1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/ethtool_netlink.h> 96 #include <linux/skbuff.h> 97 #include <linux/kthread.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dsa.h> 106 #include <net/dst.h> 107 #include <net/dst_metadata.h> 108 #include <net/gro.h> 109 #include <net/netdev_queues.h> 110 #include <net/pkt_sched.h> 111 #include <net/pkt_cls.h> 112 #include <net/checksum.h> 113 #include <net/xfrm.h> 114 #include <net/tcx.h> 115 #include <linux/highmem.h> 116 #include <linux/init.h> 117 #include <linux/module.h> 118 #include <linux/netpoll.h> 119 #include <linux/rcupdate.h> 120 #include <linux/delay.h> 121 #include <net/iw_handler.h> 122 #include <asm/current.h> 123 #include <linux/audit.h> 124 #include <linux/dmaengine.h> 125 #include <linux/err.h> 126 #include <linux/ctype.h> 127 #include <linux/if_arp.h> 128 #include <linux/if_vlan.h> 129 #include <linux/ip.h> 130 #include <net/ip.h> 131 #include <net/mpls.h> 132 #include <linux/ipv6.h> 133 #include <linux/in.h> 134 #include <linux/jhash.h> 135 #include <linux/random.h> 136 #include <trace/events/napi.h> 137 #include <trace/events/net.h> 138 #include <trace/events/skb.h> 139 #include <trace/events/qdisc.h> 140 #include <trace/events/xdp.h> 141 #include <linux/inetdevice.h> 142 #include <linux/cpu_rmap.h> 143 #include <linux/static_key.h> 144 #include <linux/hashtable.h> 145 #include <linux/vmalloc.h> 146 #include <linux/if_macvlan.h> 147 #include <linux/errqueue.h> 148 #include <linux/hrtimer.h> 149 #include <linux/netfilter_netdev.h> 150 #include <linux/crash_dump.h> 151 #include <linux/sctp.h> 152 #include <net/udp_tunnel.h> 153 #include <linux/net_namespace.h> 154 #include <linux/indirect_call_wrapper.h> 155 #include <net/devlink.h> 156 #include <linux/pm_runtime.h> 157 #include <linux/prandom.h> 158 #include <linux/once_lite.h> 159 #include <net/netdev_lock.h> 160 #include <net/netdev_rx_queue.h> 161 #include <net/page_pool/types.h> 162 #include <net/page_pool/helpers.h> 163 #include <net/page_pool/memory_provider.h> 164 #include <net/rps.h> 165 #include <linux/phy_link_topology.h> 166 167 #include "dev.h" 168 #include "devmem.h" 169 #include "net-sysfs.h" 170 171 static DEFINE_SPINLOCK(ptype_lock); 172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 173 174 static int netif_rx_internal(struct sk_buff *skb); 175 static int call_netdevice_notifiers_extack(unsigned long val, 176 struct net_device *dev, 177 struct netlink_ext_ack *extack); 178 179 static DEFINE_MUTEX(ifalias_mutex); 180 181 /* protects napi_hash addition/deletion and napi_gen_id */ 182 static DEFINE_SPINLOCK(napi_hash_lock); 183 184 static unsigned int napi_gen_id = NR_CPUS; 185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 186 187 static inline void dev_base_seq_inc(struct net *net) 188 { 189 unsigned int val = net->dev_base_seq + 1; 190 191 WRITE_ONCE(net->dev_base_seq, val ?: 1); 192 } 193 194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195 { 196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199 } 200 201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202 { 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204 } 205 206 #ifndef CONFIG_PREEMPT_RT 207 208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 209 210 static int __init setup_backlog_napi_threads(char *arg) 211 { 212 static_branch_enable(&use_backlog_threads_key); 213 return 0; 214 } 215 early_param("thread_backlog_napi", setup_backlog_napi_threads); 216 217 static bool use_backlog_threads(void) 218 { 219 return static_branch_unlikely(&use_backlog_threads_key); 220 } 221 222 #else 223 224 static bool use_backlog_threads(void) 225 { 226 return true; 227 } 228 229 #endif 230 231 static inline void backlog_lock_irq_save(struct softnet_data *sd, 232 unsigned long *flags) 233 { 234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 236 else 237 local_irq_save(*flags); 238 } 239 240 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 241 { 242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 243 spin_lock_irq(&sd->input_pkt_queue.lock); 244 else 245 local_irq_disable(); 246 } 247 248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 249 unsigned long *flags) 250 { 251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 253 else 254 local_irq_restore(*flags); 255 } 256 257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 258 { 259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 260 spin_unlock_irq(&sd->input_pkt_queue.lock); 261 else 262 local_irq_enable(); 263 } 264 265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 266 const char *name) 267 { 268 struct netdev_name_node *name_node; 269 270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 271 if (!name_node) 272 return NULL; 273 INIT_HLIST_NODE(&name_node->hlist); 274 name_node->dev = dev; 275 name_node->name = name; 276 return name_node; 277 } 278 279 static struct netdev_name_node * 280 netdev_name_node_head_alloc(struct net_device *dev) 281 { 282 struct netdev_name_node *name_node; 283 284 name_node = netdev_name_node_alloc(dev, dev->name); 285 if (!name_node) 286 return NULL; 287 INIT_LIST_HEAD(&name_node->list); 288 return name_node; 289 } 290 291 static void netdev_name_node_free(struct netdev_name_node *name_node) 292 { 293 kfree(name_node); 294 } 295 296 static void netdev_name_node_add(struct net *net, 297 struct netdev_name_node *name_node) 298 { 299 hlist_add_head_rcu(&name_node->hlist, 300 dev_name_hash(net, name_node->name)); 301 } 302 303 static void netdev_name_node_del(struct netdev_name_node *name_node) 304 { 305 hlist_del_rcu(&name_node->hlist); 306 } 307 308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 309 const char *name) 310 { 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318 } 319 320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 321 const char *name) 322 { 323 struct hlist_head *head = dev_name_hash(net, name); 324 struct netdev_name_node *name_node; 325 326 hlist_for_each_entry_rcu(name_node, head, hlist) 327 if (!strcmp(name_node->name, name)) 328 return name_node; 329 return NULL; 330 } 331 332 bool netdev_name_in_use(struct net *net, const char *name) 333 { 334 return netdev_name_node_lookup(net, name); 335 } 336 EXPORT_SYMBOL(netdev_name_in_use); 337 338 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 339 { 340 struct netdev_name_node *name_node; 341 struct net *net = dev_net(dev); 342 343 name_node = netdev_name_node_lookup(net, name); 344 if (name_node) 345 return -EEXIST; 346 name_node = netdev_name_node_alloc(dev, name); 347 if (!name_node) 348 return -ENOMEM; 349 netdev_name_node_add(net, name_node); 350 /* The node that holds dev->name acts as a head of per-device list. */ 351 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 352 353 return 0; 354 } 355 356 static void netdev_name_node_alt_free(struct rcu_head *head) 357 { 358 struct netdev_name_node *name_node = 359 container_of(head, struct netdev_name_node, rcu); 360 361 kfree(name_node->name); 362 netdev_name_node_free(name_node); 363 } 364 365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 366 { 367 netdev_name_node_del(name_node); 368 list_del(&name_node->list); 369 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 370 } 371 372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 373 { 374 struct netdev_name_node *name_node; 375 struct net *net = dev_net(dev); 376 377 name_node = netdev_name_node_lookup(net, name); 378 if (!name_node) 379 return -ENOENT; 380 /* lookup might have found our primary name or a name belonging 381 * to another device. 382 */ 383 if (name_node == dev->name_node || name_node->dev != dev) 384 return -EINVAL; 385 386 __netdev_name_node_alt_destroy(name_node); 387 return 0; 388 } 389 390 static void netdev_name_node_alt_flush(struct net_device *dev) 391 { 392 struct netdev_name_node *name_node, *tmp; 393 394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 395 list_del(&name_node->list); 396 netdev_name_node_alt_free(&name_node->rcu); 397 } 398 } 399 400 /* Device list insertion */ 401 static void list_netdevice(struct net_device *dev) 402 { 403 struct netdev_name_node *name_node; 404 struct net *net = dev_net(dev); 405 406 ASSERT_RTNL(); 407 408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 409 netdev_name_node_add(net, dev->name_node); 410 hlist_add_head_rcu(&dev->index_hlist, 411 dev_index_hash(net, dev->ifindex)); 412 413 netdev_for_each_altname(dev, name_node) 414 netdev_name_node_add(net, name_node); 415 416 /* We reserved the ifindex, this can't fail */ 417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 418 419 dev_base_seq_inc(net); 420 } 421 422 /* Device list removal 423 * caller must respect a RCU grace period before freeing/reusing dev 424 */ 425 static void unlist_netdevice(struct net_device *dev) 426 { 427 struct netdev_name_node *name_node; 428 struct net *net = dev_net(dev); 429 430 ASSERT_RTNL(); 431 432 xa_erase(&net->dev_by_index, dev->ifindex); 433 434 netdev_for_each_altname(dev, name_node) 435 netdev_name_node_del(name_node); 436 437 /* Unlink dev from the device chain */ 438 list_del_rcu(&dev->dev_list); 439 netdev_name_node_del(dev->name_node); 440 hlist_del_rcu(&dev->index_hlist); 441 442 dev_base_seq_inc(dev_net(dev)); 443 } 444 445 /* 446 * Our notifier list 447 */ 448 449 static RAW_NOTIFIER_HEAD(netdev_chain); 450 451 /* 452 * Device drivers call our routines to queue packets here. We empty the 453 * queue in the local softnet handler. 454 */ 455 456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 458 }; 459 EXPORT_PER_CPU_SYMBOL(softnet_data); 460 461 /* Page_pool has a lockless array/stack to alloc/recycle pages. 462 * PP consumers must pay attention to run APIs in the appropriate context 463 * (e.g. NAPI context). 464 */ 465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = { 466 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 467 }; 468 469 #ifdef CONFIG_LOCKDEP 470 /* 471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 472 * according to dev->type 473 */ 474 static const unsigned short netdev_lock_type[] = { 475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 490 491 static const char *const netdev_lock_name[] = { 492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 507 508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 510 511 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 512 { 513 int i; 514 515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 516 if (netdev_lock_type[i] == dev_type) 517 return i; 518 /* the last key is used by default */ 519 return ARRAY_SIZE(netdev_lock_type) - 1; 520 } 521 522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 523 unsigned short dev_type) 524 { 525 int i; 526 527 i = netdev_lock_pos(dev_type); 528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 529 netdev_lock_name[i]); 530 } 531 532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 533 { 534 int i; 535 536 i = netdev_lock_pos(dev->type); 537 lockdep_set_class_and_name(&dev->addr_list_lock, 538 &netdev_addr_lock_key[i], 539 netdev_lock_name[i]); 540 } 541 #else 542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 543 unsigned short dev_type) 544 { 545 } 546 547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 548 { 549 } 550 #endif 551 552 /******************************************************************************* 553 * 554 * Protocol management and registration routines 555 * 556 *******************************************************************************/ 557 558 559 /* 560 * Add a protocol ID to the list. Now that the input handler is 561 * smarter we can dispense with all the messy stuff that used to be 562 * here. 563 * 564 * BEWARE!!! Protocol handlers, mangling input packets, 565 * MUST BE last in hash buckets and checking protocol handlers 566 * MUST start from promiscuous ptype_all chain in net_bh. 567 * It is true now, do not change it. 568 * Explanation follows: if protocol handler, mangling packet, will 569 * be the first on list, it is not able to sense, that packet 570 * is cloned and should be copied-on-write, so that it will 571 * change it and subsequent readers will get broken packet. 572 * --ANK (980803) 573 */ 574 575 static inline struct list_head *ptype_head(const struct packet_type *pt) 576 { 577 if (pt->type == htons(ETH_P_ALL)) { 578 if (!pt->af_packet_net && !pt->dev) 579 return NULL; 580 581 return pt->dev ? &pt->dev->ptype_all : 582 &pt->af_packet_net->ptype_all; 583 } 584 585 if (pt->dev) 586 return &pt->dev->ptype_specific; 587 588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : 589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 590 } 591 592 /** 593 * dev_add_pack - add packet handler 594 * @pt: packet type declaration 595 * 596 * Add a protocol handler to the networking stack. The passed &packet_type 597 * is linked into kernel lists and may not be freed until it has been 598 * removed from the kernel lists. 599 * 600 * This call does not sleep therefore it can not 601 * guarantee all CPU's that are in middle of receiving packets 602 * will see the new packet type (until the next received packet). 