1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Kernel errors. 4 //! 5 //! C header: [`include/uapi/asm-generic/errno-base.h`](srctree/include/uapi/asm-generic/errno-base.h)\ 6 //! C header: [`include/uapi/asm-generic/errno.h`](srctree/include/uapi/asm-generic/errno.h)\ 7 //! C header: [`include/linux/errno.h`](srctree/include/linux/errno.h) 8 9 use crate::{ 10 alloc::{layout::LayoutError, AllocError}, 11 fmt, 12 str::CStr, 13 }; 14 15 use core::num::NonZeroI32; 16 use core::num::TryFromIntError; 17 use core::str::Utf8Error; 18 19 /// Contains the C-compatible error codes. 20 #[rustfmt::skip] 21 pub mod code { 22 macro_rules! declare_err { 23 ($err:tt $(,)? $($doc:expr),+) => { 24 $( 25 #[doc = $doc] 26 )* 27 pub const $err: super::Error = 28 match super::Error::try_from_errno(-(crate::bindings::$err as i32)) { 29 Some(err) => err, 30 None => panic!("Invalid errno in `declare_err!`"), 31 }; 32 }; 33 } 34 35 declare_err!(EPERM, "Operation not permitted."); 36 declare_err!(ENOENT, "No such file or directory."); 37 declare_err!(ESRCH, "No such process."); 38 declare_err!(EINTR, "Interrupted system call."); 39 declare_err!(EIO, "I/O error."); 40 declare_err!(ENXIO, "No such device or address."); 41 declare_err!(E2BIG, "Argument list too long."); 42 declare_err!(ENOEXEC, "Exec format error."); 43 declare_err!(EBADF, "Bad file number."); 44 declare_err!(ECHILD, "No child processes."); 45 declare_err!(EAGAIN, "Try again."); 46 declare_err!(ENOMEM, "Out of memory."); 47 declare_err!(EACCES, "Permission denied."); 48 declare_err!(EFAULT, "Bad address."); 49 declare_err!(ENOTBLK, "Block device required."); 50 declare_err!(EBUSY, "Device or resource busy."); 51 declare_err!(EEXIST, "File exists."); 52 declare_err!(EXDEV, "Cross-device link."); 53 declare_err!(ENODEV, "No such device."); 54 declare_err!(ENOTDIR, "Not a directory."); 55 declare_err!(EISDIR, "Is a directory."); 56 declare_err!(EINVAL, "Invalid argument."); 57 declare_err!(ENFILE, "File table overflow."); 58 declare_err!(EMFILE, "Too many open files."); 59 declare_err!(ENOTTY, "Not a typewriter."); 60 declare_err!(ETXTBSY, "Text file busy."); 61 declare_err!(EFBIG, "File too large."); 62 declare_err!(ENOSPC, "No space left on device."); 63 declare_err!(ESPIPE, "Illegal seek."); 64 declare_err!(EROFS, "Read-only file system."); 65 declare_err!(EMLINK, "Too many links."); 66 declare_err!(EPIPE, "Broken pipe."); 67 declare_err!(EDOM, "Math argument out of domain of func."); 68 declare_err!(ERANGE, "Math result not representable."); 69 declare_err!(EOVERFLOW, "Value too large for defined data type."); 70 declare_err!(ETIMEDOUT, "Connection timed out."); 71 declare_err!(ERESTARTSYS, "Restart the system call."); 72 declare_err!(ERESTARTNOINTR, "System call was interrupted by a signal and will be restarted."); 73 declare_err!(ERESTARTNOHAND, "Restart if no handler."); 74 declare_err!(ENOIOCTLCMD, "No ioctl command."); 75 declare_err!(ERESTART_RESTARTBLOCK, "Restart by calling sys_restart_syscall."); 76 declare_err!(EPROBE_DEFER, "Driver requests probe retry."); 77 declare_err!(EOPENSTALE, "Open found a stale dentry."); 78 declare_err!(ENOPARAM, "Parameter not supported."); 79 declare_err!(EBADHANDLE, "Illegal NFS file handle."); 80 declare_err!(ENOTSYNC, "Update synchronization mismatch."); 81 declare_err!(EBADCOOKIE, "Cookie is stale."); 82 declare_err!(ENOTSUPP, "Operation is not supported."); 83 declare_err!(ETOOSMALL, "Buffer or request is too small."); 84 declare_err!(ESERVERFAULT, "An untranslatable error occurred."); 85 declare_err!(EBADTYPE, "Type not supported by server."); 86 declare_err!(EJUKEBOX, "Request initiated, but will not complete before timeout."); 87 declare_err!(EIOCBQUEUED, "iocb queued, will get completion event."); 88 declare_err!