1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Kernel errors. 4 //! 5 //! C header: [`include/uapi/asm-generic/errno-base.h`](srctree/include/uapi/asm-generic/errno-base.h)\ 6 //! C header: [`include/uapi/asm-generic/errno.h`](srctree/include/uapi/asm-generic/errno.h)\ 7 //! C header: [`include/linux/errno.h`](srctree/include/linux/errno.h) 8 9 use crate::{ 10 alloc::{layout::LayoutError, AllocError}, 11 fmt, 12 str::CStr, 13 }; 14 15 use core::num::NonZeroI32; 16 use core::num::TryFromIntError; 17 use core::str::Utf8Error; 18 19 /// Contains the C-compatible error codes. 20 #[rustfmt::skip] 21 pub mod code { 22 macro_rules! declare_err { 23 ($err:tt $(,)? $($doc:expr),+) => { 24 $( 25 #[doc = $doc] 26 )* 27 pub const $err: super::Error = 28 match super::Error::try_from_errno(-(crate::bindings::$err as i32)) { 29 Some(err) => err, 30 None => panic!("Invalid errno in `declare_err!`"), 31 }; 32 }; 33 } 34 35 declare_err!(EPERM, "Operation not permitted."); 36 declare_err!(ENOENT, "No such file or directory."); 37 declare_err!(ESRCH, "No such process."); 38 declare_err!(EINTR, "Interrupted system call."); 39 declare_err!(EIO, "I/O error."); 40 declare_err!(ENXIO, "No such device or address."); 41 declare_err!(E2BIG, "Argument list too long."); 42 declare_err!(ENOEXEC, "Exec format error."); 43 declare_err!(EBADF, "Bad file number."); 44 declare_err!(ECHILD, "No child processes."); 45 declare_err!(EAGAIN, "Try again."); 46 declare_err!(ENOMEM, "Out of memory."); 47 declare_err!(EACCES, "Permission denied."); 48 declare_err!(EFAULT, "Bad address."); 49 declare_err!(ENOTBLK, "Block device required."); 50 declare_err!(EBUSY, "Device or resource busy."); 51 declare_err!(EEXIST, "File exists."); 52 declare_err!(EXDEV, "Cross-device link."); 53 declare_err!(ENODEV, "No such device."); 54 declare_err!(ENOTDIR, "Not a directory."); 55 declare_err!(EISDIR, "Is a directory."); 56 declare_err!(EINVAL, "Invalid argument."); 57 declare_err!(ENFILE, "File table overflow."); 58 declare_err!(EMFILE, "Too many open files."); 59 declare_err!(ENOTTY, "Not a typewriter."); 60 declare_err!(ETXTBSY, "Text file busy."); 61 declare_err!(EFBIG, "File too large."); 62 declare_err!(ENOSPC, "No space left on device."); 63 declare_err!(ESPIPE, "Illegal seek."); 64 declare_err!(EROFS, "Read-only file system."); 65 declare_err!(EMLINK, "Too many links."); 66 declare_err!(EPIPE, "Broken pipe."); 67 declare_err!(EDOM, "Math argument out of domain of func."); 68 declare_err!(ERANGE, "Math result not representable."); 69 declare_err!(EOVERFLOW, "Value too large for defined data type."); 70 declare_err!(ETIMEDOUT, "Connection timed out."); 71 declare_err!(ERESTARTSYS, "Restart the system call."); 72 declare_err!(ERESTARTNOINTR, "System call was interrupted by a signal and will be restarted."); 73 declare_err!(ERESTARTNOHAND, "Restart if no handler."); 74 declare_err!(ENOIOCTLCMD, "No ioctl command."); 75 declare_err!(ERESTART_RESTARTBLOCK, "Restart by calling sys_restart_syscall."); 76 declare_err!(EPROBE_DEFER, "Driver requests probe retry."); 77 declare_err!(EOPENSTALE, "Open found a stale dentry."); 78 declare_err!(ENOPARAM, "Parameter not supported."); 79 declare_err!(EBADHANDLE, "Illegal NFS file handle."); 80 declare_err!(ENOTSYNC, "Update synchronization mismatch."); 81 declare_err!(EBADCOOKIE, "Cookie is stale."); 82 declare_err!(ENOTSUPP, "Operation is not supported."); 83 declare_err!(ETOOSMALL, "Buffer or request is too small."); 84 declare_err!(ESERVERFAULT, "An untranslatable error occurred."); 85 declare_err!(EBADTYPE, "Type not supported by server."); 86 declare_err!(EJUKEBOX, "Request initiated, but will not complete before timeout."); 87 declare_err!(EIOCBQUEUED, "iocb queued, will get completion event."); 88 declare_err!