1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * builtin-stat.c 4 * 5 * Builtin stat command: Give a precise performance counters summary 6 * overview about any workload, CPU or specific PID. 7 * 8 * Sample output: 9 10 $ perf stat ./hackbench 10 11 12 Time: 0.118 13 14 Performance counter stats for './hackbench 10': 15 16 1708.761321 task-clock # 11.037 CPUs utilized 17 41,190 context-switches # 0.024 M/sec 18 6,735 CPU-migrations # 0.004 M/sec 19 17,318 page-faults # 0.010 M/sec 20 5,205,202,243 cycles # 3.046 GHz 21 3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle 22 1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle 23 2,603,501,247 instructions # 0.50 insns per cycle 24 # 1.48 stalled cycles per insn 25 484,357,498 branches # 283.455 M/sec 26 6,388,934 branch-misses # 1.32% of all branches 27 28 0.154822978 seconds time elapsed 29 30 * 31 * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com> 32 * 33 * Improvements and fixes by: 34 * 35 * Arjan van de Ven <arjan@linux.intel.com> 36 * Yanmin Zhang <yanmin.zhang@intel.com> 37 * Wu Fengguang <fengguang.wu@intel.com> 38 * Mike Galbraith <efault@gmx.de> 39 * Paul Mackerras <paulus@samba.org> 40 * Jaswinder Singh Rajput <jaswinder@kernel.org> 41 */ 42 43 #include "builtin.h" 44 #include "util/cgroup.h" 45 #include <subcmd/parse-options.h> 46 #include "util/parse-events.h" 47 #include "util/pmus.h" 48 #include "util/pmu.h" 49 #include "util/event.h" 50 #include "util/evlist.h" 51 #include "util/evsel.h" 52 #include "util/debug.h" 53 #include "util/color.h" 54 #include "util/stat.h" 55 #include "util/header.h" 56 #include "util/cpumap.h" 57 #include "util/thread_map.h" 58 #include "util/counts.h" 59 #include "util/topdown.h" 60 #include "util/session.h" 61 #include "util/tool.h" 62 #include "util/string2.h" 63 #include "util/metricgroup.h" 64 #include "util/synthetic-events.h" 65 #include "util/target.h" 66 #include "util/time-utils.h" 67 #include "util/top.h" 68 #include "util/affinity.h" 69 #include "util/pfm.h" 70 #include "util/bpf_counter.h" 71 #include "util/iostat.h" 72 #include "util/util.h" 73 #include "util/intel-tpebs.h" 74 #include "asm/bug.h" 75 76 #include <linux/time64.h> 77 #include <linux/zalloc.h> 78 #include <api/fs/fs.h> 79 #include <errno.h> 80 #include <signal.h> 81 #include <stdlib.h> 82 #include <sys/prctl.h> 83 #include <inttypes.h> 84 #include <locale.h> 85 #include <math.h> 86 #include <sys/types.h> 87 #include <sys/stat.h> 88 #include <sys/wait.h> 89 #include <unistd.h> 90 #include <sys/time.h> 91 #include <sys/resource.h> 92 #include <linux/err.h> 93 94 #include <linux/ctype.h> 95 #include <perf/evlist.h> 96 #include <internal/threadmap.h> 97 98 #define DEFAULT_SEPARATOR " " 99 #define FREEZE_ON_SMI_PATH "devices/cpu/freeze_on_smi" 100 101 static void print_counters(struct timespec *ts, int argc, const char **argv); 102 103 static struct evlist *evsel_list; 104 static struct parse_events_option_args parse_events_option_args = { 105 .evlistp = &evsel_list, 106 }; 107 108 static bool all_counters_use_bpf = true; 109 110 static struct target target = { 111 .uid = UINT_MAX, 112 }; 113 114 #define METRIC_ONLY_LEN 20 115 116 static volatile sig_atomic_t child_pid = -1; 117 static int detailed_run = 0; 118 static bool transaction_run; 119 static bool topdown_run = false; 120 static bool smi_cost = false; 121 static bool smi_reset = false; 122 static int big_num_opt = -1; 123 static const char *pre_cmd = NULL; 124 static const char *post_cmd = NULL; 125 static bool sync_run = false; 126 static bool forever = false; 127 static bool force_metric_only = false; 128 static struct timespec ref_time; 129 static bool append_file; 130 static bool interval_count; 131 static const char *output_name; 132 static int output_fd; 133 static char *metrics; 134 135 struct perf_stat { 136 bool record; 137 struct perf_data data; 138 struct perf_session *session; 139 u64 bytes_written; 140 struct perf_tool tool; 141 bool maps_allocated; 142 struct perf_cpu_map *cpus; 143 struct perf_thread_map *threads; 144 enum aggr_mode aggr_mode; 145 u32 aggr_level; 146 }; 147 148 static struct perf_stat perf_stat; 149 #define STAT_RECORD perf_stat.record 150 151 static volatile sig_atomic_t done = 0; 152 153 static struct perf_stat_config stat_config = { 154 .aggr_mode = AGGR_GLOBAL, 155 .aggr_level = MAX_CACHE_LVL + 1, 156 .scale = true, 157 .unit_width = 4, /* strlen("unit") */ 158 .run_count = 1, 159 .metric_only_len = METRIC_ONLY_LEN, 160 .walltime_nsecs_stats = &walltime_nsecs_stats, 161 .ru_stats = &ru_stats, 162 .big_num = true, 163 .ctl_fd = -1, 164 .ctl_fd_ack = -1, 165 .iostat_run = false, 166 }; 167 168 /* Options set from the command line. */ 169 struct opt_aggr_mode { 170 bool node, socket, die, cluster, cache, core, thread, no_aggr; 171 }; 172 173 /* Turn command line option into most generic aggregation mode setting. */ 174 static enum aggr_mode opt_aggr_mode_to_aggr_mode(struct opt_aggr_mode *opt_mode) 175 { 176 enum aggr_mode mode = AGGR_GLOBAL; 177 178 if (opt_mode->node) 179 mode = AGGR_NODE; 180 if (opt_mode->socket) 181 mode = AGGR_SOCKET; 182 if (opt_mode->die) 183 mode = AGGR_DIE; 184 if (opt_mode->cluster) 185 mode = AGGR_CLUSTER; 186 if (opt_mode->cache) 187 mode = AGGR_CACHE; 188 if (opt_mode->core) 189 mode = AGGR_CORE; 190 if (opt_mode->thread) 191 mode = AGGR_THREAD; 192 if (opt_mode->no_aggr) 193 mode = AGGR_NONE; 194 return mode; 195 } 196 197 static void evlist__check_cpu_maps(struct evlist *evlist) 198 { 199 struct evsel *evsel, *warned_leader = NULL; 200 201 evlist__for_each_entry(evlist, evsel) { 202 struct evsel *leader = evsel__leader(evsel); 203 204 /* Check that leader matches cpus with each member. */ 205 if (leader == evsel) 206 continue; 207 if (perf_cpu_map__equal(leader->core.cpus, evsel->core.cpus)) 208 continue; 209 210 /* If there's mismatch disable the group and warn user. */ 211 if (warned_leader != leader) { 212 char buf[200]; 213 214 pr_warning("WARNING: grouped events cpus do not match.\n" 215 "Events with CPUs not matching the leader will " 216 "be removed from the group.\n"); 217 evsel__group_desc(leader, buf, sizeof(buf)); 218 pr_warning(" %s\n", buf); 219 warned_leader = leader; 220 } 221 if (verbose > 0) { 222 char buf[200]; 223 224 cpu_map__snprint(leader->core.cpus, buf, sizeof(buf)); 225 pr_warning(" %s: %s\n", leader->name, buf); 226 cpu_map__snprint(evsel->core.cpus, buf, sizeof(buf)); 227 pr_warning(" %s: %s\n", evsel->name, buf); 228 } 229 230 evsel__remove_from_group(evsel, leader); 231 } 232 } 233 234 static inline void diff_timespec(struct timespec *r, struct timespec *a, 235 struct timespec *b) 236 { 237 r->tv_sec = a->tv_sec - b->tv_sec; 238 if (a->tv_nsec < b->tv_nsec) { 239 r->tv_nsec = a->tv_nsec + NSEC_PER_SEC - b->tv_nsec; 240 r->tv_sec--; 241 } else { 242 r->tv_nsec = a->tv_nsec - b->tv_nsec ; 243 } 244 } 245 246 static void perf_stat__reset_stats(void) 247 { 248 evlist__reset_stats(evsel_list); 249 perf_stat__reset_shadow_stats(); 250 } 251 252 static int process_synthesized_event(const struct perf_tool *tool __maybe_unused, 253 union perf_event *event, 254 struct perf_sample *sample __maybe_unused, 255 struct machine *machine __maybe_unused) 256 { 257 if (perf_data__write(&perf_stat.data, event, event->header.size) < 0) { 258 pr_err("failed to write perf data, error: %m\n"); 259 return -1; 260 } 261 262 perf_stat.bytes_written += event->header.size; 263 return 0; 264 } 265 266 static int write_stat_round_event(u64 tm, u64 type) 267 { 268 return perf_event__synthesize_stat_round(NULL, tm, type, 269 process_synthesized_event, 270 NULL); 271 } 272 273 #define WRITE_STAT_ROUND_EVENT(time, interval) \ 274 write_stat_round_event(time, PERF_STAT_ROUND_TYPE__ ## interval) 275 276 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y) 277 278 static int evsel__write_stat_event(struct evsel *counter, int cpu_map_idx, u32 thread, 279 struct perf_counts_values *count) 280 { 281 struct perf_sample_id *sid = SID(counter, cpu_map_idx, thread); 282 struct perf_cpu cpu = perf_cpu_map__cpu(evsel__cpus(counter), cpu_map_idx); 283 284 return perf_event__synthesize_stat(NULL, cpu, thread, sid->id, count, 285 process_synthesized_event, NULL); 286 } 287 288 static int read_single_counter(struct evsel *counter, int cpu_map_idx, int thread) 289 { 290 int err = evsel__read_counter(counter, cpu_map_idx, thread); 291 292 /* 293 * Reading user and system time will fail when the process 294 * terminates. Use the wait4 values in that case. 295 */ 296 if (err && cpu_map_idx == 0 && 297 (evsel__tool_event(counter) == PERF_TOOL_USER_TIME || 298 evsel__tool_event(counter) == PERF_TOOL_SYSTEM_TIME)) { 299 u64 val, *start_time; 300 struct perf_counts_values *count = 301 perf_counts(counter->counts, cpu_map_idx, thread); 302 303 start_time = xyarray__entry(counter->start_times, cpu_map_idx, thread); 304 if (evsel__tool_event(counter) == PERF_TOOL_USER_TIME) 305 val = ru_stats.ru_utime_usec_stat.mean; 306 else 307 val = ru_stats.ru_stime_usec_stat.mean; 308 count->ena = count->run = *start_time + val; 309 count->val = val; 310 return 0; 311 } 312 return err; 313 } 314 315 /* 316 * Read out the results of a single counter: 317 * do not aggregate counts across CPUs in system-wide mode 318 */ 319 static int read_counter_cpu(struct evsel *counter, int cpu_map_idx) 320 { 321 int nthreads = perf_thread_map__nr(evsel_list->core.threads); 322 int thread; 323 324 if (!counter->supported) 325 return -ENOENT; 326 327 for (thread = 0; thread < nthreads; thread++) { 328 struct perf_counts_values *count; 329 330 count = perf_counts(counter->counts, cpu_map_idx, thread); 331 332 /* 333 * The leader's group read loads data into its group members 334 * (via evsel__read_counter()) and sets their count->loaded. 