603 */ 604 605 void dev_add_pack(struct packet_type *pt) 606 { 607 struct list_head *head = ptype_head(pt); 608 609 if (WARN_ON_ONCE(!head)) 610 return; 611 612 spin_lock(&ptype_lock); 613 list_add_rcu(&pt->list, head); 614 spin_unlock(&ptype_lock); 615 } 616 EXPORT_SYMBOL(dev_add_pack); 617 618 /** 619 * __dev_remove_pack - remove packet handler 620 * @pt: packet type declaration 621 * 622 * Remove a protocol handler that was previously added to the kernel 623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 624 * from the kernel lists and can be freed or reused once this function 625 * returns. 626 * 627 * The packet type might still be in use by receivers 628 * and must not be freed until after all the CPU's have gone 629 * through a quiescent state. 630 */ 631 void __dev_remove_pack(struct packet_type *pt) 632 { 633 struct list_head *head = ptype_head(pt); 634 struct packet_type *pt1; 635 636 if (!head) 637 return; 638 639 spin_lock(&ptype_lock); 640 641 list_for_each_entry(pt1, head, list) { 642 if (pt == pt1) { 643 list_del_rcu(&pt->list); 644 goto out; 645 } 646 } 647 648 pr_warn("dev_remove_pack: %p not found\n", pt); 649 out: 650 spin_unlock(&ptype_lock); 651 } 652 EXPORT_SYMBOL(__dev_remove_pack); 653 654 /** 655 * dev_remove_pack - remove packet handler 656 * @pt: packet type declaration 657 * 658 * Remove a protocol handler that was previously added to the kernel 659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 660 * from the kernel lists and can be freed or reused once this function 661 * returns. 662 * 663 * This call sleeps to guarantee that no CPU is looking at the packet 664 * type after return. 665 */ 666 void dev_remove_pack(struct packet_type *pt) 667 { 668 __dev_remove_pack(pt); 669 670 synchronize_net(); 671 } 672 EXPORT_SYMBOL(dev_remove_pack); 673 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return READ_ONCE(dev->ifindex); 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 725 { 726 int k = stack->num_paths++; 727 728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 729 return NULL; 730 731 return &stack->path[k]; 732 } 733 734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 735 struct net_device_path_stack *stack) 736 { 737 const struct net_device *last_dev; 738 struct net_device_path_ctx ctx = { 739 .dev = dev, 740 }; 741 struct net_device_path *path; 742 int ret = 0; 743 744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 745 stack->num_paths = 0; 746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 747 last_dev = ctx.dev; 748 path = dev_fwd_path(stack); 749 if (!path) 750 return -1; 751 752 memset(path, 0, sizeof(struct net_device_path)); 753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 754 if (ret < 0) 755 return -1; 756 757 if (WARN_ON_ONCE(last_dev == ctx.dev)) 758 return -1; 759 } 760 761 if (!ctx.dev) 762 return ret; 763 764 path = dev_fwd_path(stack); 765 if (!path) 766 return -1; 767 path->type = DEV_PATH_ETHERNET; 768 path->dev = ctx.dev; 769 770 return ret; 771 } 772 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 773 774 /* must be called under rcu_read_lock(), as we dont take a reference */ 775 static struct napi_struct *napi_by_id(unsigned int napi_id) 776 { 777 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 778 struct napi_struct *napi; 779 780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 781 if (napi->napi_id == napi_id) 782 return napi; 783 784 return NULL; 785 } 786 787 /* must be called under rcu_read_lock(), as we dont take a reference */ 788 static struct napi_struct * 789 netdev_napi_by_id(struct net *net, unsigned int napi_id) 790 { 791 struct napi_struct *napi; 792 793 napi = napi_by_id(napi_id); 794 if (!napi) 795 return NULL; 796 797 if (WARN_ON_ONCE(!napi->dev)) 798 return NULL; 799 if (!net_eq(net, dev_net(napi->dev))) 800 return NULL; 801 802 return napi; 803 } 804 805 /** 806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it 807 * @net: the applicable net namespace 808 * @napi_id: ID of a NAPI of a target device 809 * 810 * Find a NAPI instance with @napi_id. Lock its device. 811 * The device must be in %NETREG_REGISTERED state for lookup to succeed. 812 * netdev_unlock() must be called to release it. 813 * 814 * Return: pointer to NAPI, its device with lock held, NULL if not found. 815 */ 816 struct napi_struct * 817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) 818 { 819 struct napi_struct *napi; 820 struct net_device *dev; 821 822 rcu_read_lock(); 823 napi = netdev_napi_by_id(net, napi_id); 824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { 825 rcu_read_unlock(); 826 return NULL; 827 } 828 829 dev = napi->dev; 830 dev_hold(dev); 831 rcu_read_unlock(); 832 833 dev = __netdev_put_lock(dev, net); 834 if (!dev) 835 return NULL; 836 837 rcu_read_lock(); 838 napi = netdev_napi_by_id(net, napi_id); 839 if (napi && napi->dev != dev) 840 napi = NULL; 841 rcu_read_unlock(); 842 843 if (!napi) 844 netdev_unlock(dev); 845 return napi; 846 } 847 848 /** 849 * __dev_get_by_name - find a device by its name 850 * @net: the applicable net namespace 851 * @name: name to find 852 * 853 * Find an interface by name. Must be called under RTNL semaphore. 854 * If the name is found a pointer to the device is returned. 855 * If the name is not found then %NULL is returned. The 856 * reference counters are not incremented so the caller must be 857 * careful with locks. 858 */ 859 860 struct net_device *__dev_get_by_name(struct net *net, const char *name) 861 { 862 struct netdev_name_node *node_name; 863 864 node_name = netdev_name_node_lookup(net, name); 865 return node_name ? node_name->dev : NULL; 866 } 867 EXPORT_SYMBOL(__dev_get_by_name); 868 869 /** 870 * dev_get_by_name_rcu - find a device by its name 871 * @net: the applicable net namespace 872 * @name: name to find 873 * 874 * Find an interface by name. 875 * If the name is found a pointer to the device is returned. 876 * If the name is not found then %NULL is returned. 877 * The reference counters are not incremented so the caller must be 878 * careful with locks. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 882 { 883 struct netdev_name_node *node_name; 884 885 node_name = netdev_name_node_lookup_rcu(net, name); 886 return node_name ? node_name->dev : NULL; 887 } 888 EXPORT_SYMBOL(dev_get_by_name_rcu); 889 890 /* Deprecated for new users, call netdev_get_by_name() instead */ 891 struct net_device *dev_get_by_name(struct net *net, const char *name) 892 { 893 struct net_device *dev; 894 895 rcu_read_lock(); 896 dev = dev_get_by_name_rcu(net, name); 897 dev_hold(dev); 898 rcu_read_unlock(); 899 return dev; 900 } 901 EXPORT_SYMBOL(dev_get_by_name); 902 903 /** 904 * netdev_get_by_name() - find a device by its name 905 * @net: the applicable net namespace 906 * @name: name to find 907 * @tracker: tracking object for the acquired reference 908 * @gfp: allocation flags for the tracker 909 * 910 * Find an interface by name. This can be called from any 911 * context and does its own locking. The returned handle has 912 * the usage count incremented and the caller must use netdev_put() to 913 * release it when it is no longer needed. %NULL is returned if no 914 * matching device is found. 915 */ 916 struct net_device *netdev_get_by_name(struct net *net, const char *name, 917 netdevice_tracker *tracker, gfp_t gfp) 918 { 919 struct net_device *dev; 920 921 dev = dev_get_by_name(net, name); 922 if (dev) 923 netdev_tracker_alloc(dev, tracker, gfp); 924 return dev; 925 } 926 EXPORT_SYMBOL(netdev_get_by_name); 927 928 /** 929 * __dev_get_by_index - find a device by its ifindex 930 * @net: the applicable net namespace 931 * @ifindex: index of device 932 * 933 * Search for an interface by index. Returns %NULL if the device 934 * is not found or a pointer to the device. The device has not 935 * had its reference counter increased so the caller must be careful 936 * about locking. The caller must hold the RTNL semaphore. 937 */ 938 939 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 940 { 941 struct net_device *dev; 942 struct hlist_head *head = dev_index_hash(net, ifindex); 943 944 hlist_for_each_entry(dev, head, index_hlist) 945 if (dev->ifindex == ifindex) 946 return dev; 947 948 return NULL; 949 } 950 EXPORT_SYMBOL(__dev_get_by_index); 951 952 /** 953 * dev_get_by_index_rcu - find a device by its ifindex 954 * @net: the applicable net namespace 955 * @ifindex: index of device 956 * 957 * Search for an interface by index. Returns %NULL if the device 958 * is not found or a pointer to the device. The device has not 959 * had its reference counter increased so the caller must be careful 960 * about locking. The caller must hold RCU lock. 961 */ 962 963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 964 { 965 struct net_device *dev; 966 struct hlist_head *head = dev_index_hash(net, ifindex); 967 968 hlist_for_each_entry_rcu(dev, head, index_hlist) 969 if (dev->ifindex == ifindex) 970 return dev; 971 972 return NULL; 973 } 974 EXPORT_SYMBOL(dev_get_by_index_rcu); 975 976 /* Deprecated for new users, call netdev_get_by_index() instead */ 977 struct net_device *dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 dev_hold(dev); 984 rcu_read_unlock(); 985 return dev; 986 } 987 EXPORT_SYMBOL(dev_get_by_index); 988 989 /** 990 * netdev_get_by_index() - find a device by its ifindex 991 * @net: the applicable net namespace 992 * @ifindex: index of device 993 * @tracker: tracking object for the acquired reference 994 * @gfp: allocation flags for the tracker 995 * 996 * Search for an interface by index. Returns NULL if the device 997 * is not found or a pointer to the device. The device returned has 998 * had a reference added and the pointer is safe until the user calls 999 * netdev_put() to indicate they have finished with it. 1000 */ 1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 1002 netdevice_tracker *tracker, gfp_t gfp) 1003 { 1004 struct net_device *dev; 1005 1006 dev = dev_get_by_index(net, ifindex); 1007 if (dev) 1008 netdev_tracker_alloc(dev, tracker, gfp); 1009 return dev; 1010 } 1011 EXPORT_SYMBOL(netdev_get_by_index); 1012 1013 /** 1014 * dev_get_by_napi_id - find a device by napi_id 1015 * @napi_id: ID of the NAPI struct 1016 * 1017 * Search for an interface by NAPI ID. Returns %NULL if the device 1018 * is not found or a pointer to the device. The device has not had 1019 * its reference counter increased so the caller must be careful 1020 * about locking. The caller must hold RCU lock. 1021 */ 1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1023 { 1024 struct napi_struct *napi; 1025 1026 WARN_ON_ONCE(!rcu_read_lock_held()); 1027 1028 if (!napi_id_valid(napi_id)) 1029 return NULL; 1030 1031 napi = napi_by_id(napi_id); 1032 1033 return napi ? napi->dev : NULL; 1034 } 1035 1036 /* Release the held reference on the net_device, and if the net_device 1037 * is still registered try to lock the instance lock. If device is being 1038 * unregistered NULL will be returned (but the reference has been released, 1039 * either way!) 1040 * 1041 * This helper is intended for locking net_device after it has been looked up 1042 * using a lockless lookup helper. Lock prevents the instance from going away. 1043 */ 1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) 1045 { 1046 netdev_lock(dev); 1047 if (dev->reg_state > NETREG_REGISTERED || 1048 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1049 netdev_unlock(dev); 1050 dev_put(dev); 1051 return NULL; 1052 } 1053 dev_put(dev); 1054 return dev; 1055 } 1056 1057 static struct net_device * 1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) 1059 { 1060 netdev_lock_ops_compat(dev); 1061 if (dev->reg_state > NETREG_REGISTERED || 1062 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1063 netdev_unlock_ops_compat(dev); 1064 dev_put(dev); 1065 return NULL; 1066 } 1067 dev_put(dev); 1068 return dev; 1069 } 1070 1071 /** 1072 * netdev_get_by_index_lock() - find a device by its ifindex 1073 * @net: the applicable net namespace 1074 * @ifindex: index of device 1075 * 1076 * Search for an interface by index. If a valid device 1077 * with @ifindex is found it will be returned with netdev->lock held. 1078 * netdev_unlock() must be called to release it. 1079 * 1080 * Return: pointer to a device with lock held, NULL if not found. 