1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * builtin-stat.c 4 * 5 * Builtin stat command: Give a precise performance counters summary 6 * overview about any workload, CPU or specific PID. 7 * 8 * Sample output: 9 10 $ perf stat ./hackbench 10 11 12 Time: 0.118 13 14 Performance counter stats for './hackbench 10': 15 16 1708.761321 task-clock # 11.037 CPUs utilized 17 41,190 context-switches # 0.024 M/sec 18 6,735 CPU-migrations # 0.004 M/sec 19 17,318 page-faults # 0.010 M/sec 20 5,205,202,243 cycles # 3.046 GHz 21 3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle 22 1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle 23 2,603,501,247 instructions # 0.50 insns per cycle 24 # 1.48 stalled cycles per insn 25 484,357,498 branches # 283.455 M/sec 26 6,388,934 branch-misses # 1.32% of all branches 27 28 0.154822978 seconds time elapsed 29 30 * 31 * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com> 32 * 33 * Improvements and fixes by: 34 * 35 * Arjan van de Ven <arjan@linux.intel.com> 36 * Yanmin Zhang <yanmin.zhang@intel.com> 37 * Wu Fengguang <fengguang.wu@intel.com> 38 * Mike Galbraith <efault@gmx.de> 39 * Paul Mackerras <paulus@samba.org> 40 * Jaswinder Singh Rajput <jaswinder@kernel.org> 41 */ 42 43 #include "builtin.h" 44 #include "util/cgroup.h" 45 #include <subcmd/parse-options.h> 46 #include "util/parse-events.h" 47 #include "util/pmus.h" 48 #include "util/pmu.h" 49 #include "util/tool_pmu.h" 50 #include "util/event.h" 51 #include "util/evlist.h" 52 #include "util/evsel.h" 53 #include "util/debug.h" 54 #include "util/color.h" 55 #include "util/stat.h" 56 #include "util/header.h" 57 #include "util/cpumap.h" 58 #include "util/thread_map.h" 59 #include "util/counts.h" 60 #include "util/topdown.h" 61 #include "util/session.h" 62 #include "util/tool.h" 63 #include "util/string2.h" 64 #include "util/metricgroup.h" 65 #include "util/synthetic-events.h" 66 #include "util/target.h" 67 #include "util/time-utils.h" 68 #include "util/top.h" 69 #include "util/affinity.h" 70 #include "util/pfm.h" 71 #include "util/bpf_counter.h" 72 #include "util/iostat.h" 73 #include "util/util.h" 74 #include "util/intel-tpebs.h" 75 #include "asm/bug.h" 76 77 #include <linux/list_sort.h> 78 #include <linux/time64.h> 79 #include <linux/zalloc.h> 80 #include <api/fs/fs.h> 81 #include <errno.h> 82 #include <signal.h> 83 #include <stdlib.h> 84 #include <sys/prctl.h> 85 #include <inttypes.h> 86 #include <locale.h> 87 #include <math.h> 88 #include <sys/types.h> 89 #include <sys/stat.h> 90 #include <sys/wait.h> 91 #include <unistd.h> 92 #include <sys/time.h> 93 #include <sys/resource.h> 94 #include <linux/err.h> 95 96 #include <linux/ctype.h> 97 #include <perf/evlist.h> 98 #include <internal/threadmap.h> 99 100 #ifdef HAVE_BPF_SKEL 101 #include "util/bpf_skel/bperf_cgroup.h" 102 #endif 103 104 #define DEFAULT_SEPARATOR " " 105 #define FREEZE_ON_SMI_PATH "bus/event_source/devices/cpu/freeze_on_smi" 106 107 struct rusage_stats { 108 struct stats ru_utime_usec_stat; 109 struct stats ru_stime_usec_stat; 110 }; 111 112 static void print_counters(struct timespec *ts, int argc, const char **argv); 113 114 static struct evlist *evsel_list; 115 static struct parse_events_option_args parse_events_option_args = { 116 .evlistp = &evsel_list, 117 }; 118 119 static bool all_counters_use_bpf = true; 120 121 static struct target target; 122 123 static volatile sig_atomic_t child_pid = -1; 124 static int detailed_run = 0; 125 static bool transaction_run; 126 static bool topdown_run = false; 127 static bool smi_cost = false; 128 static bool smi_reset = false; 129 static int big_num_opt = -1; 130 static const char *pre_cmd = NULL; 131 static const char *post_cmd = NULL; 132 static bool sync_run = false; 133 static bool forever = false; 134 static bool force_metric_only = false; 135 static struct timespec ref_time; 136 static bool append_file; 137 static bool interval_count; 138 static const char *output_name; 139 static int output_fd; 140 static char *metrics; 141 static struct rusage_stats ru_stats; 142 143 struct perf_stat { 144 bool record; 145 struct perf_data data; 146 struct perf_session *session; 147 u64 bytes_written; 148 struct perf_tool tool; 149 bool maps_allocated; 150 struct perf_cpu_map *cpus; 151 struct perf_thread_map *threads; 152 enum aggr_mode aggr_mode; 153 u32 aggr_level; 154 }; 155 156 static struct perf_stat perf_stat; 157 #define STAT_RECORD perf_stat.record 158 159 static volatile sig_atomic_t done = 0; 160 161 /* Options set from the command line. */ 162 struct opt_aggr_mode { 163 bool node, socket, die, cluster, cache, core, thread, no_aggr; 164 }; 165 166 /* Turn command line option into most generic aggregation mode setting. */ 167 static enum aggr_mode opt_aggr_mode_to_aggr_mode(struct opt_aggr_mode *opt_mode) 168 { 169 enum aggr_mode mode = AGGR_GLOBAL; 170 171 if (opt_mode->node) 172 mode = AGGR_NODE; 173 if (opt_mode->socket) 174 mode = AGGR_SOCKET; 175 if (opt_mode->die) 176 mode = AGGR_DIE; 177 if (opt_mode->cluster) 178 mode = AGGR_CLUSTER; 179 if (opt_mode->cache) 180 mode = AGGR_CACHE; 181 if (opt_mode->core) 182 mode = AGGR_CORE; 183 if (opt_mode->thread) 184 mode = AGGR_THREAD; 185 if (opt_mode->no_aggr) 186 mode = AGGR_NONE; 187 return mode; 188 } 189 190 static void evlist__check_cpu_maps(struct evlist *evlist) 191 { 192 struct evsel *evsel, *warned_leader = NULL; 193 194 evlist__for_each_entry(evlist, evsel) { 195 struct evsel *leader = evsel__leader(evsel); 196 197 /* Check that leader matches cpus with each member. */ 198 if (leader == evsel) 199 continue; 200 if (perf_cpu_map__equal(leader->core.cpus, evsel->core.cpus)) 201 continue; 202 203 /* If there's mismatch disable the group and warn user. */ 204 if (warned_leader != leader) { 205 char buf[200]; 206 207 pr_warning("WARNING: grouped events cpus do not match.\n" 208 "Events with CPUs not matching the leader will " 209 "be removed from the group.\n"); 210 evsel__group_desc(leader, buf, sizeof(buf)); 211 pr_warning(" %s\n", buf); 212 warned_leader = leader; 213 } 214 if (verbose > 0) { 215 char buf[200]; 216 217 cpu_map__snprint(leader->core.cpus, buf, sizeof(buf)); 218 pr_warning(" %s: %s\n", leader->name, buf); 219 cpu_map__snprint(evsel->core.cpus, buf, sizeof(buf)); 220 pr_warning(" %s: %s\n", evsel->name, buf); 221 } 222 223 evsel__remove_from_group(evsel, leader); 224 } 225 } 226 227 static inline void diff_timespec(struct timespec *r, struct timespec *a, 228 struct timespec *b) 229 { 230 r->tv_sec = a->tv_sec - b->tv_sec; 231 if (a->tv_nsec < b->tv_nsec) { 232 r->tv_nsec = a->tv_nsec + NSEC_PER_SEC - b->tv_nsec; 233 r->tv_sec--; 234 } else { 235 r->tv_nsec = a->tv_nsec - b->tv_nsec ; 236 } 237 } 238 239 static void perf_stat__reset_stats(void) 240 { 241 evlist__reset_stats(evsel_list); 242 memset(stat_config.walltime_nsecs_stats, 0, sizeof(*stat_config.walltime_nsecs_stats)); 243 } 244 245 static int process_synthesized_event(const struct perf_tool *tool __maybe_unused, 246 union perf_event *event, 247 struct perf_sample *sample __maybe_unused, 248 struct machine *machine __maybe_unused) 249 { 250 if (perf_data__write(&perf_stat.data, event, event->header.size) < 0) { 251 pr_err("failed to write perf data, error: %m\n"); 252 return -1; 253 } 254 255 perf_stat.bytes_written += event->header.size; 256 return 0; 257 } 258 259 static int write_stat_round_event(u64 tm, u64 type) 260 { 261 return perf_event__synthesize_stat_round(NULL, tm, type, 262 process_synthesized_event, 263 NULL); 264 } 265 266 #define WRITE_STAT_ROUND_EVENT(time, interval) \ 267 write_stat_round_event(time, PERF_STAT_ROUND_TYPE__ ## interval) 268 269 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y) 270 271 static int evsel__write_stat_event(struct evsel *counter, int cpu_map_idx, u32 thread, 272 struct perf_counts_values *count) 273 { 274 struct perf_sample_id *sid = SID(counter, cpu_map_idx, thread); 275 struct perf_cpu cpu = perf_cpu_map__cpu(evsel__cpus(counter), cpu_map_idx); 276 277 return perf_event__synthesize_stat(NULL, cpu, thread, sid->id, count, 278 process_synthesized_event, NULL); 279 } 280 281 static int read_single_counter(struct evsel *counter, int cpu_map_idx, int thread) 282 { 283 int err = evsel__read_counter(counter, cpu_map_idx, thread); 284 285 /* 286 * Reading user and system time will fail when the process 287 * terminates. Use the wait4 values in that case. 288 */ 289 if (err && cpu_map_idx == 0 && 290 (evsel__tool_event(counter) == TOOL_PMU__EVENT_USER_TIME || 291 evsel__tool_event(counter) == TOOL_PMU__EVENT_SYSTEM_TIME)) { 292 struct perf_counts_values *count = 293 perf_counts(counter->counts, cpu_map_idx, thread); 294 struct perf_counts_values *old_count = NULL; 295 u64 val; 296 297 if (counter->prev_raw_counts) 298 old_count = perf_counts(counter->prev_raw_counts, cpu_map_idx, thread); 299 300 if (evsel__tool_event(counter) == TOOL_PMU__EVENT_USER_TIME) 301 val = ru_stats.ru_utime_usec_stat.mean; 302 else 303 val = ru_stats.ru_stime_usec_stat.mean; 304 305 count->val = val; 306 if (old_count) { 307 count->run = old_count->run + 1; 308 count->ena = old_count->ena + 1; 309 } else { 310 count->run++; 311 count->ena++; 312 } 313 return 0; 314 } 315 return err; 316 } 317 318 /* 319 * Read out the results of a single counter: 320 * do not aggregate counts across CPUs in system-wide mode 321 */ 322 static int read_counter_cpu(struct evsel *counter, int cpu_map_idx) 323 { 324 int nthreads = perf_thread_map__nr(evsel_list->core.threads); 325 int thread; 326 327 if (!counter->supported) 328 return -ENOENT; 329 330 for (thread = 0; thread < nthreads; thread++) { 331 struct perf_counts_values *count; 332 333 count = perf_counts(counter->counts, cpu_map_idx, thread); 334 335 /* 336 * The leader's group read loads data into its group members 337 * (via evsel__read_counter()) and sets their count->loaded. 