1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * builtin-stat.c 4 * 5 * Builtin stat command: Give a precise performance counters summary 6 * overview about any workload, CPU or specific PID. 7 * 8 * Sample output: 9 10 $ perf stat ./hackbench 10 11 12 Time: 0.118 13 14 Performance counter stats for './hackbench 10': 15 16 1708.761321 task-clock # 11.037 CPUs utilized 17 41,190 context-switches # 0.024 M/sec 18 6,735 CPU-migrations # 0.004 M/sec 19 17,318 page-faults # 0.010 M/sec 20 5,205,202,243 cycles # 3.046 GHz 21 3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle 22 1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle 23 2,603,501,247 instructions # 0.50 insns per cycle 24 # 1.48 stalled cycles per insn 25 484,357,498 branches # 283.455 M/sec 26 6,388,934 branch-misses # 1.32% of all branches 27 28 0.154822978 seconds time elapsed 29 30 * 31 * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com> 32 * 33 * Improvements and fixes by: 34 * 35 * Arjan van de Ven <arjan@linux.intel.com> 36 * Yanmin Zhang <yanmin.zhang@intel.com> 37 * Wu Fengguang <fengguang.wu@intel.com> 38 * Mike Galbraith <efault@gmx.de> 39 * Paul Mackerras <paulus@samba.org> 40 * Jaswinder Singh Rajput <jaswinder@kernel.org> 41 */ 42 43 #include "builtin.h" 44 #include "util/cgroup.h" 45 #include <subcmd/parse-options.h> 46 #include "util/parse-events.h" 47 #include "util/pmus.h" 48 #include "util/pmu.h" 49 #include "util/tool_pmu.h" 50 #include "util/event.h" 51 #include "util/evlist.h" 52 #include "util/evsel.h" 53 #include "util/debug.h" 54 #include "util/color.h" 55 #include "util/stat.h" 56 #include "util/header.h" 57 #include "util/cpumap.h" 58 #include "util/thread_map.h" 59 #include "util/counts.h" 60 #include "util/topdown.h" 61 #include "util/session.h" 62 #include "util/tool.h" 63 #include "util/string2.h" 64 #include "util/metricgroup.h" 65 #include "util/synthetic-events.h" 66 #include "util/target.h" 67 #include "util/time-utils.h" 68 #include "util/top.h" 69 #include "util/affinity.h" 70 #include "util/pfm.h" 71 #include "util/bpf_counter.h" 72 #include "util/iostat.h" 73 #include "util/util.h" 74 #include "util/intel-tpebs.h" 75 #include "asm/bug.h" 76 77 #include <linux/time64.h> 78 #include <linux/zalloc.h> 79 #include <api/fs/fs.h> 80 #include <errno.h> 81 #include <signal.h> 82 #include <stdlib.h> 83 #include <sys/prctl.h> 84 #include <inttypes.h> 85 #include <locale.h> 86 #include <math.h> 87 #include <sys/types.h> 88 #include <sys/stat.h> 89 #include <sys/wait.h> 90 #include <unistd.h> 91 #include <sys/time.h> 92 #include <sys/resource.h> 93 #include <linux/err.h> 94 95 #include <linux/ctype.h> 96 #include <perf/evlist.h> 97 #include <internal/threadmap.h> 98 99 #define DEFAULT_SEPARATOR " " 100 #define FREEZE_ON_SMI_PATH "bus/event_source/devices/cpu/freeze_on_smi" 101 102 static void print_counters(struct timespec *ts, int argc, const char **argv); 103 104 static struct evlist *evsel_list; 105 static struct parse_events_option_args parse_events_option_args = { 106 .evlistp = &evsel_list, 107 }; 108 109 static bool all_counters_use_bpf = true; 110 111 static struct target target = { 112 .uid = UINT_MAX, 113 }; 114 115 static volatile sig_atomic_t child_pid = -1; 116 static int detailed_run = 0; 117 static bool transaction_run; 118 static bool topdown_run = false; 119 static bool smi_cost = false; 120 static bool smi_reset = false; 121 static int big_num_opt = -1; 122 static const char *pre_cmd = NULL; 123 static const char *post_cmd = NULL; 124 static bool sync_run = false; 125 static bool forever = false; 126 static bool force_metric_only = false; 127 static struct timespec ref_time; 128 static bool append_file; 129 static bool interval_count; 130 static const char *output_name; 131 static int output_fd; 132 static char *metrics; 133 134 struct perf_stat { 135 bool record; 136 struct perf_data data; 137 struct perf_session *session; 138 u64 bytes_written; 139 struct perf_tool tool; 140 bool maps_allocated; 141 struct perf_cpu_map *cpus; 142 struct perf_thread_map *threads; 143 enum aggr_mode aggr_mode; 144 u32 aggr_level; 145 }; 146 147 static struct perf_stat perf_stat; 148 #define STAT_RECORD perf_stat.record 149 150 static volatile sig_atomic_t done = 0; 151 152 /* Options set from the command line. */ 153 struct opt_aggr_mode { 154 bool node, socket, die, cluster, cache, core, thread, no_aggr; 155 }; 156 157 /* Turn command line option into most generic aggregation mode setting. */ 158 static enum aggr_mode opt_aggr_mode_to_aggr_mode(struct opt_aggr_mode *opt_mode) 159 { 160 enum aggr_mode mode = AGGR_GLOBAL; 161 162 if (opt_mode->node) 163 mode = AGGR_NODE; 164 if (opt_mode->socket) 165 mode = AGGR_SOCKET; 166 if (opt_mode->die) 167 mode = AGGR_DIE; 168 if (opt_mode->cluster) 169 mode = AGGR_CLUSTER; 170 if (opt_mode->cache) 171 mode = AGGR_CACHE; 172 if (opt_mode->core) 173 mode = AGGR_CORE; 174 if (opt_mode->thread) 175 mode = AGGR_THREAD; 176 if (opt_mode->no_aggr) 177 mode = AGGR_NONE; 178 return mode; 179 } 180 181 static void evlist__check_cpu_maps(struct evlist *evlist) 182 { 183 struct evsel *evsel, *warned_leader = NULL; 184 185 evlist__for_each_entry(evlist, evsel) { 186 struct evsel *leader = evsel__leader(evsel); 187 188 /* Check that leader matches cpus with each member. */ 189 if (leader == evsel) 190 continue; 191 if (perf_cpu_map__equal(leader->core.cpus, evsel->core.cpus)) 192 continue; 193 194 /* If there's mismatch disable the group and warn user. */ 195 if (warned_leader != leader) { 196 char buf[200]; 197 198 pr_warning("WARNING: grouped events cpus do not match.\n" 199 "Events with CPUs not matching the leader will " 200 "be removed from the group.\n"); 201 evsel__group_desc(leader, buf, sizeof(buf)); 202 pr_warning(" %s\n", buf); 203 warned_leader = leader; 204 } 205 if (verbose > 0) { 206 char buf[200]; 207 208 cpu_map__snprint(leader->core.cpus, buf, sizeof(buf)); 209 pr_warning(" %s: %s\n", leader->name, buf); 210 cpu_map__snprint(evsel->core.cpus, buf, sizeof(buf)); 211 pr_warning(" %s: %s\n", evsel->name, buf); 212 } 213 214 evsel__remove_from_group(evsel, leader); 215 } 216 } 217 218 static inline void diff_timespec(struct timespec *r, struct timespec *a, 219 struct timespec *b) 220 { 221 r->tv_sec = a->tv_sec - b->tv_sec; 222 if (a->tv_nsec < b->tv_nsec) { 223 r->tv_nsec = a->tv_nsec + NSEC_PER_SEC - b->tv_nsec; 224 r->tv_sec--; 225 } else { 226 r->tv_nsec = a->tv_nsec - b->tv_nsec ; 227 } 228 } 229 230 static void perf_stat__reset_stats(void) 231 { 232 evlist__reset_stats(evsel_list); 233 perf_stat__reset_shadow_stats(); 234 } 235 236 static int process_synthesized_event(const struct perf_tool *tool __maybe_unused, 237 union perf_event *event, 238 struct perf_sample *sample __maybe_unused, 239 struct machine *machine __maybe_unused) 240 { 241 if (perf_data__write(&perf_stat.data, event, event->header.size) < 0) { 242 pr_err("failed to write perf data, error: %m\n"); 243 return -1; 244 } 245 246 perf_stat.bytes_written += event->header.size; 247 return 0; 248 } 249 250 static int write_stat_round_event(u64 tm, u64 type) 251 { 252 return perf_event__synthesize_stat_round(NULL, tm, type, 253 process_synthesized_event, 254 NULL); 255 } 256 257 #define WRITE_STAT_ROUND_EVENT(time, interval) \ 258 write_stat_round_event(time, PERF_STAT_ROUND_TYPE__ ## interval) 259 260 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y) 261 262 static int evsel__write_stat_event(struct evsel *counter, int cpu_map_idx, u32 thread, 263 struct perf_counts_values *count) 264 { 265 struct perf_sample_id *sid = SID(counter, cpu_map_idx, thread); 266 struct perf_cpu cpu = perf_cpu_map__cpu(evsel__cpus(counter), cpu_map_idx); 267 268 return perf_event__synthesize_stat(NULL, cpu, thread, sid->id, count, 269 process_synthesized_event, NULL); 270 } 271 272 static int read_single_counter(struct evsel *counter, int cpu_map_idx, int thread) 273 { 274 int err = evsel__read_counter(counter, cpu_map_idx, thread); 275 276 /* 277 * Reading user and system time will fail when the process 278 * terminates. Use the wait4 values in that case. 279 */ 280 if (err && cpu_map_idx == 0 && 281 (evsel__tool_event(counter) == TOOL_PMU__EVENT_USER_TIME || 282 evsel__tool_event(counter) == TOOL_PMU__EVENT_SYSTEM_TIME)) { 283 u64 val, *start_time; 284 struct perf_counts_values *count = 285 perf_counts(counter->counts, cpu_map_idx, thread); 286 287 start_time = xyarray__entry(counter->start_times, cpu_map_idx, thread); 288 if (evsel__tool_event(counter) == TOOL_PMU__EVENT_USER_TIME) 289 val = ru_stats.ru_utime_usec_stat.mean; 290 else 291 val = ru_stats.ru_stime_usec_stat.mean; 292 count->ena = count->run = *start_time + val; 293 count->val = val; 294 return 0; 295 } 296 return err; 297 } 298 299 /* 300 * Read out the results of a single counter: 301 * do not aggregate counts across CPUs in system-wide mode 302 */ 303 static int read_counter_cpu(struct evsel *counter, int cpu_map_idx) 304 { 305 int nthreads = perf_thread_map__nr(evsel_list->core.threads); 306 int thread; 307 308 if (!counter->supported) 309 return -ENOENT; 310 311 for (thread = 0; thread < nthreads; thread++) { 312 struct perf_counts_values *count; 313 314 count = perf_counts(counter->counts, cpu_map_idx, thread); 315 316 /* 317 * The leader's group read loads data into its group members 318 * (via evsel__read_counter()) and sets their count->loaded. 319 */ 320 if (!perf_counts__is_loaded(counter->counts, cpu_map_idx, thread) && 321 read_single_counter(counter, cpu_map_idx, thread)) { 322 counter->counts->scaled = -1; 323 perf_counts(counter->counts, cpu_map_idx, thread)->ena = 0; 324 perf_counts(counter->counts, cpu_map_idx, thread)->run = 0; 325 return -1; 326 } 327 328 perf_counts__set_loaded(counter->counts, cpu_map_idx, thread, false); 329 330 if (STAT_RECORD) { 331 if (evsel__write_stat_event(counter, cpu_map_idx, thread, count)) { 332 pr_err("failed to write stat event\n"); 333 return -1; 334 } 335 } 336 337 if (verbose > 1) { 338 fprintf(stat_config.output, 339 "%s: %d: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", 340 evsel__name(counter), 341 perf_cpu_map__cpu(evsel__cpus(counter), 342 cpu_map_idx).cpu, 343 count->val, count->ena, count->run); 344 } 345 } 346 347 return 0; 348 } 349 350 static int read_affinity_counters(void) 351 { 352 struct evlist_cpu_iterator evlist_cpu_itr; 353 struct affinity saved_affinity, *affinity; 354 355 if (all_counters_use_bpf) 356 return 0; 357 358 if (!target__has_cpu(&target) || target__has_per_thread(&target)) 359 affinity = NULL; 360 else if (affinity__setup(&saved_affinity) < 0) 361 return -1; 362 else 363 affinity = &saved_affinity; 364 365 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 366 struct evsel *counter = evlist_cpu_itr.evsel; 367 368 if (evsel__is_bpf(counter)) 369 continue; 370 371 if (!counter->err) 372 counter->err = read_counter_cpu(counter, evlist_cpu_itr.cpu_map_idx); 373 } 374 if (affinity) 375 affinity__cleanup(&saved_affinity); 376 377 return 0; 378 } 379 380 static int read_bpf_map_counters(void) 381 { 382 struct evsel *counter; 383 int err; 384 385 evlist__for_each_entry(evsel_list, counter) { 386 if (!evsel__is_bpf(counter)) 387 continue; 388 389 err = bpf_counter__read(counter); 390 if (err) 391 return err; 392 } 393 return 0; 394 } 395 396 static int read_counters(void) 397 { 398 if (!stat_config.stop_read_counter) { 399 if (read_bpf_map_counters() || 400 read_affinity_counters()) 401 return -1; 402 } 403 return 0; 404 } 405 406 static void process_counters(void) 407 { 408 struct evsel *counter; 409 410 evlist__for_each_entry(evsel_list, counter) { 411 if (counter->err) 412 pr_debug("failed to read counter %s\n", counter->name); 413 if (counter->err == 0 && perf_stat_process_counter(&stat_config, counter)) 414 pr_warning("failed to process counter %s\n", counter->name); 415 counter->err = 0; 416 } 417 418 perf_stat_merge_counters(&stat_config, evsel_list); 419 perf_stat_process_percore(&stat_config, evsel_list); 420 } 421 422 static void process_interval(void) 423 { 424 struct timespec ts, rs; 425 426 clock_gettime(CLOCK_MONOTONIC, &ts); 427 diff_timespec(&rs, &ts, &ref_time); 428 429 evlist__reset_aggr_stats(evsel_list); 430 431 if (read_counters() == 0) 432 process_counters(); 433 434 if (STAT_RECORD) { 435 if (WRITE_STAT_ROUND_EVENT(rs.tv_sec * NSEC_PER_SEC + rs.tv_nsec, INTERVAL)) 436 pr_err("failed to write stat round event\n"); 437 } 438 439 init_stats(&walltime_nsecs_stats); 440 update_stats(&walltime_nsecs_stats, stat_config.interval * 1000000ULL); 441 print_counters(&rs, 0, NULL); 442 } 443 444 static bool handle_interval(unsigned int interval, int *times) 445 { 446 if (interval) { 447 process_interval(); 448 if (interval_count && !