1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * builtin-stat.c
4 *
5 * Builtin stat command: Give a precise performance counters summary
6 * overview about any workload, CPU or specific PID.
7 *
8 * Sample output:
9
10 $ perf stat ./hackbench 10
11
12 Time: 0.118
13
14 Performance counter stats for './hackbench 10':
15
16 1708.761321 task-clock # 11.037 CPUs utilized
17 41,190 context-switches # 0.024 M/sec
18 6,735 CPU-migrations # 0.004 M/sec
19 17,318 page-faults # 0.010 M/sec
20 5,205,202,243 cycles # 3.046 GHz
21 3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle
22 1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle
23 2,603,501,247 instructions # 0.50 insns per cycle
24 # 1.48 stalled cycles per insn
25 484,357,498 branches # 283.455 M/sec
26 6,388,934 branch-misses # 1.32% of all branches
27
28 0.154822978 seconds time elapsed
29
30 *
31 * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
32 *
33 * Improvements and fixes by:
34 *
35 * Arjan van de Ven <arjan@linux.intel.com>
36 * Yanmin Zhang <yanmin.zhang@intel.com>
37 * Wu Fengguang <fengguang.wu@intel.com>
38 * Mike Galbraith <efault@gmx.de>
39 * Paul Mackerras <paulus@samba.org>
40 * Jaswinder Singh Rajput <jaswinder@kernel.org>
41 */
42
43 #include "builtin.h"
44 #include "util/cgroup.h"
45 #include <subcmd/parse-options.h>
46 #include "util/parse-events.h"
47 #include "util/pmus.h"
48 #include "util/pmu.h"
49 #include "util/event.h"
50 #include "util/evlist.h"
51 #include "util/evsel.h"
52 #include "util/debug.h"
53 #include "util/color.h"
54 #include "util/stat.h"
55 #include "util/header.h"
56 #include "util/cpumap.h"
57 #include "util/thread_map.h"
58 #include "util/counts.h"
59 #include "util/topdown.h"
60 #include "util/session.h"
61 #include "util/tool.h"
62 #include "util/string2.h"
63 #include "util/metricgroup.h"
64 #include "util/synthetic-events.h"
65 #include "util/target.h"
66 #include "util/time-utils.h"
67 #include "util/top.h"
68 #include "util/affinity.h"
69 #include "util/pfm.h"
70 #include "util/bpf_counter.h"
71 #include "util/iostat.h"
72 #include "util/util.h"
73 #include "util/intel-tpebs.h"
74 #include "asm/bug.h"
75
76 #include <linux/time64.h>
77 #include <linux/zalloc.h>
78 #include <api/fs/fs.h>
79 #include <errno.h>
80 #include <signal.h>
81 #include <stdlib.h>
82 #include <sys/prctl.h>
83 #include <inttypes.h>
84 #include <locale.h>
85 #include <math.h>
86 #include <sys/types.h>
87 #include <sys/stat.h>
88 #include <sys/wait.h>
89 #include <unistd.h>
90 #include <sys/time.h>
91 #include <sys/resource.h>
92 #include <linux/err.h>
93
94 #include <linux/ctype.h>
95 #include <perf/evlist.h>
96 #include <internal/threadmap.h>
97
98 #define DEFAULT_SEPARATOR " "
99 #define FREEZE_ON_SMI_PATH "devices/cpu/freeze_on_smi"
100
101 static void print_counters(struct timespec *ts, int argc, const char **argv);
102
103 static struct evlist *evsel_list;
104 static struct parse_events_option_args parse_events_option_args = {
105 .evlistp = &evsel_list,
106 };
107
108 static bool all_counters_use_bpf = true;
109
110 static struct target target = {
111 .uid = UINT_MAX,
112 };
113
114 #define METRIC_ONLY_LEN 20
115
116 static volatile sig_atomic_t child_pid = -1;
117 static int detailed_run = 0;
118 static bool transaction_run;
119 static bool topdown_run = false;
120 static bool smi_cost = false;
121 static bool smi_reset = false;
122 static int big_num_opt = -1;
123 static const char *pre_cmd = NULL;
124 static const char *post_cmd = NULL;
125 static bool sync_run = false;
126 static bool forever = false;
127 static bool force_metric_only = false;
128 static struct timespec ref_time;
129 static bool append_file;
130 static bool interval_count;
131 static const char *output_name;
132 static int output_fd;
133 static char *metrics;
134
135 struct perf_stat {
136 bool record;
137 struct perf_data data;
138 struct perf_session *session;
139 u64 bytes_written;
140 struct perf_tool tool;
141 bool maps_allocated;
142 struct perf_cpu_map *cpus;
143 struct perf_thread_map *threads;
144 enum aggr_mode aggr_mode;
145 u32 aggr_level;
146 };
147
148 static struct perf_stat perf_stat;
149 #define STAT_RECORD perf_stat.record
150
151 static volatile sig_atomic_t done = 0;
152
153 static struct perf_stat_config stat_config = {
154 .aggr_mode = AGGR_GLOBAL,
155 .aggr_level = MAX_CACHE_LVL + 1,
156 .scale = true,
157 .unit_width = 4, /* strlen("unit") */
158 .run_count = 1,
159 .metric_only_len = METRIC_ONLY_LEN,
160 .walltime_nsecs_stats = &walltime_nsecs_stats,
161 .ru_stats = &ru_stats,
162 .big_num = true,
163 .ctl_fd = -1,
164 .ctl_fd_ack = -1,
165 .iostat_run = false,
166 };
167
168 /* Options set from the command line. */
169 struct opt_aggr_mode {
170 bool node, socket, die, cluster, cache, core, thread, no_aggr;
171 };
172
173 /* Turn command line option into most generic aggregation mode setting. */
opt_aggr_mode_to_aggr_mode(struct opt_aggr_mode * opt_mode)174 static enum aggr_mode opt_aggr_mode_to_aggr_mode(struct opt_aggr_mode *opt_mode)
175 {
176 enum aggr_mode mode = AGGR_GLOBAL;
177
178 if (opt_mode->node)
179 mode = AGGR_NODE;
180 if (opt_mode->socket)
181 mode = AGGR_SOCKET;
182 if (opt_mode->die)
183 mode = AGGR_DIE;
184 if (opt_mode->cluster)
185 mode = AGGR_CLUSTER;
186 if (opt_mode->cache)
187 mode = AGGR_CACHE;
188 if (opt_mode->core)
189 mode = AGGR_CORE;
190 if (opt_mode->thread)
191 mode = AGGR_THREAD;
192 if (opt_mode->no_aggr)
193 mode = AGGR_NONE;
194 return mode;
195 }
196
evlist__check_cpu_maps(struct evlist * evlist)197 static void evlist__check_cpu_maps(struct evlist *evlist)
198 {
199 struct evsel *evsel, *warned_leader = NULL;
200
201 evlist__for_each_entry(evlist, evsel) {
202 struct evsel *leader = evsel__leader(evsel);
203
204 /* Check that leader matches cpus with each member. */
205 if (leader == evsel)
206 continue;
207 if (perf_cpu_map__equal(leader->core.cpus, evsel->core.cpus))
208 continue;
209
210 /* If there's mismatch disable the group and warn user. */
211 if (warned_leader != leader) {
212 char buf[200];
213
214 pr_warning("WARNING: grouped events cpus do not match.\n"
215 "Events with CPUs not matching the leader will "
216 "be removed from the group.\n");
217 evsel__group_desc(leader, buf, sizeof(buf));
218 pr_warning(" %s\n", buf);
219 warned_leader = leader;
220 }
221 if (verbose > 0) {
222 char buf[200];
223
224 cpu_map__snprint(leader->core.cpus, buf, sizeof(buf));
225 pr_warning(" %s: %s\n", leader->name, buf);
226 cpu_map__snprint(evsel->core.cpus, buf, sizeof(buf));
227 pr_warning(" %s: %s\n", evsel->name, buf);
228 }
229
230 evsel__remove_from_group(evsel, leader);
231 }
232 }
233
diff_timespec(struct timespec * r,struct timespec * a,struct timespec * b)234 static inline void diff_timespec(struct timespec *r, struct timespec *a,
235 struct timespec *b)
236 {
237 r->tv_sec = a->tv_sec - b->tv_sec;
238 if (a->tv_nsec < b->tv_nsec) {
239 r->tv_nsec = a->tv_nsec + NSEC_PER_SEC - b->tv_nsec;
240 r->tv_sec--;
241 } else {
242 r->tv_nsec = a->tv_nsec - b->tv_nsec ;
243 }
244 }
245
perf_stat__reset_stats(void)246 static void perf_stat__reset_stats(void)
247 {
248 evlist__reset_stats(evsel_list);
249 perf_stat__reset_shadow_stats();
250 }
251
process_synthesized_event(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)252 static int process_synthesized_event(const struct perf_tool *tool __maybe_unused,
253 union perf_event *event,
254 struct perf_sample *sample __maybe_unused,
255 struct machine *machine __maybe_unused)
256 {
257 if (perf_data__write(&perf_stat.data, event, event->header.size) < 0) {
258 pr_err("failed to write perf data, error: %m\n");
259 return -1;
260 }
261
262 perf_stat.bytes_written += event->header.size;
263 return 0;
264 }
265
write_stat_round_event(u64 tm,u64 type)266 static int write_stat_round_event(u64 tm, u64 type)
267 {
268 return perf_event__synthesize_stat_round(NULL, tm, type,
269 process_synthesized_event,
270 NULL);
271 }
272
273 #define WRITE_STAT_ROUND_EVENT(time, interval) \
274 write_stat_round_event(time, PERF_STAT_ROUND_TYPE__ ## interval)
275
276 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y)
277
evsel__write_stat_event(struct evsel * counter,int cpu_map_idx,u32 thread,struct perf_counts_values * count)278 static int evsel__write_stat_event(struct evsel *counter, int cpu_map_idx, u32 thread,
279 struct perf_counts_values *count)
280 {
281 struct perf_sample_id *sid = SID(counter, cpu_map_idx, thread);
282 struct perf_cpu cpu = perf_cpu_map__cpu(evsel__cpus(counter), cpu_map_idx);
283
284 return perf_event__synthesize_stat(NULL, cpu, thread, sid->id, count,
285 process_synthesized_event, NULL);
286 }
287
read_single_counter(struct evsel * counter,int cpu_map_idx,int thread)288 static int read_single_counter(struct evsel *counter, int cpu_map_idx, int thread)
289 {
290 int err = evsel__read_counter(counter, cpu_map_idx, thread);
291
292 /*
293 * Reading user and system time will fail when the process
294 * terminates. Use the wait4 values in that case.
295 */
296 if (err && cpu_map_idx == 0 &&
297 (evsel__tool_event(counter) == PERF_TOOL_USER_TIME ||
298 evsel__tool_event(counter) == PERF_TOOL_SYSTEM_TIME)) {
299 u64 val, *start_time;
300 struct perf_counts_values *count =
301 perf_counts(counter->counts, cpu_map_idx, thread);
302
303 start_time = xyarray__entry(counter->start_times, cpu_map_idx, thread);
304 if (evsel__tool_event(counter) == PERF_TOOL_USER_TIME)
305 val = ru_stats.ru_utime_usec_stat.mean;
306 else
307 val = ru_stats.ru_stime_usec_stat.mean;
308 count->ena = count->run = *start_time + val;
309 count->val = val;
310 return 0;
311 }
312 return err;
313 }
314
315 /*
316 * Read out the results of a single counter:
317 * do not aggregate counts across CPUs in system-wide mode
318 */
read_counter_cpu(struct evsel * counter,int cpu_map_idx)319 static int read_counter_cpu(struct evsel *counter, int cpu_map_idx)
320 {
321 int nthreads = perf_thread_map__nr(evsel_list->core.threads);
322 int thread;
323
324 if (!counter->supported)
325 return -ENOENT;
326
327 for (thread = 0; thread < nthreads; thread++) {
328 struct perf_counts_values *count;
329
330 count = perf_counts(counter->counts, cpu_map_idx, thread);
331
332 /*
333 * The leader's group read loads data into its group members
334 * (via evsel__read_counter()) and sets their count->loaded.
