xref: /linux/tools/perf/util/cpumap.c (revision 36ec807b627b4c0a0a382f0ae48eac7187d14b2b)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <api/fs/fs.h>
3 #include "cpumap.h"
4 #include "debug.h"
5 #include "event.h"
6 #include <assert.h>
7 #include <dirent.h>
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <linux/bitmap.h>
11 #include "asm/bug.h"
12 
13 #include <linux/ctype.h>
14 #include <linux/zalloc.h>
15 #include <internal/cpumap.h>
16 
17 static struct perf_cpu max_cpu_num;
18 static struct perf_cpu max_present_cpu_num;
19 static int max_node_num;
20 /**
21  * The numa node X as read from /sys/devices/system/node/nodeX indexed by the
22  * CPU number.
23  */
24 static int *cpunode_map;
25 
26 bool perf_record_cpu_map_data__test_bit(int i,
27 					const struct perf_record_cpu_map_data *data)
28 {
29 	int bit_word32 = i / 32;
30 	__u32 bit_mask32 = 1U << (i & 31);
31 	int bit_word64 = i / 64;
32 	__u64 bit_mask64 = ((__u64)1) << (i & 63);
33 
34 	return (data->mask32_data.long_size == 4)
35 		? (bit_word32 < data->mask32_data.nr) &&
36 		(data->mask32_data.mask[bit_word32] & bit_mask32) != 0
37 		: (bit_word64 < data->mask64_data.nr) &&
38 		(data->mask64_data.mask[bit_word64] & bit_mask64) != 0;
39 }
40 
41 /* Read ith mask value from data into the given 64-bit sized bitmap */
42 static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data,
43 						    int i, unsigned long *bitmap)
44 {
45 #if __SIZEOF_LONG__ == 8
46 	if (data->mask32_data.long_size == 4)
47 		bitmap[0] = data->mask32_data.mask[i];
48 	else
49 		bitmap[0] = data->mask64_data.mask[i];
50 #else
51 	if (data->mask32_data.long_size == 4) {
52 		bitmap[0] = data->mask32_data.mask[i];
53 		bitmap[1] = 0;
54 	} else {
55 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
56 		bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32);
57 		bitmap[1] = (unsigned long)data->mask64_data.mask[i];
58 #else
59 		bitmap[0] = (unsigned long)data->mask64_data.mask[i];
60 		bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32);
61 #endif
62 	}
63 #endif
64 }
65 static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data)
66 {
67 	struct perf_cpu_map *map;
68 
69 	map = perf_cpu_map__empty_new(data->cpus_data.nr);
70 	if (map) {
71 		unsigned i;
72 
73 		for (i = 0; i < data->cpus_data.nr; i++) {
74 			/*
75 			 * Special treatment for -1, which is not real cpu number,
76 			 * and we need to use (int) -1 to initialize map[i],
77 			 * otherwise it would become 65535.
78 			 */
79 			if (data->cpus_data.cpu[i] == (u16) -1)
80 				RC_CHK_ACCESS(map)->map[i].cpu = -1;
81 			else
82 				RC_CHK_ACCESS(map)->map[i].cpu = (int) data->cpus_data.cpu[i];
83 		}
84 	}
85 
86 	return map;
87 }
88 
89 static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data)
90 {
91 	DECLARE_BITMAP(local_copy, 64);
92 	int weight = 0, mask_nr = data->mask32_data.nr;
93 	struct perf_cpu_map *map;
94 
95 	for (int i = 0; i < mask_nr; i++) {
96 		perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
97 		weight += bitmap_weight(local_copy, 64);
98 	}
99 
100 	map = perf_cpu_map__empty_new(weight);
101 	if (!map)
102 		return NULL;
103 
104 	for (int i = 0, j = 0; i < mask_nr; i++) {
105 		int cpus_per_i = (i * data->mask32_data.long_size  * BITS_PER_BYTE);
106 		int cpu;
107 
108 		perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
109 		for_each_set_bit(cpu, local_copy, 64)
110 			RC_CHK_ACCESS(map)->map[j++].cpu = cpu + cpus_per_i;
111 	}
112 	return map;
113 
114 }
115 
116 static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data)
117 {
118 	struct perf_cpu_map *map;
119 	unsigned int i = 0;
120 
121 	map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu -
122 				data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu);
123 	if (!map)
124 		return NULL;
125 
126 	if (data->range_cpu_data.any_cpu)
127 		RC_CHK_ACCESS(map)->map[i++].cpu = -1;
128 
129 	for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu;
130 	     i++, cpu++)
131 		RC_CHK_ACCESS(map)->map[i].cpu = cpu;
132 
133 	return map;
134 }
135 
136 struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data)
137 {
138 	switch (data->type) {
139 	case PERF_CPU_MAP__CPUS:
140 		return cpu_map__from_entries(data);