338 */ 339 if (!perf_counts__is_loaded(counter->counts, cpu_map_idx, thread) && 340 read_single_counter(counter, cpu_map_idx, thread)) { 341 counter->counts->scaled = -1; 342 perf_counts(counter->counts, cpu_map_idx, thread)->ena = 0; 343 perf_counts(counter->counts, cpu_map_idx, thread)->run = 0; 344 return -1; 345 } 346 347 perf_counts__set_loaded(counter->counts, cpu_map_idx, thread, false); 348 349 if (STAT_RECORD) { 350 if (evsel__write_stat_event(counter, cpu_map_idx, thread, count)) { 351 pr_err("failed to write stat event\n"); 352 return -1; 353 } 354 } 355 356 if (verbose > 1) { 357 fprintf(stat_config.output, 358 "%s: %d: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n", 359 evsel__name(counter), 360 perf_cpu_map__cpu(evsel__cpus(counter), 361 cpu_map_idx).cpu, 362 count->val, count->ena, count->run); 363 } 364 } 365 366 return 0; 367 } 368 369 static int read_affinity_counters(void) 370 { 371 struct evlist_cpu_iterator evlist_cpu_itr; 372 struct affinity saved_affinity, *affinity; 373 374 if (all_counters_use_bpf) 375 return 0; 376 377 if (!target__has_cpu(&target) || target__has_per_thread(&target)) 378 affinity = NULL; 379 else if (affinity__setup(&saved_affinity) < 0) 380 return -1; 381 else 382 affinity = &saved_affinity; 383 384 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 385 struct evsel *counter = evlist_cpu_itr.evsel; 386 387 if (evsel__is_bpf(counter)) 388 continue; 389 390 if (!counter->err) 391 counter->err = read_counter_cpu(counter, evlist_cpu_itr.cpu_map_idx); 392 } 393 if (affinity) 394 affinity__cleanup(&saved_affinity); 395 396 return 0; 397 } 398 399 static int read_bpf_map_counters(void) 400 { 401 struct evsel *counter; 402 int err; 403 404 evlist__for_each_entry(evsel_list, counter) { 405 if (!evsel__is_bpf(counter)) 406 continue; 407 408 err = bpf_counter__read(counter); 409 if (err) 410 return err; 411 } 412 return 0; 413 } 414 415 static int read_counters(void) 416 { 417 if (!stat_config.stop_read_counter) { 418 if (read_bpf_map_counters() || 419 read_affinity_counters()) 420 return -1; 421 } 422 return 0; 423 } 424 425 static void process_counters(void) 426 { 427 struct evsel *counter; 428 429 evlist__for_each_entry(evsel_list, counter) { 430 if (counter->err) 431 pr_debug("failed to read counter %s\n", counter->name); 432 if (counter->err == 0 && perf_stat_process_counter(&stat_config, counter)) 433 pr_warning("failed to process counter %s\n", counter->name); 434 counter->err = 0; 435 } 436 437 perf_stat_merge_counters(&stat_config, evsel_list); 438 perf_stat_process_percore(&stat_config, evsel_list); 439 } 440 441 static void process_interval(void) 442 { 443 struct timespec ts, rs; 444 445 clock_gettime(CLOCK_MONOTONIC, &ts); 446 diff_timespec(&rs, &ts, &ref_time); 447 448 evlist__reset_aggr_stats(evsel_list); 449 450 if (read_counters() == 0) 451 process_counters(); 452 453 if (STAT_RECORD) { 454 if (WRITE_STAT_ROUND_EVENT(rs.tv_sec * NSEC_PER_SEC + rs.tv_nsec, INTERVAL)) 455 pr_err("failed to write stat round event\n"); 456 } 457 458 init_stats(stat_config.walltime_nsecs_stats); 459 update_stats(stat_config.walltime_nsecs_stats, stat_config.interval * 1000000ULL); 460 print_counters(&rs, 0, NULL); 461 } 462 463 static bool handle_interval(unsigned int interval, int *times) 464 { 465 if (interval) { 466 process_interval(); 467 if (interval_count && !(--(*times))) 468 return true; 469 } 470 return false; 471 } 472 473 static int enable_counters(void) 474 { 475 struct evsel *evsel; 476 int err; 477 478 evlist__for_each_entry(evsel_list, evsel) { 479 if (!evsel__is_bpf(evsel)) 480 continue; 481 482 err = bpf_counter__enable(evsel); 483 if (err) 484 return err; 485 } 486 487 if (!target__enable_on_exec(&target)) { 488 if (!all_counters_use_bpf) 489 evlist__enable(evsel_list); 490 } 491 return 0; 492 } 493 494 static void disable_counters(void) 495 { 496 struct evsel *counter; 497 498 /* 499 * If we don't have tracee (attaching to task or cpu), counters may 500 * still be running. To get accurate group ratios, we must stop groups 501 * from counting before reading their constituent counters. 502 */ 503 if (!target__none(&target)) { 504 evlist__for_each_entry(evsel_list, counter) 505 bpf_counter__disable(counter); 506 if (!all_counters_use_bpf) 507 evlist__disable(evsel_list); 508 } 509 } 510 511 static volatile sig_atomic_t workload_exec_errno; 512 513 /* 514 * evlist__prepare_workload will send a SIGUSR1 515 * if the fork fails, since we asked by setting its 516 * want_signal to true. 517 */ 518 static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info, 519 void *ucontext __maybe_unused) 520 { 521 workload_exec_errno = info->si_value.sival_int; 522 } 523 524 static bool evsel__should_store_id(struct evsel *counter) 525 { 526 return STAT_RECORD || counter->core.attr.read_format & PERF_FORMAT_ID; 527 } 528 529 static bool is_target_alive(struct target *_target, 530 struct perf_thread_map *threads) 531 { 532 struct stat st; 533 int i; 534 535 if (!target__has_task(_target)) 536 return true; 537 538 for (i = 0; i < threads->nr; i++) { 539 char path[PATH_MAX]; 540 541 scnprintf(path, PATH_MAX, "%s/%d", procfs__mountpoint(), 542 threads->map[i].pid); 543 544 if (!stat(path, &st)) 545 return true; 546 } 547 548 return false; 549 } 550 551 static void process_evlist(struct evlist *evlist, unsigned int interval) 552 { 553 enum evlist_ctl_cmd cmd = EVLIST_CTL_CMD_UNSUPPORTED; 554 555 if (evlist__ctlfd_process(evlist, &cmd) > 0) { 556 switch (cmd) { 557 case EVLIST_CTL_CMD_ENABLE: 558 fallthrough; 559 case EVLIST_CTL_CMD_DISABLE: 560 if (interval) 561 process_interval(); 562 break; 563 case EVLIST_CTL_CMD_SNAPSHOT: 564 case EVLIST_CTL_CMD_ACK: 565 case EVLIST_CTL_CMD_UNSUPPORTED: 566 case EVLIST_CTL_CMD_EVLIST: 567 case EVLIST_CTL_CMD_STOP: 568 case EVLIST_CTL_CMD_PING: 569 default: 570 break; 571 } 572 } 573 } 574 575 static void compute_tts(struct timespec *time_start, struct timespec *time_stop, 576 int *time_to_sleep) 577 { 578 int tts = *time_to_sleep; 579 struct timespec time_diff; 580 581 diff_timespec(&time_diff, time_stop, time_start); 582 583 tts -= time_diff.tv_sec * MSEC_PER_SEC + 584 time_diff.tv_nsec / NSEC_PER_MSEC; 585 586 if (tts < 0) 587 tts = 0; 588 589 *time_to_sleep = tts; 590 } 591 592 static int dispatch_events(bool forks, int timeout, int interval, int *times) 593 { 594 int child_exited = 0, status = 0; 595 int time_to_sleep, sleep_time; 596 struct timespec time_start, time_stop; 597 598 if (interval) 599 sleep_time = interval; 600 else if (timeout) 601 sleep_time = timeout; 602 else 603 sleep_time = 1000; 604 605 time_to_sleep = sleep_time; 606 607 while (!done) { 608 if (forks) 609 child_exited = waitpid(child_pid, &status, WNOHANG); 610 else 611 child_exited = !is_target_alive(&target, evsel_list->core.threads) ? 1 : 0; 612 613 if (child_exited) 614 break; 615 616 clock_gettime(CLOCK_MONOTONIC, &time_start); 617 if (!(evlist__poll(evsel_list, time_to_sleep) > 0)) { /* poll timeout or EINTR */ 618 if (timeout || handle_interval(interval, times)) 619 break; 620 time_to_sleep = sleep_time; 621 } else { /* fd revent */ 622 process_evlist(evsel_list, interval); 623 clock_gettime(CLOCK_MONOTONIC, &time_stop); 624 compute_tts(&time_start, &time_stop, &time_to_sleep); 625 } 626 } 627 628 return status; 629 } 630 631 enum counter_recovery { 632 COUNTER_SKIP, 633 COUNTER_RETRY, 634 }; 635 636 static enum counter_recovery stat_handle_error(struct evsel *counter, int err) 637 { 638 char msg[BUFSIZ]; 639 640 assert(!counter->supported); 641 642 /* 643 * PPC returns ENXIO for HW counters until 2.6.37 644 * (behavior changed with commit b0a873e). 645 */ 646 if (err == EINVAL || err == ENOSYS || err == ENOENT || err == ENXIO) { 647 if (verbose > 0) { 648 evsel__open_strerror(counter, &target, err, msg, sizeof(msg)); 649 ui__warning("%s event is not supported by the kernel.\n%s\n", 650 evsel__name(counter), msg); 651 } 652 return COUNTER_SKIP; 653 } 654 if (evsel__fallback(counter, &target, err, msg, sizeof(msg))) { 655 if (verbose > 0) 656 ui__warning("%s\n", msg); 657 counter->supported = true; 658 return COUNTER_RETRY; 659 } 660 if (target__has_per_thread(&target) && err != EOPNOTSUPP && 661 evsel_list->core.threads && evsel_list->core.threads->err_thread != -1) { 662 /* 663 * For global --per-thread case, skip current 664 * error thread. 665 */ 666 if (!thread_map__remove(evsel_list->core.threads, 667 evsel_list->core.threads->err_thread)) { 668 evsel_list->core.threads->err_thread = -1; 669 counter->supported = true; 670 return COUNTER_RETRY; 671 } 672 } 673 if (verbose > 0) { 674 evsel__open_strerror(counter, &target, err, msg, sizeof(msg)); 675 ui__warning(err == EOPNOTSUPP 676 ? "%s event is not supported by the kernel.\n%s\n" 677 : "skipping event %s that kernel failed to open.\n%s\n", 678 evsel__name(counter), msg); 679 } 680 return COUNTER_SKIP; 681 } 682 683 static int create_perf_stat_counter(struct evsel *evsel, 684 struct perf_stat_config *config, 685 int cpu_map_idx) 686 { 687 struct perf_event_attr *attr = &evsel->core.attr; 688 struct evsel *leader = evsel__leader(evsel); 689 690 /* Reset supported flag as creating a stat counter is retried. */ 691 attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED | 692 PERF_FORMAT_TOTAL_TIME_RUNNING; 693 694 /* 695 * The event is part of non trivial group, let's enable 696 * the group read (for leader) and ID retrieval for all 697 * members. 698 */ 699 if (leader->core.nr_members > 1) 700 attr->read_format |= PERF_FORMAT_ID|PERF_FORMAT_GROUP; 701 702 attr->inherit = !config->no_inherit && list_empty(&evsel->bpf_counter_list); 703 704 /* 705 * Some events get initialized with sample_(period/type) set, 706 * like tracepoints. Clear it up for counting. 707 */ 708 attr->sample_period = 0; 709 710 if (config->identifier) 711 attr->sample_type = PERF_SAMPLE_IDENTIFIER; 712 713 if (config->all_user) { 714 attr->exclude_kernel = 1; 715 attr->exclude_user = 0; 716 } 717 718 if (config->all_kernel) { 719 attr->exclude_kernel = 0; 720 attr->exclude_user = 1; 721 } 722 723 /* 724 * Disabling all counters initially, they will be enabled 725 * either manually by us or by kernel via enable_on_exec 726 * set later. 727 */ 728 if (evsel__is_group_leader(evsel)) { 729 attr->disabled = 1; 730 731 if (target__enable_on_exec(&target)) 732 attr->enable_on_exec = 1; 733 } 734 735 return evsel__open_per_cpu_and_thread(evsel, evsel__cpus(evsel), cpu_map_idx, 736 evsel->core.threads); 737 } 738 739 static void update_rusage_stats(const struct rusage *rusage) 740 { 741 const u64 us_to_ns = 1000; 742 const u64 s_to_ns = 1000000000; 743 744 update_stats(&ru_stats.ru_utime_usec_stat, 745 (rusage->ru_utime.tv_usec * us_to_ns + rusage->ru_utime.tv_sec * s_to_ns)); 746 update_stats(&ru_stats.ru_stime_usec_stat, 747 (rusage->ru_stime.tv_usec * us_to_ns + rusage->ru_stime.tv_sec * s_to_ns)); 748 } 749 750 static int __run_perf_stat(int argc, const char **argv, int run_idx) 751 { 752 int interval = stat_config.interval; 753 int times = stat_config.times; 754 int timeout = stat_config.timeout; 755 char msg[BUFSIZ]; 756 unsigned long long t0, t1; 757 struct evsel *counter; 758 size_t l; 759 int status = 0; 760 const bool forks = (argc > 0); 761 bool is_pipe = STAT_RECORD ? perf_stat.data.is_pipe : false; 762 struct evlist_cpu_iterator evlist_cpu_itr; 763 struct affinity saved_affinity, *affinity = NULL; 764 int err, open_err = 0; 765 bool second_pass = false, has_supported_counters; 766 767 if (forks) { 768 if (evlist__prepare_workload(evsel_list, &target, argv, is_pipe, workload_exec_failed_signal) < 0) { 769 perror("failed to prepare workload"); 770 return -1; 771 } 772 child_pid = evsel_list->workload.pid; 773 } 774 775 if (!cpu_map__is_dummy(evsel_list->core.user_requested_cpus)) { 776 if (affinity__setup(&saved_affinity) < 0) { 777 err = -1; 778 goto err_out; 779 } 780 affinity = &saved_affinity; 781 } 782 783 evlist__for_each_entry(evsel_list, counter) { 784 counter->reset_group = false; 785 if (bpf_counter__load(counter, &target)) { 786 err = -1; 787 goto err_out; 788 } 789 if (!(evsel__is_bperf(counter))) 790 all_counters_use_bpf = false; 791 } 792 793 evlist__reset_aggr_stats(evsel_list); 794 795 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 796 counter = evlist_cpu_itr.evsel; 797 798 /* 799 * bperf calls evsel__open_per_cpu() in bperf__load(), so 800 * no need to call it again here. 801 */ 802 if (target.use_bpf) 803 break; 804 805 if (counter->reset_group || !counter->supported) 806 continue; 807 if (evsel__is_bperf(counter)) 808 continue; 809 810 while (true) { 811 if (create_perf_stat_counter(counter, &stat_config, 812 evlist_cpu_itr.cpu_map_idx) == 0) 813 break; 814 815 open_err = errno; 816 /* 817 * Weak group failed. We cannot just undo this here 818 * because earlier CPUs might be in group mode, and the kernel 819 * doesn't support mixing group and non group reads. Defer 820 * it to later. 821 * Don't close here because we're in the wrong affinity. 