335 */ 336 if (!perf_counts__is_loaded(counter->counts, cpu_map_idx, thread) && 337 read_single_counter(counter, cpu_map_idx, thread)) { 338 counter->counts->scaled = -1; 339 perf_counts(counter->counts, cpu_map_idx, thread)->ena = 0; 340 perf_counts(counter->counts, cpu_map_idx, thread)->run = 0; 341 return -1; 342 } 343 344 perf_counts__set_loaded(counter->counts, cpu_map_idx, thread, false); 345 346 if (STAT_RECORD) { 347 if (evsel__write_stat_event(counter, cpu_map_idx, thread, count)) { 348 pr_err("failed to write stat event\n"); 349 return -1; 350 } 351 } 352 353 if (verbose > 1) { 354 fprintf(stat_config.output, 355 "%s: %d: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", 356 evsel__name(counter), 357 perf_cpu_map__cpu(evsel__cpus(counter), 358 cpu_map_idx).cpu, 359 count->val, count->ena, count->run); 360 } 361 } 362 363 return 0; 364 } 365 366 static int read_affinity_counters(void) 367 { 368 struct evlist_cpu_iterator evlist_cpu_itr; 369 struct affinity saved_affinity, *affinity; 370 371 if (all_counters_use_bpf) 372 return 0; 373 374 if (!target__has_cpu(&target) || target__has_per_thread(&target)) 375 affinity = NULL; 376 else if (affinity__setup(&saved_affinity) < 0) 377 return -1; 378 else 379 affinity = &saved_affinity; 380 381 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 382 struct evsel *counter = evlist_cpu_itr.evsel; 383 384 if (evsel__is_bpf(counter)) 385 continue; 386 387 if (!counter->err) 388 counter->err = read_counter_cpu(counter, evlist_cpu_itr.cpu_map_idx); 389 } 390 if (affinity) 391 affinity__cleanup(&saved_affinity); 392 393 return 0; 394 } 395 396 static int read_bpf_map_counters(void) 397 { 398 struct evsel *counter; 399 int err; 400 401 evlist__for_each_entry(evsel_list, counter) { 402 if (!evsel__is_bpf(counter)) 403 continue; 404 405 err = bpf_counter__read(counter); 406 if (err) 407 return err; 408 } 409 return 0; 410 } 411 412 static int read_counters(void) 413 { 414 if (!stat_config.stop_read_counter) { 415 if (read_bpf_map_counters() || 416 read_affinity_counters()) 417 return -1; 418 } 419 return 0; 420 } 421 422 static void process_counters(void) 423 { 424 struct evsel *counter; 425 426 evlist__for_each_entry(evsel_list, counter) { 427 if (counter->err) 428 pr_debug("failed to read counter %s\n", counter->name); 429 if (counter->err == 0 && perf_stat_process_counter(&stat_config, counter)) 430 pr_warning("failed to process counter %s\n", counter->name); 431 counter->err = 0; 432 } 433 434 perf_stat_merge_counters(&stat_config, evsel_list); 435 perf_stat_process_percore(&stat_config, evsel_list); 436 } 437 438 static void process_interval(void) 439 { 440 struct timespec ts, rs; 441 442 clock_gettime(CLOCK_MONOTONIC, &ts); 443 diff_timespec(&rs, &ts, &ref_time); 444 445 evlist__reset_aggr_stats(evsel_list); 446 447 if (read_counters() == 0) 448 process_counters(); 449 450 if (STAT_RECORD) { 451 if (WRITE_STAT_ROUND_EVENT(rs.tv_sec * NSEC_PER_SEC + rs.tv_nsec, INTERVAL)) 452 pr_err("failed to write stat round event\n"); 453 } 454 455 init_stats(&walltime_nsecs_stats); 456 update_stats(&walltime_nsecs_stats, stat_config.interval * 1000000ULL); 457 print_counters(&rs, 0, NULL); 458 } 459 460 static bool handle_interval(unsigned int interval, int *times) 461 { 462 if (interval) { 463 process_interval(); 464 if (interval_count && !(--(*times))) 465 return true; 466 } 467 return false; 468 } 469 470 static int enable_counters(void) 471 { 472 struct evsel *evsel; 473 int err; 474 475 evlist__for_each_entry(evsel_list, evsel) { 476 if (!evsel__is_bpf(evsel)) 477 continue; 478 479 err = bpf_counter__enable(evsel); 480 if (err) 481 return err; 482 } 483 484 if (!target__enable_on_exec(&target)) { 485 if (!all_counters_use_bpf) 486 evlist__enable(evsel_list); 487 } 488 return 0; 489 } 490 491 static void disable_counters(void) 492 { 493 struct evsel *counter; 494 495 /* 496 * If we don't have tracee (attaching to task or cpu), counters may 497 * still be running. To get accurate group ratios, we must stop groups 498 * from counting before reading their constituent counters. 499 */ 500 if (!target__none(&target)) { 501 evlist__for_each_entry(evsel_list, counter) 502 bpf_counter__disable(counter); 503 if (!all_counters_use_bpf) 504 evlist__disable(evsel_list); 505 } 506 } 507 508 static volatile sig_atomic_t workload_exec_errno; 509 510 /* 511 * evlist__prepare_workload will send a SIGUSR1 512 * if the fork fails, since we asked by setting its 513 * want_signal to true. 514 */ 515 static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info, 516 void *ucontext __maybe_unused) 517 { 518 workload_exec_errno = info->si_value.sival_int; 519 } 520 521 static bool evsel__should_store_id(struct evsel *counter) 522 { 523 return STAT_RECORD || counter->core.attr.read_format & PERF_FORMAT_ID; 524 } 525 526 static bool is_target_alive(struct target *_target, 527 struct perf_thread_map *threads) 528 { 529 struct stat st; 530 int i; 531 532 if (!target__has_task(_target)) 533 return true; 534 535 for (i = 0; i < threads->nr; i++) { 536 char path[PATH_MAX]; 537 538 scnprintf(path, PATH_MAX, "%s/%d", procfs__mountpoint(), 539 threads->map[i].pid); 540 541 if (!stat(path, &st)) 542 return true; 543 } 544 545 return false; 546 } 547 548 static void process_evlist(struct evlist *evlist, unsigned int interval) 549 { 550 enum evlist_ctl_cmd cmd = EVLIST_CTL_CMD_UNSUPPORTED; 551 552 if (evlist__ctlfd_process(evlist, &cmd) > 0) { 553 switch (cmd) { 554 case EVLIST_CTL_CMD_ENABLE: 555 fallthrough; 556 case EVLIST_CTL_CMD_DISABLE: 557 if (interval) 558 process_interval(); 559 break; 560 case EVLIST_CTL_CMD_SNAPSHOT: 561 case EVLIST_CTL_CMD_ACK: 562 case EVLIST_CTL_CMD_UNSUPPORTED: 563 case EVLIST_CTL_CMD_EVLIST: 564 case EVLIST_CTL_CMD_STOP: 565 case EVLIST_CTL_CMD_PING: 566 default: 567 break; 568 } 569 } 570 } 571 572 static void compute_tts(struct timespec *time_start, struct timespec *time_stop, 573 int *time_to_sleep) 574 { 575 int tts = *time_to_sleep; 576 struct timespec time_diff; 577 578 diff_timespec(&time_diff, time_stop, time_start); 579 580 tts -= time_diff.tv_sec * MSEC_PER_SEC + 581 time_diff.tv_nsec / NSEC_PER_MSEC; 582 583 if (tts < 0) 584 tts = 0; 585 586 *time_to_sleep = tts; 587 } 588 589 static int dispatch_events(bool forks, int timeout, int interval, int *times) 590 { 591 int child_exited = 0, status = 0; 592 int time_to_sleep, sleep_time; 593 struct timespec time_start, time_stop; 594 595 if (interval) 596 sleep_time = interval; 597 else if (timeout) 598 sleep_time = timeout; 599 else 600 sleep_time = 1000; 601 602 time_to_sleep = sleep_time; 603 604 while (!done) { 605 if (forks) 606 child_exited = waitpid(child_pid, &status, WNOHANG); 607 else 608 child_exited = !is_target_alive(&target, evsel_list->core.threads) ? 1 : 0; 609 610 if (child_exited) 611 break; 612 613 clock_gettime(CLOCK_MONOTONIC, &time_start); 614 if (!(evlist__poll(evsel_list, time_to_sleep) > 0)) { /* poll timeout or EINTR */ 615 if (timeout || handle_interval(interval, times)) 616 break; 617 time_to_sleep = sleep_time; 618 } else { /* fd revent */ 619 process_evlist(evsel_list, interval); 620 clock_gettime(CLOCK_MONOTONIC, &time_stop); 621 compute_tts(&time_start, &time_stop, &time_to_sleep); 622 } 623 } 624 625 return status; 626 } 627 628 enum counter_recovery { 629 COUNTER_SKIP, 630 COUNTER_RETRY, 631 COUNTER_FATAL, 632 }; 633 634 static enum counter_recovery stat_handle_error(struct evsel *counter) 635 { 636 char msg[BUFSIZ]; 637 /* 638 * PPC returns ENXIO for HW counters until 2.6.37 639 * (behavior changed with commit b0a873e). 640 */ 641 if (errno == EINVAL || errno == ENOSYS || 642 errno == ENOENT || errno == EOPNOTSUPP || 643 errno == ENXIO) { 644 if (verbose > 0) 645 ui__warning("%s event is not supported by the kernel.\n", 646 evsel__name(counter)); 647 counter->supported = false; 648 /* 649 * errored is a sticky flag that means one of the counter's 650 * cpu event had a problem and needs to be reexamined. 651 */ 652 counter->errored = true; 653 654 if ((evsel__leader(counter) != counter) || 655 !(counter->core.leader->nr_members > 1)) 656 return COUNTER_SKIP; 657 } else if (evsel__fallback(counter, &target, errno, msg, sizeof(msg))) { 658 if (verbose > 0) 659 ui__warning("%s\n", msg); 660 return COUNTER_RETRY; 661 } else if (target__has_per_thread(&target) && 662 evsel_list->core.threads && 663 evsel_list->core.threads->err_thread != -1) { 664 /* 665 * For global --per-thread case, skip current 666 * error thread. 667 */ 668 if (!thread_map__remove(evsel_list->core.threads, 669 evsel_list->core.threads->err_thread)) { 670 evsel_list->core.threads->err_thread = -1; 671 return COUNTER_RETRY; 672 } 673 } else if (counter->skippable) { 674 if (verbose > 0) 675 ui__warning("skipping event %s that kernel failed to open .\n", 676 evsel__name(counter)); 677 counter->supported = false; 678 counter->errored = true; 679 return COUNTER_SKIP; 680 } 681 682 evsel__open_strerror(counter, &target, errno, msg, sizeof(msg)); 683 ui__error("%s\n", msg); 684 685 if (child_pid != -1) 686 kill(child_pid, SIGTERM); 687 688 tpebs_delete(); 689 690 return COUNTER_FATAL; 691 } 692 693 static int __run_perf_stat(int argc, const char **argv, int run_idx) 694 { 695 int interval = stat_config.interval; 696 int times = stat_config.times; 697 int timeout = stat_config.timeout; 698 char msg[BUFSIZ]; 699 unsigned long long t0, t1; 700 struct evsel *counter; 701 size_t l; 702 int status = 0; 703 const bool forks = (argc > 0); 704 bool is_pipe = STAT_RECORD ? perf_stat.data.is_pipe : false; 705 struct evlist_cpu_iterator evlist_cpu_itr; 706 struct affinity saved_affinity, *affinity = NULL; 707 int err; 708 bool second_pass = false; 709 710 if (forks) { 711 if (evlist__prepare_workload(evsel_list, &target, argv, is_pipe, workload_exec_failed_signal) < 0) { 712 perror("failed to prepare workload"); 713 return -1; 714 } 715 child_pid = evsel_list->workload.pid; 716 } 717 718 if (!cpu_map__is_dummy(evsel_list->core.user_requested_cpus)) { 719 if (affinity__setup(&saved_affinity) < 0) { 720 err = -1; 721 goto err_out; 722 } 723 affinity = &saved_affinity; 724 } 725 726 evlist__for_each_entry(evsel_list, counter) { 727 counter->reset_group = false; 728 if (bpf_counter__load(counter, &target)) { 729 err = -1; 730 goto err_out; 731 } 732 if (!(evsel__is_bperf(counter))) 733 all_counters_use_bpf = false; 734 } 735 736 evlist__reset_aggr_stats(evsel_list); 737 738 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 739 counter = evlist_cpu_itr.evsel; 740 741 /* 742 * bperf calls evsel__open_per_cpu() in bperf__load(), so 743 * no need to call it again here. 744 */ 745 if (target.use_bpf) 746 break; 747 748 if (counter->reset_group || counter->errored) 749 continue; 750 if (evsel__is_bperf(counter)) 751 continue; 752 try_again: 753 if (create_perf_stat_counter(counter, &stat_config, &target, 754 evlist_cpu_itr.cpu_map_idx) < 0) { 755 756 /* 757 * Weak group failed. We cannot just undo this here 758 * because earlier CPUs might be in group mode, and the kernel 759 * doesn't support mixing group and non group reads. Defer 760 * it to later. 761 * Don't close here because we're in the wrong affinity. 762 */ 763 if ((errno == EINVAL || errno == EBADF) && 764 evsel__leader(counter) != counter && 765 counter->weak_group) { 766 evlist__reset_weak_group(evsel_list, counter, false); 767 assert(counter->reset_group); 768 second_pass = true; 769 continue; 770 } 771 772 switch (stat_handle_error(counter)) { 773 case COUNTER_FATAL: 774 err = -1; 775 goto err_out; 776 case COUNTER_RETRY: 777 goto try_again; 778 case COUNTER_SKIP: 779 continue; 780 default: 781 break; 782 } 783 784 } 785 counter->supported = true; 786 } 787 788 if (second_pass) { 789 /* 790 * Now redo all the weak group after closing them, 791 * and also close errored counters. 