xref: /linux/net/core/dev.c (revision f9aa1fb9f8c0542f5f6e6e620de320995d5622ad)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dsa.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/gro.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <net/tcx.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
128 #include <net/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
160 #include <net/rps.h>
161 #include <linux/phy_link_topology.h>
162 
163 #include "dev.h"
164 #include "devmem.h"
165 #include "net-sysfs.h"
166 
167 static DEFINE_SPINLOCK(ptype_lock);
168 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
169 
170 static int netif_rx_internal(struct sk_buff *skb);
171 static int call_netdevice_notifiers_extack(unsigned long val,
172 					   struct net_device *dev,
173 					   struct netlink_ext_ack *extack);
174 
175 static DEFINE_MUTEX(ifalias_mutex);
176 
177 /* protects napi_hash addition/deletion and napi_gen_id */
178 static DEFINE_SPINLOCK(napi_hash_lock);
179 
180 static unsigned int napi_gen_id = NR_CPUS;
181 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
182 
183 static DECLARE_RWSEM(devnet_rename_sem);
184 
185 static inline void dev_base_seq_inc(struct net *net)
186 {
187 	unsigned int val = net->dev_base_seq + 1;
188 
189 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
190 }
191 
192 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
193 {
194 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
195 
196 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
197 }
198 
199 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
200 {
201 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
202 }
203 
204 #ifndef CONFIG_PREEMPT_RT
205 
206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
207 
208 static int __init setup_backlog_napi_threads(char *arg)
209 {
210 	static_branch_enable(&use_backlog_threads_key);
211 	return 0;
212 }
213 early_param("thread_backlog_napi", setup_backlog_napi_threads);
214 
215 static bool use_backlog_threads(void)
216 {
217 	return static_branch_unlikely(&use_backlog_threads_key);
218 }
219 
220 #else
221 
222 static bool use_backlog_threads(void)
223 {
224 	return true;
225 }
226 
227 #endif
228 
229 static inline void backlog_lock_irq_save(struct softnet_data *sd,
230 					 unsigned long *flags)
231 {
232 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234 	else
235 		local_irq_save(*flags);
236 }
237 
238 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
239 {
240 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241 		spin_lock_irq(&sd->input_pkt_queue.lock);
242 	else
243 		local_irq_disable();
244 }
245 
246 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247 					      unsigned long *flags)
248 {
249 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251 	else
252 		local_irq_restore(*flags);
253 }
254 
255 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
256 {
257 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 		spin_unlock_irq(&sd->input_pkt_queue.lock);
259 	else
260 		local_irq_enable();
261 }
262 
263 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264 						       const char *name)
265 {
266 	struct netdev_name_node *name_node;
267 
268 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269 	if (!name_node)
270 		return NULL;
271 	INIT_HLIST_NODE(&name_node->hlist);
272 	name_node->dev = dev;
273 	name_node->name = name;
274 	return name_node;
275 }
276 
277 static struct netdev_name_node *
278 netdev_name_node_head_alloc(struct net_device *dev)
279 {
280 	struct netdev_name_node *name_node;
281 
282 	name_node = netdev_name_node_alloc(dev, dev->name);
283 	if (!name_node)
284 		return NULL;
285 	INIT_LIST_HEAD(&name_node->list);
286 	return name_node;
287 }
288 
289 static void netdev_name_node_free(struct netdev_name_node *name_node)
290 {
291 	kfree(name_node);
292 }
293 
294 static void netdev_name_node_add(struct net *net,
295 				 struct netdev_name_node *name_node)
296 {
297 	hlist_add_head_rcu(&name_node->hlist,
298 			   dev_name_hash(net, name_node->name));
299 }
300 
301 static void netdev_name_node_del(struct netdev_name_node *name_node)
302 {
303 	hlist_del_rcu(&name_node->hlist);
304 }
305 
306 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307 							const char *name)
308 {
309 	struct hlist_head *head = dev_name_hash(net, name);
310 	struct netdev_name_node *name_node;
311 
312 	hlist_for_each_entry(name_node, head, hlist)
313 		if (!strcmp(name_node->name, name))
314 			return name_node;
315 	return NULL;
316 }
317 
318 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319 							    const char *name)
320 {
321 	struct hlist_head *head = dev_name_hash(net, name);
322 	struct netdev_name_node *name_node;
323 
324 	hlist_for_each_entry_rcu(name_node, head, hlist)
325 		if (!strcmp(name_node->name, name))
326 			return name_node;
327 	return NULL;
328 }
329 
330 bool netdev_name_in_use(struct net *net, const char *name)
331 {
332 	return netdev_name_node_lookup(net, name);
333 }
334 EXPORT_SYMBOL(netdev_name_in_use);
335 
336 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
337 {
338 	struct netdev_name_node *name_node;
339 	struct net *net = dev_net(dev);
340 
341 	name_node = netdev_name_node_lookup(net, name);
342 	if (name_node)
343 		return -EEXIST;
344 	name_node = netdev_name_node_alloc(dev, name);
345 	if (!name_node)
346 		return -ENOMEM;
347 	netdev_name_node_add(net, name_node);
348 	/* The node that holds dev->name acts as a head of per-device list. */
349 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
350 
351 	return 0;
352 }
353 
354 static void netdev_name_node_alt_free(struct rcu_head *head)
355 {
356 	struct netdev_name_node *name_node =
357 		container_of(head, struct netdev_name_node, rcu);
358 
359 	kfree(name_node->name);
360 	netdev_name_node_free(name_node);
361 }
362 
363 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
364 {
365 	netdev_name_node_del(name_node);
366 	list_del(&name_node->list);
367 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
368 }
369 
370 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
371 {
372 	struct netdev_name_node *name_node;
373 	struct net *net = dev_net(dev);
374 
375 	name_node = netdev_name_node_lookup(net, name);
376 	if (!name_node)
377 		return -ENOENT;
378 	/* lookup might have found our primary name or a name belonging
379 	 * to another device.
380 	 */
381 	if (name_node == dev->name_node || name_node->dev != dev)
382 		return -EINVAL;
383 
384 	__netdev_name_node_alt_destroy(name_node);
385 	return 0;
386 }
387 
388 static void netdev_name_node_alt_flush(struct net_device *dev)
389 {
390 	struct netdev_name_node *name_node, *tmp;
391 
392 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393 		list_del(&name_node->list);
394 		netdev_name_node_alt_free(&name_node->rcu);
395 	}
396 }
397 
398 /* Device list insertion */
399 static void list_netdevice(struct net_device *dev)
400 {
401 	struct netdev_name_node *name_node;
402 	struct net *net = dev_net(dev);
403 
404 	ASSERT_RTNL();
405 
406 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407 	netdev_name_node_add(net, dev->name_node);
408 	hlist_add_head_rcu(&dev->index_hlist,
409 			   dev_index_hash(net, dev->ifindex));
410 
411 	netdev_for_each_altname(dev, name_node)
412 		netdev_name_node_add(net, name_node);
413 
414 	/* We reserved the ifindex, this can't fail */
415 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
416 
417 	dev_base_seq_inc(net);
418 }
419 
420 /* Device list removal
421  * caller must respect a RCU grace period before freeing/reusing dev
422  */
423 static void unlist_netdevice(struct net_device *dev)
424 {
425 	struct netdev_name_node *name_node;
426 	struct net *net = dev_net(dev);
427 
428 	ASSERT_RTNL();
429 
430 	xa_erase(&net->dev_by_index, dev->ifindex);
431 
432 	netdev_for_each_altname(dev, name_node)
433 		netdev_name_node_del(name_node);
434 
435 	/* Unlink dev from the device chain */
436 	list_del_rcu(&dev->dev_list);
437 	netdev_name_node_del(dev->name_node);
438 	hlist_del_rcu(&dev->index_hlist);
439 
440 	dev_base_seq_inc(dev_net(dev));
441 }
442 
443 /*
444  *	Our notifier list
445  */
446 
447 static RAW_NOTIFIER_HEAD(netdev_chain);
448 
449 /*
450  *	Device drivers call our routines to queue packets here. We empty the
451  *	queue in the local softnet handler.
452  */
453 
454 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
456 };
457 EXPORT_PER_CPU_SYMBOL(softnet_data);
458 
459 /* Page_pool has a lockless array/stack to alloc/recycle pages.
460  * PP consumers must pay attention to run APIs in the appropriate context
461  * (e.g. NAPI context).
462  */
463 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
464 
465 #ifdef CONFIG_LOCKDEP
466 /*
467  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468  * according to dev->type
469  */
470 static const unsigned short netdev_lock_type[] = {
471 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
486 
487 static const char *const netdev_lock_name[] = {
488 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
503 
504 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
506 
507 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
508 {
509 	int i;
510 
511 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512 		if (netdev_lock_type[i] == dev_type)
513 			return i;
514 	/* the last key is used by default */
515 	return ARRAY_SIZE(netdev_lock_type) - 1;
516 }
517 
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 						 unsigned short dev_type)
520 {
521 	int i;
522 
523 	i = netdev_lock_pos(dev_type);
524 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525 				   netdev_lock_name[i]);
526 }
527 
528 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529 {
530 	int i;
531 
532 	i = netdev_lock_pos(dev->type);
533 	lockdep_set_class_and_name(&dev->addr_list_lock,
534 				   &netdev_addr_lock_key[i],
535 				   netdev_lock_name[i]);
536 }
537 #else
538 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539 						 unsigned short dev_type)
540 {
541 }
542 
543 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
544 {
545 }
546 #endif
547 
548 /*******************************************************************************
549  *
550  *		Protocol management and registration routines
551  *
552  *******************************************************************************/
553 
554 
555 /*
556  *	Add a protocol ID to the list. Now that the input handler is
557  *	smarter we can dispense with all the messy stuff that used to be
558  *	here.
559  *
560  *	BEWARE!!! Protocol handlers, mangling input packets,
561  *	MUST BE last in hash buckets and checking protocol handlers
562  *	MUST start from promiscuous ptype_all chain in net_bh.
563  *	It is true now, do not change it.
564  *	Explanation follows: if protocol handler, mangling packet, will
565  *	be the first on list, it is not able to sense, that packet
566  *	is cloned and should be copied-on-write, so that it will
567  *	change it and subsequent readers will get broken packet.
568  *							--ANK (980803)
569  */
570 
571 static inline struct list_head *ptype_head(const struct packet_type *pt)
572 {
573 	if (pt->type == htons(ETH_P_ALL))
574 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575 	else
576 		return pt->dev ? &pt->dev->ptype_specific :
577 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
578 }
579 
580 /**
581  *	dev_add_pack - add packet handler
582  *	@pt: packet type declaration
583  *
584  *	Add a protocol handler to the networking stack. The passed &packet_type
585  *	is linked into kernel lists and may not be freed until it has been
586  *	removed from the kernel lists.
587  *
588  *	This call does not sleep therefore it can not
589  *	guarantee all CPU's that are in middle of receiving packets
590  *	will see the new packet type (until the next received packet).
591  */
592 
593 void dev_add_pack(struct packet_type *pt)
594 {
595 	struct list_head *head = ptype_head(pt);
596 
597 	spin_lock(&ptype_lock);
598 	list_add_rcu(&pt->list, head);
599 	spin_unlock(&ptype_lock);
600 }
601 EXPORT_SYMBOL(dev_add_pack);
602 
603 /**
604  *	__dev_remove_pack	 - remove packet handler
605  *	@pt: packet type declaration
606  *
607  *	Remove a protocol handler that was previously added to the kernel
608  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
609  *	from the kernel lists and can be freed or reused once this function
610  *	returns.
611  *
612  *      The packet type might still be in use by receivers
613  *	and must not be freed until after all the CPU's have gone
614  *	through a quiescent state.
615  */
616 void __dev_remove_pack(struct packet_type *pt)
617 {
618 	struct list_head *head = ptype_head(pt);
619 	struct packet_type *pt1;
620 
621 	spin_lock(&ptype_lock);
622 
623 	list_for_each_entry(pt1, head, list) {
624 		if (pt == pt1) {
625 			list_del_rcu(&pt->list);
626 			goto out;
627 		}
628 	}
629 
630 	pr_warn("dev_remove_pack: %p not found\n", pt);
631 out:
632 	spin_unlock(&ptype_lock);
633 }
634 EXPORT_SYMBOL(__dev_remove_pack);
635 
636 /**
637  *	dev_remove_pack	 - remove packet handler
638  *	@pt: packet type declaration
639  *
640  *	Remove a protocol handler that was previously added to the kernel
641  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
642  *	from the kernel lists and can be freed or reused once this function
643  *	returns.
644  *
645  *	This call sleeps to guarantee that no CPU is looking at the packet
646  *	type after return.
647  */
648 void dev_remove_pack(struct packet_type *pt)
649 {
650 	__dev_remove_pack(pt);
651 
652 	synchronize_net();
653 }
654 EXPORT_SYMBOL(dev_remove_pack);
655 
656 
657 /*******************************************************************************
658  *
659  *			    Device Interface Subroutines
660  *
661  *******************************************************************************/
662 
663 /**
664  *	dev_get_iflink	- get 'iflink' value of a interface
665  *	@dev: targeted interface
666  *
667  *	Indicates the ifindex the interface is linked to.
668  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
669  */
670 
671 int dev_get_iflink(const struct net_device *dev)
672 {
673 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 		return dev->netdev_ops->ndo_get_iflink(dev);
675 
676 	return READ_ONCE(dev->ifindex);
677 }
678 EXPORT_SYMBOL(dev_get_iflink);
679 
680 /**
681  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
682  *	@dev: targeted interface
683  *	@skb: The packet.
684  *
685  *	For better visibility of tunnel traffic OVS needs to retrieve
686  *	egress tunnel information for a packet. Following API allows
687  *	user to get this info.
688  */
689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
690 {
691 	struct ip_tunnel_info *info;
692 
693 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
694 		return -EINVAL;
695 
696 	info = skb_tunnel_info_unclone(skb);
697 	if (!info)
698 		return -ENOMEM;
699 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700 		return -EINVAL;
701 
702 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
703 }
704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
705 
706 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
707 {
708 	int k = stack->num_paths++;
709 
710 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711 		return NULL;
712 
713 	return &stack->path[k];
714 }
715 
716 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717 			  struct net_device_path_stack *stack)
718 {
719 	const struct net_device *last_dev;
720 	struct net_device_path_ctx ctx = {
721 		.dev	= dev,
722 	};
723 	struct net_device_path *path;
724 	int ret = 0;
725 
726 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727 	stack->num_paths = 0;
728 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729 		last_dev = ctx.dev;
730 		path = dev_fwd_path(stack);
731 		if (!path)
732 			return -1;
733 
734 		memset(path, 0, sizeof(struct net_device_path));
735 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736 		if (ret < 0)
737 			return -1;
738 
739 		if (WARN_ON_ONCE(last_dev == ctx.dev))
740 			return -1;
741 	}
742 
743 	if (!ctx.dev)
744 		return ret;
745 
746 	path = dev_fwd_path(stack);
747 	if (!path)
748 		return -1;
749 	path->type = DEV_PATH_ETHERNET;
750 	path->dev = ctx.dev;
751 
752 	return ret;
753 }
754 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
755 
756 /**
757  *	__dev_get_by_name	- find a device by its name
758  *	@net: the applicable net namespace
759  *	@name: name to find
760  *
761  *	Find an interface by name. Must be called under RTNL semaphore.
762  *	If the name is found a pointer to the device is returned.
763  *	If the name is not found then %NULL is returned. The
764  *	reference counters are not incremented so the caller must be
765  *	careful with locks.
766  */
767 
768 struct net_device *__dev_get_by_name(struct net *net, const char *name)
769 {
770 	struct netdev_name_node *node_name;
771 
772 	node_name = netdev_name_node_lookup(net, name);
773 	return node_name ? node_name->dev : NULL;
774 }
775 EXPORT_SYMBOL(__dev_get_by_name);
776 
777 /**
778  * dev_get_by_name_rcu	- find a device by its name
779  * @net: the applicable net namespace
780  * @name: name to find
781  *
782  * Find an interface by name.
783  * If the name is found a pointer to the device is returned.
784  * If the name is not found then %NULL is returned.
785  * The reference counters are not incremented so the caller must be
786  * careful with locks. The caller must hold RCU lock.
787  */
788 
789 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
790 {
791 	struct netdev_name_node *node_name;
792 
793 	node_name = netdev_name_node_lookup_rcu(net, name);
794 	return node_name ? node_name->dev : NULL;
795 }
796 EXPORT_SYMBOL(dev_get_by_name_rcu);
797 
798 /* Deprecated for new users, call netdev_get_by_name() instead */
799 struct net_device *dev_get_by_name(struct net *net, const char *name)
800 {
801 	struct net_device *dev;
802 
803 	rcu_read_lock();
804 	dev = dev_get_by_name_rcu(net, name);
805 	dev_hold(dev);
806 	rcu_read_unlock();
807 	return dev;
808 }
809 EXPORT_SYMBOL(dev_get_by_name);
810 
811 /**
812  *	netdev_get_by_name() - find a device by its name
813  *	@net: the applicable net namespace
814  *	@name: name to find
815  *	@tracker: tracking object for the acquired reference
816  *	@gfp: allocation flags for the tracker
817  *
818  *	Find an interface by name. This can be called from any
819  *	context and does its own locking. The returned handle has
820  *	the usage count incremented and the caller must use netdev_put() to
821  *	release it when it is no longer needed. %NULL is returned if no
822  *	matching device is found.
823  */
824 struct net_device *netdev_get_by_name(struct net *net, const char *name,
825 				      netdevice_tracker *tracker, gfp_t gfp)
826 {
827 	struct net_device *dev;
828 
829 	dev = dev_get_by_name(net, name);
830 	if (dev)
831 		netdev_tracker_alloc(dev, tracker, gfp);
832 	return dev;
833 }
834 EXPORT_SYMBOL(netdev_get_by_name);
835 
836 /**
837  *	__dev_get_by_index - find a device by its ifindex
838  *	@net: the applicable net namespace
839  *	@ifindex: index of device
840  *
841  *	Search for an interface by index. Returns %NULL if the device
842  *	is not found or a pointer to the device. The device has not
843  *	had its reference counter increased so the caller must be careful
844  *	about locking. The caller must hold the RTNL semaphore.
845  */
846 
847 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
848 {
849 	struct net_device *dev;
850 	struct hlist_head *head = dev_index_hash(net, ifindex);
851 
852 	hlist_for_each_entry(dev, head, index_hlist)
853 		if (dev->ifindex == ifindex)
854 			return dev;
855 
856 	return NULL;
857 }
858 EXPORT_SYMBOL(__dev_get_by_index);
859 
860 /**
861  *	dev_get_by_index_rcu - find a device by its ifindex
862  *	@net: the applicable net namespace
863  *	@ifindex: index of device
864  *
865  *	Search for an interface by index. Returns %NULL if the device
866  *	is not found or a pointer to the device. The device has not
867  *	had its reference counter increased so the caller must be careful
868  *	about locking. The caller must hold RCU lock.
869  */
870 
871 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
872 {
873 	struct net_device *dev;
874 	struct hlist_head *head = dev_index_hash(net, ifindex);
875 
876 	hlist_for_each_entry_rcu(dev, head, index_hlist)
877 		if (dev->ifindex == ifindex)
878 			return dev;
879 
880 	return NULL;
881 }
882 EXPORT_SYMBOL(dev_get_by_index_rcu);
883 
884 /* Deprecated for new users, call netdev_get_by_index() instead */
885 struct net_device *dev_get_by_index(struct net *net, int ifindex)
886 {
887 	struct net_device *dev;
888 
889 	rcu_read_lock();
890 	dev = dev_get_by_index_rcu(net, ifindex);
891 	dev_hold(dev);
892 	rcu_read_unlock();
893 	return dev;
894 }
895 EXPORT_SYMBOL(dev_get_by_index);
896 
897 /**
898  *	netdev_get_by_index() - find a device by its ifindex
899  *	@net: the applicable net namespace
900  *	@ifindex: index of device
901  *	@tracker: tracking object for the acquired reference
902  *	@gfp: allocation flags for the tracker
903  *
904  *	Search for an interface by index. Returns NULL if the device
905  *	is not found or a pointer to the device. The device returned has
906  *	had a reference added and the pointer is safe until the user calls
907  *	netdev_put() to indicate they have finished with it.
908  */
909 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
910 				       netdevice_tracker *tracker, gfp_t gfp)
911 {
912 	struct net_device *dev;
913 
914 	dev = dev_get_by_index(net, ifindex);
915 	if (dev)
916 		netdev_tracker_alloc(dev, tracker, gfp);
917 	return dev;
918 }
919 EXPORT_SYMBOL(netdev_get_by_index);
920 
921 /**
922  *	dev_get_by_napi_id - find a device by napi_id
923  *	@napi_id: ID of the NAPI struct
924  *
925  *	Search for an interface by NAPI ID. Returns %NULL if the device
926  *	is not found or a pointer to the device. The device has not had
927  *	its reference counter increased so the caller must be careful
928  *	about locking. The caller must hold RCU lock.
929  */
930 
931 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
932 {
933 	struct napi_struct *napi;
934 
935 	WARN_ON_ONCE(!rcu_read_lock_held());
936 
937 	if (napi_id < MIN_NAPI_ID)
938 		return NULL;
939 
940 	napi = napi_by_id(napi_id);
941 
942 	return napi ? napi->dev : NULL;
943 }
944 EXPORT_SYMBOL(dev_get_by_napi_id);
945 
946 static DEFINE_SEQLOCK(netdev_rename_lock);
947 
948 void netdev_copy_name(struct net_device *dev, char *name)
949 {
950 	unsigned int seq;
951 
952 	do {
953 		seq = read_seqbegin(&netdev_rename_lock);
954 		strscpy(name, dev->name, IFNAMSIZ);
955 	} while (read_seqretry(&netdev_rename_lock, seq));
956 }
957 
958 /**
959  *	netdev_get_name - get a netdevice name, knowing its ifindex.
960  *	@net: network namespace
961  *	@name: a pointer to the buffer where the name will be stored.
962  *	@ifindex: the ifindex of the interface to get the name from.
963  */
964 int netdev_get_name(struct net *net, char *name, int ifindex)
965 {
966 	struct net_device *dev;
967 	int ret;
968 
969 	rcu_read_lock();
970 
971 	dev = dev_get_by_index_rcu(net, ifindex);
972 	if (!dev) {
973 		ret = -ENODEV;
974 		goto out;
975 	}
976 
977 	netdev_copy_name(dev, name);
978 
979 	ret = 0;
980 out:
981 	rcu_read_unlock();
982 	return ret;
983 }
984 
985 /**
986  *	dev_getbyhwaddr_rcu - find a device by its hardware address
987  *	@net: the applicable net namespace
988  *	@type: media type of device
989  *	@ha: hardware address
990  *
991  *	Search for an interface by MAC address. Returns NULL if the device
992  *	is not found or a pointer to the device.
993  *	The caller must hold RCU or RTNL.
994  *	The returned device has not had its ref count increased
995  *	and the caller must therefore be careful about locking
996  *
997  */
998 
999 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1000 				       const char *ha)
1001 {
1002 	struct net_device *dev;
1003 
1004 	for_each_netdev_rcu(net, dev)
1005 		if (dev->type == type &&
1006 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1007 			return dev;
1008 
1009 	return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1012 
1013 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1014 {
1015 	struct net_device *dev, *ret = NULL;
1016 
1017 	rcu_read_lock();
1018 	for_each_netdev_rcu(net, dev)
1019 		if (dev->type == type) {
1020 			dev_hold(dev);
1021 			ret = dev;
1022 			break;
1023 		}
1024 	rcu_read_unlock();
1025 	return ret;
1026 }
1027 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1028 
1029 /**
1030  *	__dev_get_by_flags - find any device with given flags
1031  *	@net: the applicable net namespace
1032  *	@if_flags: IFF_* values
1033  *	@mask: bitmask of bits in if_flags to check
1034  *
1035  *	Search for any interface with the given flags. Returns NULL if a device
1036  *	is not found or a pointer to the device. Must be called inside
1037  *	rtnl_lock(), and result refcount is unchanged.
1038  */
1039 
1040 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1041 				      unsigned short mask)
1042 {
1043 	struct net_device *dev, *ret;
1044 
1045 	ASSERT_RTNL();
1046 
1047 	ret = NULL;
1048 	for_each_netdev(net, dev) {
1049 		if (((dev->flags ^ if_flags) & mask) == 0) {
1050 			ret = dev;
1051 			break;
1052 		}
1053 	}
1054 	return ret;
1055 }
1056 EXPORT_SYMBOL(__dev_get_by_flags);
1057 
1058 /**
1059  *	dev_valid_name - check if name is okay for network device
1060  *	@name: name string
1061  *
1062  *	Network device names need to be valid file names to
1063  *	allow sysfs to work.  We also disallow any kind of
1064  *	whitespace.
1065  */
1066 bool dev_valid_name(const char *name)
1067 {
1068 	if (*name == '\0')
1069 		return false;
1070 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1071 		return false;
1072 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1073 		return false;
1074 
1075 	while (*name) {
1076 		if (*name == '/' || *name == ':' || isspace(*name))
1077 			return false;
1078 		name++;
1079 	}
1080 	return true;
1081 }
1082 EXPORT_SYMBOL(dev_valid_name);
1083 
1084 /**
1085  *	__dev_alloc_name - allocate a name for a device
1086  *	@net: network namespace to allocate the device name in
1087  *	@name: name format string
1088  *	@res: result name string
1089  *
1090  *	Passed a format string - eg "lt%d" it will try and find a suitable
1091  *	id. It scans list of devices to build up a free map, then chooses
1092  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1093  *	while allocating the name and adding the device in order to avoid
1094  *	duplicates.
1095  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1096  *	Returns the number of the unit assigned or a negative errno code.
1097  */
1098 
1099 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1100 {
1101 	int i = 0;
1102 	const char *p;
1103 	const int max_netdevices = 8*PAGE_SIZE;
1104 	unsigned long *inuse;
1105 	struct net_device *d;
1106 	char buf[IFNAMSIZ];
1107 
1108 	/* Verify the string as this thing may have come from the user.
1109 	 * There must be one "%d" and no other "%" characters.
1110 	 */
1111 	p = strchr(name, '%');
1112 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1113 		return -EINVAL;
1114 
1115 	/* Use one page as a bit array of possible slots */
1116 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1117 	if (!inuse)
1118 		return -ENOMEM;
1119 
1120 	for_each_netdev(net, d) {
1121 		struct netdev_name_node *name_node;
1122 
1123 		netdev_for_each_altname(d, name_node) {
1124 			if (!sscanf(name_node->name, name, &i))
1125 				continue;
1126 			if (i < 0 || i >= max_netdevices)
1127 				continue;
1128 
1129 			/* avoid cases where sscanf is not exact inverse of printf */
1130 			snprintf(buf, IFNAMSIZ, name, i);
1131 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1132 				__set_bit(i, inuse);
1133 		}
1134 		if (!sscanf(d->name, name, &i))
1135 			continue;
1136 		if (i < 0 || i >= max_netdevices)
1137 			continue;
1138 
1139 		/* avoid cases where sscanf is not exact inverse of printf */
1140 		snprintf(buf, IFNAMSIZ, name, i);
1141 		if (!strncmp(buf, d->name, IFNAMSIZ))
1142 			__set_bit(i, inuse);
1143 	}
1144 
1145 	i = find_first_zero_bit(inuse, max_netdevices);
1146 	bitmap_free(inuse);
1147 	if (i == max_netdevices)
1148 		return -ENFILE;
1149 
1150 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1151 	strscpy(buf, name, IFNAMSIZ);
1152 	snprintf(res, IFNAMSIZ, buf, i);
1153 	return i;
1154 }
1155 
1156 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1157 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1158 			       const char *want_name, char *out_name,
1159 			       int dup_errno)
1160 {
1161 	if (!dev_valid_name(want_name))
1162 		return -EINVAL;
1163 
1164 	if (strchr(want_name, '%'))
1165 		return __dev_alloc_name(net, want_name, out_name);
1166 
1167 	if (netdev_name_in_use(net, want_name))
1168 		return -dup_errno;
1169 	if (out_name != want_name)
1170 		strscpy(out_name, want_name, IFNAMSIZ);
1171 	return 0;
1172 }
1173 
1174 /**
1175  *	dev_alloc_name - allocate a name for a device
1176  *	@dev: device
1177  *	@name: name format string
1178  *
1179  *	Passed a format string - eg "lt%d" it will try and find a suitable
1180  *	id. It scans list of devices to build up a free map, then chooses
1181  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1182  *	while allocating the name and adding the device in order to avoid
1183  *	duplicates.
1184  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1185  *	Returns the number of the unit assigned or a negative errno code.
1186  */
1187 
1188 int dev_alloc_name(struct net_device *dev, const char *name)
1189 {
1190 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1191 }
1192 EXPORT_SYMBOL(dev_alloc_name);
1193 
1194 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1195 			      const char *name)
1196 {
1197 	int ret;
1198 
1199 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1200 	return ret < 0 ? ret : 0;
1201 }
1202 
1203 /**
1204  *	dev_change_name - change name of a device
1205  *	@dev: device
1206  *	@newname: name (or format string) must be at least IFNAMSIZ
1207  *
1208  *	Change name of a device, can pass format strings "eth%d".
1209  *	for wildcarding.
1210  */
1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213 	unsigned char old_assign_type;
1214 	char oldname[IFNAMSIZ];
1215 	int err = 0;
1216 	int ret;
1217 	struct net *net;
1218 
1219 	ASSERT_RTNL();
1220 	BUG_ON(!dev_net(dev));
1221 
1222 	net = dev_net(dev);
1223 
1224 	down_write(&devnet_rename_sem);
1225 
1226 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 		up_write(&devnet_rename_sem);
1228 		return 0;
1229 	}
1230 
1231 	memcpy(oldname, dev->name, IFNAMSIZ);
1232 
1233 	write_seqlock_bh(&netdev_rename_lock);
1234 	err = dev_get_valid_name(net, dev, newname);
1235 	write_sequnlock_bh(&netdev_rename_lock);
1236 
1237 	if (err < 0) {
1238 		up_write(&devnet_rename_sem);
1239 		return err;
1240 	}
1241 
1242 	if (oldname[0] && !strchr(oldname, '%'))
1243 		netdev_info(dev, "renamed from %s%s\n", oldname,
1244 			    dev->flags & IFF_UP ? " (while UP)" : "");
1245 
1246 	old_assign_type = dev->name_assign_type;
1247 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1248 
1249 rollback:
1250 	ret = device_rename(&dev->dev, dev->name);
1251 	if (ret) {
1252 		memcpy(dev->name, oldname, IFNAMSIZ);
1253 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1254 		up_write(&devnet_rename_sem);
1255 		return ret;
1256 	}
1257 
1258 	up_write(&devnet_rename_sem);
1259 
1260 	netdev_adjacent_rename_links(dev, oldname);
1261 
1262 	netdev_name_node_del(dev->name_node);
1263 
1264 	synchronize_net();
1265 
1266 	netdev_name_node_add(net, dev->name_node);
1267 
1268 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1269 	ret = notifier_to_errno(ret);
1270 
1271 	if (ret) {
1272 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1273 		if (err >= 0) {
1274 			err = ret;
1275 			down_write(&devnet_rename_sem);
1276 			write_seqlock_bh(&netdev_rename_lock);
1277 			memcpy(dev->name, oldname, IFNAMSIZ);
1278 			write_sequnlock_bh(&netdev_rename_lock);
1279 			memcpy(oldname, newname, IFNAMSIZ);
1280 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1281 			old_assign_type = NET_NAME_RENAMED;
1282 			goto rollback;
1283 		} else {
1284 			netdev_err(dev, "name change rollback failed: %d\n",
1285 				   ret);
1286 		}
1287 	}
1288 
1289 	return err;
1290 }
1291 
1292 /**
1293  *	dev_set_alias - change ifalias of a device
1294  *	@dev: device
1295  *	@alias: name up to IFALIASZ
1296  *	@len: limit of bytes to copy from info
1297  *
1298  *	Set ifalias for a device,
1299  */
1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301 {
1302 	struct dev_ifalias *new_alias = NULL;
1303 
1304 	if (len >= IFALIASZ)
1305 		return -EINVAL;
1306 
1307 	if (len) {
1308 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309 		if (!new_alias)
1310 			return -ENOMEM;
1311 
1312 		memcpy(new_alias->ifalias, alias, len);
1313 		new_alias->ifalias[len] = 0;
1314 	}
1315 
1316 	mutex_lock(&ifalias_mutex);
1317 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318 					mutex_is_locked(&ifalias_mutex));
1319 	mutex_unlock(&ifalias_mutex);
1320 
1321 	if (new_alias)
1322 		kfree_rcu(new_alias, rcuhead);
1323 
1324 	return len;
1325 }
1326 EXPORT_SYMBOL(dev_set_alias);
1327 
1328 /**
1329  *	dev_get_alias - get ifalias of a device
1330  *	@dev: device
1331  *	@name: buffer to store name of ifalias
1332  *	@len: size of buffer
1333  *
1334  *	get ifalias for a device.  Caller must make sure dev cannot go
1335  *	away,  e.g. rcu read lock or own a reference count to device.
1336  */
1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338 {
1339 	const struct dev_ifalias *alias;
1340 	int ret = 0;
1341 
1342 	rcu_read_lock();
1343 	alias = rcu_dereference(dev->ifalias);
1344 	if (alias)
1345 		ret = snprintf(name, len, "%s", alias->ifalias);
1346 	rcu_read_unlock();
1347 
1348 	return ret;
1349 }
1350 
1351 /**
1352  *	netdev_features_change - device changes features
1353  *	@dev: device to cause notification
1354  *
1355  *	Called to indicate a device has changed features.
1356  */
1357 void netdev_features_change(struct net_device *dev)
1358 {
1359 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1360 }
1361 EXPORT_SYMBOL(netdev_features_change);
1362 
1363 /**
1364  *	netdev_state_change - device changes state
1365  *	@dev: device to cause notification
1366  *
1367  *	Called to indicate a device has changed state. This function calls
1368  *	the notifier chains for netdev_chain and sends a NEWLINK message
1369  *	to the routing socket.
1370  */
1371 void netdev_state_change(struct net_device *dev)
1372 {
1373 	if (dev->flags & IFF_UP) {
1374 		struct netdev_notifier_change_info change_info = {
1375 			.info.dev = dev,
1376 		};
1377 
1378 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1379 					      &change_info.info);
1380 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1381 	}
1382 }
1383 EXPORT_SYMBOL(netdev_state_change);
1384 
1385 /**
1386  * __netdev_notify_peers - notify network peers about existence of @dev,
1387  * to be called when rtnl lock is already held.
1388  * @dev: network device
1389  *
1390  * Generate traffic such that interested network peers are aware of
1391  * @dev, such as by generating a gratuitous ARP. This may be used when
1392  * a device wants to inform the rest of the network about some sort of
1393  * reconfiguration such as a failover event or virtual machine
1394  * migration.
1395  */
1396 void __netdev_notify_peers(struct net_device *dev)
1397 {
1398 	ASSERT_RTNL();
1399 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1400 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1401 }
1402 EXPORT_SYMBOL(__netdev_notify_peers);
1403 
1404 /**
1405  * netdev_notify_peers - notify network peers about existence of @dev
1406  * @dev: network device
1407  *
1408  * Generate traffic such that interested network peers are aware of
1409  * @dev, such as by generating a gratuitous ARP. This may be used when
1410  * a device wants to inform the rest of the network about some sort of
1411  * reconfiguration such as a failover event or virtual machine
1412  * migration.
1413  */
1414 void netdev_notify_peers(struct net_device *dev)
1415 {
1416 	rtnl_lock();
1417 	__netdev_notify_peers(dev);
1418 	rtnl_unlock();
1419 }
1420 EXPORT_SYMBOL(netdev_notify_peers);
1421 
1422 static int napi_threaded_poll(void *data);
1423 
1424 static int napi_kthread_create(struct napi_struct *n)
1425 {
1426 	int err = 0;
1427 
1428 	/* Create and wake up the kthread once to put it in
1429 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1430 	 * warning and work with loadavg.
1431 	 */
1432 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1433 				n->dev->name, n->napi_id);
1434 	if (IS_ERR(n->thread)) {
1435 		err = PTR_ERR(n->thread);
1436 		pr_err("kthread_run failed with err %d\n", err);
1437 		n->thread = NULL;
1438 	}
1439 
1440 	return err;
1441 }
1442 
1443 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1444 {
1445 	const struct net_device_ops *ops = dev->netdev_ops;
1446 	int ret;
1447 
1448 	ASSERT_RTNL();
1449 	dev_addr_check(dev);
1450 
1451 	if (!netif_device_present(dev)) {
1452 		/* may be detached because parent is runtime-suspended */
1453 		if (dev->dev.parent)
1454 			pm_runtime_resume(dev->dev.parent);
1455 		if (!netif_device_present(dev))
1456 			return -ENODEV;
1457 	}
1458 
1459 	/* Block netpoll from trying to do any rx path servicing.
1460 	 * If we don't do this there is a chance ndo_poll_controller
1461 	 * or ndo_poll may be running while we open the device
1462 	 */
1463 	netpoll_poll_disable(dev);
1464 
1465 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1466 	ret = notifier_to_errno(ret);
1467 	if (ret)
1468 		return ret;
1469 
1470 	set_bit(__LINK_STATE_START, &dev->state);
1471 
1472 	if (ops->ndo_validate_addr)
1473 		ret = ops->ndo_validate_addr(dev);
1474 
1475 	if (!ret && ops->ndo_open)
1476 		ret = ops->ndo_open(dev);
1477 
1478 	netpoll_poll_enable(dev);
1479 
1480 	if (ret)
1481 		clear_bit(__LINK_STATE_START, &dev->state);
1482 	else {
1483 		dev->flags |= IFF_UP;
1484 		dev_set_rx_mode(dev);
1485 		dev_activate(dev);
1486 		add_device_randomness(dev->dev_addr, dev->addr_len);
1487 	}
1488 
1489 	return ret;
1490 }
1491 
1492 /**
1493  *	dev_open	- prepare an interface for use.
1494  *	@dev: device to open
1495  *	@extack: netlink extended ack
1496  *
1497  *	Takes a device from down to up state. The device's private open
1498  *	function is invoked and then the multicast lists are loaded. Finally
1499  *	the device is moved into the up state and a %NETDEV_UP message is
1500  *	sent to the netdev notifier chain.
1501  *
1502  *	Calling this function on an active interface is a nop. On a failure
1503  *	a negative errno code is returned.
1504  */
1505 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1506 {
1507 	int ret;
1508 
1509 	if (dev->flags & IFF_UP)
1510 		return 0;
1511 
1512 	ret = __dev_open(dev, extack);
1513 	if (ret < 0)
1514 		return ret;
1515 
1516 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1517 	call_netdevice_notifiers(NETDEV_UP, dev);
1518 
1519 	return ret;
1520 }
1521 EXPORT_SYMBOL(dev_open);
1522 
1523 static void __dev_close_many(struct list_head *head)
1524 {
1525 	struct net_device *dev;
1526 
1527 	ASSERT_RTNL();
1528 	might_sleep();
1529 
1530 	list_for_each_entry(dev, head, close_list) {
1531 		/* Temporarily disable netpoll until the interface is down */
1532 		netpoll_poll_disable(dev);
1533 
1534 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1535 
1536 		clear_bit(__LINK_STATE_START, &dev->state);
1537 
1538 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1539 		 * can be even on different cpu. So just clear netif_running().
1540 		 *
1541 		 * dev->stop() will invoke napi_disable() on all of it's
1542 		 * napi_struct instances on this device.
1543 		 */
1544 		smp_mb__after_atomic(); /* Commit netif_running(). */
1545 	}
1546 
1547 	dev_deactivate_many(head);
1548 
1549 	list_for_each_entry(dev, head, close_list) {
1550 		const struct net_device_ops *ops = dev->netdev_ops;
1551 
1552 		/*
1553 		 *	Call the device specific close. This cannot fail.
1554 		 *	Only if device is UP
1555 		 *
1556 		 *	We allow it to be called even after a DETACH hot-plug
1557 		 *	event.
1558 		 */
1559 		if (ops->ndo_stop)
1560 			ops->ndo_stop(dev);
1561 
1562 		dev->flags &= ~IFF_UP;
1563 		netpoll_poll_enable(dev);
1564 	}
1565 }
1566 
1567 static void __dev_close(struct net_device *dev)
1568 {
1569 	LIST_HEAD(single);
1570 
1571 	list_add(&dev->close_list, &single);
1572 	__dev_close_many(&single);
1573 	list_del(&single);
1574 }
1575 
1576 void dev_close_many(struct list_head *head, bool unlink)
1577 {
1578 	struct net_device *dev, *tmp;
1579 
1580 	/* Remove the devices that don't need to be closed */
1581 	list_for_each_entry_safe(dev, tmp, head, close_list)
1582 		if (!(dev->flags & IFF_UP))
1583 			list_del_init(&dev->close_list);
1584 
1585 	__dev_close_many(head);
1586 
1587 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1588 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1589 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1590 		if (unlink)
1591 			list_del_init(&dev->close_list);
1592 	}
1593 }
1594 EXPORT_SYMBOL(dev_close_many);
1595 
1596 /**
1597  *	dev_close - shutdown an interface.
1598  *	@dev: device to shutdown
1599  *
1600  *	This function moves an active device into down state. A
1601  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1602  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1603  *	chain.
1604  */
1605 void dev_close(struct net_device *dev)
1606 {
1607 	if (dev->flags & IFF_UP) {
1608 		LIST_HEAD(single);
1609 
1610 		list_add(&dev->close_list, &single);
1611 		dev_close_many(&single, true);
1612 		list_del(&single);
1613 	}
1614 }
1615 EXPORT_SYMBOL(dev_close);
1616 
1617 
1618 /**
1619  *	dev_disable_lro - disable Large Receive Offload on a device
1620  *	@dev: device
1621  *
1622  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1623  *	called under RTNL.  This is needed if received packets may be
1624  *	forwarded to another interface.
1625  */
1626 void dev_disable_lro(struct net_device *dev)
1627 {
1628 	struct net_device *lower_dev;
1629 	struct list_head *iter;
1630 
1631 	dev->wanted_features &= ~NETIF_F_LRO;
1632 	netdev_update_features(dev);
1633 
1634 	if (unlikely(dev->features & NETIF_F_LRO))
1635 		netdev_WARN(dev, "failed to disable LRO!\n");
1636 
1637 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1638 		dev_disable_lro(lower_dev);
1639 }
1640 EXPORT_SYMBOL(dev_disable_lro);
1641 
1642 /**
1643  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1644  *	@dev: device
1645  *
1646  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1647  *	called under RTNL.  This is needed if Generic XDP is installed on
1648  *	the device.
1649  */
1650 static void dev_disable_gro_hw(struct net_device *dev)
1651 {
1652 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1653 	netdev_update_features(dev);
1654 
1655 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1656 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1657 }
1658 
1659 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1660 {
1661 #define N(val) 						\
1662 	case NETDEV_##val:				\
1663 		return "NETDEV_" __stringify(val);
1664 	switch (cmd) {
1665 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1666 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1667 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1668 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1669 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1670 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1671 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1672 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1673 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1674 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1675 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1676 	N(XDP_FEAT_CHANGE)
1677 	}
1678 #undef N
1679 	return "UNKNOWN_NETDEV_EVENT";
1680 }
1681 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1682 
1683 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1684 				   struct net_device *dev)
1685 {
1686 	struct netdev_notifier_info info = {
1687 		.dev = dev,
1688 	};
1689 
1690 	return nb->notifier_call(nb, val, &info);
1691 }
1692 
1693 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1694 					     struct net_device *dev)
1695 {
1696 	int err;
1697 
1698 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1699 	err = notifier_to_errno(err);
1700 	if (err)
1701 		return err;
1702 
1703 	if (!(dev->flags & IFF_UP))
1704 		return 0;
1705 
1706 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1707 	return 0;
1708 }
1709 
1710 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1711 						struct net_device *dev)
1712 {
1713 	if (dev->flags & IFF_UP) {
1714 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1715 					dev);
1716 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1717 	}
1718 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1719 }
1720 
1721 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1722 						 struct net *net)
1723 {
1724 	struct net_device *dev;
1725 	int err;
1726 
1727 	for_each_netdev(net, dev) {
1728 		err = call_netdevice_register_notifiers(nb, dev);
1729 		if (err)
1730 			goto rollback;
1731 	}
1732 	return 0;
1733 
1734 rollback:
1735 	for_each_netdev_continue_reverse(net, dev)
1736 		call_netdevice_unregister_notifiers(nb, dev);
1737 	return err;
1738 }
1739 
1740 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1741 						    struct net *net)
1742 {
1743 	struct net_device *dev;
1744 
1745 	for_each_netdev(net, dev)
1746 		call_netdevice_unregister_notifiers(nb, dev);
1747 }
1748 
1749 static int dev_boot_phase = 1;
1750 
1751 /**
1752  * register_netdevice_notifier - register a network notifier block
1753  * @nb: notifier
1754  *
1755  * Register a notifier to be called when network device events occur.