822 */ 823 if ((open_err == EINVAL || open_err == EBADF) && 824 evsel__leader(counter) != counter && 825 counter->weak_group) { 826 evlist__reset_weak_group(evsel_list, counter, false); 827 assert(counter->reset_group); 828 counter->supported = true; 829 second_pass = true; 830 break; 831 } 832 833 if (stat_handle_error(counter, open_err) != COUNTER_RETRY) 834 break; 835 } 836 } 837 838 if (second_pass) { 839 /* 840 * Now redo all the weak group after closing them, 841 * and also close errored counters. 842 */ 843 844 /* First close errored or weak retry */ 845 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 846 counter = evlist_cpu_itr.evsel; 847 848 if (!counter->reset_group && counter->supported) 849 continue; 850 851 perf_evsel__close_cpu(&counter->core, evlist_cpu_itr.cpu_map_idx); 852 } 853 /* Now reopen weak */ 854 evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) { 855 counter = evlist_cpu_itr.evsel; 856 857 if (!counter->reset_group) 858 continue; 859 860 while (true) { 861 pr_debug2("reopening weak %s\n", evsel__name(counter)); 862 if (create_perf_stat_counter(counter, &stat_config, 863 evlist_cpu_itr.cpu_map_idx) == 0) 864 break; 865 866 open_err = errno; 867 if (stat_handle_error(counter, open_err) != COUNTER_RETRY) 868 break; 869 } 870 } 871 } 872 affinity__cleanup(affinity); 873 affinity = NULL; 874 875 has_supported_counters = false; 876 evlist__for_each_entry(evsel_list, counter) { 877 if (!counter->supported) { 878 perf_evsel__free_fd(&counter->core); 879 continue; 880 } 881 has_supported_counters = true; 882 883 l = strlen(counter->unit); 884 if (l > stat_config.unit_width) 885 stat_config.unit_width = l; 886 887 if (evsel__should_store_id(counter) && 888 evsel__store_ids(counter, evsel_list)) { 889 err = -1; 890 goto err_out; 891 } 892 } 893 if (!has_supported_counters) { 894 evsel__open_strerror(evlist__first(evsel_list), &target, open_err, 895 msg, sizeof(msg)); 896 ui__error("No supported events found.\n%s\n", msg); 897 898 if (child_pid != -1) 899 kill(child_pid, SIGTERM); 900 err = -1; 901 goto err_out; 902 } 903 904 if (evlist__apply_filters(evsel_list, &counter, &target)) { 905 pr_err("failed to set filter \"%s\" on event %s with %d (%s)\n", 906 counter->filter, evsel__name(counter), errno, 907 str_error_r(errno, msg, sizeof(msg))); 908 return -1; 909 } 910 911 if (STAT_RECORD) { 912 int fd = perf_data__fd(&perf_stat.data); 913 914 if (is_pipe) { 915 err = perf_header__write_pipe(perf_data__fd(&perf_stat.data)); 916 } else { 917 err = perf_session__write_header(perf_stat.session, evsel_list, 918 fd, false); 919 } 920 921 if (err < 0) 922 goto err_out; 923 924 err = perf_event__synthesize_stat_events(&stat_config, NULL, evsel_list, 925 process_synthesized_event, is_pipe); 926 if (err < 0) 927 goto err_out; 928 929 } 930 931 if (target.initial_delay) { 932 pr_info(EVLIST_DISABLED_MSG); 933 } else { 934 err = enable_counters(); 935 if (err) { 936 err = -1; 937 goto err_out; 938 } 939 } 940 941 /* Exec the command, if any */ 942 if (forks) 943 evlist__start_workload(evsel_list); 944 945 if (target.initial_delay > 0) { 946 usleep(target.initial_delay * USEC_PER_MSEC); 947 err = enable_counters(); 948 if (err) { 949 err = -1; 950 goto err_out; 951 } 952 953 pr_info(EVLIST_ENABLED_MSG); 954 } 955 956 t0 = rdclock(); 957 clock_gettime(CLOCK_MONOTONIC, &ref_time); 958 959 if (forks) { 960 if (interval || timeout || evlist__ctlfd_initialized(evsel_list)) 961 status = dispatch_events(forks, timeout, interval, ×); 962 if (child_pid != -1) { 963 if (timeout) 964 kill(child_pid, SIGTERM); 965 wait4(child_pid, &status, 0, &stat_config.ru_data); 966 } 967 968 if (workload_exec_errno) { 969 const char *emsg = str_error_r(workload_exec_errno, msg, sizeof(msg)); 970 pr_err("Workload failed: %s\n", emsg); 971 err = -1; 972 goto err_out; 973 } 974 975 if (WIFSIGNALED(status)) 976 psignal(WTERMSIG(status), argv[0]); 977 } else { 978 status = dispatch_events(forks, timeout, interval, ×); 979 } 980 981 disable_counters(); 982 983 t1 = rdclock(); 984 985 if (stat_config.walltime_run_table) 986 stat_config.walltime_run[run_idx] = t1 - t0; 987 988 if (interval && stat_config.summary) { 989 stat_config.interval = 0; 990 stat_config.stop_read_counter = true; 991 init_stats(stat_config.walltime_nsecs_stats); 992 update_stats(stat_config.walltime_nsecs_stats, t1 - t0); 993 994 evlist__copy_prev_raw_counts(evsel_list); 995 evlist__reset_prev_raw_counts(evsel_list); 996 evlist__reset_aggr_stats(evsel_list); 997 } else { 998 update_stats(stat_config.walltime_nsecs_stats, t1 - t0); 999 update_rusage_stats(&stat_config.ru_data); 1000 } 1001 1002 /* 1003 * Closing a group leader splits the group, and as we only disable 1004 * group leaders, results in remaining events becoming enabled. To 1005 * avoid arbitrary skew, we must read all counters before closing any 1006 * group leaders. 1007 */ 1008 if (read_counters() == 0) 1009 process_counters(); 1010 1011 /* 1012 * We need to keep evsel_list alive, because it's processed 1013 * later the evsel_list will be closed after. 1014 */ 1015 if (!STAT_RECORD) 1016 evlist__close(evsel_list); 1017 1018 return WEXITSTATUS(status); 1019 1020 err_out: 1021 if (forks) 1022 evlist__cancel_workload(evsel_list); 1023 1024 affinity__cleanup(affinity); 1025 return err; 1026 } 1027 1028 /* 1029 * Returns -1 for fatal errors which signifies to not continue 1030 * when in repeat mode. 1031 * 1032 * Returns < -1 error codes when stat record is used. These 1033 * result in the stat information being displayed, but writing 1034 * to the file fails and is non fatal. 1035 */ 1036 static int run_perf_stat(int argc, const char **argv, int run_idx) 1037 { 1038 int ret; 1039 1040 if (pre_cmd) { 1041 ret = system(pre_cmd); 1042 if (ret) 1043 return ret; 1044 } 1045 1046 if (sync_run) 1047 sync(); 1048 1049 ret = __run_perf_stat(argc, argv, run_idx); 1050 if (ret) 1051 return ret; 1052 1053 if (post_cmd) { 1054 ret = system(post_cmd); 1055 if (ret) 1056 return ret; 1057 } 1058 1059 return ret; 1060 } 1061 1062 static void print_counters(struct timespec *ts, int argc, const char **argv) 1063 { 1064 /* Do not print anything if we record to the pipe. */ 1065 if (STAT_RECORD && perf_stat.data.is_pipe) 1066 return; 1067 if (quiet) 1068 return; 1069 1070 evlist__print_counters(evsel_list, &stat_config, &target, ts, argc, argv); 1071 } 1072 1073 static volatile sig_atomic_t signr = -1; 1074 1075 static void skip_signal(int signo) 1076 { 1077 if ((child_pid == -1) || stat_config.interval) 1078 done = 1; 1079 1080 signr = signo; 1081 /* 1082 * render child_pid harmless 1083 * won't send SIGTERM to a random 1084 * process in case of race condition 1085 * and fast PID recycling 1086 */ 1087 child_pid = -1; 1088 } 1089 1090 static void sig_atexit(void) 1091 { 1092 sigset_t set, oset; 1093 1094 /* 1095 * avoid race condition with SIGCHLD handler 1096 * in skip_signal() which is modifying child_pid 1097 * goal is to avoid send SIGTERM to a random 1098 * process 1099 */ 1100 sigemptyset(&set); 1101 sigaddset(&set, SIGCHLD); 1102 sigprocmask(SIG_BLOCK, &set, &oset); 1103 1104 if (child_pid != -1) 1105 kill(child_pid, SIGTERM); 1106 1107 sigprocmask(SIG_SETMASK, &oset, NULL); 1108 1109 if (signr == -1) 1110 return; 1111 1112 signal(signr, SIG_DFL); 1113 kill(getpid(), signr); 1114 } 1115 1116 static int stat__set_big_num(const struct option *opt __maybe_unused, 1117 const char *s __maybe_unused, int unset) 1118 { 1119 big_num_opt = unset ? 0 : 1; 1120 perf_stat__set_big_num(!unset); 1121 return 0; 1122 } 1123 1124 static int enable_metric_only(const struct option *opt __maybe_unused, 1125 const char *s __maybe_unused, int unset) 1126 { 1127 force_metric_only = true; 1128 stat_config.metric_only = !unset; 1129 return 0; 1130 } 1131 1132 static int append_metric_groups(const struct option *opt __maybe_unused, 1133 const char *str, 1134 int unset __maybe_unused) 1135 { 1136 if (metrics) { 1137 char *tmp; 1138 1139 if (asprintf(&tmp, "%s,%s", metrics, str) < 0) 1140 return -ENOMEM; 1141 free(metrics); 1142 metrics = tmp; 1143 } else { 1144 metrics = strdup(str); 1145 if (!metrics) 1146 return -ENOMEM; 1147 } 1148 return 0; 1149 } 1150 1151 static int parse_control_option(const struct option *opt, 1152 const char *str, 1153 int unset __maybe_unused) 1154 { 1155 struct perf_stat_config *config = opt->value; 1156 1157 return evlist__parse_control(str, &config->ctl_fd, &config->ctl_fd_ack, &config->ctl_fd_close); 1158 } 1159 1160 static int parse_stat_cgroups(const struct option *opt, 1161 const char *str, int unset) 1162 { 1163 if (stat_config.cgroup_list) { 1164 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 1165 return -1; 1166 } 1167 1168 return parse_cgroups(opt, str, unset); 1169 } 1170 1171 static int parse_cputype(const struct option *opt, 1172 const char *str, 1173 int unset __maybe_unused) 1174 { 1175 const struct perf_pmu *pmu; 1176 struct evlist *evlist = *(struct evlist **)opt->value; 1177 1178 if (!list_empty(&evlist->core.entries)) { 1179 fprintf(stderr, "Must define cputype before events/metrics\n"); 1180 return -1; 1181 } 1182 1183 pmu = perf_pmus__pmu_for_pmu_filter(str); 1184 if (!pmu) { 1185 fprintf(stderr, "--cputype %s is not supported!\n", str); 1186 return -1; 1187 } 1188 parse_events_option_args.pmu_filter = pmu->name; 1189 1190 return 0; 1191 } 1192 1193 static int parse_cache_level(const struct option *opt, 1194 const char *str, 1195 int unset __maybe_unused) 1196 { 1197 int level; 1198 struct opt_aggr_mode *opt_aggr_mode = (struct opt_aggr_mode *)opt->value; 1199 u32 *aggr_level = (u32 *)opt->data; 1200 1201 /* 1202 * If no string is specified, aggregate based on the topology of 1203 * Last Level Cache (LLC). Since the LLC level can change from 1204 * architecture to architecture, set level greater than 1205 * MAX_CACHE_LVL which will be interpreted as LLC. 1206 */ 1207 if (str == NULL) { 1208 level = MAX_CACHE_LVL + 1; 1209 goto out; 1210 } 1211 1212 /* 1213 * The format to specify cache level is LX or lX where X is the 1214 * cache level. 1215 */ 1216 if (strlen(str) != 2 || (str[0] != 'l' && str[0] != 'L')) { 1217 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1218 MAX_CACHE_LVL, 1219 MAX_CACHE_LVL); 1220 return -EINVAL; 1221 } 1222 1223 level = atoi(&str[1]); 1224 if (level < 1) { 1225 pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n", 1226 MAX_CACHE_LVL, 1227 MAX_CACHE_LVL); 1228 return -EINVAL; 1229 } 1230 1231 if (level > MAX_CACHE_LVL) { 1232 pr_err("perf only supports max cache level of %d.\n" 1233 "Consider increasing MAX_CACHE_LVL\n", MAX_CACHE_LVL); 1234 return -EINVAL; 1235 } 1236 out: 1237 opt_aggr_mode->cache = true; 1238 *aggr_level = level; 1239 return 0; 1240 } 1241 1242 /** 1243 * Calculate the cache instance ID from the map in 1244 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1245 * Cache instance ID is the first CPU reported in the shared_cpu_list file. 1246 */ 1247 static int cpu__get_cache_id_from_map(struct perf_cpu cpu, char *map) 1248 { 1249 int id; 1250 struct perf_cpu_map *cpu_map = perf_cpu_map__new(map); 1251 1252 /* 1253 * If the map contains no CPU, consider the current CPU to 1254 * be the first online CPU in the cache domain else use the 1255 * first online CPU of the cache domain as the ID. 1256 */ 1257 id = perf_cpu_map__min(cpu_map).cpu; 1258 if (id == -1) 1259 id = cpu.cpu; 1260 1261 /* Free the perf_cpu_map used to find the cache ID */ 1262 perf_cpu_map__put(cpu_map); 1263 1264 return id; 1265 } 1266 1267 /** 1268 * cpu__get_cache_id - Returns 0 if successful in populating the 1269 * cache level and cache id. Cache level is read from 1270 * /sys/devices/system/cpu/cpuX/cache/indexY/level where as cache instance ID 1271 * is the first CPU reported by 1272 * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list 1273 */ 1274 static int cpu__get_cache_details(struct perf_cpu cpu, struct perf_cache *cache) 1275 { 1276 int ret = 0; 1277 u32 cache_level = stat_config.aggr_level; 1278 struct cpu_cache_level caches[MAX_CACHE_LVL]; 1279 u32 i = 0, caches_cnt = 0; 1280 1281 cache->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1282 cache->cache = -1; 1283 1284 ret = build_caches_for_cpu(cpu.cpu, caches, &caches_cnt); 1285 if (ret) { 1286 /* 1287 * If caches_cnt is not 0, cpu_cache_level data 1288 * was allocated when building the topology. 