xref: /linux/net/core/dev.c (revision fdaf9a5840acaab18694a19e0eb0aa51162eeeed)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "net-sysfs.h"
155 
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163 					 struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165 					   struct net_device *dev,
166 					   struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static DECLARE_RWSEM(devnet_rename_sem);
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock_irqsave(struct softnet_data *sd,
220 				    unsigned long *flags)
221 {
222 	if (IS_ENABLED(CONFIG_RPS))
223 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
224 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
225 		local_irq_save(*flags);
226 }
227 
228 static inline void rps_lock_irq_disable(struct softnet_data *sd)
229 {
230 	if (IS_ENABLED(CONFIG_RPS))
231 		spin_lock_irq(&sd->input_pkt_queue.lock);
232 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
233 		local_irq_disable();
234 }
235 
236 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
237 					  unsigned long *flags)
238 {
239 	if (IS_ENABLED(CONFIG_RPS))
240 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
241 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 		local_irq_restore(*flags);
243 }
244 
245 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
246 {
247 	if (IS_ENABLED(CONFIG_RPS))
248 		spin_unlock_irq(&sd->input_pkt_queue.lock);
249 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 		local_irq_enable();
251 }
252 
253 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
254 						       const char *name)
255 {
256 	struct netdev_name_node *name_node;
257 
258 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
259 	if (!name_node)
260 		return NULL;
261 	INIT_HLIST_NODE(&name_node->hlist);
262 	name_node->dev = dev;
263 	name_node->name = name;
264 	return name_node;
265 }
266 
267 static struct netdev_name_node *
268 netdev_name_node_head_alloc(struct net_device *dev)
269 {
270 	struct netdev_name_node *name_node;
271 
272 	name_node = netdev_name_node_alloc(dev, dev->name);
273 	if (!name_node)
274 		return NULL;
275 	INIT_LIST_HEAD(&name_node->list);
276 	return name_node;
277 }
278 
279 static void netdev_name_node_free(struct netdev_name_node *name_node)
280 {
281 	kfree(name_node);
282 }
283 
284 static void netdev_name_node_add(struct net *net,
285 				 struct netdev_name_node *name_node)
286 {
287 	hlist_add_head_rcu(&name_node->hlist,
288 			   dev_name_hash(net, name_node->name));
289 }
290 
291 static void netdev_name_node_del(struct netdev_name_node *name_node)
292 {
293 	hlist_del_rcu(&name_node->hlist);
294 }
295 
296 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
297 							const char *name)
298 {
299 	struct hlist_head *head = dev_name_hash(net, name);
300 	struct netdev_name_node *name_node;
301 
302 	hlist_for_each_entry(name_node, head, hlist)
303 		if (!strcmp(name_node->name, name))
304 			return name_node;
305 	return NULL;
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
309 							    const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry_rcu(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 bool netdev_name_in_use(struct net *net, const char *name)
321 {
322 	return netdev_name_node_lookup(net, name);
323 }
324 EXPORT_SYMBOL(netdev_name_in_use);
325 
326 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
327 {
328 	struct netdev_name_node *name_node;
329 	struct net *net = dev_net(dev);
330 
331 	name_node = netdev_name_node_lookup(net, name);
332 	if (name_node)
333 		return -EEXIST;
334 	name_node = netdev_name_node_alloc(dev, name);
335 	if (!name_node)
336 		return -ENOMEM;
337 	netdev_name_node_add(net, name_node);
338 	/* The node that holds dev->name acts as a head of per-device list. */
339 	list_add_tail(&name_node->list, &dev->name_node->list);
340 
341 	return 0;
342 }
343 
344 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
345 {
346 	list_del(&name_node->list);
347 	netdev_name_node_del(name_node);
348 	kfree(name_node->name);
349 	netdev_name_node_free(name_node);
350 }
351 
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354 	struct netdev_name_node *name_node;
355 	struct net *net = dev_net(dev);
356 
357 	name_node = netdev_name_node_lookup(net, name);
358 	if (!name_node)
359 		return -ENOENT;
360 	/* lookup might have found our primary name or a name belonging
361 	 * to another device.
362 	 */
363 	if (name_node == dev->name_node || name_node->dev != dev)
364 		return -EINVAL;
365 
366 	__netdev_name_node_alt_destroy(name_node);
367 
368 	return 0;
369 }
370 
371 static void netdev_name_node_alt_flush(struct net_device *dev)
372 {
373 	struct netdev_name_node *name_node, *tmp;
374 
375 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
376 		__netdev_name_node_alt_destroy(name_node);
377 }
378 
379 /* Device list insertion */
380 static void list_netdevice(struct net_device *dev)
381 {
382 	struct net *net = dev_net(dev);
383 
384 	ASSERT_RTNL();
385 
386 	write_lock(&dev_base_lock);
387 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
388 	netdev_name_node_add(net, dev->name_node);
389 	hlist_add_head_rcu(&dev->index_hlist,
390 			   dev_index_hash(net, dev->ifindex));
391 	write_unlock(&dev_base_lock);
392 
393 	dev_base_seq_inc(net);
394 }
395 
396 /* Device list removal
397  * caller must respect a RCU grace period before freeing/reusing dev
398  */
399 static void unlist_netdevice(struct net_device *dev)
400 {
401 	ASSERT_RTNL();
402 
403 	/* Unlink dev from the device chain */
404 	write_lock(&dev_base_lock);
405 	list_del_rcu(&dev->dev_list);
406 	netdev_name_node_del(dev->name_node);
407 	hlist_del_rcu(&dev->index_hlist);
408 	write_unlock(&dev_base_lock);
409 
410 	dev_base_seq_inc(dev_net(dev));
411 }
412 
413 /*
414  *	Our notifier list
415  */
416 
417 static RAW_NOTIFIER_HEAD(netdev_chain);
418 
419 /*
420  *	Device drivers call our routines to queue packets here. We empty the
421  *	queue in the local softnet handler.
422  */
423 
424 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
425 EXPORT_PER_CPU_SYMBOL(softnet_data);
426 
427 #ifdef CONFIG_LOCKDEP
428 /*
429  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
430  * according to dev->type
431  */
432 static const unsigned short netdev_lock_type[] = {
433 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
434 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
435 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
436 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
437 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
438 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
439 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
440 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
441 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
442 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
443 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
444 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
445 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
446 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
447 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
448 
449 static const char *const netdev_lock_name[] = {
450 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
451 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
452 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
453 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
454 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
455 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
456 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
457 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
458 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
459 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
460 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
461 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
462 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
463 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
464 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
465 
466 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
467 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
468 
469 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
470 {
471 	int i;
472 
473 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
474 		if (netdev_lock_type[i] == dev_type)
475 			return i;
476 	/* the last key is used by default */
477 	return ARRAY_SIZE(netdev_lock_type) - 1;
478 }
479 
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 						 unsigned short dev_type)
482 {
483 	int i;
484 
485 	i = netdev_lock_pos(dev_type);
486 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
487 				   netdev_lock_name[i]);
488 }
489 
490 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
491 {
492 	int i;
493 
494 	i = netdev_lock_pos(dev->type);
495 	lockdep_set_class_and_name(&dev->addr_list_lock,
496 				   &netdev_addr_lock_key[i],
497 				   netdev_lock_name[i]);
498 }
499 #else
500 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
501 						 unsigned short dev_type)
502 {
503 }
504 
505 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
506 {
507 }
508 #endif
509 
510 /*******************************************************************************
511  *
512  *		Protocol management and registration routines
513  *
514  *******************************************************************************/
515 
516 
517 /*
518  *	Add a protocol ID to the list. Now that the input handler is
519  *	smarter we can dispense with all the messy stuff that used to be
520  *	here.
521  *
522  *	BEWARE!!! Protocol handlers, mangling input packets,
523  *	MUST BE last in hash buckets and checking protocol handlers
524  *	MUST start from promiscuous ptype_all chain in net_bh.
525  *	It is true now, do not change it.
526  *	Explanation follows: if protocol handler, mangling packet, will
527  *	be the first on list, it is not able to sense, that packet
528  *	is cloned and should be copied-on-write, so that it will
529  *	change it and subsequent readers will get broken packet.
530  *							--ANK (980803)
531  */
532 
533 static inline struct list_head *ptype_head(const struct packet_type *pt)
534 {
535 	if (pt->type == htons(ETH_P_ALL))
536 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
537 	else
538 		return pt->dev ? &pt->dev->ptype_specific :
539 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
540 }
541 
542 /**
543  *	dev_add_pack - add packet handler
544  *	@pt: packet type declaration
545  *
546  *	Add a protocol handler to the networking stack. The passed &packet_type
547  *	is linked into kernel lists and may not be freed until it has been
548  *	removed from the kernel lists.
549  *
550  *	This call does not sleep therefore it can not
551  *	guarantee all CPU's that are in middle of receiving packets
552  *	will see the new packet type (until the next received packet).
553  */
554 
555 void dev_add_pack(struct packet_type *pt)
556 {
557 	struct list_head *head = ptype_head(pt);
558 
559 	spin_lock(&ptype_lock);
560 	list_add_rcu(&pt->list, head);
561 	spin_unlock(&ptype_lock);
562 }
563 EXPORT_SYMBOL(dev_add_pack);
564 
565 /**
566  *	__dev_remove_pack	 - remove packet handler
567  *	@pt: packet type declaration
568  *
569  *	Remove a protocol handler that was previously added to the kernel
570  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
571  *	from the kernel lists and can be freed or reused once this function
572  *	returns.
573  *
574  *      The packet type might still be in use by receivers
575  *	and must not be freed until after all the CPU's have gone
576  *	through a quiescent state.
577  */
578 void __dev_remove_pack(struct packet_type *pt)
579 {
580 	struct list_head *head = ptype_head(pt);
581 	struct packet_type *pt1;
582 
583 	spin_lock(&ptype_lock);
584 
585 	list_for_each_entry(pt1, head, list) {
586 		if (pt == pt1) {
587 			list_del_rcu(&pt->list);
588 			goto out;
589 		}
590 	}
591 
592 	pr_warn("dev_remove_pack: %p not found\n", pt);
593 out:
594 	spin_unlock(&ptype_lock);
595 }
596 EXPORT_SYMBOL(__dev_remove_pack);
597 
598 /**
599  *	dev_remove_pack	 - remove packet handler
600  *	@pt: packet type declaration
601  *
602  *	Remove a protocol handler that was previously added to the kernel
603  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
604  *	from the kernel lists and can be freed or reused once this function
605  *	returns.
606  *
607  *	This call sleeps to guarantee that no CPU is looking at the packet
608  *	type after return.
609  */
610 void dev_remove_pack(struct packet_type *pt)
611 {
612 	__dev_remove_pack(pt);
613 
614 	synchronize_net();
615 }
616 EXPORT_SYMBOL(dev_remove_pack);
617 
618 
619 /*******************************************************************************
620  *
621  *			    Device Interface Subroutines
622  *
623  *******************************************************************************/
624 
625 /**
626  *	dev_get_iflink	- get 'iflink' value of a interface
627  *	@dev: targeted interface
628  *
629  *	Indicates the ifindex the interface is linked to.
630  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
631  */
632 
633 int dev_get_iflink(const struct net_device *dev)
634 {
635 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
636 		return dev->netdev_ops->ndo_get_iflink(dev);
637 
638 	return dev->ifindex;
639 }
640 EXPORT_SYMBOL(dev_get_iflink);
641 
642 /**
643  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
644  *	@dev: targeted interface
645  *	@skb: The packet.
646  *
647  *	For better visibility of tunnel traffic OVS needs to retrieve
648  *	egress tunnel information for a packet. Following API allows
649  *	user to get this info.
650  */
651 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
652 {
653 	struct ip_tunnel_info *info;
654 
655 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
656 		return -EINVAL;
657 
658 	info = skb_tunnel_info_unclone(skb);
659 	if (!info)
660 		return -ENOMEM;
661 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
662 		return -EINVAL;
663 
664 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
665 }
666 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
667 
668 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
669 {
670 	int k = stack->num_paths++;
671 
672 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
673 		return NULL;
674 
675 	return &stack->path[k];
676 }
677 
678 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
679 			  struct net_device_path_stack *stack)
680 {
681 	const struct net_device *last_dev;
682 	struct net_device_path_ctx ctx = {
683 		.dev	= dev,
684 	};
685 	struct net_device_path *path;
686 	int ret = 0;
687 
688 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
689 	stack->num_paths = 0;
690 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
691 		last_dev = ctx.dev;
692 		path = dev_fwd_path(stack);
693 		if (!path)
694 			return -1;
695 
696 		memset(path, 0, sizeof(struct net_device_path));
697 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
698 		if (ret < 0)
699 			return -1;
700 
701 		if (WARN_ON_ONCE(last_dev == ctx.dev))
702 			return -1;
703 	}
704 	path = dev_fwd_path(stack);
705 	if (!path)
706 		return -1;
707 	path->type = DEV_PATH_ETHERNET;
708 	path->dev = ctx.dev;
709 
710 	return ret;
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
713 
714 /**
715  *	__dev_get_by_name	- find a device by its name
716  *	@net: the applicable net namespace
717  *	@name: name to find
718  *
719  *	Find an interface by name. Must be called under RTNL semaphore
720  *	or @dev_base_lock. If the name is found a pointer to the device
721  *	is returned. If the name is not found then %NULL is returned. The
722  *	reference counters are not incremented so the caller must be
723  *	careful with locks.
724  */
725 
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728 	struct netdev_name_node *node_name;
729 
730 	node_name = netdev_name_node_lookup(net, name);
731 	return node_name ? node_name->dev : NULL;
732 }
733 EXPORT_SYMBOL(__dev_get_by_name);
734 
735 /**
736  * dev_get_by_name_rcu	- find a device by its name
737  * @net: the applicable net namespace
738  * @name: name to find
739  *
740  * Find an interface by name.
741  * If the name is found a pointer to the device is returned.
742  * If the name is not found then %NULL is returned.
743  * The reference counters are not incremented so the caller must be
744  * careful with locks. The caller must hold RCU lock.
745  */
746 
747 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
748 {
749 	struct netdev_name_node *node_name;
750 
751 	node_name = netdev_name_node_lookup_rcu(net, name);
752 	return node_name ? node_name->dev : NULL;
753 }
754 EXPORT_SYMBOL(dev_get_by_name_rcu);
755 
756 /**
757  *	dev_get_by_name		- find a device by its name
758  *	@net: the applicable net namespace
759  *	@name: name to find
760  *
761  *	Find an interface by name. This can be called from any
762  *	context and does its own locking. The returned handle has
763  *	the usage count incremented and the caller must use dev_put() to
764  *	release it when it is no longer needed. %NULL is returned if no
765  *	matching device is found.
766  */
767 
768 struct net_device *dev_get_by_name(struct net *net, const char *name)
769 {
770 	struct net_device *dev;
771 
772 	rcu_read_lock();
773 	dev = dev_get_by_name_rcu(net, name);
774 	dev_hold(dev);
775 	rcu_read_unlock();
776 	return dev;
777 }
778 EXPORT_SYMBOL(dev_get_by_name);
779 
780 /**
781  *	__dev_get_by_index - find a device by its ifindex
782  *	@net: the applicable net namespace
783  *	@ifindex: index of device
784  *
785  *	Search for an interface by index. Returns %NULL if the device
786  *	is not found or a pointer to the device. The device has not
787  *	had its reference counter increased so the caller must be careful
788  *	about locking. The caller must hold either the RTNL semaphore
789  *	or @dev_base_lock.
790  */
791 
792 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
793 {
794 	struct net_device *dev;
795 	struct hlist_head *head = dev_index_hash(net, ifindex);
796 
797 	hlist_for_each_entry(dev, head, index_hlist)
798 		if (dev->ifindex == ifindex)
799 			return dev;
800 
801 	return NULL;
802 }
803 EXPORT_SYMBOL(__dev_get_by_index);
804 
805 /**
806  *	dev_get_by_index_rcu - find a device by its ifindex
807  *	@net: the applicable net namespace
808  *	@ifindex: index of device
809  *
810  *	Search for an interface by index. Returns %NULL if the device
811  *	is not found or a pointer to the device. The device has not
812  *	had its reference counter increased so the caller must be careful
813  *	about locking. The caller must hold RCU lock.
814  */
815 
816 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
817 {
818 	struct net_device *dev;
819 	struct hlist_head *head = dev_index_hash(net, ifindex);
820 
821 	hlist_for_each_entry_rcu(dev, head, index_hlist)
822 		if (dev->ifindex == ifindex)
823 			return dev;
824 
825 	return NULL;
826 }
827 EXPORT_SYMBOL(dev_get_by_index_rcu);
828 
829 
830 /**
831  *	dev_get_by_index - find a device by its ifindex
832  *	@net: the applicable net namespace
833  *	@ifindex: index of device
834  *
835  *	Search for an interface by index. Returns NULL if the device
836  *	is not found or a pointer to the device. The device returned has
837  *	had a reference added and the pointer is safe until the user calls
838  *	dev_put to indicate they have finished with it.
839  */
840 
841 struct net_device *dev_get_by_index(struct net *net, int ifindex)
842 {
843 	struct net_device *dev;
844 
845 	rcu_read_lock();
846 	dev = dev_get_by_index_rcu(net, ifindex);
847 	dev_hold(dev);
848 	rcu_read_unlock();
849 	return dev;
850 }
851 EXPORT_SYMBOL(dev_get_by_index);
852 
853 /**
854  *	dev_get_by_napi_id - find a device by napi_id
855  *	@napi_id: ID of the NAPI struct
856  *
857  *	Search for an interface by NAPI ID. Returns %NULL if the device
858  *	is not found or a pointer to the device. The device has not had
859  *	its reference counter increased so the caller must be careful
860  *	about locking. The caller must hold RCU lock.
861  */
862 
863 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
864 {
865 	struct napi_struct *napi;
866 
867 	WARN_ON_ONCE(!rcu_read_lock_held());
868 
869 	if (napi_id < MIN_NAPI_ID)
870 		return NULL;
871 
872 	napi = napi_by_id(napi_id);
873 
874 	return napi ? napi->dev : NULL;
875 }
876 EXPORT_SYMBOL(dev_get_by_napi_id);
877 
878 /**
879  *	netdev_get_name - get a netdevice name, knowing its ifindex.
880  *	@net: network namespace
881  *	@name: a pointer to the buffer where the name will be stored.
882  *	@ifindex: the ifindex of the interface to get the name from.
883  */
884 int netdev_get_name(struct net *net, char *name, int ifindex)
885 {
886 	struct net_device *dev;
887 	int ret;
888 
889 	down_read(&devnet_rename_sem);
890 	rcu_read_lock();
891 
892 	dev = dev_get_by_index_rcu(net, ifindex);
893 	if (!dev) {
894 		ret = -ENODEV;
895 		goto out;
896 	}
897 
898 	strcpy(name, dev->name);
899 
900 	ret = 0;
901 out:
902 	rcu_read_unlock();
903 	up_read(&devnet_rename_sem);
904 	return ret;
905 }
906 
907 /**
908  *	dev_getbyhwaddr_rcu - find a device by its hardware address
909  *	@net: the applicable net namespace
910  *	@type: media type of device
911  *	@ha: hardware address
912  *
913  *	Search for an interface by MAC address. Returns NULL if the device
914  *	is not found or a pointer to the device.
915  *	The caller must hold RCU or RTNL.
916  *	The returned device has not had its ref count increased
917  *	and the caller must therefore be careful about locking
918  *
919  */
920 
921 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
922 				       const char *ha)
923 {
924 	struct net_device *dev;
925 
926 	for_each_netdev_rcu(net, dev)
927 		if (dev->type == type &&
928 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
929 			return dev;
930 
931 	return NULL;
932 }
933 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
934 
935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936 {
937 	struct net_device *dev, *ret = NULL;
938 
939 	rcu_read_lock();
940 	for_each_netdev_rcu(net, dev)
941 		if (dev->type == type) {
942 			dev_hold(dev);
943 			ret = dev;
944 			break;
945 		}
946 	rcu_read_unlock();
947 	return ret;
948 }
949 EXPORT_SYMBOL(dev_getfirstbyhwtype);
950 
951 /**
952  *	__dev_get_by_flags - find any device with given flags
953  *	@net: the applicable net namespace
954  *	@if_flags: IFF_* values
955  *	@mask: bitmask of bits in if_flags to check
956  *
957  *	Search for any interface with the given flags. Returns NULL if a device
958  *	is not found or a pointer to the device. Must be called inside
959  *	rtnl_lock(), and result refcount is unchanged.
960  */
961 
962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963 				      unsigned short mask)
964 {
965 	struct net_device *dev, *ret;
966 
967 	ASSERT_RTNL();
968 
969 	ret = NULL;
970 	for_each_netdev(net, dev) {
971 		if (((dev->flags ^ if_flags) & mask) == 0) {
972 			ret = dev;
973 			break;
974 		}
975 	}
976 	return ret;
977 }
978 EXPORT_SYMBOL(__dev_get_by_flags);
979 
980 /**
981  *	dev_valid_name - check if name is okay for network device
982  *	@name: name string
983  *
984  *	Network device names need to be valid file names to
985  *	allow sysfs to work.  We also disallow any kind of
986  *	whitespace.
987  */
988 bool dev_valid_name(const char *name)
989 {
990 	if (*name == '\0')
991 		return false;
992 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
993 		return false;
994 	if (!strcmp(name, ".") || !strcmp(name, ".."))
995 		return false;
996 
997 	while (*name) {
998 		if (*name == '/' || *name == ':' || isspace(*name))
999 			return false;
1000 		name++;
1001 	}
1002 	return true;
1003 }
1004 EXPORT_SYMBOL(dev_valid_name);
1005 
1006 /**
1007  *	__dev_alloc_name - allocate a name for a device
1008  *	@net: network namespace to allocate the device name in
1009  *	@name: name format string
1010  *	@buf:  scratch buffer and result name string
1011  *
1012  *	Passed a format string - eg "lt%d" it will try and find a suitable
1013  *	id. It scans list of devices to build up a free map, then chooses
1014  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1015  *	while allocating the name and adding the device in order to avoid
1016  *	duplicates.
1017  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018  *	Returns the number of the unit assigned or a negative errno code.
1019  */
1020 
1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022 {
1023 	int i = 0;
1024 	const char *p;
1025 	const int max_netdevices = 8*PAGE_SIZE;
1026 	unsigned long *inuse;
1027 	struct net_device *d;
1028 
1029 	if (!dev_valid_name(name))
1030 		return -EINVAL;
1031 
1032 	p = strchr(name, '%');
1033 	if (p) {
1034 		/*
1035 		 * Verify the string as this thing may have come from
1036 		 * the user.  There must be either one "%d" and no other "%"
1037 		 * characters.
1038 		 */
1039 		if (p[1] != 'd' || strchr(p + 2, '%'))
1040 			return -EINVAL;
1041 
1042 		/* Use one page as a bit array of possible slots */
1043 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044 		if (!inuse)
1045 			return -ENOMEM;
1046 
1047 		for_each_netdev(net, d) {
1048 			struct netdev_name_node *name_node;
1049 			list_for_each_entry(name_node, &d->name_node->list, list) {
1050 				if (!sscanf(name_node->name, name, &i))
1051 					continue;
1052 				if (i < 0 || i >= max_netdevices)
1053 					continue;
1054 
1055 				/*  avoid cases where sscanf is not exact inverse of printf */
1056 				snprintf(buf, IFNAMSIZ, name, i);
1057 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1058 					__set_bit(i, inuse);
1059 			}
1060 			if (!sscanf(d->name, name, &i))
1061 				continue;
1062 			if (i < 0 || i >= max_netdevices)
1063 				continue;
1064 
1065 			/*  avoid cases where sscanf is not exact inverse of printf */
1066 			snprintf(buf, IFNAMSIZ, name, i);
1067 			if (!strncmp(buf, d->name, IFNAMSIZ))
1068 				__set_bit(i, inuse);
1069 		}
1070 
1071 		i = find_first_zero_bit(inuse, max_netdevices);
1072 		free_page((unsigned long) inuse);
1073 	}
1074 
1075 	snprintf(buf, IFNAMSIZ, name, i);
1076 	if (!netdev_name_in_use(net, buf))
1077 		return i;
1078 
1079 	/* It is possible to run out of possible slots
1080 	 * when the name is long and there isn't enough space left
1081 	 * for the digits, or if all bits are used.
1082 	 */
1083 	return -ENFILE;
1084 }
1085 
1086 static int dev_alloc_name_ns(struct net *net,
1087 			     struct net_device *dev,
1088 			     const char *name)
1089 {
1090 	char buf[IFNAMSIZ];
1091 	int ret;
1092 
1093 	BUG_ON(!net);
1094 	ret = __dev_alloc_name(net, name, buf);
1095 	if (ret >= 0)
1096 		strlcpy(dev->name, buf, IFNAMSIZ);
1097 	return ret;
1098 }
1099 
1100 /**
1101  *	dev_alloc_name - allocate a name for a device
1102  *	@dev: device
1103  *	@name: name format string
1104  *
1105  *	Passed a format string - eg "lt%d" it will try and find a suitable
1106  *	id. It scans list of devices to build up a free map, then chooses
1107  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1108  *	while allocating the name and adding the device in order to avoid
1109  *	duplicates.
1110  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1111  *	Returns the number of the unit assigned or a negative errno code.
1112  */
1113 
1114 int dev_alloc_name(struct net_device *dev, const char *name)
1115 {
1116 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1117 }
1118 EXPORT_SYMBOL(dev_alloc_name);
1119 
1120 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1121 			      const char *name)
1122 {
1123 	BUG_ON(!net);
1124 
1125 	if (!dev_valid_name(name))
1126 		return -EINVAL;
1127 
1128 	if (strchr(name, '%'))
1129 		return dev_alloc_name_ns(net, dev, name);
1130 	else if (netdev_name_in_use(net, name))
1131 		return -EEXIST;
1132 	else if (dev->name != name)
1133 		strlcpy(dev->name, name, IFNAMSIZ);
1134 
1135 	return 0;
1136 }
1137 
1138 /**
1139  *	dev_change_name - change name of a device
1140  *	@dev: device
1141  *	@newname: name (or format string) must be at least IFNAMSIZ
1142  *
1143  *	Change name of a device, can pass format strings "eth%d".
1144  *	for wildcarding.
1145  */
1146 int dev_change_name(struct net_device *dev, const char *newname)
1147 {
1148 	unsigned char old_assign_type;
1149 	char oldname[IFNAMSIZ];
1150 	int err = 0;
1151 	int ret;
1152 	struct net *net;
1153 
1154 	ASSERT_RTNL();
1155 	BUG_ON(!dev_net(dev));
1156 
1157 	net = dev_net(dev);
1158 
1159 	/* Some auto-enslaved devices e.g. failover slaves are
1160 	 * special, as userspace might rename the device after
1161 	 * the interface had been brought up and running since
1162 	 * the point kernel initiated auto-enslavement. Allow
1163 	 * live name change even when these slave devices are
1164 	 * up and running.
1165 	 *
1166 	 * Typically, users of these auto-enslaving devices
1167 	 * don't actually care about slave name change, as
1168 	 * they are supposed to operate on master interface
1169 	 * directly.
1170 	 */
1171 	if (dev->flags & IFF_UP &&
1172 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1173 		return -EBUSY;
1174 
1175 	down_write(&devnet_rename_sem);
1176 
1177 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1178 		up_write(&devnet_rename_sem);
1179 		return 0;
1180 	}
1181 
1182 	memcpy(oldname, dev->name, IFNAMSIZ);
1183 
1184 	err = dev_get_valid_name(net, dev, newname);
1185 	if (err < 0) {
1186 		up_write(&devnet_rename_sem);
1187 		return err;
1188 	}
1189 
1190 	if (oldname[0] && !strchr(oldname, '%'))
1191 		netdev_info(dev, "renamed from %s\n", oldname);
1192 
1193 	old_assign_type = dev->name_assign_type;
1194 	dev->name_assign_type = NET_NAME_RENAMED;
1195 
1196 rollback:
1197 	ret = device_rename(&dev->dev, dev->name);
1198 	if (ret) {
1199 		memcpy(dev->name, oldname, IFNAMSIZ);
1200 		dev->name_assign_type = old_assign_type;
1201 		up_write(&devnet_rename_sem);
1202 		return ret;
1203 	}
1204 
1205 	up_write(&devnet_rename_sem);
1206 
1207 	netdev_adjacent_rename_links(dev, oldname);
1208 
1209 	write_lock(&dev_base_lock);
1210 	netdev_name_node_del(dev->name_node);
1211 	write_unlock(&dev_base_lock);
1212 
1213 	synchronize_rcu();
1214 
1215 	write_lock(&dev_base_lock);
1216 	netdev_name_node_add(net, dev->name_node);
1217 	write_unlock(&dev_base_lock);
1218 
1219 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1220 	ret = notifier_to_errno(ret);
1221 
1222 	if (ret) {
1223 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1224 		if (err >= 0) {
1225 			err = ret;
1226 			down_write(&devnet_rename_sem);
1227 			memcpy(dev->name, oldname, IFNAMSIZ);
1228 			memcpy(oldname, newname, IFNAMSIZ);
1229 			dev->name_assign_type = old_assign_type;
1230 			old_assign_type = NET_NAME_RENAMED;
1231 			goto rollback;
1232 		} else {
1233 			netdev_err(dev, "name change rollback failed: %d\n",
1234 				   ret);
1235 		}
1236 	}
1237 
1238 	return err;
1239 }
1240 
1241 /**
1242  *	dev_set_alias - change ifalias of a device
1243  *	@dev: device
1244  *	@alias: name up to IFALIASZ
1245  *	@len: limit of bytes to copy from info
1246  *
1247  *	Set ifalias for a device,
1248  */
1249 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1250 {
1251 	struct dev_ifalias *new_alias = NULL;
1252 
1253 	if (len >= IFALIASZ)
1254 		return -EINVAL;
1255 
1256 	if (len) {
1257 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1258 		if (!new_alias)
1259 			return -ENOMEM;
1260 
1261 		memcpy(new_alias->ifalias, alias, len);
1262 		new_alias->ifalias[len] = 0;
1263 	}
1264 
1265 	mutex_lock(&ifalias_mutex);
1266 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1267 					mutex_is_locked(&ifalias_mutex));
1268 	mutex_unlock(&ifalias_mutex);
1269 
1270 	if (new_alias)
1271 		kfree_rcu(new_alias, rcuhead);
1272 
1273 	return len;
1274 }
1275 EXPORT_SYMBOL(dev_set_alias);
1276 
1277 /**
1278  *	dev_get_alias - get ifalias of a device
1279  *	@dev: device
1280  *	@name: buffer to store name of ifalias
1281  *	@len: size of buffer
1282  *
1283  *	get ifalias for a device.  Caller must make sure dev cannot go
1284  *	away,  e.g. rcu read lock or own a reference count to device.
1285  */
1286 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1287 {
1288 	const struct dev_ifalias *alias;
1289 	int ret = 0;
1290 
1291 	rcu_read_lock();
1292 	alias = rcu_dereference(dev->ifalias);
1293 	if (alias)
1294 		ret = snprintf(name, len, "%s", alias->ifalias);
1295 	rcu_read_unlock();
1296 
1297 	return ret;
1298 }
1299 
1300 /**
1301  *	netdev_features_change - device changes features
1302  *	@dev: device to cause notification
1303  *
1304  *	Called to indicate a device has changed features.
1305  */
1306 void netdev_features_change(struct net_device *dev)
1307 {
1308 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1309 }
1310 EXPORT_SYMBOL(netdev_features_change);
1311 
1312 /**
1313  *	netdev_state_change - device changes state
1314  *	@dev: device to cause notification
1315  *
1316  *	Called to indicate a device has changed state. This function calls
1317  *	the notifier chains for netdev_chain and sends a NEWLINK message
1318  *	to the routing socket.
1319  */
1320 void netdev_state_change(struct net_device *dev)
1321 {
1322 	if (dev->flags & IFF_UP) {
1323 		struct netdev_notifier_change_info change_info = {
1324 			.info.dev = dev,
1325 		};
1326 
1327 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1328 					      &change_info.info);
1329 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1330 	}
1331 }
1332 EXPORT_SYMBOL(netdev_state_change);
1333 
1334 /**
1335  * __netdev_notify_peers - notify network peers about existence of @dev,
1336  * to be called when rtnl lock is already held.
1337  * @dev: network device
1338  *
1339  * Generate traffic such that interested network peers are aware of
1340  * @dev, such as by generating a gratuitous ARP. This may be used when
1341  * a device wants to inform the rest of the network about some sort of
1342  * reconfiguration such as a failover event or virtual machine
1343  * migration.
1344  */
1345 void __netdev_notify_peers(struct net_device *dev)
1346 {
1347 	ASSERT_RTNL();
1348 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1349 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1350 }
1351 EXPORT_SYMBOL(__netdev_notify_peers);
1352 
1353 /**
1354  * netdev_notify_peers - notify network peers about existence of @dev
1355  * @dev: network device
1356  *
1357  * Generate traffic such that interested network peers are aware of
1358  * @dev, such as by generating a gratuitous ARP. This may be used when
1359  * a device wants to inform the rest of the network about some sort of
1360  * reconfiguration such as a failover event or virtual machine
1361  * migration.
1362  */
1363 void netdev_notify_peers(struct net_device *dev)
1364 {
1365 	rtnl_lock();
1366 	__netdev_notify_peers(dev);
1367 	rtnl_unlock();
1368 }
1369 EXPORT_SYMBOL(netdev_notify_peers);
1370 
1371 static int napi_threaded_poll(void *data);
1372 
1373 static int napi_kthread_create(struct napi_struct *n)
1374 {
1375 	int err = 0;
1376 
1377 	/* Create and wake up the kthread once to put it in
1378 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1379 	 * warning and work with loadavg.
1380 	 */
1381 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1382 				n->dev->name, n->napi_id);
1383 	if (IS_ERR(n->thread)) {
1384 		err = PTR_ERR(n->thread);
1385 		pr_err("kthread_run failed with err %d\n", err);
1386 		n->thread = NULL;
1387 	}
1388 
1389 	return err;
1390 }
1391 
1392 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1393 {
1394 	const struct net_device_ops *ops = dev->netdev_ops;
1395 	int ret;
1396 
1397 	ASSERT_RTNL();
1398 	dev_addr_check(dev);
1399 
1400 	if (!netif_device_present(dev)) {
1401 		/* may be detached because parent is runtime-suspended */
1402 		if (dev->dev.parent)
1403 			pm_runtime_resume(dev->dev.parent);
1404 		if (!netif_device_present(dev))
1405 			return -ENODEV;
1406 	}
1407 
1408 	/* Block netpoll from trying to do any rx path servicing.
1409 	 * If we don't do this there is a chance ndo_poll_controller
1410 	 * or ndo_poll may be running while we open the device
1411 	 */
1412 	netpoll_poll_disable(dev);
1413 
1414 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1415 	ret = notifier_to_errno(ret);
1416 	if (ret)
1417 		return ret;
1418 
1419 	set_bit(__LINK_STATE_START, &dev->state);
1420 
1421 	if (ops->ndo_validate_addr)
1422 		ret = ops->ndo_validate_addr(dev);
1423 
1424 	if (!ret && ops->ndo_open)
1425 		ret = ops->ndo_open(dev);
1426 
1427 	netpoll_poll_enable(dev);
1428 
1429 	if (ret)
1430 		clear_bit(__LINK_STATE_START, &dev->state);
1431 	else {
1432 		dev->flags |= IFF_UP;
1433 		dev_set_rx_mode(dev);
1434 		dev_activate(dev);
1435 		add_device_randomness(dev->dev_addr, dev->addr_len);
1436 	}
1437 
1438 	return ret;
1439 }
1440 
1441 /**
1442  *	dev_open	- prepare an interface for use.
1443  *	@dev: device to open
1444  *	@extack: netlink extended ack
1445  *
1446  *	Takes a device from down to up state. The device's private open
1447  *	function is invoked and then the multicast lists are loaded. Finally
1448  *	the device is moved into the up state and a %NETDEV_UP message is
1449  *	sent to the netdev notifier chain.
1450  *
1451  *	Calling this function on an active interface is a nop. On a failure
1452  *	a negative errno code is returned.
1453  */
1454 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1455 {
1456 	int ret;
1457 
1458 	if (dev->flags & IFF_UP)
1459 		return 0;
1460 
1461 	ret = __dev_open(dev, extack);
1462 	if (ret < 0)
1463 		return ret;
1464 
1465 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1466 	call_netdevice_notifiers(NETDEV_UP, dev);
1467 
1468 	return ret;
1469 }
1470 EXPORT_SYMBOL(dev_open);
1471 
1472 static void __dev_close_many(struct list_head *head)
1473 {
1474 	struct net_device *dev;
1475 
1476 	ASSERT_RTNL();
1477 	might_sleep();
1478 
1479 	list_for_each_entry(dev, head, close_list) {
1480 		/* Temporarily disable netpoll until the interface is down */
1481 		netpoll_poll_disable(dev);
1482 
1483 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1484 
1485 		clear_bit(__LINK_STATE_START, &dev->state);
1486 
1487 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1488 		 * can be even on different cpu. So just clear netif_running().
1489 		 *
1490 		 * dev->stop() will invoke napi_disable() on all of it's
1491 		 * napi_struct instances on this device.
1492 		 */
1493 		smp_mb__after_atomic(); /* Commit netif_running(). */
1494 	}
1495 
1496 	dev_deactivate_many(head);
1497 
1498 	list_for_each_entry(dev, head, close_list) {
1499 		const struct net_device_ops *ops = dev->netdev_ops;
1500 
1501 		/*
1502 		 *	Call the device specific close. This cannot fail.
1503 		 *	Only if device is UP
1504 		 *
1505 		 *	We allow it to be called even after a DETACH hot-plug
1506 		 *	event.
1507 		 */
1508 		if (ops->ndo_stop)
1509 			ops->ndo_stop(dev);
1510 
1511 		dev->flags &= ~IFF_UP;
1512 		netpoll_poll_enable(dev);
1513 	}
1514 }
1515 
1516 static void __dev_close(struct net_device *dev)
1517 {
1518 	LIST_HEAD(single);
1519 
1520 	list_add(&dev->close_list, &single);
1521 	__dev_close_many(&single);
1522 	list_del(&single);
1523 }
1524 
1525 void dev_close_many(struct list_head *head, bool unlink)
1526 {
1527 	struct net_device *dev, *tmp;
1528 
1529 	/* Remove the devices that don't need to be closed */
1530 	list_for_each_entry_safe(dev, tmp, head, close_list)
1531 		if (!(dev->flags & IFF_UP))
1532 			list_del_init(&dev->close_list);
1533 
1534 	__dev_close_many(head);
1535 
1536 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1537 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1538 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1539 		if (unlink)
1540 			list_del_init(&dev->close_list);
1541 	}
1542 }
1543 EXPORT_SYMBOL(dev_close_many);
1544 
1545 /**
1546  *	dev_close - shutdown an interface.
1547  *	@dev: device to shutdown
1548  *
1549  *	This function moves an active device into down state. A
1550  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1551  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1552  *	chain.
1553  */
1554 void dev_close(struct net_device *dev)
1555 {
1556 	if (dev->flags & IFF_UP) {
1557 		LIST_HEAD(single);
1558 
1559 		list_add(&dev->close_list, &single);
1560 		dev_close_many(&single, true);
1561 		list_del(&single);
1562 	}
1563 }
1564 EXPORT_SYMBOL(dev_close);
1565 
1566 
1567 /**
1568  *	dev_disable_lro - disable Large Receive Offload on a device
1569  *	@dev: device
1570  *
1571  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1572  *	called under RTNL.  This is needed if received packets may be
1573  *	forwarded to another interface.
1574  */
1575 void dev_disable_lro(struct net_device *dev)
1576 {
1577 	struct net_device *lower_dev;
1578 	struct list_head *iter;
1579 
1580 	dev->wanted_features &= ~NETIF_F_LRO;
1581 	netdev_update_features(dev);
1582 
1583 	if (unlikely(dev->features & NETIF_F_LRO))
1584 		netdev_WARN(dev, "failed to disable LRO!\n");
1585 
1586 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1587 		dev_disable_lro(lower_dev);
1588 }
1589 EXPORT_SYMBOL(dev_disable_lro);
1590 
1591 /**
1592  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1593  *	@dev: device
1594  *
1595  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1596  *	called under RTNL.  This is needed if Generic XDP is installed on
1597  *	the device.