335 */
336 if (!perf_counts__is_loaded(counter->counts, cpu_map_idx, thread) &&
337 read_single_counter(counter, cpu_map_idx, thread)) {
338 counter->counts->scaled = -1;
339 perf_counts(counter->counts, cpu_map_idx, thread)->ena = 0;
340 perf_counts(counter->counts, cpu_map_idx, thread)->run = 0;
341 return -1;
342 }
343
344 perf_counts__set_loaded(counter->counts, cpu_map_idx, thread, false);
345
346 if (STAT_RECORD) {
347 if (evsel__write_stat_event(counter, cpu_map_idx, thread, count)) {
348 pr_err("failed to write stat event\n");
349 return -1;
350 }
351 }
352
353 if (verbose > 1) {
354 fprintf(stat_config.output,
355 "%s: %d: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
356 evsel__name(counter),
357 perf_cpu_map__cpu(evsel__cpus(counter),
358 cpu_map_idx).cpu,
359 count->val, count->ena, count->run);
360 }
361 }
362
363 return 0;
364 }
365
read_affinity_counters(void)366 static int read_affinity_counters(void)
367 {
368 struct evlist_cpu_iterator evlist_cpu_itr;
369 struct affinity saved_affinity, *affinity;
370
371 if (all_counters_use_bpf)
372 return 0;
373
374 if (!target__has_cpu(&target) || target__has_per_thread(&target))
375 affinity = NULL;
376 else if (affinity__setup(&saved_affinity) < 0)
377 return -1;
378 else
379 affinity = &saved_affinity;
380
381 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) {
382 struct evsel *counter = evlist_cpu_itr.evsel;
383
384 if (evsel__is_bpf(counter))
385 continue;
386
387 if (!counter->err)
388 counter->err = read_counter_cpu(counter, evlist_cpu_itr.cpu_map_idx);
389 }
390 if (affinity)
391 affinity__cleanup(&saved_affinity);
392
393 return 0;
394 }
395
read_bpf_map_counters(void)396 static int read_bpf_map_counters(void)
397 {
398 struct evsel *counter;
399 int err;
400
401 evlist__for_each_entry(evsel_list, counter) {
402 if (!evsel__is_bpf(counter))
403 continue;
404
405 err = bpf_counter__read(counter);
406 if (err)
407 return err;
408 }
409 return 0;
410 }
411
read_counters(void)412 static int read_counters(void)
413 {
414 if (!stat_config.stop_read_counter) {
415 if (read_bpf_map_counters() ||
416 read_affinity_counters())
417 return -1;
418 }
419 return 0;
420 }
421
process_counters(void)422 static void process_counters(void)
423 {
424 struct evsel *counter;
425
426 evlist__for_each_entry(evsel_list, counter) {
427 if (counter->err)
428 pr_debug("failed to read counter %s\n", counter->name);
429 if (counter->err == 0 && perf_stat_process_counter(&stat_config, counter))
430 pr_warning("failed to process counter %s\n", counter->name);
431 counter->err = 0;
432 }
433
434 perf_stat_merge_counters(&stat_config, evsel_list);
435 perf_stat_process_percore(&stat_config, evsel_list);
436 }
437
process_interval(void)438 static void process_interval(void)
439 {
440 struct timespec ts, rs;
441
442 clock_gettime(CLOCK_MONOTONIC, &ts);
443 diff_timespec(&rs, &ts, &ref_time);
444
445 evlist__reset_aggr_stats(evsel_list);
446
447 if (read_counters() == 0)
448 process_counters();
449
450 if (STAT_RECORD) {
451 if (WRITE_STAT_ROUND_EVENT(rs.tv_sec * NSEC_PER_SEC + rs.tv_nsec, INTERVAL))
452 pr_err("failed to write stat round event\n");
453 }
454
455 init_stats(&walltime_nsecs_stats);
456 update_stats(&walltime_nsecs_stats, stat_config.interval * 1000000ULL);
457 print_counters(&rs, 0, NULL);
458 }
459
handle_interval(unsigned int interval,int * times)460 static bool handle_interval(unsigned int interval, int *times)
461 {
462 if (interval) {
463 process_interval();
464 if (interval_count && !(--(*times)))
465 return true;
466 }
467 return false;
468 }
469
enable_counters(void)470 static int enable_counters(void)
471 {
472 struct evsel *evsel;
473 int err;
474
475 evlist__for_each_entry(evsel_list, evsel) {
476 if (!evsel__is_bpf(evsel))
477 continue;
478
479 err = bpf_counter__enable(evsel);
480 if (err)
481 return err;
482 }
483
484 if (!target__enable_on_exec(&target)) {
485 if (!all_counters_use_bpf)
486 evlist__enable(evsel_list);
487 }
488 return 0;
489 }
490
disable_counters(void)491 static void disable_counters(void)
492 {
493 struct evsel *counter;
494
495 /*
496 * If we don't have tracee (attaching to task or cpu), counters may
497 * still be running. To get accurate group ratios, we must stop groups
498 * from counting before reading their constituent counters.
499 */
500 if (!target__none(&target)) {
501 evlist__for_each_entry(evsel_list, counter)
502 bpf_counter__disable(counter);
503 if (!all_counters_use_bpf)
504 evlist__disable(evsel_list);
505 }
506 }
507
508 static volatile sig_atomic_t workload_exec_errno;
509
510 /*
511 * evlist__prepare_workload will send a SIGUSR1
512 * if the fork fails, since we asked by setting its
513 * want_signal to true.
514 */
workload_exec_failed_signal(int signo __maybe_unused,siginfo_t * info,void * ucontext __maybe_unused)515 static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info,
516 void *ucontext __maybe_unused)
517 {
518 workload_exec_errno = info->si_value.sival_int;
519 }
520
evsel__should_store_id(struct evsel * counter)521 static bool evsel__should_store_id(struct evsel *counter)
522 {
523 return STAT_RECORD || counter->core.attr.read_format & PERF_FORMAT_ID;
524 }
525
is_target_alive(struct target * _target,struct perf_thread_map * threads)526 static bool is_target_alive(struct target *_target,
527 struct perf_thread_map *threads)
528 {
529 struct stat st;
530 int i;
531
532 if (!target__has_task(_target))
533 return true;
534
535 for (i = 0; i < threads->nr; i++) {
536 char path[PATH_MAX];
537
538 scnprintf(path, PATH_MAX, "%s/%d", procfs__mountpoint(),
539 threads->map[i].pid);
540
541 if (!stat(path, &st))
542 return true;
543 }
544
545 return false;
546 }
547
process_evlist(struct evlist * evlist,unsigned int interval)548 static void process_evlist(struct evlist *evlist, unsigned int interval)
549 {
550 enum evlist_ctl_cmd cmd = EVLIST_CTL_CMD_UNSUPPORTED;
551
552 if (evlist__ctlfd_process(evlist, &cmd) > 0) {
553 switch (cmd) {
554 case EVLIST_CTL_CMD_ENABLE:
555 fallthrough;
556 case EVLIST_CTL_CMD_DISABLE:
557 if (interval)
558 process_interval();
559 break;
560 case EVLIST_CTL_CMD_SNAPSHOT:
561 case EVLIST_CTL_CMD_ACK:
562 case EVLIST_CTL_CMD_UNSUPPORTED:
563 case EVLIST_CTL_CMD_EVLIST:
564 case EVLIST_CTL_CMD_STOP:
565 case EVLIST_CTL_CMD_PING:
566 default:
567 break;
568 }
569 }
570 }
571
compute_tts(struct timespec * time_start,struct timespec * time_stop,int * time_to_sleep)572 static void compute_tts(struct timespec *time_start, struct timespec *time_stop,
573 int *time_to_sleep)
574 {
575 int tts = *time_to_sleep;
576 struct timespec time_diff;
577
578 diff_timespec(&time_diff, time_stop, time_start);
579
580 tts -= time_diff.tv_sec * MSEC_PER_SEC +
581 time_diff.tv_nsec / NSEC_PER_MSEC;
582
583 if (tts < 0)
584 tts = 0;
585
586 *time_to_sleep = tts;
587 }
588
dispatch_events(bool forks,int timeout,int interval,int * times)589 static int dispatch_events(bool forks, int timeout, int interval, int *times)
590 {
591 int child_exited = 0, status = 0;
592 int time_to_sleep, sleep_time;
593 struct timespec time_start, time_stop;
594
595 if (interval)
596 sleep_time = interval;
597 else if (timeout)
598 sleep_time = timeout;
599 else
600 sleep_time = 1000;
601
602 time_to_sleep = sleep_time;
603
604 while (!done) {
605 if (forks)
606 child_exited = waitpid(child_pid, &status, WNOHANG);
607 else
608 child_exited = !is_target_alive(&target, evsel_list->core.threads) ? 1 : 0;
609
610 if (child_exited)
611 break;
612
613 clock_gettime(CLOCK_MONOTONIC, &time_start);
614 if (!(evlist__poll(evsel_list, time_to_sleep) > 0)) { /* poll timeout or EINTR */
615 if (timeout || handle_interval(interval, times))
616 break;
617 time_to_sleep = sleep_time;
618 } else { /* fd revent */
619 process_evlist(evsel_list, interval);
620 clock_gettime(CLOCK_MONOTONIC, &time_stop);
621 compute_tts(&time_start, &time_stop, &time_to_sleep);
622 }
623 }
624
625 return status;
626 }
627
628 enum counter_recovery {
629 COUNTER_SKIP,
630 COUNTER_RETRY,
631 COUNTER_FATAL,
632 };
633
stat_handle_error(struct evsel * counter)634 static enum counter_recovery stat_handle_error(struct evsel *counter)
635 {
636 char msg[BUFSIZ];
637 /*
638 * PPC returns ENXIO for HW counters until 2.6.37
639 * (behavior changed with commit b0a873e).
640 */
641 if (errno == EINVAL || errno == ENOSYS ||
642 errno == ENOENT || errno == EOPNOTSUPP ||
643 errno == ENXIO) {
644 if (verbose > 0)
645 ui__warning("%s event is not supported by the kernel.\n",
646 evsel__name(counter));
647 counter->supported = false;
648 /*
649 * errored is a sticky flag that means one of the counter's
650 * cpu event had a problem and needs to be reexamined.
651 */
652 counter->errored = true;
653
654 if ((evsel__leader(counter) != counter) ||
655 !(counter->core.leader->nr_members > 1))
656 return COUNTER_SKIP;
657 } else if (evsel__fallback(counter, &target, errno, msg, sizeof(msg))) {
658 if (verbose > 0)
659 ui__warning("%s\n", msg);
660 return COUNTER_RETRY;
661 } else if (target__has_per_thread(&target) &&
662 evsel_list->core.threads &&
663 evsel_list->core.threads->err_thread != -1) {
664 /*
665 * For global --per-thread case, skip current
666 * error thread.
667 */
668 if (!thread_map__remove(evsel_list->core.threads,
669 evsel_list->core.threads->err_thread)) {
670 evsel_list->core.threads->err_thread = -1;
671 return COUNTER_RETRY;
672 }
673 } else if (counter->skippable) {
674 if (verbose > 0)
675 ui__warning("skipping event %s that kernel failed to open .\n",
676 evsel__name(counter));
677 counter->supported = false;
678 counter->errored = true;
679 return COUNTER_SKIP;
680 }
681
682 evsel__open_strerror(counter, &target, errno, msg, sizeof(msg));
683 ui__error("%s\n", msg);
684
685 if (child_pid != -1)
686 kill(child_pid, SIGTERM);
687
688 tpebs_delete();
689
690 return COUNTER_FATAL;
691 }
692
__run_perf_stat(int argc,const char ** argv,int run_idx)693 static int __run_perf_stat(int argc, const char **argv, int run_idx)
694 {
695 int interval = stat_config.interval;
696 int times = stat_config.times;
697 int timeout = stat_config.timeout;
698 char msg[BUFSIZ];
699 unsigned long long t0, t1;
700 struct evsel *counter;
701 size_t l;
702 int status = 0;
703 const bool forks = (argc > 0);
704 bool is_pipe = STAT_RECORD ? perf_stat.data.is_pipe : false;
705 struct evlist_cpu_iterator evlist_cpu_itr;
706 struct affinity saved_affinity, *affinity = NULL;
707 int err;
708 bool second_pass = false;
709
710 if (forks) {
711 if (evlist__prepare_workload(evsel_list, &target, argv, is_pipe, workload_exec_failed_signal) < 0) {
712 perror("failed to prepare workload");
713 return -1;
714 }
715 child_pid = evsel_list->workload.pid;
716 }
717
718 if (!cpu_map__is_dummy(evsel_list->core.user_requested_cpus)) {
719 if (affinity__setup(&saved_affinity) < 0)
720 return -1;
721 affinity = &saved_affinity;
722 }
723
724 evlist__for_each_entry(evsel_list, counter) {
725 counter->reset_group = false;
726 if (bpf_counter__load(counter, &target))
727 return -1;
728 if (!(evsel__is_bperf(counter)))
729 all_counters_use_bpf = false;
730 }
731
732 evlist__reset_aggr_stats(evsel_list);
733
734 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) {
735 counter = evlist_cpu_itr.evsel;
736
737 /*
738 * bperf calls evsel__open_per_cpu() in bperf__load(), so
739 * no need to call it again here.
740 */
741 if (target.use_bpf)
742 break;
743
744 if (counter->reset_group || counter->errored)
745 continue;
746 if (evsel__is_bperf(counter))
747 continue;
748 try_again:
749 if (create_perf_stat_counter(counter, &stat_config, &target,
750 evlist_cpu_itr.cpu_map_idx) < 0) {
751
752 /*
753 * Weak group failed. We cannot just undo this here
754 * because earlier CPUs might be in group mode, and the kernel
755 * doesn't support mixing group and non group reads. Defer
756 * it to later.
757 * Don't close here because we're in the wrong affinity.
758 */
759 if ((errno == EINVAL || errno == EBADF) &&
760 evsel__leader(counter) != counter &&
761 counter->weak_group) {
762 evlist__reset_weak_group(evsel_list, counter, false);
763 assert(counter->reset_group);
764 second_pass = true;
765 continue;
766 }
767
768 switch (stat_handle_error(counter)) {
769 case COUNTER_FATAL:
770 return -1;
771 case COUNTER_RETRY:
772 goto try_again;
773 case COUNTER_SKIP:
774 continue;
775 default:
776 break;
777 }
778
779 }
780 counter->supported = true;
781 }
782
783 if (second_pass) {
784 /*
785 * Now redo all the weak group after closing them,
786 * and also close errored counters.