1289 * Free the allocated data before returning. 1290 */ 1291 if (caches_cnt) 1292 goto free_caches; 1293 1294 return ret; 1295 } 1296 1297 if (!caches_cnt) 1298 return -1; 1299 1300 /* 1301 * Save the data for the highest level if no 1302 * level was specified by the user. 1303 */ 1304 if (cache_level > MAX_CACHE_LVL) { 1305 int max_level_index = 0; 1306 1307 for (i = 1; i < caches_cnt; ++i) { 1308 if (caches[i].level > caches[max_level_index].level) 1309 max_level_index = i; 1310 } 1311 1312 cache->cache_lvl = caches[max_level_index].level; 1313 cache->cache = cpu__get_cache_id_from_map(cpu, caches[max_level_index].map); 1314 1315 /* Reset i to 0 to free entire caches[] */ 1316 i = 0; 1317 goto free_caches; 1318 } 1319 1320 for (i = 0; i < caches_cnt; ++i) { 1321 if (caches[i].level == cache_level) { 1322 cache->cache_lvl = cache_level; 1323 cache->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1324 } 1325 1326 cpu_cache_level__free(&caches[i]); 1327 } 1328 1329 free_caches: 1330 /* 1331 * Free all the allocated cpu_cache_level data. 1332 */ 1333 while (i < caches_cnt) 1334 cpu_cache_level__free(&caches[i++]); 1335 1336 return ret; 1337 } 1338 1339 /** 1340 * aggr_cpu_id__cache - Create an aggr_cpu_id with cache instache ID, cache 1341 * level, die and socket populated with the cache instache ID, cache level, 1342 * die and socket for cpu. The function signature is compatible with 1343 * aggr_cpu_id_get_t. 1344 */ 1345 static struct aggr_cpu_id aggr_cpu_id__cache(struct perf_cpu cpu, void *data) 1346 { 1347 int ret; 1348 struct aggr_cpu_id id; 1349 struct perf_cache cache; 1350 1351 id = aggr_cpu_id__die(cpu, data); 1352 if (aggr_cpu_id__is_empty(&id)) 1353 return id; 1354 1355 ret = cpu__get_cache_details(cpu, &cache); 1356 if (ret) 1357 return id; 1358 1359 id.cache_lvl = cache.cache_lvl; 1360 id.cache = cache.cache; 1361 return id; 1362 } 1363 1364 static const char *const aggr_mode__string[] = { 1365 [AGGR_CORE] = "core", 1366 [AGGR_CACHE] = "cache", 1367 [AGGR_CLUSTER] = "cluster", 1368 [AGGR_DIE] = "die", 1369 [AGGR_GLOBAL] = "global", 1370 [AGGR_NODE] = "node", 1371 [AGGR_NONE] = "none", 1372 [AGGR_SOCKET] = "socket", 1373 [AGGR_THREAD] = "thread", 1374 [AGGR_UNSET] = "unset", 1375 }; 1376 1377 static struct aggr_cpu_id perf_stat__get_socket(struct perf_stat_config *config __maybe_unused, 1378 struct perf_cpu cpu) 1379 { 1380 return aggr_cpu_id__socket(cpu, /*data=*/NULL); 1381 } 1382 1383 static struct aggr_cpu_id perf_stat__get_die(struct perf_stat_config *config __maybe_unused, 1384 struct perf_cpu cpu) 1385 { 1386 return aggr_cpu_id__die(cpu, /*data=*/NULL); 1387 } 1388 1389 static struct aggr_cpu_id perf_stat__get_cache_id(struct perf_stat_config *config __maybe_unused, 1390 struct perf_cpu cpu) 1391 { 1392 return aggr_cpu_id__cache(cpu, /*data=*/NULL); 1393 } 1394 1395 static struct aggr_cpu_id perf_stat__get_cluster(struct perf_stat_config *config __maybe_unused, 1396 struct perf_cpu cpu) 1397 { 1398 return aggr_cpu_id__cluster(cpu, /*data=*/NULL); 1399 } 1400 1401 static struct aggr_cpu_id perf_stat__get_core(struct perf_stat_config *config __maybe_unused, 1402 struct perf_cpu cpu) 1403 { 1404 return aggr_cpu_id__core(cpu, /*data=*/NULL); 1405 } 1406 1407 static struct aggr_cpu_id perf_stat__get_node(struct perf_stat_config *config __maybe_unused, 1408 struct perf_cpu cpu) 1409 { 1410 return aggr_cpu_id__node(cpu, /*data=*/NULL); 1411 } 1412 1413 static struct aggr_cpu_id perf_stat__get_global(struct perf_stat_config *config __maybe_unused, 1414 struct perf_cpu cpu) 1415 { 1416 return aggr_cpu_id__global(cpu, /*data=*/NULL); 1417 } 1418 1419 static struct aggr_cpu_id perf_stat__get_cpu(struct perf_stat_config *config __maybe_unused, 1420 struct perf_cpu cpu) 1421 { 1422 return aggr_cpu_id__cpu(cpu, /*data=*/NULL); 1423 } 1424 1425 static struct aggr_cpu_id perf_stat__get_aggr(struct perf_stat_config *config, 1426 aggr_get_id_t get_id, struct perf_cpu cpu) 1427 { 1428 struct aggr_cpu_id id; 1429 1430 /* per-process mode - should use global aggr mode */ 1431 if (cpu.cpu == -1 || cpu.cpu >= config->cpus_aggr_map->nr) 1432 return get_id(config, cpu); 1433 1434 if (aggr_cpu_id__is_empty(&config->cpus_aggr_map->map[cpu.cpu])) 1435 config->cpus_aggr_map->map[cpu.cpu] = get_id(config, cpu); 1436 1437 id = config->cpus_aggr_map->map[cpu.cpu]; 1438 return id; 1439 } 1440 1441 static struct aggr_cpu_id perf_stat__get_socket_cached(struct perf_stat_config *config, 1442 struct perf_cpu cpu) 1443 { 1444 return perf_stat__get_aggr(config, perf_stat__get_socket, cpu); 1445 } 1446 1447 static struct aggr_cpu_id perf_stat__get_die_cached(struct perf_stat_config *config, 1448 struct perf_cpu cpu) 1449 { 1450 return perf_stat__get_aggr(config, perf_stat__get_die, cpu); 1451 } 1452 1453 static struct aggr_cpu_id perf_stat__get_cluster_cached(struct perf_stat_config *config, 1454 struct perf_cpu cpu) 1455 { 1456 return perf_stat__get_aggr(config, perf_stat__get_cluster, cpu); 1457 } 1458 1459 static struct aggr_cpu_id perf_stat__get_cache_id_cached(struct perf_stat_config *config, 1460 struct perf_cpu cpu) 1461 { 1462 return perf_stat__get_aggr(config, perf_stat__get_cache_id, cpu); 1463 } 1464 1465 static struct aggr_cpu_id perf_stat__get_core_cached(struct perf_stat_config *config, 1466 struct perf_cpu cpu) 1467 { 1468 return perf_stat__get_aggr(config, perf_stat__get_core, cpu); 1469 } 1470 1471 static struct aggr_cpu_id perf_stat__get_node_cached(struct perf_stat_config *config, 1472 struct perf_cpu cpu) 1473 { 1474 return perf_stat__get_aggr(config, perf_stat__get_node, cpu); 1475 } 1476 1477 static struct aggr_cpu_id perf_stat__get_global_cached(struct perf_stat_config *config, 1478 struct perf_cpu cpu) 1479 { 1480 return perf_stat__get_aggr(config, perf_stat__get_global, cpu); 1481 } 1482 1483 static struct aggr_cpu_id perf_stat__get_cpu_cached(struct perf_stat_config *config, 1484 struct perf_cpu cpu) 1485 { 1486 return perf_stat__get_aggr(config, perf_stat__get_cpu, cpu); 1487 } 1488 1489 static aggr_cpu_id_get_t aggr_mode__get_aggr(enum aggr_mode aggr_mode) 1490 { 1491 switch (aggr_mode) { 1492 case AGGR_SOCKET: 1493 return aggr_cpu_id__socket; 1494 case AGGR_DIE: 1495 return aggr_cpu_id__die; 1496 case AGGR_CLUSTER: 1497 return aggr_cpu_id__cluster; 1498 case AGGR_CACHE: 1499 return aggr_cpu_id__cache; 1500 case AGGR_CORE: 1501 return aggr_cpu_id__core; 1502 case AGGR_NODE: 1503 return aggr_cpu_id__node; 1504 case AGGR_NONE: 1505 return aggr_cpu_id__cpu; 1506 case AGGR_GLOBAL: 1507 return aggr_cpu_id__global; 1508 case AGGR_THREAD: 1509 case AGGR_UNSET: 1510 case AGGR_MAX: 1511 default: 1512 return NULL; 1513 } 1514 } 1515 1516 static aggr_get_id_t aggr_mode__get_id(enum aggr_mode aggr_mode) 1517 { 1518 switch (aggr_mode) { 1519 case AGGR_SOCKET: 1520 return perf_stat__get_socket_cached; 1521 case AGGR_DIE: 1522 return perf_stat__get_die_cached; 1523 case AGGR_CLUSTER: 1524 return perf_stat__get_cluster_cached; 1525 case AGGR_CACHE: 1526 return perf_stat__get_cache_id_cached; 1527 case AGGR_CORE: 1528 return perf_stat__get_core_cached; 1529 case AGGR_NODE: 1530 return perf_stat__get_node_cached; 1531 case AGGR_NONE: 1532 return perf_stat__get_cpu_cached; 1533 case AGGR_GLOBAL: 1534 return perf_stat__get_global_cached; 1535 case AGGR_THREAD: 1536 case AGGR_UNSET: 1537 case AGGR_MAX: 1538 default: 1539 return NULL; 1540 } 1541 } 1542 1543 static int perf_stat_init_aggr_mode(void) 1544 { 1545 int nr; 1546 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr(stat_config.aggr_mode); 1547 1548 if (get_id) { 1549 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1550 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1551 get_id, /*data=*/NULL, needs_sort); 1552 if (!stat_config.aggr_map) { 1553 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1554 return -1; 1555 } 1556 stat_config.aggr_get_id = aggr_mode__get_id(stat_config.aggr_mode); 1557 } 1558 1559 if (stat_config.aggr_mode == AGGR_THREAD) { 1560 nr = perf_thread_map__nr(evsel_list->core.threads); 1561 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1562 if (stat_config.aggr_map == NULL) 1563 return -ENOMEM; 1564 1565 for (int s = 0; s < nr; s++) { 1566 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1567 1568 id.thread_idx = s; 1569 stat_config.aggr_map->map[s] = id; 1570 } 1571 return 0; 1572 } 1573 1574 /* 1575 * The evsel_list->cpus is the base we operate on, 1576 * taking the highest cpu number to be the size of 1577 * the aggregation translate cpumap. 1578 */ 1579 nr = perf_cpu_map__max(evsel_list->core.all_cpus).cpu + 1; 1580 stat_config.cpus_aggr_map = cpu_aggr_map__empty_new(nr); 1581 return stat_config.cpus_aggr_map ? 0 : -ENOMEM; 1582 } 1583 1584 static void cpu_aggr_map__delete(struct cpu_aggr_map *map) 1585 { 1586 free(map); 1587 } 1588 1589 static void perf_stat__exit_aggr_mode(void) 1590 { 1591 cpu_aggr_map__delete(stat_config.aggr_map); 1592 cpu_aggr_map__delete(stat_config.cpus_aggr_map); 1593 stat_config.aggr_map = NULL; 1594 stat_config.cpus_aggr_map = NULL; 1595 } 1596 1597 static struct aggr_cpu_id perf_env__get_socket_aggr_by_cpu(struct perf_cpu cpu, void *data) 1598 { 1599 struct perf_env *env = data; 1600 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1601 1602 if (cpu.cpu != -1) 1603 id.socket = env->cpu[cpu.cpu].socket_id; 1604 1605 return id; 1606 } 1607 1608 static struct aggr_cpu_id perf_env__get_die_aggr_by_cpu(struct perf_cpu cpu, void *data) 1609 { 1610 struct perf_env *env = data; 1611 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1612 1613 if (cpu.cpu != -1) { 1614 /* 1615 * die_id is relative to socket, so start 1616 * with the socket ID and then add die to 1617 * make a unique ID. 1618 */ 1619 id.socket = env->cpu[cpu.cpu].socket_id; 1620 id.die = env->cpu[cpu.cpu].die_id; 1621 } 1622 1623 return id; 1624 } 1625 1626 static void perf_env__get_cache_id_for_cpu(struct perf_cpu cpu, struct perf_env *env, 1627 u32 cache_level, struct aggr_cpu_id *id) 1628 { 1629 int i; 1630 int caches_cnt = env->caches_cnt; 1631 struct cpu_cache_level *caches = env->caches; 1632 1633 id->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level; 1634 id->cache = -1; 1635 1636 if (!caches_cnt) 1637 return; 1638 1639 for (i = caches_cnt - 1; i > -1; --i) { 1640 struct perf_cpu_map *cpu_map; 1641 int map_contains_cpu; 1642 1643 /* 1644 * If user has not specified a level, find the fist level with 1645 * the cpu in the map. Since building the map is expensive, do 1646 * this only if levels match. 