(--(*times))) 449 return true; 450 } 451 return false; 452 } 453 454 static int enable_counters(void) 455 { 456 struct evsel *evsel; 457 int err; 458 459 evlist__for_each_entry(evsel_list, evsel) { 460 if (!evsel__is_bpf(evsel)) 461 continue; 462 463 err = bpf_counter__enable(evsel); 464 if (err) 465 return err; 466 } 467 468 if (!target__enable_on_exec(&target)) { 469 if (!all_counters_use_bpf) 470 evlist__enable(evsel_list); 471 } 472 return 0; 473 } 474 475 static void disable_counters(void) 476 { 477 struct evsel *counter; 478 479 /* 480 * If we don't have tracee (attaching to task or cpu), counters may 481 * still be running. To get accurate group ratios, we must stop groups 482 * from counting before reading their constituent counters. 483 */ 484 if (!target__none(&target)) { 485 evlist__for_each_entry(evsel_list, counter) 486 bpf_counter__disable(counter); 487 if (!all_counters_use_bpf) 488 evlist__disable(evsel_list); 489 } 490 } 491 492 static volatile sig_atomic_t workload_exec_errno; 493 494 /* 495 * evlist__prepare_workload will send a SIGUSR1 496 * if the fork fails, since we asked by setting its 497 * want_signal to true. 498 */ 499 static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info, 500 void *ucontext __maybe_unused) 501 { 502 workload_exec_errno = info->si_value.sival_int; 503 } 504 505 static bool evsel__should_store_id(struct evsel *counter) 506 { 507 return STAT_RECORD || counter->core.attr.read_format & PERF_FORMAT_ID; 508 } 509 510 static bool is_target_alive(struct target *_target, 511 struct perf_thread_map *threads) 512 { 513 struct stat st; 514 int i; 515 516 if (!target__has_task(_target)) 517 return true; 518 519 for (i = 0; i < threads->nr; i++) { 520 char path[PATH_MAX]; 521 522 scnprintf(path, PATH_MAX, "%s/%d", procfs__mountpoint(), 523 threads->map[i].pid); 524 525 if (!stat(path, &st)) 526 return true; 527 } 528 529 return false; 530 } 531 532 static void process_evlist(struct evlist *evlist, unsigned int interval) 533 { 534 enum evlist_ctl_cmd cmd = EVLIST_CTL_CMD_UNSUPPORTED; 535 536 if (evlist__ctlfd_process(evlist, &cmd) > 0) { 537 switch (cmd) { 538 case EVLIST_CTL_CMD_ENABLE: 539 fallthrough; 540 case EVLIST_CTL_CMD_DISABLE: 541 if (interval) 542 process_interval(); 543 break; 544 case EVLIST_CTL_CMD_SNAPSHOT: 545 case EVLIST_CTL_CMD_ACK: 546 case EVLIST_CTL_CMD_UNSUPPORTED: 547 case EVLIST_CTL_CMD_EVLIST: 548 case EVLIST_CTL_CMD_STOP: 549 case EVLIST_CTL_CMD_PING: 550 default: 551 break; 552 } 553 } 554 } 555 556 static void compute_tts(struct timespec *time_start, struct timespec *time_stop, 557 int *time_to_sleep) 558 { 559 int tts = *time_to_sleep; 560 struct timespec time_diff; 561 562 diff_timespec(&time_diff, time_stop, time_start); 563 564 tts -= time_diff.tv_sec * MSEC_PER_SEC + 565 time_diff.tv_nsec / NSEC_PER_MSEC; 566 567 if (tts < 0) 568 tts = 0; 569 570 *time_to_sleep = tts; 571 } 572 573 static int dispatch_events(bool forks, int timeout, int interval, int *times) 574 { 575 int child_exited = 0, status = 0; 576 int time_to_sleep, sleep_time; 577 struct timespec time_start, time_stop; 578 579 if (interval) 580 sleep_time = interval; 581 else if (timeout) 582 sleep_time = timeout; 583 else 584 sleep_time = 1000; 585 586 time_to_sleep = sleep_time; 587 588 while (!done) { 589 if (forks) 590 child_exited = waitpid(child_pid, &status, WNOHANG); 591 else 592 child_exited = !is_target_alive(&target, evsel_list->core.threads) ? 1 : 0; 593 594 if (child_exited) 595 break; 596 597 clock_gettime(CLOCK_MONOTONIC, &time_start); 598 if (!(evlist__poll(evsel_list, time_to_sleep) > 0)) { /* poll timeout or EINTR */ 599 if (timeout || handle_interval(interval, times)) 600 break; 601 time_to_sleep = sleep_time; 602 } else { /* fd revent */ 603 process_evlist(evsel_list, interval); 604 clock_gettime(CLOCK_MONOTONIC, &time_stop); 605 compute_tts(&time_start, &time_stop, &time_to_sleep); 606 } 607 } 608 609 return status; 610 } 611 612 enum counter_recovery { 613 COUNTER_SKIP, 614 COUNTER_RETRY, 615 COUNTER_FATAL, 616 }; 617 618 static enum counter_recovery stat_handle_error(struct evsel *counter) 619 { 620 char msg[BUFSIZ]; 621 /* 622 * PPC returns ENXIO for HW counters until 2.6.37 623 * (behavior changed with commit b0a873e). 624 */ 625 if (errno == EINVAL || errno == ENOSYS || 626 errno == ENOENT || errno == ENXIO) { 627 if (verbose > 0) 628 ui__warning("%s event is not supported by the kernel.\n", 629 evsel__name(counter)); 630 counter->supported = false; 631 /* 632 * errored is a sticky flag that means one of the counter's 633 * cpu event had a problem and needs to be reexamined. 634 */ 635 counter->errored = true; 636 637 if ((evsel__leader(counter) != counter) || 638 !(counter->core.leader->nr_members > 1)) 639 return COUNTER_SKIP; 640 } else if (evsel__fallback(counter, &target, errno, msg, sizeof(msg))) { 641 if (verbose > 0) 642 ui__warning("%s\n", msg); 643 return COUNTER_RETRY; 644 } else if (target__has_per_thread(&target) && errno != EOPNOTSUPP && 645 evsel_list->core.threads && 646 evsel_list->core.threads->err_thread != -1) { 647 /* 648 * For global --per-thread case, skip current 649 * error thread. 650 */ 651 if (!thread_map__remove(evsel_list->core.threads, 652 evsel_list->core.threads->err_thread)) { 653 evsel_list->core.threads->err_thread = -1; 654 return COUNTER_RETRY; 655 } 656 } else if (counter->skippable) { 657 if (verbose > 0) 658 ui__warning("skipping event %s that kernel failed to open .\n", 659 evsel__name(counter)); 660 counter->supported = false; 661 counter->errored = true; 662 return COUNTER_SKIP; 663 } 664 665 if (errno == EOPNOTSUPP) { 666 if (verbose > 0) { 667 ui__warning("%s event is not supported by the kernel.\n", 668 evsel__name(counter)); 669 } 670 counter->supported = false; 671 counter->errored = true; 672 673 if ((evsel__leader(counter) != counter) || 674 !(counter->core.leader->nr_members > 1)) 675 return COUNTER_SKIP; 676 } 677 678 evsel__open_strerror(counter, &target, errno, msg, sizeof(msg)); 679 ui__error("%s\n", msg); 680 681 if (child_pid != -1) 682 kill(child_pid, SIGTERM); 683 684 return COUNTER_FATAL; 685 } 686 687 static int __run_perf_stat(int argc, const char **argv, int run_idx) 688 { 689 int interval = stat_config.interval; 690 int times = stat_config.times; 691 int timeout = stat_config.timeout; 692 char msg[BUFSIZ]; 693 unsigned long long t0, t1; 694 struct evsel *counter; 695 size_t l; 696 int status = 0; 697 const bool forks = (argc > 0); 698 bool is_pipe = STAT_RECORD ? perf_stat.data.is_pipe : false; 699 struct evlist_cpu_iterator evlist_cpu_itr; 700 struct affinity saved_affinity, *affinity = NULL; 701 int err; 702 bool second_pass = false; 703 704 if (forks) { 705 if (evlist__prepare_workload(evsel_list, &target, argv, is_pipe, workload_exec_failed_signal) < 0) { 706 perror("failed to prepare workload"); 707 return -1; 708 } 709 child_pid = evsel_list->workload.pid; 710 } 711 712 if (!cpu_map__is_dummy(evsel_list->core.user_requested_cpus)) { 713 if (affinity__setup(&saved_affinity) < 0) { 714 err = -1; 715 goto err_out; 716 } 717 affinity = &saved_affinity; 718 } 719 720 evlist__for_each_entry(evsel_list, counter) { 721 counter->reset_group = false; 722 if (bpf_counter__load(counter, &target)) { 723 err = -1; 724 goto err_out; 725 } 726 if (!(evsel__is_bperf(counter))) 727 all_counters_use_bpf = false; 728 } 729 730 evlist__reset_aggr_stats(evsel_list); 731 732 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 733 counter = evlist_cpu_itr.evsel; 734 735 /* 736 * bperf calls evsel__open_per_cpu() in bperf__load(), so 737 * no need to call it again here. 738 */ 739 if (target.use_bpf) 740 break; 741 742 if (counter->reset_group || counter->errored) 743 continue; 744 if (evsel__is_bperf(counter)) 745 continue; 746 try_again: 747 if (create_perf_stat_counter(counter, &stat_config, &target, 748 evlist_cpu_itr.cpu_map_idx) < 0) { 749 750 /* 751 * Weak group failed. We cannot just undo this here 752 * because earlier CPUs might be in group mode, and the kernel 753 * doesn't support mixing group and non group reads. Defer 754 * it to later. 755 * Don't close here because we're in the wrong affinity. 756 */ 757 if ((errno == EINVAL || errno == EBADF) && 758 evsel__leader(counter) != counter && 759 counter->weak_group) { 760 evlist__reset_weak_group(evsel_list, counter, false); 761 assert(counter->reset_group); 762 second_pass = true; 763 continue; 764 } 765 766 switch (stat_handle_error(counter)) { 767 case COUNTER_FATAL: 768 err = -1; 769 goto err_out; 770 case COUNTER_RETRY: 771 goto try_again; 772 case COUNTER_SKIP: 773 continue; 774 default: 775 break; 776 } 777 778 } 779 counter->supported = true; 780 } 781 782 if (second_pass) { 783 /* 784 * Now redo all the weak group after closing them, 785 * and also close errored counters. 