(ERECALLCONFLICT, "Conflict with recalled state."); 89 declare_err!(ENOGRACE, "NFS file lock reclaim refused."); 90 } 91 92 /// Generic integer kernel error. 93 /// 94 /// The kernel defines a set of integer generic error codes based on C and 95 /// POSIX ones. These codes may have a more specific meaning in some contexts. 96 /// 97 /// # Invariants 98 /// 99 /// The value is a valid `errno` (i.e. `>= -MAX_ERRNO && < 0`). 100 #[derive(Clone, Copy, PartialEq, Eq)] 101 pub struct Error(NonZeroI32); 102 103 impl Error { 104 /// Creates an [`Error`] from a kernel error code. 105 /// 106 /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`). 107 /// 108 /// It is a bug to pass an out-of-range `errno`. [`code::EINVAL`] is returned in such a case. 109 /// 110 /// # Examples 111 /// 112 /// ``` 113 /// assert_eq!(Error::from_errno(-1), EPERM); 114 /// assert_eq!(Error::from_errno(-2), ENOENT); 115 /// ``` 116 /// 117 /// The following calls are considered a bug: 118 /// 119 /// ``` 120 /// assert_eq!(Error::from_errno(0), EINVAL); 121 /// assert_eq!(Error::from_errno(-1000000), EINVAL); 122 /// ``` 123 pub fn from_errno(errno: crate::ffi::c_int) -> Error { 124 if let Some(error) = Self::try_from_errno(errno) { 125 error 126 } else { 127 // TODO: Make it a `WARN_ONCE` once available. 128 crate::pr_warn!( 129 "attempted to create `Error` with out of range `errno`: {}\n", 130 errno 131 ); 132 code::EINVAL 133 } 134 } 135 136 /// Creates an [`Error`] from a kernel error code. 137 /// 138 /// Returns [`None`] if `errno` is out-of-range. 139 const fn try_from_errno(errno: crate::ffi::c_int) -> Option<Error> { 140 if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 { 141 return None; 142 } 143 144 // SAFETY: `errno` is checked above to be in a valid range. 145 Some(unsafe { Error::from_errno_unchecked(errno) }) 146 } 147 148 /// Creates an [`Error`] from a kernel error code. 149 /// 150 /// # Safety 151 /// 152 /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`). 153 const unsafe fn from_errno_unchecked(errno: crate::ffi::c_int) -> Error { 154 // INVARIANT: The contract ensures the type invariant 155 // will hold. 156 // SAFETY: The caller guarantees `errno` is non-zero. 157 Error(unsafe { NonZeroI32::new_unchecked(errno) }) 158 } 159 160 /// Returns the kernel error code. 161 pub fn to_errno(self) -> crate::ffi::c_int { 162 self.0.get() 163 } 164 165 #[cfg(CONFIG_BLOCK)] 166 pub(crate) fn to_blk_status(self) -> bindings::blk_status_t { 167 // SAFETY: `self.0` is a valid error due to its invariant. 168 unsafe { bindings::errno_to_blk_status(self.0.get()) } 169 } 170 171 /// Returns the error encoded as a pointer. 172 pub fn to_ptr<T>(self) -> *mut T { 173 // SAFETY: `self.0` is a valid error due to its invariant. 174 unsafe { bindings::ERR_PTR(self.0.get() as crate::ffi::c_long).cast() } 175 } 176 177 /// Returns a string representing the error, if one exists. 178 #[cfg(not(testlib))] 179 pub fn name(&self) -> Option<&'static CStr> { 180 // SAFETY: Just an FFI call, there are no extra safety requirements. 181 let ptr = unsafe { bindings::errname(-self.0.get()) }; 182 if ptr.is_null() { 183 None 184 } else { 185 use crate::str::CStrExt as _; 186 187 // SAFETY: The string returned by `errname` is static and `NUL`-terminated. 188 Some(unsafe { CStr::from_char_ptr(ptr) }) 189 } 190 } 191 192 /// Returns a string representing the error, if one exists. 193 /// 194 /// When `testlib` is configured, this always returns `None` to avoid the dependency on a 195 /// kernel function so that tests that use this (e.g., by calling [`Result::unwrap`]) can still 196 /// run in userspace. 