xref: /linux/net/core/dev.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 
135 #include "net-sysfs.h"
136 
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139 
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142 
143 static DEFINE_SPINLOCK(ptype_lock);
144 static DEFINE_SPINLOCK(offload_lock);
145 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
146 struct list_head ptype_all __read_mostly;	/* Taps */
147 static struct list_head offload_base __read_mostly;
148 
149 /*
150  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
151  * semaphore.
152  *
153  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
154  *
155  * Writers must hold the rtnl semaphore while they loop through the
156  * dev_base_head list, and hold dev_base_lock for writing when they do the
157  * actual updates.  This allows pure readers to access the list even
158  * while a writer is preparing to update it.
159  *
160  * To put it another way, dev_base_lock is held for writing only to
161  * protect against pure readers; the rtnl semaphore provides the
162  * protection against other writers.
163  *
164  * See, for example usages, register_netdevice() and
165  * unregister_netdevice(), which must be called with the rtnl
166  * semaphore held.
167  */
168 DEFINE_RWLOCK(dev_base_lock);
169 EXPORT_SYMBOL(dev_base_lock);
170 
171 /* protects napi_hash addition/deletion and napi_gen_id */
172 static DEFINE_SPINLOCK(napi_hash_lock);
173 
174 static unsigned int napi_gen_id;
175 static DEFINE_HASHTABLE(napi_hash, 8);
176 
177 seqcount_t devnet_rename_seq;
178 
179 static inline void dev_base_seq_inc(struct net *net)
180 {
181 	while (++net->dev_base_seq == 0);
182 }
183 
184 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
185 {
186 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
187 
188 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
189 }
190 
191 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
192 {
193 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
194 }
195 
196 static inline void rps_lock(struct softnet_data *sd)
197 {
198 #ifdef CONFIG_RPS
199 	spin_lock(&sd->input_pkt_queue.lock);
200 #endif
201 }
202 
203 static inline void rps_unlock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 	spin_unlock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209 
210 /* Device list insertion */
211 static void list_netdevice(struct net_device *dev)
212 {
213 	struct net *net = dev_net(dev);
214 
215 	ASSERT_RTNL();
216 
217 	write_lock_bh(&dev_base_lock);
218 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
219 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
220 	hlist_add_head_rcu(&dev->index_hlist,
221 			   dev_index_hash(net, dev->ifindex));
222 	write_unlock_bh(&dev_base_lock);
223 
224 	dev_base_seq_inc(net);
225 }
226 
227 /* Device list removal
228  * caller must respect a RCU grace period before freeing/reusing dev
229  */
230 static void unlist_netdevice(struct net_device *dev)
231 {
232 	ASSERT_RTNL();
233 
234 	/* Unlink dev from the device chain */
235 	write_lock_bh(&dev_base_lock);
236 	list_del_rcu(&dev->dev_list);
237 	hlist_del_rcu(&dev->name_hlist);
238 	hlist_del_rcu(&dev->index_hlist);
239 	write_unlock_bh(&dev_base_lock);
240 
241 	dev_base_seq_inc(dev_net(dev));
242 }
243 
244 /*
245  *	Our notifier list
246  */
247 
248 static RAW_NOTIFIER_HEAD(netdev_chain);
249 
250 /*
251  *	Device drivers call our routines to queue packets here. We empty the
252  *	queue in the local softnet handler.
253  */
254 
255 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
256 EXPORT_PER_CPU_SYMBOL(softnet_data);
257 
258 #ifdef CONFIG_LOCKDEP
259 /*
260  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
261  * according to dev->type
262  */
263 static const unsigned short netdev_lock_type[] =
264 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
265 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
266 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
267 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
268 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
269 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
270 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
271 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
272 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
273 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
274 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
275 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
276 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
277 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
278 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
279 
280 static const char *const netdev_lock_name[] =
281 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
282 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
283 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
284 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
285 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
286 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
287 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
288 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
289 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
290 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
291 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
292 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
293 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
294 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
295 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
296 
297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
298 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
299 
300 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301 {
302 	int i;
303 
304 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 		if (netdev_lock_type[i] == dev_type)
306 			return i;
307 	/* the last key is used by default */
308 	return ARRAY_SIZE(netdev_lock_type) - 1;
309 }
310 
311 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
312 						 unsigned short dev_type)
313 {
314 	int i;
315 
316 	i = netdev_lock_pos(dev_type);
317 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 				   netdev_lock_name[i]);
319 }
320 
321 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
322 {
323 	int i;
324 
325 	i = netdev_lock_pos(dev->type);
326 	lockdep_set_class_and_name(&dev->addr_list_lock,
327 				   &netdev_addr_lock_key[i],
328 				   netdev_lock_name[i]);
329 }
330 #else
331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332 						 unsigned short dev_type)
333 {
334 }
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 }
338 #endif
339 
340 /*******************************************************************************
341 
342 		Protocol management and registration routines
343 
344 *******************************************************************************/
345 
346 /*
347  *	Add a protocol ID to the list. Now that the input handler is
348  *	smarter we can dispense with all the messy stuff that used to be
349  *	here.
350  *
351  *	BEWARE!!! Protocol handlers, mangling input packets,
352  *	MUST BE last in hash buckets and checking protocol handlers
353  *	MUST start from promiscuous ptype_all chain in net_bh.
354  *	It is true now, do not change it.
355  *	Explanation follows: if protocol handler, mangling packet, will
356  *	be the first on list, it is not able to sense, that packet
357  *	is cloned and should be copied-on-write, so that it will
358  *	change it and subsequent readers will get broken packet.
359  *							--ANK (980803)
360  */
361 
362 static inline struct list_head *ptype_head(const struct packet_type *pt)
363 {
364 	if (pt->type == htons(ETH_P_ALL))
365 		return &ptype_all;
366 	else
367 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
368 }
369 
370 /**
371  *	dev_add_pack - add packet handler
372  *	@pt: packet type declaration
373  *
374  *	Add a protocol handler to the networking stack. The passed &packet_type
375  *	is linked into kernel lists and may not be freed until it has been
376  *	removed from the kernel lists.
377  *
378  *	This call does not sleep therefore it can not
379  *	guarantee all CPU's that are in middle of receiving packets
380  *	will see the new packet type (until the next received packet).
381  */
382 
383 void dev_add_pack(struct packet_type *pt)
384 {
385 	struct list_head *head = ptype_head(pt);
386 
387 	spin_lock(&ptype_lock);
388 	list_add_rcu(&pt->list, head);
389 	spin_unlock(&ptype_lock);
390 }
391 EXPORT_SYMBOL(dev_add_pack);
392 
393 /**
394  *	__dev_remove_pack	 - remove packet handler
395  *	@pt: packet type declaration
396  *
397  *	Remove a protocol handler that was previously added to the kernel
398  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
399  *	from the kernel lists and can be freed or reused once this function
400  *	returns.
401  *
402  *      The packet type might still be in use by receivers
403  *	and must not be freed until after all the CPU's have gone
404  *	through a quiescent state.
405  */
406 void __dev_remove_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 	struct packet_type *pt1;
410 
411 	spin_lock(&ptype_lock);
412 
413 	list_for_each_entry(pt1, head, list) {
414 		if (pt == pt1) {
415 			list_del_rcu(&pt->list);
416 			goto out;
417 		}
418 	}
419 
420 	pr_warn("dev_remove_pack: %p not found\n", pt);
421 out:
422 	spin_unlock(&ptype_lock);
423 }
424 EXPORT_SYMBOL(__dev_remove_pack);
425 
426 /**
427  *	dev_remove_pack	 - remove packet handler
428  *	@pt: packet type declaration
429  *
430  *	Remove a protocol handler that was previously added to the kernel
431  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
432  *	from the kernel lists and can be freed or reused once this function
433  *	returns.
434  *
435  *	This call sleeps to guarantee that no CPU is looking at the packet
436  *	type after return.
437  */
438 void dev_remove_pack(struct packet_type *pt)
439 {
440 	__dev_remove_pack(pt);
441 
442 	synchronize_net();
443 }
444 EXPORT_SYMBOL(dev_remove_pack);
445 
446 
447 /**
448  *	dev_add_offload - register offload handlers
449  *	@po: protocol offload declaration
450  *
451  *	Add protocol offload handlers to the networking stack. The passed
452  *	&proto_offload is linked into kernel lists and may not be freed until
453  *	it has been removed from the kernel lists.
454  *
455  *	This call does not sleep therefore it can not
456  *	guarantee all CPU's that are in middle of receiving packets
457  *	will see the new offload handlers (until the next received packet).
458  */
459 void dev_add_offload(struct packet_offload *po)
460 {
461 	struct list_head *head = &offload_base;
462 
463 	spin_lock(&offload_lock);
464 	list_add_rcu(&po->list, head);
465 	spin_unlock(&offload_lock);
466 }
467 EXPORT_SYMBOL(dev_add_offload);
468 
469 /**
470  *	__dev_remove_offload	 - remove offload handler
471  *	@po: packet offload declaration
472  *
473  *	Remove a protocol offload handler that was previously added to the
474  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
475  *	is removed from the kernel lists and can be freed or reused once this
476  *	function returns.
477  *
478  *      The packet type might still be in use by receivers
479  *	and must not be freed until after all the CPU's have gone
480  *	through a quiescent state.
481  */
482 void __dev_remove_offload(struct packet_offload *po)
483 {
484 	struct list_head *head = &offload_base;
485 	struct packet_offload *po1;
486 
487 	spin_lock(&offload_lock);
488 
489 	list_for_each_entry(po1, head, list) {
490 		if (po == po1) {
491 			list_del_rcu(&po->list);
492 			goto out;
493 		}
494 	}
495 
496 	pr_warn("dev_remove_offload: %p not found\n", po);
497 out:
498 	spin_unlock(&offload_lock);
499 }
500 EXPORT_SYMBOL(__dev_remove_offload);
501 
502 /**
503  *	dev_remove_offload	 - remove packet offload handler
504  *	@po: packet offload declaration
505  *
506  *	Remove a packet offload handler that was previously added to the kernel
507  *	offload handlers by dev_add_offload(). The passed &offload_type is
508  *	removed from the kernel lists and can be freed or reused once this
509  *	function returns.
510  *
511  *	This call sleeps to guarantee that no CPU is looking at the packet
512  *	type after return.
513  */
514 void dev_remove_offload(struct packet_offload *po)
515 {
516 	__dev_remove_offload(po);
517 
518 	synchronize_net();
519 }
520 EXPORT_SYMBOL(dev_remove_offload);
521 
522 /******************************************************************************
523 
524 		      Device Boot-time Settings Routines
525 
526 *******************************************************************************/
527 
528 /* Boot time configuration table */
529 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
530 
531 /**
532  *	netdev_boot_setup_add	- add new setup entry
533  *	@name: name of the device
534  *	@map: configured settings for the device
535  *
536  *	Adds new setup entry to the dev_boot_setup list.  The function
537  *	returns 0 on error and 1 on success.  This is a generic routine to
538  *	all netdevices.
539  */
540 static int netdev_boot_setup_add(char *name, struct ifmap *map)
541 {
542 	struct netdev_boot_setup *s;
543 	int i;
544 
545 	s = dev_boot_setup;
546 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
547 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
548 			memset(s[i].name, 0, sizeof(s[i].name));
549 			strlcpy(s[i].name, name, IFNAMSIZ);
550 			memcpy(&s[i].map, map, sizeof(s[i].map));
551 			break;
552 		}
553 	}
554 
555 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
556 }
557 
558 /**
559  *	netdev_boot_setup_check	- check boot time settings
560  *	@dev: the netdevice
561  *
562  * 	Check boot time settings for the device.
563  *	The found settings are set for the device to be used
564  *	later in the device probing.
565  *	Returns 0 if no settings found, 1 if they are.
566  */
567 int netdev_boot_setup_check(struct net_device *dev)
568 {
569 	struct netdev_boot_setup *s = dev_boot_setup;
570 	int i;
571 
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
574 		    !strcmp(dev->name, s[i].name)) {
575 			dev->irq 	= s[i].map.irq;
576 			dev->base_addr 	= s[i].map.base_addr;
577 			dev->mem_start 	= s[i].map.mem_start;
578 			dev->mem_end 	= s[i].map.mem_end;
579 			return 1;
580 		}
581 	}
582 	return 0;
583 }
584 EXPORT_SYMBOL(netdev_boot_setup_check);
585 
586 
587 /**
588  *	netdev_boot_base	- get address from boot time settings
589  *	@prefix: prefix for network device
590  *	@unit: id for network device
591  *
592  * 	Check boot time settings for the base address of device.
593  *	The found settings are set for the device to be used
594  *	later in the device probing.
595  *	Returns 0 if no settings found.
596  */
597 unsigned long netdev_boot_base(const char *prefix, int unit)
598 {
599 	const struct netdev_boot_setup *s = dev_boot_setup;
600 	char name[IFNAMSIZ];
601 	int i;
602 
603 	sprintf(name, "%s%d", prefix, unit);
604 
605 	/*
606 	 * If device already registered then return base of 1
607 	 * to indicate not to probe for this interface
608 	 */
609 	if (__dev_get_by_name(&init_net, name))
610 		return 1;
611 
612 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
613 		if (!strcmp(name, s[i].name))
614 			return s[i].map.base_addr;
615 	return 0;
616 }
617 
618 /*
619  * Saves at boot time configured settings for any netdevice.
620  */
621 int __init netdev_boot_setup(char *str)
622 {
623 	int ints[5];
624 	struct ifmap map;
625 
626 	str = get_options(str, ARRAY_SIZE(ints), ints);
627 	if (!str || !*str)
628 		return 0;
629 
630 	/* Save settings */
631 	memset(&map, 0, sizeof(map));
632 	if (ints[0] > 0)
633 		map.irq = ints[1];
634 	if (ints[0] > 1)
635 		map.base_addr = ints[2];
636 	if (ints[0] > 2)
637 		map.mem_start = ints[3];
638 	if (ints[0] > 3)
639 		map.mem_end = ints[4];
640 
641 	/* Add new entry to the list */
642 	return netdev_boot_setup_add(str, &map);
643 }
644 
645 __setup("netdev=", netdev_boot_setup);
646 
647 /*******************************************************************************
648 
649 			    Device Interface Subroutines
650 
651 *******************************************************************************/
652 
653 /**
654  *	__dev_get_by_name	- find a device by its name
655  *	@net: the applicable net namespace
656  *	@name: name to find
657  *
658  *	Find an interface by name. Must be called under RTNL semaphore
659  *	or @dev_base_lock. If the name is found a pointer to the device
660  *	is returned. If the name is not found then %NULL is returned. The
661  *	reference counters are not incremented so the caller must be
662  *	careful with locks.
663  */
664 
665 struct net_device *__dev_get_by_name(struct net *net, const char *name)
666 {
667 	struct net_device *dev;
668 	struct hlist_head *head = dev_name_hash(net, name);
669 
670 	hlist_for_each_entry(dev, head, name_hlist)
671 		if (!strncmp(dev->name, name, IFNAMSIZ))
672 			return dev;
673 
674 	return NULL;
675 }
676 EXPORT_SYMBOL(__dev_get_by_name);
677 
678 /**
679  *	dev_get_by_name_rcu	- find a device by its name
680  *	@net: the applicable net namespace
681  *	@name: name to find
682  *
683  *	Find an interface by name.
684  *	If the name is found a pointer to the device is returned.
685  * 	If the name is not found then %NULL is returned.
686  *	The reference counters are not incremented so the caller must be
687  *	careful with locks. The caller must hold RCU lock.
688  */
689 
690 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
691 {
692 	struct net_device *dev;
693 	struct hlist_head *head = dev_name_hash(net, name);
694 
695 	hlist_for_each_entry_rcu(dev, head, name_hlist)
696 		if (!strncmp(dev->name, name, IFNAMSIZ))
697 			return dev;
698 
699 	return NULL;
700 }
701 EXPORT_SYMBOL(dev_get_by_name_rcu);
702 
703 /**
704  *	dev_get_by_name		- find a device by its name
705  *	@net: the applicable net namespace
706  *	@name: name to find
707  *
708  *	Find an interface by name. This can be called from any
709  *	context and does its own locking. The returned handle has
710  *	the usage count incremented and the caller must use dev_put() to
711  *	release it when it is no longer needed. %NULL is returned if no
712  *	matching device is found.
713  */
714 
715 struct net_device *dev_get_by_name(struct net *net, const char *name)
716 {
717 	struct net_device *dev;
718 
719 	rcu_read_lock();
720 	dev = dev_get_by_name_rcu(net, name);
721 	if (dev)
722 		dev_hold(dev);
723 	rcu_read_unlock();
724 	return dev;
725 }
726 EXPORT_SYMBOL(dev_get_by_name);
727 
728 /**
729  *	__dev_get_by_index - find a device by its ifindex
730  *	@net: the applicable net namespace
731  *	@ifindex: index of device
732  *
733  *	Search for an interface by index. Returns %NULL if the device
734  *	is not found or a pointer to the device. The device has not
735  *	had its reference counter increased so the caller must be careful
736  *	about locking. The caller must hold either the RTNL semaphore
737  *	or @dev_base_lock.
738  */
739 
740 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
741 {
742 	struct net_device *dev;
743 	struct hlist_head *head = dev_index_hash(net, ifindex);
744 
745 	hlist_for_each_entry(dev, head, index_hlist)
746 		if (dev->ifindex == ifindex)
747 			return dev;
748 
749 	return NULL;
750 }
751 EXPORT_SYMBOL(__dev_get_by_index);
752 
753 /**
754  *	dev_get_by_index_rcu - find a device by its ifindex
755  *	@net: the applicable net namespace
756  *	@ifindex: index of device
757  *
758  *	Search for an interface by index. Returns %NULL if the device
759  *	is not found or a pointer to the device. The device has not
760  *	had its reference counter increased so the caller must be careful
761  *	about locking. The caller must hold RCU lock.
762  */
763 
764 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
765 {
766 	struct net_device *dev;
767 	struct hlist_head *head = dev_index_hash(net, ifindex);
768 
769 	hlist_for_each_entry_rcu(dev, head, index_hlist)
770 		if (dev->ifindex == ifindex)
771 			return dev;
772 
773 	return NULL;
774 }
775 EXPORT_SYMBOL(dev_get_by_index_rcu);
776 
777 
778 /**
779  *	dev_get_by_index - find a device by its ifindex
780  *	@net: the applicable net namespace
781  *	@ifindex: index of device
782  *
783  *	Search for an interface by index. Returns NULL if the device
784  *	is not found or a pointer to the device. The device returned has
785  *	had a reference added and the pointer is safe until the user calls
786  *	dev_put to indicate they have finished with it.
787  */
788 
789 struct net_device *dev_get_by_index(struct net *net, int ifindex)
790 {
791 	struct net_device *dev;
792 
793 	rcu_read_lock();
794 	dev = dev_get_by_index_rcu(net, ifindex);
795 	if (dev)
796 		dev_hold(dev);
797 	rcu_read_unlock();
798 	return dev;
799 }
800 EXPORT_SYMBOL(dev_get_by_index);
801 
802 /**
803  *	netdev_get_name - get a netdevice name, knowing its ifindex.
804  *	@net: network namespace
805  *	@name: a pointer to the buffer where the name will be stored.
806  *	@ifindex: the ifindex of the interface to get the name from.
807  *
808  *	The use of raw_seqcount_begin() and cond_resched() before
809  *	retrying is required as we want to give the writers a chance
810  *	to complete when CONFIG_PREEMPT is not set.
811  */
812 int netdev_get_name(struct net *net, char *name, int ifindex)
813 {
814 	struct net_device *dev;
815 	unsigned int seq;
816 
817 retry:
818 	seq = raw_seqcount_begin(&devnet_rename_seq);
819 	rcu_read_lock();
820 	dev = dev_get_by_index_rcu(net, ifindex);
821 	if (!dev) {
822 		rcu_read_unlock();
823 		return -ENODEV;
824 	}
825 
826 	strcpy(name, dev->name);
827 	rcu_read_unlock();
828 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
829 		cond_resched();
830 		goto retry;
831 	}
832 
833 	return 0;
834 }
835 
836 /**
837  *	dev_getbyhwaddr_rcu - find a device by its hardware address
838  *	@net: the applicable net namespace
839  *	@type: media type of device
840  *	@ha: hardware address
841  *
842  *	Search for an interface by MAC address. Returns NULL if the device
843  *	is not found or a pointer to the device.
844  *	The caller must hold RCU or RTNL.
845  *	The returned device has not had its ref count increased
846  *	and the caller must therefore be careful about locking
847  *
848  */
849 
850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
851 				       const char *ha)
852 {
853 	struct net_device *dev;
854 
855 	for_each_netdev_rcu(net, dev)
856 		if (dev->type == type &&
857 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
858 			return dev;
859 
860 	return NULL;
861 }
862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
863 
864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
865 {
866 	struct net_device *dev;
867 
868 	ASSERT_RTNL();
869 	for_each_netdev(net, dev)
870 		if (dev->type == type)
871 			return dev;
872 
873 	return NULL;
874 }
875 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
876 
877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
878 {
879 	struct net_device *dev, *ret = NULL;
880 
881 	rcu_read_lock();
882 	for_each_netdev_rcu(net, dev)
883 		if (dev->type == type) {
884 			dev_hold(dev);
885 			ret = dev;
886 			break;
887 		}
888 	rcu_read_unlock();
889 	return ret;
890 }
891 EXPORT_SYMBOL(dev_getfirstbyhwtype);
892 
893 /**
894  *	dev_get_by_flags_rcu - find any device with given flags
895  *	@net: the applicable net namespace
896  *	@if_flags: IFF_* values
897  *	@mask: bitmask of bits in if_flags to check
898  *
899  *	Search for any interface with the given flags. Returns NULL if a device
900  *	is not found or a pointer to the device. Must be called inside
901  *	rcu_read_lock(), and result refcount is unchanged.
902  */
903 
904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
905 				    unsigned short mask)
906 {
907 	struct net_device *dev, *ret;
908 
909 	ret = NULL;
910 	for_each_netdev_rcu(net, dev) {
911 		if (((dev->flags ^ if_flags) & mask) == 0) {
912 			ret = dev;
913 			break;
914 		}
915 	}
916 	return ret;
917 }
918 EXPORT_SYMBOL(dev_get_by_flags_rcu);
919 
920 /**
921  *	dev_valid_name - check if name is okay for network device
922  *	@name: name string
923  *
924  *	Network device names need to be valid file names to
925  *	to allow sysfs to work.  We also disallow any kind of
926  *	whitespace.
927  */
928 bool dev_valid_name(const char *name)
929 {
930 	if (*name == '\0')
931 		return false;
932 	if (strlen(name) >= IFNAMSIZ)
933 		return false;
934 	if (!strcmp(name, ".") || !strcmp(name, ".."))
935 		return false;
936 
937 	while (*name) {
938 		if (*name == '/' || isspace(*name))
939 			return false;
940 		name++;
941 	}
942 	return true;
943 }
944 EXPORT_SYMBOL(dev_valid_name);
945 
946 /**
947  *	__dev_alloc_name - allocate a name for a device
948  *	@net: network namespace to allocate the device name in
949  *	@name: name format string
950  *	@buf:  scratch buffer and result name string
951  *
952  *	Passed a format string - eg "lt%d" it will try and find a suitable
953  *	id. It scans list of devices to build up a free map, then chooses
954  *	the first empty slot. The caller must hold the dev_base or rtnl lock
955  *	while allocating the name and adding the device in order to avoid
956  *	duplicates.
957  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
958  *	Returns the number of the unit assigned or a negative errno code.
959  */
960 
961 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
962 {
963 	int i = 0;
964 	const char *p;
965 	const int max_netdevices = 8*PAGE_SIZE;
966 	unsigned long *inuse;
967 	struct net_device *d;
968 
969 	p = strnchr(name, IFNAMSIZ-1, '%');
970 	if (p) {
971 		/*
972 		 * Verify the string as this thing may have come from
973 		 * the user.  There must be either one "%d" and no other "%"
974 		 * characters.
