xref: /linux/rust/kernel/time/hrtimer.rs (revision 588adb24b757d5d9a438056ac0347d8b3ac38dde)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Intrusive high resolution timers.
4 //!
5 //! Allows running timer callbacks without doing allocations at the time of
6 //! starting the timer. For now, only one timer per type is allowed.
7 //!
8 //! # Vocabulary
9 //!
10 //! States:
11 //!
12 //! - Stopped: initialized but not started, or cancelled, or not restarted.
13 //! - Started: initialized and started or restarted.
14 //! - Running: executing the callback.
15 //!
16 //! Operations:
17 //!
18 //! * Start
19 //! * Cancel
20 //! * Restart
21 //!
22 //! Events:
23 //!
24 //! * Expire
25 //!
26 //! ## State Diagram
27 //!
28 //! ```text
29 //!                                                   Return NoRestart
30 //!                       +---------------------------------------------------------------------+
31 //!                       |                                                                     |
32 //!                       |                                                                     |
33 //!                       |                                                                     |
34 //!                       |                                         Return Restart              |
35 //!                       |                                      +------------------------+     |
36 //!                       |                                      |                        |     |
37 //!                       |                                      |                        |     |
38 //!                       v                                      v                        |     |
39 //!           +-----------------+      Start      +------------------+           +--------+-----+--+
40 //!           |                 +---------------->|                  |           |                 |
41 //! Init      |                 |                 |                  |  Expire   |                 |
42 //! --------->|    Stopped      |                 |      Started     +---------->|     Running     |
43 //!           |                 |     Cancel      |                  |           |                 |
44 //!           |                 |<----------------+                  |           |                 |
45 //!           +-----------------+                 +---------------+--+           +-----------------+
46 //!                                                     ^         |
47 //!                                                     |         |
48 //!                                                     +---------+
49 //!                                                      Restart
50 //! ```
51 //!
52 //!
53 //! A timer is initialized in the **stopped** state. A stopped timer can be
54 //! **started** by the `start` operation, with an **expiry** time. After the
55 //! `start` operation, the timer is in the **started** state. When the timer
56 //! **expires**, the timer enters the **running** state and the handler is
57 //! executed. After the handler has returned, the timer may enter the
58 //! **started* or **stopped** state, depending on the return value of the
59 //! handler. A timer in the **started** or **running** state may be **canceled**
60 //! by the `cancel` operation. A timer that is cancelled enters the **stopped**
61 //! state.
62 //!
63 //! A `cancel` or `restart` operation on a timer in the **running** state takes
64 //! effect after the handler has returned and the timer has transitioned
65 //! out of the **running** state.
66 //!
67 //! A `restart` operation on a timer in the **stopped** state is equivalent to a
68 //! `start` operation.
69 
70 use super::ClockId;
71 use crate::{prelude::*, types::Opaque};
72 use core::marker::PhantomData;
73 use pin_init::PinInit;
74 
75 /// A Rust wrapper around a `ktime_t`.
76 // NOTE: Ktime is going to be removed when hrtimer is converted to Instant/Delta.
77 #[repr(transparent)]
78 #[derive(Copy, Clone, PartialEq, PartialOrd, Eq, Ord)]
79 pub struct Ktime {
80     inner: bindings::ktime_t,
81 }
82 
83 impl Ktime {
84     /// Returns the number of nanoseconds.
85     #[inline]
to_ns(self) -> i6486     pub fn to_ns(self) -> i64 {
87         self.inner
88     }
89 }
90 
91 /// A timer backed by a C `struct hrtimer`.
92 ///
93 /// # Invariants
94 ///
95 /// * `self.timer` is initialized by `bindings::hrtimer_setup`.
96 #[pin_data]
97 #[repr(C)]
98 pub struct HrTimer<T> {
99     #[pin]
100     timer: Opaque<bindings::hrtimer>,
101     mode: HrTimerMode,
102     _t: PhantomData<T>,
103 }
104 
105 // SAFETY: Ownership of an `HrTimer` can be moved to other threads and
106 // used/dropped from there.