197 #[cfg(testlib)] 198 pub fn name(&self) -> Option<&'static CStr> { 199 None 200 } 201 } 202 203 impl fmt::Debug for Error { 204 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 205 match self.name() { 206 // Print out number if no name can be found. 207 None => f.debug_tuple("Error").field(&-self.0).finish(), 208 Some(name) => f 209 .debug_tuple( 210 // SAFETY: These strings are ASCII-only. 211 unsafe { core::str::from_utf8_unchecked(name.to_bytes()) }, 212 ) 213 .finish(), 214 } 215 } 216 } 217 218 impl From<AllocError> for Error { 219 fn from(_: AllocError) -> Error { 220 code::ENOMEM 221 } 222 } 223 224 impl From<TryFromIntError> for Error { 225 fn from(_: TryFromIntError) -> Error { 226 code::EINVAL 227 } 228 } 229 230 impl From<Utf8Error> for Error { 231 fn from(_: Utf8Error) -> Error { 232 code::EINVAL 233 } 234 } 235 236 impl From<LayoutError> for Error { 237 fn from(_: LayoutError) -> Error { 238 code::ENOMEM 239 } 240 } 241 242 impl From<fmt::Error> for Error { 243 fn from(_: fmt::Error) -> Error { 244 code::EINVAL 245 } 246 } 247 248 impl From<core::convert::Infallible> for Error { 249 fn from(e: core::convert::Infallible) -> Error { 250 match e {} 251 } 252 } 253 254 /// A [`Result`] with an [`Error`] error type. 255 /// 256 /// To be used as the return type for functions that may fail. 257 /// 258 /// # Error codes in C and Rust 259 /// 260 /// In C, it is common that functions indicate success or failure through 261 /// their return value; modifying or returning extra data through non-`const` 262 /// pointer parameters. In particular, in the kernel, functions that may fail 263 /// typically return an `int` that represents a generic error code. We model 264 /// those as [`Error`]. 265 /// 266 /// In Rust, it is idiomatic to model functions that may fail as returning 267 /// a [`Result`]. Since in the kernel many functions return an error code, 268 /// [`Result`] is a type alias for a [`core::result::Result`] that uses 269 /// [`Error`] as its error type. 270 /// 271 /// Note that even if a function does not return anything when it succeeds, 272 /// it should still be modeled as returning a [`Result`] rather than 273 /// just an [`Error`]. 274 /// 275 /// Calling a function that returns [`Result`] forces the caller to handle 276 /// the returned [`Result`]. 277 /// 278 /// This can be done "manually" by using [`match`]. Using [`match`] to decode 279 /// the [`Result`] is similar to C where all the return value decoding and the 280 /// error handling is done explicitly by writing handling code for each 281 /// error to cover. Using [`match`] the error and success handling can be 282 /// implemented in all detail as required. For example (inspired by 283 /// [`samples/rust/rust_minimal.rs`]): 284 /// 285 /// ``` 286 /// # #[allow(clippy::single_match)] 287 /// fn example() -> Result { 288 /// let mut numbers = KVec::new(); 289 /// 290 /// match numbers.push(72, GFP_KERNEL) { 291 /// Err(e) => { 292 /// pr_err!("Error pushing 72: {e:?}"); 293 /// return Err(e.into()); 294 /// } 295 /// // Do nothing, continue. 296 /// Ok(()) => (), 297 /// } 298 /// 299 /// match numbers.push(108, GFP_KERNEL) { 300 /// Err(e) => { 301 /// pr_err!("Error pushing 108: {e:?}"); 302 /// return Err(e.into()); 303 /// } 304 /// // Do nothing, continue. 305 /// Ok(()) => (), 306 /// } 307 /// 308 /// match numbers.push(200, GFP_KERNEL) { 309 /// Err(e) => { 310 /// pr_err!("Error pushing 200: {e:?}"); 311 /// return Err(e.into()); 312 /// } 313 /// // Do nothing, continue. 314 /// Ok(()) => (), 315 /// } 316 /// 317 /// Ok(()) 318 /// } 319 /// # example()?; 320 /// # Ok::<(), Error>(()) 321 /// ``` 322 /// 323 /// An alternative to be more concise is the [`if let`] syntax: 324 /// 325 /// ``` 326 /// fn example() -> Result { 327 /// let mut numbers = KVec::new(); 328 /// 329 /// if let Err(e) = numbers.push(72, GFP_KERNEL) { 330 /// pr_err!