786 */ 787 788 /* First close errored or weak retry */ 789 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 790 counter = evlist_cpu_itr.evsel; 791 792 if (!counter->reset_group && !counter->errored) 793 continue; 794 795 perf_evsel__close_cpu(&counter->core, evlist_cpu_itr.cpu_map_idx); 796 } 797 /* Now reopen weak */ 798 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 799 counter = evlist_cpu_itr.evsel; 800 801 if (!counter->reset_group) 802 continue; 803 try_again_reset: 804 pr_debug2("reopening weak %s\n", evsel__name(counter)); 805 if (create_perf_stat_counter(counter, &stat_config, &target, 806 evlist_cpu_itr.cpu_map_idx) < 0) { 807 808 switch (stat_handle_error(counter)) { 809 case COUNTER_FATAL: 810 err = -1; 811 goto err_out; 812 case COUNTER_RETRY: 813 goto try_again_reset; 814 case COUNTER_SKIP: 815 continue; 816 default: 817 break; 818 } 819 } 820 counter->supported = true; 821 } 822 } 823 affinity__cleanup(affinity); 824 affinity = NULL; 825 826 evlist__for_each_entry(evsel_list, counter) { 827 if (!counter->supported) { 828 perf_evsel__free_fd(&counter->core); 829 continue; 830 } 831 832 l = strlen(counter->unit); 833 if (l > stat_config.unit_width) 834 stat_config.unit_width = l; 835 836 if (evsel__should_store_id(counter) && 837 evsel__store_ids(counter, evsel_list)) { 838 err = -1; 839 goto err_out; 840 } 841 } 842 843 if (evlist__apply_filters(evsel_list, &counter, &target)) { 844 pr_err("failed to set filter \"%s\" on event %s with %d (%s)\n", 845 counter->filter, evsel__name(counter), errno, 846 str_error_r(errno, msg, sizeof(msg))); 847 return -1; 848 } 849 850 if (STAT_RECORD) { 851 int fd = perf_data__fd(&perf_stat.data); 852 853 if (is_pipe) { 854 err = perf_header__write_pipe(perf_data__fd(&perf_stat.data)); 855 } else { 856 err = perf_session__write_header(perf_stat.session, evsel_list, 857 fd, false); 858 } 859 860 if (err < 0) 861 goto err_out; 862 863 err = perf_event__synthesize_stat_events(&stat_config, NULL, evsel_list, 864 process_synthesized_event, is_pipe); 865 if (err < 0) 866 goto err_out; 867 868 } 869 870 if (target.initial_delay) { 871 pr_info(EVLIST_DISABLED_MSG); 872 } else { 873 err = enable_counters(); 874 if (err) { 875 err = -1; 876 goto err_out; 877 } 878 } 879 880 /* Exec the command, if any */ 881 if (forks) 882 evlist__start_workload(evsel_list); 883 884 if (target.initial_delay > 0) { 885 usleep(target.initial_delay * USEC_PER_MSEC); 886 err = enable_counters(); 887 if (err) { 888 err = -1; 889 goto err_out; 890 } 891 892 pr_info(EVLIST_ENABLED_MSG); 893 } 894 895 t0 = rdclock(); 896 clock_gettime(CLOCK_MONOTONIC, &ref_time); 897 898 if (forks) { 899 if (interval || timeout || evlist__ctlfd_initialized(evsel_list)) 900 status = dispatch_events(forks, timeout, interval, ×); 901 if (child_pid != -1) { 902 if (timeout) 903 kill(child_pid, SIGTERM); 904 wait4(child_pid, &status, 0, &stat_config.ru_data); 905 } 906 907 if (workload_exec_errno) { 908 const char *emsg = str_error_r(workload_exec_errno, msg, sizeof(msg)); 909 pr_err("Workload failed: %s\n", emsg); 910 err = -1; 911 goto err_out; 912 } 913 914 if (WIFSIGNALED(status)) 915 psignal(WTERMSIG(status), argv[0]); 916 } else { 917 status = dispatch_events(forks, timeout, interval, ×); 918 } 919 920 disable_counters(); 921 922 t1 = rdclock(); 923 924 if (stat_config.walltime_run_table) 925 stat_config.walltime_run[run_idx] = t1 - t0; 926 927 if (interval && stat_config.summary) { 928 stat_config.interval = 0; 929 stat_config.stop_read_counter = true; 930 init_stats(&walltime_nsecs_stats); 931 update_stats(&walltime_nsecs_stats, t1 - t0); 932 933 evlist__copy_prev_raw_counts(evsel_list); 934 evlist__reset_prev_raw_counts(evsel_list); 935 evlist__reset_aggr_stats(evsel_list); 936 } else { 937 update_stats(&walltime_nsecs_stats, t1 - t0); 938 update_rusage_stats(&ru_stats, &stat_config.ru_data); 939 } 940 941 /* 942 * Closing a group leader splits the group, and as we only disable 943 * group leaders, results in remaining events becoming enabled. To 944 * avoid arbitrary skew, we must read all counters before closing any 945 * group leaders. 946 */ 947 if (read_counters() == 0) 948 process_counters(); 949 950 /* 951 * We need to keep evsel_list alive, because it's processed 952 * later the evsel_list will be closed after. 953 */ 954 if (!STAT_RECORD) 955 evlist__close(evsel_list); 956 957 return WEXITSTATUS(status); 958 959 err_out: 960 if (forks) 961 evlist__cancel_workload(evsel_list); 962 963 affinity__cleanup(affinity); 964 return err; 965 } 966 967 /* 968 * Returns -1 for fatal errors which signifies to not continue 969 * when in repeat mode. 970 * 971 * Returns < -1 error codes when stat record is used. These 972 * result in the stat information being displayed, but writing 973 * to the file fails and is non fatal. 974 */ 975 static int run_perf_stat(int argc, const char **argv, int run_idx) 976 { 977 int ret; 978 979 if (pre_cmd) { 980 ret = system(pre_cmd); 981 if (ret) 982 return ret; 983 } 984 985 if (sync_run) 986 sync(); 987 988 ret = __run_perf_stat(argc, argv, run_idx); 989 if (ret) 990 return ret; 991 992 if (post_cmd) { 993 ret = system(post_cmd); 994 if (ret) 995 return ret; 996 } 997 998 return ret; 999 } 1000 1001 static void print_counters(struct timespec *ts, int argc, const char **argv) 1002 { 1003 /* Do not print anything if we record to the pipe. */ 1004 if (STAT_RECORD && perf_stat.data.is_pipe) 1005 return; 1006 if (quiet) 1007 return; 1008 1009 evlist__print_counters(evsel_list, &stat_config, &target, ts, argc, argv); 1010 } 1011 1012 static volatile sig_atomic_t signr = -1; 1013 1014 static void skip_signal(int signo) 1015 { 1016 if ((child_pid == -1) || stat_config.interval) 1017 done = 1; 1018 1019 signr = signo; 1020 /* 1021 * render child_pid harmless 1022 * won't send SIGTERM to a random 1023 * process in case of race condition 1024 * and fast PID recycling 1025 */ 1026 child_pid = -1; 1027 } 1028 1029 static void sig_atexit(void) 1030 { 1031 sigset_t set, oset; 1032 1033 /* 1034 * avoid race condition with SIGCHLD handler 1035 * in skip_signal() which is modifying child_pid 1036 * goal is to avoid send SIGTERM to a random 1037 * process 1038 */ 1039 sigemptyset(&set); 1040 sigaddset(&set, SIGCHLD); 1041 sigprocmask(SIG_BLOCK, &set, &oset); 1042 1043 if (child_pid != -1) 1044 kill(child_pid, SIGTERM); 1045 1046 sigprocmask(SIG_SETMASK, &oset, NULL); 1047 1048 if (signr == -1) 1049 return; 1050 1051 signal(signr, SIG_DFL); 1052 kill(getpid(), signr); 1053 } 1054 1055 static int stat__set_big_num(const struct option *opt __maybe_unused, 1056 const char *s __maybe_unused, int unset) 1057 { 1058 big_num_opt = unset ? 0 : 1; 1059 perf_stat__set_big_num(!unset); 1060 return 0; 1061 } 1062 1063 static int enable_metric_only(const struct option *opt __maybe_unused, 1064 const char *s __maybe_unused, int unset) 1065 { 1066 force_metric_only = true; 1067 stat_config.metric_only = !unset; 1068 return 0; 1069 } 1070 1071 static int append_metric_groups(const struct option *opt __maybe_unused, 1072 const char *str, 1073 int unset __maybe_unused) 1074 { 1075 if (metrics) { 1076 char *tmp; 1077 1078 if (asprintf(&tmp, "%s,%s", metrics, str) < 0) 1079 return -ENOMEM; 1080 free(metrics); 1081 metrics = tmp; 1082 } else { 1083 metrics = strdup(str); 1084 if (!metrics) 1085 return -ENOMEM; 1086 } 1087 return 0; 1088 } 1089 1090 static int parse_control_option(const struct option *opt, 1091 const char *str, 1092 int unset __maybe_unused) 1093 { 1094 struct perf_stat_config *config = opt->value; 1095 1096 return evlist__parse_control(str, &config->ctl_fd, &config->ctl_fd_ack, &config->ctl_fd_close); 1097 } 1098 1099 static int parse_stat_cgroups(const struct option *opt, 1100 const char *str, int unset) 1101 { 1102 if (stat_config.cgroup_list) { 1103 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 1104 return -1; 1105 } 1106 1107 return parse_cgroups(opt, str, unset); 1108 } 1109 1110 static int parse_cputype(const struct option *opt, 1111 const char *str, 1112 int unset __maybe_unused) 1113 { 1114 const struct perf_pmu *pmu; 1115 struct evlist *evlist = *(struct evlist **)opt->value; 1116 1117 if (!list_empty(&evlist->core.entries)) { 1118 fprintf(stderr, "Must define cputype before events/metrics\n"); 1119 return -1; 1120 } 1121 1122 pmu = perf_pmus__pmu_for_pmu_filter(str); 1123 if (!pmu) { 1124 fprintf(stderr, "--cputype %s is not supported!\n", str); 1125 return -1; 1126 } 1127 parse_events_option_args.pmu_filter = pmu->name; 1128 1129 return 0; 1130 } 1131 1132 static int parse_cache_level(const struct option *opt, 1133 const char *str, 1134 int unset __maybe_unused) 1135 { 1136 int level; 1137 struct opt_aggr_mode *opt_aggr_mode = (struct opt_aggr_mode *)opt->value; 1138 u32 *aggr_level = (u32 *)opt->data; 1139 1140 /* 1141 * If no string is specified, aggregate based on the topology of 1142 * Last Level Cache (LLC). Since the LLC level can change from 1143 * architecture to architecture, set level greater than 1144 * MAX_CACHE_LVL which will be interpreted as LLC. 1145 */ 1146 if (str == NULL) { 1147 level = MAX_CACHE_LVL + 1; 1148 goto out; 1149 } 1150 1151 /* 1152 * The format to specify cache level is LX or lX where X is the 1153 * cache level. 1154 */ 1155 if (strlen(str) != 2 || (str[0] != 'l' && str[0] != 'L')) { 1156 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1157 MAX_CACHE_LVL, 1158 MAX_CACHE_LVL); 1159 return -EINVAL; 1160 } 1161 1162 level = atoi(&str[1]); 1163 if (level < 1) { 1164 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1165 MAX_CACHE_LVL, 1166 MAX_CACHE_LVL); 1167 return -EINVAL; 1168 } 1169 1170 if (level > MAX_CACHE_LVL) { 1171 pr_err("perf only supports max cache level of %d.\n" 1172 "Consider increasing MAX_CACHE_LVL\n", MAX_CACHE_LVL); 1173 return -EINVAL; 1174 } 1175 out: 1176 opt_aggr_mode->cache = true; 1177 *aggr_level = level; 1178 return 0; 1179 } 1180 1181 /** 1182 * Calculate the cache instance ID from the map in 1183 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1184 * Cache instance ID is the first CPU reported in the shared_cpu_list file. 1185 */ 1186 static int cpu__get_cache_id_from_map(struct perf_cpu cpu, char *map) 1187 { 1188 int id; 1189 struct perf_cpu_map *cpu_map = perf_cpu_map__new(map); 1190 1191 /* 1192 * If the map contains no CPU, consider the current CPU to 1193 * be the first online CPU in the cache domain else use the 1194 * first online CPU of the cache domain as the ID. 1195 */ 1196 id = perf_cpu_map__min(cpu_map).cpu; 1197 if (id == -1) 1198 id = cpu.cpu; 1199 1200 /* Free the perf_cpu_map used to find the cache ID */ 1201 perf_cpu_map__put(cpu_map); 1202 1203 return id; 1204 } 1205 1206 /** 1207 * cpu__get_cache_id - Returns 0 if successful in populating the 1208 * cache level and cache id. Cache level is read from 1209 * /sys/devices/system/cpu/cpuX/cache/indexY/level where as cache instance ID 1210 * is the first CPU reported by 1211 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1212 */ 1213 static int cpu__get_cache_details(struct perf_cpu cpu, struct perf_cache *cache) 1214 { 1215 int ret = 0; 1216 u32 cache_level = stat_config.aggr_level; 1217 struct cpu_cache_level caches[MAX_CACHE_LVL]; 1218 u32 i = 0, caches_cnt = 0; 1219 1220 cache->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1221 cache->cache = -1; 1222 1223 ret = build_caches_for_cpu(cpu.cpu, caches, &caches_cnt); 1224 if (ret) { 1225 /* 1226 * If caches_cnt is not 0, cpu_cache_level data 1227 * was allocated when building the topology. 1228 * Free the allocated data before returning. 