xref: /linux/net/core/dev.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dsa.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/gro.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <net/tcx.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
128 #include <net/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
160 #include <net/rps.h>
161 #include <linux/phy_link_topology.h>
162 
163 #include "dev.h"
164 #include "devmem.h"
165 #include "net-sysfs.h"
166 
167 static DEFINE_SPINLOCK(ptype_lock);
168 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
169 
170 static int netif_rx_internal(struct sk_buff *skb);
171 static int call_netdevice_notifiers_extack(unsigned long val,
172 					   struct net_device *dev,
173 					   struct netlink_ext_ack *extack);
174 
175 static DEFINE_MUTEX(ifalias_mutex);
176 
177 /* protects napi_hash addition/deletion and napi_gen_id */
178 static DEFINE_SPINLOCK(napi_hash_lock);
179 
180 static unsigned int napi_gen_id = NR_CPUS;
181 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
182 
183 static DECLARE_RWSEM(devnet_rename_sem);
184 
185 static inline void dev_base_seq_inc(struct net *net)
186 {
187 	unsigned int val = net->dev_base_seq + 1;
188 
189 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
190 }
191 
192 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
193 {
194 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
195 
196 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
197 }
198 
199 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
200 {
201 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
202 }
203 
204 #ifndef CONFIG_PREEMPT_RT
205 
206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
207 
208 static int __init setup_backlog_napi_threads(char *arg)
209 {
210 	static_branch_enable(&use_backlog_threads_key);
211 	return 0;
212 }
213 early_param("thread_backlog_napi", setup_backlog_napi_threads);
214 
215 static bool use_backlog_threads(void)
216 {
217 	return static_branch_unlikely(&use_backlog_threads_key);
218 }
219 
220 #else
221 
222 static bool use_backlog_threads(void)
223 {
224 	return true;
225 }
226 
227 #endif
228 
229 static inline void backlog_lock_irq_save(struct softnet_data *sd,
230 					 unsigned long *flags)
231 {
232 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234 	else
235 		local_irq_save(*flags);
236 }
237 
238 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
239 {
240 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241 		spin_lock_irq(&sd->input_pkt_queue.lock);
242 	else
243 		local_irq_disable();
244 }
245 
246 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247 					      unsigned long *flags)
248 {
249 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251 	else
252 		local_irq_restore(*flags);
253 }
254 
255 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
256 {
257 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 		spin_unlock_irq(&sd->input_pkt_queue.lock);
259 	else
260 		local_irq_enable();
261 }
262 
263 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264 						       const char *name)
265 {
266 	struct netdev_name_node *name_node;
267 
268 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269 	if (!name_node)
270 		return NULL;
271 	INIT_HLIST_NODE(&name_node->hlist);
272 	name_node->dev = dev;
273 	name_node->name = name;
274 	return name_node;
275 }
276 
277 static struct netdev_name_node *
278 netdev_name_node_head_alloc(struct net_device *dev)
279 {
280 	struct netdev_name_node *name_node;
281 
282 	name_node = netdev_name_node_alloc(dev, dev->name);
283 	if (!name_node)
284 		return NULL;
285 	INIT_LIST_HEAD(&name_node->list);
286 	return name_node;
287 }
288 
289 static void netdev_name_node_free(struct netdev_name_node *name_node)
290 {
291 	kfree(name_node);
292 }
293 
294 static void netdev_name_node_add(struct net *net,
295 				 struct netdev_name_node *name_node)
296 {
297 	hlist_add_head_rcu(&name_node->hlist,
298 			   dev_name_hash(net, name_node->name));
299 }
300 
301 static void netdev_name_node_del(struct netdev_name_node *name_node)
302 {
303 	hlist_del_rcu(&name_node->hlist);
304 }
305 
306 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307 							const char *name)
308 {
309 	struct hlist_head *head = dev_name_hash(net, name);
310 	struct netdev_name_node *name_node;
311 
312 	hlist_for_each_entry(name_node, head, hlist)
313 		if (!strcmp(name_node->name, name))
314 			return name_node;
315 	return NULL;
316 }
317 
318 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319 							    const char *name)
320 {
321 	struct hlist_head *head = dev_name_hash(net, name);
322 	struct netdev_name_node *name_node;
323 
324 	hlist_for_each_entry_rcu(name_node, head, hlist)
325 		if (!strcmp(name_node->name, name))
326 			return name_node;
327 	return NULL;
328 }
329 
330 bool netdev_name_in_use(struct net *net, const char *name)
331 {
332 	return netdev_name_node_lookup(net, name);
333 }
334 EXPORT_SYMBOL(netdev_name_in_use);
335 
336 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
337 {
338 	struct netdev_name_node *name_node;
339 	struct net *net = dev_net(dev);
340 
341 	name_node = netdev_name_node_lookup(net, name);
342 	if (name_node)
343 		return -EEXIST;
344 	name_node = netdev_name_node_alloc(dev, name);
345 	if (!name_node)
346 		return -ENOMEM;
347 	netdev_name_node_add(net, name_node);
348 	/* The node that holds dev->name acts as a head of per-device list. */
349 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
350 
351 	return 0;
352 }
353 
354 static void netdev_name_node_alt_free(struct rcu_head *head)
355 {
356 	struct netdev_name_node *name_node =
357 		container_of(head, struct netdev_name_node, rcu);
358 
359 	kfree(name_node->name);
360 	netdev_name_node_free(name_node);
361 }
362 
363 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
364 {
365 	netdev_name_node_del(name_node);
366 	list_del(&name_node->list);
367 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
368 }
369 
370 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
371 {
372 	struct netdev_name_node *name_node;
373 	struct net *net = dev_net(dev);
374 
375 	name_node = netdev_name_node_lookup(net, name);
376 	if (!name_node)
377 		return -ENOENT;
378 	/* lookup might have found our primary name or a name belonging
379 	 * to another device.
380 	 */
381 	if (name_node == dev->name_node || name_node->dev != dev)
382 		return -EINVAL;
383 
384 	__netdev_name_node_alt_destroy(name_node);
385 	return 0;
386 }
387 
388 static void netdev_name_node_alt_flush(struct net_device *dev)
389 {
390 	struct netdev_name_node *name_node, *tmp;
391 
392 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393 		list_del(&name_node->list);
394 		netdev_name_node_alt_free(&name_node->rcu);
395 	}
396 }
397 
398 /* Device list insertion */
399 static void list_netdevice(struct net_device *dev)
400 {
401 	struct netdev_name_node *name_node;
402 	struct net *net = dev_net(dev);
403 
404 	ASSERT_RTNL();
405 
406 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407 	netdev_name_node_add(net, dev->name_node);
408 	hlist_add_head_rcu(&dev->index_hlist,
409 			   dev_index_hash(net, dev->ifindex));
410 
411 	netdev_for_each_altname(dev, name_node)
412 		netdev_name_node_add(net, name_node);
413 
414 	/* We reserved the ifindex, this can't fail */
415 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
416 
417 	dev_base_seq_inc(net);
418 }
419 
420 /* Device list removal
421  * caller must respect a RCU grace period before freeing/reusing dev
422  */
423 static void unlist_netdevice(struct net_device *dev)
424 {
425 	struct netdev_name_node *name_node;
426 	struct net *net = dev_net(dev);
427 
428 	ASSERT_RTNL();
429 
430 	xa_erase(&net->dev_by_index, dev->ifindex);
431 
432 	netdev_for_each_altname(dev, name_node)
433 		netdev_name_node_del(name_node);
434 
435 	/* Unlink dev from the device chain */
436 	list_del_rcu(&dev->dev_list);
437 	netdev_name_node_del(dev->name_node);
438 	hlist_del_rcu(&dev->index_hlist);
439 
440 	dev_base_seq_inc(dev_net(dev));
441 }
442 
443 /*
444  *	Our notifier list
445  */
446 
447 static RAW_NOTIFIER_HEAD(netdev_chain);
448 
449 /*
450  *	Device drivers call our routines to queue packets here. We empty the
451  *	queue in the local softnet handler.
452  */
453 
454 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
456 };
457 EXPORT_PER_CPU_SYMBOL(softnet_data);
458 
459 /* Page_pool has a lockless array/stack to alloc/recycle pages.
460  * PP consumers must pay attention to run APIs in the appropriate context
461  * (e.g. NAPI context).
462  */
463 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
464 
465 #ifdef CONFIG_LOCKDEP
466 /*
467  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468  * according to dev->type
469  */
470 static const unsigned short netdev_lock_type[] = {
471 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
486 
487 static const char *const netdev_lock_name[] = {
488 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
503 
504 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
506 
507 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
508 {
509 	int i;
510 
511 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512 		if (netdev_lock_type[i] == dev_type)
513 			return i;
514 	/* the last key is used by default */
515 	return ARRAY_SIZE(netdev_lock_type) - 1;
516 }
517 
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 						 unsigned short dev_type)
520 {
521 	int i;
522 
523 	i = netdev_lock_pos(dev_type);
524 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525 				   netdev_lock_name[i]);
526 }
527 
528 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529 {
530 	int i;
531 
532 	i = netdev_lock_pos(dev->type);
533 	lockdep_set_class_and_name(&dev->addr_list_lock,
534 				   &netdev_addr_lock_key[i],
535 				   netdev_lock_name[i]);
536 }
537 #else
538 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539 						 unsigned short dev_type)
540 {
541 }
542 
543 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
544 {
545 }
546 #endif
547 
548 /*******************************************************************************
549  *
550  *		Protocol management and registration routines
551  *
552  *******************************************************************************/
553 
554 
555 /*
556  *	Add a protocol ID to the list. Now that the input handler is
557  *	smarter we can dispense with all the messy stuff that used to be
558  *	here.
559  *
560  *	BEWARE!!! Protocol handlers, mangling input packets,
561  *	MUST BE last in hash buckets and checking protocol handlers
562  *	MUST start from promiscuous ptype_all chain in net_bh.
563  *	It is true now, do not change it.
564  *	Explanation follows: if protocol handler, mangling packet, will
565  *	be the first on list, it is not able to sense, that packet
566  *	is cloned and should be copied-on-write, so that it will
567  *	change it and subsequent readers will get broken packet.
568  *							--ANK (980803)
569  */
570 
571 static inline struct list_head *ptype_head(const struct packet_type *pt)
572 {
573 	if (pt->type == htons(ETH_P_ALL))
574 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575 	else
576 		return pt->dev ? &pt->dev->ptype_specific :
577 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
578 }
579 
580 /**
581  *	dev_add_pack - add packet handler
582  *	@pt: packet type declaration
583  *
584  *	Add a protocol handler to the networking stack. The passed &packet_type
585  *	is linked into kernel lists and may not be freed until it has been
586  *	removed from the kernel lists.
587  *
588  *	This call does not sleep therefore it can not
589  *	guarantee all CPU's that are in middle of receiving packets
590  *	will see the new packet type (until the next received packet).
591  */
592 
593 void dev_add_pack(struct packet_type *pt)
594 {
595 	struct list_head *head = ptype_head(pt);
596 
597 	spin_lock(&ptype_lock);
598 	list_add_rcu(&pt->list, head);
599 	spin_unlock(&ptype_lock);
600 }
601 EXPORT_SYMBOL(dev_add_pack);
602 
603 /**
604  *	__dev_remove_pack	 - remove packet handler
605  *	@pt: packet type declaration
606  *
607  *	Remove a protocol handler that was previously added to the kernel
608  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
609  *	from the kernel lists and can be freed or reused once this function
610  *	returns.
611  *
612  *      The packet type might still be in use by receivers
613  *	and must not be freed until after all the CPU's have gone
614  *	through a quiescent state.
615  */
616 void __dev_remove_pack(struct packet_type *pt)
617 {
618 	struct list_head *head = ptype_head(pt);
619 	struct packet_type *pt1;
620 
621 	spin_lock(&ptype_lock);
622 
623 	list_for_each_entry(pt1, head, list) {
624 		if (pt == pt1) {
625 			list_del_rcu(&pt->list);
626 			goto out;
627 		}
628 	}
629 
630 	pr_warn("dev_remove_pack: %p not found\n", pt);
631 out:
632 	spin_unlock(&ptype_lock);
633 }
634 EXPORT_SYMBOL(__dev_remove_pack);
635 
636 /**
637  *	dev_remove_pack	 - remove packet handler
638  *	@pt: packet type declaration
639  *
640  *	Remove a protocol handler that was previously added to the kernel
641  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
642  *	from the kernel lists and can be freed or reused once this function
643  *	returns.
644  *
645  *	This call sleeps to guarantee that no CPU is looking at the packet
646  *	type after return.
647  */
648 void dev_remove_pack(struct packet_type *pt)
649 {
650 	__dev_remove_pack(pt);
651 
652 	synchronize_net();
653 }
654 EXPORT_SYMBOL(dev_remove_pack);
655 
656 
657 /*******************************************************************************
658  *
659  *			    Device Interface Subroutines
660  *
661  *******************************************************************************/
662 
663 /**
664  *	dev_get_iflink	- get 'iflink' value of a interface
665  *	@dev: targeted interface
666  *
667  *	Indicates the ifindex the interface is linked to.
668  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
669  */
670 
671 int dev_get_iflink(const struct net_device *dev)
672 {
673 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 		return dev->netdev_ops->ndo_get_iflink(dev);
675 
676 	return READ_ONCE(dev->ifindex);
677 }
678 EXPORT_SYMBOL(dev_get_iflink);
679 
680 /**
681  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
682  *	@dev: targeted interface
683  *	@skb: The packet.
684  *
685  *	For better visibility of tunnel traffic OVS needs to retrieve
686  *	egress tunnel information for a packet. Following API allows
687  *	user to get this info.
688  */
689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
690 {
691 	struct ip_tunnel_info *info;
692 
693 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
694 		return -EINVAL;
695 
696 	info = skb_tunnel_info_unclone(skb);
697 	if (!info)
698 		return -ENOMEM;
699 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700 		return -EINVAL;
701 
702 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
703 }
704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
705 
706 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
707 {
708 	int k = stack->num_paths++;
709 
710 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711 		return NULL;
712 
713 	return &stack->path[k];
714 }
715 
716 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717 			  struct net_device_path_stack *stack)
718 {
719 	const struct net_device *last_dev;
720 	struct net_device_path_ctx ctx = {
721 		.dev	= dev,
722 	};
723 	struct net_device_path *path;
724 	int ret = 0;
725 
726 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727 	stack->num_paths = 0;
728 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729 		last_dev = ctx.dev;
730 		path = dev_fwd_path(stack);
731 		if (!path)
732 			return -1;
733 
734 		memset(path, 0, sizeof(struct net_device_path));
735 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736 		if (ret < 0)
737 			return -1;
738 
739 		if (WARN_ON_ONCE(last_dev == ctx.dev))
740 			return -1;
741 	}
742 
743 	if (!ctx.dev)
744 		return ret;
745 
746 	path = dev_fwd_path(stack);
747 	if (!path)
748 		return -1;
749 	path->type = DEV_PATH_ETHERNET;
750 	path->dev = ctx.dev;
751 
752 	return ret;
753 }
754 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
755 
756 /**
757  *	__dev_get_by_name	- find a device by its name
758  *	@net: the applicable net namespace
759  *	@name: name to find
760  *
761  *	Find an interface by name. Must be called under RTNL semaphore.
762  *	If the name is found a pointer to the device is returned.
763  *	If the name is not found then %NULL is returned. The
764  *	reference counters are not incremented so the caller must be
765  *	careful with locks.
766  */
767 
768 struct net_device *__dev_get_by_name(struct net *net, const char *name)
769 {
770 	struct netdev_name_node *node_name;
771 
772 	node_name = netdev_name_node_lookup(net, name);
773 	return node_name ? node_name->dev : NULL;
774 }
775 EXPORT_SYMBOL(__dev_get_by_name);
776 
777 /**
778  * dev_get_by_name_rcu	- find a device by its name
779  * @net: the applicable net namespace
780  * @name: name to find
781  *
782  * Find an interface by name.
783  * If the name is found a pointer to the device is returned.
784  * If the name is not found then %NULL is returned.
785  * The reference counters are not incremented so the caller must be
786  * careful with locks. The caller must hold RCU lock.
787  */
788 
789 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
790 {
791 	struct netdev_name_node *node_name;
792 
793 	node_name = netdev_name_node_lookup_rcu(net, name);
794 	return node_name ? node_name->dev : NULL;
795 }
796 EXPORT_SYMBOL(dev_get_by_name_rcu);
797 
798 /* Deprecated for new users, call netdev_get_by_name() instead */
799 struct net_device *dev_get_by_name(struct net *net, const char *name)
800 {
801 	struct net_device *dev;
802 
803 	rcu_read_lock();
804 	dev = dev_get_by_name_rcu(net, name);
805 	dev_hold(dev);
806 	rcu_read_unlock();
807 	return dev;
808 }
809 EXPORT_SYMBOL(dev_get_by_name);
810 
811 /**
812  *	netdev_get_by_name() - find a device by its name
813  *	@net: the applicable net namespace
814  *	@name: name to find
815  *	@tracker: tracking object for the acquired reference
816  *	@gfp: allocation flags for the tracker
817  *
818  *	Find an interface by name. This can be called from any
819  *	context and does its own locking. The returned handle has
820  *	the usage count incremented and the caller must use netdev_put() to
821  *	release it when it is no longer needed. %NULL is returned if no
822  *	matching device is found.
823  */
824 struct net_device *netdev_get_by_name(struct net *net, const char *name,
825 				      netdevice_tracker *tracker, gfp_t gfp)
826 {
827 	struct net_device *dev;
828 
829 	dev = dev_get_by_name(net, name);
830 	if (dev)
831 		netdev_tracker_alloc(dev, tracker, gfp);
832 	return dev;
833 }
834 EXPORT_SYMBOL(netdev_get_by_name);
835 
836 /**
837  *	__dev_get_by_index - find a device by its ifindex
838  *	@net: the applicable net namespace
839  *	@ifindex: index of device
840  *
841  *	Search for an interface by index. Returns %NULL if the device
842  *	is not found or a pointer to the device. The device has not
843  *	had its reference counter increased so the caller must be careful
844  *	about locking. The caller must hold the RTNL semaphore.
845  */
846 
847 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
848 {
849 	struct net_device *dev;
850 	struct hlist_head *head = dev_index_hash(net, ifindex);
851 
852 	hlist_for_each_entry(dev, head, index_hlist)
853 		if (dev->ifindex == ifindex)
854 			return dev;
855 
856 	return NULL;
857 }
858 EXPORT_SYMBOL(__dev_get_by_index);
859 
860 /**
861  *	dev_get_by_index_rcu - find a device by its ifindex
862  *	@net: the applicable net namespace
863  *	@ifindex: index of device
864  *
865  *	Search for an interface by index. Returns %NULL if the device
866  *	is not found or a pointer to the device. The device has not
867  *	had its reference counter increased so the caller must be careful
868  *	about locking. The caller must hold RCU lock.
869  */
870 
871 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
872 {
873 	struct net_device *dev;
874 	struct hlist_head *head = dev_index_hash(net, ifindex);
875 
876 	hlist_for_each_entry_rcu(dev, head, index_hlist)
877 		if (dev->ifindex == ifindex)
878 			return dev;
879 
880 	return NULL;
881 }
882 EXPORT_SYMBOL(dev_get_by_index_rcu);
883 
884 /* Deprecated for new users, call netdev_get_by_index() instead */
885 struct net_device *dev_get_by_index(struct net *net, int ifindex)
886 {
887 	struct net_device *dev;
888 
889 	rcu_read_lock();
890 	dev = dev_get_by_index_rcu(net, ifindex);
891 	dev_hold(dev);
892 	rcu_read_unlock();
893 	return dev;
894 }
895 EXPORT_SYMBOL(dev_get_by_index);
896 
897 /**
898  *	netdev_get_by_index() - find a device by its ifindex
899  *	@net: the applicable net namespace
900  *	@ifindex: index of device
901  *	@tracker: tracking object for the acquired reference
902  *	@gfp: allocation flags for the tracker
903  *
904  *	Search for an interface by index. Returns NULL if the device
905  *	is not found or a pointer to the device. The device returned has
906  *	had a reference added and the pointer is safe until the user calls
907  *	netdev_put() to indicate they have finished with it.
908  */
909 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
910 				       netdevice_tracker *tracker, gfp_t gfp)
911 {
912 	struct net_device *dev;
913 
914 	dev = dev_get_by_index(net, ifindex);
915 	if (dev)
916 		netdev_tracker_alloc(dev, tracker, gfp);
917 	return dev;
918 }
919 EXPORT_SYMBOL(netdev_get_by_index);
920 
921 /**
922  *	dev_get_by_napi_id - find a device by napi_id
923  *	@napi_id: ID of the NAPI struct
924  *
925  *	Search for an interface by NAPI ID. Returns %NULL if the device
926  *	is not found or a pointer to the device. The device has not had
927  *	its reference counter increased so the caller must be careful
928  *	about locking. The caller must hold RCU lock.
929  */
930 
931 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
932 {
933 	struct napi_struct *napi;
934 
935 	WARN_ON_ONCE(!rcu_read_lock_held());
936 
937 	if (napi_id < MIN_NAPI_ID)
938 		return NULL;
939 
940 	napi = napi_by_id(napi_id);
941 
942 	return napi ? napi->dev : NULL;
943 }
944 EXPORT_SYMBOL(dev_get_by_napi_id);
945 
946 static DEFINE_SEQLOCK(netdev_rename_lock);
947 
948 void netdev_copy_name(struct net_device *dev, char *name)
949 {
950 	unsigned int seq;
951 
952 	do {
953 		seq = read_seqbegin(&netdev_rename_lock);
954 		strscpy(name, dev->name, IFNAMSIZ);
955 	} while (read_seqretry(&netdev_rename_lock, seq));
956 }
957 
958 /**
959  *	netdev_get_name - get a netdevice name, knowing its ifindex.
960  *	@net: network namespace
961  *	@name: a pointer to the buffer where the name will be stored.
962  *	@ifindex: the ifindex of the interface to get the name from.
963  */
964 int netdev_get_name(struct net *net, char *name, int ifindex)
965 {
966 	struct net_device *dev;
967 	int ret;
968 
969 	rcu_read_lock();
970 
971 	dev = dev_get_by_index_rcu(net, ifindex);
972 	if (!dev) {
973 		ret = -ENODEV;
974 		goto out;
975 	}
976 
977 	netdev_copy_name(dev, name);
978 
979 	ret = 0;
980 out:
981 	rcu_read_unlock();
982 	return ret;
983 }
984 
985 /**
986  *	dev_getbyhwaddr_rcu - find a device by its hardware address
987  *	@net: the applicable net namespace
988  *	@type: media type of device
989  *	@ha: hardware address
990  *
991  *	Search for an interface by MAC address. Returns NULL if the device
992  *	is not found or a pointer to the device.
993  *	The caller must hold RCU or RTNL.
994  *	The returned device has not had its ref count increased
995  *	and the caller must therefore be careful about locking
996  *
997  */
998 
999 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1000 				       const char *ha)
1001 {
1002 	struct net_device *dev;
1003 
1004 	for_each_netdev_rcu(net, dev)
1005 		if (dev->type == type &&
1006 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1007 			return dev;
1008 
1009 	return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1012 
1013 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1014 {
1015 	struct net_device *dev, *ret = NULL;
1016 
1017 	rcu_read_lock();
1018 	for_each_netdev_rcu(net, dev)
1019 		if (dev->type == type) {
1020 			dev_hold(dev);
1021 			ret = dev;
1022 			break;
1023 		}
1024 	rcu_read_unlock();
1025 	return ret;
1026 }
1027 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1028 
1029 /**
1030  *	__dev_get_by_flags - find any device with given flags
1031  *	@net: the applicable net namespace
1032  *	@if_flags: IFF_* values
1033  *	@mask: bitmask of bits in if_flags to check
1034  *
1035  *	Search for any interface with the given flags. Returns NULL if a device
1036  *	is not found or a pointer to the device. Must be called inside
1037  *	rtnl_lock(), and result refcount is unchanged.
1038  */
1039 
1040 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1041 				      unsigned short mask)
1042 {
1043 	struct net_device *dev, *ret;
1044 
1045 	ASSERT_RTNL();
1046 
1047 	ret = NULL;
1048 	for_each_netdev(net, dev) {
1049 		if (((dev->flags ^ if_flags) & mask) == 0) {
1050 			ret = dev;
1051 			break;
1052 		}
1053 	}
1054 	return ret;
1055 }
1056 EXPORT_SYMBOL(__dev_get_by_flags);
1057 
1058 /**
1059  *	dev_valid_name - check if name is okay for network device
1060  *	@name: name string
1061  *
1062  *	Network device names need to be valid file names to
1063  *	allow sysfs to work.  We also disallow any kind of
1064  *	whitespace.
1065  */
1066 bool dev_valid_name(const char *name)
1067 {
1068 	if (*name == '\0')
1069 		return false;
1070 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1071 		return false;
1072 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1073 		return false;
1074 
1075 	while (*name) {
1076 		if (*name == '/' || *name == ':' || isspace(*name))
1077 			return false;
1078 		name++;
1079 	}
1080 	return true;
1081 }
1082 EXPORT_SYMBOL(dev_valid_name);
1083 
1084 /**
1085  *	__dev_alloc_name - allocate a name for a device
1086  *	@net: network namespace to allocate the device name in
1087  *	@name: name format string
1088  *	@res: result name string
1089  *
1090  *	Passed a format string - eg "lt%d" it will try and find a suitable
1091  *	id. It scans list of devices to build up a free map, then chooses
1092  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1093  *	while allocating the name and adding the device in order to avoid
1094  *	duplicates.
1095  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1096  *	Returns the number of the unit assigned or a negative errno code.
1097  */
1098 
1099 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1100 {
1101 	int i = 0;
1102 	const char *p;
1103 	const int max_netdevices = 8*PAGE_SIZE;
1104 	unsigned long *inuse;
1105 	struct net_device *d;
1106 	char buf[IFNAMSIZ];
1107 
1108 	/* Verify the string as this thing may have come from the user.
1109 	 * There must be one "%d" and no other "%" characters.
1110 	 */
1111 	p = strchr(name, '%');
1112 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1113 		return -EINVAL;
1114 
1115 	/* Use one page as a bit array of possible slots */
1116 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1117 	if (!inuse)
1118 		return -ENOMEM;
1119 
1120 	for_each_netdev(net, d) {
1121 		struct netdev_name_node *name_node;
1122 
1123 		netdev_for_each_altname(d, name_node) {
1124 			if (!sscanf(name_node->name, name, &i))
1125 				continue;
1126 			if (i < 0 || i >= max_netdevices)
1127 				continue;
1128 
1129 			/* avoid cases where sscanf is not exact inverse of printf */
1130 			snprintf(buf, IFNAMSIZ, name, i);
1131 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1132 				__set_bit(i, inuse);
1133 		}
1134 		if (!sscanf(d->name, name, &i))
1135 			continue;
1136 		if (i < 0 || i >= max_netdevices)
1137 			continue;
1138 
1139 		/* avoid cases where sscanf is not exact inverse of printf */
1140 		snprintf(buf, IFNAMSIZ, name, i);
1141 		if (!strncmp(buf, d->name, IFNAMSIZ))
1142 			__set_bit(i, inuse);
1143 	}
1144 
1145 	i = find_first_zero_bit(inuse, max_netdevices);
1146 	bitmap_free(inuse);
1147 	if (i == max_netdevices)
1148 		return -ENFILE;
1149 
1150 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1151 	strscpy(buf, name, IFNAMSIZ);
1152 	snprintf(res, IFNAMSIZ, buf, i);
1153 	return i;
1154 }
1155 
1156 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1157 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1158 			       const char *want_name, char *out_name,
1159 			       int dup_errno)
1160 {
1161 	if (!dev_valid_name(want_name))
1162 		return -EINVAL;
1163 
1164 	if (strchr(want_name, '%'))
1165 		return __dev_alloc_name(net, want_name, out_name);
1166 
1167 	if (netdev_name_in_use(net, want_name))
1168 		return -dup_errno;
1169 	if (out_name != want_name)
1170 		strscpy(out_name, want_name, IFNAMSIZ);
1171 	return 0;
1172 }
1173 
1174 /**
1175  *	dev_alloc_name - allocate a name for a device
1176  *	@dev: device
1177  *	@name: name format string
1178  *
1179  *	Passed a format string - eg "lt%d" it will try and find a suitable
1180  *	id. It scans list of devices to build up a free map, then chooses
1181  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1182  *	while allocating the name and adding the device in order to avoid
1183  *	duplicates.
1184  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1185  *	Returns the number of the unit assigned or a negative errno code.
1186  */
1187 
1188 int dev_alloc_name(struct net_device *dev, const char *name)
1189 {
1190 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1191 }
1192 EXPORT_SYMBOL(dev_alloc_name);
1193 
1194 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1195 			      const char *name)
1196 {
1197 	int ret;
1198 
1199 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1200 	return ret < 0 ? ret : 0;
1201 }
1202 
1203 /**
1204  *	dev_change_name - change name of a device
1205  *	@dev: device
1206  *	@newname: name (or format string) must be at least IFNAMSIZ
1207  *
1208  *	Change name of a device, can pass format strings "eth%d".
1209  *	for wildcarding.
1210  */
1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213 	unsigned char old_assign_type;
1214 	char oldname[IFNAMSIZ];
1215 	int err = 0;
1216 	int ret;
1217 	struct net *net;
1218 
1219 	ASSERT_RTNL();
1220 	BUG_ON(!dev_net(dev));
1221 
1222 	net = dev_net(dev);
1223 
1224 	down_write(&devnet_rename_sem);
1225 
1226 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 		up_write(&devnet_rename_sem);
1228 		return 0;
1229 	}
1230 
1231 	memcpy(oldname, dev->name, IFNAMSIZ);
1232 
1233 	write_seqlock_bh(&netdev_rename_lock);
1234 	err = dev_get_valid_name(net, dev, newname);
1235 	write_sequnlock_bh(&netdev_rename_lock);
1236 
1237 	if (err < 0) {
1238 		up_write(&devnet_rename_sem);
1239 		return err;
1240 	}
1241 
1242 	if (oldname[0] && !strchr(oldname, '%'))
1243 		netdev_info(dev, "renamed from %s%s\n", oldname,
1244 			    dev->flags & IFF_UP ? " (while UP)" : "");
1245 
1246 	old_assign_type = dev->name_assign_type;
1247 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1248 
1249 rollback:
1250 	ret = device_rename(&dev->dev, dev->name);
1251 	if (ret) {
1252 		memcpy(dev->name, oldname, IFNAMSIZ);
1253 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1254 		up_write(&devnet_rename_sem);
1255 		return ret;
1256 	}
1257 
1258 	up_write(&devnet_rename_sem);
1259 
1260 	netdev_adjacent_rename_links(dev, oldname);
1261 
1262 	netdev_name_node_del(dev->name_node);
1263 
1264 	synchronize_net();
1265 
1266 	netdev_name_node_add(net, dev->name_node);
1267 
1268 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1269 	ret = notifier_to_errno(ret);
1270 
1271 	if (ret) {
1272 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1273 		if (err >= 0) {
1274 			err = ret;
1275 			down_write(&devnet_rename_sem);
1276 			write_seqlock_bh(&netdev_rename_lock);
1277 			memcpy(dev->name, oldname, IFNAMSIZ);
1278 			write_sequnlock_bh(&netdev_rename_lock);
1279 			memcpy(oldname, newname, IFNAMSIZ);
1280 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1281 			old_assign_type = NET_NAME_RENAMED;
1282 			goto rollback;
1283 		} else {
1284 			netdev_err(dev, "name change rollback failed: %d\n",
1285 				   ret);
1286 		}
1287 	}
1288 
1289 	return err;
1290 }
1291 
1292 /**
1293  *	dev_set_alias - change ifalias of a device
1294  *	@dev: device
1295  *	@alias: name up to IFALIASZ
1296  *	@len: limit of bytes to copy from info
1297  *
1298  *	Set ifalias for a device,
1299  */
1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301 {
1302 	struct dev_ifalias *new_alias = NULL;
1303 
1304 	if (len >= IFALIASZ)
1305 		return -EINVAL;
1306 
1307 	if (len) {
1308 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309 		if (!new_alias)
1310 			return -ENOMEM;
1311 
1312 		memcpy(new_alias->ifalias, alias, len);
1313 		new_alias->ifalias[len] = 0;
1314 	}
1315 
1316 	mutex_lock(&ifalias_mutex);
1317 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318 					mutex_is_locked(&ifalias_mutex));
1319 	mutex_unlock(&ifalias_mutex);
1320 
1321 	if (new_alias)
1322 		kfree_rcu(new_alias, rcuhead);
1323 
1324 	return len;
1325 }
1326 EXPORT_SYMBOL(dev_set_alias);
1327 
1328 /**
1329  *	dev_get_alias - get ifalias of a device
1330  *	@dev: device
1331  *	@name: buffer to store name of ifalias
1332  *	@len: size of buffer
1333  *
1334  *	get ifalias for a device.  Caller must make sure dev cannot go
1335  *	away,  e.g. rcu read lock or own a reference count to device.
1336  */
1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338 {
1339 	const struct dev_ifalias *alias;
1340 	int ret = 0;
1341 
1342 	rcu_read_lock();
1343 	alias = rcu_dereference(dev->ifalias);
1344 	if (alias)
1345 		ret = snprintf(name, len, "%s", alias->ifalias);
1346 	rcu_read_unlock();
1347 
1348 	return ret;
1349 }
1350 
1351 /**
1352  *	netdev_features_change - device changes features
1353  *	@dev: device to cause notification
1354  *
1355  *	Called to indicate a device has changed features.
1356  */
1357 void netdev_features_change(struct net_device *dev)
1358 {
1359 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1360 }
1361 EXPORT_SYMBOL(netdev_features_change);
1362 
1363 /**
1364  *	netdev_state_change - device changes state
1365  *	@dev: device to cause notification
1366  *
1367  *	Called to indicate a device has changed state. This function calls
1368  *	the notifier chains for netdev_chain and sends a NEWLINK message
1369  *	to the routing socket.
1370  */
1371 void netdev_state_change(struct net_device *dev)
1372 {
1373 	if (dev->flags & IFF_UP) {
1374 		struct netdev_notifier_change_info change_info = {
1375 			.info.dev = dev,
1376 		};
1377 
1378 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1379 					      &change_info.info);
1380 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1381 	}
1382 }
1383 EXPORT_SYMBOL(netdev_state_change);
1384 
1385 /**
1386  * __netdev_notify_peers - notify network peers about existence of @dev,
1387  * to be called when rtnl lock is already held.
1388  * @dev: network device
1389  *
1390  * Generate traffic such that interested network peers are aware of
1391  * @dev, such as by generating a gratuitous ARP. This may be used when
1392  * a device wants to inform the rest of the network about some sort of
1393  * reconfiguration such as a failover event or virtual machine
1394  * migration.
1395  */
1396 void __netdev_notify_peers(struct net_device *dev)
1397 {
1398 	ASSERT_RTNL();
1399 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1400 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1401 }
1402 EXPORT_SYMBOL(__netdev_notify_peers);
1403 
1404 /**
1405  * netdev_notify_peers - notify network peers about existence of @dev
1406  * @dev: network device
1407  *
1408  * Generate traffic such that interested network peers are aware of
1409  * @dev, such as by generating a gratuitous ARP. This may be used when
1410  * a device wants to inform the rest of the network about some sort of
1411  * reconfiguration such as a failover event or virtual machine
1412  * migration.
1413  */
1414 void netdev_notify_peers(struct net_device *dev)
1415 {
1416 	rtnl_lock();
1417 	__netdev_notify_peers(dev);
1418 	rtnl_unlock();
1419 }
1420 EXPORT_SYMBOL(netdev_notify_peers);
1421 
1422 static int napi_threaded_poll(void *data);
1423 
1424 static int napi_kthread_create(struct napi_struct *n)
1425 {
1426 	int err = 0;
1427 
1428 	/* Create and wake up the kthread once to put it in
1429 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1430 	 * warning and work with loadavg.
1431 	 */
1432 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1433 				n->dev->name, n->napi_id);
1434 	if (IS_ERR(n->thread)) {
1435 		err = PTR_ERR(n->thread);
1436 		pr_err("kthread_run failed with err %d\n", err);
1437 		n->thread = NULL;
1438 	}
1439 
1440 	return err;
1441 }
1442 
1443 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1444 {
1445 	const struct net_device_ops *ops = dev->netdev_ops;
1446 	int ret;
1447 
1448 	ASSERT_RTNL();
1449 	dev_addr_check(dev);
1450 
1451 	if (!netif_device_present(dev)) {
1452 		/* may be detached because parent is runtime-suspended */
1453 		if (dev->dev.parent)
1454 			pm_runtime_resume(dev->dev.parent);
1455 		if (!netif_device_present(dev))
1456 			return -ENODEV;
1457 	}
1458 
1459 	/* Block netpoll from trying to do any rx path servicing.
1460 	 * If we don't do this there is a chance ndo_poll_controller
1461 	 * or ndo_poll may be running while we open the device
1462 	 */
1463 	netpoll_poll_disable(dev);
1464 
1465 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1466 	ret = notifier_to_errno(ret);
1467 	if (ret)
1468 		return ret;
1469 
1470 	set_bit(__LINK_STATE_START, &dev->state);
1471 
1472 	if (ops->ndo_validate_addr)
1473 		ret = ops->ndo_validate_addr(dev);
1474 
1475 	if (!ret && ops->ndo_open)
1476 		ret = ops->ndo_open(dev);
1477 
1478 	netpoll_poll_enable(dev);
1479 
1480 	if (ret)
1481 		clear_bit(__LINK_STATE_START, &dev->state);
1482 	else {
1483 		dev->flags |= IFF_UP;
1484 		dev_set_rx_mode(dev);
1485 		dev_activate(dev);
1486 		add_device_randomness(dev->dev_addr, dev->addr_len);
1487 	}
1488 
1489 	return ret;
1490 }
1491 
1492 /**
1493  *	dev_open	- prepare an interface for use.
1494  *	@dev: device to open
1495  *	@extack: netlink extended ack
1496  *
1497  *	Takes a device from down to up state. The device's private open
1498  *	function is invoked and then the multicast lists are loaded. Finally
1499  *	the device is moved into the up state and a %NETDEV_UP message is
1500  *	sent to the netdev notifier chain.
1501  *
1502  *	Calling this function on an active interface is a nop. On a failure
1503  *	a negative errno code is returned.
1504  */
1505 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1506 {
1507 	int ret;
1508 
1509 	if (dev->flags & IFF_UP)
1510 		return 0;
1511 
1512 	ret = __dev_open(dev, extack);
1513 	if (ret < 0)
1514 		return ret;
1515 
1516 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1517 	call_netdevice_notifiers(NETDEV_UP, dev);
1518 
1519 	return ret;
1520 }
1521 EXPORT_SYMBOL(dev_open);
1522 
1523 static void __dev_close_many(struct list_head *head)
1524 {
1525 	struct net_device *dev;
1526 
1527 	ASSERT_RTNL();
1528 	might_sleep();
1529 
1530 	list_for_each_entry(dev, head, close_list) {
1531 		/* Temporarily disable netpoll until the interface is down */
1532 		netpoll_poll_disable(dev);
1533 
1534 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1535 
1536 		clear_bit(__LINK_STATE_START, &dev->state);
1537 
1538 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1539 		 * can be even on different cpu. So just clear netif_running().
1540 		 *
1541 		 * dev->stop() will invoke napi_disable() on all of it's
1542 		 * napi_struct instances on this device.
1543 		 */
1544 		smp_mb__after_atomic(); /* Commit netif_running(). */
1545 	}
1546 
1547 	dev_deactivate_many(head);
1548 
1549 	list_for_each_entry(dev, head, close_list) {
1550 		const struct net_device_ops *ops = dev->netdev_ops;
1551 
1552 		/*
1553 		 *	Call the device specific close. This cannot fail.
1554 		 *	Only if device is UP
1555 		 *
1556 		 *	We allow it to be called even after a DETACH hot-plug
1557 		 *	event.
1558 		 */
1559 		if (ops->ndo_stop)
1560 			ops->ndo_stop(dev);
1561 
1562 		dev->flags &= ~IFF_UP;
1563 		netpoll_poll_enable(dev);
1564 	}
1565 }
1566 
1567 static void __dev_close(struct net_device *dev)
1568 {
1569 	LIST_HEAD(single);
1570 
1571 	list_add(&dev->close_list, &single);
1572 	__dev_close_many(&single);
1573 	list_del(&single);
1574 }
1575 
1576 void dev_close_many(struct list_head *head, bool unlink)
1577 {
1578 	struct net_device *dev, *tmp;
1579 
1580 	/* Remove the devices that don't need to be closed */
1581 	list_for_each_entry_safe(dev, tmp, head, close_list)
1582 		if (!(dev->flags & IFF_UP))
1583 			list_del_init(&dev->close_list);
1584 
1585 	__dev_close_many(head);
1586 
1587 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1588 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1589 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1590 		if (unlink)
1591 			list_del_init(&dev->close_list);
1592 	}
1593 }
1594 EXPORT_SYMBOL(dev_close_many);
1595 
1596 /**
1597  *	dev_close - shutdown an interface.
1598  *	@dev: device to shutdown
1599  *
1600  *	This function moves an active device into down state. A
1601  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1602  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1603  *	chain.
1604  */
1605 void dev_close(struct net_device *dev)
1606 {
1607 	if (dev->flags & IFF_UP) {
1608 		LIST_HEAD(single);
1609 
1610 		list_add(&dev->close_list, &single);
1611 		dev_close_many(&single, true);
1612 		list_del(&single);
1613 	}
1614 }
1615 EXPORT_SYMBOL(dev_close);
1616 
1617 
1618 /**
1619  *	dev_disable_lro - disable Large Receive Offload on a device
1620  *	@dev: device
1621  *
1622  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1623  *	called under RTNL.  This is needed if received packets may be
1624  *	forwarded to another interface.
1625  */
1626 void dev_disable_lro(struct net_device *dev)
1627 {
1628 	struct net_device *lower_dev;
1629 	struct list_head *iter;
1630 
1631 	dev->wanted_features &= ~NETIF_F_LRO;
1632 	netdev_update_features(dev);
1633 
1634 	if (unlikely(dev->features & NETIF_F_LRO))
1635 		netdev_WARN(dev, "failed to disable LRO!\n");
1636 
1637 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1638 		dev_disable_lro(lower_dev);
1639 }
1640 EXPORT_SYMBOL(dev_disable_lro);
1641 
1642 /**
1643  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1644  *	@dev: device
1645  *
1646  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1647  *	called under RTNL.  This is needed if Generic XDP is installed on
1648  *	the device.
1649  */
1650 static void dev_disable_gro_hw(struct net_device *dev)
1651 {
1652 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1653 	netdev_update_features(dev);
1654 
1655 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1656 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1657 }
1658 
1659 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1660 {
1661 #define N(val) 						\
1662 	case NETDEV_##val:				\
1663 		return "NETDEV_" __stringify(val);
1664 	switch (cmd) {
1665 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1666 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1667 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1668 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1669 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1670 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1671 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1672 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1673 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1674 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1675 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1676 	N(XDP_FEAT_CHANGE)
1677 	}
1678 #undef N
1679 	return "UNKNOWN_NETDEV_EVENT";
1680 }
1681 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1682 
1683 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1684 				   struct net_device *dev)
1685 {
1686 	struct netdev_notifier_info info = {
1687 		.dev = dev,
1688 	};
1689 
1690 	return nb->notifier_call(nb, val, &info);
1691 }
1692 
1693 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1694 					     struct net_device *dev)
1695 {
1696 	int err;
1697 
1698 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1699 	err = notifier_to_errno(err);
1700 	if (err)
1701 		return err;
1702 
1703 	if (!(dev->flags & IFF_UP))
1704 		return 0;
1705 
1706 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1707 	return 0;
1708 }
1709 
1710 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1711 						struct net_device *dev)
1712 {
1713 	if (dev->flags & IFF_UP) {
1714 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1715 					dev);
1716 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1717 	}
1718 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1719 }
1720 
1721 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1722 						 struct net *net)
1723 {
1724 	struct net_device *dev;
1725 	int err;
1726 
1727 	for_each_netdev(net, dev) {
1728 		err = call_netdevice_register_notifiers(nb, dev);
1729 		if (err)
1730 			goto rollback;
1731 	}
1732 	return 0;
1733 
1734 rollback:
1735 	for_each_netdev_continue_reverse(net, dev)
1736 		call_netdevice_unregister_notifiers(nb, dev);
1737 	return err;
1738 }
1739 
1740 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1741 						    struct net *net)
1742 {
1743 	struct net_device *dev;
1744 
1745 	for_each_netdev(net, dev)
1746 		call_netdevice_unregister_notifiers(nb, dev);
1747 }
1748 
1749 static int dev_boot_phase = 1;
1750 
1751 /**
1752  * register_netdevice_notifier - register a network notifier block
1753  * @nb: notifier
1754  *
1755  * Register a notifier to be called when network device events occur.