787 */
788
789 /* First close errored or weak retry */
790 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) {
791 counter = evlist_cpu_itr.evsel;
792
793 if (!counter->reset_group && !counter->errored)
794 continue;
795
796 perf_evsel__close_cpu(&counter->core, evlist_cpu_itr.cpu_map_idx);
797 }
798 /* Now reopen weak */
799 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) {
800 counter = evlist_cpu_itr.evsel;
801
802 if (!counter->reset_group)
803 continue;
804 try_again_reset:
805 pr_debug2("reopening weak %s\n", evsel__name(counter));
806 if (create_perf_stat_counter(counter, &stat_config, &target,
807 evlist_cpu_itr.cpu_map_idx) < 0) {
808
809 switch (stat_handle_error(counter)) {
810 case COUNTER_FATAL:
811 return -1;
812 case COUNTER_RETRY:
813 goto try_again_reset;
814 case COUNTER_SKIP:
815 continue;
816 default:
817 break;
818 }
819 }
820 counter->supported = true;
821 }
822 }
823 affinity__cleanup(affinity);
824
825 evlist__for_each_entry(evsel_list, counter) {
826 if (!counter->supported) {
827 perf_evsel__free_fd(&counter->core);
828 continue;
829 }
830
831 l = strlen(counter->unit);
832 if (l > stat_config.unit_width)
833 stat_config.unit_width = l;
834
835 if (evsel__should_store_id(counter) &&
836 evsel__store_ids(counter, evsel_list))
837 return -1;
838 }
839
840 if (evlist__apply_filters(evsel_list, &counter, &target)) {
841 pr_err("failed to set filter \"%s\" on event %s with %d (%s)\n",
842 counter->filter, evsel__name(counter), errno,
843 str_error_r(errno, msg, sizeof(msg)));
844 return -1;
845 }
846
847 if (STAT_RECORD) {
848 int fd = perf_data__fd(&perf_stat.data);
849
850 if (is_pipe) {
851 err = perf_header__write_pipe(perf_data__fd(&perf_stat.data));
852 } else {
853 err = perf_session__write_header(perf_stat.session, evsel_list,
854 fd, false);
855 }
856
857 if (err < 0)
858 return err;
859
860 err = perf_event__synthesize_stat_events(&stat_config, NULL, evsel_list,
861 process_synthesized_event, is_pipe);
862 if (err < 0)
863 return err;
864 }
865
866 if (target.initial_delay) {
867 pr_info(EVLIST_DISABLED_MSG);
868 } else {
869 err = enable_counters();
870 if (err)
871 return -1;
872 }
873
874 /* Exec the command, if any */
875 if (forks)
876 evlist__start_workload(evsel_list);
877
878 if (target.initial_delay > 0) {
879 usleep(target.initial_delay * USEC_PER_MSEC);
880 err = enable_counters();
881 if (err)
882 return -1;
883
884 pr_info(EVLIST_ENABLED_MSG);
885 }
886
887 t0 = rdclock();
888 clock_gettime(CLOCK_MONOTONIC, &ref_time);
889
890 if (forks) {
891 if (interval || timeout || evlist__ctlfd_initialized(evsel_list))
892 status = dispatch_events(forks, timeout, interval, ×);
893 if (child_pid != -1) {
894 if (timeout)
895 kill(child_pid, SIGTERM);
896 wait4(child_pid, &status, 0, &stat_config.ru_data);
897 }
898
899 if (workload_exec_errno) {
900 const char *emsg = str_error_r(workload_exec_errno, msg, sizeof(msg));
901 pr_err("Workload failed: %s\n", emsg);
902 return -1;
903 }
904
905 if (WIFSIGNALED(status))
906 psignal(WTERMSIG(status), argv[0]);
907 } else {
908 status = dispatch_events(forks, timeout, interval, ×);
909 }
910
911 disable_counters();
912
913 t1 = rdclock();
914
915 if (stat_config.walltime_run_table)
916 stat_config.walltime_run[run_idx] = t1 - t0;
917
918 if (interval && stat_config.summary) {
919 stat_config.interval = 0;
920 stat_config.stop_read_counter = true;
921 init_stats(&walltime_nsecs_stats);
922 update_stats(&walltime_nsecs_stats, t1 - t0);
923
924 evlist__copy_prev_raw_counts(evsel_list);
925 evlist__reset_prev_raw_counts(evsel_list);
926 evlist__reset_aggr_stats(evsel_list);
927 } else {
928 update_stats(&walltime_nsecs_stats, t1 - t0);
929 update_rusage_stats(&ru_stats, &stat_config.ru_data);
930 }
931
932 /*
933 * Closing a group leader splits the group, and as we only disable
934 * group leaders, results in remaining events becoming enabled. To
935 * avoid arbitrary skew, we must read all counters before closing any
936 * group leaders.
937 */
938 if (read_counters() == 0)
939 process_counters();
940
941 /*
942 * We need to keep evsel_list alive, because it's processed
943 * later the evsel_list will be closed after.
944 */
945 if (!STAT_RECORD)
946 evlist__close(evsel_list);
947
948 return WEXITSTATUS(status);
949 }
950
run_perf_stat(int argc,const char ** argv,int run_idx)951 static int run_perf_stat(int argc, const char **argv, int run_idx)
952 {
953 int ret;
954
955 if (pre_cmd) {
956 ret = system(pre_cmd);
957 if (ret)
958 return ret;
959 }
960
961 if (sync_run)
962 sync();
963
964 ret = __run_perf_stat(argc, argv, run_idx);
965 if (ret)
966 return ret;
967
968 if (post_cmd) {
969 ret = system(post_cmd);
970 if (ret)
971 return ret;
972 }
973
974 return ret;
975 }
976
print_counters(struct timespec * ts,int argc,const char ** argv)977 static void print_counters(struct timespec *ts, int argc, const char **argv)
978 {
979 /* Do not print anything if we record to the pipe. */
980 if (STAT_RECORD && perf_stat.data.is_pipe)
981 return;
982 if (quiet)
983 return;
984
985 evlist__print_counters(evsel_list, &stat_config, &target, ts, argc, argv);
986 }
987
988 static volatile sig_atomic_t signr = -1;
989
skip_signal(int signo)990 static void skip_signal(int signo)
991 {
992 if ((child_pid == -1) || stat_config.interval)
993 done = 1;
994
995 signr = signo;
996 /*
997 * render child_pid harmless
998 * won't send SIGTERM to a random
999 * process in case of race condition
1000 * and fast PID recycling
1001 */
1002 child_pid = -1;
1003 }
1004
sig_atexit(void)1005 static void sig_atexit(void)
1006 {
1007 sigset_t set, oset;
1008
1009 /*
1010 * avoid race condition with SIGCHLD handler
1011 * in skip_signal() which is modifying child_pid
1012 * goal is to avoid send SIGTERM to a random
1013 * process
1014 */
1015 sigemptyset(&set);
1016 sigaddset(&set, SIGCHLD);
1017 sigprocmask(SIG_BLOCK, &set, &oset);
1018
1019 if (child_pid != -1)
1020 kill(child_pid, SIGTERM);
1021
1022 sigprocmask(SIG_SETMASK, &oset, NULL);
1023
1024 if (signr == -1)
1025 return;
1026
1027 signal(signr, SIG_DFL);
1028 kill(getpid(), signr);
1029 }
1030
perf_stat__set_big_num(int set)1031 void perf_stat__set_big_num(int set)
1032 {
1033 stat_config.big_num = (set != 0);
1034 }
1035
perf_stat__set_no_csv_summary(int set)1036 void perf_stat__set_no_csv_summary(int set)
1037 {
1038 stat_config.no_csv_summary = (set != 0);
1039 }
1040
stat__set_big_num(const struct option * opt __maybe_unused,const char * s __maybe_unused,int unset)1041 static int stat__set_big_num(const struct option *opt __maybe_unused,
1042 const char *s __maybe_unused, int unset)
1043 {
1044 big_num_opt = unset ? 0 : 1;
1045 perf_stat__set_big_num(!unset);
1046 return 0;
1047 }
1048
enable_metric_only(const struct option * opt __maybe_unused,const char * s __maybe_unused,int unset)1049 static int enable_metric_only(const struct option *opt __maybe_unused,
1050 const char *s __maybe_unused, int unset)
1051 {
1052 force_metric_only = true;
1053 stat_config.metric_only = !unset;
1054 return 0;
1055 }
1056
append_metric_groups(const struct option * opt __maybe_unused,const char * str,int unset __maybe_unused)1057 static int append_metric_groups(const struct option *opt __maybe_unused,
1058 const char *str,
1059 int unset __maybe_unused)
1060 {
1061 if (metrics) {
1062 char *tmp;
1063
1064 if (asprintf(&tmp, "%s,%s", metrics, str) < 0)
1065 return -ENOMEM;
1066 free(metrics);
1067 metrics = tmp;
1068 } else {
1069 metrics = strdup(str);
1070 if (!metrics)
1071 return -ENOMEM;
1072 }
1073 return 0;
1074 }
1075
parse_control_option(const struct option * opt,const char * str,int unset __maybe_unused)1076 static int parse_control_option(const struct option *opt,
1077 const char *str,
1078 int unset __maybe_unused)
1079 {
1080 struct perf_stat_config *config = opt->value;
1081
1082 return evlist__parse_control(str, &config->ctl_fd, &config->ctl_fd_ack, &config->ctl_fd_close);
1083 }
1084
parse_stat_cgroups(const struct option * opt,const char * str,int unset)1085 static int parse_stat_cgroups(const struct option *opt,
1086 const char *str, int unset)
1087 {
1088 if (stat_config.cgroup_list) {
1089 pr_err("--cgroup and --for-each-cgroup cannot be used together\n");
1090 return -1;
1091 }
1092
1093 return parse_cgroups(opt, str, unset);
1094 }
1095
parse_cputype(const struct option * opt,const char * str,int unset __maybe_unused)1096 static int parse_cputype(const struct option *opt,
1097 const char *str,
1098 int unset __maybe_unused)
1099 {
1100 const struct perf_pmu *pmu;
1101 struct evlist *evlist = *(struct evlist **)opt->value;
1102
1103 if (!list_empty(&evlist->core.entries)) {
1104 fprintf(stderr, "Must define cputype before events/metrics\n");
1105 return -1;
1106 }
1107
1108 pmu = perf_pmus__pmu_for_pmu_filter(str);
1109 if (!pmu) {
1110 fprintf(stderr, "--cputype %s is not supported!\n", str);
1111 return -1;
1112 }
1113 parse_events_option_args.pmu_filter = pmu->name;
1114
1115 return 0;
1116 }
1117
parse_cache_level(const struct option * opt,const char * str,int unset __maybe_unused)1118 static int parse_cache_level(const struct option *opt,
1119 const char *str,
1120 int unset __maybe_unused)
1121 {
1122 int level;
1123 struct opt_aggr_mode *opt_aggr_mode = (struct opt_aggr_mode *)opt->value;
1124 u32 *aggr_level = (u32 *)opt->data;
1125
1126 /*
1127 * If no string is specified, aggregate based on the topology of
1128 * Last Level Cache (LLC). Since the LLC level can change from
1129 * architecture to architecture, set level greater than
1130 * MAX_CACHE_LVL which will be interpreted as LLC.
1131 */
1132 if (str == NULL) {
1133 level = MAX_CACHE_LVL + 1;
1134 goto out;
1135 }
1136
1137 /*
1138 * The format to specify cache level is LX or lX where X is the
1139 * cache level.
1140 */
1141 if (strlen(str) != 2 || (str[0] != 'l' && str[0] != 'L')) {
1142 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n",
1143 MAX_CACHE_LVL,
1144 MAX_CACHE_LVL);
1145 return -EINVAL;
1146 }
1147
1148 level = atoi(&str[1]);
1149 if (level < 1) {
1150 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n",
1151 MAX_CACHE_LVL,
1152 MAX_CACHE_LVL);
1153 return -EINVAL;
1154 }
1155
1156 if (level > MAX_CACHE_LVL) {
1157 pr_err("perf only supports max cache level of %d.\n"
1158 "Consider increasing MAX_CACHE_LVL\n", MAX_CACHE_LVL);
1159 return -EINVAL;
1160 }
1161 out:
1162 opt_aggr_mode->cache = true;
1163 *aggr_level = level;
1164 return 0;
1165 }
1166
1167 /**
1168 * Calculate the cache instance ID from the map in
1169 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list
1170 * Cache instance ID is the first CPU reported in the shared_cpu_list file.
1171 */
cpu__get_cache_id_from_map(struct perf_cpu cpu,char * map)1172 static int cpu__get_cache_id_from_map(struct perf_cpu cpu, char *map)
1173 {
1174 int id;
1175 struct perf_cpu_map *cpu_map = perf_cpu_map__new(map);
1176
1177 /*
1178 * If the map contains no CPU, consider the current CPU to
1179 * be the first online CPU in the cache domain else use the
1180 * first online CPU of the cache domain as the ID.
1181 */
1182 id = perf_cpu_map__min(cpu_map).cpu;
1183 if (id == -1)
1184 id = cpu.cpu;
1185
1186 /* Free the perf_cpu_map used to find the cache ID */
1187 perf_cpu_map__put(cpu_map);
1188
1189 return id;
1190 }
1191
1192 /**
1193 * cpu__get_cache_id - Returns 0 if successful in populating the
1194 * cache level and cache id. Cache level is read from
1195 * /sys/devices/system/cpu/cpuX/cache/indexY/level where as cache instance ID
1196 * is the first CPU reported by
1197 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list
1198 */
cpu__get_cache_details(struct perf_cpu cpu,struct perf_cache * cache)1199 static int cpu__get_cache_details(struct perf_cpu cpu, struct perf_cache *cache)
1200 {
1201 int ret = 0;
1202 u32 cache_level = stat_config.aggr_level;
1203 struct cpu_cache_level caches[MAX_CACHE_LVL];
1204 u32 i = 0, caches_cnt = 0;
1205
1206 cache->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level;
1207 cache->cache = -1;
1208
1209 ret = build_caches_for_cpu(cpu.cpu, caches, &caches_cnt);
1210 if (ret) {
1211 /*
1212 * If caches_cnt is not 0, cpu_cache_level data
1213 * was allocated when building the topology.
1214 * Free the allocated data before returning.
1215 */
1216 if (caches_cnt)
1217 goto free_caches;
1218
1219 return ret;
1220 }
1221
1222 if (!caches_cnt)
1223 return -1;
1224
1225 /*
1226 * Save the data for the highest level if no
1227 * level was specified by the user.
1228 */
1229 if (cache_level > MAX_CACHE_LVL) {
1230 int max_level_index = 0;
1231
1232 for (i = 1; i < caches_cnt; ++i) {
1233 if (caches[i].level > caches[max_level_index].level)
1234 max_level_index = i;
1235 }
1236
1237 cache->cache_lvl = caches[max_level_index].level;
1238 cache->cache = cpu__get_cache_id_from_map(cpu, caches[max_level_index].map);
1239
1240 /* Reset i to 0 to free entire caches[] */
1241 i = 0;
1242 goto free_caches;
1243 }
1244
1245 for (i = 0; i < caches_cnt; ++i) {
1246 if (caches[i].level == cache_level) {
1247 cache->cache_lvl = cache_level;
1248 cache->cache = cpu__get_cache_id_from_map(cpu, caches[i].map);
1249 }
1250
1251 cpu_cache_level__free(&caches[i]);
1252 }
1253
1254 free_caches:
1255 /*
1256 * Free all the allocated cpu_cache_level data.
1257 */
1258 while (i < caches_cnt)
1259 cpu_cache_level__free(&caches[i++]);
1260
1261 return ret;
1262 }
1263
1264 /**
1265 * aggr_cpu_id__cache - Create an aggr_cpu_id with cache instache ID, cache
1266 * level, die and socket populated with the cache instache ID, cache level,
1267 * die and socket for cpu. The function signature is compatible with
1268 * aggr_cpu_id_get_t.