107 unsafe impl<T> Send for HrTimer<T> {}
108 
109 // SAFETY: Timer operations are locked on the C side, so it is safe to operate
110 // on a timer from multiple threads.
111 unsafe impl<T> Sync for HrTimer<T> {}
112 
113 impl<T> HrTimer<T> {
114     /// Return an initializer for a new timer instance.
new(mode: HrTimerMode, clock: ClockId) -> impl PinInit<Self> where T: HrTimerCallback,115     pub fn new(mode: HrTimerMode, clock: ClockId) -> impl PinInit<Self>
116     where
117         T: HrTimerCallback,
118     {
119         pin_init!(Self {
120             // INVARIANT: We initialize `timer` with `hrtimer_setup` below.
121             timer <- Opaque::ffi_init(move |place: *mut bindings::hrtimer| {
122                 // SAFETY: By design of `pin_init!`, `place` is a pointer to a
123                 // live allocation. hrtimer_setup will initialize `place` and
124                 // does not require `place` to be initialized prior to the call.
125                 unsafe {
126                     bindings::hrtimer_setup(
127                         place,
128                         Some(T::Pointer::run),
129                         clock.into_c(),
130                         mode.into_c(),
131                     );
132                 }
133             }),
134             mode: mode,
135             _t: PhantomData,
136         })
137     }
138 
139     /// Get a pointer to the contained `bindings::hrtimer`.
140     ///
141     /// This function is useful to get access to the value without creating
142     /// intermediate references.
143     ///
144     /// # Safety
145     ///
146     /// `this` must point to a live allocation of at least the size of `Self`.
raw_get(this: *const Self) -> *mut bindings::hrtimer147     unsafe fn raw_get(this: *const Self) -> *mut bindings::hrtimer {
148         // SAFETY: The field projection to `timer` does not go out of bounds,
149         // because the caller of this function promises that `this` points to an
150         // allocation of at least the size of `Self`.
151         unsafe { Opaque::raw_get(core::ptr::addr_of!((*this).timer)) }
152     }
153 
154     /// Cancel an initialized and potentially running timer.
155     ///
156     /// If the timer handler is running, this function will block until the
157     /// handler returns.
158     ///
159     /// Note that the timer might be started by a concurrent start operation. If
160     /// so, the timer might not be in the **stopped** state when this function
161     /// returns.
162     ///
163     /// Users of the `HrTimer` API would not usually call this method directly.
164     /// Instead they would use the safe [`HrTimerHandle::cancel`] on the handle
165     /// returned when the timer was started.
166     ///
167     /// This function is useful to get access to the value without creating
168     /// intermediate references.
169     ///
170     /// # Safety
171     ///
172     /// `this` must point to a valid `Self`.
raw_cancel(this: *const Self) -> bool173     pub(crate) unsafe fn raw_cancel(this: *const Self) -> bool {
174         // SAFETY: `this` points to an allocation of at least `HrTimer` size.
175         let c_timer_ptr = unsafe { HrTimer::raw_get(this) };
176 
177         // If the handler is running, this will wait for the handler to return
178         // before returning.
179         // SAFETY: `c_timer_ptr` is initialized and valid. Synchronization is
180         // handled on the C side.
181         unsafe { bindings::hrtimer_cancel(c_timer_ptr) != 0 }
182     }
183 }
184 
185 /// Implemented by pointer types that point to structs that contain a [`HrTimer`].
186 ///
187 /// `Self` must be [`Sync`] because it is passed to timer callbacks in another
188 /// thread of execution (hard or soft interrupt context).
189 ///
190 /// Starting a timer returns a [`HrTimerHandle`] that can be used to manipulate
191 /// the timer. Note that it is OK to call the start function repeatedly, and
192 /// that more than one [`HrTimerHandle`] associated with a [`HrTimerPointer`] may
193 /// exist. A timer can be manipulated through any of the handles, and a handle
194 /// may represent a cancelled timer.
