xref: /linux/rust/kernel/error.rs (revision 570172569238c66a482ec3eb5d766cc9cf255f69)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Kernel errors.
4 //!
5 //! C header: [`include/uapi/asm-generic/errno-base.h`](srctree/include/uapi/asm-generic/errno-base.h)
6 
7 use crate::{alloc::AllocError, str::CStr};
8 
9 use alloc::alloc::LayoutError;
10 
11 use core::fmt;
12 use core::num::TryFromIntError;
13 use core::str::Utf8Error;
14 
15 /// Contains the C-compatible error codes.
16 #[rustfmt::skip]
17 pub mod code {
18     macro_rules! declare_err {
19         ($err:tt $(,)? $($doc:expr),+) => {
20             $(
21             #[doc = $doc]
22             )*
23             pub const $err: super::Error = super::Error(-(crate::bindings::$err as i32));
24         };
25     }
26 
27     declare_err!(EPERM, "Operation not permitted.");
28     declare_err!(ENOENT, "No such file or directory.");
29     declare_err!(ESRCH, "No such process.");
30     declare_err!(EINTR, "Interrupted system call.");
31     declare_err!(EIO, "I/O error.");
32     declare_err!(ENXIO, "No such device or address.");
33     declare_err!(E2BIG, "Argument list too long.");
34     declare_err!(ENOEXEC, "Exec format error.");
35     declare_err!(EBADF, "Bad file number.");
36     declare_err!(ECHILD, "No child processes.");
37     declare_err!(EAGAIN, "Try again.");
38     declare_err!(ENOMEM, "Out of memory.");
39     declare_err!(EACCES, "Permission denied.");
40     declare_err!(EFAULT, "Bad address.");
41     declare_err!(ENOTBLK, "Block device required.");
42     declare_err!(EBUSY, "Device or resource busy.");
43     declare_err!(EEXIST, "File exists.");
44     declare_err!(EXDEV, "Cross-device link.");
45     declare_err!(ENODEV, "No such device.");
46     declare_err!(ENOTDIR, "Not a directory.");
47     declare_err!(EISDIR, "Is a directory.");
48     declare_err!(EINVAL, "Invalid argument.");
49     declare_err!(ENFILE, "File table overflow.");
50     declare_err!(EMFILE, "Too many open files.");
51     declare_err!(ENOTTY, "Not a typewriter.");
52     declare_err!(ETXTBSY, "Text file busy.");
53     declare_err!(EFBIG, "File too large.");
54     declare_err!(ENOSPC, "No space left on device.");
55     declare_err!(ESPIPE, "Illegal seek.");
56     declare_err!(EROFS, "Read-only file system.");
57     declare_err!(EMLINK, "Too many links.");
58     declare_err!(EPIPE, "Broken pipe.");
59     declare_err!(EDOM, "Math argument out of domain of func.");
60     declare_err!(ERANGE, "Math result not representable.");
61     declare_err!(ERESTARTSYS, "Restart the system call.");
62     declare_err!(ERESTARTNOINTR, "System call was interrupted by a signal and will be restarted.");
63     declare_err!(ERESTARTNOHAND, "Restart if no handler.");
64     declare_err!(ENOIOCTLCMD, "No ioctl command.");
65     declare_err!(ERESTART_RESTARTBLOCK, "Restart by calling sys_restart_syscall.");
66     declare_err!(EPROBE_DEFER, "Driver requests probe retry.");
67     declare_err!(EOPENSTALE, "Open found a stale dentry.");
68     declare_err!(ENOPARAM, "Parameter not supported.");
69     declare_err!(EBADHANDLE, "Illegal NFS file handle.");
70     declare_err!(ENOTSYNC, "Update synchronization mismatch.");
71     declare_err!(EBADCOOKIE, "Cookie is stale.");
72     declare_err!(ENOTSUPP, "Operation is not supported.");
73     declare_err!(ETOOSMALL, "Buffer or request is too small.");
74     declare_err!(ESERVERFAULT, "An untranslatable error occurred.");
75     declare_err!(EBADTYPE, "Type not supported by server.");
76     declare_err!(EJUKEBOX, "Request initiated, but will not complete before timeout.");
77     declare_err!(EIOCBQUEUED, "iocb queued, will get completion event.");
78     declare_err!(ERECALLCONFLICT, "Conflict with recalled state.");
79     declare_err!(ENOGRACE, "NFS file lock reclaim refused.");
80 }
81 
82 /// Generic integer kernel error.
83 ///
84 /// The kernel defines a set of integer generic error codes based on C and
85 /// POSIX ones. These codes may have a more specific meaning in some contexts.
86 ///
87 /// # Invariants
88 ///
89 /// The value is a valid `errno` (i.e. `>= -MAX_ERRNO && < 0`).
90 #[derive(Clone, Copy, PartialEq, Eq)]
91 pub struct Error(core::ffi::c_int);
92 
93 impl Error {
94     /// Creates an [`Error`] from a kernel error code.
