1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 #include <linux/hashtable.h> 133 #include <linux/vmalloc.h> 134 135 #include "net-sysfs.h" 136 137 /* Instead of increasing this, you should create a hash table. */ 138 #define MAX_GRO_SKBS 8 139 140 /* This should be increased if a protocol with a bigger head is added. */ 141 #define GRO_MAX_HEAD (MAX_HEADER + 128) 142 143 static DEFINE_SPINLOCK(ptype_lock); 144 static DEFINE_SPINLOCK(offload_lock); 145 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 146 struct list_head ptype_all __read_mostly; /* Taps */ 147 static struct list_head offload_base __read_mostly; 148 149 /* 150 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 151 * semaphore. 152 * 153 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 154 * 155 * Writers must hold the rtnl semaphore while they loop through the 156 * dev_base_head list, and hold dev_base_lock for writing when they do the 157 * actual updates. This allows pure readers to access the list even 158 * while a writer is preparing to update it. 159 * 160 * To put it another way, dev_base_lock is held for writing only to 161 * protect against pure readers; the rtnl semaphore provides the 162 * protection against other writers. 163 * 164 * See, for example usages, register_netdevice() and 165 * unregister_netdevice(), which must be called with the rtnl 166 * semaphore held. 167 */ 168 DEFINE_RWLOCK(dev_base_lock); 169 EXPORT_SYMBOL(dev_base_lock); 170 171 /* protects napi_hash addition/deletion and napi_gen_id */ 172 static DEFINE_SPINLOCK(napi_hash_lock); 173 174 static unsigned int napi_gen_id; 175 static DEFINE_HASHTABLE(napi_hash, 8); 176 177 seqcount_t devnet_rename_seq; 178 179 static inline void dev_base_seq_inc(struct net *net) 180 { 181 while (++net->dev_base_seq == 0); 182 } 183 184 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 185 { 186 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 187 188 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 189 } 190 191 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 192 { 193 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 194 } 195 196 static inline void rps_lock(struct softnet_data *sd) 197 { 198 #ifdef CONFIG_RPS 199 spin_lock(&sd->input_pkt_queue.lock); 200 #endif 201 } 202 203 static inline void rps_unlock(struct softnet_data *sd) 204 { 205 #ifdef CONFIG_RPS 206 spin_unlock(&sd->input_pkt_queue.lock); 207 #endif 208 } 209 210 /* Device list insertion */ 211 static void list_netdevice(struct net_device *dev) 212 { 213 struct net *net = dev_net(dev); 214 215 ASSERT_RTNL(); 216 217 write_lock_bh(&dev_base_lock); 218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 220 hlist_add_head_rcu(&dev->index_hlist, 221 dev_index_hash(net, dev->ifindex)); 222 write_unlock_bh(&dev_base_lock); 223 224 dev_base_seq_inc(net); 225 } 226 227 /* Device list removal 228 * caller must respect a RCU grace period before freeing/reusing dev 229 */ 230 static void unlist_netdevice(struct net_device *dev) 231 { 232 ASSERT_RTNL(); 233 234 /* Unlink dev from the device chain */ 235 write_lock_bh(&dev_base_lock); 236 list_del_rcu(&dev->dev_list); 237 hlist_del_rcu(&dev->name_hlist); 238 hlist_del_rcu(&dev->index_hlist); 239 write_unlock_bh(&dev_base_lock); 240 241 dev_base_seq_inc(dev_net(dev)); 242 } 243 244 /* 245 * Our notifier list 246 */ 247 248 static RAW_NOTIFIER_HEAD(netdev_chain); 249 250 /* 251 * Device drivers call our routines to queue packets here. We empty the 252 * queue in the local softnet handler. 253 */ 254 255 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 256 EXPORT_PER_CPU_SYMBOL(softnet_data); 257 258 #ifdef CONFIG_LOCKDEP 259 /* 260 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 261 * according to dev->type 262 */ 263 static const unsigned short netdev_lock_type[] = 264 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 265 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 266 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 267 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 268 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 269 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 270 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 271 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 272 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 273 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 274 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 275 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 276 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 277 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 278 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 279 280 static const char *const netdev_lock_name[] = 281 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 282 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 283 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 284 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 285 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 286 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 287 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 288 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 289 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 290 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 291 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 292 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 293 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 294 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 295 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 296 297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 298 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 299 300 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 301 { 302 int i; 303 304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 305 if (netdev_lock_type[i] == dev_type) 306 return i; 307 /* the last key is used by default */ 308 return ARRAY_SIZE(netdev_lock_type) - 1; 309 } 310 311 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 312 unsigned short dev_type) 313 { 314 int i; 315 316 i = netdev_lock_pos(dev_type); 317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 318 netdev_lock_name[i]); 319 } 320 321 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 322 { 323 int i; 324 325 i = netdev_lock_pos(dev->type); 326 lockdep_set_class_and_name(&dev->addr_list_lock, 327 &netdev_addr_lock_key[i], 328 netdev_lock_name[i]); 329 } 330 #else 331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 332 unsigned short dev_type) 333 { 334 } 335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336 { 337 } 338 #endif 339 340 /******************************************************************************* 341 342 Protocol management and registration routines 343 344 *******************************************************************************/ 345 346 /* 347 * Add a protocol ID to the list. Now that the input handler is 348 * smarter we can dispense with all the messy stuff that used to be 349 * here. 350 * 351 * BEWARE!!! Protocol handlers, mangling input packets, 352 * MUST BE last in hash buckets and checking protocol handlers 353 * MUST start from promiscuous ptype_all chain in net_bh. 354 * It is true now, do not change it. 355 * Explanation follows: if protocol handler, mangling packet, will 356 * be the first on list, it is not able to sense, that packet 357 * is cloned and should be copied-on-write, so that it will 358 * change it and subsequent readers will get broken packet. 359 * --ANK (980803) 360 */ 361 362 static inline struct list_head *ptype_head(const struct packet_type *pt) 363 { 364 if (pt->type == htons(ETH_P_ALL)) 365 return &ptype_all; 366 else 367 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 368 } 369 370 /** 371 * dev_add_pack - add packet handler 372 * @pt: packet type declaration 373 * 374 * Add a protocol handler to the networking stack. The passed &packet_type 375 * is linked into kernel lists and may not be freed until it has been 376 * removed from the kernel lists. 377 * 378 * This call does not sleep therefore it can not 379 * guarantee all CPU's that are in middle of receiving packets 380 * will see the new packet type (until the next received packet). 381 */ 382 383 void dev_add_pack(struct packet_type *pt) 384 { 385 struct list_head *head = ptype_head(pt); 386 387 spin_lock(&ptype_lock); 388 list_add_rcu(&pt->list, head); 389 spin_unlock(&ptype_lock); 390 } 391 EXPORT_SYMBOL(dev_add_pack); 392 393 /** 394 * __dev_remove_pack - remove packet handler 395 * @pt: packet type declaration 396 * 397 * Remove a protocol handler that was previously added to the kernel 398 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 399 * from the kernel lists and can be freed or reused once this function 400 * returns. 401 * 402 * The packet type might still be in use by receivers 403 * and must not be freed until after all the CPU's have gone 404 * through a quiescent state. 405 */ 406 void __dev_remove_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 struct packet_type *pt1; 410 411 spin_lock(&ptype_lock); 412 413 list_for_each_entry(pt1, head, list) { 414 if (pt == pt1) { 415 list_del_rcu(&pt->list); 416 goto out; 417 } 418 } 419 420 pr_warn("dev_remove_pack: %p not found\n", pt); 421 out: 422 spin_unlock(&ptype_lock); 423 } 424 EXPORT_SYMBOL(__dev_remove_pack); 425 426 /** 427 * dev_remove_pack - remove packet handler 428 * @pt: packet type declaration 429 * 430 * Remove a protocol handler that was previously added to the kernel 431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 432 * from the kernel lists and can be freed or reused once this function 433 * returns. 434 * 435 * This call sleeps to guarantee that no CPU is looking at the packet 436 * type after return. 437 */ 438 void dev_remove_pack(struct packet_type *pt) 439 { 440 __dev_remove_pack(pt); 441 442 synchronize_net(); 443 } 444 EXPORT_SYMBOL(dev_remove_pack); 445 446 447 /** 448 * dev_add_offload - register offload handlers 449 * @po: protocol offload declaration 450 * 451 * Add protocol offload handlers to the networking stack. The passed 452 * &proto_offload is linked into kernel lists and may not be freed until 453 * it has been removed from the kernel lists. 454 * 455 * This call does not sleep therefore it can not 456 * guarantee all CPU's that are in middle of receiving packets 457 * will see the new offload handlers (until the next received packet). 458 */ 459 void dev_add_offload(struct packet_offload *po) 460 { 461 struct list_head *head = &offload_base; 462 463 spin_lock(&offload_lock); 464 list_add_rcu(&po->list, head); 465 spin_unlock(&offload_lock); 466 } 467 EXPORT_SYMBOL(dev_add_offload); 468 469 /** 470 * __dev_remove_offload - remove offload handler 471 * @po: packet offload declaration 472 * 473 * Remove a protocol offload handler that was previously added to the 474 * kernel offload handlers by dev_add_offload(). The passed &offload_type 475 * is removed from the kernel lists and can be freed or reused once this 476 * function returns. 477 * 478 * The packet type might still be in use by receivers 479 * and must not be freed until after all the CPU's have gone 480 * through a quiescent state. 481 */ 482 void __dev_remove_offload(struct packet_offload *po) 483 { 484 struct list_head *head = &offload_base; 485 struct packet_offload *po1; 486 487 spin_lock(&offload_lock); 488 489 list_for_each_entry(po1, head, list) { 490 if (po == po1) { 491 list_del_rcu(&po->list); 492 goto out; 493 } 494 } 495 496 pr_warn("dev_remove_offload: %p not found\n", po); 497 out: 498 spin_unlock(&offload_lock); 499 } 500 EXPORT_SYMBOL(__dev_remove_offload); 501 502 /** 503 * dev_remove_offload - remove packet offload handler 504 * @po: packet offload declaration 505 * 506 * Remove a packet offload handler that was previously added to the kernel 507 * offload handlers by dev_add_offload(). The passed &offload_type is 508 * removed from the kernel lists and can be freed or reused once this 509 * function returns. 510 * 511 * This call sleeps to guarantee that no CPU is looking at the packet 512 * type after return. 513 */ 514 void dev_remove_offload(struct packet_offload *po) 515 { 516 __dev_remove_offload(po); 517 518 synchronize_net(); 519 } 520 EXPORT_SYMBOL(dev_remove_offload); 521 522 /****************************************************************************** 523 524 Device Boot-time Settings Routines 525 526 *******************************************************************************/ 527 528 /* Boot time configuration table */ 529 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 530 531 /** 532 * netdev_boot_setup_add - add new setup entry 533 * @name: name of the device 534 * @map: configured settings for the device 535 * 536 * Adds new setup entry to the dev_boot_setup list. The function 537 * returns 0 on error and 1 on success. This is a generic routine to 538 * all netdevices. 539 */ 540 static int netdev_boot_setup_add(char *name, struct ifmap *map) 541 { 542 struct netdev_boot_setup *s; 543 int i; 544 545 s = dev_boot_setup; 546 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 547 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 548 memset(s[i].name, 0, sizeof(s[i].name)); 549 strlcpy(s[i].name, name, IFNAMSIZ); 550 memcpy(&s[i].map, map, sizeof(s[i].map)); 551 break; 552 } 553 } 554 555 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 556 } 557 558 /** 559 * netdev_boot_setup_check - check boot time settings 560 * @dev: the netdevice 561 * 562 * Check boot time settings for the device. 563 * The found settings are set for the device to be used 564 * later in the device probing. 565 * Returns 0 if no settings found, 1 if they are. 566 */ 567 int netdev_boot_setup_check(struct net_device *dev) 568 { 569 struct netdev_boot_setup *s = dev_boot_setup; 570 int i; 571 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 574 !strcmp(dev->name, s[i].name)) { 575 dev->irq = s[i].map.irq; 576 dev->base_addr = s[i].map.base_addr; 577 dev->mem_start = s[i].map.mem_start; 578 dev->mem_end = s[i].map.mem_end; 579 return 1; 580 } 581 } 582 return 0; 583 } 584 EXPORT_SYMBOL(netdev_boot_setup_check); 585 586 587 /** 588 * netdev_boot_base - get address from boot time settings 589 * @prefix: prefix for network device 590 * @unit: id for network device 591 * 592 * Check boot time settings for the base address of device. 593 * The found settings are set for the device to be used 594 * later in the device probing. 595 * Returns 0 if no settings found. 596 */ 597 unsigned long netdev_boot_base(const char *prefix, int unit) 598 { 599 const struct netdev_boot_setup *s = dev_boot_setup; 600 char name[IFNAMSIZ]; 601 int i; 602 603 sprintf(name, "%s%d", prefix, unit); 604 605 /* 606 * If device already registered then return base of 1 607 * to indicate not to probe for this interface 608 */ 609 if (__dev_get_by_name(&init_net, name)) 610 return 1; 611 612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 613 if (!strcmp(name, s[i].name)) 614 return s[i].map.base_addr; 615 return 0; 616 } 617 618 /* 619 * Saves at boot time configured settings for any netdevice. 620 */ 621 int __init netdev_boot_setup(char *str) 622 { 623 int ints[5]; 624 struct ifmap map; 625 626 str = get_options(str, ARRAY_SIZE(ints), ints); 627 if (!str || !*str) 628 return 0; 629 630 /* Save settings */ 631 memset(&map, 0, sizeof(map)); 632 if (ints[0] > 0) 633 map.irq = ints[1]; 634 if (ints[0] > 1) 635 map.base_addr = ints[2]; 636 if (ints[0] > 2) 637 map.mem_start = ints[3]; 638 if (ints[0] > 3) 639 map.mem_end = ints[4]; 640 641 /* Add new entry to the list */ 642 return netdev_boot_setup_add(str, &map); 643 } 644 645 __setup("netdev=", netdev_boot_setup); 646 647 /******************************************************************************* 648 649 Device Interface Subroutines 650 651 *******************************************************************************/ 652 653 /** 654 * __dev_get_by_name - find a device by its name 655 * @net: the applicable net namespace 656 * @name: name to find 657 * 658 * Find an interface by name. Must be called under RTNL semaphore 659 * or @dev_base_lock. If the name is found a pointer to the device 660 * is returned. If the name is not found then %NULL is returned. The 661 * reference counters are not incremented so the caller must be 662 * careful with locks. 663 */ 664 665 struct net_device *__dev_get_by_name(struct net *net, const char *name) 666 { 667 struct net_device *dev; 668 struct hlist_head *head = dev_name_hash(net, name); 669 670 hlist_for_each_entry(dev, head, name_hlist) 671 if (!strncmp(dev->name, name, IFNAMSIZ)) 672 return dev; 673 674 return NULL; 675 } 676 EXPORT_SYMBOL(__dev_get_by_name); 677 678 /** 679 * dev_get_by_name_rcu - find a device by its name 680 * @net: the applicable net namespace 681 * @name: name to find 682 * 683 * Find an interface by name. 684 * If the name is found a pointer to the device is returned. 685 * If the name is not found then %NULL is returned. 686 * The reference counters are not incremented so the caller must be 687 * careful with locks. The caller must hold RCU lock. 688 */ 689 690 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 691 { 692 struct net_device *dev; 693 struct hlist_head *head = dev_name_hash(net, name); 694 695 hlist_for_each_entry_rcu(dev, head, name_hlist) 696 if (!strncmp(dev->name, name, IFNAMSIZ)) 697 return dev; 698 699 return NULL; 700 } 701 EXPORT_SYMBOL(dev_get_by_name_rcu); 702 703 /** 704 * dev_get_by_name - find a device by its name 705 * @net: the applicable net namespace 706 * @name: name to find 707 * 708 * Find an interface by name. This can be called from any 709 * context and does its own locking. The returned handle has 710 * the usage count incremented and the caller must use dev_put() to 711 * release it when it is no longer needed. %NULL is returned if no 712 * matching device is found. 713 */ 714 715 struct net_device *dev_get_by_name(struct net *net, const char *name) 716 { 717 struct net_device *dev; 718 719 rcu_read_lock(); 720 dev = dev_get_by_name_rcu(net, name); 721 if (dev) 722 dev_hold(dev); 723 rcu_read_unlock(); 724 return dev; 725 } 726 EXPORT_SYMBOL(dev_get_by_name); 727 728 /** 729 * __dev_get_by_index - find a device by its ifindex 730 * @net: the applicable net namespace 731 * @ifindex: index of device 732 * 733 * Search for an interface by index. Returns %NULL if the device 734 * is not found or a pointer to the device. The device has not 735 * had its reference counter increased so the caller must be careful 736 * about locking. The caller must hold either the RTNL semaphore 737 * or @dev_base_lock. 738 */ 739 740 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 741 { 742 struct net_device *dev; 743 struct hlist_head *head = dev_index_hash(net, ifindex); 744 745 hlist_for_each_entry(dev, head, index_hlist) 746 if (dev->ifindex == ifindex) 747 return dev; 748 749 return NULL; 750 } 751 EXPORT_SYMBOL(__dev_get_by_index); 752 753 /** 754 * dev_get_by_index_rcu - find a device by its ifindex 755 * @net: the applicable net namespace 756 * @ifindex: index of device 757 * 758 * Search for an interface by index. Returns %NULL if the device 759 * is not found or a pointer to the device. The device has not 760 * had its reference counter increased so the caller must be careful 761 * about locking. The caller must hold RCU lock. 762 */ 763 764 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 765 { 766 struct net_device *dev; 767 struct hlist_head *head = dev_index_hash(net, ifindex); 768 769 hlist_for_each_entry_rcu(dev, head, index_hlist) 770 if (dev->ifindex == ifindex) 771 return dev; 772 773 return NULL; 774 } 775 EXPORT_SYMBOL(dev_get_by_index_rcu); 776 777 778 /** 779 * dev_get_by_index - find a device by its ifindex 780 * @net: the applicable net namespace 781 * @ifindex: index of device 782 * 783 * Search for an interface by index. Returns NULL if the device 784 * is not found or a pointer to the device. The device returned has 785 * had a reference added and the pointer is safe until the user calls 786 * dev_put to indicate they have finished with it. 787 */ 788 789 struct net_device *dev_get_by_index(struct net *net, int ifindex) 790 { 791 struct net_device *dev; 792 793 rcu_read_lock(); 794 dev = dev_get_by_index_rcu(net, ifindex); 795 if (dev) 796 dev_hold(dev); 797 rcu_read_unlock(); 798 return dev; 799 } 800 EXPORT_SYMBOL(dev_get_by_index); 801 802 /** 803 * netdev_get_name - get a netdevice name, knowing its ifindex. 804 * @net: network namespace 805 * @name: a pointer to the buffer where the name will be stored. 806 * @ifindex: the ifindex of the interface to get the name from. 807 * 808 * The use of raw_seqcount_begin() and cond_resched() before 809 * retrying is required as we want to give the writers a chance 810 * to complete when CONFIG_PREEMPT is not set. 811 */ 812 int netdev_get_name(struct net *net, char *name, int ifindex) 813 { 814 struct net_device *dev; 815 unsigned int seq; 816 817 retry: 818 seq = raw_seqcount_begin(&devnet_rename_seq); 819 rcu_read_lock(); 820 dev = dev_get_by_index_rcu(net, ifindex); 821 if (!dev) { 822 rcu_read_unlock(); 823 return -ENODEV; 824 } 825 826 strcpy(name, dev->name); 827 rcu_read_unlock(); 828 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 829 cond_resched(); 830 goto retry; 831 } 832 833 return 0; 834 } 835 836 /** 837 * dev_getbyhwaddr_rcu - find a device by its hardware address 838 * @net: the applicable net namespace 839 * @type: media type of device 840 * @ha: hardware address 841 * 842 * Search for an interface by MAC address. Returns NULL if the device 843 * is not found or a pointer to the device. 