1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * builtin-stat.c 4 * 5 * Builtin stat command: Give a precise performance counters summary 6 * overview about any workload, CPU or specific PID. 7 * 8 * Sample output: 9 10 $ perf stat ./hackbench 10 11 12 Time: 0.118 13 14 Performance counter stats for './hackbench 10': 15 16 1708.761321 task-clock # 11.037 CPUs utilized 17 41,190 context-switches # 0.024 M/sec 18 6,735 CPU-migrations # 0.004 M/sec 19 17,318 page-faults # 0.010 M/sec 20 5,205,202,243 cycles # 3.046 GHz 21 3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle 22 1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle 23 2,603,501,247 instructions # 0.50 insns per cycle 24 # 1.48 stalled cycles per insn 25 484,357,498 branches # 283.455 M/sec 26 6,388,934 branch-misses # 1.32% of all branches 27 28 0.154822978 seconds time elapsed 29 30 * 31 * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com> 32 * 33 * Improvements and fixes by: 34 * 35 * Arjan van de Ven <arjan@linux.intel.com> 36 * Yanmin Zhang <yanmin.zhang@intel.com> 37 * Wu Fengguang <fengguang.wu@intel.com> 38 * Mike Galbraith <efault@gmx.de> 39 * Paul Mackerras <paulus@samba.org> 40 * Jaswinder Singh Rajput <jaswinder@kernel.org> 41 */ 42 43 #include "builtin.h" 44 #include "util/cgroup.h" 45 #include <subcmd/parse-options.h> 46 #include "util/parse-events.h" 47 #include "util/pmus.h" 48 #include "util/pmu.h" 49 #include "util/event.h" 50 #include "util/evlist.h" 51 #include "util/evsel.h" 52 #include "util/debug.h" 53 #include "util/color.h" 54 #include "util/stat.h" 55 #include "util/header.h" 56 #include "util/cpumap.h" 57 #include "util/thread_map.h" 58 #include "util/counts.h" 59 #include "util/topdown.h" 60 #include "util/session.h" 61 #include "util/tool.h" 62 #include "util/string2.h" 63 #include "util/metricgroup.h" 64 #include "util/synthetic-events.h" 65 #include "util/target.h" 66 #include "util/time-utils.h" 67 #include "util/top.h" 68 #include "util/affinity.h" 69 #include "util/pfm.h" 70 #include "util/bpf_counter.h" 71 #include "util/iostat.h" 72 #include "util/util.h" 73 #include "util/intel-tpebs.h" 74 #include "asm/bug.h" 75 76 #include <linux/time64.h> 77 #include <linux/zalloc.h> 78 #include <api/fs/fs.h> 79 #include <errno.h> 80 #include <signal.h> 81 #include <stdlib.h> 82 #include <sys/prctl.h> 83 #include <inttypes.h> 84 #include <locale.h> 85 #include <math.h> 86 #include <sys/types.h> 87 #include <sys/stat.h> 88 #include <sys/wait.h> 89 #include <unistd.h> 90 #include <sys/time.h> 91 #include <sys/resource.h> 92 #include <linux/err.h> 93 94 #include <linux/ctype.h> 95 #include <perf/evlist.h> 96 #include <internal/threadmap.h> 97 98 #define DEFAULT_SEPARATOR " " 99 #define FREEZE_ON_SMI_PATH "devices/cpu/freeze_on_smi" 100 101 static void print_counters(struct timespec *ts, int argc, const char **argv); 102 103 static struct evlist *evsel_list; 104 static struct parse_events_option_args parse_events_option_args = { 105 .evlistp = &evsel_list, 106 }; 107 108 static bool all_counters_use_bpf = true; 109 110 static struct target target = { 111 .uid = UINT_MAX, 112 }; 113 114 #define METRIC_ONLY_LEN 20 115 116 static volatile sig_atomic_t child_pid = -1; 117 static int detailed_run = 0; 118 static bool transaction_run; 119 static bool topdown_run = false; 120 static bool smi_cost = false; 121 static bool smi_reset = false; 122 static int big_num_opt = -1; 123 static const char *pre_cmd = NULL; 124 static const char *post_cmd = NULL; 125 static bool sync_run = false; 126 static bool forever = false; 127 static bool force_metric_only = false; 128 static struct timespec ref_time; 129 static bool append_file; 130 static bool interval_count; 131 static const char *output_name; 132 static int output_fd; 133 static char *metrics; 134 135 struct perf_stat { 136 bool record; 137 struct perf_data data; 138 struct perf_session *session; 139 u64 bytes_written; 140 struct perf_tool tool; 141 bool maps_allocated; 142 struct perf_cpu_map *cpus; 143 struct perf_thread_map *threads; 144 enum aggr_mode aggr_mode; 145 u32 aggr_level; 146 }; 147 148 static struct perf_stat perf_stat; 149 #define STAT_RECORD perf_stat.record 150 151 static volatile sig_atomic_t done = 0; 152 153 static struct perf_stat_config stat_config = { 154 .aggr_mode = AGGR_GLOBAL, 155 .aggr_level = MAX_CACHE_LVL + 1, 156 .scale = true, 157 .unit_width = 4, /* strlen("unit") */ 158 .run_count = 1, 159 .metric_only_len = METRIC_ONLY_LEN, 160 .walltime_nsecs_stats = &walltime_nsecs_stats, 161 .ru_stats = &ru_stats, 162 .big_num = true, 163 .ctl_fd = -1, 164 .ctl_fd_ack = -1, 165 .iostat_run = false, 166 }; 167 168 /* Options set from the command line. */ 169 struct opt_aggr_mode { 170 bool node, socket, die, cluster, cache, core, thread, no_aggr; 171 }; 172 173 /* Turn command line option into most generic aggregation mode setting. */ 174 static enum aggr_mode opt_aggr_mode_to_aggr_mode(struct opt_aggr_mode *opt_mode) 175 { 176 enum aggr_mode mode = AGGR_GLOBAL; 177 178 if (opt_mode->node) 179 mode = AGGR_NODE; 180 if (opt_mode->socket) 181 mode = AGGR_SOCKET; 182 if (opt_mode->die) 183 mode = AGGR_DIE; 184 if (opt_mode->cluster) 185 mode = AGGR_CLUSTER; 186 if (opt_mode->cache) 187 mode = AGGR_CACHE; 188 if (opt_mode->core) 189 mode = AGGR_CORE; 190 if (opt_mode->thread) 191 mode = AGGR_THREAD; 192 if (opt_mode->no_aggr) 193 mode = AGGR_NONE; 194 return mode; 195 } 196 197 static void evlist__check_cpu_maps(struct evlist *evlist) 198 { 199 struct evsel *evsel, *warned_leader = NULL; 200 201 evlist__for_each_entry(evlist, evsel) { 202 struct evsel *leader = evsel__leader(evsel); 203 204 /* Check that leader matches cpus with each member. */ 205 if (leader == evsel) 206 continue; 207 if (perf_cpu_map__equal(leader->core.cpus, evsel->core.cpus)) 208 continue; 209 210 /* If there's mismatch disable the group and warn user. */ 211 if (warned_leader != leader) { 212 char buf[200]; 213 214 pr_warning("WARNING: grouped events cpus do not match.\n" 215 "Events with CPUs not matching the leader will " 216 "be removed from the group.\n"); 217 evsel__group_desc(leader, buf, sizeof(buf)); 218 pr_warning(" %s\n", buf); 219 warned_leader = leader; 220 } 221 if (verbose > 0) { 222 char buf[200]; 223 224 cpu_map__snprint(leader->core.cpus, buf, sizeof(buf)); 225 pr_warning(" %s: %s\n", leader->name, buf); 226 cpu_map__snprint(evsel->core.cpus, buf, sizeof(buf)); 227 pr_warning(" %s: %s\n", evsel->name, buf); 228 } 229 230 evsel__remove_from_group(evsel, leader); 231 } 232 } 233 234 static inline void diff_timespec(struct timespec *r, struct timespec *a, 235 struct timespec *b) 236 { 237 r->tv_sec = a->tv_sec - b->tv_sec; 238 if (a->tv_nsec < b->tv_nsec) { 239 r->tv_nsec = a->tv_nsec + NSEC_PER_SEC - b->tv_nsec; 240 r->tv_sec--; 241 } else { 242 r->tv_nsec = a->tv_nsec - b->tv_nsec ; 243 } 244 } 245 246 static void perf_stat__reset_stats(void) 247 { 248 evlist__reset_stats(evsel_list); 249 perf_stat__reset_shadow_stats(); 250 } 251 252 static int process_synthesized_event(const struct perf_tool *tool __maybe_unused, 253 union perf_event *event, 254 struct perf_sample *sample __maybe_unused, 255 struct machine *machine __maybe_unused) 256 { 257 if (perf_data__write(&perf_stat.data, event, event->header.size) < 0) { 258 pr_err("failed to write perf data, error: %m\n"); 259 return -1; 260 } 261 262 perf_stat.bytes_written += event->header.size; 263 return 0; 264 } 265 266 static int write_stat_round_event(u64 tm, u64 type) 267 { 268 return perf_event__synthesize_stat_round(NULL, tm, type, 269 process_synthesized_event, 270 NULL); 271 } 272 273 #define WRITE_STAT_ROUND_EVENT(time, interval) \ 274 write_stat_round_event(time, PERF_STAT_ROUND_TYPE__ ## interval) 275 276 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y) 277 278 static int evsel__write_stat_event(struct evsel *counter, int cpu_map_idx, u32 thread, 279 struct perf_counts_values *count) 280 { 281 struct perf_sample_id *sid = SID(counter, cpu_map_idx, thread); 282 struct perf_cpu cpu = perf_cpu_map__cpu(evsel__cpus(counter), cpu_map_idx); 283 284 return perf_event__synthesize_stat(NULL, cpu, thread, sid->id, count, 285 process_synthesized_event, NULL); 286 } 287 288 static int read_single_counter(struct evsel *counter, int cpu_map_idx, int thread) 289 { 290 int err = evsel__read_counter(counter, cpu_map_idx, thread); 291 292 /* 293 * Reading user and system time will fail when the process 294 * terminates. Use the wait4 values in that case. 295 */ 296 if (err && cpu_map_idx == 0 && 297 (evsel__tool_event(counter) == PERF_TOOL_USER_TIME || 298 evsel__tool_event(counter) == PERF_TOOL_SYSTEM_TIME)) { 299 u64 val, *start_time; 300 struct perf_counts_values *count = 301 perf_counts(counter->counts, cpu_map_idx, thread); 302 303 start_time = xyarray__entry(counter->start_times, cpu_map_idx, thread); 304 if (evsel__tool_event(counter) == PERF_TOOL_USER_TIME) 305 val = ru_stats.ru_utime_usec_stat.mean; 306 else 307 val = ru_stats.ru_stime_usec_stat.mean; 308 count->ena = count->run = *start_time + val; 309 count->val = val; 310 return 0; 311 } 312 return err; 313 } 314 315 /* 316 * Read out the results of a single counter: 317 * do not aggregate counts across CPUs in system-wide mode 318 */ 319 static int read_counter_cpu(struct evsel *counter, int cpu_map_idx) 320 { 321 int nthreads = perf_thread_map__nr(evsel_list->core.threads); 322 int thread; 323 324 if (!counter->supported) 325 return -ENOENT; 326 327 for (thread = 0; thread < nthreads; thread++) { 328 struct perf_counts_values *count; 329 330 count = perf_counts(counter->counts, cpu_map_idx, thread); 331 332 /* 333 * The leader's group read loads data into its group members 334 * (via evsel__read_counter()) and sets their count->loaded. 