1081 */ 1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) 1083 { 1084 struct net_device *dev; 1085 1086 dev = dev_get_by_index(net, ifindex); 1087 if (!dev) 1088 return NULL; 1089 1090 return __netdev_put_lock(dev, net); 1091 } 1092 1093 struct net_device * 1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) 1095 { 1096 struct net_device *dev; 1097 1098 dev = dev_get_by_index(net, ifindex); 1099 if (!dev) 1100 return NULL; 1101 1102 return __netdev_put_lock_ops_compat(dev, net); 1103 } 1104 1105 struct net_device * 1106 netdev_xa_find_lock(struct net *net, struct net_device *dev, 1107 unsigned long *index) 1108 { 1109 if (dev) 1110 netdev_unlock(dev); 1111 1112 do { 1113 rcu_read_lock(); 1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1115 if (!dev) { 1116 rcu_read_unlock(); 1117 return NULL; 1118 } 1119 dev_hold(dev); 1120 rcu_read_unlock(); 1121 1122 dev = __netdev_put_lock(dev, net); 1123 if (dev) 1124 return dev; 1125 1126 (*index)++; 1127 } while (true); 1128 } 1129 1130 struct net_device * 1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, 1132 unsigned long *index) 1133 { 1134 if (dev) 1135 netdev_unlock_ops_compat(dev); 1136 1137 do { 1138 rcu_read_lock(); 1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1140 if (!dev) { 1141 rcu_read_unlock(); 1142 return NULL; 1143 } 1144 dev_hold(dev); 1145 rcu_read_unlock(); 1146 1147 dev = __netdev_put_lock_ops_compat(dev, net); 1148 if (dev) 1149 return dev; 1150 1151 (*index)++; 1152 } while (true); 1153 } 1154 1155 static DEFINE_SEQLOCK(netdev_rename_lock); 1156 1157 void netdev_copy_name(struct net_device *dev, char *name) 1158 { 1159 unsigned int seq; 1160 1161 do { 1162 seq = read_seqbegin(&netdev_rename_lock); 1163 strscpy(name, dev->name, IFNAMSIZ); 1164 } while (read_seqretry(&netdev_rename_lock, seq)); 1165 } 1166 1167 /** 1168 * netdev_get_name - get a netdevice name, knowing its ifindex. 1169 * @net: network namespace 1170 * @name: a pointer to the buffer where the name will be stored. 1171 * @ifindex: the ifindex of the interface to get the name from. 1172 */ 1173 int netdev_get_name(struct net *net, char *name, int ifindex) 1174 { 1175 struct net_device *dev; 1176 int ret; 1177 1178 rcu_read_lock(); 1179 1180 dev = dev_get_by_index_rcu(net, ifindex); 1181 if (!dev) { 1182 ret = -ENODEV; 1183 goto out; 1184 } 1185 1186 netdev_copy_name(dev, name); 1187 1188 ret = 0; 1189 out: 1190 rcu_read_unlock(); 1191 return ret; 1192 } 1193 1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 1195 const char *ha) 1196 { 1197 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 1198 } 1199 1200 /** 1201 * dev_getbyhwaddr_rcu - find a device by its hardware address 1202 * @net: the applicable net namespace 1203 * @type: media type of device 1204 * @ha: hardware address 1205 * 1206 * Search for an interface by MAC address. Returns NULL if the device 1207 * is not found or a pointer to the device. 1208 * The caller must hold RCU. 1209 * The returned device has not had its ref count increased 1210 * and the caller must therefore be careful about locking 1211 * 1212 */ 1213 1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1215 const char *ha) 1216 { 1217 struct net_device *dev; 1218 1219 for_each_netdev_rcu(net, dev) 1220 if (dev_addr_cmp(dev, type, ha)) 1221 return dev; 1222 1223 return NULL; 1224 } 1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1226 1227 /** 1228 * dev_getbyhwaddr() - find a device by its hardware address 1229 * @net: the applicable net namespace 1230 * @type: media type of device 1231 * @ha: hardware address 1232 * 1233 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 1234 * rtnl_lock. 1235 * 1236 * Context: rtnl_lock() must be held. 1237 * Return: pointer to the net_device, or NULL if not found 1238 */ 1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1240 const char *ha) 1241 { 1242 struct net_device *dev; 1243 1244 ASSERT_RTNL(); 1245 for_each_netdev(net, dev) 1246 if (dev_addr_cmp(dev, type, ha)) 1247 return dev; 1248 1249 return NULL; 1250 } 1251 EXPORT_SYMBOL(dev_getbyhwaddr); 1252 1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1254 { 1255 struct net_device *dev, *ret = NULL; 1256 1257 rcu_read_lock(); 1258 for_each_netdev_rcu(net, dev) 1259 if (dev->type == type) { 1260 dev_hold(dev); 1261 ret = dev; 1262 break; 1263 } 1264 rcu_read_unlock(); 1265 return ret; 1266 } 1267 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1268 1269 /** 1270 * dev_get_by_flags_rcu - find any device with given flags 1271 * @net: the applicable net namespace 1272 * @if_flags: IFF_* values 1273 * @mask: bitmask of bits in if_flags to check 1274 * 1275 * Search for any interface with the given flags. 1276 * 1277 * Context: rcu_read_lock() must be held. 1278 * Returns: NULL if a device is not found or a pointer to the device. 1279 */ 1280 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 1281 unsigned short mask) 1282 { 1283 struct net_device *dev; 1284 1285 for_each_netdev_rcu(net, dev) { 1286 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) { 1287 dev_hold(dev); 1288 return dev; 1289 } 1290 } 1291 1292 return NULL; 1293 } 1294 EXPORT_IPV6_MOD(dev_get_by_flags_rcu); 1295 1296 /** 1297 * dev_valid_name - check if name is okay for network device 1298 * @name: name string 1299 * 1300 * Network device names need to be valid file names to 1301 * allow sysfs to work. We also disallow any kind of 1302 * whitespace. 1303 */ 1304 bool dev_valid_name(const char *name) 1305 { 1306 if (*name == '\0') 1307 return false; 1308 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1309 return false; 1310 if (!strcmp(name, ".") || !strcmp(name, "..")) 1311 return false; 1312 1313 while (*name) { 1314 if (*name == '/' || *name == ':' || isspace(*name)) 1315 return false; 1316 name++; 1317 } 1318 return true; 1319 } 1320 EXPORT_SYMBOL(dev_valid_name); 1321 1322 /** 1323 * __dev_alloc_name - allocate a name for a device 1324 * @net: network namespace to allocate the device name in 1325 * @name: name format string 1326 * @res: result name string 1327 * 1328 * Passed a format string - eg "lt%d" it will try and find a suitable 1329 * id. It scans list of devices to build up a free map, then chooses 1330 * the first empty slot. The caller must hold the dev_base or rtnl lock 1331 * while allocating the name and adding the device in order to avoid 1332 * duplicates. 1333 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1334 * Returns the number of the unit assigned or a negative errno code. 1335 */ 1336 1337 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1338 { 1339 int i = 0; 1340 const char *p; 1341 const int max_netdevices = 8*PAGE_SIZE; 1342 unsigned long *inuse; 1343 struct net_device *d; 1344 char buf[IFNAMSIZ]; 1345 1346 /* Verify the string as this thing may have come from the user. 1347 * There must be one "%d" and no other "%" characters. 1348 */ 1349 p = strchr(name, '%'); 1350 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1351 return -EINVAL; 1352 1353 /* Use one page as a bit array of possible slots */ 1354 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1355 if (!inuse) 1356 return -ENOMEM; 1357 1358 for_each_netdev(net, d) { 1359 struct netdev_name_node *name_node; 1360 1361 netdev_for_each_altname(d, name_node) { 1362 if (!sscanf(name_node->name, name, &i)) 1363 continue; 1364 if (i < 0 || i >= max_netdevices) 1365 continue; 1366 1367 /* avoid cases where sscanf is not exact inverse of printf */ 1368 snprintf(buf, IFNAMSIZ, name, i); 1369 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1370 __set_bit(i, inuse); 1371 } 1372 if (!sscanf(d->name, name, &i)) 1373 continue; 1374 if (i < 0 || i >= max_netdevices) 1375 continue; 1376 1377 /* avoid cases where sscanf is not exact inverse of printf */ 1378 snprintf(buf, IFNAMSIZ, name, i); 1379 if (!strncmp(buf, d->name, IFNAMSIZ)) 1380 __set_bit(i, inuse); 1381 } 1382 1383 i = find_first_zero_bit(inuse, max_netdevices); 1384 bitmap_free(inuse); 1385 if (i == max_netdevices) 1386 return -ENFILE; 1387 1388 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1389 strscpy(buf, name, IFNAMSIZ); 1390 snprintf(res, IFNAMSIZ, buf, i); 1391 return i; 1392 } 1393 1394 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1395 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1396 const char *want_name, char *out_name, 1397 int dup_errno) 1398 { 1399 if (!dev_valid_name(want_name)) 1400 return -EINVAL; 1401 1402 if (strchr(want_name, '%')) 1403 return __dev_alloc_name(net, want_name, out_name); 1404 1405 if (netdev_name_in_use(net, want_name)) 1406 return -dup_errno; 1407 if (out_name != want_name) 1408 strscpy(out_name, want_name, IFNAMSIZ); 1409 return 0; 1410 } 1411 1412 /** 1413 * dev_alloc_name - allocate a name for a device 1414 * @dev: device 1415 * @name: name format string 1416 * 1417 * Passed a format string - eg "lt%d" it will try and find a suitable 1418 * id. It scans list of devices to build up a free map, then chooses 1419 * the first empty slot. The caller must hold the dev_base or rtnl lock 1420 * while allocating the name and adding the device in order to avoid 1421 * duplicates. 1422 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1423 * Returns the number of the unit assigned or a negative errno code. 1424 */ 1425 1426 int dev_alloc_name(struct net_device *dev, const char *name) 1427 { 1428 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1429 } 1430 EXPORT_SYMBOL(dev_alloc_name); 1431 1432 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1433 const char *name) 1434 { 1435 int ret; 1436 1437 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1438 return ret < 0 ? ret : 0; 1439 } 1440 1441 int netif_change_name(struct net_device *dev, const char *newname) 1442 { 1443 struct net *net = dev_net(dev); 1444 unsigned char old_assign_type; 1445 char oldname[IFNAMSIZ]; 1446 int err = 0; 1447 int ret; 1448 1449 ASSERT_RTNL_NET(net); 1450 1451 if (!strncmp(newname, dev->name, IFNAMSIZ)) 1452 return 0; 1453 1454 memcpy(oldname, dev->name, IFNAMSIZ); 1455 1456 write_seqlock_bh(&netdev_rename_lock); 1457 err = dev_get_valid_name(net, dev, newname); 1458 write_sequnlock_bh(&netdev_rename_lock); 1459 1460 if (err < 0) 1461 return err; 1462 1463 if (oldname[0] && !strchr(oldname, '%')) 1464 netdev_info(dev, "renamed from %s%s\n", oldname, 1465 dev->flags & IFF_UP ? " (while UP)" : ""); 1466 1467 old_assign_type = dev->name_assign_type; 1468 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1469 1470 rollback: 1471 ret = device_rename(&dev->dev, dev->name); 1472 if (ret) { 1473 write_seqlock_bh(&netdev_rename_lock); 1474 memcpy(dev->name, oldname, IFNAMSIZ); 1475 write_sequnlock_bh(&netdev_rename_lock); 1476 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1477 return ret; 1478 } 1479 1480 netdev_adjacent_rename_links(dev, oldname); 1481 1482 netdev_name_node_del(dev->name_node); 1483 1484 synchronize_net(); 1485 1486 netdev_name_node_add(net, dev->name_node); 1487 1488 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1489 ret = notifier_to_errno(ret); 1490 1491 if (ret) { 1492 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1493 if (err >= 0) { 1494 err = ret; 1495 write_seqlock_bh(&netdev_rename_lock); 1496 memcpy(dev->name, oldname, IFNAMSIZ); 1497 write_sequnlock_bh(&netdev_rename_lock); 1498 memcpy(oldname, newname, IFNAMSIZ); 1499 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1500 old_assign_type = NET_NAME_RENAMED; 1501 goto rollback; 1502 } else { 1503 netdev_err(dev, "name change rollback failed: %d\n", 1504 ret); 1505 } 1506 } 1507 1508 return err; 1509 } 1510 1511 int netif_set_alias(struct net_device *dev, const char *alias, size_t len) 1512 { 1513 struct dev_ifalias *new_alias = NULL; 1514 1515 if (len >= IFALIASZ) 1516 return -EINVAL; 1517 1518 if (len) { 1519 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1520 if (!new_alias) 1521 return -ENOMEM; 1522 1523 memcpy(new_alias->ifalias, alias, len); 1524 new_alias->ifalias[len] = 0; 1525 } 1526 1527 mutex_lock(&ifalias_mutex); 1528 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1529 mutex_is_locked(&ifalias_mutex)); 1530 mutex_unlock(&ifalias_mutex); 1531 1532 if (new_alias) 1533 kfree_rcu(new_alias, rcuhead); 1534 1535 return len; 1536 } 1537 1538 /** 1539 * dev_get_alias - get ifalias of a device 1540 * @dev: device 1541 * @name: buffer to store name of ifalias 1542 * @len: size of buffer 1543 * 1544 * get ifalias for a device. Caller must make sure dev cannot go 1545 * away, e.g. rcu read lock or own a reference count to device. 1546 */ 1547 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1548 { 1549 const struct dev_ifalias *alias; 1550 int ret = 0; 1551 1552 rcu_read_lock(); 1553 alias = rcu_dereference(dev->ifalias); 1554 if (alias) 1555 ret = snprintf(name, len, "%s", alias->ifalias); 1556 rcu_read_unlock(); 1557 1558 return ret; 1559 } 1560 1561 /** 1562 * netdev_features_change - device changes features 1563 * @dev: device to cause notification 1564 * 1565 * Called to indicate a device has changed features. 1566 */ 1567 void netdev_features_change(struct net_device *dev) 1568 { 1569 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1570 } 1571 EXPORT_SYMBOL(netdev_features_change); 1572 1573 void netif_state_change(struct net_device *dev) 1574 { 1575 netdev_ops_assert_locked_or_invisible(dev); 1576 1577 if (dev->flags & IFF_UP) { 1578 struct netdev_notifier_change_info change_info = { 1579 .info.dev = dev, 1580 }; 1581 1582 call_netdevice_notifiers_info(NETDEV_CHANGE, 1583 &change_info.info); 1584 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1585 } 1586 } 1587 1588 /** 1589 * __netdev_notify_peers - notify network peers about existence of @dev, 1590 * to be called when rtnl lock is already held. 1591 * @dev: network device 1592 * 1593 * Generate traffic such that interested network peers are aware of 1594 * @dev, such as by generating a gratuitous ARP. This may be used when 1595 * a device wants to inform the rest of the network about some sort of 1596 * reconfiguration such as a failover event or virtual machine 1597 * migration. 