1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Kernel errors. 4 //! 5 //! C header: [`include/uapi/asm-generic/errno-base.h`](srctree/include/uapi/asm-generic/errno-base.h) 6 7 use crate::{alloc::AllocError, str::CStr}; 8 9 use alloc::alloc::LayoutError; 10 11 use core::fmt; 12 use core::num::TryFromIntError; 13 use core::str::Utf8Error; 14 15 /// Contains the C-compatible error codes. 16 #[rustfmt::skip] 17 pub mod code { 18 macro_rules! declare_err { 19 ($err:tt $(,)? $($doc:expr),+) => { 20 $( 21 #[doc = $doc] 22 )* 23 pub const $err: super::Error = super::Error(-(crate::bindings::$err as i32)); 24 }; 25 } 26 27 declare_err!(EPERM, "Operation not permitted."); 28 declare_err!(ENOENT, "No such file or directory."); 29 declare_err!(ESRCH, "No such process."); 30 declare_err!(EINTR, "Interrupted system call."); 31 declare_err!(EIO, "I/O error."); 32 declare_err!(ENXIO, "No such device or address."); 33 declare_err!(E2BIG, "Argument list too long."); 34 declare_err!(ENOEXEC, "Exec format error."); 35 declare_err!(EBADF, "Bad file number."); 36 declare_err!(ECHILD, "No child processes."); 37 declare_err!(EAGAIN, "Try again."); 38 declare_err!(ENOMEM, "Out of memory."); 39 declare_err!(EACCES, "Permission denied."); 40 declare_err!(EFAULT, "Bad address."); 41 declare_err!(ENOTBLK, "Block device required."); 42 declare_err!(EBUSY, "Device or resource busy."); 43 declare_err!(EEXIST, "File exists."); 44 declare_err!(EXDEV, "Cross-device link."); 45 declare_err!(ENODEV, "No such device."); 46 declare_err!(ENOTDIR, "Not a directory."); 47 declare_err!(EISDIR, "Is a directory."); 48 declare_err!(EINVAL, "Invalid argument."); 49 declare_err!(ENFILE, "File table overflow."); 50 declare_err!(EMFILE, "Too many open files."); 51 declare_err!(ENOTTY, "Not a typewriter."); 52 declare_err!(ETXTBSY, "Text file busy."); 53 declare_err!(EFBIG, "File too large."); 54 declare_err!(ENOSPC, "No space left on device."); 55 declare_err!(ESPIPE, "Illegal seek."); 56 declare_err!(EROFS, "Read-only file system."); 57 declare_err!(EMLINK, "Too many links."); 58 declare_err!(EPIPE, "Broken pipe."); 59 declare_err!(EDOM, "Math argument out of domain of func."); 60 declare_err!(ERANGE, "Math result not representable."); 61 declare_err!(ERESTARTSYS, "Restart the system call."); 62 declare_err!(ERESTARTNOINTR, "System call was interrupted by a signal and will be restarted."); 63 declare_err!(ERESTARTNOHAND, "Restart if no handler."); 64 declare_err!(ENOIOCTLCMD, "No ioctl command."); 65 declare_err!(ERESTART_RESTARTBLOCK, "Restart by calling sys_restart_syscall."); 66 declare_err!(EPROBE_DEFER, "Driver requests probe retry."); 67 declare_err!(EOPENSTALE, "Open found a stale dentry."); 68 declare_err!(ENOPARAM, "Parameter not supported."); 69 declare_err!(EBADHANDLE, "Illegal NFS file handle."); 70 declare_err!(ENOTSYNC, "Update synchronization mismatch."); 71 declare_err!(EBADCOOKIE, "Cookie is stale."); 72 declare_err!(ENOTSUPP, "Operation is not supported."); 73 declare_err!(ETOOSMALL, "Buffer or request is too small."); 74 declare_err!(ESERVERFAULT, "An untranslatable error occurred."); 75 declare_err!(EBADTYPE, "Type not supported by server."); 76 declare_err!(EJUKEBOX, "Request initiated, but will not complete before timeout."); 77 declare_err!(EIOCBQUEUED, "iocb queued, will get completion event."); 78 declare_err!(ERECALLCONFLICT, "Conflict with recalled state."); 79 declare_err!(ENOGRACE, "NFS file lock reclaim refused."); 80 } 81 82 /// Generic integer kernel error. 83 /// 84 /// The kernel defines a set of integer generic error codes based on C and 85 /// POSIX ones. These codes may have a more specific meaning in some contexts. 86 /// 87 /// # Invariants 88 /// 89 /// The value is a valid `errno` (i.e. `>= -MAX_ERRNO && < 0`). 90 #[derive(Clone, Copy, PartialEq, Eq)] 91 pub struct Error(core::ffi::c_int); 92 93 impl Error { 94 /// Creates an [`Error`] from a kernel error code. 95 /// 96 /// It is a bug to pass an out-of-range `errno`. `EINVAL` would 97 /// be returned in such a case. 98 pub fn from_errno(errno: core::ffi::c_int) -> Error { 99 if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 { 100 // TODO: Make it a `WARN_ONCE` once available. 