1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Kernel errors. 4 //! 5 //! C header: [`include/uapi/asm-generic/errno-base.h`](srctree/include/uapi/asm-generic/errno-base.h) 6 7 use crate::{ 8 alloc::{layout::LayoutError, AllocError}, 9 str::CStr, 10 }; 11 12 use core::fmt; 13 use core::num::NonZeroI32; 14 use core::num::TryFromIntError; 15 use core::str::Utf8Error; 16 17 /// Contains the C-compatible error codes. 18 #[rustfmt::skip] 19 pub mod code { 20 macro_rules! declare_err { 21 ($err:tt $(,)? $($doc:expr),+) => { 22 $( 23 #[doc = $doc] 24 )* 25 pub const $err: super::Error = 26 match super::Error::try_from_errno(-(crate::bindings::$err as i32)) { 27 Some(err) => err, 28 None => panic!("Invalid errno in `declare_err!`"), 29 }; 30 }; 31 } 32 33 declare_err!(EPERM, "Operation not permitted."); 34 declare_err!(ENOENT, "No such file or directory."); 35 declare_err!(ESRCH, "No such process."); 36 declare_err!(EINTR, "Interrupted system call."); 37 declare_err!(EIO, "I/O error."); 38 declare_err!(ENXIO, "No such device or address."); 39 declare_err!(E2BIG, "Argument list too long."); 40 declare_err!(ENOEXEC, "Exec format error."); 41 declare_err!(EBADF, "Bad file number."); 42 declare_err!(ECHILD, "No child processes."); 43 declare_err!(EAGAIN, "Try again."); 44 declare_err!(ENOMEM, "Out of memory."); 45 declare_err!(EACCES, "Permission denied."); 46 declare_err!(EFAULT, "Bad address."); 47 declare_err!(ENOTBLK, "Block device required."); 48 declare_err!(EBUSY, "Device or resource busy."); 49 declare_err!(EEXIST, "File exists."); 50 declare_err!(EXDEV, "Cross-device link."); 51 declare_err!(ENODEV, "No such device."); 52 declare_err!(ENOTDIR, "Not a directory."); 53 declare_err!(EISDIR, "Is a directory."); 54 declare_err!(EINVAL, "Invalid argument."); 55 declare_err!(ENFILE, "File table overflow."); 56 declare_err!(EMFILE, "Too many open files."); 57 declare_err!(ENOTTY, "Not a typewriter."); 58 declare_err!(ETXTBSY, "Text file busy."); 59 declare_err!(EFBIG, "File too large."); 60 declare_err!(ENOSPC, "No space left on device."); 61 declare_err!(ESPIPE, "Illegal seek."); 62 declare_err!(EROFS, "Read-only file system."); 63 declare_err!(EMLINK, "Too many links."); 64 declare_err!(EPIPE, "Broken pipe."); 65 declare_err!(EDOM, "Math argument out of domain of func."); 66 declare_err!(ERANGE, "Math result not representable."); 67 declare_err!(EOVERFLOW, "Value too large for defined data type."); 68 declare_err!(ETIMEDOUT, "Connection timed out."); 69 declare_err!(ERESTARTSYS, "Restart the system call."); 70 declare_err!(ERESTARTNOINTR, "System call was interrupted by a signal and will be restarted."); 71 declare_err!(ERESTARTNOHAND, "Restart if no handler."); 72 declare_err!(ENOIOCTLCMD, "No ioctl command."); 73 declare_err!(ERESTART_RESTARTBLOCK, "Restart by calling sys_restart_syscall."); 74 declare_err!(EPROBE_DEFER, "Driver requests probe retry."); 75 declare_err!(EOPENSTALE, "Open found a stale dentry."); 76 declare_err!(ENOPARAM, "Parameter not supported."); 77 declare_err!(EBADHANDLE, "Illegal NFS file handle."); 78 declare_err!(ENOTSYNC, "Update synchronization mismatch."); 79 declare_err!(EBADCOOKIE, "Cookie is stale."); 80 declare_err!(ENOTSUPP, "Operation is not supported."); 81 declare_err!(ETOOSMALL, "Buffer or request is too small."); 82 declare_err!(ESERVERFAULT, "An untranslatable error occurred."); 83 declare_err!