792 */ 793 794 /* First close errored or weak retry */ 795 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 796 counter = evlist_cpu_itr.evsel; 797 798 if (!counter->reset_group && !counter->errored) 799 continue; 800 801 perf_evsel__close_cpu(&counter->core, evlist_cpu_itr.cpu_map_idx); 802 } 803 /* Now reopen weak */ 804 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 805 counter = evlist_cpu_itr.evsel; 806 807 if (!counter->reset_group) 808 continue; 809 try_again_reset: 810 pr_debug2("reopening weak %s\n", evsel__name(counter)); 811 if (create_perf_stat_counter(counter, &stat_config, &target, 812 evlist_cpu_itr.cpu_map_idx) < 0) { 813 814 switch (stat_handle_error(counter)) { 815 case COUNTER_FATAL: 816 err = -1; 817 goto err_out; 818 case COUNTER_RETRY: 819 goto try_again_reset; 820 case COUNTER_SKIP: 821 continue; 822 default: 823 break; 824 } 825 } 826 counter->supported = true; 827 } 828 } 829 affinity__cleanup(affinity); 830 affinity = NULL; 831 832 evlist__for_each_entry(evsel_list, counter) { 833 if (!counter->supported) { 834 perf_evsel__free_fd(&counter->core); 835 continue; 836 } 837 838 l = strlen(counter->unit); 839 if (l > stat_config.unit_width) 840 stat_config.unit_width = l; 841 842 if (evsel__should_store_id(counter) && 843 evsel__store_ids(counter, evsel_list)) { 844 err = -1; 845 goto err_out; 846 } 847 } 848 849 if (evlist__apply_filters(evsel_list, &counter, &target)) { 850 pr_err("failed to set filter \"%s\" on event %s with %d (%s)\n", 851 counter->filter, evsel__name(counter), errno, 852 str_error_r(errno, msg, sizeof(msg))); 853 return -1; 854 } 855 856 if (STAT_RECORD) { 857 int fd = perf_data__fd(&perf_stat.data); 858 859 if (is_pipe) { 860 err = perf_header__write_pipe(perf_data__fd(&perf_stat.data)); 861 } else { 862 err = perf_session__write_header(perf_stat.session, evsel_list, 863 fd, false); 864 } 865 866 if (err < 0) 867 goto err_out; 868 869 err = perf_event__synthesize_stat_events(&stat_config, NULL, evsel_list, 870 process_synthesized_event, is_pipe); 871 if (err < 0) 872 goto err_out; 873 874 } 875 876 if (target.initial_delay) { 877 pr_info(EVLIST_DISABLED_MSG); 878 } else { 879 err = enable_counters(); 880 if (err) { 881 err = -1; 882 goto err_out; 883 } 884 } 885 886 /* Exec the command, if any */ 887 if (forks) 888 evlist__start_workload(evsel_list); 889 890 if (target.initial_delay > 0) { 891 usleep(target.initial_delay * USEC_PER_MSEC); 892 err = enable_counters(); 893 if (err) { 894 err = -1; 895 goto err_out; 896 } 897 898 pr_info(EVLIST_ENABLED_MSG); 899 } 900 901 t0 = rdclock(); 902 clock_gettime(CLOCK_MONOTONIC, &ref_time); 903 904 if (forks) { 905 if (interval || timeout || evlist__ctlfd_initialized(evsel_list)) 906 status = dispatch_events(forks, timeout, interval, ×); 907 if (child_pid != -1) { 908 if (timeout) 909 kill(child_pid, SIGTERM); 910 wait4(child_pid, &status, 0, &stat_config.ru_data); 911 } 912 913 if (workload_exec_errno) { 914 const char *emsg = str_error_r(workload_exec_errno, msg, sizeof(msg)); 915 pr_err("Workload failed: %s\n", emsg); 916 err = -1; 917 goto err_out; 918 } 919 920 if (WIFSIGNALED(status)) 921 psignal(WTERMSIG(status), argv[0]); 922 } else { 923 status = dispatch_events(forks, timeout, interval, ×); 924 } 925 926 disable_counters(); 927 928 t1 = rdclock(); 929 930 if (stat_config.walltime_run_table) 931 stat_config.walltime_run[run_idx] = t1 - t0; 932 933 if (interval && stat_config.summary) { 934 stat_config.interval = 0; 935 stat_config.stop_read_counter = true; 936 init_stats(&walltime_nsecs_stats); 937 update_stats(&walltime_nsecs_stats, t1 - t0); 938 939 evlist__copy_prev_raw_counts(evsel_list); 940 evlist__reset_prev_raw_counts(evsel_list); 941 evlist__reset_aggr_stats(evsel_list); 942 } else { 943 update_stats(&walltime_nsecs_stats, t1 - t0); 944 update_rusage_stats(&ru_stats, &stat_config.ru_data); 945 } 946 947 /* 948 * Closing a group leader splits the group, and as we only disable 949 * group leaders, results in remaining events becoming enabled. To 950 * avoid arbitrary skew, we must read all counters before closing any 951 * group leaders. 952 */ 953 if (read_counters() == 0) 954 process_counters(); 955 956 /* 957 * We need to keep evsel_list alive, because it's processed 958 * later the evsel_list will be closed after. 959 */ 960 if (!STAT_RECORD) 961 evlist__close(evsel_list); 962 963 return WEXITSTATUS(status); 964 965 err_out: 966 if (forks) 967 evlist__cancel_workload(evsel_list); 968 969 affinity__cleanup(affinity); 970 return err; 971 } 972 973 /* 974 * Returns -1 for fatal errors which signifies to not continue 975 * when in repeat mode. 976 * 977 * Returns < -1 error codes when stat record is used. These 978 * result in the stat information being displayed, but writing 979 * to the file fails and is non fatal. 980 */ 981 static int run_perf_stat(int argc, const char **argv, int run_idx) 982 { 983 int ret; 984 985 if (pre_cmd) { 986 ret = system(pre_cmd); 987 if (ret) 988 return ret; 989 } 990 991 if (sync_run) 992 sync(); 993 994 ret = __run_perf_stat(argc, argv, run_idx); 995 if (ret) 996 return ret; 997 998 if (post_cmd) { 999 ret = system(post_cmd); 1000 if (ret) 1001 return ret; 1002 } 1003 1004 return ret; 1005 } 1006 1007 static void print_counters(struct timespec *ts, int argc, const char **argv) 1008 { 1009 /* Do not print anything if we record to the pipe. */ 1010 if (STAT_RECORD && perf_stat.data.is_pipe) 1011 return; 1012 if (quiet) 1013 return; 1014 1015 evlist__print_counters(evsel_list, &stat_config, &target, ts, argc, argv); 1016 } 1017 1018 static volatile sig_atomic_t signr = -1; 1019 1020 static void skip_signal(int signo) 1021 { 1022 if ((child_pid == -1) || stat_config.interval) 1023 done = 1; 1024 1025 signr = signo; 1026 /* 1027 * render child_pid harmless 1028 * won't send SIGTERM to a random 1029 * process in case of race condition 1030 * and fast PID recycling 1031 */ 1032 child_pid = -1; 1033 } 1034 1035 static void sig_atexit(void) 1036 { 1037 sigset_t set, oset; 1038 1039 /* 1040 * avoid race condition with SIGCHLD handler 1041 * in skip_signal() which is modifying child_pid 1042 * goal is to avoid send SIGTERM to a random 1043 * process 1044 */ 1045 sigemptyset(&set); 1046 sigaddset(&set, SIGCHLD); 1047 sigprocmask(SIG_BLOCK, &set, &oset); 1048 1049 if (child_pid != -1) 1050 kill(child_pid, SIGTERM); 1051 1052 sigprocmask(SIG_SETMASK, &oset, NULL); 1053 1054 if (signr == -1) 1055 return; 1056 1057 signal(signr, SIG_DFL); 1058 kill(getpid(), signr); 1059 } 1060 1061 void perf_stat__set_big_num(int set) 1062 { 1063 stat_config.big_num = (set != 0); 1064 } 1065 1066 void perf_stat__set_no_csv_summary(int set) 1067 { 1068 stat_config.no_csv_summary = (set != 0); 1069 } 1070 1071 static int stat__set_big_num(const struct option *opt __maybe_unused, 1072 const char *s __maybe_unused, int unset) 1073 { 1074 big_num_opt = unset ? 0 : 1; 1075 perf_stat__set_big_num(!unset); 1076 return 0; 1077 } 1078 1079 static int enable_metric_only(const struct option *opt __maybe_unused, 1080 const char *s __maybe_unused, int unset) 1081 { 1082 force_metric_only = true; 1083 stat_config.metric_only = !unset; 1084 return 0; 1085 } 1086 1087 static int append_metric_groups(const struct option *opt __maybe_unused, 1088 const char *str, 1089 int unset __maybe_unused) 1090 { 1091 if (metrics) { 1092 char *tmp; 1093 1094 if (asprintf(&tmp, "%s,%s", metrics, str) < 0) 1095 return -ENOMEM; 1096 free(metrics); 1097 metrics = tmp; 1098 } else { 1099 metrics = strdup(str); 1100 if (!metrics) 1101 return -ENOMEM; 1102 } 1103 return 0; 1104 } 1105 1106 static int parse_control_option(const struct option *opt, 1107 const char *str, 1108 int unset __maybe_unused) 1109 { 1110 struct perf_stat_config *config = opt->value; 1111 1112 return evlist__parse_control(str, &config->ctl_fd, &config->ctl_fd_ack, &config->ctl_fd_close); 1113 } 1114 1115 static int parse_stat_cgroups(const struct option *opt, 1116 const char *str, int unset) 1117 { 1118 if (stat_config.cgroup_list) { 1119 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 1120 return -1; 1121 } 1122 1123 return parse_cgroups(opt, str, unset); 1124 } 1125 1126 static int parse_cputype(const struct option *opt, 1127 const char *str, 1128 int unset __maybe_unused) 1129 { 1130 const struct perf_pmu *pmu; 1131 struct evlist *evlist = *(struct evlist **)opt->value; 1132 1133 if (!list_empty(&evlist->core.entries)) { 1134 fprintf(stderr, "Must define cputype before events/metrics\n"); 1135 return -1; 1136 } 1137 1138 pmu = perf_pmus__pmu_for_pmu_filter(str); 1139 if (!pmu) { 1140 fprintf(stderr, "--cputype %s is not supported!\n", str); 1141 return -1; 1142 } 1143 parse_events_option_args.pmu_filter = pmu->name; 1144 1145 return 0; 1146 } 1147 1148 static int parse_cache_level(const struct option *opt, 1149 const char *str, 1150 int unset __maybe_unused) 1151 { 1152 int level; 1153 struct opt_aggr_mode *opt_aggr_mode = (struct opt_aggr_mode *)opt->value; 1154 u32 *aggr_level = (u32 *)opt->data; 1155 1156 /* 1157 * If no string is specified, aggregate based on the topology of 1158 * Last Level Cache (LLC). Since the LLC level can change from 1159 * architecture to architecture, set level greater than 1160 * MAX_CACHE_LVL which will be interpreted as LLC. 1161 */ 1162 if (str == NULL) { 1163 level = MAX_CACHE_LVL + 1; 1164 goto out; 1165 } 1166 1167 /* 1168 * The format to specify cache level is LX or lX where X is the 1169 * cache level. 1170 */ 1171 if (strlen(str) != 2 || (str[0] != 'l' && str[0] != 'L')) { 1172 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1173 MAX_CACHE_LVL, 1174 MAX_CACHE_LVL); 1175 return -EINVAL; 1176 } 1177 1178 level = atoi(&str[1]); 1179 if (level < 1) { 1180 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1181 MAX_CACHE_LVL, 1182 MAX_CACHE_LVL); 1183 return -EINVAL; 1184 } 1185 1186 if (level > MAX_CACHE_LVL) { 1187 pr_err("perf only supports max cache level of %d.\n" 1188 "Consider increasing MAX_CACHE_LVL\n", MAX_CACHE_LVL); 1189 return -EINVAL; 1190 } 1191 out: 1192 opt_aggr_mode->cache = true; 1193 *aggr_level = level; 1194 return 0; 1195 } 1196 1197 /** 1198 * Calculate the cache instance ID from the map in 1199 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1200 * Cache instance ID is the first CPU reported in the shared_cpu_list file. 1201 */ 1202 static int cpu__get_cache_id_from_map(struct perf_cpu cpu, char *map) 1203 { 1204 int id; 1205 struct perf_cpu_map *cpu_map = perf_cpu_map__new(map); 1206 1207 /* 1208 * If the map contains no CPU, consider the current CPU to 1209 * be the first online CPU in the cache domain else use the 1210 * first online CPU of the cache domain as the ID. 1211 */ 1212 id = perf_cpu_map__min(cpu_map).cpu; 1213 if (id == -1) 1214 id = cpu.cpu; 1215 1216 /* Free the perf_cpu_map used to find the cache ID */ 1217 perf_cpu_map__put(cpu_map); 1218 1219 return id; 1220 } 1221 1222 /** 1223 * cpu__get_cache_id - Returns 0 if successful in populating the 1224 * cache level and cache id. Cache level is read from 1225 * /sys/devices/system/cpu/cpuX/cache/indexY/level where as cache instance ID 1226 * is the first CPU reported by 1227 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1228 */ 1229 static int cpu__get_cache_details(struct perf_cpu cpu, struct perf_cache *cache) 1230 { 1231 int ret = 0; 1232 u32 cache_level = stat_config.aggr_level; 1233 struct cpu_cache_level caches[MAX_CACHE_LVL]; 1234 u32 i = 0, caches_cnt = 0; 1235 1236 cache->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1237 cache->cache = -1; 1238 1239 ret = build_caches_for_cpu(cpu.cpu, caches, &caches_cnt); 1240 if (ret) { 1241 /* 1242 * If caches_cnt is not 0, cpu_cache_level data 1243 * was allocated when building the topology. 