1269 */
aggr_cpu_id__cache(struct perf_cpu cpu,void * data)1270 static struct aggr_cpu_id aggr_cpu_id__cache(struct perf_cpu cpu, void *data)
1271 {
1272 int ret;
1273 struct aggr_cpu_id id;
1274 struct perf_cache cache;
1275
1276 id = aggr_cpu_id__die(cpu, data);
1277 if (aggr_cpu_id__is_empty(&id))
1278 return id;
1279
1280 ret = cpu__get_cache_details(cpu, &cache);
1281 if (ret)
1282 return id;
1283
1284 id.cache_lvl = cache.cache_lvl;
1285 id.cache = cache.cache;
1286 return id;
1287 }
1288
1289 static const char *const aggr_mode__string[] = {
1290 [AGGR_CORE] = "core",
1291 [AGGR_CACHE] = "cache",
1292 [AGGR_CLUSTER] = "cluster",
1293 [AGGR_DIE] = "die",
1294 [AGGR_GLOBAL] = "global",
1295 [AGGR_NODE] = "node",
1296 [AGGR_NONE] = "none",
1297 [AGGR_SOCKET] = "socket",
1298 [AGGR_THREAD] = "thread",
1299 [AGGR_UNSET] = "unset",
1300 };
1301
perf_stat__get_socket(struct perf_stat_config * config __maybe_unused,struct perf_cpu cpu)1302 static struct aggr_cpu_id perf_stat__get_socket(struct perf_stat_config *config __maybe_unused,
1303 struct perf_cpu cpu)
1304 {
1305 return aggr_cpu_id__socket(cpu, /*data=*/NULL);
1306 }
1307
perf_stat__get_die(struct perf_stat_config * config __maybe_unused,struct perf_cpu cpu)1308 static struct aggr_cpu_id perf_stat__get_die(struct perf_stat_config *config __maybe_unused,
1309 struct perf_cpu cpu)
1310 {
1311 return aggr_cpu_id__die(cpu, /*data=*/NULL);
1312 }
1313
perf_stat__get_cache_id(struct perf_stat_config * config __maybe_unused,struct perf_cpu cpu)1314 static struct aggr_cpu_id perf_stat__get_cache_id(struct perf_stat_config *config __maybe_unused,
1315 struct perf_cpu cpu)
1316 {
1317 return aggr_cpu_id__cache(cpu, /*data=*/NULL);
1318 }
1319
perf_stat__get_cluster(struct perf_stat_config * config __maybe_unused,struct perf_cpu cpu)1320 static struct aggr_cpu_id perf_stat__get_cluster(struct perf_stat_config *config __maybe_unused,
1321 struct perf_cpu cpu)
1322 {
1323 return aggr_cpu_id__cluster(cpu, /*data=*/NULL);
1324 }
1325
perf_stat__get_core(struct perf_stat_config * config __maybe_unused,struct perf_cpu cpu)1326 static struct aggr_cpu_id perf_stat__get_core(struct perf_stat_config *config __maybe_unused,
1327 struct perf_cpu cpu)
1328 {
1329 return aggr_cpu_id__core(cpu, /*data=*/NULL);
1330 }
1331
perf_stat__get_node(struct perf_stat_config * config __maybe_unused,struct perf_cpu cpu)1332 static struct aggr_cpu_id perf_stat__get_node(struct perf_stat_config *config __maybe_unused,
1333 struct perf_cpu cpu)
1334 {
1335 return aggr_cpu_id__node(cpu, /*data=*/NULL);
1336 }
1337
perf_stat__get_global(struct perf_stat_config * config __maybe_unused,struct perf_cpu cpu)1338 static struct aggr_cpu_id perf_stat__get_global(struct perf_stat_config *config __maybe_unused,
1339 struct perf_cpu cpu)
1340 {
1341 return aggr_cpu_id__global(cpu, /*data=*/NULL);
1342 }
1343
perf_stat__get_cpu(struct perf_stat_config * config __maybe_unused,struct perf_cpu cpu)1344 static struct aggr_cpu_id perf_stat__get_cpu(struct perf_stat_config *config __maybe_unused,
1345 struct perf_cpu cpu)
1346 {
1347 return aggr_cpu_id__cpu(cpu, /*data=*/NULL);
1348 }
1349
perf_stat__get_aggr(struct perf_stat_config * config,aggr_get_id_t get_id,struct perf_cpu cpu)1350 static struct aggr_cpu_id perf_stat__get_aggr(struct perf_stat_config *config,
1351 aggr_get_id_t get_id, struct perf_cpu cpu)
1352 {
1353 struct aggr_cpu_id id;
1354
1355 /* per-process mode - should use global aggr mode */
1356 if (cpu.cpu == -1)
1357 return get_id(config, cpu);
1358
1359 if (aggr_cpu_id__is_empty(&config->cpus_aggr_map->map[cpu.cpu]))
1360 config->cpus_aggr_map->map[cpu.cpu] = get_id(config, cpu);
1361
1362 id = config->cpus_aggr_map->map[cpu.cpu];
1363 return id;
1364 }
1365
perf_stat__get_socket_cached(struct perf_stat_config * config,struct perf_cpu cpu)1366 static struct aggr_cpu_id perf_stat__get_socket_cached(struct perf_stat_config *config,
1367 struct perf_cpu cpu)
1368 {
1369 return perf_stat__get_aggr(config, perf_stat__get_socket, cpu);
1370 }
1371
perf_stat__get_die_cached(struct perf_stat_config * config,struct perf_cpu cpu)1372 static struct aggr_cpu_id perf_stat__get_die_cached(struct perf_stat_config *config,
1373 struct perf_cpu cpu)
1374 {
1375 return perf_stat__get_aggr(config, perf_stat__get_die, cpu);
1376 }
1377
perf_stat__get_cluster_cached(struct perf_stat_config * config,struct perf_cpu cpu)1378 static struct aggr_cpu_id perf_stat__get_cluster_cached(struct perf_stat_config *config,
1379 struct perf_cpu cpu)
1380 {
1381 return perf_stat__get_aggr(config, perf_stat__get_cluster, cpu);
1382 }
1383
perf_stat__get_cache_id_cached(struct perf_stat_config * config,struct perf_cpu cpu)1384 static struct aggr_cpu_id perf_stat__get_cache_id_cached(struct perf_stat_config *config,
1385 struct perf_cpu cpu)
1386 {
1387 return perf_stat__get_aggr(config, perf_stat__get_cache_id, cpu);
1388 }
1389
perf_stat__get_core_cached(struct perf_stat_config * config,struct perf_cpu cpu)1390 static struct aggr_cpu_id perf_stat__get_core_cached(struct perf_stat_config *config,
1391 struct perf_cpu cpu)
1392 {
1393 return perf_stat__get_aggr(config, perf_stat__get_core, cpu);
1394 }
1395
perf_stat__get_node_cached(struct perf_stat_config * config,struct perf_cpu cpu)1396 static struct aggr_cpu_id perf_stat__get_node_cached(struct perf_stat_config *config,
1397 struct perf_cpu cpu)
1398 {
1399 return perf_stat__get_aggr(config, perf_stat__get_node, cpu);
1400 }
1401
perf_stat__get_global_cached(struct perf_stat_config * config,struct perf_cpu cpu)1402 static struct aggr_cpu_id perf_stat__get_global_cached(struct perf_stat_config *config,
1403 struct perf_cpu cpu)
1404 {
1405 return perf_stat__get_aggr(config, perf_stat__get_global, cpu);
1406 }
1407
perf_stat__get_cpu_cached(struct perf_stat_config * config,struct perf_cpu cpu)1408 static struct aggr_cpu_id perf_stat__get_cpu_cached(struct perf_stat_config *config,
1409 struct perf_cpu cpu)
1410 {
1411 return perf_stat__get_aggr(config, perf_stat__get_cpu, cpu);
1412 }
1413
aggr_mode__get_aggr(enum aggr_mode aggr_mode)1414 static aggr_cpu_id_get_t aggr_mode__get_aggr(enum aggr_mode aggr_mode)
1415 {
1416 switch (aggr_mode) {
1417 case AGGR_SOCKET:
1418 return aggr_cpu_id__socket;
1419 case AGGR_DIE:
1420 return aggr_cpu_id__die;
1421 case AGGR_CLUSTER:
1422 return aggr_cpu_id__cluster;
1423 case AGGR_CACHE:
1424 return aggr_cpu_id__cache;
1425 case AGGR_CORE:
1426 return aggr_cpu_id__core;
1427 case AGGR_NODE:
1428 return aggr_cpu_id__node;
1429 case AGGR_NONE:
1430 return aggr_cpu_id__cpu;
1431 case AGGR_GLOBAL:
1432 return aggr_cpu_id__global;
1433 case AGGR_THREAD:
1434 case AGGR_UNSET:
1435 case AGGR_MAX:
1436 default:
1437 return NULL;
1438 }
1439 }
1440
aggr_mode__get_id(enum aggr_mode aggr_mode)1441 static aggr_get_id_t aggr_mode__get_id(enum aggr_mode aggr_mode)
1442 {
1443 switch (aggr_mode) {
1444 case AGGR_SOCKET:
1445 return perf_stat__get_socket_cached;
1446 case AGGR_DIE:
1447 return perf_stat__get_die_cached;
1448 case AGGR_CLUSTER:
1449 return perf_stat__get_cluster_cached;
1450 case AGGR_CACHE:
1451 return perf_stat__get_cache_id_cached;
1452 case AGGR_CORE:
1453 return perf_stat__get_core_cached;
1454 case AGGR_NODE:
1455 return perf_stat__get_node_cached;
1456 case AGGR_NONE:
1457 return perf_stat__get_cpu_cached;
1458 case AGGR_GLOBAL:
1459 return perf_stat__get_global_cached;
1460 case AGGR_THREAD:
1461 case AGGR_UNSET:
1462 case AGGR_MAX:
1463 default:
1464 return NULL;
1465 }
1466 }
1467
perf_stat_init_aggr_mode(void)1468 static int perf_stat_init_aggr_mode(void)
1469 {
1470 int nr;
1471 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr(stat_config.aggr_mode);
1472
1473 if (get_id) {
1474 bool needs_sort = stat_config.aggr_mode != AGGR_NONE;
1475 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus,
1476 get_id, /*data=*/NULL, needs_sort);
1477 if (!stat_config.aggr_map) {
1478 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]);
1479 return -1;
1480 }
1481 stat_config.aggr_get_id = aggr_mode__get_id(stat_config.aggr_mode);
1482 }
1483
1484 if (stat_config.aggr_mode == AGGR_THREAD) {
1485 nr = perf_thread_map__nr(evsel_list->core.threads);
1486 stat_config.aggr_map = cpu_aggr_map__empty_new(nr);
1487 if (stat_config.aggr_map == NULL)
1488 return -ENOMEM;
1489
1490 for (int s = 0; s < nr; s++) {
1491 struct aggr_cpu_id id = aggr_cpu_id__empty();
1492
1493 id.thread_idx = s;
1494 stat_config.aggr_map->map[s] = id;
1495 }
1496 return 0;
1497 }
1498
1499 /*
1500 * The evsel_list->cpus is the base we operate on,
1501 * taking the highest cpu number to be the size of
1502 * the aggregation translate cpumap.
1503 */
1504 if (!perf_cpu_map__is_any_cpu_or_is_empty(evsel_list->core.user_requested_cpus))
1505 nr = perf_cpu_map__max(evsel_list->core.user_requested_cpus).cpu;
1506 else
1507 nr = 0;
1508 stat_config.cpus_aggr_map = cpu_aggr_map__empty_new(nr + 1);
1509 return stat_config.cpus_aggr_map ? 0 : -ENOMEM;
1510 }
1511
cpu_aggr_map__delete(struct cpu_aggr_map * map)1512 static void cpu_aggr_map__delete(struct cpu_aggr_map *map)
1513 {
1514 free(map);
1515 }
1516
perf_stat__exit_aggr_mode(void)1517 static void perf_stat__exit_aggr_mode(void)
1518 {
1519 cpu_aggr_map__delete(stat_config.aggr_map);
1520 cpu_aggr_map__delete(stat_config.cpus_aggr_map);
1521 stat_config.aggr_map = NULL;
1522 stat_config.cpus_aggr_map = NULL;
1523 }
1524
perf_env__get_socket_aggr_by_cpu(struct perf_cpu cpu,void * data)1525 static struct aggr_cpu_id perf_env__get_socket_aggr_by_cpu(struct perf_cpu cpu, void *data)
1526 {
1527 struct perf_env *env = data;
1528 struct aggr_cpu_id id = aggr_cpu_id__empty();
1529
1530 if (cpu.cpu != -1)
1531 id.socket = env->cpu[cpu.cpu].socket_id;
1532
1533 return id;
1534 }
1535
perf_env__get_die_aggr_by_cpu(struct perf_cpu cpu,void * data)1536 static struct aggr_cpu_id perf_env__get_die_aggr_by_cpu(struct perf_cpu cpu, void *data)
1537 {
1538 struct perf_env *env = data;
1539 struct aggr_cpu_id id = aggr_cpu_id__empty();
1540
1541 if (cpu.cpu != -1) {
1542 /*
1543 * die_id is relative to socket, so start
1544 * with the socket ID and then add die to
1545 * make a unique ID.
1546 */
1547 id.socket = env->cpu[cpu.cpu].socket_id;
1548 id.die = env->cpu[cpu.cpu].die_id;
1549 }
1550
1551 return id;
1552 }
1553
perf_env__get_cache_id_for_cpu(struct perf_cpu cpu,struct perf_env * env,u32 cache_level,struct aggr_cpu_id * id)1554 static void perf_env__get_cache_id_for_cpu(struct perf_cpu cpu, struct perf_env *env,
1555 u32 cache_level, struct aggr_cpu_id *id)
1556 {
1557 int i;
1558 int caches_cnt = env->caches_cnt;
1559 struct cpu_cache_level *caches = env->caches;
1560
1561 id->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level;
1562 id->cache = -1;
1563
1564 if (!caches_cnt)
1565 return;
1566
1567 for (i = caches_cnt - 1; i > -1; --i) {
1568 struct perf_cpu_map *cpu_map;
1569 int map_contains_cpu;
1570
1571 /*
1572 * If user has not specified a level, find the fist level with
1573 * the cpu in the map. Since building the map is expensive, do
1574 * this only if levels match.