1756  * The notifier passed is linked into the kernel structures and must
1757  * not be reused until it has been unregistered. A negative errno code
1758  * is returned on a failure.
1759  *
1760  * When registered all registration and up events are replayed
1761  * to the new notifier to allow device to have a race free
1762  * view of the network device list.
1763  */
1764 
1765 int register_netdevice_notifier(struct notifier_block *nb)
1766 {
1767 	struct net *net;
1768 	int err;
1769 
1770 	/* Close race with setup_net() and cleanup_net() */
1771 	down_write(&pernet_ops_rwsem);
1772 	rtnl_lock();
1773 	err = raw_notifier_chain_register(&netdev_chain, nb);
1774 	if (err)
1775 		goto unlock;
1776 	if (dev_boot_phase)
1777 		goto unlock;
1778 	for_each_net(net) {
1779 		err = call_netdevice_register_net_notifiers(nb, net);
1780 		if (err)
1781 			goto rollback;
1782 	}
1783 
1784 unlock:
1785 	rtnl_unlock();
1786 	up_write(&pernet_ops_rwsem);
1787 	return err;
1788 
1789 rollback:
1790 	for_each_net_continue_reverse(net)
1791 		call_netdevice_unregister_net_notifiers(nb, net);
1792 
1793 	raw_notifier_chain_unregister(&netdev_chain, nb);
1794 	goto unlock;
1795 }
1796 EXPORT_SYMBOL(register_netdevice_notifier);
1797 
1798 /**
1799  * unregister_netdevice_notifier - unregister a network notifier block
1800  * @nb: notifier
1801  *
1802  * Unregister a notifier previously registered by
1803  * register_netdevice_notifier(). The notifier is unlinked into the
1804  * kernel structures and may then be reused. A negative errno code
1805  * is returned on a failure.
1806  *
1807  * After unregistering unregister and down device events are synthesized
1808  * for all devices on the device list to the removed notifier to remove
1809  * the need for special case cleanup code.
1810  */
1811 
1812 int unregister_netdevice_notifier(struct notifier_block *nb)
1813 {
1814 	struct net *net;
1815 	int err;
1816 
1817 	/* Close race with setup_net() and cleanup_net() */
1818 	down_write(&pernet_ops_rwsem);
1819 	rtnl_lock();
1820 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1821 	if (err)
1822 		goto unlock;
1823 
1824 	for_each_net(net)
1825 		call_netdevice_unregister_net_notifiers(nb, net);
1826 
1827 unlock:
1828 	rtnl_unlock();
1829 	up_write(&pernet_ops_rwsem);
1830 	return err;
1831 }
1832 EXPORT_SYMBOL(unregister_netdevice_notifier);
1833 
1834 static int __register_netdevice_notifier_net(struct net *net,
1835 					     struct notifier_block *nb,
1836 					     bool ignore_call_fail)
1837 {
1838 	int err;
1839 
1840 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1841 	if (err)
1842 		return err;
1843 	if (dev_boot_phase)
1844 		return 0;
1845 
1846 	err = call_netdevice_register_net_notifiers(nb, net);
1847 	if (err && !ignore_call_fail)
1848 		goto chain_unregister;
1849 
1850 	return 0;
1851 
1852 chain_unregister:
1853 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1854 	return err;
1855 }
1856 
1857 static int __unregister_netdevice_notifier_net(struct net *net,
1858 					       struct notifier_block *nb)
1859 {
1860 	int err;
1861 
1862 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1863 	if (err)
1864 		return err;
1865 
1866 	call_netdevice_unregister_net_notifiers(nb, net);
1867 	return 0;
1868 }
1869 
1870 /**
1871  * register_netdevice_notifier_net - register a per-netns network notifier block
1872  * @net: network namespace
1873  * @nb: notifier
1874  *
1875  * Register a notifier to be called when network device events occur.
1876  * The notifier passed is linked into the kernel structures and must
1877  * not be reused until it has been unregistered. A negative errno code
1878  * is returned on a failure.
1879  *
1880  * When registered all registration and up events are replayed
1881  * to the new notifier to allow device to have a race free
1882  * view of the network device list.
1883  */
1884 
1885 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1886 {
1887 	int err;
1888 
1889 	rtnl_lock();
1890 	err = __register_netdevice_notifier_net(net, nb, false);
1891 	rtnl_unlock();
1892 	return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_net);
1895 
1896 /**
1897  * unregister_netdevice_notifier_net - unregister a per-netns
1898  *                                     network notifier block
1899  * @net: network namespace
1900  * @nb: notifier
1901  *
1902  * Unregister a notifier previously registered by
1903  * register_netdevice_notifier_net(). The notifier is unlinked from the
1904  * kernel structures and may then be reused. A negative errno code
1905  * is returned on a failure.
1906  *
1907  * After unregistering unregister and down device events are synthesized
1908  * for all devices on the device list to the removed notifier to remove
1909  * the need for special case cleanup code.
1910  */
1911 
1912 int unregister_netdevice_notifier_net(struct net *net,
1913 				      struct notifier_block *nb)
1914 {
1915 	int err;
1916 
1917 	rtnl_lock();
1918 	err = __unregister_netdevice_notifier_net(net, nb);
1919 	rtnl_unlock();
1920 	return err;
1921 }
1922 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1923 
1924 static void __move_netdevice_notifier_net(struct net *src_net,
1925 					  struct net *dst_net,
1926 					  struct notifier_block *nb)
1927 {
1928 	__unregister_netdevice_notifier_net(src_net, nb);
1929 	__register_netdevice_notifier_net(dst_net, nb, true);
1930 }
1931 
1932 int register_netdevice_notifier_dev_net(struct net_device *dev,
1933 					struct notifier_block *nb,
1934 					struct netdev_net_notifier *nn)
1935 {
1936 	int err;
1937 
1938 	rtnl_lock();
1939 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1940 	if (!err) {
1941 		nn->nb = nb;
1942 		list_add(&nn->list, &dev->net_notifier_list);
1943 	}
1944 	rtnl_unlock();
1945 	return err;
1946 }
1947 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1948 
1949 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1950 					  struct notifier_block *nb,
1951 					  struct netdev_net_notifier *nn)
1952 {
1953 	int err;
1954 
1955 	rtnl_lock();
1956 	list_del(&nn->list);
1957 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1958 	rtnl_unlock();
1959 	return err;
1960 }
1961 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1962 
1963 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1964 					     struct net *net)
1965 {
1966 	struct netdev_net_notifier *nn;
1967 
1968 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1969 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1970 }
1971 
1972 /**
1973  *	call_netdevice_notifiers_info - call all network notifier blocks
1974  *	@val: value passed unmodified to notifier function
1975  *	@info: notifier information data
1976  *
1977  *	Call all network notifier blocks.  Parameters and return value
1978  *	are as for raw_notifier_call_chain().
1979  */
1980 
1981 int call_netdevice_notifiers_info(unsigned long val,
1982 				  struct netdev_notifier_info *info)
1983 {
1984 	struct net *net = dev_net(info->dev);
1985 	int ret;
1986 
1987 	ASSERT_RTNL();
1988 
1989 	/* Run per-netns notifier block chain first, then run the global one.
1990 	 * Hopefully, one day, the global one is going to be removed after
1991 	 * all notifier block registrators get converted to be per-netns.
1992 	 */
1993 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994 	if (ret & NOTIFY_STOP_MASK)
1995 		return ret;
1996 	return raw_notifier_call_chain(&netdev_chain, val, info);
1997 }
1998 
1999 /**
2000  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2001  *	                                       for and rollback on error
2002  *	@val_up: value passed unmodified to notifier function
2003  *	@val_down: value passed unmodified to the notifier function when
2004  *	           recovering from an error on @val_up
2005  *	@info: notifier information data
2006  *
2007  *	Call all per-netns network notifier blocks, but not notifier blocks on
2008  *	the global notifier chain. Parameters and return value are as for
2009  *	raw_notifier_call_chain_robust().
2010  */
2011 
2012 static int
2013 call_netdevice_notifiers_info_robust(unsigned long val_up,
2014 				     unsigned long val_down,
2015 				     struct netdev_notifier_info *info)
2016 {
2017 	struct net *net = dev_net(info->dev);
2018 
2019 	ASSERT_RTNL();
2020 
2021 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2022 					      val_up, val_down, info);
2023 }
2024 
2025 static int call_netdevice_notifiers_extack(unsigned long val,
2026 					   struct net_device *dev,
2027 					   struct netlink_ext_ack *extack)
2028 {
2029 	struct netdev_notifier_info info = {
2030 		.dev = dev,
2031 		.extack = extack,
2032 	};
2033 
2034 	return call_netdevice_notifiers_info(val, &info);
2035 }
2036 
2037 /**
2038  *	call_netdevice_notifiers - call all network notifier blocks
2039  *      @val: value passed unmodified to notifier function
2040  *      @dev: net_device pointer passed unmodified to notifier function
2041  *
2042  *	Call all network notifier blocks.  Parameters and return value
2043  *	are as for raw_notifier_call_chain().
2044  */
2045 
2046 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2047 {
2048 	return call_netdevice_notifiers_extack(val, dev, NULL);
2049 }
2050 EXPORT_SYMBOL(call_netdevice_notifiers);
2051 
2052 /**
2053  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2054  *	@val: value passed unmodified to notifier function
2055  *	@dev: net_device pointer passed unmodified to notifier function
2056  *	@arg: additional u32 argument passed to the notifier function
2057  *
2058  *	Call all network notifier blocks.  Parameters and return value
2059  *	are as for raw_notifier_call_chain().
2060  */
2061 static int call_netdevice_notifiers_mtu(unsigned long val,
2062 					struct net_device *dev, u32 arg)
2063 {
2064 	struct netdev_notifier_info_ext info = {
2065 		.info.dev = dev,
2066 		.ext.mtu = arg,
2067 	};
2068 
2069 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2070 
2071 	return call_netdevice_notifiers_info(val, &info.info);
2072 }
2073 
2074 #ifdef CONFIG_NET_INGRESS
2075 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2076 
2077 void net_inc_ingress_queue(void)
2078 {
2079 	static_branch_inc(&ingress_needed_key);
2080 }
2081 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2082 
2083 void net_dec_ingress_queue(void)
2084 {
2085 	static_branch_dec(&ingress_needed_key);
2086 }
2087 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2088 #endif
2089 
2090 #ifdef CONFIG_NET_EGRESS
2091 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2092 
2093 void net_inc_egress_queue(void)
2094 {
2095 	static_branch_inc(&egress_needed_key);
2096 }
2097 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2098 
2099 void net_dec_egress_queue(void)
2100 {
2101 	static_branch_dec(&egress_needed_key);
2102 }
2103 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2104 #endif
2105 
2106 #ifdef CONFIG_NET_CLS_ACT
2107 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2108 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2109 #endif
2110 
2111 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2112 EXPORT_SYMBOL(netstamp_needed_key);
2113 #ifdef CONFIG_JUMP_LABEL
2114 static atomic_t netstamp_needed_deferred;
2115 static atomic_t netstamp_wanted;
2116 static void netstamp_clear(struct work_struct *work)
2117 {
2118 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2119 	int wanted;
2120 
2121 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2122 	if (wanted > 0)
2123 		static_branch_enable(&netstamp_needed_key);
2124 	else
2125 		static_branch_disable(&netstamp_needed_key);
2126 }
2127 static DECLARE_WORK(netstamp_work, netstamp_clear);
2128 #endif
2129 
2130 void net_enable_timestamp(void)
2131 {
2132 #ifdef CONFIG_JUMP_LABEL
2133 	int wanted = atomic_read(&netstamp_wanted);
2134 
2135 	while (wanted > 0) {
2136 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2137 			return;
2138 	}
2139 	atomic_inc(&netstamp_needed_deferred);
2140 	schedule_work(&netstamp_work);
2141 #else
2142 	static_branch_inc(&netstamp_needed_key);
2143 #endif
2144 }
2145 EXPORT_SYMBOL(net_enable_timestamp);
2146 
2147 void net_disable_timestamp(void)
2148 {
2149 #ifdef CONFIG_JUMP_LABEL
2150 	int wanted = atomic_read(&netstamp_wanted);
2151 
2152 	while (wanted > 1) {
2153 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2154 			return;
2155 	}
2156 	atomic_dec(&netstamp_needed_deferred);
2157 	schedule_work(&netstamp_work);
2158 #else
2159 	static_branch_dec(&netstamp_needed_key);
2160 #endif
2161 }
2162 EXPORT_SYMBOL(net_disable_timestamp);
2163 
2164 static inline void net_timestamp_set(struct sk_buff *skb)
2165 {
2166 	skb->tstamp = 0;
2167 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2168 	if (static_branch_unlikely(&netstamp_needed_key))
2169 		skb->tstamp = ktime_get_real();
2170 }
2171 
2172 #define net_timestamp_check(COND, SKB)				\
2173 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2174 		if ((COND) && !(SKB)->tstamp)			\
2175 			(SKB)->tstamp = ktime_get_real();	\
2176 	}							\
2177 
2178 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2179 {
2180 	return __is_skb_forwardable(dev, skb, true);
2181 }
2182 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2183 
2184 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2185 			      bool check_mtu)
2186 {
2187 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2188 
2189 	if (likely(!ret)) {
2190 		skb->protocol = eth_type_trans(skb, dev);
2191 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2192 	}
2193 
2194 	return ret;
2195 }
2196 
2197 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2198 {
2199 	return __dev_forward_skb2(dev, skb, true);
2200 }
2201 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2202 
2203 /**
2204  * dev_forward_skb - loopback an skb to another netif
2205  *
2206  * @dev: destination network device
2207  * @skb: buffer to forward
2208  *
2209  * return values:
2210  *	NET_RX_SUCCESS	(no congestion)
2211  *	NET_RX_DROP     (packet was dropped, but freed)
2212  *
2213  * dev_forward_skb can be used for injecting an skb from the
2214  * start_xmit function of one device into the receive queue
2215  * of another device.
2216  *
2217  * The receiving device may be in another namespace, so
2218  * we have to clear all information in the skb that could
2219  * impact namespace isolation.
2220  */
2221 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2222 {
2223 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2224 }
2225 EXPORT_SYMBOL_GPL(dev_forward_skb);
2226 
2227 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2228 {
2229 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2230 }
2231 
2232 static inline int deliver_skb(struct sk_buff *skb,
2233 			      struct packet_type *pt_prev,
2234 			      struct net_device *orig_dev)
2235 {
2236 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2237 		return -ENOMEM;
2238 	refcount_inc(&skb->users);
2239 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2240 }
2241 
2242 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2243 					  struct packet_type **pt,
2244 					  struct net_device *orig_dev,
2245 					  __be16 type,
2246 					  struct list_head *ptype_list)
2247 {
2248 	struct packet_type *ptype, *pt_prev = *pt;
2249 
2250 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2251 		if (ptype->type != type)
2252 			continue;
2253 		if (pt_prev)
2254 			deliver_skb(skb, pt_prev, orig_dev);
2255 		pt_prev = ptype;
2256 	}
2257 	*pt = pt_prev;
2258 }
2259 
2260 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2261 {
2262 	if (!ptype->af_packet_priv || !skb->sk)
2263 		return false;
2264 
2265 	if (ptype->id_match)
2266 		return ptype->id_match(ptype, skb->sk);
2267 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2268 		return true;
2269 
2270 	return false;
2271 }
2272 
2273 /**
2274  * dev_nit_active - return true if any network interface taps are in use
2275  *
2276  * @dev: network device to check for the presence of taps
2277  */
2278 bool dev_nit_active(struct net_device *dev)
2279 {
2280 	return !list_empty(&net_hotdata.ptype_all) ||
2281 	       !list_empty(&dev->ptype_all);
2282 }
2283 EXPORT_SYMBOL_GPL(dev_nit_active);
2284 
2285 /*
2286  *	Support routine. Sends outgoing frames to any network
2287  *	taps currently in use.
2288  */
2289 
2290 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2291 {
2292 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2293 	struct packet_type *ptype, *pt_prev = NULL;
2294 	struct sk_buff *skb2 = NULL;
2295 
2296 	rcu_read_lock();
2297 again:
2298 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2299 		if (READ_ONCE(ptype->ignore_outgoing))
2300 			continue;
2301 
2302 		/* Never send packets back to the socket
2303 		 * they originated from - MvS (miquels@drinkel.ow.org)
2304 		 */
2305 		if (skb_loop_sk(ptype, skb))
2306 			continue;
2307 
2308 		if (pt_prev) {
2309 			deliver_skb(skb2, pt_prev, skb->dev);
2310 			pt_prev = ptype;
2311 			continue;
2312 		}
2313 
2314 		/* need to clone skb, done only once */
2315 		skb2 = skb_clone(skb, GFP_ATOMIC);
2316 		if (!skb2)
2317 			goto out_unlock;
2318 
2319 		net_timestamp_set(skb2);
2320 
2321 		/* skb->nh should be correctly
2322 		 * set by sender, so that the second statement is
2323 		 * just protection against buggy protocols.
2324 		 */
2325 		skb_reset_mac_header(skb2);
2326 
2327 		if (skb_network_header(skb2) < skb2->data ||
2328 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2329 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2330 					     ntohs(skb2->protocol),
2331 					     dev->name);
2332 			skb_reset_network_header(skb2);
2333 		}
2334 
2335 		skb2->transport_header = skb2->network_header;
2336 		skb2->pkt_type = PACKET_OUTGOING;
2337 		pt_prev = ptype;
2338 	}
2339 
2340 	if (ptype_list == &net_hotdata.ptype_all) {
2341 		ptype_list = &dev->ptype_all;
2342 		goto again;
2343 	}
2344 out_unlock:
2345 	if (pt_prev) {
2346 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2347 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2348 		else
2349 			kfree_skb(skb2);
2350 	}
2351 	rcu_read_unlock();
2352 }
2353 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2354 
2355 /**
2356  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2357  * @dev: Network device
2358  * @txq: number of queues available
2359  *
2360  * If real_num_tx_queues is changed the tc mappings may no longer be
2361  * valid. To resolve this verify the tc mapping remains valid and if
2362  * not NULL the mapping. With no priorities mapping to this
2363  * offset/count pair it will no longer be used. In the worst case TC0
2364  * is invalid nothing can be done so disable priority mappings. If is
2365  * expected that drivers will fix this mapping if they can before
2366  * calling netif_set_real_num_tx_queues.
2367  */
2368 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2369 {
2370 	int i;
2371 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2372 
2373 	/* If TC0 is invalidated disable TC mapping */
2374 	if (tc->offset + tc->count > txq) {
2375 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2376 		dev->num_tc = 0;
2377 		return;
2378 	}
2379 
2380 	/* Invalidated prio to tc mappings set to TC0 */
2381 	for (i = 1; i < TC_BITMASK + 1; i++) {
2382 		int q = netdev_get_prio_tc_map(dev, i);
2383 
2384 		tc = &dev->tc_to_txq[q];
2385 		if (tc->offset + tc->count > txq) {
2386 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2387 				    i, q);
2388 			netdev_set_prio_tc_map(dev, i, 0);
2389 		}
2390 	}
2391 }
2392 
2393 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2394 {
2395 	if (dev->num_tc) {
2396 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2397 		int i;
2398 
2399 		/* walk through the TCs and see if it falls into any of them */
2400 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2401 			if ((txq - tc->offset) < tc->count)
2402 				return i;
2403 		}
2404 
2405 		/* didn't find it, just return -1 to indicate no match */
2406 		return -1;
2407 	}
2408 
2409 	return 0;
2410 }
2411 EXPORT_SYMBOL(netdev_txq_to_tc);
2412 
2413 #ifdef CONFIG_XPS
2414 static struct static_key xps_needed __read_mostly;
2415 static struct static_key xps_rxqs_needed __read_mostly;
2416 static DEFINE_MUTEX(xps_map_mutex);
2417 #define xmap_dereference(P)		\
2418 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2419 
2420 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2421 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2422 {
2423 	struct xps_map *map = NULL;
2424 	int pos;
2425 
2426 	map = xmap_dereference(dev_maps->attr_map[tci]);
2427 	if (!map)
2428 		return false;
2429 
2430 	for (pos = map->len; pos--;) {
2431 		if (map->queues[pos] != index)
2432 			continue;
2433 
2434 		if (map->len > 1) {
2435 			map->queues[pos] = map->queues[--map->len];
2436 			break;
2437 		}
2438 
2439 		if (old_maps)
2440 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2441 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2442 		kfree_rcu(map, rcu);
2443 		return false;
2444 	}
2445 
2446 	return true;
2447 }
2448 
2449 static bool remove_xps_queue_cpu(struct net_device *dev,
2450 				 struct xps_dev_maps *dev_maps,
2451 				 int cpu, u16 offset, u16 count)
2452 {
2453 	int num_tc = dev_maps->num_tc;
2454 	bool active = false;
2455 	int tci;
2456 
2457 	for (tci = cpu * num_tc; num_tc--; tci++) {
2458 		int i, j;
2459 
2460 		for (i = count, j = offset; i--; j++) {
2461 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2462 				break;
2463 		}
2464 
2465 		active |= i < 0;
2466 	}
2467 
2468 	return active;
2469 }
2470 
2471 static void reset_xps_maps(struct net_device *dev,
2472 			   struct xps_dev_maps *dev_maps,
2473 			   enum xps_map_type type)
2474 {
2475 	static_key_slow_dec_cpuslocked(&xps_needed);
2476 	if (type == XPS_RXQS)
2477 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2478 
2479 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2480 
2481 	kfree_rcu(dev_maps, rcu);
2482 }
2483 
2484 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2485 			   u16 offset, u16 count)
2486 {
2487 	struct xps_dev_maps *dev_maps;
2488 	bool active = false;
2489 	int i, j;
2490 
2491 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2492 	if (!dev_maps)
2493 		return;
2494 
2495 	for (j = 0; j < dev_maps->nr_ids; j++)
2496 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2497 	if (!active)
2498 		reset_xps_maps(dev, dev_maps, type);
2499 
2500 	if (type == XPS_CPUS) {
2501 		for (i = offset + (count - 1); count--; i--)
2502 			netdev_queue_numa_node_write(
2503 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2504 	}
2505 }
2506 
2507 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2508 				   u16 count)
2509 {
2510 	if (!static_key_false(&xps_needed))
2511 		return;
2512 
2513 	cpus_read_lock();
2514 	mutex_lock(&xps_map_mutex);
2515 
2516 	if (static_key_false(&xps_rxqs_needed))
2517 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2518 
2519 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2520 
2521 	mutex_unlock(&xps_map_mutex);
2522 	cpus_read_unlock();
2523 }
2524 
2525 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2526 {
2527 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2528 }
2529 
2530 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2531 				      u16 index, bool is_rxqs_map)
2532 {
2533 	struct xps_map *new_map;
2534 	int alloc_len = XPS_MIN_MAP_ALLOC;
2535 	int i, pos;
2536 
2537 	for (pos = 0; map && pos < map->len; pos++) {
2538 		if (map->queues[pos] != index)
2539 			continue;
2540 		return map;
2541 	}
2542 
2543 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2544 	if (map) {
2545 		if (pos < map->alloc_len)
2546 			return map;
2547 
2548 		alloc_len = map->alloc_len * 2;
2549 	}
2550 
2551 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2552 	 *  map
2553 	 */
2554 	if (is_rxqs_map)
2555 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2556 	else
2557 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2558 				       cpu_to_node(attr_index));
2559 	if (!new_map)
2560 		return NULL;
2561 
2562 	for (i = 0; i < pos; i++)
2563 		new_map->queues[i] = map->queues[i];
2564 	new_map->alloc_len = alloc_len;
2565 	new_map->len = pos;
2566 
2567 	return new_map;
2568 }
2569 
2570 /* Copy xps maps at a given index */
2571 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2572 			      struct xps_dev_maps *new_dev_maps, int index,
2573 			      int tc, bool skip_tc)
2574 {
2575 	int i, tci = index * dev_maps->num_tc;
2576 	struct xps_map *map;
2577 
2578 	/* copy maps belonging to foreign traffic classes */
2579 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2580 		if (i == tc && skip_tc)
2581 			continue;
2582 
2583 		/* fill in the new device map from the old device map */
2584 		map = xmap_dereference(dev_maps->attr_map[tci]);
2585 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2586 	}
2587 }
2588 
2589 /* Must be called under cpus_read_lock */
2590 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2591 			  u16 index, enum xps_map_type type)
2592 {
2593 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2594 	const unsigned long *online_mask = NULL;
2595 	bool active = false, copy = false;
2596 	int i, j, tci, numa_node_id = -2;
2597 	int maps_sz, num_tc = 1, tc = 0;
2598 	struct xps_map *map, *new_map;
2599 	unsigned int nr_ids;
2600 
2601 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2602 
2603 	if (dev->num_tc) {
2604 		/* Do not allow XPS on subordinate device directly */
2605 		num_tc = dev->num_tc;
2606 		if (num_tc < 0)
2607 			return -EINVAL;
2608 
2609 		/* If queue belongs to subordinate dev use its map */
2610 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2611 
2612 		tc = netdev_txq_to_tc(dev, index);
2613 		if (tc < 0)
2614 			return -EINVAL;
2615 	}
2616 
2617 	mutex_lock(&xps_map_mutex);
2618 
2619 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2620 	if (type == XPS_RXQS) {
2621 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2622 		nr_ids = dev->num_rx_queues;
2623 	} else {
2624 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2625 		if (num_possible_cpus() > 1)
2626 			online_mask = cpumask_bits(cpu_online_mask);
2627 		nr_ids = nr_cpu_ids;
2628 	}
2629 
2630 	if (maps_sz < L1_CACHE_BYTES)
2631 		maps_sz = L1_CACHE_BYTES;
2632 
2633 	/* The old dev_maps could be larger or smaller than the one we're
2634 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2635 	 * between. We could try to be smart, but let's be safe instead and only
2636 	 * copy foreign traffic classes if the two map sizes match.
2637 	 */
2638 	if (dev_maps &&
2639 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2640 		copy = true;
2641 
2642 	/* allocate memory for queue storage */
2643 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2644 	     j < nr_ids;) {
2645 		if (!new_dev_maps) {
2646 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2647 			if (!new_dev_maps) {
2648 				mutex_unlock(&xps_map_mutex);
2649 				return -ENOMEM;
2650 			}
2651 
2652 			new_dev_maps->nr_ids = nr_ids;
2653 			new_dev_maps->num_tc = num_tc;
2654 		}
2655 
2656 		tci = j * num_tc + tc;
2657 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2658 
2659 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2660 		if (!map)
2661 			goto error;
2662 
2663 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2664 	}
2665 
2666 	if (!new_dev_maps)
2667 		goto out_no_new_maps;
2668 
2669 	if (!dev_maps) {
2670 		/* Increment static keys at most once per type */
2671 		static_key_slow_inc_cpuslocked(&xps_needed);
2672 		if (type == XPS_RXQS)
2673 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2674 	}
2675 
2676 	for (j = 0; j < nr_ids; j++) {
2677 		bool skip_tc = false;
2678 
2679 		tci = j * num_tc + tc;
2680 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2681 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2682 			/* add tx-queue to CPU/rx-queue maps */
2683 			int pos = 0;
2684 
2685 			skip_tc = true;
2686 
2687 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2688 			while ((pos < map->len) && (map->queues[pos] != index))
2689 				pos++;
2690 
2691 			if (pos == map->len)
2692 				map->queues[map->len++] = index;
2693 #ifdef CONFIG_NUMA
2694 			if (type == XPS_CPUS) {
2695 				if (numa_node_id == -2)
2696 					numa_node_id = cpu_to_node(j);
2697 				else if (numa_node_id != cpu_to_node(j))
2698 					numa_node_id = -1;
2699 			}
2700 #endif
2701 		}
2702 
2703 		if (copy)
2704 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2705 					  skip_tc);
2706 	}
2707 
2708 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2709 
2710 	/* Cleanup old maps */
2711 	if (!dev_maps)
2712 		goto out_no_old_maps;
2713 
2714 	for (j = 0; j < dev_maps->nr_ids; j++) {
2715 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2716 			map = xmap_dereference(dev_maps->attr_map[tci]);
2717 			if (!map)
2718 				continue;
2719 
2720 			if (copy) {
2721 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2722 				if (map == new_map)
2723 					continue;
2724 			}
2725 
2726 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2727 			kfree_rcu(map, rcu);
2728 		}
2729 	}
2730 
2731 	old_dev_maps = dev_maps;
2732 
2733 out_no_old_maps:
2734 	dev_maps = new_dev_maps;
2735 	active = true;
2736 
2737 out_no_new_maps:
2738 	if (type == XPS_CPUS)
2739 		/* update Tx queue numa node */
2740 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2741 					     (numa_node_id >= 0) ?
2742 					     numa_node_id : NUMA_NO_NODE);
2743 
2744 	if (!dev_maps)
2745 		goto out_no_maps;
2746 
2747 	/* removes tx-queue from unused CPUs/rx-queues */
2748 	for (j = 0; j < dev_maps->nr_ids; j++) {
2749 		tci = j * dev_maps->num_tc;
2750 
2751 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2752 			if (i == tc &&
2753 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2754 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2755 				continue;
2756 
2757 			active |= remove_xps_queue(dev_maps,
2758 						   copy ? old_dev_maps : NULL,
2759 						   tci, index);
2760 		}
2761 	}
2762 
2763 	if (old_dev_maps)
2764 		kfree_rcu(old_dev_maps, rcu);
2765 
2766 	/* free map if not active */
2767 	if (!active)
2768 		reset_xps_maps(dev, dev_maps, type);
2769 
2770 out_no_maps:
2771 	mutex_unlock(&xps_map_mutex);
2772 
2773 	return 0;
2774 error:
2775 	/* remove any maps that we added */
2776 	for (j = 0; j < nr_ids; j++) {
2777 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2778 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2779 			map = copy ?
2780 			      xmap_dereference(dev_maps->attr_map[tci]) :
2781 			      NULL;
2782 			if (new_map && new_map != map)
2783 				kfree(new_map);
2784 		}
2785 	}
2786 
2787 	mutex_unlock(&xps_map_mutex);
2788 
2789 	kfree(new_dev_maps);
2790 	return -ENOMEM;
2791 }
2792 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2793 
2794 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2795 			u16 index)
2796 {
2797 	int ret;
2798 
2799 	cpus_read_lock();
2800 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2801 	cpus_read_unlock();
2802 
2803 	return ret;
2804 }
2805 EXPORT_SYMBOL(netif_set_xps_queue);
2806 
2807 #endif
2808 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2809 {
2810 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2811 
2812 	/* Unbind any subordinate channels */
2813 	while (txq-- != &dev->_tx[0]) {
2814 		if (txq->sb_dev)
2815 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2816 	}
2817 }
2818 
2819 void netdev_reset_tc(struct net_device *dev)
2820 {
2821 #ifdef CONFIG_XPS
2822 	netif_reset_xps_queues_gt(dev, 0);
2823 #endif
2824 	netdev_unbind_all_sb_channels(dev);
2825 
2826 	/* Reset TC configuration of device */
2827 	dev->num_tc = 0;
2828 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2829 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2830 }
2831 EXPORT_SYMBOL(netdev_reset_tc);
2832 
2833 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2834 {
2835 	if (tc >= dev->num_tc)
2836 		return -EINVAL;
2837 
2838 #ifdef CONFIG_XPS
2839 	netif_reset_xps_queues(dev, offset, count);
2840 #endif
2841 	dev->tc_to_txq[tc].count = count;
2842 	dev->tc_to_txq[tc].offset = offset;
2843 	return 0;
2844 }
2845 EXPORT_SYMBOL(netdev_set_tc_queue);
2846 
2847 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2848 {
2849 	if (num_tc > TC_MAX_QUEUE)
2850 		return -EINVAL;
2851 
2852 #ifdef CONFIG_XPS
2853 	netif_reset_xps_queues_gt(dev, 0);
2854 #endif
2855 	netdev_unbind_all_sb_channels(dev);
2856 
2857 	dev->num_tc = num_tc;
2858 	return 0;
2859 }
2860 EXPORT_SYMBOL(netdev_set_num_tc);
2861 
2862 void netdev_unbind_sb_channel(struct net_device *dev,
2863 			      struct net_device *sb_dev)
2864 {
2865 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2866 
2867 #ifdef CONFIG_XPS
2868 	netif_reset_xps_queues_gt(sb_dev, 0);
2869 #endif
2870 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2871 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2872 
2873 	while (txq-- != &dev->_tx[0]) {
2874 		if (txq->sb_dev == sb_dev)
2875 			txq->sb_dev = NULL;
2876 	}
2877 }
2878 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2879 
2880 int netdev_bind_sb_channel_queue(struct net_device *dev,
2881 				 struct net_device *sb_dev,
2882 				 u8 tc, u16 count, u16 offset)
2883 {
2884 	/* Make certain the sb_dev and dev are already configured */
2885 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2886 		return -EINVAL;
2887 
2888 	/* We cannot hand out queues we don't have */
2889 	if ((offset + count) > dev->real_num_tx_queues)
2890 		return -EINVAL;
2891 
2892 	/* Record the mapping */
2893 	sb_dev->tc_to_txq[tc].count = count;
2894 	sb_dev->tc_to_txq[tc].offset = offset;
2895 
2896 	/* Provide a way for Tx queue to find the tc_to_txq map or
2897 	 * XPS map for itself.
2898 	 */
2899 	while (count--)
2900 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2901 
2902 	return 0;
2903 }
2904 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2905 
2906 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2907 {
2908 	/* Do not use a multiqueue device to represent a subordinate channel */
2909 	if (netif_is_multiqueue(dev))
2910 		return -ENODEV;
2911 
2912 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2913 	 * Channel 0 is meant to be "native" mode and used only to represent
2914 	 * the main root device. We allow writing 0 to reset the device back
2915 	 * to normal mode after being used as a subordinate channel.
2916 	 */
2917 	if (channel > S16_MAX)
2918 		return -EINVAL;
2919 
2920 	dev->num_tc = -channel;
2921 
2922 	return 0;
2923 }
2924 EXPORT_SYMBOL(netdev_set_sb_channel);
2925 
2926 /*
2927  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2928  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2929  */
2930 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2931 {
2932 	bool disabling;
2933 	int rc;
2934 
2935 	disabling = txq < dev->real_num_tx_queues;
2936 
2937 	if (txq < 1 || txq > dev->num_tx_queues)
2938 		return -EINVAL;
2939 
2940 	if (dev->reg_state == NETREG_REGISTERED ||
2941 	    dev->reg_state == NETREG_UNREGISTERING) {
2942 		ASSERT_RTNL();
2943 
2944 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2945 						  txq);
2946 		if (rc)
2947 			return rc;
2948 
2949 		if (dev->num_tc)
2950 			netif_setup_tc(dev, txq);
2951 
2952 		net_shaper_set_real_num_tx_queues(dev, txq);
2953 
2954 		dev_qdisc_change_real_num_tx(dev, txq);
2955 
2956 		dev->real_num_tx_queues = txq;
2957 
2958 		if (disabling) {
2959 			synchronize_net();
2960 			qdisc_reset_all_tx_gt(dev, txq);
2961 #ifdef CONFIG_XPS
2962 			netif_reset_xps_queues_gt(dev, txq);
2963 #endif
2964 		}
2965 	} else {
2966 		dev->real_num_tx_queues = txq;
2967 	}
2968 
2969 	return 0;
2970 }
2971 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2972 
2973 #ifdef CONFIG_SYSFS
2974 /**
2975  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2976  *	@dev: Network device
2977  *	@rxq: Actual number of RX queues
2978  *
2979  *	This must be called either with the rtnl_lock held or before
2980  *	registration of the net device.  Returns 0 on success, or a
2981  *	negative error code.  If called before registration, it always
2982  *	succeeds.
2983  */
2984 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2985 {
2986 	int rc;
2987 
2988 	if (rxq < 1 || rxq > dev->num_rx_queues)
2989 		return -EINVAL;
2990 
2991 	if (dev->reg_state == NETREG_REGISTERED) {
2992 		ASSERT_RTNL();
2993 
2994 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2995 						  rxq);
2996 		if (rc)
2997 			return rc;
2998 	}
2999 
3000 	dev->real_num_rx_queues = rxq;
3001 	return 0;
3002 }
3003 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3004 #endif
3005 
3006 /**
3007  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3008  *	@dev: Network device
3009  *	@txq: Actual number of TX queues
3010  *	@rxq: Actual number of RX queues
3011  *
3012  *	Set the real number of both TX and RX queues.
3013  *	Does nothing if the number of queues is already correct.
3014  */
3015 int netif_set_real_num_queues(struct net_device *dev,
3016 			      unsigned int txq, unsigned int rxq)
3017 {
3018 	unsigned int old_rxq = dev->real_num_rx_queues;
3019 	int err;
3020 
3021 	if (txq < 1 || txq > dev->num_tx_queues ||
3022 	    rxq < 1 || rxq > dev->num_rx_queues)
3023 		return -EINVAL;
3024 
3025 	/* Start from increases, so the error path only does decreases -
3026 	 * decreases can't fail.
3027 	 */
3028 	if (rxq > dev->real_num_rx_queues) {
3029 		err = netif_set_real_num_rx_queues(dev, rxq);
3030 		if (err)
3031 			return err;
3032 	}
3033 	if (txq > dev->real_num_tx_queues) {
3034 		err = netif_set_real_num_tx_queues(dev, txq);
3035 		if (err)
3036 			goto undo_rx;
3037 	}
3038 	if (rxq < dev->real_num_rx_queues)
3039 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3040 	if (txq < dev->real_num_tx_queues)
3041 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3042 
3043 	return 0;
3044 undo_rx:
3045 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3046 	return err;
3047 }
3048 EXPORT_SYMBOL(netif_set_real_num_queues);
3049 
3050 /**
3051  * netif_set_tso_max_size() - set the max size of TSO frames supported
3052  * @dev:	netdev to update
3053  * @size:	max skb->len of a TSO frame
3054  *
3055  * Set the limit on the size of TSO super-frames the device can handle.
3056  * Unless explicitly set the stack will assume the value of
3057  * %GSO_LEGACY_MAX_SIZE.
3058  */
3059 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3060 {
3061 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3062 	if (size < READ_ONCE(dev->gso_max_size))
3063 		netif_set_gso_max_size(dev, size);
3064 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3065 		netif_set_gso_ipv4_max_size(dev, size);
3066 }
3067 EXPORT_SYMBOL(netif_set_tso_max_size);
3068 
3069 /**
3070  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3071  * @dev:	netdev to update
3072  * @segs:	max number of TCP segments
3073  *
3074  * Set the limit on the number of TCP segments the device can generate from
3075  * a single TSO super-frame.
3076  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3077  */
3078 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3079 {
3080 	dev->tso_max_segs = segs;
3081 	if (segs < READ_ONCE(dev->gso_max_segs))
3082 		netif_set_gso_max_segs(dev, segs);
3083 }
3084 EXPORT_SYMBOL(netif_set_tso_max_segs);
3085 
3086 /**
3087  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3088  * @to:		netdev to update
3089  * @from:	netdev from which to copy the limits
3090  */
3091 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3092 {
3093 	netif_set_tso_max_size(to, from->tso_max_size);
3094 	netif_set_tso_max_segs(to, from->tso_max_segs);
3095 }
3096 EXPORT_SYMBOL(netif_inherit_tso_max);
3097 
3098 /**
3099  * netif_get_num_default_rss_queues - default number of RSS queues
3100  *
3101  * Default value is the number of physical cores if there are only 1 or 2, or
3102  * divided by 2 if there are more.
3103  */
3104 int netif_get_num_default_rss_queues(void)
3105 {
3106 	cpumask_var_t cpus;
3107 	int cpu, count = 0;
3108 
3109 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3110 		return 1;
3111 
3112 	cpumask_copy(cpus, cpu_online_mask);
3113 	for_each_cpu(cpu, cpus) {
3114 		++count;
3115 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3116 	}
3117 	free_cpumask_var(cpus);
3118 
3119 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3120 }
3121 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3122 
3123 static void __netif_reschedule(struct Qdisc *q)
3124 {
3125 	struct softnet_data *sd;
3126 	unsigned long flags;
3127 
3128 	local_irq_save(flags);
3129 	sd = this_cpu_ptr(&softnet_data);
3130 	q->next_sched = NULL;
3131 	*sd->output_queue_tailp = q;
3132 	sd->output_queue_tailp = &q->next_sched;
3133 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3134 	local_irq_restore(flags);
3135 }
3136 
3137 void __netif_schedule(struct Qdisc *q)
3138 {
3139 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3140 		__netif_reschedule(q);
3141 }
3142 EXPORT_SYMBOL(__netif_schedule);
3143 
3144 struct dev_kfree_skb_cb {
3145 	enum skb_drop_reason reason;
3146 };
3147 
3148 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3149 {
3150 	return (struct dev_kfree_skb_cb *)skb->cb;
3151 }
3152 
3153 void netif_schedule_queue(struct netdev_queue *txq)
3154 {
3155 	rcu_read_lock();
3156 	if (!netif_xmit_stopped(txq)) {
3157 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3158 
3159 		__netif_schedule(q);
3160 	}
3161 	rcu_read_unlock();
3162 }
3163 EXPORT_SYMBOL(netif_schedule_queue);
3164 
3165 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3166 {
3167 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3168 		struct Qdisc *q;
3169 
3170 		rcu_read_lock();
3171 		q = rcu_dereference(dev_queue->qdisc);
3172 		__netif_schedule(q);
3173 		rcu_read_unlock();
3174 	}
3175 }
3176 EXPORT_SYMBOL(netif_tx_wake_queue);
3177 
3178 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3179 {
3180 	unsigned long flags;
3181 
3182 	if (unlikely(!skb))
3183 		return;
3184 
3185 	if (likely(refcount_read(&skb->users) == 1)) {
3186 		smp_rmb();
3187 		refcount_set(&skb->users, 0);
3188 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3189 		return;
3190 	}
3191 	get_kfree_skb_cb(skb)->reason = reason;
3192 	local_irq_save(flags);
3193 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3194 	__this_cpu_write(softnet_data.completion_queue, skb);
3195 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3196 	local_irq_restore(flags);
3197 }
3198 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3199 
3200 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3201 {
3202 	if (in_hardirq() || irqs_disabled())
3203 		dev_kfree_skb_irq_reason(skb, reason);
3204 	else
3205 		kfree_skb_reason(skb, reason);
3206 }
3207 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3208 
3209 
3210 /**
3211  * netif_device_detach - mark device as removed
3212  * @dev: network device
3213  *
3214  * Mark device as removed from system and therefore no longer available.
3215  */
3216 void netif_device_detach(struct net_device *dev)
3217 {
3218 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3219 	    netif_running(dev)) {
3220 		netif_tx_stop_all_queues(dev);
3221 	}
3222 }
3223 EXPORT_SYMBOL(netif_device_detach);
3224 
3225 /**
3226  * netif_device_attach - mark device as attached
3227  * @dev: network device
3228  *
3229  * Mark device as attached from system and restart if needed.
3230  */
3231 void netif_device_attach(struct net_device *dev)
3232 {
3233 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3234 	    netif_running(dev)) {
3235 		netif_tx_wake_all_queues(dev);
3236 		__netdev_watchdog_up(dev);
3237 	}
3238 }
3239 EXPORT_SYMBOL(netif_device_attach);
3240 
3241 /*
3242  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3243  * to be used as a distribution range.
3244  */
3245 static u16 skb_tx_hash(const struct net_device *dev,
3246 		       const struct net_device *sb_dev,
3247 		       struct sk_buff *skb)
3248 {
3249 	u32 hash;
3250 	u16 qoffset = 0;
3251 	u16 qcount = dev->real_num_tx_queues;
3252 
3253 	if (dev->num_tc) {
3254 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3255 
3256 		qoffset = sb_dev->tc_to_txq[tc].offset;
3257 		qcount = sb_dev->tc_to_txq[tc].count;
3258 		if (unlikely(!qcount)) {
3259 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3260 					     sb_dev->name, qoffset, tc);
3261 			qoffset = 0;
3262 			qcount = dev->real_num_tx_queues;
3263 		}
3264 	}
3265 
3266 	if (skb_rx_queue_recorded(skb)) {
3267 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3268 		hash = skb_get_rx_queue(skb);
3269 		if (hash >= qoffset)
3270 			hash -= qoffset;
3271 		while (unlikely(hash >= qcount))
3272 			hash -= qcount;
3273 		return hash + qoffset;
3274 	}
3275 
3276 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3277 }
3278 
3279 void skb_warn_bad_offload(const struct sk_buff *skb)
3280 {
3281 	static const netdev_features_t null_features;
3282 	struct net_device *dev = skb->dev;
3283 	const char *name = "";
3284 
3285 	if (!net_ratelimit())
3286 		return;
3287 
3288 	if (dev) {
3289 		if (dev->dev.parent)
3290 			name = dev_driver_string(dev->dev.parent);
3291 		else
3292 			name = netdev_name(dev);
3293 	}
3294 	skb_dump(KERN_WARNING, skb, false);
3295 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3296 	     name, dev ? &dev->features : &null_features,
3297 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3298 }
3299 
3300 /*
3301  * Invalidate hardware checksum when packet is to be mangled, and
3302  * complete checksum manually on outgoing path.
