1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
4 *
5 * Copyright: 2014 Raumfeld GmbH
6 * Author: Sven Brandau <info@brandau.biz>
7 *
8 * based on code from:
9 * Raumfeld GmbH
10 * Johannes Stezenbach <js@sig21.net>
11 * Wolfson Microelectronics PLC.
12 * Mark Brown <broonie@opensource.wolfsonmicro.com>
13 * Freescale Semiconductor, Inc.
14 * Timur Tabi <timur@freescale.com>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
18
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/init.h>
22 #include <linux/delay.h>
23 #include <linux/pm.h>
24 #include <linux/i2c.h>
25 #include <linux/of.h>
26 #include <linux/regmap.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/slab.h>
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/soc.h>
34 #include <sound/soc-dapm.h>
35 #include <sound/initval.h>
36 #include <sound/tlv.h>
37
38 #include <sound/sta350.h>
39 #include "sta350.h"
40
41 #define STA350_RATES (SNDRV_PCM_RATE_32000 | \
42 SNDRV_PCM_RATE_44100 | \
43 SNDRV_PCM_RATE_48000 | \
44 SNDRV_PCM_RATE_88200 | \
45 SNDRV_PCM_RATE_96000 | \
46 SNDRV_PCM_RATE_176400 | \
47 SNDRV_PCM_RATE_192000)
48
49 #define STA350_FORMATS \
50 (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S18_3LE | \
51 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_3LE | \
52 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
53
54 /* Power-up register defaults */
55 static const struct reg_default sta350_regs[] = {
56 { 0x0, 0x63 },
57 { 0x1, 0x80 },
58 { 0x2, 0xdf },
59 { 0x3, 0x40 },
60 { 0x4, 0xc2 },
61 { 0x5, 0x5c },
62 { 0x6, 0x00 },
63 { 0x7, 0xff },
64 { 0x8, 0x60 },
65 { 0x9, 0x60 },
66 { 0xa, 0x60 },
67 { 0xb, 0x00 },
68 { 0xc, 0x00 },
69 { 0xd, 0x00 },
70 { 0xe, 0x00 },
71 { 0xf, 0x40 },
72 { 0x10, 0x80 },
73 { 0x11, 0x77 },
74 { 0x12, 0x6a },
75 { 0x13, 0x69 },
76 { 0x14, 0x6a },
77 { 0x15, 0x69 },
78 { 0x16, 0x00 },
79 { 0x17, 0x00 },
80 { 0x18, 0x00 },
81 { 0x19, 0x00 },
82 { 0x1a, 0x00 },
83 { 0x1b, 0x00 },
84 { 0x1c, 0x00 },
85 { 0x1d, 0x00 },
86 { 0x1e, 0x00 },
87 { 0x1f, 0x00 },
88 { 0x20, 0x00 },
89 { 0x21, 0x00 },
90 { 0x22, 0x00 },
91 { 0x23, 0x00 },
92 { 0x24, 0x00 },
93 { 0x25, 0x00 },
94 { 0x26, 0x00 },
95 { 0x27, 0x2a },
96 { 0x28, 0xc0 },
97 { 0x29, 0xf3 },
98 { 0x2a, 0x33 },
99 { 0x2b, 0x00 },
100 { 0x2c, 0x0c },
101 { 0x31, 0x00 },
102 { 0x36, 0x00 },
103 { 0x37, 0x00 },
104 { 0x38, 0x00 },
105 { 0x39, 0x01 },
106 { 0x3a, 0xee },
107 { 0x3b, 0xff },
108 { 0x3c, 0x7e },
109 { 0x3d, 0xc0 },
110 { 0x3e, 0x26 },
111 { 0x3f, 0x00 },
112 { 0x48, 0x00 },
113 { 0x49, 0x00 },
114 { 0x4a, 0x00 },
115 { 0x4b, 0x04 },
116 { 0x4c, 0x00 },
117 };
118
119 static const struct regmap_range sta350_write_regs_range[] = {
120 regmap_reg_range(STA350_CONFA, STA350_AUTO2),
121 regmap_reg_range(STA350_C1CFG, STA350_FDRC2),
122 regmap_reg_range(STA350_EQCFG, STA350_EVOLRES),
123 regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
124 };
125
126 static const struct regmap_range sta350_read_regs_range[] = {
127 regmap_reg_range(STA350_CONFA, STA350_AUTO2),
128 regmap_reg_range(STA350_C1CFG, STA350_STATUS),
129 regmap_reg_range(STA350_EQCFG, STA350_EVOLRES),
130 regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
131 };
132
133 static const struct regmap_range sta350_volatile_regs_range[] = {
134 regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
135 regmap_reg_range(STA350_STATUS, STA350_STATUS),
136 };
137
138 static const struct regmap_access_table sta350_write_regs = {
139 .yes_ranges = sta350_write_regs_range,
140 .n_yes_ranges = ARRAY_SIZE(sta350_write_regs_range),
141 };
142
143 static const struct regmap_access_table sta350_read_regs = {
144 .yes_ranges = sta350_read_regs_range,
145 .n_yes_ranges = ARRAY_SIZE(sta350_read_regs_range),
146 };
147
148 static const struct regmap_access_table sta350_volatile_regs = {
149 .yes_ranges = sta350_volatile_regs_range,
150 .n_yes_ranges = ARRAY_SIZE(sta350_volatile_regs_range),
151 };
152
153 /* regulator power supply names */
154 static const char * const sta350_supply_names[] = {
155 "vdd-dig", /* digital supply, 3.3V */
156 "vdd-pll", /* pll supply, 3.3V */
157 "vcc" /* power amp supply, 5V - 26V */
158 };
159
160 /* codec private data */
161 struct sta350_priv {
162 struct regmap *regmap;
163 struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
164 struct sta350_platform_data *pdata;
165
166 unsigned int mclk;
167 unsigned int format;
168
169 u32 coef_shadow[STA350_COEF_COUNT];
170 int shutdown;
171
172 struct gpio_desc *gpiod_nreset;
173 struct gpio_desc *gpiod_power_down;
174
175 struct mutex coeff_lock;
176 };
177
178 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
179 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
180 static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
181
182 static const char * const sta350_drc_ac[] = {
183 "Anti-Clipping", "Dynamic Range Compression"
184 };
185 static const char * const sta350_auto_gc_mode[] = {
186 "User", "AC no clipping", "AC limited clipping (10%)",
187 "DRC nighttime listening mode"
188 };
189 static const char * const sta350_auto_xo_mode[] = {
190 "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
191 "200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
192 "340Hz", "360Hz"
193 };
194 static const char * const sta350_binary_output[] = {
195 "FFX 3-state output - normal operation", "Binary output"
196 };
197 static const char * const sta350_limiter_select[] = {
198 "Limiter Disabled", "Limiter #1", "Limiter #2"
199 };
200 static const char * const sta350_limiter_attack_rate[] = {
201 "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
202 "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
203 "0.0645", "0.0564", "0.0501", "0.0451"
204 };
205 static const char * const sta350_limiter_release_rate[] = {
206 "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
