xref: /linux/tools/perf/util/cpumap.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <api/fs/fs.h>
3 #include "cpumap.h"
4 #include "debug.h"
5 #include "event.h"
6 #include <assert.h>
7 #include <dirent.h>
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <linux/bitmap.h>
11 #include "asm/bug.h"
12 
13 #include <linux/ctype.h>
14 #include <linux/zalloc.h>
15 #include <internal/cpumap.h>
16 
17 static struct perf_cpu max_cpu_num;
18 static struct perf_cpu max_present_cpu_num;
19 static int max_node_num;
20 /**
21  * The numa node X as read from /sys/devices/system/node/nodeX indexed by the
22  * CPU number.
23  */
24 static int *cpunode_map;
25 
26 bool perf_record_cpu_map_data__test_bit(int i,
27 					const struct perf_record_cpu_map_data *data)
28 {
29 	int bit_word32 = i / 32;
30 	__u32 bit_mask32 = 1U << (i & 31);
31 	int bit_word64 = i / 64;
32 	__u64 bit_mask64 = ((__u64)1) << (i & 63);
33 
34 	return (data->mask32_data.long_size == 4)
35 		? (bit_word32 < data->mask32_data.nr) &&
36 		(data->mask32_data.mask[bit_word32] & bit_mask32) != 0
37 		: (bit_word64 < data->mask64_data.nr) &&
38 		(data->mask64_data.mask[bit_word64] & bit_mask64) != 0;
39 }
40 
41 /* Read ith mask value from data into the given 64-bit sized bitmap */
42 static void perf_record_cpu_map_data__read_one_mask(const struct perf_record_cpu_map_data *data,
43 						    int i, unsigned long *bitmap)
44 {
45 #if __SIZEOF_LONG__ == 8
46 	if (data->mask32_data.long_size == 4)
47 		bitmap[0] = data->mask32_data.mask[i];
48 	else
49 		bitmap[0] = data->mask64_data.mask[i];
50 #else
51 	if (data->mask32_data.long_size == 4) {
52 		bitmap[0] = data->mask32_data.mask[i];
53 		bitmap[1] = 0;
54 	} else {
55 #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
56 		bitmap[0] = (unsigned long)(data->mask64_data.mask[i] >> 32);
57 		bitmap[1] = (unsigned long)data->mask64_data.mask[i];
58 #else
59 		bitmap[0] = (unsigned long)data->mask64_data.mask[i];
60 		bitmap[1] = (unsigned long)(data->mask64_data.mask[i] >> 32);
61 #endif
62 	}
63 #endif
64 }
65 static struct perf_cpu_map *cpu_map__from_entries(const struct perf_record_cpu_map_data *data)
66 {
67 	struct perf_cpu_map *map;
68 
69 	map = perf_cpu_map__empty_new(data->cpus_data.nr);
70 	if (map) {
71 		unsigned i;
72 
73 		for (i = 0; i < data->cpus_data.nr; i++) {
74 			/*
75 			 * Special treatment for -1, which is not real cpu number,
76 			 * and we need to use (int) -1 to initialize map[i],
77 			 * otherwise it would become 65535.