1598 */ 1599 void __netdev_notify_peers(struct net_device *dev) 1600 { 1601 ASSERT_RTNL(); 1602 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1603 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1604 } 1605 EXPORT_SYMBOL(__netdev_notify_peers); 1606 1607 /** 1608 * netdev_notify_peers - notify network peers about existence of @dev 1609 * @dev: network device 1610 * 1611 * Generate traffic such that interested network peers are aware of 1612 * @dev, such as by generating a gratuitous ARP. This may be used when 1613 * a device wants to inform the rest of the network about some sort of 1614 * reconfiguration such as a failover event or virtual machine 1615 * migration. 1616 */ 1617 void netdev_notify_peers(struct net_device *dev) 1618 { 1619 rtnl_lock(); 1620 __netdev_notify_peers(dev); 1621 rtnl_unlock(); 1622 } 1623 EXPORT_SYMBOL(netdev_notify_peers); 1624 1625 static int napi_threaded_poll(void *data); 1626 1627 static int napi_kthread_create(struct napi_struct *n) 1628 { 1629 int err = 0; 1630 1631 /* Create and wake up the kthread once to put it in 1632 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1633 * warning and work with loadavg. 1634 */ 1635 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1636 n->dev->name, n->napi_id); 1637 if (IS_ERR(n->thread)) { 1638 err = PTR_ERR(n->thread); 1639 pr_err("kthread_run failed with err %d\n", err); 1640 n->thread = NULL; 1641 } 1642 1643 return err; 1644 } 1645 1646 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1647 { 1648 const struct net_device_ops *ops = dev->netdev_ops; 1649 int ret; 1650 1651 ASSERT_RTNL(); 1652 dev_addr_check(dev); 1653 1654 if (!netif_device_present(dev)) { 1655 /* may be detached because parent is runtime-suspended */ 1656 if (dev->dev.parent) 1657 pm_runtime_resume(dev->dev.parent); 1658 if (!netif_device_present(dev)) 1659 return -ENODEV; 1660 } 1661 1662 /* Block netpoll from trying to do any rx path servicing. 1663 * If we don't do this there is a chance ndo_poll_controller 1664 * or ndo_poll may be running while we open the device 1665 */ 1666 netpoll_poll_disable(dev); 1667 1668 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1669 ret = notifier_to_errno(ret); 1670 if (ret) 1671 return ret; 1672 1673 set_bit(__LINK_STATE_START, &dev->state); 1674 1675 netdev_ops_assert_locked(dev); 1676 1677 if (ops->ndo_validate_addr) 1678 ret = ops->ndo_validate_addr(dev); 1679 1680 if (!ret && ops->ndo_open) 1681 ret = ops->ndo_open(dev); 1682 1683 netpoll_poll_enable(dev); 1684 1685 if (ret) 1686 clear_bit(__LINK_STATE_START, &dev->state); 1687 else { 1688 netif_set_up(dev, true); 1689 dev_set_rx_mode(dev); 1690 dev_activate(dev); 1691 add_device_randomness(dev->dev_addr, dev->addr_len); 1692 } 1693 1694 return ret; 1695 } 1696 1697 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) 1698 { 1699 int ret; 1700 1701 if (dev->flags & IFF_UP) 1702 return 0; 1703 1704 ret = __dev_open(dev, extack); 1705 if (ret < 0) 1706 return ret; 1707 1708 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1709 call_netdevice_notifiers(NETDEV_UP, dev); 1710 1711 return ret; 1712 } 1713 1714 static void __dev_close_many(struct list_head *head) 1715 { 1716 struct net_device *dev; 1717 1718 ASSERT_RTNL(); 1719 might_sleep(); 1720 1721 list_for_each_entry(dev, head, close_list) { 1722 /* Temporarily disable netpoll until the interface is down */ 1723 netpoll_poll_disable(dev); 1724 1725 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1726 1727 clear_bit(__LINK_STATE_START, &dev->state); 1728 1729 /* Synchronize to scheduled poll. We cannot touch poll list, it 1730 * can be even on different cpu. So just clear netif_running(). 1731 * 1732 * dev->stop() will invoke napi_disable() on all of it's 1733 * napi_struct instances on this device. 1734 */ 1735 smp_mb__after_atomic(); /* Commit netif_running(). */ 1736 } 1737 1738 dev_deactivate_many(head); 1739 1740 list_for_each_entry(dev, head, close_list) { 1741 const struct net_device_ops *ops = dev->netdev_ops; 1742 1743 /* 1744 * Call the device specific close. This cannot fail. 1745 * Only if device is UP 1746 * 1747 * We allow it to be called even after a DETACH hot-plug 1748 * event. 1749 */ 1750 1751 netdev_ops_assert_locked(dev); 1752 1753 if (ops->ndo_stop) 1754 ops->ndo_stop(dev); 1755 1756 netif_set_up(dev, false); 1757 netpoll_poll_enable(dev); 1758 } 1759 } 1760 1761 static void __dev_close(struct net_device *dev) 1762 { 1763 LIST_HEAD(single); 1764 1765 list_add(&dev->close_list, &single); 1766 __dev_close_many(&single); 1767 list_del(&single); 1768 } 1769 1770 void dev_close_many(struct list_head *head, bool unlink) 1771 { 1772 struct net_device *dev, *tmp; 1773 1774 /* Remove the devices that don't need to be closed */ 1775 list_for_each_entry_safe(dev, tmp, head, close_list) 1776 if (!(dev->flags & IFF_UP)) 1777 list_del_init(&dev->close_list); 1778 1779 __dev_close_many(head); 1780 1781 list_for_each_entry_safe(dev, tmp, head, close_list) { 1782 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1783 call_netdevice_notifiers(NETDEV_DOWN, dev); 1784 if (unlink) 1785 list_del_init(&dev->close_list); 1786 } 1787 } 1788 EXPORT_SYMBOL(dev_close_many); 1789 1790 void netif_close(struct net_device *dev) 1791 { 1792 if (dev->flags & IFF_UP) { 1793 LIST_HEAD(single); 1794 1795 list_add(&dev->close_list, &single); 1796 dev_close_many(&single, true); 1797 list_del(&single); 1798 } 1799 } 1800 EXPORT_SYMBOL(netif_close); 1801 1802 void netif_disable_lro(struct net_device *dev) 1803 { 1804 struct net_device *lower_dev; 1805 struct list_head *iter; 1806 1807 dev->wanted_features &= ~NETIF_F_LRO; 1808 netdev_update_features(dev); 1809 1810 if (unlikely(dev->features & NETIF_F_LRO)) 1811 netdev_WARN(dev, "failed to disable LRO!\n"); 1812 1813 netdev_for_each_lower_dev(dev, lower_dev, iter) { 1814 netdev_lock_ops(lower_dev); 1815 netif_disable_lro(lower_dev); 1816 netdev_unlock_ops(lower_dev); 1817 } 1818 } 1819 EXPORT_IPV6_MOD(netif_disable_lro); 1820 1821 /** 1822 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1823 * @dev: device 1824 * 1825 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1826 * called under RTNL. This is needed if Generic XDP is installed on 1827 * the device. 1828 */ 1829 static void dev_disable_gro_hw(struct net_device *dev) 1830 { 1831 dev->wanted_features &= ~NETIF_F_GRO_HW; 1832 netdev_update_features(dev); 1833 1834 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1835 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1836 } 1837 1838 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1839 { 1840 #define N(val) \ 1841 case NETDEV_##val: \ 1842 return "NETDEV_" __stringify(val); 1843 switch (cmd) { 1844 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1845 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1846 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1847 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1848 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1849 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1850 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1851 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1852 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1853 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1854 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1855 N(XDP_FEAT_CHANGE) 1856 } 1857 #undef N 1858 return "UNKNOWN_NETDEV_EVENT"; 1859 } 1860 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1861 1862 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1863 struct net_device *dev) 1864 { 1865 struct netdev_notifier_info info = { 1866 .dev = dev, 1867 }; 1868 1869 return nb->notifier_call(nb, val, &info); 1870 } 1871 1872 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1873 struct net_device *dev) 1874 { 1875 int err; 1876 1877 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1878 err = notifier_to_errno(err); 1879 if (err) 1880 return err; 1881 1882 if (!(dev->flags & IFF_UP)) 1883 return 0; 1884 1885 call_netdevice_notifier(nb, NETDEV_UP, dev); 1886 return 0; 1887 } 1888 1889 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1890 struct net_device *dev) 1891 { 1892 if (dev->flags & IFF_UP) { 1893 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1894 dev); 1895 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1896 } 1897 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1898 } 1899 1900 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1901 struct net *net) 1902 { 1903 struct net_device *dev; 1904 int err; 1905 1906 for_each_netdev(net, dev) { 1907 netdev_lock_ops(dev); 1908 err = call_netdevice_register_notifiers(nb, dev); 1909 netdev_unlock_ops(dev); 1910 if (err) 1911 goto rollback; 1912 } 1913 return 0; 1914 1915 rollback: 1916 for_each_netdev_continue_reverse(net, dev) 1917 call_netdevice_unregister_notifiers(nb, dev); 1918 return err; 1919 } 1920 1921 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1922 struct net *net) 1923 { 1924 struct net_device *dev; 1925 1926 for_each_netdev(net, dev) 1927 call_netdevice_unregister_notifiers(nb, dev); 1928 } 1929 1930 static int dev_boot_phase = 1; 1931 1932 /** 1933 * register_netdevice_notifier - register a network notifier block 1934 * @nb: notifier 1935 * 1936 * Register a notifier to be called when network device events occur. 1937 * The notifier passed is linked into the kernel structures and must 1938 * not be reused until it has been unregistered. A negative errno code 1939 * is returned on a failure. 1940 * 1941 * When registered all registration and up events are replayed 1942 * to the new notifier to allow device to have a race free 1943 * view of the network device list. 1944 */ 1945 1946 int register_netdevice_notifier(struct notifier_block *nb) 1947 { 1948 struct net *net; 1949 int err; 1950 1951 /* Close race with setup_net() and cleanup_net() */ 1952 down_write(&pernet_ops_rwsem); 1953 1954 /* When RTNL is removed, we need protection for netdev_chain. */ 1955 rtnl_lock(); 1956 1957 err = raw_notifier_chain_register(&netdev_chain, nb); 1958 if (err) 1959 goto unlock; 1960 if (dev_boot_phase) 1961 goto unlock; 1962 for_each_net(net) { 1963 __rtnl_net_lock(net); 1964 err = call_netdevice_register_net_notifiers(nb, net); 1965 __rtnl_net_unlock(net); 1966 if (err) 1967 goto rollback; 1968 } 1969 1970 unlock: 1971 rtnl_unlock(); 1972 up_write(&pernet_ops_rwsem); 1973 return err; 1974 1975 rollback: 1976 for_each_net_continue_reverse(net) { 1977 __rtnl_net_lock(net); 1978 call_netdevice_unregister_net_notifiers(nb, net); 1979 __rtnl_net_unlock(net); 1980 } 1981 1982 raw_notifier_chain_unregister(&netdev_chain, nb); 1983 goto unlock; 1984 } 1985 EXPORT_SYMBOL(register_netdevice_notifier); 1986 1987 /** 1988 * unregister_netdevice_notifier - unregister a network notifier block 1989 * @nb: notifier 1990 * 1991 * Unregister a notifier previously registered by 1992 * register_netdevice_notifier(). The notifier is unlinked into the 1993 * kernel structures and may then be reused. A negative errno code 1994 * is returned on a failure. 1995 * 1996 * After unregistering unregister and down device events are synthesized 1997 * for all devices on the device list to the removed notifier to remove 1998 * the need for special case cleanup code. 1999 */ 2000 2001 int unregister_netdevice_notifier(struct notifier_block *nb) 2002 { 2003 struct net *net; 2004 int err; 2005 2006 /* Close race with setup_net() and cleanup_net() */ 2007 down_write(&pernet_ops_rwsem); 2008 rtnl_lock(); 2009 err = raw_notifier_chain_unregister(&netdev_chain, nb); 2010 if (err) 2011 goto unlock; 2012 2013 for_each_net(net) { 2014 __rtnl_net_lock(net); 2015 call_netdevice_unregister_net_notifiers(nb, net); 2016 __rtnl_net_unlock(net); 2017 } 2018 2019 unlock: 2020 rtnl_unlock(); 2021 up_write(&pernet_ops_rwsem); 2022 return err; 2023 } 2024 EXPORT_SYMBOL(unregister_netdevice_notifier); 2025 2026 static int __register_netdevice_notifier_net(struct net *net, 2027 struct notifier_block *nb, 2028 bool ignore_call_fail) 2029 { 2030 int err; 2031 2032 err = raw_notifier_chain_register(&net->netdev_chain, nb); 2033 if (err) 2034 return err; 2035 if (dev_boot_phase) 2036 return 0; 2037 2038 err = call_netdevice_register_net_notifiers(nb, net); 2039 if (err && !ignore_call_fail) 2040 goto chain_unregister; 2041 2042 return 0; 2043 2044 chain_unregister: 2045 raw_notifier_chain_unregister(&net->netdev_chain, nb); 2046 return err; 2047 } 2048 2049 static int __unregister_netdevice_notifier_net(struct net *net, 2050 struct notifier_block *nb) 2051 { 2052 int err; 2053 2054 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 2055 if (err) 2056 return err; 2057 2058 call_netdevice_unregister_net_notifiers(nb, net); 2059 return 0; 2060 } 2061 2062 /** 2063 * register_netdevice_notifier_net - register a per-netns network notifier block 2064 * @net: network namespace 2065 * @nb: notifier 2066 * 2067 * Register a notifier to be called when network device events occur. 