1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Kernel errors. 4 //! 5 //! C header: [`include/uapi/asm-generic/errno-base.h`](srctree/include/uapi/asm-generic/errno-base.h)\ 6 //! C header: [`include/uapi/asm-generic/errno.h`](srctree/include/uapi/asm-generic/errno.h)\ 7 //! C header: [`include/linux/errno.h`](srctree/include/linux/errno.h) 8 9 use crate::{ 10 alloc::{layout::LayoutError, AllocError}, 11 fmt, 12 str::CStr, 13 }; 14 15 use core::num::NonZeroI32; 16 use core::num::TryFromIntError; 17 use core::str::Utf8Error; 18 19 /// Contains the C-compatible error codes. 20 #[rustfmt::skip] 21 pub mod code { 22 macro_rules! declare_err { 23 ($err:tt $(,)? $($doc:expr),+) => { 24 $( 25 #[doc = $doc] 26 )* 27 pub const $err: super::Error = 28 match super::Error::try_from_errno(-(crate::bindings::$err as i32)) { 29 Some(err) => err, 30 None => panic!("Invalid errno in `declare_err!`"), 31 }; 32 }; 33 } 34 35 declare_err!(EPERM, "Operation not permitted."); 36 declare_err!(ENOENT, "No such file or directory."); 37 declare_err!(ESRCH, "No such process."); 38 declare_err!(EINTR, "Interrupted system call."); 39 declare_err!(EIO, "I/O error."); 40 declare_err!(ENXIO, "No such device or address."); 41 declare_err!(E2BIG, "Argument list too long."); 42 declare_err!(ENOEXEC, "Exec format error."); 43 declare_err!(EBADF, "Bad file number."); 44 declare_err!(ECHILD, "No child processes."); 45 declare_err!(EAGAIN, "Try again."); 46 declare_err!(ENOMEM, "Out of memory."); 47 declare_err!(EACCES, "Permission denied."); 48 declare_err!(EFAULT, "Bad address."); 49 declare_err!(ENOTBLK, "Block device required."); 50 declare_err!(EBUSY, "Device or resource busy."); 51 declare_err!(EEXIST, "File exists."); 52 declare_err!(EXDEV, "Cross-device link."); 53 declare_err!(ENODEV, "No such device."); 54 declare_err!(ENOTDIR, "Not a directory."); 55 declare_err!(EISDIR, "Is a directory."); 56 declare_err!(EINVAL, "Invalid argument."); 57 declare_err!(ENFILE, "File table overflow."); 58 declare_err!(EMFILE, "Too many open files."); 59 declare_err!(ENOTTY, "Not a typewriter."); 60 declare_err!(ETXTBSY, "Text file busy."); 61 declare_err!(EFBIG, "File too large."); 62 declare_err!(ENOSPC, "No space left on device."); 63 declare_err!(ESPIPE, "Illegal seek."); 64 declare_err!(EROFS, "Read-only file system."); 65 declare_err!(EMLINK, "Too many links."); 66 declare_err!(EPIPE, "Broken pipe."); 67 declare_err!(EDOM, "Math argument out of domain of func."); 68 declare_err!(ERANGE, "Math result not representable."); 69 declare_err!(EOVERFLOW, "Value too large for defined data type."); 70 declare_err!(ETIMEDOUT, "Connection timed out."); 71 declare_err!(ERESTARTSYS, "Restart the system call."); 72 declare_err!(ERESTARTNOINTR, "System call was interrupted by a signal and will be restarted."); 73 declare_err!(ERESTARTNOHAND, "Restart if no handler."); 74 declare_err!(ENOIOCTLCMD, "No ioctl command."); 75 declare_err!(ERESTART_RESTARTBLOCK, "Restart by calling sys_restart_syscall."); 76 declare_err!(EPROBE_DEFER, "Driver requests probe retry."); 77 declare_err!(EOPENSTALE, "Open found a stale dentry."); 78 declare_err!(ENOPARAM, "Parameter not supported."); 79 declare_err!(EBADHANDLE, "Illegal NFS file handle."); 80 declare_err!(ENOTSYNC, "Update synchronization mismatch."); 81 declare_err!(EBADCOOKIE, "Cookie is stale."); 82 declare_err!(ENOTSUPP, "Operation is not supported."); 83 declare_err!