1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dsa.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/gro.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <net/tcx.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
128 #include <net/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
160 #include <net/rps.h>
161 #include <linux/phy_link_topology.h>
162
163 #include "dev.h"
164 #include "devmem.h"
165 #include "net-sysfs.h"
166
167 static DEFINE_SPINLOCK(ptype_lock);
168 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
169
170 static int netif_rx_internal(struct sk_buff *skb);
171 static int call_netdevice_notifiers_extack(unsigned long val,
172 struct net_device *dev,
173 struct netlink_ext_ack *extack);
174
175 static DEFINE_MUTEX(ifalias_mutex);
176
177 /* protects napi_hash addition/deletion and napi_gen_id */
178 static DEFINE_SPINLOCK(napi_hash_lock);
179
180 static unsigned int napi_gen_id = NR_CPUS;
181 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
182
183 static DECLARE_RWSEM(devnet_rename_sem);
184
dev_base_seq_inc(struct net * net)185 static inline void dev_base_seq_inc(struct net *net)
186 {
187 unsigned int val = net->dev_base_seq + 1;
188
189 WRITE_ONCE(net->dev_base_seq, val ?: 1);
190 }
191
dev_name_hash(struct net * net,const char * name)192 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
193 {
194 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
195
196 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
197 }
198
dev_index_hash(struct net * net,int ifindex)199 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
200 {
201 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
202 }
203
204 #ifndef CONFIG_PREEMPT_RT
205
206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
207
setup_backlog_napi_threads(char * arg)208 static int __init setup_backlog_napi_threads(char *arg)
209 {
210 static_branch_enable(&use_backlog_threads_key);
211 return 0;
212 }
213 early_param("thread_backlog_napi", setup_backlog_napi_threads);
214
use_backlog_threads(void)215 static bool use_backlog_threads(void)
216 {
217 return static_branch_unlikely(&use_backlog_threads_key);
218 }
219
220 #else
221
use_backlog_threads(void)222 static bool use_backlog_threads(void)
223 {
224 return true;
225 }
226
227 #endif
228
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)229 static inline void backlog_lock_irq_save(struct softnet_data *sd,
230 unsigned long *flags)
231 {
232 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234 else
235 local_irq_save(*flags);
236 }
237
backlog_lock_irq_disable(struct softnet_data * sd)238 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
239 {
240 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241 spin_lock_irq(&sd->input_pkt_queue.lock);
242 else
243 local_irq_disable();
244 }
245
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)246 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247 unsigned long *flags)
248 {
249 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251 else
252 local_irq_restore(*flags);
253 }
254
backlog_unlock_irq_enable(struct softnet_data * sd)255 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
256 {
257 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 spin_unlock_irq(&sd->input_pkt_queue.lock);
259 else
260 local_irq_enable();
261 }
262
netdev_name_node_alloc(struct net_device * dev,const char * name)263 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264 const char *name)
265 {
266 struct netdev_name_node *name_node;
267
268 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269 if (!name_node)
270 return NULL;
271 INIT_HLIST_NODE(&name_node->hlist);
272 name_node->dev = dev;
273 name_node->name = name;
274 return name_node;
275 }
276
277 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)278 netdev_name_node_head_alloc(struct net_device *dev)
279 {
280 struct netdev_name_node *name_node;
281
282 name_node = netdev_name_node_alloc(dev, dev->name);
283 if (!name_node)
284 return NULL;
285 INIT_LIST_HEAD(&name_node->list);
286 return name_node;
287 }
288
netdev_name_node_free(struct netdev_name_node * name_node)289 static void netdev_name_node_free(struct netdev_name_node *name_node)
290 {
291 kfree(name_node);
292 }
293
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)294 static void netdev_name_node_add(struct net *net,
295 struct netdev_name_node *name_node)
296 {
297 hlist_add_head_rcu(&name_node->hlist,
298 dev_name_hash(net, name_node->name));
299 }
300
netdev_name_node_del(struct netdev_name_node * name_node)301 static void netdev_name_node_del(struct netdev_name_node *name_node)
302 {
303 hlist_del_rcu(&name_node->hlist);
304 }
305
netdev_name_node_lookup(struct net * net,const char * name)306 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307 const char *name)
308 {
309 struct hlist_head *head = dev_name_hash(net, name);
310 struct netdev_name_node *name_node;
311
312 hlist_for_each_entry(name_node, head, hlist)
313 if (!strcmp(name_node->name, name))
314 return name_node;
315 return NULL;
316 }
317
netdev_name_node_lookup_rcu(struct net * net,const char * name)318 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319 const char *name)
320 {
321 struct hlist_head *head = dev_name_hash(net, name);
322 struct netdev_name_node *name_node;
323
324 hlist_for_each_entry_rcu(name_node, head, hlist)
325 if (!strcmp(name_node->name, name))
326 return name_node;
327 return NULL;
328 }
329
netdev_name_in_use(struct net * net,const char * name)330 bool netdev_name_in_use(struct net *net, const char *name)
331 {
332 return netdev_name_node_lookup(net, name);
333 }
334 EXPORT_SYMBOL(netdev_name_in_use);
335
netdev_name_node_alt_create(struct net_device * dev,const char * name)336 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
337 {
338 struct netdev_name_node *name_node;
339 struct net *net = dev_net(dev);
340
341 name_node = netdev_name_node_lookup(net, name);
342 if (name_node)
343 return -EEXIST;
344 name_node = netdev_name_node_alloc(dev, name);
345 if (!name_node)
346 return -ENOMEM;
347 netdev_name_node_add(net, name_node);
348 /* The node that holds dev->name acts as a head of per-device list. */
349 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
350
351 return 0;
352 }
353
netdev_name_node_alt_free(struct rcu_head * head)354 static void netdev_name_node_alt_free(struct rcu_head *head)
355 {
356 struct netdev_name_node *name_node =
357 container_of(head, struct netdev_name_node, rcu);
358
359 kfree(name_node->name);
360 netdev_name_node_free(name_node);
361 }
362
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)363 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
364 {
365 netdev_name_node_del(name_node);
366 list_del(&name_node->list);
367 call_rcu(&name_node->rcu, netdev_name_node_alt_free);
368 }
369
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)370 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
371 {
372 struct netdev_name_node *name_node;
373 struct net *net = dev_net(dev);
374
375 name_node = netdev_name_node_lookup(net, name);
376 if (!name_node)
377 return -ENOENT;
378 /* lookup might have found our primary name or a name belonging
379 * to another device.
380 */
381 if (name_node == dev->name_node || name_node->dev != dev)
382 return -EINVAL;
383
384 __netdev_name_node_alt_destroy(name_node);
385 return 0;
386 }
387
netdev_name_node_alt_flush(struct net_device * dev)388 static void netdev_name_node_alt_flush(struct net_device *dev)
389 {
390 struct netdev_name_node *name_node, *tmp;
391
392 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393 list_del(&name_node->list);
394 netdev_name_node_alt_free(&name_node->rcu);
395 }
396 }
397
398 /* Device list insertion */
list_netdevice(struct net_device * dev)399 static void list_netdevice(struct net_device *dev)
400 {
401 struct netdev_name_node *name_node;
402 struct net *net = dev_net(dev);
403
404 ASSERT_RTNL();
405
406 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407 netdev_name_node_add(net, dev->name_node);
408 hlist_add_head_rcu(&dev->index_hlist,
409 dev_index_hash(net, dev->ifindex));
410
411 netdev_for_each_altname(dev, name_node)
412 netdev_name_node_add(net, name_node);
413
414 /* We reserved the ifindex, this can't fail */
415 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
416
417 dev_base_seq_inc(net);
418 }
419
420 /* Device list removal
421 * caller must respect a RCU grace period before freeing/reusing dev
422 */
unlist_netdevice(struct net_device * dev)423 static void unlist_netdevice(struct net_device *dev)
424 {
425 struct netdev_name_node *name_node;
426 struct net *net = dev_net(dev);
427
428 ASSERT_RTNL();
429
430 xa_erase(&net->dev_by_index, dev->ifindex);
431
432 netdev_for_each_altname(dev, name_node)
433 netdev_name_node_del(name_node);
434
435 /* Unlink dev from the device chain */
436 list_del_rcu(&dev->dev_list);
437 netdev_name_node_del(dev->name_node);
438 hlist_del_rcu(&dev->index_hlist);
439
440 dev_base_seq_inc(dev_net(dev));
441 }
442
443 /*
444 * Our notifier list
445 */
446
447 static RAW_NOTIFIER_HEAD(netdev_chain);
448
449 /*
450 * Device drivers call our routines to queue packets here. We empty the
451 * queue in the local softnet handler.
452 */
453
454 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
456 };
457 EXPORT_PER_CPU_SYMBOL(softnet_data);
458
459 /* Page_pool has a lockless array/stack to alloc/recycle pages.
460 * PP consumers must pay attention to run APIs in the appropriate context
461 * (e.g. NAPI context).
462 */
463 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
464
465 #ifdef CONFIG_LOCKDEP
466 /*
467 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468 * according to dev->type
469 */
470 static const unsigned short netdev_lock_type[] = {
471 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
486
487 static const char *const netdev_lock_name[] = {
488 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
503
504 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
506
netdev_lock_pos(unsigned short dev_type)507 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
508 {
509 int i;
510
511 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512 if (netdev_lock_type[i] == dev_type)
513 return i;
514 /* the last key is used by default */
515 return ARRAY_SIZE(netdev_lock_type) - 1;
516 }
517
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 unsigned short dev_type)
520 {
521 int i;
522
523 i = netdev_lock_pos(dev_type);
524 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525 netdev_lock_name[i]);
526 }
527
netdev_set_addr_lockdep_class(struct net_device * dev)528 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529 {
530 int i;
531
532 i = netdev_lock_pos(dev->type);
533 lockdep_set_class_and_name(&dev->addr_list_lock,
534 &netdev_addr_lock_key[i],
535 netdev_lock_name[i]);
536 }
537 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)538 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539 unsigned short dev_type)
540 {
541 }
542
netdev_set_addr_lockdep_class(struct net_device * dev)543 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
544 {
545 }
546 #endif
547
548 /*******************************************************************************
549 *
550 * Protocol management and registration routines
551 *
552 *******************************************************************************/
553
554
555 /*
556 * Add a protocol ID to the list. Now that the input handler is
557 * smarter we can dispense with all the messy stuff that used to be
558 * here.
559 *
560 * BEWARE!!! Protocol handlers, mangling input packets,
561 * MUST BE last in hash buckets and checking protocol handlers
562 * MUST start from promiscuous ptype_all chain in net_bh.
563 * It is true now, do not change it.
564 * Explanation follows: if protocol handler, mangling packet, will
565 * be the first on list, it is not able to sense, that packet
566 * is cloned and should be copied-on-write, so that it will
567 * change it and subsequent readers will get broken packet.
568 * --ANK (980803)
569 */
570
ptype_head(const struct packet_type * pt)571 static inline struct list_head *ptype_head(const struct packet_type *pt)
572 {
573 if (pt->type == htons(ETH_P_ALL))
574 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575 else
576 return pt->dev ? &pt->dev->ptype_specific :
577 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
578 }
579
580 /**
581 * dev_add_pack - add packet handler
582 * @pt: packet type declaration
583 *
584 * Add a protocol handler to the networking stack. The passed &packet_type
585 * is linked into kernel lists and may not be freed until it has been
586 * removed from the kernel lists.
587 *
588 * This call does not sleep therefore it can not
589 * guarantee all CPU's that are in middle of receiving packets
590 * will see the new packet type (until the next received packet).
591 */
592
dev_add_pack(struct packet_type * pt)593 void dev_add_pack(struct packet_type *pt)
594 {
595 struct list_head *head = ptype_head(pt);
596
597 spin_lock(&ptype_lock);
598 list_add_rcu(&pt->list, head);
599 spin_unlock(&ptype_lock);
600 }
601 EXPORT_SYMBOL(dev_add_pack);
602
603 /**
604 * __dev_remove_pack - remove packet handler
605 * @pt: packet type declaration
606 *
607 * Remove a protocol handler that was previously added to the kernel
608 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
609 * from the kernel lists and can be freed or reused once this function
610 * returns.
611 *
612 * The packet type might still be in use by receivers
613 * and must not be freed until after all the CPU's have gone
614 * through a quiescent state.
615 */
__dev_remove_pack(struct packet_type * pt)616 void __dev_remove_pack(struct packet_type *pt)
617 {
618 struct list_head *head = ptype_head(pt);
619 struct packet_type *pt1;
620
621 spin_lock(&ptype_lock);
622
623 list_for_each_entry(pt1, head, list) {
624 if (pt == pt1) {
625 list_del_rcu(&pt->list);
626 goto out;
627 }
628 }
629
630 pr_warn("dev_remove_pack: %p not found\n", pt);
631 out:
632 spin_unlock(&ptype_lock);
633 }
634 EXPORT_SYMBOL(__dev_remove_pack);
635
636 /**
637 * dev_remove_pack - remove packet handler
638 * @pt: packet type declaration
639 *
640 * Remove a protocol handler that was previously added to the kernel
641 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
642 * from the kernel lists and can be freed or reused once this function
643 * returns.
644 *
645 * This call sleeps to guarantee that no CPU is looking at the packet
646 * type after return.
647 */
dev_remove_pack(struct packet_type * pt)648 void dev_remove_pack(struct packet_type *pt)
649 {
650 __dev_remove_pack(pt);
651
652 synchronize_net();
653 }
654 EXPORT_SYMBOL(dev_remove_pack);
655
656
657 /*******************************************************************************
658 *
659 * Device Interface Subroutines
660 *
661 *******************************************************************************/
662
663 /**
664 * dev_get_iflink - get 'iflink' value of a interface
665 * @dev: targeted interface
666 *
667 * Indicates the ifindex the interface is linked to.
668 * Physical interfaces have the same 'ifindex' and 'iflink' values.
669 */
670
dev_get_iflink(const struct net_device * dev)671 int dev_get_iflink(const struct net_device *dev)
672 {
673 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 return dev->netdev_ops->ndo_get_iflink(dev);
675
676 return READ_ONCE(dev->ifindex);
677 }
678 EXPORT_SYMBOL(dev_get_iflink);
679
680 /**
681 * dev_fill_metadata_dst - Retrieve tunnel egress information.
682 * @dev: targeted interface
683 * @skb: The packet.
684 *
685 * For better visibility of tunnel traffic OVS needs to retrieve
686 * egress tunnel information for a packet. Following API allows
687 * user to get this info.
688 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
690 {
691 struct ip_tunnel_info *info;
692
693 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
694 return -EINVAL;
695
696 info = skb_tunnel_info_unclone(skb);
697 if (!info)
698 return -ENOMEM;
699 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700 return -EINVAL;
701
702 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
703 }
704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
705
dev_fwd_path(struct net_device_path_stack * stack)706 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
707 {
708 int k = stack->num_paths++;
709
710 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711 return NULL;
712
713 return &stack->path[k];
714 }
715
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)716 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717 struct net_device_path_stack *stack)
718 {
719 const struct net_device *last_dev;
720 struct net_device_path_ctx ctx = {
721 .dev = dev,
722 };
723 struct net_device_path *path;
724 int ret = 0;
725
726 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727 stack->num_paths = 0;
728 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729 last_dev = ctx.dev;
730 path = dev_fwd_path(stack);
731 if (!path)
732 return -1;
733
734 memset(path, 0, sizeof(struct net_device_path));
735 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736 if (ret < 0)
737 return -1;
738
739 if (WARN_ON_ONCE(last_dev == ctx.dev))
740 return -1;
741 }
742
743 if (!ctx.dev)
744 return ret;
745
746 path = dev_fwd_path(stack);
747 if (!path)
748 return -1;
749 path->type = DEV_PATH_ETHERNET;
750 path->dev = ctx.dev;
751
752 return ret;
753 }
754 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
755
756 /**
757 * __dev_get_by_name - find a device by its name
758 * @net: the applicable net namespace
759 * @name: name to find
760 *
761 * Find an interface by name. Must be called under RTNL semaphore.
762 * If the name is found a pointer to the device is returned.
763 * If the name is not found then %NULL is returned. The
764 * reference counters are not incremented so the caller must be
765 * careful with locks.
766 */
767
__dev_get_by_name(struct net * net,const char * name)768 struct net_device *__dev_get_by_name(struct net *net, const char *name)
769 {
770 struct netdev_name_node *node_name;
771
772 node_name = netdev_name_node_lookup(net, name);
773 return node_name ? node_name->dev : NULL;
774 }
775 EXPORT_SYMBOL(__dev_get_by_name);
776
777 /**
778 * dev_get_by_name_rcu - find a device by its name
779 * @net: the applicable net namespace
780 * @name: name to find
781 *
782 * Find an interface by name.
783 * If the name is found a pointer to the device is returned.
784 * If the name is not found then %NULL is returned.
785 * The reference counters are not incremented so the caller must be
786 * careful with locks. The caller must hold RCU lock.
787 */
788
dev_get_by_name_rcu(struct net * net,const char * name)789 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
790 {
791 struct netdev_name_node *node_name;
792
793 node_name = netdev_name_node_lookup_rcu(net, name);
794 return node_name ? node_name->dev : NULL;
795 }
796 EXPORT_SYMBOL(dev_get_by_name_rcu);
797
798 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)799 struct net_device *dev_get_by_name(struct net *net, const char *name)
800 {
801 struct net_device *dev;
802
803 rcu_read_lock();
804 dev = dev_get_by_name_rcu(net, name);
805 dev_hold(dev);
806 rcu_read_unlock();
807 return dev;
808 }
809 EXPORT_SYMBOL(dev_get_by_name);
810
811 /**
812 * netdev_get_by_name() - find a device by its name
813 * @net: the applicable net namespace
814 * @name: name to find
815 * @tracker: tracking object for the acquired reference
816 * @gfp: allocation flags for the tracker
817 *
818 * Find an interface by name. This can be called from any
819 * context and does its own locking. The returned handle has
820 * the usage count incremented and the caller must use netdev_put() to
821 * release it when it is no longer needed. %NULL is returned if no
822 * matching device is found.
823 */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)824 struct net_device *netdev_get_by_name(struct net *net, const char *name,
825 netdevice_tracker *tracker, gfp_t gfp)
826 {
827 struct net_device *dev;
828
829 dev = dev_get_by_name(net, name);
830 if (dev)
831 netdev_tracker_alloc(dev, tracker, gfp);
832 return dev;
833 }
834 EXPORT_SYMBOL(netdev_get_by_name);
835
836 /**
837 * __dev_get_by_index - find a device by its ifindex
838 * @net: the applicable net namespace
839 * @ifindex: index of device
840 *
841 * Search for an interface by index. Returns %NULL if the device
842 * is not found or a pointer to the device. The device has not
843 * had its reference counter increased so the caller must be careful
844 * about locking. The caller must hold the RTNL semaphore.
845 */
846
__dev_get_by_index(struct net * net,int ifindex)847 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
848 {
849 struct net_device *dev;
850 struct hlist_head *head = dev_index_hash(net, ifindex);
851
852 hlist_for_each_entry(dev, head, index_hlist)
853 if (dev->ifindex == ifindex)
854 return dev;
855
856 return NULL;
857 }
858 EXPORT_SYMBOL(__dev_get_by_index);
859
860 /**
861 * dev_get_by_index_rcu - find a device by its ifindex
862 * @net: the applicable net namespace
863 * @ifindex: index of device
864 *
865 * Search for an interface by index. Returns %NULL if the device
866 * is not found or a pointer to the device. The device has not
867 * had its reference counter increased so the caller must be careful
868 * about locking. The caller must hold RCU lock.
869 */
870
dev_get_by_index_rcu(struct net * net,int ifindex)871 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
872 {
873 struct net_device *dev;
874 struct hlist_head *head = dev_index_hash(net, ifindex);
875
876 hlist_for_each_entry_rcu(dev, head, index_hlist)
877 if (dev->ifindex == ifindex)
878 return dev;
879
880 return NULL;
881 }
882 EXPORT_SYMBOL(dev_get_by_index_rcu);
883
884 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)885 struct net_device *dev_get_by_index(struct net *net, int ifindex)
886 {
887 struct net_device *dev;
888
889 rcu_read_lock();
890 dev = dev_get_by_index_rcu(net, ifindex);
891 dev_hold(dev);
892 rcu_read_unlock();
893 return dev;
894 }
895 EXPORT_SYMBOL(dev_get_by_index);
896
897 /**
898 * netdev_get_by_index() - find a device by its ifindex
899 * @net: the applicable net namespace
900 * @ifindex: index of device
901 * @tracker: tracking object for the acquired reference
902 * @gfp: allocation flags for the tracker
903 *
904 * Search for an interface by index. Returns NULL if the device
905 * is not found or a pointer to the device. The device returned has
906 * had a reference added and the pointer is safe until the user calls
907 * netdev_put() to indicate they have finished with it.
908 */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)909 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
910 netdevice_tracker *tracker, gfp_t gfp)
911 {
912 struct net_device *dev;
913
914 dev = dev_get_by_index(net, ifindex);
915 if (dev)
916 netdev_tracker_alloc(dev, tracker, gfp);
917 return dev;
918 }
919 EXPORT_SYMBOL(netdev_get_by_index);
920
921 /**
922 * dev_get_by_napi_id - find a device by napi_id
923 * @napi_id: ID of the NAPI struct
924 *
925 * Search for an interface by NAPI ID. Returns %NULL if the device
926 * is not found or a pointer to the device. The device has not had
927 * its reference counter increased so the caller must be careful
928 * about locking. The caller must hold RCU lock.
929 */
930
dev_get_by_napi_id(unsigned int napi_id)931 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
932 {
933 struct napi_struct *napi;
934
935 WARN_ON_ONCE(!rcu_read_lock_held());
936
937 if (napi_id < MIN_NAPI_ID)
938 return NULL;
939
940 napi = napi_by_id(napi_id);
941
942 return napi ? napi->dev : NULL;
943 }
944 EXPORT_SYMBOL(dev_get_by_napi_id);
945
946 static DEFINE_SEQLOCK(netdev_rename_lock);
947
netdev_copy_name(struct net_device * dev,char * name)948 void netdev_copy_name(struct net_device *dev, char *name)
949 {
950 unsigned int seq;
951
952 do {
953 seq = read_seqbegin(&netdev_rename_lock);
954 strscpy(name, dev->name, IFNAMSIZ);
955 } while (read_seqretry(&netdev_rename_lock, seq));
956 }
957
958 /**
959 * netdev_get_name - get a netdevice name, knowing its ifindex.
960 * @net: network namespace
961 * @name: a pointer to the buffer where the name will be stored.
962 * @ifindex: the ifindex of the interface to get the name from.
963 */
netdev_get_name(struct net * net,char * name,int ifindex)964 int netdev_get_name(struct net *net, char *name, int ifindex)
965 {
966 struct net_device *dev;
967 int ret;
968
969 rcu_read_lock();
970
971 dev = dev_get_by_index_rcu(net, ifindex);
972 if (!dev) {
973 ret = -ENODEV;
974 goto out;
975 }
976
977 netdev_copy_name(dev, name);
978
979 ret = 0;
980 out:
981 rcu_read_unlock();
982 return ret;
983 }
984
985 /**
986 * dev_getbyhwaddr_rcu - find a device by its hardware address
987 * @net: the applicable net namespace
988 * @type: media type of device
989 * @ha: hardware address
990 *
991 * Search for an interface by MAC address. Returns NULL if the device
992 * is not found or a pointer to the device.
993 * The caller must hold RCU or RTNL.
994 * The returned device has not had its ref count increased
995 * and the caller must therefore be careful about locking
996 *
997 */
998
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)999 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1000 const char *ha)
1001 {
1002 struct net_device *dev;
1003
1004 for_each_netdev_rcu(net, dev)
1005 if (dev->type == type &&
1006 !memcmp(dev->dev_addr, ha, dev->addr_len))
1007 return dev;
1008
1009 return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1012
dev_getfirstbyhwtype(struct net * net,unsigned short type)1013 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1014 {
1015 struct net_device *dev, *ret = NULL;
1016
1017 rcu_read_lock();
1018 for_each_netdev_rcu(net, dev)
1019 if (dev->type == type) {
1020 dev_hold(dev);
1021 ret = dev;
1022 break;
1023 }
1024 rcu_read_unlock();
1025 return ret;
1026 }
1027 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1028
1029 /**
1030 * __dev_get_by_flags - find any device with given flags
1031 * @net: the applicable net namespace
1032 * @if_flags: IFF_* values
1033 * @mask: bitmask of bits in if_flags to check
1034 *
1035 * Search for any interface with the given flags. Returns NULL if a device
1036 * is not found or a pointer to the device. Must be called inside
1037 * rtnl_lock(), and result refcount is unchanged.
1038 */
1039
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1040 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1041 unsigned short mask)
1042 {
1043 struct net_device *dev, *ret;
1044
1045 ASSERT_RTNL();
1046
1047 ret = NULL;
1048 for_each_netdev(net, dev) {
1049 if (((dev->flags ^ if_flags) & mask) == 0) {
1050 ret = dev;
1051 break;
1052 }
1053 }
1054 return ret;
1055 }
1056 EXPORT_SYMBOL(__dev_get_by_flags);
1057
1058 /**
1059 * dev_valid_name - check if name is okay for network device
1060 * @name: name string
1061 *
1062 * Network device names need to be valid file names to
1063 * allow sysfs to work. We also disallow any kind of
1064 * whitespace.
1065 */
dev_valid_name(const char * name)1066 bool dev_valid_name(const char *name)
1067 {
1068 if (*name == '\0')
1069 return false;
1070 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1071 return false;
1072 if (!strcmp(name, ".") || !strcmp(name, ".."))
1073 return false;
1074
1075 while (*name) {
1076 if (*name == '/' || *name == ':' || isspace(*name))
1077 return false;
1078 name++;
1079 }
1080 return true;
1081 }
1082 EXPORT_SYMBOL(dev_valid_name);
1083
1084 /**
1085 * __dev_alloc_name - allocate a name for a device
1086 * @net: network namespace to allocate the device name in
1087 * @name: name format string
1088 * @res: result name string
1089 *
1090 * Passed a format string - eg "lt%d" it will try and find a suitable
1091 * id. It scans list of devices to build up a free map, then chooses
1092 * the first empty slot. The caller must hold the dev_base or rtnl lock
1093 * while allocating the name and adding the device in order to avoid
1094 * duplicates.
1095 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1096 * Returns the number of the unit assigned or a negative errno code.
1097 */
1098
__dev_alloc_name(struct net * net,const char * name,char * res)1099 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1100 {
1101 int i = 0;
1102 const char *p;
1103 const int max_netdevices = 8*PAGE_SIZE;
1104 unsigned long *inuse;
1105 struct net_device *d;
1106 char buf[IFNAMSIZ];
1107
1108 /* Verify the string as this thing may have come from the user.
1109 * There must be one "%d" and no other "%" characters.
1110 */
1111 p = strchr(name, '%');
1112 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1113 return -EINVAL;
1114
1115 /* Use one page as a bit array of possible slots */
1116 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1117 if (!inuse)
1118 return -ENOMEM;
1119
1120 for_each_netdev(net, d) {
1121 struct netdev_name_node *name_node;
1122
1123 netdev_for_each_altname(d, name_node) {
1124 if (!sscanf(name_node->name, name, &i))
1125 continue;
1126 if (i < 0 || i >= max_netdevices)
1127 continue;
1128
1129 /* avoid cases where sscanf is not exact inverse of printf */
1130 snprintf(buf, IFNAMSIZ, name, i);
1131 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1132 __set_bit(i, inuse);
1133 }
1134 if (!sscanf(d->name, name, &i))
1135 continue;
1136 if (i < 0 || i >= max_netdevices)
1137 continue;
1138
1139 /* avoid cases where sscanf is not exact inverse of printf */
1140 snprintf(buf, IFNAMSIZ, name, i);
1141 if (!strncmp(buf, d->name, IFNAMSIZ))
1142 __set_bit(i, inuse);
1143 }
1144
1145 i = find_first_zero_bit(inuse, max_netdevices);
1146 bitmap_free(inuse);
1147 if (i == max_netdevices)
1148 return -ENFILE;
1149
1150 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1151 strscpy(buf, name, IFNAMSIZ);
1152 snprintf(res, IFNAMSIZ, buf, i);
1153 return i;
1154 }
1155
1156 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1157 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1158 const char *want_name, char *out_name,
1159 int dup_errno)
1160 {
1161 if (!dev_valid_name(want_name))
1162 return -EINVAL;
1163
1164 if (strchr(want_name, '%'))
1165 return __dev_alloc_name(net, want_name, out_name);
1166
1167 if (netdev_name_in_use(net, want_name))
1168 return -dup_errno;
1169 if (out_name != want_name)
1170 strscpy(out_name, want_name, IFNAMSIZ);
1171 return 0;
1172 }
1173
1174 /**
1175 * dev_alloc_name - allocate a name for a device
1176 * @dev: device
1177 * @name: name format string
1178 *
1179 * Passed a format string - eg "lt%d" it will try and find a suitable
1180 * id. It scans list of devices to build up a free map, then chooses
1181 * the first empty slot. The caller must hold the dev_base or rtnl lock
1182 * while allocating the name and adding the device in order to avoid
1183 * duplicates.
1184 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1185 * Returns the number of the unit assigned or a negative errno code.
1186 */
1187
dev_alloc_name(struct net_device * dev,const char * name)1188 int dev_alloc_name(struct net_device *dev, const char *name)
1189 {
1190 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1191 }
1192 EXPORT_SYMBOL(dev_alloc_name);
1193
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1194 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1195 const char *name)
1196 {
1197 int ret;
1198
1199 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1200 return ret < 0 ? ret : 0;
1201 }
1202
1203 /**
1204 * dev_change_name - change name of a device
1205 * @dev: device
1206 * @newname: name (or format string) must be at least IFNAMSIZ
1207 *
1208 * Change name of a device, can pass format strings "eth%d".
1209 * for wildcarding.
1210 */
dev_change_name(struct net_device * dev,const char * newname)1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213 unsigned char old_assign_type;
1214 char oldname[IFNAMSIZ];
1215 int err = 0;
1216 int ret;
1217 struct net *net;
1218
1219 ASSERT_RTNL();
1220 BUG_ON(!dev_net(dev));
1221
1222 net = dev_net(dev);
1223
1224 down_write(&devnet_rename_sem);
1225
1226 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 up_write(&devnet_rename_sem);
1228 return 0;
1229 }
1230
1231 memcpy(oldname, dev->name, IFNAMSIZ);
1232
1233 write_seqlock_bh(&netdev_rename_lock);
1234 err = dev_get_valid_name(net, dev, newname);
1235 write_sequnlock_bh(&netdev_rename_lock);
1236
1237 if (err < 0) {
1238 up_write(&devnet_rename_sem);
1239 return err;
1240 }
1241
1242 if (oldname[0] && !strchr(oldname, '%'))
1243 netdev_info(dev, "renamed from %s%s\n", oldname,
1244 dev->flags & IFF_UP ? " (while UP)" : "");
1245
1246 old_assign_type = dev->name_assign_type;
1247 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1248
1249 rollback:
1250 ret = device_rename(&dev->dev, dev->name);
1251 if (ret) {
1252 memcpy(dev->name, oldname, IFNAMSIZ);
1253 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1254 up_write(&devnet_rename_sem);
1255 return ret;
1256 }
1257
1258 up_write(&devnet_rename_sem);
1259
1260 netdev_adjacent_rename_links(dev, oldname);
1261
1262 netdev_name_node_del(dev->name_node);
1263
1264 synchronize_net();
1265
1266 netdev_name_node_add(net, dev->name_node);
1267
1268 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1269 ret = notifier_to_errno(ret);
1270
1271 if (ret) {
1272 /* err >= 0 after dev_alloc_name() or stores the first errno */
1273 if (err >= 0) {
1274 err = ret;
1275 down_write(&devnet_rename_sem);
1276 write_seqlock_bh(&netdev_rename_lock);
1277 memcpy(dev->name, oldname, IFNAMSIZ);
1278 write_sequnlock_bh(&netdev_rename_lock);
1279 memcpy(oldname, newname, IFNAMSIZ);
1280 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1281 old_assign_type = NET_NAME_RENAMED;
1282 goto rollback;
1283 } else {
1284 netdev_err(dev, "name change rollback failed: %d\n",
1285 ret);
1286 }
1287 }
1288
1289 return err;
1290 }
1291
1292 /**
1293 * dev_set_alias - change ifalias of a device
1294 * @dev: device
1295 * @alias: name up to IFALIASZ
1296 * @len: limit of bytes to copy from info
1297 *
1298 * Set ifalias for a device,
1299 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301 {
1302 struct dev_ifalias *new_alias = NULL;
1303
1304 if (len >= IFALIASZ)
1305 return -EINVAL;
1306
1307 if (len) {
1308 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309 if (!new_alias)
1310 return -ENOMEM;
1311
1312 memcpy(new_alias->ifalias, alias, len);
1313 new_alias->ifalias[len] = 0;
1314 }
1315
1316 mutex_lock(&ifalias_mutex);
1317 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318 mutex_is_locked(&ifalias_mutex));
1319 mutex_unlock(&ifalias_mutex);
1320
1321 if (new_alias)
1322 kfree_rcu(new_alias, rcuhead);
1323
1324 return len;
1325 }
1326 EXPORT_SYMBOL(dev_set_alias);
1327
1328 /**
1329 * dev_get_alias - get ifalias of a device
1330 * @dev: device
1331 * @name: buffer to store name of ifalias
1332 * @len: size of buffer
1333 *
1334 * get ifalias for a device. Caller must make sure dev cannot go
1335 * away, e.g. rcu read lock or own a reference count to device.
1336 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338 {
1339 const struct dev_ifalias *alias;
1340 int ret = 0;
1341
1342 rcu_read_lock();
1343 alias = rcu_dereference(dev->ifalias);
1344 if (alias)
1345 ret = snprintf(name, len, "%s", alias->ifalias);
1346 rcu_read_unlock();
1347
1348 return ret;
1349 }
1350
1351 /**
1352 * netdev_features_change - device changes features
1353 * @dev: device to cause notification
1354 *
1355 * Called to indicate a device has changed features.
1356 */
netdev_features_change(struct net_device * dev)1357 void netdev_features_change(struct net_device *dev)
1358 {
1359 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1360 }
1361 EXPORT_SYMBOL(netdev_features_change);
1362
1363 /**
1364 * netdev_state_change - device changes state
1365 * @dev: device to cause notification
1366 *
1367 * Called to indicate a device has changed state. This function calls
1368 * the notifier chains for netdev_chain and sends a NEWLINK message
1369 * to the routing socket.
1370 */
netdev_state_change(struct net_device * dev)1371 void netdev_state_change(struct net_device *dev)
1372 {
1373 if (dev->flags & IFF_UP) {
1374 struct netdev_notifier_change_info change_info = {
1375 .info.dev = dev,
1376 };
1377
1378 call_netdevice_notifiers_info(NETDEV_CHANGE,
1379 &change_info.info);
1380 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1381 }
1382 }
1383 EXPORT_SYMBOL(netdev_state_change);
1384
1385 /**
1386 * __netdev_notify_peers - notify network peers about existence of @dev,
1387 * to be called when rtnl lock is already held.
1388 * @dev: network device
1389 *
1390 * Generate traffic such that interested network peers are aware of
1391 * @dev, such as by generating a gratuitous ARP. This may be used when
1392 * a device wants to inform the rest of the network about some sort of
1393 * reconfiguration such as a failover event or virtual machine
1394 * migration.
1395 */
__netdev_notify_peers(struct net_device * dev)1396 void __netdev_notify_peers(struct net_device *dev)
1397 {
1398 ASSERT_RTNL();
1399 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1400 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1401 }
1402 EXPORT_SYMBOL(__netdev_notify_peers);
1403
1404 /**
1405 * netdev_notify_peers - notify network peers about existence of @dev
1406 * @dev: network device
1407 *
1408 * Generate traffic such that interested network peers are aware of
1409 * @dev, such as by generating a gratuitous ARP. This may be used when
1410 * a device wants to inform the rest of the network about some sort of
1411 * reconfiguration such as a failover event or virtual machine
1412 * migration.
1413 */
netdev_notify_peers(struct net_device * dev)1414 void netdev_notify_peers(struct net_device *dev)
1415 {
1416 rtnl_lock();
1417 __netdev_notify_peers(dev);
1418 rtnl_unlock();
1419 }
1420 EXPORT_SYMBOL(netdev_notify_peers);
1421
1422 static int napi_threaded_poll(void *data);
1423
napi_kthread_create(struct napi_struct * n)1424 static int napi_kthread_create(struct napi_struct *n)
1425 {
1426 int err = 0;
1427
1428 /* Create and wake up the kthread once to put it in
1429 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1430 * warning and work with loadavg.
1431 */
1432 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1433 n->dev->name, n->napi_id);
1434 if (IS_ERR(n->thread)) {
1435 err = PTR_ERR(n->thread);
1436 pr_err("kthread_run failed with err %d\n", err);
1437 n->thread = NULL;
1438 }
1439
1440 return err;
1441 }
1442
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1443 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1444 {
1445 const struct net_device_ops *ops = dev->netdev_ops;
1446 int ret;
1447
1448 ASSERT_RTNL();
1449 dev_addr_check(dev);
1450
1451 if (!netif_device_present(dev)) {
1452 /* may be detached because parent is runtime-suspended */
1453 if (dev->dev.parent)
1454 pm_runtime_resume(dev->dev.parent);
1455 if (!netif_device_present(dev))
1456 return -ENODEV;
1457 }
1458
1459 /* Block netpoll from trying to do any rx path servicing.
1460 * If we don't do this there is a chance ndo_poll_controller
1461 * or ndo_poll may be running while we open the device
1462 */
1463 netpoll_poll_disable(dev);
1464
1465 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1466 ret = notifier_to_errno(ret);
1467 if (ret)
1468 return ret;
1469
1470 set_bit(__LINK_STATE_START, &dev->state);
1471
1472 if (ops->ndo_validate_addr)
1473 ret = ops->ndo_validate_addr(dev);
1474
1475 if (!ret && ops->ndo_open)
1476 ret = ops->ndo_open(dev);
1477
1478 netpoll_poll_enable(dev);
1479
1480 if (ret)
1481 clear_bit(__LINK_STATE_START, &dev->state);
1482 else {
1483 dev->flags |= IFF_UP;
1484 dev_set_rx_mode(dev);
1485 dev_activate(dev);
1486 add_device_randomness(dev->dev_addr, dev->addr_len);
1487 }
1488
1489 return ret;
1490 }
1491
1492 /**
1493 * dev_open - prepare an interface for use.
1494 * @dev: device to open
1495 * @extack: netlink extended ack
1496 *
1497 * Takes a device from down to up state. The device's private open
1498 * function is invoked and then the multicast lists are loaded. Finally
1499 * the device is moved into the up state and a %NETDEV_UP message is
1500 * sent to the netdev notifier chain.
1501 *
1502 * Calling this function on an active interface is a nop. On a failure
1503 * a negative errno code is returned.
1504 */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1505 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1506 {
1507 int ret;
1508
1509 if (dev->flags & IFF_UP)
1510 return 0;
1511
1512 ret = __dev_open(dev, extack);
1513 if (ret < 0)
1514 return ret;
1515
1516 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1517 call_netdevice_notifiers(NETDEV_UP, dev);
1518
1519 return ret;
1520 }
1521 EXPORT_SYMBOL(dev_open);
1522
__dev_close_many(struct list_head * head)1523 static void __dev_close_many(struct list_head *head)
1524 {
1525 struct net_device *dev;
1526
1527 ASSERT_RTNL();
1528 might_sleep();
1529
1530 list_for_each_entry(dev, head, close_list) {
1531 /* Temporarily disable netpoll until the interface is down */
1532 netpoll_poll_disable(dev);
1533
1534 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1535
1536 clear_bit(__LINK_STATE_START, &dev->state);
1537
1538 /* Synchronize to scheduled poll. We cannot touch poll list, it
1539 * can be even on different cpu. So just clear netif_running().
1540 *
1541 * dev->stop() will invoke napi_disable() on all of it's
1542 * napi_struct instances on this device.
1543 */
1544 smp_mb__after_atomic(); /* Commit netif_running(). */
1545 }
1546
1547 dev_deactivate_many(head);
1548
1549 list_for_each_entry(dev, head, close_list) {
1550 const struct net_device_ops *ops = dev->netdev_ops;
1551
1552 /*
1553 * Call the device specific close. This cannot fail.
1554 * Only if device is UP
1555 *
1556 * We allow it to be called even after a DETACH hot-plug
1557 * event.
1558 */
1559 if (ops->ndo_stop)
1560 ops->ndo_stop(dev);
1561
1562 dev->flags &= ~IFF_UP;
1563 netpoll_poll_enable(dev);
1564 }
1565 }
1566
__dev_close(struct net_device * dev)1567 static void __dev_close(struct net_device *dev)
1568 {
1569 LIST_HEAD(single);
1570
1571 list_add(&dev->close_list, &single);
1572 __dev_close_many(&single);
1573 list_del(&single);
1574 }
1575
dev_close_many(struct list_head * head,bool unlink)1576 void dev_close_many(struct list_head *head, bool unlink)
1577 {
1578 struct net_device *dev, *tmp;
1579
1580 /* Remove the devices that don't need to be closed */
1581 list_for_each_entry_safe(dev, tmp, head, close_list)
1582 if (!(dev->flags & IFF_UP))
1583 list_del_init(&dev->close_list);
1584
1585 __dev_close_many(head);
1586
1587 list_for_each_entry_safe(dev, tmp, head, close_list) {
1588 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1589 call_netdevice_notifiers(NETDEV_DOWN, dev);
1590 if (unlink)
1591 list_del_init(&dev->close_list);
1592 }
1593 }
1594 EXPORT_SYMBOL(dev_close_many);
1595
1596 /**
1597 * dev_close - shutdown an interface.
1598 * @dev: device to shutdown
1599 *
1600 * This function moves an active device into down state. A
1601 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1602 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1603 * chain.
1604 */
dev_close(struct net_device * dev)1605 void dev_close(struct net_device *dev)
1606 {
1607 if (dev->flags & IFF_UP) {
1608 LIST_HEAD(single);
1609
1610 list_add(&dev->close_list, &single);
1611 dev_close_many(&single, true);
1612 list_del(&single);
1613 }
1614 }
1615 EXPORT_SYMBOL(dev_close);
1616
1617
1618 /**
1619 * dev_disable_lro - disable Large Receive Offload on a device
1620 * @dev: device
1621 *
1622 * Disable Large Receive Offload (LRO) on a net device. Must be
1623 * called under RTNL. This is needed if received packets may be
1624 * forwarded to another interface.
1625 */
dev_disable_lro(struct net_device * dev)1626 void dev_disable_lro(struct net_device *dev)
1627 {
1628 struct net_device *lower_dev;
1629 struct list_head *iter;
1630
1631 dev->wanted_features &= ~NETIF_F_LRO;
1632 netdev_update_features(dev);
1633
1634 if (unlikely(dev->features & NETIF_F_LRO))
1635 netdev_WARN(dev, "failed to disable LRO!\n");
1636
1637 netdev_for_each_lower_dev(dev, lower_dev, iter)
1638 dev_disable_lro(lower_dev);
1639 }
1640 EXPORT_SYMBOL(dev_disable_lro);
1641
1642 /**
1643 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1644 * @dev: device
1645 *
1646 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1647 * called under RTNL. This is needed if Generic XDP is installed on
1648 * the device.