975 		 */
976 		if (p[1] != 'd' || strchr(p + 2, '%'))
977 			return -EINVAL;
978 
979 		/* Use one page as a bit array of possible slots */
980 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
981 		if (!inuse)
982 			return -ENOMEM;
983 
984 		for_each_netdev(net, d) {
985 			if (!sscanf(d->name, name, &i))
986 				continue;
987 			if (i < 0 || i >= max_netdevices)
988 				continue;
989 
990 			/*  avoid cases where sscanf is not exact inverse of printf */
991 			snprintf(buf, IFNAMSIZ, name, i);
992 			if (!strncmp(buf, d->name, IFNAMSIZ))
993 				set_bit(i, inuse);
994 		}
995 
996 		i = find_first_zero_bit(inuse, max_netdevices);
997 		free_page((unsigned long) inuse);
998 	}
999 
1000 	if (buf != name)
1001 		snprintf(buf, IFNAMSIZ, name, i);
1002 	if (!__dev_get_by_name(net, buf))
1003 		return i;
1004 
1005 	/* It is possible to run out of possible slots
1006 	 * when the name is long and there isn't enough space left
1007 	 * for the digits, or if all bits are used.
1008 	 */
1009 	return -ENFILE;
1010 }
1011 
1012 /**
1013  *	dev_alloc_name - allocate a name for a device
1014  *	@dev: device
1015  *	@name: name format string
1016  *
1017  *	Passed a format string - eg "lt%d" it will try and find a suitable
1018  *	id. It scans list of devices to build up a free map, then chooses
1019  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1020  *	while allocating the name and adding the device in order to avoid
1021  *	duplicates.
1022  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023  *	Returns the number of the unit assigned or a negative errno code.
1024  */
1025 
1026 int dev_alloc_name(struct net_device *dev, const char *name)
1027 {
1028 	char buf[IFNAMSIZ];
1029 	struct net *net;
1030 	int ret;
1031 
1032 	BUG_ON(!dev_net(dev));
1033 	net = dev_net(dev);
1034 	ret = __dev_alloc_name(net, name, buf);
1035 	if (ret >= 0)
1036 		strlcpy(dev->name, buf, IFNAMSIZ);
1037 	return ret;
1038 }
1039 EXPORT_SYMBOL(dev_alloc_name);
1040 
1041 static int dev_alloc_name_ns(struct net *net,
1042 			     struct net_device *dev,
1043 			     const char *name)
1044 {
1045 	char buf[IFNAMSIZ];
1046 	int ret;
1047 
1048 	ret = __dev_alloc_name(net, name, buf);
1049 	if (ret >= 0)
1050 		strlcpy(dev->name, buf, IFNAMSIZ);
1051 	return ret;
1052 }
1053 
1054 static int dev_get_valid_name(struct net *net,
1055 			      struct net_device *dev,
1056 			      const char *name)
1057 {
1058 	BUG_ON(!net);
1059 
1060 	if (!dev_valid_name(name))
1061 		return -EINVAL;
1062 
1063 	if (strchr(name, '%'))
1064 		return dev_alloc_name_ns(net, dev, name);
1065 	else if (__dev_get_by_name(net, name))
1066 		return -EEXIST;
1067 	else if (dev->name != name)
1068 		strlcpy(dev->name, name, IFNAMSIZ);
1069 
1070 	return 0;
1071 }
1072 
1073 /**
1074  *	dev_change_name - change name of a device
1075  *	@dev: device
1076  *	@newname: name (or format string) must be at least IFNAMSIZ
1077  *
1078  *	Change name of a device, can pass format strings "eth%d".
1079  *	for wildcarding.
1080  */
1081 int dev_change_name(struct net_device *dev, const char *newname)
1082 {
1083 	char oldname[IFNAMSIZ];
1084 	int err = 0;
1085 	int ret;
1086 	struct net *net;
1087 
1088 	ASSERT_RTNL();
1089 	BUG_ON(!dev_net(dev));
1090 
1091 	net = dev_net(dev);
1092 	if (dev->flags & IFF_UP)
1093 		return -EBUSY;
1094 
1095 	write_seqcount_begin(&devnet_rename_seq);
1096 
1097 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1098 		write_seqcount_end(&devnet_rename_seq);
1099 		return 0;
1100 	}
1101 
1102 	memcpy(oldname, dev->name, IFNAMSIZ);
1103 
1104 	err = dev_get_valid_name(net, dev, newname);
1105 	if (err < 0) {
1106 		write_seqcount_end(&devnet_rename_seq);
1107 		return err;
1108 	}
1109 
1110 rollback:
1111 	ret = device_rename(&dev->dev, dev->name);
1112 	if (ret) {
1113 		memcpy(dev->name, oldname, IFNAMSIZ);
1114 		write_seqcount_end(&devnet_rename_seq);
1115 		return ret;
1116 	}
1117 
1118 	write_seqcount_end(&devnet_rename_seq);
1119 
1120 	write_lock_bh(&dev_base_lock);
1121 	hlist_del_rcu(&dev->name_hlist);
1122 	write_unlock_bh(&dev_base_lock);
1123 
1124 	synchronize_rcu();
1125 
1126 	write_lock_bh(&dev_base_lock);
1127 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1128 	write_unlock_bh(&dev_base_lock);
1129 
1130 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1131 	ret = notifier_to_errno(ret);
1132 
1133 	if (ret) {
1134 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1135 		if (err >= 0) {
1136 			err = ret;
1137 			write_seqcount_begin(&devnet_rename_seq);
1138 			memcpy(dev->name, oldname, IFNAMSIZ);
1139 			goto rollback;
1140 		} else {
1141 			pr_err("%s: name change rollback failed: %d\n",
1142 			       dev->name, ret);
1143 		}
1144 	}
1145 
1146 	return err;
1147 }
1148 
1149 /**
1150  *	dev_set_alias - change ifalias of a device
1151  *	@dev: device
1152  *	@alias: name up to IFALIASZ
1153  *	@len: limit of bytes to copy from info
1154  *
1155  *	Set ifalias for a device,
1156  */
1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1158 {
1159 	char *new_ifalias;
1160 
1161 	ASSERT_RTNL();
1162 
1163 	if (len >= IFALIASZ)
1164 		return -EINVAL;
1165 
1166 	if (!len) {
1167 		kfree(dev->ifalias);
1168 		dev->ifalias = NULL;
1169 		return 0;
1170 	}
1171 
1172 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1173 	if (!new_ifalias)
1174 		return -ENOMEM;
1175 	dev->ifalias = new_ifalias;
1176 
1177 	strlcpy(dev->ifalias, alias, len+1);
1178 	return len;
1179 }
1180 
1181 
1182 /**
1183  *	netdev_features_change - device changes features
1184  *	@dev: device to cause notification
1185  *
1186  *	Called to indicate a device has changed features.
1187  */
1188 void netdev_features_change(struct net_device *dev)
1189 {
1190 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1191 }
1192 EXPORT_SYMBOL(netdev_features_change);
1193 
1194 /**
1195  *	netdev_state_change - device changes state
1196  *	@dev: device to cause notification
1197  *
1198  *	Called to indicate a device has changed state. This function calls
1199  *	the notifier chains for netdev_chain and sends a NEWLINK message
1200  *	to the routing socket.
1201  */
1202 void netdev_state_change(struct net_device *dev)
1203 {
1204 	if (dev->flags & IFF_UP) {
1205 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1206 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1207 	}
1208 }
1209 EXPORT_SYMBOL(netdev_state_change);
1210 
1211 /**
1212  * 	netdev_notify_peers - notify network peers about existence of @dev
1213  * 	@dev: network device
1214  *
1215  * Generate traffic such that interested network peers are aware of
1216  * @dev, such as by generating a gratuitous ARP. This may be used when
1217  * a device wants to inform the rest of the network about some sort of
1218  * reconfiguration such as a failover event or virtual machine
1219  * migration.
1220  */
1221 void netdev_notify_peers(struct net_device *dev)
1222 {
1223 	rtnl_lock();
1224 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1225 	rtnl_unlock();
1226 }
1227 EXPORT_SYMBOL(netdev_notify_peers);
1228 
1229 static int __dev_open(struct net_device *dev)
1230 {
1231 	const struct net_device_ops *ops = dev->netdev_ops;
1232 	int ret;
1233 
1234 	ASSERT_RTNL();
1235 
1236 	if (!netif_device_present(dev))
1237 		return -ENODEV;
1238 
1239 	/* Block netpoll from trying to do any rx path servicing.
1240 	 * If we don't do this there is a chance ndo_poll_controller
1241 	 * or ndo_poll may be running while we open the device
1242 	 */
1243 	netpoll_rx_disable(dev);
1244 
1245 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1246 	ret = notifier_to_errno(ret);
1247 	if (ret)
1248 		return ret;
1249 
1250 	set_bit(__LINK_STATE_START, &dev->state);
1251 
1252 	if (ops->ndo_validate_addr)
1253 		ret = ops->ndo_validate_addr(dev);
1254 
1255 	if (!ret && ops->ndo_open)
1256 		ret = ops->ndo_open(dev);
1257 
1258 	netpoll_rx_enable(dev);
1259 
1260 	if (ret)
1261 		clear_bit(__LINK_STATE_START, &dev->state);
1262 	else {
1263 		dev->flags |= IFF_UP;
1264 		net_dmaengine_get();
1265 		dev_set_rx_mode(dev);
1266 		dev_activate(dev);
1267 		add_device_randomness(dev->dev_addr, dev->addr_len);
1268 	}
1269 
1270 	return ret;
1271 }
1272 
1273 /**
1274  *	dev_open	- prepare an interface for use.
1275  *	@dev:	device to open
1276  *
1277  *	Takes a device from down to up state. The device's private open
1278  *	function is invoked and then the multicast lists are loaded. Finally
1279  *	the device is moved into the up state and a %NETDEV_UP message is
1280  *	sent to the netdev notifier chain.
1281  *
1282  *	Calling this function on an active interface is a nop. On a failure
1283  *	a negative errno code is returned.
1284  */
1285 int dev_open(struct net_device *dev)
1286 {
1287 	int ret;
1288 
1289 	if (dev->flags & IFF_UP)
1290 		return 0;
1291 
1292 	ret = __dev_open(dev);
1293 	if (ret < 0)
1294 		return ret;
1295 
1296 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1297 	call_netdevice_notifiers(NETDEV_UP, dev);
1298 
1299 	return ret;
1300 }
1301 EXPORT_SYMBOL(dev_open);
1302 
1303 static int __dev_close_many(struct list_head *head)
1304 {
1305 	struct net_device *dev;
1306 
1307 	ASSERT_RTNL();
1308 	might_sleep();
1309 
1310 	list_for_each_entry(dev, head, unreg_list) {
1311 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1312 
1313 		clear_bit(__LINK_STATE_START, &dev->state);
1314 
1315 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1316 		 * can be even on different cpu. So just clear netif_running().
1317 		 *
1318 		 * dev->stop() will invoke napi_disable() on all of it's
1319 		 * napi_struct instances on this device.
1320 		 */
1321 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1322 	}
1323 
1324 	dev_deactivate_many(head);
1325 
1326 	list_for_each_entry(dev, head, unreg_list) {
1327 		const struct net_device_ops *ops = dev->netdev_ops;
1328 
1329 		/*
1330 		 *	Call the device specific close. This cannot fail.
1331 		 *	Only if device is UP
1332 		 *
1333 		 *	We allow it to be called even after a DETACH hot-plug
1334 		 *	event.
1335 		 */
1336 		if (ops->ndo_stop)
1337 			ops->ndo_stop(dev);
1338 
1339 		dev->flags &= ~IFF_UP;
1340 		net_dmaengine_put();
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 static int __dev_close(struct net_device *dev)
1347 {
1348 	int retval;
1349 	LIST_HEAD(single);
1350 
1351 	/* Temporarily disable netpoll until the interface is down */
1352 	netpoll_rx_disable(dev);
1353 
1354 	list_add(&dev->unreg_list, &single);
1355 	retval = __dev_close_many(&single);
1356 	list_del(&single);
1357 
1358 	netpoll_rx_enable(dev);
1359 	return retval;
1360 }
1361 
1362 static int dev_close_many(struct list_head *head)
1363 {
1364 	struct net_device *dev, *tmp;
1365 	LIST_HEAD(tmp_list);
1366 
1367 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1368 		if (!(dev->flags & IFF_UP))
1369 			list_move(&dev->unreg_list, &tmp_list);
1370 
1371 	__dev_close_many(head);
1372 
1373 	list_for_each_entry(dev, head, unreg_list) {
1374 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1375 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1376 	}
1377 
1378 	/* rollback_registered_many needs the complete original list */
1379 	list_splice(&tmp_list, head);
1380 	return 0;
1381 }
1382 
1383 /**
1384  *	dev_close - shutdown an interface.
1385  *	@dev: device to shutdown
1386  *
1387  *	This function moves an active device into down state. A
1388  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1389  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1390  *	chain.
1391  */
1392 int dev_close(struct net_device *dev)
1393 {
1394 	if (dev->flags & IFF_UP) {
1395 		LIST_HEAD(single);
1396 
1397 		/* Block netpoll rx while the interface is going down */
1398 		netpoll_rx_disable(dev);
1399 
1400 		list_add(&dev->unreg_list, &single);
1401 		dev_close_many(&single);
1402 		list_del(&single);
1403 
1404 		netpoll_rx_enable(dev);
1405 	}
1406 	return 0;
1407 }
1408 EXPORT_SYMBOL(dev_close);
1409 
1410 
1411 /**
1412  *	dev_disable_lro - disable Large Receive Offload on a device
1413  *	@dev: device
1414  *
1415  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1416  *	called under RTNL.  This is needed if received packets may be
1417  *	forwarded to another interface.
1418  */
1419 void dev_disable_lro(struct net_device *dev)
1420 {
1421 	/*
1422 	 * If we're trying to disable lro on a vlan device
1423 	 * use the underlying physical device instead
1424 	 */
1425 	if (is_vlan_dev(dev))
1426 		dev = vlan_dev_real_dev(dev);
1427 
1428 	dev->wanted_features &= ~NETIF_F_LRO;
1429 	netdev_update_features(dev);
1430 
1431 	if (unlikely(dev->features & NETIF_F_LRO))
1432 		netdev_WARN(dev, "failed to disable LRO!\n");
1433 }
1434 EXPORT_SYMBOL(dev_disable_lro);
1435 
1436 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1437 				   struct net_device *dev)
1438 {
1439 	struct netdev_notifier_info info;
1440 
1441 	netdev_notifier_info_init(&info, dev);
1442 	return nb->notifier_call(nb, val, &info);
1443 }
1444 
1445 static int dev_boot_phase = 1;
1446 
1447 /**
1448  *	register_netdevice_notifier - register a network notifier block
1449  *	@nb: notifier
1450  *
1451  *	Register a notifier to be called when network device events occur.
1452  *	The notifier passed is linked into the kernel structures and must
1453  *	not be reused until it has been unregistered. A negative errno code
1454  *	is returned on a failure.
1455  *
1456  * 	When registered all registration and up events are replayed
1457  *	to the new notifier to allow device to have a race free
1458  *	view of the network device list.
1459  */
1460 
1461 int register_netdevice_notifier(struct notifier_block *nb)
1462 {
1463 	struct net_device *dev;
1464 	struct net_device *last;
1465 	struct net *net;
1466 	int err;
1467 
1468 	rtnl_lock();
1469 	err = raw_notifier_chain_register(&netdev_chain, nb);
1470 	if (err)
1471 		goto unlock;
1472 	if (dev_boot_phase)
1473 		goto unlock;
1474 	for_each_net(net) {
1475 		for_each_netdev(net, dev) {
1476 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1477 			err = notifier_to_errno(err);
1478 			if (err)
1479 				goto rollback;
1480 
1481 			if (!(dev->flags & IFF_UP))
1482 				continue;
1483 
1484 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1485 		}
1486 	}
1487 
1488 unlock:
1489 	rtnl_unlock();
1490 	return err;
1491 
1492 rollback:
1493 	last = dev;
1494 	for_each_net(net) {
1495 		for_each_netdev(net, dev) {
1496 			if (dev == last)
1497 				goto outroll;
1498 
1499 			if (dev->flags & IFF_UP) {
1500 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1501 							dev);
1502 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1503 			}
1504 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1505 		}
1506 	}
1507 
1508 outroll:
1509 	raw_notifier_chain_unregister(&netdev_chain, nb);
1510 	goto unlock;
1511 }
1512 EXPORT_SYMBOL(register_netdevice_notifier);
1513 
1514 /**
1515  *	unregister_netdevice_notifier - unregister a network notifier block
1516  *	@nb: notifier
1517  *
1518  *	Unregister a notifier previously registered by
1519  *	register_netdevice_notifier(). The notifier is unlinked into the
1520  *	kernel structures and may then be reused. A negative errno code
1521  *	is returned on a failure.
1522  *
1523  * 	After unregistering unregister and down device events are synthesized
1524  *	for all devices on the device list to the removed notifier to remove
1525  *	the need for special case cleanup code.
1526  */
1527 
1528 int unregister_netdevice_notifier(struct notifier_block *nb)
1529 {
1530 	struct net_device *dev;
1531 	struct net *net;
1532 	int err;
1533 
1534 	rtnl_lock();
1535 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1536 	if (err)
1537 		goto unlock;
1538 
1539 	for_each_net(net) {
1540 		for_each_netdev(net, dev) {
1541 			if (dev->flags & IFF_UP) {
1542 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1543 							dev);
1544 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1545 			}
1546 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1547 		}
1548 	}
1549 unlock:
1550 	rtnl_unlock();
1551 	return err;
1552 }
1553 EXPORT_SYMBOL(unregister_netdevice_notifier);
1554 
1555 /**
1556  *	call_netdevice_notifiers_info - call all network notifier blocks
1557  *	@val: value passed unmodified to notifier function
1558  *	@dev: net_device pointer passed unmodified to notifier function
1559  *	@info: notifier information data
1560  *
1561  *	Call all network notifier blocks.  Parameters and return value
1562  *	are as for raw_notifier_call_chain().
1563  */
1564 
1565 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1566 				  struct netdev_notifier_info *info)
1567 {
1568 	ASSERT_RTNL();
1569 	netdev_notifier_info_init(info, dev);
1570 	return raw_notifier_call_chain(&netdev_chain, val, info);
1571 }
1572 EXPORT_SYMBOL(call_netdevice_notifiers_info);
1573 
1574 /**
1575  *	call_netdevice_notifiers - call all network notifier blocks
1576  *      @val: value passed unmodified to notifier function
1577  *      @dev: net_device pointer passed unmodified to notifier function
1578  *
1579  *	Call all network notifier blocks.  Parameters and return value
1580  *	are as for raw_notifier_call_chain().
1581  */
1582 
1583 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1584 {
1585 	struct netdev_notifier_info info;
1586 
1587 	return call_netdevice_notifiers_info(val, dev, &info);
1588 }
1589 EXPORT_SYMBOL(call_netdevice_notifiers);
1590 
1591 static struct static_key netstamp_needed __read_mostly;
1592 #ifdef HAVE_JUMP_LABEL
1593 /* We are not allowed to call static_key_slow_dec() from irq context
1594  * If net_disable_timestamp() is called from irq context, defer the
1595  * static_key_slow_dec() calls.
1596  */
1597 static atomic_t netstamp_needed_deferred;
1598 #endif
1599 
1600 void net_enable_timestamp(void)
1601 {
1602 #ifdef HAVE_JUMP_LABEL
1603 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1604 
1605 	if (deferred) {
1606 		while (--deferred)
1607 			static_key_slow_dec(&netstamp_needed);
1608 		return;
1609 	}
1610 #endif
1611 	static_key_slow_inc(&netstamp_needed);
1612 }
1613 EXPORT_SYMBOL(net_enable_timestamp);
1614 
1615 void net_disable_timestamp(void)
1616 {
1617 #ifdef HAVE_JUMP_LABEL
1618 	if (in_interrupt()) {
1619 		atomic_inc(&netstamp_needed_deferred);
1620 		return;
1621 	}
1622 #endif
1623 	static_key_slow_dec(&netstamp_needed);
1624 }
1625 EXPORT_SYMBOL(net_disable_timestamp);
1626 
1627 static inline void net_timestamp_set(struct sk_buff *skb)
1628 {
1629 	skb->tstamp.tv64 = 0;
1630 	if (static_key_false(&netstamp_needed))
1631 		__net_timestamp(skb);
1632 }
1633 
1634 #define net_timestamp_check(COND, SKB)			\
1635 	if (static_key_false(&netstamp_needed)) {		\
1636 		if ((COND) && !(SKB)->tstamp.tv64)	\
1637 			__net_timestamp(SKB);		\
1638 	}						\
1639 
1640 static inline bool is_skb_forwardable(struct net_device *dev,
1641 				      struct sk_buff *skb)
1642 {
1643 	unsigned int len;
1644 
1645 	if (!(dev->flags & IFF_UP))
1646 		return false;
1647 
1648 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1649 	if (skb->len <= len)
1650 		return true;
1651 
1652 	/* if TSO is enabled, we don't care about the length as the packet
1653 	 * could be forwarded without being segmented before
1654 	 */
1655 	if (skb_is_gso(skb))
1656 		return true;
1657 
1658 	return false;
1659 }
1660 
1661 /**
1662  * dev_forward_skb - loopback an skb to another netif
1663  *
1664  * @dev: destination network device
1665  * @skb: buffer to forward
1666  *
1667  * return values:
1668  *	NET_RX_SUCCESS	(no congestion)
1669  *	NET_RX_DROP     (packet was dropped, but freed)
1670  *
1671  * dev_forward_skb can be used for injecting an skb from the
1672  * start_xmit function of one device into the receive queue
1673  * of another device.
1674  *
1675  * The receiving device may be in another namespace, so
1676  * we have to clear all information in the skb that could
1677  * impact namespace isolation.
1678  */
1679 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1680 {
1681 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1682 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1683 			atomic_long_inc(&dev->rx_dropped);
1684 			kfree_skb(skb);
1685 			return NET_RX_DROP;
1686 		}
1687 	}
1688 
1689 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1690 		atomic_long_inc(&dev->rx_dropped);
1691 		kfree_skb(skb);
1692 		return NET_RX_DROP;
1693 	}
1694 	skb_scrub_packet(skb);
1695 	skb->protocol = eth_type_trans(skb, dev);
1696 
1697 	/* eth_type_trans() can set pkt_type.
1698 	 * clear pkt_type _after_ calling eth_type_trans()
1699 	 */
1700 	skb->pkt_type = PACKET_HOST;
1701 
1702 	return netif_rx(skb);
1703 }
1704 EXPORT_SYMBOL_GPL(dev_forward_skb);
1705 
1706 static inline int deliver_skb(struct sk_buff *skb,
1707 			      struct packet_type *pt_prev,
1708 			      struct net_device *orig_dev)
1709 {
1710 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1711 		return -ENOMEM;
1712 	atomic_inc(&skb->users);
1713 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1714 }
1715 
1716 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1717 {
1718 	if (!ptype->af_packet_priv || !skb->sk)
1719 		return false;
1720 
1721 	if (ptype->id_match)
1722 		return ptype->id_match(ptype, skb->sk);
1723 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1724 		return true;
1725 
1726 	return false;
1727 }
1728 
1729 /*
1730  *	Support routine. Sends outgoing frames to any network
1731  *	taps currently in use.
1732  */
1733 
1734 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1735 {
1736 	struct packet_type *ptype;
1737 	struct sk_buff *skb2 = NULL;
1738 	struct packet_type *pt_prev = NULL;
1739 
1740 	rcu_read_lock();
1741 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1742 		/* Never send packets back to the socket
1743 		 * they originated from - MvS (miquels@drinkel.ow.org)
1744 		 */
1745 		if ((ptype->dev == dev || !ptype->dev) &&
1746 		    (!skb_loop_sk(ptype, skb))) {
1747 			if (pt_prev) {
1748 				deliver_skb(skb2, pt_prev, skb->dev);
1749 				pt_prev = ptype;
1750 				continue;
1751 			}
1752 
1753 			skb2 = skb_clone(skb, GFP_ATOMIC);
1754 			if (!skb2)
1755 				break;
1756 
1757 			net_timestamp_set(skb2);
1758 
1759 			/* skb->nh should be correctly
1760 			   set by sender, so that the second statement is
1761 			   just protection against buggy protocols.