(ETOOSMALL, "Buffer or request is too small."); 84 declare_err!(ESERVERFAULT, "An untranslatable error occurred."); 85 declare_err!(EBADTYPE, "Type not supported by server."); 86 declare_err!(EJUKEBOX, "Request initiated, but will not complete before timeout."); 87 declare_err!(EIOCBQUEUED, "iocb queued, will get completion event."); 88 declare_err!(ERECALLCONFLICT, "Conflict with recalled state."); 89 declare_err!(ENOGRACE, "NFS file lock reclaim refused."); 90 } 91 92 /// Generic integer kernel error. 93 /// 94 /// The kernel defines a set of integer generic error codes based on C and 95 /// POSIX ones. These codes may have a more specific meaning in some contexts. 96 /// 97 /// # Invariants 98 /// 99 /// The value is a valid `errno` (i.e. `>= -MAX_ERRNO && < 0`). 100 #[derive(Clone, Copy, PartialEq, Eq)] 101 pub struct Error(NonZeroI32); 102 103 impl Error { 104 /// Creates an [`Error`] from a kernel error code. 105 /// 106 /// It is a bug to pass an out-of-range `errno`. `EINVAL` would 107 /// be returned in such a case. 108 pub fn from_errno(errno: crate::ffi::c_int) -> Error { 109 if let Some(error) = Self::try_from_errno(errno) { 110 error 111 } else { 112 // TODO: Make it a `WARN_ONCE` once available. 113 crate::pr_warn!( 114 "attempted to create `Error` with out of range `errno`: {}\n", 115 errno 116 ); 117 code::EINVAL 118 } 119 } 120 121 /// Creates an [`Error`] from a kernel error code. 122 /// 123 /// Returns [`None`] if `errno` is out-of-range. 124 const fn try_from_errno(errno: crate::ffi::c_int) -> Option<Error> { 125 if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 { 126 return None; 127 } 128 129 // SAFETY: `errno` is checked above to be in a valid range. 130 Some(unsafe { Error::from_errno_unchecked(errno) }) 131 } 132 133 /// Creates an [`Error`] from a kernel error code. 134 /// 135 /// # Safety 136 /// 137 /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`). 138 const unsafe fn from_errno_unchecked(errno: crate::ffi::c_int) -> Error { 139 // INVARIANT: The contract ensures the type invariant 140 // will hold. 141 // SAFETY: The caller guarantees `errno` is non-zero. 142 Error(unsafe { NonZeroI32::new_unchecked(errno) }) 143 } 144 145 /// Returns the kernel error code. 146 pub fn to_errno(self) -> crate::ffi::c_int { 147 self.0.get() 148 } 149 150 #[cfg(CONFIG_BLOCK)] 151 pub(crate) fn to_blk_status(self) -> bindings::blk_status_t { 152 // SAFETY: `self.0` is a valid error due to its invariant. 153 unsafe { bindings::errno_to_blk_status(self.0.get()) } 154 } 155 156 /// Returns the error encoded as a pointer. 157 pub fn to_ptr<T>(self) -> *mut T { 158 // SAFETY: `self.0` is a valid error due to its invariant. 159 unsafe { bindings::ERR_PTR(self.0.get() as crate::ffi::c_long).cast() } 160 } 161 162 /// Returns a string representing the error, if one exists. 163 #[cfg(not(testlib))] 164 pub fn name(&self) -> Option<&'static CStr> { 165 // SAFETY: Just an FFI call, there are no extra safety requirements. 166 let ptr = unsafe { bindings::errname(-self.0.get()) }; 167 if ptr.is_null() { 168 None 169 } else { 170 // SAFETY: The string returned by `errname` is static and `NUL`-terminated. 171 Some(unsafe { CStr::from_char_ptr(ptr) }) 172 } 173 } 174 175 /// Returns a string representing the error, if one exists. 176 /// 177 /// When `testlib` is configured, this always returns `None` to avoid the dependency on a 178 /// kernel function so that tests that use this (e.g., by calling [`Result::unwrap`]) can still 179 /// run in userspace. 