1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * builtin-stat.c 4 * 5 * Builtin stat command: Give a precise performance counters summary 6 * overview about any workload, CPU or specific PID. 7 * 8 * Sample output: 9 10 $ perf stat ./hackbench 10 11 12 Time: 0.118 13 14 Performance counter stats for './hackbench 10': 15 16 1708.761321 task-clock # 11.037 CPUs utilized 17 41,190 context-switches # 0.024 M/sec 18 6,735 CPU-migrations # 0.004 M/sec 19 17,318 page-faults # 0.010 M/sec 20 5,205,202,243 cycles # 3.046 GHz 21 3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle 22 1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle 23 2,603,501,247 instructions # 0.50 insns per cycle 24 # 1.48 stalled cycles per insn 25 484,357,498 branches # 283.455 M/sec 26 6,388,934 branch-misses # 1.32% of all branches 27 28 0.154822978 seconds time elapsed 29 30 * 31 * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com> 32 * 33 * Improvements and fixes by: 34 * 35 * Arjan van de Ven <arjan@linux.intel.com> 36 * Yanmin Zhang <yanmin.zhang@intel.com> 37 * Wu Fengguang <fengguang.wu@intel.com> 38 * Mike Galbraith <efault@gmx.de> 39 * Paul Mackerras <paulus@samba.org> 40 * Jaswinder Singh Rajput <jaswinder@kernel.org> 41 */ 42 43 #include "builtin.h" 44 #include "util/cgroup.h" 45 #include <subcmd/parse-options.h> 46 #include "util/parse-events.h" 47 #include "util/pmus.h" 48 #include "util/pmu.h" 49 #include "util/event.h" 50 #include "util/evlist.h" 51 #include "util/evsel.h" 52 #include "util/debug.h" 53 #include "util/color.h" 54 #include "util/stat.h" 55 #include "util/header.h" 56 #include "util/cpumap.h" 57 #include "util/thread_map.h" 58 #include "util/counts.h" 59 #include "util/topdown.h" 60 #include "util/session.h" 61 #include "util/tool.h" 62 #include "util/string2.h" 63 #include "util/metricgroup.h" 64 #include "util/synthetic-events.h" 65 #include "util/target.h" 66 #include "util/time-utils.h" 67 #include "util/top.h" 68 #include "util/affinity.h" 69 #include "util/pfm.h" 70 #include "util/bpf_counter.h" 71 #include "util/iostat.h" 72 #include "util/util.h" 73 #include "asm/bug.h" 74 75 #include <linux/time64.h> 76 #include <linux/zalloc.h> 77 #include <api/fs/fs.h> 78 #include <errno.h> 79 #include <signal.h> 80 #include <stdlib.h> 81 #include <sys/prctl.h> 82 #include <inttypes.h> 83 #include <locale.h> 84 #include <math.h> 85 #include <sys/types.h> 86 #include <sys/stat.h> 87 #include <sys/wait.h> 88 #include <unistd.h> 89 #include <sys/time.h> 90 #include <sys/resource.h> 91 #include <linux/err.h> 92 93 #include <linux/ctype.h> 94 #include <perf/evlist.h> 95 #include <internal/threadmap.h> 96 97 #define DEFAULT_SEPARATOR " " 98 #define FREEZE_ON_SMI_PATH "devices/cpu/freeze_on_smi" 99 100 static void print_counters(struct timespec *ts, int argc, const char **argv); 101 102 static struct evlist *evsel_list; 103 static struct parse_events_option_args parse_events_option_args = { 104 .evlistp = &evsel_list, 105 }; 106 107 static bool all_counters_use_bpf = true; 108 109 static struct target target = { 110 .uid = UINT_MAX, 111 }; 112 113 #define METRIC_ONLY_LEN 20 114 115 static volatile sig_atomic_t child_pid = -1; 116 static int detailed_run = 0; 117 static bool transaction_run; 118 static bool topdown_run = false; 119 static bool smi_cost = false; 120 static bool smi_reset = false; 121 static int big_num_opt = -1; 122 static const char *pre_cmd = NULL; 123 static const char *post_cmd = NULL; 124 static bool sync_run = false; 125 static bool forever = false; 126 static bool force_metric_only = false; 127 static struct timespec ref_time; 128 static bool append_file; 129 static bool interval_count; 130 static const char *output_name; 131 static int output_fd; 132 static char *metrics; 133 134 struct perf_stat { 135 bool record; 136 struct perf_data data; 137 struct perf_session *session; 138 u64 bytes_written; 139 struct perf_tool tool; 140 bool maps_allocated; 141 struct perf_cpu_map *cpus; 142 struct perf_thread_map *threads; 143 enum aggr_mode aggr_mode; 144 u32 aggr_level; 145 }; 146 147 static struct perf_stat perf_stat; 148 #define STAT_RECORD perf_stat.record 149 150 static volatile sig_atomic_t done = 0; 151 152 static struct perf_stat_config stat_config = { 153 .aggr_mode = AGGR_GLOBAL, 154 .aggr_level = MAX_CACHE_LVL + 1, 155 .scale = true, 156 .unit_width = 4, /* strlen("unit") */ 157 .run_count = 1, 158 .metric_only_len = METRIC_ONLY_LEN, 159 .walltime_nsecs_stats = &walltime_nsecs_stats, 160 .ru_stats = &ru_stats, 161 .big_num = true, 162 .ctl_fd = -1, 163 .ctl_fd_ack = -1, 164 .iostat_run = false, 165 }; 166 167 static bool cpus_map_matched(struct evsel *a, struct evsel *b) 168 { 169 if (!a->core.cpus && !b->core.cpus) 170 return true; 171 172 if (!a->core.cpus || !b->core.cpus) 173 return false; 174 175 if (perf_cpu_map__nr(a->core.cpus) != perf_cpu_map__nr(b->core.cpus)) 176 return false; 177 178 for (int i = 0; i < perf_cpu_map__nr(a->core.cpus); i++) { 179 if (perf_cpu_map__cpu(a->core.cpus, i).cpu != 180 perf_cpu_map__cpu(b->core.cpus, i).cpu) 181 return false; 182 } 183 184 return true; 185 } 186 187 static void evlist__check_cpu_maps(struct evlist *evlist) 188 { 189 struct evsel *evsel, *warned_leader = NULL; 190 191 evlist__for_each_entry(evlist, evsel) { 192 struct evsel *leader = evsel__leader(evsel); 193 194 /* Check that leader matches cpus with each member. */ 195 if (leader == evsel) 196 continue; 197 if (cpus_map_matched(leader, evsel)) 198 continue; 199 200 /* If there's mismatch disable the group and warn user. */ 201 if (warned_leader != leader) { 202 char buf[200]; 203 204 pr_warning("WARNING: grouped events cpus do not match.\n" 205 "Events with CPUs not matching the leader will " 206 "be removed from the group.\n"); 207 evsel__group_desc(leader, buf, sizeof(buf)); 208 pr_warning(" %s\n", buf); 209 warned_leader = leader; 210 } 211 if (verbose > 0) { 212 char buf[200]; 213 214 cpu_map__snprint(leader->core.cpus, buf, sizeof(buf)); 215 pr_warning(" %s: %s\n", leader->name, buf); 216 cpu_map__snprint(evsel->core.cpus, buf, sizeof(buf)); 217 pr_warning(" %s: %s\n", evsel->name, buf); 218 } 219 220 evsel__remove_from_group(evsel, leader); 221 } 222 } 223 224 static inline void diff_timespec(struct timespec *r, struct timespec *a, 225 struct timespec *b) 226 { 227 r->tv_sec = a->tv_sec - b->tv_sec; 228 if (a->tv_nsec < b->tv_nsec) { 229 r->tv_nsec = a->tv_nsec + NSEC_PER_SEC - b->tv_nsec; 230 r->tv_sec--; 231 } else { 232 r->tv_nsec = a->tv_nsec - b->tv_nsec ; 233 } 234 } 235 236 static void perf_stat__reset_stats(void) 237 { 238 evlist__reset_stats(evsel_list); 239 perf_stat__reset_shadow_stats(); 240 } 241 242 static int process_synthesized_event(struct perf_tool *tool __maybe_unused, 243 union perf_event *event, 244 struct perf_sample *sample __maybe_unused, 245 struct machine *machine __maybe_unused) 246 { 247 if (perf_data__write(&perf_stat.data, event, event->header.size) < 0) { 248 pr_err("failed to write perf data, error: %m\n"); 249 return -1; 250 } 251 252 perf_stat.bytes_written += event->header.size; 253 return 0; 254 } 255 256 static int write_stat_round_event(u64 tm, u64 type) 257 { 258 return perf_event__synthesize_stat_round(NULL, tm, type, 259 process_synthesized_event, 260 NULL); 261 } 262 263 #define WRITE_STAT_ROUND_EVENT(time, interval) \ 264 write_stat_round_event(time, PERF_STAT_ROUND_TYPE__ ## interval) 265 266 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y) 267 268 static int evsel__write_stat_event(struct evsel *counter, int cpu_map_idx, u32 thread, 269 struct perf_counts_values *count) 270 { 271 struct perf_sample_id *sid = SID(counter, cpu_map_idx, thread); 272 struct perf_cpu cpu = perf_cpu_map__cpu(evsel__cpus(counter), cpu_map_idx); 273 274 return perf_event__synthesize_stat(NULL, cpu, thread, sid->id, count, 275 process_synthesized_event, NULL); 276 } 277 278 static int read_single_counter(struct evsel *counter, int cpu_map_idx, 279 int thread, struct timespec *rs) 280 { 281 switch(counter->tool_event) { 282 case PERF_TOOL_DURATION_TIME: { 283 u64 val = rs->tv_nsec + rs->tv_sec*1000000000ULL; 284 struct perf_counts_values *count = 285 perf_counts(counter->counts, cpu_map_idx, thread); 286 count->ena = count->run = val; 287 count->val = val; 288 return 0; 289 } 290 case PERF_TOOL_USER_TIME: 291 case PERF_TOOL_SYSTEM_TIME: { 292 u64 val; 293 struct perf_counts_values *count = 294 perf_counts(counter->counts, cpu_map_idx, thread); 295 if (counter->tool_event == PERF_TOOL_USER_TIME) 296 val = ru_stats.ru_utime_usec_stat.mean; 297 else 298 val = ru_stats.ru_stime_usec_stat.mean; 299 count->ena = count->run = val; 300 count->val = val; 301 return 0; 302 } 303 default: 304 case PERF_TOOL_NONE: 305 return evsel__read_counter(counter, cpu_map_idx, thread); 306 case PERF_TOOL_MAX: 307 /* This should never be reached */ 308 return 0; 309 } 310 } 311 312 /* 313 * Read out the results of a single counter: 314 * do not aggregate counts across CPUs in system-wide mode 315 */ 316 static int read_counter_cpu(struct evsel *counter, struct timespec *rs, int cpu_map_idx) 317 { 318 int nthreads = perf_thread_map__nr(evsel_list->core.threads); 319 int thread; 320 321 if (!counter->supported) 322 return -ENOENT; 323 324 for (thread = 0; thread < nthreads; thread++) { 325 struct perf_counts_values *count; 326 327 count = perf_counts(counter->counts, cpu_map_idx, thread); 328 329 /* 330 * The leader's group read loads data into its group members 331 * (via evsel__read_counter()) and sets their count->loaded. 332 */ 333 if (!perf_counts__is_loaded(counter->counts, cpu_map_idx, thread) && 334 read_single_counter(counter, cpu_map_idx, thread, rs)) { 335 counter->counts->scaled = -1; 336 perf_counts(counter->counts, cpu_map_idx, thread)->ena = 0; 337 perf_counts(counter->counts, cpu_map_idx, thread)->run = 0; 338 return -1; 339 } 340 341 perf_counts__set_loaded(counter->counts, cpu_map_idx, thread, false); 342 343 if (STAT_RECORD) { 344 if (evsel__write_stat_event(counter, cpu_map_idx, thread, count)) { 345 pr_err("failed to write stat event\n"); 346 return -1; 347 } 348 } 349 350 if (verbose > 1) { 351 fprintf(stat_config.output, 352 "%s: %d: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", 353 evsel__name(counter), 354 perf_cpu_map__cpu(evsel__cpus(counter), 355 cpu_map_idx).cpu, 356 count->val, count->ena, count->run); 357 } 358 } 359 360 return 0; 361 } 362 363 static int read_affinity_counters(struct timespec *rs) 364 { 365 struct evlist_cpu_iterator evlist_cpu_itr; 366 struct affinity saved_affinity, *affinity; 367 368 if (all_counters_use_bpf) 369 return 0; 370 371 if (!target__has_cpu(&target) || target__has_per_thread(&target)) 372 affinity = NULL; 373 else if (affinity__setup(&saved_affinity) < 0) 374 return -1; 375 else 376 affinity = &saved_affinity; 377 378 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 379 struct evsel *counter = evlist_cpu_itr.evsel; 380 381 if (evsel__is_bpf(counter)) 382 continue; 383 384 if (!counter->err) { 385 counter->err = read_counter_cpu(counter, rs, 386 evlist_cpu_itr.cpu_map_idx); 387 } 388 } 389 if (affinity) 390 affinity__cleanup(&saved_affinity); 391 392 return 0; 393 } 394 395 static int read_bpf_map_counters(void) 396 { 