xref: /linux/tools/perf/builtin-stat.c (revision 5499b45190237ca90dd2ac86395cf464fe1f4cc7)
1 /*
2  * builtin-stat.c
3  *
4  * Builtin stat command: Give a precise performance counters summary
5  * overview about any workload, CPU or specific PID.
6  *
7  * Sample output:
8 
9    $ perf stat ~/hackbench 10
10    Time: 0.104
11 
12     Performance counter stats for '/home/mingo/hackbench':
13 
14        1255.538611  task clock ticks     #      10.143 CPU utilization factor
15              54011  context switches     #       0.043 M/sec
16                385  CPU migrations       #       0.000 M/sec
17              17755  pagefaults           #       0.014 M/sec
18         3808323185  CPU cycles           #    3033.219 M/sec
19         1575111190  instructions         #    1254.530 M/sec
20           17367895  cache references     #      13.833 M/sec
21            7674421  cache misses         #       6.112 M/sec
22 
23     Wall-clock time elapsed:   123.786620 msecs
24 
25  *
26  * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
27  *
28  * Improvements and fixes by:
29  *
30  *   Arjan van de Ven <arjan@linux.intel.com>
31  *   Yanmin Zhang <yanmin.zhang@intel.com>
32  *   Wu Fengguang <fengguang.wu@intel.com>
33  *   Mike Galbraith <efault@gmx.de>
34  *   Paul Mackerras <paulus@samba.org>
35  *   Jaswinder Singh Rajput <jaswinder@kernel.org>
36  *
37  * Released under the GPL v2. (and only v2, not any later version)
38  */
39 
40 #include "perf.h"
41 #include "builtin.h"
42 #include "util/util.h"
43 #include "util/parse-options.h"
44 #include "util/parse-events.h"
45 #include "util/event.h"
46 #include "util/debug.h"
47 #include "util/header.h"
48 
49 #include <sys/prctl.h>
50 #include <math.h>
51 
52 static struct perf_event_attr default_attrs[] = {
53 
54   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK		},
55   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES	},
56   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS		},
57   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS		},
58 
59   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES		},
60   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS		},
61   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS	},
62   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES		},
63   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES	},
64   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES		},
65 
66 };
67 
68 static int			system_wide			=  0;
69 static unsigned int		nr_cpus				=  0;
70 static int			run_idx				=  0;
71 
72 static int			run_count			=  1;
73 static int			inherit				=  1;
74 static int			scale				=  1;
75 static pid_t			target_pid			= -1;
76 static pid_t			child_pid			= -1;
77 static int			null_run			=  0;
78 
79 static int			fd[MAX_NR_CPUS][MAX_COUNTERS];
80 
81 static int			event_scaled[MAX_COUNTERS];
82 
83 static volatile int done = 0;
84 
85 struct stats
86 {
87 	double n, mean, M2;
88 };
89 
90 static void update_stats(struct stats *stats, u64 val)
91 {
92 	double delta;
93 
94 	stats->n++;
95 	delta = val - stats->mean;
96 	stats->mean += delta / stats->n;
97 	stats->M2 += delta*(val - stats->mean);
98 }
99 
100 static double avg_stats(struct stats *stats)
101 {
102 	return stats->mean;
103 }
104 
105 /*
106  * http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
107  *
108  *       (\Sum n_i^2) - ((\Sum n_i)^2)/n
109  * s^2 = -------------------------------
110  *                  n - 1
111  *
112  * http://en.wikipedia.org/wiki/Stddev
113  *
114  * The std dev of the mean is related to the std dev by:
115  *
116  *             s
117  * s_mean = -------
118  *          sqrt(n)
119  *
120  */
121 static double stddev_stats(struct stats *stats)
122 {
123 	double variance = stats->M2 / (stats->n - 1);
124 	double variance_mean = variance / stats->n;
125 
126 	return sqrt(variance_mean);
127 }
128 
129 struct stats			event_res_stats[MAX_COUNTERS][3];
130 struct stats			runtime_nsecs_stats;
131 struct stats			walltime_nsecs_stats;
132 struct stats			runtime_cycles_stats;
133 struct stats			runtime_branches_stats;
134 
135 #define MATCH_EVENT(t, c, counter)			\
136 	(attrs[counter].type == PERF_TYPE_##t &&	\
137 	 attrs[counter].config == PERF_COUNT_##c)
138 
139 #define ERR_PERF_OPEN \
140 "Error: counter %d, sys_perf_event_open() syscall returned with %d (%s)\n"
141 
142 static void create_perf_stat_counter(int counter, int pid)
143 {
144 	struct perf_event_attr *attr = attrs + counter;
145 
146 	if (scale)
147 		attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
148 				    PERF_FORMAT_TOTAL_TIME_RUNNING;
149 
150 	if (system_wide) {
151 		unsigned int cpu;
152 
153 		for (cpu = 0; cpu < nr_cpus; cpu++) {
154 			fd[cpu][counter] = sys_perf_event_open(attr, -1, cpu, -1, 0);
155 			if (fd[cpu][counter] < 0 && verbose)
156 				fprintf(stderr, ERR_PERF_OPEN, counter,
157 					fd[cpu][counter], strerror(errno));
158 		}
159 	} else {
160 		attr->inherit	     = inherit;
161 		attr->disabled	     = 1;
162 		attr->enable_on_exec = 1;
163 
164 		fd[0][counter] = sys_perf_event_open(attr, pid, -1, -1, 0);
165 		if (fd[0][counter] < 0 && verbose)
166 			fprintf(stderr, ERR_PERF_OPEN, counter,
167 				fd[0][counter], strerror(errno));
168 	}
169 }
170 
171 /*
172  * Does the counter have nsecs as a unit?