1649 */
dev_disable_gro_hw(struct net_device * dev)1650 static void dev_disable_gro_hw(struct net_device *dev)
1651 {
1652 dev->wanted_features &= ~NETIF_F_GRO_HW;
1653 netdev_update_features(dev);
1654
1655 if (unlikely(dev->features & NETIF_F_GRO_HW))
1656 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1657 }
1658
netdev_cmd_to_name(enum netdev_cmd cmd)1659 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1660 {
1661 #define N(val) \
1662 case NETDEV_##val: \
1663 return "NETDEV_" __stringify(val);
1664 switch (cmd) {
1665 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1666 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1667 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1668 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1669 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1670 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1671 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1672 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1673 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1674 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1675 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1676 N(XDP_FEAT_CHANGE)
1677 }
1678 #undef N
1679 return "UNKNOWN_NETDEV_EVENT";
1680 }
1681 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1682
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1683 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1684 struct net_device *dev)
1685 {
1686 struct netdev_notifier_info info = {
1687 .dev = dev,
1688 };
1689
1690 return nb->notifier_call(nb, val, &info);
1691 }
1692
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1693 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1694 struct net_device *dev)
1695 {
1696 int err;
1697
1698 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1699 err = notifier_to_errno(err);
1700 if (err)
1701 return err;
1702
1703 if (!(dev->flags & IFF_UP))
1704 return 0;
1705
1706 call_netdevice_notifier(nb, NETDEV_UP, dev);
1707 return 0;
1708 }
1709
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1710 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1711 struct net_device *dev)
1712 {
1713 if (dev->flags & IFF_UP) {
1714 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1715 dev);
1716 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1717 }
1718 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1719 }
1720
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1721 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1722 struct net *net)
1723 {
1724 struct net_device *dev;
1725 int err;
1726
1727 for_each_netdev(net, dev) {
1728 err = call_netdevice_register_notifiers(nb, dev);
1729 if (err)
1730 goto rollback;
1731 }
1732 return 0;
1733
1734 rollback:
1735 for_each_netdev_continue_reverse(net, dev)
1736 call_netdevice_unregister_notifiers(nb, dev);
1737 return err;
1738 }
1739
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1740 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1741 struct net *net)
1742 {
1743 struct net_device *dev;
1744
1745 for_each_netdev(net, dev)
1746 call_netdevice_unregister_notifiers(nb, dev);
1747 }
1748
1749 static int dev_boot_phase = 1;
1750
1751 /**
1752 * register_netdevice_notifier - register a network notifier block
1753 * @nb: notifier
1754 *
1755 * Register a notifier to be called when network device events occur.
1756 * The notifier passed is linked into the kernel structures and must
1757 * not be reused until it has been unregistered. A negative errno code
1758 * is returned on a failure.
1759 *
1760 * When registered all registration and up events are replayed
1761 * to the new notifier to allow device to have a race free
1762 * view of the network device list.
1763 */
1764
register_netdevice_notifier(struct notifier_block * nb)1765 int register_netdevice_notifier(struct notifier_block *nb)
1766 {
1767 struct net *net;
1768 int err;
1769
1770 /* Close race with setup_net() and cleanup_net() */
1771 down_write(&pernet_ops_rwsem);
1772 rtnl_lock();
1773 err = raw_notifier_chain_register(&netdev_chain, nb);
1774 if (err)
1775 goto unlock;
1776 if (dev_boot_phase)
1777 goto unlock;
1778 for_each_net(net) {
1779 err = call_netdevice_register_net_notifiers(nb, net);
1780 if (err)
1781 goto rollback;
1782 }
1783
1784 unlock:
1785 rtnl_unlock();
1786 up_write(&pernet_ops_rwsem);
1787 return err;
1788
1789 rollback:
1790 for_each_net_continue_reverse(net)
1791 call_netdevice_unregister_net_notifiers(nb, net);
1792
1793 raw_notifier_chain_unregister(&netdev_chain, nb);
1794 goto unlock;
1795 }
1796 EXPORT_SYMBOL(register_netdevice_notifier);
1797
1798 /**
1799 * unregister_netdevice_notifier - unregister a network notifier block
1800 * @nb: notifier
1801 *
1802 * Unregister a notifier previously registered by
1803 * register_netdevice_notifier(). The notifier is unlinked into the
1804 * kernel structures and may then be reused. A negative errno code
1805 * is returned on a failure.
1806 *
1807 * After unregistering unregister and down device events are synthesized
1808 * for all devices on the device list to the removed notifier to remove
1809 * the need for special case cleanup code.
1810 */
1811
unregister_netdevice_notifier(struct notifier_block * nb)1812 int unregister_netdevice_notifier(struct notifier_block *nb)
1813 {
1814 struct net *net;
1815 int err;
1816
1817 /* Close race with setup_net() and cleanup_net() */
1818 down_write(&pernet_ops_rwsem);
1819 rtnl_lock();
1820 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1821 if (err)
1822 goto unlock;
1823
1824 for_each_net(net)
1825 call_netdevice_unregister_net_notifiers(nb, net);
1826
1827 unlock:
1828 rtnl_unlock();
1829 up_write(&pernet_ops_rwsem);
1830 return err;
1831 }
1832 EXPORT_SYMBOL(unregister_netdevice_notifier);
1833
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1834 static int __register_netdevice_notifier_net(struct net *net,
1835 struct notifier_block *nb,
1836 bool ignore_call_fail)
1837 {
1838 int err;
1839
1840 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1841 if (err)
1842 return err;
1843 if (dev_boot_phase)
1844 return 0;
1845
1846 err = call_netdevice_register_net_notifiers(nb, net);
1847 if (err && !ignore_call_fail)
1848 goto chain_unregister;
1849
1850 return 0;
1851
1852 chain_unregister:
1853 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1854 return err;
1855 }
1856
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1857 static int __unregister_netdevice_notifier_net(struct net *net,
1858 struct notifier_block *nb)
1859 {
1860 int err;
1861
1862 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1863 if (err)
1864 return err;
1865
1866 call_netdevice_unregister_net_notifiers(nb, net);
1867 return 0;
1868 }
1869
1870 /**
1871 * register_netdevice_notifier_net - register a per-netns network notifier block
1872 * @net: network namespace
1873 * @nb: notifier
1874 *
1875 * Register a notifier to be called when network device events occur.
1876 * The notifier passed is linked into the kernel structures and must
1877 * not be reused until it has been unregistered. A negative errno code
1878 * is returned on a failure.
1879 *
1880 * When registered all registration and up events are replayed
1881 * to the new notifier to allow device to have a race free
1882 * view of the network device list.
1883 */
1884
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1885 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1886 {
1887 int err;
1888
1889 rtnl_lock();
1890 err = __register_netdevice_notifier_net(net, nb, false);
1891 rtnl_unlock();
1892 return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_net);
1895
1896 /**
1897 * unregister_netdevice_notifier_net - unregister a per-netns
1898 * network notifier block
1899 * @net: network namespace
1900 * @nb: notifier
1901 *
1902 * Unregister a notifier previously registered by
1903 * register_netdevice_notifier_net(). The notifier is unlinked from the
1904 * kernel structures and may then be reused. A negative errno code
1905 * is returned on a failure.
1906 *
1907 * After unregistering unregister and down device events are synthesized
1908 * for all devices on the device list to the removed notifier to remove
1909 * the need for special case cleanup code.
1910 */
1911
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1912 int unregister_netdevice_notifier_net(struct net *net,
1913 struct notifier_block *nb)
1914 {
1915 int err;
1916
1917 rtnl_lock();
1918 err = __unregister_netdevice_notifier_net(net, nb);
1919 rtnl_unlock();
1920 return err;
1921 }
1922 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1923
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)1924 static void __move_netdevice_notifier_net(struct net *src_net,
1925 struct net *dst_net,
1926 struct notifier_block *nb)
1927 {
1928 __unregister_netdevice_notifier_net(src_net, nb);
1929 __register_netdevice_notifier_net(dst_net, nb, true);
1930 }
1931
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1932 int register_netdevice_notifier_dev_net(struct net_device *dev,
1933 struct notifier_block *nb,
1934 struct netdev_net_notifier *nn)
1935 {
1936 int err;
1937
1938 rtnl_lock();
1939 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1940 if (!err) {
1941 nn->nb = nb;
1942 list_add(&nn->list, &dev->net_notifier_list);
1943 }
1944 rtnl_unlock();
1945 return err;
1946 }
1947 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1948
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1949 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1950 struct notifier_block *nb,
1951 struct netdev_net_notifier *nn)
1952 {
1953 int err;
1954
1955 rtnl_lock();
1956 list_del(&nn->list);
1957 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1958 rtnl_unlock();
1959 return err;
1960 }
1961 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1962
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)1963 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1964 struct net *net)
1965 {
1966 struct netdev_net_notifier *nn;
1967
1968 list_for_each_entry(nn, &dev->net_notifier_list, list)
1969 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1970 }
1971
1972 /**
1973 * call_netdevice_notifiers_info - call all network notifier blocks
1974 * @val: value passed unmodified to notifier function
1975 * @info: notifier information data
1976 *
1977 * Call all network notifier blocks. Parameters and return value
1978 * are as for raw_notifier_call_chain().
1979 */
1980
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)1981 int call_netdevice_notifiers_info(unsigned long val,
1982 struct netdev_notifier_info *info)
1983 {
1984 struct net *net = dev_net(info->dev);
1985 int ret;
1986
1987 ASSERT_RTNL();
1988
1989 /* Run per-netns notifier block chain first, then run the global one.
1990 * Hopefully, one day, the global one is going to be removed after
1991 * all notifier block registrators get converted to be per-netns.
1992 */
1993 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994 if (ret & NOTIFY_STOP_MASK)
1995 return ret;
1996 return raw_notifier_call_chain(&netdev_chain, val, info);
1997 }
1998
1999 /**
2000 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2001 * for and rollback on error
2002 * @val_up: value passed unmodified to notifier function
2003 * @val_down: value passed unmodified to the notifier function when
2004 * recovering from an error on @val_up
2005 * @info: notifier information data
2006 *
2007 * Call all per-netns network notifier blocks, but not notifier blocks on
2008 * the global notifier chain. Parameters and return value are as for
2009 * raw_notifier_call_chain_robust().
2010 */
2011
2012 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2013 call_netdevice_notifiers_info_robust(unsigned long val_up,
2014 unsigned long val_down,
2015 struct netdev_notifier_info *info)
2016 {
2017 struct net *net = dev_net(info->dev);
2018
2019 ASSERT_RTNL();
2020
2021 return raw_notifier_call_chain_robust(&net->netdev_chain,
2022 val_up, val_down, info);
2023 }
2024
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2025 static int call_netdevice_notifiers_extack(unsigned long val,
2026 struct net_device *dev,
2027 struct netlink_ext_ack *extack)
2028 {
2029 struct netdev_notifier_info info = {
2030 .dev = dev,
2031 .extack = extack,
2032 };
2033
2034 return call_netdevice_notifiers_info(val, &info);
2035 }
2036
2037 /**
2038 * call_netdevice_notifiers - call all network notifier blocks
2039 * @val: value passed unmodified to notifier function
2040 * @dev: net_device pointer passed unmodified to notifier function
2041 *
2042 * Call all network notifier blocks. Parameters and return value
2043 * are as for raw_notifier_call_chain().
2044 */
2045
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2046 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2047 {
2048 return call_netdevice_notifiers_extack(val, dev, NULL);
2049 }
2050 EXPORT_SYMBOL(call_netdevice_notifiers);
2051
2052 /**
2053 * call_netdevice_notifiers_mtu - call all network notifier blocks
2054 * @val: value passed unmodified to notifier function
2055 * @dev: net_device pointer passed unmodified to notifier function
2056 * @arg: additional u32 argument passed to the notifier function
2057 *
2058 * Call all network notifier blocks. Parameters and return value
2059 * are as for raw_notifier_call_chain().
2060 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2061 static int call_netdevice_notifiers_mtu(unsigned long val,
2062 struct net_device *dev, u32 arg)
2063 {
2064 struct netdev_notifier_info_ext info = {
2065 .info.dev = dev,
2066 .ext.mtu = arg,
2067 };
2068
2069 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2070
2071 return call_netdevice_notifiers_info(val, &info.info);
2072 }
2073
2074 #ifdef CONFIG_NET_INGRESS
2075 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2076
net_inc_ingress_queue(void)2077 void net_inc_ingress_queue(void)
2078 {
2079 static_branch_inc(&ingress_needed_key);
2080 }
2081 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2082
net_dec_ingress_queue(void)2083 void net_dec_ingress_queue(void)
2084 {
2085 static_branch_dec(&ingress_needed_key);
2086 }
2087 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2088 #endif
2089
2090 #ifdef CONFIG_NET_EGRESS
2091 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2092
net_inc_egress_queue(void)2093 void net_inc_egress_queue(void)
2094 {
2095 static_branch_inc(&egress_needed_key);
2096 }
2097 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2098
net_dec_egress_queue(void)2099 void net_dec_egress_queue(void)
2100 {
2101 static_branch_dec(&egress_needed_key);
2102 }
2103 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2104 #endif
2105
2106 #ifdef CONFIG_NET_CLS_ACT
2107 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2108 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2109 #endif
2110
2111 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2112 EXPORT_SYMBOL(netstamp_needed_key);
2113 #ifdef CONFIG_JUMP_LABEL
2114 static atomic_t netstamp_needed_deferred;
2115 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2116 static void netstamp_clear(struct work_struct *work)
2117 {
2118 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2119 int wanted;
2120
2121 wanted = atomic_add_return(deferred, &netstamp_wanted);
2122 if (wanted > 0)
2123 static_branch_enable(&netstamp_needed_key);
2124 else
2125 static_branch_disable(&netstamp_needed_key);
2126 }
2127 static DECLARE_WORK(netstamp_work, netstamp_clear);
2128 #endif
2129
net_enable_timestamp(void)2130 void net_enable_timestamp(void)
2131 {
2132 #ifdef CONFIG_JUMP_LABEL
2133 int wanted = atomic_read(&netstamp_wanted);
2134
2135 while (wanted > 0) {
2136 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2137 return;
2138 }
2139 atomic_inc(&netstamp_needed_deferred);
2140 schedule_work(&netstamp_work);
2141 #else
2142 static_branch_inc(&netstamp_needed_key);
2143 #endif
2144 }
2145 EXPORT_SYMBOL(net_enable_timestamp);
2146
net_disable_timestamp(void)2147 void net_disable_timestamp(void)
2148 {
2149 #ifdef CONFIG_JUMP_LABEL
2150 int wanted = atomic_read(&netstamp_wanted);
2151
2152 while (wanted > 1) {
2153 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2154 return;
2155 }
2156 atomic_dec(&netstamp_needed_deferred);
2157 schedule_work(&netstamp_work);
2158 #else
2159 static_branch_dec(&netstamp_needed_key);
2160 #endif
2161 }
2162 EXPORT_SYMBOL(net_disable_timestamp);
2163
net_timestamp_set(struct sk_buff * skb)2164 static inline void net_timestamp_set(struct sk_buff *skb)
2165 {
2166 skb->tstamp = 0;
2167 skb->tstamp_type = SKB_CLOCK_REALTIME;
2168 if (static_branch_unlikely(&netstamp_needed_key))
2169 skb->tstamp = ktime_get_real();
2170 }
2171
2172 #define net_timestamp_check(COND, SKB) \
2173 if (static_branch_unlikely(&netstamp_needed_key)) { \
2174 if ((COND) && !(SKB)->tstamp) \
2175 (SKB)->tstamp = ktime_get_real(); \
2176 } \
2177
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2178 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2179 {
2180 return __is_skb_forwardable(dev, skb, true);
2181 }
2182 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2183
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2184 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2185 bool check_mtu)
2186 {
2187 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2188
2189 if (likely(!ret)) {
2190 skb->protocol = eth_type_trans(skb, dev);
2191 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2192 }
2193
2194 return ret;
2195 }
2196
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2197 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2198 {
2199 return __dev_forward_skb2(dev, skb, true);
2200 }
2201 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2202
2203 /**
2204 * dev_forward_skb - loopback an skb to another netif
2205 *
2206 * @dev: destination network device
2207 * @skb: buffer to forward
2208 *
2209 * return values:
2210 * NET_RX_SUCCESS (no congestion)
2211 * NET_RX_DROP (packet was dropped, but freed)
2212 *
2213 * dev_forward_skb can be used for injecting an skb from the
2214 * start_xmit function of one device into the receive queue
2215 * of another device.
2216 *
2217 * The receiving device may be in another namespace, so
2218 * we have to clear all information in the skb that could
2219 * impact namespace isolation.
2220 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2221 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2222 {
2223 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2224 }
2225 EXPORT_SYMBOL_GPL(dev_forward_skb);
2226
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2227 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2228 {
2229 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2230 }
2231
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2232 static inline int deliver_skb(struct sk_buff *skb,
2233 struct packet_type *pt_prev,
2234 struct net_device *orig_dev)
2235 {
2236 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2237 return -ENOMEM;
2238 refcount_inc(&skb->users);
2239 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2240 }
2241
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2242 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2243 struct packet_type **pt,
2244 struct net_device *orig_dev,
2245 __be16 type,
2246 struct list_head *ptype_list)
2247 {
2248 struct packet_type *ptype, *pt_prev = *pt;
2249
2250 list_for_each_entry_rcu(ptype, ptype_list, list) {
2251 if (ptype->type != type)
2252 continue;
2253 if (pt_prev)
2254 deliver_skb(skb, pt_prev, orig_dev);
2255 pt_prev = ptype;
2256 }
2257 *pt = pt_prev;
2258 }
2259
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2260 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2261 {
2262 if (!ptype->af_packet_priv || !skb->sk)
2263 return false;
2264
2265 if (ptype->id_match)
2266 return ptype->id_match(ptype, skb->sk);
2267 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2268 return true;
2269
2270 return false;
2271 }
2272
2273 /**
2274 * dev_nit_active - return true if any network interface taps are in use
2275 *
2276 * @dev: network device to check for the presence of taps
2277 */
dev_nit_active(struct net_device * dev)2278 bool dev_nit_active(struct net_device *dev)
2279 {
2280 return !list_empty(&net_hotdata.ptype_all) ||
2281 !list_empty(&dev->ptype_all);
2282 }
2283 EXPORT_SYMBOL_GPL(dev_nit_active);
2284
2285 /*
2286 * Support routine. Sends outgoing frames to any network
2287 * taps currently in use.
2288 */
2289
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2290 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2291 {
2292 struct list_head *ptype_list = &net_hotdata.ptype_all;
2293 struct packet_type *ptype, *pt_prev = NULL;
2294 struct sk_buff *skb2 = NULL;
2295
2296 rcu_read_lock();
2297 again:
2298 list_for_each_entry_rcu(ptype, ptype_list, list) {
2299 if (READ_ONCE(ptype->ignore_outgoing))
2300 continue;
2301
2302 /* Never send packets back to the socket
2303 * they originated from - MvS (miquels@drinkel.ow.org)
2304 */
2305 if (skb_loop_sk(ptype, skb))
2306 continue;
2307
2308 if (pt_prev) {
2309 deliver_skb(skb2, pt_prev, skb->dev);
2310 pt_prev = ptype;
2311 continue;
2312 }
2313
2314 /* need to clone skb, done only once */
2315 skb2 = skb_clone(skb, GFP_ATOMIC);
2316 if (!skb2)
2317 goto out_unlock;
2318
2319 net_timestamp_set(skb2);
2320
2321 /* skb->nh should be correctly
2322 * set by sender, so that the second statement is
2323 * just protection against buggy protocols.
2324 */
2325 skb_reset_mac_header(skb2);
2326
2327 if (skb_network_header(skb2) < skb2->data ||
2328 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2329 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2330 ntohs(skb2->protocol),
2331 dev->name);
2332 skb_reset_network_header(skb2);
2333 }
2334
2335 skb2->transport_header = skb2->network_header;
2336 skb2->pkt_type = PACKET_OUTGOING;
2337 pt_prev = ptype;
2338 }
2339
2340 if (ptype_list == &net_hotdata.ptype_all) {
2341 ptype_list = &dev->ptype_all;
2342 goto again;
2343 }
2344 out_unlock:
2345 if (pt_prev) {
2346 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2347 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2348 else
2349 kfree_skb(skb2);
2350 }
2351 rcu_read_unlock();
2352 }
2353 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2354
2355 /**
2356 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2357 * @dev: Network device
2358 * @txq: number of queues available
2359 *
2360 * If real_num_tx_queues is changed the tc mappings may no longer be
2361 * valid. To resolve this verify the tc mapping remains valid and if
2362 * not NULL the mapping. With no priorities mapping to this
2363 * offset/count pair it will no longer be used. In the worst case TC0
2364 * is invalid nothing can be done so disable priority mappings. If is
2365 * expected that drivers will fix this mapping if they can before
2366 * calling netif_set_real_num_tx_queues.
2367 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2368 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2369 {
2370 int i;
2371 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2372
2373 /* If TC0 is invalidated disable TC mapping */
2374 if (tc->offset + tc->count > txq) {
2375 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2376 dev->num_tc = 0;
2377 return;
2378 }
2379
2380 /* Invalidated prio to tc mappings set to TC0 */
2381 for (i = 1; i < TC_BITMASK + 1; i++) {
2382 int q = netdev_get_prio_tc_map(dev, i);
2383
2384 tc = &dev->tc_to_txq[q];
2385 if (tc->offset + tc->count > txq) {
2386 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2387 i, q);
2388 netdev_set_prio_tc_map(dev, i, 0);
2389 }
2390 }
2391 }
2392
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2393 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2394 {
2395 if (dev->num_tc) {
2396 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2397 int i;
2398
2399 /* walk through the TCs and see if it falls into any of them */
2400 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2401 if ((txq - tc->offset) < tc->count)
2402 return i;
2403 }
2404
2405 /* didn't find it, just return -1 to indicate no match */
2406 return -1;
2407 }
2408
2409 return 0;
2410 }
2411 EXPORT_SYMBOL(netdev_txq_to_tc);
2412
2413 #ifdef CONFIG_XPS
2414 static struct static_key xps_needed __read_mostly;
2415 static struct static_key xps_rxqs_needed __read_mostly;
2416 static DEFINE_MUTEX(xps_map_mutex);
2417 #define xmap_dereference(P) \
2418 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2419
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2420 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2421 struct xps_dev_maps *old_maps, int tci, u16 index)
2422 {
2423 struct xps_map *map = NULL;
2424 int pos;
2425
2426 map = xmap_dereference(dev_maps->attr_map[tci]);
2427 if (!map)
2428 return false;
2429
2430 for (pos = map->len; pos--;) {
2431 if (map->queues[pos] != index)
2432 continue;
2433
2434 if (map->len > 1) {
2435 map->queues[pos] = map->queues[--map->len];
2436 break;
2437 }
2438
2439 if (old_maps)
2440 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2441 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2442 kfree_rcu(map, rcu);
2443 return false;
2444 }
2445
2446 return true;
2447 }
2448
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2449 static bool remove_xps_queue_cpu(struct net_device *dev,
2450 struct xps_dev_maps *dev_maps,
2451 int cpu, u16 offset, u16 count)
2452 {
2453 int num_tc = dev_maps->num_tc;
2454 bool active = false;
2455 int tci;
2456
2457 for (tci = cpu * num_tc; num_tc--; tci++) {
2458 int i, j;
2459
2460 for (i = count, j = offset; i--; j++) {
2461 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2462 break;
2463 }
2464
2465 active |= i < 0;
2466 }
2467
2468 return active;
2469 }
2470
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2471 static void reset_xps_maps(struct net_device *dev,
2472 struct xps_dev_maps *dev_maps,
2473 enum xps_map_type type)
2474 {
2475 static_key_slow_dec_cpuslocked(&xps_needed);
2476 if (type == XPS_RXQS)
2477 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2478
2479 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2480
2481 kfree_rcu(dev_maps, rcu);
2482 }
2483
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2484 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2485 u16 offset, u16 count)
2486 {
2487 struct xps_dev_maps *dev_maps;
2488 bool active = false;
2489 int i, j;
2490
2491 dev_maps = xmap_dereference(dev->xps_maps[type]);
2492 if (!dev_maps)
2493 return;
2494
2495 for (j = 0; j < dev_maps->nr_ids; j++)
2496 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2497 if (!active)
2498 reset_xps_maps(dev, dev_maps, type);
2499
2500 if (type == XPS_CPUS) {
2501 for (i = offset + (count - 1); count--; i--)
2502 netdev_queue_numa_node_write(
2503 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2504 }
2505 }
2506
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2507 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2508 u16 count)
2509 {
2510 if (!static_key_false(&xps_needed))
2511 return;
2512
2513 cpus_read_lock();
2514 mutex_lock(&xps_map_mutex);
2515
2516 if (static_key_false(&xps_rxqs_needed))
2517 clean_xps_maps(dev, XPS_RXQS, offset, count);
2518
2519 clean_xps_maps(dev, XPS_CPUS, offset, count);
2520
2521 mutex_unlock(&xps_map_mutex);
2522 cpus_read_unlock();
2523 }
2524
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2525 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2526 {
2527 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2528 }
2529
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2530 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2531 u16 index, bool is_rxqs_map)
2532 {
2533 struct xps_map *new_map;
2534 int alloc_len = XPS_MIN_MAP_ALLOC;
2535 int i, pos;
2536
2537 for (pos = 0; map && pos < map->len; pos++) {
2538 if (map->queues[pos] != index)
2539 continue;
2540 return map;
2541 }
2542
2543 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2544 if (map) {
2545 if (pos < map->alloc_len)
2546 return map;
2547
2548 alloc_len = map->alloc_len * 2;
2549 }
2550
2551 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2552 * map
2553 */
2554 if (is_rxqs_map)
2555 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2556 else
2557 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2558 cpu_to_node(attr_index));
2559 if (!new_map)
2560 return NULL;
2561
2562 for (i = 0; i < pos; i++)
2563 new_map->queues[i] = map->queues[i];
2564 new_map->alloc_len = alloc_len;
2565 new_map->len = pos;
2566
2567 return new_map;
2568 }
2569
2570 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2571 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2572 struct xps_dev_maps *new_dev_maps, int index,
2573 int tc, bool skip_tc)
2574 {
2575 int i, tci = index * dev_maps->num_tc;
2576 struct xps_map *map;
2577
2578 /* copy maps belonging to foreign traffic classes */
2579 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2580 if (i == tc && skip_tc)
2581 continue;
2582
2583 /* fill in the new device map from the old device map */
2584 map = xmap_dereference(dev_maps->attr_map[tci]);
2585 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2586 }
2587 }
2588
2589 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2590 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2591 u16 index, enum xps_map_type type)
2592 {
2593 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2594 const unsigned long *online_mask = NULL;
2595 bool active = false, copy = false;
2596 int i, j, tci, numa_node_id = -2;
2597 int maps_sz, num_tc = 1, tc = 0;
2598 struct xps_map *map, *new_map;
2599 unsigned int nr_ids;
2600
2601 WARN_ON_ONCE(index >= dev->num_tx_queues);
2602
2603 if (dev->num_tc) {
2604 /* Do not allow XPS on subordinate device directly */
2605 num_tc = dev->num_tc;
2606 if (num_tc < 0)
2607 return -EINVAL;
2608
2609 /* If queue belongs to subordinate dev use its map */
2610 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2611
2612 tc = netdev_txq_to_tc(dev, index);
2613 if (tc < 0)
2614 return -EINVAL;
2615 }
2616
2617 mutex_lock(&xps_map_mutex);
2618
2619 dev_maps = xmap_dereference(dev->xps_maps[type]);
2620 if (type == XPS_RXQS) {
2621 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2622 nr_ids = dev->num_rx_queues;
2623 } else {
2624 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2625 if (num_possible_cpus() > 1)
2626 online_mask = cpumask_bits(cpu_online_mask);
2627 nr_ids = nr_cpu_ids;
2628 }
2629
2630 if (maps_sz < L1_CACHE_BYTES)
2631 maps_sz = L1_CACHE_BYTES;
2632
2633 /* The old dev_maps could be larger or smaller than the one we're
2634 * setting up now, as dev->num_tc or nr_ids could have been updated in
2635 * between. We could try to be smart, but let's be safe instead and only
2636 * copy foreign traffic classes if the two map sizes match.
2637 */
2638 if (dev_maps &&
2639 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2640 copy = true;
2641
2642 /* allocate memory for queue storage */
2643 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2644 j < nr_ids;) {
2645 if (!new_dev_maps) {
2646 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2647 if (!new_dev_maps) {
2648 mutex_unlock(&xps_map_mutex);
2649 return -ENOMEM;
2650 }
2651
2652 new_dev_maps->nr_ids = nr_ids;
2653 new_dev_maps->num_tc = num_tc;
2654 }
2655
2656 tci = j * num_tc + tc;
2657 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2658
2659 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2660 if (!map)
2661 goto error;
2662
2663 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2664 }
2665
2666 if (!new_dev_maps)
2667 goto out_no_new_maps;
2668
2669 if (!dev_maps) {
2670 /* Increment static keys at most once per type */
2671 static_key_slow_inc_cpuslocked(&xps_needed);
2672 if (type == XPS_RXQS)
2673 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2674 }
2675
2676 for (j = 0; j < nr_ids; j++) {
2677 bool skip_tc = false;
2678
2679 tci = j * num_tc + tc;
2680 if (netif_attr_test_mask(j, mask, nr_ids) &&
2681 netif_attr_test_online(j, online_mask, nr_ids)) {
2682 /* add tx-queue to CPU/rx-queue maps */
2683 int pos = 0;
2684
2685 skip_tc = true;
2686
2687 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2688 while ((pos < map->len) && (map->queues[pos] != index))
2689 pos++;
2690
2691 if (pos == map->len)
2692 map->queues[map->len++] = index;
2693 #ifdef CONFIG_NUMA
2694 if (type == XPS_CPUS) {
2695 if (numa_node_id == -2)
2696 numa_node_id = cpu_to_node(j);
2697 else if (numa_node_id != cpu_to_node(j))
2698 numa_node_id = -1;
2699 }
2700 #endif
2701 }
2702
2703 if (copy)
2704 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2705 skip_tc);
2706 }
2707
2708 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2709
2710 /* Cleanup old maps */
2711 if (!dev_maps)
2712 goto out_no_old_maps;
2713
2714 for (j = 0; j < dev_maps->nr_ids; j++) {
2715 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2716 map = xmap_dereference(dev_maps->attr_map[tci]);
2717 if (!map)
2718 continue;
2719
2720 if (copy) {
2721 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2722 if (map == new_map)
2723 continue;
2724 }
2725
2726 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2727 kfree_rcu(map, rcu);
2728 }
2729 }
2730
2731 old_dev_maps = dev_maps;
2732
2733 out_no_old_maps:
2734 dev_maps = new_dev_maps;
2735 active = true;
2736
2737 out_no_new_maps:
2738 if (type == XPS_CPUS)
2739 /* update Tx queue numa node */
2740 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2741 (numa_node_id >= 0) ?
2742 numa_node_id : NUMA_NO_NODE);
2743
2744 if (!dev_maps)
2745 goto out_no_maps;
2746
2747 /* removes tx-queue from unused CPUs/rx-queues */
2748 for (j = 0; j < dev_maps->nr_ids; j++) {
2749 tci = j * dev_maps->num_tc;
2750
2751 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2752 if (i == tc &&
2753 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2754 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2755 continue;
2756
2757 active |= remove_xps_queue(dev_maps,
2758 copy ? old_dev_maps : NULL,
2759 tci, index);
2760 }
2761 }
2762
2763 if (old_dev_maps)
2764 kfree_rcu(old_dev_maps, rcu);
2765
2766 /* free map if not active */
2767 if (!active)
2768 reset_xps_maps(dev, dev_maps, type);
2769
2770 out_no_maps:
2771 mutex_unlock(&xps_map_mutex);
2772
2773 return 0;
2774 error:
2775 /* remove any maps that we added */
2776 for (j = 0; j < nr_ids; j++) {
2777 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2778 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2779 map = copy ?
2780 xmap_dereference(dev_maps->attr_map[tci]) :
2781 NULL;
2782 if (new_map && new_map != map)
2783 kfree(new_map);
2784 }
2785 }
2786
2787 mutex_unlock(&xps_map_mutex);
2788
2789 kfree(new_dev_maps);
2790 return -ENOMEM;
2791 }
2792 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2793
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2794 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2795 u16 index)
2796 {
2797 int ret;
2798
2799 cpus_read_lock();
2800 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2801 cpus_read_unlock();
2802
2803 return ret;
2804 }
2805 EXPORT_SYMBOL(netif_set_xps_queue);
2806
2807 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2808 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2809 {
2810 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2811
2812 /* Unbind any subordinate channels */
2813 while (txq-- != &dev->_tx[0]) {
2814 if (txq->sb_dev)
2815 netdev_unbind_sb_channel(dev, txq->sb_dev);
2816 }
2817 }
2818
netdev_reset_tc(struct net_device * dev)2819 void netdev_reset_tc(struct net_device *dev)
2820 {
2821 #ifdef CONFIG_XPS
2822 netif_reset_xps_queues_gt(dev, 0);
2823 #endif
2824 netdev_unbind_all_sb_channels(dev);
2825
2826 /* Reset TC configuration of device */
2827 dev->num_tc = 0;
2828 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2829 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2830 }
2831 EXPORT_SYMBOL(netdev_reset_tc);
2832
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2833 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2834 {
2835 if (tc >= dev->num_tc)
2836 return -EINVAL;
2837
2838 #ifdef CONFIG_XPS
2839 netif_reset_xps_queues(dev, offset, count);
2840 #endif
2841 dev->tc_to_txq[tc].count = count;
2842 dev->tc_to_txq[tc].offset = offset;
2843 return 0;
2844 }
2845 EXPORT_SYMBOL(netdev_set_tc_queue);
2846
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2847 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2848 {
2849 if (num_tc > TC_MAX_QUEUE)
2850 return -EINVAL;
2851
2852 #ifdef CONFIG_XPS
2853 netif_reset_xps_queues_gt(dev, 0);
2854 #endif
2855 netdev_unbind_all_sb_channels(dev);
2856
2857 dev->num_tc = num_tc;
2858 return 0;
2859 }
2860 EXPORT_SYMBOL(netdev_set_num_tc);
2861
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2862 void netdev_unbind_sb_channel(struct net_device *dev,
2863 struct net_device *sb_dev)
2864 {
2865 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2866
2867 #ifdef CONFIG_XPS
2868 netif_reset_xps_queues_gt(sb_dev, 0);
2869 #endif
2870 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2871 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2872
2873 while (txq-- != &dev->_tx[0]) {
2874 if (txq->sb_dev == sb_dev)
2875 txq->sb_dev = NULL;
2876 }
2877 }
2878 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2879
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2880 int netdev_bind_sb_channel_queue(struct net_device *dev,
2881 struct net_device *sb_dev,
2882 u8 tc, u16 count, u16 offset)
2883 {
2884 /* Make certain the sb_dev and dev are already configured */
2885 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2886 return -EINVAL;
2887
2888 /* We cannot hand out queues we don't have */
2889 if ((offset + count) > dev->real_num_tx_queues)
2890 return -EINVAL;
2891
2892 /* Record the mapping */
2893 sb_dev->tc_to_txq[tc].count = count;
2894 sb_dev->tc_to_txq[tc].offset = offset;
2895
2896 /* Provide a way for Tx queue to find the tc_to_txq map or
2897 * XPS map for itself.
2898 */
2899 while (count--)
2900 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2901
2902 return 0;
2903 }
2904 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2905
netdev_set_sb_channel(struct net_device * dev,u16 channel)2906 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2907 {
2908 /* Do not use a multiqueue device to represent a subordinate channel */
2909 if (netif_is_multiqueue(dev))
2910 return -ENODEV;
2911
2912 /* We allow channels 1 - 32767 to be used for subordinate channels.
2913 * Channel 0 is meant to be "native" mode and used only to represent
2914 * the main root device. We allow writing 0 to reset the device back
2915 * to normal mode after being used as a subordinate channel.
2916 */
2917 if (channel > S16_MAX)
2918 return -EINVAL;
2919
2920 dev->num_tc = -channel;
2921
2922 return 0;
2923 }
2924 EXPORT_SYMBOL(netdev_set_sb_channel);
2925
2926 /*
2927 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2928 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2929 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2930 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2931 {
2932 bool disabling;
2933 int rc;
2934
2935 disabling = txq < dev->real_num_tx_queues;
2936
2937 if (txq < 1 || txq > dev->num_tx_queues)
2938 return -EINVAL;
2939
2940 if (dev->reg_state == NETREG_REGISTERED ||
2941 dev->reg_state == NETREG_UNREGISTERING) {
2942 ASSERT_RTNL();
2943
2944 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2945 txq);
2946 if (rc)
2947 return rc;
2948
2949 if (dev->num_tc)
2950 netif_setup_tc(dev, txq);
2951
2952 dev_qdisc_change_real_num_tx(dev, txq);
2953
2954 dev->real_num_tx_queues = txq;
2955
2956 if (disabling) {
2957 synchronize_net();
2958 qdisc_reset_all_tx_gt(dev, txq);
2959 #ifdef CONFIG_XPS
2960 netif_reset_xps_queues_gt(dev, txq);
2961 #endif
2962 }
2963 } else {
2964 dev->real_num_tx_queues = txq;
2965 }
2966
2967 return 0;
2968 }
2969 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2970
2971 #ifdef CONFIG_SYSFS
2972 /**
2973 * netif_set_real_num_rx_queues - set actual number of RX queues used
2974 * @dev: Network device
2975 * @rxq: Actual number of RX queues
2976 *
2977 * This must be called either with the rtnl_lock held or before
2978 * registration of the net device. Returns 0 on success, or a
2979 * negative error code. If called before registration, it always
2980 * succeeds.
2981 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2982 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2983 {
2984 int rc;
2985
2986 if (rxq < 1 || rxq > dev->num_rx_queues)
2987 return -EINVAL;
2988
2989 if (dev->reg_state == NETREG_REGISTERED) {
2990 ASSERT_RTNL();
2991
2992 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2993 rxq);
2994 if (rc)
2995 return rc;
2996 }
2997
2998 dev->real_num_rx_queues = rxq;
2999 return 0;
3000 }
3001 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3002 #endif
3003
3004 /**
3005 * netif_set_real_num_queues - set actual number of RX and TX queues used
3006 * @dev: Network device
3007 * @txq: Actual number of TX queues
3008 * @rxq: Actual number of RX queues
3009 *
3010 * Set the real number of both TX and RX queues.
3011 * Does nothing if the number of queues is already correct.
3012 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3013 int netif_set_real_num_queues(struct net_device *dev,
3014 unsigned int txq, unsigned int rxq)
3015 {
3016 unsigned int old_rxq = dev->real_num_rx_queues;
3017 int err;
3018
3019 if (txq < 1 || txq > dev->num_tx_queues ||
3020 rxq < 1 || rxq > dev->num_rx_queues)
3021 return -EINVAL;
3022
3023 /* Start from increases, so the error path only does decreases -
3024 * decreases can't fail.
3025 */
3026 if (rxq > dev->real_num_rx_queues) {
3027 err = netif_set_real_num_rx_queues(dev, rxq);
3028 if (err)
3029 return err;
3030 }
3031 if (txq > dev->real_num_tx_queues) {
3032 err = netif_set_real_num_tx_queues(dev, txq);
3033 if (err)
3034 goto undo_rx;
3035 }
3036 if (rxq < dev->real_num_rx_queues)
3037 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3038 if (txq < dev->real_num_tx_queues)
3039 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3040
3041 return 0;
3042 undo_rx:
3043 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3044 return err;
3045 }
3046 EXPORT_SYMBOL(netif_set_real_num_queues);
3047
3048 /**
3049 * netif_set_tso_max_size() - set the max size of TSO frames supported
3050 * @dev: netdev to update
3051 * @size: max skb->len of a TSO frame
3052 *
3053 * Set the limit on the size of TSO super-frames the device can handle.
3054 * Unless explicitly set the stack will assume the value of
3055 * %GSO_LEGACY_MAX_SIZE.
3056 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3057 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3058 {
3059 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3060 if (size < READ_ONCE(dev->gso_max_size))
3061 netif_set_gso_max_size(dev, size);
3062 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3063 netif_set_gso_ipv4_max_size(dev, size);
3064 }
3065 EXPORT_SYMBOL(netif_set_tso_max_size);
3066
3067 /**
3068 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3069 * @dev: netdev to update
3070 * @segs: max number of TCP segments
3071 *
3072 * Set the limit on the number of TCP segments the device can generate from
3073 * a single TSO super-frame.
3074 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3075 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3076 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3077 {
3078 dev->tso_max_segs = segs;
3079 if (segs < READ_ONCE(dev->gso_max_segs))
3080 netif_set_gso_max_segs(dev, segs);
3081 }
3082 EXPORT_SYMBOL(netif_set_tso_max_segs);
3083
3084 /**
3085 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3086 * @to: netdev to update
3087 * @from: netdev from which to copy the limits
3088 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3089 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3090 {
3091 netif_set_tso_max_size(to, from->tso_max_size);
3092 netif_set_tso_max_segs(to, from->tso_max_segs);
3093 }
3094 EXPORT_SYMBOL(netif_inherit_tso_max);
3095
3096 /**
3097 * netif_get_num_default_rss_queues - default number of RSS queues
3098 *
3099 * Default value is the number of physical cores if there are only 1 or 2, or
3100 * divided by 2 if there are more.
3101 */
netif_get_num_default_rss_queues(void)3102 int netif_get_num_default_rss_queues(void)
3103 {
3104 cpumask_var_t cpus;
3105 int cpu, count = 0;
3106
3107 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3108 return 1;
3109
3110 cpumask_copy(cpus, cpu_online_mask);
3111 for_each_cpu(cpu, cpus) {
3112 ++count;
3113 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3114 }
3115 free_cpumask_var(cpus);
3116
3117 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3118 }
3119 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3120
__netif_reschedule(struct Qdisc * q)3121 static void __netif_reschedule(struct Qdisc *q)
3122 {
3123 struct softnet_data *sd;
3124 unsigned long flags;
3125
3126 local_irq_save(flags);
3127 sd = this_cpu_ptr(&softnet_data);
3128 q->next_sched = NULL;
3129 *sd->output_queue_tailp = q;
3130 sd->output_queue_tailp = &q->next_sched;
3131 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3132 local_irq_restore(flags);
3133 }
3134
__netif_schedule(struct Qdisc * q)3135 void __netif_schedule(struct Qdisc *q)
3136 {
3137 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3138 __netif_reschedule(q);
3139 }
3140 EXPORT_SYMBOL(__netif_schedule);
3141
3142 struct dev_kfree_skb_cb {
3143 enum skb_drop_reason reason;
3144 };
3145
get_kfree_skb_cb(const struct sk_buff * skb)3146 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3147 {
3148 return (struct dev_kfree_skb_cb *)skb->cb;
3149 }
3150
netif_schedule_queue(struct netdev_queue * txq)3151 void netif_schedule_queue(struct netdev_queue *txq)
3152 {
3153 rcu_read_lock();
3154 if (!netif_xmit_stopped(txq)) {
3155 struct Qdisc *q = rcu_dereference(txq->qdisc);
3156
3157 __netif_schedule(q);
3158 }
3159 rcu_read_unlock();
3160 }
3161 EXPORT_SYMBOL(netif_schedule_queue);
3162
netif_tx_wake_queue(struct netdev_queue * dev_queue)3163 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3164 {
3165 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3166 struct Qdisc *q;
3167
3168 rcu_read_lock();
3169 q = rcu_dereference(dev_queue->qdisc);
3170 __netif_schedule(q);
3171 rcu_read_unlock();
3172 }
3173 }
3174 EXPORT_SYMBOL(netif_tx_wake_queue);
3175
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3176 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3177 {
3178 unsigned long flags;
3179
3180 if (unlikely(!skb))
3181 return;
3182
3183 if (likely(refcount_read(&skb->users) == 1)) {
3184 smp_rmb();
3185 refcount_set(&skb->users, 0);
3186 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3187 return;
3188 }
3189 get_kfree_skb_cb(skb)->reason = reason;
3190 local_irq_save(flags);
3191 skb->next = __this_cpu_read(softnet_data.completion_queue);
3192 __this_cpu_write(softnet_data.completion_queue, skb);
3193 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3194 local_irq_restore(flags);
3195 }
3196 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3197
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3198 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3199 {
3200 if (in_hardirq() || irqs_disabled())
3201 dev_kfree_skb_irq_reason(skb, reason);
3202 else
3203 kfree_skb_reason(skb, reason);
3204 }
3205 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3206
3207
3208 /**
3209 * netif_device_detach - mark device as removed
3210 * @dev: network device
3211 *
3212 * Mark device as removed from system and therefore no longer available.
