1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * builtin-stat.c 4 * 5 * Builtin stat command: Give a precise performance counters summary 6 * overview about any workload, CPU or specific PID. 7 * 8 * Sample output: 9 10 $ perf stat ./hackbench 10 11 12 Time: 0.118 13 14 Performance counter stats for './hackbench 10': 15 16 1708.761321 task-clock # 11.037 CPUs utilized 17 41,190 context-switches # 0.024 M/sec 18 6,735 CPU-migrations # 0.004 M/sec 19 17,318 page-faults # 0.010 M/sec 20 5,205,202,243 cycles # 3.046 GHz 21 3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle 22 1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle 23 2,603,501,247 instructions # 0.50 insns per cycle 24 # 1.48 stalled cycles per insn 25 484,357,498 branches # 283.455 M/sec 26 6,388,934 branch-misses # 1.32% of all branches 27 28 0.154822978 seconds time elapsed 29 30 * 31 * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com> 32 * 33 * Improvements and fixes by: 34 * 35 * Arjan van de Ven <arjan@linux.intel.com> 36 * Yanmin Zhang <yanmin.zhang@intel.com> 37 * Wu Fengguang <fengguang.wu@intel.com> 38 * Mike Galbraith <efault@gmx.de> 39 * Paul Mackerras <paulus@samba.org> 40 * Jaswinder Singh Rajput <jaswinder@kernel.org> 41 */ 42 43 #include "builtin.h" 44 #include "util/cgroup.h" 45 #include <subcmd/parse-options.h> 46 #include "util/parse-events.h" 47 #include "util/pmus.h" 48 #include "util/pmu.h" 49 #include "util/tool_pmu.h" 50 #include "util/event.h" 51 #include "util/evlist.h" 52 #include "util/evsel.h" 53 #include "util/debug.h" 54 #include "util/color.h" 55 #include "util/stat.h" 56 #include "util/header.h" 57 #include "util/cpumap.h" 58 #include "util/thread_map.h" 59 #include "util/counts.h" 60 #include "util/topdown.h" 61 #include "util/session.h" 62 #include "util/tool.h" 63 #include "util/string2.h" 64 #include "util/metricgroup.h" 65 #include "util/synthetic-events.h" 66 #include "util/target.h" 67 #include "util/time-utils.h" 68 #include "util/top.h" 69 #include "util/affinity.h" 70 #include "util/pfm.h" 71 #include "util/bpf_counter.h" 72 #include "util/iostat.h" 73 #include "util/util.h" 74 #include "util/intel-tpebs.h" 75 #include "asm/bug.h" 76 77 #include <linux/time64.h> 78 #include <linux/zalloc.h> 79 #include <api/fs/fs.h> 80 #include <errno.h> 81 #include <signal.h> 82 #include <stdlib.h> 83 #include <sys/prctl.h> 84 #include <inttypes.h> 85 #include <locale.h> 86 #include <math.h> 87 #include <sys/types.h> 88 #include <sys/stat.h> 89 #include <sys/wait.h> 90 #include <unistd.h> 91 #include <sys/time.h> 92 #include <sys/resource.h> 93 #include <linux/err.h> 94 95 #include <linux/ctype.h> 96 #include <perf/evlist.h> 97 #include <internal/threadmap.h> 98 99 #define DEFAULT_SEPARATOR " " 100 #define FREEZE_ON_SMI_PATH "devices/cpu/freeze_on_smi" 101 102 static void print_counters(struct timespec *ts, int argc, const char **argv); 103 104 static struct evlist *evsel_list; 105 static struct parse_events_option_args parse_events_option_args = { 106 .evlistp = &evsel_list, 107 }; 108 109 static bool all_counters_use_bpf = true; 110 111 static struct target target = { 112 .uid = UINT_MAX, 113 }; 114 115 #define METRIC_ONLY_LEN 20 116 117 static volatile sig_atomic_t child_pid = -1; 118 static int detailed_run = 0; 119 static bool transaction_run; 120 static bool topdown_run = false; 121 static bool smi_cost = false; 122 static bool smi_reset = false; 123 static int big_num_opt = -1; 124 static const char *pre_cmd = NULL; 125 static const char *post_cmd = NULL; 126 static bool sync_run = false; 127 static bool forever = false; 128 static bool force_metric_only = false; 129 static struct timespec ref_time; 130 static bool append_file; 131 static bool interval_count; 132 static const char *output_name; 133 static int output_fd; 134 static char *metrics; 135 136 struct perf_stat { 137 bool record; 138 struct perf_data data; 139 struct perf_session *session; 140 u64 bytes_written; 141 struct perf_tool tool; 142 bool maps_allocated; 143 struct perf_cpu_map *cpus; 144 struct perf_thread_map *threads; 145 enum aggr_mode aggr_mode; 146 u32 aggr_level; 147 }; 148 149 static struct perf_stat perf_stat; 150 #define STAT_RECORD perf_stat.record 151 152 static volatile sig_atomic_t done = 0; 153 154 static struct perf_stat_config stat_config = { 155 .aggr_mode = AGGR_GLOBAL, 156 .aggr_level = MAX_CACHE_LVL + 1, 157 .scale = true, 158 .unit_width = 4, /* strlen("unit") */ 159 .run_count = 1, 160 .metric_only_len = METRIC_ONLY_LEN, 161 .walltime_nsecs_stats = &walltime_nsecs_stats, 162 .ru_stats = &ru_stats, 163 .big_num = true, 164 .ctl_fd = -1, 165 .ctl_fd_ack = -1, 166 .iostat_run = false, 167 }; 168 169 /* Options set from the command line. */ 170 struct opt_aggr_mode { 171 bool node, socket, die, cluster, cache, core, thread, no_aggr; 172 }; 173 174 /* Turn command line option into most generic aggregation mode setting. */ 175 static enum aggr_mode opt_aggr_mode_to_aggr_mode(struct opt_aggr_mode *opt_mode) 176 { 177 enum aggr_mode mode = AGGR_GLOBAL; 178 179 if (opt_mode->node) 180 mode = AGGR_NODE; 181 if (opt_mode->socket) 182 mode = AGGR_SOCKET; 183 if (opt_mode->die) 184 mode = AGGR_DIE; 185 if (opt_mode->cluster) 186 mode = AGGR_CLUSTER; 187 if (opt_mode->cache) 188 mode = AGGR_CACHE; 189 if (opt_mode->core) 190 mode = AGGR_CORE; 191 if (opt_mode->thread) 192 mode = AGGR_THREAD; 193 if (opt_mode->no_aggr) 194 mode = AGGR_NONE; 195 return mode; 196 } 197 198 static void evlist__check_cpu_maps(struct evlist *evlist) 199 { 200 struct evsel *evsel, *warned_leader = NULL; 201 202 evlist__for_each_entry(evlist, evsel) { 203 struct evsel *leader = evsel__leader(evsel); 204 205 /* Check that leader matches cpus with each member. */ 206 if (leader == evsel) 207 continue; 208 if (perf_cpu_map__equal(leader->core.cpus, evsel->core.cpus)) 209 continue; 210 211 /* If there's mismatch disable the group and warn user. */ 212 if (warned_leader != leader) { 213 char buf[200]; 214 215 pr_warning("WARNING: grouped events cpus do not match.\n" 216 "Events with CPUs not matching the leader will " 217 "be removed from the group.\n"); 218 evsel__group_desc(leader, buf, sizeof(buf)); 219 pr_warning(" %s\n", buf); 220 warned_leader = leader; 221 } 222 if (verbose > 0) { 223 char buf[200]; 224 225 cpu_map__snprint(leader->core.cpus, buf, sizeof(buf)); 226 pr_warning(" %s: %s\n", leader->name, buf); 227 cpu_map__snprint(evsel->core.cpus, buf, sizeof(buf)); 228 pr_warning(" %s: %s\n", evsel->name, buf); 229 } 230 231 evsel__remove_from_group(evsel, leader); 232 } 233 } 234 235 static inline void diff_timespec(struct timespec *r, struct timespec *a, 236 struct timespec *b) 237 { 238 r->tv_sec = a->tv_sec - b->tv_sec; 239 if (a->tv_nsec < b->tv_nsec) { 240 r->tv_nsec = a->tv_nsec + NSEC_PER_SEC - b->tv_nsec; 241 r->tv_sec--; 242 } else { 243 r->tv_nsec = a->tv_nsec - b->tv_nsec ; 244 } 245 } 246 247 static void perf_stat__reset_stats(void) 248 { 249 evlist__reset_stats(evsel_list); 250 perf_stat__reset_shadow_stats(); 251 } 252 253 static int process_synthesized_event(const struct perf_tool *tool __maybe_unused, 254 union perf_event *event, 255 struct perf_sample *sample __maybe_unused, 256 struct machine *machine __maybe_unused) 257 { 258 if (perf_data__write(&perf_stat.data, event, event->header.size) < 0) { 259 pr_err("failed to write perf data, error: %m\n"); 260 return -1; 261 } 262 263 perf_stat.bytes_written += event->header.size; 264 return 0; 265 } 266 267 static int write_stat_round_event(u64 tm, u64 type) 268 { 269 return perf_event__synthesize_stat_round(NULL, tm, type, 270 process_synthesized_event, 271 NULL); 272 } 273 274 #define WRITE_STAT_ROUND_EVENT(time, interval) \ 275 write_stat_round_event(time, PERF_STAT_ROUND_TYPE__ ## interval) 276 277 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y) 278 279 static int evsel__write_stat_event(struct evsel *counter, int cpu_map_idx, u32 thread, 280 struct perf_counts_values *count) 281 { 282 struct perf_sample_id *sid = SID(counter, cpu_map_idx, thread); 283 struct perf_cpu cpu = perf_cpu_map__cpu(evsel__cpus(counter), cpu_map_idx); 284 285 return perf_event__synthesize_stat(NULL, cpu, thread, sid->id, count, 286 process_synthesized_event, NULL); 287 } 288 289 static int read_single_counter(struct evsel *counter, int cpu_map_idx, int thread) 290 { 291 int err = evsel__read_counter(counter, cpu_map_idx, thread); 292 293 /* 294 * Reading user and system time will fail when the process 295 * terminates. Use the wait4 values in that case. 296 */ 297 if (err && cpu_map_idx == 0 && 298 (evsel__tool_event(counter) == TOOL_PMU__EVENT_USER_TIME || 299 evsel__tool_event(counter) == TOOL_PMU__EVENT_SYSTEM_TIME)) { 300 u64 val, *start_time; 301 struct perf_counts_values *count = 302 perf_counts(counter->counts, cpu_map_idx, thread); 303 304 start_time = xyarray__entry(counter->start_times, cpu_map_idx, thread); 305 if (evsel__tool_event(counter) == TOOL_PMU__EVENT_USER_TIME) 306 val = ru_stats.ru_utime_usec_stat.mean; 307 else 308 val = ru_stats.ru_stime_usec_stat.mean; 309 count->ena = count->run = *start_time + val; 310 count->val = val; 311 return 0; 312 } 313 return err; 314 } 315 316 /* 317 * Read out the results of a single counter: 318 * do not aggregate counts across CPUs in system-wide mode 319 */ 320 static int read_counter_cpu(struct evsel *counter, int cpu_map_idx) 321 { 322 int nthreads = perf_thread_map__nr(evsel_list->core.threads); 323 int thread; 324 325 if (!counter->supported) 326 return -ENOENT; 327 328 for (thread = 0; thread < nthreads; thread++) { 329 struct perf_counts_values *count; 330 331 count = perf_counts(counter->counts, cpu_map_idx, thread); 332 333 /* 334 * The leader's group read loads data into its group members 335 * (via evsel__read_counter()) and sets their count->loaded. 