1762 			 */
1763 			skb_reset_mac_header(skb2);
1764 
1765 			if (skb_network_header(skb2) < skb2->data ||
1766 			    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1767 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1768 						     ntohs(skb2->protocol),
1769 						     dev->name);
1770 				skb_reset_network_header(skb2);
1771 			}
1772 
1773 			skb2->transport_header = skb2->network_header;
1774 			skb2->pkt_type = PACKET_OUTGOING;
1775 			pt_prev = ptype;
1776 		}
1777 	}
1778 	if (pt_prev)
1779 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1780 	rcu_read_unlock();
1781 }
1782 
1783 /**
1784  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1785  * @dev: Network device
1786  * @txq: number of queues available
1787  *
1788  * If real_num_tx_queues is changed the tc mappings may no longer be
1789  * valid. To resolve this verify the tc mapping remains valid and if
1790  * not NULL the mapping. With no priorities mapping to this
1791  * offset/count pair it will no longer be used. In the worst case TC0
1792  * is invalid nothing can be done so disable priority mappings. If is
1793  * expected that drivers will fix this mapping if they can before
1794  * calling netif_set_real_num_tx_queues.
1795  */
1796 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1797 {
1798 	int i;
1799 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1800 
1801 	/* If TC0 is invalidated disable TC mapping */
1802 	if (tc->offset + tc->count > txq) {
1803 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1804 		dev->num_tc = 0;
1805 		return;
1806 	}
1807 
1808 	/* Invalidated prio to tc mappings set to TC0 */
1809 	for (i = 1; i < TC_BITMASK + 1; i++) {
1810 		int q = netdev_get_prio_tc_map(dev, i);
1811 
1812 		tc = &dev->tc_to_txq[q];
1813 		if (tc->offset + tc->count > txq) {
1814 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1815 				i, q);
1816 			netdev_set_prio_tc_map(dev, i, 0);
1817 		}
1818 	}
1819 }
1820 
1821 #ifdef CONFIG_XPS
1822 static DEFINE_MUTEX(xps_map_mutex);
1823 #define xmap_dereference(P)		\
1824 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1825 
1826 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1827 					int cpu, u16 index)
1828 {
1829 	struct xps_map *map = NULL;
1830 	int pos;
1831 
1832 	if (dev_maps)
1833 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1834 
1835 	for (pos = 0; map && pos < map->len; pos++) {
1836 		if (map->queues[pos] == index) {
1837 			if (map->len > 1) {
1838 				map->queues[pos] = map->queues[--map->len];
1839 			} else {
1840 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1841 				kfree_rcu(map, rcu);
1842 				map = NULL;
1843 			}
1844 			break;
1845 		}
1846 	}
1847 
1848 	return map;
1849 }
1850 
1851 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1852 {
1853 	struct xps_dev_maps *dev_maps;
1854 	int cpu, i;
1855 	bool active = false;
1856 
1857 	mutex_lock(&xps_map_mutex);
1858 	dev_maps = xmap_dereference(dev->xps_maps);
1859 
1860 	if (!dev_maps)
1861 		goto out_no_maps;
1862 
1863 	for_each_possible_cpu(cpu) {
1864 		for (i = index; i < dev->num_tx_queues; i++) {
1865 			if (!remove_xps_queue(dev_maps, cpu, i))
1866 				break;
1867 		}
1868 		if (i == dev->num_tx_queues)
1869 			active = true;
1870 	}
1871 
1872 	if (!active) {
1873 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1874 		kfree_rcu(dev_maps, rcu);
1875 	}
1876 
1877 	for (i = index; i < dev->num_tx_queues; i++)
1878 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1879 					     NUMA_NO_NODE);
1880 
1881 out_no_maps:
1882 	mutex_unlock(&xps_map_mutex);
1883 }
1884 
1885 static struct xps_map *expand_xps_map(struct xps_map *map,
1886 				      int cpu, u16 index)
1887 {
1888 	struct xps_map *new_map;
1889 	int alloc_len = XPS_MIN_MAP_ALLOC;
1890 	int i, pos;
1891 
1892 	for (pos = 0; map && pos < map->len; pos++) {
1893 		if (map->queues[pos] != index)
1894 			continue;
1895 		return map;
1896 	}
1897 
1898 	/* Need to add queue to this CPU's existing map */
1899 	if (map) {
1900 		if (pos < map->alloc_len)
1901 			return map;
1902 
1903 		alloc_len = map->alloc_len * 2;
1904 	}
1905 
1906 	/* Need to allocate new map to store queue on this CPU's map */
1907 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1908 			       cpu_to_node(cpu));
1909 	if (!new_map)
1910 		return NULL;
1911 
1912 	for (i = 0; i < pos; i++)
1913 		new_map->queues[i] = map->queues[i];
1914 	new_map->alloc_len = alloc_len;
1915 	new_map->len = pos;
1916 
1917 	return new_map;
1918 }
1919 
1920 int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1921 {
1922 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923 	struct xps_map *map, *new_map;
1924 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925 	int cpu, numa_node_id = -2;
1926 	bool active = false;
1927 
1928 	mutex_lock(&xps_map_mutex);
1929 
1930 	dev_maps = xmap_dereference(dev->xps_maps);
1931 
1932 	/* allocate memory for queue storage */
1933 	for_each_online_cpu(cpu) {
1934 		if (!cpumask_test_cpu(cpu, mask))
1935 			continue;
1936 
1937 		if (!new_dev_maps)
1938 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939 		if (!new_dev_maps) {
1940 			mutex_unlock(&xps_map_mutex);
1941 			return -ENOMEM;
1942 		}
1943 
1944 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945 				 NULL;
1946 
1947 		map = expand_xps_map(map, cpu, index);
1948 		if (!map)
1949 			goto error;
1950 
1951 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952 	}
1953 
1954 	if (!new_dev_maps)
1955 		goto out_no_new_maps;
1956 
1957 	for_each_possible_cpu(cpu) {
1958 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 			/* add queue to CPU maps */
1960 			int pos = 0;
1961 
1962 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 			while ((pos < map->len) && (map->queues[pos] != index))
1964 				pos++;
1965 
1966 			if (pos == map->len)
1967 				map->queues[map->len++] = index;
1968 #ifdef CONFIG_NUMA
1969 			if (numa_node_id == -2)
1970 				numa_node_id = cpu_to_node(cpu);
1971 			else if (numa_node_id != cpu_to_node(cpu))
1972 				numa_node_id = -1;
1973 #endif
1974 		} else if (dev_maps) {
1975 			/* fill in the new device map from the old device map */
1976 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 		}
1979 
1980 	}
1981 
1982 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983 
1984 	/* Cleanup old maps */
1985 	if (dev_maps) {
1986 		for_each_possible_cpu(cpu) {
1987 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 			if (map && map != new_map)
1990 				kfree_rcu(map, rcu);
1991 		}
1992 
1993 		kfree_rcu(dev_maps, rcu);
1994 	}
1995 
1996 	dev_maps = new_dev_maps;
1997 	active = true;
1998 
1999 out_no_new_maps:
2000 	/* update Tx queue numa node */
2001 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 				     (numa_node_id >= 0) ? numa_node_id :
2003 				     NUMA_NO_NODE);
2004 
2005 	if (!dev_maps)
2006 		goto out_no_maps;
2007 
2008 	/* removes queue from unused CPUs */
2009 	for_each_possible_cpu(cpu) {
2010 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011 			continue;
2012 
2013 		if (remove_xps_queue(dev_maps, cpu, index))
2014 			active = true;
2015 	}
2016 
2017 	/* free map if not active */
2018 	if (!active) {
2019 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 		kfree_rcu(dev_maps, rcu);
2021 	}
2022 
2023 out_no_maps:
2024 	mutex_unlock(&xps_map_mutex);
2025 
2026 	return 0;
2027 error:
2028 	/* remove any maps that we added */
2029 	for_each_possible_cpu(cpu) {
2030 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032 				 NULL;
2033 		if (new_map && new_map != map)
2034 			kfree(new_map);
2035 	}
2036 
2037 	mutex_unlock(&xps_map_mutex);
2038 
2039 	kfree(new_dev_maps);
2040 	return -ENOMEM;
2041 }
2042 EXPORT_SYMBOL(netif_set_xps_queue);
2043 
2044 #endif
2045 /*
2046  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048  */
2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2050 {
2051 	int rc;
2052 
2053 	if (txq < 1 || txq > dev->num_tx_queues)
2054 		return -EINVAL;
2055 
2056 	if (dev->reg_state == NETREG_REGISTERED ||
2057 	    dev->reg_state == NETREG_UNREGISTERING) {
2058 		ASSERT_RTNL();
2059 
2060 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061 						  txq);
2062 		if (rc)
2063 			return rc;
2064 
2065 		if (dev->num_tc)
2066 			netif_setup_tc(dev, txq);
2067 
2068 		if (txq < dev->real_num_tx_queues) {
2069 			qdisc_reset_all_tx_gt(dev, txq);
2070 #ifdef CONFIG_XPS
2071 			netif_reset_xps_queues_gt(dev, txq);
2072 #endif
2073 		}
2074 	}
2075 
2076 	dev->real_num_tx_queues = txq;
2077 	return 0;
2078 }
2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2080 
2081 #ifdef CONFIG_RPS
2082 /**
2083  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2084  *	@dev: Network device
2085  *	@rxq: Actual number of RX queues
2086  *
2087  *	This must be called either with the rtnl_lock held or before
2088  *	registration of the net device.  Returns 0 on success, or a
2089  *	negative error code.  If called before registration, it always
2090  *	succeeds.
2091  */
2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093 {
2094 	int rc;
2095 
2096 	if (rxq < 1 || rxq > dev->num_rx_queues)
2097 		return -EINVAL;
2098 
2099 	if (dev->reg_state == NETREG_REGISTERED) {
2100 		ASSERT_RTNL();
2101 
2102 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103 						  rxq);
2104 		if (rc)
2105 			return rc;
2106 	}
2107 
2108 	dev->real_num_rx_queues = rxq;
2109 	return 0;
2110 }
2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112 #endif
2113 
2114 /**
2115  * netif_get_num_default_rss_queues - default number of RSS queues
2116  *
2117  * This routine should set an upper limit on the number of RSS queues
2118  * used by default by multiqueue devices.
2119  */
2120 int netif_get_num_default_rss_queues(void)
2121 {
2122 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2123 }
2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125 
2126 static inline void __netif_reschedule(struct Qdisc *q)
2127 {
2128 	struct softnet_data *sd;
2129 	unsigned long flags;
2130 
2131 	local_irq_save(flags);
2132 	sd = &__get_cpu_var(softnet_data);
2133 	q->next_sched = NULL;
2134 	*sd->output_queue_tailp = q;
2135 	sd->output_queue_tailp = &q->next_sched;
2136 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 	local_irq_restore(flags);
2138 }
2139 
2140 void __netif_schedule(struct Qdisc *q)
2141 {
2142 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 		__netif_reschedule(q);
2144 }
2145 EXPORT_SYMBOL(__netif_schedule);
2146 
2147 void dev_kfree_skb_irq(struct sk_buff *skb)
2148 {
2149 	if (atomic_dec_and_test(&skb->users)) {
2150 		struct softnet_data *sd;
2151 		unsigned long flags;
2152 
2153 		local_irq_save(flags);
2154 		sd = &__get_cpu_var(softnet_data);
2155 		skb->next = sd->completion_queue;
2156 		sd->completion_queue = skb;
2157 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
2158 		local_irq_restore(flags);
2159 	}
2160 }
2161 EXPORT_SYMBOL(dev_kfree_skb_irq);
2162 
2163 void dev_kfree_skb_any(struct sk_buff *skb)
2164 {
2165 	if (in_irq() || irqs_disabled())
2166 		dev_kfree_skb_irq(skb);
2167 	else
2168 		dev_kfree_skb(skb);
2169 }
2170 EXPORT_SYMBOL(dev_kfree_skb_any);
2171 
2172 
2173 /**
2174  * netif_device_detach - mark device as removed
2175  * @dev: network device
2176  *
2177  * Mark device as removed from system and therefore no longer available.
2178  */
2179 void netif_device_detach(struct net_device *dev)
2180 {
2181 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2182 	    netif_running(dev)) {
2183 		netif_tx_stop_all_queues(dev);
2184 	}
2185 }
2186 EXPORT_SYMBOL(netif_device_detach);
2187 
2188 /**
2189  * netif_device_attach - mark device as attached
2190  * @dev: network device
2191  *
2192  * Mark device as attached from system and restart if needed.
2193  */
2194 void netif_device_attach(struct net_device *dev)
2195 {
2196 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2197 	    netif_running(dev)) {
2198 		netif_tx_wake_all_queues(dev);
2199 		__netdev_watchdog_up(dev);
2200 	}
2201 }
2202 EXPORT_SYMBOL(netif_device_attach);
2203 
2204 static void skb_warn_bad_offload(const struct sk_buff *skb)
2205 {
2206 	static const netdev_features_t null_features = 0;
2207 	struct net_device *dev = skb->dev;
2208 	const char *driver = "";
2209 
2210 	if (!net_ratelimit())
2211 		return;
2212 
2213 	if (dev && dev->dev.parent)
2214 		driver = dev_driver_string(dev->dev.parent);
2215 
2216 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2217 	     "gso_type=%d ip_summed=%d\n",
2218 	     driver, dev ? &dev->features : &null_features,
2219 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2220 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2221 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2222 }
2223 
2224 /*
2225  * Invalidate hardware checksum when packet is to be mangled, and
2226  * complete checksum manually on outgoing path.
2227  */
2228 int skb_checksum_help(struct sk_buff *skb)
2229 {
2230 	__wsum csum;
2231 	int ret = 0, offset;
2232 
2233 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2234 		goto out_set_summed;
2235 
2236 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2237 		skb_warn_bad_offload(skb);
2238 		return -EINVAL;
2239 	}
2240 
2241 	/* Before computing a checksum, we should make sure no frag could
2242 	 * be modified by an external entity : checksum could be wrong.
2243 	 */
2244 	if (skb_has_shared_frag(skb)) {
2245 		ret = __skb_linearize(skb);
2246 		if (ret)
2247 			goto out;
2248 	}
2249 
2250 	offset = skb_checksum_start_offset(skb);
2251 	BUG_ON(offset >= skb_headlen(skb));
2252 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2253 
2254 	offset += skb->csum_offset;
2255 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2256 
2257 	if (skb_cloned(skb) &&
2258 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2259 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2260 		if (ret)
2261 			goto out;
2262 	}
2263 
2264 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2265 out_set_summed:
2266 	skb->ip_summed = CHECKSUM_NONE;
2267 out:
2268 	return ret;
2269 }
2270 EXPORT_SYMBOL(skb_checksum_help);
2271 
2272 __be16 skb_network_protocol(struct sk_buff *skb)
2273 {
2274 	__be16 type = skb->protocol;
2275 	int vlan_depth = ETH_HLEN;
2276 
2277 	/* Tunnel gso handlers can set protocol to ethernet. */
2278 	if (type == htons(ETH_P_TEB)) {
2279 		struct ethhdr *eth;
2280 
2281 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2282 			return 0;
2283 
2284 		eth = (struct ethhdr *)skb_mac_header(skb);
2285 		type = eth->h_proto;
2286 	}
2287 
2288 	while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2289 		struct vlan_hdr *vh;
2290 
2291 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2292 			return 0;
2293 
2294 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2295 		type = vh->h_vlan_encapsulated_proto;
2296 		vlan_depth += VLAN_HLEN;
2297 	}
2298 
2299 	return type;
2300 }
2301 
2302 /**
2303  *	skb_mac_gso_segment - mac layer segmentation handler.
2304  *	@skb: buffer to segment
2305  *	@features: features for the output path (see dev->features)
2306  */
2307 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2308 				    netdev_features_t features)
2309 {
2310 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2311 	struct packet_offload *ptype;
2312 	__be16 type = skb_network_protocol(skb);
2313 
2314 	if (unlikely(!type))
2315 		return ERR_PTR(-EINVAL);
2316 
2317 	__skb_pull(skb, skb->mac_len);
2318 
2319 	rcu_read_lock();
2320 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2321 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2322 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2323 				int err;
2324 
2325 				err = ptype->callbacks.gso_send_check(skb);
2326 				segs = ERR_PTR(err);
2327 				if (err || skb_gso_ok(skb, features))
2328 					break;
2329 				__skb_push(skb, (skb->data -
2330 						 skb_network_header(skb)));
2331 			}
2332 			segs = ptype->callbacks.gso_segment(skb, features);
2333 			break;
2334 		}
2335 	}
2336 	rcu_read_unlock();
2337 
2338 	__skb_push(skb, skb->data - skb_mac_header(skb));
2339 
2340 	return segs;
2341 }
2342 EXPORT_SYMBOL(skb_mac_gso_segment);
2343 
2344 
2345 /* openvswitch calls this on rx path, so we need a different check.
2346  */
2347 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2348 {
2349 	if (tx_path)
2350 		return skb->ip_summed != CHECKSUM_PARTIAL;
2351 	else
2352 		return skb->ip_summed == CHECKSUM_NONE;
2353 }
2354 
2355 /**
2356  *	__skb_gso_segment - Perform segmentation on skb.
2357  *	@skb: buffer to segment
2358  *	@features: features for the output path (see dev->features)
2359  *	@tx_path: whether it is called in TX path
2360  *
2361  *	This function segments the given skb and returns a list of segments.
2362  *
2363  *	It may return NULL if the skb requires no segmentation.  This is
2364  *	only possible when GSO is used for verifying header integrity.
2365  */
2366 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2367 				  netdev_features_t features, bool tx_path)
2368 {
2369 	if (unlikely(skb_needs_check(skb, tx_path))) {
2370 		int err;
2371 
2372 		skb_warn_bad_offload(skb);
2373 
2374 		if (skb_header_cloned(skb) &&
2375 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2376 			return ERR_PTR(err);
2377 	}
2378 
2379 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2380 	skb_reset_mac_header(skb);
2381 	skb_reset_mac_len(skb);
2382 
2383 	return skb_mac_gso_segment(skb, features);
2384 }
2385 EXPORT_SYMBOL(__skb_gso_segment);
2386 
2387 /* Take action when hardware reception checksum errors are detected. */
2388 #ifdef CONFIG_BUG
2389 void netdev_rx_csum_fault(struct net_device *dev)
2390 {
2391 	if (net_ratelimit()) {
2392 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2393 		dump_stack();
2394 	}
2395 }
2396 EXPORT_SYMBOL(netdev_rx_csum_fault);
2397 #endif
2398 
2399 /* Actually, we should eliminate this check as soon as we know, that:
2400  * 1. IOMMU is present and allows to map all the memory.
2401  * 2. No high memory really exists on this machine.
2402  */
2403 
2404 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2405 {
2406 #ifdef CONFIG_HIGHMEM
2407 	int i;
2408 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2409 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2410 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2411 			if (PageHighMem(skb_frag_page(frag)))
2412 				return 1;
2413 		}
2414 	}
2415 
2416 	if (PCI_DMA_BUS_IS_PHYS) {
2417 		struct device *pdev = dev->dev.parent;
2418 
2419 		if (!pdev)
2420 			return 0;
2421 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2422 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2423 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2424 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2425 				return 1;
2426 		}
2427 	}
2428 #endif
2429 	return 0;
2430 }
2431 
2432 struct dev_gso_cb {
2433 	void (*destructor)(struct sk_buff *skb);
2434 };
2435 
2436 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2437 
2438 static void dev_gso_skb_destructor(struct sk_buff *skb)
2439 {
2440 	struct dev_gso_cb *cb;
2441 
2442 	do {
2443 		struct sk_buff *nskb = skb->next;
2444 
2445 		skb->next = nskb->next;
2446 		nskb->next = NULL;
2447 		kfree_skb(nskb);
2448 	} while (skb->next);
2449 
2450 	cb = DEV_GSO_CB(skb);
2451 	if (cb->destructor)
2452 		cb->destructor(skb);
2453 }
2454 
2455 /**
2456  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2457  *	@skb: buffer to segment
2458  *	@features: device features as applicable to this skb
2459  *
2460  *	This function segments the given skb and stores the list of segments
2461  *	in skb->next.
2462  */
2463 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2464 {
2465 	struct sk_buff *segs;
2466 
2467 	segs = skb_gso_segment(skb, features);
2468 
2469 	/* Verifying header integrity only. */
2470 	if (!segs)
2471 		return 0;
2472 
2473 	if (IS_ERR(segs))
2474 		return PTR_ERR(segs);
2475 
2476 	skb->next = segs;
2477 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2478 	skb->destructor = dev_gso_skb_destructor;
2479 
2480 	return 0;
2481 }
2482 
2483 static netdev_features_t harmonize_features(struct sk_buff *skb,
2484 	__be16 protocol, netdev_features_t features)
2485 {
2486 	if (skb->ip_summed != CHECKSUM_NONE &&
2487 	    !can_checksum_protocol(features, protocol)) {
2488 		features &= ~NETIF_F_ALL_CSUM;
2489 	} else if (illegal_highdma(skb->dev, skb)) {
2490 		features &= ~NETIF_F_SG;
2491 	}
2492 
2493 	return features;
2494 }
2495 
2496 netdev_features_t netif_skb_features(struct sk_buff *skb)
2497 {
2498 	__be16 protocol = skb->protocol;
2499 	netdev_features_t features = skb->dev->features;
2500 
2501 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2502 		features &= ~NETIF_F_GSO_MASK;
2503 
2504 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2505 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2506 		protocol = veh->h_vlan_encapsulated_proto;
2507 	} else if (!vlan_tx_tag_present(skb)) {
2508 		return harmonize_features(skb, protocol, features);
2509 	}
2510 
2511 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2512 					       NETIF_F_HW_VLAN_STAG_TX);
2513 
2514 	if (protocol != htons(ETH_P_8021Q) && protocol != htons(ETH_P_8021AD)) {
2515 		return harmonize_features(skb, protocol, features);
2516 	} else {
2517 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2518 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2519 				NETIF_F_HW_VLAN_STAG_TX;
2520 		return harmonize_features(skb, protocol, features);
2521 	}
2522 }
2523 EXPORT_SYMBOL(netif_skb_features);
2524 
2525 /*
2526  * Returns true if either:
2527  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2528  *	2. skb is fragmented and the device does not support SG.
2529  */
2530 static inline int skb_needs_linearize(struct sk_buff *skb,
2531 				      netdev_features_t features)
2532 {
2533 	return skb_is_nonlinear(skb) &&
2534 			((skb_has_frag_list(skb) &&
2535 				!(features & NETIF_F_FRAGLIST)) ||
2536 			(skb_shinfo(skb)->nr_frags &&
2537 				!(features & NETIF_F_SG)));
2538 }
2539 
2540 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2541 			struct netdev_queue *txq)
2542 {
2543 	const struct net_device_ops *ops = dev->netdev_ops;
2544 	int rc = NETDEV_TX_OK;
2545 	unsigned int skb_len;
2546 
2547 	if (likely(!skb->next)) {
2548 		netdev_features_t features;
2549 
2550 		/*
2551 		 * If device doesn't need skb->dst, release it right now while
2552 		 * its hot in this cpu cache
2553 		 */
2554 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2555 			skb_dst_drop(skb);
2556 
2557 		features = netif_skb_features(skb);
2558 
2559 		if (vlan_tx_tag_present(skb) &&
2560 		    !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2561 			skb = __vlan_put_tag(skb, skb->vlan_proto,
2562 					     vlan_tx_tag_get(skb));
2563 			if (unlikely(!skb))
2564 				goto out;
2565 
2566 			skb->vlan_tci = 0;
2567 		}
2568 
2569 		/* If encapsulation offload request, verify we are testing
2570 		 * hardware encapsulation features instead of standard
2571 		 * features for the netdev
2572 		 */
2573 		if (skb->encapsulation)
2574 			features &= dev->hw_enc_features;
2575 
2576 		if (netif_needs_gso(skb, features)) {
2577 			if (unlikely(dev_gso_segment(skb, features)))
2578 				goto out_kfree_skb;
2579 			if (skb->next)
2580 				goto gso;
2581 		} else {
2582 			if (skb_needs_linearize(skb, features) &&
2583 			    __skb_linearize(skb))
2584 				goto out_kfree_skb;
2585 
2586 			/* If packet is not checksummed and device does not
2587 			 * support checksumming for this protocol, complete
2588 			 * checksumming here.