3213 */
netif_device_detach(struct net_device * dev)3214 void netif_device_detach(struct net_device *dev)
3215 {
3216 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3217 netif_running(dev)) {
3218 netif_tx_stop_all_queues(dev);
3219 }
3220 }
3221 EXPORT_SYMBOL(netif_device_detach);
3222
3223 /**
3224 * netif_device_attach - mark device as attached
3225 * @dev: network device
3226 *
3227 * Mark device as attached from system and restart if needed.
3228 */
netif_device_attach(struct net_device * dev)3229 void netif_device_attach(struct net_device *dev)
3230 {
3231 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3232 netif_running(dev)) {
3233 netif_tx_wake_all_queues(dev);
3234 __netdev_watchdog_up(dev);
3235 }
3236 }
3237 EXPORT_SYMBOL(netif_device_attach);
3238
3239 /*
3240 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3241 * to be used as a distribution range.
3242 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3243 static u16 skb_tx_hash(const struct net_device *dev,
3244 const struct net_device *sb_dev,
3245 struct sk_buff *skb)
3246 {
3247 u32 hash;
3248 u16 qoffset = 0;
3249 u16 qcount = dev->real_num_tx_queues;
3250
3251 if (dev->num_tc) {
3252 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3253
3254 qoffset = sb_dev->tc_to_txq[tc].offset;
3255 qcount = sb_dev->tc_to_txq[tc].count;
3256 if (unlikely(!qcount)) {
3257 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3258 sb_dev->name, qoffset, tc);
3259 qoffset = 0;
3260 qcount = dev->real_num_tx_queues;
3261 }
3262 }
3263
3264 if (skb_rx_queue_recorded(skb)) {
3265 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3266 hash = skb_get_rx_queue(skb);
3267 if (hash >= qoffset)
3268 hash -= qoffset;
3269 while (unlikely(hash >= qcount))
3270 hash -= qcount;
3271 return hash + qoffset;
3272 }
3273
3274 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3275 }
3276
skb_warn_bad_offload(const struct sk_buff * skb)3277 void skb_warn_bad_offload(const struct sk_buff *skb)
3278 {
3279 static const netdev_features_t null_features;
3280 struct net_device *dev = skb->dev;
3281 const char *name = "";
3282
3283 if (!net_ratelimit())
3284 return;
3285
3286 if (dev) {
3287 if (dev->dev.parent)
3288 name = dev_driver_string(dev->dev.parent);
3289 else
3290 name = netdev_name(dev);
3291 }
3292 skb_dump(KERN_WARNING, skb, false);
3293 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3294 name, dev ? &dev->features : &null_features,
3295 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3296 }
3297
3298 /*
3299 * Invalidate hardware checksum when packet is to be mangled, and
3300 * complete checksum manually on outgoing path.
3301 */
skb_checksum_help(struct sk_buff * skb)3302 int skb_checksum_help(struct sk_buff *skb)
3303 {
3304 __wsum csum;
3305 int ret = 0, offset;
3306
3307 if (skb->ip_summed == CHECKSUM_COMPLETE)
3308 goto out_set_summed;
3309
3310 if (unlikely(skb_is_gso(skb))) {
3311 skb_warn_bad_offload(skb);
3312 return -EINVAL;
3313 }
3314
3315 if (!skb_frags_readable(skb)) {
3316 return -EFAULT;
3317 }
3318
3319 /* Before computing a checksum, we should make sure no frag could
3320 * be modified by an external entity : checksum could be wrong.
3321 */
3322 if (skb_has_shared_frag(skb)) {
3323 ret = __skb_linearize(skb);
3324 if (ret)
3325 goto out;
3326 }
3327
3328 offset = skb_checksum_start_offset(skb);
3329 ret = -EINVAL;
3330 if (unlikely(offset >= skb_headlen(skb))) {
3331 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3332 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3333 offset, skb_headlen(skb));
3334 goto out;
3335 }
3336 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3337
3338 offset += skb->csum_offset;
3339 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3340 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3341 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3342 offset + sizeof(__sum16), skb_headlen(skb));
3343 goto out;
3344 }
3345 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3346 if (ret)
3347 goto out;
3348
3349 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3350 out_set_summed:
3351 skb->ip_summed = CHECKSUM_NONE;
3352 out:
3353 return ret;
3354 }
3355 EXPORT_SYMBOL(skb_checksum_help);
3356
skb_crc32c_csum_help(struct sk_buff * skb)3357 int skb_crc32c_csum_help(struct sk_buff *skb)
3358 {
3359 __le32 crc32c_csum;
3360 int ret = 0, offset, start;
3361
3362 if (skb->ip_summed != CHECKSUM_PARTIAL)
3363 goto out;
3364
3365 if (unlikely(skb_is_gso(skb)))
3366 goto out;
3367
3368 /* Before computing a checksum, we should make sure no frag could
3369 * be modified by an external entity : checksum could be wrong.
3370 */
3371 if (unlikely(skb_has_shared_frag(skb))) {
3372 ret = __skb_linearize(skb);
3373 if (ret)
3374 goto out;
3375 }
3376 start = skb_checksum_start_offset(skb);
3377 offset = start + offsetof(struct sctphdr, checksum);
3378 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3379 ret = -EINVAL;
3380 goto out;
3381 }
3382
3383 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3384 if (ret)
3385 goto out;
3386
3387 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3388 skb->len - start, ~(__u32)0,
3389 crc32c_csum_stub));
3390 *(__le32 *)(skb->data + offset) = crc32c_csum;
3391 skb_reset_csum_not_inet(skb);
3392 out:
3393 return ret;
3394 }
3395 EXPORT_SYMBOL(skb_crc32c_csum_help);
3396
skb_network_protocol(struct sk_buff * skb,int * depth)3397 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3398 {
3399 __be16 type = skb->protocol;
3400
3401 /* Tunnel gso handlers can set protocol to ethernet. */
3402 if (type == htons(ETH_P_TEB)) {
3403 struct ethhdr *eth;
3404
3405 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3406 return 0;
3407
3408 eth = (struct ethhdr *)skb->data;
3409 type = eth->h_proto;
3410 }
3411
3412 return vlan_get_protocol_and_depth(skb, type, depth);
3413 }
3414
3415
3416 /* Take action when hardware reception checksum errors are detected. */
3417 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3418 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3419 {
3420 netdev_err(dev, "hw csum failure\n");
3421 skb_dump(KERN_ERR, skb, true);
3422 dump_stack();
3423 }
3424
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3425 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3426 {
3427 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3428 }
3429 EXPORT_SYMBOL(netdev_rx_csum_fault);
3430 #endif
3431
3432 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3433 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3434 {
3435 #ifdef CONFIG_HIGHMEM
3436 int i;
3437
3438 if (!(dev->features & NETIF_F_HIGHDMA)) {
3439 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3440 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3441 struct page *page = skb_frag_page(frag);
3442
3443 if (page && PageHighMem(page))
3444 return 1;
3445 }
3446 }
3447 #endif
3448 return 0;
3449 }
3450
3451 /* If MPLS offload request, verify we are testing hardware MPLS features
3452 * instead of standard features for the netdev.
3453 */
3454 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3455 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3456 netdev_features_t features,
3457 __be16 type)
3458 {
3459 if (eth_p_mpls(type))
3460 features &= skb->dev->mpls_features;
3461
3462 return features;
3463 }
3464 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3465 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3466 netdev_features_t features,
3467 __be16 type)
3468 {
3469 return features;
3470 }
3471 #endif
3472
harmonize_features(struct sk_buff * skb,netdev_features_t features)3473 static netdev_features_t harmonize_features(struct sk_buff *skb,
3474 netdev_features_t features)
3475 {
3476 __be16 type;
3477
3478 type = skb_network_protocol(skb, NULL);
3479 features = net_mpls_features(skb, features, type);
3480
3481 if (skb->ip_summed != CHECKSUM_NONE &&
3482 !can_checksum_protocol(features, type)) {
3483 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3484 }
3485 if (illegal_highdma(skb->dev, skb))
3486 features &= ~NETIF_F_SG;
3487
3488 return features;
3489 }
3490
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3491 netdev_features_t passthru_features_check(struct sk_buff *skb,
3492 struct net_device *dev,
3493 netdev_features_t features)
3494 {
3495 return features;
3496 }
3497 EXPORT_SYMBOL(passthru_features_check);
3498
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3499 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3500 struct net_device *dev,
3501 netdev_features_t features)
3502 {
3503 return vlan_features_check(skb, features);
3504 }
3505
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3506 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3507 struct net_device *dev,
3508 netdev_features_t features)
3509 {
3510 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3511
3512 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3513 return features & ~NETIF_F_GSO_MASK;
3514
3515 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3516 return features & ~NETIF_F_GSO_MASK;
3517
3518 if (!skb_shinfo(skb)->gso_type) {
3519 skb_warn_bad_offload(skb);
3520 return features & ~NETIF_F_GSO_MASK;
3521 }
3522
3523 /* Support for GSO partial features requires software
3524 * intervention before we can actually process the packets
3525 * so we need to strip support for any partial features now
3526 * and we can pull them back in after we have partially
3527 * segmented the frame.
3528 */
3529 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3530 features &= ~dev->gso_partial_features;
3531
3532 /* Make sure to clear the IPv4 ID mangling feature if the
3533 * IPv4 header has the potential to be fragmented.
3534 */
3535 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3536 struct iphdr *iph = skb->encapsulation ?
3537 inner_ip_hdr(skb) : ip_hdr(skb);
3538
3539 if (!(iph->frag_off & htons(IP_DF)))
3540 features &= ~NETIF_F_TSO_MANGLEID;
3541 }
3542
3543 return features;
3544 }
3545
netif_skb_features(struct sk_buff * skb)3546 netdev_features_t netif_skb_features(struct sk_buff *skb)
3547 {
3548 struct net_device *dev = skb->dev;
3549 netdev_features_t features = dev->features;
3550
3551 if (skb_is_gso(skb))
3552 features = gso_features_check(skb, dev, features);
3553
3554 /* If encapsulation offload request, verify we are testing
3555 * hardware encapsulation features instead of standard
3556 * features for the netdev
3557 */
3558 if (skb->encapsulation)
3559 features &= dev->hw_enc_features;
3560
3561 if (skb_vlan_tagged(skb))
3562 features = netdev_intersect_features(features,
3563 dev->vlan_features |
3564 NETIF_F_HW_VLAN_CTAG_TX |
3565 NETIF_F_HW_VLAN_STAG_TX);
3566
3567 if (dev->netdev_ops->ndo_features_check)
3568 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3569 features);
3570 else
3571 features &= dflt_features_check(skb, dev, features);
3572
3573 return harmonize_features(skb, features);
3574 }
3575 EXPORT_SYMBOL(netif_skb_features);
3576
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3577 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3578 struct netdev_queue *txq, bool more)
3579 {
3580 unsigned int len;
3581 int rc;
3582
3583 if (dev_nit_active(dev))
3584 dev_queue_xmit_nit(skb, dev);
3585
3586 len = skb->len;
3587 trace_net_dev_start_xmit(skb, dev);
3588 rc = netdev_start_xmit(skb, dev, txq, more);
3589 trace_net_dev_xmit(skb, rc, dev, len);
3590
3591 return rc;
3592 }
3593
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3594 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3595 struct netdev_queue *txq, int *ret)
3596 {
3597 struct sk_buff *skb = first;
3598 int rc = NETDEV_TX_OK;
3599
3600 while (skb) {
3601 struct sk_buff *next = skb->next;
3602
3603 skb_mark_not_on_list(skb);
3604 rc = xmit_one(skb, dev, txq, next != NULL);
3605 if (unlikely(!dev_xmit_complete(rc))) {
3606 skb->next = next;
3607 goto out;
3608 }
3609
3610 skb = next;
3611 if (netif_tx_queue_stopped(txq) && skb) {
3612 rc = NETDEV_TX_BUSY;
3613 break;
3614 }
3615 }
3616
3617 out:
3618 *ret = rc;
3619 return skb;
3620 }
3621
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3622 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3623 netdev_features_t features)
3624 {
3625 if (skb_vlan_tag_present(skb) &&
3626 !vlan_hw_offload_capable(features, skb->vlan_proto))
3627 skb = __vlan_hwaccel_push_inside(skb);
3628 return skb;
3629 }
3630
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3631 int skb_csum_hwoffload_help(struct sk_buff *skb,
3632 const netdev_features_t features)
3633 {
3634 if (unlikely(skb_csum_is_sctp(skb)))
3635 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3636 skb_crc32c_csum_help(skb);
3637
3638 if (features & NETIF_F_HW_CSUM)
3639 return 0;
3640
3641 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3642 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3643 skb_network_header_len(skb) != sizeof(struct ipv6hdr))
3644 goto sw_checksum;
3645 switch (skb->csum_offset) {
3646 case offsetof(struct tcphdr, check):
3647 case offsetof(struct udphdr, check):
3648 return 0;
3649 }
3650 }
3651
3652 sw_checksum:
3653 return skb_checksum_help(skb);
3654 }
3655 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3656
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3657 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3658 {
3659 netdev_features_t features;
3660
3661 features = netif_skb_features(skb);
3662 skb = validate_xmit_vlan(skb, features);
3663 if (unlikely(!skb))
3664 goto out_null;
3665
3666 skb = sk_validate_xmit_skb(skb, dev);
3667 if (unlikely(!skb))
3668 goto out_null;
3669
3670 if (netif_needs_gso(skb, features)) {
3671 struct sk_buff *segs;
3672
3673 segs = skb_gso_segment(skb, features);
3674 if (IS_ERR(segs)) {
3675 goto out_kfree_skb;
3676 } else if (segs) {
3677 consume_skb(skb);
3678 skb = segs;
3679 }
3680 } else {
3681 if (skb_needs_linearize(skb, features) &&
3682 __skb_linearize(skb))
3683 goto out_kfree_skb;
3684
3685 /* If packet is not checksummed and device does not
3686 * support checksumming for this protocol, complete
3687 * checksumming here.
3688 */
3689 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3690 if (skb->encapsulation)
3691 skb_set_inner_transport_header(skb,
3692 skb_checksum_start_offset(skb));
3693 else
3694 skb_set_transport_header(skb,
3695 skb_checksum_start_offset(skb));
3696 if (skb_csum_hwoffload_help(skb, features))
3697 goto out_kfree_skb;
3698 }
3699 }
3700
3701 skb = validate_xmit_xfrm(skb, features, again);
3702
3703 return skb;
3704
3705 out_kfree_skb:
3706 kfree_skb(skb);
3707 out_null:
3708 dev_core_stats_tx_dropped_inc(dev);
3709 return NULL;
3710 }
3711
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3712 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3713 {
3714 struct sk_buff *next, *head = NULL, *tail;
3715
3716 for (; skb != NULL; skb = next) {
3717 next = skb->next;
3718 skb_mark_not_on_list(skb);
3719
3720 /* in case skb won't be segmented, point to itself */
3721 skb->prev = skb;
3722
3723 skb = validate_xmit_skb(skb, dev, again);
3724 if (!skb)
3725 continue;
3726
3727 if (!head)
3728 head = skb;
3729 else
3730 tail->next = skb;
3731 /* If skb was segmented, skb->prev points to
3732 * the last segment. If not, it still contains skb.
3733 */
3734 tail = skb->prev;
3735 }
3736 return head;
3737 }
3738 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3739
qdisc_pkt_len_init(struct sk_buff * skb)3740 static void qdisc_pkt_len_init(struct sk_buff *skb)
3741 {
3742 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3743
3744 qdisc_skb_cb(skb)->pkt_len = skb->len;
3745
3746 /* To get more precise estimation of bytes sent on wire,
3747 * we add to pkt_len the headers size of all segments
3748 */
3749 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3750 u16 gso_segs = shinfo->gso_segs;
3751 unsigned int hdr_len;
3752
3753 /* mac layer + network layer */
3754 hdr_len = skb_transport_offset(skb);
3755
3756 /* + transport layer */
3757 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3758 const struct tcphdr *th;
3759 struct tcphdr _tcphdr;
3760
3761 th = skb_header_pointer(skb, hdr_len,
3762 sizeof(_tcphdr), &_tcphdr);
3763 if (likely(th))
3764 hdr_len += __tcp_hdrlen(th);
3765 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3766 struct udphdr _udphdr;
3767
3768 if (skb_header_pointer(skb, hdr_len,
3769 sizeof(_udphdr), &_udphdr))
3770 hdr_len += sizeof(struct udphdr);
3771 }
3772
3773 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3774 int payload = skb->len - hdr_len;
3775
3776 /* Malicious packet. */
3777 if (payload <= 0)
3778 return;
3779 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3780 }
3781 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3782 }
3783 }
3784
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3785 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3786 struct sk_buff **to_free,
3787 struct netdev_queue *txq)
3788 {
3789 int rc;
3790
3791 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3792 if (rc == NET_XMIT_SUCCESS)
3793 trace_qdisc_enqueue(q, txq, skb);
3794 return rc;
3795 }
3796
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3797 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3798 struct net_device *dev,
3799 struct netdev_queue *txq)
3800 {
3801 spinlock_t *root_lock = qdisc_lock(q);
3802 struct sk_buff *to_free = NULL;
3803 bool contended;
3804 int rc;
3805
3806 qdisc_calculate_pkt_len(skb, q);
3807
3808 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3809
3810 if (q->flags & TCQ_F_NOLOCK) {
3811 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3812 qdisc_run_begin(q)) {
3813 /* Retest nolock_qdisc_is_empty() within the protection
3814 * of q->seqlock to protect from racing with requeuing.
3815 */
3816 if (unlikely(!nolock_qdisc_is_empty(q))) {
3817 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3818 __qdisc_run(q);
3819 qdisc_run_end(q);
3820
3821 goto no_lock_out;
3822 }
3823
3824 qdisc_bstats_cpu_update(q, skb);
3825 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3826 !nolock_qdisc_is_empty(q))
3827 __qdisc_run(q);
3828
3829 qdisc_run_end(q);
3830 return NET_XMIT_SUCCESS;
3831 }
3832
3833 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3834 qdisc_run(q);
3835
3836 no_lock_out:
3837 if (unlikely(to_free))
3838 kfree_skb_list_reason(to_free,
3839 tcf_get_drop_reason(to_free));
3840 return rc;
3841 }
3842
3843 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3844 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3845 return NET_XMIT_DROP;
3846 }
3847 /*
3848 * Heuristic to force contended enqueues to serialize on a
3849 * separate lock before trying to get qdisc main lock.
3850 * This permits qdisc->running owner to get the lock more
3851 * often and dequeue packets faster.
3852 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3853 * and then other tasks will only enqueue packets. The packets will be
3854 * sent after the qdisc owner is scheduled again. To prevent this
3855 * scenario the task always serialize on the lock.
3856 */
3857 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3858 if (unlikely(contended))
3859 spin_lock(&q->busylock);
3860
3861 spin_lock(root_lock);
3862 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3863 __qdisc_drop(skb, &to_free);
3864 rc = NET_XMIT_DROP;
3865 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3866 qdisc_run_begin(q)) {
3867 /*
3868 * This is a work-conserving queue; there are no old skbs
3869 * waiting to be sent out; and the qdisc is not running -
3870 * xmit the skb directly.
3871 */
3872
3873 qdisc_bstats_update(q, skb);
3874
3875 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3876 if (unlikely(contended)) {
3877 spin_unlock(&q->busylock);
3878 contended = false;
3879 }
3880 __qdisc_run(q);
3881 }
3882
3883 qdisc_run_end(q);
3884 rc = NET_XMIT_SUCCESS;
3885 } else {
3886 WRITE_ONCE(q->owner, smp_processor_id());
3887 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3888 WRITE_ONCE(q->owner, -1);
3889 if (qdisc_run_begin(q)) {
3890 if (unlikely(contended)) {
3891 spin_unlock(&q->busylock);
3892 contended = false;
3893 }
3894 __qdisc_run(q);
3895 qdisc_run_end(q);
3896 }
3897 }
3898 spin_unlock(root_lock);
3899 if (unlikely(to_free))
3900 kfree_skb_list_reason(to_free,
3901 tcf_get_drop_reason(to_free));
3902 if (unlikely(contended))
3903 spin_unlock(&q->busylock);
3904 return rc;
3905 }
3906
3907 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3908 static void skb_update_prio(struct sk_buff *skb)
3909 {
3910 const struct netprio_map *map;
3911 const struct sock *sk;
3912 unsigned int prioidx;
3913
3914 if (skb->priority)
3915 return;
3916 map = rcu_dereference_bh(skb->dev->priomap);
3917 if (!map)
3918 return;
3919 sk = skb_to_full_sk(skb);
3920 if (!sk)
3921 return;
3922
3923 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3924
3925 if (prioidx < map->priomap_len)
3926 skb->priority = map->priomap[prioidx];
3927 }
3928 #else
3929 #define skb_update_prio(skb)
3930 #endif
3931
3932 /**
3933 * dev_loopback_xmit - loop back @skb
3934 * @net: network namespace this loopback is happening in
3935 * @sk: sk needed to be a netfilter okfn
3936 * @skb: buffer to transmit
3937 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3938 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3939 {
3940 skb_reset_mac_header(skb);
3941 __skb_pull(skb, skb_network_offset(skb));
3942 skb->pkt_type = PACKET_LOOPBACK;
3943 if (skb->ip_summed == CHECKSUM_NONE)
3944 skb->ip_summed = CHECKSUM_UNNECESSARY;
3945 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3946 skb_dst_force(skb);
3947 netif_rx(skb);
3948 return 0;
3949 }
3950 EXPORT_SYMBOL(dev_loopback_xmit);
3951
3952 #ifdef CONFIG_NET_EGRESS
3953 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)3954 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3955 {
3956 int qm = skb_get_queue_mapping(skb);
3957
3958 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3959 }
3960
3961 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)3962 static bool netdev_xmit_txqueue_skipped(void)
3963 {
3964 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3965 }
3966
netdev_xmit_skip_txqueue(bool skip)3967 void netdev_xmit_skip_txqueue(bool skip)
3968 {
3969 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3970 }
3971 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3972
3973 #else
netdev_xmit_txqueue_skipped(void)3974 static bool netdev_xmit_txqueue_skipped(void)
3975 {
3976 return current->net_xmit.skip_txqueue;
3977 }
3978
netdev_xmit_skip_txqueue(bool skip)3979 void netdev_xmit_skip_txqueue(bool skip)
3980 {
3981 current->net_xmit.skip_txqueue = skip;
3982 }
3983 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3984 #endif
3985 #endif /* CONFIG_NET_EGRESS */
3986
3987 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)3988 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3989 enum skb_drop_reason *drop_reason)
3990 {
3991 int ret = TC_ACT_UNSPEC;
3992 #ifdef CONFIG_NET_CLS_ACT
3993 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3994 struct tcf_result res;
3995
3996 if (!miniq)
3997 return ret;
3998
3999 if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
4000 if (tcf_block_bypass_sw(miniq->block))
4001 return ret;
4002 }
4003
4004 tc_skb_cb(skb)->mru = 0;
4005 tc_skb_cb(skb)->post_ct = false;
4006 tcf_set_drop_reason(skb, *drop_reason);
4007
4008 mini_qdisc_bstats_cpu_update(miniq, skb);
4009 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4010 /* Only tcf related quirks below. */
4011 switch (ret) {
4012 case TC_ACT_SHOT:
4013 *drop_reason = tcf_get_drop_reason(skb);
4014 mini_qdisc_qstats_cpu_drop(miniq);
4015 break;
4016 case TC_ACT_OK:
4017 case TC_ACT_RECLASSIFY:
4018 skb->tc_index = TC_H_MIN(res.classid);
4019 break;
4020 }
4021 #endif /* CONFIG_NET_CLS_ACT */
4022 return ret;
4023 }
4024
4025 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4026
tcx_inc(void)4027 void tcx_inc(void)
4028 {
4029 static_branch_inc(&tcx_needed_key);
4030 }
4031
tcx_dec(void)4032 void tcx_dec(void)
4033 {
4034 static_branch_dec(&tcx_needed_key);
4035 }
4036
4037 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4038 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4039 const bool needs_mac)
4040 {
4041 const struct bpf_mprog_fp *fp;
4042 const struct bpf_prog *prog;
4043 int ret = TCX_NEXT;
4044
4045 if (needs_mac)
4046 __skb_push(skb, skb->mac_len);
4047 bpf_mprog_foreach_prog(entry, fp, prog) {
4048 bpf_compute_data_pointers(skb);
4049 ret = bpf_prog_run(prog, skb);
4050 if (ret != TCX_NEXT)
4051 break;
4052 }
4053 if (needs_mac)
4054 __skb_pull(skb, skb->mac_len);
4055 return tcx_action_code(skb, ret);
4056 }
4057
4058 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4059 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4060 struct net_device *orig_dev, bool *another)
4061 {
4062 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4063 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4064 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4065 int sch_ret;
4066
4067 if (!entry)
4068 return skb;
4069
4070 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4071 if (*pt_prev) {
4072 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4073 *pt_prev = NULL;
4074 }
4075
4076 qdisc_skb_cb(skb)->pkt_len = skb->len;
4077 tcx_set_ingress(skb, true);
4078
4079 if (static_branch_unlikely(&tcx_needed_key)) {
4080 sch_ret = tcx_run(entry, skb, true);
4081 if (sch_ret != TC_ACT_UNSPEC)
4082 goto ingress_verdict;
4083 }
4084 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4085 ingress_verdict:
4086 switch (sch_ret) {
4087 case TC_ACT_REDIRECT:
4088 /* skb_mac_header check was done by BPF, so we can safely
4089 * push the L2 header back before redirecting to another
4090 * netdev.
4091 */
4092 __skb_push(skb, skb->mac_len);
4093 if (skb_do_redirect(skb) == -EAGAIN) {
4094 __skb_pull(skb, skb->mac_len);
4095 *another = true;
4096 break;
4097 }
4098 *ret = NET_RX_SUCCESS;
4099 bpf_net_ctx_clear(bpf_net_ctx);
4100 return NULL;
4101 case TC_ACT_SHOT:
4102 kfree_skb_reason(skb, drop_reason);
4103 *ret = NET_RX_DROP;
4104 bpf_net_ctx_clear(bpf_net_ctx);
4105 return NULL;
4106 /* used by tc_run */
4107 case TC_ACT_STOLEN:
4108 case TC_ACT_QUEUED:
4109 case TC_ACT_TRAP:
4110 consume_skb(skb);
4111 fallthrough;
4112 case TC_ACT_CONSUMED:
4113 *ret = NET_RX_SUCCESS;
4114 bpf_net_ctx_clear(bpf_net_ctx);
4115 return NULL;
4116 }
4117 bpf_net_ctx_clear(bpf_net_ctx);
4118
4119 return skb;
4120 }
4121
4122 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4123 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4124 {
4125 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4126 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4127 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4128 int sch_ret;
4129
4130 if (!entry)
4131 return skb;
4132
4133 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4134
4135 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4136 * already set by the caller.
4137 */
4138 if (static_branch_unlikely(&tcx_needed_key)) {
4139 sch_ret = tcx_run(entry, skb, false);
4140 if (sch_ret != TC_ACT_UNSPEC)
4141 goto egress_verdict;
4142 }
4143 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4144 egress_verdict:
4145 switch (sch_ret) {
4146 case TC_ACT_REDIRECT:
4147 /* No need to push/pop skb's mac_header here on egress! */
4148 skb_do_redirect(skb);
4149 *ret = NET_XMIT_SUCCESS;
4150 bpf_net_ctx_clear(bpf_net_ctx);
4151 return NULL;
4152 case TC_ACT_SHOT:
4153 kfree_skb_reason(skb, drop_reason);
4154 *ret = NET_XMIT_DROP;
4155 bpf_net_ctx_clear(bpf_net_ctx);
4156 return NULL;
4157 /* used by tc_run */
4158 case TC_ACT_STOLEN:
4159 case TC_ACT_QUEUED:
4160 case TC_ACT_TRAP:
4161 consume_skb(skb);
4162 fallthrough;
4163 case TC_ACT_CONSUMED:
4164 *ret = NET_XMIT_SUCCESS;
4165 bpf_net_ctx_clear(bpf_net_ctx);
4166 return NULL;
4167 }
4168 bpf_net_ctx_clear(bpf_net_ctx);
4169
4170 return skb;
4171 }
4172 #else
4173 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4174 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4175 struct net_device *orig_dev, bool *another)
4176 {
4177 return skb;
4178 }
4179
4180 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4181 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4182 {
4183 return skb;
4184 }
4185 #endif /* CONFIG_NET_XGRESS */
4186
4187 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4188 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4189 struct xps_dev_maps *dev_maps, unsigned int tci)
4190 {
4191 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4192 struct xps_map *map;
4193 int queue_index = -1;
4194
4195 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4196 return queue_index;
4197
4198 tci *= dev_maps->num_tc;
4199 tci += tc;
4200
4201 map = rcu_dereference(dev_maps->attr_map[tci]);
4202 if (map) {
4203 if (map->len == 1)
4204 queue_index = map->queues[0];
4205 else
4206 queue_index = map->queues[reciprocal_scale(
4207 skb_get_hash(skb), map->len)];
4208 if (unlikely(queue_index >= dev->real_num_tx_queues))
4209 queue_index = -1;
4210 }
4211 return queue_index;
4212 }
4213 #endif
4214
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4215 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4216 struct sk_buff *skb)
4217 {
4218 #ifdef CONFIG_XPS
4219 struct xps_dev_maps *dev_maps;
4220 struct sock *sk = skb->sk;
4221 int queue_index = -1;
4222
4223 if (!static_key_false(&xps_needed))
4224 return -1;
4225
4226 rcu_read_lock();
4227 if (!static_key_false(&xps_rxqs_needed))
4228 goto get_cpus_map;
4229
4230 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4231 if (dev_maps) {
4232 int tci = sk_rx_queue_get(sk);
4233
4234 if (tci >= 0)
4235 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4236 tci);
4237 }
4238
4239 get_cpus_map:
4240 if (queue_index < 0) {
4241 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4242 if (dev_maps) {
4243 unsigned int tci = skb->sender_cpu - 1;
4244
4245 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4246 tci);
4247 }
4248 }
4249 rcu_read_unlock();
4250
4251 return queue_index;
4252 #else
4253 return -1;
4254 #endif
4255 }
4256
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4257 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4258 struct net_device *sb_dev)
4259 {
4260 return 0;
4261 }
4262 EXPORT_SYMBOL(dev_pick_tx_zero);
4263
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4264 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4265 struct net_device *sb_dev)
4266 {
4267 struct sock *sk = skb->sk;
4268 int queue_index = sk_tx_queue_get(sk);
4269
4270 sb_dev = sb_dev ? : dev;
4271
4272 if (queue_index < 0 || skb->ooo_okay ||
4273 queue_index >= dev->real_num_tx_queues) {
4274 int new_index = get_xps_queue(dev, sb_dev, skb);
4275
4276 if (new_index < 0)
4277 new_index = skb_tx_hash(dev, sb_dev, skb);
4278
4279 if (queue_index != new_index && sk &&
4280 sk_fullsock(sk) &&
4281 rcu_access_pointer(sk->sk_dst_cache))
4282 sk_tx_queue_set(sk, new_index);
4283
4284 queue_index = new_index;
4285 }
4286
4287 return queue_index;
4288 }
4289 EXPORT_SYMBOL(netdev_pick_tx);
4290
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4291 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4292 struct sk_buff *skb,
4293 struct net_device *sb_dev)
4294 {
4295 int queue_index = 0;
4296
4297 #ifdef CONFIG_XPS
4298 u32 sender_cpu = skb->sender_cpu - 1;
4299
4300 if (sender_cpu >= (u32)NR_CPUS)
4301 skb->sender_cpu = raw_smp_processor_id() + 1;
4302 #endif
4303
4304 if (dev->real_num_tx_queues != 1) {
4305 const struct net_device_ops *ops = dev->netdev_ops;
4306
4307 if (ops->ndo_select_queue)
4308 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4309 else
4310 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4311
4312 queue_index = netdev_cap_txqueue(dev, queue_index);
4313 }
4314
4315 skb_set_queue_mapping(skb, queue_index);
4316 return netdev_get_tx_queue(dev, queue_index);
4317 }
4318
4319 /**
4320 * __dev_queue_xmit() - transmit a buffer
4321 * @skb: buffer to transmit
4322 * @sb_dev: suboordinate device used for L2 forwarding offload
4323 *
4324 * Queue a buffer for transmission to a network device. The caller must
4325 * have set the device and priority and built the buffer before calling
4326 * this function. The function can be called from an interrupt.
4327 *
4328 * When calling this method, interrupts MUST be enabled. This is because
4329 * the BH enable code must have IRQs enabled so that it will not deadlock.
4330 *
4331 * Regardless of the return value, the skb is consumed, so it is currently
4332 * difficult to retry a send to this method. (You can bump the ref count
4333 * before sending to hold a reference for retry if you are careful.)
4334 *
4335 * Return:
4336 * * 0 - buffer successfully transmitted
4337 * * positive qdisc return code - NET_XMIT_DROP etc.
4338 * * negative errno - other errors
4339 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4340 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4341 {
4342 struct net_device *dev = skb->dev;
4343 struct netdev_queue *txq = NULL;
4344 struct Qdisc *q;
4345 int rc = -ENOMEM;
4346 bool again = false;
4347
4348 skb_reset_mac_header(skb);
4349 skb_assert_len(skb);
4350
4351 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4352 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4353
4354 /* Disable soft irqs for various locks below. Also
4355 * stops preemption for RCU.
4356 */
4357 rcu_read_lock_bh();
4358
4359 skb_update_prio(skb);
4360
4361 qdisc_pkt_len_init(skb);
4362 tcx_set_ingress(skb, false);
4363 #ifdef CONFIG_NET_EGRESS
4364 if (static_branch_unlikely(&egress_needed_key)) {
4365 if (nf_hook_egress_active()) {
4366 skb = nf_hook_egress(skb, &rc, dev);
4367 if (!skb)
4368 goto out;
4369 }
4370
4371 netdev_xmit_skip_txqueue(false);
4372
4373 nf_skip_egress(skb, true);
4374 skb = sch_handle_egress(skb, &rc, dev);
4375 if (!skb)
4376 goto out;
4377 nf_skip_egress(skb, false);
4378
4379 if (netdev_xmit_txqueue_skipped())
4380 txq = netdev_tx_queue_mapping(dev, skb);
4381 }
4382 #endif
4383 /* If device/qdisc don't need skb->dst, release it right now while
4384 * its hot in this cpu cache.
4385 */
4386 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4387 skb_dst_drop(skb);
4388 else
4389 skb_dst_force(skb);
4390
4391 if (!txq)
4392 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4393
4394 q = rcu_dereference_bh(txq->qdisc);
4395
4396 trace_net_dev_queue(skb);
4397 if (q->enqueue) {
4398 rc = __dev_xmit_skb(skb, q, dev, txq);
4399 goto out;
4400 }
4401
4402 /* The device has no queue. Common case for software devices:
4403 * loopback, all the sorts of tunnels...
4404
4405 * Really, it is unlikely that netif_tx_lock protection is necessary
4406 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4407 * counters.)
4408 * However, it is possible, that they rely on protection
4409 * made by us here.
4410
4411 * Check this and shot the lock. It is not prone from deadlocks.
4412 *Either shot noqueue qdisc, it is even simpler 8)
4413 */
4414 if (dev->flags & IFF_UP) {
4415 int cpu = smp_processor_id(); /* ok because BHs are off */
4416
4417 /* Other cpus might concurrently change txq->xmit_lock_owner
4418 * to -1 or to their cpu id, but not to our id.
4419 */
4420 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4421 if (dev_xmit_recursion())
4422 goto recursion_alert;
4423
4424 skb = validate_xmit_skb(skb, dev, &again);
4425 if (!skb)
4426 goto out;
4427
4428 HARD_TX_LOCK(dev, txq, cpu);
4429
4430 if (!netif_xmit_stopped(txq)) {
4431 dev_xmit_recursion_inc();
4432 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4433 dev_xmit_recursion_dec();
4434 if (dev_xmit_complete(rc)) {
4435 HARD_TX_UNLOCK(dev, txq);
4436 goto out;
4437 }
4438 }
4439 HARD_TX_UNLOCK(dev, txq);
4440 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4441 dev->name);
4442 } else {
4443 /* Recursion is detected! It is possible,
4444 * unfortunately
4445 */
4446 recursion_alert:
4447 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4448 dev->name);
4449 }
4450 }
4451
4452 rc = -ENETDOWN;
4453 rcu_read_unlock_bh();
4454
4455 dev_core_stats_tx_dropped_inc(dev);
4456 kfree_skb_list(skb);
4457 return rc;
4458 out:
4459 rcu_read_unlock_bh();
4460 return rc;
4461 }
4462 EXPORT_SYMBOL(__dev_queue_xmit);
4463
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4464 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4465 {
4466 struct net_device *dev = skb->dev;
4467 struct sk_buff *orig_skb = skb;
4468 struct netdev_queue *txq;
4469 int ret = NETDEV_TX_BUSY;
4470 bool again = false;
4471
4472 if (unlikely(!netif_running(dev) ||
4473 !netif_carrier_ok(dev)))
4474 goto drop;
4475
4476 skb = validate_xmit_skb_list(skb, dev, &again);
4477 if (skb != orig_skb)
4478 goto drop;
4479
4480 skb_set_queue_mapping(skb, queue_id);
4481 txq = skb_get_tx_queue(dev, skb);
4482
4483 local_bh_disable();
4484
4485 dev_xmit_recursion_inc();
4486 HARD_TX_LOCK(dev, txq, smp_processor_id());
4487 if (!netif_xmit_frozen_or_drv_stopped(txq))
4488 ret = netdev_start_xmit(skb, dev, txq, false);
4489 HARD_TX_UNLOCK(dev, txq);
4490 dev_xmit_recursion_dec();
4491
4492 local_bh_enable();
4493 return ret;
4494 drop:
4495 dev_core_stats_tx_dropped_inc(dev);
4496 kfree_skb_list(skb);
4497 return NET_XMIT_DROP;
4498 }
4499 EXPORT_SYMBOL(__dev_direct_xmit);
4500
4501 /*************************************************************************
4502 * Receiver routines
4503 *************************************************************************/
4504 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4505
4506 int weight_p __read_mostly = 64; /* old backlog weight */
4507 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4508 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4509
4510 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4511 static inline void ____napi_schedule(struct softnet_data *sd,
4512 struct napi_struct *napi)
4513 {
4514 struct task_struct *thread;
4515
4516 lockdep_assert_irqs_disabled();
4517
4518 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4519 /* Paired with smp_mb__before_atomic() in
4520 * napi_enable()/dev_set_threaded().
4521 * Use READ_ONCE() to guarantee a complete
4522 * read on napi->thread. Only call
4523 * wake_up_process() when it's not NULL.
4524 */
4525 thread = READ_ONCE(napi->thread);
4526 if (thread) {
4527 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4528 goto use_local_napi;
4529
4530 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4531 wake_up_process(thread);
4532 return;
4533 }
4534 }
4535
4536 use_local_napi:
4537 list_add_tail(&napi->poll_list, &sd->poll_list);
4538 WRITE_ONCE(napi->list_owner, smp_processor_id());
4539 /* If not called from net_rx_action()
4540 * we have to raise NET_RX_SOFTIRQ.
4541 */
4542 if (!sd->in_net_rx_action)
4543 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4544 }
4545
4546 #ifdef CONFIG_RPS
4547
4548 struct static_key_false rps_needed __read_mostly;
4549 EXPORT_SYMBOL(rps_needed);
4550 struct static_key_false rfs_needed __read_mostly;
4551 EXPORT_SYMBOL(rfs_needed);
4552
4553 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4554 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4555 struct rps_dev_flow *rflow, u16 next_cpu)
4556 {
4557 if (next_cpu < nr_cpu_ids) {
4558 u32 head;
4559 #ifdef CONFIG_RFS_ACCEL
4560 struct netdev_rx_queue *rxqueue;
4561 struct rps_dev_flow_table *flow_table;
4562 struct rps_dev_flow *old_rflow;
4563 u16 rxq_index;
4564 u32 flow_id;
4565 int rc;
4566
4567 /* Should we steer this flow to a different hardware queue? */
4568 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4569 !(dev->features & NETIF_F_NTUPLE))
4570 goto out;
4571 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4572 if (rxq_index == skb_get_rx_queue(skb))
4573 goto out;
4574
4575 rxqueue = dev->_rx + rxq_index;
4576 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4577 if (!flow_table)
4578 goto out;
4579 flow_id = skb_get_hash(skb) & flow_table->mask;
4580 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4581 rxq_index, flow_id);
4582 if (rc < 0)
4583 goto out;
4584 old_rflow = rflow;
4585 rflow = &flow_table->flows[flow_id];
4586 WRITE_ONCE(rflow->filter, rc);
4587 if (old_rflow->filter == rc)
4588 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4589 out:
4590 #endif
4591 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4592 rps_input_queue_tail_save(&rflow->last_qtail, head);
4593 }
4594
4595 WRITE_ONCE(rflow->cpu, next_cpu);
4596 return rflow;
4597 }
4598
4599 /*
4600 * get_rps_cpu is called from netif_receive_skb and returns the target
4601 * CPU from the RPS map of the receiving queue for a given skb.
4602 * rcu_read_lock must be held on entry.
4603 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4604 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4605 struct rps_dev_flow **rflowp)
4606 {
4607 const struct rps_sock_flow_table *sock_flow_table;
4608 struct netdev_rx_queue *rxqueue = dev->_rx;
4609 struct rps_dev_flow_table *flow_table;
4610 struct rps_map *map;
4611 int cpu = -1;
4612 u32 tcpu;
4613 u32 hash;
4614
4615 if (skb_rx_queue_recorded(skb)) {
4616 u16 index = skb_get_rx_queue(skb);
4617
4618 if (unlikely(index >= dev->real_num_rx_queues)) {
4619 WARN_ONCE(dev->real_num_rx_queues > 1,
4620 "%s received packet on queue %u, but number "
4621 "of RX queues is %u\n",
4622 dev->name, index, dev->real_num_rx_queues);
4623 goto done;
4624 }
4625 rxqueue += index;
4626 }
4627
4628 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4629
4630 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4631 map = rcu_dereference(rxqueue->rps_map);
4632 if (!flow_table && !map)
4633 goto done;
4634
4635 skb_reset_network_header(skb);
4636 hash = skb_get_hash(skb);
4637 if (!hash)
4638 goto done;
4639
4640 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4641 if (flow_table && sock_flow_table) {
4642 struct rps_dev_flow *rflow;
4643 u32 next_cpu;
4644 u32 ident;
4645
4646 /* First check into global flow table if there is a match.
4647 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4648 */
4649 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4650 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4651 goto try_rps;
4652
4653 next_cpu = ident & net_hotdata.rps_cpu_mask;
4654
4655 /* OK, now we know there is a match,
4656 * we can look at the local (per receive queue) flow table
4657 */
4658 rflow = &flow_table->flows[hash & flow_table->mask];
4659 tcpu = rflow->cpu;
4660
4661 /*
4662 * If the desired CPU (where last recvmsg was done) is
4663 * different from current CPU (one in the rx-queue flow
4664 * table entry), switch if one of the following holds:
4665 * - Current CPU is unset (>= nr_cpu_ids).
4666 * - Current CPU is offline.
4667 * - The current CPU's queue tail has advanced beyond the
4668 * last packet that was enqueued using this table entry.
4669 * This guarantees that all previous packets for the flow
4670 * have been dequeued, thus preserving in order delivery.
4671 */
4672 if (unlikely(tcpu != next_cpu) &&
4673 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4674 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4675 rflow->last_qtail)) >= 0)) {
4676 tcpu = next_cpu;
4677 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4678 }
4679
4680 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4681 *rflowp = rflow;
4682 cpu = tcpu;
4683 goto done;
4684 }
4685 }
4686
4687 try_rps:
4688
4689 if (map) {
4690 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4691 if (cpu_online(tcpu)) {
4692 cpu = tcpu;
4693 goto done;
4694 }
4695 }
4696
4697 done:
4698 return cpu;
4699 }
4700
4701 #ifdef CONFIG_RFS_ACCEL
4702
4703 /**
4704 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4705 * @dev: Device on which the filter was set
4706 * @rxq_index: RX queue index
4707 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4708 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4709 *
4710 * Drivers that implement ndo_rx_flow_steer() should periodically call
4711 * this function for each installed filter and remove the filters for
4712 * which it returns %true.