1647 */ 1648 if (cache_level <= MAX_CACHE_LVL && caches[i].level != cache_level) 1649 continue; 1650 1651 cpu_map = perf_cpu_map__new(caches[i].map); 1652 map_contains_cpu = perf_cpu_map__idx(cpu_map, cpu); 1653 perf_cpu_map__put(cpu_map); 1654 1655 if (map_contains_cpu != -1) { 1656 id->cache_lvl = caches[i].level; 1657 id->cache = cpu__get_cache_id_from_map(cpu, caches[i].map); 1658 return; 1659 } 1660 } 1661 } 1662 1663 static struct aggr_cpu_id perf_env__get_cache_aggr_by_cpu(struct perf_cpu cpu, 1664 void *data) 1665 { 1666 struct perf_env *env = data; 1667 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1668 1669 if (cpu.cpu != -1) { 1670 u32 cache_level = (perf_stat.aggr_level) ?: stat_config.aggr_level; 1671 1672 id.socket = env->cpu[cpu.cpu].socket_id; 1673 id.die = env->cpu[cpu.cpu].die_id; 1674 perf_env__get_cache_id_for_cpu(cpu, env, cache_level, &id); 1675 } 1676 1677 return id; 1678 } 1679 1680 static struct aggr_cpu_id perf_env__get_cluster_aggr_by_cpu(struct perf_cpu cpu, 1681 void *data) 1682 { 1683 struct perf_env *env = data; 1684 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1685 1686 if (cpu.cpu != -1) { 1687 id.socket = env->cpu[cpu.cpu].socket_id; 1688 id.die = env->cpu[cpu.cpu].die_id; 1689 id.cluster = env->cpu[cpu.cpu].cluster_id; 1690 } 1691 1692 return id; 1693 } 1694 1695 static struct aggr_cpu_id perf_env__get_core_aggr_by_cpu(struct perf_cpu cpu, void *data) 1696 { 1697 struct perf_env *env = data; 1698 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1699 1700 if (cpu.cpu != -1) { 1701 /* 1702 * core_id is relative to socket, die and cluster, we need a 1703 * global id. So we set socket, die id, cluster id and core id. 1704 */ 1705 id.socket = env->cpu[cpu.cpu].socket_id; 1706 id.die = env->cpu[cpu.cpu].die_id; 1707 id.cluster = env->cpu[cpu.cpu].cluster_id; 1708 id.core = env->cpu[cpu.cpu].core_id; 1709 } 1710 1711 return id; 1712 } 1713 1714 static struct aggr_cpu_id perf_env__get_cpu_aggr_by_cpu(struct perf_cpu cpu, void *data) 1715 { 1716 struct perf_env *env = data; 1717 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1718 1719 if (cpu.cpu != -1) { 1720 /* 1721 * core_id is relative to socket and die, 1722 * we need a global id. So we set 1723 * socket, die id and core id 1724 */ 1725 id.socket = env->cpu[cpu.cpu].socket_id; 1726 id.die = env->cpu[cpu.cpu].die_id; 1727 id.core = env->cpu[cpu.cpu].core_id; 1728 id.cpu = cpu; 1729 } 1730 1731 return id; 1732 } 1733 1734 static struct aggr_cpu_id perf_env__get_node_aggr_by_cpu(struct perf_cpu cpu, void *data) 1735 { 1736 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1737 1738 id.node = perf_env__numa_node(data, cpu); 1739 return id; 1740 } 1741 1742 static struct aggr_cpu_id perf_env__get_global_aggr_by_cpu(struct perf_cpu cpu __maybe_unused, 1743 void *data __maybe_unused) 1744 { 1745 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1746 1747 /* it always aggregates to the cpu 0 */ 1748 id.cpu = (struct perf_cpu){ .cpu = 0 }; 1749 return id; 1750 } 1751 1752 static struct aggr_cpu_id perf_stat__get_socket_file(struct perf_stat_config *config __maybe_unused, 1753 struct perf_cpu cpu) 1754 { 1755 return perf_env__get_socket_aggr_by_cpu(cpu, perf_session__env(perf_stat.session)); 1756 } 1757 static struct aggr_cpu_id perf_stat__get_die_file(struct perf_stat_config *config __maybe_unused, 1758 struct perf_cpu cpu) 1759 { 1760 return perf_env__get_die_aggr_by_cpu(cpu, perf_session__env(perf_stat.session)); 1761 } 1762 1763 static struct aggr_cpu_id perf_stat__get_cluster_file(struct perf_stat_config *config __maybe_unused, 1764 struct perf_cpu cpu) 1765 { 1766 return perf_env__get_cluster_aggr_by_cpu(cpu, perf_session__env(perf_stat.session)); 1767 } 1768 1769 static struct aggr_cpu_id perf_stat__get_cache_file(struct perf_stat_config *config __maybe_unused, 1770 struct perf_cpu cpu) 1771 { 1772 return perf_env__get_cache_aggr_by_cpu(cpu, perf_session__env(perf_stat.session)); 1773 } 1774 1775 static struct aggr_cpu_id perf_stat__get_core_file(struct perf_stat_config *config __maybe_unused, 1776 struct perf_cpu cpu) 1777 { 1778 return perf_env__get_core_aggr_by_cpu(cpu, perf_session__env(perf_stat.session)); 1779 } 1780 1781 static struct aggr_cpu_id perf_stat__get_cpu_file(struct perf_stat_config *config __maybe_unused, 1782 struct perf_cpu cpu) 1783 { 1784 return perf_env__get_cpu_aggr_by_cpu(cpu, perf_session__env(perf_stat.session)); 1785 } 1786 1787 static struct aggr_cpu_id perf_stat__get_node_file(struct perf_stat_config *config __maybe_unused, 1788 struct perf_cpu cpu) 1789 { 1790 return perf_env__get_node_aggr_by_cpu(cpu, perf_session__env(perf_stat.session)); 1791 } 1792 1793 static struct aggr_cpu_id perf_stat__get_global_file(struct perf_stat_config *config __maybe_unused, 1794 struct perf_cpu cpu) 1795 { 1796 return perf_env__get_global_aggr_by_cpu(cpu, perf_session__env(perf_stat.session)); 1797 } 1798 1799 static aggr_cpu_id_get_t aggr_mode__get_aggr_file(enum aggr_mode aggr_mode) 1800 { 1801 switch (aggr_mode) { 1802 case AGGR_SOCKET: 1803 return perf_env__get_socket_aggr_by_cpu; 1804 case AGGR_DIE: 1805 return perf_env__get_die_aggr_by_cpu; 1806 case AGGR_CLUSTER: 1807 return perf_env__get_cluster_aggr_by_cpu; 1808 case AGGR_CACHE: 1809 return perf_env__get_cache_aggr_by_cpu; 1810 case AGGR_CORE: 1811 return perf_env__get_core_aggr_by_cpu; 1812 case AGGR_NODE: 1813 return perf_env__get_node_aggr_by_cpu; 1814 case AGGR_GLOBAL: 1815 return perf_env__get_global_aggr_by_cpu; 1816 case AGGR_NONE: 1817 return perf_env__get_cpu_aggr_by_cpu; 1818 case AGGR_THREAD: 1819 case AGGR_UNSET: 1820 case AGGR_MAX: 1821 default: 1822 return NULL; 1823 } 1824 } 1825 1826 static aggr_get_id_t aggr_mode__get_id_file(enum aggr_mode aggr_mode) 1827 { 1828 switch (aggr_mode) { 1829 case AGGR_SOCKET: 1830 return perf_stat__get_socket_file; 1831 case AGGR_DIE: 1832 return perf_stat__get_die_file; 1833 case AGGR_CLUSTER: 1834 return perf_stat__get_cluster_file; 1835 case AGGR_CACHE: 1836 return perf_stat__get_cache_file; 1837 case AGGR_CORE: 1838 return perf_stat__get_core_file; 1839 case AGGR_NODE: 1840 return perf_stat__get_node_file; 1841 case AGGR_GLOBAL: 1842 return perf_stat__get_global_file; 1843 case AGGR_NONE: 1844 return perf_stat__get_cpu_file; 1845 case AGGR_THREAD: 1846 case AGGR_UNSET: 1847 case AGGR_MAX: 1848 default: 1849 return NULL; 1850 } 1851 } 1852 1853 static int perf_stat_init_aggr_mode_file(struct perf_stat *st) 1854 { 1855 struct perf_env *env = perf_session__env(st->session); 1856 aggr_cpu_id_get_t get_id = aggr_mode__get_aggr_file(stat_config.aggr_mode); 1857 bool needs_sort = stat_config.aggr_mode != AGGR_NONE; 1858 1859 if (stat_config.aggr_mode == AGGR_THREAD) { 1860 int nr = perf_thread_map__nr(evsel_list->core.threads); 1861 1862 stat_config.aggr_map = cpu_aggr_map__empty_new(nr); 1863 if (stat_config.aggr_map == NULL) 1864 return -ENOMEM; 1865 1866 for (int s = 0; s < nr; s++) { 1867 struct aggr_cpu_id id = aggr_cpu_id__empty(); 1868 1869 id.thread_idx = s; 1870 stat_config.aggr_map->map[s] = id; 1871 } 1872 return 0; 1873 } 1874 1875 if (!get_id) 1876 return 0; 1877 1878 stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus, 1879 get_id, env, needs_sort); 1880 if (!stat_config.aggr_map) { 1881 pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]); 1882 return -1; 1883 } 1884 stat_config.aggr_get_id = aggr_mode__get_id_file(stat_config.aggr_mode); 1885 return 0; 1886 } 1887 1888 static int default_evlist_evsel_cmp(void *priv __maybe_unused, 1889 const struct list_head *l, 1890 const struct list_head *r) 1891 { 1892 const struct perf_evsel *lhs_core = container_of(l, struct perf_evsel, node); 1893 const struct evsel *lhs = container_of(lhs_core, struct evsel, core); 1894 const struct perf_evsel *rhs_core = container_of(r, struct perf_evsel, node); 1895 const struct evsel *rhs = container_of(rhs_core, struct evsel, core); 1896 1897 if (evsel__leader(lhs) == evsel__leader(rhs)) { 1898 /* Within the same group, respect the original order. */ 1899 return lhs_core->idx - rhs_core->idx; 1900 } 1901 1902 /* Sort default metrics evsels first, and default show events before those. */ 1903 if (lhs->default_metricgroup != rhs->default_metricgroup) 1904 return lhs->default_metricgroup ? -1 : 1; 1905 1906 if (lhs->default_show_events != rhs->default_show_events) 1907 return lhs->default_show_events ? -1 : 1; 1908 1909 /* Sort by PMU type (prefers legacy types first). */ 1910 if (lhs->pmu != rhs->pmu) 1911 return lhs->pmu->type - rhs->pmu->type; 1912 1913 /* Sort by name. */ 1914 return strcmp(evsel__name((struct evsel *)lhs), evsel__name((struct evsel *)rhs)); 1915 } 1916 1917 /* 1918 * Add default events, if there were no attributes specified or 1919 * if -d/--detailed, -d -d or -d -d -d is used: 1920 */ 1921 static int add_default_events(void) 1922 { 1923 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 1924 struct parse_events_error err; 1925 struct evlist *evlist = evlist__new(); 1926 struct evsel *evsel; 1927 int ret = 0; 1928 1929 if (!evlist) 1930 return -ENOMEM; 1931 1932 parse_events_error__init(&err); 1933 1934 /* Set attrs if no event is selected and !null_run: */ 1935 if (stat_config.null_run) 1936 goto out; 1937 1938 if (transaction_run) { 1939 /* Handle -T as -M transaction. Once platform specific metrics 1940 * support has been added to the json files, all architectures 1941 * will use this approach. To determine transaction support 1942 * on an architecture test for such a metric name. 1943 */ 1944 if (!metricgroup__has_metric_or_groups(pmu, "transaction")) { 1945 pr_err("Missing transaction metrics\n"); 1946 ret = -1; 1947 goto out; 1948 } 1949 ret = metricgroup__parse_groups(evlist, pmu, "transaction", 1950 stat_config.metric_no_group, 1951 stat_config.metric_no_merge, 1952 stat_config.metric_no_threshold, 1953 stat_config.user_requested_cpu_list, 1954 stat_config.system_wide, 1955 stat_config.hardware_aware_grouping); 1956 goto out; 1957 } 1958 1959 if (smi_cost) { 1960 int smi; 1961 1962 if (sysfs__read_int(FREEZE_ON_SMI_PATH, &smi) < 0) { 1963 pr_err("freeze_on_smi is not supported.\n"); 1964 ret = -1; 1965 goto out; 1966 } 1967 1968 if (!smi) { 1969 if (sysfs__write_int(FREEZE_ON_SMI_PATH, 1) < 0) { 1970 pr_err("Failed to set freeze_on_smi.\n"); 1971 ret = -1; 1972 goto out; 1973 } 1974 smi_reset = true; 1975 } 1976 1977 if (!metricgroup__has_metric_or_groups(pmu, "smi")) { 1978 pr_err("Missing smi metrics\n"); 1979 ret = -1; 1980 goto out; 1981 } 1982 1983 if (!force_metric_only) 1984 stat_config.metric_only = true; 1985 1986 ret = metricgroup__parse_groups(evlist, pmu, "smi", 1987 stat_config.metric_no_group, 1988 stat_config.metric_no_merge, 1989 stat_config.metric_no_threshold, 1990 stat_config.user_requested_cpu_list, 1991 stat_config.system_wide, 1992 stat_config.hardware_aware_grouping); 1993 goto out; 1994 } 1995 1996 if (topdown_run) { 1997 unsigned int max_level = metricgroups__topdown_max_level(); 1998 char str[] = "TopdownL1"; 1999 2000 if (!force_metric_only) 2001 stat_config.metric_only = true; 2002 2003 if (!max_level) { 2004 pr_err("Topdown requested but the topdown metric groups aren't present.\n" 2005 "(See perf list the metric groups have names like TopdownL1)\n"); 2006 ret = -1; 2007 goto out; 2008 } 2009 if (stat_config.topdown_level > max_level) { 2010 pr_err("Invalid top-down metrics level. The max level is %u.\n", max_level); 2011 ret = -1; 2012 goto out; 2013 } else if (!stat_config.topdown_level) { 2014 stat_config.topdown_level = 1; 2015 } 2016 if (!stat_config.interval && !stat_config.metric_only) { 2017 fprintf(stat_config.output, 2018 "Topdown accuracy may decrease when measuring long periods.