1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Kernel errors. 4 //! 5 //! C header: [`include/uapi/asm-generic/errno-base.h`](srctree/include/uapi/asm-generic/errno-base.h) 6 7 use crate::{ 8 alloc::{layout::LayoutError, AllocError}, 9 str::CStr, 10 }; 11 12 use core::fmt; 13 use core::num::NonZeroI32; 14 use core::num::TryFromIntError; 15 use core::str::Utf8Error; 16 17 /// Contains the C-compatible error codes. 18 #[rustfmt::skip] 19 pub mod code { 20 macro_rules! declare_err { 21 ($err:tt $(,)? $($doc:expr),+) => { 22 $( 23 #[doc = $doc] 24 )* 25 pub const $err: super::Error = 26 match super::Error::try_from_errno(-(crate::bindings::$err as i32)) { 27 Some(err) => err, 28 None => panic!("Invalid errno in `declare_err!`"), 29 }; 30 }; 31 } 32 33 declare_err!(EPERM, "Operation not permitted."); 34 declare_err!(ENOENT, "No such file or directory."); 35 declare_err!(ESRCH, "No such process."); 36 declare_err!(EINTR, "Interrupted system call."); 37 declare_err!(EIO, "I/O error."); 38 declare_err!(ENXIO, "No such device or address."); 39 declare_err!(E2BIG, "Argument list too long."); 40 declare_err!(ENOEXEC, "Exec format error."); 41 declare_err!(EBADF, "Bad file number."); 42 declare_err!(ECHILD, "No child processes."); 43 declare_err!(EAGAIN, "Try again."); 44 declare_err!(ENOMEM, "Out of memory."); 45 declare_err!(EACCES, "Permission denied."); 46 declare_err!(EFAULT, "Bad address."); 47 declare_err!(ENOTBLK, "Block device required."); 48 declare_err!(EBUSY, "Device or resource busy."); 49 declare_err!(EEXIST, "File exists."); 50 declare_err!(EXDEV, "Cross-device link."); 51 declare_err!(ENODEV, "No such device."); 52 declare_err!(ENOTDIR, "Not a directory."); 53 declare_err!(EISDIR, "Is a directory."); 54 declare_err!(EINVAL, "Invalid argument."); 55 declare_err!(ENFILE, "File table overflow."); 56 declare_err!(EMFILE, "Too many open files."); 57 declare_err!(ENOTTY, "Not a typewriter."); 58 declare_err!(ETXTBSY, "Text file busy."); 59 declare_err!(EFBIG, "File too large."); 60 declare_err!(ENOSPC, "No space left on device."); 61 declare_err!(ESPIPE, "Illegal seek."); 62 declare_err!(EROFS, "Read-only file system."); 63 declare_err!(EMLINK, "Too many links."); 64 declare_err!(EPIPE, "Broken pipe."); 65 declare_err!(EDOM, "Math argument out of domain of func."); 66 declare_err!(ERANGE, "Math result not representable."); 67 declare_err!(EOVERFLOW, "Value too large for defined data type."); 68 declare_err!(ERESTARTSYS, "Restart the system call."); 69 declare_err!(ERESTARTNOINTR, "System call was interrupted by a signal and will be restarted."); 70 declare_err!(ERESTARTNOHAND, "Restart if no handler."); 71 declare_err!(ENOIOCTLCMD, "No ioctl command."); 72 declare_err!(ERESTART_RESTARTBLOCK, "Restart by calling sys_restart_syscall."); 73 declare_err!(EPROBE_DEFER, "Driver requests probe retry."); 74 declare_err!(EOPENSTALE, "Open found a stale dentry."); 75 declare_err!(ENOPARAM, "Parameter not supported."); 76 declare_err!(EBADHANDLE, "Illegal NFS file handle."); 77 declare_err!(ENOTSYNC, "Update synchronization mismatch."); 78 declare_err!(EBADCOOKIE, "Cookie is stale."); 79 declare_err!(ENOTSUPP, "Operation is not supported."); 80 declare_err!(ETOOSMALL, "Buffer or request is too small."); 81 declare_err!(ESERVERFAULT, "An untranslatable error occurred."); 82 declare_err!(EBADTYPE, "Type not supported by server."); 83 declare_err!