4713 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4714 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4715 u32 flow_id, u16 filter_id)
4716 {
4717 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4718 struct rps_dev_flow_table *flow_table;
4719 struct rps_dev_flow *rflow;
4720 bool expire = true;
4721 unsigned int cpu;
4722
4723 rcu_read_lock();
4724 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4725 if (flow_table && flow_id <= flow_table->mask) {
4726 rflow = &flow_table->flows[flow_id];
4727 cpu = READ_ONCE(rflow->cpu);
4728 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4729 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4730 READ_ONCE(rflow->last_qtail)) <
4731 (int)(10 * flow_table->mask)))
4732 expire = false;
4733 }
4734 rcu_read_unlock();
4735 return expire;
4736 }
4737 EXPORT_SYMBOL(rps_may_expire_flow);
4738
4739 #endif /* CONFIG_RFS_ACCEL */
4740
4741 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4742 static void rps_trigger_softirq(void *data)
4743 {
4744 struct softnet_data *sd = data;
4745
4746 ____napi_schedule(sd, &sd->backlog);
4747 sd->received_rps++;
4748 }
4749
4750 #endif /* CONFIG_RPS */
4751
4752 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)4753 static void trigger_rx_softirq(void *data)
4754 {
4755 struct softnet_data *sd = data;
4756
4757 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4758 smp_store_release(&sd->defer_ipi_scheduled, 0);
4759 }
4760
4761 /*
4762 * After we queued a packet into sd->input_pkt_queue,
4763 * we need to make sure this queue is serviced soon.
4764 *
4765 * - If this is another cpu queue, link it to our rps_ipi_list,
4766 * and make sure we will process rps_ipi_list from net_rx_action().
4767 *
4768 * - If this is our own queue, NAPI schedule our backlog.
4769 * Note that this also raises NET_RX_SOFTIRQ.
4770 */
napi_schedule_rps(struct softnet_data * sd)4771 static void napi_schedule_rps(struct softnet_data *sd)
4772 {
4773 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4774
4775 #ifdef CONFIG_RPS
4776 if (sd != mysd) {
4777 if (use_backlog_threads()) {
4778 __napi_schedule_irqoff(&sd->backlog);
4779 return;
4780 }
4781
4782 sd->rps_ipi_next = mysd->rps_ipi_list;
4783 mysd->rps_ipi_list = sd;
4784
4785 /* If not called from net_rx_action() or napi_threaded_poll()
4786 * we have to raise NET_RX_SOFTIRQ.
4787 */
4788 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4789 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4790 return;
4791 }
4792 #endif /* CONFIG_RPS */
4793 __napi_schedule_irqoff(&mysd->backlog);
4794 }
4795
kick_defer_list_purge(struct softnet_data * sd,unsigned int cpu)4796 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4797 {
4798 unsigned long flags;
4799
4800 if (use_backlog_threads()) {
4801 backlog_lock_irq_save(sd, &flags);
4802
4803 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4804 __napi_schedule_irqoff(&sd->backlog);
4805
4806 backlog_unlock_irq_restore(sd, &flags);
4807
4808 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4809 smp_call_function_single_async(cpu, &sd->defer_csd);
4810 }
4811 }
4812
4813 #ifdef CONFIG_NET_FLOW_LIMIT
4814 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4815 #endif
4816
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4817 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4818 {
4819 #ifdef CONFIG_NET_FLOW_LIMIT
4820 struct sd_flow_limit *fl;
4821 struct softnet_data *sd;
4822 unsigned int old_flow, new_flow;
4823
4824 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4825 return false;
4826
4827 sd = this_cpu_ptr(&softnet_data);
4828
4829 rcu_read_lock();
4830 fl = rcu_dereference(sd->flow_limit);
4831 if (fl) {
4832 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4833 old_flow = fl->history[fl->history_head];
4834 fl->history[fl->history_head] = new_flow;
4835
4836 fl->history_head++;
4837 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4838
4839 if (likely(fl->buckets[old_flow]))
4840 fl->buckets[old_flow]--;
4841
4842 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4843 fl->count++;
4844 rcu_read_unlock();
4845 return true;
4846 }
4847 }
4848 rcu_read_unlock();
4849 #endif
4850 return false;
4851 }
4852
4853 /*
4854 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4855 * queue (may be a remote CPU queue).
4856 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4857 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4858 unsigned int *qtail)
4859 {
4860 enum skb_drop_reason reason;
4861 struct softnet_data *sd;
4862 unsigned long flags;
4863 unsigned int qlen;
4864 int max_backlog;
4865 u32 tail;
4866
4867 reason = SKB_DROP_REASON_DEV_READY;
4868 if (!netif_running(skb->dev))
4869 goto bad_dev;
4870
4871 reason = SKB_DROP_REASON_CPU_BACKLOG;
4872 sd = &per_cpu(softnet_data, cpu);
4873
4874 qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4875 max_backlog = READ_ONCE(net_hotdata.max_backlog);
4876 if (unlikely(qlen > max_backlog))
4877 goto cpu_backlog_drop;
4878 backlog_lock_irq_save(sd, &flags);
4879 qlen = skb_queue_len(&sd->input_pkt_queue);
4880 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4881 if (!qlen) {
4882 /* Schedule NAPI for backlog device. We can use
4883 * non atomic operation as we own the queue lock.
4884 */
4885 if (!__test_and_set_bit(NAPI_STATE_SCHED,
4886 &sd->backlog.state))
4887 napi_schedule_rps(sd);
4888 }
4889 __skb_queue_tail(&sd->input_pkt_queue, skb);
4890 tail = rps_input_queue_tail_incr(sd);
4891 backlog_unlock_irq_restore(sd, &flags);
4892
4893 /* save the tail outside of the critical section */
4894 rps_input_queue_tail_save(qtail, tail);
4895 return NET_RX_SUCCESS;
4896 }
4897
4898 backlog_unlock_irq_restore(sd, &flags);
4899
4900 cpu_backlog_drop:
4901 atomic_inc(&sd->dropped);
4902 bad_dev:
4903 dev_core_stats_rx_dropped_inc(skb->dev);
4904 kfree_skb_reason(skb, reason);
4905 return NET_RX_DROP;
4906 }
4907
netif_get_rxqueue(struct sk_buff * skb)4908 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4909 {
4910 struct net_device *dev = skb->dev;
4911 struct netdev_rx_queue *rxqueue;
4912
4913 rxqueue = dev->_rx;
4914
4915 if (skb_rx_queue_recorded(skb)) {
4916 u16 index = skb_get_rx_queue(skb);
4917
4918 if (unlikely(index >= dev->real_num_rx_queues)) {
4919 WARN_ONCE(dev->real_num_rx_queues > 1,
4920 "%s received packet on queue %u, but number "
4921 "of RX queues is %u\n",
4922 dev->name, index, dev->real_num_rx_queues);
4923
4924 return rxqueue; /* Return first rxqueue */
4925 }
4926 rxqueue += index;
4927 }
4928 return rxqueue;
4929 }
4930
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4931 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4932 struct bpf_prog *xdp_prog)
4933 {
4934 void *orig_data, *orig_data_end, *hard_start;
4935 struct netdev_rx_queue *rxqueue;
4936 bool orig_bcast, orig_host;
4937 u32 mac_len, frame_sz;
4938 __be16 orig_eth_type;
4939 struct ethhdr *eth;
4940 u32 metalen, act;
4941 int off;
4942
4943 /* The XDP program wants to see the packet starting at the MAC
4944 * header.
4945 */
4946 mac_len = skb->data - skb_mac_header(skb);
4947 hard_start = skb->data - skb_headroom(skb);
4948
4949 /* SKB "head" area always have tailroom for skb_shared_info */
4950 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4951 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4952
4953 rxqueue = netif_get_rxqueue(skb);
4954 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4955 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4956 skb_headlen(skb) + mac_len, true);
4957 if (skb_is_nonlinear(skb)) {
4958 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4959 xdp_buff_set_frags_flag(xdp);
4960 } else {
4961 xdp_buff_clear_frags_flag(xdp);
4962 }
4963
4964 orig_data_end = xdp->data_end;
4965 orig_data = xdp->data;
4966 eth = (struct ethhdr *)xdp->data;
4967 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4968 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4969 orig_eth_type = eth->h_proto;
4970
4971 act = bpf_prog_run_xdp(xdp_prog, xdp);
4972
4973 /* check if bpf_xdp_adjust_head was used */
4974 off = xdp->data - orig_data;
4975 if (off) {
4976 if (off > 0)
4977 __skb_pull(skb, off);
4978 else if (off < 0)
4979 __skb_push(skb, -off);
4980
4981 skb->mac_header += off;
4982 skb_reset_network_header(skb);
4983 }
4984
4985 /* check if bpf_xdp_adjust_tail was used */
4986 off = xdp->data_end - orig_data_end;
4987 if (off != 0) {
4988 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4989 skb->len += off; /* positive on grow, negative on shrink */
4990 }
4991
4992 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4993 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4994 */
4995 if (xdp_buff_has_frags(xdp))
4996 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4997 else
4998 skb->data_len = 0;
4999
5000 /* check if XDP changed eth hdr such SKB needs update */
5001 eth = (struct ethhdr *)xdp->data;
5002 if ((orig_eth_type != eth->h_proto) ||
5003 (orig_host != ether_addr_equal_64bits(eth->h_dest,
5004 skb->dev->dev_addr)) ||
5005 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5006 __skb_push(skb, ETH_HLEN);
5007 skb->pkt_type = PACKET_HOST;
5008 skb->protocol = eth_type_trans(skb, skb->dev);
5009 }
5010
5011 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5012 * before calling us again on redirect path. We do not call do_redirect
5013 * as we leave that up to the caller.
5014 *
5015 * Caller is responsible for managing lifetime of skb (i.e. calling
5016 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5017 */
5018 switch (act) {
5019 case XDP_REDIRECT:
5020 case XDP_TX:
5021 __skb_push(skb, mac_len);
5022 break;
5023 case XDP_PASS:
5024 metalen = xdp->data - xdp->data_meta;
5025 if (metalen)
5026 skb_metadata_set(skb, metalen);
5027 break;
5028 }
5029
5030 return act;
5031 }
5032
5033 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,struct bpf_prog * prog)5034 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5035 {
5036 struct sk_buff *skb = *pskb;
5037 int err, hroom, troom;
5038
5039 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5040 return 0;
5041
5042 /* In case we have to go down the path and also linearize,
5043 * then lets do the pskb_expand_head() work just once here.
5044 */
5045 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5046 troom = skb->tail + skb->data_len - skb->end;
5047 err = pskb_expand_head(skb,
5048 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5049 troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5050 if (err)
5051 return err;
5052
5053 return skb_linearize(skb);
5054 }
5055
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)5056 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5057 struct xdp_buff *xdp,
5058 struct bpf_prog *xdp_prog)
5059 {
5060 struct sk_buff *skb = *pskb;
5061 u32 mac_len, act = XDP_DROP;
5062
5063 /* Reinjected packets coming from act_mirred or similar should
5064 * not get XDP generic processing.
5065 */
5066 if (skb_is_redirected(skb))
5067 return XDP_PASS;
5068
5069 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5070 * bytes. This is the guarantee that also native XDP provides,
5071 * thus we need to do it here as well.
5072 */
5073 mac_len = skb->data - skb_mac_header(skb);
5074 __skb_push(skb, mac_len);
5075
5076 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5077 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5078 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5079 goto do_drop;
5080 }
5081
5082 __skb_pull(*pskb, mac_len);
5083
5084 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5085 switch (act) {
5086 case XDP_REDIRECT:
5087 case XDP_TX:
5088 case XDP_PASS:
5089 break;
5090 default:
5091 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5092 fallthrough;
5093 case XDP_ABORTED:
5094 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5095 fallthrough;
5096 case XDP_DROP:
5097 do_drop:
5098 kfree_skb(*pskb);
5099 break;
5100 }
5101
5102 return act;
5103 }
5104
5105 /* When doing generic XDP we have to bypass the qdisc layer and the
5106 * network taps in order to match in-driver-XDP behavior. This also means
5107 * that XDP packets are able to starve other packets going through a qdisc,
5108 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5109 * queues, so they do not have this starvation issue.
5110 */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)5111 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5112 {
5113 struct net_device *dev = skb->dev;
5114 struct netdev_queue *txq;
5115 bool free_skb = true;
5116 int cpu, rc;
5117
5118 txq = netdev_core_pick_tx(dev, skb, NULL);
5119 cpu = smp_processor_id();
5120 HARD_TX_LOCK(dev, txq, cpu);
5121 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5122 rc = netdev_start_xmit(skb, dev, txq, 0);
5123 if (dev_xmit_complete(rc))
5124 free_skb = false;
5125 }
5126 HARD_TX_UNLOCK(dev, txq);
5127 if (free_skb) {
5128 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5129 dev_core_stats_tx_dropped_inc(dev);
5130 kfree_skb(skb);
5131 }
5132 }
5133
5134 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5135
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5136 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5137 {
5138 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5139
5140 if (xdp_prog) {
5141 struct xdp_buff xdp;
5142 u32 act;
5143 int err;
5144
5145 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5146 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5147 if (act != XDP_PASS) {
5148 switch (act) {
5149 case XDP_REDIRECT:
5150 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5151 &xdp, xdp_prog);
5152 if (err)
5153 goto out_redir;
5154 break;
5155 case XDP_TX:
5156 generic_xdp_tx(*pskb, xdp_prog);
5157 break;
5158 }
5159 bpf_net_ctx_clear(bpf_net_ctx);
5160 return XDP_DROP;
5161 }
5162 bpf_net_ctx_clear(bpf_net_ctx);
5163 }
5164 return XDP_PASS;
5165 out_redir:
5166 bpf_net_ctx_clear(bpf_net_ctx);
5167 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5168 return XDP_DROP;
5169 }
5170 EXPORT_SYMBOL_GPL(do_xdp_generic);
5171
netif_rx_internal(struct sk_buff * skb)5172 static int netif_rx_internal(struct sk_buff *skb)
5173 {
5174 int ret;
5175
5176 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5177
5178 trace_netif_rx(skb);
5179
5180 #ifdef CONFIG_RPS
5181 if (static_branch_unlikely(&rps_needed)) {
5182 struct rps_dev_flow voidflow, *rflow = &voidflow;
5183 int cpu;
5184
5185 rcu_read_lock();
5186
5187 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5188 if (cpu < 0)
5189 cpu = smp_processor_id();
5190
5191 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5192
5193 rcu_read_unlock();
5194 } else
5195 #endif
5196 {
5197 unsigned int qtail;
5198
5199 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5200 }
5201 return ret;
5202 }
5203
5204 /**
5205 * __netif_rx - Slightly optimized version of netif_rx
5206 * @skb: buffer to post
5207 *
5208 * This behaves as netif_rx except that it does not disable bottom halves.
5209 * As a result this function may only be invoked from the interrupt context
5210 * (either hard or soft interrupt).
5211 */
__netif_rx(struct sk_buff * skb)5212 int __netif_rx(struct sk_buff *skb)
5213 {
5214 int ret;
5215
5216 lockdep_assert_once(hardirq_count() | softirq_count());
5217
5218 trace_netif_rx_entry(skb);
5219 ret = netif_rx_internal(skb);
5220 trace_netif_rx_exit(ret);
5221 return ret;
5222 }
5223 EXPORT_SYMBOL(__netif_rx);
5224
5225 /**
5226 * netif_rx - post buffer to the network code
5227 * @skb: buffer to post
5228 *
5229 * This function receives a packet from a device driver and queues it for
5230 * the upper (protocol) levels to process via the backlog NAPI device. It
5231 * always succeeds. The buffer may be dropped during processing for
5232 * congestion control or by the protocol layers.
5233 * The network buffer is passed via the backlog NAPI device. Modern NIC
5234 * driver should use NAPI and GRO.
5235 * This function can used from interrupt and from process context. The
5236 * caller from process context must not disable interrupts before invoking
5237 * this function.
5238 *
5239 * return values:
5240 * NET_RX_SUCCESS (no congestion)
5241 * NET_RX_DROP (packet was dropped)
5242 *
5243 */
netif_rx(struct sk_buff * skb)5244 int netif_rx(struct sk_buff *skb)
5245 {
5246 bool need_bh_off = !(hardirq_count() | softirq_count());
5247 int ret;
5248
5249 if (need_bh_off)
5250 local_bh_disable();
5251 trace_netif_rx_entry(skb);
5252 ret = netif_rx_internal(skb);
5253 trace_netif_rx_exit(ret);
5254 if (need_bh_off)
5255 local_bh_enable();
5256 return ret;
5257 }
5258 EXPORT_SYMBOL(netif_rx);
5259
net_tx_action(void)5260 static __latent_entropy void net_tx_action(void)
5261 {
5262 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5263
5264 if (sd->completion_queue) {
5265 struct sk_buff *clist;
5266
5267 local_irq_disable();
5268 clist = sd->completion_queue;
5269 sd->completion_queue = NULL;
5270 local_irq_enable();
5271
5272 while (clist) {
5273 struct sk_buff *skb = clist;
5274
5275 clist = clist->next;
5276
5277 WARN_ON(refcount_read(&skb->users));
5278 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5279 trace_consume_skb(skb, net_tx_action);
5280 else
5281 trace_kfree_skb(skb, net_tx_action,
5282 get_kfree_skb_cb(skb)->reason, NULL);
5283
5284 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5285 __kfree_skb(skb);
5286 else
5287 __napi_kfree_skb(skb,
5288 get_kfree_skb_cb(skb)->reason);
5289 }
5290 }
5291
5292 if (sd->output_queue) {
5293 struct Qdisc *head;
5294
5295 local_irq_disable();
5296 head = sd->output_queue;
5297 sd->output_queue = NULL;
5298 sd->output_queue_tailp = &sd->output_queue;
5299 local_irq_enable();
5300
5301 rcu_read_lock();
5302
5303 while (head) {
5304 struct Qdisc *q = head;
5305 spinlock_t *root_lock = NULL;
5306
5307 head = head->next_sched;
5308
5309 /* We need to make sure head->next_sched is read
5310 * before clearing __QDISC_STATE_SCHED
5311 */
5312 smp_mb__before_atomic();
5313
5314 if (!(q->flags & TCQ_F_NOLOCK)) {
5315 root_lock = qdisc_lock(q);
5316 spin_lock(root_lock);
5317 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5318 &q->state))) {
5319 /* There is a synchronize_net() between
5320 * STATE_DEACTIVATED flag being set and
5321 * qdisc_reset()/some_qdisc_is_busy() in
5322 * dev_deactivate(), so we can safely bail out
5323 * early here to avoid data race between
5324 * qdisc_deactivate() and some_qdisc_is_busy()
5325 * for lockless qdisc.
5326 */
5327 clear_bit(__QDISC_STATE_SCHED, &q->state);
5328 continue;
5329 }
5330
5331 clear_bit(__QDISC_STATE_SCHED, &q->state);
5332 qdisc_run(q);
5333 if (root_lock)
5334 spin_unlock(root_lock);
5335 }
5336
5337 rcu_read_unlock();
5338 }
5339
5340 xfrm_dev_backlog(sd);
5341 }
5342
5343 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5344 /* This hook is defined here for ATM LANE */
5345 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5346 unsigned char *addr) __read_mostly;
5347 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5348 #endif
5349
5350 /**
5351 * netdev_is_rx_handler_busy - check if receive handler is registered
5352 * @dev: device to check
5353 *
5354 * Check if a receive handler is already registered for a given device.
5355 * Return true if there one.
5356 *
5357 * The caller must hold the rtnl_mutex.
5358 */
netdev_is_rx_handler_busy(struct net_device * dev)5359 bool netdev_is_rx_handler_busy(struct net_device *dev)
5360 {
5361 ASSERT_RTNL();
5362 return dev && rtnl_dereference(dev->rx_handler);
5363 }
5364 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5365
5366 /**
5367 * netdev_rx_handler_register - register receive handler
5368 * @dev: device to register a handler for
5369 * @rx_handler: receive handler to register
5370 * @rx_handler_data: data pointer that is used by rx handler
5371 *
5372 * Register a receive handler for a device. This handler will then be
5373 * called from __netif_receive_skb. A negative errno code is returned
5374 * on a failure.
5375 *
5376 * The caller must hold the rtnl_mutex.
5377 *
5378 * For a general description of rx_handler, see enum rx_handler_result.
5379 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5380 int netdev_rx_handler_register(struct net_device *dev,
5381 rx_handler_func_t *rx_handler,
5382 void *rx_handler_data)
5383 {
5384 if (netdev_is_rx_handler_busy(dev))
5385 return -EBUSY;
5386
5387 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5388 return -EINVAL;
5389
5390 /* Note: rx_handler_data must be set before rx_handler */
5391 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5392 rcu_assign_pointer(dev->rx_handler, rx_handler);
5393
5394 return 0;
5395 }
5396 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5397
5398 /**
5399 * netdev_rx_handler_unregister - unregister receive handler
5400 * @dev: device to unregister a handler from
5401 *
5402 * Unregister a receive handler from a device.
5403 *
5404 * The caller must hold the rtnl_mutex.
5405 */
netdev_rx_handler_unregister(struct net_device * dev)5406 void netdev_rx_handler_unregister(struct net_device *dev)
5407 {
5408
5409 ASSERT_RTNL();
5410 RCU_INIT_POINTER(dev->rx_handler, NULL);
5411 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5412 * section has a guarantee to see a non NULL rx_handler_data
5413 * as well.
5414 */
5415 synchronize_net();
5416 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5417 }
5418 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5419
5420 /*
5421 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5422 * the special handling of PFMEMALLOC skbs.
5423 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5424 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5425 {
5426 switch (skb->protocol) {
5427 case htons(ETH_P_ARP):
5428 case htons(ETH_P_IP):
5429 case htons(ETH_P_IPV6):
5430 case htons(ETH_P_8021Q):
5431 case htons(ETH_P_8021AD):
5432 return true;
5433 default:
5434 return false;
5435 }
5436 }
5437
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5438 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5439 int *ret, struct net_device *orig_dev)
5440 {
5441 if (nf_hook_ingress_active(skb)) {
5442 int ingress_retval;
5443
5444 if (*pt_prev) {
5445 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5446 *pt_prev = NULL;
5447 }
5448
5449 rcu_read_lock();
5450 ingress_retval = nf_hook_ingress(skb);
5451 rcu_read_unlock();
5452 return ingress_retval;
5453 }
5454 return 0;
5455 }
5456
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5457 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5458 struct packet_type **ppt_prev)
5459 {
5460 struct packet_type *ptype, *pt_prev;
5461 rx_handler_func_t *rx_handler;
5462 struct sk_buff *skb = *pskb;
5463 struct net_device *orig_dev;
5464 bool deliver_exact = false;
5465 int ret = NET_RX_DROP;
5466 __be16 type;
5467
5468 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5469
5470 trace_netif_receive_skb(skb);
5471
5472 orig_dev = skb->dev;
5473
5474 skb_reset_network_header(skb);
5475 if (!skb_transport_header_was_set(skb))
5476 skb_reset_transport_header(skb);
5477 skb_reset_mac_len(skb);
5478
5479 pt_prev = NULL;
5480
5481 another_round:
5482 skb->skb_iif = skb->dev->ifindex;
5483
5484 __this_cpu_inc(softnet_data.processed);
5485
5486 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5487 int ret2;
5488
5489 migrate_disable();
5490 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5491 &skb);
5492 migrate_enable();
5493
5494 if (ret2 != XDP_PASS) {
5495 ret = NET_RX_DROP;
5496 goto out;
5497 }
5498 }
5499
5500 if (eth_type_vlan(skb->protocol)) {
5501 skb = skb_vlan_untag(skb);
5502 if (unlikely(!skb))
5503 goto out;
5504 }
5505
5506 if (skb_skip_tc_classify(skb))
5507 goto skip_classify;
5508
5509 if (pfmemalloc)
5510 goto skip_taps;
5511
5512 list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5513 if (pt_prev)
5514 ret = deliver_skb(skb, pt_prev, orig_dev);
5515 pt_prev = ptype;
5516 }
5517
5518 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5519 if (pt_prev)
5520 ret = deliver_skb(skb, pt_prev, orig_dev);
5521 pt_prev = ptype;
5522 }
5523
5524 skip_taps:
5525 #ifdef CONFIG_NET_INGRESS
5526 if (static_branch_unlikely(&ingress_needed_key)) {
5527 bool another = false;
5528
5529 nf_skip_egress(skb, true);
5530 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5531 &another);
5532 if (another)
5533 goto another_round;
5534 if (!skb)
5535 goto out;
5536
5537 nf_skip_egress(skb, false);
5538 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5539 goto out;
5540 }
5541 #endif
5542 skb_reset_redirect(skb);
5543 skip_classify:
5544 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5545 goto drop;
5546
5547 if (skb_vlan_tag_present(skb)) {
5548 if (pt_prev) {
5549 ret = deliver_skb(skb, pt_prev, orig_dev);
5550 pt_prev = NULL;
5551 }
5552 if (vlan_do_receive(&skb))
5553 goto another_round;
5554 else if (unlikely(!skb))
5555 goto out;
5556 }
5557
5558 rx_handler = rcu_dereference(skb->dev->rx_handler);
5559 if (rx_handler) {
5560 if (pt_prev) {
5561 ret = deliver_skb(skb, pt_prev, orig_dev);
5562 pt_prev = NULL;
5563 }
5564 switch (rx_handler(&skb)) {
5565 case RX_HANDLER_CONSUMED:
5566 ret = NET_RX_SUCCESS;
5567 goto out;
5568 case RX_HANDLER_ANOTHER:
5569 goto another_round;
5570 case RX_HANDLER_EXACT:
5571 deliver_exact = true;
5572 break;
5573 case RX_HANDLER_PASS:
5574 break;
5575 default:
5576 BUG();
5577 }
5578 }
5579
5580 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5581 check_vlan_id:
5582 if (skb_vlan_tag_get_id(skb)) {
5583 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5584 * find vlan device.
5585 */
5586 skb->pkt_type = PACKET_OTHERHOST;
5587 } else if (eth_type_vlan(skb->protocol)) {
5588 /* Outer header is 802.1P with vlan 0, inner header is
5589 * 802.1Q or 802.1AD and vlan_do_receive() above could
5590 * not find vlan dev for vlan id 0.
5591 */
5592 __vlan_hwaccel_clear_tag(skb);
5593 skb = skb_vlan_untag(skb);
5594 if (unlikely(!skb))
5595 goto out;
5596 if (vlan_do_receive(&skb))
5597 /* After stripping off 802.1P header with vlan 0
5598 * vlan dev is found for inner header.
5599 */
5600 goto another_round;
5601 else if (unlikely(!skb))
5602 goto out;
5603 else
5604 /* We have stripped outer 802.1P vlan 0 header.
5605 * But could not find vlan dev.
5606 * check again for vlan id to set OTHERHOST.
5607 */
5608 goto check_vlan_id;
5609 }
5610 /* Note: we might in the future use prio bits
5611 * and set skb->priority like in vlan_do_receive()
5612 * For the time being, just ignore Priority Code Point
5613 */
5614 __vlan_hwaccel_clear_tag(skb);
5615 }
5616
5617 type = skb->protocol;
5618
5619 /* deliver only exact match when indicated */
5620 if (likely(!deliver_exact)) {
5621 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5622 &ptype_base[ntohs(type) &
5623 PTYPE_HASH_MASK]);
5624 }
5625
5626 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5627 &orig_dev->ptype_specific);
5628
5629 if (unlikely(skb->dev != orig_dev)) {
5630 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5631 &skb->dev->ptype_specific);
5632 }
5633
5634 if (pt_prev) {
5635 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5636 goto drop;
5637 *ppt_prev = pt_prev;
5638 } else {
5639 drop:
5640 if (!deliver_exact)
5641 dev_core_stats_rx_dropped_inc(skb->dev);
5642 else
5643 dev_core_stats_rx_nohandler_inc(skb->dev);
5644 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5645 /* Jamal, now you will not able to escape explaining
5646 * me how you were going to use this. :-)
5647 */
5648 ret = NET_RX_DROP;
5649 }
5650
5651 out:
5652 /* The invariant here is that if *ppt_prev is not NULL
5653 * then skb should also be non-NULL.
5654 *
5655 * Apparently *ppt_prev assignment above holds this invariant due to
5656 * skb dereferencing near it.
5657 */
5658 *pskb = skb;
5659 return ret;
5660 }
5661
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5662 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5663 {
5664 struct net_device *orig_dev = skb->dev;
5665 struct packet_type *pt_prev = NULL;
5666 int ret;
5667
5668 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5669 if (pt_prev)
5670 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5671 skb->dev, pt_prev, orig_dev);
5672 return ret;
5673 }
5674
5675 /**
5676 * netif_receive_skb_core - special purpose version of netif_receive_skb
5677 * @skb: buffer to process
5678 *
5679 * More direct receive version of netif_receive_skb(). It should
5680 * only be used by callers that have a need to skip RPS and Generic XDP.
5681 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5682 *
5683 * This function may only be called from softirq context and interrupts
5684 * should be enabled.
5685 *
5686 * Return values (usually ignored):
5687 * NET_RX_SUCCESS: no congestion
5688 * NET_RX_DROP: packet was dropped
5689 */
netif_receive_skb_core(struct sk_buff * skb)5690 int netif_receive_skb_core(struct sk_buff *skb)
5691 {
5692 int ret;
5693
5694 rcu_read_lock();
5695 ret = __netif_receive_skb_one_core(skb, false);
5696 rcu_read_unlock();
5697
5698 return ret;
5699 }
5700 EXPORT_SYMBOL(netif_receive_skb_core);
5701
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5702 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5703 struct packet_type *pt_prev,
5704 struct net_device *orig_dev)
5705 {
5706 struct sk_buff *skb, *next;
5707
5708 if (!pt_prev)
5709 return;
5710 if (list_empty(head))
5711 return;
5712 if (pt_prev->list_func != NULL)
5713 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5714 ip_list_rcv, head, pt_prev, orig_dev);
5715 else
5716 list_for_each_entry_safe(skb, next, head, list) {
5717 skb_list_del_init(skb);
5718 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5719 }
5720 }
5721
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5722 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5723 {
5724 /* Fast-path assumptions:
5725 * - There is no RX handler.
5726 * - Only one packet_type matches.
5727 * If either of these fails, we will end up doing some per-packet
5728 * processing in-line, then handling the 'last ptype' for the whole
5729 * sublist. This can't cause out-of-order delivery to any single ptype,
5730 * because the 'last ptype' must be constant across the sublist, and all
5731 * other ptypes are handled per-packet.
5732 */
5733 /* Current (common) ptype of sublist */
5734 struct packet_type *pt_curr = NULL;
5735 /* Current (common) orig_dev of sublist */
5736 struct net_device *od_curr = NULL;
5737 struct sk_buff *skb, *next;
5738 LIST_HEAD(sublist);
5739
5740 list_for_each_entry_safe(skb, next, head, list) {
5741 struct net_device *orig_dev = skb->dev;
5742 struct packet_type *pt_prev = NULL;
5743
5744 skb_list_del_init(skb);
5745 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5746 if (!pt_prev)
5747 continue;
5748 if (pt_curr != pt_prev || od_curr != orig_dev) {
5749 /* dispatch old sublist */
5750 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5751 /* start new sublist */
5752 INIT_LIST_HEAD(&sublist);
5753 pt_curr = pt_prev;
5754 od_curr = orig_dev;
5755 }
5756 list_add_tail(&skb->list, &sublist);
5757 }
5758
5759 /* dispatch final sublist */
5760 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5761 }
5762
__netif_receive_skb(struct sk_buff * skb)5763 static int __netif_receive_skb(struct sk_buff *skb)
5764 {
5765 int ret;
5766
5767 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5768 unsigned int noreclaim_flag;
5769
5770 /*
5771 * PFMEMALLOC skbs are special, they should
5772 * - be delivered to SOCK_MEMALLOC sockets only
5773 * - stay away from userspace
5774 * - have bounded memory usage
5775 *
5776 * Use PF_MEMALLOC as this saves us from propagating the allocation
5777 * context down to all allocation sites.
5778 */
5779 noreclaim_flag = memalloc_noreclaim_save();
5780 ret = __netif_receive_skb_one_core(skb, true);
5781 memalloc_noreclaim_restore(noreclaim_flag);
5782 } else
5783 ret = __netif_receive_skb_one_core(skb, false);
5784
5785 return ret;
5786 }
5787
__netif_receive_skb_list(struct list_head * head)5788 static void __netif_receive_skb_list(struct list_head *head)
5789 {
5790 unsigned long noreclaim_flag = 0;
5791 struct sk_buff *skb, *next;
5792 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5793
5794 list_for_each_entry_safe(skb, next, head, list) {
5795 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5796 struct list_head sublist;
5797
5798 /* Handle the previous sublist */
5799 list_cut_before(&sublist, head, &skb->list);
5800 if (!list_empty(&sublist))
5801 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5802 pfmemalloc = !pfmemalloc;
5803 /* See comments in __netif_receive_skb */
5804 if (pfmemalloc)
5805 noreclaim_flag = memalloc_noreclaim_save();
5806 else
5807 memalloc_noreclaim_restore(noreclaim_flag);
5808 }
5809 }
5810 /* Handle the remaining sublist */
5811 if (!list_empty(head))
5812 __netif_receive_skb_list_core(head, pfmemalloc);
5813 /* Restore pflags */
5814 if (pfmemalloc)
5815 memalloc_noreclaim_restore(noreclaim_flag);
5816 }
5817
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5818 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5819 {
5820 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5821 struct bpf_prog *new = xdp->prog;
5822 int ret = 0;
5823
5824 switch (xdp->command) {
5825 case XDP_SETUP_PROG:
5826 rcu_assign_pointer(dev->xdp_prog, new);
5827 if (old)
5828 bpf_prog_put(old);
5829
5830 if (old && !new) {
5831 static_branch_dec(&generic_xdp_needed_key);
5832 } else if (new && !old) {
5833 static_branch_inc(&generic_xdp_needed_key);
5834 dev_disable_lro(dev);
5835 dev_disable_gro_hw(dev);
5836 }
5837 break;
5838
5839 default:
5840 ret = -EINVAL;
5841 break;
5842 }
5843
5844 return ret;
5845 }
5846
netif_receive_skb_internal(struct sk_buff * skb)5847 static int netif_receive_skb_internal(struct sk_buff *skb)
5848 {
5849 int ret;
5850
5851 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5852
5853 if (skb_defer_rx_timestamp(skb))
5854 return NET_RX_SUCCESS;
5855
5856 rcu_read_lock();
5857 #ifdef CONFIG_RPS
5858 if (static_branch_unlikely(&rps_needed)) {
5859 struct rps_dev_flow voidflow, *rflow = &voidflow;
5860 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5861
5862 if (cpu >= 0) {
5863 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5864 rcu_read_unlock();
5865 return ret;
5866 }
5867 }
5868 #endif
5869 ret = __netif_receive_skb(skb);
5870 rcu_read_unlock();
5871 return ret;
5872 }
5873
netif_receive_skb_list_internal(struct list_head * head)5874 void netif_receive_skb_list_internal(struct list_head *head)
5875 {
5876 struct sk_buff *skb, *next;
5877 LIST_HEAD(sublist);
5878
5879 list_for_each_entry_safe(skb, next, head, list) {
5880 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5881 skb);
5882 skb_list_del_init(skb);
5883 if (!skb_defer_rx_timestamp(skb))
5884 list_add_tail(&skb->list, &sublist);
5885 }
5886 list_splice_init(&sublist, head);
5887
5888 rcu_read_lock();
5889 #ifdef CONFIG_RPS
5890 if (static_branch_unlikely(&rps_needed)) {
5891 list_for_each_entry_safe(skb, next, head, list) {
5892 struct rps_dev_flow voidflow, *rflow = &voidflow;
5893 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5894
5895 if (cpu >= 0) {
5896 /* Will be handled, remove from list */
5897 skb_list_del_init(skb);
5898 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5899 }
5900 }
5901 }
5902 #endif
5903 __netif_receive_skb_list(head);
5904 rcu_read_unlock();
5905 }
5906
5907 /**
5908 * netif_receive_skb - process receive buffer from network
5909 * @skb: buffer to process
5910 *
5911 * netif_receive_skb() is the main receive data processing function.
5912 * It always succeeds. The buffer may be dropped during processing
5913 * for congestion control or by the protocol layers.
5914 *
5915 * This function may only be called from softirq context and interrupts
5916 * should be enabled.
5917 *
5918 * Return values (usually ignored):
5919 * NET_RX_SUCCESS: no congestion
5920 * NET_RX_DROP: packet was dropped
5921 */
netif_receive_skb(struct sk_buff * skb)5922 int netif_receive_skb(struct sk_buff *skb)
5923 {
5924 int ret;
5925
5926 trace_netif_receive_skb_entry(skb);
5927
5928 ret = netif_receive_skb_internal(skb);
5929 trace_netif_receive_skb_exit(ret);
5930
5931 return ret;
5932 }
5933 EXPORT_SYMBOL(netif_receive_skb);
5934
5935 /**
5936 * netif_receive_skb_list - process many receive buffers from network
5937 * @head: list of skbs to process.
5938 *
5939 * Since return value of netif_receive_skb() is normally ignored, and
5940 * wouldn't be meaningful for a list, this function returns void.
5941 *
5942 * This function may only be called from softirq context and interrupts
5943 * should be enabled.
5944 */
netif_receive_skb_list(struct list_head * head)5945 void netif_receive_skb_list(struct list_head *head)
5946 {
5947 struct sk_buff *skb;
5948
5949 if (list_empty(head))
5950 return;
5951 if (trace_netif_receive_skb_list_entry_enabled()) {
5952 list_for_each_entry(skb, head, list)
5953 trace_netif_receive_skb_list_entry(skb);
5954 }
5955 netif_receive_skb_list_internal(head);
5956 trace_netif_receive_skb_list_exit(0);
5957 }
5958 EXPORT_SYMBOL(netif_receive_skb_list);
5959
5960 static DEFINE_PER_CPU(struct work_struct, flush_works);
5961
5962 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5963 static void flush_backlog(struct work_struct *work)
5964 {
5965 struct sk_buff *skb, *tmp;
5966 struct softnet_data *sd;
5967
5968 local_bh_disable();
5969 sd = this_cpu_ptr(&softnet_data);
5970
5971 backlog_lock_irq_disable(sd);
5972 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5973 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5974 __skb_unlink(skb, &sd->input_pkt_queue);
5975 dev_kfree_skb_irq(skb);
5976 rps_input_queue_head_incr(sd);
5977 }
5978 }
5979 backlog_unlock_irq_enable(sd);
5980
5981 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
5982 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5983 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5984 __skb_unlink(skb, &sd->process_queue);
5985 kfree_skb(skb);
5986 rps_input_queue_head_incr(sd);
5987 }
5988 }
5989 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
5990 local_bh_enable();
5991 }
5992
flush_required(int cpu)5993 static bool flush_required(int cpu)
5994 {
5995 #if IS_ENABLED(CONFIG_RPS)
5996 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5997 bool do_flush;
5998
5999 backlog_lock_irq_disable(sd);
6000
6001 /* as insertion into process_queue happens with the rps lock held,
6002 * process_queue access may race only with dequeue
6003 */
6004 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6005 !skb_queue_empty_lockless(&sd->process_queue);
6006 backlog_unlock_irq_enable(sd);
6007
6008 return do_flush;
6009 #endif
6010 /* without RPS we can't safely check input_pkt_queue: during a
6011 * concurrent remote skb_queue_splice() we can detect as empty both
6012 * input_pkt_queue and process_queue even if the latter could end-up
6013 * containing a lot of packets.
6014 */
6015 return true;
6016 }
6017
flush_all_backlogs(void)6018 static void flush_all_backlogs(void)
6019 {
6020 static cpumask_t flush_cpus;
6021 unsigned int cpu;
6022
6023 /* since we are under rtnl lock protection we can use static data
6024 * for the cpumask and avoid allocating on stack the possibly
6025 * large mask
6026 */
6027 ASSERT_RTNL();
6028
6029 cpus_read_lock();
6030
6031 cpumask_clear(&flush_cpus);
6032 for_each_online_cpu(cpu) {
6033 if (flush_required(cpu)) {
6034 queue_work_on(cpu, system_highpri_wq,
6035 per_cpu_ptr(&flush_works, cpu));
6036 cpumask_set_cpu(cpu, &flush_cpus);
6037 }
6038 }
6039
6040 /* we can have in flight packet[s] on the cpus we are not flushing,
6041 * synchronize_net() in unregister_netdevice_many() will take care of
6042 * them
6043 */
6044 for_each_cpu(cpu, &flush_cpus)
6045 flush_work(per_cpu_ptr(&flush_works, cpu));
6046
6047 cpus_read_unlock();
6048 }
6049
net_rps_send_ipi(struct softnet_data * remsd)6050 static void net_rps_send_ipi(struct softnet_data *remsd)
6051 {
6052 #ifdef CONFIG_RPS
6053 while (remsd) {
6054 struct softnet_data *next = remsd->rps_ipi_next;
6055
6056 if (cpu_online(remsd->cpu))
6057 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6058 remsd = next;
6059 }
6060 #endif
6061 }
6062
6063 /*
6064 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6065 * Note: called with local irq disabled, but exits with local irq enabled.
6066 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6067 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6068 {
6069 #ifdef CONFIG_RPS
6070 struct softnet_data *remsd = sd->rps_ipi_list;
6071
6072 if (!use_backlog_threads() && remsd) {
6073 sd->rps_ipi_list = NULL;
6074
6075 local_irq_enable();
6076
6077 /* Send pending IPI's to kick RPS processing on remote cpus. */
6078 net_rps_send_ipi(remsd);
6079 } else
6080 #endif
6081 local_irq_enable();
6082 }
6083
sd_has_rps_ipi_waiting(struct softnet_data * sd)6084 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6085 {
6086 #ifdef CONFIG_RPS
6087 return !use_backlog_threads() && sd->rps_ipi_list;
6088 #else
6089 return false;
6090 #endif
6091 }
6092
process_backlog(struct napi_struct * napi,int quota)6093 static int process_backlog(struct napi_struct *napi, int quota)
6094 {
6095 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6096 bool again = true;
6097 int work = 0;
6098
6099 /* Check if we have pending ipi, its better to send them now,
6100 * not waiting net_rx_action() end.
6101 */
6102 if (sd_has_rps_ipi_waiting(sd)) {
6103 local_irq_disable();
6104 net_rps_action_and_irq_enable(sd);
6105 }
6106
6107 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6108 while (again) {
6109 struct sk_buff *skb;
6110
6111 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6112 while ((skb = __skb_dequeue(&sd->process_queue))) {
6113 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6114 rcu_read_lock();
6115 __netif_receive_skb(skb);
6116 rcu_read_unlock();
6117 if (++work >= quota) {
6118 rps_input_queue_head_add(sd, work);
6119 return work;
6120 }
6121
6122 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6123 }
6124 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6125
6126 backlog_lock_irq_disable(sd);
6127 if (skb_queue_empty(&sd->input_pkt_queue)) {
6128 /*
6129 * Inline a custom version of __napi_complete().
6130 * only current cpu owns and manipulates this napi,
6131 * and NAPI_STATE_SCHED is the only possible flag set
6132 * on backlog.
6133 * We can use a plain write instead of clear_bit(),
6134 * and we dont need an smp_mb() memory barrier.
6135 */
6136 napi->state &= NAPIF_STATE_THREADED;
6137 again = false;
6138 } else {
6139 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6140 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6141 &sd->process_queue);
6142 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6143 }
6144 backlog_unlock_irq_enable(sd);
6145 }
6146
6147 if (work)
6148 rps_input_queue_head_add(sd, work);
6149 return work;
6150 }
6151
6152 /**
6153 * __napi_schedule - schedule for receive
6154 * @n: entry to schedule
6155 *
6156 * The entry's receive function will be scheduled to run.