336 */ 337 if (!perf_counts__is_loaded(counter->counts, cpu_map_idx, thread) && 338 read_single_counter(counter, cpu_map_idx, thread)) { 339 counter->counts->scaled = -1; 340 perf_counts(counter->counts, cpu_map_idx, thread)->ena = 0; 341 perf_counts(counter->counts, cpu_map_idx, thread)->run = 0; 342 return -1; 343 } 344 345 perf_counts__set_loaded(counter->counts, cpu_map_idx, thread, false); 346 347 if (STAT_RECORD) { 348 if (evsel__write_stat_event(counter, cpu_map_idx, thread, count)) { 349 pr_err("failed to write stat event\n"); 350 return -1; 351 } 352 } 353 354 if (verbose > 1) { 355 fprintf(stat_config.output, 356 "%s: %d: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", 357 evsel__name(counter), 358 perf_cpu_map__cpu(evsel__cpus(counter), 359 cpu_map_idx).cpu, 360 count->val, count->ena, count->run); 361 } 362 } 363 364 return 0; 365 } 366 367 static int read_affinity_counters(void) 368 { 369 struct evlist_cpu_iterator evlist_cpu_itr; 370 struct affinity saved_affinity, *affinity; 371 372 if (all_counters_use_bpf) 373 return 0; 374 375 if (!target__has_cpu(&target) || target__has_per_thread(&target)) 376 affinity = NULL; 377 else if (affinity__setup(&saved_affinity) < 0) 378 return -1; 379 else 380 affinity = &saved_affinity; 381 382 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 383 struct evsel *counter = evlist_cpu_itr.evsel; 384 385 if (evsel__is_bpf(counter)) 386 continue; 387 388 if (!counter->err) 389 counter->err = read_counter_cpu(counter, evlist_cpu_itr.cpu_map_idx); 390 } 391 if (affinity) 392 affinity__cleanup(&saved_affinity); 393 394 return 0; 395 } 396 397 static int read_bpf_map_counters(void) 398 { 399 struct evsel *counter; 400 int err; 401 402 evlist__for_each_entry(evsel_list, counter) { 403 if (!evsel__is_bpf(counter)) 404 continue; 405 406 err = bpf_counter__read(counter); 407 if (err) 408 return err; 409 } 410 return 0; 411 } 412 413 static int read_counters(void) 414 { 415 if (!stat_config.stop_read_counter) { 416 if (read_bpf_map_counters() || 417 read_affinity_counters()) 418 return -1; 419 } 420 return 0; 421 } 422 423 static void process_counters(void) 424 { 425 struct evsel *counter; 426 427 evlist__for_each_entry(evsel_list, counter) { 428 if (counter->err) 429 pr_debug("failed to read counter %s\n", counter->name); 430 if (counter->err == 0 && perf_stat_process_counter(&stat_config, counter)) 431 pr_warning("failed to process counter %s\n", counter->name); 432 counter->err = 0; 433 } 434 435 perf_stat_merge_counters(&stat_config, evsel_list); 436 perf_stat_process_percore(&stat_config, evsel_list); 437 } 438 439 static void process_interval(void) 440 { 441 struct timespec ts, rs; 442 443 clock_gettime(CLOCK_MONOTONIC, &ts); 444 diff_timespec(&rs, &ts, &ref_time); 445 446 evlist__reset_aggr_stats(evsel_list); 447 448 if (read_counters() == 0) 449 process_counters(); 450 451 if (STAT_RECORD) { 452 if (WRITE_STAT_ROUND_EVENT(rs.tv_sec * NSEC_PER_SEC + rs.tv_nsec, INTERVAL)) 453 pr_err("failed to write stat round event\n"); 454 } 455 456 init_stats(&walltime_nsecs_stats); 457 update_stats(&walltime_nsecs_stats, stat_config.interval * 1000000ULL); 458 print_counters(&rs, 0, NULL); 459 } 460 461 static bool handle_interval(unsigned int interval, int *times) 462 { 463 if (interval) { 464 process_interval(); 465 if (interval_count && !(--(*times))) 466 return true; 467 } 468 return false; 469 } 470 471 static int enable_counters(void) 472 { 473 struct evsel *evsel; 474 int err; 475 476 evlist__for_each_entry(evsel_list, evsel) { 477 if (!evsel__is_bpf(evsel)) 478 continue; 479 480 err = bpf_counter__enable(evsel); 481 if (err) 482 return err; 483 } 484 485 if (!target__enable_on_exec(&target)) { 486 if (!all_counters_use_bpf) 487 evlist__enable(evsel_list); 488 } 489 return 0; 490 } 491 492 static void disable_counters(void) 493 { 494 struct evsel *counter; 495 496 /* 497 * If we don't have tracee (attaching to task or cpu), counters may 498 * still be running. To get accurate group ratios, we must stop groups 499 * from counting before reading their constituent counters. 500 */ 501 if (!target__none(&target)) { 502 evlist__for_each_entry(evsel_list, counter) 503 bpf_counter__disable(counter); 504 if (!all_counters_use_bpf) 505 evlist__disable(evsel_list); 506 } 507 } 508 509 static volatile sig_atomic_t workload_exec_errno; 510 511 /* 512 * evlist__prepare_workload will send a SIGUSR1 513 * if the fork fails, since we asked by setting its 514 * want_signal to true. 515 */ 516 static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info, 517 void *ucontext __maybe_unused) 518 { 519 workload_exec_errno = info->si_value.sival_int; 520 } 521 522 static bool evsel__should_store_id(struct evsel *counter) 523 { 524 return STAT_RECORD || counter->core.attr.read_format & PERF_FORMAT_ID; 525 } 526 527 static bool is_target_alive(struct target *_target, 528 struct perf_thread_map *threads) 529 { 530 struct stat st; 531 int i; 532 533 if (!target__has_task(_target)) 534 return true; 535 536 for (i = 0; i < threads->nr; i++) { 537 char path[PATH_MAX]; 538 539 scnprintf(path, PATH_MAX, "%s/%d", procfs__mountpoint(), 540 threads->map[i].pid); 541 542 if (!stat(path, &st)) 543 return true; 544 } 545 546 return false; 547 } 548 549 static void process_evlist(struct evlist *evlist, unsigned int interval) 550 { 551 enum evlist_ctl_cmd cmd = EVLIST_CTL_CMD_UNSUPPORTED; 552 553 if (evlist__ctlfd_process(evlist, &cmd) > 0) { 554 switch (cmd) { 555 case EVLIST_CTL_CMD_ENABLE: 556 fallthrough; 557 case EVLIST_CTL_CMD_DISABLE: 558 if (interval) 559 process_interval(); 560 break; 561 case EVLIST_CTL_CMD_SNAPSHOT: 562 case EVLIST_CTL_CMD_ACK: 563 case EVLIST_CTL_CMD_UNSUPPORTED: 564 case EVLIST_CTL_CMD_EVLIST: 565 case EVLIST_CTL_CMD_STOP: 566 case EVLIST_CTL_CMD_PING: 567 default: 568 break; 569 } 570 } 571 } 572 573 static void compute_tts(struct timespec *time_start, struct timespec *time_stop, 574 int *time_to_sleep) 575 { 576 int tts = *time_to_sleep; 577 struct timespec time_diff; 578 579 diff_timespec(&time_diff, time_stop, time_start); 580 581 tts -= time_diff.tv_sec * MSEC_PER_SEC + 582 time_diff.tv_nsec / NSEC_PER_MSEC; 583 584 if (tts < 0) 585 tts = 0; 586 587 *time_to_sleep = tts; 588 } 589 590 static int dispatch_events(bool forks, int timeout, int interval, int *times) 591 { 592 int child_exited = 0, status = 0; 593 int time_to_sleep, sleep_time; 594 struct timespec time_start, time_stop; 595 596 if (interval) 597 sleep_time = interval; 598 else if (timeout) 599 sleep_time = timeout; 600 else 601 sleep_time = 1000; 602 603 time_to_sleep = sleep_time; 604 605 while (!done) { 606 if (forks) 607 child_exited = waitpid(child_pid, &status, WNOHANG); 608 else 609 child_exited = !is_target_alive(&target, evsel_list->core.threads) ? 1 : 0; 610 611 if (child_exited) 612 break; 613 614 clock_gettime(CLOCK_MONOTONIC, &time_start); 615 if (!(evlist__poll(evsel_list, time_to_sleep) > 0)) { /* poll timeout or EINTR */ 616 if (timeout || handle_interval(interval, times)) 617 break; 618 time_to_sleep = sleep_time; 619 } else { /* fd revent */ 620 process_evlist(evsel_list, interval); 621 clock_gettime(CLOCK_MONOTONIC, &time_stop); 622 compute_tts(&time_start, &time_stop, &time_to_sleep); 623 } 624 } 625 626 return status; 627 } 628 629 enum counter_recovery { 630 COUNTER_SKIP, 631 COUNTER_RETRY, 632 COUNTER_FATAL, 633 }; 634 635 static enum counter_recovery stat_handle_error(struct evsel *counter) 636 { 637 char msg[BUFSIZ]; 638 /* 639 * PPC returns ENXIO for HW counters until 2.6.37 640 * (behavior changed with commit b0a873e). 641 */ 642 if (errno == EINVAL || errno == ENOSYS || 643 errno == ENOENT || errno == ENXIO) { 644 if (verbose > 0) 645 ui__warning("%s event is not supported by the kernel.\n", 646 evsel__name(counter)); 647 counter->supported = false; 648 /* 649 * errored is a sticky flag that means one of the counter's 650 * cpu event had a problem and needs to be reexamined. 651 */ 652 counter->errored = true; 653 654 if ((evsel__leader(counter) != counter) || 655 !(counter->core.leader->nr_members > 1)) 656 return COUNTER_SKIP; 657 } else if (evsel__fallback(counter, &target, errno, msg, sizeof(msg))) { 658 if (verbose > 0) 659 ui__warning("%s\n", msg); 660 return COUNTER_RETRY; 661 } else if (target__has_per_thread(&target) && errno != EOPNOTSUPP && 662 evsel_list->core.threads && 663 evsel_list->core.threads->err_thread != -1) { 664 /* 665 * For global --per-thread case, skip current 666 * error thread. 667 */ 668 if (!thread_map__remove(evsel_list->core.threads, 669 evsel_list->core.threads->err_thread)) { 670 evsel_list->core.threads->err_thread = -1; 671 return COUNTER_RETRY; 672 } 673 } else if (counter->skippable) { 674 if (verbose > 0) 675 ui__warning("skipping event %s that kernel failed to open .\n", 676 evsel__name(counter)); 677 counter->supported = false; 678 counter->errored = true; 679 return COUNTER_SKIP; 680 } 681 682 if (errno == EOPNOTSUPP) { 683 if (verbose > 0) { 684 ui__warning("%s event is not supported by the kernel.\n", 685 evsel__name(counter)); 686 } 687 counter->supported = false; 688 counter->errored = true; 689 690 if ((evsel__leader(counter) != counter) || 691 !(counter->core.leader->nr_members > 1)) 692 return COUNTER_SKIP; 693 } 694 695 evsel__open_strerror(counter, &target, errno, msg, sizeof(msg)); 696 ui__error("%s\n", msg); 697 698 if (child_pid != -1) 699 kill(child_pid, SIGTERM); 700 701 tpebs_delete(); 702 703 return COUNTER_FATAL; 704 } 705 706 static int __run_perf_stat(int argc, const char **argv, int run_idx) 707 { 708 int interval = stat_config.interval; 709 int times = stat_config.times; 710 int timeout = stat_config.timeout; 711 char msg[BUFSIZ]; 712 unsigned long long t0, t1; 713 struct evsel *counter; 714 size_t l; 715 int status = 0; 716 const bool forks = (argc > 0); 717 bool is_pipe = STAT_RECORD ? perf_stat.data.is_pipe : false; 718 struct evlist_cpu_iterator evlist_cpu_itr; 719 struct affinity saved_affinity, *affinity = NULL; 720 int err; 721 bool second_pass = false; 722 723 if (forks) { 724 if (evlist__prepare_workload(evsel_list, &target, argv, is_pipe, workload_exec_failed_signal) < 0) { 725 perror("failed to prepare workload"); 726 return -1; 727 } 728 child_pid = evsel_list->workload.pid; 729 } 730 731 if (!cpu_map__is_dummy(evsel_list->core.user_requested_cpus)) { 732 if (affinity__setup(&saved_affinity) < 0) { 733 err = -1; 734 goto err_out; 735 } 736 affinity = &saved_affinity; 737 } 738 739 evlist__for_each_entry(evsel_list, counter) { 740 counter->reset_group = false; 741 if (bpf_counter__load(counter, &target)) { 742 err = -1; 743 goto err_out; 744 } 745 if (!(evsel__is_bperf(counter))) 746 all_counters_use_bpf = false; 747 } 748 749 evlist__reset_aggr_stats(evsel_list); 750 751 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 752 counter = evlist_cpu_itr.evsel; 753 754 /* 755 * bperf calls evsel__open_per_cpu() in bperf__load(), so 756 * no need to call it again here. 757 */ 758 if (target.use_bpf) 759 break; 760 761 if (counter->reset_group || counter->errored) 762 continue; 763 if (evsel__is_bperf(counter)) 764 continue; 765 try_again: 766 if (create_perf_stat_counter(counter, &stat_config, &target, 767 evlist_cpu_itr.cpu_map_idx) < 0) { 768 769 /* 770 * Weak group failed. We cannot just undo this here 771 * because earlier CPUs might be in group mode, and the kernel 772 * doesn't support mixing group and non group reads. Defer 773 * it to later. 774 * Don't close here because we're in the wrong affinity. 775 */ 776 if ((errno == EINVAL || errno == EBADF) && 777 evsel__leader(counter) != counter && 778 counter->weak_group) { 779 evlist__reset_weak_group(evsel_list, counter, false); 780 assert(counter->reset_group); 781 second_pass = true; 782 continue; 783 } 784 785 switch (stat_handle_error(counter)) { 786 case COUNTER_FATAL: 787 err = -1; 788 goto err_out; 789 case COUNTER_RETRY: 790 goto try_again; 791 case COUNTER_SKIP: 792 continue; 793 default: 794 break; 795 } 796 797 } 798 counter->supported = true; 799 } 800 801 if (second_pass) { 802 /* 803 * Now redo all the weak group after closing them, 804 * and also close errored counters. 