335 */ 336 if (!perf_counts__is_loaded(counter->counts, cpu_map_idx, thread) && 337 read_single_counter(counter, cpu_map_idx, thread)) { 338 counter->counts->scaled = -1; 339 perf_counts(counter->counts, cpu_map_idx, thread)->ena = 0; 340 perf_counts(counter->counts, cpu_map_idx, thread)->run = 0; 341 return -1; 342 } 343 344 perf_counts__set_loaded(counter->counts, cpu_map_idx, thread, false); 345 346 if (STAT_RECORD) { 347 if (evsel__write_stat_event(counter, cpu_map_idx, thread, count)) { 348 pr_err("failed to write stat event\n"); 349 return -1; 350 } 351 } 352 353 if (verbose > 1) { 354 fprintf(stat_config.output, 355 "%s: %d: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", 356 evsel__name(counter), 357 perf_cpu_map__cpu(evsel__cpus(counter), 358 cpu_map_idx).cpu, 359 count->val, count->ena, count->run); 360 } 361 } 362 363 return 0; 364 } 365 366 static int read_affinity_counters(void) 367 { 368 struct evlist_cpu_iterator evlist_cpu_itr; 369 struct affinity saved_affinity, *affinity; 370 371 if (all_counters_use_bpf) 372 return 0; 373 374 if (!target__has_cpu(&target) || target__has_per_thread(&target)) 375 affinity = NULL; 376 else if (affinity__setup(&saved_affinity) < 0) 377 return -1; 378 else 379 affinity = &saved_affinity; 380 381 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 382 struct evsel *counter = evlist_cpu_itr.evsel; 383 384 if (evsel__is_bpf(counter)) 385 continue; 386 387 if (!counter->err) 388 counter->err = read_counter_cpu(counter, evlist_cpu_itr.cpu_map_idx); 389 } 390 if (affinity) 391 affinity__cleanup(&saved_affinity); 392 393 return 0; 394 } 395 396 static int read_bpf_map_counters(void) 397 { 398 struct evsel *counter; 399 int err; 400 401 evlist__for_each_entry(evsel_list, counter) { 402 if (!evsel__is_bpf(counter)) 403 continue; 404 405 err = bpf_counter__read(counter); 406 if (err) 407 return err; 408 } 409 return 0; 410 } 411 412 static int read_counters(void) 413 { 414 if (!stat_config.stop_read_counter) { 415 if (read_bpf_map_counters() || 416 read_affinity_counters()) 417 return -1; 418 } 419 return 0; 420 } 421 422 static void process_counters(void) 423 { 424 struct evsel *counter; 425 426 evlist__for_each_entry(evsel_list, counter) { 427 if (counter->err) 428 pr_debug("failed to read counter %s\n", counter->name); 429 if (counter->err == 0 && perf_stat_process_counter(&stat_config, counter)) 430 pr_warning("failed to process counter %s\n", counter->name); 431 counter->err = 0; 432 } 433 434 perf_stat_merge_counters(&stat_config, evsel_list); 435 perf_stat_process_percore(&stat_config, evsel_list); 436 } 437 438 static void process_interval(void) 439 { 440 struct timespec ts, rs; 441 442 clock_gettime(CLOCK_MONOTONIC, &ts); 443 diff_timespec(&rs, &ts, &ref_time); 444 445 evlist__reset_aggr_stats(evsel_list); 446 447 if (read_counters() == 0) 448 process_counters(); 449 450 if (STAT_RECORD) { 451 if (WRITE_STAT_ROUND_EVENT(rs.tv_sec * NSEC_PER_SEC + rs.tv_nsec, INTERVAL)) 452 pr_err("failed to write stat round event\n"); 453 } 454 455 init_stats(&walltime_nsecs_stats); 456 update_stats(&walltime_nsecs_stats, stat_config.interval * 1000000ULL); 457 print_counters(&rs, 0, NULL); 458 } 459 460 static bool handle_interval(unsigned int interval, int *times) 461 { 462 if (interval) { 463 process_interval(); 464 if (interval_count && !(--(*times))) 465 return true; 466 } 467 return false; 468 } 469 470 static int enable_counters(void) 471 { 472 struct evsel *evsel; 473 int err; 474 475 evlist__for_each_entry(evsel_list, evsel) { 476 if (!evsel__is_bpf(evsel)) 477 continue; 478 479 err = bpf_counter__enable(evsel); 480 if (err) 481 return err; 482 } 483 484 if (!target__enable_on_exec(&target)) { 485 if (!all_counters_use_bpf) 486 evlist__enable(evsel_list); 487 } 488 return 0; 489 } 490 491 static void disable_counters(void) 492 { 493 struct evsel *counter; 494 495 /* 496 * If we don't have tracee (attaching to task or cpu), counters may 497 * still be running. To get accurate group ratios, we must stop groups 498 * from counting before reading their constituent counters. 499 */ 500 if (!target__none(&target)) { 501 evlist__for_each_entry(evsel_list, counter) 502 bpf_counter__disable(counter); 503 if (!all_counters_use_bpf) 504 evlist__disable(evsel_list); 505 } 506 } 507 508 static volatile sig_atomic_t workload_exec_errno; 509 510 /* 511 * evlist__prepare_workload will send a SIGUSR1 512 * if the fork fails, since we asked by setting its 513 * want_signal to true. 514 */ 515 static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info, 516 void *ucontext __maybe_unused) 517 { 518 workload_exec_errno = info->si_value.sival_int; 519 } 520 521 static bool evsel__should_store_id(struct evsel *counter) 522 { 523 return STAT_RECORD || counter->core.attr.read_format & PERF_FORMAT_ID; 524 } 525 526 static bool is_target_alive(struct target *_target, 527 struct perf_thread_map *threads) 528 { 529 struct stat st; 530 int i; 531 532 if (!target__has_task(_target)) 533 return true; 534 535 for (i = 0; i < threads->nr; i++) { 536 char path[PATH_MAX]; 537 538 scnprintf(path, PATH_MAX, "%s/%d", procfs__mountpoint(), 539 threads->map[i].pid); 540 541 if (!stat(path, &st)) 542 return true; 543 } 544 545 return false; 546 } 547 548 static void process_evlist(struct evlist *evlist, unsigned int interval) 549 { 550 enum evlist_ctl_cmd cmd = EVLIST_CTL_CMD_UNSUPPORTED; 551 552 if (evlist__ctlfd_process(evlist, &cmd) > 0) { 553 switch (cmd) { 554 case EVLIST_CTL_CMD_ENABLE: 555 fallthrough; 556 case EVLIST_CTL_CMD_DISABLE: 557 if (interval) 558 process_interval(); 559 break; 560 case EVLIST_CTL_CMD_SNAPSHOT: 561 case EVLIST_CTL_CMD_ACK: 562 case EVLIST_CTL_CMD_UNSUPPORTED: 563 case EVLIST_CTL_CMD_EVLIST: 564 case EVLIST_CTL_CMD_STOP: 565 case EVLIST_CTL_CMD_PING: 566 default: 567 break; 568 } 569 } 570 } 571 572 static void compute_tts(struct timespec *time_start, struct timespec *time_stop, 573 int *time_to_sleep) 574 { 575 int tts = *time_to_sleep; 576 struct timespec time_diff; 577 578 diff_timespec(&time_diff, time_stop, time_start); 579 580 tts -= time_diff.tv_sec * MSEC_PER_SEC + 581 time_diff.tv_nsec / NSEC_PER_MSEC; 582 583 if (tts < 0) 584 tts = 0; 585 586 *time_to_sleep = tts; 587 } 588 589 static int dispatch_events(bool forks, int timeout, int interval, int *times) 590 { 591 int child_exited = 0, status = 0; 592 int time_to_sleep, sleep_time; 593 struct timespec time_start, time_stop; 594 595 if (interval) 596 sleep_time = interval; 597 else if (timeout) 598 sleep_time = timeout; 599 else 600 sleep_time = 1000; 601 602 time_to_sleep = sleep_time; 603 604 while (!done) { 605 if (forks) 606 child_exited = waitpid(child_pid, &status, WNOHANG); 607 else 608 child_exited = !is_target_alive(&target, evsel_list->core.threads) ? 1 : 0; 609 610 if (child_exited) 611 break; 612 613 clock_gettime(CLOCK_MONOTONIC, &time_start); 614 if (!(evlist__poll(evsel_list, time_to_sleep) > 0)) { /* poll timeout or EINTR */ 615 if (timeout || handle_interval(interval, times)) 616 break; 617 time_to_sleep = sleep_time; 618 } else { /* fd revent */ 619 process_evlist(evsel_list, interval); 620 clock_gettime(CLOCK_MONOTONIC, &time_stop); 621 compute_tts(&time_start, &time_stop, &time_to_sleep); 622 } 623 } 624 625 return status; 626 } 627 628 enum counter_recovery { 629 COUNTER_SKIP, 630 COUNTER_RETRY, 631 COUNTER_FATAL, 632 }; 633 634 static enum counter_recovery stat_handle_error(struct evsel *counter) 635 { 636 char msg[BUFSIZ]; 637 /* 638 * PPC returns ENXIO for HW counters until 2.6.37 639 * (behavior changed with commit b0a873e). 640 */ 641 if (errno == EINVAL || errno == ENOSYS || 642 errno == ENOENT || errno == EOPNOTSUPP || 643 errno == ENXIO) { 644 if (verbose > 0) 645 ui__warning("%s event is not supported by the kernel.\n", 646 evsel__name(counter)); 647 counter->supported = false; 648 /* 649 * errored is a sticky flag that means one of the counter's 650 * cpu event had a problem and needs to be reexamined. 651 */ 652 counter->errored = true; 653 654 if ((evsel__leader(counter) != counter) || 655 !(counter->core.leader->nr_members > 1)) 656 return COUNTER_SKIP; 657 } else if (evsel__fallback(counter, &target, errno, msg, sizeof(msg))) { 658 if (verbose > 0) 659 ui__warning("%s\n", msg); 660 return COUNTER_RETRY; 661 } else if (target__has_per_thread(&target) && 662 evsel_list->core.threads && 663 evsel_list->core.threads->err_thread != -1) { 664 /* 665 * For global --per-thread case, skip current 666 * error thread. 667 */ 668 if (!thread_map__remove(evsel_list->core.threads, 669 evsel_list->core.threads->err_thread)) { 670 evsel_list->core.threads->err_thread = -1; 671 return COUNTER_RETRY; 672 } 673 } else if (counter->skippable) { 674 if (verbose > 0) 675 ui__warning("skipping event %s that kernel failed to open .\n", 676 evsel__name(counter)); 677 counter->supported = false; 678 counter->errored = true; 679 return COUNTER_SKIP; 680 } 681 682 evsel__open_strerror(counter, &target, errno, msg, sizeof(msg)); 683 ui__error("%s\n", msg); 684 685 if (child_pid != -1) 686 kill(child_pid, SIGTERM); 687 688 tpebs_delete(); 689 690 return COUNTER_FATAL; 691 } 692 693 static int __run_perf_stat(int argc, const char **argv, int run_idx) 694 { 695 int interval = stat_config.interval; 696 int times = stat_config.times; 697 int timeout = stat_config.timeout; 698 char msg[BUFSIZ]; 699 unsigned long long t0, t1; 700 struct evsel *counter; 701 size_t l; 702 int status = 0; 703 const bool forks = (argc > 0); 704 bool is_pipe = STAT_RECORD ? perf_stat.data.is_pipe : false; 705 struct evlist_cpu_iterator evlist_cpu_itr; 706 struct affinity saved_affinity, *affinity = NULL; 707 int err; 708 bool second_pass = false; 709 710 if (forks) { 711 if (evlist__prepare_workload(evsel_list, &target, argv, is_pipe, workload_exec_failed_signal) < 0) { 712 perror("failed to prepare workload"); 713 return -1; 714 } 715 child_pid = evsel_list->workload.pid; 716 } 717 718 if (!cpu_map__is_dummy(evsel_list->core.user_requested_cpus)) { 719 if (affinity__setup(&saved_affinity) < 0) 720 return -1; 721 affinity = &saved_affinity; 722 } 723 724 evlist__for_each_entry(evsel_list, counter) { 725 counter->reset_group = false; 726 if (bpf_counter__load(counter, &target)) 727 return -1; 728 if (!(evsel__is_bperf(counter))) 729 all_counters_use_bpf = false; 730 } 731 732 evlist__reset_aggr_stats(evsel_list); 733 734 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 735 counter = evlist_cpu_itr.evsel; 736 737 /* 738 * bperf calls evsel__open_per_cpu() in bperf__load(), so 739 * no need to call it again here. 740 */ 741 if (target.use_bpf) 742 break; 743 744 if (counter->reset_group || counter->errored) 745 continue; 746 if (evsel__is_bperf(counter)) 747 continue; 748 try_again: 749 if (create_perf_stat_counter(counter, &stat_config, &target, 750 evlist_cpu_itr.cpu_map_idx) < 0) { 751 752 /* 753 * Weak group failed. We cannot just undo this here 754 * because earlier CPUs might be in group mode, and the kernel 755 * doesn't support mixing group and non group reads. Defer 756 * it to later. 757 * Don't close here because we're in the wrong affinity. 758 */ 759 if ((errno == EINVAL || errno == EBADF) && 760 evsel__leader(counter) != counter && 761 counter->weak_group) { 762 evlist__reset_weak_group(evsel_list, counter, false); 763 assert(counter->reset_group); 764 second_pass = true; 765 continue; 766 } 767 768 switch (stat_handle_error(counter)) { 769 case COUNTER_FATAL: 770 return -1; 771 case COUNTER_RETRY: 772 goto try_again; 773 case COUNTER_SKIP: 774 continue; 775 default: 776 break; 777 } 778 779 } 780 counter->supported = true; 781 } 782 783 if (second_pass) { 784 /* 785 * Now redo all the weak group after closing them, 786 * and also close errored counters. 