844 * The caller must hold RCU or RTNL. 845 * The returned device has not had its ref count increased 846 * and the caller must therefore be careful about locking 847 * 848 */ 849 850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 851 const char *ha) 852 { 853 struct net_device *dev; 854 855 for_each_netdev_rcu(net, dev) 856 if (dev->type == type && 857 !memcmp(dev->dev_addr, ha, dev->addr_len)) 858 return dev; 859 860 return NULL; 861 } 862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 863 864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 865 { 866 struct net_device *dev; 867 868 ASSERT_RTNL(); 869 for_each_netdev(net, dev) 870 if (dev->type == type) 871 return dev; 872 873 return NULL; 874 } 875 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 876 877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 878 { 879 struct net_device *dev, *ret = NULL; 880 881 rcu_read_lock(); 882 for_each_netdev_rcu(net, dev) 883 if (dev->type == type) { 884 dev_hold(dev); 885 ret = dev; 886 break; 887 } 888 rcu_read_unlock(); 889 return ret; 890 } 891 EXPORT_SYMBOL(dev_getfirstbyhwtype); 892 893 /** 894 * dev_get_by_flags_rcu - find any device with given flags 895 * @net: the applicable net namespace 896 * @if_flags: IFF_* values 897 * @mask: bitmask of bits in if_flags to check 898 * 899 * Search for any interface with the given flags. Returns NULL if a device 900 * is not found or a pointer to the device. Must be called inside 901 * rcu_read_lock(), and result refcount is unchanged. 902 */ 903 904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 905 unsigned short mask) 906 { 907 struct net_device *dev, *ret; 908 909 ret = NULL; 910 for_each_netdev_rcu(net, dev) { 911 if (((dev->flags ^ if_flags) & mask) == 0) { 912 ret = dev; 913 break; 914 } 915 } 916 return ret; 917 } 918 EXPORT_SYMBOL(dev_get_by_flags_rcu); 919 920 /** 921 * dev_valid_name - check if name is okay for network device 922 * @name: name string 923 * 924 * Network device names need to be valid file names to 925 * to allow sysfs to work. We also disallow any kind of 926 * whitespace. 927 */ 928 bool dev_valid_name(const char *name) 929 { 930 if (*name == '\0') 931 return false; 932 if (strlen(name) >= IFNAMSIZ) 933 return false; 934 if (!strcmp(name, ".") || !strcmp(name, "..")) 935 return false; 936 937 while (*name) { 938 if (*name == '/' || isspace(*name)) 939 return false; 940 name++; 941 } 942 return true; 943 } 944 EXPORT_SYMBOL(dev_valid_name); 945 946 /** 947 * __dev_alloc_name - allocate a name for a device 948 * @net: network namespace to allocate the device name in 949 * @name: name format string 950 * @buf: scratch buffer and result name string 951 * 952 * Passed a format string - eg "lt%d" it will try and find a suitable 953 * id. It scans list of devices to build up a free map, then chooses 954 * the first empty slot. The caller must hold the dev_base or rtnl lock 955 * while allocating the name and adding the device in order to avoid 956 * duplicates. 957 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 958 * Returns the number of the unit assigned or a negative errno code. 959 */ 960 961 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 962 { 963 int i = 0; 964 const char *p; 965 const int max_netdevices = 8*PAGE_SIZE; 966 unsigned long *inuse; 967 struct net_device *d; 968 969 p = strnchr(name, IFNAMSIZ-1, '%'); 970 if (p) { 971 /* 972 * Verify the string as this thing may have come from 973 * the user. There must be either one "%d" and no other "%" 974 * characters. 975 */ 976 if (p[1] != 'd' || strchr(p + 2, '%')) 977 return -EINVAL; 978 979 /* Use one page as a bit array of possible slots */ 980 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 981 if (!inuse) 982 return -ENOMEM; 983 984 for_each_netdev(net, d) { 985 if (!sscanf(d->name, name, &i)) 986 continue; 987 if (i < 0 || i >= max_netdevices) 988 continue; 989 990 /* avoid cases where sscanf is not exact inverse of printf */ 991 snprintf(buf, IFNAMSIZ, name, i); 992 if (!strncmp(buf, d->name, IFNAMSIZ)) 993 set_bit(i, inuse); 994 } 995 996 i = find_first_zero_bit(inuse, max_netdevices); 997 free_page((unsigned long) inuse); 998 } 999 1000 if (buf != name) 1001 snprintf(buf, IFNAMSIZ, name, i); 1002 if (!__dev_get_by_name(net, buf)) 1003 return i; 1004 1005 /* It is possible to run out of possible slots 1006 * when the name is long and there isn't enough space left 1007 * for the digits, or if all bits are used. 1008 */ 1009 return -ENFILE; 1010 } 1011 1012 /** 1013 * dev_alloc_name - allocate a name for a device 1014 * @dev: device 1015 * @name: name format string 1016 * 1017 * Passed a format string - eg "lt%d" it will try and find a suitable 1018 * id. It scans list of devices to build up a free map, then chooses 1019 * the first empty slot. The caller must hold the dev_base or rtnl lock 1020 * while allocating the name and adding the device in order to avoid 1021 * duplicates. 1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1023 * Returns the number of the unit assigned or a negative errno code. 1024 */ 1025 1026 int dev_alloc_name(struct net_device *dev, const char *name) 1027 { 1028 char buf[IFNAMSIZ]; 1029 struct net *net; 1030 int ret; 1031 1032 BUG_ON(!dev_net(dev)); 1033 net = dev_net(dev); 1034 ret = __dev_alloc_name(net, name, buf); 1035 if (ret >= 0) 1036 strlcpy(dev->name, buf, IFNAMSIZ); 1037 return ret; 1038 } 1039 EXPORT_SYMBOL(dev_alloc_name); 1040 1041 static int dev_alloc_name_ns(struct net *net, 1042 struct net_device *dev, 1043 const char *name) 1044 { 1045 char buf[IFNAMSIZ]; 1046 int ret; 1047 1048 ret = __dev_alloc_name(net, name, buf); 1049 if (ret >= 0) 1050 strlcpy(dev->name, buf, IFNAMSIZ); 1051 return ret; 1052 } 1053 1054 static int dev_get_valid_name(struct net *net, 1055 struct net_device *dev, 1056 const char *name) 1057 { 1058 BUG_ON(!net); 1059 1060 if (!dev_valid_name(name)) 1061 return -EINVAL; 1062 1063 if (strchr(name, '%')) 1064 return dev_alloc_name_ns(net, dev, name); 1065 else if (__dev_get_by_name(net, name)) 1066 return -EEXIST; 1067 else if (dev->name != name) 1068 strlcpy(dev->name, name, IFNAMSIZ); 1069 1070 return 0; 1071 } 1072 1073 /** 1074 * dev_change_name - change name of a device 1075 * @dev: device 1076 * @newname: name (or format string) must be at least IFNAMSIZ 1077 * 1078 * Change name of a device, can pass format strings "eth%d". 1079 * for wildcarding. 1080 */ 1081 int dev_change_name(struct net_device *dev, const char *newname) 1082 { 1083 char oldname[IFNAMSIZ]; 1084 int err = 0; 1085 int ret; 1086 struct net *net; 1087 1088 ASSERT_RTNL(); 1089 BUG_ON(!dev_net(dev)); 1090 1091 net = dev_net(dev); 1092 if (dev->flags & IFF_UP) 1093 return -EBUSY; 1094 1095 write_seqcount_begin(&devnet_rename_seq); 1096 1097 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1098 write_seqcount_end(&devnet_rename_seq); 1099 return 0; 1100 } 1101 1102 memcpy(oldname, dev->name, IFNAMSIZ); 1103 1104 err = dev_get_valid_name(net, dev, newname); 1105 if (err < 0) { 1106 write_seqcount_end(&devnet_rename_seq); 1107 return err; 1108 } 1109 1110 rollback: 1111 ret = device_rename(&dev->dev, dev->name); 1112 if (ret) { 1113 memcpy(dev->name, oldname, IFNAMSIZ); 1114 write_seqcount_end(&devnet_rename_seq); 1115 return ret; 1116 } 1117 1118 write_seqcount_end(&devnet_rename_seq); 1119 1120 write_lock_bh(&dev_base_lock); 1121 hlist_del_rcu(&dev->name_hlist); 1122 write_unlock_bh(&dev_base_lock); 1123 1124 synchronize_rcu(); 1125 1126 write_lock_bh(&dev_base_lock); 1127 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1128 write_unlock_bh(&dev_base_lock); 1129 1130 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1131 ret = notifier_to_errno(ret); 1132 1133 if (ret) { 1134 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1135 if (err >= 0) { 1136 err = ret; 1137 write_seqcount_begin(&devnet_rename_seq); 1138 memcpy(dev->name, oldname, IFNAMSIZ); 1139 goto rollback; 1140 } else { 1141 pr_err("%s: name change rollback failed: %d\n", 1142 dev->name, ret); 1143 } 1144 } 1145 1146 return err; 1147 } 1148 1149 /** 1150 * dev_set_alias - change ifalias of a device 1151 * @dev: device 1152 * @alias: name up to IFALIASZ 1153 * @len: limit of bytes to copy from info 1154 * 1155 * Set ifalias for a device, 1156 */ 1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1158 { 1159 char *new_ifalias; 1160 1161 ASSERT_RTNL(); 1162 1163 if (len >= IFALIASZ) 1164 return -EINVAL; 1165 1166 if (!len) { 1167 kfree(dev->ifalias); 1168 dev->ifalias = NULL; 1169 return 0; 1170 } 1171 1172 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1173 if (!new_ifalias) 1174 return -ENOMEM; 1175 dev->ifalias = new_ifalias; 1176 1177 strlcpy(dev->ifalias, alias, len+1); 1178 return len; 1179 } 1180 1181 1182 /** 1183 * netdev_features_change - device changes features 1184 * @dev: device to cause notification 1185 * 1186 * Called to indicate a device has changed features. 1187 */ 1188 void netdev_features_change(struct net_device *dev) 1189 { 1190 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1191 } 1192 EXPORT_SYMBOL(netdev_features_change); 1193 1194 /** 1195 * netdev_state_change - device changes state 1196 * @dev: device to cause notification 1197 * 1198 * Called to indicate a device has changed state. This function calls 1199 * the notifier chains for netdev_chain and sends a NEWLINK message 1200 * to the routing socket. 1201 */ 1202 void netdev_state_change(struct net_device *dev) 1203 { 1204 if (dev->flags & IFF_UP) { 1205 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1206 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1207 } 1208 } 1209 EXPORT_SYMBOL(netdev_state_change); 1210 1211 /** 1212 * netdev_notify_peers - notify network peers about existence of @dev 1213 * @dev: network device 1214 * 1215 * Generate traffic such that interested network peers are aware of 1216 * @dev, such as by generating a gratuitous ARP. This may be used when 1217 * a device wants to inform the rest of the network about some sort of 1218 * reconfiguration such as a failover event or virtual machine 1219 * migration. 1220 */ 1221 void netdev_notify_peers(struct net_device *dev) 1222 { 1223 rtnl_lock(); 1224 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1225 rtnl_unlock(); 1226 } 1227 EXPORT_SYMBOL(netdev_notify_peers); 1228 1229 static int __dev_open(struct net_device *dev) 1230 { 1231 const struct net_device_ops *ops = dev->netdev_ops; 1232 int ret; 1233 1234 ASSERT_RTNL(); 1235 1236 if (!netif_device_present(dev)) 1237 return -ENODEV; 1238 1239 /* Block netpoll from trying to do any rx path servicing. 1240 * If we don't do this there is a chance ndo_poll_controller 1241 * or ndo_poll may be running while we open the device 1242 */ 1243 netpoll_rx_disable(dev); 1244 1245 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1246 ret = notifier_to_errno(ret); 1247 if (ret) 1248 return ret; 1249 1250 set_bit(__LINK_STATE_START, &dev->state); 1251 1252 if (ops->ndo_validate_addr) 1253 ret = ops->ndo_validate_addr(dev); 1254 1255 if (!ret && ops->ndo_open) 1256 ret = ops->ndo_open(dev); 1257 1258 netpoll_rx_enable(dev); 1259 1260 if (ret) 1261 clear_bit(__LINK_STATE_START, &dev->state); 1262 else { 1263 dev->flags |= IFF_UP; 1264 net_dmaengine_get(); 1265 dev_set_rx_mode(dev); 1266 dev_activate(dev); 1267 add_device_randomness(dev->dev_addr, dev->addr_len); 1268 } 1269 1270 return ret; 1271 } 1272 1273 /** 1274 * dev_open - prepare an interface for use. 1275 * @dev: device to open 1276 * 1277 * Takes a device from down to up state. The device's private open 1278 * function is invoked and then the multicast lists are loaded. Finally 1279 * the device is moved into the up state and a %NETDEV_UP message is 1280 * sent to the netdev notifier chain. 1281 * 1282 * Calling this function on an active interface is a nop. On a failure 1283 * a negative errno code is returned. 1284 */ 1285 int dev_open(struct net_device *dev) 1286 { 1287 int ret; 1288 1289 if (dev->flags & IFF_UP) 1290 return 0; 1291 1292 ret = __dev_open(dev); 1293 if (ret < 0) 1294 return ret; 1295 1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1297 call_netdevice_notifiers(NETDEV_UP, dev); 1298 1299 return ret; 1300 } 1301 EXPORT_SYMBOL(dev_open); 1302 1303 static int __dev_close_many(struct list_head *head) 1304 { 1305 struct net_device *dev; 1306 1307 ASSERT_RTNL(); 1308 might_sleep(); 1309 1310 list_for_each_entry(dev, head, unreg_list) { 1311 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1312 1313 clear_bit(__LINK_STATE_START, &dev->state); 1314 1315 /* Synchronize to scheduled poll. We cannot touch poll list, it 1316 * can be even on different cpu. So just clear netif_running(). 1317 * 1318 * dev->stop() will invoke napi_disable() on all of it's 1319 * napi_struct instances on this device. 1320 */ 1321 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1322 } 1323 1324 dev_deactivate_many(head); 1325 1326 list_for_each_entry(dev, head, unreg_list) { 1327 const struct net_device_ops *ops = dev->netdev_ops; 1328 1329 /* 1330 * Call the device specific close. This cannot fail. 1331 * Only if device is UP 1332 * 1333 * We allow it to be called even after a DETACH hot-plug 1334 * event. 1335 */ 1336 if (ops->ndo_stop) 1337 ops->ndo_stop(dev); 1338 1339 dev->flags &= ~IFF_UP; 1340 net_dmaengine_put(); 1341 } 1342 1343 return 0; 1344 } 1345 1346 static int __dev_close(struct net_device *dev) 1347 { 1348 int retval; 1349 LIST_HEAD(single); 1350 1351 /* Temporarily disable netpoll until the interface is down */ 1352 netpoll_rx_disable(dev); 1353 1354 list_add(&dev->unreg_list, &single); 1355 retval = __dev_close_many(&single); 1356 list_del(&single); 1357 1358 netpoll_rx_enable(dev); 1359 return retval; 1360 } 1361 1362 static int dev_close_many(struct list_head *head) 1363 { 1364 struct net_device *dev, *tmp; 1365 LIST_HEAD(tmp_list); 1366 1367 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1368 if (!(dev->flags & IFF_UP)) 1369 list_move(&dev->unreg_list, &tmp_list); 1370 1371 __dev_close_many(head); 1372 1373 list_for_each_entry(dev, head, unreg_list) { 1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1375 call_netdevice_notifiers(NETDEV_DOWN, dev); 1376 } 1377 1378 /* rollback_registered_many needs the complete original list */ 1379 list_splice(&tmp_list, head); 1380 return 0; 1381 } 1382 1383 /** 1384 * dev_close - shutdown an interface. 1385 * @dev: device to shutdown 1386 * 1387 * This function moves an active device into down state. A 1388 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1389 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1390 * chain. 1391 */ 1392 int dev_close(struct net_device *dev) 1393 { 1394 if (dev->flags & IFF_UP) { 1395 LIST_HEAD(single); 1396 1397 /* Block netpoll rx while the interface is going down */ 1398 netpoll_rx_disable(dev); 1399 1400 list_add(&dev->unreg_list, &single); 1401 dev_close_many(&single); 1402 list_del(&single); 1403 1404 netpoll_rx_enable(dev); 1405 } 1406 return 0; 1407 } 1408 EXPORT_SYMBOL(dev_close); 1409 1410 1411 /** 1412 * dev_disable_lro - disable Large Receive Offload on a device 1413 * @dev: device 1414 * 1415 * Disable Large Receive Offload (LRO) on a net device. Must be 1416 * called under RTNL. This is needed if received packets may be 1417 * forwarded to another interface. 1418 */ 1419 void dev_disable_lro(struct net_device *dev) 1420 { 1421 /* 1422 * If we're trying to disable lro on a vlan device 1423 * use the underlying physical device instead 1424 */ 1425 if (is_vlan_dev(dev)) 1426 dev = vlan_dev_real_dev(dev); 1427 1428 dev->wanted_features &= ~NETIF_F_LRO; 1429 netdev_update_features(dev); 1430 1431 if (unlikely(dev->features & NETIF_F_LRO)) 1432 netdev_WARN(dev, "failed to disable LRO!\n"); 1433 } 1434 EXPORT_SYMBOL(dev_disable_lro); 1435 1436 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1437 struct net_device *dev) 1438 { 1439 struct netdev_notifier_info info; 1440 1441 netdev_notifier_info_init(&info, dev); 1442 return nb->notifier_call(nb, val, &info); 1443 } 1444 1445 static int dev_boot_phase = 1; 1446 1447 /** 1448 * register_netdevice_notifier - register a network notifier block 1449 * @nb: notifier 1450 * 1451 * Register a notifier to be called when network device events occur. 1452 * The notifier passed is linked into the kernel structures and must 1453 * not be reused until it has been unregistered. A negative errno code 1454 * is returned on a failure. 1455 * 1456 * When registered all registration and up events are replayed 1457 * to the new notifier to allow device to have a race free 1458 * view of the network device list. 1459 */ 1460 1461 int register_netdevice_notifier(struct notifier_block *nb) 1462 { 1463 struct net_device *dev; 1464 struct net_device *last; 1465 struct net *net; 1466 int err; 1467 1468 rtnl_lock(); 1469 err = raw_notifier_chain_register(&netdev_chain, nb); 1470 if (err) 1471 goto unlock; 1472 if (dev_boot_phase) 1473 goto unlock; 1474 for_each_net(net) { 1475 for_each_netdev(net, dev) { 1476 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1477 err = notifier_to_errno(err); 1478 if (err) 1479 goto rollback; 1480 1481 if (!(dev->flags & IFF_UP)) 1482 continue; 1483 1484 call_netdevice_notifier(nb, NETDEV_UP, dev); 1485 } 1486 } 1487 1488 unlock: 1489 rtnl_unlock(); 1490 return err; 1491 1492 rollback: 1493 last = dev; 1494 for_each_net(net) { 1495 for_each_netdev(net, dev) { 1496 if (dev == last) 1497 goto outroll; 1498 1499 if (dev->flags & IFF_UP) { 1500 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1501 dev); 1502 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1503 } 1504 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1505 } 1506 } 1507 1508 outroll: 1509 raw_notifier_chain_unregister(&netdev_chain, nb); 1510 goto unlock; 1511 } 1512 EXPORT_SYMBOL(register_netdevice_notifier); 1513 1514 /** 1515 * unregister_netdevice_notifier - unregister a network notifier block 1516 * @nb: notifier 1517 * 1518 * Unregister a notifier previously registered by 1519 * register_netdevice_notifier(). The notifier is unlinked into the 1520 * kernel structures and may then be reused. A negative errno code 1521 * is returned on a failure. 1522 * 1523 * After unregistering unregister and down device events are synthesized 1524 * for all devices on the device list to the removed notifier to remove 1525 * the need for special case cleanup code. 1526 */ 1527 1528 int unregister_netdevice_notifier(struct notifier_block *nb) 1529 { 1530 struct net_device *dev; 1531 struct net *net; 1532 int err; 1533 1534 rtnl_lock(); 1535 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1536 if (err) 1537 goto unlock; 1538 1539 for_each_net(net) { 1540 for_each_netdev(net, dev) { 1541 if (dev->flags & IFF_UP) { 1542 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1543 dev); 1544 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1545 } 1546 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1547 } 1548 } 1549 unlock: 1550 rtnl_unlock(); 1551 return err; 1552 } 1553 EXPORT_SYMBOL(unregister_netdevice_notifier); 1554 1555 /** 1556 * call_netdevice_notifiers_info - call all network notifier blocks 1557 * @val: value passed unmodified to notifier function 1558 * @dev: net_device pointer passed unmodified to notifier function 1559 * @info: notifier information data 1560 * 1561 * Call all network notifier blocks. Parameters and return value 1562 * are as for raw_notifier_call_chain(). 1563 */ 1564 1565 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev, 1566 struct netdev_notifier_info *info) 1567 { 1568 ASSERT_RTNL(); 1569 netdev_notifier_info_init(info, dev); 1570 return raw_notifier_call_chain(&netdev_chain, val, info); 1571 } 1572 EXPORT_SYMBOL(call_netdevice_notifiers_info); 1573 1574 /** 1575 * call_netdevice_notifiers - call all network notifier blocks 1576 * @val: value passed unmodified to notifier function 1577 * @dev: net_device pointer passed unmodified to notifier function 1578 * 1579 * Call all network notifier blocks. Parameters and return value 1580 * are as for raw_notifier_call_chain(). 1581 */ 1582 1583 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1584 { 1585 struct netdev_notifier_info info; 1586 1587 return call_netdevice_notifiers_info(val, dev, &info); 1588 } 1589 EXPORT_SYMBOL(call_netdevice_notifiers); 1590 1591 static struct static_key netstamp_needed __read_mostly; 1592 #ifdef HAVE_JUMP_LABEL 1593 /* We are not allowed to call static_key_slow_dec() from irq context 1594 * If net_disable_timestamp() is called from irq context, defer the 1595 * static_key_slow_dec() calls. 1596 */ 1597 static atomic_t netstamp_needed_deferred; 1598 #endif 1599 1600 void net_enable_timestamp(void) 1601 { 1602 #ifdef HAVE_JUMP_LABEL 1603 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1604 1605 if (deferred) { 1606 while (--deferred) 1607 static_key_slow_dec(&netstamp_needed); 1608 return; 1609 } 1610 #endif 1611 static_key_slow_inc(&netstamp_needed); 1612 } 1613 EXPORT_SYMBOL(net_enable_timestamp); 1614 1615 void net_disable_timestamp(void) 1616 { 1617 #ifdef HAVE_JUMP_LABEL 1618 if (in_interrupt()) { 1619 atomic_inc(&netstamp_needed_deferred); 1620 return; 1621 } 1622 #endif 1623 static_key_slow_dec(&netstamp_needed); 1624 } 1625 EXPORT_SYMBOL(net_disable_timestamp); 1626 1627 static inline void net_timestamp_set(struct sk_buff *skb) 1628 { 1629 skb->tstamp.tv64 = 0; 1630 if (static_key_false(&netstamp_needed)) 1631 __net_timestamp(skb); 1632 } 1633 1634 #define net_timestamp_check(COND, SKB) \ 1635 if (static_key_false(&netstamp_needed)) { \ 1636 if ((COND) && !(SKB)->tstamp.tv64) \ 1637 __net_timestamp(SKB); \ 1638 } \ 1639 1640 static inline bool is_skb_forwardable(struct net_device *dev, 1641 struct sk_buff *skb) 1642 { 1643 unsigned int len; 1644 1645 if (!(dev->flags & IFF_UP)) 1646 return false; 1647 1648 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1649 if (skb->len <= len) 1650 return true; 1651 1652 /* if TSO is enabled, we don't care about the length as the packet 1653 * could be forwarded without being segmented before 1654 */ 1655 if (skb_is_gso(skb)) 1656 return true; 1657 1658 return false; 1659 } 1660 1661 /** 1662 * dev_forward_skb - loopback an skb to another netif 1663 * 1664 * @dev: destination network device 1665 * @skb: buffer to forward 1666 * 1667 * return values: 1668 * NET_RX_SUCCESS (no congestion) 1669 * NET_RX_DROP (packet was dropped, but freed) 1670 * 1671 * dev_forward_skb can be used for injecting an skb from the 1672 * start_xmit function of one device into the receive queue 1673 * of another device. 1674 * 1675 * The receiving device may be in another namespace, so 1676 * we have to clear all information in the skb that could 1677 * impact namespace isolation. 