3303  */
3304 int skb_checksum_help(struct sk_buff *skb)
3305 {
3306 	__wsum csum;
3307 	int ret = 0, offset;
3308 
3309 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3310 		goto out_set_summed;
3311 
3312 	if (unlikely(skb_is_gso(skb))) {
3313 		skb_warn_bad_offload(skb);
3314 		return -EINVAL;
3315 	}
3316 
3317 	if (!skb_frags_readable(skb)) {
3318 		return -EFAULT;
3319 	}
3320 
3321 	/* Before computing a checksum, we should make sure no frag could
3322 	 * be modified by an external entity : checksum could be wrong.
3323 	 */
3324 	if (skb_has_shared_frag(skb)) {
3325 		ret = __skb_linearize(skb);
3326 		if (ret)
3327 			goto out;
3328 	}
3329 
3330 	offset = skb_checksum_start_offset(skb);
3331 	ret = -EINVAL;
3332 	if (unlikely(offset >= skb_headlen(skb))) {
3333 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3334 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3335 			  offset, skb_headlen(skb));
3336 		goto out;
3337 	}
3338 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3339 
3340 	offset += skb->csum_offset;
3341 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3342 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3343 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3344 			  offset + sizeof(__sum16), skb_headlen(skb));
3345 		goto out;
3346 	}
3347 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3348 	if (ret)
3349 		goto out;
3350 
3351 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3352 out_set_summed:
3353 	skb->ip_summed = CHECKSUM_NONE;
3354 out:
3355 	return ret;
3356 }
3357 EXPORT_SYMBOL(skb_checksum_help);
3358 
3359 int skb_crc32c_csum_help(struct sk_buff *skb)
3360 {
3361 	__le32 crc32c_csum;
3362 	int ret = 0, offset, start;
3363 
3364 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3365 		goto out;
3366 
3367 	if (unlikely(skb_is_gso(skb)))
3368 		goto out;
3369 
3370 	/* Before computing a checksum, we should make sure no frag could
3371 	 * be modified by an external entity : checksum could be wrong.
3372 	 */
3373 	if (unlikely(skb_has_shared_frag(skb))) {
3374 		ret = __skb_linearize(skb);
3375 		if (ret)
3376 			goto out;
3377 	}
3378 	start = skb_checksum_start_offset(skb);
3379 	offset = start + offsetof(struct sctphdr, checksum);
3380 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3381 		ret = -EINVAL;
3382 		goto out;
3383 	}
3384 
3385 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3386 	if (ret)
3387 		goto out;
3388 
3389 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3390 						  skb->len - start, ~(__u32)0,
3391 						  crc32c_csum_stub));
3392 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3393 	skb_reset_csum_not_inet(skb);
3394 out:
3395 	return ret;
3396 }
3397 EXPORT_SYMBOL(skb_crc32c_csum_help);
3398 
3399 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3400 {
3401 	__be16 type = skb->protocol;
3402 
3403 	/* Tunnel gso handlers can set protocol to ethernet. */
3404 	if (type == htons(ETH_P_TEB)) {
3405 		struct ethhdr *eth;
3406 
3407 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3408 			return 0;
3409 
3410 		eth = (struct ethhdr *)skb->data;
3411 		type = eth->h_proto;
3412 	}
3413 
3414 	return vlan_get_protocol_and_depth(skb, type, depth);
3415 }
3416 
3417 
3418 /* Take action when hardware reception checksum errors are detected. */
3419 #ifdef CONFIG_BUG
3420 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3421 {
3422 	netdev_err(dev, "hw csum failure\n");
3423 	skb_dump(KERN_ERR, skb, true);
3424 	dump_stack();
3425 }
3426 
3427 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3428 {
3429 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3430 }
3431 EXPORT_SYMBOL(netdev_rx_csum_fault);
3432 #endif
3433 
3434 /* XXX: check that highmem exists at all on the given machine. */
3435 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3436 {
3437 #ifdef CONFIG_HIGHMEM
3438 	int i;
3439 
3440 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3441 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3442 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3443 			struct page *page = skb_frag_page(frag);
3444 
3445 			if (page && PageHighMem(page))
3446 				return 1;
3447 		}
3448 	}
3449 #endif
3450 	return 0;
3451 }
3452 
3453 /* If MPLS offload request, verify we are testing hardware MPLS features
3454  * instead of standard features for the netdev.
3455  */
3456 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3457 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3458 					   netdev_features_t features,
3459 					   __be16 type)
3460 {
3461 	if (eth_p_mpls(type))
3462 		features &= skb->dev->mpls_features;
3463 
3464 	return features;
3465 }
3466 #else
3467 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3468 					   netdev_features_t features,
3469 					   __be16 type)
3470 {
3471 	return features;
3472 }
3473 #endif
3474 
3475 static netdev_features_t harmonize_features(struct sk_buff *skb,
3476 	netdev_features_t features)
3477 {
3478 	__be16 type;
3479 
3480 	type = skb_network_protocol(skb, NULL);
3481 	features = net_mpls_features(skb, features, type);
3482 
3483 	if (skb->ip_summed != CHECKSUM_NONE &&
3484 	    !can_checksum_protocol(features, type)) {
3485 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3486 	}
3487 	if (illegal_highdma(skb->dev, skb))
3488 		features &= ~NETIF_F_SG;
3489 
3490 	return features;
3491 }
3492 
3493 netdev_features_t passthru_features_check(struct sk_buff *skb,
3494 					  struct net_device *dev,
3495 					  netdev_features_t features)
3496 {
3497 	return features;
3498 }
3499 EXPORT_SYMBOL(passthru_features_check);
3500 
3501 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3502 					     struct net_device *dev,
3503 					     netdev_features_t features)
3504 {
3505 	return vlan_features_check(skb, features);
3506 }
3507 
3508 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3509 					    struct net_device *dev,
3510 					    netdev_features_t features)
3511 {
3512 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3513 
3514 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3515 		return features & ~NETIF_F_GSO_MASK;
3516 
3517 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3518 		return features & ~NETIF_F_GSO_MASK;
3519 
3520 	if (!skb_shinfo(skb)->gso_type) {
3521 		skb_warn_bad_offload(skb);
3522 		return features & ~NETIF_F_GSO_MASK;
3523 	}
3524 
3525 	/* Support for GSO partial features requires software
3526 	 * intervention before we can actually process the packets
3527 	 * so we need to strip support for any partial features now
3528 	 * and we can pull them back in after we have partially
3529 	 * segmented the frame.
3530 	 */
3531 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3532 		features &= ~dev->gso_partial_features;
3533 
3534 	/* Make sure to clear the IPv4 ID mangling feature if the
3535 	 * IPv4 header has the potential to be fragmented.
3536 	 */
3537 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3538 		struct iphdr *iph = skb->encapsulation ?
3539 				    inner_ip_hdr(skb) : ip_hdr(skb);
3540 
3541 		if (!(iph->frag_off & htons(IP_DF)))
3542 			features &= ~NETIF_F_TSO_MANGLEID;
3543 	}
3544 
3545 	return features;
3546 }
3547 
3548 netdev_features_t netif_skb_features(struct sk_buff *skb)
3549 {
3550 	struct net_device *dev = skb->dev;
3551 	netdev_features_t features = dev->features;
3552 
3553 	if (skb_is_gso(skb))
3554 		features = gso_features_check(skb, dev, features);
3555 
3556 	/* If encapsulation offload request, verify we are testing
3557 	 * hardware encapsulation features instead of standard
3558 	 * features for the netdev
3559 	 */
3560 	if (skb->encapsulation)
3561 		features &= dev->hw_enc_features;
3562 
3563 	if (skb_vlan_tagged(skb))
3564 		features = netdev_intersect_features(features,
3565 						     dev->vlan_features |
3566 						     NETIF_F_HW_VLAN_CTAG_TX |
3567 						     NETIF_F_HW_VLAN_STAG_TX);
3568 
3569 	if (dev->netdev_ops->ndo_features_check)
3570 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3571 								features);
3572 	else
3573 		features &= dflt_features_check(skb, dev, features);
3574 
3575 	return harmonize_features(skb, features);
3576 }
3577 EXPORT_SYMBOL(netif_skb_features);
3578 
3579 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3580 		    struct netdev_queue *txq, bool more)
3581 {
3582 	unsigned int len;
3583 	int rc;
3584 
3585 	if (dev_nit_active(dev))
3586 		dev_queue_xmit_nit(skb, dev);
3587 
3588 	len = skb->len;
3589 	trace_net_dev_start_xmit(skb, dev);
3590 	rc = netdev_start_xmit(skb, dev, txq, more);
3591 	trace_net_dev_xmit(skb, rc, dev, len);
3592 
3593 	return rc;
3594 }
3595 
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597 				    struct netdev_queue *txq, int *ret)
3598 {
3599 	struct sk_buff *skb = first;
3600 	int rc = NETDEV_TX_OK;
3601 
3602 	while (skb) {
3603 		struct sk_buff *next = skb->next;
3604 
3605 		skb_mark_not_on_list(skb);
3606 		rc = xmit_one(skb, dev, txq, next != NULL);
3607 		if (unlikely(!dev_xmit_complete(rc))) {
3608 			skb->next = next;
3609 			goto out;
3610 		}
3611 
3612 		skb = next;
3613 		if (netif_tx_queue_stopped(txq) && skb) {
3614 			rc = NETDEV_TX_BUSY;
3615 			break;
3616 		}
3617 	}
3618 
3619 out:
3620 	*ret = rc;
3621 	return skb;
3622 }
3623 
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625 					  netdev_features_t features)
3626 {
3627 	if (skb_vlan_tag_present(skb) &&
3628 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3629 		skb = __vlan_hwaccel_push_inside(skb);
3630 	return skb;
3631 }
3632 
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634 			    const netdev_features_t features)
3635 {
3636 	if (unlikely(skb_csum_is_sctp(skb)))
3637 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638 			skb_crc32c_csum_help(skb);
3639 
3640 	if (features & NETIF_F_HW_CSUM)
3641 		return 0;
3642 
3643 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3645 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3646 		    !ipv6_has_hopopt_jumbo(skb))
3647 			goto sw_checksum;
3648 
3649 		switch (skb->csum_offset) {
3650 		case offsetof(struct tcphdr, check):
3651 		case offsetof(struct udphdr, check):
3652 			return 0;
3653 		}
3654 	}
3655 
3656 sw_checksum:
3657 	return skb_checksum_help(skb);
3658 }
3659 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3660 
3661 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3662 {
3663 	netdev_features_t features;
3664 
3665 	features = netif_skb_features(skb);
3666 	skb = validate_xmit_vlan(skb, features);
3667 	if (unlikely(!skb))
3668 		goto out_null;
3669 
3670 	skb = sk_validate_xmit_skb(skb, dev);
3671 	if (unlikely(!skb))
3672 		goto out_null;
3673 
3674 	if (netif_needs_gso(skb, features)) {
3675 		struct sk_buff *segs;
3676 
3677 		segs = skb_gso_segment(skb, features);
3678 		if (IS_ERR(segs)) {
3679 			goto out_kfree_skb;
3680 		} else if (segs) {
3681 			consume_skb(skb);
3682 			skb = segs;
3683 		}
3684 	} else {
3685 		if (skb_needs_linearize(skb, features) &&
3686 		    __skb_linearize(skb))
3687 			goto out_kfree_skb;
3688 
3689 		/* If packet is not checksummed and device does not
3690 		 * support checksumming for this protocol, complete
3691 		 * checksumming here.
3692 		 */
3693 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3694 			if (skb->encapsulation)
3695 				skb_set_inner_transport_header(skb,
3696 							       skb_checksum_start_offset(skb));
3697 			else
3698 				skb_set_transport_header(skb,
3699 							 skb_checksum_start_offset(skb));
3700 			if (skb_csum_hwoffload_help(skb, features))
3701 				goto out_kfree_skb;
3702 		}
3703 	}
3704 
3705 	skb = validate_xmit_xfrm(skb, features, again);
3706 
3707 	return skb;
3708 
3709 out_kfree_skb:
3710 	kfree_skb(skb);
3711 out_null:
3712 	dev_core_stats_tx_dropped_inc(dev);
3713 	return NULL;
3714 }
3715 
3716 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3717 {
3718 	struct sk_buff *next, *head = NULL, *tail;
3719 
3720 	for (; skb != NULL; skb = next) {
3721 		next = skb->next;
3722 		skb_mark_not_on_list(skb);
3723 
3724 		/* in case skb won't be segmented, point to itself */
3725 		skb->prev = skb;
3726 
3727 		skb = validate_xmit_skb(skb, dev, again);
3728 		if (!skb)
3729 			continue;
3730 
3731 		if (!head)
3732 			head = skb;
3733 		else
3734 			tail->next = skb;
3735 		/* If skb was segmented, skb->prev points to
3736 		 * the last segment. If not, it still contains skb.
3737 		 */
3738 		tail = skb->prev;
3739 	}
3740 	return head;
3741 }
3742 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3743 
3744 static void qdisc_pkt_len_init(struct sk_buff *skb)
3745 {
3746 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3747 
3748 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3749 
3750 	/* To get more precise estimation of bytes sent on wire,
3751 	 * we add to pkt_len the headers size of all segments
3752 	 */
3753 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3754 		u16 gso_segs = shinfo->gso_segs;
3755 		unsigned int hdr_len;
3756 
3757 		/* mac layer + network layer */
3758 		hdr_len = skb_transport_offset(skb);
3759 
3760 		/* + transport layer */
3761 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3762 			const struct tcphdr *th;
3763 			struct tcphdr _tcphdr;
3764 
3765 			th = skb_header_pointer(skb, hdr_len,
3766 						sizeof(_tcphdr), &_tcphdr);
3767 			if (likely(th))
3768 				hdr_len += __tcp_hdrlen(th);
3769 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3770 			struct udphdr _udphdr;
3771 
3772 			if (skb_header_pointer(skb, hdr_len,
3773 					       sizeof(_udphdr), &_udphdr))
3774 				hdr_len += sizeof(struct udphdr);
3775 		}
3776 
3777 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3778 			int payload = skb->len - hdr_len;
3779 
3780 			/* Malicious packet. */
3781 			if (payload <= 0)
3782 				return;
3783 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3784 		}
3785 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3786 	}
3787 }
3788 
3789 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3790 			     struct sk_buff **to_free,
3791 			     struct netdev_queue *txq)
3792 {
3793 	int rc;
3794 
3795 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3796 	if (rc == NET_XMIT_SUCCESS)
3797 		trace_qdisc_enqueue(q, txq, skb);
3798 	return rc;
3799 }
3800 
3801 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3802 				 struct net_device *dev,
3803 				 struct netdev_queue *txq)
3804 {
3805 	spinlock_t *root_lock = qdisc_lock(q);
3806 	struct sk_buff *to_free = NULL;
3807 	bool contended;
3808 	int rc;
3809 
3810 	qdisc_calculate_pkt_len(skb, q);
3811 
3812 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3813 
3814 	if (q->flags & TCQ_F_NOLOCK) {
3815 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3816 		    qdisc_run_begin(q)) {
3817 			/* Retest nolock_qdisc_is_empty() within the protection
3818 			 * of q->seqlock to protect from racing with requeuing.
3819 			 */
3820 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3821 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3822 				__qdisc_run(q);
3823 				qdisc_run_end(q);
3824 
3825 				goto no_lock_out;
3826 			}
3827 
3828 			qdisc_bstats_cpu_update(q, skb);
3829 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3830 			    !nolock_qdisc_is_empty(q))
3831 				__qdisc_run(q);
3832 
3833 			qdisc_run_end(q);
3834 			return NET_XMIT_SUCCESS;
3835 		}
3836 
3837 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3838 		qdisc_run(q);
3839 
3840 no_lock_out:
3841 		if (unlikely(to_free))
3842 			kfree_skb_list_reason(to_free,
3843 					      tcf_get_drop_reason(to_free));
3844 		return rc;
3845 	}
3846 
3847 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3848 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3849 		return NET_XMIT_DROP;
3850 	}
3851 	/*
3852 	 * Heuristic to force contended enqueues to serialize on a
3853 	 * separate lock before trying to get qdisc main lock.
3854 	 * This permits qdisc->running owner to get the lock more
3855 	 * often and dequeue packets faster.
3856 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3857 	 * and then other tasks will only enqueue packets. The packets will be
3858 	 * sent after the qdisc owner is scheduled again. To prevent this
3859 	 * scenario the task always serialize on the lock.
3860 	 */
3861 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3862 	if (unlikely(contended))
3863 		spin_lock(&q->busylock);
3864 
3865 	spin_lock(root_lock);
3866 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3867 		__qdisc_drop(skb, &to_free);
3868 		rc = NET_XMIT_DROP;
3869 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3870 		   qdisc_run_begin(q)) {
3871 		/*
3872 		 * This is a work-conserving queue; there are no old skbs
3873 		 * waiting to be sent out; and the qdisc is not running -
3874 		 * xmit the skb directly.
3875 		 */
3876 
3877 		qdisc_bstats_update(q, skb);
3878 
3879 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3880 			if (unlikely(contended)) {
3881 				spin_unlock(&q->busylock);
3882 				contended = false;
3883 			}
3884 			__qdisc_run(q);
3885 		}
3886 
3887 		qdisc_run_end(q);
3888 		rc = NET_XMIT_SUCCESS;
3889 	} else {
3890 		WRITE_ONCE(q->owner, smp_processor_id());
3891 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3892 		WRITE_ONCE(q->owner, -1);
3893 		if (qdisc_run_begin(q)) {
3894 			if (unlikely(contended)) {
3895 				spin_unlock(&q->busylock);
3896 				contended = false;
3897 			}
3898 			__qdisc_run(q);
3899 			qdisc_run_end(q);
3900 		}
3901 	}
3902 	spin_unlock(root_lock);
3903 	if (unlikely(to_free))
3904 		kfree_skb_list_reason(to_free,
3905 				      tcf_get_drop_reason(to_free));
3906 	if (unlikely(contended))
3907 		spin_unlock(&q->busylock);
3908 	return rc;
3909 }
3910 
3911 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3912 static void skb_update_prio(struct sk_buff *skb)
3913 {
3914 	const struct netprio_map *map;
3915 	const struct sock *sk;
3916 	unsigned int prioidx;
3917 
3918 	if (skb->priority)
3919 		return;
3920 	map = rcu_dereference_bh(skb->dev->priomap);
3921 	if (!map)
3922 		return;
3923 	sk = skb_to_full_sk(skb);
3924 	if (!sk)
3925 		return;
3926 
3927 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3928 
3929 	if (prioidx < map->priomap_len)
3930 		skb->priority = map->priomap[prioidx];
3931 }
3932 #else
3933 #define skb_update_prio(skb)
3934 #endif
3935 
3936 /**
3937  *	dev_loopback_xmit - loop back @skb
3938  *	@net: network namespace this loopback is happening in
3939  *	@sk:  sk needed to be a netfilter okfn
3940  *	@skb: buffer to transmit
3941  */
3942 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3943 {
3944 	skb_reset_mac_header(skb);
3945 	__skb_pull(skb, skb_network_offset(skb));
3946 	skb->pkt_type = PACKET_LOOPBACK;
3947 	if (skb->ip_summed == CHECKSUM_NONE)
3948 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3949 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3950 	skb_dst_force(skb);
3951 	netif_rx(skb);
3952 	return 0;
3953 }
3954 EXPORT_SYMBOL(dev_loopback_xmit);
3955 
3956 #ifdef CONFIG_NET_EGRESS
3957 static struct netdev_queue *
3958 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3959 {
3960 	int qm = skb_get_queue_mapping(skb);
3961 
3962 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3963 }
3964 
3965 #ifndef CONFIG_PREEMPT_RT
3966 static bool netdev_xmit_txqueue_skipped(void)
3967 {
3968 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3969 }
3970 
3971 void netdev_xmit_skip_txqueue(bool skip)
3972 {
3973 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3974 }
3975 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3976 
3977 #else
3978 static bool netdev_xmit_txqueue_skipped(void)
3979 {
3980 	return current->net_xmit.skip_txqueue;
3981 }
3982 
3983 void netdev_xmit_skip_txqueue(bool skip)
3984 {
3985 	current->net_xmit.skip_txqueue = skip;
3986 }
3987 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3988 #endif
3989 #endif /* CONFIG_NET_EGRESS */
3990 
3991 #ifdef CONFIG_NET_XGRESS
3992 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3993 		  enum skb_drop_reason *drop_reason)
3994 {
3995 	int ret = TC_ACT_UNSPEC;
3996 #ifdef CONFIG_NET_CLS_ACT
3997 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3998 	struct tcf_result res;
3999 
4000 	if (!miniq)
4001 		return ret;
4002 
4003 	if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
4004 		if (tcf_block_bypass_sw(miniq->block))
4005 			return ret;
4006 	}
4007 
4008 	tc_skb_cb(skb)->mru = 0;
4009 	tc_skb_cb(skb)->post_ct = false;
4010 	tcf_set_drop_reason(skb, *drop_reason);
4011 
4012 	mini_qdisc_bstats_cpu_update(miniq, skb);
4013 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4014 	/* Only tcf related quirks below. */
4015 	switch (ret) {
4016 	case TC_ACT_SHOT:
4017 		*drop_reason = tcf_get_drop_reason(skb);
4018 		mini_qdisc_qstats_cpu_drop(miniq);
4019 		break;
4020 	case TC_ACT_OK:
4021 	case TC_ACT_RECLASSIFY:
4022 		skb->tc_index = TC_H_MIN(res.classid);
4023 		break;
4024 	}
4025 #endif /* CONFIG_NET_CLS_ACT */
4026 	return ret;
4027 }
4028 
4029 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4030 
4031 void tcx_inc(void)
4032 {
4033 	static_branch_inc(&tcx_needed_key);
4034 }
4035 
4036 void tcx_dec(void)
4037 {
4038 	static_branch_dec(&tcx_needed_key);
4039 }
4040 
4041 static __always_inline enum tcx_action_base
4042 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4043 	const bool needs_mac)
4044 {
4045 	const struct bpf_mprog_fp *fp;
4046 	const struct bpf_prog *prog;
4047 	int ret = TCX_NEXT;
4048 
4049 	if (needs_mac)
4050 		__skb_push(skb, skb->mac_len);
4051 	bpf_mprog_foreach_prog(entry, fp, prog) {
4052 		bpf_compute_data_pointers(skb);
4053 		ret = bpf_prog_run(prog, skb);
4054 		if (ret != TCX_NEXT)
4055 			break;
4056 	}
4057 	if (needs_mac)
4058 		__skb_pull(skb, skb->mac_len);
4059 	return tcx_action_code(skb, ret);
4060 }
4061 
4062 static __always_inline struct sk_buff *
4063 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4064 		   struct net_device *orig_dev, bool *another)
4065 {
4066 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4067 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4068 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4069 	int sch_ret;
4070 
4071 	if (!entry)
4072 		return skb;
4073 
4074 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4075 	if (*pt_prev) {
4076 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4077 		*pt_prev = NULL;
4078 	}
4079 
4080 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4081 	tcx_set_ingress(skb, true);
4082 
4083 	if (static_branch_unlikely(&tcx_needed_key)) {
4084 		sch_ret = tcx_run(entry, skb, true);
4085 		if (sch_ret != TC_ACT_UNSPEC)
4086 			goto ingress_verdict;
4087 	}
4088 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4089 ingress_verdict:
4090 	switch (sch_ret) {
4091 	case TC_ACT_REDIRECT:
4092 		/* skb_mac_header check was done by BPF, so we can safely
4093 		 * push the L2 header back before redirecting to another
4094 		 * netdev.
4095 		 */
4096 		__skb_push(skb, skb->mac_len);
4097 		if (skb_do_redirect(skb) == -EAGAIN) {
4098 			__skb_pull(skb, skb->mac_len);
4099 			*another = true;
4100 			break;
4101 		}
4102 		*ret = NET_RX_SUCCESS;
4103 		bpf_net_ctx_clear(bpf_net_ctx);
4104 		return NULL;
4105 	case TC_ACT_SHOT:
4106 		kfree_skb_reason(skb, drop_reason);
4107 		*ret = NET_RX_DROP;
4108 		bpf_net_ctx_clear(bpf_net_ctx);
4109 		return NULL;
4110 	/* used by tc_run */
4111 	case TC_ACT_STOLEN:
4112 	case TC_ACT_QUEUED:
4113 	case TC_ACT_TRAP:
4114 		consume_skb(skb);
4115 		fallthrough;
4116 	case TC_ACT_CONSUMED:
4117 		*ret = NET_RX_SUCCESS;
4118 		bpf_net_ctx_clear(bpf_net_ctx);
4119 		return NULL;
4120 	}
4121 	bpf_net_ctx_clear(bpf_net_ctx);
4122 
4123 	return skb;
4124 }
4125 
4126 static __always_inline struct sk_buff *
4127 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4128 {
4129 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4130 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4131 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4132 	int sch_ret;
4133 
4134 	if (!entry)
4135 		return skb;
4136 
4137 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4138 
4139 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4140 	 * already set by the caller.
4141 	 */
4142 	if (static_branch_unlikely(&tcx_needed_key)) {
4143 		sch_ret = tcx_run(entry, skb, false);
4144 		if (sch_ret != TC_ACT_UNSPEC)
4145 			goto egress_verdict;
4146 	}
4147 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4148 egress_verdict:
4149 	switch (sch_ret) {
4150 	case TC_ACT_REDIRECT:
4151 		/* No need to push/pop skb's mac_header here on egress! */
4152 		skb_do_redirect(skb);
4153 		*ret = NET_XMIT_SUCCESS;
4154 		bpf_net_ctx_clear(bpf_net_ctx);
4155 		return NULL;
4156 	case TC_ACT_SHOT:
4157 		kfree_skb_reason(skb, drop_reason);
4158 		*ret = NET_XMIT_DROP;
4159 		bpf_net_ctx_clear(bpf_net_ctx);
4160 		return NULL;
4161 	/* used by tc_run */
4162 	case TC_ACT_STOLEN:
4163 	case TC_ACT_QUEUED:
4164 	case TC_ACT_TRAP:
4165 		consume_skb(skb);
4166 		fallthrough;
4167 	case TC_ACT_CONSUMED:
4168 		*ret = NET_XMIT_SUCCESS;
4169 		bpf_net_ctx_clear(bpf_net_ctx);
4170 		return NULL;
4171 	}
4172 	bpf_net_ctx_clear(bpf_net_ctx);
4173 
4174 	return skb;
4175 }
4176 #else
4177 static __always_inline struct sk_buff *
4178 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4179 		   struct net_device *orig_dev, bool *another)
4180 {
4181 	return skb;
4182 }
4183 
4184 static __always_inline struct sk_buff *
4185 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4186 {
4187 	return skb;
4188 }
4189 #endif /* CONFIG_NET_XGRESS */
4190 
4191 #ifdef CONFIG_XPS
4192 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4193 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4194 {
4195 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4196 	struct xps_map *map;
4197 	int queue_index = -1;
4198 
4199 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4200 		return queue_index;
4201 
4202 	tci *= dev_maps->num_tc;
4203 	tci += tc;
4204 
4205 	map = rcu_dereference(dev_maps->attr_map[tci]);
4206 	if (map) {
4207 		if (map->len == 1)
4208 			queue_index = map->queues[0];
4209 		else
4210 			queue_index = map->queues[reciprocal_scale(
4211 						skb_get_hash(skb), map->len)];
4212 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4213 			queue_index = -1;
4214 	}
4215 	return queue_index;
4216 }
4217 #endif
4218 
4219 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4220 			 struct sk_buff *skb)
4221 {
4222 #ifdef CONFIG_XPS
4223 	struct xps_dev_maps *dev_maps;
4224 	struct sock *sk = skb->sk;
4225 	int queue_index = -1;
4226 
4227 	if (!static_key_false(&xps_needed))
4228 		return -1;
4229 
4230 	rcu_read_lock();
4231 	if (!static_key_false(&xps_rxqs_needed))
4232 		goto get_cpus_map;
4233 
4234 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4235 	if (dev_maps) {
4236 		int tci = sk_rx_queue_get(sk);
4237 
4238 		if (tci >= 0)
4239 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4240 							  tci);
4241 	}
4242 
4243 get_cpus_map:
4244 	if (queue_index < 0) {
4245 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4246 		if (dev_maps) {
4247 			unsigned int tci = skb->sender_cpu - 1;
4248 
4249 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4250 							  tci);
4251 		}
4252 	}
4253 	rcu_read_unlock();
4254 
4255 	return queue_index;
4256 #else
4257 	return -1;
4258 #endif
4259 }
4260 
4261 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4262 		     struct net_device *sb_dev)
4263 {
4264 	return 0;
4265 }
4266 EXPORT_SYMBOL(dev_pick_tx_zero);
4267 
4268 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4269 		     struct net_device *sb_dev)
4270 {
4271 	struct sock *sk = skb->sk;
4272 	int queue_index = sk_tx_queue_get(sk);
4273 
4274 	sb_dev = sb_dev ? : dev;
4275 
4276 	if (queue_index < 0 || skb->ooo_okay ||
4277 	    queue_index >= dev->real_num_tx_queues) {
4278 		int new_index = get_xps_queue(dev, sb_dev, skb);
4279 
4280 		if (new_index < 0)
4281 			new_index = skb_tx_hash(dev, sb_dev, skb);
4282 
4283 		if (queue_index != new_index && sk &&
4284 		    sk_fullsock(sk) &&
4285 		    rcu_access_pointer(sk->sk_dst_cache))
4286 			sk_tx_queue_set(sk, new_index);
4287 
4288 		queue_index = new_index;
4289 	}
4290 
4291 	return queue_index;
4292 }
4293 EXPORT_SYMBOL(netdev_pick_tx);
4294 
4295 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4296 					 struct sk_buff *skb,
4297 					 struct net_device *sb_dev)
4298 {
4299 	int queue_index = 0;
4300 
4301 #ifdef CONFIG_XPS
4302 	u32 sender_cpu = skb->sender_cpu - 1;
4303 
4304 	if (sender_cpu >= (u32)NR_CPUS)
4305 		skb->sender_cpu = raw_smp_processor_id() + 1;
4306 #endif
4307 
4308 	if (dev->real_num_tx_queues != 1) {
4309 		const struct net_device_ops *ops = dev->netdev_ops;
4310 
4311 		if (ops->ndo_select_queue)
4312 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4313 		else
4314 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4315 
4316 		queue_index = netdev_cap_txqueue(dev, queue_index);
4317 	}
4318 
4319 	skb_set_queue_mapping(skb, queue_index);
4320 	return netdev_get_tx_queue(dev, queue_index);
4321 }
4322 
4323 /**
4324  * __dev_queue_xmit() - transmit a buffer
4325  * @skb:	buffer to transmit
4326  * @sb_dev:	suboordinate device used for L2 forwarding offload
4327  *
4328  * Queue a buffer for transmission to a network device. The caller must
4329  * have set the device and priority and built the buffer before calling
4330  * this function. The function can be called from an interrupt.
4331  *
4332  * When calling this method, interrupts MUST be enabled. This is because
4333  * the BH enable code must have IRQs enabled so that it will not deadlock.
4334  *
4335  * Regardless of the return value, the skb is consumed, so it is currently
4336  * difficult to retry a send to this method. (You can bump the ref count
4337  * before sending to hold a reference for retry if you are careful.)
4338  *
4339  * Return:
4340  * * 0				- buffer successfully transmitted
4341  * * positive qdisc return code	- NET_XMIT_DROP etc.
4342  * * negative errno		- other errors
4343  */
4344 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4345 {
4346 	struct net_device *dev = skb->dev;
4347 	struct netdev_queue *txq = NULL;
4348 	struct Qdisc *q;
4349 	int rc = -ENOMEM;
4350 	bool again = false;
4351 
4352 	skb_reset_mac_header(skb);
4353 	skb_assert_len(skb);
4354 
4355 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4356 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4357 
4358 	/* Disable soft irqs for various locks below. Also
4359 	 * stops preemption for RCU.
4360 	 */
4361 	rcu_read_lock_bh();
4362 
4363 	skb_update_prio(skb);
4364 
4365 	qdisc_pkt_len_init(skb);
4366 	tcx_set_ingress(skb, false);
4367 #ifdef CONFIG_NET_EGRESS
4368 	if (static_branch_unlikely(&egress_needed_key)) {
4369 		if (nf_hook_egress_active()) {
4370 			skb = nf_hook_egress(skb, &rc, dev);
4371 			if (!skb)
4372 				goto out;
4373 		}
4374 
4375 		netdev_xmit_skip_txqueue(false);
4376 
4377 		nf_skip_egress(skb, true);
4378 		skb = sch_handle_egress(skb, &rc, dev);
4379 		if (!skb)
4380 			goto out;
4381 		nf_skip_egress(skb, false);
4382 
4383 		if (netdev_xmit_txqueue_skipped())
4384 			txq = netdev_tx_queue_mapping(dev, skb);
4385 	}
4386 #endif
4387 	/* If device/qdisc don't need skb->dst, release it right now while
4388 	 * its hot in this cpu cache.
4389 	 */
4390 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4391 		skb_dst_drop(skb);
4392 	else
4393 		skb_dst_force(skb);
4394 
4395 	if (!txq)
4396 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4397 
4398 	q = rcu_dereference_bh(txq->qdisc);
4399 
4400 	trace_net_dev_queue(skb);
4401 	if (q->enqueue) {
4402 		rc = __dev_xmit_skb(skb, q, dev, txq);
4403 		goto out;
4404 	}
4405 
4406 	/* The device has no queue. Common case for software devices:
4407 	 * loopback, all the sorts of tunnels...
4408 
4409 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4410 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4411 	 * counters.)
4412 	 * However, it is possible, that they rely on protection
4413 	 * made by us here.
4414 
4415 	 * Check this and shot the lock. It is not prone from deadlocks.
4416 	 *Either shot noqueue qdisc, it is even simpler 8)
4417 	 */
4418 	if (dev->flags & IFF_UP) {
4419 		int cpu = smp_processor_id(); /* ok because BHs are off */
4420 
4421 		/* Other cpus might concurrently change txq->xmit_lock_owner
4422 		 * to -1 or to their cpu id, but not to our id.
4423 		 */
4424 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4425 			if (dev_xmit_recursion())
4426 				goto recursion_alert;
4427 
4428 			skb = validate_xmit_skb(skb, dev, &again);
4429 			if (!skb)
4430 				goto out;
4431 
4432 			HARD_TX_LOCK(dev, txq, cpu);
4433 
4434 			if (!netif_xmit_stopped(txq)) {
4435 				dev_xmit_recursion_inc();
4436 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4437 				dev_xmit_recursion_dec();
4438 				if (dev_xmit_complete(rc)) {
4439 					HARD_TX_UNLOCK(dev, txq);
4440 					goto out;
4441 				}
4442 			}
4443 			HARD_TX_UNLOCK(dev, txq);
4444 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4445 					     dev->name);
4446 		} else {
4447 			/* Recursion is detected! It is possible,
4448 			 * unfortunately
4449 			 */
4450 recursion_alert:
4451 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4452 					     dev->name);
4453 		}
4454 	}
4455 
4456 	rc = -ENETDOWN;
4457 	rcu_read_unlock_bh();
4458 
4459 	dev_core_stats_tx_dropped_inc(dev);
4460 	kfree_skb_list(skb);
4461 	return rc;
4462 out:
4463 	rcu_read_unlock_bh();
4464 	return rc;
4465 }
4466 EXPORT_SYMBOL(__dev_queue_xmit);
4467 
4468 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4469 {
4470 	struct net_device *dev = skb->dev;
4471 	struct sk_buff *orig_skb = skb;
4472 	struct netdev_queue *txq;
4473 	int ret = NETDEV_TX_BUSY;
4474 	bool again = false;
4475 
4476 	if (unlikely(!netif_running(dev) ||
4477 		     !netif_carrier_ok(dev)))
4478 		goto drop;
4479 
4480 	skb = validate_xmit_skb_list(skb, dev, &again);
4481 	if (skb != orig_skb)
4482 		goto drop;
4483 
4484 	skb_set_queue_mapping(skb, queue_id);
4485 	txq = skb_get_tx_queue(dev, skb);
4486 
4487 	local_bh_disable();
4488 
4489 	dev_xmit_recursion_inc();
4490 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4491 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4492 		ret = netdev_start_xmit(skb, dev, txq, false);
4493 	HARD_TX_UNLOCK(dev, txq);
4494 	dev_xmit_recursion_dec();
4495 
4496 	local_bh_enable();
4497 	return ret;
4498 drop:
4499 	dev_core_stats_tx_dropped_inc(dev);
4500 	kfree_skb_list(skb);
4501 	return NET_XMIT_DROP;
4502 }
4503 EXPORT_SYMBOL(__dev_direct_xmit);
4504 
4505 /*************************************************************************
4506  *			Receiver routines
4507  *************************************************************************/
4508 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4509 
4510 int weight_p __read_mostly = 64;           /* old backlog weight */
4511 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4512 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4513 
4514 /* Called with irq disabled */
4515 static inline void ____napi_schedule(struct softnet_data *sd,
4516 				     struct napi_struct *napi)
4517 {
4518 	struct task_struct *thread;
4519 
4520 	lockdep_assert_irqs_disabled();
4521 
4522 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4523 		/* Paired with smp_mb__before_atomic() in
4524 		 * napi_enable()/dev_set_threaded().
4525 		 * Use READ_ONCE() to guarantee a complete
4526 		 * read on napi->thread. Only call
4527 		 * wake_up_process() when it's not NULL.
4528 		 */
4529 		thread = READ_ONCE(napi->thread);
4530 		if (thread) {
4531 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4532 				goto use_local_napi;
4533 
4534 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4535 			wake_up_process(thread);
4536 			return;
4537 		}
4538 	}
4539 
4540 use_local_napi:
4541 	list_add_tail(&napi->poll_list, &sd->poll_list);
4542 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4543 	/* If not called from net_rx_action()
4544 	 * we have to raise NET_RX_SOFTIRQ.
4545 	 */
4546 	if (!sd->in_net_rx_action)
4547 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4548 }
4549 
4550 #ifdef CONFIG_RPS
4551 
4552 struct static_key_false rps_needed __read_mostly;
4553 EXPORT_SYMBOL(rps_needed);
4554 struct static_key_false rfs_needed __read_mostly;
4555 EXPORT_SYMBOL(rfs_needed);
4556 
4557 static struct rps_dev_flow *
4558 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4559 	    struct rps_dev_flow *rflow, u16 next_cpu)
4560 {
4561 	if (next_cpu < nr_cpu_ids) {
4562 		u32 head;
4563 #ifdef CONFIG_RFS_ACCEL
4564 		struct netdev_rx_queue *rxqueue;
4565 		struct rps_dev_flow_table *flow_table;
4566 		struct rps_dev_flow *old_rflow;
4567 		u16 rxq_index;
4568 		u32 flow_id;
4569 		int rc;
4570 
4571 		/* Should we steer this flow to a different hardware queue? */
4572 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4573 		    !(dev->features & NETIF_F_NTUPLE))
4574 			goto out;
4575 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4576 		if (rxq_index == skb_get_rx_queue(skb))
4577 			goto out;
4578 
4579 		rxqueue = dev->_rx + rxq_index;
4580 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4581 		if (!flow_table)
4582 			goto out;
4583 		flow_id = skb_get_hash(skb) & flow_table->mask;
4584 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4585 							rxq_index, flow_id);
4586 		if (rc < 0)
4587 			goto out;
4588 		old_rflow = rflow;
4589 		rflow = &flow_table->flows[flow_id];
4590 		WRITE_ONCE(rflow->filter, rc);
4591 		if (old_rflow->filter == rc)
4592 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4593 	out:
4594 #endif
4595 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4596 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4597 	}
4598 
4599 	WRITE_ONCE(rflow->cpu, next_cpu);
4600 	return rflow;
4601 }
4602 
4603 /*
4604  * get_rps_cpu is called from netif_receive_skb and returns the target
4605  * CPU from the RPS map of the receiving queue for a given skb.
4606  * rcu_read_lock must be held on entry.
4607  */
4608 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4609 		       struct rps_dev_flow **rflowp)
4610 {
4611 	const struct rps_sock_flow_table *sock_flow_table;
4612 	struct netdev_rx_queue *rxqueue = dev->_rx;
4613 	struct rps_dev_flow_table *flow_table;
4614 	struct rps_map *map;
4615 	int cpu = -1;
4616 	u32 tcpu;
4617 	u32 hash;
4618 
4619 	if (skb_rx_queue_recorded(skb)) {
4620 		u16 index = skb_get_rx_queue(skb);
4621 
4622 		if (unlikely(index >= dev->real_num_rx_queues)) {
4623 			WARN_ONCE(dev->real_num_rx_queues > 1,
4624 				  "%s received packet on queue %u, but number "
4625 				  "of RX queues is %u\n",
4626 				  dev->name, index, dev->real_num_rx_queues);
4627 			goto done;
4628 		}
4629 		rxqueue += index;
4630 	}
4631 
4632 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4633 
4634 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4635 	map = rcu_dereference(rxqueue->rps_map);
4636 	if (!flow_table && !map)
4637 		goto done;
4638 
4639 	skb_reset_network_header(skb);
4640 	hash = skb_get_hash(skb);
4641 	if (!hash)
4642 		goto done;
4643 
4644 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4645 	if (flow_table && sock_flow_table) {
4646 		struct rps_dev_flow *rflow;
4647 		u32 next_cpu;
4648 		u32 ident;
4649 
4650 		/* First check into global flow table if there is a match.
4651 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4652 		 */
4653 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4654 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4655 			goto try_rps;
4656 
4657 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4658 
4659 		/* OK, now we know there is a match,
4660 		 * we can look at the local (per receive queue) flow table
4661 		 */
4662 		rflow = &flow_table->flows[hash & flow_table->mask];
4663 		tcpu = rflow->cpu;
4664 
4665 		/*
4666 		 * If the desired CPU (where last recvmsg was done) is
4667 		 * different from current CPU (one in the rx-queue flow
4668 		 * table entry), switch if one of the following holds:
4669 		 *   - Current CPU is unset (>= nr_cpu_ids).
4670 		 *   - Current CPU is offline.
4671 		 *   - The current CPU's queue tail has advanced beyond the
4672 		 *     last packet that was enqueued using this table entry.
4673 		 *     This guarantees that all previous packets for the flow
4674 		 *     have been dequeued, thus preserving in order delivery.
4675 		 */
4676 		if (unlikely(tcpu != next_cpu) &&
4677 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4678 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4679 		      rflow->last_qtail)) >= 0)) {
4680 			tcpu = next_cpu;
4681 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4682 		}
4683 
4684 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4685 			*rflowp = rflow;
4686 			cpu = tcpu;
4687 			goto done;
4688 		}
4689 	}
4690 
4691 try_rps:
4692 
4693 	if (map) {
4694 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4695 		if (cpu_online(tcpu)) {
4696 			cpu = tcpu;
4697 			goto done;
4698 		}
4699 	}
4700 
4701 done:
4702 	return cpu;
4703 }
4704 
4705 #ifdef CONFIG_RFS_ACCEL
4706 
4707 /**
4708  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4709  * @dev: Device on which the filter was set
4710  * @rxq_index: RX queue index
4711  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4712  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4713  *
4714  * Drivers that implement ndo_rx_flow_steer() should periodically call
4715  * this function for each installed filter and remove the filters for
4716  * which it returns %true.
4717  */
4718 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4719 			 u32 flow_id, u16 filter_id)
4720 {
4721 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4722 	struct rps_dev_flow_table *flow_table;
4723 	struct rps_dev_flow *rflow;
4724 	bool expire = true;
4725 	unsigned int cpu;
4726 
4727 	rcu_read_lock();
4728 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4729 	if (flow_table && flow_id <= flow_table->mask) {
4730 		rflow = &flow_table->flows[flow_id];
4731 		cpu = READ_ONCE(rflow->cpu);
4732 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4733 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4734 			   READ_ONCE(rflow->last_qtail)) <
4735 		     (int)(10 * flow_table->mask)))
4736 			expire = false;
4737 	}
4738 	rcu_read_unlock();
4739 	return expire;
4740 }
4741 EXPORT_SYMBOL(rps_may_expire_flow);
4742 
4743 #endif /* CONFIG_RFS_ACCEL */
4744 
4745 /* Called from hardirq (IPI) context */
4746 static void rps_trigger_softirq(void *data)
4747 {
4748 	struct softnet_data *sd = data;
4749 
4750 	____napi_schedule(sd, &sd->backlog);
4751 	sd->received_rps++;
4752 }
4753 
4754 #endif /* CONFIG_RPS */
4755 
4756 /* Called from hardirq (IPI) context */
4757 static void trigger_rx_softirq(void *data)
4758 {
4759 	struct softnet_data *sd = data;
4760 
4761 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4762 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4763 }
4764 
4765 /*
4766  * After we queued a packet into sd->input_pkt_queue,
4767  * we need to make sure this queue is serviced soon.