1756  * The notifier passed is linked into the kernel structures and must
1757  * not be reused until it has been unregistered. A negative errno code
1758  * is returned on a failure.
1759  *
1760  * When registered all registration and up events are replayed
1761  * to the new notifier to allow device to have a race free
1762  * view of the network device list.
1763  */
1764 
1765 int register_netdevice_notifier(struct notifier_block *nb)
1766 {
1767 	struct net *net;
1768 	int err;
1769 
1770 	/* Close race with setup_net() and cleanup_net() */
1771 	down_write(&pernet_ops_rwsem);
1772 	rtnl_lock();
1773 	err = raw_notifier_chain_register(&netdev_chain, nb);
1774 	if (err)
1775 		goto unlock;
1776 	if (dev_boot_phase)
1777 		goto unlock;
1778 	for_each_net(net) {
1779 		err = call_netdevice_register_net_notifiers(nb, net);
1780 		if (err)
1781 			goto rollback;
1782 	}
1783 
1784 unlock:
1785 	rtnl_unlock();
1786 	up_write(&pernet_ops_rwsem);
1787 	return err;
1788 
1789 rollback:
1790 	for_each_net_continue_reverse(net)
1791 		call_netdevice_unregister_net_notifiers(nb, net);
1792 
1793 	raw_notifier_chain_unregister(&netdev_chain, nb);
1794 	goto unlock;
1795 }
1796 EXPORT_SYMBOL(register_netdevice_notifier);
1797 
1798 /**
1799  * unregister_netdevice_notifier - unregister a network notifier block
1800  * @nb: notifier
1801  *
1802  * Unregister a notifier previously registered by
1803  * register_netdevice_notifier(). The notifier is unlinked into the
1804  * kernel structures and may then be reused. A negative errno code
1805  * is returned on a failure.
1806  *
1807  * After unregistering unregister and down device events are synthesized
1808  * for all devices on the device list to the removed notifier to remove
1809  * the need for special case cleanup code.
1810  */
1811 
1812 int unregister_netdevice_notifier(struct notifier_block *nb)
1813 {
1814 	struct net *net;
1815 	int err;
1816 
1817 	/* Close race with setup_net() and cleanup_net() */
1818 	down_write(&pernet_ops_rwsem);
1819 	rtnl_lock();
1820 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1821 	if (err)
1822 		goto unlock;
1823 
1824 	for_each_net(net)
1825 		call_netdevice_unregister_net_notifiers(nb, net);
1826 
1827 unlock:
1828 	rtnl_unlock();
1829 	up_write(&pernet_ops_rwsem);
1830 	return err;
1831 }
1832 EXPORT_SYMBOL(unregister_netdevice_notifier);
1833 
1834 static int __register_netdevice_notifier_net(struct net *net,
1835 					     struct notifier_block *nb,
1836 					     bool ignore_call_fail)
1837 {
1838 	int err;
1839 
1840 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1841 	if (err)
1842 		return err;
1843 	if (dev_boot_phase)
1844 		return 0;
1845 
1846 	err = call_netdevice_register_net_notifiers(nb, net);
1847 	if (err && !ignore_call_fail)
1848 		goto chain_unregister;
1849 
1850 	return 0;
1851 
1852 chain_unregister:
1853 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1854 	return err;
1855 }
1856 
1857 static int __unregister_netdevice_notifier_net(struct net *net,
1858 					       struct notifier_block *nb)
1859 {
1860 	int err;
1861 
1862 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1863 	if (err)
1864 		return err;
1865 
1866 	call_netdevice_unregister_net_notifiers(nb, net);
1867 	return 0;
1868 }
1869 
1870 /**
1871  * register_netdevice_notifier_net - register a per-netns network notifier block
1872  * @net: network namespace
1873  * @nb: notifier
1874  *
1875  * Register a notifier to be called when network device events occur.
1876  * The notifier passed is linked into the kernel structures and must
1877  * not be reused until it has been unregistered. A negative errno code
1878  * is returned on a failure.
1879  *
1880  * When registered all registration and up events are replayed
1881  * to the new notifier to allow device to have a race free
1882  * view of the network device list.
1883  */
1884 
1885 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1886 {
1887 	int err;
1888 
1889 	rtnl_lock();
1890 	err = __register_netdevice_notifier_net(net, nb, false);
1891 	rtnl_unlock();
1892 	return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_net);
1895 
1896 /**
1897  * unregister_netdevice_notifier_net - unregister a per-netns
1898  *                                     network notifier block
1899  * @net: network namespace
1900  * @nb: notifier
1901  *
1902  * Unregister a notifier previously registered by
1903  * register_netdevice_notifier_net(). The notifier is unlinked from the
1904  * kernel structures and may then be reused. A negative errno code
1905  * is returned on a failure.
1906  *
1907  * After unregistering unregister and down device events are synthesized
1908  * for all devices on the device list to the removed notifier to remove
1909  * the need for special case cleanup code.
1910  */
1911 
1912 int unregister_netdevice_notifier_net(struct net *net,
1913 				      struct notifier_block *nb)
1914 {
1915 	int err;
1916 
1917 	rtnl_lock();
1918 	err = __unregister_netdevice_notifier_net(net, nb);
1919 	rtnl_unlock();
1920 	return err;
1921 }
1922 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1923 
1924 static void __move_netdevice_notifier_net(struct net *src_net,
1925 					  struct net *dst_net,
1926 					  struct notifier_block *nb)
1927 {
1928 	__unregister_netdevice_notifier_net(src_net, nb);
1929 	__register_netdevice_notifier_net(dst_net, nb, true);
1930 }
1931 
1932 int register_netdevice_notifier_dev_net(struct net_device *dev,
1933 					struct notifier_block *nb,
1934 					struct netdev_net_notifier *nn)
1935 {
1936 	int err;
1937 
1938 	rtnl_lock();
1939 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1940 	if (!err) {
1941 		nn->nb = nb;
1942 		list_add(&nn->list, &dev->net_notifier_list);
1943 	}
1944 	rtnl_unlock();
1945 	return err;
1946 }
1947 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1948 
1949 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1950 					  struct notifier_block *nb,
1951 					  struct netdev_net_notifier *nn)
1952 {
1953 	int err;
1954 
1955 	rtnl_lock();
1956 	list_del(&nn->list);
1957 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1958 	rtnl_unlock();
1959 	return err;
1960 }
1961 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1962 
1963 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1964 					     struct net *net)
1965 {
1966 	struct netdev_net_notifier *nn;
1967 
1968 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1969 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1970 }
1971 
1972 /**
1973  *	call_netdevice_notifiers_info - call all network notifier blocks
1974  *	@val: value passed unmodified to notifier function
1975  *	@info: notifier information data
1976  *
1977  *	Call all network notifier blocks.  Parameters and return value
1978  *	are as for raw_notifier_call_chain().
1979  */
1980 
1981 int call_netdevice_notifiers_info(unsigned long val,
1982 				  struct netdev_notifier_info *info)
1983 {
1984 	struct net *net = dev_net(info->dev);
1985 	int ret;
1986 
1987 	ASSERT_RTNL();
1988 
1989 	/* Run per-netns notifier block chain first, then run the global one.
1990 	 * Hopefully, one day, the global one is going to be removed after
1991 	 * all notifier block registrators get converted to be per-netns.
1992 	 */
1993 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994 	if (ret & NOTIFY_STOP_MASK)
1995 		return ret;
1996 	return raw_notifier_call_chain(&netdev_chain, val, info);
1997 }
1998 
1999 /**
2000  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2001  *	                                       for and rollback on error
2002  *	@val_up: value passed unmodified to notifier function
2003  *	@val_down: value passed unmodified to the notifier function when
2004  *	           recovering from an error on @val_up
2005  *	@info: notifier information data
2006  *
2007  *	Call all per-netns network notifier blocks, but not notifier blocks on
2008  *	the global notifier chain. Parameters and return value are as for
2009  *	raw_notifier_call_chain_robust().
2010  */
2011 
2012 static int
2013 call_netdevice_notifiers_info_robust(unsigned long val_up,
2014 				     unsigned long val_down,
2015 				     struct netdev_notifier_info *info)
2016 {
2017 	struct net *net = dev_net(info->dev);
2018 
2019 	ASSERT_RTNL();
2020 
2021 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2022 					      val_up, val_down, info);
2023 }
2024 
2025 static int call_netdevice_notifiers_extack(unsigned long val,
2026 					   struct net_device *dev,
2027 					   struct netlink_ext_ack *extack)
2028 {
2029 	struct netdev_notifier_info info = {
2030 		.dev = dev,
2031 		.extack = extack,
2032 	};
2033 
2034 	return call_netdevice_notifiers_info(val, &info);
2035 }
2036 
2037 /**
2038  *	call_netdevice_notifiers - call all network notifier blocks
2039  *      @val: value passed unmodified to notifier function
2040  *      @dev: net_device pointer passed unmodified to notifier function
2041  *
2042  *	Call all network notifier blocks.  Parameters and return value
2043  *	are as for raw_notifier_call_chain().
2044  */
2045 
2046 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2047 {
2048 	return call_netdevice_notifiers_extack(val, dev, NULL);
2049 }
2050 EXPORT_SYMBOL(call_netdevice_notifiers);
2051 
2052 /**
2053  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2054  *	@val: value passed unmodified to notifier function
2055  *	@dev: net_device pointer passed unmodified to notifier function
2056  *	@arg: additional u32 argument passed to the notifier function
2057  *
2058  *	Call all network notifier blocks.  Parameters and return value
2059  *	are as for raw_notifier_call_chain().
2060  */
2061 static int call_netdevice_notifiers_mtu(unsigned long val,
2062 					struct net_device *dev, u32 arg)
2063 {
2064 	struct netdev_notifier_info_ext info = {
2065 		.info.dev = dev,
2066 		.ext.mtu = arg,
2067 	};
2068 
2069 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2070 
2071 	return call_netdevice_notifiers_info(val, &info.info);
2072 }
2073 
2074 #ifdef CONFIG_NET_INGRESS
2075 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2076 
2077 void net_inc_ingress_queue(void)
2078 {
2079 	static_branch_inc(&ingress_needed_key);
2080 }
2081 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2082 
2083 void net_dec_ingress_queue(void)
2084 {
2085 	static_branch_dec(&ingress_needed_key);
2086 }
2087 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2088 #endif
2089 
2090 #ifdef CONFIG_NET_EGRESS
2091 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2092 
2093 void net_inc_egress_queue(void)
2094 {
2095 	static_branch_inc(&egress_needed_key);
2096 }
2097 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2098 
2099 void net_dec_egress_queue(void)
2100 {
2101 	static_branch_dec(&egress_needed_key);
2102 }
2103 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2104 #endif
2105 
2106 #ifdef CONFIG_NET_CLS_ACT
2107 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2108 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2109 #endif
2110 
2111 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2112 EXPORT_SYMBOL(netstamp_needed_key);
2113 #ifdef CONFIG_JUMP_LABEL
2114 static atomic_t netstamp_needed_deferred;
2115 static atomic_t netstamp_wanted;
2116 static void netstamp_clear(struct work_struct *work)
2117 {
2118 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2119 	int wanted;
2120 
2121 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2122 	if (wanted > 0)
2123 		static_branch_enable(&netstamp_needed_key);
2124 	else
2125 		static_branch_disable(&netstamp_needed_key);
2126 }
2127 static DECLARE_WORK(netstamp_work, netstamp_clear);
2128 #endif
2129 
2130 void net_enable_timestamp(void)
2131 {
2132 #ifdef CONFIG_JUMP_LABEL
2133 	int wanted = atomic_read(&netstamp_wanted);
2134 
2135 	while (wanted > 0) {
2136 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2137 			return;
2138 	}
2139 	atomic_inc(&netstamp_needed_deferred);
2140 	schedule_work(&netstamp_work);
2141 #else
2142 	static_branch_inc(&netstamp_needed_key);
2143 #endif
2144 }
2145 EXPORT_SYMBOL(net_enable_timestamp);
2146 
2147 void net_disable_timestamp(void)
2148 {
2149 #ifdef CONFIG_JUMP_LABEL
2150 	int wanted = atomic_read(&netstamp_wanted);
2151 
2152 	while (wanted > 1) {
2153 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2154 			return;
2155 	}
2156 	atomic_dec(&netstamp_needed_deferred);
2157 	schedule_work(&netstamp_work);
2158 #else
2159 	static_branch_dec(&netstamp_needed_key);
2160 #endif
2161 }
2162 EXPORT_SYMBOL(net_disable_timestamp);
2163 
2164 static inline void net_timestamp_set(struct sk_buff *skb)
2165 {
2166 	skb->tstamp = 0;
2167 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2168 	if (static_branch_unlikely(&netstamp_needed_key))
2169 		skb->tstamp = ktime_get_real();
2170 }
2171 
2172 #define net_timestamp_check(COND, SKB)				\
2173 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2174 		if ((COND) && !(SKB)->tstamp)			\
2175 			(SKB)->tstamp = ktime_get_real();	\
2176 	}							\
2177 
2178 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2179 {
2180 	return __is_skb_forwardable(dev, skb, true);
2181 }
2182 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2183 
2184 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2185 			      bool check_mtu)
2186 {
2187 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2188 
2189 	if (likely(!ret)) {
2190 		skb->protocol = eth_type_trans(skb, dev);
2191 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2192 	}
2193 
2194 	return ret;
2195 }
2196 
2197 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2198 {
2199 	return __dev_forward_skb2(dev, skb, true);
2200 }
2201 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2202 
2203 /**
2204  * dev_forward_skb - loopback an skb to another netif
2205  *
2206  * @dev: destination network device
2207  * @skb: buffer to forward
2208  *
2209  * return values:
2210  *	NET_RX_SUCCESS	(no congestion)
2211  *	NET_RX_DROP     (packet was dropped, but freed)
2212  *
2213  * dev_forward_skb can be used for injecting an skb from the
2214  * start_xmit function of one device into the receive queue
2215  * of another device.
2216  *
2217  * The receiving device may be in another namespace, so
2218  * we have to clear all information in the skb that could
2219  * impact namespace isolation.
2220  */
2221 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2222 {
2223 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2224 }
2225 EXPORT_SYMBOL_GPL(dev_forward_skb);
2226 
2227 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2228 {
2229 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2230 }
2231 
2232 static inline int deliver_skb(struct sk_buff *skb,
2233 			      struct packet_type *pt_prev,
2234 			      struct net_device *orig_dev)
2235 {
2236 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2237 		return -ENOMEM;
2238 	refcount_inc(&skb->users);
2239 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2240 }
2241 
2242 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2243 					  struct packet_type **pt,
2244 					  struct net_device *orig_dev,
2245 					  __be16 type,
2246 					  struct list_head *ptype_list)
2247 {
2248 	struct packet_type *ptype, *pt_prev = *pt;
2249 
2250 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2251 		if (ptype->type != type)
2252 			continue;
2253 		if (pt_prev)
2254 			deliver_skb(skb, pt_prev, orig_dev);
2255 		pt_prev = ptype;
2256 	}
2257 	*pt = pt_prev;
2258 }
2259 
2260 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2261 {
2262 	if (!ptype->af_packet_priv || !skb->sk)
2263 		return false;
2264 
2265 	if (ptype->id_match)
2266 		return ptype->id_match(ptype, skb->sk);
2267 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2268 		return true;
2269 
2270 	return false;
2271 }
2272 
2273 /**
2274  * dev_nit_active - return true if any network interface taps are in use
2275  *
2276  * @dev: network device to check for the presence of taps
2277  */
2278 bool dev_nit_active(struct net_device *dev)
2279 {
2280 	return !list_empty(&net_hotdata.ptype_all) ||
2281 	       !list_empty(&dev->ptype_all);
2282 }
2283 EXPORT_SYMBOL_GPL(dev_nit_active);
2284 
2285 /*
2286  *	Support routine. Sends outgoing frames to any network
2287  *	taps currently in use.
2288  */
2289 
2290 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2291 {
2292 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2293 	struct packet_type *ptype, *pt_prev = NULL;
2294 	struct sk_buff *skb2 = NULL;
2295 
2296 	rcu_read_lock();
2297 again:
2298 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2299 		if (READ_ONCE(ptype->ignore_outgoing))
2300 			continue;
2301 
2302 		/* Never send packets back to the socket
2303 		 * they originated from - MvS (miquels@drinkel.ow.org)
2304 		 */
2305 		if (skb_loop_sk(ptype, skb))
2306 			continue;
2307 
2308 		if (pt_prev) {
2309 			deliver_skb(skb2, pt_prev, skb->dev);
2310 			pt_prev = ptype;
2311 			continue;
2312 		}
2313 
2314 		/* need to clone skb, done only once */
2315 		skb2 = skb_clone(skb, GFP_ATOMIC);
2316 		if (!skb2)
2317 			goto out_unlock;
2318 
2319 		net_timestamp_set(skb2);
2320 
2321 		/* skb->nh should be correctly
2322 		 * set by sender, so that the second statement is
2323 		 * just protection against buggy protocols.
2324 		 */
2325 		skb_reset_mac_header(skb2);
2326 
2327 		if (skb_network_header(skb2) < skb2->data ||
2328 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2329 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2330 					     ntohs(skb2->protocol),
2331 					     dev->name);
2332 			skb_reset_network_header(skb2);
2333 		}
2334 
2335 		skb2->transport_header = skb2->network_header;
2336 		skb2->pkt_type = PACKET_OUTGOING;
2337 		pt_prev = ptype;
2338 	}
2339 
2340 	if (ptype_list == &net_hotdata.ptype_all) {
2341 		ptype_list = &dev->ptype_all;
2342 		goto again;
2343 	}
2344 out_unlock:
2345 	if (pt_prev) {
2346 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2347 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2348 		else
2349 			kfree_skb(skb2);
2350 	}
2351 	rcu_read_unlock();
2352 }
2353 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2354 
2355 /**
2356  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2357  * @dev: Network device
2358  * @txq: number of queues available
2359  *
2360  * If real_num_tx_queues is changed the tc mappings may no longer be
2361  * valid. To resolve this verify the tc mapping remains valid and if
2362  * not NULL the mapping. With no priorities mapping to this
2363  * offset/count pair it will no longer be used. In the worst case TC0
2364  * is invalid nothing can be done so disable priority mappings. If is
2365  * expected that drivers will fix this mapping if they can before
2366  * calling netif_set_real_num_tx_queues.
2367  */
2368 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2369 {
2370 	int i;
2371 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2372 
2373 	/* If TC0 is invalidated disable TC mapping */
2374 	if (tc->offset + tc->count > txq) {
2375 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2376 		dev->num_tc = 0;
2377 		return;
2378 	}
2379 
2380 	/* Invalidated prio to tc mappings set to TC0 */
2381 	for (i = 1; i < TC_BITMASK + 1; i++) {
2382 		int q = netdev_get_prio_tc_map(dev, i);
2383 
2384 		tc = &dev->tc_to_txq[q];
2385 		if (tc->offset + tc->count > txq) {
2386 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2387 				    i, q);
2388 			netdev_set_prio_tc_map(dev, i, 0);
2389 		}
2390 	}
2391 }
2392 
2393 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2394 {
2395 	if (dev->num_tc) {
2396 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2397 		int i;
2398 
2399 		/* walk through the TCs and see if it falls into any of them */
2400 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2401 			if ((txq - tc->offset) < tc->count)
2402 				return i;
2403 		}
2404 
2405 		/* didn't find it, just return -1 to indicate no match */
2406 		return -1;
2407 	}
2408 
2409 	return 0;
2410 }
2411 EXPORT_SYMBOL(netdev_txq_to_tc);
2412 
2413 #ifdef CONFIG_XPS
2414 static struct static_key xps_needed __read_mostly;
2415 static struct static_key xps_rxqs_needed __read_mostly;
2416 static DEFINE_MUTEX(xps_map_mutex);
2417 #define xmap_dereference(P)		\
2418 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2419 
2420 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2421 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2422 {
2423 	struct xps_map *map = NULL;
2424 	int pos;
2425 
2426 	map = xmap_dereference(dev_maps->attr_map[tci]);
2427 	if (!map)
2428 		return false;
2429 
2430 	for (pos = map->len; pos--;) {
2431 		if (map->queues[pos] != index)
2432 			continue;
2433 
2434 		if (map->len > 1) {
2435 			map->queues[pos] = map->queues[--map->len];
2436 			break;
2437 		}
2438 
2439 		if (old_maps)
2440 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2441 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2442 		kfree_rcu(map, rcu);
2443 		return false;
2444 	}
2445 
2446 	return true;
2447 }
2448 
2449 static bool remove_xps_queue_cpu(struct net_device *dev,
2450 				 struct xps_dev_maps *dev_maps,
2451 				 int cpu, u16 offset, u16 count)
2452 {
2453 	int num_tc = dev_maps->num_tc;
2454 	bool active = false;
2455 	int tci;
2456 
2457 	for (tci = cpu * num_tc; num_tc--; tci++) {
2458 		int i, j;
2459 
2460 		for (i = count, j = offset; i--; j++) {
2461 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2462 				break;
2463 		}
2464 
2465 		active |= i < 0;
2466 	}
2467 
2468 	return active;
2469 }
2470 
2471 static void reset_xps_maps(struct net_device *dev,
2472 			   struct xps_dev_maps *dev_maps,
2473 			   enum xps_map_type type)
2474 {
2475 	static_key_slow_dec_cpuslocked(&xps_needed);
2476 	if (type == XPS_RXQS)
2477 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2478 
2479 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2480 
2481 	kfree_rcu(dev_maps, rcu);
2482 }
2483 
2484 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2485 			   u16 offset, u16 count)
2486 {
2487 	struct xps_dev_maps *dev_maps;
2488 	bool active = false;
2489 	int i, j;
2490 
2491 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2492 	if (!dev_maps)
2493 		return;
2494 
2495 	for (j = 0; j < dev_maps->nr_ids; j++)
2496 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2497 	if (!active)
2498 		reset_xps_maps(dev, dev_maps, type);
2499 
2500 	if (type == XPS_CPUS) {
2501 		for (i = offset + (count - 1); count--; i--)
2502 			netdev_queue_numa_node_write(
2503 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2504 	}
2505 }
2506 
2507 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2508 				   u16 count)
2509 {
2510 	if (!static_key_false(&xps_needed))
2511 		return;
2512 
2513 	cpus_read_lock();
2514 	mutex_lock(&xps_map_mutex);
2515 
2516 	if (static_key_false(&xps_rxqs_needed))
2517 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2518 
2519 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2520 
2521 	mutex_unlock(&xps_map_mutex);
2522 	cpus_read_unlock();
2523 }
2524 
2525 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2526 {
2527 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2528 }
2529 
2530 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2531 				      u16 index, bool is_rxqs_map)
2532 {
2533 	struct xps_map *new_map;
2534 	int alloc_len = XPS_MIN_MAP_ALLOC;
2535 	int i, pos;
2536 
2537 	for (pos = 0; map && pos < map->len; pos++) {
2538 		if (map->queues[pos] != index)
2539 			continue;
2540 		return map;
2541 	}
2542 
2543 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2544 	if (map) {
2545 		if (pos < map->alloc_len)
2546 			return map;
2547 
2548 		alloc_len = map->alloc_len * 2;
2549 	}
2550 
2551 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2552 	 *  map
2553 	 */
2554 	if (is_rxqs_map)
2555 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2556 	else
2557 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2558 				       cpu_to_node(attr_index));
2559 	if (!new_map)
2560 		return NULL;
2561 
2562 	for (i = 0; i < pos; i++)
2563 		new_map->queues[i] = map->queues[i];
2564 	new_map->alloc_len = alloc_len;
2565 	new_map->len = pos;
2566 
2567 	return new_map;
2568 }
2569 
2570 /* Copy xps maps at a given index */
2571 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2572 			      struct xps_dev_maps *new_dev_maps, int index,
2573 			      int tc, bool skip_tc)
2574 {
2575 	int i, tci = index * dev_maps->num_tc;
2576 	struct xps_map *map;
2577 
2578 	/* copy maps belonging to foreign traffic classes */
2579 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2580 		if (i == tc && skip_tc)
2581 			continue;
2582 
2583 		/* fill in the new device map from the old device map */
2584 		map = xmap_dereference(dev_maps->attr_map[tci]);
2585 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2586 	}
2587 }
2588 
2589 /* Must be called under cpus_read_lock */
2590 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2591 			  u16 index, enum xps_map_type type)
2592 {
2593 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2594 	const unsigned long *online_mask = NULL;
2595 	bool active = false, copy = false;
2596 	int i, j, tci, numa_node_id = -2;
2597 	int maps_sz, num_tc = 1, tc = 0;
2598 	struct xps_map *map, *new_map;
2599 	unsigned int nr_ids;
2600 
2601 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2602 
2603 	if (dev->num_tc) {
2604 		/* Do not allow XPS on subordinate device directly */
2605 		num_tc = dev->num_tc;
2606 		if (num_tc < 0)
2607 			return -EINVAL;
2608 
2609 		/* If queue belongs to subordinate dev use its map */
2610 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2611 
2612 		tc = netdev_txq_to_tc(dev, index);
2613 		if (tc < 0)
2614 			return -EINVAL;
2615 	}
2616 
2617 	mutex_lock(&xps_map_mutex);
2618 
2619 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2620 	if (type == XPS_RXQS) {
2621 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2622 		nr_ids = dev->num_rx_queues;
2623 	} else {
2624 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2625 		if (num_possible_cpus() > 1)
2626 			online_mask = cpumask_bits(cpu_online_mask);
2627 		nr_ids = nr_cpu_ids;
2628 	}
2629 
2630 	if (maps_sz < L1_CACHE_BYTES)
2631 		maps_sz = L1_CACHE_BYTES;
2632 
2633 	/* The old dev_maps could be larger or smaller than the one we're
2634 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2635 	 * between. We could try to be smart, but let's be safe instead and only
2636 	 * copy foreign traffic classes if the two map sizes match.
2637 	 */
2638 	if (dev_maps &&
2639 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2640 		copy = true;
2641 
2642 	/* allocate memory for queue storage */
2643 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2644 	     j < nr_ids;) {
2645 		if (!new_dev_maps) {
2646 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2647 			if (!new_dev_maps) {
2648 				mutex_unlock(&xps_map_mutex);
2649 				return -ENOMEM;
2650 			}
2651 
2652 			new_dev_maps->nr_ids = nr_ids;
2653 			new_dev_maps->num_tc = num_tc;
2654 		}
2655 
2656 		tci = j * num_tc + tc;
2657 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2658 
2659 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2660 		if (!map)
2661 			goto error;
2662 
2663 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2664 	}
2665 
2666 	if (!new_dev_maps)
2667 		goto out_no_new_maps;
2668 
2669 	if (!dev_maps) {
2670 		/* Increment static keys at most once per type */
2671 		static_key_slow_inc_cpuslocked(&xps_needed);
2672 		if (type == XPS_RXQS)
2673 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2674 	}
2675 
2676 	for (j = 0; j < nr_ids; j++) {
2677 		bool skip_tc = false;
2678 
2679 		tci = j * num_tc + tc;
2680 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2681 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2682 			/* add tx-queue to CPU/rx-queue maps */
2683 			int pos = 0;
2684 
2685 			skip_tc = true;
2686 
2687 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2688 			while ((pos < map->len) && (map->queues[pos] != index))
2689 				pos++;
2690 
2691 			if (pos == map->len)
2692 				map->queues[map->len++] = index;
2693 #ifdef CONFIG_NUMA
2694 			if (type == XPS_CPUS) {
2695 				if (numa_node_id == -2)
2696 					numa_node_id = cpu_to_node(j);
2697 				else if (numa_node_id != cpu_to_node(j))
2698 					numa_node_id = -1;
2699 			}
2700 #endif
2701 		}
2702 
2703 		if (copy)
2704 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2705 					  skip_tc);
2706 	}
2707 
2708 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2709 
2710 	/* Cleanup old maps */
2711 	if (!dev_maps)
2712 		goto out_no_old_maps;
2713 
2714 	for (j = 0; j < dev_maps->nr_ids; j++) {
2715 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2716 			map = xmap_dereference(dev_maps->attr_map[tci]);
2717 			if (!map)
2718 				continue;
2719 
2720 			if (copy) {
2721 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2722 				if (map == new_map)
2723 					continue;
2724 			}
2725 
2726 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2727 			kfree_rcu(map, rcu);
2728 		}
2729 	}
2730 
2731 	old_dev_maps = dev_maps;
2732 
2733 out_no_old_maps:
2734 	dev_maps = new_dev_maps;
2735 	active = true;
2736 
2737 out_no_new_maps:
2738 	if (type == XPS_CPUS)
2739 		/* update Tx queue numa node */
2740 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2741 					     (numa_node_id >= 0) ?
2742 					     numa_node_id : NUMA_NO_NODE);
2743 
2744 	if (!dev_maps)
2745 		goto out_no_maps;
2746 
2747 	/* removes tx-queue from unused CPUs/rx-queues */
2748 	for (j = 0; j < dev_maps->nr_ids; j++) {
2749 		tci = j * dev_maps->num_tc;
2750 
2751 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2752 			if (i == tc &&
2753 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2754 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2755 				continue;
2756 
2757 			active |= remove_xps_queue(dev_maps,
2758 						   copy ? old_dev_maps : NULL,
2759 						   tci, index);
2760 		}
2761 	}
2762 
2763 	if (old_dev_maps)
2764 		kfree_rcu(old_dev_maps, rcu);
2765 
2766 	/* free map if not active */
2767 	if (!active)
2768 		reset_xps_maps(dev, dev_maps, type);
2769 
2770 out_no_maps:
2771 	mutex_unlock(&xps_map_mutex);
2772 
2773 	return 0;
2774 error:
2775 	/* remove any maps that we added */
2776 	for (j = 0; j < nr_ids; j++) {
2777 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2778 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2779 			map = copy ?
2780 			      xmap_dereference(dev_maps->attr_map[tci]) :
2781 			      NULL;
2782 			if (new_map && new_map != map)
2783 				kfree(new_map);
2784 		}
2785 	}
2786 
2787 	mutex_unlock(&xps_map_mutex);
2788 
2789 	kfree(new_dev_maps);
2790 	return -ENOMEM;
2791 }
2792 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2793 
2794 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2795 			u16 index)
2796 {
2797 	int ret;
2798 
2799 	cpus_read_lock();
2800 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2801 	cpus_read_unlock();
2802 
2803 	return ret;
2804 }
2805 EXPORT_SYMBOL(netif_set_xps_queue);
2806 
2807 #endif
2808 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2809 {
2810 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2811 
2812 	/* Unbind any subordinate channels */
2813 	while (txq-- != &dev->_tx[0]) {
2814 		if (txq->sb_dev)
2815 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2816 	}
2817 }
2818 
2819 void netdev_reset_tc(struct net_device *dev)
2820 {
2821 #ifdef CONFIG_XPS
2822 	netif_reset_xps_queues_gt(dev, 0);
2823 #endif
2824 	netdev_unbind_all_sb_channels(dev);
2825 
2826 	/* Reset TC configuration of device */
2827 	dev->num_tc = 0;
2828 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2829 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2830 }
2831 EXPORT_SYMBOL(netdev_reset_tc);
2832 
2833 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2834 {
2835 	if (tc >= dev->num_tc)
2836 		return -EINVAL;
2837 
2838 #ifdef CONFIG_XPS
2839 	netif_reset_xps_queues(dev, offset, count);
2840 #endif
2841 	dev->tc_to_txq[tc].count = count;
2842 	dev->tc_to_txq[tc].offset = offset;
2843 	return 0;
2844 }
2845 EXPORT_SYMBOL(netdev_set_tc_queue);
2846 
2847 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2848 {
2849 	if (num_tc > TC_MAX_QUEUE)
2850 		return -EINVAL;
2851 
2852 #ifdef CONFIG_XPS
2853 	netif_reset_xps_queues_gt(dev, 0);
2854 #endif
2855 	netdev_unbind_all_sb_channels(dev);
2856 
2857 	dev->num_tc = num_tc;
2858 	return 0;
2859 }
2860 EXPORT_SYMBOL(netdev_set_num_tc);
2861 
2862 void netdev_unbind_sb_channel(struct net_device *dev,
2863 			      struct net_device *sb_dev)
2864 {
2865 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2866 
2867 #ifdef CONFIG_XPS
2868 	netif_reset_xps_queues_gt(sb_dev, 0);
2869 #endif
2870 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2871 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2872 
2873 	while (txq-- != &dev->_tx[0]) {
2874 		if (txq->sb_dev == sb_dev)
2875 			txq->sb_dev = NULL;
2876 	}
2877 }
2878 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2879 
2880 int netdev_bind_sb_channel_queue(struct net_device *dev,
2881 				 struct net_device *sb_dev,
2882 				 u8 tc, u16 count, u16 offset)
2883 {
2884 	/* Make certain the sb_dev and dev are already configured */
2885 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2886 		return -EINVAL;
2887 
2888 	/* We cannot hand out queues we don't have */
2889 	if ((offset + count) > dev->real_num_tx_queues)
2890 		return -EINVAL;
2891 
2892 	/* Record the mapping */
2893 	sb_dev->tc_to_txq[tc].count = count;
2894 	sb_dev->tc_to_txq[tc].offset = offset;
2895 
2896 	/* Provide a way for Tx queue to find the tc_to_txq map or
2897 	 * XPS map for itself.
2898 	 */
2899 	while (count--)
2900 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2901 
2902 	return 0;
2903 }
2904 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2905 
2906 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2907 {
2908 	/* Do not use a multiqueue device to represent a subordinate channel */
2909 	if (netif_is_multiqueue(dev))
2910 		return -ENODEV;
2911 
2912 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2913 	 * Channel 0 is meant to be "native" mode and used only to represent
2914 	 * the main root device. We allow writing 0 to reset the device back
2915 	 * to normal mode after being used as a subordinate channel.
2916 	 */
2917 	if (channel > S16_MAX)
2918 		return -EINVAL;
2919 
2920 	dev->num_tc = -channel;
2921 
2922 	return 0;
2923 }
2924 EXPORT_SYMBOL(netdev_set_sb_channel);
2925 
2926 /*
2927  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2928  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2929  */
2930 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2931 {
2932 	bool disabling;
2933 	int rc;
2934 
2935 	disabling = txq < dev->real_num_tx_queues;
2936 
2937 	if (txq < 1 || txq > dev->num_tx_queues)
2938 		return -EINVAL;
2939 
2940 	if (dev->reg_state == NETREG_REGISTERED ||
2941 	    dev->reg_state == NETREG_UNREGISTERING) {
2942 		ASSERT_RTNL();
2943 
2944 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2945 						  txq);
2946 		if (rc)
2947 			return rc;
2948 
2949 		if (dev->num_tc)
2950 			netif_setup_tc(dev, txq);
2951 
2952 		net_shaper_set_real_num_tx_queues(dev, txq);
2953 
2954 		dev_qdisc_change_real_num_tx(dev, txq);
2955 
2956 		dev->real_num_tx_queues = txq;
2957 
2958 		if (disabling) {
2959 			synchronize_net();
2960 			qdisc_reset_all_tx_gt(dev, txq);
2961 #ifdef CONFIG_XPS
2962 			netif_reset_xps_queues_gt(dev, txq);
2963 #endif
2964 		}
2965 	} else {
2966 		dev->real_num_tx_queues = txq;
2967 	}
2968 
2969 	return 0;
2970 }
2971 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2972 
2973 #ifdef CONFIG_SYSFS
2974 /**
2975  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2976  *	@dev: Network device
2977  *	@rxq: Actual number of RX queues
2978  *
2979  *	This must be called either with the rtnl_lock held or before
2980  *	registration of the net device.  Returns 0 on success, or a
2981  *	negative error code.  If called before registration, it always
2982  *	succeeds.
2983  */
2984 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2985 {
2986 	int rc;
2987 
2988 	if (rxq < 1 || rxq > dev->num_rx_queues)
2989 		return -EINVAL;
2990 
2991 	if (dev->reg_state == NETREG_REGISTERED) {
2992 		ASSERT_RTNL();
2993 
2994 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2995 						  rxq);
2996 		if (rc)
2997 			return rc;
2998 	}
2999 
3000 	dev->real_num_rx_queues = rxq;
3001 	return 0;
3002 }
3003 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3004 #endif
3005 
3006 /**
3007  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3008  *	@dev: Network device
3009  *	@txq: Actual number of TX queues
3010  *	@rxq: Actual number of RX queues
3011  *
3012  *	Set the real number of both TX and RX queues.
3013  *	Does nothing if the number of queues is already correct.
3014  */
3015 int netif_set_real_num_queues(struct net_device *dev,
3016 			      unsigned int txq, unsigned int rxq)
3017 {
3018 	unsigned int old_rxq = dev->real_num_rx_queues;
3019 	int err;
3020 
3021 	if (txq < 1 || txq > dev->num_tx_queues ||
3022 	    rxq < 1 || rxq > dev->num_rx_queues)
3023 		return -EINVAL;
3024 
3025 	/* Start from increases, so the error path only does decreases -
3026 	 * decreases can't fail.
3027 	 */
3028 	if (rxq > dev->real_num_rx_queues) {
3029 		err = netif_set_real_num_rx_queues(dev, rxq);
3030 		if (err)
3031 			return err;
3032 	}
3033 	if (txq > dev->real_num_tx_queues) {
3034 		err = netif_set_real_num_tx_queues(dev, txq);
3035 		if (err)
3036 			goto undo_rx;
3037 	}
3038 	if (rxq < dev->real_num_rx_queues)
3039 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3040 	if (txq < dev->real_num_tx_queues)
3041 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3042 
3043 	return 0;
3044 undo_rx:
3045 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3046 	return err;
3047 }
3048 EXPORT_SYMBOL(netif_set_real_num_queues);
3049 
3050 /**
3051  * netif_set_tso_max_size() - set the max size of TSO frames supported
3052  * @dev:	netdev to update
3053  * @size:	max skb->len of a TSO frame
3054  *
3055  * Set the limit on the size of TSO super-frames the device can handle.
3056  * Unless explicitly set the stack will assume the value of
3057  * %GSO_LEGACY_MAX_SIZE.
3058  */
3059 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3060 {
3061 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3062 	if (size < READ_ONCE(dev->gso_max_size))
3063 		netif_set_gso_max_size(dev, size);
3064 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3065 		netif_set_gso_ipv4_max_size(dev, size);
3066 }
3067 EXPORT_SYMBOL(netif_set_tso_max_size);
3068 
3069 /**
3070  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3071  * @dev:	netdev to update
3072  * @segs:	max number of TCP segments
3073  *
3074  * Set the limit on the number of TCP segments the device can generate from
3075  * a single TSO super-frame.
3076  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3077  */
3078 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3079 {
3080 	dev->tso_max_segs = segs;
3081 	if (segs < READ_ONCE(dev->gso_max_segs))
3082 		netif_set_gso_max_segs(dev, segs);
3083 }
3084 EXPORT_SYMBOL(netif_set_tso_max_segs);
3085 
3086 /**
3087  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3088  * @to:		netdev to update
3089  * @from:	netdev from which to copy the limits
3090  */
3091 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3092 {
3093 	netif_set_tso_max_size(to, from->tso_max_size);
3094 	netif_set_tso_max_segs(to, from->tso_max_segs);
3095 }
3096 EXPORT_SYMBOL(netif_inherit_tso_max);
3097 
3098 /**
3099  * netif_get_num_default_rss_queues - default number of RSS queues
3100  *
3101  * Default value is the number of physical cores if there are only 1 or 2, or
3102  * divided by 2 if there are more.
3103  */
3104 int netif_get_num_default_rss_queues(void)
3105 {
3106 	cpumask_var_t cpus;
3107 	int cpu, count = 0;
3108 
3109 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3110 		return 1;
3111 
3112 	cpumask_copy(cpus, cpu_online_mask);
3113 	for_each_cpu(cpu, cpus) {
3114 		++count;
3115 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3116 	}
3117 	free_cpumask_var(cpus);
3118 
3119 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3120 }
3121 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3122 
3123 static void __netif_reschedule(struct Qdisc *q)
3124 {
3125 	struct softnet_data *sd;
3126 	unsigned long flags;
3127 
3128 	local_irq_save(flags);
3129 	sd = this_cpu_ptr(&softnet_data);
3130 	q->next_sched = NULL;
3131 	*sd->output_queue_tailp = q;
3132 	sd->output_queue_tailp = &q->next_sched;
3133 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3134 	local_irq_restore(flags);
3135 }
3136 
3137 void __netif_schedule(struct Qdisc *q)
3138 {
3139 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3140 		__netif_reschedule(q);
3141 }
3142 EXPORT_SYMBOL(__netif_schedule);
3143 
3144 struct dev_kfree_skb_cb {
3145 	enum skb_drop_reason reason;
3146 };
3147 
3148 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3149 {
3150 	return (struct dev_kfree_skb_cb *)skb->cb;
3151 }
3152 
3153 void netif_schedule_queue(struct netdev_queue *txq)
3154 {
3155 	rcu_read_lock();
3156 	if (!netif_xmit_stopped(txq)) {
3157 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3158 
3159 		__netif_schedule(q);
3160 	}
3161 	rcu_read_unlock();
3162 }
3163 EXPORT_SYMBOL(netif_schedule_queue);
3164 
3165 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3166 {
3167 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3168 		struct Qdisc *q;
3169 
3170 		rcu_read_lock();
3171 		q = rcu_dereference(dev_queue->qdisc);
3172 		__netif_schedule(q);
3173 		rcu_read_unlock();
3174 	}
3175 }
3176 EXPORT_SYMBOL(netif_tx_wake_queue);
3177 
3178 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3179 {
3180 	unsigned long flags;
3181 
3182 	if (unlikely(!skb))
3183 		return;
3184 
3185 	if (likely(refcount_read(&skb->users) == 1)) {
3186 		smp_rmb();
3187 		refcount_set(&skb->users, 0);
3188 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3189 		return;
3190 	}
3191 	get_kfree_skb_cb(skb)->reason = reason;
3192 	local_irq_save(flags);
3193 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3194 	__this_cpu_write(softnet_data.completion_queue, skb);
3195 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3196 	local_irq_restore(flags);
3197 }
3198 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3199 
3200 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3201 {
3202 	if (in_hardirq() || irqs_disabled())
3203 		dev_kfree_skb_irq_reason(skb, reason);
3204 	else
3205 		kfree_skb_reason(skb, reason);
3206 }
3207 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3208 
3209 
3210 /**
3211  * netif_device_detach - mark device as removed
3212  * @dev: network device
3213  *
3214  * Mark device as removed from system and therefore no longer available.
3215  */
3216 void netif_device_detach(struct net_device *dev)
3217 {
3218 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3219 	    netif_running(dev)) {
3220 		netif_tx_stop_all_queues(dev);
3221 	}
3222 }
3223 EXPORT_SYMBOL(netif_device_detach);
3224 
3225 /**
3226  * netif_device_attach - mark device as attached
3227  * @dev: network device
3228  *
3229  * Mark device as attached from system and restart if needed.
3230  */
3231 void netif_device_attach(struct net_device *dev)
3232 {
3233 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3234 	    netif_running(dev)) {
3235 		netif_tx_wake_all_queues(dev);
3236 		__netdev_watchdog_up(dev);
3237 	}
3238 }
3239 EXPORT_SYMBOL(netif_device_attach);
3240 
3241 /*
3242  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3243  * to be used as a distribution range.
3244  */
3245 static u16 skb_tx_hash(const struct net_device *dev,
3246 		       const struct net_device *sb_dev,
3247 		       struct sk_buff *skb)
3248 {
3249 	u32 hash;
3250 	u16 qoffset = 0;
3251 	u16 qcount = dev->real_num_tx_queues;
3252 
3253 	if (dev->num_tc) {
3254 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3255 
3256 		qoffset = sb_dev->tc_to_txq[tc].offset;
3257 		qcount = sb_dev->tc_to_txq[tc].count;
3258 		if (unlikely(!qcount)) {
3259 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3260 					     sb_dev->name, qoffset, tc);
3261 			qoffset = 0;
3262 			qcount = dev->real_num_tx_queues;
3263 		}
3264 	}
3265 
3266 	if (skb_rx_queue_recorded(skb)) {
3267 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3268 		hash = skb_get_rx_queue(skb);
3269 		if (hash >= qoffset)
3270 			hash -= qoffset;
3271 		while (unlikely(hash >= qcount))
3272 			hash -= qcount;
3273 		return hash + qoffset;
3274 	}
3275 
3276 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3277 }
3278 
3279 void skb_warn_bad_offload(const struct sk_buff *skb)
3280 {
3281 	static const netdev_features_t null_features;
3282 	struct net_device *dev = skb->dev;
3283 	const char *name = "";
3284 
3285 	if (!net_ratelimit())
3286 		return;
3287 
3288 	if (dev) {
3289 		if (dev->dev.parent)
3290 			name = dev_driver_string(dev->dev.parent);
3291 		else
3292 			name = netdev_name(dev);
3293 	}
3294 	skb_dump(KERN_WARNING, skb, false);
3295 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3296 	     name, dev ? &dev->features : &null_features,
3297 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3298 }
3299 
3300 /*
3301  * Invalidate hardware checksum when packet is to be mangled, and
3302  * complete checksum manually on outgoing path.