(EJUKEBOX, "Request initiated, but will not complete before timeout."); 84 declare_err!(EIOCBQUEUED, "iocb queued, will get completion event."); 85 declare_err!(ERECALLCONFLICT, "Conflict with recalled state."); 86 declare_err!(ENOGRACE, "NFS file lock reclaim refused."); 87 } 88 89 /// Generic integer kernel error. 90 /// 91 /// The kernel defines a set of integer generic error codes based on C and 92 /// POSIX ones. These codes may have a more specific meaning in some contexts. 93 /// 94 /// # Invariants 95 /// 96 /// The value is a valid `errno` (i.e. `>= -MAX_ERRNO && < 0`). 97 #[derive(Clone, Copy, PartialEq, Eq)] 98 pub struct Error(NonZeroI32); 99 100 impl Error { 101 /// Creates an [`Error`] from a kernel error code. 102 /// 103 /// It is a bug to pass an out-of-range `errno`. `EINVAL` would 104 /// be returned in such a case. 105 pub fn from_errno(errno: crate::ffi::c_int) -> Error { 106 if let Some(error) = Self::try_from_errno(errno) { 107 error 108 } else { 109 // TODO: Make it a `WARN_ONCE` once available. 110 crate::pr_warn!( 111 "attempted to create `Error` with out of range `errno`: {}\n", 112 errno 113 ); 114 code::EINVAL 115 } 116 } 117 118 /// Creates an [`Error`] from a kernel error code. 119 /// 120 /// Returns [`None`] if `errno` is out-of-range. 121 const fn try_from_errno(errno: crate::ffi::c_int) -> Option<Error> { 122 if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 { 123 return None; 124 } 125 126 // SAFETY: `errno` is checked above to be in a valid range. 127 Some(unsafe { Error::from_errno_unchecked(errno) }) 128 } 129 130 /// Creates an [`Error`] from a kernel error code. 131 /// 132 /// # Safety 133 /// 134 /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`). 135 const unsafe fn from_errno_unchecked(errno: crate::ffi::c_int) -> Error { 136 // INVARIANT: The contract ensures the type invariant 137 // will hold. 138 // SAFETY: The caller guarantees `errno` is non-zero. 139 Error(unsafe { NonZeroI32::new_unchecked(errno) }) 140 } 141 142 /// Returns the kernel error code. 143 pub fn to_errno(self) -> crate::ffi::c_int { 144 self.0.get() 145 } 146 147 #[cfg(CONFIG_BLOCK)] 148 pub(crate) fn to_blk_status(self) -> bindings::blk_status_t { 149 // SAFETY: `self.0` is a valid error due to its invariant. 150 unsafe { bindings::errno_to_blk_status(self.0.get()) } 151 } 152 153 /// Returns the error encoded as a pointer. 154 pub fn to_ptr<T>(self) -> *mut T { 155 // SAFETY: `self.0` is a valid error due to its invariant. 156 unsafe { bindings::ERR_PTR(self.0.get() as _) as *mut _ } 157 } 158 159 /// Returns a string representing the error, if one exists. 160 #[cfg(not(any(test, testlib)))] 161 pub fn name(&self) -> Option<&'static CStr> { 162 // SAFETY: Just an FFI call, there are no extra safety requirements. 163 let ptr = unsafe { bindings::errname(-self.0.get()) }; 164 if ptr.is_null() { 165 None 166 } else { 167 // SAFETY: The string returned by `errname` is static and `NUL`-terminated. 168 Some(unsafe { CStr::from_char_ptr(ptr) }) 169 } 170 } 171 172 /// Returns a string representing the error, if one exists. 173 /// 174 /// When `testlib` is configured, this always returns `None` to avoid the dependency on a 175 /// kernel function so that tests that use this (e.g., by calling [`Result::unwrap`]) can still 176 /// run in userspace. 