805 */ 806 807 /* First close errored or weak retry */ 808 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 809 counter = evlist_cpu_itr.evsel; 810 811 if (!counter->reset_group && !counter->errored) 812 continue; 813 814 perf_evsel__close_cpu(&counter->core, evlist_cpu_itr.cpu_map_idx); 815 } 816 /* Now reopen weak */ 817 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 818 counter = evlist_cpu_itr.evsel; 819 820 if (!counter->reset_group) 821 continue; 822 try_again_reset: 823 pr_debug2("reopening weak %s\n", evsel__name(counter)); 824 if (create_perf_stat_counter(counter, &stat_config, &target, 825 evlist_cpu_itr.cpu_map_idx) < 0) { 826 827 switch (stat_handle_error(counter)) { 828 case COUNTER_FATAL: 829 err = -1; 830 goto err_out; 831 case COUNTER_RETRY: 832 goto try_again_reset; 833 case COUNTER_SKIP: 834 continue; 835 default: 836 break; 837 } 838 } 839 counter->supported = true; 840 } 841 } 842 affinity__cleanup(affinity); 843 affinity = NULL; 844 845 evlist__for_each_entry(evsel_list, counter) { 846 if (!counter->supported) { 847 perf_evsel__free_fd(&counter->core); 848 continue; 849 } 850 851 l = strlen(counter->unit); 852 if (l > stat_config.unit_width) 853 stat_config.unit_width = l; 854 855 if (evsel__should_store_id(counter) && 856 evsel__store_ids(counter, evsel_list)) { 857 err = -1; 858 goto err_out; 859 } 860 } 861 862 if (evlist__apply_filters(evsel_list, &counter, &target)) { 863 pr_err("failed to set filter \"%s\" on event %s with %d (%s)\n", 864 counter->filter, evsel__name(counter), errno, 865 str_error_r(errno, msg, sizeof(msg))); 866 return -1; 867 } 868 869 if (STAT_RECORD) { 870 int fd = perf_data__fd(&perf_stat.data); 871 872 if (is_pipe) { 873 err = perf_header__write_pipe(perf_data__fd(&perf_stat.data)); 874 } else { 875 err = perf_session__write_header(perf_stat.session, evsel_list, 876 fd, false); 877 } 878 879 if (err < 0) 880 goto err_out; 881 882 err = perf_event__synthesize_stat_events(&stat_config, NULL, evsel_list, 883 process_synthesized_event, is_pipe); 884 if (err < 0) 885 goto err_out; 886 887 } 888 889 if (target.initial_delay) { 890 pr_info(EVLIST_DISABLED_MSG); 891 } else { 892 err = enable_counters(); 893 if (err) { 894 err = -1; 895 goto err_out; 896 } 897 } 898 899 /* Exec the command, if any */ 900 if (forks) 901 evlist__start_workload(evsel_list); 902 903 if (target.initial_delay > 0) { 904 usleep(target.initial_delay * USEC_PER_MSEC); 905 err = enable_counters(); 906 if (err) { 907 err = -1; 908 goto err_out; 909 } 910 911 pr_info(EVLIST_ENABLED_MSG); 912 } 913 914 t0 = rdclock(); 915 clock_gettime(CLOCK_MONOTONIC, &ref_time); 916 917 if (forks) { 918 if (interval || timeout || evlist__ctlfd_initialized(evsel_list)) 919 status = dispatch_events(forks, timeout, interval, ×); 920 if (child_pid != -1) { 921 if (timeout) 922 kill(child_pid, SIGTERM); 923 wait4(child_pid, &status, 0, &stat_config.ru_data); 924 } 925 926 if (workload_exec_errno) { 927 const char *emsg = str_error_r(workload_exec_errno, msg, sizeof(msg)); 928 pr_err("Workload failed: %s\n", emsg); 929 err = -1; 930 goto err_out; 931 } 932 933 if (WIFSIGNALED(status)) 934 psignal(WTERMSIG(status), argv[0]); 935 } else { 936 status = dispatch_events(forks, timeout, interval, ×); 937 } 938 939 disable_counters(); 940 941 t1 = rdclock(); 942 943 if (stat_config.walltime_run_table) 944 stat_config.walltime_run[run_idx] = t1 - t0; 945 946 if (interval && stat_config.summary) { 947 stat_config.interval = 0; 948 stat_config.stop_read_counter = true; 949 init_stats(&walltime_nsecs_stats); 950 update_stats(&walltime_nsecs_stats, t1 - t0); 951 952 evlist__copy_prev_raw_counts(evsel_list); 953 evlist__reset_prev_raw_counts(evsel_list); 954 evlist__reset_aggr_stats(evsel_list); 955 } else { 956 update_stats(&walltime_nsecs_stats, t1 - t0); 957 update_rusage_stats(&ru_stats, &stat_config.ru_data); 958 } 959 960 /* 961 * Closing a group leader splits the group, and as we only disable 962 * group leaders, results in remaining events becoming enabled. To 963 * avoid arbitrary skew, we must read all counters before closing any 964 * group leaders. 965 */ 966 if (read_counters() == 0) 967 process_counters(); 968 969 /* 970 * We need to keep evsel_list alive, because it's processed 971 * later the evsel_list will be closed after. 972 */ 973 if (!STAT_RECORD) 974 evlist__close(evsel_list); 975 976 return WEXITSTATUS(status); 977 978 err_out: 979 if (forks) 980 evlist__cancel_workload(evsel_list); 981 982 affinity__cleanup(affinity); 983 return err; 984 } 985 986 /* 987 * Returns -1 for fatal errors which signifies to not continue 988 * when in repeat mode. 989 * 990 * Returns < -1 error codes when stat record is used. These 991 * result in the stat information being displayed, but writing 992 * to the file fails and is non fatal. 993 */ 994 static int run_perf_stat(int argc, const char **argv, int run_idx) 995 { 996 int ret; 997 998 if (pre_cmd) { 999 ret = system(pre_cmd); 1000 if (ret) 1001 return ret; 1002 } 1003 1004 if (sync_run) 1005 sync(); 1006 1007 ret = __run_perf_stat(argc, argv, run_idx); 1008 if (ret) 1009 return ret; 1010 1011 if (post_cmd) { 1012 ret = system(post_cmd); 1013 if (ret) 1014 return ret; 1015 } 1016 1017 return ret; 1018 } 1019 1020 static void print_counters(struct timespec *ts, int argc, const char **argv) 1021 { 1022 /* Do not print anything if we record to the pipe. */ 1023 if (STAT_RECORD && perf_stat.data.is_pipe) 1024 return; 1025 if (quiet) 1026 return; 1027 1028 evlist__print_counters(evsel_list, &stat_config, &target, ts, argc, argv); 1029 } 1030 1031 static volatile sig_atomic_t signr = -1; 1032 1033 static void skip_signal(int signo) 1034 { 1035 if ((child_pid == -1) || stat_config.interval) 1036 done = 1; 1037 1038 signr = signo; 1039 /* 1040 * render child_pid harmless 1041 * won't send SIGTERM to a random 1042 * process in case of race condition 1043 * and fast PID recycling 1044 */ 1045 child_pid = -1; 1046 } 1047 1048 static void sig_atexit(void) 1049 { 1050 sigset_t set, oset; 1051 1052 /* 1053 * avoid race condition with SIGCHLD handler 1054 * in skip_signal() which is modifying child_pid 1055 * goal is to avoid send SIGTERM to a random 1056 * process 1057 */ 1058 sigemptyset(&set); 1059 sigaddset(&set, SIGCHLD); 1060 sigprocmask(SIG_BLOCK, &set, &oset); 1061 1062 if (child_pid != -1) 1063 kill(child_pid, SIGTERM); 1064 1065 sigprocmask(SIG_SETMASK, &oset, NULL); 1066 1067 if (signr == -1) 1068 return; 1069 1070 signal(signr, SIG_DFL); 1071 kill(getpid(), signr); 1072 } 1073 1074 void perf_stat__set_big_num(int set) 1075 { 1076 stat_config.big_num = (set != 0); 1077 } 1078 1079 void perf_stat__set_no_csv_summary(int set) 1080 { 1081 stat_config.no_csv_summary = (set != 0); 1082 } 1083 1084 static int stat__set_big_num(const struct option *opt __maybe_unused, 1085 const char *s __maybe_unused, int unset) 1086 { 1087 big_num_opt = unset ? 0 : 1; 1088 perf_stat__set_big_num(!unset); 1089 return 0; 1090 } 1091 1092 static int enable_metric_only(const struct option *opt __maybe_unused, 1093 const char *s __maybe_unused, int unset) 1094 { 1095 force_metric_only = true; 1096 stat_config.metric_only = !unset; 1097 return 0; 1098 } 1099 1100 static int append_metric_groups(const struct option *opt __maybe_unused, 1101 const char *str, 1102 int unset __maybe_unused) 1103 { 1104 if (metrics) { 1105 char *tmp; 1106 1107 if (asprintf(&tmp, "%s,%s", metrics, str) < 0) 1108 return -ENOMEM; 1109 free(metrics); 1110 metrics = tmp; 1111 } else { 1112 metrics = strdup(str); 1113 if (!metrics) 1114 return -ENOMEM; 1115 } 1116 return 0; 1117 } 1118 1119 static int parse_control_option(const struct option *opt, 1120 const char *str, 1121 int unset __maybe_unused) 1122 { 1123 struct perf_stat_config *config = opt->value; 1124 1125 return evlist__parse_control(str, &config->ctl_fd, &config->ctl_fd_ack, &config->ctl_fd_close); 1126 } 1127 1128 static int parse_stat_cgroups(const struct option *opt, 1129 const char *str, int unset) 1130 { 1131 if (stat_config.cgroup_list) { 1132 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 1133 return -1; 1134 } 1135 1136 return parse_cgroups(opt, str, unset); 1137 } 1138 1139 static int parse_cputype(const struct option *opt, 1140 const char *str, 1141 int unset __maybe_unused) 1142 { 1143 const struct perf_pmu *pmu; 1144 struct evlist *evlist = *(struct evlist **)opt->value; 1145 1146 if (!list_empty(&evlist->core.entries)) { 1147 fprintf(stderr, "Must define cputype before events/metrics\n"); 1148 return -1; 1149 } 1150 1151 pmu = perf_pmus__pmu_for_pmu_filter(str); 1152 if (!pmu) { 1153 fprintf(stderr, "--cputype %s is not supported!\n", str); 1154 return -1; 1155 } 1156 parse_events_option_args.pmu_filter = pmu->name; 1157 1158 return 0; 1159 } 1160 1161 static int parse_cache_level(const struct option *opt, 1162 const char *str, 1163 int unset __maybe_unused) 1164 { 1165 int level; 1166 struct opt_aggr_mode *opt_aggr_mode = (struct opt_aggr_mode *)opt->value; 1167 u32 *aggr_level = (u32 *)opt->data; 1168 1169 /* 1170 * If no string is specified, aggregate based on the topology of 1171 * Last Level Cache (LLC). Since the LLC level can change from 1172 * architecture to architecture, set level greater than 1173 * MAX_CACHE_LVL which will be interpreted as LLC. 1174 */ 1175 if (str == NULL) { 1176 level = MAX_CACHE_LVL + 1; 1177 goto out; 1178 } 1179 1180 /* 1181 * The format to specify cache level is LX or lX where X is the 1182 * cache level. 1183 */ 1184 if (strlen(str) != 2 || (str[0] != 'l' && str[0] != 'L')) { 1185 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1186 MAX_CACHE_LVL, 1187 MAX_CACHE_LVL); 1188 return -EINVAL; 1189 } 1190 1191 level = atoi(&str[1]); 1192 if (level < 1) { 1193 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1194 MAX_CACHE_LVL, 1195 MAX_CACHE_LVL); 1196 return -EINVAL; 1197 } 1198 1199 if (level > MAX_CACHE_LVL) { 1200 pr_err("perf only supports max cache level of %d.\n" 1201 "Consider increasing MAX_CACHE_LVL\n", MAX_CACHE_LVL); 1202 return -EINVAL; 1203 } 1204 out: 1205 opt_aggr_mode->cache = true; 1206 *aggr_level = level; 1207 return 0; 1208 } 1209 1210 /** 1211 * Calculate the cache instance ID from the map in 1212 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1213 * Cache instance ID is the first CPU reported in the shared_cpu_list file. 1214 */ 1215 static int cpu__get_cache_id_from_map(struct perf_cpu cpu, char *map) 1216 { 1217 int id; 1218 struct perf_cpu_map *cpu_map = perf_cpu_map__new(map); 1219 1220 /* 1221 * If the map contains no CPU, consider the current CPU to 1222 * be the first online CPU in the cache domain else use the 1223 * first online CPU of the cache domain as the ID. 1224 */ 1225 id = perf_cpu_map__min(cpu_map).cpu; 1226 if (id == -1) 1227 id = cpu.cpu; 1228 1229 /* Free the perf_cpu_map used to find the cache ID */ 1230 perf_cpu_map__put(cpu_map); 1231 1232 return id; 1233 } 1234 1235 /** 1236 * cpu__get_cache_id - Returns 0 if successful in populating the 1237 * cache level and cache id. Cache level is read from 1238 * /sys/devices/system/cpu/cpuX/cache/indexY/level where as cache instance ID 1239 * is the first CPU reported by 1240 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1241 */ 1242 static int cpu__get_cache_details(struct perf_cpu cpu, struct perf_cache *cache) 1243 { 1244 int ret = 0; 1245 u32 cache_level = stat_config.aggr_level; 1246 struct cpu_cache_level caches[MAX_CACHE_LVL]; 1247 u32 i = 0, caches_cnt = 0; 1248 1249 cache->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1250 cache->cache = -1; 1251 1252 ret = build_caches_for_cpu(cpu.cpu, caches, &caches_cnt); 1253 if (ret) { 1254 /* 1255 * If caches_cnt is not 0, cpu_cache_level data 1256 * was allocated when building the topology. 