3303  */
3304 int skb_checksum_help(struct sk_buff *skb)
3305 {
3306 	__wsum csum;
3307 	int ret = 0, offset;
3308 
3309 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3310 		goto out_set_summed;
3311 
3312 	if (unlikely(skb_is_gso(skb))) {
3313 		skb_warn_bad_offload(skb);
3314 		return -EINVAL;
3315 	}
3316 
3317 	if (!skb_frags_readable(skb)) {
3318 		return -EFAULT;
3319 	}
3320 
3321 	/* Before computing a checksum, we should make sure no frag could
3322 	 * be modified by an external entity : checksum could be wrong.
3323 	 */
3324 	if (skb_has_shared_frag(skb)) {
3325 		ret = __skb_linearize(skb);
3326 		if (ret)
3327 			goto out;
3328 	}
3329 
3330 	offset = skb_checksum_start_offset(skb);
3331 	ret = -EINVAL;
3332 	if (unlikely(offset >= skb_headlen(skb))) {
3333 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3334 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3335 			  offset, skb_headlen(skb));
3336 		goto out;
3337 	}
3338 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3339 
3340 	offset += skb->csum_offset;
3341 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3342 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3343 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3344 			  offset + sizeof(__sum16), skb_headlen(skb));
3345 		goto out;
3346 	}
3347 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3348 	if (ret)
3349 		goto out;
3350 
3351 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3352 out_set_summed:
3353 	skb->ip_summed = CHECKSUM_NONE;
3354 out:
3355 	return ret;
3356 }
3357 EXPORT_SYMBOL(skb_checksum_help);
3358 
3359 int skb_crc32c_csum_help(struct sk_buff *skb)
3360 {
3361 	__le32 crc32c_csum;
3362 	int ret = 0, offset, start;
3363 
3364 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3365 		goto out;
3366 
3367 	if (unlikely(skb_is_gso(skb)))
3368 		goto out;
3369 
3370 	/* Before computing a checksum, we should make sure no frag could
3371 	 * be modified by an external entity : checksum could be wrong.
3372 	 */
3373 	if (unlikely(skb_has_shared_frag(skb))) {
3374 		ret = __skb_linearize(skb);
3375 		if (ret)
3376 			goto out;
3377 	}
3378 	start = skb_checksum_start_offset(skb);
3379 	offset = start + offsetof(struct sctphdr, checksum);
3380 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3381 		ret = -EINVAL;
3382 		goto out;
3383 	}
3384 
3385 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3386 	if (ret)
3387 		goto out;
3388 
3389 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3390 						  skb->len - start, ~(__u32)0,
3391 						  crc32c_csum_stub));
3392 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3393 	skb_reset_csum_not_inet(skb);
3394 out:
3395 	return ret;
3396 }
3397 EXPORT_SYMBOL(skb_crc32c_csum_help);
3398 
3399 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3400 {
3401 	__be16 type = skb->protocol;
3402 
3403 	/* Tunnel gso handlers can set protocol to ethernet. */
3404 	if (type == htons(ETH_P_TEB)) {
3405 		struct ethhdr *eth;
3406 
3407 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3408 			return 0;
3409 
3410 		eth = (struct ethhdr *)skb->data;
3411 		type = eth->h_proto;
3412 	}
3413 
3414 	return vlan_get_protocol_and_depth(skb, type, depth);
3415 }
3416 
3417 
3418 /* Take action when hardware reception checksum errors are detected. */
3419 #ifdef CONFIG_BUG
3420 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3421 {
3422 	netdev_err(dev, "hw csum failure\n");
3423 	skb_dump(KERN_ERR, skb, true);
3424 	dump_stack();
3425 }
3426 
3427 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3428 {
3429 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3430 }
3431 EXPORT_SYMBOL(netdev_rx_csum_fault);
3432 #endif
3433 
3434 /* XXX: check that highmem exists at all on the given machine. */
3435 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3436 {
3437 #ifdef CONFIG_HIGHMEM
3438 	int i;
3439 
3440 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3441 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3442 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3443 			struct page *page = skb_frag_page(frag);
3444 
3445 			if (page && PageHighMem(page))
3446 				return 1;
3447 		}
3448 	}
3449 #endif
3450 	return 0;
3451 }
3452 
3453 /* If MPLS offload request, verify we are testing hardware MPLS features
3454  * instead of standard features for the netdev.
3455  */
3456 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3457 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3458 					   netdev_features_t features,
3459 					   __be16 type)
3460 {
3461 	if (eth_p_mpls(type))
3462 		features &= skb->dev->mpls_features;
3463 
3464 	return features;
3465 }
3466 #else
3467 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3468 					   netdev_features_t features,
3469 					   __be16 type)
3470 {
3471 	return features;
3472 }
3473 #endif
3474 
3475 static netdev_features_t harmonize_features(struct sk_buff *skb,
3476 	netdev_features_t features)
3477 {
3478 	__be16 type;
3479 
3480 	type = skb_network_protocol(skb, NULL);
3481 	features = net_mpls_features(skb, features, type);
3482 
3483 	if (skb->ip_summed != CHECKSUM_NONE &&
3484 	    !can_checksum_protocol(features, type)) {
3485 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3486 	}
3487 	if (illegal_highdma(skb->dev, skb))
3488 		features &= ~NETIF_F_SG;
3489 
3490 	return features;
3491 }
3492 
3493 netdev_features_t passthru_features_check(struct sk_buff *skb,
3494 					  struct net_device *dev,
3495 					  netdev_features_t features)
3496 {
3497 	return features;
3498 }
3499 EXPORT_SYMBOL(passthru_features_check);
3500 
3501 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3502 					     struct net_device *dev,
3503 					     netdev_features_t features)
3504 {
3505 	return vlan_features_check(skb, features);
3506 }
3507 
3508 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3509 					    struct net_device *dev,
3510 					    netdev_features_t features)
3511 {
3512 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3513 
3514 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3515 		return features & ~NETIF_F_GSO_MASK;
3516 
3517 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3518 		return features & ~NETIF_F_GSO_MASK;
3519 
3520 	if (!skb_shinfo(skb)->gso_type) {
3521 		skb_warn_bad_offload(skb);
3522 		return features & ~NETIF_F_GSO_MASK;
3523 	}
3524 
3525 	/* Support for GSO partial features requires software
3526 	 * intervention before we can actually process the packets
3527 	 * so we need to strip support for any partial features now
3528 	 * and we can pull them back in after we have partially
3529 	 * segmented the frame.
3530 	 */
3531 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3532 		features &= ~dev->gso_partial_features;
3533 
3534 	/* Make sure to clear the IPv4 ID mangling feature if the
3535 	 * IPv4 header has the potential to be fragmented.
3536 	 */
3537 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3538 		struct iphdr *iph = skb->encapsulation ?
3539 				    inner_ip_hdr(skb) : ip_hdr(skb);
3540 
3541 		if (!(iph->frag_off & htons(IP_DF)))
3542 			features &= ~NETIF_F_TSO_MANGLEID;
3543 	}
3544 
3545 	return features;
3546 }
3547 
3548 netdev_features_t netif_skb_features(struct sk_buff *skb)
3549 {
3550 	struct net_device *dev = skb->dev;
3551 	netdev_features_t features = dev->features;
3552 
3553 	if (skb_is_gso(skb))
3554 		features = gso_features_check(skb, dev, features);
3555 
3556 	/* If encapsulation offload request, verify we are testing
3557 	 * hardware encapsulation features instead of standard
3558 	 * features for the netdev
3559 	 */
3560 	if (skb->encapsulation)
3561 		features &= dev->hw_enc_features;
3562 
3563 	if (skb_vlan_tagged(skb))
3564 		features = netdev_intersect_features(features,
3565 						     dev->vlan_features |
3566 						     NETIF_F_HW_VLAN_CTAG_TX |
3567 						     NETIF_F_HW_VLAN_STAG_TX);
3568 
3569 	if (dev->netdev_ops->ndo_features_check)
3570 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3571 								features);
3572 	else
3573 		features &= dflt_features_check(skb, dev, features);
3574 
3575 	return harmonize_features(skb, features);
3576 }
3577 EXPORT_SYMBOL(netif_skb_features);
3578 
3579 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3580 		    struct netdev_queue *txq, bool more)
3581 {
3582 	unsigned int len;
3583 	int rc;
3584 
3585 	if (dev_nit_active(dev))
3586 		dev_queue_xmit_nit(skb, dev);
3587 
3588 	len = skb->len;
3589 	trace_net_dev_start_xmit(skb, dev);
3590 	rc = netdev_start_xmit(skb, dev, txq, more);
3591 	trace_net_dev_xmit(skb, rc, dev, len);
3592 
3593 	return rc;
3594 }
3595 
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597 				    struct netdev_queue *txq, int *ret)
3598 {
3599 	struct sk_buff *skb = first;
3600 	int rc = NETDEV_TX_OK;
3601 
3602 	while (skb) {
3603 		struct sk_buff *next = skb->next;
3604 
3605 		skb_mark_not_on_list(skb);
3606 		rc = xmit_one(skb, dev, txq, next != NULL);
3607 		if (unlikely(!dev_xmit_complete(rc))) {
3608 			skb->next = next;
3609 			goto out;
3610 		}
3611 
3612 		skb = next;
3613 		if (netif_tx_queue_stopped(txq) && skb) {
3614 			rc = NETDEV_TX_BUSY;
3615 			break;
3616 		}
3617 	}
3618 
3619 out:
3620 	*ret = rc;
3621 	return skb;
3622 }
3623 
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625 					  netdev_features_t features)
3626 {
3627 	if (skb_vlan_tag_present(skb) &&
3628 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3629 		skb = __vlan_hwaccel_push_inside(skb);
3630 	return skb;
3631 }
3632 
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634 			    const netdev_features_t features)
3635 {
3636 	if (unlikely(skb_csum_is_sctp(skb)))
3637 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638 			skb_crc32c_csum_help(skb);
3639 
3640 	if (features & NETIF_F_HW_CSUM)
3641 		return 0;
3642 
3643 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3645 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr))
3646 			goto sw_checksum;
3647 		switch (skb->csum_offset) {
3648 		case offsetof(struct tcphdr, check):
3649 		case offsetof(struct udphdr, check):
3650 			return 0;
3651 		}
3652 	}
3653 
3654 sw_checksum:
3655 	return skb_checksum_help(skb);
3656 }
3657 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3658 
3659 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3660 {
3661 	netdev_features_t features;
3662 
3663 	features = netif_skb_features(skb);
3664 	skb = validate_xmit_vlan(skb, features);
3665 	if (unlikely(!skb))
3666 		goto out_null;
3667 
3668 	skb = sk_validate_xmit_skb(skb, dev);
3669 	if (unlikely(!skb))
3670 		goto out_null;
3671 
3672 	if (netif_needs_gso(skb, features)) {
3673 		struct sk_buff *segs;
3674 
3675 		segs = skb_gso_segment(skb, features);
3676 		if (IS_ERR(segs)) {
3677 			goto out_kfree_skb;
3678 		} else if (segs) {
3679 			consume_skb(skb);
3680 			skb = segs;
3681 		}
3682 	} else {
3683 		if (skb_needs_linearize(skb, features) &&
3684 		    __skb_linearize(skb))
3685 			goto out_kfree_skb;
3686 
3687 		/* If packet is not checksummed and device does not
3688 		 * support checksumming for this protocol, complete
3689 		 * checksumming here.
3690 		 */
3691 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3692 			if (skb->encapsulation)
3693 				skb_set_inner_transport_header(skb,
3694 							       skb_checksum_start_offset(skb));
3695 			else
3696 				skb_set_transport_header(skb,
3697 							 skb_checksum_start_offset(skb));
3698 			if (skb_csum_hwoffload_help(skb, features))
3699 				goto out_kfree_skb;
3700 		}
3701 	}
3702 
3703 	skb = validate_xmit_xfrm(skb, features, again);
3704 
3705 	return skb;
3706 
3707 out_kfree_skb:
3708 	kfree_skb(skb);
3709 out_null:
3710 	dev_core_stats_tx_dropped_inc(dev);
3711 	return NULL;
3712 }
3713 
3714 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3715 {
3716 	struct sk_buff *next, *head = NULL, *tail;
3717 
3718 	for (; skb != NULL; skb = next) {
3719 		next = skb->next;
3720 		skb_mark_not_on_list(skb);
3721 
3722 		/* in case skb won't be segmented, point to itself */
3723 		skb->prev = skb;
3724 
3725 		skb = validate_xmit_skb(skb, dev, again);
3726 		if (!skb)
3727 			continue;
3728 
3729 		if (!head)
3730 			head = skb;
3731 		else
3732 			tail->next = skb;
3733 		/* If skb was segmented, skb->prev points to
3734 		 * the last segment. If not, it still contains skb.
3735 		 */
3736 		tail = skb->prev;
3737 	}
3738 	return head;
3739 }
3740 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3741 
3742 static void qdisc_pkt_len_init(struct sk_buff *skb)
3743 {
3744 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3745 
3746 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3747 
3748 	/* To get more precise estimation of bytes sent on wire,
3749 	 * we add to pkt_len the headers size of all segments
3750 	 */
3751 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3752 		u16 gso_segs = shinfo->gso_segs;
3753 		unsigned int hdr_len;
3754 
3755 		/* mac layer + network layer */
3756 		hdr_len = skb_transport_offset(skb);
3757 
3758 		/* + transport layer */
3759 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3760 			const struct tcphdr *th;
3761 			struct tcphdr _tcphdr;
3762 
3763 			th = skb_header_pointer(skb, hdr_len,
3764 						sizeof(_tcphdr), &_tcphdr);
3765 			if (likely(th))
3766 				hdr_len += __tcp_hdrlen(th);
3767 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3768 			struct udphdr _udphdr;
3769 
3770 			if (skb_header_pointer(skb, hdr_len,
3771 					       sizeof(_udphdr), &_udphdr))
3772 				hdr_len += sizeof(struct udphdr);
3773 		}
3774 
3775 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3776 			int payload = skb->len - hdr_len;
3777 
3778 			/* Malicious packet. */
3779 			if (payload <= 0)
3780 				return;
3781 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3782 		}
3783 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3784 	}
3785 }
3786 
3787 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3788 			     struct sk_buff **to_free,
3789 			     struct netdev_queue *txq)
3790 {
3791 	int rc;
3792 
3793 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3794 	if (rc == NET_XMIT_SUCCESS)
3795 		trace_qdisc_enqueue(q, txq, skb);
3796 	return rc;
3797 }
3798 
3799 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3800 				 struct net_device *dev,
3801 				 struct netdev_queue *txq)
3802 {
3803 	spinlock_t *root_lock = qdisc_lock(q);
3804 	struct sk_buff *to_free = NULL;
3805 	bool contended;
3806 	int rc;
3807 
3808 	qdisc_calculate_pkt_len(skb, q);
3809 
3810 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3811 
3812 	if (q->flags & TCQ_F_NOLOCK) {
3813 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3814 		    qdisc_run_begin(q)) {
3815 			/* Retest nolock_qdisc_is_empty() within the protection
3816 			 * of q->seqlock to protect from racing with requeuing.
3817 			 */
3818 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3819 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3820 				__qdisc_run(q);
3821 				qdisc_run_end(q);
3822 
3823 				goto no_lock_out;
3824 			}
3825 
3826 			qdisc_bstats_cpu_update(q, skb);
3827 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3828 			    !nolock_qdisc_is_empty(q))
3829 				__qdisc_run(q);
3830 
3831 			qdisc_run_end(q);
3832 			return NET_XMIT_SUCCESS;
3833 		}
3834 
3835 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3836 		qdisc_run(q);
3837 
3838 no_lock_out:
3839 		if (unlikely(to_free))
3840 			kfree_skb_list_reason(to_free,
3841 					      tcf_get_drop_reason(to_free));
3842 		return rc;
3843 	}
3844 
3845 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3846 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3847 		return NET_XMIT_DROP;
3848 	}
3849 	/*
3850 	 * Heuristic to force contended enqueues to serialize on a
3851 	 * separate lock before trying to get qdisc main lock.
3852 	 * This permits qdisc->running owner to get the lock more
3853 	 * often and dequeue packets faster.
3854 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3855 	 * and then other tasks will only enqueue packets. The packets will be
3856 	 * sent after the qdisc owner is scheduled again. To prevent this
3857 	 * scenario the task always serialize on the lock.
3858 	 */
3859 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3860 	if (unlikely(contended))
3861 		spin_lock(&q->busylock);
3862 
3863 	spin_lock(root_lock);
3864 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3865 		__qdisc_drop(skb, &to_free);
3866 		rc = NET_XMIT_DROP;
3867 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3868 		   qdisc_run_begin(q)) {
3869 		/*
3870 		 * This is a work-conserving queue; there are no old skbs
3871 		 * waiting to be sent out; and the qdisc is not running -
3872 		 * xmit the skb directly.
3873 		 */
3874 
3875 		qdisc_bstats_update(q, skb);
3876 
3877 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3878 			if (unlikely(contended)) {
3879 				spin_unlock(&q->busylock);
3880 				contended = false;
3881 			}
3882 			__qdisc_run(q);
3883 		}
3884 
3885 		qdisc_run_end(q);
3886 		rc = NET_XMIT_SUCCESS;
3887 	} else {
3888 		WRITE_ONCE(q->owner, smp_processor_id());
3889 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3890 		WRITE_ONCE(q->owner, -1);
3891 		if (qdisc_run_begin(q)) {
3892 			if (unlikely(contended)) {
3893 				spin_unlock(&q->busylock);
3894 				contended = false;
3895 			}
3896 			__qdisc_run(q);
3897 			qdisc_run_end(q);
3898 		}
3899 	}
3900 	spin_unlock(root_lock);
3901 	if (unlikely(to_free))
3902 		kfree_skb_list_reason(to_free,
3903 				      tcf_get_drop_reason(to_free));
3904 	if (unlikely(contended))
3905 		spin_unlock(&q->busylock);
3906 	return rc;
3907 }
3908 
3909 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3910 static void skb_update_prio(struct sk_buff *skb)
3911 {
3912 	const struct netprio_map *map;
3913 	const struct sock *sk;
3914 	unsigned int prioidx;
3915 
3916 	if (skb->priority)
3917 		return;
3918 	map = rcu_dereference_bh(skb->dev->priomap);
3919 	if (!map)
3920 		return;
3921 	sk = skb_to_full_sk(skb);
3922 	if (!sk)
3923 		return;
3924 
3925 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3926 
3927 	if (prioidx < map->priomap_len)
3928 		skb->priority = map->priomap[prioidx];
3929 }
3930 #else
3931 #define skb_update_prio(skb)
3932 #endif
3933 
3934 /**
3935  *	dev_loopback_xmit - loop back @skb
3936  *	@net: network namespace this loopback is happening in
3937  *	@sk:  sk needed to be a netfilter okfn
3938  *	@skb: buffer to transmit
3939  */
3940 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3941 {
3942 	skb_reset_mac_header(skb);
3943 	__skb_pull(skb, skb_network_offset(skb));
3944 	skb->pkt_type = PACKET_LOOPBACK;
3945 	if (skb->ip_summed == CHECKSUM_NONE)
3946 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3947 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3948 	skb_dst_force(skb);
3949 	netif_rx(skb);
3950 	return 0;
3951 }
3952 EXPORT_SYMBOL(dev_loopback_xmit);
3953 
3954 #ifdef CONFIG_NET_EGRESS
3955 static struct netdev_queue *
3956 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3957 {
3958 	int qm = skb_get_queue_mapping(skb);
3959 
3960 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3961 }
3962 
3963 #ifndef CONFIG_PREEMPT_RT
3964 static bool netdev_xmit_txqueue_skipped(void)
3965 {
3966 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3967 }
3968 
3969 void netdev_xmit_skip_txqueue(bool skip)
3970 {
3971 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3972 }
3973 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3974 
3975 #else
3976 static bool netdev_xmit_txqueue_skipped(void)
3977 {
3978 	return current->net_xmit.skip_txqueue;
3979 }
3980 
3981 void netdev_xmit_skip_txqueue(bool skip)
3982 {
3983 	current->net_xmit.skip_txqueue = skip;
3984 }
3985 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3986 #endif
3987 #endif /* CONFIG_NET_EGRESS */
3988 
3989 #ifdef CONFIG_NET_XGRESS
3990 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3991 		  enum skb_drop_reason *drop_reason)
3992 {
3993 	int ret = TC_ACT_UNSPEC;
3994 #ifdef CONFIG_NET_CLS_ACT
3995 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3996 	struct tcf_result res;
3997 
3998 	if (!miniq)
3999 		return ret;
4000 
4001 	if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
4002 		if (tcf_block_bypass_sw(miniq->block))
4003 			return ret;
4004 	}
4005 
4006 	tc_skb_cb(skb)->mru = 0;
4007 	tc_skb_cb(skb)->post_ct = false;
4008 	tcf_set_drop_reason(skb, *drop_reason);
4009 
4010 	mini_qdisc_bstats_cpu_update(miniq, skb);
4011 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4012 	/* Only tcf related quirks below. */
4013 	switch (ret) {
4014 	case TC_ACT_SHOT:
4015 		*drop_reason = tcf_get_drop_reason(skb);
4016 		mini_qdisc_qstats_cpu_drop(miniq);
4017 		break;
4018 	case TC_ACT_OK:
4019 	case TC_ACT_RECLASSIFY:
4020 		skb->tc_index = TC_H_MIN(res.classid);
4021 		break;
4022 	}
4023 #endif /* CONFIG_NET_CLS_ACT */
4024 	return ret;
4025 }
4026 
4027 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4028 
4029 void tcx_inc(void)
4030 {
4031 	static_branch_inc(&tcx_needed_key);
4032 }
4033 
4034 void tcx_dec(void)
4035 {
4036 	static_branch_dec(&tcx_needed_key);
4037 }
4038 
4039 static __always_inline enum tcx_action_base
4040 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4041 	const bool needs_mac)
4042 {
4043 	const struct bpf_mprog_fp *fp;
4044 	const struct bpf_prog *prog;
4045 	int ret = TCX_NEXT;
4046 
4047 	if (needs_mac)
4048 		__skb_push(skb, skb->mac_len);
4049 	bpf_mprog_foreach_prog(entry, fp, prog) {
4050 		bpf_compute_data_pointers(skb);
4051 		ret = bpf_prog_run(prog, skb);
4052 		if (ret != TCX_NEXT)
4053 			break;
4054 	}
4055 	if (needs_mac)
4056 		__skb_pull(skb, skb->mac_len);
4057 	return tcx_action_code(skb, ret);
4058 }
4059 
4060 static __always_inline struct sk_buff *
4061 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4062 		   struct net_device *orig_dev, bool *another)
4063 {
4064 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4065 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4066 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4067 	int sch_ret;
4068 
4069 	if (!entry)
4070 		return skb;
4071 
4072 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4073 	if (*pt_prev) {
4074 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4075 		*pt_prev = NULL;
4076 	}
4077 
4078 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4079 	tcx_set_ingress(skb, true);
4080 
4081 	if (static_branch_unlikely(&tcx_needed_key)) {
4082 		sch_ret = tcx_run(entry, skb, true);
4083 		if (sch_ret != TC_ACT_UNSPEC)
4084 			goto ingress_verdict;
4085 	}
4086 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4087 ingress_verdict:
4088 	switch (sch_ret) {
4089 	case TC_ACT_REDIRECT:
4090 		/* skb_mac_header check was done by BPF, so we can safely
4091 		 * push the L2 header back before redirecting to another
4092 		 * netdev.
4093 		 */
4094 		__skb_push(skb, skb->mac_len);
4095 		if (skb_do_redirect(skb) == -EAGAIN) {
4096 			__skb_pull(skb, skb->mac_len);
4097 			*another = true;
4098 			break;
4099 		}
4100 		*ret = NET_RX_SUCCESS;
4101 		bpf_net_ctx_clear(bpf_net_ctx);
4102 		return NULL;
4103 	case TC_ACT_SHOT:
4104 		kfree_skb_reason(skb, drop_reason);
4105 		*ret = NET_RX_DROP;
4106 		bpf_net_ctx_clear(bpf_net_ctx);
4107 		return NULL;
4108 	/* used by tc_run */
4109 	case TC_ACT_STOLEN:
4110 	case TC_ACT_QUEUED:
4111 	case TC_ACT_TRAP:
4112 		consume_skb(skb);
4113 		fallthrough;
4114 	case TC_ACT_CONSUMED:
4115 		*ret = NET_RX_SUCCESS;
4116 		bpf_net_ctx_clear(bpf_net_ctx);
4117 		return NULL;
4118 	}
4119 	bpf_net_ctx_clear(bpf_net_ctx);
4120 
4121 	return skb;
4122 }
4123 
4124 static __always_inline struct sk_buff *
4125 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4126 {
4127 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4128 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4129 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4130 	int sch_ret;
4131 
4132 	if (!entry)
4133 		return skb;
4134 
4135 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4136 
4137 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4138 	 * already set by the caller.
4139 	 */
4140 	if (static_branch_unlikely(&tcx_needed_key)) {
4141 		sch_ret = tcx_run(entry, skb, false);
4142 		if (sch_ret != TC_ACT_UNSPEC)
4143 			goto egress_verdict;
4144 	}
4145 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4146 egress_verdict:
4147 	switch (sch_ret) {
4148 	case TC_ACT_REDIRECT:
4149 		/* No need to push/pop skb's mac_header here on egress! */
4150 		skb_do_redirect(skb);
4151 		*ret = NET_XMIT_SUCCESS;
4152 		bpf_net_ctx_clear(bpf_net_ctx);
4153 		return NULL;
4154 	case TC_ACT_SHOT:
4155 		kfree_skb_reason(skb, drop_reason);
4156 		*ret = NET_XMIT_DROP;
4157 		bpf_net_ctx_clear(bpf_net_ctx);
4158 		return NULL;
4159 	/* used by tc_run */
4160 	case TC_ACT_STOLEN:
4161 	case TC_ACT_QUEUED:
4162 	case TC_ACT_TRAP:
4163 		consume_skb(skb);
4164 		fallthrough;
4165 	case TC_ACT_CONSUMED:
4166 		*ret = NET_XMIT_SUCCESS;
4167 		bpf_net_ctx_clear(bpf_net_ctx);
4168 		return NULL;
4169 	}
4170 	bpf_net_ctx_clear(bpf_net_ctx);
4171 
4172 	return skb;
4173 }
4174 #else
4175 static __always_inline struct sk_buff *
4176 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4177 		   struct net_device *orig_dev, bool *another)
4178 {
4179 	return skb;
4180 }
4181 
4182 static __always_inline struct sk_buff *
4183 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4184 {
4185 	return skb;
4186 }
4187 #endif /* CONFIG_NET_XGRESS */
4188 
4189 #ifdef CONFIG_XPS
4190 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4191 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4192 {
4193 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4194 	struct xps_map *map;
4195 	int queue_index = -1;
4196 
4197 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4198 		return queue_index;
4199 
4200 	tci *= dev_maps->num_tc;
4201 	tci += tc;
4202 
4203 	map = rcu_dereference(dev_maps->attr_map[tci]);
4204 	if (map) {
4205 		if (map->len == 1)
4206 			queue_index = map->queues[0];
4207 		else
4208 			queue_index = map->queues[reciprocal_scale(
4209 						skb_get_hash(skb), map->len)];
4210 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4211 			queue_index = -1;
4212 	}
4213 	return queue_index;
4214 }
4215 #endif
4216 
4217 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4218 			 struct sk_buff *skb)
4219 {
4220 #ifdef CONFIG_XPS
4221 	struct xps_dev_maps *dev_maps;
4222 	struct sock *sk = skb->sk;
4223 	int queue_index = -1;
4224 
4225 	if (!static_key_false(&xps_needed))
4226 		return -1;
4227 
4228 	rcu_read_lock();
4229 	if (!static_key_false(&xps_rxqs_needed))
4230 		goto get_cpus_map;
4231 
4232 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4233 	if (dev_maps) {
4234 		int tci = sk_rx_queue_get(sk);
4235 
4236 		if (tci >= 0)
4237 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4238 							  tci);
4239 	}
4240 
4241 get_cpus_map:
4242 	if (queue_index < 0) {
4243 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4244 		if (dev_maps) {
4245 			unsigned int tci = skb->sender_cpu - 1;
4246 
4247 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4248 							  tci);
4249 		}
4250 	}
4251 	rcu_read_unlock();
4252 
4253 	return queue_index;
4254 #else
4255 	return -1;
4256 #endif
4257 }
4258 
4259 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4260 		     struct net_device *sb_dev)
4261 {
4262 	return 0;
4263 }
4264 EXPORT_SYMBOL(dev_pick_tx_zero);
4265 
4266 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4267 		     struct net_device *sb_dev)
4268 {
4269 	struct sock *sk = skb->sk;
4270 	int queue_index = sk_tx_queue_get(sk);
4271 
4272 	sb_dev = sb_dev ? : dev;
4273 
4274 	if (queue_index < 0 || skb->ooo_okay ||
4275 	    queue_index >= dev->real_num_tx_queues) {
4276 		int new_index = get_xps_queue(dev, sb_dev, skb);
4277 
4278 		if (new_index < 0)
4279 			new_index = skb_tx_hash(dev, sb_dev, skb);
4280 
4281 		if (queue_index != new_index && sk &&
4282 		    sk_fullsock(sk) &&
4283 		    rcu_access_pointer(sk->sk_dst_cache))
4284 			sk_tx_queue_set(sk, new_index);
4285 
4286 		queue_index = new_index;
4287 	}
4288 
4289 	return queue_index;
4290 }
4291 EXPORT_SYMBOL(netdev_pick_tx);
4292 
4293 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4294 					 struct sk_buff *skb,
4295 					 struct net_device *sb_dev)
4296 {
4297 	int queue_index = 0;
4298 
4299 #ifdef CONFIG_XPS
4300 	u32 sender_cpu = skb->sender_cpu - 1;
4301 
4302 	if (sender_cpu >= (u32)NR_CPUS)
4303 		skb->sender_cpu = raw_smp_processor_id() + 1;
4304 #endif
4305 
4306 	if (dev->real_num_tx_queues != 1) {
4307 		const struct net_device_ops *ops = dev->netdev_ops;
4308 
4309 		if (ops->ndo_select_queue)
4310 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4311 		else
4312 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4313 
4314 		queue_index = netdev_cap_txqueue(dev, queue_index);
4315 	}
4316 
4317 	skb_set_queue_mapping(skb, queue_index);
4318 	return netdev_get_tx_queue(dev, queue_index);
4319 }
4320 
4321 /**
4322  * __dev_queue_xmit() - transmit a buffer
4323  * @skb:	buffer to transmit
4324  * @sb_dev:	suboordinate device used for L2 forwarding offload
4325  *
4326  * Queue a buffer for transmission to a network device. The caller must
4327  * have set the device and priority and built the buffer before calling
4328  * this function. The function can be called from an interrupt.
4329  *
4330  * When calling this method, interrupts MUST be enabled. This is because
4331  * the BH enable code must have IRQs enabled so that it will not deadlock.
4332  *
4333  * Regardless of the return value, the skb is consumed, so it is currently
4334  * difficult to retry a send to this method. (You can bump the ref count
4335  * before sending to hold a reference for retry if you are careful.)
4336  *
4337  * Return:
4338  * * 0				- buffer successfully transmitted
4339  * * positive qdisc return code	- NET_XMIT_DROP etc.
4340  * * negative errno		- other errors
4341  */
4342 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4343 {
4344 	struct net_device *dev = skb->dev;
4345 	struct netdev_queue *txq = NULL;
4346 	struct Qdisc *q;
4347 	int rc = -ENOMEM;
4348 	bool again = false;
4349 
4350 	skb_reset_mac_header(skb);
4351 	skb_assert_len(skb);
4352 
4353 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4354 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4355 
4356 	/* Disable soft irqs for various locks below. Also
4357 	 * stops preemption for RCU.
4358 	 */
4359 	rcu_read_lock_bh();
4360 
4361 	skb_update_prio(skb);
4362 
4363 	qdisc_pkt_len_init(skb);
4364 	tcx_set_ingress(skb, false);
4365 #ifdef CONFIG_NET_EGRESS
4366 	if (static_branch_unlikely(&egress_needed_key)) {
4367 		if (nf_hook_egress_active()) {
4368 			skb = nf_hook_egress(skb, &rc, dev);
4369 			if (!skb)
4370 				goto out;
4371 		}
4372 
4373 		netdev_xmit_skip_txqueue(false);
4374 
4375 		nf_skip_egress(skb, true);
4376 		skb = sch_handle_egress(skb, &rc, dev);
4377 		if (!skb)
4378 			goto out;
4379 		nf_skip_egress(skb, false);
4380 
4381 		if (netdev_xmit_txqueue_skipped())
4382 			txq = netdev_tx_queue_mapping(dev, skb);
4383 	}
4384 #endif
4385 	/* If device/qdisc don't need skb->dst, release it right now while
4386 	 * its hot in this cpu cache.
4387 	 */
4388 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4389 		skb_dst_drop(skb);
4390 	else
4391 		skb_dst_force(skb);
4392 
4393 	if (!txq)
4394 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4395 
4396 	q = rcu_dereference_bh(txq->qdisc);
4397 
4398 	trace_net_dev_queue(skb);
4399 	if (q->enqueue) {
4400 		rc = __dev_xmit_skb(skb, q, dev, txq);
4401 		goto out;
4402 	}
4403 
4404 	/* The device has no queue. Common case for software devices:
4405 	 * loopback, all the sorts of tunnels...
4406 
4407 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4408 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4409 	 * counters.)
4410 	 * However, it is possible, that they rely on protection
4411 	 * made by us here.
4412 
4413 	 * Check this and shot the lock. It is not prone from deadlocks.
4414 	 *Either shot noqueue qdisc, it is even simpler 8)
4415 	 */
4416 	if (dev->flags & IFF_UP) {
4417 		int cpu = smp_processor_id(); /* ok because BHs are off */
4418 
4419 		/* Other cpus might concurrently change txq->xmit_lock_owner
4420 		 * to -1 or to their cpu id, but not to our id.
4421 		 */
4422 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4423 			if (dev_xmit_recursion())
4424 				goto recursion_alert;
4425 
4426 			skb = validate_xmit_skb(skb, dev, &again);
4427 			if (!skb)
4428 				goto out;
4429 
4430 			HARD_TX_LOCK(dev, txq, cpu);
4431 
4432 			if (!netif_xmit_stopped(txq)) {
4433 				dev_xmit_recursion_inc();
4434 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4435 				dev_xmit_recursion_dec();
4436 				if (dev_xmit_complete(rc)) {
4437 					HARD_TX_UNLOCK(dev, txq);
4438 					goto out;
4439 				}
4440 			}
4441 			HARD_TX_UNLOCK(dev, txq);
4442 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4443 					     dev->name);
4444 		} else {
4445 			/* Recursion is detected! It is possible,
4446 			 * unfortunately
4447 			 */
4448 recursion_alert:
4449 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4450 					     dev->name);
4451 		}
4452 	}
4453 
4454 	rc = -ENETDOWN;
4455 	rcu_read_unlock_bh();
4456 
4457 	dev_core_stats_tx_dropped_inc(dev);
4458 	kfree_skb_list(skb);
4459 	return rc;
4460 out:
4461 	rcu_read_unlock_bh();
4462 	return rc;
4463 }
4464 EXPORT_SYMBOL(__dev_queue_xmit);
4465 
4466 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4467 {
4468 	struct net_device *dev = skb->dev;
4469 	struct sk_buff *orig_skb = skb;
4470 	struct netdev_queue *txq;
4471 	int ret = NETDEV_TX_BUSY;
4472 	bool again = false;
4473 
4474 	if (unlikely(!netif_running(dev) ||
4475 		     !netif_carrier_ok(dev)))
4476 		goto drop;
4477 
4478 	skb = validate_xmit_skb_list(skb, dev, &again);
4479 	if (skb != orig_skb)
4480 		goto drop;
4481 
4482 	skb_set_queue_mapping(skb, queue_id);
4483 	txq = skb_get_tx_queue(dev, skb);
4484 
4485 	local_bh_disable();
4486 
4487 	dev_xmit_recursion_inc();
4488 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4489 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4490 		ret = netdev_start_xmit(skb, dev, txq, false);
4491 	HARD_TX_UNLOCK(dev, txq);
4492 	dev_xmit_recursion_dec();
4493 
4494 	local_bh_enable();
4495 	return ret;
4496 drop:
4497 	dev_core_stats_tx_dropped_inc(dev);
4498 	kfree_skb_list(skb);
4499 	return NET_XMIT_DROP;
4500 }
4501 EXPORT_SYMBOL(__dev_direct_xmit);
4502 
4503 /*************************************************************************
4504  *			Receiver routines
4505  *************************************************************************/
4506 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4507 
4508 int weight_p __read_mostly = 64;           /* old backlog weight */
4509 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4510 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4511 
4512 /* Called with irq disabled */
4513 static inline void ____napi_schedule(struct softnet_data *sd,
4514 				     struct napi_struct *napi)
4515 {
4516 	struct task_struct *thread;
4517 
4518 	lockdep_assert_irqs_disabled();
4519 
4520 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4521 		/* Paired with smp_mb__before_atomic() in
4522 		 * napi_enable()/dev_set_threaded().
4523 		 * Use READ_ONCE() to guarantee a complete
4524 		 * read on napi->thread. Only call
4525 		 * wake_up_process() when it's not NULL.
4526 		 */
4527 		thread = READ_ONCE(napi->thread);
4528 		if (thread) {
4529 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4530 				goto use_local_napi;
4531 
4532 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4533 			wake_up_process(thread);
4534 			return;
4535 		}
4536 	}
4537 
4538 use_local_napi:
4539 	list_add_tail(&napi->poll_list, &sd->poll_list);
4540 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4541 	/* If not called from net_rx_action()
4542 	 * we have to raise NET_RX_SOFTIRQ.
4543 	 */
4544 	if (!sd->in_net_rx_action)
4545 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4546 }
4547 
4548 #ifdef CONFIG_RPS
4549 
4550 struct static_key_false rps_needed __read_mostly;
4551 EXPORT_SYMBOL(rps_needed);
4552 struct static_key_false rfs_needed __read_mostly;
4553 EXPORT_SYMBOL(rfs_needed);
4554 
4555 static struct rps_dev_flow *
4556 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4557 	    struct rps_dev_flow *rflow, u16 next_cpu)
4558 {
4559 	if (next_cpu < nr_cpu_ids) {
4560 		u32 head;
4561 #ifdef CONFIG_RFS_ACCEL
4562 		struct netdev_rx_queue *rxqueue;
4563 		struct rps_dev_flow_table *flow_table;
4564 		struct rps_dev_flow *old_rflow;
4565 		u16 rxq_index;
4566 		u32 flow_id;
4567 		int rc;
4568 
4569 		/* Should we steer this flow to a different hardware queue? */
4570 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4571 		    !(dev->features & NETIF_F_NTUPLE))
4572 			goto out;
4573 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4574 		if (rxq_index == skb_get_rx_queue(skb))
4575 			goto out;
4576 
4577 		rxqueue = dev->_rx + rxq_index;
4578 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4579 		if (!flow_table)
4580 			goto out;
4581 		flow_id = skb_get_hash(skb) & flow_table->mask;
4582 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4583 							rxq_index, flow_id);
4584 		if (rc < 0)
4585 			goto out;
4586 		old_rflow = rflow;
4587 		rflow = &flow_table->flows[flow_id];
4588 		WRITE_ONCE(rflow->filter, rc);
4589 		if (old_rflow->filter == rc)
4590 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4591 	out:
4592 #endif
4593 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4594 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4595 	}
4596 
4597 	WRITE_ONCE(rflow->cpu, next_cpu);
4598 	return rflow;
4599 }
4600 
4601 /*
4602  * get_rps_cpu is called from netif_receive_skb and returns the target
4603  * CPU from the RPS map of the receiving queue for a given skb.
4604  * rcu_read_lock must be held on entry.
4605  */
4606 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4607 		       struct rps_dev_flow **rflowp)
4608 {
4609 	const struct rps_sock_flow_table *sock_flow_table;
4610 	struct netdev_rx_queue *rxqueue = dev->_rx;
4611 	struct rps_dev_flow_table *flow_table;
4612 	struct rps_map *map;
4613 	int cpu = -1;
4614 	u32 tcpu;
4615 	u32 hash;
4616 
4617 	if (skb_rx_queue_recorded(skb)) {
4618 		u16 index = skb_get_rx_queue(skb);
4619 
4620 		if (unlikely(index >= dev->real_num_rx_queues)) {
4621 			WARN_ONCE(dev->real_num_rx_queues > 1,
4622 				  "%s received packet on queue %u, but number "
4623 				  "of RX queues is %u\n",
4624 				  dev->name, index, dev->real_num_rx_queues);
4625 			goto done;
4626 		}
4627 		rxqueue += index;
4628 	}
4629 
4630 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4631 
4632 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4633 	map = rcu_dereference(rxqueue->rps_map);
4634 	if (!flow_table && !map)
4635 		goto done;
4636 
4637 	skb_reset_network_header(skb);
4638 	hash = skb_get_hash(skb);
4639 	if (!hash)
4640 		goto done;
4641 
4642 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4643 	if (flow_table && sock_flow_table) {
4644 		struct rps_dev_flow *rflow;
4645 		u32 next_cpu;
4646 		u32 ident;
4647 
4648 		/* First check into global flow table if there is a match.
4649 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4650 		 */
4651 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4652 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4653 			goto try_rps;
4654 
4655 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4656 
4657 		/* OK, now we know there is a match,
4658 		 * we can look at the local (per receive queue) flow table
4659 		 */
4660 		rflow = &flow_table->flows[hash & flow_table->mask];
4661 		tcpu = rflow->cpu;
4662 
4663 		/*
4664 		 * If the desired CPU (where last recvmsg was done) is
4665 		 * different from current CPU (one in the rx-queue flow
4666 		 * table entry), switch if one of the following holds:
4667 		 *   - Current CPU is unset (>= nr_cpu_ids).
4668 		 *   - Current CPU is offline.
4669 		 *   - The current CPU's queue tail has advanced beyond the
4670 		 *     last packet that was enqueued using this table entry.
4671 		 *     This guarantees that all previous packets for the flow
4672 		 *     have been dequeued, thus preserving in order delivery.
4673 		 */
4674 		if (unlikely(tcpu != next_cpu) &&
4675 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4676 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4677 		      rflow->last_qtail)) >= 0)) {
4678 			tcpu = next_cpu;
4679 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4680 		}
4681 
4682 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4683 			*rflowp = rflow;
4684 			cpu = tcpu;
4685 			goto done;
4686 		}
4687 	}
4688 
4689 try_rps:
4690 
4691 	if (map) {
4692 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4693 		if (cpu_online(tcpu)) {
4694 			cpu = tcpu;
4695 			goto done;
4696 		}
4697 	}
4698 
4699 done:
4700 	return cpu;
4701 }
4702 
4703 #ifdef CONFIG_RFS_ACCEL
4704 
4705 /**
4706  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4707  * @dev: Device on which the filter was set
4708  * @rxq_index: RX queue index
4709  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4710  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4711  *
4712  * Drivers that implement ndo_rx_flow_steer() should periodically call
4713  * this function for each installed filter and remove the filters for
4714  * which it returns %true.
4715  */
4716 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4717 			 u32 flow_id, u16 filter_id)
4718 {
4719 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4720 	struct rps_dev_flow_table *flow_table;
4721 	struct rps_dev_flow *rflow;
4722 	bool expire = true;
4723 	unsigned int cpu;
4724 
4725 	rcu_read_lock();
4726 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4727 	if (flow_table && flow_id <= flow_table->mask) {
4728 		rflow = &flow_table->flows[flow_id];
4729 		cpu = READ_ONCE(rflow->cpu);
4730 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4731 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4732 			   READ_ONCE(rflow->last_qtail)) <
4733 		     (int)(10 * flow_table->mask)))
4734 			expire = false;
4735 	}
4736 	rcu_read_unlock();
4737 	return expire;
4738 }
4739 EXPORT_SYMBOL(rps_may_expire_flow);
4740 
4741 #endif /* CONFIG_RFS_ACCEL */
4742 
4743 /* Called from hardirq (IPI) context */
4744 static void rps_trigger_softirq(void *data)
4745 {
4746 	struct softnet_data *sd = data;
4747 
4748 	____napi_schedule(sd, &sd->backlog);
4749 	sd->received_rps++;
4750 }
4751 
4752 #endif /* CONFIG_RPS */
4753 
4754 /* Called from hardirq (IPI) context */
4755 static void trigger_rx_softirq(void *data)
4756 {
4757 	struct softnet_data *sd = data;
4758 
4759 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4760 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4761 }
4762 
4763 /*
4764  * After we queued a packet into sd->input_pkt_queue,
4765  * we need to make sure this queue is serviced soon.