78 			 */
79 			if (data->cpus_data.cpu[i] == (u16) -1)
80 				RC_CHK_ACCESS(map)->map[i].cpu = -1;
81 			else
82 				RC_CHK_ACCESS(map)->map[i].cpu = (int) data->cpus_data.cpu[i];
83 		}
84 	}
85 
86 	return map;
87 }
88 
89 static struct perf_cpu_map *cpu_map__from_mask(const struct perf_record_cpu_map_data *data)
90 {
91 	DECLARE_BITMAP(local_copy, 64);
92 	int weight = 0, mask_nr = data->mask32_data.nr;
93 	struct perf_cpu_map *map;
94 
95 	for (int i = 0; i < mask_nr; i++) {
96 		perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
97 		weight += bitmap_weight(local_copy, 64);
98 	}
99 
100 	map = perf_cpu_map__empty_new(weight);
101 	if (!map)
102 		return NULL;
103 
104 	for (int i = 0, j = 0; i < mask_nr; i++) {
105 		int cpus_per_i = (i * data->mask32_data.long_size  * BITS_PER_BYTE);
106 		int cpu;
107 
108 		perf_record_cpu_map_data__read_one_mask(data, i, local_copy);
109 		for_each_set_bit(cpu, local_copy, 64)
110 			RC_CHK_ACCESS(map)->map[j++].cpu = cpu + cpus_per_i;
111 	}
112 	return map;
113 
114 }
115 
116 static struct perf_cpu_map *cpu_map__from_range(const struct perf_record_cpu_map_data *data)
117 {
118 	struct perf_cpu_map *map;
119 	unsigned int i = 0;
120 
121 	map = perf_cpu_map__empty_new(data->range_cpu_data.end_cpu -
122 				data->range_cpu_data.start_cpu + 1 + data->range_cpu_data.any_cpu);
123 	if (!map)
124 		return NULL;
125 
126 	if (data->range_cpu_data.any_cpu)
127 		RC_CHK_ACCESS(map)->map[i++].cpu = -1;
128 
129 	for (int cpu = data->range_cpu_data.start_cpu; cpu <= data->range_cpu_data.end_cpu;
130 	     i++, cpu++)
131 		RC_CHK_ACCESS(map)->map[i].cpu = cpu;
132 
133 	return map;
134 }
135 
136 struct perf_cpu_map *cpu_map__new_data(const struct perf_record_cpu_map_data *data)
137 {
138 	switch (data->type) {
139 	case PERF_CPU_MAP__CPUS:
140 		return cpu_map__from_entries(data);
141 	case PERF_CPU_MAP__MASK:
142 		return cpu_map__from_mask(data);
143 	case PERF_CPU_MAP__RANGE_CPUS:
144 		return cpu_map__from_range(data);
145 	default:
146 		pr_err("cpu_map__new_data unknown type %d\n", data->type);
147 		return NULL;
148 	}
149 }
150 
151 size_t cpu_map__fprintf(struct perf_cpu_map *map, FILE *fp)
152 {
153 #define BUFSIZE 1024
154 	char buf[BUFSIZE];
155 
156 	cpu_map__snprint(map, buf, sizeof(buf));
157 	return fprintf(fp, "%s\n", buf);
158 #undef BUFSIZE
159 }
160 
161 struct perf_cpu_map *perf_cpu_map__empty_new(int nr)
162 {
163 	struct perf_cpu_map *cpus = perf_cpu_map__alloc(nr);
164 
165 	if (cpus != NULL) {
166 		for (int i = 0; i < nr; i++)
167 			RC_CHK_ACCESS(cpus)->map[i].cpu = -1;
168 	}
169 
170 	return cpus;
171 }
172 
173 struct cpu_aggr_map *cpu_aggr_map__empty_new(int nr)
174 {
175 	struct cpu_aggr_map *cpus = malloc(sizeof(*cpus) + sizeof(struct aggr_cpu_id) * nr);
176 
177 	if (cpus != NULL) {
178 		int i;
179 
180 		cpus->nr = nr;
181 		for (i = 0; i < nr; i++)
182 			cpus->map[i] = aggr_cpu_id__empty();
183 
184 		refcount_set(&cpus->refcnt, 1);
185 	}
186 
187 	return cpus;
188 }
189 
190 static int cpu__get_topology_int(int cpu, const char *name, int *value)
191 {
192 	char path[PATH_MAX];
193 
194 	snprintf(path, PATH_MAX,
195 		"devices/system/cpu/cpu%d/topology/%s", cpu, name);
196 
197 	return sysfs__read_int(path, value);
198 }
199 
200 int cpu__get_socket_id(struct perf_cpu cpu)
201 {
202 	int value, ret = cpu__get_topology_int(cpu.cpu, "physical_package_id", &value);
203 	return ret ?: value;
204 }
205 
206 struct aggr_cpu_id aggr_cpu_id__socket(struct perf_cpu cpu, void *data __maybe_unused)
207 {
208 	struct aggr_cpu_id id = aggr_cpu_id__empty();
209 
210 	id.socket = cpu__get_socket_id(cpu);
211 	return id;
212 }
213 
214 static int aggr_cpu_id__cmp(const void *a_pointer, const void *b_pointer)
215 {