207 "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
208 "0.0134", "0.0117", "0.0110", "0.0104"
209 };
210 static const char * const sta350_noise_shaper_type[] = {
211 "Third order", "Fourth order"
212 };
213
214 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
215 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
216 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
217 );
218
219 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
220 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
221 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
222 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
223 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
224 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
225 );
226
227 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
228 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
229 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
230 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
231 );
232
233 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
234 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
235 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
236 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
237 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
238 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
239 );
240
241 static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
242 STA350_CONFD, STA350_CONFD_DRC_SHIFT,
243 sta350_drc_ac);
244 static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
245 STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
246 sta350_noise_shaper_type);
247 static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
248 STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
249 sta350_auto_gc_mode);
250 static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
251 STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
252 sta350_auto_xo_mode);
253 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
254 STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
255 sta350_binary_output);
256 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
257 STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
258 sta350_binary_output);
259 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
260 STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
261 sta350_binary_output);
262 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
263 STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
264 sta350_limiter_select);
265 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
266 STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
267 sta350_limiter_select);
268 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
269 STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
270 sta350_limiter_select);
271 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
272 STA350_L1AR, STA350_LxA_SHIFT,
273 sta350_limiter_attack_rate);
274 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
275 STA350_L2AR, STA350_LxA_SHIFT,
276 sta350_limiter_attack_rate);
277 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
278 STA350_L1AR, STA350_LxR_SHIFT,
279 sta350_limiter_release_rate);
280 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
281 STA350_L2AR, STA350_LxR_SHIFT,
282 sta350_limiter_release_rate);
283
284 /*
285 * byte array controls for setting biquad, mixer, scaling coefficients;
286 * for biquads all five coefficients need to be set in one go,
287 * mixer and pre/postscale coefs can be set individually;
288 * each coef is 24bit, the bytes are ordered in the same way
289 * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
290 */
291
sta350_coefficient_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)292 static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
293 struct snd_ctl_elem_info *uinfo)
294 {
295 int numcoef = kcontrol->private_value >> 16;
296 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
297 uinfo->count = 3 * numcoef;
298 return 0;
299 }
300
sta350_coefficient_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)301 static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
302 struct snd_ctl_elem_value *ucontrol)
303 {
304 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
305 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
306 int numcoef = kcontrol->private_value >> 16;
307 int index = kcontrol->private_value & 0xffff;
308 unsigned int cfud, val;
309 int i, ret = 0;
310
311 mutex_lock(&sta350->coeff_lock);
312
313 /* preserve reserved bits in STA350_CFUD */
314 regmap_read(sta350->regmap, STA350_CFUD, &cfud);
315 cfud &= 0xf0;
316 /*
317 * chip documentation does not say if the bits are self clearing,
318 * so do it explicitly
319 */
320 regmap_write(sta350->regmap, STA350_CFUD, cfud);
321
322 regmap_write(sta350->regmap, STA350_CFADDR2, index);
323 if (numcoef == 1) {
324 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
325 } else if (numcoef == 5) {
326 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
327 } else {
328 ret = -EINVAL;
329 goto exit_unlock;
330 }
331
332 for (i = 0; i < 3 * numcoef; i++) {
333 regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
334 ucontrol->value.bytes.data[i] = val;
335 }
336
337 exit_unlock:
338 mutex_unlock(&sta350->coeff_lock);
339
340 return ret;
341 }
342
sta350_coefficient_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)343 static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
344 struct snd_ctl_elem_value *ucontrol)
345 {
346 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
347 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
348 int numcoef = kcontrol->private_value >> 16;
349 int index = kcontrol->private_value & 0xffff;
350 unsigned int cfud;
351 int i;
352
353 /* preserve reserved bits in STA350_CFUD */
354 regmap_read(sta350->regmap, STA350_CFUD, &cfud);