1598  */
1599 static void dev_disable_gro_hw(struct net_device *dev)
1600 {
1601 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1602 	netdev_update_features(dev);
1603 
1604 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1605 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1606 }
1607 
1608 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1609 {
1610 #define N(val) 						\
1611 	case NETDEV_##val:				\
1612 		return "NETDEV_" __stringify(val);
1613 	switch (cmd) {
1614 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1615 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1616 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1617 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1618 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1619 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1620 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1621 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1622 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1623 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1624 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1625 	}
1626 #undef N
1627 	return "UNKNOWN_NETDEV_EVENT";
1628 }
1629 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1630 
1631 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1632 				   struct net_device *dev)
1633 {
1634 	struct netdev_notifier_info info = {
1635 		.dev = dev,
1636 	};
1637 
1638 	return nb->notifier_call(nb, val, &info);
1639 }
1640 
1641 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1642 					     struct net_device *dev)
1643 {
1644 	int err;
1645 
1646 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1647 	err = notifier_to_errno(err);
1648 	if (err)
1649 		return err;
1650 
1651 	if (!(dev->flags & IFF_UP))
1652 		return 0;
1653 
1654 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1655 	return 0;
1656 }
1657 
1658 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1659 						struct net_device *dev)
1660 {
1661 	if (dev->flags & IFF_UP) {
1662 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663 					dev);
1664 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665 	}
1666 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667 }
1668 
1669 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1670 						 struct net *net)
1671 {
1672 	struct net_device *dev;
1673 	int err;
1674 
1675 	for_each_netdev(net, dev) {
1676 		err = call_netdevice_register_notifiers(nb, dev);
1677 		if (err)
1678 			goto rollback;
1679 	}
1680 	return 0;
1681 
1682 rollback:
1683 	for_each_netdev_continue_reverse(net, dev)
1684 		call_netdevice_unregister_notifiers(nb, dev);
1685 	return err;
1686 }
1687 
1688 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1689 						    struct net *net)
1690 {
1691 	struct net_device *dev;
1692 
1693 	for_each_netdev(net, dev)
1694 		call_netdevice_unregister_notifiers(nb, dev);
1695 }
1696 
1697 static int dev_boot_phase = 1;
1698 
1699 /**
1700  * register_netdevice_notifier - register a network notifier block
1701  * @nb: notifier
1702  *
1703  * Register a notifier to be called when network device events occur.
1704  * The notifier passed is linked into the kernel structures and must
1705  * not be reused until it has been unregistered. A negative errno code
1706  * is returned on a failure.
1707  *
1708  * When registered all registration and up events are replayed
1709  * to the new notifier to allow device to have a race free
1710  * view of the network device list.
1711  */
1712 
1713 int register_netdevice_notifier(struct notifier_block *nb)
1714 {
1715 	struct net *net;
1716 	int err;
1717 
1718 	/* Close race with setup_net() and cleanup_net() */
1719 	down_write(&pernet_ops_rwsem);
1720 	rtnl_lock();
1721 	err = raw_notifier_chain_register(&netdev_chain, nb);
1722 	if (err)
1723 		goto unlock;
1724 	if (dev_boot_phase)
1725 		goto unlock;
1726 	for_each_net(net) {
1727 		err = call_netdevice_register_net_notifiers(nb, net);
1728 		if (err)
1729 			goto rollback;
1730 	}
1731 
1732 unlock:
1733 	rtnl_unlock();
1734 	up_write(&pernet_ops_rwsem);
1735 	return err;
1736 
1737 rollback:
1738 	for_each_net_continue_reverse(net)
1739 		call_netdevice_unregister_net_notifiers(nb, net);
1740 
1741 	raw_notifier_chain_unregister(&netdev_chain, nb);
1742 	goto unlock;
1743 }
1744 EXPORT_SYMBOL(register_netdevice_notifier);
1745 
1746 /**
1747  * unregister_netdevice_notifier - unregister a network notifier block
1748  * @nb: notifier
1749  *
1750  * Unregister a notifier previously registered by
1751  * register_netdevice_notifier(). The notifier is unlinked into the
1752  * kernel structures and may then be reused. A negative errno code
1753  * is returned on a failure.
1754  *
1755  * After unregistering unregister and down device events are synthesized
1756  * for all devices on the device list to the removed notifier to remove
1757  * the need for special case cleanup code.
1758  */
1759 
1760 int unregister_netdevice_notifier(struct notifier_block *nb)
1761 {
1762 	struct net *net;
1763 	int err;
1764 
1765 	/* Close race with setup_net() and cleanup_net() */
1766 	down_write(&pernet_ops_rwsem);
1767 	rtnl_lock();
1768 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1769 	if (err)
1770 		goto unlock;
1771 
1772 	for_each_net(net)
1773 		call_netdevice_unregister_net_notifiers(nb, net);
1774 
1775 unlock:
1776 	rtnl_unlock();
1777 	up_write(&pernet_ops_rwsem);
1778 	return err;
1779 }
1780 EXPORT_SYMBOL(unregister_netdevice_notifier);
1781 
1782 static int __register_netdevice_notifier_net(struct net *net,
1783 					     struct notifier_block *nb,
1784 					     bool ignore_call_fail)
1785 {
1786 	int err;
1787 
1788 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1789 	if (err)
1790 		return err;
1791 	if (dev_boot_phase)
1792 		return 0;
1793 
1794 	err = call_netdevice_register_net_notifiers(nb, net);
1795 	if (err && !ignore_call_fail)
1796 		goto chain_unregister;
1797 
1798 	return 0;
1799 
1800 chain_unregister:
1801 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1802 	return err;
1803 }
1804 
1805 static int __unregister_netdevice_notifier_net(struct net *net,
1806 					       struct notifier_block *nb)
1807 {
1808 	int err;
1809 
1810 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1811 	if (err)
1812 		return err;
1813 
1814 	call_netdevice_unregister_net_notifiers(nb, net);
1815 	return 0;
1816 }
1817 
1818 /**
1819  * register_netdevice_notifier_net - register a per-netns network notifier block
1820  * @net: network namespace
1821  * @nb: notifier
1822  *
1823  * Register a notifier to be called when network device events occur.
1824  * The notifier passed is linked into the kernel structures and must
1825  * not be reused until it has been unregistered. A negative errno code
1826  * is returned on a failure.
1827  *
1828  * When registered all registration and up events are replayed
1829  * to the new notifier to allow device to have a race free
1830  * view of the network device list.
1831  */
1832 
1833 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1834 {
1835 	int err;
1836 
1837 	rtnl_lock();
1838 	err = __register_netdevice_notifier_net(net, nb, false);
1839 	rtnl_unlock();
1840 	return err;
1841 }
1842 EXPORT_SYMBOL(register_netdevice_notifier_net);
1843 
1844 /**
1845  * unregister_netdevice_notifier_net - unregister a per-netns
1846  *                                     network notifier block
1847  * @net: network namespace
1848  * @nb: notifier
1849  *
1850  * Unregister a notifier previously registered by
1851  * register_netdevice_notifier(). The notifier is unlinked into the
1852  * kernel structures and may then be reused. A negative errno code
1853  * is returned on a failure.
1854  *
1855  * After unregistering unregister and down device events are synthesized
1856  * for all devices on the device list to the removed notifier to remove
1857  * the need for special case cleanup code.
1858  */
1859 
1860 int unregister_netdevice_notifier_net(struct net *net,
1861 				      struct notifier_block *nb)
1862 {
1863 	int err;
1864 
1865 	rtnl_lock();
1866 	err = __unregister_netdevice_notifier_net(net, nb);
1867 	rtnl_unlock();
1868 	return err;
1869 }
1870 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1871 
1872 int register_netdevice_notifier_dev_net(struct net_device *dev,
1873 					struct notifier_block *nb,
1874 					struct netdev_net_notifier *nn)
1875 {
1876 	int err;
1877 
1878 	rtnl_lock();
1879 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1880 	if (!err) {
1881 		nn->nb = nb;
1882 		list_add(&nn->list, &dev->net_notifier_list);
1883 	}
1884 	rtnl_unlock();
1885 	return err;
1886 }
1887 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1888 
1889 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1890 					  struct notifier_block *nb,
1891 					  struct netdev_net_notifier *nn)
1892 {
1893 	int err;
1894 
1895 	rtnl_lock();
1896 	list_del(&nn->list);
1897 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1898 	rtnl_unlock();
1899 	return err;
1900 }
1901 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1902 
1903 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1904 					     struct net *net)
1905 {
1906 	struct netdev_net_notifier *nn;
1907 
1908 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1909 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1910 		__register_netdevice_notifier_net(net, nn->nb, true);
1911 	}
1912 }
1913 
1914 /**
1915  *	call_netdevice_notifiers_info - call all network notifier blocks
1916  *	@val: value passed unmodified to notifier function
1917  *	@info: notifier information data
1918  *
1919  *	Call all network notifier blocks.  Parameters and return value
1920  *	are as for raw_notifier_call_chain().
1921  */
1922 
1923 static int call_netdevice_notifiers_info(unsigned long val,
1924 					 struct netdev_notifier_info *info)
1925 {
1926 	struct net *net = dev_net(info->dev);
1927 	int ret;
1928 
1929 	ASSERT_RTNL();
1930 
1931 	/* Run per-netns notifier block chain first, then run the global one.
1932 	 * Hopefully, one day, the global one is going to be removed after
1933 	 * all notifier block registrators get converted to be per-netns.
1934 	 */
1935 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1936 	if (ret & NOTIFY_STOP_MASK)
1937 		return ret;
1938 	return raw_notifier_call_chain(&netdev_chain, val, info);
1939 }
1940 
1941 /**
1942  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1943  *	                                       for and rollback on error
1944  *	@val_up: value passed unmodified to notifier function
1945  *	@val_down: value passed unmodified to the notifier function when
1946  *	           recovering from an error on @val_up
1947  *	@info: notifier information data
1948  *
1949  *	Call all per-netns network notifier blocks, but not notifier blocks on
1950  *	the global notifier chain. Parameters and return value are as for
1951  *	raw_notifier_call_chain_robust().
1952  */
1953 
1954 static int
1955 call_netdevice_notifiers_info_robust(unsigned long val_up,
1956 				     unsigned long val_down,
1957 				     struct netdev_notifier_info *info)
1958 {
1959 	struct net *net = dev_net(info->dev);
1960 
1961 	ASSERT_RTNL();
1962 
1963 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1964 					      val_up, val_down, info);
1965 }
1966 
1967 static int call_netdevice_notifiers_extack(unsigned long val,
1968 					   struct net_device *dev,
1969 					   struct netlink_ext_ack *extack)
1970 {
1971 	struct netdev_notifier_info info = {
1972 		.dev = dev,
1973 		.extack = extack,
1974 	};
1975 
1976 	return call_netdevice_notifiers_info(val, &info);
1977 }
1978 
1979 /**
1980  *	call_netdevice_notifiers - call all network notifier blocks
1981  *      @val: value passed unmodified to notifier function
1982  *      @dev: net_device pointer passed unmodified to notifier function
1983  *
1984  *	Call all network notifier blocks.  Parameters and return value
1985  *	are as for raw_notifier_call_chain().
1986  */
1987 
1988 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1989 {
1990 	return call_netdevice_notifiers_extack(val, dev, NULL);
1991 }
1992 EXPORT_SYMBOL(call_netdevice_notifiers);
1993 
1994 /**
1995  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1996  *	@val: value passed unmodified to notifier function
1997  *	@dev: net_device pointer passed unmodified to notifier function
1998  *	@arg: additional u32 argument passed to the notifier function
1999  *
2000  *	Call all network notifier blocks.  Parameters and return value
2001  *	are as for raw_notifier_call_chain().
2002  */
2003 static int call_netdevice_notifiers_mtu(unsigned long val,
2004 					struct net_device *dev, u32 arg)
2005 {
2006 	struct netdev_notifier_info_ext info = {
2007 		.info.dev = dev,
2008 		.ext.mtu = arg,
2009 	};
2010 
2011 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2012 
2013 	return call_netdevice_notifiers_info(val, &info.info);
2014 }
2015 
2016 #ifdef CONFIG_NET_INGRESS
2017 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2018 
2019 void net_inc_ingress_queue(void)
2020 {
2021 	static_branch_inc(&ingress_needed_key);
2022 }
2023 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2024 
2025 void net_dec_ingress_queue(void)
2026 {
2027 	static_branch_dec(&ingress_needed_key);
2028 }
2029 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2030 #endif
2031 
2032 #ifdef CONFIG_NET_EGRESS
2033 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2034 
2035 void net_inc_egress_queue(void)
2036 {
2037 	static_branch_inc(&egress_needed_key);
2038 }
2039 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2040 
2041 void net_dec_egress_queue(void)
2042 {
2043 	static_branch_dec(&egress_needed_key);
2044 }
2045 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2046 #endif
2047 
2048 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2049 EXPORT_SYMBOL(netstamp_needed_key);
2050 #ifdef CONFIG_JUMP_LABEL
2051 static atomic_t netstamp_needed_deferred;
2052 static atomic_t netstamp_wanted;
2053 static void netstamp_clear(struct work_struct *work)
2054 {
2055 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2056 	int wanted;
2057 
2058 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2059 	if (wanted > 0)
2060 		static_branch_enable(&netstamp_needed_key);
2061 	else
2062 		static_branch_disable(&netstamp_needed_key);
2063 }
2064 static DECLARE_WORK(netstamp_work, netstamp_clear);
2065 #endif
2066 
2067 void net_enable_timestamp(void)
2068 {
2069 #ifdef CONFIG_JUMP_LABEL
2070 	int wanted;
2071 
2072 	while (1) {
2073 		wanted = atomic_read(&netstamp_wanted);
2074 		if (wanted <= 0)
2075 			break;
2076 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2077 			return;
2078 	}
2079 	atomic_inc(&netstamp_needed_deferred);
2080 	schedule_work(&netstamp_work);
2081 #else
2082 	static_branch_inc(&netstamp_needed_key);
2083 #endif
2084 }
2085 EXPORT_SYMBOL(net_enable_timestamp);
2086 
2087 void net_disable_timestamp(void)
2088 {
2089 #ifdef CONFIG_JUMP_LABEL
2090 	int wanted;
2091 
2092 	while (1) {
2093 		wanted = atomic_read(&netstamp_wanted);
2094 		if (wanted <= 1)
2095 			break;
2096 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2097 			return;
2098 	}
2099 	atomic_dec(&netstamp_needed_deferred);
2100 	schedule_work(&netstamp_work);
2101 #else
2102 	static_branch_dec(&netstamp_needed_key);
2103 #endif
2104 }
2105 EXPORT_SYMBOL(net_disable_timestamp);
2106 
2107 static inline void net_timestamp_set(struct sk_buff *skb)
2108 {
2109 	skb->tstamp = 0;
2110 	skb->mono_delivery_time = 0;
2111 	if (static_branch_unlikely(&netstamp_needed_key))
2112 		skb->tstamp = ktime_get_real();
2113 }
2114 
2115 #define net_timestamp_check(COND, SKB)				\
2116 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2117 		if ((COND) && !(SKB)->tstamp)			\
2118 			(SKB)->tstamp = ktime_get_real();	\
2119 	}							\
2120 
2121 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2122 {
2123 	return __is_skb_forwardable(dev, skb, true);
2124 }
2125 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2126 
2127 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2128 			      bool check_mtu)
2129 {
2130 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2131 
2132 	if (likely(!ret)) {
2133 		skb->protocol = eth_type_trans(skb, dev);
2134 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2135 	}
2136 
2137 	return ret;
2138 }
2139 
2140 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2141 {
2142 	return __dev_forward_skb2(dev, skb, true);
2143 }
2144 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2145 
2146 /**
2147  * dev_forward_skb - loopback an skb to another netif
2148  *
2149  * @dev: destination network device
2150  * @skb: buffer to forward
2151  *
2152  * return values:
2153  *	NET_RX_SUCCESS	(no congestion)
2154  *	NET_RX_DROP     (packet was dropped, but freed)
2155  *
2156  * dev_forward_skb can be used for injecting an skb from the
2157  * start_xmit function of one device into the receive queue
2158  * of another device.
2159  *
2160  * The receiving device may be in another namespace, so
2161  * we have to clear all information in the skb that could
2162  * impact namespace isolation.
2163  */
2164 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2165 {
2166 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2167 }
2168 EXPORT_SYMBOL_GPL(dev_forward_skb);
2169 
2170 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2171 {
2172 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2173 }
2174 
2175 static inline int deliver_skb(struct sk_buff *skb,
2176 			      struct packet_type *pt_prev,
2177 			      struct net_device *orig_dev)
2178 {
2179 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2180 		return -ENOMEM;
2181 	refcount_inc(&skb->users);
2182 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2183 }
2184 
2185 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2186 					  struct packet_type **pt,
2187 					  struct net_device *orig_dev,
2188 					  __be16 type,
2189 					  struct list_head *ptype_list)
2190 {
2191 	struct packet_type *ptype, *pt_prev = *pt;
2192 
2193 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2194 		if (ptype->type != type)
2195 			continue;
2196 		if (pt_prev)
2197 			deliver_skb(skb, pt_prev, orig_dev);
2198 		pt_prev = ptype;
2199 	}
2200 	*pt = pt_prev;
2201 }
2202 
2203 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2204 {
2205 	if (!ptype->af_packet_priv || !skb->sk)
2206 		return false;
2207 
2208 	if (ptype->id_match)
2209 		return ptype->id_match(ptype, skb->sk);
2210 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2211 		return true;
2212 
2213 	return false;
2214 }
2215 
2216 /**
2217  * dev_nit_active - return true if any network interface taps are in use
2218  *
2219  * @dev: network device to check for the presence of taps
2220  */
2221 bool dev_nit_active(struct net_device *dev)
2222 {
2223 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2224 }
2225 EXPORT_SYMBOL_GPL(dev_nit_active);
2226 
2227 /*
2228  *	Support routine. Sends outgoing frames to any network
2229  *	taps currently in use.
2230  */
2231 
2232 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2233 {
2234 	struct packet_type *ptype;
2235 	struct sk_buff *skb2 = NULL;
2236 	struct packet_type *pt_prev = NULL;
2237 	struct list_head *ptype_list = &ptype_all;
2238 
2239 	rcu_read_lock();
2240 again:
2241 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2242 		if (ptype->ignore_outgoing)
2243 			continue;
2244 
2245 		/* Never send packets back to the socket
2246 		 * they originated from - MvS (miquels@drinkel.ow.org)
2247 		 */
2248 		if (skb_loop_sk(ptype, skb))
2249 			continue;
2250 
2251 		if (pt_prev) {
2252 			deliver_skb(skb2, pt_prev, skb->dev);
2253 			pt_prev = ptype;
2254 			continue;
2255 		}
2256 
2257 		/* need to clone skb, done only once */
2258 		skb2 = skb_clone(skb, GFP_ATOMIC);
2259 		if (!skb2)
2260 			goto out_unlock;
2261 
2262 		net_timestamp_set(skb2);
2263 
2264 		/* skb->nh should be correctly
2265 		 * set by sender, so that the second statement is
2266 		 * just protection against buggy protocols.
2267 		 */
2268 		skb_reset_mac_header(skb2);
2269 
2270 		if (skb_network_header(skb2) < skb2->data ||
2271 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2272 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2273 					     ntohs(skb2->protocol),
2274 					     dev->name);
2275 			skb_reset_network_header(skb2);
2276 		}
2277 
2278 		skb2->transport_header = skb2->network_header;
2279 		skb2->pkt_type = PACKET_OUTGOING;
2280 		pt_prev = ptype;
2281 	}
2282 
2283 	if (ptype_list == &ptype_all) {
2284 		ptype_list = &dev->ptype_all;
2285 		goto again;
2286 	}
2287 out_unlock:
2288 	if (pt_prev) {
2289 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2290 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2291 		else
2292 			kfree_skb(skb2);
2293 	}
2294 	rcu_read_unlock();
2295 }
2296 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2297 
2298 /**
2299  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2300  * @dev: Network device
2301  * @txq: number of queues available
2302  *
2303  * If real_num_tx_queues is changed the tc mappings may no longer be
2304  * valid. To resolve this verify the tc mapping remains valid and if
2305  * not NULL the mapping. With no priorities mapping to this
2306  * offset/count pair it will no longer be used. In the worst case TC0
2307  * is invalid nothing can be done so disable priority mappings. If is
2308  * expected that drivers will fix this mapping if they can before
2309  * calling netif_set_real_num_tx_queues.
2310  */
2311 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2312 {
2313 	int i;
2314 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2315 
2316 	/* If TC0 is invalidated disable TC mapping */
2317 	if (tc->offset + tc->count > txq) {
2318 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2319 		dev->num_tc = 0;
2320 		return;
2321 	}
2322 
2323 	/* Invalidated prio to tc mappings set to TC0 */
2324 	for (i = 1; i < TC_BITMASK + 1; i++) {
2325 		int q = netdev_get_prio_tc_map(dev, i);
2326 
2327 		tc = &dev->tc_to_txq[q];
2328 		if (tc->offset + tc->count > txq) {
2329 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2330 				    i, q);
2331 			netdev_set_prio_tc_map(dev, i, 0);
2332 		}
2333 	}
2334 }
2335 
2336 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2337 {
2338 	if (dev->num_tc) {
2339 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2340 		int i;
2341 
2342 		/* walk through the TCs and see if it falls into any of them */
2343 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2344 			if ((txq - tc->offset) < tc->count)
2345 				return i;
2346 		}
2347 
2348 		/* didn't find it, just return -1 to indicate no match */
2349 		return -1;
2350 	}
2351 
2352 	return 0;
2353 }
2354 EXPORT_SYMBOL(netdev_txq_to_tc);
2355 
2356 #ifdef CONFIG_XPS
2357 static struct static_key xps_needed __read_mostly;
2358 static struct static_key xps_rxqs_needed __read_mostly;
2359 static DEFINE_MUTEX(xps_map_mutex);
2360 #define xmap_dereference(P)		\
2361 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2362 
2363 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2364 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2365 {
2366 	struct xps_map *map = NULL;
2367 	int pos;
2368 
2369 	if (dev_maps)
2370 		map = xmap_dereference(dev_maps->attr_map[tci]);
2371 	if (!map)
2372 		return false;
2373 
2374 	for (pos = map->len; pos--;) {
2375 		if (map->queues[pos] != index)
2376 			continue;
2377 
2378 		if (map->len > 1) {
2379 			map->queues[pos] = map->queues[--map->len];
2380 			break;
2381 		}
2382 
2383 		if (old_maps)
2384 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2385 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2386 		kfree_rcu(map, rcu);
2387 		return false;
2388 	}
2389 
2390 	return true;
2391 }
2392 
2393 static bool remove_xps_queue_cpu(struct net_device *dev,
2394 				 struct xps_dev_maps *dev_maps,
2395 				 int cpu, u16 offset, u16 count)
2396 {
2397 	int num_tc = dev_maps->num_tc;
2398 	bool active = false;
2399 	int tci;
2400 
2401 	for (tci = cpu * num_tc; num_tc--; tci++) {
2402 		int i, j;
2403 
2404 		for (i = count, j = offset; i--; j++) {
2405 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2406 				break;
2407 		}
2408 
2409 		active |= i < 0;
2410 	}
2411 
2412 	return active;
2413 }
2414 
2415 static void reset_xps_maps(struct net_device *dev,
2416 			   struct xps_dev_maps *dev_maps,
2417 			   enum xps_map_type type)
2418 {
2419 	static_key_slow_dec_cpuslocked(&xps_needed);
2420 	if (type == XPS_RXQS)
2421 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2422 
2423 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2424 
2425 	kfree_rcu(dev_maps, rcu);
2426 }
2427 
2428 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2429 			   u16 offset, u16 count)
2430 {
2431 	struct xps_dev_maps *dev_maps;
2432 	bool active = false;
2433 	int i, j;
2434 
2435 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2436 	if (!dev_maps)
2437 		return;
2438 
2439 	for (j = 0; j < dev_maps->nr_ids; j++)
2440 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2441 	if (!active)
2442 		reset_xps_maps(dev, dev_maps, type);
2443 
2444 	if (type == XPS_CPUS) {
2445 		for (i = offset + (count - 1); count--; i--)
2446 			netdev_queue_numa_node_write(
2447 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2448 	}
2449 }
2450 
2451 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2452 				   u16 count)
2453 {
2454 	if (!static_key_false(&xps_needed))
2455 		return;
2456 
2457 	cpus_read_lock();
2458 	mutex_lock(&xps_map_mutex);
2459 
2460 	if (static_key_false(&xps_rxqs_needed))
2461 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2462 
2463 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2464 
2465 	mutex_unlock(&xps_map_mutex);
2466 	cpus_read_unlock();
2467 }
2468 
2469 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2470 {
2471 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2472 }
2473 
2474 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2475 				      u16 index, bool is_rxqs_map)
2476 {
2477 	struct xps_map *new_map;
2478 	int alloc_len = XPS_MIN_MAP_ALLOC;
2479 	int i, pos;
2480 
2481 	for (pos = 0; map && pos < map->len; pos++) {
2482 		if (map->queues[pos] != index)
2483 			continue;
2484 		return map;
2485 	}
2486 
2487 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2488 	if (map) {
2489 		if (pos < map->alloc_len)
2490 			return map;
2491 
2492 		alloc_len = map->alloc_len * 2;
2493 	}
2494 
2495 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2496 	 *  map
2497 	 */
2498 	if (is_rxqs_map)
2499 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2500 	else
2501 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2502 				       cpu_to_node(attr_index));
2503 	if (!new_map)
2504 		return NULL;
2505 
2506 	for (i = 0; i < pos; i++)
2507 		new_map->queues[i] = map->queues[i];
2508 	new_map->alloc_len = alloc_len;
2509 	new_map->len = pos;
2510 
2511 	return new_map;
2512 }
2513 
2514 /* Copy xps maps at a given index */
2515 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2516 			      struct xps_dev_maps *new_dev_maps, int index,
2517 			      int tc, bool skip_tc)
2518 {
2519 	int i, tci = index * dev_maps->num_tc;
2520 	struct xps_map *map;
2521 
2522 	/* copy maps belonging to foreign traffic classes */
2523 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2524 		if (i == tc && skip_tc)
2525 			continue;
2526 
2527 		/* fill in the new device map from the old device map */
2528 		map = xmap_dereference(dev_maps->attr_map[tci]);
2529 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2530 	}
2531 }
2532 
2533 /* Must be called under cpus_read_lock */
2534 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2535 			  u16 index, enum xps_map_type type)
2536 {
2537 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2538 	const unsigned long *online_mask = NULL;
2539 	bool active = false, copy = false;
2540 	int i, j, tci, numa_node_id = -2;
2541 	int maps_sz, num_tc = 1, tc = 0;
2542 	struct xps_map *map, *new_map;
2543 	unsigned int nr_ids;
2544 
2545 	if (dev->num_tc) {
2546 		/* Do not allow XPS on subordinate device directly */
2547 		num_tc = dev->num_tc;
2548 		if (num_tc < 0)
2549 			return -EINVAL;
2550 
2551 		/* If queue belongs to subordinate dev use its map */
2552 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2553 
2554 		tc = netdev_txq_to_tc(dev, index);
2555 		if (tc < 0)
2556 			return -EINVAL;
2557 	}
2558 
2559 	mutex_lock(&xps_map_mutex);
2560 
2561 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2562 	if (type == XPS_RXQS) {
2563 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2564 		nr_ids = dev->num_rx_queues;
2565 	} else {
2566 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2567 		if (num_possible_cpus() > 1)
2568 			online_mask = cpumask_bits(cpu_online_mask);
2569 		nr_ids = nr_cpu_ids;
2570 	}
2571 
2572 	if (maps_sz < L1_CACHE_BYTES)
2573 		maps_sz = L1_CACHE_BYTES;
2574 
2575 	/* The old dev_maps could be larger or smaller than the one we're
2576 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2577 	 * between. We could try to be smart, but let's be safe instead and only
2578 	 * copy foreign traffic classes if the two map sizes match.
2579 	 */
2580 	if (dev_maps &&
2581 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2582 		copy = true;
2583 
2584 	/* allocate memory for queue storage */
2585 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2586 	     j < nr_ids;) {
2587 		if (!new_dev_maps) {
2588 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2589 			if (!new_dev_maps) {
2590 				mutex_unlock(&xps_map_mutex);
2591 				return -ENOMEM;
2592 			}
2593 
2594 			new_dev_maps->nr_ids = nr_ids;
2595 			new_dev_maps->num_tc = num_tc;
2596 		}
2597 
2598 		tci = j * num_tc + tc;
2599 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2600 
2601 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2602 		if (!map)
2603 			goto error;
2604 
2605 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2606 	}
2607 
2608 	if (!new_dev_maps)
2609 		goto out_no_new_maps;
2610 
2611 	if (!dev_maps) {
2612 		/* Increment static keys at most once per type */
2613 		static_key_slow_inc_cpuslocked(&xps_needed);
2614 		if (type == XPS_RXQS)
2615 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2616 	}
2617 
2618 	for (j = 0; j < nr_ids; j++) {
2619 		bool skip_tc = false;
2620 
2621 		tci = j * num_tc + tc;
2622 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2623 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2624 			/* add tx-queue to CPU/rx-queue maps */
2625 			int pos = 0;
2626 
2627 			skip_tc = true;
2628 
2629 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2630 			while ((pos < map->len) && (map->queues[pos] != index))
2631 				pos++;
2632 
2633 			if (pos == map->len)
2634 				map->queues[map->len++] = index;
2635 #ifdef CONFIG_NUMA
2636 			if (type == XPS_CPUS) {
2637 				if (numa_node_id == -2)
2638 					numa_node_id = cpu_to_node(j);
2639 				else if (numa_node_id != cpu_to_node(j))
2640 					numa_node_id = -1;
2641 			}
2642 #endif
2643 		}
2644 
2645 		if (copy)
2646 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2647 					  skip_tc);
2648 	}
2649 
2650 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2651 
2652 	/* Cleanup old maps */
2653 	if (!dev_maps)
2654 		goto out_no_old_maps;
2655 
2656 	for (j = 0; j < dev_maps->nr_ids; j++) {
2657 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2658 			map = xmap_dereference(dev_maps->attr_map[tci]);
2659 			if (!map)
2660 				continue;
2661 
2662 			if (copy) {
2663 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2664 				if (map == new_map)
2665 					continue;
2666 			}
2667 
2668 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2669 			kfree_rcu(map, rcu);
2670 		}
2671 	}
2672 
2673 	old_dev_maps = dev_maps;
2674 
2675 out_no_old_maps:
2676 	dev_maps = new_dev_maps;
2677 	active = true;
2678 
2679 out_no_new_maps:
2680 	if (type == XPS_CPUS)
2681 		/* update Tx queue numa node */
2682 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2683 					     (numa_node_id >= 0) ?
2684 					     numa_node_id : NUMA_NO_NODE);
2685 
2686 	if (!dev_maps)
2687 		goto out_no_maps;
2688 
2689 	/* removes tx-queue from unused CPUs/rx-queues */
2690 	for (j = 0; j < dev_maps->nr_ids; j++) {
2691 		tci = j * dev_maps->num_tc;
2692 
2693 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2694 			if (i == tc &&
2695 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2696 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2697 				continue;
2698 
2699 			active |= remove_xps_queue(dev_maps,
2700 						   copy ? old_dev_maps : NULL,
2701 						   tci, index);
2702 		}
2703 	}
2704 
2705 	if (old_dev_maps)
2706 		kfree_rcu(old_dev_maps, rcu);
2707 
2708 	/* free map if not active */
2709 	if (!active)
2710 		reset_xps_maps(dev, dev_maps, type);
2711 
2712 out_no_maps:
2713 	mutex_unlock(&xps_map_mutex);
2714 
2715 	return 0;
2716 error:
2717 	/* remove any maps that we added */
2718 	for (j = 0; j < nr_ids; j++) {
2719 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2720 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2721 			map = copy ?
2722 			      xmap_dereference(dev_maps->attr_map[tci]) :
2723 			      NULL;
2724 			if (new_map && new_map != map)
2725 				kfree(new_map);
2726 		}
2727 	}
2728 
2729 	mutex_unlock(&xps_map_mutex);
2730 
2731 	kfree(new_dev_maps);
2732 	return -ENOMEM;
2733 }
2734 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2735 
2736 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2737 			u16 index)
2738 {
2739 	int ret;
2740 
2741 	cpus_read_lock();
2742 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2743 	cpus_read_unlock();
2744 
2745 	return ret;
2746 }
2747 EXPORT_SYMBOL(netif_set_xps_queue);
2748 
2749 #endif
2750 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2751 {
2752 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2753 
2754 	/* Unbind any subordinate channels */
2755 	while (txq-- != &dev->_tx[0]) {
2756 		if (txq->sb_dev)
2757 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2758 	}
2759 }
2760 
2761 void netdev_reset_tc(struct net_device *dev)
2762 {
2763 #ifdef CONFIG_XPS
2764 	netif_reset_xps_queues_gt(dev, 0);
2765 #endif
2766 	netdev_unbind_all_sb_channels(dev);
2767 
2768 	/* Reset TC configuration of device */
2769 	dev->num_tc = 0;
2770 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2771 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2772 }
2773 EXPORT_SYMBOL(netdev_reset_tc);
2774 
2775 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2776 {
2777 	if (tc >= dev->num_tc)
2778 		return -EINVAL;
2779 
2780 #ifdef CONFIG_XPS
2781 	netif_reset_xps_queues(dev, offset, count);
2782 #endif
2783 	dev->tc_to_txq[tc].count = count;
2784 	dev->tc_to_txq[tc].offset = offset;
2785 	return 0;
2786 }
2787 EXPORT_SYMBOL(netdev_set_tc_queue);
2788 
2789 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2790 {
2791 	if (num_tc > TC_MAX_QUEUE)
2792 		return -EINVAL;
2793 
2794 #ifdef CONFIG_XPS
2795 	netif_reset_xps_queues_gt(dev, 0);
2796 #endif
2797 	netdev_unbind_all_sb_channels(dev);
2798 
2799 	dev->num_tc = num_tc;
2800 	return 0;
2801 }
2802 EXPORT_SYMBOL(netdev_set_num_tc);
2803 
2804 void netdev_unbind_sb_channel(struct net_device *dev,
2805 			      struct net_device *sb_dev)
2806 {
2807 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2808 
2809 #ifdef CONFIG_XPS
2810 	netif_reset_xps_queues_gt(sb_dev, 0);
2811 #endif
2812 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2813 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2814 
2815 	while (txq-- != &dev->_tx[0]) {
2816 		if (txq->sb_dev == sb_dev)
2817 			txq->sb_dev = NULL;
2818 	}
2819 }
2820 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2821 
2822 int netdev_bind_sb_channel_queue(struct net_device *dev,
2823 				 struct net_device *sb_dev,
2824 				 u8 tc, u16 count, u16 offset)
2825 {
2826 	/* Make certain the sb_dev and dev are already configured */
2827 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2828 		return -EINVAL;
2829 
2830 	/* We cannot hand out queues we don't have */
2831 	if ((offset + count) > dev->real_num_tx_queues)
2832 		return -EINVAL;
2833 
2834 	/* Record the mapping */
2835 	sb_dev->tc_to_txq[tc].count = count;
2836 	sb_dev->tc_to_txq[tc].offset = offset;
2837 
2838 	/* Provide a way for Tx queue to find the tc_to_txq map or
2839 	 * XPS map for itself.
2840 	 */
2841 	while (count--)
2842 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2843 
2844 	return 0;
2845 }
2846 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2847 
2848 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2849 {
2850 	/* Do not use a multiqueue device to represent a subordinate channel */
2851 	if (netif_is_multiqueue(dev))
2852 		return -ENODEV;
2853 
2854 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2855 	 * Channel 0 is meant to be "native" mode and used only to represent
2856 	 * the main root device. We allow writing 0 to reset the device back
2857 	 * to normal mode after being used as a subordinate channel.
2858 	 */
2859 	if (channel > S16_MAX)
2860 		return -EINVAL;
2861 
2862 	dev->num_tc = -channel;
2863 
2864 	return 0;
2865 }
2866 EXPORT_SYMBOL(netdev_set_sb_channel);
2867 
2868 /*
2869  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2870  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2871  */
2872 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2873 {
2874 	bool disabling;
2875 	int rc;
2876 
2877 	disabling = txq < dev->real_num_tx_queues;
2878 
2879 	if (txq < 1 || txq > dev->num_tx_queues)
2880 		return -EINVAL;
2881 
2882 	if (dev->reg_state == NETREG_REGISTERED ||
2883 	    dev->reg_state == NETREG_UNREGISTERING) {
2884 		ASSERT_RTNL();
2885 
2886 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2887 						  txq);
2888 		if (rc)
2889 			return rc;
2890 
2891 		if (dev->num_tc)
2892 			netif_setup_tc(dev, txq);
2893 
2894 		dev_qdisc_change_real_num_tx(dev, txq);
2895 
2896 		dev->real_num_tx_queues = txq;
2897 
2898 		if (disabling) {
2899 			synchronize_net();
2900 			qdisc_reset_all_tx_gt(dev, txq);
2901 #ifdef CONFIG_XPS
2902 			netif_reset_xps_queues_gt(dev, txq);
2903 #endif
2904 		}
2905 	} else {
2906 		dev->real_num_tx_queues = txq;
2907 	}
2908 
2909 	return 0;
2910 }
2911 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2912 
2913 #ifdef CONFIG_SYSFS
2914 /**
2915  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2916  *	@dev: Network device
2917  *	@rxq: Actual number of RX queues
2918  *
2919  *	This must be called either with the rtnl_lock held or before
2920  *	registration of the net device.  Returns 0 on success, or a
2921  *	negative error code.  If called before registration, it always
2922  *	succeeds.
2923  */
2924 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2925 {
2926 	int rc;
2927 
2928 	if (rxq < 1 || rxq > dev->num_rx_queues)
2929 		return -EINVAL;
2930 
2931 	if (dev->reg_state == NETREG_REGISTERED) {
2932 		ASSERT_RTNL();
2933 
2934 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2935 						  rxq);
2936 		if (rc)
2937 			return rc;
2938 	}
2939 
2940 	dev->real_num_rx_queues = rxq;
2941 	return 0;
2942 }
2943 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2944 #endif
2945 
2946 /**
2947  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2948  *	@dev: Network device
2949  *	@txq: Actual number of TX queues
2950  *	@rxq: Actual number of RX queues
2951  *
2952  *	Set the real number of both TX and RX queues.
2953  *	Does nothing if the number of queues is already correct.
2954  */
2955 int netif_set_real_num_queues(struct net_device *dev,
2956 			      unsigned int txq, unsigned int rxq)
2957 {
2958 	unsigned int old_rxq = dev->real_num_rx_queues;
2959 	int err;
2960 
2961 	if (txq < 1 || txq > dev->num_tx_queues ||
2962 	    rxq < 1 || rxq > dev->num_rx_queues)
2963 		return -EINVAL;
2964 
2965 	/* Start from increases, so the error path only does decreases -
2966 	 * decreases can't fail.
2967 	 */
2968 	if (rxq > dev->real_num_rx_queues) {
2969 		err = netif_set_real_num_rx_queues(dev, rxq);
2970 		if (err)
2971 			return err;
2972 	}
2973 	if (txq > dev->real_num_tx_queues) {
2974 		err = netif_set_real_num_tx_queues(dev, txq);
2975 		if (err)
2976 			goto undo_rx;
2977 	}
2978 	if (rxq < dev->real_num_rx_queues)
2979 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2980 	if (txq < dev->real_num_tx_queues)
2981 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2982 
2983 	return 0;
2984 undo_rx:
2985 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2986 	return err;
2987 }
2988 EXPORT_SYMBOL(netif_set_real_num_queues);
2989 
2990 /**
2991  * netif_get_num_default_rss_queues - default number of RSS queues
2992  *
2993  * Default value is the number of physical cores if there are only 1 or 2, or
2994  * divided by 2 if there are more.
2995  */
2996 int netif_get_num_default_rss_queues(void)
2997 {
2998 	cpumask_var_t cpus;
2999 	int cpu, count = 0;
3000 
3001 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3002 		return 1;
3003 
3004 	cpumask_copy(cpus, cpu_online_mask);
3005 	for_each_cpu(cpu, cpus) {
3006 		++count;
3007 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3008 	}
3009 	free_cpumask_var(cpus);
3010 
3011 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3012 }
3013 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3014 
3015 static void __netif_reschedule(struct Qdisc *q)
3016 {
3017 	struct softnet_data *sd;
3018 	unsigned long flags;
3019 
3020 	local_irq_save(flags);
3021 	sd = this_cpu_ptr(&softnet_data);
3022 	q->next_sched = NULL;
3023 	*sd->output_queue_tailp = q;
3024 	sd->output_queue_tailp = &q->next_sched;
3025 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3026 	local_irq_restore(flags);
3027 }
3028 
3029 void __netif_schedule(struct Qdisc *q)
3030 {
3031 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3032 		__netif_reschedule(q);
3033 }
3034 EXPORT_SYMBOL(__netif_schedule);
3035 
3036 struct dev_kfree_skb_cb {
3037 	enum skb_free_reason reason;
3038 };
3039 
3040 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3041 {
3042 	return (struct dev_kfree_skb_cb *)skb->cb;
3043 }
3044 
3045 void netif_schedule_queue(struct netdev_queue *txq)
3046 {
3047 	rcu_read_lock();
3048 	if (!netif_xmit_stopped(txq)) {
3049 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3050 
3051 		__netif_schedule(q);
3052 	}
3053 	rcu_read_unlock();
3054 }
3055 EXPORT_SYMBOL(netif_schedule_queue);
3056 
3057 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3058 {
3059 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3060 		struct Qdisc *q;
3061 
3062 		rcu_read_lock();
3063 		q = rcu_dereference(dev_queue->qdisc);
3064 		__netif_schedule(q);
3065 		rcu_read_unlock();
3066 	}
3067 }
3068 EXPORT_SYMBOL(netif_tx_wake_queue);
3069 
3070 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3071 {
3072 	unsigned long flags;
3073 
3074 	if (unlikely(!skb))
3075 		return;
3076 
3077 	if (likely(refcount_read(&skb->users) == 1)) {
3078 		smp_rmb();
3079 		refcount_set(&skb->users, 0);
3080 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3081 		return;
3082 	}
3083 	get_kfree_skb_cb(skb)->reason = reason;
3084 	local_irq_save(flags);
3085 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3086 	__this_cpu_write(softnet_data.completion_queue, skb);
3087 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3088 	local_irq_restore(flags);
3089 }
3090 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3091 
3092 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3093 {
3094 	if (in_hardirq() || irqs_disabled())
3095 		__dev_kfree_skb_irq(skb, reason);
3096 	else
3097 		dev_kfree_skb(skb);
3098 }
3099 EXPORT_SYMBOL(__dev_kfree_skb_any);
3100 
3101 
3102 /**
3103  * netif_device_detach - mark device as removed
3104  * @dev: network device
3105  *
3106  * Mark device as removed from system and therefore no longer available.