95     ///
96     /// It is a bug to pass an out-of-range `errno`. `EINVAL` would
97     /// be returned in such a case.
from_errno(errno: core::ffi::c_int) -> Error98     pub(crate) fn from_errno(errno: core::ffi::c_int) -> Error {
99         if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 {
100             // TODO: Make it a `WARN_ONCE` once available.
101             crate::pr_warn!(
102                 "attempted to create `Error` with out of range `errno`: {}",
103                 errno
104             );
105             return code::EINVAL;
106         }
107 
108         // INVARIANT: The check above ensures the type invariant
109         // will hold.
110         Error(errno)
111     }
112 
113     /// Creates an [`Error`] from a kernel error code.
114     ///
115     /// # Safety
116     ///
117     /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`).
from_errno_unchecked(errno: core::ffi::c_int) -> Error118     unsafe fn from_errno_unchecked(errno: core::ffi::c_int) -> Error {
119         // INVARIANT: The contract ensures the type invariant
120         // will hold.
121         Error(errno)
122     }
123 
124     /// Returns the kernel error code.
to_errno(self) -> core::ffi::c_int125     pub fn to_errno(self) -> core::ffi::c_int {
126         self.0
127     }
128 
129     #[cfg(CONFIG_BLOCK)]
to_blk_status(self) -> bindings::blk_status_t130     pub(crate) fn to_blk_status(self) -> bindings::blk_status_t {
131         // SAFETY: `self.0` is a valid error due to its invariant.
132         unsafe { bindings::errno_to_blk_status(self.0) }
133     }
134 
135     /// Returns the error encoded as a pointer.
136     #[allow(dead_code)]
to_ptr<T>(self) -> *mut T137     pub(crate) fn to_ptr<T>(self) -> *mut T {
138         #[cfg_attr(target_pointer_width = "32", allow(clippy::useless_conversion))]
139         // SAFETY: `self.0` is a valid error due to its invariant.
140         unsafe {
141             bindings::ERR_PTR(self.0.into()) as *mut _
142         }
143     }
144 
145     /// Returns a string representing the error, if one exists.
146     #[cfg(not(testlib))]
name(&self) -> Option<&'static CStr>147     pub fn name(&self) -> Option<&'static CStr> {
148         // SAFETY: Just an FFI call, there are no extra safety requirements.
149         let ptr = unsafe { bindings::errname(-self.0) };
150         if ptr.is_null() {
151             None
152         } else {
153             // SAFETY: The string returned by `errname` is static and `NUL`-terminated.
154             Some(unsafe { CStr::from_char_ptr(ptr) })
155         }
156     }
157 
158     /// Returns a string representing the error, if one exists.
159     ///
160     /// When `testlib` is configured, this always returns `None` to avoid the dependency on a
161     /// kernel function so that tests that use this (e.g., by calling [`Result::unwrap`]) can still
162     /// run in userspace.
163     #[cfg(testlib)]
name(&self) -> Option<&'static CStr>164     pub fn name(&self) -> Option<&'static CStr> {
165         None
166     }
167 }
168 
169 impl fmt::Debug for Error {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result170     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
171         match self.name() {
172             // Print out number if no name can be found.
173             None => f.debug_tuple("Error").field(&-self.0).finish(),
174             // SAFETY: These strings are ASCII-only.
175             Some(name) => f
176                 .debug_tuple(unsafe { core::str::from_utf8_unchecked(name) })
177                 .finish(),
178         }
179     }
180 }
181 
182 impl From<AllocError> for Error {
from(_: AllocError) -> Error183     fn from(_: AllocError) -> Error {
184         code::ENOMEM
185     }
186 }
187 
188 impl From<TryFromIntError> for Error {
from(_: TryFromIntError) -> Error189     fn from(_: TryFromIntError) -> Error {
190         code::EINVAL
191     }
192 }
193 
194 impl From<Utf8Error> for Error {
from(_: Utf8Error) -> Error195     fn from(_: Utf8Error) -> Error {
196         code::EINVAL
197     }
198 }
199 
200 impl From<LayoutError> for Error {
from(_: LayoutError) -> Error201     fn from(_: LayoutError) -> Error {
202         code::ENOMEM
203     }
204 }
205 
206 impl From<core::fmt::Error> for Error {
from(_: core::fmt::Error) -> Error207     fn from(_: core::fmt::Error) -> Error {
208         code::EINVAL
209     }
210 }
211 
212 impl From<core::convert::Infallible> for Error {
from(e: core::convert::Infallible) -> Error213     fn from(e: core::convert::Infallible) -> Error {
214         match e {}
215     }
216 }
217 
218 /// A [`Result`] with an [`Error`] error type.
219 ///
220 /// To be used as the return type for functions that may fail.
221 ///
222 /// # Error codes in C and Rust
223 ///
224 /// In C, it is common that functions indicate success or failure through
225 /// their return value; modifying or returning extra data through non-`const`
226 /// pointer parameters. In particular, in the kernel, functions that may fail
227 /// typically return an `int` that represents a generic error code. We model
228 /// those as [`Error`].
229 ///
230 /// In Rust, it is idiomatic to model functions that may fail as returning
231 /// a [`Result`]. Since in the kernel many functions return an error code,
232 /// [`Result`] is a type alias for a [`core::result::Result`] that uses
233 /// [`Error`] as its error type.
