xref: /linux/rust/kernel/mm/virt.rs (revision 00c010e130e58301db2ea0cec1eadc931e1cb8cf)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 // Copyright (C) 2024 Google LLC.
4 
5 //! Virtual memory.
6 //!
7 //! This module deals with managing a single VMA in the address space of a userspace process. Each
8 //! VMA corresponds to a region of memory that the userspace process can access, and the VMA lets
9 //! you control what happens when userspace reads or writes to that region of memory.
10 //!
11 //! The module has several different Rust types that all correspond to the C type called
12 //! `vm_area_struct`. The different structs represent what kind of access you have to the VMA, e.g.
13 //! [`VmaRef`] is used when you hold the mmap or vma read lock. Using the appropriate struct
14 //! ensures that you can't, for example, accidentally call a function that requires holding the
15 //! write lock when you only hold the read lock.
16 
17 use crate::{
18     bindings,
19     error::{code::EINVAL, to_result, Result},
20     mm::MmWithUser,
21     page::Page,
22     types::Opaque,
23 };
24 
25 use core::ops::Deref;
26 
27 /// A wrapper for the kernel's `struct vm_area_struct` with read access.
28 ///
29 /// It represents an area of virtual memory.
30 ///
31 /// # Invariants
32 ///
33 /// The caller must hold the mmap read lock or the vma read lock.
34 #[repr(transparent)]
35 pub struct VmaRef {
36     vma: Opaque<bindings::vm_area_struct>,
37 }
38 
39 // Methods you can call when holding the mmap or vma read lock (or stronger). They must be usable
40 // no matter what the vma flags are.
41 impl VmaRef {
42     /// Access a virtual memory area given a raw pointer.
43     ///
44     /// # Safety
45     ///
46     /// Callers must ensure that `vma` is valid for the duration of 'a, and that the mmap or vma
47     /// read lock (or stronger) is held for at least the duration of 'a.
48     #[inline]
from_raw<'a>(vma: *const bindings::vm_area_struct) -> &'a Self49     pub unsafe fn from_raw<'a>(vma: *const bindings::vm_area_struct) -> &'a Self {
50         // SAFETY: The caller ensures that the invariants are satisfied for the duration of 'a.
51         unsafe { &*vma.cast() }
52     }
53 
54     /// Returns a raw pointer to this area.
55     #[inline]
as_ptr(&self) -> *mut bindings::vm_area_struct56     pub fn as_ptr(&self) -> *mut bindings::vm_area_struct {
57         self.vma.get()
58     }
59 
60     /// Access the underlying `mm_struct`.
61     #[inline]
mm(&self) -> &MmWithUser62     pub fn mm(&self) -> &MmWithUser {
63         // SAFETY: By the type invariants, this `vm_area_struct` is valid and we hold the mmap/vma
64         // read lock or stronger. This implies that the underlying mm has a non-zero value of
65         // `mm_users`.
66         unsafe { MmWithUser::from_raw((*self.as_ptr()).vm_mm) }
67     }
68 
69     /// Returns the flags associated with the virtual memory area.
70     ///
71     /// The possible flags are a combination of the constants in [`flags`].
72     #[inline]
flags(&self) -> vm_flags_t73     pub fn flags(&self) -> vm_flags_t {
74         // SAFETY: By the type invariants, the caller holds at least the mmap read lock, so this
75         // access is not a data race.
76         unsafe { (*self.as_ptr()).__bindgen_anon_2.vm_flags }
77     }
78 
79     /// Returns the (inclusive) start address of the virtual memory area.
80     #[inline]
start(&self) -> usize81     pub fn start(&self) -> usize {
82         // SAFETY: By the type invariants, the caller holds at least the mmap read lock, so this
83         // access is not a data race.
84         unsafe { (*self.as_ptr()).__bindgen_anon_1.__bindgen_anon_1.vm_start }
85     }
86 
87     /// Returns the (exclusive) end address of the virtual memory area.
88     #[inline]
end(&self) -> usize89     pub fn end(&self) -> usize {
90         // SAFETY: By the type invariants, the caller holds at least the mmap read lock, so this
91         // access is not a data race.
92         unsafe { (*self.as_ptr()).__bindgen_anon_1.__bindgen_anon_1.vm_end }
93     }
94 
95     /// Zap pages in the given page range.