(ERECALLCONFLICT, "Conflict with recalled state."); 89 declare_err!(ENOGRACE, "NFS file lock reclaim refused."); 90 } 91 92 /// Generic integer kernel error. 93 /// 94 /// The kernel defines a set of integer generic error codes based on C and 95 /// POSIX ones. These codes may have a more specific meaning in some contexts. 96 /// 97 /// # Invariants 98 /// 99 /// The value is a valid `errno` (i.e. `>= -MAX_ERRNO && < 0`). 100 #[derive(Clone, Copy, PartialEq, Eq)] 101 pub struct Error(NonZeroI32); 102 103 impl Error { 104 /// Creates an [`Error`] from a kernel error code. 105 /// 106 /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`). 107 /// 108 /// It is a bug to pass an out-of-range `errno`. [`code::EINVAL`] is returned in such a case. 109 /// 110 /// # Examples 111 /// 112 /// ``` 113 /// assert_eq!(Error::from_errno(-1), EPERM); 114 /// assert_eq!(Error::from_errno(-2), ENOENT); 115 /// ``` 116 /// 117 /// The following calls are considered a bug: 118 /// 119 /// ``` 120 /// assert_eq!(Error::from_errno(0), EINVAL); 121 /// assert_eq!(Error::from_errno(-1000000), EINVAL); 122 /// ``` 123 pub fn from_errno(errno: crate::ffi::c_int) -> Error { 124 if let Some(error) = Self::try_from_errno(errno) { 125 error 126 } else { 127 // TODO: Make it a `WARN_ONCE` once available. 128 crate::pr_warn!( 129 "attempted to create `Error` with out of range `errno`: {}\n", 130 errno 131 ); 132 code::EINVAL 133 } 134 } 135 136 /// Creates an [`Error`] from a kernel error code. 137 /// 138 /// Returns [`None`] if `errno` is out-of-range. 139 const fn try_from_errno(errno: crate::ffi::c_int) -> Option<Error> { 140 if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 { 141 return None; 142 } 143 144 // SAFETY: `errno` is checked above to be in a valid range. 145 Some(unsafe { Error::from_errno_unchecked(errno) }) 146 } 147 148 /// Creates an [`Error`] from a kernel error code. 149 /// 150 /// # Safety 151 /// 152 /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`). 153 const unsafe fn from_errno_unchecked(errno: crate::ffi::c_int) -> Error { 154 // INVARIANT: The contract ensures the type invariant 155 // will hold. 156 // SAFETY: The caller guarantees `errno` is non-zero. 157 Error(unsafe { NonZeroI32::new_unchecked(errno) }) 158 } 159 160 /// Returns the kernel error code. 161 pub fn to_errno(self) -> crate::ffi::c_int { 162 self.0.get() 163 } 164 165 #[cfg(CONFIG_BLOCK)] 166 pub(crate) fn to_blk_status(self) -> bindings::blk_status_t { 167 // SAFETY: `self.0` is a valid error due to its invariant. 168 unsafe { bindings::errno_to_blk_status(self.0.get()) } 169 } 170 171 /// Returns the error encoded as a pointer. 172 pub fn to_ptr<T>(self) -> *mut T { 173 // SAFETY: `self.0` is a valid error due to its invariant. 174 unsafe { bindings::ERR_PTR(self.0.get() as crate::ffi::c_long).cast() } 175 } 176 177 /// Returns a string representing the error, if one exists. 178 #[cfg(not(testlib))] 179 pub fn name(&self) -> Option<&'static CStr> { 180 // SAFETY: Just an FFI call, there are no extra safety requirements. 181 let ptr = unsafe { bindings::errname(-self.0.get()) }; 182 if ptr.is_null() { 183 None 184 } else { 185 // SAFETY: The string returned by `errname` is static and `NUL`-terminated. 186 Some(unsafe { CStr::from_char_ptr(ptr) }) 187 } 188 } 189 190 /// Returns a string representing the error, if one exists. 191 /// 192 /// When `testlib` is configured, this always returns `None` to avoid the dependency on a 193 /// kernel function so that tests that use this (e.g., by calling [`Result::unwrap`]) can still 194 /// run in userspace. 