1229 */ 1230 if (caches_cnt) 1231 goto free_caches; 1232 1233 return ret; 1234 } 1235 1236 if (!caches_cnt) 1237 return -1; 1238 1239 /* 1240 * Save the data for the highest level if no 1241 * level was specified by the user. 1242 */ 1243 if (cache_level > MAX_CACHE_LVL) { 1244 int max_level_index = 0; 1245 1246 for (i = 1; i < caches_cnt; ++i) { 1247 if (caches[i].level > caches[max_level_index].level) 1248 max_level_index = i; 1249 } 1250 1251 cache->cache_lvl = caches[max_level_index].level; 1252 cache->cache = cpu__get_cache_id_from_map(cpu, caches[max_level_index].map); 1253 1254 /* Reset i to 0 to free entire caches[] */ 1255 i = 0; 1256 goto free_caches; 1257 } 1258 1259 for (i = 0; i < caches_cnt; ++i) { 1260 if (caches[i].level == cache_level) { 1261 cache->cache_lvl = cache_level; 1262 cache->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1263 } 1264 1265 cpu_cache_level__free(&caches[i]); 1266 } 1267 1268 free_caches: 1269 /* 1270 * Free all the allocated cpu_cache_level data. 1271 */ 1272 while (i < caches_cnt) 1273 cpu_cache_level__free(&caches[i++]); 1274 1275 return ret; 1276 } 1277 1278 /** 1279 * aggr_cpu_id__cache - Create an aggr_cpu_id with cache instache ID, cache 1280 * level, die and socket populated with the cache instache ID, cache level, 1281 * die and socket for cpu. The function signature is compatible with 1282 * aggr_cpu_id_get_t. 1283 */ 1284 static struct aggr_cpu_id aggr_cpu_id__cache(struct perf_cpu cpu, void *data) 1285 { 1286 int ret; 1287 struct aggr_cpu_id id; 1288 struct perf_cache cache; 1289 1290 id = aggr_cpu_id__die(cpu, data); 1291 if (aggr_cpu_id__is_empty(&id)) 1292 return id; 1293 1294 ret = cpu__get_cache_details(cpu, &cache); 1295 if (ret) 1296 return id; 1297 1298 id.cache_lvl = cache.cache_lvl; 1299 id.cache = cache.cache; 1300 return id; 1301 } 1302 1303 static const char *const aggr_mode__string[] = { 1304 [AGGR_CORE] = "core", 1305 [AGGR_CACHE] = "cache", 1306 [AGGR_CLUSTER] = "cluster", 1307 [AGGR_DIE] = "die", 1308 [AGGR_GLOBAL] = "global", 1309 [AGGR_NODE] = "node", 1310 [AGGR_NONE] = "none", 1311 [AGGR_SOCKET] = "socket", 1312 [AGGR_THREAD] = "thread", 1313 [AGGR_UNSET] = "unset", 1314 }; 1315 1316 static struct aggr_cpu_id perf_stat__get_socket(struct perf_stat_config *config __maybe_unused, 1317 struct perf_cpu cpu) 1318 { 1319 return aggr_cpu_id__socket(cpu, /*data=*/NULL); 1320 } 1321 1322 static struct aggr_cpu_id perf_stat__get_die(struct perf_stat_config *config __maybe_unused, 1323 struct perf_cpu cpu) 1324 { 1325 return aggr_cpu_id__die(cpu, /*data=*/NULL); 1326 } 1327 1328 static struct aggr_cpu_id perf_stat__get_cache_id(struct perf_stat_config *config __maybe_unused, 1329 struct perf_cpu cpu) 1330 { 1331 return aggr_cpu_id__cache(cpu, /*data=*/NULL); 1332 } 1333 1334 static struct aggr_cpu_id perf_stat__get_cluster(struct perf_stat_config *config __maybe_unused, 1335 struct perf_cpu cpu) 1336 { 1337 return aggr_cpu_id__cluster(cpu, /*data=*/NULL); 1338 } 1339 1340 static struct aggr_cpu_id perf_stat__get_core(struct perf_stat_config *config __maybe_unused, 1341 struct perf_cpu cpu) 1342 { 1343 return aggr_cpu_id__core(cpu, /*data=*/NULL); 1344 } 1345 1346 static struct aggr_cpu_id perf_stat__get_node(struct perf_stat_config *config __maybe_unused, 1347 struct perf_cpu cpu) 1348 { 1349 return aggr_cpu_id__node(cpu, /*data=*/NULL); 1350 } 1351 1352 static struct aggr_cpu_id perf_stat__get_global(struct perf_stat_config *config __maybe_unused, 1353 struct perf_cpu cpu) 1354 { 1355 return aggr_cpu_id__global(cpu, /*data=*/NULL); 1356 } 1357 1358 static struct aggr_cpu_id perf_stat__get_cpu(struct perf_stat_config *config __maybe_unused, 1359 struct perf_cpu cpu) 1360 { 1361 return aggr_cpu_id__cpu(cpu, /*data=*/NULL); 1362 } 1363 1364 static struct aggr_cpu_id perf_stat__get_aggr(struct perf_stat_config *config, 1365 aggr_get_id_t get_id, struct perf_cpu cpu) 1366 { 1367 struct aggr_cpu_id id; 1368 1369 /* per-process mode - should use global aggr mode */ 1370 if (cpu.cpu == -1) 1371 return get_id(config, cpu); 1372 1373 if (aggr_cpu_id__is_empty(&config->cpus_aggr_map->map[cpu.cpu])) 1374 config->cpus_aggr_map->map[cpu.cpu] = get_id(config, cpu); 1375 1376 id = config->cpus_aggr_map->map[cpu.cpu]; 1377 return id; 1378 } 1379 1380 static struct aggr_cpu_id perf_stat__get_socket_cached(struct perf_stat_config *config, 1381 struct perf_cpu cpu) 1382 { 1383 return perf_stat__get_aggr(config, perf_stat__get_socket, cpu); 1384 } 1385 1386 static struct aggr_cpu_id perf_stat__get_die_cached(struct perf_stat_config *config, 1387 struct perf_cpu cpu) 1388 { 1389 return perf_stat__get_aggr(config, perf_stat__get_die, cpu); 1390 } 1391 1392 static struct aggr_cpu_id perf_stat__get_cluster_cached(struct perf_stat_config *config, 1393 struct perf_cpu cpu) 1394 { 1395 return perf_stat__get_aggr(config, perf_stat__get_cluster, cpu); 1396 } 1397 1398 static struct aggr_cpu_id perf_stat__get_cache_id_cached(struct perf_stat_config *config, 1399 struct perf_cpu cpu) 1400 { 1401 return perf_stat__get_aggr(config, perf_stat__get_cache_id, cpu); 1402 } 1403 1404 static struct aggr_cpu_id perf_stat__get_core_cached(struct perf_stat_config *config, 1405 struct perf_cpu cpu) 1406 { 1407 return perf_stat__get_aggr(config, perf_stat__get_core, cpu); 1408 } 1409 1410 static struct aggr_cpu_id perf_stat__get_node_cached(struct perf_stat_config *config, 1411 struct perf_cpu cpu) 1412 { 1413 return perf_stat__get_aggr(config, perf_stat__get_node, cpu); 1414 } 1415 1416 static struct aggr_cpu_id perf_stat__get_global_cached(struct perf_stat_config *config, 1417 struct perf_cpu cpu) 1418 { 1419 return perf_stat__get_aggr(config, perf_stat__get_global, cpu); 1420 } 1421 1422 static struct aggr_cpu_id perf_stat__get_cpu_cached(struct perf_stat_config *config, 1423 struct perf_cpu cpu) 1424 { 1425 return perf_stat__get_aggr(config, perf_stat__get_cpu, cpu); 1426 } 1427 1428 static aggr_cpu_id_get_t aggr_mode__get_aggr(enum aggr_mode aggr_mode) 1429 { 1430 switch (aggr_mode) { 1431 case AGGR_SOCKET: 1432 return aggr_cpu_id__socket; 1433 case AGGR_DIE: 1434 return aggr_cpu_id__die; 1435 case AGGR_CLUSTER: 1436 return aggr_cpu_id__cluster; 1437 case AGGR_CACHE: 1438 return aggr_cpu_id__cache; 1439 case AGGR_CORE: 1440 return aggr_cpu_id__core; 1441 case AGGR_NODE: 1442 return aggr_cpu_id__node; 1443 case AGGR_NONE: 1444 return aggr_cpu_id__cpu; 1445 case AGGR_GLOBAL: 1446 return aggr_cpu_id__global; 1447 case AGGR_THREAD: 1448 case AGGR_UNSET: 1449 case AGGR_MAX: 1450 default: 1451 return NULL; 1452 } 1453 } 1454 1455 static aggr_get_id_t aggr_mode__get_id(enum aggr_mode aggr_mode) 1456 { 1457 switch (aggr_mode) { 1458 case AGGR_SOCKET: 1459 return perf_stat__get_socket_cached; 1460 case AGGR_DIE: 1461 return perf_stat__get_die_cached; 1462 case AGGR_CLUSTER: 1463 return perf_stat__get_cluster_cached; 1464 case AGGR_CACHE: 1465 return perf_stat__get_cache_id_cached; 1466 case AGGR_CORE: 1467 return perf_stat__get_core_cached; 1468 case AGGR_NODE: 1469 return perf_stat__get_node_cached; 1470 case AGGR_NONE: 1471 return perf_stat__get_cpu_cached; 1472 case AGGR_GLOBAL: 1473 return perf_stat__get_global_cached; 1474 case AGGR_THREAD: 1475 case AGGR_UNSET: 1476 case AGGR_MAX: 1477 default: 1478 return NULL; 1479 } 1480 } 1481 1482 static int perf_stat_init_aggr_mode(void) 1483 { 1484 int nr; 1485 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr(stat_config.aggr_mode); 1486 1487 if (get_id) { 1488 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1489 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1490 get_id, /*data=*/NULL, needs_sort); 1491 if (!stat_config.aggr_map) { 1492 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1493 return -1; 1494 } 1495 stat_config.aggr_get_id = aggr_mode__get_id(stat_config.aggr_mode); 1496 } 1497 1498 if (stat_config.aggr_mode == AGGR_THREAD) { 1499 nr = perf_thread_map__nr(evsel_list->core.threads); 1500 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1501 if (stat_config.aggr_map == NULL) 1502 return -ENOMEM; 1503 1504 for (int s = 0; s < nr; s++) { 1505 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1506 1507 id.thread_idx = s; 1508 stat_config.aggr_map->map[s] = id; 1509 } 1510 return 0; 1511 } 1512 1513 /* 1514 * The evsel_list->cpus is the base we operate on, 1515 * taking the highest cpu number to be the size of 1516 * the aggregation translate cpumap. 1517 */ 1518 if (!perf_cpu_map__is_any_cpu_or_is_empty(evsel_list->core.user_requested_cpus)) 1519 nr = perf_cpu_map__max(evsel_list->core.user_requested_cpus).cpu; 1520 else 1521 nr = 0; 1522 stat_config.cpus_aggr_map = cpu_aggr_map__empty_new(nr + 1); 1523 return stat_config.cpus_aggr_map ? 0 : -ENOMEM; 1524 } 1525 1526 static void cpu_aggr_map__delete(struct cpu_aggr_map *map) 1527 { 1528 free(map); 1529 } 1530 1531 static void perf_stat__exit_aggr_mode(void) 1532 { 1533 cpu_aggr_map__delete(stat_config.aggr_map); 1534 cpu_aggr_map__delete(stat_config.cpus_aggr_map); 1535 stat_config.aggr_map = NULL; 1536 stat_config.cpus_aggr_map = NULL; 1537 } 1538 1539 static struct aggr_cpu_id perf_env__get_socket_aggr_by_cpu(struct perf_cpu cpu, void *data) 1540 { 1541 struct perf_env *env = data; 1542 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1543 1544 if (cpu.cpu != -1) 1545 id.socket = env->cpu[cpu.cpu].socket_id; 1546 1547 return id; 1548 } 1549 1550 static struct aggr_cpu_id perf_env__get_die_aggr_by_cpu(struct perf_cpu cpu, void *data) 1551 { 1552 struct perf_env *env = data; 1553 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1554 1555 if (cpu.cpu != -1) { 1556 /* 1557 * die_id is relative to socket, so start 1558 * with the socket ID and then add die to 1559 * make a unique ID. 1560 */ 1561 id.socket = env->cpu[cpu.cpu].socket_id; 1562 id.die = env->cpu[cpu.cpu].die_id; 1563 } 1564 1565 return id; 1566 } 1567 1568 static void perf_env__get_cache_id_for_cpu(struct perf_cpu cpu, struct perf_env *env, 1569 u32 cache_level, struct aggr_cpu_id *id) 1570 { 1571 int i; 1572 int caches_cnt = env->caches_cnt; 1573 struct cpu_cache_level *caches = env->caches; 1574 1575 id->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1576 id->cache = -1; 1577 1578 if (!caches_cnt) 1579 return; 1580 1581 for (i = caches_cnt - 1; i > -1; --i) { 1582 struct perf_cpu_map *cpu_map; 1583 int map_contains_cpu; 1584 1585 /* 1586 * If user has not specified a level, find the fist level with 1587 * the cpu in the map. Since building the map is expensive, do 1588 * this only if levels match. 