(EBADTYPE, "Type not supported by server."); 84 declare_err!(EJUKEBOX, "Request initiated, but will not complete before timeout."); 85 declare_err!(EIOCBQUEUED, "iocb queued, will get completion event."); 86 declare_err!(ERECALLCONFLICT, "Conflict with recalled state."); 87 declare_err!(ENOGRACE, "NFS file lock reclaim refused."); 88 } 89 90 /// Generic integer kernel error. 91 /// 92 /// The kernel defines a set of integer generic error codes based on C and 93 /// POSIX ones. These codes may have a more specific meaning in some contexts. 94 /// 95 /// # Invariants 96 /// 97 /// The value is a valid `errno` (i.e. `>= -MAX_ERRNO && < 0`). 98 #[derive(Clone, Copy, PartialEq, Eq)] 99 pub struct Error(NonZeroI32); 100 101 impl Error { 102 /// Creates an [`Error`] from a kernel error code. 103 /// 104 /// It is a bug to pass an out-of-range `errno`. `EINVAL` would 105 /// be returned in such a case. 106 pub fn from_errno(errno: crate::ffi::c_int) -> Error { 107 if let Some(error) = Self::try_from_errno(errno) { 108 error 109 } else { 110 // TODO: Make it a `WARN_ONCE` once available. 111 crate::pr_warn!( 112 "attempted to create `Error` with out of range `errno`: {}\n", 113 errno 114 ); 115 code::EINVAL 116 } 117 } 118 119 /// Creates an [`Error`] from a kernel error code. 120 /// 121 /// Returns [`None`] if `errno` is out-of-range. 122 const fn try_from_errno(errno: crate::ffi::c_int) -> Option<Error> { 123 if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 { 124 return None; 125 } 126 127 // SAFETY: `errno` is checked above to be in a valid range. 128 Some(unsafe { Error::from_errno_unchecked(errno) }) 129 } 130 131 /// Creates an [`Error`] from a kernel error code. 132 /// 133 /// # Safety 134 /// 135 /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`). 136 const unsafe fn from_errno_unchecked(errno: crate::ffi::c_int) -> Error { 137 // INVARIANT: The contract ensures the type invariant 138 // will hold. 139 // SAFETY: The caller guarantees `errno` is non-zero. 140 Error(unsafe { NonZeroI32::new_unchecked(errno) }) 141 } 142 143 /// Returns the kernel error code. 144 pub fn to_errno(self) -> crate::ffi::c_int { 145 self.0.get() 146 } 147 148 #[cfg(CONFIG_BLOCK)] 149 pub(crate) fn to_blk_status(self) -> bindings::blk_status_t { 150 // SAFETY: `self.0` is a valid error due to its invariant. 151 unsafe { bindings::errno_to_blk_status(self.0.get()) } 152 } 153 154 /// Returns the error encoded as a pointer. 155 pub fn to_ptr<T>(self) -> *mut T { 156 // SAFETY: `self.0` is a valid error due to its invariant. 157 unsafe { bindings::ERR_PTR(self.0.get() as _) as *mut _ } 158 } 159 160 /// Returns a string representing the error, if one exists. 161 #[cfg(not(any(test, testlib)))] 162 pub fn name(&self) -> Option<&'static CStr> { 163 // SAFETY: Just an FFI call, there are no extra safety requirements. 164 let ptr = unsafe { bindings::errname(-self.0.get()) }; 165 if ptr.is_null() { 166 None 167 } else { 168 // SAFETY: The string returned by `errname` is static and `NUL`-terminated. 169 Some(unsafe { CStr::from_char_ptr(ptr) }) 170 } 171 } 172 173 /// Returns a string representing the error, if one exists. 174 /// 175 /// When `testlib` is configured, this always returns `None` to avoid the dependency on a 176 /// kernel function so that tests that use this (e.g., by calling [`Result::unwrap`]) can still 177 /// run in userspace. 