4766  *
4767  * - If this is another cpu queue, link it to our rps_ipi_list,
4768  *   and make sure we will process rps_ipi_list from net_rx_action().
4769  *
4770  * - If this is our own queue, NAPI schedule our backlog.
4771  *   Note that this also raises NET_RX_SOFTIRQ.
4772  */
4773 static void napi_schedule_rps(struct softnet_data *sd)
4774 {
4775 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4776 
4777 #ifdef CONFIG_RPS
4778 	if (sd != mysd) {
4779 		if (use_backlog_threads()) {
4780 			__napi_schedule_irqoff(&sd->backlog);
4781 			return;
4782 		}
4783 
4784 		sd->rps_ipi_next = mysd->rps_ipi_list;
4785 		mysd->rps_ipi_list = sd;
4786 
4787 		/* If not called from net_rx_action() or napi_threaded_poll()
4788 		 * we have to raise NET_RX_SOFTIRQ.
4789 		 */
4790 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4791 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4792 		return;
4793 	}
4794 #endif /* CONFIG_RPS */
4795 	__napi_schedule_irqoff(&mysd->backlog);
4796 }
4797 
4798 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4799 {
4800 	unsigned long flags;
4801 
4802 	if (use_backlog_threads()) {
4803 		backlog_lock_irq_save(sd, &flags);
4804 
4805 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4806 			__napi_schedule_irqoff(&sd->backlog);
4807 
4808 		backlog_unlock_irq_restore(sd, &flags);
4809 
4810 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4811 		smp_call_function_single_async(cpu, &sd->defer_csd);
4812 	}
4813 }
4814 
4815 #ifdef CONFIG_NET_FLOW_LIMIT
4816 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4817 #endif
4818 
4819 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4820 {
4821 #ifdef CONFIG_NET_FLOW_LIMIT
4822 	struct sd_flow_limit *fl;
4823 	struct softnet_data *sd;
4824 	unsigned int old_flow, new_flow;
4825 
4826 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4827 		return false;
4828 
4829 	sd = this_cpu_ptr(&softnet_data);
4830 
4831 	rcu_read_lock();
4832 	fl = rcu_dereference(sd->flow_limit);
4833 	if (fl) {
4834 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4835 		old_flow = fl->history[fl->history_head];
4836 		fl->history[fl->history_head] = new_flow;
4837 
4838 		fl->history_head++;
4839 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4840 
4841 		if (likely(fl->buckets[old_flow]))
4842 			fl->buckets[old_flow]--;
4843 
4844 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4845 			fl->count++;
4846 			rcu_read_unlock();
4847 			return true;
4848 		}
4849 	}
4850 	rcu_read_unlock();
4851 #endif
4852 	return false;
4853 }
4854 
4855 /*
4856  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4857  * queue (may be a remote CPU queue).
4858  */
4859 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4860 			      unsigned int *qtail)
4861 {
4862 	enum skb_drop_reason reason;
4863 	struct softnet_data *sd;
4864 	unsigned long flags;
4865 	unsigned int qlen;
4866 	int max_backlog;
4867 	u32 tail;
4868 
4869 	reason = SKB_DROP_REASON_DEV_READY;
4870 	if (!netif_running(skb->dev))
4871 		goto bad_dev;
4872 
4873 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4874 	sd = &per_cpu(softnet_data, cpu);
4875 
4876 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4877 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
4878 	if (unlikely(qlen > max_backlog))
4879 		goto cpu_backlog_drop;
4880 	backlog_lock_irq_save(sd, &flags);
4881 	qlen = skb_queue_len(&sd->input_pkt_queue);
4882 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4883 		if (!qlen) {
4884 			/* Schedule NAPI for backlog device. We can use
4885 			 * non atomic operation as we own the queue lock.
4886 			 */
4887 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
4888 						&sd->backlog.state))
4889 				napi_schedule_rps(sd);
4890 		}
4891 		__skb_queue_tail(&sd->input_pkt_queue, skb);
4892 		tail = rps_input_queue_tail_incr(sd);
4893 		backlog_unlock_irq_restore(sd, &flags);
4894 
4895 		/* save the tail outside of the critical section */
4896 		rps_input_queue_tail_save(qtail, tail);
4897 		return NET_RX_SUCCESS;
4898 	}
4899 
4900 	backlog_unlock_irq_restore(sd, &flags);
4901 
4902 cpu_backlog_drop:
4903 	atomic_inc(&sd->dropped);
4904 bad_dev:
4905 	dev_core_stats_rx_dropped_inc(skb->dev);
4906 	kfree_skb_reason(skb, reason);
4907 	return NET_RX_DROP;
4908 }
4909 
4910 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4911 {
4912 	struct net_device *dev = skb->dev;
4913 	struct netdev_rx_queue *rxqueue;
4914 
4915 	rxqueue = dev->_rx;
4916 
4917 	if (skb_rx_queue_recorded(skb)) {
4918 		u16 index = skb_get_rx_queue(skb);
4919 
4920 		if (unlikely(index >= dev->real_num_rx_queues)) {
4921 			WARN_ONCE(dev->real_num_rx_queues > 1,
4922 				  "%s received packet on queue %u, but number "
4923 				  "of RX queues is %u\n",
4924 				  dev->name, index, dev->real_num_rx_queues);
4925 
4926 			return rxqueue; /* Return first rxqueue */
4927 		}
4928 		rxqueue += index;
4929 	}
4930 	return rxqueue;
4931 }
4932 
4933 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4934 			     struct bpf_prog *xdp_prog)
4935 {
4936 	void *orig_data, *orig_data_end, *hard_start;
4937 	struct netdev_rx_queue *rxqueue;
4938 	bool orig_bcast, orig_host;
4939 	u32 mac_len, frame_sz;
4940 	__be16 orig_eth_type;
4941 	struct ethhdr *eth;
4942 	u32 metalen, act;
4943 	int off;
4944 
4945 	/* The XDP program wants to see the packet starting at the MAC
4946 	 * header.
4947 	 */
4948 	mac_len = skb->data - skb_mac_header(skb);
4949 	hard_start = skb->data - skb_headroom(skb);
4950 
4951 	/* SKB "head" area always have tailroom for skb_shared_info */
4952 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4953 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4954 
4955 	rxqueue = netif_get_rxqueue(skb);
4956 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4957 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4958 			 skb_headlen(skb) + mac_len, true);
4959 	if (skb_is_nonlinear(skb)) {
4960 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4961 		xdp_buff_set_frags_flag(xdp);
4962 	} else {
4963 		xdp_buff_clear_frags_flag(xdp);
4964 	}
4965 
4966 	orig_data_end = xdp->data_end;
4967 	orig_data = xdp->data;
4968 	eth = (struct ethhdr *)xdp->data;
4969 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4970 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4971 	orig_eth_type = eth->h_proto;
4972 
4973 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4974 
4975 	/* check if bpf_xdp_adjust_head was used */
4976 	off = xdp->data - orig_data;
4977 	if (off) {
4978 		if (off > 0)
4979 			__skb_pull(skb, off);
4980 		else if (off < 0)
4981 			__skb_push(skb, -off);
4982 
4983 		skb->mac_header += off;
4984 		skb_reset_network_header(skb);
4985 	}
4986 
4987 	/* check if bpf_xdp_adjust_tail was used */
4988 	off = xdp->data_end - orig_data_end;
4989 	if (off != 0) {
4990 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4991 		skb->len += off; /* positive on grow, negative on shrink */
4992 	}
4993 
4994 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4995 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4996 	 */
4997 	if (xdp_buff_has_frags(xdp))
4998 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4999 	else
5000 		skb->data_len = 0;
5001 
5002 	/* check if XDP changed eth hdr such SKB needs update */
5003 	eth = (struct ethhdr *)xdp->data;
5004 	if ((orig_eth_type != eth->h_proto) ||
5005 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5006 						  skb->dev->dev_addr)) ||
5007 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5008 		__skb_push(skb, ETH_HLEN);
5009 		skb->pkt_type = PACKET_HOST;
5010 		skb->protocol = eth_type_trans(skb, skb->dev);
5011 	}
5012 
5013 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5014 	 * before calling us again on redirect path. We do not call do_redirect
5015 	 * as we leave that up to the caller.
5016 	 *
5017 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5018 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5019 	 */
5020 	switch (act) {
5021 	case XDP_REDIRECT:
5022 	case XDP_TX:
5023 		__skb_push(skb, mac_len);
5024 		break;
5025 	case XDP_PASS:
5026 		metalen = xdp->data - xdp->data_meta;
5027 		if (metalen)
5028 			skb_metadata_set(skb, metalen);
5029 		break;
5030 	}
5031 
5032 	return act;
5033 }
5034 
5035 static int
5036 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5037 {
5038 	struct sk_buff *skb = *pskb;
5039 	int err, hroom, troom;
5040 
5041 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5042 		return 0;
5043 
5044 	/* In case we have to go down the path and also linearize,
5045 	 * then lets do the pskb_expand_head() work just once here.
5046 	 */
5047 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5048 	troom = skb->tail + skb->data_len - skb->end;
5049 	err = pskb_expand_head(skb,
5050 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5051 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5052 	if (err)
5053 		return err;
5054 
5055 	return skb_linearize(skb);
5056 }
5057 
5058 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5059 				     struct xdp_buff *xdp,
5060 				     struct bpf_prog *xdp_prog)
5061 {
5062 	struct sk_buff *skb = *pskb;
5063 	u32 mac_len, act = XDP_DROP;
5064 
5065 	/* Reinjected packets coming from act_mirred or similar should
5066 	 * not get XDP generic processing.
5067 	 */
5068 	if (skb_is_redirected(skb))
5069 		return XDP_PASS;
5070 
5071 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5072 	 * bytes. This is the guarantee that also native XDP provides,
5073 	 * thus we need to do it here as well.
5074 	 */
5075 	mac_len = skb->data - skb_mac_header(skb);
5076 	__skb_push(skb, mac_len);
5077 
5078 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5079 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5080 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5081 			goto do_drop;
5082 	}
5083 
5084 	__skb_pull(*pskb, mac_len);
5085 
5086 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5087 	switch (act) {
5088 	case XDP_REDIRECT:
5089 	case XDP_TX:
5090 	case XDP_PASS:
5091 		break;
5092 	default:
5093 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5094 		fallthrough;
5095 	case XDP_ABORTED:
5096 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5097 		fallthrough;
5098 	case XDP_DROP:
5099 	do_drop:
5100 		kfree_skb(*pskb);
5101 		break;
5102 	}
5103 
5104 	return act;
5105 }
5106 
5107 /* When doing generic XDP we have to bypass the qdisc layer and the
5108  * network taps in order to match in-driver-XDP behavior. This also means
5109  * that XDP packets are able to starve other packets going through a qdisc,
5110  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5111  * queues, so they do not have this starvation issue.
5112  */
5113 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5114 {
5115 	struct net_device *dev = skb->dev;
5116 	struct netdev_queue *txq;
5117 	bool free_skb = true;
5118 	int cpu, rc;
5119 
5120 	txq = netdev_core_pick_tx(dev, skb, NULL);
5121 	cpu = smp_processor_id();
5122 	HARD_TX_LOCK(dev, txq, cpu);
5123 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5124 		rc = netdev_start_xmit(skb, dev, txq, 0);
5125 		if (dev_xmit_complete(rc))
5126 			free_skb = false;
5127 	}
5128 	HARD_TX_UNLOCK(dev, txq);
5129 	if (free_skb) {
5130 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5131 		dev_core_stats_tx_dropped_inc(dev);
5132 		kfree_skb(skb);
5133 	}
5134 }
5135 
5136 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5137 
5138 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5139 {
5140 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5141 
5142 	if (xdp_prog) {
5143 		struct xdp_buff xdp;
5144 		u32 act;
5145 		int err;
5146 
5147 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5148 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5149 		if (act != XDP_PASS) {
5150 			switch (act) {
5151 			case XDP_REDIRECT:
5152 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5153 							      &xdp, xdp_prog);
5154 				if (err)
5155 					goto out_redir;
5156 				break;
5157 			case XDP_TX:
5158 				generic_xdp_tx(*pskb, xdp_prog);
5159 				break;
5160 			}
5161 			bpf_net_ctx_clear(bpf_net_ctx);
5162 			return XDP_DROP;
5163 		}
5164 		bpf_net_ctx_clear(bpf_net_ctx);
5165 	}
5166 	return XDP_PASS;
5167 out_redir:
5168 	bpf_net_ctx_clear(bpf_net_ctx);
5169 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5170 	return XDP_DROP;
5171 }
5172 EXPORT_SYMBOL_GPL(do_xdp_generic);
5173 
5174 static int netif_rx_internal(struct sk_buff *skb)
5175 {
5176 	int ret;
5177 
5178 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5179 
5180 	trace_netif_rx(skb);
5181 
5182 #ifdef CONFIG_RPS
5183 	if (static_branch_unlikely(&rps_needed)) {
5184 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5185 		int cpu;
5186 
5187 		rcu_read_lock();
5188 
5189 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5190 		if (cpu < 0)
5191 			cpu = smp_processor_id();
5192 
5193 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5194 
5195 		rcu_read_unlock();
5196 	} else
5197 #endif
5198 	{
5199 		unsigned int qtail;
5200 
5201 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5202 	}
5203 	return ret;
5204 }
5205 
5206 /**
5207  *	__netif_rx	-	Slightly optimized version of netif_rx
5208  *	@skb: buffer to post
5209  *
5210  *	This behaves as netif_rx except that it does not disable bottom halves.
5211  *	As a result this function may only be invoked from the interrupt context
5212  *	(either hard or soft interrupt).
5213  */
5214 int __netif_rx(struct sk_buff *skb)
5215 {
5216 	int ret;
5217 
5218 	lockdep_assert_once(hardirq_count() | softirq_count());
5219 
5220 	trace_netif_rx_entry(skb);
5221 	ret = netif_rx_internal(skb);
5222 	trace_netif_rx_exit(ret);
5223 	return ret;
5224 }
5225 EXPORT_SYMBOL(__netif_rx);
5226 
5227 /**
5228  *	netif_rx	-	post buffer to the network code
5229  *	@skb: buffer to post
5230  *
5231  *	This function receives a packet from a device driver and queues it for
5232  *	the upper (protocol) levels to process via the backlog NAPI device. It
5233  *	always succeeds. The buffer may be dropped during processing for
5234  *	congestion control or by the protocol layers.
5235  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5236  *	driver should use NAPI and GRO.
5237  *	This function can used from interrupt and from process context. The
5238  *	caller from process context must not disable interrupts before invoking
5239  *	this function.
5240  *
5241  *	return values:
5242  *	NET_RX_SUCCESS	(no congestion)
5243  *	NET_RX_DROP     (packet was dropped)
5244  *
5245  */
5246 int netif_rx(struct sk_buff *skb)
5247 {
5248 	bool need_bh_off = !(hardirq_count() | softirq_count());
5249 	int ret;
5250 
5251 	if (need_bh_off)
5252 		local_bh_disable();
5253 	trace_netif_rx_entry(skb);
5254 	ret = netif_rx_internal(skb);
5255 	trace_netif_rx_exit(ret);
5256 	if (need_bh_off)
5257 		local_bh_enable();
5258 	return ret;
5259 }
5260 EXPORT_SYMBOL(netif_rx);
5261 
5262 static __latent_entropy void net_tx_action(void)
5263 {
5264 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5265 
5266 	if (sd->completion_queue) {
5267 		struct sk_buff *clist;
5268 
5269 		local_irq_disable();
5270 		clist = sd->completion_queue;
5271 		sd->completion_queue = NULL;
5272 		local_irq_enable();
5273 
5274 		while (clist) {
5275 			struct sk_buff *skb = clist;
5276 
5277 			clist = clist->next;
5278 
5279 			WARN_ON(refcount_read(&skb->users));
5280 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5281 				trace_consume_skb(skb, net_tx_action);
5282 			else
5283 				trace_kfree_skb(skb, net_tx_action,
5284 						get_kfree_skb_cb(skb)->reason, NULL);
5285 
5286 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5287 				__kfree_skb(skb);
5288 			else
5289 				__napi_kfree_skb(skb,
5290 						 get_kfree_skb_cb(skb)->reason);
5291 		}
5292 	}
5293 
5294 	if (sd->output_queue) {
5295 		struct Qdisc *head;
5296 
5297 		local_irq_disable();
5298 		head = sd->output_queue;
5299 		sd->output_queue = NULL;
5300 		sd->output_queue_tailp = &sd->output_queue;
5301 		local_irq_enable();
5302 
5303 		rcu_read_lock();
5304 
5305 		while (head) {
5306 			struct Qdisc *q = head;
5307 			spinlock_t *root_lock = NULL;
5308 
5309 			head = head->next_sched;
5310 
5311 			/* We need to make sure head->next_sched is read
5312 			 * before clearing __QDISC_STATE_SCHED
5313 			 */
5314 			smp_mb__before_atomic();
5315 
5316 			if (!(q->flags & TCQ_F_NOLOCK)) {
5317 				root_lock = qdisc_lock(q);
5318 				spin_lock(root_lock);
5319 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5320 						     &q->state))) {
5321 				/* There is a synchronize_net() between
5322 				 * STATE_DEACTIVATED flag being set and
5323 				 * qdisc_reset()/some_qdisc_is_busy() in
5324 				 * dev_deactivate(), so we can safely bail out
5325 				 * early here to avoid data race between
5326 				 * qdisc_deactivate() and some_qdisc_is_busy()
5327 				 * for lockless qdisc.
5328 				 */
5329 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5330 				continue;
5331 			}
5332 
5333 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5334 			qdisc_run(q);
5335 			if (root_lock)
5336 				spin_unlock(root_lock);
5337 		}
5338 
5339 		rcu_read_unlock();
5340 	}
5341 
5342 	xfrm_dev_backlog(sd);
5343 }
5344 
5345 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5346 /* This hook is defined here for ATM LANE */
5347 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5348 			     unsigned char *addr) __read_mostly;
5349 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5350 #endif
5351 
5352 /**
5353  *	netdev_is_rx_handler_busy - check if receive handler is registered
5354  *	@dev: device to check
5355  *
5356  *	Check if a receive handler is already registered for a given device.
5357  *	Return true if there one.
5358  *
5359  *	The caller must hold the rtnl_mutex.
5360  */
5361 bool netdev_is_rx_handler_busy(struct net_device *dev)
5362 {
5363 	ASSERT_RTNL();
5364 	return dev && rtnl_dereference(dev->rx_handler);
5365 }
5366 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5367 
5368 /**
5369  *	netdev_rx_handler_register - register receive handler
5370  *	@dev: device to register a handler for
5371  *	@rx_handler: receive handler to register
5372  *	@rx_handler_data: data pointer that is used by rx handler
5373  *
5374  *	Register a receive handler for a device. This handler will then be
5375  *	called from __netif_receive_skb. A negative errno code is returned
5376  *	on a failure.
5377  *
5378  *	The caller must hold the rtnl_mutex.
5379  *
5380  *	For a general description of rx_handler, see enum rx_handler_result.
5381  */
5382 int netdev_rx_handler_register(struct net_device *dev,
5383 			       rx_handler_func_t *rx_handler,
5384 			       void *rx_handler_data)
5385 {
5386 	if (netdev_is_rx_handler_busy(dev))
5387 		return -EBUSY;
5388 
5389 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5390 		return -EINVAL;
5391 
5392 	/* Note: rx_handler_data must be set before rx_handler */
5393 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5394 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5395 
5396 	return 0;
5397 }
5398 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5399 
5400 /**
5401  *	netdev_rx_handler_unregister - unregister receive handler
5402  *	@dev: device to unregister a handler from
5403  *
5404  *	Unregister a receive handler from a device.
5405  *
5406  *	The caller must hold the rtnl_mutex.
5407  */
5408 void netdev_rx_handler_unregister(struct net_device *dev)
5409 {
5410 
5411 	ASSERT_RTNL();
5412 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5413 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5414 	 * section has a guarantee to see a non NULL rx_handler_data
5415 	 * as well.
5416 	 */
5417 	synchronize_net();
5418 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5419 }
5420 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5421 
5422 /*
5423  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5424  * the special handling of PFMEMALLOC skbs.
5425  */
5426 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5427 {
5428 	switch (skb->protocol) {
5429 	case htons(ETH_P_ARP):
5430 	case htons(ETH_P_IP):
5431 	case htons(ETH_P_IPV6):
5432 	case htons(ETH_P_8021Q):
5433 	case htons(ETH_P_8021AD):
5434 		return true;
5435 	default:
5436 		return false;
5437 	}
5438 }
5439 
5440 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5441 			     int *ret, struct net_device *orig_dev)
5442 {
5443 	if (nf_hook_ingress_active(skb)) {
5444 		int ingress_retval;
5445 
5446 		if (*pt_prev) {
5447 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5448 			*pt_prev = NULL;
5449 		}
5450 
5451 		rcu_read_lock();
5452 		ingress_retval = nf_hook_ingress(skb);
5453 		rcu_read_unlock();
5454 		return ingress_retval;
5455 	}
5456 	return 0;
5457 }
5458 
5459 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5460 				    struct packet_type **ppt_prev)
5461 {
5462 	struct packet_type *ptype, *pt_prev;
5463 	rx_handler_func_t *rx_handler;
5464 	struct sk_buff *skb = *pskb;
5465 	struct net_device *orig_dev;
5466 	bool deliver_exact = false;
5467 	int ret = NET_RX_DROP;
5468 	__be16 type;
5469 
5470 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5471 
5472 	trace_netif_receive_skb(skb);
5473 
5474 	orig_dev = skb->dev;
5475 
5476 	skb_reset_network_header(skb);
5477 	if (!skb_transport_header_was_set(skb))
5478 		skb_reset_transport_header(skb);
5479 	skb_reset_mac_len(skb);
5480 
5481 	pt_prev = NULL;
5482 
5483 another_round:
5484 	skb->skb_iif = skb->dev->ifindex;
5485 
5486 	__this_cpu_inc(softnet_data.processed);
5487 
5488 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5489 		int ret2;
5490 
5491 		migrate_disable();
5492 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5493 				      &skb);
5494 		migrate_enable();
5495 
5496 		if (ret2 != XDP_PASS) {
5497 			ret = NET_RX_DROP;
5498 			goto out;
5499 		}
5500 	}
5501 
5502 	if (eth_type_vlan(skb->protocol)) {
5503 		skb = skb_vlan_untag(skb);
5504 		if (unlikely(!skb))
5505 			goto out;
5506 	}
5507 
5508 	if (skb_skip_tc_classify(skb))
5509 		goto skip_classify;
5510 
5511 	if (pfmemalloc)
5512 		goto skip_taps;
5513 
5514 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5515 		if (pt_prev)
5516 			ret = deliver_skb(skb, pt_prev, orig_dev);
5517 		pt_prev = ptype;
5518 	}
5519 
5520 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5521 		if (pt_prev)
5522 			ret = deliver_skb(skb, pt_prev, orig_dev);
5523 		pt_prev = ptype;
5524 	}
5525 
5526 skip_taps:
5527 #ifdef CONFIG_NET_INGRESS
5528 	if (static_branch_unlikely(&ingress_needed_key)) {
5529 		bool another = false;
5530 
5531 		nf_skip_egress(skb, true);
5532 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5533 					 &another);
5534 		if (another)
5535 			goto another_round;
5536 		if (!skb)
5537 			goto out;
5538 
5539 		nf_skip_egress(skb, false);
5540 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5541 			goto out;
5542 	}
5543 #endif
5544 	skb_reset_redirect(skb);
5545 skip_classify:
5546 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5547 		goto drop;
5548 
5549 	if (skb_vlan_tag_present(skb)) {
5550 		if (pt_prev) {
5551 			ret = deliver_skb(skb, pt_prev, orig_dev);
5552 			pt_prev = NULL;
5553 		}
5554 		if (vlan_do_receive(&skb))
5555 			goto another_round;
5556 		else if (unlikely(!skb))
5557 			goto out;
5558 	}
5559 
5560 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5561 	if (rx_handler) {
5562 		if (pt_prev) {
5563 			ret = deliver_skb(skb, pt_prev, orig_dev);
5564 			pt_prev = NULL;
5565 		}
5566 		switch (rx_handler(&skb)) {
5567 		case RX_HANDLER_CONSUMED:
5568 			ret = NET_RX_SUCCESS;
5569 			goto out;
5570 		case RX_HANDLER_ANOTHER:
5571 			goto another_round;
5572 		case RX_HANDLER_EXACT:
5573 			deliver_exact = true;
5574 			break;
5575 		case RX_HANDLER_PASS:
5576 			break;
5577 		default:
5578 			BUG();
5579 		}
5580 	}
5581 
5582 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5583 check_vlan_id:
5584 		if (skb_vlan_tag_get_id(skb)) {
5585 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5586 			 * find vlan device.
5587 			 */
5588 			skb->pkt_type = PACKET_OTHERHOST;
5589 		} else if (eth_type_vlan(skb->protocol)) {
5590 			/* Outer header is 802.1P with vlan 0, inner header is
5591 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5592 			 * not find vlan dev for vlan id 0.
5593 			 */
5594 			__vlan_hwaccel_clear_tag(skb);
5595 			skb = skb_vlan_untag(skb);
5596 			if (unlikely(!skb))
5597 				goto out;
5598 			if (vlan_do_receive(&skb))
5599 				/* After stripping off 802.1P header with vlan 0
5600 				 * vlan dev is found for inner header.
5601 				 */
5602 				goto another_round;
5603 			else if (unlikely(!skb))
5604 				goto out;
5605 			else
5606 				/* We have stripped outer 802.1P vlan 0 header.
5607 				 * But could not find vlan dev.
5608 				 * check again for vlan id to set OTHERHOST.
5609 				 */
5610 				goto check_vlan_id;
5611 		}
5612 		/* Note: we might in the future use prio bits
5613 		 * and set skb->priority like in vlan_do_receive()
5614 		 * For the time being, just ignore Priority Code Point
5615 		 */
5616 		__vlan_hwaccel_clear_tag(skb);
5617 	}
5618 
5619 	type = skb->protocol;
5620 
5621 	/* deliver only exact match when indicated */
5622 	if (likely(!deliver_exact)) {
5623 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5624 				       &ptype_base[ntohs(type) &
5625 						   PTYPE_HASH_MASK]);
5626 	}
5627 
5628 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5629 			       &orig_dev->ptype_specific);
5630 
5631 	if (unlikely(skb->dev != orig_dev)) {
5632 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5633 				       &skb->dev->ptype_specific);
5634 	}
5635 
5636 	if (pt_prev) {
5637 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5638 			goto drop;
5639 		*ppt_prev = pt_prev;
5640 	} else {
5641 drop:
5642 		if (!deliver_exact)
5643 			dev_core_stats_rx_dropped_inc(skb->dev);
5644 		else
5645 			dev_core_stats_rx_nohandler_inc(skb->dev);
5646 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5647 		/* Jamal, now you will not able to escape explaining
5648 		 * me how you were going to use this. :-)
5649 		 */
5650 		ret = NET_RX_DROP;
5651 	}
5652 
5653 out:
5654 	/* The invariant here is that if *ppt_prev is not NULL
5655 	 * then skb should also be non-NULL.
5656 	 *
5657 	 * Apparently *ppt_prev assignment above holds this invariant due to
5658 	 * skb dereferencing near it.
5659 	 */
5660 	*pskb = skb;
5661 	return ret;
5662 }
5663 
5664 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5665 {
5666 	struct net_device *orig_dev = skb->dev;
5667 	struct packet_type *pt_prev = NULL;
5668 	int ret;
5669 
5670 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5671 	if (pt_prev)
5672 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5673 					 skb->dev, pt_prev, orig_dev);
5674 	return ret;
5675 }
5676 
5677 /**
5678  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5679  *	@skb: buffer to process
5680  *
5681  *	More direct receive version of netif_receive_skb().  It should
5682  *	only be used by callers that have a need to skip RPS and Generic XDP.
5683  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5684  *
5685  *	This function may only be called from softirq context and interrupts
5686  *	should be enabled.
5687  *
5688  *	Return values (usually ignored):
5689  *	NET_RX_SUCCESS: no congestion
5690  *	NET_RX_DROP: packet was dropped
5691  */
5692 int netif_receive_skb_core(struct sk_buff *skb)
5693 {
5694 	int ret;
5695 
5696 	rcu_read_lock();
5697 	ret = __netif_receive_skb_one_core(skb, false);
5698 	rcu_read_unlock();
5699 
5700 	return ret;
5701 }
5702 EXPORT_SYMBOL(netif_receive_skb_core);
5703 
5704 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5705 						  struct packet_type *pt_prev,
5706 						  struct net_device *orig_dev)
5707 {
5708 	struct sk_buff *skb, *next;
5709 
5710 	if (!pt_prev)
5711 		return;
5712 	if (list_empty(head))
5713 		return;
5714 	if (pt_prev->list_func != NULL)
5715 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5716 				   ip_list_rcv, head, pt_prev, orig_dev);
5717 	else
5718 		list_for_each_entry_safe(skb, next, head, list) {
5719 			skb_list_del_init(skb);
5720 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5721 		}
5722 }
5723 
5724 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5725 {
5726 	/* Fast-path assumptions:
5727 	 * - There is no RX handler.
5728 	 * - Only one packet_type matches.
5729 	 * If either of these fails, we will end up doing some per-packet
5730 	 * processing in-line, then handling the 'last ptype' for the whole
5731 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5732 	 * because the 'last ptype' must be constant across the sublist, and all
5733 	 * other ptypes are handled per-packet.
5734 	 */
5735 	/* Current (common) ptype of sublist */
5736 	struct packet_type *pt_curr = NULL;
5737 	/* Current (common) orig_dev of sublist */
5738 	struct net_device *od_curr = NULL;
5739 	struct sk_buff *skb, *next;
5740 	LIST_HEAD(sublist);
5741 
5742 	list_for_each_entry_safe(skb, next, head, list) {
5743 		struct net_device *orig_dev = skb->dev;
5744 		struct packet_type *pt_prev = NULL;
5745 
5746 		skb_list_del_init(skb);
5747 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5748 		if (!pt_prev)
5749 			continue;
5750 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5751 			/* dispatch old sublist */
5752 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5753 			/* start new sublist */
5754 			INIT_LIST_HEAD(&sublist);
5755 			pt_curr = pt_prev;
5756 			od_curr = orig_dev;
5757 		}
5758 		list_add_tail(&skb->list, &sublist);
5759 	}
5760 
5761 	/* dispatch final sublist */
5762 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5763 }
5764 
5765 static int __netif_receive_skb(struct sk_buff *skb)
5766 {
5767 	int ret;
5768 
5769 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5770 		unsigned int noreclaim_flag;
5771 
5772 		/*
5773 		 * PFMEMALLOC skbs are special, they should
5774 		 * - be delivered to SOCK_MEMALLOC sockets only
5775 		 * - stay away from userspace
5776 		 * - have bounded memory usage
5777 		 *
5778 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5779 		 * context down to all allocation sites.
5780 		 */
5781 		noreclaim_flag = memalloc_noreclaim_save();
5782 		ret = __netif_receive_skb_one_core(skb, true);
5783 		memalloc_noreclaim_restore(noreclaim_flag);
5784 	} else
5785 		ret = __netif_receive_skb_one_core(skb, false);
5786 
5787 	return ret;
5788 }
5789 
5790 static void __netif_receive_skb_list(struct list_head *head)
5791 {
5792 	unsigned long noreclaim_flag = 0;
5793 	struct sk_buff *skb, *next;
5794 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5795 
5796 	list_for_each_entry_safe(skb, next, head, list) {
5797 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5798 			struct list_head sublist;
5799 
5800 			/* Handle the previous sublist */
5801 			list_cut_before(&sublist, head, &skb->list);
5802 			if (!list_empty(&sublist))
5803 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5804 			pfmemalloc = !pfmemalloc;
5805 			/* See comments in __netif_receive_skb */
5806 			if (pfmemalloc)
5807 				noreclaim_flag = memalloc_noreclaim_save();
5808 			else
5809 				memalloc_noreclaim_restore(noreclaim_flag);
5810 		}
5811 	}
5812 	/* Handle the remaining sublist */
5813 	if (!list_empty(head))
5814 		__netif_receive_skb_list_core(head, pfmemalloc);
5815 	/* Restore pflags */
5816 	if (pfmemalloc)
5817 		memalloc_noreclaim_restore(noreclaim_flag);
5818 }
5819 
5820 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5821 {
5822 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5823 	struct bpf_prog *new = xdp->prog;
5824 	int ret = 0;
5825 
5826 	switch (xdp->command) {
5827 	case XDP_SETUP_PROG:
5828 		rcu_assign_pointer(dev->xdp_prog, new);
5829 		if (old)
5830 			bpf_prog_put(old);
5831 
5832 		if (old && !new) {
5833 			static_branch_dec(&generic_xdp_needed_key);
5834 		} else if (new && !old) {
5835 			static_branch_inc(&generic_xdp_needed_key);
5836 			dev_disable_lro(dev);
5837 			dev_disable_gro_hw(dev);
5838 		}
5839 		break;
5840 
5841 	default:
5842 		ret = -EINVAL;
5843 		break;
5844 	}
5845 
5846 	return ret;
5847 }
5848 
5849 static int netif_receive_skb_internal(struct sk_buff *skb)
5850 {
5851 	int ret;
5852 
5853 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5854 
5855 	if (skb_defer_rx_timestamp(skb))
5856 		return NET_RX_SUCCESS;
5857 
5858 	rcu_read_lock();
5859 #ifdef CONFIG_RPS
5860 	if (static_branch_unlikely(&rps_needed)) {
5861 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5862 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5863 
5864 		if (cpu >= 0) {
5865 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5866 			rcu_read_unlock();
5867 			return ret;
5868 		}
5869 	}
5870 #endif
5871 	ret = __netif_receive_skb(skb);
5872 	rcu_read_unlock();
5873 	return ret;
5874 }
5875 
5876 void netif_receive_skb_list_internal(struct list_head *head)
5877 {
5878 	struct sk_buff *skb, *next;
5879 	LIST_HEAD(sublist);
5880 
5881 	list_for_each_entry_safe(skb, next, head, list) {
5882 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5883 				    skb);
5884 		skb_list_del_init(skb);
5885 		if (!skb_defer_rx_timestamp(skb))
5886 			list_add_tail(&skb->list, &sublist);
5887 	}
5888 	list_splice_init(&sublist, head);
5889 
5890 	rcu_read_lock();
5891 #ifdef CONFIG_RPS
5892 	if (static_branch_unlikely(&rps_needed)) {
5893 		list_for_each_entry_safe(skb, next, head, list) {
5894 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5895 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5896 
5897 			if (cpu >= 0) {
5898 				/* Will be handled, remove from list */
5899 				skb_list_del_init(skb);
5900 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5901 			}
5902 		}
5903 	}
5904 #endif
5905 	__netif_receive_skb_list(head);
5906 	rcu_read_unlock();
5907 }
5908 
5909 /**
5910  *	netif_receive_skb - process receive buffer from network
5911  *	@skb: buffer to process
5912  *
5913  *	netif_receive_skb() is the main receive data processing function.
5914  *	It always succeeds. The buffer may be dropped during processing
5915  *	for congestion control or by the protocol layers.
5916  *
5917  *	This function may only be called from softirq context and interrupts
5918  *	should be enabled.
5919  *
5920  *	Return values (usually ignored):
5921  *	NET_RX_SUCCESS: no congestion
5922  *	NET_RX_DROP: packet was dropped
5923  */
5924 int netif_receive_skb(struct sk_buff *skb)
5925 {
5926 	int ret;
5927 
5928 	trace_netif_receive_skb_entry(skb);
5929 
5930 	ret = netif_receive_skb_internal(skb);
5931 	trace_netif_receive_skb_exit(ret);
5932 
5933 	return ret;
5934 }
5935 EXPORT_SYMBOL(netif_receive_skb);
5936 
5937 /**
5938  *	netif_receive_skb_list - process many receive buffers from network
5939  *	@head: list of skbs to process.
5940  *
5941  *	Since return value of netif_receive_skb() is normally ignored, and
5942  *	wouldn't be meaningful for a list, this function returns void.
5943  *
5944  *	This function may only be called from softirq context and interrupts
5945  *	should be enabled.
5946  */
5947 void netif_receive_skb_list(struct list_head *head)
5948 {
5949 	struct sk_buff *skb;
5950 
5951 	if (list_empty(head))
5952 		return;
5953 	if (trace_netif_receive_skb_list_entry_enabled()) {
5954 		list_for_each_entry(skb, head, list)
5955 			trace_netif_receive_skb_list_entry(skb);
5956 	}
5957 	netif_receive_skb_list_internal(head);
5958 	trace_netif_receive_skb_list_exit(0);
5959 }
5960 EXPORT_SYMBOL(netif_receive_skb_list);
5961 
5962 static DEFINE_PER_CPU(struct work_struct, flush_works);
5963 
5964 /* Network device is going away, flush any packets still pending */
5965 static void flush_backlog(struct work_struct *work)
5966 {
5967 	struct sk_buff *skb, *tmp;
5968 	struct softnet_data *sd;
5969 
5970 	local_bh_disable();
5971 	sd = this_cpu_ptr(&softnet_data);
5972 
5973 	backlog_lock_irq_disable(sd);
5974 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5975 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5976 			__skb_unlink(skb, &sd->input_pkt_queue);
5977 			dev_kfree_skb_irq(skb);
5978 			rps_input_queue_head_incr(sd);
5979 		}
5980 	}
5981 	backlog_unlock_irq_enable(sd);
5982 
5983 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
5984 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5985 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5986 			__skb_unlink(skb, &sd->process_queue);
5987 			kfree_skb(skb);
5988 			rps_input_queue_head_incr(sd);
5989 		}
5990 	}
5991 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
5992 	local_bh_enable();
5993 }
5994 
5995 static bool flush_required(int cpu)
5996 {
5997 #if IS_ENABLED(CONFIG_RPS)
5998 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5999 	bool do_flush;
6000 
6001 	backlog_lock_irq_disable(sd);
6002 
6003 	/* as insertion into process_queue happens with the rps lock held,
6004 	 * process_queue access may race only with dequeue
6005 	 */
6006 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6007 		   !skb_queue_empty_lockless(&sd->process_queue);
6008 	backlog_unlock_irq_enable(sd);
6009 
6010 	return do_flush;
6011 #endif
6012 	/* without RPS we can't safely check input_pkt_queue: during a
6013 	 * concurrent remote skb_queue_splice() we can detect as empty both
6014 	 * input_pkt_queue and process_queue even if the latter could end-up
6015 	 * containing a lot of packets.
6016 	 */
6017 	return true;
6018 }
6019 
6020 static void flush_all_backlogs(void)
6021 {
6022 	static cpumask_t flush_cpus;
6023 	unsigned int cpu;
6024 
6025 	/* since we are under rtnl lock protection we can use static data
6026 	 * for the cpumask and avoid allocating on stack the possibly
6027 	 * large mask
6028 	 */
6029 	ASSERT_RTNL();
6030 
6031 	cpus_read_lock();
6032 
6033 	cpumask_clear(&flush_cpus);
6034 	for_each_online_cpu(cpu) {
6035 		if (flush_required(cpu)) {
6036 			queue_work_on(cpu, system_highpri_wq,
6037 				      per_cpu_ptr(&flush_works, cpu));
6038 			cpumask_set_cpu(cpu, &flush_cpus);
6039 		}
6040 	}
6041 
6042 	/* we can have in flight packet[s] on the cpus we are not flushing,
6043 	 * synchronize_net() in unregister_netdevice_many() will take care of
6044 	 * them
6045 	 */
6046 	for_each_cpu(cpu, &flush_cpus)
6047 		flush_work(per_cpu_ptr(&flush_works, cpu));
6048 
6049 	cpus_read_unlock();
6050 }
6051 
6052 static void net_rps_send_ipi(struct softnet_data *remsd)
6053 {
6054 #ifdef CONFIG_RPS
6055 	while (remsd) {
6056 		struct softnet_data *next = remsd->rps_ipi_next;
6057 
6058 		if (cpu_online(remsd->cpu))
6059 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6060 		remsd = next;
6061 	}
6062 #endif
6063 }
6064 
6065 /*
6066  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6067  * Note: called with local irq disabled, but exits with local irq enabled.
6068  */
6069 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6070 {
6071 #ifdef CONFIG_RPS
6072 	struct softnet_data *remsd = sd->rps_ipi_list;
6073 
6074 	if (!use_backlog_threads() && remsd) {
6075 		sd->rps_ipi_list = NULL;
6076 
6077 		local_irq_enable();
6078 
6079 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6080 		net_rps_send_ipi(remsd);
6081 	} else
6082 #endif
6083 		local_irq_enable();
6084 }
6085 
6086 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6087 {
6088 #ifdef CONFIG_RPS
6089 	return !use_backlog_threads() && sd->rps_ipi_list;
6090 #else
6091 	return false;
6092 #endif
6093 }
6094 
6095 static int process_backlog(struct napi_struct *napi, int quota)
6096 {
6097 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6098 	bool again = true;
6099 	int work = 0;
6100 
6101 	/* Check if we have pending ipi, its better to send them now,
6102 	 * not waiting net_rx_action() end.
6103 	 */
6104 	if (sd_has_rps_ipi_waiting(sd)) {
6105 		local_irq_disable();
6106 		net_rps_action_and_irq_enable(sd);
6107 	}
6108 
6109 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6110 	while (again) {
6111 		struct sk_buff *skb;
6112 
6113 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6114 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6115 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6116 			rcu_read_lock();
6117 			__netif_receive_skb(skb);
6118 			rcu_read_unlock();
6119 			if (++work >= quota) {
6120 				rps_input_queue_head_add(sd, work);
6121 				return work;
6122 			}
6123 
6124 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6125 		}
6126 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6127 
6128 		backlog_lock_irq_disable(sd);
6129 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6130 			/*
6131 			 * Inline a custom version of __napi_complete().
6132 			 * only current cpu owns and manipulates this napi,
6133 			 * and NAPI_STATE_SCHED is the only possible flag set
6134 			 * on backlog.
6135 			 * We can use a plain write instead of clear_bit(),
6136 			 * and we dont need an smp_mb() memory barrier.
6137 			 */
6138 			napi->state &= NAPIF_STATE_THREADED;
6139 			again = false;
6140 		} else {
6141 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6142 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6143 						   &sd->process_queue);
6144 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6145 		}
6146 		backlog_unlock_irq_enable(sd);
6147 	}
6148 
6149 	if (work)
6150 		rps_input_queue_head_add(sd, work);
6151 	return work;
6152 }
6153 
6154 /**
6155  * __napi_schedule - schedule for receive
6156  * @n: entry to schedule
6157  *
6158  * The entry's receive function will be scheduled to run.
6159  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6160  */
6161 void __napi_schedule(struct napi_struct *n)
6162 {
6163 	unsigned long flags;
6164 
6165 	local_irq_save(flags);
6166 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6167 	local_irq_restore(flags);
6168 }
6169 EXPORT_SYMBOL(__napi_schedule);
6170 
6171 /**
6172  *	napi_schedule_prep - check if napi can be scheduled
6173  *	@n: napi context
6174  *
6175  * Test if NAPI routine is already running, and if not mark
6176  * it as running.  This is used as a condition variable to
6177  * insure only one NAPI poll instance runs.  We also make
6178  * sure there is no pending NAPI disable.
6179  */
6180 bool napi_schedule_prep(struct napi_struct *n)
6181 {
6182 	unsigned long new, val = READ_ONCE(n->state);
6183 
6184 	do {
6185 		if (unlikely(val & NAPIF_STATE_DISABLE))
6186 			return false;
6187 		new = val | NAPIF_STATE_SCHED;
6188 
6189 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6190 		 * This was suggested by Alexander Duyck, as compiler
6191 		 * emits better code than :
6192 		 * if (val & NAPIF_STATE_SCHED)
6193 		 *     new |= NAPIF_STATE_MISSED;
6194 		 */
6195 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6196 						   NAPIF_STATE_MISSED;
6197 	} while (!try_cmpxchg(&n->state, &val, new));
6198 
6199 	return !(val & NAPIF_STATE_SCHED);
6200 }
6201 EXPORT_SYMBOL(napi_schedule_prep);
6202 
6203 /**
6204  * __napi_schedule_irqoff - schedule for receive
6205  * @n: entry to schedule
6206  *
6207  * Variant of __napi_schedule() assuming hard irqs are masked.
6208  *
6209  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6210  * because the interrupt disabled assumption might not be true
6211  * due to force-threaded interrupts and spinlock substitution.