195 #[cfg(testlib)] 196 pub fn name(&self) -> Option<&'static CStr> { 197 None 198 } 199 } 200 201 impl fmt::Debug for Error { 202 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 203 match self.name() { 204 // Print out number if no name can be found. 205 None => f.debug_tuple("Error").field(&-self.0).finish(), 206 Some(name) => f 207 .debug_tuple( 208 // SAFETY: These strings are ASCII-only. 209 unsafe { core::str::from_utf8_unchecked(name.to_bytes()) }, 210 ) 211 .finish(), 212 } 213 } 214 } 215 216 impl From<AllocError> for Error { 217 fn from(_: AllocError) -> Error { 218 code::ENOMEM 219 } 220 } 221 222 impl From<TryFromIntError> for Error { 223 fn from(_: TryFromIntError) -> Error { 224 code::EINVAL 225 } 226 } 227 228 impl From<Utf8Error> for Error { 229 fn from(_: Utf8Error) -> Error { 230 code::EINVAL 231 } 232 } 233 234 impl From<LayoutError> for Error { 235 fn from(_: LayoutError) -> Error { 236 code::ENOMEM 237 } 238 } 239 240 impl From<fmt::Error> for Error { 241 fn from(_: fmt::Error) -> Error { 242 code::EINVAL 243 } 244 } 245 246 impl From<core::convert::Infallible> for Error { 247 fn from(e: core::convert::Infallible) -> Error { 248 match e {} 249 } 250 } 251 252 /// A [`Result`] with an [`Error`] error type. 253 /// 254 /// To be used as the return type for functions that may fail. 255 /// 256 /// # Error codes in C and Rust 257 /// 258 /// In C, it is common that functions indicate success or failure through 259 /// their return value; modifying or returning extra data through non-`const` 260 /// pointer parameters. In particular, in the kernel, functions that may fail 261 /// typically return an `int` that represents a generic error code. We model 262 /// those as [`Error`]. 263 /// 264 /// In Rust, it is idiomatic to model functions that may fail as returning 265 /// a [`Result`]. Since in the kernel many functions return an error code, 266 /// [`Result`] is a type alias for a [`core::result::Result`] that uses 267 /// [`Error`] as its error type. 268 /// 269 /// Note that even if a function does not return anything when it succeeds, 270 /// it should still be modeled as returning a [`Result`] rather than 271 /// just an [`Error`]. 272 /// 273 /// Calling a function that returns [`Result`] forces the caller to handle 274 /// the returned [`Result`]. 275 /// 276 /// This can be done "manually" by using [`match`]. Using [`match`] to decode 277 /// the [`Result`] is similar to C where all the return value decoding and the 278 /// error handling is done explicitly by writing handling code for each 279 /// error to cover. Using [`match`] the error and success handling can be 280 /// implemented in all detail as required. For example (inspired by 281 /// [`samples/rust/rust_minimal.rs`]): 282 /// 283 /// ``` 284 /// # #[allow(clippy::single_match)] 285 /// fn example() -> Result { 286 /// let mut numbers = KVec::new(); 287 /// 288 /// match numbers.push(72, GFP_KERNEL) { 289 /// Err(e) => { 290 /// pr_err!("Error pushing 72: {e:?}"); 291 /// return Err(e.into()); 292 /// } 293 /// // Do nothing, continue. 294 /// Ok(()) => (), 295 /// } 296 /// 297 /// match numbers.push(108, GFP_KERNEL) { 298 /// Err(e) => { 299 /// pr_err!("Error pushing 108: {e:?}"); 300 /// return Err(e.into()); 301 /// } 302 /// // Do nothing, continue. 303 /// Ok(()) => (), 304 /// } 305 /// 306 /// match numbers.push(200, GFP_KERNEL) { 307 /// Err(e) => { 308 /// pr_err!("Error pushing 200: {e:?}"); 309 /// return Err(e.into()); 310 /// } 311 /// // Do nothing, continue. 312 /// Ok(()) => (), 313 /// } 314 /// 315 /// Ok(()) 316 /// } 317 /// # example()?; 318 /// # Ok::<(), Error>(()) 319 /// ``` 320 /// 321 /// An alternative to be more concise is the [`if let`] syntax: 322 /// 323 /// ``` 324 /// fn example() -> Result { 325 /// let mut numbers = KVec::new(); 326 /// 327 /// if let Err(e) = numbers.push(72, GFP_KERNEL) { 328 /// pr_err!