4768  *
4769  * - If this is another cpu queue, link it to our rps_ipi_list,
4770  *   and make sure we will process rps_ipi_list from net_rx_action().
4771  *
4772  * - If this is our own queue, NAPI schedule our backlog.
4773  *   Note that this also raises NET_RX_SOFTIRQ.
4774  */
4775 static void napi_schedule_rps(struct softnet_data *sd)
4776 {
4777 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4778 
4779 #ifdef CONFIG_RPS
4780 	if (sd != mysd) {
4781 		if (use_backlog_threads()) {
4782 			__napi_schedule_irqoff(&sd->backlog);
4783 			return;
4784 		}
4785 
4786 		sd->rps_ipi_next = mysd->rps_ipi_list;
4787 		mysd->rps_ipi_list = sd;
4788 
4789 		/* If not called from net_rx_action() or napi_threaded_poll()
4790 		 * we have to raise NET_RX_SOFTIRQ.
4791 		 */
4792 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4793 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4794 		return;
4795 	}
4796 #endif /* CONFIG_RPS */
4797 	__napi_schedule_irqoff(&mysd->backlog);
4798 }
4799 
4800 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4801 {
4802 	unsigned long flags;
4803 
4804 	if (use_backlog_threads()) {
4805 		backlog_lock_irq_save(sd, &flags);
4806 
4807 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4808 			__napi_schedule_irqoff(&sd->backlog);
4809 
4810 		backlog_unlock_irq_restore(sd, &flags);
4811 
4812 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4813 		smp_call_function_single_async(cpu, &sd->defer_csd);
4814 	}
4815 }
4816 
4817 #ifdef CONFIG_NET_FLOW_LIMIT
4818 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4819 #endif
4820 
4821 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4822 {
4823 #ifdef CONFIG_NET_FLOW_LIMIT
4824 	struct sd_flow_limit *fl;
4825 	struct softnet_data *sd;
4826 	unsigned int old_flow, new_flow;
4827 
4828 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4829 		return false;
4830 
4831 	sd = this_cpu_ptr(&softnet_data);
4832 
4833 	rcu_read_lock();
4834 	fl = rcu_dereference(sd->flow_limit);
4835 	if (fl) {
4836 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4837 		old_flow = fl->history[fl->history_head];
4838 		fl->history[fl->history_head] = new_flow;
4839 
4840 		fl->history_head++;
4841 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4842 
4843 		if (likely(fl->buckets[old_flow]))
4844 			fl->buckets[old_flow]--;
4845 
4846 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4847 			fl->count++;
4848 			rcu_read_unlock();
4849 			return true;
4850 		}
4851 	}
4852 	rcu_read_unlock();
4853 #endif
4854 	return false;
4855 }
4856 
4857 /*
4858  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4859  * queue (may be a remote CPU queue).
4860  */
4861 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4862 			      unsigned int *qtail)
4863 {
4864 	enum skb_drop_reason reason;
4865 	struct softnet_data *sd;
4866 	unsigned long flags;
4867 	unsigned int qlen;
4868 	int max_backlog;
4869 	u32 tail;
4870 
4871 	reason = SKB_DROP_REASON_DEV_READY;
4872 	if (!netif_running(skb->dev))
4873 		goto bad_dev;
4874 
4875 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4876 	sd = &per_cpu(softnet_data, cpu);
4877 
4878 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4879 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
4880 	if (unlikely(qlen > max_backlog))
4881 		goto cpu_backlog_drop;
4882 	backlog_lock_irq_save(sd, &flags);
4883 	qlen = skb_queue_len(&sd->input_pkt_queue);
4884 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4885 		if (!qlen) {
4886 			/* Schedule NAPI for backlog device. We can use
4887 			 * non atomic operation as we own the queue lock.
4888 			 */
4889 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
4890 						&sd->backlog.state))
4891 				napi_schedule_rps(sd);
4892 		}
4893 		__skb_queue_tail(&sd->input_pkt_queue, skb);
4894 		tail = rps_input_queue_tail_incr(sd);
4895 		backlog_unlock_irq_restore(sd, &flags);
4896 
4897 		/* save the tail outside of the critical section */
4898 		rps_input_queue_tail_save(qtail, tail);
4899 		return NET_RX_SUCCESS;
4900 	}
4901 
4902 	backlog_unlock_irq_restore(sd, &flags);
4903 
4904 cpu_backlog_drop:
4905 	atomic_inc(&sd->dropped);
4906 bad_dev:
4907 	dev_core_stats_rx_dropped_inc(skb->dev);
4908 	kfree_skb_reason(skb, reason);
4909 	return NET_RX_DROP;
4910 }
4911 
4912 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4913 {
4914 	struct net_device *dev = skb->dev;
4915 	struct netdev_rx_queue *rxqueue;
4916 
4917 	rxqueue = dev->_rx;
4918 
4919 	if (skb_rx_queue_recorded(skb)) {
4920 		u16 index = skb_get_rx_queue(skb);
4921 
4922 		if (unlikely(index >= dev->real_num_rx_queues)) {
4923 			WARN_ONCE(dev->real_num_rx_queues > 1,
4924 				  "%s received packet on queue %u, but number "
4925 				  "of RX queues is %u\n",
4926 				  dev->name, index, dev->real_num_rx_queues);
4927 
4928 			return rxqueue; /* Return first rxqueue */
4929 		}
4930 		rxqueue += index;
4931 	}
4932 	return rxqueue;
4933 }
4934 
4935 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4936 			     struct bpf_prog *xdp_prog)
4937 {
4938 	void *orig_data, *orig_data_end, *hard_start;
4939 	struct netdev_rx_queue *rxqueue;
4940 	bool orig_bcast, orig_host;
4941 	u32 mac_len, frame_sz;
4942 	__be16 orig_eth_type;
4943 	struct ethhdr *eth;
4944 	u32 metalen, act;
4945 	int off;
4946 
4947 	/* The XDP program wants to see the packet starting at the MAC
4948 	 * header.
4949 	 */
4950 	mac_len = skb->data - skb_mac_header(skb);
4951 	hard_start = skb->data - skb_headroom(skb);
4952 
4953 	/* SKB "head" area always have tailroom for skb_shared_info */
4954 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4955 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4956 
4957 	rxqueue = netif_get_rxqueue(skb);
4958 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4959 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4960 			 skb_headlen(skb) + mac_len, true);
4961 	if (skb_is_nonlinear(skb)) {
4962 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4963 		xdp_buff_set_frags_flag(xdp);
4964 	} else {
4965 		xdp_buff_clear_frags_flag(xdp);
4966 	}
4967 
4968 	orig_data_end = xdp->data_end;
4969 	orig_data = xdp->data;
4970 	eth = (struct ethhdr *)xdp->data;
4971 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4972 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4973 	orig_eth_type = eth->h_proto;
4974 
4975 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4976 
4977 	/* check if bpf_xdp_adjust_head was used */
4978 	off = xdp->data - orig_data;
4979 	if (off) {
4980 		if (off > 0)
4981 			__skb_pull(skb, off);
4982 		else if (off < 0)
4983 			__skb_push(skb, -off);
4984 
4985 		skb->mac_header += off;
4986 		skb_reset_network_header(skb);
4987 	}
4988 
4989 	/* check if bpf_xdp_adjust_tail was used */
4990 	off = xdp->data_end - orig_data_end;
4991 	if (off != 0) {
4992 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4993 		skb->len += off; /* positive on grow, negative on shrink */
4994 	}
4995 
4996 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4997 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4998 	 */
4999 	if (xdp_buff_has_frags(xdp))
5000 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5001 	else
5002 		skb->data_len = 0;
5003 
5004 	/* check if XDP changed eth hdr such SKB needs update */
5005 	eth = (struct ethhdr *)xdp->data;
5006 	if ((orig_eth_type != eth->h_proto) ||
5007 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5008 						  skb->dev->dev_addr)) ||
5009 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5010 		__skb_push(skb, ETH_HLEN);
5011 		skb->pkt_type = PACKET_HOST;
5012 		skb->protocol = eth_type_trans(skb, skb->dev);
5013 	}
5014 
5015 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5016 	 * before calling us again on redirect path. We do not call do_redirect
5017 	 * as we leave that up to the caller.
5018 	 *
5019 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5020 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5021 	 */
5022 	switch (act) {
5023 	case XDP_REDIRECT:
5024 	case XDP_TX:
5025 		__skb_push(skb, mac_len);
5026 		break;
5027 	case XDP_PASS:
5028 		metalen = xdp->data - xdp->data_meta;
5029 		if (metalen)
5030 			skb_metadata_set(skb, metalen);
5031 		break;
5032 	}
5033 
5034 	return act;
5035 }
5036 
5037 static int
5038 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5039 {
5040 	struct sk_buff *skb = *pskb;
5041 	int err, hroom, troom;
5042 
5043 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5044 		return 0;
5045 
5046 	/* In case we have to go down the path and also linearize,
5047 	 * then lets do the pskb_expand_head() work just once here.
5048 	 */
5049 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5050 	troom = skb->tail + skb->data_len - skb->end;
5051 	err = pskb_expand_head(skb,
5052 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5053 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5054 	if (err)
5055 		return err;
5056 
5057 	return skb_linearize(skb);
5058 }
5059 
5060 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5061 				     struct xdp_buff *xdp,
5062 				     struct bpf_prog *xdp_prog)
5063 {
5064 	struct sk_buff *skb = *pskb;
5065 	u32 mac_len, act = XDP_DROP;
5066 
5067 	/* Reinjected packets coming from act_mirred or similar should
5068 	 * not get XDP generic processing.
5069 	 */
5070 	if (skb_is_redirected(skb))
5071 		return XDP_PASS;
5072 
5073 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5074 	 * bytes. This is the guarantee that also native XDP provides,
5075 	 * thus we need to do it here as well.
5076 	 */
5077 	mac_len = skb->data - skb_mac_header(skb);
5078 	__skb_push(skb, mac_len);
5079 
5080 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5081 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5082 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5083 			goto do_drop;
5084 	}
5085 
5086 	__skb_pull(*pskb, mac_len);
5087 
5088 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5089 	switch (act) {
5090 	case XDP_REDIRECT:
5091 	case XDP_TX:
5092 	case XDP_PASS:
5093 		break;
5094 	default:
5095 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5096 		fallthrough;
5097 	case XDP_ABORTED:
5098 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5099 		fallthrough;
5100 	case XDP_DROP:
5101 	do_drop:
5102 		kfree_skb(*pskb);
5103 		break;
5104 	}
5105 
5106 	return act;
5107 }
5108 
5109 /* When doing generic XDP we have to bypass the qdisc layer and the
5110  * network taps in order to match in-driver-XDP behavior. This also means
5111  * that XDP packets are able to starve other packets going through a qdisc,
5112  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5113  * queues, so they do not have this starvation issue.
5114  */
5115 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5116 {
5117 	struct net_device *dev = skb->dev;
5118 	struct netdev_queue *txq;
5119 	bool free_skb = true;
5120 	int cpu, rc;
5121 
5122 	txq = netdev_core_pick_tx(dev, skb, NULL);
5123 	cpu = smp_processor_id();
5124 	HARD_TX_LOCK(dev, txq, cpu);
5125 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5126 		rc = netdev_start_xmit(skb, dev, txq, 0);
5127 		if (dev_xmit_complete(rc))
5128 			free_skb = false;
5129 	}
5130 	HARD_TX_UNLOCK(dev, txq);
5131 	if (free_skb) {
5132 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5133 		dev_core_stats_tx_dropped_inc(dev);
5134 		kfree_skb(skb);
5135 	}
5136 }
5137 
5138 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5139 
5140 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5141 {
5142 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5143 
5144 	if (xdp_prog) {
5145 		struct xdp_buff xdp;
5146 		u32 act;
5147 		int err;
5148 
5149 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5150 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5151 		if (act != XDP_PASS) {
5152 			switch (act) {
5153 			case XDP_REDIRECT:
5154 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5155 							      &xdp, xdp_prog);
5156 				if (err)
5157 					goto out_redir;
5158 				break;
5159 			case XDP_TX:
5160 				generic_xdp_tx(*pskb, xdp_prog);
5161 				break;
5162 			}
5163 			bpf_net_ctx_clear(bpf_net_ctx);
5164 			return XDP_DROP;
5165 		}
5166 		bpf_net_ctx_clear(bpf_net_ctx);
5167 	}
5168 	return XDP_PASS;
5169 out_redir:
5170 	bpf_net_ctx_clear(bpf_net_ctx);
5171 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5172 	return XDP_DROP;
5173 }
5174 EXPORT_SYMBOL_GPL(do_xdp_generic);
5175 
5176 static int netif_rx_internal(struct sk_buff *skb)
5177 {
5178 	int ret;
5179 
5180 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5181 
5182 	trace_netif_rx(skb);
5183 
5184 #ifdef CONFIG_RPS
5185 	if (static_branch_unlikely(&rps_needed)) {
5186 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5187 		int cpu;
5188 
5189 		rcu_read_lock();
5190 
5191 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5192 		if (cpu < 0)
5193 			cpu = smp_processor_id();
5194 
5195 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5196 
5197 		rcu_read_unlock();
5198 	} else
5199 #endif
5200 	{
5201 		unsigned int qtail;
5202 
5203 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5204 	}
5205 	return ret;
5206 }
5207 
5208 /**
5209  *	__netif_rx	-	Slightly optimized version of netif_rx
5210  *	@skb: buffer to post
5211  *
5212  *	This behaves as netif_rx except that it does not disable bottom halves.
5213  *	As a result this function may only be invoked from the interrupt context
5214  *	(either hard or soft interrupt).
5215  */
5216 int __netif_rx(struct sk_buff *skb)
5217 {
5218 	int ret;
5219 
5220 	lockdep_assert_once(hardirq_count() | softirq_count());
5221 
5222 	trace_netif_rx_entry(skb);
5223 	ret = netif_rx_internal(skb);
5224 	trace_netif_rx_exit(ret);
5225 	return ret;
5226 }
5227 EXPORT_SYMBOL(__netif_rx);
5228 
5229 /**
5230  *	netif_rx	-	post buffer to the network code
5231  *	@skb: buffer to post
5232  *
5233  *	This function receives a packet from a device driver and queues it for
5234  *	the upper (protocol) levels to process via the backlog NAPI device. It
5235  *	always succeeds. The buffer may be dropped during processing for
5236  *	congestion control or by the protocol layers.
5237  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5238  *	driver should use NAPI and GRO.
5239  *	This function can used from interrupt and from process context. The
5240  *	caller from process context must not disable interrupts before invoking
5241  *	this function.
5242  *
5243  *	return values:
5244  *	NET_RX_SUCCESS	(no congestion)
5245  *	NET_RX_DROP     (packet was dropped)
5246  *
5247  */
5248 int netif_rx(struct sk_buff *skb)
5249 {
5250 	bool need_bh_off = !(hardirq_count() | softirq_count());
5251 	int ret;
5252 
5253 	if (need_bh_off)
5254 		local_bh_disable();
5255 	trace_netif_rx_entry(skb);
5256 	ret = netif_rx_internal(skb);
5257 	trace_netif_rx_exit(ret);
5258 	if (need_bh_off)
5259 		local_bh_enable();
5260 	return ret;
5261 }
5262 EXPORT_SYMBOL(netif_rx);
5263 
5264 static __latent_entropy void net_tx_action(void)
5265 {
5266 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5267 
5268 	if (sd->completion_queue) {
5269 		struct sk_buff *clist;
5270 
5271 		local_irq_disable();
5272 		clist = sd->completion_queue;
5273 		sd->completion_queue = NULL;
5274 		local_irq_enable();
5275 
5276 		while (clist) {
5277 			struct sk_buff *skb = clist;
5278 
5279 			clist = clist->next;
5280 
5281 			WARN_ON(refcount_read(&skb->users));
5282 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5283 				trace_consume_skb(skb, net_tx_action);
5284 			else
5285 				trace_kfree_skb(skb, net_tx_action,
5286 						get_kfree_skb_cb(skb)->reason, NULL);
5287 
5288 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5289 				__kfree_skb(skb);
5290 			else
5291 				__napi_kfree_skb(skb,
5292 						 get_kfree_skb_cb(skb)->reason);
5293 		}
5294 	}
5295 
5296 	if (sd->output_queue) {
5297 		struct Qdisc *head;
5298 
5299 		local_irq_disable();
5300 		head = sd->output_queue;
5301 		sd->output_queue = NULL;
5302 		sd->output_queue_tailp = &sd->output_queue;
5303 		local_irq_enable();
5304 
5305 		rcu_read_lock();
5306 
5307 		while (head) {
5308 			struct Qdisc *q = head;
5309 			spinlock_t *root_lock = NULL;
5310 
5311 			head = head->next_sched;
5312 
5313 			/* We need to make sure head->next_sched is read
5314 			 * before clearing __QDISC_STATE_SCHED
5315 			 */
5316 			smp_mb__before_atomic();
5317 
5318 			if (!(q->flags & TCQ_F_NOLOCK)) {
5319 				root_lock = qdisc_lock(q);
5320 				spin_lock(root_lock);
5321 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5322 						     &q->state))) {
5323 				/* There is a synchronize_net() between
5324 				 * STATE_DEACTIVATED flag being set and
5325 				 * qdisc_reset()/some_qdisc_is_busy() in
5326 				 * dev_deactivate(), so we can safely bail out
5327 				 * early here to avoid data race between
5328 				 * qdisc_deactivate() and some_qdisc_is_busy()
5329 				 * for lockless qdisc.
5330 				 */
5331 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5332 				continue;
5333 			}
5334 
5335 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5336 			qdisc_run(q);
5337 			if (root_lock)
5338 				spin_unlock(root_lock);
5339 		}
5340 
5341 		rcu_read_unlock();
5342 	}
5343 
5344 	xfrm_dev_backlog(sd);
5345 }
5346 
5347 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5348 /* This hook is defined here for ATM LANE */
5349 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5350 			     unsigned char *addr) __read_mostly;
5351 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5352 #endif
5353 
5354 /**
5355  *	netdev_is_rx_handler_busy - check if receive handler is registered
5356  *	@dev: device to check
5357  *
5358  *	Check if a receive handler is already registered for a given device.
5359  *	Return true if there one.
5360  *
5361  *	The caller must hold the rtnl_mutex.
5362  */
5363 bool netdev_is_rx_handler_busy(struct net_device *dev)
5364 {
5365 	ASSERT_RTNL();
5366 	return dev && rtnl_dereference(dev->rx_handler);
5367 }
5368 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5369 
5370 /**
5371  *	netdev_rx_handler_register - register receive handler
5372  *	@dev: device to register a handler for
5373  *	@rx_handler: receive handler to register
5374  *	@rx_handler_data: data pointer that is used by rx handler
5375  *
5376  *	Register a receive handler for a device. This handler will then be
5377  *	called from __netif_receive_skb. A negative errno code is returned
5378  *	on a failure.
5379  *
5380  *	The caller must hold the rtnl_mutex.
5381  *
5382  *	For a general description of rx_handler, see enum rx_handler_result.
5383  */
5384 int netdev_rx_handler_register(struct net_device *dev,
5385 			       rx_handler_func_t *rx_handler,
5386 			       void *rx_handler_data)
5387 {
5388 	if (netdev_is_rx_handler_busy(dev))
5389 		return -EBUSY;
5390 
5391 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5392 		return -EINVAL;
5393 
5394 	/* Note: rx_handler_data must be set before rx_handler */
5395 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5396 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5397 
5398 	return 0;
5399 }
5400 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5401 
5402 /**
5403  *	netdev_rx_handler_unregister - unregister receive handler
5404  *	@dev: device to unregister a handler from
5405  *
5406  *	Unregister a receive handler from a device.
5407  *
5408  *	The caller must hold the rtnl_mutex.
5409  */
5410 void netdev_rx_handler_unregister(struct net_device *dev)
5411 {
5412 
5413 	ASSERT_RTNL();
5414 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5415 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5416 	 * section has a guarantee to see a non NULL rx_handler_data
5417 	 * as well.
5418 	 */
5419 	synchronize_net();
5420 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5421 }
5422 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5423 
5424 /*
5425  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5426  * the special handling of PFMEMALLOC skbs.
5427  */
5428 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5429 {
5430 	switch (skb->protocol) {
5431 	case htons(ETH_P_ARP):
5432 	case htons(ETH_P_IP):
5433 	case htons(ETH_P_IPV6):
5434 	case htons(ETH_P_8021Q):
5435 	case htons(ETH_P_8021AD):
5436 		return true;
5437 	default:
5438 		return false;
5439 	}
5440 }
5441 
5442 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5443 			     int *ret, struct net_device *orig_dev)
5444 {
5445 	if (nf_hook_ingress_active(skb)) {
5446 		int ingress_retval;
5447 
5448 		if (*pt_prev) {
5449 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5450 			*pt_prev = NULL;
5451 		}
5452 
5453 		rcu_read_lock();
5454 		ingress_retval = nf_hook_ingress(skb);
5455 		rcu_read_unlock();
5456 		return ingress_retval;
5457 	}
5458 	return 0;
5459 }
5460 
5461 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5462 				    struct packet_type **ppt_prev)
5463 {
5464 	struct packet_type *ptype, *pt_prev;
5465 	rx_handler_func_t *rx_handler;
5466 	struct sk_buff *skb = *pskb;
5467 	struct net_device *orig_dev;
5468 	bool deliver_exact = false;
5469 	int ret = NET_RX_DROP;
5470 	__be16 type;
5471 
5472 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5473 
5474 	trace_netif_receive_skb(skb);
5475 
5476 	orig_dev = skb->dev;
5477 
5478 	skb_reset_network_header(skb);
5479 	if (!skb_transport_header_was_set(skb))
5480 		skb_reset_transport_header(skb);
5481 	skb_reset_mac_len(skb);
5482 
5483 	pt_prev = NULL;
5484 
5485 another_round:
5486 	skb->skb_iif = skb->dev->ifindex;
5487 
5488 	__this_cpu_inc(softnet_data.processed);
5489 
5490 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5491 		int ret2;
5492 
5493 		migrate_disable();
5494 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5495 				      &skb);
5496 		migrate_enable();
5497 
5498 		if (ret2 != XDP_PASS) {
5499 			ret = NET_RX_DROP;
5500 			goto out;
5501 		}
5502 	}
5503 
5504 	if (eth_type_vlan(skb->protocol)) {
5505 		skb = skb_vlan_untag(skb);
5506 		if (unlikely(!skb))
5507 			goto out;
5508 	}
5509 
5510 	if (skb_skip_tc_classify(skb))
5511 		goto skip_classify;
5512 
5513 	if (pfmemalloc)
5514 		goto skip_taps;
5515 
5516 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5517 		if (pt_prev)
5518 			ret = deliver_skb(skb, pt_prev, orig_dev);
5519 		pt_prev = ptype;
5520 	}
5521 
5522 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5523 		if (pt_prev)
5524 			ret = deliver_skb(skb, pt_prev, orig_dev);
5525 		pt_prev = ptype;
5526 	}
5527 
5528 skip_taps:
5529 #ifdef CONFIG_NET_INGRESS
5530 	if (static_branch_unlikely(&ingress_needed_key)) {
5531 		bool another = false;
5532 
5533 		nf_skip_egress(skb, true);
5534 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5535 					 &another);
5536 		if (another)
5537 			goto another_round;
5538 		if (!skb)
5539 			goto out;
5540 
5541 		nf_skip_egress(skb, false);
5542 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5543 			goto out;
5544 	}
5545 #endif
5546 	skb_reset_redirect(skb);
5547 skip_classify:
5548 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5549 		goto drop;
5550 
5551 	if (skb_vlan_tag_present(skb)) {
5552 		if (pt_prev) {
5553 			ret = deliver_skb(skb, pt_prev, orig_dev);
5554 			pt_prev = NULL;
5555 		}
5556 		if (vlan_do_receive(&skb))
5557 			goto another_round;
5558 		else if (unlikely(!skb))
5559 			goto out;
5560 	}
5561 
5562 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5563 	if (rx_handler) {
5564 		if (pt_prev) {
5565 			ret = deliver_skb(skb, pt_prev, orig_dev);
5566 			pt_prev = NULL;
5567 		}
5568 		switch (rx_handler(&skb)) {
5569 		case RX_HANDLER_CONSUMED:
5570 			ret = NET_RX_SUCCESS;
5571 			goto out;
5572 		case RX_HANDLER_ANOTHER:
5573 			goto another_round;
5574 		case RX_HANDLER_EXACT:
5575 			deliver_exact = true;
5576 			break;
5577 		case RX_HANDLER_PASS:
5578 			break;
5579 		default:
5580 			BUG();
5581 		}
5582 	}
5583 
5584 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5585 check_vlan_id:
5586 		if (skb_vlan_tag_get_id(skb)) {
5587 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5588 			 * find vlan device.
5589 			 */
5590 			skb->pkt_type = PACKET_OTHERHOST;
5591 		} else if (eth_type_vlan(skb->protocol)) {
5592 			/* Outer header is 802.1P with vlan 0, inner header is
5593 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5594 			 * not find vlan dev for vlan id 0.
5595 			 */
5596 			__vlan_hwaccel_clear_tag(skb);
5597 			skb = skb_vlan_untag(skb);
5598 			if (unlikely(!skb))
5599 				goto out;
5600 			if (vlan_do_receive(&skb))
5601 				/* After stripping off 802.1P header with vlan 0
5602 				 * vlan dev is found for inner header.
5603 				 */
5604 				goto another_round;
5605 			else if (unlikely(!skb))
5606 				goto out;
5607 			else
5608 				/* We have stripped outer 802.1P vlan 0 header.
5609 				 * But could not find vlan dev.
5610 				 * check again for vlan id to set OTHERHOST.
5611 				 */
5612 				goto check_vlan_id;
5613 		}
5614 		/* Note: we might in the future use prio bits
5615 		 * and set skb->priority like in vlan_do_receive()
5616 		 * For the time being, just ignore Priority Code Point
5617 		 */
5618 		__vlan_hwaccel_clear_tag(skb);
5619 	}
5620 
5621 	type = skb->protocol;
5622 
5623 	/* deliver only exact match when indicated */
5624 	if (likely(!deliver_exact)) {
5625 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5626 				       &ptype_base[ntohs(type) &
5627 						   PTYPE_HASH_MASK]);
5628 	}
5629 
5630 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5631 			       &orig_dev->ptype_specific);
5632 
5633 	if (unlikely(skb->dev != orig_dev)) {
5634 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5635 				       &skb->dev->ptype_specific);
5636 	}
5637 
5638 	if (pt_prev) {
5639 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5640 			goto drop;
5641 		*ppt_prev = pt_prev;
5642 	} else {
5643 drop:
5644 		if (!deliver_exact)
5645 			dev_core_stats_rx_dropped_inc(skb->dev);
5646 		else
5647 			dev_core_stats_rx_nohandler_inc(skb->dev);
5648 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5649 		/* Jamal, now you will not able to escape explaining
5650 		 * me how you were going to use this. :-)
5651 		 */
5652 		ret = NET_RX_DROP;
5653 	}
5654 
5655 out:
5656 	/* The invariant here is that if *ppt_prev is not NULL
5657 	 * then skb should also be non-NULL.
5658 	 *
5659 	 * Apparently *ppt_prev assignment above holds this invariant due to
5660 	 * skb dereferencing near it.
5661 	 */
5662 	*pskb = skb;
5663 	return ret;
5664 }
5665 
5666 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5667 {
5668 	struct net_device *orig_dev = skb->dev;
5669 	struct packet_type *pt_prev = NULL;
5670 	int ret;
5671 
5672 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5673 	if (pt_prev)
5674 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5675 					 skb->dev, pt_prev, orig_dev);
5676 	return ret;
5677 }
5678 
5679 /**
5680  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5681  *	@skb: buffer to process
5682  *
5683  *	More direct receive version of netif_receive_skb().  It should
5684  *	only be used by callers that have a need to skip RPS and Generic XDP.
5685  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5686  *
5687  *	This function may only be called from softirq context and interrupts
5688  *	should be enabled.
5689  *
5690  *	Return values (usually ignored):
5691  *	NET_RX_SUCCESS: no congestion
5692  *	NET_RX_DROP: packet was dropped
5693  */
5694 int netif_receive_skb_core(struct sk_buff *skb)
5695 {
5696 	int ret;
5697 
5698 	rcu_read_lock();
5699 	ret = __netif_receive_skb_one_core(skb, false);
5700 	rcu_read_unlock();
5701 
5702 	return ret;
5703 }
5704 EXPORT_SYMBOL(netif_receive_skb_core);
5705 
5706 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5707 						  struct packet_type *pt_prev,
5708 						  struct net_device *orig_dev)
5709 {
5710 	struct sk_buff *skb, *next;
5711 
5712 	if (!pt_prev)
5713 		return;
5714 	if (list_empty(head))
5715 		return;
5716 	if (pt_prev->list_func != NULL)
5717 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5718 				   ip_list_rcv, head, pt_prev, orig_dev);
5719 	else
5720 		list_for_each_entry_safe(skb, next, head, list) {
5721 			skb_list_del_init(skb);
5722 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5723 		}
5724 }
5725 
5726 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5727 {
5728 	/* Fast-path assumptions:
5729 	 * - There is no RX handler.
5730 	 * - Only one packet_type matches.
5731 	 * If either of these fails, we will end up doing some per-packet
5732 	 * processing in-line, then handling the 'last ptype' for the whole
5733 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5734 	 * because the 'last ptype' must be constant across the sublist, and all
5735 	 * other ptypes are handled per-packet.
5736 	 */
5737 	/* Current (common) ptype of sublist */
5738 	struct packet_type *pt_curr = NULL;
5739 	/* Current (common) orig_dev of sublist */
5740 	struct net_device *od_curr = NULL;
5741 	struct sk_buff *skb, *next;
5742 	LIST_HEAD(sublist);
5743 
5744 	list_for_each_entry_safe(skb, next, head, list) {
5745 		struct net_device *orig_dev = skb->dev;
5746 		struct packet_type *pt_prev = NULL;
5747 
5748 		skb_list_del_init(skb);
5749 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5750 		if (!pt_prev)
5751 			continue;
5752 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5753 			/* dispatch old sublist */
5754 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5755 			/* start new sublist */
5756 			INIT_LIST_HEAD(&sublist);
5757 			pt_curr = pt_prev;
5758 			od_curr = orig_dev;
5759 		}
5760 		list_add_tail(&skb->list, &sublist);
5761 	}
5762 
5763 	/* dispatch final sublist */
5764 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5765 }
5766 
5767 static int __netif_receive_skb(struct sk_buff *skb)
5768 {
5769 	int ret;
5770 
5771 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5772 		unsigned int noreclaim_flag;
5773 
5774 		/*
5775 		 * PFMEMALLOC skbs are special, they should
5776 		 * - be delivered to SOCK_MEMALLOC sockets only
5777 		 * - stay away from userspace
5778 		 * - have bounded memory usage
5779 		 *
5780 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5781 		 * context down to all allocation sites.
5782 		 */
5783 		noreclaim_flag = memalloc_noreclaim_save();
5784 		ret = __netif_receive_skb_one_core(skb, true);
5785 		memalloc_noreclaim_restore(noreclaim_flag);
5786 	} else
5787 		ret = __netif_receive_skb_one_core(skb, false);
5788 
5789 	return ret;
5790 }
5791 
5792 static void __netif_receive_skb_list(struct list_head *head)
5793 {
5794 	unsigned long noreclaim_flag = 0;
5795 	struct sk_buff *skb, *next;
5796 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5797 
5798 	list_for_each_entry_safe(skb, next, head, list) {
5799 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5800 			struct list_head sublist;
5801 
5802 			/* Handle the previous sublist */
5803 			list_cut_before(&sublist, head, &skb->list);
5804 			if (!list_empty(&sublist))
5805 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5806 			pfmemalloc = !pfmemalloc;
5807 			/* See comments in __netif_receive_skb */
5808 			if (pfmemalloc)
5809 				noreclaim_flag = memalloc_noreclaim_save();
5810 			else
5811 				memalloc_noreclaim_restore(noreclaim_flag);
5812 		}
5813 	}
5814 	/* Handle the remaining sublist */
5815 	if (!list_empty(head))
5816 		__netif_receive_skb_list_core(head, pfmemalloc);
5817 	/* Restore pflags */
5818 	if (pfmemalloc)
5819 		memalloc_noreclaim_restore(noreclaim_flag);
5820 }
5821 
5822 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5823 {
5824 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5825 	struct bpf_prog *new = xdp->prog;
5826 	int ret = 0;
5827 
5828 	switch (xdp->command) {
5829 	case XDP_SETUP_PROG:
5830 		rcu_assign_pointer(dev->xdp_prog, new);
5831 		if (old)
5832 			bpf_prog_put(old);
5833 
5834 		if (old && !new) {
5835 			static_branch_dec(&generic_xdp_needed_key);
5836 		} else if (new && !old) {
5837 			static_branch_inc(&generic_xdp_needed_key);
5838 			dev_disable_lro(dev);
5839 			dev_disable_gro_hw(dev);
5840 		}
5841 		break;
5842 
5843 	default:
5844 		ret = -EINVAL;
5845 		break;
5846 	}
5847 
5848 	return ret;
5849 }
5850 
5851 static int netif_receive_skb_internal(struct sk_buff *skb)
5852 {
5853 	int ret;
5854 
5855 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5856 
5857 	if (skb_defer_rx_timestamp(skb))
5858 		return NET_RX_SUCCESS;
5859 
5860 	rcu_read_lock();
5861 #ifdef CONFIG_RPS
5862 	if (static_branch_unlikely(&rps_needed)) {
5863 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5864 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5865 
5866 		if (cpu >= 0) {
5867 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5868 			rcu_read_unlock();
5869 			return ret;
5870 		}
5871 	}
5872 #endif
5873 	ret = __netif_receive_skb(skb);
5874 	rcu_read_unlock();
5875 	return ret;
5876 }
5877 
5878 void netif_receive_skb_list_internal(struct list_head *head)
5879 {
5880 	struct sk_buff *skb, *next;
5881 	LIST_HEAD(sublist);
5882 
5883 	list_for_each_entry_safe(skb, next, head, list) {
5884 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5885 				    skb);
5886 		skb_list_del_init(skb);
5887 		if (!skb_defer_rx_timestamp(skb))
5888 			list_add_tail(&skb->list, &sublist);
5889 	}
5890 	list_splice_init(&sublist, head);
5891 
5892 	rcu_read_lock();
5893 #ifdef CONFIG_RPS
5894 	if (static_branch_unlikely(&rps_needed)) {
5895 		list_for_each_entry_safe(skb, next, head, list) {
5896 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5897 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5898 
5899 			if (cpu >= 0) {
5900 				/* Will be handled, remove from list */
5901 				skb_list_del_init(skb);
5902 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5903 			}
5904 		}
5905 	}
5906 #endif
5907 	__netif_receive_skb_list(head);
5908 	rcu_read_unlock();
5909 }
5910 
5911 /**
5912  *	netif_receive_skb - process receive buffer from network
5913  *	@skb: buffer to process
5914  *
5915  *	netif_receive_skb() is the main receive data processing function.
5916  *	It always succeeds. The buffer may be dropped during processing
5917  *	for congestion control or by the protocol layers.
5918  *
5919  *	This function may only be called from softirq context and interrupts
5920  *	should be enabled.
5921  *
5922  *	Return values (usually ignored):
5923  *	NET_RX_SUCCESS: no congestion
5924  *	NET_RX_DROP: packet was dropped
5925  */
5926 int netif_receive_skb(struct sk_buff *skb)
5927 {
5928 	int ret;
5929 
5930 	trace_netif_receive_skb_entry(skb);
5931 
5932 	ret = netif_receive_skb_internal(skb);
5933 	trace_netif_receive_skb_exit(ret);
5934 
5935 	return ret;
5936 }
5937 EXPORT_SYMBOL(netif_receive_skb);
5938 
5939 /**
5940  *	netif_receive_skb_list - process many receive buffers from network
5941  *	@head: list of skbs to process.
5942  *
5943  *	Since return value of netif_receive_skb() is normally ignored, and
5944  *	wouldn't be meaningful for a list, this function returns void.
5945  *
5946  *	This function may only be called from softirq context and interrupts
5947  *	should be enabled.
5948  */
5949 void netif_receive_skb_list(struct list_head *head)
5950 {
5951 	struct sk_buff *skb;
5952 
5953 	if (list_empty(head))
5954 		return;
5955 	if (trace_netif_receive_skb_list_entry_enabled()) {
5956 		list_for_each_entry(skb, head, list)
5957 			trace_netif_receive_skb_list_entry(skb);
5958 	}
5959 	netif_receive_skb_list_internal(head);
5960 	trace_netif_receive_skb_list_exit(0);
5961 }
5962 EXPORT_SYMBOL(netif_receive_skb_list);
5963 
5964 static DEFINE_PER_CPU(struct work_struct, flush_works);
5965 
5966 /* Network device is going away, flush any packets still pending */
5967 static void flush_backlog(struct work_struct *work)
5968 {
5969 	struct sk_buff *skb, *tmp;
5970 	struct softnet_data *sd;
5971 
5972 	local_bh_disable();
5973 	sd = this_cpu_ptr(&softnet_data);
5974 
5975 	backlog_lock_irq_disable(sd);
5976 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5977 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5978 			__skb_unlink(skb, &sd->input_pkt_queue);
5979 			dev_kfree_skb_irq(skb);
5980 			rps_input_queue_head_incr(sd);
5981 		}
5982 	}
5983 	backlog_unlock_irq_enable(sd);
5984 
5985 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
5986 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5987 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5988 			__skb_unlink(skb, &sd->process_queue);
5989 			kfree_skb(skb);
5990 			rps_input_queue_head_incr(sd);
5991 		}
5992 	}
5993 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
5994 	local_bh_enable();
5995 }
5996 
5997 static bool flush_required(int cpu)
5998 {
5999 #if IS_ENABLED(CONFIG_RPS)
6000 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6001 	bool do_flush;
6002 
6003 	backlog_lock_irq_disable(sd);
6004 
6005 	/* as insertion into process_queue happens with the rps lock held,
6006 	 * process_queue access may race only with dequeue
6007 	 */
6008 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6009 		   !skb_queue_empty_lockless(&sd->process_queue);
6010 	backlog_unlock_irq_enable(sd);
6011 
6012 	return do_flush;
6013 #endif
6014 	/* without RPS we can't safely check input_pkt_queue: during a
6015 	 * concurrent remote skb_queue_splice() we can detect as empty both
6016 	 * input_pkt_queue and process_queue even if the latter could end-up
6017 	 * containing a lot of packets.
6018 	 */
6019 	return true;
6020 }
6021 
6022 static void flush_all_backlogs(void)
6023 {
6024 	static cpumask_t flush_cpus;
6025 	unsigned int cpu;
6026 
6027 	/* since we are under rtnl lock protection we can use static data
6028 	 * for the cpumask and avoid allocating on stack the possibly
6029 	 * large mask
6030 	 */
6031 	ASSERT_RTNL();
6032 
6033 	cpus_read_lock();
6034 
6035 	cpumask_clear(&flush_cpus);
6036 	for_each_online_cpu(cpu) {
6037 		if (flush_required(cpu)) {
6038 			queue_work_on(cpu, system_highpri_wq,
6039 				      per_cpu_ptr(&flush_works, cpu));
6040 			cpumask_set_cpu(cpu, &flush_cpus);
6041 		}
6042 	}
6043 
6044 	/* we can have in flight packet[s] on the cpus we are not flushing,
6045 	 * synchronize_net() in unregister_netdevice_many() will take care of
6046 	 * them
6047 	 */
6048 	for_each_cpu(cpu, &flush_cpus)
6049 		flush_work(per_cpu_ptr(&flush_works, cpu));
6050 
6051 	cpus_read_unlock();
6052 }
6053 
6054 static void net_rps_send_ipi(struct softnet_data *remsd)
6055 {
6056 #ifdef CONFIG_RPS
6057 	while (remsd) {
6058 		struct softnet_data *next = remsd->rps_ipi_next;
6059 
6060 		if (cpu_online(remsd->cpu))
6061 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6062 		remsd = next;
6063 	}
6064 #endif
6065 }
6066 
6067 /*
6068  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6069  * Note: called with local irq disabled, but exits with local irq enabled.
6070  */
6071 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6072 {
6073 #ifdef CONFIG_RPS
6074 	struct softnet_data *remsd = sd->rps_ipi_list;
6075 
6076 	if (!use_backlog_threads() && remsd) {
6077 		sd->rps_ipi_list = NULL;
6078 
6079 		local_irq_enable();
6080 
6081 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6082 		net_rps_send_ipi(remsd);
6083 	} else
6084 #endif
6085 		local_irq_enable();
6086 }
6087 
6088 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6089 {
6090 #ifdef CONFIG_RPS
6091 	return !use_backlog_threads() && sd->rps_ipi_list;
6092 #else
6093 	return false;
6094 #endif
6095 }
6096 
6097 static int process_backlog(struct napi_struct *napi, int quota)
6098 {
6099 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6100 	bool again = true;
6101 	int work = 0;
6102 
6103 	/* Check if we have pending ipi, its better to send them now,
6104 	 * not waiting net_rx_action() end.
6105 	 */
6106 	if (sd_has_rps_ipi_waiting(sd)) {
6107 		local_irq_disable();
6108 		net_rps_action_and_irq_enable(sd);
6109 	}
6110 
6111 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6112 	while (again) {
6113 		struct sk_buff *skb;
6114 
6115 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6116 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6117 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6118 			rcu_read_lock();
6119 			__netif_receive_skb(skb);
6120 			rcu_read_unlock();
6121 			if (++work >= quota) {
6122 				rps_input_queue_head_add(sd, work);
6123 				return work;
6124 			}
6125 
6126 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6127 		}
6128 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6129 
6130 		backlog_lock_irq_disable(sd);
6131 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6132 			/*
6133 			 * Inline a custom version of __napi_complete().
6134 			 * only current cpu owns and manipulates this napi,
6135 			 * and NAPI_STATE_SCHED is the only possible flag set
6136 			 * on backlog.
6137 			 * We can use a plain write instead of clear_bit(),
6138 			 * and we dont need an smp_mb() memory barrier.
6139 			 */
6140 			napi->state &= NAPIF_STATE_THREADED;
6141 			again = false;
6142 		} else {
6143 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6144 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6145 						   &sd->process_queue);
6146 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6147 		}
6148 		backlog_unlock_irq_enable(sd);
6149 	}
6150 
6151 	if (work)
6152 		rps_input_queue_head_add(sd, work);
6153 	return work;
6154 }
6155 
6156 /**
6157  * __napi_schedule - schedule for receive
6158  * @n: entry to schedule
6159  *
6160  * The entry's receive function will be scheduled to run.
6161  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6162  */
6163 void __napi_schedule(struct napi_struct *n)
6164 {
6165 	unsigned long flags;
6166 
6167 	local_irq_save(flags);
6168 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6169 	local_irq_restore(flags);
6170 }
6171 EXPORT_SYMBOL(__napi_schedule);
6172 
6173 /**
6174  *	napi_schedule_prep - check if napi can be scheduled
6175  *	@n: napi context
6176  *
6177  * Test if NAPI routine is already running, and if not mark
6178  * it as running.  This is used as a condition variable to
6179  * insure only one NAPI poll instance runs.  We also make
6180  * sure there is no pending NAPI disable.
6181  */
6182 bool napi_schedule_prep(struct napi_struct *n)
6183 {
6184 	unsigned long new, val = READ_ONCE(n->state);
6185 
6186 	do {
6187 		if (unlikely(val & NAPIF_STATE_DISABLE))
6188 			return false;
6189 		new = val | NAPIF_STATE_SCHED;
6190 
6191 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6192 		 * This was suggested by Alexander Duyck, as compiler
6193 		 * emits better code than :
6194 		 * if (val & NAPIF_STATE_SCHED)
6195 		 *     new |= NAPIF_STATE_MISSED;
6196 		 */
6197 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6198 						   NAPIF_STATE_MISSED;
6199 	} while (!try_cmpxchg(&n->state, &val, new));
6200 
6201 	return !(val & NAPIF_STATE_SCHED);
6202 }
6203 EXPORT_SYMBOL(napi_schedule_prep);
6204 
6205 /**
6206  * __napi_schedule_irqoff - schedule for receive
6207  * @n: entry to schedule
6208  *
6209  * Variant of __napi_schedule() assuming hard irqs are masked.
6210  *
6211  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6212  * because the interrupt disabled assumption might not be true
6213  * due to force-threaded interrupts and spinlock substitution.