1678 */ 1679 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1680 { 1681 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1682 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1683 atomic_long_inc(&dev->rx_dropped); 1684 kfree_skb(skb); 1685 return NET_RX_DROP; 1686 } 1687 } 1688 1689 if (unlikely(!is_skb_forwardable(dev, skb))) { 1690 atomic_long_inc(&dev->rx_dropped); 1691 kfree_skb(skb); 1692 return NET_RX_DROP; 1693 } 1694 skb_scrub_packet(skb); 1695 skb->protocol = eth_type_trans(skb, dev); 1696 1697 /* eth_type_trans() can set pkt_type. 1698 * clear pkt_type _after_ calling eth_type_trans() 1699 */ 1700 skb->pkt_type = PACKET_HOST; 1701 1702 return netif_rx(skb); 1703 } 1704 EXPORT_SYMBOL_GPL(dev_forward_skb); 1705 1706 static inline int deliver_skb(struct sk_buff *skb, 1707 struct packet_type *pt_prev, 1708 struct net_device *orig_dev) 1709 { 1710 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1711 return -ENOMEM; 1712 atomic_inc(&skb->users); 1713 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1714 } 1715 1716 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1717 { 1718 if (!ptype->af_packet_priv || !skb->sk) 1719 return false; 1720 1721 if (ptype->id_match) 1722 return ptype->id_match(ptype, skb->sk); 1723 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1724 return true; 1725 1726 return false; 1727 } 1728 1729 /* 1730 * Support routine. Sends outgoing frames to any network 1731 * taps currently in use. 1732 */ 1733 1734 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1735 { 1736 struct packet_type *ptype; 1737 struct sk_buff *skb2 = NULL; 1738 struct packet_type *pt_prev = NULL; 1739 1740 rcu_read_lock(); 1741 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1742 /* Never send packets back to the socket 1743 * they originated from - MvS (miquels@drinkel.ow.org) 1744 */ 1745 if ((ptype->dev == dev || !ptype->dev) && 1746 (!skb_loop_sk(ptype, skb))) { 1747 if (pt_prev) { 1748 deliver_skb(skb2, pt_prev, skb->dev); 1749 pt_prev = ptype; 1750 continue; 1751 } 1752 1753 skb2 = skb_clone(skb, GFP_ATOMIC); 1754 if (!skb2) 1755 break; 1756 1757 net_timestamp_set(skb2); 1758 1759 /* skb->nh should be correctly 1760 set by sender, so that the second statement is 1761 just protection against buggy protocols. 1762 */ 1763 skb_reset_mac_header(skb2); 1764 1765 if (skb_network_header(skb2) < skb2->data || 1766 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1767 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1768 ntohs(skb2->protocol), 1769 dev->name); 1770 skb_reset_network_header(skb2); 1771 } 1772 1773 skb2->transport_header = skb2->network_header; 1774 skb2->pkt_type = PACKET_OUTGOING; 1775 pt_prev = ptype; 1776 } 1777 } 1778 if (pt_prev) 1779 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1780 rcu_read_unlock(); 1781 } 1782 1783 /** 1784 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1785 * @dev: Network device 1786 * @txq: number of queues available 1787 * 1788 * If real_num_tx_queues is changed the tc mappings may no longer be 1789 * valid. To resolve this verify the tc mapping remains valid and if 1790 * not NULL the mapping. With no priorities mapping to this 1791 * offset/count pair it will no longer be used. In the worst case TC0 1792 * is invalid nothing can be done so disable priority mappings. If is 1793 * expected that drivers will fix this mapping if they can before 1794 * calling netif_set_real_num_tx_queues. 1795 */ 1796 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1797 { 1798 int i; 1799 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1800 1801 /* If TC0 is invalidated disable TC mapping */ 1802 if (tc->offset + tc->count > txq) { 1803 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1804 dev->num_tc = 0; 1805 return; 1806 } 1807 1808 /* Invalidated prio to tc mappings set to TC0 */ 1809 for (i = 1; i < TC_BITMASK + 1; i++) { 1810 int q = netdev_get_prio_tc_map(dev, i); 1811 1812 tc = &dev->tc_to_txq[q]; 1813 if (tc->offset + tc->count > txq) { 1814 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1815 i, q); 1816 netdev_set_prio_tc_map(dev, i, 0); 1817 } 1818 } 1819 } 1820 1821 #ifdef CONFIG_XPS 1822 static DEFINE_MUTEX(xps_map_mutex); 1823 #define xmap_dereference(P) \ 1824 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1825 1826 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1827 int cpu, u16 index) 1828 { 1829 struct xps_map *map = NULL; 1830 int pos; 1831 1832 if (dev_maps) 1833 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1834 1835 for (pos = 0; map && pos < map->len; pos++) { 1836 if (map->queues[pos] == index) { 1837 if (map->len > 1) { 1838 map->queues[pos] = map->queues[--map->len]; 1839 } else { 1840 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1841 kfree_rcu(map, rcu); 1842 map = NULL; 1843 } 1844 break; 1845 } 1846 } 1847 1848 return map; 1849 } 1850 1851 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1852 { 1853 struct xps_dev_maps *dev_maps; 1854 int cpu, i; 1855 bool active = false; 1856 1857 mutex_lock(&xps_map_mutex); 1858 dev_maps = xmap_dereference(dev->xps_maps); 1859 1860 if (!dev_maps) 1861 goto out_no_maps; 1862 1863 for_each_possible_cpu(cpu) { 1864 for (i = index; i < dev->num_tx_queues; i++) { 1865 if (!remove_xps_queue(dev_maps, cpu, i)) 1866 break; 1867 } 1868 if (i == dev->num_tx_queues) 1869 active = true; 1870 } 1871 1872 if (!active) { 1873 RCU_INIT_POINTER(dev->xps_maps, NULL); 1874 kfree_rcu(dev_maps, rcu); 1875 } 1876 1877 for (i = index; i < dev->num_tx_queues; i++) 1878 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1879 NUMA_NO_NODE); 1880 1881 out_no_maps: 1882 mutex_unlock(&xps_map_mutex); 1883 } 1884 1885 static struct xps_map *expand_xps_map(struct xps_map *map, 1886 int cpu, u16 index) 1887 { 1888 struct xps_map *new_map; 1889 int alloc_len = XPS_MIN_MAP_ALLOC; 1890 int i, pos; 1891 1892 for (pos = 0; map && pos < map->len; pos++) { 1893 if (map->queues[pos] != index) 1894 continue; 1895 return map; 1896 } 1897 1898 /* Need to add queue to this CPU's existing map */ 1899 if (map) { 1900 if (pos < map->alloc_len) 1901 return map; 1902 1903 alloc_len = map->alloc_len * 2; 1904 } 1905 1906 /* Need to allocate new map to store queue on this CPU's map */ 1907 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1908 cpu_to_node(cpu)); 1909 if (!new_map) 1910 return NULL; 1911 1912 for (i = 0; i < pos; i++) 1913 new_map->queues[i] = map->queues[i]; 1914 new_map->alloc_len = alloc_len; 1915 new_map->len = pos; 1916 1917 return new_map; 1918 } 1919 1920 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index) 1921 { 1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1923 struct xps_map *map, *new_map; 1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1925 int cpu, numa_node_id = -2; 1926 bool active = false; 1927 1928 mutex_lock(&xps_map_mutex); 1929 1930 dev_maps = xmap_dereference(dev->xps_maps); 1931 1932 /* allocate memory for queue storage */ 1933 for_each_online_cpu(cpu) { 1934 if (!cpumask_test_cpu(cpu, mask)) 1935 continue; 1936 1937 if (!new_dev_maps) 1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1939 if (!new_dev_maps) { 1940 mutex_unlock(&xps_map_mutex); 1941 return -ENOMEM; 1942 } 1943 1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1945 NULL; 1946 1947 map = expand_xps_map(map, cpu, index); 1948 if (!map) 1949 goto error; 1950 1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1952 } 1953 1954 if (!new_dev_maps) 1955 goto out_no_new_maps; 1956 1957 for_each_possible_cpu(cpu) { 1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1959 /* add queue to CPU maps */ 1960 int pos = 0; 1961 1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1963 while ((pos < map->len) && (map->queues[pos] != index)) 1964 pos++; 1965 1966 if (pos == map->len) 1967 map->queues[map->len++] = index; 1968 #ifdef CONFIG_NUMA 1969 if (numa_node_id == -2) 1970 numa_node_id = cpu_to_node(cpu); 1971 else if (numa_node_id != cpu_to_node(cpu)) 1972 numa_node_id = -1; 1973 #endif 1974 } else if (dev_maps) { 1975 /* fill in the new device map from the old device map */ 1976 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1978 } 1979 1980 } 1981 1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1983 1984 /* Cleanup old maps */ 1985 if (dev_maps) { 1986 for_each_possible_cpu(cpu) { 1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1988 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1989 if (map && map != new_map) 1990 kfree_rcu(map, rcu); 1991 } 1992 1993 kfree_rcu(dev_maps, rcu); 1994 } 1995 1996 dev_maps = new_dev_maps; 1997 active = true; 1998 1999 out_no_new_maps: 2000 /* update Tx queue numa node */ 2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2002 (numa_node_id >= 0) ? numa_node_id : 2003 NUMA_NO_NODE); 2004 2005 if (!dev_maps) 2006 goto out_no_maps; 2007 2008 /* removes queue from unused CPUs */ 2009 for_each_possible_cpu(cpu) { 2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2011 continue; 2012 2013 if (remove_xps_queue(dev_maps, cpu, index)) 2014 active = true; 2015 } 2016 2017 /* free map if not active */ 2018 if (!active) { 2019 RCU_INIT_POINTER(dev->xps_maps, NULL); 2020 kfree_rcu(dev_maps, rcu); 2021 } 2022 2023 out_no_maps: 2024 mutex_unlock(&xps_map_mutex); 2025 2026 return 0; 2027 error: 2028 /* remove any maps that we added */ 2029 for_each_possible_cpu(cpu) { 2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2032 NULL; 2033 if (new_map && new_map != map) 2034 kfree(new_map); 2035 } 2036 2037 mutex_unlock(&xps_map_mutex); 2038 2039 kfree(new_dev_maps); 2040 return -ENOMEM; 2041 } 2042 EXPORT_SYMBOL(netif_set_xps_queue); 2043 2044 #endif 2045 /* 2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2048 */ 2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2050 { 2051 int rc; 2052 2053 if (txq < 1 || txq > dev->num_tx_queues) 2054 return -EINVAL; 2055 2056 if (dev->reg_state == NETREG_REGISTERED || 2057 dev->reg_state == NETREG_UNREGISTERING) { 2058 ASSERT_RTNL(); 2059 2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2061 txq); 2062 if (rc) 2063 return rc; 2064 2065 if (dev->num_tc) 2066 netif_setup_tc(dev, txq); 2067 2068 if (txq < dev->real_num_tx_queues) { 2069 qdisc_reset_all_tx_gt(dev, txq); 2070 #ifdef CONFIG_XPS 2071 netif_reset_xps_queues_gt(dev, txq); 2072 #endif 2073 } 2074 } 2075 2076 dev->real_num_tx_queues = txq; 2077 return 0; 2078 } 2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2080 2081 #ifdef CONFIG_RPS 2082 /** 2083 * netif_set_real_num_rx_queues - set actual number of RX queues used 2084 * @dev: Network device 2085 * @rxq: Actual number of RX queues 2086 * 2087 * This must be called either with the rtnl_lock held or before 2088 * registration of the net device. Returns 0 on success, or a 2089 * negative error code. If called before registration, it always 2090 * succeeds. 2091 */ 2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2093 { 2094 int rc; 2095 2096 if (rxq < 1 || rxq > dev->num_rx_queues) 2097 return -EINVAL; 2098 2099 if (dev->reg_state == NETREG_REGISTERED) { 2100 ASSERT_RTNL(); 2101 2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2103 rxq); 2104 if (rc) 2105 return rc; 2106 } 2107 2108 dev->real_num_rx_queues = rxq; 2109 return 0; 2110 } 2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2112 #endif 2113 2114 /** 2115 * netif_get_num_default_rss_queues - default number of RSS queues 2116 * 2117 * This routine should set an upper limit on the number of RSS queues 2118 * used by default by multiqueue devices. 2119 */ 2120 int netif_get_num_default_rss_queues(void) 2121 { 2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2123 } 2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2125 2126 static inline void __netif_reschedule(struct Qdisc *q) 2127 { 2128 struct softnet_data *sd; 2129 unsigned long flags; 2130 2131 local_irq_save(flags); 2132 sd = &__get_cpu_var(softnet_data); 2133 q->next_sched = NULL; 2134 *sd->output_queue_tailp = q; 2135 sd->output_queue_tailp = &q->next_sched; 2136 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2137 local_irq_restore(flags); 2138 } 2139 2140 void __netif_schedule(struct Qdisc *q) 2141 { 2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2143 __netif_reschedule(q); 2144 } 2145 EXPORT_SYMBOL(__netif_schedule); 2146 2147 void dev_kfree_skb_irq(struct sk_buff *skb) 2148 { 2149 if (atomic_dec_and_test(&skb->users)) { 2150 struct softnet_data *sd; 2151 unsigned long flags; 2152 2153 local_irq_save(flags); 2154 sd = &__get_cpu_var(softnet_data); 2155 skb->next = sd->completion_queue; 2156 sd->completion_queue = skb; 2157 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2158 local_irq_restore(flags); 2159 } 2160 } 2161 EXPORT_SYMBOL(dev_kfree_skb_irq); 2162 2163 void dev_kfree_skb_any(struct sk_buff *skb) 2164 { 2165 if (in_irq() || irqs_disabled()) 2166 dev_kfree_skb_irq(skb); 2167 else 2168 dev_kfree_skb(skb); 2169 } 2170 EXPORT_SYMBOL(dev_kfree_skb_any); 2171 2172 2173 /** 2174 * netif_device_detach - mark device as removed 2175 * @dev: network device 2176 * 2177 * Mark device as removed from system and therefore no longer available. 2178 */ 2179 void netif_device_detach(struct net_device *dev) 2180 { 2181 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2182 netif_running(dev)) { 2183 netif_tx_stop_all_queues(dev); 2184 } 2185 } 2186 EXPORT_SYMBOL(netif_device_detach); 2187 2188 /** 2189 * netif_device_attach - mark device as attached 2190 * @dev: network device 2191 * 2192 * Mark device as attached from system and restart if needed. 2193 */ 2194 void netif_device_attach(struct net_device *dev) 2195 { 2196 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2197 netif_running(dev)) { 2198 netif_tx_wake_all_queues(dev); 2199 __netdev_watchdog_up(dev); 2200 } 2201 } 2202 EXPORT_SYMBOL(netif_device_attach); 2203 2204 static void skb_warn_bad_offload(const struct sk_buff *skb) 2205 { 2206 static const netdev_features_t null_features = 0; 2207 struct net_device *dev = skb->dev; 2208 const char *driver = ""; 2209 2210 if (!net_ratelimit()) 2211 return; 2212 2213 if (dev && dev->dev.parent) 2214 driver = dev_driver_string(dev->dev.parent); 2215 2216 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2217 "gso_type=%d ip_summed=%d\n", 2218 driver, dev ? &dev->features : &null_features, 2219 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2220 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2221 skb_shinfo(skb)->gso_type, skb->ip_summed); 2222 } 2223 2224 /* 2225 * Invalidate hardware checksum when packet is to be mangled, and 2226 * complete checksum manually on outgoing path. 2227 */ 2228 int skb_checksum_help(struct sk_buff *skb) 2229 { 2230 __wsum csum; 2231 int ret = 0, offset; 2232 2233 if (skb->ip_summed == CHECKSUM_COMPLETE) 2234 goto out_set_summed; 2235 2236 if (unlikely(skb_shinfo(skb)->gso_size)) { 2237 skb_warn_bad_offload(skb); 2238 return -EINVAL; 2239 } 2240 2241 /* Before computing a checksum, we should make sure no frag could 2242 * be modified by an external entity : checksum could be wrong. 2243 */ 2244 if (skb_has_shared_frag(skb)) { 2245 ret = __skb_linearize(skb); 2246 if (ret) 2247 goto out; 2248 } 2249 2250 offset = skb_checksum_start_offset(skb); 2251 BUG_ON(offset >= skb_headlen(skb)); 2252 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2253 2254 offset += skb->csum_offset; 2255 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2256 2257 if (skb_cloned(skb) && 2258 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2259 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2260 if (ret) 2261 goto out; 2262 } 2263 2264 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2265 out_set_summed: 2266 skb->ip_summed = CHECKSUM_NONE; 2267 out: 2268 return ret; 2269 } 2270 EXPORT_SYMBOL(skb_checksum_help); 2271 2272 __be16 skb_network_protocol(struct sk_buff *skb) 2273 { 2274 __be16 type = skb->protocol; 2275 int vlan_depth = ETH_HLEN; 2276 2277 /* Tunnel gso handlers can set protocol to ethernet. */ 2278 if (type == htons(ETH_P_TEB)) { 2279 struct ethhdr *eth; 2280 2281 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2282 return 0; 2283 2284 eth = (struct ethhdr *)skb_mac_header(skb); 2285 type = eth->h_proto; 2286 } 2287 2288 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2289 struct vlan_hdr *vh; 2290 2291 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2292 return 0; 2293 2294 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2295 type = vh->h_vlan_encapsulated_proto; 2296 vlan_depth += VLAN_HLEN; 2297 } 2298 2299 return type; 2300 } 2301 2302 /** 2303 * skb_mac_gso_segment - mac layer segmentation handler. 2304 * @skb: buffer to segment 2305 * @features: features for the output path (see dev->features) 2306 */ 2307 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2308 netdev_features_t features) 2309 { 2310 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2311 struct packet_offload *ptype; 2312 __be16 type = skb_network_protocol(skb); 2313 2314 if (unlikely(!type)) 2315 return ERR_PTR(-EINVAL); 2316 2317 __skb_pull(skb, skb->mac_len); 2318 2319 rcu_read_lock(); 2320 list_for_each_entry_rcu(ptype, &offload_base, list) { 2321 if (ptype->type == type && ptype->callbacks.gso_segment) { 2322 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2323 int err; 2324 2325 err = ptype->callbacks.gso_send_check(skb); 2326 segs = ERR_PTR(err); 2327 if (err || skb_gso_ok(skb, features)) 2328 break; 2329 __skb_push(skb, (skb->data - 2330 skb_network_header(skb))); 2331 } 2332 segs = ptype->callbacks.gso_segment(skb, features); 2333 break; 2334 } 2335 } 2336 rcu_read_unlock(); 2337 2338 __skb_push(skb, skb->data - skb_mac_header(skb)); 2339 2340 return segs; 2341 } 2342 EXPORT_SYMBOL(skb_mac_gso_segment); 2343 2344 2345 /* openvswitch calls this on rx path, so we need a different check. 2346 */ 2347 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2348 { 2349 if (tx_path) 2350 return skb->ip_summed != CHECKSUM_PARTIAL; 2351 else 2352 return skb->ip_summed == CHECKSUM_NONE; 2353 } 2354 2355 /** 2356 * __skb_gso_segment - Perform segmentation on skb. 2357 * @skb: buffer to segment 2358 * @features: features for the output path (see dev->features) 2359 * @tx_path: whether it is called in TX path 2360 * 2361 * This function segments the given skb and returns a list of segments. 2362 * 2363 * It may return NULL if the skb requires no segmentation. This is 2364 * only possible when GSO is used for verifying header integrity. 2365 */ 2366 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2367 netdev_features_t features, bool tx_path) 2368 { 2369 if (unlikely(skb_needs_check(skb, tx_path))) { 2370 int err; 2371 2372 skb_warn_bad_offload(skb); 2373 2374 if (skb_header_cloned(skb) && 2375 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2376 return ERR_PTR(err); 2377 } 2378 2379 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2380 skb_reset_mac_header(skb); 2381 skb_reset_mac_len(skb); 2382 2383 return skb_mac_gso_segment(skb, features); 2384 } 2385 EXPORT_SYMBOL(__skb_gso_segment); 2386 2387 /* Take action when hardware reception checksum errors are detected. */ 2388 #ifdef CONFIG_BUG 2389 void netdev_rx_csum_fault(struct net_device *dev) 2390 { 2391 if (net_ratelimit()) { 2392 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2393 dump_stack(); 2394 } 2395 } 2396 EXPORT_SYMBOL(netdev_rx_csum_fault); 2397 #endif 2398 2399 /* Actually, we should eliminate this check as soon as we know, that: 2400 * 1. IOMMU is present and allows to map all the memory. 2401 * 2. No high memory really exists on this machine. 2402 */ 2403 2404 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2405 { 2406 #ifdef CONFIG_HIGHMEM 2407 int i; 2408 if (!(dev->features & NETIF_F_HIGHDMA)) { 2409 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2410 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2411 if (PageHighMem(skb_frag_page(frag))) 2412 return 1; 2413 } 2414 } 2415 2416 if (PCI_DMA_BUS_IS_PHYS) { 2417 struct device *pdev = dev->dev.parent; 2418 2419 if (!pdev) 2420 return 0; 2421 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2422 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2423 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2424 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2425 return 1; 2426 } 2427 } 2428 #endif 2429 return 0; 2430 } 2431 2432 struct dev_gso_cb { 2433 void (*destructor)(struct sk_buff *skb); 2434 }; 2435 2436 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2437 2438 static void dev_gso_skb_destructor(struct sk_buff *skb) 2439 { 2440 struct dev_gso_cb *cb; 2441 2442 do { 2443 struct sk_buff *nskb = skb->next; 2444 2445 skb->next = nskb->next; 2446 nskb->next = NULL; 2447 kfree_skb(nskb); 2448 } while (skb->next); 2449 2450 cb = DEV_GSO_CB(skb); 2451 if (cb->destructor) 2452 cb->destructor(skb); 2453 } 2454 2455 /** 2456 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2457 * @skb: buffer to segment 2458 * @features: device features as applicable to this skb 2459 * 2460 * This function segments the given skb and stores the list of segments 2461 * in skb->next. 2462 */ 2463 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2464 { 2465 struct sk_buff *segs; 2466 2467 segs = skb_gso_segment(skb, features); 2468 2469 /* Verifying header integrity only. */ 2470 if (!segs) 2471 return 0; 2472 2473 if (IS_ERR(segs)) 2474 return PTR_ERR(segs); 2475 2476 skb->next = segs; 2477 DEV_GSO_CB(skb)->destructor = skb->destructor; 2478 skb->destructor = dev_gso_skb_destructor; 2479 2480 return 0; 2481 } 2482 2483 static netdev_features_t harmonize_features(struct sk_buff *skb, 2484 __be16 protocol, netdev_features_t features) 2485 { 2486 if (skb->ip_summed != CHECKSUM_NONE && 2487 !can_checksum_protocol(features, protocol)) { 2488 features &= ~NETIF_F_ALL_CSUM; 2489 } else if (illegal_highdma(skb->dev, skb)) { 2490 features &= ~NETIF_F_SG; 2491 } 2492 2493 return features; 2494 } 2495 2496 netdev_features_t netif_skb_features(struct sk_buff *skb) 2497 { 2498 __be16 protocol = skb->protocol; 2499 netdev_features_t features = skb->dev->features; 2500 2501 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2502 features &= ~NETIF_F_GSO_MASK; 2503 2504 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2505 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2506 protocol = veh->h_vlan_encapsulated_proto; 2507 } else if (!vlan_tx_tag_present(skb)) { 2508 return harmonize_features(skb, protocol, features); 2509 } 2510 2511 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2512 NETIF_F_HW_VLAN_STAG_TX); 2513 2514 if (protocol != htons(ETH_P_8021Q) && protocol != htons(ETH_P_8021AD)) { 2515 return harmonize_features(skb, protocol, features); 2516 } else { 2517 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2518 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2519 NETIF_F_HW_VLAN_STAG_TX; 2520 return harmonize_features(skb, protocol, features); 2521 } 2522 } 2523 EXPORT_SYMBOL(netif_skb_features); 2524 2525 /* 2526 * Returns true if either: 2527 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2528 * 2. skb is fragmented and the device does not support SG. 2529 */ 2530 static inline int skb_needs_linearize(struct sk_buff *skb, 2531 netdev_features_t features) 2532 { 2533 return skb_is_nonlinear(skb) && 2534 ((skb_has_frag_list(skb) && 2535 !