355 cfud &= 0xf0;
356 /*
357 * chip documentation does not say if the bits are self clearing,
358 * so do it explicitly
359 */
360 regmap_write(sta350->regmap, STA350_CFUD, cfud);
361
362 regmap_write(sta350->regmap, STA350_CFADDR2, index);
363 for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
364 sta350->coef_shadow[index + i] =
365 (ucontrol->value.bytes.data[3 * i] << 16)
366 | (ucontrol->value.bytes.data[3 * i + 1] << 8)
367 | (ucontrol->value.bytes.data[3 * i + 2]);
368 for (i = 0; i < 3 * numcoef; i++)
369 regmap_write(sta350->regmap, STA350_B1CF1 + i,
370 ucontrol->value.bytes.data[i]);
371 if (numcoef == 1)
372 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
373 else if (numcoef == 5)
374 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
375 else
376 return -EINVAL;
377
378 return 0;
379 }
380
sta350_sync_coef_shadow(struct snd_soc_component * component)381 static int sta350_sync_coef_shadow(struct snd_soc_component *component)
382 {
383 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
384 unsigned int cfud;
385 int i;
386
387 /* preserve reserved bits in STA350_CFUD */
388 regmap_read(sta350->regmap, STA350_CFUD, &cfud);
389 cfud &= 0xf0;
390
391 for (i = 0; i < STA350_COEF_COUNT; i++) {
392 regmap_write(sta350->regmap, STA350_CFADDR2, i);
393 regmap_write(sta350->regmap, STA350_B1CF1,
394 (sta350->coef_shadow[i] >> 16) & 0xff);
395 regmap_write(sta350->regmap, STA350_B1CF2,
396 (sta350->coef_shadow[i] >> 8) & 0xff);
397 regmap_write(sta350->regmap, STA350_B1CF3,
398 (sta350->coef_shadow[i]) & 0xff);
399 /*
400 * chip documentation does not say if the bits are
401 * self-clearing, so do it explicitly
402 */
403 regmap_write(sta350->regmap, STA350_CFUD, cfud);
404 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
405 }
406 return 0;
407 }
408
sta350_cache_sync(struct snd_soc_component * component)409 static int sta350_cache_sync(struct snd_soc_component *component)
410 {
411 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
412 unsigned int mute;
413 int rc;
414
415 /* mute during register sync */
416 regmap_read(sta350->regmap, STA350_CFUD, &mute);
417 regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
418 sta350_sync_coef_shadow(component);
419 rc = regcache_sync(sta350->regmap);
420 regmap_write(sta350->regmap, STA350_MMUTE, mute);
421 return rc;
422 }
423
424 #define SINGLE_COEF(xname, index) \
425 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
426 .info = sta350_coefficient_info, \
427 .get = sta350_coefficient_get,\
428 .put = sta350_coefficient_put, \
429 .private_value = index | (1 << 16) }
430
431 #define BIQUAD_COEFS(xname, index) \
432 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
433 .info = sta350_coefficient_info, \
434 .get = sta350_coefficient_get,\
435 .put = sta350_coefficient_put, \
436 .private_value = index | (5 << 16) }
437
438 static const struct snd_kcontrol_new sta350_snd_controls[] = {
439 SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
440 /* VOL */
441 SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
442 SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
443 SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
444 /* CONFD */
445 SOC_SINGLE("High Pass Filter Bypass Switch",
446 STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
447 SOC_SINGLE("De-emphasis Filter Switch",
448 STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
449 SOC_SINGLE("DSP Bypass Switch",
450 STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
451 SOC_SINGLE("Post-scale Link Switch",
452 STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
453 SOC_SINGLE("Biquad Coefficient Link Switch",
454 STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
455 SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
456 SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
457 SOC_SINGLE("Zero-detect Mute Enable Switch",
458 STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
459 SOC_SINGLE("Submix Mode Switch",
460 STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
461 /* CONFE */
462 SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
463 SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
464 /* MUTE */
465 SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
466 SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
467 SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
468 SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
469 /* AUTOx */
470 SOC_ENUM("Automode GC", sta350_auto_gc_enum),
471 SOC_ENUM("Automode XO", sta350_auto_xo_enum),
472 /* CxCFG */
473 SOC_SINGLE("Ch1 Tone Control Bypass Switch",
474 STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
475 SOC_SINGLE("Ch2 Tone Control Bypass Switch",
476 STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
477 SOC_SINGLE("Ch1 EQ Bypass Switch",
478 STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
479 SOC_SINGLE("Ch2 EQ Bypass Switch",
480 STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
481 SOC_SINGLE("Ch1 Master Volume Bypass Switch",
482 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
483 SOC_SINGLE("Ch2 Master Volume Bypass Switch",
484 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
485 SOC_SINGLE("Ch3 Master Volume Bypass Switch",
486 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
487 SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
488 SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
489 SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
490 SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
491 SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
492 SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
493 /* TONE */
494 SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
495 STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
496 SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