6214  */
6215 void __napi_schedule_irqoff(struct napi_struct *n)
6216 {
6217 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6218 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6219 	else
6220 		__napi_schedule(n);
6221 }
6222 EXPORT_SYMBOL(__napi_schedule_irqoff);
6223 
6224 bool napi_complete_done(struct napi_struct *n, int work_done)
6225 {
6226 	unsigned long flags, val, new, timeout = 0;
6227 	bool ret = true;
6228 
6229 	/*
6230 	 * 1) Don't let napi dequeue from the cpu poll list
6231 	 *    just in case its running on a different cpu.
6232 	 * 2) If we are busy polling, do nothing here, we have
6233 	 *    the guarantee we will be called later.
6234 	 */
6235 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6236 				 NAPIF_STATE_IN_BUSY_POLL)))
6237 		return false;
6238 
6239 	if (work_done) {
6240 		if (n->gro_bitmask)
6241 			timeout = napi_get_gro_flush_timeout(n);
6242 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6243 	}
6244 	if (n->defer_hard_irqs_count > 0) {
6245 		n->defer_hard_irqs_count--;
6246 		timeout = napi_get_gro_flush_timeout(n);
6247 		if (timeout)
6248 			ret = false;
6249 	}
6250 	if (n->gro_bitmask) {
6251 		/* When the NAPI instance uses a timeout and keeps postponing
6252 		 * it, we need to bound somehow the time packets are kept in
6253 		 * the GRO layer
6254 		 */
6255 		napi_gro_flush(n, !!timeout);
6256 	}
6257 
6258 	gro_normal_list(n);
6259 
6260 	if (unlikely(!list_empty(&n->poll_list))) {
6261 		/* If n->poll_list is not empty, we need to mask irqs */
6262 		local_irq_save(flags);
6263 		list_del_init(&n->poll_list);
6264 		local_irq_restore(flags);
6265 	}
6266 	WRITE_ONCE(n->list_owner, -1);
6267 
6268 	val = READ_ONCE(n->state);
6269 	do {
6270 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6271 
6272 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6273 			      NAPIF_STATE_SCHED_THREADED |
6274 			      NAPIF_STATE_PREFER_BUSY_POLL);
6275 
6276 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6277 		 * because we will call napi->poll() one more time.
6278 		 * This C code was suggested by Alexander Duyck to help gcc.
6279 		 */
6280 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6281 						    NAPIF_STATE_SCHED;
6282 	} while (!try_cmpxchg(&n->state, &val, new));
6283 
6284 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6285 		__napi_schedule(n);
6286 		return false;
6287 	}
6288 
6289 	if (timeout)
6290 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6291 			      HRTIMER_MODE_REL_PINNED);
6292 	return ret;
6293 }
6294 EXPORT_SYMBOL(napi_complete_done);
6295 
6296 /* must be called under rcu_read_lock(), as we dont take a reference */
6297 struct napi_struct *napi_by_id(unsigned int napi_id)
6298 {
6299 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6300 	struct napi_struct *napi;
6301 
6302 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6303 		if (napi->napi_id == napi_id)
6304 			return napi;
6305 
6306 	return NULL;
6307 }
6308 
6309 static void skb_defer_free_flush(struct softnet_data *sd)
6310 {
6311 	struct sk_buff *skb, *next;
6312 
6313 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6314 	if (!READ_ONCE(sd->defer_list))
6315 		return;
6316 
6317 	spin_lock(&sd->defer_lock);
6318 	skb = sd->defer_list;
6319 	sd->defer_list = NULL;
6320 	sd->defer_count = 0;
6321 	spin_unlock(&sd->defer_lock);
6322 
6323 	while (skb != NULL) {
6324 		next = skb->next;
6325 		napi_consume_skb(skb, 1);
6326 		skb = next;
6327 	}
6328 }
6329 
6330 #if defined(CONFIG_NET_RX_BUSY_POLL)
6331 
6332 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6333 {
6334 	if (!skip_schedule) {
6335 		gro_normal_list(napi);
6336 		__napi_schedule(napi);
6337 		return;
6338 	}
6339 
6340 	if (napi->gro_bitmask) {
6341 		/* flush too old packets
6342 		 * If HZ < 1000, flush all packets.
6343 		 */
6344 		napi_gro_flush(napi, HZ >= 1000);
6345 	}
6346 
6347 	gro_normal_list(napi);
6348 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6349 }
6350 
6351 enum {
6352 	NAPI_F_PREFER_BUSY_POLL	= 1,
6353 	NAPI_F_END_ON_RESCHED	= 2,
6354 };
6355 
6356 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6357 			   unsigned flags, u16 budget)
6358 {
6359 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6360 	bool skip_schedule = false;
6361 	unsigned long timeout;
6362 	int rc;
6363 
6364 	/* Busy polling means there is a high chance device driver hard irq
6365 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6366 	 * set in napi_schedule_prep().
6367 	 * Since we are about to call napi->poll() once more, we can safely
6368 	 * clear NAPI_STATE_MISSED.
6369 	 *
6370 	 * Note: x86 could use a single "lock and ..." instruction
6371 	 * to perform these two clear_bit()
6372 	 */
6373 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6374 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6375 
6376 	local_bh_disable();
6377 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6378 
6379 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6380 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6381 		timeout = napi_get_gro_flush_timeout(napi);
6382 		if (napi->defer_hard_irqs_count && timeout) {
6383 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6384 			skip_schedule = true;
6385 		}
6386 	}
6387 
6388 	/* All we really want here is to re-enable device interrupts.
6389 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6390 	 */
6391 	rc = napi->poll(napi, budget);
6392 	/* We can't gro_normal_list() here, because napi->poll() might have
6393 	 * rearmed the napi (napi_complete_done()) in which case it could
6394 	 * already be running on another CPU.
6395 	 */
6396 	trace_napi_poll(napi, rc, budget);
6397 	netpoll_poll_unlock(have_poll_lock);
6398 	if (rc == budget)
6399 		__busy_poll_stop(napi, skip_schedule);
6400 	bpf_net_ctx_clear(bpf_net_ctx);
6401 	local_bh_enable();
6402 }
6403 
6404 static void __napi_busy_loop(unsigned int napi_id,
6405 		      bool (*loop_end)(void *, unsigned long),
6406 		      void *loop_end_arg, unsigned flags, u16 budget)
6407 {
6408 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6409 	int (*napi_poll)(struct napi_struct *napi, int budget);
6410 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6411 	void *have_poll_lock = NULL;
6412 	struct napi_struct *napi;
6413 
6414 	WARN_ON_ONCE(!rcu_read_lock_held());
6415 
6416 restart:
6417 	napi_poll = NULL;
6418 
6419 	napi = napi_by_id(napi_id);
6420 	if (!napi)
6421 		return;
6422 
6423 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6424 		preempt_disable();
6425 	for (;;) {
6426 		int work = 0;
6427 
6428 		local_bh_disable();
6429 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6430 		if (!napi_poll) {
6431 			unsigned long val = READ_ONCE(napi->state);
6432 
6433 			/* If multiple threads are competing for this napi,
6434 			 * we avoid dirtying napi->state as much as we can.
6435 			 */
6436 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6437 				   NAPIF_STATE_IN_BUSY_POLL)) {
6438 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6439 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6440 				goto count;
6441 			}
6442 			if (cmpxchg(&napi->state, val,
6443 				    val | NAPIF_STATE_IN_BUSY_POLL |
6444 					  NAPIF_STATE_SCHED) != val) {
6445 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6446 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6447 				goto count;
6448 			}
6449 			have_poll_lock = netpoll_poll_lock(napi);
6450 			napi_poll = napi->poll;
6451 		}
6452 		work = napi_poll(napi, budget);
6453 		trace_napi_poll(napi, work, budget);
6454 		gro_normal_list(napi);
6455 count:
6456 		if (work > 0)
6457 			__NET_ADD_STATS(dev_net(napi->dev),
6458 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6459 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6460 		bpf_net_ctx_clear(bpf_net_ctx);
6461 		local_bh_enable();
6462 
6463 		if (!loop_end || loop_end(loop_end_arg, start_time))
6464 			break;
6465 
6466 		if (unlikely(need_resched())) {
6467 			if (flags & NAPI_F_END_ON_RESCHED)
6468 				break;
6469 			if (napi_poll)
6470 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6471 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6472 				preempt_enable();
6473 			rcu_read_unlock();
6474 			cond_resched();
6475 			rcu_read_lock();
6476 			if (loop_end(loop_end_arg, start_time))
6477 				return;
6478 			goto restart;
6479 		}
6480 		cpu_relax();
6481 	}
6482 	if (napi_poll)
6483 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6484 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6485 		preempt_enable();
6486 }
6487 
6488 void napi_busy_loop_rcu(unsigned int napi_id,
6489 			bool (*loop_end)(void *, unsigned long),
6490 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6491 {
6492 	unsigned flags = NAPI_F_END_ON_RESCHED;
6493 
6494 	if (prefer_busy_poll)
6495 		flags |= NAPI_F_PREFER_BUSY_POLL;
6496 
6497 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6498 }
6499 
6500 void napi_busy_loop(unsigned int napi_id,
6501 		    bool (*loop_end)(void *, unsigned long),
6502 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6503 {
6504 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6505 
6506 	rcu_read_lock();
6507 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6508 	rcu_read_unlock();
6509 }
6510 EXPORT_SYMBOL(napi_busy_loop);
6511 
6512 void napi_suspend_irqs(unsigned int napi_id)
6513 {
6514 	struct napi_struct *napi;
6515 
6516 	rcu_read_lock();
6517 	napi = napi_by_id(napi_id);
6518 	if (napi) {
6519 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6520 
6521 		if (timeout)
6522 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6523 				      HRTIMER_MODE_REL_PINNED);
6524 	}
6525 	rcu_read_unlock();
6526 }
6527 
6528 void napi_resume_irqs(unsigned int napi_id)
6529 {
6530 	struct napi_struct *napi;
6531 
6532 	rcu_read_lock();
6533 	napi = napi_by_id(napi_id);
6534 	if (napi) {
6535 		/* If irq_suspend_timeout is set to 0 between the call to
6536 		 * napi_suspend_irqs and now, the original value still
6537 		 * determines the safety timeout as intended and napi_watchdog
6538 		 * will resume irq processing.
6539 		 */
6540 		if (napi_get_irq_suspend_timeout(napi)) {
6541 			local_bh_disable();
6542 			napi_schedule(napi);
6543 			local_bh_enable();
6544 		}
6545 	}
6546 	rcu_read_unlock();
6547 }
6548 
6549 #endif /* CONFIG_NET_RX_BUSY_POLL */
6550 
6551 static void __napi_hash_add_with_id(struct napi_struct *napi,
6552 				    unsigned int napi_id)
6553 {
6554 	napi->napi_id = napi_id;
6555 	hlist_add_head_rcu(&napi->napi_hash_node,
6556 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6557 }
6558 
6559 static void napi_hash_add_with_id(struct napi_struct *napi,
6560 				  unsigned int napi_id)
6561 {
6562 	unsigned long flags;
6563 
6564 	spin_lock_irqsave(&napi_hash_lock, flags);
6565 	WARN_ON_ONCE(napi_by_id(napi_id));
6566 	__napi_hash_add_with_id(napi, napi_id);
6567 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6568 }
6569 
6570 static void napi_hash_add(struct napi_struct *napi)
6571 {
6572 	unsigned long flags;
6573 
6574 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6575 		return;
6576 
6577 	spin_lock_irqsave(&napi_hash_lock, flags);
6578 
6579 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6580 	do {
6581 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6582 			napi_gen_id = MIN_NAPI_ID;
6583 	} while (napi_by_id(napi_gen_id));
6584 
6585 	__napi_hash_add_with_id(napi, napi_gen_id);
6586 
6587 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6588 }
6589 
6590 /* Warning : caller is responsible to make sure rcu grace period
6591  * is respected before freeing memory containing @napi
6592  */
6593 static void napi_hash_del(struct napi_struct *napi)
6594 {
6595 	unsigned long flags;
6596 
6597 	spin_lock_irqsave(&napi_hash_lock, flags);
6598 
6599 	hlist_del_init_rcu(&napi->napi_hash_node);
6600 
6601 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6602 }
6603 
6604 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6605 {
6606 	struct napi_struct *napi;
6607 
6608 	napi = container_of(timer, struct napi_struct, timer);
6609 
6610 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6611 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6612 	 */
6613 	if (!napi_disable_pending(napi) &&
6614 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6615 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6616 		__napi_schedule_irqoff(napi);
6617 	}
6618 
6619 	return HRTIMER_NORESTART;
6620 }
6621 
6622 static void init_gro_hash(struct napi_struct *napi)
6623 {
6624 	int i;
6625 
6626 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6627 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6628 		napi->gro_hash[i].count = 0;
6629 	}
6630 	napi->gro_bitmask = 0;
6631 }
6632 
6633 int dev_set_threaded(struct net_device *dev, bool threaded)
6634 {
6635 	struct napi_struct *napi;
6636 	int err = 0;
6637 
6638 	if (dev->threaded == threaded)
6639 		return 0;
6640 
6641 	if (threaded) {
6642 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6643 			if (!napi->thread) {
6644 				err = napi_kthread_create(napi);
6645 				if (err) {
6646 					threaded = false;
6647 					break;
6648 				}
6649 			}
6650 		}
6651 	}
6652 
6653 	WRITE_ONCE(dev->threaded, threaded);
6654 
6655 	/* Make sure kthread is created before THREADED bit
6656 	 * is set.
6657 	 */
6658 	smp_mb__before_atomic();
6659 
6660 	/* Setting/unsetting threaded mode on a napi might not immediately
6661 	 * take effect, if the current napi instance is actively being
6662 	 * polled. In this case, the switch between threaded mode and
6663 	 * softirq mode will happen in the next round of napi_schedule().
6664 	 * This should not cause hiccups/stalls to the live traffic.
6665 	 */
6666 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6667 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6668 
6669 	return err;
6670 }
6671 EXPORT_SYMBOL(dev_set_threaded);
6672 
6673 /**
6674  * netif_queue_set_napi - Associate queue with the napi
6675  * @dev: device to which NAPI and queue belong
6676  * @queue_index: Index of queue
6677  * @type: queue type as RX or TX
6678  * @napi: NAPI context, pass NULL to clear previously set NAPI
6679  *
6680  * Set queue with its corresponding napi context. This should be done after
6681  * registering the NAPI handler for the queue-vector and the queues have been
6682  * mapped to the corresponding interrupt vector.
6683  */
6684 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6685 			  enum netdev_queue_type type, struct napi_struct *napi)
6686 {
6687 	struct netdev_rx_queue *rxq;
6688 	struct netdev_queue *txq;
6689 
6690 	if (WARN_ON_ONCE(napi && !napi->dev))
6691 		return;
6692 	if (dev->reg_state >= NETREG_REGISTERED)
6693 		ASSERT_RTNL();
6694 
6695 	switch (type) {
6696 	case NETDEV_QUEUE_TYPE_RX:
6697 		rxq = __netif_get_rx_queue(dev, queue_index);
6698 		rxq->napi = napi;
6699 		return;
6700 	case NETDEV_QUEUE_TYPE_TX:
6701 		txq = netdev_get_tx_queue(dev, queue_index);
6702 		txq->napi = napi;
6703 		return;
6704 	default:
6705 		return;
6706 	}
6707 }
6708 EXPORT_SYMBOL(netif_queue_set_napi);
6709 
6710 static void napi_restore_config(struct napi_struct *n)
6711 {
6712 	n->defer_hard_irqs = n->config->defer_hard_irqs;
6713 	n->gro_flush_timeout = n->config->gro_flush_timeout;
6714 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
6715 	/* a NAPI ID might be stored in the config, if so use it. if not, use
6716 	 * napi_hash_add to generate one for us. It will be saved to the config
6717 	 * in napi_disable.
6718 	 */
6719 	if (n->config->napi_id)
6720 		napi_hash_add_with_id(n, n->config->napi_id);
6721 	else
6722 		napi_hash_add(n);
6723 }
6724 
6725 static void napi_save_config(struct napi_struct *n)
6726 {
6727 	n->config->defer_hard_irqs = n->defer_hard_irqs;
6728 	n->config->gro_flush_timeout = n->gro_flush_timeout;
6729 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
6730 	n->config->napi_id = n->napi_id;
6731 	napi_hash_del(n);
6732 }
6733 
6734 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6735 			   int (*poll)(struct napi_struct *, int), int weight)
6736 {
6737 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6738 		return;
6739 
6740 	INIT_LIST_HEAD(&napi->poll_list);
6741 	INIT_HLIST_NODE(&napi->napi_hash_node);
6742 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6743 	napi->timer.function = napi_watchdog;
6744 	init_gro_hash(napi);
6745 	napi->skb = NULL;
6746 	INIT_LIST_HEAD(&napi->rx_list);
6747 	napi->rx_count = 0;
6748 	napi->poll = poll;
6749 	if (weight > NAPI_POLL_WEIGHT)
6750 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6751 				weight);
6752 	napi->weight = weight;
6753 	napi->dev = dev;
6754 #ifdef CONFIG_NETPOLL
6755 	napi->poll_owner = -1;
6756 #endif
6757 	napi->list_owner = -1;
6758 	set_bit(NAPI_STATE_SCHED, &napi->state);
6759 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6760 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6761 
6762 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
6763 	 * configuration will be loaded in napi_enable
6764 	 */
6765 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
6766 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
6767 
6768 	napi_get_frags_check(napi);
6769 	/* Create kthread for this napi if dev->threaded is set.
6770 	 * Clear dev->threaded if kthread creation failed so that
6771 	 * threaded mode will not be enabled in napi_enable().
6772 	 */
6773 	if (dev->threaded && napi_kthread_create(napi))
6774 		dev->threaded = false;
6775 	netif_napi_set_irq(napi, -1);
6776 }
6777 EXPORT_SYMBOL(netif_napi_add_weight);
6778 
6779 void napi_disable(struct napi_struct *n)
6780 {
6781 	unsigned long val, new;
6782 
6783 	might_sleep();
6784 	set_bit(NAPI_STATE_DISABLE, &n->state);
6785 
6786 	val = READ_ONCE(n->state);
6787 	do {
6788 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6789 			usleep_range(20, 200);
6790 			val = READ_ONCE(n->state);
6791 		}
6792 
6793 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6794 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6795 	} while (!try_cmpxchg(&n->state, &val, new));
6796 
6797 	hrtimer_cancel(&n->timer);
6798 
6799 	if (n->config)
6800 		napi_save_config(n);
6801 	else
6802 		napi_hash_del(n);
6803 
6804 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6805 }
6806 EXPORT_SYMBOL(napi_disable);
6807 
6808 /**
6809  *	napi_enable - enable NAPI scheduling
6810  *	@n: NAPI context
6811  *
6812  * Resume NAPI from being scheduled on this context.
6813  * Must be paired with napi_disable.
6814  */
6815 void napi_enable(struct napi_struct *n)
6816 {
6817 	unsigned long new, val = READ_ONCE(n->state);
6818 
6819 	if (n->config)
6820 		napi_restore_config(n);
6821 	else
6822 		napi_hash_add(n);
6823 
6824 	do {
6825 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6826 
6827 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6828 		if (n->dev->threaded && n->thread)
6829 			new |= NAPIF_STATE_THREADED;
6830 	} while (!try_cmpxchg(&n->state, &val, new));
6831 }
6832 EXPORT_SYMBOL(napi_enable);
6833 
6834 static void flush_gro_hash(struct napi_struct *napi)
6835 {
6836 	int i;
6837 
6838 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6839 		struct sk_buff *skb, *n;
6840 
6841 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6842 			kfree_skb(skb);
6843 		napi->gro_hash[i].count = 0;
6844 	}
6845 }
6846 
6847 /* Must be called in process context */
6848 void __netif_napi_del(struct napi_struct *napi)
6849 {
6850 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6851 		return;
6852 
6853 	if (napi->config) {
6854 		napi->index = -1;
6855 		napi->config = NULL;
6856 	}
6857 
6858 	list_del_rcu(&napi->dev_list);
6859 	napi_free_frags(napi);
6860 
6861 	flush_gro_hash(napi);
6862 	napi->gro_bitmask = 0;
6863 
6864 	if (napi->thread) {
6865 		kthread_stop(napi->thread);
6866 		napi->thread = NULL;
6867 	}
6868 }
6869 EXPORT_SYMBOL(__netif_napi_del);
6870 
6871 static int __napi_poll(struct napi_struct *n, bool *repoll)
6872 {
6873 	int work, weight;
6874 
6875 	weight = n->weight;
6876 
6877 	/* This NAPI_STATE_SCHED test is for avoiding a race
6878 	 * with netpoll's poll_napi().  Only the entity which
6879 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6880 	 * actually make the ->poll() call.  Therefore we avoid
6881 	 * accidentally calling ->poll() when NAPI is not scheduled.
6882 	 */
6883 	work = 0;
6884 	if (napi_is_scheduled(n)) {
6885 		work = n->poll(n, weight);
6886 		trace_napi_poll(n, work, weight);
6887 
6888 		xdp_do_check_flushed(n);
6889 	}
6890 
6891 	if (unlikely(work > weight))
6892 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6893 				n->poll, work, weight);
6894 
6895 	if (likely(work < weight))
6896 		return work;
6897 
6898 	/* Drivers must not modify the NAPI state if they
6899 	 * consume the entire weight.  In such cases this code
6900 	 * still "owns" the NAPI instance and therefore can
6901 	 * move the instance around on the list at-will.
6902 	 */
6903 	if (unlikely(napi_disable_pending(n))) {
6904 		napi_complete(n);
6905 		return work;
6906 	}
6907 
6908 	/* The NAPI context has more processing work, but busy-polling
6909 	 * is preferred. Exit early.
6910 	 */
6911 	if (napi_prefer_busy_poll(n)) {
6912 		if (napi_complete_done(n, work)) {
6913 			/* If timeout is not set, we need to make sure
6914 			 * that the NAPI is re-scheduled.
6915 			 */
6916 			napi_schedule(n);
6917 		}
6918 		return work;
6919 	}
6920 
6921 	if (n->gro_bitmask) {
6922 		/* flush too old packets
6923 		 * If HZ < 1000, flush all packets.
6924 		 */
6925 		napi_gro_flush(n, HZ >= 1000);
6926 	}
6927 
6928 	gro_normal_list(n);
6929 
6930 	/* Some drivers may have called napi_schedule
6931 	 * prior to exhausting their budget.
6932 	 */
6933 	if (unlikely(!list_empty(&n->poll_list))) {
6934 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6935 			     n->dev ? n->dev->name : "backlog");
6936 		return work;
6937 	}
6938 
6939 	*repoll = true;
6940 
6941 	return work;
6942 }
6943 
6944 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6945 {
6946 	bool do_repoll = false;
6947 	void *have;
6948 	int work;
6949 
6950 	list_del_init(&n->poll_list);
6951 
6952 	have = netpoll_poll_lock(n);
6953 
6954 	work = __napi_poll(n, &do_repoll);
6955 
6956 	if (do_repoll)
6957 		list_add_tail(&n->poll_list, repoll);
6958 
6959 	netpoll_poll_unlock(have);
6960 
6961 	return work;
6962 }
6963 
6964 static int napi_thread_wait(struct napi_struct *napi)
6965 {
6966 	set_current_state(TASK_INTERRUPTIBLE);
6967 
6968 	while (!kthread_should_stop()) {
6969 		/* Testing SCHED_THREADED bit here to make sure the current
6970 		 * kthread owns this napi and could poll on this napi.
6971 		 * Testing SCHED bit is not enough because SCHED bit might be
6972 		 * set by some other busy poll thread or by napi_disable().
6973 		 */
6974 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6975 			WARN_ON(!list_empty(&napi->poll_list));
6976 			__set_current_state(TASK_RUNNING);
6977 			return 0;
6978 		}
6979 
6980 		schedule();
6981 		set_current_state(TASK_INTERRUPTIBLE);
6982 	}
6983 	__set_current_state(TASK_RUNNING);
6984 
6985 	return -1;
6986 }
6987 
6988 static void napi_threaded_poll_loop(struct napi_struct *napi)
6989 {
6990 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6991 	struct softnet_data *sd;
6992 	unsigned long last_qs = jiffies;
6993 
6994 	for (;;) {
6995 		bool repoll = false;
6996 		void *have;
6997 
6998 		local_bh_disable();
6999 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7000 
7001 		sd = this_cpu_ptr(&softnet_data);
7002 		sd->in_napi_threaded_poll = true;
7003 
7004 		have = netpoll_poll_lock(napi);
7005 		__napi_poll(napi, &repoll);
7006 		netpoll_poll_unlock(have);
7007 
7008 		sd->in_napi_threaded_poll = false;
7009 		barrier();
7010 
7011 		if (sd_has_rps_ipi_waiting(sd)) {
7012 			local_irq_disable();
7013 			net_rps_action_and_irq_enable(sd);
7014 		}
7015 		skb_defer_free_flush(sd);
7016 		bpf_net_ctx_clear(bpf_net_ctx);
7017 		local_bh_enable();
7018 
7019 		if (!repoll)
7020 			break;
7021 
7022 		rcu_softirq_qs_periodic(last_qs);
7023 		cond_resched();
7024 	}
7025 }
7026 
7027 static int napi_threaded_poll(void *data)
7028 {
7029 	struct napi_struct *napi = data;
7030 
7031 	while (!napi_thread_wait(napi))
7032 		napi_threaded_poll_loop(napi);
7033 
7034 	return 0;
7035 }
7036 
7037 static __latent_entropy void net_rx_action(void)
7038 {
7039 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7040 	unsigned long time_limit = jiffies +
7041 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7042 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7043 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7044 	LIST_HEAD(list);
7045 	LIST_HEAD(repoll);
7046 
7047 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7048 start:
7049 	sd->in_net_rx_action = true;
7050 	local_irq_disable();
7051 	list_splice_init(&sd->poll_list, &list);
7052 	local_irq_enable();
7053 
7054 	for (;;) {
7055 		struct napi_struct *n;
7056 
7057 		skb_defer_free_flush(sd);
7058 
7059 		if (list_empty(&list)) {
7060 			if (list_empty(&repoll)) {
7061 				sd->in_net_rx_action = false;
7062 				barrier();
7063 				/* We need to check if ____napi_schedule()
7064 				 * had refilled poll_list while
7065 				 * sd->in_net_rx_action was true.
7066 				 */
7067 				if (!list_empty(&sd->poll_list))
7068 					goto start;
7069 				if (!sd_has_rps_ipi_waiting(sd))
7070 					goto end;
7071 			}
7072 			break;
7073 		}
7074 
7075 		n = list_first_entry(&list, struct napi_struct, poll_list);
7076 		budget -= napi_poll(n, &repoll);
7077 
7078 		/* If softirq window is exhausted then punt.
7079 		 * Allow this to run for 2 jiffies since which will allow
7080 		 * an average latency of 1.5/HZ.
7081 		 */
7082 		if (unlikely(budget <= 0 ||
7083 			     time_after_eq(jiffies, time_limit))) {
7084 			sd->time_squeeze++;
7085 			break;
7086 		}
7087 	}
7088 
7089 	local_irq_disable();
7090 
7091 	list_splice_tail_init(&sd->poll_list, &list);
7092 	list_splice_tail(&repoll, &list);
7093 	list_splice(&list, &sd->poll_list);
7094 	if (!list_empty(&sd->poll_list))
7095 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7096 	else
7097 		sd->in_net_rx_action = false;
7098 
7099 	net_rps_action_and_irq_enable(sd);
7100 end:
7101 	bpf_net_ctx_clear(bpf_net_ctx);
7102 }
7103 
7104 struct netdev_adjacent {
7105 	struct net_device *dev;
7106 	netdevice_tracker dev_tracker;
7107 
7108 	/* upper master flag, there can only be one master device per list */
7109 	bool master;
7110 
7111 	/* lookup ignore flag */
7112 	bool ignore;
7113 
7114 	/* counter for the number of times this device was added to us */
7115 	u16 ref_nr;
7116 
7117 	/* private field for the users */
7118 	void *private;
7119 
7120 	struct list_head list;
7121 	struct rcu_head rcu;
7122 };
7123 
7124 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7125 						 struct list_head *adj_list)
7126 {
7127 	struct netdev_adjacent *adj;
7128 
7129 	list_for_each_entry(adj, adj_list, list) {
7130 		if (adj->dev == adj_dev)
7131 			return adj;
7132 	}
7133 	return NULL;
7134 }
7135 
7136 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7137 				    struct netdev_nested_priv *priv)
7138 {
7139 	struct net_device *dev = (struct net_device *)priv->data;
7140 
7141 	return upper_dev == dev;
7142 }
7143 
7144 /**
7145  * netdev_has_upper_dev - Check if device is linked to an upper device
7146  * @dev: device
7147  * @upper_dev: upper device to check
7148  *
7149  * Find out if a device is linked to specified upper device and return true
7150  * in case it is. Note that this checks only immediate upper device,
7151  * not through a complete stack of devices. The caller must hold the RTNL lock.
7152  */
7153 bool netdev_has_upper_dev(struct net_device *dev,
7154 			  struct net_device *upper_dev)
7155 {
7156 	struct netdev_nested_priv priv = {
7157 		.data = (void *)upper_dev,
7158 	};
7159 
7160 	ASSERT_RTNL();
7161 
7162 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7163 					     &priv);
7164 }
7165 EXPORT_SYMBOL(netdev_has_upper_dev);
7166 
7167 /**
7168  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7169  * @dev: device
7170  * @upper_dev: upper device to check
7171  *
7172  * Find out if a device is linked to specified upper device and return true
7173  * in case it is. Note that this checks the entire upper device chain.
7174  * The caller must hold rcu lock.
7175  */
7176 
7177 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7178 				  struct net_device *upper_dev)
7179 {
7180 	struct netdev_nested_priv priv = {
7181 		.data = (void *)upper_dev,
7182 	};
7183 
7184 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7185 					       &priv);
7186 }
7187 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7188 
7189 /**
7190  * netdev_has_any_upper_dev - Check if device is linked to some device
7191  * @dev: device
7192  *
7193  * Find out if a device is linked to an upper device and return true in case
7194  * it is. The caller must hold the RTNL lock.
7195  */
7196 bool netdev_has_any_upper_dev(struct net_device *dev)
7197 {
7198 	ASSERT_RTNL();
7199 
7200 	return !list_empty(&dev->adj_list.upper);
7201 }
7202 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7203 
7204 /**
7205  * netdev_master_upper_dev_get - Get master upper device
7206  * @dev: device
7207  *
7208  * Find a master upper device and return pointer to it or NULL in case
7209  * it's not there. The caller must hold the RTNL lock.
7210  */
7211 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7212 {
7213 	struct netdev_adjacent *upper;
7214 
7215 	ASSERT_RTNL();
7216 
7217 	if (list_empty(&dev->adj_list.upper))
7218 		return NULL;
7219 
7220 	upper = list_first_entry(&dev->adj_list.upper,
7221 				 struct netdev_adjacent, list);
7222 	if (likely(upper->master))
7223 		return upper->dev;
7224 	return NULL;
7225 }
7226 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7227 
7228 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7229 {
7230 	struct netdev_adjacent *upper;
7231 
7232 	ASSERT_RTNL();
7233 
7234 	if (list_empty(&dev->adj_list.upper))
7235 		return NULL;
7236 
7237 	upper = list_first_entry(&dev->adj_list.upper,
7238 				 struct netdev_adjacent, list);
7239 	if (likely(upper->master) && !upper->ignore)
7240 		return upper->dev;
7241 	return NULL;
7242 }
7243 
7244 /**
7245  * netdev_has_any_lower_dev - Check if device is linked to some device
7246  * @dev: device
7247  *
7248  * Find out if a device is linked to a lower device and return true in case
7249  * it is. The caller must hold the RTNL lock.
7250  */
7251 static bool netdev_has_any_lower_dev(struct net_device *dev)
7252 {
7253 	ASSERT_RTNL();
7254 
7255 	return !list_empty(&dev->adj_list.lower);
7256 }
7257 
7258 void *netdev_adjacent_get_private(struct list_head *adj_list)
7259 {
7260 	struct netdev_adjacent *adj;
7261 
7262 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7263 
7264 	return adj->private;
7265 }
7266 EXPORT_SYMBOL(netdev_adjacent_get_private);
7267 
7268 /**
7269  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7270  * @dev: device
7271  * @iter: list_head ** of the current position
7272  *
7273  * Gets the next device from the dev's upper list, starting from iter
7274  * position. The caller must hold RCU read lock.
7275  */
7276 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7277 						 struct list_head **iter)
7278 {
7279 	struct netdev_adjacent *upper;
7280 
7281 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7282 
7283 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7284 
7285 	if (&upper->list == &dev->adj_list.upper)
7286 		return NULL;
7287 
7288 	*iter = &upper->list;
7289 
7290 	return upper->dev;
7291 }
7292 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7293 
7294 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7295 						  struct list_head **iter,
7296 						  bool *ignore)
7297 {
7298 	struct netdev_adjacent *upper;
7299 
7300 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7301 
7302 	if (&upper->list == &dev->adj_list.upper)
7303 		return NULL;
7304 
7305 	*iter = &upper->list;
7306 	*ignore = upper->ignore;
7307 
7308 	return upper->dev;
7309 }
7310 
7311 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7312 						    struct list_head **iter)
7313 {
7314 	struct netdev_adjacent *upper;
7315 
7316 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7317 
7318 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7319 
7320 	if (&upper->list == &dev->adj_list.upper)
7321 		return NULL;
7322 
7323 	*iter = &upper->list;
7324 
7325 	return upper->dev;
7326 }
7327 
7328 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7329 				       int (*fn)(struct net_device *dev,
7330 					 struct netdev_nested_priv *priv),
7331 				       struct netdev_nested_priv *priv)
7332 {
7333 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7334 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7335 	int ret, cur = 0;
7336 	bool ignore;
7337 
7338 	now = dev;
7339 	iter = &dev->adj_list.upper;
7340 
7341 	while (1) {
7342 		if (now != dev) {
7343 			ret = fn(now, priv);
7344 			if (ret)
7345 				return ret;
7346 		}
7347 
7348 		next = NULL;
7349 		while (1) {
7350 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7351 			if (!udev)
7352 				break;
7353 			if (ignore)
7354 				continue;
7355 
7356 			next = udev;
7357 			niter = &udev->adj_list.upper;
7358 			dev_stack[cur] = now;
7359 			iter_stack[cur++] = iter;
7360 			break;
7361 		}
7362 
7363 		if (!next) {
7364 			if (!cur)
7365 				return 0;
7366 			next = dev_stack[--cur];
7367 			niter = iter_stack[cur];
7368 		}
7369 
7370 		now = next;
7371 		iter = niter;
7372 	}
7373 
7374 	return 0;
7375 }
7376 
7377 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7378 				  int (*fn)(struct net_device *dev,
7379 					    struct netdev_nested_priv *priv),
7380 				  struct netdev_nested_priv *priv)
7381 {
7382 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7383 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7384 	int ret, cur = 0;
7385 
7386 	now = dev;
7387 	iter = &dev->adj_list.upper;
7388 
7389 	while (1) {
7390 		if (now != dev) {
7391 			ret = fn(now, priv);
7392 			if (ret)
7393 				return ret;
7394 		}
7395 
7396 		next = NULL;
7397 		while (1) {
7398 			udev = netdev_next_upper_dev_rcu(now, &iter);
7399 			if (!udev)
7400 				break;
7401 
7402 			next = udev;
7403 			niter = &udev->adj_list.upper;
7404 			dev_stack[cur] = now;
7405 			iter_stack[cur++] = iter;
7406 			break;
7407 		}
7408 
7409 		if (!next) {
7410 			if (!cur)
7411 				return 0;
7412 			next = dev_stack[--cur];
7413 			niter = iter_stack[cur];
7414 		}
7415 
7416 		now = next;
7417 		iter = niter;
7418 	}
7419 
7420 	return 0;
7421 }
7422 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7423 
7424 static bool __netdev_has_upper_dev(struct net_device *dev,
7425 				   struct net_device *upper_dev)
7426 {
7427 	struct netdev_nested_priv priv = {
7428 		.flags = 0,
7429 		.data = (void *)upper_dev,
7430 	};
7431 
7432 	ASSERT_RTNL();
7433 
7434 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7435 					   &priv);
7436 }
7437 
7438 /**
7439  * netdev_lower_get_next_private - Get the next ->private from the
7440  *				   lower neighbour list
7441  * @dev: device
7442  * @iter: list_head ** of the current position
7443  *
7444  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7445  * list, starting from iter position. The caller must hold either hold the
7446  * RTNL lock or its own locking that guarantees that the neighbour lower
7447  * list will remain unchanged.
7448  */
7449 void *netdev_lower_get_next_private(struct net_device *dev,
7450 				    struct list_head **iter)
7451 {
7452 	struct netdev_adjacent *lower;
7453 
7454 	lower = list_entry(*iter, struct netdev_adjacent, list);
7455 
7456 	if (&lower->list == &dev->adj_list.lower)
7457 		return NULL;
7458 
7459 	*iter = lower->list.next;
7460 
7461 	return lower->private;
7462 }
7463 EXPORT_SYMBOL(netdev_lower_get_next_private);
7464 
7465 /**
7466  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7467  *				       lower neighbour list, RCU
7468  *				       variant
7469  * @dev: device
7470  * @iter: list_head ** of the current position
7471  *
7472  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7473  * list, starting from iter position. The caller must hold RCU read lock.
7474  */
7475 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7476 					struct list_head **iter)
7477 {
7478 	struct netdev_adjacent *lower;
7479 
7480 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7481 
7482 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7483 
7484 	if (&lower->list == &dev->adj_list.lower)
7485 		return NULL;
7486 
7487 	*iter = &lower->list;
7488 
7489 	return lower->private;
7490 }
7491 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7492 
7493 /**
7494  * netdev_lower_get_next - Get the next device from the lower neighbour
7495  *                         list
7496  * @dev: device
7497  * @iter: list_head ** of the current position
7498  *
7499  * Gets the next netdev_adjacent from the dev's lower neighbour
7500  * list, starting from iter position. The caller must hold RTNL lock or
7501  * its own locking that guarantees that the neighbour lower
7502  * list will remain unchanged.
7503  */
7504 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7505 {
7506 	struct netdev_adjacent *lower;
7507 
7508 	lower = list_entry(*iter, struct netdev_adjacent, list);
7509 
7510 	if (&lower->list == &dev->adj_list.lower)
7511 		return NULL;
7512 
7513 	*iter = lower->list.next;
7514 
7515 	return lower->dev;
7516 }
7517 EXPORT_SYMBOL(netdev_lower_get_next);
7518 
7519 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7520 						struct list_head **iter)
7521 {
7522 	struct netdev_adjacent *lower;
7523 
7524 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7525 
7526 	if (&lower->list == &dev->adj_list.lower)
7527 		return NULL;
7528 
7529 	*iter = &lower->list;
7530 
7531 	return lower->dev;
7532 }
7533 
7534 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7535 						  struct list_head **iter,
7536 						  bool *ignore)
7537 {
7538 	struct netdev_adjacent *lower;
7539 
7540 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7541 
7542 	if (&lower->list == &dev->adj_list.lower)
7543 		return NULL;
7544 
7545 	*iter = &lower->list;
7546 	*ignore = lower->ignore;
7547 
7548 	return lower->dev;
7549 }
7550 
7551 int netdev_walk_all_lower_dev(struct net_device *dev,
7552 			      int (*fn)(struct net_device *dev,
7553 					struct netdev_nested_priv *priv),
7554 			      struct netdev_nested_priv *priv)
7555 {
7556 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7557 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7558 	int ret, cur = 0;
7559 
7560 	now = dev;
7561 	iter = &dev->adj_list.lower;
7562 
7563 	while (1) {
7564 		if (now != dev) {
7565 			ret = fn(now, priv);
7566 			if (ret)
7567 				return ret;
7568 		}
7569 
7570 		next = NULL;
7571 		while (1) {
7572 			ldev = netdev_next_lower_dev(now, &iter);
7573 			if (!ldev)
7574 				break;
7575 
7576 			next = ldev;
7577 			niter = &ldev->adj_list.lower;
7578 			dev_stack[cur] = now;
7579 			iter_stack[cur++] = iter;
7580 			break;
7581 		}
7582 
7583 		if (!next) {
7584 			if (!cur)
7585 				return 0;
7586 			next = dev_stack[--cur];
7587 			niter = iter_stack[cur];
7588 		}
7589 
7590 		now = next;
7591 		iter = niter;
7592 	}
7593 
7594 	return 0;
7595 }
7596 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7597 
7598 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7599 				       int (*fn)(struct net_device *dev,
7600 					 struct netdev_nested_priv *priv),
7601 				       struct netdev_nested_priv *priv)
7602 {
7603 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7604 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7605 	int ret, cur = 0;
7606 	bool ignore;
7607 
7608 	now = dev;
7609 	iter = &dev->adj_list.lower;
7610 
7611 	while (1) {
7612 		if (now != dev) {
7613 			ret = fn(now, priv);
7614 			if (ret)
7615 				return ret;
7616 		}
7617 
7618 		next = NULL;
7619 		while (1) {
7620 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7621 			if (!ldev)
7622 				break;
7623 			if (ignore)
7624 				continue;
7625 
7626 			next = ldev;
7627 			niter = &ldev->adj_list.lower;
7628 			dev_stack[cur] = now;
7629 			iter_stack[cur++] = iter;
7630 			break;
7631 		}
7632 
7633 		if (!next) {
7634 			if (!cur)
7635 				return 0;
7636 			next = dev_stack[--cur];
7637 			niter = iter_stack[cur];
7638 		}
7639 
7640 		now = next;
7641 		iter = niter;
7642 	}
7643 
7644 	return 0;
7645 }
7646 
7647 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7648 					     struct list_head **iter)
7649 {
7650 	struct netdev_adjacent *lower;
7651 
7652 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7653 	if (&lower->list == &dev->adj_list.lower)
7654 		return NULL;
7655 
7656 	*iter = &lower->list;
7657 
7658 	return lower->dev;
7659 }
7660 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7661 
7662 static u8 __netdev_upper_depth(struct net_device *dev)
7663 {
7664 	struct net_device *udev;
7665 	struct list_head *iter;
7666 	u8 max_depth = 0;
7667 	bool ignore;
7668 
7669 	for (iter = &dev->adj_list.upper,
7670 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7671 	     udev;
7672 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7673 		if (ignore)
7674 			continue;
7675 		if (max_depth < udev->upper_level)
7676 			max_depth = udev->upper_level;
7677 	}
7678 
7679 	return max_depth;
7680 }
7681 
7682 static u8 __netdev_lower_depth(struct net_device *dev)
7683 {
7684 	struct net_device *ldev;
7685 	struct list_head *iter;
7686 	u8 max_depth = 0;
7687 	bool ignore;
7688 
7689 	for (iter = &dev->adj_list.lower,
7690 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7691 	     ldev;
7692 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7693 		if (ignore)
7694 			continue;
7695 		if (max_depth < ldev->lower_level)
7696 			max_depth = ldev->lower_level;
7697 	}
7698 
7699 	return max_depth;
7700 }
7701 
7702 static int __netdev_update_upper_level(struct net_device *dev,
7703 				       struct netdev_nested_priv *__unused)
7704 {
7705 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7706 	return 0;
7707 }
7708 
7709 #ifdef CONFIG_LOCKDEP
7710 static LIST_HEAD(net_unlink_list);
7711 
7712 static void net_unlink_todo(struct net_device *dev)
7713 {
7714 	if (list_empty(&dev->unlink_list))
7715 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7716 }
7717 #endif
7718 
7719 static int __netdev_update_lower_level(struct net_device *dev,
7720 				       struct netdev_nested_priv *priv)
7721 {
7722 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7723 
7724 #ifdef CONFIG_LOCKDEP
7725 	if (!priv)
7726 		return 0;
7727 
7728 	if (priv->flags & NESTED_SYNC_IMM)
7729 		dev->nested_level = dev->lower_level - 1;
7730 	if (priv->flags & NESTED_SYNC_TODO)
7731 		net_unlink_todo(dev);
7732 #endif
7733 	return 0;
7734 }
7735 
7736 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7737 				  int (*fn)(struct net_device *dev,
7738 					    struct netdev_nested_priv *priv),
7739 				  struct netdev_nested_priv *priv)
7740 {
7741 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7742 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7743 	int ret, cur = 0;
7744 
7745 	now = dev;
7746 	iter = &dev->adj_list.lower;
7747 
7748 	while (1) {
7749 		if (now != dev) {
7750 			ret = fn(now, priv);
7751 			if (ret)
7752 				return ret;
7753 		}
7754 
7755 		next = NULL;
7756 		while (1) {
7757 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7758 			if (!ldev)
7759 				break;
7760 
7761 			next = ldev;
7762 			niter = &ldev->adj_list.lower;
7763 			dev_stack[cur] = now;
7764 			iter_stack[cur++] = iter;
7765 			break;
7766 		}
7767 
7768 		if (!next) {
7769 			if (!cur)
7770 				return 0;
7771 			next = dev_stack[--cur];
7772 			niter = iter_stack[cur];
7773 		}
7774 
7775 		now = next;
7776 		iter = niter;
7777 	}
7778 
7779 	return 0;
7780 }
7781 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7782 
7783 /**
7784  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7785  *				       lower neighbour list, RCU
7786  *				       variant
7787  * @dev: device
7788  *
7789  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7790  * list. The caller must hold RCU read lock.