141 	case PERF_CPU_MAP__MASK:
142 		return cpu_map__from_mask(data);
143 	case PERF_CPU_MAP__RANGE_CPUS:
144 		return cpu_map__from_range(data);
145 	default:
146 		pr_err("cpu_map__new_data unknown type %d\n", data->type);
147 		return NULL;
148 	}
149 }
150 
151 size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp)
152 {
153 #define BUFSIZE 1024
154 	char buf[BUFSIZE];
155 
156 	cpu_map__snprint(map, buf, sizeof(buf));
157 	return fprintf(fp, "%s\n", buf);
158 #undef BUFSIZE
159 }
160 
161 struct perf_cpu_map *perf_cpu_map__empty_new(int nr)
162 {
163 	struct perf_cpu_map *cpus = perf_cpu_map__alloc(nr);
164 
165 	if (cpus != NULL) {
166 		for (int i = 0; i < nr; i++)
167 			RC_CHK_ACCESS(cpus)->map[i].cpu = -1;
168 	}
169 
170 	return cpus;
171 }
172 
173 struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr)
174 {
175 	struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr);
176 
177 	if (cpus != NULL) {
178 		int i;
179 
180 		cpus->nr = nr;
181 		for (i = 0; i < nr; i++)
182 			cpus->map[i] = aggr_cpu_id__empty();
183 	}
184 
185 	return cpus;
186 }
187 
188 static int cpu__get_topology_int(int cpu, const char *name, int *value)
189 {
190 	char path[PATH_MAX];
191 
192 	snprintf(path, PATH_MAX,
193 		"devices/system/cpu/cpu%d/topology/%s", cpu, name);
194 
195 	return sysfs__read_int(path, value);
196 }
197 
198 int cpu__get_socket_id(struct perf_cpu cpu)
199 {
200 	int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value);
201 	return ret ?: value;
202 }
203 
204 struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused)
205 {
206 	struct aggr_cpu_id id = aggr_cpu_id__empty();
207 
208 	id.socket = cpu__get_socket_id(cpu);
209 	return id;
210 }
211 
212 static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer)
213 {
214 	struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer;
215 	struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer;
216 
217 	if (a->node != b->node)
218 		return a->node - b->node;
219 	else if (a->socket != b->socket)
220 		return a->socket - b->socket;
221 	else if (a->die != b->die)
222 		return a->die - b->die;
223 	else if (a->cluster != b->cluster)
224 		return a->cluster - b->cluster;
225 	else if (a->cache_lvl != b->cache_lvl)
226 		return a->cache_lvl - b->cache_lvl;
227 	else if (a->cache != b->cache)
228 		return a->cache - b->cache;
229 	else if (a->core != b->core)
230 		return a->core - b->core;
231 	else
232 		return a->thread_idx - b->thread_idx;
233 }
234 
235 struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus,
236 				       aggr_cpu_id_get_t get_id,
237 				       void *data, bool needs_sort)
238 {
239 	int idx;
240 	struct perf_cpu cpu;
241 	struct cpu_aggr_map *c = cpu_aggr_map__empty_new(perf_cpu_map__nr(cpus));
242 
243 	if (!c)
244 		return NULL;
245 
246 	/* Reset size as it may only be partially filled */
247 	c->nr = 0;
248 
249 	perf_cpu_map__for_each_cpu(cpu, idx, cpus) {
250 		bool duplicate = false;
251 		struct aggr_cpu_id cpu_id = get_id(cpu, data);
252 
253 		for (int j = 0; j < c->nr; j++) {
254 			if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) {
255 				duplicate = true;
256 				break;
257 			}
258 		}
259 		if (!duplicate) {
260 			c->map[c->nr] = cpu_id;
261 			c->nr++;
262 		}
263 	}
264 	/* Trim. */
265 	if (c->nr != perf_cpu_map__nr(cpus)) {
266 		struct cpu_aggr_map *trimmed_c =
267 			realloc(c,
268 				sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr);
269 
270 		if (trimmed_c)
271 			c = trimmed_c;
272 	}
273 
274 	/* ensure we process id in increasing order */
275 	if (needs_sort)
276 		qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp);
277 
278 	return c;
279 
280 }
281 
282 int cpu__get_die_id(struct perf_cpu cpu)
283 {
284 	int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value);
285 
286 	return ret ?: value;
287 }
288 
289 struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data)
290 {
291 	struct aggr_cpu_id id;
292 	int die;
293 
294 	die = cpu__get_die_id(cpu);
295 	/* There is no die_id on legacy system. */
296 	if (die == -1)
297 		die = 0;
298 
299 	/*
300 	 * die_id is relative to socket, so start
301 	 * with the socket ID and then add die to
302 	 * make a unique ID.
