1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * builtin-stat.c 4 * 5 * Builtin stat command: Give a precise performance counters summary 6 * overview about any workload, CPU or specific PID. 7 * 8 * Sample output: 9 10 $ perf stat ./hackbench 10 11 12 Time: 0.118 13 14 Performance counter stats for './hackbench 10': 15 16 1708.761321 task-clock # 11.037 CPUs utilized 17 41,190 context-switches # 0.024 M/sec 18 6,735 CPU-migrations # 0.004 M/sec 19 17,318 page-faults # 0.010 M/sec 20 5,205,202,243 cycles # 3.046 GHz 21 3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle 22 1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle 23 2,603,501,247 instructions # 0.50 insns per cycle 24 # 1.48 stalled cycles per insn 25 484,357,498 branches # 283.455 M/sec 26 6,388,934 branch-misses # 1.32% of all branches 27 28 0.154822978 seconds time elapsed 29 30 * 31 * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com> 32 * 33 * Improvements and fixes by: 34 * 35 * Arjan van de Ven <arjan@linux.intel.com> 36 * Yanmin Zhang <yanmin.zhang@intel.com> 37 * Wu Fengguang <fengguang.wu@intel.com> 38 * Mike Galbraith <efault@gmx.de> 39 * Paul Mackerras <paulus@samba.org> 40 * Jaswinder Singh Rajput <jaswinder@kernel.org> 41 */ 42 43 #include "builtin.h" 44 #include "util/cgroup.h" 45 #include <subcmd/parse-options.h> 46 #include "util/parse-events.h" 47 #include "util/pmus.h" 48 #include "util/pmu.h" 49 #include "util/tool_pmu.h" 50 #include "util/event.h" 51 #include "util/evlist.h" 52 #include "util/evsel.h" 53 #include "util/debug.h" 54 #include "util/color.h" 55 #include "util/stat.h" 56 #include "util/header.h" 57 #include "util/cpumap.h" 58 #include "util/thread_map.h" 59 #include "util/counts.h" 60 #include "util/topdown.h" 61 #include "util/session.h" 62 #include "util/tool.h" 63 #include "util/string2.h" 64 #include "util/metricgroup.h" 65 #include "util/synthetic-events.h" 66 #include "util/target.h" 67 #include "util/time-utils.h" 68 #include "util/top.h" 69 #include "util/affinity.h" 70 #include "util/pfm.h" 71 #include "util/bpf_counter.h" 72 #include "util/iostat.h" 73 #include "util/util.h" 74 #include "util/intel-tpebs.h" 75 #include "asm/bug.h" 76 77 #include <linux/time64.h> 78 #include <linux/zalloc.h> 79 #include <api/fs/fs.h> 80 #include <errno.h> 81 #include <signal.h> 82 #include <stdlib.h> 83 #include <sys/prctl.h> 84 #include <inttypes.h> 85 #include <locale.h> 86 #include <math.h> 87 #include <sys/types.h> 88 #include <sys/stat.h> 89 #include <sys/wait.h> 90 #include <unistd.h> 91 #include <sys/time.h> 92 #include <sys/resource.h> 93 #include <linux/err.h> 94 95 #include <linux/ctype.h> 96 #include <perf/evlist.h> 97 #include <internal/threadmap.h> 98 99 #define DEFAULT_SEPARATOR " " 100 #define FREEZE_ON_SMI_PATH "bus/event_source/devices/cpu/freeze_on_smi" 101 102 static void print_counters(struct timespec *ts, int argc, const char **argv); 103 104 static struct evlist *evsel_list; 105 static struct parse_events_option_args parse_events_option_args = { 106 .evlistp = &evsel_list, 107 }; 108 109 static bool all_counters_use_bpf = true; 110 111 static struct target target; 112 113 static volatile sig_atomic_t child_pid = -1; 114 static int detailed_run = 0; 115 static bool transaction_run; 116 static bool topdown_run = false; 117 static bool smi_cost = false; 118 static bool smi_reset = false; 119 static int big_num_opt = -1; 120 static const char *pre_cmd = NULL; 121 static const char *post_cmd = NULL; 122 static bool sync_run = false; 123 static bool forever = false; 124 static bool force_metric_only = false; 125 static struct timespec ref_time; 126 static bool append_file; 127 static bool interval_count; 128 static const char *output_name; 129 static int output_fd; 130 static char *metrics; 131 132 struct perf_stat { 133 bool record; 134 struct perf_data data; 135 struct perf_session *session; 136 u64 bytes_written; 137 struct perf_tool tool; 138 bool maps_allocated; 139 struct perf_cpu_map *cpus; 140 struct perf_thread_map *threads; 141 enum aggr_mode aggr_mode; 142 u32 aggr_level; 143 }; 144 145 static struct perf_stat perf_stat; 146 #define STAT_RECORD perf_stat.record 147 148 static volatile sig_atomic_t done = 0; 149 150 /* Options set from the command line. */ 151 struct opt_aggr_mode { 152 bool node, socket, die, cluster, cache, core, thread, no_aggr; 153 }; 154 155 /* Turn command line option into most generic aggregation mode setting. */ 156 static enum aggr_mode opt_aggr_mode_to_aggr_mode(struct opt_aggr_mode *opt_mode) 157 { 158 enum aggr_mode mode = AGGR_GLOBAL; 159 160 if (opt_mode->node) 161 mode = AGGR_NODE; 162 if (opt_mode->socket) 163 mode = AGGR_SOCKET; 164 if (opt_mode->die) 165 mode = AGGR_DIE; 166 if (opt_mode->cluster) 167 mode = AGGR_CLUSTER; 168 if (opt_mode->cache) 169 mode = AGGR_CACHE; 170 if (opt_mode->core) 171 mode = AGGR_CORE; 172 if (opt_mode->thread) 173 mode = AGGR_THREAD; 174 if (opt_mode->no_aggr) 175 mode = AGGR_NONE; 176 return mode; 177 } 178 179 static void evlist__check_cpu_maps(struct evlist *evlist) 180 { 181 struct evsel *evsel, *warned_leader = NULL; 182 183 evlist__for_each_entry(evlist, evsel) { 184 struct evsel *leader = evsel__leader(evsel); 185 186 /* Check that leader matches cpus with each member. */ 187 if (leader == evsel) 188 continue; 189 if (perf_cpu_map__equal(leader->core.cpus, evsel->core.cpus)) 190 continue; 191 192 /* If there's mismatch disable the group and warn user. */ 193 if (warned_leader != leader) { 194 char buf[200]; 195 196 pr_warning("WARNING: grouped events cpus do not match.\n" 197 "Events with CPUs not matching the leader will " 198 "be removed from the group.\n"); 199 evsel__group_desc(leader, buf, sizeof(buf)); 200 pr_warning(" %s\n", buf); 201 warned_leader = leader; 202 } 203 if (verbose > 0) { 204 char buf[200]; 205 206 cpu_map__snprint(leader->core.cpus, buf, sizeof(buf)); 207 pr_warning(" %s: %s\n", leader->name, buf); 208 cpu_map__snprint(evsel->core.cpus, buf, sizeof(buf)); 209 pr_warning(" %s: %s\n", evsel->name, buf); 210 } 211 212 evsel__remove_from_group(evsel, leader); 213 } 214 } 215 216 static inline void diff_timespec(struct timespec *r, struct timespec *a, 217 struct timespec *b) 218 { 219 r->tv_sec = a->tv_sec - b->tv_sec; 220 if (a->tv_nsec < b->tv_nsec) { 221 r->tv_nsec = a->tv_nsec + NSEC_PER_SEC - b->tv_nsec; 222 r->tv_sec--; 223 } else { 224 r->tv_nsec = a->tv_nsec - b->tv_nsec ; 225 } 226 } 227 228 static void perf_stat__reset_stats(void) 229 { 230 evlist__reset_stats(evsel_list); 231 perf_stat__reset_shadow_stats(); 232 } 233 234 static int process_synthesized_event(const struct perf_tool *tool __maybe_unused, 235 union perf_event *event, 236 struct perf_sample *sample __maybe_unused, 237 struct machine *machine __maybe_unused) 238 { 239 if (perf_data__write(&perf_stat.data, event, event->header.size) < 0) { 240 pr_err("failed to write perf data, error: %m\n"); 241 return -1; 242 } 243 244 perf_stat.bytes_written += event->header.size; 245 return 0; 246 } 247 248 static int write_stat_round_event(u64 tm, u64 type) 249 { 250 return perf_event__synthesize_stat_round(NULL, tm, type, 251 process_synthesized_event, 252 NULL); 253 } 254 255 #define WRITE_STAT_ROUND_EVENT(time, interval) \ 256 write_stat_round_event(time, PERF_STAT_ROUND_TYPE__ ## interval) 257 258 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y) 259 260 static int evsel__write_stat_event(struct evsel *counter, int cpu_map_idx, u32 thread, 261 struct perf_counts_values *count) 262 { 263 struct perf_sample_id *sid = SID(counter, cpu_map_idx, thread); 264 struct perf_cpu cpu = perf_cpu_map__cpu(evsel__cpus(counter), cpu_map_idx); 265 266 return perf_event__synthesize_stat(NULL, cpu, thread, sid->id, count, 267 process_synthesized_event, NULL); 268 } 269 270 static int read_single_counter(struct evsel *counter, int cpu_map_idx, int thread) 271 { 272 int err = evsel__read_counter(counter, cpu_map_idx, thread); 273 274 /* 275 * Reading user and system time will fail when the process 276 * terminates. Use the wait4 values in that case. 277 */ 278 if (err && cpu_map_idx == 0 && 279 (evsel__tool_event(counter) == TOOL_PMU__EVENT_USER_TIME || 280 evsel__tool_event(counter) == TOOL_PMU__EVENT_SYSTEM_TIME)) { 281 u64 val, *start_time; 282 struct perf_counts_values *count = 283 perf_counts(counter->counts, cpu_map_idx, thread); 284 285 start_time = xyarray__entry(counter->start_times, cpu_map_idx, thread); 286 if (evsel__tool_event(counter) == TOOL_PMU__EVENT_USER_TIME) 287 val = ru_stats.ru_utime_usec_stat.mean; 288 else 289 val = ru_stats.ru_stime_usec_stat.mean; 290 count->ena = count->run = *start_time + val; 291 count->val = val; 292 return 0; 293 } 294 return err; 295 } 296 297 /* 298 * Read out the results of a single counter: 299 * do not aggregate counts across CPUs in system-wide mode 300 */ 301 static int read_counter_cpu(struct evsel *counter, int cpu_map_idx) 302 { 303 int nthreads = perf_thread_map__nr(evsel_list->core.threads); 304 int thread; 305 306 if (!counter->supported) 307 return -ENOENT; 308 309 for (thread = 0; thread < nthreads; thread++) { 310 struct perf_counts_values *count; 311 312 count = perf_counts(counter->counts, cpu_map_idx, thread); 313 314 /* 315 * The leader's group read loads data into its group members 316 * (via evsel__read_counter()) and sets their count->loaded. 317 */ 318 if (!perf_counts__is_loaded(counter->counts, cpu_map_idx, thread) && 319 read_single_counter(counter, cpu_map_idx, thread)) { 320 counter->counts->scaled = -1; 321 perf_counts(counter->counts, cpu_map_idx, thread)->ena = 0; 322 perf_counts(counter->counts, cpu_map_idx, thread)->run = 0; 323 return -1; 324 } 325 326 perf_counts__set_loaded(counter->counts, cpu_map_idx, thread, false); 327 328 if (STAT_RECORD) { 329 if (evsel__write_stat_event(counter, cpu_map_idx, thread, count)) { 330 pr_err("failed to write stat event\n"); 331 return -1; 332 } 333 } 334 335 if (verbose > 1) { 336 fprintf(stat_config.output, 337 "%s: %d: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", 338 evsel__name(counter), 339 perf_cpu_map__cpu(evsel__cpus(counter), 340 cpu_map_idx).cpu, 341 count->val, count->ena, count->run); 342 } 343 } 344 345 return 0; 346 } 347 348 static int read_affinity_counters(void) 349 { 350 struct evlist_cpu_iterator evlist_cpu_itr; 351 struct affinity saved_affinity, *affinity; 352 353 if (all_counters_use_bpf) 354 return 0; 355 356 if (!target__has_cpu(&target) || target__has_per_thread(&target)) 357 affinity = NULL; 358 else if (affinity__setup(&saved_affinity) < 0) 359 return -1; 360 else 361 affinity = &saved_affinity; 362 363 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 364 struct evsel *counter = evlist_cpu_itr.evsel; 365 366 if (evsel__is_bpf(counter)) 367 continue; 368 369 if (!counter->err) 370 counter->err = read_counter_cpu(counter, evlist_cpu_itr.cpu_map_idx); 371 } 372 if (affinity) 373 affinity__cleanup(&saved_affinity); 374 375 return 0; 376 } 377 378 static int read_bpf_map_counters(void) 379 { 380 struct evsel *counter; 381 int err; 382 383 evlist__for_each_entry(evsel_list, counter) { 384 if (!evsel__is_bpf(counter)) 385 continue; 386 387 err = bpf_counter__read(counter); 388 if (err) 389 return err; 390 } 391 return 0; 392 } 393 394 static int read_counters(void) 395 { 396 if (!stat_config.stop_read_counter) { 397 if (read_bpf_map_counters() || 398 read_affinity_counters()) 399 return -1; 400 } 401 return 0; 402 } 403 404 static void process_counters(void) 405 { 406 struct evsel *counter; 407 408 evlist__for_each_entry(evsel_list, counter) { 409 if (counter->err) 410 pr_debug("failed to read counter %s\n", counter->name); 411 if (counter->err == 0 && perf_stat_process_counter(&stat_config, counter)) 412 pr_warning("failed to process counter %s\n", counter->name); 413 counter->err = 0; 414 } 415 416 perf_stat_merge_counters(&stat_config, evsel_list); 417 perf_stat_process_percore(&stat_config, evsel_list); 418 } 419 420 static void process_interval(void) 421 { 422 struct timespec ts, rs; 423 424 clock_gettime(CLOCK_MONOTONIC, &ts); 425 diff_timespec(&rs, &ts, &ref_time); 426 427 evlist__reset_aggr_stats(evsel_list); 428 429 if (read_counters() == 0) 430 process_counters(); 431 432 if (STAT_RECORD) { 433 if (WRITE_STAT_ROUND_EVENT(rs.tv_sec * NSEC_PER_SEC + rs.tv_nsec, INTERVAL)) 434 pr_err("failed to write stat round event\n"); 435 } 436 437 init_stats(&walltime_nsecs_stats); 438 update_stats(&walltime_nsecs_stats, stat_config.interval * 1000000ULL); 439 print_counters(&rs, 0, NULL); 440 } 441 442 static bool handle_interval(unsigned int interval, int *times) 443 { 444 if (interval) { 445 process_interval(); 446 if (interval_count && !