xref: /linux/rust/kernel/error.rs (revision e9759c5b9ea555d09f426c70c880e9522e9b0576)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Kernel errors.
4 //!
5 //! C header: [`include/uapi/asm-generic/errno-base.h`](srctree/include/uapi/asm-generic/errno-base.h)
6 
7 use crate::{alloc::AllocError, str::CStr};
8 
9 use alloc::alloc::LayoutError;
10 
11 use core::fmt;
12 use core::num::NonZeroI32;
13 use core::num::TryFromIntError;
14 use core::str::Utf8Error;
15 
16 /// Contains the C-compatible error codes.
17 #[rustfmt::skip]
18 pub mod code {
19     macro_rules! declare_err {
20         ($err:tt $(,)? $($doc:expr),+) => {
21             $(
22             #[doc = $doc]
23             )*
24             pub const $err: super::Error =
25                 match super::Error::try_from_errno(-(crate::bindings::$err as i32)) {
26                     Some(err) => err,
27                     None => panic!("Invalid errno in `declare_err!`"),
28                 };
29         };
30     }
31 
32     declare_err!(EPERM, "Operation not permitted.");
33     declare_err!(ENOENT, "No such file or directory.");
34     declare_err!(ESRCH, "No such process.");
35     declare_err!(EINTR, "Interrupted system call.");
36     declare_err!(EIO, "I/O error.");
37     declare_err!(ENXIO, "No such device or address.");
38     declare_err!(E2BIG, "Argument list too long.");
39     declare_err!(ENOEXEC, "Exec format error.");
40     declare_err!(EBADF, "Bad file number.");
41     declare_err!(ECHILD, "No child processes.");
42     declare_err!(EAGAIN, "Try again.");
43     declare_err!(ENOMEM, "Out of memory.");
44     declare_err!(EACCES, "Permission denied.");
45     declare_err!(EFAULT, "Bad address.");
46     declare_err!(ENOTBLK, "Block device required.");
47     declare_err!(EBUSY, "Device or resource busy.");
48     declare_err!(EEXIST, "File exists.");
49     declare_err!(EXDEV, "Cross-device link.");
50     declare_err!(ENODEV, "No such device.");
51     declare_err!(ENOTDIR, "Not a directory.");
52     declare_err!(EISDIR, "Is a directory.");
53     declare_err!(EINVAL, "Invalid argument.");
54     declare_err!(ENFILE, "File table overflow.");
55     declare_err!(EMFILE, "Too many open files.");
56     declare_err!(ENOTTY, "Not a typewriter.");
57     declare_err!(ETXTBSY, "Text file busy.");
58     declare_err!(EFBIG, "File too large.");
59     declare_err!(ENOSPC, "No space left on device.");
60     declare_err!(ESPIPE, "Illegal seek.");
61     declare_err!(EROFS, "Read-only file system.");
62     declare_err!(EMLINK, "Too many links.");
63     declare_err!(EPIPE, "Broken pipe.");
64     declare_err!(EDOM, "Math argument out of domain of func.");
65     declare_err!(ERANGE, "Math result not representable.");
66     declare_err!(ERESTARTSYS, "Restart the system call.");
67     declare_err!(ERESTARTNOINTR, "System call was interrupted by a signal and will be restarted.");
68     declare_err!(ERESTARTNOHAND, "Restart if no handler.");
69     declare_err!(ENOIOCTLCMD, "No ioctl command.");
70     declare_err!(ERESTART_RESTARTBLOCK, "Restart by calling sys_restart_syscall.");
71     declare_err!(EPROBE_DEFER, "Driver requests probe retry.");
72     declare_err!(EOPENSTALE, "Open found a stale dentry.");
73     declare_err!(ENOPARAM, "Parameter not supported.");
74     declare_err!(EBADHANDLE, "Illegal NFS file handle.");
75     declare_err!(ENOTSYNC, "Update synchronization mismatch.");
76     declare_err!(EBADCOOKIE, "Cookie is stale.");
77     declare_err!(ENOTSUPP, "Operation is not supported.");
78     declare_err!(ETOOSMALL, "Buffer or request is too small.");
79     declare_err!(ESERVERFAULT, "An untranslatable error occurred.");
80     declare_err!(EBADTYPE, "Type not supported by server.");
81     declare_err!(EJUKEBOX, "Request initiated, but will not complete before timeout.");
82     declare_err!(EIOCBQUEUED, "iocb queued, will get completion event.");
83     declare_err!(ERECALLCONFLICT, "Conflict with recalled state.");
84     declare_err!(ENOGRACE, "NFS file lock reclaim refused.");
85 }
86 
87 /// Generic integer kernel error.
88 ///
89 /// The kernel defines a set of integer generic error codes based on C and
90 /// POSIX ones. These codes may have a more specific meaning in some contexts.
91 ///
92 /// # Invariants
93 ///
94 /// The value is a valid `errno` (i.e. `>= -MAX_ERRNO && < 0`).