1257 * Free the allocated data before returning. 1258 */ 1259 if (caches_cnt) 1260 goto free_caches; 1261 1262 return ret; 1263 } 1264 1265 if (!caches_cnt) 1266 return -1; 1267 1268 /* 1269 * Save the data for the highest level if no 1270 * level was specified by the user. 1271 */ 1272 if (cache_level > MAX_CACHE_LVL) { 1273 int max_level_index = 0; 1274 1275 for (i = 1; i < caches_cnt; ++i) { 1276 if (caches[i].level > caches[max_level_index].level) 1277 max_level_index = i; 1278 } 1279 1280 cache->cache_lvl = caches[max_level_index].level; 1281 cache->cache = cpu__get_cache_id_from_map(cpu, caches[max_level_index].map); 1282 1283 /* Reset i to 0 to free entire caches[] */ 1284 i = 0; 1285 goto free_caches; 1286 } 1287 1288 for (i = 0; i < caches_cnt; ++i) { 1289 if (caches[i].level == cache_level) { 1290 cache->cache_lvl = cache_level; 1291 cache->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1292 } 1293 1294 cpu_cache_level__free(&caches[i]); 1295 } 1296 1297 free_caches: 1298 /* 1299 * Free all the allocated cpu_cache_level data. 1300 */ 1301 while (i < caches_cnt) 1302 cpu_cache_level__free(&caches[i++]); 1303 1304 return ret; 1305 } 1306 1307 /** 1308 * aggr_cpu_id__cache - Create an aggr_cpu_id with cache instache ID, cache 1309 * level, die and socket populated with the cache instache ID, cache level, 1310 * die and socket for cpu. The function signature is compatible with 1311 * aggr_cpu_id_get_t. 1312 */ 1313 static struct aggr_cpu_id aggr_cpu_id__cache(struct perf_cpu cpu, void *data) 1314 { 1315 int ret; 1316 struct aggr_cpu_id id; 1317 struct perf_cache cache; 1318 1319 id = aggr_cpu_id__die(cpu, data); 1320 if (aggr_cpu_id__is_empty(&id)) 1321 return id; 1322 1323 ret = cpu__get_cache_details(cpu, &cache); 1324 if (ret) 1325 return id; 1326 1327 id.cache_lvl = cache.cache_lvl; 1328 id.cache = cache.cache; 1329 return id; 1330 } 1331 1332 static const char *const aggr_mode__string[] = { 1333 [AGGR_CORE] = "core", 1334 [AGGR_CACHE] = "cache", 1335 [AGGR_CLUSTER] = "cluster", 1336 [AGGR_DIE] = "die", 1337 [AGGR_GLOBAL] = "global", 1338 [AGGR_NODE] = "node", 1339 [AGGR_NONE] = "none", 1340 [AGGR_SOCKET] = "socket", 1341 [AGGR_THREAD] = "thread", 1342 [AGGR_UNSET] = "unset", 1343 }; 1344 1345 static struct aggr_cpu_id perf_stat__get_socket(struct perf_stat_config *config __maybe_unused, 1346 struct perf_cpu cpu) 1347 { 1348 return aggr_cpu_id__socket(cpu, /*data=*/NULL); 1349 } 1350 1351 static struct aggr_cpu_id perf_stat__get_die(struct perf_stat_config *config __maybe_unused, 1352 struct perf_cpu cpu) 1353 { 1354 return aggr_cpu_id__die(cpu, /*data=*/NULL); 1355 } 1356 1357 static struct aggr_cpu_id perf_stat__get_cache_id(struct perf_stat_config *config __maybe_unused, 1358 struct perf_cpu cpu) 1359 { 1360 return aggr_cpu_id__cache(cpu, /*data=*/NULL); 1361 } 1362 1363 static struct aggr_cpu_id perf_stat__get_cluster(struct perf_stat_config *config __maybe_unused, 1364 struct perf_cpu cpu) 1365 { 1366 return aggr_cpu_id__cluster(cpu, /*data=*/NULL); 1367 } 1368 1369 static struct aggr_cpu_id perf_stat__get_core(struct perf_stat_config *config __maybe_unused, 1370 struct perf_cpu cpu) 1371 { 1372 return aggr_cpu_id__core(cpu, /*data=*/NULL); 1373 } 1374 1375 static struct aggr_cpu_id perf_stat__get_node(struct perf_stat_config *config __maybe_unused, 1376 struct perf_cpu cpu) 1377 { 1378 return aggr_cpu_id__node(cpu, /*data=*/NULL); 1379 } 1380 1381 static struct aggr_cpu_id perf_stat__get_global(struct perf_stat_config *config __maybe_unused, 1382 struct perf_cpu cpu) 1383 { 1384 return aggr_cpu_id__global(cpu, /*data=*/NULL); 1385 } 1386 1387 static struct aggr_cpu_id perf_stat__get_cpu(struct perf_stat_config *config __maybe_unused, 1388 struct perf_cpu cpu) 1389 { 1390 return aggr_cpu_id__cpu(cpu, /*data=*/NULL); 1391 } 1392 1393 static struct aggr_cpu_id perf_stat__get_aggr(struct perf_stat_config *config, 1394 aggr_get_id_t get_id, struct perf_cpu cpu) 1395 { 1396 struct aggr_cpu_id id; 1397 1398 /* per-process mode - should use global aggr mode */ 1399 if (cpu.cpu == -1) 1400 return get_id(config, cpu); 1401 1402 if (aggr_cpu_id__is_empty(&config->cpus_aggr_map->map[cpu.cpu])) 1403 config->cpus_aggr_map->map[cpu.cpu] = get_id(config, cpu); 1404 1405 id = config->cpus_aggr_map->map[cpu.cpu]; 1406 return id; 1407 } 1408 1409 static struct aggr_cpu_id perf_stat__get_socket_cached(struct perf_stat_config *config, 1410 struct perf_cpu cpu) 1411 { 1412 return perf_stat__get_aggr(config, perf_stat__get_socket, cpu); 1413 } 1414 1415 static struct aggr_cpu_id perf_stat__get_die_cached(struct perf_stat_config *config, 1416 struct perf_cpu cpu) 1417 { 1418 return perf_stat__get_aggr(config, perf_stat__get_die, cpu); 1419 } 1420 1421 static struct aggr_cpu_id perf_stat__get_cluster_cached(struct perf_stat_config *config, 1422 struct perf_cpu cpu) 1423 { 1424 return perf_stat__get_aggr(config, perf_stat__get_cluster, cpu); 1425 } 1426 1427 static struct aggr_cpu_id perf_stat__get_cache_id_cached(struct perf_stat_config *config, 1428 struct perf_cpu cpu) 1429 { 1430 return perf_stat__get_aggr(config, perf_stat__get_cache_id, cpu); 1431 } 1432 1433 static struct aggr_cpu_id perf_stat__get_core_cached(struct perf_stat_config *config, 1434 struct perf_cpu cpu) 1435 { 1436 return perf_stat__get_aggr(config, perf_stat__get_core, cpu); 1437 } 1438 1439 static struct aggr_cpu_id perf_stat__get_node_cached(struct perf_stat_config *config, 1440 struct perf_cpu cpu) 1441 { 1442 return perf_stat__get_aggr(config, perf_stat__get_node, cpu); 1443 } 1444 1445 static struct aggr_cpu_id perf_stat__get_global_cached(struct perf_stat_config *config, 1446 struct perf_cpu cpu) 1447 { 1448 return perf_stat__get_aggr(config, perf_stat__get_global, cpu); 1449 } 1450 1451 static struct aggr_cpu_id perf_stat__get_cpu_cached(struct perf_stat_config *config, 1452 struct perf_cpu cpu) 1453 { 1454 return perf_stat__get_aggr(config, perf_stat__get_cpu, cpu); 1455 } 1456 1457 static aggr_cpu_id_get_t aggr_mode__get_aggr(enum aggr_mode aggr_mode) 1458 { 1459 switch (aggr_mode) { 1460 case AGGR_SOCKET: 1461 return aggr_cpu_id__socket; 1462 case AGGR_DIE: 1463 return aggr_cpu_id__die; 1464 case AGGR_CLUSTER: 1465 return aggr_cpu_id__cluster; 1466 case AGGR_CACHE: 1467 return aggr_cpu_id__cache; 1468 case AGGR_CORE: 1469 return aggr_cpu_id__core; 1470 case AGGR_NODE: 1471 return aggr_cpu_id__node; 1472 case AGGR_NONE: 1473 return aggr_cpu_id__cpu; 1474 case AGGR_GLOBAL: 1475 return aggr_cpu_id__global; 1476 case AGGR_THREAD: 1477 case AGGR_UNSET: 1478 case AGGR_MAX: 1479 default: 1480 return NULL; 1481 } 1482 } 1483 1484 static aggr_get_id_t aggr_mode__get_id(enum aggr_mode aggr_mode) 1485 { 1486 switch (aggr_mode) { 1487 case AGGR_SOCKET: 1488 return perf_stat__get_socket_cached; 1489 case AGGR_DIE: 1490 return perf_stat__get_die_cached; 1491 case AGGR_CLUSTER: 1492 return perf_stat__get_cluster_cached; 1493 case AGGR_CACHE: 1494 return perf_stat__get_cache_id_cached; 1495 case AGGR_CORE: 1496 return perf_stat__get_core_cached; 1497 case AGGR_NODE: 1498 return perf_stat__get_node_cached; 1499 case AGGR_NONE: 1500 return perf_stat__get_cpu_cached; 1501 case AGGR_GLOBAL: 1502 return perf_stat__get_global_cached; 1503 case AGGR_THREAD: 1504 case AGGR_UNSET: 1505 case AGGR_MAX: 1506 default: 1507 return NULL; 1508 } 1509 } 1510 1511 static int perf_stat_init_aggr_mode(void) 1512 { 1513 int nr; 1514 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr(stat_config.aggr_mode); 1515 1516 if (get_id) { 1517 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1518 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1519 get_id, /*data=*/NULL, needs_sort); 1520 if (!stat_config.aggr_map) { 1521 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1522 return -1; 1523 } 1524 stat_config.aggr_get_id = aggr_mode__get_id(stat_config.aggr_mode); 1525 } 1526 1527 if (stat_config.aggr_mode == AGGR_THREAD) { 1528 nr = perf_thread_map__nr(evsel_list->core.threads); 1529 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1530 if (stat_config.aggr_map == NULL) 1531 return -ENOMEM; 1532 1533 for (int s = 0; s < nr; s++) { 1534 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1535 1536 id.thread_idx = s; 1537 stat_config.aggr_map->map[s] = id; 1538 } 1539 return 0; 1540 } 1541 1542 /* 1543 * The evsel_list->cpus is the base we operate on, 1544 * taking the highest cpu number to be the size of 1545 * the aggregation translate cpumap. 1546 */ 1547 if (!perf_cpu_map__is_any_cpu_or_is_empty(evsel_list->core.user_requested_cpus)) 1548 nr = perf_cpu_map__max(evsel_list->core.user_requested_cpus).cpu; 1549 else 1550 nr = 0; 1551 stat_config.cpus_aggr_map = cpu_aggr_map__empty_new(nr + 1); 1552 return stat_config.cpus_aggr_map ? 0 : -ENOMEM; 1553 } 1554 1555 static void cpu_aggr_map__delete(struct cpu_aggr_map *map) 1556 { 1557 free(map); 1558 } 1559 1560 static void perf_stat__exit_aggr_mode(void) 1561 { 1562 cpu_aggr_map__delete(stat_config.aggr_map); 1563 cpu_aggr_map__delete(stat_config.cpus_aggr_map); 1564 stat_config.aggr_map = NULL; 1565 stat_config.cpus_aggr_map = NULL; 1566 } 1567 1568 static struct aggr_cpu_id perf_env__get_socket_aggr_by_cpu(struct perf_cpu cpu, void *data) 1569 { 1570 struct perf_env *env = data; 1571 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1572 1573 if (cpu.cpu != -1) 1574 id.socket = env->cpu[cpu.cpu].socket_id; 1575 1576 return id; 1577 } 1578 1579 static struct aggr_cpu_id perf_env__get_die_aggr_by_cpu(struct perf_cpu cpu, void *data) 1580 { 1581 struct perf_env *env = data; 1582 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1583 1584 if (cpu.cpu != -1) { 1585 /* 1586 * die_id is relative to socket, so start 1587 * with the socket ID and then add die to 1588 * make a unique ID. 1589 */ 1590 id.socket = env->cpu[cpu.cpu].socket_id; 1591 id.die = env->cpu[cpu.cpu].die_id; 1592 } 1593 1594 return id; 1595 } 1596 1597 static void perf_env__get_cache_id_for_cpu(struct perf_cpu cpu, struct perf_env *env, 1598 u32 cache_level, struct aggr_cpu_id *id) 1599 { 1600 int i; 1601 int caches_cnt = env->caches_cnt; 1602 struct cpu_cache_level *caches = env->caches; 1603 1604 id->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1605 id->cache = -1; 1606 1607 if (!caches_cnt) 1608 return; 1609 1610 for (i = caches_cnt - 1; i > -1; --i) { 1611 struct perf_cpu_map *cpu_map; 1612 int map_contains_cpu; 1613 1614 /* 1615 * If user has not specified a level, find the fist level with 1616 * the cpu in the map. Since building the map is expensive, do 1617 * this only if levels match. 