(features & NETIF_F_FRAGLIST)) || 2536 (skb_shinfo(skb)->nr_frags && 2537 !(features & NETIF_F_SG))); 2538 } 2539 2540 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2541 struct netdev_queue *txq) 2542 { 2543 const struct net_device_ops *ops = dev->netdev_ops; 2544 int rc = NETDEV_TX_OK; 2545 unsigned int skb_len; 2546 2547 if (likely(!skb->next)) { 2548 netdev_features_t features; 2549 2550 /* 2551 * If device doesn't need skb->dst, release it right now while 2552 * its hot in this cpu cache 2553 */ 2554 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2555 skb_dst_drop(skb); 2556 2557 features = netif_skb_features(skb); 2558 2559 if (vlan_tx_tag_present(skb) && 2560 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2561 skb = __vlan_put_tag(skb, skb->vlan_proto, 2562 vlan_tx_tag_get(skb)); 2563 if (unlikely(!skb)) 2564 goto out; 2565 2566 skb->vlan_tci = 0; 2567 } 2568 2569 /* If encapsulation offload request, verify we are testing 2570 * hardware encapsulation features instead of standard 2571 * features for the netdev 2572 */ 2573 if (skb->encapsulation) 2574 features &= dev->hw_enc_features; 2575 2576 if (netif_needs_gso(skb, features)) { 2577 if (unlikely(dev_gso_segment(skb, features))) 2578 goto out_kfree_skb; 2579 if (skb->next) 2580 goto gso; 2581 } else { 2582 if (skb_needs_linearize(skb, features) && 2583 __skb_linearize(skb)) 2584 goto out_kfree_skb; 2585 2586 /* If packet is not checksummed and device does not 2587 * support checksumming for this protocol, complete 2588 * checksumming here. 2589 */ 2590 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2591 if (skb->encapsulation) 2592 skb_set_inner_transport_header(skb, 2593 skb_checksum_start_offset(skb)); 2594 else 2595 skb_set_transport_header(skb, 2596 skb_checksum_start_offset(skb)); 2597 if (!(features & NETIF_F_ALL_CSUM) && 2598 skb_checksum_help(skb)) 2599 goto out_kfree_skb; 2600 } 2601 } 2602 2603 if (!list_empty(&ptype_all)) 2604 dev_queue_xmit_nit(skb, dev); 2605 2606 skb_len = skb->len; 2607 rc = ops->ndo_start_xmit(skb, dev); 2608 trace_net_dev_xmit(skb, rc, dev, skb_len); 2609 if (rc == NETDEV_TX_OK) 2610 txq_trans_update(txq); 2611 return rc; 2612 } 2613 2614 gso: 2615 do { 2616 struct sk_buff *nskb = skb->next; 2617 2618 skb->next = nskb->next; 2619 nskb->next = NULL; 2620 2621 if (!list_empty(&ptype_all)) 2622 dev_queue_xmit_nit(nskb, dev); 2623 2624 skb_len = nskb->len; 2625 rc = ops->ndo_start_xmit(nskb, dev); 2626 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2627 if (unlikely(rc != NETDEV_TX_OK)) { 2628 if (rc & ~NETDEV_TX_MASK) 2629 goto out_kfree_gso_skb; 2630 nskb->next = skb->next; 2631 skb->next = nskb; 2632 return rc; 2633 } 2634 txq_trans_update(txq); 2635 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2636 return NETDEV_TX_BUSY; 2637 } while (skb->next); 2638 2639 out_kfree_gso_skb: 2640 if (likely(skb->next == NULL)) { 2641 skb->destructor = DEV_GSO_CB(skb)->destructor; 2642 consume_skb(skb); 2643 return rc; 2644 } 2645 out_kfree_skb: 2646 kfree_skb(skb); 2647 out: 2648 return rc; 2649 } 2650 2651 static void qdisc_pkt_len_init(struct sk_buff *skb) 2652 { 2653 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2654 2655 qdisc_skb_cb(skb)->pkt_len = skb->len; 2656 2657 /* To get more precise estimation of bytes sent on wire, 2658 * we add to pkt_len the headers size of all segments 2659 */ 2660 if (shinfo->gso_size) { 2661 unsigned int hdr_len; 2662 u16 gso_segs = shinfo->gso_segs; 2663 2664 /* mac layer + network layer */ 2665 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2666 2667 /* + transport layer */ 2668 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2669 hdr_len += tcp_hdrlen(skb); 2670 else 2671 hdr_len += sizeof(struct udphdr); 2672 2673 if (shinfo->gso_type & SKB_GSO_DODGY) 2674 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2675 shinfo->gso_size); 2676 2677 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2678 } 2679 } 2680 2681 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2682 struct net_device *dev, 2683 struct netdev_queue *txq) 2684 { 2685 spinlock_t *root_lock = qdisc_lock(q); 2686 bool contended; 2687 int rc; 2688 2689 qdisc_pkt_len_init(skb); 2690 qdisc_calculate_pkt_len(skb, q); 2691 /* 2692 * Heuristic to force contended enqueues to serialize on a 2693 * separate lock before trying to get qdisc main lock. 2694 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2695 * and dequeue packets faster. 2696 */ 2697 contended = qdisc_is_running(q); 2698 if (unlikely(contended)) 2699 spin_lock(&q->busylock); 2700 2701 spin_lock(root_lock); 2702 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2703 kfree_skb(skb); 2704 rc = NET_XMIT_DROP; 2705 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2706 qdisc_run_begin(q)) { 2707 /* 2708 * This is a work-conserving queue; there are no old skbs 2709 * waiting to be sent out; and the qdisc is not running - 2710 * xmit the skb directly. 2711 */ 2712 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2713 skb_dst_force(skb); 2714 2715 qdisc_bstats_update(q, skb); 2716 2717 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2718 if (unlikely(contended)) { 2719 spin_unlock(&q->busylock); 2720 contended = false; 2721 } 2722 __qdisc_run(q); 2723 } else 2724 qdisc_run_end(q); 2725 2726 rc = NET_XMIT_SUCCESS; 2727 } else { 2728 skb_dst_force(skb); 2729 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2730 if (qdisc_run_begin(q)) { 2731 if (unlikely(contended)) { 2732 spin_unlock(&q->busylock); 2733 contended = false; 2734 } 2735 __qdisc_run(q); 2736 } 2737 } 2738 spin_unlock(root_lock); 2739 if (unlikely(contended)) 2740 spin_unlock(&q->busylock); 2741 return rc; 2742 } 2743 2744 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2745 static void skb_update_prio(struct sk_buff *skb) 2746 { 2747 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2748 2749 if (!skb->priority && skb->sk && map) { 2750 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2751 2752 if (prioidx < map->priomap_len) 2753 skb->priority = map->priomap[prioidx]; 2754 } 2755 } 2756 #else 2757 #define skb_update_prio(skb) 2758 #endif 2759 2760 static DEFINE_PER_CPU(int, xmit_recursion); 2761 #define RECURSION_LIMIT 10 2762 2763 /** 2764 * dev_loopback_xmit - loop back @skb 2765 * @skb: buffer to transmit 2766 */ 2767 int dev_loopback_xmit(struct sk_buff *skb) 2768 { 2769 skb_reset_mac_header(skb); 2770 __skb_pull(skb, skb_network_offset(skb)); 2771 skb->pkt_type = PACKET_LOOPBACK; 2772 skb->ip_summed = CHECKSUM_UNNECESSARY; 2773 WARN_ON(!skb_dst(skb)); 2774 skb_dst_force(skb); 2775 netif_rx_ni(skb); 2776 return 0; 2777 } 2778 EXPORT_SYMBOL(dev_loopback_xmit); 2779 2780 /** 2781 * dev_queue_xmit - transmit a buffer 2782 * @skb: buffer to transmit 2783 * 2784 * Queue a buffer for transmission to a network device. The caller must 2785 * have set the device and priority and built the buffer before calling 2786 * this function. The function can be called from an interrupt. 2787 * 2788 * A negative errno code is returned on a failure. A success does not 2789 * guarantee the frame will be transmitted as it may be dropped due 2790 * to congestion or traffic shaping. 2791 * 2792 * ----------------------------------------------------------------------------------- 2793 * I notice this method can also return errors from the queue disciplines, 2794 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2795 * be positive. 2796 * 2797 * Regardless of the return value, the skb is consumed, so it is currently 2798 * difficult to retry a send to this method. (You can bump the ref count 2799 * before sending to hold a reference for retry if you are careful.) 2800 * 2801 * When calling this method, interrupts MUST be enabled. This is because 2802 * the BH enable code must have IRQs enabled so that it will not deadlock. 2803 * --BLG 2804 */ 2805 int dev_queue_xmit(struct sk_buff *skb) 2806 { 2807 struct net_device *dev = skb->dev; 2808 struct netdev_queue *txq; 2809 struct Qdisc *q; 2810 int rc = -ENOMEM; 2811 2812 skb_reset_mac_header(skb); 2813 2814 /* Disable soft irqs for various locks below. Also 2815 * stops preemption for RCU. 2816 */ 2817 rcu_read_lock_bh(); 2818 2819 skb_update_prio(skb); 2820 2821 txq = netdev_pick_tx(dev, skb); 2822 q = rcu_dereference_bh(txq->qdisc); 2823 2824 #ifdef CONFIG_NET_CLS_ACT 2825 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2826 #endif 2827 trace_net_dev_queue(skb); 2828 if (q->enqueue) { 2829 rc = __dev_xmit_skb(skb, q, dev, txq); 2830 goto out; 2831 } 2832 2833 /* The device has no queue. Common case for software devices: 2834 loopback, all the sorts of tunnels... 2835 2836 Really, it is unlikely that netif_tx_lock protection is necessary 2837 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2838 counters.) 2839 However, it is possible, that they rely on protection 2840 made by us here. 2841 2842 Check this and shot the lock. It is not prone from deadlocks. 2843 Either shot noqueue qdisc, it is even simpler 8) 2844 */ 2845 if (dev->flags & IFF_UP) { 2846 int cpu = smp_processor_id(); /* ok because BHs are off */ 2847 2848 if (txq->xmit_lock_owner != cpu) { 2849 2850 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2851 goto recursion_alert; 2852 2853 HARD_TX_LOCK(dev, txq, cpu); 2854 2855 if (!netif_xmit_stopped(txq)) { 2856 __this_cpu_inc(xmit_recursion); 2857 rc = dev_hard_start_xmit(skb, dev, txq); 2858 __this_cpu_dec(xmit_recursion); 2859 if (dev_xmit_complete(rc)) { 2860 HARD_TX_UNLOCK(dev, txq); 2861 goto out; 2862 } 2863 } 2864 HARD_TX_UNLOCK(dev, txq); 2865 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2866 dev->name); 2867 } else { 2868 /* Recursion is detected! It is possible, 2869 * unfortunately 2870 */ 2871 recursion_alert: 2872 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2873 dev->name); 2874 } 2875 } 2876 2877 rc = -ENETDOWN; 2878 rcu_read_unlock_bh(); 2879 2880 kfree_skb(skb); 2881 return rc; 2882 out: 2883 rcu_read_unlock_bh(); 2884 return rc; 2885 } 2886 EXPORT_SYMBOL(dev_queue_xmit); 2887 2888 2889 /*======================================================================= 2890 Receiver routines 2891 =======================================================================*/ 2892 2893 int netdev_max_backlog __read_mostly = 1000; 2894 EXPORT_SYMBOL(netdev_max_backlog); 2895 2896 int netdev_tstamp_prequeue __read_mostly = 1; 2897 int netdev_budget __read_mostly = 300; 2898 int weight_p __read_mostly = 64; /* old backlog weight */ 2899 2900 /* Called with irq disabled */ 2901 static inline void ____napi_schedule(struct softnet_data *sd, 2902 struct napi_struct *napi) 2903 { 2904 list_add_tail(&napi->poll_list, &sd->poll_list); 2905 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2906 } 2907 2908 #ifdef CONFIG_RPS 2909 2910 /* One global table that all flow-based protocols share. */ 2911 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2912 EXPORT_SYMBOL(rps_sock_flow_table); 2913 2914 struct static_key rps_needed __read_mostly; 2915 2916 static struct rps_dev_flow * 2917 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2918 struct rps_dev_flow *rflow, u16 next_cpu) 2919 { 2920 if (next_cpu != RPS_NO_CPU) { 2921 #ifdef CONFIG_RFS_ACCEL 2922 struct netdev_rx_queue *rxqueue; 2923 struct rps_dev_flow_table *flow_table; 2924 struct rps_dev_flow *old_rflow; 2925 u32 flow_id; 2926 u16 rxq_index; 2927 int rc; 2928 2929 /* Should we steer this flow to a different hardware queue? */ 2930 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2931 !(dev->features & NETIF_F_NTUPLE)) 2932 goto out; 2933 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2934 if (rxq_index == skb_get_rx_queue(skb)) 2935 goto out; 2936 2937 rxqueue = dev->_rx + rxq_index; 2938 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2939 if (!flow_table) 2940 goto out; 2941 flow_id = skb->rxhash & flow_table->mask; 2942 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2943 rxq_index, flow_id); 2944 if (rc < 0) 2945 goto out; 2946 old_rflow = rflow; 2947 rflow = &flow_table->flows[flow_id]; 2948 rflow->filter = rc; 2949 if (old_rflow->filter == rflow->filter) 2950 old_rflow->filter = RPS_NO_FILTER; 2951 out: 2952 #endif 2953 rflow->last_qtail = 2954 per_cpu(softnet_data, next_cpu).input_queue_head; 2955 } 2956 2957 rflow->cpu = next_cpu; 2958 return rflow; 2959 } 2960 2961 /* 2962 * get_rps_cpu is called from netif_receive_skb and returns the target 2963 * CPU from the RPS map of the receiving queue for a given skb. 2964 * rcu_read_lock must be held on entry. 2965 */ 2966 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2967 struct rps_dev_flow **rflowp) 2968 { 2969 struct netdev_rx_queue *rxqueue; 2970 struct rps_map *map; 2971 struct rps_dev_flow_table *flow_table; 2972 struct rps_sock_flow_table *sock_flow_table; 2973 int cpu = -1; 2974 u16 tcpu; 2975 2976 if (skb_rx_queue_recorded(skb)) { 2977 u16 index = skb_get_rx_queue(skb); 2978 if (unlikely(index >= dev->real_num_rx_queues)) { 2979 WARN_ONCE(dev->real_num_rx_queues > 1, 2980 "%s received packet on queue %u, but number " 2981 "of RX queues is %u\n", 2982 dev->name, index, dev->real_num_rx_queues); 2983 goto done; 2984 } 2985 rxqueue = dev->_rx + index; 2986 } else 2987 rxqueue = dev->_rx; 2988 2989 map = rcu_dereference(rxqueue->rps_map); 2990 if (map) { 2991 if (map->len == 1 && 2992 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2993 tcpu = map->cpus[0]; 2994 if (cpu_online(tcpu)) 2995 cpu = tcpu; 2996 goto done; 2997 } 2998 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2999 goto done; 3000 } 3001 3002 skb_reset_network_header(skb); 3003 if (!skb_get_rxhash(skb)) 3004 goto done; 3005 3006 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3007 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3008 if (flow_table && sock_flow_table) { 3009 u16 next_cpu; 3010 struct rps_dev_flow *rflow; 3011 3012 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 3013 tcpu = rflow->cpu; 3014 3015 next_cpu = sock_flow_table->ents[skb->rxhash & 3016 sock_flow_table->mask]; 3017 3018 /* 3019 * If the desired CPU (where last recvmsg was done) is 3020 * different from current CPU (one in the rx-queue flow 3021 * table entry), switch if one of the following holds: 3022 * - Current CPU is unset (equal to RPS_NO_CPU). 3023 * - Current CPU is offline. 3024 * - The current CPU's queue tail has advanced beyond the 3025 * last packet that was enqueued using this table entry. 3026 * This guarantees that all previous packets for the flow 3027 * have been dequeued, thus preserving in order delivery. 3028 */ 3029 if (unlikely(tcpu != next_cpu) && 3030 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3031 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3032 rflow->last_qtail)) >= 0)) { 3033 tcpu = next_cpu; 3034 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3035 } 3036 3037 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3038 *rflowp = rflow; 3039 cpu = tcpu; 3040 goto done; 3041 } 3042 } 3043 3044 if (map) { 3045 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 3046 3047 if (cpu_online(tcpu)) { 3048 cpu = tcpu; 3049 goto done; 3050 } 3051 } 3052 3053 done: 3054 return cpu; 3055 } 3056 3057 #ifdef CONFIG_RFS_ACCEL 3058 3059 /** 3060 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3061 * @dev: Device on which the filter was set 3062 * @rxq_index: RX queue index 3063 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3064 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3065 * 3066 * Drivers that implement ndo_rx_flow_steer() should periodically call 3067 * this function for each installed filter and remove the filters for 3068 * which it returns %true. 3069 */ 3070 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3071 u32 flow_id, u16 filter_id) 3072 { 3073 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3074 struct rps_dev_flow_table *flow_table; 3075 struct rps_dev_flow *rflow; 3076 bool expire = true; 3077 int cpu; 3078 3079 rcu_read_lock(); 3080 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3081 if (flow_table && flow_id <= flow_table->mask) { 3082 rflow = &flow_table->flows[flow_id]; 3083 cpu = ACCESS_ONCE(rflow->cpu); 3084 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3085 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3086 rflow->last_qtail) < 3087 (int)(10 * flow_table->mask))) 3088 expire = false; 3089 } 3090 rcu_read_unlock(); 3091 return expire; 3092 } 3093 EXPORT_SYMBOL(rps_may_expire_flow); 3094 3095 #endif /* CONFIG_RFS_ACCEL */ 3096 3097 /* Called from hardirq (IPI) context */ 3098 static void rps_trigger_softirq(void *data) 3099 { 3100 struct softnet_data *sd = data; 3101 3102 ____napi_schedule(sd, &sd->backlog); 3103 sd->received_rps++; 3104 } 3105 3106 #endif /* CONFIG_RPS */ 3107 3108 /* 3109 * Check if this softnet_data structure is another cpu one 3110 * If yes, queue it to our IPI list and return 1 3111 * If no, return 0 3112 */ 3113 static int rps_ipi_queued(struct softnet_data *sd) 3114 { 3115 #ifdef CONFIG_RPS 3116 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3117 3118 if (sd != mysd) { 3119 sd->rps_ipi_next = mysd->rps_ipi_list; 3120 mysd->rps_ipi_list = sd; 3121 3122 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3123 return 1; 3124 } 3125 #endif /* CONFIG_RPS */ 3126 return 0; 3127 } 3128 3129 #ifdef CONFIG_NET_FLOW_LIMIT 3130 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3131 #endif 3132 3133 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3134 { 3135 #ifdef CONFIG_NET_FLOW_LIMIT 3136 struct sd_flow_limit *fl; 3137 struct softnet_data *sd; 3138 unsigned int old_flow, new_flow; 3139 3140 if (qlen < (netdev_max_backlog >> 1)) 3141 return false; 3142 3143 sd = &__get_cpu_var(softnet_data); 3144 3145 rcu_read_lock(); 3146 fl = rcu_dereference(sd->flow_limit); 3147 if (fl) { 3148 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1); 3149 old_flow = fl->history[fl->history_head]; 3150 fl->history[fl->history_head] = new_flow; 3151 3152 fl->history_head++; 3153 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3154 3155 if (likely(fl->buckets[old_flow])) 3156 fl->buckets[old_flow]--; 3157 3158 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3159 fl->count++; 3160 rcu_read_unlock(); 3161 return true; 3162 } 3163 } 3164 rcu_read_unlock(); 3165 #endif 3166 return false; 3167 } 3168 3169 /* 3170 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3171 * queue (may be a remote CPU queue). 3172 */ 3173 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3174 unsigned int *qtail) 3175 { 3176 struct softnet_data *sd; 3177 unsigned long flags; 3178 unsigned int qlen; 3179 3180 sd = &per_cpu(softnet_data, cpu); 3181 3182 local_irq_save(flags); 3183 3184 rps_lock(sd); 3185 qlen = skb_queue_len(&sd->input_pkt_queue); 3186 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3187 if (skb_queue_len(&sd->input_pkt_queue)) { 3188 enqueue: 3189 __skb_queue_tail(&sd->input_pkt_queue, skb); 3190 input_queue_tail_incr_save(sd, qtail); 3191 rps_unlock(sd); 3192 local_irq_restore(flags); 3193 return NET_RX_SUCCESS; 3194 } 3195 3196 /* Schedule NAPI for backlog device 3197 * We can use non atomic operation since we own the queue lock 3198 */ 3199 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3200 if (!rps_ipi_queued(sd)) 3201 ____napi_schedule(sd, &sd->backlog); 3202 } 3203 goto enqueue; 3204 } 3205 3206 sd->dropped++; 3207 rps_unlock(sd); 3208 3209 local_irq_restore(flags); 3210 3211 atomic_long_inc(&skb->dev->rx_dropped); 3212 kfree_skb(skb); 3213 return NET_RX_DROP; 3214 } 3215 3216 /** 3217 * netif_rx - post buffer to the network code 3218 * @skb: buffer to post 3219 * 3220 * This function receives a packet from a device driver and queues it for 3221 * the upper (protocol) levels to process. It always succeeds. The buffer 3222 * may be dropped during processing for congestion control or by the 3223 * protocol layers. 