216 	struct aggr_cpu_id *a = (struct aggr_cpu_id *)a_pointer;
217 	struct aggr_cpu_id *b = (struct aggr_cpu_id *)b_pointer;
218 
219 	if (a->node != b->node)
220 		return a->node - b->node;
221 	else if (a->socket != b->socket)
222 		return a->socket - b->socket;
223 	else if (a->die != b->die)
224 		return a->die - b->die;
225 	else if (a->cluster != b->cluster)
226 		return a->cluster - b->cluster;
227 	else if (a->cache_lvl != b->cache_lvl)
228 		return a->cache_lvl - b->cache_lvl;
229 	else if (a->cache != b->cache)
230 		return a->cache - b->cache;
231 	else if (a->core != b->core)
232 		return a->core - b->core;
233 	else
234 		return a->thread_idx - b->thread_idx;
235 }
236 
237 struct cpu_aggr_map *cpu_aggr_map__new(const struct perf_cpu_map *cpus,
238 				       aggr_cpu_id_get_t get_id,
239 				       void *data, bool needs_sort)
240 {
241 	int idx;
242 	struct perf_cpu cpu;
243 	struct cpu_aggr_map *c = cpu_aggr_map__empty_new(perf_cpu_map__nr(cpus));
244 
245 	if (!c)
246 		return NULL;
247 
248 	/* Reset size as it may only be partially filled */
249 	c->nr = 0;
250 
251 	perf_cpu_map__for_each_cpu(cpu, idx, cpus) {
252 		bool duplicate = false;
253 		struct aggr_cpu_id cpu_id = get_id(cpu, data);
254 
255 		for (int j = 0; j < c->nr; j++) {
256 			if (aggr_cpu_id__equal(&cpu_id, &c->map[j])) {
257 				duplicate = true;
258 				break;
259 			}
260 		}
261 		if (!duplicate) {
262 			c->map[c->nr] = cpu_id;
263 			c->nr++;
264 		}
265 	}
266 	/* Trim. */
267 	if (c->nr != perf_cpu_map__nr(cpus)) {
268 		struct cpu_aggr_map *trimmed_c =
269 			realloc(c,
270 				sizeof(struct cpu_aggr_map) + sizeof(struct aggr_cpu_id) * c->nr);
271 
272 		if (trimmed_c)
273 			c = trimmed_c;
274 	}
275 
276 	/* ensure we process id in increasing order */
277 	if (needs_sort)
278 		qsort(c->map, c->nr, sizeof(struct aggr_cpu_id), aggr_cpu_id__cmp);
279 
280 	return c;
281 
282 }
283 
284 int cpu__get_die_id(struct perf_cpu cpu)
285 {
286 	int value, ret = cpu__get_topology_int(cpu.cpu, "die_id", &value);
287 
288 	return ret ?: value;
289 }
290 
291 struct aggr_cpu_id aggr_cpu_id__die(struct perf_cpu cpu, void *data)
292 {
293 	struct aggr_cpu_id id;
294 	int die;
295 
296 	die = cpu__get_die_id(cpu);
297 	/* There is no die_id on legacy system. */
298 	if (die == -1)
299 		die = 0;
300 
301 	/*
302 	 * die_id is relative to socket, so start
303 	 * with the socket ID and then add die to
304 	 * make a unique ID.
305 	 */
306 	id = aggr_cpu_id__socket(cpu, data);
307 	if (aggr_cpu_id__is_empty(&id))
308 		return id;
309 
310 	id.die = die;
311 	return id;
312 }
313 
314 int cpu__get_cluster_id(struct perf_cpu cpu)
315 {
316 	int value, ret = cpu__get_topology_int(cpu.cpu, "cluster_id", &value);
317 
318 	return ret ?: value;
319 }
320 
321 struct aggr_cpu_id aggr_cpu_id__cluster(struct perf_cpu cpu, void *data)
322 {
323 	int cluster = cpu__get_cluster_id(cpu);
324 	struct aggr_cpu_id id;
325 
326 	/* There is no cluster_id on legacy system. */
327 	if (cluster == -1)
328 		cluster = 0;
329 
330 	id = aggr_cpu_id__die(cpu, data);
331 	if (aggr_cpu_id__is_empty(&id))
332 		return id;
333 
334 	id.cluster = cluster;
335 	return id;
336 }
337 
338 int cpu__get_core_id(struct perf_cpu cpu)
339 {
340 	int value, ret = cpu__get_topology_int(cpu.cpu, "core_id", &value);
341 	return ret ?: value;
342 }
343 
344 struct aggr_cpu_id aggr_cpu_id__core(struct perf_cpu cpu, void *data)
345 {
346 	struct aggr_cpu_id id;
347 	int core = cpu__get_core_id(cpu);
348 
349 	/* aggr_cpu_id__die returns a struct with socket die, and cluster set. */
350 	id = aggr_cpu_id__cluster(cpu, data);
351 	if (aggr_cpu_id__is_empty(&id))
352 		return id;
353 
354 	/*
355 	 * core_id is relative to socket and die, we need a global id.