95 #[derive(Clone, Copy, PartialEq, Eq)]
96 pub struct Error(NonZeroI32);
97 
98 impl Error {
99     /// Creates an [`Error`] from a kernel error code.
100     ///
101     /// It is a bug to pass an out-of-range `errno`. `EINVAL` would
102     /// be returned in such a case.
103     pub fn from_errno(errno: core::ffi::c_int) -> Error {
104         if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 {
105             // TODO: Make it a `WARN_ONCE` once available.
106             crate::pr_warn!(
107                 "attempted to create `Error` with out of range `errno`: {}",
108                 errno
109             );
110             return code::EINVAL;
111         }
112 
113         // INVARIANT: The check above ensures the type invariant
114         // will hold.
115         // SAFETY: `errno` is checked above to be in a valid range.
116         unsafe { Error::from_errno_unchecked(errno) }
117     }
118 
119     /// Creates an [`Error`] from a kernel error code.
120     ///
121     /// Returns [`None`] if `errno` is out-of-range.
122     const fn try_from_errno(errno: core::ffi::c_int) -> Option<Error> {
123         if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 {
124             return None;
125         }
126 
127         // SAFETY: `errno` is checked above to be in a valid range.
128         Some(unsafe { Error::from_errno_unchecked(errno) })
129     }
130 
131     /// Creates an [`Error`] from a kernel error code.
132     ///
133     /// # Safety
134     ///
135     /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`).
136     const unsafe fn from_errno_unchecked(errno: core::ffi::c_int) -> Error {
137         // INVARIANT: The contract ensures the type invariant
138         // will hold.
139         // SAFETY: The caller guarantees `errno` is non-zero.
140         Error(unsafe { NonZeroI32::new_unchecked(errno) })
141     }
142 
143     /// Returns the kernel error code.
144     pub fn to_errno(self) -> core::ffi::c_int {
145         self.0.get()
146     }
147 
148     #[cfg(CONFIG_BLOCK)]
149     pub(crate) fn to_blk_status(self) -> bindings::blk_status_t {
150         // SAFETY: `self.0` is a valid error due to its invariant.
151         unsafe { bindings::errno_to_blk_status(self.0.get()) }
152     }
153 
154     /// Returns the error encoded as a pointer.
155     pub fn to_ptr<T>(self) -> *mut T {
156         #[cfg_attr(target_pointer_width = "32", allow(clippy::useless_conversion))]
157         // SAFETY: `self.0` is a valid error due to its invariant.
158         unsafe {
159             bindings::ERR_PTR(self.0.get().into()) as *mut _
160         }
161     }
162 
163     /// Returns a string representing the error, if one exists.
164     #[cfg(not(testlib))]
165     pub fn name(&self) -> Option<&'static CStr> {
166         // SAFETY: Just an FFI call, there are no extra safety requirements.
167         let ptr = unsafe { bindings::errname(-self.0.get()) };
168         if ptr.is_null() {
169             None
170         } else {
171             // SAFETY: The string returned by `errname` is static and `NUL`-terminated.
172             Some(unsafe { CStr::from_char_ptr(ptr) })
173         }
174     }
175 
176     /// Returns a string representing the error, if one exists.
177     ///
178     /// When `testlib` is configured, this always returns `None` to avoid the dependency on a
179     /// kernel function so that tests that use this (e.g., by calling [`Result::unwrap`]) can still
180     /// run in userspace.
181     #[cfg(testlib)]
182     pub fn name(&self) -> Option<&'static CStr> {
183         None
184     }
185 }
186 
187 impl fmt::Debug for Error {
188     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
189         match self.name() {
190             // Print out number if no name can be found.
191             None => f.debug_tuple("Error").field(&-self.0).finish(),
192             Some(name) => f
193                 .debug_tuple(
194                     // SAFETY: These strings are ASCII-only.
195                     unsafe { core::str::from_utf8_unchecked(name) },
196                 )
197                 .finish(),
198         }
199     }
200 }
201 
202 impl From<AllocError> for Error {
203     fn from(_: AllocError) -> Error {
204         code::ENOMEM
205     }
206 }
207 
208 impl From<TryFromIntError> for Error {
209     fn from(_: TryFromIntError) -> Error {
210         code::EINVAL
211     }
212 }
213 
214 impl From<Utf8Error> for Error {
215     fn from(_: Utf8Error) -> Error {
216         code::EINVAL
217     }
218 }
219 
220 impl From<LayoutError> for Error {
221     fn from(_: LayoutError) -> Error {
222         code::ENOMEM
223     }
224 }
225 
226 impl From<core::fmt::Error> for Error {
227     fn from(_: core::fmt::Error) -> Error {
228         code::EINVAL
229     }
230 }
231 
232 impl From<core::convert::Infallible> for Error {
233     fn from(e: core::convert::Infallible) -> Error {
234         match e {}
235     }
236 }
237 
238 /// A [`Result`] with an [`Error`] error type.
239 ///
240 /// To be used as the return type for functions that may fail.