1575 */
1576 if (cache_level <= MAX_CACHE_LVL && caches[i].level != cache_level)
1577 continue;
1578
1579 cpu_map = perf_cpu_map__new(caches[i].map);
1580 map_contains_cpu = perf_cpu_map__idx(cpu_map, cpu);
1581 perf_cpu_map__put(cpu_map);
1582
1583 if (map_contains_cpu != -1) {
1584 id->cache_lvl = caches[i].level;
1585 id->cache = cpu__get_cache_id_from_map(cpu, caches[i].map);
1586 return;
1587 }
1588 }
1589 }
1590
perf_env__get_cache_aggr_by_cpu(struct perf_cpu cpu,void * data)1591 static struct aggr_cpu_id perf_env__get_cache_aggr_by_cpu(struct perf_cpu cpu,
1592 void *data)
1593 {
1594 struct perf_env *env = data;
1595 struct aggr_cpu_id id = aggr_cpu_id__empty();
1596
1597 if (cpu.cpu != -1) {
1598 u32 cache_level = (perf_stat.aggr_level) ?: stat_config.aggr_level;
1599
1600 id.socket = env->cpu[cpu.cpu].socket_id;
1601 id.die = env->cpu[cpu.cpu].die_id;
1602 perf_env__get_cache_id_for_cpu(cpu, env, cache_level, &id);
1603 }
1604
1605 return id;
1606 }
1607
perf_env__get_cluster_aggr_by_cpu(struct perf_cpu cpu,void * data)1608 static struct aggr_cpu_id perf_env__get_cluster_aggr_by_cpu(struct perf_cpu cpu,
1609 void *data)
1610 {
1611 struct perf_env *env = data;
1612 struct aggr_cpu_id id = aggr_cpu_id__empty();
1613
1614 if (cpu.cpu != -1) {
1615 id.socket = env->cpu[cpu.cpu].socket_id;
1616 id.die = env->cpu[cpu.cpu].die_id;
1617 id.cluster = env->cpu[cpu.cpu].cluster_id;
1618 }
1619
1620 return id;
1621 }
1622
perf_env__get_core_aggr_by_cpu(struct perf_cpu cpu,void * data)1623 static struct aggr_cpu_id perf_env__get_core_aggr_by_cpu(struct perf_cpu cpu, void *data)
1624 {
1625 struct perf_env *env = data;
1626 struct aggr_cpu_id id = aggr_cpu_id__empty();
1627
1628 if (cpu.cpu != -1) {
1629 /*
1630 * core_id is relative to socket, die and cluster, we need a
1631 * global id. So we set socket, die id, cluster id and core id.
1632 */
1633 id.socket = env->cpu[cpu.cpu].socket_id;
1634 id.die = env->cpu[cpu.cpu].die_id;
1635 id.cluster = env->cpu[cpu.cpu].cluster_id;
1636 id.core = env->cpu[cpu.cpu].core_id;
1637 }
1638
1639 return id;
1640 }
1641
perf_env__get_cpu_aggr_by_cpu(struct perf_cpu cpu,void * data)1642 static struct aggr_cpu_id perf_env__get_cpu_aggr_by_cpu(struct perf_cpu cpu, void *data)
1643 {
1644 struct perf_env *env = data;
1645 struct aggr_cpu_id id = aggr_cpu_id__empty();
1646
1647 if (cpu.cpu != -1) {
1648 /*
1649 * core_id is relative to socket and die,
1650 * we need a global id. So we set
1651 * socket, die id and core id
1652 */
1653 id.socket = env->cpu[cpu.cpu].socket_id;
1654 id.die = env->cpu[cpu.cpu].die_id;
1655 id.core = env->cpu[cpu.cpu].core_id;
1656 id.cpu = cpu;
1657 }
1658
1659 return id;
1660 }
1661
perf_env__get_node_aggr_by_cpu(struct perf_cpu cpu,void * data)1662 static struct aggr_cpu_id perf_env__get_node_aggr_by_cpu(struct perf_cpu cpu, void *data)
1663 {
1664 struct aggr_cpu_id id = aggr_cpu_id__empty();
1665
1666 id.node = perf_env__numa_node(data, cpu);
1667 return id;
1668 }
1669
perf_env__get_global_aggr_by_cpu(struct perf_cpu cpu __maybe_unused,void * data __maybe_unused)1670 static struct aggr_cpu_id perf_env__get_global_aggr_by_cpu(struct perf_cpu cpu __maybe_unused,
1671 void *data __maybe_unused)
1672 {
1673 struct aggr_cpu_id id = aggr_cpu_id__empty();
1674
1675 /* it always aggregates to the cpu 0 */
1676 id.cpu = (struct perf_cpu){ .cpu = 0 };
1677 return id;
1678 }
1679
perf_stat__get_socket_file(struct perf_stat_config * config __maybe_unused,struct perf_cpu cpu)1680 static struct aggr_cpu_id perf_stat__get_socket_file(struct perf_stat_config *config __maybe_unused,
1681 struct perf_cpu cpu)
1682 {
1683 return perf_env__get_socket_aggr_by_cpu(cpu, &perf_stat.session->header.env);
1684 }
perf_stat__get_die_file(struct perf_stat_config * config __maybe_unused,struct perf_cpu cpu)1685 static struct aggr_cpu_id perf_stat__get_die_file(struct perf_stat_config *config __maybe_unused,
1686 struct perf_cpu cpu)
1687 {
1688 return perf_env__get_die_aggr_by_cpu(cpu, &perf_stat.session->header.env);
1689 }
1690
perf_stat__get_cluster_file(struct perf_stat_config * config __maybe_unused,struct perf_cpu cpu)1691 static struct aggr_cpu_id perf_stat__get_cluster_file(struct perf_stat_config *config __maybe_unused,
1692 struct perf_cpu cpu)
1693 {
1694 return perf_env__get_cluster_aggr_by_cpu(cpu, &perf_stat.session->header.env);
1695 }
1696
perf_stat__get_cache_file(struct perf_stat_config * config __maybe_unused,struct perf_cpu cpu)1697 static struct aggr_cpu_id perf_stat__get_cache_file(struct perf_stat_config *config __maybe_unused,
1698 struct perf_cpu cpu)
1699 {
1700 return perf_env__get_cache_aggr_by_cpu(cpu, &perf_stat.session->header.env);
1701 }
1702
perf_stat__get_core_file(struct perf_stat_config * config __maybe_unused,struct perf_cpu cpu)1703 static struct aggr_cpu_id perf_stat__get_core_file(struct perf_stat_config *config __maybe_unused,
1704 struct perf_cpu cpu)
1705 {
1706 return perf_env__get_core_aggr_by_cpu(cpu, &perf_stat.session->header.env);
1707 }
1708
perf_stat__get_cpu_file(struct perf_stat_config * config __maybe_unused,struct perf_cpu cpu)1709 static struct aggr_cpu_id perf_stat__get_cpu_file(struct perf_stat_config *config __maybe_unused,
1710 struct perf_cpu cpu)
1711 {
1712 return perf_env__get_cpu_aggr_by_cpu(cpu, &perf_stat.session->header.env);
1713 }
1714
perf_stat__get_node_file(struct perf_stat_config * config __maybe_unused,struct perf_cpu cpu)1715 static struct aggr_cpu_id perf_stat__get_node_file(struct perf_stat_config *config __maybe_unused,
1716 struct perf_cpu cpu)
1717 {
1718 return perf_env__get_node_aggr_by_cpu(cpu, &perf_stat.session->header.env);
1719 }
1720
perf_stat__get_global_file(struct perf_stat_config * config __maybe_unused,struct perf_cpu cpu)1721 static struct aggr_cpu_id perf_stat__get_global_file(struct perf_stat_config *config __maybe_unused,
1722 struct perf_cpu cpu)
1723 {
1724 return perf_env__get_global_aggr_by_cpu(cpu, &perf_stat.session->header.env);
1725 }
1726
aggr_mode__get_aggr_file(enum aggr_mode aggr_mode)1727 static aggr_cpu_id_get_t aggr_mode__get_aggr_file(enum aggr_mode aggr_mode)
1728 {
1729 switch (aggr_mode) {
1730 case AGGR_SOCKET:
1731 return perf_env__get_socket_aggr_by_cpu;
1732 case AGGR_DIE:
1733 return perf_env__get_die_aggr_by_cpu;
1734 case AGGR_CLUSTER:
1735 return perf_env__get_cluster_aggr_by_cpu;
1736 case AGGR_CACHE:
1737 return perf_env__get_cache_aggr_by_cpu;
1738 case AGGR_CORE:
1739 return perf_env__get_core_aggr_by_cpu;
1740 case AGGR_NODE:
1741 return perf_env__get_node_aggr_by_cpu;
1742 case AGGR_GLOBAL:
1743 return perf_env__get_global_aggr_by_cpu;
1744 case AGGR_NONE:
1745 return perf_env__get_cpu_aggr_by_cpu;
1746 case AGGR_THREAD:
1747 case AGGR_UNSET:
1748 case AGGR_MAX:
1749 default:
1750 return NULL;
1751 }
1752 }
1753
aggr_mode__get_id_file(enum aggr_mode aggr_mode)1754 static aggr_get_id_t aggr_mode__get_id_file(enum aggr_mode aggr_mode)
1755 {
1756 switch (aggr_mode) {
1757 case AGGR_SOCKET:
1758 return perf_stat__get_socket_file;
1759 case AGGR_DIE:
1760 return perf_stat__get_die_file;
1761 case AGGR_CLUSTER:
1762 return perf_stat__get_cluster_file;
1763 case AGGR_CACHE:
1764 return perf_stat__get_cache_file;
1765 case AGGR_CORE:
1766 return perf_stat__get_core_file;
1767 case AGGR_NODE:
1768 return perf_stat__get_node_file;
1769 case AGGR_GLOBAL:
1770 return perf_stat__get_global_file;
1771 case AGGR_NONE:
1772 return perf_stat__get_cpu_file;
1773 case AGGR_THREAD:
1774 case AGGR_UNSET:
1775 case AGGR_MAX:
1776 default:
1777 return NULL;
1778 }
1779 }
1780
perf_stat_init_aggr_mode_file(struct perf_stat * st)1781 static int perf_stat_init_aggr_mode_file(struct perf_stat *st)
1782 {
1783 struct perf_env *env = &st->session->header.env;
1784 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr_file(stat_config.aggr_mode);
1785 bool needs_sort = stat_config.aggr_mode != AGGR_NONE;
1786
1787 if (stat_config.aggr_mode == AGGR_THREAD) {
1788 int nr = perf_thread_map__nr(evsel_list->core.threads);
1789
1790 stat_config.aggr_map = cpu_aggr_map__empty_new(nr);
1791 if (stat_config.aggr_map == NULL)
1792 return -ENOMEM;
1793
1794 for (int s = 0; s < nr; s++) {
1795 struct aggr_cpu_id id = aggr_cpu_id__empty();
1796
1797 id.thread_idx = s;
1798 stat_config.aggr_map->map[s] = id;
1799 }
1800 return 0;
1801 }
1802
1803 if (!get_id)
1804 return 0;
1805
1806 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus,
1807 get_id, env, needs_sort);
1808 if (!stat_config.aggr_map) {
1809 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]);
1810 return -1;
1811 }
1812 stat_config.aggr_get_id = aggr_mode__get_id_file(stat_config.aggr_mode);
1813 return 0;
1814 }
1815
1816 /*
1817 * Add default attributes, if there were no attributes specified or
1818 * if -d/--detailed, -d -d or -d -d -d is used:
1819 */
add_default_attributes(void)1820 static int add_default_attributes(void)
1821 {
1822 struct perf_event_attr default_attrs0[] = {
1823
1824 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK },
1825 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES },
1826 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS },
1827 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS },
1828
1829 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES },
1830 };
1831 struct perf_event_attr frontend_attrs[] = {
1832 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_FRONTEND },
1833 };
1834 struct perf_event_attr backend_attrs[] = {
1835 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_BACKEND },
1836 };
1837 struct perf_event_attr default_attrs1[] = {
1838 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS },
1839 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS },
1840 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES },
1841
1842 };
1843
1844 /*
1845 * Detailed stats (-d), covering the L1 and last level data caches:
1846 */
1847 struct perf_event_attr detailed_attrs[] = {
1848
1849 { .type = PERF_TYPE_HW_CACHE,
1850 .config =
1851 PERF_COUNT_HW_CACHE_L1D << 0 |
1852 (PERF_COUNT_HW_CACHE_OP_READ << 8) |
1853 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
1854
1855 { .type = PERF_TYPE_HW_CACHE,
1856 .config =
1857 PERF_COUNT_HW_CACHE_L1D << 0 |
1858 (PERF_COUNT_HW_CACHE_OP_READ << 8) |
1859 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
1860
1861 { .type = PERF_TYPE_HW_CACHE,
1862 .config =
1863 PERF_COUNT_HW_CACHE_LL << 0 |
1864 (PERF_COUNT_HW_CACHE_OP_READ << 8) |
1865 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
1866
1867 { .type = PERF_TYPE_HW_CACHE,
1868 .config =
1869 PERF_COUNT_HW_CACHE_LL << 0 |
1870 (PERF_COUNT_HW_CACHE_OP_READ << 8) |
1871 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
1872 };
1873
1874 /*
1875 * Very detailed stats (-d -d), covering the instruction cache and the TLB caches:
1876 */
1877 struct perf_event_attr very_detailed_attrs[] = {
1878
1879 { .type = PERF_TYPE_HW_CACHE,
1880 .config =
1881 PERF_COUNT_HW_CACHE_L1I << 0 |
1882 (PERF_COUNT_HW_CACHE_OP_READ << 8) |
1883 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
1884
1885 { .type = PERF_TYPE_HW_CACHE,
1886 .config =
1887 PERF_COUNT_HW_CACHE_L1I << 0 |
1888 (PERF_COUNT_HW_CACHE_OP_READ << 8) |
1889 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
1890
1891 { .type = PERF_TYPE_HW_CACHE,
1892 .config =
1893 PERF_COUNT_HW_CACHE_DTLB << 0 |
1894 (PERF_COUNT_HW_CACHE_OP_READ << 8) |
1895 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
1896
1897 { .type = PERF_TYPE_HW_CACHE,
1898 .config =
1899 PERF_COUNT_HW_CACHE_DTLB << 0 |
1900 (PERF_COUNT_HW_CACHE_OP_READ << 8) |
1901 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
1902
1903 { .type = PERF_TYPE_HW_CACHE,
1904 .config =
1905 PERF_COUNT_HW_CACHE_ITLB << 0 |
1906 (PERF_COUNT_HW_CACHE_OP_READ << 8) |
1907 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
1908
1909 { .type = PERF_TYPE_HW_CACHE,
1910 .config =
1911 PERF_COUNT_HW_CACHE_ITLB << 0 |
1912 (PERF_COUNT_HW_CACHE_OP_READ << 8) |
1913 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
1914
1915 };
1916
1917 /*
1918 * Very, very detailed stats (-d -d -d), adding prefetch events:
1919 */
1920 struct perf_event_attr very_very_detailed_attrs[] = {
1921
1922 { .type = PERF_TYPE_HW_CACHE,
1923 .config =
1924 PERF_COUNT_HW_CACHE_L1D << 0 |
1925 (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) |
1926 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
1927
1928 { .type = PERF_TYPE_HW_CACHE,
1929 .config =
1930 PERF_COUNT_HW_CACHE_L1D << 0 |
1931 (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) |
1932 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
1933 };
1934
1935 struct perf_event_attr default_null_attrs[] = {};
1936 const char *pmu = parse_events_option_args.pmu_filter ?: "all";
1937
1938 /* Set attrs if no event is selected and !null_run: */
1939 if (stat_config.null_run)
1940 return 0;
1941
1942 if (transaction_run) {
1943 /* Handle -T as -M transaction. Once platform specific metrics
1944 * support has been added to the json files, all architectures
1945 * will use this approach. To determine transaction support
1946 * on an architecture test for such a metric name.