96     ///
97     /// This clears page table mappings for the range at the leaf level, leaving all other page
98     /// tables intact, and freeing any memory referenced by the VMA in this range. That is,
99     /// anonymous memory is completely freed, file-backed memory has its reference count on page
100     /// cache folio's dropped, any dirty data will still be written back to disk as usual.
101     ///
102     /// It may seem odd that we clear at the leaf level, this is however a product of the page
103     /// table structure used to map physical memory into a virtual address space - each virtual
104     /// address actually consists of a bitmap of array indices into page tables, which form a
105     /// hierarchical page table level structure.
106     ///
107     /// As a result, each page table level maps a multiple of page table levels below, and thus
108     /// span ever increasing ranges of pages. At the leaf or PTE level, we map the actual physical
109     /// memory.
110     ///
111     /// It is here where a zap operates, as it the only place we can be certain of clearing without
112     /// impacting any other virtual mappings. It is an implementation detail as to whether the
113     /// kernel goes further in freeing unused page tables, but for the purposes of this operation
114     /// we must only assume that the leaf level is cleared.
115     #[inline]
zap_page_range_single(&self, address: usize, size: usize)116     pub fn zap_page_range_single(&self, address: usize, size: usize) {
117         let (end, did_overflow) = address.overflowing_add(size);
118         if did_overflow || address < self.start() || self.end() < end {
119             // TODO: call WARN_ONCE once Rust version of it is added
120             return;
121         }
122 
123         // SAFETY: By the type invariants, the caller has read access to this VMA, which is
124         // sufficient for this method call. This method has no requirements on the vma flags. The
125         // address range is checked to be within the vma.
126         unsafe {
127             bindings::zap_page_range_single(self.as_ptr(), address, size, core::ptr::null_mut())
128         };
129     }
130 
131     /// If the [`VM_MIXEDMAP`] flag is set, returns a [`VmaMixedMap`] to this VMA, otherwise
132     /// returns `None`.
133     ///
134     /// This can be used to access methods that require [`VM_MIXEDMAP`] to be set.
135     ///
136     /// [`VM_MIXEDMAP`]: flags::MIXEDMAP
137     #[inline]
as_mixedmap_vma(&self) -> Option<&VmaMixedMap>138     pub fn as_mixedmap_vma(&self) -> Option<&VmaMixedMap> {
139         if self.flags() & flags::MIXEDMAP != 0 {
140             // SAFETY: We just checked that `VM_MIXEDMAP` is set. All other requirements are
141             // satisfied by the type invariants of `VmaRef`.
142             Some(unsafe { VmaMixedMap::from_raw(self.as_ptr()) })
143         } else {
144             None
145         }
146     }
147 }
148 
149 /// A wrapper for the kernel's `struct vm_area_struct` with read access and [`VM_MIXEDMAP`] set.
150 ///
151 /// It represents an area of virtual memory.
152 ///
153 /// This struct is identical to [`VmaRef`] except that it must only be used when the
154 /// [`VM_MIXEDMAP`] flag is set on the vma.
155 ///
156 /// # Invariants
157 ///
158 /// The caller must hold the mmap read lock or the vma read lock. The `VM_MIXEDMAP` flag must be
159 /// set.
160 ///
161 /// [`VM_MIXEDMAP`]: flags::MIXEDMAP
162 #[repr(transparent)]
163 pub struct VmaMixedMap {
164     vma: VmaRef,
165 }
166 
167 // Make all `VmaRef` methods available on `VmaMixedMap`.
168 impl Deref for VmaMixedMap {
169     type Target = VmaRef;
170 
171     #[inline]
deref(&self) -> &VmaRef172     fn deref(&self) -> &VmaRef {
173         &self.vma
174     }
175 }
176 
177 impl VmaMixedMap {
178     /// Access a virtual memory area given a raw pointer.
179     ///
180     /// # Safety
181     ///
182     /// Callers must ensure that `vma` is valid for the duration of 'a, and that the mmap read lock
183     /// (or stronger) is held for at least the duration of 'a. The `VM_MIXEDMAP` flag must be set.
184     #[inline]
from_raw<'a>(vma: *const bindings::vm_area_struct) -> &'a Self185     pub unsafe fn from_raw<'a>(vma: *const bindings::vm_area_struct) -> &'a Self {
186         // SAFETY: The caller ensures that the invariants are satisfied for the duration of 'a.