6212  */
6213 void __napi_schedule_irqoff(struct napi_struct *n)
6214 {
6215 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6216 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6217 	else
6218 		__napi_schedule(n);
6219 }
6220 EXPORT_SYMBOL(__napi_schedule_irqoff);
6221 
6222 bool napi_complete_done(struct napi_struct *n, int work_done)
6223 {
6224 	unsigned long flags, val, new, timeout = 0;
6225 	bool ret = true;
6226 
6227 	/*
6228 	 * 1) Don't let napi dequeue from the cpu poll list
6229 	 *    just in case its running on a different cpu.
6230 	 * 2) If we are busy polling, do nothing here, we have
6231 	 *    the guarantee we will be called later.
6232 	 */
6233 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6234 				 NAPIF_STATE_IN_BUSY_POLL)))
6235 		return false;
6236 
6237 	if (work_done) {
6238 		if (n->gro_bitmask)
6239 			timeout = napi_get_gro_flush_timeout(n);
6240 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6241 	}
6242 	if (n->defer_hard_irqs_count > 0) {
6243 		n->defer_hard_irqs_count--;
6244 		timeout = napi_get_gro_flush_timeout(n);
6245 		if (timeout)
6246 			ret = false;
6247 	}
6248 	if (n->gro_bitmask) {
6249 		/* When the NAPI instance uses a timeout and keeps postponing
6250 		 * it, we need to bound somehow the time packets are kept in
6251 		 * the GRO layer
6252 		 */
6253 		napi_gro_flush(n, !!timeout);
6254 	}
6255 
6256 	gro_normal_list(n);
6257 
6258 	if (unlikely(!list_empty(&n->poll_list))) {
6259 		/* If n->poll_list is not empty, we need to mask irqs */
6260 		local_irq_save(flags);
6261 		list_del_init(&n->poll_list);
6262 		local_irq_restore(flags);
6263 	}
6264 	WRITE_ONCE(n->list_owner, -1);
6265 
6266 	val = READ_ONCE(n->state);
6267 	do {
6268 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6269 
6270 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6271 			      NAPIF_STATE_SCHED_THREADED |
6272 			      NAPIF_STATE_PREFER_BUSY_POLL);
6273 
6274 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6275 		 * because we will call napi->poll() one more time.
6276 		 * This C code was suggested by Alexander Duyck to help gcc.
6277 		 */
6278 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6279 						    NAPIF_STATE_SCHED;
6280 	} while (!try_cmpxchg(&n->state, &val, new));
6281 
6282 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6283 		__napi_schedule(n);
6284 		return false;
6285 	}
6286 
6287 	if (timeout)
6288 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6289 			      HRTIMER_MODE_REL_PINNED);
6290 	return ret;
6291 }
6292 EXPORT_SYMBOL(napi_complete_done);
6293 
6294 /* must be called under rcu_read_lock(), as we dont take a reference */
6295 struct napi_struct *napi_by_id(unsigned int napi_id)
6296 {
6297 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6298 	struct napi_struct *napi;
6299 
6300 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6301 		if (napi->napi_id == napi_id)
6302 			return napi;
6303 
6304 	return NULL;
6305 }
6306 
6307 static void skb_defer_free_flush(struct softnet_data *sd)
6308 {
6309 	struct sk_buff *skb, *next;
6310 
6311 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6312 	if (!READ_ONCE(sd->defer_list))
6313 		return;
6314 
6315 	spin_lock(&sd->defer_lock);
6316 	skb = sd->defer_list;
6317 	sd->defer_list = NULL;
6318 	sd->defer_count = 0;
6319 	spin_unlock(&sd->defer_lock);
6320 
6321 	while (skb != NULL) {
6322 		next = skb->next;
6323 		napi_consume_skb(skb, 1);
6324 		skb = next;
6325 	}
6326 }
6327 
6328 #if defined(CONFIG_NET_RX_BUSY_POLL)
6329 
6330 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6331 {
6332 	if (!skip_schedule) {
6333 		gro_normal_list(napi);
6334 		__napi_schedule(napi);
6335 		return;
6336 	}
6337 
6338 	if (napi->gro_bitmask) {
6339 		/* flush too old packets
6340 		 * If HZ < 1000, flush all packets.
6341 		 */
6342 		napi_gro_flush(napi, HZ >= 1000);
6343 	}
6344 
6345 	gro_normal_list(napi);
6346 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6347 }
6348 
6349 enum {
6350 	NAPI_F_PREFER_BUSY_POLL	= 1,
6351 	NAPI_F_END_ON_RESCHED	= 2,
6352 };
6353 
6354 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6355 			   unsigned flags, u16 budget)
6356 {
6357 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6358 	bool skip_schedule = false;
6359 	unsigned long timeout;
6360 	int rc;
6361 
6362 	/* Busy polling means there is a high chance device driver hard irq
6363 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6364 	 * set in napi_schedule_prep().
6365 	 * Since we are about to call napi->poll() once more, we can safely
6366 	 * clear NAPI_STATE_MISSED.
6367 	 *
6368 	 * Note: x86 could use a single "lock and ..." instruction
6369 	 * to perform these two clear_bit()
6370 	 */
6371 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6372 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6373 
6374 	local_bh_disable();
6375 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6376 
6377 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6378 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6379 		timeout = napi_get_gro_flush_timeout(napi);
6380 		if (napi->defer_hard_irqs_count && timeout) {
6381 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6382 			skip_schedule = true;
6383 		}
6384 	}
6385 
6386 	/* All we really want here is to re-enable device interrupts.
6387 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6388 	 */
6389 	rc = napi->poll(napi, budget);
6390 	/* We can't gro_normal_list() here, because napi->poll() might have
6391 	 * rearmed the napi (napi_complete_done()) in which case it could
6392 	 * already be running on another CPU.
6393 	 */
6394 	trace_napi_poll(napi, rc, budget);
6395 	netpoll_poll_unlock(have_poll_lock);
6396 	if (rc == budget)
6397 		__busy_poll_stop(napi, skip_schedule);
6398 	bpf_net_ctx_clear(bpf_net_ctx);
6399 	local_bh_enable();
6400 }
6401 
6402 static void __napi_busy_loop(unsigned int napi_id,
6403 		      bool (*loop_end)(void *, unsigned long),
6404 		      void *loop_end_arg, unsigned flags, u16 budget)
6405 {
6406 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6407 	int (*napi_poll)(struct napi_struct *napi, int budget);
6408 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6409 	void *have_poll_lock = NULL;
6410 	struct napi_struct *napi;
6411 
6412 	WARN_ON_ONCE(!rcu_read_lock_held());
6413 
6414 restart:
6415 	napi_poll = NULL;
6416 
6417 	napi = napi_by_id(napi_id);
6418 	if (!napi)
6419 		return;
6420 
6421 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6422 		preempt_disable();
6423 	for (;;) {
6424 		int work = 0;
6425 
6426 		local_bh_disable();
6427 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6428 		if (!napi_poll) {
6429 			unsigned long val = READ_ONCE(napi->state);
6430 
6431 			/* If multiple threads are competing for this napi,
6432 			 * we avoid dirtying napi->state as much as we can.
6433 			 */
6434 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6435 				   NAPIF_STATE_IN_BUSY_POLL)) {
6436 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6437 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6438 				goto count;
6439 			}
6440 			if (cmpxchg(&napi->state, val,
6441 				    val | NAPIF_STATE_IN_BUSY_POLL |
6442 					  NAPIF_STATE_SCHED) != val) {
6443 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6444 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6445 				goto count;
6446 			}
6447 			have_poll_lock = netpoll_poll_lock(napi);
6448 			napi_poll = napi->poll;
6449 		}
6450 		work = napi_poll(napi, budget);
6451 		trace_napi_poll(napi, work, budget);
6452 		gro_normal_list(napi);
6453 count:
6454 		if (work > 0)
6455 			__NET_ADD_STATS(dev_net(napi->dev),
6456 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6457 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6458 		bpf_net_ctx_clear(bpf_net_ctx);
6459 		local_bh_enable();
6460 
6461 		if (!loop_end || loop_end(loop_end_arg, start_time))
6462 			break;
6463 
6464 		if (unlikely(need_resched())) {
6465 			if (flags & NAPI_F_END_ON_RESCHED)
6466 				break;
6467 			if (napi_poll)
6468 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6469 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6470 				preempt_enable();
6471 			rcu_read_unlock();
6472 			cond_resched();
6473 			rcu_read_lock();
6474 			if (loop_end(loop_end_arg, start_time))
6475 				return;
6476 			goto restart;
6477 		}
6478 		cpu_relax();
6479 	}
6480 	if (napi_poll)
6481 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6482 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6483 		preempt_enable();
6484 }
6485 
6486 void napi_busy_loop_rcu(unsigned int napi_id,
6487 			bool (*loop_end)(void *, unsigned long),
6488 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6489 {
6490 	unsigned flags = NAPI_F_END_ON_RESCHED;
6491 
6492 	if (prefer_busy_poll)
6493 		flags |= NAPI_F_PREFER_BUSY_POLL;
6494 
6495 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6496 }
6497 
6498 void napi_busy_loop(unsigned int napi_id,
6499 		    bool (*loop_end)(void *, unsigned long),
6500 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6501 {
6502 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6503 
6504 	rcu_read_lock();
6505 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6506 	rcu_read_unlock();
6507 }
6508 EXPORT_SYMBOL(napi_busy_loop);
6509 
6510 void napi_suspend_irqs(unsigned int napi_id)
6511 {
6512 	struct napi_struct *napi;
6513 
6514 	rcu_read_lock();
6515 	napi = napi_by_id(napi_id);
6516 	if (napi) {
6517 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6518 
6519 		if (timeout)
6520 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6521 				      HRTIMER_MODE_REL_PINNED);
6522 	}
6523 	rcu_read_unlock();
6524 }
6525 
6526 void napi_resume_irqs(unsigned int napi_id)
6527 {
6528 	struct napi_struct *napi;
6529 
6530 	rcu_read_lock();
6531 	napi = napi_by_id(napi_id);
6532 	if (napi) {
6533 		/* If irq_suspend_timeout is set to 0 between the call to
6534 		 * napi_suspend_irqs and now, the original value still
6535 		 * determines the safety timeout as intended and napi_watchdog
6536 		 * will resume irq processing.
6537 		 */
6538 		if (napi_get_irq_suspend_timeout(napi)) {
6539 			local_bh_disable();
6540 			napi_schedule(napi);
6541 			local_bh_enable();
6542 		}
6543 	}
6544 	rcu_read_unlock();
6545 }
6546 
6547 #endif /* CONFIG_NET_RX_BUSY_POLL */
6548 
6549 static void __napi_hash_add_with_id(struct napi_struct *napi,
6550 				    unsigned int napi_id)
6551 {
6552 	napi->napi_id = napi_id;
6553 	hlist_add_head_rcu(&napi->napi_hash_node,
6554 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6555 }
6556 
6557 static void napi_hash_add_with_id(struct napi_struct *napi,
6558 				  unsigned int napi_id)
6559 {
6560 	spin_lock(&napi_hash_lock);
6561 	WARN_ON_ONCE(napi_by_id(napi_id));
6562 	__napi_hash_add_with_id(napi, napi_id);
6563 	spin_unlock(&napi_hash_lock);
6564 }
6565 
6566 static void napi_hash_add(struct napi_struct *napi)
6567 {
6568 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6569 		return;
6570 
6571 	spin_lock(&napi_hash_lock);
6572 
6573 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6574 	do {
6575 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6576 			napi_gen_id = MIN_NAPI_ID;
6577 	} while (napi_by_id(napi_gen_id));
6578 
6579 	__napi_hash_add_with_id(napi, napi_gen_id);
6580 
6581 	spin_unlock(&napi_hash_lock);
6582 }
6583 
6584 /* Warning : caller is responsible to make sure rcu grace period
6585  * is respected before freeing memory containing @napi
6586  */
6587 static void napi_hash_del(struct napi_struct *napi)
6588 {
6589 	spin_lock(&napi_hash_lock);
6590 
6591 	hlist_del_init_rcu(&napi->napi_hash_node);
6592 
6593 	spin_unlock(&napi_hash_lock);
6594 }
6595 
6596 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6597 {
6598 	struct napi_struct *napi;
6599 
6600 	napi = container_of(timer, struct napi_struct, timer);
6601 
6602 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6603 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6604 	 */
6605 	if (!napi_disable_pending(napi) &&
6606 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6607 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6608 		__napi_schedule_irqoff(napi);
6609 	}
6610 
6611 	return HRTIMER_NORESTART;
6612 }
6613 
6614 static void init_gro_hash(struct napi_struct *napi)
6615 {
6616 	int i;
6617 
6618 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6619 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6620 		napi->gro_hash[i].count = 0;
6621 	}
6622 	napi->gro_bitmask = 0;
6623 }
6624 
6625 int dev_set_threaded(struct net_device *dev, bool threaded)
6626 {
6627 	struct napi_struct *napi;
6628 	int err = 0;
6629 
6630 	if (dev->threaded == threaded)
6631 		return 0;
6632 
6633 	if (threaded) {
6634 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6635 			if (!napi->thread) {
6636 				err = napi_kthread_create(napi);
6637 				if (err) {
6638 					threaded = false;
6639 					break;
6640 				}
6641 			}
6642 		}
6643 	}
6644 
6645 	WRITE_ONCE(dev->threaded, threaded);
6646 
6647 	/* Make sure kthread is created before THREADED bit
6648 	 * is set.
6649 	 */
6650 	smp_mb__before_atomic();
6651 
6652 	/* Setting/unsetting threaded mode on a napi might not immediately
6653 	 * take effect, if the current napi instance is actively being
6654 	 * polled. In this case, the switch between threaded mode and
6655 	 * softirq mode will happen in the next round of napi_schedule().
6656 	 * This should not cause hiccups/stalls to the live traffic.
6657 	 */
6658 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6659 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6660 
6661 	return err;
6662 }
6663 EXPORT_SYMBOL(dev_set_threaded);
6664 
6665 /**
6666  * netif_queue_set_napi - Associate queue with the napi
6667  * @dev: device to which NAPI and queue belong
6668  * @queue_index: Index of queue
6669  * @type: queue type as RX or TX
6670  * @napi: NAPI context, pass NULL to clear previously set NAPI
6671  *
6672  * Set queue with its corresponding napi context. This should be done after
6673  * registering the NAPI handler for the queue-vector and the queues have been
6674  * mapped to the corresponding interrupt vector.
6675  */
6676 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6677 			  enum netdev_queue_type type, struct napi_struct *napi)
6678 {
6679 	struct netdev_rx_queue *rxq;
6680 	struct netdev_queue *txq;
6681 
6682 	if (WARN_ON_ONCE(napi && !napi->dev))
6683 		return;
6684 	if (dev->reg_state >= NETREG_REGISTERED)
6685 		ASSERT_RTNL();
6686 
6687 	switch (type) {
6688 	case NETDEV_QUEUE_TYPE_RX:
6689 		rxq = __netif_get_rx_queue(dev, queue_index);
6690 		rxq->napi = napi;
6691 		return;
6692 	case NETDEV_QUEUE_TYPE_TX:
6693 		txq = netdev_get_tx_queue(dev, queue_index);
6694 		txq->napi = napi;
6695 		return;
6696 	default:
6697 		return;
6698 	}
6699 }
6700 EXPORT_SYMBOL(netif_queue_set_napi);
6701 
6702 static void napi_restore_config(struct napi_struct *n)
6703 {
6704 	n->defer_hard_irqs = n->config->defer_hard_irqs;
6705 	n->gro_flush_timeout = n->config->gro_flush_timeout;
6706 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
6707 	/* a NAPI ID might be stored in the config, if so use it. if not, use
6708 	 * napi_hash_add to generate one for us. It will be saved to the config
6709 	 * in napi_disable.
6710 	 */
6711 	if (n->config->napi_id)
6712 		napi_hash_add_with_id(n, n->config->napi_id);
6713 	else
6714 		napi_hash_add(n);
6715 }
6716 
6717 static void napi_save_config(struct napi_struct *n)
6718 {
6719 	n->config->defer_hard_irqs = n->defer_hard_irqs;
6720 	n->config->gro_flush_timeout = n->gro_flush_timeout;
6721 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
6722 	n->config->napi_id = n->napi_id;
6723 	napi_hash_del(n);
6724 }
6725 
6726 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6727 			   int (*poll)(struct napi_struct *, int), int weight)
6728 {
6729 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6730 		return;
6731 
6732 	INIT_LIST_HEAD(&napi->poll_list);
6733 	INIT_HLIST_NODE(&napi->napi_hash_node);
6734 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6735 	napi->timer.function = napi_watchdog;
6736 	init_gro_hash(napi);
6737 	napi->skb = NULL;
6738 	INIT_LIST_HEAD(&napi->rx_list);
6739 	napi->rx_count = 0;
6740 	napi->poll = poll;
6741 	if (weight > NAPI_POLL_WEIGHT)
6742 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6743 				weight);
6744 	napi->weight = weight;
6745 	napi->dev = dev;
6746 #ifdef CONFIG_NETPOLL
6747 	napi->poll_owner = -1;
6748 #endif
6749 	napi->list_owner = -1;
6750 	set_bit(NAPI_STATE_SCHED, &napi->state);
6751 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6752 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6753 
6754 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
6755 	 * configuration will be loaded in napi_enable
6756 	 */
6757 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
6758 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
6759 
6760 	napi_get_frags_check(napi);
6761 	/* Create kthread for this napi if dev->threaded is set.
6762 	 * Clear dev->threaded if kthread creation failed so that
6763 	 * threaded mode will not be enabled in napi_enable().
6764 	 */
6765 	if (dev->threaded && napi_kthread_create(napi))
6766 		dev->threaded = false;
6767 	netif_napi_set_irq(napi, -1);
6768 }
6769 EXPORT_SYMBOL(netif_napi_add_weight);
6770 
6771 void napi_disable(struct napi_struct *n)
6772 {
6773 	unsigned long val, new;
6774 
6775 	might_sleep();
6776 	set_bit(NAPI_STATE_DISABLE, &n->state);
6777 
6778 	val = READ_ONCE(n->state);
6779 	do {
6780 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6781 			usleep_range(20, 200);
6782 			val = READ_ONCE(n->state);
6783 		}
6784 
6785 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6786 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6787 	} while (!try_cmpxchg(&n->state, &val, new));
6788 
6789 	hrtimer_cancel(&n->timer);
6790 
6791 	if (n->config)
6792 		napi_save_config(n);
6793 	else
6794 		napi_hash_del(n);
6795 
6796 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6797 }
6798 EXPORT_SYMBOL(napi_disable);
6799 
6800 /**
6801  *	napi_enable - enable NAPI scheduling
6802  *	@n: NAPI context
6803  *
6804  * Resume NAPI from being scheduled on this context.
6805  * Must be paired with napi_disable.
6806  */
6807 void napi_enable(struct napi_struct *n)
6808 {
6809 	unsigned long new, val = READ_ONCE(n->state);
6810 
6811 	if (n->config)
6812 		napi_restore_config(n);
6813 	else
6814 		napi_hash_add(n);
6815 
6816 	do {
6817 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6818 
6819 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6820 		if (n->dev->threaded && n->thread)
6821 			new |= NAPIF_STATE_THREADED;
6822 	} while (!try_cmpxchg(&n->state, &val, new));
6823 }
6824 EXPORT_SYMBOL(napi_enable);
6825 
6826 static void flush_gro_hash(struct napi_struct *napi)
6827 {
6828 	int i;
6829 
6830 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6831 		struct sk_buff *skb, *n;
6832 
6833 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6834 			kfree_skb(skb);
6835 		napi->gro_hash[i].count = 0;
6836 	}
6837 }
6838 
6839 /* Must be called in process context */
6840 void __netif_napi_del(struct napi_struct *napi)
6841 {
6842 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6843 		return;
6844 
6845 	if (napi->config) {
6846 		napi->index = -1;
6847 		napi->config = NULL;
6848 	}
6849 
6850 	list_del_rcu(&napi->dev_list);
6851 	napi_free_frags(napi);
6852 
6853 	flush_gro_hash(napi);
6854 	napi->gro_bitmask = 0;
6855 
6856 	if (napi->thread) {
6857 		kthread_stop(napi->thread);
6858 		napi->thread = NULL;
6859 	}
6860 }
6861 EXPORT_SYMBOL(__netif_napi_del);
6862 
6863 static int __napi_poll(struct napi_struct *n, bool *repoll)
6864 {
6865 	int work, weight;
6866 
6867 	weight = n->weight;
6868 
6869 	/* This NAPI_STATE_SCHED test is for avoiding a race
6870 	 * with netpoll's poll_napi().  Only the entity which
6871 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6872 	 * actually make the ->poll() call.  Therefore we avoid
6873 	 * accidentally calling ->poll() when NAPI is not scheduled.
6874 	 */
6875 	work = 0;
6876 	if (napi_is_scheduled(n)) {
6877 		work = n->poll(n, weight);
6878 		trace_napi_poll(n, work, weight);
6879 
6880 		xdp_do_check_flushed(n);
6881 	}
6882 
6883 	if (unlikely(work > weight))
6884 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6885 				n->poll, work, weight);
6886 
6887 	if (likely(work < weight))
6888 		return work;
6889 
6890 	/* Drivers must not modify the NAPI state if they
6891 	 * consume the entire weight.  In such cases this code
6892 	 * still "owns" the NAPI instance and therefore can
6893 	 * move the instance around on the list at-will.
6894 	 */
6895 	if (unlikely(napi_disable_pending(n))) {
6896 		napi_complete(n);
6897 		return work;
6898 	}
6899 
6900 	/* The NAPI context has more processing work, but busy-polling
6901 	 * is preferred. Exit early.
6902 	 */
6903 	if (napi_prefer_busy_poll(n)) {
6904 		if (napi_complete_done(n, work)) {
6905 			/* If timeout is not set, we need to make sure
6906 			 * that the NAPI is re-scheduled.
6907 			 */
6908 			napi_schedule(n);
6909 		}
6910 		return work;
6911 	}
6912 
6913 	if (n->gro_bitmask) {
6914 		/* flush too old packets
6915 		 * If HZ < 1000, flush all packets.
6916 		 */
6917 		napi_gro_flush(n, HZ >= 1000);
6918 	}
6919 
6920 	gro_normal_list(n);
6921 
6922 	/* Some drivers may have called napi_schedule
6923 	 * prior to exhausting their budget.
6924 	 */
6925 	if (unlikely(!list_empty(&n->poll_list))) {
6926 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6927 			     n->dev ? n->dev->name : "backlog");
6928 		return work;
6929 	}
6930 
6931 	*repoll = true;
6932 
6933 	return work;
6934 }
6935 
6936 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6937 {
6938 	bool do_repoll = false;
6939 	void *have;
6940 	int work;
6941 
6942 	list_del_init(&n->poll_list);
6943 
6944 	have = netpoll_poll_lock(n);
6945 
6946 	work = __napi_poll(n, &do_repoll);
6947 
6948 	if (do_repoll)
6949 		list_add_tail(&n->poll_list, repoll);
6950 
6951 	netpoll_poll_unlock(have);
6952 
6953 	return work;
6954 }
6955 
6956 static int napi_thread_wait(struct napi_struct *napi)
6957 {
6958 	set_current_state(TASK_INTERRUPTIBLE);
6959 
6960 	while (!kthread_should_stop()) {
6961 		/* Testing SCHED_THREADED bit here to make sure the current
6962 		 * kthread owns this napi and could poll on this napi.
6963 		 * Testing SCHED bit is not enough because SCHED bit might be
6964 		 * set by some other busy poll thread or by napi_disable().
6965 		 */
6966 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6967 			WARN_ON(!list_empty(&napi->poll_list));
6968 			__set_current_state(TASK_RUNNING);
6969 			return 0;
6970 		}
6971 
6972 		schedule();
6973 		set_current_state(TASK_INTERRUPTIBLE);
6974 	}
6975 	__set_current_state(TASK_RUNNING);
6976 
6977 	return -1;
6978 }
6979 
6980 static void napi_threaded_poll_loop(struct napi_struct *napi)
6981 {
6982 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6983 	struct softnet_data *sd;
6984 	unsigned long last_qs = jiffies;
6985 
6986 	for (;;) {
6987 		bool repoll = false;
6988 		void *have;
6989 
6990 		local_bh_disable();
6991 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6992 
6993 		sd = this_cpu_ptr(&softnet_data);
6994 		sd->in_napi_threaded_poll = true;
6995 
6996 		have = netpoll_poll_lock(napi);
6997 		__napi_poll(napi, &repoll);
6998 		netpoll_poll_unlock(have);
6999 
7000 		sd->in_napi_threaded_poll = false;
7001 		barrier();
7002 
7003 		if (sd_has_rps_ipi_waiting(sd)) {
7004 			local_irq_disable();
7005 			net_rps_action_and_irq_enable(sd);
7006 		}
7007 		skb_defer_free_flush(sd);
7008 		bpf_net_ctx_clear(bpf_net_ctx);
7009 		local_bh_enable();
7010 
7011 		if (!repoll)
7012 			break;
7013 
7014 		rcu_softirq_qs_periodic(last_qs);
7015 		cond_resched();
7016 	}
7017 }
7018 
7019 static int napi_threaded_poll(void *data)
7020 {
7021 	struct napi_struct *napi = data;
7022 
7023 	while (!napi_thread_wait(napi))
7024 		napi_threaded_poll_loop(napi);
7025 
7026 	return 0;
7027 }
7028 
7029 static __latent_entropy void net_rx_action(void)
7030 {
7031 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7032 	unsigned long time_limit = jiffies +
7033 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7034 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7035 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7036 	LIST_HEAD(list);
7037 	LIST_HEAD(repoll);
7038 
7039 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7040 start:
7041 	sd->in_net_rx_action = true;
7042 	local_irq_disable();
7043 	list_splice_init(&sd->poll_list, &list);
7044 	local_irq_enable();
7045 
7046 	for (;;) {
7047 		struct napi_struct *n;
7048 
7049 		skb_defer_free_flush(sd);
7050 
7051 		if (list_empty(&list)) {
7052 			if (list_empty(&repoll)) {
7053 				sd->in_net_rx_action = false;
7054 				barrier();
7055 				/* We need to check if ____napi_schedule()
7056 				 * had refilled poll_list while
7057 				 * sd->in_net_rx_action was true.
7058 				 */
7059 				if (!list_empty(&sd->poll_list))
7060 					goto start;
7061 				if (!sd_has_rps_ipi_waiting(sd))
7062 					goto end;
7063 			}
7064 			break;
7065 		}
7066 
7067 		n = list_first_entry(&list, struct napi_struct, poll_list);
7068 		budget -= napi_poll(n, &repoll);
7069 
7070 		/* If softirq window is exhausted then punt.
7071 		 * Allow this to run for 2 jiffies since which will allow
7072 		 * an average latency of 1.5/HZ.
7073 		 */
7074 		if (unlikely(budget <= 0 ||
7075 			     time_after_eq(jiffies, time_limit))) {
7076 			sd->time_squeeze++;
7077 			break;
7078 		}
7079 	}
7080 
7081 	local_irq_disable();
7082 
7083 	list_splice_tail_init(&sd->poll_list, &list);
7084 	list_splice_tail(&repoll, &list);
7085 	list_splice(&list, &sd->poll_list);
7086 	if (!list_empty(&sd->poll_list))
7087 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7088 	else
7089 		sd->in_net_rx_action = false;
7090 
7091 	net_rps_action_and_irq_enable(sd);
7092 end:
7093 	bpf_net_ctx_clear(bpf_net_ctx);
7094 }
7095 
7096 struct netdev_adjacent {
7097 	struct net_device *dev;
7098 	netdevice_tracker dev_tracker;
7099 
7100 	/* upper master flag, there can only be one master device per list */
7101 	bool master;
7102 
7103 	/* lookup ignore flag */
7104 	bool ignore;
7105 
7106 	/* counter for the number of times this device was added to us */
7107 	u16 ref_nr;
7108 
7109 	/* private field for the users */
7110 	void *private;
7111 
7112 	struct list_head list;
7113 	struct rcu_head rcu;
7114 };
7115 
7116 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7117 						 struct list_head *adj_list)
7118 {
7119 	struct netdev_adjacent *adj;
7120 
7121 	list_for_each_entry(adj, adj_list, list) {
7122 		if (adj->dev == adj_dev)
7123 			return adj;
7124 	}
7125 	return NULL;
7126 }
7127 
7128 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7129 				    struct netdev_nested_priv *priv)
7130 {
7131 	struct net_device *dev = (struct net_device *)priv->data;
7132 
7133 	return upper_dev == dev;
7134 }
7135 
7136 /**
7137  * netdev_has_upper_dev - Check if device is linked to an upper device
7138  * @dev: device
7139  * @upper_dev: upper device to check
7140  *
7141  * Find out if a device is linked to specified upper device and return true
7142  * in case it is. Note that this checks only immediate upper device,
7143  * not through a complete stack of devices. The caller must hold the RTNL lock.
7144  */
7145 bool netdev_has_upper_dev(struct net_device *dev,
7146 			  struct net_device *upper_dev)
7147 {
7148 	struct netdev_nested_priv priv = {
7149 		.data = (void *)upper_dev,
7150 	};
7151 
7152 	ASSERT_RTNL();
7153 
7154 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7155 					     &priv);
7156 }
7157 EXPORT_SYMBOL(netdev_has_upper_dev);
7158 
7159 /**
7160  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7161  * @dev: device
7162  * @upper_dev: upper device to check
7163  *
7164  * Find out if a device is linked to specified upper device and return true
7165  * in case it is. Note that this checks the entire upper device chain.
7166  * The caller must hold rcu lock.
7167  */
7168 
7169 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7170 				  struct net_device *upper_dev)
7171 {
7172 	struct netdev_nested_priv priv = {
7173 		.data = (void *)upper_dev,
7174 	};
7175 
7176 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7177 					       &priv);
7178 }
7179 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7180 
7181 /**
7182  * netdev_has_any_upper_dev - Check if device is linked to some device
7183  * @dev: device
7184  *
7185  * Find out if a device is linked to an upper device and return true in case
7186  * it is. The caller must hold the RTNL lock.
7187  */
7188 bool netdev_has_any_upper_dev(struct net_device *dev)
7189 {
7190 	ASSERT_RTNL();
7191 
7192 	return !list_empty(&dev->adj_list.upper);
7193 }
7194 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7195 
7196 /**
7197  * netdev_master_upper_dev_get - Get master upper device
7198  * @dev: device
7199  *
7200  * Find a master upper device and return pointer to it or NULL in case
7201  * it's not there. The caller must hold the RTNL lock.
7202  */
7203 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7204 {
7205 	struct netdev_adjacent *upper;
7206 
7207 	ASSERT_RTNL();
7208 
7209 	if (list_empty(&dev->adj_list.upper))
7210 		return NULL;
7211 
7212 	upper = list_first_entry(&dev->adj_list.upper,
7213 				 struct netdev_adjacent, list);
7214 	if (likely(upper->master))
7215 		return upper->dev;
7216 	return NULL;
7217 }
7218 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7219 
7220 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7221 {
7222 	struct netdev_adjacent *upper;
7223 
7224 	ASSERT_RTNL();
7225 
7226 	if (list_empty(&dev->adj_list.upper))
7227 		return NULL;
7228 
7229 	upper = list_first_entry(&dev->adj_list.upper,
7230 				 struct netdev_adjacent, list);
7231 	if (likely(upper->master) && !upper->ignore)
7232 		return upper->dev;
7233 	return NULL;
7234 }
7235 
7236 /**
7237  * netdev_has_any_lower_dev - Check if device is linked to some device
7238  * @dev: device
7239  *
7240  * Find out if a device is linked to a lower device and return true in case
7241  * it is. The caller must hold the RTNL lock.
7242  */
7243 static bool netdev_has_any_lower_dev(struct net_device *dev)
7244 {
7245 	ASSERT_RTNL();
7246 
7247 	return !list_empty(&dev->adj_list.lower);
7248 }
7249 
7250 void *netdev_adjacent_get_private(struct list_head *adj_list)
7251 {
7252 	struct netdev_adjacent *adj;
7253 
7254 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7255 
7256 	return adj->private;
7257 }
7258 EXPORT_SYMBOL(netdev_adjacent_get_private);
7259 
7260 /**
7261  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7262  * @dev: device
7263  * @iter: list_head ** of the current position
7264  *
7265  * Gets the next device from the dev's upper list, starting from iter
7266  * position. The caller must hold RCU read lock.
7267  */
7268 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7269 						 struct list_head **iter)
7270 {
7271 	struct netdev_adjacent *upper;
7272 
7273 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7274 
7275 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7276 
7277 	if (&upper->list == &dev->adj_list.upper)
7278 		return NULL;
7279 
7280 	*iter = &upper->list;
7281 
7282 	return upper->dev;
7283 }
7284 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7285 
7286 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7287 						  struct list_head **iter,
7288 						  bool *ignore)
7289 {
7290 	struct netdev_adjacent *upper;
7291 
7292 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7293 
7294 	if (&upper->list == &dev->adj_list.upper)
7295 		return NULL;
7296 
7297 	*iter = &upper->list;
7298 	*ignore = upper->ignore;
7299 
7300 	return upper->dev;
7301 }
7302 
7303 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7304 						    struct list_head **iter)
7305 {
7306 	struct netdev_adjacent *upper;
7307 
7308 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7309 
7310 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7311 
7312 	if (&upper->list == &dev->adj_list.upper)
7313 		return NULL;
7314 
7315 	*iter = &upper->list;
7316 
7317 	return upper->dev;
7318 }
7319 
7320 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7321 				       int (*fn)(struct net_device *dev,
7322 					 struct netdev_nested_priv *priv),
7323 				       struct netdev_nested_priv *priv)
7324 {
7325 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7326 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7327 	int ret, cur = 0;
7328 	bool ignore;
7329 
7330 	now = dev;
7331 	iter = &dev->adj_list.upper;
7332 
7333 	while (1) {
7334 		if (now != dev) {
7335 			ret = fn(now, priv);
7336 			if (ret)
7337 				return ret;
7338 		}
7339 
7340 		next = NULL;
7341 		while (1) {
7342 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7343 			if (!udev)
7344 				break;
7345 			if (ignore)
7346 				continue;
7347 
7348 			next = udev;
7349 			niter = &udev->adj_list.upper;
7350 			dev_stack[cur] = now;
7351 			iter_stack[cur++] = iter;
7352 			break;
7353 		}
7354 
7355 		if (!next) {
7356 			if (!cur)
7357 				return 0;
7358 			next = dev_stack[--cur];
7359 			niter = iter_stack[cur];
7360 		}
7361 
7362 		now = next;
7363 		iter = niter;
7364 	}
7365 
7366 	return 0;
7367 }
7368 
7369 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7370 				  int (*fn)(struct net_device *dev,
7371 					    struct netdev_nested_priv *priv),
7372 				  struct netdev_nested_priv *priv)
7373 {
7374 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7375 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7376 	int ret, cur = 0;
7377 
7378 	now = dev;
7379 	iter = &dev->adj_list.upper;
7380 
7381 	while (1) {
7382 		if (now != dev) {
7383 			ret = fn(now, priv);
7384 			if (ret)
7385 				return ret;
7386 		}
7387 
7388 		next = NULL;
7389 		while (1) {
7390 			udev = netdev_next_upper_dev_rcu(now, &iter);
7391 			if (!udev)
7392 				break;
7393 
7394 			next = udev;
7395 			niter = &udev->adj_list.upper;
7396 			dev_stack[cur] = now;
7397 			iter_stack[cur++] = iter;
7398 			break;
7399 		}
7400 
7401 		if (!next) {
7402 			if (!cur)
7403 				return 0;
7404 			next = dev_stack[--cur];
7405 			niter = iter_stack[cur];
7406 		}
7407 
7408 		now = next;
7409 		iter = niter;
7410 	}
7411 
7412 	return 0;
7413 }
7414 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7415 
7416 static bool __netdev_has_upper_dev(struct net_device *dev,
7417 				   struct net_device *upper_dev)
7418 {
7419 	struct netdev_nested_priv priv = {
7420 		.flags = 0,
7421 		.data = (void *)upper_dev,
7422 	};
7423 
7424 	ASSERT_RTNL();
7425 
7426 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7427 					   &priv);
7428 }
7429 
7430 /**
7431  * netdev_lower_get_next_private - Get the next ->private from the
7432  *				   lower neighbour list
7433  * @dev: device
7434  * @iter: list_head ** of the current position
7435  *
7436  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7437  * list, starting from iter position. The caller must hold either hold the
7438  * RTNL lock or its own locking that guarantees that the neighbour lower
7439  * list will remain unchanged.
7440  */
7441 void *netdev_lower_get_next_private(struct net_device *dev,
7442 				    struct list_head **iter)
7443 {
7444 	struct netdev_adjacent *lower;
7445 
7446 	lower = list_entry(*iter, struct netdev_adjacent, list);
7447 
7448 	if (&lower->list == &dev->adj_list.lower)
7449 		return NULL;
7450 
7451 	*iter = lower->list.next;
7452 
7453 	return lower->private;
7454 }
7455 EXPORT_SYMBOL(netdev_lower_get_next_private);
7456 
7457 /**
7458  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7459  *				       lower neighbour list, RCU
7460  *				       variant
7461  * @dev: device
7462  * @iter: list_head ** of the current position
7463  *
7464  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7465  * list, starting from iter position. The caller must hold RCU read lock.
7466  */
7467 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7468 					struct list_head **iter)
7469 {
7470 	struct netdev_adjacent *lower;
7471 
7472 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7473 
7474 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7475 
7476 	if (&lower->list == &dev->adj_list.lower)
7477 		return NULL;
7478 
7479 	*iter = &lower->list;
7480 
7481 	return lower->private;
7482 }
7483 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7484 
7485 /**
7486  * netdev_lower_get_next - Get the next device from the lower neighbour
7487  *                         list
7488  * @dev: device
7489  * @iter: list_head ** of the current position
7490  *
7491  * Gets the next netdev_adjacent from the dev's lower neighbour
7492  * list, starting from iter position. The caller must hold RTNL lock or
7493  * its own locking that guarantees that the neighbour lower
7494  * list will remain unchanged.
7495  */
7496 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7497 {
7498 	struct netdev_adjacent *lower;
7499 
7500 	lower = list_entry(*iter, struct netdev_adjacent, list);
7501 
7502 	if (&lower->list == &dev->adj_list.lower)
7503 		return NULL;
7504 
7505 	*iter = lower->list.next;
7506 
7507 	return lower->dev;
7508 }
7509 EXPORT_SYMBOL(netdev_lower_get_next);
7510 
7511 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7512 						struct list_head **iter)
7513 {
7514 	struct netdev_adjacent *lower;
7515 
7516 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7517 
7518 	if (&lower->list == &dev->adj_list.lower)
7519 		return NULL;
7520 
7521 	*iter = &lower->list;
7522 
7523 	return lower->dev;
7524 }
7525 
7526 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7527 						  struct list_head **iter,
7528 						  bool *ignore)
7529 {
7530 	struct netdev_adjacent *lower;
7531 
7532 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7533 
7534 	if (&lower->list == &dev->adj_list.lower)
7535 		return NULL;
7536 
7537 	*iter = &lower->list;
7538 	*ignore = lower->ignore;
7539 
7540 	return lower->dev;
7541 }
7542 
7543 int netdev_walk_all_lower_dev(struct net_device *dev,
7544 			      int (*fn)(struct net_device *dev,
7545 					struct netdev_nested_priv *priv),
7546 			      struct netdev_nested_priv *priv)
7547 {
7548 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7549 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7550 	int ret, cur = 0;
7551 
7552 	now = dev;
7553 	iter = &dev->adj_list.lower;
7554 
7555 	while (1) {
7556 		if (now != dev) {
7557 			ret = fn(now, priv);
7558 			if (ret)
7559 				return ret;
7560 		}
7561 
7562 		next = NULL;
7563 		while (1) {
7564 			ldev = netdev_next_lower_dev(now, &iter);
7565 			if (!ldev)
7566 				break;
7567 
7568 			next = ldev;
7569 			niter = &ldev->adj_list.lower;
7570 			dev_stack[cur] = now;
7571 			iter_stack[cur++] = iter;
7572 			break;
7573 		}
7574 
7575 		if (!next) {
7576 			if (!cur)
7577 				return 0;
7578 			next = dev_stack[--cur];
7579 			niter = iter_stack[cur];
7580 		}
7581 
7582 		now = next;
7583 		iter = niter;
7584 	}
7585 
7586 	return 0;
7587 }
7588 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7589 
7590 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7591 				       int (*fn)(struct net_device *dev,
7592 					 struct netdev_nested_priv *priv),
7593 				       struct netdev_nested_priv *priv)
7594 {
7595 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7596 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7597 	int ret, cur = 0;
7598 	bool ignore;
7599 
7600 	now = dev;
7601 	iter = &dev->adj_list.lower;
7602 
7603 	while (1) {
7604 		if (now != dev) {
7605 			ret = fn(now, priv);
7606 			if (ret)
7607 				return ret;
7608 		}
7609 
7610 		next = NULL;
7611 		while (1) {
7612 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7613 			if (!ldev)
7614 				break;
7615 			if (ignore)
7616 				continue;
7617 
7618 			next = ldev;
7619 			niter = &ldev->adj_list.lower;
7620 			dev_stack[cur] = now;
7621 			iter_stack[cur++] = iter;
7622 			break;
7623 		}
7624 
7625 		if (!next) {
7626 			if (!cur)
7627 				return 0;
7628 			next = dev_stack[--cur];
7629 			niter = iter_stack[cur];
7630 		}
7631 
7632 		now = next;
7633 		iter = niter;
7634 	}
7635 
7636 	return 0;
7637 }
7638 
7639 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7640 					     struct list_head **iter)
7641 {
7642 	struct netdev_adjacent *lower;
7643 
7644 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7645 	if (&lower->list == &dev->adj_list.lower)
7646 		return NULL;
7647 
7648 	*iter = &lower->list;
7649 
7650 	return lower->dev;
7651 }
7652 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7653 
7654 static u8 __netdev_upper_depth(struct net_device *dev)
7655 {
7656 	struct net_device *udev;
7657 	struct list_head *iter;
7658 	u8 max_depth = 0;
7659 	bool ignore;
7660 
7661 	for (iter = &dev->adj_list.upper,
7662 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7663 	     udev;
7664 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7665 		if (ignore)
7666 			continue;
7667 		if (max_depth < udev->upper_level)
7668 			max_depth = udev->upper_level;
7669 	}
7670 
7671 	return max_depth;
7672 }
7673 
7674 static u8 __netdev_lower_depth(struct net_device *dev)
7675 {
7676 	struct net_device *ldev;
7677 	struct list_head *iter;
7678 	u8 max_depth = 0;
7679 	bool ignore;
7680 
7681 	for (iter = &dev->adj_list.lower,
7682 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7683 	     ldev;
7684 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7685 		if (ignore)
7686 			continue;
7687 		if (max_depth < ldev->lower_level)
7688 			max_depth = ldev->lower_level;
7689 	}
7690 
7691 	return max_depth;
7692 }
7693 
7694 static int __netdev_update_upper_level(struct net_device *dev,
7695 				       struct netdev_nested_priv *__unused)
7696 {
7697 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7698 	return 0;
7699 }
7700 
7701 #ifdef CONFIG_LOCKDEP
7702 static LIST_HEAD(net_unlink_list);
7703 
7704 static void net_unlink_todo(struct net_device *dev)
7705 {
7706 	if (list_empty(&dev->unlink_list))
7707 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7708 }
7709 #endif
7710 
7711 static int __netdev_update_lower_level(struct net_device *dev,
7712 				       struct netdev_nested_priv *priv)
7713 {
7714 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7715 
7716 #ifdef CONFIG_LOCKDEP
7717 	if (!priv)
7718 		return 0;
7719 
7720 	if (priv->flags & NESTED_SYNC_IMM)
7721 		dev->nested_level = dev->lower_level - 1;
7722 	if (priv->flags & NESTED_SYNC_TODO)
7723 		net_unlink_todo(dev);
7724 #endif
7725 	return 0;
7726 }
7727 
7728 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7729 				  int (*fn)(struct net_device *dev,
7730 					    struct netdev_nested_priv *priv),
7731 				  struct netdev_nested_priv *priv)
7732 {
7733 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7734 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7735 	int ret, cur = 0;
7736 
7737 	now = dev;
7738 	iter = &dev->adj_list.lower;
7739 
7740 	while (1) {
7741 		if (now != dev) {
7742 			ret = fn(now, priv);
7743 			if (ret)
7744 				return ret;
7745 		}
7746 
7747 		next = NULL;
7748 		while (1) {
7749 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7750 			if (!ldev)
7751 				break;
7752 
7753 			next = ldev;
7754 			niter = &ldev->adj_list.lower;
7755 			dev_stack[cur] = now;
7756 			iter_stack[cur++] = iter;
7757 			break;
7758 		}
7759 
7760 		if (!next) {
7761 			if (!cur)
7762 				return 0;
7763 			next = dev_stack[--cur];
7764 			niter = iter_stack[cur];
7765 		}
7766 
7767 		now = next;
7768 		iter = niter;
7769 	}
7770 
7771 	return 0;
7772 }
7773 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7774 
7775 /**
7776  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7777  *				       lower neighbour list, RCU
7778  *				       variant
7779  * @dev: device
7780  *
7781  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7782  * list. The caller must hold RCU read lock.