("Error pushing 72: {e:?}"); 329 /// return Err(e.into()); 330 /// } 331 /// 332 /// if let Err(e) = numbers.push(108, GFP_KERNEL) { 333 /// pr_err!("Error pushing 108: {e:?}"); 334 /// return Err(e.into()); 335 /// } 336 /// 337 /// if let Err(e) = numbers.push(200, GFP_KERNEL) { 338 /// pr_err!("Error pushing 200: {e:?}"); 339 /// return Err(e.into()); 340 /// } 341 /// 342 /// Ok(()) 343 /// } 344 /// # example()?; 345 /// # Ok::<(), Error>(()) 346 /// ``` 347 /// 348 /// Instead of these verbose [`match`]/[`if let`], the [`?`] operator can 349 /// be used to handle the [`Result`]. Using the [`?`] operator is often 350 /// the best choice to handle [`Result`] in a non-verbose way as done in 351 /// [`samples/rust/rust_minimal.rs`]: 352 /// 353 /// ``` 354 /// fn example() -> Result { 355 /// let mut numbers = KVec::new(); 356 /// 357 /// numbers.push(72, GFP_KERNEL)?; 358 /// numbers.push(108, GFP_KERNEL)?; 359 /// numbers.push(200, GFP_KERNEL)?; 360 /// 361 /// Ok(()) 362 /// } 363 /// # example()?; 364 /// # Ok::<(), Error>(()) 365 /// ``` 366 /// 367 /// Another possibility is to call [`unwrap()`](Result::unwrap) or 368 /// [`expect()`](Result::expect). However, use of these functions is 369 /// *heavily discouraged* in the kernel because they trigger a Rust 370 /// [`panic!`] if an error happens, which may destabilize the system or 371 /// entirely break it as a result -- just like the C [`BUG()`] macro. 372 /// Please see the documentation for the C macro [`BUG()`] for guidance 373 /// on when to use these functions. 374 /// 375 /// Alternatively, depending on the use case, using [`unwrap_or()`], 376 /// [`unwrap_or_else()`], [`unwrap_or_default()`] or [`unwrap_unchecked()`] 377 /// might be an option, as well. 378 /// 379 /// For even more details, please see the [Rust documentation]. 380 /// 381 /// [`match`]: https://doc.rust-lang.org/reference/expressions/match-expr.html 382 /// [`samples/rust/rust_minimal.rs`]: srctree/samples/rust/rust_minimal.rs 383 /// [`if let`]: https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions 384 /// [`?`]: https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator 385 /// [`unwrap()`]: Result::unwrap 386 /// [`expect()`]: Result::expect 387 /// [`BUG()`]: https://docs.kernel.org/process/deprecated.html#bug-and-bug-on 388 /// [`unwrap_or()`]: Result::unwrap_or 389 /// [`unwrap_or_else()`]: Result::unwrap_or_else 390 /// [`unwrap_or_default()`]: Result::unwrap_or_default 391 /// [`unwrap_unchecked()`]: Result::unwrap_unchecked 392 /// [Rust documentation]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html 393 pub type Result<T = (), E = Error> = core::result::Result<T, E>; 394 395 /// Converts an integer as returned by a C kernel function to a [`Result`]. 396 /// 397 /// If the integer is negative, an [`Err`] with an [`Error`] as given by [`Error::from_errno`] is 398 /// returned. This means the integer must be `>= -MAX_ERRNO`. 399 /// 400 /// Otherwise, it returns [`Ok`]. 401 /// 402 /// It is a bug to pass an out-of-range negative integer. `Err(EINVAL)` is returned in such a case. 403 /// 404 /// # Examples 405 /// 406 /// This function may be used to easily perform early returns with the [`?`] operator when working 407 /// with C APIs within Rust abstractions: 408 /// 409 /// ``` 410 /// # use kernel::error::to_result; 411 /// # mod bindings { 412 /// # #![expect(clippy::missing_safety_doc)] 413 /// # use kernel::prelude::*; 414 /// # pub(super) unsafe fn f1() -> c_int { 0 } 415 /// # pub(super) unsafe fn f2() -> c_int { EINVAL.to_errno() } 416 /// # } 417 /// fn f() -> Result { 418 /// // SAFETY: ... 419 /// to_result(unsafe { bindings::f1() })?; 420 /// 421 /// // SAFETY: ... 