(--(*times))) 447 return true; 448 } 449 return false; 450 } 451 452 static int enable_counters(void) 453 { 454 struct evsel *evsel; 455 int err; 456 457 evlist__for_each_entry(evsel_list, evsel) { 458 if (!evsel__is_bpf(evsel)) 459 continue; 460 461 err = bpf_counter__enable(evsel); 462 if (err) 463 return err; 464 } 465 466 if (!target__enable_on_exec(&target)) { 467 if (!all_counters_use_bpf) 468 evlist__enable(evsel_list); 469 } 470 return 0; 471 } 472 473 static void disable_counters(void) 474 { 475 struct evsel *counter; 476 477 /* 478 * If we don't have tracee (attaching to task or cpu), counters may 479 * still be running. To get accurate group ratios, we must stop groups 480 * from counting before reading their constituent counters. 481 */ 482 if (!target__none(&target)) { 483 evlist__for_each_entry(evsel_list, counter) 484 bpf_counter__disable(counter); 485 if (!all_counters_use_bpf) 486 evlist__disable(evsel_list); 487 } 488 } 489 490 static volatile sig_atomic_t workload_exec_errno; 491 492 /* 493 * evlist__prepare_workload will send a SIGUSR1 494 * if the fork fails, since we asked by setting its 495 * want_signal to true. 496 */ 497 static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info, 498 void *ucontext __maybe_unused) 499 { 500 workload_exec_errno = info->si_value.sival_int; 501 } 502 503 static bool evsel__should_store_id(struct evsel *counter) 504 { 505 return STAT_RECORD || counter->core.attr.read_format & PERF_FORMAT_ID; 506 } 507 508 static bool is_target_alive(struct target *_target, 509 struct perf_thread_map *threads) 510 { 511 struct stat st; 512 int i; 513 514 if (!target__has_task(_target)) 515 return true; 516 517 for (i = 0; i < threads->nr; i++) { 518 char path[PATH_MAX]; 519 520 scnprintf(path, PATH_MAX, "%s/%d", procfs__mountpoint(), 521 threads->map[i].pid); 522 523 if (!stat(path, &st)) 524 return true; 525 } 526 527 return false; 528 } 529 530 static void process_evlist(struct evlist *evlist, unsigned int interval) 531 { 532 enum evlist_ctl_cmd cmd = EVLIST_CTL_CMD_UNSUPPORTED; 533 534 if (evlist__ctlfd_process(evlist, &cmd) > 0) { 535 switch (cmd) { 536 case EVLIST_CTL_CMD_ENABLE: 537 fallthrough; 538 case EVLIST_CTL_CMD_DISABLE: 539 if (interval) 540 process_interval(); 541 break; 542 case EVLIST_CTL_CMD_SNAPSHOT: 543 case EVLIST_CTL_CMD_ACK: 544 case EVLIST_CTL_CMD_UNSUPPORTED: 545 case EVLIST_CTL_CMD_EVLIST: 546 case EVLIST_CTL_CMD_STOP: 547 case EVLIST_CTL_CMD_PING: 548 default: 549 break; 550 } 551 } 552 } 553 554 static void compute_tts(struct timespec *time_start, struct timespec *time_stop, 555 int *time_to_sleep) 556 { 557 int tts = *time_to_sleep; 558 struct timespec time_diff; 559 560 diff_timespec(&time_diff, time_stop, time_start); 561 562 tts -= time_diff.tv_sec * MSEC_PER_SEC + 563 time_diff.tv_nsec / NSEC_PER_MSEC; 564 565 if (tts < 0) 566 tts = 0; 567 568 *time_to_sleep = tts; 569 } 570 571 static int dispatch_events(bool forks, int timeout, int interval, int *times) 572 { 573 int child_exited = 0, status = 0; 574 int time_to_sleep, sleep_time; 575 struct timespec time_start, time_stop; 576 577 if (interval) 578 sleep_time = interval; 579 else if (timeout) 580 sleep_time = timeout; 581 else 582 sleep_time = 1000; 583 584 time_to_sleep = sleep_time; 585 586 while (!done) { 587 if (forks) 588 child_exited = waitpid(child_pid, &status, WNOHANG); 589 else 590 child_exited = !is_target_alive(&target, evsel_list->core.threads) ? 1 : 0; 591 592 if (child_exited) 593 break; 594 595 clock_gettime(CLOCK_MONOTONIC, &time_start); 596 if (!(evlist__poll(evsel_list, time_to_sleep) > 0)) { /* poll timeout or EINTR */ 597 if (timeout || handle_interval(interval, times)) 598 break; 599 time_to_sleep = sleep_time; 600 } else { /* fd revent */ 601 process_evlist(evsel_list, interval); 602 clock_gettime(CLOCK_MONOTONIC, &time_stop); 603 compute_tts(&time_start, &time_stop, &time_to_sleep); 604 } 605 } 606 607 return status; 608 } 609 610 enum counter_recovery { 611 COUNTER_SKIP, 612 COUNTER_RETRY, 613 COUNTER_FATAL, 614 }; 615 616 static enum counter_recovery stat_handle_error(struct evsel *counter, int err) 617 { 618 char msg[BUFSIZ]; 619 620 if (counter->skippable) { 621 if (verbose > 0) { 622 ui__warning("skipping event %s that kernel failed to open .\n", 623 evsel__name(counter)); 624 } 625 counter->supported = false; 626 counter->errored = true; 627 return COUNTER_SKIP; 628 } 629 630 /* 631 * PPC returns ENXIO for HW counters until 2.6.37 632 * (behavior changed with commit b0a873e). 633 */ 634 if (err == EINVAL || err == ENOSYS || err == ENOENT || err == ENXIO) { 635 if (verbose > 0) { 636 ui__warning("%s event is not supported by the kernel.\n", 637 evsel__name(counter)); 638 } 639 counter->supported = false; 640 /* 641 * errored is a sticky flag that means one of the counter's 642 * cpu event had a problem and needs to be reexamined. 643 */ 644 counter->errored = true; 645 } else if (evsel__fallback(counter, &target, err, msg, sizeof(msg))) { 646 if (verbose > 0) 647 ui__warning("%s\n", msg); 648 return COUNTER_RETRY; 649 } else if (target__has_per_thread(&target) && err != EOPNOTSUPP && 650 evsel_list->core.threads && 651 evsel_list->core.threads->err_thread != -1) { 652 /* 653 * For global --per-thread case, skip current 654 * error thread. 655 */ 656 if (!thread_map__remove(evsel_list->core.threads, 657 evsel_list->core.threads->err_thread)) { 658 evsel_list->core.threads->err_thread = -1; 659 return COUNTER_RETRY; 660 } 661 } else if (err == EOPNOTSUPP) { 662 if (verbose > 0) { 663 ui__warning("%s event is not supported by the kernel.\n", 664 evsel__name(counter)); 665 } 666 counter->supported = false; 667 counter->errored = true; 668 } 669 670 evsel__open_strerror(counter, &target, err, msg, sizeof(msg)); 671 ui__error("%s\n", msg); 672 673 if (child_pid != -1) 674 kill(child_pid, SIGTERM); 675 676 return COUNTER_FATAL; 677 } 678 679 static int __run_perf_stat(int argc, const char **argv, int run_idx) 680 { 681 int interval = stat_config.interval; 682 int times = stat_config.times; 683 int timeout = stat_config.timeout; 684 char msg[BUFSIZ]; 685 unsigned long long t0, t1; 686 struct evsel *counter; 687 size_t l; 688 int status = 0; 689 const bool forks = (argc > 0); 690 bool is_pipe = STAT_RECORD ? perf_stat.data.is_pipe : false; 691 struct evlist_cpu_iterator evlist_cpu_itr; 692 struct affinity saved_affinity, *affinity = NULL; 693 int err; 694 bool second_pass = false; 695 696 if (forks) { 697 if (evlist__prepare_workload(evsel_list, &target, argv, is_pipe, workload_exec_failed_signal) < 0) { 698 perror("failed to prepare workload"); 699 return -1; 700 } 701 child_pid = evsel_list->workload.pid; 702 } 703 704 if (!cpu_map__is_dummy(evsel_list->core.user_requested_cpus)) { 705 if (affinity__setup(&saved_affinity) < 0) { 706 err = -1; 707 goto err_out; 708 } 709 affinity = &saved_affinity; 710 } 711 712 evlist__for_each_entry(evsel_list, counter) { 713 counter->reset_group = false; 714 if (bpf_counter__load(counter, &target)) { 715 err = -1; 716 goto err_out; 717 } 718 if (!(evsel__is_bperf(counter))) 719 all_counters_use_bpf = false; 720 } 721 722 evlist__reset_aggr_stats(evsel_list); 723 724 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 725 counter = evlist_cpu_itr.evsel; 726 727 /* 728 * bperf calls evsel__open_per_cpu() in bperf__load(), so 729 * no need to call it again here. 730 */ 731 if (target.use_bpf) 732 break; 733 734 if (counter->reset_group || counter->errored) 735 continue; 736 if (evsel__is_bperf(counter)) 737 continue; 738 try_again: 739 if (create_perf_stat_counter(counter, &stat_config, &target, 740 evlist_cpu_itr.cpu_map_idx) < 0) { 741 742 /* 743 * Weak group failed. We cannot just undo this here 744 * because earlier CPUs might be in group mode, and the kernel 745 * doesn't support mixing group and non group reads. Defer 746 * it to later. 747 * Don't close here because we're in the wrong affinity. 748 */ 749 if ((errno == EINVAL || errno == EBADF) && 750 evsel__leader(counter) != counter && 751 counter->weak_group) { 752 evlist__reset_weak_group(evsel_list, counter, false); 753 assert(counter->reset_group); 754 second_pass = true; 755 continue; 756 } 757 758 switch (stat_handle_error(counter, errno)) { 759 case COUNTER_FATAL: 760 err = -1; 761 goto err_out; 762 case COUNTER_RETRY: 763 goto try_again; 764 case COUNTER_SKIP: 765 continue; 766 default: 767 break; 768 } 769 770 } 771 counter->supported = true; 772 } 773 774 if (second_pass) { 775 /* 776 * Now redo all the weak group after closing them, 777 * and also close errored counters. 