397 struct evsel *counter; 398 int err; 399 400 evlist__for_each_entry(evsel_list, counter) { 401 if (!evsel__is_bpf(counter)) 402 continue; 403 404 err = bpf_counter__read(counter); 405 if (err) 406 return err; 407 } 408 return 0; 409 } 410 411 static int read_counters(struct timespec *rs) 412 { 413 if (!stat_config.stop_read_counter) { 414 if (read_bpf_map_counters() || 415 read_affinity_counters(rs)) 416 return -1; 417 } 418 return 0; 419 } 420 421 static void process_counters(void) 422 { 423 struct evsel *counter; 424 425 evlist__for_each_entry(evsel_list, counter) { 426 if (counter->err) 427 pr_debug("failed to read counter %s\n", counter->name); 428 if (counter->err == 0 && perf_stat_process_counter(&stat_config, counter)) 429 pr_warning("failed to process counter %s\n", counter->name); 430 counter->err = 0; 431 } 432 433 perf_stat_merge_counters(&stat_config, evsel_list); 434 perf_stat_process_percore(&stat_config, evsel_list); 435 } 436 437 static void process_interval(void) 438 { 439 struct timespec ts, rs; 440 441 clock_gettime(CLOCK_MONOTONIC, &ts); 442 diff_timespec(&rs, &ts, &ref_time); 443 444 evlist__reset_aggr_stats(evsel_list); 445 446 if (read_counters(&rs) == 0) 447 process_counters(); 448 449 if (STAT_RECORD) { 450 if (WRITE_STAT_ROUND_EVENT(rs.tv_sec * NSEC_PER_SEC + rs.tv_nsec, INTERVAL)) 451 pr_err("failed to write stat round event\n"); 452 } 453 454 init_stats(&walltime_nsecs_stats); 455 update_stats(&walltime_nsecs_stats, stat_config.interval * 1000000ULL); 456 print_counters(&rs, 0, NULL); 457 } 458 459 static bool handle_interval(unsigned int interval, int *times) 460 { 461 if (interval) { 462 process_interval(); 463 if (interval_count && !(--(*times))) 464 return true; 465 } 466 return false; 467 } 468 469 static int enable_counters(void) 470 { 471 struct evsel *evsel; 472 int err; 473 474 evlist__for_each_entry(evsel_list, evsel) { 475 if (!evsel__is_bpf(evsel)) 476 continue; 477 478 err = bpf_counter__enable(evsel); 479 if (err) 480 return err; 481 } 482 483 if (!target__enable_on_exec(&target)) { 484 if (!all_counters_use_bpf) 485 evlist__enable(evsel_list); 486 } 487 return 0; 488 } 489 490 static void disable_counters(void) 491 { 492 struct evsel *counter; 493 494 /* 495 * If we don't have tracee (attaching to task or cpu), counters may 496 * still be running. To get accurate group ratios, we must stop groups 497 * from counting before reading their constituent counters. 498 */ 499 if (!target__none(&target)) { 500 evlist__for_each_entry(evsel_list, counter) 501 bpf_counter__disable(counter); 502 if (!all_counters_use_bpf) 503 evlist__disable(evsel_list); 504 } 505 } 506 507 static volatile sig_atomic_t workload_exec_errno; 508 509 /* 510 * evlist__prepare_workload will send a SIGUSR1 511 * if the fork fails, since we asked by setting its 512 * want_signal to true. 513 */ 514 static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info, 515 void *ucontext __maybe_unused) 516 { 517 workload_exec_errno = info->si_value.sival_int; 518 } 519 520 static bool evsel__should_store_id(struct evsel *counter) 521 { 522 return STAT_RECORD || counter->core.attr.read_format & PERF_FORMAT_ID; 523 } 524 525 static bool is_target_alive(struct target *_target, 526 struct perf_thread_map *threads) 527 { 528 struct stat st; 529 int i; 530 531 if (!target__has_task(_target)) 532 return true; 533 534 for (i = 0; i < threads->nr; i++) { 535 char path[PATH_MAX]; 536 537 scnprintf(path, PATH_MAX, "%s/%d", procfs__mountpoint(), 538 threads->map[i].pid); 539 540 if (!stat(path, &st)) 541 return true; 542 } 543 544 return false; 545 } 546 547 static void process_evlist(struct evlist *evlist, unsigned int interval) 548 { 549 enum evlist_ctl_cmd cmd = EVLIST_CTL_CMD_UNSUPPORTED; 550 551 if (evlist__ctlfd_process(evlist, &cmd) > 0) { 552 switch (cmd) { 553 case EVLIST_CTL_CMD_ENABLE: 554 fallthrough; 555 case EVLIST_CTL_CMD_DISABLE: 556 if (interval) 557 process_interval(); 558 break; 559 case EVLIST_CTL_CMD_SNAPSHOT: 560 case EVLIST_CTL_CMD_ACK: 561 case EVLIST_CTL_CMD_UNSUPPORTED: 562 case EVLIST_CTL_CMD_EVLIST: 563 case EVLIST_CTL_CMD_STOP: 564 case EVLIST_CTL_CMD_PING: 565 default: 566 break; 567 } 568 } 569 } 570 571 static void compute_tts(struct timespec *time_start, struct timespec *time_stop, 572 int *time_to_sleep) 573 { 574 int tts = *time_to_sleep; 575 struct timespec time_diff; 576 577 diff_timespec(&time_diff, time_stop, time_start); 578 579 tts -= time_diff.tv_sec * MSEC_PER_SEC + 580 time_diff.tv_nsec / NSEC_PER_MSEC; 581 582 if (tts < 0) 583 tts = 0; 584 585 *time_to_sleep = tts; 586 } 587 588 static int dispatch_events(bool forks, int timeout, int interval, int *times) 589 { 590 int child_exited = 0, status = 0; 591 int time_to_sleep, sleep_time; 592 struct timespec time_start, time_stop; 593 594 if (interval) 595 sleep_time = interval; 596 else if (timeout) 597 sleep_time = timeout; 598 else 599 sleep_time = 1000; 600 601 time_to_sleep = sleep_time; 602 603 while (!done) { 604 if (forks) 605 child_exited = waitpid(child_pid, &status, WNOHANG); 606 else 607 child_exited = !is_target_alive(&target, evsel_list->core.threads) ? 1 : 0; 608 609 if (child_exited) 610 break; 611 612 clock_gettime(CLOCK_MONOTONIC, &time_start); 613 if (!(evlist__poll(evsel_list, time_to_sleep) > 0)) { /* poll timeout or EINTR */ 614 if (timeout || handle_interval(interval, times)) 615 break; 616 time_to_sleep = sleep_time; 617 } else { /* fd revent */ 618 process_evlist(evsel_list, interval); 619 clock_gettime(CLOCK_MONOTONIC, &time_stop); 620 compute_tts(&time_start, &time_stop, &time_to_sleep); 621 } 622 } 623 624 return status; 625 } 626 627 enum counter_recovery { 628 COUNTER_SKIP, 629 COUNTER_RETRY, 630 COUNTER_FATAL, 631 }; 632 633 static enum counter_recovery stat_handle_error(struct evsel *counter) 634 { 635 char msg[BUFSIZ]; 636 /* 637 * PPC returns ENXIO for HW counters until 2.6.37 638 * (behavior changed with commit b0a873e). 639 */ 640 if (errno == EINVAL || errno == ENOSYS || 641 errno == ENOENT || errno == EOPNOTSUPP || 642 errno == ENXIO) { 643 if (verbose > 0) 644 ui__warning("%s event is not supported by the kernel.\n", 645 evsel__name(counter)); 646 counter->supported = false; 647 /* 648 * errored is a sticky flag that means one of the counter's 649 * cpu event had a problem and needs to be reexamined. 650 */ 651 counter->errored = true; 652 653 if ((evsel__leader(counter) != counter) || 654 !(counter->core.leader->nr_members > 1)) 655 return COUNTER_SKIP; 656 } else if (evsel__fallback(counter, &target, errno, msg, sizeof(msg))) { 657 if (verbose > 0) 658 ui__warning("%s\n", msg); 659 return COUNTER_RETRY; 660 } else if (target__has_per_thread(&target) && 661 evsel_list->core.threads && 662 evsel_list->core.threads->err_thread != -1) { 663 /* 664 * For global --per-thread case, skip current 665 * error thread. 666 */ 667 if (!thread_map__remove(evsel_list->core.threads, 668 evsel_list->core.threads->err_thread)) { 669 evsel_list->core.threads->err_thread = -1; 670 return COUNTER_RETRY; 671 } 672 } else if (counter->skippable) { 673 if (verbose > 0) 674 ui__warning("skipping event %s that kernel failed to open .\n", 675 evsel__name(counter)); 676 counter->supported = false; 677 counter->errored = true; 678 return COUNTER_SKIP; 679 } 680 681 evsel__open_strerror(counter, &target, errno, msg, sizeof(msg)); 682 ui__error("%s\n", msg); 683 684 if (child_pid != -1) 685 kill(child_pid, SIGTERM); 686 return COUNTER_FATAL; 687 } 688 689 static int __run_perf_stat(int argc, const char **argv, int run_idx) 690 { 691 int interval = stat_config.interval; 692 int times = stat_config.times; 693 int timeout = stat_config.timeout; 694 char msg[BUFSIZ]; 695 unsigned long long t0, t1; 696 struct evsel *counter; 697 size_t l; 698 int status = 0; 699 const bool forks = (argc > 0); 700 bool is_pipe = STAT_RECORD ? perf_stat.data.is_pipe : false; 701 struct evlist_cpu_iterator evlist_cpu_itr; 702 struct affinity saved_affinity, *affinity = NULL; 703 int err; 704 bool second_pass = false; 705 706 if (forks) { 707 if (evlist__prepare_workload(evsel_list, &target, argv, is_pipe, workload_exec_failed_signal) < 0) { 708 perror("failed to prepare workload"); 709 return -1; 710 } 711 child_pid = evsel_list->workload.pid; 712 } 713 714 if (!cpu_map__is_dummy(evsel_list->core.user_requested_cpus)) { 715 if (affinity__setup(&saved_affinity) < 0) 716 return -1; 717 affinity = &saved_affinity; 718 } 719 720 evlist__for_each_entry(evsel_list, counter) { 721 counter->reset_group = false; 722 if (bpf_counter__load(counter, &target)) 723 return -1; 724 if (!(evsel__is_bperf(counter))) 725 all_counters_use_bpf = false; 726 } 727 728 evlist__reset_aggr_stats(evsel_list); 729 730 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 731 counter = evlist_cpu_itr.evsel; 732 733 /* 734 * bperf calls evsel__open_per_cpu() in bperf__load(), so 735 * no need to call it again here. 736 */ 737 if (target.use_bpf) 738 break; 739 740 if (counter->reset_group || counter->errored) 741 continue; 742 if (evsel__is_bperf(counter)) 743 continue; 744 try_again: 745 if (create_perf_stat_counter(counter, &stat_config, &target, 746 evlist_cpu_itr.cpu_map_idx) < 0) { 747 748 /* 749 * Weak group failed. We cannot just undo this here 750 * because earlier CPUs might be in group mode, and the kernel 751 * doesn't support mixing group and non group reads. Defer 752 * it to later. 753 * Don't close here because we're in the wrong affinity. 754 */ 755 if ((errno == EINVAL || errno == EBADF) && 756 evsel__leader(counter) != counter && 757 counter->weak_group) { 758 evlist__reset_weak_group(evsel_list, counter, false); 759 assert(counter->reset_group); 760 second_pass = true; 761 continue; 762 } 763 764 switch (stat_handle_error(counter)) { 765 case COUNTER_FATAL: 766 return -1; 767 case COUNTER_RETRY: 768 goto try_again; 769 case COUNTER_SKIP: 770 continue; 771 default: 772 break; 773 } 774 775 } 776 counter->supported = true; 777 } 778 779 if (second_pass) { 780 /* 781 * Now redo all the weak group after closing them, 782 * and also close errored counters. 