\n" 2019 "Please print the result regularly, e.g. -I1000\n"); 2020 } 2021 str[8] = stat_config.topdown_level + '0'; 2022 if (metricgroup__parse_groups(evlist, 2023 pmu, str, 2024 /*metric_no_group=*/false, 2025 /*metric_no_merge=*/false, 2026 /*metric_no_threshold=*/true, 2027 stat_config.user_requested_cpu_list, 2028 stat_config.system_wide, 2029 stat_config.hardware_aware_grouping) < 0) { 2030 ret = -1; 2031 goto out; 2032 } 2033 } 2034 2035 if (!stat_config.topdown_level) 2036 stat_config.topdown_level = 1; 2037 2038 if (!evlist->core.nr_entries && !evsel_list->core.nr_entries) { 2039 /* 2040 * Add Default metrics. To minimize multiplexing, don't request 2041 * threshold computation, but it will be computed if the events 2042 * are present. 2043 */ 2044 const char *default_metricgroup_names[] = { 2045 "Default", "Default2", "Default3", "Default4", 2046 }; 2047 2048 for (size_t i = 0; i < ARRAY_SIZE(default_metricgroup_names); i++) { 2049 struct evlist *metric_evlist; 2050 2051 if (!metricgroup__has_metric_or_groups(pmu, default_metricgroup_names[i])) 2052 continue; 2053 2054 if ((int)i > detailed_run) 2055 break; 2056 2057 metric_evlist = evlist__new(); 2058 if (!metric_evlist) { 2059 ret = -ENOMEM; 2060 break; 2061 } 2062 if (metricgroup__parse_groups(metric_evlist, pmu, default_metricgroup_names[i], 2063 /*metric_no_group=*/false, 2064 /*metric_no_merge=*/false, 2065 /*metric_no_threshold=*/true, 2066 stat_config.user_requested_cpu_list, 2067 stat_config.system_wide, 2068 stat_config.hardware_aware_grouping) < 0) { 2069 evlist__delete(metric_evlist); 2070 ret = -1; 2071 break; 2072 } 2073 2074 evlist__for_each_entry(metric_evlist, evsel) 2075 evsel->default_metricgroup = true; 2076 2077 evlist__splice_list_tail(evlist, &metric_evlist->core.entries); 2078 metricgroup__copy_metric_events(evlist, /*cgrp=*/NULL, 2079 &evlist->metric_events, 2080 &metric_evlist->metric_events); 2081 evlist__delete(metric_evlist); 2082 } 2083 list_sort(/*priv=*/NULL, &evlist->core.entries, default_evlist_evsel_cmp); 2084 2085 } 2086 out: 2087 if (!ret) { 2088 evlist__for_each_entry(evlist, evsel) { 2089 /* 2090 * Make at least one event non-skippable so fatal errors are visible. 2091 * 'cycles' always used to be default and non-skippable, so use that. 2092 */ 2093 if (!evsel__match(evsel, HARDWARE, HW_CPU_CYCLES)) 2094 evsel->skippable = true; 2095 } 2096 } 2097 parse_events_error__exit(&err); 2098 evlist__splice_list_tail(evsel_list, &evlist->core.entries); 2099 metricgroup__copy_metric_events(evsel_list, /*cgrp=*/NULL, 2100 &evsel_list->metric_events, 2101 &evlist->metric_events); 2102 evlist__delete(evlist); 2103 return ret; 2104 } 2105 2106 static const char * const stat_record_usage[] = { 2107 "perf stat record [<options>]", 2108 NULL, 2109 }; 2110 2111 static void init_features(struct perf_session *session) 2112 { 2113 int feat; 2114 2115 for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++) 2116 perf_header__set_feat(&session->header, feat); 2117 2118 perf_header__clear_feat(&session->header, HEADER_DIR_FORMAT); 2119 perf_header__clear_feat(&session->header, HEADER_BUILD_ID); 2120 perf_header__clear_feat(&session->header, HEADER_TRACING_DATA); 2121 perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK); 2122 perf_header__clear_feat(&session->header, HEADER_AUXTRACE); 2123 } 2124 2125 static int __cmd_record(const struct option stat_options[], struct opt_aggr_mode *opt_mode, 2126 int argc, const char **argv) 2127 { 2128 struct perf_session *session; 2129 struct perf_data *data = &perf_stat.data; 2130 2131 argc = parse_options(argc, argv, stat_options, stat_record_usage, 2132 PARSE_OPT_STOP_AT_NON_OPTION); 2133 stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(opt_mode); 2134 2135 if (output_name) 2136 data->path = output_name; 2137 2138 if (stat_config.run_count != 1 || forever) { 2139 pr_err("Cannot use -r option with perf stat record.\n"); 2140 return -1; 2141 } 2142 2143 session = perf_session__new(data, NULL); 2144 if (IS_ERR(session)) { 2145 pr_err("Perf session creation failed\n"); 2146 return PTR_ERR(session); 2147 } 2148 2149 init_features(session); 2150 2151 session->evlist = evsel_list; 2152 perf_stat.session = session; 2153 perf_stat.record = true; 2154 return argc; 2155 } 2156 2157 static int process_stat_round_event(const struct perf_tool *tool __maybe_unused, 2158 struct perf_session *session, 2159 union perf_event *event) 2160 { 2161 struct perf_record_stat_round *stat_round = &event->stat_round; 2162 struct timespec tsh, *ts = NULL; 2163 struct perf_env *env = perf_session__env(session); 2164 const char **argv = env->cmdline_argv; 2165 int argc = env->nr_cmdline; 2166 2167 process_counters(); 2168 2169 if (stat_round->type == PERF_STAT_ROUND_TYPE__FINAL) 2170 update_stats(stat_config.walltime_nsecs_stats, stat_round->time); 2171 2172 if (stat_config.interval && stat_round->time) { 2173 tsh.tv_sec = stat_round->time / NSEC_PER_SEC; 2174 tsh.tv_nsec = stat_round->time % NSEC_PER_SEC; 2175 ts = &tsh; 2176 } 2177 2178 print_counters(ts, argc, argv); 2179 return 0; 2180 } 2181 2182 static 2183 int process_stat_config_event(const struct perf_tool *tool, 2184 struct perf_session *session, 2185 union perf_event *event) 2186 { 2187 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2188 2189 perf_event__read_stat_config(&stat_config, &event->stat_config); 2190 2191 if (perf_cpu_map__is_empty(st->cpus)) { 2192 if (st->aggr_mode != AGGR_UNSET) 2193 pr_warning("warning: processing task data, aggregation mode not set\n"); 2194 } else if (st->aggr_mode != AGGR_UNSET) { 2195 stat_config.aggr_mode = st->aggr_mode; 2196 } 2197 2198 if (perf_stat.data.is_pipe) 2199 perf_stat_init_aggr_mode(); 2200 else 2201 perf_stat_init_aggr_mode_file(st); 2202 2203 if (stat_config.aggr_map) { 2204 int nr_aggr = stat_config.aggr_map->nr; 2205 2206 if (evlist__alloc_aggr_stats(session->evlist, nr_aggr) < 0) { 2207 pr_err("cannot allocate aggr counts\n"); 2208 return -1; 2209 } 2210 } 2211 return 0; 2212 } 2213 2214 static int set_maps(struct perf_stat *st) 2215 { 2216 if (!st->cpus || !st->threads) 2217 return 0; 2218 2219 if (WARN_ONCE(st->maps_allocated, "stats double allocation\n")) 2220 return -EINVAL; 2221 2222 perf_evlist__set_maps(&evsel_list->core, st->cpus, st->threads); 2223 2224 if (evlist__alloc_stats(&stat_config, evsel_list, /*alloc_raw=*/true)) 2225 return -ENOMEM; 2226 2227 st->maps_allocated = true; 2228 return 0; 2229 } 2230 2231 static 2232 int process_thread_map_event(const struct perf_tool *tool, 2233 struct perf_session *session __maybe_unused, 2234 union perf_event *event) 2235 { 2236 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2237 2238 if (st->threads) { 2239 pr_warning("Extra thread map event, ignoring.\n"); 2240 return 0; 2241 } 2242 2243 st->threads = thread_map__new_event(&event->thread_map); 2244 if (!st->threads) 2245 return -ENOMEM; 2246 2247 return set_maps(st); 2248 } 2249 2250 static 2251 int process_cpu_map_event(const struct perf_tool *tool, 2252 struct perf_session *session __maybe_unused, 2253 union perf_event *event) 2254 { 2255 struct perf_stat *st = container_of(tool, struct perf_stat, tool); 2256 struct perf_cpu_map *cpus; 2257 2258 if (st->cpus) { 2259 pr_warning("Extra cpu map event, ignoring.\n"); 2260 return 0; 2261 } 2262 2263 cpus = cpu_map__new_data(&event->cpu_map.data); 2264 if (!cpus) 2265 return -ENOMEM; 2266 2267 st->cpus = cpus; 2268 return set_maps(st); 2269 } 2270 2271 static const char * const stat_report_usage[] = { 2272 "perf stat report [<options>]", 2273 NULL, 2274 }; 2275 2276 static struct perf_stat perf_stat = { 2277 .aggr_mode = AGGR_UNSET, 2278 .aggr_level = 0, 2279 }; 2280 2281 static int __cmd_report(int argc, const char **argv) 2282 { 2283 struct perf_session *session; 2284 const struct option options[] = { 2285 OPT_STRING('i', "input", &input_name, "file", "input file name"), 2286 OPT_SET_UINT(0, "per-socket", &perf_stat.aggr_mode, 2287 "aggregate counts per processor socket", AGGR_SOCKET), 2288 OPT_SET_UINT(0, "per-die", &perf_stat.aggr_mode, 2289 "aggregate counts per processor die", AGGR_DIE), 2290 OPT_SET_UINT(0, "per-cluster", &perf_stat.aggr_mode, 2291 "aggregate counts perf processor cluster", AGGR_CLUSTER), 2292 OPT_CALLBACK_OPTARG(0, "per-cache", &perf_stat.aggr_mode, &perf_stat.aggr_level, 2293 "cache level", 2294 "aggregate count at this cache level (Default: LLC)", 2295 parse_cache_level), 2296 OPT_SET_UINT(0, "per-core", &perf_stat.aggr_mode, 2297 "aggregate counts per physical processor core", AGGR_CORE), 2298 OPT_SET_UINT(0, "per-node", &perf_stat.aggr_mode, 2299 "aggregate counts per numa node", AGGR_NODE), 2300 OPT_SET_UINT('A', "no-aggr", &perf_stat.aggr_mode, 2301 "disable CPU count aggregation", AGGR_NONE), 2302 OPT_END() 2303 }; 2304 struct stat st; 2305 int ret; 2306 2307 argc = parse_options(argc, argv, options, stat_report_usage, 0); 2308 2309 if (!input_name || !strlen(input_name)) { 2310 if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode)) 2311 input_name = "-"; 2312 else 2313 input_name = "perf.data"; 2314 } 2315 2316 perf_stat.data.path = input_name; 2317 perf_stat.data.mode = PERF_DATA_MODE_READ; 2318 2319 perf_tool__init(&perf_stat.tool, /*ordered_events=*/false); 2320 perf_stat.tool.attr = perf_event__process_attr; 2321 perf_stat.tool.event_update = perf_event__process_event_update; 2322 perf_stat.tool.thread_map = process_thread_map_event; 2323 perf_stat.tool.cpu_map = process_cpu_map_event; 2324 perf_stat.tool.stat_config = process_stat_config_event; 2325 perf_stat.tool.stat = perf_event__process_stat_event; 2326 perf_stat.tool.stat_round = process_stat_round_event; 2327 2328 session = perf_session__new(&perf_stat.data, &perf_stat.tool); 2329 if (IS_ERR(session)) 2330 return PTR_ERR(session); 2331 2332 perf_stat.session = session; 2333 stat_config.output = stderr; 2334 evlist__delete(evsel_list); 2335 evsel_list = session->evlist; 2336 2337 ret = perf_session__process_events(session); 2338 if (ret) 2339 return ret; 2340 2341 perf_session__delete(session); 2342 return 0; 2343 } 2344 2345 static void setup_system_wide(int forks) 2346 { 2347 /* 2348 * Make system wide (-a) the default target if 2349 * no target was specified and one of following 2350 * conditions is met: 2351 * 2352 * - there's no workload specified 2353 * - there is workload specified but all requested 2354 * events are system wide events 2355 */ 2356 if (!target__none(&target)) 2357 return; 2358 2359 if (!forks) 2360 target.system_wide = true; 2361 else { 2362 struct evsel *counter; 2363 2364 evlist__for_each_entry(evsel_list, counter) { 2365 if (!counter->core.requires_cpu && 2366 !evsel__name_is(counter, "duration_time")) { 2367 return; 2368 } 2369 } 2370 2371 if (evsel_list->core.nr_entries) 2372 target.system_wide = true; 2373 } 2374 } 2375 2376 #ifdef HAVE_ARCH_X86_64_SUPPORT 2377 static int parse_tpebs_mode(const struct option *opt, const char *str, 2378 int unset __maybe_unused) 2379 { 2380 enum tpebs_mode *mode = opt->value; 2381 2382 if (!strcasecmp("mean", str)) { 2383 *mode = TPEBS_MODE__MEAN; 2384 return 0; 2385 } 2386 if (!strcasecmp("min", str)) { 2387 *mode = TPEBS_MODE__MIN; 2388 return 0; 2389 } 2390 if (!strcasecmp("max", str)) { 2391 *mode = TPEBS_MODE__MAX; 2392 return 0; 2393 } 2394 if (!strcasecmp("last", str)) { 2395 *mode = TPEBS_MODE__LAST; 2396 return 0; 2397 } 2398 return -1; 2399 } 2400 #endif // HAVE_ARCH_X86_64_SUPPORT 2401 2402 int cmd_stat(int argc, const char **argv) 2403 { 2404 struct opt_aggr_mode opt_mode = {}; 2405 struct option stat_options[] = { 2406 OPT_BOOLEAN('T', "transaction", &transaction_run, 2407 "hardware transaction statistics"), 2408 OPT_CALLBACK('e', "event", &parse_events_option_args, "event", 2409 "event