3224 * 3225 * return values: 3226 * NET_RX_SUCCESS (no congestion) 3227 * NET_RX_DROP (packet was dropped) 3228 * 3229 */ 3230 3231 int netif_rx(struct sk_buff *skb) 3232 { 3233 int ret; 3234 3235 /* if netpoll wants it, pretend we never saw it */ 3236 if (netpoll_rx(skb)) 3237 return NET_RX_DROP; 3238 3239 net_timestamp_check(netdev_tstamp_prequeue, skb); 3240 3241 trace_netif_rx(skb); 3242 #ifdef CONFIG_RPS 3243 if (static_key_false(&rps_needed)) { 3244 struct rps_dev_flow voidflow, *rflow = &voidflow; 3245 int cpu; 3246 3247 preempt_disable(); 3248 rcu_read_lock(); 3249 3250 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3251 if (cpu < 0) 3252 cpu = smp_processor_id(); 3253 3254 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3255 3256 rcu_read_unlock(); 3257 preempt_enable(); 3258 } else 3259 #endif 3260 { 3261 unsigned int qtail; 3262 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3263 put_cpu(); 3264 } 3265 return ret; 3266 } 3267 EXPORT_SYMBOL(netif_rx); 3268 3269 int netif_rx_ni(struct sk_buff *skb) 3270 { 3271 int err; 3272 3273 preempt_disable(); 3274 err = netif_rx(skb); 3275 if (local_softirq_pending()) 3276 do_softirq(); 3277 preempt_enable(); 3278 3279 return err; 3280 } 3281 EXPORT_SYMBOL(netif_rx_ni); 3282 3283 static void net_tx_action(struct softirq_action *h) 3284 { 3285 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3286 3287 if (sd->completion_queue) { 3288 struct sk_buff *clist; 3289 3290 local_irq_disable(); 3291 clist = sd->completion_queue; 3292 sd->completion_queue = NULL; 3293 local_irq_enable(); 3294 3295 while (clist) { 3296 struct sk_buff *skb = clist; 3297 clist = clist->next; 3298 3299 WARN_ON(atomic_read(&skb->users)); 3300 trace_kfree_skb(skb, net_tx_action); 3301 __kfree_skb(skb); 3302 } 3303 } 3304 3305 if (sd->output_queue) { 3306 struct Qdisc *head; 3307 3308 local_irq_disable(); 3309 head = sd->output_queue; 3310 sd->output_queue = NULL; 3311 sd->output_queue_tailp = &sd->output_queue; 3312 local_irq_enable(); 3313 3314 while (head) { 3315 struct Qdisc *q = head; 3316 spinlock_t *root_lock; 3317 3318 head = head->next_sched; 3319 3320 root_lock = qdisc_lock(q); 3321 if (spin_trylock(root_lock)) { 3322 smp_mb__before_clear_bit(); 3323 clear_bit(__QDISC_STATE_SCHED, 3324 &q->state); 3325 qdisc_run(q); 3326 spin_unlock(root_lock); 3327 } else { 3328 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3329 &q->state)) { 3330 __netif_reschedule(q); 3331 } else { 3332 smp_mb__before_clear_bit(); 3333 clear_bit(__QDISC_STATE_SCHED, 3334 &q->state); 3335 } 3336 } 3337 } 3338 } 3339 } 3340 3341 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3342 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3343 /* This hook is defined here for ATM LANE */ 3344 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3345 unsigned char *addr) __read_mostly; 3346 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3347 #endif 3348 3349 #ifdef CONFIG_NET_CLS_ACT 3350 /* TODO: Maybe we should just force sch_ingress to be compiled in 3351 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3352 * a compare and 2 stores extra right now if we dont have it on 3353 * but have CONFIG_NET_CLS_ACT 3354 * NOTE: This doesn't stop any functionality; if you dont have 3355 * the ingress scheduler, you just can't add policies on ingress. 3356 * 3357 */ 3358 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3359 { 3360 struct net_device *dev = skb->dev; 3361 u32 ttl = G_TC_RTTL(skb->tc_verd); 3362 int result = TC_ACT_OK; 3363 struct Qdisc *q; 3364 3365 if (unlikely(MAX_RED_LOOP < ttl++)) { 3366 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3367 skb->skb_iif, dev->ifindex); 3368 return TC_ACT_SHOT; 3369 } 3370 3371 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3372 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3373 3374 q = rxq->qdisc; 3375 if (q != &noop_qdisc) { 3376 spin_lock(qdisc_lock(q)); 3377 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3378 result = qdisc_enqueue_root(skb, q); 3379 spin_unlock(qdisc_lock(q)); 3380 } 3381 3382 return result; 3383 } 3384 3385 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3386 struct packet_type **pt_prev, 3387 int *ret, struct net_device *orig_dev) 3388 { 3389 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3390 3391 if (!rxq || rxq->qdisc == &noop_qdisc) 3392 goto out; 3393 3394 if (*pt_prev) { 3395 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3396 *pt_prev = NULL; 3397 } 3398 3399 switch (ing_filter(skb, rxq)) { 3400 case TC_ACT_SHOT: 3401 case TC_ACT_STOLEN: 3402 kfree_skb(skb); 3403 return NULL; 3404 } 3405 3406 out: 3407 skb->tc_verd = 0; 3408 return skb; 3409 } 3410 #endif 3411 3412 /** 3413 * netdev_rx_handler_register - register receive handler 3414 * @dev: device to register a handler for 3415 * @rx_handler: receive handler to register 3416 * @rx_handler_data: data pointer that is used by rx handler 3417 * 3418 * Register a receive hander for a device. This handler will then be 3419 * called from __netif_receive_skb. A negative errno code is returned 3420 * on a failure. 3421 * 3422 * The caller must hold the rtnl_mutex. 3423 * 3424 * For a general description of rx_handler, see enum rx_handler_result. 3425 */ 3426 int netdev_rx_handler_register(struct net_device *dev, 3427 rx_handler_func_t *rx_handler, 3428 void *rx_handler_data) 3429 { 3430 ASSERT_RTNL(); 3431 3432 if (dev->rx_handler) 3433 return -EBUSY; 3434 3435 /* Note: rx_handler_data must be set before rx_handler */ 3436 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3437 rcu_assign_pointer(dev->rx_handler, rx_handler); 3438 3439 return 0; 3440 } 3441 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3442 3443 /** 3444 * netdev_rx_handler_unregister - unregister receive handler 3445 * @dev: device to unregister a handler from 3446 * 3447 * Unregister a receive handler from a device. 3448 * 3449 * The caller must hold the rtnl_mutex. 3450 */ 3451 void netdev_rx_handler_unregister(struct net_device *dev) 3452 { 3453 3454 ASSERT_RTNL(); 3455 RCU_INIT_POINTER(dev->rx_handler, NULL); 3456 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3457 * section has a guarantee to see a non NULL rx_handler_data 3458 * as well. 3459 */ 3460 synchronize_net(); 3461 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3462 } 3463 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3464 3465 /* 3466 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3467 * the special handling of PFMEMALLOC skbs. 3468 */ 3469 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3470 { 3471 switch (skb->protocol) { 3472 case __constant_htons(ETH_P_ARP): 3473 case __constant_htons(ETH_P_IP): 3474 case __constant_htons(ETH_P_IPV6): 3475 case __constant_htons(ETH_P_8021Q): 3476 case __constant_htons(ETH_P_8021AD): 3477 return true; 3478 default: 3479 return false; 3480 } 3481 } 3482 3483 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3484 { 3485 struct packet_type *ptype, *pt_prev; 3486 rx_handler_func_t *rx_handler; 3487 struct net_device *orig_dev; 3488 struct net_device *null_or_dev; 3489 bool deliver_exact = false; 3490 int ret = NET_RX_DROP; 3491 __be16 type; 3492 3493 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3494 3495 trace_netif_receive_skb(skb); 3496 3497 /* if we've gotten here through NAPI, check netpoll */ 3498 if (netpoll_receive_skb(skb)) 3499 goto out; 3500 3501 orig_dev = skb->dev; 3502 3503 skb_reset_network_header(skb); 3504 if (!skb_transport_header_was_set(skb)) 3505 skb_reset_transport_header(skb); 3506 skb_reset_mac_len(skb); 3507 3508 pt_prev = NULL; 3509 3510 rcu_read_lock(); 3511 3512 another_round: 3513 skb->skb_iif = skb->dev->ifindex; 3514 3515 __this_cpu_inc(softnet_data.processed); 3516 3517 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3518 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3519 skb = vlan_untag(skb); 3520 if (unlikely(!skb)) 3521 goto unlock; 3522 } 3523 3524 #ifdef CONFIG_NET_CLS_ACT 3525 if (skb->tc_verd & TC_NCLS) { 3526 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3527 goto ncls; 3528 } 3529 #endif 3530 3531 if (pfmemalloc) 3532 goto skip_taps; 3533 3534 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3535 if (!ptype->dev || ptype->dev == skb->dev) { 3536 if (pt_prev) 3537 ret = deliver_skb(skb, pt_prev, orig_dev); 3538 pt_prev = ptype; 3539 } 3540 } 3541 3542 skip_taps: 3543 #ifdef CONFIG_NET_CLS_ACT 3544 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3545 if (!skb) 3546 goto unlock; 3547 ncls: 3548 #endif 3549 3550 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3551 goto drop; 3552 3553 if (vlan_tx_tag_present(skb)) { 3554 if (pt_prev) { 3555 ret = deliver_skb(skb, pt_prev, orig_dev); 3556 pt_prev = NULL; 3557 } 3558 if (vlan_do_receive(&skb)) 3559 goto another_round; 3560 else if (unlikely(!skb)) 3561 goto unlock; 3562 } 3563 3564 rx_handler = rcu_dereference(skb->dev->rx_handler); 3565 if (rx_handler) { 3566 if (pt_prev) { 3567 ret = deliver_skb(skb, pt_prev, orig_dev); 3568 pt_prev = NULL; 3569 } 3570 switch (rx_handler(&skb)) { 3571 case RX_HANDLER_CONSUMED: 3572 ret = NET_RX_SUCCESS; 3573 goto unlock; 3574 case RX_HANDLER_ANOTHER: 3575 goto another_round; 3576 case RX_HANDLER_EXACT: 3577 deliver_exact = true; 3578 case RX_HANDLER_PASS: 3579 break; 3580 default: 3581 BUG(); 3582 } 3583 } 3584 3585 if (vlan_tx_nonzero_tag_present(skb)) 3586 skb->pkt_type = PACKET_OTHERHOST; 3587 3588 /* deliver only exact match when indicated */ 3589 null_or_dev = deliver_exact ? skb->dev : NULL; 3590 3591 type = skb->protocol; 3592 list_for_each_entry_rcu(ptype, 3593 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3594 if (ptype->type == type && 3595 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3596 ptype->dev == orig_dev)) { 3597 if (pt_prev) 3598 ret = deliver_skb(skb, pt_prev, orig_dev); 3599 pt_prev = ptype; 3600 } 3601 } 3602 3603 if (pt_prev) { 3604 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3605 goto drop; 3606 else 3607 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3608 } else { 3609 drop: 3610 atomic_long_inc(&skb->dev->rx_dropped); 3611 kfree_skb(skb); 3612 /* Jamal, now you will not able to escape explaining 3613 * me how you were going to use this. :-) 3614 */ 3615 ret = NET_RX_DROP; 3616 } 3617 3618 unlock: 3619 rcu_read_unlock(); 3620 out: 3621 return ret; 3622 } 3623 3624 static int __netif_receive_skb(struct sk_buff *skb) 3625 { 3626 int ret; 3627 3628 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3629 unsigned long pflags = current->flags; 3630 3631 /* 3632 * PFMEMALLOC skbs are special, they should 3633 * - be delivered to SOCK_MEMALLOC sockets only 3634 * - stay away from userspace 3635 * - have bounded memory usage 3636 * 3637 * Use PF_MEMALLOC as this saves us from propagating the allocation 3638 * context down to all allocation sites. 3639 */ 3640 current->flags |= PF_MEMALLOC; 3641 ret = __netif_receive_skb_core(skb, true); 3642 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3643 } else 3644 ret = __netif_receive_skb_core(skb, false); 3645 3646 return ret; 3647 } 3648 3649 /** 3650 * netif_receive_skb - process receive buffer from network 3651 * @skb: buffer to process 3652 * 3653 * netif_receive_skb() is the main receive data processing function. 3654 * It always succeeds. The buffer may be dropped during processing 3655 * for congestion control or by the protocol layers. 3656 * 3657 * This function may only be called from softirq context and interrupts 3658 * should be enabled. 3659 * 3660 * Return values (usually ignored): 3661 * NET_RX_SUCCESS: no congestion 3662 * NET_RX_DROP: packet was dropped 3663 */ 3664 int netif_receive_skb(struct sk_buff *skb) 3665 { 3666 net_timestamp_check(netdev_tstamp_prequeue, skb); 3667 3668 if (skb_defer_rx_timestamp(skb)) 3669 return NET_RX_SUCCESS; 3670 3671 #ifdef CONFIG_RPS 3672 if (static_key_false(&rps_needed)) { 3673 struct rps_dev_flow voidflow, *rflow = &voidflow; 3674 int cpu, ret; 3675 3676 rcu_read_lock(); 3677 3678 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3679 3680 if (cpu >= 0) { 3681 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3682 rcu_read_unlock(); 3683 return ret; 3684 } 3685 rcu_read_unlock(); 3686 } 3687 #endif 3688 return __netif_receive_skb(skb); 3689 } 3690 EXPORT_SYMBOL(netif_receive_skb); 3691 3692 /* Network device is going away, flush any packets still pending 3693 * Called with irqs disabled. 3694 */ 3695 static void flush_backlog(void *arg) 3696 { 3697 struct net_device *dev = arg; 3698 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3699 struct sk_buff *skb, *tmp; 3700 3701 rps_lock(sd); 3702 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3703 if (skb->dev == dev) { 3704 __skb_unlink(skb, &sd->input_pkt_queue); 3705 kfree_skb(skb); 3706 input_queue_head_incr(sd); 3707 } 3708 } 3709 rps_unlock(sd); 3710 3711 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3712 if (skb->dev == dev) { 3713 __skb_unlink(skb, &sd->process_queue); 3714 kfree_skb(skb); 3715 input_queue_head_incr(sd); 3716 } 3717 } 3718 } 3719 3720 static int napi_gro_complete(struct sk_buff *skb) 3721 { 3722 struct packet_offload *ptype; 3723 __be16 type = skb->protocol; 3724 struct list_head *head = &offload_base; 3725 int err = -ENOENT; 3726 3727 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3728 3729 if (NAPI_GRO_CB(skb)->count == 1) { 3730 skb_shinfo(skb)->gso_size = 0; 3731 goto out; 3732 } 3733 3734 rcu_read_lock(); 3735 list_for_each_entry_rcu(ptype, head, list) { 3736 if (ptype->type != type || !ptype->callbacks.gro_complete) 3737 continue; 3738 3739 err = ptype->callbacks.gro_complete(skb); 3740 break; 3741 } 3742 rcu_read_unlock(); 3743 3744 if (err) { 3745 WARN_ON(&ptype->list == head); 3746 kfree_skb(skb); 3747 return NET_RX_SUCCESS; 3748 } 3749 3750 out: 3751 return netif_receive_skb(skb); 3752 } 3753 3754 /* napi->gro_list contains packets ordered by age. 3755 * youngest packets at the head of it. 3756 * Complete skbs in reverse order to reduce latencies. 3757 */ 3758 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3759 { 3760 struct sk_buff *skb, *prev = NULL; 3761 3762 /* scan list and build reverse chain */ 3763 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3764 skb->prev = prev; 3765 prev = skb; 3766 } 3767 3768 for (skb = prev; skb; skb = prev) { 3769 skb->next = NULL; 3770 3771 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3772 return; 3773 3774 prev = skb->prev; 3775 napi_gro_complete(skb); 3776 napi->gro_count--; 3777 } 3778 3779 napi->gro_list = NULL; 3780 } 3781 EXPORT_SYMBOL(napi_gro_flush); 3782 3783 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3784 { 3785 struct sk_buff *p; 3786 unsigned int maclen = skb->dev->hard_header_len; 3787 3788 for (p = napi->gro_list; p; p = p->next) { 3789 unsigned long diffs; 3790 3791 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3792 diffs |= p->vlan_tci ^ skb->vlan_tci; 3793 if (maclen == ETH_HLEN) 3794 diffs |= compare_ether_header(skb_mac_header(p), 3795 skb_gro_mac_header(skb)); 3796 else if (!diffs) 3797 diffs = memcmp(skb_mac_header(p), 3798 skb_gro_mac_header(skb), 3799 maclen); 3800 NAPI_GRO_CB(p)->same_flow = !diffs; 3801 NAPI_GRO_CB(p)->flush = 0; 3802 } 3803 } 3804 3805 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3806 { 3807 struct sk_buff **pp = NULL; 3808 struct packet_offload *ptype; 3809 __be16 type = skb->protocol; 3810 struct list_head *head = &offload_base; 3811 int same_flow; 3812 enum gro_result ret; 3813 3814 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3815 goto normal; 3816 3817 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3818 goto normal; 3819 3820 gro_list_prepare(napi, skb); 3821 3822 rcu_read_lock(); 3823 list_for_each_entry_rcu(ptype, head, list) { 3824 if (ptype->type != type || !ptype->callbacks.gro_receive) 3825 continue; 3826 3827 skb_set_network_header(skb, skb_gro_offset(skb)); 3828 skb_reset_mac_len(skb); 3829 NAPI_GRO_CB(skb)->same_flow = 0; 3830 NAPI_GRO_CB(skb)->flush = 0; 3831 NAPI_GRO_CB(skb)->free = 0; 3832 3833 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3834 break; 3835 } 3836 rcu_read_unlock(); 3837 3838 if (&ptype->list == head) 3839 goto normal; 3840 3841 same_flow = NAPI_GRO_CB(skb)->same_flow; 3842 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3843 3844 if (pp) { 3845 struct sk_buff *nskb = *pp; 3846 3847 *pp = nskb->next; 3848 nskb->next = NULL; 3849 napi_gro_complete(nskb); 3850 napi->gro_count--; 3851 } 3852 3853 if (same_flow) 3854 goto ok; 3855 3856 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3857 goto normal; 3858 3859 napi->gro_count++; 3860 NAPI_GRO_CB(skb)->count = 1; 3861 NAPI_GRO_CB(skb)->age = jiffies; 3862 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3863 skb->next = napi->gro_list; 3864 napi->gro_list = skb; 3865 ret = GRO_HELD; 3866 3867 pull: 3868 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3869 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3870 3871 BUG_ON(skb->end - skb->tail < grow); 3872 3873 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3874 3875 skb->tail += grow; 3876 skb->data_len -= grow; 3877 3878 skb_shinfo(skb)->frags[0].page_offset += grow; 3879 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3880 3881 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3882 skb_frag_unref(skb, 0); 3883 memmove(skb_shinfo(skb)->frags, 3884 skb_shinfo(skb)->frags + 1, 3885 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3886 } 3887 } 3888 3889 ok: 3890 return ret; 3891 3892 normal: 3893 ret = GRO_NORMAL; 3894 goto pull; 3895 } 3896 3897 3898 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3899 { 3900 switch (ret) { 3901 case GRO_NORMAL: 3902 if (netif_receive_skb(skb)) 3903 ret = GRO_DROP; 3904 break; 3905 3906 case GRO_DROP: 3907 kfree_skb(skb); 3908 break; 3909 3910 case GRO_MERGED_FREE: 3911 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3912 kmem_cache_free(skbuff_head_cache, skb); 3913 else 3914 __kfree_skb(skb); 3915 break; 3916 3917 case GRO_HELD: 3918 case GRO_MERGED: 3919 break; 3920 } 3921 3922 return ret; 3923 } 3924 3925 static void skb_gro_reset_offset(struct sk_buff *skb) 3926 { 3927 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3928 const skb_frag_t *frag0 = &pinfo->frags[0]; 3929 3930 NAPI_GRO_CB(skb)->data_offset = 0; 3931 NAPI_GRO_CB(skb)->frag0 = NULL; 3932 NAPI_GRO_CB(skb)->frag0_len = 0; 3933 3934 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3935 pinfo->nr_frags && 3936 !PageHighMem(skb_frag_page(frag0))) { 3937 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3938 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3939 } 3940 } 3941 3942 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3943 { 3944 skb_gro_reset_offset(skb); 3945 3946 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 3947 } 3948 EXPORT_SYMBOL(napi_gro_receive); 3949 3950 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3951 { 3952 __skb_pull(skb, skb_headlen(skb)); 3953 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3954 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3955 skb->vlan_tci = 0; 3956 skb->dev = napi->dev; 3957 skb->skb_iif = 0; 3958 3959 napi->skb = skb; 3960 } 3961 3962 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3963 { 3964 struct sk_buff *skb = napi->skb; 3965 3966 if (!skb) { 3967 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3968 if (skb) 3969 napi->skb = skb; 3970 } 3971 return skb; 3972 } 3973 EXPORT_SYMBOL(napi_get_frags); 3974 3975 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3976 gro_result_t ret) 3977 { 3978 switch (ret) { 3979 case GRO_NORMAL: 3980 case GRO_HELD: 3981 skb->protocol = eth_type_trans(skb, skb->dev); 3982 3983 if (ret == GRO_HELD) 3984 skb_gro_pull(skb, -ETH_HLEN); 3985 else if (netif_receive_skb(skb)) 3986 ret = GRO_DROP; 3987 break; 3988 3989 case GRO_DROP: 3990 case GRO_MERGED_FREE: 3991 napi_reuse_skb(napi, skb); 3992 break; 3993 3994 case GRO_MERGED: 3995 break; 3996 } 3997 3998 return ret; 3999 } 4000 4001 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4002 { 4003 struct sk_buff *skb = napi->skb; 4004 struct ethhdr *eth; 4005 unsigned int hlen; 4006 unsigned int off; 4007 4008 napi->skb = NULL; 4009 4010 skb_reset_mac_header(skb); 4011 skb_gro_reset_offset(skb); 4012 4013 off = skb_gro_offset(skb); 4014 hlen = off + sizeof(*eth); 4015 eth = skb_gro_header_fast(skb, off); 4016 if (skb_gro_header_hard(skb, hlen)) { 4017 eth = skb_gro_header_slow(skb, hlen, off); 4018 if (unlikely(!eth)) { 4019 napi_reuse_skb(napi, skb); 4020 skb = NULL; 4021 goto out; 4022 } 4023 } 4024 4025 skb_gro_pull(skb, sizeof(*eth)); 4026 4027 /* 4028 * This works because the only protocols we care about don't require 4029 * special handling. We'll fix it up properly at the end. 4030 */ 4031 skb->protocol = eth->h_proto; 4032 4033 out: 4034 return skb; 4035 } 4036 4037 gro_result_t napi_gro_frags(struct napi_struct *napi) 4038 { 4039 struct sk_buff *skb = napi_frags_skb(napi); 4040 4041 if (!skb) 4042 return GRO_DROP; 4043 4044 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4045 } 4046 EXPORT_SYMBOL(napi_gro_frags); 4047 4048 /* 4049 * net_rps_action sends any pending IPI's for rps. 4050 * Note: called with local irq disabled, but exits with local irq enabled. 4051 */ 4052 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4053 { 4054 #ifdef CONFIG_RPS 4055 struct softnet_data *remsd = sd->rps_ipi_list; 4056 4057 if (remsd) { 4058 sd->rps_ipi_list = NULL; 4059 4060 local_irq_enable(); 4061 4062 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4063 while (remsd) { 4064 struct softnet_data *next = remsd->rps_ipi_next; 4065 4066 if (cpu_online(remsd->cpu)) 4067 __smp_call_function_single(remsd->cpu, 4068 &remsd->csd, 0); 4069 remsd = next; 4070 } 4071 } else 4072 #endif 4073 local_irq_enable(); 4074 } 4075 4076 static int process_backlog(struct napi_struct *napi, int quota) 4077 { 4078 int work = 0; 4079 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4080 4081 #ifdef CONFIG_RPS 4082 /* Check if we have pending ipi, its better to send them now, 4083 * not waiting net_rx_action() end. 4084 */ 4085 if (sd->rps_ipi_list) { 4086 local_irq_disable(); 4087 net_rps_action_and_irq_enable(sd); 4088 } 4089 #endif 4090 napi->weight = weight_p; 4091 local_irq_disable(); 4092 while (work < quota) { 4093 struct sk_buff *skb; 4094 unsigned int qlen; 4095 4096 while ((skb = __skb_dequeue(&sd->process_queue))) { 4097 local_irq_enable(); 4098 __netif_receive_skb(skb); 4099 local_irq_disable(); 4100 input_queue_head_incr(sd); 4101 if (++work >= quota) { 4102 local_irq_enable(); 4103 return work; 4104 } 4105 } 4106 4107 rps_lock(sd); 4108 qlen = skb_queue_len(&sd->input_pkt_queue); 4109 if (qlen) 4110 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4111 &sd->process_queue); 4112 4113 if (qlen < quota - work) { 4114 /* 4115 * Inline a custom version of __napi_complete(). 4116 * only current cpu owns and manipulates this napi, 4117 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 4118 * we can use a plain write instead of clear_bit(), 4119 * and we dont need an smp_mb() memory barrier. 