101 crate::pr_warn!( 102 "attempted to create `Error` with out of range `errno`: {}", 103 errno 104 ); 105 return code::EINVAL; 106 } 107 108 // INVARIANT: The check above ensures the type invariant 109 // will hold. 110 Error(errno) 111 } 112 113 /// Creates an [`Error`] from a kernel error code. 114 /// 115 /// # Safety 116 /// 117 /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`). 118 unsafe fn from_errno_unchecked(errno: core::ffi::c_int) -> Error { 119 // INVARIANT: The contract ensures the type invariant 120 // will hold. 121 Error(errno) 122 } 123 124 /// Returns the kernel error code. 125 pub fn to_errno(self) -> core::ffi::c_int { 126 self.0 127 } 128 129 #[cfg(CONFIG_BLOCK)] 130 pub(crate) fn to_blk_status(self) -> bindings::blk_status_t { 131 // SAFETY: `self.0` is a valid error due to its invariant. 132 unsafe { bindings::errno_to_blk_status(self.0) } 133 } 134 135 /// Returns the error encoded as a pointer. 136 pub fn to_ptr<T>(self) -> *mut T { 137 #[cfg_attr(target_pointer_width = "32", allow(clippy::useless_conversion))] 138 // SAFETY: `self.0` is a valid error due to its invariant. 139 unsafe { 140 bindings::ERR_PTR(self.0.into()) as *mut _ 141 } 142 } 143 144 /// Returns a string representing the error, if one exists. 145 #[cfg(not(testlib))] 146 pub fn name(&self) -> Option<&'static CStr> { 147 // SAFETY: Just an FFI call, there are no extra safety requirements. 148 let ptr = unsafe { bindings::errname(-self.0) }; 149 if ptr.is_null() { 150 None 151 } else { 152 // SAFETY: The string returned by `errname` is static and `NUL`-terminated. 153 Some(unsafe { CStr::from_char_ptr(ptr) }) 154 } 155 } 156 157 /// Returns a string representing the error, if one exists. 158 /// 159 /// When `testlib` is configured, this always returns `None` to avoid the dependency on a 160 /// kernel function so that tests that use this (e.g., by calling [`Result::unwrap`]) can still 161 /// run in userspace. 162 #[cfg(testlib)] 163 pub fn name(&self) -> Option<&'static CStr> { 164 None 165 } 166 } 167 168 impl fmt::Debug for Error { 169 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 170 match self.name() { 171 // Print out number if no name can be found. 172 None => f.debug_tuple("Error").field(&-self.0).finish(), 173 Some(name) => f 174 .debug_tuple( 175 // SAFETY: These strings are ASCII-only. 176 unsafe { core::str::from_utf8_unchecked(name) }, 177 ) 178 .finish(), 179 } 180 } 181 } 182 183 impl From<AllocError> for Error { 184 fn from(_: AllocError) -> Error { 185 code::ENOMEM 186 } 187 } 188 189 impl From<TryFromIntError> for Error { 190 fn from(_: TryFromIntError) -> Error { 191 code::EINVAL 192 } 193 } 194 195 impl From<Utf8Error> for Error { 196 fn from(_: Utf8Error) -> Error { 197 code::EINVAL 198 } 199 } 200 201 impl From<LayoutError> for Error { 202 fn from(_: LayoutError) -> Error { 203 code::ENOMEM 204 } 205 } 206 207 impl From<core::fmt::Error> for Error { 208 fn from(_: core::fmt::Error) -> Error { 209 code::EINVAL 210 } 211 } 212 213 impl From<core::convert::Infallible> for Error { 214 fn from(e: core::convert::Infallible) -> Error { 215 match e {} 216 } 217 } 218 219 /// A [`Result`] with an [`Error`] error type. 220 /// 221 /// To be used as the return type for functions that may fail. 222 /// 223 /// # Error codes in C and Rust 224 /// 225 /// In C, it is common that functions indicate success or failure through 226 /// their return value; modifying or returning extra data through non-`const` 227 /// pointer parameters. In particular, in the kernel, functions that may fail 228 /// typically return an `int` that represents a generic error code. We model 229 /// those as [`Error`]. 