7791  */
7792 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7793 {
7794 	struct netdev_adjacent *lower;
7795 
7796 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7797 			struct netdev_adjacent, list);
7798 	if (lower)
7799 		return lower->private;
7800 	return NULL;
7801 }
7802 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7803 
7804 /**
7805  * netdev_master_upper_dev_get_rcu - Get master upper device
7806  * @dev: device
7807  *
7808  * Find a master upper device and return pointer to it or NULL in case
7809  * it's not there. The caller must hold the RCU read lock.
7810  */
7811 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7812 {
7813 	struct netdev_adjacent *upper;
7814 
7815 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7816 				       struct netdev_adjacent, list);
7817 	if (upper && likely(upper->master))
7818 		return upper->dev;
7819 	return NULL;
7820 }
7821 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7822 
7823 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7824 			      struct net_device *adj_dev,
7825 			      struct list_head *dev_list)
7826 {
7827 	char linkname[IFNAMSIZ+7];
7828 
7829 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7830 		"upper_%s" : "lower_%s", adj_dev->name);
7831 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7832 				 linkname);
7833 }
7834 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7835 			       char *name,
7836 			       struct list_head *dev_list)
7837 {
7838 	char linkname[IFNAMSIZ+7];
7839 
7840 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7841 		"upper_%s" : "lower_%s", name);
7842 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7843 }
7844 
7845 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7846 						 struct net_device *adj_dev,
7847 						 struct list_head *dev_list)
7848 {
7849 	return (dev_list == &dev->adj_list.upper ||
7850 		dev_list == &dev->adj_list.lower) &&
7851 		net_eq(dev_net(dev), dev_net(adj_dev));
7852 }
7853 
7854 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7855 					struct net_device *adj_dev,
7856 					struct list_head *dev_list,
7857 					void *private, bool master)
7858 {
7859 	struct netdev_adjacent *adj;
7860 	int ret;
7861 
7862 	adj = __netdev_find_adj(adj_dev, dev_list);
7863 
7864 	if (adj) {
7865 		adj->ref_nr += 1;
7866 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7867 			 dev->name, adj_dev->name, adj->ref_nr);
7868 
7869 		return 0;
7870 	}
7871 
7872 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7873 	if (!adj)
7874 		return -ENOMEM;
7875 
7876 	adj->dev = adj_dev;
7877 	adj->master = master;
7878 	adj->ref_nr = 1;
7879 	adj->private = private;
7880 	adj->ignore = false;
7881 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7882 
7883 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7884 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7885 
7886 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7887 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7888 		if (ret)
7889 			goto free_adj;
7890 	}
7891 
7892 	/* Ensure that master link is always the first item in list. */
7893 	if (master) {
7894 		ret = sysfs_create_link(&(dev->dev.kobj),
7895 					&(adj_dev->dev.kobj), "master");
7896 		if (ret)
7897 			goto remove_symlinks;
7898 
7899 		list_add_rcu(&adj->list, dev_list);
7900 	} else {
7901 		list_add_tail_rcu(&adj->list, dev_list);
7902 	}
7903 
7904 	return 0;
7905 
7906 remove_symlinks:
7907 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7908 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7909 free_adj:
7910 	netdev_put(adj_dev, &adj->dev_tracker);
7911 	kfree(adj);
7912 
7913 	return ret;
7914 }
7915 
7916 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7917 					 struct net_device *adj_dev,
7918 					 u16 ref_nr,
7919 					 struct list_head *dev_list)
7920 {
7921 	struct netdev_adjacent *adj;
7922 
7923 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7924 		 dev->name, adj_dev->name, ref_nr);
7925 
7926 	adj = __netdev_find_adj(adj_dev, dev_list);
7927 
7928 	if (!adj) {
7929 		pr_err("Adjacency does not exist for device %s from %s\n",
7930 		       dev->name, adj_dev->name);
7931 		WARN_ON(1);
7932 		return;
7933 	}
7934 
7935 	if (adj->ref_nr > ref_nr) {
7936 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7937 			 dev->name, adj_dev->name, ref_nr,
7938 			 adj->ref_nr - ref_nr);
7939 		adj->ref_nr -= ref_nr;
7940 		return;
7941 	}
7942 
7943 	if (adj->master)
7944 		sysfs_remove_link(&(dev->dev.kobj), "master");
7945 
7946 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7947 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7948 
7949 	list_del_rcu(&adj->list);
7950 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7951 		 adj_dev->name, dev->name, adj_dev->name);
7952 	netdev_put(adj_dev, &adj->dev_tracker);
7953 	kfree_rcu(adj, rcu);
7954 }
7955 
7956 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7957 					    struct net_device *upper_dev,
7958 					    struct list_head *up_list,
7959 					    struct list_head *down_list,
7960 					    void *private, bool master)
7961 {
7962 	int ret;
7963 
7964 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7965 					   private, master);
7966 	if (ret)
7967 		return ret;
7968 
7969 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7970 					   private, false);
7971 	if (ret) {
7972 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7973 		return ret;
7974 	}
7975 
7976 	return 0;
7977 }
7978 
7979 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7980 					       struct net_device *upper_dev,
7981 					       u16 ref_nr,
7982 					       struct list_head *up_list,
7983 					       struct list_head *down_list)
7984 {
7985 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7986 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7987 }
7988 
7989 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7990 						struct net_device *upper_dev,
7991 						void *private, bool master)
7992 {
7993 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7994 						&dev->adj_list.upper,
7995 						&upper_dev->adj_list.lower,
7996 						private, master);
7997 }
7998 
7999 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8000 						   struct net_device *upper_dev)
8001 {
8002 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8003 					   &dev->adj_list.upper,
8004 					   &upper_dev->adj_list.lower);
8005 }
8006 
8007 static int __netdev_upper_dev_link(struct net_device *dev,
8008 				   struct net_device *upper_dev, bool master,
8009 				   void *upper_priv, void *upper_info,
8010 				   struct netdev_nested_priv *priv,
8011 				   struct netlink_ext_ack *extack)
8012 {
8013 	struct netdev_notifier_changeupper_info changeupper_info = {
8014 		.info = {
8015 			.dev = dev,
8016 			.extack = extack,
8017 		},
8018 		.upper_dev = upper_dev,
8019 		.master = master,
8020 		.linking = true,
8021 		.upper_info = upper_info,
8022 	};
8023 	struct net_device *master_dev;
8024 	int ret = 0;
8025 
8026 	ASSERT_RTNL();
8027 
8028 	if (dev == upper_dev)
8029 		return -EBUSY;
8030 
8031 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8032 	if (__netdev_has_upper_dev(upper_dev, dev))
8033 		return -EBUSY;
8034 
8035 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8036 		return -EMLINK;
8037 
8038 	if (!master) {
8039 		if (__netdev_has_upper_dev(dev, upper_dev))
8040 			return -EEXIST;
8041 	} else {
8042 		master_dev = __netdev_master_upper_dev_get(dev);
8043 		if (master_dev)
8044 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8045 	}
8046 
8047 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8048 					    &changeupper_info.info);
8049 	ret = notifier_to_errno(ret);
8050 	if (ret)
8051 		return ret;
8052 
8053 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8054 						   master);
8055 	if (ret)
8056 		return ret;
8057 
8058 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8059 					    &changeupper_info.info);
8060 	ret = notifier_to_errno(ret);
8061 	if (ret)
8062 		goto rollback;
8063 
8064 	__netdev_update_upper_level(dev, NULL);
8065 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8066 
8067 	__netdev_update_lower_level(upper_dev, priv);
8068 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8069 				    priv);
8070 
8071 	return 0;
8072 
8073 rollback:
8074 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8075 
8076 	return ret;
8077 }
8078 
8079 /**
8080  * netdev_upper_dev_link - Add a link to the upper device
8081  * @dev: device
8082  * @upper_dev: new upper device
8083  * @extack: netlink extended ack
8084  *
8085  * Adds a link to device which is upper to this one. The caller must hold
8086  * the RTNL lock. On a failure a negative errno code is returned.
8087  * On success the reference counts are adjusted and the function
8088  * returns zero.
8089  */
8090 int netdev_upper_dev_link(struct net_device *dev,
8091 			  struct net_device *upper_dev,
8092 			  struct netlink_ext_ack *extack)
8093 {
8094 	struct netdev_nested_priv priv = {
8095 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8096 		.data = NULL,
8097 	};
8098 
8099 	return __netdev_upper_dev_link(dev, upper_dev, false,
8100 				       NULL, NULL, &priv, extack);
8101 }
8102 EXPORT_SYMBOL(netdev_upper_dev_link);
8103 
8104 /**
8105  * netdev_master_upper_dev_link - Add a master link to the upper device
8106  * @dev: device
8107  * @upper_dev: new upper device
8108  * @upper_priv: upper device private
8109  * @upper_info: upper info to be passed down via notifier
8110  * @extack: netlink extended ack
8111  *
8112  * Adds a link to device which is upper to this one. In this case, only
8113  * one master upper device can be linked, although other non-master devices
8114  * might be linked as well. The caller must hold the RTNL lock.
8115  * On a failure a negative errno code is returned. On success the reference
8116  * counts are adjusted and the function returns zero.
8117  */
8118 int netdev_master_upper_dev_link(struct net_device *dev,
8119 				 struct net_device *upper_dev,
8120 				 void *upper_priv, void *upper_info,
8121 				 struct netlink_ext_ack *extack)
8122 {
8123 	struct netdev_nested_priv priv = {
8124 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8125 		.data = NULL,
8126 	};
8127 
8128 	return __netdev_upper_dev_link(dev, upper_dev, true,
8129 				       upper_priv, upper_info, &priv, extack);
8130 }
8131 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8132 
8133 static void __netdev_upper_dev_unlink(struct net_device *dev,
8134 				      struct net_device *upper_dev,
8135 				      struct netdev_nested_priv *priv)
8136 {
8137 	struct netdev_notifier_changeupper_info changeupper_info = {
8138 		.info = {
8139 			.dev = dev,
8140 		},
8141 		.upper_dev = upper_dev,
8142 		.linking = false,
8143 	};
8144 
8145 	ASSERT_RTNL();
8146 
8147 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8148 
8149 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8150 				      &changeupper_info.info);
8151 
8152 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8153 
8154 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8155 				      &changeupper_info.info);
8156 
8157 	__netdev_update_upper_level(dev, NULL);
8158 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8159 
8160 	__netdev_update_lower_level(upper_dev, priv);
8161 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8162 				    priv);
8163 }
8164 
8165 /**
8166  * netdev_upper_dev_unlink - Removes a link to upper device
8167  * @dev: device
8168  * @upper_dev: new upper device
8169  *
8170  * Removes a link to device which is upper to this one. The caller must hold
8171  * the RTNL lock.
8172  */
8173 void netdev_upper_dev_unlink(struct net_device *dev,
8174 			     struct net_device *upper_dev)
8175 {
8176 	struct netdev_nested_priv priv = {
8177 		.flags = NESTED_SYNC_TODO,
8178 		.data = NULL,
8179 	};
8180 
8181 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8182 }
8183 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8184 
8185 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8186 				      struct net_device *lower_dev,
8187 				      bool val)
8188 {
8189 	struct netdev_adjacent *adj;
8190 
8191 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8192 	if (adj)
8193 		adj->ignore = val;
8194 
8195 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8196 	if (adj)
8197 		adj->ignore = val;
8198 }
8199 
8200 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8201 					struct net_device *lower_dev)
8202 {
8203 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8204 }
8205 
8206 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8207 				       struct net_device *lower_dev)
8208 {
8209 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8210 }
8211 
8212 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8213 				   struct net_device *new_dev,
8214 				   struct net_device *dev,
8215 				   struct netlink_ext_ack *extack)
8216 {
8217 	struct netdev_nested_priv priv = {
8218 		.flags = 0,
8219 		.data = NULL,
8220 	};
8221 	int err;
8222 
8223 	if (!new_dev)
8224 		return 0;
8225 
8226 	if (old_dev && new_dev != old_dev)
8227 		netdev_adjacent_dev_disable(dev, old_dev);
8228 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8229 				      extack);
8230 	if (err) {
8231 		if (old_dev && new_dev != old_dev)
8232 			netdev_adjacent_dev_enable(dev, old_dev);
8233 		return err;
8234 	}
8235 
8236 	return 0;
8237 }
8238 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8239 
8240 void netdev_adjacent_change_commit(struct net_device *old_dev,
8241 				   struct net_device *new_dev,
8242 				   struct net_device *dev)
8243 {
8244 	struct netdev_nested_priv priv = {
8245 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8246 		.data = NULL,
8247 	};
8248 
8249 	if (!new_dev || !old_dev)
8250 		return;
8251 
8252 	if (new_dev == old_dev)
8253 		return;
8254 
8255 	netdev_adjacent_dev_enable(dev, old_dev);
8256 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8257 }
8258 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8259 
8260 void netdev_adjacent_change_abort(struct net_device *old_dev,
8261 				  struct net_device *new_dev,
8262 				  struct net_device *dev)
8263 {
8264 	struct netdev_nested_priv priv = {
8265 		.flags = 0,
8266 		.data = NULL,
8267 	};
8268 
8269 	if (!new_dev)
8270 		return;
8271 
8272 	if (old_dev && new_dev != old_dev)
8273 		netdev_adjacent_dev_enable(dev, old_dev);
8274 
8275 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8276 }
8277 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8278 
8279 /**
8280  * netdev_bonding_info_change - Dispatch event about slave change
8281  * @dev: device
8282  * @bonding_info: info to dispatch
8283  *
8284  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8285  * The caller must hold the RTNL lock.
8286  */
8287 void netdev_bonding_info_change(struct net_device *dev,
8288 				struct netdev_bonding_info *bonding_info)
8289 {
8290 	struct netdev_notifier_bonding_info info = {
8291 		.info.dev = dev,
8292 	};
8293 
8294 	memcpy(&info.bonding_info, bonding_info,
8295 	       sizeof(struct netdev_bonding_info));
8296 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8297 				      &info.info);
8298 }
8299 EXPORT_SYMBOL(netdev_bonding_info_change);
8300 
8301 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8302 					   struct netlink_ext_ack *extack)
8303 {
8304 	struct netdev_notifier_offload_xstats_info info = {
8305 		.info.dev = dev,
8306 		.info.extack = extack,
8307 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8308 	};
8309 	int err;
8310 	int rc;
8311 
8312 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8313 					 GFP_KERNEL);
8314 	if (!dev->offload_xstats_l3)
8315 		return -ENOMEM;
8316 
8317 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8318 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8319 						  &info.info);
8320 	err = notifier_to_errno(rc);
8321 	if (err)
8322 		goto free_stats;
8323 
8324 	return 0;
8325 
8326 free_stats:
8327 	kfree(dev->offload_xstats_l3);
8328 	dev->offload_xstats_l3 = NULL;
8329 	return err;
8330 }
8331 
8332 int netdev_offload_xstats_enable(struct net_device *dev,
8333 				 enum netdev_offload_xstats_type type,
8334 				 struct netlink_ext_ack *extack)
8335 {
8336 	ASSERT_RTNL();
8337 
8338 	if (netdev_offload_xstats_enabled(dev, type))
8339 		return -EALREADY;
8340 
8341 	switch (type) {
8342 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8343 		return netdev_offload_xstats_enable_l3(dev, extack);
8344 	}
8345 
8346 	WARN_ON(1);
8347 	return -EINVAL;
8348 }
8349 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8350 
8351 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8352 {
8353 	struct netdev_notifier_offload_xstats_info info = {
8354 		.info.dev = dev,
8355 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8356 	};
8357 
8358 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8359 				      &info.info);
8360 	kfree(dev->offload_xstats_l3);
8361 	dev->offload_xstats_l3 = NULL;
8362 }
8363 
8364 int netdev_offload_xstats_disable(struct net_device *dev,
8365 				  enum netdev_offload_xstats_type type)
8366 {
8367 	ASSERT_RTNL();
8368 
8369 	if (!netdev_offload_xstats_enabled(dev, type))
8370 		return -EALREADY;
8371 
8372 	switch (type) {
8373 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8374 		netdev_offload_xstats_disable_l3(dev);
8375 		return 0;
8376 	}
8377 
8378 	WARN_ON(1);
8379 	return -EINVAL;
8380 }
8381 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8382 
8383 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8384 {
8385 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8386 }
8387 
8388 static struct rtnl_hw_stats64 *
8389 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8390 			      enum netdev_offload_xstats_type type)
8391 {
8392 	switch (type) {
8393 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8394 		return dev->offload_xstats_l3;
8395 	}
8396 
8397 	WARN_ON(1);
8398 	return NULL;
8399 }
8400 
8401 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8402 				   enum netdev_offload_xstats_type type)
8403 {
8404 	ASSERT_RTNL();
8405 
8406 	return netdev_offload_xstats_get_ptr(dev, type);
8407 }
8408 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8409 
8410 struct netdev_notifier_offload_xstats_ru {
8411 	bool used;
8412 };
8413 
8414 struct netdev_notifier_offload_xstats_rd {
8415 	struct rtnl_hw_stats64 stats;
8416 	bool used;
8417 };
8418 
8419 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8420 				  const struct rtnl_hw_stats64 *src)
8421 {
8422 	dest->rx_packets	  += src->rx_packets;
8423 	dest->tx_packets	  += src->tx_packets;
8424 	dest->rx_bytes		  += src->rx_bytes;
8425 	dest->tx_bytes		  += src->tx_bytes;
8426 	dest->rx_errors		  += src->rx_errors;
8427 	dest->tx_errors		  += src->tx_errors;
8428 	dest->rx_dropped	  += src->rx_dropped;
8429 	dest->tx_dropped	  += src->tx_dropped;
8430 	dest->multicast		  += src->multicast;
8431 }
8432 
8433 static int netdev_offload_xstats_get_used(struct net_device *dev,
8434 					  enum netdev_offload_xstats_type type,
8435 					  bool *p_used,
8436 					  struct netlink_ext_ack *extack)
8437 {
8438 	struct netdev_notifier_offload_xstats_ru report_used = {};
8439 	struct netdev_notifier_offload_xstats_info info = {
8440 		.info.dev = dev,
8441 		.info.extack = extack,
8442 		.type = type,
8443 		.report_used = &report_used,
8444 	};
8445 	int rc;
8446 
8447 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8448 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8449 					   &info.info);
8450 	*p_used = report_used.used;
8451 	return notifier_to_errno(rc);
8452 }
8453 
8454 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8455 					   enum netdev_offload_xstats_type type,
8456 					   struct rtnl_hw_stats64 *p_stats,
8457 					   bool *p_used,
8458 					   struct netlink_ext_ack *extack)
8459 {
8460 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8461 	struct netdev_notifier_offload_xstats_info info = {
8462 		.info.dev = dev,
8463 		.info.extack = extack,
8464 		.type = type,
8465 		.report_delta = &report_delta,
8466 	};
8467 	struct rtnl_hw_stats64 *stats;
8468 	int rc;
8469 
8470 	stats = netdev_offload_xstats_get_ptr(dev, type);
8471 	if (WARN_ON(!stats))
8472 		return -EINVAL;
8473 
8474 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8475 					   &info.info);
8476 
8477 	/* Cache whatever we got, even if there was an error, otherwise the
8478 	 * successful stats retrievals would get lost.
8479 	 */
8480 	netdev_hw_stats64_add(stats, &report_delta.stats);
8481 
8482 	if (p_stats)
8483 		*p_stats = *stats;
8484 	*p_used = report_delta.used;
8485 
8486 	return notifier_to_errno(rc);
8487 }
8488 
8489 int netdev_offload_xstats_get(struct net_device *dev,
8490 			      enum netdev_offload_xstats_type type,
8491 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8492 			      struct netlink_ext_ack *extack)
8493 {
8494 	ASSERT_RTNL();
8495 
8496 	if (p_stats)
8497 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8498 						       p_used, extack);
8499 	else
8500 		return netdev_offload_xstats_get_used(dev, type, p_used,
8501 						      extack);
8502 }
8503 EXPORT_SYMBOL(netdev_offload_xstats_get);
8504 
8505 void
8506 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8507 				   const struct rtnl_hw_stats64 *stats)
8508 {
8509 	report_delta->used = true;
8510 	netdev_hw_stats64_add(&report_delta->stats, stats);
8511 }
8512 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8513 
8514 void
8515 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8516 {
8517 	report_used->used = true;
8518 }
8519 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8520 
8521 void netdev_offload_xstats_push_delta(struct net_device *dev,
8522 				      enum netdev_offload_xstats_type type,
8523 				      const struct rtnl_hw_stats64 *p_stats)
8524 {
8525 	struct rtnl_hw_stats64 *stats;
8526 
8527 	ASSERT_RTNL();
8528 
8529 	stats = netdev_offload_xstats_get_ptr(dev, type);
8530 	if (WARN_ON(!stats))
8531 		return;
8532 
8533 	netdev_hw_stats64_add(stats, p_stats);
8534 }
8535 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8536 
8537 /**
8538  * netdev_get_xmit_slave - Get the xmit slave of master device
8539  * @dev: device
8540  * @skb: The packet
8541  * @all_slaves: assume all the slaves are active
8542  *
8543  * The reference counters are not incremented so the caller must be
8544  * careful with locks. The caller must hold RCU lock.
8545  * %NULL is returned if no slave is found.
8546  */
8547 
8548 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8549 					 struct sk_buff *skb,
8550 					 bool all_slaves)
8551 {
8552 	const struct net_device_ops *ops = dev->netdev_ops;
8553 
8554 	if (!ops->ndo_get_xmit_slave)
8555 		return NULL;
8556 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8557 }
8558 EXPORT_SYMBOL(netdev_get_xmit_slave);
8559 
8560 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8561 						  struct sock *sk)
8562 {
8563 	const struct net_device_ops *ops = dev->netdev_ops;
8564 
8565 	if (!ops->ndo_sk_get_lower_dev)
8566 		return NULL;
8567 	return ops->ndo_sk_get_lower_dev(dev, sk);
8568 }
8569 
8570 /**
8571  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8572  * @dev: device
8573  * @sk: the socket
8574  *
8575  * %NULL is returned if no lower device is found.
8576  */
8577 
8578 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8579 					    struct sock *sk)
8580 {
8581 	struct net_device *lower;
8582 
8583 	lower = netdev_sk_get_lower_dev(dev, sk);
8584 	while (lower) {
8585 		dev = lower;
8586 		lower = netdev_sk_get_lower_dev(dev, sk);
8587 	}
8588 
8589 	return dev;
8590 }
8591 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8592 
8593 static void netdev_adjacent_add_links(struct net_device *dev)
8594 {
8595 	struct netdev_adjacent *iter;
8596 
8597 	struct net *net = dev_net(dev);
8598 
8599 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8600 		if (!net_eq(net, dev_net(iter->dev)))
8601 			continue;
8602 		netdev_adjacent_sysfs_add(iter->dev, dev,
8603 					  &iter->dev->adj_list.lower);
8604 		netdev_adjacent_sysfs_add(dev, iter->dev,
8605 					  &dev->adj_list.upper);
8606 	}
8607 
8608 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8609 		if (!net_eq(net, dev_net(iter->dev)))
8610 			continue;
8611 		netdev_adjacent_sysfs_add(iter->dev, dev,
8612 					  &iter->dev->adj_list.upper);
8613 		netdev_adjacent_sysfs_add(dev, iter->dev,
8614 					  &dev->adj_list.lower);
8615 	}
8616 }
8617 
8618 static void netdev_adjacent_del_links(struct net_device *dev)
8619 {
8620 	struct netdev_adjacent *iter;
8621 
8622 	struct net *net = dev_net(dev);
8623 
8624 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8625 		if (!net_eq(net, dev_net(iter->dev)))
8626 			continue;
8627 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8628 					  &iter->dev->adj_list.lower);
8629 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8630 					  &dev->adj_list.upper);
8631 	}
8632 
8633 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8634 		if (!net_eq(net, dev_net(iter->dev)))
8635 			continue;
8636 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8637 					  &iter->dev->adj_list.upper);
8638 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8639 					  &dev->adj_list.lower);
8640 	}
8641 }
8642 
8643 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8644 {
8645 	struct netdev_adjacent *iter;
8646 
8647 	struct net *net = dev_net(dev);
8648 
8649 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8650 		if (!net_eq(net, dev_net(iter->dev)))
8651 			continue;
8652 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8653 					  &iter->dev->adj_list.lower);
8654 		netdev_adjacent_sysfs_add(iter->dev, dev,
8655 					  &iter->dev->adj_list.lower);
8656 	}
8657 
8658 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8659 		if (!net_eq(net, dev_net(iter->dev)))
8660 			continue;
8661 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8662 					  &iter->dev->adj_list.upper);
8663 		netdev_adjacent_sysfs_add(iter->dev, dev,
8664 					  &iter->dev->adj_list.upper);
8665 	}
8666 }
8667 
8668 void *netdev_lower_dev_get_private(struct net_device *dev,
8669 				   struct net_device *lower_dev)
8670 {
8671 	struct netdev_adjacent *lower;
8672 
8673 	if (!lower_dev)
8674 		return NULL;
8675 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8676 	if (!lower)
8677 		return NULL;
8678 
8679 	return lower->private;
8680 }
8681 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8682 
8683 
8684 /**
8685  * netdev_lower_state_changed - Dispatch event about lower device state change
8686  * @lower_dev: device
8687  * @lower_state_info: state to dispatch
8688  *
8689  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8690  * The caller must hold the RTNL lock.
8691  */
8692 void netdev_lower_state_changed(struct net_device *lower_dev,
8693 				void *lower_state_info)
8694 {
8695 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8696 		.info.dev = lower_dev,
8697 	};
8698 
8699 	ASSERT_RTNL();
8700 	changelowerstate_info.lower_state_info = lower_state_info;
8701 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8702 				      &changelowerstate_info.info);
8703 }
8704 EXPORT_SYMBOL(netdev_lower_state_changed);
8705 
8706 static void dev_change_rx_flags(struct net_device *dev, int flags)
8707 {
8708 	const struct net_device_ops *ops = dev->netdev_ops;
8709 
8710 	if (ops->ndo_change_rx_flags)
8711 		ops->ndo_change_rx_flags(dev, flags);
8712 }
8713 
8714 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8715 {
8716 	unsigned int old_flags = dev->flags;
8717 	unsigned int promiscuity, flags;
8718 	kuid_t uid;
8719 	kgid_t gid;
8720 
8721 	ASSERT_RTNL();
8722 
8723 	promiscuity = dev->promiscuity + inc;
8724 	if (promiscuity == 0) {
8725 		/*
8726 		 * Avoid overflow.
8727 		 * If inc causes overflow, untouch promisc and return error.
8728 		 */
8729 		if (unlikely(inc > 0)) {
8730 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8731 			return -EOVERFLOW;
8732 		}
8733 		flags = old_flags & ~IFF_PROMISC;
8734 	} else {
8735 		flags = old_flags | IFF_PROMISC;
8736 	}
8737 	WRITE_ONCE(dev->promiscuity, promiscuity);
8738 	if (flags != old_flags) {
8739 		WRITE_ONCE(dev->flags, flags);
8740 		netdev_info(dev, "%s promiscuous mode\n",
8741 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8742 		if (audit_enabled) {
8743 			current_uid_gid(&uid, &gid);
8744 			audit_log(audit_context(), GFP_ATOMIC,
8745 				  AUDIT_ANOM_PROMISCUOUS,
8746 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8747 				  dev->name, (dev->flags & IFF_PROMISC),
8748 				  (old_flags & IFF_PROMISC),
8749 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8750 				  from_kuid(&init_user_ns, uid),
8751 				  from_kgid(&init_user_ns, gid),
8752 				  audit_get_sessionid(current));
8753 		}
8754 
8755 		dev_change_rx_flags(dev, IFF_PROMISC);
8756 	}
8757 	if (notify)
8758 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8759 	return 0;
8760 }
8761 
8762 /**
8763  *	dev_set_promiscuity	- update promiscuity count on a device
8764  *	@dev: device
8765  *	@inc: modifier
8766  *
8767  *	Add or remove promiscuity from a device. While the count in the device
8768  *	remains above zero the interface remains promiscuous. Once it hits zero
8769  *	the device reverts back to normal filtering operation. A negative inc
8770  *	value is used to drop promiscuity on the device.
8771  *	Return 0 if successful or a negative errno code on error.
8772  */
8773 int dev_set_promiscuity(struct net_device *dev, int inc)
8774 {
8775 	unsigned int old_flags = dev->flags;
8776 	int err;
8777 
8778 	err = __dev_set_promiscuity(dev, inc, true);
8779 	if (err < 0)
8780 		return err;
8781 	if (dev->flags != old_flags)
8782 		dev_set_rx_mode(dev);
8783 	return err;
8784 }
8785 EXPORT_SYMBOL(dev_set_promiscuity);
8786 
8787 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8788 {
8789 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8790 	unsigned int allmulti, flags;
8791 
8792 	ASSERT_RTNL();
8793 
8794 	allmulti = dev->allmulti + inc;
8795 	if (allmulti == 0) {
8796 		/*
8797 		 * Avoid overflow.
8798 		 * If inc causes overflow, untouch allmulti and return error.
8799 		 */
8800 		if (unlikely(inc > 0)) {
8801 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8802 			return -EOVERFLOW;
8803 		}
8804 		flags = old_flags & ~IFF_ALLMULTI;
8805 	} else {
8806 		flags = old_flags | IFF_ALLMULTI;
8807 	}
8808 	WRITE_ONCE(dev->allmulti, allmulti);
8809 	if (flags != old_flags) {
8810 		WRITE_ONCE(dev->flags, flags);
8811 		netdev_info(dev, "%s allmulticast mode\n",
8812 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8813 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8814 		dev_set_rx_mode(dev);
8815 		if (notify)
8816 			__dev_notify_flags(dev, old_flags,
8817 					   dev->gflags ^ old_gflags, 0, NULL);
8818 	}
8819 	return 0;
8820 }
8821 
8822 /**
8823  *	dev_set_allmulti	- update allmulti count on a device
8824  *	@dev: device
8825  *	@inc: modifier
8826  *
8827  *	Add or remove reception of all multicast frames to a device. While the
8828  *	count in the device remains above zero the interface remains listening
8829  *	to all interfaces. Once it hits zero the device reverts back to normal
8830  *	filtering operation. A negative @inc value is used to drop the counter
8831  *	when releasing a resource needing all multicasts.
8832  *	Return 0 if successful or a negative errno code on error.
8833  */
8834 
8835 int dev_set_allmulti(struct net_device *dev, int inc)
8836 {
8837 	return __dev_set_allmulti(dev, inc, true);
8838 }
8839 EXPORT_SYMBOL(dev_set_allmulti);
8840 
8841 /*
8842  *	Upload unicast and multicast address lists to device and
8843  *	configure RX filtering. When the device doesn't support unicast
8844  *	filtering it is put in promiscuous mode while unicast addresses
8845  *	are present.
8846  */
8847 void __dev_set_rx_mode(struct net_device *dev)
8848 {
8849 	const struct net_device_ops *ops = dev->netdev_ops;
8850 
8851 	/* dev_open will call this function so the list will stay sane. */
8852 	if (!(dev->flags&IFF_UP))
8853 		return;
8854 
8855 	if (!netif_device_present(dev))
8856 		return;
8857 
8858 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8859 		/* Unicast addresses changes may only happen under the rtnl,
8860 		 * therefore calling __dev_set_promiscuity here is safe.
8861 		 */
8862 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8863 			__dev_set_promiscuity(dev, 1, false);
8864 			dev->uc_promisc = true;
8865 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8866 			__dev_set_promiscuity(dev, -1, false);
8867 			dev->uc_promisc = false;
8868 		}
8869 	}
8870 
8871 	if (ops->ndo_set_rx_mode)
8872 		ops->ndo_set_rx_mode(dev);
8873 }
8874 
8875 void dev_set_rx_mode(struct net_device *dev)
8876 {
8877 	netif_addr_lock_bh(dev);
8878 	__dev_set_rx_mode(dev);
8879 	netif_addr_unlock_bh(dev);
8880 }
8881 
8882 /**
8883  *	dev_get_flags - get flags reported to userspace
8884  *	@dev: device
8885  *
8886  *	Get the combination of flag bits exported through APIs to userspace.
8887  */
8888 unsigned int dev_get_flags(const struct net_device *dev)
8889 {
8890 	unsigned int flags;
8891 
8892 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8893 				IFF_ALLMULTI |
8894 				IFF_RUNNING |
8895 				IFF_LOWER_UP |
8896 				IFF_DORMANT)) |
8897 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8898 				IFF_ALLMULTI));
8899 
8900 	if (netif_running(dev)) {
8901 		if (netif_oper_up(dev))
8902 			flags |= IFF_RUNNING;
8903 		if (netif_carrier_ok(dev))
8904 			flags |= IFF_LOWER_UP;
8905 		if (netif_dormant(dev))
8906 			flags |= IFF_DORMANT;
8907 	}
8908 
8909 	return flags;
8910 }
8911 EXPORT_SYMBOL(dev_get_flags);
8912 
8913 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8914 		       struct netlink_ext_ack *extack)
8915 {
8916 	unsigned int old_flags = dev->flags;
8917 	int ret;
8918 
8919 	ASSERT_RTNL();
8920 
8921 	/*
8922 	 *	Set the flags on our device.
8923 	 */
8924 
8925 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8926 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8927 			       IFF_AUTOMEDIA)) |
8928 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8929 				    IFF_ALLMULTI));
8930 
8931 	/*
8932 	 *	Load in the correct multicast list now the flags have changed.
8933 	 */
8934 
8935 	if ((old_flags ^ flags) & IFF_MULTICAST)
8936 		dev_change_rx_flags(dev, IFF_MULTICAST);
8937 
8938 	dev_set_rx_mode(dev);
8939 
8940 	/*
8941 	 *	Have we downed the interface. We handle IFF_UP ourselves
8942 	 *	according to user attempts to set it, rather than blindly
8943 	 *	setting it.
8944 	 */
8945 
8946 	ret = 0;
8947 	if ((old_flags ^ flags) & IFF_UP) {
8948 		if (old_flags & IFF_UP)
8949 			__dev_close(dev);
8950 		else
8951 			ret = __dev_open(dev, extack);
8952 	}
8953 
8954 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8955 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8956 		unsigned int old_flags = dev->flags;
8957 
8958 		dev->gflags ^= IFF_PROMISC;
8959 
8960 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8961 			if (dev->flags != old_flags)
8962 				dev_set_rx_mode(dev);
8963 	}
8964 
8965 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8966 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8967 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8968 	 */
8969 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8970 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8971 
8972 		dev->gflags ^= IFF_ALLMULTI;
8973 		__dev_set_allmulti(dev, inc, false);
8974 	}
8975 
8976 	return ret;
8977 }
8978 
8979 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8980 			unsigned int gchanges, u32 portid,
8981 			const struct nlmsghdr *nlh)
8982 {
8983 	unsigned int changes = dev->flags ^ old_flags;
8984 
8985 	if (gchanges)
8986 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8987 
8988 	if (changes & IFF_UP) {
8989 		if (dev->flags & IFF_UP)
8990 			call_netdevice_notifiers(NETDEV_UP, dev);
8991 		else
8992 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8993 	}
8994 
8995 	if (dev->flags & IFF_UP &&
8996 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8997 		struct netdev_notifier_change_info change_info = {
8998 			.info = {
8999 				.dev = dev,
9000 			},
9001 			.flags_changed = changes,
9002 		};
9003 
9004 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9005 	}
9006 }
9007 
9008 /**
9009  *	dev_change_flags - change device settings
9010  *	@dev: device
9011  *	@flags: device state flags
9012  *	@extack: netlink extended ack
9013  *
9014  *	Change settings on device based state flags. The flags are
9015  *	in the userspace exported format.
9016  */
9017 int dev_change_flags(struct net_device *dev, unsigned int flags,
9018 		     struct netlink_ext_ack *extack)
9019 {
9020 	int ret;
9021 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9022 
9023 	ret = __dev_change_flags(dev, flags, extack);
9024 	if (ret < 0)
9025 		return ret;
9026 
9027 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9028 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9029 	return ret;
9030 }
9031 EXPORT_SYMBOL(dev_change_flags);
9032 
9033 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9034 {
9035 	const struct net_device_ops *ops = dev->netdev_ops;
9036 
9037 	if (ops->ndo_change_mtu)
9038 		return ops->ndo_change_mtu(dev, new_mtu);
9039 
9040 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9041 	WRITE_ONCE(dev->mtu, new_mtu);
9042 	return 0;
9043 }
9044 EXPORT_SYMBOL(__dev_set_mtu);
9045 
9046 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9047 		     struct netlink_ext_ack *extack)
9048 {
9049 	/* MTU must be positive, and in range */
9050 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9051 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9052 		return -EINVAL;
9053 	}
9054 
9055 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9056 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9057 		return -EINVAL;
9058 	}
9059 	return 0;
9060 }
9061 
9062 /**
9063  *	dev_set_mtu_ext - Change maximum transfer unit
9064  *	@dev: device
9065  *	@new_mtu: new transfer unit
9066  *	@extack: netlink extended ack
9067  *
9068  *	Change the maximum transfer size of the network device.
9069  */
9070 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
9071 		    struct netlink_ext_ack *extack)
9072 {
9073 	int err, orig_mtu;
9074 
9075 	if (new_mtu == dev->mtu)
9076 		return 0;
9077 
9078 	err = dev_validate_mtu(dev, new_mtu, extack);
9079 	if (err)
9080 		return err;
9081 
9082 	if (!netif_device_present(dev))
9083 		return -ENODEV;
9084 
9085 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9086 	err = notifier_to_errno(err);
9087 	if (err)
9088 		return err;
9089 
9090 	orig_mtu = dev->mtu;
9091 	err = __dev_set_mtu(dev, new_mtu);
9092 
9093 	if (!err) {
9094 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9095 						   orig_mtu);
9096 		err = notifier_to_errno(err);
9097 		if (err) {
9098 			/* setting mtu back and notifying everyone again,
9099 			 * so that they have a chance to revert changes.
9100 			 */
9101 			__dev_set_mtu(dev, orig_mtu);
9102 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9103 						     new_mtu);
9104 		}
9105 	}
9106 	return err;
9107 }
9108 
9109 int dev_set_mtu(struct net_device *dev, int new_mtu)
9110 {
9111 	struct netlink_ext_ack extack;
9112 	int err;
9113 
9114 	memset(&extack, 0, sizeof(extack));
9115 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
9116 	if (err && extack._msg)
9117 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9118 	return err;
9119 }
9120 EXPORT_SYMBOL(dev_set_mtu);
9121 
9122 /**
9123  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9124  *	@dev: device
9125  *	@new_len: new tx queue length
9126  */
9127 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9128 {
9129 	unsigned int orig_len = dev->tx_queue_len;
9130 	int res;
9131 
9132 	if (new_len != (unsigned int)new_len)
9133 		return -ERANGE;
9134 
9135 	if (new_len != orig_len) {
9136 		WRITE_ONCE(dev->tx_queue_len, new_len);
9137 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9138 		res = notifier_to_errno(res);
9139 		if (res)
9140 			goto err_rollback;
9141 		res = dev_qdisc_change_tx_queue_len(dev);
9142 		if (res)
9143 			goto err_rollback;
9144 	}
9145 
9146 	return 0;
9147 
9148 err_rollback:
9149 	netdev_err(dev, "refused to change device tx_queue_len\n");
9150 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9151 	return res;
9152 }
9153 
9154 /**
9155  *	dev_set_group - Change group this device belongs to
9156  *	@dev: device
9157  *	@new_group: group this device should belong to
9158  */
9159 void dev_set_group(struct net_device *dev, int new_group)
9160 {
9161 	dev->group = new_group;
9162 }
9163 
9164 /**
9165  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9166  *	@dev: device
9167  *	@addr: new address
9168  *	@extack: netlink extended ack
9169  */
9170 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9171 			      struct netlink_ext_ack *extack)
9172 {
9173 	struct netdev_notifier_pre_changeaddr_info info = {
9174 		.info.dev = dev,
9175 		.info.extack = extack,
9176 		.dev_addr = addr,
9177 	};
9178 	int rc;
9179 
9180 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9181 	return notifier_to_errno(rc);
9182 }
9183 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9184 
9185 /**
9186  *	dev_set_mac_address - Change Media Access Control Address
9187  *	@dev: device
9188  *	@sa: new address
9189  *	@extack: netlink extended ack
9190  *
9191  *	Change the hardware (MAC) address of the device
9192  */
9193 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9194 			struct netlink_ext_ack *extack)
9195 {
9196 	const struct net_device_ops *ops = dev->netdev_ops;
9197 	int err;
9198 
9199 	if (!ops->ndo_set_mac_address)
9200 		return -EOPNOTSUPP;
9201 	if (sa->sa_family != dev->type)
9202 		return -EINVAL;
9203 	if (!netif_device_present(dev))
9204 		return -ENODEV;
9205 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9206 	if (err)
9207 		return err;
9208 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9209 		err = ops->ndo_set_mac_address(dev, sa);
9210 		if (err)
9211 			return err;
9212 	}
9213 	dev->addr_assign_type = NET_ADDR_SET;
9214 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9215 	add_device_randomness(dev->dev_addr, dev->addr_len);
9216 	return 0;
9217 }
9218 EXPORT_SYMBOL(dev_set_mac_address);
9219 
9220 DECLARE_RWSEM(dev_addr_sem);
9221 
9222 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9223 			     struct netlink_ext_ack *extack)
9224 {
9225 	int ret;
9226 
9227 	down_write(&dev_addr_sem);
9228 	ret = dev_set_mac_address(dev, sa, extack);
9229 	up_write(&dev_addr_sem);
9230 	return ret;
9231 }
9232 EXPORT_SYMBOL(dev_set_mac_address_user);
9233 
9234 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9235 {
9236 	size_t size = sizeof(sa->sa_data_min);
9237 	struct net_device *dev;
9238 	int ret = 0;
9239 
9240 	down_read(&dev_addr_sem);
9241 	rcu_read_lock();
9242 
9243 	dev = dev_get_by_name_rcu(net, dev_name);
9244 	if (!dev) {
9245 		ret = -ENODEV;
9246 		goto unlock;
9247 	}
9248 	if (!dev->addr_len)
9249 		memset(sa->sa_data, 0, size);
9250 	else
9251 		memcpy(sa->sa_data, dev->dev_addr,
9252 		       min_t(size_t, size, dev->addr_len));
9253 	sa->sa_family = dev->type;
9254 
9255 unlock:
9256 	rcu_read_unlock();
9257 	up_read(&dev_addr_sem);
9258 	return ret;
9259 }
9260 EXPORT_SYMBOL(dev_get_mac_address);
9261 
9262 /**
9263  *	dev_change_carrier - Change device carrier
9264  *	@dev: device
9265  *	@new_carrier: new value
9266  *
9267  *	Change device carrier
9268  */
9269 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9270 {
9271 	const struct net_device_ops *ops = dev->netdev_ops;
9272 
9273 	if (!ops->ndo_change_carrier)
9274 		return -EOPNOTSUPP;
9275 	if (!netif_device_present(dev))
9276 		return -ENODEV;
9277 	return ops->ndo_change_carrier(dev, new_carrier);
9278 }
9279 
9280 /**
9281  *	dev_get_phys_port_id - Get device physical port ID
9282  *	@dev: device
9283  *	@ppid: port ID
9284  *
9285  *	Get device physical port ID
9286  */
9287 int dev_get_phys_port_id(struct net_device *dev,
9288 			 struct netdev_phys_item_id *ppid)
9289 {
9290 	const struct net_device_ops *ops = dev->netdev_ops;
9291 
9292 	if (!ops->ndo_get_phys_port_id)
9293 		return -EOPNOTSUPP;
9294 	return ops->ndo_get_phys_port_id(dev, ppid);
9295 }
9296 
9297 /**
9298  *	dev_get_phys_port_name - Get device physical port name
9299  *	@dev: device
9300  *	@name: port name
9301  *	@len: limit of bytes to copy to name
9302  *
9303  *	Get device physical port name
9304  */
9305 int dev_get_phys_port_name(struct net_device *dev,
9306 			   char *name, size_t len)
9307 {
9308 	const struct net_device_ops *ops = dev->netdev_ops;
9309 	int err;
9310 
9311 	if (ops->ndo_get_phys_port_name) {
9312 		err = ops->ndo_get_phys_port_name(dev, name, len);
9313 		if (err != -EOPNOTSUPP)
9314 			return err;
9315 	}
9316 	return devlink_compat_phys_port_name_get(dev, name, len);
9317 }
9318 
9319 /**
9320  *	dev_get_port_parent_id - Get the device's port parent identifier
9321  *	@dev: network device
9322  *	@ppid: pointer to a storage for the port's parent identifier
9323  *	@recurse: allow/disallow recursion to lower devices
9324  *
9325  *	Get the devices's port parent identifier
9326  */
9327 int dev_get_port_parent_id(struct net_device *dev,
9328 			   struct netdev_phys_item_id *ppid,
9329 			   bool recurse)
9330 {
9331 	const struct net_device_ops *ops = dev->netdev_ops;
9332 	struct netdev_phys_item_id first = { };
9333 	struct net_device *lower_dev;
9334 	struct list_head *iter;
9335 	int err;
9336 
9337 	if (ops->ndo_get_port_parent_id) {
9338 		err = ops->ndo_get_port_parent_id(dev, ppid);
9339 		if (err != -EOPNOTSUPP)
9340 			return err;
9341 	}
9342 
9343 	err = devlink_compat_switch_id_get(dev, ppid);
9344 	if (!recurse || err != -EOPNOTSUPP)
9345 		return err;
9346 
9347 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9348 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9349 		if (err)
9350 			break;
9351 		if (!first.id_len)
9352 			first = *ppid;
9353 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9354 			return -EOPNOTSUPP;
9355 	}
9356 
9357 	return err;
9358 }
9359 EXPORT_SYMBOL(dev_get_port_parent_id);
9360 
9361 /**
9362  *	netdev_port_same_parent_id - Indicate if two network devices have
9363  *	the same port parent identifier
9364  *	@a: first network device
9365  *	@b: second network device
9366  */
9367 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9368 {
9369 	struct netdev_phys_item_id a_id = { };
9370 	struct netdev_phys_item_id b_id = { };
9371 
9372 	if (dev_get_port_parent_id(a, &a_id, true) ||
9373 	    dev_get_port_parent_id(b, &b_id, true))
9374 		return false;
9375 
9376 	return netdev_phys_item_id_same(&a_id, &b_id);
9377 }
9378 EXPORT_SYMBOL(netdev_port_same_parent_id);
9379 
9380 /**
9381  *	dev_change_proto_down - set carrier according to proto_down.