173  */
174 static inline int nsec_counter(int counter)
175 {
176 	if (MATCH_EVENT(SOFTWARE, SW_CPU_CLOCK, counter) ||
177 	    MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
178 		return 1;
179 
180 	return 0;
181 }
182 
183 /*
184  * Read out the results of a single counter:
185  */
186 static void read_counter(int counter)
187 {
188 	u64 count[3], single_count[3];
189 	unsigned int cpu;
190 	size_t res, nv;
191 	int scaled;
192 	int i;
193 
194 	count[0] = count[1] = count[2] = 0;
195 
196 	nv = scale ? 3 : 1;
197 	for (cpu = 0; cpu < nr_cpus; cpu++) {
198 		if (fd[cpu][counter] < 0)
199 			continue;
200 
201 		res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
202 		assert(res == nv * sizeof(u64));
203 
204 		close(fd[cpu][counter]);
205 		fd[cpu][counter] = -1;
206 
207 		count[0] += single_count[0];
208 		if (scale) {
209 			count[1] += single_count[1];
210 			count[2] += single_count[2];
211 		}
212 	}
213 
214 	scaled = 0;
215 	if (scale) {
216 		if (count[2] == 0) {
217 			event_scaled[counter] = -1;
218 			count[0] = 0;
219 			return;
220 		}
221 
222 		if (count[2] < count[1]) {
223 			event_scaled[counter] = 1;
224 			count[0] = (unsigned long long)
225 				((double)count[0] * count[1] / count[2] + 0.5);
226 		}
227 	}
228 
229 	for (i = 0; i < 3; i++)
230 		update_stats(&event_res_stats[counter][i], count[i]);
231 
232 	if (verbose) {
233 		fprintf(stderr, "%s: %Ld %Ld %Ld\n", event_name(counter),
234 				count[0], count[1], count[2]);
235 	}
236 
237 	/*
238 	 * Save the full runtime - to allow normalization during printout:
239 	 */
240 	if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
241 		update_stats(&runtime_nsecs_stats, count[0]);
242 	if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter))
243 		update_stats(&runtime_cycles_stats, count[0]);
244 	if (MATCH_EVENT(HARDWARE, HW_BRANCH_INSTRUCTIONS, counter))
245 		update_stats(&runtime_branches_stats, count[0]);
246 }
247 
248 static int run_perf_stat(int argc __used, const char **argv)
249 {
250 	unsigned long long t0, t1;
251 	int status = 0;
252 	int counter;
253 	int pid = target_pid;
254 	int child_ready_pipe[2], go_pipe[2];
255 	const bool forks = (target_pid == -1 && argc > 0);
256 	char buf;
257 
258 	if (!system_wide)
259 		nr_cpus = 1;
260 
261 	if (forks && (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0)) {
262 		perror("failed to create pipes");
263 		exit(1);
264 	}
265 
266 	if (forks) {
267 		if ((pid = fork()) < 0)
268 			perror("failed to fork");
269 
270 		if (!pid) {
271 			close(child_ready_pipe[0]);
272 			close(go_pipe[1]);
273 			fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
274 
275 			/*
276 			 * Do a dummy execvp to get the PLT entry resolved,
277 			 * so we avoid the resolver overhead on the real
278 			 * execvp call.