497 STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
498 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
499 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
500 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
501 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
502
503 /*
504 * depending on mode, the attack/release thresholds have
505 * two different enum definitions; provide both
506 */
507 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
508 STA350_L1ATRT, STA350_LxA_SHIFT,
509 16, 0, sta350_limiter_ac_attack_tlv),
510 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
511 STA350_L2ATRT, STA350_LxA_SHIFT,
512 16, 0, sta350_limiter_ac_attack_tlv),
513 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
514 STA350_L1ATRT, STA350_LxR_SHIFT,
515 16, 0, sta350_limiter_ac_release_tlv),
516 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
517 STA350_L2ATRT, STA350_LxR_SHIFT,
518 16, 0, sta350_limiter_ac_release_tlv),
519 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
520 STA350_L1ATRT, STA350_LxA_SHIFT,
521 16, 0, sta350_limiter_drc_attack_tlv),
522 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
523 STA350_L2ATRT, STA350_LxA_SHIFT,
524 16, 0, sta350_limiter_drc_attack_tlv),
525 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
526 STA350_L1ATRT, STA350_LxR_SHIFT,
527 16, 0, sta350_limiter_drc_release_tlv),
528 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
529 STA350_L2ATRT, STA350_LxR_SHIFT,
530 16, 0, sta350_limiter_drc_release_tlv),
531
532 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
533 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
534 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
535 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
536 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
537 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
538 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
539 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
540 BIQUAD_COEFS("High-pass", 40),
541 BIQUAD_COEFS("Low-pass", 45),
542 SINGLE_COEF("Ch1 - Prescale", 50),
543 SINGLE_COEF("Ch2 - Prescale", 51),
544 SINGLE_COEF("Ch1 - Postscale", 52),
545 SINGLE_COEF("Ch2 - Postscale", 53),
546 SINGLE_COEF("Ch3 - Postscale", 54),
547 SINGLE_COEF("Thermal warning - Postscale", 55),
548 SINGLE_COEF("Ch1 - Mix 1", 56),
549 SINGLE_COEF("Ch1 - Mix 2", 57),
550 SINGLE_COEF("Ch2 - Mix 1", 58),
551 SINGLE_COEF("Ch2 - Mix 2", 59),
552 SINGLE_COEF("Ch3 - Mix 1", 60),
553 SINGLE_COEF("Ch3 - Mix 2", 61),
554 };
555
556 static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
557 SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
558 SND_SOC_DAPM_OUTPUT("LEFT"),
559 SND_SOC_DAPM_OUTPUT("RIGHT"),
560 SND_SOC_DAPM_OUTPUT("SUB"),
561 };
562
563 static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
564 { "LEFT", NULL, "DAC" },
565 { "RIGHT", NULL, "DAC" },
566 { "SUB", NULL, "DAC" },
567 { "DAC", NULL, "Playback" },
568 };
569
570 /* MCLK interpolation ratio per fs */
571 static struct {
572 int fs;
573 int ir;
574 } interpolation_ratios[] = {
575 { 32000, 0 },
576 { 44100, 0 },
577 { 48000, 0 },
578 { 88200, 1 },
579 { 96000, 1 },
580 { 176400, 2 },
581 { 192000, 2 },
582 };
583
584 /* MCLK to fs clock ratios */
585 static int mcs_ratio_table[3][6] = {
586 { 768, 512, 384, 256, 128, 576 },
587 { 384, 256, 192, 128, 64, 0 },
588 { 192, 128, 96, 64, 32, 0 },
589 };
590
591 /**
592 * sta350_set_dai_sysclk - configure MCLK
593 * @codec_dai: the codec DAI
594 * @clk_id: the clock ID (ignored)
595 * @freq: the MCLK input frequency
596 * @dir: the clock direction (ignored)
597 *
598 * The value of MCLK is used to determine which sample rates are supported
599 * by the STA350, based on the mcs_ratio_table.
600 *
601 * This function must be called by the machine driver's 'startup' function,
602 * otherwise the list of supported sample rates will not be available in
603 * time for ALSA.
604 */
sta350_set_dai_sysclk(struct snd_soc_dai * codec_dai,int clk_id,unsigned int freq,int dir)605 static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
606 int clk_id, unsigned int freq, int dir)
607 {
608 struct snd_soc_component *component = codec_dai->component;
609 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
610
611 dev_dbg(component->dev, "mclk=%u\n", freq);
612 sta350->mclk = freq;
613
614 return 0;
615 }
616
617 /**
618 * sta350_set_dai_fmt - configure the codec for the selected audio format
619 * @codec_dai: the codec DAI
620 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
621 *
622 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
623 * codec accordingly.
624 */
sta350_set_dai_fmt(struct snd_soc_dai * codec_dai,unsigned int fmt)625 static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
626 unsigned int fmt)
627 {
628 struct snd_soc_component *component = codec_dai->component;
629 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
630 unsigned int confb = 0;
631
632 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
633 case SND_SOC_DAIFMT_CBC_CFC:
634 break;
635 default:
636 return -EINVAL;
637 }
638
639 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
640 case SND_SOC_DAIFMT_I2S:
641 case SND_SOC_DAIFMT_RIGHT_J:
642 case SND_SOC_DAIFMT_LEFT_J:
643 sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
644 break;
645 default:
646 return -EINVAL;
647 }
648
649 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
650 case SND_SOC_DAIFMT_NB_NF:
651 confb |= STA350_CONFB_C2IM;
652 break;
653 case SND_SOC_DAIFMT_NB_IF:
654 confb |= STA350_CONFB_C1IM;
655 break;
656 default:
657 return -EINVAL;
658 }
659
660 return regmap_update_bits(sta350->regmap, STA350_CONFB,
661 STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
662 }
663
664 /**
665 * sta350_hw_params - program the STA350 with the given hardware parameters.