4120 */ 4121 list_del(&napi->poll_list); 4122 napi->state = 0; 4123 4124 quota = work + qlen; 4125 } 4126 rps_unlock(sd); 4127 } 4128 local_irq_enable(); 4129 4130 return work; 4131 } 4132 4133 /** 4134 * __napi_schedule - schedule for receive 4135 * @n: entry to schedule 4136 * 4137 * The entry's receive function will be scheduled to run 4138 */ 4139 void __napi_schedule(struct napi_struct *n) 4140 { 4141 unsigned long flags; 4142 4143 local_irq_save(flags); 4144 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4145 local_irq_restore(flags); 4146 } 4147 EXPORT_SYMBOL(__napi_schedule); 4148 4149 void __napi_complete(struct napi_struct *n) 4150 { 4151 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4152 BUG_ON(n->gro_list); 4153 4154 list_del(&n->poll_list); 4155 smp_mb__before_clear_bit(); 4156 clear_bit(NAPI_STATE_SCHED, &n->state); 4157 } 4158 EXPORT_SYMBOL(__napi_complete); 4159 4160 void napi_complete(struct napi_struct *n) 4161 { 4162 unsigned long flags; 4163 4164 /* 4165 * don't let napi dequeue from the cpu poll list 4166 * just in case its running on a different cpu 4167 */ 4168 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4169 return; 4170 4171 napi_gro_flush(n, false); 4172 local_irq_save(flags); 4173 __napi_complete(n); 4174 local_irq_restore(flags); 4175 } 4176 EXPORT_SYMBOL(napi_complete); 4177 4178 /* must be called under rcu_read_lock(), as we dont take a reference */ 4179 struct napi_struct *napi_by_id(unsigned int napi_id) 4180 { 4181 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4182 struct napi_struct *napi; 4183 4184 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4185 if (napi->napi_id == napi_id) 4186 return napi; 4187 4188 return NULL; 4189 } 4190 EXPORT_SYMBOL_GPL(napi_by_id); 4191 4192 void napi_hash_add(struct napi_struct *napi) 4193 { 4194 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4195 4196 spin_lock(&napi_hash_lock); 4197 4198 /* 0 is not a valid id, we also skip an id that is taken 4199 * we expect both events to be extremely rare 4200 */ 4201 napi->napi_id = 0; 4202 while (!napi->napi_id) { 4203 napi->napi_id = ++napi_gen_id; 4204 if (napi_by_id(napi->napi_id)) 4205 napi->napi_id = 0; 4206 } 4207 4208 hlist_add_head_rcu(&napi->napi_hash_node, 4209 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4210 4211 spin_unlock(&napi_hash_lock); 4212 } 4213 } 4214 EXPORT_SYMBOL_GPL(napi_hash_add); 4215 4216 /* Warning : caller is responsible to make sure rcu grace period 4217 * is respected before freeing memory containing @napi 4218 */ 4219 void napi_hash_del(struct napi_struct *napi) 4220 { 4221 spin_lock(&napi_hash_lock); 4222 4223 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4224 hlist_del_rcu(&napi->napi_hash_node); 4225 4226 spin_unlock(&napi_hash_lock); 4227 } 4228 EXPORT_SYMBOL_GPL(napi_hash_del); 4229 4230 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4231 int (*poll)(struct napi_struct *, int), int weight) 4232 { 4233 INIT_LIST_HEAD(&napi->poll_list); 4234 napi->gro_count = 0; 4235 napi->gro_list = NULL; 4236 napi->skb = NULL; 4237 napi->poll = poll; 4238 if (weight > NAPI_POLL_WEIGHT) 4239 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4240 weight, dev->name); 4241 napi->weight = weight; 4242 list_add(&napi->dev_list, &dev->napi_list); 4243 napi->dev = dev; 4244 #ifdef CONFIG_NETPOLL 4245 spin_lock_init(&napi->poll_lock); 4246 napi->poll_owner = -1; 4247 #endif 4248 set_bit(NAPI_STATE_SCHED, &napi->state); 4249 } 4250 EXPORT_SYMBOL(netif_napi_add); 4251 4252 void netif_napi_del(struct napi_struct *napi) 4253 { 4254 struct sk_buff *skb, *next; 4255 4256 list_del_init(&napi->dev_list); 4257 napi_free_frags(napi); 4258 4259 for (skb = napi->gro_list; skb; skb = next) { 4260 next = skb->next; 4261 skb->next = NULL; 4262 kfree_skb(skb); 4263 } 4264 4265 napi->gro_list = NULL; 4266 napi->gro_count = 0; 4267 } 4268 EXPORT_SYMBOL(netif_napi_del); 4269 4270 static void net_rx_action(struct softirq_action *h) 4271 { 4272 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4273 unsigned long time_limit = jiffies + 2; 4274 int budget = netdev_budget; 4275 void *have; 4276 4277 local_irq_disable(); 4278 4279 while (!list_empty(&sd->poll_list)) { 4280 struct napi_struct *n; 4281 int work, weight; 4282 4283 /* If softirq window is exhuasted then punt. 4284 * Allow this to run for 2 jiffies since which will allow 4285 * an average latency of 1.5/HZ. 4286 */ 4287 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4288 goto softnet_break; 4289 4290 local_irq_enable(); 4291 4292 /* Even though interrupts have been re-enabled, this 4293 * access is safe because interrupts can only add new 4294 * entries to the tail of this list, and only ->poll() 4295 * calls can remove this head entry from the list. 4296 */ 4297 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4298 4299 have = netpoll_poll_lock(n); 4300 4301 weight = n->weight; 4302 4303 /* This NAPI_STATE_SCHED test is for avoiding a race 4304 * with netpoll's poll_napi(). Only the entity which 4305 * obtains the lock and sees NAPI_STATE_SCHED set will 4306 * actually make the ->poll() call. Therefore we avoid 4307 * accidentally calling ->poll() when NAPI is not scheduled. 4308 */ 4309 work = 0; 4310 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4311 work = n->poll(n, weight); 4312 trace_napi_poll(n); 4313 } 4314 4315 WARN_ON_ONCE(work > weight); 4316 4317 budget -= work; 4318 4319 local_irq_disable(); 4320 4321 /* Drivers must not modify the NAPI state if they 4322 * consume the entire weight. In such cases this code 4323 * still "owns" the NAPI instance and therefore can 4324 * move the instance around on the list at-will. 4325 */ 4326 if (unlikely(work == weight)) { 4327 if (unlikely(napi_disable_pending(n))) { 4328 local_irq_enable(); 4329 napi_complete(n); 4330 local_irq_disable(); 4331 } else { 4332 if (n->gro_list) { 4333 /* flush too old packets 4334 * If HZ < 1000, flush all packets. 4335 */ 4336 local_irq_enable(); 4337 napi_gro_flush(n, HZ >= 1000); 4338 local_irq_disable(); 4339 } 4340 list_move_tail(&n->poll_list, &sd->poll_list); 4341 } 4342 } 4343 4344 netpoll_poll_unlock(have); 4345 } 4346 out: 4347 net_rps_action_and_irq_enable(sd); 4348 4349 #ifdef CONFIG_NET_DMA 4350 /* 4351 * There may not be any more sk_buffs coming right now, so push 4352 * any pending DMA copies to hardware 4353 */ 4354 dma_issue_pending_all(); 4355 #endif 4356 4357 return; 4358 4359 softnet_break: 4360 sd->time_squeeze++; 4361 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4362 goto out; 4363 } 4364 4365 struct netdev_upper { 4366 struct net_device *dev; 4367 bool master; 4368 struct list_head list; 4369 struct rcu_head rcu; 4370 struct list_head search_list; 4371 }; 4372 4373 static void __append_search_uppers(struct list_head *search_list, 4374 struct net_device *dev) 4375 { 4376 struct netdev_upper *upper; 4377 4378 list_for_each_entry(upper, &dev->upper_dev_list, list) { 4379 /* check if this upper is not already in search list */ 4380 if (list_empty(&upper->search_list)) 4381 list_add_tail(&upper->search_list, search_list); 4382 } 4383 } 4384 4385 static bool __netdev_search_upper_dev(struct net_device *dev, 4386 struct net_device *upper_dev) 4387 { 4388 LIST_HEAD(search_list); 4389 struct netdev_upper *upper; 4390 struct netdev_upper *tmp; 4391 bool ret = false; 4392 4393 __append_search_uppers(&search_list, dev); 4394 list_for_each_entry(upper, &search_list, search_list) { 4395 if (upper->dev == upper_dev) { 4396 ret = true; 4397 break; 4398 } 4399 __append_search_uppers(&search_list, upper->dev); 4400 } 4401 list_for_each_entry_safe(upper, tmp, &search_list, search_list) 4402 INIT_LIST_HEAD(&upper->search_list); 4403 return ret; 4404 } 4405 4406 static struct netdev_upper *__netdev_find_upper(struct net_device *dev, 4407 struct net_device *upper_dev) 4408 { 4409 struct netdev_upper *upper; 4410 4411 list_for_each_entry(upper, &dev->upper_dev_list, list) { 4412 if (upper->dev == upper_dev) 4413 return upper; 4414 } 4415 return NULL; 4416 } 4417 4418 /** 4419 * netdev_has_upper_dev - Check if device is linked to an upper device 4420 * @dev: device 4421 * @upper_dev: upper device to check 4422 * 4423 * Find out if a device is linked to specified upper device and return true 4424 * in case it is. Note that this checks only immediate upper device, 4425 * not through a complete stack of devices. The caller must hold the RTNL lock. 4426 */ 4427 bool netdev_has_upper_dev(struct net_device *dev, 4428 struct net_device *upper_dev) 4429 { 4430 ASSERT_RTNL(); 4431 4432 return __netdev_find_upper(dev, upper_dev); 4433 } 4434 EXPORT_SYMBOL(netdev_has_upper_dev); 4435 4436 /** 4437 * netdev_has_any_upper_dev - Check if device is linked to some device 4438 * @dev: device 4439 * 4440 * Find out if a device is linked to an upper device and return true in case 4441 * it is. The caller must hold the RTNL lock. 4442 */ 4443 bool netdev_has_any_upper_dev(struct net_device *dev) 4444 { 4445 ASSERT_RTNL(); 4446 4447 return !list_empty(&dev->upper_dev_list); 4448 } 4449 EXPORT_SYMBOL(netdev_has_any_upper_dev); 4450 4451 /** 4452 * netdev_master_upper_dev_get - Get master upper device 4453 * @dev: device 4454 * 4455 * Find a master upper device and return pointer to it or NULL in case 4456 * it's not there. The caller must hold the RTNL lock. 4457 */ 4458 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4459 { 4460 struct netdev_upper *upper; 4461 4462 ASSERT_RTNL(); 4463 4464 if (list_empty(&dev->upper_dev_list)) 4465 return NULL; 4466 4467 upper = list_first_entry(&dev->upper_dev_list, 4468 struct netdev_upper, list); 4469 if (likely(upper->master)) 4470 return upper->dev; 4471 return NULL; 4472 } 4473 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4474 4475 /** 4476 * netdev_master_upper_dev_get_rcu - Get master upper device 4477 * @dev: device 4478 * 4479 * Find a master upper device and return pointer to it or NULL in case 4480 * it's not there. The caller must hold the RCU read lock. 4481 */ 4482 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4483 { 4484 struct netdev_upper *upper; 4485 4486 upper = list_first_or_null_rcu(&dev->upper_dev_list, 4487 struct netdev_upper, list); 4488 if (upper && likely(upper->master)) 4489 return upper->dev; 4490 return NULL; 4491 } 4492 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4493 4494 static int __netdev_upper_dev_link(struct net_device *dev, 4495 struct net_device *upper_dev, bool master) 4496 { 4497 struct netdev_upper *upper; 4498 4499 ASSERT_RTNL(); 4500 4501 if (dev == upper_dev) 4502 return -EBUSY; 4503 4504 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4505 if (__netdev_search_upper_dev(upper_dev, dev)) 4506 return -EBUSY; 4507 4508 if (__netdev_find_upper(dev, upper_dev)) 4509 return -EEXIST; 4510 4511 if (master && netdev_master_upper_dev_get(dev)) 4512 return -EBUSY; 4513 4514 upper = kmalloc(sizeof(*upper), GFP_KERNEL); 4515 if (!upper) 4516 return -ENOMEM; 4517 4518 upper->dev = upper_dev; 4519 upper->master = master; 4520 INIT_LIST_HEAD(&upper->search_list); 4521 4522 /* Ensure that master upper link is always the first item in list. */ 4523 if (master) 4524 list_add_rcu(&upper->list, &dev->upper_dev_list); 4525 else 4526 list_add_tail_rcu(&upper->list, &dev->upper_dev_list); 4527 dev_hold(upper_dev); 4528 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4529 return 0; 4530 } 4531 4532 /** 4533 * netdev_upper_dev_link - Add a link to the upper device 4534 * @dev: device 4535 * @upper_dev: new upper device 4536 * 4537 * Adds a link to device which is upper to this one. The caller must hold 4538 * the RTNL lock. On a failure a negative errno code is returned. 4539 * On success the reference counts are adjusted and the function 4540 * returns zero. 4541 */ 4542 int netdev_upper_dev_link(struct net_device *dev, 4543 struct net_device *upper_dev) 4544 { 4545 return __netdev_upper_dev_link(dev, upper_dev, false); 4546 } 4547 EXPORT_SYMBOL(netdev_upper_dev_link); 4548 4549 /** 4550 * netdev_master_upper_dev_link - Add a master link to the upper device 4551 * @dev: device 4552 * @upper_dev: new upper device 4553 * 4554 * Adds a link to device which is upper to this one. In this case, only 4555 * one master upper device can be linked, although other non-master devices 4556 * might be linked as well. The caller must hold the RTNL lock. 4557 * On a failure a negative errno code is returned. On success the reference 4558 * counts are adjusted and the function returns zero. 4559 */ 4560 int netdev_master_upper_dev_link(struct net_device *dev, 4561 struct net_device *upper_dev) 4562 { 4563 return __netdev_upper_dev_link(dev, upper_dev, true); 4564 } 4565 EXPORT_SYMBOL(netdev_master_upper_dev_link); 4566 4567 /** 4568 * netdev_upper_dev_unlink - Removes a link to upper device 4569 * @dev: device 4570 * @upper_dev: new upper device 4571 * 4572 * Removes a link to device which is upper to this one. The caller must hold 4573 * the RTNL lock. 4574 */ 4575 void netdev_upper_dev_unlink(struct net_device *dev, 4576 struct net_device *upper_dev) 4577 { 4578 struct netdev_upper *upper; 4579 4580 ASSERT_RTNL(); 4581 4582 upper = __netdev_find_upper(dev, upper_dev); 4583 if (!upper) 4584 return; 4585 list_del_rcu(&upper->list); 4586 dev_put(upper_dev); 4587 kfree_rcu(upper, rcu); 4588 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4589 } 4590 EXPORT_SYMBOL(netdev_upper_dev_unlink); 4591 4592 static void dev_change_rx_flags(struct net_device *dev, int flags) 4593 { 4594 const struct net_device_ops *ops = dev->netdev_ops; 4595 4596 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4597 ops->ndo_change_rx_flags(dev, flags); 4598 } 4599 4600 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4601 { 4602 unsigned int old_flags = dev->flags; 4603 kuid_t uid; 4604 kgid_t gid; 4605 4606 ASSERT_RTNL(); 4607 4608 dev->flags |= IFF_PROMISC; 4609 dev->promiscuity += inc; 4610 if (dev->promiscuity == 0) { 4611 /* 4612 * Avoid overflow. 4613 * If inc causes overflow, untouch promisc and return error. 4614 */ 4615 if (inc < 0) 4616 dev->flags &= ~IFF_PROMISC; 4617 else { 4618 dev->promiscuity -= inc; 4619 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4620 dev->name); 4621 return -EOVERFLOW; 4622 } 4623 } 4624 if (dev->flags != old_flags) { 4625 pr_info("device %s %s promiscuous mode\n", 4626 dev->name, 4627 dev->flags & IFF_PROMISC ? "entered" : "left"); 4628 if (audit_enabled) { 4629 current_uid_gid(&uid, &gid); 4630 audit_log(current->audit_context, GFP_ATOMIC, 4631 AUDIT_ANOM_PROMISCUOUS, 4632 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4633 dev->name, (dev->flags & IFF_PROMISC), 4634 (old_flags & IFF_PROMISC), 4635 from_kuid(&init_user_ns, audit_get_loginuid(current)), 4636 from_kuid(&init_user_ns, uid), 4637 from_kgid(&init_user_ns, gid), 4638 audit_get_sessionid(current)); 4639 } 4640 4641 dev_change_rx_flags(dev, IFF_PROMISC); 4642 } 4643 return 0; 4644 } 4645 4646 /** 4647 * dev_set_promiscuity - update promiscuity count on a device 4648 * @dev: device 4649 * @inc: modifier 4650 * 4651 * Add or remove promiscuity from a device. While the count in the device 4652 * remains above zero the interface remains promiscuous. Once it hits zero 4653 * the device reverts back to normal filtering operation. A negative inc 4654 * value is used to drop promiscuity on the device. 4655 * Return 0 if successful or a negative errno code on error. 4656 */ 4657 int dev_set_promiscuity(struct net_device *dev, int inc) 4658 { 4659 unsigned int old_flags = dev->flags; 4660 int err; 4661 4662 err = __dev_set_promiscuity(dev, inc); 4663 if (err < 0) 4664 return err; 4665 if (dev->flags != old_flags) 4666 dev_set_rx_mode(dev); 4667 return err; 4668 } 4669 EXPORT_SYMBOL(dev_set_promiscuity); 4670 4671 /** 4672 * dev_set_allmulti - update allmulti count on a device 4673 * @dev: device 4674 * @inc: modifier 4675 * 4676 * Add or remove reception of all multicast frames to a device. While the 4677 * count in the device remains above zero the interface remains listening 4678 * to all interfaces. Once it hits zero the device reverts back to normal 4679 * filtering operation. A negative @inc value is used to drop the counter 4680 * when releasing a resource needing all multicasts. 4681 * Return 0 if successful or a negative errno code on error. 4682 */ 4683 4684 int dev_set_allmulti(struct net_device *dev, int inc) 4685 { 4686 unsigned int old_flags = dev->flags; 4687 4688 ASSERT_RTNL(); 4689 4690 dev->flags |= IFF_ALLMULTI; 4691 dev->allmulti += inc; 4692 if (dev->allmulti == 0) { 4693 /* 4694 * Avoid overflow. 4695 * If inc causes overflow, untouch allmulti and return error. 4696 */ 4697 if (inc < 0) 4698 dev->flags &= ~IFF_ALLMULTI; 4699 else { 4700 dev->allmulti -= inc; 4701 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4702 dev->name); 4703 return -EOVERFLOW; 4704 } 4705 } 4706 if (dev->flags ^ old_flags) { 4707 dev_change_rx_flags(dev, IFF_ALLMULTI); 4708 dev_set_rx_mode(dev); 4709 } 4710 return 0; 4711 } 4712 EXPORT_SYMBOL(dev_set_allmulti); 4713 4714 /* 4715 * Upload unicast and multicast address lists to device and 4716 * configure RX filtering. When the device doesn't support unicast 4717 * filtering it is put in promiscuous mode while unicast addresses 4718 * are present. 4719 */ 4720 void __dev_set_rx_mode(struct net_device *dev) 4721 { 4722 const struct net_device_ops *ops = dev->netdev_ops; 4723 4724 /* dev_open will call this function so the list will stay sane. */ 4725 if (!(dev->flags&IFF_UP)) 4726 return; 4727 4728 if (!netif_device_present(dev)) 4729 return; 4730 4731 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4732 /* Unicast addresses changes may only happen under the rtnl, 4733 * therefore calling __dev_set_promiscuity here is safe. 4734 */ 4735 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4736 __dev_set_promiscuity(dev, 1); 4737 dev->uc_promisc = true; 4738 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4739 __dev_set_promiscuity(dev, -1); 4740 dev->uc_promisc = false; 4741 } 4742 } 4743 4744 if (ops->ndo_set_rx_mode) 4745 ops->ndo_set_rx_mode(dev); 4746 } 4747 4748 void dev_set_rx_mode(struct net_device *dev) 4749 { 4750 netif_addr_lock_bh(dev); 4751 __dev_set_rx_mode(dev); 4752 netif_addr_unlock_bh(dev); 4753 } 4754 4755 /** 4756 * dev_get_flags - get flags reported to userspace 4757 * @dev: device 4758 * 4759 * Get the combination of flag bits exported through APIs to userspace. 4760 */ 4761 unsigned int dev_get_flags(const struct net_device *dev) 4762 { 4763 unsigned int flags; 4764 4765 flags = (dev->flags & ~(IFF_PROMISC | 4766 IFF_ALLMULTI | 4767 IFF_RUNNING | 4768 IFF_LOWER_UP | 4769 IFF_DORMANT)) | 4770 (dev->gflags & (IFF_PROMISC | 4771 IFF_ALLMULTI)); 4772 4773 if (netif_running(dev)) { 4774 if (netif_oper_up(dev)) 4775 flags |= IFF_RUNNING; 4776 if (netif_carrier_ok(dev)) 4777 flags |= IFF_LOWER_UP; 4778 if (netif_dormant(dev)) 4779 flags |= IFF_DORMANT; 4780 } 4781 4782 return flags; 4783 } 4784 EXPORT_SYMBOL(dev_get_flags); 4785 4786 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4787 { 4788 unsigned int old_flags = dev->flags; 4789 int ret; 4790 4791 ASSERT_RTNL(); 4792 4793 /* 4794 * Set the flags on our device. 4795 */ 4796 4797 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4798 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4799 IFF_AUTOMEDIA)) | 4800 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4801 IFF_ALLMULTI)); 4802 4803 /* 4804 * Load in the correct multicast list now the flags have changed. 4805 */ 4806 4807 if ((old_flags ^ flags) & IFF_MULTICAST) 4808 dev_change_rx_flags(dev, IFF_MULTICAST); 4809 4810 dev_set_rx_mode(dev); 4811 4812 /* 4813 * Have we downed the interface. We handle IFF_UP ourselves 4814 * according to user attempts to set it, rather than blindly 4815 * setting it. 4816 */ 4817 4818 ret = 0; 4819 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4820 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4821 4822 if (!ret) 4823 dev_set_rx_mode(dev); 4824 } 4825 4826 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4827 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4828 4829 dev->gflags ^= IFF_PROMISC; 4830 dev_set_promiscuity(dev, inc); 4831 } 4832 4833 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4834 is important. Some (broken) drivers set IFF_PROMISC, when 4835 IFF_ALLMULTI is requested not asking us and not reporting. 4836 */ 4837 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4838 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4839 4840 dev->gflags ^= IFF_ALLMULTI; 4841 dev_set_allmulti(dev, inc); 4842 } 4843 4844 return ret; 4845 } 4846 4847 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4848 { 4849 unsigned int changes = dev->flags ^ old_flags; 4850 4851 if (changes & IFF_UP) { 4852 if (dev->flags & IFF_UP) 4853 call_netdevice_notifiers(NETDEV_UP, dev); 4854 else 4855 call_netdevice_notifiers(NETDEV_DOWN, dev); 4856 } 4857 4858 if (dev->flags & IFF_UP && 4859 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 4860 struct netdev_notifier_change_info change_info; 4861 4862 change_info.flags_changed = changes; 4863 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 4864 &change_info.info); 4865 } 4866 } 4867 4868 /** 4869 * dev_change_flags - change device settings 4870 * @dev: device 4871 * @flags: device state flags 4872 * 4873 * Change settings on device based state flags. The flags are 4874 * in the userspace exported format. 4875 */ 4876 int dev_change_flags(struct net_device *dev, unsigned int flags) 4877 { 4878 int ret; 4879 unsigned int changes, old_flags = dev->flags; 4880 4881 ret = __dev_change_flags(dev, flags); 4882 if (ret < 0) 4883 return ret; 4884 4885 changes = old_flags ^ dev->flags; 4886 if (changes) 4887 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4888 4889 __dev_notify_flags(dev, old_flags); 4890 return ret; 4891 } 4892 EXPORT_SYMBOL(dev_change_flags); 4893 4894 /** 4895 * dev_set_mtu - Change maximum transfer unit 4896 * @dev: device 4897 * @new_mtu: new transfer unit 4898 * 4899 * Change the maximum transfer size of the network device. 