422 /// to_result(unsafe { bindings::f2() })?; 423 /// 424 /// // ... 425 /// 426 /// Ok(()) 427 /// } 428 /// # assert_eq!(f(), Err(EINVAL)); 429 /// ``` 430 /// 431 /// [`?`]: https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator 432 pub fn to_result(err: crate::ffi::c_int) -> Result { 433 if err < 0 { 434 Err(Error::from_errno(err)) 435 } else { 436 Ok(()) 437 } 438 } 439 440 /// Transform a kernel "error pointer" to a normal pointer. 441 /// 442 /// Some kernel C API functions return an "error pointer" which optionally 443 /// embeds an `errno`. Callers are supposed to check the returned pointer 444 /// for errors. This function performs the check and converts the "error pointer" 445 /// to a normal pointer in an idiomatic fashion. 446 /// 447 /// # Examples 448 /// 449 /// ```ignore 450 /// # use kernel::from_err_ptr; 451 /// # use kernel::bindings; 452 /// fn devm_platform_ioremap_resource( 453 /// pdev: &mut PlatformDevice, 454 /// index: u32, 455 /// ) -> Result<*mut kernel::ffi::c_void> { 456 /// // SAFETY: `pdev` points to a valid platform device. There are no safety requirements 457 /// // on `index`. 458 /// from_err_ptr(unsafe { bindings::devm_platform_ioremap_resource(pdev.to_ptr(), index) }) 459 /// } 460 /// ``` 461 pub fn from_err_ptr<T>(ptr: *mut T) -> Result<*mut T> { 462 // CAST: Casting a pointer to `*const crate::ffi::c_void` is always valid. 463 let const_ptr: *const crate::ffi::c_void = ptr.cast(); 464 // SAFETY: The FFI function does not deref the pointer. 465 if unsafe { bindings::IS_ERR(const_ptr) } { 466 // SAFETY: The FFI function does not deref the pointer. 467 let err = unsafe { bindings::PTR_ERR(const_ptr) }; 468 469 #[allow(clippy::unnecessary_cast)] 470 // CAST: If `IS_ERR()` returns `true`, 471 // then `PTR_ERR()` is guaranteed to return a 472 // negative value greater-or-equal to `-bindings::MAX_ERRNO`, 473 // which always fits in an `i16`, as per the invariant above. 474 // And an `i16` always fits in an `i32`. So casting `err` to 475 // an `i32` can never overflow, and is always valid. 476 // 477 // SAFETY: `IS_ERR()` ensures `err` is a 478 // negative value greater-or-equal to `-bindings::MAX_ERRNO`. 479 return Err(unsafe { Error::from_errno_unchecked(err as crate::ffi::c_int) }); 480 } 481 Ok(ptr) 482 } 483 484 /// Calls a closure returning a [`crate::error::Result<T>`] and converts the result to 485 /// a C integer result. 486 /// 487 /// This is useful when calling Rust functions that return [`crate::error::Result<T>`] 488 /// from inside `extern "C"` functions that need to return an integer error result. 489 /// 490 /// `T` should be convertible from an `i16` via `From<i16>`. 491 /// 492 /// # Examples 493 /// 494 /// ```ignore 495 /// # use kernel::from_result; 496 /// # use kernel::bindings; 497 /// unsafe extern "C" fn probe_callback( 498 /// pdev: *mut bindings::platform_device, 499 /// ) -> kernel::ffi::c_int { 500 /// from_result(|| { 501 /// let ptr = devm_alloc(pdev)?; 502 /// bindings::platform_set_drvdata(pdev, ptr); 503 /// Ok(0) 504 /// }) 505 /// } 506 /// ``` 507 pub fn from_result<T, F>(f: F) -> T 508 where 509 T: From<i16>, 510 F: FnOnce() -> Result<T>, 511 { 512 match f() { 513 Ok(v) => v, 514 // NO-OVERFLOW: negative `errno`s are no smaller than `-bindings::MAX_ERRNO`, 515 // `-bindings::MAX_ERRNO` fits in an `i16` as per invariant above, 516 // therefore a negative `errno` always fits in an `i16` and will not overflow. 517 Err(e) => T::from(e.to_errno() as i16), 518 } 519 } 520 521 /// Error message for calling a default function of a [`#[vtable]`](macros::vtable) trait. 522 pub const VTABLE_DEFAULT_ERROR: &str = 523 "This function must not be called, see the #[vtable] documentation."; 524