2068 * The notifier passed is linked into the kernel structures and must 2069 * not be reused until it has been unregistered. A negative errno code 2070 * is returned on a failure. 2071 * 2072 * When registered all registration and up events are replayed 2073 * to the new notifier to allow device to have a race free 2074 * view of the network device list. 2075 */ 2076 2077 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2078 { 2079 int err; 2080 2081 rtnl_net_lock(net); 2082 err = __register_netdevice_notifier_net(net, nb, false); 2083 rtnl_net_unlock(net); 2084 2085 return err; 2086 } 2087 EXPORT_SYMBOL(register_netdevice_notifier_net); 2088 2089 /** 2090 * unregister_netdevice_notifier_net - unregister a per-netns 2091 * network notifier block 2092 * @net: network namespace 2093 * @nb: notifier 2094 * 2095 * Unregister a notifier previously registered by 2096 * register_netdevice_notifier_net(). The notifier is unlinked from the 2097 * kernel structures and may then be reused. A negative errno code 2098 * is returned on a failure. 2099 * 2100 * After unregistering unregister and down device events are synthesized 2101 * for all devices on the device list to the removed notifier to remove 2102 * the need for special case cleanup code. 2103 */ 2104 2105 int unregister_netdevice_notifier_net(struct net *net, 2106 struct notifier_block *nb) 2107 { 2108 int err; 2109 2110 rtnl_net_lock(net); 2111 err = __unregister_netdevice_notifier_net(net, nb); 2112 rtnl_net_unlock(net); 2113 2114 return err; 2115 } 2116 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2117 2118 static void __move_netdevice_notifier_net(struct net *src_net, 2119 struct net *dst_net, 2120 struct notifier_block *nb) 2121 { 2122 __unregister_netdevice_notifier_net(src_net, nb); 2123 __register_netdevice_notifier_net(dst_net, nb, true); 2124 } 2125 2126 static void rtnl_net_dev_lock(struct net_device *dev) 2127 { 2128 bool again; 2129 2130 do { 2131 struct net *net; 2132 2133 again = false; 2134 2135 /* netns might be being dismantled. */ 2136 rcu_read_lock(); 2137 net = dev_net_rcu(dev); 2138 net_passive_inc(net); 2139 rcu_read_unlock(); 2140 2141 rtnl_net_lock(net); 2142 2143 #ifdef CONFIG_NET_NS 2144 /* dev might have been moved to another netns. */ 2145 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) { 2146 rtnl_net_unlock(net); 2147 net_passive_dec(net); 2148 again = true; 2149 } 2150 #endif 2151 } while (again); 2152 } 2153 2154 static void rtnl_net_dev_unlock(struct net_device *dev) 2155 { 2156 struct net *net = dev_net(dev); 2157 2158 rtnl_net_unlock(net); 2159 net_passive_dec(net); 2160 } 2161 2162 int register_netdevice_notifier_dev_net(struct net_device *dev, 2163 struct notifier_block *nb, 2164 struct netdev_net_notifier *nn) 2165 { 2166 int err; 2167 2168 rtnl_net_dev_lock(dev); 2169 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2170 if (!err) { 2171 nn->nb = nb; 2172 list_add(&nn->list, &dev->net_notifier_list); 2173 } 2174 rtnl_net_dev_unlock(dev); 2175 2176 return err; 2177 } 2178 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2179 2180 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2181 struct notifier_block *nb, 2182 struct netdev_net_notifier *nn) 2183 { 2184 int err; 2185 2186 rtnl_net_dev_lock(dev); 2187 list_del(&nn->list); 2188 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2189 rtnl_net_dev_unlock(dev); 2190 2191 return err; 2192 } 2193 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2194 2195 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2196 struct net *net) 2197 { 2198 struct netdev_net_notifier *nn; 2199 2200 list_for_each_entry(nn, &dev->net_notifier_list, list) 2201 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2202 } 2203 2204 /** 2205 * call_netdevice_notifiers_info - call all network notifier blocks 2206 * @val: value passed unmodified to notifier function 2207 * @info: notifier information data 2208 * 2209 * Call all network notifier blocks. Parameters and return value 2210 * are as for raw_notifier_call_chain(). 2211 */ 2212 2213 int call_netdevice_notifiers_info(unsigned long val, 2214 struct netdev_notifier_info *info) 2215 { 2216 struct net *net = dev_net(info->dev); 2217 int ret; 2218 2219 ASSERT_RTNL(); 2220 2221 /* Run per-netns notifier block chain first, then run the global one. 2222 * Hopefully, one day, the global one is going to be removed after 2223 * all notifier block registrators get converted to be per-netns. 2224 */ 2225 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2226 if (ret & NOTIFY_STOP_MASK) 2227 return ret; 2228 return raw_notifier_call_chain(&netdev_chain, val, info); 2229 } 2230 2231 /** 2232 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2233 * for and rollback on error 2234 * @val_up: value passed unmodified to notifier function 2235 * @val_down: value passed unmodified to the notifier function when 2236 * recovering from an error on @val_up 2237 * @info: notifier information data 2238 * 2239 * Call all per-netns network notifier blocks, but not notifier blocks on 2240 * the global notifier chain. Parameters and return value are as for 2241 * raw_notifier_call_chain_robust(). 2242 */ 2243 2244 static int 2245 call_netdevice_notifiers_info_robust(unsigned long val_up, 2246 unsigned long val_down, 2247 struct netdev_notifier_info *info) 2248 { 2249 struct net *net = dev_net(info->dev); 2250 2251 ASSERT_RTNL(); 2252 2253 return raw_notifier_call_chain_robust(&net->netdev_chain, 2254 val_up, val_down, info); 2255 } 2256 2257 static int call_netdevice_notifiers_extack(unsigned long val, 2258 struct net_device *dev, 2259 struct netlink_ext_ack *extack) 2260 { 2261 struct netdev_notifier_info info = { 2262 .dev = dev, 2263 .extack = extack, 2264 }; 2265 2266 return call_netdevice_notifiers_info(val, &info); 2267 } 2268 2269 /** 2270 * call_netdevice_notifiers - call all network notifier blocks 2271 * @val: value passed unmodified to notifier function 2272 * @dev: net_device pointer passed unmodified to notifier function 2273 * 2274 * Call all network notifier blocks. Parameters and return value 2275 * are as for raw_notifier_call_chain(). 2276 */ 2277 2278 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2279 { 2280 return call_netdevice_notifiers_extack(val, dev, NULL); 2281 } 2282 EXPORT_SYMBOL(call_netdevice_notifiers); 2283 2284 /** 2285 * call_netdevice_notifiers_mtu - call all network notifier blocks 2286 * @val: value passed unmodified to notifier function 2287 * @dev: net_device pointer passed unmodified to notifier function 2288 * @arg: additional u32 argument passed to the notifier function 2289 * 2290 * Call all network notifier blocks. Parameters and return value 2291 * are as for raw_notifier_call_chain(). 2292 */ 2293 static int call_netdevice_notifiers_mtu(unsigned long val, 2294 struct net_device *dev, u32 arg) 2295 { 2296 struct netdev_notifier_info_ext info = { 2297 .info.dev = dev, 2298 .ext.mtu = arg, 2299 }; 2300 2301 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2302 2303 return call_netdevice_notifiers_info(val, &info.info); 2304 } 2305 2306 #ifdef CONFIG_NET_INGRESS 2307 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2308 2309 void net_inc_ingress_queue(void) 2310 { 2311 static_branch_inc(&ingress_needed_key); 2312 } 2313 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2314 2315 void net_dec_ingress_queue(void) 2316 { 2317 static_branch_dec(&ingress_needed_key); 2318 } 2319 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2320 #endif 2321 2322 #ifdef CONFIG_NET_EGRESS 2323 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2324 2325 void net_inc_egress_queue(void) 2326 { 2327 static_branch_inc(&egress_needed_key); 2328 } 2329 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2330 2331 void net_dec_egress_queue(void) 2332 { 2333 static_branch_dec(&egress_needed_key); 2334 } 2335 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2336 #endif 2337 2338 #ifdef CONFIG_NET_CLS_ACT 2339 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); 2340 EXPORT_SYMBOL(tcf_sw_enabled_key); 2341 #endif 2342 2343 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2344 EXPORT_SYMBOL(netstamp_needed_key); 2345 #ifdef CONFIG_JUMP_LABEL 2346 static atomic_t netstamp_needed_deferred; 2347 static atomic_t netstamp_wanted; 2348 static void netstamp_clear(struct work_struct *work) 2349 { 2350 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2351 int wanted; 2352 2353 wanted = atomic_add_return(deferred, &netstamp_wanted); 2354 if (wanted > 0) 2355 static_branch_enable(&netstamp_needed_key); 2356 else 2357 static_branch_disable(&netstamp_needed_key); 2358 } 2359 static DECLARE_WORK(netstamp_work, netstamp_clear); 2360 #endif 2361 2362 void net_enable_timestamp(void) 2363 { 2364 #ifdef CONFIG_JUMP_LABEL 2365 int wanted = atomic_read(&netstamp_wanted); 2366 2367 while (wanted > 0) { 2368 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2369 return; 2370 } 2371 atomic_inc(&netstamp_needed_deferred); 2372 schedule_work(&netstamp_work); 2373 #else 2374 static_branch_inc(&netstamp_needed_key); 2375 #endif 2376 } 2377 EXPORT_SYMBOL(net_enable_timestamp); 2378 2379 void net_disable_timestamp(void) 2380 { 2381 #ifdef CONFIG_JUMP_LABEL 2382 int wanted = atomic_read(&netstamp_wanted); 2383 2384 while (wanted > 1) { 2385 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2386 return; 2387 } 2388 atomic_dec(&netstamp_needed_deferred); 2389 schedule_work(&netstamp_work); 2390 #else 2391 static_branch_dec(&netstamp_needed_key); 2392 #endif 2393 } 2394 EXPORT_SYMBOL(net_disable_timestamp); 2395 2396 static inline void net_timestamp_set(struct sk_buff *skb) 2397 { 2398 skb->tstamp = 0; 2399 skb->tstamp_type = SKB_CLOCK_REALTIME; 2400 if (static_branch_unlikely(&netstamp_needed_key)) 2401 skb->tstamp = ktime_get_real(); 2402 } 2403 2404 #define net_timestamp_check(COND, SKB) \ 2405 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2406 if ((COND) && !(SKB)->tstamp) \ 2407 (SKB)->tstamp = ktime_get_real(); \ 2408 } \ 2409 2410 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2411 { 2412 return __is_skb_forwardable(dev, skb, true); 2413 } 2414 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2415 2416 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2417 bool check_mtu) 2418 { 2419 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2420 2421 if (likely(!ret)) { 2422 skb->protocol = eth_type_trans(skb, dev); 2423 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2424 } 2425 2426 return ret; 2427 } 2428 2429 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2430 { 2431 return __dev_forward_skb2(dev, skb, true); 2432 } 2433 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2434 2435 /** 2436 * dev_forward_skb - loopback an skb to another netif 2437 * 2438 * @dev: destination network device 2439 * @skb: buffer to forward 2440 * 2441 * return values: 2442 * NET_RX_SUCCESS (no congestion) 2443 * NET_RX_DROP (packet was dropped, but freed) 2444 * 2445 * dev_forward_skb can be used for injecting an skb from the 2446 * start_xmit function of one device into the receive queue 2447 * of another device. 2448 * 2449 * The receiving device may be in another namespace, so 2450 * we have to clear all information in the skb that could 2451 * impact namespace isolation. 2452 */ 2453 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2454 { 2455 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2456 } 2457 EXPORT_SYMBOL_GPL(dev_forward_skb); 2458 2459 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2460 { 2461 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2462 } 2463 2464 static inline int deliver_skb(struct sk_buff *skb, 2465 struct packet_type *pt_prev, 2466 struct net_device *orig_dev) 2467 { 2468 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2469 return -ENOMEM; 2470 refcount_inc(&skb->users); 2471 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2472 } 2473 2474 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2475 struct packet_type **pt, 2476 struct net_device *orig_dev, 2477 __be16 type, 2478 struct list_head *ptype_list) 2479 { 2480 struct packet_type *ptype, *pt_prev = *pt; 2481 2482 list_for_each_entry_rcu(ptype, ptype_list, list) { 2483 if (ptype->type != type) 2484 continue; 2485 if (pt_prev) 2486 deliver_skb(skb, pt_prev, orig_dev); 2487 pt_prev = ptype; 2488 } 2489 *pt = pt_prev; 2490 } 2491 2492 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2493 { 2494 if (!ptype->af_packet_priv || !skb->sk) 2495 return false; 2496 2497 if (ptype->id_match) 2498 return ptype->id_match(ptype, skb->sk); 2499 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2500 return true; 2501 2502 return false; 2503 } 2504 2505 /** 2506 * dev_nit_active_rcu - return true if any network interface taps are in use 2507 * 2508 * The caller must hold the RCU lock 2509 * 2510 * @dev: network device to check for the presence of taps 2511 */ 2512 bool dev_nit_active_rcu(const struct net_device *dev) 2513 { 2514 /* Callers may hold either RCU or RCU BH lock */ 2515 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 2516 2517 return !list_empty(&dev_net(dev)->ptype_all) || 2518 !list_empty(&dev->ptype_all); 2519 } 2520 EXPORT_SYMBOL_GPL(dev_nit_active_rcu); 2521 2522 /* 2523 * Support routine. Sends outgoing frames to any network 2524 * taps currently in use. 2525 */ 2526 2527 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2528 { 2529 struct packet_type *ptype, *pt_prev = NULL; 2530 struct list_head *ptype_list; 2531 struct sk_buff *skb2 = NULL; 2532 2533 rcu_read_lock(); 2534 ptype_list = &dev_net_rcu(dev)->ptype_all; 2535 again: 2536 list_for_each_entry_rcu(ptype, ptype_list, list) { 2537 if (READ_ONCE(ptype->ignore_outgoing)) 2538 continue; 2539 2540 /* Never send packets back to the socket 2541 * they originated from - MvS (miquels@drinkel.ow.org) 2542 */ 2543 if (skb_loop_sk(ptype, skb)) 2544 continue; 2545 2546 if (pt_prev) { 2547 deliver_skb(skb2, pt_prev, skb->dev); 2548 pt_prev = ptype; 2549 continue; 2550 } 2551 2552 /* need to clone skb, done only once */ 2553 skb2 = skb_clone(skb, GFP_ATOMIC); 2554 if (!skb2) 2555 goto out_unlock; 2556 2557 net_timestamp_set(skb2); 2558 2559 /* skb->nh should be correctly 2560 * set by sender, so that the second statement is 2561 * just protection against buggy protocols. 