6157 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6158 */
__napi_schedule(struct napi_struct * n)6159 void __napi_schedule(struct napi_struct *n)
6160 {
6161 unsigned long flags;
6162
6163 local_irq_save(flags);
6164 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6165 local_irq_restore(flags);
6166 }
6167 EXPORT_SYMBOL(__napi_schedule);
6168
6169 /**
6170 * napi_schedule_prep - check if napi can be scheduled
6171 * @n: napi context
6172 *
6173 * Test if NAPI routine is already running, and if not mark
6174 * it as running. This is used as a condition variable to
6175 * insure only one NAPI poll instance runs. We also make
6176 * sure there is no pending NAPI disable.
6177 */
napi_schedule_prep(struct napi_struct * n)6178 bool napi_schedule_prep(struct napi_struct *n)
6179 {
6180 unsigned long new, val = READ_ONCE(n->state);
6181
6182 do {
6183 if (unlikely(val & NAPIF_STATE_DISABLE))
6184 return false;
6185 new = val | NAPIF_STATE_SCHED;
6186
6187 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6188 * This was suggested by Alexander Duyck, as compiler
6189 * emits better code than :
6190 * if (val & NAPIF_STATE_SCHED)
6191 * new |= NAPIF_STATE_MISSED;
6192 */
6193 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6194 NAPIF_STATE_MISSED;
6195 } while (!try_cmpxchg(&n->state, &val, new));
6196
6197 return !(val & NAPIF_STATE_SCHED);
6198 }
6199 EXPORT_SYMBOL(napi_schedule_prep);
6200
6201 /**
6202 * __napi_schedule_irqoff - schedule for receive
6203 * @n: entry to schedule
6204 *
6205 * Variant of __napi_schedule() assuming hard irqs are masked.
6206 *
6207 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6208 * because the interrupt disabled assumption might not be true
6209 * due to force-threaded interrupts and spinlock substitution.
6210 */
__napi_schedule_irqoff(struct napi_struct * n)6211 void __napi_schedule_irqoff(struct napi_struct *n)
6212 {
6213 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6214 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6215 else
6216 __napi_schedule(n);
6217 }
6218 EXPORT_SYMBOL(__napi_schedule_irqoff);
6219
napi_complete_done(struct napi_struct * n,int work_done)6220 bool napi_complete_done(struct napi_struct *n, int work_done)
6221 {
6222 unsigned long flags, val, new, timeout = 0;
6223 bool ret = true;
6224
6225 /*
6226 * 1) Don't let napi dequeue from the cpu poll list
6227 * just in case its running on a different cpu.
6228 * 2) If we are busy polling, do nothing here, we have
6229 * the guarantee we will be called later.
6230 */
6231 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6232 NAPIF_STATE_IN_BUSY_POLL)))
6233 return false;
6234
6235 if (work_done) {
6236 if (n->gro_bitmask)
6237 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6238 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6239 }
6240 if (n->defer_hard_irqs_count > 0) {
6241 n->defer_hard_irqs_count--;
6242 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6243 if (timeout)
6244 ret = false;
6245 }
6246 if (n->gro_bitmask) {
6247 /* When the NAPI instance uses a timeout and keeps postponing
6248 * it, we need to bound somehow the time packets are kept in
6249 * the GRO layer
6250 */
6251 napi_gro_flush(n, !!timeout);
6252 }
6253
6254 gro_normal_list(n);
6255
6256 if (unlikely(!list_empty(&n->poll_list))) {
6257 /* If n->poll_list is not empty, we need to mask irqs */
6258 local_irq_save(flags);
6259 list_del_init(&n->poll_list);
6260 local_irq_restore(flags);
6261 }
6262 WRITE_ONCE(n->list_owner, -1);
6263
6264 val = READ_ONCE(n->state);
6265 do {
6266 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6267
6268 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6269 NAPIF_STATE_SCHED_THREADED |
6270 NAPIF_STATE_PREFER_BUSY_POLL);
6271
6272 /* If STATE_MISSED was set, leave STATE_SCHED set,
6273 * because we will call napi->poll() one more time.
6274 * This C code was suggested by Alexander Duyck to help gcc.
6275 */
6276 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6277 NAPIF_STATE_SCHED;
6278 } while (!try_cmpxchg(&n->state, &val, new));
6279
6280 if (unlikely(val & NAPIF_STATE_MISSED)) {
6281 __napi_schedule(n);
6282 return false;
6283 }
6284
6285 if (timeout)
6286 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6287 HRTIMER_MODE_REL_PINNED);
6288 return ret;
6289 }
6290 EXPORT_SYMBOL(napi_complete_done);
6291
6292 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6293 struct napi_struct *napi_by_id(unsigned int napi_id)
6294 {
6295 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6296 struct napi_struct *napi;
6297
6298 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6299 if (napi->napi_id == napi_id)
6300 return napi;
6301
6302 return NULL;
6303 }
6304
skb_defer_free_flush(struct softnet_data * sd)6305 static void skb_defer_free_flush(struct softnet_data *sd)
6306 {
6307 struct sk_buff *skb, *next;
6308
6309 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6310 if (!READ_ONCE(sd->defer_list))
6311 return;
6312
6313 spin_lock(&sd->defer_lock);
6314 skb = sd->defer_list;
6315 sd->defer_list = NULL;
6316 sd->defer_count = 0;
6317 spin_unlock(&sd->defer_lock);
6318
6319 while (skb != NULL) {
6320 next = skb->next;
6321 napi_consume_skb(skb, 1);
6322 skb = next;
6323 }
6324 }
6325
6326 #if defined(CONFIG_NET_RX_BUSY_POLL)
6327
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6328 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6329 {
6330 if (!skip_schedule) {
6331 gro_normal_list(napi);
6332 __napi_schedule(napi);
6333 return;
6334 }
6335
6336 if (napi->gro_bitmask) {
6337 /* flush too old packets
6338 * If HZ < 1000, flush all packets.
6339 */
6340 napi_gro_flush(napi, HZ >= 1000);
6341 }
6342
6343 gro_normal_list(napi);
6344 clear_bit(NAPI_STATE_SCHED, &napi->state);
6345 }
6346
6347 enum {
6348 NAPI_F_PREFER_BUSY_POLL = 1,
6349 NAPI_F_END_ON_RESCHED = 2,
6350 };
6351
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6352 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6353 unsigned flags, u16 budget)
6354 {
6355 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6356 bool skip_schedule = false;
6357 unsigned long timeout;
6358 int rc;
6359
6360 /* Busy polling means there is a high chance device driver hard irq
6361 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6362 * set in napi_schedule_prep().
6363 * Since we are about to call napi->poll() once more, we can safely
6364 * clear NAPI_STATE_MISSED.
6365 *
6366 * Note: x86 could use a single "lock and ..." instruction
6367 * to perform these two clear_bit()
6368 */
6369 clear_bit(NAPI_STATE_MISSED, &napi->state);
6370 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6371
6372 local_bh_disable();
6373 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6374
6375 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6376 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6377 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6378 if (napi->defer_hard_irqs_count && timeout) {
6379 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6380 skip_schedule = true;
6381 }
6382 }
6383
6384 /* All we really want here is to re-enable device interrupts.
6385 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6386 */
6387 rc = napi->poll(napi, budget);
6388 /* We can't gro_normal_list() here, because napi->poll() might have
6389 * rearmed the napi (napi_complete_done()) in which case it could
6390 * already be running on another CPU.
6391 */
6392 trace_napi_poll(napi, rc, budget);
6393 netpoll_poll_unlock(have_poll_lock);
6394 if (rc == budget)
6395 __busy_poll_stop(napi, skip_schedule);
6396 bpf_net_ctx_clear(bpf_net_ctx);
6397 local_bh_enable();
6398 }
6399
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6400 static void __napi_busy_loop(unsigned int napi_id,
6401 bool (*loop_end)(void *, unsigned long),
6402 void *loop_end_arg, unsigned flags, u16 budget)
6403 {
6404 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6405 int (*napi_poll)(struct napi_struct *napi, int budget);
6406 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6407 void *have_poll_lock = NULL;
6408 struct napi_struct *napi;
6409
6410 WARN_ON_ONCE(!rcu_read_lock_held());
6411
6412 restart:
6413 napi_poll = NULL;
6414
6415 napi = napi_by_id(napi_id);
6416 if (!napi)
6417 return;
6418
6419 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6420 preempt_disable();
6421 for (;;) {
6422 int work = 0;
6423
6424 local_bh_disable();
6425 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6426 if (!napi_poll) {
6427 unsigned long val = READ_ONCE(napi->state);
6428
6429 /* If multiple threads are competing for this napi,
6430 * we avoid dirtying napi->state as much as we can.
6431 */
6432 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6433 NAPIF_STATE_IN_BUSY_POLL)) {
6434 if (flags & NAPI_F_PREFER_BUSY_POLL)
6435 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6436 goto count;
6437 }
6438 if (cmpxchg(&napi->state, val,
6439 val | NAPIF_STATE_IN_BUSY_POLL |
6440 NAPIF_STATE_SCHED) != val) {
6441 if (flags & NAPI_F_PREFER_BUSY_POLL)
6442 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6443 goto count;
6444 }
6445 have_poll_lock = netpoll_poll_lock(napi);
6446 napi_poll = napi->poll;
6447 }
6448 work = napi_poll(napi, budget);
6449 trace_napi_poll(napi, work, budget);
6450 gro_normal_list(napi);
6451 count:
6452 if (work > 0)
6453 __NET_ADD_STATS(dev_net(napi->dev),
6454 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6455 skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6456 bpf_net_ctx_clear(bpf_net_ctx);
6457 local_bh_enable();
6458
6459 if (!loop_end || loop_end(loop_end_arg, start_time))
6460 break;
6461
6462 if (unlikely(need_resched())) {
6463 if (flags & NAPI_F_END_ON_RESCHED)
6464 break;
6465 if (napi_poll)
6466 busy_poll_stop(napi, have_poll_lock, flags, budget);
6467 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6468 preempt_enable();
6469 rcu_read_unlock();
6470 cond_resched();
6471 rcu_read_lock();
6472 if (loop_end(loop_end_arg, start_time))
6473 return;
6474 goto restart;
6475 }
6476 cpu_relax();
6477 }
6478 if (napi_poll)
6479 busy_poll_stop(napi, have_poll_lock, flags, budget);
6480 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6481 preempt_enable();
6482 }
6483
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6484 void napi_busy_loop_rcu(unsigned int napi_id,
6485 bool (*loop_end)(void *, unsigned long),
6486 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6487 {
6488 unsigned flags = NAPI_F_END_ON_RESCHED;
6489
6490 if (prefer_busy_poll)
6491 flags |= NAPI_F_PREFER_BUSY_POLL;
6492
6493 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6494 }
6495
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6496 void napi_busy_loop(unsigned int napi_id,
6497 bool (*loop_end)(void *, unsigned long),
6498 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6499 {
6500 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6501
6502 rcu_read_lock();
6503 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6504 rcu_read_unlock();
6505 }
6506 EXPORT_SYMBOL(napi_busy_loop);
6507
6508 #endif /* CONFIG_NET_RX_BUSY_POLL */
6509
napi_hash_add(struct napi_struct * napi)6510 static void napi_hash_add(struct napi_struct *napi)
6511 {
6512 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6513 return;
6514
6515 spin_lock(&napi_hash_lock);
6516
6517 /* 0..NR_CPUS range is reserved for sender_cpu use */
6518 do {
6519 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6520 napi_gen_id = MIN_NAPI_ID;
6521 } while (napi_by_id(napi_gen_id));
6522 napi->napi_id = napi_gen_id;
6523
6524 hlist_add_head_rcu(&napi->napi_hash_node,
6525 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6526
6527 spin_unlock(&napi_hash_lock);
6528 }
6529
6530 /* Warning : caller is responsible to make sure rcu grace period
6531 * is respected before freeing memory containing @napi
6532 */
napi_hash_del(struct napi_struct * napi)6533 static void napi_hash_del(struct napi_struct *napi)
6534 {
6535 spin_lock(&napi_hash_lock);
6536
6537 hlist_del_init_rcu(&napi->napi_hash_node);
6538
6539 spin_unlock(&napi_hash_lock);
6540 }
6541
napi_watchdog(struct hrtimer * timer)6542 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6543 {
6544 struct napi_struct *napi;
6545
6546 napi = container_of(timer, struct napi_struct, timer);
6547
6548 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6549 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6550 */
6551 if (!napi_disable_pending(napi) &&
6552 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6553 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6554 __napi_schedule_irqoff(napi);
6555 }
6556
6557 return HRTIMER_NORESTART;
6558 }
6559
init_gro_hash(struct napi_struct * napi)6560 static void init_gro_hash(struct napi_struct *napi)
6561 {
6562 int i;
6563
6564 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6565 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6566 napi->gro_hash[i].count = 0;
6567 }
6568 napi->gro_bitmask = 0;
6569 }
6570
dev_set_threaded(struct net_device * dev,bool threaded)6571 int dev_set_threaded(struct net_device *dev, bool threaded)
6572 {
6573 struct napi_struct *napi;
6574 int err = 0;
6575
6576 if (dev->threaded == threaded)
6577 return 0;
6578
6579 if (threaded) {
6580 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6581 if (!napi->thread) {
6582 err = napi_kthread_create(napi);
6583 if (err) {
6584 threaded = false;
6585 break;
6586 }
6587 }
6588 }
6589 }
6590
6591 WRITE_ONCE(dev->threaded, threaded);
6592
6593 /* Make sure kthread is created before THREADED bit
6594 * is set.
6595 */
6596 smp_mb__before_atomic();
6597
6598 /* Setting/unsetting threaded mode on a napi might not immediately
6599 * take effect, if the current napi instance is actively being
6600 * polled. In this case, the switch between threaded mode and
6601 * softirq mode will happen in the next round of napi_schedule().
6602 * This should not cause hiccups/stalls to the live traffic.
6603 */
6604 list_for_each_entry(napi, &dev->napi_list, dev_list)
6605 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6606
6607 return err;
6608 }
6609 EXPORT_SYMBOL(dev_set_threaded);
6610
6611 /**
6612 * netif_queue_set_napi - Associate queue with the napi
6613 * @dev: device to which NAPI and queue belong
6614 * @queue_index: Index of queue
6615 * @type: queue type as RX or TX
6616 * @napi: NAPI context, pass NULL to clear previously set NAPI
6617 *
6618 * Set queue with its corresponding napi context. This should be done after
6619 * registering the NAPI handler for the queue-vector and the queues have been
6620 * mapped to the corresponding interrupt vector.
6621 */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)6622 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6623 enum netdev_queue_type type, struct napi_struct *napi)
6624 {
6625 struct netdev_rx_queue *rxq;
6626 struct netdev_queue *txq;
6627
6628 if (WARN_ON_ONCE(napi && !napi->dev))
6629 return;
6630 if (dev->reg_state >= NETREG_REGISTERED)
6631 ASSERT_RTNL();
6632
6633 switch (type) {
6634 case NETDEV_QUEUE_TYPE_RX:
6635 rxq = __netif_get_rx_queue(dev, queue_index);
6636 rxq->napi = napi;
6637 return;
6638 case NETDEV_QUEUE_TYPE_TX:
6639 txq = netdev_get_tx_queue(dev, queue_index);
6640 txq->napi = napi;
6641 return;
6642 default:
6643 return;
6644 }
6645 }
6646 EXPORT_SYMBOL(netif_queue_set_napi);
6647
netif_napi_add_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6648 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6649 int (*poll)(struct napi_struct *, int), int weight)
6650 {
6651 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6652 return;
6653
6654 INIT_LIST_HEAD(&napi->poll_list);
6655 INIT_HLIST_NODE(&napi->napi_hash_node);
6656 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6657 napi->timer.function = napi_watchdog;
6658 init_gro_hash(napi);
6659 napi->skb = NULL;
6660 INIT_LIST_HEAD(&napi->rx_list);
6661 napi->rx_count = 0;
6662 napi->poll = poll;
6663 if (weight > NAPI_POLL_WEIGHT)
6664 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6665 weight);
6666 napi->weight = weight;
6667 napi->dev = dev;
6668 #ifdef CONFIG_NETPOLL
6669 napi->poll_owner = -1;
6670 #endif
6671 napi->list_owner = -1;
6672 set_bit(NAPI_STATE_SCHED, &napi->state);
6673 set_bit(NAPI_STATE_NPSVC, &napi->state);
6674 list_add_rcu(&napi->dev_list, &dev->napi_list);
6675 napi_hash_add(napi);
6676 napi_get_frags_check(napi);
6677 /* Create kthread for this napi if dev->threaded is set.
6678 * Clear dev->threaded if kthread creation failed so that
6679 * threaded mode will not be enabled in napi_enable().
6680 */
6681 if (dev->threaded && napi_kthread_create(napi))
6682 dev->threaded = false;
6683 netif_napi_set_irq(napi, -1);
6684 }
6685 EXPORT_SYMBOL(netif_napi_add_weight);
6686
napi_disable(struct napi_struct * n)6687 void napi_disable(struct napi_struct *n)
6688 {
6689 unsigned long val, new;
6690
6691 might_sleep();
6692 set_bit(NAPI_STATE_DISABLE, &n->state);
6693
6694 val = READ_ONCE(n->state);
6695 do {
6696 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6697 usleep_range(20, 200);
6698 val = READ_ONCE(n->state);
6699 }
6700
6701 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6702 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6703 } while (!try_cmpxchg(&n->state, &val, new));
6704
6705 hrtimer_cancel(&n->timer);
6706
6707 clear_bit(NAPI_STATE_DISABLE, &n->state);
6708 }
6709 EXPORT_SYMBOL(napi_disable);
6710
6711 /**
6712 * napi_enable - enable NAPI scheduling
6713 * @n: NAPI context
6714 *
6715 * Resume NAPI from being scheduled on this context.
6716 * Must be paired with napi_disable.
6717 */
napi_enable(struct napi_struct * n)6718 void napi_enable(struct napi_struct *n)
6719 {
6720 unsigned long new, val = READ_ONCE(n->state);
6721
6722 do {
6723 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6724
6725 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6726 if (n->dev->threaded && n->thread)
6727 new |= NAPIF_STATE_THREADED;
6728 } while (!try_cmpxchg(&n->state, &val, new));
6729 }
6730 EXPORT_SYMBOL(napi_enable);
6731
flush_gro_hash(struct napi_struct * napi)6732 static void flush_gro_hash(struct napi_struct *napi)
6733 {
6734 int i;
6735
6736 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6737 struct sk_buff *skb, *n;
6738
6739 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6740 kfree_skb(skb);
6741 napi->gro_hash[i].count = 0;
6742 }
6743 }
6744
6745 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6746 void __netif_napi_del(struct napi_struct *napi)
6747 {
6748 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6749 return;
6750
6751 napi_hash_del(napi);
6752 list_del_rcu(&napi->dev_list);
6753 napi_free_frags(napi);
6754
6755 flush_gro_hash(napi);
6756 napi->gro_bitmask = 0;
6757
6758 if (napi->thread) {
6759 kthread_stop(napi->thread);
6760 napi->thread = NULL;
6761 }
6762 }
6763 EXPORT_SYMBOL(__netif_napi_del);
6764
__napi_poll(struct napi_struct * n,bool * repoll)6765 static int __napi_poll(struct napi_struct *n, bool *repoll)
6766 {
6767 int work, weight;
6768
6769 weight = n->weight;
6770
6771 /* This NAPI_STATE_SCHED test is for avoiding a race
6772 * with netpoll's poll_napi(). Only the entity which
6773 * obtains the lock and sees NAPI_STATE_SCHED set will
6774 * actually make the ->poll() call. Therefore we avoid
6775 * accidentally calling ->poll() when NAPI is not scheduled.
6776 */
6777 work = 0;
6778 if (napi_is_scheduled(n)) {
6779 work = n->poll(n, weight);
6780 trace_napi_poll(n, work, weight);
6781
6782 xdp_do_check_flushed(n);
6783 }
6784
6785 if (unlikely(work > weight))
6786 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6787 n->poll, work, weight);
6788
6789 if (likely(work < weight))
6790 return work;
6791
6792 /* Drivers must not modify the NAPI state if they
6793 * consume the entire weight. In such cases this code
6794 * still "owns" the NAPI instance and therefore can
6795 * move the instance around on the list at-will.
6796 */
6797 if (unlikely(napi_disable_pending(n))) {
6798 napi_complete(n);
6799 return work;
6800 }
6801
6802 /* The NAPI context has more processing work, but busy-polling
6803 * is preferred. Exit early.
6804 */
6805 if (napi_prefer_busy_poll(n)) {
6806 if (napi_complete_done(n, work)) {
6807 /* If timeout is not set, we need to make sure
6808 * that the NAPI is re-scheduled.
6809 */
6810 napi_schedule(n);
6811 }
6812 return work;
6813 }
6814
6815 if (n->gro_bitmask) {
6816 /* flush too old packets
6817 * If HZ < 1000, flush all packets.
6818 */
6819 napi_gro_flush(n, HZ >= 1000);
6820 }
6821
6822 gro_normal_list(n);
6823
6824 /* Some drivers may have called napi_schedule
6825 * prior to exhausting their budget.
6826 */
6827 if (unlikely(!list_empty(&n->poll_list))) {
6828 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6829 n->dev ? n->dev->name : "backlog");
6830 return work;
6831 }
6832
6833 *repoll = true;
6834
6835 return work;
6836 }
6837
napi_poll(struct napi_struct * n,struct list_head * repoll)6838 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6839 {
6840 bool do_repoll = false;
6841 void *have;
6842 int work;
6843
6844 list_del_init(&n->poll_list);
6845
6846 have = netpoll_poll_lock(n);
6847
6848 work = __napi_poll(n, &do_repoll);
6849
6850 if (do_repoll)
6851 list_add_tail(&n->poll_list, repoll);
6852
6853 netpoll_poll_unlock(have);
6854
6855 return work;
6856 }
6857
napi_thread_wait(struct napi_struct * napi)6858 static int napi_thread_wait(struct napi_struct *napi)
6859 {
6860 set_current_state(TASK_INTERRUPTIBLE);
6861
6862 while (!kthread_should_stop()) {
6863 /* Testing SCHED_THREADED bit here to make sure the current
6864 * kthread owns this napi and could poll on this napi.
6865 * Testing SCHED bit is not enough because SCHED bit might be
6866 * set by some other busy poll thread or by napi_disable().
6867 */
6868 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6869 WARN_ON(!list_empty(&napi->poll_list));
6870 __set_current_state(TASK_RUNNING);
6871 return 0;
6872 }
6873
6874 schedule();
6875 set_current_state(TASK_INTERRUPTIBLE);
6876 }
6877 __set_current_state(TASK_RUNNING);
6878
6879 return -1;
6880 }
6881
napi_threaded_poll_loop(struct napi_struct * napi)6882 static void napi_threaded_poll_loop(struct napi_struct *napi)
6883 {
6884 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6885 struct softnet_data *sd;
6886 unsigned long last_qs = jiffies;
6887
6888 for (;;) {
6889 bool repoll = false;
6890 void *have;
6891
6892 local_bh_disable();
6893 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6894
6895 sd = this_cpu_ptr(&softnet_data);
6896 sd->in_napi_threaded_poll = true;
6897
6898 have = netpoll_poll_lock(napi);
6899 __napi_poll(napi, &repoll);
6900 netpoll_poll_unlock(have);
6901
6902 sd->in_napi_threaded_poll = false;
6903 barrier();
6904
6905 if (sd_has_rps_ipi_waiting(sd)) {
6906 local_irq_disable();
6907 net_rps_action_and_irq_enable(sd);
6908 }
6909 skb_defer_free_flush(sd);
6910 bpf_net_ctx_clear(bpf_net_ctx);
6911 local_bh_enable();
6912
6913 if (!repoll)
6914 break;
6915
6916 rcu_softirq_qs_periodic(last_qs);
6917 cond_resched();
6918 }
6919 }
6920
napi_threaded_poll(void * data)6921 static int napi_threaded_poll(void *data)
6922 {
6923 struct napi_struct *napi = data;
6924
6925 while (!napi_thread_wait(napi))
6926 napi_threaded_poll_loop(napi);
6927
6928 return 0;
6929 }
6930
net_rx_action(void)6931 static __latent_entropy void net_rx_action(void)
6932 {
6933 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6934 unsigned long time_limit = jiffies +
6935 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6936 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6937 int budget = READ_ONCE(net_hotdata.netdev_budget);
6938 LIST_HEAD(list);
6939 LIST_HEAD(repoll);
6940
6941 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6942 start:
6943 sd->in_net_rx_action = true;
6944 local_irq_disable();
6945 list_splice_init(&sd->poll_list, &list);
6946 local_irq_enable();
6947
6948 for (;;) {
6949 struct napi_struct *n;
6950
6951 skb_defer_free_flush(sd);
6952
6953 if (list_empty(&list)) {
6954 if (list_empty(&repoll)) {
6955 sd->in_net_rx_action = false;
6956 barrier();
6957 /* We need to check if ____napi_schedule()
6958 * had refilled poll_list while
6959 * sd->in_net_rx_action was true.
6960 */
6961 if (!list_empty(&sd->poll_list))
6962 goto start;
6963 if (!sd_has_rps_ipi_waiting(sd))
6964 goto end;
6965 }
6966 break;
6967 }
6968
6969 n = list_first_entry(&list, struct napi_struct, poll_list);
6970 budget -= napi_poll(n, &repoll);
6971
6972 /* If softirq window is exhausted then punt.
6973 * Allow this to run for 2 jiffies since which will allow
6974 * an average latency of 1.5/HZ.
6975 */
6976 if (unlikely(budget <= 0 ||
6977 time_after_eq(jiffies, time_limit))) {
6978 sd->time_squeeze++;
6979 break;
6980 }
6981 }
6982
6983 local_irq_disable();
6984
6985 list_splice_tail_init(&sd->poll_list, &list);
6986 list_splice_tail(&repoll, &list);
6987 list_splice(&list, &sd->poll_list);
6988 if (!list_empty(&sd->poll_list))
6989 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6990 else
6991 sd->in_net_rx_action = false;
6992
6993 net_rps_action_and_irq_enable(sd);
6994 end:
6995 bpf_net_ctx_clear(bpf_net_ctx);
6996 }
6997
6998 struct netdev_adjacent {
6999 struct net_device *dev;
7000 netdevice_tracker dev_tracker;
7001
7002 /* upper master flag, there can only be one master device per list */
7003 bool master;
7004
7005 /* lookup ignore flag */
7006 bool ignore;
7007
7008 /* counter for the number of times this device was added to us */
7009 u16 ref_nr;
7010
7011 /* private field for the users */
7012 void *private;
7013
7014 struct list_head list;
7015 struct rcu_head rcu;
7016 };
7017
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7018 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7019 struct list_head *adj_list)
7020 {
7021 struct netdev_adjacent *adj;
7022
7023 list_for_each_entry(adj, adj_list, list) {
7024 if (adj->dev == adj_dev)
7025 return adj;
7026 }
7027 return NULL;
7028 }
7029
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7030 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7031 struct netdev_nested_priv *priv)
7032 {
7033 struct net_device *dev = (struct net_device *)priv->data;
7034
7035 return upper_dev == dev;
7036 }
7037
7038 /**
7039 * netdev_has_upper_dev - Check if device is linked to an upper device
7040 * @dev: device
7041 * @upper_dev: upper device to check
7042 *
7043 * Find out if a device is linked to specified upper device and return true
7044 * in case it is. Note that this checks only immediate upper device,
7045 * not through a complete stack of devices. The caller must hold the RTNL lock.
7046 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7047 bool netdev_has_upper_dev(struct net_device *dev,
7048 struct net_device *upper_dev)
7049 {
7050 struct netdev_nested_priv priv = {
7051 .data = (void *)upper_dev,
7052 };
7053
7054 ASSERT_RTNL();
7055
7056 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7057 &priv);
7058 }
7059 EXPORT_SYMBOL(netdev_has_upper_dev);
7060
7061 /**
7062 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7063 * @dev: device
7064 * @upper_dev: upper device to check
7065 *
7066 * Find out if a device is linked to specified upper device and return true
7067 * in case it is. Note that this checks the entire upper device chain.
7068 * The caller must hold rcu lock.
7069 */
7070
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7071 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7072 struct net_device *upper_dev)
7073 {
7074 struct netdev_nested_priv priv = {
7075 .data = (void *)upper_dev,
7076 };
7077
7078 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7079 &priv);
7080 }
7081 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7082
7083 /**
7084 * netdev_has_any_upper_dev - Check if device is linked to some device
7085 * @dev: device
7086 *
7087 * Find out if a device is linked to an upper device and return true in case
7088 * it is. The caller must hold the RTNL lock.
7089 */
netdev_has_any_upper_dev(struct net_device * dev)7090 bool netdev_has_any_upper_dev(struct net_device *dev)
7091 {
7092 ASSERT_RTNL();
7093
7094 return !list_empty(&dev->adj_list.upper);
7095 }
7096 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7097
7098 /**
7099 * netdev_master_upper_dev_get - Get master upper device
7100 * @dev: device
7101 *
7102 * Find a master upper device and return pointer to it or NULL in case
7103 * it's not there. The caller must hold the RTNL lock.
7104 */
netdev_master_upper_dev_get(struct net_device * dev)7105 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7106 {
7107 struct netdev_adjacent *upper;
7108
7109 ASSERT_RTNL();
7110
7111 if (list_empty(&dev->adj_list.upper))
7112 return NULL;
7113
7114 upper = list_first_entry(&dev->adj_list.upper,
7115 struct netdev_adjacent, list);
7116 if (likely(upper->master))
7117 return upper->dev;
7118 return NULL;
7119 }
7120 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7121
__netdev_master_upper_dev_get(struct net_device * dev)7122 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7123 {
7124 struct netdev_adjacent *upper;
7125
7126 ASSERT_RTNL();
7127
7128 if (list_empty(&dev->adj_list.upper))
7129 return NULL;
7130
7131 upper = list_first_entry(&dev->adj_list.upper,
7132 struct netdev_adjacent, list);
7133 if (likely(upper->master) && !upper->ignore)
7134 return upper->dev;
7135 return NULL;
7136 }
7137
7138 /**
7139 * netdev_has_any_lower_dev - Check if device is linked to some device
7140 * @dev: device
7141 *
7142 * Find out if a device is linked to a lower device and return true in case
7143 * it is. The caller must hold the RTNL lock.
7144 */
netdev_has_any_lower_dev(struct net_device * dev)7145 static bool netdev_has_any_lower_dev(struct net_device *dev)
7146 {
7147 ASSERT_RTNL();
7148
7149 return !list_empty(&dev->adj_list.lower);
7150 }
7151
netdev_adjacent_get_private(struct list_head * adj_list)7152 void *netdev_adjacent_get_private(struct list_head *adj_list)
7153 {
7154 struct netdev_adjacent *adj;
7155
7156 adj = list_entry(adj_list, struct netdev_adjacent, list);
7157
7158 return adj->private;
7159 }
7160 EXPORT_SYMBOL(netdev_adjacent_get_private);
7161
7162 /**
7163 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7164 * @dev: device
7165 * @iter: list_head ** of the current position
7166 *
7167 * Gets the next device from the dev's upper list, starting from iter
7168 * position. The caller must hold RCU read lock.
7169 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7170 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7171 struct list_head **iter)
7172 {
7173 struct netdev_adjacent *upper;
7174
7175 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7176
7177 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7178
7179 if (&upper->list == &dev->adj_list.upper)
7180 return NULL;
7181
7182 *iter = &upper->list;
7183
7184 return upper->dev;
7185 }
7186 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7187
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7188 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7189 struct list_head **iter,
7190 bool *ignore)
7191 {
7192 struct netdev_adjacent *upper;
7193
7194 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7195
7196 if (&upper->list == &dev->adj_list.upper)
7197 return NULL;
7198
7199 *iter = &upper->list;
7200 *ignore = upper->ignore;
7201
7202 return upper->dev;
7203 }
7204
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7205 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7206 struct list_head **iter)
7207 {
7208 struct netdev_adjacent *upper;
7209
7210 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7211
7212 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7213
7214 if (&upper->list == &dev->adj_list.upper)
7215 return NULL;
7216
7217 *iter = &upper->list;
7218
7219 return upper->dev;
7220 }
7221
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7222 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7223 int (*fn)(struct net_device *dev,
7224 struct netdev_nested_priv *priv),
7225 struct netdev_nested_priv *priv)
7226 {
7227 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7228 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7229 int ret, cur = 0;
7230 bool ignore;
7231
7232 now = dev;
7233 iter = &dev->adj_list.upper;
7234
7235 while (1) {
7236 if (now != dev) {
7237 ret = fn(now, priv);
7238 if (ret)
7239 return ret;
7240 }
7241
7242 next = NULL;
7243 while (1) {
7244 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7245 if (!udev)
7246 break;
7247 if (ignore)
7248 continue;
7249
7250 next = udev;
7251 niter = &udev->adj_list.upper;
7252 dev_stack[cur] = now;
7253 iter_stack[cur++] = iter;
7254 break;
7255 }
7256
7257 if (!next) {
7258 if (!cur)
7259 return 0;
7260 next = dev_stack[--cur];
7261 niter = iter_stack[cur];
7262 }
7263
7264 now = next;
7265 iter = niter;
7266 }
7267
7268 return 0;
7269 }
7270
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7271 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7272 int (*fn)(struct net_device *dev,
7273 struct netdev_nested_priv *priv),
7274 struct netdev_nested_priv *priv)
7275 {
7276 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7277 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7278 int ret, cur = 0;
7279
7280 now = dev;
7281 iter = &dev->adj_list.upper;
7282
7283 while (1) {
7284 if (now != dev) {
7285 ret = fn(now, priv);
7286 if (ret)
7287 return ret;
7288 }
7289
7290 next = NULL;
7291 while (1) {
7292 udev = netdev_next_upper_dev_rcu(now, &iter);
7293 if (!udev)
7294 break;
7295
7296 next = udev;
7297 niter = &udev->adj_list.upper;
7298 dev_stack[cur] = now;
7299 iter_stack[cur++] = iter;
7300 break;
7301 }
7302
7303 if (!next) {
7304 if (!cur)
7305 return 0;
7306 next = dev_stack[--cur];
7307 niter = iter_stack[cur];
7308 }
7309
7310 now = next;
7311 iter = niter;
7312 }
7313
7314 return 0;
7315 }
7316 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7317
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7318 static bool __netdev_has_upper_dev(struct net_device *dev,
7319 struct net_device *upper_dev)
7320 {
7321 struct netdev_nested_priv priv = {
7322 .flags = 0,
7323 .data = (void *)upper_dev,
7324 };
7325
7326 ASSERT_RTNL();
7327
7328 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7329 &priv);
7330 }
7331
7332 /**
7333 * netdev_lower_get_next_private - Get the next ->private from the
7334 * lower neighbour list
7335 * @dev: device
7336 * @iter: list_head ** of the current position
7337 *
7338 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7339 * list, starting from iter position. The caller must hold either hold the
7340 * RTNL lock or its own locking that guarantees that the neighbour lower
7341 * list will remain unchanged.
7342 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7343 void *netdev_lower_get_next_private(struct net_device *dev,
7344 struct list_head **iter)
7345 {
7346 struct netdev_adjacent *lower;
7347
7348 lower = list_entry(*iter, struct netdev_adjacent, list);
7349
7350 if (&lower->list == &dev->adj_list.lower)
7351 return NULL;
7352
7353 *iter = lower->list.next;
7354
7355 return lower->private;
7356 }
7357 EXPORT_SYMBOL(netdev_lower_get_next_private);
7358
7359 /**
7360 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7361 * lower neighbour list, RCU
7362 * variant
7363 * @dev: device
7364 * @iter: list_head ** of the current position
7365 *
7366 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7367 * list, starting from iter position. The caller must hold RCU read lock.
7368 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7369 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7370 struct list_head **iter)
7371 {
7372 struct netdev_adjacent *lower;
7373
7374 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7375
7376 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7377
7378 if (&lower->list == &dev->adj_list.lower)
7379 return NULL;
7380
7381 *iter = &lower->list;
7382
7383 return lower->private;
7384 }
7385 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7386
7387 /**
7388 * netdev_lower_get_next - Get the next device from the lower neighbour
7389 * list
7390 * @dev: device
7391 * @iter: list_head ** of the current position
7392 *
7393 * Gets the next netdev_adjacent from the dev's lower neighbour
7394 * list, starting from iter position. The caller must hold RTNL lock or
7395 * its own locking that guarantees that the neighbour lower
7396 * list will remain unchanged.
7397 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7398 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7399 {
7400 struct netdev_adjacent *lower;
7401
7402 lower = list_entry(*iter, struct netdev_adjacent, list);
7403
7404 if (&lower->list == &dev->adj_list.lower)
7405 return NULL;
7406
7407 *iter = lower->list.next;
7408
7409 return lower->dev;
7410 }
7411 EXPORT_SYMBOL(netdev_lower_get_next);
7412
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7413 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7414 struct list_head **iter)
7415 {
7416 struct netdev_adjacent *lower;
7417
7418 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7419
7420 if (&lower->list == &dev->adj_list.lower)
7421 return NULL;
7422
7423 *iter = &lower->list;
7424
7425 return lower->dev;
7426 }
7427
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7428 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7429 struct list_head **iter,
7430 bool *ignore)
7431 {
7432 struct netdev_adjacent *lower;
7433
7434 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7435
7436 if (&lower->list == &dev->adj_list.lower)
7437 return NULL;
7438
7439 *iter = &lower->list;
7440 *ignore = lower->ignore;
7441
7442 return lower->dev;
7443 }
7444
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7445 int netdev_walk_all_lower_dev(struct net_device *dev,
7446 int (*fn)(struct net_device *dev,
7447 struct netdev_nested_priv *priv),
7448 struct netdev_nested_priv *priv)
7449 {
7450 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7451 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7452 int ret, cur = 0;
7453
7454 now = dev;
7455 iter = &dev->adj_list.lower;
7456
7457 while (1) {
7458 if (now != dev) {
7459 ret = fn(now, priv);
7460 if (ret)
7461 return ret;
7462 }
7463
7464 next = NULL;
7465 while (1) {
7466 ldev = netdev_next_lower_dev(now, &iter);
7467 if (!ldev)
7468 break;
7469
7470 next = ldev;
7471 niter = &ldev->adj_list.lower;
7472 dev_stack[cur] = now;
7473 iter_stack[cur++] = iter;
7474 break;
7475 }
7476
7477 if (!next) {
7478 if (!cur)
7479 return 0;
7480 next = dev_stack[--cur];
7481 niter = iter_stack[cur];
7482 }
7483
7484 now = next;
7485 iter = niter;
7486 }
7487
7488 return 0;
7489 }
7490 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7491
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7492 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7493 int (*fn)(struct net_device *dev,
7494 struct netdev_nested_priv *priv),
7495 struct netdev_nested_priv *priv)
7496 {
7497 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7498 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7499 int ret, cur = 0;
7500 bool ignore;
7501
7502 now = dev;
7503 iter = &dev->adj_list.lower;
7504
7505 while (1) {
7506 if (now != dev) {
7507 ret = fn(now, priv);
7508 if (ret)
7509 return ret;
7510 }
7511
7512 next = NULL;
7513 while (1) {
7514 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7515 if (!ldev)
7516 break;
7517 if (ignore)
7518 continue;
7519
7520 next = ldev;
7521 niter = &ldev->adj_list.lower;
7522 dev_stack[cur] = now;
7523 iter_stack[cur++] = iter;
7524 break;
7525 }
7526
7527 if (!next) {
7528 if (!cur)
7529 return 0;
7530 next = dev_stack[--cur];
7531 niter = iter_stack[cur];
7532 }
7533
7534 now = next;
7535 iter = niter;
7536 }
7537
7538 return 0;
7539 }
7540
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7541 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7542 struct list_head **iter)
7543 {
7544 struct netdev_adjacent *lower;
7545
7546 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7547 if (&lower->list == &dev->adj_list.lower)
7548 return NULL;
7549
7550 *iter = &lower->list;
7551
7552 return lower->dev;
7553 }
7554 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7555
__netdev_upper_depth(struct net_device * dev)7556 static u8 __netdev_upper_depth(struct net_device *dev)
7557 {
7558 struct net_device *udev;
7559 struct list_head *iter;
7560 u8 max_depth = 0;
7561 bool ignore;
7562
7563 for (iter = &dev->adj_list.upper,
7564 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7565 udev;
7566 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7567 if (ignore)
7568 continue;
7569 if (max_depth < udev->upper_level)
7570 max_depth = udev->upper_level;
7571 }
7572
7573 return max_depth;
7574 }
7575
__netdev_lower_depth(struct net_device * dev)7576 static u8 __netdev_lower_depth(struct net_device *dev)
7577 {
7578 struct net_device *ldev;
7579 struct list_head *iter;
7580 u8 max_depth = 0;
7581 bool ignore;
7582
7583 for (iter = &dev->adj_list.lower,
7584 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7585 ldev;
7586 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7587 if (ignore)
7588 continue;
7589 if (max_depth < ldev->lower_level)
7590 max_depth = ldev->lower_level;
7591 }
7592
7593 return max_depth;
7594 }
7595
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7596 static int __netdev_update_upper_level(struct net_device *dev,
7597 struct netdev_nested_priv *__unused)
7598 {
7599 dev->upper_level = __netdev_upper_depth(dev) + 1;
7600 return 0;
7601 }
7602
7603 #ifdef CONFIG_LOCKDEP
7604 static LIST_HEAD(net_unlink_list);
7605
net_unlink_todo(struct net_device * dev)7606 static void net_unlink_todo(struct net_device *dev)
7607 {
7608 if (list_empty(&dev->unlink_list))
7609 list_add_tail(&dev->unlink_list, &net_unlink_list);
7610 }
7611 #endif
7612
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7613 static int __netdev_update_lower_level(struct net_device *dev,
7614 struct netdev_nested_priv *priv)
7615 {
7616 dev->lower_level = __netdev_lower_depth(dev) + 1;
7617
7618 #ifdef CONFIG_LOCKDEP
7619 if (!priv)
7620 return 0;
7621
7622 if (priv->flags & NESTED_SYNC_IMM)
7623 dev->nested_level = dev->lower_level - 1;
7624 if (priv->flags & NESTED_SYNC_TODO)
7625 net_unlink_todo(dev);
7626 #endif
7627 return 0;
7628 }
7629
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7630 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7631 int (*fn)(struct net_device *dev,
7632 struct netdev_nested_priv *priv),
7633 struct netdev_nested_priv *priv)
7634 {
7635 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7636 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7637 int ret, cur = 0;
7638
7639 now = dev;
7640 iter = &dev->adj_list.lower;
7641
7642 while (1) {
7643 if (now != dev) {
7644 ret = fn(now, priv);
7645 if (ret)
7646 return ret;
7647 }
7648
7649 next = NULL;
7650 while (1) {
7651 ldev = netdev_next_lower_dev_rcu(now, &iter);
7652 if (!ldev)
7653 break;
7654
7655 next = ldev;
7656 niter = &ldev->adj_list.lower;
7657 dev_stack[cur] = now;
7658 iter_stack[cur++] = iter;
7659 break;
7660 }
7661
7662 if (!next) {
7663 if (!cur)
7664 return 0;
7665 next = dev_stack[--cur];
7666 niter = iter_stack[cur];
7667 }
7668
7669 now = next;
7670 iter = niter;
7671 }
7672
7673 return 0;
7674 }
7675 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7676
7677 /**
7678 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7679 * lower neighbour list, RCU
7680 * variant
7681 * @dev: device
7682 *
7683 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7684 * list. The caller must hold RCU read lock.
7685 */
netdev_lower_get_first_private_rcu(struct net_device * dev)7686 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7687 {
7688 struct netdev_adjacent *lower;
7689
7690 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7691 struct netdev_adjacent, list);
7692 if (lower)
7693 return lower->private;
7694 return NULL;
7695 }
7696 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7697
7698 /**
7699 * netdev_master_upper_dev_get_rcu - Get master upper device
7700 * @dev: device
7701 *
7702 * Find a master upper device and return pointer to it or NULL in case
7703 * it's not there. The caller must hold the RCU read lock.