1589 */ 1590 if (cache_level <= MAX_CACHE_LVL && caches[i].level != cache_level) 1591 continue; 1592 1593 cpu_map = perf_cpu_map__new(caches[i].map); 1594 map_contains_cpu = perf_cpu_map__idx(cpu_map, cpu); 1595 perf_cpu_map__put(cpu_map); 1596 1597 if (map_contains_cpu != -1) { 1598 id->cache_lvl = caches[i].level; 1599 id->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1600 return; 1601 } 1602 } 1603 } 1604 1605 static struct aggr_cpu_id perf_env__get_cache_aggr_by_cpu(struct perf_cpu cpu, 1606 void *data) 1607 { 1608 struct perf_env *env = data; 1609 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1610 1611 if (cpu.cpu != -1) { 1612 u32 cache_level = (perf_stat.aggr_level) ?: stat_config.aggr_level; 1613 1614 id.socket = env->cpu[cpu.cpu].socket_id; 1615 id.die = env->cpu[cpu.cpu].die_id; 1616 perf_env__get_cache_id_for_cpu(cpu, env, cache_level, &id); 1617 } 1618 1619 return id; 1620 } 1621 1622 static struct aggr_cpu_id perf_env__get_cluster_aggr_by_cpu(struct perf_cpu cpu, 1623 void *data) 1624 { 1625 struct perf_env *env = data; 1626 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1627 1628 if (cpu.cpu != -1) { 1629 id.socket = env->cpu[cpu.cpu].socket_id; 1630 id.die = env->cpu[cpu.cpu].die_id; 1631 id.cluster = env->cpu[cpu.cpu].cluster_id; 1632 } 1633 1634 return id; 1635 } 1636 1637 static struct aggr_cpu_id perf_env__get_core_aggr_by_cpu(struct perf_cpu cpu, void *data) 1638 { 1639 struct perf_env *env = data; 1640 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1641 1642 if (cpu.cpu != -1) { 1643 /* 1644 * core_id is relative to socket, die and cluster, we need a 1645 * global id. So we set socket, die id, cluster id and core id. 1646 */ 1647 id.socket = env->cpu[cpu.cpu].socket_id; 1648 id.die = env->cpu[cpu.cpu].die_id; 1649 id.cluster = env->cpu[cpu.cpu].cluster_id; 1650 id.core = env->cpu[cpu.cpu].core_id; 1651 } 1652 1653 return id; 1654 } 1655 1656 static struct aggr_cpu_id perf_env__get_cpu_aggr_by_cpu(struct perf_cpu cpu, void *data) 1657 { 1658 struct perf_env *env = data; 1659 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1660 1661 if (cpu.cpu != -1) { 1662 /* 1663 * core_id is relative to socket and die, 1664 * we need a global id. So we set 1665 * socket, die id and core id 1666 */ 1667 id.socket = env->cpu[cpu.cpu].socket_id; 1668 id.die = env->cpu[cpu.cpu].die_id; 1669 id.core = env->cpu[cpu.cpu].core_id; 1670 id.cpu = cpu; 1671 } 1672 1673 return id; 1674 } 1675 1676 static struct aggr_cpu_id perf_env__get_node_aggr_by_cpu(struct perf_cpu cpu, void *data) 1677 { 1678 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1679 1680 id.node = perf_env__numa_node(data, cpu); 1681 return id; 1682 } 1683 1684 static struct aggr_cpu_id perf_env__get_global_aggr_by_cpu(struct perf_cpu cpu __maybe_unused, 1685 void *data __maybe_unused) 1686 { 1687 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1688 1689 /* it always aggregates to the cpu 0 */ 1690 id.cpu = (struct perf_cpu){ .cpu = 0 }; 1691 return id; 1692 } 1693 1694 static struct aggr_cpu_id perf_stat__get_socket_file(struct perf_stat_config *config __maybe_unused, 1695 struct perf_cpu cpu) 1696 { 1697 return perf_env__get_socket_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1698 } 1699 static struct aggr_cpu_id perf_stat__get_die_file(struct perf_stat_config *config __maybe_unused, 1700 struct perf_cpu cpu) 1701 { 1702 return perf_env__get_die_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1703 } 1704 1705 static struct aggr_cpu_id perf_stat__get_cluster_file(struct perf_stat_config *config __maybe_unused, 1706 struct perf_cpu cpu) 1707 { 1708 return perf_env__get_cluster_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1709 } 1710 1711 static struct aggr_cpu_id perf_stat__get_cache_file(struct perf_stat_config *config __maybe_unused, 1712 struct perf_cpu cpu) 1713 { 1714 return perf_env__get_cache_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1715 } 1716 1717 static struct aggr_cpu_id perf_stat__get_core_file(struct perf_stat_config *config __maybe_unused, 1718 struct perf_cpu cpu) 1719 { 1720 return perf_env__get_core_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1721 } 1722 1723 static struct aggr_cpu_id perf_stat__get_cpu_file(struct perf_stat_config *config __maybe_unused, 1724 struct perf_cpu cpu) 1725 { 1726 return perf_env__get_cpu_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1727 } 1728 1729 static struct aggr_cpu_id perf_stat__get_node_file(struct perf_stat_config *config __maybe_unused, 1730 struct perf_cpu cpu) 1731 { 1732 return perf_env__get_node_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1733 } 1734 1735 static struct aggr_cpu_id perf_stat__get_global_file(struct perf_stat_config *config __maybe_unused, 1736 struct perf_cpu cpu) 1737 { 1738 return perf_env__get_global_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1739 } 1740 1741 static aggr_cpu_id_get_t aggr_mode__get_aggr_file(enum aggr_mode aggr_mode) 1742 { 1743 switch (aggr_mode) { 1744 case AGGR_SOCKET: 1745 return perf_env__get_socket_aggr_by_cpu; 1746 case AGGR_DIE: 1747 return perf_env__get_die_aggr_by_cpu; 1748 case AGGR_CLUSTER: 1749 return perf_env__get_cluster_aggr_by_cpu; 1750 case AGGR_CACHE: 1751 return perf_env__get_cache_aggr_by_cpu; 1752 case AGGR_CORE: 1753 return perf_env__get_core_aggr_by_cpu; 1754 case AGGR_NODE: 1755 return perf_env__get_node_aggr_by_cpu; 1756 case AGGR_GLOBAL: 1757 return perf_env__get_global_aggr_by_cpu; 1758 case AGGR_NONE: 1759 return perf_env__get_cpu_aggr_by_cpu; 1760 case AGGR_THREAD: 1761 case AGGR_UNSET: 1762 case AGGR_MAX: 1763 default: 1764 return NULL; 1765 } 1766 } 1767 1768 static aggr_get_id_t aggr_mode__get_id_file(enum aggr_mode aggr_mode) 1769 { 1770 switch (aggr_mode) { 1771 case AGGR_SOCKET: 1772 return perf_stat__get_socket_file; 1773 case AGGR_DIE: 1774 return perf_stat__get_die_file; 1775 case AGGR_CLUSTER: 1776 return perf_stat__get_cluster_file; 1777 case AGGR_CACHE: 1778 return perf_stat__get_cache_file; 1779 case AGGR_CORE: 1780 return perf_stat__get_core_file; 1781 case AGGR_NODE: 1782 return perf_stat__get_node_file; 1783 case AGGR_GLOBAL: 1784 return perf_stat__get_global_file; 1785 case AGGR_NONE: 1786 return perf_stat__get_cpu_file; 1787 case AGGR_THREAD: 1788 case AGGR_UNSET: 1789 case AGGR_MAX: 1790 default: 1791 return NULL; 1792 } 1793 } 1794 1795 static int perf_stat_init_aggr_mode_file(struct perf_stat *st) 1796 { 1797 struct perf_env *env = &st->session->header.env; 1798 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr_file(stat_config.aggr_mode); 1799 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1800 1801 if (stat_config.aggr_mode == AGGR_THREAD) { 1802 int nr = perf_thread_map__nr(evsel_list->core.threads); 1803 1804 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1805 if (stat_config.aggr_map == NULL) 1806 return -ENOMEM; 1807 1808 for (int s = 0; s < nr; s++) { 1809 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1810 1811 id.thread_idx = s; 1812 stat_config.aggr_map->map[s] = id; 1813 } 1814 return 0; 1815 } 1816 1817 if (!get_id) 1818 return 0; 1819 1820 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1821 get_id, env, needs_sort); 1822 if (!stat_config.aggr_map) { 1823 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1824 return -1; 1825 } 1826 stat_config.aggr_get_id = aggr_mode__get_id_file(stat_config.aggr_mode); 1827 return 0; 1828 } 1829 1830 /* 1831 * Add default events, if there were no attributes specified or 1832 * if -d/--detailed, -d -d or -d -d -d is used: 1833 */ 1834 static int add_default_events(void) 1835 { 1836 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 1837 struct parse_events_error err; 1838 struct evlist *evlist = evlist__new(); 1839 struct evsel *evsel; 1840 int ret = 0; 1841 1842 if (!evlist) 1843 return -ENOMEM; 1844 1845 parse_events_error__init(&err); 1846 1847 /* Set attrs if no event is selected and !null_run: */ 1848 if (stat_config.null_run) 1849 goto out; 1850 1851 if (transaction_run) { 1852 /* Handle -T as -M transaction. Once platform specific metrics 1853 * support has been added to the json files, all architectures 1854 * will use this approach. To determine transaction support 1855 * on an architecture test for such a metric name. 1856 */ 1857 if (!metricgroup__has_metric_or_groups(pmu, "transaction")) { 1858 pr_err("Missing transaction metrics\n"); 1859 ret = -1; 1860 goto out; 1861 } 1862 ret = metricgroup__parse_groups(evlist, pmu, "transaction", 1863 stat_config.metric_no_group, 1864 stat_config.metric_no_merge, 1865 stat_config.metric_no_threshold, 1866 stat_config.user_requested_cpu_list, 1867 stat_config.system_wide, 1868 stat_config.hardware_aware_grouping, 1869 &stat_config.metric_events); 1870 goto out; 1871 } 1872 1873 if (smi_cost) { 1874 int smi; 1875 1876 if (sysfs__read_int(FREEZE_ON_SMI_PATH, &smi) < 0) { 1877 pr_err("freeze_on_smi is not supported.\n"); 1878 ret = -1; 1879 goto out; 1880 } 1881 1882 if (!smi) { 1883 if (sysfs__write_int(FREEZE_ON_SMI_PATH, 1) < 0) { 1884 pr_err("Failed to set freeze_on_smi.\n"); 1885 ret = -1; 1886 goto out; 1887 } 1888 smi_reset = true; 1889 } 1890 1891 if (!metricgroup__has_metric_or_groups(pmu, "smi")) { 1892 pr_err("Missing smi metrics\n"); 1893 ret = -1; 1894 goto out; 1895 } 1896 1897 if (!force_metric_only) 1898 stat_config.metric_only = true; 1899 1900 ret = metricgroup__parse_groups(evlist, pmu, "smi", 1901 stat_config.metric_no_group, 1902 stat_config.metric_no_merge, 1903 stat_config.metric_no_threshold, 1904 stat_config.user_requested_cpu_list, 1905 stat_config.system_wide, 1906 stat_config.hardware_aware_grouping, 1907 &stat_config.metric_events); 1908 goto out; 1909 } 1910 1911 if (topdown_run) { 1912 unsigned int max_level = metricgroups__topdown_max_level(); 1913 char str[] = "TopdownL1"; 1914 1915 if (!force_metric_only) 1916 stat_config.metric_only = true; 1917 1918 if (!max_level) { 1919 pr_err("Topdown requested but the topdown metric groups aren't present.\n" 1920 "(See perf list the metric groups have names like TopdownL1)\n"); 1921 ret = -1; 1922 goto out; 1923 } 1924 if (stat_config.topdown_level > max_level) { 1925 pr_err("Invalid top-down metrics level. The max level is %u.\n", max_level); 1926 ret = -1; 1927 goto out; 1928 } else if (!stat_config.topdown_level) { 1929 stat_config.topdown_level = 1; 1930 } 1931 if (!stat_config.interval && !stat_config.metric_only) { 1932 fprintf(stat_config.output, 1933 "Topdown accuracy may decrease when measuring long periods.\n" 1934 "Please print the result regularly, e.g. -I1000\n"); 1935 } 1936 str[8] = stat_config.topdown_level + '0'; 1937 if (metricgroup__parse_groups(evlist, 1938 pmu, str, 1939 /*metric_no_group=*/false, 1940 /*metric_no_merge=*/false, 1941 /*metric_no_threshold=*/true, 1942 stat_config.user_requested_cpu_list, 1943 stat_config.system_wide, 1944 stat_config.hardware_aware_grouping, 1945 &stat_config.metric_events) < 0) { 1946 ret = -1; 1947 goto out; 1948 } 1949 } 1950 1951 if (!stat_config.topdown_level) 1952 stat_config.topdown_level = 1; 1953 1954 if (!evlist->core.nr_entries && !evsel_list->core.nr_entries) { 1955 /* No events so add defaults. */ 1956 if (target__has_cpu(&target)) 1957 ret = parse_events(evlist, "cpu-clock", &err); 1958 else 1959 ret = parse_events(evlist, "task-clock", &err); 1960 if (ret) 1961 goto out; 1962 1963 ret = parse_events(evlist, 1964 "context-switches," 1965 "cpu-migrations," 1966 "page-faults," 1967 "instructions," 1968 "cycles," 1969 "stalled-cycles-frontend," 1970 "stalled-cycles-backend," 1971 "branches," 1972 "branch-misses", 1973 &err); 1974 if (ret) 1975 goto out; 1976 1977 /* 1978 * Add TopdownL1 metrics if they exist. To minimize 1979 * multiplexing, don't request threshold computation. 