2562 */ 2563 skb_reset_mac_header(skb2); 2564 2565 if (skb_network_header(skb2) < skb2->data || 2566 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2567 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2568 ntohs(skb2->protocol), 2569 dev->name); 2570 skb_reset_network_header(skb2); 2571 } 2572 2573 skb2->transport_header = skb2->network_header; 2574 skb2->pkt_type = PACKET_OUTGOING; 2575 pt_prev = ptype; 2576 } 2577 2578 if (ptype_list != &dev->ptype_all) { 2579 ptype_list = &dev->ptype_all; 2580 goto again; 2581 } 2582 out_unlock: 2583 if (pt_prev) { 2584 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2585 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2586 else 2587 kfree_skb(skb2); 2588 } 2589 rcu_read_unlock(); 2590 } 2591 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2592 2593 /** 2594 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2595 * @dev: Network device 2596 * @txq: number of queues available 2597 * 2598 * If real_num_tx_queues is changed the tc mappings may no longer be 2599 * valid. To resolve this verify the tc mapping remains valid and if 2600 * not NULL the mapping. With no priorities mapping to this 2601 * offset/count pair it will no longer be used. In the worst case TC0 2602 * is invalid nothing can be done so disable priority mappings. If is 2603 * expected that drivers will fix this mapping if they can before 2604 * calling netif_set_real_num_tx_queues. 2605 */ 2606 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2607 { 2608 int i; 2609 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2610 2611 /* If TC0 is invalidated disable TC mapping */ 2612 if (tc->offset + tc->count > txq) { 2613 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2614 dev->num_tc = 0; 2615 return; 2616 } 2617 2618 /* Invalidated prio to tc mappings set to TC0 */ 2619 for (i = 1; i < TC_BITMASK + 1; i++) { 2620 int q = netdev_get_prio_tc_map(dev, i); 2621 2622 tc = &dev->tc_to_txq[q]; 2623 if (tc->offset + tc->count > txq) { 2624 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2625 i, q); 2626 netdev_set_prio_tc_map(dev, i, 0); 2627 } 2628 } 2629 } 2630 2631 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2632 { 2633 if (dev->num_tc) { 2634 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2635 int i; 2636 2637 /* walk through the TCs and see if it falls into any of them */ 2638 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2639 if ((txq - tc->offset) < tc->count) 2640 return i; 2641 } 2642 2643 /* didn't find it, just return -1 to indicate no match */ 2644 return -1; 2645 } 2646 2647 return 0; 2648 } 2649 EXPORT_SYMBOL(netdev_txq_to_tc); 2650 2651 #ifdef CONFIG_XPS 2652 static struct static_key xps_needed __read_mostly; 2653 static struct static_key xps_rxqs_needed __read_mostly; 2654 static DEFINE_MUTEX(xps_map_mutex); 2655 #define xmap_dereference(P) \ 2656 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2657 2658 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2659 struct xps_dev_maps *old_maps, int tci, u16 index) 2660 { 2661 struct xps_map *map = NULL; 2662 int pos; 2663 2664 map = xmap_dereference(dev_maps->attr_map[tci]); 2665 if (!map) 2666 return false; 2667 2668 for (pos = map->len; pos--;) { 2669 if (map->queues[pos] != index) 2670 continue; 2671 2672 if (map->len > 1) { 2673 map->queues[pos] = map->queues[--map->len]; 2674 break; 2675 } 2676 2677 if (old_maps) 2678 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2679 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2680 kfree_rcu(map, rcu); 2681 return false; 2682 } 2683 2684 return true; 2685 } 2686 2687 static bool remove_xps_queue_cpu(struct net_device *dev, 2688 struct xps_dev_maps *dev_maps, 2689 int cpu, u16 offset, u16 count) 2690 { 2691 int num_tc = dev_maps->num_tc; 2692 bool active = false; 2693 int tci; 2694 2695 for (tci = cpu * num_tc; num_tc--; tci++) { 2696 int i, j; 2697 2698 for (i = count, j = offset; i--; j++) { 2699 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2700 break; 2701 } 2702 2703 active |= i < 0; 2704 } 2705 2706 return active; 2707 } 2708 2709 static void reset_xps_maps(struct net_device *dev, 2710 struct xps_dev_maps *dev_maps, 2711 enum xps_map_type type) 2712 { 2713 static_key_slow_dec_cpuslocked(&xps_needed); 2714 if (type == XPS_RXQS) 2715 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2716 2717 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2718 2719 kfree_rcu(dev_maps, rcu); 2720 } 2721 2722 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2723 u16 offset, u16 count) 2724 { 2725 struct xps_dev_maps *dev_maps; 2726 bool active = false; 2727 int i, j; 2728 2729 dev_maps = xmap_dereference(dev->xps_maps[type]); 2730 if (!dev_maps) 2731 return; 2732 2733 for (j = 0; j < dev_maps->nr_ids; j++) 2734 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2735 if (!active) 2736 reset_xps_maps(dev, dev_maps, type); 2737 2738 if (type == XPS_CPUS) { 2739 for (i = offset + (count - 1); count--; i--) 2740 netdev_queue_numa_node_write( 2741 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2742 } 2743 } 2744 2745 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2746 u16 count) 2747 { 2748 if (!static_key_false(&xps_needed)) 2749 return; 2750 2751 cpus_read_lock(); 2752 mutex_lock(&xps_map_mutex); 2753 2754 if (static_key_false(&xps_rxqs_needed)) 2755 clean_xps_maps(dev, XPS_RXQS, offset, count); 2756 2757 clean_xps_maps(dev, XPS_CPUS, offset, count); 2758 2759 mutex_unlock(&xps_map_mutex); 2760 cpus_read_unlock(); 2761 } 2762 2763 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2764 { 2765 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2766 } 2767 2768 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2769 u16 index, bool is_rxqs_map) 2770 { 2771 struct xps_map *new_map; 2772 int alloc_len = XPS_MIN_MAP_ALLOC; 2773 int i, pos; 2774 2775 for (pos = 0; map && pos < map->len; pos++) { 2776 if (map->queues[pos] != index) 2777 continue; 2778 return map; 2779 } 2780 2781 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2782 if (map) { 2783 if (pos < map->alloc_len) 2784 return map; 2785 2786 alloc_len = map->alloc_len * 2; 2787 } 2788 2789 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2790 * map 2791 */ 2792 if (is_rxqs_map) 2793 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2794 else 2795 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2796 cpu_to_node(attr_index)); 2797 if (!new_map) 2798 return NULL; 2799 2800 for (i = 0; i < pos; i++) 2801 new_map->queues[i] = map->queues[i]; 2802 new_map->alloc_len = alloc_len; 2803 new_map->len = pos; 2804 2805 return new_map; 2806 } 2807 2808 /* Copy xps maps at a given index */ 2809 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2810 struct xps_dev_maps *new_dev_maps, int index, 2811 int tc, bool skip_tc) 2812 { 2813 int i, tci = index * dev_maps->num_tc; 2814 struct xps_map *map; 2815 2816 /* copy maps belonging to foreign traffic classes */ 2817 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2818 if (i == tc && skip_tc) 2819 continue; 2820 2821 /* fill in the new device map from the old device map */ 2822 map = xmap_dereference(dev_maps->attr_map[tci]); 2823 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2824 } 2825 } 2826 2827 /* Must be called under cpus_read_lock */ 2828 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2829 u16 index, enum xps_map_type type) 2830 { 2831 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2832 const unsigned long *online_mask = NULL; 2833 bool active = false, copy = false; 2834 int i, j, tci, numa_node_id = -2; 2835 int maps_sz, num_tc = 1, tc = 0; 2836 struct xps_map *map, *new_map; 2837 unsigned int nr_ids; 2838 2839 WARN_ON_ONCE(index >= dev->num_tx_queues); 2840 2841 if (dev->num_tc) { 2842 /* Do not allow XPS on subordinate device directly */ 2843 num_tc = dev->num_tc; 2844 if (num_tc < 0) 2845 return -EINVAL; 2846 2847 /* If queue belongs to subordinate dev use its map */ 2848 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2849 2850 tc = netdev_txq_to_tc(dev, index); 2851 if (tc < 0) 2852 return -EINVAL; 2853 } 2854 2855 mutex_lock(&xps_map_mutex); 2856 2857 dev_maps = xmap_dereference(dev->xps_maps[type]); 2858 if (type == XPS_RXQS) { 2859 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2860 nr_ids = dev->num_rx_queues; 2861 } else { 2862 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2863 if (num_possible_cpus() > 1) 2864 online_mask = cpumask_bits(cpu_online_mask); 2865 nr_ids = nr_cpu_ids; 2866 } 2867 2868 if (maps_sz < L1_CACHE_BYTES) 2869 maps_sz = L1_CACHE_BYTES; 2870 2871 /* The old dev_maps could be larger or smaller than the one we're 2872 * setting up now, as dev->num_tc or nr_ids could have been updated in 2873 * between. We could try to be smart, but let's be safe instead and only 2874 * copy foreign traffic classes if the two map sizes match. 2875 */ 2876 if (dev_maps && 2877 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2878 copy = true; 2879 2880 /* allocate memory for queue storage */ 2881 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2882 j < nr_ids;) { 2883 if (!new_dev_maps) { 2884 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2885 if (!new_dev_maps) { 2886 mutex_unlock(&xps_map_mutex); 2887 return -ENOMEM; 2888 } 2889 2890 new_dev_maps->nr_ids = nr_ids; 2891 new_dev_maps->num_tc = num_tc; 2892 } 2893 2894 tci = j * num_tc + tc; 2895 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2896 2897 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2898 if (!map) 2899 goto error; 2900 2901 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2902 } 2903 2904 if (!new_dev_maps) 2905 goto out_no_new_maps; 2906 2907 if (!dev_maps) { 2908 /* Increment static keys at most once per type */ 2909 static_key_slow_inc_cpuslocked(&xps_needed); 2910 if (type == XPS_RXQS) 2911 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2912 } 2913 2914 for (j = 0; j < nr_ids; j++) { 2915 bool skip_tc = false; 2916 2917 tci = j * num_tc + tc; 2918 if (netif_attr_test_mask(j, mask, nr_ids) && 2919 netif_attr_test_online(j, online_mask, nr_ids)) { 2920 /* add tx-queue to CPU/rx-queue maps */ 2921 int pos = 0; 2922 2923 skip_tc = true; 2924 2925 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2926 while ((pos < map->len) && (map->queues[pos] != index)) 2927 pos++; 2928 2929 if (pos == map->len) 2930 map->queues[map->len++] = index; 2931 #ifdef CONFIG_NUMA 2932 if (type == XPS_CPUS) { 2933 if (numa_node_id == -2) 2934 numa_node_id = cpu_to_node(j); 2935 else if (numa_node_id != cpu_to_node(j)) 2936 numa_node_id = -1; 2937 } 2938 #endif 2939 } 2940 2941 if (copy) 2942 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2943 skip_tc); 2944 } 2945 2946 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2947 2948 /* Cleanup old maps */ 2949 if (!dev_maps) 2950 goto out_no_old_maps; 2951 2952 for (j = 0; j < dev_maps->nr_ids; j++) { 2953 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2954 map = xmap_dereference(dev_maps->attr_map[tci]); 2955 if (!map) 2956 continue; 2957 2958 if (copy) { 2959 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2960 if (map == new_map) 2961 continue; 2962 } 2963 2964 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2965 kfree_rcu(map, rcu); 2966 } 2967 } 2968 2969 old_dev_maps = dev_maps; 2970 2971 out_no_old_maps: 2972 dev_maps = new_dev_maps; 2973 active = true; 2974 2975 out_no_new_maps: 2976 if (type == XPS_CPUS) 2977 /* update Tx queue numa node */ 2978 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2979 (numa_node_id >= 0) ? 