787 */ 788 789 /* First close errored or weak retry */ 790 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 791 counter = evlist_cpu_itr.evsel; 792 793 if (!counter->reset_group && !counter->errored) 794 continue; 795 796 perf_evsel__close_cpu(&counter->core, evlist_cpu_itr.cpu_map_idx); 797 } 798 /* Now reopen weak */ 799 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 800 counter = evlist_cpu_itr.evsel; 801 802 if (!counter->reset_group) 803 continue; 804 try_again_reset: 805 pr_debug2("reopening weak %s\n", evsel__name(counter)); 806 if (create_perf_stat_counter(counter, &stat_config, &target, 807 evlist_cpu_itr.cpu_map_idx) < 0) { 808 809 switch (stat_handle_error(counter)) { 810 case COUNTER_FATAL: 811 return -1; 812 case COUNTER_RETRY: 813 goto try_again_reset; 814 case COUNTER_SKIP: 815 continue; 816 default: 817 break; 818 } 819 } 820 counter->supported = true; 821 } 822 } 823 affinity__cleanup(affinity); 824 825 evlist__for_each_entry(evsel_list, counter) { 826 if (!counter->supported) { 827 perf_evsel__free_fd(&counter->core); 828 continue; 829 } 830 831 l = strlen(counter->unit); 832 if (l > stat_config.unit_width) 833 stat_config.unit_width = l; 834 835 if (evsel__should_store_id(counter) && 836 evsel__store_ids(counter, evsel_list)) 837 return -1; 838 } 839 840 if (evlist__apply_filters(evsel_list, &counter, &target)) { 841 pr_err("failed to set filter \"%s\" on event %s with %d (%s)\n", 842 counter->filter, evsel__name(counter), errno, 843 str_error_r(errno, msg, sizeof(msg))); 844 return -1; 845 } 846 847 if (STAT_RECORD) { 848 int fd = perf_data__fd(&perf_stat.data); 849 850 if (is_pipe) { 851 err = perf_header__write_pipe(perf_data__fd(&perf_stat.data)); 852 } else { 853 err = perf_session__write_header(perf_stat.session, evsel_list, 854 fd, false); 855 } 856 857 if (err < 0) 858 return err; 859 860 err = perf_event__synthesize_stat_events(&stat_config, NULL, evsel_list, 861 process_synthesized_event, is_pipe); 862 if (err < 0) 863 return err; 864 } 865 866 if (target.initial_delay) { 867 pr_info(EVLIST_DISABLED_MSG); 868 } else { 869 err = enable_counters(); 870 if (err) 871 return -1; 872 } 873 874 /* Exec the command, if any */ 875 if (forks) 876 evlist__start_workload(evsel_list); 877 878 if (target.initial_delay > 0) { 879 usleep(target.initial_delay * USEC_PER_MSEC); 880 err = enable_counters(); 881 if (err) 882 return -1; 883 884 pr_info(EVLIST_ENABLED_MSG); 885 } 886 887 t0 = rdclock(); 888 clock_gettime(CLOCK_MONOTONIC, &ref_time); 889 890 if (forks) { 891 if (interval || timeout || evlist__ctlfd_initialized(evsel_list)) 892 status = dispatch_events(forks, timeout, interval, ×); 893 if (child_pid != -1) { 894 if (timeout) 895 kill(child_pid, SIGTERM); 896 wait4(child_pid, &status, 0, &stat_config.ru_data); 897 } 898 899 if (workload_exec_errno) { 900 const char *emsg = str_error_r(workload_exec_errno, msg, sizeof(msg)); 901 pr_err("Workload failed: %s\n", emsg); 902 return -1; 903 } 904 905 if (WIFSIGNALED(status)) 906 psignal(WTERMSIG(status), argv[0]); 907 } else { 908 status = dispatch_events(forks, timeout, interval, ×); 909 } 910 911 disable_counters(); 912 913 t1 = rdclock(); 914 915 if (stat_config.walltime_run_table) 916 stat_config.walltime_run[run_idx] = t1 - t0; 917 918 if (interval && stat_config.summary) { 919 stat_config.interval = 0; 920 stat_config.stop_read_counter = true; 921 init_stats(&walltime_nsecs_stats); 922 update_stats(&walltime_nsecs_stats, t1 - t0); 923 924 evlist__copy_prev_raw_counts(evsel_list); 925 evlist__reset_prev_raw_counts(evsel_list); 926 evlist__reset_aggr_stats(evsel_list); 927 } else { 928 update_stats(&walltime_nsecs_stats, t1 - t0); 929 update_rusage_stats(&ru_stats, &stat_config.ru_data); 930 } 931 932 /* 933 * Closing a group leader splits the group, and as we only disable 934 * group leaders, results in remaining events becoming enabled. To 935 * avoid arbitrary skew, we must read all counters before closing any 936 * group leaders. 937 */ 938 if (read_counters() == 0) 939 process_counters(); 940 941 /* 942 * We need to keep evsel_list alive, because it's processed 943 * later the evsel_list will be closed after. 944 */ 945 if (!STAT_RECORD) 946 evlist__close(evsel_list); 947 948 return WEXITSTATUS(status); 949 } 950 951 static int run_perf_stat(int argc, const char **argv, int run_idx) 952 { 953 int ret; 954 955 if (pre_cmd) { 956 ret = system(pre_cmd); 957 if (ret) 958 return ret; 959 } 960 961 if (sync_run) 962 sync(); 963 964 ret = __run_perf_stat(argc, argv, run_idx); 965 if (ret) 966 return ret; 967 968 if (post_cmd) { 969 ret = system(post_cmd); 970 if (ret) 971 return ret; 972 } 973 974 return ret; 975 } 976 977 static void print_counters(struct timespec *ts, int argc, const char **argv) 978 { 979 /* Do not print anything if we record to the pipe. */ 980 if (STAT_RECORD && perf_stat.data.is_pipe) 981 return; 982 if (quiet) 983 return; 984 985 evlist__print_counters(evsel_list, &stat_config, &target, ts, argc, argv); 986 } 987 988 static volatile sig_atomic_t signr = -1; 989 990 static void skip_signal(int signo) 991 { 992 if ((child_pid == -1) || stat_config.interval) 993 done = 1; 994 995 signr = signo; 996 /* 997 * render child_pid harmless 998 * won't send SIGTERM to a random 999 * process in case of race condition 1000 * and fast PID recycling 1001 */ 1002 child_pid = -1; 1003 } 1004 1005 static void sig_atexit(void) 1006 { 1007 sigset_t set, oset; 1008 1009 /* 1010 * avoid race condition with SIGCHLD handler 1011 * in skip_signal() which is modifying child_pid 1012 * goal is to avoid send SIGTERM to a random 1013 * process 1014 */ 1015 sigemptyset(&set); 1016 sigaddset(&set, SIGCHLD); 1017 sigprocmask(SIG_BLOCK, &set, &oset); 1018 1019 if (child_pid != -1) 1020 kill(child_pid, SIGTERM); 1021 1022 sigprocmask(SIG_SETMASK, &oset, NULL); 1023 1024 if (signr == -1) 1025 return; 1026 1027 signal(signr, SIG_DFL); 1028 kill(getpid(), signr); 1029 } 1030 1031 void perf_stat__set_big_num(int set) 1032 { 1033 stat_config.big_num = (set != 0); 1034 } 1035 1036 void perf_stat__set_no_csv_summary(int set) 1037 { 1038 stat_config.no_csv_summary = (set != 0); 1039 } 1040 1041 static int stat__set_big_num(const struct option *opt __maybe_unused, 1042 const char *s __maybe_unused, int unset) 1043 { 1044 big_num_opt = unset ? 0 : 1; 1045 perf_stat__set_big_num(!unset); 1046 return 0; 1047 } 1048 1049 static int enable_metric_only(const struct option *opt __maybe_unused, 1050 const char *s __maybe_unused, int unset) 1051 { 1052 force_metric_only = true; 1053 stat_config.metric_only = !unset; 1054 return 0; 1055 } 1056 1057 static int append_metric_groups(const struct option *opt __maybe_unused, 1058 const char *str, 1059 int unset __maybe_unused) 1060 { 1061 if (metrics) { 1062 char *tmp; 1063 1064 if (asprintf(&tmp, "%s,%s", metrics, str) < 0) 1065 return -ENOMEM; 1066 free(metrics); 1067 metrics = tmp; 1068 } else { 1069 metrics = strdup(str); 1070 if (!metrics) 1071 return -ENOMEM; 1072 } 1073 return 0; 1074 } 1075 1076 static int parse_control_option(const struct option *opt, 1077 const char *str, 1078 int unset __maybe_unused) 1079 { 1080 struct perf_stat_config *config = opt->value; 1081 1082 return evlist__parse_control(str, &config->ctl_fd, &config->ctl_fd_ack, &config->ctl_fd_close); 1083 } 1084 1085 static int parse_stat_cgroups(const struct option *opt, 1086 const char *str, int unset) 1087 { 1088 if (stat_config.cgroup_list) { 1089 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 1090 return -1; 1091 } 1092 1093 return parse_cgroups(opt, str, unset); 1094 } 1095 1096 static int parse_cputype(const struct option *opt, 1097 const char *str, 1098 int unset __maybe_unused) 1099 { 1100 const struct perf_pmu *pmu; 1101 struct evlist *evlist = *(struct evlist **)opt->value; 1102 1103 if (!list_empty(&evlist->core.entries)) { 1104 fprintf(stderr, "Must define cputype before events/metrics\n"); 1105 return -1; 1106 } 1107 1108 pmu = perf_pmus__pmu_for_pmu_filter(str); 1109 if (!pmu) { 1110 fprintf(stderr, "--cputype %s is not supported!\n", str); 1111 return -1; 1112 } 1113 parse_events_option_args.pmu_filter = pmu->name; 1114 1115 return 0; 1116 } 1117 1118 static int parse_cache_level(const struct option *opt, 1119 const char *str, 1120 int unset __maybe_unused) 1121 { 1122 int level; 1123 struct opt_aggr_mode *opt_aggr_mode = (struct opt_aggr_mode *)opt->value; 1124 u32 *aggr_level = (u32 *)opt->data; 1125 1126 /* 1127 * If no string is specified, aggregate based on the topology of 1128 * Last Level Cache (LLC). Since the LLC level can change from 1129 * architecture to architecture, set level greater than 1130 * MAX_CACHE_LVL which will be interpreted as LLC. 1131 */ 1132 if (str == NULL) { 1133 level = MAX_CACHE_LVL + 1; 1134 goto out; 1135 } 1136 1137 /* 1138 * The format to specify cache level is LX or lX where X is the 1139 * cache level. 1140 */ 1141 if (strlen(str) != 2 || (str[0] != 'l' && str[0] != 'L')) { 1142 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1143 MAX_CACHE_LVL, 1144 MAX_CACHE_LVL); 1145 return -EINVAL; 1146 } 1147 1148 level = atoi(&str[1]); 1149 if (level < 1) { 1150 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1151 MAX_CACHE_LVL, 1152 MAX_CACHE_LVL); 1153 return -EINVAL; 1154 } 1155 1156 if (level > MAX_CACHE_LVL) { 1157 pr_err("perf only supports max cache level of %d.\n" 1158 "Consider increasing MAX_CACHE_LVL\n", MAX_CACHE_LVL); 1159 return -EINVAL; 1160 } 1161 out: 1162 opt_aggr_mode->cache = true; 1163 *aggr_level = level; 1164 return 0; 1165 } 1166 1167 /** 1168 * Calculate the cache instance ID from the map in 1169 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1170 * Cache instance ID is the first CPU reported in the shared_cpu_list file. 1171 */ 1172 static int cpu__get_cache_id_from_map(struct perf_cpu cpu, char *map) 1173 { 1174 int id; 1175 struct perf_cpu_map *cpu_map = perf_cpu_map__new(map); 1176 1177 /* 1178 * If the map contains no CPU, consider the current CPU to 1179 * be the first online CPU in the cache domain else use the 1180 * first online CPU of the cache domain as the ID. 1181 */ 1182 id = perf_cpu_map__min(cpu_map).cpu; 1183 if (id == -1) 1184 id = cpu.cpu; 1185 1186 /* Free the perf_cpu_map used to find the cache ID */ 1187 perf_cpu_map__put(cpu_map); 1188 1189 return id; 1190 } 1191 1192 /** 1193 * cpu__get_cache_id - Returns 0 if successful in populating the 1194 * cache level and cache id. Cache level is read from 1195 * /sys/devices/system/cpu/cpuX/cache/indexY/level where as cache instance ID 1196 * is the first CPU reported by 1197 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1198 */ 1199 static int cpu__get_cache_details(struct perf_cpu cpu, struct perf_cache *cache) 1200 { 1201 int ret = 0; 1202 u32 cache_level = stat_config.aggr_level; 1203 struct cpu_cache_level caches[MAX_CACHE_LVL]; 1204 u32 i = 0, caches_cnt = 0; 1205 1206 cache->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1207 cache->cache = -1; 1208 1209 ret = build_caches_for_cpu(cpu.cpu, caches, &caches_cnt); 1210 if (ret) { 1211 /* 1212 * If caches_cnt is not 0, cpu_cache_level data 1213 * was allocated when building the topology. 1214 * Free the allocated data before returning. 