778 */ 779 780 /* First close errored or weak retry */ 781 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 782 counter = evlist_cpu_itr.evsel; 783 784 if (!counter->reset_group && !counter->errored) 785 continue; 786 787 perf_evsel__close_cpu(&counter->core, evlist_cpu_itr.cpu_map_idx); 788 } 789 /* Now reopen weak */ 790 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 791 counter = evlist_cpu_itr.evsel; 792 793 if (!counter->reset_group) 794 continue; 795 try_again_reset: 796 pr_debug2("reopening weak %s\n", evsel__name(counter)); 797 if (create_perf_stat_counter(counter, &stat_config, &target, 798 evlist_cpu_itr.cpu_map_idx) < 0) { 799 800 switch (stat_handle_error(counter, errno)) { 801 case COUNTER_FATAL: 802 err = -1; 803 goto err_out; 804 case COUNTER_RETRY: 805 goto try_again_reset; 806 case COUNTER_SKIP: 807 continue; 808 default: 809 break; 810 } 811 } 812 counter->supported = true; 813 } 814 } 815 affinity__cleanup(affinity); 816 affinity = NULL; 817 818 evlist__for_each_entry(evsel_list, counter) { 819 if (!counter->supported) { 820 perf_evsel__free_fd(&counter->core); 821 continue; 822 } 823 824 l = strlen(counter->unit); 825 if (l > stat_config.unit_width) 826 stat_config.unit_width = l; 827 828 if (evsel__should_store_id(counter) && 829 evsel__store_ids(counter, evsel_list)) { 830 err = -1; 831 goto err_out; 832 } 833 } 834 835 if (evlist__apply_filters(evsel_list, &counter, &target)) { 836 pr_err("failed to set filter \"%s\" on event %s with %d (%s)\n", 837 counter->filter, evsel__name(counter), errno, 838 str_error_r(errno, msg, sizeof(msg))); 839 return -1; 840 } 841 842 if (STAT_RECORD) { 843 int fd = perf_data__fd(&perf_stat.data); 844 845 if (is_pipe) { 846 err = perf_header__write_pipe(perf_data__fd(&perf_stat.data)); 847 } else { 848 err = perf_session__write_header(perf_stat.session, evsel_list, 849 fd, false); 850 } 851 852 if (err < 0) 853 goto err_out; 854 855 err = perf_event__synthesize_stat_events(&stat_config, NULL, evsel_list, 856 process_synthesized_event, is_pipe); 857 if (err < 0) 858 goto err_out; 859 860 } 861 862 if (target.initial_delay) { 863 pr_info(EVLIST_DISABLED_MSG); 864 } else { 865 err = enable_counters(); 866 if (err) { 867 err = -1; 868 goto err_out; 869 } 870 } 871 872 /* Exec the command, if any */ 873 if (forks) 874 evlist__start_workload(evsel_list); 875 876 if (target.initial_delay > 0) { 877 usleep(target.initial_delay * USEC_PER_MSEC); 878 err = enable_counters(); 879 if (err) { 880 err = -1; 881 goto err_out; 882 } 883 884 pr_info(EVLIST_ENABLED_MSG); 885 } 886 887 t0 = rdclock(); 888 clock_gettime(CLOCK_MONOTONIC, &ref_time); 889 890 if (forks) { 891 if (interval || timeout || evlist__ctlfd_initialized(evsel_list)) 892 status = dispatch_events(forks, timeout, interval, ×); 893 if (child_pid != -1) { 894 if (timeout) 895 kill(child_pid, SIGTERM); 896 wait4(child_pid, &status, 0, &stat_config.ru_data); 897 } 898 899 if (workload_exec_errno) { 900 const char *emsg = str_error_r(workload_exec_errno, msg, sizeof(msg)); 901 pr_err("Workload failed: %s\n", emsg); 902 err = -1; 903 goto err_out; 904 } 905 906 if (WIFSIGNALED(status)) 907 psignal(WTERMSIG(status), argv[0]); 908 } else { 909 status = dispatch_events(forks, timeout, interval, ×); 910 } 911 912 disable_counters(); 913 914 t1 = rdclock(); 915 916 if (stat_config.walltime_run_table) 917 stat_config.walltime_run[run_idx] = t1 - t0; 918 919 if (interval && stat_config.summary) { 920 stat_config.interval = 0; 921 stat_config.stop_read_counter = true; 922 init_stats(&walltime_nsecs_stats); 923 update_stats(&walltime_nsecs_stats, t1 - t0); 924 925 evlist__copy_prev_raw_counts(evsel_list); 926 evlist__reset_prev_raw_counts(evsel_list); 927 evlist__reset_aggr_stats(evsel_list); 928 } else { 929 update_stats(&walltime_nsecs_stats, t1 - t0); 930 update_rusage_stats(&ru_stats, &stat_config.ru_data); 931 } 932 933 /* 934 * Closing a group leader splits the group, and as we only disable 935 * group leaders, results in remaining events becoming enabled. To 936 * avoid arbitrary skew, we must read all counters before closing any 937 * group leaders. 938 */ 939 if (read_counters() == 0) 940 process_counters(); 941 942 /* 943 * We need to keep evsel_list alive, because it's processed 944 * later the evsel_list will be closed after. 945 */ 946 if (!STAT_RECORD) 947 evlist__close(evsel_list); 948 949 return WEXITSTATUS(status); 950 951 err_out: 952 if (forks) 953 evlist__cancel_workload(evsel_list); 954 955 affinity__cleanup(affinity); 956 return err; 957 } 958 959 /* 960 * Returns -1 for fatal errors which signifies to not continue 961 * when in repeat mode. 962 * 963 * Returns < -1 error codes when stat record is used. These 964 * result in the stat information being displayed, but writing 965 * to the file fails and is non fatal. 966 */ 967 static int run_perf_stat(int argc, const char **argv, int run_idx) 968 { 969 int ret; 970 971 if (pre_cmd) { 972 ret = system(pre_cmd); 973 if (ret) 974 return ret; 975 } 976 977 if (sync_run) 978 sync(); 979 980 ret = __run_perf_stat(argc, argv, run_idx); 981 if (ret) 982 return ret; 983 984 if (post_cmd) { 985 ret = system(post_cmd); 986 if (ret) 987 return ret; 988 } 989 990 return ret; 991 } 992 993 static void print_counters(struct timespec *ts, int argc, const char **argv) 994 { 995 /* Do not print anything if we record to the pipe. */ 996 if (STAT_RECORD && perf_stat.data.is_pipe) 997 return; 998 if (quiet) 999 return; 1000 1001 evlist__print_counters(evsel_list, &stat_config, &target, ts, argc, argv); 1002 } 1003 1004 static volatile sig_atomic_t signr = -1; 1005 1006 static void skip_signal(int signo) 1007 { 1008 if ((child_pid == -1) || stat_config.interval) 1009 done = 1; 1010 1011 signr = signo; 1012 /* 1013 * render child_pid harmless 1014 * won't send SIGTERM to a random 1015 * process in case of race condition 1016 * and fast PID recycling 1017 */ 1018 child_pid = -1; 1019 } 1020 1021 static void sig_atexit(void) 1022 { 1023 sigset_t set, oset; 1024 1025 /* 1026 * avoid race condition with SIGCHLD handler 1027 * in skip_signal() which is modifying child_pid 1028 * goal is to avoid send SIGTERM to a random 1029 * process 1030 */ 1031 sigemptyset(&set); 1032 sigaddset(&set, SIGCHLD); 1033 sigprocmask(SIG_BLOCK, &set, &oset); 1034 1035 if (child_pid != -1) 1036 kill(child_pid, SIGTERM); 1037 1038 sigprocmask(SIG_SETMASK, &oset, NULL); 1039 1040 if (signr == -1) 1041 return; 1042 1043 signal(signr, SIG_DFL); 1044 kill(getpid(), signr); 1045 } 1046 1047 static int stat__set_big_num(const struct option *opt __maybe_unused, 1048 const char *s __maybe_unused, int unset) 1049 { 1050 big_num_opt = unset ? 0 : 1; 1051 perf_stat__set_big_num(!unset); 1052 return 0; 1053 } 1054 1055 static int enable_metric_only(const struct option *opt __maybe_unused, 1056 const char *s __maybe_unused, int unset) 1057 { 1058 force_metric_only = true; 1059 stat_config.metric_only = !unset; 1060 return 0; 1061 } 1062 1063 static int append_metric_groups(const struct option *opt __maybe_unused, 1064 const char *str, 1065 int unset __maybe_unused) 1066 { 1067 if (metrics) { 1068 char *tmp; 1069 1070 if (asprintf(&tmp, "%s,%s", metrics, str) < 0) 1071 return -ENOMEM; 1072 free(metrics); 1073 metrics = tmp; 1074 } else { 1075 metrics = strdup(str); 1076 if (!metrics) 1077 return -ENOMEM; 1078 } 1079 return 0; 1080 } 1081 1082 static int parse_control_option(const struct option *opt, 1083 const char *str, 1084 int unset __maybe_unused) 1085 { 1086 struct perf_stat_config *config = opt->value; 1087 1088 return evlist__parse_control(str, &config->ctl_fd, &config->ctl_fd_ack, &config->ctl_fd_close); 1089 } 1090 1091 static int parse_stat_cgroups(const struct option *opt, 1092 const char *str, int unset) 1093 { 1094 if (stat_config.cgroup_list) { 1095 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 1096 return -1; 1097 } 1098 1099 return parse_cgroups(opt, str, unset); 1100 } 1101 1102 static int parse_cputype(const struct option *opt, 1103 const char *str, 1104 int unset __maybe_unused) 1105 { 1106 const struct perf_pmu *pmu; 1107 struct evlist *evlist = *(struct evlist **)opt->value; 1108 1109 if (!list_empty(&evlist->core.entries)) { 1110 fprintf(stderr, "Must define cputype before events/metrics\n"); 1111 return -1; 1112 } 1113 1114 pmu = perf_pmus__pmu_for_pmu_filter(str); 1115 if (!pmu) { 1116 fprintf(stderr, "--cputype %s is not supported!\n", str); 1117 return -1; 1118 } 1119 parse_events_option_args.pmu_filter = pmu->name; 1120 1121 return 0; 1122 } 1123 1124 static int parse_cache_level(const struct option *opt, 1125 const char *str, 1126 int unset __maybe_unused) 1127 { 1128 int level; 1129 struct opt_aggr_mode *opt_aggr_mode = (struct opt_aggr_mode *)opt->value; 1130 u32 *aggr_level = (u32 *)opt->data; 1131 1132 /* 1133 * If no string is specified, aggregate based on the topology of 1134 * Last Level Cache (LLC). Since the LLC level can change from 1135 * architecture to architecture, set level greater than 1136 * MAX_CACHE_LVL which will be interpreted as LLC. 1137 */ 1138 if (str == NULL) { 1139 level = MAX_CACHE_LVL + 1; 1140 goto out; 1141 } 1142 1143 /* 1144 * The format to specify cache level is LX or lX where X is the 1145 * cache level. 1146 */ 1147 if (strlen(str) != 2 || (str[0] != 'l' && str[0] != 'L')) { 1148 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1149 MAX_CACHE_LVL, 1150 MAX_CACHE_LVL); 1151 return -EINVAL; 1152 } 1153 1154 level = atoi(&str[1]); 1155 if (level < 1) { 1156 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1157 MAX_CACHE_LVL, 1158 MAX_CACHE_LVL); 1159 return -EINVAL; 1160 } 1161 1162 if (level > MAX_CACHE_LVL) { 1163 pr_err("perf only supports max cache level of %d.\n" 1164 "Consider increasing MAX_CACHE_LVL\n", MAX_CACHE_LVL); 1165 return -EINVAL; 1166 } 1167 out: 1168 opt_aggr_mode->cache = true; 1169 *aggr_level = level; 1170 return 0; 1171 } 1172 1173 /** 1174 * Calculate the cache instance ID from the map in 1175 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1176 * Cache instance ID is the first CPU reported in the shared_cpu_list file. 1177 */ 1178 static int cpu__get_cache_id_from_map(struct perf_cpu cpu, char *map) 1179 { 1180 int id; 1181 struct perf_cpu_map *cpu_map = perf_cpu_map__new(map); 1182 1183 /* 1184 * If the map contains no CPU, consider the current CPU to 1185 * be the first online CPU in the cache domain else use the 1186 * first online CPU of the cache domain as the ID. 1187 */ 1188 id = perf_cpu_map__min(cpu_map).cpu; 1189 if (id == -1) 1190 id = cpu.cpu; 1191 1192 /* Free the perf_cpu_map used to find the cache ID */ 1193 perf_cpu_map__put(cpu_map); 1194 1195 return id; 1196 } 1197 1198 /** 1199 * cpu__get_cache_id - Returns 0 if successful in populating the 1200 * cache level and cache id. Cache level is read from 1201 * /sys/devices/system/cpu/cpuX/cache/indexY/level where as cache instance ID 1202 * is the first CPU reported by 1203 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1204 */ 1205 static int cpu__get_cache_details(struct perf_cpu cpu, struct perf_cache *cache) 1206 { 1207 int ret = 0; 1208 u32 cache_level = stat_config.aggr_level; 1209 struct cpu_cache_level caches[MAX_CACHE_LVL]; 1210 u32 i = 0, caches_cnt = 0; 1211 1212 cache->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1213 cache->cache = -1; 1214 1215 ret = build_caches_for_cpu(cpu.cpu, caches, &caches_cnt); 1216 if (ret) { 1217 /* 1218 * If caches_cnt is not 0, cpu_cache_level data 1219 * was allocated when building the topology. 1220 * Free the allocated data before returning. 