279 			 */
280 			execvp("", (char **)argv);
281 
282 			/*
283 			 * Tell the parent we're ready to go
284 			 */
285 			close(child_ready_pipe[1]);
286 
287 			/*
288 			 * Wait until the parent tells us to go.
289 			 */
290 			if (read(go_pipe[0], &buf, 1) == -1)
291 				perror("unable to read pipe");
292 
293 			execvp(argv[0], (char **)argv);
294 
295 			perror(argv[0]);
296 			exit(-1);
297 		}
298 
299 		child_pid = pid;
300 
301 		/*
302 		 * Wait for the child to be ready to exec.
303 		 */
304 		close(child_ready_pipe[1]);
305 		close(go_pipe[0]);
306 		if (read(child_ready_pipe[0], &buf, 1) == -1)
307 			perror("unable to read pipe");
308 		close(child_ready_pipe[0]);
309 	}
310 
311 	for (counter = 0; counter < nr_counters; counter++)
312 		create_perf_stat_counter(counter, pid);
313 
314 	/*
315 	 * Enable counters and exec the command:
316 	 */
317 	t0 = rdclock();
318 
319 	if (forks) {
320 		close(go_pipe[1]);
321 		wait(&status);
322 	} else {
323 		while(!done);
324 	}
325 
326 	t1 = rdclock();
327 
328 	update_stats(&walltime_nsecs_stats, t1 - t0);
329 
330 	for (counter = 0; counter < nr_counters; counter++)
331 		read_counter(counter);
332 
333 	return WEXITSTATUS(status);
334 }
335 
336 static void print_noise(int counter, double avg)
337 {
338 	if (run_count == 1)
339 		return;
340 
341 	fprintf(stderr, "   ( +- %7.3f%% )",
342 			100 * stddev_stats(&event_res_stats[counter][0]) / avg);
343 }
344 
345 static void nsec_printout(int counter, double avg)
346 {
347 	double msecs = avg / 1e6;
348 
349 	fprintf(stderr, " %14.6f  %-24s", msecs, event_name(counter));
350 
351 	if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) {
352 		fprintf(stderr, " # %10.3f CPUs ",
353 				avg / avg_stats(&walltime_nsecs_stats));
354 	}
355 }
356 
357 static void abs_printout(int counter, double avg)
358 {
359 	double total, ratio = 0.0;
360 
361 	fprintf(stderr, " %14.0f  %-24s", avg, event_name(counter));
362 
363 	if (MATCH_EVENT(HARDWARE, HW_INSTRUCTIONS, counter)) {
364 		total = avg_stats(&runtime_cycles_stats);
365 
366 		if (total)
367 			ratio = avg / total;
368 
369 		fprintf(stderr, " # %10.3f IPC  ", ratio);
370 	} else if (MATCH_EVENT(HARDWARE, HW_BRANCH_MISSES, counter) &&
371 			runtime_branches_stats.n != 0) {
372 		total = avg_stats(&runtime_branches_stats);
373 
374 		if (total)
375 			ratio = avg * 100 / total;
376 
377 		fprintf(stderr, " # %10.3f %%    ", ratio);
378 
379 	} else if (runtime_nsecs_stats.n != 0) {
380 		total = avg_stats(&runtime_nsecs_stats);
381 
382 		if (total)
383 			ratio = 1000.0 * avg / total;
384 
385 		fprintf(stderr, " # %10.3f M/sec", ratio);
386 	}
387 }
388 
389 /*
390  * Print out the results of a single counter:
391  */
392 static void print_counter(int counter)
393 {
394 	double avg = avg_stats(&event_res_stats[counter][0]);
395 	int scaled = event_scaled[counter];
396 
397 	if (scaled == -1) {
398 		fprintf(stderr, " %14s  %-24s\n",
399 			"<not counted>", event_name(counter));
400 		return;
401 	}
402 
403 	if (nsec_counter(counter))
404 		nsec_printout(counter, avg);
405 	else
406 		abs_printout(counter, avg);
407 
408 	print_noise(counter, avg);
409 
410 	if (scaled) {
411 		double avg_enabled, avg_running;
412 
413 		avg_enabled = avg_stats(&event_res_stats[counter][1]);
414 		avg_running = avg_stats(&event_res_stats[counter][2]);
415 
416 		fprintf(stderr, "  (scaled from %.2f%%)",
417 				100 * avg_running / avg_enabled);
418 	}
419 
420 	fprintf(stderr, "\n");
421 }
422 
423 static void print_stat(int argc, const char **argv)
424 {
425 	int i, counter;
426 
427 	fflush(stdout);
428 