178 #[cfg(any(test, testlib))] 179 pub fn name(&self) -> Option<&'static CStr> { 180 None 181 } 182 } 183 184 impl fmt::Debug for Error { 185 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 186 match self.name() { 187 // Print out number if no name can be found. 188 None => f.debug_tuple("Error").field(&-self.0).finish(), 189 Some(name) => f 190 .debug_tuple( 191 // SAFETY: These strings are ASCII-only. 192 unsafe { core::str::from_utf8_unchecked(name) }, 193 ) 194 .finish(), 195 } 196 } 197 } 198 199 impl From<AllocError> for Error { 200 fn from(_: AllocError) -> Error { 201 code::ENOMEM 202 } 203 } 204 205 impl From<TryFromIntError> for Error { 206 fn from(_: TryFromIntError) -> Error { 207 code::EINVAL 208 } 209 } 210 211 impl From<Utf8Error> for Error { 212 fn from(_: Utf8Error) -> Error { 213 code::EINVAL 214 } 215 } 216 217 impl From<LayoutError> for Error { 218 fn from(_: LayoutError) -> Error { 219 code::ENOMEM 220 } 221 } 222 223 impl From<core::fmt::Error> for Error { 224 fn from(_: core::fmt::Error) -> Error { 225 code::EINVAL 226 } 227 } 228 229 impl From<core::convert::Infallible> for Error { 230 fn from(e: core::convert::Infallible) -> Error { 231 match e {} 232 } 233 } 234 235 /// A [`Result`] with an [`Error`] error type. 236 /// 237 /// To be used as the return type for functions that may fail. 238 /// 239 /// # Error codes in C and Rust 240 /// 241 /// In C, it is common that functions indicate success or failure through 242 /// their return value; modifying or returning extra data through non-`const` 243 /// pointer parameters. In particular, in the kernel, functions that may fail 244 /// typically return an `int` that represents a generic error code. We model 245 /// those as [`Error`]. 246 /// 247 /// In Rust, it is idiomatic to model functions that may fail as returning 248 /// a [`Result`]. Since in the kernel many functions return an error code, 249 /// [`Result`] is a type alias for a [`core::result::Result`] that uses 250 /// [`Error`] as its error type. 251 /// 252 /// Note that even if a function does not return anything when it succeeds, 253 /// it should still be modeled as returning a [`Result`] rather than 254 /// just an [`Error`]. 255 /// 256 /// Calling a function that returns [`Result`] forces the caller to handle 257 /// the returned [`Result`]. 258 /// 259 /// This can be done "manually" by using [`match`]. Using [`match`] to decode 260 /// the [`Result`] is similar to C where all the return value decoding and the 261 /// error handling is done explicitly by writing handling code for each 262 /// error to cover. Using [`match`] the error and success handling can be 263 /// implemented in all detail as required. For example (inspired by 264 /// [`samples/rust/rust_minimal.rs`]): 265 /// 266 /// ``` 267 /// # #[allow(clippy::single_match)] 268 /// fn example() -> Result { 269 /// let mut numbers = KVec::new(); 270 /// 271 /// match numbers.push(72, GFP_KERNEL) { 272 /// Err(e) => { 273 /// pr_err!("Error pushing 72: {e:?}"); 274 /// return Err(e.into()); 275 /// } 276 /// // Do nothing, continue. 277 /// Ok(()) => (), 278 /// } 279 /// 280 /// match numbers.push(108, GFP_KERNEL) { 281 /// Err(e) => { 282 /// pr_err!("Error pushing 108: {e:?}"); 283 /// return Err(e.into()); 284 /// } 285 /// // Do nothing, continue. 286 /// Ok(()) => (), 287 /// } 288 /// 289 /// match numbers.push(200, GFP_KERNEL) { 290 /// Err(e) => { 291 /// pr_err!