3107  */
3108 void netif_device_detach(struct net_device *dev)
3109 {
3110 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3111 	    netif_running(dev)) {
3112 		netif_tx_stop_all_queues(dev);
3113 	}
3114 }
3115 EXPORT_SYMBOL(netif_device_detach);
3116 
3117 /**
3118  * netif_device_attach - mark device as attached
3119  * @dev: network device
3120  *
3121  * Mark device as attached from system and restart if needed.
3122  */
3123 void netif_device_attach(struct net_device *dev)
3124 {
3125 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3126 	    netif_running(dev)) {
3127 		netif_tx_wake_all_queues(dev);
3128 		__netdev_watchdog_up(dev);
3129 	}
3130 }
3131 EXPORT_SYMBOL(netif_device_attach);
3132 
3133 /*
3134  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3135  * to be used as a distribution range.
3136  */
3137 static u16 skb_tx_hash(const struct net_device *dev,
3138 		       const struct net_device *sb_dev,
3139 		       struct sk_buff *skb)
3140 {
3141 	u32 hash;
3142 	u16 qoffset = 0;
3143 	u16 qcount = dev->real_num_tx_queues;
3144 
3145 	if (dev->num_tc) {
3146 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3147 
3148 		qoffset = sb_dev->tc_to_txq[tc].offset;
3149 		qcount = sb_dev->tc_to_txq[tc].count;
3150 		if (unlikely(!qcount)) {
3151 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3152 					     sb_dev->name, qoffset, tc);
3153 			qoffset = 0;
3154 			qcount = dev->real_num_tx_queues;
3155 		}
3156 	}
3157 
3158 	if (skb_rx_queue_recorded(skb)) {
3159 		hash = skb_get_rx_queue(skb);
3160 		if (hash >= qoffset)
3161 			hash -= qoffset;
3162 		while (unlikely(hash >= qcount))
3163 			hash -= qcount;
3164 		return hash + qoffset;
3165 	}
3166 
3167 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3168 }
3169 
3170 static void skb_warn_bad_offload(const struct sk_buff *skb)
3171 {
3172 	static const netdev_features_t null_features;
3173 	struct net_device *dev = skb->dev;
3174 	const char *name = "";
3175 
3176 	if (!net_ratelimit())
3177 		return;
3178 
3179 	if (dev) {
3180 		if (dev->dev.parent)
3181 			name = dev_driver_string(dev->dev.parent);
3182 		else
3183 			name = netdev_name(dev);
3184 	}
3185 	skb_dump(KERN_WARNING, skb, false);
3186 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3187 	     name, dev ? &dev->features : &null_features,
3188 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3189 }
3190 
3191 /*
3192  * Invalidate hardware checksum when packet is to be mangled, and
3193  * complete checksum manually on outgoing path.
3194  */
3195 int skb_checksum_help(struct sk_buff *skb)
3196 {
3197 	__wsum csum;
3198 	int ret = 0, offset;
3199 
3200 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3201 		goto out_set_summed;
3202 
3203 	if (unlikely(skb_is_gso(skb))) {
3204 		skb_warn_bad_offload(skb);
3205 		return -EINVAL;
3206 	}
3207 
3208 	/* Before computing a checksum, we should make sure no frag could
3209 	 * be modified by an external entity : checksum could be wrong.
3210 	 */
3211 	if (skb_has_shared_frag(skb)) {
3212 		ret = __skb_linearize(skb);
3213 		if (ret)
3214 			goto out;
3215 	}
3216 
3217 	offset = skb_checksum_start_offset(skb);
3218 	BUG_ON(offset >= skb_headlen(skb));
3219 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3220 
3221 	offset += skb->csum_offset;
3222 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3223 
3224 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3225 	if (ret)
3226 		goto out;
3227 
3228 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3229 out_set_summed:
3230 	skb->ip_summed = CHECKSUM_NONE;
3231 out:
3232 	return ret;
3233 }
3234 EXPORT_SYMBOL(skb_checksum_help);
3235 
3236 int skb_crc32c_csum_help(struct sk_buff *skb)
3237 {
3238 	__le32 crc32c_csum;
3239 	int ret = 0, offset, start;
3240 
3241 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3242 		goto out;
3243 
3244 	if (unlikely(skb_is_gso(skb)))
3245 		goto out;
3246 
3247 	/* Before computing a checksum, we should make sure no frag could
3248 	 * be modified by an external entity : checksum could be wrong.
3249 	 */
3250 	if (unlikely(skb_has_shared_frag(skb))) {
3251 		ret = __skb_linearize(skb);
3252 		if (ret)
3253 			goto out;
3254 	}
3255 	start = skb_checksum_start_offset(skb);
3256 	offset = start + offsetof(struct sctphdr, checksum);
3257 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3258 		ret = -EINVAL;
3259 		goto out;
3260 	}
3261 
3262 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3263 	if (ret)
3264 		goto out;
3265 
3266 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3267 						  skb->len - start, ~(__u32)0,
3268 						  crc32c_csum_stub));
3269 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3270 	skb->ip_summed = CHECKSUM_NONE;
3271 	skb->csum_not_inet = 0;
3272 out:
3273 	return ret;
3274 }
3275 
3276 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3277 {
3278 	__be16 type = skb->protocol;
3279 
3280 	/* Tunnel gso handlers can set protocol to ethernet. */
3281 	if (type == htons(ETH_P_TEB)) {
3282 		struct ethhdr *eth;
3283 
3284 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3285 			return 0;
3286 
3287 		eth = (struct ethhdr *)skb->data;
3288 		type = eth->h_proto;
3289 	}
3290 
3291 	return __vlan_get_protocol(skb, type, depth);
3292 }
3293 
3294 /* openvswitch calls this on rx path, so we need a different check.
3295  */
3296 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3297 {
3298 	if (tx_path)
3299 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3300 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3301 
3302 	return skb->ip_summed == CHECKSUM_NONE;
3303 }
3304 
3305 /**
3306  *	__skb_gso_segment - Perform segmentation on skb.
3307  *	@skb: buffer to segment
3308  *	@features: features for the output path (see dev->features)
3309  *	@tx_path: whether it is called in TX path
3310  *
3311  *	This function segments the given skb and returns a list of segments.
3312  *
3313  *	It may return NULL if the skb requires no segmentation.  This is
3314  *	only possible when GSO is used for verifying header integrity.
3315  *
3316  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3317  */
3318 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3319 				  netdev_features_t features, bool tx_path)
3320 {
3321 	struct sk_buff *segs;
3322 
3323 	if (unlikely(skb_needs_check(skb, tx_path))) {
3324 		int err;
3325 
3326 		/* We're going to init ->check field in TCP or UDP header */
3327 		err = skb_cow_head(skb, 0);
3328 		if (err < 0)
3329 			return ERR_PTR(err);
3330 	}
3331 
3332 	/* Only report GSO partial support if it will enable us to
3333 	 * support segmentation on this frame without needing additional
3334 	 * work.
3335 	 */
3336 	if (features & NETIF_F_GSO_PARTIAL) {
3337 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3338 		struct net_device *dev = skb->dev;
3339 
3340 		partial_features |= dev->features & dev->gso_partial_features;
3341 		if (!skb_gso_ok(skb, features | partial_features))
3342 			features &= ~NETIF_F_GSO_PARTIAL;
3343 	}
3344 
3345 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3346 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3347 
3348 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3349 	SKB_GSO_CB(skb)->encap_level = 0;
3350 
3351 	skb_reset_mac_header(skb);
3352 	skb_reset_mac_len(skb);
3353 
3354 	segs = skb_mac_gso_segment(skb, features);
3355 
3356 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3357 		skb_warn_bad_offload(skb);
3358 
3359 	return segs;
3360 }
3361 EXPORT_SYMBOL(__skb_gso_segment);
3362 
3363 /* Take action when hardware reception checksum errors are detected. */
3364 #ifdef CONFIG_BUG
3365 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3366 {
3367 	netdev_err(dev, "hw csum failure\n");
3368 	skb_dump(KERN_ERR, skb, true);
3369 	dump_stack();
3370 }
3371 
3372 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3373 {
3374 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3375 }
3376 EXPORT_SYMBOL(netdev_rx_csum_fault);
3377 #endif
3378 
3379 /* XXX: check that highmem exists at all on the given machine. */
3380 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3381 {
3382 #ifdef CONFIG_HIGHMEM
3383 	int i;
3384 
3385 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3386 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3387 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3388 
3389 			if (PageHighMem(skb_frag_page(frag)))
3390 				return 1;
3391 		}
3392 	}
3393 #endif
3394 	return 0;
3395 }
3396 
3397 /* If MPLS offload request, verify we are testing hardware MPLS features
3398  * instead of standard features for the netdev.
3399  */
3400 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3401 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3402 					   netdev_features_t features,
3403 					   __be16 type)
3404 {
3405 	if (eth_p_mpls(type))
3406 		features &= skb->dev->mpls_features;
3407 
3408 	return features;
3409 }
3410 #else
3411 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3412 					   netdev_features_t features,
3413 					   __be16 type)
3414 {
3415 	return features;
3416 }
3417 #endif
3418 
3419 static netdev_features_t harmonize_features(struct sk_buff *skb,
3420 	netdev_features_t features)
3421 {
3422 	__be16 type;
3423 
3424 	type = skb_network_protocol(skb, NULL);
3425 	features = net_mpls_features(skb, features, type);
3426 
3427 	if (skb->ip_summed != CHECKSUM_NONE &&
3428 	    !can_checksum_protocol(features, type)) {
3429 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3430 	}
3431 	if (illegal_highdma(skb->dev, skb))
3432 		features &= ~NETIF_F_SG;
3433 
3434 	return features;
3435 }
3436 
3437 netdev_features_t passthru_features_check(struct sk_buff *skb,
3438 					  struct net_device *dev,
3439 					  netdev_features_t features)
3440 {
3441 	return features;
3442 }
3443 EXPORT_SYMBOL(passthru_features_check);
3444 
3445 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3446 					     struct net_device *dev,
3447 					     netdev_features_t features)
3448 {
3449 	return vlan_features_check(skb, features);
3450 }
3451 
3452 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3453 					    struct net_device *dev,
3454 					    netdev_features_t features)
3455 {
3456 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3457 
3458 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3459 		return features & ~NETIF_F_GSO_MASK;
3460 
3461 	if (!skb_shinfo(skb)->gso_type) {
3462 		skb_warn_bad_offload(skb);
3463 		return features & ~NETIF_F_GSO_MASK;
3464 	}
3465 
3466 	/* Support for GSO partial features requires software
3467 	 * intervention before we can actually process the packets
3468 	 * so we need to strip support for any partial features now
3469 	 * and we can pull them back in after we have partially
3470 	 * segmented the frame.
3471 	 */
3472 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3473 		features &= ~dev->gso_partial_features;
3474 
3475 	/* Make sure to clear the IPv4 ID mangling feature if the
3476 	 * IPv4 header has the potential to be fragmented.
3477 	 */
3478 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3479 		struct iphdr *iph = skb->encapsulation ?
3480 				    inner_ip_hdr(skb) : ip_hdr(skb);
3481 
3482 		if (!(iph->frag_off & htons(IP_DF)))
3483 			features &= ~NETIF_F_TSO_MANGLEID;
3484 	}
3485 
3486 	return features;
3487 }
3488 
3489 netdev_features_t netif_skb_features(struct sk_buff *skb)
3490 {
3491 	struct net_device *dev = skb->dev;
3492 	netdev_features_t features = dev->features;
3493 
3494 	if (skb_is_gso(skb))
3495 		features = gso_features_check(skb, dev, features);
3496 
3497 	/* If encapsulation offload request, verify we are testing
3498 	 * hardware encapsulation features instead of standard
3499 	 * features for the netdev
3500 	 */
3501 	if (skb->encapsulation)
3502 		features &= dev->hw_enc_features;
3503 
3504 	if (skb_vlan_tagged(skb))
3505 		features = netdev_intersect_features(features,
3506 						     dev->vlan_features |
3507 						     NETIF_F_HW_VLAN_CTAG_TX |
3508 						     NETIF_F_HW_VLAN_STAG_TX);
3509 
3510 	if (dev->netdev_ops->ndo_features_check)
3511 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3512 								features);
3513 	else
3514 		features &= dflt_features_check(skb, dev, features);
3515 
3516 	return harmonize_features(skb, features);
3517 }
3518 EXPORT_SYMBOL(netif_skb_features);
3519 
3520 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3521 		    struct netdev_queue *txq, bool more)
3522 {
3523 	unsigned int len;
3524 	int rc;
3525 
3526 	if (dev_nit_active(dev))
3527 		dev_queue_xmit_nit(skb, dev);
3528 
3529 	len = skb->len;
3530 	trace_net_dev_start_xmit(skb, dev);
3531 	rc = netdev_start_xmit(skb, dev, txq, more);
3532 	trace_net_dev_xmit(skb, rc, dev, len);
3533 
3534 	return rc;
3535 }
3536 
3537 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3538 				    struct netdev_queue *txq, int *ret)
3539 {
3540 	struct sk_buff *skb = first;
3541 	int rc = NETDEV_TX_OK;
3542 
3543 	while (skb) {
3544 		struct sk_buff *next = skb->next;
3545 
3546 		skb_mark_not_on_list(skb);
3547 		rc = xmit_one(skb, dev, txq, next != NULL);
3548 		if (unlikely(!dev_xmit_complete(rc))) {
3549 			skb->next = next;
3550 			goto out;
3551 		}
3552 
3553 		skb = next;
3554 		if (netif_tx_queue_stopped(txq) && skb) {
3555 			rc = NETDEV_TX_BUSY;
3556 			break;
3557 		}
3558 	}
3559 
3560 out:
3561 	*ret = rc;
3562 	return skb;
3563 }
3564 
3565 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3566 					  netdev_features_t features)
3567 {
3568 	if (skb_vlan_tag_present(skb) &&
3569 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3570 		skb = __vlan_hwaccel_push_inside(skb);
3571 	return skb;
3572 }
3573 
3574 int skb_csum_hwoffload_help(struct sk_buff *skb,
3575 			    const netdev_features_t features)
3576 {
3577 	if (unlikely(skb_csum_is_sctp(skb)))
3578 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3579 			skb_crc32c_csum_help(skb);
3580 
3581 	if (features & NETIF_F_HW_CSUM)
3582 		return 0;
3583 
3584 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3585 		switch (skb->csum_offset) {
3586 		case offsetof(struct tcphdr, check):
3587 		case offsetof(struct udphdr, check):
3588 			return 0;
3589 		}
3590 	}
3591 
3592 	return skb_checksum_help(skb);
3593 }
3594 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3595 
3596 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3597 {
3598 	netdev_features_t features;
3599 
3600 	features = netif_skb_features(skb);
3601 	skb = validate_xmit_vlan(skb, features);
3602 	if (unlikely(!skb))
3603 		goto out_null;
3604 
3605 	skb = sk_validate_xmit_skb(skb, dev);
3606 	if (unlikely(!skb))
3607 		goto out_null;
3608 
3609 	if (netif_needs_gso(skb, features)) {
3610 		struct sk_buff *segs;
3611 
3612 		segs = skb_gso_segment(skb, features);
3613 		if (IS_ERR(segs)) {
3614 			goto out_kfree_skb;
3615 		} else if (segs) {
3616 			consume_skb(skb);
3617 			skb = segs;
3618 		}
3619 	} else {
3620 		if (skb_needs_linearize(skb, features) &&
3621 		    __skb_linearize(skb))
3622 			goto out_kfree_skb;
3623 
3624 		/* If packet is not checksummed and device does not
3625 		 * support checksumming for this protocol, complete
3626 		 * checksumming here.
3627 		 */
3628 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3629 			if (skb->encapsulation)
3630 				skb_set_inner_transport_header(skb,
3631 							       skb_checksum_start_offset(skb));
3632 			else
3633 				skb_set_transport_header(skb,
3634 							 skb_checksum_start_offset(skb));
3635 			if (skb_csum_hwoffload_help(skb, features))
3636 				goto out_kfree_skb;
3637 		}
3638 	}
3639 
3640 	skb = validate_xmit_xfrm(skb, features, again);
3641 
3642 	return skb;
3643 
3644 out_kfree_skb:
3645 	kfree_skb(skb);
3646 out_null:
3647 	dev_core_stats_tx_dropped_inc(dev);
3648 	return NULL;
3649 }
3650 
3651 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3652 {
3653 	struct sk_buff *next, *head = NULL, *tail;
3654 
3655 	for (; skb != NULL; skb = next) {
3656 		next = skb->next;
3657 		skb_mark_not_on_list(skb);
3658 
3659 		/* in case skb wont be segmented, point to itself */
3660 		skb->prev = skb;
3661 
3662 		skb = validate_xmit_skb(skb, dev, again);
3663 		if (!skb)
3664 			continue;
3665 
3666 		if (!head)
3667 			head = skb;
3668 		else
3669 			tail->next = skb;
3670 		/* If skb was segmented, skb->prev points to
3671 		 * the last segment. If not, it still contains skb.
3672 		 */
3673 		tail = skb->prev;
3674 	}
3675 	return head;
3676 }
3677 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3678 
3679 static void qdisc_pkt_len_init(struct sk_buff *skb)
3680 {
3681 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3682 
3683 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3684 
3685 	/* To get more precise estimation of bytes sent on wire,
3686 	 * we add to pkt_len the headers size of all segments
3687 	 */
3688 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3689 		unsigned int hdr_len;
3690 		u16 gso_segs = shinfo->gso_segs;
3691 
3692 		/* mac layer + network layer */
3693 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3694 
3695 		/* + transport layer */
3696 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3697 			const struct tcphdr *th;
3698 			struct tcphdr _tcphdr;
3699 
3700 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3701 						sizeof(_tcphdr), &_tcphdr);
3702 			if (likely(th))
3703 				hdr_len += __tcp_hdrlen(th);
3704 		} else {
3705 			struct udphdr _udphdr;
3706 
3707 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3708 					       sizeof(_udphdr), &_udphdr))
3709 				hdr_len += sizeof(struct udphdr);
3710 		}
3711 
3712 		if (shinfo->gso_type & SKB_GSO_DODGY)
3713 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3714 						shinfo->gso_size);
3715 
3716 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3717 	}
3718 }
3719 
3720 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3721 			     struct sk_buff **to_free,
3722 			     struct netdev_queue *txq)
3723 {
3724 	int rc;
3725 
3726 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3727 	if (rc == NET_XMIT_SUCCESS)
3728 		trace_qdisc_enqueue(q, txq, skb);
3729 	return rc;
3730 }
3731 
3732 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3733 				 struct net_device *dev,
3734 				 struct netdev_queue *txq)
3735 {
3736 	spinlock_t *root_lock = qdisc_lock(q);
3737 	struct sk_buff *to_free = NULL;
3738 	bool contended;
3739 	int rc;
3740 
3741 	qdisc_calculate_pkt_len(skb, q);
3742 
3743 	if (q->flags & TCQ_F_NOLOCK) {
3744 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3745 		    qdisc_run_begin(q)) {
3746 			/* Retest nolock_qdisc_is_empty() within the protection
3747 			 * of q->seqlock to protect from racing with requeuing.
3748 			 */
3749 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3750 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3751 				__qdisc_run(q);
3752 				qdisc_run_end(q);
3753 
3754 				goto no_lock_out;
3755 			}
3756 
3757 			qdisc_bstats_cpu_update(q, skb);
3758 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3759 			    !nolock_qdisc_is_empty(q))
3760 				__qdisc_run(q);
3761 
3762 			qdisc_run_end(q);
3763 			return NET_XMIT_SUCCESS;
3764 		}
3765 
3766 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3767 		qdisc_run(q);
3768 
3769 no_lock_out:
3770 		if (unlikely(to_free))
3771 			kfree_skb_list_reason(to_free,
3772 					      SKB_DROP_REASON_QDISC_DROP);
3773 		return rc;
3774 	}
3775 
3776 	/*
3777 	 * Heuristic to force contended enqueues to serialize on a
3778 	 * separate lock before trying to get qdisc main lock.
3779 	 * This permits qdisc->running owner to get the lock more
3780 	 * often and dequeue packets faster.
3781 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3782 	 * and then other tasks will only enqueue packets. The packets will be
3783 	 * sent after the qdisc owner is scheduled again. To prevent this
3784 	 * scenario the task always serialize on the lock.
3785 	 */
3786 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3787 	if (unlikely(contended))
3788 		spin_lock(&q->busylock);
3789 
3790 	spin_lock(root_lock);
3791 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3792 		__qdisc_drop(skb, &to_free);
3793 		rc = NET_XMIT_DROP;
3794 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3795 		   qdisc_run_begin(q)) {
3796 		/*
3797 		 * This is a work-conserving queue; there are no old skbs
3798 		 * waiting to be sent out; and the qdisc is not running -
3799 		 * xmit the skb directly.
3800 		 */
3801 
3802 		qdisc_bstats_update(q, skb);
3803 
3804 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3805 			if (unlikely(contended)) {
3806 				spin_unlock(&q->busylock);
3807 				contended = false;
3808 			}
3809 			__qdisc_run(q);
3810 		}
3811 
3812 		qdisc_run_end(q);
3813 		rc = NET_XMIT_SUCCESS;
3814 	} else {
3815 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3816 		if (qdisc_run_begin(q)) {
3817 			if (unlikely(contended)) {
3818 				spin_unlock(&q->busylock);
3819 				contended = false;
3820 			}
3821 			__qdisc_run(q);
3822 			qdisc_run_end(q);
3823 		}
3824 	}
3825 	spin_unlock(root_lock);
3826 	if (unlikely(to_free))
3827 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3828 	if (unlikely(contended))
3829 		spin_unlock(&q->busylock);
3830 	return rc;
3831 }
3832 
3833 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3834 static void skb_update_prio(struct sk_buff *skb)
3835 {
3836 	const struct netprio_map *map;
3837 	const struct sock *sk;
3838 	unsigned int prioidx;
3839 
3840 	if (skb->priority)
3841 		return;
3842 	map = rcu_dereference_bh(skb->dev->priomap);
3843 	if (!map)
3844 		return;
3845 	sk = skb_to_full_sk(skb);
3846 	if (!sk)
3847 		return;
3848 
3849 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3850 
3851 	if (prioidx < map->priomap_len)
3852 		skb->priority = map->priomap[prioidx];
3853 }
3854 #else
3855 #define skb_update_prio(skb)
3856 #endif
3857 
3858 /**
3859  *	dev_loopback_xmit - loop back @skb
3860  *	@net: network namespace this loopback is happening in
3861  *	@sk:  sk needed to be a netfilter okfn
3862  *	@skb: buffer to transmit
3863  */
3864 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3865 {
3866 	skb_reset_mac_header(skb);
3867 	__skb_pull(skb, skb_network_offset(skb));
3868 	skb->pkt_type = PACKET_LOOPBACK;
3869 	if (skb->ip_summed == CHECKSUM_NONE)
3870 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3871 	WARN_ON(!skb_dst(skb));
3872 	skb_dst_force(skb);
3873 	netif_rx(skb);
3874 	return 0;
3875 }
3876 EXPORT_SYMBOL(dev_loopback_xmit);
3877 
3878 #ifdef CONFIG_NET_EGRESS
3879 static struct sk_buff *
3880 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3881 {
3882 #ifdef CONFIG_NET_CLS_ACT
3883 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3884 	struct tcf_result cl_res;
3885 
3886 	if (!miniq)
3887 		return skb;
3888 
3889 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3890 	tc_skb_cb(skb)->mru = 0;
3891 	tc_skb_cb(skb)->post_ct = false;
3892 	mini_qdisc_bstats_cpu_update(miniq, skb);
3893 
3894 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3895 	case TC_ACT_OK:
3896 	case TC_ACT_RECLASSIFY:
3897 		skb->tc_index = TC_H_MIN(cl_res.classid);
3898 		break;
3899 	case TC_ACT_SHOT:
3900 		mini_qdisc_qstats_cpu_drop(miniq);
3901 		*ret = NET_XMIT_DROP;
3902 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3903 		return NULL;
3904 	case TC_ACT_STOLEN:
3905 	case TC_ACT_QUEUED:
3906 	case TC_ACT_TRAP:
3907 		*ret = NET_XMIT_SUCCESS;
3908 		consume_skb(skb);
3909 		return NULL;
3910 	case TC_ACT_REDIRECT:
3911 		/* No need to push/pop skb's mac_header here on egress! */
3912 		skb_do_redirect(skb);
3913 		*ret = NET_XMIT_SUCCESS;
3914 		return NULL;
3915 	default:
3916 		break;
3917 	}
3918 #endif /* CONFIG_NET_CLS_ACT */
3919 
3920 	return skb;
3921 }
3922 #endif /* CONFIG_NET_EGRESS */
3923 
3924 #ifdef CONFIG_XPS
3925 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3926 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3927 {
3928 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3929 	struct xps_map *map;
3930 	int queue_index = -1;
3931 
3932 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3933 		return queue_index;
3934 
3935 	tci *= dev_maps->num_tc;
3936 	tci += tc;
3937 
3938 	map = rcu_dereference(dev_maps->attr_map[tci]);
3939 	if (map) {
3940 		if (map->len == 1)
3941 			queue_index = map->queues[0];
3942 		else
3943 			queue_index = map->queues[reciprocal_scale(
3944 						skb_get_hash(skb), map->len)];
3945 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3946 			queue_index = -1;
3947 	}
3948 	return queue_index;
3949 }
3950 #endif
3951 
3952 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3953 			 struct sk_buff *skb)
3954 {
3955 #ifdef CONFIG_XPS
3956 	struct xps_dev_maps *dev_maps;
3957 	struct sock *sk = skb->sk;
3958 	int queue_index = -1;
3959 
3960 	if (!static_key_false(&xps_needed))
3961 		return -1;
3962 
3963 	rcu_read_lock();
3964 	if (!static_key_false(&xps_rxqs_needed))
3965 		goto get_cpus_map;
3966 
3967 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
3968 	if (dev_maps) {
3969 		int tci = sk_rx_queue_get(sk);
3970 
3971 		if (tci >= 0)
3972 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3973 							  tci);
3974 	}
3975 
3976 get_cpus_map:
3977 	if (queue_index < 0) {
3978 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
3979 		if (dev_maps) {
3980 			unsigned int tci = skb->sender_cpu - 1;
3981 
3982 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3983 							  tci);
3984 		}
3985 	}
3986 	rcu_read_unlock();
3987 
3988 	return queue_index;
3989 #else
3990 	return -1;
3991 #endif
3992 }
3993 
3994 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3995 		     struct net_device *sb_dev)
3996 {
3997 	return 0;
3998 }
3999 EXPORT_SYMBOL(dev_pick_tx_zero);
4000 
4001 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4002 		       struct net_device *sb_dev)
4003 {
4004 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4005 }
4006 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4007 
4008 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4009 		     struct net_device *sb_dev)
4010 {
4011 	struct sock *sk = skb->sk;
4012 	int queue_index = sk_tx_queue_get(sk);
4013 
4014 	sb_dev = sb_dev ? : dev;
4015 
4016 	if (queue_index < 0 || skb->ooo_okay ||
4017 	    queue_index >= dev->real_num_tx_queues) {
4018 		int new_index = get_xps_queue(dev, sb_dev, skb);
4019 
4020 		if (new_index < 0)
4021 			new_index = skb_tx_hash(dev, sb_dev, skb);
4022 
4023 		if (queue_index != new_index && sk &&
4024 		    sk_fullsock(sk) &&
4025 		    rcu_access_pointer(sk->sk_dst_cache))
4026 			sk_tx_queue_set(sk, new_index);
4027 
4028 		queue_index = new_index;
4029 	}
4030 
4031 	return queue_index;
4032 }
4033 EXPORT_SYMBOL(netdev_pick_tx);
4034 
4035 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4036 					 struct sk_buff *skb,
4037 					 struct net_device *sb_dev)
4038 {
4039 	int queue_index = 0;
4040 
4041 #ifdef CONFIG_XPS
4042 	u32 sender_cpu = skb->sender_cpu - 1;
4043 
4044 	if (sender_cpu >= (u32)NR_CPUS)
4045 		skb->sender_cpu = raw_smp_processor_id() + 1;
4046 #endif
4047 
4048 	if (dev->real_num_tx_queues != 1) {
4049 		const struct net_device_ops *ops = dev->netdev_ops;
4050 
4051 		if (ops->ndo_select_queue)
4052 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4053 		else
4054 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4055 
4056 		queue_index = netdev_cap_txqueue(dev, queue_index);
4057 	}
4058 
4059 	skb_set_queue_mapping(skb, queue_index);
4060 	return netdev_get_tx_queue(dev, queue_index);
4061 }
4062 
4063 /**
4064  *	__dev_queue_xmit - transmit a buffer
4065  *	@skb: buffer to transmit
4066  *	@sb_dev: suboordinate device used for L2 forwarding offload
4067  *
4068  *	Queue a buffer for transmission to a network device. The caller must
4069  *	have set the device and priority and built the buffer before calling
4070  *	this function. The function can be called from an interrupt.
4071  *
4072  *	A negative errno code is returned on a failure. A success does not
4073  *	guarantee the frame will be transmitted as it may be dropped due
4074  *	to congestion or traffic shaping.
4075  *
4076  * -----------------------------------------------------------------------------------
4077  *      I notice this method can also return errors from the queue disciplines,
4078  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4079  *      be positive.
4080  *
4081  *      Regardless of the return value, the skb is consumed, so it is currently
4082  *      difficult to retry a send to this method.  (You can bump the ref count
4083  *      before sending to hold a reference for retry if you are careful.)
4084  *
4085  *      When calling this method, interrupts MUST be enabled.  This is because
4086  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4087  *          --BLG
4088  */
4089 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4090 {
4091 	struct net_device *dev = skb->dev;
4092 	struct netdev_queue *txq;
4093 	struct Qdisc *q;
4094 	int rc = -ENOMEM;
4095 	bool again = false;
4096 
4097 	skb_reset_mac_header(skb);
4098 
4099 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4100 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4101 
4102 	/* Disable soft irqs for various locks below. Also
4103 	 * stops preemption for RCU.
4104 	 */
4105 	rcu_read_lock_bh();
4106 
4107 	skb_update_prio(skb);
4108 
4109 	qdisc_pkt_len_init(skb);
4110 #ifdef CONFIG_NET_CLS_ACT
4111 	skb->tc_at_ingress = 0;
4112 #endif
4113 #ifdef CONFIG_NET_EGRESS
4114 	if (static_branch_unlikely(&egress_needed_key)) {
4115 		if (nf_hook_egress_active()) {
4116 			skb = nf_hook_egress(skb, &rc, dev);
4117 			if (!skb)
4118 				goto out;
4119 		}
4120 		nf_skip_egress(skb, true);
4121 		skb = sch_handle_egress(skb, &rc, dev);
4122 		if (!skb)
4123 			goto out;
4124 		nf_skip_egress(skb, false);
4125 	}
4126 #endif
4127 	/* If device/qdisc don't need skb->dst, release it right now while
4128 	 * its hot in this cpu cache.
4129 	 */
4130 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4131 		skb_dst_drop(skb);
4132 	else
4133 		skb_dst_force(skb);
4134 
4135 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4136 	q = rcu_dereference_bh(txq->qdisc);
4137 
4138 	trace_net_dev_queue(skb);
4139 	if (q->enqueue) {
4140 		rc = __dev_xmit_skb(skb, q, dev, txq);
4141 		goto out;
4142 	}
4143 
4144 	/* The device has no queue. Common case for software devices:
4145 	 * loopback, all the sorts of tunnels...
4146 
4147 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4148 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4149 	 * counters.)
4150 	 * However, it is possible, that they rely on protection
4151 	 * made by us here.
4152 
4153 	 * Check this and shot the lock. It is not prone from deadlocks.
4154 	 *Either shot noqueue qdisc, it is even simpler 8)
4155 	 */
4156 	if (dev->flags & IFF_UP) {
4157 		int cpu = smp_processor_id(); /* ok because BHs are off */
4158 
4159 		/* Other cpus might concurrently change txq->xmit_lock_owner
4160 		 * to -1 or to their cpu id, but not to our id.
4161 		 */
4162 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4163 			if (dev_xmit_recursion())
4164 				goto recursion_alert;
4165 
4166 			skb = validate_xmit_skb(skb, dev, &again);
4167 			if (!skb)
4168 				goto out;
4169 
4170 			HARD_TX_LOCK(dev, txq, cpu);
4171 
4172 			if (!netif_xmit_stopped(txq)) {
4173 				dev_xmit_recursion_inc();
4174 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4175 				dev_xmit_recursion_dec();
4176 				if (dev_xmit_complete(rc)) {
4177 					HARD_TX_UNLOCK(dev, txq);
4178 					goto out;
4179 				}
4180 			}
4181 			HARD_TX_UNLOCK(dev, txq);
4182 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4183 					     dev->name);
4184 		} else {
4185 			/* Recursion is detected! It is possible,
4186 			 * unfortunately
4187 			 */
4188 recursion_alert:
4189 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4190 					     dev->name);
4191 		}
4192 	}
4193 
4194 	rc = -ENETDOWN;
4195 	rcu_read_unlock_bh();
4196 
4197 	dev_core_stats_tx_dropped_inc(dev);
4198 	kfree_skb_list(skb);
4199 	return rc;
4200 out:
4201 	rcu_read_unlock_bh();
4202 	return rc;
4203 }
4204 
4205 int dev_queue_xmit(struct sk_buff *skb)
4206 {
4207 	return __dev_queue_xmit(skb, NULL);
4208 }
4209 EXPORT_SYMBOL(dev_queue_xmit);
4210 
4211 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4212 {
4213 	return __dev_queue_xmit(skb, sb_dev);
4214 }
4215 EXPORT_SYMBOL(dev_queue_xmit_accel);
4216 
4217 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4218 {
4219 	struct net_device *dev = skb->dev;
4220 	struct sk_buff *orig_skb = skb;
4221 	struct netdev_queue *txq;
4222 	int ret = NETDEV_TX_BUSY;
4223 	bool again = false;
4224 
4225 	if (unlikely(!netif_running(dev) ||
4226 		     !netif_carrier_ok(dev)))
4227 		goto drop;
4228 
4229 	skb = validate_xmit_skb_list(skb, dev, &again);
4230 	if (skb != orig_skb)
4231 		goto drop;
4232 
4233 	skb_set_queue_mapping(skb, queue_id);
4234 	txq = skb_get_tx_queue(dev, skb);
4235 
4236 	local_bh_disable();
4237 
4238 	dev_xmit_recursion_inc();
4239 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4240 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4241 		ret = netdev_start_xmit(skb, dev, txq, false);
4242 	HARD_TX_UNLOCK(dev, txq);
4243 	dev_xmit_recursion_dec();
4244 
4245 	local_bh_enable();
4246 	return ret;
4247 drop:
4248 	dev_core_stats_tx_dropped_inc(dev);
4249 	kfree_skb_list(skb);
4250 	return NET_XMIT_DROP;
4251 }
4252 EXPORT_SYMBOL(__dev_direct_xmit);
4253 
4254 /*************************************************************************
4255  *			Receiver routines
4256  *************************************************************************/
4257 
4258 int netdev_max_backlog __read_mostly = 1000;
4259 EXPORT_SYMBOL(netdev_max_backlog);
4260 
4261 int netdev_tstamp_prequeue __read_mostly = 1;
4262 int netdev_budget __read_mostly = 300;
4263 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4264 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4265 int weight_p __read_mostly = 64;           /* old backlog weight */
4266 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4267 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4268 int dev_rx_weight __read_mostly = 64;
4269 int dev_tx_weight __read_mostly = 64;
4270 
4271 /* Called with irq disabled */
4272 static inline void ____napi_schedule(struct softnet_data *sd,
4273 				     struct napi_struct *napi)
4274 {
4275 	struct task_struct *thread;
4276 
4277 	lockdep_assert_irqs_disabled();
4278 
4279 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4280 		/* Paired with smp_mb__before_atomic() in
4281 		 * napi_enable()/dev_set_threaded().
4282 		 * Use READ_ONCE() to guarantee a complete
4283 		 * read on napi->thread. Only call
4284 		 * wake_up_process() when it's not NULL.
4285 		 */
4286 		thread = READ_ONCE(napi->thread);
4287 		if (thread) {
4288 			/* Avoid doing set_bit() if the thread is in
4289 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4290 			 * makes sure to proceed with napi polling
4291 			 * if the thread is explicitly woken from here.
4292 			 */
4293 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4294 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4295 			wake_up_process(thread);
4296 			return;
4297 		}
4298 	}
4299 
4300 	list_add_tail(&napi->poll_list, &sd->poll_list);
4301 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4302 }
4303 
4304 #ifdef CONFIG_RPS
4305 
4306 /* One global table that all flow-based protocols share. */
4307 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4308 EXPORT_SYMBOL(rps_sock_flow_table);
4309 u32 rps_cpu_mask __read_mostly;
4310 EXPORT_SYMBOL(rps_cpu_mask);
4311 
4312 struct static_key_false rps_needed __read_mostly;
4313 EXPORT_SYMBOL(rps_needed);
4314 struct static_key_false rfs_needed __read_mostly;
4315 EXPORT_SYMBOL(rfs_needed);
4316 
4317 static struct rps_dev_flow *
4318 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4319 	    struct rps_dev_flow *rflow, u16 next_cpu)
4320 {
4321 	if (next_cpu < nr_cpu_ids) {
4322 #ifdef CONFIG_RFS_ACCEL
4323 		struct netdev_rx_queue *rxqueue;
4324 		struct rps_dev_flow_table *flow_table;
4325 		struct rps_dev_flow *old_rflow;
4326 		u32 flow_id;
4327 		u16 rxq_index;
4328 		int rc;
4329 
4330 		/* Should we steer this flow to a different hardware queue? */
4331 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4332 		    !(dev->features & NETIF_F_NTUPLE))
4333 			goto out;
4334 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4335 		if (rxq_index == skb_get_rx_queue(skb))
4336 			goto out;
4337 
4338 		rxqueue = dev->_rx + rxq_index;
4339 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4340 		if (!flow_table)
4341 			goto out;
4342 		flow_id = skb_get_hash(skb) & flow_table->mask;
4343 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4344 							rxq_index, flow_id);
4345 		if (rc < 0)
4346 			goto out;
4347 		old_rflow = rflow;
4348 		rflow = &flow_table->flows[flow_id];
4349 		rflow->filter = rc;
4350 		if (old_rflow->filter == rflow->filter)
4351 			old_rflow->filter = RPS_NO_FILTER;
4352 	out:
4353 #endif
4354 		rflow->last_qtail =
4355 			per_cpu(softnet_data, next_cpu).input_queue_head;
4356 	}
4357 
4358 	rflow->cpu = next_cpu;
4359 	return rflow;
4360 }
4361 
4362 /*
4363  * get_rps_cpu is called from netif_receive_skb and returns the target
4364  * CPU from the RPS map of the receiving queue for a given skb.
4365  * rcu_read_lock must be held on entry.
4366  */
4367 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4368 		       struct rps_dev_flow **rflowp)
4369 {
4370 	const struct rps_sock_flow_table *sock_flow_table;
4371 	struct netdev_rx_queue *rxqueue = dev->_rx;
4372 	struct rps_dev_flow_table *flow_table;
4373 	struct rps_map *map;
4374 	int cpu = -1;
4375 	u32 tcpu;
4376 	u32 hash;
4377 
4378 	if (skb_rx_queue_recorded(skb)) {
4379 		u16 index = skb_get_rx_queue(skb);
4380 
4381 		if (unlikely(index >= dev->real_num_rx_queues)) {
4382 			WARN_ONCE(dev->real_num_rx_queues > 1,
4383 				  "%s received packet on queue %u, but number "
4384 				  "of RX queues is %u\n",
4385 				  dev->name, index, dev->real_num_rx_queues);
4386 			goto done;
4387 		}
4388 		rxqueue += index;
4389 	}
4390 
4391 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4392 
4393 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4394 	map = rcu_dereference(rxqueue->rps_map);
4395 	if (!flow_table && !map)
4396 		goto done;
4397 
4398 	skb_reset_network_header(skb);
4399 	hash = skb_get_hash(skb);
4400 	if (!hash)
4401 		goto done;
4402 
4403 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4404 	if (flow_table && sock_flow_table) {
4405 		struct rps_dev_flow *rflow;
4406 		u32 next_cpu;
4407 		u32 ident;
4408 
4409 		/* First check into global flow table if there is a match */
4410 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4411 		if ((ident ^ hash) & ~rps_cpu_mask)
4412 			goto try_rps;
4413 
4414 		next_cpu = ident & rps_cpu_mask;
4415 
4416 		/* OK, now we know there is a match,
4417 		 * we can look at the local (per receive queue) flow table
4418 		 */
4419 		rflow = &flow_table->flows[hash & flow_table->mask];
4420 		tcpu = rflow->cpu;
4421 
4422 		/*
4423 		 * If the desired CPU (where last recvmsg was done) is
4424 		 * different from current CPU (one in the rx-queue flow
4425 		 * table entry), switch if one of the following holds:
4426 		 *   - Current CPU is unset (>= nr_cpu_ids).