1244 * Free the allocated data before returning. 1245 */ 1246 if (caches_cnt) 1247 goto free_caches; 1248 1249 return ret; 1250 } 1251 1252 if (!caches_cnt) 1253 return -1; 1254 1255 /* 1256 * Save the data for the highest level if no 1257 * level was specified by the user. 1258 */ 1259 if (cache_level > MAX_CACHE_LVL) { 1260 int max_level_index = 0; 1261 1262 for (i = 1; i < caches_cnt; ++i) { 1263 if (caches[i].level > caches[max_level_index].level) 1264 max_level_index = i; 1265 } 1266 1267 cache->cache_lvl = caches[max_level_index].level; 1268 cache->cache = cpu__get_cache_id_from_map(cpu, caches[max_level_index].map); 1269 1270 /* Reset i to 0 to free entire caches[] */ 1271 i = 0; 1272 goto free_caches; 1273 } 1274 1275 for (i = 0; i < caches_cnt; ++i) { 1276 if (caches[i].level == cache_level) { 1277 cache->cache_lvl = cache_level; 1278 cache->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1279 } 1280 1281 cpu_cache_level__free(&caches[i]); 1282 } 1283 1284 free_caches: 1285 /* 1286 * Free all the allocated cpu_cache_level data. 1287 */ 1288 while (i < caches_cnt) 1289 cpu_cache_level__free(&caches[i++]); 1290 1291 return ret; 1292 } 1293 1294 /** 1295 * aggr_cpu_id__cache - Create an aggr_cpu_id with cache instache ID, cache 1296 * level, die and socket populated with the cache instache ID, cache level, 1297 * die and socket for cpu. The function signature is compatible with 1298 * aggr_cpu_id_get_t. 1299 */ 1300 static struct aggr_cpu_id aggr_cpu_id__cache(struct perf_cpu cpu, void *data) 1301 { 1302 int ret; 1303 struct aggr_cpu_id id; 1304 struct perf_cache cache; 1305 1306 id = aggr_cpu_id__die(cpu, data); 1307 if (aggr_cpu_id__is_empty(&id)) 1308 return id; 1309 1310 ret = cpu__get_cache_details(cpu, &cache); 1311 if (ret) 1312 return id; 1313 1314 id.cache_lvl = cache.cache_lvl; 1315 id.cache = cache.cache; 1316 return id; 1317 } 1318 1319 static const char *const aggr_mode__string[] = { 1320 [AGGR_CORE] = "core", 1321 [AGGR_CACHE] = "cache", 1322 [AGGR_CLUSTER] = "cluster", 1323 [AGGR_DIE] = "die", 1324 [AGGR_GLOBAL] = "global", 1325 [AGGR_NODE] = "node", 1326 [AGGR_NONE] = "none", 1327 [AGGR_SOCKET] = "socket", 1328 [AGGR_THREAD] = "thread", 1329 [AGGR_UNSET] = "unset", 1330 }; 1331 1332 static struct aggr_cpu_id perf_stat__get_socket(struct perf_stat_config *config __maybe_unused, 1333 struct perf_cpu cpu) 1334 { 1335 return aggr_cpu_id__socket(cpu, /*data=*/NULL); 1336 } 1337 1338 static struct aggr_cpu_id perf_stat__get_die(struct perf_stat_config *config __maybe_unused, 1339 struct perf_cpu cpu) 1340 { 1341 return aggr_cpu_id__die(cpu, /*data=*/NULL); 1342 } 1343 1344 static struct aggr_cpu_id perf_stat__get_cache_id(struct perf_stat_config *config __maybe_unused, 1345 struct perf_cpu cpu) 1346 { 1347 return aggr_cpu_id__cache(cpu, /*data=*/NULL); 1348 } 1349 1350 static struct aggr_cpu_id perf_stat__get_cluster(struct perf_stat_config *config __maybe_unused, 1351 struct perf_cpu cpu) 1352 { 1353 return aggr_cpu_id__cluster(cpu, /*data=*/NULL); 1354 } 1355 1356 static struct aggr_cpu_id perf_stat__get_core(struct perf_stat_config *config __maybe_unused, 1357 struct perf_cpu cpu) 1358 { 1359 return aggr_cpu_id__core(cpu, /*data=*/NULL); 1360 } 1361 1362 static struct aggr_cpu_id perf_stat__get_node(struct perf_stat_config *config __maybe_unused, 1363 struct perf_cpu cpu) 1364 { 1365 return aggr_cpu_id__node(cpu, /*data=*/NULL); 1366 } 1367 1368 static struct aggr_cpu_id perf_stat__get_global(struct perf_stat_config *config __maybe_unused, 1369 struct perf_cpu cpu) 1370 { 1371 return aggr_cpu_id__global(cpu, /*data=*/NULL); 1372 } 1373 1374 static struct aggr_cpu_id perf_stat__get_cpu(struct perf_stat_config *config __maybe_unused, 1375 struct perf_cpu cpu) 1376 { 1377 return aggr_cpu_id__cpu(cpu, /*data=*/NULL); 1378 } 1379 1380 static struct aggr_cpu_id perf_stat__get_aggr(struct perf_stat_config *config, 1381 aggr_get_id_t get_id, struct perf_cpu cpu) 1382 { 1383 struct aggr_cpu_id id; 1384 1385 /* per-process mode - should use global aggr mode */ 1386 if (cpu.cpu == -1) 1387 return get_id(config, cpu); 1388 1389 if (aggr_cpu_id__is_empty(&config->cpus_aggr_map->map[cpu.cpu])) 1390 config->cpus_aggr_map->map[cpu.cpu] = get_id(config, cpu); 1391 1392 id = config->cpus_aggr_map->map[cpu.cpu]; 1393 return id; 1394 } 1395 1396 static struct aggr_cpu_id perf_stat__get_socket_cached(struct perf_stat_config *config, 1397 struct perf_cpu cpu) 1398 { 1399 return perf_stat__get_aggr(config, perf_stat__get_socket, cpu); 1400 } 1401 1402 static struct aggr_cpu_id perf_stat__get_die_cached(struct perf_stat_config *config, 1403 struct perf_cpu cpu) 1404 { 1405 return perf_stat__get_aggr(config, perf_stat__get_die, cpu); 1406 } 1407 1408 static struct aggr_cpu_id perf_stat__get_cluster_cached(struct perf_stat_config *config, 1409 struct perf_cpu cpu) 1410 { 1411 return perf_stat__get_aggr(config, perf_stat__get_cluster, cpu); 1412 } 1413 1414 static struct aggr_cpu_id perf_stat__get_cache_id_cached(struct perf_stat_config *config, 1415 struct perf_cpu cpu) 1416 { 1417 return perf_stat__get_aggr(config, perf_stat__get_cache_id, cpu); 1418 } 1419 1420 static struct aggr_cpu_id perf_stat__get_core_cached(struct perf_stat_config *config, 1421 struct perf_cpu cpu) 1422 { 1423 return perf_stat__get_aggr(config, perf_stat__get_core, cpu); 1424 } 1425 1426 static struct aggr_cpu_id perf_stat__get_node_cached(struct perf_stat_config *config, 1427 struct perf_cpu cpu) 1428 { 1429 return perf_stat__get_aggr(config, perf_stat__get_node, cpu); 1430 } 1431 1432 static struct aggr_cpu_id perf_stat__get_global_cached(struct perf_stat_config *config, 1433 struct perf_cpu cpu) 1434 { 1435 return perf_stat__get_aggr(config, perf_stat__get_global, cpu); 1436 } 1437 1438 static struct aggr_cpu_id perf_stat__get_cpu_cached(struct perf_stat_config *config, 1439 struct perf_cpu cpu) 1440 { 1441 return perf_stat__get_aggr(config, perf_stat__get_cpu, cpu); 1442 } 1443 1444 static aggr_cpu_id_get_t aggr_mode__get_aggr(enum aggr_mode aggr_mode) 1445 { 1446 switch (aggr_mode) { 1447 case AGGR_SOCKET: 1448 return aggr_cpu_id__socket; 1449 case AGGR_DIE: 1450 return aggr_cpu_id__die; 1451 case AGGR_CLUSTER: 1452 return aggr_cpu_id__cluster; 1453 case AGGR_CACHE: 1454 return aggr_cpu_id__cache; 1455 case AGGR_CORE: 1456 return aggr_cpu_id__core; 1457 case AGGR_NODE: 1458 return aggr_cpu_id__node; 1459 case AGGR_NONE: 1460 return aggr_cpu_id__cpu; 1461 case AGGR_GLOBAL: 1462 return aggr_cpu_id__global; 1463 case AGGR_THREAD: 1464 case AGGR_UNSET: 1465 case AGGR_MAX: 1466 default: 1467 return NULL; 1468 } 1469 } 1470 1471 static aggr_get_id_t aggr_mode__get_id(enum aggr_mode aggr_mode) 1472 { 1473 switch (aggr_mode) { 1474 case AGGR_SOCKET: 1475 return perf_stat__get_socket_cached; 1476 case AGGR_DIE: 1477 return perf_stat__get_die_cached; 1478 case AGGR_CLUSTER: 1479 return perf_stat__get_cluster_cached; 1480 case AGGR_CACHE: 1481 return perf_stat__get_cache_id_cached; 1482 case AGGR_CORE: 1483 return perf_stat__get_core_cached; 1484 case AGGR_NODE: 1485 return perf_stat__get_node_cached; 1486 case AGGR_NONE: 1487 return perf_stat__get_cpu_cached; 1488 case AGGR_GLOBAL: 1489 return perf_stat__get_global_cached; 1490 case AGGR_THREAD: 1491 case AGGR_UNSET: 1492 case AGGR_MAX: 1493 default: 1494 return NULL; 1495 } 1496 } 1497 1498 static int perf_stat_init_aggr_mode(void) 1499 { 1500 int nr; 1501 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr(stat_config.aggr_mode); 1502 1503 if (get_id) { 1504 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1505 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1506 get_id, /*data=*/NULL, needs_sort); 1507 if (!stat_config.aggr_map) { 1508 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1509 return -1; 1510 } 1511 stat_config.aggr_get_id = aggr_mode__get_id(stat_config.aggr_mode); 1512 } 1513 1514 if (stat_config.aggr_mode == AGGR_THREAD) { 1515 nr = perf_thread_map__nr(evsel_list->core.threads); 1516 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1517 if (stat_config.aggr_map == NULL) 1518 return -ENOMEM; 1519 1520 for (int s = 0; s < nr; s++) { 1521 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1522 1523 id.thread_idx = s; 1524 stat_config.aggr_map->map[s] = id; 1525 } 1526 return 0; 1527 } 1528 1529 /* 1530 * The evsel_list->cpus is the base we operate on, 1531 * taking the highest cpu number to be the size of 1532 * the aggregation translate cpumap. 1533 */ 1534 if (!perf_cpu_map__is_any_cpu_or_is_empty(evsel_list->core.user_requested_cpus)) 1535 nr = perf_cpu_map__max(evsel_list->core.user_requested_cpus).cpu; 1536 else 1537 nr = 0; 1538 stat_config.cpus_aggr_map = cpu_aggr_map__empty_new(nr + 1); 1539 return stat_config.cpus_aggr_map ? 0 : -ENOMEM; 1540 } 1541 1542 static void cpu_aggr_map__delete(struct cpu_aggr_map *map) 1543 { 1544 free(map); 1545 } 1546 1547 static void perf_stat__exit_aggr_mode(void) 1548 { 1549 cpu_aggr_map__delete(stat_config.aggr_map); 1550 cpu_aggr_map__delete(stat_config.cpus_aggr_map); 1551 stat_config.aggr_map = NULL; 1552 stat_config.cpus_aggr_map = NULL; 1553 } 1554 1555 static struct aggr_cpu_id perf_env__get_socket_aggr_by_cpu(struct perf_cpu cpu, void *data) 1556 { 1557 struct perf_env *env = data; 1558 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1559 1560 if (cpu.cpu != -1) 1561 id.socket = env->cpu[cpu.cpu].socket_id; 1562 1563 return id; 1564 } 1565 1566 static struct aggr_cpu_id perf_env__get_die_aggr_by_cpu(struct perf_cpu cpu, void *data) 1567 { 1568 struct perf_env *env = data; 1569 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1570 1571 if (cpu.cpu != -1) { 1572 /* 1573 * die_id is relative to socket, so start 1574 * with the socket ID and then add die to 1575 * make a unique ID. 1576 */ 1577 id.socket = env->cpu[cpu.cpu].socket_id; 1578 id.die = env->cpu[cpu.cpu].die_id; 1579 } 1580 1581 return id; 1582 } 1583 1584 static void perf_env__get_cache_id_for_cpu(struct perf_cpu cpu, struct perf_env *env, 1585 u32 cache_level, struct aggr_cpu_id *id) 1586 { 1587 int i; 1588 int caches_cnt = env->caches_cnt; 1589 struct cpu_cache_level *caches = env->caches; 1590 1591 id->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1592 id->cache = -1; 1593 1594 if (!caches_cnt) 1595 return; 1596 1597 for (i = caches_cnt - 1; i > -1; --i) { 1598 struct perf_cpu_map *cpu_map; 1599 int map_contains_cpu; 1600 1601 /* 1602 * If user has not specified a level, find the fist level with 1603 * the cpu in the map. Since building the map is expensive, do 1604 * this only if levels match. 