187         unsafe { &*vma.cast() }
188     }
189 
190     /// Maps a single page at the given address within the virtual memory area.
191     ///
192     /// This operation does not take ownership of the page.
193     #[inline]
vm_insert_page(&self, address: usize, page: &Page) -> Result194     pub fn vm_insert_page(&self, address: usize, page: &Page) -> Result {
195         // SAFETY: By the type invariant of `Self` caller has read access and has verified that
196         // `VM_MIXEDMAP` is set. By invariant on `Page` the page has order 0.
197         to_result(unsafe { bindings::vm_insert_page(self.as_ptr(), address, page.as_ptr()) })
198     }
199 }
200 
201 /// A configuration object for setting up a VMA in an `f_ops->mmap()` hook.
202 ///
203 /// The `f_ops->mmap()` hook is called when a new VMA is being created, and the hook is able to
204 /// configure the VMA in various ways to fit the driver that owns it. Using `VmaNew` indicates that
205 /// you are allowed to perform operations on the VMA that can only be performed before the VMA is
206 /// fully initialized.
207 ///
208 /// # Invariants
209 ///
210 /// For the duration of 'a, the referenced vma must be undergoing initialization in an
211 /// `f_ops->mmap()` hook.
212 pub struct VmaNew {
213     vma: VmaRef,
214 }
215 
216 // Make all `VmaRef` methods available on `VmaNew`.
217 impl Deref for VmaNew {
218     type Target = VmaRef;
219 
220     #[inline]
deref(&self) -> &VmaRef221     fn deref(&self) -> &VmaRef {
222         &self.vma
223     }
224 }
225 
226 impl VmaNew {
227     /// Access a virtual memory area given a raw pointer.
228     ///
229     /// # Safety
230     ///
231     /// Callers must ensure that `vma` is undergoing initial vma setup for the duration of 'a.
232     #[inline]
from_raw<'a>(vma: *mut bindings::vm_area_struct) -> &'a Self233     pub unsafe fn from_raw<'a>(vma: *mut bindings::vm_area_struct) -> &'a Self {
234         // SAFETY: The caller ensures that the invariants are satisfied for the duration of 'a.
235         unsafe { &*vma.cast() }
236     }
237 
238     /// Internal method for updating the vma flags.
239     ///
240     /// # Safety
241     ///
242     /// This must not be used to set the flags to an invalid value.
243     #[inline]
update_flags(&self, set: vm_flags_t, unset: vm_flags_t)244     unsafe fn update_flags(&self, set: vm_flags_t, unset: vm_flags_t) {
245         let mut flags = self.flags();
246         flags |= set;
247         flags &= !unset;
248 
249         // SAFETY: This is not a data race: the vma is undergoing initial setup, so it's not yet
250         // shared. Additionally, `VmaNew` is `!Sync`, so it cannot be used to write in parallel.
251         // The caller promises that this does not set the flags to an invalid value.
252         unsafe { (*self.as_ptr()).__bindgen_anon_2.__vm_flags = flags };
253     }
254 
255     /// Set the `VM_MIXEDMAP` flag on this vma.
256     ///
257     /// This enables the vma to contain both `struct page` and pure PFN pages. Returns a reference
258     /// that can be used to call `vm_insert_page` on the vma.
259     #[inline]
set_mixedmap(&self) -> &VmaMixedMap260     pub fn set_mixedmap(&self) -> &VmaMixedMap {
261         // SAFETY: We don't yet provide a way to set VM_PFNMAP, so this cannot put the flags in an
262         // invalid state.
263         unsafe { self.update_flags(flags::MIXEDMAP, 0) };
264 
265         // SAFETY: We just set `VM_MIXEDMAP` on the vma.
266         unsafe { VmaMixedMap::from_raw(self.vma.as_ptr()) }
267     }
268 
269     /// Set the `VM_IO` flag on this vma.
270     ///
271     /// This is used for memory mapped IO and similar. The flag tells other parts of the kernel to
272     /// avoid looking at the pages. For memory mapped IO this is useful as accesses to the pages
273     /// could have side effects.
274     #[inline]
set_io(&self)275     pub fn set_io(&self) {
276         // SAFETY: Setting the VM_IO flag is always okay.