1221 */ 1222 if (caches_cnt) 1223 goto free_caches; 1224 1225 return ret; 1226 } 1227 1228 if (!caches_cnt) 1229 return -1; 1230 1231 /* 1232 * Save the data for the highest level if no 1233 * level was specified by the user. 1234 */ 1235 if (cache_level > MAX_CACHE_LVL) { 1236 int max_level_index = 0; 1237 1238 for (i = 1; i < caches_cnt; ++i) { 1239 if (caches[i].level > caches[max_level_index].level) 1240 max_level_index = i; 1241 } 1242 1243 cache->cache_lvl = caches[max_level_index].level; 1244 cache->cache = cpu__get_cache_id_from_map(cpu, caches[max_level_index].map); 1245 1246 /* Reset i to 0 to free entire caches[] */ 1247 i = 0; 1248 goto free_caches; 1249 } 1250 1251 for (i = 0; i < caches_cnt; ++i) { 1252 if (caches[i].level == cache_level) { 1253 cache->cache_lvl = cache_level; 1254 cache->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1255 } 1256 1257 cpu_cache_level__free(&caches[i]); 1258 } 1259 1260 free_caches: 1261 /* 1262 * Free all the allocated cpu_cache_level data. 1263 */ 1264 while (i < caches_cnt) 1265 cpu_cache_level__free(&caches[i++]); 1266 1267 return ret; 1268 } 1269 1270 /** 1271 * aggr_cpu_id__cache - Create an aggr_cpu_id with cache instache ID, cache 1272 * level, die and socket populated with the cache instache ID, cache level, 1273 * die and socket for cpu. The function signature is compatible with 1274 * aggr_cpu_id_get_t. 1275 */ 1276 static struct aggr_cpu_id aggr_cpu_id__cache(struct perf_cpu cpu, void *data) 1277 { 1278 int ret; 1279 struct aggr_cpu_id id; 1280 struct perf_cache cache; 1281 1282 id = aggr_cpu_id__die(cpu, data); 1283 if (aggr_cpu_id__is_empty(&id)) 1284 return id; 1285 1286 ret = cpu__get_cache_details(cpu, &cache); 1287 if (ret) 1288 return id; 1289 1290 id.cache_lvl = cache.cache_lvl; 1291 id.cache = cache.cache; 1292 return id; 1293 } 1294 1295 static const char *const aggr_mode__string[] = { 1296 [AGGR_CORE] = "core", 1297 [AGGR_CACHE] = "cache", 1298 [AGGR_CLUSTER] = "cluster", 1299 [AGGR_DIE] = "die", 1300 [AGGR_GLOBAL] = "global", 1301 [AGGR_NODE] = "node", 1302 [AGGR_NONE] = "none", 1303 [AGGR_SOCKET] = "socket", 1304 [AGGR_THREAD] = "thread", 1305 [AGGR_UNSET] = "unset", 1306 }; 1307 1308 static struct aggr_cpu_id perf_stat__get_socket(struct perf_stat_config *config __maybe_unused, 1309 struct perf_cpu cpu) 1310 { 1311 return aggr_cpu_id__socket(cpu, /*data=*/NULL); 1312 } 1313 1314 static struct aggr_cpu_id perf_stat__get_die(struct perf_stat_config *config __maybe_unused, 1315 struct perf_cpu cpu) 1316 { 1317 return aggr_cpu_id__die(cpu, /*data=*/NULL); 1318 } 1319 1320 static struct aggr_cpu_id perf_stat__get_cache_id(struct perf_stat_config *config __maybe_unused, 1321 struct perf_cpu cpu) 1322 { 1323 return aggr_cpu_id__cache(cpu, /*data=*/NULL); 1324 } 1325 1326 static struct aggr_cpu_id perf_stat__get_cluster(struct perf_stat_config *config __maybe_unused, 1327 struct perf_cpu cpu) 1328 { 1329 return aggr_cpu_id__cluster(cpu, /*data=*/NULL); 1330 } 1331 1332 static struct aggr_cpu_id perf_stat__get_core(struct perf_stat_config *config __maybe_unused, 1333 struct perf_cpu cpu) 1334 { 1335 return aggr_cpu_id__core(cpu, /*data=*/NULL); 1336 } 1337 1338 static struct aggr_cpu_id perf_stat__get_node(struct perf_stat_config *config __maybe_unused, 1339 struct perf_cpu cpu) 1340 { 1341 return aggr_cpu_id__node(cpu, /*data=*/NULL); 1342 } 1343 1344 static struct aggr_cpu_id perf_stat__get_global(struct perf_stat_config *config __maybe_unused, 1345 struct perf_cpu cpu) 1346 { 1347 return aggr_cpu_id__global(cpu, /*data=*/NULL); 1348 } 1349 1350 static struct aggr_cpu_id perf_stat__get_cpu(struct perf_stat_config *config __maybe_unused, 1351 struct perf_cpu cpu) 1352 { 1353 return aggr_cpu_id__cpu(cpu, /*data=*/NULL); 1354 } 1355 1356 static struct aggr_cpu_id perf_stat__get_aggr(struct perf_stat_config *config, 1357 aggr_get_id_t get_id, struct perf_cpu cpu) 1358 { 1359 struct aggr_cpu_id id; 1360 1361 /* per-process mode - should use global aggr mode */ 1362 if (cpu.cpu == -1 || cpu.cpu >= config->cpus_aggr_map->nr) 1363 return get_id(config, cpu); 1364 1365 if (aggr_cpu_id__is_empty(&config->cpus_aggr_map->map[cpu.cpu])) 1366 config->cpus_aggr_map->map[cpu.cpu] = get_id(config, cpu); 1367 1368 id = config->cpus_aggr_map->map[cpu.cpu]; 1369 return id; 1370 } 1371 1372 static struct aggr_cpu_id perf_stat__get_socket_cached(struct perf_stat_config *config, 1373 struct perf_cpu cpu) 1374 { 1375 return perf_stat__get_aggr(config, perf_stat__get_socket, cpu); 1376 } 1377 1378 static struct aggr_cpu_id perf_stat__get_die_cached(struct perf_stat_config *config, 1379 struct perf_cpu cpu) 1380 { 1381 return perf_stat__get_aggr(config, perf_stat__get_die, cpu); 1382 } 1383 1384 static struct aggr_cpu_id perf_stat__get_cluster_cached(struct perf_stat_config *config, 1385 struct perf_cpu cpu) 1386 { 1387 return perf_stat__get_aggr(config, perf_stat__get_cluster, cpu); 1388 } 1389 1390 static struct aggr_cpu_id perf_stat__get_cache_id_cached(struct perf_stat_config *config, 1391 struct perf_cpu cpu) 1392 { 1393 return perf_stat__get_aggr(config, perf_stat__get_cache_id, cpu); 1394 } 1395 1396 static struct aggr_cpu_id perf_stat__get_core_cached(struct perf_stat_config *config, 1397 struct perf_cpu cpu) 1398 { 1399 return perf_stat__get_aggr(config, perf_stat__get_core, cpu); 1400 } 1401 1402 static struct aggr_cpu_id perf_stat__get_node_cached(struct perf_stat_config *config, 1403 struct perf_cpu cpu) 1404 { 1405 return perf_stat__get_aggr(config, perf_stat__get_node, cpu); 1406 } 1407 1408 static struct aggr_cpu_id perf_stat__get_global_cached(struct perf_stat_config *config, 1409 struct perf_cpu cpu) 1410 { 1411 return perf_stat__get_aggr(config, perf_stat__get_global, cpu); 1412 } 1413 1414 static struct aggr_cpu_id perf_stat__get_cpu_cached(struct perf_stat_config *config, 1415 struct perf_cpu cpu) 1416 { 1417 return perf_stat__get_aggr(config, perf_stat__get_cpu, cpu); 1418 } 1419 1420 static aggr_cpu_id_get_t aggr_mode__get_aggr(enum aggr_mode aggr_mode) 1421 { 1422 switch (aggr_mode) { 1423 case AGGR_SOCKET: 1424 return aggr_cpu_id__socket; 1425 case AGGR_DIE: 1426 return aggr_cpu_id__die; 1427 case AGGR_CLUSTER: 1428 return aggr_cpu_id__cluster; 1429 case AGGR_CACHE: 1430 return aggr_cpu_id__cache; 1431 case AGGR_CORE: 1432 return aggr_cpu_id__core; 1433 case AGGR_NODE: 1434 return aggr_cpu_id__node; 1435 case AGGR_NONE: 1436 return aggr_cpu_id__cpu; 1437 case AGGR_GLOBAL: 1438 return aggr_cpu_id__global; 1439 case AGGR_THREAD: 1440 case AGGR_UNSET: 1441 case AGGR_MAX: 1442 default: 1443 return NULL; 1444 } 1445 } 1446 1447 static aggr_get_id_t aggr_mode__get_id(enum aggr_mode aggr_mode) 1448 { 1449 switch (aggr_mode) { 1450 case AGGR_SOCKET: 1451 return perf_stat__get_socket_cached; 1452 case AGGR_DIE: 1453 return perf_stat__get_die_cached; 1454 case AGGR_CLUSTER: 1455 return perf_stat__get_cluster_cached; 1456 case AGGR_CACHE: 1457 return perf_stat__get_cache_id_cached; 1458 case AGGR_CORE: 1459 return perf_stat__get_core_cached; 1460 case AGGR_NODE: 1461 return perf_stat__get_node_cached; 1462 case AGGR_NONE: 1463 return perf_stat__get_cpu_cached; 1464 case AGGR_GLOBAL: 1465 return perf_stat__get_global_cached; 1466 case AGGR_THREAD: 1467 case AGGR_UNSET: 1468 case AGGR_MAX: 1469 default: 1470 return NULL; 1471 } 1472 } 1473 1474 static int perf_stat_init_aggr_mode(void) 1475 { 1476 int nr; 1477 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr(stat_config.aggr_mode); 1478 1479 if (get_id) { 1480 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1481 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1482 get_id, /*data=*/NULL, needs_sort); 1483 if (!stat_config.aggr_map) { 1484 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1485 return -1; 1486 } 1487 stat_config.aggr_get_id = aggr_mode__get_id(stat_config.aggr_mode); 1488 } 1489 1490 if (stat_config.aggr_mode == AGGR_THREAD) { 1491 nr = perf_thread_map__nr(evsel_list->core.threads); 1492 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1493 if (stat_config.aggr_map == NULL) 1494 return -ENOMEM; 1495 1496 for (int s = 0; s < nr; s++) { 1497 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1498 1499 id.thread_idx = s; 1500 stat_config.aggr_map->map[s] = id; 1501 } 1502 return 0; 1503 } 1504 1505 /* 1506 * The evsel_list->cpus is the base we operate on, 1507 * taking the highest cpu number to be the size of 1508 * the aggregation translate cpumap. 1509 */ 1510 nr = perf_cpu_map__max(evsel_list->core.all_cpus).cpu + 1; 1511 stat_config.cpus_aggr_map = cpu_aggr_map__empty_new(nr); 1512 return stat_config.cpus_aggr_map ? 0 : -ENOMEM; 1513 } 1514 1515 static void cpu_aggr_map__delete(struct cpu_aggr_map *map) 1516 { 1517 free(map); 1518 } 1519 1520 static void perf_stat__exit_aggr_mode(void) 1521 { 1522 cpu_aggr_map__delete(stat_config.aggr_map); 1523 cpu_aggr_map__delete(stat_config.cpus_aggr_map); 1524 stat_config.aggr_map = NULL; 1525 stat_config.cpus_aggr_map = NULL; 1526 } 1527 1528 static struct aggr_cpu_id perf_env__get_socket_aggr_by_cpu(struct perf_cpu cpu, void *data) 1529 { 1530 struct perf_env *env = data; 1531 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1532 1533 if (cpu.cpu != -1) 1534 id.socket = env->cpu[cpu.cpu].socket_id; 1535 1536 return id; 1537 } 1538 1539 static struct aggr_cpu_id perf_env__get_die_aggr_by_cpu(struct perf_cpu cpu, void *data) 1540 { 1541 struct perf_env *env = data; 1542 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1543 1544 if (cpu.cpu != -1) { 1545 /* 1546 * die_id is relative to socket, so start 1547 * with the socket ID and then add die to 1548 * make a unique ID. 1549 */ 1550 id.socket = env->cpu[cpu.cpu].socket_id; 1551 id.die = env->cpu[cpu.cpu].die_id; 1552 } 1553 1554 return id; 1555 } 1556 1557 static void perf_env__get_cache_id_for_cpu(struct perf_cpu cpu, struct perf_env *env, 1558 u32 cache_level, struct aggr_cpu_id *id) 1559 { 1560 int i; 1561 int caches_cnt = env->caches_cnt; 1562 struct cpu_cache_level *caches = env->caches; 1563 1564 id->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1565 id->cache = -1; 1566 1567 if (!caches_cnt) 1568 return; 1569 1570 for (i = caches_cnt - 1; i > -1; --i) { 1571 struct perf_cpu_map *cpu_map; 1572 int map_contains_cpu; 1573 1574 /* 1575 * If user has not specified a level, find the fist level with 1576 * the cpu in the map. Since building the map is expensive, do 1577 * this only if levels match. 