177 #[cfg(any(test, testlib))] 178 pub fn name(&self) -> Option<&'static CStr> { 179 None 180 } 181 } 182 183 impl fmt::Debug for Error { 184 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 185 match self.name() { 186 // Print out number if no name can be found. 187 None => f.debug_tuple("Error").field(&-self.0).finish(), 188 Some(name) => f 189 .debug_tuple( 190 // SAFETY: These strings are ASCII-only. 191 unsafe { core::str::from_utf8_unchecked(name) }, 192 ) 193 .finish(), 194 } 195 } 196 } 197 198 impl From<AllocError> for Error { 199 fn from(_: AllocError) -> Error { 200 code::ENOMEM 201 } 202 } 203 204 impl From<TryFromIntError> for Error { 205 fn from(_: TryFromIntError) -> Error { 206 code::EINVAL 207 } 208 } 209 210 impl From<Utf8Error> for Error { 211 fn from(_: Utf8Error) -> Error { 212 code::EINVAL 213 } 214 } 215 216 impl From<LayoutError> for Error { 217 fn from(_: LayoutError) -> Error { 218 code::ENOMEM 219 } 220 } 221 222 impl From<core::fmt::Error> for Error { 223 fn from(_: core::fmt::Error) -> Error { 224 code::EINVAL 225 } 226 } 227 228 impl From<core::convert::Infallible> for Error { 229 fn from(e: core::convert::Infallible) -> Error { 230 match e {} 231 } 232 } 233 234 /// A [`Result`] with an [`Error`] error type. 235 /// 236 /// To be used as the return type for functions that may fail. 237 /// 238 /// # Error codes in C and Rust 239 /// 240 /// In C, it is common that functions indicate success or failure through 241 /// their return value; modifying or returning extra data through non-`const` 242 /// pointer parameters. In particular, in the kernel, functions that may fail 243 /// typically return an `int` that represents a generic error code. We model 244 /// those as [`Error`]. 245 /// 246 /// In Rust, it is idiomatic to model functions that may fail as returning 247 /// a [`Result`]. Since in the kernel many functions return an error code, 248 /// [`Result`] is a type alias for a [`core::result::Result`] that uses 249 /// [`Error`] as its error type. 250 /// 251 /// Note that even if a function does not return anything when it succeeds, 252 /// it should still be modeled as returning a [`Result`] rather than 253 /// just an [`Error`]. 254 /// 255 /// Calling a function that returns [`Result`] forces the caller to handle 256 /// the returned [`Result`]. 257 /// 258 /// This can be done "manually" by using [`match`]. Using [`match`] to decode 259 /// the [`Result`] is similar to C where all the return value decoding and the 260 /// error handling is done explicitly by writing handling code for each 261 /// error to cover. Using [`match`] the error and success handling can be 262 /// implemented in all detail as required. For example (inspired by 263 /// [`samples/rust/rust_minimal.rs`]): 264 /// 265 /// ``` 266 /// # #[allow(clippy::single_match)] 267 /// fn example() -> Result { 268 /// let mut numbers = KVec::new(); 269 /// 270 /// match numbers.push(72, GFP_KERNEL) { 271 /// Err(e) => { 272 /// pr_err!("Error pushing 72: {e:?}"); 273 /// return Err(e.into()); 274 /// } 275 /// // Do nothing, continue. 276 /// Ok(()) => (), 277 /// } 278 /// 279 /// match numbers.push(108, GFP_KERNEL) { 280 /// Err(e) => { 281 /// pr_err!("Error pushing 108: {e:?}"); 282 /// return Err(e.into()); 283 /// } 284 /// // Do nothing, continue. 285 /// Ok(()) => (), 286 /// } 287 /// 288 /// match numbers.push(200, GFP_KERNEL) { 289 /// Err(e) => { 290 /// pr_err!