1605 */ 1606 if (cache_level <= MAX_CACHE_LVL && caches[i].level != cache_level) 1607 continue; 1608 1609 cpu_map = perf_cpu_map__new(caches[i].map); 1610 map_contains_cpu = perf_cpu_map__idx(cpu_map, cpu); 1611 perf_cpu_map__put(cpu_map); 1612 1613 if (map_contains_cpu != -1) { 1614 id->cache_lvl = caches[i].level; 1615 id->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1616 return; 1617 } 1618 } 1619 } 1620 1621 static struct aggr_cpu_id perf_env__get_cache_aggr_by_cpu(struct perf_cpu cpu, 1622 void *data) 1623 { 1624 struct perf_env *env = data; 1625 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1626 1627 if (cpu.cpu != -1) { 1628 u32 cache_level = (perf_stat.aggr_level) ?: stat_config.aggr_level; 1629 1630 id.socket = env->cpu[cpu.cpu].socket_id; 1631 id.die = env->cpu[cpu.cpu].die_id; 1632 perf_env__get_cache_id_for_cpu(cpu, env, cache_level, &id); 1633 } 1634 1635 return id; 1636 } 1637 1638 static struct aggr_cpu_id perf_env__get_cluster_aggr_by_cpu(struct perf_cpu cpu, 1639 void *data) 1640 { 1641 struct perf_env *env = data; 1642 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1643 1644 if (cpu.cpu != -1) { 1645 id.socket = env->cpu[cpu.cpu].socket_id; 1646 id.die = env->cpu[cpu.cpu].die_id; 1647 id.cluster = env->cpu[cpu.cpu].cluster_id; 1648 } 1649 1650 return id; 1651 } 1652 1653 static struct aggr_cpu_id perf_env__get_core_aggr_by_cpu(struct perf_cpu cpu, void *data) 1654 { 1655 struct perf_env *env = data; 1656 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1657 1658 if (cpu.cpu != -1) { 1659 /* 1660 * core_id is relative to socket, die and cluster, we need a 1661 * global id. So we set socket, die id, cluster id and core id. 1662 */ 1663 id.socket = env->cpu[cpu.cpu].socket_id; 1664 id.die = env->cpu[cpu.cpu].die_id; 1665 id.cluster = env->cpu[cpu.cpu].cluster_id; 1666 id.core = env->cpu[cpu.cpu].core_id; 1667 } 1668 1669 return id; 1670 } 1671 1672 static struct aggr_cpu_id perf_env__get_cpu_aggr_by_cpu(struct perf_cpu cpu, void *data) 1673 { 1674 struct perf_env *env = data; 1675 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1676 1677 if (cpu.cpu != -1) { 1678 /* 1679 * core_id is relative to socket and die, 1680 * we need a global id. So we set 1681 * socket, die id and core id 1682 */ 1683 id.socket = env->cpu[cpu.cpu].socket_id; 1684 id.die = env->cpu[cpu.cpu].die_id; 1685 id.core = env->cpu[cpu.cpu].core_id; 1686 id.cpu = cpu; 1687 } 1688 1689 return id; 1690 } 1691 1692 static struct aggr_cpu_id perf_env__get_node_aggr_by_cpu(struct perf_cpu cpu, void *data) 1693 { 1694 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1695 1696 id.node = perf_env__numa_node(data, cpu); 1697 return id; 1698 } 1699 1700 static struct aggr_cpu_id perf_env__get_global_aggr_by_cpu(struct perf_cpu cpu __maybe_unused, 1701 void *data __maybe_unused) 1702 { 1703 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1704 1705 /* it always aggregates to the cpu 0 */ 1706 id.cpu = (struct perf_cpu){ .cpu = 0 }; 1707 return id; 1708 } 1709 1710 static struct aggr_cpu_id perf_stat__get_socket_file(struct perf_stat_config *config __maybe_unused, 1711 struct perf_cpu cpu) 1712 { 1713 return perf_env__get_socket_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1714 } 1715 static struct aggr_cpu_id perf_stat__get_die_file(struct perf_stat_config *config __maybe_unused, 1716 struct perf_cpu cpu) 1717 { 1718 return perf_env__get_die_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1719 } 1720 1721 static struct aggr_cpu_id perf_stat__get_cluster_file(struct perf_stat_config *config __maybe_unused, 1722 struct perf_cpu cpu) 1723 { 1724 return perf_env__get_cluster_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1725 } 1726 1727 static struct aggr_cpu_id perf_stat__get_cache_file(struct perf_stat_config *config __maybe_unused, 1728 struct perf_cpu cpu) 1729 { 1730 return perf_env__get_cache_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1731 } 1732 1733 static struct aggr_cpu_id perf_stat__get_core_file(struct perf_stat_config *config __maybe_unused, 1734 struct perf_cpu cpu) 1735 { 1736 return perf_env__get_core_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1737 } 1738 1739 static struct aggr_cpu_id perf_stat__get_cpu_file(struct perf_stat_config *config __maybe_unused, 1740 struct perf_cpu cpu) 1741 { 1742 return perf_env__get_cpu_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1743 } 1744 1745 static struct aggr_cpu_id perf_stat__get_node_file(struct perf_stat_config *config __maybe_unused, 1746 struct perf_cpu cpu) 1747 { 1748 return perf_env__get_node_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1749 } 1750 1751 static struct aggr_cpu_id perf_stat__get_global_file(struct perf_stat_config *config __maybe_unused, 1752 struct perf_cpu cpu) 1753 { 1754 return perf_env__get_global_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1755 } 1756 1757 static aggr_cpu_id_get_t aggr_mode__get_aggr_file(enum aggr_mode aggr_mode) 1758 { 1759 switch (aggr_mode) { 1760 case AGGR_SOCKET: 1761 return perf_env__get_socket_aggr_by_cpu; 1762 case AGGR_DIE: 1763 return perf_env__get_die_aggr_by_cpu; 1764 case AGGR_CLUSTER: 1765 return perf_env__get_cluster_aggr_by_cpu; 1766 case AGGR_CACHE: 1767 return perf_env__get_cache_aggr_by_cpu; 1768 case AGGR_CORE: 1769 return perf_env__get_core_aggr_by_cpu; 1770 case AGGR_NODE: 1771 return perf_env__get_node_aggr_by_cpu; 1772 case AGGR_GLOBAL: 1773 return perf_env__get_global_aggr_by_cpu; 1774 case AGGR_NONE: 1775 return perf_env__get_cpu_aggr_by_cpu; 1776 case AGGR_THREAD: 1777 case AGGR_UNSET: 1778 case AGGR_MAX: 1779 default: 1780 return NULL; 1781 } 1782 } 1783 1784 static aggr_get_id_t aggr_mode__get_id_file(enum aggr_mode aggr_mode) 1785 { 1786 switch (aggr_mode) { 1787 case AGGR_SOCKET: 1788 return perf_stat__get_socket_file; 1789 case AGGR_DIE: 1790 return perf_stat__get_die_file; 1791 case AGGR_CLUSTER: 1792 return perf_stat__get_cluster_file; 1793 case AGGR_CACHE: 1794 return perf_stat__get_cache_file; 1795 case AGGR_CORE: 1796 return perf_stat__get_core_file; 1797 case AGGR_NODE: 1798 return perf_stat__get_node_file; 1799 case AGGR_GLOBAL: 1800 return perf_stat__get_global_file; 1801 case AGGR_NONE: 1802 return perf_stat__get_cpu_file; 1803 case AGGR_THREAD: 1804 case AGGR_UNSET: 1805 case AGGR_MAX: 1806 default: 1807 return NULL; 1808 } 1809 } 1810 1811 static int perf_stat_init_aggr_mode_file(struct perf_stat *st) 1812 { 1813 struct perf_env *env = &st->session->header.env; 1814 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr_file(stat_config.aggr_mode); 1815 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1816 1817 if (stat_config.aggr_mode == AGGR_THREAD) { 1818 int nr = perf_thread_map__nr(evsel_list->core.threads); 1819 1820 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1821 if (stat_config.aggr_map == NULL) 1822 return -ENOMEM; 1823 1824 for (int s = 0; s < nr; s++) { 1825 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1826 1827 id.thread_idx = s; 1828 stat_config.aggr_map->map[s] = id; 1829 } 1830 return 0; 1831 } 1832 1833 if (!get_id) 1834 return 0; 1835 1836 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1837 get_id, env, needs_sort); 1838 if (!stat_config.aggr_map) { 1839 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1840 return -1; 1841 } 1842 stat_config.aggr_get_id = aggr_mode__get_id_file(stat_config.aggr_mode); 1843 return 0; 1844 } 1845 1846 /* 1847 * Add default events, if there were no attributes specified or 1848 * if -d/--detailed, -d -d or -d -d -d is used: 1849 */ 1850 static int add_default_events(void) 1851 { 1852 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 1853 struct parse_events_error err; 1854 struct evlist *evlist = evlist__new(); 1855 struct evsel *evsel; 1856 int ret = 0; 1857 1858 if (!evlist) 1859 return -ENOMEM; 1860 1861 parse_events_error__init(&err); 1862 1863 /* Set attrs if no event is selected and !null_run: */ 1864 if (stat_config.null_run) 1865 goto out; 1866 1867 if (transaction_run) { 1868 /* Handle -T as -M transaction. Once platform specific metrics 1869 * support has been added to the json files, all architectures 1870 * will use this approach. To determine transaction support 1871 * on an architecture test for such a metric name. 1872 */ 1873 if (!metricgroup__has_metric(pmu, "transaction")) { 1874 pr_err("Missing transaction metrics\n"); 1875 ret = -1; 1876 goto out; 1877 } 1878 ret = metricgroup__parse_groups(evlist, pmu, "transaction", 1879 stat_config.metric_no_group, 1880 stat_config.metric_no_merge, 1881 stat_config.metric_no_threshold, 1882 stat_config.user_requested_cpu_list, 1883 stat_config.system_wide, 1884 stat_config.hardware_aware_grouping, 1885 &stat_config.metric_events); 1886 goto out; 1887 } 1888 1889 if (smi_cost) { 1890 int smi; 1891 1892 if (sysfs__read_int(FREEZE_ON_SMI_PATH, &smi) < 0) { 1893 pr_err("freeze_on_smi is not supported.\n"); 1894 ret = -1; 1895 goto out; 1896 } 1897 1898 if (!smi) { 1899 if (sysfs__write_int(FREEZE_ON_SMI_PATH, 1) < 0) { 1900 pr_err("Failed to set freeze_on_smi.\n"); 1901 ret = -1; 1902 goto out; 1903 } 1904 smi_reset = true; 1905 } 1906 1907 if (!metricgroup__has_metric(pmu, "smi")) { 1908 pr_err("Missing smi metrics\n"); 1909 ret = -1; 1910 goto out; 1911 } 1912 1913 if (!force_metric_only) 1914 stat_config.metric_only = true; 1915 1916 ret = metricgroup__parse_groups(evlist, pmu, "smi", 1917 stat_config.metric_no_group, 1918 stat_config.metric_no_merge, 1919 stat_config.metric_no_threshold, 1920 stat_config.user_requested_cpu_list, 1921 stat_config.system_wide, 1922 stat_config.hardware_aware_grouping, 1923 &stat_config.metric_events); 1924 goto out; 1925 } 1926 1927 if (topdown_run) { 1928 unsigned int max_level = metricgroups__topdown_max_level(); 1929 char str[] = "TopdownL1"; 1930 1931 if (!force_metric_only) 1932 stat_config.metric_only = true; 1933 1934 if (!max_level) { 1935 pr_err("Topdown requested but the topdown metric groups aren't present.\n" 1936 "(See perf list the metric groups have names like TopdownL1)\n"); 1937 ret = -1; 1938 goto out; 1939 } 1940 if (stat_config.topdown_level > max_level) { 1941 pr_err("Invalid top-down metrics level. The max level is %u.\n", max_level); 1942 ret = -1; 1943 goto out; 1944 } else if (!stat_config.topdown_level) { 1945 stat_config.topdown_level = 1; 1946 } 1947 if (!stat_config.interval && !stat_config.metric_only) { 1948 fprintf(stat_config.output, 1949 "Topdown accuracy may decrease when measuring long periods.