4427 		 *   - Current CPU is offline.
4428 		 *   - The current CPU's queue tail has advanced beyond the
4429 		 *     last packet that was enqueued using this table entry.
4430 		 *     This guarantees that all previous packets for the flow
4431 		 *     have been dequeued, thus preserving in order delivery.
4432 		 */
4433 		if (unlikely(tcpu != next_cpu) &&
4434 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4435 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4436 		      rflow->last_qtail)) >= 0)) {
4437 			tcpu = next_cpu;
4438 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4439 		}
4440 
4441 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4442 			*rflowp = rflow;
4443 			cpu = tcpu;
4444 			goto done;
4445 		}
4446 	}
4447 
4448 try_rps:
4449 
4450 	if (map) {
4451 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4452 		if (cpu_online(tcpu)) {
4453 			cpu = tcpu;
4454 			goto done;
4455 		}
4456 	}
4457 
4458 done:
4459 	return cpu;
4460 }
4461 
4462 #ifdef CONFIG_RFS_ACCEL
4463 
4464 /**
4465  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4466  * @dev: Device on which the filter was set
4467  * @rxq_index: RX queue index
4468  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4469  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4470  *
4471  * Drivers that implement ndo_rx_flow_steer() should periodically call
4472  * this function for each installed filter and remove the filters for
4473  * which it returns %true.
4474  */
4475 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4476 			 u32 flow_id, u16 filter_id)
4477 {
4478 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4479 	struct rps_dev_flow_table *flow_table;
4480 	struct rps_dev_flow *rflow;
4481 	bool expire = true;
4482 	unsigned int cpu;
4483 
4484 	rcu_read_lock();
4485 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4486 	if (flow_table && flow_id <= flow_table->mask) {
4487 		rflow = &flow_table->flows[flow_id];
4488 		cpu = READ_ONCE(rflow->cpu);
4489 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4490 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4491 			   rflow->last_qtail) <
4492 		     (int)(10 * flow_table->mask)))
4493 			expire = false;
4494 	}
4495 	rcu_read_unlock();
4496 	return expire;
4497 }
4498 EXPORT_SYMBOL(rps_may_expire_flow);
4499 
4500 #endif /* CONFIG_RFS_ACCEL */
4501 
4502 /* Called from hardirq (IPI) context */
4503 static void rps_trigger_softirq(void *data)
4504 {
4505 	struct softnet_data *sd = data;
4506 
4507 	____napi_schedule(sd, &sd->backlog);
4508 	sd->received_rps++;
4509 }
4510 
4511 #endif /* CONFIG_RPS */
4512 
4513 /*
4514  * Check if this softnet_data structure is another cpu one
4515  * If yes, queue it to our IPI list and return 1
4516  * If no, return 0
4517  */
4518 static int napi_schedule_rps(struct softnet_data *sd)
4519 {
4520 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4521 
4522 #ifdef CONFIG_RPS
4523 	if (sd != mysd) {
4524 		sd->rps_ipi_next = mysd->rps_ipi_list;
4525 		mysd->rps_ipi_list = sd;
4526 
4527 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4528 		return 1;
4529 	}
4530 #endif /* CONFIG_RPS */
4531 	__napi_schedule_irqoff(&mysd->backlog);
4532 	return 0;
4533 }
4534 
4535 #ifdef CONFIG_NET_FLOW_LIMIT
4536 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4537 #endif
4538 
4539 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4540 {
4541 #ifdef CONFIG_NET_FLOW_LIMIT
4542 	struct sd_flow_limit *fl;
4543 	struct softnet_data *sd;
4544 	unsigned int old_flow, new_flow;
4545 
4546 	if (qlen < (netdev_max_backlog >> 1))
4547 		return false;
4548 
4549 	sd = this_cpu_ptr(&softnet_data);
4550 
4551 	rcu_read_lock();
4552 	fl = rcu_dereference(sd->flow_limit);
4553 	if (fl) {
4554 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4555 		old_flow = fl->history[fl->history_head];
4556 		fl->history[fl->history_head] = new_flow;
4557 
4558 		fl->history_head++;
4559 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4560 
4561 		if (likely(fl->buckets[old_flow]))
4562 			fl->buckets[old_flow]--;
4563 
4564 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4565 			fl->count++;
4566 			rcu_read_unlock();
4567 			return true;
4568 		}
4569 	}
4570 	rcu_read_unlock();
4571 #endif
4572 	return false;
4573 }
4574 
4575 /*
4576  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4577  * queue (may be a remote CPU queue).
4578  */
4579 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4580 			      unsigned int *qtail)
4581 {
4582 	enum skb_drop_reason reason;
4583 	struct softnet_data *sd;
4584 	unsigned long flags;
4585 	unsigned int qlen;
4586 
4587 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4588 	sd = &per_cpu(softnet_data, cpu);
4589 
4590 	rps_lock_irqsave(sd, &flags);
4591 	if (!netif_running(skb->dev))
4592 		goto drop;
4593 	qlen = skb_queue_len(&sd->input_pkt_queue);
4594 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4595 		if (qlen) {
4596 enqueue:
4597 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4598 			input_queue_tail_incr_save(sd, qtail);
4599 			rps_unlock_irq_restore(sd, &flags);
4600 			return NET_RX_SUCCESS;
4601 		}
4602 
4603 		/* Schedule NAPI for backlog device
4604 		 * We can use non atomic operation since we own the queue lock
4605 		 */
4606 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4607 			napi_schedule_rps(sd);
4608 		goto enqueue;
4609 	}
4610 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4611 
4612 drop:
4613 	sd->dropped++;
4614 	rps_unlock_irq_restore(sd, &flags);
4615 
4616 	dev_core_stats_rx_dropped_inc(skb->dev);
4617 	kfree_skb_reason(skb, reason);
4618 	return NET_RX_DROP;
4619 }
4620 
4621 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4622 {
4623 	struct net_device *dev = skb->dev;
4624 	struct netdev_rx_queue *rxqueue;
4625 
4626 	rxqueue = dev->_rx;
4627 
4628 	if (skb_rx_queue_recorded(skb)) {
4629 		u16 index = skb_get_rx_queue(skb);
4630 
4631 		if (unlikely(index >= dev->real_num_rx_queues)) {
4632 			WARN_ONCE(dev->real_num_rx_queues > 1,
4633 				  "%s received packet on queue %u, but number "
4634 				  "of RX queues is %u\n",
4635 				  dev->name, index, dev->real_num_rx_queues);
4636 
4637 			return rxqueue; /* Return first rxqueue */
4638 		}
4639 		rxqueue += index;
4640 	}
4641 	return rxqueue;
4642 }
4643 
4644 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4645 			     struct bpf_prog *xdp_prog)
4646 {
4647 	void *orig_data, *orig_data_end, *hard_start;
4648 	struct netdev_rx_queue *rxqueue;
4649 	bool orig_bcast, orig_host;
4650 	u32 mac_len, frame_sz;
4651 	__be16 orig_eth_type;
4652 	struct ethhdr *eth;
4653 	u32 metalen, act;
4654 	int off;
4655 
4656 	/* The XDP program wants to see the packet starting at the MAC
4657 	 * header.
4658 	 */
4659 	mac_len = skb->data - skb_mac_header(skb);
4660 	hard_start = skb->data - skb_headroom(skb);
4661 
4662 	/* SKB "head" area always have tailroom for skb_shared_info */
4663 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4664 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4665 
4666 	rxqueue = netif_get_rxqueue(skb);
4667 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4668 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4669 			 skb_headlen(skb) + mac_len, true);
4670 
4671 	orig_data_end = xdp->data_end;
4672 	orig_data = xdp->data;
4673 	eth = (struct ethhdr *)xdp->data;
4674 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4675 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4676 	orig_eth_type = eth->h_proto;
4677 
4678 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4679 
4680 	/* check if bpf_xdp_adjust_head was used */
4681 	off = xdp->data - orig_data;
4682 	if (off) {
4683 		if (off > 0)
4684 			__skb_pull(skb, off);
4685 		else if (off < 0)
4686 			__skb_push(skb, -off);
4687 
4688 		skb->mac_header += off;
4689 		skb_reset_network_header(skb);
4690 	}
4691 
4692 	/* check if bpf_xdp_adjust_tail was used */
4693 	off = xdp->data_end - orig_data_end;
4694 	if (off != 0) {
4695 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4696 		skb->len += off; /* positive on grow, negative on shrink */
4697 	}
4698 
4699 	/* check if XDP changed eth hdr such SKB needs update */
4700 	eth = (struct ethhdr *)xdp->data;
4701 	if ((orig_eth_type != eth->h_proto) ||
4702 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4703 						  skb->dev->dev_addr)) ||
4704 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4705 		__skb_push(skb, ETH_HLEN);
4706 		skb->pkt_type = PACKET_HOST;
4707 		skb->protocol = eth_type_trans(skb, skb->dev);
4708 	}
4709 
4710 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4711 	 * before calling us again on redirect path. We do not call do_redirect
4712 	 * as we leave that up to the caller.
4713 	 *
4714 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4715 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4716 	 */
4717 	switch (act) {
4718 	case XDP_REDIRECT:
4719 	case XDP_TX:
4720 		__skb_push(skb, mac_len);
4721 		break;
4722 	case XDP_PASS:
4723 		metalen = xdp->data - xdp->data_meta;
4724 		if (metalen)
4725 			skb_metadata_set(skb, metalen);
4726 		break;
4727 	}
4728 
4729 	return act;
4730 }
4731 
4732 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4733 				     struct xdp_buff *xdp,
4734 				     struct bpf_prog *xdp_prog)
4735 {
4736 	u32 act = XDP_DROP;
4737 
4738 	/* Reinjected packets coming from act_mirred or similar should
4739 	 * not get XDP generic processing.
4740 	 */
4741 	if (skb_is_redirected(skb))
4742 		return XDP_PASS;
4743 
4744 	/* XDP packets must be linear and must have sufficient headroom
4745 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4746 	 * native XDP provides, thus we need to do it here as well.
4747 	 */
4748 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4749 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4750 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4751 		int troom = skb->tail + skb->data_len - skb->end;
4752 
4753 		/* In case we have to go down the path and also linearize,
4754 		 * then lets do the pskb_expand_head() work just once here.
4755 		 */
4756 		if (pskb_expand_head(skb,
4757 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4758 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4759 			goto do_drop;
4760 		if (skb_linearize(skb))
4761 			goto do_drop;
4762 	}
4763 
4764 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4765 	switch (act) {
4766 	case XDP_REDIRECT:
4767 	case XDP_TX:
4768 	case XDP_PASS:
4769 		break;
4770 	default:
4771 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4772 		fallthrough;
4773 	case XDP_ABORTED:
4774 		trace_xdp_exception(skb->dev, xdp_prog, act);
4775 		fallthrough;
4776 	case XDP_DROP:
4777 	do_drop:
4778 		kfree_skb(skb);
4779 		break;
4780 	}
4781 
4782 	return act;
4783 }
4784 
4785 /* When doing generic XDP we have to bypass the qdisc layer and the
4786  * network taps in order to match in-driver-XDP behavior.
4787  */
4788 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4789 {
4790 	struct net_device *dev = skb->dev;
4791 	struct netdev_queue *txq;
4792 	bool free_skb = true;
4793 	int cpu, rc;
4794 
4795 	txq = netdev_core_pick_tx(dev, skb, NULL);
4796 	cpu = smp_processor_id();
4797 	HARD_TX_LOCK(dev, txq, cpu);
4798 	if (!netif_xmit_stopped(txq)) {
4799 		rc = netdev_start_xmit(skb, dev, txq, 0);
4800 		if (dev_xmit_complete(rc))
4801 			free_skb = false;
4802 	}
4803 	HARD_TX_UNLOCK(dev, txq);
4804 	if (free_skb) {
4805 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4806 		kfree_skb(skb);
4807 	}
4808 }
4809 
4810 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4811 
4812 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4813 {
4814 	if (xdp_prog) {
4815 		struct xdp_buff xdp;
4816 		u32 act;
4817 		int err;
4818 
4819 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4820 		if (act != XDP_PASS) {
4821 			switch (act) {
4822 			case XDP_REDIRECT:
4823 				err = xdp_do_generic_redirect(skb->dev, skb,
4824 							      &xdp, xdp_prog);
4825 				if (err)
4826 					goto out_redir;
4827 				break;
4828 			case XDP_TX:
4829 				generic_xdp_tx(skb, xdp_prog);
4830 				break;
4831 			}
4832 			return XDP_DROP;
4833 		}
4834 	}
4835 	return XDP_PASS;
4836 out_redir:
4837 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4838 	return XDP_DROP;
4839 }
4840 EXPORT_SYMBOL_GPL(do_xdp_generic);
4841 
4842 static int netif_rx_internal(struct sk_buff *skb)
4843 {
4844 	int ret;
4845 
4846 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4847 
4848 	trace_netif_rx(skb);
4849 
4850 #ifdef CONFIG_RPS
4851 	if (static_branch_unlikely(&rps_needed)) {
4852 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4853 		int cpu;
4854 
4855 		rcu_read_lock();
4856 
4857 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4858 		if (cpu < 0)
4859 			cpu = smp_processor_id();
4860 
4861 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4862 
4863 		rcu_read_unlock();
4864 	} else
4865 #endif
4866 	{
4867 		unsigned int qtail;
4868 
4869 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4870 	}
4871 	return ret;
4872 }
4873 
4874 /**
4875  *	__netif_rx	-	Slightly optimized version of netif_rx
4876  *	@skb: buffer to post
4877  *
4878  *	This behaves as netif_rx except that it does not disable bottom halves.
4879  *	As a result this function may only be invoked from the interrupt context
4880  *	(either hard or soft interrupt).
4881  */
4882 int __netif_rx(struct sk_buff *skb)
4883 {
4884 	int ret;
4885 
4886 	lockdep_assert_once(hardirq_count() | softirq_count());
4887 
4888 	trace_netif_rx_entry(skb);
4889 	ret = netif_rx_internal(skb);
4890 	trace_netif_rx_exit(ret);
4891 	return ret;
4892 }
4893 EXPORT_SYMBOL(__netif_rx);
4894 
4895 /**
4896  *	netif_rx	-	post buffer to the network code
4897  *	@skb: buffer to post
4898  *
4899  *	This function receives a packet from a device driver and queues it for
4900  *	the upper (protocol) levels to process via the backlog NAPI device. It
4901  *	always succeeds. The buffer may be dropped during processing for
4902  *	congestion control or by the protocol layers.
4903  *	The network buffer is passed via the backlog NAPI device. Modern NIC
4904  *	driver should use NAPI and GRO.
4905  *	This function can used from interrupt and from process context. The
4906  *	caller from process context must not disable interrupts before invoking
4907  *	this function.
4908  *
4909  *	return values:
4910  *	NET_RX_SUCCESS	(no congestion)
4911  *	NET_RX_DROP     (packet was dropped)
4912  *
4913  */
4914 int netif_rx(struct sk_buff *skb)
4915 {
4916 	bool need_bh_off = !(hardirq_count() | softirq_count());
4917 	int ret;
4918 
4919 	if (need_bh_off)
4920 		local_bh_disable();
4921 	trace_netif_rx_entry(skb);
4922 	ret = netif_rx_internal(skb);
4923 	trace_netif_rx_exit(ret);
4924 	if (need_bh_off)
4925 		local_bh_enable();
4926 	return ret;
4927 }
4928 EXPORT_SYMBOL(netif_rx);
4929 
4930 static __latent_entropy void net_tx_action(struct softirq_action *h)
4931 {
4932 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4933 
4934 	if (sd->completion_queue) {
4935 		struct sk_buff *clist;
4936 
4937 		local_irq_disable();
4938 		clist = sd->completion_queue;
4939 		sd->completion_queue = NULL;
4940 		local_irq_enable();
4941 
4942 		while (clist) {
4943 			struct sk_buff *skb = clist;
4944 
4945 			clist = clist->next;
4946 
4947 			WARN_ON(refcount_read(&skb->users));
4948 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4949 				trace_consume_skb(skb);
4950 			else
4951 				trace_kfree_skb(skb, net_tx_action,
4952 						SKB_DROP_REASON_NOT_SPECIFIED);
4953 
4954 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4955 				__kfree_skb(skb);
4956 			else
4957 				__kfree_skb_defer(skb);
4958 		}
4959 	}
4960 
4961 	if (sd->output_queue) {
4962 		struct Qdisc *head;
4963 
4964 		local_irq_disable();
4965 		head = sd->output_queue;
4966 		sd->output_queue = NULL;
4967 		sd->output_queue_tailp = &sd->output_queue;
4968 		local_irq_enable();
4969 
4970 		rcu_read_lock();
4971 
4972 		while (head) {
4973 			struct Qdisc *q = head;
4974 			spinlock_t *root_lock = NULL;
4975 
4976 			head = head->next_sched;
4977 
4978 			/* We need to make sure head->next_sched is read
4979 			 * before clearing __QDISC_STATE_SCHED
4980 			 */
4981 			smp_mb__before_atomic();
4982 
4983 			if (!(q->flags & TCQ_F_NOLOCK)) {
4984 				root_lock = qdisc_lock(q);
4985 				spin_lock(root_lock);
4986 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4987 						     &q->state))) {
4988 				/* There is a synchronize_net() between
4989 				 * STATE_DEACTIVATED flag being set and
4990 				 * qdisc_reset()/some_qdisc_is_busy() in
4991 				 * dev_deactivate(), so we can safely bail out
4992 				 * early here to avoid data race between
4993 				 * qdisc_deactivate() and some_qdisc_is_busy()
4994 				 * for lockless qdisc.
4995 				 */
4996 				clear_bit(__QDISC_STATE_SCHED, &q->state);
4997 				continue;
4998 			}
4999 
5000 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5001 			qdisc_run(q);
5002 			if (root_lock)
5003 				spin_unlock(root_lock);
5004 		}
5005 
5006 		rcu_read_unlock();
5007 	}
5008 
5009 	xfrm_dev_backlog(sd);
5010 }
5011 
5012 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5013 /* This hook is defined here for ATM LANE */
5014 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5015 			     unsigned char *addr) __read_mostly;
5016 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5017 #endif
5018 
5019 static inline struct sk_buff *
5020 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5021 		   struct net_device *orig_dev, bool *another)
5022 {
5023 #ifdef CONFIG_NET_CLS_ACT
5024 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5025 	struct tcf_result cl_res;
5026 
5027 	/* If there's at least one ingress present somewhere (so
5028 	 * we get here via enabled static key), remaining devices
5029 	 * that are not configured with an ingress qdisc will bail
5030 	 * out here.
5031 	 */
5032 	if (!miniq)
5033 		return skb;
5034 
5035 	if (*pt_prev) {
5036 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5037 		*pt_prev = NULL;
5038 	}
5039 
5040 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5041 	tc_skb_cb(skb)->mru = 0;
5042 	tc_skb_cb(skb)->post_ct = false;
5043 	skb->tc_at_ingress = 1;
5044 	mini_qdisc_bstats_cpu_update(miniq, skb);
5045 
5046 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5047 	case TC_ACT_OK:
5048 	case TC_ACT_RECLASSIFY:
5049 		skb->tc_index = TC_H_MIN(cl_res.classid);
5050 		break;
5051 	case TC_ACT_SHOT:
5052 		mini_qdisc_qstats_cpu_drop(miniq);
5053 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5054 		return NULL;
5055 	case TC_ACT_STOLEN:
5056 	case TC_ACT_QUEUED:
5057 	case TC_ACT_TRAP:
5058 		consume_skb(skb);
5059 		return NULL;
5060 	case TC_ACT_REDIRECT:
5061 		/* skb_mac_header check was done by cls/act_bpf, so
5062 		 * we can safely push the L2 header back before
5063 		 * redirecting to another netdev
5064 		 */
5065 		__skb_push(skb, skb->mac_len);
5066 		if (skb_do_redirect(skb) == -EAGAIN) {
5067 			__skb_pull(skb, skb->mac_len);
5068 			*another = true;
5069 			break;
5070 		}
5071 		return NULL;
5072 	case TC_ACT_CONSUMED:
5073 		return NULL;
5074 	default:
5075 		break;
5076 	}
5077 #endif /* CONFIG_NET_CLS_ACT */
5078 	return skb;
5079 }
5080 
5081 /**
5082  *	netdev_is_rx_handler_busy - check if receive handler is registered
5083  *	@dev: device to check
5084  *
5085  *	Check if a receive handler is already registered for a given device.
5086  *	Return true if there one.
5087  *
5088  *	The caller must hold the rtnl_mutex.
5089  */
5090 bool netdev_is_rx_handler_busy(struct net_device *dev)
5091 {
5092 	ASSERT_RTNL();
5093 	return dev && rtnl_dereference(dev->rx_handler);
5094 }
5095 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5096 
5097 /**
5098  *	netdev_rx_handler_register - register receive handler
5099  *	@dev: device to register a handler for
5100  *	@rx_handler: receive handler to register
5101  *	@rx_handler_data: data pointer that is used by rx handler
5102  *
5103  *	Register a receive handler for a device. This handler will then be
5104  *	called from __netif_receive_skb. A negative errno code is returned
5105  *	on a failure.
5106  *
5107  *	The caller must hold the rtnl_mutex.
5108  *
5109  *	For a general description of rx_handler, see enum rx_handler_result.
5110  */
5111 int netdev_rx_handler_register(struct net_device *dev,
5112 			       rx_handler_func_t *rx_handler,
5113 			       void *rx_handler_data)
5114 {
5115 	if (netdev_is_rx_handler_busy(dev))
5116 		return -EBUSY;
5117 
5118 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5119 		return -EINVAL;
5120 
5121 	/* Note: rx_handler_data must be set before rx_handler */
5122 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5123 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5124 
5125 	return 0;
5126 }
5127 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5128 
5129 /**
5130  *	netdev_rx_handler_unregister - unregister receive handler
5131  *	@dev: device to unregister a handler from
5132  *
5133  *	Unregister a receive handler from a device.
5134  *
5135  *	The caller must hold the rtnl_mutex.
5136  */
5137 void netdev_rx_handler_unregister(struct net_device *dev)
5138 {
5139 
5140 	ASSERT_RTNL();
5141 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5142 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5143 	 * section has a guarantee to see a non NULL rx_handler_data
5144 	 * as well.
5145 	 */
5146 	synchronize_net();
5147 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5148 }
5149 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5150 
5151 /*
5152  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5153  * the special handling of PFMEMALLOC skbs.
5154  */
5155 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5156 {
5157 	switch (skb->protocol) {
5158 	case htons(ETH_P_ARP):
5159 	case htons(ETH_P_IP):
5160 	case htons(ETH_P_IPV6):
5161 	case htons(ETH_P_8021Q):
5162 	case htons(ETH_P_8021AD):
5163 		return true;
5164 	default:
5165 		return false;
5166 	}
5167 }
5168 
5169 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5170 			     int *ret, struct net_device *orig_dev)
5171 {
5172 	if (nf_hook_ingress_active(skb)) {
5173 		int ingress_retval;
5174 
5175 		if (*pt_prev) {
5176 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5177 			*pt_prev = NULL;
5178 		}
5179 
5180 		rcu_read_lock();
5181 		ingress_retval = nf_hook_ingress(skb);
5182 		rcu_read_unlock();
5183 		return ingress_retval;
5184 	}
5185 	return 0;
5186 }
5187 
5188 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5189 				    struct packet_type **ppt_prev)
5190 {
5191 	struct packet_type *ptype, *pt_prev;
5192 	rx_handler_func_t *rx_handler;
5193 	struct sk_buff *skb = *pskb;
5194 	struct net_device *orig_dev;
5195 	bool deliver_exact = false;
5196 	int ret = NET_RX_DROP;
5197 	__be16 type;
5198 
5199 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5200 
5201 	trace_netif_receive_skb(skb);
5202 
5203 	orig_dev = skb->dev;
5204 
5205 	skb_reset_network_header(skb);
5206 	if (!skb_transport_header_was_set(skb))
5207 		skb_reset_transport_header(skb);
5208 	skb_reset_mac_len(skb);
5209 
5210 	pt_prev = NULL;
5211 
5212 another_round:
5213 	skb->skb_iif = skb->dev->ifindex;
5214 
5215 	__this_cpu_inc(softnet_data.processed);
5216 
5217 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5218 		int ret2;
5219 
5220 		migrate_disable();
5221 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5222 		migrate_enable();
5223 
5224 		if (ret2 != XDP_PASS) {
5225 			ret = NET_RX_DROP;
5226 			goto out;
5227 		}
5228 	}
5229 
5230 	if (eth_type_vlan(skb->protocol)) {
5231 		skb = skb_vlan_untag(skb);
5232 		if (unlikely(!skb))
5233 			goto out;
5234 	}
5235 
5236 	if (skb_skip_tc_classify(skb))
5237 		goto skip_classify;
5238 
5239 	if (pfmemalloc)
5240 		goto skip_taps;
5241 
5242 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5243 		if (pt_prev)
5244 			ret = deliver_skb(skb, pt_prev, orig_dev);
5245 		pt_prev = ptype;
5246 	}
5247 
5248 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5249 		if (pt_prev)
5250 			ret = deliver_skb(skb, pt_prev, orig_dev);
5251 		pt_prev = ptype;
5252 	}
5253 
5254 skip_taps:
5255 #ifdef CONFIG_NET_INGRESS
5256 	if (static_branch_unlikely(&ingress_needed_key)) {
5257 		bool another = false;
5258 
5259 		nf_skip_egress(skb, true);
5260 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5261 					 &another);
5262 		if (another)
5263 			goto another_round;
5264 		if (!skb)
5265 			goto out;
5266 
5267 		nf_skip_egress(skb, false);
5268 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5269 			goto out;
5270 	}
5271 #endif
5272 	skb_reset_redirect(skb);
5273 skip_classify:
5274 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5275 		goto drop;
5276 
5277 	if (skb_vlan_tag_present(skb)) {
5278 		if (pt_prev) {
5279 			ret = deliver_skb(skb, pt_prev, orig_dev);
5280 			pt_prev = NULL;
5281 		}
5282 		if (vlan_do_receive(&skb))
5283 			goto another_round;
5284 		else if (unlikely(!skb))
5285 			goto out;
5286 	}
5287 
5288 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5289 	if (rx_handler) {
5290 		if (pt_prev) {
5291 			ret = deliver_skb(skb, pt_prev, orig_dev);
5292 			pt_prev = NULL;
5293 		}
5294 		switch (rx_handler(&skb)) {
5295 		case RX_HANDLER_CONSUMED:
5296 			ret = NET_RX_SUCCESS;
5297 			goto out;
5298 		case RX_HANDLER_ANOTHER:
5299 			goto another_round;
5300 		case RX_HANDLER_EXACT:
5301 			deliver_exact = true;
5302 			break;
5303 		case RX_HANDLER_PASS:
5304 			break;
5305 		default:
5306 			BUG();
5307 		}
5308 	}
5309 
5310 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5311 check_vlan_id:
5312 		if (skb_vlan_tag_get_id(skb)) {
5313 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5314 			 * find vlan device.
5315 			 */
5316 			skb->pkt_type = PACKET_OTHERHOST;
5317 		} else if (eth_type_vlan(skb->protocol)) {
5318 			/* Outer header is 802.1P with vlan 0, inner header is
5319 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5320 			 * not find vlan dev for vlan id 0.
5321 			 */
5322 			__vlan_hwaccel_clear_tag(skb);
5323 			skb = skb_vlan_untag(skb);
5324 			if (unlikely(!skb))
5325 				goto out;
5326 			if (vlan_do_receive(&skb))
5327 				/* After stripping off 802.1P header with vlan 0
5328 				 * vlan dev is found for inner header.
5329 				 */
5330 				goto another_round;
5331 			else if (unlikely(!skb))
5332 				goto out;
5333 			else
5334 				/* We have stripped outer 802.1P vlan 0 header.
5335 				 * But could not find vlan dev.
5336 				 * check again for vlan id to set OTHERHOST.
5337 				 */
5338 				goto check_vlan_id;
5339 		}
5340 		/* Note: we might in the future use prio bits
5341 		 * and set skb->priority like in vlan_do_receive()
5342 		 * For the time being, just ignore Priority Code Point
5343 		 */
5344 		__vlan_hwaccel_clear_tag(skb);
5345 	}
5346 
5347 	type = skb->protocol;
5348 
5349 	/* deliver only exact match when indicated */
5350 	if (likely(!deliver_exact)) {
5351 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5352 				       &ptype_base[ntohs(type) &
5353 						   PTYPE_HASH_MASK]);
5354 	}
5355 
5356 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5357 			       &orig_dev->ptype_specific);
5358 
5359 	if (unlikely(skb->dev != orig_dev)) {
5360 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5361 				       &skb->dev->ptype_specific);
5362 	}
5363 
5364 	if (pt_prev) {
5365 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5366 			goto drop;
5367 		*ppt_prev = pt_prev;
5368 	} else {
5369 drop:
5370 		if (!deliver_exact) {
5371 			dev_core_stats_rx_dropped_inc(skb->dev);
5372 			kfree_skb_reason(skb, SKB_DROP_REASON_PTYPE_ABSENT);
5373 		} else {
5374 			dev_core_stats_rx_nohandler_inc(skb->dev);
5375 			kfree_skb(skb);
5376 		}
5377 		/* Jamal, now you will not able to escape explaining
5378 		 * me how you were going to use this. :-)
5379 		 */
5380 		ret = NET_RX_DROP;
5381 	}
5382 
5383 out:
5384 	/* The invariant here is that if *ppt_prev is not NULL
5385 	 * then skb should also be non-NULL.
5386 	 *
5387 	 * Apparently *ppt_prev assignment above holds this invariant due to
5388 	 * skb dereferencing near it.
5389 	 */
5390 	*pskb = skb;
5391 	return ret;
5392 }
5393 
5394 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5395 {
5396 	struct net_device *orig_dev = skb->dev;
5397 	struct packet_type *pt_prev = NULL;
5398 	int ret;
5399 
5400 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5401 	if (pt_prev)
5402 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5403 					 skb->dev, pt_prev, orig_dev);
5404 	return ret;
5405 }
5406 
5407 /**
5408  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5409  *	@skb: buffer to process
5410  *
5411  *	More direct receive version of netif_receive_skb().  It should
5412  *	only be used by callers that have a need to skip RPS and Generic XDP.
5413  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5414  *
5415  *	This function may only be called from softirq context and interrupts
5416  *	should be enabled.
5417  *
5418  *	Return values (usually ignored):
5419  *	NET_RX_SUCCESS: no congestion
5420  *	NET_RX_DROP: packet was dropped
5421  */
5422 int netif_receive_skb_core(struct sk_buff *skb)
5423 {
5424 	int ret;
5425 
5426 	rcu_read_lock();
5427 	ret = __netif_receive_skb_one_core(skb, false);
5428 	rcu_read_unlock();
5429 
5430 	return ret;
5431 }
5432 EXPORT_SYMBOL(netif_receive_skb_core);
5433 
5434 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5435 						  struct packet_type *pt_prev,
5436 						  struct net_device *orig_dev)
5437 {
5438 	struct sk_buff *skb, *next;
5439 
5440 	if (!pt_prev)
5441 		return;
5442 	if (list_empty(head))
5443 		return;
5444 	if (pt_prev->list_func != NULL)
5445 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5446 				   ip_list_rcv, head, pt_prev, orig_dev);
5447 	else
5448 		list_for_each_entry_safe(skb, next, head, list) {
5449 			skb_list_del_init(skb);
5450 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5451 		}
5452 }
5453 
5454 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5455 {
5456 	/* Fast-path assumptions:
5457 	 * - There is no RX handler.
5458 	 * - Only one packet_type matches.
5459 	 * If either of these fails, we will end up doing some per-packet
5460 	 * processing in-line, then handling the 'last ptype' for the whole
5461 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5462 	 * because the 'last ptype' must be constant across the sublist, and all
5463 	 * other ptypes are handled per-packet.
5464 	 */
5465 	/* Current (common) ptype of sublist */
5466 	struct packet_type *pt_curr = NULL;
5467 	/* Current (common) orig_dev of sublist */
5468 	struct net_device *od_curr = NULL;
5469 	struct list_head sublist;
5470 	struct sk_buff *skb, *next;
5471 
5472 	INIT_LIST_HEAD(&sublist);
5473 	list_for_each_entry_safe(skb, next, head, list) {
5474 		struct net_device *orig_dev = skb->dev;
5475 		struct packet_type *pt_prev = NULL;
5476 
5477 		skb_list_del_init(skb);
5478 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5479 		if (!pt_prev)
5480 			continue;
5481 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5482 			/* dispatch old sublist */
5483 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5484 			/* start new sublist */
5485 			INIT_LIST_HEAD(&sublist);
5486 			pt_curr = pt_prev;
5487 			od_curr = orig_dev;
5488 		}
5489 		list_add_tail(&skb->list, &sublist);
5490 	}
5491 
5492 	/* dispatch final sublist */
5493 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5494 }
5495 
5496 static int __netif_receive_skb(struct sk_buff *skb)
5497 {
5498 	int ret;
5499 
5500 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5501 		unsigned int noreclaim_flag;
5502 
5503 		/*
5504 		 * PFMEMALLOC skbs are special, they should
5505 		 * - be delivered to SOCK_MEMALLOC sockets only
5506 		 * - stay away from userspace
5507 		 * - have bounded memory usage
5508 		 *
5509 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5510 		 * context down to all allocation sites.
5511 		 */
5512 		noreclaim_flag = memalloc_noreclaim_save();
5513 		ret = __netif_receive_skb_one_core(skb, true);
5514 		memalloc_noreclaim_restore(noreclaim_flag);
5515 	} else
5516 		ret = __netif_receive_skb_one_core(skb, false);
5517 
5518 	return ret;
5519 }
5520 
5521 static void __netif_receive_skb_list(struct list_head *head)
5522 {
5523 	unsigned long noreclaim_flag = 0;
5524 	struct sk_buff *skb, *next;
5525 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5526 
5527 	list_for_each_entry_safe(skb, next, head, list) {
5528 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5529 			struct list_head sublist;
5530 
5531 			/* Handle the previous sublist */
5532 			list_cut_before(&sublist, head, &skb->list);
5533 			if (!list_empty(&sublist))
5534 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5535 			pfmemalloc = !pfmemalloc;
5536 			/* See comments in __netif_receive_skb */
5537 			if (pfmemalloc)
5538 				noreclaim_flag = memalloc_noreclaim_save();
5539 			else
5540 				memalloc_noreclaim_restore(noreclaim_flag);
5541 		}
5542 	}
5543 	/* Handle the remaining sublist */
5544 	if (!list_empty(head))
5545 		__netif_receive_skb_list_core(head, pfmemalloc);
5546 	/* Restore pflags */
5547 	if (pfmemalloc)
5548 		memalloc_noreclaim_restore(noreclaim_flag);
5549 }
5550 
5551 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5552 {
5553 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5554 	struct bpf_prog *new = xdp->prog;
5555 	int ret = 0;
5556 
5557 	switch (xdp->command) {
5558 	case XDP_SETUP_PROG:
5559 		rcu_assign_pointer(dev->xdp_prog, new);
5560 		if (old)
5561 			bpf_prog_put(old);
5562 
5563 		if (old && !new) {
5564 			static_branch_dec(&generic_xdp_needed_key);
5565 		} else if (new && !old) {
5566 			static_branch_inc(&generic_xdp_needed_key);
5567 			dev_disable_lro(dev);
5568 			dev_disable_gro_hw(dev);
5569 		}
5570 		break;
5571 
5572 	default:
5573 		ret = -EINVAL;
5574 		break;
5575 	}
5576 
5577 	return ret;
5578 }
5579 
5580 static int netif_receive_skb_internal(struct sk_buff *skb)
5581 {
5582 	int ret;
5583 
5584 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5585 
5586 	if (skb_defer_rx_timestamp(skb))
5587 		return NET_RX_SUCCESS;
5588 
5589 	rcu_read_lock();
5590 #ifdef CONFIG_RPS
5591 	if (static_branch_unlikely(&rps_needed)) {
5592 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5593 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5594 
5595 		if (cpu >= 0) {
5596 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5597 			rcu_read_unlock();
5598 			return ret;
5599 		}
5600 	}
5601 #endif
5602 	ret = __netif_receive_skb(skb);
5603 	rcu_read_unlock();
5604 	return ret;
5605 }
5606 
5607 void netif_receive_skb_list_internal(struct list_head *head)
5608 {
5609 	struct sk_buff *skb, *next;
5610 	struct list_head sublist;
5611 
5612 	INIT_LIST_HEAD(&sublist);
5613 	list_for_each_entry_safe(skb, next, head, list) {
5614 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5615 		skb_list_del_init(skb);
5616 		if (!skb_defer_rx_timestamp(skb))
5617 			list_add_tail(&skb->list, &sublist);
5618 	}
5619 	list_splice_init(&sublist, head);
5620 
5621 	rcu_read_lock();
5622 #ifdef CONFIG_RPS
5623 	if (static_branch_unlikely(&rps_needed)) {
5624 		list_for_each_entry_safe(skb, next, head, list) {
5625 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5626 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5627 
5628 			if (cpu >= 0) {
5629 				/* Will be handled, remove from list */
5630 				skb_list_del_init(skb);
5631 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5632 			}
5633 		}
5634 	}
5635 #endif
5636 	__netif_receive_skb_list(head);
5637 	rcu_read_unlock();
5638 }
5639 
5640 /**
5641  *	netif_receive_skb - process receive buffer from network
5642  *	@skb: buffer to process
5643  *
5644  *	netif_receive_skb() is the main receive data processing function.
5645  *	It always succeeds. The buffer may be dropped during processing
5646  *	for congestion control or by the protocol layers.
5647  *
5648  *	This function may only be called from softirq context and interrupts
5649  *	should be enabled.
5650  *
5651  *	Return values (usually ignored):
5652  *	NET_RX_SUCCESS: no congestion
5653  *	NET_RX_DROP: packet was dropped
5654  */
5655 int netif_receive_skb(struct sk_buff *skb)
5656 {
5657 	int ret;
5658 
5659 	trace_netif_receive_skb_entry(skb);
5660 
5661 	ret = netif_receive_skb_internal(skb);
5662 	trace_netif_receive_skb_exit(ret);
5663 
5664 	return ret;
5665 }
5666 EXPORT_SYMBOL(netif_receive_skb);
5667 
5668 /**
5669  *	netif_receive_skb_list - process many receive buffers from network
5670  *	@head: list of skbs to process.
5671  *
5672  *	Since return value of netif_receive_skb() is normally ignored, and
5673  *	wouldn't be meaningful for a list, this function returns void.
5674  *
5675  *	This function may only be called from softirq context and interrupts
5676  *	should be enabled.
5677  */
5678 void netif_receive_skb_list(struct list_head *head)
5679 {
5680 	struct sk_buff *skb;
5681 
5682 	if (list_empty(head))
5683 		return;
5684 	if (trace_netif_receive_skb_list_entry_enabled()) {
5685 		list_for_each_entry(skb, head, list)
5686 			trace_netif_receive_skb_list_entry(skb);
5687 	}
5688 	netif_receive_skb_list_internal(head);
5689 	trace_netif_receive_skb_list_exit(0);
5690 }
5691 EXPORT_SYMBOL(netif_receive_skb_list);
5692 
5693 static DEFINE_PER_CPU(struct work_struct, flush_works);
5694 
5695 /* Network device is going away, flush any packets still pending */
5696 static void flush_backlog(struct work_struct *work)
5697 {
5698 	struct sk_buff *skb, *tmp;
5699 	struct softnet_data *sd;
5700 
5701 	local_bh_disable();
5702 	sd = this_cpu_ptr(&softnet_data);
5703 
5704 	rps_lock_irq_disable(sd);
5705 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5706 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5707 			__skb_unlink(skb, &sd->input_pkt_queue);
5708 			dev_kfree_skb_irq(skb);
5709 			input_queue_head_incr(sd);
5710 		}
5711 	}
5712 	rps_unlock_irq_enable(sd);
5713 
5714 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5715 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5716 			__skb_unlink(skb, &sd->process_queue);
5717 			kfree_skb(skb);
5718 			input_queue_head_incr(sd);
5719 		}
5720 	}
5721 	local_bh_enable();
5722 }
5723 
5724 static bool flush_required(int cpu)
5725 {
5726 #if IS_ENABLED(CONFIG_RPS)
5727 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5728 	bool do_flush;
5729 
5730 	rps_lock_irq_disable(sd);
5731 
5732 	/* as insertion into process_queue happens with the rps lock held,
5733 	 * process_queue access may race only with dequeue
5734 	 */
5735 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5736 		   !skb_queue_empty_lockless(&sd->process_queue);
5737 	rps_unlock_irq_enable(sd);
5738 
5739 	return do_flush;
5740 #endif
5741 	/* without RPS we can't safely check input_pkt_queue: during a
5742 	 * concurrent remote skb_queue_splice() we can detect as empty both
5743 	 * input_pkt_queue and process_queue even if the latter could end-up
5744 	 * containing a lot of packets.