("Error pushing 200: {e:?}"); 291 /// return Err(e.into()); 292 /// } 293 /// // Do nothing, continue. 294 /// Ok(()) => (), 295 /// } 296 /// 297 /// Ok(()) 298 /// } 299 /// # example()?; 300 /// # Ok::<(), Error>(()) 301 /// ``` 302 /// 303 /// An alternative to be more concise is the [`if let`] syntax: 304 /// 305 /// ``` 306 /// fn example() -> Result { 307 /// let mut numbers = KVec::new(); 308 /// 309 /// if let Err(e) = numbers.push(72, GFP_KERNEL) { 310 /// pr_err!("Error pushing 72: {e:?}"); 311 /// return Err(e.into()); 312 /// } 313 /// 314 /// if let Err(e) = numbers.push(108, GFP_KERNEL) { 315 /// pr_err!("Error pushing 108: {e:?}"); 316 /// return Err(e.into()); 317 /// } 318 /// 319 /// if let Err(e) = numbers.push(200, GFP_KERNEL) { 320 /// pr_err!("Error pushing 200: {e:?}"); 321 /// return Err(e.into()); 322 /// } 323 /// 324 /// Ok(()) 325 /// } 326 /// # example()?; 327 /// # Ok::<(), Error>(()) 328 /// ``` 329 /// 330 /// Instead of these verbose [`match`]/[`if let`], the [`?`] operator can 331 /// be used to handle the [`Result`]. Using the [`?`] operator is often 332 /// the best choice to handle [`Result`] in a non-verbose way as done in 333 /// [`samples/rust/rust_minimal.rs`]: 334 /// 335 /// ``` 336 /// fn example() -> Result { 337 /// let mut numbers = KVec::new(); 338 /// 339 /// numbers.push(72, GFP_KERNEL)?; 340 /// numbers.push(108, GFP_KERNEL)?; 341 /// numbers.push(200, GFP_KERNEL)?; 342 /// 343 /// Ok(()) 344 /// } 345 /// # example()?; 346 /// # Ok::<(), Error>(()) 347 /// ``` 348 /// 349 /// Another possibility is to call [`unwrap()`](Result::unwrap) or 350 /// [`expect()`](Result::expect). However, use of these functions is 351 /// *heavily discouraged* in the kernel because they trigger a Rust 352 /// [`panic!`] if an error happens, which may destabilize the system or 353 /// entirely break it as a result -- just like the C [`BUG()`] macro. 354 /// Please see the documentation for the C macro [`BUG()`] for guidance 355 /// on when to use these functions. 356 /// 357 /// Alternatively, depending on the use case, using [`unwrap_or()`], 358 /// [`unwrap_or_else()`], [`unwrap_or_default()`] or [`unwrap_unchecked()`] 359 /// might be an option, as well. 360 /// 361 /// For even more details, please see the [Rust documentation]. 362 /// 363 /// [`match`]: https://doc.rust-lang.org/reference/expressions/match-expr.html 364 /// [`samples/rust/rust_minimal.rs`]: srctree/samples/rust/rust_minimal.rs 365 /// [`if let`]: https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions 366 /// [`?`]: https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator 367 /// [`unwrap()`]: Result::unwrap 368 /// [`expect()`]: Result::expect 369 /// [`BUG()`]: https://docs.kernel.org/process/deprecated.html#bug-and-bug-on 370 /// [`unwrap_or()`]: Result::unwrap_or 371 /// [`unwrap_or_else()`]: Result::unwrap_or_else 372 /// [`unwrap_or_default()`]: Result::unwrap_or_default 373 /// [`unwrap_unchecked()`]: Result::unwrap_unchecked 374 /// [Rust documentation]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html 375 pub type Result<T = (), E = Error> = core::result::Result<T, E>; 376 377 /// Converts an integer as returned by a C kernel function to an error if it's negative, and 378 /// `Ok(())` otherwise. 