\n" 1950 "Please print the result regularly, e.g. -I1000\n"); 1951 } 1952 str[8] = stat_config.topdown_level + '0'; 1953 if (metricgroup__parse_groups(evlist, 1954 pmu, str, 1955 /*metric_no_group=*/false, 1956 /*metric_no_merge=*/false, 1957 /*metric_no_threshold=*/true, 1958 stat_config.user_requested_cpu_list, 1959 stat_config.system_wide, 1960 stat_config.hardware_aware_grouping, 1961 &stat_config.metric_events) < 0) { 1962 ret = -1; 1963 goto out; 1964 } 1965 } 1966 1967 if (!stat_config.topdown_level) 1968 stat_config.topdown_level = 1; 1969 1970 if (!evlist->core.nr_entries && !evsel_list->core.nr_entries) { 1971 /* No events so add defaults. */ 1972 if (target__has_cpu(&target)) 1973 ret = parse_events(evlist, "cpu-clock", &err); 1974 else 1975 ret = parse_events(evlist, "task-clock", &err); 1976 if (ret) 1977 goto out; 1978 1979 ret = parse_events(evlist, 1980 "context-switches," 1981 "cpu-migrations," 1982 "page-faults," 1983 "instructions," 1984 "cycles," 1985 "stalled-cycles-frontend," 1986 "stalled-cycles-backend," 1987 "branches," 1988 "branch-misses", 1989 &err); 1990 if (ret) 1991 goto out; 1992 1993 /* 1994 * Add TopdownL1 metrics if they exist. To minimize 1995 * multiplexing, don't request threshold computation. 1996 */ 1997 if (metricgroup__has_metric(pmu, "Default")) { 1998 struct evlist *metric_evlist = evlist__new(); 1999 2000 if (!metric_evlist) { 2001 ret = -ENOMEM; 2002 goto out; 2003 } 2004 if (metricgroup__parse_groups(metric_evlist, pmu, "Default", 2005 /*metric_no_group=*/false, 2006 /*metric_no_merge=*/false, 2007 /*metric_no_threshold=*/true, 2008 stat_config.user_requested_cpu_list, 2009 stat_config.system_wide, 2010 stat_config.hardware_aware_grouping, 2011 &stat_config.metric_events) < 0) { 2012 ret = -1; 2013 goto out; 2014 } 2015 2016 evlist__for_each_entry(metric_evlist, evsel) 2017 evsel->default_metricgroup = true; 2018 2019 evlist__splice_list_tail(evlist, &metric_evlist->core.entries); 2020 evlist__delete(metric_evlist); 2021 } 2022 } 2023 2024 /* Detailed events get appended to the event list: */ 2025 2026 if (!ret && detailed_run >= 1) { 2027 /* 2028 * Detailed stats (-d), covering the L1 and last level data 2029 * caches: 2030 */ 2031 ret = parse_events(evlist, 2032 "L1-dcache-loads," 2033 "L1-dcache-load-misses," 2034 "LLC-loads," 2035 "LLC-load-misses", 2036 &err); 2037 } 2038 if (!ret && detailed_run >= 2) { 2039 /* 2040 * Very detailed stats (-d -d), covering the instruction cache 2041 * and the TLB caches: 2042 */ 2043 ret = parse_events(evlist, 2044 "L1-icache-loads," 2045 "L1-icache-load-misses," 2046 "dTLB-loads," 2047 "dTLB-load-misses," 2048 "iTLB-loads," 2049 "iTLB-load-misses", 2050 &err); 2051 } 2052 if (!ret && detailed_run >= 3) { 2053 /* 2054 * Very, very detailed stats (-d -d -d), adding prefetch events: 2055 */ 2056 ret = parse_events(evlist, 2057 "L1-dcache-prefetches," 2058 "L1-dcache-prefetch-misses", 2059 &err); 2060 } 2061 out: 2062 if (!ret) { 2063 evlist__for_each_entry(evlist, evsel) { 2064 /* 2065 * Make at least one event non-skippable so fatal errors are visible. 2066 * 'cycles' always used to be default and non-skippable, so use that. 2067 */ 2068 if (strcmp("cycles", evsel__name(evsel))) 2069 evsel->skippable = true; 2070 } 2071 } 2072 parse_events_error__exit(&err); 2073 evlist__splice_list_tail(evsel_list, &evlist->core.entries); 2074 evlist__delete(evlist); 2075 return ret; 2076 } 2077 2078 static const char * const stat_record_usage[] = { 2079 "perf stat record [<options>]", 2080 NULL, 2081 }; 2082 2083 static void init_features(struct perf_session *session) 2084 { 2085 int feat; 2086 2087 for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++) 2088 perf_header__set_feat(&session->header, feat); 2089 2090 perf_header__clear_feat(&session->header, HEADER_DIR_FORMAT); 2091 perf_header__clear_feat(&session->header, HEADER_BUILD_ID); 2092 perf_header__clear_feat(&session->header, HEADER_TRACING_DATA); 2093 perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK); 2094 perf_header__clear_feat(&session->header, HEADER_AUXTRACE); 2095 } 2096 2097 static int __cmd_record(const struct option stat_options[], struct opt_aggr_mode *opt_mode, 2098 int argc, const char **argv) 2099 { 2100 struct perf_session *session; 2101 struct perf_data *data = &perf_stat.data; 2102 2103 argc = parse_options(argc, argv, stat_options, stat_record_usage, 2104 PARSE_OPT_STOP_AT_NON_OPTION); 2105 stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(opt_mode); 2106 2107 if (output_name) 2108 data->path = output_name; 2109 2110 if (stat_config.run_count != 1 || forever) { 2111 pr_err("Cannot use -r option with perf stat record.\n"); 2112 return -1; 2113 } 2114 2115 session = perf_session__new(data, NULL); 2116 if (IS_ERR(session)) { 2117 pr_err("Perf session creation failed\n"); 2118 return PTR_ERR(session); 2119 } 2120 2121 init_features(session); 2122 2123 session->evlist = evsel_list; 2124 perf_stat.session = session; 2125 perf_stat.record = true; 2126 return argc; 2127 } 2128 2129 static int process_stat_round_event(struct perf_session *session, 2130 union perf_event *event) 2131 { 2132 struct perf_record_stat_round *stat_round = &event->stat_round; 2133 struct timespec tsh, *ts = NULL; 2134 const char **argv = session->header.env.cmdline_argv; 2135 int argc = session->header.env.nr_cmdline; 2136 2137 process_counters(); 2138 2139 if (stat_round->type == PERF_STAT_ROUND_TYPE__FINAL) 2140 update_stats(&walltime_nsecs_stats, stat_round->time); 2141 2142 if (stat_config.interval && stat_round->time) { 2143 tsh.tv_sec = stat_round->time / NSEC_PER_SEC; 2144 tsh.tv_nsec = stat_round->time % NSEC_PER_SEC; 2145 ts = &tsh; 2146 } 2147 2148 print_counters(ts, argc, argv); 2149 return 0; 2150 } 2151 2152 static 2153 int process_stat_config_event(struct perf_session *session, 2154 union perf_event *event) 2155 { 2156 const struct perf_tool *tool = session->tool; 2157 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2158 2159 perf_event__read_stat_config(&stat_config, &event->stat_config); 2160 2161 if (perf_cpu_map__is_empty(st->cpus)) { 2162 if (st->aggr_mode != AGGR_UNSET) 2163 pr_warning("warning: processing task data, aggregation mode not set\n"); 2164 } else if (st->aggr_mode != AGGR_UNSET) { 2165 stat_config.aggr_mode = st->aggr_mode; 2166 } 2167 2168 if (perf_stat.data.is_pipe) 2169 perf_stat_init_aggr_mode(); 2170 else 2171 perf_stat_init_aggr_mode_file(st); 2172 2173 if (stat_config.aggr_map) { 2174 int nr_aggr = stat_config.aggr_map->nr; 2175 2176 if (evlist__alloc_aggr_stats(session->evlist, nr_aggr) < 0) { 2177 pr_err("cannot allocate aggr counts\n"); 2178 return -1; 2179 } 2180 } 2181 return 0; 2182 } 2183 2184 static int set_maps(struct perf_stat *st) 2185 { 2186 if (!st->cpus || !st->threads) 2187 return 0; 2188 2189 if (WARN_ONCE(st->maps_allocated, "stats double allocation\n")) 2190 return -EINVAL; 2191 2192 perf_evlist__set_maps(&evsel_list->core, st->cpus, st->threads); 2193 2194 if (evlist__alloc_stats(&stat_config, evsel_list, /*alloc_raw=*/true)) 2195 return -ENOMEM; 2196 2197 st->maps_allocated = true; 2198 return 0; 2199 } 2200 2201 static 2202 int process_thread_map_event(struct perf_session *session, 2203 union perf_event *event) 2204 { 2205 const struct perf_tool *tool = session->tool; 2206 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2207 2208 if (st->threads) { 2209 pr_warning("Extra thread map event, ignoring.\n"); 2210 return 0; 2211 } 2212 2213 st->threads = thread_map__new_event(&event->thread_map); 2214 if (!st->threads) 2215 return -ENOMEM; 2216 2217 return set_maps(st); 2218 } 2219 2220 static 2221 int process_cpu_map_event(struct perf_session *session, 2222 union perf_event *event) 2223 { 2224 const struct perf_tool *tool = session->tool; 2225 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2226 struct perf_cpu_map *cpus; 2227 2228 if (st->cpus) { 2229 pr_warning("Extra cpu map event, ignoring.\n"); 2230 return 0; 2231 } 2232 2233 cpus = cpu_map__new_data(&event->cpu_map.data); 2234 if (!cpus) 2235 return -ENOMEM; 2236 2237 st->cpus = cpus; 2238 return set_maps(st); 2239 } 2240 2241 static const char * const stat_report_usage[] = { 2242 "perf stat report [<options>]", 2243 NULL, 2244 }; 2245 2246 static struct perf_stat perf_stat = { 2247 .aggr_mode = AGGR_UNSET, 2248 .aggr_level = 0, 2249 }; 2250 2251 static int __cmd_report(int argc, const char **argv) 2252 { 2253 struct perf_session *session; 2254 const struct option options[] = { 2255 OPT_STRING('i', "input", &input_name, "file", "input file name"), 2256 OPT_SET_UINT(0, "per-socket", &perf_stat.aggr_mode, 2257 "aggregate counts per processor socket", AGGR_SOCKET), 2258 OPT_SET_UINT(0, "per-die", &perf_stat.aggr_mode, 2259 "aggregate counts per processor die", AGGR_DIE), 2260 OPT_SET_UINT(0, "per-cluster", &perf_stat.aggr_mode, 2261 "aggregate counts perf processor cluster", AGGR_CLUSTER), 2262 OPT_CALLBACK_OPTARG(0, "per-cache", &perf_stat.aggr_mode, &perf_stat.aggr_level, 2263 "cache level", 2264 "aggregate count at this cache level (Default: LLC)", 2265 parse_cache_level), 2266 OPT_SET_UINT(0, "per-core", &perf_stat.aggr_mode, 2267 "aggregate counts per physical processor core", AGGR_CORE), 2268 OPT_SET_UINT(0, "per-node", &perf_stat.aggr_mode, 2269 "aggregate counts per numa node", AGGR_NODE), 2270 OPT_SET_UINT('A', "no-aggr", &perf_stat.aggr_mode, 2271 "disable CPU count aggregation", AGGR_NONE), 2272 OPT_END() 2273 }; 2274 struct stat st; 2275 int ret; 2276 2277 argc = parse_options(argc, argv, options, stat_report_usage, 0); 2278 2279 if (!input_name || !strlen(input_name)) { 2280 if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode)) 2281 input_name = "-"; 2282 else 2283 input_name = "perf.data"; 2284 } 2285 2286 perf_stat.data.path = input_name; 2287 perf_stat.data.mode = PERF_DATA_MODE_READ; 2288 2289 perf_tool__init(&perf_stat.tool, /*ordered_events=*/false); 2290 perf_stat.tool.attr = perf_event__process_attr; 2291 perf_stat.tool.event_update = perf_event__process_event_update; 2292 perf_stat.tool.thread_map = process_thread_map_event; 2293 perf_stat.tool.cpu_map = process_cpu_map_event; 2294 perf_stat.tool.stat_config = process_stat_config_event; 2295 perf_stat.tool.stat = perf_event__process_stat_event; 2296 perf_stat.tool.stat_round = process_stat_round_event; 2297 2298 session = perf_session__new(&perf_stat.data, &perf_stat.tool); 2299 if (IS_ERR(session)) 2300 return PTR_ERR(session); 2301 2302 perf_stat.session = session; 2303 stat_config.output = stderr; 2304 evlist__delete(evsel_list); 2305 evsel_list = session->evlist; 2306 2307 ret = perf_session__process_events(session); 2308 if (ret) 2309 return ret; 2310 2311 perf_session__delete(session); 2312 return 0; 2313 } 2314 2315 static void setup_system_wide(int forks) 2316 { 2317 /* 2318 * Make system wide (-a) the default target if 2319 * no target was specified and one of following 2320 * conditions is met: 2321 * 2322 * - there's no workload specified 2323 * - there is workload specified but all requested 2324 * events are system wide events 2325 */ 2326 if (!target__none(&target)) 2327 return; 2328 2329 if (!forks) 2330 target.system_wide = true; 2331 else { 2332 struct evsel *counter; 2333 2334 evlist__for_each_entry(evsel_list, counter) { 2335 if (!counter->core.requires_cpu && 2336 !evsel__name_is(counter, "duration_time")) { 2337 return; 2338 } 2339 } 2340 2341 if (evsel_list->core.nr_entries) 2342 target.system_wide = true; 2343 } 2344 } 2345 2346 int cmd_stat(int argc, const char **argv) 2347 { 2348 struct