230 /// 231 /// In Rust, it is idiomatic to model functions that may fail as returning 232 /// a [`Result`]. Since in the kernel many functions return an error code, 233 /// [`Result`] is a type alias for a [`core::result::Result`] that uses 234 /// [`Error`] as its error type. 235 /// 236 /// Note that even if a function does not return anything when it succeeds, 237 /// it should still be modeled as returning a `Result` rather than 238 /// just an [`Error`]. 239 pub type Result<T = (), E = Error> = core::result::Result<T, E>; 240 241 /// Converts an integer as returned by a C kernel function to an error if it's negative, and 242 /// `Ok(())` otherwise. 243 pub fn to_result(err: core::ffi::c_int) -> Result { 244 if err < 0 { 245 Err(Error::from_errno(err)) 246 } else { 247 Ok(()) 248 } 249 } 250 251 /// Transform a kernel "error pointer" to a normal pointer. 252 /// 253 /// Some kernel C API functions return an "error pointer" which optionally 254 /// embeds an `errno`. Callers are supposed to check the returned pointer 255 /// for errors. This function performs the check and converts the "error pointer" 256 /// to a normal pointer in an idiomatic fashion. 257 /// 258 /// # Examples 259 /// 260 /// ```ignore 261 /// # use kernel::from_err_ptr; 262 /// # use kernel::bindings; 263 /// fn devm_platform_ioremap_resource( 264 /// pdev: &mut PlatformDevice, 265 /// index: u32, 266 /// ) -> Result<*mut core::ffi::c_void> { 267 /// // SAFETY: `pdev` points to a valid platform device. There are no safety requirements 268 /// // on `index`. 269 /// from_err_ptr(unsafe { bindings::devm_platform_ioremap_resource(pdev.to_ptr(), index) }) 270 /// } 271 /// ``` 272 pub fn from_err_ptr<T>(ptr: *mut T) -> Result<*mut T> { 273 // CAST: Casting a pointer to `*const core::ffi::c_void` is always valid. 274 let const_ptr: *const core::ffi::c_void = ptr.cast(); 275 // SAFETY: The FFI function does not deref the pointer. 276 if unsafe { bindings::IS_ERR(const_ptr) } { 277 // SAFETY: The FFI function does not deref the pointer. 278 let err = unsafe { bindings::PTR_ERR(const_ptr) }; 279 280 #[allow(clippy::unnecessary_cast)] 281 // CAST: If `IS_ERR()` returns `true`, 282 // then `PTR_ERR()` is guaranteed to return a 283 // negative value greater-or-equal to `-bindings::MAX_ERRNO`, 284 // which always fits in an `i16`, as per the invariant above. 285 // And an `i16` always fits in an `i32`. So casting `err` to 286 // an `i32` can never overflow, and is always valid. 287 // 288 // SAFETY: `IS_ERR()` ensures `err` is a 289 // negative value greater-or-equal to `-bindings::MAX_ERRNO`. 290 return Err(unsafe { Error::from_errno_unchecked(err as core::ffi::c_int) }); 291 } 292 Ok(ptr) 293 } 294 295 /// Calls a closure returning a [`crate::error::Result<T>`] and converts the result to 296 /// a C integer result. 297 /// 298 /// This is useful when calling Rust functions that return [`crate::error::Result<T>`] 299 /// from inside `extern "C"` functions that need to return an integer error result. 300 /// 301 /// `T` should be convertible from an `i16` via `From<i16>`. 302 /// 303 /// # Examples 304 /// 305 /// ```ignore 306 /// # use kernel::from_result; 307 /// # use kernel::bindings; 308 /// unsafe extern "C" fn probe_callback( 309 /// pdev: *mut bindings::platform_device, 310 /// ) -> core::ffi::c_int { 311 /// from_result(|| { 312 /// let ptr = devm_alloc(pdev)?; 313 /// bindings::platform_set_drvdata(pdev, ptr); 314 /// Ok(0) 315 /// }) 316 /// } 317 /// ``` 318 pub fn from_result<T, F>(f: F) -> T 319 where 320 T: From<i16>, 321 F: FnOnce() -> Result<T>, 322 { 323 match f() { 324 Ok(v) => v, 325 // NO-OVERFLOW: negative `errno`s are no smaller than `-bindings::MAX_ERRNO`, 326 // `-bindings::MAX_ERRNO` fits in an `i16` as per invariant above, 327 // therefore a negative `errno` always fits in an `i16` and will not overflow. 328 Err(e) => T::from(e.to_errno() as i16), 329 } 330 } 331 332 /// Error message for calling a default function of a [`#[vtable]`](macros::vtable) trait. 333 pub const VTABLE_DEFAULT_ERROR: &str = 334 "This function must not be called, see the #[vtable] documentation."; 335