("Error pushing 72: {e:?}"); 331 /// return Err(e.into()); 332 /// } 333 /// 334 /// if let Err(e) = numbers.push(108, GFP_KERNEL) { 335 /// pr_err!("Error pushing 108: {e:?}"); 336 /// return Err(e.into()); 337 /// } 338 /// 339 /// if let Err(e) = numbers.push(200, GFP_KERNEL) { 340 /// pr_err!("Error pushing 200: {e:?}"); 341 /// return Err(e.into()); 342 /// } 343 /// 344 /// Ok(()) 345 /// } 346 /// # example()?; 347 /// # Ok::<(), Error>(()) 348 /// ``` 349 /// 350 /// Instead of these verbose [`match`]/[`if let`], the [`?`] operator can 351 /// be used to handle the [`Result`]. Using the [`?`] operator is often 352 /// the best choice to handle [`Result`] in a non-verbose way as done in 353 /// [`samples/rust/rust_minimal.rs`]: 354 /// 355 /// ``` 356 /// fn example() -> Result { 357 /// let mut numbers = KVec::new(); 358 /// 359 /// numbers.push(72, GFP_KERNEL)?; 360 /// numbers.push(108, GFP_KERNEL)?; 361 /// numbers.push(200, GFP_KERNEL)?; 362 /// 363 /// Ok(()) 364 /// } 365 /// # example()?; 366 /// # Ok::<(), Error>(()) 367 /// ``` 368 /// 369 /// Another possibility is to call [`unwrap()`](Result::unwrap) or 370 /// [`expect()`](Result::expect). However, use of these functions is 371 /// *heavily discouraged* in the kernel because they trigger a Rust 372 /// [`panic!`] if an error happens, which may destabilize the system or 373 /// entirely break it as a result -- just like the C [`BUG()`] macro. 374 /// Please see the documentation for the C macro [`BUG()`] for guidance 375 /// on when to use these functions. 376 /// 377 /// Alternatively, depending on the use case, using [`unwrap_or()`], 378 /// [`unwrap_or_else()`], [`unwrap_or_default()`] or [`unwrap_unchecked()`] 379 /// might be an option, as well. 380 /// 381 /// For even more details, please see the [Rust documentation]. 382 /// 383 /// [`match`]: https://doc.rust-lang.org/reference/expressions/match-expr.html 384 /// [`samples/rust/rust_minimal.rs`]: srctree/samples/rust/rust_minimal.rs 385 /// [`if let`]: https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions 386 /// [`?`]: https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator 387 /// [`unwrap()`]: Result::unwrap 388 /// [`expect()`]: Result::expect 389 /// [`BUG()`]: https://docs.kernel.org/process/deprecated.html#bug-and-bug-on 390 /// [`unwrap_or()`]: Result::unwrap_or 391 /// [`unwrap_or_else()`]: Result::unwrap_or_else 392 /// [`unwrap_or_default()`]: Result::unwrap_or_default 393 /// [`unwrap_unchecked()`]: Result::unwrap_unchecked 394 /// [Rust documentation]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html 395 pub type Result<T = (), E = Error> = core::result::Result<T, E>; 396 397 /// Converts an integer as returned by a C kernel function to a [`Result`]. 398 /// 399 /// If the integer is negative, an [`Err`] with an [`Error`] as given by [`Error::from_errno`] is 400 /// returned. This means the integer must be `>= -MAX_ERRNO`. 401 /// 402 /// Otherwise, it returns [`Ok`]. 403 /// 404 /// It is a bug to pass an out-of-range negative integer. `Err(EINVAL)` is returned in such a case. 405 /// 406 /// # Examples 407 /// 408 /// This function may be used to easily perform early returns with the [`?`] operator when working 409 /// with C APIs within Rust abstractions: 410 /// 411 /// ``` 412 /// # use kernel::error::to_result; 413 /// # mod bindings { 414 /// # #![expect(clippy::missing_safety_doc)] 415 /// # use kernel::prelude::*; 416 /// # pub(super) unsafe fn f1() -> c_int { 0 } 417 /// # pub(super) unsafe fn f2() -> c_int { EINVAL.to_errno() } 418 /// # } 419 /// fn f() -> Result { 420 /// // SAFETY: ... 421 /// to_result(unsafe { bindings::f1() })?; 422 /// 423 /// // SAFETY: ... 