9382  *
9383  *	@dev: device
9384  *	@proto_down: new value
9385  */
9386 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9387 {
9388 	if (!dev->change_proto_down)
9389 		return -EOPNOTSUPP;
9390 	if (!netif_device_present(dev))
9391 		return -ENODEV;
9392 	if (proto_down)
9393 		netif_carrier_off(dev);
9394 	else
9395 		netif_carrier_on(dev);
9396 	WRITE_ONCE(dev->proto_down, proto_down);
9397 	return 0;
9398 }
9399 
9400 /**
9401  *	dev_change_proto_down_reason - proto down reason
9402  *
9403  *	@dev: device
9404  *	@mask: proto down mask
9405  *	@value: proto down value
9406  */
9407 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9408 				  u32 value)
9409 {
9410 	u32 proto_down_reason;
9411 	int b;
9412 
9413 	if (!mask) {
9414 		proto_down_reason = value;
9415 	} else {
9416 		proto_down_reason = dev->proto_down_reason;
9417 		for_each_set_bit(b, &mask, 32) {
9418 			if (value & (1 << b))
9419 				proto_down_reason |= BIT(b);
9420 			else
9421 				proto_down_reason &= ~BIT(b);
9422 		}
9423 	}
9424 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9425 }
9426 
9427 struct bpf_xdp_link {
9428 	struct bpf_link link;
9429 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9430 	int flags;
9431 };
9432 
9433 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9434 {
9435 	if (flags & XDP_FLAGS_HW_MODE)
9436 		return XDP_MODE_HW;
9437 	if (flags & XDP_FLAGS_DRV_MODE)
9438 		return XDP_MODE_DRV;
9439 	if (flags & XDP_FLAGS_SKB_MODE)
9440 		return XDP_MODE_SKB;
9441 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9442 }
9443 
9444 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9445 {
9446 	switch (mode) {
9447 	case XDP_MODE_SKB:
9448 		return generic_xdp_install;
9449 	case XDP_MODE_DRV:
9450 	case XDP_MODE_HW:
9451 		return dev->netdev_ops->ndo_bpf;
9452 	default:
9453 		return NULL;
9454 	}
9455 }
9456 
9457 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9458 					 enum bpf_xdp_mode mode)
9459 {
9460 	return dev->xdp_state[mode].link;
9461 }
9462 
9463 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9464 				     enum bpf_xdp_mode mode)
9465 {
9466 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9467 
9468 	if (link)
9469 		return link->link.prog;
9470 	return dev->xdp_state[mode].prog;
9471 }
9472 
9473 u8 dev_xdp_prog_count(struct net_device *dev)
9474 {
9475 	u8 count = 0;
9476 	int i;
9477 
9478 	for (i = 0; i < __MAX_XDP_MODE; i++)
9479 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9480 			count++;
9481 	return count;
9482 }
9483 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9484 
9485 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9486 {
9487 	if (!dev->netdev_ops->ndo_bpf)
9488 		return -EOPNOTSUPP;
9489 
9490 	if (dev_get_min_mp_channel_count(dev)) {
9491 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9492 		return -EBUSY;
9493 	}
9494 
9495 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9496 }
9497 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9498 
9499 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9500 {
9501 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9502 
9503 	return prog ? prog->aux->id : 0;
9504 }
9505 
9506 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9507 			     struct bpf_xdp_link *link)
9508 {
9509 	dev->xdp_state[mode].link = link;
9510 	dev->xdp_state[mode].prog = NULL;
9511 }
9512 
9513 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9514 			     struct bpf_prog *prog)
9515 {
9516 	dev->xdp_state[mode].link = NULL;
9517 	dev->xdp_state[mode].prog = prog;
9518 }
9519 
9520 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9521 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9522 			   u32 flags, struct bpf_prog *prog)
9523 {
9524 	struct netdev_bpf xdp;
9525 	int err;
9526 
9527 	if (dev_get_min_mp_channel_count(dev)) {
9528 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9529 		return -EBUSY;
9530 	}
9531 
9532 	memset(&xdp, 0, sizeof(xdp));
9533 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9534 	xdp.extack = extack;
9535 	xdp.flags = flags;
9536 	xdp.prog = prog;
9537 
9538 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9539 	 * "moved" into driver), so they don't increment it on their own, but
9540 	 * they do decrement refcnt when program is detached or replaced.
9541 	 * Given net_device also owns link/prog, we need to bump refcnt here
9542 	 * to prevent drivers from underflowing it.
9543 	 */
9544 	if (prog)
9545 		bpf_prog_inc(prog);
9546 	err = bpf_op(dev, &xdp);
9547 	if (err) {
9548 		if (prog)
9549 			bpf_prog_put(prog);
9550 		return err;
9551 	}
9552 
9553 	if (mode != XDP_MODE_HW)
9554 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9555 
9556 	return 0;
9557 }
9558 
9559 static void dev_xdp_uninstall(struct net_device *dev)
9560 {
9561 	struct bpf_xdp_link *link;
9562 	struct bpf_prog *prog;
9563 	enum bpf_xdp_mode mode;
9564 	bpf_op_t bpf_op;
9565 
9566 	ASSERT_RTNL();
9567 
9568 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9569 		prog = dev_xdp_prog(dev, mode);
9570 		if (!prog)
9571 			continue;
9572 
9573 		bpf_op = dev_xdp_bpf_op(dev, mode);
9574 		if (!bpf_op)
9575 			continue;
9576 
9577 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9578 
9579 		/* auto-detach link from net device */
9580 		link = dev_xdp_link(dev, mode);
9581 		if (link)
9582 			link->dev = NULL;
9583 		else
9584 			bpf_prog_put(prog);
9585 
9586 		dev_xdp_set_link(dev, mode, NULL);
9587 	}
9588 }
9589 
9590 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9591 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9592 			  struct bpf_prog *old_prog, u32 flags)
9593 {
9594 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9595 	struct bpf_prog *cur_prog;
9596 	struct net_device *upper;
9597 	struct list_head *iter;
9598 	enum bpf_xdp_mode mode;
9599 	bpf_op_t bpf_op;
9600 	int err;
9601 
9602 	ASSERT_RTNL();
9603 
9604 	/* either link or prog attachment, never both */
9605 	if (link && (new_prog || old_prog))
9606 		return -EINVAL;
9607 	/* link supports only XDP mode flags */
9608 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9609 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9610 		return -EINVAL;
9611 	}
9612 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9613 	if (num_modes > 1) {
9614 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9615 		return -EINVAL;
9616 	}
9617 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9618 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9619 		NL_SET_ERR_MSG(extack,
9620 			       "More than one program loaded, unset mode is ambiguous");
9621 		return -EINVAL;
9622 	}
9623 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9624 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9625 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9626 		return -EINVAL;
9627 	}
9628 
9629 	mode = dev_xdp_mode(dev, flags);
9630 	/* can't replace attached link */
9631 	if (dev_xdp_link(dev, mode)) {
9632 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9633 		return -EBUSY;
9634 	}
9635 
9636 	/* don't allow if an upper device already has a program */
9637 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9638 		if (dev_xdp_prog_count(upper) > 0) {
9639 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9640 			return -EEXIST;
9641 		}
9642 	}
9643 
9644 	cur_prog = dev_xdp_prog(dev, mode);
9645 	/* can't replace attached prog with link */
9646 	if (link && cur_prog) {
9647 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9648 		return -EBUSY;
9649 	}
9650 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9651 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9652 		return -EEXIST;
9653 	}
9654 
9655 	/* put effective new program into new_prog */
9656 	if (link)
9657 		new_prog = link->link.prog;
9658 
9659 	if (new_prog) {
9660 		bool offload = mode == XDP_MODE_HW;
9661 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9662 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9663 
9664 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9665 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9666 			return -EBUSY;
9667 		}
9668 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9669 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9670 			return -EEXIST;
9671 		}
9672 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9673 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9674 			return -EINVAL;
9675 		}
9676 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9677 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9678 			return -EINVAL;
9679 		}
9680 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9681 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9682 			return -EINVAL;
9683 		}
9684 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9685 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9686 			return -EINVAL;
9687 		}
9688 	}
9689 
9690 	/* don't call drivers if the effective program didn't change */
9691 	if (new_prog != cur_prog) {
9692 		bpf_op = dev_xdp_bpf_op(dev, mode);
9693 		if (!bpf_op) {
9694 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9695 			return -EOPNOTSUPP;
9696 		}
9697 
9698 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9699 		if (err)
9700 			return err;
9701 	}
9702 
9703 	if (link)
9704 		dev_xdp_set_link(dev, mode, link);
9705 	else
9706 		dev_xdp_set_prog(dev, mode, new_prog);
9707 	if (cur_prog)
9708 		bpf_prog_put(cur_prog);
9709 
9710 	return 0;
9711 }
9712 
9713 static int dev_xdp_attach_link(struct net_device *dev,
9714 			       struct netlink_ext_ack *extack,
9715 			       struct bpf_xdp_link *link)
9716 {
9717 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9718 }
9719 
9720 static int dev_xdp_detach_link(struct net_device *dev,
9721 			       struct netlink_ext_ack *extack,
9722 			       struct bpf_xdp_link *link)
9723 {
9724 	enum bpf_xdp_mode mode;
9725 	bpf_op_t bpf_op;
9726 
9727 	ASSERT_RTNL();
9728 
9729 	mode = dev_xdp_mode(dev, link->flags);
9730 	if (dev_xdp_link(dev, mode) != link)
9731 		return -EINVAL;
9732 
9733 	bpf_op = dev_xdp_bpf_op(dev, mode);
9734 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9735 	dev_xdp_set_link(dev, mode, NULL);
9736 	return 0;
9737 }
9738 
9739 static void bpf_xdp_link_release(struct bpf_link *link)
9740 {
9741 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9742 
9743 	rtnl_lock();
9744 
9745 	/* if racing with net_device's tear down, xdp_link->dev might be
9746 	 * already NULL, in which case link was already auto-detached
9747 	 */
9748 	if (xdp_link->dev) {
9749 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9750 		xdp_link->dev = NULL;
9751 	}
9752 
9753 	rtnl_unlock();
9754 }
9755 
9756 static int bpf_xdp_link_detach(struct bpf_link *link)
9757 {
9758 	bpf_xdp_link_release(link);
9759 	return 0;
9760 }
9761 
9762 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9763 {
9764 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9765 
9766 	kfree(xdp_link);
9767 }
9768 
9769 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9770 				     struct seq_file *seq)
9771 {
9772 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9773 	u32 ifindex = 0;
9774 
9775 	rtnl_lock();
9776 	if (xdp_link->dev)
9777 		ifindex = xdp_link->dev->ifindex;
9778 	rtnl_unlock();
9779 
9780 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9781 }
9782 
9783 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9784 				       struct bpf_link_info *info)
9785 {
9786 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9787 	u32 ifindex = 0;
9788 
9789 	rtnl_lock();
9790 	if (xdp_link->dev)
9791 		ifindex = xdp_link->dev->ifindex;
9792 	rtnl_unlock();
9793 
9794 	info->xdp.ifindex = ifindex;
9795 	return 0;
9796 }
9797 
9798 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9799 			       struct bpf_prog *old_prog)
9800 {
9801 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9802 	enum bpf_xdp_mode mode;
9803 	bpf_op_t bpf_op;
9804 	int err = 0;
9805 
9806 	rtnl_lock();
9807 
9808 	/* link might have been auto-released already, so fail */
9809 	if (!xdp_link->dev) {
9810 		err = -ENOLINK;
9811 		goto out_unlock;
9812 	}
9813 
9814 	if (old_prog && link->prog != old_prog) {
9815 		err = -EPERM;
9816 		goto out_unlock;
9817 	}
9818 	old_prog = link->prog;
9819 	if (old_prog->type != new_prog->type ||
9820 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9821 		err = -EINVAL;
9822 		goto out_unlock;
9823 	}
9824 
9825 	if (old_prog == new_prog) {
9826 		/* no-op, don't disturb drivers */
9827 		bpf_prog_put(new_prog);
9828 		goto out_unlock;
9829 	}
9830 
9831 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9832 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9833 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9834 			      xdp_link->flags, new_prog);
9835 	if (err)
9836 		goto out_unlock;
9837 
9838 	old_prog = xchg(&link->prog, new_prog);
9839 	bpf_prog_put(old_prog);
9840 
9841 out_unlock:
9842 	rtnl_unlock();
9843 	return err;
9844 }
9845 
9846 static const struct bpf_link_ops bpf_xdp_link_lops = {
9847 	.release = bpf_xdp_link_release,
9848 	.dealloc = bpf_xdp_link_dealloc,
9849 	.detach = bpf_xdp_link_detach,
9850 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9851 	.fill_link_info = bpf_xdp_link_fill_link_info,
9852 	.update_prog = bpf_xdp_link_update,
9853 };
9854 
9855 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9856 {
9857 	struct net *net = current->nsproxy->net_ns;
9858 	struct bpf_link_primer link_primer;
9859 	struct netlink_ext_ack extack = {};
9860 	struct bpf_xdp_link *link;
9861 	struct net_device *dev;
9862 	int err, fd;
9863 
9864 	rtnl_lock();
9865 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9866 	if (!dev) {
9867 		rtnl_unlock();
9868 		return -EINVAL;
9869 	}
9870 
9871 	link = kzalloc(sizeof(*link), GFP_USER);
9872 	if (!link) {
9873 		err = -ENOMEM;
9874 		goto unlock;
9875 	}
9876 
9877 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9878 	link->dev = dev;
9879 	link->flags = attr->link_create.flags;
9880 
9881 	err = bpf_link_prime(&link->link, &link_primer);
9882 	if (err) {
9883 		kfree(link);
9884 		goto unlock;
9885 	}
9886 
9887 	err = dev_xdp_attach_link(dev, &extack, link);
9888 	rtnl_unlock();
9889 
9890 	if (err) {
9891 		link->dev = NULL;
9892 		bpf_link_cleanup(&link_primer);
9893 		trace_bpf_xdp_link_attach_failed(extack._msg);
9894 		goto out_put_dev;
9895 	}
9896 
9897 	fd = bpf_link_settle(&link_primer);
9898 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9899 	dev_put(dev);
9900 	return fd;
9901 
9902 unlock:
9903 	rtnl_unlock();
9904 
9905 out_put_dev:
9906 	dev_put(dev);
9907 	return err;
9908 }
9909 
9910 /**
9911  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9912  *	@dev: device
9913  *	@extack: netlink extended ack
9914  *	@fd: new program fd or negative value to clear
9915  *	@expected_fd: old program fd that userspace expects to replace or clear
9916  *	@flags: xdp-related flags
9917  *
9918  *	Set or clear a bpf program for a device
9919  */
9920 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9921 		      int fd, int expected_fd, u32 flags)
9922 {
9923 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9924 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9925 	int err;
9926 
9927 	ASSERT_RTNL();
9928 
9929 	if (fd >= 0) {
9930 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9931 						 mode != XDP_MODE_SKB);
9932 		if (IS_ERR(new_prog))
9933 			return PTR_ERR(new_prog);
9934 	}
9935 
9936 	if (expected_fd >= 0) {
9937 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9938 						 mode != XDP_MODE_SKB);
9939 		if (IS_ERR(old_prog)) {
9940 			err = PTR_ERR(old_prog);
9941 			old_prog = NULL;
9942 			goto err_out;
9943 		}
9944 	}
9945 
9946 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9947 
9948 err_out:
9949 	if (err && new_prog)
9950 		bpf_prog_put(new_prog);
9951 	if (old_prog)
9952 		bpf_prog_put(old_prog);
9953 	return err;
9954 }
9955 
9956 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
9957 {
9958 	int i;
9959 
9960 	ASSERT_RTNL();
9961 
9962 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
9963 		if (dev->_rx[i].mp_params.mp_priv)
9964 			/* The channel count is the idx plus 1. */
9965 			return i + 1;
9966 
9967 	return 0;
9968 }
9969 
9970 /**
9971  * dev_index_reserve() - allocate an ifindex in a namespace
9972  * @net: the applicable net namespace
9973  * @ifindex: requested ifindex, pass %0 to get one allocated
9974  *
9975  * Allocate a ifindex for a new device. Caller must either use the ifindex
9976  * to store the device (via list_netdevice()) or call dev_index_release()
9977  * to give the index up.
9978  *
9979  * Return: a suitable unique value for a new device interface number or -errno.
9980  */
9981 static int dev_index_reserve(struct net *net, u32 ifindex)
9982 {
9983 	int err;
9984 
9985 	if (ifindex > INT_MAX) {
9986 		DEBUG_NET_WARN_ON_ONCE(1);
9987 		return -EINVAL;
9988 	}
9989 
9990 	if (!ifindex)
9991 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9992 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9993 	else
9994 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9995 	if (err < 0)
9996 		return err;
9997 
9998 	return ifindex;
9999 }
10000 
10001 static void dev_index_release(struct net *net, int ifindex)
10002 {
10003 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10004 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10005 }
10006 
10007 /* Delayed registration/unregisteration */
10008 LIST_HEAD(net_todo_list);
10009 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10010 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10011 
10012 static void net_set_todo(struct net_device *dev)
10013 {
10014 	list_add_tail(&dev->todo_list, &net_todo_list);
10015 }
10016 
10017 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10018 	struct net_device *upper, netdev_features_t features)
10019 {
10020 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10021 	netdev_features_t feature;
10022 	int feature_bit;
10023 
10024 	for_each_netdev_feature(upper_disables, feature_bit) {
10025 		feature = __NETIF_F_BIT(feature_bit);
10026 		if (!(upper->wanted_features & feature)
10027 		    && (features & feature)) {
10028 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10029 				   &feature, upper->name);
10030 			features &= ~feature;
10031 		}
10032 	}
10033 
10034 	return features;
10035 }
10036 
10037 static void netdev_sync_lower_features(struct net_device *upper,
10038 	struct net_device *lower, netdev_features_t features)
10039 {
10040 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10041 	netdev_features_t feature;
10042 	int feature_bit;
10043 
10044 	for_each_netdev_feature(upper_disables, feature_bit) {
10045 		feature = __NETIF_F_BIT(feature_bit);
10046 		if (!(features & feature) && (lower->features & feature)) {
10047 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10048 				   &feature, lower->name);
10049 			lower->wanted_features &= ~feature;
10050 			__netdev_update_features(lower);
10051 
10052 			if (unlikely(lower->features & feature))
10053 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10054 					    &feature, lower->name);
10055 			else
10056 				netdev_features_change(lower);
10057 		}
10058 	}
10059 }
10060 
10061 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10062 {
10063 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10064 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10065 	bool hw_csum = features & NETIF_F_HW_CSUM;
10066 
10067 	return ip_csum || hw_csum;
10068 }
10069 
10070 static netdev_features_t netdev_fix_features(struct net_device *dev,
10071 	netdev_features_t features)
10072 {
10073 	/* Fix illegal checksum combinations */
10074 	if ((features & NETIF_F_HW_CSUM) &&
10075 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10076 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10077 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10078 	}
10079 
10080 	/* TSO requires that SG is present as well. */
10081 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10082 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10083 		features &= ~NETIF_F_ALL_TSO;
10084 	}
10085 
10086 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10087 					!(features & NETIF_F_IP_CSUM)) {
10088 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10089 		features &= ~NETIF_F_TSO;
10090 		features &= ~NETIF_F_TSO_ECN;
10091 	}
10092 
10093 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10094 					 !(features & NETIF_F_IPV6_CSUM)) {
10095 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10096 		features &= ~NETIF_F_TSO6;
10097 	}
10098 
10099 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10100 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10101 		features &= ~NETIF_F_TSO_MANGLEID;
10102 
10103 	/* TSO ECN requires that TSO is present as well. */
10104 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10105 		features &= ~NETIF_F_TSO_ECN;
10106 
10107 	/* Software GSO depends on SG. */
10108 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10109 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10110 		features &= ~NETIF_F_GSO;
10111 	}
10112 
10113 	/* GSO partial features require GSO partial be set */
10114 	if ((features & dev->gso_partial_features) &&
10115 	    !(features & NETIF_F_GSO_PARTIAL)) {
10116 		netdev_dbg(dev,
10117 			   "Dropping partially supported GSO features since no GSO partial.\n");
10118 		features &= ~dev->gso_partial_features;
10119 	}
10120 
10121 	if (!(features & NETIF_F_RXCSUM)) {
10122 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10123 		 * successfully merged by hardware must also have the
10124 		 * checksum verified by hardware.  If the user does not
10125 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10126 		 */
10127 		if (features & NETIF_F_GRO_HW) {
10128 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10129 			features &= ~NETIF_F_GRO_HW;
10130 		}
10131 	}
10132 
10133 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10134 	if (features & NETIF_F_RXFCS) {
10135 		if (features & NETIF_F_LRO) {
10136 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10137 			features &= ~NETIF_F_LRO;
10138 		}
10139 
10140 		if (features & NETIF_F_GRO_HW) {
10141 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10142 			features &= ~NETIF_F_GRO_HW;
10143 		}
10144 	}
10145 
10146 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10147 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10148 		features &= ~NETIF_F_LRO;
10149 	}
10150 
10151 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10152 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10153 		features &= ~NETIF_F_HW_TLS_TX;
10154 	}
10155 
10156 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10157 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10158 		features &= ~NETIF_F_HW_TLS_RX;
10159 	}
10160 
10161 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10162 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10163 		features &= ~NETIF_F_GSO_UDP_L4;
10164 	}
10165 
10166 	return features;
10167 }
10168 
10169 int __netdev_update_features(struct net_device *dev)
10170 {
10171 	struct net_device *upper, *lower;
10172 	netdev_features_t features;
10173 	struct list_head *iter;
10174 	int err = -1;
10175 
10176 	ASSERT_RTNL();
10177 
10178 	features = netdev_get_wanted_features(dev);
10179 
10180 	if (dev->netdev_ops->ndo_fix_features)
10181 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10182 
10183 	/* driver might be less strict about feature dependencies */
10184 	features = netdev_fix_features(dev, features);
10185 
10186 	/* some features can't be enabled if they're off on an upper device */
10187 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10188 		features = netdev_sync_upper_features(dev, upper, features);
10189 
10190 	if (dev->features == features)
10191 		goto sync_lower;
10192 
10193 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10194 		&dev->features, &features);
10195 
10196 	if (dev->netdev_ops->ndo_set_features)
10197 		err = dev->netdev_ops->ndo_set_features(dev, features);
10198 	else
10199 		err = 0;
10200 
10201 	if (unlikely(err < 0)) {
10202 		netdev_err(dev,
10203 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10204 			err, &features, &dev->features);
10205 		/* return non-0 since some features might have changed and
10206 		 * it's better to fire a spurious notification than miss it
10207 		 */
10208 		return -1;
10209 	}
10210 
10211 sync_lower:
10212 	/* some features must be disabled on lower devices when disabled
10213 	 * on an upper device (think: bonding master or bridge)
10214 	 */
10215 	netdev_for_each_lower_dev(dev, lower, iter)
10216 		netdev_sync_lower_features(dev, lower, features);
10217 
10218 	if (!err) {
10219 		netdev_features_t diff = features ^ dev->features;
10220 
10221 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10222 			/* udp_tunnel_{get,drop}_rx_info both need
10223 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10224 			 * device, or they won't do anything.
10225 			 * Thus we need to update dev->features
10226 			 * *before* calling udp_tunnel_get_rx_info,
10227 			 * but *after* calling udp_tunnel_drop_rx_info.
10228 			 */
10229 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10230 				dev->features = features;
10231 				udp_tunnel_get_rx_info(dev);
10232 			} else {
10233 				udp_tunnel_drop_rx_info(dev);
10234 			}
10235 		}
10236 
10237 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10238 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10239 				dev->features = features;
10240 				err |= vlan_get_rx_ctag_filter_info(dev);
10241 			} else {
10242 				vlan_drop_rx_ctag_filter_info(dev);
10243 			}
10244 		}
10245 
10246 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10247 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10248 				dev->features = features;
10249 				err |= vlan_get_rx_stag_filter_info(dev);
10250 			} else {
10251 				vlan_drop_rx_stag_filter_info(dev);
10252 			}
10253 		}
10254 
10255 		dev->features = features;
10256 	}
10257 
10258 	return err < 0 ? 0 : 1;
10259 }
10260 
10261 /**
10262  *	netdev_update_features - recalculate device features
10263  *	@dev: the device to check
10264  *
10265  *	Recalculate dev->features set and send notifications if it
10266  *	has changed. Should be called after driver or hardware dependent
10267  *	conditions might have changed that influence the features.
10268  */
10269 void netdev_update_features(struct net_device *dev)
10270 {
10271 	if (__netdev_update_features(dev))
10272 		netdev_features_change(dev);
10273 }
10274 EXPORT_SYMBOL(netdev_update_features);
10275 
10276 /**
10277  *	netdev_change_features - recalculate device features
10278  *	@dev: the device to check
10279  *
10280  *	Recalculate dev->features set and send notifications even
10281  *	if they have not changed. Should be called instead of
10282  *	netdev_update_features() if also dev->vlan_features might
10283  *	have changed to allow the changes to be propagated to stacked
10284  *	VLAN devices.
10285  */
10286 void netdev_change_features(struct net_device *dev)
10287 {
10288 	__netdev_update_features(dev);
10289 	netdev_features_change(dev);
10290 }
10291 EXPORT_SYMBOL(netdev_change_features);
10292 
10293 /**
10294  *	netif_stacked_transfer_operstate -	transfer operstate
10295  *	@rootdev: the root or lower level device to transfer state from
10296  *	@dev: the device to transfer operstate to
10297  *
10298  *	Transfer operational state from root to device. This is normally
10299  *	called when a stacking relationship exists between the root
10300  *	device and the device(a leaf device).
10301  */
10302 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10303 					struct net_device *dev)
10304 {
10305 	if (rootdev->operstate == IF_OPER_DORMANT)
10306 		netif_dormant_on(dev);
10307 	else
10308 		netif_dormant_off(dev);
10309 
10310 	if (rootdev->operstate == IF_OPER_TESTING)
10311 		netif_testing_on(dev);
10312 	else
10313 		netif_testing_off(dev);
10314 
10315 	if (netif_carrier_ok(rootdev))
10316 		netif_carrier_on(dev);
10317 	else
10318 		netif_carrier_off(dev);
10319 }
10320 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10321 
10322 static int netif_alloc_rx_queues(struct net_device *dev)
10323 {
10324 	unsigned int i, count = dev->num_rx_queues;
10325 	struct netdev_rx_queue *rx;
10326 	size_t sz = count * sizeof(*rx);
10327 	int err = 0;
10328 
10329 	BUG_ON(count < 1);
10330 
10331 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10332 	if (!rx)
10333 		return -ENOMEM;
10334 
10335 	dev->_rx = rx;
10336 
10337 	for (i = 0; i < count; i++) {
10338 		rx[i].dev = dev;
10339 
10340 		/* XDP RX-queue setup */
10341 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10342 		if (err < 0)
10343 			goto err_rxq_info;
10344 	}
10345 	return 0;
10346 
10347 err_rxq_info:
10348 	/* Rollback successful reg's and free other resources */
10349 	while (i--)
10350 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10351 	kvfree(dev->_rx);
10352 	dev->_rx = NULL;
10353 	return err;
10354 }
10355 
10356 static void netif_free_rx_queues(struct net_device *dev)
10357 {
10358 	unsigned int i, count = dev->num_rx_queues;
10359 
10360 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10361 	if (!dev->_rx)
10362 		return;
10363 
10364 	for (i = 0; i < count; i++)
10365 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10366 
10367 	kvfree(dev->_rx);
10368 }
10369 
10370 static void netdev_init_one_queue(struct net_device *dev,
10371 				  struct netdev_queue *queue, void *_unused)
10372 {
10373 	/* Initialize queue lock */
10374 	spin_lock_init(&queue->_xmit_lock);
10375 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10376 	queue->xmit_lock_owner = -1;
10377 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10378 	queue->dev = dev;
10379 #ifdef CONFIG_BQL
10380 	dql_init(&queue->dql, HZ);
10381 #endif
10382 }
10383 
10384 static void netif_free_tx_queues(struct net_device *dev)
10385 {
10386 	kvfree(dev->_tx);
10387 }
10388 
10389 static int netif_alloc_netdev_queues(struct net_device *dev)
10390 {
10391 	unsigned int count = dev->num_tx_queues;
10392 	struct netdev_queue *tx;
10393 	size_t sz = count * sizeof(*tx);
10394 
10395 	if (count < 1 || count > 0xffff)
10396 		return -EINVAL;
10397 
10398 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10399 	if (!tx)
10400 		return -ENOMEM;
10401 
10402 	dev->_tx = tx;
10403 
10404 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10405 	spin_lock_init(&dev->tx_global_lock);
10406 
10407 	return 0;
10408 }
10409 
10410 void netif_tx_stop_all_queues(struct net_device *dev)
10411 {
10412 	unsigned int i;
10413 
10414 	for (i = 0; i < dev->num_tx_queues; i++) {
10415 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10416 
10417 		netif_tx_stop_queue(txq);
10418 	}
10419 }
10420 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10421 
10422 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10423 {
10424 	void __percpu *v;
10425 
10426 	/* Drivers implementing ndo_get_peer_dev must support tstat
10427 	 * accounting, so that skb_do_redirect() can bump the dev's
10428 	 * RX stats upon network namespace switch.
10429 	 */
10430 	if (dev->netdev_ops->ndo_get_peer_dev &&
10431 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10432 		return -EOPNOTSUPP;
10433 
10434 	switch (dev->pcpu_stat_type) {
10435 	case NETDEV_PCPU_STAT_NONE:
10436 		return 0;
10437 	case NETDEV_PCPU_STAT_LSTATS:
10438 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10439 		break;
10440 	case NETDEV_PCPU_STAT_TSTATS:
10441 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10442 		break;
10443 	case NETDEV_PCPU_STAT_DSTATS:
10444 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10445 		break;
10446 	default:
10447 		return -EINVAL;
10448 	}
10449 
10450 	return v ? 0 : -ENOMEM;
10451 }
10452 
10453 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10454 {
10455 	switch (dev->pcpu_stat_type) {
10456 	case NETDEV_PCPU_STAT_NONE:
10457 		return;
10458 	case NETDEV_PCPU_STAT_LSTATS:
10459 		free_percpu(dev->lstats);
10460 		break;
10461 	case NETDEV_PCPU_STAT_TSTATS:
10462 		free_percpu(dev->tstats);
10463 		break;
10464 	case NETDEV_PCPU_STAT_DSTATS:
10465 		free_percpu(dev->dstats);
10466 		break;
10467 	}
10468 }
10469 
10470 static void netdev_free_phy_link_topology(struct net_device *dev)
10471 {
10472 	struct phy_link_topology *topo = dev->link_topo;
10473 
10474 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10475 		xa_destroy(&topo->phys);
10476 		kfree(topo);
10477 		dev->link_topo = NULL;
10478 	}
10479 }
10480 
10481 /**
10482  * register_netdevice() - register a network device
10483  * @dev: device to register
10484  *
10485  * Take a prepared network device structure and make it externally accessible.
10486  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10487  * Callers must hold the rtnl lock - you may want register_netdev()
10488  * instead of this.
10489  */
10490 int register_netdevice(struct net_device *dev)
10491 {
10492 	int ret;
10493 	struct net *net = dev_net(dev);
10494 
10495 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10496 		     NETDEV_FEATURE_COUNT);
10497 	BUG_ON(dev_boot_phase);
10498 	ASSERT_RTNL();
10499 
10500 	might_sleep();
10501 
10502 	/* When net_device's are persistent, this will be fatal. */
10503 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10504 	BUG_ON(!net);
10505 
10506 	ret = ethtool_check_ops(dev->ethtool_ops);
10507 	if (ret)
10508 		return ret;
10509 
10510 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10511 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10512 	mutex_init(&dev->ethtool->rss_lock);
10513 
10514 	spin_lock_init(&dev->addr_list_lock);
10515 	netdev_set_addr_lockdep_class(dev);
10516 
10517 	ret = dev_get_valid_name(net, dev, dev->name);
10518 	if (ret < 0)
10519 		goto out;
10520 
10521 	ret = -ENOMEM;
10522 	dev->name_node = netdev_name_node_head_alloc(dev);
10523 	if (!dev->name_node)
10524 		goto out;
10525 
10526 	/* Init, if this function is available */
10527 	if (dev->netdev_ops->ndo_init) {
10528 		ret = dev->netdev_ops->ndo_init(dev);
10529 		if (ret) {
10530 			if (ret > 0)
10531 				ret = -EIO;
10532 			goto err_free_name;
10533 		}
10534 	}
10535 
10536 	if (((dev->hw_features | dev->features) &
10537 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10538 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10539 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10540 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10541 		ret = -EINVAL;
10542 		goto err_uninit;
10543 	}
10544 
10545 	ret = netdev_do_alloc_pcpu_stats(dev);
10546 	if (ret)
10547 		goto err_uninit;
10548 
10549 	ret = dev_index_reserve(net, dev->ifindex);
10550 	if (ret < 0)
10551 		goto err_free_pcpu;
10552 	dev->ifindex = ret;
10553 
10554 	/* Transfer changeable features to wanted_features and enable
10555 	 * software offloads (GSO and GRO).
10556 	 */
10557 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10558 	dev->features |= NETIF_F_SOFT_FEATURES;
10559 
10560 	if (dev->udp_tunnel_nic_info) {
10561 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10562 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10563 	}
10564 
10565 	dev->wanted_features = dev->features & dev->hw_features;
10566 
10567 	if (!(dev->flags & IFF_LOOPBACK))
10568 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10569 
10570 	/* If IPv4 TCP segmentation offload is supported we should also
10571 	 * allow the device to enable segmenting the frame with the option
10572 	 * of ignoring a static IP ID value.  This doesn't enable the
10573 	 * feature itself but allows the user to enable it later.
10574 	 */
10575 	if (dev->hw_features & NETIF_F_TSO)
10576 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10577 	if (dev->vlan_features & NETIF_F_TSO)
10578 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10579 	if (dev->mpls_features & NETIF_F_TSO)
10580 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10581 	if (dev->hw_enc_features & NETIF_F_TSO)
10582 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10583 
10584 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10585 	 */
10586 	dev->vlan_features |= NETIF_F_HIGHDMA;
10587 
10588 	/* Make NETIF_F_SG inheritable to tunnel devices.
10589 	 */
10590 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10591 
10592 	/* Make NETIF_F_SG inheritable to MPLS.
10593 	 */
10594 	dev->mpls_features |= NETIF_F_SG;
10595 
10596 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10597 	ret = notifier_to_errno(ret);
10598 	if (ret)
10599 		goto err_ifindex_release;
10600 
10601 	ret = netdev_register_kobject(dev);
10602 
10603 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10604 
10605 	if (ret)
10606 		goto err_uninit_notify;
10607 
10608 	__netdev_update_features(dev);
10609 
10610 	/*
10611 	 *	Default initial state at registry is that the
10612 	 *	device is present.
10613 	 */
10614 
10615 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10616 
10617 	linkwatch_init_dev(dev);
10618 
10619 	dev_init_scheduler(dev);
10620 
10621 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10622 	list_netdevice(dev);
10623 
10624 	add_device_randomness(dev->dev_addr, dev->addr_len);
10625 
10626 	/* If the device has permanent device address, driver should
10627 	 * set dev_addr and also addr_assign_type should be set to
10628 	 * NET_ADDR_PERM (default value).
10629 	 */
10630 	if (dev->addr_assign_type == NET_ADDR_PERM)
10631 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10632 
10633 	/* Notify protocols, that a new device appeared. */
10634 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10635 	ret = notifier_to_errno(ret);
10636 	if (ret) {
10637 		/* Expect explicit free_netdev() on failure */
10638 		dev->needs_free_netdev = false;
10639 		unregister_netdevice_queue(dev, NULL);
10640 		goto out;
10641 	}
10642 	/*
10643 	 *	Prevent userspace races by waiting until the network
10644 	 *	device is fully setup before sending notifications.
10645 	 */
10646 	if (!dev->rtnl_link_ops ||
10647 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10648 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10649 
10650 out:
10651 	return ret;
10652 
10653 err_uninit_notify:
10654 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10655 err_ifindex_release:
10656 	dev_index_release(net, dev->ifindex);
10657 err_free_pcpu:
10658 	netdev_do_free_pcpu_stats(dev);
10659 err_uninit:
10660 	if (dev->netdev_ops->ndo_uninit)
10661 		dev->netdev_ops->ndo_uninit(dev);
10662 	if (dev->priv_destructor)
10663 		dev->priv_destructor(dev);
10664 err_free_name:
10665 	netdev_name_node_free(dev->name_node);
10666 	goto out;
10667 }
10668 EXPORT_SYMBOL(register_netdevice);
10669 
10670 /* Initialize the core of a dummy net device.
10671  * This is useful if you are calling this function after alloc_netdev(),
10672  * since it does not memset the net_device fields.
10673  */
10674 static void init_dummy_netdev_core(struct net_device *dev)
10675 {
10676 	/* make sure we BUG if trying to hit standard
10677 	 * register/unregister code path
10678 	 */
10679 	dev->reg_state = NETREG_DUMMY;
10680 
10681 	/* NAPI wants this */
10682 	INIT_LIST_HEAD(&dev->napi_list);
10683 
10684 	/* a dummy interface is started by default */
10685 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10686 	set_bit(__LINK_STATE_START, &dev->state);
10687 
10688 	/* napi_busy_loop stats accounting wants this */
10689 	dev_net_set(dev, &init_net);
10690 
10691 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10692 	 * because users of this 'device' dont need to change
10693 	 * its refcount.
10694 	 */
10695 }
10696 
10697 /**
10698  *	init_dummy_netdev	- init a dummy network device for NAPI
10699  *	@dev: device to init
10700  *
10701  *	This takes a network device structure and initializes the minimum
10702  *	amount of fields so it can be used to schedule NAPI polls without
10703  *	registering a full blown interface. This is to be used by drivers
10704  *	that need to tie several hardware interfaces to a single NAPI
10705  *	poll scheduler due to HW limitations.
10706  */
10707 void init_dummy_netdev(struct net_device *dev)
10708 {
10709 	/* Clear everything. Note we don't initialize spinlocks
10710 	 * as they aren't supposed to be taken by any of the
10711 	 * NAPI code and this dummy netdev is supposed to be
10712 	 * only ever used for NAPI polls
10713 	 */
10714 	memset(dev, 0, sizeof(struct net_device));
10715 	init_dummy_netdev_core(dev);
10716 }
10717 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10718 
10719 /**
10720  *	register_netdev	- register a network device
10721  *	@dev: device to register
10722  *
10723  *	Take a completed network device structure and add it to the kernel
10724  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10725  *	chain. 0 is returned on success. A negative errno code is returned
10726  *	on a failure to set up the device, or if the name is a duplicate.
10727  *
10728  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10729  *	and expands the device name if you passed a format string to
10730  *	alloc_netdev.
10731  */
10732 int register_netdev(struct net_device *dev)
10733 {
10734 	int err;
10735 
10736 	if (rtnl_lock_killable())
10737 		return -EINTR;
10738 	err = register_netdevice(dev);
10739 	rtnl_unlock();
10740 	return err;
10741 }
10742 EXPORT_SYMBOL(register_netdev);
10743 
10744 int netdev_refcnt_read(const struct net_device *dev)
10745 {
10746 #ifdef CONFIG_PCPU_DEV_REFCNT
10747 	int i, refcnt = 0;
10748 
10749 	for_each_possible_cpu(i)
10750 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10751 	return refcnt;
10752 #else
10753 	return refcount_read(&dev->dev_refcnt);
10754 #endif
10755 }
10756 EXPORT_SYMBOL(netdev_refcnt_read);
10757 
10758 int netdev_unregister_timeout_secs __read_mostly = 10;
10759 
10760 #define WAIT_REFS_MIN_MSECS 1
10761 #define WAIT_REFS_MAX_MSECS 250
10762 /**
10763  * netdev_wait_allrefs_any - wait until all references are gone.
10764  * @list: list of net_devices to wait on
10765  *
10766  * This is called when unregistering network devices.
10767  *
10768  * Any protocol or device that holds a reference should register
10769  * for netdevice notification, and cleanup and put back the
10770  * reference if they receive an UNREGISTER event.
10771  * We can get stuck here if buggy protocols don't correctly
10772  * call dev_put.
10773  */
10774 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10775 {
10776 	unsigned long rebroadcast_time, warning_time;
10777 	struct net_device *dev;
10778 	int wait = 0;
10779 
10780 	rebroadcast_time = warning_time = jiffies;
10781 
10782 	list_for_each_entry(dev, list, todo_list)
10783 		if (netdev_refcnt_read(dev) == 1)
10784 			return dev;
10785 
10786 	while (true) {
10787 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10788 			rtnl_lock();
10789 
10790 			/* Rebroadcast unregister notification */
10791 			list_for_each_entry(dev, list, todo_list)
10792 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10793 
10794 			__rtnl_unlock();
10795 			rcu_barrier();
10796 			rtnl_lock();
10797 
10798 			list_for_each_entry(dev, list, todo_list)
10799 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10800 					     &dev->state)) {
10801 					/* We must not have linkwatch events
10802 					 * pending on unregister. If this
10803 					 * happens, we simply run the queue
10804 					 * unscheduled, resulting in a noop
10805 					 * for this device.
10806 					 */
10807 					linkwatch_run_queue();
10808 					break;
10809 				}
10810 
10811 			__rtnl_unlock();
10812 
10813 			rebroadcast_time = jiffies;
10814 		}
10815 
10816 		rcu_barrier();
10817 
10818 		if (!wait) {
10819 			wait = WAIT_REFS_MIN_MSECS;
10820 		} else {
10821 			msleep(wait);
10822 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10823 		}
10824 
10825 		list_for_each_entry(dev, list, todo_list)
10826 			if (netdev_refcnt_read(dev) == 1)
10827 				return dev;
10828 
10829 		if (time_after(jiffies, warning_time +
10830 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10831 			list_for_each_entry(dev, list, todo_list) {
10832 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10833 					 dev->name, netdev_refcnt_read(dev));
10834 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10835 			}
10836 
10837 			warning_time = jiffies;
10838 		}
10839 	}
10840 }
10841 
10842 /* The sequence is:
10843  *
10844  *	rtnl_lock();
10845  *	...
10846  *	register_netdevice(x1);
10847  *	register_netdevice(x2);
10848  *	...
10849  *	unregister_netdevice(y1);
10850  *	unregister_netdevice(y2);
10851  *      ...
10852  *	rtnl_unlock();
10853  *	free_netdev(y1);
10854  *	free_netdev(y2);
10855  *
10856  * We are invoked by rtnl_unlock().
10857  * This allows us to deal with problems:
10858  * 1) We can delete sysfs objects which invoke hotplug
10859  *    without deadlocking with linkwatch via keventd.
10860  * 2) Since we run with the RTNL semaphore not held, we can sleep
10861  *    safely in order to wait for the netdev refcnt to drop to zero.
10862  *
10863  * We must not return until all unregister events added during
10864  * the interval the lock was held have been completed.