666 * @substream: the audio stream
667 * @params: the hardware parameters to set
668 * @dai: the SOC DAI (ignored)
669 *
670 * This function programs the hardware with the values provided.
671 * Specifically, the sample rate and the data format.
672 */
sta350_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * dai)673 static int sta350_hw_params(struct snd_pcm_substream *substream,
674 struct snd_pcm_hw_params *params,
675 struct snd_soc_dai *dai)
676 {
677 struct snd_soc_component *component = dai->component;
678 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
679 int i, mcs = -EINVAL, ir = -EINVAL;
680 unsigned int confa, confb;
681 unsigned int rate, ratio;
682 int ret;
683
684 if (!sta350->mclk) {
685 dev_err(component->dev,
686 "sta350->mclk is unset. Unable to determine ratio\n");
687 return -EIO;
688 }
689
690 rate = params_rate(params);
691 ratio = sta350->mclk / rate;
692 dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
693
694 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
695 if (interpolation_ratios[i].fs == rate) {
696 ir = interpolation_ratios[i].ir;
697 break;
698 }
699 }
700
701 if (ir < 0) {
702 dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
703 return -EINVAL;
704 }
705
706 for (i = 0; i < 6; i++) {
707 if (mcs_ratio_table[ir][i] == ratio) {
708 mcs = i;
709 break;
710 }
711 }
712
713 if (mcs < 0) {
714 dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
715 return -EINVAL;
716 }
717
718 confa = (ir << STA350_CONFA_IR_SHIFT) |
719 (mcs << STA350_CONFA_MCS_SHIFT);
720 confb = 0;
721
722 switch (params_width(params)) {
723 case 24:
724 dev_dbg(component->dev, "24bit\n");
725 fallthrough;
726 case 32:
727 dev_dbg(component->dev, "24bit or 32bit\n");
728 switch (sta350->format) {
729 case SND_SOC_DAIFMT_I2S:
730 confb |= 0x0;
731 break;
732 case SND_SOC_DAIFMT_LEFT_J:
733 confb |= 0x1;
734 break;
735 case SND_SOC_DAIFMT_RIGHT_J:
736 confb |= 0x2;
737 break;
738 }
739
740 break;
741 case 20:
742 dev_dbg(component->dev, "20bit\n");
743 switch (sta350->format) {
744 case SND_SOC_DAIFMT_I2S:
745 confb |= 0x4;
746 break;
747 case SND_SOC_DAIFMT_LEFT_J:
748 confb |= 0x5;
749 break;
750 case SND_SOC_DAIFMT_RIGHT_J:
751 confb |= 0x6;
752 break;
753 }
754
755 break;
756 case 18:
757 dev_dbg(component->dev, "18bit\n");
758 switch (sta350->format) {
759 case SND_SOC_DAIFMT_I2S:
760 confb |= 0x8;
761 break;
762 case SND_SOC_DAIFMT_LEFT_J:
763 confb |= 0x9;
764 break;
765 case SND_SOC_DAIFMT_RIGHT_J:
766 confb |= 0xa;
767 break;
768 }
769
770 break;
771 case 16:
772 dev_dbg(component->dev, "16bit\n");
773 switch (sta350->format) {
774 case SND_SOC_DAIFMT_I2S:
775 confb |= 0x0;
776 break;
777 case SND_SOC_DAIFMT_LEFT_J:
778 confb |= 0xd;
779 break;
780 case SND_SOC_DAIFMT_RIGHT_J:
781 confb |= 0xe;
782 break;
783 }
784
785 break;
786 default:
787 return -EINVAL;
788 }
789
790 ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
791 STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
792 confa);
793 if (ret < 0)
794 return ret;
795
796 ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
797 STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
798 confb);
799 if (ret < 0)
800 return ret;
801
802 return 0;
803 }
804
sta350_startup_sequence(struct sta350_priv * sta350)805 static int sta350_startup_sequence(struct sta350_priv *sta350)
806 {
807 if (sta350->gpiod_power_down)
808 gpiod_set_value(sta350->gpiod_power_down, 1);
809
810 if (sta350->gpiod_nreset) {
811 gpiod_set_value(sta350->gpiod_nreset, 0);
812 mdelay(1);
813 gpiod_set_value(sta350->gpiod_nreset, 1);
814 mdelay(1);
815 }
816
817 return 0;
818 }
819
820 /**
821 * sta350_set_bias_level - DAPM callback
822 * @component: the component device
823 * @level: DAPM power level
824 *
825 * This is called by ALSA to put the component into low power mode
826 * or to wake it up. If the component is powered off completely
827 * all registers must be restored after power on.