2589 			 */
2590 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2591 				if (skb->encapsulation)
2592 					skb_set_inner_transport_header(skb,
2593 						skb_checksum_start_offset(skb));
2594 				else
2595 					skb_set_transport_header(skb,
2596 						skb_checksum_start_offset(skb));
2597 				if (!(features & NETIF_F_ALL_CSUM) &&
2598 				     skb_checksum_help(skb))
2599 					goto out_kfree_skb;
2600 			}
2601 		}
2602 
2603 		if (!list_empty(&ptype_all))
2604 			dev_queue_xmit_nit(skb, dev);
2605 
2606 		skb_len = skb->len;
2607 		rc = ops->ndo_start_xmit(skb, dev);
2608 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2609 		if (rc == NETDEV_TX_OK)
2610 			txq_trans_update(txq);
2611 		return rc;
2612 	}
2613 
2614 gso:
2615 	do {
2616 		struct sk_buff *nskb = skb->next;
2617 
2618 		skb->next = nskb->next;
2619 		nskb->next = NULL;
2620 
2621 		if (!list_empty(&ptype_all))
2622 			dev_queue_xmit_nit(nskb, dev);
2623 
2624 		skb_len = nskb->len;
2625 		rc = ops->ndo_start_xmit(nskb, dev);
2626 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2627 		if (unlikely(rc != NETDEV_TX_OK)) {
2628 			if (rc & ~NETDEV_TX_MASK)
2629 				goto out_kfree_gso_skb;
2630 			nskb->next = skb->next;
2631 			skb->next = nskb;
2632 			return rc;
2633 		}
2634 		txq_trans_update(txq);
2635 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2636 			return NETDEV_TX_BUSY;
2637 	} while (skb->next);
2638 
2639 out_kfree_gso_skb:
2640 	if (likely(skb->next == NULL)) {
2641 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2642 		consume_skb(skb);
2643 		return rc;
2644 	}
2645 out_kfree_skb:
2646 	kfree_skb(skb);
2647 out:
2648 	return rc;
2649 }
2650 
2651 static void qdisc_pkt_len_init(struct sk_buff *skb)
2652 {
2653 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2654 
2655 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2656 
2657 	/* To get more precise estimation of bytes sent on wire,
2658 	 * we add to pkt_len the headers size of all segments
2659 	 */
2660 	if (shinfo->gso_size)  {
2661 		unsigned int hdr_len;
2662 		u16 gso_segs = shinfo->gso_segs;
2663 
2664 		/* mac layer + network layer */
2665 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2666 
2667 		/* + transport layer */
2668 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2669 			hdr_len += tcp_hdrlen(skb);
2670 		else
2671 			hdr_len += sizeof(struct udphdr);
2672 
2673 		if (shinfo->gso_type & SKB_GSO_DODGY)
2674 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2675 						shinfo->gso_size);
2676 
2677 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2678 	}
2679 }
2680 
2681 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2682 				 struct net_device *dev,
2683 				 struct netdev_queue *txq)
2684 {
2685 	spinlock_t *root_lock = qdisc_lock(q);
2686 	bool contended;
2687 	int rc;
2688 
2689 	qdisc_pkt_len_init(skb);
2690 	qdisc_calculate_pkt_len(skb, q);
2691 	/*
2692 	 * Heuristic to force contended enqueues to serialize on a
2693 	 * separate lock before trying to get qdisc main lock.
2694 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2695 	 * and dequeue packets faster.
2696 	 */
2697 	contended = qdisc_is_running(q);
2698 	if (unlikely(contended))
2699 		spin_lock(&q->busylock);
2700 
2701 	spin_lock(root_lock);
2702 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2703 		kfree_skb(skb);
2704 		rc = NET_XMIT_DROP;
2705 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2706 		   qdisc_run_begin(q)) {
2707 		/*
2708 		 * This is a work-conserving queue; there are no old skbs
2709 		 * waiting to be sent out; and the qdisc is not running -
2710 		 * xmit the skb directly.
2711 		 */
2712 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2713 			skb_dst_force(skb);
2714 
2715 		qdisc_bstats_update(q, skb);
2716 
2717 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2718 			if (unlikely(contended)) {
2719 				spin_unlock(&q->busylock);
2720 				contended = false;
2721 			}
2722 			__qdisc_run(q);
2723 		} else
2724 			qdisc_run_end(q);
2725 
2726 		rc = NET_XMIT_SUCCESS;
2727 	} else {
2728 		skb_dst_force(skb);
2729 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2730 		if (qdisc_run_begin(q)) {
2731 			if (unlikely(contended)) {
2732 				spin_unlock(&q->busylock);
2733 				contended = false;
2734 			}
2735 			__qdisc_run(q);
2736 		}
2737 	}
2738 	spin_unlock(root_lock);
2739 	if (unlikely(contended))
2740 		spin_unlock(&q->busylock);
2741 	return rc;
2742 }
2743 
2744 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2745 static void skb_update_prio(struct sk_buff *skb)
2746 {
2747 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2748 
2749 	if (!skb->priority && skb->sk && map) {
2750 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2751 
2752 		if (prioidx < map->priomap_len)
2753 			skb->priority = map->priomap[prioidx];
2754 	}
2755 }
2756 #else
2757 #define skb_update_prio(skb)
2758 #endif
2759 
2760 static DEFINE_PER_CPU(int, xmit_recursion);
2761 #define RECURSION_LIMIT 10
2762 
2763 /**
2764  *	dev_loopback_xmit - loop back @skb
2765  *	@skb: buffer to transmit
2766  */
2767 int dev_loopback_xmit(struct sk_buff *skb)
2768 {
2769 	skb_reset_mac_header(skb);
2770 	__skb_pull(skb, skb_network_offset(skb));
2771 	skb->pkt_type = PACKET_LOOPBACK;
2772 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2773 	WARN_ON(!skb_dst(skb));
2774 	skb_dst_force(skb);
2775 	netif_rx_ni(skb);
2776 	return 0;
2777 }
2778 EXPORT_SYMBOL(dev_loopback_xmit);
2779 
2780 /**
2781  *	dev_queue_xmit - transmit a buffer
2782  *	@skb: buffer to transmit
2783  *
2784  *	Queue a buffer for transmission to a network device. The caller must
2785  *	have set the device and priority and built the buffer before calling
2786  *	this function. The function can be called from an interrupt.
2787  *
2788  *	A negative errno code is returned on a failure. A success does not
2789  *	guarantee the frame will be transmitted as it may be dropped due
2790  *	to congestion or traffic shaping.
2791  *
2792  * -----------------------------------------------------------------------------------
2793  *      I notice this method can also return errors from the queue disciplines,
2794  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2795  *      be positive.
2796  *
2797  *      Regardless of the return value, the skb is consumed, so it is currently
2798  *      difficult to retry a send to this method.  (You can bump the ref count
2799  *      before sending to hold a reference for retry if you are careful.)
2800  *
2801  *      When calling this method, interrupts MUST be enabled.  This is because
2802  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2803  *          --BLG
2804  */
2805 int dev_queue_xmit(struct sk_buff *skb)
2806 {
2807 	struct net_device *dev = skb->dev;
2808 	struct netdev_queue *txq;
2809 	struct Qdisc *q;
2810 	int rc = -ENOMEM;
2811 
2812 	skb_reset_mac_header(skb);
2813 
2814 	/* Disable soft irqs for various locks below. Also
2815 	 * stops preemption for RCU.
2816 	 */
2817 	rcu_read_lock_bh();
2818 
2819 	skb_update_prio(skb);
2820 
2821 	txq = netdev_pick_tx(dev, skb);
2822 	q = rcu_dereference_bh(txq->qdisc);
2823 
2824 #ifdef CONFIG_NET_CLS_ACT
2825 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2826 #endif
2827 	trace_net_dev_queue(skb);
2828 	if (q->enqueue) {
2829 		rc = __dev_xmit_skb(skb, q, dev, txq);
2830 		goto out;
2831 	}
2832 
2833 	/* The device has no queue. Common case for software devices:
2834 	   loopback, all the sorts of tunnels...
2835 
2836 	   Really, it is unlikely that netif_tx_lock protection is necessary
2837 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2838 	   counters.)
2839 	   However, it is possible, that they rely on protection
2840 	   made by us here.
2841 
2842 	   Check this and shot the lock. It is not prone from deadlocks.
2843 	   Either shot noqueue qdisc, it is even simpler 8)
2844 	 */
2845 	if (dev->flags & IFF_UP) {
2846 		int cpu = smp_processor_id(); /* ok because BHs are off */
2847 
2848 		if (txq->xmit_lock_owner != cpu) {
2849 
2850 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2851 				goto recursion_alert;
2852 
2853 			HARD_TX_LOCK(dev, txq, cpu);
2854 
2855 			if (!netif_xmit_stopped(txq)) {
2856 				__this_cpu_inc(xmit_recursion);
2857 				rc = dev_hard_start_xmit(skb, dev, txq);
2858 				__this_cpu_dec(xmit_recursion);
2859 				if (dev_xmit_complete(rc)) {
2860 					HARD_TX_UNLOCK(dev, txq);
2861 					goto out;
2862 				}
2863 			}
2864 			HARD_TX_UNLOCK(dev, txq);
2865 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2866 					     dev->name);
2867 		} else {
2868 			/* Recursion is detected! It is possible,
2869 			 * unfortunately
2870 			 */
2871 recursion_alert:
2872 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2873 					     dev->name);
2874 		}
2875 	}
2876 
2877 	rc = -ENETDOWN;
2878 	rcu_read_unlock_bh();
2879 
2880 	kfree_skb(skb);
2881 	return rc;
2882 out:
2883 	rcu_read_unlock_bh();
2884 	return rc;
2885 }
2886 EXPORT_SYMBOL(dev_queue_xmit);
2887 
2888 
2889 /*=======================================================================
2890 			Receiver routines
2891   =======================================================================*/
2892 
2893 int netdev_max_backlog __read_mostly = 1000;
2894 EXPORT_SYMBOL(netdev_max_backlog);
2895 
2896 int netdev_tstamp_prequeue __read_mostly = 1;
2897 int netdev_budget __read_mostly = 300;
2898 int weight_p __read_mostly = 64;            /* old backlog weight */
2899 
2900 /* Called with irq disabled */
2901 static inline void ____napi_schedule(struct softnet_data *sd,
2902 				     struct napi_struct *napi)
2903 {
2904 	list_add_tail(&napi->poll_list, &sd->poll_list);
2905 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2906 }
2907 
2908 #ifdef CONFIG_RPS
2909 
2910 /* One global table that all flow-based protocols share. */
2911 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2912 EXPORT_SYMBOL(rps_sock_flow_table);
2913 
2914 struct static_key rps_needed __read_mostly;
2915 
2916 static struct rps_dev_flow *
2917 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2918 	    struct rps_dev_flow *rflow, u16 next_cpu)
2919 {
2920 	if (next_cpu != RPS_NO_CPU) {
2921 #ifdef CONFIG_RFS_ACCEL
2922 		struct netdev_rx_queue *rxqueue;
2923 		struct rps_dev_flow_table *flow_table;
2924 		struct rps_dev_flow *old_rflow;
2925 		u32 flow_id;
2926 		u16 rxq_index;
2927 		int rc;
2928 
2929 		/* Should we steer this flow to a different hardware queue? */
2930 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2931 		    !(dev->features & NETIF_F_NTUPLE))
2932 			goto out;
2933 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2934 		if (rxq_index == skb_get_rx_queue(skb))
2935 			goto out;
2936 
2937 		rxqueue = dev->_rx + rxq_index;
2938 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2939 		if (!flow_table)
2940 			goto out;
2941 		flow_id = skb->rxhash & flow_table->mask;
2942 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2943 							rxq_index, flow_id);
2944 		if (rc < 0)
2945 			goto out;
2946 		old_rflow = rflow;
2947 		rflow = &flow_table->flows[flow_id];
2948 		rflow->filter = rc;
2949 		if (old_rflow->filter == rflow->filter)
2950 			old_rflow->filter = RPS_NO_FILTER;
2951 	out:
2952 #endif
2953 		rflow->last_qtail =
2954 			per_cpu(softnet_data, next_cpu).input_queue_head;
2955 	}
2956 
2957 	rflow->cpu = next_cpu;
2958 	return rflow;
2959 }
2960 
2961 /*
2962  * get_rps_cpu is called from netif_receive_skb and returns the target
2963  * CPU from the RPS map of the receiving queue for a given skb.
2964  * rcu_read_lock must be held on entry.
2965  */
2966 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2967 		       struct rps_dev_flow **rflowp)
2968 {
2969 	struct netdev_rx_queue *rxqueue;
2970 	struct rps_map *map;
2971 	struct rps_dev_flow_table *flow_table;
2972 	struct rps_sock_flow_table *sock_flow_table;
2973 	int cpu = -1;
2974 	u16 tcpu;
2975 
2976 	if (skb_rx_queue_recorded(skb)) {
2977 		u16 index = skb_get_rx_queue(skb);
2978 		if (unlikely(index >= dev->real_num_rx_queues)) {
2979 			WARN_ONCE(dev->real_num_rx_queues > 1,
2980 				  "%s received packet on queue %u, but number "
2981 				  "of RX queues is %u\n",
2982 				  dev->name, index, dev->real_num_rx_queues);
2983 			goto done;
2984 		}
2985 		rxqueue = dev->_rx + index;
2986 	} else
2987 		rxqueue = dev->_rx;
2988 
2989 	map = rcu_dereference(rxqueue->rps_map);
2990 	if (map) {
2991 		if (map->len == 1 &&
2992 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2993 			tcpu = map->cpus[0];
2994 			if (cpu_online(tcpu))
2995 				cpu = tcpu;
2996 			goto done;
2997 		}
2998 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2999 		goto done;
3000 	}
3001 
3002 	skb_reset_network_header(skb);
3003 	if (!skb_get_rxhash(skb))
3004 		goto done;
3005 
3006 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3007 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3008 	if (flow_table && sock_flow_table) {
3009 		u16 next_cpu;
3010 		struct rps_dev_flow *rflow;
3011 
3012 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3013 		tcpu = rflow->cpu;
3014 
3015 		next_cpu = sock_flow_table->ents[skb->rxhash &
3016 		    sock_flow_table->mask];
3017 
3018 		/*
3019 		 * If the desired CPU (where last recvmsg was done) is
3020 		 * different from current CPU (one in the rx-queue flow
3021 		 * table entry), switch if one of the following holds:
3022 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3023 		 *   - Current CPU is offline.
3024 		 *   - The current CPU's queue tail has advanced beyond the
3025 		 *     last packet that was enqueued using this table entry.
3026 		 *     This guarantees that all previous packets for the flow
3027 		 *     have been dequeued, thus preserving in order delivery.
3028 		 */
3029 		if (unlikely(tcpu != next_cpu) &&
3030 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3031 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3032 		      rflow->last_qtail)) >= 0)) {
3033 			tcpu = next_cpu;
3034 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3035 		}
3036 
3037 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3038 			*rflowp = rflow;
3039 			cpu = tcpu;
3040 			goto done;
3041 		}
3042 	}
3043 
3044 	if (map) {
3045 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3046 
3047 		if (cpu_online(tcpu)) {
3048 			cpu = tcpu;
3049 			goto done;
3050 		}
3051 	}
3052 
3053 done:
3054 	return cpu;
3055 }
3056 
3057 #ifdef CONFIG_RFS_ACCEL
3058 
3059 /**
3060  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3061  * @dev: Device on which the filter was set
3062  * @rxq_index: RX queue index
3063  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3064  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3065  *
3066  * Drivers that implement ndo_rx_flow_steer() should periodically call
3067  * this function for each installed filter and remove the filters for
3068  * which it returns %true.
3069  */
3070 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3071 			 u32 flow_id, u16 filter_id)
3072 {
3073 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3074 	struct rps_dev_flow_table *flow_table;
3075 	struct rps_dev_flow *rflow;
3076 	bool expire = true;
3077 	int cpu;
3078 
3079 	rcu_read_lock();
3080 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3081 	if (flow_table && flow_id <= flow_table->mask) {
3082 		rflow = &flow_table->flows[flow_id];
3083 		cpu = ACCESS_ONCE(rflow->cpu);
3084 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3085 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3086 			   rflow->last_qtail) <
3087 		     (int)(10 * flow_table->mask)))
3088 			expire = false;
3089 	}
3090 	rcu_read_unlock();
3091 	return expire;
3092 }
3093 EXPORT_SYMBOL(rps_may_expire_flow);
3094 
3095 #endif /* CONFIG_RFS_ACCEL */
3096 
3097 /* Called from hardirq (IPI) context */
3098 static void rps_trigger_softirq(void *data)
3099 {
3100 	struct softnet_data *sd = data;
3101 
3102 	____napi_schedule(sd, &sd->backlog);
3103 	sd->received_rps++;
3104 }
3105 
3106 #endif /* CONFIG_RPS */
3107 
3108 /*
3109  * Check if this softnet_data structure is another cpu one
3110  * If yes, queue it to our IPI list and return 1
3111  * If no, return 0
3112  */
3113 static int rps_ipi_queued(struct softnet_data *sd)
3114 {
3115 #ifdef CONFIG_RPS
3116 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3117 
3118 	if (sd != mysd) {
3119 		sd->rps_ipi_next = mysd->rps_ipi_list;
3120 		mysd->rps_ipi_list = sd;
3121 
3122 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3123 		return 1;
3124 	}
3125 #endif /* CONFIG_RPS */
3126 	return 0;
3127 }
3128 
3129 #ifdef CONFIG_NET_FLOW_LIMIT
3130 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3131 #endif
3132 
3133 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3134 {
3135 #ifdef CONFIG_NET_FLOW_LIMIT
3136 	struct sd_flow_limit *fl;
3137 	struct softnet_data *sd;
3138 	unsigned int old_flow, new_flow;
3139 
3140 	if (qlen < (netdev_max_backlog >> 1))
3141 		return false;
3142 
3143 	sd = &__get_cpu_var(softnet_data);
3144 
3145 	rcu_read_lock();
3146 	fl = rcu_dereference(sd->flow_limit);
3147 	if (fl) {
3148 		new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1);
3149 		old_flow = fl->history[fl->history_head];
3150 		fl->history[fl->history_head] = new_flow;
3151 
3152 		fl->history_head++;
3153 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3154 
3155 		if (likely(fl->buckets[old_flow]))
3156 			fl->buckets[old_flow]--;
3157 
3158 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3159 			fl->count++;
3160 			rcu_read_unlock();
3161 			return true;
3162 		}
3163 	}
3164 	rcu_read_unlock();
3165 #endif
3166 	return false;
3167 }
3168 
3169 /*
3170  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3171  * queue (may be a remote CPU queue).
3172  */
3173 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3174 			      unsigned int *qtail)
3175 {
3176 	struct softnet_data *sd;
3177 	unsigned long flags;
3178 	unsigned int qlen;
3179 
3180 	sd = &per_cpu(softnet_data, cpu);
3181 
3182 	local_irq_save(flags);
3183 
3184 	rps_lock(sd);
3185 	qlen = skb_queue_len(&sd->input_pkt_queue);
3186 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3187 		if (skb_queue_len(&sd->input_pkt_queue)) {
3188 enqueue:
3189 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3190 			input_queue_tail_incr_save(sd, qtail);
3191 			rps_unlock(sd);
3192 			local_irq_restore(flags);
3193 			return NET_RX_SUCCESS;
3194 		}
3195 
3196 		/* Schedule NAPI for backlog device
3197 		 * We can use non atomic operation since we own the queue lock
3198 		 */
3199 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3200 			if (!rps_ipi_queued(sd))
3201 				____napi_schedule(sd, &sd->backlog);
3202 		}
3203 		goto enqueue;
3204 	}
3205 
3206 	sd->dropped++;
3207 	rps_unlock(sd);
3208 
3209 	local_irq_restore(flags);
3210 
3211 	atomic_long_inc(&skb->dev->rx_dropped);
3212 	kfree_skb(skb);
3213 	return NET_RX_DROP;
3214 }
3215 
3216 /**
3217  *	netif_rx	-	post buffer to the network code
3218  *	@skb: buffer to post
3219  *
3220  *	This function receives a packet from a device driver and queues it for
3221  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3222  *	may be dropped during processing for congestion control or by the
3223  *	protocol layers.
3224  *
3225  *	return values:
3226  *	NET_RX_SUCCESS	(no congestion)
3227  *	NET_RX_DROP     (packet was dropped)
3228  *
3229  */
3230 
3231 int netif_rx(struct sk_buff *skb)
3232 {
3233 	int ret;
3234 
3235 	/* if netpoll wants it, pretend we never saw it */
3236 	if (netpoll_rx(skb))
3237 		return NET_RX_DROP;
3238 
3239 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3240 
3241 	trace_netif_rx(skb);
3242 #ifdef CONFIG_RPS
3243 	if (static_key_false(&rps_needed)) {
3244 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3245 		int cpu;
3246 
3247 		preempt_disable();
3248 		rcu_read_lock();
3249 
3250 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3251 		if (cpu < 0)
3252 			cpu = smp_processor_id();
3253 
3254 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3255 
3256 		rcu_read_unlock();
3257 		preempt_enable();
3258 	} else
3259 #endif
3260 	{
3261 		unsigned int qtail;
3262 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3263 		put_cpu();
3264 	}
3265 	return ret;
3266 }
3267 EXPORT_SYMBOL(netif_rx);
3268 
3269 int netif_rx_ni(struct sk_buff *skb)
3270 {
3271 	int err;
3272 
3273 	preempt_disable();
3274 	err = netif_rx(skb);
3275 	if (local_softirq_pending())
3276 		do_softirq();
3277 	preempt_enable();
3278 
3279 	return err;
3280 }
3281 EXPORT_SYMBOL(netif_rx_ni);
3282 
3283 static void net_tx_action(struct softirq_action *h)
3284 {
3285 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3286 
3287 	if (sd->completion_queue) {
3288 		struct sk_buff *clist;
3289 
3290 		local_irq_disable();
3291 		clist = sd->completion_queue;
3292 		sd->completion_queue = NULL;
3293 		local_irq_enable();
3294 
3295 		while (clist) {
3296 			struct sk_buff *skb = clist;
3297 			clist = clist->next;
3298 
3299 			WARN_ON(atomic_read(&skb->users));
3300 			trace_kfree_skb(skb, net_tx_action);
3301 			__kfree_skb(skb);
3302 		}
3303 	}
3304 
3305 	if (sd->output_queue) {
3306 		struct Qdisc *head;
3307 
3308 		local_irq_disable();
3309 		head = sd->output_queue;
3310 		sd->output_queue = NULL;
3311 		sd->output_queue_tailp = &sd->output_queue;
3312 		local_irq_enable();
3313 
3314 		while (head) {
3315 			struct Qdisc *q = head;
3316 			spinlock_t *root_lock;
3317 
3318 			head = head->next_sched;
3319 
3320 			root_lock = qdisc_lock(q);
3321 			if (spin_trylock(root_lock)) {
3322 				smp_mb__before_clear_bit();
3323 				clear_bit(__QDISC_STATE_SCHED,
3324 					  &q->state);
3325 				qdisc_run(q);
3326 				spin_unlock(root_lock);
3327 			} else {
3328 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3329 					      &q->state)) {
3330 					__netif_reschedule(q);
3331 				} else {
3332 					smp_mb__before_clear_bit();
3333 					clear_bit(__QDISC_STATE_SCHED,
3334 						  &q->state);
3335 				}
3336 			}
3337 		}
3338 	}
3339 }
3340 
3341 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3342     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3343 /* This hook is defined here for ATM LANE */
3344 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3345 			     unsigned char *addr) __read_mostly;
3346 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3347 #endif
3348 
3349 #ifdef CONFIG_NET_CLS_ACT
3350 /* TODO: Maybe we should just force sch_ingress to be compiled in
3351  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3352  * a compare and 2 stores extra right now if we dont have it on
3353  * but have CONFIG_NET_CLS_ACT
3354  * NOTE: This doesn't stop any functionality; if you dont have
3355  * the ingress scheduler, you just can't add policies on ingress.