selector. use 'perf list' to list available events", 2410 parse_events_option), 2411 OPT_CALLBACK(0, "filter", &evsel_list, "filter", 2412 "event filter", parse_filter), 2413 OPT_BOOLEAN('i', "no-inherit", &stat_config.no_inherit, 2414 "child tasks do not inherit counters"), 2415 OPT_STRING('p', "pid", &target.pid, "pid", 2416 "stat events on existing process id"), 2417 OPT_STRING('t', "tid", &target.tid, "tid", 2418 "stat events on existing thread id"), 2419 #ifdef HAVE_BPF_SKEL 2420 OPT_STRING('b', "bpf-prog", &target.bpf_str, "bpf-prog-id", 2421 "stat events on existing bpf program id"), 2422 OPT_BOOLEAN(0, "bpf-counters", &target.use_bpf, 2423 "use bpf program to count events"), 2424 OPT_STRING(0, "bpf-attr-map", &target.attr_map, "attr-map-path", 2425 "path to perf_event_attr map"), 2426 #endif 2427 OPT_BOOLEAN('a', "all-cpus", &target.system_wide, 2428 "system-wide collection from all CPUs"), 2429 OPT_BOOLEAN(0, "scale", &stat_config.scale, 2430 "Use --no-scale to disable counter scaling for multiplexing"), 2431 OPT_INCR('v', "verbose", &verbose, 2432 "be more verbose (show counter open errors, etc)"), 2433 OPT_INTEGER('r', "repeat", &stat_config.run_count, 2434 "repeat command and print average + stddev (max: 100, forever: 0)"), 2435 OPT_BOOLEAN(0, "table", &stat_config.walltime_run_table, 2436 "display details about each run (only with -r option)"), 2437 OPT_BOOLEAN('n', "null", &stat_config.null_run, 2438 "null run - dont start any counters"), 2439 OPT_INCR('d', "detailed", &detailed_run, 2440 "detailed run - start a lot of events"), 2441 OPT_BOOLEAN('S', "sync", &sync_run, 2442 "call sync() before starting a run"), 2443 OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL, 2444 "print large numbers with thousands\' separators", 2445 stat__set_big_num), 2446 OPT_STRING('C', "cpu", &target.cpu_list, "cpu", 2447 "list of cpus to monitor in system-wide"), 2448 OPT_BOOLEAN('A', "no-aggr", &opt_mode.no_aggr, 2449 "disable aggregation across CPUs or PMUs"), 2450 OPT_BOOLEAN(0, "no-merge", &opt_mode.no_aggr, 2451 "disable aggregation the same as -A or -no-aggr"), 2452 OPT_BOOLEAN(0, "hybrid-merge", &stat_config.hybrid_merge, 2453 "Merge identical named hybrid events"), 2454 OPT_STRING('x', "field-separator", &stat_config.csv_sep, "separator", 2455 "print counts with custom separator"), 2456 OPT_BOOLEAN('j', "json-output", &stat_config.json_output, 2457 "print counts in JSON format"), 2458 OPT_CALLBACK('G', "cgroup", &evsel_list, "name", 2459 "monitor event in cgroup name only", parse_stat_cgroups), 2460 OPT_STRING(0, "for-each-cgroup", &stat_config.cgroup_list, "name", 2461 "expand events for each cgroup"), 2462 OPT_STRING('o', "output", &output_name, "file", "output file name"), 2463 OPT_BOOLEAN(0, "append", &append_file, "append to the output file"), 2464 OPT_INTEGER(0, "log-fd", &output_fd, 2465 "log output to fd, instead of stderr"), 2466 OPT_STRING(0, "pre", &pre_cmd, "command", 2467 "command to run prior to the measured command"), 2468 OPT_STRING(0, "post", &post_cmd, "command", 2469 "command to run after to the measured command"), 2470 OPT_UINTEGER('I', "interval-print", &stat_config.interval, 2471 "print counts at regular interval in ms " 2472 "(overhead is possible for values <= 100ms)"), 2473 OPT_INTEGER(0, "interval-count", &stat_config.times, 2474 "print counts for fixed number of times"), 2475 OPT_BOOLEAN(0, "interval-clear", &stat_config.interval_clear, 2476 "clear screen in between new interval"), 2477 OPT_UINTEGER(0, "timeout", &stat_config.timeout, 2478 "stop workload and print counts after a timeout period in ms (>= 10ms)"), 2479 OPT_BOOLEAN(0, "per-socket", &opt_mode.socket, 2480 "aggregate counts per processor socket"), 2481 OPT_BOOLEAN(0, "per-die", &opt_mode.die, "aggregate counts per processor die"), 2482 OPT_BOOLEAN(0, "per-cluster", &opt_mode.cluster, 2483 "aggregate counts per processor cluster"), 2484 OPT_CALLBACK_OPTARG(0, "per-cache", &opt_mode, &stat_config.aggr_level, 2485 "cache level", "aggregate count at this cache level (Default: LLC)", 2486 parse_cache_level), 2487 OPT_BOOLEAN(0, "per-core", &opt_mode.core, 2488 "aggregate counts per physical processor core"), 2489 OPT_BOOLEAN(0, "per-thread", &opt_mode.thread, "aggregate counts per thread"), 2490 OPT_BOOLEAN(0, "per-node", &opt_mode.node, "aggregate counts per numa node"), 2491 OPT_INTEGER('D', "delay", &target.initial_delay, 2492 "ms to wait before starting measurement after program start (-1: start with events disabled)"), 2493 OPT_CALLBACK_NOOPT(0, "metric-only", &stat_config.metric_only, NULL, 2494 "Only print computed metrics. No raw values", enable_metric_only), 2495 OPT_BOOLEAN(0, "metric-no-group", &stat_config.metric_no_group, 2496 "don't group metric events, impacts multiplexing"), 2497 OPT_BOOLEAN(0, "metric-no-merge", &stat_config.metric_no_merge, 2498 "don't try to share events between metrics in a group"), 2499 OPT_BOOLEAN(0, "metric-no-threshold", &stat_config.metric_no_threshold, 2500 "disable adding events for the metric threshold calculation"), 2501 OPT_BOOLEAN(0, "topdown", &topdown_run, 2502 "measure top-down statistics"), 2503 #ifdef HAVE_ARCH_X86_64_SUPPORT 2504 OPT_BOOLEAN(0, "record-tpebs", &tpebs_recording, 2505 "enable recording for tpebs when retire_latency required"), 2506 OPT_CALLBACK(0, "tpebs-mode", &tpebs_mode, "tpebs-mode", 2507 "Mode of TPEBS recording: mean, min or max", 2508 parse_tpebs_mode), 2509 #endif 2510 OPT_UINTEGER(0, "td-level", &stat_config.topdown_level, 2511 "Set the metrics level for the top-down statistics (0: max level)"), 2512 OPT_BOOLEAN(0, "smi-cost", &smi_cost, 2513 "measure SMI cost"), 2514 OPT_CALLBACK('M', "metrics", &evsel_list, "metric/metric group list", 2515 "monitor specified metrics or metric groups (separated by ,)", 2516 append_metric_groups), 2517 OPT_BOOLEAN_FLAG(0, "all-kernel", &stat_config.all_kernel, 2518 "Configure all used events to run in kernel space.", 2519 PARSE_OPT_EXCLUSIVE), 2520 OPT_BOOLEAN_FLAG(0, "all-user", &stat_config.all_user, 2521 "Configure all used events to run in user space.", 2522 PARSE_OPT_EXCLUSIVE), 2523 OPT_BOOLEAN(0, "percore-show-thread", &stat_config.percore_show_thread, 2524 "Use with 'percore' event qualifier to show the event " 2525 "counts of one hardware thread by sum up total hardware " 2526 "threads of same physical core"), 2527 OPT_BOOLEAN(0, "summary", &stat_config.summary, 2528 "print summary for interval mode"), 2529 OPT_BOOLEAN(0, "no-csv-summary", &stat_config.no_csv_summary, 2530 "don't print 'summary' for CSV summary output"), 2531 OPT_BOOLEAN(0, "quiet", &quiet, 2532 "don't print any output, messages or warnings (useful with record)"), 2533 OPT_CALLBACK(0, "cputype", &evsel_list, "hybrid cpu type", 2534 "Only enable events on applying cpu with this type " 2535 "for hybrid platform (e.g. core or atom)", 2536 parse_cputype), 2537 #ifdef HAVE_LIBPFM 2538 OPT_CALLBACK(0, "pfm-events", &evsel_list, "event", 2539 "libpfm4 event selector. use 'perf list' to list available events", 2540 parse_libpfm_events_option), 2541 #endif 2542 OPT_CALLBACK(0, "control", &stat_config, "fd:ctl-fd[,ack-fd] or fifo:ctl-fifo[,ack-fifo]", 2543 "Listen on ctl-fd descriptor for command to control measurement ('enable': enable events, 'disable': disable events).\n" 2544 "\t\t\t Optionally send control command completion ('ack\\n') to ack-fd descriptor.\n" 2545 "\t\t\t Alternatively, ctl-fifo / ack-fifo will be opened and used as ctl-fd / ack-fd.", 2546 parse_control_option), 2547 OPT_CALLBACK_OPTARG(0, "iostat", &evsel_list, &stat_config, "default", 2548 "measure I/O performance metrics provided by arch/platform", 2549 iostat_parse), 2550 OPT_END() 2551 }; 2552 const char * const stat_usage[] = { 2553 "perf stat [<options>] [<command>]", 2554 NULL 2555 }; 2556 int status = -EINVAL, run_idx, err; 2557 const char *mode; 2558 FILE *output = stderr; 2559 unsigned int interval, timeout; 2560 const char * const stat_subcommands[] = { "record", "report" }; 2561 char errbuf[BUFSIZ]; 2562 struct evsel *counter; 2563 2564 setlocale(LC_ALL, ""); 2565 2566 evsel_list = evlist__new(); 2567 if (evsel_list == NULL) 2568 return -ENOMEM; 2569 2570 parse_events__shrink_config_terms(); 2571 2572 /* String-parsing callback-based options would segfault when negated */ 2573 set_option_flag(stat_options, 'e', "event", PARSE_OPT_NONEG); 2574 set_option_flag(stat_options, 'M', "metrics", PARSE_OPT_NONEG); 2575 set_option_flag(stat_options, 'G', "cgroup", PARSE_OPT_NONEG); 2576 2577 argc = parse_options_subcommand(argc, argv, stat_options, stat_subcommands, 2578 (const char **) stat_usage, 2579 PARSE_OPT_STOP_AT_NON_OPTION); 2580 2581 stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(&opt_mode); 2582 2583 if (stat_config.csv_sep) { 2584 stat_config.csv_output = true; 2585 if (!strcmp(stat_config.csv_sep, "\\t")) 2586 stat_config.csv_sep = "\t"; 2587 } else 2588 stat_config.csv_sep = DEFAULT_SEPARATOR; 2589 2590 if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) { 2591 argc = __cmd_record(stat_options, &opt_mode, argc, argv); 2592 if (argc < 0) 2593 return -1; 2594 } else if (argc && strlen(argv[0]) > 2 && strstarts("report", argv[0])) 2595 return __cmd_report(argc, argv); 2596 2597 interval = stat_config.interval; 2598 timeout = stat_config.timeout; 2599 2600 /* 2601 * For record command the -o is already taken care of. 2602 */ 2603 if (!STAT_RECORD && output_name && strcmp(output_name, "-")) 2604 output = NULL; 2605 2606 if (output_name && output_fd) { 2607 fprintf(stderr, "cannot use both --output and --log-fd\n"); 2608 parse_options_usage(stat_usage, stat_options, "o", 1); 2609 parse_options_usage(NULL, stat_options, "log-fd", 0); 2610 goto out; 2611 } 2612 2613 if (stat_config.metric_only && stat_config.aggr_mode == AGGR_THREAD) { 2614 fprintf(stderr, "--metric-only is not supported with --per-thread\n"); 2615 goto out; 2616 } 2617 2618 if (stat_config.metric_only && stat_config.run_count > 1) { 2619 fprintf(stderr, "--metric-only is not supported with -r\n"); 2620 goto out; 2621 } 2622 2623 if (stat_config.csv_output || (stat_config.metric_only && stat_config.json_output)) { 2624 /* 2625 * Current CSV and metric-only JSON output doesn't display the 2626 * metric threshold so don't compute it. 2627 */ 2628 stat_config.metric_no_threshold = true; 2629 } 2630 2631 if (stat_config.walltime_run_table && stat_config.run_count <= 1) { 2632 fprintf(stderr, "--table is only supported with -r\n"); 2633 parse_options_usage(stat_usage, stat_options, "r", 1); 2634 parse_options_usage(NULL, stat_options, "table", 0); 2635 goto out; 2636 } 2637 2638 if (output_fd < 0) { 2639 fprintf(stderr, "argument to --log-fd must be a > 0\n"); 2640 parse_options_usage(stat_usage, stat_options, "log-fd", 0); 2641 goto out; 2642 } 2643 2644 if (!output && !quiet) { 2645 struct timespec tm; 2646 mode = append_file ? "a" : "w"; 2647 2648 output = fopen(output_name, mode); 2649 if (!output) { 2650 perror("failed to create output file"); 2651 return -1; 2652 } 2653 if (!stat_config.json_output) { 2654 clock_gettime(CLOCK_REALTIME, &tm); 2655 fprintf(output, "# started on %s\n", ctime(&tm.tv_sec)); 2656 } 2657 } else if (output_fd > 0) { 2658 mode = append_file ? "a" : "w"; 2659 output = fdopen(output_fd, mode); 2660 if (!output) { 2661 perror("Failed opening logfd"); 2662 return -errno; 2663 } 2664 } 2665 2666 if (stat_config.interval_clear && !isatty(fileno(output))) { 2667 fprintf(stderr, "--interval-clear does not work with output\n"); 2668 parse_options_usage(stat_usage, stat_options, "o", 1); 2669 parse_options_usage(NULL, stat_options, "log-fd", 0); 2670 parse_options_usage(NULL, stat_options, "interval-clear", 0); 2671 return -1; 2672 } 2673 2674 stat_config.output = output; 2675 2676 /* 2677 * let the spreadsheet do the pretty-printing 2678 */ 2679 if (stat_config.csv_output) { 2680 /* User explicitly passed -B? */ 2681 if (big_num_opt == 1) { 2682 fprintf(stderr, "-B option not supported with -x\n"); 2683 parse_options_usage(stat_usage, stat_options, "B", 1); 2684 parse_options_usage(NULL, stat_options, "x", 1); 2685 goto out; 2686 } else /* Nope, so disable big number formatting */ 2687 stat_config.big_num = false; 2688 } else if (big_num_opt == 0) /* User passed --no-big-num */ 2689 stat_config.big_num = false; 2690 2691 target.inherit = !stat_config.no_inherit; 2692 err = target__validate(&target); 2693 if (err) { 2694 target__strerror(&target, err, errbuf, BUFSIZ); 2695 pr_warning("%s\n", errbuf); 2696 } 2697 2698 setup_system_wide(argc); 2699 2700 /* 2701 * Display user/system times only for single 2702 * run and when there's specified tracee. 