2980 numa_node_id : NUMA_NO_NODE); 2981 2982 if (!dev_maps) 2983 goto out_no_maps; 2984 2985 /* removes tx-queue from unused CPUs/rx-queues */ 2986 for (j = 0; j < dev_maps->nr_ids; j++) { 2987 tci = j * dev_maps->num_tc; 2988 2989 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2990 if (i == tc && 2991 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2992 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2993 continue; 2994 2995 active |= remove_xps_queue(dev_maps, 2996 copy ? old_dev_maps : NULL, 2997 tci, index); 2998 } 2999 } 3000 3001 if (old_dev_maps) 3002 kfree_rcu(old_dev_maps, rcu); 3003 3004 /* free map if not active */ 3005 if (!active) 3006 reset_xps_maps(dev, dev_maps, type); 3007 3008 out_no_maps: 3009 mutex_unlock(&xps_map_mutex); 3010 3011 return 0; 3012 error: 3013 /* remove any maps that we added */ 3014 for (j = 0; j < nr_ids; j++) { 3015 for (i = num_tc, tci = j * num_tc; i--; tci++) { 3016 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 3017 map = copy ? 3018 xmap_dereference(dev_maps->attr_map[tci]) : 3019 NULL; 3020 if (new_map && new_map != map) 3021 kfree(new_map); 3022 } 3023 } 3024 3025 mutex_unlock(&xps_map_mutex); 3026 3027 kfree(new_dev_maps); 3028 return -ENOMEM; 3029 } 3030 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 3031 3032 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3033 u16 index) 3034 { 3035 int ret; 3036 3037 cpus_read_lock(); 3038 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 3039 cpus_read_unlock(); 3040 3041 return ret; 3042 } 3043 EXPORT_SYMBOL(netif_set_xps_queue); 3044 3045 #endif 3046 static void netdev_unbind_all_sb_channels(struct net_device *dev) 3047 { 3048 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3049 3050 /* Unbind any subordinate channels */ 3051 while (txq-- != &dev->_tx[0]) { 3052 if (txq->sb_dev) 3053 netdev_unbind_sb_channel(dev, txq->sb_dev); 3054 } 3055 } 3056 3057 void netdev_reset_tc(struct net_device *dev) 3058 { 3059 #ifdef CONFIG_XPS 3060 netif_reset_xps_queues_gt(dev, 0); 3061 #endif 3062 netdev_unbind_all_sb_channels(dev); 3063 3064 /* Reset TC configuration of device */ 3065 dev->num_tc = 0; 3066 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 3067 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 3068 } 3069 EXPORT_SYMBOL(netdev_reset_tc); 3070 3071 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 3072 { 3073 if (tc >= dev->num_tc) 3074 return -EINVAL; 3075 3076 #ifdef CONFIG_XPS 3077 netif_reset_xps_queues(dev, offset, count); 3078 #endif 3079 dev->tc_to_txq[tc].count = count; 3080 dev->tc_to_txq[tc].offset = offset; 3081 return 0; 3082 } 3083 EXPORT_SYMBOL(netdev_set_tc_queue); 3084 3085 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 3086 { 3087 if (num_tc > TC_MAX_QUEUE) 3088 return -EINVAL; 3089 3090 #ifdef CONFIG_XPS 3091 netif_reset_xps_queues_gt(dev, 0); 3092 #endif 3093 netdev_unbind_all_sb_channels(dev); 3094 3095 dev->num_tc = num_tc; 3096 return 0; 3097 } 3098 EXPORT_SYMBOL(netdev_set_num_tc); 3099 3100 void netdev_unbind_sb_channel(struct net_device *dev, 3101 struct net_device *sb_dev) 3102 { 3103 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3104 3105 #ifdef CONFIG_XPS 3106 netif_reset_xps_queues_gt(sb_dev, 0); 3107 #endif 3108 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 3109 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 3110 3111 while (txq-- != &dev->_tx[0]) { 3112 if (txq->sb_dev == sb_dev) 3113 txq->sb_dev = NULL; 3114 } 3115 } 3116 EXPORT_SYMBOL(netdev_unbind_sb_channel); 3117 3118 int netdev_bind_sb_channel_queue(struct net_device *dev, 3119 struct net_device *sb_dev, 3120 u8 tc, u16 count, u16 offset) 3121 { 3122 /* Make certain the sb_dev and dev are already configured */ 3123 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 3124 return -EINVAL; 3125 3126 /* We cannot hand out queues we don't have */ 3127 if ((offset + count) > dev->real_num_tx_queues) 3128 return -EINVAL; 3129 3130 /* Record the mapping */ 3131 sb_dev->tc_to_txq[tc].count = count; 3132 sb_dev->tc_to_txq[tc].offset = offset; 3133 3134 /* Provide a way for Tx queue to find the tc_to_txq map or 3135 * XPS map for itself. 3136 */ 3137 while (count--) 3138 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 3139 3140 return 0; 3141 } 3142 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3143 3144 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3145 { 3146 /* Do not use a multiqueue device to represent a subordinate channel */ 3147 if (netif_is_multiqueue(dev)) 3148 return -ENODEV; 3149 3150 /* We allow channels 1 - 32767 to be used for subordinate channels. 3151 * Channel 0 is meant to be "native" mode and used only to represent 3152 * the main root device. We allow writing 0 to reset the device back 3153 * to normal mode after being used as a subordinate channel. 3154 */ 3155 if (channel > S16_MAX) 3156 return -EINVAL; 3157 3158 dev->num_tc = -channel; 3159 3160 return 0; 3161 } 3162 EXPORT_SYMBOL(netdev_set_sb_channel); 3163 3164 /* 3165 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3166 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3167 */ 3168 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3169 { 3170 bool disabling; 3171 int rc; 3172 3173 disabling = txq < dev->real_num_tx_queues; 3174 3175 if (txq < 1 || txq > dev->num_tx_queues) 3176 return -EINVAL; 3177 3178 if (dev->reg_state == NETREG_REGISTERED || 3179 dev->reg_state == NETREG_UNREGISTERING) { 3180 netdev_ops_assert_locked(dev); 3181 3182 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3183 txq); 3184 if (rc) 3185 return rc; 3186 3187 if (dev->num_tc) 3188 netif_setup_tc(dev, txq); 3189 3190 net_shaper_set_real_num_tx_queues(dev, txq); 3191 3192 dev_qdisc_change_real_num_tx(dev, txq); 3193 3194 dev->real_num_tx_queues = txq; 3195 3196 if (disabling) { 3197 synchronize_net(); 3198 qdisc_reset_all_tx_gt(dev, txq); 3199 #ifdef CONFIG_XPS 3200 netif_reset_xps_queues_gt(dev, txq); 3201 #endif 3202 } 3203 } else { 3204 dev->real_num_tx_queues = txq; 3205 } 3206 3207 return 0; 3208 } 3209 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3210 3211 /** 3212 * netif_set_real_num_rx_queues - set actual number of RX queues used 3213 * @dev: Network device 3214 * @rxq: Actual number of RX queues 3215 * 3216 * This must be called either with the rtnl_lock held or before 3217 * registration of the net device. Returns 0 on success, or a 3218 * negative error code. If called before registration, it always 3219 * succeeds. 3220 */ 3221 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3222 { 3223 int rc; 3224 3225 if (rxq < 1 || rxq > dev->num_rx_queues) 3226 return -EINVAL; 3227 3228 if (dev->reg_state == NETREG_REGISTERED) { 3229 netdev_ops_assert_locked(dev); 3230 3231 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3232 rxq); 3233 if (rc) 3234 return rc; 3235 } 3236 3237 dev->real_num_rx_queues = rxq; 3238 return 0; 3239 } 3240 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3241 3242 /** 3243 * netif_set_real_num_queues - set actual number of RX and TX queues used 3244 * @dev: Network device 3245 * @txq: Actual number of TX queues 3246 * @rxq: Actual number of RX queues 3247 * 3248 * Set the real number of both TX and RX queues. 3249 * Does nothing if the number of queues is already correct. 3250 */ 3251 int netif_set_real_num_queues(struct net_device *dev, 3252 unsigned int txq, unsigned int rxq) 3253 { 3254 unsigned int old_rxq = dev->real_num_rx_queues; 3255 int err; 3256 3257 if (txq < 1 || txq > dev->num_tx_queues || 3258 rxq < 1 || rxq > dev->num_rx_queues) 3259 return -EINVAL; 3260 3261 /* Start from increases, so the error path only does decreases - 3262 * decreases can't fail. 3263 */ 3264 if (rxq > dev->real_num_rx_queues) { 3265 err = netif_set_real_num_rx_queues(dev, rxq); 3266 if (err) 3267 return err; 3268 } 3269 if (txq > dev->real_num_tx_queues) { 3270 err = netif_set_real_num_tx_queues(dev, txq); 3271 if (err) 3272 goto undo_rx; 3273 } 3274 if (rxq < dev->real_num_rx_queues) 3275 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3276 if (txq < dev->real_num_tx_queues) 3277 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3278 3279 return 0; 3280 undo_rx: 3281 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3282 return err; 3283 } 3284 EXPORT_SYMBOL(netif_set_real_num_queues); 3285 3286 /** 3287 * netif_set_tso_max_size() - set the max size of TSO frames supported 3288 * @dev: netdev to update 3289 * @size: max skb->len of a TSO frame 3290 * 3291 * Set the limit on the size of TSO super-frames the device can handle. 3292 * Unless explicitly set the stack will assume the value of 3293 * %GSO_LEGACY_MAX_SIZE. 3294 */ 3295 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3296 { 3297 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3298 if (size < READ_ONCE(dev->gso_max_size)) 3299 netif_set_gso_max_size(dev, size); 3300 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3301 netif_set_gso_ipv4_max_size(dev, size); 3302 } 3303 EXPORT_SYMBOL(netif_set_tso_max_size); 3304 3305 /** 3306 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3307 * @dev: netdev to update 3308 * @segs: max number of TCP segments 3309 * 3310 * Set the limit on the number of TCP segments the device can generate from 3311 * a single TSO super-frame. 3312 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3313 */ 3314 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3315 { 3316 dev->tso_max_segs = segs; 3317 if (segs < READ_ONCE(dev->gso_max_segs)) 3318 netif_set_gso_max_segs(dev, segs); 3319 } 3320 EXPORT_SYMBOL(netif_set_tso_max_segs); 3321 3322 /** 3323 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3324 * @to: netdev to update 3325 * @from: netdev from which to copy the limits 3326 */ 3327 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3328 { 3329 netif_set_tso_max_size(to, from->tso_max_size); 3330 netif_set_tso_max_segs(to, from->tso_max_segs); 3331 } 3332 EXPORT_SYMBOL(netif_inherit_tso_max); 3333 3334 /** 3335 * netif_get_num_default_rss_queues - default number of RSS queues 3336 * 3337 * Default value is the number of physical cores if there are only 1 or 2, or 3338 * divided by 2 if there are more. 3339 */ 3340 int netif_get_num_default_rss_queues(void) 3341 { 3342 cpumask_var_t cpus; 3343 int cpu, count = 0; 3344 3345 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3346 return 1; 3347 3348 cpumask_copy(cpus, cpu_online_mask); 3349 for_each_cpu(cpu, cpus) { 3350 ++count; 3351 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3352 } 3353 free_cpumask_var(cpus); 3354 3355 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3356 } 3357 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3358 3359 static void __netif_reschedule(struct Qdisc *q) 3360 { 3361 struct softnet_data *sd; 3362 unsigned long flags; 3363 3364 local_irq_save(flags); 3365 sd = this_cpu_ptr(&softnet_data); 3366 q->next_sched = NULL; 3367 *sd->output_queue_tailp = q; 3368 sd->output_queue_tailp = &q->next_sched; 3369 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3370 local_irq_restore(flags); 3371 } 3372 3373 void __netif_schedule(struct Qdisc *q) 3374 { 3375 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3376 __netif_reschedule(q); 3377 } 3378 EXPORT_SYMBOL(__netif_schedule); 3379 3380 struct dev_kfree_skb_cb { 3381 enum skb_drop_reason reason; 3382 }; 3383 3384 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3385 { 3386 return (struct dev_kfree_skb_cb *)skb->cb; 3387 } 3388 3389 void netif_schedule_queue(struct netdev_queue *txq) 3390 { 3391 rcu_read_lock(); 3392 if (!netif_xmit_stopped(txq)) { 3393 struct Qdisc *q = rcu_dereference(txq->qdisc); 3394 3395 __netif_schedule(q); 3396 } 3397 rcu_read_unlock(); 3398 } 3399 EXPORT_SYMBOL(netif_schedule_queue); 3400 3401 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3402 { 3403 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3404 struct Qdisc *q; 3405 3406 rcu_read_lock(); 3407 q = rcu_dereference(dev_queue->qdisc); 3408 __netif_schedule(q); 3409 rcu_read_unlock(); 3410 } 3411 } 3412 EXPORT_SYMBOL(netif_tx_wake_queue); 3413 3414 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3415 { 3416 unsigned long flags; 3417 3418 if (unlikely(!skb)) 3419 return; 3420 3421 if (likely(refcount_read(&skb->users) == 1)) { 3422 smp_rmb(); 3423 refcount_set(&skb->users, 0); 3424 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3425 return; 3426 } 3427 get_kfree_skb_cb(skb)->reason = reason; 3428 local_irq_save(flags); 3429 skb->next = __this_cpu_read(softnet_data.completion_queue); 3430 __this_cpu_write(softnet_data.completion_queue, skb); 3431 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3432 local_irq_restore(flags); 3433 } 3434 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3435 3436 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3437 { 3438 if (in_hardirq() || irqs_disabled()) 3439 dev_kfree_skb_irq_reason(skb, reason); 3440 else 3441 kfree_skb_reason(skb, reason); 3442 } 3443 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3444 3445 3446 /** 3447 * netif_device_detach - mark device as removed 3448 * @dev: network device 3449 * 3450 * Mark device as removed from system and therefore no longer available. 