1578 */ 1579 if (cache_level <= MAX_CACHE_LVL && caches[i].level != cache_level) 1580 continue; 1581 1582 cpu_map = perf_cpu_map__new(caches[i].map); 1583 map_contains_cpu = perf_cpu_map__idx(cpu_map, cpu); 1584 perf_cpu_map__put(cpu_map); 1585 1586 if (map_contains_cpu != -1) { 1587 id->cache_lvl = caches[i].level; 1588 id->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1589 return; 1590 } 1591 } 1592 } 1593 1594 static struct aggr_cpu_id perf_env__get_cache_aggr_by_cpu(struct perf_cpu cpu, 1595 void *data) 1596 { 1597 struct perf_env *env = data; 1598 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1599 1600 if (cpu.cpu != -1) { 1601 u32 cache_level = (perf_stat.aggr_level) ?: stat_config.aggr_level; 1602 1603 id.socket = env->cpu[cpu.cpu].socket_id; 1604 id.die = env->cpu[cpu.cpu].die_id; 1605 perf_env__get_cache_id_for_cpu(cpu, env, cache_level, &id); 1606 } 1607 1608 return id; 1609 } 1610 1611 static struct aggr_cpu_id perf_env__get_cluster_aggr_by_cpu(struct perf_cpu cpu, 1612 void *data) 1613 { 1614 struct perf_env *env = data; 1615 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1616 1617 if (cpu.cpu != -1) { 1618 id.socket = env->cpu[cpu.cpu].socket_id; 1619 id.die = env->cpu[cpu.cpu].die_id; 1620 id.cluster = env->cpu[cpu.cpu].cluster_id; 1621 } 1622 1623 return id; 1624 } 1625 1626 static struct aggr_cpu_id perf_env__get_core_aggr_by_cpu(struct perf_cpu cpu, void *data) 1627 { 1628 struct perf_env *env = data; 1629 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1630 1631 if (cpu.cpu != -1) { 1632 /* 1633 * core_id is relative to socket, die and cluster, we need a 1634 * global id. So we set socket, die id, cluster id and core id. 1635 */ 1636 id.socket = env->cpu[cpu.cpu].socket_id; 1637 id.die = env->cpu[cpu.cpu].die_id; 1638 id.cluster = env->cpu[cpu.cpu].cluster_id; 1639 id.core = env->cpu[cpu.cpu].core_id; 1640 } 1641 1642 return id; 1643 } 1644 1645 static struct aggr_cpu_id perf_env__get_cpu_aggr_by_cpu(struct perf_cpu cpu, void *data) 1646 { 1647 struct perf_env *env = data; 1648 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1649 1650 if (cpu.cpu != -1) { 1651 /* 1652 * core_id is relative to socket and die, 1653 * we need a global id. So we set 1654 * socket, die id and core id 1655 */ 1656 id.socket = env->cpu[cpu.cpu].socket_id; 1657 id.die = env->cpu[cpu.cpu].die_id; 1658 id.core = env->cpu[cpu.cpu].core_id; 1659 id.cpu = cpu; 1660 } 1661 1662 return id; 1663 } 1664 1665 static struct aggr_cpu_id perf_env__get_node_aggr_by_cpu(struct perf_cpu cpu, void *data) 1666 { 1667 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1668 1669 id.node = perf_env__numa_node(data, cpu); 1670 return id; 1671 } 1672 1673 static struct aggr_cpu_id perf_env__get_global_aggr_by_cpu(struct perf_cpu cpu __maybe_unused, 1674 void *data __maybe_unused) 1675 { 1676 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1677 1678 /* it always aggregates to the cpu 0 */ 1679 id.cpu = (struct perf_cpu){ .cpu = 0 }; 1680 return id; 1681 } 1682 1683 static struct aggr_cpu_id perf_stat__get_socket_file(struct perf_stat_config *config __maybe_unused, 1684 struct perf_cpu cpu) 1685 { 1686 return perf_env__get_socket_aggr_by_cpu(cpu, perf_session__env(perf_stat.session)); 1687 } 1688 static struct aggr_cpu_id perf_stat__get_die_file(struct perf_stat_config *config __maybe_unused, 1689 struct perf_cpu cpu) 1690 { 1691 return perf_env__get_die_aggr_by_cpu(cpu, perf_session__env(perf_stat.session)); 1692 } 1693 1694 static struct aggr_cpu_id perf_stat__get_cluster_file(struct perf_stat_config *config __maybe_unused, 1695 struct perf_cpu cpu) 1696 { 1697 return perf_env__get_cluster_aggr_by_cpu(cpu, perf_session__env(perf_stat.session)); 1698 } 1699 1700 static struct aggr_cpu_id perf_stat__get_cache_file(struct perf_stat_config *config __maybe_unused, 1701 struct perf_cpu cpu) 1702 { 1703 return perf_env__get_cache_aggr_by_cpu(cpu, perf_session__env(perf_stat.session)); 1704 } 1705 1706 static struct aggr_cpu_id perf_stat__get_core_file(struct perf_stat_config *config __maybe_unused, 1707 struct perf_cpu cpu) 1708 { 1709 return perf_env__get_core_aggr_by_cpu(cpu, perf_session__env(perf_stat.session)); 1710 } 1711 1712 static struct aggr_cpu_id perf_stat__get_cpu_file(struct perf_stat_config *config __maybe_unused, 1713 struct perf_cpu cpu) 1714 { 1715 return perf_env__get_cpu_aggr_by_cpu(cpu, perf_session__env(perf_stat.session)); 1716 } 1717 1718 static struct aggr_cpu_id perf_stat__get_node_file(struct perf_stat_config *config __maybe_unused, 1719 struct perf_cpu cpu) 1720 { 1721 return perf_env__get_node_aggr_by_cpu(cpu, perf_session__env(perf_stat.session)); 1722 } 1723 1724 static struct aggr_cpu_id perf_stat__get_global_file(struct perf_stat_config *config __maybe_unused, 1725 struct perf_cpu cpu) 1726 { 1727 return perf_env__get_global_aggr_by_cpu(cpu, perf_session__env(perf_stat.session)); 1728 } 1729 1730 static aggr_cpu_id_get_t aggr_mode__get_aggr_file(enum aggr_mode aggr_mode) 1731 { 1732 switch (aggr_mode) { 1733 case AGGR_SOCKET: 1734 return perf_env__get_socket_aggr_by_cpu; 1735 case AGGR_DIE: 1736 return perf_env__get_die_aggr_by_cpu; 1737 case AGGR_CLUSTER: 1738 return perf_env__get_cluster_aggr_by_cpu; 1739 case AGGR_CACHE: 1740 return perf_env__get_cache_aggr_by_cpu; 1741 case AGGR_CORE: 1742 return perf_env__get_core_aggr_by_cpu; 1743 case AGGR_NODE: 1744 return perf_env__get_node_aggr_by_cpu; 1745 case AGGR_GLOBAL: 1746 return perf_env__get_global_aggr_by_cpu; 1747 case AGGR_NONE: 1748 return perf_env__get_cpu_aggr_by_cpu; 1749 case AGGR_THREAD: 1750 case AGGR_UNSET: 1751 case AGGR_MAX: 1752 default: 1753 return NULL; 1754 } 1755 } 1756 1757 static aggr_get_id_t aggr_mode__get_id_file(enum aggr_mode aggr_mode) 1758 { 1759 switch (aggr_mode) { 1760 case AGGR_SOCKET: 1761 return perf_stat__get_socket_file; 1762 case AGGR_DIE: 1763 return perf_stat__get_die_file; 1764 case AGGR_CLUSTER: 1765 return perf_stat__get_cluster_file; 1766 case AGGR_CACHE: 1767 return perf_stat__get_cache_file; 1768 case AGGR_CORE: 1769 return perf_stat__get_core_file; 1770 case AGGR_NODE: 1771 return perf_stat__get_node_file; 1772 case AGGR_GLOBAL: 1773 return perf_stat__get_global_file; 1774 case AGGR_NONE: 1775 return perf_stat__get_cpu_file; 1776 case AGGR_THREAD: 1777 case AGGR_UNSET: 1778 case AGGR_MAX: 1779 default: 1780 return NULL; 1781 } 1782 } 1783 1784 static int perf_stat_init_aggr_mode_file(struct perf_stat *st) 1785 { 1786 struct perf_env *env = perf_session__env(st->session); 1787 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr_file(stat_config.aggr_mode); 1788 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1789 1790 if (stat_config.aggr_mode == AGGR_THREAD) { 1791 int nr = perf_thread_map__nr(evsel_list->core.threads); 1792 1793 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1794 if (stat_config.aggr_map == NULL) 1795 return -ENOMEM; 1796 1797 for (int s = 0; s < nr; s++) { 1798 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1799 1800 id.thread_idx = s; 1801 stat_config.aggr_map->map[s] = id; 1802 } 1803 return 0; 1804 } 1805 1806 if (!get_id) 1807 return 0; 1808 1809 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1810 get_id, env, needs_sort); 1811 if (!stat_config.aggr_map) { 1812 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1813 return -1; 1814 } 1815 stat_config.aggr_get_id = aggr_mode__get_id_file(stat_config.aggr_mode); 1816 return 0; 1817 } 1818 1819 /* 1820 * Add default events, if there were no attributes specified or 1821 * if -d/--detailed, -d -d or -d -d -d is used: 1822 */ 1823 static int add_default_events(void) 1824 { 1825 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 1826 struct parse_events_error err; 1827 struct evlist *evlist = evlist__new(); 1828 struct evsel *evsel; 1829 int ret = 0; 1830 1831 if (!evlist) 1832 return -ENOMEM; 1833 1834 parse_events_error__init(&err); 1835 1836 /* Set attrs if no event is selected and !null_run: */ 1837 if (stat_config.null_run) 1838 goto out; 1839 1840 if (transaction_run) { 1841 /* Handle -T as -M transaction. Once platform specific metrics 1842 * support has been added to the json files, all architectures 1843 * will use this approach. To determine transaction support 1844 * on an architecture test for such a metric name. 1845 */ 1846 if (!metricgroup__has_metric_or_groups(pmu, "transaction")) { 1847 pr_err("Missing transaction metrics\n"); 1848 ret = -1; 1849 goto out; 1850 } 1851 ret = metricgroup__parse_groups(evlist, pmu, "transaction", 1852 stat_config.metric_no_group, 1853 stat_config.metric_no_merge, 1854 stat_config.metric_no_threshold, 1855 stat_config.user_requested_cpu_list, 1856 stat_config.system_wide, 1857 stat_config.hardware_aware_grouping); 1858 goto out; 1859 } 1860 1861 if (smi_cost) { 1862 int smi; 1863 1864 if (sysfs__read_int(FREEZE_ON_SMI_PATH, &smi) < 0) { 1865 pr_err("freeze_on_smi is not supported.\n"); 1866 ret = -1; 1867 goto out; 1868 } 1869 1870 if (!smi) { 1871 if (sysfs__write_int(FREEZE_ON_SMI_PATH, 1) < 0) { 1872 pr_err("Failed to set freeze_on_smi.\n"); 1873 ret = -1; 1874 goto out; 1875 } 1876 smi_reset = true; 1877 } 1878 1879 if (!metricgroup__has_metric_or_groups(pmu, "smi")) { 1880 pr_err("Missing smi metrics\n"); 1881 ret = -1; 1882 goto out; 1883 } 1884 1885 if (!force_metric_only) 1886 stat_config.metric_only = true; 1887 1888 ret = metricgroup__parse_groups(evlist, pmu, "smi", 1889 stat_config.metric_no_group, 1890 stat_config.metric_no_merge, 1891 stat_config.metric_no_threshold, 1892 stat_config.user_requested_cpu_list, 1893 stat_config.system_wide, 1894 stat_config.hardware_aware_grouping); 1895 goto out; 1896 } 1897 1898 if (topdown_run) { 1899 unsigned int max_level = metricgroups__topdown_max_level(); 1900 char str[] = "TopdownL1"; 1901 1902 if (!force_metric_only) 1903 stat_config.metric_only = true; 1904 1905 if (!max_level) { 1906 pr_err("Topdown requested but the topdown metric groups aren't present.\n" 1907 "(See perf list the metric groups have names like TopdownL1)\n"); 1908 ret = -1; 1909 goto out; 1910 } 1911 if (stat_config.topdown_level > max_level) { 1912 pr_err("Invalid top-down metrics level. The max level is %u.\n", max_level); 1913 ret = -1; 1914 goto out; 1915 } else if (!stat_config.topdown_level) { 1916 stat_config.topdown_level = 1; 1917 } 1918 if (!stat_config.interval && !stat_config.metric_only) { 1919 fprintf(stat_config.output, 1920 "Topdown accuracy may decrease when measuring long periods.\n" 1921 "Please print the result regularly, e.g. -I1000\n"); 1922 } 1923 str[8] = stat_config.topdown_level + '0'; 1924 if (metricgroup__parse_groups(evlist, 1925 pmu, str, 1926 /*metric_no_group=*/false, 1927 /*metric_no_merge=*/false, 1928 /*metric_no_threshold=*/true, 1929 stat_config.user_requested_cpu_list, 1930 stat_config.system_wide, 1931 stat_config.hardware_aware_grouping) < 0) { 1932 ret = -1; 1933 goto out; 1934 } 1935 } 1936 1937 if (!stat_config.topdown_level) 1938 stat_config.topdown_level = 1; 1939 1940 if (!evlist->core.nr_entries && !evsel_list->core.nr_entries) { 1941 /* No events so add defaults. */ 1942 if (target__has_cpu(&target)) 1943 ret = parse_events(evlist, "cpu-clock", &err); 1944 else 1945 ret = parse_events(evlist, "task-clock", &err); 1946 if (ret) 1947 goto out; 1948 1949 ret = parse_events(evlist, 1950 "context-switches," 1951 "cpu-migrations," 1952 "page-faults," 1953 "instructions," 1954 "cycles," 1955 "stalled-cycles-frontend," 1956 "stalled-cycles-backend," 1957 "branches," 1958 "branch-misses", 1959 &err); 1960 if (ret) 1961 goto out; 1962 1963 /* 1964 * Add TopdownL1 metrics if they exist. To minimize 1965 * multiplexing, don't request threshold computation. 