180 #[cfg(testlib)] 181 pub fn name(&self) -> Option<&'static CStr> { 182 None 183 } 184 } 185 186 impl fmt::Debug for Error { 187 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 188 match self.name() { 189 // Print out number if no name can be found. 190 None => f.debug_tuple("Error").field(&-self.0).finish(), 191 Some(name) => f 192 .debug_tuple( 193 // SAFETY: These strings are ASCII-only. 194 unsafe { core::str::from_utf8_unchecked(name.to_bytes()) }, 195 ) 196 .finish(), 197 } 198 } 199 } 200 201 impl From<AllocError> for Error { 202 fn from(_: AllocError) -> Error { 203 code::ENOMEM 204 } 205 } 206 207 impl From<TryFromIntError> for Error { 208 fn from(_: TryFromIntError) -> Error { 209 code::EINVAL 210 } 211 } 212 213 impl From<Utf8Error> for Error { 214 fn from(_: Utf8Error) -> Error { 215 code::EINVAL 216 } 217 } 218 219 impl From<LayoutError> for Error { 220 fn from(_: LayoutError) -> Error { 221 code::ENOMEM 222 } 223 } 224 225 impl From<fmt::Error> for Error { 226 fn from(_: fmt::Error) -> Error { 227 code::EINVAL 228 } 229 } 230 231 impl From<core::convert::Infallible> for Error { 232 fn from(e: core::convert::Infallible) -> Error { 233 match e {} 234 } 235 } 236 237 /// A [`Result`] with an [`Error`] error type. 238 /// 239 /// To be used as the return type for functions that may fail. 240 /// 241 /// # Error codes in C and Rust 242 /// 243 /// In C, it is common that functions indicate success or failure through 244 /// their return value; modifying or returning extra data through non-`const` 245 /// pointer parameters. In particular, in the kernel, functions that may fail 246 /// typically return an `int` that represents a generic error code. We model 247 /// those as [`Error`]. 248 /// 249 /// In Rust, it is idiomatic to model functions that may fail as returning 250 /// a [`Result`]. Since in the kernel many functions return an error code, 251 /// [`Result`] is a type alias for a [`core::result::Result`] that uses 252 /// [`Error`] as its error type. 253 /// 254 /// Note that even if a function does not return anything when it succeeds, 255 /// it should still be modeled as returning a [`Result`] rather than 256 /// just an [`Error`]. 257 /// 258 /// Calling a function that returns [`Result`] forces the caller to handle 259 /// the returned [`Result`]. 260 /// 261 /// This can be done "manually" by using [`match`]. Using [`match`] to decode 262 /// the [`Result`] is similar to C where all the return value decoding and the 263 /// error handling is done explicitly by writing handling code for each 264 /// error to cover. Using [`match`] the error and success handling can be 265 /// implemented in all detail as required. For example (inspired by 266 /// [`samples/rust/rust_minimal.rs`]): 267 /// 268 /// ``` 269 /// # #[allow(clippy::single_match)] 270 /// fn example() -> Result { 271 /// let mut numbers = KVec::new(); 272 /// 273 /// match numbers.push(72, GFP_KERNEL) { 274 /// Err(e) => { 275 /// pr_err!("Error pushing 72: {e:?}"); 276 /// return Err(e.into()); 277 /// } 278 /// // Do nothing, continue. 279 /// Ok(()) => (), 280 /// } 281 /// 282 /// match numbers.push(108, GFP_KERNEL) { 283 /// Err(e) => { 284 /// pr_err!("Error pushing 108: {e:?}"); 285 /// return Err(e.into()); 286 /// } 287 /// // Do nothing, continue. 