4900 */ 4901 int dev_set_mtu(struct net_device *dev, int new_mtu) 4902 { 4903 const struct net_device_ops *ops = dev->netdev_ops; 4904 int err; 4905 4906 if (new_mtu == dev->mtu) 4907 return 0; 4908 4909 /* MTU must be positive. */ 4910 if (new_mtu < 0) 4911 return -EINVAL; 4912 4913 if (!netif_device_present(dev)) 4914 return -ENODEV; 4915 4916 err = 0; 4917 if (ops->ndo_change_mtu) 4918 err = ops->ndo_change_mtu(dev, new_mtu); 4919 else 4920 dev->mtu = new_mtu; 4921 4922 if (!err) 4923 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4924 return err; 4925 } 4926 EXPORT_SYMBOL(dev_set_mtu); 4927 4928 /** 4929 * dev_set_group - Change group this device belongs to 4930 * @dev: device 4931 * @new_group: group this device should belong to 4932 */ 4933 void dev_set_group(struct net_device *dev, int new_group) 4934 { 4935 dev->group = new_group; 4936 } 4937 EXPORT_SYMBOL(dev_set_group); 4938 4939 /** 4940 * dev_set_mac_address - Change Media Access Control Address 4941 * @dev: device 4942 * @sa: new address 4943 * 4944 * Change the hardware (MAC) address of the device 4945 */ 4946 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4947 { 4948 const struct net_device_ops *ops = dev->netdev_ops; 4949 int err; 4950 4951 if (!ops->ndo_set_mac_address) 4952 return -EOPNOTSUPP; 4953 if (sa->sa_family != dev->type) 4954 return -EINVAL; 4955 if (!netif_device_present(dev)) 4956 return -ENODEV; 4957 err = ops->ndo_set_mac_address(dev, sa); 4958 if (err) 4959 return err; 4960 dev->addr_assign_type = NET_ADDR_SET; 4961 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4962 add_device_randomness(dev->dev_addr, dev->addr_len); 4963 return 0; 4964 } 4965 EXPORT_SYMBOL(dev_set_mac_address); 4966 4967 /** 4968 * dev_change_carrier - Change device carrier 4969 * @dev: device 4970 * @new_carrier: new value 4971 * 4972 * Change device carrier 4973 */ 4974 int dev_change_carrier(struct net_device *dev, bool new_carrier) 4975 { 4976 const struct net_device_ops *ops = dev->netdev_ops; 4977 4978 if (!ops->ndo_change_carrier) 4979 return -EOPNOTSUPP; 4980 if (!netif_device_present(dev)) 4981 return -ENODEV; 4982 return ops->ndo_change_carrier(dev, new_carrier); 4983 } 4984 EXPORT_SYMBOL(dev_change_carrier); 4985 4986 /** 4987 * dev_new_index - allocate an ifindex 4988 * @net: the applicable net namespace 4989 * 4990 * Returns a suitable unique value for a new device interface 4991 * number. The caller must hold the rtnl semaphore or the 4992 * dev_base_lock to be sure it remains unique. 4993 */ 4994 static int dev_new_index(struct net *net) 4995 { 4996 int ifindex = net->ifindex; 4997 for (;;) { 4998 if (++ifindex <= 0) 4999 ifindex = 1; 5000 if (!__dev_get_by_index(net, ifindex)) 5001 return net->ifindex = ifindex; 5002 } 5003 } 5004 5005 /* Delayed registration/unregisteration */ 5006 static LIST_HEAD(net_todo_list); 5007 5008 static void net_set_todo(struct net_device *dev) 5009 { 5010 list_add_tail(&dev->todo_list, &net_todo_list); 5011 } 5012 5013 static void rollback_registered_many(struct list_head *head) 5014 { 5015 struct net_device *dev, *tmp; 5016 5017 BUG_ON(dev_boot_phase); 5018 ASSERT_RTNL(); 5019 5020 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5021 /* Some devices call without registering 5022 * for initialization unwind. Remove those 5023 * devices and proceed with the remaining. 5024 */ 5025 if (dev->reg_state == NETREG_UNINITIALIZED) { 5026 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5027 dev->name, dev); 5028 5029 WARN_ON(1); 5030 list_del(&dev->unreg_list); 5031 continue; 5032 } 5033 dev->dismantle = true; 5034 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5035 } 5036 5037 /* If device is running, close it first. */ 5038 dev_close_many(head); 5039 5040 list_for_each_entry(dev, head, unreg_list) { 5041 /* And unlink it from device chain. */ 5042 unlist_netdevice(dev); 5043 5044 dev->reg_state = NETREG_UNREGISTERING; 5045 } 5046 5047 synchronize_net(); 5048 5049 list_for_each_entry(dev, head, unreg_list) { 5050 /* Shutdown queueing discipline. */ 5051 dev_shutdown(dev); 5052 5053 5054 /* Notify protocols, that we are about to destroy 5055 this device. They should clean all the things. 5056 */ 5057 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5058 5059 if (!dev->rtnl_link_ops || 5060 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5061 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5062 5063 /* 5064 * Flush the unicast and multicast chains 5065 */ 5066 dev_uc_flush(dev); 5067 dev_mc_flush(dev); 5068 5069 if (dev->netdev_ops->ndo_uninit) 5070 dev->netdev_ops->ndo_uninit(dev); 5071 5072 /* Notifier chain MUST detach us all upper devices. */ 5073 WARN_ON(netdev_has_any_upper_dev(dev)); 5074 5075 /* Remove entries from kobject tree */ 5076 netdev_unregister_kobject(dev); 5077 #ifdef CONFIG_XPS 5078 /* Remove XPS queueing entries */ 5079 netif_reset_xps_queues_gt(dev, 0); 5080 #endif 5081 } 5082 5083 synchronize_net(); 5084 5085 list_for_each_entry(dev, head, unreg_list) 5086 dev_put(dev); 5087 } 5088 5089 static void rollback_registered(struct net_device *dev) 5090 { 5091 LIST_HEAD(single); 5092 5093 list_add(&dev->unreg_list, &single); 5094 rollback_registered_many(&single); 5095 list_del(&single); 5096 } 5097 5098 static netdev_features_t netdev_fix_features(struct net_device *dev, 5099 netdev_features_t features) 5100 { 5101 /* Fix illegal checksum combinations */ 5102 if ((features & NETIF_F_HW_CSUM) && 5103 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5104 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5105 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5106 } 5107 5108 /* TSO requires that SG is present as well. */ 5109 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5110 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5111 features &= ~NETIF_F_ALL_TSO; 5112 } 5113 5114 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5115 !(features & NETIF_F_IP_CSUM)) { 5116 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5117 features &= ~NETIF_F_TSO; 5118 features &= ~NETIF_F_TSO_ECN; 5119 } 5120 5121 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5122 !(features & NETIF_F_IPV6_CSUM)) { 5123 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5124 features &= ~NETIF_F_TSO6; 5125 } 5126 5127 /* TSO ECN requires that TSO is present as well. */ 5128 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5129 features &= ~NETIF_F_TSO_ECN; 5130 5131 /* Software GSO depends on SG. */ 5132 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5133 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5134 features &= ~NETIF_F_GSO; 5135 } 5136 5137 /* UFO needs SG and checksumming */ 5138 if (features & NETIF_F_UFO) { 5139 /* maybe split UFO into V4 and V6? */ 5140 if (!((features & NETIF_F_GEN_CSUM) || 5141 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5142 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5143 netdev_dbg(dev, 5144 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5145 features &= ~NETIF_F_UFO; 5146 } 5147 5148 if (!(features & NETIF_F_SG)) { 5149 netdev_dbg(dev, 5150 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5151 features &= ~NETIF_F_UFO; 5152 } 5153 } 5154 5155 return features; 5156 } 5157 5158 int __netdev_update_features(struct net_device *dev) 5159 { 5160 netdev_features_t features; 5161 int err = 0; 5162 5163 ASSERT_RTNL(); 5164 5165 features = netdev_get_wanted_features(dev); 5166 5167 if (dev->netdev_ops->ndo_fix_features) 5168 features = dev->netdev_ops->ndo_fix_features(dev, features); 5169 5170 /* driver might be less strict about feature dependencies */ 5171 features = netdev_fix_features(dev, features); 5172 5173 if (dev->features == features) 5174 return 0; 5175 5176 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5177 &dev->features, &features); 5178 5179 if (dev->netdev_ops->ndo_set_features) 5180 err = dev->netdev_ops->ndo_set_features(dev, features); 5181 5182 if (unlikely(err < 0)) { 5183 netdev_err(dev, 5184 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5185 err, &features, &dev->features); 5186 return -1; 5187 } 5188 5189 if (!err) 5190 dev->features = features; 5191 5192 return 1; 5193 } 5194 5195 /** 5196 * netdev_update_features - recalculate device features 5197 * @dev: the device to check 5198 * 5199 * Recalculate dev->features set and send notifications if it 5200 * has changed. Should be called after driver or hardware dependent 5201 * conditions might have changed that influence the features. 5202 */ 5203 void netdev_update_features(struct net_device *dev) 5204 { 5205 if (__netdev_update_features(dev)) 5206 netdev_features_change(dev); 5207 } 5208 EXPORT_SYMBOL(netdev_update_features); 5209 5210 /** 5211 * netdev_change_features - recalculate device features 5212 * @dev: the device to check 5213 * 5214 * Recalculate dev->features set and send notifications even 5215 * if they have not changed. Should be called instead of 5216 * netdev_update_features() if also dev->vlan_features might 5217 * have changed to allow the changes to be propagated to stacked 5218 * VLAN devices. 5219 */ 5220 void netdev_change_features(struct net_device *dev) 5221 { 5222 __netdev_update_features(dev); 5223 netdev_features_change(dev); 5224 } 5225 EXPORT_SYMBOL(netdev_change_features); 5226 5227 /** 5228 * netif_stacked_transfer_operstate - transfer operstate 5229 * @rootdev: the root or lower level device to transfer state from 5230 * @dev: the device to transfer operstate to 5231 * 5232 * Transfer operational state from root to device. This is normally 5233 * called when a stacking relationship exists between the root 5234 * device and the device(a leaf device). 5235 */ 5236 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5237 struct net_device *dev) 5238 { 5239 if (rootdev->operstate == IF_OPER_DORMANT) 5240 netif_dormant_on(dev); 5241 else 5242 netif_dormant_off(dev); 5243 5244 if (netif_carrier_ok(rootdev)) { 5245 if (!netif_carrier_ok(dev)) 5246 netif_carrier_on(dev); 5247 } else { 5248 if (netif_carrier_ok(dev)) 5249 netif_carrier_off(dev); 5250 } 5251 } 5252 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5253 5254 #ifdef CONFIG_RPS 5255 static int netif_alloc_rx_queues(struct net_device *dev) 5256 { 5257 unsigned int i, count = dev->num_rx_queues; 5258 struct netdev_rx_queue *rx; 5259 5260 BUG_ON(count < 1); 5261 5262 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5263 if (!rx) 5264 return -ENOMEM; 5265 5266 dev->_rx = rx; 5267 5268 for (i = 0; i < count; i++) 5269 rx[i].dev = dev; 5270 return 0; 5271 } 5272 #endif 5273 5274 static void netdev_init_one_queue(struct net_device *dev, 5275 struct netdev_queue *queue, void *_unused) 5276 { 5277 /* Initialize queue lock */ 5278 spin_lock_init(&queue->_xmit_lock); 5279 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5280 queue->xmit_lock_owner = -1; 5281 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5282 queue->dev = dev; 5283 #ifdef CONFIG_BQL 5284 dql_init(&queue->dql, HZ); 5285 #endif 5286 } 5287 5288 static void netif_free_tx_queues(struct net_device *dev) 5289 { 5290 if (is_vmalloc_addr(dev->_tx)) 5291 vfree(dev->_tx); 5292 else 5293 kfree(dev->_tx); 5294 } 5295 5296 static int netif_alloc_netdev_queues(struct net_device *dev) 5297 { 5298 unsigned int count = dev->num_tx_queues; 5299 struct netdev_queue *tx; 5300 size_t sz = count * sizeof(*tx); 5301 5302 BUG_ON(count < 1 || count > 0xffff); 5303 5304 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 5305 if (!tx) { 5306 tx = vzalloc(sz); 5307 if (!tx) 5308 return -ENOMEM; 5309 } 5310 dev->_tx = tx; 5311 5312 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5313 spin_lock_init(&dev->tx_global_lock); 5314 5315 return 0; 5316 } 5317 5318 /** 5319 * register_netdevice - register a network device 5320 * @dev: device to register 5321 * 5322 * Take a completed network device structure and add it to the kernel 5323 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5324 * chain. 0 is returned on success. A negative errno code is returned 5325 * on a failure to set up the device, or if the name is a duplicate. 5326 * 5327 * Callers must hold the rtnl semaphore. You may want 5328 * register_netdev() instead of this. 5329 * 5330 * BUGS: 5331 * The locking appears insufficient to guarantee two parallel registers 5332 * will not get the same name. 5333 */ 5334 5335 int register_netdevice(struct net_device *dev) 5336 { 5337 int ret; 5338 struct net *net = dev_net(dev); 5339 5340 BUG_ON(dev_boot_phase); 5341 ASSERT_RTNL(); 5342 5343 might_sleep(); 5344 5345 /* When net_device's are persistent, this will be fatal. */ 5346 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5347 BUG_ON(!net); 5348 5349 spin_lock_init(&dev->addr_list_lock); 5350 netdev_set_addr_lockdep_class(dev); 5351 5352 dev->iflink = -1; 5353 5354 ret = dev_get_valid_name(net, dev, dev->name); 5355 if (ret < 0) 5356 goto out; 5357 5358 /* Init, if this function is available */ 5359 if (dev->netdev_ops->ndo_init) { 5360 ret = dev->netdev_ops->ndo_init(dev); 5361 if (ret) { 5362 if (ret > 0) 5363 ret = -EIO; 5364 goto out; 5365 } 5366 } 5367 5368 if (((dev->hw_features | dev->features) & 5369 NETIF_F_HW_VLAN_CTAG_FILTER) && 5370 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5371 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5372 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5373 ret = -EINVAL; 5374 goto err_uninit; 5375 } 5376 5377 ret = -EBUSY; 5378 if (!dev->ifindex) 5379 dev->ifindex = dev_new_index(net); 5380 else if (__dev_get_by_index(net, dev->ifindex)) 5381 goto err_uninit; 5382 5383 if (dev->iflink == -1) 5384 dev->iflink = dev->ifindex; 5385 5386 /* Transfer changeable features to wanted_features and enable 5387 * software offloads (GSO and GRO). 5388 */ 5389 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5390 dev->features |= NETIF_F_SOFT_FEATURES; 5391 dev->wanted_features = dev->features & dev->hw_features; 5392 5393 /* Turn on no cache copy if HW is doing checksum */ 5394 if (!(dev->flags & IFF_LOOPBACK)) { 5395 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5396 if (dev->features & NETIF_F_ALL_CSUM) { 5397 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5398 dev->features |= NETIF_F_NOCACHE_COPY; 5399 } 5400 } 5401 5402 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5403 */ 5404 dev->vlan_features |= NETIF_F_HIGHDMA; 5405 5406 /* Make NETIF_F_SG inheritable to tunnel devices. 5407 */ 5408 dev->hw_enc_features |= NETIF_F_SG; 5409 5410 /* Make NETIF_F_SG inheritable to MPLS. 5411 */ 5412 dev->mpls_features |= NETIF_F_SG; 5413 5414 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5415 ret = notifier_to_errno(ret); 5416 if (ret) 5417 goto err_uninit; 5418 5419 ret = netdev_register_kobject(dev); 5420 if (ret) 5421 goto err_uninit; 5422 dev->reg_state = NETREG_REGISTERED; 5423 5424 __netdev_update_features(dev); 5425 5426 /* 5427 * Default initial state at registry is that the 5428 * device is present. 5429 */ 5430 5431 set_bit(__LINK_STATE_PRESENT, &dev->state); 5432 5433 linkwatch_init_dev(dev); 5434 5435 dev_init_scheduler(dev); 5436 dev_hold(dev); 5437 list_netdevice(dev); 5438 add_device_randomness(dev->dev_addr, dev->addr_len); 5439 5440 /* If the device has permanent device address, driver should 5441 * set dev_addr and also addr_assign_type should be set to 5442 * NET_ADDR_PERM (default value). 5443 */ 5444 if (dev->addr_assign_type == NET_ADDR_PERM) 5445 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5446 5447 /* Notify protocols, that a new device appeared. */ 5448 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5449 ret = notifier_to_errno(ret); 5450 if (ret) { 5451 rollback_registered(dev); 5452 dev->reg_state = NETREG_UNREGISTERED; 5453 } 5454 /* 5455 * Prevent userspace races by waiting until the network 5456 * device is fully setup before sending notifications. 5457 */ 5458 if (!dev->rtnl_link_ops || 5459 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5460 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5461 5462 out: 5463 return ret; 5464 5465 err_uninit: 5466 if (dev->netdev_ops->ndo_uninit) 5467 dev->netdev_ops->ndo_uninit(dev); 5468 goto out; 5469 } 5470 EXPORT_SYMBOL(register_netdevice); 5471 5472 /** 5473 * init_dummy_netdev - init a dummy network device for NAPI 5474 * @dev: device to init 5475 * 5476 * This takes a network device structure and initialize the minimum 5477 * amount of fields so it can be used to schedule NAPI polls without 5478 * registering a full blown interface. This is to be used by drivers 5479 * that need to tie several hardware interfaces to a single NAPI 5480 * poll scheduler due to HW limitations. 5481 */ 5482 int init_dummy_netdev(struct net_device *dev) 5483 { 5484 /* Clear everything. Note we don't initialize spinlocks 5485 * are they aren't supposed to be taken by any of the 5486 * NAPI code and this dummy netdev is supposed to be 5487 * only ever used for NAPI polls 5488 */ 5489 memset(dev, 0, sizeof(struct net_device)); 5490 5491 /* make sure we BUG if trying to hit standard 5492 * register/unregister code path 5493 */ 5494 dev->reg_state = NETREG_DUMMY; 5495 5496 /* NAPI wants this */ 5497 INIT_LIST_HEAD(&dev->napi_list); 5498 5499 /* a dummy interface is started by default */ 5500 set_bit(__LINK_STATE_PRESENT, &dev->state); 5501 set_bit(__LINK_STATE_START, &dev->state); 5502 5503 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5504 * because users of this 'device' dont need to change 5505 * its refcount. 5506 */ 5507 5508 return 0; 5509 } 5510 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5511 5512 5513 /** 5514 * register_netdev - register a network device 5515 * @dev: device to register 5516 * 5517 * Take a completed network device structure and add it to the kernel 5518 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5519 * chain. 0 is returned on success. A negative errno code is returned 5520 * on a failure to set up the device, or if the name is a duplicate. 5521 * 5522 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5523 * and expands the device name if you passed a format string to 5524 * alloc_netdev. 5525 */ 5526 int register_netdev(struct net_device *dev) 5527 { 5528 int err; 5529 5530 rtnl_lock(); 5531 err = register_netdevice(dev); 5532 rtnl_unlock(); 5533 return err; 5534 } 5535 EXPORT_SYMBOL(register_netdev); 5536 5537 int netdev_refcnt_read(const struct net_device *dev) 5538 { 5539 int i, refcnt = 0; 5540 5541 for_each_possible_cpu(i) 5542 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5543 return refcnt; 5544 } 5545 EXPORT_SYMBOL(netdev_refcnt_read); 5546 5547 /** 5548 * netdev_wait_allrefs - wait until all references are gone. 5549 * @dev: target net_device 5550 * 5551 * This is called when unregistering network devices. 5552 * 5553 * Any protocol or device that holds a reference should register 5554 * for netdevice notification, and cleanup and put back the 5555 * reference if they receive an UNREGISTER event. 5556 * We can get stuck here if buggy protocols don't correctly 5557 * call dev_put. 5558 */ 5559 static void netdev_wait_allrefs(struct net_device *dev) 5560 { 5561 unsigned long rebroadcast_time, warning_time; 5562 int refcnt; 5563 5564 linkwatch_forget_dev(dev); 5565 5566 rebroadcast_time = warning_time = jiffies; 5567 refcnt = netdev_refcnt_read(dev); 5568 5569 while (refcnt != 0) { 5570 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5571 rtnl_lock(); 5572 5573 /* Rebroadcast unregister notification */ 5574 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5575 5576 __rtnl_unlock(); 5577 rcu_barrier(); 5578 rtnl_lock(); 5579 5580 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5581 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5582 &dev->state)) { 5583 /* We must not have linkwatch events 5584 * pending on unregister. If this 5585 * happens, we simply run the queue 5586 * unscheduled, resulting in a noop 5587 * for this device. 5588 */ 5589 linkwatch_run_queue(); 5590 } 5591 5592 __rtnl_unlock(); 5593 5594 rebroadcast_time = jiffies; 5595 } 5596 5597 msleep(250); 5598 5599 refcnt = netdev_refcnt_read(dev); 5600 5601 if (time_after(jiffies, warning_time + 10 * HZ)) { 5602 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5603 dev->name, refcnt); 5604 warning_time = jiffies; 5605 } 5606 } 5607 } 5608 5609 /* The sequence is: 5610 * 5611 * rtnl_lock(); 5612 * ... 5613 * register_netdevice(x1); 5614 * register_netdevice(x2); 5615 * ... 5616 * unregister_netdevice(y1); 5617 * unregister_netdevice(y2); 5618 * ... 5619 * rtnl_unlock(); 5620 * free_netdev(y1); 5621 * free_netdev(y2); 5622 * 5623 * We are invoked by rtnl_unlock(). 5624 * This allows us to deal with problems: 5625 * 1) We can delete sysfs objects which invoke hotplug 5626 * without deadlocking with linkwatch via keventd. 5627 * 2) Since we run with the RTNL semaphore not held, we can sleep 5628 * safely in order to wait for the netdev refcnt to drop to zero. 5629 * 5630 * We must not return until all unregister events added during 5631 * the interval the lock was held have been completed. 5632 */ 5633 void netdev_run_todo(void) 5634 { 5635 struct list_head list; 5636 5637 /* Snapshot list, allow later requests */ 5638 list_replace_init(&net_todo_list, &list); 5639 5640 __rtnl_unlock(); 5641 5642 5643 /* Wait for rcu callbacks to finish before next phase */ 5644 if (!list_empty(&list)) 5645 rcu_barrier(); 5646 5647 while (!list_empty(&list)) { 5648 struct net_device *dev 5649 = list_first_entry(&list, struct net_device, todo_list); 5650 list_del(&dev->todo_list); 5651 5652 rtnl_lock(); 5653 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5654 __rtnl_unlock(); 5655 5656 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5657 pr_err("network todo '%s' but state %d\n", 5658 dev->name, dev->reg_state); 5659 dump_stack(); 5660 continue; 5661 } 5662 5663 dev->reg_state = NETREG_UNREGISTERED; 5664 5665 on_each_cpu(flush_backlog, dev, 1); 5666 5667 netdev_wait_allrefs(dev); 5668 5669 /* paranoia */ 5670 BUG_ON(netdev_refcnt_read(dev)); 5671 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5672 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5673 WARN_ON(dev->dn_ptr); 5674 5675 if (dev->destructor) 5676 dev->destructor(dev); 5677 5678 /* Free network device */ 5679 kobject_put(&dev->dev.kobj); 5680 } 5681 } 5682 5683 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5684 * fields in the same order, with only the type differing. 5685 */ 5686 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5687 const struct net_device_stats *netdev_stats) 5688 { 5689 #if BITS_PER_LONG == 64 5690 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5691 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5692 #else 5693 size_t i, n = sizeof(*stats64) / sizeof(u64); 5694 const unsigned long *src = (const unsigned long *)netdev_stats; 5695 u64 *dst = (u64 *)stats64; 5696 5697 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5698 sizeof(*stats64) / sizeof(u64)); 5699 for (i = 0; i < n; i++) 5700 dst[i] = src[i]; 5701 #endif 5702 } 5703 EXPORT_SYMBOL(netdev_stats_to_stats64); 5704 5705 /** 5706 * dev_get_stats - get network device statistics 5707 * @dev: device to get statistics from 5708 * @storage: place to store stats 5709 * 5710 * Get network statistics from device. Return @storage. 