1618 */ 1619 if (cache_level <= MAX_CACHE_LVL && caches[i].level != cache_level) 1620 continue; 1621 1622 cpu_map = perf_cpu_map__new(caches[i].map); 1623 map_contains_cpu = perf_cpu_map__idx(cpu_map, cpu); 1624 perf_cpu_map__put(cpu_map); 1625 1626 if (map_contains_cpu != -1) { 1627 id->cache_lvl = caches[i].level; 1628 id->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1629 return; 1630 } 1631 } 1632 } 1633 1634 static struct aggr_cpu_id perf_env__get_cache_aggr_by_cpu(struct perf_cpu cpu, 1635 void *data) 1636 { 1637 struct perf_env *env = data; 1638 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1639 1640 if (cpu.cpu != -1) { 1641 u32 cache_level = (perf_stat.aggr_level) ?: stat_config.aggr_level; 1642 1643 id.socket = env->cpu[cpu.cpu].socket_id; 1644 id.die = env->cpu[cpu.cpu].die_id; 1645 perf_env__get_cache_id_for_cpu(cpu, env, cache_level, &id); 1646 } 1647 1648 return id; 1649 } 1650 1651 static struct aggr_cpu_id perf_env__get_cluster_aggr_by_cpu(struct perf_cpu cpu, 1652 void *data) 1653 { 1654 struct perf_env *env = data; 1655 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1656 1657 if (cpu.cpu != -1) { 1658 id.socket = env->cpu[cpu.cpu].socket_id; 1659 id.die = env->cpu[cpu.cpu].die_id; 1660 id.cluster = env->cpu[cpu.cpu].cluster_id; 1661 } 1662 1663 return id; 1664 } 1665 1666 static struct aggr_cpu_id perf_env__get_core_aggr_by_cpu(struct perf_cpu cpu, void *data) 1667 { 1668 struct perf_env *env = data; 1669 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1670 1671 if (cpu.cpu != -1) { 1672 /* 1673 * core_id is relative to socket, die and cluster, we need a 1674 * global id. So we set socket, die id, cluster id and core id. 1675 */ 1676 id.socket = env->cpu[cpu.cpu].socket_id; 1677 id.die = env->cpu[cpu.cpu].die_id; 1678 id.cluster = env->cpu[cpu.cpu].cluster_id; 1679 id.core = env->cpu[cpu.cpu].core_id; 1680 } 1681 1682 return id; 1683 } 1684 1685 static struct aggr_cpu_id perf_env__get_cpu_aggr_by_cpu(struct perf_cpu cpu, void *data) 1686 { 1687 struct perf_env *env = data; 1688 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1689 1690 if (cpu.cpu != -1) { 1691 /* 1692 * core_id is relative to socket and die, 1693 * we need a global id. So we set 1694 * socket, die id and core id 1695 */ 1696 id.socket = env->cpu[cpu.cpu].socket_id; 1697 id.die = env->cpu[cpu.cpu].die_id; 1698 id.core = env->cpu[cpu.cpu].core_id; 1699 id.cpu = cpu; 1700 } 1701 1702 return id; 1703 } 1704 1705 static struct aggr_cpu_id perf_env__get_node_aggr_by_cpu(struct perf_cpu cpu, void *data) 1706 { 1707 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1708 1709 id.node = perf_env__numa_node(data, cpu); 1710 return id; 1711 } 1712 1713 static struct aggr_cpu_id perf_env__get_global_aggr_by_cpu(struct perf_cpu cpu __maybe_unused, 1714 void *data __maybe_unused) 1715 { 1716 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1717 1718 /* it always aggregates to the cpu 0 */ 1719 id.cpu = (struct perf_cpu){ .cpu = 0 }; 1720 return id; 1721 } 1722 1723 static struct aggr_cpu_id perf_stat__get_socket_file(struct perf_stat_config *config __maybe_unused, 1724 struct perf_cpu cpu) 1725 { 1726 return perf_env__get_socket_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1727 } 1728 static struct aggr_cpu_id perf_stat__get_die_file(struct perf_stat_config *config __maybe_unused, 1729 struct perf_cpu cpu) 1730 { 1731 return perf_env__get_die_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1732 } 1733 1734 static struct aggr_cpu_id perf_stat__get_cluster_file(struct perf_stat_config *config __maybe_unused, 1735 struct perf_cpu cpu) 1736 { 1737 return perf_env__get_cluster_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1738 } 1739 1740 static struct aggr_cpu_id perf_stat__get_cache_file(struct perf_stat_config *config __maybe_unused, 1741 struct perf_cpu cpu) 1742 { 1743 return perf_env__get_cache_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1744 } 1745 1746 static struct aggr_cpu_id perf_stat__get_core_file(struct perf_stat_config *config __maybe_unused, 1747 struct perf_cpu cpu) 1748 { 1749 return perf_env__get_core_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1750 } 1751 1752 static struct aggr_cpu_id perf_stat__get_cpu_file(struct perf_stat_config *config __maybe_unused, 1753 struct perf_cpu cpu) 1754 { 1755 return perf_env__get_cpu_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1756 } 1757 1758 static struct aggr_cpu_id perf_stat__get_node_file(struct perf_stat_config *config __maybe_unused, 1759 struct perf_cpu cpu) 1760 { 1761 return perf_env__get_node_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1762 } 1763 1764 static struct aggr_cpu_id perf_stat__get_global_file(struct perf_stat_config *config __maybe_unused, 1765 struct perf_cpu cpu) 1766 { 1767 return perf_env__get_global_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1768 } 1769 1770 static aggr_cpu_id_get_t aggr_mode__get_aggr_file(enum aggr_mode aggr_mode) 1771 { 1772 switch (aggr_mode) { 1773 case AGGR_SOCKET: 1774 return perf_env__get_socket_aggr_by_cpu; 1775 case AGGR_DIE: 1776 return perf_env__get_die_aggr_by_cpu; 1777 case AGGR_CLUSTER: 1778 return perf_env__get_cluster_aggr_by_cpu; 1779 case AGGR_CACHE: 1780 return perf_env__get_cache_aggr_by_cpu; 1781 case AGGR_CORE: 1782 return perf_env__get_core_aggr_by_cpu; 1783 case AGGR_NODE: 1784 return perf_env__get_node_aggr_by_cpu; 1785 case AGGR_GLOBAL: 1786 return perf_env__get_global_aggr_by_cpu; 1787 case AGGR_NONE: 1788 return perf_env__get_cpu_aggr_by_cpu; 1789 case AGGR_THREAD: 1790 case AGGR_UNSET: 1791 case AGGR_MAX: 1792 default: 1793 return NULL; 1794 } 1795 } 1796 1797 static aggr_get_id_t aggr_mode__get_id_file(enum aggr_mode aggr_mode) 1798 { 1799 switch (aggr_mode) { 1800 case AGGR_SOCKET: 1801 return perf_stat__get_socket_file; 1802 case AGGR_DIE: 1803 return perf_stat__get_die_file; 1804 case AGGR_CLUSTER: 1805 return perf_stat__get_cluster_file; 1806 case AGGR_CACHE: 1807 return perf_stat__get_cache_file; 1808 case AGGR_CORE: 1809 return perf_stat__get_core_file; 1810 case AGGR_NODE: 1811 return perf_stat__get_node_file; 1812 case AGGR_GLOBAL: 1813 return perf_stat__get_global_file; 1814 case AGGR_NONE: 1815 return perf_stat__get_cpu_file; 1816 case AGGR_THREAD: 1817 case AGGR_UNSET: 1818 case AGGR_MAX: 1819 default: 1820 return NULL; 1821 } 1822 } 1823 1824 static int perf_stat_init_aggr_mode_file(struct perf_stat *st) 1825 { 1826 struct perf_env *env = &st->session->header.env; 1827 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr_file(stat_config.aggr_mode); 1828 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1829 1830 if (stat_config.aggr_mode == AGGR_THREAD) { 1831 int nr = perf_thread_map__nr(evsel_list->core.threads); 1832 1833 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1834 if (stat_config.aggr_map == NULL) 1835 return -ENOMEM; 1836 1837 for (int s = 0; s < nr; s++) { 1838 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1839 1840 id.thread_idx = s; 1841 stat_config.aggr_map->map[s] = id; 1842 } 1843 return 0; 1844 } 1845 1846 if (!get_id) 1847 return 0; 1848 1849 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1850 get_id, env, needs_sort); 1851 if (!stat_config.aggr_map) { 1852 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1853 return -1; 1854 } 1855 stat_config.aggr_get_id = aggr_mode__get_id_file(stat_config.aggr_mode); 1856 return 0; 1857 } 1858 1859 /* 1860 * Add default events, if there were no attributes specified or 1861 * if -d/--detailed, -d -d or -d -d -d is used: 1862 */ 1863 static int add_default_events(void) 1864 { 1865 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 1866 struct parse_events_error err; 1867 struct evlist *evlist = evlist__new(); 1868 struct evsel *evsel; 1869 int ret = 0; 1870 1871 if (!evlist) 1872 return -ENOMEM; 1873 1874 parse_events_error__init(&err); 1875 1876 /* Set attrs if no event is selected and !null_run: */ 1877 if (stat_config.null_run) 1878 goto out; 1879 1880 if (transaction_run) { 1881 /* Handle -T as -M transaction. Once platform specific metrics 1882 * support has been added to the json files, all architectures 1883 * will use this approach. To determine transaction support 1884 * on an architecture test for such a metric name. 1885 */ 1886 if (!metricgroup__has_metric(pmu, "transaction")) { 1887 pr_err("Missing transaction metrics\n"); 1888 ret = -1; 1889 goto out; 1890 } 1891 ret = metricgroup__parse_groups(evlist, pmu, "transaction", 1892 stat_config.metric_no_group, 1893 stat_config.metric_no_merge, 1894 stat_config.metric_no_threshold, 1895 stat_config.user_requested_cpu_list, 1896 stat_config.system_wide, 1897 stat_config.hardware_aware_grouping, 1898 &stat_config.metric_events); 1899 goto out; 1900 } 1901 1902 if (smi_cost) { 1903 int smi; 1904 1905 if (sysfs__read_int(FREEZE_ON_SMI_PATH, &smi) < 0) { 1906 pr_err("freeze_on_smi is not supported.\n"); 1907 ret = -1; 1908 goto out; 1909 } 1910 1911 if (!smi) { 1912 if (sysfs__write_int(FREEZE_ON_SMI_PATH, 1) < 0) { 1913 pr_err("Failed to set freeze_on_smi.\n"); 1914 ret = -1; 1915 goto out; 1916 } 1917 smi_reset = true; 1918 } 1919 1920 if (!metricgroup__has_metric(pmu, "smi")) { 1921 pr_err("Missing smi metrics\n"); 1922 ret = -1; 1923 goto out; 1924 } 1925 1926 if (!force_metric_only) 1927 stat_config.metric_only = true; 1928 1929 ret = metricgroup__parse_groups(evlist, pmu, "smi", 1930 stat_config.metric_no_group, 1931 stat_config.metric_no_merge, 1932 stat_config.metric_no_threshold, 1933 stat_config.user_requested_cpu_list, 1934 stat_config.system_wide, 1935 stat_config.hardware_aware_grouping, 1936 &stat_config.metric_events); 1937 goto out; 1938 } 1939 1940 if (topdown_run) { 1941 unsigned int max_level = metricgroups__topdown_max_level(); 1942 char str[] = "TopdownL1"; 1943 1944 if (!force_metric_only) 1945 stat_config.metric_only = true; 1946 1947 if (!max_level) { 1948 pr_err("Topdown requested but the topdown metric groups aren't present.\n" 1949 "(See perf list the metric groups have names like TopdownL1)\n"); 1950 ret = -1; 1951 goto out; 1952 } 1953 if (stat_config.topdown_level > max_level) { 1954 pr_err("Invalid top-down metrics level. The max level is %u.\n", max_level); 1955 ret = -1; 1956 goto out; 1957 } else if (!stat_config.topdown_level) { 1958 stat_config.topdown_level = 1; 1959 } 1960 if (!stat_config.interval && !stat_config.metric_only) { 1961 fprintf(stat_config.output, 1962 "Topdown accuracy may decrease when measuring long periods.