195 pub trait HrTimerPointer: Sync + Sized {
196     /// A handle representing a started or restarted timer.
197     ///
198     /// If the timer is running or if the timer callback is executing when the
199     /// handle is dropped, the drop method of [`HrTimerHandle`] should not return
200     /// until the timer is stopped and the callback has completed.
201     ///
202     /// Note: When implementing this trait, consider that it is not unsafe to
203     /// leak the handle.
204     type TimerHandle: HrTimerHandle;
205 
206     /// Start the timer with expiry after `expires` time units. If the timer was
207     /// already running, it is restarted with the new expiry time.
start(self, expires: Ktime) -> Self::TimerHandle208     fn start(self, expires: Ktime) -> Self::TimerHandle;
209 }
210 
211 /// Unsafe version of [`HrTimerPointer`] for situations where leaking the
212 /// [`HrTimerHandle`] returned by `start` would be unsound. This is the case for
213 /// stack allocated timers.
214 ///
215 /// Typical implementers are pinned references such as [`Pin<&T>`].
216 ///
217 /// # Safety
218 ///
219 /// Implementers of this trait must ensure that instances of types implementing
220 /// [`UnsafeHrTimerPointer`] outlives any associated [`HrTimerPointer::TimerHandle`]
221 /// instances.
222 pub unsafe trait UnsafeHrTimerPointer: Sync + Sized {
223     /// A handle representing a running timer.
224     ///
225     /// # Safety
226     ///
227     /// If the timer is running, or if the timer callback is executing when the
228     /// handle is dropped, the drop method of [`Self::TimerHandle`] must not return
229     /// until the timer is stopped and the callback has completed.
230     type TimerHandle: HrTimerHandle;
231 
232     /// Start the timer after `expires` time units. If the timer was already
233     /// running, it is restarted at the new expiry time.
234     ///
235     /// # Safety
236     ///
237     /// Caller promises keep the timer structure alive until the timer is dead.
238     /// Caller can ensure this by not leaking the returned [`Self::TimerHandle`].
start(self, expires: Ktime) -> Self::TimerHandle239     unsafe fn start(self, expires: Ktime) -> Self::TimerHandle;
240 }
241 
242 /// A trait for stack allocated timers.
243 ///
244 /// # Safety
245 ///
246 /// Implementers must ensure that `start_scoped` does not return until the
247 /// timer is dead and the timer handler is not running.
248 pub unsafe trait ScopedHrTimerPointer {
249     /// Start the timer to run after `expires` time units and immediately
250     /// after call `f`. When `f` returns, the timer is cancelled.
start_scoped<T, F>(self, expires: Ktime, f: F) -> T where F: FnOnce() -> T251     fn start_scoped<T, F>(self, expires: Ktime, f: F) -> T
252     where
253         F: FnOnce() -> T;
254 }
255 
256 // SAFETY: By the safety requirement of [`UnsafeHrTimerPointer`], dropping the
257 // handle returned by [`UnsafeHrTimerPointer::start`] ensures that the timer is
258 // killed.
259 unsafe impl<T> ScopedHrTimerPointer for T
260 where
261     T: UnsafeHrTimerPointer,
262 {
start_scoped<U, F>(self, expires: Ktime, f: F) -> U where F: FnOnce() -> U,263     fn start_scoped<U, F>(self, expires: Ktime, f: F) -> U
264     where
265         F: FnOnce() -> U,
266     {
267         // SAFETY: We drop the timer handle below before returning.
268         let handle = unsafe { UnsafeHrTimerPointer::start(self, expires) };
269         let t = f();
270         drop(handle);
271         t
272     }
273 }
274 
275 /// Implemented by [`HrTimerPointer`] implementers to give the C timer callback a
276 /// function to call.
277 // This is split from `HrTimerPointer` to make it easier to specify trait bounds.
278 pub trait RawHrTimerCallback {
279     /// Type of the parameter passed to [`HrTimerCallback::run`]. It may be
280     /// [`Self`], or a pointer type derived from [`Self`].