1215 */ 1216 if (caches_cnt) 1217 goto free_caches; 1218 1219 return ret; 1220 } 1221 1222 if (!caches_cnt) 1223 return -1; 1224 1225 /* 1226 * Save the data for the highest level if no 1227 * level was specified by the user. 1228 */ 1229 if (cache_level > MAX_CACHE_LVL) { 1230 int max_level_index = 0; 1231 1232 for (i = 1; i < caches_cnt; ++i) { 1233 if (caches[i].level > caches[max_level_index].level) 1234 max_level_index = i; 1235 } 1236 1237 cache->cache_lvl = caches[max_level_index].level; 1238 cache->cache = cpu__get_cache_id_from_map(cpu, caches[max_level_index].map); 1239 1240 /* Reset i to 0 to free entire caches[] */ 1241 i = 0; 1242 goto free_caches; 1243 } 1244 1245 for (i = 0; i < caches_cnt; ++i) { 1246 if (caches[i].level == cache_level) { 1247 cache->cache_lvl = cache_level; 1248 cache->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1249 } 1250 1251 cpu_cache_level__free(&caches[i]); 1252 } 1253 1254 free_caches: 1255 /* 1256 * Free all the allocated cpu_cache_level data. 1257 */ 1258 while (i < caches_cnt) 1259 cpu_cache_level__free(&caches[i++]); 1260 1261 return ret; 1262 } 1263 1264 /** 1265 * aggr_cpu_id__cache - Create an aggr_cpu_id with cache instache ID, cache 1266 * level, die and socket populated with the cache instache ID, cache level, 1267 * die and socket for cpu. The function signature is compatible with 1268 * aggr_cpu_id_get_t. 1269 */ 1270 static struct aggr_cpu_id aggr_cpu_id__cache(struct perf_cpu cpu, void *data) 1271 { 1272 int ret; 1273 struct aggr_cpu_id id; 1274 struct perf_cache cache; 1275 1276 id = aggr_cpu_id__die(cpu, data); 1277 if (aggr_cpu_id__is_empty(&id)) 1278 return id; 1279 1280 ret = cpu__get_cache_details(cpu, &cache); 1281 if (ret) 1282 return id; 1283 1284 id.cache_lvl = cache.cache_lvl; 1285 id.cache = cache.cache; 1286 return id; 1287 } 1288 1289 static const char *const aggr_mode__string[] = { 1290 [AGGR_CORE] = "core", 1291 [AGGR_CACHE] = "cache", 1292 [AGGR_CLUSTER] = "cluster", 1293 [AGGR_DIE] = "die", 1294 [AGGR_GLOBAL] = "global", 1295 [AGGR_NODE] = "node", 1296 [AGGR_NONE] = "none", 1297 [AGGR_SOCKET] = "socket", 1298 [AGGR_THREAD] = "thread", 1299 [AGGR_UNSET] = "unset", 1300 }; 1301 1302 static struct aggr_cpu_id perf_stat__get_socket(struct perf_stat_config *config __maybe_unused, 1303 struct perf_cpu cpu) 1304 { 1305 return aggr_cpu_id__socket(cpu, /*data=*/NULL); 1306 } 1307 1308 static struct aggr_cpu_id perf_stat__get_die(struct perf_stat_config *config __maybe_unused, 1309 struct perf_cpu cpu) 1310 { 1311 return aggr_cpu_id__die(cpu, /*data=*/NULL); 1312 } 1313 1314 static struct aggr_cpu_id perf_stat__get_cache_id(struct perf_stat_config *config __maybe_unused, 1315 struct perf_cpu cpu) 1316 { 1317 return aggr_cpu_id__cache(cpu, /*data=*/NULL); 1318 } 1319 1320 static struct aggr_cpu_id perf_stat__get_cluster(struct perf_stat_config *config __maybe_unused, 1321 struct perf_cpu cpu) 1322 { 1323 return aggr_cpu_id__cluster(cpu, /*data=*/NULL); 1324 } 1325 1326 static struct aggr_cpu_id perf_stat__get_core(struct perf_stat_config *config __maybe_unused, 1327 struct perf_cpu cpu) 1328 { 1329 return aggr_cpu_id__core(cpu, /*data=*/NULL); 1330 } 1331 1332 static struct aggr_cpu_id perf_stat__get_node(struct perf_stat_config *config __maybe_unused, 1333 struct perf_cpu cpu) 1334 { 1335 return aggr_cpu_id__node(cpu, /*data=*/NULL); 1336 } 1337 1338 static struct aggr_cpu_id perf_stat__get_global(struct perf_stat_config *config __maybe_unused, 1339 struct perf_cpu cpu) 1340 { 1341 return aggr_cpu_id__global(cpu, /*data=*/NULL); 1342 } 1343 1344 static struct aggr_cpu_id perf_stat__get_cpu(struct perf_stat_config *config __maybe_unused, 1345 struct perf_cpu cpu) 1346 { 1347 return aggr_cpu_id__cpu(cpu, /*data=*/NULL); 1348 } 1349 1350 static struct aggr_cpu_id perf_stat__get_aggr(struct perf_stat_config *config, 1351 aggr_get_id_t get_id, struct perf_cpu cpu) 1352 { 1353 struct aggr_cpu_id id; 1354 1355 /* per-process mode - should use global aggr mode */ 1356 if (cpu.cpu == -1) 1357 return get_id(config, cpu); 1358 1359 if (aggr_cpu_id__is_empty(&config->cpus_aggr_map->map[cpu.cpu])) 1360 config->cpus_aggr_map->map[cpu.cpu] = get_id(config, cpu); 1361 1362 id = config->cpus_aggr_map->map[cpu.cpu]; 1363 return id; 1364 } 1365 1366 static struct aggr_cpu_id perf_stat__get_socket_cached(struct perf_stat_config *config, 1367 struct perf_cpu cpu) 1368 { 1369 return perf_stat__get_aggr(config, perf_stat__get_socket, cpu); 1370 } 1371 1372 static struct aggr_cpu_id perf_stat__get_die_cached(struct perf_stat_config *config, 1373 struct perf_cpu cpu) 1374 { 1375 return perf_stat__get_aggr(config, perf_stat__get_die, cpu); 1376 } 1377 1378 static struct aggr_cpu_id perf_stat__get_cluster_cached(struct perf_stat_config *config, 1379 struct perf_cpu cpu) 1380 { 1381 return perf_stat__get_aggr(config, perf_stat__get_cluster, cpu); 1382 } 1383 1384 static struct aggr_cpu_id perf_stat__get_cache_id_cached(struct perf_stat_config *config, 1385 struct perf_cpu cpu) 1386 { 1387 return perf_stat__get_aggr(config, perf_stat__get_cache_id, cpu); 1388 } 1389 1390 static struct aggr_cpu_id perf_stat__get_core_cached(struct perf_stat_config *config, 1391 struct perf_cpu cpu) 1392 { 1393 return perf_stat__get_aggr(config, perf_stat__get_core, cpu); 1394 } 1395 1396 static struct aggr_cpu_id perf_stat__get_node_cached(struct perf_stat_config *config, 1397 struct perf_cpu cpu) 1398 { 1399 return perf_stat__get_aggr(config, perf_stat__get_node, cpu); 1400 } 1401 1402 static struct aggr_cpu_id perf_stat__get_global_cached(struct perf_stat_config *config, 1403 struct perf_cpu cpu) 1404 { 1405 return perf_stat__get_aggr(config, perf_stat__get_global, cpu); 1406 } 1407 1408 static struct aggr_cpu_id perf_stat__get_cpu_cached(struct perf_stat_config *config, 1409 struct perf_cpu cpu) 1410 { 1411 return perf_stat__get_aggr(config, perf_stat__get_cpu, cpu); 1412 } 1413 1414 static aggr_cpu_id_get_t aggr_mode__get_aggr(enum aggr_mode aggr_mode) 1415 { 1416 switch (aggr_mode) { 1417 case AGGR_SOCKET: 1418 return aggr_cpu_id__socket; 1419 case AGGR_DIE: 1420 return aggr_cpu_id__die; 1421 case AGGR_CLUSTER: 1422 return aggr_cpu_id__cluster; 1423 case AGGR_CACHE: 1424 return aggr_cpu_id__cache; 1425 case AGGR_CORE: 1426 return aggr_cpu_id__core; 1427 case AGGR_NODE: 1428 return aggr_cpu_id__node; 1429 case AGGR_NONE: 1430 return aggr_cpu_id__cpu; 1431 case AGGR_GLOBAL: 1432 return aggr_cpu_id__global; 1433 case AGGR_THREAD: 1434 case AGGR_UNSET: 1435 case AGGR_MAX: 1436 default: 1437 return NULL; 1438 } 1439 } 1440 1441 static aggr_get_id_t aggr_mode__get_id(enum aggr_mode aggr_mode) 1442 { 1443 switch (aggr_mode) { 1444 case AGGR_SOCKET: 1445 return perf_stat__get_socket_cached; 1446 case AGGR_DIE: 1447 return perf_stat__get_die_cached; 1448 case AGGR_CLUSTER: 1449 return perf_stat__get_cluster_cached; 1450 case AGGR_CACHE: 1451 return perf_stat__get_cache_id_cached; 1452 case AGGR_CORE: 1453 return perf_stat__get_core_cached; 1454 case AGGR_NODE: 1455 return perf_stat__get_node_cached; 1456 case AGGR_NONE: 1457 return perf_stat__get_cpu_cached; 1458 case AGGR_GLOBAL: 1459 return perf_stat__get_global_cached; 1460 case AGGR_THREAD: 1461 case AGGR_UNSET: 1462 case AGGR_MAX: 1463 default: 1464 return NULL; 1465 } 1466 } 1467 1468 static int perf_stat_init_aggr_mode(void) 1469 { 1470 int nr; 1471 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr(stat_config.aggr_mode); 1472 1473 if (get_id) { 1474 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1475 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1476 get_id, /*data=*/NULL, needs_sort); 1477 if (!stat_config.aggr_map) { 1478 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1479 return -1; 1480 } 1481 stat_config.aggr_get_id = aggr_mode__get_id(stat_config.aggr_mode); 1482 } 1483 1484 if (stat_config.aggr_mode == AGGR_THREAD) { 1485 nr = perf_thread_map__nr(evsel_list->core.threads); 1486 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1487 if (stat_config.aggr_map == NULL) 1488 return -ENOMEM; 1489 1490 for (int s = 0; s < nr; s++) { 1491 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1492 1493 id.thread_idx = s; 1494 stat_config.aggr_map->map[s] = id; 1495 } 1496 return 0; 1497 } 1498 1499 /* 1500 * The evsel_list->cpus is the base we operate on, 1501 * taking the highest cpu number to be the size of 1502 * the aggregation translate cpumap. 1503 */ 1504 if (!perf_cpu_map__is_any_cpu_or_is_empty(evsel_list->core.user_requested_cpus)) 1505 nr = perf_cpu_map__max(evsel_list->core.user_requested_cpus).cpu; 1506 else 1507 nr = 0; 1508 stat_config.cpus_aggr_map = cpu_aggr_map__empty_new(nr + 1); 1509 return stat_config.cpus_aggr_map ? 0 : -ENOMEM; 1510 } 1511 1512 static void cpu_aggr_map__delete(struct cpu_aggr_map *map) 1513 { 1514 free(map); 1515 } 1516 1517 static void perf_stat__exit_aggr_mode(void) 1518 { 1519 cpu_aggr_map__delete(stat_config.aggr_map); 1520 cpu_aggr_map__delete(stat_config.cpus_aggr_map); 1521 stat_config.aggr_map = NULL; 1522 stat_config.cpus_aggr_map = NULL; 1523 } 1524 1525 static struct aggr_cpu_id perf_env__get_socket_aggr_by_cpu(struct perf_cpu cpu, void *data) 1526 { 1527 struct perf_env *env = data; 1528 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1529 1530 if (cpu.cpu != -1) 1531 id.socket = env->cpu[cpu.cpu].socket_id; 1532 1533 return id; 1534 } 1535 1536 static struct aggr_cpu_id perf_env__get_die_aggr_by_cpu(struct perf_cpu cpu, void *data) 1537 { 1538 struct perf_env *env = data; 1539 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1540 1541 if (cpu.cpu != -1) { 1542 /* 1543 * die_id is relative to socket, so start 1544 * with the socket ID and then add die to 1545 * make a unique ID. 1546 */ 1547 id.socket = env->cpu[cpu.cpu].socket_id; 1548 id.die = env->cpu[cpu.cpu].die_id; 1549 } 1550 1551 return id; 1552 } 1553 1554 static void perf_env__get_cache_id_for_cpu(struct perf_cpu cpu, struct perf_env *env, 1555 u32 cache_level, struct aggr_cpu_id *id) 1556 { 1557 int i; 1558 int caches_cnt = env->caches_cnt; 1559 struct cpu_cache_level *caches = env->caches; 1560 1561 id->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1562 id->cache = -1; 1563 1564 if (!caches_cnt) 1565 return; 1566 1567 for (i = caches_cnt - 1; i > -1; --i) { 1568 struct perf_cpu_map *cpu_map; 1569 int map_contains_cpu; 1570 1571 /* 1572 * If user has not specified a level, find the fist level with 1573 * the cpu in the map. Since building the map is expensive, do 1574 * this only if levels match. 1575 */ 1576 if (cache_level <= MAX_CACHE_LVL && caches[i].level != cache_level) 1577 continue; 1578 1579 cpu_map = perf_cpu_map__new(caches[i].map); 1580 map_contains_cpu = perf_cpu_map__idx(cpu_map, cpu); 1581 perf_cpu_map__put(cpu_map); 1582 1583 if (map_contains_cpu != -1) { 1584 id->cache_lvl = caches[i].level; 1585 id->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1586 return; 1587 } 1588 } 1589 } 1590 1591 static struct aggr_cpu_id perf_env__get_cache_aggr_by_cpu(struct perf_cpu cpu, 1592 void *data) 1593 { 1594 struct perf_env *env = data; 1595 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1596 1597 if (cpu.cpu != -1) { 1598 u32 cache_level = (perf_stat.aggr_level) ?: stat_config.aggr_level; 1599 1600 id.socket = env->cpu[cpu.cpu].socket_id; 1601 id.die = env->cpu[cpu.cpu].die_id; 1602 perf_env__get_cache_id_for_cpu(cpu, env, cache_level, &id); 1603 } 1604 1605 return id; 1606 } 1607 1608 static struct aggr_cpu_id perf_env__get_cluster_aggr_by_cpu(struct perf_cpu cpu, 1609 void *data) 1610 { 1611 struct perf_env *env = data; 1612 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1613 1614 if (cpu.cpu != -1) { 1615 id.socket = env->cpu[cpu.cpu].socket_id; 1616 id.die = env->cpu[cpu.cpu].die_id; 1617 id.cluster = env->cpu[cpu.cpu].cluster_id; 1618 } 1619 1620 return id; 1621 } 1622 1623 static struct aggr_cpu_id perf_env__get_core_aggr_by_cpu(struct perf_cpu cpu, void *data) 1624 { 1625 struct perf_env *env = data; 1626 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1627 1628 if (cpu.cpu != -1) { 1629 /* 1630 * core_id is relative to socket, die and cluster, we need a 1631 * global id. So we set socket, die id, cluster id and core id. 1632 */ 1633 id.socket = env->cpu[cpu.cpu].socket_id; 1634 id.die = env->cpu[cpu.cpu].die_id; 1635 id.cluster = env->cpu[cpu.cpu].cluster_id; 1636 id.core = env->cpu[cpu.cpu].core_id; 1637 } 1638 1639 return id; 1640 } 1641 1642 