opt_aggr_mode opt_mode = {}; 2349 struct option stat_options[] = { 2350 OPT_BOOLEAN('T', "transaction", &transaction_run, 2351 "hardware transaction statistics"), 2352 OPT_CALLBACK('e', "event", &parse_events_option_args, "event", 2353 "event selector. use 'perf list' to list available events", 2354 parse_events_option), 2355 OPT_CALLBACK(0, "filter", &evsel_list, "filter", 2356 "event filter", parse_filter), 2357 OPT_BOOLEAN('i', "no-inherit", &stat_config.no_inherit, 2358 "child tasks do not inherit counters"), 2359 OPT_STRING('p', "pid", &target.pid, "pid", 2360 "stat events on existing process id"), 2361 OPT_STRING('t', "tid", &target.tid, "tid", 2362 "stat events on existing thread id"), 2363 #ifdef HAVE_BPF_SKEL 2364 OPT_STRING('b', "bpf-prog", &target.bpf_str, "bpf-prog-id", 2365 "stat events on existing bpf program id"), 2366 OPT_BOOLEAN(0, "bpf-counters", &target.use_bpf, 2367 "use bpf program to count events"), 2368 OPT_STRING(0, "bpf-attr-map", &target.attr_map, "attr-map-path", 2369 "path to perf_event_attr map"), 2370 #endif 2371 OPT_BOOLEAN('a', "all-cpus", &target.system_wide, 2372 "system-wide collection from all CPUs"), 2373 OPT_BOOLEAN(0, "scale", &stat_config.scale, 2374 "Use --no-scale to disable counter scaling for multiplexing"), 2375 OPT_INCR('v', "verbose", &verbose, 2376 "be more verbose (show counter open errors, etc)"), 2377 OPT_INTEGER('r', "repeat", &stat_config.run_count, 2378 "repeat command and print average + stddev (max: 100, forever: 0)"), 2379 OPT_BOOLEAN(0, "table", &stat_config.walltime_run_table, 2380 "display details about each run (only with -r option)"), 2381 OPT_BOOLEAN('n', "null", &stat_config.null_run, 2382 "null run - dont start any counters"), 2383 OPT_INCR('d', "detailed", &detailed_run, 2384 "detailed run - start a lot of events"), 2385 OPT_BOOLEAN('S', "sync", &sync_run, 2386 "call sync() before starting a run"), 2387 OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL, 2388 "print large numbers with thousands\' separators", 2389 stat__set_big_num), 2390 OPT_STRING('C', "cpu", &target.cpu_list, "cpu", 2391 "list of cpus to monitor in system-wide"), 2392 OPT_BOOLEAN('A', "no-aggr", &opt_mode.no_aggr, 2393 "disable aggregation across CPUs or PMUs"), 2394 OPT_BOOLEAN(0, "no-merge", &opt_mode.no_aggr, 2395 "disable aggregation the same as -A or -no-aggr"), 2396 OPT_BOOLEAN(0, "hybrid-merge", &stat_config.hybrid_merge, 2397 "Merge identical named hybrid events"), 2398 OPT_STRING('x', "field-separator", &stat_config.csv_sep, "separator", 2399 "print counts with custom separator"), 2400 OPT_BOOLEAN('j', "json-output", &stat_config.json_output, 2401 "print counts in JSON format"), 2402 OPT_CALLBACK('G', "cgroup", &evsel_list, "name", 2403 "monitor event in cgroup name only", parse_stat_cgroups), 2404 OPT_STRING(0, "for-each-cgroup", &stat_config.cgroup_list, "name", 2405 "expand events for each cgroup"), 2406 OPT_STRING('o', "output", &output_name, "file", "output file name"), 2407 OPT_BOOLEAN(0, "append", &append_file, "append to the output file"), 2408 OPT_INTEGER(0, "log-fd", &output_fd, 2409 "log output to fd, instead of stderr"), 2410 OPT_STRING(0, "pre", &pre_cmd, "command", 2411 "command to run prior to the measured command"), 2412 OPT_STRING(0, "post", &post_cmd, "command", 2413 "command to run after to the measured command"), 2414 OPT_UINTEGER('I', "interval-print", &stat_config.interval, 2415 "print counts at regular interval in ms " 2416 "(overhead is possible for values <= 100ms)"), 2417 OPT_INTEGER(0, "interval-count", &stat_config.times, 2418 "print counts for fixed number of times"), 2419 OPT_BOOLEAN(0, "interval-clear", &stat_config.interval_clear, 2420 "clear screen in between new interval"), 2421 OPT_UINTEGER(0, "timeout", &stat_config.timeout, 2422 "stop workload and print counts after a timeout period in ms (>= 10ms)"), 2423 OPT_BOOLEAN(0, "per-socket", &opt_mode.socket, 2424 "aggregate counts per processor socket"), 2425 OPT_BOOLEAN(0, "per-die", &opt_mode.die, "aggregate counts per processor die"), 2426 OPT_BOOLEAN(0, "per-cluster", &opt_mode.cluster, 2427 "aggregate counts per processor cluster"), 2428 OPT_CALLBACK_OPTARG(0, "per-cache", &opt_mode, &stat_config.aggr_level, 2429 "cache level", "aggregate count at this cache level (Default: LLC)", 2430 parse_cache_level), 2431 OPT_BOOLEAN(0, "per-core", &opt_mode.core, 2432 "aggregate counts per physical processor core"), 2433 OPT_BOOLEAN(0, "per-thread", &opt_mode.thread, "aggregate counts per thread"), 2434 OPT_BOOLEAN(0, "per-node", &opt_mode.node, "aggregate counts per numa node"), 2435 OPT_INTEGER('D', "delay", &target.initial_delay, 2436 "ms to wait before starting measurement after program start (-1: start with events disabled)"), 2437 OPT_CALLBACK_NOOPT(0, "metric-only", &stat_config.metric_only, NULL, 2438 "Only print computed metrics. No raw values", enable_metric_only), 2439 OPT_BOOLEAN(0, "metric-no-group", &stat_config.metric_no_group, 2440 "don't group metric events, impacts multiplexing"), 2441 OPT_BOOLEAN(0, "metric-no-merge", &stat_config.metric_no_merge, 2442 "don't try to share events between metrics in a group"), 2443 OPT_BOOLEAN(0, "metric-no-threshold", &stat_config.metric_no_threshold, 2444 "disable adding events for the metric threshold calculation"), 2445 OPT_BOOLEAN(0, "topdown", &topdown_run, 2446 "measure top-down statistics"), 2447 #ifdef HAVE_ARCH_X86_64_SUPPORT 2448 OPT_BOOLEAN(0, "record-tpebs", &tpebs_recording, 2449 "enable recording for tpebs when retire_latency required"), 2450 #endif 2451 OPT_UINTEGER(0, "td-level", &stat_config.topdown_level, 2452 "Set the metrics level for the top-down statistics (0: max level)"), 2453 OPT_BOOLEAN(0, "smi-cost", &smi_cost, 2454 "measure SMI cost"), 2455 OPT_CALLBACK('M', "metrics", &evsel_list, "metric/metric group list", 2456 "monitor specified metrics or metric groups (separated by ,)", 2457 append_metric_groups), 2458 OPT_BOOLEAN_FLAG(0, "all-kernel", &stat_config.all_kernel, 2459 "Configure all used events to run in kernel space.", 2460 PARSE_OPT_EXCLUSIVE), 2461 OPT_BOOLEAN_FLAG(0, "all-user", &stat_config.all_user, 2462 "Configure all used events to run in user space.", 2463 PARSE_OPT_EXCLUSIVE), 2464 OPT_BOOLEAN(0, "percore-show-thread", &stat_config.percore_show_thread, 2465 "Use with 'percore' event qualifier to show the event " 2466 "counts of one hardware thread by sum up total hardware " 2467 "threads of same physical core"), 2468 OPT_BOOLEAN(0, "summary", &stat_config.summary, 2469 "print summary for interval mode"), 2470 OPT_BOOLEAN(0, "no-csv-summary", &stat_config.no_csv_summary, 2471 "don't print 'summary' for CSV summary output"), 2472 OPT_BOOLEAN(0, "quiet", &quiet, 2473 "don't print any output, messages or warnings (useful with record)"), 2474 OPT_CALLBACK(0, "cputype", &evsel_list, "hybrid cpu type", 2475 "Only enable events on applying cpu with this type " 2476 "for hybrid platform (e.g. core or atom)", 2477 parse_cputype), 2478 #ifdef HAVE_LIBPFM 2479 OPT_CALLBACK(0, "pfm-events", &evsel_list, "event", 2480 "libpfm4 event selector. use 'perf list' to list available events", 2481 parse_libpfm_events_option), 2482 #endif 2483 OPT_CALLBACK(0, "control", &stat_config, "fd:ctl-fd[,ack-fd] or fifo:ctl-fifo[,ack-fifo]", 2484 "Listen on ctl-fd descriptor for command to control measurement ('enable': enable events, 'disable': disable events).\n" 2485 "\t\t\t Optionally send control command completion ('ack\\n') to ack-fd descriptor.\n" 2486 "\t\t\t Alternatively, ctl-fifo / ack-fifo will be opened and used as ctl-fd / ack-fd.", 2487 parse_control_option), 2488 OPT_CALLBACK_OPTARG(0, "iostat", &evsel_list, &stat_config, "default", 2489 "measure I/O performance metrics provided by arch/platform", 2490 iostat_parse), 2491 OPT_END() 2492 }; 2493 const char * const stat_usage[] = { 2494 "perf stat [<options>] [<command>]", 2495 NULL 2496 }; 2497 int status = -EINVAL, run_idx, err; 2498 const char *mode; 2499 FILE *output = stderr; 2500 unsigned int interval, timeout; 2501 const char * const stat_subcommands[] = { "record", "report" }; 2502 char errbuf[BUFSIZ]; 2503 2504 setlocale(LC_ALL, ""); 2505 2506 evsel_list = evlist__new(); 2507 if (evsel_list == NULL) 2508 return -ENOMEM; 2509 2510 parse_events__shrink_config_terms(); 2511 2512 /* String-parsing callback-based options would segfault when negated */ 2513 set_option_flag(stat_options, 'e', "event", PARSE_OPT_NONEG); 2514 set_option_flag(stat_options, 'M', "metrics", PARSE_OPT_NONEG); 2515 set_option_flag(stat_options, 'G', "cgroup", PARSE_OPT_NONEG); 2516 2517 argc = parse_options_subcommand(argc, argv, stat_options, stat_subcommands, 2518 (const char **) stat_usage, 2519 PARSE_OPT_STOP_AT_NON_OPTION); 2520 2521 stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(&opt_mode); 2522 2523 if (stat_config.csv_sep) { 2524 stat_config.csv_output = true; 2525 if (!strcmp(stat_config.csv_sep, "\\t")) 2526 stat_config.csv_sep = "\t"; 2527 } else 2528 stat_config.csv_sep = DEFAULT_SEPARATOR; 2529 2530 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) { 2531 argc = __cmd_record(stat_options, &opt_mode, argc, argv); 2532 if (argc < 0) 2533 return -1; 2534 } else if (argc && strlen(argv[0]) > 2 && strstarts("report", argv[0])) 2535 return __cmd_report(argc, argv); 2536 2537 interval = stat_config.interval; 2538 timeout = stat_config.timeout; 2539 2540 /* 2541 * For record command the -o is already taken care of. 2542 */ 2543 if (!STAT_RECORD && output_name && strcmp(output_name, "-")) 2544 output = NULL; 2545 2546 if (output_name && output_fd) { 2547 fprintf(stderr, "cannot use both --output and --log-fd\n"); 2548 parse_options_usage(stat_usage, stat_options, "o", 1); 2549 parse_options_usage(NULL, stat_options, "log-fd", 0); 2550 goto out; 2551 } 2552 2553 if (stat_config.metric_only && stat_config.aggr_mode == AGGR_THREAD) { 2554 fprintf(stderr, "--metric-only is not supported with --per-thread\n"); 2555 goto out; 2556 } 2557 2558 if (stat_config.metric_only && stat_config.run_count > 1) { 2559 fprintf(stderr, "--metric-only is not supported with -r\n"); 2560 goto out; 2561 } 2562 2563 if (stat_config.walltime_run_table && stat_config.run_count <= 1) { 2564 fprintf(stderr, "--table is only supported with -r\n"); 2565 parse_options_usage(stat_usage, stat_options, "r", 1); 2566 parse_options_usage(NULL, stat_options, "table", 0); 2567 goto out; 2568 } 2569 2570 if (output_fd < 0) { 2571 fprintf(stderr, "argument to --log-fd must be a > 0\n"); 2572 parse_options_usage(stat_usage, stat_options, "log-fd", 0); 2573 goto out; 2574 } 2575 2576 if (!output && !quiet) { 2577 struct timespec tm; 2578 mode = append_file ? "a" : "w"; 2579 2580 output = fopen(output_name, mode); 2581 if (!output) { 2582 perror("failed to create output file"); 2583 return -1; 2584 } 2585 if (!stat_config.json_output) { 2586 clock_gettime(CLOCK_REALTIME, &tm); 2587 fprintf(output, "# started on %s\n", ctime(&tm.tv_sec)); 2588 } 2589 } else if (output_fd > 0) { 2590 mode = append_file ? "a" : "w"; 2591 output = fdopen(output_fd, mode); 2592 if (!output) { 2593 perror("Failed opening logfd"); 2594 return -errno; 2595 } 2596 } 2597 2598 if (stat_config.interval_clear && !isatty(fileno(output))) { 2599 fprintf(stderr, "--interval-clear does not work with output\n"); 2600 parse_options_usage(stat_usage, stat_options, "o", 1); 2601 parse_options_usage(NULL, stat_options, "log-fd", 0); 2602 parse_options_usage(NULL, stat_options, "interval-clear", 0); 2603 return -1; 2604 } 2605 2606 stat_config.output = output; 2607 2608 /* 2609 * let the spreadsheet do the pretty-printing 2610 */ 2611 if (stat_config.csv_output) { 2612 /* User explicitly passed -B? */ 2613 if (big_num_opt == 1) { 2614 fprintf(stderr, "-B option not supported with -x\n"); 2615 parse_options_usage(stat_usage, stat_options, "B", 1); 2616 parse_options_usage(NULL, stat_options, "x", 1); 2617 goto out; 2618 } else /* Nope, so disable big number formatting */ 2619 stat_config.big_num = false; 2620 } else if (big_num_opt == 0) /* User passed --no-big-num */ 2621 stat_config.big_num = false; 2622 2623 err = target__validate(&target); 2624 if (err) { 2625 target__strerror(&target, err, errbuf, BUFSIZ); 2626 pr_warning("%s\n", errbuf); 2627 } 2628 2629 setup_system_wide(argc); 2630 2631 /* 2632 * Display user/system times only for single 2633 * run and when there's specified tracee. 