7704 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7705 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7706 {
7707 struct netdev_adjacent *upper;
7708
7709 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7710 struct netdev_adjacent, list);
7711 if (upper && likely(upper->master))
7712 return upper->dev;
7713 return NULL;
7714 }
7715 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7716
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7717 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7718 struct net_device *adj_dev,
7719 struct list_head *dev_list)
7720 {
7721 char linkname[IFNAMSIZ+7];
7722
7723 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7724 "upper_%s" : "lower_%s", adj_dev->name);
7725 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7726 linkname);
7727 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7728 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7729 char *name,
7730 struct list_head *dev_list)
7731 {
7732 char linkname[IFNAMSIZ+7];
7733
7734 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7735 "upper_%s" : "lower_%s", name);
7736 sysfs_remove_link(&(dev->dev.kobj), linkname);
7737 }
7738
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7739 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7740 struct net_device *adj_dev,
7741 struct list_head *dev_list)
7742 {
7743 return (dev_list == &dev->adj_list.upper ||
7744 dev_list == &dev->adj_list.lower) &&
7745 net_eq(dev_net(dev), dev_net(adj_dev));
7746 }
7747
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7748 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7749 struct net_device *adj_dev,
7750 struct list_head *dev_list,
7751 void *private, bool master)
7752 {
7753 struct netdev_adjacent *adj;
7754 int ret;
7755
7756 adj = __netdev_find_adj(adj_dev, dev_list);
7757
7758 if (adj) {
7759 adj->ref_nr += 1;
7760 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7761 dev->name, adj_dev->name, adj->ref_nr);
7762
7763 return 0;
7764 }
7765
7766 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7767 if (!adj)
7768 return -ENOMEM;
7769
7770 adj->dev = adj_dev;
7771 adj->master = master;
7772 adj->ref_nr = 1;
7773 adj->private = private;
7774 adj->ignore = false;
7775 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7776
7777 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7778 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7779
7780 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7781 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7782 if (ret)
7783 goto free_adj;
7784 }
7785
7786 /* Ensure that master link is always the first item in list. */
7787 if (master) {
7788 ret = sysfs_create_link(&(dev->dev.kobj),
7789 &(adj_dev->dev.kobj), "master");
7790 if (ret)
7791 goto remove_symlinks;
7792
7793 list_add_rcu(&adj->list, dev_list);
7794 } else {
7795 list_add_tail_rcu(&adj->list, dev_list);
7796 }
7797
7798 return 0;
7799
7800 remove_symlinks:
7801 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7802 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7803 free_adj:
7804 netdev_put(adj_dev, &adj->dev_tracker);
7805 kfree(adj);
7806
7807 return ret;
7808 }
7809
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7810 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7811 struct net_device *adj_dev,
7812 u16 ref_nr,
7813 struct list_head *dev_list)
7814 {
7815 struct netdev_adjacent *adj;
7816
7817 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7818 dev->name, adj_dev->name, ref_nr);
7819
7820 adj = __netdev_find_adj(adj_dev, dev_list);
7821
7822 if (!adj) {
7823 pr_err("Adjacency does not exist for device %s from %s\n",
7824 dev->name, adj_dev->name);
7825 WARN_ON(1);
7826 return;
7827 }
7828
7829 if (adj->ref_nr > ref_nr) {
7830 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7831 dev->name, adj_dev->name, ref_nr,
7832 adj->ref_nr - ref_nr);
7833 adj->ref_nr -= ref_nr;
7834 return;
7835 }
7836
7837 if (adj->master)
7838 sysfs_remove_link(&(dev->dev.kobj), "master");
7839
7840 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7841 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7842
7843 list_del_rcu(&adj->list);
7844 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7845 adj_dev->name, dev->name, adj_dev->name);
7846 netdev_put(adj_dev, &adj->dev_tracker);
7847 kfree_rcu(adj, rcu);
7848 }
7849
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7850 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7851 struct net_device *upper_dev,
7852 struct list_head *up_list,
7853 struct list_head *down_list,
7854 void *private, bool master)
7855 {
7856 int ret;
7857
7858 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7859 private, master);
7860 if (ret)
7861 return ret;
7862
7863 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7864 private, false);
7865 if (ret) {
7866 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7867 return ret;
7868 }
7869
7870 return 0;
7871 }
7872
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7873 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7874 struct net_device *upper_dev,
7875 u16 ref_nr,
7876 struct list_head *up_list,
7877 struct list_head *down_list)
7878 {
7879 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7880 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7881 }
7882
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7883 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7884 struct net_device *upper_dev,
7885 void *private, bool master)
7886 {
7887 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7888 &dev->adj_list.upper,
7889 &upper_dev->adj_list.lower,
7890 private, master);
7891 }
7892
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7893 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7894 struct net_device *upper_dev)
7895 {
7896 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7897 &dev->adj_list.upper,
7898 &upper_dev->adj_list.lower);
7899 }
7900
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7901 static int __netdev_upper_dev_link(struct net_device *dev,
7902 struct net_device *upper_dev, bool master,
7903 void *upper_priv, void *upper_info,
7904 struct netdev_nested_priv *priv,
7905 struct netlink_ext_ack *extack)
7906 {
7907 struct netdev_notifier_changeupper_info changeupper_info = {
7908 .info = {
7909 .dev = dev,
7910 .extack = extack,
7911 },
7912 .upper_dev = upper_dev,
7913 .master = master,
7914 .linking = true,
7915 .upper_info = upper_info,
7916 };
7917 struct net_device *master_dev;
7918 int ret = 0;
7919
7920 ASSERT_RTNL();
7921
7922 if (dev == upper_dev)
7923 return -EBUSY;
7924
7925 /* To prevent loops, check if dev is not upper device to upper_dev. */
7926 if (__netdev_has_upper_dev(upper_dev, dev))
7927 return -EBUSY;
7928
7929 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7930 return -EMLINK;
7931
7932 if (!master) {
7933 if (__netdev_has_upper_dev(dev, upper_dev))
7934 return -EEXIST;
7935 } else {
7936 master_dev = __netdev_master_upper_dev_get(dev);
7937 if (master_dev)
7938 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7939 }
7940
7941 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7942 &changeupper_info.info);
7943 ret = notifier_to_errno(ret);
7944 if (ret)
7945 return ret;
7946
7947 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7948 master);
7949 if (ret)
7950 return ret;
7951
7952 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7953 &changeupper_info.info);
7954 ret = notifier_to_errno(ret);
7955 if (ret)
7956 goto rollback;
7957
7958 __netdev_update_upper_level(dev, NULL);
7959 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7960
7961 __netdev_update_lower_level(upper_dev, priv);
7962 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7963 priv);
7964
7965 return 0;
7966
7967 rollback:
7968 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7969
7970 return ret;
7971 }
7972
7973 /**
7974 * netdev_upper_dev_link - Add a link to the upper device
7975 * @dev: device
7976 * @upper_dev: new upper device
7977 * @extack: netlink extended ack
7978 *
7979 * Adds a link to device which is upper to this one. The caller must hold
7980 * the RTNL lock. On a failure a negative errno code is returned.
7981 * On success the reference counts are adjusted and the function
7982 * returns zero.
7983 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7984 int netdev_upper_dev_link(struct net_device *dev,
7985 struct net_device *upper_dev,
7986 struct netlink_ext_ack *extack)
7987 {
7988 struct netdev_nested_priv priv = {
7989 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7990 .data = NULL,
7991 };
7992
7993 return __netdev_upper_dev_link(dev, upper_dev, false,
7994 NULL, NULL, &priv, extack);
7995 }
7996 EXPORT_SYMBOL(netdev_upper_dev_link);
7997
7998 /**
7999 * netdev_master_upper_dev_link - Add a master link to the upper device
8000 * @dev: device
8001 * @upper_dev: new upper device
8002 * @upper_priv: upper device private
8003 * @upper_info: upper info to be passed down via notifier
8004 * @extack: netlink extended ack
8005 *
8006 * Adds a link to device which is upper to this one. In this case, only
8007 * one master upper device can be linked, although other non-master devices
8008 * might be linked as well. The caller must hold the RTNL lock.
8009 * On a failure a negative errno code is returned. On success the reference
8010 * counts are adjusted and the function returns zero.
8011 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8012 int netdev_master_upper_dev_link(struct net_device *dev,
8013 struct net_device *upper_dev,
8014 void *upper_priv, void *upper_info,
8015 struct netlink_ext_ack *extack)
8016 {
8017 struct netdev_nested_priv priv = {
8018 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8019 .data = NULL,
8020 };
8021
8022 return __netdev_upper_dev_link(dev, upper_dev, true,
8023 upper_priv, upper_info, &priv, extack);
8024 }
8025 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8026
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8027 static void __netdev_upper_dev_unlink(struct net_device *dev,
8028 struct net_device *upper_dev,
8029 struct netdev_nested_priv *priv)
8030 {
8031 struct netdev_notifier_changeupper_info changeupper_info = {
8032 .info = {
8033 .dev = dev,
8034 },
8035 .upper_dev = upper_dev,
8036 .linking = false,
8037 };
8038
8039 ASSERT_RTNL();
8040
8041 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8042
8043 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8044 &changeupper_info.info);
8045
8046 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8047
8048 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8049 &changeupper_info.info);
8050
8051 __netdev_update_upper_level(dev, NULL);
8052 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8053
8054 __netdev_update_lower_level(upper_dev, priv);
8055 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8056 priv);
8057 }
8058
8059 /**
8060 * netdev_upper_dev_unlink - Removes a link to upper device
8061 * @dev: device
8062 * @upper_dev: new upper device
8063 *
8064 * Removes a link to device which is upper to this one. The caller must hold
8065 * the RTNL lock.
8066 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8067 void netdev_upper_dev_unlink(struct net_device *dev,
8068 struct net_device *upper_dev)
8069 {
8070 struct netdev_nested_priv priv = {
8071 .flags = NESTED_SYNC_TODO,
8072 .data = NULL,
8073 };
8074
8075 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8076 }
8077 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8078
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8079 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8080 struct net_device *lower_dev,
8081 bool val)
8082 {
8083 struct netdev_adjacent *adj;
8084
8085 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8086 if (adj)
8087 adj->ignore = val;
8088
8089 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8090 if (adj)
8091 adj->ignore = val;
8092 }
8093
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8094 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8095 struct net_device *lower_dev)
8096 {
8097 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8098 }
8099
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8100 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8101 struct net_device *lower_dev)
8102 {
8103 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8104 }
8105
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8106 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8107 struct net_device *new_dev,
8108 struct net_device *dev,
8109 struct netlink_ext_ack *extack)
8110 {
8111 struct netdev_nested_priv priv = {
8112 .flags = 0,
8113 .data = NULL,
8114 };
8115 int err;
8116
8117 if (!new_dev)
8118 return 0;
8119
8120 if (old_dev && new_dev != old_dev)
8121 netdev_adjacent_dev_disable(dev, old_dev);
8122 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8123 extack);
8124 if (err) {
8125 if (old_dev && new_dev != old_dev)
8126 netdev_adjacent_dev_enable(dev, old_dev);
8127 return err;
8128 }
8129
8130 return 0;
8131 }
8132 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8133
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8134 void netdev_adjacent_change_commit(struct net_device *old_dev,
8135 struct net_device *new_dev,
8136 struct net_device *dev)
8137 {
8138 struct netdev_nested_priv priv = {
8139 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8140 .data = NULL,
8141 };
8142
8143 if (!new_dev || !old_dev)
8144 return;
8145
8146 if (new_dev == old_dev)
8147 return;
8148
8149 netdev_adjacent_dev_enable(dev, old_dev);
8150 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8151 }
8152 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8153
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8154 void netdev_adjacent_change_abort(struct net_device *old_dev,
8155 struct net_device *new_dev,
8156 struct net_device *dev)
8157 {
8158 struct netdev_nested_priv priv = {
8159 .flags = 0,
8160 .data = NULL,
8161 };
8162
8163 if (!new_dev)
8164 return;
8165
8166 if (old_dev && new_dev != old_dev)
8167 netdev_adjacent_dev_enable(dev, old_dev);
8168
8169 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8170 }
8171 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8172
8173 /**
8174 * netdev_bonding_info_change - Dispatch event about slave change
8175 * @dev: device
8176 * @bonding_info: info to dispatch
8177 *
8178 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8179 * The caller must hold the RTNL lock.
8180 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8181 void netdev_bonding_info_change(struct net_device *dev,
8182 struct netdev_bonding_info *bonding_info)
8183 {
8184 struct netdev_notifier_bonding_info info = {
8185 .info.dev = dev,
8186 };
8187
8188 memcpy(&info.bonding_info, bonding_info,
8189 sizeof(struct netdev_bonding_info));
8190 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8191 &info.info);
8192 }
8193 EXPORT_SYMBOL(netdev_bonding_info_change);
8194
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8195 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8196 struct netlink_ext_ack *extack)
8197 {
8198 struct netdev_notifier_offload_xstats_info info = {
8199 .info.dev = dev,
8200 .info.extack = extack,
8201 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8202 };
8203 int err;
8204 int rc;
8205
8206 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8207 GFP_KERNEL);
8208 if (!dev->offload_xstats_l3)
8209 return -ENOMEM;
8210
8211 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8212 NETDEV_OFFLOAD_XSTATS_DISABLE,
8213 &info.info);
8214 err = notifier_to_errno(rc);
8215 if (err)
8216 goto free_stats;
8217
8218 return 0;
8219
8220 free_stats:
8221 kfree(dev->offload_xstats_l3);
8222 dev->offload_xstats_l3 = NULL;
8223 return err;
8224 }
8225
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8226 int netdev_offload_xstats_enable(struct net_device *dev,
8227 enum netdev_offload_xstats_type type,
8228 struct netlink_ext_ack *extack)
8229 {
8230 ASSERT_RTNL();
8231
8232 if (netdev_offload_xstats_enabled(dev, type))
8233 return -EALREADY;
8234
8235 switch (type) {
8236 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8237 return netdev_offload_xstats_enable_l3(dev, extack);
8238 }
8239
8240 WARN_ON(1);
8241 return -EINVAL;
8242 }
8243 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8244
netdev_offload_xstats_disable_l3(struct net_device * dev)8245 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8246 {
8247 struct netdev_notifier_offload_xstats_info info = {
8248 .info.dev = dev,
8249 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8250 };
8251
8252 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8253 &info.info);
8254 kfree(dev->offload_xstats_l3);
8255 dev->offload_xstats_l3 = NULL;
8256 }
8257
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8258 int netdev_offload_xstats_disable(struct net_device *dev,
8259 enum netdev_offload_xstats_type type)
8260 {
8261 ASSERT_RTNL();
8262
8263 if (!netdev_offload_xstats_enabled(dev, type))
8264 return -EALREADY;
8265
8266 switch (type) {
8267 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8268 netdev_offload_xstats_disable_l3(dev);
8269 return 0;
8270 }
8271
8272 WARN_ON(1);
8273 return -EINVAL;
8274 }
8275 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8276
netdev_offload_xstats_disable_all(struct net_device * dev)8277 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8278 {
8279 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8280 }
8281
8282 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8283 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8284 enum netdev_offload_xstats_type type)
8285 {
8286 switch (type) {
8287 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8288 return dev->offload_xstats_l3;
8289 }
8290
8291 WARN_ON(1);
8292 return NULL;
8293 }
8294
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8295 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8296 enum netdev_offload_xstats_type type)
8297 {
8298 ASSERT_RTNL();
8299
8300 return netdev_offload_xstats_get_ptr(dev, type);
8301 }
8302 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8303
8304 struct netdev_notifier_offload_xstats_ru {
8305 bool used;
8306 };
8307
8308 struct netdev_notifier_offload_xstats_rd {
8309 struct rtnl_hw_stats64 stats;
8310 bool used;
8311 };
8312
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8313 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8314 const struct rtnl_hw_stats64 *src)
8315 {
8316 dest->rx_packets += src->rx_packets;
8317 dest->tx_packets += src->tx_packets;
8318 dest->rx_bytes += src->rx_bytes;
8319 dest->tx_bytes += src->tx_bytes;
8320 dest->rx_errors += src->rx_errors;
8321 dest->tx_errors += src->tx_errors;
8322 dest->rx_dropped += src->rx_dropped;
8323 dest->tx_dropped += src->tx_dropped;
8324 dest->multicast += src->multicast;
8325 }
8326
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8327 static int netdev_offload_xstats_get_used(struct net_device *dev,
8328 enum netdev_offload_xstats_type type,
8329 bool *p_used,
8330 struct netlink_ext_ack *extack)
8331 {
8332 struct netdev_notifier_offload_xstats_ru report_used = {};
8333 struct netdev_notifier_offload_xstats_info info = {
8334 .info.dev = dev,
8335 .info.extack = extack,
8336 .type = type,
8337 .report_used = &report_used,
8338 };
8339 int rc;
8340
8341 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8342 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8343 &info.info);
8344 *p_used = report_used.used;
8345 return notifier_to_errno(rc);
8346 }
8347
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8348 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8349 enum netdev_offload_xstats_type type,
8350 struct rtnl_hw_stats64 *p_stats,
8351 bool *p_used,
8352 struct netlink_ext_ack *extack)
8353 {
8354 struct netdev_notifier_offload_xstats_rd report_delta = {};
8355 struct netdev_notifier_offload_xstats_info info = {
8356 .info.dev = dev,
8357 .info.extack = extack,
8358 .type = type,
8359 .report_delta = &report_delta,
8360 };
8361 struct rtnl_hw_stats64 *stats;
8362 int rc;
8363
8364 stats = netdev_offload_xstats_get_ptr(dev, type);
8365 if (WARN_ON(!stats))
8366 return -EINVAL;
8367
8368 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8369 &info.info);
8370
8371 /* Cache whatever we got, even if there was an error, otherwise the
8372 * successful stats retrievals would get lost.
8373 */
8374 netdev_hw_stats64_add(stats, &report_delta.stats);
8375
8376 if (p_stats)
8377 *p_stats = *stats;
8378 *p_used = report_delta.used;
8379
8380 return notifier_to_errno(rc);
8381 }
8382
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8383 int netdev_offload_xstats_get(struct net_device *dev,
8384 enum netdev_offload_xstats_type type,
8385 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8386 struct netlink_ext_ack *extack)
8387 {
8388 ASSERT_RTNL();
8389
8390 if (p_stats)
8391 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8392 p_used, extack);
8393 else
8394 return netdev_offload_xstats_get_used(dev, type, p_used,
8395 extack);
8396 }
8397 EXPORT_SYMBOL(netdev_offload_xstats_get);
8398
8399 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8400 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8401 const struct rtnl_hw_stats64 *stats)
8402 {
8403 report_delta->used = true;
8404 netdev_hw_stats64_add(&report_delta->stats, stats);
8405 }
8406 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8407
8408 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8409 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8410 {
8411 report_used->used = true;
8412 }
8413 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8414
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8415 void netdev_offload_xstats_push_delta(struct net_device *dev,
8416 enum netdev_offload_xstats_type type,
8417 const struct rtnl_hw_stats64 *p_stats)
8418 {
8419 struct rtnl_hw_stats64 *stats;
8420
8421 ASSERT_RTNL();
8422
8423 stats = netdev_offload_xstats_get_ptr(dev, type);
8424 if (WARN_ON(!stats))
8425 return;
8426
8427 netdev_hw_stats64_add(stats, p_stats);
8428 }
8429 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8430
8431 /**
8432 * netdev_get_xmit_slave - Get the xmit slave of master device
8433 * @dev: device
8434 * @skb: The packet
8435 * @all_slaves: assume all the slaves are active
8436 *
8437 * The reference counters are not incremented so the caller must be
8438 * careful with locks. The caller must hold RCU lock.
8439 * %NULL is returned if no slave is found.
8440 */
8441
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8442 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8443 struct sk_buff *skb,
8444 bool all_slaves)
8445 {
8446 const struct net_device_ops *ops = dev->netdev_ops;
8447
8448 if (!ops->ndo_get_xmit_slave)
8449 return NULL;
8450 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8451 }
8452 EXPORT_SYMBOL(netdev_get_xmit_slave);
8453
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8454 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8455 struct sock *sk)
8456 {
8457 const struct net_device_ops *ops = dev->netdev_ops;
8458
8459 if (!ops->ndo_sk_get_lower_dev)
8460 return NULL;
8461 return ops->ndo_sk_get_lower_dev(dev, sk);
8462 }
8463
8464 /**
8465 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8466 * @dev: device
8467 * @sk: the socket
8468 *
8469 * %NULL is returned if no lower device is found.
8470 */
8471
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)8472 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8473 struct sock *sk)
8474 {
8475 struct net_device *lower;
8476
8477 lower = netdev_sk_get_lower_dev(dev, sk);
8478 while (lower) {
8479 dev = lower;
8480 lower = netdev_sk_get_lower_dev(dev, sk);
8481 }
8482
8483 return dev;
8484 }
8485 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8486
netdev_adjacent_add_links(struct net_device * dev)8487 static void netdev_adjacent_add_links(struct net_device *dev)
8488 {
8489 struct netdev_adjacent *iter;
8490
8491 struct net *net = dev_net(dev);
8492
8493 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8494 if (!net_eq(net, dev_net(iter->dev)))
8495 continue;
8496 netdev_adjacent_sysfs_add(iter->dev, dev,
8497 &iter->dev->adj_list.lower);
8498 netdev_adjacent_sysfs_add(dev, iter->dev,
8499 &dev->adj_list.upper);
8500 }
8501
8502 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8503 if (!net_eq(net, dev_net(iter->dev)))
8504 continue;
8505 netdev_adjacent_sysfs_add(iter->dev, dev,
8506 &iter->dev->adj_list.upper);
8507 netdev_adjacent_sysfs_add(dev, iter->dev,
8508 &dev->adj_list.lower);
8509 }
8510 }
8511
netdev_adjacent_del_links(struct net_device * dev)8512 static void netdev_adjacent_del_links(struct net_device *dev)
8513 {
8514 struct netdev_adjacent *iter;
8515
8516 struct net *net = dev_net(dev);
8517
8518 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8519 if (!net_eq(net, dev_net(iter->dev)))
8520 continue;
8521 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8522 &iter->dev->adj_list.lower);
8523 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8524 &dev->adj_list.upper);
8525 }
8526
8527 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8528 if (!net_eq(net, dev_net(iter->dev)))
8529 continue;
8530 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8531 &iter->dev->adj_list.upper);
8532 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8533 &dev->adj_list.lower);
8534 }
8535 }
8536
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8537 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8538 {
8539 struct netdev_adjacent *iter;
8540
8541 struct net *net = dev_net(dev);
8542
8543 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8544 if (!net_eq(net, dev_net(iter->dev)))
8545 continue;
8546 netdev_adjacent_sysfs_del(iter->dev, oldname,
8547 &iter->dev->adj_list.lower);
8548 netdev_adjacent_sysfs_add(iter->dev, dev,
8549 &iter->dev->adj_list.lower);
8550 }
8551
8552 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8553 if (!net_eq(net, dev_net(iter->dev)))
8554 continue;
8555 netdev_adjacent_sysfs_del(iter->dev, oldname,
8556 &iter->dev->adj_list.upper);
8557 netdev_adjacent_sysfs_add(iter->dev, dev,
8558 &iter->dev->adj_list.upper);
8559 }
8560 }
8561
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8562 void *netdev_lower_dev_get_private(struct net_device *dev,
8563 struct net_device *lower_dev)
8564 {
8565 struct netdev_adjacent *lower;
8566
8567 if (!lower_dev)
8568 return NULL;
8569 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8570 if (!lower)
8571 return NULL;
8572
8573 return lower->private;
8574 }
8575 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8576
8577
8578 /**
8579 * netdev_lower_state_changed - Dispatch event about lower device state change
8580 * @lower_dev: device
8581 * @lower_state_info: state to dispatch
8582 *
8583 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8584 * The caller must hold the RTNL lock.
8585 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8586 void netdev_lower_state_changed(struct net_device *lower_dev,
8587 void *lower_state_info)
8588 {
8589 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8590 .info.dev = lower_dev,
8591 };
8592
8593 ASSERT_RTNL();
8594 changelowerstate_info.lower_state_info = lower_state_info;
8595 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8596 &changelowerstate_info.info);
8597 }
8598 EXPORT_SYMBOL(netdev_lower_state_changed);
8599
dev_change_rx_flags(struct net_device * dev,int flags)8600 static void dev_change_rx_flags(struct net_device *dev, int flags)
8601 {
8602 const struct net_device_ops *ops = dev->netdev_ops;
8603
8604 if (ops->ndo_change_rx_flags)
8605 ops->ndo_change_rx_flags(dev, flags);
8606 }
8607
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8608 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8609 {
8610 unsigned int old_flags = dev->flags;
8611 unsigned int promiscuity, flags;
8612 kuid_t uid;
8613 kgid_t gid;
8614
8615 ASSERT_RTNL();
8616
8617 promiscuity = dev->promiscuity + inc;
8618 if (promiscuity == 0) {
8619 /*
8620 * Avoid overflow.
8621 * If inc causes overflow, untouch promisc and return error.
8622 */
8623 if (unlikely(inc > 0)) {
8624 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8625 return -EOVERFLOW;
8626 }
8627 flags = old_flags & ~IFF_PROMISC;
8628 } else {
8629 flags = old_flags | IFF_PROMISC;
8630 }
8631 WRITE_ONCE(dev->promiscuity, promiscuity);
8632 if (flags != old_flags) {
8633 WRITE_ONCE(dev->flags, flags);
8634 netdev_info(dev, "%s promiscuous mode\n",
8635 dev->flags & IFF_PROMISC ? "entered" : "left");
8636 if (audit_enabled) {
8637 current_uid_gid(&uid, &gid);
8638 audit_log(audit_context(), GFP_ATOMIC,
8639 AUDIT_ANOM_PROMISCUOUS,
8640 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8641 dev->name, (dev->flags & IFF_PROMISC),
8642 (old_flags & IFF_PROMISC),
8643 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8644 from_kuid(&init_user_ns, uid),
8645 from_kgid(&init_user_ns, gid),
8646 audit_get_sessionid(current));
8647 }
8648
8649 dev_change_rx_flags(dev, IFF_PROMISC);
8650 }
8651 if (notify)
8652 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8653 return 0;
8654 }
8655
8656 /**
8657 * dev_set_promiscuity - update promiscuity count on a device
8658 * @dev: device
8659 * @inc: modifier
8660 *
8661 * Add or remove promiscuity from a device. While the count in the device
8662 * remains above zero the interface remains promiscuous. Once it hits zero
8663 * the device reverts back to normal filtering operation. A negative inc
8664 * value is used to drop promiscuity on the device.
8665 * Return 0 if successful or a negative errno code on error.
8666 */
dev_set_promiscuity(struct net_device * dev,int inc)8667 int dev_set_promiscuity(struct net_device *dev, int inc)
8668 {
8669 unsigned int old_flags = dev->flags;
8670 int err;
8671
8672 err = __dev_set_promiscuity(dev, inc, true);
8673 if (err < 0)
8674 return err;
8675 if (dev->flags != old_flags)
8676 dev_set_rx_mode(dev);
8677 return err;
8678 }
8679 EXPORT_SYMBOL(dev_set_promiscuity);
8680
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8681 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8682 {
8683 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8684 unsigned int allmulti, flags;
8685
8686 ASSERT_RTNL();
8687
8688 allmulti = dev->allmulti + inc;
8689 if (allmulti == 0) {
8690 /*
8691 * Avoid overflow.
8692 * If inc causes overflow, untouch allmulti and return error.
8693 */
8694 if (unlikely(inc > 0)) {
8695 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8696 return -EOVERFLOW;
8697 }
8698 flags = old_flags & ~IFF_ALLMULTI;
8699 } else {
8700 flags = old_flags | IFF_ALLMULTI;
8701 }
8702 WRITE_ONCE(dev->allmulti, allmulti);
8703 if (flags != old_flags) {
8704 WRITE_ONCE(dev->flags, flags);
8705 netdev_info(dev, "%s allmulticast mode\n",
8706 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8707 dev_change_rx_flags(dev, IFF_ALLMULTI);
8708 dev_set_rx_mode(dev);
8709 if (notify)
8710 __dev_notify_flags(dev, old_flags,
8711 dev->gflags ^ old_gflags, 0, NULL);
8712 }
8713 return 0;
8714 }
8715
8716 /**
8717 * dev_set_allmulti - update allmulti count on a device
8718 * @dev: device
8719 * @inc: modifier
8720 *
8721 * Add or remove reception of all multicast frames to a device. While the
8722 * count in the device remains above zero the interface remains listening
8723 * to all interfaces. Once it hits zero the device reverts back to normal
8724 * filtering operation. A negative @inc value is used to drop the counter
8725 * when releasing a resource needing all multicasts.
8726 * Return 0 if successful or a negative errno code on error.
8727 */
8728
dev_set_allmulti(struct net_device * dev,int inc)8729 int dev_set_allmulti(struct net_device *dev, int inc)
8730 {
8731 return __dev_set_allmulti(dev, inc, true);
8732 }
8733 EXPORT_SYMBOL(dev_set_allmulti);
8734
8735 /*
8736 * Upload unicast and multicast address lists to device and
8737 * configure RX filtering. When the device doesn't support unicast
8738 * filtering it is put in promiscuous mode while unicast addresses
8739 * are present.
8740 */
__dev_set_rx_mode(struct net_device * dev)8741 void __dev_set_rx_mode(struct net_device *dev)
8742 {
8743 const struct net_device_ops *ops = dev->netdev_ops;
8744
8745 /* dev_open will call this function so the list will stay sane. */
8746 if (!(dev->flags&IFF_UP))
8747 return;
8748
8749 if (!netif_device_present(dev))
8750 return;
8751
8752 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8753 /* Unicast addresses changes may only happen under the rtnl,
8754 * therefore calling __dev_set_promiscuity here is safe.
8755 */
8756 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8757 __dev_set_promiscuity(dev, 1, false);
8758 dev->uc_promisc = true;
8759 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8760 __dev_set_promiscuity(dev, -1, false);
8761 dev->uc_promisc = false;
8762 }
8763 }
8764
8765 if (ops->ndo_set_rx_mode)
8766 ops->ndo_set_rx_mode(dev);
8767 }
8768
dev_set_rx_mode(struct net_device * dev)8769 void dev_set_rx_mode(struct net_device *dev)
8770 {
8771 netif_addr_lock_bh(dev);
8772 __dev_set_rx_mode(dev);
8773 netif_addr_unlock_bh(dev);
8774 }
8775
8776 /**
8777 * dev_get_flags - get flags reported to userspace
8778 * @dev: device
8779 *
8780 * Get the combination of flag bits exported through APIs to userspace.
8781 */
dev_get_flags(const struct net_device * dev)8782 unsigned int dev_get_flags(const struct net_device *dev)
8783 {
8784 unsigned int flags;
8785
8786 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8787 IFF_ALLMULTI |
8788 IFF_RUNNING |
8789 IFF_LOWER_UP |
8790 IFF_DORMANT)) |
8791 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
8792 IFF_ALLMULTI));
8793
8794 if (netif_running(dev)) {
8795 if (netif_oper_up(dev))
8796 flags |= IFF_RUNNING;
8797 if (netif_carrier_ok(dev))
8798 flags |= IFF_LOWER_UP;
8799 if (netif_dormant(dev))
8800 flags |= IFF_DORMANT;
8801 }
8802
8803 return flags;
8804 }
8805 EXPORT_SYMBOL(dev_get_flags);
8806
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8807 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8808 struct netlink_ext_ack *extack)
8809 {
8810 unsigned int old_flags = dev->flags;
8811 int ret;
8812
8813 ASSERT_RTNL();
8814
8815 /*
8816 * Set the flags on our device.
8817 */
8818
8819 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8820 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8821 IFF_AUTOMEDIA)) |
8822 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8823 IFF_ALLMULTI));
8824
8825 /*
8826 * Load in the correct multicast list now the flags have changed.
8827 */
8828
8829 if ((old_flags ^ flags) & IFF_MULTICAST)
8830 dev_change_rx_flags(dev, IFF_MULTICAST);
8831
8832 dev_set_rx_mode(dev);
8833
8834 /*
8835 * Have we downed the interface. We handle IFF_UP ourselves
8836 * according to user attempts to set it, rather than blindly
8837 * setting it.
8838 */
8839
8840 ret = 0;
8841 if ((old_flags ^ flags) & IFF_UP) {
8842 if (old_flags & IFF_UP)
8843 __dev_close(dev);
8844 else
8845 ret = __dev_open(dev, extack);
8846 }
8847
8848 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8849 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8850 unsigned int old_flags = dev->flags;
8851
8852 dev->gflags ^= IFF_PROMISC;
8853
8854 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8855 if (dev->flags != old_flags)
8856 dev_set_rx_mode(dev);
8857 }
8858
8859 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8860 * is important. Some (broken) drivers set IFF_PROMISC, when
8861 * IFF_ALLMULTI is requested not asking us and not reporting.
8862 */
8863 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8864 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8865
8866 dev->gflags ^= IFF_ALLMULTI;
8867 __dev_set_allmulti(dev, inc, false);
8868 }
8869
8870 return ret;
8871 }
8872
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)8873 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8874 unsigned int gchanges, u32 portid,
8875 const struct nlmsghdr *nlh)
8876 {
8877 unsigned int changes = dev->flags ^ old_flags;
8878
8879 if (gchanges)
8880 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8881
8882 if (changes & IFF_UP) {
8883 if (dev->flags & IFF_UP)
8884 call_netdevice_notifiers(NETDEV_UP, dev);
8885 else
8886 call_netdevice_notifiers(NETDEV_DOWN, dev);
8887 }
8888
8889 if (dev->flags & IFF_UP &&
8890 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8891 struct netdev_notifier_change_info change_info = {
8892 .info = {
8893 .dev = dev,
8894 },
8895 .flags_changed = changes,
8896 };
8897
8898 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8899 }
8900 }
8901
8902 /**
8903 * dev_change_flags - change device settings
8904 * @dev: device
8905 * @flags: device state flags
8906 * @extack: netlink extended ack
8907 *
8908 * Change settings on device based state flags. The flags are
8909 * in the userspace exported format.
8910 */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8911 int dev_change_flags(struct net_device *dev, unsigned int flags,
8912 struct netlink_ext_ack *extack)
8913 {
8914 int ret;
8915 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8916
8917 ret = __dev_change_flags(dev, flags, extack);
8918 if (ret < 0)
8919 return ret;
8920
8921 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8922 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8923 return ret;
8924 }
8925 EXPORT_SYMBOL(dev_change_flags);
8926
__dev_set_mtu(struct net_device * dev,int new_mtu)8927 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8928 {
8929 const struct net_device_ops *ops = dev->netdev_ops;
8930
8931 if (ops->ndo_change_mtu)
8932 return ops->ndo_change_mtu(dev, new_mtu);
8933
8934 /* Pairs with all the lockless reads of dev->mtu in the stack */
8935 WRITE_ONCE(dev->mtu, new_mtu);
8936 return 0;
8937 }
8938 EXPORT_SYMBOL(__dev_set_mtu);
8939
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8940 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8941 struct netlink_ext_ack *extack)
8942 {
8943 /* MTU must be positive, and in range */
8944 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8945 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8946 return -EINVAL;
8947 }
8948
8949 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8950 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8951 return -EINVAL;
8952 }
8953 return 0;
8954 }
8955
8956 /**
8957 * dev_set_mtu_ext - Change maximum transfer unit
8958 * @dev: device
8959 * @new_mtu: new transfer unit
8960 * @extack: netlink extended ack
8961 *
8962 * Change the maximum transfer size of the network device.
8963 */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8964 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8965 struct netlink_ext_ack *extack)
8966 {
8967 int err, orig_mtu;
8968
8969 if (new_mtu == dev->mtu)
8970 return 0;
8971
8972 err = dev_validate_mtu(dev, new_mtu, extack);
8973 if (err)
8974 return err;
8975
8976 if (!netif_device_present(dev))
8977 return -ENODEV;
8978
8979 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8980 err = notifier_to_errno(err);
8981 if (err)
8982 return err;
8983
8984 orig_mtu = dev->mtu;
8985 err = __dev_set_mtu(dev, new_mtu);
8986
8987 if (!err) {
8988 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8989 orig_mtu);
8990 err = notifier_to_errno(err);
8991 if (err) {
8992 /* setting mtu back and notifying everyone again,
8993 * so that they have a chance to revert changes.
8994 */
8995 __dev_set_mtu(dev, orig_mtu);
8996 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8997 new_mtu);
8998 }
8999 }
9000 return err;
9001 }
9002
dev_set_mtu(struct net_device * dev,int new_mtu)9003 int dev_set_mtu(struct net_device *dev, int new_mtu)
9004 {
9005 struct netlink_ext_ack extack;
9006 int err;
9007
9008 memset(&extack, 0, sizeof(extack));
9009 err = dev_set_mtu_ext(dev, new_mtu, &extack);
9010 if (err && extack._msg)
9011 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9012 return err;
9013 }
9014 EXPORT_SYMBOL(dev_set_mtu);
9015
9016 /**
9017 * dev_change_tx_queue_len - Change TX queue length of a netdevice
9018 * @dev: device
9019 * @new_len: new tx queue length
9020 */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9021 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9022 {
9023 unsigned int orig_len = dev->tx_queue_len;
9024 int res;
9025
9026 if (new_len != (unsigned int)new_len)
9027 return -ERANGE;
9028
9029 if (new_len != orig_len) {
9030 WRITE_ONCE(dev->tx_queue_len, new_len);
9031 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9032 res = notifier_to_errno(res);
9033 if (res)
9034 goto err_rollback;
9035 res = dev_qdisc_change_tx_queue_len(dev);
9036 if (res)
9037 goto err_rollback;
9038 }
9039
9040 return 0;
9041
9042 err_rollback:
9043 netdev_err(dev, "refused to change device tx_queue_len\n");
9044 WRITE_ONCE(dev->tx_queue_len, orig_len);
9045 return res;
9046 }
9047
9048 /**
9049 * dev_set_group - Change group this device belongs to
9050 * @dev: device
9051 * @new_group: group this device should belong to
9052 */
dev_set_group(struct net_device * dev,int new_group)9053 void dev_set_group(struct net_device *dev, int new_group)
9054 {
9055 dev->group = new_group;
9056 }
9057
9058 /**
9059 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9060 * @dev: device
9061 * @addr: new address
9062 * @extack: netlink extended ack
9063 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9064 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9065 struct netlink_ext_ack *extack)
9066 {
9067 struct netdev_notifier_pre_changeaddr_info info = {
9068 .info.dev = dev,
9069 .info.extack = extack,
9070 .dev_addr = addr,
9071 };
9072 int rc;
9073
9074 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9075 return notifier_to_errno(rc);
9076 }
9077 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9078
9079 /**
9080 * dev_set_mac_address - Change Media Access Control Address
9081 * @dev: device
9082 * @sa: new address
9083 * @extack: netlink extended ack
9084 *
9085 * Change the hardware (MAC) address of the device
9086 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9087 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9088 struct netlink_ext_ack *extack)
9089 {
9090 const struct net_device_ops *ops = dev->netdev_ops;
9091 int err;
9092
9093 if (!ops->ndo_set_mac_address)
9094 return -EOPNOTSUPP;
9095 if (sa->sa_family != dev->type)
9096 return -EINVAL;
9097 if (!netif_device_present(dev))
9098 return -ENODEV;
9099 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9100 if (err)
9101 return err;
9102 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9103 err = ops->ndo_set_mac_address(dev, sa);
9104 if (err)
9105 return err;
9106 }
9107 dev->addr_assign_type = NET_ADDR_SET;
9108 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9109 add_device_randomness(dev->dev_addr, dev->addr_len);
9110 return 0;
9111 }
9112 EXPORT_SYMBOL(dev_set_mac_address);
9113
9114 DECLARE_RWSEM(dev_addr_sem);
9115
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9116 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9117 struct netlink_ext_ack *extack)
9118 {
9119 int ret;
9120
9121 down_write(&dev_addr_sem);
9122 ret = dev_set_mac_address(dev, sa, extack);
9123 up_write(&dev_addr_sem);
9124 return ret;
9125 }
9126 EXPORT_SYMBOL(dev_set_mac_address_user);
9127
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9128 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9129 {
9130 size_t size = sizeof(sa->sa_data_min);
9131 struct net_device *dev;
9132 int ret = 0;
9133
9134 down_read(&dev_addr_sem);
9135 rcu_read_lock();
9136
9137 dev = dev_get_by_name_rcu(net, dev_name);
9138 if (!dev) {
9139 ret = -ENODEV;
9140 goto unlock;
9141 }
9142 if (!dev->addr_len)
9143 memset(sa->sa_data, 0, size);
9144 else
9145 memcpy(sa->sa_data, dev->dev_addr,
9146 min_t(size_t, size, dev->addr_len));
9147 sa->sa_family = dev->type;
9148
9149 unlock:
9150 rcu_read_unlock();
9151 up_read(&dev_addr_sem);
9152 return ret;
9153 }
9154 EXPORT_SYMBOL(dev_get_mac_address);
9155
9156 /**
9157 * dev_change_carrier - Change device carrier
9158 * @dev: device
9159 * @new_carrier: new value
9160 *
9161 * Change device carrier
9162 */
dev_change_carrier(struct net_device * dev,bool new_carrier)9163 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9164 {
9165 const struct net_device_ops *ops = dev->netdev_ops;
9166
9167 if (!ops->ndo_change_carrier)
9168 return -EOPNOTSUPP;
9169 if (!netif_device_present(dev))
9170 return -ENODEV;
9171 return ops->ndo_change_carrier(dev, new_carrier);
9172 }
9173
9174 /**
9175 * dev_get_phys_port_id - Get device physical port ID
9176 * @dev: device
9177 * @ppid: port ID
9178 *
9179 * Get device physical port ID
9180 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9181 int dev_get_phys_port_id(struct net_device *dev,
9182 struct netdev_phys_item_id *ppid)
9183 {
9184 const struct net_device_ops *ops = dev->netdev_ops;
9185
9186 if (!ops->ndo_get_phys_port_id)
9187 return -EOPNOTSUPP;
9188 return ops->ndo_get_phys_port_id(dev, ppid);
9189 }
9190
9191 /**
9192 * dev_get_phys_port_name - Get device physical port name
9193 * @dev: device
9194 * @name: port name
9195 * @len: limit of bytes to copy to name
9196 *
9197 * Get device physical port name
9198 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9199 int dev_get_phys_port_name(struct net_device *dev,
9200 char *name, size_t len)
9201 {
9202 const struct net_device_ops *ops = dev->netdev_ops;
9203 int err;
9204
9205 if (ops->ndo_get_phys_port_name) {
9206 err = ops->ndo_get_phys_port_name(dev, name, len);
9207 if (err != -EOPNOTSUPP)
9208 return err;
9209 }
9210 return devlink_compat_phys_port_name_get(dev, name, len);
9211 }
9212
9213 /**
9214 * dev_get_port_parent_id - Get the device's port parent identifier
9215 * @dev: network device
9216 * @ppid: pointer to a storage for the port's parent identifier
9217 * @recurse: allow/disallow recursion to lower devices
9218 *
9219 * Get the devices's port parent identifier
9220 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9221 int dev_get_port_parent_id(struct net_device *dev,
9222 struct netdev_phys_item_id *ppid,
9223 bool recurse)
9224 {
9225 const struct net_device_ops *ops = dev->netdev_ops;
9226 struct netdev_phys_item_id first = { };
9227 struct net_device *lower_dev;
9228 struct list_head *iter;
9229 int err;
9230
9231 if (ops->ndo_get_port_parent_id) {
9232 err = ops->ndo_get_port_parent_id(dev, ppid);
9233 if (err != -EOPNOTSUPP)
9234 return err;
9235 }
9236
9237 err = devlink_compat_switch_id_get(dev, ppid);
9238 if (!recurse || err != -EOPNOTSUPP)
9239 return err;
9240
9241 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9242 err = dev_get_port_parent_id(lower_dev, ppid, true);
9243 if (err)
9244 break;
9245 if (!first.id_len)
9246 first = *ppid;
9247 else if (memcmp(&first, ppid, sizeof(*ppid)))
9248 return -EOPNOTSUPP;
9249 }
9250
9251 return err;
9252 }
9253 EXPORT_SYMBOL(dev_get_port_parent_id);
9254
9255 /**
9256 * netdev_port_same_parent_id - Indicate if two network devices have
9257 * the same port parent identifier
9258 * @a: first network device
9259 * @b: second network device
9260 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9261 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9262 {
9263 struct netdev_phys_item_id a_id = { };
9264 struct netdev_phys_item_id b_id = { };
9265
9266 if (dev_get_port_parent_id(a, &a_id, true) ||
9267 dev_get_port_parent_id(b, &b_id, true))
9268 return false;
9269
9270 return netdev_phys_item_id_same(&a_id, &b_id);
9271 }
9272 EXPORT_SYMBOL(netdev_port_same_parent_id);
9273
9274 /**
9275 * dev_change_proto_down - set carrier according to proto_down.