static struct aggr_cpu_id perf_env__get_cpu_aggr_by_cpu(struct perf_cpu cpu, void *data) 1643 { 1644 struct perf_env *env = data; 1645 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1646 1647 if (cpu.cpu != -1) { 1648 /* 1649 * core_id is relative to socket and die, 1650 * we need a global id. So we set 1651 * socket, die id and core id 1652 */ 1653 id.socket = env->cpu[cpu.cpu].socket_id; 1654 id.die = env->cpu[cpu.cpu].die_id; 1655 id.core = env->cpu[cpu.cpu].core_id; 1656 id.cpu = cpu; 1657 } 1658 1659 return id; 1660 } 1661 1662 static struct aggr_cpu_id perf_env__get_node_aggr_by_cpu(struct perf_cpu cpu, void *data) 1663 { 1664 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1665 1666 id.node = perf_env__numa_node(data, cpu); 1667 return id; 1668 } 1669 1670 static struct aggr_cpu_id perf_env__get_global_aggr_by_cpu(struct perf_cpu cpu __maybe_unused, 1671 void *data __maybe_unused) 1672 { 1673 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1674 1675 /* it always aggregates to the cpu 0 */ 1676 id.cpu = (struct perf_cpu){ .cpu = 0 }; 1677 return id; 1678 } 1679 1680 static struct aggr_cpu_id perf_stat__get_socket_file(struct perf_stat_config *config __maybe_unused, 1681 struct perf_cpu cpu) 1682 { 1683 return perf_env__get_socket_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1684 } 1685 static struct aggr_cpu_id perf_stat__get_die_file(struct perf_stat_config *config __maybe_unused, 1686 struct perf_cpu cpu) 1687 { 1688 return perf_env__get_die_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1689 } 1690 1691 static struct aggr_cpu_id perf_stat__get_cluster_file(struct perf_stat_config *config __maybe_unused, 1692 struct perf_cpu cpu) 1693 { 1694 return perf_env__get_cluster_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1695 } 1696 1697 static struct aggr_cpu_id perf_stat__get_cache_file(struct perf_stat_config *config __maybe_unused, 1698 struct perf_cpu cpu) 1699 { 1700 return perf_env__get_cache_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1701 } 1702 1703 static struct aggr_cpu_id perf_stat__get_core_file(struct perf_stat_config *config __maybe_unused, 1704 struct perf_cpu cpu) 1705 { 1706 return perf_env__get_core_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1707 } 1708 1709 static struct aggr_cpu_id perf_stat__get_cpu_file(struct perf_stat_config *config __maybe_unused, 1710 struct perf_cpu cpu) 1711 { 1712 return perf_env__get_cpu_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1713 } 1714 1715 static struct aggr_cpu_id perf_stat__get_node_file(struct perf_stat_config *config __maybe_unused, 1716 struct perf_cpu cpu) 1717 { 1718 return perf_env__get_node_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1719 } 1720 1721 static struct aggr_cpu_id perf_stat__get_global_file(struct perf_stat_config *config __maybe_unused, 1722 struct perf_cpu cpu) 1723 { 1724 return perf_env__get_global_aggr_by_cpu(cpu, &perf_stat.session->header.env); 1725 } 1726 1727 static aggr_cpu_id_get_t aggr_mode__get_aggr_file(enum aggr_mode aggr_mode) 1728 { 1729 switch (aggr_mode) { 1730 case AGGR_SOCKET: 1731 return perf_env__get_socket_aggr_by_cpu; 1732 case AGGR_DIE: 1733 return perf_env__get_die_aggr_by_cpu; 1734 case AGGR_CLUSTER: 1735 return perf_env__get_cluster_aggr_by_cpu; 1736 case AGGR_CACHE: 1737 return perf_env__get_cache_aggr_by_cpu; 1738 case AGGR_CORE: 1739 return perf_env__get_core_aggr_by_cpu; 1740 case AGGR_NODE: 1741 return perf_env__get_node_aggr_by_cpu; 1742 case AGGR_GLOBAL: 1743 return perf_env__get_global_aggr_by_cpu; 1744 case AGGR_NONE: 1745 return perf_env__get_cpu_aggr_by_cpu; 1746 case AGGR_THREAD: 1747 case AGGR_UNSET: 1748 case AGGR_MAX: 1749 default: 1750 return NULL; 1751 } 1752 } 1753 1754 static aggr_get_id_t aggr_mode__get_id_file(enum aggr_mode aggr_mode) 1755 { 1756 switch (aggr_mode) { 1757 case AGGR_SOCKET: 1758 return perf_stat__get_socket_file; 1759 case AGGR_DIE: 1760 return perf_stat__get_die_file; 1761 case AGGR_CLUSTER: 1762 return perf_stat__get_cluster_file; 1763 case AGGR_CACHE: 1764 return perf_stat__get_cache_file; 1765 case AGGR_CORE: 1766 return perf_stat__get_core_file; 1767 case AGGR_NODE: 1768 return perf_stat__get_node_file; 1769 case AGGR_GLOBAL: 1770 return perf_stat__get_global_file; 1771 case AGGR_NONE: 1772 return perf_stat__get_cpu_file; 1773 case AGGR_THREAD: 1774 case AGGR_UNSET: 1775 case AGGR_MAX: 1776 default: 1777 return NULL; 1778 } 1779 } 1780 1781 static int perf_stat_init_aggr_mode_file(struct perf_stat *st) 1782 { 1783 struct perf_env *env = &st->session->header.env; 1784 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr_file(stat_config.aggr_mode); 1785 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1786 1787 if (stat_config.aggr_mode == AGGR_THREAD) { 1788 int nr = perf_thread_map__nr(evsel_list->core.threads); 1789 1790 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1791 if (stat_config.aggr_map == NULL) 1792 return -ENOMEM; 1793 1794 for (int s = 0; s < nr; s++) { 1795 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1796 1797 id.thread_idx = s; 1798 stat_config.aggr_map->map[s] = id; 1799 } 1800 return 0; 1801 } 1802 1803 if (!get_id) 1804 return 0; 1805 1806 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1807 get_id, env, needs_sort); 1808 if (!stat_config.aggr_map) { 1809 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1810 return -1; 1811 } 1812 stat_config.aggr_get_id = aggr_mode__get_id_file(stat_config.aggr_mode); 1813 return 0; 1814 } 1815 1816 /* 1817 * Add default attributes, if there were no attributes specified or 1818 * if -d/--detailed, -d -d or -d -d -d is used: 1819 */ 1820 static int add_default_attributes(void) 1821 { 1822 struct perf_event_attr default_attrs0[] = { 1823 1824 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK }, 1825 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES }, 1826 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS }, 1827 { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS }, 1828 1829 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES }, 1830 }; 1831 struct perf_event_attr frontend_attrs[] = { 1832 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_FRONTEND }, 1833 }; 1834 struct perf_event_attr backend_attrs[] = { 1835 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_BACKEND }, 1836 }; 1837 struct perf_event_attr default_attrs1[] = { 1838 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS }, 1839 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS }, 1840 { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES }, 1841 1842 }; 1843 1844 /* 1845 * Detailed stats (-d), covering the L1 and last level data caches: 1846 */ 1847 struct perf_event_attr detailed_attrs[] = { 1848 1849 { .type = PERF_TYPE_HW_CACHE, 1850 .config = 1851 PERF_COUNT_HW_CACHE_L1D << 0 | 1852 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1853 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 1854 1855 { .type = PERF_TYPE_HW_CACHE, 1856 .config = 1857 PERF_COUNT_HW_CACHE_L1D << 0 | 1858 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1859 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 1860 1861 { .type = PERF_TYPE_HW_CACHE, 1862 .config = 1863 PERF_COUNT_HW_CACHE_LL << 0 | 1864 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1865 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 1866 1867 { .type = PERF_TYPE_HW_CACHE, 1868 .config = 1869 PERF_COUNT_HW_CACHE_LL << 0 | 1870 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1871 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 1872 }; 1873 1874 /* 1875 * Very detailed stats (-d -d), covering the instruction cache and the TLB caches: 1876 */ 1877 struct perf_event_attr very_detailed_attrs[] = { 1878 1879 { .type = PERF_TYPE_HW_CACHE, 1880 .config = 1881 PERF_COUNT_HW_CACHE_L1I << 0 | 1882 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1883 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 1884 1885 { .type = PERF_TYPE_HW_CACHE, 1886 .config = 1887 PERF_COUNT_HW_CACHE_L1I << 0 | 1888 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1889 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 1890 1891 { .type = PERF_TYPE_HW_CACHE, 1892 .config = 1893 PERF_COUNT_HW_CACHE_DTLB << 0 | 1894 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1895 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 1896 1897 { .type = PERF_TYPE_HW_CACHE, 1898 .config = 1899 PERF_COUNT_HW_CACHE_DTLB << 0 | 1900 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1901 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 1902 1903 { .type = PERF_TYPE_HW_CACHE, 1904 .config = 1905 PERF_COUNT_HW_CACHE_ITLB << 0 | 1906 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1907 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 1908 1909 { .type = PERF_TYPE_HW_CACHE, 1910 .config = 1911 PERF_COUNT_HW_CACHE_ITLB << 0 | 1912 (PERF_COUNT_HW_CACHE_OP_READ << 8) | 1913 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 1914 1915 }; 1916 1917 /* 1918 * Very, very detailed stats (-d -d -d), adding prefetch events: 1919 */ 1920 struct perf_event_attr very_very_detailed_attrs[] = { 1921 1922 { .type = PERF_TYPE_HW_CACHE, 1923 .config = 1924 PERF_COUNT_HW_CACHE_L1D << 0 | 1925 (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) | 1926 (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) }, 1927 1928 { .type = PERF_TYPE_HW_CACHE, 1929 .config = 1930 PERF_COUNT_HW_CACHE_L1D << 0 | 1931 (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) | 1932 (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) }, 1933 }; 1934 1935 struct perf_event_attr default_null_attrs[] = {}; 1936 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 1937 1938 /* Set attrs if no event is selected and !null_run: */ 1939 if (stat_config.null_run) 1940 return 0; 1941 1942 if (transaction_run) { 1943 /* Handle -T as -M transaction. Once platform specific metrics 1944 * support has been added to the json files, all architectures 1945 * will use this approach. To determine transaction support 1946 * on an architecture test for such a metric name. 1947 */ 1948 if (!metricgroup__has_metric(pmu, "transaction")) { 1949 pr_err("Missing transaction metrics\n"); 1950 return -1; 1951 } 1952 return metricgroup__parse_groups(evsel_list, pmu, "transaction", 1953 stat_config.metric_no_group, 1954 stat_config.metric_no_merge, 1955 stat_config.metric_no_threshold, 1956 stat_config.user_requested_cpu_list, 1957 stat_config.system_wide, 1958 stat_config.hardware_aware_grouping, 1959 &stat_config.metric_events); 1960 } 1961 1962 if (smi_cost) { 1963 int smi; 1964 1965 if (sysfs__read_int(FREEZE_ON_SMI_PATH, &smi) < 0) { 1966 pr_err("freeze_on_smi is not supported.\n"); 1967 return -1; 1968 } 1969 1970 if (!smi) { 1971 if (sysfs__write_int(FREEZE_ON_SMI_PATH, 1) < 0) { 1972 fprintf(stderr, "Failed to set freeze_on_smi.\n"); 1973 return -1; 1974 } 1975 smi_reset = true; 1976 } 1977 1978 if (!metricgroup__has_metric(pmu, "smi")) { 1979 pr_err("Missing smi metrics\n"); 1980 return -1; 1981 } 1982 1983 if (!force_metric_only) 1984 stat_config.metric_only = true; 1985 1986 return metricgroup__parse_groups(evsel_list, pmu, "smi", 1987 stat_config.metric_no_group, 1988 stat_config.metric_no_merge, 1989 stat_config.metric_no_threshold, 1990 stat_config.user_requested_cpu_list, 1991 stat_config.system_wide, 1992 stat_config.hardware_aware_grouping, 1993 &stat_config.metric_events); 1994 } 1995 1996 if (topdown_run) { 1997 unsigned int max_level = metricgroups__topdown_max_level(); 1998 char str[] = "TopdownL1"; 1999 2000 if (!force_metric_only) 2001 stat_config.metric_only = true; 2002 2003 if (!max_level) { 2004 pr_err("Topdown requested but the topdown metric groups aren't present.