281     type CallbackTarget<'a>;
282 
283     /// Callback to be called from C when timer fires.
284     ///
285     /// # Safety
286     ///
287     /// Only to be called by C code in the `hrtimer` subsystem. `this` must point
288     /// to the `bindings::hrtimer` structure that was used to start the timer.
run(this: *mut bindings::hrtimer) -> bindings::hrtimer_restart289     unsafe extern "C" fn run(this: *mut bindings::hrtimer) -> bindings::hrtimer_restart;
290 }
291 
292 /// Implemented by structs that can be the target of a timer callback.
293 pub trait HrTimerCallback {
294     /// The type whose [`RawHrTimerCallback::run`] method will be invoked when
295     /// the timer expires.
296     type Pointer<'a>: RawHrTimerCallback;
297 
298     /// Called by the timer logic when the timer fires.
run(this: <Self::Pointer<'_> as RawHrTimerCallback>::CallbackTarget<'_>) -> HrTimerRestart where Self: Sized299     fn run(this: <Self::Pointer<'_> as RawHrTimerCallback>::CallbackTarget<'_>) -> HrTimerRestart
300     where
301         Self: Sized;
302 }
303 
304 /// A handle representing a potentially running timer.
305 ///
306 /// More than one handle representing the same timer might exist.
307 ///
308 /// # Safety
309 ///
310 /// When dropped, the timer represented by this handle must be cancelled, if it
311 /// is running. If the timer handler is running when the handle is dropped, the
312 /// drop method must wait for the handler to return before returning.
313 ///
314 /// Note: One way to satisfy the safety requirement is to call `Self::cancel` in
315 /// the drop implementation for `Self.`
316 pub unsafe trait HrTimerHandle {
317     /// Cancel the timer. If the timer is in the running state, block till the
318     /// handler has returned.
319     ///
320     /// Note that the timer might be started by a concurrent start operation. If
321     /// so, the timer might not be in the **stopped** state when this function
322     /// returns.
cancel(&mut self) -> bool323     fn cancel(&mut self) -> bool;
324 }
325 
326 /// Implemented by structs that contain timer nodes.
327 ///
328 /// Clients of the timer API would usually safely implement this trait by using
329 /// the [`crate::impl_has_hr_timer`] macro.
330 ///
331 /// # Safety
332 ///
333 /// Implementers of this trait must ensure that the implementer has a
334 /// [`HrTimer`] field and that all trait methods are implemented according to
335 /// their documentation. All the methods of this trait must operate on the same
336 /// field.
337 pub unsafe trait HasHrTimer<T> {
338     /// Return a pointer to the [`HrTimer`] within `Self`.
339     ///
340     /// This function is useful to get access to the value without creating
341     /// intermediate references.
342     ///
343     /// # Safety
344     ///
345     /// `this` must be a valid pointer.
raw_get_timer(this: *const Self) -> *const HrTimer<T>346     unsafe fn raw_get_timer(this: *const Self) -> *const HrTimer<T>;
347 
348     /// Return a pointer to the struct that is containing the [`HrTimer`] pointed
349     /// to by `ptr`.
350     ///
351     /// This function is useful to get access to the value without creating
352     /// intermediate references.
353     ///
354     /// # Safety
355     ///
356     /// `ptr` must point to a [`HrTimer<T>`] field in a struct of type `Self`.
timer_container_of(ptr: *mut HrTimer<T>) -> *mut Self where Self: Sized357     unsafe fn timer_container_of(ptr: *mut HrTimer<T>) -> *mut Self
358     where
359         Self: Sized;
360 
361     /// Get pointer to the contained `bindings::hrtimer` struct.
362     ///
363     /// This function is useful to get access to the value without creating
364     /// intermediate references.
365     ///
366     /// # Safety
367     ///
368     /// `this` must be a valid pointer.
c_timer_ptr(this: *const Self) -> *const bindings::hrtimer369     unsafe fn c_timer_ptr(this: *const Self) -> *const bindings::hrtimer {
370         // SAFETY: `this` is a valid pointer to a `Self`.