234 ///
235 /// Note that even if a function does not return anything when it succeeds,
236 /// it should still be modeled as returning a `Result` rather than
237 /// just an [`Error`].
238 pub type Result<T = (), E = Error> = core::result::Result<T, E>;
239 
240 /// Converts an integer as returned by a C kernel function to an error if it's negative, and
241 /// `Ok(())` otherwise.
to_result(err: core::ffi::c_int) -> Result242 pub fn to_result(err: core::ffi::c_int) -> Result {
243     if err < 0 {
244         Err(Error::from_errno(err))
245     } else {
246         Ok(())
247     }
248 }
249 
250 /// Transform a kernel "error pointer" to a normal pointer.
251 ///
252 /// Some kernel C API functions return an "error pointer" which optionally
253 /// embeds an `errno`. Callers are supposed to check the returned pointer
254 /// for errors. This function performs the check and converts the "error pointer"
255 /// to a normal pointer in an idiomatic fashion.
256 ///
257 /// # Examples
258 ///
259 /// ```ignore
260 /// # use kernel::from_err_ptr;
261 /// # use kernel::bindings;
262 /// fn devm_platform_ioremap_resource(
263 ///     pdev: &mut PlatformDevice,
264 ///     index: u32,
265 /// ) -> Result<*mut core::ffi::c_void> {
266 ///     // SAFETY: `pdev` points to a valid platform device. There are no safety requirements
267 ///     // on `index`.
268 ///     from_err_ptr(unsafe { bindings::devm_platform_ioremap_resource(pdev.to_ptr(), index) })
269 /// }
270 /// ```
271 // TODO: Remove `dead_code` marker once an in-kernel client is available.
272 #[allow(dead_code)]
from_err_ptr<T>(ptr: *mut T) -> Result<*mut T>273 pub(crate) fn from_err_ptr<T>(ptr: *mut T) -> Result<*mut T> {
274     // CAST: Casting a pointer to `*const core::ffi::c_void` is always valid.
275     let const_ptr: *const core::ffi::c_void = ptr.cast();
276     // SAFETY: The FFI function does not deref the pointer.
277     if unsafe { bindings::IS_ERR(const_ptr) } {
278         // SAFETY: The FFI function does not deref the pointer.
279         let err = unsafe { bindings::PTR_ERR(const_ptr) };
280         // CAST: If `IS_ERR()` returns `true`,
281         // then `PTR_ERR()` is guaranteed to return a
282         // negative value greater-or-equal to `-bindings::MAX_ERRNO`,
283         // which always fits in an `i16`, as per the invariant above.
284         // And an `i16` always fits in an `i32`. So casting `err` to
285         // an `i32` can never overflow, and is always valid.
286         //
287         // SAFETY: `IS_ERR()` ensures `err` is a
288         // negative value greater-or-equal to `-bindings::MAX_ERRNO`.
289         #[allow(clippy::unnecessary_cast)]
290         return Err(unsafe { Error::from_errno_unchecked(err as core::ffi::c_int) });
291     }
292     Ok(ptr)
293 }
294 
295 /// Calls a closure returning a [`crate::error::Result<T>`] and converts the result to
296 /// a C integer result.
297 ///
298 /// This is useful when calling Rust functions that return [`crate::error::Result<T>`]
299 /// from inside `extern "C"` functions that need to return an integer error result.
300 ///
301 /// `T` should be convertible from an `i16` via `From<i16>`.
302 ///
303 /// # Examples
304 ///
305 /// ```ignore
306 /// # use kernel::from_result;
307 /// # use kernel::bindings;
308 /// unsafe extern "C" fn probe_callback(
309 ///     pdev: *mut bindings::platform_device,
310 /// ) -> core::ffi::c_int {
311 ///     from_result(|| {
312 ///         let ptr = devm_alloc(pdev)?;
313 ///         bindings::platform_set_drvdata(pdev, ptr);
314 ///         Ok(0)
315 ///     })
316 /// }
317 /// ```
318 // TODO: Remove `dead_code` marker once an in-kernel client is available.
319 #[allow(dead_code)]
from_result<T, F>(f: F) -> T where T: From<i16>, F: FnOnce() -> Result<T>,320 pub(crate) fn from_result<T, F>(f: F) -> T
321 where
322     T: From<i16>,
323     F: FnOnce() -> Result<T>,
324 {
325     match f() {
326         Ok(v) => v,
327         // NO-OVERFLOW: negative `errno`s are no smaller than `-bindings::MAX_ERRNO`,
328         // `-bindings::MAX_ERRNO` fits in an `i16` as per invariant above,
329         // therefore a negative `errno` always fits in an `i16` and will not overflow.
330         Err(e) => T::from(e.to_errno() as i16),
331     }
332 }
333 
334 /// Error message for calling a default function of a [`#[vtable]`](macros::vtable) trait.
335 pub const VTABLE_DEFAULT_ERROR: &str =
336     "This function must not be called, see the #[vtable] documentation.";
337