241 ///
242 /// # Error codes in C and Rust
243 ///
244 /// In C, it is common that functions indicate success or failure through
245 /// their return value; modifying or returning extra data through non-`const`
246 /// pointer parameters. In particular, in the kernel, functions that may fail
247 /// typically return an `int` that represents a generic error code. We model
248 /// those as [`Error`].
249 ///
250 /// In Rust, it is idiomatic to model functions that may fail as returning
251 /// a [`Result`]. Since in the kernel many functions return an error code,
252 /// [`Result`] is a type alias for a [`core::result::Result`] that uses
253 /// [`Error`] as its error type.
254 ///
255 /// Note that even if a function does not return anything when it succeeds,
256 /// it should still be modeled as returning a `Result` rather than
257 /// just an [`Error`].
258 pub type Result<T = (), E = Error> = core::result::Result<T, E>;
259 
260 /// Converts an integer as returned by a C kernel function to an error if it's negative, and
261 /// `Ok(())` otherwise.
262 pub fn to_result(err: core::ffi::c_int) -> Result {
263     if err < 0 {
264         Err(Error::from_errno(err))
265     } else {
266         Ok(())
267     }
268 }
269 
270 /// Transform a kernel "error pointer" to a normal pointer.
271 ///
272 /// Some kernel C API functions return an "error pointer" which optionally
273 /// embeds an `errno`. Callers are supposed to check the returned pointer
274 /// for errors. This function performs the check and converts the "error pointer"
275 /// to a normal pointer in an idiomatic fashion.
276 ///
277 /// # Examples
278 ///
279 /// ```ignore
280 /// # use kernel::from_err_ptr;
281 /// # use kernel::bindings;
282 /// fn devm_platform_ioremap_resource(
283 ///     pdev: &mut PlatformDevice,
284 ///     index: u32,
285 /// ) -> Result<*mut core::ffi::c_void> {
286 ///     // SAFETY: `pdev` points to a valid platform device. There are no safety requirements
287 ///     // on `index`.
288 ///     from_err_ptr(unsafe { bindings::devm_platform_ioremap_resource(pdev.to_ptr(), index) })
289 /// }
290 /// ```
291 pub fn from_err_ptr<T>(ptr: *mut T) -> Result<*mut T> {
292     // CAST: Casting a pointer to `*const core::ffi::c_void` is always valid.
293     let const_ptr: *const core::ffi::c_void = ptr.cast();
294     // SAFETY: The FFI function does not deref the pointer.
295     if unsafe { bindings::IS_ERR(const_ptr) } {
296         // SAFETY: The FFI function does not deref the pointer.
297         let err = unsafe { bindings::PTR_ERR(const_ptr) };
298 
299         #[allow(clippy::unnecessary_cast)]
300         // CAST: If `IS_ERR()` returns `true`,
301         // then `PTR_ERR()` is guaranteed to return a
302         // negative value greater-or-equal to `-bindings::MAX_ERRNO`,
303         // which always fits in an `i16`, as per the invariant above.
304         // And an `i16` always fits in an `i32`. So casting `err` to
305         // an `i32` can never overflow, and is always valid.
306         //
307         // SAFETY: `IS_ERR()` ensures `err` is a
308         // negative value greater-or-equal to `-bindings::MAX_ERRNO`.
309         return Err(unsafe { Error::from_errno_unchecked(err as core::ffi::c_int) });
310     }
311     Ok(ptr)
312 }
313 
314 /// Calls a closure returning a [`crate::error::Result<T>`] and converts the result to
315 /// a C integer result.
316 ///
317 /// This is useful when calling Rust functions that return [`crate::error::Result<T>`]
318 /// from inside `extern "C"` functions that need to return an integer error result.
319 ///
320 /// `T` should be convertible from an `i16` via `From<i16>`.
321 ///
322 /// # Examples
323 ///
324 /// ```ignore
325 /// # use kernel::from_result;
326 /// # use kernel::bindings;
327 /// unsafe extern "C" fn probe_callback(
328 ///     pdev: *mut bindings::platform_device,
329 /// ) -> core::ffi::c_int {
330 ///     from_result(|| {
331 ///         let ptr = devm_alloc(pdev)?;
332 ///         bindings::platform_set_drvdata(pdev, ptr);
333 ///         Ok(0)
334 ///     })
335 /// }
336 /// ```
337 pub fn from_result<T, F>(f: F) -> T
338 where
339     T: From<i16>,
340     F: FnOnce() -> Result<T>,
341 {
342     match f() {
343         Ok(v) => v,
344         // NO-OVERFLOW: negative `errno`s are no smaller than `-bindings::MAX_ERRNO`,
345         // `-bindings::MAX_ERRNO` fits in an `i16` as per invariant above,
346         // therefore a negative `errno` always fits in an `i16` and will not overflow.
347         Err(e) => T::from(e.to_errno() as i16),
348     }
349 }
350 
351 /// Error message for calling a default function of a [`#[vtable]`](macros::vtable) trait.
352 pub const VTABLE_DEFAULT_ERROR: &str =
353     "This function must not be called, see the #[vtable] documentation.";
354