("Error pushing 200: {e:?}"); 292 /// return Err(e.into()); 293 /// } 294 /// // Do nothing, continue. 295 /// Ok(()) => (), 296 /// } 297 /// 298 /// Ok(()) 299 /// } 300 /// # example()?; 301 /// # Ok::<(), Error>(()) 302 /// ``` 303 /// 304 /// An alternative to be more concise is the [`if let`] syntax: 305 /// 306 /// ``` 307 /// fn example() -> Result { 308 /// let mut numbers = KVec::new(); 309 /// 310 /// if let Err(e) = numbers.push(72, GFP_KERNEL) { 311 /// pr_err!("Error pushing 72: {e:?}"); 312 /// return Err(e.into()); 313 /// } 314 /// 315 /// if let Err(e) = numbers.push(108, GFP_KERNEL) { 316 /// pr_err!("Error pushing 108: {e:?}"); 317 /// return Err(e.into()); 318 /// } 319 /// 320 /// if let Err(e) = numbers.push(200, GFP_KERNEL) { 321 /// pr_err!("Error pushing 200: {e:?}"); 322 /// return Err(e.into()); 323 /// } 324 /// 325 /// Ok(()) 326 /// } 327 /// # example()?; 328 /// # Ok::<(), Error>(()) 329 /// ``` 330 /// 331 /// Instead of these verbose [`match`]/[`if let`], the [`?`] operator can 332 /// be used to handle the [`Result`]. Using the [`?`] operator is often 333 /// the best choice to handle [`Result`] in a non-verbose way as done in 334 /// [`samples/rust/rust_minimal.rs`]: 335 /// 336 /// ``` 337 /// fn example() -> Result { 338 /// let mut numbers = KVec::new(); 339 /// 340 /// numbers.push(72, GFP_KERNEL)?; 341 /// numbers.push(108, GFP_KERNEL)?; 342 /// numbers.push(200, GFP_KERNEL)?; 343 /// 344 /// Ok(()) 345 /// } 346 /// # example()?; 347 /// # Ok::<(), Error>(()) 348 /// ``` 349 /// 350 /// Another possibility is to call [`unwrap()`](Result::unwrap) or 351 /// [`expect()`](Result::expect). However, use of these functions is 352 /// *heavily discouraged* in the kernel because they trigger a Rust 353 /// [`panic!`] if an error happens, which may destabilize the system or 354 /// entirely break it as a result -- just like the C [`BUG()`] macro. 355 /// Please see the documentation for the C macro [`BUG()`] for guidance 356 /// on when to use these functions. 357 /// 358 /// Alternatively, depending on the use case, using [`unwrap_or()`], 359 /// [`unwrap_or_else()`], [`unwrap_or_default()`] or [`unwrap_unchecked()`] 360 /// might be an option, as well. 361 /// 362 /// For even more details, please see the [Rust documentation]. 363 /// 364 /// [`match`]: https://doc.rust-lang.org/reference/expressions/match-expr.html 365 /// [`samples/rust/rust_minimal.rs`]: srctree/samples/rust/rust_minimal.rs 366 /// [`if let`]: https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions 367 /// [`?`]: https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator 368 /// [`unwrap()`]: Result::unwrap 369 /// [`expect()`]: Result::expect 370 /// [`BUG()`]: https://docs.kernel.org/process/deprecated.html#bug-and-bug-on 371 /// [`unwrap_or()`]: Result::unwrap_or 372 /// [`unwrap_or_else()`]: Result::unwrap_or_else 373 /// [`unwrap_or_default()`]: Result::unwrap_or_default 374 /// [`unwrap_unchecked()`]: Result::unwrap_unchecked 375 /// [Rust documentation]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html 376 pub type Result<T = (), E = Error> = core::result::Result<T, E>; 377 378 /// Converts an integer as returned by a C kernel function to an error if it's negative, and 379 /// `Ok(())` otherwise. 