828 */
sta350_set_bias_level(struct snd_soc_component * component,enum snd_soc_bias_level level)829 static int sta350_set_bias_level(struct snd_soc_component *component,
830 enum snd_soc_bias_level level)
831 {
832 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
833 int ret;
834
835 dev_dbg(component->dev, "level = %d\n", level);
836 switch (level) {
837 case SND_SOC_BIAS_ON:
838 break;
839
840 case SND_SOC_BIAS_PREPARE:
841 /* Full power on */
842 regmap_update_bits(sta350->regmap, STA350_CONFF,
843 STA350_CONFF_PWDN | STA350_CONFF_EAPD,
844 STA350_CONFF_PWDN | STA350_CONFF_EAPD);
845 break;
846
847 case SND_SOC_BIAS_STANDBY:
848 if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
849 ret = regulator_bulk_enable(
850 ARRAY_SIZE(sta350->supplies),
851 sta350->supplies);
852 if (ret < 0) {
853 dev_err(component->dev,
854 "Failed to enable supplies: %d\n",
855 ret);
856 return ret;
857 }
858 sta350_startup_sequence(sta350);
859 sta350_cache_sync(component);
860 }
861
862 /* Power down */
863 regmap_update_bits(sta350->regmap, STA350_CONFF,
864 STA350_CONFF_PWDN | STA350_CONFF_EAPD,
865 0);
866
867 break;
868
869 case SND_SOC_BIAS_OFF:
870 /* The chip runs through the power down sequence for us */
871 regmap_update_bits(sta350->regmap, STA350_CONFF,
872 STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
873
874 /* power down: low */
875 if (sta350->gpiod_power_down)
876 gpiod_set_value(sta350->gpiod_power_down, 0);
877
878 if (sta350->gpiod_nreset)
879 gpiod_set_value(sta350->gpiod_nreset, 0);
880
881 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
882 sta350->supplies);
883 break;
884 }
885 return 0;
886 }
887
888 static const struct snd_soc_dai_ops sta350_dai_ops = {
889 .hw_params = sta350_hw_params,
890 .set_sysclk = sta350_set_dai_sysclk,
891 .set_fmt = sta350_set_dai_fmt,
892 };
893
894 static struct snd_soc_dai_driver sta350_dai = {
895 .name = "sta350-hifi",
896 .playback = {
897 .stream_name = "Playback",
898 .channels_min = 2,
899 .channels_max = 2,
900 .rates = STA350_RATES,
901 .formats = STA350_FORMATS,
902 },
903 .ops = &sta350_dai_ops,
904 };
905
sta350_probe(struct snd_soc_component * component)906 static int sta350_probe(struct snd_soc_component *component)
907 {
908 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
909 struct sta350_platform_data *pdata = sta350->pdata;
910 int i, ret = 0, thermal = 0;
911
912 ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
913 sta350->supplies);
914 if (ret < 0) {
915 dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
916 return ret;
917 }
918
919 ret = sta350_startup_sequence(sta350);
920 if (ret < 0) {
921 dev_err(component->dev, "Failed to startup device\n");
922 return ret;
923 }
924
925 /* CONFA */
926 if (!pdata->thermal_warning_recovery)
927 thermal |= STA350_CONFA_TWAB;
928 if (!pdata->thermal_warning_adjustment)
929 thermal |= STA350_CONFA_TWRB;
930 if (!pdata->fault_detect_recovery)
931 thermal |= STA350_CONFA_FDRB;
932 regmap_update_bits(sta350->regmap, STA350_CONFA,
933 STA350_CONFA_TWAB | STA350_CONFA_TWRB |
934 STA350_CONFA_FDRB,
935 thermal);
936
937 /* CONFC */
938 regmap_update_bits(sta350->regmap, STA350_CONFC,
939 STA350_CONFC_OM_MASK,
940 pdata->ffx_power_output_mode
941 << STA350_CONFC_OM_SHIFT);
942 regmap_update_bits(sta350->regmap, STA350_CONFC,
943 STA350_CONFC_CSZ_MASK,
944 pdata->drop_compensation_ns
945 << STA350_CONFC_CSZ_SHIFT);
946 regmap_update_bits(sta350->regmap,
947 STA350_CONFC,
948 STA350_CONFC_OCRB,
949 pdata->oc_warning_adjustment ?
950 STA350_CONFC_OCRB : 0);
951
952 /* CONFE */
953 regmap_update_bits(sta350->regmap, STA350_CONFE,
954 STA350_CONFE_MPCV,
955 pdata->max_power_use_mpcc ?
956 STA350_CONFE_MPCV : 0);
957 regmap_update_bits(sta350->regmap, STA350_CONFE,
958 STA350_CONFE_MPC,
959 pdata->max_power_correction ?
960 STA350_CONFE_MPC : 0);
961 regmap_update_bits(sta350->regmap, STA350_CONFE,
962 STA350_CONFE_AME,
963 pdata->am_reduction_mode ?
964 STA350_CONFE_AME : 0);
965 regmap_update_bits(sta350->regmap, STA350_CONFE,
966 STA350_CONFE_PWMS,
967 pdata->odd_pwm_speed_mode ?
968 STA350_CONFE_PWMS : 0);
969 regmap_update_bits(sta350->regmap, STA350_CONFE,
970 STA350_CONFE_DCCV,
971 pdata->distortion_compensation ?
972 STA350_CONFE_DCCV : 0);
973 /* CONFF */
974 regmap_update_bits(sta350->regmap, STA350_CONFF,
975 STA350_CONFF_IDE,
976 pdata->invalid_input_detect_mute ?