356 	 * So we combine the result from cpu_map__get_die with the core id
357 	 */
358 	id.core = core;
359 	return id;
360 
361 }
362 
363 struct aggr_cpu_id aggr_cpu_id__cpu(struct perf_cpu cpu, void *data)
364 {
365 	struct aggr_cpu_id id;
366 
367 	/* aggr_cpu_id__core returns a struct with socket, die and core set. */
368 	id = aggr_cpu_id__core(cpu, data);
369 	if (aggr_cpu_id__is_empty(&id))
370 		return id;
371 
372 	id.cpu = cpu;
373 	return id;
374 
375 }
376 
377 struct aggr_cpu_id aggr_cpu_id__node(struct perf_cpu cpu, void *data __maybe_unused)
378 {
379 	struct aggr_cpu_id id = aggr_cpu_id__empty();
380 
381 	id.node = cpu__get_node(cpu);
382 	return id;
383 }
384 
385 struct aggr_cpu_id aggr_cpu_id__global(struct perf_cpu cpu, void *data __maybe_unused)
386 {
387 	struct aggr_cpu_id id = aggr_cpu_id__empty();
388 
389 	/* it always aggregates to the cpu 0 */
390 	cpu.cpu = 0;
391 	id.cpu = cpu;
392 	return id;
393 }
394 
395 /* setup simple routines to easily access node numbers given a cpu number */
396 static int get_max_num(char *path, int *max)
397 {
398 	size_t num;
399 	char *buf;
400 	int err = 0;
401 
402 	if (filename__read_str(path, &buf, &num))
403 		return -1;
404 
405 	buf[num] = '\0';
406 
407 	/* start on the right, to find highest node num */
408 	while (--num) {
409 		if ((buf[num] == ',') || (buf[num] == '-')) {
410 			num++;
411 			break;
412 		}
413 	}
414 	if (sscanf(&buf[num], "%d", max) < 1) {
415 		err = -1;
416 		goto out;
417 	}
418 
419 	/* convert from 0-based to 1-based */
420 	(*max)++;
421 
422 out:
423 	free(buf);
424 	return err;
425 }
426 
427 /* Determine highest possible cpu in the system for sparse allocation */
428 static void set_max_cpu_num(void)
429 {
430 	const char *mnt;
431 	char path[PATH_MAX];
432 	int ret = -1;
433 
434 	/* set up default */
435 	max_cpu_num.cpu = 4096;
436 	max_present_cpu_num.cpu = 4096;
437 
438 	mnt = sysfs__mountpoint();
439 	if (!mnt)
440 		goto out;
441 
442 	/* get the highest possible cpu number for a sparse allocation */
443 	ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/possible", mnt);
444 	if (ret >= PATH_MAX) {
445 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
446 		goto out;
447 	}
448 
449 	ret = get_max_num(path, &max_cpu_num.cpu);
450 	if (ret)
451 		goto out;
452 
453 	/* get the highest present cpu number for a sparse allocation */
454 	ret = snprintf(path, PATH_MAX, "%s/devices/system/cpu/present", mnt);
455 	if (ret >= PATH_MAX) {
456 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
457 		goto out;
458 	}
459 
460 	ret = get_max_num(path, &max_present_cpu_num.cpu);
461 
462 out:
463 	if (ret)
464 		pr_err("Failed to read max cpus, using default of %d\n", max_cpu_num.cpu);
465 }
466 
467 /* Determine highest possible node in the system for sparse allocation */
468 static void set_max_node_num(void)
469 {
470 	const char *mnt;
471 	char path[PATH_MAX];
472 	int ret = -1;
473 
474 	/* set up default */
475 	max_node_num = 8;
476 
477 	mnt = sysfs__mountpoint();
478 	if (!mnt)
479 		goto out;
480 
481 	/* get the highest possible cpu number for a sparse allocation */