7783  */
7784 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7785 {
7786 	struct netdev_adjacent *lower;
7787 
7788 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7789 			struct netdev_adjacent, list);
7790 	if (lower)
7791 		return lower->private;
7792 	return NULL;
7793 }
7794 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7795 
7796 /**
7797  * netdev_master_upper_dev_get_rcu - Get master upper device
7798  * @dev: device
7799  *
7800  * Find a master upper device and return pointer to it or NULL in case
7801  * it's not there. The caller must hold the RCU read lock.
7802  */
7803 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7804 {
7805 	struct netdev_adjacent *upper;
7806 
7807 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7808 				       struct netdev_adjacent, list);
7809 	if (upper && likely(upper->master))
7810 		return upper->dev;
7811 	return NULL;
7812 }
7813 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7814 
7815 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7816 			      struct net_device *adj_dev,
7817 			      struct list_head *dev_list)
7818 {
7819 	char linkname[IFNAMSIZ+7];
7820 
7821 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7822 		"upper_%s" : "lower_%s", adj_dev->name);
7823 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7824 				 linkname);
7825 }
7826 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7827 			       char *name,
7828 			       struct list_head *dev_list)
7829 {
7830 	char linkname[IFNAMSIZ+7];
7831 
7832 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7833 		"upper_%s" : "lower_%s", name);
7834 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7835 }
7836 
7837 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7838 						 struct net_device *adj_dev,
7839 						 struct list_head *dev_list)
7840 {
7841 	return (dev_list == &dev->adj_list.upper ||
7842 		dev_list == &dev->adj_list.lower) &&
7843 		net_eq(dev_net(dev), dev_net(adj_dev));
7844 }
7845 
7846 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7847 					struct net_device *adj_dev,
7848 					struct list_head *dev_list,
7849 					void *private, bool master)
7850 {
7851 	struct netdev_adjacent *adj;
7852 	int ret;
7853 
7854 	adj = __netdev_find_adj(adj_dev, dev_list);
7855 
7856 	if (adj) {
7857 		adj->ref_nr += 1;
7858 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7859 			 dev->name, adj_dev->name, adj->ref_nr);
7860 
7861 		return 0;
7862 	}
7863 
7864 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7865 	if (!adj)
7866 		return -ENOMEM;
7867 
7868 	adj->dev = adj_dev;
7869 	adj->master = master;
7870 	adj->ref_nr = 1;
7871 	adj->private = private;
7872 	adj->ignore = false;
7873 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7874 
7875 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7876 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7877 
7878 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7879 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7880 		if (ret)
7881 			goto free_adj;
7882 	}
7883 
7884 	/* Ensure that master link is always the first item in list. */
7885 	if (master) {
7886 		ret = sysfs_create_link(&(dev->dev.kobj),
7887 					&(adj_dev->dev.kobj), "master");
7888 		if (ret)
7889 			goto remove_symlinks;
7890 
7891 		list_add_rcu(&adj->list, dev_list);
7892 	} else {
7893 		list_add_tail_rcu(&adj->list, dev_list);
7894 	}
7895 
7896 	return 0;
7897 
7898 remove_symlinks:
7899 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7900 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7901 free_adj:
7902 	netdev_put(adj_dev, &adj->dev_tracker);
7903 	kfree(adj);
7904 
7905 	return ret;
7906 }
7907 
7908 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7909 					 struct net_device *adj_dev,
7910 					 u16 ref_nr,
7911 					 struct list_head *dev_list)
7912 {
7913 	struct netdev_adjacent *adj;
7914 
7915 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7916 		 dev->name, adj_dev->name, ref_nr);
7917 
7918 	adj = __netdev_find_adj(adj_dev, dev_list);
7919 
7920 	if (!adj) {
7921 		pr_err("Adjacency does not exist for device %s from %s\n",
7922 		       dev->name, adj_dev->name);
7923 		WARN_ON(1);
7924 		return;
7925 	}
7926 
7927 	if (adj->ref_nr > ref_nr) {
7928 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7929 			 dev->name, adj_dev->name, ref_nr,
7930 			 adj->ref_nr - ref_nr);
7931 		adj->ref_nr -= ref_nr;
7932 		return;
7933 	}
7934 
7935 	if (adj->master)
7936 		sysfs_remove_link(&(dev->dev.kobj), "master");
7937 
7938 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7939 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7940 
7941 	list_del_rcu(&adj->list);
7942 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7943 		 adj_dev->name, dev->name, adj_dev->name);
7944 	netdev_put(adj_dev, &adj->dev_tracker);
7945 	kfree_rcu(adj, rcu);
7946 }
7947 
7948 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7949 					    struct net_device *upper_dev,
7950 					    struct list_head *up_list,
7951 					    struct list_head *down_list,
7952 					    void *private, bool master)
7953 {
7954 	int ret;
7955 
7956 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7957 					   private, master);
7958 	if (ret)
7959 		return ret;
7960 
7961 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7962 					   private, false);
7963 	if (ret) {
7964 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7965 		return ret;
7966 	}
7967 
7968 	return 0;
7969 }
7970 
7971 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7972 					       struct net_device *upper_dev,
7973 					       u16 ref_nr,
7974 					       struct list_head *up_list,
7975 					       struct list_head *down_list)
7976 {
7977 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7978 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7979 }
7980 
7981 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7982 						struct net_device *upper_dev,
7983 						void *private, bool master)
7984 {
7985 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7986 						&dev->adj_list.upper,
7987 						&upper_dev->adj_list.lower,
7988 						private, master);
7989 }
7990 
7991 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7992 						   struct net_device *upper_dev)
7993 {
7994 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7995 					   &dev->adj_list.upper,
7996 					   &upper_dev->adj_list.lower);
7997 }
7998 
7999 static int __netdev_upper_dev_link(struct net_device *dev,
8000 				   struct net_device *upper_dev, bool master,
8001 				   void *upper_priv, void *upper_info,
8002 				   struct netdev_nested_priv *priv,
8003 				   struct netlink_ext_ack *extack)
8004 {
8005 	struct netdev_notifier_changeupper_info changeupper_info = {
8006 		.info = {
8007 			.dev = dev,
8008 			.extack = extack,
8009 		},
8010 		.upper_dev = upper_dev,
8011 		.master = master,
8012 		.linking = true,
8013 		.upper_info = upper_info,
8014 	};
8015 	struct net_device *master_dev;
8016 	int ret = 0;
8017 
8018 	ASSERT_RTNL();
8019 
8020 	if (dev == upper_dev)
8021 		return -EBUSY;
8022 
8023 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8024 	if (__netdev_has_upper_dev(upper_dev, dev))
8025 		return -EBUSY;
8026 
8027 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8028 		return -EMLINK;
8029 
8030 	if (!master) {
8031 		if (__netdev_has_upper_dev(dev, upper_dev))
8032 			return -EEXIST;
8033 	} else {
8034 		master_dev = __netdev_master_upper_dev_get(dev);
8035 		if (master_dev)
8036 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8037 	}
8038 
8039 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8040 					    &changeupper_info.info);
8041 	ret = notifier_to_errno(ret);
8042 	if (ret)
8043 		return ret;
8044 
8045 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8046 						   master);
8047 	if (ret)
8048 		return ret;
8049 
8050 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8051 					    &changeupper_info.info);
8052 	ret = notifier_to_errno(ret);
8053 	if (ret)
8054 		goto rollback;
8055 
8056 	__netdev_update_upper_level(dev, NULL);
8057 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8058 
8059 	__netdev_update_lower_level(upper_dev, priv);
8060 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8061 				    priv);
8062 
8063 	return 0;
8064 
8065 rollback:
8066 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8067 
8068 	return ret;
8069 }
8070 
8071 /**
8072  * netdev_upper_dev_link - Add a link to the upper device
8073  * @dev: device
8074  * @upper_dev: new upper device
8075  * @extack: netlink extended ack
8076  *
8077  * Adds a link to device which is upper to this one. The caller must hold
8078  * the RTNL lock. On a failure a negative errno code is returned.
8079  * On success the reference counts are adjusted and the function
8080  * returns zero.
8081  */
8082 int netdev_upper_dev_link(struct net_device *dev,
8083 			  struct net_device *upper_dev,
8084 			  struct netlink_ext_ack *extack)
8085 {
8086 	struct netdev_nested_priv priv = {
8087 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8088 		.data = NULL,
8089 	};
8090 
8091 	return __netdev_upper_dev_link(dev, upper_dev, false,
8092 				       NULL, NULL, &priv, extack);
8093 }
8094 EXPORT_SYMBOL(netdev_upper_dev_link);
8095 
8096 /**
8097  * netdev_master_upper_dev_link - Add a master link to the upper device
8098  * @dev: device
8099  * @upper_dev: new upper device
8100  * @upper_priv: upper device private
8101  * @upper_info: upper info to be passed down via notifier
8102  * @extack: netlink extended ack
8103  *
8104  * Adds a link to device which is upper to this one. In this case, only
8105  * one master upper device can be linked, although other non-master devices
8106  * might be linked as well. The caller must hold the RTNL lock.
8107  * On a failure a negative errno code is returned. On success the reference
8108  * counts are adjusted and the function returns zero.
8109  */
8110 int netdev_master_upper_dev_link(struct net_device *dev,
8111 				 struct net_device *upper_dev,
8112 				 void *upper_priv, void *upper_info,
8113 				 struct netlink_ext_ack *extack)
8114 {
8115 	struct netdev_nested_priv priv = {
8116 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8117 		.data = NULL,
8118 	};
8119 
8120 	return __netdev_upper_dev_link(dev, upper_dev, true,
8121 				       upper_priv, upper_info, &priv, extack);
8122 }
8123 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8124 
8125 static void __netdev_upper_dev_unlink(struct net_device *dev,
8126 				      struct net_device *upper_dev,
8127 				      struct netdev_nested_priv *priv)
8128 {
8129 	struct netdev_notifier_changeupper_info changeupper_info = {
8130 		.info = {
8131 			.dev = dev,
8132 		},
8133 		.upper_dev = upper_dev,
8134 		.linking = false,
8135 	};
8136 
8137 	ASSERT_RTNL();
8138 
8139 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8140 
8141 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8142 				      &changeupper_info.info);
8143 
8144 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8145 
8146 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8147 				      &changeupper_info.info);
8148 
8149 	__netdev_update_upper_level(dev, NULL);
8150 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8151 
8152 	__netdev_update_lower_level(upper_dev, priv);
8153 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8154 				    priv);
8155 }
8156 
8157 /**
8158  * netdev_upper_dev_unlink - Removes a link to upper device
8159  * @dev: device
8160  * @upper_dev: new upper device
8161  *
8162  * Removes a link to device which is upper to this one. The caller must hold
8163  * the RTNL lock.
8164  */
8165 void netdev_upper_dev_unlink(struct net_device *dev,
8166 			     struct net_device *upper_dev)
8167 {
8168 	struct netdev_nested_priv priv = {
8169 		.flags = NESTED_SYNC_TODO,
8170 		.data = NULL,
8171 	};
8172 
8173 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8174 }
8175 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8176 
8177 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8178 				      struct net_device *lower_dev,
8179 				      bool val)
8180 {
8181 	struct netdev_adjacent *adj;
8182 
8183 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8184 	if (adj)
8185 		adj->ignore = val;
8186 
8187 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8188 	if (adj)
8189 		adj->ignore = val;
8190 }
8191 
8192 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8193 					struct net_device *lower_dev)
8194 {
8195 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8196 }
8197 
8198 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8199 				       struct net_device *lower_dev)
8200 {
8201 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8202 }
8203 
8204 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8205 				   struct net_device *new_dev,
8206 				   struct net_device *dev,
8207 				   struct netlink_ext_ack *extack)
8208 {
8209 	struct netdev_nested_priv priv = {
8210 		.flags = 0,
8211 		.data = NULL,
8212 	};
8213 	int err;
8214 
8215 	if (!new_dev)
8216 		return 0;
8217 
8218 	if (old_dev && new_dev != old_dev)
8219 		netdev_adjacent_dev_disable(dev, old_dev);
8220 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8221 				      extack);
8222 	if (err) {
8223 		if (old_dev && new_dev != old_dev)
8224 			netdev_adjacent_dev_enable(dev, old_dev);
8225 		return err;
8226 	}
8227 
8228 	return 0;
8229 }
8230 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8231 
8232 void netdev_adjacent_change_commit(struct net_device *old_dev,
8233 				   struct net_device *new_dev,
8234 				   struct net_device *dev)
8235 {
8236 	struct netdev_nested_priv priv = {
8237 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8238 		.data = NULL,
8239 	};
8240 
8241 	if (!new_dev || !old_dev)
8242 		return;
8243 
8244 	if (new_dev == old_dev)
8245 		return;
8246 
8247 	netdev_adjacent_dev_enable(dev, old_dev);
8248 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8249 }
8250 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8251 
8252 void netdev_adjacent_change_abort(struct net_device *old_dev,
8253 				  struct net_device *new_dev,
8254 				  struct net_device *dev)
8255 {
8256 	struct netdev_nested_priv priv = {
8257 		.flags = 0,
8258 		.data = NULL,
8259 	};
8260 
8261 	if (!new_dev)
8262 		return;
8263 
8264 	if (old_dev && new_dev != old_dev)
8265 		netdev_adjacent_dev_enable(dev, old_dev);
8266 
8267 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8268 }
8269 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8270 
8271 /**
8272  * netdev_bonding_info_change - Dispatch event about slave change
8273  * @dev: device
8274  * @bonding_info: info to dispatch
8275  *
8276  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8277  * The caller must hold the RTNL lock.
8278  */
8279 void netdev_bonding_info_change(struct net_device *dev,
8280 				struct netdev_bonding_info *bonding_info)
8281 {
8282 	struct netdev_notifier_bonding_info info = {
8283 		.info.dev = dev,
8284 	};
8285 
8286 	memcpy(&info.bonding_info, bonding_info,
8287 	       sizeof(struct netdev_bonding_info));
8288 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8289 				      &info.info);
8290 }
8291 EXPORT_SYMBOL(netdev_bonding_info_change);
8292 
8293 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8294 					   struct netlink_ext_ack *extack)
8295 {
8296 	struct netdev_notifier_offload_xstats_info info = {
8297 		.info.dev = dev,
8298 		.info.extack = extack,
8299 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8300 	};
8301 	int err;
8302 	int rc;
8303 
8304 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8305 					 GFP_KERNEL);
8306 	if (!dev->offload_xstats_l3)
8307 		return -ENOMEM;
8308 
8309 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8310 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8311 						  &info.info);
8312 	err = notifier_to_errno(rc);
8313 	if (err)
8314 		goto free_stats;
8315 
8316 	return 0;
8317 
8318 free_stats:
8319 	kfree(dev->offload_xstats_l3);
8320 	dev->offload_xstats_l3 = NULL;
8321 	return err;
8322 }
8323 
8324 int netdev_offload_xstats_enable(struct net_device *dev,
8325 				 enum netdev_offload_xstats_type type,
8326 				 struct netlink_ext_ack *extack)
8327 {
8328 	ASSERT_RTNL();
8329 
8330 	if (netdev_offload_xstats_enabled(dev, type))
8331 		return -EALREADY;
8332 
8333 	switch (type) {
8334 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8335 		return netdev_offload_xstats_enable_l3(dev, extack);
8336 	}
8337 
8338 	WARN_ON(1);
8339 	return -EINVAL;
8340 }
8341 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8342 
8343 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8344 {
8345 	struct netdev_notifier_offload_xstats_info info = {
8346 		.info.dev = dev,
8347 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8348 	};
8349 
8350 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8351 				      &info.info);
8352 	kfree(dev->offload_xstats_l3);
8353 	dev->offload_xstats_l3 = NULL;
8354 }
8355 
8356 int netdev_offload_xstats_disable(struct net_device *dev,
8357 				  enum netdev_offload_xstats_type type)
8358 {
8359 	ASSERT_RTNL();
8360 
8361 	if (!netdev_offload_xstats_enabled(dev, type))
8362 		return -EALREADY;
8363 
8364 	switch (type) {
8365 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8366 		netdev_offload_xstats_disable_l3(dev);
8367 		return 0;
8368 	}
8369 
8370 	WARN_ON(1);
8371 	return -EINVAL;
8372 }
8373 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8374 
8375 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8376 {
8377 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8378 }
8379 
8380 static struct rtnl_hw_stats64 *
8381 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8382 			      enum netdev_offload_xstats_type type)
8383 {
8384 	switch (type) {
8385 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8386 		return dev->offload_xstats_l3;
8387 	}
8388 
8389 	WARN_ON(1);
8390 	return NULL;
8391 }
8392 
8393 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8394 				   enum netdev_offload_xstats_type type)
8395 {
8396 	ASSERT_RTNL();
8397 
8398 	return netdev_offload_xstats_get_ptr(dev, type);
8399 }
8400 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8401 
8402 struct netdev_notifier_offload_xstats_ru {
8403 	bool used;
8404 };
8405 
8406 struct netdev_notifier_offload_xstats_rd {
8407 	struct rtnl_hw_stats64 stats;
8408 	bool used;
8409 };
8410 
8411 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8412 				  const struct rtnl_hw_stats64 *src)
8413 {
8414 	dest->rx_packets	  += src->rx_packets;
8415 	dest->tx_packets	  += src->tx_packets;
8416 	dest->rx_bytes		  += src->rx_bytes;
8417 	dest->tx_bytes		  += src->tx_bytes;
8418 	dest->rx_errors		  += src->rx_errors;
8419 	dest->tx_errors		  += src->tx_errors;
8420 	dest->rx_dropped	  += src->rx_dropped;
8421 	dest->tx_dropped	  += src->tx_dropped;
8422 	dest->multicast		  += src->multicast;
8423 }
8424 
8425 static int netdev_offload_xstats_get_used(struct net_device *dev,
8426 					  enum netdev_offload_xstats_type type,
8427 					  bool *p_used,
8428 					  struct netlink_ext_ack *extack)
8429 {
8430 	struct netdev_notifier_offload_xstats_ru report_used = {};
8431 	struct netdev_notifier_offload_xstats_info info = {
8432 		.info.dev = dev,
8433 		.info.extack = extack,
8434 		.type = type,
8435 		.report_used = &report_used,
8436 	};
8437 	int rc;
8438 
8439 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8440 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8441 					   &info.info);
8442 	*p_used = report_used.used;
8443 	return notifier_to_errno(rc);
8444 }
8445 
8446 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8447 					   enum netdev_offload_xstats_type type,
8448 					   struct rtnl_hw_stats64 *p_stats,
8449 					   bool *p_used,
8450 					   struct netlink_ext_ack *extack)
8451 {
8452 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8453 	struct netdev_notifier_offload_xstats_info info = {
8454 		.info.dev = dev,
8455 		.info.extack = extack,
8456 		.type = type,
8457 		.report_delta = &report_delta,
8458 	};
8459 	struct rtnl_hw_stats64 *stats;
8460 	int rc;
8461 
8462 	stats = netdev_offload_xstats_get_ptr(dev, type);
8463 	if (WARN_ON(!stats))
8464 		return -EINVAL;
8465 
8466 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8467 					   &info.info);
8468 
8469 	/* Cache whatever we got, even if there was an error, otherwise the
8470 	 * successful stats retrievals would get lost.
8471 	 */
8472 	netdev_hw_stats64_add(stats, &report_delta.stats);
8473 
8474 	if (p_stats)
8475 		*p_stats = *stats;
8476 	*p_used = report_delta.used;
8477 
8478 	return notifier_to_errno(rc);
8479 }
8480 
8481 int netdev_offload_xstats_get(struct net_device *dev,
8482 			      enum netdev_offload_xstats_type type,
8483 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8484 			      struct netlink_ext_ack *extack)
8485 {
8486 	ASSERT_RTNL();
8487 
8488 	if (p_stats)
8489 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8490 						       p_used, extack);
8491 	else
8492 		return netdev_offload_xstats_get_used(dev, type, p_used,
8493 						      extack);
8494 }
8495 EXPORT_SYMBOL(netdev_offload_xstats_get);
8496 
8497 void
8498 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8499 				   const struct rtnl_hw_stats64 *stats)
8500 {
8501 	report_delta->used = true;
8502 	netdev_hw_stats64_add(&report_delta->stats, stats);
8503 }
8504 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8505 
8506 void
8507 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8508 {
8509 	report_used->used = true;
8510 }
8511 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8512 
8513 void netdev_offload_xstats_push_delta(struct net_device *dev,
8514 				      enum netdev_offload_xstats_type type,
8515 				      const struct rtnl_hw_stats64 *p_stats)
8516 {
8517 	struct rtnl_hw_stats64 *stats;
8518 
8519 	ASSERT_RTNL();
8520 
8521 	stats = netdev_offload_xstats_get_ptr(dev, type);
8522 	if (WARN_ON(!stats))
8523 		return;
8524 
8525 	netdev_hw_stats64_add(stats, p_stats);
8526 }
8527 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8528 
8529 /**
8530  * netdev_get_xmit_slave - Get the xmit slave of master device
8531  * @dev: device
8532  * @skb: The packet
8533  * @all_slaves: assume all the slaves are active
8534  *
8535  * The reference counters are not incremented so the caller must be
8536  * careful with locks. The caller must hold RCU lock.
8537  * %NULL is returned if no slave is found.
8538  */
8539 
8540 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8541 					 struct sk_buff *skb,
8542 					 bool all_slaves)
8543 {
8544 	const struct net_device_ops *ops = dev->netdev_ops;
8545 
8546 	if (!ops->ndo_get_xmit_slave)
8547 		return NULL;
8548 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8549 }
8550 EXPORT_SYMBOL(netdev_get_xmit_slave);
8551 
8552 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8553 						  struct sock *sk)
8554 {
8555 	const struct net_device_ops *ops = dev->netdev_ops;
8556 
8557 	if (!ops->ndo_sk_get_lower_dev)
8558 		return NULL;
8559 	return ops->ndo_sk_get_lower_dev(dev, sk);
8560 }
8561 
8562 /**
8563  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8564  * @dev: device
8565  * @sk: the socket
8566  *
8567  * %NULL is returned if no lower device is found.
8568  */
8569 
8570 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8571 					    struct sock *sk)
8572 {
8573 	struct net_device *lower;
8574 
8575 	lower = netdev_sk_get_lower_dev(dev, sk);
8576 	while (lower) {
8577 		dev = lower;
8578 		lower = netdev_sk_get_lower_dev(dev, sk);
8579 	}
8580 
8581 	return dev;
8582 }
8583 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8584 
8585 static void netdev_adjacent_add_links(struct net_device *dev)
8586 {
8587 	struct netdev_adjacent *iter;
8588 
8589 	struct net *net = dev_net(dev);
8590 
8591 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8592 		if (!net_eq(net, dev_net(iter->dev)))
8593 			continue;
8594 		netdev_adjacent_sysfs_add(iter->dev, dev,
8595 					  &iter->dev->adj_list.lower);
8596 		netdev_adjacent_sysfs_add(dev, iter->dev,
8597 					  &dev->adj_list.upper);
8598 	}
8599 
8600 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8601 		if (!net_eq(net, dev_net(iter->dev)))
8602 			continue;
8603 		netdev_adjacent_sysfs_add(iter->dev, dev,
8604 					  &iter->dev->adj_list.upper);
8605 		netdev_adjacent_sysfs_add(dev, iter->dev,
8606 					  &dev->adj_list.lower);
8607 	}
8608 }
8609 
8610 static void netdev_adjacent_del_links(struct net_device *dev)
8611 {
8612 	struct netdev_adjacent *iter;
8613 
8614 	struct net *net = dev_net(dev);
8615 
8616 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8617 		if (!net_eq(net, dev_net(iter->dev)))
8618 			continue;
8619 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8620 					  &iter->dev->adj_list.lower);
8621 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8622 					  &dev->adj_list.upper);
8623 	}
8624 
8625 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8626 		if (!net_eq(net, dev_net(iter->dev)))
8627 			continue;
8628 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8629 					  &iter->dev->adj_list.upper);
8630 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8631 					  &dev->adj_list.lower);
8632 	}
8633 }
8634 
8635 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8636 {
8637 	struct netdev_adjacent *iter;
8638 
8639 	struct net *net = dev_net(dev);
8640 
8641 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8642 		if (!net_eq(net, dev_net(iter->dev)))
8643 			continue;
8644 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8645 					  &iter->dev->adj_list.lower);
8646 		netdev_adjacent_sysfs_add(iter->dev, dev,
8647 					  &iter->dev->adj_list.lower);
8648 	}
8649 
8650 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8651 		if (!net_eq(net, dev_net(iter->dev)))
8652 			continue;
8653 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8654 					  &iter->dev->adj_list.upper);
8655 		netdev_adjacent_sysfs_add(iter->dev, dev,
8656 					  &iter->dev->adj_list.upper);
8657 	}
8658 }
8659 
8660 void *netdev_lower_dev_get_private(struct net_device *dev,
8661 				   struct net_device *lower_dev)
8662 {
8663 	struct netdev_adjacent *lower;
8664 
8665 	if (!lower_dev)
8666 		return NULL;
8667 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8668 	if (!lower)
8669 		return NULL;
8670 
8671 	return lower->private;
8672 }
8673 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8674 
8675 
8676 /**
8677  * netdev_lower_state_changed - Dispatch event about lower device state change
8678  * @lower_dev: device
8679  * @lower_state_info: state to dispatch
8680  *
8681  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8682  * The caller must hold the RTNL lock.
8683  */
8684 void netdev_lower_state_changed(struct net_device *lower_dev,
8685 				void *lower_state_info)
8686 {
8687 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8688 		.info.dev = lower_dev,
8689 	};
8690 
8691 	ASSERT_RTNL();
8692 	changelowerstate_info.lower_state_info = lower_state_info;
8693 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8694 				      &changelowerstate_info.info);
8695 }
8696 EXPORT_SYMBOL(netdev_lower_state_changed);
8697 
8698 static void dev_change_rx_flags(struct net_device *dev, int flags)
8699 {
8700 	const struct net_device_ops *ops = dev->netdev_ops;
8701 
8702 	if (ops->ndo_change_rx_flags)
8703 		ops->ndo_change_rx_flags(dev, flags);
8704 }
8705 
8706 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8707 {
8708 	unsigned int old_flags = dev->flags;
8709 	unsigned int promiscuity, flags;
8710 	kuid_t uid;
8711 	kgid_t gid;
8712 
8713 	ASSERT_RTNL();
8714 
8715 	promiscuity = dev->promiscuity + inc;
8716 	if (promiscuity == 0) {
8717 		/*
8718 		 * Avoid overflow.
8719 		 * If inc causes overflow, untouch promisc and return error.
8720 		 */
8721 		if (unlikely(inc > 0)) {
8722 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8723 			return -EOVERFLOW;
8724 		}
8725 		flags = old_flags & ~IFF_PROMISC;
8726 	} else {
8727 		flags = old_flags | IFF_PROMISC;
8728 	}
8729 	WRITE_ONCE(dev->promiscuity, promiscuity);
8730 	if (flags != old_flags) {
8731 		WRITE_ONCE(dev->flags, flags);
8732 		netdev_info(dev, "%s promiscuous mode\n",
8733 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8734 		if (audit_enabled) {
8735 			current_uid_gid(&uid, &gid);
8736 			audit_log(audit_context(), GFP_ATOMIC,
8737 				  AUDIT_ANOM_PROMISCUOUS,
8738 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8739 				  dev->name, (dev->flags & IFF_PROMISC),
8740 				  (old_flags & IFF_PROMISC),
8741 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8742 				  from_kuid(&init_user_ns, uid),
8743 				  from_kgid(&init_user_ns, gid),
8744 				  audit_get_sessionid(current));
8745 		}
8746 
8747 		dev_change_rx_flags(dev, IFF_PROMISC);
8748 	}
8749 	if (notify)
8750 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8751 	return 0;
8752 }
8753 
8754 /**
8755  *	dev_set_promiscuity	- update promiscuity count on a device
8756  *	@dev: device
8757  *	@inc: modifier
8758  *
8759  *	Add or remove promiscuity from a device. While the count in the device
8760  *	remains above zero the interface remains promiscuous. Once it hits zero
8761  *	the device reverts back to normal filtering operation. A negative inc
8762  *	value is used to drop promiscuity on the device.
8763  *	Return 0 if successful or a negative errno code on error.
8764  */
8765 int dev_set_promiscuity(struct net_device *dev, int inc)
8766 {
8767 	unsigned int old_flags = dev->flags;
8768 	int err;
8769 
8770 	err = __dev_set_promiscuity(dev, inc, true);
8771 	if (err < 0)
8772 		return err;
8773 	if (dev->flags != old_flags)
8774 		dev_set_rx_mode(dev);
8775 	return err;
8776 }
8777 EXPORT_SYMBOL(dev_set_promiscuity);
8778 
8779 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8780 {
8781 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8782 	unsigned int allmulti, flags;
8783 
8784 	ASSERT_RTNL();
8785 
8786 	allmulti = dev->allmulti + inc;
8787 	if (allmulti == 0) {
8788 		/*
8789 		 * Avoid overflow.
8790 		 * If inc causes overflow, untouch allmulti and return error.
8791 		 */
8792 		if (unlikely(inc > 0)) {
8793 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8794 			return -EOVERFLOW;
8795 		}
8796 		flags = old_flags & ~IFF_ALLMULTI;
8797 	} else {
8798 		flags = old_flags | IFF_ALLMULTI;
8799 	}
8800 	WRITE_ONCE(dev->allmulti, allmulti);
8801 	if (flags != old_flags) {
8802 		WRITE_ONCE(dev->flags, flags);
8803 		netdev_info(dev, "%s allmulticast mode\n",
8804 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8805 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8806 		dev_set_rx_mode(dev);
8807 		if (notify)
8808 			__dev_notify_flags(dev, old_flags,
8809 					   dev->gflags ^ old_gflags, 0, NULL);
8810 	}
8811 	return 0;
8812 }
8813 
8814 /**
8815  *	dev_set_allmulti	- update allmulti count on a device
8816  *	@dev: device
8817  *	@inc: modifier
8818  *
8819  *	Add or remove reception of all multicast frames to a device. While the
8820  *	count in the device remains above zero the interface remains listening
8821  *	to all interfaces. Once it hits zero the device reverts back to normal
8822  *	filtering operation. A negative @inc value is used to drop the counter
8823  *	when releasing a resource needing all multicasts.
8824  *	Return 0 if successful or a negative errno code on error.
8825  */
8826 
8827 int dev_set_allmulti(struct net_device *dev, int inc)
8828 {
8829 	return __dev_set_allmulti(dev, inc, true);
8830 }
8831 EXPORT_SYMBOL(dev_set_allmulti);
8832 
8833 /*
8834  *	Upload unicast and multicast address lists to device and
8835  *	configure RX filtering. When the device doesn't support unicast
8836  *	filtering it is put in promiscuous mode while unicast addresses
8837  *	are present.
8838  */
8839 void __dev_set_rx_mode(struct net_device *dev)
8840 {
8841 	const struct net_device_ops *ops = dev->netdev_ops;
8842 
8843 	/* dev_open will call this function so the list will stay sane. */
8844 	if (!(dev->flags&IFF_UP))
8845 		return;
8846 
8847 	if (!netif_device_present(dev))
8848 		return;
8849 
8850 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8851 		/* Unicast addresses changes may only happen under the rtnl,
8852 		 * therefore calling __dev_set_promiscuity here is safe.
8853 		 */
8854 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8855 			__dev_set_promiscuity(dev, 1, false);
8856 			dev->uc_promisc = true;
8857 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8858 			__dev_set_promiscuity(dev, -1, false);
8859 			dev->uc_promisc = false;
8860 		}
8861 	}
8862 
8863 	if (ops->ndo_set_rx_mode)
8864 		ops->ndo_set_rx_mode(dev);
8865 }
8866 
8867 void dev_set_rx_mode(struct net_device *dev)
8868 {
8869 	netif_addr_lock_bh(dev);
8870 	__dev_set_rx_mode(dev);
8871 	netif_addr_unlock_bh(dev);
8872 }
8873 
8874 /**
8875  *	dev_get_flags - get flags reported to userspace
8876  *	@dev: device
8877  *
8878  *	Get the combination of flag bits exported through APIs to userspace.
8879  */
8880 unsigned int dev_get_flags(const struct net_device *dev)
8881 {
8882 	unsigned int flags;
8883 
8884 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8885 				IFF_ALLMULTI |
8886 				IFF_RUNNING |
8887 				IFF_LOWER_UP |
8888 				IFF_DORMANT)) |
8889 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8890 				IFF_ALLMULTI));
8891 
8892 	if (netif_running(dev)) {
8893 		if (netif_oper_up(dev))
8894 			flags |= IFF_RUNNING;
8895 		if (netif_carrier_ok(dev))
8896 			flags |= IFF_LOWER_UP;
8897 		if (netif_dormant(dev))
8898 			flags |= IFF_DORMANT;
8899 	}
8900 
8901 	return flags;
8902 }
8903 EXPORT_SYMBOL(dev_get_flags);
8904 
8905 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8906 		       struct netlink_ext_ack *extack)
8907 {
8908 	unsigned int old_flags = dev->flags;
8909 	int ret;
8910 
8911 	ASSERT_RTNL();
8912 
8913 	/*
8914 	 *	Set the flags on our device.
8915 	 */
8916 
8917 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8918 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8919 			       IFF_AUTOMEDIA)) |
8920 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8921 				    IFF_ALLMULTI));
8922 
8923 	/*
8924 	 *	Load in the correct multicast list now the flags have changed.
8925 	 */
8926 
8927 	if ((old_flags ^ flags) & IFF_MULTICAST)
8928 		dev_change_rx_flags(dev, IFF_MULTICAST);
8929 
8930 	dev_set_rx_mode(dev);
8931 
8932 	/*
8933 	 *	Have we downed the interface. We handle IFF_UP ourselves
8934 	 *	according to user attempts to set it, rather than blindly
8935 	 *	setting it.
8936 	 */
8937 
8938 	ret = 0;
8939 	if ((old_flags ^ flags) & IFF_UP) {
8940 		if (old_flags & IFF_UP)
8941 			__dev_close(dev);
8942 		else
8943 			ret = __dev_open(dev, extack);
8944 	}
8945 
8946 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8947 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8948 		unsigned int old_flags = dev->flags;
8949 
8950 		dev->gflags ^= IFF_PROMISC;
8951 
8952 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8953 			if (dev->flags != old_flags)
8954 				dev_set_rx_mode(dev);
8955 	}
8956 
8957 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8958 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8959 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8960 	 */
8961 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8962 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8963 
8964 		dev->gflags ^= IFF_ALLMULTI;
8965 		__dev_set_allmulti(dev, inc, false);
8966 	}
8967 
8968 	return ret;
8969 }
8970 
8971 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8972 			unsigned int gchanges, u32 portid,
8973 			const struct nlmsghdr *nlh)
8974 {
8975 	unsigned int changes = dev->flags ^ old_flags;
8976 
8977 	if (gchanges)
8978 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8979 
8980 	if (changes & IFF_UP) {
8981 		if (dev->flags & IFF_UP)
8982 			call_netdevice_notifiers(NETDEV_UP, dev);
8983 		else
8984 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8985 	}
8986 
8987 	if (dev->flags & IFF_UP &&
8988 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8989 		struct netdev_notifier_change_info change_info = {
8990 			.info = {
8991 				.dev = dev,
8992 			},
8993 			.flags_changed = changes,
8994 		};
8995 
8996 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8997 	}
8998 }
8999 
9000 /**
9001  *	dev_change_flags - change device settings
9002  *	@dev: device
9003  *	@flags: device state flags
9004  *	@extack: netlink extended ack
9005  *
9006  *	Change settings on device based state flags. The flags are
9007  *	in the userspace exported format.
9008  */
9009 int dev_change_flags(struct net_device *dev, unsigned int flags,
9010 		     struct netlink_ext_ack *extack)
9011 {
9012 	int ret;
9013 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9014 
9015 	ret = __dev_change_flags(dev, flags, extack);
9016 	if (ret < 0)
9017 		return ret;
9018 
9019 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9020 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9021 	return ret;
9022 }
9023 EXPORT_SYMBOL(dev_change_flags);
9024 
9025 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9026 {
9027 	const struct net_device_ops *ops = dev->netdev_ops;
9028 
9029 	if (ops->ndo_change_mtu)
9030 		return ops->ndo_change_mtu(dev, new_mtu);
9031 
9032 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9033 	WRITE_ONCE(dev->mtu, new_mtu);
9034 	return 0;
9035 }
9036 EXPORT_SYMBOL(__dev_set_mtu);
9037 
9038 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9039 		     struct netlink_ext_ack *extack)
9040 {
9041 	/* MTU must be positive, and in range */
9042 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9043 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9044 		return -EINVAL;
9045 	}
9046 
9047 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9048 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9049 		return -EINVAL;
9050 	}
9051 	return 0;
9052 }
9053 
9054 /**
9055  *	dev_set_mtu_ext - Change maximum transfer unit
9056  *	@dev: device
9057  *	@new_mtu: new transfer unit
9058  *	@extack: netlink extended ack
9059  *
9060  *	Change the maximum transfer size of the network device.
9061  */
9062 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
9063 		    struct netlink_ext_ack *extack)
9064 {
9065 	int err, orig_mtu;
9066 
9067 	if (new_mtu == dev->mtu)
9068 		return 0;
9069 
9070 	err = dev_validate_mtu(dev, new_mtu, extack);
9071 	if (err)
9072 		return err;
9073 
9074 	if (!netif_device_present(dev))
9075 		return -ENODEV;
9076 
9077 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9078 	err = notifier_to_errno(err);
9079 	if (err)
9080 		return err;
9081 
9082 	orig_mtu = dev->mtu;
9083 	err = __dev_set_mtu(dev, new_mtu);
9084 
9085 	if (!err) {
9086 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9087 						   orig_mtu);
9088 		err = notifier_to_errno(err);
9089 		if (err) {
9090 			/* setting mtu back and notifying everyone again,
9091 			 * so that they have a chance to revert changes.
9092 			 */
9093 			__dev_set_mtu(dev, orig_mtu);
9094 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9095 						     new_mtu);
9096 		}
9097 	}
9098 	return err;
9099 }
9100 
9101 int dev_set_mtu(struct net_device *dev, int new_mtu)
9102 {
9103 	struct netlink_ext_ack extack;
9104 	int err;
9105 
9106 	memset(&extack, 0, sizeof(extack));
9107 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
9108 	if (err && extack._msg)
9109 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9110 	return err;
9111 }
9112 EXPORT_SYMBOL(dev_set_mtu);
9113 
9114 /**
9115  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9116  *	@dev: device
9117  *	@new_len: new tx queue length
9118  */
9119 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9120 {
9121 	unsigned int orig_len = dev->tx_queue_len;
9122 	int res;
9123 
9124 	if (new_len != (unsigned int)new_len)
9125 		return -ERANGE;
9126 
9127 	if (new_len != orig_len) {
9128 		WRITE_ONCE(dev->tx_queue_len, new_len);
9129 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9130 		res = notifier_to_errno(res);
9131 		if (res)
9132 			goto err_rollback;
9133 		res = dev_qdisc_change_tx_queue_len(dev);
9134 		if (res)
9135 			goto err_rollback;
9136 	}
9137 
9138 	return 0;
9139 
9140 err_rollback:
9141 	netdev_err(dev, "refused to change device tx_queue_len\n");
9142 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9143 	return res;
9144 }
9145 
9146 /**
9147  *	dev_set_group - Change group this device belongs to
9148  *	@dev: device
9149  *	@new_group: group this device should belong to
9150  */
9151 void dev_set_group(struct net_device *dev, int new_group)
9152 {
9153 	dev->group = new_group;
9154 }
9155 
9156 /**
9157  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9158  *	@dev: device
9159  *	@addr: new address
9160  *	@extack: netlink extended ack
9161  */
9162 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9163 			      struct netlink_ext_ack *extack)
9164 {
9165 	struct netdev_notifier_pre_changeaddr_info info = {
9166 		.info.dev = dev,
9167 		.info.extack = extack,
9168 		.dev_addr = addr,
9169 	};
9170 	int rc;
9171 
9172 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9173 	return notifier_to_errno(rc);
9174 }
9175 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9176 
9177 /**
9178  *	dev_set_mac_address - Change Media Access Control Address
9179  *	@dev: device
9180  *	@sa: new address
9181  *	@extack: netlink extended ack
9182  *
9183  *	Change the hardware (MAC) address of the device
9184  */
9185 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9186 			struct netlink_ext_ack *extack)
9187 {
9188 	const struct net_device_ops *ops = dev->netdev_ops;
9189 	int err;
9190 
9191 	if (!ops->ndo_set_mac_address)
9192 		return -EOPNOTSUPP;
9193 	if (sa->sa_family != dev->type)
9194 		return -EINVAL;
9195 	if (!netif_device_present(dev))
9196 		return -ENODEV;
9197 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9198 	if (err)
9199 		return err;
9200 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9201 		err = ops->ndo_set_mac_address(dev, sa);
9202 		if (err)
9203 			return err;
9204 	}
9205 	dev->addr_assign_type = NET_ADDR_SET;
9206 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9207 	add_device_randomness(dev->dev_addr, dev->addr_len);
9208 	return 0;
9209 }
9210 EXPORT_SYMBOL(dev_set_mac_address);
9211 
9212 DECLARE_RWSEM(dev_addr_sem);
9213 
9214 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9215 			     struct netlink_ext_ack *extack)
9216 {
9217 	int ret;
9218 
9219 	down_write(&dev_addr_sem);
9220 	ret = dev_set_mac_address(dev, sa, extack);
9221 	up_write(&dev_addr_sem);
9222 	return ret;
9223 }
9224 EXPORT_SYMBOL(dev_set_mac_address_user);
9225 
9226 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9227 {
9228 	size_t size = sizeof(sa->sa_data_min);
9229 	struct net_device *dev;
9230 	int ret = 0;
9231 
9232 	down_read(&dev_addr_sem);
9233 	rcu_read_lock();
9234 
9235 	dev = dev_get_by_name_rcu(net, dev_name);
9236 	if (!dev) {
9237 		ret = -ENODEV;
9238 		goto unlock;
9239 	}
9240 	if (!dev->addr_len)
9241 		memset(sa->sa_data, 0, size);
9242 	else
9243 		memcpy(sa->sa_data, dev->dev_addr,
9244 		       min_t(size_t, size, dev->addr_len));
9245 	sa->sa_family = dev->type;
9246 
9247 unlock:
9248 	rcu_read_unlock();
9249 	up_read(&dev_addr_sem);
9250 	return ret;
9251 }
9252 EXPORT_SYMBOL(dev_get_mac_address);
9253 
9254 /**
9255  *	dev_change_carrier - Change device carrier
9256  *	@dev: device
9257  *	@new_carrier: new value
9258  *
9259  *	Change device carrier
9260  */
9261 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9262 {
9263 	const struct net_device_ops *ops = dev->netdev_ops;
9264 
9265 	if (!ops->ndo_change_carrier)
9266 		return -EOPNOTSUPP;
9267 	if (!netif_device_present(dev))
9268 		return -ENODEV;
9269 	return ops->ndo_change_carrier(dev, new_carrier);
9270 }
9271 
9272 /**
9273  *	dev_get_phys_port_id - Get device physical port ID
9274  *	@dev: device
9275  *	@ppid: port ID
9276  *
9277  *	Get device physical port ID
9278  */
9279 int dev_get_phys_port_id(struct net_device *dev,
9280 			 struct netdev_phys_item_id *ppid)
9281 {
9282 	const struct net_device_ops *ops = dev->netdev_ops;
9283 
9284 	if (!ops->ndo_get_phys_port_id)
9285 		return -EOPNOTSUPP;
9286 	return ops->ndo_get_phys_port_id(dev, ppid);
9287 }
9288 
9289 /**
9290  *	dev_get_phys_port_name - Get device physical port name
9291  *	@dev: device
9292  *	@name: port name
9293  *	@len: limit of bytes to copy to name
9294  *
9295  *	Get device physical port name
9296  */
9297 int dev_get_phys_port_name(struct net_device *dev,
9298 			   char *name, size_t len)
9299 {
9300 	const struct net_device_ops *ops = dev->netdev_ops;
9301 	int err;
9302 
9303 	if (ops->ndo_get_phys_port_name) {
9304 		err = ops->ndo_get_phys_port_name(dev, name, len);
9305 		if (err != -EOPNOTSUPP)
9306 			return err;
9307 	}
9308 	return devlink_compat_phys_port_name_get(dev, name, len);
9309 }
9310 
9311 /**
9312  *	dev_get_port_parent_id - Get the device's port parent identifier
9313  *	@dev: network device
9314  *	@ppid: pointer to a storage for the port's parent identifier
9315  *	@recurse: allow/disallow recursion to lower devices
9316  *
9317  *	Get the devices's port parent identifier
9318  */
9319 int dev_get_port_parent_id(struct net_device *dev,
9320 			   struct netdev_phys_item_id *ppid,
9321 			   bool recurse)
9322 {
9323 	const struct net_device_ops *ops = dev->netdev_ops;
9324 	struct netdev_phys_item_id first = { };
9325 	struct net_device *lower_dev;
9326 	struct list_head *iter;
9327 	int err;
9328 
9329 	if (ops->ndo_get_port_parent_id) {
9330 		err = ops->ndo_get_port_parent_id(dev, ppid);
9331 		if (err != -EOPNOTSUPP)
9332 			return err;
9333 	}
9334 
9335 	err = devlink_compat_switch_id_get(dev, ppid);
9336 	if (!recurse || err != -EOPNOTSUPP)
9337 		return err;
9338 
9339 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9340 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9341 		if (err)
9342 			break;
9343 		if (!first.id_len)
9344 			first = *ppid;
9345 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9346 			return -EOPNOTSUPP;
9347 	}
9348 
9349 	return err;
9350 }
9351 EXPORT_SYMBOL(dev_get_port_parent_id);
9352 
9353 /**
9354  *	netdev_port_same_parent_id - Indicate if two network devices have
9355  *	the same port parent identifier
9356  *	@a: first network device
9357  *	@b: second network device
9358  */
9359 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9360 {
9361 	struct netdev_phys_item_id a_id = { };
9362 	struct netdev_phys_item_id b_id = { };
9363 
9364 	if (dev_get_port_parent_id(a, &a_id, true) ||
9365 	    dev_get_port_parent_id(b, &b_id, true))
9366 		return false;
9367 
9368 	return netdev_phys_item_id_same(&a_id, &b_id);
9369 }
9370 EXPORT_SYMBOL(netdev_port_same_parent_id);
9371 
9372 /**
9373  *	dev_change_proto_down - set carrier according to proto_down.