1966 */ 1967 if (metricgroup__has_metric_or_groups(pmu, "Default")) { 1968 struct evlist *metric_evlist = evlist__new(); 1969 1970 if (!metric_evlist) { 1971 ret = -ENOMEM; 1972 goto out; 1973 } 1974 if (metricgroup__parse_groups(metric_evlist, pmu, "Default", 1975 /*metric_no_group=*/false, 1976 /*metric_no_merge=*/false, 1977 /*metric_no_threshold=*/true, 1978 stat_config.user_requested_cpu_list, 1979 stat_config.system_wide, 1980 stat_config.hardware_aware_grouping) < 0) { 1981 ret = -1; 1982 goto out; 1983 } 1984 1985 evlist__for_each_entry(metric_evlist, evsel) 1986 evsel->default_metricgroup = true; 1987 1988 evlist__splice_list_tail(evlist, &metric_evlist->core.entries); 1989 metricgroup__copy_metric_events(evlist, /*cgrp=*/NULL, 1990 &evlist->metric_events, 1991 &metric_evlist->metric_events); 1992 evlist__delete(metric_evlist); 1993 } 1994 } 1995 1996 /* Detailed events get appended to the event list: */ 1997 1998 if (!ret && detailed_run >= 1) { 1999 /* 2000 * Detailed stats (-d), covering the L1 and last level data 2001 * caches: 2002 */ 2003 ret = parse_events(evlist, 2004 "L1-dcache-loads," 2005 "L1-dcache-load-misses," 2006 "LLC-loads," 2007 "LLC-load-misses", 2008 &err); 2009 } 2010 if (!ret && detailed_run >= 2) { 2011 /* 2012 * Very detailed stats (-d -d), covering the instruction cache 2013 * and the TLB caches: 2014 */ 2015 ret = parse_events(evlist, 2016 "L1-icache-loads," 2017 "L1-icache-load-misses," 2018 "dTLB-loads," 2019 "dTLB-load-misses," 2020 "iTLB-loads," 2021 "iTLB-load-misses", 2022 &err); 2023 } 2024 if (!ret && detailed_run >= 3) { 2025 /* 2026 * Very, very detailed stats (-d -d -d), adding prefetch events: 2027 */ 2028 ret = parse_events(evlist, 2029 "L1-dcache-prefetches," 2030 "L1-dcache-prefetch-misses", 2031 &err); 2032 } 2033 out: 2034 if (!ret) { 2035 evlist__for_each_entry(evlist, evsel) { 2036 /* 2037 * Make at least one event non-skippable so fatal errors are visible. 2038 * 'cycles' always used to be default and non-skippable, so use that. 2039 */ 2040 if (strcmp("cycles", evsel__name(evsel))) 2041 evsel->skippable = true; 2042 } 2043 } 2044 parse_events_error__exit(&err); 2045 evlist__splice_list_tail(evsel_list, &evlist->core.entries); 2046 metricgroup__copy_metric_events(evsel_list, /*cgrp=*/NULL, 2047 &evsel_list->metric_events, 2048 &evlist->metric_events); 2049 evlist__delete(evlist); 2050 return ret; 2051 } 2052 2053 static const char * const stat_record_usage[] = { 2054 "perf stat record [<options>]", 2055 NULL, 2056 }; 2057 2058 static void init_features(struct perf_session *session) 2059 { 2060 int feat; 2061 2062 for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++) 2063 perf_header__set_feat(&session->header, feat); 2064 2065 perf_header__clear_feat(&session->header, HEADER_DIR_FORMAT); 2066 perf_header__clear_feat(&session->header, HEADER_BUILD_ID); 2067 perf_header__clear_feat(&session->header, HEADER_TRACING_DATA); 2068 perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK); 2069 perf_header__clear_feat(&session->header, HEADER_AUXTRACE); 2070 } 2071 2072 static int __cmd_record(const struct option stat_options[], struct opt_aggr_mode *opt_mode, 2073 int argc, const char **argv) 2074 { 2075 struct perf_session *session; 2076 struct perf_data *data = &perf_stat.data; 2077 2078 argc = parse_options(argc, argv, stat_options, stat_record_usage, 2079 PARSE_OPT_STOP_AT_NON_OPTION); 2080 stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(opt_mode); 2081 2082 if (output_name) 2083 data->path = output_name; 2084 2085 if (stat_config.run_count != 1 || forever) { 2086 pr_err("Cannot use -r option with perf stat record.\n"); 2087 return -1; 2088 } 2089 2090 session = perf_session__new(data, NULL); 2091 if (IS_ERR(session)) { 2092 pr_err("Perf session creation failed\n"); 2093 return PTR_ERR(session); 2094 } 2095 2096 init_features(session); 2097 2098 session->evlist = evsel_list; 2099 perf_stat.session = session; 2100 perf_stat.record = true; 2101 return argc; 2102 } 2103 2104 static int process_stat_round_event(struct perf_session *session, 2105 union perf_event *event) 2106 { 2107 struct perf_record_stat_round *stat_round = &event->stat_round; 2108 struct timespec tsh, *ts = NULL; 2109 struct perf_env *env = perf_session__env(session); 2110 const char **argv = env->cmdline_argv; 2111 int argc = env->nr_cmdline; 2112 2113 process_counters(); 2114 2115 if (stat_round->type == PERF_STAT_ROUND_TYPE__FINAL) 2116 update_stats(&walltime_nsecs_stats, stat_round->time); 2117 2118 if (stat_config.interval && stat_round->time) { 2119 tsh.tv_sec = stat_round->time / NSEC_PER_SEC; 2120 tsh.tv_nsec = stat_round->time % NSEC_PER_SEC; 2121 ts = &tsh; 2122 } 2123 2124 print_counters(ts, argc, argv); 2125 return 0; 2126 } 2127 2128 static 2129 int process_stat_config_event(struct perf_session *session, 2130 union perf_event *event) 2131 { 2132 const struct perf_tool *tool = session->tool; 2133 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2134 2135 perf_event__read_stat_config(&stat_config, &event->stat_config); 2136 2137 if (perf_cpu_map__is_empty(st->cpus)) { 2138 if (st->aggr_mode != AGGR_UNSET) 2139 pr_warning("warning: processing task data, aggregation mode not set\n"); 2140 } else if (st->aggr_mode != AGGR_UNSET) { 2141 stat_config.aggr_mode = st->aggr_mode; 2142 } 2143 2144 if (perf_stat.data.is_pipe) 2145 perf_stat_init_aggr_mode(); 2146 else 2147 perf_stat_init_aggr_mode_file(st); 2148 2149 if (stat_config.aggr_map) { 2150 int nr_aggr = stat_config.aggr_map->nr; 2151 2152 if (evlist__alloc_aggr_stats(session->evlist, nr_aggr) < 0) { 2153 pr_err("cannot allocate aggr counts\n"); 2154 return -1; 2155 } 2156 } 2157 return 0; 2158 } 2159 2160 static int set_maps(struct perf_stat *st) 2161 { 2162 if (!st->cpus || !st->threads) 2163 return 0; 2164 2165 if (WARN_ONCE(st->maps_allocated, "stats double allocation\n")) 2166 return -EINVAL; 2167 2168 perf_evlist__set_maps(&evsel_list->core, st->cpus, st->threads); 2169 2170 if (evlist__alloc_stats(&stat_config, evsel_list, /*alloc_raw=*/true)) 2171 return -ENOMEM; 2172 2173 st->maps_allocated = true; 2174 return 0; 2175 } 2176 2177 static 2178 int process_thread_map_event(struct perf_session *session, 2179 union perf_event *event) 2180 { 2181 const struct perf_tool *tool = session->tool; 2182 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2183 2184 if (st->threads) { 2185 pr_warning("Extra thread map event, ignoring.\n"); 2186 return 0; 2187 } 2188 2189 st->threads = thread_map__new_event(&event->thread_map); 2190 if (!st->threads) 2191 return -ENOMEM; 2192 2193 return set_maps(st); 2194 } 2195 2196 static 2197 int process_cpu_map_event(struct perf_session *session, 2198 union perf_event *event) 2199 { 2200 const struct perf_tool *tool = session->tool; 2201 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2202 struct perf_cpu_map *cpus; 2203 2204 if (st->cpus) { 2205 pr_warning("Extra cpu map event, ignoring.\n"); 2206 return 0; 2207 } 2208 2209 cpus = cpu_map__new_data(&event->cpu_map.data); 2210 if (!cpus) 2211 return -ENOMEM; 2212 2213 st->cpus = cpus; 2214 return set_maps(st); 2215 } 2216 2217 static const char * const stat_report_usage[] = { 2218 "perf stat report [<options>]", 2219 NULL, 2220 }; 2221 2222 static struct perf_stat perf_stat = { 2223 .aggr_mode = AGGR_UNSET, 2224 .aggr_level = 0, 2225 }; 2226 2227 static int __cmd_report(int argc, const char **argv) 2228 { 2229 struct perf_session *session; 2230 const struct option options[] = { 2231 OPT_STRING('i', "input", &input_name, "file", "input file name"), 2232 OPT_SET_UINT(0, "per-socket", &perf_stat.aggr_mode, 2233 "aggregate counts per processor socket", AGGR_SOCKET), 2234 OPT_SET_UINT(0, "per-die", &perf_stat.aggr_mode, 2235 "aggregate counts per processor die", AGGR_DIE), 2236 OPT_SET_UINT(0, "per-cluster", &perf_stat.aggr_mode, 2237 "aggregate counts perf processor cluster", AGGR_CLUSTER), 2238 OPT_CALLBACK_OPTARG(0, "per-cache", &perf_stat.aggr_mode, &perf_stat.aggr_level, 2239 "cache level", 2240 "aggregate count at this cache level (Default: LLC)", 2241 parse_cache_level), 2242 OPT_SET_UINT(0, "per-core", &perf_stat.aggr_mode, 2243 "aggregate counts per physical processor core", AGGR_CORE), 2244 OPT_SET_UINT(0, "per-node", &perf_stat.aggr_mode, 2245 "aggregate counts per numa node", AGGR_NODE), 2246 OPT_SET_UINT('A', "no-aggr", &perf_stat.aggr_mode, 2247 "disable CPU count aggregation", AGGR_NONE), 2248 OPT_END() 2249 }; 2250 struct stat st; 2251 int ret; 2252 2253 argc = parse_options(argc, argv, options, stat_report_usage, 0); 2254 2255 if (!input_name || !strlen(input_name)) { 2256 if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode)) 2257 input_name = "-"; 2258 else 2259 input_name = "perf.data"; 2260 } 2261 2262 perf_stat.data.path = input_name; 2263 perf_stat.data.mode = PERF_DATA_MODE_READ; 2264 2265 perf_tool__init(&perf_stat.tool, /*ordered_events=*/false); 2266 perf_stat.tool.attr = perf_event__process_attr; 2267 perf_stat.tool.event_update = perf_event__process_event_update; 2268 perf_stat.tool.thread_map = process_thread_map_event; 2269 perf_stat.tool.cpu_map = process_cpu_map_event; 2270 perf_stat.tool.stat_config = process_stat_config_event; 2271 perf_stat.tool.stat = perf_event__process_stat_event; 2272 perf_stat.tool.stat_round = process_stat_round_event; 2273 2274 session = perf_session__new(&perf_stat.data, &perf_stat.tool); 2275 if (IS_ERR(session)) 2276 return PTR_ERR(session); 2277 2278 perf_stat.session = session; 2279 stat_config.output = stderr; 2280 evlist__delete(evsel_list); 2281 evsel_list = session->evlist; 2282 2283 ret = perf_session__process_events(session); 2284 if (ret) 2285 return ret; 2286 2287 perf_session__delete(session); 2288 return 0; 2289 } 2290 2291 static void setup_system_wide(int forks) 2292 { 2293 /* 2294 * Make system wide (-a) the default target if 2295 * no target was specified and one of following 2296 * conditions is met: 2297 * 2298 * - there's no workload specified 2299 * - there is workload specified but all requested 2300 * events are system wide events 2301 */ 2302 if (!target__none(&target)) 2303 return; 2304 2305 if (!forks) 2306 target.system_wide = true; 2307 else { 2308 struct evsel *counter; 2309 2310 evlist__for_each_entry(evsel_list, counter) { 2311 if (!counter->core.requires_cpu && 2312 !evsel__name_is(counter, "duration_time")) { 2313 return; 2314 } 2315 } 2316 2317 if (evsel_list->core.nr_entries) 2318 target.system_wide = true; 2319 } 2320 } 2321 2322 #ifdef HAVE_ARCH_X86_64_SUPPORT 2323 static int parse_tpebs_mode(const struct option *opt, const char *str, 2324 int unset __maybe_unused) 2325 { 2326 enum tpebs_mode *mode = opt->value; 2327 2328 if (!strcasecmp("mean", str)) { 2329 *mode = TPEBS_MODE__MEAN; 2330 return 0; 2331 } 2332 if (!strcasecmp("min", str)) { 2333 *mode = TPEBS_MODE__MIN; 2334 return 0; 2335 } 2336 if (!strcasecmp("max", str)) { 2337 *mode = TPEBS_MODE__MAX; 2338 return 0; 2339 } 2340 if (!strcasecmp("last", str)) { 2341 *mode = TPEBS_MODE__LAST; 2342 return 0; 2343 } 2344 return -1; 2345 } 2346 #endif // HAVE_ARCH_X86_64_SUPPORT 2347 2348 int cmd_stat(int argc, const char **argv) 2349 { 2350 struct opt_aggr_mode opt_mode = {}; 2351 struct option stat_options[] = { 2352 OPT_BOOLEAN('T', "transaction", &transaction_run, 2353 "hardware transaction statistics"), 2354 