5745 	 */
5746 	return true;
5747 }
5748 
5749 static void flush_all_backlogs(void)
5750 {
5751 	static cpumask_t flush_cpus;
5752 	unsigned int cpu;
5753 
5754 	/* since we are under rtnl lock protection we can use static data
5755 	 * for the cpumask and avoid allocating on stack the possibly
5756 	 * large mask
5757 	 */
5758 	ASSERT_RTNL();
5759 
5760 	cpus_read_lock();
5761 
5762 	cpumask_clear(&flush_cpus);
5763 	for_each_online_cpu(cpu) {
5764 		if (flush_required(cpu)) {
5765 			queue_work_on(cpu, system_highpri_wq,
5766 				      per_cpu_ptr(&flush_works, cpu));
5767 			cpumask_set_cpu(cpu, &flush_cpus);
5768 		}
5769 	}
5770 
5771 	/* we can have in flight packet[s] on the cpus we are not flushing,
5772 	 * synchronize_net() in unregister_netdevice_many() will take care of
5773 	 * them
5774 	 */
5775 	for_each_cpu(cpu, &flush_cpus)
5776 		flush_work(per_cpu_ptr(&flush_works, cpu));
5777 
5778 	cpus_read_unlock();
5779 }
5780 
5781 static void net_rps_send_ipi(struct softnet_data *remsd)
5782 {
5783 #ifdef CONFIG_RPS
5784 	while (remsd) {
5785 		struct softnet_data *next = remsd->rps_ipi_next;
5786 
5787 		if (cpu_online(remsd->cpu))
5788 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5789 		remsd = next;
5790 	}
5791 #endif
5792 }
5793 
5794 /*
5795  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5796  * Note: called with local irq disabled, but exits with local irq enabled.
5797  */
5798 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5799 {
5800 #ifdef CONFIG_RPS
5801 	struct softnet_data *remsd = sd->rps_ipi_list;
5802 
5803 	if (remsd) {
5804 		sd->rps_ipi_list = NULL;
5805 
5806 		local_irq_enable();
5807 
5808 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5809 		net_rps_send_ipi(remsd);
5810 	} else
5811 #endif
5812 		local_irq_enable();
5813 }
5814 
5815 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5816 {
5817 #ifdef CONFIG_RPS
5818 	return sd->rps_ipi_list != NULL;
5819 #else
5820 	return false;
5821 #endif
5822 }
5823 
5824 static int process_backlog(struct napi_struct *napi, int quota)
5825 {
5826 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5827 	bool again = true;
5828 	int work = 0;
5829 
5830 	/* Check if we have pending ipi, its better to send them now,
5831 	 * not waiting net_rx_action() end.
5832 	 */
5833 	if (sd_has_rps_ipi_waiting(sd)) {
5834 		local_irq_disable();
5835 		net_rps_action_and_irq_enable(sd);
5836 	}
5837 
5838 	napi->weight = dev_rx_weight;
5839 	while (again) {
5840 		struct sk_buff *skb;
5841 
5842 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5843 			rcu_read_lock();
5844 			__netif_receive_skb(skb);
5845 			rcu_read_unlock();
5846 			input_queue_head_incr(sd);
5847 			if (++work >= quota)
5848 				return work;
5849 
5850 		}
5851 
5852 		rps_lock_irq_disable(sd);
5853 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5854 			/*
5855 			 * Inline a custom version of __napi_complete().
5856 			 * only current cpu owns and manipulates this napi,
5857 			 * and NAPI_STATE_SCHED is the only possible flag set
5858 			 * on backlog.
5859 			 * We can use a plain write instead of clear_bit(),
5860 			 * and we dont need an smp_mb() memory barrier.
5861 			 */
5862 			napi->state = 0;
5863 			again = false;
5864 		} else {
5865 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5866 						   &sd->process_queue);
5867 		}
5868 		rps_unlock_irq_enable(sd);
5869 	}
5870 
5871 	return work;
5872 }
5873 
5874 /**
5875  * __napi_schedule - schedule for receive
5876  * @n: entry to schedule
5877  *
5878  * The entry's receive function will be scheduled to run.
5879  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5880  */
5881 void __napi_schedule(struct napi_struct *n)
5882 {
5883 	unsigned long flags;
5884 
5885 	local_irq_save(flags);
5886 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5887 	local_irq_restore(flags);
5888 }
5889 EXPORT_SYMBOL(__napi_schedule);
5890 
5891 /**
5892  *	napi_schedule_prep - check if napi can be scheduled
5893  *	@n: napi context
5894  *
5895  * Test if NAPI routine is already running, and if not mark
5896  * it as running.  This is used as a condition variable to
5897  * insure only one NAPI poll instance runs.  We also make
5898  * sure there is no pending NAPI disable.
5899  */
5900 bool napi_schedule_prep(struct napi_struct *n)
5901 {
5902 	unsigned long val, new;
5903 
5904 	do {
5905 		val = READ_ONCE(n->state);
5906 		if (unlikely(val & NAPIF_STATE_DISABLE))
5907 			return false;
5908 		new = val | NAPIF_STATE_SCHED;
5909 
5910 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5911 		 * This was suggested by Alexander Duyck, as compiler
5912 		 * emits better code than :
5913 		 * if (val & NAPIF_STATE_SCHED)
5914 		 *     new |= NAPIF_STATE_MISSED;
5915 		 */
5916 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5917 						   NAPIF_STATE_MISSED;
5918 	} while (cmpxchg(&n->state, val, new) != val);
5919 
5920 	return !(val & NAPIF_STATE_SCHED);
5921 }
5922 EXPORT_SYMBOL(napi_schedule_prep);
5923 
5924 /**
5925  * __napi_schedule_irqoff - schedule for receive
5926  * @n: entry to schedule
5927  *
5928  * Variant of __napi_schedule() assuming hard irqs are masked.
5929  *
5930  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5931  * because the interrupt disabled assumption might not be true
5932  * due to force-threaded interrupts and spinlock substitution.
5933  */
5934 void __napi_schedule_irqoff(struct napi_struct *n)
5935 {
5936 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5937 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
5938 	else
5939 		__napi_schedule(n);
5940 }
5941 EXPORT_SYMBOL(__napi_schedule_irqoff);
5942 
5943 bool napi_complete_done(struct napi_struct *n, int work_done)
5944 {
5945 	unsigned long flags, val, new, timeout = 0;
5946 	bool ret = true;
5947 
5948 	/*
5949 	 * 1) Don't let napi dequeue from the cpu poll list
5950 	 *    just in case its running on a different cpu.
5951 	 * 2) If we are busy polling, do nothing here, we have
5952 	 *    the guarantee we will be called later.
5953 	 */
5954 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5955 				 NAPIF_STATE_IN_BUSY_POLL)))
5956 		return false;
5957 
5958 	if (work_done) {
5959 		if (n->gro_bitmask)
5960 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
5961 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
5962 	}
5963 	if (n->defer_hard_irqs_count > 0) {
5964 		n->defer_hard_irqs_count--;
5965 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
5966 		if (timeout)
5967 			ret = false;
5968 	}
5969 	if (n->gro_bitmask) {
5970 		/* When the NAPI instance uses a timeout and keeps postponing
5971 		 * it, we need to bound somehow the time packets are kept in
5972 		 * the GRO layer
5973 		 */
5974 		napi_gro_flush(n, !!timeout);
5975 	}
5976 
5977 	gro_normal_list(n);
5978 
5979 	if (unlikely(!list_empty(&n->poll_list))) {
5980 		/* If n->poll_list is not empty, we need to mask irqs */
5981 		local_irq_save(flags);
5982 		list_del_init(&n->poll_list);
5983 		local_irq_restore(flags);
5984 	}
5985 
5986 	do {
5987 		val = READ_ONCE(n->state);
5988 
5989 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5990 
5991 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
5992 			      NAPIF_STATE_SCHED_THREADED |
5993 			      NAPIF_STATE_PREFER_BUSY_POLL);
5994 
5995 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5996 		 * because we will call napi->poll() one more time.
5997 		 * This C code was suggested by Alexander Duyck to help gcc.
5998 		 */
5999 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6000 						    NAPIF_STATE_SCHED;
6001 	} while (cmpxchg(&n->state, val, new) != val);
6002 
6003 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6004 		__napi_schedule(n);
6005 		return false;
6006 	}
6007 
6008 	if (timeout)
6009 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6010 			      HRTIMER_MODE_REL_PINNED);
6011 	return ret;
6012 }
6013 EXPORT_SYMBOL(napi_complete_done);
6014 
6015 /* must be called under rcu_read_lock(), as we dont take a reference */
6016 static struct napi_struct *napi_by_id(unsigned int napi_id)
6017 {
6018 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6019 	struct napi_struct *napi;
6020 
6021 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6022 		if (napi->napi_id == napi_id)
6023 			return napi;
6024 
6025 	return NULL;
6026 }
6027 
6028 #if defined(CONFIG_NET_RX_BUSY_POLL)
6029 
6030 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6031 {
6032 	if (!skip_schedule) {
6033 		gro_normal_list(napi);
6034 		__napi_schedule(napi);
6035 		return;
6036 	}
6037 
6038 	if (napi->gro_bitmask) {
6039 		/* flush too old packets
6040 		 * If HZ < 1000, flush all packets.
6041 		 */
6042 		napi_gro_flush(napi, HZ >= 1000);
6043 	}
6044 
6045 	gro_normal_list(napi);
6046 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6047 }
6048 
6049 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6050 			   u16 budget)
6051 {
6052 	bool skip_schedule = false;
6053 	unsigned long timeout;
6054 	int rc;
6055 
6056 	/* Busy polling means there is a high chance device driver hard irq
6057 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6058 	 * set in napi_schedule_prep().
6059 	 * Since we are about to call napi->poll() once more, we can safely
6060 	 * clear NAPI_STATE_MISSED.
6061 	 *
6062 	 * Note: x86 could use a single "lock and ..." instruction
6063 	 * to perform these two clear_bit()
6064 	 */
6065 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6066 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6067 
6068 	local_bh_disable();
6069 
6070 	if (prefer_busy_poll) {
6071 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6072 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6073 		if (napi->defer_hard_irqs_count && timeout) {
6074 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6075 			skip_schedule = true;
6076 		}
6077 	}
6078 
6079 	/* All we really want here is to re-enable device interrupts.
6080 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6081 	 */
6082 	rc = napi->poll(napi, budget);
6083 	/* We can't gro_normal_list() here, because napi->poll() might have
6084 	 * rearmed the napi (napi_complete_done()) in which case it could
6085 	 * already be running on another CPU.
6086 	 */
6087 	trace_napi_poll(napi, rc, budget);
6088 	netpoll_poll_unlock(have_poll_lock);
6089 	if (rc == budget)
6090 		__busy_poll_stop(napi, skip_schedule);
6091 	local_bh_enable();
6092 }
6093 
6094 void napi_busy_loop(unsigned int napi_id,
6095 		    bool (*loop_end)(void *, unsigned long),
6096 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6097 {
6098 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6099 	int (*napi_poll)(struct napi_struct *napi, int budget);
6100 	void *have_poll_lock = NULL;
6101 	struct napi_struct *napi;
6102 
6103 restart:
6104 	napi_poll = NULL;
6105 
6106 	rcu_read_lock();
6107 
6108 	napi = napi_by_id(napi_id);
6109 	if (!napi)
6110 		goto out;
6111 
6112 	preempt_disable();
6113 	for (;;) {
6114 		int work = 0;
6115 
6116 		local_bh_disable();
6117 		if (!napi_poll) {
6118 			unsigned long val = READ_ONCE(napi->state);
6119 
6120 			/* If multiple threads are competing for this napi,
6121 			 * we avoid dirtying napi->state as much as we can.
6122 			 */
6123 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6124 				   NAPIF_STATE_IN_BUSY_POLL)) {
6125 				if (prefer_busy_poll)
6126 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6127 				goto count;
6128 			}
6129 			if (cmpxchg(&napi->state, val,
6130 				    val | NAPIF_STATE_IN_BUSY_POLL |
6131 					  NAPIF_STATE_SCHED) != val) {
6132 				if (prefer_busy_poll)
6133 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6134 				goto count;
6135 			}
6136 			have_poll_lock = netpoll_poll_lock(napi);
6137 			napi_poll = napi->poll;
6138 		}
6139 		work = napi_poll(napi, budget);
6140 		trace_napi_poll(napi, work, budget);
6141 		gro_normal_list(napi);
6142 count:
6143 		if (work > 0)
6144 			__NET_ADD_STATS(dev_net(napi->dev),
6145 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6146 		local_bh_enable();
6147 
6148 		if (!loop_end || loop_end(loop_end_arg, start_time))
6149 			break;
6150 
6151 		if (unlikely(need_resched())) {
6152 			if (napi_poll)
6153 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6154 			preempt_enable();
6155 			rcu_read_unlock();
6156 			cond_resched();
6157 			if (loop_end(loop_end_arg, start_time))
6158 				return;
6159 			goto restart;
6160 		}
6161 		cpu_relax();
6162 	}
6163 	if (napi_poll)
6164 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6165 	preempt_enable();
6166 out:
6167 	rcu_read_unlock();
6168 }
6169 EXPORT_SYMBOL(napi_busy_loop);
6170 
6171 #endif /* CONFIG_NET_RX_BUSY_POLL */
6172 
6173 static void napi_hash_add(struct napi_struct *napi)
6174 {
6175 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6176 		return;
6177 
6178 	spin_lock(&napi_hash_lock);
6179 
6180 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6181 	do {
6182 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6183 			napi_gen_id = MIN_NAPI_ID;
6184 	} while (napi_by_id(napi_gen_id));
6185 	napi->napi_id = napi_gen_id;
6186 
6187 	hlist_add_head_rcu(&napi->napi_hash_node,
6188 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6189 
6190 	spin_unlock(&napi_hash_lock);
6191 }
6192 
6193 /* Warning : caller is responsible to make sure rcu grace period
6194  * is respected before freeing memory containing @napi
6195  */
6196 static void napi_hash_del(struct napi_struct *napi)
6197 {
6198 	spin_lock(&napi_hash_lock);
6199 
6200 	hlist_del_init_rcu(&napi->napi_hash_node);
6201 
6202 	spin_unlock(&napi_hash_lock);
6203 }
6204 
6205 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6206 {
6207 	struct napi_struct *napi;
6208 
6209 	napi = container_of(timer, struct napi_struct, timer);
6210 
6211 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6212 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6213 	 */
6214 	if (!napi_disable_pending(napi) &&
6215 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6216 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6217 		__napi_schedule_irqoff(napi);
6218 	}
6219 
6220 	return HRTIMER_NORESTART;
6221 }
6222 
6223 static void init_gro_hash(struct napi_struct *napi)
6224 {
6225 	int i;
6226 
6227 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6228 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6229 		napi->gro_hash[i].count = 0;
6230 	}
6231 	napi->gro_bitmask = 0;
6232 }
6233 
6234 int dev_set_threaded(struct net_device *dev, bool threaded)
6235 {
6236 	struct napi_struct *napi;
6237 	int err = 0;
6238 
6239 	if (dev->threaded == threaded)
6240 		return 0;
6241 
6242 	if (threaded) {
6243 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6244 			if (!napi->thread) {
6245 				err = napi_kthread_create(napi);
6246 				if (err) {
6247 					threaded = false;
6248 					break;
6249 				}
6250 			}
6251 		}
6252 	}
6253 
6254 	dev->threaded = threaded;
6255 
6256 	/* Make sure kthread is created before THREADED bit
6257 	 * is set.
6258 	 */
6259 	smp_mb__before_atomic();
6260 
6261 	/* Setting/unsetting threaded mode on a napi might not immediately
6262 	 * take effect, if the current napi instance is actively being
6263 	 * polled. In this case, the switch between threaded mode and
6264 	 * softirq mode will happen in the next round of napi_schedule().
6265 	 * This should not cause hiccups/stalls to the live traffic.
6266 	 */
6267 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6268 		if (threaded)
6269 			set_bit(NAPI_STATE_THREADED, &napi->state);
6270 		else
6271 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6272 	}
6273 
6274 	return err;
6275 }
6276 EXPORT_SYMBOL(dev_set_threaded);
6277 
6278 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6279 		    int (*poll)(struct napi_struct *, int), int weight)
6280 {
6281 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6282 		return;
6283 
6284 	INIT_LIST_HEAD(&napi->poll_list);
6285 	INIT_HLIST_NODE(&napi->napi_hash_node);
6286 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6287 	napi->timer.function = napi_watchdog;
6288 	init_gro_hash(napi);
6289 	napi->skb = NULL;
6290 	INIT_LIST_HEAD(&napi->rx_list);
6291 	napi->rx_count = 0;
6292 	napi->poll = poll;
6293 	if (weight > NAPI_POLL_WEIGHT)
6294 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6295 				weight);
6296 	napi->weight = weight;
6297 	napi->dev = dev;
6298 #ifdef CONFIG_NETPOLL
6299 	napi->poll_owner = -1;
6300 #endif
6301 	set_bit(NAPI_STATE_SCHED, &napi->state);
6302 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6303 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6304 	napi_hash_add(napi);
6305 	/* Create kthread for this napi if dev->threaded is set.
6306 	 * Clear dev->threaded if kthread creation failed so that
6307 	 * threaded mode will not be enabled in napi_enable().
6308 	 */
6309 	if (dev->threaded && napi_kthread_create(napi))
6310 		dev->threaded = 0;
6311 }
6312 EXPORT_SYMBOL(netif_napi_add);
6313 
6314 void napi_disable(struct napi_struct *n)
6315 {
6316 	unsigned long val, new;
6317 
6318 	might_sleep();
6319 	set_bit(NAPI_STATE_DISABLE, &n->state);
6320 
6321 	for ( ; ; ) {
6322 		val = READ_ONCE(n->state);
6323 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6324 			usleep_range(20, 200);
6325 			continue;
6326 		}
6327 
6328 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6329 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6330 
6331 		if (cmpxchg(&n->state, val, new) == val)
6332 			break;
6333 	}
6334 
6335 	hrtimer_cancel(&n->timer);
6336 
6337 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6338 }
6339 EXPORT_SYMBOL(napi_disable);
6340 
6341 /**
6342  *	napi_enable - enable NAPI scheduling
6343  *	@n: NAPI context
6344  *
6345  * Resume NAPI from being scheduled on this context.
6346  * Must be paired with napi_disable.
6347  */
6348 void napi_enable(struct napi_struct *n)
6349 {
6350 	unsigned long val, new;
6351 
6352 	do {
6353 		val = READ_ONCE(n->state);
6354 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6355 
6356 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6357 		if (n->dev->threaded && n->thread)
6358 			new |= NAPIF_STATE_THREADED;
6359 	} while (cmpxchg(&n->state, val, new) != val);
6360 }
6361 EXPORT_SYMBOL(napi_enable);
6362 
6363 static void flush_gro_hash(struct napi_struct *napi)
6364 {
6365 	int i;
6366 
6367 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6368 		struct sk_buff *skb, *n;
6369 
6370 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6371 			kfree_skb(skb);
6372 		napi->gro_hash[i].count = 0;
6373 	}
6374 }
6375 
6376 /* Must be called in process context */
6377 void __netif_napi_del(struct napi_struct *napi)
6378 {
6379 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6380 		return;
6381 
6382 	napi_hash_del(napi);
6383 	list_del_rcu(&napi->dev_list);
6384 	napi_free_frags(napi);
6385 
6386 	flush_gro_hash(napi);
6387 	napi->gro_bitmask = 0;
6388 
6389 	if (napi->thread) {
6390 		kthread_stop(napi->thread);
6391 		napi->thread = NULL;
6392 	}
6393 }
6394 EXPORT_SYMBOL(__netif_napi_del);
6395 
6396 static int __napi_poll(struct napi_struct *n, bool *repoll)
6397 {
6398 	int work, weight;
6399 
6400 	weight = n->weight;
6401 
6402 	/* This NAPI_STATE_SCHED test is for avoiding a race
6403 	 * with netpoll's poll_napi().  Only the entity which
6404 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6405 	 * actually make the ->poll() call.  Therefore we avoid
6406 	 * accidentally calling ->poll() when NAPI is not scheduled.
6407 	 */
6408 	work = 0;
6409 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6410 		work = n->poll(n, weight);
6411 		trace_napi_poll(n, work, weight);
6412 	}
6413 
6414 	if (unlikely(work > weight))
6415 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6416 				n->poll, work, weight);
6417 
6418 	if (likely(work < weight))
6419 		return work;
6420 
6421 	/* Drivers must not modify the NAPI state if they
6422 	 * consume the entire weight.  In such cases this code
6423 	 * still "owns" the NAPI instance and therefore can
6424 	 * move the instance around on the list at-will.
6425 	 */
6426 	if (unlikely(napi_disable_pending(n))) {
6427 		napi_complete(n);
6428 		return work;
6429 	}
6430 
6431 	/* The NAPI context has more processing work, but busy-polling
6432 	 * is preferred. Exit early.
6433 	 */
6434 	if (napi_prefer_busy_poll(n)) {
6435 		if (napi_complete_done(n, work)) {
6436 			/* If timeout is not set, we need to make sure
6437 			 * that the NAPI is re-scheduled.
6438 			 */
6439 			napi_schedule(n);
6440 		}
6441 		return work;
6442 	}
6443 
6444 	if (n->gro_bitmask) {
6445 		/* flush too old packets
6446 		 * If HZ < 1000, flush all packets.
6447 		 */
6448 		napi_gro_flush(n, HZ >= 1000);
6449 	}
6450 
6451 	gro_normal_list(n);
6452 
6453 	/* Some drivers may have called napi_schedule
6454 	 * prior to exhausting their budget.
6455 	 */
6456 	if (unlikely(!list_empty(&n->poll_list))) {
6457 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6458 			     n->dev ? n->dev->name : "backlog");
6459 		return work;
6460 	}
6461 
6462 	*repoll = true;
6463 
6464 	return work;
6465 }
6466 
6467 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6468 {
6469 	bool do_repoll = false;
6470 	void *have;
6471 	int work;
6472 
6473 	list_del_init(&n->poll_list);
6474 
6475 	have = netpoll_poll_lock(n);
6476 
6477 	work = __napi_poll(n, &do_repoll);
6478 
6479 	if (do_repoll)
6480 		list_add_tail(&n->poll_list, repoll);
6481 
6482 	netpoll_poll_unlock(have);
6483 
6484 	return work;
6485 }
6486 
6487 static int napi_thread_wait(struct napi_struct *napi)
6488 {
6489 	bool woken = false;
6490 
6491 	set_current_state(TASK_INTERRUPTIBLE);
6492 
6493 	while (!kthread_should_stop()) {
6494 		/* Testing SCHED_THREADED bit here to make sure the current
6495 		 * kthread owns this napi and could poll on this napi.
6496 		 * Testing SCHED bit is not enough because SCHED bit might be
6497 		 * set by some other busy poll thread or by napi_disable().
6498 		 */
6499 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6500 			WARN_ON(!list_empty(&napi->poll_list));
6501 			__set_current_state(TASK_RUNNING);
6502 			return 0;
6503 		}
6504 
6505 		schedule();
6506 		/* woken being true indicates this thread owns this napi. */
6507 		woken = true;
6508 		set_current_state(TASK_INTERRUPTIBLE);
6509 	}
6510 	__set_current_state(TASK_RUNNING);
6511 
6512 	return -1;
6513 }
6514 
6515 static int napi_threaded_poll(void *data)
6516 {
6517 	struct napi_struct *napi = data;
6518 	void *have;
6519 
6520 	while (!napi_thread_wait(napi)) {
6521 		for (;;) {
6522 			bool repoll = false;
6523 
6524 			local_bh_disable();
6525 
6526 			have = netpoll_poll_lock(napi);
6527 			__napi_poll(napi, &repoll);
6528 			netpoll_poll_unlock(have);
6529 
6530 			local_bh_enable();
6531 
6532 			if (!repoll)
6533 				break;
6534 
6535 			cond_resched();
6536 		}
6537 	}
6538 	return 0;
6539 }
6540 
6541 static __latent_entropy void net_rx_action(struct softirq_action *h)
6542 {
6543 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6544 	unsigned long time_limit = jiffies +
6545 		usecs_to_jiffies(netdev_budget_usecs);
6546 	int budget = netdev_budget;
6547 	LIST_HEAD(list);
6548 	LIST_HEAD(repoll);
6549 
6550 	local_irq_disable();
6551 	list_splice_init(&sd->poll_list, &list);
6552 	local_irq_enable();
6553 
6554 	for (;;) {
6555 		struct napi_struct *n;
6556 
6557 		if (list_empty(&list)) {
6558 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6559 				return;
6560 			break;
6561 		}
6562 
6563 		n = list_first_entry(&list, struct napi_struct, poll_list);
6564 		budget -= napi_poll(n, &repoll);
6565 
6566 		/* If softirq window is exhausted then punt.
6567 		 * Allow this to run for 2 jiffies since which will allow
6568 		 * an average latency of 1.5/HZ.
6569 		 */
6570 		if (unlikely(budget <= 0 ||
6571 			     time_after_eq(jiffies, time_limit))) {
6572 			sd->time_squeeze++;
6573 			break;
6574 		}
6575 	}
6576 
6577 	local_irq_disable();
6578 
6579 	list_splice_tail_init(&sd->poll_list, &list);
6580 	list_splice_tail(&repoll, &list);
6581 	list_splice(&list, &sd->poll_list);
6582 	if (!list_empty(&sd->poll_list))
6583 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6584 
6585 	net_rps_action_and_irq_enable(sd);
6586 }
6587 
6588 struct netdev_adjacent {
6589 	struct net_device *dev;
6590 	netdevice_tracker dev_tracker;
6591 
6592 	/* upper master flag, there can only be one master device per list */
6593 	bool master;
6594 
6595 	/* lookup ignore flag */
6596 	bool ignore;
6597 
6598 	/* counter for the number of times this device was added to us */
6599 	u16 ref_nr;
6600 
6601 	/* private field for the users */
6602 	void *private;
6603 
6604 	struct list_head list;
6605 	struct rcu_head rcu;
6606 };
6607 
6608 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6609 						 struct list_head *adj_list)
6610 {
6611 	struct netdev_adjacent *adj;
6612 
6613 	list_for_each_entry(adj, adj_list, list) {
6614 		if (adj->dev == adj_dev)
6615 			return adj;
6616 	}
6617 	return NULL;
6618 }
6619 
6620 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6621 				    struct netdev_nested_priv *priv)
6622 {
6623 	struct net_device *dev = (struct net_device *)priv->data;
6624 
6625 	return upper_dev == dev;
6626 }
6627 
6628 /**
6629  * netdev_has_upper_dev - Check if device is linked to an upper device
6630  * @dev: device
6631  * @upper_dev: upper device to check
6632  *
6633  * Find out if a device is linked to specified upper device and return true
6634  * in case it is. Note that this checks only immediate upper device,
6635  * not through a complete stack of devices. The caller must hold the RTNL lock.
6636  */
6637 bool netdev_has_upper_dev(struct net_device *dev,
6638 			  struct net_device *upper_dev)
6639 {
6640 	struct netdev_nested_priv priv = {
6641 		.data = (void *)upper_dev,
6642 	};
6643 
6644 	ASSERT_RTNL();
6645 
6646 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6647 					     &priv);
6648 }
6649 EXPORT_SYMBOL(netdev_has_upper_dev);
6650 
6651 /**
6652  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6653  * @dev: device
6654  * @upper_dev: upper device to check
6655  *
6656  * Find out if a device is linked to specified upper device and return true
6657  * in case it is. Note that this checks the entire upper device chain.
6658  * The caller must hold rcu lock.
6659  */
6660 
6661 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6662 				  struct net_device *upper_dev)
6663 {
6664 	struct netdev_nested_priv priv = {
6665 		.data = (void *)upper_dev,
6666 	};
6667 
6668 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6669 					       &priv);
6670 }
6671 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6672 
6673 /**
6674  * netdev_has_any_upper_dev - Check if device is linked to some device
6675  * @dev: device
6676  *
6677  * Find out if a device is linked to an upper device and return true in case
6678  * it is. The caller must hold the RTNL lock.
6679  */
6680 bool netdev_has_any_upper_dev(struct net_device *dev)
6681 {
6682 	ASSERT_RTNL();
6683 
6684 	return !list_empty(&dev->adj_list.upper);
6685 }
6686 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6687 
6688 /**
6689  * netdev_master_upper_dev_get - Get master upper device
6690  * @dev: device
6691  *
6692  * Find a master upper device and return pointer to it or NULL in case
6693  * it's not there. The caller must hold the RTNL lock.
6694  */
6695 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6696 {
6697 	struct netdev_adjacent *upper;
6698 
6699 	ASSERT_RTNL();
6700 
6701 	if (list_empty(&dev->adj_list.upper))
6702 		return NULL;
6703 
6704 	upper = list_first_entry(&dev->adj_list.upper,
6705 				 struct netdev_adjacent, list);
6706 	if (likely(upper->master))
6707 		return upper->dev;
6708 	return NULL;
6709 }
6710 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6711 
6712 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6713 {
6714 	struct netdev_adjacent *upper;
6715 
6716 	ASSERT_RTNL();
6717 
6718 	if (list_empty(&dev->adj_list.upper))
6719 		return NULL;
6720 
6721 	upper = list_first_entry(&dev->adj_list.upper,
6722 				 struct netdev_adjacent, list);
6723 	if (likely(upper->master) && !upper->ignore)
6724 		return upper->dev;
6725 	return NULL;
6726 }
6727 
6728 /**
6729  * netdev_has_any_lower_dev - Check if device is linked to some device
6730  * @dev: device
6731  *
6732  * Find out if a device is linked to a lower device and return true in case
6733  * it is. The caller must hold the RTNL lock.
6734  */
6735 static bool netdev_has_any_lower_dev(struct net_device *dev)
6736 {
6737 	ASSERT_RTNL();
6738 
6739 	return !list_empty(&dev->adj_list.lower);
6740 }
6741 
6742 void *netdev_adjacent_get_private(struct list_head *adj_list)
6743 {
6744 	struct netdev_adjacent *adj;
6745 
6746 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6747 
6748 	return adj->private;
6749 }
6750 EXPORT_SYMBOL(netdev_adjacent_get_private);
6751 
6752 /**
6753  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6754  * @dev: device
6755  * @iter: list_head ** of the current position
6756  *
6757  * Gets the next device from the dev's upper list, starting from iter
6758  * position. The caller must hold RCU read lock.
6759  */
6760 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6761 						 struct list_head **iter)
6762 {
6763 	struct netdev_adjacent *upper;
6764 
6765 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6766 
6767 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6768 
6769 	if (&upper->list == &dev->adj_list.upper)
6770 		return NULL;
6771 
6772 	*iter = &upper->list;
6773 
6774 	return upper->dev;
6775 }
6776 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6777 
6778 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6779 						  struct list_head **iter,
6780 						  bool *ignore)
6781 {
6782 	struct netdev_adjacent *upper;
6783 
6784 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6785 
6786 	if (&upper->list == &dev->adj_list.upper)
6787 		return NULL;
6788 
6789 	*iter = &upper->list;
6790 	*ignore = upper->ignore;
6791 
6792 	return upper->dev;
6793 }
6794 
6795 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6796 						    struct list_head **iter)
6797 {
6798 	struct netdev_adjacent *upper;
6799 
6800 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6801 
6802 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6803 
6804 	if (&upper->list == &dev->adj_list.upper)
6805 		return NULL;
6806 
6807 	*iter = &upper->list;
6808 
6809 	return upper->dev;
6810 }
6811 
6812 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6813 				       int (*fn)(struct net_device *dev,
6814 					 struct netdev_nested_priv *priv),
6815 				       struct netdev_nested_priv *priv)
6816 {
6817 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6818 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6819 	int ret, cur = 0;
6820 	bool ignore;
6821 
6822 	now = dev;
6823 	iter = &dev->adj_list.upper;
6824 
6825 	while (1) {
6826 		if (now != dev) {
6827 			ret = fn(now, priv);
6828 			if (ret)
6829 				return ret;
6830 		}
6831 
6832 		next = NULL;
6833 		while (1) {
6834 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6835 			if (!udev)
6836 				break;
6837 			if (ignore)
6838 				continue;
6839 
6840 			next = udev;
6841 			niter = &udev->adj_list.upper;
6842 			dev_stack[cur] = now;
6843 			iter_stack[cur++] = iter;
6844 			break;
6845 		}
6846 
6847 		if (!next) {
6848 			if (!cur)
6849 				return 0;
6850 			next = dev_stack[--cur];
6851 			niter = iter_stack[cur];
6852 		}
6853 
6854 		now = next;
6855 		iter = niter;
6856 	}
6857 
6858 	return 0;
6859 }
6860 
6861 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6862 				  int (*fn)(struct net_device *dev,
6863 					    struct netdev_nested_priv *priv),
6864 				  struct netdev_nested_priv *priv)
6865 {
6866 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6867 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6868 	int ret, cur = 0;
6869 
6870 	now = dev;
6871 	iter = &dev->adj_list.upper;
6872 
6873 	while (1) {
6874 		if (now != dev) {
6875 			ret = fn(now, priv);
6876 			if (ret)
6877 				return ret;
6878 		}
6879 
6880 		next = NULL;
6881 		while (1) {
6882 			udev = netdev_next_upper_dev_rcu(now, &iter);
6883 			if (!udev)
6884 				break;
6885 
6886 			next = udev;
6887 			niter = &udev->adj_list.upper;
6888 			dev_stack[cur] = now;
6889 			iter_stack[cur++] = iter;
6890 			break;
6891 		}
6892 
6893 		if (!next) {
6894 			if (!cur)
6895 				return 0;
6896 			next = dev_stack[--cur];
6897 			niter = iter_stack[cur];
6898 		}
6899 
6900 		now = next;
6901 		iter = niter;
6902 	}
6903 
6904 	return 0;
6905 }
6906 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6907 
6908 static bool __netdev_has_upper_dev(struct net_device *dev,
6909 				   struct net_device *upper_dev)
6910 {
6911 	struct netdev_nested_priv priv = {
6912 		.flags = 0,
6913 		.data = (void *)upper_dev,
6914 	};
6915 
6916 	ASSERT_RTNL();
6917 
6918 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6919 					   &priv);
6920 }
6921 
6922 /**
6923  * netdev_lower_get_next_private - Get the next ->private from the
6924  *				   lower neighbour list
6925  * @dev: device
6926  * @iter: list_head ** of the current position
6927  *
6928  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6929  * list, starting from iter position. The caller must hold either hold the
6930  * RTNL lock or its own locking that guarantees that the neighbour lower
6931  * list will remain unchanged.
6932  */
6933 void *netdev_lower_get_next_private(struct net_device *dev,
6934 				    struct list_head **iter)
6935 {
6936 	struct netdev_adjacent *lower;
6937 
6938 	lower = list_entry(*iter, struct netdev_adjacent, list);
6939 
6940 	if (&lower->list == &dev->adj_list.lower)
6941 		return NULL;
6942 
6943 	*iter = lower->list.next;
6944 
6945 	return lower->private;
6946 }
6947 EXPORT_SYMBOL(netdev_lower_get_next_private);
6948 
6949 /**
6950  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6951  *				       lower neighbour list, RCU
6952  *				       variant
6953  * @dev: device
6954  * @iter: list_head ** of the current position
6955  *
6956  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6957  * list, starting from iter position. The caller must hold RCU read lock.
6958  */
6959 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6960 					struct list_head **iter)
6961 {
6962 	struct netdev_adjacent *lower;
6963 
6964 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
6965 
6966 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6967 
6968 	if (&lower->list == &dev->adj_list.lower)
6969 		return NULL;
6970 
6971 	*iter = &lower->list;
6972 
6973 	return lower->private;
6974 }
6975 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6976 
6977 /**
6978  * netdev_lower_get_next - Get the next device from the lower neighbour
6979  *                         list
6980  * @dev: device
6981  * @iter: list_head ** of the current position
6982  *
6983  * Gets the next netdev_adjacent from the dev's lower neighbour
6984  * list, starting from iter position. The caller must hold RTNL lock or
6985  * its own locking that guarantees that the neighbour lower
6986  * list will remain unchanged.
6987  */
6988 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6989 {
6990 	struct netdev_adjacent *lower;
6991 
6992 	lower = list_entry(*iter, struct netdev_adjacent, list);
6993 
6994 	if (&lower->list == &dev->adj_list.lower)
6995 		return NULL;
6996 
6997 	*iter = lower->list.next;
6998 
6999 	return lower->dev;
7000 }
7001 EXPORT_SYMBOL(netdev_lower_get_next);
7002 
7003 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7004 						struct list_head **iter)
7005 {
7006 	struct netdev_adjacent *lower;
7007 
7008 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7009 
7010 	if (&lower->list == &dev->adj_list.lower)
7011 		return NULL;
7012 
7013 	*iter = &lower->list;
7014 
7015 	return lower->dev;
7016 }
7017 
7018 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7019 						  struct list_head **iter,
7020 						  bool *ignore)
7021 {
7022 	struct netdev_adjacent *lower;
7023 
7024 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7025 
7026 	if (&lower->list == &dev->adj_list.lower)
7027 		return NULL;
7028 
7029 	*iter = &lower->list;
7030 	*ignore = lower->ignore;
7031 
7032 	return lower->dev;
7033 }
7034 
7035 int netdev_walk_all_lower_dev(struct net_device *dev,
7036 			      int (*fn)(struct net_device *dev,
7037 					struct netdev_nested_priv *priv),
7038 			      struct netdev_nested_priv *priv)
7039 {
7040 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7041 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7042 	int ret, cur = 0;
7043 
7044 	now = dev;
7045 	iter = &dev->adj_list.lower;
7046 
7047 	while (1) {
7048 		if (now != dev) {
7049 			ret = fn(now, priv);
7050 			if (ret)
7051 				return ret;
7052 		}
7053 
7054 		next = NULL;
7055 		while (1) {
7056 			ldev = netdev_next_lower_dev(now, &iter);
7057 			if (!ldev)
7058 				break;
7059 
7060 			next = ldev;
7061 			niter = &ldev->adj_list.lower;
7062 			dev_stack[cur] = now;
7063 			iter_stack[cur++] = iter;
7064 			break;
7065 		}
7066 
7067 		if (!next) {
7068 			if (!cur)
7069 				return 0;
7070 			next = dev_stack[--cur];
7071 			niter = iter_stack[cur];
7072 		}
7073 
7074 		now = next;
7075 		iter = niter;
7076 	}
7077 
7078 	return 0;
7079 }
7080 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7081 
7082 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7083 				       int (*fn)(struct net_device *dev,
7084 					 struct netdev_nested_priv *priv),
7085 				       struct netdev_nested_priv *priv)
7086 {
7087 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7088 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7089 	int ret, cur = 0;
7090 	bool ignore;
7091 
7092 	now = dev;
7093 	iter = &dev->adj_list.lower;
7094 
7095 	while (1) {
7096 		if (now != dev) {
7097 			ret = fn(now, priv);
7098 			if (ret)
7099 				return ret;
7100 		}
7101 
7102 		next = NULL;
7103 		while (1) {
7104 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7105 			if (!ldev)
7106 				break;
7107 			if (ignore)
7108 				continue;
7109 
7110 			next = ldev;
7111 			niter = &ldev->adj_list.lower;
7112 			dev_stack[cur] = now;
7113 			iter_stack[cur++] = iter;
7114 			break;
7115 		}
7116 
7117 		if (!next) {
7118 			if (!cur)
7119 				return 0;
7120 			next = dev_stack[--cur];
7121 			niter = iter_stack[cur];
7122 		}
7123 
7124 		now = next;
7125 		iter = niter;
7126 	}
7127 
7128 	return 0;
7129 }
7130 
7131 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7132 					     struct list_head **iter)
7133 {
7134 	struct netdev_adjacent *lower;
7135 
7136 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7137 	if (&lower->list == &dev->adj_list.lower)
7138 		return NULL;
7139 
7140 	*iter = &lower->list;
7141 
7142 	return lower->dev;
7143 }
7144 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7145 
7146 static u8 __netdev_upper_depth(struct net_device *dev)
7147 {
7148 	struct net_device *udev;
7149 	struct list_head *iter;
7150 	u8 max_depth = 0;
7151 	bool ignore;
7152 
7153 	for (iter = &dev->adj_list.upper,
7154 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7155 	     udev;
7156 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7157 		if (ignore)
7158 			continue;
7159 		if (max_depth < udev->upper_level)
7160 			max_depth = udev->upper_level;
7161 	}
7162 
7163 	return max_depth;
7164 }
7165 
7166 static u8 __netdev_lower_depth(struct net_device *dev)
7167 {
7168 	struct net_device *ldev;
7169 	struct list_head *iter;
7170 	u8 max_depth = 0;
7171 	bool ignore;
7172 
7173 	for (iter = &dev->adj_list.lower,
7174 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7175 	     ldev;
7176 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7177 		if (ignore)
7178 			continue;
7179 		if (max_depth < ldev->lower_level)
7180 			max_depth = ldev->lower_level;
7181 	}
7182 
7183 	return max_depth;
7184 }
7185 
7186 static int __netdev_update_upper_level(struct net_device *dev,
7187 				       struct netdev_nested_priv *__unused)
7188 {
7189 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7190 	return 0;
7191 }
7192 
7193 #ifdef CONFIG_LOCKDEP
7194 static LIST_HEAD(net_unlink_list);
7195 
7196 static void net_unlink_todo(struct net_device *dev)
7197 {
7198 	if (list_empty(&dev->unlink_list))
7199 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7200 }
7201 #endif
7202 
7203 static int __netdev_update_lower_level(struct net_device *dev,
7204 				       struct netdev_nested_priv *priv)
7205 {
7206 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7207 
7208 #ifdef CONFIG_LOCKDEP
7209 	if (!priv)
7210 		return 0;
7211 
7212 	if (priv->flags & NESTED_SYNC_IMM)
7213 		dev->nested_level = dev->lower_level - 1;
7214 	if (priv->flags & NESTED_SYNC_TODO)
7215 		net_unlink_todo(dev);
7216 #endif
7217 	return 0;
7218 }
7219 
7220 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7221 				  int (*fn)(struct net_device *dev,
7222 					    struct netdev_nested_priv *priv),
7223 				  struct netdev_nested_priv *priv)
7224 {
7225 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7226 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7227 	int ret, cur = 0;
7228 
7229 	now = dev;
7230 	iter = &dev->adj_list.lower;
7231 
7232 	while (1) {
7233 		if (now != dev) {
7234 			ret = fn(now, priv);
7235 			if (ret)
7236 				return ret;
7237 		}
7238 
7239 		next = NULL;
7240 		while (1) {
7241 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7242 			if (!ldev)
7243 				break;
7244 
7245 			next = ldev;
7246 			niter = &ldev->adj_list.lower;
7247 			dev_stack[cur] = now;
7248 			iter_stack[cur++] = iter;
7249 			break;
7250 		}
7251 
7252 		if (!next) {
7253 			if (!cur)
7254 				return 0;
7255 			next = dev_stack[--cur];
7256 			niter = iter_stack[cur];
7257 		}
7258 
7259 		now = next;
7260 		iter = niter;
7261 	}
7262 
7263 	return 0;
7264 }
7265 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7266 
7267 /**
7268  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7269  *				       lower neighbour list, RCU
7270  *				       variant
7271  * @dev: device
7272  *
7273  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7274  * list. The caller must hold RCU read lock.