783 */ 784 785 /* First close errored or weak retry */ 786 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 787 counter = evlist_cpu_itr.evsel; 788 789 if (!counter->reset_group && !counter->errored) 790 continue; 791 792 perf_evsel__close_cpu(&counter->core, evlist_cpu_itr.cpu_map_idx); 793 } 794 /* Now reopen weak */ 795 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 796 counter = evlist_cpu_itr.evsel; 797 798 if (!counter->reset_group) 799 continue; 800 try_again_reset: 801 pr_debug2("reopening weak %s\n", evsel__name(counter)); 802 if (create_perf_stat_counter(counter, &stat_config, &target, 803 evlist_cpu_itr.cpu_map_idx) < 0) { 804 805 switch (stat_handle_error(counter)) { 806 case COUNTER_FATAL: 807 return -1; 808 case COUNTER_RETRY: 809 goto try_again_reset; 810 case COUNTER_SKIP: 811 continue; 812 default: 813 break; 814 } 815 } 816 counter->supported = true; 817 } 818 } 819 affinity__cleanup(affinity); 820 821 evlist__for_each_entry(evsel_list, counter) { 822 if (!counter->supported) { 823 perf_evsel__free_fd(&counter->core); 824 continue; 825 } 826 827 l = strlen(counter->unit); 828 if (l > stat_config.unit_width) 829 stat_config.unit_width = l; 830 831 if (evsel__should_store_id(counter) && 832 evsel__store_ids(counter, evsel_list)) 833 return -1; 834 } 835 836 if (evlist__apply_filters(evsel_list, &counter)) { 837 pr_err("failed to set filter \"%s\" on event %s with %d (%s)\n", 838 counter->filter, evsel__name(counter), errno, 839 str_error_r(errno, msg, sizeof(msg))); 840 return -1; 841 } 842 843 if (STAT_RECORD) { 844 int fd = perf_data__fd(&perf_stat.data); 845 846 if (is_pipe) { 847 err = perf_header__write_pipe(perf_data__fd(&perf_stat.data)); 848 } else { 849 err = perf_session__write_header(perf_stat.session, evsel_list, 850 fd, false); 851 } 852 853 if (err < 0) 854 return err; 855 856 err = perf_event__synthesize_stat_events(&stat_config, NULL, evsel_list, 857 process_synthesized_event, is_pipe); 858 if (err < 0) 859 return err; 860 } 861 862 if (target.initial_delay) { 863 pr_info(EVLIST_DISABLED_MSG); 864 } else { 865 err = enable_counters(); 866 if (err) 867 return -1; 868 } 869 870 /* Exec the command, if any */ 871 if (forks) 872 evlist__start_workload(evsel_list); 873 874 if (target.initial_delay > 0) { 875 usleep(target.initial_delay * USEC_PER_MSEC); 876 err = enable_counters(); 877 if (err) 878 return -1; 879 880 pr_info(EVLIST_ENABLED_MSG); 881 } 882 883 t0 = rdclock(); 884 clock_gettime(CLOCK_MONOTONIC, &ref_time); 885 886 if (forks) { 887 if (interval || timeout || evlist__ctlfd_initialized(evsel_list)) 888 status = dispatch_events(forks, timeout, interval, ×); 889 if (child_pid != -1) { 890 if (timeout) 891 kill(child_pid, SIGTERM); 892 wait4(child_pid, &status, 0, &stat_config.ru_data); 893 } 894 895 if (workload_exec_errno) { 896 const char *emsg = str_error_r(workload_exec_errno, msg, sizeof(msg)); 897 pr_err("Workload failed: %s\n", emsg); 898 return -1; 899 } 900 901 if (WIFSIGNALED(status)) 902 psignal(WTERMSIG(status), argv[0]); 903 } else { 904 status = dispatch_events(forks, timeout, interval, ×); 905 } 906 907 disable_counters(); 908 909 t1 = rdclock(); 910 911 if (stat_config.walltime_run_table) 912 stat_config.walltime_run[run_idx] = t1 - t0; 913 914 if (interval && stat_config.summary) { 915 stat_config.interval = 0; 916 stat_config.stop_read_counter = true; 917 init_stats(&walltime_nsecs_stats); 918 update_stats(&walltime_nsecs_stats, t1 - t0); 919 920 evlist__copy_prev_raw_counts(evsel_list); 921 evlist__reset_prev_raw_counts(evsel_list); 922 evlist__reset_aggr_stats(evsel_list); 923 } else { 924 update_stats(&walltime_nsecs_stats, t1 - t0); 925 update_rusage_stats(&ru_stats, &stat_config.ru_data); 926 } 927 928 /* 929 * Closing a group leader splits the group, and as we only disable 930 * group leaders, results in remaining events becoming enabled. To 931 * avoid arbitrary skew, we must read all counters before closing any 932 * group leaders. 933 */ 934 if (read_counters(&(struct timespec) { .tv_nsec = t1-t0 }) == 0) 935 process_counters(); 936 937 /* 938 * We need to keep evsel_list alive, because it's processed 939 * later the evsel_list will be closed after. 940 */ 941 if (!STAT_RECORD) 942 evlist__close(evsel_list); 943 944 return WEXITSTATUS(status); 945 } 946 947 static int run_perf_stat(int argc, const char **argv, int run_idx) 948 { 949 int ret; 950 951 if (pre_cmd) { 952 ret = system(pre_cmd); 953 if (ret) 954 return ret; 955 } 956 957 if (sync_run) 958 sync(); 959 960 ret = __run_perf_stat(argc, argv, run_idx); 961 if (ret) 962 return ret; 963 964 if (post_cmd) { 965 ret = system(post_cmd); 966 if (ret) 967 return ret; 968 } 969 970 return ret; 971 } 972 973 static void print_counters(struct timespec *ts, int argc, const char **argv) 974 { 975 /* Do not print anything if we record to the pipe. */ 976 if (STAT_RECORD && perf_stat.data.is_pipe) 977 return; 978 if (quiet) 979 return; 980 981 evlist__print_counters(evsel_list, &stat_config, &target, ts, argc, argv); 982 } 983 984 static volatile sig_atomic_t signr = -1; 985 986 static void skip_signal(int signo) 987 { 988 if ((child_pid == -1) || stat_config.interval) 989 done = 1; 990 991 signr = signo; 992 /* 993 * render child_pid harmless 994 * won't send SIGTERM to a random 995 * process in case of race condition 996 * and fast PID recycling 997 */ 998 child_pid = -1; 999 } 1000 1001 static void sig_atexit(void) 1002 { 1003 sigset_t set, oset; 1004 1005 /* 1006 * avoid race condition with SIGCHLD handler 1007 * in skip_signal() which is modifying child_pid 1008 * goal is to avoid send SIGTERM to a random 1009 * process 1010 */ 1011 sigemptyset(&set); 1012 sigaddset(&set, SIGCHLD); 1013 sigprocmask(SIG_BLOCK, &set, &oset); 1014 1015 if (child_pid != -1) 1016 kill(child_pid, SIGTERM); 1017 1018 sigprocmask(SIG_SETMASK, &oset, NULL); 1019 1020 if (signr == -1) 1021 return; 1022 1023 signal(signr, SIG_DFL); 1024 kill(getpid(), signr); 1025 } 1026 1027 void perf_stat__set_big_num(int set) 1028 { 1029 stat_config.big_num = (set != 0); 1030 } 1031 1032 void perf_stat__set_no_csv_summary(int set) 1033 { 1034 stat_config.no_csv_summary = (set != 0); 1035 } 1036 1037 static int stat__set_big_num(const struct option *opt __maybe_unused, 1038 const char *s __maybe_unused, int unset) 1039 { 1040 big_num_opt = unset ? 0 : 1; 1041 perf_stat__set_big_num(!unset); 1042 return 0; 1043 } 1044 1045 static int enable_metric_only(const struct option *opt __maybe_unused, 1046 const char *s __maybe_unused, int unset) 1047 { 1048 force_metric_only = true; 1049 stat_config.metric_only = !unset; 1050 return 0; 1051 } 1052 1053 static int append_metric_groups(const struct option *opt __maybe_unused, 1054 const char *str, 1055 int unset __maybe_unused) 1056 { 1057 if (metrics) { 1058 char *tmp; 1059 1060 if (asprintf(&tmp, "%s,%s", metrics, str) < 0) 1061 return -ENOMEM; 1062 free(metrics); 1063 metrics = tmp; 1064 } else { 1065 metrics = strdup(str); 1066 if (!metrics) 1067 return -ENOMEM; 1068 } 1069 return 0; 1070 } 1071 1072 static int parse_control_option(const struct option *opt, 1073 const char *str, 1074 int unset __maybe_unused) 1075 { 1076 struct perf_stat_config *config = opt->value; 1077 1078 return evlist__parse_control(str, &config->ctl_fd, &config->ctl_fd_ack, &config->ctl_fd_close); 1079 } 1080 1081 static int parse_stat_cgroups(const struct option *opt, 1082 const char *str, int unset) 1083 { 1084 if (stat_config.cgroup_list) { 1085 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 1086 return -1; 1087 } 1088 1089 return parse_cgroups(opt, str, unset); 1090 } 1091 1092 static int parse_cputype(const struct option *opt, 1093 const char *str, 1094 int unset __maybe_unused) 1095 { 1096 const struct perf_pmu *pmu; 1097 struct evlist *evlist = *(struct evlist **)opt->value; 1098 1099 if (!list_empty(&evlist->core.entries)) { 1100 fprintf(stderr, "Must define cputype before events/metrics\n"); 1101 return -1; 1102 } 1103 1104 pmu = perf_pmus__pmu_for_pmu_filter(str); 1105 if (!pmu) { 1106 fprintf(stderr, "--cputype %s is not supported!\n", str); 1107 return -1; 1108 } 1109 parse_events_option_args.pmu_filter = pmu->name; 1110 1111 return 0; 1112 } 1113 1114 static int parse_cache_level(const struct option *opt, 1115 const char *str, 1116 int unset __maybe_unused) 1117 { 1118 int level; 1119 u32 *aggr_mode = (u32 *)opt->value; 1120 u32 *aggr_level = (u32 *)opt->data; 1121 1122 /* 1123 * If no string is specified, aggregate based on the topology of 1124 * Last Level Cache (LLC). Since the LLC level can change from 1125 * architecture to architecture, set level greater than 1126 * MAX_CACHE_LVL which will be interpreted as LLC. 1127 */ 1128 if (str == NULL) { 1129 level = MAX_CACHE_LVL + 1; 1130 goto out; 1131 } 1132 1133 /* 1134 * The format to specify cache level is LX or lX where X is the 1135 * cache level. 1136 */ 1137 if (strlen(str) != 2 || (str[0] != 'l' && str[0] != 'L')) { 1138 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1139 MAX_CACHE_LVL, 1140 MAX_CACHE_LVL); 1141 return -EINVAL; 1142 } 1143 1144 level = atoi(&str[1]); 1145 if (level < 1) { 1146 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1147 MAX_CACHE_LVL, 1148 MAX_CACHE_LVL); 1149 return -EINVAL; 1150 } 1151 1152 if (level > MAX_CACHE_LVL) { 1153 pr_err("perf only supports max cache level of %d.\n" 1154 "Consider increasing MAX_CACHE_LVL\n", MAX_CACHE_LVL); 1155 return -EINVAL; 1156 } 1157 out: 1158 *aggr_mode = AGGR_CACHE; 1159 *aggr_level = level; 1160 return 0; 1161 } 1162 1163 static struct option stat_options[] = { 1164 OPT_BOOLEAN('T', "transaction", &transaction_run, 1165 "hardware transaction statistics"), 1166 OPT_CALLBACK('e', "event", &parse_events_option_args, "event", 1167 "event selector. use 'perf list' to list available events", 1168 parse_events_option), 1169 OPT_CALLBACK(0, "filter", &evsel_list, "filter", 1170 "event filter", parse_filter), 1171 OPT_BOOLEAN('i', "no-inherit", &stat_config.no_inherit, 1172 "child tasks do not inherit counters"), 1173 OPT_STRING('p', "pid", &target.pid, "pid", 1174 "stat events on existing process id"), 1175 OPT_STRING('t', "tid", &target.tid, "tid", 1176 "stat events on existing thread id"), 1177 #ifdef HAVE_BPF_SKEL 1178 OPT_STRING('b', "bpf-prog", &target.bpf_str, "bpf-prog-id", 1179 "stat events on existing bpf program id"), 1180 OPT_BOOLEAN(0, "bpf-counters", &target.use_bpf, 1181 "use bpf program to count events"), 1182 OPT_STRING(0, "bpf-attr-map", &target.attr_map, "attr-map-path", 1183 "path to perf_event_attr map"), 1184 #endif 1185 OPT_BOOLEAN('a', "all-cpus", &target.system_wide, 1186 "system-wide collection from all CPUs"), 1187 OPT_BOOLEAN(0, "scale", &stat_config.scale, 1188 "Use --no-scale to disable counter scaling for multiplexing"), 1189 OPT_INCR('v', "verbose", &verbose, 1190 "be more verbose (show counter open errors, etc)"), 1191 OPT_INTEGER('r', "repeat", &stat_config.run_count, 1192 "repeat command and print average + stddev (max: 100, forever: 0)"), 1193 OPT_BOOLEAN(0, "table", &stat_config.walltime_run_table, 1194 "display details about each run (only with -r option)"), 1195 OPT_BOOLEAN('n', "null", &stat_config.null_run, 1196 "null run - dont start any counters"), 1197 OPT_INCR('d', "detailed", &detailed_run, 1198 "detailed run - start a lot of events"), 1199 OPT_BOOLEAN('S', "sync", &sync_run, 1200 "call sync() before starting a run"), 1201 OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL, 1202 "print large numbers with thousands\' separators", 1203 stat__set_big_num), 1204 OPT_STRING('C', "cpu", &target.cpu_list, "cpu", 1205 "list of cpus to monitor in system-wide"), 1206 OPT_SET_UINT('A', "no-aggr", &stat_config.aggr_mode, 1207 "disable aggregation across CPUs or PMUs", AGGR_NONE), 1208 OPT_SET_UINT(0, "no-merge", &stat_config.aggr_mode, 1209 "disable aggregation the same as -A or -no-aggr", AGGR_NONE), 1210 OPT_BOOLEAN(0, "hybrid-merge", &stat_config.hybrid_merge, 1211 "Merge identical named hybrid events"), 1212 OPT_STRING('x', "field-separator", &stat_config.csv_sep, "separator", 1213 "print counts with custom separator"), 1214 OPT_BOOLEAN('j', "json-output", &stat_config.json_output, 1215 "print counts in JSON format"), 1216 OPT_CALLBACK('G', "cgroup", &evsel_list, "name", 1217 "monitor event in cgroup name only", parse_stat_cgroups), 1218 OPT_STRING(0, "for-each-cgroup", &stat_config.cgroup_list, "name", 