9374  *
9375  *	@dev: device
9376  *	@proto_down: new value
9377  */
9378 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9379 {
9380 	if (!dev->change_proto_down)
9381 		return -EOPNOTSUPP;
9382 	if (!netif_device_present(dev))
9383 		return -ENODEV;
9384 	if (proto_down)
9385 		netif_carrier_off(dev);
9386 	else
9387 		netif_carrier_on(dev);
9388 	WRITE_ONCE(dev->proto_down, proto_down);
9389 	return 0;
9390 }
9391 
9392 /**
9393  *	dev_change_proto_down_reason - proto down reason
9394  *
9395  *	@dev: device
9396  *	@mask: proto down mask
9397  *	@value: proto down value
9398  */
9399 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9400 				  u32 value)
9401 {
9402 	u32 proto_down_reason;
9403 	int b;
9404 
9405 	if (!mask) {
9406 		proto_down_reason = value;
9407 	} else {
9408 		proto_down_reason = dev->proto_down_reason;
9409 		for_each_set_bit(b, &mask, 32) {
9410 			if (value & (1 << b))
9411 				proto_down_reason |= BIT(b);
9412 			else
9413 				proto_down_reason &= ~BIT(b);
9414 		}
9415 	}
9416 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9417 }
9418 
9419 struct bpf_xdp_link {
9420 	struct bpf_link link;
9421 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9422 	int flags;
9423 };
9424 
9425 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9426 {
9427 	if (flags & XDP_FLAGS_HW_MODE)
9428 		return XDP_MODE_HW;
9429 	if (flags & XDP_FLAGS_DRV_MODE)
9430 		return XDP_MODE_DRV;
9431 	if (flags & XDP_FLAGS_SKB_MODE)
9432 		return XDP_MODE_SKB;
9433 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9434 }
9435 
9436 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9437 {
9438 	switch (mode) {
9439 	case XDP_MODE_SKB:
9440 		return generic_xdp_install;
9441 	case XDP_MODE_DRV:
9442 	case XDP_MODE_HW:
9443 		return dev->netdev_ops->ndo_bpf;
9444 	default:
9445 		return NULL;
9446 	}
9447 }
9448 
9449 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9450 					 enum bpf_xdp_mode mode)
9451 {
9452 	return dev->xdp_state[mode].link;
9453 }
9454 
9455 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9456 				     enum bpf_xdp_mode mode)
9457 {
9458 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9459 
9460 	if (link)
9461 		return link->link.prog;
9462 	return dev->xdp_state[mode].prog;
9463 }
9464 
9465 u8 dev_xdp_prog_count(struct net_device *dev)
9466 {
9467 	u8 count = 0;
9468 	int i;
9469 
9470 	for (i = 0; i < __MAX_XDP_MODE; i++)
9471 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9472 			count++;
9473 	return count;
9474 }
9475 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9476 
9477 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9478 {
9479 	if (!dev->netdev_ops->ndo_bpf)
9480 		return -EOPNOTSUPP;
9481 
9482 	if (dev_get_min_mp_channel_count(dev)) {
9483 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9484 		return -EBUSY;
9485 	}
9486 
9487 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9488 }
9489 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9490 
9491 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9492 {
9493 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9494 
9495 	return prog ? prog->aux->id : 0;
9496 }
9497 
9498 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9499 			     struct bpf_xdp_link *link)
9500 {
9501 	dev->xdp_state[mode].link = link;
9502 	dev->xdp_state[mode].prog = NULL;
9503 }
9504 
9505 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9506 			     struct bpf_prog *prog)
9507 {
9508 	dev->xdp_state[mode].link = NULL;
9509 	dev->xdp_state[mode].prog = prog;
9510 }
9511 
9512 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9513 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9514 			   u32 flags, struct bpf_prog *prog)
9515 {
9516 	struct netdev_bpf xdp;
9517 	int err;
9518 
9519 	if (dev_get_min_mp_channel_count(dev)) {
9520 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9521 		return -EBUSY;
9522 	}
9523 
9524 	memset(&xdp, 0, sizeof(xdp));
9525 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9526 	xdp.extack = extack;
9527 	xdp.flags = flags;
9528 	xdp.prog = prog;
9529 
9530 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9531 	 * "moved" into driver), so they don't increment it on their own, but
9532 	 * they do decrement refcnt when program is detached or replaced.
9533 	 * Given net_device also owns link/prog, we need to bump refcnt here
9534 	 * to prevent drivers from underflowing it.
9535 	 */
9536 	if (prog)
9537 		bpf_prog_inc(prog);
9538 	err = bpf_op(dev, &xdp);
9539 	if (err) {
9540 		if (prog)
9541 			bpf_prog_put(prog);
9542 		return err;
9543 	}
9544 
9545 	if (mode != XDP_MODE_HW)
9546 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9547 
9548 	return 0;
9549 }
9550 
9551 static void dev_xdp_uninstall(struct net_device *dev)
9552 {
9553 	struct bpf_xdp_link *link;
9554 	struct bpf_prog *prog;
9555 	enum bpf_xdp_mode mode;
9556 	bpf_op_t bpf_op;
9557 
9558 	ASSERT_RTNL();
9559 
9560 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9561 		prog = dev_xdp_prog(dev, mode);
9562 		if (!prog)
9563 			continue;
9564 
9565 		bpf_op = dev_xdp_bpf_op(dev, mode);
9566 		if (!bpf_op)
9567 			continue;
9568 
9569 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9570 
9571 		/* auto-detach link from net device */
9572 		link = dev_xdp_link(dev, mode);
9573 		if (link)
9574 			link->dev = NULL;
9575 		else
9576 			bpf_prog_put(prog);
9577 
9578 		dev_xdp_set_link(dev, mode, NULL);
9579 	}
9580 }
9581 
9582 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9583 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9584 			  struct bpf_prog *old_prog, u32 flags)
9585 {
9586 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9587 	struct bpf_prog *cur_prog;
9588 	struct net_device *upper;
9589 	struct list_head *iter;
9590 	enum bpf_xdp_mode mode;
9591 	bpf_op_t bpf_op;
9592 	int err;
9593 
9594 	ASSERT_RTNL();
9595 
9596 	/* either link or prog attachment, never both */
9597 	if (link && (new_prog || old_prog))
9598 		return -EINVAL;
9599 	/* link supports only XDP mode flags */
9600 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9601 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9602 		return -EINVAL;
9603 	}
9604 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9605 	if (num_modes > 1) {
9606 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9607 		return -EINVAL;
9608 	}
9609 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9610 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9611 		NL_SET_ERR_MSG(extack,
9612 			       "More than one program loaded, unset mode is ambiguous");
9613 		return -EINVAL;
9614 	}
9615 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9616 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9617 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9618 		return -EINVAL;
9619 	}
9620 
9621 	mode = dev_xdp_mode(dev, flags);
9622 	/* can't replace attached link */
9623 	if (dev_xdp_link(dev, mode)) {
9624 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9625 		return -EBUSY;
9626 	}
9627 
9628 	/* don't allow if an upper device already has a program */
9629 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9630 		if (dev_xdp_prog_count(upper) > 0) {
9631 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9632 			return -EEXIST;
9633 		}
9634 	}
9635 
9636 	cur_prog = dev_xdp_prog(dev, mode);
9637 	/* can't replace attached prog with link */
9638 	if (link && cur_prog) {
9639 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9640 		return -EBUSY;
9641 	}
9642 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9643 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9644 		return -EEXIST;
9645 	}
9646 
9647 	/* put effective new program into new_prog */
9648 	if (link)
9649 		new_prog = link->link.prog;
9650 
9651 	if (new_prog) {
9652 		bool offload = mode == XDP_MODE_HW;
9653 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9654 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9655 
9656 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9657 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9658 			return -EBUSY;
9659 		}
9660 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9661 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9662 			return -EEXIST;
9663 		}
9664 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9665 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9666 			return -EINVAL;
9667 		}
9668 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9669 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9670 			return -EINVAL;
9671 		}
9672 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9673 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9674 			return -EINVAL;
9675 		}
9676 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9677 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9678 			return -EINVAL;
9679 		}
9680 	}
9681 
9682 	/* don't call drivers if the effective program didn't change */
9683 	if (new_prog != cur_prog) {
9684 		bpf_op = dev_xdp_bpf_op(dev, mode);
9685 		if (!bpf_op) {
9686 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9687 			return -EOPNOTSUPP;
9688 		}
9689 
9690 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9691 		if (err)
9692 			return err;
9693 	}
9694 
9695 	if (link)
9696 		dev_xdp_set_link(dev, mode, link);
9697 	else
9698 		dev_xdp_set_prog(dev, mode, new_prog);
9699 	if (cur_prog)
9700 		bpf_prog_put(cur_prog);
9701 
9702 	return 0;
9703 }
9704 
9705 static int dev_xdp_attach_link(struct net_device *dev,
9706 			       struct netlink_ext_ack *extack,
9707 			       struct bpf_xdp_link *link)
9708 {
9709 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9710 }
9711 
9712 static int dev_xdp_detach_link(struct net_device *dev,
9713 			       struct netlink_ext_ack *extack,
9714 			       struct bpf_xdp_link *link)
9715 {
9716 	enum bpf_xdp_mode mode;
9717 	bpf_op_t bpf_op;
9718 
9719 	ASSERT_RTNL();
9720 
9721 	mode = dev_xdp_mode(dev, link->flags);
9722 	if (dev_xdp_link(dev, mode) != link)
9723 		return -EINVAL;
9724 
9725 	bpf_op = dev_xdp_bpf_op(dev, mode);
9726 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9727 	dev_xdp_set_link(dev, mode, NULL);
9728 	return 0;
9729 }
9730 
9731 static void bpf_xdp_link_release(struct bpf_link *link)
9732 {
9733 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9734 
9735 	rtnl_lock();
9736 
9737 	/* if racing with net_device's tear down, xdp_link->dev might be
9738 	 * already NULL, in which case link was already auto-detached
9739 	 */
9740 	if (xdp_link->dev) {
9741 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9742 		xdp_link->dev = NULL;
9743 	}
9744 
9745 	rtnl_unlock();
9746 }
9747 
9748 static int bpf_xdp_link_detach(struct bpf_link *link)
9749 {
9750 	bpf_xdp_link_release(link);
9751 	return 0;
9752 }
9753 
9754 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9755 {
9756 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9757 
9758 	kfree(xdp_link);
9759 }
9760 
9761 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9762 				     struct seq_file *seq)
9763 {
9764 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9765 	u32 ifindex = 0;
9766 
9767 	rtnl_lock();
9768 	if (xdp_link->dev)
9769 		ifindex = xdp_link->dev->ifindex;
9770 	rtnl_unlock();
9771 
9772 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9773 }
9774 
9775 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9776 				       struct bpf_link_info *info)
9777 {
9778 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9779 	u32 ifindex = 0;
9780 
9781 	rtnl_lock();
9782 	if (xdp_link->dev)
9783 		ifindex = xdp_link->dev->ifindex;
9784 	rtnl_unlock();
9785 
9786 	info->xdp.ifindex = ifindex;
9787 	return 0;
9788 }
9789 
9790 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9791 			       struct bpf_prog *old_prog)
9792 {
9793 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9794 	enum bpf_xdp_mode mode;
9795 	bpf_op_t bpf_op;
9796 	int err = 0;
9797 
9798 	rtnl_lock();
9799 
9800 	/* link might have been auto-released already, so fail */
9801 	if (!xdp_link->dev) {
9802 		err = -ENOLINK;
9803 		goto out_unlock;
9804 	}
9805 
9806 	if (old_prog && link->prog != old_prog) {
9807 		err = -EPERM;
9808 		goto out_unlock;
9809 	}
9810 	old_prog = link->prog;
9811 	if (old_prog->type != new_prog->type ||
9812 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9813 		err = -EINVAL;
9814 		goto out_unlock;
9815 	}
9816 
9817 	if (old_prog == new_prog) {
9818 		/* no-op, don't disturb drivers */
9819 		bpf_prog_put(new_prog);
9820 		goto out_unlock;
9821 	}
9822 
9823 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9824 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9825 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9826 			      xdp_link->flags, new_prog);
9827 	if (err)
9828 		goto out_unlock;
9829 
9830 	old_prog = xchg(&link->prog, new_prog);
9831 	bpf_prog_put(old_prog);
9832 
9833 out_unlock:
9834 	rtnl_unlock();
9835 	return err;
9836 }
9837 
9838 static const struct bpf_link_ops bpf_xdp_link_lops = {
9839 	.release = bpf_xdp_link_release,
9840 	.dealloc = bpf_xdp_link_dealloc,
9841 	.detach = bpf_xdp_link_detach,
9842 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9843 	.fill_link_info = bpf_xdp_link_fill_link_info,
9844 	.update_prog = bpf_xdp_link_update,
9845 };
9846 
9847 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9848 {
9849 	struct net *net = current->nsproxy->net_ns;
9850 	struct bpf_link_primer link_primer;
9851 	struct netlink_ext_ack extack = {};
9852 	struct bpf_xdp_link *link;
9853 	struct net_device *dev;
9854 	int err, fd;
9855 
9856 	rtnl_lock();
9857 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9858 	if (!dev) {
9859 		rtnl_unlock();
9860 		return -EINVAL;
9861 	}
9862 
9863 	link = kzalloc(sizeof(*link), GFP_USER);
9864 	if (!link) {
9865 		err = -ENOMEM;
9866 		goto unlock;
9867 	}
9868 
9869 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9870 	link->dev = dev;
9871 	link->flags = attr->link_create.flags;
9872 
9873 	err = bpf_link_prime(&link->link, &link_primer);
9874 	if (err) {
9875 		kfree(link);
9876 		goto unlock;
9877 	}
9878 
9879 	err = dev_xdp_attach_link(dev, &extack, link);
9880 	rtnl_unlock();
9881 
9882 	if (err) {
9883 		link->dev = NULL;
9884 		bpf_link_cleanup(&link_primer);
9885 		trace_bpf_xdp_link_attach_failed(extack._msg);
9886 		goto out_put_dev;
9887 	}
9888 
9889 	fd = bpf_link_settle(&link_primer);
9890 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9891 	dev_put(dev);
9892 	return fd;
9893 
9894 unlock:
9895 	rtnl_unlock();
9896 
9897 out_put_dev:
9898 	dev_put(dev);
9899 	return err;
9900 }
9901 
9902 /**
9903  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9904  *	@dev: device
9905  *	@extack: netlink extended ack
9906  *	@fd: new program fd or negative value to clear
9907  *	@expected_fd: old program fd that userspace expects to replace or clear
9908  *	@flags: xdp-related flags
9909  *
9910  *	Set or clear a bpf program for a device
9911  */
9912 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9913 		      int fd, int expected_fd, u32 flags)
9914 {
9915 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9916 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9917 	int err;
9918 
9919 	ASSERT_RTNL();
9920 
9921 	if (fd >= 0) {
9922 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9923 						 mode != XDP_MODE_SKB);
9924 		if (IS_ERR(new_prog))
9925 			return PTR_ERR(new_prog);
9926 	}
9927 
9928 	if (expected_fd >= 0) {
9929 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9930 						 mode != XDP_MODE_SKB);
9931 		if (IS_ERR(old_prog)) {
9932 			err = PTR_ERR(old_prog);
9933 			old_prog = NULL;
9934 			goto err_out;
9935 		}
9936 	}
9937 
9938 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9939 
9940 err_out:
9941 	if (err && new_prog)
9942 		bpf_prog_put(new_prog);
9943 	if (old_prog)
9944 		bpf_prog_put(old_prog);
9945 	return err;
9946 }
9947 
9948 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
9949 {
9950 	int i;
9951 
9952 	ASSERT_RTNL();
9953 
9954 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
9955 		if (dev->_rx[i].mp_params.mp_priv)
9956 			/* The channel count is the idx plus 1. */
9957 			return i + 1;
9958 
9959 	return 0;
9960 }
9961 
9962 /**
9963  * dev_index_reserve() - allocate an ifindex in a namespace
9964  * @net: the applicable net namespace
9965  * @ifindex: requested ifindex, pass %0 to get one allocated
9966  *
9967  * Allocate a ifindex for a new device. Caller must either use the ifindex
9968  * to store the device (via list_netdevice()) or call dev_index_release()
9969  * to give the index up.
9970  *
9971  * Return: a suitable unique value for a new device interface number or -errno.
9972  */
9973 static int dev_index_reserve(struct net *net, u32 ifindex)
9974 {
9975 	int err;
9976 
9977 	if (ifindex > INT_MAX) {
9978 		DEBUG_NET_WARN_ON_ONCE(1);
9979 		return -EINVAL;
9980 	}
9981 
9982 	if (!ifindex)
9983 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9984 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9985 	else
9986 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9987 	if (err < 0)
9988 		return err;
9989 
9990 	return ifindex;
9991 }
9992 
9993 static void dev_index_release(struct net *net, int ifindex)
9994 {
9995 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9996 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9997 }
9998 
9999 /* Delayed registration/unregisteration */
10000 LIST_HEAD(net_todo_list);
10001 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10002 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10003 
10004 static void net_set_todo(struct net_device *dev)
10005 {
10006 	list_add_tail(&dev->todo_list, &net_todo_list);
10007 }
10008 
10009 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10010 	struct net_device *upper, netdev_features_t features)
10011 {
10012 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10013 	netdev_features_t feature;
10014 	int feature_bit;
10015 
10016 	for_each_netdev_feature(upper_disables, feature_bit) {
10017 		feature = __NETIF_F_BIT(feature_bit);
10018 		if (!(upper->wanted_features & feature)
10019 		    && (features & feature)) {
10020 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10021 				   &feature, upper->name);
10022 			features &= ~feature;
10023 		}
10024 	}
10025 
10026 	return features;
10027 }
10028 
10029 static void netdev_sync_lower_features(struct net_device *upper,
10030 	struct net_device *lower, netdev_features_t features)
10031 {
10032 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10033 	netdev_features_t feature;
10034 	int feature_bit;
10035 
10036 	for_each_netdev_feature(upper_disables, feature_bit) {
10037 		feature = __NETIF_F_BIT(feature_bit);
10038 		if (!(features & feature) && (lower->features & feature)) {
10039 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10040 				   &feature, lower->name);
10041 			lower->wanted_features &= ~feature;
10042 			__netdev_update_features(lower);
10043 
10044 			if (unlikely(lower->features & feature))
10045 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10046 					    &feature, lower->name);
10047 			else
10048 				netdev_features_change(lower);
10049 		}
10050 	}
10051 }
10052 
10053 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10054 {
10055 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10056 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10057 	bool hw_csum = features & NETIF_F_HW_CSUM;
10058 
10059 	return ip_csum || hw_csum;
10060 }
10061 
10062 static netdev_features_t netdev_fix_features(struct net_device *dev,
10063 	netdev_features_t features)
10064 {
10065 	/* Fix illegal checksum combinations */
10066 	if ((features & NETIF_F_HW_CSUM) &&
10067 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10068 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10069 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10070 	}
10071 
10072 	/* TSO requires that SG is present as well. */
10073 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10074 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10075 		features &= ~NETIF_F_ALL_TSO;
10076 	}
10077 
10078 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10079 					!(features & NETIF_F_IP_CSUM)) {
10080 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10081 		features &= ~NETIF_F_TSO;
10082 		features &= ~NETIF_F_TSO_ECN;
10083 	}
10084 
10085 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10086 					 !(features & NETIF_F_IPV6_CSUM)) {
10087 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10088 		features &= ~NETIF_F_TSO6;
10089 	}
10090 
10091 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10092 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10093 		features &= ~NETIF_F_TSO_MANGLEID;
10094 
10095 	/* TSO ECN requires that TSO is present as well. */
10096 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10097 		features &= ~NETIF_F_TSO_ECN;
10098 
10099 	/* Software GSO depends on SG. */
10100 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10101 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10102 		features &= ~NETIF_F_GSO;
10103 	}
10104 
10105 	/* GSO partial features require GSO partial be set */
10106 	if ((features & dev->gso_partial_features) &&
10107 	    !(features & NETIF_F_GSO_PARTIAL)) {
10108 		netdev_dbg(dev,
10109 			   "Dropping partially supported GSO features since no GSO partial.\n");
10110 		features &= ~dev->gso_partial_features;
10111 	}
10112 
10113 	if (!(features & NETIF_F_RXCSUM)) {
10114 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10115 		 * successfully merged by hardware must also have the
10116 		 * checksum verified by hardware.  If the user does not
10117 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10118 		 */
10119 		if (features & NETIF_F_GRO_HW) {
10120 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10121 			features &= ~NETIF_F_GRO_HW;
10122 		}
10123 	}
10124 
10125 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10126 	if (features & NETIF_F_RXFCS) {
10127 		if (features & NETIF_F_LRO) {
10128 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10129 			features &= ~NETIF_F_LRO;
10130 		}
10131 
10132 		if (features & NETIF_F_GRO_HW) {
10133 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10134 			features &= ~NETIF_F_GRO_HW;
10135 		}
10136 	}
10137 
10138 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10139 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10140 		features &= ~NETIF_F_LRO;
10141 	}
10142 
10143 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10144 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10145 		features &= ~NETIF_F_HW_TLS_TX;
10146 	}
10147 
10148 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10149 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10150 		features &= ~NETIF_F_HW_TLS_RX;
10151 	}
10152 
10153 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10154 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10155 		features &= ~NETIF_F_GSO_UDP_L4;
10156 	}
10157 
10158 	return features;
10159 }
10160 
10161 int __netdev_update_features(struct net_device *dev)
10162 {
10163 	struct net_device *upper, *lower;
10164 	netdev_features_t features;
10165 	struct list_head *iter;
10166 	int err = -1;
10167 
10168 	ASSERT_RTNL();
10169 
10170 	features = netdev_get_wanted_features(dev);
10171 
10172 	if (dev->netdev_ops->ndo_fix_features)
10173 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10174 
10175 	/* driver might be less strict about feature dependencies */
10176 	features = netdev_fix_features(dev, features);
10177 
10178 	/* some features can't be enabled if they're off on an upper device */
10179 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10180 		features = netdev_sync_upper_features(dev, upper, features);
10181 
10182 	if (dev->features == features)
10183 		goto sync_lower;
10184 
10185 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10186 		&dev->features, &features);
10187 
10188 	if (dev->netdev_ops->ndo_set_features)
10189 		err = dev->netdev_ops->ndo_set_features(dev, features);
10190 	else
10191 		err = 0;
10192 
10193 	if (unlikely(err < 0)) {
10194 		netdev_err(dev,
10195 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10196 			err, &features, &dev->features);
10197 		/* return non-0 since some features might have changed and
10198 		 * it's better to fire a spurious notification than miss it
10199 		 */
10200 		return -1;
10201 	}
10202 
10203 sync_lower:
10204 	/* some features must be disabled on lower devices when disabled
10205 	 * on an upper device (think: bonding master or bridge)
10206 	 */
10207 	netdev_for_each_lower_dev(dev, lower, iter)
10208 		netdev_sync_lower_features(dev, lower, features);
10209 
10210 	if (!err) {
10211 		netdev_features_t diff = features ^ dev->features;
10212 
10213 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10214 			/* udp_tunnel_{get,drop}_rx_info both need
10215 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10216 			 * device, or they won't do anything.
10217 			 * Thus we need to update dev->features
10218 			 * *before* calling udp_tunnel_get_rx_info,
10219 			 * but *after* calling udp_tunnel_drop_rx_info.
10220 			 */
10221 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10222 				dev->features = features;
10223 				udp_tunnel_get_rx_info(dev);
10224 			} else {
10225 				udp_tunnel_drop_rx_info(dev);
10226 			}
10227 		}
10228 
10229 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10230 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10231 				dev->features = features;
10232 				err |= vlan_get_rx_ctag_filter_info(dev);
10233 			} else {
10234 				vlan_drop_rx_ctag_filter_info(dev);
10235 			}
10236 		}
10237 
10238 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10239 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10240 				dev->features = features;
10241 				err |= vlan_get_rx_stag_filter_info(dev);
10242 			} else {
10243 				vlan_drop_rx_stag_filter_info(dev);
10244 			}
10245 		}
10246 
10247 		dev->features = features;
10248 	}
10249 
10250 	return err < 0 ? 0 : 1;
10251 }
10252 
10253 /**
10254  *	netdev_update_features - recalculate device features
10255  *	@dev: the device to check
10256  *
10257  *	Recalculate dev->features set and send notifications if it
10258  *	has changed. Should be called after driver or hardware dependent
10259  *	conditions might have changed that influence the features.
10260  */
10261 void netdev_update_features(struct net_device *dev)
10262 {
10263 	if (__netdev_update_features(dev))
10264 		netdev_features_change(dev);
10265 }
10266 EXPORT_SYMBOL(netdev_update_features);
10267 
10268 /**
10269  *	netdev_change_features - recalculate device features
10270  *	@dev: the device to check
10271  *
10272  *	Recalculate dev->features set and send notifications even
10273  *	if they have not changed. Should be called instead of
10274  *	netdev_update_features() if also dev->vlan_features might
10275  *	have changed to allow the changes to be propagated to stacked
10276  *	VLAN devices.
10277  */
10278 void netdev_change_features(struct net_device *dev)
10279 {
10280 	__netdev_update_features(dev);
10281 	netdev_features_change(dev);
10282 }
10283 EXPORT_SYMBOL(netdev_change_features);
10284 
10285 /**
10286  *	netif_stacked_transfer_operstate -	transfer operstate
10287  *	@rootdev: the root or lower level device to transfer state from
10288  *	@dev: the device to transfer operstate to
10289  *
10290  *	Transfer operational state from root to device. This is normally
10291  *	called when a stacking relationship exists between the root
10292  *	device and the device(a leaf device).
10293  */
10294 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10295 					struct net_device *dev)
10296 {
10297 	if (rootdev->operstate == IF_OPER_DORMANT)
10298 		netif_dormant_on(dev);
10299 	else
10300 		netif_dormant_off(dev);
10301 
10302 	if (rootdev->operstate == IF_OPER_TESTING)
10303 		netif_testing_on(dev);
10304 	else
10305 		netif_testing_off(dev);
10306 
10307 	if (netif_carrier_ok(rootdev))
10308 		netif_carrier_on(dev);
10309 	else
10310 		netif_carrier_off(dev);
10311 }
10312 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10313 
10314 static int netif_alloc_rx_queues(struct net_device *dev)
10315 {
10316 	unsigned int i, count = dev->num_rx_queues;
10317 	struct netdev_rx_queue *rx;
10318 	size_t sz = count * sizeof(*rx);
10319 	int err = 0;
10320 
10321 	BUG_ON(count < 1);
10322 
10323 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10324 	if (!rx)
10325 		return -ENOMEM;
10326 
10327 	dev->_rx = rx;
10328 
10329 	for (i = 0; i < count; i++) {
10330 		rx[i].dev = dev;
10331 
10332 		/* XDP RX-queue setup */
10333 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10334 		if (err < 0)
10335 			goto err_rxq_info;
10336 	}
10337 	return 0;
10338 
10339 err_rxq_info:
10340 	/* Rollback successful reg's and free other resources */
10341 	while (i--)
10342 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10343 	kvfree(dev->_rx);
10344 	dev->_rx = NULL;
10345 	return err;
10346 }
10347 
10348 static void netif_free_rx_queues(struct net_device *dev)
10349 {
10350 	unsigned int i, count = dev->num_rx_queues;
10351 
10352 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10353 	if (!dev->_rx)
10354 		return;
10355 
10356 	for (i = 0; i < count; i++)
10357 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10358 
10359 	kvfree(dev->_rx);
10360 }
10361 
10362 static void netdev_init_one_queue(struct net_device *dev,
10363 				  struct netdev_queue *queue, void *_unused)
10364 {
10365 	/* Initialize queue lock */
10366 	spin_lock_init(&queue->_xmit_lock);
10367 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10368 	queue->xmit_lock_owner = -1;
10369 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10370 	queue->dev = dev;
10371 #ifdef CONFIG_BQL
10372 	dql_init(&queue->dql, HZ);
10373 #endif
10374 }
10375 
10376 static void netif_free_tx_queues(struct net_device *dev)
10377 {
10378 	kvfree(dev->_tx);
10379 }
10380 
10381 static int netif_alloc_netdev_queues(struct net_device *dev)
10382 {
10383 	unsigned int count = dev->num_tx_queues;
10384 	struct netdev_queue *tx;
10385 	size_t sz = count * sizeof(*tx);
10386 
10387 	if (count < 1 || count > 0xffff)
10388 		return -EINVAL;
10389 
10390 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10391 	if (!tx)
10392 		return -ENOMEM;
10393 
10394 	dev->_tx = tx;
10395 
10396 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10397 	spin_lock_init(&dev->tx_global_lock);
10398 
10399 	return 0;
10400 }
10401 
10402 void netif_tx_stop_all_queues(struct net_device *dev)
10403 {
10404 	unsigned int i;
10405 
10406 	for (i = 0; i < dev->num_tx_queues; i++) {
10407 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10408 
10409 		netif_tx_stop_queue(txq);
10410 	}
10411 }
10412 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10413 
10414 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10415 {
10416 	void __percpu *v;
10417 
10418 	/* Drivers implementing ndo_get_peer_dev must support tstat
10419 	 * accounting, so that skb_do_redirect() can bump the dev's
10420 	 * RX stats upon network namespace switch.
10421 	 */
10422 	if (dev->netdev_ops->ndo_get_peer_dev &&
10423 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10424 		return -EOPNOTSUPP;
10425 
10426 	switch (dev->pcpu_stat_type) {
10427 	case NETDEV_PCPU_STAT_NONE:
10428 		return 0;
10429 	case NETDEV_PCPU_STAT_LSTATS:
10430 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10431 		break;
10432 	case NETDEV_PCPU_STAT_TSTATS:
10433 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10434 		break;
10435 	case NETDEV_PCPU_STAT_DSTATS:
10436 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10437 		break;
10438 	default:
10439 		return -EINVAL;
10440 	}
10441 
10442 	return v ? 0 : -ENOMEM;
10443 }
10444 
10445 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10446 {
10447 	switch (dev->pcpu_stat_type) {
10448 	case NETDEV_PCPU_STAT_NONE:
10449 		return;
10450 	case NETDEV_PCPU_STAT_LSTATS:
10451 		free_percpu(dev->lstats);
10452 		break;
10453 	case NETDEV_PCPU_STAT_TSTATS:
10454 		free_percpu(dev->tstats);
10455 		break;
10456 	case NETDEV_PCPU_STAT_DSTATS:
10457 		free_percpu(dev->dstats);
10458 		break;
10459 	}
10460 }
10461 
10462 static void netdev_free_phy_link_topology(struct net_device *dev)
10463 {
10464 	struct phy_link_topology *topo = dev->link_topo;
10465 
10466 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10467 		xa_destroy(&topo->phys);
10468 		kfree(topo);
10469 		dev->link_topo = NULL;
10470 	}
10471 }
10472 
10473 /**
10474  * register_netdevice() - register a network device
10475  * @dev: device to register
10476  *
10477  * Take a prepared network device structure and make it externally accessible.
10478  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10479  * Callers must hold the rtnl lock - you may want register_netdev()
10480  * instead of this.
10481  */
10482 int register_netdevice(struct net_device *dev)
10483 {
10484 	int ret;
10485 	struct net *net = dev_net(dev);
10486 
10487 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10488 		     NETDEV_FEATURE_COUNT);
10489 	BUG_ON(dev_boot_phase);
10490 	ASSERT_RTNL();
10491 
10492 	might_sleep();
10493 
10494 	/* When net_device's are persistent, this will be fatal. */
10495 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10496 	BUG_ON(!net);
10497 
10498 	ret = ethtool_check_ops(dev->ethtool_ops);
10499 	if (ret)
10500 		return ret;
10501 
10502 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10503 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10504 	mutex_init(&dev->ethtool->rss_lock);
10505 
10506 	spin_lock_init(&dev->addr_list_lock);
10507 	netdev_set_addr_lockdep_class(dev);
10508 
10509 	ret = dev_get_valid_name(net, dev, dev->name);
10510 	if (ret < 0)
10511 		goto out;
10512 
10513 	ret = -ENOMEM;
10514 	dev->name_node = netdev_name_node_head_alloc(dev);
10515 	if (!dev->name_node)
10516 		goto out;
10517 
10518 	/* Init, if this function is available */
10519 	if (dev->netdev_ops->ndo_init) {
10520 		ret = dev->netdev_ops->ndo_init(dev);
10521 		if (ret) {
10522 			if (ret > 0)
10523 				ret = -EIO;
10524 			goto err_free_name;
10525 		}
10526 	}
10527 
10528 	if (((dev->hw_features | dev->features) &
10529 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10530 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10531 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10532 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10533 		ret = -EINVAL;
10534 		goto err_uninit;
10535 	}
10536 
10537 	ret = netdev_do_alloc_pcpu_stats(dev);
10538 	if (ret)
10539 		goto err_uninit;
10540 
10541 	ret = dev_index_reserve(net, dev->ifindex);
10542 	if (ret < 0)
10543 		goto err_free_pcpu;
10544 	dev->ifindex = ret;
10545 
10546 	/* Transfer changeable features to wanted_features and enable
10547 	 * software offloads (GSO and GRO).
10548 	 */
10549 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10550 	dev->features |= NETIF_F_SOFT_FEATURES;
10551 
10552 	if (dev->udp_tunnel_nic_info) {
10553 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10554 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10555 	}
10556 
10557 	dev->wanted_features = dev->features & dev->hw_features;
10558 
10559 	if (!(dev->flags & IFF_LOOPBACK))
10560 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10561 
10562 	/* If IPv4 TCP segmentation offload is supported we should also
10563 	 * allow the device to enable segmenting the frame with the option
10564 	 * of ignoring a static IP ID value.  This doesn't enable the
10565 	 * feature itself but allows the user to enable it later.
10566 	 */
10567 	if (dev->hw_features & NETIF_F_TSO)
10568 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10569 	if (dev->vlan_features & NETIF_F_TSO)
10570 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10571 	if (dev->mpls_features & NETIF_F_TSO)
10572 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10573 	if (dev->hw_enc_features & NETIF_F_TSO)
10574 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10575 
10576 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10577 	 */
10578 	dev->vlan_features |= NETIF_F_HIGHDMA;
10579 
10580 	/* Make NETIF_F_SG inheritable to tunnel devices.
10581 	 */
10582 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10583 
10584 	/* Make NETIF_F_SG inheritable to MPLS.
10585 	 */
10586 	dev->mpls_features |= NETIF_F_SG;
10587 
10588 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10589 	ret = notifier_to_errno(ret);
10590 	if (ret)
10591 		goto err_ifindex_release;
10592 
10593 	ret = netdev_register_kobject(dev);
10594 
10595 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10596 
10597 	if (ret)
10598 		goto err_uninit_notify;
10599 
10600 	__netdev_update_features(dev);
10601 
10602 	/*
10603 	 *	Default initial state at registry is that the
10604 	 *	device is present.
10605 	 */
10606 
10607 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10608 
10609 	linkwatch_init_dev(dev);
10610 
10611 	dev_init_scheduler(dev);
10612 
10613 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10614 	list_netdevice(dev);
10615 
10616 	add_device_randomness(dev->dev_addr, dev->addr_len);
10617 
10618 	/* If the device has permanent device address, driver should
10619 	 * set dev_addr and also addr_assign_type should be set to
10620 	 * NET_ADDR_PERM (default value).
10621 	 */
10622 	if (dev->addr_assign_type == NET_ADDR_PERM)
10623 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10624 
10625 	/* Notify protocols, that a new device appeared. */
10626 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10627 	ret = notifier_to_errno(ret);
10628 	if (ret) {
10629 		/* Expect explicit free_netdev() on failure */
10630 		dev->needs_free_netdev = false;
10631 		unregister_netdevice_queue(dev, NULL);
10632 		goto out;
10633 	}
10634 	/*
10635 	 *	Prevent userspace races by waiting until the network
10636 	 *	device is fully setup before sending notifications.
10637 	 */
10638 	if (!dev->rtnl_link_ops ||
10639 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10640 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10641 
10642 out:
10643 	return ret;
10644 
10645 err_uninit_notify:
10646 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10647 err_ifindex_release:
10648 	dev_index_release(net, dev->ifindex);
10649 err_free_pcpu:
10650 	netdev_do_free_pcpu_stats(dev);
10651 err_uninit:
10652 	if (dev->netdev_ops->ndo_uninit)
10653 		dev->netdev_ops->ndo_uninit(dev);
10654 	if (dev->priv_destructor)
10655 		dev->priv_destructor(dev);
10656 err_free_name:
10657 	netdev_name_node_free(dev->name_node);
10658 	goto out;
10659 }
10660 EXPORT_SYMBOL(register_netdevice);
10661 
10662 /* Initialize the core of a dummy net device.
10663  * This is useful if you are calling this function after alloc_netdev(),
10664  * since it does not memset the net_device fields.
10665  */
10666 static void init_dummy_netdev_core(struct net_device *dev)
10667 {
10668 	/* make sure we BUG if trying to hit standard
10669 	 * register/unregister code path
10670 	 */
10671 	dev->reg_state = NETREG_DUMMY;
10672 
10673 	/* NAPI wants this */
10674 	INIT_LIST_HEAD(&dev->napi_list);
10675 
10676 	/* a dummy interface is started by default */
10677 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10678 	set_bit(__LINK_STATE_START, &dev->state);
10679 
10680 	/* napi_busy_loop stats accounting wants this */
10681 	dev_net_set(dev, &init_net);
10682 
10683 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10684 	 * because users of this 'device' dont need to change
10685 	 * its refcount.
10686 	 */
10687 }
10688 
10689 /**
10690  *	init_dummy_netdev	- init a dummy network device for NAPI
10691  *	@dev: device to init
10692  *
10693  *	This takes a network device structure and initializes the minimum
10694  *	amount of fields so it can be used to schedule NAPI polls without
10695  *	registering a full blown interface. This is to be used by drivers
10696  *	that need to tie several hardware interfaces to a single NAPI
10697  *	poll scheduler due to HW limitations.
10698  */
10699 void init_dummy_netdev(struct net_device *dev)
10700 {
10701 	/* Clear everything. Note we don't initialize spinlocks
10702 	 * as they aren't supposed to be taken by any of the
10703 	 * NAPI code and this dummy netdev is supposed to be
10704 	 * only ever used for NAPI polls
10705 	 */
10706 	memset(dev, 0, sizeof(struct net_device));
10707 	init_dummy_netdev_core(dev);
10708 }
10709 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10710 
10711 /**
10712  *	register_netdev	- register a network device
10713  *	@dev: device to register
10714  *
10715  *	Take a completed network device structure and add it to the kernel
10716  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10717  *	chain. 0 is returned on success. A negative errno code is returned
10718  *	on a failure to set up the device, or if the name is a duplicate.
10719  *
10720  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10721  *	and expands the device name if you passed a format string to
10722  *	alloc_netdev.
10723  */
10724 int register_netdev(struct net_device *dev)
10725 {
10726 	int err;
10727 
10728 	if (rtnl_lock_killable())
10729 		return -EINTR;
10730 	err = register_netdevice(dev);
10731 	rtnl_unlock();
10732 	return err;
10733 }
10734 EXPORT_SYMBOL(register_netdev);
10735 
10736 int netdev_refcnt_read(const struct net_device *dev)
10737 {
10738 #ifdef CONFIG_PCPU_DEV_REFCNT
10739 	int i, refcnt = 0;
10740 
10741 	for_each_possible_cpu(i)
10742 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10743 	return refcnt;
10744 #else
10745 	return refcount_read(&dev->dev_refcnt);
10746 #endif
10747 }
10748 EXPORT_SYMBOL(netdev_refcnt_read);
10749 
10750 int netdev_unregister_timeout_secs __read_mostly = 10;
10751 
10752 #define WAIT_REFS_MIN_MSECS 1
10753 #define WAIT_REFS_MAX_MSECS 250
10754 /**
10755  * netdev_wait_allrefs_any - wait until all references are gone.
10756  * @list: list of net_devices to wait on
10757  *
10758  * This is called when unregistering network devices.
10759  *
10760  * Any protocol or device that holds a reference should register
10761  * for netdevice notification, and cleanup and put back the
10762  * reference if they receive an UNREGISTER event.
10763  * We can get stuck here if buggy protocols don't correctly
10764  * call dev_put.
10765  */
10766 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10767 {
10768 	unsigned long rebroadcast_time, warning_time;
10769 	struct net_device *dev;
10770 	int wait = 0;
10771 
10772 	rebroadcast_time = warning_time = jiffies;
10773 
10774 	list_for_each_entry(dev, list, todo_list)
10775 		if (netdev_refcnt_read(dev) == 1)
10776 			return dev;
10777 
10778 	while (true) {
10779 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10780 			rtnl_lock();
10781 
10782 			/* Rebroadcast unregister notification */
10783 			list_for_each_entry(dev, list, todo_list)
10784 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10785 
10786 			__rtnl_unlock();
10787 			rcu_barrier();
10788 			rtnl_lock();
10789 
10790 			list_for_each_entry(dev, list, todo_list)
10791 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10792 					     &dev->state)) {
10793 					/* We must not have linkwatch events
10794 					 * pending on unregister. If this
10795 					 * happens, we simply run the queue
10796 					 * unscheduled, resulting in a noop
10797 					 * for this device.
10798 					 */
10799 					linkwatch_run_queue();
10800 					break;
10801 				}
10802 
10803 			__rtnl_unlock();
10804 
10805 			rebroadcast_time = jiffies;
10806 		}
10807 
10808 		rcu_barrier();
10809 
10810 		if (!wait) {
10811 			wait = WAIT_REFS_MIN_MSECS;
10812 		} else {
10813 			msleep(wait);
10814 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10815 		}
10816 
10817 		list_for_each_entry(dev, list, todo_list)
10818 			if (netdev_refcnt_read(dev) == 1)
10819 				return dev;
10820 
10821 		if (time_after(jiffies, warning_time +
10822 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10823 			list_for_each_entry(dev, list, todo_list) {
10824 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10825 					 dev->name, netdev_refcnt_read(dev));
10826 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10827 			}
10828 
10829 			warning_time = jiffies;
10830 		}
10831 	}
10832 }
10833 
10834 /* The sequence is:
10835  *
10836  *	rtnl_lock();
10837  *	...
10838  *	register_netdevice(x1);
10839  *	register_netdevice(x2);
10840  *	...
10841  *	unregister_netdevice(y1);
10842  *	unregister_netdevice(y2);
10843  *      ...
10844  *	rtnl_unlock();
10845  *	free_netdev(y1);
10846  *	free_netdev(y2);
10847  *
10848  * We are invoked by rtnl_unlock().
10849  * This allows us to deal with problems:
10850  * 1) We can delete sysfs objects which invoke hotplug
10851  *    without deadlocking with linkwatch via keventd.
10852  * 2) Since we run with the RTNL semaphore not held, we can sleep
10853  *    safely in order to wait for the netdev refcnt to drop to zero.
10854  *
10855  * We must not return until all unregister events added during
10856  * the interval the lock was held have been completed.