379 pub fn to_result(err: crate::ffi::c_int) -> Result { 380 if err < 0 { 381 Err(Error::from_errno(err)) 382 } else { 383 Ok(()) 384 } 385 } 386 387 /// Transform a kernel "error pointer" to a normal pointer. 388 /// 389 /// Some kernel C API functions return an "error pointer" which optionally 390 /// embeds an `errno`. Callers are supposed to check the returned pointer 391 /// for errors. This function performs the check and converts the "error pointer" 392 /// to a normal pointer in an idiomatic fashion. 393 /// 394 /// # Examples 395 /// 396 /// ```ignore 397 /// # use kernel::from_err_ptr; 398 /// # use kernel::bindings; 399 /// fn devm_platform_ioremap_resource( 400 /// pdev: &mut PlatformDevice, 401 /// index: u32, 402 /// ) -> Result<*mut kernel::ffi::c_void> { 403 /// // SAFETY: `pdev` points to a valid platform device. There are no safety requirements 404 /// // on `index`. 405 /// from_err_ptr(unsafe { bindings::devm_platform_ioremap_resource(pdev.to_ptr(), index) }) 406 /// } 407 /// ``` 408 pub fn from_err_ptr<T>(ptr: *mut T) -> Result<*mut T> { 409 // CAST: Casting a pointer to `*const crate::ffi::c_void` is always valid. 410 let const_ptr: *const crate::ffi::c_void = ptr.cast(); 411 // SAFETY: The FFI function does not deref the pointer. 412 if unsafe { bindings::IS_ERR(const_ptr) } { 413 // SAFETY: The FFI function does not deref the pointer. 414 let err = unsafe { bindings::PTR_ERR(const_ptr) }; 415 416 #[allow(clippy::unnecessary_cast)] 417 // CAST: If `IS_ERR()` returns `true`, 418 // then `PTR_ERR()` is guaranteed to return a 419 // negative value greater-or-equal to `-bindings::MAX_ERRNO`, 420 // which always fits in an `i16`, as per the invariant above. 421 // And an `i16` always fits in an `i32`. So casting `err` to 422 // an `i32` can never overflow, and is always valid. 423 // 424 // SAFETY: `IS_ERR()` ensures `err` is a 425 // negative value greater-or-equal to `-bindings::MAX_ERRNO`. 426 return Err(unsafe { Error::from_errno_unchecked(err as crate::ffi::c_int) }); 427 } 428 Ok(ptr) 429 } 430 431 /// Calls a closure returning a [`crate::error::Result<T>`] and converts the result to 432 /// a C integer result. 433 /// 434 /// This is useful when calling Rust functions that return [`crate::error::Result<T>`] 435 /// from inside `extern "C"` functions that need to return an integer error result. 436 /// 437 /// `T` should be convertible from an `i16` via `From<i16>`. 438 /// 439 /// # Examples 440 /// 441 /// ```ignore 442 /// # use kernel::from_result; 443 /// # use kernel::bindings; 444 /// unsafe extern "C" fn probe_callback( 445 /// pdev: *mut bindings::platform_device, 446 /// ) -> kernel::ffi::c_int { 447 /// from_result(|| { 448 /// let ptr = devm_alloc(pdev)?; 449 /// bindings::platform_set_drvdata(pdev, ptr); 450 /// Ok(0) 451 /// }) 452 /// } 453 /// ``` 454 pub fn from_result<T, F>(f: F) -> T 455 where 456 T: From<i16>, 457 F: FnOnce() -> Result<T>, 458 { 459 match f() { 460 Ok(v) => v, 461 // NO-OVERFLOW: negative `errno`s are no smaller than `-bindings::MAX_ERRNO`, 462 // `-bindings::MAX_ERRNO` fits in an `i16` as per invariant above, 463 // therefore a negative `errno` always fits in an `i16` and will not overflow. 464 Err(e) => T::from(e.to_errno() as i16), 465 } 466 } 467 468 /// Error message for calling a default function of a [`#[vtable]`](macros::vtable) trait. 469 pub const VTABLE_DEFAULT_ERROR: &str = 470 "This function must not be called, see the #[vtable] documentation."; 471