1219 "expand events for each cgroup"), 1220 OPT_STRING('o', "output", &output_name, "file", "output file name"), 1221 OPT_BOOLEAN(0, "append", &append_file, "append to the output file"), 1222 OPT_INTEGER(0, "log-fd", &output_fd, 1223 "log output to fd, instead of stderr"), 1224 OPT_STRING(0, "pre", &pre_cmd, "command", 1225 "command to run prior to the measured command"), 1226 OPT_STRING(0, "post", &post_cmd, "command", 1227 "command to run after to the measured command"), 1228 OPT_UINTEGER('I', "interval-print", &stat_config.interval, 1229 "print counts at regular interval in ms " 1230 "(overhead is possible for values <= 100ms)"), 1231 OPT_INTEGER(0, "interval-count", &stat_config.times, 1232 "print counts for fixed number of times"), 1233 OPT_BOOLEAN(0, "interval-clear", &stat_config.interval_clear, 1234 "clear screen in between new interval"), 1235 OPT_UINTEGER(0, "timeout", &stat_config.timeout, 1236 "stop workload and print counts after a timeout period in ms (>= 10ms)"), 1237 OPT_SET_UINT(0, "per-socket", &stat_config.aggr_mode, 1238 "aggregate counts per processor socket", AGGR_SOCKET), 1239 OPT_SET_UINT(0, "per-die", &stat_config.aggr_mode, 1240 "aggregate counts per processor die", AGGR_DIE), 1241 OPT_SET_UINT(0, "per-cluster", &stat_config.aggr_mode, 1242 "aggregate counts per processor cluster", AGGR_CLUSTER), 1243 OPT_CALLBACK_OPTARG(0, "per-cache", &stat_config.aggr_mode, &stat_config.aggr_level, 1244 "cache level", "aggregate count at this cache level (Default: LLC)", 1245 parse_cache_level), 1246 OPT_SET_UINT(0, "per-core", &stat_config.aggr_mode, 1247 "aggregate counts per physical processor core", AGGR_CORE), 1248 OPT_SET_UINT(0, "per-thread", &stat_config.aggr_mode, 1249 "aggregate counts per thread", AGGR_THREAD), 1250 OPT_SET_UINT(0, "per-node", &stat_config.aggr_mode, 1251 "aggregate counts per numa node", AGGR_NODE), 1252 OPT_INTEGER('D', "delay", &target.initial_delay, 1253 "ms to wait before starting measurement after program start (-1: start with events disabled)"), 1254 OPT_CALLBACK_NOOPT(0, "metric-only", &stat_config.metric_only, NULL, 1255 "Only print computed metrics. No raw values", enable_metric_only), 1256 OPT_BOOLEAN(0, "metric-no-group", &stat_config.metric_no_group, 1257 "don't group metric events, impacts multiplexing"), 1258 OPT_BOOLEAN(0, "metric-no-merge", &stat_config.metric_no_merge, 1259 "don't try to share events between metrics in a group"), 1260 OPT_BOOLEAN(0, "metric-no-threshold", &stat_config.metric_no_threshold, 1261 "disable adding events for the metric threshold calculation"), 1262 OPT_BOOLEAN(0, "topdown", &topdown_run, 1263 "measure top-down statistics"), 1264 OPT_UINTEGER(0, "td-level", &stat_config.topdown_level, 1265 "Set the metrics level for the top-down statistics (0: max level)"), 1266 OPT_BOOLEAN(0, "smi-cost", &smi_cost, 1267 "measure SMI cost"), 1268 OPT_CALLBACK('M', "metrics", &evsel_list, "metric/metric group list", 1269 "monitor specified metrics or metric groups (separated by ,)", 1270 append_metric_groups), 1271 OPT_BOOLEAN_FLAG(0, "all-kernel", &stat_config.all_kernel, 1272 "Configure all used events to run in kernel space.", 1273 PARSE_OPT_EXCLUSIVE), 1274 OPT_BOOLEAN_FLAG(0, "all-user", &stat_config.all_user, 1275 "Configure all used events to run in user space.", 1276 PARSE_OPT_EXCLUSIVE), 1277 OPT_BOOLEAN(0, "percore-show-thread", &stat_config.percore_show_thread, 1278 "Use with 'percore' event qualifier to show the event " 1279 "counts of one hardware thread by sum up total hardware " 1280 "threads of same physical core"), 1281 OPT_BOOLEAN(0, "summary", &stat_config.summary, 1282 "print summary for interval mode"), 1283 OPT_BOOLEAN(0, "no-csv-summary", &stat_config.no_csv_summary, 1284 "don't print 'summary' for CSV summary output"), 1285 OPT_BOOLEAN(0, "quiet", &quiet, 1286 "don't print any output, messages or warnings (useful with record)"), 1287 OPT_CALLBACK(0, "cputype", &evsel_list, "hybrid cpu type", 1288 "Only enable events on applying cpu with this type " 1289 "for hybrid platform (e.g. core or atom)", 1290 parse_cputype), 1291 #ifdef HAVE_LIBPFM 1292 OPT_CALLBACK(0, "pfm-events", &evsel_list, "event", 1293 "libpfm4 event selector. use 'perf list' to list available events", 1294 parse_libpfm_events_option), 1295 #endif 1296 OPT_CALLBACK(0, "control", &stat_config, "fd:ctl-fd[,ack-fd] or fifo:ctl-fifo[,ack-fifo]", 1297 "Listen on ctl-fd descriptor for command to control measurement ('enable': enable events, 'disable': disable events).\n" 1298 "\t\t\t Optionally send control command completion ('ack\\n') to ack-fd descriptor.\n" 1299 "\t\t\t Alternatively, ctl-fifo / ack-fifo will be opened and used as ctl-fd / ack-fd.", 1300 parse_control_option), 1301 OPT_CALLBACK_OPTARG(0, "iostat", &evsel_list, &stat_config, "default", 1302 "measure I/O performance metrics provided by arch/platform", 1303 iostat_parse), 1304 OPT_END() 1305 }; 1306 1307 /** 1308 * Calculate the cache instance ID from the map in 1309 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1310 * Cache instance ID is the first CPU reported in the shared_cpu_list file. 1311 */ 1312 static int cpu__get_cache_id_from_map(struct perf_cpu cpu, char *map) 1313 { 1314 int id; 1315 struct perf_cpu_map *cpu_map = perf_cpu_map__new(map); 1316 1317 /* 1318 * If the map contains no CPU, consider the current CPU to 1319 * be the first online CPU in the cache domain else use the 1320 * first online CPU of the cache domain as the ID. 1321 */ 1322 if (perf_cpu_map__has_any_cpu_or_is_empty(cpu_map)) 1323 id = cpu.cpu; 1324 else 1325 id = perf_cpu_map__cpu(cpu_map, 0).cpu; 1326 1327 /* Free the perf_cpu_map used to find the cache ID */ 1328 perf_cpu_map__put(cpu_map); 1329 1330 return id; 1331 } 1332 1333 /** 1334 * cpu__get_cache_id - Returns 0 if successful in populating the 1335 * cache level and cache id. Cache level is read from 1336 * /sys/devices/system/cpu/cpuX/cache/indexY/level where as cache instance ID 1337 * is the first CPU reported by 1338 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1339 */ 1340 static int cpu__get_cache_details(struct perf_cpu cpu, struct perf_cache *cache) 1341 { 1342 int ret = 0; 1343 u32 cache_level = stat_config.aggr_level; 1344 struct cpu_cache_level caches[MAX_CACHE_LVL]; 1345 u32 i = 0, caches_cnt = 0; 1346 1347 cache->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1348 cache->cache = -1; 1349 1350 ret = build_caches_for_cpu(cpu.cpu, caches, &caches_cnt); 1351 if (ret) { 1352 /* 1353 * If caches_cnt is not 0, cpu_cache_level data 1354 * was allocated when building the topology. 1355 * Free the allocated data before returning. 1356 */ 1357 if (caches_cnt) 1358 goto free_caches; 1359 1360 return ret; 1361 } 1362 1363 if (!caches_cnt) 1364 return -1; 1365 1366 /* 1367 * Save the data for the highest level if no 1368 * level was specified by the user. 1369 */ 1370 if (cache_level > MAX_CACHE_LVL) { 1371 int max_level_index = 0; 1372 1373 for (i = 1; i < caches_cnt; ++i) { 1374 if (caches[i].level > caches[max_level_index].level) 1375 max_level_index = i; 1376 } 1377 1378 cache->cache_lvl = caches[max_level_index].level; 1379 cache->cache = cpu__get_cache_id_from_map(cpu, caches[max_level_index].map); 1380 1381 /* Reset i to 0 to free entire caches[] */ 1382 i = 0; 1383 goto free_caches; 1384 } 1385 1386 for (i = 0; i < caches_cnt; ++i) { 1387 if (caches[i].level == cache_level) { 1388 cache->cache_lvl = cache_level; 1389 cache->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1390 } 1391 1392 cpu_cache_level__free(&caches[i]); 1393 } 1394 1395 free_caches: 1396 /* 1397 * Free all the allocated cpu_cache_level data. 1398 */ 1399 while (i < caches_cnt) 1400 cpu_cache_level__free(&caches[i++]); 1401 1402 return ret; 1403 } 1404 1405 /** 1406 * aggr_cpu_id__cache - Create an aggr_cpu_id with cache instache ID, cache 1407 * level, die and socket populated with the cache instache ID, cache level, 1408 * die and socket for cpu. The function signature is compatible with 1409 * aggr_cpu_id_get_t. 1410 */ 1411 static struct aggr_cpu_id aggr_cpu_id__cache(struct perf_cpu cpu, void *data) 1412 { 1413 int ret; 1414 struct aggr_cpu_id id; 1415 struct perf_cache cache; 1416 1417 id = aggr_cpu_id__die(cpu, data); 1418 if (aggr_cpu_id__is_empty(&id)) 1419 return id; 1420 1421 ret = cpu__get_cache_details(cpu, &cache); 1422 if (ret) 1423 return id; 1424 1425 id.cache_lvl = cache.cache_lvl; 1426 id.cache = cache.cache; 1427 return id; 1428 } 1429 1430 static const char *const aggr_mode__string[] = { 1431 [AGGR_CORE] = "core", 1432 [AGGR_CACHE] = "cache", 1433 [AGGR_CLUSTER] = "cluster", 1434 [AGGR_DIE] = "die", 1435 [AGGR_GLOBAL] = "global", 1436 [AGGR_NODE] = "node", 1437 [AGGR_NONE] = "none", 1438 [AGGR_SOCKET] = "socket", 1439 [AGGR_THREAD] = "thread", 1440 [AGGR_UNSET] = "unset", 1441 }; 1442 1443 static struct aggr_cpu_id perf_stat__get_socket(struct perf_stat_config *config __maybe_unused, 1444 struct perf_cpu cpu) 1445 { 1446 return aggr_cpu_id__socket(cpu, /*data=*/NULL); 1447 } 1448 1449 static struct aggr_cpu_id perf_stat__get_die(struct perf_stat_config *config __maybe_unused, 1450 struct perf_cpu cpu) 1451 { 1452 return aggr_cpu_id__die(cpu, /*data=*/NULL); 1453 } 1454 1455 static struct aggr_cpu_id perf_stat__get_cache_id(struct perf_stat_config *config __maybe_unused, 1456 struct perf_cpu cpu) 1457 { 1458 return aggr_cpu_id__cache(cpu, /*data=*/NULL); 1459 } 1460 1461 static struct aggr_cpu_id perf_stat__get_cluster(struct perf_stat_config *config __maybe_unused, 1462 struct perf_cpu cpu) 1463 { 1464 return aggr_cpu_id__cluster(cpu, /*data=*/NULL); 1465 } 1466 1467 static struct aggr_cpu_id perf_stat__get_core(struct perf_stat_config *config __maybe_unused, 1468 struct perf_cpu cpu) 1469 { 1470 return aggr_cpu_id__core(cpu, /*data=*/NULL); 1471 } 1472 1473 static struct aggr_cpu_id perf_stat__get_node(struct perf_stat_config *config __maybe_unused, 1474 struct perf_cpu cpu) 1475 { 1476 return aggr_cpu_id__node(cpu, /*data=*/NULL); 1477 } 1478 1479 static struct aggr_cpu_id perf_stat__get_global(struct perf_stat_config *config __maybe_unused, 1480 struct perf_cpu cpu) 1481 { 1482 return aggr_cpu_id__global(cpu, /*data=*/NULL); 1483 } 1484 1485 static struct aggr_cpu_id perf_stat__get_cpu(struct perf_stat_config *config __maybe_unused, 1486 struct perf_cpu cpu) 1487 { 1488 return aggr_cpu_id__cpu(cpu, /*data=*/NULL); 1489 } 1490 1491 static struct aggr_cpu_id perf_stat__get_aggr(struct perf_stat_config *config, 1492 aggr_get_id_t get_id, struct perf_cpu cpu) 1493 { 1494 struct aggr_cpu_id id; 1495 1496 /* per-process mode - should use global aggr mode */ 1497 if (cpu.cpu == -1) 1498 return get_id(config, cpu); 1499 1500 if (aggr_cpu_id__is_empty(&config->cpus_aggr_map->map[cpu.cpu])) 1501 config->cpus_aggr_map->map[cpu.cpu] = get_id(config, cpu); 1502 1503 id = config->cpus_aggr_map->map[cpu.cpu]; 1504 return id; 1505 } 1506 1507 static struct aggr_cpu_id perf_stat__get_socket_cached(struct perf_stat_config *config, 1508 struct perf_cpu cpu) 1509 { 1510 return perf_stat__get_aggr(config, perf_stat__get_socket, cpu); 1511 } 1512 1513 static struct aggr_cpu_id perf_stat__get_die_cached(struct perf_stat_config *config, 1514 struct