288 /// Ok(()) => (), 289 /// } 290 /// 291 /// match numbers.push(200, GFP_KERNEL) { 292 /// Err(e) => { 293 /// pr_err!("Error pushing 200: {e:?}"); 294 /// return Err(e.into()); 295 /// } 296 /// // Do nothing, continue. 297 /// Ok(()) => (), 298 /// } 299 /// 300 /// Ok(()) 301 /// } 302 /// # example()?; 303 /// # Ok::<(), Error>(()) 304 /// ``` 305 /// 306 /// An alternative to be more concise is the [`if let`] syntax: 307 /// 308 /// ``` 309 /// fn example() -> Result { 310 /// let mut numbers = KVec::new(); 311 /// 312 /// if let Err(e) = numbers.push(72, GFP_KERNEL) { 313 /// pr_err!("Error pushing 72: {e:?}"); 314 /// return Err(e.into()); 315 /// } 316 /// 317 /// if let Err(e) = numbers.push(108, GFP_KERNEL) { 318 /// pr_err!("Error pushing 108: {e:?}"); 319 /// return Err(e.into()); 320 /// } 321 /// 322 /// if let Err(e) = numbers.push(200, GFP_KERNEL) { 323 /// pr_err!("Error pushing 200: {e:?}"); 324 /// return Err(e.into()); 325 /// } 326 /// 327 /// Ok(()) 328 /// } 329 /// # example()?; 330 /// # Ok::<(), Error>(()) 331 /// ``` 332 /// 333 /// Instead of these verbose [`match`]/[`if let`], the [`?`] operator can 334 /// be used to handle the [`Result`]. Using the [`?`] operator is often 335 /// the best choice to handle [`Result`] in a non-verbose way as done in 336 /// [`samples/rust/rust_minimal.rs`]: 337 /// 338 /// ``` 339 /// fn example() -> Result { 340 /// let mut numbers = KVec::new(); 341 /// 342 /// numbers.push(72, GFP_KERNEL)?; 343 /// numbers.push(108, GFP_KERNEL)?; 344 /// numbers.push(200, GFP_KERNEL)?; 345 /// 346 /// Ok(()) 347 /// } 348 /// # example()?; 349 /// # Ok::<(), Error>(()) 350 /// ``` 351 /// 352 /// Another possibility is to call [`unwrap()`](Result::unwrap) or 353 /// [`expect()`](Result::expect). However, use of these functions is 354 /// *heavily discouraged* in the kernel because they trigger a Rust 355 /// [`panic!`] if an error happens, which may destabilize the system or 356 /// entirely break it as a result -- just like the C [`BUG()`] macro. 357 /// Please see the documentation for the C macro [`BUG()`] for guidance 358 /// on when to use these functions. 359 /// 360 /// Alternatively, depending on the use case, using [`unwrap_or()`], 361 /// [`unwrap_or_else()`], [`unwrap_or_default()`] or [`unwrap_unchecked()`] 362 /// might be an option, as well. 363 /// 364 /// For even more details, please see the [Rust documentation]. 365 /// 366 /// [`match`]: https://doc.rust-lang.org/reference/expressions/match-expr.html 367 /// [`samples/rust/rust_minimal.rs`]: srctree/samples/rust/rust_minimal.rs 368 /// [`if let`]: https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions 369 /// [`?`]: https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator 370 /// [`unwrap()`]: Result::unwrap 371 /// [`expect()`]: Result::expect 372 /// [`BUG()`]: https://docs.kernel.org/process/deprecated.html#bug-and-bug-on 373 /// [`unwrap_or()`]: Result::unwrap_or 374 /// [`unwrap_or_else()`]: Result::unwrap_or_else 375 /// [`unwrap_or_default()`]: Result::unwrap_or_default 376 /// [`unwrap_unchecked()`]: Result::unwrap_unchecked 377 /// [Rust documentation]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html 378 pub type Result<T = (), E = Error> = core::result::Result<T, E>; 379 380 /// Converts an integer as returned by a C kernel function to an error if it's negative, and 381 /// `Ok(())` otherwise. 