424 /// to_result(unsafe { bindings::f2() })?; 425 /// 426 /// // ... 427 /// 428 /// Ok(()) 429 /// } 430 /// # assert_eq!(f(), Err(EINVAL)); 431 /// ``` 432 /// 433 /// [`?`]: https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator 434 pub fn to_result(err: crate::ffi::c_int) -> Result { 435 if err < 0 { 436 Err(Error::from_errno(err)) 437 } else { 438 Ok(()) 439 } 440 } 441 442 /// Transform a kernel "error pointer" to a normal pointer. 443 /// 444 /// Some kernel C API functions return an "error pointer" which optionally 445 /// embeds an `errno`. Callers are supposed to check the returned pointer 446 /// for errors. This function performs the check and converts the "error pointer" 447 /// to a normal pointer in an idiomatic fashion. 448 /// 449 /// # Examples 450 /// 451 /// ```ignore 452 /// # use kernel::from_err_ptr; 453 /// # use kernel::bindings; 454 /// fn devm_platform_ioremap_resource( 455 /// pdev: &mut PlatformDevice, 456 /// index: u32, 457 /// ) -> Result<*mut kernel::ffi::c_void> { 458 /// // SAFETY: `pdev` points to a valid platform device. There are no safety requirements 459 /// // on `index`. 460 /// from_err_ptr(unsafe { bindings::devm_platform_ioremap_resource(pdev.to_ptr(), index) }) 461 /// } 462 /// ``` 463 pub fn from_err_ptr<T>(ptr: *mut T) -> Result<*mut T> { 464 // CAST: Casting a pointer to `*const crate::ffi::c_void` is always valid. 465 let const_ptr: *const crate::ffi::c_void = ptr.cast(); 466 // SAFETY: The FFI function does not deref the pointer. 467 if unsafe { bindings::IS_ERR(const_ptr) } { 468 // SAFETY: The FFI function does not deref the pointer. 469 let err = unsafe { bindings::PTR_ERR(const_ptr) }; 470 471 #[allow(clippy::unnecessary_cast)] 472 // CAST: If `IS_ERR()` returns `true`, 473 // then `PTR_ERR()` is guaranteed to return a 474 // negative value greater-or-equal to `-bindings::MAX_ERRNO`, 475 // which always fits in an `i16`, as per the invariant above. 476 // And an `i16` always fits in an `i32`. So casting `err` to 477 // an `i32` can never overflow, and is always valid. 478 // 479 // SAFETY: `IS_ERR()` ensures `err` is a 480 // negative value greater-or-equal to `-bindings::MAX_ERRNO`. 481 return Err(unsafe { Error::from_errno_unchecked(err as crate::ffi::c_int) }); 482 } 483 Ok(ptr) 484 } 485 486 /// Calls a closure returning a [`crate::error::Result<T>`] and converts the result to 487 /// a C integer result. 488 /// 489 /// This is useful when calling Rust functions that return [`crate::error::Result<T>`] 490 /// from inside `extern "C"` functions that need to return an integer error result. 491 /// 492 /// `T` should be convertible from an `i16` via `From<i16>`. 493 /// 494 /// # Examples 495 /// 496 /// ```ignore 497 /// # use kernel::from_result; 498 /// # use kernel::bindings; 499 /// unsafe extern "C" fn probe_callback( 500 /// pdev: *mut bindings::platform_device, 501 /// ) -> kernel::ffi::c_int { 502 /// from_result(|| { 503 /// let ptr = devm_alloc(pdev)?; 504 /// bindings::platform_set_drvdata(pdev, ptr); 505 /// Ok(0) 506 /// }) 507 /// } 508 /// ``` 509 pub fn from_result<T, F>(f: F) -> T 510 where 511 T: From<i16>, 512 F: FnOnce() -> Result<T>, 513 { 514 match f() { 515 Ok(v) => v, 516 // NO-OVERFLOW: negative `errno`s are no smaller than `-bindings::MAX_ERRNO`, 517 // `-bindings::MAX_ERRNO` fits in an `i16` as per invariant above, 518 // therefore a negative `errno` always fits in an `i16` and will not overflow. 519 Err(e) => T::from(e.to_errno() as i16), 520 } 521 } 522 523 /// Error message for calling a default function of a [`#[vtable]`](macros::vtable) trait. 524 pub const VTABLE_DEFAULT_ERROR: &str = 525 "This function must not be called, see the #[vtable] documentation."; 526