277         unsafe { self.update_flags(flags::IO, 0) };
278     }
279 
280     /// Set the `VM_DONTEXPAND` flag on this vma.
281     ///
282     /// This prevents the vma from being expanded with `mremap()`.
283     #[inline]
set_dontexpand(&self)284     pub fn set_dontexpand(&self) {
285         // SAFETY: Setting the VM_DONTEXPAND flag is always okay.
286         unsafe { self.update_flags(flags::DONTEXPAND, 0) };
287     }
288 
289     /// Set the `VM_DONTCOPY` flag on this vma.
290     ///
291     /// This prevents the vma from being copied on fork. This option is only permanent if `VM_IO`
292     /// is set.
293     #[inline]
set_dontcopy(&self)294     pub fn set_dontcopy(&self) {
295         // SAFETY: Setting the VM_DONTCOPY flag is always okay.
296         unsafe { self.update_flags(flags::DONTCOPY, 0) };
297     }
298 
299     /// Set the `VM_DONTDUMP` flag on this vma.
300     ///
301     /// This prevents the vma from being included in core dumps. This option is only permanent if
302     /// `VM_IO` is set.
303     #[inline]
set_dontdump(&self)304     pub fn set_dontdump(&self) {
305         // SAFETY: Setting the VM_DONTDUMP flag is always okay.
306         unsafe { self.update_flags(flags::DONTDUMP, 0) };
307     }
308 
309     /// Returns whether `VM_READ` is set.
310     ///
311     /// This flag indicates whether userspace is mapping this vma as readable.
312     #[inline]
readable(&self) -> bool313     pub fn readable(&self) -> bool {
314         (self.flags() & flags::READ) != 0
315     }
316 
317     /// Try to clear the `VM_MAYREAD` flag, failing if `VM_READ` is set.
318     ///
319     /// This flag indicates whether userspace is allowed to make this vma readable with
320     /// `mprotect()`.
321     ///
322     /// Note that this operation is irreversible. Once `VM_MAYREAD` has been cleared, it can never
323     /// be set again.
324     #[inline]
try_clear_mayread(&self) -> Result325     pub fn try_clear_mayread(&self) -> Result {
326         if self.readable() {
327             return Err(EINVAL);
328         }
329         // SAFETY: Clearing `VM_MAYREAD` is okay when `VM_READ` is not set.
330         unsafe { self.update_flags(0, flags::MAYREAD) };
331         Ok(())
332     }
333 
334     /// Returns whether `VM_WRITE` is set.
335     ///
336     /// This flag indicates whether userspace is mapping this vma as writable.
337     #[inline]
writable(&self) -> bool338     pub fn writable(&self) -> bool {
339         (self.flags() & flags::WRITE) != 0
340     }
341 
342     /// Try to clear the `VM_MAYWRITE` flag, failing if `VM_WRITE` is set.
343     ///
344     /// This flag indicates whether userspace is allowed to make this vma writable with
345     /// `mprotect()`.
346     ///
347     /// Note that this operation is irreversible. Once `VM_MAYWRITE` has been cleared, it can never
348     /// be set again.
349     #[inline]
try_clear_maywrite(&self) -> Result350     pub fn try_clear_maywrite(&self) -> Result {
351         if self.writable() {
352             return Err(EINVAL);
353         }
354         // SAFETY: Clearing `VM_MAYWRITE` is okay when `VM_WRITE` is not set.
355         unsafe { self.update_flags(0, flags::MAYWRITE) };
356         Ok(())
357     }
358 
359     /// Returns whether `VM_EXEC` is set.
360     ///
361     /// This flag indicates whether userspace is mapping this vma as executable.
362     #[inline]
executable(&self) -> bool363     pub fn executable(&self) -> bool {
364         (self.flags() & flags::EXEC) != 0
365     }
366 
367     /// Try to clear the `VM_MAYEXEC` flag, failing if `VM_EXEC` is set.
368     ///
369     /// This flag indicates whether userspace is allowed to make this vma executable with
370     /// `mprotect()`.
371     ///
372     /// Note that this operation is irreversible. Once `VM_MAYEXEC` has been cleared, it can never
373     /// be set again.
374     #[inline]
try_clear_mayexec(&self) -> Result375     pub fn try_clear_mayexec(&self) -> Result {
376         if self.executable() {
377             return Err(EINVAL);
378         }
379         // SAFETY: Clearing `VM_MAYEXEC` is okay when `VM_EXEC` is not set.