perf_cpu cpu) 1515 { 1516 return perf_stat__get_aggr(config, perf_stat__get_die, cpu); 1517 } 1518 1519 static struct aggr_cpu_id perf_stat__get_cluster_cached(struct perf_stat_config *config, 1520 struct perf_cpu cpu) 1521 { 1522 return perf_stat__get_aggr(config, perf_stat__get_cluster, cpu); 1523 } 1524 1525 static struct aggr_cpu_id perf_stat__get_cache_id_cached(struct perf_stat_config *config, 1526 struct perf_cpu cpu) 1527 { 1528 return perf_stat__get_aggr(config, perf_stat__get_cache_id, cpu); 1529 } 1530 1531 static struct aggr_cpu_id perf_stat__get_core_cached(struct perf_stat_config *config, 1532 struct perf_cpu cpu) 1533 { 1534 return perf_stat__get_aggr(config, perf_stat__get_core, cpu); 1535 } 1536 1537 static struct aggr_cpu_id perf_stat__get_node_cached(struct perf_stat_config *config, 1538 struct perf_cpu cpu) 1539 { 1540 return perf_stat__get_aggr(config, perf_stat__get_node, cpu); 1541 } 1542 1543 static struct aggr_cpu_id perf_stat__get_global_cached(struct perf_stat_config *config, 1544 struct perf_cpu cpu) 1545 { 1546 return perf_stat__get_aggr(config, perf_stat__get_global, cpu); 1547 } 1548 1549 static struct aggr_cpu_id perf_stat__get_cpu_cached(struct perf_stat_config *config, 1550 struct perf_cpu cpu) 1551 { 1552 return perf_stat__get_aggr(config, perf_stat__get_cpu, cpu); 1553 } 1554 1555 static aggr_cpu_id_get_t aggr_mode__get_aggr(enum aggr_mode aggr_mode) 1556 { 1557 switch (aggr_mode) { 1558 case AGGR_SOCKET: 1559 return aggr_cpu_id__socket; 1560 case AGGR_DIE: 1561 return aggr_cpu_id__die; 1562 case AGGR_CLUSTER: 1563 return aggr_cpu_id__cluster; 1564 case AGGR_CACHE: 1565 return aggr_cpu_id__cache; 1566 case AGGR_CORE: 1567 return aggr_cpu_id__core; 1568 case AGGR_NODE: 1569 return aggr_cpu_id__node; 1570 case AGGR_NONE: 1571 return aggr_cpu_id__cpu; 1572 case AGGR_GLOBAL: 1573 return aggr_cpu_id__global; 1574 case AGGR_THREAD: 1575 case AGGR_UNSET: 1576 case AGGR_MAX: 1577 default: 1578 return NULL; 1579 } 1580 } 1581 1582 static aggr_get_id_t aggr_mode__get_id(enum aggr_mode aggr_mode) 1583 { 1584 switch (aggr_mode) { 1585 case AGGR_SOCKET: 1586 return perf_stat__get_socket_cached; 1587 case AGGR_DIE: 1588 return perf_stat__get_die_cached; 1589 case AGGR_CLUSTER: 1590 return perf_stat__get_cluster_cached; 1591 case AGGR_CACHE: 1592 return perf_stat__get_cache_id_cached; 1593 case AGGR_CORE: 1594 return perf_stat__get_core_cached; 1595 case AGGR_NODE: 1596 return perf_stat__get_node_cached; 1597 case AGGR_NONE: 1598 return perf_stat__get_cpu_cached; 1599 case AGGR_GLOBAL: 1600 return perf_stat__get_global_cached; 1601 case AGGR_THREAD: 1602 case AGGR_UNSET: 1603 case AGGR_MAX: 1604 default: 1605 return NULL; 1606 } 1607 } 1608 1609 static int perf_stat_init_aggr_mode(void) 1610 { 1611 int nr; 1612 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr(stat_config.aggr_mode); 1613 1614 if (get_id) { 1615 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1616 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1617 get_id, /*data=*/NULL, needs_sort); 1618 if (!stat_config.aggr_map) { 1619 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1620 return -1; 1621 } 1622 stat_config.aggr_get_id = aggr_mode__get_id(stat_config.aggr_mode); 1623 } 1624 1625 if (stat_config.aggr_mode == AGGR_THREAD) { 1626 nr = perf_thread_map__nr(evsel_list->core.threads); 1627 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1628 if (stat_config.aggr_map == NULL) 1629 return -ENOMEM; 1630 1631 for (int s = 0; s < nr; s++) { 1632 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1633 1634 id.thread_idx = s; 1635 stat_config.aggr_map->map[s] = id; 1636 } 1637 return 0; 1638 } 1639 1640 /* 1641 * The evsel_list->cpus is the base we operate on, 1642 * taking the highest cpu number to be the size of 1643 * the aggregation translate cpumap. 1644 */ 1645 if (!perf_cpu_map__has_any_cpu_or_is_empty(evsel_list->core.user_requested_cpus)) 1646 nr = perf_cpu_map__max(evsel_list->core.user_requested_cpus).cpu; 1647 else 1648 nr = 0; 1649 stat_config.cpus_aggr_map = cpu_aggr_map__empty_new(nr + 1); 1650 return stat_config.cpus_aggr_map ? 0 : -ENOMEM; 1651 } 1652 1653 static void cpu_aggr_map__delete(struct cpu_aggr_map *map) 1654 { 1655 if (map) { 1656 WARN_ONCE(refcount_read(&map->refcnt) != 0, 1657 "cpu_aggr_map refcnt unbalanced\n"); 1658 free(map); 1659 } 1660 } 1661 1662 static void cpu_aggr_map__put(struct cpu_aggr_map *map) 1663 { 1664 if (map && refcount_dec_and_test(&map->refcnt)) 1665 cpu_aggr_map__delete(map); 1666 } 1667 1668 static void perf_stat__exit_aggr_mode(void) 1669 { 1670 cpu_aggr_map__put(stat_config.aggr_map); 1671 cpu_aggr_map__put(stat_config.cpus_aggr_map); 1672 stat_config.aggr_map = NULL; 1673 stat_config.cpus_aggr_map = NULL; 1674 } 1675 1676 static struct aggr_cpu_id perf_env__get_socket_aggr_by_cpu(struct perf_cpu cpu, void *data) 1677 { 1678 struct perf_env *env = data; 1679 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1680 1681 if (cpu.cpu != -1) 1682 id.socket = env->cpu[cpu.cpu].socket_id; 1683 1684 return id; 1685 } 1686 1687 static struct aggr_cpu_id perf_env__get_die_aggr_by_cpu(struct perf_cpu cpu, void *data) 1688 { 1689 struct perf_env *env = data; 1690 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1691 1692 if (cpu.cpu != -1) { 1693 /* 1694 * die_id is relative to socket, so start 1695 * with the socket ID and then add die to 1696 * make a unique ID. 1697 */ 1698 id.socket = env->cpu[cpu.cpu].socket_id; 1699 id.die = env->cpu[cpu.cpu].die_id; 1700 } 1701 1702 return id; 1703 } 1704 1705 static void perf_env__get_cache_id_for_cpu(struct perf_cpu cpu, struct perf_env *env, 1706 u32 cache_level, struct aggr_cpu_id *id) 1707 { 1708 int i; 1709 int caches_cnt = env->caches_cnt; 1710 struct cpu_cache_level *caches = env->caches; 1711 1712 id->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1713 id->cache = -1; 1714 1715 if (!caches_cnt) 1716 return; 1717 1718 for (i = caches_cnt - 1; i > -1; --i) { 1719 struct perf_cpu_map *cpu_map; 1720 int map_contains_cpu; 1721 1722 /* 1723 * If user has not specified a level, find the fist level with 1724 * the cpu in the map. Since building the map is expensive, do 1725 * this only if levels match. 1726 */ 1727 if (cache_level <= MAX_CACHE_LVL && caches[i].level != cache_level) 1728 continue; 1729 1730 cpu_map = perf_cpu_map__new(caches[i].map); 1731 map_contains_cpu = perf_cpu_map__idx(cpu_map, cpu); 1732 perf_cpu_map__put(cpu_map); 1733 1734 if (map_contains_cpu != -1) { 1735 id->cache_lvl = caches[i].level; 1736 id->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1737 return; 1738 } 1739 } 1740 } 1741 1742 static struct aggr_cpu_id perf_env__get_cache_aggr_by_cpu(struct perf_cpu cpu, 1743 void *data) 1744 { 1745 struct perf_env *env = data; 1746 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1747 1748 if (cpu.cpu != -1) { 1749 u32 cache_level = (perf_stat.aggr_level) ?: stat_config.aggr_level; 1750 1751 id.socket = env->cpu[cpu.cpu].socket_id; 1752 id.die = env->cpu[cpu.cpu].die_id; 1753 perf_env__get_cache_id_for_cpu(cpu, env, cache_level, &id); 1754 } 1755 1756 return id; 1757 } 1758 1759 static struct aggr_cpu_id perf_env__get_cluster_aggr_by_cpu(struct perf_cpu cpu, 1760 void *data) 1761 { 1762 struct perf_env *env = data; 1763 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1764 1765 if (cpu.cpu != -1) { 1766 id.socket = env->cpu[cpu.cpu].socket_id; 1767 id.die = env->cpu[cpu.cpu].die_id; 1768 id.cluster = env->cpu[cpu.cpu].cluster_id; 1769 } 1770 1771 return id; 1772 } 1773 1774 static struct aggr_cpu_id perf_env__get_core_aggr_by_cpu(struct perf_cpu cpu, void *data) 1775 { 1776 struct perf_env *env = data; 1777 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1778 1779 if (cpu.cpu != -1) { 1780 /* 1781 * core_id is relative to socket, die and cluster, we need a 1782 * global id. So we set socket, die id, cluster id and core id. 1783 */ 1784 id.socket = env->cpu[cpu.cpu].socket_id; 1785 id.die = env->cpu[cpu.cpu].die_id; 1786 id.cluster = env->cpu[cpu.cpu].cluster_id; 1787 id.core = env->cpu[cpu.cpu].core_id; 1788 } 1789 1790 return id; 1791 } 1792 1793 static struct aggr_cpu_id perf_env__get_cpu_aggr_by_cpu(struct perf_cpu cpu, void *data) 1794 { 1795 struct perf_env *env = data; 1796 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1797 1798 if (cpu.cpu != -1) { 1799 /* 1800 * core_id is relative to socket and die, 1801 * we need a global id. So we set 1802 * socket, die id and core id 1803 */ 1804 id.socket = env->cpu[cpu.cpu].socket_id; 1805 id.die = env->cpu[cpu.cpu].die_id; 1806 id.core = env->cpu[cpu.cpu].core_id; 1807 id.cpu = cpu; 1808 } 1809 1810 return id; 1811 } 1812 1813 static struct aggr_cpu_id perf_env__get_node_aggr_by_cpu(struct perf_cpu cpu, void *data) 1814 { 1815 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1816 1817 id.node = perf_env__numa_node(data, cpu); 1818 return id; 1819 } 1820 1821 static struct aggr_cpu_id perf_env__get_global_aggr_by_cpu(struct perf_cpu cpu __maybe_unused, 1822 void *data __maybe_unused) 1823 { 1824 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1825 1826 /* it always aggregates to the cpu 0 */ 1827 id.cpu = (struct perf_cpu){ .cpu = 0 }; 1828 return id; 1829 } 1830 1831 static struct aggr_cpu_id perf_stat__get_socket_file(struct perf_stat_config *config __maybe_unused, 1832 struct perf_cpu cpu) 1833 { 1834 return perf_env__get_socket_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1835 } 1836 static struct aggr_cpu_id perf_stat__get_die_file(struct perf_stat_config *config __maybe_unused, 1837 struct perf_cpu cpu) 1838 { 1839 return perf_env__get_die_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1840 } 1841 1842 static struct aggr_cpu_id perf_stat__get_cluster_file(struct perf_stat_config *config __maybe_unused, 1843 struct perf_cpu cpu) 1844 { 1845 return perf_env__get_cluster_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1846 } 1847 1848 static struct aggr_cpu_id perf_stat__get_cache_file(struct perf_stat_config *config __maybe_unused, 1849 struct perf_cpu cpu) 1850 { 1851 return perf_env__get_cache_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1852 } 1853 1854 static struct aggr_cpu_id perf_stat__get_core_file(struct perf_stat_config *config __maybe_unused, 1855 struct perf_cpu cpu) 1856 { 1857 return perf_env__get_core_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1858 } 1859 1860 static struct aggr_cpu_id perf_stat__get_cpu_file(struct perf_stat_config *config __maybe_unused, 1861 struct perf_cpu cpu) 1862 { 1863 return perf_env__get_cpu_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1864 } 1865 1866 static struct aggr_cpu_id perf_stat__get_node_file(struct perf_stat_config *config __maybe_unused, 1867 struct perf_cpu cpu) 1868 { 1869 return perf_env__get_node_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1870 } 1871 1872 static struct aggr_cpu_id perf_stat__get_global_file(struct perf_stat_config *config __maybe_unused, 1873 struct perf_cpu cpu) 1874 { 1875 return perf_env__get_global_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1876 } 1877 1878 static aggr_cpu_id_get_t aggr_mode__get_aggr_file(enum aggr_mode aggr_mode) 1879 { 1880 switch (aggr_mode) { 1881 case AGGR_SOCKET: 1882 