10857  */
10858 void netdev_run_todo(void)
10859 {
10860 	struct net_device *dev, *tmp;
10861 	struct list_head list;
10862 	int cnt;
10863 #ifdef CONFIG_LOCKDEP
10864 	struct list_head unlink_list;
10865 
10866 	list_replace_init(&net_unlink_list, &unlink_list);
10867 
10868 	while (!list_empty(&unlink_list)) {
10869 		struct net_device *dev = list_first_entry(&unlink_list,
10870 							  struct net_device,
10871 							  unlink_list);
10872 		list_del_init(&dev->unlink_list);
10873 		dev->nested_level = dev->lower_level - 1;
10874 	}
10875 #endif
10876 
10877 	/* Snapshot list, allow later requests */
10878 	list_replace_init(&net_todo_list, &list);
10879 
10880 	__rtnl_unlock();
10881 
10882 	/* Wait for rcu callbacks to finish before next phase */
10883 	if (!list_empty(&list))
10884 		rcu_barrier();
10885 
10886 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10887 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10888 			netdev_WARN(dev, "run_todo but not unregistering\n");
10889 			list_del(&dev->todo_list);
10890 			continue;
10891 		}
10892 
10893 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10894 		linkwatch_sync_dev(dev);
10895 	}
10896 
10897 	cnt = 0;
10898 	while (!list_empty(&list)) {
10899 		dev = netdev_wait_allrefs_any(&list);
10900 		list_del(&dev->todo_list);
10901 
10902 		/* paranoia */
10903 		BUG_ON(netdev_refcnt_read(dev) != 1);
10904 		BUG_ON(!list_empty(&dev->ptype_all));
10905 		BUG_ON(!list_empty(&dev->ptype_specific));
10906 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10907 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10908 
10909 		netdev_do_free_pcpu_stats(dev);
10910 		if (dev->priv_destructor)
10911 			dev->priv_destructor(dev);
10912 		if (dev->needs_free_netdev)
10913 			free_netdev(dev);
10914 
10915 		cnt++;
10916 
10917 		/* Free network device */
10918 		kobject_put(&dev->dev.kobj);
10919 	}
10920 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10921 		wake_up(&netdev_unregistering_wq);
10922 }
10923 
10924 /* Collate per-cpu network dstats statistics
10925  *
10926  * Read per-cpu network statistics from dev->dstats and populate the related
10927  * fields in @s.
10928  */
10929 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10930 			     const struct pcpu_dstats __percpu *dstats)
10931 {
10932 	int cpu;
10933 
10934 	for_each_possible_cpu(cpu) {
10935 		u64 rx_packets, rx_bytes, rx_drops;
10936 		u64 tx_packets, tx_bytes, tx_drops;
10937 		const struct pcpu_dstats *stats;
10938 		unsigned int start;
10939 
10940 		stats = per_cpu_ptr(dstats, cpu);
10941 		do {
10942 			start = u64_stats_fetch_begin(&stats->syncp);
10943 			rx_packets = u64_stats_read(&stats->rx_packets);
10944 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10945 			rx_drops   = u64_stats_read(&stats->rx_drops);
10946 			tx_packets = u64_stats_read(&stats->tx_packets);
10947 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10948 			tx_drops   = u64_stats_read(&stats->tx_drops);
10949 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10950 
10951 		s->rx_packets += rx_packets;
10952 		s->rx_bytes   += rx_bytes;
10953 		s->rx_dropped += rx_drops;
10954 		s->tx_packets += tx_packets;
10955 		s->tx_bytes   += tx_bytes;
10956 		s->tx_dropped += tx_drops;
10957 	}
10958 }
10959 
10960 /* ndo_get_stats64 implementation for dtstats-based accounting.
10961  *
10962  * Populate @s from dev->stats and dev->dstats. This is used internally by the
10963  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10964  */
10965 static void dev_get_dstats64(const struct net_device *dev,
10966 			     struct rtnl_link_stats64 *s)
10967 {
10968 	netdev_stats_to_stats64(s, &dev->stats);
10969 	dev_fetch_dstats(s, dev->dstats);
10970 }
10971 
10972 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10973  * all the same fields in the same order as net_device_stats, with only
10974  * the type differing, but rtnl_link_stats64 may have additional fields
10975  * at the end for newer counters.
10976  */
10977 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10978 			     const struct net_device_stats *netdev_stats)
10979 {
10980 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10981 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10982 	u64 *dst = (u64 *)stats64;
10983 
10984 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10985 	for (i = 0; i < n; i++)
10986 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10987 	/* zero out counters that only exist in rtnl_link_stats64 */
10988 	memset((char *)stats64 + n * sizeof(u64), 0,
10989 	       sizeof(*stats64) - n * sizeof(u64));
10990 }
10991 EXPORT_SYMBOL(netdev_stats_to_stats64);
10992 
10993 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10994 		struct net_device *dev)
10995 {
10996 	struct net_device_core_stats __percpu *p;
10997 
10998 	p = alloc_percpu_gfp(struct net_device_core_stats,
10999 			     GFP_ATOMIC | __GFP_NOWARN);
11000 
11001 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11002 		free_percpu(p);
11003 
11004 	/* This READ_ONCE() pairs with the cmpxchg() above */
11005 	return READ_ONCE(dev->core_stats);
11006 }
11007 
11008 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11009 {
11010 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11011 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11012 	unsigned long __percpu *field;
11013 
11014 	if (unlikely(!p)) {
11015 		p = netdev_core_stats_alloc(dev);
11016 		if (!p)
11017 			return;
11018 	}
11019 
11020 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11021 	this_cpu_inc(*field);
11022 }
11023 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11024 
11025 /**
11026  *	dev_get_stats	- get network device statistics
11027  *	@dev: device to get statistics from
11028  *	@storage: place to store stats
11029  *
11030  *	Get network statistics from device. Return @storage.
11031  *	The device driver may provide its own method by setting
11032  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11033  *	otherwise the internal statistics structure is used.
11034  */
11035 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11036 					struct rtnl_link_stats64 *storage)
11037 {
11038 	const struct net_device_ops *ops = dev->netdev_ops;
11039 	const struct net_device_core_stats __percpu *p;
11040 
11041 	if (ops->ndo_get_stats64) {
11042 		memset(storage, 0, sizeof(*storage));
11043 		ops->ndo_get_stats64(dev, storage);
11044 	} else if (ops->ndo_get_stats) {
11045 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11046 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11047 		dev_get_tstats64(dev, storage);
11048 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11049 		dev_get_dstats64(dev, storage);
11050 	} else {
11051 		netdev_stats_to_stats64(storage, &dev->stats);
11052 	}
11053 
11054 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11055 	p = READ_ONCE(dev->core_stats);
11056 	if (p) {
11057 		const struct net_device_core_stats *core_stats;
11058 		int i;
11059 
11060 		for_each_possible_cpu(i) {
11061 			core_stats = per_cpu_ptr(p, i);
11062 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11063 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11064 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11065 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11066 		}
11067 	}
11068 	return storage;
11069 }
11070 EXPORT_SYMBOL(dev_get_stats);
11071 
11072 /**
11073  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11074  *	@s: place to store stats
11075  *	@netstats: per-cpu network stats to read from
11076  *
11077  *	Read per-cpu network statistics and populate the related fields in @s.
11078  */
11079 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11080 			   const struct pcpu_sw_netstats __percpu *netstats)
11081 {
11082 	int cpu;
11083 
11084 	for_each_possible_cpu(cpu) {
11085 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11086 		const struct pcpu_sw_netstats *stats;
11087 		unsigned int start;
11088 
11089 		stats = per_cpu_ptr(netstats, cpu);
11090 		do {
11091 			start = u64_stats_fetch_begin(&stats->syncp);
11092 			rx_packets = u64_stats_read(&stats->rx_packets);
11093 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11094 			tx_packets = u64_stats_read(&stats->tx_packets);
11095 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11096 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11097 
11098 		s->rx_packets += rx_packets;
11099 		s->rx_bytes   += rx_bytes;
11100 		s->tx_packets += tx_packets;
11101 		s->tx_bytes   += tx_bytes;
11102 	}
11103 }
11104 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11105 
11106 /**
11107  *	dev_get_tstats64 - ndo_get_stats64 implementation
11108  *	@dev: device to get statistics from
11109  *	@s: place to store stats
11110  *
11111  *	Populate @s from dev->stats and dev->tstats. Can be used as
11112  *	ndo_get_stats64() callback.
11113  */
11114 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11115 {
11116 	netdev_stats_to_stats64(s, &dev->stats);
11117 	dev_fetch_sw_netstats(s, dev->tstats);
11118 }
11119 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11120 
11121 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11122 {
11123 	struct netdev_queue *queue = dev_ingress_queue(dev);
11124 
11125 #ifdef CONFIG_NET_CLS_ACT
11126 	if (queue)
11127 		return queue;
11128 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11129 	if (!queue)
11130 		return NULL;
11131 	netdev_init_one_queue(dev, queue, NULL);
11132 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11133 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11134 	rcu_assign_pointer(dev->ingress_queue, queue);
11135 #endif
11136 	return queue;
11137 }
11138 
11139 static const struct ethtool_ops default_ethtool_ops;
11140 
11141 void netdev_set_default_ethtool_ops(struct net_device *dev,
11142 				    const struct ethtool_ops *ops)
11143 {
11144 	if (dev->ethtool_ops == &default_ethtool_ops)
11145 		dev->ethtool_ops = ops;
11146 }
11147 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11148 
11149 /**
11150  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11151  * @dev: netdev to enable the IRQ coalescing on
11152  *
11153  * Sets a conservative default for SW IRQ coalescing. Users can use
11154  * sysfs attributes to override the default values.
11155  */
11156 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11157 {
11158 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11159 
11160 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11161 		netdev_set_gro_flush_timeout(dev, 20000);
11162 		netdev_set_defer_hard_irqs(dev, 1);
11163 	}
11164 }
11165 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11166 
11167 /**
11168  * alloc_netdev_mqs - allocate network device
11169  * @sizeof_priv: size of private data to allocate space for
11170  * @name: device name format string
11171  * @name_assign_type: origin of device name
11172  * @setup: callback to initialize device
11173  * @txqs: the number of TX subqueues to allocate
11174  * @rxqs: the number of RX subqueues to allocate
11175  *
11176  * Allocates a struct net_device with private data area for driver use
11177  * and performs basic initialization.  Also allocates subqueue structs
11178  * for each queue on the device.
11179  */
11180 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11181 		unsigned char name_assign_type,
11182 		void (*setup)(struct net_device *),
11183 		unsigned int txqs, unsigned int rxqs)
11184 {
11185 	struct net_device *dev;
11186 	size_t napi_config_sz;
11187 	unsigned int maxqs;
11188 
11189 	BUG_ON(strlen(name) >= sizeof(dev->name));
11190 
11191 	if (txqs < 1) {
11192 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11193 		return NULL;
11194 	}
11195 
11196 	if (rxqs < 1) {
11197 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11198 		return NULL;
11199 	}
11200 
11201 	maxqs = max(txqs, rxqs);
11202 
11203 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11204 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11205 	if (!dev)
11206 		return NULL;
11207 
11208 	dev->priv_len = sizeof_priv;
11209 
11210 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11211 #ifdef CONFIG_PCPU_DEV_REFCNT
11212 	dev->pcpu_refcnt = alloc_percpu(int);
11213 	if (!dev->pcpu_refcnt)
11214 		goto free_dev;
11215 	__dev_hold(dev);
11216 #else
11217 	refcount_set(&dev->dev_refcnt, 1);
11218 #endif
11219 
11220 	if (dev_addr_init(dev))
11221 		goto free_pcpu;
11222 
11223 	dev_mc_init(dev);
11224 	dev_uc_init(dev);
11225 
11226 	dev_net_set(dev, &init_net);
11227 
11228 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11229 	dev->xdp_zc_max_segs = 1;
11230 	dev->gso_max_segs = GSO_MAX_SEGS;
11231 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11232 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11233 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11234 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11235 	dev->tso_max_segs = TSO_MAX_SEGS;
11236 	dev->upper_level = 1;
11237 	dev->lower_level = 1;
11238 #ifdef CONFIG_LOCKDEP
11239 	dev->nested_level = 0;
11240 	INIT_LIST_HEAD(&dev->unlink_list);
11241 #endif
11242 
11243 	INIT_LIST_HEAD(&dev->napi_list);
11244 	INIT_LIST_HEAD(&dev->unreg_list);
11245 	INIT_LIST_HEAD(&dev->close_list);
11246 	INIT_LIST_HEAD(&dev->link_watch_list);
11247 	INIT_LIST_HEAD(&dev->adj_list.upper);
11248 	INIT_LIST_HEAD(&dev->adj_list.lower);
11249 	INIT_LIST_HEAD(&dev->ptype_all);
11250 	INIT_LIST_HEAD(&dev->ptype_specific);
11251 	INIT_LIST_HEAD(&dev->net_notifier_list);
11252 #ifdef CONFIG_NET_SCHED
11253 	hash_init(dev->qdisc_hash);
11254 #endif
11255 
11256 	mutex_init(&dev->lock);
11257 
11258 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11259 	setup(dev);
11260 
11261 	if (!dev->tx_queue_len) {
11262 		dev->priv_flags |= IFF_NO_QUEUE;
11263 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11264 	}
11265 
11266 	dev->num_tx_queues = txqs;
11267 	dev->real_num_tx_queues = txqs;
11268 	if (netif_alloc_netdev_queues(dev))
11269 		goto free_all;
11270 
11271 	dev->num_rx_queues = rxqs;
11272 	dev->real_num_rx_queues = rxqs;
11273 	if (netif_alloc_rx_queues(dev))
11274 		goto free_all;
11275 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11276 	if (!dev->ethtool)
11277 		goto free_all;
11278 
11279 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11280 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11281 	if (!dev->napi_config)
11282 		goto free_all;
11283 
11284 	strscpy(dev->name, name);
11285 	dev->name_assign_type = name_assign_type;
11286 	dev->group = INIT_NETDEV_GROUP;
11287 	if (!dev->ethtool_ops)
11288 		dev->ethtool_ops = &default_ethtool_ops;
11289 
11290 	nf_hook_netdev_init(dev);
11291 
11292 	return dev;
11293 
11294 free_all:
11295 	free_netdev(dev);
11296 	return NULL;
11297 
11298 free_pcpu:
11299 #ifdef CONFIG_PCPU_DEV_REFCNT
11300 	free_percpu(dev->pcpu_refcnt);
11301 free_dev:
11302 #endif
11303 	kvfree(dev);
11304 	return NULL;
11305 }
11306 EXPORT_SYMBOL(alloc_netdev_mqs);
11307 
11308 /**
11309  * free_netdev - free network device
11310  * @dev: device
11311  *
11312  * This function does the last stage of destroying an allocated device
11313  * interface. The reference to the device object is released. If this
11314  * is the last reference then it will be freed.Must be called in process
11315  * context.
11316  */
11317 void free_netdev(struct net_device *dev)
11318 {
11319 	struct napi_struct *p, *n;
11320 
11321 	might_sleep();
11322 
11323 	/* When called immediately after register_netdevice() failed the unwind
11324 	 * handling may still be dismantling the device. Handle that case by
11325 	 * deferring the free.
11326 	 */
11327 	if (dev->reg_state == NETREG_UNREGISTERING) {
11328 		ASSERT_RTNL();
11329 		dev->needs_free_netdev = true;
11330 		return;
11331 	}
11332 
11333 	mutex_destroy(&dev->lock);
11334 
11335 	kfree(dev->ethtool);
11336 	netif_free_tx_queues(dev);
11337 	netif_free_rx_queues(dev);
11338 
11339 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11340 
11341 	/* Flush device addresses */
11342 	dev_addr_flush(dev);
11343 
11344 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11345 		netif_napi_del(p);
11346 
11347 	kvfree(dev->napi_config);
11348 
11349 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11350 #ifdef CONFIG_PCPU_DEV_REFCNT
11351 	free_percpu(dev->pcpu_refcnt);
11352 	dev->pcpu_refcnt = NULL;
11353 #endif
11354 	free_percpu(dev->core_stats);
11355 	dev->core_stats = NULL;
11356 	free_percpu(dev->xdp_bulkq);
11357 	dev->xdp_bulkq = NULL;
11358 
11359 	netdev_free_phy_link_topology(dev);
11360 
11361 	/*  Compatibility with error handling in drivers */
11362 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11363 	    dev->reg_state == NETREG_DUMMY) {
11364 		kvfree(dev);
11365 		return;
11366 	}
11367 
11368 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11369 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11370 
11371 	/* will free via device release */
11372 	put_device(&dev->dev);
11373 }
11374 EXPORT_SYMBOL(free_netdev);
11375 
11376 /**
11377  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11378  * @sizeof_priv: size of private data to allocate space for
11379  *
11380  * Return: the allocated net_device on success, NULL otherwise
11381  */
11382 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11383 {
11384 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11385 			    init_dummy_netdev_core);
11386 }
11387 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11388 
11389 /**
11390  *	synchronize_net -  Synchronize with packet receive processing
11391  *
11392  *	Wait for packets currently being received to be done.
11393  *	Does not block later packets from starting.
11394  */
11395 void synchronize_net(void)
11396 {
11397 	might_sleep();
11398 	if (rtnl_is_locked())
11399 		synchronize_rcu_expedited();
11400 	else
11401 		synchronize_rcu();
11402 }
11403 EXPORT_SYMBOL(synchronize_net);
11404 
11405 static void netdev_rss_contexts_free(struct net_device *dev)
11406 {
11407 	struct ethtool_rxfh_context *ctx;
11408 	unsigned long context;
11409 
11410 	mutex_lock(&dev->ethtool->rss_lock);
11411 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11412 		struct ethtool_rxfh_param rxfh;
11413 
11414 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11415 		rxfh.key = ethtool_rxfh_context_key(ctx);
11416 		rxfh.hfunc = ctx->hfunc;
11417 		rxfh.input_xfrm = ctx->input_xfrm;
11418 		rxfh.rss_context = context;
11419 		rxfh.rss_delete = true;
11420 
11421 		xa_erase(&dev->ethtool->rss_ctx, context);
11422 		if (dev->ethtool_ops->create_rxfh_context)
11423 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11424 							      context, NULL);
11425 		else
11426 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11427 		kfree(ctx);
11428 	}
11429 	xa_destroy(&dev->ethtool->rss_ctx);
11430 	mutex_unlock(&dev->ethtool->rss_lock);
11431 }
11432 
11433 /**
11434  *	unregister_netdevice_queue - remove device from the kernel
11435  *	@dev: device
11436  *	@head: list
11437  *
11438  *	This function shuts down a device interface and removes it
11439  *	from the kernel tables.
11440  *	If head not NULL, device is queued to be unregistered later.
11441  *
11442  *	Callers must hold the rtnl semaphore.  You may want
11443  *	unregister_netdev() instead of this.
11444  */
11445 
11446 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11447 {
11448 	ASSERT_RTNL();
11449 
11450 	if (head) {
11451 		list_move_tail(&dev->unreg_list, head);
11452 	} else {
11453 		LIST_HEAD(single);
11454 
11455 		list_add(&dev->unreg_list, &single);
11456 		unregister_netdevice_many(&single);
11457 	}
11458 }
11459 EXPORT_SYMBOL(unregister_netdevice_queue);
11460 
11461 void unregister_netdevice_many_notify(struct list_head *head,
11462 				      u32 portid, const struct nlmsghdr *nlh)
11463 {
11464 	struct net_device *dev, *tmp;
11465 	LIST_HEAD(close_head);
11466 	int cnt = 0;
11467 
11468 	BUG_ON(dev_boot_phase);
11469 	ASSERT_RTNL();
11470 
11471 	if (list_empty(head))
11472 		return;
11473 
11474 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11475 		/* Some devices call without registering
11476 		 * for initialization unwind. Remove those
11477 		 * devices and proceed with the remaining.
11478 		 */
11479 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11480 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11481 				 dev->name, dev);
11482 
11483 			WARN_ON(1);
11484 			list_del(&dev->unreg_list);
11485 			continue;
11486 		}
11487 		dev->dismantle = true;
11488 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11489 	}
11490 
11491 	/* If device is running, close it first. */
11492 	list_for_each_entry(dev, head, unreg_list)
11493 		list_add_tail(&dev->close_list, &close_head);
11494 	dev_close_many(&close_head, true);
11495 
11496 	list_for_each_entry(dev, head, unreg_list) {
11497 		/* And unlink it from device chain. */
11498 		unlist_netdevice(dev);
11499 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11500 	}
11501 	flush_all_backlogs();
11502 
11503 	synchronize_net();
11504 
11505 	list_for_each_entry(dev, head, unreg_list) {
11506 		struct sk_buff *skb = NULL;
11507 
11508 		/* Shutdown queueing discipline. */
11509 		dev_shutdown(dev);
11510 		dev_tcx_uninstall(dev);
11511 		dev_xdp_uninstall(dev);
11512 		bpf_dev_bound_netdev_unregister(dev);
11513 		dev_dmabuf_uninstall(dev);
11514 
11515 		netdev_offload_xstats_disable_all(dev);
11516 
11517 		/* Notify protocols, that we are about to destroy
11518 		 * this device. They should clean all the things.
11519 		 */
11520 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11521 
11522 		if (!dev->rtnl_link_ops ||
11523 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11524 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11525 						     GFP_KERNEL, NULL, 0,
11526 						     portid, nlh);
11527 
11528 		/*
11529 		 *	Flush the unicast and multicast chains
11530 		 */
11531 		dev_uc_flush(dev);
11532 		dev_mc_flush(dev);
11533 
11534 		netdev_name_node_alt_flush(dev);
11535 		netdev_name_node_free(dev->name_node);
11536 
11537 		netdev_rss_contexts_free(dev);
11538 
11539 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11540 
11541 		if (dev->netdev_ops->ndo_uninit)
11542 			dev->netdev_ops->ndo_uninit(dev);
11543 
11544 		mutex_destroy(&dev->ethtool->rss_lock);
11545 
11546 		net_shaper_flush_netdev(dev);
11547 
11548 		if (skb)
11549 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11550 
11551 		/* Notifier chain MUST detach us all upper devices. */
11552 		WARN_ON(netdev_has_any_upper_dev(dev));
11553 		WARN_ON(netdev_has_any_lower_dev(dev));
11554 
11555 		/* Remove entries from kobject tree */
11556 		netdev_unregister_kobject(dev);
11557 #ifdef CONFIG_XPS
11558 		/* Remove XPS queueing entries */
11559 		netif_reset_xps_queues_gt(dev, 0);
11560 #endif
11561 	}
11562 
11563 	synchronize_net();
11564 
11565 	list_for_each_entry(dev, head, unreg_list) {
11566 		netdev_put(dev, &dev->dev_registered_tracker);
11567 		net_set_todo(dev);
11568 		cnt++;
11569 	}
11570 	atomic_add(cnt, &dev_unreg_count);
11571 
11572 	list_del(head);
11573 }
11574 
11575 /**
11576  *	unregister_netdevice_many - unregister many devices
11577  *	@head: list of devices
11578  *
11579  *  Note: As most callers use a stack allocated list_head,
11580  *  we force a list_del() to make sure stack won't be corrupted later.
11581  */
11582 void unregister_netdevice_many(struct list_head *head)
11583 {
11584 	unregister_netdevice_many_notify(head, 0, NULL);
11585 }
11586 EXPORT_SYMBOL(unregister_netdevice_many);
11587 
11588 /**
11589  *	unregister_netdev - remove device from the kernel
11590  *	@dev: device
11591  *
11592  *	This function shuts down a device interface and removes it
11593  *	from the kernel tables.
11594  *
11595  *	This is just a wrapper for unregister_netdevice that takes
11596  *	the rtnl semaphore.  In general you want to use this and not
11597  *	unregister_netdevice.
11598  */
11599 void unregister_netdev(struct net_device *dev)
11600 {
11601 	rtnl_lock();
11602 	unregister_netdevice(dev);
11603 	rtnl_unlock();
11604 }
11605 EXPORT_SYMBOL(unregister_netdev);
11606 
11607 /**
11608  *	__dev_change_net_namespace - move device to different nethost namespace
11609  *	@dev: device
11610  *	@net: network namespace
11611  *	@pat: If not NULL name pattern to try if the current device name
11612  *	      is already taken in the destination network namespace.
11613  *	@new_ifindex: If not zero, specifies device index in the target
11614  *	              namespace.
11615  *
11616  *	This function shuts down a device interface and moves it
11617  *	to a new network namespace. On success 0 is returned, on
11618  *	a failure a netagive errno code is returned.
11619  *
11620  *	Callers must hold the rtnl semaphore.
11621  */
11622 
11623 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11624 			       const char *pat, int new_ifindex)
11625 {
11626 	struct netdev_name_node *name_node;
11627 	struct net *net_old = dev_net(dev);
11628 	char new_name[IFNAMSIZ] = {};
11629 	int err, new_nsid;
11630 
11631 	ASSERT_RTNL();
11632 
11633 	/* Don't allow namespace local devices to be moved. */
11634 	err = -EINVAL;
11635 	if (dev->netns_local)
11636 		goto out;
11637 
11638 	/* Ensure the device has been registered */
11639 	if (dev->reg_state != NETREG_REGISTERED)
11640 		goto out;
11641 
11642 	/* Get out if there is nothing todo */
11643 	err = 0;
11644 	if (net_eq(net_old, net))
11645 		goto out;
11646 
11647 	/* Pick the destination device name, and ensure
11648 	 * we can use it in the destination network namespace.
11649 	 */
11650 	err = -EEXIST;
11651 	if (netdev_name_in_use(net, dev->name)) {
11652 		/* We get here if we can't use the current device name */
11653 		if (!pat)
11654 			goto out;
11655 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11656 		if (err < 0)
11657 			goto out;
11658 	}
11659 	/* Check that none of the altnames conflicts. */
11660 	err = -EEXIST;
11661 	netdev_for_each_altname(dev, name_node)
11662 		if (netdev_name_in_use(net, name_node->name))
11663 			goto out;
11664 
11665 	/* Check that new_ifindex isn't used yet. */
11666 	if (new_ifindex) {
11667 		err = dev_index_reserve(net, new_ifindex);
11668 		if (err < 0)
11669 			goto out;
11670 	} else {
11671 		/* If there is an ifindex conflict assign a new one */
11672 		err = dev_index_reserve(net, dev->ifindex);
11673 		if (err == -EBUSY)
11674 			err = dev_index_reserve(net, 0);
11675 		if (err < 0)
11676 			goto out;
11677 		new_ifindex = err;
11678 	}
11679 
11680 	/*
11681 	 * And now a mini version of register_netdevice unregister_netdevice.
11682 	 */
11683 
11684 	/* If device is running close it first. */
11685 	dev_close(dev);
11686 
11687 	/* And unlink it from device chain */
11688 	unlist_netdevice(dev);
11689 
11690 	synchronize_net();
11691 
11692 	/* Shutdown queueing discipline. */
11693 	dev_shutdown(dev);
11694 
11695 	/* Notify protocols, that we are about to destroy
11696 	 * this device. They should clean all the things.
11697 	 *
11698 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11699 	 * This is wanted because this way 8021q and macvlan know
11700 	 * the device is just moving and can keep their slaves up.
11701 	 */
11702 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11703 	rcu_barrier();
11704 
11705 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11706 
11707 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11708 			    new_ifindex);
11709 
11710 	/*
11711 	 *	Flush the unicast and multicast chains
11712 	 */
11713 	dev_uc_flush(dev);
11714 	dev_mc_flush(dev);
11715 
11716 	/* Send a netdev-removed uevent to the old namespace */
11717 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11718 	netdev_adjacent_del_links(dev);
11719 
11720 	/* Move per-net netdevice notifiers that are following the netdevice */
11721 	move_netdevice_notifiers_dev_net(dev, net);
11722 
11723 	/* Actually switch the network namespace */
11724 	dev_net_set(dev, net);
11725 	dev->ifindex = new_ifindex;
11726 
11727 	if (new_name[0]) {
11728 		/* Rename the netdev to prepared name */
11729 		write_seqlock_bh(&netdev_rename_lock);
11730 		strscpy(dev->name, new_name, IFNAMSIZ);
11731 		write_sequnlock_bh(&netdev_rename_lock);
11732 	}
11733 
11734 	/* Fixup kobjects */
11735 	dev_set_uevent_suppress(&dev->dev, 1);
11736 	err = device_rename(&dev->dev, dev->name);
11737 	dev_set_uevent_suppress(&dev->dev, 0);
11738 	WARN_ON(err);
11739 
11740 	/* Send a netdev-add uevent to the new namespace */
11741 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11742 	netdev_adjacent_add_links(dev);
11743 
11744 	/* Adapt owner in case owning user namespace of target network
11745 	 * namespace is different from the original one.
11746 	 */
11747 	err = netdev_change_owner(dev, net_old, net);
11748 	WARN_ON(err);
11749 
11750 	/* Add the device back in the hashes */
11751 	list_netdevice(dev);
11752 
11753 	/* Notify protocols, that a new device appeared. */
11754 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11755 
11756 	/*
11757 	 *	Prevent userspace races by waiting until the network
11758 	 *	device is fully setup before sending notifications.
11759 	 */
11760 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11761 
11762 	synchronize_net();
11763 	err = 0;
11764 out:
11765 	return err;
11766 }
11767 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11768 
11769 static int dev_cpu_dead(unsigned int oldcpu)
11770 {
11771 	struct sk_buff **list_skb;
11772 	struct sk_buff *skb;
11773 	unsigned int cpu;
11774 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11775 
11776 	local_irq_disable();
11777 	cpu = smp_processor_id();
11778 	sd = &per_cpu(softnet_data, cpu);
11779 	oldsd = &per_cpu(softnet_data, oldcpu);
11780 
11781 	/* Find end of our completion_queue. */
11782 	list_skb = &sd->completion_queue;
11783 	while (*list_skb)
11784 		list_skb = &(*list_skb)->next;
11785 	/* Append completion queue from offline CPU. */
11786 	*list_skb = oldsd->completion_queue;
11787 	oldsd->completion_queue = NULL;
11788 
11789 	/* Append output queue from offline CPU. */
11790 	if (oldsd->output_queue) {
11791 		*sd->output_queue_tailp = oldsd->output_queue;
11792 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11793 		oldsd->output_queue = NULL;
11794 		oldsd->output_queue_tailp = &oldsd->output_queue;
11795 	}
11796 	/* Append NAPI poll list from offline CPU, with one exception :
11797 	 * process_backlog() must be called by cpu owning percpu backlog.
11798 	 * We properly handle process_queue & input_pkt_queue later.
11799 	 */
11800 	while (!list_empty(&oldsd->poll_list)) {
11801 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11802 							    struct napi_struct,
11803 							    poll_list);
11804 
11805 		list_del_init(&napi->poll_list);
11806 		if (napi->poll == process_backlog)
11807 			napi->state &= NAPIF_STATE_THREADED;
11808 		else
11809 			____napi_schedule(sd, napi);
11810 	}
11811 
11812 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11813 	local_irq_enable();
11814 
11815 	if (!use_backlog_threads()) {
11816 #ifdef CONFIG_RPS
11817 		remsd = oldsd->rps_ipi_list;
11818 		oldsd->rps_ipi_list = NULL;
11819 #endif
11820 		/* send out pending IPI's on offline CPU */
11821 		net_rps_send_ipi(remsd);
11822 	}
11823 
11824 	/* Process offline CPU's input_pkt_queue */
11825 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11826 		netif_rx(skb);
11827 		rps_input_queue_head_incr(oldsd);
11828 	}
11829 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11830 		netif_rx(skb);
11831 		rps_input_queue_head_incr(oldsd);
11832 	}
11833 
11834 	return 0;
11835 }
11836 
11837 /**
11838  *	netdev_increment_features - increment feature set by one
11839  *	@all: current feature set
11840  *	@one: new feature set
11841  *	@mask: mask feature set
11842  *
11843  *	Computes a new feature set after adding a device with feature set
11844  *	@one to the master device with current feature set @all.  Will not
11845  *	enable anything that is off in @mask. Returns the new feature set.
11846  */
11847 netdev_features_t netdev_increment_features(netdev_features_t all,
11848 	netdev_features_t one, netdev_features_t mask)
11849 {
11850 	if (mask & NETIF_F_HW_CSUM)
11851 		mask |= NETIF_F_CSUM_MASK;
11852 	mask |= NETIF_F_VLAN_CHALLENGED;
11853 
11854 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11855 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11856 
11857 	/* If one device supports hw checksumming, set for all. */
11858 	if (all & NETIF_F_HW_CSUM)
11859 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11860 
11861 	return all;
11862 }
11863 EXPORT_SYMBOL(netdev_increment_features);
11864 
11865 static struct hlist_head * __net_init netdev_create_hash(void)
11866 {
11867 	int i;
11868 	struct hlist_head *hash;
11869 
11870 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11871 	if (hash != NULL)
11872 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11873 			INIT_HLIST_HEAD(&hash[i]);
11874 
11875 	return hash;
11876 }
11877 
11878 /* Initialize per network namespace state */
11879 static int __net_init netdev_init(struct net *net)
11880 {
11881 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11882 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11883 
11884 	INIT_LIST_HEAD(&net->dev_base_head);
11885 
11886 	net->dev_name_head = netdev_create_hash();
11887 	if (net->dev_name_head == NULL)
11888 		goto err_name;
11889 
11890 	net->dev_index_head = netdev_create_hash();
11891 	if (net->dev_index_head == NULL)
11892 		goto err_idx;
11893 
11894 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11895 
11896 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11897 
11898 	return 0;
11899 
11900 err_idx:
11901 	kfree(net->dev_name_head);
11902 err_name:
11903 	return -ENOMEM;
11904 }
11905 
11906 /**
11907  *	netdev_drivername - network driver for the device
11908  *	@dev: network device
11909  *
11910  *	Determine network driver for device.
11911  */
11912 const char *netdev_drivername(const struct net_device *dev)
11913 {
11914 	const struct device_driver *driver;
11915 	const struct device *parent;
11916 	const char *empty = "";
11917 
11918 	parent = dev->dev.parent;
11919 	if (!parent)
11920 		return empty;
11921 
11922 	driver = parent->driver;
11923 	if (driver && driver->name)
11924 		return driver->name;
11925 	return empty;
11926 }
11927 
11928 static void __netdev_printk(const char *level, const struct net_device *dev,
11929 			    struct va_format *vaf)
11930 {
11931 	if (dev && dev->dev.parent) {
11932 		dev_printk_emit(level[1] - '0',
11933 				dev->dev.parent,
11934 				"%s %s %s%s: %pV",
11935 				dev_driver_string(dev->dev.parent),
11936 				dev_name(dev->dev.parent),
11937 				netdev_name(dev), netdev_reg_state(dev),
11938 				vaf);
11939 	} else if (dev) {
11940 		printk("%s%s%s: %pV",
11941 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11942 	} else {
11943 		printk("%s(NULL net_device): %pV", level, vaf);
11944 	}
11945 }
11946 
11947 void netdev_printk(const char *level, const struct net_device *dev,
11948 		   const char *format, ...)
11949 {
11950 	struct va_format vaf;
11951 	va_list args;
11952 
11953 	va_start(args, format);
11954 
11955 	vaf.fmt = format;
11956 	vaf.va = &args;
11957 
11958 	__netdev_printk(level, dev, &vaf);
11959 
11960 	va_end(args);
11961 }
11962 EXPORT_SYMBOL(netdev_printk);
11963 
11964 #define define_netdev_printk_level(func, level)			\
11965 void func(const struct net_device *dev, const char *fmt, ...)	\
11966 {								\
11967 	struct va_format vaf;					\
11968 	va_list args;						\
11969 								\
11970 	va_start(args, fmt);					\
11971 								\
11972 	vaf.fmt = fmt;						\
11973 	vaf.va = &args;						\
11974 								\
11975 	__netdev_printk(level, dev, &vaf);			\
11976 								\
11977 	va_end(args);						\
11978 }								\
11979 EXPORT_SYMBOL(func);
11980 
11981 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11982 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11983 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11984 define_netdev_printk_level(netdev_err, KERN_ERR);
11985 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11986 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11987 define_netdev_printk_level(netdev_info, KERN_INFO);
11988 
11989 static void __net_exit netdev_exit(struct net *net)
11990 {
11991 	kfree(net->dev_name_head);
11992 	kfree(net->dev_index_head);
11993 	xa_destroy(&net->dev_by_index);
11994 	if (net != &init_net)
11995 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11996 }
11997 
11998 static struct pernet_operations __net_initdata netdev_net_ops = {
11999 	.init = netdev_init,
12000 	.exit = netdev_exit,
12001 };
12002 
12003 static void __net_exit default_device_exit_net(struct net *net)
12004 {
12005 	struct netdev_name_node *name_node, *tmp;
12006 	struct net_device *dev, *aux;
12007 	/*
12008 	 * Push all migratable network devices back to the
12009 	 * initial network namespace
12010 	 */
12011 	ASSERT_RTNL();
12012 	for_each_netdev_safe(net, dev, aux) {
12013 		int err;
12014 		char fb_name[IFNAMSIZ];
12015 
12016 		/* Ignore unmoveable devices (i.e. loopback) */
12017 		if (dev->netns_local)
12018 			continue;
12019 
12020 		/* Leave virtual devices for the generic cleanup */
12021 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12022 			continue;
12023 
12024 		/* Push remaining network devices to init_net */
12025 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12026 		if (netdev_name_in_use(&init_net, fb_name))
12027 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12028 
12029 		netdev_for_each_altname_safe(dev, name_node, tmp)
12030 			if (netdev_name_in_use(&init_net, name_node->name))
12031 				__netdev_name_node_alt_destroy(name_node);
12032 
12033 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12034 		if (err) {
12035 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12036 				 __func__, dev->name, err);
12037 			BUG();
12038 		}
12039 	}
12040 }
12041 
12042 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12043 {
12044 	/* At exit all network devices most be removed from a network
12045 	 * namespace.  Do this in the reverse order of registration.
12046 	 * Do this across as many network namespaces as possible to
12047 	 * improve batching efficiency.
12048 	 */
12049 	struct net_device *dev;
12050 	struct net *net;
12051 	LIST_HEAD(dev_kill_list);
12052 
12053 	rtnl_lock();
12054 	list_for_each_entry(net, net_list, exit_list) {
12055 		default_device_exit_net(net);
12056 		cond_resched();
12057 	}
12058 
12059 	list_for_each_entry(net, net_list, exit_list) {
12060 		for_each_netdev_reverse(net, dev) {
12061 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12062 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12063 			else
12064 				unregister_netdevice_queue(dev, &dev_kill_list);
12065 		}
12066 	}
12067 	unregister_netdevice_many(&dev_kill_list);
12068 	rtnl_unlock();
12069 }
12070 
12071 static struct pernet_operations __net_initdata default_device_ops = {
12072 	.exit_batch = default_device_exit_batch,
12073 };
12074 
12075 static void __init net_dev_struct_check(void)
12076 {
12077 	/* TX read-mostly hotpath */
12078 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12079 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12080 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12081 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12082 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12083 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12084 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12085 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12086 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12087 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12088 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12089 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12090 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12091 #ifdef CONFIG_XPS
12092 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12093 #endif
12094 #ifdef CONFIG_NETFILTER_EGRESS
12095 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12096 #endif
12097 #ifdef CONFIG_NET_XGRESS
12098 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12099 #endif
12100 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12101 
12102 	/* TXRX read-mostly hotpath */
12103 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12104 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12105 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12106 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12107 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12108 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12109 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12110 
12111 	/* RX read-mostly hotpath */
12112 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12113 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12114 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12115 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12116 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12117 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12118 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12119 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12120 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12121 #ifdef CONFIG_NETPOLL
12122 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12123 #endif
12124 #ifdef CONFIG_NET_XGRESS
12125 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12126 #endif
12127 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12128 }
12129 
12130 /*
12131  *	Initialize the DEV module. At boot time this walks the device list and
12132  *	unhooks any devices that fail to initialise (normally hardware not
12133  *	present) and leaves us with a valid list of present and active devices.
12134  *
12135  */
12136 
12137 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12138 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12139 
12140 static int net_page_pool_create(int cpuid)
12141 {
12142 #if IS_ENABLED(CONFIG_PAGE_POOL)
12143 	struct page_pool_params page_pool_params = {
12144 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12145 		.flags = PP_FLAG_SYSTEM_POOL,
12146 		.nid = cpu_to_mem(cpuid),
12147 	};
12148 	struct page_pool *pp_ptr;
12149 
12150 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12151 	if (IS_ERR(pp_ptr))
12152 		return -ENOMEM;
12153 
12154 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12155 #endif
12156 	return 0;
12157 }
12158 
12159 static int backlog_napi_should_run(unsigned int cpu)
12160 {
12161 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12162 	struct napi_struct *napi = &sd->backlog;
12163 
12164 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12165 }
12166 
12167 static void run_backlog_napi(unsigned int cpu)
12168 {
12169 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12170 
12171 	napi_threaded_poll_loop(&sd->backlog);
12172 }
12173 
12174 static void backlog_napi_setup(unsigned int cpu)
12175 {
12176 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12177 	struct napi_struct *napi = &sd->backlog;
12178 
12179 	napi->thread = this_cpu_read(backlog_napi);
12180 	set_bit(NAPI_STATE_THREADED, &napi->state);
12181 }
12182 
12183 static struct smp_hotplug_thread backlog_threads = {
12184 	.store			= &backlog_napi,
12185 	.thread_should_run	= backlog_napi_should_run,
12186 	.thread_fn		= run_backlog_napi,
12187 	.thread_comm		= "backlog_napi/%u",
12188 	.setup			= backlog_napi_setup,
12189 };
12190 
12191 /*
12192  *       This is called single threaded during boot, so no need
12193  *       to take the rtnl semaphore.
12194  */
12195 static int __init net_dev_init(void)
12196 {
12197 	int i, rc = -ENOMEM;
12198 
12199 	BUG_ON(!dev_boot_phase);
12200 
12201 	net_dev_struct_check();
12202 
12203 	if (dev_proc_init())
12204 		goto out;
12205 
12206 	if (netdev_kobject_init())
12207 		goto out;
12208 
12209 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12210 		INIT_LIST_HEAD(&ptype_base[i]);
12211 
12212 	if (register_pernet_subsys(&netdev_net_ops))
12213 		goto out;
12214 
12215 	/*
12216 	 *	Initialise the packet receive queues.
12217 	 */
12218 
12219 	for_each_possible_cpu(i) {
12220 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12221 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12222 
12223 		INIT_WORK(flush, flush_backlog);
12224 
12225 		skb_queue_head_init(&sd->input_pkt_queue);
12226 		skb_queue_head_init(&sd->process_queue);
12227 #ifdef CONFIG_XFRM_OFFLOAD
12228 		skb_queue_head_init(&sd->xfrm_backlog);
12229 #endif
12230 		INIT_LIST_HEAD(&sd->poll_list);
12231 		sd->output_queue_tailp = &sd->output_queue;
12232 #ifdef CONFIG_RPS
12233 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12234 		sd->cpu = i;
12235 #endif
12236 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12237 		spin_lock_init(&sd->defer_lock);
12238 
12239 		init_gro_hash(&sd->backlog);
12240 		sd->backlog.poll = process_backlog;
12241 		sd->backlog.weight = weight_p;
12242 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12243 
12244 		if (net_page_pool_create(i))
12245 			goto out;
12246 	}
12247 	if (use_backlog_threads())
12248 		smpboot_register_percpu_thread(&backlog_threads);
12249 
12250 	dev_boot_phase = 0;
12251 
12252 	/* The loopback device is special if any other network devices
12253 	 * is present in a network namespace the loopback device must
12254 	 * be present. Since we now dynamically allocate and free the
12255 	 * loopback device ensure this invariant is maintained by
12256 	 * keeping the loopback device as the first device on the
12257 	 * list of network devices.  Ensuring the loopback devices
12258 	 * is the first device that appears and the last network device
12259 	 * that disappears.
12260 	 */
12261 	if (register_pernet_device(&loopback_net_ops))
12262 		goto out;
12263 
12264 	if (register_pernet_device(&default_device_ops))
12265 		goto out;
12266 
12267 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12268 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12269 
12270 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12271 				       NULL, dev_cpu_dead);
12272 	WARN_ON(rc < 0);
12273 	rc = 0;
12274 
12275 	/* avoid static key IPIs to isolated CPUs */
12276 	if (housekeeping_enabled(HK_TYPE_MISC))
12277 		net_enable_timestamp();
12278 out:
12279 	if (rc < 0) {
12280 		for_each_possible_cpu(i) {
12281 			struct page_pool *pp_ptr;
12282 
12283 			pp_ptr = per_cpu(system_page_pool, i);
12284 			if (!pp_ptr)
12285 				continue;
12286 
12287 			page_pool_destroy(pp_ptr);
12288 			per_cpu(system_page_pool, i) = NULL;
12289 		}
12290 	}
12291 
12292 	return rc;
12293 }
12294 
12295 subsys_initcall(net_dev_init);
12296