1980 */ 1981 if (metricgroup__has_metric_or_groups(pmu, "Default")) { 1982 struct evlist *metric_evlist = evlist__new(); 1983 1984 if (!metric_evlist) { 1985 ret = -ENOMEM; 1986 goto out; 1987 } 1988 if (metricgroup__parse_groups(metric_evlist, pmu, "Default", 1989 /*metric_no_group=*/false, 1990 /*metric_no_merge=*/false, 1991 /*metric_no_threshold=*/true, 1992 stat_config.user_requested_cpu_list, 1993 stat_config.system_wide, 1994 stat_config.hardware_aware_grouping, 1995 &stat_config.metric_events) < 0) { 1996 ret = -1; 1997 goto out; 1998 } 1999 2000 evlist__for_each_entry(metric_evlist, evsel) 2001 evsel->default_metricgroup = true; 2002 2003 evlist__splice_list_tail(evlist, &metric_evlist->core.entries); 2004 evlist__delete(metric_evlist); 2005 } 2006 } 2007 2008 /* Detailed events get appended to the event list: */ 2009 2010 if (!ret && detailed_run >= 1) { 2011 /* 2012 * Detailed stats (-d), covering the L1 and last level data 2013 * caches: 2014 */ 2015 ret = parse_events(evlist, 2016 "L1-dcache-loads," 2017 "L1-dcache-load-misses," 2018 "LLC-loads," 2019 "LLC-load-misses", 2020 &err); 2021 } 2022 if (!ret && detailed_run >= 2) { 2023 /* 2024 * Very detailed stats (-d -d), covering the instruction cache 2025 * and the TLB caches: 2026 */ 2027 ret = parse_events(evlist, 2028 "L1-icache-loads," 2029 "L1-icache-load-misses," 2030 "dTLB-loads," 2031 "dTLB-load-misses," 2032 "iTLB-loads," 2033 "iTLB-load-misses", 2034 &err); 2035 } 2036 if (!ret && detailed_run >= 3) { 2037 /* 2038 * Very, very detailed stats (-d -d -d), adding prefetch events: 2039 */ 2040 ret = parse_events(evlist, 2041 "L1-dcache-prefetches," 2042 "L1-dcache-prefetch-misses", 2043 &err); 2044 } 2045 out: 2046 if (!ret) { 2047 evlist__for_each_entry(evlist, evsel) { 2048 /* 2049 * Make at least one event non-skippable so fatal errors are visible. 2050 * 'cycles' always used to be default and non-skippable, so use that. 2051 */ 2052 if (strcmp("cycles", evsel__name(evsel))) 2053 evsel->skippable = true; 2054 } 2055 } 2056 parse_events_error__exit(&err); 2057 evlist__splice_list_tail(evsel_list, &evlist->core.entries); 2058 evlist__delete(evlist); 2059 return ret; 2060 } 2061 2062 static const char * const stat_record_usage[] = { 2063 "perf stat record [<options>]", 2064 NULL, 2065 }; 2066 2067 static void init_features(struct perf_session *session) 2068 { 2069 int feat; 2070 2071 for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++) 2072 perf_header__set_feat(&session->header, feat); 2073 2074 perf_header__clear_feat(&session->header, HEADER_DIR_FORMAT); 2075 perf_header__clear_feat(&session->header, HEADER_BUILD_ID); 2076 perf_header__clear_feat(&session->header, HEADER_TRACING_DATA); 2077 perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK); 2078 perf_header__clear_feat(&session->header, HEADER_AUXTRACE); 2079 } 2080 2081 static int __cmd_record(const struct option stat_options[], struct opt_aggr_mode *opt_mode, 2082 int argc, const char **argv) 2083 { 2084 struct perf_session *session; 2085 struct perf_data *data = &perf_stat.data; 2086 2087 argc = parse_options(argc, argv, stat_options, stat_record_usage, 2088 PARSE_OPT_STOP_AT_NON_OPTION); 2089 stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(opt_mode); 2090 2091 if (output_name) 2092 data->path = output_name; 2093 2094 if (stat_config.run_count != 1 || forever) { 2095 pr_err("Cannot use -r option with perf stat record.\n"); 2096 return -1; 2097 } 2098 2099 session = perf_session__new(data, NULL); 2100 if (IS_ERR(session)) { 2101 pr_err("Perf session creation failed\n"); 2102 return PTR_ERR(session); 2103 } 2104 2105 init_features(session); 2106 2107 session->evlist = evsel_list; 2108 perf_stat.session = session; 2109 perf_stat.record = true; 2110 return argc; 2111 } 2112 2113 static int process_stat_round_event(struct perf_session *session, 2114 union perf_event *event) 2115 { 2116 struct perf_record_stat_round *stat_round = &event->stat_round; 2117 struct timespec tsh, *ts = NULL; 2118 const char **argv = session->header.env.cmdline_argv; 2119 int argc = session->header.env.nr_cmdline; 2120 2121 process_counters(); 2122 2123 if (stat_round->type == PERF_STAT_ROUND_TYPE__FINAL) 2124 update_stats(&walltime_nsecs_stats, stat_round->time); 2125 2126 if (stat_config.interval && stat_round->time) { 2127 tsh.tv_sec = stat_round->time / NSEC_PER_SEC; 2128 tsh.tv_nsec = stat_round->time % NSEC_PER_SEC; 2129 ts = &tsh; 2130 } 2131 2132 print_counters(ts, argc, argv); 2133 return 0; 2134 } 2135 2136 static 2137 int process_stat_config_event(struct perf_session *session, 2138 union perf_event *event) 2139 { 2140 const struct perf_tool *tool = session->tool; 2141 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2142 2143 perf_event__read_stat_config(&stat_config, &event->stat_config); 2144 2145 if (perf_cpu_map__is_empty(st->cpus)) { 2146 if (st->aggr_mode != AGGR_UNSET) 2147 pr_warning("warning: processing task data, aggregation mode not set\n"); 2148 } else if (st->aggr_mode != AGGR_UNSET) { 2149 stat_config.aggr_mode = st->aggr_mode; 2150 } 2151 2152 if (perf_stat.data.is_pipe) 2153 perf_stat_init_aggr_mode(); 2154 else 2155 perf_stat_init_aggr_mode_file(st); 2156 2157 if (stat_config.aggr_map) { 2158 int nr_aggr = stat_config.aggr_map->nr; 2159 2160 if (evlist__alloc_aggr_stats(session->evlist, nr_aggr) < 0) { 2161 pr_err("cannot allocate aggr counts\n"); 2162 return -1; 2163 } 2164 } 2165 return 0; 2166 } 2167 2168 static int set_maps(struct perf_stat *st) 2169 { 2170 if (!st->cpus || !st->threads) 2171 return 0; 2172 2173 if (WARN_ONCE(st->maps_allocated, "stats double allocation\n")) 2174 return -EINVAL; 2175 2176 perf_evlist__set_maps(&evsel_list->core, st->cpus, st->threads); 2177 2178 if (evlist__alloc_stats(&stat_config, evsel_list, /*alloc_raw=*/true)) 2179 return -ENOMEM; 2180 2181 st->maps_allocated = true; 2182 return 0; 2183 } 2184 2185 static 2186 int process_thread_map_event(struct perf_session *session, 2187 union perf_event *event) 2188 { 2189 const struct perf_tool *tool = session->tool; 2190 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2191 2192 if (st->threads) { 2193 pr_warning("Extra thread map event, ignoring.\n"); 2194 return 0; 2195 } 2196 2197 st->threads = thread_map__new_event(&event->thread_map); 2198 if (!st->threads) 2199 return -ENOMEM; 2200 2201 return set_maps(st); 2202 } 2203 2204 static 2205 int process_cpu_map_event(struct perf_session *session, 2206 union perf_event *event) 2207 { 2208 const struct perf_tool *tool = session->tool; 2209 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2210 struct perf_cpu_map *cpus; 2211 2212 if (st->cpus) { 2213 pr_warning("Extra cpu map event, ignoring.\n"); 2214 return 0; 2215 } 2216 2217 cpus = cpu_map__new_data(&event->cpu_map.data); 2218 if (!cpus) 2219 return -ENOMEM; 2220 2221 st->cpus = cpus; 2222 return set_maps(st); 2223 } 2224 2225 static const char * const stat_report_usage[] = { 2226 "perf stat report [<options>]", 2227 NULL, 2228 }; 2229 2230 static struct perf_stat perf_stat = { 2231 .aggr_mode = AGGR_UNSET, 2232 .aggr_level = 0, 2233 }; 2234 2235 static int __cmd_report(int argc, const char **argv) 2236 { 2237 struct perf_session *session; 2238 const struct option options[] = { 2239 OPT_STRING('i', "input", &input_name, "file", "input file name"), 2240 OPT_SET_UINT(0, "per-socket", &perf_stat.aggr_mode, 2241 "aggregate counts per processor socket", AGGR_SOCKET), 2242 OPT_SET_UINT(0, "per-die", &perf_stat.aggr_mode, 2243 "aggregate counts per processor die", AGGR_DIE), 2244 OPT_SET_UINT(0, "per-cluster", &perf_stat.aggr_mode, 2245 "aggregate counts perf processor cluster", AGGR_CLUSTER), 2246 OPT_CALLBACK_OPTARG(0, "per-cache", &perf_stat.aggr_mode, &perf_stat.aggr_level, 2247 "cache level", 2248 "aggregate count at this cache level (Default: LLC)", 2249 parse_cache_level), 2250 OPT_SET_UINT(0, "per-core", &perf_stat.aggr_mode, 2251 "aggregate counts per physical processor core", AGGR_CORE), 2252 OPT_SET_UINT(0, "per-node", &perf_stat.aggr_mode, 2253 "aggregate counts per numa node", AGGR_NODE), 2254 OPT_SET_UINT('A', "no-aggr", &perf_stat.aggr_mode, 2255 "disable CPU count aggregation", AGGR_NONE), 2256 OPT_END() 2257 }; 2258 struct stat st; 2259 int ret; 2260 2261 argc = parse_options(argc, argv, options, stat_report_usage, 0); 2262 2263 if (!input_name || !strlen(input_name)) { 2264 if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode)) 2265 input_name = "-"; 2266 else 2267 input_name = "perf.data"; 2268 } 2269 2270 perf_stat.data.path = input_name; 2271 perf_stat.data.mode = PERF_DATA_MODE_READ; 2272 2273 perf_tool__init(&perf_stat.tool, /*ordered_events=*/false); 2274 perf_stat.tool.attr = perf_event__process_attr; 2275 perf_stat.tool.event_update = perf_event__process_event_update; 2276 perf_stat.tool.thread_map = process_thread_map_event; 2277 perf_stat.tool.cpu_map = process_cpu_map_event; 2278 perf_stat.tool.stat_config = process_stat_config_event; 2279 perf_stat.tool.stat = perf_event__process_stat_event; 2280 perf_stat.tool.stat_round = process_stat_round_event; 2281 2282 session = perf_session__new(&perf_stat.data, &perf_stat.tool); 2283 if (IS_ERR(session)) 2284 return PTR_ERR(session); 2285 2286 perf_stat.session = session; 2287 stat_config.output = stderr; 2288 evlist__delete(evsel_list); 2289 evsel_list = session->evlist; 2290 2291 ret = perf_session__process_events(session); 2292 if (ret) 2293 return ret; 2294 2295 perf_session__delete(session); 2296 return 0; 2297 } 2298 2299 static void setup_system_wide(int forks) 2300 { 2301 /* 2302 * Make system wide (-a) the default target if 2303 * no target was specified and one of following 2304 * conditions is met: 2305 * 2306 * - there's no workload specified 2307 * - there is workload specified but all requested 2308 * events are system wide events 2309 */ 2310 if (!target__none(&target)) 2311 return; 2312 2313 if (!forks) 2314 target.system_wide = true; 2315 else { 2316 struct evsel *counter; 2317 2318 evlist__for_each_entry(evsel_list, counter) { 2319 if (!counter->core.requires_cpu && 2320 !evsel__name_is(counter, "duration_time")) { 2321 return; 2322 } 2323 } 2324 2325 if (evsel_list->core.nr_entries) 2326 target.system_wide = true; 2327 } 2328 } 2329 2330 #ifdef HAVE_ARCH_X86_64_SUPPORT 2331 static int parse_tpebs_mode(const struct option *opt, const char *str, 2332 int unset __maybe_unused) 2333 { 2334 enum tpebs_mode *mode = opt->value; 2335 2336 if (!strcasecmp("mean", str)) { 2337 *mode = TPEBS_MODE__MEAN; 2338 return 0; 2339 } 2340 if (!strcasecmp("min", str)) { 2341 *mode = TPEBS_MODE__MIN; 2342 return 0; 2343 } 2344 if (!strcasecmp("max", str)) { 2345 *mode = TPEBS_MODE__MAX; 2346 return 0; 2347 } 2348 if (!strcasecmp("last", str)) { 2349 *mode = TPEBS_MODE__LAST; 2350 return 0; 2351 } 2352 return -1; 2353 } 2354 #endif // HAVE_ARCH_X86_64_SUPPORT 2355 2356 int cmd_stat(int argc, const char **argv) 2357 { 2358 struct opt_aggr_mode opt_mode = {}; 2359 struct option stat_options[] = { 2360 OPT_BOOLEAN('T', "transaction", &transaction_run, 2361 "hardware transaction statistics"), 2362 OPT_CALLBACK('e', "event", &parse_events_option_args, "event", 2363 "event selector. use 