7275  */
7276 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7277 {
7278 	struct netdev_adjacent *lower;
7279 
7280 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7281 			struct netdev_adjacent, list);
7282 	if (lower)
7283 		return lower->private;
7284 	return NULL;
7285 }
7286 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7287 
7288 /**
7289  * netdev_master_upper_dev_get_rcu - Get master upper device
7290  * @dev: device
7291  *
7292  * Find a master upper device and return pointer to it or NULL in case
7293  * it's not there. The caller must hold the RCU read lock.
7294  */
7295 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7296 {
7297 	struct netdev_adjacent *upper;
7298 
7299 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7300 				       struct netdev_adjacent, list);
7301 	if (upper && likely(upper->master))
7302 		return upper->dev;
7303 	return NULL;
7304 }
7305 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7306 
7307 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7308 			      struct net_device *adj_dev,
7309 			      struct list_head *dev_list)
7310 {
7311 	char linkname[IFNAMSIZ+7];
7312 
7313 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7314 		"upper_%s" : "lower_%s", adj_dev->name);
7315 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7316 				 linkname);
7317 }
7318 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7319 			       char *name,
7320 			       struct list_head *dev_list)
7321 {
7322 	char linkname[IFNAMSIZ+7];
7323 
7324 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7325 		"upper_%s" : "lower_%s", name);
7326 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7327 }
7328 
7329 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7330 						 struct net_device *adj_dev,
7331 						 struct list_head *dev_list)
7332 {
7333 	return (dev_list == &dev->adj_list.upper ||
7334 		dev_list == &dev->adj_list.lower) &&
7335 		net_eq(dev_net(dev), dev_net(adj_dev));
7336 }
7337 
7338 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7339 					struct net_device *adj_dev,
7340 					struct list_head *dev_list,
7341 					void *private, bool master)
7342 {
7343 	struct netdev_adjacent *adj;
7344 	int ret;
7345 
7346 	adj = __netdev_find_adj(adj_dev, dev_list);
7347 
7348 	if (adj) {
7349 		adj->ref_nr += 1;
7350 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7351 			 dev->name, adj_dev->name, adj->ref_nr);
7352 
7353 		return 0;
7354 	}
7355 
7356 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7357 	if (!adj)
7358 		return -ENOMEM;
7359 
7360 	adj->dev = adj_dev;
7361 	adj->master = master;
7362 	adj->ref_nr = 1;
7363 	adj->private = private;
7364 	adj->ignore = false;
7365 	dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7366 
7367 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7368 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7369 
7370 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7371 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7372 		if (ret)
7373 			goto free_adj;
7374 	}
7375 
7376 	/* Ensure that master link is always the first item in list. */
7377 	if (master) {
7378 		ret = sysfs_create_link(&(dev->dev.kobj),
7379 					&(adj_dev->dev.kobj), "master");
7380 		if (ret)
7381 			goto remove_symlinks;
7382 
7383 		list_add_rcu(&adj->list, dev_list);
7384 	} else {
7385 		list_add_tail_rcu(&adj->list, dev_list);
7386 	}
7387 
7388 	return 0;
7389 
7390 remove_symlinks:
7391 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7392 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7393 free_adj:
7394 	dev_put_track(adj_dev, &adj->dev_tracker);
7395 	kfree(adj);
7396 
7397 	return ret;
7398 }
7399 
7400 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7401 					 struct net_device *adj_dev,
7402 					 u16 ref_nr,
7403 					 struct list_head *dev_list)
7404 {
7405 	struct netdev_adjacent *adj;
7406 
7407 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7408 		 dev->name, adj_dev->name, ref_nr);
7409 
7410 	adj = __netdev_find_adj(adj_dev, dev_list);
7411 
7412 	if (!adj) {
7413 		pr_err("Adjacency does not exist for device %s from %s\n",
7414 		       dev->name, adj_dev->name);
7415 		WARN_ON(1);
7416 		return;
7417 	}
7418 
7419 	if (adj->ref_nr > ref_nr) {
7420 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7421 			 dev->name, adj_dev->name, ref_nr,
7422 			 adj->ref_nr - ref_nr);
7423 		adj->ref_nr -= ref_nr;
7424 		return;
7425 	}
7426 
7427 	if (adj->master)
7428 		sysfs_remove_link(&(dev->dev.kobj), "master");
7429 
7430 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7431 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7432 
7433 	list_del_rcu(&adj->list);
7434 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7435 		 adj_dev->name, dev->name, adj_dev->name);
7436 	dev_put_track(adj_dev, &adj->dev_tracker);
7437 	kfree_rcu(adj, rcu);
7438 }
7439 
7440 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7441 					    struct net_device *upper_dev,
7442 					    struct list_head *up_list,
7443 					    struct list_head *down_list,
7444 					    void *private, bool master)
7445 {
7446 	int ret;
7447 
7448 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7449 					   private, master);
7450 	if (ret)
7451 		return ret;
7452 
7453 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7454 					   private, false);
7455 	if (ret) {
7456 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7457 		return ret;
7458 	}
7459 
7460 	return 0;
7461 }
7462 
7463 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7464 					       struct net_device *upper_dev,
7465 					       u16 ref_nr,
7466 					       struct list_head *up_list,
7467 					       struct list_head *down_list)
7468 {
7469 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7470 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7471 }
7472 
7473 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7474 						struct net_device *upper_dev,
7475 						void *private, bool master)
7476 {
7477 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7478 						&dev->adj_list.upper,
7479 						&upper_dev->adj_list.lower,
7480 						private, master);
7481 }
7482 
7483 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7484 						   struct net_device *upper_dev)
7485 {
7486 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7487 					   &dev->adj_list.upper,
7488 					   &upper_dev->adj_list.lower);
7489 }
7490 
7491 static int __netdev_upper_dev_link(struct net_device *dev,
7492 				   struct net_device *upper_dev, bool master,
7493 				   void *upper_priv, void *upper_info,
7494 				   struct netdev_nested_priv *priv,
7495 				   struct netlink_ext_ack *extack)
7496 {
7497 	struct netdev_notifier_changeupper_info changeupper_info = {
7498 		.info = {
7499 			.dev = dev,
7500 			.extack = extack,
7501 		},
7502 		.upper_dev = upper_dev,
7503 		.master = master,
7504 		.linking = true,
7505 		.upper_info = upper_info,
7506 	};
7507 	struct net_device *master_dev;
7508 	int ret = 0;
7509 
7510 	ASSERT_RTNL();
7511 
7512 	if (dev == upper_dev)
7513 		return -EBUSY;
7514 
7515 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7516 	if (__netdev_has_upper_dev(upper_dev, dev))
7517 		return -EBUSY;
7518 
7519 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7520 		return -EMLINK;
7521 
7522 	if (!master) {
7523 		if (__netdev_has_upper_dev(dev, upper_dev))
7524 			return -EEXIST;
7525 	} else {
7526 		master_dev = __netdev_master_upper_dev_get(dev);
7527 		if (master_dev)
7528 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7529 	}
7530 
7531 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7532 					    &changeupper_info.info);
7533 	ret = notifier_to_errno(ret);
7534 	if (ret)
7535 		return ret;
7536 
7537 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7538 						   master);
7539 	if (ret)
7540 		return ret;
7541 
7542 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7543 					    &changeupper_info.info);
7544 	ret = notifier_to_errno(ret);
7545 	if (ret)
7546 		goto rollback;
7547 
7548 	__netdev_update_upper_level(dev, NULL);
7549 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7550 
7551 	__netdev_update_lower_level(upper_dev, priv);
7552 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7553 				    priv);
7554 
7555 	return 0;
7556 
7557 rollback:
7558 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7559 
7560 	return ret;
7561 }
7562 
7563 /**
7564  * netdev_upper_dev_link - Add a link to the upper device
7565  * @dev: device
7566  * @upper_dev: new upper device
7567  * @extack: netlink extended ack
7568  *
7569  * Adds a link to device which is upper to this one. The caller must hold
7570  * the RTNL lock. On a failure a negative errno code is returned.
7571  * On success the reference counts are adjusted and the function
7572  * returns zero.
7573  */
7574 int netdev_upper_dev_link(struct net_device *dev,
7575 			  struct net_device *upper_dev,
7576 			  struct netlink_ext_ack *extack)
7577 {
7578 	struct netdev_nested_priv priv = {
7579 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7580 		.data = NULL,
7581 	};
7582 
7583 	return __netdev_upper_dev_link(dev, upper_dev, false,
7584 				       NULL, NULL, &priv, extack);
7585 }
7586 EXPORT_SYMBOL(netdev_upper_dev_link);
7587 
7588 /**
7589  * netdev_master_upper_dev_link - Add a master link to the upper device
7590  * @dev: device
7591  * @upper_dev: new upper device
7592  * @upper_priv: upper device private
7593  * @upper_info: upper info to be passed down via notifier
7594  * @extack: netlink extended ack
7595  *
7596  * Adds a link to device which is upper to this one. In this case, only
7597  * one master upper device can be linked, although other non-master devices
7598  * might be linked as well. The caller must hold the RTNL lock.
7599  * On a failure a negative errno code is returned. On success the reference
7600  * counts are adjusted and the function returns zero.
7601  */
7602 int netdev_master_upper_dev_link(struct net_device *dev,
7603 				 struct net_device *upper_dev,
7604 				 void *upper_priv, void *upper_info,
7605 				 struct netlink_ext_ack *extack)
7606 {
7607 	struct netdev_nested_priv priv = {
7608 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7609 		.data = NULL,
7610 	};
7611 
7612 	return __netdev_upper_dev_link(dev, upper_dev, true,
7613 				       upper_priv, upper_info, &priv, extack);
7614 }
7615 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7616 
7617 static void __netdev_upper_dev_unlink(struct net_device *dev,
7618 				      struct net_device *upper_dev,
7619 				      struct netdev_nested_priv *priv)
7620 {
7621 	struct netdev_notifier_changeupper_info changeupper_info = {
7622 		.info = {
7623 			.dev = dev,
7624 		},
7625 		.upper_dev = upper_dev,
7626 		.linking = false,
7627 	};
7628 
7629 	ASSERT_RTNL();
7630 
7631 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7632 
7633 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7634 				      &changeupper_info.info);
7635 
7636 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7637 
7638 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7639 				      &changeupper_info.info);
7640 
7641 	__netdev_update_upper_level(dev, NULL);
7642 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7643 
7644 	__netdev_update_lower_level(upper_dev, priv);
7645 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7646 				    priv);
7647 }
7648 
7649 /**
7650  * netdev_upper_dev_unlink - Removes a link to upper device
7651  * @dev: device
7652  * @upper_dev: new upper device
7653  *
7654  * Removes a link to device which is upper to this one. The caller must hold
7655  * the RTNL lock.
7656  */
7657 void netdev_upper_dev_unlink(struct net_device *dev,
7658 			     struct net_device *upper_dev)
7659 {
7660 	struct netdev_nested_priv priv = {
7661 		.flags = NESTED_SYNC_TODO,
7662 		.data = NULL,
7663 	};
7664 
7665 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7666 }
7667 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7668 
7669 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7670 				      struct net_device *lower_dev,
7671 				      bool val)
7672 {
7673 	struct netdev_adjacent *adj;
7674 
7675 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7676 	if (adj)
7677 		adj->ignore = val;
7678 
7679 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7680 	if (adj)
7681 		adj->ignore = val;
7682 }
7683 
7684 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7685 					struct net_device *lower_dev)
7686 {
7687 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7688 }
7689 
7690 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7691 				       struct net_device *lower_dev)
7692 {
7693 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7694 }
7695 
7696 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7697 				   struct net_device *new_dev,
7698 				   struct net_device *dev,
7699 				   struct netlink_ext_ack *extack)
7700 {
7701 	struct netdev_nested_priv priv = {
7702 		.flags = 0,
7703 		.data = NULL,
7704 	};
7705 	int err;
7706 
7707 	if (!new_dev)
7708 		return 0;
7709 
7710 	if (old_dev && new_dev != old_dev)
7711 		netdev_adjacent_dev_disable(dev, old_dev);
7712 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7713 				      extack);
7714 	if (err) {
7715 		if (old_dev && new_dev != old_dev)
7716 			netdev_adjacent_dev_enable(dev, old_dev);
7717 		return err;
7718 	}
7719 
7720 	return 0;
7721 }
7722 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7723 
7724 void netdev_adjacent_change_commit(struct net_device *old_dev,
7725 				   struct net_device *new_dev,
7726 				   struct net_device *dev)
7727 {
7728 	struct netdev_nested_priv priv = {
7729 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7730 		.data = NULL,
7731 	};
7732 
7733 	if (!new_dev || !old_dev)
7734 		return;
7735 
7736 	if (new_dev == old_dev)
7737 		return;
7738 
7739 	netdev_adjacent_dev_enable(dev, old_dev);
7740 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7741 }
7742 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7743 
7744 void netdev_adjacent_change_abort(struct net_device *old_dev,
7745 				  struct net_device *new_dev,
7746 				  struct net_device *dev)
7747 {
7748 	struct netdev_nested_priv priv = {
7749 		.flags = 0,
7750 		.data = NULL,
7751 	};
7752 
7753 	if (!new_dev)
7754 		return;
7755 
7756 	if (old_dev && new_dev != old_dev)
7757 		netdev_adjacent_dev_enable(dev, old_dev);
7758 
7759 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7760 }
7761 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7762 
7763 /**
7764  * netdev_bonding_info_change - Dispatch event about slave change
7765  * @dev: device
7766  * @bonding_info: info to dispatch
7767  *
7768  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7769  * The caller must hold the RTNL lock.
7770  */
7771 void netdev_bonding_info_change(struct net_device *dev,
7772 				struct netdev_bonding_info *bonding_info)
7773 {
7774 	struct netdev_notifier_bonding_info info = {
7775 		.info.dev = dev,
7776 	};
7777 
7778 	memcpy(&info.bonding_info, bonding_info,
7779 	       sizeof(struct netdev_bonding_info));
7780 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7781 				      &info.info);
7782 }
7783 EXPORT_SYMBOL(netdev_bonding_info_change);
7784 
7785 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7786 					   struct netlink_ext_ack *extack)
7787 {
7788 	struct netdev_notifier_offload_xstats_info info = {
7789 		.info.dev = dev,
7790 		.info.extack = extack,
7791 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7792 	};
7793 	int err;
7794 	int rc;
7795 
7796 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7797 					 GFP_KERNEL);
7798 	if (!dev->offload_xstats_l3)
7799 		return -ENOMEM;
7800 
7801 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7802 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7803 						  &info.info);
7804 	err = notifier_to_errno(rc);
7805 	if (err)
7806 		goto free_stats;
7807 
7808 	return 0;
7809 
7810 free_stats:
7811 	kfree(dev->offload_xstats_l3);
7812 	dev->offload_xstats_l3 = NULL;
7813 	return err;
7814 }
7815 
7816 int netdev_offload_xstats_enable(struct net_device *dev,
7817 				 enum netdev_offload_xstats_type type,
7818 				 struct netlink_ext_ack *extack)
7819 {
7820 	ASSERT_RTNL();
7821 
7822 	if (netdev_offload_xstats_enabled(dev, type))
7823 		return -EALREADY;
7824 
7825 	switch (type) {
7826 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7827 		return netdev_offload_xstats_enable_l3(dev, extack);
7828 	}
7829 
7830 	WARN_ON(1);
7831 	return -EINVAL;
7832 }
7833 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7834 
7835 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7836 {
7837 	struct netdev_notifier_offload_xstats_info info = {
7838 		.info.dev = dev,
7839 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7840 	};
7841 
7842 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7843 				      &info.info);
7844 	kfree(dev->offload_xstats_l3);
7845 	dev->offload_xstats_l3 = NULL;
7846 }
7847 
7848 int netdev_offload_xstats_disable(struct net_device *dev,
7849 				  enum netdev_offload_xstats_type type)
7850 {
7851 	ASSERT_RTNL();
7852 
7853 	if (!netdev_offload_xstats_enabled(dev, type))
7854 		return -EALREADY;
7855 
7856 	switch (type) {
7857 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7858 		netdev_offload_xstats_disable_l3(dev);
7859 		return 0;
7860 	}
7861 
7862 	WARN_ON(1);
7863 	return -EINVAL;
7864 }
7865 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7866 
7867 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7868 {
7869 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7870 }
7871 
7872 static struct rtnl_hw_stats64 *
7873 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7874 			      enum netdev_offload_xstats_type type)
7875 {
7876 	switch (type) {
7877 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7878 		return dev->offload_xstats_l3;
7879 	}
7880 
7881 	WARN_ON(1);
7882 	return NULL;
7883 }
7884 
7885 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7886 				   enum netdev_offload_xstats_type type)
7887 {
7888 	ASSERT_RTNL();
7889 
7890 	return netdev_offload_xstats_get_ptr(dev, type);
7891 }
7892 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7893 
7894 struct netdev_notifier_offload_xstats_ru {
7895 	bool used;
7896 };
7897 
7898 struct netdev_notifier_offload_xstats_rd {
7899 	struct rtnl_hw_stats64 stats;
7900 	bool used;
7901 };
7902 
7903 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
7904 				  const struct rtnl_hw_stats64 *src)
7905 {
7906 	dest->rx_packets	  += src->rx_packets;
7907 	dest->tx_packets	  += src->tx_packets;
7908 	dest->rx_bytes		  += src->rx_bytes;
7909 	dest->tx_bytes		  += src->tx_bytes;
7910 	dest->rx_errors		  += src->rx_errors;
7911 	dest->tx_errors		  += src->tx_errors;
7912 	dest->rx_dropped	  += src->rx_dropped;
7913 	dest->tx_dropped	  += src->tx_dropped;
7914 	dest->multicast		  += src->multicast;
7915 }
7916 
7917 static int netdev_offload_xstats_get_used(struct net_device *dev,
7918 					  enum netdev_offload_xstats_type type,
7919 					  bool *p_used,
7920 					  struct netlink_ext_ack *extack)
7921 {
7922 	struct netdev_notifier_offload_xstats_ru report_used = {};
7923 	struct netdev_notifier_offload_xstats_info info = {
7924 		.info.dev = dev,
7925 		.info.extack = extack,
7926 		.type = type,
7927 		.report_used = &report_used,
7928 	};
7929 	int rc;
7930 
7931 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
7932 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
7933 					   &info.info);
7934 	*p_used = report_used.used;
7935 	return notifier_to_errno(rc);
7936 }
7937 
7938 static int netdev_offload_xstats_get_stats(struct net_device *dev,
7939 					   enum netdev_offload_xstats_type type,
7940 					   struct rtnl_hw_stats64 *p_stats,
7941 					   bool *p_used,
7942 					   struct netlink_ext_ack *extack)
7943 {
7944 	struct netdev_notifier_offload_xstats_rd report_delta = {};
7945 	struct netdev_notifier_offload_xstats_info info = {
7946 		.info.dev = dev,
7947 		.info.extack = extack,
7948 		.type = type,
7949 		.report_delta = &report_delta,
7950 	};
7951 	struct rtnl_hw_stats64 *stats;
7952 	int rc;
7953 
7954 	stats = netdev_offload_xstats_get_ptr(dev, type);
7955 	if (WARN_ON(!stats))
7956 		return -EINVAL;
7957 
7958 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
7959 					   &info.info);
7960 
7961 	/* Cache whatever we got, even if there was an error, otherwise the
7962 	 * successful stats retrievals would get lost.
7963 	 */
7964 	netdev_hw_stats64_add(stats, &report_delta.stats);
7965 
7966 	if (p_stats)
7967 		*p_stats = *stats;
7968 	*p_used = report_delta.used;
7969 
7970 	return notifier_to_errno(rc);
7971 }
7972 
7973 int netdev_offload_xstats_get(struct net_device *dev,
7974 			      enum netdev_offload_xstats_type type,
7975 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
7976 			      struct netlink_ext_ack *extack)
7977 {
7978 	ASSERT_RTNL();
7979 
7980 	if (p_stats)
7981 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
7982 						       p_used, extack);
7983 	else
7984 		return netdev_offload_xstats_get_used(dev, type, p_used,
7985 						      extack);
7986 }
7987 EXPORT_SYMBOL(netdev_offload_xstats_get);
7988 
7989 void
7990 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
7991 				   const struct rtnl_hw_stats64 *stats)
7992 {
7993 	report_delta->used = true;
7994 	netdev_hw_stats64_add(&report_delta->stats, stats);
7995 }
7996 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
7997 
7998 void
7999 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8000 {
8001 	report_used->used = true;
8002 }
8003 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8004 
8005 void netdev_offload_xstats_push_delta(struct net_device *dev,
8006 				      enum netdev_offload_xstats_type type,
8007 				      const struct rtnl_hw_stats64 *p_stats)
8008 {
8009 	struct rtnl_hw_stats64 *stats;
8010 
8011 	ASSERT_RTNL();
8012 
8013 	stats = netdev_offload_xstats_get_ptr(dev, type);
8014 	if (WARN_ON(!stats))
8015 		return;
8016 
8017 	netdev_hw_stats64_add(stats, p_stats);
8018 }
8019 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8020 
8021 /**
8022  * netdev_get_xmit_slave - Get the xmit slave of master device
8023  * @dev: device
8024  * @skb: The packet
8025  * @all_slaves: assume all the slaves are active
8026  *
8027  * The reference counters are not incremented so the caller must be
8028  * careful with locks. The caller must hold RCU lock.
8029  * %NULL is returned if no slave is found.
8030  */
8031 
8032 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8033 					 struct sk_buff *skb,
8034 					 bool all_slaves)
8035 {
8036 	const struct net_device_ops *ops = dev->netdev_ops;
8037 
8038 	if (!ops->ndo_get_xmit_slave)
8039 		return NULL;
8040 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8041 }
8042 EXPORT_SYMBOL(netdev_get_xmit_slave);
8043 
8044 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8045 						  struct sock *sk)
8046 {
8047 	const struct net_device_ops *ops = dev->netdev_ops;
8048 
8049 	if (!ops->ndo_sk_get_lower_dev)
8050 		return NULL;
8051 	return ops->ndo_sk_get_lower_dev(dev, sk);
8052 }
8053 
8054 /**
8055  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8056  * @dev: device
8057  * @sk: the socket
8058  *
8059  * %NULL is returned if no lower device is found.
8060  */
8061 
8062 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8063 					    struct sock *sk)
8064 {
8065 	struct net_device *lower;
8066 
8067 	lower = netdev_sk_get_lower_dev(dev, sk);
8068 	while (lower) {
8069 		dev = lower;
8070 		lower = netdev_sk_get_lower_dev(dev, sk);
8071 	}
8072 
8073 	return dev;
8074 }
8075 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8076 
8077 static void netdev_adjacent_add_links(struct net_device *dev)
8078 {
8079 	struct netdev_adjacent *iter;
8080 
8081 	struct net *net = dev_net(dev);
8082 
8083 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8084 		if (!net_eq(net, dev_net(iter->dev)))
8085 			continue;
8086 		netdev_adjacent_sysfs_add(iter->dev, dev,
8087 					  &iter->dev->adj_list.lower);
8088 		netdev_adjacent_sysfs_add(dev, iter->dev,
8089 					  &dev->adj_list.upper);
8090 	}
8091 
8092 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8093 		if (!net_eq(net, dev_net(iter->dev)))
8094 			continue;
8095 		netdev_adjacent_sysfs_add(iter->dev, dev,
8096 					  &iter->dev->adj_list.upper);
8097 		netdev_adjacent_sysfs_add(dev, iter->dev,
8098 					  &dev->adj_list.lower);
8099 	}
8100 }
8101 
8102 static void netdev_adjacent_del_links(struct net_device *dev)
8103 {
8104 	struct netdev_adjacent *iter;
8105 
8106 	struct net *net = dev_net(dev);
8107 
8108 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8109 		if (!net_eq(net, dev_net(iter->dev)))
8110 			continue;
8111 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8112 					  &iter->dev->adj_list.lower);
8113 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8114 					  &dev->adj_list.upper);
8115 	}
8116 
8117 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8118 		if (!net_eq(net, dev_net(iter->dev)))
8119 			continue;
8120 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8121 					  &iter->dev->adj_list.upper);
8122 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8123 					  &dev->adj_list.lower);
8124 	}
8125 }
8126 
8127 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8128 {
8129 	struct netdev_adjacent *iter;
8130 
8131 	struct net *net = dev_net(dev);
8132 
8133 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8134 		if (!net_eq(net, dev_net(iter->dev)))
8135 			continue;
8136 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8137 					  &iter->dev->adj_list.lower);
8138 		netdev_adjacent_sysfs_add(iter->dev, dev,
8139 					  &iter->dev->adj_list.lower);
8140 	}
8141 
8142 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8143 		if (!net_eq(net, dev_net(iter->dev)))
8144 			continue;
8145 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8146 					  &iter->dev->adj_list.upper);
8147 		netdev_adjacent_sysfs_add(iter->dev, dev,
8148 					  &iter->dev->adj_list.upper);
8149 	}
8150 }
8151 
8152 void *netdev_lower_dev_get_private(struct net_device *dev,
8153 				   struct net_device *lower_dev)
8154 {
8155 	struct netdev_adjacent *lower;
8156 
8157 	if (!lower_dev)
8158 		return NULL;
8159 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8160 	if (!lower)
8161 		return NULL;
8162 
8163 	return lower->private;
8164 }
8165 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8166 
8167 
8168 /**
8169  * netdev_lower_state_changed - Dispatch event about lower device state change
8170  * @lower_dev: device
8171  * @lower_state_info: state to dispatch
8172  *
8173  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8174  * The caller must hold the RTNL lock.
8175  */
8176 void netdev_lower_state_changed(struct net_device *lower_dev,
8177 				void *lower_state_info)
8178 {
8179 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8180 		.info.dev = lower_dev,
8181 	};
8182 
8183 	ASSERT_RTNL();
8184 	changelowerstate_info.lower_state_info = lower_state_info;
8185 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8186 				      &changelowerstate_info.info);
8187 }
8188 EXPORT_SYMBOL(netdev_lower_state_changed);
8189 
8190 static void dev_change_rx_flags(struct net_device *dev, int flags)
8191 {
8192 	const struct net_device_ops *ops = dev->netdev_ops;
8193 
8194 	if (ops->ndo_change_rx_flags)
8195 		ops->ndo_change_rx_flags(dev, flags);
8196 }
8197 
8198 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8199 {
8200 	unsigned int old_flags = dev->flags;
8201 	kuid_t uid;
8202 	kgid_t gid;
8203 
8204 	ASSERT_RTNL();
8205 
8206 	dev->flags |= IFF_PROMISC;
8207 	dev->promiscuity += inc;
8208 	if (dev->promiscuity == 0) {
8209 		/*
8210 		 * Avoid overflow.
8211 		 * If inc causes overflow, untouch promisc and return error.
8212 		 */
8213 		if (inc < 0)
8214 			dev->flags &= ~IFF_PROMISC;
8215 		else {
8216 			dev->promiscuity -= inc;
8217 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8218 			return -EOVERFLOW;
8219 		}
8220 	}
8221 	if (dev->flags != old_flags) {
8222 		pr_info("device %s %s promiscuous mode\n",
8223 			dev->name,
8224 			dev->flags & IFF_PROMISC ? "entered" : "left");
8225 		if (audit_enabled) {
8226 			current_uid_gid(&uid, &gid);
8227 			audit_log(audit_context(), GFP_ATOMIC,
8228 				  AUDIT_ANOM_PROMISCUOUS,
8229 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8230 				  dev->name, (dev->flags & IFF_PROMISC),
8231 				  (old_flags & IFF_PROMISC),
8232 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8233 				  from_kuid(&init_user_ns, uid),
8234 				  from_kgid(&init_user_ns, gid),
8235 				  audit_get_sessionid(current));
8236 		}
8237 
8238 		dev_change_rx_flags(dev, IFF_PROMISC);
8239 	}
8240 	if (notify)
8241 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8242 	return 0;
8243 }
8244 
8245 /**
8246  *	dev_set_promiscuity	- update promiscuity count on a device
8247  *	@dev: device
8248  *	@inc: modifier
8249  *
8250  *	Add or remove promiscuity from a device. While the count in the device
8251  *	remains above zero the interface remains promiscuous. Once it hits zero
8252  *	the device reverts back to normal filtering operation. A negative inc
8253  *	value is used to drop promiscuity on the device.
8254  *	Return 0 if successful or a negative errno code on error.
8255  */
8256 int dev_set_promiscuity(struct net_device *dev, int inc)
8257 {
8258 	unsigned int old_flags = dev->flags;
8259 	int err;
8260 
8261 	err = __dev_set_promiscuity(dev, inc, true);
8262 	if (err < 0)
8263 		return err;
8264 	if (dev->flags != old_flags)
8265 		dev_set_rx_mode(dev);
8266 	return err;
8267 }
8268 EXPORT_SYMBOL(dev_set_promiscuity);
8269 
8270 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8271 {
8272 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8273 
8274 	ASSERT_RTNL();
8275 
8276 	dev->flags |= IFF_ALLMULTI;
8277 	dev->allmulti += inc;
8278 	if (dev->allmulti == 0) {
8279 		/*
8280 		 * Avoid overflow.
8281 		 * If inc causes overflow, untouch allmulti and return error.
8282 		 */
8283 		if (inc < 0)
8284 			dev->flags &= ~IFF_ALLMULTI;
8285 		else {
8286 			dev->allmulti -= inc;
8287 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8288 			return -EOVERFLOW;
8289 		}
8290 	}
8291 	if (dev->flags ^ old_flags) {
8292 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8293 		dev_set_rx_mode(dev);
8294 		if (notify)
8295 			__dev_notify_flags(dev, old_flags,
8296 					   dev->gflags ^ old_gflags);
8297 	}
8298 	return 0;
8299 }
8300 
8301 /**
8302  *	dev_set_allmulti	- update allmulti count on a device
8303  *	@dev: device
8304  *	@inc: modifier
8305  *
8306  *	Add or remove reception of all multicast frames to a device. While the
8307  *	count in the device remains above zero the interface remains listening
8308  *	to all interfaces. Once it hits zero the device reverts back to normal
8309  *	filtering operation. A negative @inc value is used to drop the counter
8310  *	when releasing a resource needing all multicasts.
8311  *	Return 0 if successful or a negative errno code on error.
8312  */
8313 
8314 int dev_set_allmulti(struct net_device *dev, int inc)
8315 {
8316 	return __dev_set_allmulti(dev, inc, true);
8317 }
8318 EXPORT_SYMBOL(dev_set_allmulti);
8319 
8320 /*
8321  *	Upload unicast and multicast address lists to device and
8322  *	configure RX filtering. When the device doesn't support unicast
8323  *	filtering it is put in promiscuous mode while unicast addresses
8324  *	are present.
8325  */
8326 void __dev_set_rx_mode(struct net_device *dev)
8327 {
8328 	const struct net_device_ops *ops = dev->netdev_ops;
8329 
8330 	/* dev_open will call this function so the list will stay sane. */
8331 	if (!(dev->flags&IFF_UP))
8332 		return;
8333 
8334 	if (!netif_device_present(dev))
8335 		return;
8336 
8337 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8338 		/* Unicast addresses changes may only happen under the rtnl,
8339 		 * therefore calling __dev_set_promiscuity here is safe.
8340 		 */
8341 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8342 			__dev_set_promiscuity(dev, 1, false);
8343 			dev->uc_promisc = true;
8344 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8345 			__dev_set_promiscuity(dev, -1, false);
8346 			dev->uc_promisc = false;
8347 		}
8348 	}
8349 
8350 	if (ops->ndo_set_rx_mode)
8351 		ops->ndo_set_rx_mode(dev);
8352 }
8353 
8354 void dev_set_rx_mode(struct net_device *dev)
8355 {
8356 	netif_addr_lock_bh(dev);
8357 	__dev_set_rx_mode(dev);
8358 	netif_addr_unlock_bh(dev);
8359 }
8360 
8361 /**
8362  *	dev_get_flags - get flags reported to userspace
8363  *	@dev: device
8364  *
8365  *	Get the combination of flag bits exported through APIs to userspace.
8366  */
8367 unsigned int dev_get_flags(const struct net_device *dev)
8368 {
8369 	unsigned int flags;
8370 
8371 	flags = (dev->flags & ~(IFF_PROMISC |
8372 				IFF_ALLMULTI |
8373 				IFF_RUNNING |
8374 				IFF_LOWER_UP |
8375 				IFF_DORMANT)) |
8376 		(dev->gflags & (IFF_PROMISC |
8377 				IFF_ALLMULTI));
8378 
8379 	if (netif_running(dev)) {
8380 		if (netif_oper_up(dev))
8381 			flags |= IFF_RUNNING;
8382 		if (netif_carrier_ok(dev))
8383 			flags |= IFF_LOWER_UP;
8384 		if (netif_dormant(dev))
8385 			flags |= IFF_DORMANT;
8386 	}
8387 
8388 	return flags;
8389 }
8390 EXPORT_SYMBOL(dev_get_flags);
8391 
8392 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8393 		       struct netlink_ext_ack *extack)
8394 {
8395 	unsigned int old_flags = dev->flags;
8396 	int ret;
8397 
8398 	ASSERT_RTNL();
8399 
8400 	/*
8401 	 *	Set the flags on our device.
8402 	 */
8403 
8404 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8405 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8406 			       IFF_AUTOMEDIA)) |
8407 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8408 				    IFF_ALLMULTI));
8409 
8410 	/*
8411 	 *	Load in the correct multicast list now the flags have changed.
8412 	 */
8413 
8414 	if ((old_flags ^ flags) & IFF_MULTICAST)
8415 		dev_change_rx_flags(dev, IFF_MULTICAST);
8416 
8417 	dev_set_rx_mode(dev);
8418 
8419 	/*
8420 	 *	Have we downed the interface. We handle IFF_UP ourselves
8421 	 *	according to user attempts to set it, rather than blindly
8422 	 *	setting it.
8423 	 */
8424 
8425 	ret = 0;
8426 	if ((old_flags ^ flags) & IFF_UP) {
8427 		if (old_flags & IFF_UP)
8428 			__dev_close(dev);
8429 		else
8430 			ret = __dev_open(dev, extack);
8431 	}
8432 
8433 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8434 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8435 		unsigned int old_flags = dev->flags;
8436 
8437 		dev->gflags ^= IFF_PROMISC;
8438 
8439 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8440 			if (dev->flags != old_flags)
8441 				dev_set_rx_mode(dev);
8442 	}
8443 
8444 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8445 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8446 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8447 	 */
8448 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8449 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8450 
8451 		dev->gflags ^= IFF_ALLMULTI;
8452 		__dev_set_allmulti(dev, inc, false);
8453 	}
8454 
8455 	return ret;
8456 }
8457 
8458 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8459 			unsigned int gchanges)
8460 {
8461 	unsigned int changes = dev->flags ^ old_flags;
8462 
8463 	if (gchanges)
8464 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8465 
8466 	if (changes & IFF_UP) {
8467 		if (dev->flags & IFF_UP)
8468 			call_netdevice_notifiers(NETDEV_UP, dev);
8469 		else
8470 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8471 	}
8472 
8473 	if (dev->flags & IFF_UP &&
8474 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8475 		struct netdev_notifier_change_info change_info = {
8476 			.info = {
8477 				.dev = dev,
8478 			},
8479 			.flags_changed = changes,
8480 		};
8481 
8482 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8483 	}
8484 }
8485 
8486 /**
8487  *	dev_change_flags - change device settings
8488  *	@dev: device
8489  *	@flags: device state flags
8490  *	@extack: netlink extended ack
8491  *
8492  *	Change settings on device based state flags. The flags are
8493  *	in the userspace exported format.
8494  */
8495 int dev_change_flags(struct net_device *dev, unsigned int flags,
8496 		     struct netlink_ext_ack *extack)
8497 {
8498 	int ret;
8499 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8500 
8501 	ret = __dev_change_flags(dev, flags, extack);
8502 	if (ret < 0)
8503 		return ret;
8504 
8505 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8506 	__dev_notify_flags(dev, old_flags, changes);
8507 	return ret;
8508 }
8509 EXPORT_SYMBOL(dev_change_flags);
8510 
8511 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8512 {
8513 	const struct net_device_ops *ops = dev->netdev_ops;
8514 
8515 	if (ops->ndo_change_mtu)
8516 		return ops->ndo_change_mtu(dev, new_mtu);
8517 
8518 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8519 	WRITE_ONCE(dev->mtu, new_mtu);
8520 	return 0;
8521 }
8522 EXPORT_SYMBOL(__dev_set_mtu);
8523 
8524 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8525 		     struct netlink_ext_ack *extack)
8526 {
8527 	/* MTU must be positive, and in range */
8528 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8529 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8530 		return -EINVAL;
8531 	}
8532 
8533 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8534 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8535 		return -EINVAL;
8536 	}
8537 	return 0;
8538 }
8539 
8540 /**
8541  *	dev_set_mtu_ext - Change maximum transfer unit
8542  *	@dev: device
8543  *	@new_mtu: new transfer unit
8544  *	@extack: netlink extended ack
8545  *
8546  *	Change the maximum transfer size of the network device.
8547  */
8548 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8549 		    struct netlink_ext_ack *extack)
8550 {
8551 	int err, orig_mtu;
8552 
8553 	if (new_mtu == dev->mtu)
8554 		return 0;
8555 
8556 	err = dev_validate_mtu(dev, new_mtu, extack);
8557 	if (err)
8558 		return err;
8559 
8560 	if (!netif_device_present(dev))
8561 		return -ENODEV;
8562 
8563 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8564 	err = notifier_to_errno(err);
8565 	if (err)
8566 		return err;
8567 
8568 	orig_mtu = dev->mtu;
8569 	err = __dev_set_mtu(dev, new_mtu);
8570 
8571 	if (!err) {
8572 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8573 						   orig_mtu);
8574 		err = notifier_to_errno(err);
8575 		if (err) {
8576 			/* setting mtu back and notifying everyone again,
8577 			 * so that they have a chance to revert changes.