OPT_CALLBACK('e', "event", &parse_events_option_args, "event", 2355 "event selector. use 'perf list' to list available events", 2356 parse_events_option), 2357 OPT_CALLBACK(0, "filter", &evsel_list, "filter", 2358 "event filter", parse_filter), 2359 OPT_BOOLEAN('i', "no-inherit", &stat_config.no_inherit, 2360 "child tasks do not inherit counters"), 2361 OPT_STRING('p', "pid", &target.pid, "pid", 2362 "stat events on existing process id"), 2363 OPT_STRING('t', "tid", &target.tid, "tid", 2364 "stat events on existing thread id"), 2365 #ifdef HAVE_BPF_SKEL 2366 OPT_STRING('b', "bpf-prog", &target.bpf_str, "bpf-prog-id", 2367 "stat events on existing bpf program id"), 2368 OPT_BOOLEAN(0, "bpf-counters", &target.use_bpf, 2369 "use bpf program to count events"), 2370 OPT_STRING(0, "bpf-attr-map", &target.attr_map, "attr-map-path", 2371 "path to perf_event_attr map"), 2372 #endif 2373 OPT_BOOLEAN('a', "all-cpus", &target.system_wide, 2374 "system-wide collection from all CPUs"), 2375 OPT_BOOLEAN(0, "scale", &stat_config.scale, 2376 "Use --no-scale to disable counter scaling for multiplexing"), 2377 OPT_INCR('v', "verbose", &verbose, 2378 "be more verbose (show counter open errors, etc)"), 2379 OPT_INTEGER('r', "repeat", &stat_config.run_count, 2380 "repeat command and print average + stddev (max: 100, forever: 0)"), 2381 OPT_BOOLEAN(0, "table", &stat_config.walltime_run_table, 2382 "display details about each run (only with -r option)"), 2383 OPT_BOOLEAN('n', "null", &stat_config.null_run, 2384 "null run - dont start any counters"), 2385 OPT_INCR('d', "detailed", &detailed_run, 2386 "detailed run - start a lot of events"), 2387 OPT_BOOLEAN('S', "sync", &sync_run, 2388 "call sync() before starting a run"), 2389 OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL, 2390 "print large numbers with thousands\' separators", 2391 stat__set_big_num), 2392 OPT_STRING('C', "cpu", &target.cpu_list, "cpu", 2393 "list of cpus to monitor in system-wide"), 2394 OPT_BOOLEAN('A', "no-aggr", &opt_mode.no_aggr, 2395 "disable aggregation across CPUs or PMUs"), 2396 OPT_BOOLEAN(0, "no-merge", &opt_mode.no_aggr, 2397 "disable aggregation the same as -A or -no-aggr"), 2398 OPT_BOOLEAN(0, "hybrid-merge", &stat_config.hybrid_merge, 2399 "Merge identical named hybrid events"), 2400 OPT_STRING('x', "field-separator", &stat_config.csv_sep, "separator", 2401 "print counts with custom separator"), 2402 OPT_BOOLEAN('j', "json-output", &stat_config.json_output, 2403 "print counts in JSON format"), 2404 OPT_CALLBACK('G', "cgroup", &evsel_list, "name", 2405 "monitor event in cgroup name only", parse_stat_cgroups), 2406 OPT_STRING(0, "for-each-cgroup", &stat_config.cgroup_list, "name", 2407 "expand events for each cgroup"), 2408 OPT_STRING('o', "output", &output_name, "file", "output file name"), 2409 OPT_BOOLEAN(0, "append", &append_file, "append to the output file"), 2410 OPT_INTEGER(0, "log-fd", &output_fd, 2411 "log output to fd, instead of stderr"), 2412 OPT_STRING(0, "pre", &pre_cmd, "command", 2413 "command to run prior to the measured command"), 2414 OPT_STRING(0, "post", &post_cmd, "command", 2415 "command to run after to the measured command"), 2416 OPT_UINTEGER('I', "interval-print", &stat_config.interval, 2417 "print counts at regular interval in ms " 2418 "(overhead is possible for values <= 100ms)"), 2419 OPT_INTEGER(0, "interval-count", &stat_config.times, 2420 "print counts for fixed number of times"), 2421 OPT_BOOLEAN(0, "interval-clear", &stat_config.interval_clear, 2422 "clear screen in between new interval"), 2423 OPT_UINTEGER(0, "timeout", &stat_config.timeout, 2424 "stop workload and print counts after a timeout period in ms (>= 10ms)"), 2425 OPT_BOOLEAN(0, "per-socket", &opt_mode.socket, 2426 "aggregate counts per processor socket"), 2427 OPT_BOOLEAN(0, "per-die", &opt_mode.die, "aggregate counts per processor die"), 2428 OPT_BOOLEAN(0, "per-cluster", &opt_mode.cluster, 2429 "aggregate counts per processor cluster"), 2430 OPT_CALLBACK_OPTARG(0, "per-cache", &opt_mode, &stat_config.aggr_level, 2431 "cache level", "aggregate count at this cache level (Default: LLC)", 2432 parse_cache_level), 2433 OPT_BOOLEAN(0, "per-core", &opt_mode.core, 2434 "aggregate counts per physical processor core"), 2435 OPT_BOOLEAN(0, "per-thread", &opt_mode.thread, "aggregate counts per thread"), 2436 OPT_BOOLEAN(0, "per-node", &opt_mode.node, "aggregate counts per numa node"), 2437 OPT_INTEGER('D', "delay", &target.initial_delay, 2438 "ms to wait before starting measurement after program start (-1: start with events disabled)"), 2439 OPT_CALLBACK_NOOPT(0, "metric-only", &stat_config.metric_only, NULL, 2440 "Only print computed metrics. No raw values", enable_metric_only), 2441 OPT_BOOLEAN(0, "metric-no-group", &stat_config.metric_no_group, 2442 "don't group metric events, impacts multiplexing"), 2443 OPT_BOOLEAN(0, "metric-no-merge", &stat_config.metric_no_merge, 2444 "don't try to share events between metrics in a group"), 2445 OPT_BOOLEAN(0, "metric-no-threshold", &stat_config.metric_no_threshold, 2446 "disable adding events for the metric threshold calculation"), 2447 OPT_BOOLEAN(0, "topdown", &topdown_run, 2448 "measure top-down statistics"), 2449 #ifdef HAVE_ARCH_X86_64_SUPPORT 2450 OPT_BOOLEAN(0, "record-tpebs", &tpebs_recording, 2451 "enable recording for tpebs when retire_latency required"), 2452 OPT_CALLBACK(0, "tpebs-mode", &tpebs_mode, "tpebs-mode", 2453 "Mode of TPEBS recording: mean, min or max", 2454 parse_tpebs_mode), 2455 #endif 2456 OPT_UINTEGER(0, "td-level", &stat_config.topdown_level, 2457 "Set the metrics level for the top-down statistics (0: max level)"), 2458 OPT_BOOLEAN(0, "smi-cost", &smi_cost, 2459 "measure SMI cost"), 2460 OPT_CALLBACK('M', "metrics", &evsel_list, "metric/metric group list", 2461 "monitor specified metrics or metric groups (separated by ,)", 2462 append_metric_groups), 2463 OPT_BOOLEAN_FLAG(0, "all-kernel", &stat_config.all_kernel, 2464 "Configure all used events to run in kernel space.", 2465 PARSE_OPT_EXCLUSIVE), 2466 OPT_BOOLEAN_FLAG(0, "all-user", &stat_config.all_user, 2467 "Configure all used events to run in user space.", 2468 PARSE_OPT_EXCLUSIVE), 2469 OPT_BOOLEAN(0, "percore-show-thread", &stat_config.percore_show_thread, 2470 "Use with 'percore' event qualifier to show the event " 2471 "counts of one hardware thread by sum up total hardware " 2472 "threads of same physical core"), 2473 OPT_BOOLEAN(0, "summary", &stat_config.summary, 2474 "print summary for interval mode"), 2475 OPT_BOOLEAN(0, "no-csv-summary", &stat_config.no_csv_summary, 2476 "don't print 'summary' for CSV summary output"), 2477 OPT_BOOLEAN(0, "quiet", &quiet, 2478 "don't print any output, messages or warnings (useful with record)"), 2479 OPT_CALLBACK(0, "cputype", &evsel_list, "hybrid cpu type", 2480 "Only enable events on applying cpu with this type " 2481 "for hybrid platform (e.g. core or atom)", 2482 parse_cputype), 2483 #ifdef HAVE_LIBPFM 2484 OPT_CALLBACK(0, "pfm-events", &evsel_list, "event", 2485 "libpfm4 event selector. use 'perf list' to list available events", 2486 parse_libpfm_events_option), 2487 #endif 2488 OPT_CALLBACK(0, "control", &stat_config, "fd:ctl-fd[,ack-fd] or fifo:ctl-fifo[,ack-fifo]", 2489 "Listen on ctl-fd descriptor for command to control measurement ('enable': enable events, 'disable': disable events).\n" 2490 "\t\t\t Optionally send control command completion ('ack\\n') to ack-fd descriptor.\n" 2491 "\t\t\t Alternatively, ctl-fifo / ack-fifo will be opened and used as ctl-fd / ack-fd.", 2492 parse_control_option), 2493 OPT_CALLBACK_OPTARG(0, "iostat", &evsel_list, &stat_config, "default", 2494 "measure I/O performance metrics provided by arch/platform", 2495 iostat_parse), 2496 OPT_END() 2497 }; 2498 const char * const stat_usage[] = { 2499 "perf stat [<options>] [<command>]", 2500 NULL 2501 }; 2502 int status = -EINVAL, run_idx, err; 2503 const char *mode; 2504 FILE *output = stderr; 2505 unsigned int interval, timeout; 2506 const char * const stat_subcommands[] = { "record", "report" }; 2507 char errbuf[BUFSIZ]; 2508 2509 setlocale(LC_ALL, ""); 2510 2511 evsel_list = evlist__new(); 2512 if (evsel_list == NULL) 2513 return -ENOMEM; 2514 2515 parse_events__shrink_config_terms(); 2516 2517 /* String-parsing callback-based options would segfault when negated */ 2518 set_option_flag(stat_options, 'e', "event", PARSE_OPT_NONEG); 2519 set_option_flag(stat_options, 'M', "metrics", PARSE_OPT_NONEG); 2520 set_option_flag(stat_options, 'G', "cgroup", PARSE_OPT_NONEG); 2521 2522 argc = parse_options_subcommand(argc, argv, stat_options, stat_subcommands, 2523 (const char **) stat_usage, 2524 PARSE_OPT_STOP_AT_NON_OPTION); 2525 2526 stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(&opt_mode); 2527 2528 if (stat_config.csv_sep) { 2529 stat_config.csv_output = true; 2530 if (!strcmp(stat_config.csv_sep, "\\t")) 2531 stat_config.csv_sep = "\t"; 2532 } else 2533 stat_config.csv_sep = DEFAULT_SEPARATOR; 2534 2535 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) { 2536 argc = __cmd_record(stat_options, &opt_mode, argc, argv); 2537 if (argc < 0) 2538 return -1; 2539 } else if (argc && strlen(argv[0]) > 2 && strstarts("report", argv[0])) 2540 return __cmd_report(argc, argv); 2541 2542 interval = stat_config.interval; 2543 timeout = stat_config.timeout; 2544 2545 /* 2546 * For record command the -o is already taken care of. 2547 */ 2548 if (!STAT_RECORD && output_name && strcmp(output_name, "-")) 2549 output = NULL; 2550 2551 if (output_name && output_fd) { 2552 fprintf(stderr, "cannot use both --output and --log-fd\n"); 2553 parse_options_usage(stat_usage, stat_options, "o", 1); 2554 parse_options_usage(NULL, stat_options, "log-fd", 0); 2555 goto out; 2556 } 2557 2558 if (stat_config.metric_only && stat_config.aggr_mode == AGGR_THREAD) { 2559 fprintf(stderr, "--metric-only is not supported with --per-thread\n"); 2560 goto out; 2561 } 2562 2563 if (stat_config.metric_only && stat_config.run_count > 1) { 2564 fprintf(stderr, "--metric-only is not supported with -r\n"); 2565 goto out; 2566 } 2567 2568 if (stat_config.csv_output || (stat_config.metric_only && stat_config.json_output)) { 2569 /* 2570 * Current CSV and metric-only JSON output doesn't display the 2571 * metric threshold so don't compute it. 2572 */ 2573 stat_config.metric_no_threshold = true; 2574 } 2575 2576 if (stat_config.walltime_run_table && stat_config.run_count <= 1) { 2577 fprintf(stderr, "--table is only supported with -r\n"); 2578 parse_options_usage(stat_usage, stat_options, "r", 1); 2579 parse_options_usage(NULL, stat_options, "table", 0); 2580 goto out; 2581 } 2582 2583 if (output_fd < 0) { 2584 fprintf(stderr, "argument to --log-fd must be a > 0\n"); 2585 parse_options_usage(stat_usage, stat_options, "log-fd", 0); 2586 goto out; 2587 } 2588 2589 if (!output && !quiet) { 2590 struct timespec tm; 2591 mode = append_file ? "a" : "w"; 2592 2593 output = fopen(output_name, mode); 2594 if (!output) { 2595 perror("failed to create output file"); 2596 return -1; 2597 } 2598 if (!stat_config.json_output) { 2599 clock_gettime(CLOCK_REALTIME, &tm); 2600 fprintf(output, "# started on %s\n", ctime(&tm.tv_sec)); 2601 } 2602 } else if (output_fd > 0) { 2603 mode = append_file ? "a" : "w"; 2604 output = fdopen(output_fd, mode); 2605 if (!output) { 2606 perror("Failed opening logfd"); 2607 return -errno; 2608 } 2609 } 2610 2611 if (stat_config.interval_clear && !isatty(fileno(output))) { 2612 fprintf(stderr, "--interval-clear does not work with output\n"); 2613 parse_options_usage(stat_usage, stat_options, "o", 1); 2614 parse_options_usage(NULL, stat_options, "log-fd", 0); 2615 parse_options_usage(NULL, stat_options, "interval-clear", 0); 2616 return -1; 2617 } 2618 2619 stat_config.output = output; 2620 2621 /* 2622 * let the spreadsheet do the pretty-printing 2623 */ 2624 if (stat_config.csv_output) { 2625 /* User explicitly passed -B? */ 2626 if (big_num_opt == 1) { 2627 fprintf(stderr, "-B option not supported with -x\n"); 2628 parse_options_usage(stat_usage, stat_options, "B", 1); 2629 parse_options_usage(NULL, stat_options, "x", 1); 2630 goto out; 2631 } else /* Nope, so disable big number formatting */ 2632 stat_config.big_num = false; 2633 } else if (big_num_opt == 0) /* User passed --no-big-num */ 2634 stat_config.big_num = false; 2635 2636 target.inherit = !stat_config.no_inherit; 2637 err = target__validate(&target); 2638 if (err) { 2639 target__strerror(&target, err, errbuf, BUFSIZ); 2640 pr_warning("%s\n", errbuf); 2641 } 2642 2643 setup_system_wide(argc); 2644 2645 /* 2646 * Display user/system times only for single 2647 * run and when there's specified tracee. 