3356  *
3357  */
3358 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3359 {
3360 	struct net_device *dev = skb->dev;
3361 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3362 	int result = TC_ACT_OK;
3363 	struct Qdisc *q;
3364 
3365 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3366 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3367 				     skb->skb_iif, dev->ifindex);
3368 		return TC_ACT_SHOT;
3369 	}
3370 
3371 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3372 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3373 
3374 	q = rxq->qdisc;
3375 	if (q != &noop_qdisc) {
3376 		spin_lock(qdisc_lock(q));
3377 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3378 			result = qdisc_enqueue_root(skb, q);
3379 		spin_unlock(qdisc_lock(q));
3380 	}
3381 
3382 	return result;
3383 }
3384 
3385 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3386 					 struct packet_type **pt_prev,
3387 					 int *ret, struct net_device *orig_dev)
3388 {
3389 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3390 
3391 	if (!rxq || rxq->qdisc == &noop_qdisc)
3392 		goto out;
3393 
3394 	if (*pt_prev) {
3395 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3396 		*pt_prev = NULL;
3397 	}
3398 
3399 	switch (ing_filter(skb, rxq)) {
3400 	case TC_ACT_SHOT:
3401 	case TC_ACT_STOLEN:
3402 		kfree_skb(skb);
3403 		return NULL;
3404 	}
3405 
3406 out:
3407 	skb->tc_verd = 0;
3408 	return skb;
3409 }
3410 #endif
3411 
3412 /**
3413  *	netdev_rx_handler_register - register receive handler
3414  *	@dev: device to register a handler for
3415  *	@rx_handler: receive handler to register
3416  *	@rx_handler_data: data pointer that is used by rx handler
3417  *
3418  *	Register a receive hander for a device. This handler will then be
3419  *	called from __netif_receive_skb. A negative errno code is returned
3420  *	on a failure.
3421  *
3422  *	The caller must hold the rtnl_mutex.
3423  *
3424  *	For a general description of rx_handler, see enum rx_handler_result.
3425  */
3426 int netdev_rx_handler_register(struct net_device *dev,
3427 			       rx_handler_func_t *rx_handler,
3428 			       void *rx_handler_data)
3429 {
3430 	ASSERT_RTNL();
3431 
3432 	if (dev->rx_handler)
3433 		return -EBUSY;
3434 
3435 	/* Note: rx_handler_data must be set before rx_handler */
3436 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3437 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3438 
3439 	return 0;
3440 }
3441 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3442 
3443 /**
3444  *	netdev_rx_handler_unregister - unregister receive handler
3445  *	@dev: device to unregister a handler from
3446  *
3447  *	Unregister a receive handler from a device.
3448  *
3449  *	The caller must hold the rtnl_mutex.
3450  */
3451 void netdev_rx_handler_unregister(struct net_device *dev)
3452 {
3453 
3454 	ASSERT_RTNL();
3455 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3456 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3457 	 * section has a guarantee to see a non NULL rx_handler_data
3458 	 * as well.
3459 	 */
3460 	synchronize_net();
3461 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3462 }
3463 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3464 
3465 /*
3466  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3467  * the special handling of PFMEMALLOC skbs.
3468  */
3469 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3470 {
3471 	switch (skb->protocol) {
3472 	case __constant_htons(ETH_P_ARP):
3473 	case __constant_htons(ETH_P_IP):
3474 	case __constant_htons(ETH_P_IPV6):
3475 	case __constant_htons(ETH_P_8021Q):
3476 	case __constant_htons(ETH_P_8021AD):
3477 		return true;
3478 	default:
3479 		return false;
3480 	}
3481 }
3482 
3483 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3484 {
3485 	struct packet_type *ptype, *pt_prev;
3486 	rx_handler_func_t *rx_handler;
3487 	struct net_device *orig_dev;
3488 	struct net_device *null_or_dev;
3489 	bool deliver_exact = false;
3490 	int ret = NET_RX_DROP;
3491 	__be16 type;
3492 
3493 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3494 
3495 	trace_netif_receive_skb(skb);
3496 
3497 	/* if we've gotten here through NAPI, check netpoll */
3498 	if (netpoll_receive_skb(skb))
3499 		goto out;
3500 
3501 	orig_dev = skb->dev;
3502 
3503 	skb_reset_network_header(skb);
3504 	if (!skb_transport_header_was_set(skb))
3505 		skb_reset_transport_header(skb);
3506 	skb_reset_mac_len(skb);
3507 
3508 	pt_prev = NULL;
3509 
3510 	rcu_read_lock();
3511 
3512 another_round:
3513 	skb->skb_iif = skb->dev->ifindex;
3514 
3515 	__this_cpu_inc(softnet_data.processed);
3516 
3517 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3518 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3519 		skb = vlan_untag(skb);
3520 		if (unlikely(!skb))
3521 			goto unlock;
3522 	}
3523 
3524 #ifdef CONFIG_NET_CLS_ACT
3525 	if (skb->tc_verd & TC_NCLS) {
3526 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3527 		goto ncls;
3528 	}
3529 #endif
3530 
3531 	if (pfmemalloc)
3532 		goto skip_taps;
3533 
3534 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3535 		if (!ptype->dev || ptype->dev == skb->dev) {
3536 			if (pt_prev)
3537 				ret = deliver_skb(skb, pt_prev, orig_dev);
3538 			pt_prev = ptype;
3539 		}
3540 	}
3541 
3542 skip_taps:
3543 #ifdef CONFIG_NET_CLS_ACT
3544 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3545 	if (!skb)
3546 		goto unlock;
3547 ncls:
3548 #endif
3549 
3550 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3551 		goto drop;
3552 
3553 	if (vlan_tx_tag_present(skb)) {
3554 		if (pt_prev) {
3555 			ret = deliver_skb(skb, pt_prev, orig_dev);
3556 			pt_prev = NULL;
3557 		}
3558 		if (vlan_do_receive(&skb))
3559 			goto another_round;
3560 		else if (unlikely(!skb))
3561 			goto unlock;
3562 	}
3563 
3564 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3565 	if (rx_handler) {
3566 		if (pt_prev) {
3567 			ret = deliver_skb(skb, pt_prev, orig_dev);
3568 			pt_prev = NULL;
3569 		}
3570 		switch (rx_handler(&skb)) {
3571 		case RX_HANDLER_CONSUMED:
3572 			ret = NET_RX_SUCCESS;
3573 			goto unlock;
3574 		case RX_HANDLER_ANOTHER:
3575 			goto another_round;
3576 		case RX_HANDLER_EXACT:
3577 			deliver_exact = true;
3578 		case RX_HANDLER_PASS:
3579 			break;
3580 		default:
3581 			BUG();
3582 		}
3583 	}
3584 
3585 	if (vlan_tx_nonzero_tag_present(skb))
3586 		skb->pkt_type = PACKET_OTHERHOST;
3587 
3588 	/* deliver only exact match when indicated */
3589 	null_or_dev = deliver_exact ? skb->dev : NULL;
3590 
3591 	type = skb->protocol;
3592 	list_for_each_entry_rcu(ptype,
3593 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3594 		if (ptype->type == type &&
3595 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3596 		     ptype->dev == orig_dev)) {
3597 			if (pt_prev)
3598 				ret = deliver_skb(skb, pt_prev, orig_dev);
3599 			pt_prev = ptype;
3600 		}
3601 	}
3602 
3603 	if (pt_prev) {
3604 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3605 			goto drop;
3606 		else
3607 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3608 	} else {
3609 drop:
3610 		atomic_long_inc(&skb->dev->rx_dropped);
3611 		kfree_skb(skb);
3612 		/* Jamal, now you will not able to escape explaining
3613 		 * me how you were going to use this. :-)
3614 		 */
3615 		ret = NET_RX_DROP;
3616 	}
3617 
3618 unlock:
3619 	rcu_read_unlock();
3620 out:
3621 	return ret;
3622 }
3623 
3624 static int __netif_receive_skb(struct sk_buff *skb)
3625 {
3626 	int ret;
3627 
3628 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3629 		unsigned long pflags = current->flags;
3630 
3631 		/*
3632 		 * PFMEMALLOC skbs are special, they should
3633 		 * - be delivered to SOCK_MEMALLOC sockets only
3634 		 * - stay away from userspace
3635 		 * - have bounded memory usage
3636 		 *
3637 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3638 		 * context down to all allocation sites.
3639 		 */
3640 		current->flags |= PF_MEMALLOC;
3641 		ret = __netif_receive_skb_core(skb, true);
3642 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3643 	} else
3644 		ret = __netif_receive_skb_core(skb, false);
3645 
3646 	return ret;
3647 }
3648 
3649 /**
3650  *	netif_receive_skb - process receive buffer from network
3651  *	@skb: buffer to process
3652  *
3653  *	netif_receive_skb() is the main receive data processing function.
3654  *	It always succeeds. The buffer may be dropped during processing
3655  *	for congestion control or by the protocol layers.
3656  *
3657  *	This function may only be called from softirq context and interrupts
3658  *	should be enabled.
3659  *
3660  *	Return values (usually ignored):
3661  *	NET_RX_SUCCESS: no congestion
3662  *	NET_RX_DROP: packet was dropped
3663  */
3664 int netif_receive_skb(struct sk_buff *skb)
3665 {
3666 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3667 
3668 	if (skb_defer_rx_timestamp(skb))
3669 		return NET_RX_SUCCESS;
3670 
3671 #ifdef CONFIG_RPS
3672 	if (static_key_false(&rps_needed)) {
3673 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3674 		int cpu, ret;
3675 
3676 		rcu_read_lock();
3677 
3678 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3679 
3680 		if (cpu >= 0) {
3681 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3682 			rcu_read_unlock();
3683 			return ret;
3684 		}
3685 		rcu_read_unlock();
3686 	}
3687 #endif
3688 	return __netif_receive_skb(skb);
3689 }
3690 EXPORT_SYMBOL(netif_receive_skb);
3691 
3692 /* Network device is going away, flush any packets still pending
3693  * Called with irqs disabled.
3694  */
3695 static void flush_backlog(void *arg)
3696 {
3697 	struct net_device *dev = arg;
3698 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3699 	struct sk_buff *skb, *tmp;
3700 
3701 	rps_lock(sd);
3702 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3703 		if (skb->dev == dev) {
3704 			__skb_unlink(skb, &sd->input_pkt_queue);
3705 			kfree_skb(skb);
3706 			input_queue_head_incr(sd);
3707 		}
3708 	}
3709 	rps_unlock(sd);
3710 
3711 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3712 		if (skb->dev == dev) {
3713 			__skb_unlink(skb, &sd->process_queue);
3714 			kfree_skb(skb);
3715 			input_queue_head_incr(sd);
3716 		}
3717 	}
3718 }
3719 
3720 static int napi_gro_complete(struct sk_buff *skb)
3721 {
3722 	struct packet_offload *ptype;
3723 	__be16 type = skb->protocol;
3724 	struct list_head *head = &offload_base;
3725 	int err = -ENOENT;
3726 
3727 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3728 
3729 	if (NAPI_GRO_CB(skb)->count == 1) {
3730 		skb_shinfo(skb)->gso_size = 0;
3731 		goto out;
3732 	}
3733 
3734 	rcu_read_lock();
3735 	list_for_each_entry_rcu(ptype, head, list) {
3736 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3737 			continue;
3738 
3739 		err = ptype->callbacks.gro_complete(skb);
3740 		break;
3741 	}
3742 	rcu_read_unlock();
3743 
3744 	if (err) {
3745 		WARN_ON(&ptype->list == head);
3746 		kfree_skb(skb);
3747 		return NET_RX_SUCCESS;
3748 	}
3749 
3750 out:
3751 	return netif_receive_skb(skb);
3752 }
3753 
3754 /* napi->gro_list contains packets ordered by age.
3755  * youngest packets at the head of it.
3756  * Complete skbs in reverse order to reduce latencies.
3757  */
3758 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3759 {
3760 	struct sk_buff *skb, *prev = NULL;
3761 
3762 	/* scan list and build reverse chain */
3763 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3764 		skb->prev = prev;
3765 		prev = skb;
3766 	}
3767 
3768 	for (skb = prev; skb; skb = prev) {
3769 		skb->next = NULL;
3770 
3771 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3772 			return;
3773 
3774 		prev = skb->prev;
3775 		napi_gro_complete(skb);
3776 		napi->gro_count--;
3777 	}
3778 
3779 	napi->gro_list = NULL;
3780 }
3781 EXPORT_SYMBOL(napi_gro_flush);
3782 
3783 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3784 {
3785 	struct sk_buff *p;
3786 	unsigned int maclen = skb->dev->hard_header_len;
3787 
3788 	for (p = napi->gro_list; p; p = p->next) {
3789 		unsigned long diffs;
3790 
3791 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3792 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3793 		if (maclen == ETH_HLEN)
3794 			diffs |= compare_ether_header(skb_mac_header(p),
3795 						      skb_gro_mac_header(skb));
3796 		else if (!diffs)
3797 			diffs = memcmp(skb_mac_header(p),
3798 				       skb_gro_mac_header(skb),
3799 				       maclen);
3800 		NAPI_GRO_CB(p)->same_flow = !diffs;
3801 		NAPI_GRO_CB(p)->flush = 0;
3802 	}
3803 }
3804 
3805 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3806 {
3807 	struct sk_buff **pp = NULL;
3808 	struct packet_offload *ptype;
3809 	__be16 type = skb->protocol;
3810 	struct list_head *head = &offload_base;
3811 	int same_flow;
3812 	enum gro_result ret;
3813 
3814 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3815 		goto normal;
3816 
3817 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3818 		goto normal;
3819 
3820 	gro_list_prepare(napi, skb);
3821 
3822 	rcu_read_lock();
3823 	list_for_each_entry_rcu(ptype, head, list) {
3824 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3825 			continue;
3826 
3827 		skb_set_network_header(skb, skb_gro_offset(skb));
3828 		skb_reset_mac_len(skb);
3829 		NAPI_GRO_CB(skb)->same_flow = 0;
3830 		NAPI_GRO_CB(skb)->flush = 0;
3831 		NAPI_GRO_CB(skb)->free = 0;
3832 
3833 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3834 		break;
3835 	}
3836 	rcu_read_unlock();
3837 
3838 	if (&ptype->list == head)
3839 		goto normal;
3840 
3841 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3842 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3843 
3844 	if (pp) {
3845 		struct sk_buff *nskb = *pp;
3846 
3847 		*pp = nskb->next;
3848 		nskb->next = NULL;
3849 		napi_gro_complete(nskb);
3850 		napi->gro_count--;
3851 	}
3852 
3853 	if (same_flow)
3854 		goto ok;
3855 
3856 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3857 		goto normal;
3858 
3859 	napi->gro_count++;
3860 	NAPI_GRO_CB(skb)->count = 1;
3861 	NAPI_GRO_CB(skb)->age = jiffies;
3862 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3863 	skb->next = napi->gro_list;
3864 	napi->gro_list = skb;
3865 	ret = GRO_HELD;
3866 
3867 pull:
3868 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3869 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3870 
3871 		BUG_ON(skb->end - skb->tail < grow);
3872 
3873 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3874 
3875 		skb->tail += grow;
3876 		skb->data_len -= grow;
3877 
3878 		skb_shinfo(skb)->frags[0].page_offset += grow;
3879 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3880 
3881 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3882 			skb_frag_unref(skb, 0);
3883 			memmove(skb_shinfo(skb)->frags,
3884 				skb_shinfo(skb)->frags + 1,
3885 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3886 		}
3887 	}
3888 
3889 ok:
3890 	return ret;
3891 
3892 normal:
3893 	ret = GRO_NORMAL;
3894 	goto pull;
3895 }
3896 
3897 
3898 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3899 {
3900 	switch (ret) {
3901 	case GRO_NORMAL:
3902 		if (netif_receive_skb(skb))
3903 			ret = GRO_DROP;
3904 		break;
3905 
3906 	case GRO_DROP:
3907 		kfree_skb(skb);
3908 		break;
3909 
3910 	case GRO_MERGED_FREE:
3911 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3912 			kmem_cache_free(skbuff_head_cache, skb);
3913 		else
3914 			__kfree_skb(skb);
3915 		break;
3916 
3917 	case GRO_HELD:
3918 	case GRO_MERGED:
3919 		break;
3920 	}
3921 
3922 	return ret;
3923 }
3924 
3925 static void skb_gro_reset_offset(struct sk_buff *skb)
3926 {
3927 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3928 	const skb_frag_t *frag0 = &pinfo->frags[0];
3929 
3930 	NAPI_GRO_CB(skb)->data_offset = 0;
3931 	NAPI_GRO_CB(skb)->frag0 = NULL;
3932 	NAPI_GRO_CB(skb)->frag0_len = 0;
3933 
3934 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3935 	    pinfo->nr_frags &&
3936 	    !PageHighMem(skb_frag_page(frag0))) {
3937 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3938 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3939 	}
3940 }
3941 
3942 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3943 {
3944 	skb_gro_reset_offset(skb);
3945 
3946 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3947 }
3948 EXPORT_SYMBOL(napi_gro_receive);
3949 
3950 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3951 {
3952 	__skb_pull(skb, skb_headlen(skb));
3953 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3954 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3955 	skb->vlan_tci = 0;
3956 	skb->dev = napi->dev;
3957 	skb->skb_iif = 0;
3958 
3959 	napi->skb = skb;
3960 }
3961 
3962 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3963 {
3964 	struct sk_buff *skb = napi->skb;
3965 
3966 	if (!skb) {
3967 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3968 		if (skb)
3969 			napi->skb = skb;
3970 	}
3971 	return skb;
3972 }
3973 EXPORT_SYMBOL(napi_get_frags);
3974 
3975 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3976 			       gro_result_t ret)
3977 {
3978 	switch (ret) {
3979 	case GRO_NORMAL:
3980 	case GRO_HELD:
3981 		skb->protocol = eth_type_trans(skb, skb->dev);
3982 
3983 		if (ret == GRO_HELD)
3984 			skb_gro_pull(skb, -ETH_HLEN);
3985 		else if (netif_receive_skb(skb))
3986 			ret = GRO_DROP;
3987 		break;
3988 
3989 	case GRO_DROP:
3990 	case GRO_MERGED_FREE:
3991 		napi_reuse_skb(napi, skb);
3992 		break;
3993 
3994 	case GRO_MERGED:
3995 		break;
3996 	}
3997 
3998 	return ret;
3999 }
4000 
4001 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4002 {
4003 	struct sk_buff *skb = napi->skb;
4004 	struct ethhdr *eth;
4005 	unsigned int hlen;
4006 	unsigned int off;
4007 
4008 	napi->skb = NULL;
4009 
4010 	skb_reset_mac_header(skb);
4011 	skb_gro_reset_offset(skb);
4012 
4013 	off = skb_gro_offset(skb);
4014 	hlen = off + sizeof(*eth);
4015 	eth = skb_gro_header_fast(skb, off);
4016 	if (skb_gro_header_hard(skb, hlen)) {
4017 		eth = skb_gro_header_slow(skb, hlen, off);
4018 		if (unlikely(!eth)) {
4019 			napi_reuse_skb(napi, skb);
4020 			skb = NULL;
4021 			goto out;
4022 		}
4023 	}
4024 
4025 	skb_gro_pull(skb, sizeof(*eth));
4026 
4027 	/*
4028 	 * This works because the only protocols we care about don't require
4029 	 * special handling.  We'll fix it up properly at the end.
4030 	 */
4031 	skb->protocol = eth->h_proto;
4032 
4033 out:
4034 	return skb;
4035 }
4036 
4037 gro_result_t napi_gro_frags(struct napi_struct *napi)
4038 {
4039 	struct sk_buff *skb = napi_frags_skb(napi);
4040 
4041 	if (!skb)
4042 		return GRO_DROP;
4043 
4044 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4045 }
4046 EXPORT_SYMBOL(napi_gro_frags);
4047 
4048 /*
4049  * net_rps_action sends any pending IPI's for rps.
4050  * Note: called with local irq disabled, but exits with local irq enabled.
4051  */
4052 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4053 {
4054 #ifdef CONFIG_RPS
4055 	struct softnet_data *remsd = sd->rps_ipi_list;
4056 
4057 	if (remsd) {
4058 		sd->rps_ipi_list = NULL;
4059 
4060 		local_irq_enable();
4061 
4062 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4063 		while (remsd) {
4064 			struct softnet_data *next = remsd->rps_ipi_next;
4065 
4066 			if (cpu_online(remsd->cpu))
4067 				__smp_call_function_single(remsd->cpu,
4068 							   &remsd->csd, 0);
4069 			remsd = next;
4070 		}
4071 	} else
4072 #endif
4073 		local_irq_enable();
4074 }
4075 
4076 static int process_backlog(struct napi_struct *napi, int quota)
4077 {
4078 	int work = 0;
4079 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4080 
4081 #ifdef CONFIG_RPS
4082 	/* Check if we have pending ipi, its better to send them now,
4083 	 * not waiting net_rx_action() end.
4084 	 */
4085 	if (sd->rps_ipi_list) {
4086 		local_irq_disable();
4087 		net_rps_action_and_irq_enable(sd);
4088 	}
4089 #endif
4090 	napi->weight = weight_p;
4091 	local_irq_disable();
4092 	while (work < quota) {
4093 		struct sk_buff *skb;
4094 		unsigned int qlen;
4095 
4096 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4097 			local_irq_enable();
4098 			__netif_receive_skb(skb);
4099 			local_irq_disable();
4100 			input_queue_head_incr(sd);
4101 			if (++work >= quota) {
4102 				local_irq_enable();
4103 				return work;
4104 			}
4105 		}
4106 
4107 		rps_lock(sd);
4108 		qlen = skb_queue_len(&sd->input_pkt_queue);
4109 		if (qlen)
4110 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4111 						   &sd->process_queue);
4112 
4113 		if (qlen < quota - work) {
4114 			/*
4115 			 * Inline a custom version of __napi_complete().
4116 			 * only current cpu owns and manipulates this napi,
4117 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4118 			 * we can use a plain write instead of clear_bit(),
4119 			 * and we dont need an smp_mb() memory barrier.