'perf list' to list available events", 2364 parse_events_option), 2365 OPT_CALLBACK(0, "filter", &evsel_list, "filter", 2366 "event filter", parse_filter), 2367 OPT_BOOLEAN('i', "no-inherit", &stat_config.no_inherit, 2368 "child tasks do not inherit counters"), 2369 OPT_STRING('p', "pid", &target.pid, "pid", 2370 "stat events on existing process id"), 2371 OPT_STRING('t', "tid", &target.tid, "tid", 2372 "stat events on existing thread id"), 2373 #ifdef HAVE_BPF_SKEL 2374 OPT_STRING('b', "bpf-prog", &target.bpf_str, "bpf-prog-id", 2375 "stat events on existing bpf program id"), 2376 OPT_BOOLEAN(0, "bpf-counters", &target.use_bpf, 2377 "use bpf program to count events"), 2378 OPT_STRING(0, "bpf-attr-map", &target.attr_map, "attr-map-path", 2379 "path to perf_event_attr map"), 2380 #endif 2381 OPT_BOOLEAN('a', "all-cpus", &target.system_wide, 2382 "system-wide collection from all CPUs"), 2383 OPT_BOOLEAN(0, "scale", &stat_config.scale, 2384 "Use --no-scale to disable counter scaling for multiplexing"), 2385 OPT_INCR('v', "verbose", &verbose, 2386 "be more verbose (show counter open errors, etc)"), 2387 OPT_INTEGER('r', "repeat", &stat_config.run_count, 2388 "repeat command and print average + stddev (max: 100, forever: 0)"), 2389 OPT_BOOLEAN(0, "table", &stat_config.walltime_run_table, 2390 "display details about each run (only with -r option)"), 2391 OPT_BOOLEAN('n', "null", &stat_config.null_run, 2392 "null run - dont start any counters"), 2393 OPT_INCR('d', "detailed", &detailed_run, 2394 "detailed run - start a lot of events"), 2395 OPT_BOOLEAN('S', "sync", &sync_run, 2396 "call sync() before starting a run"), 2397 OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL, 2398 "print large numbers with thousands\' separators", 2399 stat__set_big_num), 2400 OPT_STRING('C', "cpu", &target.cpu_list, "cpu", 2401 "list of cpus to monitor in system-wide"), 2402 OPT_BOOLEAN('A', "no-aggr", &opt_mode.no_aggr, 2403 "disable aggregation across CPUs or PMUs"), 2404 OPT_BOOLEAN(0, "no-merge", &opt_mode.no_aggr, 2405 "disable aggregation the same as -A or -no-aggr"), 2406 OPT_BOOLEAN(0, "hybrid-merge", &stat_config.hybrid_merge, 2407 "Merge identical named hybrid events"), 2408 OPT_STRING('x', "field-separator", &stat_config.csv_sep, "separator", 2409 "print counts with custom separator"), 2410 OPT_BOOLEAN('j', "json-output", &stat_config.json_output, 2411 "print counts in JSON format"), 2412 OPT_CALLBACK('G', "cgroup", &evsel_list, "name", 2413 "monitor event in cgroup name only", parse_stat_cgroups), 2414 OPT_STRING(0, "for-each-cgroup", &stat_config.cgroup_list, "name", 2415 "expand events for each cgroup"), 2416 OPT_STRING('o', "output", &output_name, "file", "output file name"), 2417 OPT_BOOLEAN(0, "append", &append_file, "append to the output file"), 2418 OPT_INTEGER(0, "log-fd", &output_fd, 2419 "log output to fd, instead of stderr"), 2420 OPT_STRING(0, "pre", &pre_cmd, "command", 2421 "command to run prior to the measured command"), 2422 OPT_STRING(0, "post", &post_cmd, "command", 2423 "command to run after to the measured command"), 2424 OPT_UINTEGER('I', "interval-print", &stat_config.interval, 2425 "print counts at regular interval in ms " 2426 "(overhead is possible for values <= 100ms)"), 2427 OPT_INTEGER(0, "interval-count", &stat_config.times, 2428 "print counts for fixed number of times"), 2429 OPT_BOOLEAN(0, "interval-clear", &stat_config.interval_clear, 2430 "clear screen in between new interval"), 2431 OPT_UINTEGER(0, "timeout", &stat_config.timeout, 2432 "stop workload and print counts after a timeout period in ms (>= 10ms)"), 2433 OPT_BOOLEAN(0, "per-socket", &opt_mode.socket, 2434 "aggregate counts per processor socket"), 2435 OPT_BOOLEAN(0, "per-die", &opt_mode.die, "aggregate counts per processor die"), 2436 OPT_BOOLEAN(0, "per-cluster", &opt_mode.cluster, 2437 "aggregate counts per processor cluster"), 2438 OPT_CALLBACK_OPTARG(0, "per-cache", &opt_mode, &stat_config.aggr_level, 2439 "cache level", "aggregate count at this cache level (Default: LLC)", 2440 parse_cache_level), 2441 OPT_BOOLEAN(0, "per-core", &opt_mode.core, 2442 "aggregate counts per physical processor core"), 2443 OPT_BOOLEAN(0, "per-thread", &opt_mode.thread, "aggregate counts per thread"), 2444 OPT_BOOLEAN(0, "per-node", &opt_mode.node, "aggregate counts per numa node"), 2445 OPT_INTEGER('D', "delay", &target.initial_delay, 2446 "ms to wait before starting measurement after program start (-1: start with events disabled)"), 2447 OPT_CALLBACK_NOOPT(0, "metric-only", &stat_config.metric_only, NULL, 2448 "Only print computed metrics. No raw values", enable_metric_only), 2449 OPT_BOOLEAN(0, "metric-no-group", &stat_config.metric_no_group, 2450 "don't group metric events, impacts multiplexing"), 2451 OPT_BOOLEAN(0, "metric-no-merge", &stat_config.metric_no_merge, 2452 "don't try to share events between metrics in a group"), 2453 OPT_BOOLEAN(0, "metric-no-threshold", &stat_config.metric_no_threshold, 2454 "disable adding events for the metric threshold calculation"), 2455 OPT_BOOLEAN(0, "topdown", &topdown_run, 2456 "measure top-down statistics"), 2457 #ifdef HAVE_ARCH_X86_64_SUPPORT 2458 OPT_BOOLEAN(0, "record-tpebs", &tpebs_recording, 2459 "enable recording for tpebs when retire_latency required"), 2460 OPT_CALLBACK(0, "tpebs-mode", &tpebs_mode, "tpebs-mode", 2461 "Mode of TPEBS recording: mean, min or max", 2462 parse_tpebs_mode), 2463 #endif 2464 OPT_UINTEGER(0, "td-level", &stat_config.topdown_level, 2465 "Set the metrics level for the top-down statistics (0: max level)"), 2466 OPT_BOOLEAN(0, "smi-cost", &smi_cost, 2467 "measure SMI cost"), 2468 OPT_CALLBACK('M', "metrics", &evsel_list, "metric/metric group list", 2469 "monitor specified metrics or metric groups (separated by ,)", 2470 append_metric_groups), 2471 OPT_BOOLEAN_FLAG(0, "all-kernel", &stat_config.all_kernel, 2472 "Configure all used events to run in kernel space.", 2473 PARSE_OPT_EXCLUSIVE), 2474 OPT_BOOLEAN_FLAG(0, "all-user", &stat_config.all_user, 2475 "Configure all used events to run in user space.", 2476 PARSE_OPT_EXCLUSIVE), 2477 OPT_BOOLEAN(0, "percore-show-thread", &stat_config.percore_show_thread, 2478 "Use with 'percore' event qualifier to show the event " 2479 "counts of one hardware thread by sum up total hardware " 2480 "threads of same physical core"), 2481 OPT_BOOLEAN(0, "summary", &stat_config.summary, 2482 "print summary for interval mode"), 2483 OPT_BOOLEAN(0, "no-csv-summary", &stat_config.no_csv_summary, 2484 "don't print 'summary' for CSV summary output"), 2485 OPT_BOOLEAN(0, "quiet", &quiet, 2486 "don't print any output, messages or warnings (useful with record)"), 2487 OPT_CALLBACK(0, "cputype", &evsel_list, "hybrid cpu type", 2488 "Only enable events on applying cpu with this type " 2489 "for hybrid platform (e.g. core or atom)", 2490 parse_cputype), 2491 #ifdef HAVE_LIBPFM 2492 OPT_CALLBACK(0, "pfm-events", &evsel_list, "event", 2493 "libpfm4 event selector. use 'perf list' to list available events", 2494 parse_libpfm_events_option), 2495 #endif 2496 OPT_CALLBACK(0, "control", &stat_config, "fd:ctl-fd[,ack-fd] or fifo:ctl-fifo[,ack-fifo]", 2497 "Listen on ctl-fd descriptor for command to control measurement ('enable': enable events, 'disable': disable events).\n" 2498 "\t\t\t Optionally send control command completion ('ack\\n') to ack-fd descriptor.\n" 2499 "\t\t\t Alternatively, ctl-fifo / ack-fifo will be opened and used as ctl-fd / ack-fd.", 2500 parse_control_option), 2501 OPT_CALLBACK_OPTARG(0, "iostat", &evsel_list, &stat_config, "default", 2502 "measure I/O performance metrics provided by arch/platform", 2503 iostat_parse), 2504 OPT_END() 2505 }; 2506 const char * const stat_usage[] = { 2507 "perf stat [<options>] [<command>]", 2508 NULL 2509 }; 2510 int status = -EINVAL, run_idx, err; 2511 const char *mode; 2512 FILE *output = stderr; 2513 unsigned int interval, timeout; 2514 const char * const stat_subcommands[] = { "record", "report" }; 2515 char errbuf[BUFSIZ]; 2516 2517 setlocale(LC_ALL, ""); 2518 2519 evsel_list = evlist__new(); 2520 if (evsel_list == NULL) 2521 return -ENOMEM; 2522 2523 parse_events__shrink_config_terms(); 2524 2525 /* String-parsing callback-based options would segfault when negated */ 2526 set_option_flag(stat_options, 'e', "event", PARSE_OPT_NONEG); 2527 set_option_flag(stat_options, 'M', "metrics", PARSE_OPT_NONEG); 2528 set_option_flag(stat_options, 'G', "cgroup", PARSE_OPT_NONEG); 2529 2530 argc = parse_options_subcommand(argc, argv, stat_options, stat_subcommands, 2531 (const char **) stat_usage, 2532 PARSE_OPT_STOP_AT_NON_OPTION); 2533 2534 stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(&opt_mode); 2535 2536 if (stat_config.csv_sep) { 2537 stat_config.csv_output = true; 2538 if (!strcmp(stat_config.csv_sep, "\\t")) 2539 stat_config.csv_sep = "\t"; 2540 } else 2541 stat_config.csv_sep = DEFAULT_SEPARATOR; 2542 2543 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) { 2544 argc = __cmd_record(stat_options, &opt_mode, argc, argv); 2545 if (argc < 0) 2546 return -1; 2547 } else if (argc && strlen(argv[0]) > 2 && strstarts("report", argv[0])) 2548 return __cmd_report(argc, argv); 2549 2550 interval = stat_config.interval; 2551 timeout = stat_config.timeout; 2552 2553 /* 2554 * For record command the -o is already taken care of. 2555 */ 2556 if (!STAT_RECORD && output_name && strcmp(output_name, "-")) 2557 output = NULL; 2558 2559 if (output_name && output_fd) { 2560 fprintf(stderr, "cannot use both --output and --log-fd\n"); 2561 parse_options_usage(stat_usage, stat_options, "o", 1); 2562 parse_options_usage(NULL, stat_options, "log-fd", 0); 2563 goto out; 2564 } 2565 2566 if (stat_config.metric_only && stat_config.aggr_mode == AGGR_THREAD) { 2567 fprintf(stderr, "--metric-only is not supported with --per-thread\n"); 2568 goto out; 2569 } 2570 2571 if (stat_config.metric_only && stat_config.run_count > 1) { 2572 fprintf(stderr, "--metric-only is not supported with -r\n"); 2573 goto out; 2574 } 2575 2576 if (stat_config.csv_output || (stat_config.metric_only && stat_config.json_output)) { 2577 /* 2578 * Current CSV and metric-only JSON output doesn't display the 2579 * metric threshold so don't compute it. 2580 */ 2581 stat_config.metric_no_threshold = true; 2582 } 2583 2584 if (stat_config.walltime_run_table && stat_config.run_count <= 1) { 2585 fprintf(stderr, "--table is only supported with -r\n"); 2586 parse_options_usage(stat_usage, stat_options, "r", 1); 2587 parse_options_usage(NULL, stat_options, "table", 0); 2588 goto out; 2589 } 2590 2591 if (output_fd < 0) { 2592 fprintf(stderr, "argument to --log-fd must be a > 0\n"); 2593 parse_options_usage(stat_usage, stat_options, "log-fd", 0); 2594 goto out; 2595 } 2596 2597 if (!output && !quiet) { 2598 struct timespec tm; 2599 mode = append_file ? "a" : "w"; 2600 2601 output = fopen(output_name, mode); 2602 if (!output) { 2603 perror("failed to create output file"); 2604 return -1; 2605 } 2606 if (!stat_config.json_output) { 2607 clock_gettime(CLOCK_REALTIME, &tm); 2608 fprintf(output, "# started on %s\n", ctime(&tm.tv_sec)); 2609 } 2610 } else if (output_fd > 0) { 2611 mode = append_file ? "a" : "w"; 2612 output = fdopen(output_fd, mode); 2613 if (!output) { 2614 perror("Failed opening logfd"); 2615 return -errno; 2616 } 2617 } 2618 2619 if (stat_config.interval_clear && !isatty(fileno(output))) { 2620 fprintf(stderr, "--interval-clear does not work with output\n"); 2621 parse_options_usage(stat_usage, stat_options, "o", 1); 2622 parse_options_usage(NULL, stat_options, "log-fd", 0); 2623 parse_options_usage(NULL, stat_options, "interval-clear", 0); 2624 return -1; 2625 } 2626 2627 stat_config.output = output; 2628 2629 /* 2630 * let the spreadsheet do the pretty-printing 2631 */ 2632 if (stat_config.csv_output) { 2633 /* User explicitly passed -B? */ 2634 if (big_num_opt == 1) { 2635 fprintf(stderr, "-B option not supported with -x\n"); 2636 parse_options_usage(stat_usage, stat_options, "B", 1); 2637 parse_options_usage(NULL, stat_options, "x", 1); 2638 goto out; 2639 } else /* Nope, so disable big number formatting */ 2640 stat_config.big_num = false; 2641 } else if (big_num_opt == 0) /* User passed --no-big-num */ 2642 stat_config.big_num = false; 2643 2644 target.inherit = !stat_config.no_inherit; 2645 err = target__validate(&target); 2646 if (err) { 2647 target__strerror(&target, err, errbuf, BUFSIZ); 2648 pr_warning("%s\n", errbuf); 2649 } 2650 2651 setup_system_wide(argc); 2652 2653 /* 2654 * Display user/system times only for single 2655 * run and when there's specified tracee. 