2634 */ 2635 if ((stat_config.run_count == 1) && target__none(&target)) 2636 stat_config.ru_display = true; 2637 2638 if (stat_config.run_count < 0) { 2639 pr_err("Run count must be a positive number\n"); 2640 parse_options_usage(stat_usage, stat_options, "r", 1); 2641 goto out; 2642 } else if (stat_config.run_count == 0) { 2643 forever = true; 2644 stat_config.run_count = 1; 2645 } 2646 2647 if (stat_config.walltime_run_table) { 2648 stat_config.walltime_run = zalloc(stat_config.run_count * sizeof(stat_config.walltime_run[0])); 2649 if (!stat_config.walltime_run) { 2650 pr_err("failed to setup -r option"); 2651 goto out; 2652 } 2653 } 2654 2655 if ((stat_config.aggr_mode == AGGR_THREAD) && 2656 !target__has_task(&target)) { 2657 if (!target.system_wide || target.cpu_list) { 2658 fprintf(stderr, "The --per-thread option is only " 2659 "available when monitoring via -p -t -a " 2660 "options or only --per-thread.\n"); 2661 parse_options_usage(NULL, stat_options, "p", 1); 2662 parse_options_usage(NULL, stat_options, "t", 1); 2663 goto out; 2664 } 2665 } 2666 2667 /* 2668 * no_aggr, cgroup are for system-wide only 2669 * --per-thread is aggregated per thread, we dont mix it with cpu mode 2670 */ 2671 if (((stat_config.aggr_mode != AGGR_GLOBAL && 2672 stat_config.aggr_mode != AGGR_THREAD) || 2673 (nr_cgroups || stat_config.cgroup_list)) && 2674 !target__has_cpu(&target)) { 2675 fprintf(stderr, "both cgroup and no-aggregation " 2676 "modes only available in system-wide mode\n"); 2677 2678 parse_options_usage(stat_usage, stat_options, "G", 1); 2679 parse_options_usage(NULL, stat_options, "A", 1); 2680 parse_options_usage(NULL, stat_options, "a", 1); 2681 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2682 goto out; 2683 } 2684 2685 if (stat_config.iostat_run) { 2686 status = iostat_prepare(evsel_list, &stat_config); 2687 if (status) 2688 goto out; 2689 if (iostat_mode == IOSTAT_LIST) { 2690 iostat_list(evsel_list, &stat_config); 2691 goto out; 2692 } else if (verbose > 0) 2693 iostat_list(evsel_list, &stat_config); 2694 if (iostat_mode == IOSTAT_RUN && !target__has_cpu(&target)) 2695 target.system_wide = true; 2696 } 2697 2698 if ((stat_config.aggr_mode == AGGR_THREAD) && (target.system_wide)) 2699 target.per_thread = true; 2700 2701 stat_config.system_wide = target.system_wide; 2702 if (target.cpu_list) { 2703 stat_config.user_requested_cpu_list = strdup(target.cpu_list); 2704 if (!stat_config.user_requested_cpu_list) { 2705 status = -ENOMEM; 2706 goto out; 2707 } 2708 } 2709 2710 /* 2711 * Metric parsing needs to be delayed as metrics may optimize events 2712 * knowing the target is system-wide. 2713 */ 2714 if (metrics) { 2715 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 2716 int ret = metricgroup__parse_groups(evsel_list, pmu, metrics, 2717 stat_config.metric_no_group, 2718 stat_config.metric_no_merge, 2719 stat_config.metric_no_threshold, 2720 stat_config.user_requested_cpu_list, 2721 stat_config.system_wide, 2722 stat_config.hardware_aware_grouping, 2723 &stat_config.metric_events); 2724 2725 zfree(&metrics); 2726 if (ret) { 2727 status = ret; 2728 goto out; 2729 } 2730 } 2731 2732 if (add_default_events()) 2733 goto out; 2734 2735 if (stat_config.cgroup_list) { 2736 if (nr_cgroups > 0) { 2737 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 2738 parse_options_usage(stat_usage, stat_options, "G", 1); 2739 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2740 goto out; 2741 } 2742 2743 if (evlist__expand_cgroup(evsel_list, stat_config.cgroup_list, 2744 &stat_config.metric_events, true) < 0) { 2745 parse_options_usage(stat_usage, stat_options, 2746 "for-each-cgroup", 0); 2747 goto out; 2748 } 2749 } 2750 2751 evlist__warn_user_requested_cpus(evsel_list, target.cpu_list); 2752 2753 if (evlist__create_maps(evsel_list, &target) < 0) { 2754 if (target__has_task(&target)) { 2755 pr_err("Problems finding threads of monitor\n"); 2756 parse_options_usage(stat_usage, stat_options, "p", 1); 2757 parse_options_usage(NULL, stat_options, "t", 1); 2758 } else if (target__has_cpu(&target)) { 2759 perror("failed to parse CPUs map"); 2760 parse_options_usage(stat_usage, stat_options, "C", 1); 2761 parse_options_usage(NULL, stat_options, "a", 1); 2762 } 2763 goto out; 2764 } 2765 2766 evlist__check_cpu_maps(evsel_list); 2767 2768 /* 2769 * Initialize thread_map with comm names, 2770 * so we could print it out on output. 2771 */ 2772 if (stat_config.aggr_mode == AGGR_THREAD) { 2773 thread_map__read_comms(evsel_list->core.threads); 2774 } 2775 2776 if (stat_config.aggr_mode == AGGR_NODE) 2777 cpu__setup_cpunode_map(); 2778 2779 if (stat_config.times && interval) 2780 interval_count = true; 2781 else if (stat_config.times && !interval) { 2782 pr_err("interval-count option should be used together with " 2783 "interval-print.\n"); 2784 parse_options_usage(stat_usage, stat_options, "interval-count", 0); 2785 parse_options_usage(stat_usage, stat_options, "I", 1); 2786 goto out; 2787 } 2788 2789 if (timeout && timeout < 100) { 2790 if (timeout < 10) { 2791 pr_err("timeout must be >= 10ms.\n"); 2792 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2793 goto out; 2794 } else 2795 pr_warning("timeout < 100ms. " 2796 "The overhead percentage could be high in some cases. " 2797 "Please proceed with caution.\n"); 2798 } 2799 if (timeout && interval) { 2800 pr_err("timeout option is not supported with interval-print.\n"); 2801 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2802 parse_options_usage(stat_usage, stat_options, "I", 1); 2803 goto out; 2804 } 2805 2806 if (perf_stat_init_aggr_mode()) 2807 goto out; 2808 2809 if (evlist__alloc_stats(&stat_config, evsel_list, interval)) 2810 goto out; 2811 2812 /* 2813 * Set sample_type to PERF_SAMPLE_IDENTIFIER, which should be harmless 2814 * while avoiding that older tools show confusing messages. 2815 * 2816 * However for pipe sessions we need to keep it zero, 2817 * because script's perf_evsel__check_attr is triggered 2818 * by attr->sample_type != 0, and we can't run it on 2819 * stat sessions. 2820 */ 2821 stat_config.identifier = !(STAT_RECORD && perf_stat.data.is_pipe); 2822 2823 /* 2824 * We dont want to block the signals - that would cause 2825 * child tasks to inherit that and Ctrl-C would not work. 2826 * What we want is for Ctrl-C to work in the exec()-ed 2827 * task, but being ignored by perf stat itself: 2828 */ 2829 atexit(sig_atexit); 2830 if (!forever) 2831 signal(SIGINT, skip_signal); 2832 signal(SIGCHLD, skip_signal); 2833 signal(SIGALRM, skip_signal); 2834 signal(SIGABRT, skip_signal); 2835 2836 if (evlist__initialize_ctlfd(evsel_list, stat_config.ctl_fd, stat_config.ctl_fd_ack)) 2837 goto out; 2838 2839 /* Enable ignoring missing threads when -p option is defined. */ 2840 evlist__first(evsel_list)->ignore_missing_thread = target.pid; 2841 status = 0; 2842 for (run_idx = 0; forever || run_idx < stat_config.run_count; run_idx++) { 2843 if (stat_config.run_count != 1 && verbose > 0) 2844 fprintf(output, "[ perf stat: executing run #%d ... ]\n", 2845 run_idx + 1); 2846 2847 if (run_idx != 0) 2848 evlist__reset_prev_raw_counts(evsel_list); 2849 2850 status = run_perf_stat(argc, argv, run_idx); 2851 if (status == -1) 2852 break; 2853 2854 if (forever && !interval) { 2855 print_counters(NULL, argc, argv); 2856 perf_stat__reset_stats(); 2857 } 2858 } 2859 2860 if (!forever && status != -1 && (!interval || stat_config.summary)) { 2861 if (stat_config.run_count > 1) 2862 evlist__copy_res_stats(&stat_config, evsel_list); 2863 print_counters(NULL, argc, argv); 2864 } 2865 2866 evlist__finalize_ctlfd(evsel_list); 2867 2868 if (STAT_RECORD) { 2869 /* 2870 * We synthesize the kernel mmap record just so that older tools 2871 * don't emit warnings about not being able to resolve symbols 2872 * due to /proc/sys/kernel/kptr_restrict settings and instead provide 2873 * a saner message about no samples being in the perf.data file. 2874 * 2875 * This also serves to suppress a warning about f_header.data.size == 0 2876 * in header.c at the moment 'perf stat record' gets introduced, which 2877 * is not really needed once we start adding the stat specific PERF_RECORD_ 2878 * records, but the need to suppress the kptr_restrict messages in older 2879 * tools remain -acme 2880 */ 2881 int fd = perf_data__fd(&perf_stat.data); 2882 2883 err = perf_event__synthesize_kernel_mmap((void *)&perf_stat, 2884 process_synthesized_event, 2885 &perf_stat.session->machines.host); 2886 if (err) { 2887 pr_warning("Couldn't synthesize the kernel mmap record, harmless, " 2888 "older tools may produce warnings about this file\n."); 2889 } 2890 2891 if (!interval) { 2892 if (WRITE_STAT_ROUND_EVENT(walltime_nsecs_stats.max, FINAL)) 2893 pr_err("failed to write stat round event\n"); 2894 } 2895 2896 if (!perf_stat.data.is_pipe) { 2897 perf_stat.session->header.data_size += perf_stat.bytes_written; 2898 perf_session__write_header(perf_stat.session, evsel_list, fd, true); 2899 } 2900 2901 evlist__close(evsel_list); 2902 perf_session__delete(perf_stat.session); 2903 } 2904 2905 perf_stat__exit_aggr_mode(); 2906 evlist__free_stats(evsel_list); 2907 out: 2908 if (stat_config.iostat_run) 2909 iostat_release(evsel_list); 2910 2911 zfree(&stat_config.walltime_run); 2912 zfree(&stat_config.user_requested_cpu_list); 2913 2914 if (smi_cost && smi_reset) 2915 sysfs__write_int(FREEZE_ON_SMI_PATH, 0); 2916 2917 evlist__delete(evsel_list); 2918 2919 metricgroup__rblist_exit(&stat_config.metric_events); 2920 evlist__close_control(stat_config.ctl_fd, stat_config.ctl_fd_ack, &stat_config.ctl_fd_close); 2921 2922 return status; 2923 } 2924