2703 */ 2704 if ((stat_config.run_count == 1) && target__none(&target)) 2705 stat_config.ru_display = true; 2706 2707 if (stat_config.run_count < 0) { 2708 pr_err("Run count must be a positive number\n"); 2709 parse_options_usage(stat_usage, stat_options, "r", 1); 2710 goto out; 2711 } else if (stat_config.run_count == 0) { 2712 forever = true; 2713 stat_config.run_count = 1; 2714 } 2715 2716 if (stat_config.walltime_run_table) { 2717 stat_config.walltime_run = zalloc(stat_config.run_count * sizeof(stat_config.walltime_run[0])); 2718 if (!stat_config.walltime_run) { 2719 pr_err("failed to setup -r option"); 2720 goto out; 2721 } 2722 } 2723 2724 if ((stat_config.aggr_mode == AGGR_THREAD) && 2725 !target__has_task(&target)) { 2726 if (!target.system_wide || target.cpu_list) { 2727 fprintf(stderr, "The --per-thread option is only " 2728 "available when monitoring via -p -t -a " 2729 "options or only --per-thread.\n"); 2730 parse_options_usage(NULL, stat_options, "p", 1); 2731 parse_options_usage(NULL, stat_options, "t", 1); 2732 goto out; 2733 } 2734 } 2735 2736 /* 2737 * no_aggr, cgroup are for system-wide only 2738 * --per-thread is aggregated per thread, we dont mix it with cpu mode 2739 */ 2740 if (((stat_config.aggr_mode != AGGR_GLOBAL && 2741 stat_config.aggr_mode != AGGR_THREAD) || 2742 (nr_cgroups || stat_config.cgroup_list)) && 2743 !target__has_cpu(&target)) { 2744 fprintf(stderr, "both cgroup and no-aggregation " 2745 "modes only available in system-wide mode\n"); 2746 2747 parse_options_usage(stat_usage, stat_options, "G", 1); 2748 parse_options_usage(NULL, stat_options, "A", 1); 2749 parse_options_usage(NULL, stat_options, "a", 1); 2750 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2751 goto out; 2752 } 2753 2754 if (stat_config.iostat_run) { 2755 status = iostat_prepare(evsel_list, &stat_config); 2756 if (status) 2757 goto out; 2758 if (iostat_mode == IOSTAT_LIST) { 2759 iostat_list(evsel_list, &stat_config); 2760 goto out; 2761 } else if (verbose > 0) 2762 iostat_list(evsel_list, &stat_config); 2763 if (iostat_mode == IOSTAT_RUN && !target__has_cpu(&target)) 2764 target.system_wide = true; 2765 } 2766 2767 if ((stat_config.aggr_mode == AGGR_THREAD) && (target.system_wide)) 2768 target.per_thread = true; 2769 2770 stat_config.system_wide = target.system_wide; 2771 if (target.cpu_list) { 2772 stat_config.user_requested_cpu_list = strdup(target.cpu_list); 2773 if (!stat_config.user_requested_cpu_list) { 2774 status = -ENOMEM; 2775 goto out; 2776 } 2777 } 2778 2779 /* 2780 * Metric parsing needs to be delayed as metrics may optimize events 2781 * knowing the target is system-wide. 2782 */ 2783 if (metrics) { 2784 const char *pmu = parse_events_option_args.pmu_filter ?: "all"; 2785 int ret = metricgroup__parse_groups(evsel_list, pmu, metrics, 2786 stat_config.metric_no_group, 2787 stat_config.metric_no_merge, 2788 stat_config.metric_no_threshold, 2789 stat_config.user_requested_cpu_list, 2790 stat_config.system_wide, 2791 stat_config.hardware_aware_grouping); 2792 2793 zfree(&metrics); 2794 if (ret) { 2795 status = ret; 2796 goto out; 2797 } 2798 } 2799 2800 if (add_default_events()) 2801 goto out; 2802 2803 if (stat_config.cgroup_list) { 2804 if (nr_cgroups > 0) { 2805 pr_err("--cgroup and --for-each-cgroup cannot be used together\n"); 2806 parse_options_usage(stat_usage, stat_options, "G", 1); 2807 parse_options_usage(NULL, stat_options, "for-each-cgroup", 0); 2808 goto out; 2809 } 2810 2811 if (evlist__expand_cgroup(evsel_list, stat_config.cgroup_list, true) < 0) { 2812 parse_options_usage(stat_usage, stat_options, 2813 "for-each-cgroup", 0); 2814 goto out; 2815 } 2816 } 2817 #ifdef HAVE_BPF_SKEL 2818 if (target.use_bpf && nr_cgroups && 2819 (evsel_list->core.nr_entries / nr_cgroups) > BPERF_CGROUP__MAX_EVENTS) { 2820 pr_warning("Disabling BPF counters due to more events (%d) than the max (%d)\n", 2821 evsel_list->core.nr_entries / nr_cgroups, BPERF_CGROUP__MAX_EVENTS); 2822 target.use_bpf = false; 2823 } 2824 #endif // HAVE_BPF_SKEL 2825 evlist__warn_user_requested_cpus(evsel_list, target.cpu_list); 2826 2827 evlist__for_each_entry(evsel_list, counter) { 2828 /* 2829 * Setup BPF counters to require CPUs as any(-1) isn't 2830 * supported. evlist__create_maps below will propagate this 2831 * information to the evsels. Note, evsel__is_bperf isn't yet 2832 * set up, and this change must happen early, so directly use 2833 * the bpf_counter variable and target information. 2834 */ 2835 if ((counter->bpf_counter || target.use_bpf) && !target__has_cpu(&target)) 2836 counter->core.requires_cpu = true; 2837 } 2838 2839 if (evlist__create_maps(evsel_list, &target) < 0) { 2840 if (target__has_task(&target)) { 2841 pr_err("Problems finding threads of monitor\n"); 2842 parse_options_usage(stat_usage, stat_options, "p", 1); 2843 parse_options_usage(NULL, stat_options, "t", 1); 2844 } else if (target__has_cpu(&target)) { 2845 perror("failed to parse CPUs map"); 2846 parse_options_usage(stat_usage, stat_options, "C", 1); 2847 parse_options_usage(NULL, stat_options, "a", 1); 2848 } 2849 goto out; 2850 } 2851 2852 evlist__check_cpu_maps(evsel_list); 2853 2854 /* 2855 * Initialize thread_map with comm names, 2856 * so we could print it out on output. 2857 */ 2858 if (stat_config.aggr_mode == AGGR_THREAD) { 2859 thread_map__read_comms(evsel_list->core.threads); 2860 } 2861 2862 if (stat_config.aggr_mode == AGGR_NODE) 2863 cpu__setup_cpunode_map(); 2864 2865 if (stat_config.times && interval) 2866 interval_count = true; 2867 else if (stat_config.times && !interval) { 2868 pr_err("interval-count option should be used together with " 2869 "interval-print.\n"); 2870 parse_options_usage(stat_usage, stat_options, "interval-count", 0); 2871 parse_options_usage(stat_usage, stat_options, "I", 1); 2872 goto out; 2873 } 2874 2875 if (timeout && timeout < 100) { 2876 if (timeout < 10) { 2877 pr_err("timeout must be >= 10ms.\n"); 2878 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2879 goto out; 2880 } else 2881 pr_warning("timeout < 100ms. " 2882 "The overhead percentage could be high in some cases. " 2883 "Please proceed with caution.\n"); 2884 } 2885 if (timeout && interval) { 2886 pr_err("timeout option is not supported with interval-print.\n"); 2887 parse_options_usage(stat_usage, stat_options, "timeout", 0); 2888 parse_options_usage(stat_usage, stat_options, "I", 1); 2889 goto out; 2890 } 2891 2892 if (perf_stat_init_aggr_mode()) 2893 goto out; 2894 2895 if (evlist__alloc_stats(&stat_config, evsel_list, interval)) 2896 goto out; 2897 2898 /* 2899 * Set sample_type to PERF_SAMPLE_IDENTIFIER, which should be harmless 2900 * while avoiding that older tools show confusing messages. 2901 * 2902 * However for pipe sessions we need to keep it zero, 2903 * because script's perf_evsel__check_attr is triggered 2904 * by attr->sample_type != 0, and we can't run it on 2905 * stat sessions. 2906 */ 2907 stat_config.identifier = !(STAT_RECORD && perf_stat.data.is_pipe); 2908 2909 /* 2910 * We dont want to block the signals - that would cause 2911 * child tasks to inherit that and Ctrl-C would not work. 2912 * What we want is for Ctrl-C to work in the exec()-ed 2913 * task, but being ignored by perf stat itself: 2914 */ 2915 atexit(sig_atexit); 2916 if (!forever) 2917 signal(SIGINT, skip_signal); 2918 signal(SIGCHLD, skip_signal); 2919 signal(SIGALRM, skip_signal); 2920 signal(SIGABRT, skip_signal); 2921 2922 if (evlist__initialize_ctlfd(evsel_list, stat_config.ctl_fd, stat_config.ctl_fd_ack)) 2923 goto out; 2924 2925 /* Enable ignoring missing threads when -p option is defined. */ 2926 evlist__first(evsel_list)->ignore_missing_thread = target.pid; 2927 status = 0; 2928 for (run_idx = 0; forever || run_idx < stat_config.run_count; run_idx++) { 2929 if (stat_config.run_count != 1 && verbose > 0) 2930 fprintf(output, "[ perf stat: executing run #%d ... ]\n", 2931 run_idx + 1); 2932 2933 if (run_idx != 0) 2934 evlist__reset_prev_raw_counts(evsel_list); 2935 2936 status = run_perf_stat(argc, argv, run_idx); 2937 if (status == -1) 2938 break; 2939 2940 if (forever && !interval) { 2941 print_counters(NULL, argc, argv); 2942 perf_stat__reset_stats(); 2943 } 2944 } 2945 2946 if (!forever && status != -1 && (!interval || stat_config.summary)) { 2947 if (stat_config.run_count > 1) 2948 evlist__copy_res_stats(&stat_config, evsel_list); 2949 print_counters(NULL, argc, argv); 2950 } 2951 2952 evlist__finalize_ctlfd(evsel_list); 2953 2954 if (STAT_RECORD) { 2955 /* 2956 * We synthesize the kernel mmap record just so that older tools 2957 * don't emit warnings about not being able to resolve symbols 2958 * due to /proc/sys/kernel/kptr_restrict settings and instead provide 2959 * a saner message about no samples being in the perf.data file. 2960 * 2961 * This also serves to suppress a warning about f_header.data.size == 0 2962 * in header.c at the moment 'perf stat record' gets introduced, which 2963 * is not really needed once we start adding the stat specific PERF_RECORD_ 2964 * records, but the need to suppress the kptr_restrict messages in older 2965 * tools remain -acme 2966 */ 2967 int fd = perf_data__fd(&perf_stat.data); 2968 2969 err = perf_event__synthesize_kernel_mmap((void *)&perf_stat, 2970 process_synthesized_event, 2971 &perf_stat.session->machines.host); 2972 if (err) { 2973 pr_warning("Couldn't synthesize the kernel mmap record, harmless, " 2974 "older tools may produce warnings about this file\n."); 2975 } 2976 2977 if (!interval) { 2978 if (WRITE_STAT_ROUND_EVENT(stat_config.walltime_nsecs_stats->max, FINAL)) 2979 pr_err("failed to write stat round event\n"); 2980 } 2981 2982 if (!perf_stat.data.is_pipe) { 2983 perf_stat.session->header.data_size += perf_stat.bytes_written; 2984 perf_session__write_header(perf_stat.session, evsel_list, fd, true); 2985 } 2986 2987 evlist__close(evsel_list); 2988 perf_session__delete(perf_stat.session); 2989 } 2990 2991 perf_stat__exit_aggr_mode(); 2992 evlist__free_stats(evsel_list); 2993 out: 2994 if (stat_config.iostat_run) 2995 iostat_release(evsel_list); 2996 2997 zfree(&stat_config.walltime_run); 2998 zfree(&stat_config.user_requested_cpu_list); 2999 3000 if (smi_cost && smi_reset) 3001 sysfs__write_int(FREEZE_ON_SMI_PATH, 0); 3002 3003 evlist__delete(evsel_list); 3004 3005 evlist__close_control(stat_config.ctl_fd, stat_config.ctl_fd_ack, &stat_config.ctl_fd_close); 3006 3007 return status; 3008 } 3009