1947 */
1948 if (!metricgroup__has_metric(pmu, "transaction")) {
1949 pr_err("Missing transaction metrics\n");
1950 return -1;
1951 }
1952 return metricgroup__parse_groups(evsel_list, pmu, "transaction",
1953 stat_config.metric_no_group,
1954 stat_config.metric_no_merge,
1955 stat_config.metric_no_threshold,
1956 stat_config.user_requested_cpu_list,
1957 stat_config.system_wide,
1958 stat_config.hardware_aware_grouping,
1959 &stat_config.metric_events);
1960 }
1961
1962 if (smi_cost) {
1963 int smi;
1964
1965 if (sysfs__read_int(FREEZE_ON_SMI_PATH, &smi) < 0) {
1966 pr_err("freeze_on_smi is not supported.\n");
1967 return -1;
1968 }
1969
1970 if (!smi) {
1971 if (sysfs__write_int(FREEZE_ON_SMI_PATH, 1) < 0) {
1972 fprintf(stderr, "Failed to set freeze_on_smi.\n");
1973 return -1;
1974 }
1975 smi_reset = true;
1976 }
1977
1978 if (!metricgroup__has_metric(pmu, "smi")) {
1979 pr_err("Missing smi metrics\n");
1980 return -1;
1981 }
1982
1983 if (!force_metric_only)
1984 stat_config.metric_only = true;
1985
1986 return metricgroup__parse_groups(evsel_list, pmu, "smi",
1987 stat_config.metric_no_group,
1988 stat_config.metric_no_merge,
1989 stat_config.metric_no_threshold,
1990 stat_config.user_requested_cpu_list,
1991 stat_config.system_wide,
1992 stat_config.hardware_aware_grouping,
1993 &stat_config.metric_events);
1994 }
1995
1996 if (topdown_run) {
1997 unsigned int max_level = metricgroups__topdown_max_level();
1998 char str[] = "TopdownL1";
1999
2000 if (!force_metric_only)
2001 stat_config.metric_only = true;
2002
2003 if (!max_level) {
2004 pr_err("Topdown requested but the topdown metric groups aren't present.\n"
2005 "(See perf list the metric groups have names like TopdownL1)\n");
2006 return -1;
2007 }
2008 if (stat_config.topdown_level > max_level) {
2009 pr_err("Invalid top-down metrics level. The max level is %u.\n", max_level);
2010 return -1;
2011 } else if (!stat_config.topdown_level)
2012 stat_config.topdown_level = 1;
2013
2014 if (!stat_config.interval && !stat_config.metric_only) {
2015 fprintf(stat_config.output,
2016 "Topdown accuracy may decrease when measuring long periods.\n"
2017 "Please print the result regularly, e.g. -I1000\n");
2018 }
2019 str[8] = stat_config.topdown_level + '0';
2020 if (metricgroup__parse_groups(evsel_list,
2021 pmu, str,
2022 /*metric_no_group=*/false,
2023 /*metric_no_merge=*/false,
2024 /*metric_no_threshold=*/true,
2025 stat_config.user_requested_cpu_list,
2026 stat_config.system_wide,
2027 stat_config.hardware_aware_grouping,
2028 &stat_config.metric_events) < 0)
2029 return -1;
2030 }
2031
2032 if (!stat_config.topdown_level)
2033 stat_config.topdown_level = 1;
2034
2035 if (!evsel_list->core.nr_entries) {
2036 /* No events so add defaults. */
2037 if (target__has_cpu(&target))
2038 default_attrs0[0].config = PERF_COUNT_SW_CPU_CLOCK;
2039
2040 if (evlist__add_default_attrs(evsel_list, default_attrs0) < 0)
2041 return -1;
2042 if (perf_pmus__have_event("cpu", "stalled-cycles-frontend")) {
2043 if (evlist__add_default_attrs(evsel_list, frontend_attrs) < 0)
2044 return -1;
2045 }
2046 if (perf_pmus__have_event("cpu", "stalled-cycles-backend")) {
2047 if (evlist__add_default_attrs(evsel_list, backend_attrs) < 0)
2048 return -1;
2049 }
2050 if (evlist__add_default_attrs(evsel_list, default_attrs1) < 0)
2051 return -1;
2052 /*
2053 * Add TopdownL1 metrics if they exist. To minimize
2054 * multiplexing, don't request threshold computation.
2055 */
2056 if (metricgroup__has_metric(pmu, "Default")) {
2057 struct evlist *metric_evlist = evlist__new();
2058 struct evsel *metric_evsel;
2059
2060 if (!metric_evlist)
2061 return -1;
2062
2063 if (metricgroup__parse_groups(metric_evlist, pmu, "Default",
2064 /*metric_no_group=*/false,
2065 /*metric_no_merge=*/false,
2066 /*metric_no_threshold=*/true,
2067 stat_config.user_requested_cpu_list,
2068 stat_config.system_wide,
2069 stat_config.hardware_aware_grouping,
2070 &stat_config.metric_events) < 0)
2071 return -1;
2072
2073 evlist__for_each_entry(metric_evlist, metric_evsel) {
2074 metric_evsel->skippable = true;
2075 metric_evsel->default_metricgroup = true;
2076 }
2077 evlist__splice_list_tail(evsel_list, &metric_evlist->core.entries);
2078 evlist__delete(metric_evlist);
2079 }
2080
2081 /* Platform specific attrs */
2082 if (evlist__add_default_attrs(evsel_list, default_null_attrs) < 0)
2083 return -1;
2084 }
2085
2086 /* Detailed events get appended to the event list: */
2087
2088 if (detailed_run < 1)
2089 return 0;
2090
2091 /* Append detailed run extra attributes: */
2092 if (evlist__add_default_attrs(evsel_list, detailed_attrs) < 0)
2093 return -1;
2094
2095 if (detailed_run < 2)
2096 return 0;
2097
2098 /* Append very detailed run extra attributes: */
2099 if (evlist__add_default_attrs(evsel_list, very_detailed_attrs) < 0)
2100 return -1;
2101
2102 if (detailed_run < 3)
2103 return 0;
2104
2105 /* Append very, very detailed run extra attributes: */
2106 return evlist__add_default_attrs(evsel_list, very_very_detailed_attrs);
2107 }
2108
2109 static const char * const stat_record_usage[] = {
2110 "perf stat record [<options>]",
2111 NULL,
2112 };
2113
init_features(struct perf_session * session)2114 static void init_features(struct perf_session *session)
2115 {
2116 int feat;
2117
2118 for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++)
2119 perf_header__set_feat(&session->header, feat);
2120
2121 perf_header__clear_feat(&session->header, HEADER_DIR_FORMAT);
2122 perf_header__clear_feat(&session->header, HEADER_BUILD_ID);
2123 perf_header__clear_feat(&session->header, HEADER_TRACING_DATA);
2124 perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK);
2125 perf_header__clear_feat(&session->header, HEADER_AUXTRACE);
2126 }
2127
__cmd_record(const struct option stat_options[],struct opt_aggr_mode * opt_mode,int argc,const char ** argv)2128 static int __cmd_record(const struct option stat_options[], struct opt_aggr_mode *opt_mode,
2129 int argc, const char **argv)
2130 {
2131 struct perf_session *session;
2132 struct perf_data *data = &perf_stat.data;
2133
2134 argc = parse_options(argc, argv, stat_options, stat_record_usage,
2135 PARSE_OPT_STOP_AT_NON_OPTION);
2136 stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(opt_mode);
2137
2138 if (output_name)
2139 data->path = output_name;
2140
2141 if (stat_config.run_count != 1 || forever) {
2142 pr_err("Cannot use -r option with perf stat record.\n");
2143 return -1;
2144 }
2145
2146 session = perf_session__new(data, NULL);
2147 if (IS_ERR(session)) {
2148 pr_err("Perf session creation failed\n");
2149 return PTR_ERR(session);
2150 }
2151
2152 init_features(session);
2153
2154 session->evlist = evsel_list;
2155 perf_stat.session = session;
2156 perf_stat.record = true;
2157 return argc;
2158 }
2159
process_stat_round_event(struct perf_session * session,union perf_event * event)2160 static int process_stat_round_event(struct perf_session *session,
2161 union perf_event *event)
2162 {
2163 struct perf_record_stat_round *stat_round = &event->stat_round;
2164 struct timespec tsh, *ts = NULL;
2165 const char **argv = session->header.env.cmdline_argv;
2166 int argc = session->header.env.nr_cmdline;
2167
2168 process_counters();
2169
2170 if (stat_round->type == PERF_STAT_ROUND_TYPE__FINAL)
2171 update_stats(&walltime_nsecs_stats, stat_round->time);
2172
2173 if (stat_config.interval && stat_round->time) {
2174 tsh.tv_sec = stat_round->time / NSEC_PER_SEC;
2175 tsh.tv_nsec = stat_round->time % NSEC_PER_SEC;
2176 ts = &tsh;
2177 }
2178
2179 print_counters(ts, argc, argv);
2180 return 0;
2181 }
2182
2183 static
process_stat_config_event(struct perf_session * session,union perf_event * event)2184 int process_stat_config_event(struct perf_session *session,
2185 union perf_event *event)
2186 {
2187 const struct perf_tool *tool = session->tool;
2188 struct perf_stat *st = container_of(tool, struct perf_stat, tool);
2189
2190 perf_event__read_stat_config(&stat_config, &event->stat_config);
2191
2192 if (perf_cpu_map__is_empty(st->cpus)) {
2193 if (st->aggr_mode != AGGR_UNSET)
2194 pr_warning("warning: processing task data, aggregation mode not set\n");
2195 } else if (st->aggr_mode != AGGR_UNSET) {
2196 stat_config.aggr_mode = st->aggr_mode;
2197 }
2198
2199 if (perf_stat.data.is_pipe)
2200 perf_stat_init_aggr_mode();
2201 else
2202 perf_stat_init_aggr_mode_file(st);
2203
2204 if (stat_config.aggr_map) {
2205 int nr_aggr = stat_config.aggr_map->nr;
2206
2207 if (evlist__alloc_aggr_stats(session->evlist, nr_aggr) < 0) {
2208 pr_err("cannot allocate aggr counts\n");
2209 return -1;
2210 }
2211 }
2212 return 0;
2213 }
2214
set_maps(struct perf_stat * st)2215 static int set_maps(struct perf_stat *st)
2216 {
2217 if (!st->cpus || !st->threads)
2218 return 0;
2219
2220 if (WARN_ONCE(st->maps_allocated, "stats double allocation\n"))
2221 return -EINVAL;
2222
2223 perf_evlist__set_maps(&evsel_list->core, st->cpus, st->threads);
2224
2225 if (evlist__alloc_stats(&stat_config, evsel_list, /*alloc_raw=*/true))
2226 return -ENOMEM;
2227
2228 st->maps_allocated = true;
2229 return 0;
2230 }
2231
2232 static
process_thread_map_event(struct perf_session * session,union perf_event * event)2233 int process_thread_map_event(struct perf_session *session,
2234 union perf_event *event)
2235 {
2236 const struct perf_tool *tool = session->tool;
2237 struct perf_stat *st = container_of(tool, struct perf_stat, tool);
2238
2239 if (st->threads) {
2240 pr_warning("Extra thread map event, ignoring.\n");
2241 return 0;
2242 }
2243
2244 st->threads = thread_map__new_event(&event->thread_map);
2245 if (!st->threads)
2246 return -ENOMEM;
2247
2248 return set_maps(st);
2249 }
2250
2251 static
process_cpu_map_event(struct perf_session * session,union perf_event * event)2252 int process_cpu_map_event(struct perf_session *session,
2253 union perf_event *event)
2254 {
2255 const struct perf_tool *tool = session->tool;
2256 struct perf_stat *st = container_of(tool, struct perf_stat, tool);
2257 struct perf_cpu_map *cpus;
2258
2259 if (st->cpus) {
2260 pr_warning("Extra cpu map event, ignoring.\n");
2261 return 0;
2262 }
2263
2264 cpus = cpu_map__new_data(&event->cpu_map.data);
2265 if (!cpus)
2266 return -ENOMEM;
2267
2268 st->cpus = cpus;
2269 return set_maps(st);
2270 }
2271
2272 static const char * const stat_report_usage[] = {
2273 "perf stat report [<options>]",
2274 NULL,
2275 };
2276
2277 static struct perf_stat perf_stat = {
2278 .aggr_mode = AGGR_UNSET,
2279 .aggr_level = 0,
2280 };
2281
__cmd_report(int argc,const char ** argv)2282 static int __cmd_report(int argc, const char **argv)
2283 {
2284 struct perf_session *session;
2285 const struct option options[] = {
2286 OPT_STRING('i', "input", &input_name, "file", "input file name"),
2287 OPT_SET_UINT(0, "per-socket", &perf_stat.aggr_mode,
2288 "aggregate counts per processor socket", AGGR_SOCKET),
2289 OPT_SET_UINT(0, "per-die", &perf_stat.aggr_mode,
2290 "aggregate counts per processor die", AGGR_DIE),
2291 OPT_SET_UINT(0, "per-cluster", &perf_stat.aggr_mode,
2292 "aggregate counts perf processor cluster", AGGR_CLUSTER),
2293 OPT_CALLBACK_OPTARG(0, "per-cache", &perf_stat.aggr_mode, &perf_stat.aggr_level,
2294 "cache level",
2295 "aggregate count at this cache level (Default: LLC)",
2296 parse_cache_level),
2297 OPT_SET_UINT(0, "per-core", &perf_stat.aggr_mode,
2298 "aggregate counts per physical processor core", AGGR_CORE),
2299 OPT_SET_UINT(0, "per-node", &perf_stat.aggr_mode,
2300 "aggregate counts per numa node", AGGR_NODE),
2301 OPT_SET_UINT('A', "no-aggr", &perf_stat.aggr_mode,
2302 "disable CPU count aggregation", AGGR_NONE),