4120 			 */
4121 			list_del(&napi->poll_list);
4122 			napi->state = 0;
4123 
4124 			quota = work + qlen;
4125 		}
4126 		rps_unlock(sd);
4127 	}
4128 	local_irq_enable();
4129 
4130 	return work;
4131 }
4132 
4133 /**
4134  * __napi_schedule - schedule for receive
4135  * @n: entry to schedule
4136  *
4137  * The entry's receive function will be scheduled to run
4138  */
4139 void __napi_schedule(struct napi_struct *n)
4140 {
4141 	unsigned long flags;
4142 
4143 	local_irq_save(flags);
4144 	____napi_schedule(&__get_cpu_var(softnet_data), n);
4145 	local_irq_restore(flags);
4146 }
4147 EXPORT_SYMBOL(__napi_schedule);
4148 
4149 void __napi_complete(struct napi_struct *n)
4150 {
4151 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4152 	BUG_ON(n->gro_list);
4153 
4154 	list_del(&n->poll_list);
4155 	smp_mb__before_clear_bit();
4156 	clear_bit(NAPI_STATE_SCHED, &n->state);
4157 }
4158 EXPORT_SYMBOL(__napi_complete);
4159 
4160 void napi_complete(struct napi_struct *n)
4161 {
4162 	unsigned long flags;
4163 
4164 	/*
4165 	 * don't let napi dequeue from the cpu poll list
4166 	 * just in case its running on a different cpu
4167 	 */
4168 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4169 		return;
4170 
4171 	napi_gro_flush(n, false);
4172 	local_irq_save(flags);
4173 	__napi_complete(n);
4174 	local_irq_restore(flags);
4175 }
4176 EXPORT_SYMBOL(napi_complete);
4177 
4178 /* must be called under rcu_read_lock(), as we dont take a reference */
4179 struct napi_struct *napi_by_id(unsigned int napi_id)
4180 {
4181 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4182 	struct napi_struct *napi;
4183 
4184 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4185 		if (napi->napi_id == napi_id)
4186 			return napi;
4187 
4188 	return NULL;
4189 }
4190 EXPORT_SYMBOL_GPL(napi_by_id);
4191 
4192 void napi_hash_add(struct napi_struct *napi)
4193 {
4194 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4195 
4196 		spin_lock(&napi_hash_lock);
4197 
4198 		/* 0 is not a valid id, we also skip an id that is taken
4199 		 * we expect both events to be extremely rare
4200 		 */
4201 		napi->napi_id = 0;
4202 		while (!napi->napi_id) {
4203 			napi->napi_id = ++napi_gen_id;
4204 			if (napi_by_id(napi->napi_id))
4205 				napi->napi_id = 0;
4206 		}
4207 
4208 		hlist_add_head_rcu(&napi->napi_hash_node,
4209 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4210 
4211 		spin_unlock(&napi_hash_lock);
4212 	}
4213 }
4214 EXPORT_SYMBOL_GPL(napi_hash_add);
4215 
4216 /* Warning : caller is responsible to make sure rcu grace period
4217  * is respected before freeing memory containing @napi
4218  */
4219 void napi_hash_del(struct napi_struct *napi)
4220 {
4221 	spin_lock(&napi_hash_lock);
4222 
4223 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4224 		hlist_del_rcu(&napi->napi_hash_node);
4225 
4226 	spin_unlock(&napi_hash_lock);
4227 }
4228 EXPORT_SYMBOL_GPL(napi_hash_del);
4229 
4230 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4231 		    int (*poll)(struct napi_struct *, int), int weight)
4232 {
4233 	INIT_LIST_HEAD(&napi->poll_list);
4234 	napi->gro_count = 0;
4235 	napi->gro_list = NULL;
4236 	napi->skb = NULL;
4237 	napi->poll = poll;
4238 	if (weight > NAPI_POLL_WEIGHT)
4239 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4240 			    weight, dev->name);
4241 	napi->weight = weight;
4242 	list_add(&napi->dev_list, &dev->napi_list);
4243 	napi->dev = dev;
4244 #ifdef CONFIG_NETPOLL
4245 	spin_lock_init(&napi->poll_lock);
4246 	napi->poll_owner = -1;
4247 #endif
4248 	set_bit(NAPI_STATE_SCHED, &napi->state);
4249 }
4250 EXPORT_SYMBOL(netif_napi_add);
4251 
4252 void netif_napi_del(struct napi_struct *napi)
4253 {
4254 	struct sk_buff *skb, *next;
4255 
4256 	list_del_init(&napi->dev_list);
4257 	napi_free_frags(napi);
4258 
4259 	for (skb = napi->gro_list; skb; skb = next) {
4260 		next = skb->next;
4261 		skb->next = NULL;
4262 		kfree_skb(skb);
4263 	}
4264 
4265 	napi->gro_list = NULL;
4266 	napi->gro_count = 0;
4267 }
4268 EXPORT_SYMBOL(netif_napi_del);
4269 
4270 static void net_rx_action(struct softirq_action *h)
4271 {
4272 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
4273 	unsigned long time_limit = jiffies + 2;
4274 	int budget = netdev_budget;
4275 	void *have;
4276 
4277 	local_irq_disable();
4278 
4279 	while (!list_empty(&sd->poll_list)) {
4280 		struct napi_struct *n;
4281 		int work, weight;
4282 
4283 		/* If softirq window is exhuasted then punt.
4284 		 * Allow this to run for 2 jiffies since which will allow
4285 		 * an average latency of 1.5/HZ.
4286 		 */
4287 		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4288 			goto softnet_break;
4289 
4290 		local_irq_enable();
4291 
4292 		/* Even though interrupts have been re-enabled, this
4293 		 * access is safe because interrupts can only add new
4294 		 * entries to the tail of this list, and only ->poll()
4295 		 * calls can remove this head entry from the list.
4296 		 */
4297 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4298 
4299 		have = netpoll_poll_lock(n);
4300 
4301 		weight = n->weight;
4302 
4303 		/* This NAPI_STATE_SCHED test is for avoiding a race
4304 		 * with netpoll's poll_napi().  Only the entity which
4305 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4306 		 * actually make the ->poll() call.  Therefore we avoid
4307 		 * accidentally calling ->poll() when NAPI is not scheduled.
4308 		 */
4309 		work = 0;
4310 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4311 			work = n->poll(n, weight);
4312 			trace_napi_poll(n);
4313 		}
4314 
4315 		WARN_ON_ONCE(work > weight);
4316 
4317 		budget -= work;
4318 
4319 		local_irq_disable();
4320 
4321 		/* Drivers must not modify the NAPI state if they
4322 		 * consume the entire weight.  In such cases this code
4323 		 * still "owns" the NAPI instance and therefore can
4324 		 * move the instance around on the list at-will.
4325 		 */
4326 		if (unlikely(work == weight)) {
4327 			if (unlikely(napi_disable_pending(n))) {
4328 				local_irq_enable();
4329 				napi_complete(n);
4330 				local_irq_disable();
4331 			} else {
4332 				if (n->gro_list) {
4333 					/* flush too old packets
4334 					 * If HZ < 1000, flush all packets.
4335 					 */
4336 					local_irq_enable();
4337 					napi_gro_flush(n, HZ >= 1000);
4338 					local_irq_disable();
4339 				}
4340 				list_move_tail(&n->poll_list, &sd->poll_list);
4341 			}
4342 		}
4343 
4344 		netpoll_poll_unlock(have);
4345 	}
4346 out:
4347 	net_rps_action_and_irq_enable(sd);
4348 
4349 #ifdef CONFIG_NET_DMA
4350 	/*
4351 	 * There may not be any more sk_buffs coming right now, so push
4352 	 * any pending DMA copies to hardware
4353 	 */
4354 	dma_issue_pending_all();
4355 #endif
4356 
4357 	return;
4358 
4359 softnet_break:
4360 	sd->time_squeeze++;
4361 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4362 	goto out;
4363 }
4364 
4365 struct netdev_upper {
4366 	struct net_device *dev;
4367 	bool master;
4368 	struct list_head list;
4369 	struct rcu_head rcu;
4370 	struct list_head search_list;
4371 };
4372 
4373 static void __append_search_uppers(struct list_head *search_list,
4374 				   struct net_device *dev)
4375 {
4376 	struct netdev_upper *upper;
4377 
4378 	list_for_each_entry(upper, &dev->upper_dev_list, list) {
4379 		/* check if this upper is not already in search list */
4380 		if (list_empty(&upper->search_list))
4381 			list_add_tail(&upper->search_list, search_list);
4382 	}
4383 }
4384 
4385 static bool __netdev_search_upper_dev(struct net_device *dev,
4386 				      struct net_device *upper_dev)
4387 {
4388 	LIST_HEAD(search_list);
4389 	struct netdev_upper *upper;
4390 	struct netdev_upper *tmp;
4391 	bool ret = false;
4392 
4393 	__append_search_uppers(&search_list, dev);
4394 	list_for_each_entry(upper, &search_list, search_list) {
4395 		if (upper->dev == upper_dev) {
4396 			ret = true;
4397 			break;
4398 		}
4399 		__append_search_uppers(&search_list, upper->dev);
4400 	}
4401 	list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4402 		INIT_LIST_HEAD(&upper->search_list);
4403 	return ret;
4404 }
4405 
4406 static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4407 						struct net_device *upper_dev)
4408 {
4409 	struct netdev_upper *upper;
4410 
4411 	list_for_each_entry(upper, &dev->upper_dev_list, list) {
4412 		if (upper->dev == upper_dev)
4413 			return upper;
4414 	}
4415 	return NULL;
4416 }
4417 
4418 /**
4419  * netdev_has_upper_dev - Check if device is linked to an upper device
4420  * @dev: device
4421  * @upper_dev: upper device to check
4422  *
4423  * Find out if a device is linked to specified upper device and return true
4424  * in case it is. Note that this checks only immediate upper device,
4425  * not through a complete stack of devices. The caller must hold the RTNL lock.
4426  */
4427 bool netdev_has_upper_dev(struct net_device *dev,
4428 			  struct net_device *upper_dev)
4429 {
4430 	ASSERT_RTNL();
4431 
4432 	return __netdev_find_upper(dev, upper_dev);
4433 }
4434 EXPORT_SYMBOL(netdev_has_upper_dev);
4435 
4436 /**
4437  * netdev_has_any_upper_dev - Check if device is linked to some device
4438  * @dev: device
4439  *
4440  * Find out if a device is linked to an upper device and return true in case
4441  * it is. The caller must hold the RTNL lock.
4442  */
4443 bool netdev_has_any_upper_dev(struct net_device *dev)
4444 {
4445 	ASSERT_RTNL();
4446 
4447 	return !list_empty(&dev->upper_dev_list);
4448 }
4449 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4450 
4451 /**
4452  * netdev_master_upper_dev_get - Get master upper device
4453  * @dev: device
4454  *
4455  * Find a master upper device and return pointer to it or NULL in case
4456  * it's not there. The caller must hold the RTNL lock.
4457  */
4458 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4459 {
4460 	struct netdev_upper *upper;
4461 
4462 	ASSERT_RTNL();
4463 
4464 	if (list_empty(&dev->upper_dev_list))
4465 		return NULL;
4466 
4467 	upper = list_first_entry(&dev->upper_dev_list,
4468 				 struct netdev_upper, list);
4469 	if (likely(upper->master))
4470 		return upper->dev;
4471 	return NULL;
4472 }
4473 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4474 
4475 /**
4476  * netdev_master_upper_dev_get_rcu - Get master upper device
4477  * @dev: device
4478  *
4479  * Find a master upper device and return pointer to it or NULL in case
4480  * it's not there. The caller must hold the RCU read lock.
4481  */
4482 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4483 {
4484 	struct netdev_upper *upper;
4485 
4486 	upper = list_first_or_null_rcu(&dev->upper_dev_list,
4487 				       struct netdev_upper, list);
4488 	if (upper && likely(upper->master))
4489 		return upper->dev;
4490 	return NULL;
4491 }
4492 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4493 
4494 static int __netdev_upper_dev_link(struct net_device *dev,
4495 				   struct net_device *upper_dev, bool master)
4496 {
4497 	struct netdev_upper *upper;
4498 
4499 	ASSERT_RTNL();
4500 
4501 	if (dev == upper_dev)
4502 		return -EBUSY;
4503 
4504 	/* To prevent loops, check if dev is not upper device to upper_dev. */
4505 	if (__netdev_search_upper_dev(upper_dev, dev))
4506 		return -EBUSY;
4507 
4508 	if (__netdev_find_upper(dev, upper_dev))
4509 		return -EEXIST;
4510 
4511 	if (master && netdev_master_upper_dev_get(dev))
4512 		return -EBUSY;
4513 
4514 	upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4515 	if (!upper)
4516 		return -ENOMEM;
4517 
4518 	upper->dev = upper_dev;
4519 	upper->master = master;
4520 	INIT_LIST_HEAD(&upper->search_list);
4521 
4522 	/* Ensure that master upper link is always the first item in list. */
4523 	if (master)
4524 		list_add_rcu(&upper->list, &dev->upper_dev_list);
4525 	else
4526 		list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4527 	dev_hold(upper_dev);
4528 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4529 	return 0;
4530 }
4531 
4532 /**
4533  * netdev_upper_dev_link - Add a link to the upper device
4534  * @dev: device
4535  * @upper_dev: new upper device
4536  *
4537  * Adds a link to device which is upper to this one. The caller must hold
4538  * the RTNL lock. On a failure a negative errno code is returned.
4539  * On success the reference counts are adjusted and the function
4540  * returns zero.
4541  */
4542 int netdev_upper_dev_link(struct net_device *dev,
4543 			  struct net_device *upper_dev)
4544 {
4545 	return __netdev_upper_dev_link(dev, upper_dev, false);
4546 }
4547 EXPORT_SYMBOL(netdev_upper_dev_link);
4548 
4549 /**
4550  * netdev_master_upper_dev_link - Add a master link to the upper device
4551  * @dev: device
4552  * @upper_dev: new upper device
4553  *
4554  * Adds a link to device which is upper to this one. In this case, only
4555  * one master upper device can be linked, although other non-master devices
4556  * might be linked as well. The caller must hold the RTNL lock.
4557  * On a failure a negative errno code is returned. On success the reference
4558  * counts are adjusted and the function returns zero.
4559  */
4560 int netdev_master_upper_dev_link(struct net_device *dev,
4561 				 struct net_device *upper_dev)
4562 {
4563 	return __netdev_upper_dev_link(dev, upper_dev, true);
4564 }
4565 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4566 
4567 /**
4568  * netdev_upper_dev_unlink - Removes a link to upper device
4569  * @dev: device
4570  * @upper_dev: new upper device
4571  *
4572  * Removes a link to device which is upper to this one. The caller must hold
4573  * the RTNL lock.
4574  */
4575 void netdev_upper_dev_unlink(struct net_device *dev,
4576 			     struct net_device *upper_dev)
4577 {
4578 	struct netdev_upper *upper;
4579 
4580 	ASSERT_RTNL();
4581 
4582 	upper = __netdev_find_upper(dev, upper_dev);
4583 	if (!upper)
4584 		return;
4585 	list_del_rcu(&upper->list);
4586 	dev_put(upper_dev);
4587 	kfree_rcu(upper, rcu);
4588 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4589 }
4590 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4591 
4592 static void dev_change_rx_flags(struct net_device *dev, int flags)
4593 {
4594 	const struct net_device_ops *ops = dev->netdev_ops;
4595 
4596 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4597 		ops->ndo_change_rx_flags(dev, flags);
4598 }
4599 
4600 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4601 {
4602 	unsigned int old_flags = dev->flags;
4603 	kuid_t uid;
4604 	kgid_t gid;
4605 
4606 	ASSERT_RTNL();
4607 
4608 	dev->flags |= IFF_PROMISC;
4609 	dev->promiscuity += inc;
4610 	if (dev->promiscuity == 0) {
4611 		/*
4612 		 * Avoid overflow.
4613 		 * If inc causes overflow, untouch promisc and return error.
4614 		 */
4615 		if (inc < 0)
4616 			dev->flags &= ~IFF_PROMISC;
4617 		else {
4618 			dev->promiscuity -= inc;
4619 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4620 				dev->name);
4621 			return -EOVERFLOW;
4622 		}
4623 	}
4624 	if (dev->flags != old_flags) {
4625 		pr_info("device %s %s promiscuous mode\n",
4626 			dev->name,
4627 			dev->flags & IFF_PROMISC ? "entered" : "left");
4628 		if (audit_enabled) {
4629 			current_uid_gid(&uid, &gid);
4630 			audit_log(current->audit_context, GFP_ATOMIC,
4631 				AUDIT_ANOM_PROMISCUOUS,
4632 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4633 				dev->name, (dev->flags & IFF_PROMISC),
4634 				(old_flags & IFF_PROMISC),
4635 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
4636 				from_kuid(&init_user_ns, uid),
4637 				from_kgid(&init_user_ns, gid),
4638 				audit_get_sessionid(current));
4639 		}
4640 
4641 		dev_change_rx_flags(dev, IFF_PROMISC);
4642 	}
4643 	return 0;
4644 }
4645 
4646 /**
4647  *	dev_set_promiscuity	- update promiscuity count on a device
4648  *	@dev: device
4649  *	@inc: modifier
4650  *
4651  *	Add or remove promiscuity from a device. While the count in the device
4652  *	remains above zero the interface remains promiscuous. Once it hits zero
4653  *	the device reverts back to normal filtering operation. A negative inc
4654  *	value is used to drop promiscuity on the device.
4655  *	Return 0 if successful or a negative errno code on error.
4656  */
4657 int dev_set_promiscuity(struct net_device *dev, int inc)
4658 {
4659 	unsigned int old_flags = dev->flags;
4660 	int err;
4661 
4662 	err = __dev_set_promiscuity(dev, inc);
4663 	if (err < 0)
4664 		return err;
4665 	if (dev->flags != old_flags)
4666 		dev_set_rx_mode(dev);
4667 	return err;
4668 }
4669 EXPORT_SYMBOL(dev_set_promiscuity);
4670 
4671 /**
4672  *	dev_set_allmulti	- update allmulti count on a device
4673  *	@dev: device
4674  *	@inc: modifier
4675  *
4676  *	Add or remove reception of all multicast frames to a device. While the
4677  *	count in the device remains above zero the interface remains listening
4678  *	to all interfaces. Once it hits zero the device reverts back to normal
4679  *	filtering operation. A negative @inc value is used to drop the counter
4680  *	when releasing a resource needing all multicasts.
4681  *	Return 0 if successful or a negative errno code on error.
4682  */
4683 
4684 int dev_set_allmulti(struct net_device *dev, int inc)
4685 {
4686 	unsigned int old_flags = dev->flags;
4687 
4688 	ASSERT_RTNL();
4689 
4690 	dev->flags |= IFF_ALLMULTI;
4691 	dev->allmulti += inc;
4692 	if (dev->allmulti == 0) {
4693 		/*
4694 		 * Avoid overflow.
4695 		 * If inc causes overflow, untouch allmulti and return error.
4696 		 */
4697 		if (inc < 0)
4698 			dev->flags &= ~IFF_ALLMULTI;
4699 		else {
4700 			dev->allmulti -= inc;
4701 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4702 				dev->name);
4703 			return -EOVERFLOW;
4704 		}
4705 	}
4706 	if (dev->flags ^ old_flags) {
4707 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4708 		dev_set_rx_mode(dev);
4709 	}
4710 	return 0;
4711 }
4712 EXPORT_SYMBOL(dev_set_allmulti);
4713 
4714 /*
4715  *	Upload unicast and multicast address lists to device and
4716  *	configure RX filtering. When the device doesn't support unicast
4717  *	filtering it is put in promiscuous mode while unicast addresses
4718  *	are present.
4719  */
4720 void __dev_set_rx_mode(struct net_device *dev)
4721 {
4722 	const struct net_device_ops *ops = dev->netdev_ops;
4723 
4724 	/* dev_open will call this function so the list will stay sane. */
4725 	if (!(dev->flags&IFF_UP))
4726 		return;
4727 
4728 	if (!netif_device_present(dev))
4729 		return;
4730 
4731 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4732 		/* Unicast addresses changes may only happen under the rtnl,
4733 		 * therefore calling __dev_set_promiscuity here is safe.
4734 		 */
4735 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4736 			__dev_set_promiscuity(dev, 1);
4737 			dev->uc_promisc = true;
4738 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4739 			__dev_set_promiscuity(dev, -1);
4740 			dev->uc_promisc = false;
4741 		}
4742 	}
4743 
4744 	if (ops->ndo_set_rx_mode)
4745 		ops->ndo_set_rx_mode(dev);
4746 }
4747 
4748 void dev_set_rx_mode(struct net_device *dev)
4749 {
4750 	netif_addr_lock_bh(dev);
4751 	__dev_set_rx_mode(dev);
4752 	netif_addr_unlock_bh(dev);
4753 }
4754 
4755 /**
4756  *	dev_get_flags - get flags reported to userspace
4757  *	@dev: device
4758  *
4759  *	Get the combination of flag bits exported through APIs to userspace.
4760  */
4761 unsigned int dev_get_flags(const struct net_device *dev)
4762 {
4763 	unsigned int flags;
4764 
4765 	flags = (dev->flags & ~(IFF_PROMISC |
4766 				IFF_ALLMULTI |
4767 				IFF_RUNNING |
4768 				IFF_LOWER_UP |
4769 				IFF_DORMANT)) |
4770 		(dev->gflags & (IFF_PROMISC |
4771 				IFF_ALLMULTI));
4772 
4773 	if (netif_running(dev)) {
4774 		if (netif_oper_up(dev))
4775 			flags |= IFF_RUNNING;
4776 		if (netif_carrier_ok(dev))
4777 			flags |= IFF_LOWER_UP;
4778 		if (netif_dormant(dev))
4779 			flags |= IFF_DORMANT;
4780 	}
4781 
4782 	return flags;
4783 }
4784 EXPORT_SYMBOL(dev_get_flags);
4785 
4786 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4787 {
4788 	unsigned int old_flags = dev->flags;
4789 	int ret;
4790 
4791 	ASSERT_RTNL();
4792 
4793 	/*
4794 	 *	Set the flags on our device.
4795 	 */
4796 
4797 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4798 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4799 			       IFF_AUTOMEDIA)) |
4800 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4801 				    IFF_ALLMULTI));
4802 
4803 	/*
4804 	 *	Load in the correct multicast list now the flags have changed.
4805 	 */
4806 
4807 	if ((old_flags ^ flags) & IFF_MULTICAST)
4808 		dev_change_rx_flags(dev, IFF_MULTICAST);
4809 
4810 	dev_set_rx_mode(dev);
4811 
4812 	/*
4813 	 *	Have we downed the interface. We handle IFF_UP ourselves
4814 	 *	according to user attempts to set it, rather than blindly
4815 	 *	setting it.
4816 	 */
4817 
4818 	ret = 0;
4819 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4820 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4821 
4822 		if (!ret)
4823 			dev_set_rx_mode(dev);
4824 	}
4825 
4826 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4827 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4828 
4829 		dev->gflags ^= IFF_PROMISC;
4830 		dev_set_promiscuity(dev, inc);
4831 	}
4832 
4833 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4834 	   is important. Some (broken) drivers set IFF_PROMISC, when
4835 	   IFF_ALLMULTI is requested not asking us and not reporting.
4836 	 */
4837 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4838 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4839 
4840 		dev->gflags ^= IFF_ALLMULTI;
4841 		dev_set_allmulti(dev, inc);
4842 	}
4843 
4844 	return ret;
4845 }
4846 
4847 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4848 {
4849 	unsigned int changes = dev->flags ^ old_flags;
4850 
4851 	if (changes & IFF_UP) {
4852 		if (dev->flags & IFF_UP)
4853 			call_netdevice_notifiers(NETDEV_UP, dev);
4854 		else
4855 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4856 	}
4857 
4858 	if (dev->flags & IFF_UP &&
4859 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
4860 		struct netdev_notifier_change_info change_info;
4861 
4862 		change_info.flags_changed = changes;
4863 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
4864 					      &change_info.info);
4865 	}
4866 }
4867 
4868 /**
4869  *	dev_change_flags - change device settings
4870  *	@dev: device
4871  *	@flags: device state flags
4872  *
4873  *	Change settings on device based state flags. The flags are
4874  *	in the userspace exported format.
4875  */
4876 int dev_change_flags(struct net_device *dev, unsigned int flags)
4877 {
4878 	int ret;
4879 	unsigned int changes, old_flags = dev->flags;
4880 
4881 	ret = __dev_change_flags(dev, flags);
4882 	if (ret < 0)
4883 		return ret;
4884 
4885 	changes = old_flags ^ dev->flags;
4886 	if (changes)
4887 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4888 
4889 	__dev_notify_flags(dev, old_flags);
4890 	return ret;
4891 }
4892 EXPORT_SYMBOL(dev_change_flags);
4893 
4894 /**
4895  *	dev_set_mtu - Change maximum transfer unit
4896  *	@dev: device
4897  *	@new_mtu: new transfer unit
4898  *
4899  *	Change the maximum transfer size of the network device.