371         let timer_ptr = unsafe { Self::raw_get_timer(this) };
372 
373         // SAFETY: timer_ptr points to an allocation of at least `HrTimer` size.
374         unsafe { HrTimer::raw_get(timer_ptr) }
375     }
376 
377     /// Start the timer contained in the `Self` pointed to by `self_ptr`. If
378     /// it is already running it is removed and inserted.
379     ///
380     /// # Safety
381     ///
382     /// - `this` must point to a valid `Self`.
383     /// - Caller must ensure that the pointee of `this` lives until the timer
384     ///   fires or is canceled.
start(this: *const Self, expires: Ktime)385     unsafe fn start(this: *const Self, expires: Ktime) {
386         // SAFETY: By function safety requirement, `this` is a valid `Self`.
387         unsafe {
388             bindings::hrtimer_start_range_ns(
389                 Self::c_timer_ptr(this).cast_mut(),
390                 expires.to_ns(),
391                 0,
392                 (*Self::raw_get_timer(this)).mode.into_c(),
393             );
394         }
395     }
396 }
397 
398 /// Restart policy for timers.
399 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
400 #[repr(u32)]
401 pub enum HrTimerRestart {
402     /// Timer should not be restarted.
403     NoRestart = bindings::hrtimer_restart_HRTIMER_NORESTART,
404     /// Timer should be restarted.
405     Restart = bindings::hrtimer_restart_HRTIMER_RESTART,
406 }
407 
408 impl HrTimerRestart {
into_c(self) -> bindings::hrtimer_restart409     fn into_c(self) -> bindings::hrtimer_restart {
410         self as bindings::hrtimer_restart
411     }
412 }
413 
414 /// Operational mode of [`HrTimer`].
415 // NOTE: Some of these have the same encoding on the C side, so we keep
416 // `repr(Rust)` and convert elsewhere.
417 #[derive(Clone, Copy, PartialEq, Eq, Debug)]
418 pub enum HrTimerMode {
419     /// Timer expires at the given expiration time.
420     Absolute,
421     /// Timer expires after the given expiration time interpreted as a duration from now.
422     Relative,
423     /// Timer does not move between CPU cores.
424     Pinned,
425     /// Timer handler is executed in soft irq context.
426     Soft,
427     /// Timer handler is executed in hard irq context.
428     Hard,
429     /// Timer expires at the given expiration time.
430     /// Timer does not move between CPU cores.
431     AbsolutePinned,
432     /// Timer expires after the given expiration time interpreted as a duration from now.
433     /// Timer does not move between CPU cores.
434     RelativePinned,
435     /// Timer expires at the given expiration time.
436     /// Timer handler is executed in soft irq context.
437     AbsoluteSoft,
438     /// Timer expires after the given expiration time interpreted as a duration from now.
439     /// Timer handler is executed in soft irq context.
440     RelativeSoft,
441     /// Timer expires at the given expiration time.
442     /// Timer does not move between CPU cores.
443     /// Timer handler is executed in soft irq context.
444     AbsolutePinnedSoft,
445     /// Timer expires after the given expiration time interpreted as a duration from now.
446     /// Timer does not move between CPU cores.
447     /// Timer handler is executed in soft irq context.
448     RelativePinnedSoft,
449     /// Timer expires at the given expiration time.
450     /// Timer handler is executed in hard irq context.
451     AbsoluteHard,
452     /// Timer expires after the given expiration time interpreted as a duration from now.
453     /// Timer handler is executed in hard irq context.
454     RelativeHard,
455     /// Timer expires at the given expiration time.
456     /// Timer does not move between CPU cores.
457     /// Timer handler is executed in hard irq context.
458     AbsolutePinnedHard,
459     /// Timer expires after the given expiration time interpreted as a duration from now.
460     /// Timer does not move between CPU cores.