\n" 2005 "(See perf list the metric groups have names like TopdownL1)\n"); 2006 return -1; 2007 } 2008 if (stat_config.topdown_level > max_level) { 2009 pr_err("Invalid top-down metrics level. The max level is %u.\n", max_level); 2010 return -1; 2011 } else if (!stat_config.topdown_level) 2012 stat_config.topdown_level = 1; 2013 2014 if (!stat_config.interval && !stat_config.metric_only) { 2015 fprintf(stat_config.output, 2016 "Topdown accuracy may decrease when measuring long periods.\n" 2017 "Please print the result regularly, e.g. -I1000\n"); 2018 } 2019 str[8] = stat_config.topdown_level + '0'; 2020 if (metricgroup__parse_groups(evsel_list, 2021 pmu, str, 2022 /*metric_no_group=*/false, 2023 /*metric_no_merge=*/false, 2024 /*metric_no_threshold=*/true, 2025 stat_config.user_requested_cpu_list, 2026 stat_config.system_wide, 2027 stat_config.hardware_aware_grouping, 2028 &stat_config.metric_events) < 0) 2029 return -1; 2030 } 2031 2032 if (!stat_config.topdown_level) 2033 stat_config.topdown_level = 1; 2034 2035 if (!evsel_list->core.nr_entries) { 2036 /* No events so add defaults. */ 2037 if (target__has_cpu(&target)) 2038 default_attrs0[0].config = PERF_COUNT_SW_CPU_CLOCK; 2039 2040 if (evlist__add_default_attrs(evsel_list, default_attrs0) < 0) 2041 return -1; 2042 if (perf_pmus__have_event("cpu", "stalled-cycles-frontend")) { 2043 if (evlist__add_default_attrs(evsel_list, frontend_attrs) < 0) 2044 return -1; 2045 } 2046 if (perf_pmus__have_event("cpu", "stalled-cycles-backend")) { 2047 if (evlist__add_default_attrs(evsel_list, backend_attrs) < 0) 2048 return -1; 2049 } 2050 if (evlist__add_default_attrs(evsel_list, default_attrs1) < 0) 2051 return -1; 2052 /* 2053 * Add TopdownL1 metrics if they exist. To minimize 2054 * multiplexing, don't request threshold computation. 2055 */ 2056 if (metricgroup__has_metric(pmu, "Default")) { 2057 struct evlist *metric_evlist = evlist__new(); 2058 struct evsel *metric_evsel; 2059 2060 if (!metric_evlist) 2061 return -1; 2062 2063 if (metricgroup__parse_groups(metric_evlist, pmu, "Default", 2064 /*metric_no_group=*/false, 2065 /*metric_no_merge=*/false, 2066 /*metric_no_threshold=*/true, 2067 stat_config.user_requested_cpu_list, 2068 stat_config.system_wide, 2069 stat_config.hardware_aware_grouping, 2070 &stat_config.metric_events) < 0) 2071 return -1; 2072 2073 evlist__for_each_entry(metric_evlist, metric_evsel) { 2074 metric_evsel->skippable = true; 2075 metric_evsel->default_metricgroup = true; 2076 } 2077 evlist__splice_list_tail(evsel_list, &metric_evlist->core.entries); 2078 evlist__delete(metric_evlist); 2079 } 2080 2081 /* Platform specific attrs */ 2082 if (evlist__add_default_attrs(evsel_list, default_null_attrs) < 0) 2083 return -1; 2084 } 2085 2086 /* Detailed events get appended to the event list: */ 2087 2088 if (detailed_run < 1) 2089 return 0; 2090 2091 /* Append detailed run extra attributes: */ 2092 if (evlist__add_default_attrs(evsel_list, detailed_attrs) < 0) 2093 return -1; 2094 2095 if (detailed_run < 2) 2096 return 0; 2097 2098 /* Append very detailed run extra attributes: */ 2099 if (evlist__add_default_attrs(evsel_list, very_detailed_attrs) < 0) 2100 return -1; 2101 2102 if (detailed_run < 3) 2103 return 0; 2104 2105 /* Append very, very detailed run extra attributes: */ 2106 return evlist__add_default_attrs(evsel_list, very_very_detailed_attrs); 2107 } 2108 2109 static const char * const stat_record_usage[] = { 2110 "perf stat record [<options>]", 2111 NULL, 2112 }; 2113 2114 static void init_features(struct perf_session *session) 2115 { 2116 int feat; 2117 2118 for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++) 2119 perf_header__set_feat(&session->header, feat); 2120 2121 perf_header__clear_feat(&session->header, HEADER_DIR_FORMAT); 2122 perf_header__clear_feat(&session->header, HEADER_BUILD_ID); 2123 perf_header__clear_feat(&session->header, HEADER_TRACING_DATA); 2124 perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK); 2125 perf_header__clear_feat(&session->header, HEADER_AUXTRACE); 2126 } 2127 2128 static int __cmd_record(const struct option stat_options[], struct opt_aggr_mode *opt_mode, 2129 int argc, const char **argv) 2130 { 2131 struct perf_session *session; 2132 struct perf_data *data = &perf_stat.data; 2133 2134 argc = parse_options(argc, argv, stat_options, stat_record_usage, 2135 PARSE_OPT_STOP_AT_NON_OPTION); 2136 stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(opt_mode); 2137 2138 if (output_name) 2139 data->path = output_name; 2140 2141 if (stat_config.run_count != 1 || forever) { 2142 pr_err("Cannot use -r option with perf stat record.\n"); 2143 return -1; 2144 } 2145 2146 session = perf_session__new(data, NULL); 2147 if (IS_ERR(session)) { 2148 pr_err("Perf session creation failed\n"); 2149 return PTR_ERR(session); 2150 } 2151 2152 init_features(session); 2153 2154 session->evlist = evsel_list; 2155 perf_stat.session = session; 2156 perf_stat.record = true; 2157 return argc; 2158 } 2159 2160 static int process_stat_round_event(struct perf_session *session, 2161 union perf_event *event) 2162 { 2163 struct perf_record_stat_round *stat_round = &event->stat_round; 2164 struct timespec tsh, *ts = NULL; 2165 const char **argv = session->header.env.cmdline_argv; 2166 int argc = session->header.env.nr_cmdline; 2167 2168 process_counters(); 2169 2170 if (stat_round->type == PERF_STAT_ROUND_TYPE__FINAL) 2171 update_stats(&walltime_nsecs_stats, stat_round->time); 2172 2173 if (stat_config.interval && stat_round->time) { 2174 tsh.tv_sec = stat_round->time / NSEC_PER_SEC; 2175 tsh.tv_nsec = stat_round->time % NSEC_PER_SEC; 2176 ts = &tsh; 2177 } 2178 2179 print_counters(ts, argc, argv); 2180 return 0; 2181 } 2182 2183 static 2184 int process_stat_config_event(struct perf_session *session, 2185 union perf_event *event) 2186 { 2187 const struct perf_tool *tool = session->tool; 2188 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2189 2190 perf_event__read_stat_config(&stat_config, &event->stat_config); 2191 2192 if (perf_cpu_map__is_empty(st->cpus)) { 2193 if (st->aggr_mode != AGGR_UNSET) 2194 pr_warning("warning: processing task data, aggregation mode not set\n"); 2195 } else if (st->aggr_mode != AGGR_UNSET) { 2196 stat_config.aggr_mode = st->aggr_mode; 2197 } 2198 2199 if (perf_stat.data.is_pipe) 2200 perf_stat_init_aggr_mode(); 2201 else 2202 perf_stat_init_aggr_mode_file(st); 2203 2204 if (stat_config.aggr_map) { 2205 int nr_aggr = stat_config.aggr_map->nr; 2206 2207 if (evlist__alloc_aggr_stats(session->evlist, nr_aggr) < 0) { 2208 pr_err("cannot allocate aggr counts\n"); 2209 return -1; 2210 } 2211 } 2212 return 0; 2213 } 2214 2215 static int set_maps(struct perf_stat *st) 2216 { 2217 if (!st->cpus || !st->threads) 2218 return 0; 2219 2220 if (WARN_ONCE(st->maps_allocated, "stats double allocation\n")) 2221 return -EINVAL; 2222 2223 perf_evlist__set_maps(&evsel_list->core, st->cpus, st->threads); 2224 2225 if (evlist__alloc_stats(&stat_config, evsel_list, /*alloc_raw=*/true)) 2226 return -ENOMEM; 2227 2228 st->maps_allocated = true; 2229 return 0; 2230 } 2231 2232 static 2233 int process_thread_map_event(struct perf_session *session, 2234 union perf_event *event) 2235 { 2236 const struct perf_tool *tool = session->tool; 2237 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2238 2239 if (st->threads) { 2240 pr_warning("Extra thread map event, ignoring.\n"); 2241 return 0; 2242 } 2243 2244 st->threads = thread_map__new_event(&event->thread_map); 2245 if (!st->threads) 2246 return -ENOMEM; 2247 2248 return set_maps(st); 2249 } 2250 2251 static 2252 int process_cpu_map_event(struct perf_session *session, 2253 union perf_event *event) 2254 { 2255 const struct perf_tool *tool = session->tool; 2256 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2257 struct perf_cpu_map *cpus; 2258 2259 if (st->cpus) { 2260 pr_warning("Extra cpu map event, ignoring.\n"); 2261 return 0; 2262 } 2263 2264 cpus = cpu_map__new_data(&event->cpu_map.data); 2265 if (!cpus) 2266 return -ENOMEM; 2267 2268 st->cpus = cpus; 2269 return set_maps(st); 2270 } 2271 2272 static const char * const stat_report_usage[] = { 2273 "perf stat report [<options>]", 2274 NULL, 2275 }; 2276 2277 static struct perf_stat perf_stat = { 2278 .aggr_mode = AGGR_UNSET, 2279 .aggr_level = 0, 2280 }; 2281 2282 static int __cmd_report(int argc, const char **argv) 2283 { 2284 struct perf_session *session; 2285 const struct option options[] = { 2286 OPT_STRING('i', "input", &input_name, "file", "input file name"), 2287 OPT_SET_UINT(0, "per-socket", &perf_stat.aggr_mode, 2288 "aggregate counts per processor socket", AGGR_SOCKET), 2289 OPT_SET_UINT(0, "per-die", &perf_stat.aggr_mode, 2290 "aggregate counts per processor die", AGGR_DIE), 2291 OPT_SET_UINT(0, "per-cluster", &perf_stat.aggr_mode, 2292 "aggregate counts perf processor cluster", AGGR_CLUSTER), 2293 OPT_CALLBACK_OPTARG(0, "per-cache", &perf_stat.aggr_mode, &perf_stat.aggr_level, 2294 "cache level", 2295 "aggregate count at this cache level (Default: LLC)", 2296 parse_cache_level), 2297 OPT_SET_UINT(0, "per-core", &perf_stat.aggr_mode, 2298 "aggregate counts per physical processor core", AGGR_CORE), 2299 OPT_SET_UINT(0, "per-node", &perf_stat.aggr_mode, 2300 "aggregate counts per numa node", AGGR_NODE), 2301 OPT_SET_UINT('A', "no-aggr", &perf_stat.aggr_mode, 2302 "disable CPU count aggregation", AGGR_NONE), 2303 OPT_END() 2304 }; 2305 struct stat st; 2306 int ret; 2307 2308 argc = parse_options(argc, argv, options, stat_report_usage, 0); 2309 2310 if (!input_name || !strlen(input_name)) { 2311 if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode)) 2312 input_name = "-"; 2313 else 2314 input_name = "perf.data"; 2315 } 2316 2317 perf_stat.data.path = input_name; 2318 perf_stat.data.mode = PERF_DATA_MODE_READ; 2319 2320 perf_tool__init(&perf_stat.tool, /*ordered_events=*/false); 2321 perf_stat.tool.attr = perf_event__process_attr; 2322 perf_stat.tool.event_update = perf_event__process_event_update; 2323 perf_stat.tool.thread_map = process_thread_map_event; 2324 perf_stat.tool.cpu_map = process_cpu_map_event; 2325 perf_stat.tool.stat_config = process_stat_config_event; 2326 perf_stat.tool.stat = perf_event__process_stat_event; 2327 perf_stat.tool.stat_round = process_stat_round_event; 2328 2329 session = perf_session__new(&perf_stat.data, &perf_stat.tool); 2330 if (IS_ERR(session)) 2331 return PTR_ERR(session); 2332 2333 perf_stat.session = session; 2334 stat_config.output = stderr; 2335 evlist__delete(evsel_list); 2336 evsel_list = session->evlist; 2337 2338 ret = perf_session__process_events(session); 2339 if (ret) 2340 return ret; 2341 2342 perf_session__delete(session); 2343 return 0; 2344 } 2345 2346 static void setup_system_wide(int forks) 2347 { 2348 /* 2349 * Make system wide (-a) the default target if 2350 * no target was specified and one of following 2351 * conditions