8578 			 */
8579 			__dev_set_mtu(dev, orig_mtu);
8580 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8581 						     new_mtu);
8582 		}
8583 	}
8584 	return err;
8585 }
8586 
8587 int dev_set_mtu(struct net_device *dev, int new_mtu)
8588 {
8589 	struct netlink_ext_ack extack;
8590 	int err;
8591 
8592 	memset(&extack, 0, sizeof(extack));
8593 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8594 	if (err && extack._msg)
8595 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8596 	return err;
8597 }
8598 EXPORT_SYMBOL(dev_set_mtu);
8599 
8600 /**
8601  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8602  *	@dev: device
8603  *	@new_len: new tx queue length
8604  */
8605 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8606 {
8607 	unsigned int orig_len = dev->tx_queue_len;
8608 	int res;
8609 
8610 	if (new_len != (unsigned int)new_len)
8611 		return -ERANGE;
8612 
8613 	if (new_len != orig_len) {
8614 		dev->tx_queue_len = new_len;
8615 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8616 		res = notifier_to_errno(res);
8617 		if (res)
8618 			goto err_rollback;
8619 		res = dev_qdisc_change_tx_queue_len(dev);
8620 		if (res)
8621 			goto err_rollback;
8622 	}
8623 
8624 	return 0;
8625 
8626 err_rollback:
8627 	netdev_err(dev, "refused to change device tx_queue_len\n");
8628 	dev->tx_queue_len = orig_len;
8629 	return res;
8630 }
8631 
8632 /**
8633  *	dev_set_group - Change group this device belongs to
8634  *	@dev: device
8635  *	@new_group: group this device should belong to
8636  */
8637 void dev_set_group(struct net_device *dev, int new_group)
8638 {
8639 	dev->group = new_group;
8640 }
8641 EXPORT_SYMBOL(dev_set_group);
8642 
8643 /**
8644  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8645  *	@dev: device
8646  *	@addr: new address
8647  *	@extack: netlink extended ack
8648  */
8649 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8650 			      struct netlink_ext_ack *extack)
8651 {
8652 	struct netdev_notifier_pre_changeaddr_info info = {
8653 		.info.dev = dev,
8654 		.info.extack = extack,
8655 		.dev_addr = addr,
8656 	};
8657 	int rc;
8658 
8659 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8660 	return notifier_to_errno(rc);
8661 }
8662 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8663 
8664 /**
8665  *	dev_set_mac_address - Change Media Access Control Address
8666  *	@dev: device
8667  *	@sa: new address
8668  *	@extack: netlink extended ack
8669  *
8670  *	Change the hardware (MAC) address of the device
8671  */
8672 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8673 			struct netlink_ext_ack *extack)
8674 {
8675 	const struct net_device_ops *ops = dev->netdev_ops;
8676 	int err;
8677 
8678 	if (!ops->ndo_set_mac_address)
8679 		return -EOPNOTSUPP;
8680 	if (sa->sa_family != dev->type)
8681 		return -EINVAL;
8682 	if (!netif_device_present(dev))
8683 		return -ENODEV;
8684 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8685 	if (err)
8686 		return err;
8687 	err = ops->ndo_set_mac_address(dev, sa);
8688 	if (err)
8689 		return err;
8690 	dev->addr_assign_type = NET_ADDR_SET;
8691 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8692 	add_device_randomness(dev->dev_addr, dev->addr_len);
8693 	return 0;
8694 }
8695 EXPORT_SYMBOL(dev_set_mac_address);
8696 
8697 static DECLARE_RWSEM(dev_addr_sem);
8698 
8699 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8700 			     struct netlink_ext_ack *extack)
8701 {
8702 	int ret;
8703 
8704 	down_write(&dev_addr_sem);
8705 	ret = dev_set_mac_address(dev, sa, extack);
8706 	up_write(&dev_addr_sem);
8707 	return ret;
8708 }
8709 EXPORT_SYMBOL(dev_set_mac_address_user);
8710 
8711 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8712 {
8713 	size_t size = sizeof(sa->sa_data);
8714 	struct net_device *dev;
8715 	int ret = 0;
8716 
8717 	down_read(&dev_addr_sem);
8718 	rcu_read_lock();
8719 
8720 	dev = dev_get_by_name_rcu(net, dev_name);
8721 	if (!dev) {
8722 		ret = -ENODEV;
8723 		goto unlock;
8724 	}
8725 	if (!dev->addr_len)
8726 		memset(sa->sa_data, 0, size);
8727 	else
8728 		memcpy(sa->sa_data, dev->dev_addr,
8729 		       min_t(size_t, size, dev->addr_len));
8730 	sa->sa_family = dev->type;
8731 
8732 unlock:
8733 	rcu_read_unlock();
8734 	up_read(&dev_addr_sem);
8735 	return ret;
8736 }
8737 EXPORT_SYMBOL(dev_get_mac_address);
8738 
8739 /**
8740  *	dev_change_carrier - Change device carrier
8741  *	@dev: device
8742  *	@new_carrier: new value
8743  *
8744  *	Change device carrier
8745  */
8746 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8747 {
8748 	const struct net_device_ops *ops = dev->netdev_ops;
8749 
8750 	if (!ops->ndo_change_carrier)
8751 		return -EOPNOTSUPP;
8752 	if (!netif_device_present(dev))
8753 		return -ENODEV;
8754 	return ops->ndo_change_carrier(dev, new_carrier);
8755 }
8756 EXPORT_SYMBOL(dev_change_carrier);
8757 
8758 /**
8759  *	dev_get_phys_port_id - Get device physical port ID
8760  *	@dev: device
8761  *	@ppid: port ID
8762  *
8763  *	Get device physical port ID
8764  */
8765 int dev_get_phys_port_id(struct net_device *dev,
8766 			 struct netdev_phys_item_id *ppid)
8767 {
8768 	const struct net_device_ops *ops = dev->netdev_ops;
8769 
8770 	if (!ops->ndo_get_phys_port_id)
8771 		return -EOPNOTSUPP;
8772 	return ops->ndo_get_phys_port_id(dev, ppid);
8773 }
8774 EXPORT_SYMBOL(dev_get_phys_port_id);
8775 
8776 /**
8777  *	dev_get_phys_port_name - Get device physical port name
8778  *	@dev: device
8779  *	@name: port name
8780  *	@len: limit of bytes to copy to name
8781  *
8782  *	Get device physical port name
8783  */
8784 int dev_get_phys_port_name(struct net_device *dev,
8785 			   char *name, size_t len)
8786 {
8787 	const struct net_device_ops *ops = dev->netdev_ops;
8788 	int err;
8789 
8790 	if (ops->ndo_get_phys_port_name) {
8791 		err = ops->ndo_get_phys_port_name(dev, name, len);
8792 		if (err != -EOPNOTSUPP)
8793 			return err;
8794 	}
8795 	return devlink_compat_phys_port_name_get(dev, name, len);
8796 }
8797 EXPORT_SYMBOL(dev_get_phys_port_name);
8798 
8799 /**
8800  *	dev_get_port_parent_id - Get the device's port parent identifier
8801  *	@dev: network device
8802  *	@ppid: pointer to a storage for the port's parent identifier
8803  *	@recurse: allow/disallow recursion to lower devices
8804  *
8805  *	Get the devices's port parent identifier
8806  */
8807 int dev_get_port_parent_id(struct net_device *dev,
8808 			   struct netdev_phys_item_id *ppid,
8809 			   bool recurse)
8810 {
8811 	const struct net_device_ops *ops = dev->netdev_ops;
8812 	struct netdev_phys_item_id first = { };
8813 	struct net_device *lower_dev;
8814 	struct list_head *iter;
8815 	int err;
8816 
8817 	if (ops->ndo_get_port_parent_id) {
8818 		err = ops->ndo_get_port_parent_id(dev, ppid);
8819 		if (err != -EOPNOTSUPP)
8820 			return err;
8821 	}
8822 
8823 	err = devlink_compat_switch_id_get(dev, ppid);
8824 	if (!recurse || err != -EOPNOTSUPP)
8825 		return err;
8826 
8827 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8828 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8829 		if (err)
8830 			break;
8831 		if (!first.id_len)
8832 			first = *ppid;
8833 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8834 			return -EOPNOTSUPP;
8835 	}
8836 
8837 	return err;
8838 }
8839 EXPORT_SYMBOL(dev_get_port_parent_id);
8840 
8841 /**
8842  *	netdev_port_same_parent_id - Indicate if two network devices have
8843  *	the same port parent identifier
8844  *	@a: first network device
8845  *	@b: second network device
8846  */
8847 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8848 {
8849 	struct netdev_phys_item_id a_id = { };
8850 	struct netdev_phys_item_id b_id = { };
8851 
8852 	if (dev_get_port_parent_id(a, &a_id, true) ||
8853 	    dev_get_port_parent_id(b, &b_id, true))
8854 		return false;
8855 
8856 	return netdev_phys_item_id_same(&a_id, &b_id);
8857 }
8858 EXPORT_SYMBOL(netdev_port_same_parent_id);
8859 
8860 /**
8861  *	dev_change_proto_down - set carrier according to proto_down.
8862  *
8863  *	@dev: device
8864  *	@proto_down: new value
8865  */
8866 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8867 {
8868 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8869 		return -EOPNOTSUPP;
8870 	if (!netif_device_present(dev))
8871 		return -ENODEV;
8872 	if (proto_down)
8873 		netif_carrier_off(dev);
8874 	else
8875 		netif_carrier_on(dev);
8876 	dev->proto_down = proto_down;
8877 	return 0;
8878 }
8879 EXPORT_SYMBOL(dev_change_proto_down);
8880 
8881 /**
8882  *	dev_change_proto_down_reason - proto down reason
8883  *
8884  *	@dev: device
8885  *	@mask: proto down mask
8886  *	@value: proto down value
8887  */
8888 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8889 				  u32 value)
8890 {
8891 	int b;
8892 
8893 	if (!mask) {
8894 		dev->proto_down_reason = value;
8895 	} else {
8896 		for_each_set_bit(b, &mask, 32) {
8897 			if (value & (1 << b))
8898 				dev->proto_down_reason |= BIT(b);
8899 			else
8900 				dev->proto_down_reason &= ~BIT(b);
8901 		}
8902 	}
8903 }
8904 EXPORT_SYMBOL(dev_change_proto_down_reason);
8905 
8906 struct bpf_xdp_link {
8907 	struct bpf_link link;
8908 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8909 	int flags;
8910 };
8911 
8912 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8913 {
8914 	if (flags & XDP_FLAGS_HW_MODE)
8915 		return XDP_MODE_HW;
8916 	if (flags & XDP_FLAGS_DRV_MODE)
8917 		return XDP_MODE_DRV;
8918 	if (flags & XDP_FLAGS_SKB_MODE)
8919 		return XDP_MODE_SKB;
8920 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8921 }
8922 
8923 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8924 {
8925 	switch (mode) {
8926 	case XDP_MODE_SKB:
8927 		return generic_xdp_install;
8928 	case XDP_MODE_DRV:
8929 	case XDP_MODE_HW:
8930 		return dev->netdev_ops->ndo_bpf;
8931 	default:
8932 		return NULL;
8933 	}
8934 }
8935 
8936 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8937 					 enum bpf_xdp_mode mode)
8938 {
8939 	return dev->xdp_state[mode].link;
8940 }
8941 
8942 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8943 				     enum bpf_xdp_mode mode)
8944 {
8945 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8946 
8947 	if (link)
8948 		return link->link.prog;
8949 	return dev->xdp_state[mode].prog;
8950 }
8951 
8952 u8 dev_xdp_prog_count(struct net_device *dev)
8953 {
8954 	u8 count = 0;
8955 	int i;
8956 
8957 	for (i = 0; i < __MAX_XDP_MODE; i++)
8958 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8959 			count++;
8960 	return count;
8961 }
8962 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
8963 
8964 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8965 {
8966 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8967 
8968 	return prog ? prog->aux->id : 0;
8969 }
8970 
8971 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8972 			     struct bpf_xdp_link *link)
8973 {
8974 	dev->xdp_state[mode].link = link;
8975 	dev->xdp_state[mode].prog = NULL;
8976 }
8977 
8978 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8979 			     struct bpf_prog *prog)
8980 {
8981 	dev->xdp_state[mode].link = NULL;
8982 	dev->xdp_state[mode].prog = prog;
8983 }
8984 
8985 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8986 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8987 			   u32 flags, struct bpf_prog *prog)
8988 {
8989 	struct netdev_bpf xdp;
8990 	int err;
8991 
8992 	memset(&xdp, 0, sizeof(xdp));
8993 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8994 	xdp.extack = extack;
8995 	xdp.flags = flags;
8996 	xdp.prog = prog;
8997 
8998 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
8999 	 * "moved" into driver), so they don't increment it on their own, but
9000 	 * they do decrement refcnt when program is detached or replaced.
9001 	 * Given net_device also owns link/prog, we need to bump refcnt here
9002 	 * to prevent drivers from underflowing it.
9003 	 */
9004 	if (prog)
9005 		bpf_prog_inc(prog);
9006 	err = bpf_op(dev, &xdp);
9007 	if (err) {
9008 		if (prog)
9009 			bpf_prog_put(prog);
9010 		return err;
9011 	}
9012 
9013 	if (mode != XDP_MODE_HW)
9014 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9015 
9016 	return 0;
9017 }
9018 
9019 static void dev_xdp_uninstall(struct net_device *dev)
9020 {
9021 	struct bpf_xdp_link *link;
9022 	struct bpf_prog *prog;
9023 	enum bpf_xdp_mode mode;
9024 	bpf_op_t bpf_op;
9025 
9026 	ASSERT_RTNL();
9027 
9028 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9029 		prog = dev_xdp_prog(dev, mode);
9030 		if (!prog)
9031 			continue;
9032 
9033 		bpf_op = dev_xdp_bpf_op(dev, mode);
9034 		if (!bpf_op)
9035 			continue;
9036 
9037 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9038 
9039 		/* auto-detach link from net device */
9040 		link = dev_xdp_link(dev, mode);
9041 		if (link)
9042 			link->dev = NULL;
9043 		else
9044 			bpf_prog_put(prog);
9045 
9046 		dev_xdp_set_link(dev, mode, NULL);
9047 	}
9048 }
9049 
9050 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9051 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9052 			  struct bpf_prog *old_prog, u32 flags)
9053 {
9054 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9055 	struct bpf_prog *cur_prog;
9056 	struct net_device *upper;
9057 	struct list_head *iter;
9058 	enum bpf_xdp_mode mode;
9059 	bpf_op_t bpf_op;
9060 	int err;
9061 
9062 	ASSERT_RTNL();
9063 
9064 	/* either link or prog attachment, never both */
9065 	if (link && (new_prog || old_prog))
9066 		return -EINVAL;
9067 	/* link supports only XDP mode flags */
9068 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9069 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9070 		return -EINVAL;
9071 	}
9072 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9073 	if (num_modes > 1) {
9074 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9075 		return -EINVAL;
9076 	}
9077 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9078 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9079 		NL_SET_ERR_MSG(extack,
9080 			       "More than one program loaded, unset mode is ambiguous");
9081 		return -EINVAL;
9082 	}
9083 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9084 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9085 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9086 		return -EINVAL;
9087 	}
9088 
9089 	mode = dev_xdp_mode(dev, flags);
9090 	/* can't replace attached link */
9091 	if (dev_xdp_link(dev, mode)) {
9092 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9093 		return -EBUSY;
9094 	}
9095 
9096 	/* don't allow if an upper device already has a program */
9097 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9098 		if (dev_xdp_prog_count(upper) > 0) {
9099 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9100 			return -EEXIST;
9101 		}
9102 	}
9103 
9104 	cur_prog = dev_xdp_prog(dev, mode);
9105 	/* can't replace attached prog with link */
9106 	if (link && cur_prog) {
9107 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9108 		return -EBUSY;
9109 	}
9110 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9111 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9112 		return -EEXIST;
9113 	}
9114 
9115 	/* put effective new program into new_prog */
9116 	if (link)
9117 		new_prog = link->link.prog;
9118 
9119 	if (new_prog) {
9120 		bool offload = mode == XDP_MODE_HW;
9121 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9122 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9123 
9124 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9125 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9126 			return -EBUSY;
9127 		}
9128 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9129 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9130 			return -EEXIST;
9131 		}
9132 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9133 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9134 			return -EINVAL;
9135 		}
9136 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9137 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9138 			return -EINVAL;
9139 		}
9140 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9141 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9142 			return -EINVAL;
9143 		}
9144 	}
9145 
9146 	/* don't call drivers if the effective program didn't change */
9147 	if (new_prog != cur_prog) {
9148 		bpf_op = dev_xdp_bpf_op(dev, mode);
9149 		if (!bpf_op) {
9150 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9151 			return -EOPNOTSUPP;
9152 		}
9153 
9154 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9155 		if (err)
9156 			return err;
9157 	}
9158 
9159 	if (link)
9160 		dev_xdp_set_link(dev, mode, link);
9161 	else
9162 		dev_xdp_set_prog(dev, mode, new_prog);
9163 	if (cur_prog)
9164 		bpf_prog_put(cur_prog);
9165 
9166 	return 0;
9167 }
9168 
9169 static int dev_xdp_attach_link(struct net_device *dev,
9170 			       struct netlink_ext_ack *extack,
9171 			       struct bpf_xdp_link *link)
9172 {
9173 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9174 }
9175 
9176 static int dev_xdp_detach_link(struct net_device *dev,
9177 			       struct netlink_ext_ack *extack,
9178 			       struct bpf_xdp_link *link)
9179 {
9180 	enum bpf_xdp_mode mode;
9181 	bpf_op_t bpf_op;
9182 
9183 	ASSERT_RTNL();
9184 
9185 	mode = dev_xdp_mode(dev, link->flags);
9186 	if (dev_xdp_link(dev, mode) != link)
9187 		return -EINVAL;
9188 
9189 	bpf_op = dev_xdp_bpf_op(dev, mode);
9190 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9191 	dev_xdp_set_link(dev, mode, NULL);
9192 	return 0;
9193 }
9194 
9195 static void bpf_xdp_link_release(struct bpf_link *link)
9196 {
9197 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9198 
9199 	rtnl_lock();
9200 
9201 	/* if racing with net_device's tear down, xdp_link->dev might be
9202 	 * already NULL, in which case link was already auto-detached
9203 	 */
9204 	if (xdp_link->dev) {
9205 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9206 		xdp_link->dev = NULL;
9207 	}
9208 
9209 	rtnl_unlock();
9210 }
9211 
9212 static int bpf_xdp_link_detach(struct bpf_link *link)
9213 {
9214 	bpf_xdp_link_release(link);
9215 	return 0;
9216 }
9217 
9218 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9219 {
9220 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9221 
9222 	kfree(xdp_link);
9223 }
9224 
9225 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9226 				     struct seq_file *seq)
9227 {
9228 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9229 	u32 ifindex = 0;
9230 
9231 	rtnl_lock();
9232 	if (xdp_link->dev)
9233 		ifindex = xdp_link->dev->ifindex;
9234 	rtnl_unlock();
9235 
9236 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9237 }
9238 
9239 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9240 				       struct bpf_link_info *info)
9241 {
9242 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9243 	u32 ifindex = 0;
9244 
9245 	rtnl_lock();
9246 	if (xdp_link->dev)
9247 		ifindex = xdp_link->dev->ifindex;
9248 	rtnl_unlock();
9249 
9250 	info->xdp.ifindex = ifindex;
9251 	return 0;
9252 }
9253 
9254 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9255 			       struct bpf_prog *old_prog)
9256 {
9257 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9258 	enum bpf_xdp_mode mode;
9259 	bpf_op_t bpf_op;
9260 	int err = 0;
9261 
9262 	rtnl_lock();
9263 
9264 	/* link might have been auto-released already, so fail */
9265 	if (!xdp_link->dev) {
9266 		err = -ENOLINK;
9267 		goto out_unlock;
9268 	}
9269 
9270 	if (old_prog && link->prog != old_prog) {
9271 		err = -EPERM;
9272 		goto out_unlock;
9273 	}
9274 	old_prog = link->prog;
9275 	if (old_prog->type != new_prog->type ||
9276 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9277 		err = -EINVAL;
9278 		goto out_unlock;
9279 	}
9280 
9281 	if (old_prog == new_prog) {
9282 		/* no-op, don't disturb drivers */
9283 		bpf_prog_put(new_prog);
9284 		goto out_unlock;
9285 	}
9286 
9287 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9288 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9289 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9290 			      xdp_link->flags, new_prog);
9291 	if (err)
9292 		goto out_unlock;
9293 
9294 	old_prog = xchg(&link->prog, new_prog);
9295 	bpf_prog_put(old_prog);
9296 
9297 out_unlock:
9298 	rtnl_unlock();
9299 	return err;
9300 }
9301 
9302 static const struct bpf_link_ops bpf_xdp_link_lops = {
9303 	.release = bpf_xdp_link_release,
9304 	.dealloc = bpf_xdp_link_dealloc,
9305 	.detach = bpf_xdp_link_detach,
9306 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9307 	.fill_link_info = bpf_xdp_link_fill_link_info,
9308 	.update_prog = bpf_xdp_link_update,
9309 };
9310 
9311 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9312 {
9313 	struct net *net = current->nsproxy->net_ns;
9314 	struct bpf_link_primer link_primer;
9315 	struct bpf_xdp_link *link;
9316 	struct net_device *dev;
9317 	int err, fd;
9318 
9319 	rtnl_lock();
9320 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9321 	if (!dev) {
9322 		rtnl_unlock();
9323 		return -EINVAL;
9324 	}
9325 
9326 	link = kzalloc(sizeof(*link), GFP_USER);
9327 	if (!link) {
9328 		err = -ENOMEM;
9329 		goto unlock;
9330 	}
9331 
9332 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9333 	link->dev = dev;
9334 	link->flags = attr->link_create.flags;
9335 
9336 	err = bpf_link_prime(&link->link, &link_primer);
9337 	if (err) {
9338 		kfree(link);
9339 		goto unlock;
9340 	}
9341 
9342 	err = dev_xdp_attach_link(dev, NULL, link);
9343 	rtnl_unlock();
9344 
9345 	if (err) {
9346 		link->dev = NULL;
9347 		bpf_link_cleanup(&link_primer);
9348 		goto out_put_dev;
9349 	}
9350 
9351 	fd = bpf_link_settle(&link_primer);
9352 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9353 	dev_put(dev);
9354 	return fd;
9355 
9356 unlock:
9357 	rtnl_unlock();
9358 
9359 out_put_dev:
9360 	dev_put(dev);
9361 	return err;
9362 }
9363 
9364 /**
9365  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9366  *	@dev: device
9367  *	@extack: netlink extended ack
9368  *	@fd: new program fd or negative value to clear
9369  *	@expected_fd: old program fd that userspace expects to replace or clear
9370  *	@flags: xdp-related flags
9371  *
9372  *	Set or clear a bpf program for a device
9373  */
9374 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9375 		      int fd, int expected_fd, u32 flags)
9376 {
9377 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9378 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9379 	int err;
9380 
9381 	ASSERT_RTNL();
9382 
9383 	if (fd >= 0) {
9384 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9385 						 mode != XDP_MODE_SKB);
9386 		if (IS_ERR(new_prog))
9387 			return PTR_ERR(new_prog);
9388 	}
9389 
9390 	if (expected_fd >= 0) {
9391 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9392 						 mode != XDP_MODE_SKB);
9393 		if (IS_ERR(old_prog)) {
9394 			err = PTR_ERR(old_prog);
9395 			old_prog = NULL;
9396 			goto err_out;
9397 		}
9398 	}
9399 
9400 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9401 
9402 err_out:
9403 	if (err && new_prog)
9404 		bpf_prog_put(new_prog);
9405 	if (old_prog)
9406 		bpf_prog_put(old_prog);
9407 	return err;
9408 }
9409 
9410 /**
9411  *	dev_new_index	-	allocate an ifindex
9412  *	@net: the applicable net namespace
9413  *
9414  *	Returns a suitable unique value for a new device interface
9415  *	number.  The caller must hold the rtnl semaphore or the
9416  *	dev_base_lock to be sure it remains unique.
9417  */
9418 static int dev_new_index(struct net *net)
9419 {
9420 	int ifindex = net->ifindex;
9421 
9422 	for (;;) {
9423 		if (++ifindex <= 0)
9424 			ifindex = 1;
9425 		if (!__dev_get_by_index(net, ifindex))
9426 			return net->ifindex = ifindex;
9427 	}
9428 }
9429 
9430 /* Delayed registration/unregisteration */
9431 static LIST_HEAD(net_todo_list);
9432 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9433 
9434 static void net_set_todo(struct net_device *dev)
9435 {
9436 	list_add_tail(&dev->todo_list, &net_todo_list);
9437 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9438 }
9439 
9440 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9441 	struct net_device *upper, netdev_features_t features)
9442 {
9443 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9444 	netdev_features_t feature;
9445 	int feature_bit;
9446 
9447 	for_each_netdev_feature(upper_disables, feature_bit) {
9448 		feature = __NETIF_F_BIT(feature_bit);
9449 		if (!(upper->wanted_features & feature)
9450 		    && (features & feature)) {
9451 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9452 				   &feature, upper->name);
9453 			features &= ~feature;
9454 		}
9455 	}
9456 
9457 	return features;
9458 }
9459 
9460 static void netdev_sync_lower_features(struct net_device *upper,
9461 	struct net_device *lower, netdev_features_t features)
9462 {
9463 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9464 	netdev_features_t feature;
9465 	int feature_bit;
9466 
9467 	for_each_netdev_feature(upper_disables, feature_bit) {
9468 		feature = __NETIF_F_BIT(feature_bit);
9469 		if (!(features & feature) && (lower->features & feature)) {
9470 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9471 				   &feature, lower->name);
9472 			lower->wanted_features &= ~feature;
9473 			__netdev_update_features(lower);
9474 
9475 			if (unlikely(lower->features & feature))
9476 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9477 					    &feature, lower->name);
9478 			else
9479 				netdev_features_change(lower);
9480 		}
9481 	}
9482 }
9483 
9484 static netdev_features_t netdev_fix_features(struct net_device *dev,
9485 	netdev_features_t features)
9486 {
9487 	/* Fix illegal checksum combinations */
9488 	if ((features & NETIF_F_HW_CSUM) &&
9489 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9490 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9491 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9492 	}
9493 
9494 	/* TSO requires that SG is present as well. */
9495 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9496 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9497 		features &= ~NETIF_F_ALL_TSO;
9498 	}
9499 
9500 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9501 					!(features & NETIF_F_IP_CSUM)) {
9502 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9503 		features &= ~NETIF_F_TSO;
9504 		features &= ~NETIF_F_TSO_ECN;
9505 	}
9506 
9507 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9508 					 !(features & NETIF_F_IPV6_CSUM)) {
9509 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9510 		features &= ~NETIF_F_TSO6;
9511 	}
9512 
9513 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9514 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9515 		features &= ~NETIF_F_TSO_MANGLEID;
9516 
9517 	/* TSO ECN requires that TSO is present as well. */
9518 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9519 		features &= ~NETIF_F_TSO_ECN;
9520 
9521 	/* Software GSO depends on SG. */
9522 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9523 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9524 		features &= ~NETIF_F_GSO;
9525 	}
9526 
9527 	/* GSO partial features require GSO partial be set */
9528 	if ((features & dev->gso_partial_features) &&
9529 	    !(features & NETIF_F_GSO_PARTIAL)) {
9530 		netdev_dbg(dev,
9531 			   "Dropping partially supported GSO features since no GSO partial.\n");
9532 		features &= ~dev->gso_partial_features;
9533 	}
9534 
9535 	if (!(features & NETIF_F_RXCSUM)) {
9536 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9537 		 * successfully merged by hardware must also have the
9538 		 * checksum verified by hardware.  If the user does not
9539 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9540 		 */
9541 		if (features & NETIF_F_GRO_HW) {
9542 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9543 			features &= ~NETIF_F_GRO_HW;
9544 		}
9545 	}
9546 
9547 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9548 	if (features & NETIF_F_RXFCS) {
9549 		if (features & NETIF_F_LRO) {
9550 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9551 			features &= ~NETIF_F_LRO;
9552 		}
9553 
9554 		if (features & NETIF_F_GRO_HW) {
9555 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9556 			features &= ~NETIF_F_GRO_HW;
9557 		}
9558 	}
9559 
9560 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9561 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9562 		features &= ~NETIF_F_LRO;
9563 	}
9564 
9565 	if (features & NETIF_F_HW_TLS_TX) {
9566 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9567 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9568 		bool hw_csum = features & NETIF_F_HW_CSUM;
9569 
9570 		if (!ip_csum && !hw_csum) {
9571 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9572 			features &= ~NETIF_F_HW_TLS_TX;
9573 		}
9574 	}
9575 
9576 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9577 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9578 		features &= ~NETIF_F_HW_TLS_RX;
9579 	}
9580 
9581 	return features;
9582 }
9583 
9584 int __netdev_update_features(struct net_device *dev)
9585 {
9586 	struct net_device *upper, *lower;
9587 	netdev_features_t features;
9588 	struct list_head *iter;
9589 	int err = -1;
9590 
9591 	ASSERT_RTNL();
9592 
9593 	features = netdev_get_wanted_features(dev);
9594 
9595 	if (dev->netdev_ops->ndo_fix_features)
9596 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9597 
9598 	/* driver might be less strict about feature dependencies */
9599 	features = netdev_fix_features(dev, features);
9600 
9601 	/* some features can't be enabled if they're off on an upper device */
9602 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9603 		features = netdev_sync_upper_features(dev, upper, features);
9604 
9605 	if (dev->features == features)
9606 		goto sync_lower;
9607 
9608 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9609 		&dev->features, &features);
9610 
9611 	if (dev->netdev_ops->ndo_set_features)
9612 		err = dev->netdev_ops->ndo_set_features(dev, features);
9613 	else
9614 		err = 0;
9615 
9616 	if (unlikely(err < 0)) {
9617 		netdev_err(dev,
9618 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9619 			err, &features, &dev->features);
9620 		/* return non-0 since some features might have changed and
9621 		 * it's better to fire a spurious notification than miss it
9622 		 */
9623 		return -1;
9624 	}
9625 
9626 sync_lower:
9627 	/* some features must be disabled on lower devices when disabled
9628 	 * on an upper device (think: bonding master or bridge)
9629 	 */
9630 	netdev_for_each_lower_dev(dev, lower, iter)
9631 		netdev_sync_lower_features(dev, lower, features);
9632 
9633 	if (!err) {
9634 		netdev_features_t diff = features ^ dev->features;
9635 
9636 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9637 			/* udp_tunnel_{get,drop}_rx_info both need
9638 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9639 			 * device, or they won't do anything.
9640 			 * Thus we need to update dev->features
9641 			 * *before* calling udp_tunnel_get_rx_info,
9642 			 * but *after* calling udp_tunnel_drop_rx_info.
9643 			 */
9644 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9645 				dev->features = features;
9646 				udp_tunnel_get_rx_info(dev);
9647 			} else {
9648 				udp_tunnel_drop_rx_info(dev);
9649 			}
9650 		}
9651 
9652 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9653 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9654 				dev->features = features;
9655 				err |= vlan_get_rx_ctag_filter_info(dev);
9656 			} else {
9657 				vlan_drop_rx_ctag_filter_info(dev);
9658 			}
9659 		}
9660 
9661 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9662 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9663 				dev->features = features;
9664 				err |= vlan_get_rx_stag_filter_info(dev);
9665 			} else {
9666 				vlan_drop_rx_stag_filter_info(dev);
9667 			}
9668 		}
9669 
9670 		dev->features = features;
9671 	}
9672 
9673 	return err < 0 ? 0 : 1;
9674 }
9675 
9676 /**
9677  *	netdev_update_features - recalculate device features
9678  *	@dev: the device to check
9679  *
9680  *	Recalculate dev->features set and send notifications if it
9681  *	has changed. Should be called after driver or hardware dependent
9682  *	conditions might have changed that influence the features.
9683  */
9684 void netdev_update_features(struct net_device *dev)
9685 {
9686 	if (__netdev_update_features(dev))
9687 		netdev_features_change(dev);
9688 }
9689 EXPORT_SYMBOL(netdev_update_features);
9690 
9691 /**
9692  *	netdev_change_features - recalculate device features
9693  *	@dev: the device to check
9694  *
9695  *	Recalculate dev->features set and send notifications even
9696  *	if they have not changed. Should be called instead of
9697  *	netdev_update_features() if also dev->vlan_features might
9698  *	have changed to allow the changes to be propagated to stacked
9699  *	VLAN devices.
9700  */
9701 void netdev_change_features(struct net_device *dev)
9702 {
9703 	__netdev_update_features(dev);
9704 	netdev_features_change(dev);
9705 }
9706 EXPORT_SYMBOL(netdev_change_features);
9707 
9708 /**
9709  *	netif_stacked_transfer_operstate -	transfer operstate
9710  *	@rootdev: the root or lower level device to transfer state from
9711  *	@dev: the device to transfer operstate to
9712  *
9713  *	Transfer operational state from root to device. This is normally
9714  *	called when a stacking relationship exists between the root
9715  *	device and the device(a leaf device).
9716  */
9717 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9718 					struct net_device *dev)
9719 {
9720 	if (rootdev->operstate == IF_OPER_DORMANT)
9721 		netif_dormant_on(dev);
9722 	else
9723 		netif_dormant_off(dev);
9724 
9725 	if (rootdev->operstate == IF_OPER_TESTING)
9726 		netif_testing_on(dev);
9727 	else
9728 		netif_testing_off(dev);
9729 
9730 	if (netif_carrier_ok(rootdev))
9731 		netif_carrier_on(dev);
9732 	else
9733 		netif_carrier_off(dev);
9734 }
9735 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9736 
9737 static int netif_alloc_rx_queues(struct net_device *dev)
9738 {
9739 	unsigned int i, count = dev->num_rx_queues;
9740 	struct netdev_rx_queue *rx;
9741 	size_t sz = count * sizeof(*rx);
9742 	int err = 0;
9743 
9744 	BUG_ON(count < 1);
9745 
9746 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9747 	if (!rx)
9748 		return -ENOMEM;
9749 
9750 	dev->_rx = rx;
9751 
9752 	for (i = 0; i < count; i++) {
9753 		rx[i].dev = dev;
9754 
9755 		/* XDP RX-queue setup */
9756 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9757 		if (err < 0)
9758 			goto err_rxq_info;
9759 	}
9760 	return 0;
9761 
9762 err_rxq_info:
9763 	/* Rollback successful reg's and free other resources */
9764 	while (i--)
9765 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9766 	kvfree(dev->_rx);
9767 	dev->_rx = NULL;
9768 	return err;
9769 }
9770 
9771 static void netif_free_rx_queues(struct net_device *dev)
9772 {
9773 	unsigned int i, count = dev->num_rx_queues;
9774 
9775 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9776 	if (!dev->_rx)
9777 		return;
9778 
9779 	for (i = 0; i < count; i++)
9780 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9781 
9782 	kvfree(dev->_rx);
9783 }
9784 
9785 static void netdev_init_one_queue(struct net_device *dev,
9786 				  struct netdev_queue *queue, void *_unused)
9787 {
9788 	/* Initialize queue lock */
9789 	spin_lock_init(&queue->_xmit_lock);
9790 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9791 	queue->xmit_lock_owner = -1;
9792 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9793 	queue->dev = dev;
9794 #ifdef CONFIG_BQL
9795 	dql_init(&queue->dql, HZ);
9796 #endif
9797 }
9798 
9799 static void netif_free_tx_queues(struct net_device *dev)
9800 {
9801 	kvfree(dev->_tx);
9802 }
9803 
9804 static int netif_alloc_netdev_queues(struct net_device *dev)
9805 {
9806 	unsigned int count = dev->num_tx_queues;
9807 	struct netdev_queue *tx;
9808 	size_t sz = count * sizeof(*tx);
9809 
9810 	if (count < 1 || count > 0xffff)
9811 		return -EINVAL;
9812 
9813 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9814 	if (!tx)
9815 		return -ENOMEM;
9816 
9817 	dev->_tx = tx;
9818 
9819 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9820 	spin_lock_init(&dev->tx_global_lock);
9821 
9822 	return 0;
9823 }
9824 
9825 void netif_tx_stop_all_queues(struct net_device *dev)
9826 {
9827 	unsigned int i;
9828 
9829 	for (i = 0; i < dev->num_tx_queues; i++) {
9830 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9831 
9832 		netif_tx_stop_queue(txq);
9833 	}
9834 }
9835 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9836 
9837 /**
9838  *	register_netdevice	- register a network device
9839  *	@dev: device to register
9840  *
9841  *	Take a completed network device structure and add it to the kernel
9842  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9843  *	chain. 0 is returned on success. A negative errno code is returned
9844  *	on a failure to set up the device, or if the name is a duplicate.
9845  *
9846  *	Callers must hold the rtnl semaphore. You may want
9847  *	register_netdev() instead of this.
9848  *
9849  *	BUGS:
9850  *	The locking appears insufficient to guarantee two parallel registers
9851  *	will not get the same name.
9852  */
9853 
9854 int register_netdevice(struct net_device *dev)
9855 {
9856 	int ret;
9857 	struct net *net = dev_net(dev);
9858 
9859 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9860 		     NETDEV_FEATURE_COUNT);
9861 	BUG_ON(dev_boot_phase);
9862 	ASSERT_RTNL();
9863 
9864 	might_sleep();
9865 
9866 	/* When net_device's are persistent, this will be fatal. */
9867 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9868 	BUG_ON(!net);
9869 
9870 	ret = ethtool_check_ops(dev->ethtool_ops);
9871 	if (ret)
9872 		return ret;
9873 
9874 	spin_lock_init(&dev->addr_list_lock);
9875 	netdev_set_addr_lockdep_class(dev);
9876 
9877 	ret = dev_get_valid_name(net, dev, dev->name);
9878 	if (ret < 0)
9879 		goto out;
9880 
9881 	ret = -ENOMEM;
9882 	dev->name_node = netdev_name_node_head_alloc(dev);
9883 	if (!dev->name_node)
9884 		goto out;
9885 
9886 	/* Init, if this function is available */
9887 	if (dev->netdev_ops->ndo_init) {
9888 		ret = dev->netdev_ops->ndo_init(dev);
9889 		if (ret) {
9890 			if (ret > 0)
9891 				ret = -EIO;
9892 			goto err_free_name;
9893 		}
9894 	}
9895 
9896 	if (((dev->hw_features | dev->features) &
9897 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9898 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9899 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9900 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9901 		ret = -EINVAL;
9902 		goto err_uninit;
9903 	}
9904 
9905 	ret = -EBUSY;
9906 	if (!dev->ifindex)
9907 		dev->ifindex = dev_new_index(net);
9908 	else if (__dev_get_by_index(net, dev->ifindex))
9909 		goto err_uninit;
9910 
9911 	/* Transfer changeable features to wanted_features and enable
9912 	 * software offloads (GSO and GRO).
9913 	 */
9914 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9915 	dev->features |= NETIF_F_SOFT_FEATURES;
9916 
9917 	if (dev->udp_tunnel_nic_info) {
9918 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9919 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9920 	}
9921 
9922 	dev->wanted_features = dev->features & dev->hw_features;
9923 
9924 	if (!(dev->flags & IFF_LOOPBACK))
9925 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9926 
9927 	/* If IPv4 TCP segmentation offload is supported we should also
9928 	 * allow the device to enable segmenting the frame with the option
9929 	 * of ignoring a static IP ID value.  This doesn't enable the
9930 	 * feature itself but allows the user to enable it later.
9931 	 */
9932 	if (dev->hw_features & NETIF_F_TSO)
9933 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9934 	if (dev->vlan_features & NETIF_F_TSO)
9935 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9936 	if (dev->mpls_features & NETIF_F_TSO)
9937 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9938 	if (dev->hw_enc_features & NETIF_F_TSO)
9939 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9940 
9941 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9942 	 */
9943 	dev->vlan_features |= NETIF_F_HIGHDMA;
9944 
9945 	/* Make NETIF_F_SG inheritable to tunnel devices.
9946 	 */
9947 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9948 
9949 	/* Make NETIF_F_SG inheritable to MPLS.
9950 	 */
9951 	dev->mpls_features |= NETIF_F_SG;
9952 
9953 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9954 	ret = notifier_to_errno(ret);
9955 	if (ret)
9956 		goto err_uninit;
9957 
9958 	ret = netdev_register_kobject(dev);
9959 	if (ret) {
9960 		dev->reg_state = NETREG_UNREGISTERED;
9961 		goto err_uninit;
9962 	}
9963 	dev->reg_state = NETREG_REGISTERED;
9964 
9965 	__netdev_update_features(dev);
9966 
9967 	/*
9968 	 *	Default initial state at registry is that the
9969 	 *	device is present.
9970 	 */
9971 
9972 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9973 
9974 	linkwatch_init_dev(dev);
9975 
9976 	dev_init_scheduler(dev);
9977 
9978 	dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
9979 	list_netdevice(dev);
9980 
9981 	add_device_randomness(dev->dev_addr, dev->addr_len);
9982 
9983 	/* If the device has permanent device address, driver should
9984 	 * set dev_addr and also addr_assign_type should be set to
9985 	 * NET_ADDR_PERM (default value).
9986 	 */
9987 	if (dev->addr_assign_type == NET_ADDR_PERM)
9988 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9989 
9990 	/* Notify protocols, that a new device appeared. */
9991 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9992 	ret = notifier_to_errno(ret);
9993 	if (ret) {
9994 		/* Expect explicit free_netdev() on failure */
9995 		dev->needs_free_netdev = false;
9996 		unregister_netdevice_queue(dev, NULL);
9997 		goto out;
9998 	}
9999 	/*
10000 	 *	Prevent userspace races by waiting until the network
10001 	 *	device is fully setup before sending notifications.
10002 	 */
10003 	if (!dev->rtnl_link_ops ||
10004 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10005 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10006 
10007 out:
10008 	return ret;
10009 
10010 err_uninit:
10011 	if (dev->netdev_ops->ndo_uninit)
10012 		dev->netdev_ops->ndo_uninit(dev);
10013 	if (dev->priv_destructor)
10014 		dev->priv_destructor(dev);
10015 err_free_name:
10016 	netdev_name_node_free(dev->name_node);
10017 	goto out;
10018 }
10019 EXPORT_SYMBOL(register_netdevice);
10020 
10021 /**
10022  *	init_dummy_netdev	- init a dummy network device for NAPI
10023  *	@dev: device to init
10024  *
10025  *	This takes a network device structure and initialize the minimum
10026  *	amount of fields so it can be used to schedule NAPI polls without
10027  *	registering a full blown interface. This is to be used by drivers
10028  *	that need to tie several hardware interfaces to a single NAPI
10029  *	poll scheduler due to HW limitations.
10030  */
10031 int init_dummy_netdev(struct net_device *dev)
10032 {
10033 	/* Clear everything. Note we don't initialize spinlocks
10034 	 * are they aren't supposed to be taken by any of the
10035 	 * NAPI code and this dummy netdev is supposed to be
10036 	 * only ever used for NAPI polls
10037 	 */
10038 	memset(dev, 0, sizeof(struct net_device));
10039 
10040 	/* make sure we BUG if trying to hit standard
10041 	 * register/unregister code path
10042 	 */
10043 	dev->reg_state = NETREG_DUMMY;
10044 
10045 	/* NAPI wants this */
10046 	INIT_LIST_HEAD(&dev->napi_list);
10047 
10048 	/* a dummy interface is started by default */
10049 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10050 	set_bit(__LINK_STATE_START, &dev->state);
10051 
10052 	/* napi_busy_loop stats accounting wants this */
10053 	dev_net_set(dev, &init_net);
10054 
10055 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10056 	 * because users of this 'device' dont need to change
10057 	 * its refcount.