10865  */
10866 void netdev_run_todo(void)
10867 {
10868 	struct net_device *dev, *tmp;
10869 	struct list_head list;
10870 	int cnt;
10871 #ifdef CONFIG_LOCKDEP
10872 	struct list_head unlink_list;
10873 
10874 	list_replace_init(&net_unlink_list, &unlink_list);
10875 
10876 	while (!list_empty(&unlink_list)) {
10877 		struct net_device *dev = list_first_entry(&unlink_list,
10878 							  struct net_device,
10879 							  unlink_list);
10880 		list_del_init(&dev->unlink_list);
10881 		dev->nested_level = dev->lower_level - 1;
10882 	}
10883 #endif
10884 
10885 	/* Snapshot list, allow later requests */
10886 	list_replace_init(&net_todo_list, &list);
10887 
10888 	__rtnl_unlock();
10889 
10890 	/* Wait for rcu callbacks to finish before next phase */
10891 	if (!list_empty(&list))
10892 		rcu_barrier();
10893 
10894 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10895 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10896 			netdev_WARN(dev, "run_todo but not unregistering\n");
10897 			list_del(&dev->todo_list);
10898 			continue;
10899 		}
10900 
10901 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10902 		linkwatch_sync_dev(dev);
10903 	}
10904 
10905 	cnt = 0;
10906 	while (!list_empty(&list)) {
10907 		dev = netdev_wait_allrefs_any(&list);
10908 		list_del(&dev->todo_list);
10909 
10910 		/* paranoia */
10911 		BUG_ON(netdev_refcnt_read(dev) != 1);
10912 		BUG_ON(!list_empty(&dev->ptype_all));
10913 		BUG_ON(!list_empty(&dev->ptype_specific));
10914 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10915 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10916 
10917 		netdev_do_free_pcpu_stats(dev);
10918 		if (dev->priv_destructor)
10919 			dev->priv_destructor(dev);
10920 		if (dev->needs_free_netdev)
10921 			free_netdev(dev);
10922 
10923 		cnt++;
10924 
10925 		/* Free network device */
10926 		kobject_put(&dev->dev.kobj);
10927 	}
10928 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10929 		wake_up(&netdev_unregistering_wq);
10930 }
10931 
10932 /* Collate per-cpu network dstats statistics
10933  *
10934  * Read per-cpu network statistics from dev->dstats and populate the related
10935  * fields in @s.
10936  */
10937 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10938 			     const struct pcpu_dstats __percpu *dstats)
10939 {
10940 	int cpu;
10941 
10942 	for_each_possible_cpu(cpu) {
10943 		u64 rx_packets, rx_bytes, rx_drops;
10944 		u64 tx_packets, tx_bytes, tx_drops;
10945 		const struct pcpu_dstats *stats;
10946 		unsigned int start;
10947 
10948 		stats = per_cpu_ptr(dstats, cpu);
10949 		do {
10950 			start = u64_stats_fetch_begin(&stats->syncp);
10951 			rx_packets = u64_stats_read(&stats->rx_packets);
10952 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10953 			rx_drops   = u64_stats_read(&stats->rx_drops);
10954 			tx_packets = u64_stats_read(&stats->tx_packets);
10955 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10956 			tx_drops   = u64_stats_read(&stats->tx_drops);
10957 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10958 
10959 		s->rx_packets += rx_packets;
10960 		s->rx_bytes   += rx_bytes;
10961 		s->rx_dropped += rx_drops;
10962 		s->tx_packets += tx_packets;
10963 		s->tx_bytes   += tx_bytes;
10964 		s->tx_dropped += tx_drops;
10965 	}
10966 }
10967 
10968 /* ndo_get_stats64 implementation for dtstats-based accounting.
10969  *
10970  * Populate @s from dev->stats and dev->dstats. This is used internally by the
10971  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10972  */
10973 static void dev_get_dstats64(const struct net_device *dev,
10974 			     struct rtnl_link_stats64 *s)
10975 {
10976 	netdev_stats_to_stats64(s, &dev->stats);
10977 	dev_fetch_dstats(s, dev->dstats);
10978 }
10979 
10980 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10981  * all the same fields in the same order as net_device_stats, with only
10982  * the type differing, but rtnl_link_stats64 may have additional fields
10983  * at the end for newer counters.
10984  */
10985 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10986 			     const struct net_device_stats *netdev_stats)
10987 {
10988 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10989 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10990 	u64 *dst = (u64 *)stats64;
10991 
10992 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10993 	for (i = 0; i < n; i++)
10994 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10995 	/* zero out counters that only exist in rtnl_link_stats64 */
10996 	memset((char *)stats64 + n * sizeof(u64), 0,
10997 	       sizeof(*stats64) - n * sizeof(u64));
10998 }
10999 EXPORT_SYMBOL(netdev_stats_to_stats64);
11000 
11001 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11002 		struct net_device *dev)
11003 {
11004 	struct net_device_core_stats __percpu *p;
11005 
11006 	p = alloc_percpu_gfp(struct net_device_core_stats,
11007 			     GFP_ATOMIC | __GFP_NOWARN);
11008 
11009 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11010 		free_percpu(p);
11011 
11012 	/* This READ_ONCE() pairs with the cmpxchg() above */
11013 	return READ_ONCE(dev->core_stats);
11014 }
11015 
11016 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11017 {
11018 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11019 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11020 	unsigned long __percpu *field;
11021 
11022 	if (unlikely(!p)) {
11023 		p = netdev_core_stats_alloc(dev);
11024 		if (!p)
11025 			return;
11026 	}
11027 
11028 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11029 	this_cpu_inc(*field);
11030 }
11031 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11032 
11033 /**
11034  *	dev_get_stats	- get network device statistics
11035  *	@dev: device to get statistics from
11036  *	@storage: place to store stats
11037  *
11038  *	Get network statistics from device. Return @storage.
11039  *	The device driver may provide its own method by setting
11040  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11041  *	otherwise the internal statistics structure is used.
11042  */
11043 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11044 					struct rtnl_link_stats64 *storage)
11045 {
11046 	const struct net_device_ops *ops = dev->netdev_ops;
11047 	const struct net_device_core_stats __percpu *p;
11048 
11049 	if (ops->ndo_get_stats64) {
11050 		memset(storage, 0, sizeof(*storage));
11051 		ops->ndo_get_stats64(dev, storage);
11052 	} else if (ops->ndo_get_stats) {
11053 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11054 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11055 		dev_get_tstats64(dev, storage);
11056 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11057 		dev_get_dstats64(dev, storage);
11058 	} else {
11059 		netdev_stats_to_stats64(storage, &dev->stats);
11060 	}
11061 
11062 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11063 	p = READ_ONCE(dev->core_stats);
11064 	if (p) {
11065 		const struct net_device_core_stats *core_stats;
11066 		int i;
11067 
11068 		for_each_possible_cpu(i) {
11069 			core_stats = per_cpu_ptr(p, i);
11070 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11071 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11072 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11073 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11074 		}
11075 	}
11076 	return storage;
11077 }
11078 EXPORT_SYMBOL(dev_get_stats);
11079 
11080 /**
11081  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11082  *	@s: place to store stats
11083  *	@netstats: per-cpu network stats to read from
11084  *
11085  *	Read per-cpu network statistics and populate the related fields in @s.
11086  */
11087 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11088 			   const struct pcpu_sw_netstats __percpu *netstats)
11089 {
11090 	int cpu;
11091 
11092 	for_each_possible_cpu(cpu) {
11093 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11094 		const struct pcpu_sw_netstats *stats;
11095 		unsigned int start;
11096 
11097 		stats = per_cpu_ptr(netstats, cpu);
11098 		do {
11099 			start = u64_stats_fetch_begin(&stats->syncp);
11100 			rx_packets = u64_stats_read(&stats->rx_packets);
11101 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11102 			tx_packets = u64_stats_read(&stats->tx_packets);
11103 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11104 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11105 
11106 		s->rx_packets += rx_packets;
11107 		s->rx_bytes   += rx_bytes;
11108 		s->tx_packets += tx_packets;
11109 		s->tx_bytes   += tx_bytes;
11110 	}
11111 }
11112 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11113 
11114 /**
11115  *	dev_get_tstats64 - ndo_get_stats64 implementation
11116  *	@dev: device to get statistics from
11117  *	@s: place to store stats
11118  *
11119  *	Populate @s from dev->stats and dev->tstats. Can be used as
11120  *	ndo_get_stats64() callback.
11121  */
11122 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11123 {
11124 	netdev_stats_to_stats64(s, &dev->stats);
11125 	dev_fetch_sw_netstats(s, dev->tstats);
11126 }
11127 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11128 
11129 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11130 {
11131 	struct netdev_queue *queue = dev_ingress_queue(dev);
11132 
11133 #ifdef CONFIG_NET_CLS_ACT
11134 	if (queue)
11135 		return queue;
11136 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11137 	if (!queue)
11138 		return NULL;
11139 	netdev_init_one_queue(dev, queue, NULL);
11140 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11141 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11142 	rcu_assign_pointer(dev->ingress_queue, queue);
11143 #endif
11144 	return queue;
11145 }
11146 
11147 static const struct ethtool_ops default_ethtool_ops;
11148 
11149 void netdev_set_default_ethtool_ops(struct net_device *dev,
11150 				    const struct ethtool_ops *ops)
11151 {
11152 	if (dev->ethtool_ops == &default_ethtool_ops)
11153 		dev->ethtool_ops = ops;
11154 }
11155 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11156 
11157 /**
11158  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11159  * @dev: netdev to enable the IRQ coalescing on
11160  *
11161  * Sets a conservative default for SW IRQ coalescing. Users can use
11162  * sysfs attributes to override the default values.
11163  */
11164 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11165 {
11166 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11167 
11168 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11169 		netdev_set_gro_flush_timeout(dev, 20000);
11170 		netdev_set_defer_hard_irqs(dev, 1);
11171 	}
11172 }
11173 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11174 
11175 /**
11176  * alloc_netdev_mqs - allocate network device
11177  * @sizeof_priv: size of private data to allocate space for
11178  * @name: device name format string
11179  * @name_assign_type: origin of device name
11180  * @setup: callback to initialize device
11181  * @txqs: the number of TX subqueues to allocate
11182  * @rxqs: the number of RX subqueues to allocate
11183  *
11184  * Allocates a struct net_device with private data area for driver use
11185  * and performs basic initialization.  Also allocates subqueue structs
11186  * for each queue on the device.
11187  */
11188 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11189 		unsigned char name_assign_type,
11190 		void (*setup)(struct net_device *),
11191 		unsigned int txqs, unsigned int rxqs)
11192 {
11193 	struct net_device *dev;
11194 	size_t napi_config_sz;
11195 	unsigned int maxqs;
11196 
11197 	BUG_ON(strlen(name) >= sizeof(dev->name));
11198 
11199 	if (txqs < 1) {
11200 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11201 		return NULL;
11202 	}
11203 
11204 	if (rxqs < 1) {
11205 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11206 		return NULL;
11207 	}
11208 
11209 	maxqs = max(txqs, rxqs);
11210 
11211 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11212 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11213 	if (!dev)
11214 		return NULL;
11215 
11216 	dev->priv_len = sizeof_priv;
11217 
11218 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11219 #ifdef CONFIG_PCPU_DEV_REFCNT
11220 	dev->pcpu_refcnt = alloc_percpu(int);
11221 	if (!dev->pcpu_refcnt)
11222 		goto free_dev;
11223 	__dev_hold(dev);
11224 #else
11225 	refcount_set(&dev->dev_refcnt, 1);
11226 #endif
11227 
11228 	if (dev_addr_init(dev))
11229 		goto free_pcpu;
11230 
11231 	dev_mc_init(dev);
11232 	dev_uc_init(dev);
11233 
11234 	dev_net_set(dev, &init_net);
11235 
11236 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11237 	dev->xdp_zc_max_segs = 1;
11238 	dev->gso_max_segs = GSO_MAX_SEGS;
11239 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11240 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11241 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11242 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11243 	dev->tso_max_segs = TSO_MAX_SEGS;
11244 	dev->upper_level = 1;
11245 	dev->lower_level = 1;
11246 #ifdef CONFIG_LOCKDEP
11247 	dev->nested_level = 0;
11248 	INIT_LIST_HEAD(&dev->unlink_list);
11249 #endif
11250 
11251 	INIT_LIST_HEAD(&dev->napi_list);
11252 	INIT_LIST_HEAD(&dev->unreg_list);
11253 	INIT_LIST_HEAD(&dev->close_list);
11254 	INIT_LIST_HEAD(&dev->link_watch_list);
11255 	INIT_LIST_HEAD(&dev->adj_list.upper);
11256 	INIT_LIST_HEAD(&dev->adj_list.lower);
11257 	INIT_LIST_HEAD(&dev->ptype_all);
11258 	INIT_LIST_HEAD(&dev->ptype_specific);
11259 	INIT_LIST_HEAD(&dev->net_notifier_list);
11260 #ifdef CONFIG_NET_SCHED
11261 	hash_init(dev->qdisc_hash);
11262 #endif
11263 
11264 	mutex_init(&dev->lock);
11265 
11266 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11267 	setup(dev);
11268 
11269 	if (!dev->tx_queue_len) {
11270 		dev->priv_flags |= IFF_NO_QUEUE;
11271 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11272 	}
11273 
11274 	dev->num_tx_queues = txqs;
11275 	dev->real_num_tx_queues = txqs;
11276 	if (netif_alloc_netdev_queues(dev))
11277 		goto free_all;
11278 
11279 	dev->num_rx_queues = rxqs;
11280 	dev->real_num_rx_queues = rxqs;
11281 	if (netif_alloc_rx_queues(dev))
11282 		goto free_all;
11283 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11284 	if (!dev->ethtool)
11285 		goto free_all;
11286 
11287 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11288 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11289 	if (!dev->napi_config)
11290 		goto free_all;
11291 
11292 	strscpy(dev->name, name);
11293 	dev->name_assign_type = name_assign_type;
11294 	dev->group = INIT_NETDEV_GROUP;
11295 	if (!dev->ethtool_ops)
11296 		dev->ethtool_ops = &default_ethtool_ops;
11297 
11298 	nf_hook_netdev_init(dev);
11299 
11300 	return dev;
11301 
11302 free_all:
11303 	free_netdev(dev);
11304 	return NULL;
11305 
11306 free_pcpu:
11307 #ifdef CONFIG_PCPU_DEV_REFCNT
11308 	free_percpu(dev->pcpu_refcnt);
11309 free_dev:
11310 #endif
11311 	kvfree(dev);
11312 	return NULL;
11313 }
11314 EXPORT_SYMBOL(alloc_netdev_mqs);
11315 
11316 /**
11317  * free_netdev - free network device
11318  * @dev: device
11319  *
11320  * This function does the last stage of destroying an allocated device
11321  * interface. The reference to the device object is released. If this
11322  * is the last reference then it will be freed.Must be called in process
11323  * context.
11324  */
11325 void free_netdev(struct net_device *dev)
11326 {
11327 	struct napi_struct *p, *n;
11328 
11329 	might_sleep();
11330 
11331 	/* When called immediately after register_netdevice() failed the unwind
11332 	 * handling may still be dismantling the device. Handle that case by
11333 	 * deferring the free.
11334 	 */
11335 	if (dev->reg_state == NETREG_UNREGISTERING) {
11336 		ASSERT_RTNL();
11337 		dev->needs_free_netdev = true;
11338 		return;
11339 	}
11340 
11341 	mutex_destroy(&dev->lock);
11342 
11343 	kfree(dev->ethtool);
11344 	netif_free_tx_queues(dev);
11345 	netif_free_rx_queues(dev);
11346 
11347 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11348 
11349 	/* Flush device addresses */
11350 	dev_addr_flush(dev);
11351 
11352 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11353 		netif_napi_del(p);
11354 
11355 	kvfree(dev->napi_config);
11356 
11357 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11358 #ifdef CONFIG_PCPU_DEV_REFCNT
11359 	free_percpu(dev->pcpu_refcnt);
11360 	dev->pcpu_refcnt = NULL;
11361 #endif
11362 	free_percpu(dev->core_stats);
11363 	dev->core_stats = NULL;
11364 	free_percpu(dev->xdp_bulkq);
11365 	dev->xdp_bulkq = NULL;
11366 
11367 	netdev_free_phy_link_topology(dev);
11368 
11369 	/*  Compatibility with error handling in drivers */
11370 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11371 	    dev->reg_state == NETREG_DUMMY) {
11372 		kvfree(dev);
11373 		return;
11374 	}
11375 
11376 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11377 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11378 
11379 	/* will free via device release */
11380 	put_device(&dev->dev);
11381 }
11382 EXPORT_SYMBOL(free_netdev);
11383 
11384 /**
11385  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11386  * @sizeof_priv: size of private data to allocate space for
11387  *
11388  * Return: the allocated net_device on success, NULL otherwise
11389  */
11390 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11391 {
11392 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11393 			    init_dummy_netdev_core);
11394 }
11395 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11396 
11397 /**
11398  *	synchronize_net -  Synchronize with packet receive processing
11399  *
11400  *	Wait for packets currently being received to be done.
11401  *	Does not block later packets from starting.
11402  */
11403 void synchronize_net(void)
11404 {
11405 	might_sleep();
11406 	if (rtnl_is_locked())
11407 		synchronize_rcu_expedited();
11408 	else
11409 		synchronize_rcu();
11410 }
11411 EXPORT_SYMBOL(synchronize_net);
11412 
11413 static void netdev_rss_contexts_free(struct net_device *dev)
11414 {
11415 	struct ethtool_rxfh_context *ctx;
11416 	unsigned long context;
11417 
11418 	mutex_lock(&dev->ethtool->rss_lock);
11419 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11420 		struct ethtool_rxfh_param rxfh;
11421 
11422 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11423 		rxfh.key = ethtool_rxfh_context_key(ctx);
11424 		rxfh.hfunc = ctx->hfunc;
11425 		rxfh.input_xfrm = ctx->input_xfrm;
11426 		rxfh.rss_context = context;
11427 		rxfh.rss_delete = true;
11428 
11429 		xa_erase(&dev->ethtool->rss_ctx, context);
11430 		if (dev->ethtool_ops->create_rxfh_context)
11431 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11432 							      context, NULL);
11433 		else
11434 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11435 		kfree(ctx);
11436 	}
11437 	xa_destroy(&dev->ethtool->rss_ctx);
11438 	mutex_unlock(&dev->ethtool->rss_lock);
11439 }
11440 
11441 /**
11442  *	unregister_netdevice_queue - remove device from the kernel
11443  *	@dev: device
11444  *	@head: list
11445  *
11446  *	This function shuts down a device interface and removes it
11447  *	from the kernel tables.
11448  *	If head not NULL, device is queued to be unregistered later.
11449  *
11450  *	Callers must hold the rtnl semaphore.  You may want
11451  *	unregister_netdev() instead of this.
11452  */
11453 
11454 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11455 {
11456 	ASSERT_RTNL();
11457 
11458 	if (head) {
11459 		list_move_tail(&dev->unreg_list, head);
11460 	} else {
11461 		LIST_HEAD(single);
11462 
11463 		list_add(&dev->unreg_list, &single);
11464 		unregister_netdevice_many(&single);
11465 	}
11466 }
11467 EXPORT_SYMBOL(unregister_netdevice_queue);
11468 
11469 void unregister_netdevice_many_notify(struct list_head *head,
11470 				      u32 portid, const struct nlmsghdr *nlh)
11471 {
11472 	struct net_device *dev, *tmp;
11473 	LIST_HEAD(close_head);
11474 	int cnt = 0;
11475 
11476 	BUG_ON(dev_boot_phase);
11477 	ASSERT_RTNL();
11478 
11479 	if (list_empty(head))
11480 		return;
11481 
11482 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11483 		/* Some devices call without registering
11484 		 * for initialization unwind. Remove those
11485 		 * devices and proceed with the remaining.
11486 		 */
11487 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11488 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11489 				 dev->name, dev);
11490 
11491 			WARN_ON(1);
11492 			list_del(&dev->unreg_list);
11493 			continue;
11494 		}
11495 		dev->dismantle = true;
11496 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11497 	}
11498 
11499 	/* If device is running, close it first. */
11500 	list_for_each_entry(dev, head, unreg_list)
11501 		list_add_tail(&dev->close_list, &close_head);
11502 	dev_close_many(&close_head, true);
11503 
11504 	list_for_each_entry(dev, head, unreg_list) {
11505 		/* And unlink it from device chain. */
11506 		unlist_netdevice(dev);
11507 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11508 	}
11509 	flush_all_backlogs();
11510 
11511 	synchronize_net();
11512 
11513 	list_for_each_entry(dev, head, unreg_list) {
11514 		struct sk_buff *skb = NULL;
11515 
11516 		/* Shutdown queueing discipline. */
11517 		dev_shutdown(dev);
11518 		dev_tcx_uninstall(dev);
11519 		dev_xdp_uninstall(dev);
11520 		bpf_dev_bound_netdev_unregister(dev);
11521 		dev_dmabuf_uninstall(dev);
11522 
11523 		netdev_offload_xstats_disable_all(dev);
11524 
11525 		/* Notify protocols, that we are about to destroy
11526 		 * this device. They should clean all the things.
11527 		 */
11528 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11529 
11530 		if (!dev->rtnl_link_ops ||
11531 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11532 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11533 						     GFP_KERNEL, NULL, 0,
11534 						     portid, nlh);
11535 
11536 		/*
11537 		 *	Flush the unicast and multicast chains
11538 		 */
11539 		dev_uc_flush(dev);
11540 		dev_mc_flush(dev);
11541 
11542 		netdev_name_node_alt_flush(dev);
11543 		netdev_name_node_free(dev->name_node);
11544 
11545 		netdev_rss_contexts_free(dev);
11546 
11547 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11548 
11549 		if (dev->netdev_ops->ndo_uninit)
11550 			dev->netdev_ops->ndo_uninit(dev);
11551 
11552 		mutex_destroy(&dev->ethtool->rss_lock);
11553 
11554 		net_shaper_flush_netdev(dev);
11555 
11556 		if (skb)
11557 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11558 
11559 		/* Notifier chain MUST detach us all upper devices. */
11560 		WARN_ON(netdev_has_any_upper_dev(dev));
11561 		WARN_ON(netdev_has_any_lower_dev(dev));
11562 
11563 		/* Remove entries from kobject tree */
11564 		netdev_unregister_kobject(dev);
11565 #ifdef CONFIG_XPS
11566 		/* Remove XPS queueing entries */
11567 		netif_reset_xps_queues_gt(dev, 0);
11568 #endif
11569 	}
11570 
11571 	synchronize_net();
11572 
11573 	list_for_each_entry(dev, head, unreg_list) {
11574 		netdev_put(dev, &dev->dev_registered_tracker);
11575 		net_set_todo(dev);
11576 		cnt++;
11577 	}
11578 	atomic_add(cnt, &dev_unreg_count);
11579 
11580 	list_del(head);
11581 }
11582 
11583 /**
11584  *	unregister_netdevice_many - unregister many devices
11585  *	@head: list of devices
11586  *
11587  *  Note: As most callers use a stack allocated list_head,
11588  *  we force a list_del() to make sure stack won't be corrupted later.
11589  */
11590 void unregister_netdevice_many(struct list_head *head)
11591 {
11592 	unregister_netdevice_many_notify(head, 0, NULL);
11593 }
11594 EXPORT_SYMBOL(unregister_netdevice_many);
11595 
11596 /**
11597  *	unregister_netdev - remove device from the kernel
11598  *	@dev: device
11599  *
11600  *	This function shuts down a device interface and removes it
11601  *	from the kernel tables.
11602  *
11603  *	This is just a wrapper for unregister_netdevice that takes
11604  *	the rtnl semaphore.  In general you want to use this and not
11605  *	unregister_netdevice.
11606  */
11607 void unregister_netdev(struct net_device *dev)
11608 {
11609 	rtnl_lock();
11610 	unregister_netdevice(dev);
11611 	rtnl_unlock();
11612 }
11613 EXPORT_SYMBOL(unregister_netdev);
11614 
11615 /**
11616  *	__dev_change_net_namespace - move device to different nethost namespace
11617  *	@dev: device
11618  *	@net: network namespace
11619  *	@pat: If not NULL name pattern to try if the current device name
11620  *	      is already taken in the destination network namespace.
11621  *	@new_ifindex: If not zero, specifies device index in the target
11622  *	              namespace.
11623  *
11624  *	This function shuts down a device interface and moves it
11625  *	to a new network namespace. On success 0 is returned, on
11626  *	a failure a netagive errno code is returned.
11627  *
11628  *	Callers must hold the rtnl semaphore.
11629  */
11630 
11631 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11632 			       const char *pat, int new_ifindex)
11633 {
11634 	struct netdev_name_node *name_node;
11635 	struct net *net_old = dev_net(dev);
11636 	char new_name[IFNAMSIZ] = {};
11637 	int err, new_nsid;
11638 
11639 	ASSERT_RTNL();
11640 
11641 	/* Don't allow namespace local devices to be moved. */
11642 	err = -EINVAL;
11643 	if (dev->netns_local)
11644 		goto out;
11645 
11646 	/* Ensure the device has been registered */
11647 	if (dev->reg_state != NETREG_REGISTERED)
11648 		goto out;
11649 
11650 	/* Get out if there is nothing todo */
11651 	err = 0;
11652 	if (net_eq(net_old, net))
11653 		goto out;
11654 
11655 	/* Pick the destination device name, and ensure
11656 	 * we can use it in the destination network namespace.
11657 	 */
11658 	err = -EEXIST;
11659 	if (netdev_name_in_use(net, dev->name)) {
11660 		/* We get here if we can't use the current device name */
11661 		if (!pat)
11662 			goto out;
11663 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11664 		if (err < 0)
11665 			goto out;
11666 	}
11667 	/* Check that none of the altnames conflicts. */
11668 	err = -EEXIST;
11669 	netdev_for_each_altname(dev, name_node)
11670 		if (netdev_name_in_use(net, name_node->name))
11671 			goto out;
11672 
11673 	/* Check that new_ifindex isn't used yet. */
11674 	if (new_ifindex) {
11675 		err = dev_index_reserve(net, new_ifindex);
11676 		if (err < 0)
11677 			goto out;
11678 	} else {
11679 		/* If there is an ifindex conflict assign a new one */
11680 		err = dev_index_reserve(net, dev->ifindex);
11681 		if (err == -EBUSY)
11682 			err = dev_index_reserve(net, 0);
11683 		if (err < 0)
11684 			goto out;
11685 		new_ifindex = err;
11686 	}
11687 
11688 	/*
11689 	 * And now a mini version of register_netdevice unregister_netdevice.
11690 	 */
11691 
11692 	/* If device is running close it first. */
11693 	dev_close(dev);
11694 
11695 	/* And unlink it from device chain */
11696 	unlist_netdevice(dev);
11697 
11698 	synchronize_net();
11699 
11700 	/* Shutdown queueing discipline. */
11701 	dev_shutdown(dev);
11702 
11703 	/* Notify protocols, that we are about to destroy
11704 	 * this device. They should clean all the things.
11705 	 *
11706 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11707 	 * This is wanted because this way 8021q and macvlan know
11708 	 * the device is just moving and can keep their slaves up.
11709 	 */
11710 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11711 	rcu_barrier();
11712 
11713 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11714 
11715 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11716 			    new_ifindex);
11717 
11718 	/*
11719 	 *	Flush the unicast and multicast chains
11720 	 */
11721 	dev_uc_flush(dev);
11722 	dev_mc_flush(dev);
11723 
11724 	/* Send a netdev-removed uevent to the old namespace */
11725 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11726 	netdev_adjacent_del_links(dev);
11727 
11728 	/* Move per-net netdevice notifiers that are following the netdevice */
11729 	move_netdevice_notifiers_dev_net(dev, net);
11730 
11731 	/* Actually switch the network namespace */
11732 	dev_net_set(dev, net);
11733 	dev->ifindex = new_ifindex;
11734 
11735 	if (new_name[0]) {
11736 		/* Rename the netdev to prepared name */
11737 		write_seqlock_bh(&netdev_rename_lock);
11738 		strscpy(dev->name, new_name, IFNAMSIZ);
11739 		write_sequnlock_bh(&netdev_rename_lock);
11740 	}
11741 
11742 	/* Fixup kobjects */
11743 	dev_set_uevent_suppress(&dev->dev, 1);
11744 	err = device_rename(&dev->dev, dev->name);
11745 	dev_set_uevent_suppress(&dev->dev, 0);
11746 	WARN_ON(err);
11747 
11748 	/* Send a netdev-add uevent to the new namespace */
11749 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11750 	netdev_adjacent_add_links(dev);
11751 
11752 	/* Adapt owner in case owning user namespace of target network
11753 	 * namespace is different from the original one.
11754 	 */
11755 	err = netdev_change_owner(dev, net_old, net);
11756 	WARN_ON(err);
11757 
11758 	/* Add the device back in the hashes */
11759 	list_netdevice(dev);
11760 
11761 	/* Notify protocols, that a new device appeared. */
11762 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11763 
11764 	/*
11765 	 *	Prevent userspace races by waiting until the network
11766 	 *	device is fully setup before sending notifications.
11767 	 */
11768 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11769 
11770 	synchronize_net();
11771 	err = 0;
11772 out:
11773 	return err;
11774 }
11775 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11776 
11777 static int dev_cpu_dead(unsigned int oldcpu)
11778 {
11779 	struct sk_buff **list_skb;
11780 	struct sk_buff *skb;
11781 	unsigned int cpu;
11782 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11783 
11784 	local_irq_disable();
11785 	cpu = smp_processor_id();
11786 	sd = &per_cpu(softnet_data, cpu);
11787 	oldsd = &per_cpu(softnet_data, oldcpu);
11788 
11789 	/* Find end of our completion_queue. */
11790 	list_skb = &sd->completion_queue;
11791 	while (*list_skb)
11792 		list_skb = &(*list_skb)->next;
11793 	/* Append completion queue from offline CPU. */
11794 	*list_skb = oldsd->completion_queue;
11795 	oldsd->completion_queue = NULL;
11796 
11797 	/* Append output queue from offline CPU. */
11798 	if (oldsd->output_queue) {
11799 		*sd->output_queue_tailp = oldsd->output_queue;
11800 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11801 		oldsd->output_queue = NULL;
11802 		oldsd->output_queue_tailp = &oldsd->output_queue;
11803 	}
11804 	/* Append NAPI poll list from offline CPU, with one exception :
11805 	 * process_backlog() must be called by cpu owning percpu backlog.
11806 	 * We properly handle process_queue & input_pkt_queue later.
11807 	 */
11808 	while (!list_empty(&oldsd->poll_list)) {
11809 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11810 							    struct napi_struct,
11811 							    poll_list);
11812 
11813 		list_del_init(&napi->poll_list);
11814 		if (napi->poll == process_backlog)
11815 			napi->state &= NAPIF_STATE_THREADED;
11816 		else
11817 			____napi_schedule(sd, napi);
11818 	}
11819 
11820 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11821 	local_irq_enable();
11822 
11823 	if (!use_backlog_threads()) {
11824 #ifdef CONFIG_RPS
11825 		remsd = oldsd->rps_ipi_list;
11826 		oldsd->rps_ipi_list = NULL;
11827 #endif
11828 		/* send out pending IPI's on offline CPU */
11829 		net_rps_send_ipi(remsd);
11830 	}
11831 
11832 	/* Process offline CPU's input_pkt_queue */
11833 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11834 		netif_rx(skb);
11835 		rps_input_queue_head_incr(oldsd);
11836 	}
11837 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11838 		netif_rx(skb);
11839 		rps_input_queue_head_incr(oldsd);
11840 	}
11841 
11842 	return 0;
11843 }
11844 
11845 /**
11846  *	netdev_increment_features - increment feature set by one
11847  *	@all: current feature set
11848  *	@one: new feature set
11849  *	@mask: mask feature set
11850  *
11851  *	Computes a new feature set after adding a device with feature set
11852  *	@one to the master device with current feature set @all.  Will not
11853  *	enable anything that is off in @mask. Returns the new feature set.
11854  */
11855 netdev_features_t netdev_increment_features(netdev_features_t all,
11856 	netdev_features_t one, netdev_features_t mask)
11857 {
11858 	if (mask & NETIF_F_HW_CSUM)
11859 		mask |= NETIF_F_CSUM_MASK;
11860 	mask |= NETIF_F_VLAN_CHALLENGED;
11861 
11862 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11863 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11864 
11865 	/* If one device supports hw checksumming, set for all. */
11866 	if (all & NETIF_F_HW_CSUM)
11867 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11868 
11869 	return all;
11870 }
11871 EXPORT_SYMBOL(netdev_increment_features);
11872 
11873 static struct hlist_head * __net_init netdev_create_hash(void)
11874 {
11875 	int i;
11876 	struct hlist_head *hash;
11877 
11878 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11879 	if (hash != NULL)
11880 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11881 			INIT_HLIST_HEAD(&hash[i]);
11882 
11883 	return hash;
11884 }
11885 
11886 /* Initialize per network namespace state */
11887 static int __net_init netdev_init(struct net *net)
11888 {
11889 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11890 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11891 
11892 	INIT_LIST_HEAD(&net->dev_base_head);
11893 
11894 	net->dev_name_head = netdev_create_hash();
11895 	if (net->dev_name_head == NULL)
11896 		goto err_name;
11897 
11898 	net->dev_index_head = netdev_create_hash();
11899 	if (net->dev_index_head == NULL)
11900 		goto err_idx;
11901 
11902 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11903 
11904 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11905 
11906 	return 0;
11907 
11908 err_idx:
11909 	kfree(net->dev_name_head);
11910 err_name:
11911 	return -ENOMEM;
11912 }
11913 
11914 /**
11915  *	netdev_drivername - network driver for the device
11916  *	@dev: network device
11917  *
11918  *	Determine network driver for device.
11919  */
11920 const char *netdev_drivername(const struct net_device *dev)
11921 {
11922 	const struct device_driver *driver;
11923 	const struct device *parent;
11924 	const char *empty = "";
11925 
11926 	parent = dev->dev.parent;
11927 	if (!parent)
11928 		return empty;
11929 
11930 	driver = parent->driver;
11931 	if (driver && driver->name)
11932 		return driver->name;
11933 	return empty;
11934 }
11935 
11936 static void __netdev_printk(const char *level, const struct net_device *dev,
11937 			    struct va_format *vaf)
11938 {
11939 	if (dev && dev->dev.parent) {
11940 		dev_printk_emit(level[1] - '0',
11941 				dev->dev.parent,
11942 				"%s %s %s%s: %pV",
11943 				dev_driver_string(dev->dev.parent),
11944 				dev_name(dev->dev.parent),
11945 				netdev_name(dev), netdev_reg_state(dev),
11946 				vaf);
11947 	} else if (dev) {
11948 		printk("%s%s%s: %pV",
11949 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11950 	} else {
11951 		printk("%s(NULL net_device): %pV", level, vaf);
11952 	}
11953 }
11954 
11955 void netdev_printk(const char *level, const struct net_device *dev,
11956 		   const char *format, ...)
11957 {
11958 	struct va_format vaf;
11959 	va_list args;
11960 
11961 	va_start(args, format);
11962 
11963 	vaf.fmt = format;
11964 	vaf.va = &args;
11965 
11966 	__netdev_printk(level, dev, &vaf);
11967 
11968 	va_end(args);
11969 }
11970 EXPORT_SYMBOL(netdev_printk);
11971 
11972 #define define_netdev_printk_level(func, level)			\
11973 void func(const struct net_device *dev, const char *fmt, ...)	\
11974 {								\
11975 	struct va_format vaf;					\
11976 	va_list args;						\
11977 								\
11978 	va_start(args, fmt);					\
11979 								\
11980 	vaf.fmt = fmt;						\
11981 	vaf.va = &args;						\
11982 								\
11983 	__netdev_printk(level, dev, &vaf);			\
11984 								\
11985 	va_end(args);						\
11986 }								\
11987 EXPORT_SYMBOL(func);
11988 
11989 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11990 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11991 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11992 define_netdev_printk_level(netdev_err, KERN_ERR);
11993 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11994 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11995 define_netdev_printk_level(netdev_info, KERN_INFO);
11996 
11997 static void __net_exit netdev_exit(struct net *net)
11998 {
11999 	kfree(net->dev_name_head);
12000 	kfree(net->dev_index_head);
12001 	xa_destroy(&net->dev_by_index);
12002 	if (net != &init_net)
12003 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12004 }
12005 
12006 static struct pernet_operations __net_initdata netdev_net_ops = {
12007 	.init = netdev_init,
12008 	.exit = netdev_exit,
12009 };
12010 
12011 static void __net_exit default_device_exit_net(struct net *net)
12012 {
12013 	struct netdev_name_node *name_node, *tmp;
12014 	struct net_device *dev, *aux;
12015 	/*
12016 	 * Push all migratable network devices back to the
12017 	 * initial network namespace
12018 	 */
12019 	ASSERT_RTNL();
12020 	for_each_netdev_safe(net, dev, aux) {
12021 		int err;
12022 		char fb_name[IFNAMSIZ];
12023 
12024 		/* Ignore unmoveable devices (i.e. loopback) */
12025 		if (dev->netns_local)
12026 			continue;
12027 
12028 		/* Leave virtual devices for the generic cleanup */
12029 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12030 			continue;
12031 
12032 		/* Push remaining network devices to init_net */
12033 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12034 		if (netdev_name_in_use(&init_net, fb_name))
12035 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12036 
12037 		netdev_for_each_altname_safe(dev, name_node, tmp)
12038 			if (netdev_name_in_use(&init_net, name_node->name))
12039 				__netdev_name_node_alt_destroy(name_node);
12040 
12041 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12042 		if (err) {
12043 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12044 				 __func__, dev->name, err);
12045 			BUG();
12046 		}
12047 	}
12048 }
12049 
12050 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12051 {
12052 	/* At exit all network devices most be removed from a network
12053 	 * namespace.  Do this in the reverse order of registration.
12054 	 * Do this across as many network namespaces as possible to
12055 	 * improve batching efficiency.
12056 	 */
12057 	struct net_device *dev;
12058 	struct net *net;
12059 	LIST_HEAD(dev_kill_list);
12060 
12061 	rtnl_lock();
12062 	list_for_each_entry(net, net_list, exit_list) {
12063 		default_device_exit_net(net);
12064 		cond_resched();
12065 	}
12066 
12067 	list_for_each_entry(net, net_list, exit_list) {
12068 		for_each_netdev_reverse(net, dev) {
12069 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12070 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12071 			else
12072 				unregister_netdevice_queue(dev, &dev_kill_list);
12073 		}
12074 	}
12075 	unregister_netdevice_many(&dev_kill_list);
12076 	rtnl_unlock();
12077 }
12078 
12079 static struct pernet_operations __net_initdata default_device_ops = {
12080 	.exit_batch = default_device_exit_batch,
12081 };
12082 
12083 static void __init net_dev_struct_check(void)
12084 {
12085 	/* TX read-mostly hotpath */
12086 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12087 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12088 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12089 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12090 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12091 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12092 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12093 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12094 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12095 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12096 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12097 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12098 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12099 #ifdef CONFIG_XPS
12100 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12101 #endif
12102 #ifdef CONFIG_NETFILTER_EGRESS
12103 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12104 #endif
12105 #ifdef CONFIG_NET_XGRESS
12106 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12107 #endif
12108 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12109 
12110 	/* TXRX read-mostly hotpath */
12111 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12112 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12113 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12114 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12115 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12116 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12117 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12118 
12119 	/* RX read-mostly hotpath */
12120 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12121 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12122 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12123 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12124 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12125 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12126 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12127 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12128 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12129 #ifdef CONFIG_NETPOLL
12130 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12131 #endif
12132 #ifdef CONFIG_NET_XGRESS
12133 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12134 #endif
12135 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12136 }
12137 
12138 /*
12139  *	Initialize the DEV module. At boot time this walks the device list and
12140  *	unhooks any devices that fail to initialise (normally hardware not
12141  *	present) and leaves us with a valid list of present and active devices.
12142  *
12143  */
12144 
12145 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12146 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12147 
12148 static int net_page_pool_create(int cpuid)
12149 {
12150 #if IS_ENABLED(CONFIG_PAGE_POOL)
12151 	struct page_pool_params page_pool_params = {
12152 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12153 		.flags = PP_FLAG_SYSTEM_POOL,
12154 		.nid = cpu_to_mem(cpuid),
12155 	};
12156 	struct page_pool *pp_ptr;
12157 
12158 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12159 	if (IS_ERR(pp_ptr))
12160 		return -ENOMEM;
12161 
12162 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12163 #endif
12164 	return 0;
12165 }
12166 
12167 static int backlog_napi_should_run(unsigned int cpu)
12168 {
12169 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12170 	struct napi_struct *napi = &sd->backlog;
12171 
12172 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12173 }
12174 
12175 static void run_backlog_napi(unsigned int cpu)
12176 {
12177 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12178 
12179 	napi_threaded_poll_loop(&sd->backlog);
12180 }
12181 
12182 static void backlog_napi_setup(unsigned int cpu)
12183 {
12184 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12185 	struct napi_struct *napi = &sd->backlog;
12186 
12187 	napi->thread = this_cpu_read(backlog_napi);
12188 	set_bit(NAPI_STATE_THREADED, &napi->state);
12189 }
12190 
12191 static struct smp_hotplug_thread backlog_threads = {
12192 	.store			= &backlog_napi,
12193 	.thread_should_run	= backlog_napi_should_run,
12194 	.thread_fn		= run_backlog_napi,
12195 	.thread_comm		= "backlog_napi/%u",
12196 	.setup			= backlog_napi_setup,
12197 };
12198 
12199 /*
12200  *       This is called single threaded during boot, so no need
12201  *       to take the rtnl semaphore.
12202  */
12203 static int __init net_dev_init(void)
12204 {
12205 	int i, rc = -ENOMEM;
12206 
12207 	BUG_ON(!dev_boot_phase);
12208 
12209 	net_dev_struct_check();
12210 
12211 	if (dev_proc_init())
12212 		goto out;
12213 
12214 	if (netdev_kobject_init())
12215 		goto out;
12216 
12217 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12218 		INIT_LIST_HEAD(&ptype_base[i]);
12219 
12220 	if (register_pernet_subsys(&netdev_net_ops))
12221 		goto out;
12222 
12223 	/*
12224 	 *	Initialise the packet receive queues.
12225 	 */
12226 
12227 	for_each_possible_cpu(i) {
12228 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12229 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12230 
12231 		INIT_WORK(flush, flush_backlog);
12232 
12233 		skb_queue_head_init(&sd->input_pkt_queue);
12234 		skb_queue_head_init(&sd->process_queue);
12235 #ifdef CONFIG_XFRM_OFFLOAD
12236 		skb_queue_head_init(&sd->xfrm_backlog);
12237 #endif
12238 		INIT_LIST_HEAD(&sd->poll_list);
12239 		sd->output_queue_tailp = &sd->output_queue;
12240 #ifdef CONFIG_RPS
12241 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12242 		sd->cpu = i;
12243 #endif
12244 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12245 		spin_lock_init(&sd->defer_lock);
12246 
12247 		init_gro_hash(&sd->backlog);
12248 		sd->backlog.poll = process_backlog;
12249 		sd->backlog.weight = weight_p;
12250 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12251 
12252 		if (net_page_pool_create(i))
12253 			goto out;
12254 	}
12255 	if (use_backlog_threads())
12256 		smpboot_register_percpu_thread(&backlog_threads);
12257 
12258 	dev_boot_phase = 0;
12259 
12260 	/* The loopback device is special if any other network devices
12261 	 * is present in a network namespace the loopback device must
12262 	 * be present. Since we now dynamically allocate and free the
12263 	 * loopback device ensure this invariant is maintained by
12264 	 * keeping the loopback device as the first device on the
12265 	 * list of network devices.  Ensuring the loopback devices
12266 	 * is the first device that appears and the last network device
12267 	 * that disappears.
12268 	 */
12269 	if (register_pernet_device(&loopback_net_ops))
12270 		goto out;
12271 
12272 	if (register_pernet_device(&default_device_ops))
12273 		goto out;
12274 
12275 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12276 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12277 
12278 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12279 				       NULL, dev_cpu_dead);
12280 	WARN_ON(rc < 0);
12281 	rc = 0;
12282 
12283 	/* avoid static key IPIs to isolated CPUs */
12284 	if (housekeeping_enabled(HK_TYPE_MISC))
12285 		net_enable_timestamp();
12286 out:
12287 	if (rc < 0) {
12288 		for_each_possible_cpu(i) {
12289 			struct page_pool *pp_ptr;
12290 
12291 			pp_ptr = per_cpu(system_page_pool, i);
12292 			if (!pp_ptr)
12293 				continue;
12294 
12295 			page_pool_destroy(pp_ptr);
12296 			per_cpu(system_page_pool, i) = NULL;
12297 		}
12298 	}
12299 
12300 	return rc;
12301 }
12302 
12303 subsys_initcall(net_dev_init);
12304