is met: 2352 * 2353 * - there's no workload specified 2354 * - there is workload specified but all requested 2355 * events are system wide events 2356 */ 2357 if (!target__none(&target)) 2358 return; 2359 2360 if (!forks) 2361 target.system_wide = true; 2362 else { 2363 struct evsel *counter; 2364 2365 evlist__for_each_entry(evsel_list, counter) { 2366 if (!counter->core.requires_cpu && 2367 !evsel__name_is(counter, "duration_time")) { 2368 return; 2369 } 2370 } 2371 2372 if (evsel_list->core.nr_entries) 2373 target.system_wide = true; 2374 } 2375 } 2376 2377 int cmd_stat(int argc, const char **argv) 2378 { 2379 struct opt_aggr_mode opt_mode = {}; 2380 struct option stat_options[] = { 2381 OPT_BOOLEAN('T', "transaction", &transaction_run, 2382 "hardware transaction statistics"), 2383 OPT_CALLBACK('e', "event", &parse_events_option_args, "event", 2384 "event selector. use 'perf list' to list available events", 2385 parse_events_option), 2386 OPT_CALLBACK(0, "filter", &evsel_list, "filter", 2387 "event filter", parse_filter), 2388 OPT_BOOLEAN('i', "no-inherit", &stat_config.no_inherit, 2389 "child tasks do not inherit counters"), 2390 OPT_STRING('p', "pid", &target.pid, "pid", 2391 "stat events on existing process id"), 2392 OPT_STRING('t', "tid", &target.tid, "tid", 2393 "stat events on existing thread id"), 2394 #ifdef HAVE_BPF_SKEL 2395 OPT_STRING('b', "bpf-prog", &target.bpf_str, "bpf-prog-id", 2396 "stat events on existing bpf program id"), 2397 OPT_BOOLEAN(0, "bpf-counters", &target.use_bpf, 2398 "use bpf program to count events"), 2399 OPT_STRING(0, "bpf-attr-map", &target.attr_map, "attr-map-path", 2400 "path to perf_event_attr map"), 2401 #endif 2402 OPT_BOOLEAN('a', "all-cpus", &target.system_wide, 2403 "system-wide collection from all CPUs"), 2404 OPT_BOOLEAN(0, "scale", &stat_config.scale, 2405 "Use --no-scale to disable counter scaling for multiplexing"), 2406 OPT_INCR('v', "verbose", &verbose, 2407 "be more verbose (show counter open errors, etc)"), 2408 OPT_INTEGER('r', "repeat", &stat_config.run_count, 2409 "repeat command and print average + stddev (max: 100, forever: 0)"), 2410 OPT_BOOLEAN(0, "table", &stat_config.walltime_run_table, 2411 "display details about each run (only with -r option)"), 2412 OPT_BOOLEAN('n', "null", &stat_config.null_run, 2413 "null run - dont start any counters"), 2414 OPT_INCR('d', "detailed", &detailed_run, 2415 "detailed run - start a lot of events"), 2416 OPT_BOOLEAN('S', "sync", &sync_run, 2417 "call sync() before starting a run"), 2418 OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL, 2419 "print large numbers with thousands\' separators", 2420 stat__set_big_num), 2421 OPT_STRING('C', "cpu", &target.cpu_list, "cpu", 2422 "list of cpus to monitor in system-wide"), 2423 OPT_BOOLEAN('A', "no-aggr", &opt_mode.no_aggr, 2424 "disable aggregation across CPUs or PMUs"), 2425 OPT_BOOLEAN(0, "no-merge", &opt_mode.no_aggr, 2426 "disable aggregation the same as -A or -no-aggr"), 2427 OPT_BOOLEAN(0, "hybrid-merge", &stat_config.hybrid_merge, 2428 "Merge identical named hybrid events"), 2429 OPT_STRING('x', "field-separator", &stat_config.csv_sep, "separator", 2430 "print counts with custom separator"), 2431 OPT_BOOLEAN('j', "json-output", &stat_config.json_output, 2432 "print counts in JSON format"), 2433 OPT_CALLBACK('G', "cgroup", &evsel_list, "name", 2434 "monitor event in cgroup name only", parse_stat_cgroups), 2435 OPT_STRING(0, "for-each-cgroup", &stat_config.cgroup_list, "name", 2436 "expand events for each cgroup"), 2437 OPT_STRING('o', "output", &output_name, "file", "output file name"), 2438 OPT_BOOLEAN(0, "append", &append_file, "append to the output file"), 2439 OPT_INTEGER(0, "log-fd", &output_fd, 2440 "log output to fd, instead of stderr"), 2441 OPT_STRING(0, "pre", &pre_cmd, "command", 2442 "command to run prior to the measured command"), 2443 OPT_STRING(0, "post", &post_cmd, "command", 2444 "command to run after to the measured command"), 2445 OPT_UINTEGER('I', "interval-print", &stat_config.interval, 2446 "print counts at regular interval in ms " 2447 "(overhead is possible for values <= 100ms)"), 2448 OPT_INTEGER(0, "interval-count", &stat_config.times, 2449 "print counts for fixed number of times"), 2450 OPT_BOOLEAN(0, "interval-clear", &stat_config.interval_clear, 2451 "clear screen in between new interval"), 2452 OPT_UINTEGER(0, "timeout", &stat_config.timeout, 2453 "stop workload and print counts after a timeout period in ms (>= 10ms)"), 2454 OPT_BOOLEAN(0, "per-socket", &opt_mode.socket, 2455 "aggregate counts per processor socket"), 2456 OPT_BOOLEAN(0, "per-die", &opt_mode.die, "aggregate counts per processor die"), 2457 OPT_BOOLEAN(0, "per-cluster", &opt_mode.cluster, 2458 "aggregate counts per processor cluster"), 2459 OPT_CALLBACK_OPTARG(0, "per-cache", &opt_mode, &stat_config.aggr_level, 2460 "cache level", "aggregate count at this cache level (Default: LLC)", 2461 parse_cache_level), 2462 OPT_BOOLEAN(0, "per-core", &opt_mode.core, 2463 "aggregate counts per physical processor core"), 2464 OPT_BOOLEAN(0, "per-thread", &opt_mode.thread, "aggregate counts per thread"), 2465 OPT_BOOLEAN(0, "per-node", &opt_mode.node, "aggregate counts per numa node"), 2466 OPT_INTEGER('D', "delay", &target.initial_delay, 2467 "ms to wait before starting measurement after program start (-1: start with events disabled)"), 2468 OPT_CALLBACK_NOOPT(0, "metric-only", &stat_config.metric_only, NULL, 2469 "Only print computed metrics. No raw values", enable_metric_only), 2470 OPT_BOOLEAN(0, "metric-no-group", &stat_config.metric_no_group, 2471 "don't group metric events, impacts multiplexing"), 2472 OPT_BOOLEAN(0, "metric-no-merge", &stat_config.metric_no_merge, 2473 "don't try to share events between metrics in a group"), 2474 OPT_BOOLEAN(0, "metric-no-threshold", &stat_config.metric_no_threshold, 2475 "disable adding events for the metric threshold calculation"), 2476 OPT_BOOLEAN(0, "topdown", &topdown_run, 2477 "measure top-down statistics"), 2478 #ifdef HAVE_ARCH_X86_64_SUPPORT 2479 OPT_BOOLEAN(0, "record-tpebs", &tpebs_recording, 2480 "enable recording for tpebs when retire_latency required"), 2481 #endif 2482 OPT_UINTEGER(0, "td-level", &stat_config.topdown_level, 2483 "Set the metrics level for the top-down statistics (0: max level)"), 2484 OPT_BOOLEAN(0, "smi-cost", &smi_cost, 2485 "measure SMI cost"), 2486 OPT_CALLBACK('M', "metrics", &evsel_list, "metric/metric group list", 2487 "monitor specified metrics or metric groups (separated by ,)", 2488 append_metric_groups), 2489 OPT_BOOLEAN_FLAG(0, "all-kernel", &stat_config.all_kernel, 2490 "Configure all used events to run in kernel space.", 2491 PARSE_OPT_EXCLUSIVE), 2492 OPT_BOOLEAN_FLAG(0, "all-user", &stat_config.all_user, 2493 "Configure all used events to run in user space.", 2494 PARSE_OPT_EXCLUSIVE), 2495 OPT_BOOLEAN(0, "percore-show-thread", &stat_config.percore_show_thread, 2496 "Use with 'percore' event qualifier to show the event " 2497 "counts of one hardware thread by sum up total hardware " 2498 "threads of same physical core"), 2499 OPT_BOOLEAN(0, "summary", &stat_config.summary, 2500 "print summary for interval mode"), 2501 OPT_BOOLEAN(0, "no-csv-summary", &stat_config.no_csv_summary, 2502 "don't print 'summary' for CSV summary output"), 2503 OPT_BOOLEAN(0, "quiet", &quiet, 2504 "don't print any output, messages or warnings (useful with record)"), 2505 OPT_CALLBACK(0, "cputype", &evsel_list, "hybrid cpu type", 2506 "Only enable events on applying cpu with this type " 2507 "for hybrid platform (e.g. core or atom)", 2508 parse_cputype), 2509 #ifdef HAVE_LIBPFM 2510 OPT_CALLBACK(0, "pfm-events", &evsel_list, "event", 2511 "libpfm4 event selector. use 'perf list' to list available events", 2512 parse_libpfm_events_option), 2513 #endif 2514 OPT_CALLBACK(0, "control", &stat_config, "fd:ctl-fd[,ack-fd] or fifo:ctl-fifo[,ack-fifo]", 2515 "Listen on ctl-fd descriptor for command to control measurement ('enable': enable events, 'disable': disable events).\n" 2516 "\t\t\t Optionally send control command completion ('ack\\n') to ack-fd descriptor.\n" 2517 "\t\t\t Alternatively, ctl-fifo / ack-fifo will be opened and used as ctl-fd / ack-fd.", 2518 parse_control_option), 2519 OPT_CALLBACK_OPTARG(0, "iostat", &evsel_list, &stat_config, "default", 2520 "measure I/O performance metrics provided by arch/platform", 2521 iostat_parse), 2522 OPT_END() 2523 }; 2524 const char * const stat_usage[] = { 2525 "perf stat [<options>] [<command>]", 2526 NULL 2527 }; 2528 int status = -EINVAL, run_idx, err; 2529 const char *mode; 2530 FILE *output = stderr; 2531 unsigned int interval, timeout; 2532 const char * const stat_subcommands[] = { "record", "report" }; 2533 char errbuf[BUFSIZ]; 2534 2535 setlocale(LC_ALL, ""); 2536 2537 evsel_list = evlist__new(); 2538 if (evsel_list == NULL) 2539 return -ENOMEM; 2540 2541 parse_events__shrink_config_terms(); 2542 2543 /* String-parsing callback-based options would segfault when negated */ 2544 set_option_flag(stat_options, 'e', "event", PARSE_OPT_NONEG); 2545 set_option_flag(stat_options, 'M', "metrics", PARSE_OPT_NONEG); 2546 set_option_flag(stat_options, 'G', "cgroup", PARSE_OPT_NONEG); 2547 2548 argc = parse_options_subcommand(argc, argv, stat_options, stat_subcommands, 2549 (const char **) stat_usage, 2550 PARSE_OPT_STOP_AT_NON_OPTION); 2551 2552 stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(&opt_mode); 2553 2554 if (stat_config.csv_sep) { 2555 stat_config.csv_output = true; 2556 if (!strcmp(stat_config.csv_sep, "\\t")) 2557 stat_config.csv_sep = "\t"; 2558 } else 2559 stat_config.csv_sep = DEFAULT_SEPARATOR; 2560 2561 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) { 2562 argc = __cmd_record(stat_options, &opt_mode, argc, argv); 2563 if (argc < 0) 2564 return -1; 2565 } else if (argc && strlen(argv[0]) > 2 && strstarts("report", argv[0])) 2566 return __cmd_report(argc, argv); 2567 2568 interval = stat_config.interval; 2569 timeout = stat_config.timeout; 2570 2571 /* 2572 * For record command the -o is already taken care of. 2573 */ 2574 if (!STAT_RECORD && output_name && strcmp(output_name, "-")) 2575 output = NULL; 2576 2577 if (output_name && output_fd) { 2578 fprintf(stderr, "cannot use both --output and --log-fd\n"); 2579 parse_options_usage(stat_usage, stat_options, "o", 1); 2580 parse_options_usage(NULL, stat_options, "log-fd", 0); 2581 goto out; 2582 } 2583 2584 if (stat_config.metric_only && stat_config.aggr_mode == AGGR_THREAD) { 2585 fprintf(stderr, "--metric-only is not supported with --per-thread\n"); 2586 goto out; 2587 } 2588 2589 if (stat_config.metric_only && stat_config.run_count > 1) { 2590 fprintf(stderr, "--metric-only is not supported with -r\n"); 2591 goto out; 2592 } 2593 2594 if (stat_config.walltime_run_table && stat_config.run_count <= 1) { 2595 fprintf(stderr, "--table is only supported with -r\n"); 2596 parse_options_usage(stat_usage, stat_options, "r", 1); 2597 parse_options_usage(NULL, stat_options, "table", 0); 2598 goto out; 2599 } 2600 2601 if (output_fd < 0) { 2602 fprintf(stderr, "argument to --log-fd must be a > 0\n"); 2603 parse_options_usage(stat_usage, stat_options, "log-fd", 0); 2604 goto out; 2605 } 2606 2607 if (!output && !quiet) { 2608 struct timespec tm; 2609 mode = append_file ? "a" : "w"; 2610 