\n" 1963 "Please print the result regularly, e.g. -I1000\n"); 1964 } 1965 str[8] = stat_config.topdown_level + '0'; 1966 if (metricgroup__parse_groups(evlist, 1967 pmu, str, 1968 /*metric_no_group=*/false, 1969 /*metric_no_merge=*/false, 1970 /*metric_no_threshold=*/true, 1971 stat_config.user_requested_cpu_list, 1972 stat_config.system_wide, 1973 stat_config.hardware_aware_grouping, 1974 &stat_config.metric_events) < 0) { 1975 ret = -1; 1976 goto out; 1977 } 1978 } 1979 1980 if (!stat_config.topdown_level) 1981 stat_config.topdown_level = 1; 1982 1983 if (!evlist->core.nr_entries && !evsel_list->core.nr_entries) { 1984 /* No events so add defaults. */ 1985 if (target__has_cpu(&target)) 1986 ret = parse_events(evlist, "cpu-clock", &err); 1987 else 1988 ret = parse_events(evlist, "task-clock", &err); 1989 if (ret) 1990 goto out; 1991 1992 ret = parse_events(evlist, 1993 "context-switches," 1994 "cpu-migrations," 1995 "page-faults," 1996 "instructions," 1997 "cycles," 1998 "stalled-cycles-frontend," 1999 "stalled-cycles-backend," 2000 "branches," 2001 "branch-misses", 2002 &err); 2003 if (ret) 2004 goto out; 2005 2006 /* 2007 * Add TopdownL1 metrics if they exist. To minimize 2008 * multiplexing, don't request threshold computation. 2009 */ 2010 if (metricgroup__has_metric(pmu, "Default")) { 2011 struct evlist *metric_evlist = evlist__new(); 2012 2013 if (!metric_evlist) { 2014 ret = -ENOMEM; 2015 goto out; 2016 } 2017 if (metricgroup__parse_groups(metric_evlist, pmu, "Default", 2018 /*metric_no_group=*/false, 2019 /*metric_no_merge=*/false, 2020 /*metric_no_threshold=*/true, 2021 stat_config.user_requested_cpu_list, 2022 stat_config.system_wide, 2023 stat_config.hardware_aware_grouping, 2024 &stat_config.metric_events) < 0) { 2025 ret = -1; 2026 goto out; 2027 } 2028 2029 evlist__for_each_entry(metric_evlist, evsel) 2030 evsel->default_metricgroup = true; 2031 2032 evlist__splice_list_tail(evlist, &metric_evlist->core.entries); 2033 evlist__delete(metric_evlist); 2034 } 2035 } 2036 2037 /* Detailed events get appended to the event list: */ 2038 2039 if (!ret && detailed_run >= 1) { 2040 /* 2041 * Detailed stats (-d), covering the L1 and last level data 2042 * caches: 2043 */ 2044 ret = parse_events(evlist, 2045 "L1-dcache-loads," 2046 "L1-dcache-load-misses," 2047 "LLC-loads," 2048 "LLC-load-misses", 2049 &err); 2050 } 2051 if (!ret && detailed_run >= 2) { 2052 /* 2053 * Very detailed stats (-d -d), covering the instruction cache 2054 * and the TLB caches: 2055 */ 2056 ret = parse_events(evlist, 2057 "L1-icache-loads," 2058 "L1-icache-load-misses," 2059 "dTLB-loads," 2060 "dTLB-load-misses," 2061 "iTLB-loads," 2062 "iTLB-load-misses", 2063 &err); 2064 } 2065 if (!ret && detailed_run >= 3) { 2066 /* 2067 * Very, very detailed stats (-d -d -d), adding prefetch events: 2068 */ 2069 ret = parse_events(evlist, 2070 "L1-dcache-prefetches," 2071 "L1-dcache-prefetch-misses", 2072 &err); 2073 } 2074 out: 2075 if (!ret) { 2076 evlist__for_each_entry(evlist, evsel) { 2077 /* 2078 * Make at least one event non-skippable so fatal errors are visible. 2079 * 'cycles' always used to be default and non-skippable, so use that. 2080 */ 2081 if (strcmp("cycles", evsel__name(evsel))) 2082 evsel->skippable = true; 2083 } 2084 } 2085 parse_events_error__exit(&err); 2086 evlist__splice_list_tail(evsel_list, &evlist->core.entries); 2087 evlist__delete(evlist); 2088 return ret; 2089 } 2090 2091 static const char * const stat_record_usage[] = { 2092 "perf stat record [<options>]", 2093 NULL, 2094 }; 2095 2096 static void init_features(struct perf_session *session) 2097 { 2098 int feat; 2099 2100 for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++) 2101 perf_header__set_feat(&session->header, feat); 2102 2103 perf_header__clear_feat(&session->header, HEADER_DIR_FORMAT); 2104 perf_header__clear_feat(&session->header, HEADER_BUILD_ID); 2105 perf_header__clear_feat(&session->header, HEADER_TRACING_DATA); 2106 perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK); 2107 perf_header__clear_feat(&session->header, HEADER_AUXTRACE); 2108 } 2109 2110 static int __cmd_record(const struct option stat_options[], struct opt_aggr_mode *opt_mode, 2111 int argc, const char **argv) 2112 { 2113 struct perf_session *session; 2114 struct perf_data *data = &perf_stat.data; 2115 2116 argc = parse_options(argc, argv, stat_options, stat_record_usage, 2117 PARSE_OPT_STOP_AT_NON_OPTION); 2118 stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(opt_mode); 2119 2120 if (output_name) 2121 data->path = output_name; 2122 2123 if (stat_config.run_count != 1 || forever) { 2124 pr_err("Cannot use -r option with perf stat record.\n"); 2125 return -1; 2126 } 2127 2128 session = perf_session__new(data, NULL); 2129 if (IS_ERR(session)) { 2130 pr_err("Perf session creation failed\n"); 2131 return PTR_ERR(session); 2132 } 2133 2134 init_features(session); 2135 2136 session->evlist = evsel_list; 2137 perf_stat.session = session; 2138 perf_stat.record = true; 2139 return argc; 2140 } 2141 2142 static int process_stat_round_event(struct perf_session *session, 2143 union perf_event *event) 2144 { 2145 struct perf_record_stat_round *stat_round = &event->stat_round; 2146 struct timespec tsh, *ts = NULL; 2147 const char **argv = session->header.env.cmdline_argv; 2148 int argc = session->header.env.nr_cmdline; 2149 2150 process_counters(); 2151 2152 if (stat_round->type == PERF_STAT_ROUND_TYPE__FINAL) 2153 update_stats(&walltime_nsecs_stats, stat_round->time); 2154 2155 if (stat_config.interval && stat_round->time) { 2156 tsh.tv_sec = stat_round->time / NSEC_PER_SEC; 2157 tsh.tv_nsec = stat_round->time % NSEC_PER_SEC; 2158 ts = &tsh; 2159 } 2160 2161 print_counters(ts, argc, argv); 2162 return 0; 2163 } 2164 2165 static 2166 int process_stat_config_event(struct perf_session *session, 2167 union perf_event *event) 2168 { 2169 const struct perf_tool *tool = session->tool; 2170 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2171 2172 perf_event__read_stat_config(&stat_config, &event->stat_config); 2173 2174 if (perf_cpu_map__is_empty(st->cpus)) { 2175 if (st->aggr_mode != AGGR_UNSET) 2176 pr_warning("warning: processing task data, aggregation mode not set\n"); 2177 } else if (st->aggr_mode != AGGR_UNSET) { 2178 stat_config.aggr_mode = st->aggr_mode; 2179 } 2180 2181 if (perf_stat.data.is_pipe) 2182 perf_stat_init_aggr_mode(); 2183 else 2184 perf_stat_init_aggr_mode_file(st); 2185 2186 if (stat_config.aggr_map) { 2187 int nr_aggr = stat_config.aggr_map->nr; 2188 2189 if (evlist__alloc_aggr_stats(session->evlist, nr_aggr) < 0) { 2190 pr_err("cannot allocate aggr counts\n"); 2191 return -1; 2192 } 2193 } 2194 return 0; 2195 } 2196 2197 static int set_maps(struct perf_stat *st) 2198 { 2199 if (!st->cpus || !st->threads) 2200 return 0; 2201 2202 if (WARN_ONCE(st->maps_allocated, "stats double allocation\n")) 2203 return -EINVAL; 2204 2205 perf_evlist__set_maps(&evsel_list->core, st->cpus, st->threads); 2206 2207 if (evlist__alloc_stats(&stat_config, evsel_list, /*alloc_raw=*/true)) 2208 return -ENOMEM; 2209 2210 st->maps_allocated = true; 2211 return 0; 2212 } 2213 2214 static 2215 int process_thread_map_event(struct perf_session *session, 2216 union perf_event *event) 2217 { 2218 const struct perf_tool *tool = session->tool; 2219 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2220 2221 if (st->threads) { 2222 pr_warning("Extra thread map event, ignoring.\n"); 2223 return 0; 2224 } 2225 2226 st->threads = thread_map__new_event(&event->thread_map); 2227 if (!st->threads) 2228 return -ENOMEM; 2229 2230 return set_maps(st); 2231 } 2232 2233 static 2234 int process_cpu_map_event(struct perf_session *session, 2235 union perf_event *event) 2236 { 2237 const struct perf_tool *tool = session->tool; 2238 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2239 struct perf_cpu_map *cpus; 2240 2241 if (st->cpus) { 2242 pr_warning("Extra cpu map event, ignoring.\n"); 2243 return 0; 2244 } 2245 2246 cpus = cpu_map__new_data(&event->cpu_map.data); 2247 if (!cpus) 2248 return -ENOMEM; 2249 2250 st->cpus = cpus; 2251 return set_maps(st); 2252 } 2253 2254 static const char * const stat_report_usage[] = { 2255 "perf stat report [<options>]", 2256 NULL, 2257 }; 2258 2259 static struct perf_stat perf_stat = { 2260 .aggr_mode = AGGR_UNSET, 2261 .aggr_level = 0, 2262 }; 2263 2264 static int __cmd_report(int argc, const char **argv) 2265 { 2266 struct perf_session *session; 2267 const struct option options[] = { 2268 OPT_STRING('i', "input", &input_name, "file", "input file name"), 2269 OPT_SET_UINT(0, "per-socket", &perf_stat.aggr_mode, 2270 "aggregate counts per processor socket", AGGR_SOCKET), 2271 OPT_SET_UINT(0, "per-die", &perf_stat.aggr_mode, 2272 "aggregate counts per processor die", AGGR_DIE), 2273 OPT_SET_UINT(0, "per-cluster", &perf_stat.aggr_mode, 2274 "aggregate counts perf processor cluster", AGGR_CLUSTER), 2275 OPT_CALLBACK_OPTARG(0, "per-cache", &perf_stat.aggr_mode, &perf_stat.aggr_level, 2276 "cache level", 2277 "aggregate count at this cache level (Default: LLC)", 2278 parse_cache_level), 2279 OPT_SET_UINT(0, "per-core", &perf_stat.aggr_mode, 2280 "aggregate counts per physical processor core", AGGR_CORE), 2281 OPT_SET_UINT(0, "per-node", &perf_stat.aggr_mode, 2282 "aggregate counts per numa node", AGGR_NODE), 2283 OPT_SET_UINT('A', "no-aggr", &perf_stat.aggr_mode, 2284 "disable CPU count aggregation", AGGR_NONE), 2285 OPT_END() 2286 }; 2287 struct stat st; 2288 int ret; 2289 2290 argc = parse_options(argc, argv, options, stat_report_usage, 0); 2291 2292 if (!input_name || !strlen(input_name)) { 2293 if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode)) 2294 input_name = "-"; 2295 else 2296 input_name = "perf.data"; 2297 } 2298 2299 perf_stat.data.path = input_name; 2300 perf_stat.data.mode = PERF_DATA_MODE_READ; 2301 2302 perf_tool__init(&perf_stat.tool, /*ordered_events=*/false); 2303 perf_stat.tool.attr = perf_event__process_attr; 2304 perf_stat.tool.event_update = perf_event__process_event_update; 2305 perf_stat.tool.thread_map = process_thread_map_event; 2306 perf_stat.tool.cpu_map = process_cpu_map_event; 2307 perf_stat.tool.stat_config = process_stat_config_event; 2308 perf_stat.tool.stat = perf_event__process_stat_event; 2309 perf_stat.tool.stat_round = process_stat_round_event; 2310 2311 session = perf_session__new(&perf_stat.data, &perf_stat.tool); 2312 if (IS_ERR(session)) 2313 return PTR_ERR(session); 2314 2315 perf_stat.session = session; 2316 stat_config.output = stderr; 2317 evlist__delete(evsel_list); 2318 evsel_list = session->evlist; 2319 2320 ret = perf_session__process_events(session); 2321 if (ret) 2322 return ret; 2323 2324 perf_session__delete(session); 2325 return 0; 2326 } 2327 2328 static void setup_system_wide(int forks) 2329 { 2330 /* 2331 * Make system wide (-a) the default target if 2332 * no target was specified and one of following 2333 * conditions is met: 2334 * 2335 * - there's no workload specified 2336 * - there is workload specified but all requested 2337 * events are system wide events 2338 */ 2339 if (!target__none(&target)) 2340 return; 2341 2342 if (!forks) 2343 target.system_wide = true; 2344 else { 2345 struct evsel *counter; 2346 2347 evlist__for_each_entry(evsel_list, counter) { 2348 if (!counter->core.requires_cpu && 2349 !evsel__name_is(counter, "duration_time")) { 2350 return; 2351 } 2352 } 2353 2354 if (evsel_list->core.nr_entries) 2355 target.system_wide = true; 2356 } 2357 } 2358 2359 int cmd_stat(int argc, const char **argv) 2360 { 2361 struct opt_aggr_mode opt_mode = {}; 2362 struct option stat_options[] = { 2363 OPT_BOOLEAN('T', "transaction", &transaction_run, 2364 "hardware