9276 *
9277 * @dev: device
9278 * @proto_down: new value
9279 */
dev_change_proto_down(struct net_device * dev,bool proto_down)9280 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9281 {
9282 if (!dev->change_proto_down)
9283 return -EOPNOTSUPP;
9284 if (!netif_device_present(dev))
9285 return -ENODEV;
9286 if (proto_down)
9287 netif_carrier_off(dev);
9288 else
9289 netif_carrier_on(dev);
9290 WRITE_ONCE(dev->proto_down, proto_down);
9291 return 0;
9292 }
9293
9294 /**
9295 * dev_change_proto_down_reason - proto down reason
9296 *
9297 * @dev: device
9298 * @mask: proto down mask
9299 * @value: proto down value
9300 */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)9301 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9302 u32 value)
9303 {
9304 u32 proto_down_reason;
9305 int b;
9306
9307 if (!mask) {
9308 proto_down_reason = value;
9309 } else {
9310 proto_down_reason = dev->proto_down_reason;
9311 for_each_set_bit(b, &mask, 32) {
9312 if (value & (1 << b))
9313 proto_down_reason |= BIT(b);
9314 else
9315 proto_down_reason &= ~BIT(b);
9316 }
9317 }
9318 WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9319 }
9320
9321 struct bpf_xdp_link {
9322 struct bpf_link link;
9323 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9324 int flags;
9325 };
9326
dev_xdp_mode(struct net_device * dev,u32 flags)9327 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9328 {
9329 if (flags & XDP_FLAGS_HW_MODE)
9330 return XDP_MODE_HW;
9331 if (flags & XDP_FLAGS_DRV_MODE)
9332 return XDP_MODE_DRV;
9333 if (flags & XDP_FLAGS_SKB_MODE)
9334 return XDP_MODE_SKB;
9335 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9336 }
9337
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9338 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9339 {
9340 switch (mode) {
9341 case XDP_MODE_SKB:
9342 return generic_xdp_install;
9343 case XDP_MODE_DRV:
9344 case XDP_MODE_HW:
9345 return dev->netdev_ops->ndo_bpf;
9346 default:
9347 return NULL;
9348 }
9349 }
9350
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9351 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9352 enum bpf_xdp_mode mode)
9353 {
9354 return dev->xdp_state[mode].link;
9355 }
9356
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9357 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9358 enum bpf_xdp_mode mode)
9359 {
9360 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9361
9362 if (link)
9363 return link->link.prog;
9364 return dev->xdp_state[mode].prog;
9365 }
9366
dev_xdp_prog_count(struct net_device * dev)9367 u8 dev_xdp_prog_count(struct net_device *dev)
9368 {
9369 u8 count = 0;
9370 int i;
9371
9372 for (i = 0; i < __MAX_XDP_MODE; i++)
9373 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9374 count++;
9375 return count;
9376 }
9377 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9378
dev_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)9379 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9380 {
9381 if (!dev->netdev_ops->ndo_bpf)
9382 return -EOPNOTSUPP;
9383
9384 if (dev_get_min_mp_channel_count(dev)) {
9385 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9386 return -EBUSY;
9387 }
9388
9389 return dev->netdev_ops->ndo_bpf(dev, bpf);
9390 }
9391 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9392
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9393 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9394 {
9395 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9396
9397 return prog ? prog->aux->id : 0;
9398 }
9399
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9400 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9401 struct bpf_xdp_link *link)
9402 {
9403 dev->xdp_state[mode].link = link;
9404 dev->xdp_state[mode].prog = NULL;
9405 }
9406
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9407 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9408 struct bpf_prog *prog)
9409 {
9410 dev->xdp_state[mode].link = NULL;
9411 dev->xdp_state[mode].prog = prog;
9412 }
9413
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9414 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9415 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9416 u32 flags, struct bpf_prog *prog)
9417 {
9418 struct netdev_bpf xdp;
9419 int err;
9420
9421 if (dev_get_min_mp_channel_count(dev)) {
9422 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9423 return -EBUSY;
9424 }
9425
9426 memset(&xdp, 0, sizeof(xdp));
9427 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9428 xdp.extack = extack;
9429 xdp.flags = flags;
9430 xdp.prog = prog;
9431
9432 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9433 * "moved" into driver), so they don't increment it on their own, but
9434 * they do decrement refcnt when program is detached or replaced.
9435 * Given net_device also owns link/prog, we need to bump refcnt here
9436 * to prevent drivers from underflowing it.
9437 */
9438 if (prog)
9439 bpf_prog_inc(prog);
9440 err = bpf_op(dev, &xdp);
9441 if (err) {
9442 if (prog)
9443 bpf_prog_put(prog);
9444 return err;
9445 }
9446
9447 if (mode != XDP_MODE_HW)
9448 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9449
9450 return 0;
9451 }
9452
dev_xdp_uninstall(struct net_device * dev)9453 static void dev_xdp_uninstall(struct net_device *dev)
9454 {
9455 struct bpf_xdp_link *link;
9456 struct bpf_prog *prog;
9457 enum bpf_xdp_mode mode;
9458 bpf_op_t bpf_op;
9459
9460 ASSERT_RTNL();
9461
9462 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9463 prog = dev_xdp_prog(dev, mode);
9464 if (!prog)
9465 continue;
9466
9467 bpf_op = dev_xdp_bpf_op(dev, mode);
9468 if (!bpf_op)
9469 continue;
9470
9471 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9472
9473 /* auto-detach link from net device */
9474 link = dev_xdp_link(dev, mode);
9475 if (link)
9476 link->dev = NULL;
9477 else
9478 bpf_prog_put(prog);
9479
9480 dev_xdp_set_link(dev, mode, NULL);
9481 }
9482 }
9483
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9484 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9485 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9486 struct bpf_prog *old_prog, u32 flags)
9487 {
9488 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9489 struct bpf_prog *cur_prog;
9490 struct net_device *upper;
9491 struct list_head *iter;
9492 enum bpf_xdp_mode mode;
9493 bpf_op_t bpf_op;
9494 int err;
9495
9496 ASSERT_RTNL();
9497
9498 /* either link or prog attachment, never both */
9499 if (link && (new_prog || old_prog))
9500 return -EINVAL;
9501 /* link supports only XDP mode flags */
9502 if (link && (flags & ~XDP_FLAGS_MODES)) {
9503 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9504 return -EINVAL;
9505 }
9506 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9507 if (num_modes > 1) {
9508 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9509 return -EINVAL;
9510 }
9511 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9512 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9513 NL_SET_ERR_MSG(extack,
9514 "More than one program loaded, unset mode is ambiguous");
9515 return -EINVAL;
9516 }
9517 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9518 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9519 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9520 return -EINVAL;
9521 }
9522
9523 mode = dev_xdp_mode(dev, flags);
9524 /* can't replace attached link */
9525 if (dev_xdp_link(dev, mode)) {
9526 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9527 return -EBUSY;
9528 }
9529
9530 /* don't allow if an upper device already has a program */
9531 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9532 if (dev_xdp_prog_count(upper) > 0) {
9533 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9534 return -EEXIST;
9535 }
9536 }
9537
9538 cur_prog = dev_xdp_prog(dev, mode);
9539 /* can't replace attached prog with link */
9540 if (link && cur_prog) {
9541 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9542 return -EBUSY;
9543 }
9544 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9545 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9546 return -EEXIST;
9547 }
9548
9549 /* put effective new program into new_prog */
9550 if (link)
9551 new_prog = link->link.prog;
9552
9553 if (new_prog) {
9554 bool offload = mode == XDP_MODE_HW;
9555 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9556 ? XDP_MODE_DRV : XDP_MODE_SKB;
9557
9558 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9559 NL_SET_ERR_MSG(extack, "XDP program already attached");
9560 return -EBUSY;
9561 }
9562 if (!offload && dev_xdp_prog(dev, other_mode)) {
9563 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9564 return -EEXIST;
9565 }
9566 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9567 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9568 return -EINVAL;
9569 }
9570 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9571 NL_SET_ERR_MSG(extack, "Program bound to different device");
9572 return -EINVAL;
9573 }
9574 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9575 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9576 return -EINVAL;
9577 }
9578 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9579 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9580 return -EINVAL;
9581 }
9582 }
9583
9584 /* don't call drivers if the effective program didn't change */
9585 if (new_prog != cur_prog) {
9586 bpf_op = dev_xdp_bpf_op(dev, mode);
9587 if (!bpf_op) {
9588 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9589 return -EOPNOTSUPP;
9590 }
9591
9592 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9593 if (err)
9594 return err;
9595 }
9596
9597 if (link)
9598 dev_xdp_set_link(dev, mode, link);
9599 else
9600 dev_xdp_set_prog(dev, mode, new_prog);
9601 if (cur_prog)
9602 bpf_prog_put(cur_prog);
9603
9604 return 0;
9605 }
9606
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9607 static int dev_xdp_attach_link(struct net_device *dev,
9608 struct netlink_ext_ack *extack,
9609 struct bpf_xdp_link *link)
9610 {
9611 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9612 }
9613
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9614 static int dev_xdp_detach_link(struct net_device *dev,
9615 struct netlink_ext_ack *extack,
9616 struct bpf_xdp_link *link)
9617 {
9618 enum bpf_xdp_mode mode;
9619 bpf_op_t bpf_op;
9620
9621 ASSERT_RTNL();
9622
9623 mode = dev_xdp_mode(dev, link->flags);
9624 if (dev_xdp_link(dev, mode) != link)
9625 return -EINVAL;
9626
9627 bpf_op = dev_xdp_bpf_op(dev, mode);
9628 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9629 dev_xdp_set_link(dev, mode, NULL);
9630 return 0;
9631 }
9632
bpf_xdp_link_release(struct bpf_link * link)9633 static void bpf_xdp_link_release(struct bpf_link *link)
9634 {
9635 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9636
9637 rtnl_lock();
9638
9639 /* if racing with net_device's tear down, xdp_link->dev might be
9640 * already NULL, in which case link was already auto-detached
9641 */
9642 if (xdp_link->dev) {
9643 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9644 xdp_link->dev = NULL;
9645 }
9646
9647 rtnl_unlock();
9648 }
9649
bpf_xdp_link_detach(struct bpf_link * link)9650 static int bpf_xdp_link_detach(struct bpf_link *link)
9651 {
9652 bpf_xdp_link_release(link);
9653 return 0;
9654 }
9655
bpf_xdp_link_dealloc(struct bpf_link * link)9656 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9657 {
9658 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9659
9660 kfree(xdp_link);
9661 }
9662
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9663 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9664 struct seq_file *seq)
9665 {
9666 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9667 u32 ifindex = 0;
9668
9669 rtnl_lock();
9670 if (xdp_link->dev)
9671 ifindex = xdp_link->dev->ifindex;
9672 rtnl_unlock();
9673
9674 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9675 }
9676
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9677 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9678 struct bpf_link_info *info)
9679 {
9680 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9681 u32 ifindex = 0;
9682
9683 rtnl_lock();
9684 if (xdp_link->dev)
9685 ifindex = xdp_link->dev->ifindex;
9686 rtnl_unlock();
9687
9688 info->xdp.ifindex = ifindex;
9689 return 0;
9690 }
9691
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9692 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9693 struct bpf_prog *old_prog)
9694 {
9695 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9696 enum bpf_xdp_mode mode;
9697 bpf_op_t bpf_op;
9698 int err = 0;
9699
9700 rtnl_lock();
9701
9702 /* link might have been auto-released already, so fail */
9703 if (!xdp_link->dev) {
9704 err = -ENOLINK;
9705 goto out_unlock;
9706 }
9707
9708 if (old_prog && link->prog != old_prog) {
9709 err = -EPERM;
9710 goto out_unlock;
9711 }
9712 old_prog = link->prog;
9713 if (old_prog->type != new_prog->type ||
9714 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9715 err = -EINVAL;
9716 goto out_unlock;
9717 }
9718
9719 if (old_prog == new_prog) {
9720 /* no-op, don't disturb drivers */
9721 bpf_prog_put(new_prog);
9722 goto out_unlock;
9723 }
9724
9725 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9726 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9727 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9728 xdp_link->flags, new_prog);
9729 if (err)
9730 goto out_unlock;
9731
9732 old_prog = xchg(&link->prog, new_prog);
9733 bpf_prog_put(old_prog);
9734
9735 out_unlock:
9736 rtnl_unlock();
9737 return err;
9738 }
9739
9740 static const struct bpf_link_ops bpf_xdp_link_lops = {
9741 .release = bpf_xdp_link_release,
9742 .dealloc = bpf_xdp_link_dealloc,
9743 .detach = bpf_xdp_link_detach,
9744 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9745 .fill_link_info = bpf_xdp_link_fill_link_info,
9746 .update_prog = bpf_xdp_link_update,
9747 };
9748
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9749 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9750 {
9751 struct net *net = current->nsproxy->net_ns;
9752 struct bpf_link_primer link_primer;
9753 struct netlink_ext_ack extack = {};
9754 struct bpf_xdp_link *link;
9755 struct net_device *dev;
9756 int err, fd;
9757
9758 rtnl_lock();
9759 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9760 if (!dev) {
9761 rtnl_unlock();
9762 return -EINVAL;
9763 }
9764
9765 link = kzalloc(sizeof(*link), GFP_USER);
9766 if (!link) {
9767 err = -ENOMEM;
9768 goto unlock;
9769 }
9770
9771 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9772 link->dev = dev;
9773 link->flags = attr->link_create.flags;
9774
9775 err = bpf_link_prime(&link->link, &link_primer);
9776 if (err) {
9777 kfree(link);
9778 goto unlock;
9779 }
9780
9781 err = dev_xdp_attach_link(dev, &extack, link);
9782 rtnl_unlock();
9783
9784 if (err) {
9785 link->dev = NULL;
9786 bpf_link_cleanup(&link_primer);
9787 trace_bpf_xdp_link_attach_failed(extack._msg);
9788 goto out_put_dev;
9789 }
9790
9791 fd = bpf_link_settle(&link_primer);
9792 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9793 dev_put(dev);
9794 return fd;
9795
9796 unlock:
9797 rtnl_unlock();
9798
9799 out_put_dev:
9800 dev_put(dev);
9801 return err;
9802 }
9803
9804 /**
9805 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9806 * @dev: device
9807 * @extack: netlink extended ack
9808 * @fd: new program fd or negative value to clear
9809 * @expected_fd: old program fd that userspace expects to replace or clear
9810 * @flags: xdp-related flags
9811 *
9812 * Set or clear a bpf program for a device
9813 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9814 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9815 int fd, int expected_fd, u32 flags)
9816 {
9817 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9818 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9819 int err;
9820
9821 ASSERT_RTNL();
9822
9823 if (fd >= 0) {
9824 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9825 mode != XDP_MODE_SKB);
9826 if (IS_ERR(new_prog))
9827 return PTR_ERR(new_prog);
9828 }
9829
9830 if (expected_fd >= 0) {
9831 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9832 mode != XDP_MODE_SKB);
9833 if (IS_ERR(old_prog)) {
9834 err = PTR_ERR(old_prog);
9835 old_prog = NULL;
9836 goto err_out;
9837 }
9838 }
9839
9840 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9841
9842 err_out:
9843 if (err && new_prog)
9844 bpf_prog_put(new_prog);
9845 if (old_prog)
9846 bpf_prog_put(old_prog);
9847 return err;
9848 }
9849
dev_get_min_mp_channel_count(const struct net_device * dev)9850 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
9851 {
9852 int i;
9853
9854 ASSERT_RTNL();
9855
9856 for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
9857 if (dev->_rx[i].mp_params.mp_priv)
9858 /* The channel count is the idx plus 1. */
9859 return i + 1;
9860
9861 return 0;
9862 }
9863
9864 /**
9865 * dev_index_reserve() - allocate an ifindex in a namespace
9866 * @net: the applicable net namespace
9867 * @ifindex: requested ifindex, pass %0 to get one allocated
9868 *
9869 * Allocate a ifindex for a new device. Caller must either use the ifindex
9870 * to store the device (via list_netdevice()) or call dev_index_release()
9871 * to give the index up.
9872 *
9873 * Return: a suitable unique value for a new device interface number or -errno.
9874 */
dev_index_reserve(struct net * net,u32 ifindex)9875 static int dev_index_reserve(struct net *net, u32 ifindex)
9876 {
9877 int err;
9878
9879 if (ifindex > INT_MAX) {
9880 DEBUG_NET_WARN_ON_ONCE(1);
9881 return -EINVAL;
9882 }
9883
9884 if (!ifindex)
9885 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9886 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9887 else
9888 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9889 if (err < 0)
9890 return err;
9891
9892 return ifindex;
9893 }
9894
dev_index_release(struct net * net,int ifindex)9895 static void dev_index_release(struct net *net, int ifindex)
9896 {
9897 /* Expect only unused indexes, unlist_netdevice() removes the used */
9898 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9899 }
9900
9901 /* Delayed registration/unregisteration */
9902 LIST_HEAD(net_todo_list);
9903 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9904 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9905
net_set_todo(struct net_device * dev)9906 static void net_set_todo(struct net_device *dev)
9907 {
9908 list_add_tail(&dev->todo_list, &net_todo_list);
9909 }
9910
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9911 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9912 struct net_device *upper, netdev_features_t features)
9913 {
9914 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9915 netdev_features_t feature;
9916 int feature_bit;
9917
9918 for_each_netdev_feature(upper_disables, feature_bit) {
9919 feature = __NETIF_F_BIT(feature_bit);
9920 if (!(upper->wanted_features & feature)
9921 && (features & feature)) {
9922 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9923 &feature, upper->name);
9924 features &= ~feature;
9925 }
9926 }
9927
9928 return features;
9929 }
9930
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9931 static void netdev_sync_lower_features(struct net_device *upper,
9932 struct net_device *lower, netdev_features_t features)
9933 {
9934 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9935 netdev_features_t feature;
9936 int feature_bit;
9937
9938 for_each_netdev_feature(upper_disables, feature_bit) {
9939 feature = __NETIF_F_BIT(feature_bit);
9940 if (!(features & feature) && (lower->features & feature)) {
9941 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9942 &feature, lower->name);
9943 lower->wanted_features &= ~feature;
9944 __netdev_update_features(lower);
9945
9946 if (unlikely(lower->features & feature))
9947 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9948 &feature, lower->name);
9949 else
9950 netdev_features_change(lower);
9951 }
9952 }
9953 }
9954
netdev_has_ip_or_hw_csum(netdev_features_t features)9955 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
9956 {
9957 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
9958 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
9959 bool hw_csum = features & NETIF_F_HW_CSUM;
9960
9961 return ip_csum || hw_csum;
9962 }
9963
netdev_fix_features(struct net_device * dev,netdev_features_t features)9964 static netdev_features_t netdev_fix_features(struct net_device *dev,
9965 netdev_features_t features)
9966 {
9967 /* Fix illegal checksum combinations */
9968 if ((features & NETIF_F_HW_CSUM) &&
9969 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9970 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9971 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9972 }
9973
9974 /* TSO requires that SG is present as well. */
9975 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9976 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9977 features &= ~NETIF_F_ALL_TSO;
9978 }
9979
9980 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9981 !(features & NETIF_F_IP_CSUM)) {
9982 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9983 features &= ~NETIF_F_TSO;
9984 features &= ~NETIF_F_TSO_ECN;
9985 }
9986
9987 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9988 !(features & NETIF_F_IPV6_CSUM)) {
9989 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9990 features &= ~NETIF_F_TSO6;
9991 }
9992
9993 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9994 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9995 features &= ~NETIF_F_TSO_MANGLEID;
9996
9997 /* TSO ECN requires that TSO is present as well. */
9998 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9999 features &= ~NETIF_F_TSO_ECN;
10000
10001 /* Software GSO depends on SG. */
10002 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10003 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10004 features &= ~NETIF_F_GSO;
10005 }
10006
10007 /* GSO partial features require GSO partial be set */
10008 if ((features & dev->gso_partial_features) &&
10009 !(features & NETIF_F_GSO_PARTIAL)) {
10010 netdev_dbg(dev,
10011 "Dropping partially supported GSO features since no GSO partial.\n");
10012 features &= ~dev->gso_partial_features;
10013 }
10014
10015 if (!(features & NETIF_F_RXCSUM)) {
10016 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10017 * successfully merged by hardware must also have the
10018 * checksum verified by hardware. If the user does not
10019 * want to enable RXCSUM, logically, we should disable GRO_HW.
10020 */
10021 if (features & NETIF_F_GRO_HW) {
10022 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10023 features &= ~NETIF_F_GRO_HW;
10024 }
10025 }
10026
10027 /* LRO/HW-GRO features cannot be combined with RX-FCS */
10028 if (features & NETIF_F_RXFCS) {
10029 if (features & NETIF_F_LRO) {
10030 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10031 features &= ~NETIF_F_LRO;
10032 }
10033
10034 if (features & NETIF_F_GRO_HW) {
10035 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10036 features &= ~NETIF_F_GRO_HW;
10037 }
10038 }
10039
10040 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10041 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10042 features &= ~NETIF_F_LRO;
10043 }
10044
10045 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10046 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10047 features &= ~NETIF_F_HW_TLS_TX;
10048 }
10049
10050 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10051 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10052 features &= ~NETIF_F_HW_TLS_RX;
10053 }
10054
10055 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10056 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10057 features &= ~NETIF_F_GSO_UDP_L4;
10058 }
10059
10060 return features;
10061 }
10062
__netdev_update_features(struct net_device * dev)10063 int __netdev_update_features(struct net_device *dev)
10064 {
10065 struct net_device *upper, *lower;
10066 netdev_features_t features;
10067 struct list_head *iter;
10068 int err = -1;
10069
10070 ASSERT_RTNL();
10071
10072 features = netdev_get_wanted_features(dev);
10073
10074 if (dev->netdev_ops->ndo_fix_features)
10075 features = dev->netdev_ops->ndo_fix_features(dev, features);
10076
10077 /* driver might be less strict about feature dependencies */
10078 features = netdev_fix_features(dev, features);
10079
10080 /* some features can't be enabled if they're off on an upper device */
10081 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10082 features = netdev_sync_upper_features(dev, upper, features);
10083
10084 if (dev->features == features)
10085 goto sync_lower;
10086
10087 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10088 &dev->features, &features);
10089
10090 if (dev->netdev_ops->ndo_set_features)
10091 err = dev->netdev_ops->ndo_set_features(dev, features);
10092 else
10093 err = 0;
10094
10095 if (unlikely(err < 0)) {
10096 netdev_err(dev,
10097 "set_features() failed (%d); wanted %pNF, left %pNF\n",
10098 err, &features, &dev->features);
10099 /* return non-0 since some features might have changed and
10100 * it's better to fire a spurious notification than miss it
10101 */
10102 return -1;
10103 }
10104
10105 sync_lower:
10106 /* some features must be disabled on lower devices when disabled
10107 * on an upper device (think: bonding master or bridge)
10108 */
10109 netdev_for_each_lower_dev(dev, lower, iter)
10110 netdev_sync_lower_features(dev, lower, features);
10111
10112 if (!err) {
10113 netdev_features_t diff = features ^ dev->features;
10114
10115 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10116 /* udp_tunnel_{get,drop}_rx_info both need
10117 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10118 * device, or they won't do anything.
10119 * Thus we need to update dev->features
10120 * *before* calling udp_tunnel_get_rx_info,
10121 * but *after* calling udp_tunnel_drop_rx_info.
10122 */
10123 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10124 dev->features = features;
10125 udp_tunnel_get_rx_info(dev);
10126 } else {
10127 udp_tunnel_drop_rx_info(dev);
10128 }
10129 }
10130
10131 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10132 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10133 dev->features = features;
10134 err |= vlan_get_rx_ctag_filter_info(dev);
10135 } else {
10136 vlan_drop_rx_ctag_filter_info(dev);
10137 }
10138 }
10139
10140 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10141 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10142 dev->features = features;
10143 err |= vlan_get_rx_stag_filter_info(dev);
10144 } else {
10145 vlan_drop_rx_stag_filter_info(dev);
10146 }
10147 }
10148
10149 dev->features = features;
10150 }
10151
10152 return err < 0 ? 0 : 1;
10153 }
10154
10155 /**
10156 * netdev_update_features - recalculate device features
10157 * @dev: the device to check
10158 *
10159 * Recalculate dev->features set and send notifications if it
10160 * has changed. Should be called after driver or hardware dependent
10161 * conditions might have changed that influence the features.
10162 */
netdev_update_features(struct net_device * dev)10163 void netdev_update_features(struct net_device *dev)
10164 {
10165 if (__netdev_update_features(dev))
10166 netdev_features_change(dev);
10167 }
10168 EXPORT_SYMBOL(netdev_update_features);
10169
10170 /**
10171 * netdev_change_features - recalculate device features
10172 * @dev: the device to check
10173 *
10174 * Recalculate dev->features set and send notifications even
10175 * if they have not changed. Should be called instead of
10176 * netdev_update_features() if also dev->vlan_features might
10177 * have changed to allow the changes to be propagated to stacked
10178 * VLAN devices.
10179 */
netdev_change_features(struct net_device * dev)10180 void netdev_change_features(struct net_device *dev)
10181 {
10182 __netdev_update_features(dev);
10183 netdev_features_change(dev);
10184 }
10185 EXPORT_SYMBOL(netdev_change_features);
10186
10187 /**
10188 * netif_stacked_transfer_operstate - transfer operstate
10189 * @rootdev: the root or lower level device to transfer state from
10190 * @dev: the device to transfer operstate to
10191 *
10192 * Transfer operational state from root to device. This is normally
10193 * called when a stacking relationship exists between the root
10194 * device and the device(a leaf device).
10195 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10196 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10197 struct net_device *dev)
10198 {
10199 if (rootdev->operstate == IF_OPER_DORMANT)
10200 netif_dormant_on(dev);
10201 else
10202 netif_dormant_off(dev);
10203
10204 if (rootdev->operstate == IF_OPER_TESTING)
10205 netif_testing_on(dev);
10206 else
10207 netif_testing_off(dev);
10208
10209 if (netif_carrier_ok(rootdev))
10210 netif_carrier_on(dev);
10211 else
10212 netif_carrier_off(dev);
10213 }
10214 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10215
netif_alloc_rx_queues(struct net_device * dev)10216 static int netif_alloc_rx_queues(struct net_device *dev)
10217 {
10218 unsigned int i, count = dev->num_rx_queues;
10219 struct netdev_rx_queue *rx;
10220 size_t sz = count * sizeof(*rx);
10221 int err = 0;
10222
10223 BUG_ON(count < 1);
10224
10225 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10226 if (!rx)
10227 return -ENOMEM;
10228
10229 dev->_rx = rx;
10230
10231 for (i = 0; i < count; i++) {
10232 rx[i].dev = dev;
10233
10234 /* XDP RX-queue setup */
10235 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10236 if (err < 0)
10237 goto err_rxq_info;
10238 }
10239 return 0;
10240
10241 err_rxq_info:
10242 /* Rollback successful reg's and free other resources */
10243 while (i--)
10244 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10245 kvfree(dev->_rx);
10246 dev->_rx = NULL;
10247 return err;
10248 }
10249
netif_free_rx_queues(struct net_device * dev)10250 static void netif_free_rx_queues(struct net_device *dev)
10251 {
10252 unsigned int i, count = dev->num_rx_queues;
10253
10254 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10255 if (!dev->_rx)
10256 return;
10257
10258 for (i = 0; i < count; i++)
10259 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10260
10261 kvfree(dev->_rx);
10262 }
10263
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10264 static void netdev_init_one_queue(struct net_device *dev,
10265 struct netdev_queue *queue, void *_unused)
10266 {
10267 /* Initialize queue lock */
10268 spin_lock_init(&queue->_xmit_lock);
10269 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10270 queue->xmit_lock_owner = -1;
10271 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10272 queue->dev = dev;
10273 #ifdef CONFIG_BQL
10274 dql_init(&queue->dql, HZ);
10275 #endif
10276 }
10277
netif_free_tx_queues(struct net_device * dev)10278 static void netif_free_tx_queues(struct net_device *dev)
10279 {
10280 kvfree(dev->_tx);
10281 }
10282
netif_alloc_netdev_queues(struct net_device * dev)10283 static int netif_alloc_netdev_queues(struct net_device *dev)
10284 {
10285 unsigned int count = dev->num_tx_queues;
10286 struct netdev_queue *tx;
10287 size_t sz = count * sizeof(*tx);
10288
10289 if (count < 1 || count > 0xffff)
10290 return -EINVAL;
10291
10292 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10293 if (!tx)
10294 return -ENOMEM;
10295
10296 dev->_tx = tx;
10297
10298 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10299 spin_lock_init(&dev->tx_global_lock);
10300
10301 return 0;
10302 }
10303
netif_tx_stop_all_queues(struct net_device * dev)10304 void netif_tx_stop_all_queues(struct net_device *dev)
10305 {
10306 unsigned int i;
10307
10308 for (i = 0; i < dev->num_tx_queues; i++) {
10309 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10310
10311 netif_tx_stop_queue(txq);
10312 }
10313 }
10314 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10315
netdev_do_alloc_pcpu_stats(struct net_device * dev)10316 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10317 {
10318 void __percpu *v;
10319
10320 /* Drivers implementing ndo_get_peer_dev must support tstat
10321 * accounting, so that skb_do_redirect() can bump the dev's
10322 * RX stats upon network namespace switch.
10323 */
10324 if (dev->netdev_ops->ndo_get_peer_dev &&
10325 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10326 return -EOPNOTSUPP;
10327
10328 switch (dev->pcpu_stat_type) {
10329 case NETDEV_PCPU_STAT_NONE:
10330 return 0;
10331 case NETDEV_PCPU_STAT_LSTATS:
10332 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10333 break;
10334 case NETDEV_PCPU_STAT_TSTATS:
10335 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10336 break;
10337 case NETDEV_PCPU_STAT_DSTATS:
10338 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10339 break;
10340 default:
10341 return -EINVAL;
10342 }
10343
10344 return v ? 0 : -ENOMEM;
10345 }
10346
netdev_do_free_pcpu_stats(struct net_device * dev)10347 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10348 {
10349 switch (dev->pcpu_stat_type) {
10350 case NETDEV_PCPU_STAT_NONE:
10351 return;
10352 case NETDEV_PCPU_STAT_LSTATS:
10353 free_percpu(dev->lstats);
10354 break;
10355 case NETDEV_PCPU_STAT_TSTATS:
10356 free_percpu(dev->tstats);
10357 break;
10358 case NETDEV_PCPU_STAT_DSTATS:
10359 free_percpu(dev->dstats);
10360 break;
10361 }
10362 }
10363
netdev_free_phy_link_topology(struct net_device * dev)10364 static void netdev_free_phy_link_topology(struct net_device *dev)
10365 {
10366 struct phy_link_topology *topo = dev->link_topo;
10367
10368 if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10369 xa_destroy(&topo->phys);
10370 kfree(topo);
10371 dev->link_topo = NULL;
10372 }
10373 }
10374
10375 /**
10376 * register_netdevice() - register a network device
10377 * @dev: device to register
10378 *
10379 * Take a prepared network device structure and make it externally accessible.
10380 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10381 * Callers must hold the rtnl lock - you may want register_netdev()
10382 * instead of this.
10383 */
register_netdevice(struct net_device * dev)10384 int register_netdevice(struct net_device *dev)
10385 {
10386 int ret;
10387 struct net *net = dev_net(dev);
10388
10389 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10390 NETDEV_FEATURE_COUNT);
10391 BUG_ON(dev_boot_phase);
10392 ASSERT_RTNL();
10393
10394 might_sleep();
10395
10396 /* When net_device's are persistent, this will be fatal. */
10397 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10398 BUG_ON(!net);
10399
10400 ret = ethtool_check_ops(dev->ethtool_ops);
10401 if (ret)
10402 return ret;
10403
10404 /* rss ctx ID 0 is reserved for the default context, start from 1 */
10405 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10406 mutex_init(&dev->ethtool->rss_lock);
10407
10408 spin_lock_init(&dev->addr_list_lock);
10409 netdev_set_addr_lockdep_class(dev);
10410
10411 ret = dev_get_valid_name(net, dev, dev->name);
10412 if (ret < 0)
10413 goto out;
10414
10415 ret = -ENOMEM;
10416 dev->name_node = netdev_name_node_head_alloc(dev);
10417 if (!dev->name_node)
10418 goto out;
10419
10420 /* Init, if this function is available */
10421 if (dev->netdev_ops->ndo_init) {
10422 ret = dev->netdev_ops->ndo_init(dev);
10423 if (ret) {
10424 if (ret > 0)
10425 ret = -EIO;
10426 goto err_free_name;
10427 }
10428 }
10429
10430 if (((dev->hw_features | dev->features) &
10431 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10432 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10433 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10434 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10435 ret = -EINVAL;
10436 goto err_uninit;
10437 }
10438
10439 ret = netdev_do_alloc_pcpu_stats(dev);
10440 if (ret)
10441 goto err_uninit;
10442
10443 ret = dev_index_reserve(net, dev->ifindex);
10444 if (ret < 0)
10445 goto err_free_pcpu;
10446 dev->ifindex = ret;
10447
10448 /* Transfer changeable features to wanted_features and enable
10449 * software offloads (GSO and GRO).
10450 */
10451 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10452 dev->features |= NETIF_F_SOFT_FEATURES;
10453
10454 if (dev->udp_tunnel_nic_info) {
10455 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10456 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10457 }
10458
10459 dev->wanted_features = dev->features & dev->hw_features;
10460
10461 if (!(dev->flags & IFF_LOOPBACK))
10462 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10463
10464 /* If IPv4 TCP segmentation offload is supported we should also
10465 * allow the device to enable segmenting the frame with the option
10466 * of ignoring a static IP ID value. This doesn't enable the
10467 * feature itself but allows the user to enable it later.
10468 */
10469 if (dev->hw_features & NETIF_F_TSO)
10470 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10471 if (dev->vlan_features & NETIF_F_TSO)
10472 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10473 if (dev->mpls_features & NETIF_F_TSO)
10474 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10475 if (dev->hw_enc_features & NETIF_F_TSO)
10476 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10477
10478 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10479 */
10480 dev->vlan_features |= NETIF_F_HIGHDMA;
10481
10482 /* Make NETIF_F_SG inheritable to tunnel devices.
10483 */
10484 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10485
10486 /* Make NETIF_F_SG inheritable to MPLS.
10487 */
10488 dev->mpls_features |= NETIF_F_SG;
10489
10490 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10491 ret = notifier_to_errno(ret);
10492 if (ret)
10493 goto err_ifindex_release;
10494
10495 ret = netdev_register_kobject(dev);
10496
10497 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10498
10499 if (ret)
10500 goto err_uninit_notify;
10501
10502 __netdev_update_features(dev);
10503
10504 /*
10505 * Default initial state at registry is that the
10506 * device is present.
10507 */
10508
10509 set_bit(__LINK_STATE_PRESENT, &dev->state);
10510
10511 linkwatch_init_dev(dev);
10512
10513 dev_init_scheduler(dev);
10514
10515 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10516 list_netdevice(dev);
10517
10518 add_device_randomness(dev->dev_addr, dev->addr_len);
10519
10520 /* If the device has permanent device address, driver should
10521 * set dev_addr and also addr_assign_type should be set to
10522 * NET_ADDR_PERM (default value).
10523 */
10524 if (dev->addr_assign_type == NET_ADDR_PERM)
10525 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10526
10527 /* Notify protocols, that a new device appeared. */
10528 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10529 ret = notifier_to_errno(ret);
10530 if (ret) {
10531 /* Expect explicit free_netdev() on failure */
10532 dev->needs_free_netdev = false;
10533 unregister_netdevice_queue(dev, NULL);
10534 goto out;
10535 }
10536 /*
10537 * Prevent userspace races by waiting until the network
10538 * device is fully setup before sending notifications.
10539 */
10540 if (!dev->rtnl_link_ops ||
10541 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10542 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10543
10544 out:
10545 return ret;
10546
10547 err_uninit_notify:
10548 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10549 err_ifindex_release:
10550 dev_index_release(net, dev->ifindex);
10551 err_free_pcpu:
10552 netdev_do_free_pcpu_stats(dev);
10553 err_uninit:
10554 if (dev->netdev_ops->ndo_uninit)
10555 dev->netdev_ops->ndo_uninit(dev);
10556 if (dev->priv_destructor)
10557 dev->priv_destructor(dev);
10558 err_free_name:
10559 netdev_name_node_free(dev->name_node);
10560 goto out;
10561 }
10562 EXPORT_SYMBOL(register_netdevice);
10563
10564 /* Initialize the core of a dummy net device.
10565 * This is useful if you are calling this function after alloc_netdev(),
10566 * since it does not memset the net_device fields.
10567 */
init_dummy_netdev_core(struct net_device * dev)10568 static void init_dummy_netdev_core(struct net_device *dev)
10569 {
10570 /* make sure we BUG if trying to hit standard
10571 * register/unregister code path
10572 */
10573 dev->reg_state = NETREG_DUMMY;
10574
10575 /* NAPI wants this */
10576 INIT_LIST_HEAD(&dev->napi_list);
10577
10578 /* a dummy interface is started by default */
10579 set_bit(__LINK_STATE_PRESENT, &dev->state);
10580 set_bit(__LINK_STATE_START, &dev->state);
10581
10582 /* napi_busy_loop stats accounting wants this */
10583 dev_net_set(dev, &init_net);
10584
10585 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10586 * because users of this 'device' dont need to change
10587 * its refcount.
10588 */
10589 }
10590
10591 /**
10592 * init_dummy_netdev - init a dummy network device for NAPI
10593 * @dev: device to init
10594 *
10595 * This takes a network device structure and initializes the minimum
10596 * amount of fields so it can be used to schedule NAPI polls without
10597 * registering a full blown interface. This is to be used by drivers
10598 * that need to tie several hardware interfaces to a single NAPI
10599 * poll scheduler due to HW limitations.
10600 */
init_dummy_netdev(struct net_device * dev)10601 void init_dummy_netdev(struct net_device *dev)
10602 {
10603 /* Clear everything. Note we don't initialize spinlocks
10604 * as they aren't supposed to be taken by any of the
10605 * NAPI code and this dummy netdev is supposed to be
10606 * only ever used for NAPI polls
10607 */
10608 memset(dev, 0, sizeof(struct net_device));
10609 init_dummy_netdev_core(dev);
10610 }
10611 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10612
10613 /**
10614 * register_netdev - register a network device
10615 * @dev: device to register
10616 *
10617 * Take a completed network device structure and add it to the kernel
10618 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10619 * chain. 0 is returned on success. A negative errno code is returned
10620 * on a failure to set up the device, or if the name is a duplicate.
10621 *
10622 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10623 * and expands the device name if you passed a format string to
10624 * alloc_netdev.
10625 */
register_netdev(struct net_device * dev)10626 int register_netdev(struct net_device *dev)
10627 {
10628 int err;
10629
10630 if (rtnl_lock_killable())
10631 return -EINTR;
10632 err = register_netdevice(dev);
10633 rtnl_unlock();
10634 return err;
10635 }
10636 EXPORT_SYMBOL(register_netdev);
10637
netdev_refcnt_read(const struct net_device * dev)10638 int netdev_refcnt_read(const struct net_device *dev)
10639 {
10640 #ifdef CONFIG_PCPU_DEV_REFCNT
10641 int i, refcnt = 0;
10642
10643 for_each_possible_cpu(i)
10644 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10645 return refcnt;
10646 #else
10647 return refcount_read(&dev->dev_refcnt);
10648 #endif
10649 }
10650 EXPORT_SYMBOL(netdev_refcnt_read);
10651
10652 int netdev_unregister_timeout_secs __read_mostly = 10;
10653
10654 #define WAIT_REFS_MIN_MSECS 1
10655 #define WAIT_REFS_MAX_MSECS 250
10656 /**
10657 * netdev_wait_allrefs_any - wait until all references are gone.
10658 * @list: list of net_devices to wait on
10659 *
10660 * This is called when unregistering network devices.
10661 *
10662 * Any protocol or device that holds a reference should register
10663 * for netdevice notification, and cleanup and put back the
10664 * reference if they receive an UNREGISTER event.
10665 * We can get stuck here if buggy protocols don't correctly
10666 * call dev_put.
10667 */
netdev_wait_allrefs_any(struct list_head * list)10668 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10669 {
10670 unsigned long rebroadcast_time, warning_time;
10671 struct net_device *dev;
10672 int wait = 0;
10673
10674 rebroadcast_time = warning_time = jiffies;
10675
10676 list_for_each_entry(dev, list, todo_list)
10677 if (netdev_refcnt_read(dev) == 1)
10678 return dev;
10679
10680 while (true) {
10681 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10682 rtnl_lock();
10683
10684 /* Rebroadcast unregister notification */
10685 list_for_each_entry(dev, list, todo_list)
10686 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10687
10688 __rtnl_unlock();
10689 rcu_barrier();
10690 rtnl_lock();
10691
10692 list_for_each_entry(dev, list, todo_list)
10693 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10694 &dev->state)) {
10695 /* We must not have linkwatch events
10696 * pending on unregister. If this
10697 * happens, we simply run the queue
10698 * unscheduled, resulting in a noop
10699 * for this device.
10700 */
10701 linkwatch_run_queue();
10702 break;
10703 }
10704
10705 __rtnl_unlock();
10706
10707 rebroadcast_time = jiffies;
10708 }
10709
10710 rcu_barrier();
10711
10712 if (!wait) {
10713 wait = WAIT_REFS_MIN_MSECS;
10714 } else {
10715 msleep(wait);
10716 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10717 }
10718
10719 list_for_each_entry(dev, list, todo_list)
10720 if (netdev_refcnt_read(dev) == 1)
10721 return dev;
10722
10723 if (time_after(jiffies, warning_time +
10724 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10725 list_for_each_entry(dev, list, todo_list) {
10726 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10727 dev->name, netdev_refcnt_read(dev));
10728 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10729 }
10730
10731 warning_time = jiffies;
10732 }
10733 }
10734 }
10735
10736 /* The sequence is:
10737 *
10738 * rtnl_lock();
10739 * ...
10740 * register_netdevice(x1);
10741 * register_netdevice(x2);
10742 * ...
10743 * unregister_netdevice(y1);
10744 * unregister_netdevice(y2);
10745 * ...
10746 * rtnl_unlock();
10747 * free_netdev(y1);
10748 * free_netdev(y2);
10749 *
10750 * We are invoked by rtnl_unlock().
10751 * This allows us to deal with problems:
10752 * 1) We can delete sysfs objects which invoke hotplug
10753 * without deadlocking with linkwatch via keventd.
10754 * 2) Since we run with the RTNL semaphore not held, we can sleep
10755 * safely in order to wait for the netdev refcnt to drop to zero.
10756 *
10757 * We must not return until all unregister events added during
10758 * the interval the lock was held have been completed.