977 STA350_CONFF_IDE : 0);
978 regmap_update_bits(sta350->regmap, STA350_CONFF,
979 STA350_CONFF_OCFG_MASK,
980 pdata->output_conf
981 << STA350_CONFF_OCFG_SHIFT);
982
983 /* channel to output mapping */
984 regmap_update_bits(sta350->regmap, STA350_C1CFG,
985 STA350_CxCFG_OM_MASK,
986 pdata->ch1_output_mapping
987 << STA350_CxCFG_OM_SHIFT);
988 regmap_update_bits(sta350->regmap, STA350_C2CFG,
989 STA350_CxCFG_OM_MASK,
990 pdata->ch2_output_mapping
991 << STA350_CxCFG_OM_SHIFT);
992 regmap_update_bits(sta350->regmap, STA350_C3CFG,
993 STA350_CxCFG_OM_MASK,
994 pdata->ch3_output_mapping
995 << STA350_CxCFG_OM_SHIFT);
996
997 /* miscellaneous registers */
998 regmap_update_bits(sta350->regmap, STA350_MISC1,
999 STA350_MISC1_CPWMEN,
1000 pdata->activate_mute_output ?
1001 STA350_MISC1_CPWMEN : 0);
1002 regmap_update_bits(sta350->regmap, STA350_MISC1,
1003 STA350_MISC1_BRIDGOFF,
1004 pdata->bridge_immediate_off ?
1005 STA350_MISC1_BRIDGOFF : 0);
1006 regmap_update_bits(sta350->regmap, STA350_MISC1,
1007 STA350_MISC1_NSHHPEN,
1008 pdata->noise_shape_dc_cut ?
1009 STA350_MISC1_NSHHPEN : 0);
1010 regmap_update_bits(sta350->regmap, STA350_MISC1,
1011 STA350_MISC1_RPDNEN,
1012 pdata->powerdown_master_vol ?
1013 STA350_MISC1_RPDNEN: 0);
1014
1015 regmap_update_bits(sta350->regmap, STA350_MISC2,
1016 STA350_MISC2_PNDLSL_MASK,
1017 pdata->powerdown_delay_divider
1018 << STA350_MISC2_PNDLSL_SHIFT);
1019
1020 /* initialize coefficient shadow RAM with reset values */
1021 for (i = 4; i <= 49; i += 5)
1022 sta350->coef_shadow[i] = 0x400000;
1023 for (i = 50; i <= 54; i++)
1024 sta350->coef_shadow[i] = 0x7fffff;
1025 sta350->coef_shadow[55] = 0x5a9df7;
1026 sta350->coef_shadow[56] = 0x7fffff;
1027 sta350->coef_shadow[59] = 0x7fffff;
1028 sta350->coef_shadow[60] = 0x400000;
1029 sta350->coef_shadow[61] = 0x400000;
1030
1031 snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
1032 /* Bias level configuration will have done an extra enable */
1033 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1034
1035 return 0;
1036 }
1037
sta350_remove(struct snd_soc_component * component)1038 static void sta350_remove(struct snd_soc_component *component)
1039 {
1040 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
1041
1042 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1043 }
1044
1045 static const struct snd_soc_component_driver sta350_component = {
1046 .probe = sta350_probe,
1047 .remove = sta350_remove,
1048 .set_bias_level = sta350_set_bias_level,
1049 .controls = sta350_snd_controls,
1050 .num_controls = ARRAY_SIZE(sta350_snd_controls),
1051 .dapm_widgets = sta350_dapm_widgets,
1052 .num_dapm_widgets = ARRAY_SIZE(sta350_dapm_widgets),
1053 .dapm_routes = sta350_dapm_routes,
1054 .num_dapm_routes = ARRAY_SIZE(sta350_dapm_routes),
1055 .suspend_bias_off = 1,
1056 .idle_bias_on = 1,
1057 .use_pmdown_time = 1,
1058 .endianness = 1,
1059 };
1060
1061 static const struct regmap_config sta350_regmap = {
1062 .reg_bits = 8,
1063 .val_bits = 8,
1064 .max_register = STA350_MISC2,
1065 .reg_defaults = sta350_regs,
1066 .num_reg_defaults = ARRAY_SIZE(sta350_regs),
1067 .cache_type = REGCACHE_MAPLE,
1068 .wr_table = &sta350_write_regs,
1069 .rd_table = &sta350_read_regs,
1070 .volatile_table = &sta350_volatile_regs,
1071 };
1072
1073 #ifdef CONFIG_OF
1074 static const struct of_device_id st350_dt_ids[] = {
1075 { .compatible = "st,sta350", },
1076 { }
1077 };
1078 MODULE_DEVICE_TABLE(of, st350_dt_ids);
1079
1080 static const char * const sta350_ffx_modes[] = {
1081 [STA350_FFX_PM_DROP_COMP] = "drop-compensation",
1082 [STA350_FFX_PM_TAPERED_COMP] = "tapered-compensation",
1083 [STA350_FFX_PM_FULL_POWER] = "full-power-mode",
1084 [STA350_FFX_PM_VARIABLE_DROP_COMP] = "variable-drop-compensation",
1085 };
1086
sta350_probe_dt(struct device * dev,struct sta350_priv * sta350)1087 static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
1088 {
1089 struct device_node *np = dev->of_node;
1090 struct sta350_platform_data *pdata;
1091 const char *ffx_power_mode;
1092 u16 tmp;
1093 u8 tmp8;
1094
1095 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1096 if (!pdata)
1097 return -ENOMEM;
1098
1099 of_property_read_u8(np, "st,output-conf",
1100 &pdata->output_conf);
1101 of_property_read_u8(np, "st,ch1-output-mapping",
1102 &pdata->ch1_output_mapping);
1103 of_property_read_u8(np, "st,ch2-output-mapping",
1104 &pdata->ch2_output_mapping);
1105 of_property_read_u8(np, "st,ch3-output-mapping",
1106 &pdata->ch3_output_mapping);
1107
1108 pdata->thermal_warning_recovery =
1109 of_property_read_bool(np, "st,thermal-warning-recovery");
1110 pdata->thermal_warning_adjustment =