transaction statistics"), 2365 OPT_CALLBACK('e', "event", &parse_events_option_args, "event", 2366 "event selector. use 'perf list' to list available events", 2367 parse_events_option), 2368 OPT_CALLBACK(0, "filter", &evsel_list, "filter", 2369 "event filter", parse_filter), 2370 OPT_BOOLEAN('i', "no-inherit", &stat_config.no_inherit, 2371 "child tasks do not inherit counters"), 2372 OPT_STRING('p', "pid", &target.pid, "pid", 2373 "stat events on existing process id"), 2374 OPT_STRING('t', "tid", &target.tid, "tid", 2375 "stat events on existing thread id"), 2376 #ifdef HAVE_BPF_SKEL 2377 OPT_STRING('b', "bpf-prog", &target.bpf_str, "bpf-prog-id", 2378 "stat events on existing bpf program id"), 2379 OPT_BOOLEAN(0, "bpf-counters", &target.use_bpf, 2380 "use bpf program to count events"), 2381 OPT_STRING(0, "bpf-attr-map", &target.attr_map, "attr-map-path", 2382 "path to perf_event_attr map"), 2383 #endif 2384 OPT_BOOLEAN('a', "all-cpus", &target.system_wide, 2385 "system-wide collection from all CPUs"), 2386 OPT_BOOLEAN(0, "scale", &stat_config.scale, 2387 "Use --no-scale to disable counter scaling for multiplexing"), 2388 OPT_INCR('v', "verbose", &verbose, 2389 "be more verbose (show counter open errors, etc)"), 2390 OPT_INTEGER('r', "repeat", &stat_config.run_count, 2391 "repeat command and print average + stddev (max: 100, forever: 0)"), 2392 OPT_BOOLEAN(0, "table", &stat_config.walltime_run_table, 2393 "display details about each run (only with -r option)"), 2394 OPT_BOOLEAN('n', "null", &stat_config.null_run, 2395 "null run - dont start any counters"), 2396 OPT_INCR('d', "detailed", &detailed_run, 2397 "detailed run - start a lot of events"), 2398 OPT_BOOLEAN('S', "sync", &sync_run, 2399 "call sync() before starting a run"), 2400 OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL, 2401 "print large numbers with thousands\' separators", 2402 stat__set_big_num), 2403 OPT_STRING('C', "cpu", &target.cpu_list, "cpu", 2404 "list of cpus to monitor in system-wide"), 2405 OPT_BOOLEAN('A', "no-aggr", &opt_mode.no_aggr, 2406 "disable aggregation across CPUs or PMUs"), 2407 OPT_BOOLEAN(0, "no-merge", &opt_mode.no_aggr, 2408 "disable aggregation the same as -A or -no-aggr"), 2409 OPT_BOOLEAN(0, "hybrid-merge", &stat_config.hybrid_merge, 2410 "Merge identical named hybrid events"), 2411 OPT_STRING('x', "field-separator", &stat_config.csv_sep, "separator", 2412 "print counts with custom separator"), 2413 OPT_BOOLEAN('j', "json-output", &stat_config.json_output, 2414 "print counts in JSON format"), 2415 OPT_CALLBACK('G', "cgroup", &evsel_list, "name", 2416 "monitor event in cgroup name only", parse_stat_cgroups), 2417 OPT_STRING(0, "for-each-cgroup", &stat_config.cgroup_list, "name", 2418 "expand events for each cgroup"), 2419 OPT_STRING('o', "output", &output_name, "file", "output file name"), 2420 OPT_BOOLEAN(0, "append", &append_file, "append to the output file"), 2421 OPT_INTEGER(0, "log-fd", &output_fd, 2422 "log output to fd, instead of stderr"), 2423 OPT_STRING(0, "pre", &pre_cmd, "command", 2424 "command to run prior to the measured command"), 2425 OPT_STRING(0, "post", &post_cmd, "command", 2426 "command to run after to the measured command"), 2427 OPT_UINTEGER('I', "interval-print", &stat_config.interval, 2428 "print counts at regular interval in ms " 2429 "(overhead is possible for values <= 100ms)"), 2430 OPT_INTEGER(0, "interval-count", &stat_config.times, 2431 "print counts for fixed number of times"), 2432 OPT_BOOLEAN(0, "interval-clear", &stat_config.interval_clear, 2433 "clear screen in between new interval"), 2434 OPT_UINTEGER(0, "timeout", &stat_config.timeout, 2435 "stop workload and print counts after a timeout period in ms (>= 10ms)"), 2436 OPT_BOOLEAN(0, "per-socket", &opt_mode.socket, 2437 "aggregate counts per processor socket"), 2438 OPT_BOOLEAN(0, "per-die", &opt_mode.die, "aggregate counts per processor die"), 2439 OPT_BOOLEAN(0, "per-cluster", &opt_mode.cluster, 2440 "aggregate counts per processor cluster"), 2441 OPT_CALLBACK_OPTARG(0, "per-cache", &opt_mode, &stat_config.aggr_level, 2442 "cache level", "aggregate count at this cache level (Default: LLC)", 2443 parse_cache_level), 2444 OPT_BOOLEAN(0, "per-core", &opt_mode.core, 2445 "aggregate counts per physical processor core"), 2446 OPT_BOOLEAN(0, "per-thread", &opt_mode.thread, "aggregate counts per thread"), 2447 OPT_BOOLEAN(0, "per-node", &opt_mode.node, "aggregate counts per numa node"), 2448 OPT_INTEGER('D', "delay", &target.initial_delay, 2449 "ms to wait before starting measurement after program start (-1: start with events disabled)"), 2450 OPT_CALLBACK_NOOPT(0, "metric-only", &stat_config.metric_only, NULL, 2451 "Only print computed metrics. No raw values", enable_metric_only), 2452 OPT_BOOLEAN(0, "metric-no-group", &stat_config.metric_no_group, 2453 "don't group metric events, impacts multiplexing"), 2454 OPT_BOOLEAN(0, "metric-no-merge", &stat_config.metric_no_merge, 2455 "don't try to share events between metrics in a group"), 2456 OPT_BOOLEAN(0, "metric-no-threshold", &stat_config.metric_no_threshold, 2457 "disable adding events for the metric threshold calculation"), 2458 OPT_BOOLEAN(0, "topdown", &topdown_run, 2459 "measure top-down statistics"), 2460 #ifdef HAVE_ARCH_X86_64_SUPPORT 2461 OPT_BOOLEAN(0, "record-tpebs", &tpebs_recording, 2462 "enable recording for tpebs when retire_latency required"), 2463 #endif 2464 OPT_UINTEGER(0, "td-level", &stat_config.topdown_level, 2465 "Set the metrics level for the top-down statistics (0: max level)"), 2466 OPT_BOOLEAN(0, "smi-cost", &smi_cost, 2467 "measure SMI cost"), 2468 OPT_CALLBACK('M', "metrics", &evsel_list, "metric/metric group list", 2469 "monitor specified metrics or metric groups (separated by ,)", 2470 append_metric_groups), 2471 OPT_BOOLEAN_FLAG(0, "all-kernel", &stat_config.all_kernel, 2472 "Configure all used events to run in kernel space.", 2473 PARSE_OPT_EXCLUSIVE), 2474 OPT_BOOLEAN_FLAG(0, "all-user", &stat_config.all_user, 2475 "Configure all used events to run in user space.", 2476 PARSE_OPT_EXCLUSIVE), 2477 OPT_BOOLEAN(0, "percore-show-thread", &stat_config.percore_show_thread, 2478 "Use with 'percore' event qualifier to show the event " 2479 "counts of one hardware thread by sum up total hardware " 2480 "threads of same physical core"), 2481 OPT_BOOLEAN(0, "summary", &stat_config.summary, 2482 "print summary for interval mode"), 2483 OPT_BOOLEAN(0, "no-csv-summary", &stat_config.no_csv_summary, 2484 "don't print 'summary' for CSV summary output"), 2485 OPT_BOOLEAN(0, "quiet", &quiet, 2486 "don't print any output, messages or warnings (useful with record)"), 2487 OPT_CALLBACK(0, "cputype", &evsel_list, "hybrid cpu type", 2488 "Only enable events on applying cpu with this type " 2489 "for hybrid platform (e.g. core or atom)", 2490 parse_cputype), 2491 #ifdef HAVE_LIBPFM 2492 OPT_CALLBACK(0, "pfm-events", &evsel_list, "event", 2493 "libpfm4 event selector. use 'perf list' to list available events", 2494 parse_libpfm_events_option), 2495 #endif 2496 OPT_CALLBACK(0, "control", &stat_config, "fd:ctl-fd[,ack-fd] or fifo:ctl-fifo[,ack-fifo]", 2497 "Listen on ctl-fd descriptor for command to control measurement ('enable': enable events, 'disable': disable events).\n" 2498 "\t\t\t Optionally send control command completion ('ack\\n') to ack-fd descriptor.\n" 2499 "\t\t\t Alternatively, ctl-fifo / ack-fifo will be opened and used as ctl-fd / ack-fd.", 2500 parse_control_option), 2501 OPT_CALLBACK_OPTARG(0, "iostat", &evsel_list, &stat_config, "default", 2502 "measure I/O performance metrics provided by arch/platform", 2503 iostat_parse), 2504 OPT_END() 2505 }; 2506 const char * const stat_usage[] = { 2507 "perf stat [<options>] [<command>]", 2508 NULL 2509 }; 2510 int status = -EINVAL, run_idx, err; 2511 const char *mode; 2512 FILE *output = stderr; 2513 unsigned int interval, timeout; 2514 const char * const stat_subcommands[] = { "record", "report" }; 2515 char errbuf[BUFSIZ]; 2516 2517 setlocale(LC_ALL, ""); 2518 2519 evsel_list = evlist__new(); 2520 if (evsel_list == NULL) 2521 return -ENOMEM; 2522 2523 parse_events__shrink_config_terms(); 2524 2525 /* String-parsing callback-based options would segfault when negated */ 2526 set_option_flag(stat_options, 'e', "event", PARSE_OPT_NONEG); 2527 set_option_flag(stat_options, 'M', "metrics", PARSE_OPT_NONEG); 2528 set_option_flag(stat_options, 'G', "cgroup", PARSE_OPT_NONEG); 2529 2530 argc = parse_options_subcommand(argc, argv, stat_options, stat_subcommands, 2531 (const char **) stat_usage, 2532 PARSE_OPT_STOP_AT_NON_OPTION); 2533 2534 stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(&opt_mode); 2535 2536 if (stat_config.csv_sep) { 2537 stat_config.csv_output = true; 2538 if (!strcmp(stat_config.csv_sep, "\\t")) 2539 stat_config.csv_sep = "\t"; 2540 } else 2541 stat_config.csv_sep = DEFAULT_SEPARATOR; 2542 2543 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) { 2544 argc = __cmd_record(stat_options, &opt_mode, argc, argv); 2545 if (argc < 0) 2546 return -1; 2547 } else if (argc && strlen(argv[0]) > 2 && strstarts("report", argv[0])) 2548 return __cmd_report(argc, argv); 2549 2550 interval = stat_config.interval; 2551 timeout = stat_config.timeout; 2552 2553 /* 2554 * For record command the -o is already taken care of. 2555 */ 2556 if (!STAT_RECORD && output_name && strcmp(output_name, "-")) 2557 output = NULL; 2558 2559 if (output_name && output_fd) { 2560 fprintf(stderr, "cannot use both --output and --log-fd\n"); 2561 parse_options_usage(stat_usage, stat_options, "o", 1); 2562 parse_options_usage(NULL, stat_options, "log-fd", 0); 2563 goto out; 2564 } 2565 2566 if (stat_config.metric_only && stat_config.aggr_mode == AGGR_THREAD) { 2567 fprintf(stderr, "--metric-only is not supported with --per-thread\n"); 2568 goto out; 2569 } 2570 2571 if (stat_config.metric_only && stat_config.run_count > 1) { 2572 fprintf(stderr, "--metric-only is not supported with -r\n"); 2573 goto out; 2574 } 2575 2576 if (stat_config.csv_output || (stat_config.metric_only && stat_config.json_output)) { 2577 /* 2578 * Current CSV and metric-only JSON output doesn't display the 2579 * metric threshold so don't compute it. 2580 */ 2581 stat_config.metric_no_threshold = true; 2582 } 2583 2584 if (stat_config.walltime_run_table && stat_config.run_count <= 1) { 2585 fprintf(stderr, "--table is only supported with -r\n"); 2586 parse_options_usage(stat_usage, stat_options, "r", 1); 2587 parse_options_usage(NULL, stat_options, "table", 0); 2588 goto out; 2589 } 2590 2591 if (output_fd < 0) { 2592 fprintf(stderr, "argument to --log-fd must be a > 0\n"); 2593 parse_options_usage(stat_usage, stat_options, "log-fd", 0); 2594 goto out; 2595 } 2596 2597 if (!output && !quiet) { 2598 struct timespec tm; 2599 mode = append_file ? "a" : "w"; 2600 2601 output = fopen(output_name, mode); 2602 if (!output) { 2603 perror("failed to create output file"); 2604 return -1; 2605 } 2606 if (!stat_config.json_output) { 2607 clock_gettime(CLOCK_REALTIME, &tm); 2608 fprintf(output, "# started on %s\n", ctime(&tm.tv_sec)); 2609 } 2610 } else if (output_fd > 0) { 2611 mode = append_file ? "a" : "w"; 2612 output = fdopen(output_fd, mode); 2613 if (!output) { 2614 perror("Failed opening logfd"); 2615 return -errno; 2616 } 2617 } 2618 2619 if (stat_config.interval_clear && !isatty(fileno(output))) { 2620 fprintf(stderr, "--interval-clear does not work with output\n"); 2621 parse_options_usage(stat_usage, stat_options, "o", 1); 2622 parse_options_usage(NULL, stat_options, "log-fd", 0); 2623 parse_options_usage(NULL, stat_options, "interval-clear", 0); 2624 return -1; 2625 } 2626 2627 stat_config.output = output; 2628 2629 /* 2630 * let the spreadsheet do the pretty-printing 2631 */ 2632 if (stat_config.csv_output) { 2633 /* User explicitly passed -B? */ 2634 if (big_num_opt == 1) { 2635 fprintf(stderr, "-B option not supported with -x\n"); 2636 parse_options_usage(stat_usage, stat_options, "B", 1); 2637 parse_options_usage(NULL, stat_options, "x", 1); 2638 goto out; 2639 } else /* Nope, so disable big number formatting */ 2640 stat_config.big_num = false; 2641 } else if (big_num_opt == 0) /* User passed --no-big-num */ 2642 stat_config.big_num = false; 2643 2644 target.inherit = !stat_config.no_inherit; 2645 err = target__validate(&target); 2646 if (err) { 2647 target__strerror(&target, err, errbuf, BUFSIZ); 2648 pr_warning("%s\n", errbuf); 2649 } 2650 2651 setup_system_wide(argc); 2652 2653 /* 2654 * Display user/system times only for single 2655 * run and when there's specified tracee. 