380 pub fn to_result(err: crate::ffi::c_int) -> Result { 381 if err < 0 { 382 Err(Error::from_errno(err)) 383 } else { 384 Ok(()) 385 } 386 } 387 388 /// Transform a kernel "error pointer" to a normal pointer. 389 /// 390 /// Some kernel C API functions return an "error pointer" which optionally 391 /// embeds an `errno`. Callers are supposed to check the returned pointer 392 /// for errors. This function performs the check and converts the "error pointer" 393 /// to a normal pointer in an idiomatic fashion. 394 /// 395 /// # Examples 396 /// 397 /// ```ignore 398 /// # use kernel::from_err_ptr; 399 /// # use kernel::bindings; 400 /// fn devm_platform_ioremap_resource( 401 /// pdev: &mut PlatformDevice, 402 /// index: u32, 403 /// ) -> Result<*mut kernel::ffi::c_void> { 404 /// // SAFETY: `pdev` points to a valid platform device. There are no safety requirements 405 /// // on `index`. 406 /// from_err_ptr(unsafe { bindings::devm_platform_ioremap_resource(pdev.to_ptr(), index) }) 407 /// } 408 /// ``` 409 pub fn from_err_ptr<T>(ptr: *mut T) -> Result<*mut T> { 410 // CAST: Casting a pointer to `*const crate::ffi::c_void` is always valid. 411 let const_ptr: *const crate::ffi::c_void = ptr.cast(); 412 // SAFETY: The FFI function does not deref the pointer. 413 if unsafe { bindings::IS_ERR(const_ptr) } { 414 // SAFETY: The FFI function does not deref the pointer. 415 let err = unsafe { bindings::PTR_ERR(const_ptr) }; 416 417 #[allow(clippy::unnecessary_cast)] 418 // CAST: If `IS_ERR()` returns `true`, 419 // then `PTR_ERR()` is guaranteed to return a 420 // negative value greater-or-equal to `-bindings::MAX_ERRNO`, 421 // which always fits in an `i16`, as per the invariant above. 422 // And an `i16` always fits in an `i32`. So casting `err` to 423 // an `i32` can never overflow, and is always valid. 424 // 425 // SAFETY: `IS_ERR()` ensures `err` is a 426 // negative value greater-or-equal to `-bindings::MAX_ERRNO`. 427 return Err(unsafe { Error::from_errno_unchecked(err as crate::ffi::c_int) }); 428 } 429 Ok(ptr) 430 } 431 432 /// Calls a closure returning a [`crate::error::Result<T>`] and converts the result to 433 /// a C integer result. 434 /// 435 /// This is useful when calling Rust functions that return [`crate::error::Result<T>`] 436 /// from inside `extern "C"` functions that need to return an integer error result. 437 /// 438 /// `T` should be convertible from an `i16` via `From<i16>`. 439 /// 440 /// # Examples 441 /// 442 /// ```ignore 443 /// # use kernel::from_result; 444 /// # use kernel::bindings; 445 /// unsafe extern "C" fn probe_callback( 446 /// pdev: *mut bindings::platform_device, 447 /// ) -> kernel::ffi::c_int { 448 /// from_result(|| { 449 /// let ptr = devm_alloc(pdev)?; 450 /// bindings::platform_set_drvdata(pdev, ptr); 451 /// Ok(0) 452 /// }) 453 /// } 454 /// ``` 455 pub fn from_result<T, F>(f: F) -> T 456 where 457 T: From<i16>, 458 F: FnOnce() -> Result<T>, 459 { 460 match f() { 461 Ok(v) => v, 462 // NO-OVERFLOW: negative `errno`s are no smaller than `-bindings::MAX_ERRNO`, 463 // `-bindings::MAX_ERRNO` fits in an `i16` as per invariant above, 464 // therefore a negative `errno` always fits in an `i16` and will not overflow. 465 Err(e) => T::from(e.to_errno() as i16), 466 } 467 } 468 469 /// Error message for calling a default function of a [`#[vtable]`](macros::vtable) trait. 470 pub const VTABLE_DEFAULT_ERROR: &str = 471 "This function must not be called, see the #[vtable] documentation."; 472