2611 output = fopen(output_name, mode); 2612 if (!output) { 2613 perror("failed to create output file"); 2614 return -1; 2615 } 2616 if (!stat_config.json_output) { 2617 clock_gettime(CLOCK_REALTIME, &tm); 2618 fprintf(output, "# started on %s\n", ctime(&tm.tv_sec)); 2619 } 2620 } else if (output_fd > 0) { 2621 mode = append_file ? "a" : "w"; 2622 output = fdopen(output_fd, mode); 2623 if (!output) { 2624 perror("Failed opening logfd"); 2625 return -errno; 2626 } 2627 } 2628 2629 if (stat_config.interval_clear && !isatty(fileno(output))) { 2630 fprintf(stderr, "--interval-clear does not work with output\n"); 2631 parse_options_usage(stat_usage, stat_options, "o", 1); 2632 parse_options_usage(NULL, stat_options, "log-fd", 0); 2633 parse_options_usage(NULL, stat_options, "interval-clear", 0); 2634 return -1; 2635 } 2636 2637 stat_config.output = output; 2638 2639 /* 2640 * let the spreadsheet do the pretty-printing 2641 */ 2642 if (stat_config.csv_output) { 2643 /* User explicitly passed -B? */ 2644 if (big_num_opt == 1) { 2645 fprintf(stderr, "-B option not supported with -x\n"); 2646 parse_options_usage(stat_usage, stat_options, "B", 1); 2647 parse_options_usage(NULL, stat_options, "x", 1); 2648 goto out; 2649 } else /* Nope, so disable big number formatting */ 2650 stat_config.big_num = false; 2651 } else if (big_num_opt == 0) /* User passed --no-big-num */ 2652 stat_config.big_num = false; 2653 2654 err = target__validate(&target); 2655 if (err) { 2656 target__strerror(&target, err, errbuf, BUFSIZ); 2657 pr_warning("%s\n", errbuf); 2658 } 2659 2660 setup_system_wide(argc); 2661 2662 /* 2663 * Display user/system times only for single 2664 * run and when there's specified tracee. 2665 */ 2666 if ((stat_config.run_count == 1) && target__none(&target)) 2667 stat_config.ru_display = true; 2668 2669 if (stat_config.run_count < 0) { 2670 pr_err("Run count must be a positive number\n"); 2671 parse_options_usage(stat_usage, stat_options, "r", 1); 2672 goto out; 2673 } else if (stat_config.run_count == 0) { 2674 forever = true; 2675 stat_config.run_count = 1; 2676 } 2677 2678 if (stat_config.walltime_run_table) { 2679 stat_config.walltime_run = zalloc(stat_config.run_count * sizeof(stat_config.walltime_run[0])); 2680 if (!stat_config.walltime_run) { 2681 pr_err("failed to setup -r option"); 2682 goto out; 2683 } 2684 } 2685 2686 if ((stat_config.aggr_mode == AGGR_THREAD) && 2687 !target__has_task(&target)) { 2688 if (!target.system_wide || target.cpu_list) { 2689 fprintf(stderr, "The --per-thread option is only " 2690 "available when monitoring via -p -t -a " 2691 "options or only --per-thread.\n"); 2692 parse_options_usage(NULL, stat_options, "p", 1); 2693 parse_options_usage(NULL, stat_options, "t", 1); 2694 goto out; 2695 } 2696 } 2697 2698 /* 2699 * no_aggr, cgroup are for system-wide only 2700 * --per-thread is aggregated per thread, we dont mix it with cpu mode 2701 */ 2702 if (((stat_config.aggr_mode != AGGR_GLOBAL && 2703 stat_config.aggr_mode != AGGR_THREAD) || 2704 (nr_cgroups || stat_config.cgroup_list)) && 2705 !target__has_cpu(&target)) { 2706 fprintf(stderr, "both cgroup and no-aggregation " 2707 "modes only available in system-wide mode\n"); 2708 2709 parse_options_usage(stat_usage, stat_options, "G", 1); 2710 parse_options_usage(NULL, stat_options, "A", 1); 2711 parse_options_usage(NULL, stat_options, "a", 1); 2712 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2713 goto out; 2714 } 2715 2716 if (stat_config.iostat_run) { 2717 status = iostat_prepare(evsel_list, &stat_config); 2718 if (status) 2719 goto out; 2720 if (iostat_mode == IOSTAT_LIST) { 2721 iostat_list(evsel_list, &stat_config); 2722 goto out; 2723 } else if (verbose > 0) 2724 iostat_list(evsel_list, &stat_config); 2725 if (iostat_mode == IOSTAT_RUN && !target__has_cpu(&target)) 2726 target.system_wide = true; 2727 } 2728 2729 if ((stat_config.aggr_mode == AGGR_THREAD) && (target.system_wide)) 2730 target.per_thread = true; 2731 2732 stat_config.system_wide = target.system_wide; 2733 if (target.cpu_list) { 2734 stat_config.user_requested_cpu_list = strdup(target.cpu_list); 2735 if (!stat_config.user_requested_cpu_list) { 2736 status = -ENOMEM; 2737 goto out; 2738 } 2739 } 2740 2741 /* 2742 * Metric parsing needs to be delayed as metrics may optimize events 2743 * knowing the target is system-wide. 2744 */ 2745 if (metrics) { 2746 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 2747 int ret = metricgroup__parse_groups(evsel_list, pmu, metrics, 2748 stat_config.metric_no_group, 2749 stat_config.metric_no_merge, 2750 stat_config.metric_no_threshold, 2751 stat_config.user_requested_cpu_list, 2752 stat_config.system_wide, 2753 stat_config.hardware_aware_grouping, 2754 &stat_config.metric_events); 2755 2756 zfree(&metrics); 2757 if (ret) { 2758 status = ret; 2759 goto out; 2760 } 2761 } 2762 2763 if (add_default_attributes()) 2764 goto out; 2765 2766 if (stat_config.cgroup_list) { 2767 if (nr_cgroups > 0) { 2768 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 2769 parse_options_usage(stat_usage, stat_options, "G", 1); 2770 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2771 goto out; 2772 } 2773 2774 if (evlist__expand_cgroup(evsel_list, stat_config.cgroup_list, 2775 &stat_config.metric_events, true) < 0) { 2776 parse_options_usage(stat_usage, stat_options, 2777 "for-each-cgroup", 0); 2778 goto out; 2779 } 2780 } 2781 2782 evlist__warn_user_requested_cpus(evsel_list, target.cpu_list); 2783 2784 if (evlist__create_maps(evsel_list, &target) < 0) { 2785 if (target__has_task(&target)) { 2786 pr_err("Problems finding threads of monitor\n"); 2787 parse_options_usage(stat_usage, stat_options, "p", 1); 2788 parse_options_usage(NULL, stat_options, "t", 1); 2789 } else if (target__has_cpu(&target)) { 2790 perror("failed to parse CPUs map"); 2791 parse_options_usage(stat_usage, stat_options, "C", 1); 2792 parse_options_usage(NULL, stat_options, "a", 1); 2793 } 2794 goto out; 2795 } 2796 2797 evlist__check_cpu_maps(evsel_list); 2798 2799 /* 2800 * Initialize thread_map with comm names, 2801 * so we could print it out on output. 2802 */ 2803 if (stat_config.aggr_mode == AGGR_THREAD) { 2804 thread_map__read_comms(evsel_list->core.threads); 2805 } 2806 2807 if (stat_config.aggr_mode == AGGR_NODE) 2808 cpu__setup_cpunode_map(); 2809 2810 if (stat_config.times && interval) 2811 interval_count = true; 2812 else if (stat_config.times && !interval) { 2813 pr_err("interval-count option should be used together with " 2814 "interval-print.\n"); 2815 parse_options_usage(stat_usage, stat_options, "interval-count", 0); 2816 parse_options_usage(stat_usage, stat_options, "I", 1); 2817 goto out; 2818 } 2819 2820 if (timeout && timeout < 100) { 2821 if (timeout < 10) { 2822 pr_err("timeout must be >= 10ms.\n"); 2823 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2824 goto out; 2825 } else 2826 pr_warning("timeout < 100ms. " 2827 "The overhead percentage could be high in some cases. " 2828 "Please proceed with caution.\n"); 2829 } 2830 if (timeout && interval) { 2831 pr_err("timeout option is not supported with interval-print.\n"); 2832 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2833 parse_options_usage(stat_usage, stat_options, "I", 1); 2834 goto out; 2835 } 2836 2837 if (perf_stat_init_aggr_mode()) 2838 goto out; 2839 2840 if (evlist__alloc_stats(&stat_config, evsel_list, interval)) 2841 goto out; 2842 2843 /* 2844 * Set sample_type to PERF_SAMPLE_IDENTIFIER, which should be harmless 2845 * while avoiding that older tools show confusing messages. 2846 * 2847 * However for pipe sessions we need to keep it zero, 2848 * because script's perf_evsel__check_attr is triggered 2849 * by attr->sample_type != 0, and we can't run it on 2850 * stat sessions. 2851 */ 2852 stat_config.identifier = !(STAT_RECORD && perf_stat.data.is_pipe); 2853 2854 /* 2855 * We dont want to block the signals - that would cause 2856 * child tasks to inherit that and Ctrl-C would not work. 2857 * What we want is for Ctrl-C to work in the exec()-ed 2858 * task, but being ignored by perf stat itself: 2859 */ 2860 atexit(sig_atexit); 2861 if (!forever) 2862 signal(SIGINT, skip_signal); 2863 signal(SIGCHLD, skip_signal); 2864 signal(SIGALRM, skip_signal); 2865 signal(SIGABRT, skip_signal); 2866 2867 if (evlist__initialize_ctlfd(evsel_list, stat_config.ctl_fd, stat_config.ctl_fd_ack)) 2868 goto out; 2869 2870 /* Enable ignoring missing threads when -p option is defined. */ 2871 evlist__first(evsel_list)->ignore_missing_thread = target.pid; 2872 status = 0; 2873 for (run_idx = 0; forever || run_idx < stat_config.run_count; run_idx++) { 2874 if (stat_config.run_count != 1 && verbose > 0) 2875 fprintf(output, "[ perf stat: executing run #%d ... ]\n", 2876 run_idx + 1); 2877 2878 if (run_idx != 0) 2879 evlist__reset_prev_raw_counts(evsel_list); 2880 2881 status = run_perf_stat(argc, argv, run_idx); 2882 if (forever && status != -1 && !interval) { 2883 print_counters(NULL, argc, argv); 2884 perf_stat__reset_stats(); 2885 } 2886 } 2887 2888 if (!forever && status != -1 && (!interval || stat_config.summary)) { 2889 if (stat_config.run_count > 1) 2890 evlist__copy_res_stats(&stat_config, evsel_list); 2891 print_counters(NULL, argc, argv); 2892 } 2893 2894 evlist__finalize_ctlfd(evsel_list); 2895 2896 if (STAT_RECORD) { 2897 /* 2898 * We synthesize the kernel mmap record just so that older tools 2899 * don't emit warnings about not being able to resolve symbols 2900 * due to /proc/sys/kernel/kptr_restrict settings and instead provide 2901 * a saner message about no samples being in the perf.data file. 2902 * 2903 * This also serves to suppress a warning about f_header.data.size == 0 2904 * in header.c at the moment 'perf stat record' gets introduced, which 2905 * is not really needed once we start adding the stat specific PERF_RECORD_ 2906 * records, but the need to suppress the kptr_restrict messages in older 2907 * tools remain -acme 2908 */ 2909 int fd = perf_data__fd(&perf_stat.data); 2910 2911 err = perf_event__synthesize_kernel_mmap((void *)&perf_stat, 2912 process_synthesized_event, 2913 &perf_stat.session->machines.host); 2914 if (err) { 2915 pr_warning("Couldn't synthesize the kernel mmap record, harmless, " 2916 "older tools may produce warnings about this file\n."); 2917 } 2918 2919 if (!interval) { 2920 if (WRITE_STAT_ROUND_EVENT(walltime_nsecs_stats.max, FINAL)) 2921 pr_err("failed to write stat round event\n"); 2922 } 2923 2924 if (!perf_stat.data.is_pipe) { 2925 perf_stat.session->header.data_size += perf_stat.bytes_written; 2926 perf_session__write_header(perf_stat.session, evsel_list, fd, true); 2927 } 2928 2929 evlist__close(evsel_list); 2930 perf_session__delete(perf_stat.session); 2931 } 2932 2933 perf_stat__exit_aggr_mode(); 2934 evlist__free_stats(evsel_list); 2935 out: 2936 if (stat_config.iostat_run) 2937 iostat_release(evsel_list); 2938 2939 zfree(&stat_config.walltime_run); 2940 zfree(&stat_config.user_requested_cpu_list); 2941 2942 if (smi_cost && smi_reset) 2943 sysfs__write_int(FREEZE_ON_SMI_PATH, 0); 2944 2945 evlist__delete(evsel_list); 2946 2947 metricgroup__rblist_exit(&stat_config.metric_events); 2948 evlist__close_control(stat_config.ctl_fd, stat_config.ctl_fd_ack, &stat_config.ctl_fd_close); 2949 2950 return status; 2951 } 2952