303 	 */
304 	id = aggr_cpu_id__socket(cpu, data);
305 	if (aggr_cpu_id__is_empty(&id))
306 		return id;
307 
308 	id.die = die;
309 	return id;
310 }
311 
312 int cpu__get_cluster_id(struct perf_cpu cpu)
313 {
314 	int value, ret = cpu__get_topology_int(cpu.cpu, "cluster_id", &value);
315 
316 	return ret ?: value;
317 }
318 
319 struct aggr_cpu_id aggr_cpu_id__cluster(struct perf_cpu cpu, void *data)
320 {
321 	int cluster = cpu__get_cluster_id(cpu);
322 	struct aggr_cpu_id id;
323 
324 	/* There is no cluster_id on legacy system. */
325 	if (cluster == -1)
326 		cluster = 0;
327 
328 	id = aggr_cpu_id__die(cpu, data);
329 	if (aggr_cpu_id__is_empty(&id))
330 		return id;
331 
332 	id.cluster = cluster;
333 	return id;
334 }
335 
336 int cpu__get_core_id(struct perf_cpu cpu)
337 {
338 	int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value);
339 	return ret ?: value;
340 }
341 
342 struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data)
343 {
344 	struct aggr_cpu_id id;
345 	int core = cpu__get_core_id(cpu);
346 
347 	/* aggr_cpu_id__die returns a struct with socket die, and cluster set. */
348 	id = aggr_cpu_id__cluster(cpu, data);
349 	if (aggr_cpu_id__is_empty(&id))
350 		return id;
351 
352 	/*
353 	 * core_id is relative to socket and die, we need a global id.
354 	 * So we combine the result from cpu_map__get_die with the core id
355 	 */
356 	id.core = core;
357 	return id;
358 
359 }
360 
361 struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data)
362 {
363 	struct aggr_cpu_id id;
364 
365 	/* aggr_cpu_id__core returns a struct with socket, die and core set. */
366 	id = aggr_cpu_id__core(cpu, data);
367 	if (aggr_cpu_id__is_empty(&id))
368 		return id;
369 
370 	id.cpu = cpu;
371 	return id;
372 
373 }
374 
375 struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused)
376 {
377 	struct aggr_cpu_id id = aggr_cpu_id__empty();
378 
379 	id.node = cpu__get_node(cpu);
380 	return id;
381 }
382 
383 struct aggr_cpu_id aggr_cpu_id__global(struct perf_cpu cpu, void *data __maybe_unused)
384 {
385 	struct aggr_cpu_id id = aggr_cpu_id__empty();
386 
387 	/* it always aggregates to the cpu 0 */
388 	cpu.cpu = 0;
389 	id.cpu = cpu;
390 	return id;
391 }
392 
393 /* setup simple routines to easily access node numbers given a cpu number */
394 static int get_max_num(char *path, int *max)
395 {
396 	size_t num;
397 	char *buf;
398 	int err = 0;
399 
400 	if (filename__read_str(path, &buf, &num))
401 		return -1;
402 
403 	buf[num] = '\0';
404 
405 	/* start on the right, to find highest node num */
406 	while (--num) {
407 		if ((buf[num] == ',') || (buf[num] == '-')) {
408 			num++;
409 			break;
410 		}
411 	}
412 	if (sscanf(&buf[num], "%d", max) < 1) {
413 		err = -1;
414 		goto out;
415 	}
416 
417 	/* convert from 0-based to 1-based */
418 	(*max)++;
419 
420 out:
421 	free(buf);
422 	return err;
423 }
424 
425 /* Determine highest possible cpu in the system for sparse allocation */
426 static void set_max_cpu_num(void)
427 {
428 	const char *mnt;
429 	char path[PATH_MAX];
430 	int ret = -1;
431 
432 	/* set up default */
433 	max_cpu_num.cpu = 4096;
434 	max_present_cpu_num.cpu = 4096;
435 
436 	mnt = sysfs__mountpoint();
437 	if (!mnt)
438 		goto out;
439 
440 	/* get the highest possible cpu number for a sparse allocation */
441 	ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt);
442 	if (ret >= PATH_MAX) {
443 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
444 		goto out;
445 	}
446 