380         unsafe { self.update_flags(0, flags::MAYEXEC) };
381         Ok(())
382     }
383 }
384 
385 /// The integer type used for vma flags.
386 #[doc(inline)]
387 pub use bindings::vm_flags_t;
388 
389 /// All possible flags for [`VmaRef`].
390 pub mod flags {
391     use super::vm_flags_t;
392     use crate::bindings;
393 
394     /// No flags are set.
395     pub const NONE: vm_flags_t = bindings::VM_NONE as _;
396 
397     /// Mapping allows reads.
398     pub const READ: vm_flags_t = bindings::VM_READ as _;
399 
400     /// Mapping allows writes.
401     pub const WRITE: vm_flags_t = bindings::VM_WRITE as _;
402 
403     /// Mapping allows execution.
404     pub const EXEC: vm_flags_t = bindings::VM_EXEC as _;
405 
406     /// Mapping is shared.
407     pub const SHARED: vm_flags_t = bindings::VM_SHARED as _;
408 
409     /// Mapping may be updated to allow reads.
410     pub const MAYREAD: vm_flags_t = bindings::VM_MAYREAD as _;
411 
412     /// Mapping may be updated to allow writes.
413     pub const MAYWRITE: vm_flags_t = bindings::VM_MAYWRITE as _;
414 
415     /// Mapping may be updated to allow execution.
416     pub const MAYEXEC: vm_flags_t = bindings::VM_MAYEXEC as _;
417 
418     /// Mapping may be updated to be shared.
419     pub const MAYSHARE: vm_flags_t = bindings::VM_MAYSHARE as _;
420 
421     /// Page-ranges managed without `struct page`, just pure PFN.
422     pub const PFNMAP: vm_flags_t = bindings::VM_PFNMAP as _;
423 
424     /// Memory mapped I/O or similar.
425     pub const IO: vm_flags_t = bindings::VM_IO as _;
426 
427     /// Do not copy this vma on fork.
428     pub const DONTCOPY: vm_flags_t = bindings::VM_DONTCOPY as _;
429 
430     /// Cannot expand with mremap().
431     pub const DONTEXPAND: vm_flags_t = bindings::VM_DONTEXPAND as _;
432 
433     /// Lock the pages covered when they are faulted in.
434     pub const LOCKONFAULT: vm_flags_t = bindings::VM_LOCKONFAULT as _;
435 
436     /// Is a VM accounted object.
437     pub const ACCOUNT: vm_flags_t = bindings::VM_ACCOUNT as _;
438 
439     /// Should the VM suppress accounting.
440     pub const NORESERVE: vm_flags_t = bindings::VM_NORESERVE as _;
441 
442     /// Huge TLB Page VM.
443     pub const HUGETLB: vm_flags_t = bindings::VM_HUGETLB as _;
444 
445     /// Synchronous page faults. (DAX-specific)
446     pub const SYNC: vm_flags_t = bindings::VM_SYNC as _;
447 
448     /// Architecture-specific flag.
449     pub const ARCH_1: vm_flags_t = bindings::VM_ARCH_1 as _;
450 
451     /// Wipe VMA contents in child on fork.
452     pub const WIPEONFORK: vm_flags_t = bindings::VM_WIPEONFORK as _;
453 
454     /// Do not include in the core dump.
455     pub const DONTDUMP: vm_flags_t = bindings::VM_DONTDUMP as _;
456 
457     /// Not soft dirty clean area.
458     pub const SOFTDIRTY: vm_flags_t = bindings::VM_SOFTDIRTY as _;
459 
460     /// Can contain `struct page` and pure PFN pages.
461     pub const MIXEDMAP: vm_flags_t = bindings::VM_MIXEDMAP as _;
462 
463     /// MADV_HUGEPAGE marked this vma.
464     pub const HUGEPAGE: vm_flags_t = bindings::VM_HUGEPAGE as _;
465 
466     /// MADV_NOHUGEPAGE marked this vma.
467     pub const NOHUGEPAGE: vm_flags_t = bindings::VM_NOHUGEPAGE as _;
468 
469     /// KSM may merge identical pages.
470     pub const MERGEABLE: vm_flags_t = bindings::VM_MERGEABLE as _;
471 }
472