10759 */
netdev_run_todo(void)10760 void netdev_run_todo(void)
10761 {
10762 struct net_device *dev, *tmp;
10763 struct list_head list;
10764 int cnt;
10765 #ifdef CONFIG_LOCKDEP
10766 struct list_head unlink_list;
10767
10768 list_replace_init(&net_unlink_list, &unlink_list);
10769
10770 while (!list_empty(&unlink_list)) {
10771 struct net_device *dev = list_first_entry(&unlink_list,
10772 struct net_device,
10773 unlink_list);
10774 list_del_init(&dev->unlink_list);
10775 dev->nested_level = dev->lower_level - 1;
10776 }
10777 #endif
10778
10779 /* Snapshot list, allow later requests */
10780 list_replace_init(&net_todo_list, &list);
10781
10782 __rtnl_unlock();
10783
10784 /* Wait for rcu callbacks to finish before next phase */
10785 if (!list_empty(&list))
10786 rcu_barrier();
10787
10788 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10789 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10790 netdev_WARN(dev, "run_todo but not unregistering\n");
10791 list_del(&dev->todo_list);
10792 continue;
10793 }
10794
10795 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10796 linkwatch_sync_dev(dev);
10797 }
10798
10799 cnt = 0;
10800 while (!list_empty(&list)) {
10801 dev = netdev_wait_allrefs_any(&list);
10802 list_del(&dev->todo_list);
10803
10804 /* paranoia */
10805 BUG_ON(netdev_refcnt_read(dev) != 1);
10806 BUG_ON(!list_empty(&dev->ptype_all));
10807 BUG_ON(!list_empty(&dev->ptype_specific));
10808 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10809 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10810
10811 netdev_do_free_pcpu_stats(dev);
10812 if (dev->priv_destructor)
10813 dev->priv_destructor(dev);
10814 if (dev->needs_free_netdev)
10815 free_netdev(dev);
10816
10817 cnt++;
10818
10819 /* Free network device */
10820 kobject_put(&dev->dev.kobj);
10821 }
10822 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10823 wake_up(&netdev_unregistering_wq);
10824 }
10825
10826 /* Collate per-cpu network dstats statistics
10827 *
10828 * Read per-cpu network statistics from dev->dstats and populate the related
10829 * fields in @s.
10830 */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)10831 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10832 const struct pcpu_dstats __percpu *dstats)
10833 {
10834 int cpu;
10835
10836 for_each_possible_cpu(cpu) {
10837 u64 rx_packets, rx_bytes, rx_drops;
10838 u64 tx_packets, tx_bytes, tx_drops;
10839 const struct pcpu_dstats *stats;
10840 unsigned int start;
10841
10842 stats = per_cpu_ptr(dstats, cpu);
10843 do {
10844 start = u64_stats_fetch_begin(&stats->syncp);
10845 rx_packets = u64_stats_read(&stats->rx_packets);
10846 rx_bytes = u64_stats_read(&stats->rx_bytes);
10847 rx_drops = u64_stats_read(&stats->rx_drops);
10848 tx_packets = u64_stats_read(&stats->tx_packets);
10849 tx_bytes = u64_stats_read(&stats->tx_bytes);
10850 tx_drops = u64_stats_read(&stats->tx_drops);
10851 } while (u64_stats_fetch_retry(&stats->syncp, start));
10852
10853 s->rx_packets += rx_packets;
10854 s->rx_bytes += rx_bytes;
10855 s->rx_dropped += rx_drops;
10856 s->tx_packets += tx_packets;
10857 s->tx_bytes += tx_bytes;
10858 s->tx_dropped += tx_drops;
10859 }
10860 }
10861
10862 /* ndo_get_stats64 implementation for dtstats-based accounting.
10863 *
10864 * Populate @s from dev->stats and dev->dstats. This is used internally by the
10865 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10866 */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)10867 static void dev_get_dstats64(const struct net_device *dev,
10868 struct rtnl_link_stats64 *s)
10869 {
10870 netdev_stats_to_stats64(s, &dev->stats);
10871 dev_fetch_dstats(s, dev->dstats);
10872 }
10873
10874 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10875 * all the same fields in the same order as net_device_stats, with only
10876 * the type differing, but rtnl_link_stats64 may have additional fields
10877 * at the end for newer counters.
10878 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10879 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10880 const struct net_device_stats *netdev_stats)
10881 {
10882 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10883 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10884 u64 *dst = (u64 *)stats64;
10885
10886 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10887 for (i = 0; i < n; i++)
10888 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10889 /* zero out counters that only exist in rtnl_link_stats64 */
10890 memset((char *)stats64 + n * sizeof(u64), 0,
10891 sizeof(*stats64) - n * sizeof(u64));
10892 }
10893 EXPORT_SYMBOL(netdev_stats_to_stats64);
10894
netdev_core_stats_alloc(struct net_device * dev)10895 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10896 struct net_device *dev)
10897 {
10898 struct net_device_core_stats __percpu *p;
10899
10900 p = alloc_percpu_gfp(struct net_device_core_stats,
10901 GFP_ATOMIC | __GFP_NOWARN);
10902
10903 if (p && cmpxchg(&dev->core_stats, NULL, p))
10904 free_percpu(p);
10905
10906 /* This READ_ONCE() pairs with the cmpxchg() above */
10907 return READ_ONCE(dev->core_stats);
10908 }
10909
netdev_core_stats_inc(struct net_device * dev,u32 offset)10910 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10911 {
10912 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10913 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10914 unsigned long __percpu *field;
10915
10916 if (unlikely(!p)) {
10917 p = netdev_core_stats_alloc(dev);
10918 if (!p)
10919 return;
10920 }
10921
10922 field = (unsigned long __percpu *)((void __percpu *)p + offset);
10923 this_cpu_inc(*field);
10924 }
10925 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10926
10927 /**
10928 * dev_get_stats - get network device statistics
10929 * @dev: device to get statistics from
10930 * @storage: place to store stats
10931 *
10932 * Get network statistics from device. Return @storage.
10933 * The device driver may provide its own method by setting
10934 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10935 * otherwise the internal statistics structure is used.
10936 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10937 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10938 struct rtnl_link_stats64 *storage)
10939 {
10940 const struct net_device_ops *ops = dev->netdev_ops;
10941 const struct net_device_core_stats __percpu *p;
10942
10943 if (ops->ndo_get_stats64) {
10944 memset(storage, 0, sizeof(*storage));
10945 ops->ndo_get_stats64(dev, storage);
10946 } else if (ops->ndo_get_stats) {
10947 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10948 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10949 dev_get_tstats64(dev, storage);
10950 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
10951 dev_get_dstats64(dev, storage);
10952 } else {
10953 netdev_stats_to_stats64(storage, &dev->stats);
10954 }
10955
10956 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10957 p = READ_ONCE(dev->core_stats);
10958 if (p) {
10959 const struct net_device_core_stats *core_stats;
10960 int i;
10961
10962 for_each_possible_cpu(i) {
10963 core_stats = per_cpu_ptr(p, i);
10964 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10965 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10966 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10967 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10968 }
10969 }
10970 return storage;
10971 }
10972 EXPORT_SYMBOL(dev_get_stats);
10973
10974 /**
10975 * dev_fetch_sw_netstats - get per-cpu network device statistics
10976 * @s: place to store stats
10977 * @netstats: per-cpu network stats to read from
10978 *
10979 * Read per-cpu network statistics and populate the related fields in @s.
10980 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10981 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10982 const struct pcpu_sw_netstats __percpu *netstats)
10983 {
10984 int cpu;
10985
10986 for_each_possible_cpu(cpu) {
10987 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10988 const struct pcpu_sw_netstats *stats;
10989 unsigned int start;
10990
10991 stats = per_cpu_ptr(netstats, cpu);
10992 do {
10993 start = u64_stats_fetch_begin(&stats->syncp);
10994 rx_packets = u64_stats_read(&stats->rx_packets);
10995 rx_bytes = u64_stats_read(&stats->rx_bytes);
10996 tx_packets = u64_stats_read(&stats->tx_packets);
10997 tx_bytes = u64_stats_read(&stats->tx_bytes);
10998 } while (u64_stats_fetch_retry(&stats->syncp, start));
10999
11000 s->rx_packets += rx_packets;
11001 s->rx_bytes += rx_bytes;
11002 s->tx_packets += tx_packets;
11003 s->tx_bytes += tx_bytes;
11004 }
11005 }
11006 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11007
11008 /**
11009 * dev_get_tstats64 - ndo_get_stats64 implementation
11010 * @dev: device to get statistics from
11011 * @s: place to store stats
11012 *
11013 * Populate @s from dev->stats and dev->tstats. Can be used as
11014 * ndo_get_stats64() callback.
11015 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11016 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11017 {
11018 netdev_stats_to_stats64(s, &dev->stats);
11019 dev_fetch_sw_netstats(s, dev->tstats);
11020 }
11021 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11022
dev_ingress_queue_create(struct net_device * dev)11023 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11024 {
11025 struct netdev_queue *queue = dev_ingress_queue(dev);
11026
11027 #ifdef CONFIG_NET_CLS_ACT
11028 if (queue)
11029 return queue;
11030 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11031 if (!queue)
11032 return NULL;
11033 netdev_init_one_queue(dev, queue, NULL);
11034 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11035 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11036 rcu_assign_pointer(dev->ingress_queue, queue);
11037 #endif
11038 return queue;
11039 }
11040
11041 static const struct ethtool_ops default_ethtool_ops;
11042
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11043 void netdev_set_default_ethtool_ops(struct net_device *dev,
11044 const struct ethtool_ops *ops)
11045 {
11046 if (dev->ethtool_ops == &default_ethtool_ops)
11047 dev->ethtool_ops = ops;
11048 }
11049 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11050
11051 /**
11052 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11053 * @dev: netdev to enable the IRQ coalescing on
11054 *
11055 * Sets a conservative default for SW IRQ coalescing. Users can use
11056 * sysfs attributes to override the default values.
11057 */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11058 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11059 {
11060 WARN_ON(dev->reg_state == NETREG_REGISTERED);
11061
11062 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11063 dev->gro_flush_timeout = 20000;
11064 dev->napi_defer_hard_irqs = 1;
11065 }
11066 }
11067 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11068
11069 /**
11070 * alloc_netdev_mqs - allocate network device
11071 * @sizeof_priv: size of private data to allocate space for
11072 * @name: device name format string
11073 * @name_assign_type: origin of device name
11074 * @setup: callback to initialize device
11075 * @txqs: the number of TX subqueues to allocate
11076 * @rxqs: the number of RX subqueues to allocate
11077 *
11078 * Allocates a struct net_device with private data area for driver use
11079 * and performs basic initialization. Also allocates subqueue structs
11080 * for each queue on the device.
11081 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11082 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11083 unsigned char name_assign_type,
11084 void (*setup)(struct net_device *),
11085 unsigned int txqs, unsigned int rxqs)
11086 {
11087 struct net_device *dev;
11088
11089 BUG_ON(strlen(name) >= sizeof(dev->name));
11090
11091 if (txqs < 1) {
11092 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11093 return NULL;
11094 }
11095
11096 if (rxqs < 1) {
11097 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11098 return NULL;
11099 }
11100
11101 dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11102 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11103 if (!dev)
11104 return NULL;
11105
11106 dev->priv_len = sizeof_priv;
11107
11108 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11109 #ifdef CONFIG_PCPU_DEV_REFCNT
11110 dev->pcpu_refcnt = alloc_percpu(int);
11111 if (!dev->pcpu_refcnt)
11112 goto free_dev;
11113 __dev_hold(dev);
11114 #else
11115 refcount_set(&dev->dev_refcnt, 1);
11116 #endif
11117
11118 if (dev_addr_init(dev))
11119 goto free_pcpu;
11120
11121 dev_mc_init(dev);
11122 dev_uc_init(dev);
11123
11124 dev_net_set(dev, &init_net);
11125
11126 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11127 dev->xdp_zc_max_segs = 1;
11128 dev->gso_max_segs = GSO_MAX_SEGS;
11129 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11130 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11131 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11132 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11133 dev->tso_max_segs = TSO_MAX_SEGS;
11134 dev->upper_level = 1;
11135 dev->lower_level = 1;
11136 #ifdef CONFIG_LOCKDEP
11137 dev->nested_level = 0;
11138 INIT_LIST_HEAD(&dev->unlink_list);
11139 #endif
11140
11141 INIT_LIST_HEAD(&dev->napi_list);
11142 INIT_LIST_HEAD(&dev->unreg_list);
11143 INIT_LIST_HEAD(&dev->close_list);
11144 INIT_LIST_HEAD(&dev->link_watch_list);
11145 INIT_LIST_HEAD(&dev->adj_list.upper);
11146 INIT_LIST_HEAD(&dev->adj_list.lower);
11147 INIT_LIST_HEAD(&dev->ptype_all);
11148 INIT_LIST_HEAD(&dev->ptype_specific);
11149 INIT_LIST_HEAD(&dev->net_notifier_list);
11150 #ifdef CONFIG_NET_SCHED
11151 hash_init(dev->qdisc_hash);
11152 #endif
11153
11154 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11155 setup(dev);
11156
11157 if (!dev->tx_queue_len) {
11158 dev->priv_flags |= IFF_NO_QUEUE;
11159 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11160 }
11161
11162 dev->num_tx_queues = txqs;
11163 dev->real_num_tx_queues = txqs;
11164 if (netif_alloc_netdev_queues(dev))
11165 goto free_all;
11166
11167 dev->num_rx_queues = rxqs;
11168 dev->real_num_rx_queues = rxqs;
11169 if (netif_alloc_rx_queues(dev))
11170 goto free_all;
11171 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11172 if (!dev->ethtool)
11173 goto free_all;
11174
11175 strscpy(dev->name, name);
11176 dev->name_assign_type = name_assign_type;
11177 dev->group = INIT_NETDEV_GROUP;
11178 if (!dev->ethtool_ops)
11179 dev->ethtool_ops = &default_ethtool_ops;
11180
11181 nf_hook_netdev_init(dev);
11182
11183 return dev;
11184
11185 free_all:
11186 free_netdev(dev);
11187 return NULL;
11188
11189 free_pcpu:
11190 #ifdef CONFIG_PCPU_DEV_REFCNT
11191 free_percpu(dev->pcpu_refcnt);
11192 free_dev:
11193 #endif
11194 kvfree(dev);
11195 return NULL;
11196 }
11197 EXPORT_SYMBOL(alloc_netdev_mqs);
11198
11199 /**
11200 * free_netdev - free network device
11201 * @dev: device
11202 *
11203 * This function does the last stage of destroying an allocated device
11204 * interface. The reference to the device object is released. If this
11205 * is the last reference then it will be freed.Must be called in process
11206 * context.
11207 */
free_netdev(struct net_device * dev)11208 void free_netdev(struct net_device *dev)
11209 {
11210 struct napi_struct *p, *n;
11211
11212 might_sleep();
11213
11214 /* When called immediately after register_netdevice() failed the unwind
11215 * handling may still be dismantling the device. Handle that case by
11216 * deferring the free.
11217 */
11218 if (dev->reg_state == NETREG_UNREGISTERING) {
11219 ASSERT_RTNL();
11220 dev->needs_free_netdev = true;
11221 return;
11222 }
11223
11224 kfree(dev->ethtool);
11225 netif_free_tx_queues(dev);
11226 netif_free_rx_queues(dev);
11227
11228 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11229
11230 /* Flush device addresses */
11231 dev_addr_flush(dev);
11232
11233 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11234 netif_napi_del(p);
11235
11236 ref_tracker_dir_exit(&dev->refcnt_tracker);
11237 #ifdef CONFIG_PCPU_DEV_REFCNT
11238 free_percpu(dev->pcpu_refcnt);
11239 dev->pcpu_refcnt = NULL;
11240 #endif
11241 free_percpu(dev->core_stats);
11242 dev->core_stats = NULL;
11243 free_percpu(dev->xdp_bulkq);
11244 dev->xdp_bulkq = NULL;
11245
11246 netdev_free_phy_link_topology(dev);
11247
11248 /* Compatibility with error handling in drivers */
11249 if (dev->reg_state == NETREG_UNINITIALIZED ||
11250 dev->reg_state == NETREG_DUMMY) {
11251 kvfree(dev);
11252 return;
11253 }
11254
11255 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11256 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11257
11258 /* will free via device release */
11259 put_device(&dev->dev);
11260 }
11261 EXPORT_SYMBOL(free_netdev);
11262
11263 /**
11264 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11265 * @sizeof_priv: size of private data to allocate space for
11266 *
11267 * Return: the allocated net_device on success, NULL otherwise
11268 */
alloc_netdev_dummy(int sizeof_priv)11269 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11270 {
11271 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11272 init_dummy_netdev_core);
11273 }
11274 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11275
11276 /**
11277 * synchronize_net - Synchronize with packet receive processing
11278 *
11279 * Wait for packets currently being received to be done.
11280 * Does not block later packets from starting.
11281 */
synchronize_net(void)11282 void synchronize_net(void)
11283 {
11284 might_sleep();
11285 if (rtnl_is_locked())
11286 synchronize_rcu_expedited();
11287 else
11288 synchronize_rcu();
11289 }
11290 EXPORT_SYMBOL(synchronize_net);
11291
netdev_rss_contexts_free(struct net_device * dev)11292 static void netdev_rss_contexts_free(struct net_device *dev)
11293 {
11294 struct ethtool_rxfh_context *ctx;
11295 unsigned long context;
11296
11297 mutex_lock(&dev->ethtool->rss_lock);
11298 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11299 struct ethtool_rxfh_param rxfh;
11300
11301 rxfh.indir = ethtool_rxfh_context_indir(ctx);
11302 rxfh.key = ethtool_rxfh_context_key(ctx);
11303 rxfh.hfunc = ctx->hfunc;
11304 rxfh.input_xfrm = ctx->input_xfrm;
11305 rxfh.rss_context = context;
11306 rxfh.rss_delete = true;
11307
11308 xa_erase(&dev->ethtool->rss_ctx, context);
11309 if (dev->ethtool_ops->create_rxfh_context)
11310 dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11311 context, NULL);
11312 else
11313 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11314 kfree(ctx);
11315 }
11316 xa_destroy(&dev->ethtool->rss_ctx);
11317 mutex_unlock(&dev->ethtool->rss_lock);
11318 }
11319
11320 /**
11321 * unregister_netdevice_queue - remove device from the kernel
11322 * @dev: device
11323 * @head: list
11324 *
11325 * This function shuts down a device interface and removes it
11326 * from the kernel tables.
11327 * If head not NULL, device is queued to be unregistered later.
11328 *
11329 * Callers must hold the rtnl semaphore. You may want
11330 * unregister_netdev() instead of this.
11331 */
11332
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)11333 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11334 {
11335 ASSERT_RTNL();
11336
11337 if (head) {
11338 list_move_tail(&dev->unreg_list, head);
11339 } else {
11340 LIST_HEAD(single);
11341
11342 list_add(&dev->unreg_list, &single);
11343 unregister_netdevice_many(&single);
11344 }
11345 }
11346 EXPORT_SYMBOL(unregister_netdevice_queue);
11347
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)11348 void unregister_netdevice_many_notify(struct list_head *head,
11349 u32 portid, const struct nlmsghdr *nlh)
11350 {
11351 struct net_device *dev, *tmp;
11352 LIST_HEAD(close_head);
11353 int cnt = 0;
11354
11355 BUG_ON(dev_boot_phase);
11356 ASSERT_RTNL();
11357
11358 if (list_empty(head))
11359 return;
11360
11361 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11362 /* Some devices call without registering
11363 * for initialization unwind. Remove those
11364 * devices and proceed with the remaining.
11365 */
11366 if (dev->reg_state == NETREG_UNINITIALIZED) {
11367 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11368 dev->name, dev);
11369
11370 WARN_ON(1);
11371 list_del(&dev->unreg_list);
11372 continue;
11373 }
11374 dev->dismantle = true;
11375 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11376 }
11377
11378 /* If device is running, close it first. */
11379 list_for_each_entry(dev, head, unreg_list)
11380 list_add_tail(&dev->close_list, &close_head);
11381 dev_close_many(&close_head, true);
11382
11383 list_for_each_entry(dev, head, unreg_list) {
11384 /* And unlink it from device chain. */
11385 unlist_netdevice(dev);
11386 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11387 }
11388 flush_all_backlogs();
11389
11390 synchronize_net();
11391
11392 list_for_each_entry(dev, head, unreg_list) {
11393 struct sk_buff *skb = NULL;
11394
11395 /* Shutdown queueing discipline. */
11396 dev_shutdown(dev);
11397 dev_tcx_uninstall(dev);
11398 dev_xdp_uninstall(dev);
11399 bpf_dev_bound_netdev_unregister(dev);
11400 dev_dmabuf_uninstall(dev);
11401
11402 netdev_offload_xstats_disable_all(dev);
11403
11404 /* Notify protocols, that we are about to destroy
11405 * this device. They should clean all the things.
11406 */
11407 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11408
11409 if (!dev->rtnl_link_ops ||
11410 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11411 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11412 GFP_KERNEL, NULL, 0,
11413 portid, nlh);
11414
11415 /*
11416 * Flush the unicast and multicast chains
11417 */
11418 dev_uc_flush(dev);
11419 dev_mc_flush(dev);
11420
11421 netdev_name_node_alt_flush(dev);
11422 netdev_name_node_free(dev->name_node);
11423
11424 netdev_rss_contexts_free(dev);
11425
11426 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11427
11428 if (dev->netdev_ops->ndo_uninit)
11429 dev->netdev_ops->ndo_uninit(dev);
11430
11431 mutex_destroy(&dev->ethtool->rss_lock);
11432
11433 if (skb)
11434 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11435
11436 /* Notifier chain MUST detach us all upper devices. */
11437 WARN_ON(netdev_has_any_upper_dev(dev));
11438 WARN_ON(netdev_has_any_lower_dev(dev));
11439
11440 /* Remove entries from kobject tree */
11441 netdev_unregister_kobject(dev);
11442 #ifdef CONFIG_XPS
11443 /* Remove XPS queueing entries */
11444 netif_reset_xps_queues_gt(dev, 0);
11445 #endif
11446 }
11447
11448 synchronize_net();
11449
11450 list_for_each_entry(dev, head, unreg_list) {
11451 netdev_put(dev, &dev->dev_registered_tracker);
11452 net_set_todo(dev);
11453 cnt++;
11454 }
11455 atomic_add(cnt, &dev_unreg_count);
11456
11457 list_del(head);
11458 }
11459
11460 /**
11461 * unregister_netdevice_many - unregister many devices
11462 * @head: list of devices
11463 *
11464 * Note: As most callers use a stack allocated list_head,
11465 * we force a list_del() to make sure stack won't be corrupted later.
11466 */
unregister_netdevice_many(struct list_head * head)11467 void unregister_netdevice_many(struct list_head *head)
11468 {
11469 unregister_netdevice_many_notify(head, 0, NULL);
11470 }
11471 EXPORT_SYMBOL(unregister_netdevice_many);
11472
11473 /**
11474 * unregister_netdev - remove device from the kernel
11475 * @dev: device
11476 *
11477 * This function shuts down a device interface and removes it
11478 * from the kernel tables.
11479 *
11480 * This is just a wrapper for unregister_netdevice that takes
11481 * the rtnl semaphore. In general you want to use this and not
11482 * unregister_netdevice.
11483 */
unregister_netdev(struct net_device * dev)11484 void unregister_netdev(struct net_device *dev)
11485 {
11486 rtnl_lock();
11487 unregister_netdevice(dev);
11488 rtnl_unlock();
11489 }
11490 EXPORT_SYMBOL(unregister_netdev);
11491
11492 /**
11493 * __dev_change_net_namespace - move device to different nethost namespace
11494 * @dev: device
11495 * @net: network namespace
11496 * @pat: If not NULL name pattern to try if the current device name
11497 * is already taken in the destination network namespace.
11498 * @new_ifindex: If not zero, specifies device index in the target
11499 * namespace.
11500 *
11501 * This function shuts down a device interface and moves it
11502 * to a new network namespace. On success 0 is returned, on
11503 * a failure a netagive errno code is returned.
11504 *
11505 * Callers must hold the rtnl semaphore.
11506 */
11507
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex)11508 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11509 const char *pat, int new_ifindex)
11510 {
11511 struct netdev_name_node *name_node;
11512 struct net *net_old = dev_net(dev);
11513 char new_name[IFNAMSIZ] = {};
11514 int err, new_nsid;
11515
11516 ASSERT_RTNL();
11517
11518 /* Don't allow namespace local devices to be moved. */
11519 err = -EINVAL;
11520 if (dev->netns_local)
11521 goto out;
11522
11523 /* Ensure the device has been registered */
11524 if (dev->reg_state != NETREG_REGISTERED)
11525 goto out;
11526
11527 /* Get out if there is nothing todo */
11528 err = 0;
11529 if (net_eq(net_old, net))
11530 goto out;
11531
11532 /* Pick the destination device name, and ensure
11533 * we can use it in the destination network namespace.
11534 */
11535 err = -EEXIST;
11536 if (netdev_name_in_use(net, dev->name)) {
11537 /* We get here if we can't use the current device name */
11538 if (!pat)
11539 goto out;
11540 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11541 if (err < 0)
11542 goto out;
11543 }
11544 /* Check that none of the altnames conflicts. */
11545 err = -EEXIST;
11546 netdev_for_each_altname(dev, name_node)
11547 if (netdev_name_in_use(net, name_node->name))
11548 goto out;
11549
11550 /* Check that new_ifindex isn't used yet. */
11551 if (new_ifindex) {
11552 err = dev_index_reserve(net, new_ifindex);
11553 if (err < 0)
11554 goto out;
11555 } else {
11556 /* If there is an ifindex conflict assign a new one */
11557 err = dev_index_reserve(net, dev->ifindex);
11558 if (err == -EBUSY)
11559 err = dev_index_reserve(net, 0);
11560 if (err < 0)
11561 goto out;
11562 new_ifindex = err;
11563 }
11564
11565 /*
11566 * And now a mini version of register_netdevice unregister_netdevice.
11567 */
11568
11569 /* If device is running close it first. */
11570 dev_close(dev);
11571
11572 /* And unlink it from device chain */
11573 unlist_netdevice(dev);
11574
11575 synchronize_net();
11576
11577 /* Shutdown queueing discipline. */
11578 dev_shutdown(dev);
11579
11580 /* Notify protocols, that we are about to destroy
11581 * this device. They should clean all the things.
11582 *
11583 * Note that dev->reg_state stays at NETREG_REGISTERED.
11584 * This is wanted because this way 8021q and macvlan know
11585 * the device is just moving and can keep their slaves up.
11586 */
11587 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11588 rcu_barrier();
11589
11590 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11591
11592 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11593 new_ifindex);
11594
11595 /*
11596 * Flush the unicast and multicast chains
11597 */
11598 dev_uc_flush(dev);
11599 dev_mc_flush(dev);
11600
11601 /* Send a netdev-removed uevent to the old namespace */
11602 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11603 netdev_adjacent_del_links(dev);
11604
11605 /* Move per-net netdevice notifiers that are following the netdevice */
11606 move_netdevice_notifiers_dev_net(dev, net);
11607
11608 /* Actually switch the network namespace */
11609 dev_net_set(dev, net);
11610 dev->ifindex = new_ifindex;
11611
11612 if (new_name[0]) {
11613 /* Rename the netdev to prepared name */
11614 write_seqlock_bh(&netdev_rename_lock);
11615 strscpy(dev->name, new_name, IFNAMSIZ);
11616 write_sequnlock_bh(&netdev_rename_lock);
11617 }
11618
11619 /* Fixup kobjects */
11620 dev_set_uevent_suppress(&dev->dev, 1);
11621 err = device_rename(&dev->dev, dev->name);
11622 dev_set_uevent_suppress(&dev->dev, 0);
11623 WARN_ON(err);
11624
11625 /* Send a netdev-add uevent to the new namespace */
11626 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11627 netdev_adjacent_add_links(dev);
11628
11629 /* Adapt owner in case owning user namespace of target network
11630 * namespace is different from the original one.
11631 */
11632 err = netdev_change_owner(dev, net_old, net);
11633 WARN_ON(err);
11634
11635 /* Add the device back in the hashes */
11636 list_netdevice(dev);
11637
11638 /* Notify protocols, that a new device appeared. */
11639 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11640
11641 /*
11642 * Prevent userspace races by waiting until the network
11643 * device is fully setup before sending notifications.
11644 */
11645 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11646
11647 synchronize_net();
11648 err = 0;
11649 out:
11650 return err;
11651 }
11652 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11653
dev_cpu_dead(unsigned int oldcpu)11654 static int dev_cpu_dead(unsigned int oldcpu)
11655 {
11656 struct sk_buff **list_skb;
11657 struct sk_buff *skb;
11658 unsigned int cpu;
11659 struct softnet_data *sd, *oldsd, *remsd = NULL;
11660
11661 local_irq_disable();
11662 cpu = smp_processor_id();
11663 sd = &per_cpu(softnet_data, cpu);
11664 oldsd = &per_cpu(softnet_data, oldcpu);
11665
11666 /* Find end of our completion_queue. */
11667 list_skb = &sd->completion_queue;
11668 while (*list_skb)
11669 list_skb = &(*list_skb)->next;
11670 /* Append completion queue from offline CPU. */
11671 *list_skb = oldsd->completion_queue;
11672 oldsd->completion_queue = NULL;
11673
11674 /* Append output queue from offline CPU. */
11675 if (oldsd->output_queue) {
11676 *sd->output_queue_tailp = oldsd->output_queue;
11677 sd->output_queue_tailp = oldsd->output_queue_tailp;
11678 oldsd->output_queue = NULL;
11679 oldsd->output_queue_tailp = &oldsd->output_queue;
11680 }
11681 /* Append NAPI poll list from offline CPU, with one exception :
11682 * process_backlog() must be called by cpu owning percpu backlog.
11683 * We properly handle process_queue & input_pkt_queue later.
11684 */
11685 while (!list_empty(&oldsd->poll_list)) {
11686 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11687 struct napi_struct,
11688 poll_list);
11689
11690 list_del_init(&napi->poll_list);
11691 if (napi->poll == process_backlog)
11692 napi->state &= NAPIF_STATE_THREADED;
11693 else
11694 ____napi_schedule(sd, napi);
11695 }
11696
11697 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11698 local_irq_enable();
11699
11700 if (!use_backlog_threads()) {
11701 #ifdef CONFIG_RPS
11702 remsd = oldsd->rps_ipi_list;
11703 oldsd->rps_ipi_list = NULL;
11704 #endif
11705 /* send out pending IPI's on offline CPU */
11706 net_rps_send_ipi(remsd);
11707 }
11708
11709 /* Process offline CPU's input_pkt_queue */
11710 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11711 netif_rx(skb);
11712 rps_input_queue_head_incr(oldsd);
11713 }
11714 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11715 netif_rx(skb);
11716 rps_input_queue_head_incr(oldsd);
11717 }
11718
11719 return 0;
11720 }
11721
11722 /**
11723 * netdev_increment_features - increment feature set by one
11724 * @all: current feature set
11725 * @one: new feature set
11726 * @mask: mask feature set
11727 *
11728 * Computes a new feature set after adding a device with feature set
11729 * @one to the master device with current feature set @all. Will not
11730 * enable anything that is off in @mask. Returns the new feature set.
11731 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11732 netdev_features_t netdev_increment_features(netdev_features_t all,
11733 netdev_features_t one, netdev_features_t mask)
11734 {
11735 if (mask & NETIF_F_HW_CSUM)
11736 mask |= NETIF_F_CSUM_MASK;
11737 mask |= NETIF_F_VLAN_CHALLENGED;
11738
11739 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11740 all &= one | ~NETIF_F_ALL_FOR_ALL;
11741
11742 /* If one device supports hw checksumming, set for all. */
11743 if (all & NETIF_F_HW_CSUM)
11744 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11745
11746 return all;
11747 }
11748 EXPORT_SYMBOL(netdev_increment_features);
11749
netdev_create_hash(void)11750 static struct hlist_head * __net_init netdev_create_hash(void)
11751 {
11752 int i;
11753 struct hlist_head *hash;
11754
11755 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11756 if (hash != NULL)
11757 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11758 INIT_HLIST_HEAD(&hash[i]);
11759
11760 return hash;
11761 }
11762
11763 /* Initialize per network namespace state */
netdev_init(struct net * net)11764 static int __net_init netdev_init(struct net *net)
11765 {
11766 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11767 8 * sizeof_field(struct napi_struct, gro_bitmask));
11768
11769 INIT_LIST_HEAD(&net->dev_base_head);
11770
11771 net->dev_name_head = netdev_create_hash();
11772 if (net->dev_name_head == NULL)
11773 goto err_name;
11774
11775 net->dev_index_head = netdev_create_hash();
11776 if (net->dev_index_head == NULL)
11777 goto err_idx;
11778
11779 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11780
11781 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11782
11783 return 0;
11784
11785 err_idx:
11786 kfree(net->dev_name_head);
11787 err_name:
11788 return -ENOMEM;
11789 }
11790
11791 /**
11792 * netdev_drivername - network driver for the device
11793 * @dev: network device
11794 *
11795 * Determine network driver for device.
11796 */
netdev_drivername(const struct net_device * dev)11797 const char *netdev_drivername(const struct net_device *dev)
11798 {
11799 const struct device_driver *driver;
11800 const struct device *parent;
11801 const char *empty = "";
11802
11803 parent = dev->dev.parent;
11804 if (!parent)
11805 return empty;
11806
11807 driver = parent->driver;
11808 if (driver && driver->name)
11809 return driver->name;
11810 return empty;
11811 }
11812
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11813 static void __netdev_printk(const char *level, const struct net_device *dev,
11814 struct va_format *vaf)
11815 {
11816 if (dev && dev->dev.parent) {
11817 dev_printk_emit(level[1] - '0',
11818 dev->dev.parent,
11819 "%s %s %s%s: %pV",
11820 dev_driver_string(dev->dev.parent),
11821 dev_name(dev->dev.parent),
11822 netdev_name(dev), netdev_reg_state(dev),
11823 vaf);
11824 } else if (dev) {
11825 printk("%s%s%s: %pV",
11826 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11827 } else {
11828 printk("%s(NULL net_device): %pV", level, vaf);
11829 }
11830 }
11831
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11832 void netdev_printk(const char *level, const struct net_device *dev,
11833 const char *format, ...)
11834 {
11835 struct va_format vaf;
11836 va_list args;
11837
11838 va_start(args, format);
11839
11840 vaf.fmt = format;
11841 vaf.va = &args;
11842
11843 __netdev_printk(level, dev, &vaf);
11844
11845 va_end(args);
11846 }
11847 EXPORT_SYMBOL(netdev_printk);
11848
11849 #define define_netdev_printk_level(func, level) \
11850 void func(const struct net_device *dev, const char *fmt, ...) \
11851 { \
11852 struct va_format vaf; \
11853 va_list args; \
11854 \
11855 va_start(args, fmt); \
11856 \
11857 vaf.fmt = fmt; \
11858 vaf.va = &args; \
11859 \
11860 __netdev_printk(level, dev, &vaf); \
11861 \
11862 va_end(args); \
11863 } \
11864 EXPORT_SYMBOL(func);
11865
11866 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11867 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11868 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11869 define_netdev_printk_level(netdev_err, KERN_ERR);
11870 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11871 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11872 define_netdev_printk_level(netdev_info, KERN_INFO);
11873
netdev_exit(struct net * net)11874 static void __net_exit netdev_exit(struct net *net)
11875 {
11876 kfree(net->dev_name_head);
11877 kfree(net->dev_index_head);
11878 xa_destroy(&net->dev_by_index);
11879 if (net != &init_net)
11880 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11881 }
11882
11883 static struct pernet_operations __net_initdata netdev_net_ops = {
11884 .init = netdev_init,
11885 .exit = netdev_exit,
11886 };
11887
default_device_exit_net(struct net * net)11888 static void __net_exit default_device_exit_net(struct net *net)
11889 {
11890 struct netdev_name_node *name_node, *tmp;
11891 struct net_device *dev, *aux;
11892 /*
11893 * Push all migratable network devices back to the
11894 * initial network namespace
11895 */
11896 ASSERT_RTNL();
11897 for_each_netdev_safe(net, dev, aux) {
11898 int err;
11899 char fb_name[IFNAMSIZ];
11900
11901 /* Ignore unmoveable devices (i.e. loopback) */
11902 if (dev->netns_local)
11903 continue;
11904
11905 /* Leave virtual devices for the generic cleanup */
11906 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11907 continue;
11908
11909 /* Push remaining network devices to init_net */
11910 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11911 if (netdev_name_in_use(&init_net, fb_name))
11912 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11913
11914 netdev_for_each_altname_safe(dev, name_node, tmp)
11915 if (netdev_name_in_use(&init_net, name_node->name))
11916 __netdev_name_node_alt_destroy(name_node);
11917
11918 err = dev_change_net_namespace(dev, &init_net, fb_name);
11919 if (err) {
11920 pr_emerg("%s: failed to move %s to init_net: %d\n",
11921 __func__, dev->name, err);
11922 BUG();
11923 }
11924 }
11925 }
11926
default_device_exit_batch(struct list_head * net_list)11927 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11928 {
11929 /* At exit all network devices most be removed from a network
11930 * namespace. Do this in the reverse order of registration.
11931 * Do this across as many network namespaces as possible to
11932 * improve batching efficiency.
11933 */
11934 struct net_device *dev;
11935 struct net *net;
11936 LIST_HEAD(dev_kill_list);
11937
11938 rtnl_lock();
11939 list_for_each_entry(net, net_list, exit_list) {
11940 default_device_exit_net(net);
11941 cond_resched();
11942 }
11943
11944 list_for_each_entry(net, net_list, exit_list) {
11945 for_each_netdev_reverse(net, dev) {
11946 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11947 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11948 else
11949 unregister_netdevice_queue(dev, &dev_kill_list);
11950 }
11951 }
11952 unregister_netdevice_many(&dev_kill_list);
11953 rtnl_unlock();
11954 }
11955
11956 static struct pernet_operations __net_initdata default_device_ops = {
11957 .exit_batch = default_device_exit_batch,
11958 };
11959
net_dev_struct_check(void)11960 static void __init net_dev_struct_check(void)
11961 {
11962 /* TX read-mostly hotpath */
11963 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
11964 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11965 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11966 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11967 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11968 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11969 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11970 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11971 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11972 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11973 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11974 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11975 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11976 #ifdef CONFIG_XPS
11977 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11978 #endif
11979 #ifdef CONFIG_NETFILTER_EGRESS
11980 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11981 #endif
11982 #ifdef CONFIG_NET_XGRESS
11983 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11984 #endif
11985 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11986
11987 /* TXRX read-mostly hotpath */
11988 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11989 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11990 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11991 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11992 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11993 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11994 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11995
11996 /* RX read-mostly hotpath */
11997 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11998 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11999 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12000 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12001 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
12002 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
12003 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12004 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12005 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12006 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12007 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12008 #ifdef CONFIG_NETPOLL
12009 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12010 #endif
12011 #ifdef CONFIG_NET_XGRESS
12012 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12013 #endif
12014 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
12015 }
12016
12017 /*
12018 * Initialize the DEV module. At boot time this walks the device list and
12019 * unhooks any devices that fail to initialise (normally hardware not
12020 * present) and leaves us with a valid list of present and active devices.
12021 *
12022 */
12023
12024 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12025 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
12026
net_page_pool_create(int cpuid)12027 static int net_page_pool_create(int cpuid)
12028 {
12029 #if IS_ENABLED(CONFIG_PAGE_POOL)
12030 struct page_pool_params page_pool_params = {
12031 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12032 .flags = PP_FLAG_SYSTEM_POOL,
12033 .nid = cpu_to_mem(cpuid),
12034 };
12035 struct page_pool *pp_ptr;
12036
12037 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12038 if (IS_ERR(pp_ptr))
12039 return -ENOMEM;
12040
12041 per_cpu(system_page_pool, cpuid) = pp_ptr;
12042 #endif
12043 return 0;
12044 }
12045
backlog_napi_should_run(unsigned int cpu)12046 static int backlog_napi_should_run(unsigned int cpu)
12047 {
12048 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12049 struct napi_struct *napi = &sd->backlog;
12050
12051 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12052 }
12053
run_backlog_napi(unsigned int cpu)12054 static void run_backlog_napi(unsigned int cpu)
12055 {
12056 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12057
12058 napi_threaded_poll_loop(&sd->backlog);
12059 }
12060
backlog_napi_setup(unsigned int cpu)12061 static void backlog_napi_setup(unsigned int cpu)
12062 {
12063 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12064 struct napi_struct *napi = &sd->backlog;
12065
12066 napi->thread = this_cpu_read(backlog_napi);
12067 set_bit(NAPI_STATE_THREADED, &napi->state);
12068 }
12069
12070 static struct smp_hotplug_thread backlog_threads = {
12071 .store = &backlog_napi,
12072 .thread_should_run = backlog_napi_should_run,
12073 .thread_fn = run_backlog_napi,
12074 .thread_comm = "backlog_napi/%u",
12075 .setup = backlog_napi_setup,
12076 };
12077
12078 /*
12079 * This is called single threaded during boot, so no need
12080 * to take the rtnl semaphore.
12081 */
net_dev_init(void)12082 static int __init net_dev_init(void)
12083 {
12084 int i, rc = -ENOMEM;
12085
12086 BUG_ON(!dev_boot_phase);
12087
12088 net_dev_struct_check();
12089
12090 if (dev_proc_init())
12091 goto out;
12092
12093 if (netdev_kobject_init())
12094 goto out;
12095
12096 for (i = 0; i < PTYPE_HASH_SIZE; i++)
12097 INIT_LIST_HEAD(&ptype_base[i]);
12098
12099 if (register_pernet_subsys(&netdev_net_ops))
12100 goto out;
12101
12102 /*
12103 * Initialise the packet receive queues.
12104 */
12105
12106 for_each_possible_cpu(i) {
12107 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12108 struct softnet_data *sd = &per_cpu(softnet_data, i);
12109
12110 INIT_WORK(flush, flush_backlog);
12111
12112 skb_queue_head_init(&sd->input_pkt_queue);
12113 skb_queue_head_init(&sd->process_queue);
12114 #ifdef CONFIG_XFRM_OFFLOAD
12115 skb_queue_head_init(&sd->xfrm_backlog);
12116 #endif
12117 INIT_LIST_HEAD(&sd->poll_list);
12118 sd->output_queue_tailp = &sd->output_queue;
12119 #ifdef CONFIG_RPS
12120 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12121 sd->cpu = i;
12122 #endif
12123 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12124 spin_lock_init(&sd->defer_lock);
12125
12126 init_gro_hash(&sd->backlog);
12127 sd->backlog.poll = process_backlog;
12128 sd->backlog.weight = weight_p;
12129 INIT_LIST_HEAD(&sd->backlog.poll_list);
12130
12131 if (net_page_pool_create(i))
12132 goto out;
12133 }
12134 if (use_backlog_threads())
12135 smpboot_register_percpu_thread(&backlog_threads);
12136
12137 dev_boot_phase = 0;
12138
12139 /* The loopback device is special if any other network devices
12140 * is present in a network namespace the loopback device must
12141 * be present. Since we now dynamically allocate and free the
12142 * loopback device ensure this invariant is maintained by
12143 * keeping the loopback device as the first device on the
12144 * list of network devices. Ensuring the loopback devices
12145 * is the first device that appears and the last network device
12146 * that disappears.
12147 */
12148 if (register_pernet_device(&loopback_net_ops))
12149 goto out;
12150
12151 if (register_pernet_device(&default_device_ops))
12152 goto out;
12153
12154 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12155 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12156
12157 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12158 NULL, dev_cpu_dead);
12159 WARN_ON(rc < 0);
12160 rc = 0;
12161
12162 /* avoid static key IPIs to isolated CPUs */
12163 if (housekeeping_enabled(HK_TYPE_MISC))
12164 net_enable_timestamp();
12165 out:
12166 if (rc < 0) {
12167 for_each_possible_cpu(i) {
12168 struct page_pool *pp_ptr;
12169
12170 pp_ptr = per_cpu(system_page_pool, i);
12171 if (!pp_ptr)
12172 continue;
12173
12174 page_pool_destroy(pp_ptr);
12175 per_cpu(system_page_pool, i) = NULL;
12176 }
12177 }
12178
12179 return rc;
12180 }
12181
12182 subsys_initcall(net_dev_init);
12183