447 	ret = get_max_num(path, &max_cpu_num.cpu);
448 	if (ret)
449 		goto out;
450 
451 	/* get the highest present cpu number for a sparse allocation */
452 	ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt);
453 	if (ret >= PATH_MAX) {
454 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
455 		goto out;
456 	}
457 
458 	ret = get_max_num(path, &max_present_cpu_num.cpu);
459 
460 out:
461 	if (ret)
462 		pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu);
463 }
464 
465 /* Determine highest possible node in the system for sparse allocation */
466 static void set_max_node_num(void)
467 {
468 	const char *mnt;
469 	char path[PATH_MAX];
470 	int ret = -1;
471 
472 	/* set up default */
473 	max_node_num = 8;
474 
475 	mnt = sysfs__mountpoint();
476 	if (!mnt)
477 		goto out;
478 
479 	/* get the highest possible cpu number for a sparse allocation */
480 	ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt);
481 	if (ret >= PATH_MAX) {
482 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
483 		goto out;
484 	}
485 
486 	ret = get_max_num(path, &max_node_num);
487 
488 out:
489 	if (ret)
490 		pr_err("Failed to read max nodes, using default of %d\n", max_node_num);
491 }
492 
493 int cpu__max_node(void)
494 {
495 	if (unlikely(!max_node_num))
496 		set_max_node_num();
497 
498 	return max_node_num;
499 }
500 
501 struct perf_cpu cpu__max_cpu(void)
502 {
503 	if (unlikely(!max_cpu_num.cpu))
504 		set_max_cpu_num();
505 
506 	return max_cpu_num;
507 }
508 
509 struct perf_cpu cpu__max_present_cpu(void)
510 {
511 	if (unlikely(!max_present_cpu_num.cpu))
512 		set_max_cpu_num();
513 
514 	return max_present_cpu_num;
515 }
516 
517 
518 int cpu__get_node(struct perf_cpu cpu)
519 {
520 	if (unlikely(cpunode_map == NULL)) {
521 		pr_debug("cpu_map not initialized\n");
522 		return -1;
523 	}
524 
525 	return cpunode_map[cpu.cpu];
526 }
527 
528 static int init_cpunode_map(void)
529 {
530 	int i;
531 
532 	set_max_cpu_num();
533 	set_max_node_num();
534 
535 	cpunode_map = calloc(max_cpu_num.cpu, sizeof(int));
536 	if (!cpunode_map) {
537 		pr_err("%s: calloc failed\n", __func__);
538 		return -1;
539 	}
540 
541 	for (i = 0; i < max_cpu_num.cpu; i++)
542 		cpunode_map[i] = -1;
543 
544 	return 0;
545 }
546 
547 int cpu__setup_cpunode_map(void)
548 {
549 	struct dirent *dent1, *dent2;
550 	DIR *dir1, *dir2;
551 	unsigned int cpu, mem;
552 	char buf[PATH_MAX];
553 	char path[PATH_MAX];
554 	const char *mnt;
555 	int n;
556 
557 	/* initialize globals */
558 	if (init_cpunode_map())
559 		return -1;
560 
561 	mnt = sysfs__mountpoint();
562 	if (!mnt)
563 		return 0;
564 
565 	n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt);
566 	if (n >= PATH_MAX) {
567 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
568 		return -1;
569 	}
570 
571 	dir1 = opendir(path);
572 	if (!dir1)
573 		return 0;
574 
575 	/* walk tree and setup map */
576 	while ((dent1 = readdir(dir1)) != NULL) {
577 		if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1)
578 			continue;
579 
580 		n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name);
581 		if (n >= PATH_MAX) {
582 			pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
583 			continue;
584 		}
585 
586 		dir2 = opendir(buf);
587 		if (!dir2)
588 			continue;
589 		while ((dent2 = readdir(dir2)) != NULL) {
590 			if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
591 				continue;
592 			cpunode_map[cpu] = mem;
593 		}
594 		closedir(dir2);
595 	}
596 	closedir(dir1);