10058 	 */
10059 
10060 	return 0;
10061 }
10062 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10063 
10064 
10065 /**
10066  *	register_netdev	- register a network device
10067  *	@dev: device to register
10068  *
10069  *	Take a completed network device structure and add it to the kernel
10070  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10071  *	chain. 0 is returned on success. A negative errno code is returned
10072  *	on a failure to set up the device, or if the name is a duplicate.
10073  *
10074  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10075  *	and expands the device name if you passed a format string to
10076  *	alloc_netdev.
10077  */
10078 int register_netdev(struct net_device *dev)
10079 {
10080 	int err;
10081 
10082 	if (rtnl_lock_killable())
10083 		return -EINTR;
10084 	err = register_netdevice(dev);
10085 	rtnl_unlock();
10086 	return err;
10087 }
10088 EXPORT_SYMBOL(register_netdev);
10089 
10090 int netdev_refcnt_read(const struct net_device *dev)
10091 {
10092 #ifdef CONFIG_PCPU_DEV_REFCNT
10093 	int i, refcnt = 0;
10094 
10095 	for_each_possible_cpu(i)
10096 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10097 	return refcnt;
10098 #else
10099 	return refcount_read(&dev->dev_refcnt);
10100 #endif
10101 }
10102 EXPORT_SYMBOL(netdev_refcnt_read);
10103 
10104 int netdev_unregister_timeout_secs __read_mostly = 10;
10105 
10106 #define WAIT_REFS_MIN_MSECS 1
10107 #define WAIT_REFS_MAX_MSECS 250
10108 /**
10109  * netdev_wait_allrefs_any - wait until all references are gone.
10110  * @list: list of net_devices to wait on
10111  *
10112  * This is called when unregistering network devices.
10113  *
10114  * Any protocol or device that holds a reference should register
10115  * for netdevice notification, and cleanup and put back the
10116  * reference if they receive an UNREGISTER event.
10117  * We can get stuck here if buggy protocols don't correctly
10118  * call dev_put.
10119  */
10120 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10121 {
10122 	unsigned long rebroadcast_time, warning_time;
10123 	struct net_device *dev;
10124 	int wait = 0;
10125 
10126 	rebroadcast_time = warning_time = jiffies;
10127 
10128 	list_for_each_entry(dev, list, todo_list)
10129 		if (netdev_refcnt_read(dev) == 1)
10130 			return dev;
10131 
10132 	while (true) {
10133 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10134 			rtnl_lock();
10135 
10136 			/* Rebroadcast unregister notification */
10137 			list_for_each_entry(dev, list, todo_list)
10138 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10139 
10140 			__rtnl_unlock();
10141 			rcu_barrier();
10142 			rtnl_lock();
10143 
10144 			list_for_each_entry(dev, list, todo_list)
10145 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10146 					     &dev->state)) {
10147 					/* We must not have linkwatch events
10148 					 * pending on unregister. If this
10149 					 * happens, we simply run the queue
10150 					 * unscheduled, resulting in a noop
10151 					 * for this device.
10152 					 */
10153 					linkwatch_run_queue();
10154 					break;
10155 				}
10156 
10157 			__rtnl_unlock();
10158 
10159 			rebroadcast_time = jiffies;
10160 		}
10161 
10162 		if (!wait) {
10163 			rcu_barrier();
10164 			wait = WAIT_REFS_MIN_MSECS;
10165 		} else {
10166 			msleep(wait);
10167 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10168 		}
10169 
10170 		list_for_each_entry(dev, list, todo_list)
10171 			if (netdev_refcnt_read(dev) == 1)
10172 				return dev;
10173 
10174 		if (time_after(jiffies, warning_time +
10175 			       netdev_unregister_timeout_secs * HZ)) {
10176 			list_for_each_entry(dev, list, todo_list) {
10177 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10178 					 dev->name, netdev_refcnt_read(dev));
10179 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10180 			}
10181 
10182 			warning_time = jiffies;
10183 		}
10184 	}
10185 }
10186 
10187 /* The sequence is:
10188  *
10189  *	rtnl_lock();
10190  *	...
10191  *	register_netdevice(x1);
10192  *	register_netdevice(x2);
10193  *	...
10194  *	unregister_netdevice(y1);
10195  *	unregister_netdevice(y2);
10196  *      ...
10197  *	rtnl_unlock();
10198  *	free_netdev(y1);
10199  *	free_netdev(y2);
10200  *
10201  * We are invoked by rtnl_unlock().
10202  * This allows us to deal with problems:
10203  * 1) We can delete sysfs objects which invoke hotplug
10204  *    without deadlocking with linkwatch via keventd.
10205  * 2) Since we run with the RTNL semaphore not held, we can sleep
10206  *    safely in order to wait for the netdev refcnt to drop to zero.
10207  *
10208  * We must not return until all unregister events added during
10209  * the interval the lock was held have been completed.
10210  */
10211 void netdev_run_todo(void)
10212 {
10213 	struct net_device *dev, *tmp;
10214 	struct list_head list;
10215 #ifdef CONFIG_LOCKDEP
10216 	struct list_head unlink_list;
10217 
10218 	list_replace_init(&net_unlink_list, &unlink_list);
10219 
10220 	while (!list_empty(&unlink_list)) {
10221 		struct net_device *dev = list_first_entry(&unlink_list,
10222 							  struct net_device,
10223 							  unlink_list);
10224 		list_del_init(&dev->unlink_list);
10225 		dev->nested_level = dev->lower_level - 1;
10226 	}
10227 #endif
10228 
10229 	/* Snapshot list, allow later requests */
10230 	list_replace_init(&net_todo_list, &list);
10231 
10232 	__rtnl_unlock();
10233 
10234 	/* Wait for rcu callbacks to finish before next phase */
10235 	if (!list_empty(&list))
10236 		rcu_barrier();
10237 
10238 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10239 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10240 			netdev_WARN(dev, "run_todo but not unregistering\n");
10241 			list_del(&dev->todo_list);
10242 			continue;
10243 		}
10244 
10245 		dev->reg_state = NETREG_UNREGISTERED;
10246 		linkwatch_forget_dev(dev);
10247 	}
10248 
10249 	while (!list_empty(&list)) {
10250 		dev = netdev_wait_allrefs_any(&list);
10251 		list_del(&dev->todo_list);
10252 
10253 		/* paranoia */
10254 		BUG_ON(netdev_refcnt_read(dev) != 1);
10255 		BUG_ON(!list_empty(&dev->ptype_all));
10256 		BUG_ON(!list_empty(&dev->ptype_specific));
10257 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10258 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10259 #if IS_ENABLED(CONFIG_DECNET)
10260 		WARN_ON(dev->dn_ptr);
10261 #endif
10262 		if (dev->priv_destructor)
10263 			dev->priv_destructor(dev);
10264 		if (dev->needs_free_netdev)
10265 			free_netdev(dev);
10266 
10267 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10268 			wake_up(&netdev_unregistering_wq);
10269 
10270 		/* Free network device */
10271 		kobject_put(&dev->dev.kobj);
10272 	}
10273 }
10274 
10275 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10276  * all the same fields in the same order as net_device_stats, with only
10277  * the type differing, but rtnl_link_stats64 may have additional fields
10278  * at the end for newer counters.
10279  */
10280 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10281 			     const struct net_device_stats *netdev_stats)
10282 {
10283 #if BITS_PER_LONG == 64
10284 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10285 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10286 	/* zero out counters that only exist in rtnl_link_stats64 */
10287 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10288 	       sizeof(*stats64) - sizeof(*netdev_stats));
10289 #else
10290 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10291 	const unsigned long *src = (const unsigned long *)netdev_stats;
10292 	u64 *dst = (u64 *)stats64;
10293 
10294 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10295 	for (i = 0; i < n; i++)
10296 		dst[i] = src[i];
10297 	/* zero out counters that only exist in rtnl_link_stats64 */
10298 	memset((char *)stats64 + n * sizeof(u64), 0,
10299 	       sizeof(*stats64) - n * sizeof(u64));
10300 #endif
10301 }
10302 EXPORT_SYMBOL(netdev_stats_to_stats64);
10303 
10304 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10305 {
10306 	struct net_device_core_stats __percpu *p;
10307 
10308 	p = alloc_percpu_gfp(struct net_device_core_stats,
10309 			     GFP_ATOMIC | __GFP_NOWARN);
10310 
10311 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10312 		free_percpu(p);
10313 
10314 	/* This READ_ONCE() pairs with the cmpxchg() above */
10315 	return READ_ONCE(dev->core_stats);
10316 }
10317 EXPORT_SYMBOL(netdev_core_stats_alloc);
10318 
10319 /**
10320  *	dev_get_stats	- get network device statistics
10321  *	@dev: device to get statistics from
10322  *	@storage: place to store stats
10323  *
10324  *	Get network statistics from device. Return @storage.
10325  *	The device driver may provide its own method by setting
10326  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10327  *	otherwise the internal statistics structure is used.
10328  */
10329 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10330 					struct rtnl_link_stats64 *storage)
10331 {
10332 	const struct net_device_ops *ops = dev->netdev_ops;
10333 	const struct net_device_core_stats __percpu *p;
10334 
10335 	if (ops->ndo_get_stats64) {
10336 		memset(storage, 0, sizeof(*storage));
10337 		ops->ndo_get_stats64(dev, storage);
10338 	} else if (ops->ndo_get_stats) {
10339 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10340 	} else {
10341 		netdev_stats_to_stats64(storage, &dev->stats);
10342 	}
10343 
10344 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10345 	p = READ_ONCE(dev->core_stats);
10346 	if (p) {
10347 		const struct net_device_core_stats *core_stats;
10348 		int i;
10349 
10350 		for_each_possible_cpu(i) {
10351 			core_stats = per_cpu_ptr(p, i);
10352 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10353 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10354 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10355 		}
10356 	}
10357 	return storage;
10358 }
10359 EXPORT_SYMBOL(dev_get_stats);
10360 
10361 /**
10362  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10363  *	@s: place to store stats
10364  *	@netstats: per-cpu network stats to read from
10365  *
10366  *	Read per-cpu network statistics and populate the related fields in @s.
10367  */
10368 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10369 			   const struct pcpu_sw_netstats __percpu *netstats)
10370 {
10371 	int cpu;
10372 
10373 	for_each_possible_cpu(cpu) {
10374 		const struct pcpu_sw_netstats *stats;
10375 		struct pcpu_sw_netstats tmp;
10376 		unsigned int start;
10377 
10378 		stats = per_cpu_ptr(netstats, cpu);
10379 		do {
10380 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10381 			tmp.rx_packets = stats->rx_packets;
10382 			tmp.rx_bytes   = stats->rx_bytes;
10383 			tmp.tx_packets = stats->tx_packets;
10384 			tmp.tx_bytes   = stats->tx_bytes;
10385 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10386 
10387 		s->rx_packets += tmp.rx_packets;
10388 		s->rx_bytes   += tmp.rx_bytes;
10389 		s->tx_packets += tmp.tx_packets;
10390 		s->tx_bytes   += tmp.tx_bytes;
10391 	}
10392 }
10393 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10394 
10395 /**
10396  *	dev_get_tstats64 - ndo_get_stats64 implementation
10397  *	@dev: device to get statistics from
10398  *	@s: place to store stats
10399  *
10400  *	Populate @s from dev->stats and dev->tstats. Can be used as
10401  *	ndo_get_stats64() callback.
10402  */
10403 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10404 {
10405 	netdev_stats_to_stats64(s, &dev->stats);
10406 	dev_fetch_sw_netstats(s, dev->tstats);
10407 }
10408 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10409 
10410 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10411 {
10412 	struct netdev_queue *queue = dev_ingress_queue(dev);
10413 
10414 #ifdef CONFIG_NET_CLS_ACT
10415 	if (queue)
10416 		return queue;
10417 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10418 	if (!queue)
10419 		return NULL;
10420 	netdev_init_one_queue(dev, queue, NULL);
10421 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10422 	queue->qdisc_sleeping = &noop_qdisc;
10423 	rcu_assign_pointer(dev->ingress_queue, queue);
10424 #endif
10425 	return queue;
10426 }
10427 
10428 static const struct ethtool_ops default_ethtool_ops;
10429 
10430 void netdev_set_default_ethtool_ops(struct net_device *dev,
10431 				    const struct ethtool_ops *ops)
10432 {
10433 	if (dev->ethtool_ops == &default_ethtool_ops)
10434 		dev->ethtool_ops = ops;
10435 }
10436 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10437 
10438 void netdev_freemem(struct net_device *dev)
10439 {
10440 	char *addr = (char *)dev - dev->padded;
10441 
10442 	kvfree(addr);
10443 }
10444 
10445 /**
10446  * alloc_netdev_mqs - allocate network device
10447  * @sizeof_priv: size of private data to allocate space for
10448  * @name: device name format string
10449  * @name_assign_type: origin of device name
10450  * @setup: callback to initialize device
10451  * @txqs: the number of TX subqueues to allocate
10452  * @rxqs: the number of RX subqueues to allocate
10453  *
10454  * Allocates a struct net_device with private data area for driver use
10455  * and performs basic initialization.  Also allocates subqueue structs
10456  * for each queue on the device.
10457  */
10458 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10459 		unsigned char name_assign_type,
10460 		void (*setup)(struct net_device *),
10461 		unsigned int txqs, unsigned int rxqs)
10462 {
10463 	struct net_device *dev;
10464 	unsigned int alloc_size;
10465 	struct net_device *p;
10466 
10467 	BUG_ON(strlen(name) >= sizeof(dev->name));
10468 
10469 	if (txqs < 1) {
10470 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10471 		return NULL;
10472 	}
10473 
10474 	if (rxqs < 1) {
10475 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10476 		return NULL;
10477 	}
10478 
10479 	alloc_size = sizeof(struct net_device);
10480 	if (sizeof_priv) {
10481 		/* ensure 32-byte alignment of private area */
10482 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10483 		alloc_size += sizeof_priv;
10484 	}
10485 	/* ensure 32-byte alignment of whole construct */
10486 	alloc_size += NETDEV_ALIGN - 1;
10487 
10488 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10489 	if (!p)
10490 		return NULL;
10491 
10492 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10493 	dev->padded = (char *)dev - (char *)p;
10494 
10495 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10496 #ifdef CONFIG_PCPU_DEV_REFCNT
10497 	dev->pcpu_refcnt = alloc_percpu(int);
10498 	if (!dev->pcpu_refcnt)
10499 		goto free_dev;
10500 	__dev_hold(dev);
10501 #else
10502 	refcount_set(&dev->dev_refcnt, 1);
10503 #endif
10504 
10505 	if (dev_addr_init(dev))
10506 		goto free_pcpu;
10507 
10508 	dev_mc_init(dev);
10509 	dev_uc_init(dev);
10510 
10511 	dev_net_set(dev, &init_net);
10512 
10513 	dev->gso_max_size = GSO_MAX_SIZE;
10514 	dev->gso_max_segs = GSO_MAX_SEGS;
10515 	dev->gro_max_size = GRO_MAX_SIZE;
10516 	dev->upper_level = 1;
10517 	dev->lower_level = 1;
10518 #ifdef CONFIG_LOCKDEP
10519 	dev->nested_level = 0;
10520 	INIT_LIST_HEAD(&dev->unlink_list);
10521 #endif
10522 
10523 	INIT_LIST_HEAD(&dev->napi_list);
10524 	INIT_LIST_HEAD(&dev->unreg_list);
10525 	INIT_LIST_HEAD(&dev->close_list);
10526 	INIT_LIST_HEAD(&dev->link_watch_list);
10527 	INIT_LIST_HEAD(&dev->adj_list.upper);
10528 	INIT_LIST_HEAD(&dev->adj_list.lower);
10529 	INIT_LIST_HEAD(&dev->ptype_all);
10530 	INIT_LIST_HEAD(&dev->ptype_specific);
10531 	INIT_LIST_HEAD(&dev->net_notifier_list);
10532 #ifdef CONFIG_NET_SCHED
10533 	hash_init(dev->qdisc_hash);
10534 #endif
10535 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10536 	setup(dev);
10537 
10538 	if (!dev->tx_queue_len) {
10539 		dev->priv_flags |= IFF_NO_QUEUE;
10540 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10541 	}
10542 
10543 	dev->num_tx_queues = txqs;
10544 	dev->real_num_tx_queues = txqs;
10545 	if (netif_alloc_netdev_queues(dev))
10546 		goto free_all;
10547 
10548 	dev->num_rx_queues = rxqs;
10549 	dev->real_num_rx_queues = rxqs;
10550 	if (netif_alloc_rx_queues(dev))
10551 		goto free_all;
10552 
10553 	strcpy(dev->name, name);
10554 	dev->name_assign_type = name_assign_type;
10555 	dev->group = INIT_NETDEV_GROUP;
10556 	if (!dev->ethtool_ops)
10557 		dev->ethtool_ops = &default_ethtool_ops;
10558 
10559 	nf_hook_netdev_init(dev);
10560 
10561 	return dev;
10562 
10563 free_all:
10564 	free_netdev(dev);
10565 	return NULL;
10566 
10567 free_pcpu:
10568 #ifdef CONFIG_PCPU_DEV_REFCNT
10569 	free_percpu(dev->pcpu_refcnt);
10570 free_dev:
10571 #endif
10572 	netdev_freemem(dev);
10573 	return NULL;
10574 }
10575 EXPORT_SYMBOL(alloc_netdev_mqs);
10576 
10577 /**
10578  * free_netdev - free network device
10579  * @dev: device
10580  *
10581  * This function does the last stage of destroying an allocated device
10582  * interface. The reference to the device object is released. If this
10583  * is the last reference then it will be freed.Must be called in process
10584  * context.
10585  */
10586 void free_netdev(struct net_device *dev)
10587 {
10588 	struct napi_struct *p, *n;
10589 
10590 	might_sleep();
10591 
10592 	/* When called immediately after register_netdevice() failed the unwind
10593 	 * handling may still be dismantling the device. Handle that case by
10594 	 * deferring the free.
10595 	 */
10596 	if (dev->reg_state == NETREG_UNREGISTERING) {
10597 		ASSERT_RTNL();
10598 		dev->needs_free_netdev = true;
10599 		return;
10600 	}
10601 
10602 	netif_free_tx_queues(dev);
10603 	netif_free_rx_queues(dev);
10604 
10605 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10606 
10607 	/* Flush device addresses */
10608 	dev_addr_flush(dev);
10609 
10610 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10611 		netif_napi_del(p);
10612 
10613 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10614 #ifdef CONFIG_PCPU_DEV_REFCNT
10615 	free_percpu(dev->pcpu_refcnt);
10616 	dev->pcpu_refcnt = NULL;
10617 #endif
10618 	free_percpu(dev->core_stats);
10619 	dev->core_stats = NULL;
10620 	free_percpu(dev->xdp_bulkq);
10621 	dev->xdp_bulkq = NULL;
10622 
10623 	/*  Compatibility with error handling in drivers */
10624 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10625 		netdev_freemem(dev);
10626 		return;
10627 	}
10628 
10629 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10630 	dev->reg_state = NETREG_RELEASED;
10631 
10632 	/* will free via device release */
10633 	put_device(&dev->dev);
10634 }
10635 EXPORT_SYMBOL(free_netdev);
10636 
10637 /**
10638  *	synchronize_net -  Synchronize with packet receive processing
10639  *
10640  *	Wait for packets currently being received to be done.
10641  *	Does not block later packets from starting.
10642  */
10643 void synchronize_net(void)
10644 {
10645 	might_sleep();
10646 	if (rtnl_is_locked())
10647 		synchronize_rcu_expedited();
10648 	else
10649 		synchronize_rcu();
10650 }
10651 EXPORT_SYMBOL(synchronize_net);
10652 
10653 /**
10654  *	unregister_netdevice_queue - remove device from the kernel
10655  *	@dev: device
10656  *	@head: list
10657  *
10658  *	This function shuts down a device interface and removes it
10659  *	from the kernel tables.
10660  *	If head not NULL, device is queued to be unregistered later.
10661  *
10662  *	Callers must hold the rtnl semaphore.  You may want
10663  *	unregister_netdev() instead of this.
10664  */
10665 
10666 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10667 {
10668 	ASSERT_RTNL();
10669 
10670 	if (head) {
10671 		list_move_tail(&dev->unreg_list, head);
10672 	} else {
10673 		LIST_HEAD(single);
10674 
10675 		list_add(&dev->unreg_list, &single);
10676 		unregister_netdevice_many(&single);
10677 	}
10678 }
10679 EXPORT_SYMBOL(unregister_netdevice_queue);
10680 
10681 /**
10682  *	unregister_netdevice_many - unregister many devices
10683  *	@head: list of devices
10684  *
10685  *  Note: As most callers use a stack allocated list_head,
10686  *  we force a list_del() to make sure stack wont be corrupted later.
10687  */
10688 void unregister_netdevice_many(struct list_head *head)
10689 {
10690 	struct net_device *dev, *tmp;
10691 	LIST_HEAD(close_head);
10692 
10693 	BUG_ON(dev_boot_phase);
10694 	ASSERT_RTNL();
10695 
10696 	if (list_empty(head))
10697 		return;
10698 
10699 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10700 		/* Some devices call without registering
10701 		 * for initialization unwind. Remove those
10702 		 * devices and proceed with the remaining.
10703 		 */
10704 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10705 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10706 				 dev->name, dev);
10707 
10708 			WARN_ON(1);
10709 			list_del(&dev->unreg_list);
10710 			continue;
10711 		}
10712 		dev->dismantle = true;
10713 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10714 	}
10715 
10716 	/* If device is running, close it first. */
10717 	list_for_each_entry(dev, head, unreg_list)
10718 		list_add_tail(&dev->close_list, &close_head);
10719 	dev_close_many(&close_head, true);
10720 
10721 	list_for_each_entry(dev, head, unreg_list) {
10722 		/* And unlink it from device chain. */
10723 		unlist_netdevice(dev);
10724 
10725 		dev->reg_state = NETREG_UNREGISTERING;
10726 	}
10727 	flush_all_backlogs();
10728 
10729 	synchronize_net();
10730 
10731 	list_for_each_entry(dev, head, unreg_list) {
10732 		struct sk_buff *skb = NULL;
10733 
10734 		/* Shutdown queueing discipline. */
10735 		dev_shutdown(dev);
10736 
10737 		dev_xdp_uninstall(dev);
10738 
10739 		netdev_offload_xstats_disable_all(dev);
10740 
10741 		/* Notify protocols, that we are about to destroy
10742 		 * this device. They should clean all the things.
10743 		 */
10744 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10745 
10746 		if (!dev->rtnl_link_ops ||
10747 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10748 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10749 						     GFP_KERNEL, NULL, 0);
10750 
10751 		/*
10752 		 *	Flush the unicast and multicast chains
10753 		 */
10754 		dev_uc_flush(dev);
10755 		dev_mc_flush(dev);
10756 
10757 		netdev_name_node_alt_flush(dev);
10758 		netdev_name_node_free(dev->name_node);
10759 
10760 		if (dev->netdev_ops->ndo_uninit)
10761 			dev->netdev_ops->ndo_uninit(dev);
10762 
10763 		if (skb)
10764 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10765 
10766 		/* Notifier chain MUST detach us all upper devices. */
10767 		WARN_ON(netdev_has_any_upper_dev(dev));
10768 		WARN_ON(netdev_has_any_lower_dev(dev));
10769 
10770 		/* Remove entries from kobject tree */
10771 		netdev_unregister_kobject(dev);
10772 #ifdef CONFIG_XPS
10773 		/* Remove XPS queueing entries */
10774 		netif_reset_xps_queues_gt(dev, 0);
10775 #endif
10776 	}
10777 
10778 	synchronize_net();
10779 
10780 	list_for_each_entry(dev, head, unreg_list) {
10781 		dev_put_track(dev, &dev->dev_registered_tracker);
10782 		net_set_todo(dev);
10783 	}
10784 
10785 	list_del(head);
10786 }
10787 EXPORT_SYMBOL(unregister_netdevice_many);
10788 
10789 /**
10790  *	unregister_netdev - remove device from the kernel
10791  *	@dev: device
10792  *
10793  *	This function shuts down a device interface and removes it
10794  *	from the kernel tables.
10795  *
10796  *	This is just a wrapper for unregister_netdevice that takes
10797  *	the rtnl semaphore.  In general you want to use this and not
10798  *	unregister_netdevice.
10799  */
10800 void unregister_netdev(struct net_device *dev)
10801 {
10802 	rtnl_lock();
10803 	unregister_netdevice(dev);
10804 	rtnl_unlock();
10805 }
10806 EXPORT_SYMBOL(unregister_netdev);
10807 
10808 /**
10809  *	__dev_change_net_namespace - move device to different nethost namespace
10810  *	@dev: device
10811  *	@net: network namespace
10812  *	@pat: If not NULL name pattern to try if the current device name
10813  *	      is already taken in the destination network namespace.
10814  *	@new_ifindex: If not zero, specifies device index in the target
10815  *	              namespace.
10816  *
10817  *	This function shuts down a device interface and moves it
10818  *	to a new network namespace. On success 0 is returned, on
10819  *	a failure a netagive errno code is returned.
10820  *
10821  *	Callers must hold the rtnl semaphore.
10822  */
10823 
10824 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10825 			       const char *pat, int new_ifindex)
10826 {
10827 	struct net *net_old = dev_net(dev);
10828 	int err, new_nsid;
10829 
10830 	ASSERT_RTNL();
10831 
10832 	/* Don't allow namespace local devices to be moved. */
10833 	err = -EINVAL;
10834 	if (dev->features & NETIF_F_NETNS_LOCAL)
10835 		goto out;
10836 
10837 	/* Ensure the device has been registrered */
10838 	if (dev->reg_state != NETREG_REGISTERED)
10839 		goto out;
10840 
10841 	/* Get out if there is nothing todo */
10842 	err = 0;
10843 	if (net_eq(net_old, net))
10844 		goto out;
10845 
10846 	/* Pick the destination device name, and ensure
10847 	 * we can use it in the destination network namespace.
10848 	 */
10849 	err = -EEXIST;
10850 	if (netdev_name_in_use(net, dev->name)) {
10851 		/* We get here if we can't use the current device name */
10852 		if (!pat)
10853 			goto out;
10854 		err = dev_get_valid_name(net, dev, pat);
10855 		if (err < 0)
10856 			goto out;
10857 	}
10858 
10859 	/* Check that new_ifindex isn't used yet. */
10860 	err = -EBUSY;
10861 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10862 		goto out;
10863 
10864 	/*
10865 	 * And now a mini version of register_netdevice unregister_netdevice.
10866 	 */
10867 
10868 	/* If device is running close it first. */
10869 	dev_close(dev);
10870 
10871 	/* And unlink it from device chain */
10872 	unlist_netdevice(dev);
10873 
10874 	synchronize_net();
10875 
10876 	/* Shutdown queueing discipline. */
10877 	dev_shutdown(dev);
10878 
10879 	/* Notify protocols, that we are about to destroy
10880 	 * this device. They should clean all the things.
10881 	 *
10882 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10883 	 * This is wanted because this way 8021q and macvlan know
10884 	 * the device is just moving and can keep their slaves up.
10885 	 */
10886 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10887 	rcu_barrier();
10888 
10889 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10890 	/* If there is an ifindex conflict assign a new one */
10891 	if (!new_ifindex) {
10892 		if (__dev_get_by_index(net, dev->ifindex))
10893 			new_ifindex = dev_new_index(net);
10894 		else
10895 			new_ifindex = dev->ifindex;
10896 	}
10897 
10898 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10899 			    new_ifindex);
10900 
10901 	/*
10902 	 *	Flush the unicast and multicast chains
10903 	 */
10904 	dev_uc_flush(dev);
10905 	dev_mc_flush(dev);
10906 
10907 	/* Send a netdev-removed uevent to the old namespace */
10908 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10909 	netdev_adjacent_del_links(dev);
10910 
10911 	/* Move per-net netdevice notifiers that are following the netdevice */
10912 	move_netdevice_notifiers_dev_net(dev, net);
10913 
10914 	/* Actually switch the network namespace */
10915 	dev_net_set(dev, net);
10916 	dev->ifindex = new_ifindex;
10917 
10918 	/* Send a netdev-add uevent to the new namespace */
10919 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10920 	netdev_adjacent_add_links(dev);
10921 
10922 	/* Fixup kobjects */
10923 	err = device_rename(&dev->dev, dev->name);
10924 	WARN_ON(err);
10925 
10926 	/* Adapt owner in case owning user namespace of target network
10927 	 * namespace is different from the original one.
10928 	 */
10929 	err = netdev_change_owner(dev, net_old, net);
10930 	WARN_ON(err);
10931 
10932 	/* Add the device back in the hashes */
10933 	list_netdevice(dev);
10934 
10935 	/* Notify protocols, that a new device appeared. */
10936 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10937 
10938 	/*
10939 	 *	Prevent userspace races by waiting until the network
10940 	 *	device is fully setup before sending notifications.
10941 	 */
10942 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10943 
10944 	synchronize_net();
10945 	err = 0;
10946 out:
10947 	return err;
10948 }
10949 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
10950 
10951 static int dev_cpu_dead(unsigned int oldcpu)
10952 {
10953 	struct sk_buff **list_skb;
10954 	struct sk_buff *skb;
10955 	unsigned int cpu;
10956 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10957 
10958 	local_irq_disable();
10959 	cpu = smp_processor_id();
10960 	sd = &per_cpu(softnet_data, cpu);
10961 	oldsd = &per_cpu(softnet_data, oldcpu);
10962 
10963 	/* Find end of our completion_queue. */
10964 	list_skb = &sd->completion_queue;
10965 	while (*list_skb)
10966 		list_skb = &(*list_skb)->next;
10967 	/* Append completion queue from offline CPU. */
10968 	*list_skb = oldsd->completion_queue;
10969 	oldsd->completion_queue = NULL;
10970 
10971 	/* Append output queue from offline CPU. */
10972 	if (oldsd->output_queue) {
10973 		*sd->output_queue_tailp = oldsd->output_queue;
10974 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10975 		oldsd->output_queue = NULL;
10976 		oldsd->output_queue_tailp = &oldsd->output_queue;
10977 	}
10978 	/* Append NAPI poll list from offline CPU, with one exception :
10979 	 * process_backlog() must be called by cpu owning percpu backlog.
10980 	 * We properly handle process_queue & input_pkt_queue later.
10981 	 */
10982 	while (!list_empty(&oldsd->poll_list)) {
10983 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10984 							    struct napi_struct,
10985 							    poll_list);
10986 
10987 		list_del_init(&napi->poll_list);
10988 		if (napi->poll == process_backlog)
10989 			napi->state = 0;
10990 		else
10991 			____napi_schedule(sd, napi);
10992 	}
10993 
10994 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10995 	local_irq_enable();
10996 
10997 #ifdef CONFIG_RPS
10998 	remsd = oldsd->rps_ipi_list;
10999 	oldsd->rps_ipi_list = NULL;
11000 #endif
11001 	/* send out pending IPI's on offline CPU */
11002 	net_rps_send_ipi(remsd);
11003 
11004 	/* Process offline CPU's input_pkt_queue */
11005 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11006 		netif_rx(skb);
11007 		input_queue_head_incr(oldsd);
11008 	}
11009 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11010 		netif_rx(skb);
11011 		input_queue_head_incr(oldsd);
11012 	}
11013 
11014 	return 0;
11015 }
11016 
11017 /**
11018  *	netdev_increment_features - increment feature set by one
11019  *	@all: current feature set
11020  *	@one: new feature set
11021  *	@mask: mask feature set
11022  *
11023  *	Computes a new feature set after adding a device with feature set
11024  *	@one to the master device with current feature set @all.  Will not
11025  *	enable anything that is off in @mask. Returns the new feature set.
11026  */
11027 netdev_features_t netdev_increment_features(netdev_features_t all,
11028 	netdev_features_t one, netdev_features_t mask)
11029 {
11030 	if (mask & NETIF_F_HW_CSUM)
11031 		mask |= NETIF_F_CSUM_MASK;
11032 	mask |= NETIF_F_VLAN_CHALLENGED;
11033 
11034 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11035 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11036 
11037 	/* If one device supports hw checksumming, set for all. */
11038 	if (all & NETIF_F_HW_CSUM)
11039 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11040 
11041 	return all;
11042 }
11043 EXPORT_SYMBOL(netdev_increment_features);
11044 
11045 static struct hlist_head * __net_init netdev_create_hash(void)
11046 {
11047 	int i;
11048 	struct hlist_head *hash;
11049 
11050 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11051 	if (hash != NULL)
11052 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11053 			INIT_HLIST_HEAD(&hash[i]);
11054 
11055 	return hash;
11056 }
11057 
11058 /* Initialize per network namespace state */
11059 static int __net_init netdev_init(struct net *net)
11060 {
11061 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11062 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11063 
11064 	INIT_LIST_HEAD(&net->dev_base_head);
11065 
11066 	net->dev_name_head = netdev_create_hash();
11067 	if (net->dev_name_head == NULL)
11068 		goto err_name;
11069 
11070 	net->dev_index_head = netdev_create_hash();
11071 	if (net->dev_index_head == NULL)
11072 		goto err_idx;
11073 
11074 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11075 
11076 	return 0;
11077 
11078 err_idx:
11079 	kfree(net->dev_name_head);
11080 err_name:
11081 	return -ENOMEM;
11082 }
11083 
11084 /**
11085  *	netdev_drivername - network driver for the device
11086  *	@dev: network device
11087  *
11088  *	Determine network driver for device.
11089  */
11090 const char *netdev_drivername(const struct net_device *dev)
11091 {
11092 	const struct device_driver *driver;
11093 	const struct device *parent;
11094 	const char *empty = "";
11095 
11096 	parent = dev->dev.parent;
11097 	if (!parent)
11098 		return empty;
11099 
11100 	driver = parent->driver;
11101 	if (driver && driver->name)
11102 		return driver->name;
11103 	return empty;
11104 }
11105 
11106 static void __netdev_printk(const char *level, const struct net_device *dev,
11107 			    struct va_format *vaf)
11108 {
11109 	if (dev && dev->dev.parent) {
11110 		dev_printk_emit(level[1] - '0',
11111 				dev->dev.parent,
11112 				"%s %s %s%s: %pV",
11113 				dev_driver_string(dev->dev.parent),
11114 				dev_name(dev->dev.parent),
11115 				netdev_name(dev), netdev_reg_state(dev),
11116 				vaf);
11117 	} else if (dev) {
11118 		printk("%s%s%s: %pV",
11119 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11120 	} else {
11121 		printk("%s(NULL net_device): %pV", level, vaf);
11122 	}
11123 }
11124 
11125 void netdev_printk(const char *level, const struct net_device *dev,
11126 		   const char *format, ...)
11127 {
11128 	struct va_format vaf;
11129 	va_list args;
11130 
11131 	va_start(args, format);
11132 
11133 	vaf.fmt = format;
11134 	vaf.va = &args;
11135 
11136 	__netdev_printk(level, dev, &vaf);
11137 
11138 	va_end(args);
11139 }
11140 EXPORT_SYMBOL(netdev_printk);
11141 
11142 #define define_netdev_printk_level(func, level)			\
11143 void func(const struct net_device *dev, const char *fmt, ...)	\
11144 {								\
11145 	struct va_format vaf;					\
11146 	va_list args;						\
11147 								\
11148 	va_start(args, fmt);					\
11149 								\
11150 	vaf.fmt = fmt;						\
11151 	vaf.va = &args;						\
11152 								\
11153 	__netdev_printk(level, dev, &vaf);			\
11154 								\
11155 	va_end(args);						\
11156 }								\
11157 EXPORT_SYMBOL(func);
11158 
11159 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11160 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11161 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11162 define_netdev_printk_level(netdev_err, KERN_ERR);
11163 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11164 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11165 define_netdev_printk_level(netdev_info, KERN_INFO);
11166 
11167 static void __net_exit netdev_exit(struct net *net)
11168 {
11169 	kfree(net->dev_name_head);
11170 	kfree(net->dev_index_head);
11171 	if (net != &init_net)
11172 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11173 }
11174 
11175 static struct pernet_operations __net_initdata netdev_net_ops = {
11176 	.init = netdev_init,
11177 	.exit = netdev_exit,
11178 };
11179 
11180 static void __net_exit default_device_exit_net(struct net *net)
11181 {
11182 	struct net_device *dev, *aux;
11183 	/*
11184 	 * Push all migratable network devices back to the
11185 	 * initial network namespace
11186 	 */
11187 	ASSERT_RTNL();
11188 	for_each_netdev_safe(net, dev, aux) {
11189 		int err;
11190 		char fb_name[IFNAMSIZ];
11191 
11192 		/* Ignore unmoveable devices (i.e. loopback) */
11193 		if (dev->features & NETIF_F_NETNS_LOCAL)
11194 			continue;
11195 
11196 		/* Leave virtual devices for the generic cleanup */
11197 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11198 			continue;
11199 
11200 		/* Push remaining network devices to init_net */
11201 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11202 		if (netdev_name_in_use(&init_net, fb_name))
11203 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11204 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11205 		if (err) {
11206 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11207 				 __func__, dev->name, err);
11208 			BUG();
11209 		}
11210 	}
11211 }
11212 
11213 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11214 {
11215 	/* At exit all network devices most be removed from a network
11216 	 * namespace.  Do this in the reverse order of registration.
11217 	 * Do this across as many network namespaces as possible to
11218 	 * improve batching efficiency.
11219 	 */
11220 	struct net_device *dev;
11221 	struct net *net;
11222 	LIST_HEAD(dev_kill_list);
11223 
11224 	rtnl_lock();
11225 	list_for_each_entry(net, net_list, exit_list) {
11226 		default_device_exit_net(net);
11227 		cond_resched();
11228 	}
11229 
11230 	list_for_each_entry(net, net_list, exit_list) {
11231 		for_each_netdev_reverse(net, dev) {
11232 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11233 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11234 			else
11235 				unregister_netdevice_queue(dev, &dev_kill_list);
11236 		}
11237 	}
11238 	unregister_netdevice_many(&dev_kill_list);
11239 	rtnl_unlock();
11240 }
11241 
11242 static struct pernet_operations __net_initdata default_device_ops = {
11243 	.exit_batch = default_device_exit_batch,
11244 };
11245 
11246 /*
11247  *	Initialize the DEV module. At boot time this walks the device list and
11248  *	unhooks any devices that fail to initialise (normally hardware not
11249  *	present) and leaves us with a valid list of present and active devices.
11250  *
11251  */
11252 
11253 /*
11254  *       This is called single threaded during boot, so no need
11255  *       to take the rtnl semaphore.
11256  */
11257 static int __init net_dev_init(void)
11258 {
11259 	int i, rc = -ENOMEM;
11260 
11261 	BUG_ON(!dev_boot_phase);
11262 
11263 	if (dev_proc_init())
11264 		goto out;
11265 
11266 	if (netdev_kobject_init())
11267 		goto out;
11268 
11269 	INIT_LIST_HEAD(&ptype_all);
11270 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11271 		INIT_LIST_HEAD(&ptype_base[i]);
11272 
11273 	if (register_pernet_subsys(&netdev_net_ops))
11274 		goto out;
11275 
11276 	/*
11277 	 *	Initialise the packet receive queues.
11278 	 */
11279 
11280 	for_each_possible_cpu(i) {
11281 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11282 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11283 
11284 		INIT_WORK(flush, flush_backlog);
11285 
11286 		skb_queue_head_init(&sd->input_pkt_queue);
11287 		skb_queue_head_init(&sd->process_queue);
11288 #ifdef CONFIG_XFRM_OFFLOAD
11289 		skb_queue_head_init(&sd->xfrm_backlog);
11290 #endif
11291 		INIT_LIST_HEAD(&sd->poll_list);
11292 		sd->output_queue_tailp = &sd->output_queue;
11293 #ifdef CONFIG_RPS
11294 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11295 		sd->cpu = i;
11296 #endif
11297 
11298 		init_gro_hash(&sd->backlog);
11299 		sd->backlog.poll = process_backlog;
11300 		sd->backlog.weight = weight_p;
11301 	}
11302 
11303 	dev_boot_phase = 0;
11304 
11305 	/* The loopback device is special if any other network devices
11306 	 * is present in a network namespace the loopback device must
11307 	 * be present. Since we now dynamically allocate and free the
11308 	 * loopback device ensure this invariant is maintained by
11309 	 * keeping the loopback device as the first device on the
11310 	 * list of network devices.  Ensuring the loopback devices
11311 	 * is the first device that appears and the last network device
11312 	 * that disappears.
11313 	 */
11314 	if (register_pernet_device(&loopback_net_ops))
11315 		goto out;
11316 
11317 	if (register_pernet_device(&default_device_ops))
11318 		goto out;
11319 
11320 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11321 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11322 
11323 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11324 				       NULL, dev_cpu_dead);
11325 	WARN_ON(rc < 0);
11326 	rc = 0;
11327 out:
11328 	return rc;
11329 }
11330 
11331 subsys_initcall(net_dev_init);
11332