4900  */
4901 int dev_set_mtu(struct net_device *dev, int new_mtu)
4902 {
4903 	const struct net_device_ops *ops = dev->netdev_ops;
4904 	int err;
4905 
4906 	if (new_mtu == dev->mtu)
4907 		return 0;
4908 
4909 	/*	MTU must be positive.	 */
4910 	if (new_mtu < 0)
4911 		return -EINVAL;
4912 
4913 	if (!netif_device_present(dev))
4914 		return -ENODEV;
4915 
4916 	err = 0;
4917 	if (ops->ndo_change_mtu)
4918 		err = ops->ndo_change_mtu(dev, new_mtu);
4919 	else
4920 		dev->mtu = new_mtu;
4921 
4922 	if (!err)
4923 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4924 	return err;
4925 }
4926 EXPORT_SYMBOL(dev_set_mtu);
4927 
4928 /**
4929  *	dev_set_group - Change group this device belongs to
4930  *	@dev: device
4931  *	@new_group: group this device should belong to
4932  */
4933 void dev_set_group(struct net_device *dev, int new_group)
4934 {
4935 	dev->group = new_group;
4936 }
4937 EXPORT_SYMBOL(dev_set_group);
4938 
4939 /**
4940  *	dev_set_mac_address - Change Media Access Control Address
4941  *	@dev: device
4942  *	@sa: new address
4943  *
4944  *	Change the hardware (MAC) address of the device
4945  */
4946 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4947 {
4948 	const struct net_device_ops *ops = dev->netdev_ops;
4949 	int err;
4950 
4951 	if (!ops->ndo_set_mac_address)
4952 		return -EOPNOTSUPP;
4953 	if (sa->sa_family != dev->type)
4954 		return -EINVAL;
4955 	if (!netif_device_present(dev))
4956 		return -ENODEV;
4957 	err = ops->ndo_set_mac_address(dev, sa);
4958 	if (err)
4959 		return err;
4960 	dev->addr_assign_type = NET_ADDR_SET;
4961 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4962 	add_device_randomness(dev->dev_addr, dev->addr_len);
4963 	return 0;
4964 }
4965 EXPORT_SYMBOL(dev_set_mac_address);
4966 
4967 /**
4968  *	dev_change_carrier - Change device carrier
4969  *	@dev: device
4970  *	@new_carrier: new value
4971  *
4972  *	Change device carrier
4973  */
4974 int dev_change_carrier(struct net_device *dev, bool new_carrier)
4975 {
4976 	const struct net_device_ops *ops = dev->netdev_ops;
4977 
4978 	if (!ops->ndo_change_carrier)
4979 		return -EOPNOTSUPP;
4980 	if (!netif_device_present(dev))
4981 		return -ENODEV;
4982 	return ops->ndo_change_carrier(dev, new_carrier);
4983 }
4984 EXPORT_SYMBOL(dev_change_carrier);
4985 
4986 /**
4987  *	dev_new_index	-	allocate an ifindex
4988  *	@net: the applicable net namespace
4989  *
4990  *	Returns a suitable unique value for a new device interface
4991  *	number.  The caller must hold the rtnl semaphore or the
4992  *	dev_base_lock to be sure it remains unique.
4993  */
4994 static int dev_new_index(struct net *net)
4995 {
4996 	int ifindex = net->ifindex;
4997 	for (;;) {
4998 		if (++ifindex <= 0)
4999 			ifindex = 1;
5000 		if (!__dev_get_by_index(net, ifindex))
5001 			return net->ifindex = ifindex;
5002 	}
5003 }
5004 
5005 /* Delayed registration/unregisteration */
5006 static LIST_HEAD(net_todo_list);
5007 
5008 static void net_set_todo(struct net_device *dev)
5009 {
5010 	list_add_tail(&dev->todo_list, &net_todo_list);
5011 }
5012 
5013 static void rollback_registered_many(struct list_head *head)
5014 {
5015 	struct net_device *dev, *tmp;
5016 
5017 	BUG_ON(dev_boot_phase);
5018 	ASSERT_RTNL();
5019 
5020 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5021 		/* Some devices call without registering
5022 		 * for initialization unwind. Remove those
5023 		 * devices and proceed with the remaining.
5024 		 */
5025 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5026 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5027 				 dev->name, dev);
5028 
5029 			WARN_ON(1);
5030 			list_del(&dev->unreg_list);
5031 			continue;
5032 		}
5033 		dev->dismantle = true;
5034 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5035 	}
5036 
5037 	/* If device is running, close it first. */
5038 	dev_close_many(head);
5039 
5040 	list_for_each_entry(dev, head, unreg_list) {
5041 		/* And unlink it from device chain. */
5042 		unlist_netdevice(dev);
5043 
5044 		dev->reg_state = NETREG_UNREGISTERING;
5045 	}
5046 
5047 	synchronize_net();
5048 
5049 	list_for_each_entry(dev, head, unreg_list) {
5050 		/* Shutdown queueing discipline. */
5051 		dev_shutdown(dev);
5052 
5053 
5054 		/* Notify protocols, that we are about to destroy
5055 		   this device. They should clean all the things.
5056 		*/
5057 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5058 
5059 		if (!dev->rtnl_link_ops ||
5060 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5061 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5062 
5063 		/*
5064 		 *	Flush the unicast and multicast chains
5065 		 */
5066 		dev_uc_flush(dev);
5067 		dev_mc_flush(dev);
5068 
5069 		if (dev->netdev_ops->ndo_uninit)
5070 			dev->netdev_ops->ndo_uninit(dev);
5071 
5072 		/* Notifier chain MUST detach us all upper devices. */
5073 		WARN_ON(netdev_has_any_upper_dev(dev));
5074 
5075 		/* Remove entries from kobject tree */
5076 		netdev_unregister_kobject(dev);
5077 #ifdef CONFIG_XPS
5078 		/* Remove XPS queueing entries */
5079 		netif_reset_xps_queues_gt(dev, 0);
5080 #endif
5081 	}
5082 
5083 	synchronize_net();
5084 
5085 	list_for_each_entry(dev, head, unreg_list)
5086 		dev_put(dev);
5087 }
5088 
5089 static void rollback_registered(struct net_device *dev)
5090 {
5091 	LIST_HEAD(single);
5092 
5093 	list_add(&dev->unreg_list, &single);
5094 	rollback_registered_many(&single);
5095 	list_del(&single);
5096 }
5097 
5098 static netdev_features_t netdev_fix_features(struct net_device *dev,
5099 	netdev_features_t features)
5100 {
5101 	/* Fix illegal checksum combinations */
5102 	if ((features & NETIF_F_HW_CSUM) &&
5103 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5104 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5105 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5106 	}
5107 
5108 	/* TSO requires that SG is present as well. */
5109 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5110 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5111 		features &= ~NETIF_F_ALL_TSO;
5112 	}
5113 
5114 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5115 					!(features & NETIF_F_IP_CSUM)) {
5116 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5117 		features &= ~NETIF_F_TSO;
5118 		features &= ~NETIF_F_TSO_ECN;
5119 	}
5120 
5121 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5122 					 !(features & NETIF_F_IPV6_CSUM)) {
5123 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5124 		features &= ~NETIF_F_TSO6;
5125 	}
5126 
5127 	/* TSO ECN requires that TSO is present as well. */
5128 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5129 		features &= ~NETIF_F_TSO_ECN;
5130 
5131 	/* Software GSO depends on SG. */
5132 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5133 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5134 		features &= ~NETIF_F_GSO;
5135 	}
5136 
5137 	/* UFO needs SG and checksumming */
5138 	if (features & NETIF_F_UFO) {
5139 		/* maybe split UFO into V4 and V6? */
5140 		if (!((features & NETIF_F_GEN_CSUM) ||
5141 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5142 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5143 			netdev_dbg(dev,
5144 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5145 			features &= ~NETIF_F_UFO;
5146 		}
5147 
5148 		if (!(features & NETIF_F_SG)) {
5149 			netdev_dbg(dev,
5150 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5151 			features &= ~NETIF_F_UFO;
5152 		}
5153 	}
5154 
5155 	return features;
5156 }
5157 
5158 int __netdev_update_features(struct net_device *dev)
5159 {
5160 	netdev_features_t features;
5161 	int err = 0;
5162 
5163 	ASSERT_RTNL();
5164 
5165 	features = netdev_get_wanted_features(dev);
5166 
5167 	if (dev->netdev_ops->ndo_fix_features)
5168 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5169 
5170 	/* driver might be less strict about feature dependencies */
5171 	features = netdev_fix_features(dev, features);
5172 
5173 	if (dev->features == features)
5174 		return 0;
5175 
5176 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5177 		&dev->features, &features);
5178 
5179 	if (dev->netdev_ops->ndo_set_features)
5180 		err = dev->netdev_ops->ndo_set_features(dev, features);
5181 
5182 	if (unlikely(err < 0)) {
5183 		netdev_err(dev,
5184 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5185 			err, &features, &dev->features);
5186 		return -1;
5187 	}
5188 
5189 	if (!err)
5190 		dev->features = features;
5191 
5192 	return 1;
5193 }
5194 
5195 /**
5196  *	netdev_update_features - recalculate device features
5197  *	@dev: the device to check
5198  *
5199  *	Recalculate dev->features set and send notifications if it
5200  *	has changed. Should be called after driver or hardware dependent
5201  *	conditions might have changed that influence the features.
5202  */
5203 void netdev_update_features(struct net_device *dev)
5204 {
5205 	if (__netdev_update_features(dev))
5206 		netdev_features_change(dev);
5207 }
5208 EXPORT_SYMBOL(netdev_update_features);
5209 
5210 /**
5211  *	netdev_change_features - recalculate device features
5212  *	@dev: the device to check
5213  *
5214  *	Recalculate dev->features set and send notifications even
5215  *	if they have not changed. Should be called instead of
5216  *	netdev_update_features() if also dev->vlan_features might
5217  *	have changed to allow the changes to be propagated to stacked
5218  *	VLAN devices.
5219  */
5220 void netdev_change_features(struct net_device *dev)
5221 {
5222 	__netdev_update_features(dev);
5223 	netdev_features_change(dev);
5224 }
5225 EXPORT_SYMBOL(netdev_change_features);
5226 
5227 /**
5228  *	netif_stacked_transfer_operstate -	transfer operstate
5229  *	@rootdev: the root or lower level device to transfer state from
5230  *	@dev: the device to transfer operstate to
5231  *
5232  *	Transfer operational state from root to device. This is normally
5233  *	called when a stacking relationship exists between the root
5234  *	device and the device(a leaf device).
5235  */
5236 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5237 					struct net_device *dev)
5238 {
5239 	if (rootdev->operstate == IF_OPER_DORMANT)
5240 		netif_dormant_on(dev);
5241 	else
5242 		netif_dormant_off(dev);
5243 
5244 	if (netif_carrier_ok(rootdev)) {
5245 		if (!netif_carrier_ok(dev))
5246 			netif_carrier_on(dev);
5247 	} else {
5248 		if (netif_carrier_ok(dev))
5249 			netif_carrier_off(dev);
5250 	}
5251 }
5252 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5253 
5254 #ifdef CONFIG_RPS
5255 static int netif_alloc_rx_queues(struct net_device *dev)
5256 {
5257 	unsigned int i, count = dev->num_rx_queues;
5258 	struct netdev_rx_queue *rx;
5259 
5260 	BUG_ON(count < 1);
5261 
5262 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5263 	if (!rx)
5264 		return -ENOMEM;
5265 
5266 	dev->_rx = rx;
5267 
5268 	for (i = 0; i < count; i++)
5269 		rx[i].dev = dev;
5270 	return 0;
5271 }
5272 #endif
5273 
5274 static void netdev_init_one_queue(struct net_device *dev,
5275 				  struct netdev_queue *queue, void *_unused)
5276 {
5277 	/* Initialize queue lock */
5278 	spin_lock_init(&queue->_xmit_lock);
5279 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5280 	queue->xmit_lock_owner = -1;
5281 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5282 	queue->dev = dev;
5283 #ifdef CONFIG_BQL
5284 	dql_init(&queue->dql, HZ);
5285 #endif
5286 }
5287 
5288 static void netif_free_tx_queues(struct net_device *dev)
5289 {
5290 	if (is_vmalloc_addr(dev->_tx))
5291 		vfree(dev->_tx);
5292 	else
5293 		kfree(dev->_tx);
5294 }
5295 
5296 static int netif_alloc_netdev_queues(struct net_device *dev)
5297 {
5298 	unsigned int count = dev->num_tx_queues;
5299 	struct netdev_queue *tx;
5300 	size_t sz = count * sizeof(*tx);
5301 
5302 	BUG_ON(count < 1 || count > 0xffff);
5303 
5304 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5305 	if (!tx) {
5306 		tx = vzalloc(sz);
5307 		if (!tx)
5308 			return -ENOMEM;
5309 	}
5310 	dev->_tx = tx;
5311 
5312 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5313 	spin_lock_init(&dev->tx_global_lock);
5314 
5315 	return 0;
5316 }
5317 
5318 /**
5319  *	register_netdevice	- register a network device
5320  *	@dev: device to register
5321  *
5322  *	Take a completed network device structure and add it to the kernel
5323  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5324  *	chain. 0 is returned on success. A negative errno code is returned
5325  *	on a failure to set up the device, or if the name is a duplicate.
5326  *
5327  *	Callers must hold the rtnl semaphore. You may want
5328  *	register_netdev() instead of this.
5329  *
5330  *	BUGS:
5331  *	The locking appears insufficient to guarantee two parallel registers
5332  *	will not get the same name.
5333  */
5334 
5335 int register_netdevice(struct net_device *dev)
5336 {
5337 	int ret;
5338 	struct net *net = dev_net(dev);
5339 
5340 	BUG_ON(dev_boot_phase);
5341 	ASSERT_RTNL();
5342 
5343 	might_sleep();
5344 
5345 	/* When net_device's are persistent, this will be fatal. */
5346 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5347 	BUG_ON(!net);
5348 
5349 	spin_lock_init(&dev->addr_list_lock);
5350 	netdev_set_addr_lockdep_class(dev);
5351 
5352 	dev->iflink = -1;
5353 
5354 	ret = dev_get_valid_name(net, dev, dev->name);
5355 	if (ret < 0)
5356 		goto out;
5357 
5358 	/* Init, if this function is available */
5359 	if (dev->netdev_ops->ndo_init) {
5360 		ret = dev->netdev_ops->ndo_init(dev);
5361 		if (ret) {
5362 			if (ret > 0)
5363 				ret = -EIO;
5364 			goto out;
5365 		}
5366 	}
5367 
5368 	if (((dev->hw_features | dev->features) &
5369 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
5370 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5371 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5372 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5373 		ret = -EINVAL;
5374 		goto err_uninit;
5375 	}
5376 
5377 	ret = -EBUSY;
5378 	if (!dev->ifindex)
5379 		dev->ifindex = dev_new_index(net);
5380 	else if (__dev_get_by_index(net, dev->ifindex))
5381 		goto err_uninit;
5382 
5383 	if (dev->iflink == -1)
5384 		dev->iflink = dev->ifindex;
5385 
5386 	/* Transfer changeable features to wanted_features and enable
5387 	 * software offloads (GSO and GRO).
5388 	 */
5389 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5390 	dev->features |= NETIF_F_SOFT_FEATURES;
5391 	dev->wanted_features = dev->features & dev->hw_features;
5392 
5393 	/* Turn on no cache copy if HW is doing checksum */
5394 	if (!(dev->flags & IFF_LOOPBACK)) {
5395 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5396 		if (dev->features & NETIF_F_ALL_CSUM) {
5397 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5398 			dev->features |= NETIF_F_NOCACHE_COPY;
5399 		}
5400 	}
5401 
5402 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5403 	 */
5404 	dev->vlan_features |= NETIF_F_HIGHDMA;
5405 
5406 	/* Make NETIF_F_SG inheritable to tunnel devices.
5407 	 */
5408 	dev->hw_enc_features |= NETIF_F_SG;
5409 
5410 	/* Make NETIF_F_SG inheritable to MPLS.
5411 	 */
5412 	dev->mpls_features |= NETIF_F_SG;
5413 
5414 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5415 	ret = notifier_to_errno(ret);
5416 	if (ret)
5417 		goto err_uninit;
5418 
5419 	ret = netdev_register_kobject(dev);
5420 	if (ret)
5421 		goto err_uninit;
5422 	dev->reg_state = NETREG_REGISTERED;
5423 
5424 	__netdev_update_features(dev);
5425 
5426 	/*
5427 	 *	Default initial state at registry is that the
5428 	 *	device is present.
5429 	 */
5430 
5431 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5432 
5433 	linkwatch_init_dev(dev);
5434 
5435 	dev_init_scheduler(dev);
5436 	dev_hold(dev);
5437 	list_netdevice(dev);
5438 	add_device_randomness(dev->dev_addr, dev->addr_len);
5439 
5440 	/* If the device has permanent device address, driver should
5441 	 * set dev_addr and also addr_assign_type should be set to
5442 	 * NET_ADDR_PERM (default value).
5443 	 */
5444 	if (dev->addr_assign_type == NET_ADDR_PERM)
5445 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5446 
5447 	/* Notify protocols, that a new device appeared. */
5448 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5449 	ret = notifier_to_errno(ret);
5450 	if (ret) {
5451 		rollback_registered(dev);
5452 		dev->reg_state = NETREG_UNREGISTERED;
5453 	}
5454 	/*
5455 	 *	Prevent userspace races by waiting until the network
5456 	 *	device is fully setup before sending notifications.
5457 	 */
5458 	if (!dev->rtnl_link_ops ||
5459 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5460 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5461 
5462 out:
5463 	return ret;
5464 
5465 err_uninit:
5466 	if (dev->netdev_ops->ndo_uninit)
5467 		dev->netdev_ops->ndo_uninit(dev);
5468 	goto out;
5469 }
5470 EXPORT_SYMBOL(register_netdevice);
5471 
5472 /**
5473  *	init_dummy_netdev	- init a dummy network device for NAPI
5474  *	@dev: device to init
5475  *
5476  *	This takes a network device structure and initialize the minimum
5477  *	amount of fields so it can be used to schedule NAPI polls without
5478  *	registering a full blown interface. This is to be used by drivers
5479  *	that need to tie several hardware interfaces to a single NAPI
5480  *	poll scheduler due to HW limitations.
5481  */
5482 int init_dummy_netdev(struct net_device *dev)
5483 {
5484 	/* Clear everything. Note we don't initialize spinlocks
5485 	 * are they aren't supposed to be taken by any of the
5486 	 * NAPI code and this dummy netdev is supposed to be
5487 	 * only ever used for NAPI polls
5488 	 */
5489 	memset(dev, 0, sizeof(struct net_device));
5490 
5491 	/* make sure we BUG if trying to hit standard
5492 	 * register/unregister code path
5493 	 */
5494 	dev->reg_state = NETREG_DUMMY;
5495 
5496 	/* NAPI wants this */
5497 	INIT_LIST_HEAD(&dev->napi_list);
5498 
5499 	/* a dummy interface is started by default */
5500 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5501 	set_bit(__LINK_STATE_START, &dev->state);
5502 
5503 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5504 	 * because users of this 'device' dont need to change
5505 	 * its refcount.
5506 	 */
5507 
5508 	return 0;
5509 }
5510 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5511 
5512 
5513 /**
5514  *	register_netdev	- register a network device
5515  *	@dev: device to register
5516  *
5517  *	Take a completed network device structure and add it to the kernel
5518  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5519  *	chain. 0 is returned on success. A negative errno code is returned
5520  *	on a failure to set up the device, or if the name is a duplicate.
5521  *
5522  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5523  *	and expands the device name if you passed a format string to
5524  *	alloc_netdev.
5525  */
5526 int register_netdev(struct net_device *dev)
5527 {
5528 	int err;
5529 
5530 	rtnl_lock();
5531 	err = register_netdevice(dev);
5532 	rtnl_unlock();
5533 	return err;
5534 }
5535 EXPORT_SYMBOL(register_netdev);
5536 
5537 int netdev_refcnt_read(const struct net_device *dev)
5538 {
5539 	int i, refcnt = 0;
5540 
5541 	for_each_possible_cpu(i)
5542 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5543 	return refcnt;
5544 }
5545 EXPORT_SYMBOL(netdev_refcnt_read);
5546 
5547 /**
5548  * netdev_wait_allrefs - wait until all references are gone.
5549  * @dev: target net_device
5550  *
5551  * This is called when unregistering network devices.
5552  *
5553  * Any protocol or device that holds a reference should register
5554  * for netdevice notification, and cleanup and put back the
5555  * reference if they receive an UNREGISTER event.
5556  * We can get stuck here if buggy protocols don't correctly
5557  * call dev_put.
5558  */
5559 static void netdev_wait_allrefs(struct net_device *dev)
5560 {
5561 	unsigned long rebroadcast_time, warning_time;
5562 	int refcnt;
5563 
5564 	linkwatch_forget_dev(dev);
5565 
5566 	rebroadcast_time = warning_time = jiffies;
5567 	refcnt = netdev_refcnt_read(dev);
5568 
5569 	while (refcnt != 0) {
5570 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5571 			rtnl_lock();
5572 
5573 			/* Rebroadcast unregister notification */
5574 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5575 
5576 			__rtnl_unlock();
5577 			rcu_barrier();
5578 			rtnl_lock();
5579 
5580 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5581 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5582 				     &dev->state)) {
5583 				/* We must not have linkwatch events
5584 				 * pending on unregister. If this
5585 				 * happens, we simply run the queue
5586 				 * unscheduled, resulting in a noop
5587 				 * for this device.
5588 				 */
5589 				linkwatch_run_queue();
5590 			}
5591 
5592 			__rtnl_unlock();
5593 
5594 			rebroadcast_time = jiffies;
5595 		}
5596 
5597 		msleep(250);
5598 
5599 		refcnt = netdev_refcnt_read(dev);
5600 
5601 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5602 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5603 				 dev->name, refcnt);
5604 			warning_time = jiffies;
5605 		}
5606 	}
5607 }
5608 
5609 /* The sequence is:
5610  *
5611  *	rtnl_lock();
5612  *	...
5613  *	register_netdevice(x1);
5614  *	register_netdevice(x2);
5615  *	...
5616  *	unregister_netdevice(y1);
5617  *	unregister_netdevice(y2);
5618  *      ...
5619  *	rtnl_unlock();
5620  *	free_netdev(y1);
5621  *	free_netdev(y2);
5622  *
5623  * We are invoked by rtnl_unlock().
5624  * This allows us to deal with problems:
5625  * 1) We can delete sysfs objects which invoke hotplug
5626  *    without deadlocking with linkwatch via keventd.
5627  * 2) Since we run with the RTNL semaphore not held, we can sleep
5628  *    safely in order to wait for the netdev refcnt to drop to zero.
5629  *
5630  * We must not return until all unregister events added during
5631  * the interval the lock was held have been completed.
5632  */
5633 void netdev_run_todo(void)
5634 {
5635 	struct list_head list;
5636 
5637 	/* Snapshot list, allow later requests */
5638 	list_replace_init(&net_todo_list, &list);
5639 
5640 	__rtnl_unlock();
5641 
5642 
5643 	/* Wait for rcu callbacks to finish before next phase */
5644 	if (!list_empty(&list))
5645 		rcu_barrier();
5646 
5647 	while (!list_empty(&list)) {
5648 		struct net_device *dev
5649 			= list_first_entry(&list, struct net_device, todo_list);
5650 		list_del(&dev->todo_list);
5651 
5652 		rtnl_lock();
5653 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5654 		__rtnl_unlock();
5655 
5656 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5657 			pr_err("network todo '%s' but state %d\n",
5658 			       dev->name, dev->reg_state);
5659 			dump_stack();
5660 			continue;
5661 		}
5662 
5663 		dev->reg_state = NETREG_UNREGISTERED;
5664 
5665 		on_each_cpu(flush_backlog, dev, 1);
5666 
5667 		netdev_wait_allrefs(dev);
5668 
5669 		/* paranoia */
5670 		BUG_ON(netdev_refcnt_read(dev));
5671 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5672 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5673 		WARN_ON(dev->dn_ptr);
5674 
5675 		if (dev->destructor)
5676 			dev->destructor(dev);
5677 
5678 		/* Free network device */
5679 		kobject_put(&dev->dev.kobj);
5680 	}
5681 }
5682 
5683 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5684  * fields in the same order, with only the type differing.
5685  */
5686 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5687 			     const struct net_device_stats *netdev_stats)
5688 {
5689 #if BITS_PER_LONG == 64
5690 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5691 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5692 #else
5693 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5694 	const unsigned long *src = (const unsigned long *)netdev_stats;
5695 	u64 *dst = (u64 *)stats64;
5696 
5697 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5698 		     sizeof(*stats64) / sizeof(u64));
5699 	for (i = 0; i < n; i++)
5700 		dst[i] = src[i];
5701 #endif
5702 }
5703 EXPORT_SYMBOL(netdev_stats_to_stats64);
5704 
5705 /**
5706  *	dev_get_stats	- get network device statistics
5707  *	@dev: device to get statistics from
5708  *	@storage: place to store stats
5709  *
5710  *	Get network statistics from device. Return @storage.
5711  *	The device driver may provide its own method by setting
5712  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5713  *	otherwise the internal statistics structure is used.