482 	ret = snprintf(path, PATH_MAX, "%s/devices/system/node/possible", mnt);
483 	if (ret >= PATH_MAX) {
484 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
485 		goto out;
486 	}
487 
488 	ret = get_max_num(path, &max_node_num);
489 
490 out:
491 	if (ret)
492 		pr_err("Failed to read max nodes, using default of %d\n", max_node_num);
493 }
494 
495 int cpu__max_node(void)
496 {
497 	if (unlikely(!max_node_num))
498 		set_max_node_num();
499 
500 	return max_node_num;
501 }
502 
503 struct perf_cpu cpu__max_cpu(void)
504 {
505 	if (unlikely(!max_cpu_num.cpu))
506 		set_max_cpu_num();
507 
508 	return max_cpu_num;
509 }
510 
511 struct perf_cpu cpu__max_present_cpu(void)
512 {
513 	if (unlikely(!max_present_cpu_num.cpu))
514 		set_max_cpu_num();
515 
516 	return max_present_cpu_num;
517 }
518 
519 
520 int cpu__get_node(struct perf_cpu cpu)
521 {
522 	if (unlikely(cpunode_map == NULL)) {
523 		pr_debug("cpu_map not initialized\n");
524 		return -1;
525 	}
526 
527 	return cpunode_map[cpu.cpu];
528 }
529 
530 static int init_cpunode_map(void)
531 {
532 	int i;
533 
534 	set_max_cpu_num();
535 	set_max_node_num();
536 
537 	cpunode_map = calloc(max_cpu_num.cpu, sizeof(int));
538 	if (!cpunode_map) {
539 		pr_err("%s: calloc failed\n", __func__);
540 		return -1;
541 	}
542 
543 	for (i = 0; i < max_cpu_num.cpu; i++)
544 		cpunode_map[i] = -1;
545 
546 	return 0;
547 }
548 
549 int cpu__setup_cpunode_map(void)
550 {
551 	struct dirent *dent1, *dent2;
552 	DIR *dir1, *dir2;
553 	unsigned int cpu, mem;
554 	char buf[PATH_MAX];
555 	char path[PATH_MAX];
556 	const char *mnt;
557 	int n;
558 
559 	/* initialize globals */
560 	if (init_cpunode_map())
561 		return -1;
562 
563 	mnt = sysfs__mountpoint();
564 	if (!mnt)
565 		return 0;
566 
567 	n = snprintf(path, PATH_MAX, "%s/devices/system/node", mnt);
568 	if (n >= PATH_MAX) {
569 		pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
570 		return -1;
571 	}
572 
573 	dir1 = opendir(path);
574 	if (!dir1)
575 		return 0;
576 
577 	/* walk tree and setup map */
578 	while ((dent1 = readdir(dir1)) != NULL) {
579 		if (dent1->d_type != DT_DIR || sscanf(dent1->d_name, "node%u", &mem) < 1)
580 			continue;
581 
582 		n = snprintf(buf, PATH_MAX, "%s/%s", path, dent1->d_name);
583 		if (n >= PATH_MAX) {
584 			pr_err("sysfs path crossed PATH_MAX(%d) size\n", PATH_MAX);
585 			continue;
586 		}
587 
588 		dir2 = opendir(buf);
589 		if (!dir2)
590 			continue;
591 		while ((dent2 = readdir(dir2)) != NULL) {
592 			if (dent2->d_type != DT_LNK || sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
593 				continue;
594 			cpunode_map[cpu] = mem;
595 		}
596 		closedir(dir2);
597 	}
598 	closedir(dir1);
599 	return 0;
600 }
601 
602 size_t cpu_map__snprint(struct perf_cpu_map *map, char *buf, size_t size)
603 {
604 	int i, start = -1;
605 	bool first = true;
606 	size_t ret = 0;
607 
608 #define COMMA first ? "" : ","
609 
610 	for (i = 0; i < perf_cpu_map__nr(map) + 1; i++) {
611 		struct perf_cpu cpu = { .cpu = INT_MAX };
612 		bool last = i == perf_cpu_map__nr(map);
613 
614 		if (!last)
615 			cpu = perf_cpu_map__cpu(map, i);