461     /// Timer handler is executed in hard irq context.
462     RelativePinnedHard,
463 }
464 
465 impl HrTimerMode {
into_c(self) -> bindings::hrtimer_mode466     fn into_c(self) -> bindings::hrtimer_mode {
467         use bindings::*;
468         match self {
469             HrTimerMode::Absolute => hrtimer_mode_HRTIMER_MODE_ABS,
470             HrTimerMode::Relative => hrtimer_mode_HRTIMER_MODE_REL,
471             HrTimerMode::Pinned => hrtimer_mode_HRTIMER_MODE_PINNED,
472             HrTimerMode::Soft => hrtimer_mode_HRTIMER_MODE_SOFT,
473             HrTimerMode::Hard => hrtimer_mode_HRTIMER_MODE_HARD,
474             HrTimerMode::AbsolutePinned => hrtimer_mode_HRTIMER_MODE_ABS_PINNED,
475             HrTimerMode::RelativePinned => hrtimer_mode_HRTIMER_MODE_REL_PINNED,
476             HrTimerMode::AbsoluteSoft => hrtimer_mode_HRTIMER_MODE_ABS_SOFT,
477             HrTimerMode::RelativeSoft => hrtimer_mode_HRTIMER_MODE_REL_SOFT,
478             HrTimerMode::AbsolutePinnedSoft => hrtimer_mode_HRTIMER_MODE_ABS_PINNED_SOFT,
479             HrTimerMode::RelativePinnedSoft => hrtimer_mode_HRTIMER_MODE_REL_PINNED_SOFT,
480             HrTimerMode::AbsoluteHard => hrtimer_mode_HRTIMER_MODE_ABS_HARD,
481             HrTimerMode::RelativeHard => hrtimer_mode_HRTIMER_MODE_REL_HARD,
482             HrTimerMode::AbsolutePinnedHard => hrtimer_mode_HRTIMER_MODE_ABS_PINNED_HARD,
483             HrTimerMode::RelativePinnedHard => hrtimer_mode_HRTIMER_MODE_REL_PINNED_HARD,
484         }
485     }
486 }
487 
488 /// Use to implement the [`HasHrTimer<T>`] trait.
489 ///
490 /// See [`module`] documentation for an example.
491 ///
492 /// [`module`]: crate::time::hrtimer
493 #[macro_export]
494 macro_rules! impl_has_hr_timer {
495     (
496         impl$({$($generics:tt)*})?
497             HasHrTimer<$timer_type:ty>
498             for $self:ty
499         { self.$field:ident }
500         $($rest:tt)*
501     ) => {
502         // SAFETY: This implementation of `raw_get_timer` only compiles if the
503         // field has the right type.
504         unsafe impl$(<$($generics)*>)? $crate::time::hrtimer::HasHrTimer<$timer_type> for $self {
505 
506             #[inline]
507             unsafe fn raw_get_timer(
508                 this: *const Self,
509             ) -> *const $crate::time::hrtimer::HrTimer<$timer_type> {
510                 // SAFETY: The caller promises that the pointer is not dangling.
511                 unsafe { ::core::ptr::addr_of!((*this).$field) }
512             }
513 
514             #[inline]
515             unsafe fn timer_container_of(
516                 ptr: *mut $crate::time::hrtimer::HrTimer<$timer_type>,
517             ) -> *mut Self {
518                 // SAFETY: As per the safety requirement of this function, `ptr`
519                 // is pointing inside a `$timer_type`.
520                 unsafe { ::kernel::container_of!(ptr, $timer_type, $field) }
521             }
522         }
523     }
524 }
525 
526 mod arc;
527 pub use arc::ArcHrTimerHandle;
528 mod pin;
529 pub use pin::PinHrTimerHandle;
530 mod pin_mut;
531 pub use pin_mut::PinMutHrTimerHandle;
532 // `box` is a reserved keyword, so prefix with `t` for timer
533 mod tbox;
534 pub use tbox::BoxHrTimerHandle;
535