597 	return 0;
598 }
599 
600 size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size)
601 {
602 	int i, start = -1;
603 	bool first = true;
604 	size_t ret = 0;
605 
606 #define COMMA first ? "" : ","
607 
608 	for (i = 0; i < perf_cpu_map__nr(map) + 1; i++) {
609 		struct perf_cpu cpu = { .cpu = INT_MAX };
610 		bool last = i == perf_cpu_map__nr(map);
611 
612 		if (!last)
613 			cpu = perf_cpu_map__cpu(map, i);
614 
615 		if (start == -1) {
616 			start = i;
617 			if (last) {
618 				ret += snprintf(buf + ret, size - ret,
619 						"%s%d", COMMA,
620 						perf_cpu_map__cpu(map, i).cpu);
621 			}
622 		} else if (((i - start) != (cpu.cpu - perf_cpu_map__cpu(map, start).cpu)) || last) {
623 			int end = i - 1;
624 
625 			if (start == end) {
626 				ret += snprintf(buf + ret, size - ret,
627 						"%s%d", COMMA,
628 						perf_cpu_map__cpu(map, start).cpu);
629 			} else {
630 				ret += snprintf(buf + ret, size - ret,
631 						"%s%d-%d", COMMA,
632 						perf_cpu_map__cpu(map, start).cpu, perf_cpu_map__cpu(map, end).cpu);
633 			}
634 			first = false;
635 			start = i;
636 		}
637 	}
638 
639 #undef COMMA
640 
641 	pr_debug2("cpumask list: %s\n", buf);
642 	return ret;
643 }
644 
645 static char hex_char(unsigned char val)
646 {
647 	if (val < 10)
648 		return val + '0';
649 	if (val < 16)
650 		return val - 10 + 'a';
651 	return '?';
652 }
653 
654 size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size)
655 {
656 	int idx;
657 	char *ptr = buf;
658 	unsigned char *bitmap;
659 	struct perf_cpu c, last_cpu = perf_cpu_map__max(map);
660 
661 	if (buf == NULL)
662 		return 0;
663 
664 	bitmap = zalloc(last_cpu.cpu / 8 + 1);
665 	if (bitmap == NULL) {
666 		buf[0] = '\0';
667 		return 0;
668 	}
669 
670 	perf_cpu_map__for_each_cpu(c, idx, map)
671 		bitmap[c.cpu / 8] |= 1 << (c.cpu % 8);
672 
673 	for (int cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) {
674 		unsigned char bits = bitmap[cpu / 8];
675 
676 		if (cpu % 8)
677 			bits >>= 4;
678 		else
679 			bits &= 0xf;
680 
681 		*ptr++ = hex_char(bits);
682 		if ((cpu % 32) == 0 && cpu > 0)
683 			*ptr++ = ',';
684 	}
685 	*ptr = '\0';
686 	free(bitmap);
687 
688 	buf[size - 1] = '\0';
689 	return ptr - buf;
690 }
691 
692 struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */
693 {
694 	static struct perf_cpu_map *online;
695 
696 	if (!online)
697 		online = perf_cpu_map__new_online_cpus(); /* from /sys/devices/system/cpu/online */
698 
699 	return online;
700 }
701 
702 bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b)
703 {
704 	return a->thread_idx == b->thread_idx &&
705 		a->node == b->node &&
706 		a->socket == b->socket &&
707 		a->die == b->die &&
708 		a->cluster == b->cluster &&
709 		a->cache_lvl == b->cache_lvl &&
710 		a->cache == b->cache &&
711 		a->core == b->core &&
712 		a->cpu.cpu == b->cpu.cpu;
713 }
714 
715 bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a)
716 {
717 	return a->thread_idx == -1 &&
718 		a->node == -1 &&
719 		a->socket == -1 &&
720 		a->die == -1 &&
721 		a->cluster == -1 &&
722 		a->cache_lvl == -1 &&
723 		a->cache == -1 &&
724 		a->core == -1 &&
725 		a->cpu.cpu == -1;
726 }
727 
728 struct aggr_cpu_id aggr_cpu_id__empty(void)
729 {
730 	struct aggr_cpu_id ret = {
731 		.thread_idx = -1,
732 		.node = -1,
733 		.socket = -1,
734 		.die = -1,
735 		.cluster = -1,
736 		.cache_lvl = -1,
737 		.cache = -1,
738 		.core = -1,
739 		.cpu = (struct perf_cpu){ .cpu = -1 },
740 	};
741 	return ret;
742 }
743