2656 */ 2657 if ((stat_config.run_count == 1) && target__none(&target)) 2658 stat_config.ru_display = true; 2659 2660 if (stat_config.run_count < 0) { 2661 pr_err("Run count must be a positive number\n"); 2662 parse_options_usage(stat_usage, stat_options, "r", 1); 2663 goto out; 2664 } else if (stat_config.run_count == 0) { 2665 forever = true; 2666 stat_config.run_count = 1; 2667 } 2668 2669 if (stat_config.walltime_run_table) { 2670 stat_config.walltime_run = zalloc(stat_config.run_count * sizeof(stat_config.walltime_run[0])); 2671 if (!stat_config.walltime_run) { 2672 pr_err("failed to setup -r option"); 2673 goto out; 2674 } 2675 } 2676 2677 if ((stat_config.aggr_mode == AGGR_THREAD) && 2678 !target__has_task(&target)) { 2679 if (!target.system_wide || target.cpu_list) { 2680 fprintf(stderr, "The --per-thread option is only " 2681 "available when monitoring via -p -t -a " 2682 "options or only --per-thread.\n"); 2683 parse_options_usage(NULL, stat_options, "p", 1); 2684 parse_options_usage(NULL, stat_options, "t", 1); 2685 goto out; 2686 } 2687 } 2688 2689 /* 2690 * no_aggr, cgroup are for system-wide only 2691 * --per-thread is aggregated per thread, we dont mix it with cpu mode 2692 */ 2693 if (((stat_config.aggr_mode != AGGR_GLOBAL && 2694 stat_config.aggr_mode != AGGR_THREAD) || 2695 (nr_cgroups || stat_config.cgroup_list)) && 2696 !target__has_cpu(&target)) { 2697 fprintf(stderr, "both cgroup and no-aggregation " 2698 "modes only available in system-wide mode\n"); 2699 2700 parse_options_usage(stat_usage, stat_options, "G", 1); 2701 parse_options_usage(NULL, stat_options, "A", 1); 2702 parse_options_usage(NULL, stat_options, "a", 1); 2703 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2704 goto out; 2705 } 2706 2707 if (stat_config.iostat_run) { 2708 status = iostat_prepare(evsel_list, &stat_config); 2709 if (status) 2710 goto out; 2711 if (iostat_mode == IOSTAT_LIST) { 2712 iostat_list(evsel_list, &stat_config); 2713 goto out; 2714 } else if (verbose > 0) 2715 iostat_list(evsel_list, &stat_config); 2716 if (iostat_mode == IOSTAT_RUN && !target__has_cpu(&target)) 2717 target.system_wide = true; 2718 } 2719 2720 if ((stat_config.aggr_mode == AGGR_THREAD) && (target.system_wide)) 2721 target.per_thread = true; 2722 2723 stat_config.system_wide = target.system_wide; 2724 if (target.cpu_list) { 2725 stat_config.user_requested_cpu_list = strdup(target.cpu_list); 2726 if (!stat_config.user_requested_cpu_list) { 2727 status = -ENOMEM; 2728 goto out; 2729 } 2730 } 2731 2732 /* 2733 * Metric parsing needs to be delayed as metrics may optimize events 2734 * knowing the target is system-wide. 2735 */ 2736 if (metrics) { 2737 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 2738 int ret = metricgroup__parse_groups(evsel_list, pmu, metrics, 2739 stat_config.metric_no_group, 2740 stat_config.metric_no_merge, 2741 stat_config.metric_no_threshold, 2742 stat_config.user_requested_cpu_list, 2743 stat_config.system_wide, 2744 stat_config.hardware_aware_grouping, 2745 &stat_config.metric_events); 2746 2747 zfree(&metrics); 2748 if (ret) { 2749 status = ret; 2750 goto out; 2751 } 2752 } 2753 2754 if (add_default_events()) 2755 goto out; 2756 2757 if (stat_config.cgroup_list) { 2758 if (nr_cgroups > 0) { 2759 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 2760 parse_options_usage(stat_usage, stat_options, "G", 1); 2761 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2762 goto out; 2763 } 2764 2765 if (evlist__expand_cgroup(evsel_list, stat_config.cgroup_list, 2766 &stat_config.metric_events, true) < 0) { 2767 parse_options_usage(stat_usage, stat_options, 2768 "for-each-cgroup", 0); 2769 goto out; 2770 } 2771 } 2772 2773 evlist__warn_user_requested_cpus(evsel_list, target.cpu_list); 2774 2775 if (evlist__create_maps(evsel_list, &target) < 0) { 2776 if (target__has_task(&target)) { 2777 pr_err("Problems finding threads of monitor\n"); 2778 parse_options_usage(stat_usage, stat_options, "p", 1); 2779 parse_options_usage(NULL, stat_options, "t", 1); 2780 } else if (target__has_cpu(&target)) { 2781 perror("failed to parse CPUs map"); 2782 parse_options_usage(stat_usage, stat_options, "C", 1); 2783 parse_options_usage(NULL, stat_options, "a", 1); 2784 } 2785 goto out; 2786 } 2787 2788 evlist__check_cpu_maps(evsel_list); 2789 2790 /* 2791 * Initialize thread_map with comm names, 2792 * so we could print it out on output. 2793 */ 2794 if (stat_config.aggr_mode == AGGR_THREAD) { 2795 thread_map__read_comms(evsel_list->core.threads); 2796 } 2797 2798 if (stat_config.aggr_mode == AGGR_NODE) 2799 cpu__setup_cpunode_map(); 2800 2801 if (stat_config.times && interval) 2802 interval_count = true; 2803 else if (stat_config.times && !interval) { 2804 pr_err("interval-count option should be used together with " 2805 "interval-print.\n"); 2806 parse_options_usage(stat_usage, stat_options, "interval-count", 0); 2807 parse_options_usage(stat_usage, stat_options, "I", 1); 2808 goto out; 2809 } 2810 2811 if (timeout && timeout < 100) { 2812 if (timeout < 10) { 2813 pr_err("timeout must be >= 10ms.\n"); 2814 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2815 goto out; 2816 } else 2817 pr_warning("timeout < 100ms. " 2818 "The overhead percentage could be high in some cases. " 2819 "Please proceed with caution.\n"); 2820 } 2821 if (timeout && interval) { 2822 pr_err("timeout option is not supported with interval-print.\n"); 2823 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2824 parse_options_usage(stat_usage, stat_options, "I", 1); 2825 goto out; 2826 } 2827 2828 if (perf_stat_init_aggr_mode()) 2829 goto out; 2830 2831 if (evlist__alloc_stats(&stat_config, evsel_list, interval)) 2832 goto out; 2833 2834 /* 2835 * Set sample_type to PERF_SAMPLE_IDENTIFIER, which should be harmless 2836 * while avoiding that older tools show confusing messages. 2837 * 2838 * However for pipe sessions we need to keep it zero, 2839 * because script's perf_evsel__check_attr is triggered 2840 * by attr->sample_type != 0, and we can't run it on 2841 * stat sessions. 2842 */ 2843 stat_config.identifier = !(STAT_RECORD && perf_stat.data.is_pipe); 2844 2845 /* 2846 * We dont want to block the signals - that would cause 2847 * child tasks to inherit that and Ctrl-C would not work. 2848 * What we want is for Ctrl-C to work in the exec()-ed 2849 * task, but being ignored by perf stat itself: 2850 */ 2851 atexit(sig_atexit); 2852 if (!forever) 2853 signal(SIGINT, skip_signal); 2854 signal(SIGCHLD, skip_signal); 2855 signal(SIGALRM, skip_signal); 2856 signal(SIGABRT, skip_signal); 2857 2858 if (evlist__initialize_ctlfd(evsel_list, stat_config.ctl_fd, stat_config.ctl_fd_ack)) 2859 goto out; 2860 2861 /* Enable ignoring missing threads when -p option is defined. */ 2862 evlist__first(evsel_list)->ignore_missing_thread = target.pid; 2863 status = 0; 2864 for (run_idx = 0; forever || run_idx < stat_config.run_count; run_idx++) { 2865 if (stat_config.run_count != 1 && verbose > 0) 2866 fprintf(output, "[ perf stat: executing run #%d ... ]\n", 2867 run_idx + 1); 2868 2869 if (run_idx != 0) 2870 evlist__reset_prev_raw_counts(evsel_list); 2871 2872 status = run_perf_stat(argc, argv, run_idx); 2873 if (status == -1) 2874 break; 2875 2876 if (forever && !interval) { 2877 print_counters(NULL, argc, argv); 2878 perf_stat__reset_stats(); 2879 } 2880 } 2881 2882 if (!forever && status != -1 && (!interval || stat_config.summary)) { 2883 if (stat_config.run_count > 1) 2884 evlist__copy_res_stats(&stat_config, evsel_list); 2885 print_counters(NULL, argc, argv); 2886 } 2887 2888 evlist__finalize_ctlfd(evsel_list); 2889 2890 if (STAT_RECORD) { 2891 /* 2892 * We synthesize the kernel mmap record just so that older tools 2893 * don't emit warnings about not being able to resolve symbols 2894 * due to /proc/sys/kernel/kptr_restrict settings and instead provide 2895 * a saner message about no samples being in the perf.data file. 2896 * 2897 * This also serves to suppress a warning about f_header.data.size == 0 2898 * in header.c at the moment 'perf stat record' gets introduced, which 2899 * is not really needed once we start adding the stat specific PERF_RECORD_ 2900 * records, but the need to suppress the kptr_restrict messages in older 2901 * tools remain -acme 2902 */ 2903 int fd = perf_data__fd(&perf_stat.data); 2904 2905 err = perf_event__synthesize_kernel_mmap((void *)&perf_stat, 2906 process_synthesized_event, 2907 &perf_stat.session->machines.host); 2908 if (err) { 2909 pr_warning("Couldn't synthesize the kernel mmap record, harmless, " 2910 "older tools may produce warnings about this file\n."); 2911 } 2912 2913 if (!interval) { 2914 if (WRITE_STAT_ROUND_EVENT(walltime_nsecs_stats.max, FINAL)) 2915 pr_err("failed to write stat round event\n"); 2916 } 2917 2918 if (!perf_stat.data.is_pipe) { 2919 perf_stat.session->header.data_size += perf_stat.bytes_written; 2920 perf_session__write_header(perf_stat.session, evsel_list, fd, true); 2921 } 2922 2923 evlist__close(evsel_list); 2924 perf_session__delete(perf_stat.session); 2925 } 2926 2927 perf_stat__exit_aggr_mode(); 2928 evlist__free_stats(evsel_list); 2929 out: 2930 if (stat_config.iostat_run) 2931 iostat_release(evsel_list); 2932 2933 zfree(&stat_config.walltime_run); 2934 zfree(&stat_config.user_requested_cpu_list); 2935 2936 if (smi_cost && smi_reset) 2937 sysfs__write_int(FREEZE_ON_SMI_PATH, 0); 2938 2939 evlist__delete(evsel_list); 2940 2941 metricgroup__rblist_exit(&stat_config.metric_events); 2942 evlist__close_control(stat_config.ctl_fd, stat_config.ctl_fd_ack, &stat_config.ctl_fd_close); 2943 2944 return status; 2945 } 2946