429 	fprintf(stderr, "\n");
430 	fprintf(stderr, " Performance counter stats for ");
431 	if(target_pid == -1) {
432 		fprintf(stderr, "\'%s", argv[0]);
433 		for (i = 1; i < argc; i++)
434 			fprintf(stderr, " %s", argv[i]);
435 	}else
436 		fprintf(stderr, "task pid \'%d", target_pid);
437 
438 	fprintf(stderr, "\'");
439 	if (run_count > 1)
440 		fprintf(stderr, " (%d runs)", run_count);
441 	fprintf(stderr, ":\n\n");
442 
443 	for (counter = 0; counter < nr_counters; counter++)
444 		print_counter(counter);
445 
446 	fprintf(stderr, "\n");
447 	fprintf(stderr, " %14.9f  seconds time elapsed",
448 			avg_stats(&walltime_nsecs_stats)/1e9);
449 	if (run_count > 1) {
450 		fprintf(stderr, "   ( +- %7.3f%% )",
451 				100*stddev_stats(&walltime_nsecs_stats) /
452 				avg_stats(&walltime_nsecs_stats));
453 	}
454 	fprintf(stderr, "\n\n");
455 }
456 
457 static volatile int signr = -1;
458 
459 static void skip_signal(int signo)
460 {
461 	if(target_pid != -1)
462 		done = 1;
463 
464 	signr = signo;
465 }
466 
467 static void sig_atexit(void)
468 {
469 	if (child_pid != -1)
470 		kill(child_pid, SIGTERM);
471 
472 	if (signr == -1)
473 		return;
474 
475 	signal(signr, SIG_DFL);
476 	kill(getpid(), signr);
477 }
478 
479 static const char * const stat_usage[] = {
480 	"perf stat [<options>] [<command>]",
481 	NULL
482 };
483 
484 static const struct option options[] = {
485 	OPT_CALLBACK('e', "event", NULL, "event",
486 		     "event selector. use 'perf list' to list available events",
487 		     parse_events),
488 	OPT_BOOLEAN('i', "inherit", &inherit,
489 		    "child tasks inherit counters"),
490 	OPT_INTEGER('p', "pid", &target_pid,
491 		    "stat events on existing pid"),
492 	OPT_BOOLEAN('a', "all-cpus", &system_wide,
493 		    "system-wide collection from all CPUs"),
494 	OPT_BOOLEAN('c', "scale", &scale,
495 		    "scale/normalize counters"),
496 	OPT_BOOLEAN('v', "verbose", &verbose,
497 		    "be more verbose (show counter open errors, etc)"),
498 	OPT_INTEGER('r', "repeat", &run_count,
499 		    "repeat command and print average + stddev (max: 100)"),
500 	OPT_BOOLEAN('n', "null", &null_run,
501 		    "null run - dont start any counters"),
502 	OPT_END()
503 };
504 
505 int cmd_stat(int argc, const char **argv, const char *prefix __used)
506 {
507 	int status;
508 
509 	argc = parse_options(argc, argv, options, stat_usage,
510 		PARSE_OPT_STOP_AT_NON_OPTION);
511 	if (!argc && target_pid == -1)
512 		usage_with_options(stat_usage, options);
513 	if (run_count <= 0)
514 		usage_with_options(stat_usage, options);
515 
516 	/* Set attrs and nr_counters if no event is selected and !null_run */
517 	if (!null_run && !nr_counters) {
518 		memcpy(attrs, default_attrs, sizeof(default_attrs));
519 		nr_counters = ARRAY_SIZE(default_attrs);
520 	}
521 
522 	nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
523 	assert(nr_cpus <= MAX_NR_CPUS);
524 	assert((int)nr_cpus >= 0);
525 
526 	/*
527 	 * We dont want to block the signals - that would cause
528 	 * child tasks to inherit that and Ctrl-C would not work.
529 	 * What we want is for Ctrl-C to work in the exec()-ed
530 	 * task, but being ignored by perf stat itself:
531 	 */
532 	atexit(sig_atexit);
533 	signal(SIGINT,  skip_signal);
534 	signal(SIGALRM, skip_signal);
535 	signal(SIGABRT, skip_signal);
536 
537 	status = 0;
538 	for (run_idx = 0; run_idx < run_count; run_idx++) {
539 		if (run_count != 1 && verbose)
540 			fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
541 		status = run_perf_stat(argc, argv);
542 	}
543 
544 	print_stat(argc, argv);
545 
546 	return status;
547 }
548