return perf_env__get_socket_aggr_by_cpu; 1883 case AGGR_DIE: 1884 return perf_env__get_die_aggr_by_cpu; 1885 case AGGR_CLUSTER: 1886 return perf_env__get_cluster_aggr_by_cpu; 1887 case AGGR_CACHE: 1888 return perf_env__get_cache_aggr_by_cpu; 1889 case AGGR_CORE: 1890 return perf_env__get_core_aggr_by_cpu; 1891 case AGGR_NODE: 1892 return perf_env__get_node_aggr_by_cpu; 1893 case AGGR_GLOBAL: 1894 return perf_env__get_global_aggr_by_cpu; 1895 case AGGR_NONE: 1896 return perf_env__get_cpu_aggr_by_cpu; 1897 case AGGR_THREAD: 1898 case AGGR_UNSET: 1899 case AGGR_MAX: 1900 default: 1901 return NULL; 1902 } 1903 } 1904 1905 static aggr_get_id_t aggr_mode__get_id_file(enum aggr_mode aggr_mode) 1906 { 1907 switch (aggr_mode) { 1908 case AGGR_SOCKET: 1909 return perf_stat__get_socket_file; 1910 case AGGR_DIE: 1911 return perf_stat__get_die_file; 1912 case AGGR_CLUSTER: 1913 return perf_stat__get_cluster_file; 1914 case AGGR_CACHE: 1915 return perf_stat__get_cache_file; 1916 case AGGR_CORE: 1917 return perf_stat__get_core_file; 1918 case AGGR_NODE: 1919 return perf_stat__get_node_file; 1920 case AGGR_GLOBAL: 1921 return perf_stat__get_global_file; 1922 case AGGR_NONE: 1923 return perf_stat__get_cpu_file; 1924 case AGGR_THREAD: 1925 case AGGR_UNSET: 1926 case AGGR_MAX: 1927 default: 1928 return NULL; 1929 } 1930 } 1931 1932 static int perf_stat_init_aggr_mode_file(struct perf_stat *st) 1933 { 1934 struct perf_env *env = &st->session->header.env; 1935 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr_file(stat_config.aggr_mode); 1936 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1937 1938 if (stat_config.aggr_mode == AGGR_THREAD) { 1939 int nr = perf_thread_map__nr(evsel_list->core.threads); 1940 1941 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1942 if (stat_config.aggr_map == NULL) 1943 return -ENOMEM; 1944 1945 for (int s = 0; s < nr; s++) { 1946 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1947 1948 id.thread_idx = s; 1949 stat_config.aggr_map->map[s] = id; 1950 } 1951 return 0; 1952 } 1953 1954 if (!get_id) 1955 return 0; 1956 1957 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1958 get_id, env, needs_sort); 1959 if (!stat_config.aggr_map) { 1960 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1961 return -1; 1962 } 1963 stat_config.aggr_get_id = aggr_mode__get_id_file(stat_config.aggr_mode); 1964 return 0; 1965 } 1966 1967 /* 1968 * Add default attributes, if there were no attributes specified or 1969 * if -d/--detailed, -d -d or -d -d -d is used: 1970 */ 1971 static int add_default_attributes(void) 1972 { 1973 struct perf_event_attr default_attrs0[] = { 1974 1975 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK }, 1976 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES }, 1977 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS }, 1978 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS }, 1979 1980 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES }, 1981 }; 1982 struct perf_event_attr frontend_attrs[] = { 1983 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_FRONTEND }, 1984 }; 1985 struct perf_event_attr backend_attrs[] = { 1986 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_BACKEND }, 1987 }; 1988 struct perf_event_attr default_attrs1[] = { 1989 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS }, 1990 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS }, 1991 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES }, 1992 1993 }; 1994 1995 /* 1996 * Detailed stats (-d), covering the L1 and last level data caches: 1997 */ 1998 struct perf_event_attr detailed_attrs[] = { 1999 2000 { .type = PERF_TYPE_HW_CACHE, 2001 .config = 2002 PERF_COUNT_HW_CACHE_L1D << 0 | 2003 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 2004 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 2005 2006 { .type = PERF_TYPE_HW_CACHE, 2007 .config = 2008 PERF_COUNT_HW_CACHE_L1D << 0 | 2009 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 2010 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 2011 2012 { .type = PERF_TYPE_HW_CACHE, 2013 .config = 2014 PERF_COUNT_HW_CACHE_LL << 0 | 2015 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 2016 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 2017 2018 { .type = PERF_TYPE_HW_CACHE, 2019 .config = 2020 PERF_COUNT_HW_CACHE_LL << 0 | 2021 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 2022 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 2023 }; 2024 2025 /* 2026 * Very detailed stats (-d -d), covering the instruction cache and the TLB caches: 2027 */ 2028 struct perf_event_attr very_detailed_attrs[] = { 2029 2030 { .type = PERF_TYPE_HW_CACHE, 2031 .config = 2032 PERF_COUNT_HW_CACHE_L1I << 0 | 2033 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 2034 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 2035 2036 { .type = PERF_TYPE_HW_CACHE, 2037 .config = 2038 PERF_COUNT_HW_CACHE_L1I << 0 | 2039 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 2040 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 2041 2042 { .type = PERF_TYPE_HW_CACHE, 2043 .config = 2044 PERF_COUNT_HW_CACHE_DTLB << 0 | 2045 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 2046 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 2047 2048 { .type = PERF_TYPE_HW_CACHE, 2049 .config = 2050 PERF_COUNT_HW_CACHE_DTLB << 0 | 2051 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 2052 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 2053 2054 { .type = PERF_TYPE_HW_CACHE, 2055 .config = 2056 PERF_COUNT_HW_CACHE_ITLB << 0 | 2057 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 2058 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 2059 2060 { .type = PERF_TYPE_HW_CACHE, 2061 .config = 2062 PERF_COUNT_HW_CACHE_ITLB << 0 | 2063 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 2064 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 2065 2066 }; 2067 2068 /* 2069 * Very, very detailed stats (-d -d -d), adding prefetch events: 2070 */ 2071 struct perf_event_attr very_very_detailed_attrs[] = { 2072 2073 { .type = PERF_TYPE_HW_CACHE, 2074 .config = 2075 PERF_COUNT_HW_CACHE_L1D << 0 | 2076 (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) | 2077 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 2078 2079 { .type = PERF_TYPE_HW_CACHE, 2080 .config = 2081 PERF_COUNT_HW_CACHE_L1D << 0 | 2082 (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) | 2083 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 2084 }; 2085 2086 struct perf_event_attr default_null_attrs[] = {}; 2087 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 2088 2089 /* Set attrs if no event is selected and !null_run: */ 2090 if (stat_config.null_run) 2091 return 0; 2092 2093 if (transaction_run) { 2094 /* Handle -T as -M transaction. Once platform specific metrics 2095 * support has been added to the json files, all architectures 2096 * will use this approach. To determine transaction support 2097 * on an architecture test for such a metric name. 2098 */ 2099 if (!metricgroup__has_metric(pmu, "transaction")) { 2100 pr_err("Missing transaction metrics\n"); 2101 return -1; 2102 } 2103 return metricgroup__parse_groups(evsel_list, pmu, "transaction", 2104 stat_config.metric_no_group, 2105 stat_config.metric_no_merge, 2106 stat_config.metric_no_threshold, 2107 stat_config.user_requested_cpu_list, 2108 stat_config.system_wide, 2109 &stat_config.metric_events); 2110 } 2111 2112 if (smi_cost) { 2113 int smi; 2114 2115 if (sysfs__read_int(FREEZE_ON_SMI_PATH, &smi) < 0) { 2116 pr_err("freeze_on_smi is not supported.\n"); 2117 return -1; 2118 } 2119 2120 if (!smi) { 2121 if (sysfs__write_int(FREEZE_ON_SMI_PATH, 1) < 0) { 2122 fprintf(stderr, "Failed to set freeze_on_smi.\n"); 2123 return -1; 2124 } 2125 smi_reset = true; 2126 } 2127 2128 if (!metricgroup__has_metric(pmu, "smi")) { 2129 pr_err("Missing smi metrics\n"); 2130 return -1; 2131 } 2132 2133 if (!force_metric_only) 2134 stat_config.metric_only = true; 2135 2136 return metricgroup__parse_groups(evsel_list, pmu, "smi", 2137 stat_config.metric_no_group, 2138 stat_config.metric_no_merge, 2139 stat_config.metric_no_threshold, 2140 stat_config.user_requested_cpu_list, 2141 stat_config.system_wide, 2142 &stat_config.metric_events); 2143 } 2144 2145 if (topdown_run) { 2146 unsigned int max_level = metricgroups__topdown_max_level(); 2147 char str[] = "TopdownL1"; 2148 2149 if (!force_metric_only) 2150 stat_config.metric_only = true; 2151 2152 if (!max_level) { 2153 pr_err("Topdown requested but the topdown metric groups aren't present.\n" 2154 "(See perf list the metric groups have names like TopdownL1)\n"); 2155 return -1; 2156 } 2157 if (stat_config.topdown_level > max_level) { 2158 pr_err("Invalid top-down metrics level. The max level is %u.\n", max_level); 2159 return -1; 2160 } else if (!stat_config.topdown_level) 2161 stat_config.topdown_level = 1; 2162 2163 if (!stat_config.interval && !stat_config.metric_only) { 2164 fprintf(stat_config.output, 2165 "Topdown accuracy may decrease when measuring long periods.\n" 2166 "Please print the result regularly, e.g. -I1000\n"); 2167 } 2168 str[8] = stat_config.topdown_level + '0'; 2169 if (metricgroup__parse_groups(evsel_list, 2170 pmu, str, 2171 /*metric_no_group=*/false, 2172 /*metric_no_merge=*/false, 2173 /*metric_no_threshold=*/true, 2174 stat_config.user_requested_cpu_list, 2175 stat_config.system_wide, 2176 &stat_config.metric_events) < 0) 2177 return -1; 2178 } 2179 2180 if (!stat_config.topdown_level) 2181 stat_config.topdown_level = 1; 2182 2183 if (!evsel_list->core.nr_entries) { 2184 /* No events so add defaults. */ 2185 if (target__has_cpu(&target)) 2186 default_attrs0[0].config = PERF_COUNT_SW_CPU_CLOCK; 2187 2188 if (evlist__add_default_attrs(evsel_list, default_attrs0) < 0) 2189 return -1; 2190 if (perf_pmus__have_event("cpu", "stalled-cycles-frontend")) { 2191 if (evlist__add_default_attrs(evsel_list, frontend_attrs) < 0) 2192 return -1; 2193 } 2194 if (perf_pmus__have_event("cpu", "stalled-cycles-backend")) { 2195 if (evlist__add_default_attrs(evsel_list, backend_attrs) < 0) 2196 return -1; 2197 } 2198 if (evlist__add_default_attrs(evsel_list, default_attrs1) < 0) 2199 return -1; 2200 /* 2201 * Add TopdownL1 metrics if they exist. To minimize 2202 * multiplexing, don't request threshold computation. 