2303 OPT_END()
2304 };
2305 struct stat st;
2306 int ret;
2307
2308 argc = parse_options(argc, argv, options, stat_report_usage, 0);
2309
2310 if (!input_name || !strlen(input_name)) {
2311 if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode))
2312 input_name = "-";
2313 else
2314 input_name = "perf.data";
2315 }
2316
2317 perf_stat.data.path = input_name;
2318 perf_stat.data.mode = PERF_DATA_MODE_READ;
2319
2320 perf_tool__init(&perf_stat.tool, /*ordered_events=*/false);
2321 perf_stat.tool.attr = perf_event__process_attr;
2322 perf_stat.tool.event_update = perf_event__process_event_update;
2323 perf_stat.tool.thread_map = process_thread_map_event;
2324 perf_stat.tool.cpu_map = process_cpu_map_event;
2325 perf_stat.tool.stat_config = process_stat_config_event;
2326 perf_stat.tool.stat = perf_event__process_stat_event;
2327 perf_stat.tool.stat_round = process_stat_round_event;
2328
2329 session = perf_session__new(&perf_stat.data, &perf_stat.tool);
2330 if (IS_ERR(session))
2331 return PTR_ERR(session);
2332
2333 perf_stat.session = session;
2334 stat_config.output = stderr;
2335 evlist__delete(evsel_list);
2336 evsel_list = session->evlist;
2337
2338 ret = perf_session__process_events(session);
2339 if (ret)
2340 return ret;
2341
2342 perf_session__delete(session);
2343 return 0;
2344 }
2345
setup_system_wide(int forks)2346 static void setup_system_wide(int forks)
2347 {
2348 /*
2349 * Make system wide (-a) the default target if
2350 * no target was specified and one of following
2351 * conditions is met:
2352 *
2353 * - there's no workload specified
2354 * - there is workload specified but all requested
2355 * events are system wide events
2356 */
2357 if (!target__none(&target))
2358 return;
2359
2360 if (!forks)
2361 target.system_wide = true;
2362 else {
2363 struct evsel *counter;
2364
2365 evlist__for_each_entry(evsel_list, counter) {
2366 if (!counter->core.requires_cpu &&
2367 !evsel__name_is(counter, "duration_time")) {
2368 return;
2369 }
2370 }
2371
2372 if (evsel_list->core.nr_entries)
2373 target.system_wide = true;
2374 }
2375 }
2376
cmd_stat(int argc,const char ** argv)2377 int cmd_stat(int argc, const char **argv)
2378 {
2379 struct opt_aggr_mode opt_mode = {};
2380 struct option stat_options[] = {
2381 OPT_BOOLEAN('T', "transaction", &transaction_run,
2382 "hardware transaction statistics"),
2383 OPT_CALLBACK('e', "event", &parse_events_option_args, "event",
2384 "event selector. use 'perf list' to list available events",
2385 parse_events_option),
2386 OPT_CALLBACK(0, "filter", &evsel_list, "filter",
2387 "event filter", parse_filter),
2388 OPT_BOOLEAN('i', "no-inherit", &stat_config.no_inherit,
2389 "child tasks do not inherit counters"),
2390 OPT_STRING('p', "pid", &target.pid, "pid",
2391 "stat events on existing process id"),
2392 OPT_STRING('t', "tid", &target.tid, "tid",
2393 "stat events on existing thread id"),
2394 #ifdef HAVE_BPF_SKEL
2395 OPT_STRING('b', "bpf-prog", &target.bpf_str, "bpf-prog-id",
2396 "stat events on existing bpf program id"),
2397 OPT_BOOLEAN(0, "bpf-counters", &target.use_bpf,
2398 "use bpf program to count events"),
2399 OPT_STRING(0, "bpf-attr-map", &target.attr_map, "attr-map-path",
2400 "path to perf_event_attr map"),
2401 #endif
2402 OPT_BOOLEAN('a', "all-cpus", &target.system_wide,
2403 "system-wide collection from all CPUs"),
2404 OPT_BOOLEAN(0, "scale", &stat_config.scale,
2405 "Use --no-scale to disable counter scaling for multiplexing"),
2406 OPT_INCR('v', "verbose", &verbose,
2407 "be more verbose (show counter open errors, etc)"),
2408 OPT_INTEGER('r', "repeat", &stat_config.run_count,
2409 "repeat command and print average + stddev (max: 100, forever: 0)"),
2410 OPT_BOOLEAN(0, "table", &stat_config.walltime_run_table,
2411 "display details about each run (only with -r option)"),
2412 OPT_BOOLEAN('n', "null", &stat_config.null_run,
2413 "null run - dont start any counters"),
2414 OPT_INCR('d', "detailed", &detailed_run,
2415 "detailed run - start a lot of events"),
2416 OPT_BOOLEAN('S', "sync", &sync_run,
2417 "call sync() before starting a run"),
2418 OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL,
2419 "print large numbers with thousands\' separators",
2420 stat__set_big_num),
2421 OPT_STRING('C', "cpu", &target.cpu_list, "cpu",
2422 "list of cpus to monitor in system-wide"),
2423 OPT_BOOLEAN('A', "no-aggr", &opt_mode.no_aggr,
2424 "disable aggregation across CPUs or PMUs"),
2425 OPT_BOOLEAN(0, "no-merge", &opt_mode.no_aggr,
2426 "disable aggregation the same as -A or -no-aggr"),
2427 OPT_BOOLEAN(0, "hybrid-merge", &stat_config.hybrid_merge,
2428 "Merge identical named hybrid events"),
2429 OPT_STRING('x', "field-separator", &stat_config.csv_sep, "separator",
2430 "print counts with custom separator"),
2431 OPT_BOOLEAN('j', "json-output", &stat_config.json_output,
2432 "print counts in JSON format"),
2433 OPT_CALLBACK('G', "cgroup", &evsel_list, "name",
2434 "monitor event in cgroup name only", parse_stat_cgroups),
2435 OPT_STRING(0, "for-each-cgroup", &stat_config.cgroup_list, "name",
2436 "expand events for each cgroup"),
2437 OPT_STRING('o', "output", &output_name, "file", "output file name"),
2438 OPT_BOOLEAN(0, "append", &append_file, "append to the output file"),
2439 OPT_INTEGER(0, "log-fd", &output_fd,
2440 "log output to fd, instead of stderr"),
2441 OPT_STRING(0, "pre", &pre_cmd, "command",
2442 "command to run prior to the measured command"),
2443 OPT_STRING(0, "post", &post_cmd, "command",
2444 "command to run after to the measured command"),
2445 OPT_UINTEGER('I', "interval-print", &stat_config.interval,
2446 "print counts at regular interval in ms "
2447 "(overhead is possible for values <= 100ms)"),
2448 OPT_INTEGER(0, "interval-count", &stat_config.times,
2449 "print counts for fixed number of times"),
2450 OPT_BOOLEAN(0, "interval-clear", &stat_config.interval_clear,
2451 "clear screen in between new interval"),
2452 OPT_UINTEGER(0, "timeout", &stat_config.timeout,
2453 "stop workload and print counts after a timeout period in ms (>= 10ms)"),
2454 OPT_BOOLEAN(0, "per-socket", &opt_mode.socket,
2455 "aggregate counts per processor socket"),
2456 OPT_BOOLEAN(0, "per-die", &opt_mode.die, "aggregate counts per processor die"),
2457 OPT_BOOLEAN(0, "per-cluster", &opt_mode.cluster,
2458 "aggregate counts per processor cluster"),
2459 OPT_CALLBACK_OPTARG(0, "per-cache", &opt_mode, &stat_config.aggr_level,
2460 "cache level", "aggregate count at this cache level (Default: LLC)",
2461 parse_cache_level),
2462 OPT_BOOLEAN(0, "per-core", &opt_mode.core,
2463 "aggregate counts per physical processor core"),
2464 OPT_BOOLEAN(0, "per-thread", &opt_mode.thread, "aggregate counts per thread"),
2465 OPT_BOOLEAN(0, "per-node", &opt_mode.node, "aggregate counts per numa node"),
2466 OPT_INTEGER('D', "delay", &target.initial_delay,
2467 "ms to wait before starting measurement after program start (-1: start with events disabled)"),
2468 OPT_CALLBACK_NOOPT(0, "metric-only", &stat_config.metric_only, NULL,
2469 "Only print computed metrics. No raw values", enable_metric_only),
2470 OPT_BOOLEAN(0, "metric-no-group", &stat_config.metric_no_group,
2471 "don't group metric events, impacts multiplexing"),
2472 OPT_BOOLEAN(0, "metric-no-merge", &stat_config.metric_no_merge,
2473 "don't try to share events between metrics in a group"),
2474 OPT_BOOLEAN(0, "metric-no-threshold", &stat_config.metric_no_threshold,
2475 "disable adding events for the metric threshold calculation"),
2476 OPT_BOOLEAN(0, "topdown", &topdown_run,
2477 "measure top-down statistics"),
2478 #ifdef HAVE_ARCH_X86_64_SUPPORT
2479 OPT_BOOLEAN(0, "record-tpebs", &tpebs_recording,
2480 "enable recording for tpebs when retire_latency required"),
2481 #endif
2482 OPT_UINTEGER(0, "td-level", &stat_config.topdown_level,
2483 "Set the metrics level for the top-down statistics (0: max level)"),
2484 OPT_BOOLEAN(0, "smi-cost", &smi_cost,
2485 "measure SMI cost"),
2486 OPT_CALLBACK('M', "metrics", &evsel_list, "metric/metric group list",
2487 "monitor specified metrics or metric groups (separated by ,)",
2488 append_metric_groups),
2489 OPT_BOOLEAN_FLAG(0, "all-kernel", &stat_config.all_kernel,
2490 "Configure all used events to run in kernel space.",
2491 PARSE_OPT_EXCLUSIVE),
2492 OPT_BOOLEAN_FLAG(0, "all-user", &stat_config.all_user,
2493 "Configure all used events to run in user space.",
2494 PARSE_OPT_EXCLUSIVE),
2495 OPT_BOOLEAN(0, "percore-show-thread", &stat_config.percore_show_thread,
2496 "Use with 'percore' event qualifier to show the event "
2497 "counts of one hardware thread by sum up total hardware "
2498 "threads of same physical core"),
2499 OPT_BOOLEAN(0, "summary", &stat_config.summary,
2500 "print summary for interval mode"),
2501 OPT_BOOLEAN(0, "no-csv-summary", &stat_config.no_csv_summary,
2502 "don't print 'summary' for CSV summary output"),
2503 OPT_BOOLEAN(0, "quiet", &quiet,
2504 "don't print any output, messages or warnings (useful with record)"),
2505 OPT_CALLBACK(0, "cputype", &evsel_list, "hybrid cpu type",
2506 "Only enable events on applying cpu with this type "
2507 "for hybrid platform (e.g. core or atom)",
2508 parse_cputype),
2509 #ifdef HAVE_LIBPFM
2510 OPT_CALLBACK(0, "pfm-events", &evsel_list, "event",
2511 "libpfm4 event selector. use 'perf list' to list available events",
2512 parse_libpfm_events_option),
2513 #endif
2514 OPT_CALLBACK(0, "control", &stat_config, "fd:ctl-fd[,ack-fd] or fifo:ctl-fifo[,ack-fifo]",
2515 "Listen on ctl-fd descriptor for command to control measurement ('enable': enable events, 'disable': disable events).\n"
2516 "\t\t\t Optionally send control command completion ('ack\\n') to ack-fd descriptor.\n"
2517 "\t\t\t Alternatively, ctl-fifo / ack-fifo will be opened and used as ctl-fd / ack-fd.",
2518 parse_control_option),
2519 OPT_CALLBACK_OPTARG(0, "iostat", &evsel_list, &stat_config, "default",
2520 "measure I/O performance metrics provided by arch/platform",
2521 iostat_parse),
2522 OPT_END()
2523 };
2524 const char * const stat_usage[] = {
2525 "perf stat [<options>] [<command>]",
2526 NULL
2527 };
2528 int status = -EINVAL, run_idx, err;
2529 const char *mode;
2530 FILE *output = stderr;
2531 unsigned int interval, timeout;
2532 const char * const stat_subcommands[] = { "record", "report" };
2533 char errbuf[BUFSIZ];
2534
2535 setlocale(LC_ALL, "");
2536
2537 evsel_list = evlist__new();
2538 if (evsel_list == NULL)
2539 return -ENOMEM;
2540
2541 parse_events__shrink_config_terms();
2542
2543 /* String-parsing callback-based options would segfault when negated */
2544 set_option_flag(stat_options, 'e', "event", PARSE_OPT_NONEG);
2545 set_option_flag(stat_options, 'M', "metrics", PARSE_OPT_NONEG);
2546 set_option_flag(stat_options, 'G', "cgroup", PARSE_OPT_NONEG);
2547
2548 argc = parse_options_subcommand(argc, argv, stat_options, stat_subcommands,
2549 (const char **) stat_usage,
2550 PARSE_OPT_STOP_AT_NON_OPTION);
2551
2552 stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(&opt_mode);
2553
2554 if (stat_config.csv_sep) {
2555 stat_config.csv_output = true;
2556 if (!strcmp(stat_config.csv_sep, "\\t"))
2557 stat_config.csv_sep = "\t";
2558 } else
2559 stat_config.csv_sep = DEFAULT_SEPARATOR;
2560
2561 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
2562 argc = __cmd_record(stat_options, &opt_mode, argc, argv);
2563 if (argc < 0)
2564 return -1;
2565 } else if (argc && strlen(argv[0]) > 2 && strstarts("report", argv[0]))
2566 return __cmd_report(argc, argv);
2567
2568 interval = stat_config.interval;
2569 timeout = stat_config.timeout;
2570
2571 /*
2572 * For record command the -o is already taken care of.