382 pub fn to_result(err: crate::ffi::c_int) -> Result { 383 if err < 0 { 384 Err(Error::from_errno(err)) 385 } else { 386 Ok(()) 387 } 388 } 389 390 /// Transform a kernel "error pointer" to a normal pointer. 391 /// 392 /// Some kernel C API functions return an "error pointer" which optionally 393 /// embeds an `errno`. Callers are supposed to check the returned pointer 394 /// for errors. This function performs the check and converts the "error pointer" 395 /// to a normal pointer in an idiomatic fashion. 396 /// 397 /// # Examples 398 /// 399 /// ```ignore 400 /// # use kernel::from_err_ptr; 401 /// # use kernel::bindings; 402 /// fn devm_platform_ioremap_resource( 403 /// pdev: &mut PlatformDevice, 404 /// index: u32, 405 /// ) -> Result<*mut kernel::ffi::c_void> { 406 /// // SAFETY: `pdev` points to a valid platform device. There are no safety requirements 407 /// // on `index`. 408 /// from_err_ptr(unsafe { bindings::devm_platform_ioremap_resource(pdev.to_ptr(), index) }) 409 /// } 410 /// ``` 411 pub fn from_err_ptr<T>(ptr: *mut T) -> Result<*mut T> { 412 // CAST: Casting a pointer to `*const crate::ffi::c_void` is always valid. 413 let const_ptr: *const crate::ffi::c_void = ptr.cast(); 414 // SAFETY: The FFI function does not deref the pointer. 415 if unsafe { bindings::IS_ERR(const_ptr) } { 416 // SAFETY: The FFI function does not deref the pointer. 417 let err = unsafe { bindings::PTR_ERR(const_ptr) }; 418 419 #[allow(clippy::unnecessary_cast)] 420 // CAST: If `IS_ERR()` returns `true`, 421 // then `PTR_ERR()` is guaranteed to return a 422 // negative value greater-or-equal to `-bindings::MAX_ERRNO`, 423 // which always fits in an `i16`, as per the invariant above. 424 // And an `i16` always fits in an `i32`. So casting `err` to 425 // an `i32` can never overflow, and is always valid. 426 // 427 // SAFETY: `IS_ERR()` ensures `err` is a 428 // negative value greater-or-equal to `-bindings::MAX_ERRNO`. 429 return Err(unsafe { Error::from_errno_unchecked(err as crate::ffi::c_int) }); 430 } 431 Ok(ptr) 432 } 433 434 /// Calls a closure returning a [`crate::error::Result<T>`] and converts the result to 435 /// a C integer result. 436 /// 437 /// This is useful when calling Rust functions that return [`crate::error::Result<T>`] 438 /// from inside `extern "C"` functions that need to return an integer error result. 439 /// 440 /// `T` should be convertible from an `i16` via `From<i16>`. 441 /// 442 /// # Examples 443 /// 444 /// ```ignore 445 /// # use kernel::from_result; 446 /// # use kernel::bindings; 447 /// unsafe extern "C" fn probe_callback( 448 /// pdev: *mut bindings::platform_device, 449 /// ) -> kernel::ffi::c_int { 450 /// from_result(|| { 451 /// let ptr = devm_alloc(pdev)?; 452 /// bindings::platform_set_drvdata(pdev, ptr); 453 /// Ok(0) 454 /// }) 455 /// } 456 /// ``` 457 pub fn from_result<T, F>(f: F) -> T 458 where 459 T: From<i16>, 460 F: FnOnce() -> Result<T>, 461 { 462 match f() { 463 Ok(v) => v, 464 // NO-OVERFLOW: negative `errno`s are no smaller than `-bindings::MAX_ERRNO`, 465 // `-bindings::MAX_ERRNO` fits in an `i16` as per invariant above, 466 // therefore a negative `errno` always fits in an `i16` and will not overflow. 467 Err(e) => T::from(e.to_errno() as i16), 468 } 469 } 470 471 /// Error message for calling a default function of a [`#[vtable]`](macros::vtable) trait. 472 pub const VTABLE_DEFAULT_ERROR: &str = 473 "This function must not be called, see the #[vtable] documentation."; 474