2203 */ 2204 if (metricgroup__has_metric(pmu, "Default")) { 2205 struct evlist *metric_evlist = evlist__new(); 2206 struct evsel *metric_evsel; 2207 2208 if (!metric_evlist) 2209 return -1; 2210 2211 if (metricgroup__parse_groups(metric_evlist, pmu, "Default", 2212 /*metric_no_group=*/false, 2213 /*metric_no_merge=*/false, 2214 /*metric_no_threshold=*/true, 2215 stat_config.user_requested_cpu_list, 2216 stat_config.system_wide, 2217 &stat_config.metric_events) < 0) 2218 return -1; 2219 2220 evlist__for_each_entry(metric_evlist, metric_evsel) { 2221 metric_evsel->skippable = true; 2222 metric_evsel->default_metricgroup = true; 2223 } 2224 evlist__splice_list_tail(evsel_list, &metric_evlist->core.entries); 2225 evlist__delete(metric_evlist); 2226 } 2227 2228 /* Platform specific attrs */ 2229 if (evlist__add_default_attrs(evsel_list, default_null_attrs) < 0) 2230 return -1; 2231 } 2232 2233 /* Detailed events get appended to the event list: */ 2234 2235 if (detailed_run < 1) 2236 return 0; 2237 2238 /* Append detailed run extra attributes: */ 2239 if (evlist__add_default_attrs(evsel_list, detailed_attrs) < 0) 2240 return -1; 2241 2242 if (detailed_run < 2) 2243 return 0; 2244 2245 /* Append very detailed run extra attributes: */ 2246 if (evlist__add_default_attrs(evsel_list, very_detailed_attrs) < 0) 2247 return -1; 2248 2249 if (detailed_run < 3) 2250 return 0; 2251 2252 /* Append very, very detailed run extra attributes: */ 2253 return evlist__add_default_attrs(evsel_list, very_very_detailed_attrs); 2254 } 2255 2256 static const char * const stat_record_usage[] = { 2257 "perf stat record [<options>]", 2258 NULL, 2259 }; 2260 2261 static void init_features(struct perf_session *session) 2262 { 2263 int feat; 2264 2265 for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++) 2266 perf_header__set_feat(&session->header, feat); 2267 2268 perf_header__clear_feat(&session->header, HEADER_DIR_FORMAT); 2269 perf_header__clear_feat(&session->header, HEADER_BUILD_ID); 2270 perf_header__clear_feat(&session->header, HEADER_TRACING_DATA); 2271 perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK); 2272 perf_header__clear_feat(&session->header, HEADER_AUXTRACE); 2273 } 2274 2275 static int __cmd_record(int argc, const char **argv) 2276 { 2277 struct perf_session *session; 2278 struct perf_data *data = &perf_stat.data; 2279 2280 argc = parse_options(argc, argv, stat_options, stat_record_usage, 2281 PARSE_OPT_STOP_AT_NON_OPTION); 2282 2283 if (output_name) 2284 data->path = output_name; 2285 2286 if (stat_config.run_count != 1 || forever) { 2287 pr_err("Cannot use -r option with perf stat record.\n"); 2288 return -1; 2289 } 2290 2291 session = perf_session__new(data, NULL); 2292 if (IS_ERR(session)) { 2293 pr_err("Perf session creation failed\n"); 2294 return PTR_ERR(session); 2295 } 2296 2297 init_features(session); 2298 2299 session->evlist = evsel_list; 2300 perf_stat.session = session; 2301 perf_stat.record = true; 2302 return argc; 2303 } 2304 2305 static int process_stat_round_event(struct perf_session *session, 2306 union perf_event *event) 2307 { 2308 struct perf_record_stat_round *stat_round = &event->stat_round; 2309 struct timespec tsh, *ts = NULL; 2310 const char **argv = session->header.env.cmdline_argv; 2311 int argc = session->header.env.nr_cmdline; 2312 2313 process_counters(); 2314 2315 if (stat_round->type == PERF_STAT_ROUND_TYPE__FINAL) 2316 update_stats(&walltime_nsecs_stats, stat_round->time); 2317 2318 if (stat_config.interval && stat_round->time) { 2319 tsh.tv_sec = stat_round->time / NSEC_PER_SEC; 2320 tsh.tv_nsec = stat_round->time % NSEC_PER_SEC; 2321 ts = &tsh; 2322 } 2323 2324 print_counters(ts, argc, argv); 2325 return 0; 2326 } 2327 2328 static 2329 int process_stat_config_event(struct perf_session *session, 2330 union perf_event *event) 2331 { 2332 struct perf_tool *tool = session->tool; 2333 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2334 2335 perf_event__read_stat_config(&stat_config, &event->stat_config); 2336 2337 if (perf_cpu_map__has_any_cpu_or_is_empty(st->cpus)) { 2338 if (st->aggr_mode != AGGR_UNSET) 2339 pr_warning("warning: processing task data, aggregation mode not set\n"); 2340 } else if (st->aggr_mode != AGGR_UNSET) { 2341 stat_config.aggr_mode = st->aggr_mode; 2342 } 2343 2344 if (perf_stat.data.is_pipe) 2345 perf_stat_init_aggr_mode(); 2346 else 2347 perf_stat_init_aggr_mode_file(st); 2348 2349 if (stat_config.aggr_map) { 2350 int nr_aggr = stat_config.aggr_map->nr; 2351 2352 if (evlist__alloc_aggr_stats(session->evlist, nr_aggr) < 0) { 2353 pr_err("cannot allocate aggr counts\n"); 2354 return -1; 2355 } 2356 } 2357 return 0; 2358 } 2359 2360 static int set_maps(struct perf_stat *st) 2361 { 2362 if (!st->cpus || !st->threads) 2363 return 0; 2364 2365 if (WARN_ONCE(st->maps_allocated, "stats double allocation\n")) 2366 return -EINVAL; 2367 2368 perf_evlist__set_maps(&evsel_list->core, st->cpus, st->threads); 2369 2370 if (evlist__alloc_stats(&stat_config, evsel_list, /*alloc_raw=*/true)) 2371 return -ENOMEM; 2372 2373 st->maps_allocated = true; 2374 return 0; 2375 } 2376 2377 static 2378 int process_thread_map_event(struct perf_session *session, 2379 union perf_event *event) 2380 { 2381 struct perf_tool *tool = session->tool; 2382 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2383 2384 if (st->threads) { 2385 pr_warning("Extra thread map event, ignoring.\n"); 2386 return 0; 2387 } 2388 2389 st->threads = thread_map__new_event(&event->thread_map); 2390 if (!st->threads) 2391 return -ENOMEM; 2392 2393 return set_maps(st); 2394 } 2395 2396 static 2397 int process_cpu_map_event(struct perf_session *session, 2398 union perf_event *event) 2399 { 2400 struct perf_tool *tool = session->tool; 2401 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2402 struct perf_cpu_map *cpus; 2403 2404 if (st->cpus) { 2405 pr_warning("Extra cpu map event, ignoring.\n"); 2406 return 0; 2407 } 2408 2409 cpus = cpu_map__new_data(&event->cpu_map.data); 2410 if (!cpus) 2411 return -ENOMEM; 2412 2413 st->cpus = cpus; 2414 return set_maps(st); 2415 } 2416 2417 static const char * const stat_report_usage[] = { 2418 "perf stat report [<options>]", 2419 NULL, 2420 }; 2421 2422 static struct perf_stat perf_stat = { 2423 .tool = { 2424 .attr = perf_event__process_attr, 2425 .event_update = perf_event__process_event_update, 2426 .thread_map = process_thread_map_event, 2427 .cpu_map = process_cpu_map_event, 2428 .stat_config = process_stat_config_event, 2429 .stat = perf_event__process_stat_event, 2430 .stat_round = process_stat_round_event, 2431 }, 2432 .aggr_mode = AGGR_UNSET, 2433 .aggr_level = 0, 2434 }; 2435 2436 static int __cmd_report(int argc, const char **argv) 2437 { 2438 struct perf_session *session; 2439 const struct option options[] = { 2440 OPT_STRING('i', "input", &input_name, "file", "input file name"), 2441 OPT_SET_UINT(0, "per-socket", &perf_stat.aggr_mode, 2442 "aggregate counts per processor socket", AGGR_SOCKET), 2443 OPT_SET_UINT(0, "per-die", &perf_stat.aggr_mode, 2444 "aggregate counts per processor die", AGGR_DIE), 2445 OPT_SET_UINT(0, "per-cluster", &perf_stat.aggr_mode, 2446 "aggregate counts perf processor cluster", AGGR_CLUSTER), 2447 OPT_CALLBACK_OPTARG(0, "per-cache", &perf_stat.aggr_mode, &perf_stat.aggr_level, 2448 "cache level", 2449 "aggregate count at this cache level (Default: LLC)", 2450 parse_cache_level), 2451 OPT_SET_UINT(0, "per-core", &perf_stat.aggr_mode, 2452 "aggregate counts per physical processor core", AGGR_CORE), 2453 OPT_SET_UINT(0, "per-node", &perf_stat.aggr_mode, 2454 "aggregate counts per numa node", AGGR_NODE), 2455 OPT_SET_UINT('A', "no-aggr", &perf_stat.aggr_mode, 2456 "disable CPU count aggregation", AGGR_NONE), 2457 OPT_END() 2458 }; 2459 struct stat st; 2460 int ret; 2461 2462 argc = parse_options(argc, argv, options, stat_report_usage, 0); 2463 2464 if (!input_name || !strlen(input_name)) { 2465 if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode)) 2466 input_name = "-"; 2467 else 2468 input_name = "perf.data"; 2469 } 2470 2471 perf_stat.data.path = input_name; 2472 perf_stat.data.mode = PERF_DATA_MODE_READ; 2473 2474 session = perf_session__new(&perf_stat.data, &perf_stat.tool); 2475 if (IS_ERR(session)) 2476 return PTR_ERR(session); 2477 2478 perf_stat.session = session; 2479 stat_config.output = stderr; 2480 evlist__delete(evsel_list); 2481 evsel_list = session->evlist; 2482 2483 ret = perf_session__process_events(session); 2484 if (ret) 2485 return ret; 2486 2487 perf_session__delete(session); 2488 return 0; 2489 } 2490 2491 static void setup_system_wide(int forks) 2492 { 2493 /* 2494 * Make system wide (-a) the default target if 2495 * no target was specified and one of following 2496 * conditions is met: 2497 * 2498 * - there's no workload specified 2499 * - there is workload specified but all requested 2500 * events are system wide events 2501 */ 2502 if (!target__none(&target)) 2503 return; 2504 2505 if (!forks) 2506 target.system_wide = true; 2507 else { 2508 struct evsel *counter; 2509 2510 evlist__for_each_entry(evsel_list, counter) { 2511 if (!counter->core.requires_cpu && 2512 !evsel__name_is(counter, "duration_time")) { 2513 return; 2514 } 2515 } 2516 2517 if (evsel_list->core.nr_entries) 2518 target.system_wide = true; 2519 } 2520 } 2521 2522 int cmd_stat(int argc, const char **argv) 2523 { 2524 const char * const stat_usage[] = { 2525 "perf stat [<options>] [<command>]", 2526 NULL 2527 }; 2528 int status = -EINVAL, run_idx, err; 2529 const char *mode; 2530 FILE *output = stderr; 2531 unsigned int interval, timeout; 2532 const char * const stat_subcommands[] = { "record", "report" }; 2533 char errbuf[BUFSIZ]; 2534 2535 setlocale(LC_ALL, ""); 2536 2537 evsel_list = evlist__new(); 2538 if (evsel_list == NULL) 2539 return -ENOMEM; 2540 2541 parse_events__shrink_config_terms(); 2542 2543 /* String-parsing callback-based options would segfault when negated */ 2544 set_option_flag(stat_options, 'e', "event", PARSE_OPT_NONEG); 2545 set_option_flag(stat_options, 'M', "metrics", PARSE_OPT_NONEG); 2546 set_option_flag(stat_options, 'G', "cgroup", PARSE_OPT_NONEG); 2547 2548 argc = parse_options_subcommand(argc, argv, stat_options, stat_subcommands, 2549 (const char **) stat_usage, 2550 PARSE_OPT_STOP_AT_NON_OPTION); 2551 2552 if (stat_config.csv_sep) { 2553 stat_config.csv_output = true; 2554 if (!strcmp(stat_config.csv_sep, "\\t")) 2555 stat_config.csv_sep = "\t"; 2556 } else 2557 stat_config.csv_sep = DEFAULT_SEPARATOR; 2558 2559 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) { 2560 argc = __cmd_record(argc, argv); 2561 if (argc < 0) 2562 return -1; 2563 } else if (argc && strlen(argv[0]) > 2 && strstarts("report", argv[0])) 2564 return __cmd_report(argc, argv); 2565 2566 interval = stat_config.interval; 2567 timeout = stat_config.timeout; 2568 2569 /* 2570 * For record command the -o is already taken care of. 2571 */ 2572 if (!STAT_RECORD && output_name && strcmp(output_name, "-")) 2573 output = NULL; 2574 2575 if (output_name && output_fd) { 2576 fprintf(stderr, "cannot use both --output and --log-fd\n"); 2577 parse_options_usage(stat_usage, stat_options, "o", 1); 2578 parse_options_usage(NULL, stat_options, "log-fd", 0); 2579 goto out; 2580 } 2581 2582 if (stat_config.metric_only && stat_config.aggr_mode == AGGR_THREAD) { 2583 fprintf(stderr, "--metric-only is not supported with --per-thread\n"); 2584 goto out; 2585 } 2586 2587 if (stat_config.metric_only && stat_config.run_count > 1) { 2588 fprintf(stderr, "--metric-only is not supported with -r\n"); 2589 goto out; 2590 } 2591 2592 if (stat_config.walltime_run_table && stat_config.run_count <= 1) { 2593 fprintf(stderr, "--table is only supported with -r\n"); 2594 parse_options_usage(stat_usage, stat_options, "r", 1); 2595 parse_options_usage(NULL, stat_options, "table", 0); 2596 goto out; 2597 } 2598 2599 if (output_fd < 0) { 2600 fprintf(stderr, "argument to --log-fd must be a > 0\n"); 2601 parse_options_usage(stat_usage, stat_options, "log-fd", 0); 2602 goto out; 2603 } 2604 2605 if (!output && !quiet) { 2606 struct timespec tm; 2607 mode = append_file ? "a" : "w"; 2608 2609 output = fopen(output_name, mode); 2610 if (!output) { 2611 perror("failed to create output file"); 2612 return -1; 2613 } 2614 if (!stat_config.json_output) { 2615 clock_gettime(CLOCK_REALTIME, &tm); 2616 fprintf(output, "# started on %s\n", ctime(&tm.tv_sec)); 2617 } 2618 } else if (output_fd > 0) { 2619 mode = append_file ? "a" : "w"; 2620 output = fdopen(output_fd, mode); 2621 if (!output) { 2622 perror("Failed opening logfd"); 2623 return -errno; 2624 } 2625 } 2626 2627 if (stat_config.interval_clear && !isatty(fileno(output))) { 2628 fprintf(stderr, "--interval-clear does not work with output\n"); 2629 parse_options_usage(stat_usage, stat_options, "o", 1); 2630 parse_options_usage(NULL, stat_options, "log-fd", 0); 2631 parse_options_usage(NULL, stat_options, "interval-clear", 0); 2632 return -1; 2633 } 2634 2635 stat_config.output = output; 2636 2637 /* 2638 * let the spreadsheet do the pretty-printing 2639 */ 2640 if (stat_config.csv_output) { 2641 /* User explicitly passed -B? */ 2642 if (big_num_opt == 1) { 2643 fprintf(stderr, "-B option not supported with -x\n"); 2644 parse_options_usage(stat_usage, stat_options, "B", 1); 2645 parse_options_usage(NULL, stat_options, "x", 1); 2646 goto out; 2647 } else /* Nope, so disable big number formatting */ 2648 stat_config.big_num = false; 2649 } else if (big_num_opt == 0) /* User passed --no-big-num */ 2650 stat_config.big_num = false; 2651 2652 err = target__validate(&target); 2653 if (err) { 2654 target__strerror(&target, err, errbuf, BUFSIZ); 2655 pr_warning("%s\n", errbuf); 2656 } 2657 2658 setup_system_wide(argc); 2659 2660 /* 2661 * Display user/system times only for single 2662 * run and when there's specified tracee. 2663 */ 2664 if ((stat_config.run_count == 1) && target__none(&target)) 2665 stat_config.ru_display = true; 2666 2667 if (stat_config.run_count < 0) { 2668 pr_err("Run count must be a positive number\n"); 2669 parse_options_usage(stat_usage, stat_options, "r", 1); 2670 goto out; 2671 } else if (stat_config.run_count == 0) { 2672 forever = true; 2673 stat_config.run_count = 1; 2674 } 2675 2676 if (stat_config.walltime_run_table) { 2677 stat_config.walltime_run = zalloc(stat_config.run_count * sizeof(stat_config.walltime_run[0])); 2678 if (!stat_config.walltime_run) { 2679 pr_err("failed to setup -r option"); 2680 goto out; 2681 } 2682 } 2683 2684 if ((stat_config.aggr_mode == AGGR_THREAD) && 2685 !target__has_task(&target)) { 2686 if (!target.system_wide || target.cpu_list) { 2687 fprintf(stderr, "The --per-thread option is only " 2688 "available when monitoring via -p -t -a " 2689 "options or only --per-thread.\n"); 2690 parse_options_usage(NULL, stat_options, "p", 1); 2691 parse_options_usage(NULL, stat_options, "t", 1); 2692 goto out; 2693 } 2694 } 2695 2696 /* 2697 * no_aggr, cgroup are for system-wide only 2698 * --per-thread is aggregated per thread, we dont mix it with cpu mode 2699 */ 2700 if (((stat_config.aggr_mode != AGGR_GLOBAL && 2701 stat_config.aggr_mode != AGGR_THREAD) || 2702 (nr_cgroups || stat_config.cgroup_list)) && 2703 !target__has_cpu(&target)) { 2704 fprintf(stderr, "both cgroup and no-aggregation " 2705 "modes only available in system-wide mode\n"); 2706 2707 parse_options_usage(stat_usage, stat_options, "G", 1); 2708 parse_options_usage(NULL, stat_options, "A", 1); 2709 parse_options_usage(NULL, stat_options, "a", 1); 2710 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2711 goto out; 2712 } 2713 2714 if (stat_config.iostat_run) { 2715 status = iostat_prepare(evsel_list, &stat_config); 2716 if (status) 2717 goto out; 2718 if (iostat_mode == IOSTAT_LIST) { 2719 iostat_list(evsel_list, &stat_config); 2720 goto out; 2721 } else if (verbose > 0) 2722 iostat_list(evsel_list, &stat_config); 2723 if (iostat_mode == IOSTAT_RUN && !target__has_cpu(&target)) 2724 target.system_wide = true; 2725 } 2726 2727 if ((stat_config.aggr_mode == AGGR_THREAD) && (target.system_wide)) 2728 target.per_thread = true; 2729 2730 stat_config.system_wide = target.system_wide; 2731 if (target.cpu_list) { 2732 stat_config.user_requested_cpu_list = strdup(target.cpu_list); 2733 if (!stat_config.user_requested_cpu_list) { 2734 status = -ENOMEM; 2735 goto out; 2736 } 2737 } 2738 2739 /* 2740 * Metric parsing needs to be delayed as metrics may optimize events 2741 * knowing the target is system-wide. 2742 */ 2743 if (metrics) { 2744 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 2745 int ret = metricgroup__parse_groups(evsel_list, pmu, metrics, 2746 stat_config.metric_no_group, 2747 stat_config.metric_no_merge, 2748 stat_config.metric_no_threshold, 2749 stat_config.user_requested_cpu_list, 2750 stat_config.system_wide, 2751 &stat_config.metric_events); 2752 2753 zfree(&metrics); 2754 if (ret) { 2755 status = ret; 2756 goto out; 2757 } 2758 } 2759 2760 if (add_default_attributes()) 2761 goto out; 2762 2763 if (stat_config.cgroup_list) { 2764 if (nr_cgroups > 0) { 2765 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 2766 parse_options_usage(stat_usage, stat_options, "G", 1); 2767 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2768 goto out; 2769 } 2770 2771 if (evlist__expand_cgroup(evsel_list, stat_config.cgroup_list, 2772 &stat_config.metric_events, true) < 0) { 2773 parse_options_usage(stat_usage, stat_options, 2774 "for-each-cgroup", 0); 2775 goto out; 2776 } 2777 } 2778 2779 evlist__warn_user_requested_cpus(evsel_list, target.cpu_list); 2780 2781 if (evlist__create_maps(evsel_list, &target) < 0) { 2782 if (target__has_task(&target)) { 2783 pr_err("Problems finding threads of monitor\n"); 2784 parse_options_usage(stat_usage, stat_options, "p", 1); 2785 parse_options_usage(NULL, stat_options, "t", 1); 2786 } else if (target__has_cpu(&target)) { 2787 perror("failed to parse CPUs map"); 2788 parse_options_usage(stat_usage, stat_options, "C", 1); 2789 parse_options_usage(NULL, stat_options, "a", 1); 2790 } 2791 goto out; 2792 } 2793 2794 evlist__check_cpu_maps(evsel_list); 2795 2796 /* 2797 * Initialize thread_map with comm names, 2798 * so we could print it out on output. 2799 */ 2800 if (stat_config.aggr_mode == AGGR_THREAD) { 2801 thread_map__read_comms(evsel_list->core.threads); 2802 } 2803 2804 if (stat_config.aggr_mode == AGGR_NODE) 2805 cpu__setup_cpunode_map(); 2806 2807 if (stat_config.times && interval) 2808 interval_count = true; 2809 else if (stat_config.times && !interval) { 2810 pr_err("interval-count option should be used together with " 2811 "interval-print.\n"); 2812 parse_options_usage(stat_usage, stat_options, "interval-count", 0); 2813 parse_options_usage(stat_usage, stat_options, "I", 1); 2814 goto out; 2815 } 2816 2817 if (timeout && timeout < 100) { 2818 if (timeout < 10) { 2819 pr_err("timeout must be >= 10ms.\n"); 2820 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2821 goto out; 2822 } else 2823 pr_warning("timeout < 100ms. " 2824 "The overhead percentage could be high in some cases. " 2825 "Please proceed with caution.\n"); 2826 } 2827 if (timeout && interval) { 2828 pr_err("timeout option is not supported with interval-print.\n"); 2829 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2830 parse_options_usage(stat_usage, stat_options, "I", 1); 2831 goto out; 2832 } 2833 2834 if (perf_stat_init_aggr_mode()) 2835 goto out; 2836 2837 if (evlist__alloc_stats(&stat_config, evsel_list, interval)) 2838 goto out; 2839 2840 /* 2841 * Set sample_type to PERF_SAMPLE_IDENTIFIER, which should be harmless 2842 * while avoiding that older tools show confusing messages. 2843 * 2844 * However for pipe sessions we need to keep it zero, 2845 * because script's perf_evsel__check_attr is triggered 2846 * by attr->sample_type != 0, and we can't run it on 2847 * stat sessions. 2848 */ 2849 stat_config.identifier = !(STAT_RECORD && perf_stat.data.is_pipe); 2850 2851 /* 2852 * We dont want to block the signals - that would cause 2853 * child tasks to inherit that and Ctrl-C would not work. 2854 * What we want is for Ctrl-C to work in the exec()-ed 2855 * task, but being ignored by perf stat itself: 2856 */ 2857 atexit(sig_atexit); 2858 if (!forever) 2859 signal(SIGINT, skip_signal); 2860 signal(SIGCHLD, skip_signal); 2861 signal(SIGALRM, skip_signal); 2862 signal(SIGABRT, skip_signal); 2863 2864 if (evlist__initialize_ctlfd(evsel_list, stat_config.ctl_fd, stat_config.ctl_fd_ack)) 2865 goto out; 2866 2867 /* Enable ignoring missing threads when -p option is defined. */ 2868 evlist__first(evsel_list)->ignore_missing_thread = target.pid; 2869 status = 0; 2870 for (run_idx = 0; forever || run_idx < stat_config.run_count; run_idx++) { 2871 if (stat_config.run_count != 1 && verbose > 0) 2872 fprintf(output, "[ perf stat: executing run #%d ... ]\n", 2873 run_idx + 1); 2874 2875 if (run_idx != 0) 2876 evlist__reset_prev_raw_counts(evsel_list); 2877 2878 status = run_perf_stat(argc, argv, run_idx); 2879 if (forever && status != -1 && !interval) { 2880 print_counters(NULL, argc, argv); 2881 perf_stat__reset_stats(); 2882 } 2883 } 2884 2885 if (!forever && status != -1 && (!interval || stat_config.summary)) { 2886 if (stat_config.run_count > 1) 2887 evlist__copy_res_stats(&stat_config, evsel_list); 2888 print_counters(NULL, argc, argv); 2889 } 2890 2891 evlist__finalize_ctlfd(evsel_list); 2892 2893 if (STAT_RECORD) { 2894 /* 2895 * We synthesize the kernel mmap record just so that older tools 2896 * don't emit warnings about not being able to resolve symbols 2897 * due to /proc/sys/kernel/kptr_restrict settings and instead provide 2898 * a saner message about no samples being in the perf.data file. 2899 * 2900 * This also serves to suppress a warning about f_header.data.size == 0 2901 * in header.c at the moment 'perf stat record' gets introduced, which 2902 * is not really needed once we start adding the stat specific PERF_RECORD_ 2903 * records, but the need to suppress the kptr_restrict messages in older 2904 * tools remain -acme 2905 */ 2906 int fd = perf_data__fd(&perf_stat.data); 2907 2908 err = perf_event__synthesize_kernel_mmap((void *)&perf_stat, 2909 process_synthesized_event, 2910 &perf_stat.session->machines.host); 2911 if (err) { 2912 pr_warning("Couldn't synthesize the kernel mmap record, harmless, " 2913 "older tools may produce warnings about this file\n."); 2914 } 2915 2916 if (!interval) { 2917 if (WRITE_STAT_ROUND_EVENT(walltime_nsecs_stats.max, FINAL)) 2918 pr_err("failed to write stat round event\n"); 2919 } 2920 2921 if (!perf_stat.data.is_pipe) { 2922 perf_stat.session->header.data_size += perf_stat.bytes_written; 2923 perf_session__write_header(perf_stat.session, evsel_list, fd, true); 2924 } 2925 2926 evlist__close(evsel_list); 2927 perf_session__delete(perf_stat.session); 2928 } 2929 2930 perf_stat__exit_aggr_mode(); 2931 evlist__free_stats(evsel_list); 2932 out: 2933 if (stat_config.iostat_run) 2934 iostat_release(evsel_list); 2935 2936 zfree(&stat_config.walltime_run); 2937 zfree(&stat_config.user_requested_cpu_list); 2938 2939 if (smi_cost && smi_reset) 2940 sysfs__write_int(FREEZE_ON_SMI_PATH, 0); 2941 2942 evlist__delete(evsel_list); 2943 2944 metricgroup__rblist_exit(&stat_config.metric_events); 2945 evlist__close_control(stat_config.ctl_fd, stat_config.ctl_fd_ack, &stat_config.ctl_fd_close); 2946 2947 return status; 2948 } 2949