2573 */
2574 if (!STAT_RECORD && output_name && strcmp(output_name, "-"))
2575 output = NULL;
2576
2577 if (output_name && output_fd) {
2578 fprintf(stderr, "cannot use both --output and --log-fd\n");
2579 parse_options_usage(stat_usage, stat_options, "o", 1);
2580 parse_options_usage(NULL, stat_options, "log-fd", 0);
2581 goto out;
2582 }
2583
2584 if (stat_config.metric_only && stat_config.aggr_mode == AGGR_THREAD) {
2585 fprintf(stderr, "--metric-only is not supported with --per-thread\n");
2586 goto out;
2587 }
2588
2589 if (stat_config.metric_only && stat_config.run_count > 1) {
2590 fprintf(stderr, "--metric-only is not supported with -r\n");
2591 goto out;
2592 }
2593
2594 if (stat_config.walltime_run_table && stat_config.run_count <= 1) {
2595 fprintf(stderr, "--table is only supported with -r\n");
2596 parse_options_usage(stat_usage, stat_options, "r", 1);
2597 parse_options_usage(NULL, stat_options, "table", 0);
2598 goto out;
2599 }
2600
2601 if (output_fd < 0) {
2602 fprintf(stderr, "argument to --log-fd must be a > 0\n");
2603 parse_options_usage(stat_usage, stat_options, "log-fd", 0);
2604 goto out;
2605 }
2606
2607 if (!output && !quiet) {
2608 struct timespec tm;
2609 mode = append_file ? "a" : "w";
2610
2611 output = fopen(output_name, mode);
2612 if (!output) {
2613 perror("failed to create output file");
2614 return -1;
2615 }
2616 if (!stat_config.json_output) {
2617 clock_gettime(CLOCK_REALTIME, &tm);
2618 fprintf(output, "# started on %s\n", ctime(&tm.tv_sec));
2619 }
2620 } else if (output_fd > 0) {
2621 mode = append_file ? "a" : "w";
2622 output = fdopen(output_fd, mode);
2623 if (!output) {
2624 perror("Failed opening logfd");
2625 return -errno;
2626 }
2627 }
2628
2629 if (stat_config.interval_clear && !isatty(fileno(output))) {
2630 fprintf(stderr, "--interval-clear does not work with output\n");
2631 parse_options_usage(stat_usage, stat_options, "o", 1);
2632 parse_options_usage(NULL, stat_options, "log-fd", 0);
2633 parse_options_usage(NULL, stat_options, "interval-clear", 0);
2634 return -1;
2635 }
2636
2637 stat_config.output = output;
2638
2639 /*
2640 * let the spreadsheet do the pretty-printing
2641 */
2642 if (stat_config.csv_output) {
2643 /* User explicitly passed -B? */
2644 if (big_num_opt == 1) {
2645 fprintf(stderr, "-B option not supported with -x\n");
2646 parse_options_usage(stat_usage, stat_options, "B", 1);
2647 parse_options_usage(NULL, stat_options, "x", 1);
2648 goto out;
2649 } else /* Nope, so disable big number formatting */
2650 stat_config.big_num = false;
2651 } else if (big_num_opt == 0) /* User passed --no-big-num */
2652 stat_config.big_num = false;
2653
2654 err = target__validate(&target);
2655 if (err) {
2656 target__strerror(&target, err, errbuf, BUFSIZ);
2657 pr_warning("%s\n", errbuf);
2658 }
2659
2660 setup_system_wide(argc);
2661
2662 /*
2663 * Display user/system times only for single
2664 * run and when there's specified tracee.
2665 */
2666 if ((stat_config.run_count == 1) && target__none(&target))
2667 stat_config.ru_display = true;
2668
2669 if (stat_config.run_count < 0) {
2670 pr_err("Run count must be a positive number\n");
2671 parse_options_usage(stat_usage, stat_options, "r", 1);
2672 goto out;
2673 } else if (stat_config.run_count == 0) {
2674 forever = true;
2675 stat_config.run_count = 1;
2676 }
2677
2678 if (stat_config.walltime_run_table) {
2679 stat_config.walltime_run = zalloc(stat_config.run_count * sizeof(stat_config.walltime_run[0]));
2680 if (!stat_config.walltime_run) {
2681 pr_err("failed to setup -r option");
2682 goto out;
2683 }
2684 }
2685
2686 if ((stat_config.aggr_mode == AGGR_THREAD) &&
2687 !target__has_task(&target)) {
2688 if (!target.system_wide || target.cpu_list) {
2689 fprintf(stderr, "The --per-thread option is only "
2690 "available when monitoring via -p -t -a "
2691 "options or only --per-thread.\n");
2692 parse_options_usage(NULL, stat_options, "p", 1);
2693 parse_options_usage(NULL, stat_options, "t", 1);
2694 goto out;
2695 }
2696 }
2697
2698 /*
2699 * no_aggr, cgroup are for system-wide only
2700 * --per-thread is aggregated per thread, we dont mix it with cpu mode
2701 */
2702 if (((stat_config.aggr_mode != AGGR_GLOBAL &&
2703 stat_config.aggr_mode != AGGR_THREAD) ||
2704 (nr_cgroups || stat_config.cgroup_list)) &&
2705 !target__has_cpu(&target)) {
2706 fprintf(stderr, "both cgroup and no-aggregation "
2707 "modes only available in system-wide mode\n");
2708
2709 parse_options_usage(stat_usage, stat_options, "G", 1);
2710 parse_options_usage(NULL, stat_options, "A", 1);
2711 parse_options_usage(NULL, stat_options, "a", 1);
2712 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0);
2713 goto out;
2714 }
2715
2716 if (stat_config.iostat_run) {
2717 status = iostat_prepare(evsel_list, &stat_config);
2718 if (status)
2719 goto out;
2720 if (iostat_mode == IOSTAT_LIST) {
2721 iostat_list(evsel_list, &stat_config);
2722 goto out;
2723 } else if (verbose > 0)
2724 iostat_list(evsel_list, &stat_config);
2725 if (iostat_mode == IOSTAT_RUN && !target__has_cpu(&target))
2726 target.system_wide = true;
2727 }
2728
2729 if ((stat_config.aggr_mode == AGGR_THREAD) && (target.system_wide))
2730 target.per_thread = true;
2731
2732 stat_config.system_wide = target.system_wide;
2733 if (target.cpu_list) {
2734 stat_config.user_requested_cpu_list = strdup(target.cpu_list);
2735 if (!stat_config.user_requested_cpu_list) {
2736 status = -ENOMEM;
2737 goto out;
2738 }
2739 }
2740
2741 /*
2742 * Metric parsing needs to be delayed as metrics may optimize events
2743 * knowing the target is system-wide.
2744 */
2745 if (metrics) {
2746 const char *pmu = parse_events_option_args.pmu_filter ?: "all";
2747 int ret = metricgroup__parse_groups(evsel_list, pmu, metrics,
2748 stat_config.metric_no_group,
2749 stat_config.metric_no_merge,
2750 stat_config.metric_no_threshold,
2751 stat_config.user_requested_cpu_list,
2752 stat_config.system_wide,
2753 stat_config.hardware_aware_grouping,
2754 &stat_config.metric_events);
2755
2756 zfree(&metrics);
2757 if (ret) {
2758 status = ret;
2759 goto out;
2760 }
2761 }
2762
2763 if (add_default_attributes())
2764 goto out;
2765
2766 if (stat_config.cgroup_list) {
2767 if (nr_cgroups > 0) {
2768 pr_err("--cgroup and --for-each-cgroup cannot be used together\n");
2769 parse_options_usage(stat_usage, stat_options, "G", 1);
2770 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0);
2771 goto out;
2772 }
2773
2774 if (evlist__expand_cgroup(evsel_list, stat_config.cgroup_list,
2775 &stat_config.metric_events, true) < 0) {
2776 parse_options_usage(stat_usage, stat_options,
2777 "for-each-cgroup", 0);
2778 goto out;
2779 }
2780 }
2781
2782 evlist__warn_user_requested_cpus(evsel_list, target.cpu_list);
2783
2784 if (evlist__create_maps(evsel_list, &target) < 0) {
2785 if (target__has_task(&target)) {
2786 pr_err("Problems finding threads of monitor\n");
2787 parse_options_usage(stat_usage, stat_options, "p", 1);
2788 parse_options_usage(NULL, stat_options, "t", 1);
2789 } else if (target__has_cpu(&target)) {
2790 perror("failed to parse CPUs map");
2791 parse_options_usage(stat_usage, stat_options, "C", 1);
2792 parse_options_usage(NULL, stat_options, "a", 1);
2793 }
2794 goto out;
2795 }
2796
2797 evlist__check_cpu_maps(evsel_list);
2798
2799 /*
2800 * Initialize thread_map with comm names,
2801 * so we could print it out on output.
2802 */
2803 if (stat_config.aggr_mode == AGGR_THREAD) {
2804 thread_map__read_comms(evsel_list->core.threads);
2805 }
2806
2807 if (stat_config.aggr_mode == AGGR_NODE)
2808 cpu__setup_cpunode_map();
2809
2810 if (stat_config.times && interval)
2811 interval_count = true;
2812 else if (stat_config.times && !interval) {
2813 pr_err("interval-count option should be used together with "
2814 "interval-print.\n");
2815 parse_options_usage(stat_usage, stat_options, "interval-count", 0);
2816 parse_options_usage(stat_usage, stat_options, "I", 1);
2817 goto out;
2818 }
2819
2820 if (timeout && timeout < 100) {
2821 if (timeout < 10) {
2822 pr_err("timeout must be >= 10ms.\n");
2823 parse_options_usage(stat_usage, stat_options, "timeout", 0);
2824 goto out;
2825 } else
2826 pr_warning("timeout < 100ms. "
2827 "The overhead percentage could be high in some cases. "
2828 "Please proceed with caution.\n");
2829 }
2830 if (timeout && interval) {
2831 pr_err("timeout option is not supported with interval-print.\n");
2832 parse_options_usage(stat_usage, stat_options, "timeout", 0);
2833 parse_options_usage(stat_usage, stat_options, "I", 1);
2834 goto out;
2835 }
2836
2837 if (perf_stat_init_aggr_mode())
2838 goto out;
2839
2840 if (evlist__alloc_stats(&stat_config, evsel_list, interval))
2841 goto out;
2842
2843 /*
2844 * Set sample_type to PERF_SAMPLE_IDENTIFIER, which should be harmless
2845 * while avoiding that older tools show confusing messages.
2846 *
2847 * However for pipe sessions we need to keep it zero,
2848 * because script's perf_evsel__check_attr is triggered
2849 * by attr->sample_type != 0, and we can't run it on
2850 * stat sessions.
2851 */
2852 stat_config.identifier = !(STAT_RECORD && perf_stat.data.is_pipe);
2853
2854 /*
2855 * We dont want to block the signals - that would cause
2856 * child tasks to inherit that and Ctrl-C would not work.
2857 * What we want is for Ctrl-C to work in the exec()-ed
2858 * task, but being ignored by perf stat itself:
2859 */
2860 atexit(sig_atexit);
2861 if (!forever)
2862 signal(SIGINT, skip_signal);
2863 signal(SIGCHLD, skip_signal);
2864 signal(SIGALRM, skip_signal);
2865 signal(SIGABRT, skip_signal);
2866
2867 if (evlist__initialize_ctlfd(evsel_list, stat_config.ctl_fd, stat_config.ctl_fd_ack))
2868 goto out;
2869
2870 /* Enable ignoring missing threads when -p option is defined. */
2871 evlist__first(evsel_list)->ignore_missing_thread = target.pid;
2872 status = 0;
2873 for (run_idx = 0; forever || run_idx < stat_config.run_count; run_idx++) {
2874 if (stat_config.run_count != 1 && verbose > 0)
2875 fprintf(output, "[ perf stat: executing run #%d ... ]\n",
2876 run_idx + 1);
2877
2878 if (run_idx != 0)
2879 evlist__reset_prev_raw_counts(evsel_list);
2880
2881 status = run_perf_stat(argc, argv, run_idx);
2882 if (forever && status != -1 && !interval) {
2883 print_counters(NULL, argc, argv);
2884 perf_stat__reset_stats();
2885 }
2886 }
2887
2888 if (!forever && status != -1 && (!interval || stat_config.summary)) {
2889 if (stat_config.run_count > 1)
2890 evlist__copy_res_stats(&stat_config, evsel_list);
2891 print_counters(NULL, argc, argv);
2892 }
2893
2894 evlist__finalize_ctlfd(evsel_list);
2895
2896 if (STAT_RECORD) {
2897 /*
2898 * We synthesize the kernel mmap record just so that older tools
2899 * don't emit warnings about not being able to resolve symbols
2900 * due to /proc/sys/kernel/kptr_restrict settings and instead provide
2901 * a saner message about no samples being in the perf.data file.
2902 *
2903 * This also serves to suppress a warning about f_header.data.size == 0
2904 * in header.c at the moment 'perf stat record' gets introduced, which
2905 * is not really needed once we start adding the stat specific PERF_RECORD_
2906 * records, but the need to suppress the kptr_restrict messages in older
2907 * tools remain -acme
2908 */
2909 int fd = perf_data__fd(&perf_stat.data);
2910
2911 err = perf_event__synthesize_kernel_mmap((void *)&perf_stat,
2912 process_synthesized_event,
2913 &perf_stat.session->machines.host);
2914 if (err) {
2915 pr_warning("Couldn't synthesize the kernel mmap record, harmless, "
2916 "older tools may produce warnings about this file\n.");
2917 }
2918
2919 if (!interval) {
2920 if (WRITE_STAT_ROUND_EVENT(walltime_nsecs_stats.max, FINAL))
2921 pr_err("failed to write stat round event\n");
2922 }
2923
2924 if (!perf_stat.data.is_pipe) {
2925 perf_stat.session->header.data_size += perf_stat.bytes_written;
2926 perf_session__write_header(perf_stat.session, evsel_list, fd, true);
2927 }
2928
2929 evlist__close(evsel_list);
2930 perf_session__delete(perf_stat.session);
2931 }
2932
2933 perf_stat__exit_aggr_mode();
2934 evlist__free_stats(evsel_list);
2935 out:
2936 if (stat_config.iostat_run)
2937 iostat_release(evsel_list);
2938
2939 zfree(&stat_config.walltime_run);
2940 zfree(&stat_config.user_requested_cpu_list);
2941
2942 if (smi_cost && smi_reset)
2943 sysfs__write_int(FREEZE_ON_SMI_PATH, 0);
2944
2945 evlist__delete(evsel_list);
2946
2947 metricgroup__rblist_exit(&stat_config.metric_events);
2948 evlist__close_control(stat_config.ctl_fd, stat_config.ctl_fd_ack, &stat_config.ctl_fd_close);
2949
2950 return status;
2951 }
2952