2648 */ 2649 if ((stat_config.run_count == 1) && target__none(&target)) 2650 stat_config.ru_display = true; 2651 2652 if (stat_config.run_count < 0) { 2653 pr_err("Run count must be a positive number\n"); 2654 parse_options_usage(stat_usage, stat_options, "r", 1); 2655 goto out; 2656 } else if (stat_config.run_count == 0) { 2657 forever = true; 2658 stat_config.run_count = 1; 2659 } 2660 2661 if (stat_config.walltime_run_table) { 2662 stat_config.walltime_run = zalloc(stat_config.run_count * sizeof(stat_config.walltime_run[0])); 2663 if (!stat_config.walltime_run) { 2664 pr_err("failed to setup -r option"); 2665 goto out; 2666 } 2667 } 2668 2669 if ((stat_config.aggr_mode == AGGR_THREAD) && 2670 !target__has_task(&target)) { 2671 if (!target.system_wide || target.cpu_list) { 2672 fprintf(stderr, "The --per-thread option is only " 2673 "available when monitoring via -p -t -a " 2674 "options or only --per-thread.\n"); 2675 parse_options_usage(NULL, stat_options, "p", 1); 2676 parse_options_usage(NULL, stat_options, "t", 1); 2677 goto out; 2678 } 2679 } 2680 2681 /* 2682 * no_aggr, cgroup are for system-wide only 2683 * --per-thread is aggregated per thread, we dont mix it with cpu mode 2684 */ 2685 if (((stat_config.aggr_mode != AGGR_GLOBAL && 2686 stat_config.aggr_mode != AGGR_THREAD) || 2687 (nr_cgroups || stat_config.cgroup_list)) && 2688 !target__has_cpu(&target)) { 2689 fprintf(stderr, "both cgroup and no-aggregation " 2690 "modes only available in system-wide mode\n"); 2691 2692 parse_options_usage(stat_usage, stat_options, "G", 1); 2693 parse_options_usage(NULL, stat_options, "A", 1); 2694 parse_options_usage(NULL, stat_options, "a", 1); 2695 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2696 goto out; 2697 } 2698 2699 if (stat_config.iostat_run) { 2700 status = iostat_prepare(evsel_list, &stat_config); 2701 if (status) 2702 goto out; 2703 if (iostat_mode == IOSTAT_LIST) { 2704 iostat_list(evsel_list, &stat_config); 2705 goto out; 2706 } else if (verbose > 0) 2707 iostat_list(evsel_list, &stat_config); 2708 if (iostat_mode == IOSTAT_RUN && !target__has_cpu(&target)) 2709 target.system_wide = true; 2710 } 2711 2712 if ((stat_config.aggr_mode == AGGR_THREAD) && (target.system_wide)) 2713 target.per_thread = true; 2714 2715 stat_config.system_wide = target.system_wide; 2716 if (target.cpu_list) { 2717 stat_config.user_requested_cpu_list = strdup(target.cpu_list); 2718 if (!stat_config.user_requested_cpu_list) { 2719 status = -ENOMEM; 2720 goto out; 2721 } 2722 } 2723 2724 /* 2725 * Metric parsing needs to be delayed as metrics may optimize events 2726 * knowing the target is system-wide. 2727 */ 2728 if (metrics) { 2729 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 2730 int ret = metricgroup__parse_groups(evsel_list, pmu, metrics, 2731 stat_config.metric_no_group, 2732 stat_config.metric_no_merge, 2733 stat_config.metric_no_threshold, 2734 stat_config.user_requested_cpu_list, 2735 stat_config.system_wide, 2736 stat_config.hardware_aware_grouping); 2737 2738 zfree(&metrics); 2739 if (ret) { 2740 status = ret; 2741 goto out; 2742 } 2743 } 2744 2745 if (add_default_events()) 2746 goto out; 2747 2748 if (stat_config.cgroup_list) { 2749 if (nr_cgroups > 0) { 2750 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 2751 parse_options_usage(stat_usage, stat_options, "G", 1); 2752 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2753 goto out; 2754 } 2755 2756 if (evlist__expand_cgroup(evsel_list, stat_config.cgroup_list, true) < 0) { 2757 parse_options_usage(stat_usage, stat_options, 2758 "for-each-cgroup", 0); 2759 goto out; 2760 } 2761 } 2762 2763 evlist__warn_user_requested_cpus(evsel_list, target.cpu_list); 2764 2765 if (evlist__create_maps(evsel_list, &target) < 0) { 2766 if (target__has_task(&target)) { 2767 pr_err("Problems finding threads of monitor\n"); 2768 parse_options_usage(stat_usage, stat_options, "p", 1); 2769 parse_options_usage(NULL, stat_options, "t", 1); 2770 } else if (target__has_cpu(&target)) { 2771 perror("failed to parse CPUs map"); 2772 parse_options_usage(stat_usage, stat_options, "C", 1); 2773 parse_options_usage(NULL, stat_options, "a", 1); 2774 } 2775 goto out; 2776 } 2777 2778 evlist__check_cpu_maps(evsel_list); 2779 2780 /* 2781 * Initialize thread_map with comm names, 2782 * so we could print it out on output. 2783 */ 2784 if (stat_config.aggr_mode == AGGR_THREAD) { 2785 thread_map__read_comms(evsel_list->core.threads); 2786 } 2787 2788 if (stat_config.aggr_mode == AGGR_NODE) 2789 cpu__setup_cpunode_map(); 2790 2791 if (stat_config.times && interval) 2792 interval_count = true; 2793 else if (stat_config.times && !interval) { 2794 pr_err("interval-count option should be used together with " 2795 "interval-print.\n"); 2796 parse_options_usage(stat_usage, stat_options, "interval-count", 0); 2797 parse_options_usage(stat_usage, stat_options, "I", 1); 2798 goto out; 2799 } 2800 2801 if (timeout && timeout < 100) { 2802 if (timeout < 10) { 2803 pr_err("timeout must be >= 10ms.\n"); 2804 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2805 goto out; 2806 } else 2807 pr_warning("timeout < 100ms. " 2808 "The overhead percentage could be high in some cases. " 2809 "Please proceed with caution.\n"); 2810 } 2811 if (timeout && interval) { 2812 pr_err("timeout option is not supported with interval-print.\n"); 2813 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2814 parse_options_usage(stat_usage, stat_options, "I", 1); 2815 goto out; 2816 } 2817 2818 if (perf_stat_init_aggr_mode()) 2819 goto out; 2820 2821 if (evlist__alloc_stats(&stat_config, evsel_list, interval)) 2822 goto out; 2823 2824 /* 2825 * Set sample_type to PERF_SAMPLE_IDENTIFIER, which should be harmless 2826 * while avoiding that older tools show confusing messages. 2827 * 2828 * However for pipe sessions we need to keep it zero, 2829 * because script's perf_evsel__check_attr is triggered 2830 * by attr->sample_type != 0, and we can't run it on 2831 * stat sessions. 2832 */ 2833 stat_config.identifier = !(STAT_RECORD && perf_stat.data.is_pipe); 2834 2835 /* 2836 * We dont want to block the signals - that would cause 2837 * child tasks to inherit that and Ctrl-C would not work. 2838 * What we want is for Ctrl-C to work in the exec()-ed 2839 * task, but being ignored by perf stat itself: 2840 */ 2841 atexit(sig_atexit); 2842 if (!forever) 2843 signal(SIGINT, skip_signal); 2844 signal(SIGCHLD, skip_signal); 2845 signal(SIGALRM, skip_signal); 2846 signal(SIGABRT, skip_signal); 2847 2848 if (evlist__initialize_ctlfd(evsel_list, stat_config.ctl_fd, stat_config.ctl_fd_ack)) 2849 goto out; 2850 2851 /* Enable ignoring missing threads when -p option is defined. */ 2852 evlist__first(evsel_list)->ignore_missing_thread = target.pid; 2853 status = 0; 2854 for (run_idx = 0; forever || run_idx < stat_config.run_count; run_idx++) { 2855 if (stat_config.run_count != 1 && verbose > 0) 2856 fprintf(output, "[ perf stat: executing run #%d ... ]\n", 2857 run_idx + 1); 2858 2859 if (run_idx != 0) 2860 evlist__reset_prev_raw_counts(evsel_list); 2861 2862 status = run_perf_stat(argc, argv, run_idx); 2863 if (status == -1) 2864 break; 2865 2866 if (forever && !interval) { 2867 print_counters(NULL, argc, argv); 2868 perf_stat__reset_stats(); 2869 } 2870 } 2871 2872 if (!forever && status != -1 && (!interval || stat_config.summary)) { 2873 if (stat_config.run_count > 1) 2874 evlist__copy_res_stats(&stat_config, evsel_list); 2875 print_counters(NULL, argc, argv); 2876 } 2877 2878 evlist__finalize_ctlfd(evsel_list); 2879 2880 if (STAT_RECORD) { 2881 /* 2882 * We synthesize the kernel mmap record just so that older tools 2883 * don't emit warnings about not being able to resolve symbols 2884 * due to /proc/sys/kernel/kptr_restrict settings and instead provide 2885 * a saner message about no samples being in the perf.data file. 2886 * 2887 * This also serves to suppress a warning about f_header.data.size == 0 2888 * in header.c at the moment 'perf stat record' gets introduced, which 2889 * is not really needed once we start adding the stat specific PERF_RECORD_ 2890 * records, but the need to suppress the kptr_restrict messages in older 2891 * tools remain -acme 2892 */ 2893 int fd = perf_data__fd(&perf_stat.data); 2894 2895 err = perf_event__synthesize_kernel_mmap((void *)&perf_stat, 2896 process_synthesized_event, 2897 &perf_stat.session->machines.host); 2898 if (err) { 2899 pr_warning("Couldn't synthesize the kernel mmap record, harmless, " 2900 "older tools may produce warnings about this file\n."); 2901 } 2902 2903 if (!interval) { 2904 if (WRITE_STAT_ROUND_EVENT(walltime_nsecs_stats.max, FINAL)) 2905 pr_err("failed to write stat round event\n"); 2906 } 2907 2908 if (!perf_stat.data.is_pipe) { 2909 perf_stat.session->header.data_size += perf_stat.bytes_written; 2910 perf_session__write_header(perf_stat.session, evsel_list, fd, true); 2911 } 2912 2913 evlist__close(evsel_list); 2914 perf_session__delete(perf_stat.session); 2915 } 2916 2917 perf_stat__exit_aggr_mode(); 2918 evlist__free_stats(evsel_list); 2919 out: 2920 if (stat_config.iostat_run) 2921 iostat_release(evsel_list); 2922 2923 zfree(&stat_config.walltime_run); 2924 zfree(&stat_config.user_requested_cpu_list); 2925 2926 if (smi_cost && smi_reset) 2927 sysfs__write_int(FREEZE_ON_SMI_PATH, 0); 2928 2929 evlist__delete(evsel_list); 2930 2931 evlist__close_control(stat_config.ctl_fd, stat_config.ctl_fd_ack, &stat_config.ctl_fd_close); 2932 2933 return status; 2934 } 2935