2656 */ 2657 if ((stat_config.run_count == 1) && target__none(&target)) 2658 stat_config.ru_display = true; 2659 2660 if (stat_config.run_count < 0) { 2661 pr_err("Run count must be a positive number\n"); 2662 parse_options_usage(stat_usage, stat_options, "r", 1); 2663 goto out; 2664 } else if (stat_config.run_count == 0) { 2665 forever = true; 2666 stat_config.run_count = 1; 2667 } 2668 2669 if (stat_config.walltime_run_table) { 2670 stat_config.walltime_run = zalloc(stat_config.run_count * sizeof(stat_config.walltime_run[0])); 2671 if (!stat_config.walltime_run) { 2672 pr_err("failed to setup -r option"); 2673 goto out; 2674 } 2675 } 2676 2677 if ((stat_config.aggr_mode == AGGR_THREAD) && 2678 !target__has_task(&target)) { 2679 if (!target.system_wide || target.cpu_list) { 2680 fprintf(stderr, "The --per-thread option is only " 2681 "available when monitoring via -p -t -a " 2682 "options or only --per-thread.\n"); 2683 parse_options_usage(NULL, stat_options, "p", 1); 2684 parse_options_usage(NULL, stat_options, "t", 1); 2685 goto out; 2686 } 2687 } 2688 2689 /* 2690 * no_aggr, cgroup are for system-wide only 2691 * --per-thread is aggregated per thread, we dont mix it with cpu mode 2692 */ 2693 if (((stat_config.aggr_mode != AGGR_GLOBAL && 2694 stat_config.aggr_mode != AGGR_THREAD) || 2695 (nr_cgroups || stat_config.cgroup_list)) && 2696 !target__has_cpu(&target)) { 2697 fprintf(stderr, "both cgroup and no-aggregation " 2698 "modes only available in system-wide mode\n"); 2699 2700 parse_options_usage(stat_usage, stat_options, "G", 1); 2701 parse_options_usage(NULL, stat_options, "A", 1); 2702 parse_options_usage(NULL, stat_options, "a", 1); 2703 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2704 goto out; 2705 } 2706 2707 if (stat_config.iostat_run) { 2708 status = iostat_prepare(evsel_list, &stat_config); 2709 if (status) 2710 goto out; 2711 if (iostat_mode == IOSTAT_LIST) { 2712 iostat_list(evsel_list, &stat_config); 2713 goto out; 2714 } else if (verbose > 0) 2715 iostat_list(evsel_list, &stat_config); 2716 if (iostat_mode == IOSTAT_RUN && !target__has_cpu(&target)) 2717 target.system_wide = true; 2718 } 2719 2720 if ((stat_config.aggr_mode == AGGR_THREAD) && (target.system_wide)) 2721 target.per_thread = true; 2722 2723 stat_config.system_wide = target.system_wide; 2724 if (target.cpu_list) { 2725 stat_config.user_requested_cpu_list = strdup(target.cpu_list); 2726 if (!stat_config.user_requested_cpu_list) { 2727 status = -ENOMEM; 2728 goto out; 2729 } 2730 } 2731 2732 /* 2733 * Metric parsing needs to be delayed as metrics may optimize events 2734 * knowing the target is system-wide. 2735 */ 2736 if (metrics) { 2737 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 2738 int ret = metricgroup__parse_groups(evsel_list, pmu, metrics, 2739 stat_config.metric_no_group, 2740 stat_config.metric_no_merge, 2741 stat_config.metric_no_threshold, 2742 stat_config.user_requested_cpu_list, 2743 stat_config.system_wide, 2744 stat_config.hardware_aware_grouping, 2745 &stat_config.metric_events); 2746 2747 zfree(&metrics); 2748 if (ret) { 2749 status = ret; 2750 goto out; 2751 } 2752 } 2753 2754 if (add_default_events()) 2755 goto out; 2756 2757 if (stat_config.cgroup_list) { 2758 if (nr_cgroups > 0) { 2759 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 2760 parse_options_usage(stat_usage, stat_options, "G", 1); 2761 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2762 goto out; 2763 } 2764 2765 if (evlist__expand_cgroup(evsel_list, stat_config.cgroup_list, 2766 &stat_config.metric_events, true) < 0) { 2767 parse_options_usage(stat_usage, stat_options, 2768 "for-each-cgroup", 0); 2769 goto out; 2770 } 2771 } 2772 2773 evlist__warn_user_requested_cpus(evsel_list, target.cpu_list); 2774 2775 if (evlist__create_maps(evsel_list, &target) < 0) { 2776 if (target__has_task(&target)) { 2777 pr_err("Problems finding threads of monitor\n"); 2778 parse_options_usage(stat_usage, stat_options, "p", 1); 2779 parse_options_usage(NULL, stat_options, "t", 1); 2780 } else if (target__has_cpu(&target)) { 2781 perror("failed to parse CPUs map"); 2782 parse_options_usage(stat_usage, stat_options, "C", 1); 2783 parse_options_usage(NULL, stat_options, "a", 1); 2784 } 2785 goto out; 2786 } 2787 2788 evlist__check_cpu_maps(evsel_list); 2789 2790 /* 2791 * Initialize thread_map with comm names, 2792 * so we could print it out on output. 2793 */ 2794 if (stat_config.aggr_mode == AGGR_THREAD) { 2795 thread_map__read_comms(evsel_list->core.threads); 2796 } 2797 2798 if (stat_config.aggr_mode == AGGR_NODE) 2799 cpu__setup_cpunode_map(); 2800 2801 if (stat_config.times && interval) 2802 interval_count = true; 2803 else if (stat_config.times && !interval) { 2804 pr_err("interval-count option should be used together with " 2805 "interval-print.\n"); 2806 parse_options_usage(stat_usage, stat_options, "interval-count", 0); 2807 parse_options_usage(stat_usage, stat_options, "I", 1); 2808 goto out; 2809 } 2810 2811 if (timeout && timeout < 100) { 2812 if (timeout < 10) { 2813 pr_err("timeout must be >= 10ms.\n"); 2814 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2815 goto out; 2816 } else 2817 pr_warning("timeout < 100ms. " 2818 "The overhead percentage could be high in some cases. " 2819 "Please proceed with caution.\n"); 2820 } 2821 if (timeout && interval) { 2822 pr_err("timeout option is not supported with interval-print.\n"); 2823 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2824 parse_options_usage(stat_usage, stat_options, "I", 1); 2825 goto out; 2826 } 2827 2828 if (perf_stat_init_aggr_mode()) 2829 goto out; 2830 2831 if (evlist__alloc_stats(&stat_config, evsel_list, interval)) 2832 goto out; 2833 2834 /* 2835 * Set sample_type to PERF_SAMPLE_IDENTIFIER, which should be harmless 2836 * while avoiding that older tools show confusing messages. 2837 * 2838 * However for pipe sessions we need to keep it zero, 2839 * because script's perf_evsel__check_attr is triggered 2840 * by attr->sample_type != 0, and we can't run it on 2841 * stat sessions. 2842 */ 2843 stat_config.identifier = !(STAT_RECORD && perf_stat.data.is_pipe); 2844 2845 /* 2846 * We dont want to block the signals - that would cause 2847 * child tasks to inherit that and Ctrl-C would not work. 2848 * What we want is for Ctrl-C to work in the exec()-ed 2849 * task, but being ignored by perf stat itself: 2850 */ 2851 atexit(sig_atexit); 2852 if (!forever) 2853 signal(SIGINT, skip_signal); 2854 signal(SIGCHLD, skip_signal); 2855 signal(SIGALRM, skip_signal); 2856 signal(SIGABRT, skip_signal); 2857 2858 if (evlist__initialize_ctlfd(evsel_list, stat_config.ctl_fd, stat_config.ctl_fd_ack)) 2859 goto out; 2860 2861 /* Enable ignoring missing threads when -p option is defined. */ 2862 evlist__first(evsel_list)->ignore_missing_thread = target.pid; 2863 status = 0; 2864 for (run_idx = 0; forever || run_idx < stat_config.run_count; run_idx++) { 2865 if (stat_config.run_count != 1 && verbose > 0) 2866 fprintf(output, "[ perf stat: executing run #%d ... ]\n", 2867 run_idx + 1); 2868 2869 if (run_idx != 0) 2870 evlist__reset_prev_raw_counts(evsel_list); 2871 2872 status = run_perf_stat(argc, argv, run_idx); 2873 if (status == -1) 2874 break; 2875 2876 if (forever && !interval) { 2877 print_counters(NULL, argc, argv); 2878 perf_stat__reset_stats(); 2879 } 2880 } 2881 2882 if (!forever && status != -1 && (!interval || stat_config.summary)) { 2883 if (stat_config.run_count > 1) 2884 evlist__copy_res_stats(&stat_config, evsel_list); 2885 print_counters(NULL, argc, argv); 2886 } 2887 2888 evlist__finalize_ctlfd(evsel_list); 2889 2890 if (STAT_RECORD) { 2891 /* 2892 * We synthesize the kernel mmap record just so that older tools 2893 * don't emit warnings about not being able to resolve symbols 2894 * due to /proc/sys/kernel/kptr_restrict settings and instead provide 2895 * a saner message about no samples being in the perf.data file. 2896 * 2897 * This also serves to suppress a warning about f_header.data.size == 0 2898 * in header.c at the moment 'perf stat record' gets introduced, which 2899 * is not really needed once we start adding the stat specific PERF_RECORD_ 2900 * records, but the need to suppress the kptr_restrict messages in older 2901 * tools remain -acme 2902 */ 2903 int fd = perf_data__fd(&perf_stat.data); 2904 2905 err = perf_event__synthesize_kernel_mmap((void *)&perf_stat, 2906 process_synthesized_event, 2907 &perf_stat.session->machines.host); 2908 if (err) { 2909 pr_warning("Couldn't synthesize the kernel mmap record, harmless, " 2910 "older tools may produce warnings about this file\n."); 2911 } 2912 2913 if (!interval) { 2914 if (WRITE_STAT_ROUND_EVENT(walltime_nsecs_stats.max, FINAL)) 2915 pr_err("failed to write stat round event\n"); 2916 } 2917 2918 if (!perf_stat.data.is_pipe) { 2919 perf_stat.session->header.data_size += perf_stat.bytes_written; 2920 perf_session__write_header(perf_stat.session, evsel_list, fd, true); 2921 } 2922 2923 evlist__close(evsel_list); 2924 perf_session__delete(perf_stat.session); 2925 } 2926 2927 perf_stat__exit_aggr_mode(); 2928 evlist__free_stats(evsel_list); 2929 out: 2930 if (stat_config.iostat_run) 2931 iostat_release(evsel_list); 2932 2933 zfree(&stat_config.walltime_run); 2934 zfree(&stat_config.user_requested_cpu_list); 2935 2936 if (smi_cost && smi_reset) 2937 sysfs__write_int(FREEZE_ON_SMI_PATH, 0); 2938 2939 evlist__delete(evsel_list); 2940 2941 metricgroup__rblist_exit(&stat_config.metric_events); 2942 evlist__close_control(stat_config.ctl_fd, stat_config.ctl_fd_ack, &stat_config.ctl_fd_close); 2943 2944 return status; 2945 } 2946