5714  */
5715 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5716 					struct rtnl_link_stats64 *storage)
5717 {
5718 	const struct net_device_ops *ops = dev->netdev_ops;
5719 
5720 	if (ops->ndo_get_stats64) {
5721 		memset(storage, 0, sizeof(*storage));
5722 		ops->ndo_get_stats64(dev, storage);
5723 	} else if (ops->ndo_get_stats) {
5724 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5725 	} else {
5726 		netdev_stats_to_stats64(storage, &dev->stats);
5727 	}
5728 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5729 	return storage;
5730 }
5731 EXPORT_SYMBOL(dev_get_stats);
5732 
5733 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5734 {
5735 	struct netdev_queue *queue = dev_ingress_queue(dev);
5736 
5737 #ifdef CONFIG_NET_CLS_ACT
5738 	if (queue)
5739 		return queue;
5740 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5741 	if (!queue)
5742 		return NULL;
5743 	netdev_init_one_queue(dev, queue, NULL);
5744 	queue->qdisc = &noop_qdisc;
5745 	queue->qdisc_sleeping = &noop_qdisc;
5746 	rcu_assign_pointer(dev->ingress_queue, queue);
5747 #endif
5748 	return queue;
5749 }
5750 
5751 static const struct ethtool_ops default_ethtool_ops;
5752 
5753 void netdev_set_default_ethtool_ops(struct net_device *dev,
5754 				    const struct ethtool_ops *ops)
5755 {
5756 	if (dev->ethtool_ops == &default_ethtool_ops)
5757 		dev->ethtool_ops = ops;
5758 }
5759 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5760 
5761 /**
5762  *	alloc_netdev_mqs - allocate network device
5763  *	@sizeof_priv:	size of private data to allocate space for
5764  *	@name:		device name format string
5765  *	@setup:		callback to initialize device
5766  *	@txqs:		the number of TX subqueues to allocate
5767  *	@rxqs:		the number of RX subqueues to allocate
5768  *
5769  *	Allocates a struct net_device with private data area for driver use
5770  *	and performs basic initialization.  Also allocates subquue structs
5771  *	for each queue on the device.
5772  */
5773 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5774 		void (*setup)(struct net_device *),
5775 		unsigned int txqs, unsigned int rxqs)
5776 {
5777 	struct net_device *dev;
5778 	size_t alloc_size;
5779 	struct net_device *p;
5780 
5781 	BUG_ON(strlen(name) >= sizeof(dev->name));
5782 
5783 	if (txqs < 1) {
5784 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5785 		return NULL;
5786 	}
5787 
5788 #ifdef CONFIG_RPS
5789 	if (rxqs < 1) {
5790 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5791 		return NULL;
5792 	}
5793 #endif
5794 
5795 	alloc_size = sizeof(struct net_device);
5796 	if (sizeof_priv) {
5797 		/* ensure 32-byte alignment of private area */
5798 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5799 		alloc_size += sizeof_priv;
5800 	}
5801 	/* ensure 32-byte alignment of whole construct */
5802 	alloc_size += NETDEV_ALIGN - 1;
5803 
5804 	p = kzalloc(alloc_size, GFP_KERNEL);
5805 	if (!p)
5806 		return NULL;
5807 
5808 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5809 	dev->padded = (char *)dev - (char *)p;
5810 
5811 	dev->pcpu_refcnt = alloc_percpu(int);
5812 	if (!dev->pcpu_refcnt)
5813 		goto free_p;
5814 
5815 	if (dev_addr_init(dev))
5816 		goto free_pcpu;
5817 
5818 	dev_mc_init(dev);
5819 	dev_uc_init(dev);
5820 
5821 	dev_net_set(dev, &init_net);
5822 
5823 	dev->gso_max_size = GSO_MAX_SIZE;
5824 	dev->gso_max_segs = GSO_MAX_SEGS;
5825 
5826 	INIT_LIST_HEAD(&dev->napi_list);
5827 	INIT_LIST_HEAD(&dev->unreg_list);
5828 	INIT_LIST_HEAD(&dev->link_watch_list);
5829 	INIT_LIST_HEAD(&dev->upper_dev_list);
5830 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5831 	setup(dev);
5832 
5833 	dev->num_tx_queues = txqs;
5834 	dev->real_num_tx_queues = txqs;
5835 	if (netif_alloc_netdev_queues(dev))
5836 		goto free_all;
5837 
5838 #ifdef CONFIG_RPS
5839 	dev->num_rx_queues = rxqs;
5840 	dev->real_num_rx_queues = rxqs;
5841 	if (netif_alloc_rx_queues(dev))
5842 		goto free_all;
5843 #endif
5844 
5845 	strcpy(dev->name, name);
5846 	dev->group = INIT_NETDEV_GROUP;
5847 	if (!dev->ethtool_ops)
5848 		dev->ethtool_ops = &default_ethtool_ops;
5849 	return dev;
5850 
5851 free_all:
5852 	free_netdev(dev);
5853 	return NULL;
5854 
5855 free_pcpu:
5856 	free_percpu(dev->pcpu_refcnt);
5857 	netif_free_tx_queues(dev);
5858 #ifdef CONFIG_RPS
5859 	kfree(dev->_rx);
5860 #endif
5861 
5862 free_p:
5863 	kfree(p);
5864 	return NULL;
5865 }
5866 EXPORT_SYMBOL(alloc_netdev_mqs);
5867 
5868 /**
5869  *	free_netdev - free network device
5870  *	@dev: device
5871  *
5872  *	This function does the last stage of destroying an allocated device
5873  * 	interface. The reference to the device object is released.
5874  *	If this is the last reference then it will be freed.
5875  */
5876 void free_netdev(struct net_device *dev)
5877 {
5878 	struct napi_struct *p, *n;
5879 
5880 	release_net(dev_net(dev));
5881 
5882 	netif_free_tx_queues(dev);
5883 #ifdef CONFIG_RPS
5884 	kfree(dev->_rx);
5885 #endif
5886 
5887 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5888 
5889 	/* Flush device addresses */
5890 	dev_addr_flush(dev);
5891 
5892 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5893 		netif_napi_del(p);
5894 
5895 	free_percpu(dev->pcpu_refcnt);
5896 	dev->pcpu_refcnt = NULL;
5897 
5898 	/*  Compatibility with error handling in drivers */
5899 	if (dev->reg_state == NETREG_UNINITIALIZED) {
5900 		kfree((char *)dev - dev->padded);
5901 		return;
5902 	}
5903 
5904 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5905 	dev->reg_state = NETREG_RELEASED;
5906 
5907 	/* will free via device release */
5908 	put_device(&dev->dev);
5909 }
5910 EXPORT_SYMBOL(free_netdev);
5911 
5912 /**
5913  *	synchronize_net -  Synchronize with packet receive processing
5914  *
5915  *	Wait for packets currently being received to be done.
5916  *	Does not block later packets from starting.
5917  */
5918 void synchronize_net(void)
5919 {
5920 	might_sleep();
5921 	if (rtnl_is_locked())
5922 		synchronize_rcu_expedited();
5923 	else
5924 		synchronize_rcu();
5925 }
5926 EXPORT_SYMBOL(synchronize_net);
5927 
5928 /**
5929  *	unregister_netdevice_queue - remove device from the kernel
5930  *	@dev: device
5931  *	@head: list
5932  *
5933  *	This function shuts down a device interface and removes it
5934  *	from the kernel tables.
5935  *	If head not NULL, device is queued to be unregistered later.
5936  *
5937  *	Callers must hold the rtnl semaphore.  You may want
5938  *	unregister_netdev() instead of this.
5939  */
5940 
5941 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5942 {
5943 	ASSERT_RTNL();
5944 
5945 	if (head) {
5946 		list_move_tail(&dev->unreg_list, head);
5947 	} else {
5948 		rollback_registered(dev);
5949 		/* Finish processing unregister after unlock */
5950 		net_set_todo(dev);
5951 	}
5952 }
5953 EXPORT_SYMBOL(unregister_netdevice_queue);
5954 
5955 /**
5956  *	unregister_netdevice_many - unregister many devices
5957  *	@head: list of devices
5958  */
5959 void unregister_netdevice_many(struct list_head *head)
5960 {
5961 	struct net_device *dev;
5962 
5963 	if (!list_empty(head)) {
5964 		rollback_registered_many(head);
5965 		list_for_each_entry(dev, head, unreg_list)
5966 			net_set_todo(dev);
5967 	}
5968 }
5969 EXPORT_SYMBOL(unregister_netdevice_many);
5970 
5971 /**
5972  *	unregister_netdev - remove device from the kernel
5973  *	@dev: device
5974  *
5975  *	This function shuts down a device interface and removes it
5976  *	from the kernel tables.
5977  *
5978  *	This is just a wrapper for unregister_netdevice that takes
5979  *	the rtnl semaphore.  In general you want to use this and not
5980  *	unregister_netdevice.
5981  */
5982 void unregister_netdev(struct net_device *dev)
5983 {
5984 	rtnl_lock();
5985 	unregister_netdevice(dev);
5986 	rtnl_unlock();
5987 }
5988 EXPORT_SYMBOL(unregister_netdev);
5989 
5990 /**
5991  *	dev_change_net_namespace - move device to different nethost namespace
5992  *	@dev: device
5993  *	@net: network namespace
5994  *	@pat: If not NULL name pattern to try if the current device name
5995  *	      is already taken in the destination network namespace.
5996  *
5997  *	This function shuts down a device interface and moves it
5998  *	to a new network namespace. On success 0 is returned, on
5999  *	a failure a netagive errno code is returned.
6000  *
6001  *	Callers must hold the rtnl semaphore.
6002  */
6003 
6004 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6005 {
6006 	int err;
6007 
6008 	ASSERT_RTNL();
6009 
6010 	/* Don't allow namespace local devices to be moved. */
6011 	err = -EINVAL;
6012 	if (dev->features & NETIF_F_NETNS_LOCAL)
6013 		goto out;
6014 
6015 	/* Ensure the device has been registrered */
6016 	if (dev->reg_state != NETREG_REGISTERED)
6017 		goto out;
6018 
6019 	/* Get out if there is nothing todo */
6020 	err = 0;
6021 	if (net_eq(dev_net(dev), net))
6022 		goto out;
6023 
6024 	/* Pick the destination device name, and ensure
6025 	 * we can use it in the destination network namespace.
6026 	 */
6027 	err = -EEXIST;
6028 	if (__dev_get_by_name(net, dev->name)) {
6029 		/* We get here if we can't use the current device name */
6030 		if (!pat)
6031 			goto out;
6032 		if (dev_get_valid_name(net, dev, pat) < 0)
6033 			goto out;
6034 	}
6035 
6036 	/*
6037 	 * And now a mini version of register_netdevice unregister_netdevice.
6038 	 */
6039 
6040 	/* If device is running close it first. */
6041 	dev_close(dev);
6042 
6043 	/* And unlink it from device chain */
6044 	err = -ENODEV;
6045 	unlist_netdevice(dev);
6046 
6047 	synchronize_net();
6048 
6049 	/* Shutdown queueing discipline. */
6050 	dev_shutdown(dev);
6051 
6052 	/* Notify protocols, that we are about to destroy
6053 	   this device. They should clean all the things.
6054 
6055 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6056 	   This is wanted because this way 8021q and macvlan know
6057 	   the device is just moving and can keep their slaves up.
6058 	*/
6059 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6060 	rcu_barrier();
6061 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6062 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6063 
6064 	/*
6065 	 *	Flush the unicast and multicast chains
6066 	 */
6067 	dev_uc_flush(dev);
6068 	dev_mc_flush(dev);
6069 
6070 	/* Send a netdev-removed uevent to the old namespace */
6071 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6072 
6073 	/* Actually switch the network namespace */
6074 	dev_net_set(dev, net);
6075 
6076 	/* If there is an ifindex conflict assign a new one */
6077 	if (__dev_get_by_index(net, dev->ifindex)) {
6078 		int iflink = (dev->iflink == dev->ifindex);
6079 		dev->ifindex = dev_new_index(net);
6080 		if (iflink)
6081 			dev->iflink = dev->ifindex;
6082 	}
6083 
6084 	/* Send a netdev-add uevent to the new namespace */
6085 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6086 
6087 	/* Fixup kobjects */
6088 	err = device_rename(&dev->dev, dev->name);
6089 	WARN_ON(err);
6090 
6091 	/* Add the device back in the hashes */
6092 	list_netdevice(dev);
6093 
6094 	/* Notify protocols, that a new device appeared. */
6095 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6096 
6097 	/*
6098 	 *	Prevent userspace races by waiting until the network
6099 	 *	device is fully setup before sending notifications.
6100 	 */
6101 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6102 
6103 	synchronize_net();
6104 	err = 0;
6105 out:
6106 	return err;
6107 }
6108 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6109 
6110 static int dev_cpu_callback(struct notifier_block *nfb,
6111 			    unsigned long action,
6112 			    void *ocpu)
6113 {
6114 	struct sk_buff **list_skb;
6115 	struct sk_buff *skb;
6116 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6117 	struct softnet_data *sd, *oldsd;
6118 
6119 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6120 		return NOTIFY_OK;
6121 
6122 	local_irq_disable();
6123 	cpu = smp_processor_id();
6124 	sd = &per_cpu(softnet_data, cpu);
6125 	oldsd = &per_cpu(softnet_data, oldcpu);
6126 
6127 	/* Find end of our completion_queue. */
6128 	list_skb = &sd->completion_queue;
6129 	while (*list_skb)
6130 		list_skb = &(*list_skb)->next;
6131 	/* Append completion queue from offline CPU. */
6132 	*list_skb = oldsd->completion_queue;
6133 	oldsd->completion_queue = NULL;
6134 
6135 	/* Append output queue from offline CPU. */
6136 	if (oldsd->output_queue) {
6137 		*sd->output_queue_tailp = oldsd->output_queue;
6138 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6139 		oldsd->output_queue = NULL;
6140 		oldsd->output_queue_tailp = &oldsd->output_queue;
6141 	}
6142 	/* Append NAPI poll list from offline CPU. */
6143 	if (!list_empty(&oldsd->poll_list)) {
6144 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6145 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6146 	}
6147 
6148 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6149 	local_irq_enable();
6150 
6151 	/* Process offline CPU's input_pkt_queue */
6152 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6153 		netif_rx(skb);
6154 		input_queue_head_incr(oldsd);
6155 	}
6156 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6157 		netif_rx(skb);
6158 		input_queue_head_incr(oldsd);
6159 	}
6160 
6161 	return NOTIFY_OK;
6162 }
6163 
6164 
6165 /**
6166  *	netdev_increment_features - increment feature set by one
6167  *	@all: current feature set
6168  *	@one: new feature set
6169  *	@mask: mask feature set
6170  *
6171  *	Computes a new feature set after adding a device with feature set
6172  *	@one to the master device with current feature set @all.  Will not
6173  *	enable anything that is off in @mask. Returns the new feature set.
6174  */
6175 netdev_features_t netdev_increment_features(netdev_features_t all,
6176 	netdev_features_t one, netdev_features_t mask)
6177 {
6178 	if (mask & NETIF_F_GEN_CSUM)
6179 		mask |= NETIF_F_ALL_CSUM;
6180 	mask |= NETIF_F_VLAN_CHALLENGED;
6181 
6182 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6183 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6184 
6185 	/* If one device supports hw checksumming, set for all. */
6186 	if (all & NETIF_F_GEN_CSUM)
6187 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6188 
6189 	return all;
6190 }
6191 EXPORT_SYMBOL(netdev_increment_features);
6192 
6193 static struct hlist_head * __net_init netdev_create_hash(void)
6194 {
6195 	int i;
6196 	struct hlist_head *hash;
6197 
6198 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6199 	if (hash != NULL)
6200 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6201 			INIT_HLIST_HEAD(&hash[i]);
6202 
6203 	return hash;
6204 }
6205 
6206 /* Initialize per network namespace state */
6207 static int __net_init netdev_init(struct net *net)
6208 {
6209 	if (net != &init_net)
6210 		INIT_LIST_HEAD(&net->dev_base_head);
6211 
6212 	net->dev_name_head = netdev_create_hash();
6213 	if (net->dev_name_head == NULL)
6214 		goto err_name;
6215 
6216 	net->dev_index_head = netdev_create_hash();
6217 	if (net->dev_index_head == NULL)
6218 		goto err_idx;
6219 
6220 	return 0;
6221 
6222 err_idx:
6223 	kfree(net->dev_name_head);
6224 err_name:
6225 	return -ENOMEM;
6226 }
6227 
6228 /**
6229  *	netdev_drivername - network driver for the device
6230  *	@dev: network device
6231  *
6232  *	Determine network driver for device.
6233  */
6234 const char *netdev_drivername(const struct net_device *dev)
6235 {
6236 	const struct device_driver *driver;
6237 	const struct device *parent;
6238 	const char *empty = "";
6239 
6240 	parent = dev->dev.parent;
6241 	if (!parent)
6242 		return empty;
6243 
6244 	driver = parent->driver;
6245 	if (driver && driver->name)
6246 		return driver->name;
6247 	return empty;
6248 }
6249 
6250 static int __netdev_printk(const char *level, const struct net_device *dev,
6251 			   struct va_format *vaf)
6252 {
6253 	int r;
6254 
6255 	if (dev && dev->dev.parent) {
6256 		r = dev_printk_emit(level[1] - '0',
6257 				    dev->dev.parent,
6258 				    "%s %s %s: %pV",
6259 				    dev_driver_string(dev->dev.parent),
6260 				    dev_name(dev->dev.parent),
6261 				    netdev_name(dev), vaf);
6262 	} else if (dev) {
6263 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6264 	} else {
6265 		r = printk("%s(NULL net_device): %pV", level, vaf);
6266 	}
6267 
6268 	return r;
6269 }
6270 
6271 int netdev_printk(const char *level, const struct net_device *dev,
6272 		  const char *format, ...)
6273 {
6274 	struct va_format vaf;
6275 	va_list args;
6276 	int r;
6277 
6278 	va_start(args, format);
6279 
6280 	vaf.fmt = format;
6281 	vaf.va = &args;
6282 
6283 	r = __netdev_printk(level, dev, &vaf);
6284 
6285 	va_end(args);
6286 
6287 	return r;
6288 }
6289 EXPORT_SYMBOL(netdev_printk);
6290 
6291 #define define_netdev_printk_level(func, level)			\
6292 int func(const struct net_device *dev, const char *fmt, ...)	\
6293 {								\
6294 	int r;							\
6295 	struct va_format vaf;					\
6296 	va_list args;						\
6297 								\
6298 	va_start(args, fmt);					\
6299 								\
6300 	vaf.fmt = fmt;						\
6301 	vaf.va = &args;						\
6302 								\
6303 	r = __netdev_printk(level, dev, &vaf);			\
6304 								\
6305 	va_end(args);						\
6306 								\
6307 	return r;						\
6308 }								\
6309 EXPORT_SYMBOL(func);
6310 
6311 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6312 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6313 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6314 define_netdev_printk_level(netdev_err, KERN_ERR);
6315 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6316 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6317 define_netdev_printk_level(netdev_info, KERN_INFO);
6318 
6319 static void __net_exit netdev_exit(struct net *net)
6320 {
6321 	kfree(net->dev_name_head);
6322 	kfree(net->dev_index_head);
6323 }
6324 
6325 static struct pernet_operations __net_initdata netdev_net_ops = {
6326 	.init = netdev_init,
6327 	.exit = netdev_exit,
6328 };
6329 
6330 static void __net_exit default_device_exit(struct net *net)
6331 {
6332 	struct net_device *dev, *aux;
6333 	/*
6334 	 * Push all migratable network devices back to the
6335 	 * initial network namespace
6336 	 */
6337 	rtnl_lock();
6338 	for_each_netdev_safe(net, dev, aux) {
6339 		int err;
6340 		char fb_name[IFNAMSIZ];
6341 
6342 		/* Ignore unmoveable devices (i.e. loopback) */
6343 		if (dev->features & NETIF_F_NETNS_LOCAL)
6344 			continue;
6345 
6346 		/* Leave virtual devices for the generic cleanup */
6347 		if (dev->rtnl_link_ops)
6348 			continue;
6349 
6350 		/* Push remaining network devices to init_net */
6351 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6352 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6353 		if (err) {
6354 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6355 				 __func__, dev->name, err);
6356 			BUG();
6357 		}
6358 	}
6359 	rtnl_unlock();
6360 }
6361 
6362 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6363 {
6364 	/* At exit all network devices most be removed from a network
6365 	 * namespace.  Do this in the reverse order of registration.
6366 	 * Do this across as many network namespaces as possible to
6367 	 * improve batching efficiency.
6368 	 */
6369 	struct net_device *dev;
6370 	struct net *net;
6371 	LIST_HEAD(dev_kill_list);
6372 
6373 	rtnl_lock();
6374 	list_for_each_entry(net, net_list, exit_list) {
6375 		for_each_netdev_reverse(net, dev) {
6376 			if (dev->rtnl_link_ops)
6377 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6378 			else
6379 				unregister_netdevice_queue(dev, &dev_kill_list);
6380 		}
6381 	}
6382 	unregister_netdevice_many(&dev_kill_list);
6383 	list_del(&dev_kill_list);
6384 	rtnl_unlock();
6385 }
6386 
6387 static struct pernet_operations __net_initdata default_device_ops = {
6388 	.exit = default_device_exit,
6389 	.exit_batch = default_device_exit_batch,
6390 };
6391 
6392 /*
6393  *	Initialize the DEV module. At boot time this walks the device list and
6394  *	unhooks any devices that fail to initialise (normally hardware not
6395  *	present) and leaves us with a valid list of present and active devices.
6396  *
6397  */
6398 
6399 /*
6400  *       This is called single threaded during boot, so no need
6401  *       to take the rtnl semaphore.
6402  */
6403 static int __init net_dev_init(void)
6404 {
6405 	int i, rc = -ENOMEM;
6406 
6407 	BUG_ON(!dev_boot_phase);
6408 
6409 	if (dev_proc_init())
6410 		goto out;
6411 
6412 	if (netdev_kobject_init())
6413 		goto out;
6414 
6415 	INIT_LIST_HEAD(&ptype_all);
6416 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6417 		INIT_LIST_HEAD(&ptype_base[i]);
6418 
6419 	INIT_LIST_HEAD(&offload_base);
6420 
6421 	if (register_pernet_subsys(&netdev_net_ops))
6422 		goto out;
6423 
6424 	/*
6425 	 *	Initialise the packet receive queues.
6426 	 */
6427 
6428 	for_each_possible_cpu(i) {
6429 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6430 
6431 		memset(sd, 0, sizeof(*sd));
6432 		skb_queue_head_init(&sd->input_pkt_queue);
6433 		skb_queue_head_init(&sd->process_queue);
6434 		sd->completion_queue = NULL;
6435 		INIT_LIST_HEAD(&sd->poll_list);
6436 		sd->output_queue = NULL;
6437 		sd->output_queue_tailp = &sd->output_queue;
6438 #ifdef CONFIG_RPS
6439 		sd->csd.func = rps_trigger_softirq;
6440 		sd->csd.info = sd;
6441 		sd->csd.flags = 0;
6442 		sd->cpu = i;
6443 #endif
6444 
6445 		sd->backlog.poll = process_backlog;
6446 		sd->backlog.weight = weight_p;
6447 		sd->backlog.gro_list = NULL;
6448 		sd->backlog.gro_count = 0;
6449 
6450 #ifdef CONFIG_NET_FLOW_LIMIT
6451 		sd->flow_limit = NULL;
6452 #endif
6453 	}
6454 
6455 	dev_boot_phase = 0;
6456 
6457 	/* The loopback device is special if any other network devices
6458 	 * is present in a network namespace the loopback device must
6459 	 * be present. Since we now dynamically allocate and free the
6460 	 * loopback device ensure this invariant is maintained by
6461 	 * keeping the loopback device as the first device on the
6462 	 * list of network devices.  Ensuring the loopback devices
6463 	 * is the first device that appears and the last network device
6464 	 * that disappears.
6465 	 */
6466 	if (register_pernet_device(&loopback_net_ops))
6467 		goto out;
6468 
6469 	if (register_pernet_device(&default_device_ops))
6470 		goto out;
6471 
6472 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6473 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6474 
6475 	hotcpu_notifier(dev_cpu_callback, 0);
6476 	dst_init();
6477 	rc = 0;
6478 out:
6479 	return rc;
6480 }
6481 
6482 subsys_initcall(net_dev_init);
6483