1111 of_property_read_bool(np, "st,thermal-warning-adjustment");
1112 pdata->fault_detect_recovery =
1113 of_property_read_bool(np, "st,fault-detect-recovery");
1114
1115 pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
1116 if (!of_property_read_string(np, "st,ffx-power-output-mode",
1117 &ffx_power_mode)) {
1118 int i, mode = -EINVAL;
1119
1120 for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
1121 if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
1122 mode = i;
1123
1124 if (mode < 0)
1125 dev_warn(dev, "Unsupported ffx output mode: %s\n",
1126 ffx_power_mode);
1127 else
1128 pdata->ffx_power_output_mode = mode;
1129 }
1130
1131 tmp = 140;
1132 of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1133 pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1134
1135 pdata->oc_warning_adjustment =
1136 of_property_read_bool(np, "st,overcurrent-warning-adjustment");
1137
1138 /* CONFE */
1139 pdata->max_power_use_mpcc =
1140 of_property_read_bool(np, "st,max-power-use-mpcc");
1141 pdata->max_power_correction =
1142 of_property_read_bool(np, "st,max-power-correction");
1143 pdata->am_reduction_mode =
1144 of_property_read_bool(np, "st,am-reduction-mode");
1145 pdata->odd_pwm_speed_mode =
1146 of_property_read_bool(np, "st,odd-pwm-speed-mode");
1147 pdata->distortion_compensation =
1148 of_property_read_bool(np, "st,distortion-compensation");
1149
1150 /* CONFF */
1151 pdata->invalid_input_detect_mute =
1152 of_property_read_bool(np, "st,invalid-input-detect-mute");
1153
1154 /* MISC */
1155 pdata->activate_mute_output =
1156 of_property_read_bool(np, "st,activate-mute-output");
1157 pdata->bridge_immediate_off =
1158 of_property_read_bool(np, "st,bridge-immediate-off");
1159 pdata->noise_shape_dc_cut =
1160 of_property_read_bool(np, "st,noise-shape-dc-cut");
1161 pdata->powerdown_master_vol =
1162 of_property_read_bool(np, "st,powerdown-master-volume");
1163
1164 if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
1165 if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
1166 pdata->powerdown_delay_divider = ilog2(tmp8);
1167 else
1168 dev_warn(dev, "Unsupported powerdown delay divider %d\n",
1169 tmp8);
1170 }
1171
1172 sta350->pdata = pdata;
1173
1174 return 0;
1175 }
1176 #endif
1177
sta350_i2c_probe(struct i2c_client * i2c)1178 static int sta350_i2c_probe(struct i2c_client *i2c)
1179 {
1180 struct device *dev = &i2c->dev;
1181 struct sta350_priv *sta350;
1182 int ret, i;
1183
1184 sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
1185 if (!sta350)
1186 return -ENOMEM;
1187
1188 mutex_init(&sta350->coeff_lock);
1189 sta350->pdata = dev_get_platdata(dev);
1190
1191 #ifdef CONFIG_OF
1192 if (dev->of_node) {
1193 ret = sta350_probe_dt(dev, sta350);
1194 if (ret < 0)
1195 return ret;
1196 }
1197 #endif
1198
1199 /* GPIOs */
1200 sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1201 GPIOD_OUT_LOW);
1202 if (IS_ERR(sta350->gpiod_nreset))
1203 return PTR_ERR(sta350->gpiod_nreset);
1204
1205 sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down",
1206 GPIOD_OUT_LOW);
1207 if (IS_ERR(sta350->gpiod_power_down))
1208 return PTR_ERR(sta350->gpiod_power_down);
1209
1210 /* regulators */
1211 for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
1212 sta350->supplies[i].supply = sta350_supply_names[i];
1213
1214 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
1215 sta350->supplies);
1216 if (ret < 0) {
1217 dev_err(dev, "Failed to request supplies: %d\n", ret);
1218 return ret;
1219 }
1220
1221 sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
1222 if (IS_ERR(sta350->regmap)) {
1223 ret = PTR_ERR(sta350->regmap);
1224 dev_err(dev, "Failed to init regmap: %d\n", ret);
1225 return ret;
1226 }
1227
1228 i2c_set_clientdata(i2c, sta350);
1229
1230 ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1);
1231 if (ret < 0)
1232 dev_err(dev, "Failed to register component (%d)\n", ret);
1233
1234 return ret;
1235 }
1236
sta350_i2c_remove(struct i2c_client * client)1237 static void sta350_i2c_remove(struct i2c_client *client)
1238 {}
1239
1240 static const struct i2c_device_id sta350_i2c_id[] = {
1241 { "sta350" },
1242 { }
1243 };
1244 MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
1245
1246 static struct i2c_driver sta350_i2c_driver = {
1247 .driver = {
1248 .name = "sta350",
1249 .of_match_table = of_match_ptr(st350_dt_ids),
1250 },
1251 .probe = sta350_i2c_probe,
1252 .remove = sta350_i2c_remove,
1253 .id_table = sta350_i2c_id,
1254 };
1255
1256 module_i2c_driver(sta350_i2c_driver);
1257
1258 MODULE_DESCRIPTION("ASoC STA350 driver");
1259 MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
1260 MODULE_LICENSE("GPL");
1261