616 
617 		if (start == -1) {
618 			start = i;
619 			if (last) {
620 				ret += snprintf(buf + ret, size - ret,
621 						"%s%d", COMMA,
622 						perf_cpu_map__cpu(map, i).cpu);
623 			}
624 		} else if (((i - start) != (cpu.cpu - perf_cpu_map__cpu(map, start).cpu)) || last) {
625 			int end = i - 1;
626 
627 			if (start == end) {
628 				ret += snprintf(buf + ret, size - ret,
629 						"%s%d", COMMA,
630 						perf_cpu_map__cpu(map, start).cpu);
631 			} else {
632 				ret += snprintf(buf + ret, size - ret,
633 						"%s%d-%d", COMMA,
634 						perf_cpu_map__cpu(map, start).cpu, perf_cpu_map__cpu(map, end).cpu);
635 			}
636 			first = false;
637 			start = i;
638 		}
639 	}
640 
641 #undef COMMA
642 
643 	pr_debug2("cpumask list: %s\n", buf);
644 	return ret;
645 }
646 
647 static char hex_char(unsigned char val)
648 {
649 	if (val < 10)
650 		return val + '0';
651 	if (val < 16)
652 		return val - 10 + 'a';
653 	return '?';
654 }
655 
656 size_t cpu_map__snprint_mask(struct perf_cpu_map *map, char *buf, size_t size)
657 {
658 	int idx;
659 	char *ptr = buf;
660 	unsigned char *bitmap;
661 	struct perf_cpu c, last_cpu = perf_cpu_map__max(map);
662 
663 	if (buf == NULL)
664 		return 0;
665 
666 	bitmap = zalloc(last_cpu.cpu / 8 + 1);
667 	if (bitmap == NULL) {
668 		buf[0] = '\0';
669 		return 0;
670 	}
671 
672 	perf_cpu_map__for_each_cpu(c, idx, map)
673 		bitmap[c.cpu / 8] |= 1 << (c.cpu % 8);
674 
675 	for (int cpu = last_cpu.cpu / 4 * 4; cpu >= 0; cpu -= 4) {
676 		unsigned char bits = bitmap[cpu / 8];
677 
678 		if (cpu % 8)
679 			bits >>= 4;
680 		else
681 			bits &= 0xf;
682 
683 		*ptr++ = hex_char(bits);
684 		if ((cpu % 32) == 0 && cpu > 0)
685 			*ptr++ = ',';
686 	}
687 	*ptr = '\0';
688 	free(bitmap);
689 
690 	buf[size - 1] = '\0';
691 	return ptr - buf;
692 }
693 
694 struct perf_cpu_map *cpu_map__online(void) /* thread unsafe */
695 {
696 	static struct perf_cpu_map *online;
697 
698 	if (!online)
699 		online = perf_cpu_map__new_online_cpus(); /* from /sys/devices/system/cpu/online */
700 
701 	return online;
702 }
703 
704 bool aggr_cpu_id__equal(const struct aggr_cpu_id *a, const struct aggr_cpu_id *b)
705 {
706 	return a->thread_idx == b->thread_idx &&
707 		a->node == b->node &&
708 		a->socket == b->socket &&
709 		a->die == b->die &&
710 		a->cluster == b->cluster &&
711 		a->cache_lvl == b->cache_lvl &&
712 		a->cache == b->cache &&
713 		a->core == b->core &&
714 		a->cpu.cpu == b->cpu.cpu;
715 }
716 
717 bool aggr_cpu_id__is_empty(const struct aggr_cpu_id *a)
718 {
719 	return a->thread_idx == -1 &&
720 		a->node == -1 &&
721 		a->socket == -1 &&
722 		a->die == -1 &&
723 		a->cluster == -1 &&
724 		a->cache_lvl == -1 &&
725 		a->cache == -1 &&
726 		a->core == -1 &&
727 		a->cpu.cpu == -1;
728 }
729 
730 struct aggr_cpu_id aggr_cpu_id__empty(void)
731 {
732 	struct aggr_cpu_id ret = {
733 		.thread_idx = -1,
734 		.node = -1,
735 		.socket = -1,
736 		.die = -1,
737 		.cluster = -1,
738 		.cache_lvl = -1,
739 		.cache = -1,
740 		.core = -1,
741 		.cpu = (struct perf_cpu){ .cpu = -1 },
742 	};
743 	return ret;
744 }
745