5711 * The device driver may provide its own method by setting 5712 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5713 * otherwise the internal statistics structure is used. 5714 */ 5715 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5716 struct rtnl_link_stats64 *storage) 5717 { 5718 const struct net_device_ops *ops = dev->netdev_ops; 5719 5720 if (ops->ndo_get_stats64) { 5721 memset(storage, 0, sizeof(*storage)); 5722 ops->ndo_get_stats64(dev, storage); 5723 } else if (ops->ndo_get_stats) { 5724 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5725 } else { 5726 netdev_stats_to_stats64(storage, &dev->stats); 5727 } 5728 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5729 return storage; 5730 } 5731 EXPORT_SYMBOL(dev_get_stats); 5732 5733 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5734 { 5735 struct netdev_queue *queue = dev_ingress_queue(dev); 5736 5737 #ifdef CONFIG_NET_CLS_ACT 5738 if (queue) 5739 return queue; 5740 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5741 if (!queue) 5742 return NULL; 5743 netdev_init_one_queue(dev, queue, NULL); 5744 queue->qdisc = &noop_qdisc; 5745 queue->qdisc_sleeping = &noop_qdisc; 5746 rcu_assign_pointer(dev->ingress_queue, queue); 5747 #endif 5748 return queue; 5749 } 5750 5751 static const struct ethtool_ops default_ethtool_ops; 5752 5753 void netdev_set_default_ethtool_ops(struct net_device *dev, 5754 const struct ethtool_ops *ops) 5755 { 5756 if (dev->ethtool_ops == &default_ethtool_ops) 5757 dev->ethtool_ops = ops; 5758 } 5759 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 5760 5761 /** 5762 * alloc_netdev_mqs - allocate network device 5763 * @sizeof_priv: size of private data to allocate space for 5764 * @name: device name format string 5765 * @setup: callback to initialize device 5766 * @txqs: the number of TX subqueues to allocate 5767 * @rxqs: the number of RX subqueues to allocate 5768 * 5769 * Allocates a struct net_device with private data area for driver use 5770 * and performs basic initialization. Also allocates subquue structs 5771 * for each queue on the device. 5772 */ 5773 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5774 void (*setup)(struct net_device *), 5775 unsigned int txqs, unsigned int rxqs) 5776 { 5777 struct net_device *dev; 5778 size_t alloc_size; 5779 struct net_device *p; 5780 5781 BUG_ON(strlen(name) >= sizeof(dev->name)); 5782 5783 if (txqs < 1) { 5784 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5785 return NULL; 5786 } 5787 5788 #ifdef CONFIG_RPS 5789 if (rxqs < 1) { 5790 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5791 return NULL; 5792 } 5793 #endif 5794 5795 alloc_size = sizeof(struct net_device); 5796 if (sizeof_priv) { 5797 /* ensure 32-byte alignment of private area */ 5798 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5799 alloc_size += sizeof_priv; 5800 } 5801 /* ensure 32-byte alignment of whole construct */ 5802 alloc_size += NETDEV_ALIGN - 1; 5803 5804 p = kzalloc(alloc_size, GFP_KERNEL); 5805 if (!p) 5806 return NULL; 5807 5808 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5809 dev->padded = (char *)dev - (char *)p; 5810 5811 dev->pcpu_refcnt = alloc_percpu(int); 5812 if (!dev->pcpu_refcnt) 5813 goto free_p; 5814 5815 if (dev_addr_init(dev)) 5816 goto free_pcpu; 5817 5818 dev_mc_init(dev); 5819 dev_uc_init(dev); 5820 5821 dev_net_set(dev, &init_net); 5822 5823 dev->gso_max_size = GSO_MAX_SIZE; 5824 dev->gso_max_segs = GSO_MAX_SEGS; 5825 5826 INIT_LIST_HEAD(&dev->napi_list); 5827 INIT_LIST_HEAD(&dev->unreg_list); 5828 INIT_LIST_HEAD(&dev->link_watch_list); 5829 INIT_LIST_HEAD(&dev->upper_dev_list); 5830 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5831 setup(dev); 5832 5833 dev->num_tx_queues = txqs; 5834 dev->real_num_tx_queues = txqs; 5835 if (netif_alloc_netdev_queues(dev)) 5836 goto free_all; 5837 5838 #ifdef CONFIG_RPS 5839 dev->num_rx_queues = rxqs; 5840 dev->real_num_rx_queues = rxqs; 5841 if (netif_alloc_rx_queues(dev)) 5842 goto free_all; 5843 #endif 5844 5845 strcpy(dev->name, name); 5846 dev->group = INIT_NETDEV_GROUP; 5847 if (!dev->ethtool_ops) 5848 dev->ethtool_ops = &default_ethtool_ops; 5849 return dev; 5850 5851 free_all: 5852 free_netdev(dev); 5853 return NULL; 5854 5855 free_pcpu: 5856 free_percpu(dev->pcpu_refcnt); 5857 netif_free_tx_queues(dev); 5858 #ifdef CONFIG_RPS 5859 kfree(dev->_rx); 5860 #endif 5861 5862 free_p: 5863 kfree(p); 5864 return NULL; 5865 } 5866 EXPORT_SYMBOL(alloc_netdev_mqs); 5867 5868 /** 5869 * free_netdev - free network device 5870 * @dev: device 5871 * 5872 * This function does the last stage of destroying an allocated device 5873 * interface. The reference to the device object is released. 5874 * If this is the last reference then it will be freed. 5875 */ 5876 void free_netdev(struct net_device *dev) 5877 { 5878 struct napi_struct *p, *n; 5879 5880 release_net(dev_net(dev)); 5881 5882 netif_free_tx_queues(dev); 5883 #ifdef CONFIG_RPS 5884 kfree(dev->_rx); 5885 #endif 5886 5887 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 5888 5889 /* Flush device addresses */ 5890 dev_addr_flush(dev); 5891 5892 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5893 netif_napi_del(p); 5894 5895 free_percpu(dev->pcpu_refcnt); 5896 dev->pcpu_refcnt = NULL; 5897 5898 /* Compatibility with error handling in drivers */ 5899 if (dev->reg_state == NETREG_UNINITIALIZED) { 5900 kfree((char *)dev - dev->padded); 5901 return; 5902 } 5903 5904 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5905 dev->reg_state = NETREG_RELEASED; 5906 5907 /* will free via device release */ 5908 put_device(&dev->dev); 5909 } 5910 EXPORT_SYMBOL(free_netdev); 5911 5912 /** 5913 * synchronize_net - Synchronize with packet receive processing 5914 * 5915 * Wait for packets currently being received to be done. 5916 * Does not block later packets from starting. 5917 */ 5918 void synchronize_net(void) 5919 { 5920 might_sleep(); 5921 if (rtnl_is_locked()) 5922 synchronize_rcu_expedited(); 5923 else 5924 synchronize_rcu(); 5925 } 5926 EXPORT_SYMBOL(synchronize_net); 5927 5928 /** 5929 * unregister_netdevice_queue - remove device from the kernel 5930 * @dev: device 5931 * @head: list 5932 * 5933 * This function shuts down a device interface and removes it 5934 * from the kernel tables. 5935 * If head not NULL, device is queued to be unregistered later. 5936 * 5937 * Callers must hold the rtnl semaphore. You may want 5938 * unregister_netdev() instead of this. 5939 */ 5940 5941 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5942 { 5943 ASSERT_RTNL(); 5944 5945 if (head) { 5946 list_move_tail(&dev->unreg_list, head); 5947 } else { 5948 rollback_registered(dev); 5949 /* Finish processing unregister after unlock */ 5950 net_set_todo(dev); 5951 } 5952 } 5953 EXPORT_SYMBOL(unregister_netdevice_queue); 5954 5955 /** 5956 * unregister_netdevice_many - unregister many devices 5957 * @head: list of devices 5958 */ 5959 void unregister_netdevice_many(struct list_head *head) 5960 { 5961 struct net_device *dev; 5962 5963 if (!list_empty(head)) { 5964 rollback_registered_many(head); 5965 list_for_each_entry(dev, head, unreg_list) 5966 net_set_todo(dev); 5967 } 5968 } 5969 EXPORT_SYMBOL(unregister_netdevice_many); 5970 5971 /** 5972 * unregister_netdev - remove device from the kernel 5973 * @dev: device 5974 * 5975 * This function shuts down a device interface and removes it 5976 * from the kernel tables. 5977 * 5978 * This is just a wrapper for unregister_netdevice that takes 5979 * the rtnl semaphore. In general you want to use this and not 5980 * unregister_netdevice. 5981 */ 5982 void unregister_netdev(struct net_device *dev) 5983 { 5984 rtnl_lock(); 5985 unregister_netdevice(dev); 5986 rtnl_unlock(); 5987 } 5988 EXPORT_SYMBOL(unregister_netdev); 5989 5990 /** 5991 * dev_change_net_namespace - move device to different nethost namespace 5992 * @dev: device 5993 * @net: network namespace 5994 * @pat: If not NULL name pattern to try if the current device name 5995 * is already taken in the destination network namespace. 5996 * 5997 * This function shuts down a device interface and moves it 5998 * to a new network namespace. On success 0 is returned, on 5999 * a failure a netagive errno code is returned. 6000 * 6001 * Callers must hold the rtnl semaphore. 6002 */ 6003 6004 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6005 { 6006 int err; 6007 6008 ASSERT_RTNL(); 6009 6010 /* Don't allow namespace local devices to be moved. */ 6011 err = -EINVAL; 6012 if (dev->features & NETIF_F_NETNS_LOCAL) 6013 goto out; 6014 6015 /* Ensure the device has been registrered */ 6016 if (dev->reg_state != NETREG_REGISTERED) 6017 goto out; 6018 6019 /* Get out if there is nothing todo */ 6020 err = 0; 6021 if (net_eq(dev_net(dev), net)) 6022 goto out; 6023 6024 /* Pick the destination device name, and ensure 6025 * we can use it in the destination network namespace. 6026 */ 6027 err = -EEXIST; 6028 if (__dev_get_by_name(net, dev->name)) { 6029 /* We get here if we can't use the current device name */ 6030 if (!pat) 6031 goto out; 6032 if (dev_get_valid_name(net, dev, pat) < 0) 6033 goto out; 6034 } 6035 6036 /* 6037 * And now a mini version of register_netdevice unregister_netdevice. 6038 */ 6039 6040 /* If device is running close it first. */ 6041 dev_close(dev); 6042 6043 /* And unlink it from device chain */ 6044 err = -ENODEV; 6045 unlist_netdevice(dev); 6046 6047 synchronize_net(); 6048 6049 /* Shutdown queueing discipline. */ 6050 dev_shutdown(dev); 6051 6052 /* Notify protocols, that we are about to destroy 6053 this device. They should clean all the things. 6054 6055 Note that dev->reg_state stays at NETREG_REGISTERED. 6056 This is wanted because this way 8021q and macvlan know 6057 the device is just moving and can keep their slaves up. 6058 */ 6059 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6060 rcu_barrier(); 6061 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6062 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6063 6064 /* 6065 * Flush the unicast and multicast chains 6066 */ 6067 dev_uc_flush(dev); 6068 dev_mc_flush(dev); 6069 6070 /* Send a netdev-removed uevent to the old namespace */ 6071 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6072 6073 /* Actually switch the network namespace */ 6074 dev_net_set(dev, net); 6075 6076 /* If there is an ifindex conflict assign a new one */ 6077 if (__dev_get_by_index(net, dev->ifindex)) { 6078 int iflink = (dev->iflink == dev->ifindex); 6079 dev->ifindex = dev_new_index(net); 6080 if (iflink) 6081 dev->iflink = dev->ifindex; 6082 } 6083 6084 /* Send a netdev-add uevent to the new namespace */ 6085 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6086 6087 /* Fixup kobjects */ 6088 err = device_rename(&dev->dev, dev->name); 6089 WARN_ON(err); 6090 6091 /* Add the device back in the hashes */ 6092 list_netdevice(dev); 6093 6094 /* Notify protocols, that a new device appeared. */ 6095 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6096 6097 /* 6098 * Prevent userspace races by waiting until the network 6099 * device is fully setup before sending notifications. 6100 */ 6101 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6102 6103 synchronize_net(); 6104 err = 0; 6105 out: 6106 return err; 6107 } 6108 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6109 6110 static int dev_cpu_callback(struct notifier_block *nfb, 6111 unsigned long action, 6112 void *ocpu) 6113 { 6114 struct sk_buff **list_skb; 6115 struct sk_buff *skb; 6116 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6117 struct softnet_data *sd, *oldsd; 6118 6119 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6120 return NOTIFY_OK; 6121 6122 local_irq_disable(); 6123 cpu = smp_processor_id(); 6124 sd = &per_cpu(softnet_data, cpu); 6125 oldsd = &per_cpu(softnet_data, oldcpu); 6126 6127 /* Find end of our completion_queue. */ 6128 list_skb = &sd->completion_queue; 6129 while (*list_skb) 6130 list_skb = &(*list_skb)->next; 6131 /* Append completion queue from offline CPU. */ 6132 *list_skb = oldsd->completion_queue; 6133 oldsd->completion_queue = NULL; 6134 6135 /* Append output queue from offline CPU. */ 6136 if (oldsd->output_queue) { 6137 *sd->output_queue_tailp = oldsd->output_queue; 6138 sd->output_queue_tailp = oldsd->output_queue_tailp; 6139 oldsd->output_queue = NULL; 6140 oldsd->output_queue_tailp = &oldsd->output_queue; 6141 } 6142 /* Append NAPI poll list from offline CPU. */ 6143 if (!list_empty(&oldsd->poll_list)) { 6144 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6145 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6146 } 6147 6148 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6149 local_irq_enable(); 6150 6151 /* Process offline CPU's input_pkt_queue */ 6152 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6153 netif_rx(skb); 6154 input_queue_head_incr(oldsd); 6155 } 6156 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6157 netif_rx(skb); 6158 input_queue_head_incr(oldsd); 6159 } 6160 6161 return NOTIFY_OK; 6162 } 6163 6164 6165 /** 6166 * netdev_increment_features - increment feature set by one 6167 * @all: current feature set 6168 * @one: new feature set 6169 * @mask: mask feature set 6170 * 6171 * Computes a new feature set after adding a device with feature set 6172 * @one to the master device with current feature set @all. Will not 6173 * enable anything that is off in @mask. Returns the new feature set. 6174 */ 6175 netdev_features_t netdev_increment_features(netdev_features_t all, 6176 netdev_features_t one, netdev_features_t mask) 6177 { 6178 if (mask & NETIF_F_GEN_CSUM) 6179 mask |= NETIF_F_ALL_CSUM; 6180 mask |= NETIF_F_VLAN_CHALLENGED; 6181 6182 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6183 all &= one | ~NETIF_F_ALL_FOR_ALL; 6184 6185 /* If one device supports hw checksumming, set for all. */ 6186 if (all & NETIF_F_GEN_CSUM) 6187 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6188 6189 return all; 6190 } 6191 EXPORT_SYMBOL(netdev_increment_features); 6192 6193 static struct hlist_head * __net_init netdev_create_hash(void) 6194 { 6195 int i; 6196 struct hlist_head *hash; 6197 6198 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6199 if (hash != NULL) 6200 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6201 INIT_HLIST_HEAD(&hash[i]); 6202 6203 return hash; 6204 } 6205 6206 /* Initialize per network namespace state */ 6207 static int __net_init netdev_init(struct net *net) 6208 { 6209 if (net != &init_net) 6210 INIT_LIST_HEAD(&net->dev_base_head); 6211 6212 net->dev_name_head = netdev_create_hash(); 6213 if (net->dev_name_head == NULL) 6214 goto err_name; 6215 6216 net->dev_index_head = netdev_create_hash(); 6217 if (net->dev_index_head == NULL) 6218 goto err_idx; 6219 6220 return 0; 6221 6222 err_idx: 6223 kfree(net->dev_name_head); 6224 err_name: 6225 return -ENOMEM; 6226 } 6227 6228 /** 6229 * netdev_drivername - network driver for the device 6230 * @dev: network device 6231 * 6232 * Determine network driver for device. 6233 */ 6234 const char *netdev_drivername(const struct net_device *dev) 6235 { 6236 const struct device_driver *driver; 6237 const struct device *parent; 6238 const char *empty = ""; 6239 6240 parent = dev->dev.parent; 6241 if (!parent) 6242 return empty; 6243 6244 driver = parent->driver; 6245 if (driver && driver->name) 6246 return driver->name; 6247 return empty; 6248 } 6249 6250 static int __netdev_printk(const char *level, const struct net_device *dev, 6251 struct va_format *vaf) 6252 { 6253 int r; 6254 6255 if (dev && dev->dev.parent) { 6256 r = dev_printk_emit(level[1] - '0', 6257 dev->dev.parent, 6258 "%s %s %s: %pV", 6259 dev_driver_string(dev->dev.parent), 6260 dev_name(dev->dev.parent), 6261 netdev_name(dev), vaf); 6262 } else if (dev) { 6263 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6264 } else { 6265 r = printk("%s(NULL net_device): %pV", level, vaf); 6266 } 6267 6268 return r; 6269 } 6270 6271 int netdev_printk(const char *level, const struct net_device *dev, 6272 const char *format, ...) 6273 { 6274 struct va_format vaf; 6275 va_list args; 6276 int r; 6277 6278 va_start(args, format); 6279 6280 vaf.fmt = format; 6281 vaf.va = &args; 6282 6283 r = __netdev_printk(level, dev, &vaf); 6284 6285 va_end(args); 6286 6287 return r; 6288 } 6289 EXPORT_SYMBOL(netdev_printk); 6290 6291 #define define_netdev_printk_level(func, level) \ 6292 int func(const struct net_device *dev, const char *fmt, ...) \ 6293 { \ 6294 int r; \ 6295 struct va_format vaf; \ 6296 va_list args; \ 6297 \ 6298 va_start(args, fmt); \ 6299 \ 6300 vaf.fmt = fmt; \ 6301 vaf.va = &args; \ 6302 \ 6303 r = __netdev_printk(level, dev, &vaf); \ 6304 \ 6305 va_end(args); \ 6306 \ 6307 return r; \ 6308 } \ 6309 EXPORT_SYMBOL(func); 6310 6311 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6312 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6313 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6314 define_netdev_printk_level(netdev_err, KERN_ERR); 6315 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6316 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6317 define_netdev_printk_level(netdev_info, KERN_INFO); 6318 6319 static void __net_exit netdev_exit(struct net *net) 6320 { 6321 kfree(net->dev_name_head); 6322 kfree(net->dev_index_head); 6323 } 6324 6325 static struct pernet_operations __net_initdata netdev_net_ops = { 6326 .init = netdev_init, 6327 .exit = netdev_exit, 6328 }; 6329 6330 static void __net_exit default_device_exit(struct net *net) 6331 { 6332 struct net_device *dev, *aux; 6333 /* 6334 * Push all migratable network devices back to the 6335 * initial network namespace 6336 */ 6337 rtnl_lock(); 6338 for_each_netdev_safe(net, dev, aux) { 6339 int err; 6340 char fb_name[IFNAMSIZ]; 6341 6342 /* Ignore unmoveable devices (i.e. loopback) */ 6343 if (dev->features & NETIF_F_NETNS_LOCAL) 6344 continue; 6345 6346 /* Leave virtual devices for the generic cleanup */ 6347 if (dev->rtnl_link_ops) 6348 continue; 6349 6350 /* Push remaining network devices to init_net */ 6351 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6352 err = dev_change_net_namespace(dev, &init_net, fb_name); 6353 if (err) { 6354 pr_emerg("%s: failed to move %s to init_net: %d\n", 6355 __func__, dev->name, err); 6356 BUG(); 6357 } 6358 } 6359 rtnl_unlock(); 6360 } 6361 6362 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6363 { 6364 /* At exit all network devices most be removed from a network 6365 * namespace. Do this in the reverse order of registration. 6366 * Do this across as many network namespaces as possible to 6367 * improve batching efficiency. 6368 */ 6369 struct net_device *dev; 6370 struct net *net; 6371 LIST_HEAD(dev_kill_list); 6372 6373 rtnl_lock(); 6374 list_for_each_entry(net, net_list, exit_list) { 6375 for_each_netdev_reverse(net, dev) { 6376 if (dev->rtnl_link_ops) 6377 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6378 else 6379 unregister_netdevice_queue(dev, &dev_kill_list); 6380 } 6381 } 6382 unregister_netdevice_many(&dev_kill_list); 6383 list_del(&dev_kill_list); 6384 rtnl_unlock(); 6385 } 6386 6387 static struct pernet_operations __net_initdata default_device_ops = { 6388 .exit = default_device_exit, 6389 .exit_batch = default_device_exit_batch, 6390 }; 6391 6392 /* 6393 * Initialize the DEV module. At boot time this walks the device list and 6394 * unhooks any devices that fail to initialise (normally hardware not 6395 * present) and leaves us with a valid list of present and active devices. 6396 * 6397 */ 6398 6399 /* 6400 * This is called single threaded during boot, so no need 6401 * to take the rtnl semaphore. 6402 */ 6403 static int __init net_dev_init(void) 6404 { 6405 int i, rc = -ENOMEM; 6406 6407 BUG_ON(!dev_boot_phase); 6408 6409 if (dev_proc_init()) 6410 goto out; 6411 6412 if (netdev_kobject_init()) 6413 goto out; 6414 6415 INIT_LIST_HEAD(&ptype_all); 6416 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6417 INIT_LIST_HEAD(&ptype_base[i]); 6418 6419 INIT_LIST_HEAD(&offload_base); 6420 6421 if (register_pernet_subsys(&netdev_net_ops)) 6422 goto out; 6423 6424 /* 6425 * Initialise the packet receive queues. 6426 */ 6427 6428 for_each_possible_cpu(i) { 6429 struct softnet_data *sd = &per_cpu(softnet_data, i); 6430 6431 memset(sd, 0, sizeof(*sd)); 6432 skb_queue_head_init(&sd->input_pkt_queue); 6433 skb_queue_head_init(&sd->process_queue); 6434 sd->completion_queue = NULL; 6435 INIT_LIST_HEAD(&sd->poll_list); 6436 sd->output_queue = NULL; 6437 sd->output_queue_tailp = &sd->output_queue; 6438 #ifdef CONFIG_RPS 6439 sd->csd.func = rps_trigger_softirq; 6440 sd->csd.info = sd; 6441 sd->csd.flags = 0; 6442 sd->cpu = i; 6443 #endif 6444 6445 sd->backlog.poll = process_backlog; 6446 sd->backlog.weight = weight_p; 6447 sd->backlog.gro_list = NULL; 6448 sd->backlog.gro_count = 0; 6449 6450 #ifdef CONFIG_NET_FLOW_LIMIT 6451 sd->flow_limit = NULL; 6452 #endif 6453 } 6454 6455 dev_boot_phase = 0; 6456 6457 /* The loopback device is special if any other network devices 6458 * is present in a network namespace the loopback device must 6459 * be present. Since we now dynamically allocate and free the 6460 * loopback device ensure this invariant is maintained by 6461 * keeping the loopback device as the first device on the 6462 * list of network devices. Ensuring the loopback devices 6463 * is the first device that appears and the last network device 6464 * that disappears. 6465 */ 6466 if (register_pernet_device(&loopback_net_ops)) 6467 goto out; 6468 6469 if (register_pernet_device(&default_device_ops)) 6470 goto out; 6471 6472 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6473 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6474 6475 hotcpu_notifier(dev_cpu_callback, 0); 6476 dst_init(); 6477 rc = 0; 6478 out: 6479 return rc; 6480 } 6481 6482 subsys_initcall(net_dev_init); 6483