3451 */ 3452 void netif_device_detach(struct net_device *dev) 3453 { 3454 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3455 netif_running(dev)) { 3456 netif_tx_stop_all_queues(dev); 3457 } 3458 } 3459 EXPORT_SYMBOL(netif_device_detach); 3460 3461 /** 3462 * netif_device_attach - mark device as attached 3463 * @dev: network device 3464 * 3465 * Mark device as attached from system and restart if needed. 3466 */ 3467 void netif_device_attach(struct net_device *dev) 3468 { 3469 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3470 netif_running(dev)) { 3471 netif_tx_wake_all_queues(dev); 3472 netdev_watchdog_up(dev); 3473 } 3474 } 3475 EXPORT_SYMBOL(netif_device_attach); 3476 3477 /* 3478 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3479 * to be used as a distribution range. 3480 */ 3481 static u16 skb_tx_hash(const struct net_device *dev, 3482 const struct net_device *sb_dev, 3483 struct sk_buff *skb) 3484 { 3485 u32 hash; 3486 u16 qoffset = 0; 3487 u16 qcount = dev->real_num_tx_queues; 3488 3489 if (dev->num_tc) { 3490 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3491 3492 qoffset = sb_dev->tc_to_txq[tc].offset; 3493 qcount = sb_dev->tc_to_txq[tc].count; 3494 if (unlikely(!qcount)) { 3495 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3496 sb_dev->name, qoffset, tc); 3497 qoffset = 0; 3498 qcount = dev->real_num_tx_queues; 3499 } 3500 } 3501 3502 if (skb_rx_queue_recorded(skb)) { 3503 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3504 hash = skb_get_rx_queue(skb); 3505 if (hash >= qoffset) 3506 hash -= qoffset; 3507 while (unlikely(hash >= qcount)) 3508 hash -= qcount; 3509 return hash + qoffset; 3510 } 3511 3512 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3513 } 3514 3515 void skb_warn_bad_offload(const struct sk_buff *skb) 3516 { 3517 static const netdev_features_t null_features; 3518 struct net_device *dev = skb->dev; 3519 const char *name = ""; 3520 3521 if (!net_ratelimit()) 3522 return; 3523 3524 if (dev) { 3525 if (dev->dev.parent) 3526 name = dev_driver_string(dev->dev.parent); 3527 else 3528 name = netdev_name(dev); 3529 } 3530 skb_dump(KERN_WARNING, skb, false); 3531 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3532 name, dev ? &dev->features : &null_features, 3533 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3534 } 3535 3536 /* 3537 * Invalidate hardware checksum when packet is to be mangled, and 3538 * complete checksum manually on outgoing path. 3539 */ 3540 int skb_checksum_help(struct sk_buff *skb) 3541 { 3542 __wsum csum; 3543 int ret = 0, offset; 3544 3545 if (skb->ip_summed == CHECKSUM_COMPLETE) 3546 goto out_set_summed; 3547 3548 if (unlikely(skb_is_gso(skb))) { 3549 skb_warn_bad_offload(skb); 3550 return -EINVAL; 3551 } 3552 3553 if (!skb_frags_readable(skb)) { 3554 return -EFAULT; 3555 } 3556 3557 /* Before computing a checksum, we should make sure no frag could 3558 * be modified by an external entity : checksum could be wrong. 3559 */ 3560 if (skb_has_shared_frag(skb)) { 3561 ret = __skb_linearize(skb); 3562 if (ret) 3563 goto out; 3564 } 3565 3566 offset = skb_checksum_start_offset(skb); 3567 ret = -EINVAL; 3568 if (unlikely(offset >= skb_headlen(skb))) { 3569 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3570 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3571 offset, skb_headlen(skb)); 3572 goto out; 3573 } 3574 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3575 3576 offset += skb->csum_offset; 3577 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3578 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3579 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3580 offset + sizeof(__sum16), skb_headlen(skb)); 3581 goto out; 3582 } 3583 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3584 if (ret) 3585 goto out; 3586 3587 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3588 out_set_summed: 3589 skb->ip_summed = CHECKSUM_NONE; 3590 out: 3591 return ret; 3592 } 3593 EXPORT_SYMBOL(skb_checksum_help); 3594 3595 #ifdef CONFIG_NET_CRC32C 3596 int skb_crc32c_csum_help(struct sk_buff *skb) 3597 { 3598 u32 crc; 3599 int ret = 0, offset, start; 3600 3601 if (skb->ip_summed != CHECKSUM_PARTIAL) 3602 goto out; 3603 3604 if (unlikely(skb_is_gso(skb))) 3605 goto out; 3606 3607 /* Before computing a checksum, we should make sure no frag could 3608 * be modified by an external entity : checksum could be wrong. 3609 */ 3610 if (unlikely(skb_has_shared_frag(skb))) { 3611 ret = __skb_linearize(skb); 3612 if (ret) 3613 goto out; 3614 } 3615 start = skb_checksum_start_offset(skb); 3616 offset = start + offsetof(struct sctphdr, checksum); 3617 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3618 ret = -EINVAL; 3619 goto out; 3620 } 3621 3622 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3623 if (ret) 3624 goto out; 3625 3626 crc = ~skb_crc32c(skb, start, skb->len - start, ~0); 3627 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc); 3628 skb_reset_csum_not_inet(skb); 3629 out: 3630 return ret; 3631 } 3632 EXPORT_SYMBOL(skb_crc32c_csum_help); 3633 #endif /* CONFIG_NET_CRC32C */ 3634 3635 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3636 { 3637 __be16 type = skb->protocol; 3638 3639 /* Tunnel gso handlers can set protocol to ethernet. */ 3640 if (type == htons(ETH_P_TEB)) { 3641 struct ethhdr *eth; 3642 3643 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3644 return 0; 3645 3646 eth = (struct ethhdr *)skb->data; 3647 type = eth->h_proto; 3648 } 3649 3650 return vlan_get_protocol_and_depth(skb, type, depth); 3651 } 3652 3653 3654 /* Take action when hardware reception checksum errors are detected. */ 3655 #ifdef CONFIG_BUG 3656 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3657 { 3658 netdev_err(dev, "hw csum failure\n"); 3659 skb_dump(KERN_ERR, skb, true); 3660 dump_stack(); 3661 } 3662 3663 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3664 { 3665 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3666 } 3667 EXPORT_SYMBOL(netdev_rx_csum_fault); 3668 #endif 3669 3670 /* XXX: check that highmem exists at all on the given machine. */ 3671 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3672 { 3673 #ifdef CONFIG_HIGHMEM 3674 int i; 3675 3676 if (!(dev->features & NETIF_F_HIGHDMA)) { 3677 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3678 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3679 struct page *page = skb_frag_page(frag); 3680 3681 if (page && PageHighMem(page)) 3682 return 1; 3683 } 3684 } 3685 #endif 3686 return 0; 3687 } 3688 3689 /* If MPLS offload request, verify we are testing hardware MPLS features 3690 * instead of standard features for the netdev. 3691 */ 3692 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3693 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3694 netdev_features_t features, 3695 __be16 type) 3696 { 3697 if (eth_p_mpls(type)) 3698 features &= skb->dev->mpls_features; 3699 3700 return features; 3701 } 3702 #else 3703 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3704 netdev_features_t features, 3705 __be16 type) 3706 { 3707 return features; 3708 } 3709 #endif 3710 3711 static netdev_features_t harmonize_features(struct sk_buff *skb, 3712 netdev_features_t features) 3713 { 3714 __be16 type; 3715 3716 type = skb_network_protocol(skb, NULL); 3717 features = net_mpls_features(skb, features, type); 3718 3719 if (skb->ip_summed != CHECKSUM_NONE && 3720 !can_checksum_protocol(features, type)) { 3721 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3722 } 3723 if (illegal_highdma(skb->dev, skb)) 3724 features &= ~NETIF_F_SG; 3725 3726 return features; 3727 } 3728 3729 netdev_features_t passthru_features_check(struct sk_buff *skb, 3730 struct net_device *dev, 3731 netdev_features_t features) 3732 { 3733 return features; 3734 } 3735 EXPORT_SYMBOL(passthru_features_check); 3736 3737 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3738 struct net_device *dev, 3739 netdev_features_t features) 3740 { 3741 return vlan_features_check(skb, features); 3742 } 3743 3744 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3745 struct net_device *dev, 3746 netdev_features_t features) 3747 { 3748 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3749 3750 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3751 return features & ~NETIF_F_GSO_MASK; 3752 3753 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3754 return features & ~NETIF_F_GSO_MASK; 3755 3756 if (!skb_shinfo(skb)->gso_type) { 3757 skb_warn_bad_offload(skb); 3758 return features & ~NETIF_F_GSO_MASK; 3759 } 3760 3761 /* Support for GSO partial features requires software 3762 * intervention before we can actually process the packets 3763 * so we need to strip support for any partial features now 3764 * and we can pull them back in after we have partially 3765 * segmented the frame. 3766 */ 3767 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3768 features &= ~dev->gso_partial_features; 3769 3770 /* Make sure to clear the IPv4 ID mangling feature if the 3771 * IPv4 header has the potential to be fragmented. 3772 */ 3773 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3774 struct iphdr *iph = skb->encapsulation ? 3775 inner_ip_hdr(skb) : ip_hdr(skb); 3776 3777 if (!(iph->frag_off & htons(IP_DF))) 3778 features &= ~NETIF_F_TSO_MANGLEID; 3779 } 3780 3781 return features; 3782 } 3783 3784 netdev_features_t netif_skb_features(struct sk_buff *skb) 3785 { 3786 struct net_device *dev = skb->dev; 3787 netdev_features_t features = dev->features; 3788 3789 if (skb_is_gso(skb)) 3790 features = gso_features_check(skb, dev, features); 3791 3792 /* If encapsulation offload request, verify we are testing 3793 * hardware encapsulation features instead of standard 3794 * features for the netdev 3795 */ 3796 if (skb->encapsulation) 3797 features &= dev->hw_enc_features; 3798 3799 if (skb_vlan_tagged(skb)) 3800 features = netdev_intersect_features(features, 3801 dev->vlan_features | 3802 NETIF_F_HW_VLAN_CTAG_TX | 3803 NETIF_F_HW_VLAN_STAG_TX); 3804 3805 if (dev->netdev_ops->ndo_features_check) 3806 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3807 features); 3808 else 3809 features &= dflt_features_check(skb, dev, features); 3810 3811 return harmonize_features(skb, features); 3812 } 3813 EXPORT_SYMBOL(netif_skb_features); 3814 3815 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3816 struct netdev_queue *txq, bool more) 3817 { 3818 unsigned int len; 3819 int rc; 3820 3821 if (dev_nit_active_rcu(dev)) 3822 dev_queue_xmit_nit(skb, dev); 3823 3824 len = skb->len; 3825 trace_net_dev_start_xmit(skb, dev); 3826 rc = netdev_start_xmit(skb, dev, txq, more); 3827 trace_net_dev_xmit(skb, rc, dev, len); 3828 3829 return rc; 3830 } 3831 3832 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3833 struct netdev_queue *txq, int *ret) 3834 { 3835 struct sk_buff *skb = first; 3836 int rc = NETDEV_TX_OK; 3837 3838 while (skb) { 3839 struct sk_buff *next = skb->next; 3840 3841 skb_mark_not_on_list(skb); 3842 rc = xmit_one(skb, dev, txq, next != NULL); 3843 if (unlikely(!dev_xmit_complete(rc))) { 3844 skb->next = next; 3845 goto out; 3846 } 3847 3848 skb = next; 3849 if (netif_tx_queue_stopped(txq) && skb) { 3850 rc = NETDEV_TX_BUSY; 3851 break; 3852 } 3853 } 3854 3855 out: 3856 *ret = rc; 3857 return skb; 3858 } 3859 3860 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3861 netdev_features_t features) 3862 { 3863 if (skb_vlan_tag_present(skb) && 3864 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3865 skb = __vlan_hwaccel_push_inside(skb); 3866 return skb; 3867 } 3868 3869 int skb_csum_hwoffload_help(struct sk_buff *skb, 3870 const netdev_features_t features) 3871 { 3872 if (unlikely(skb_csum_is_sctp(skb))) 3873 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3874 skb_crc32c_csum_help(skb); 3875 3876 if (features & NETIF_F_HW_CSUM) 3877 return 0; 3878 3879 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3880 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3881 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3882 !ipv6_has_hopopt_jumbo(skb)) 3883 goto sw_checksum; 3884 3885 switch (skb->csum_offset) { 3886 case offsetof(struct tcphdr, check): 3887 case offsetof(struct udphdr, check): 3888 return 0; 3889 } 3890 } 3891 3892 sw_checksum: 3893 return skb_checksum_help(skb); 3894 } 3895 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3896 3897 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb, 3898 struct net_device *dev) 3899 { 3900 struct skb_shared_info *shinfo; 3901 struct net_iov *niov; 3902 3903 if (likely(skb_frags_readable(skb))) 3904 goto out; 3905 3906 if (!dev->netmem_tx) 3907 goto out_free; 3908 3909 shinfo = skb_shinfo(skb); 3910 3911 if (shinfo->nr_frags > 0) { 3912 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0])); 3913 if (net_is_devmem_iov(niov) && 3914 net_devmem_iov_binding(niov)->dev != dev) 3915 goto out_free; 3916 } 3917 3918 out: 3919 return skb; 3920 3921 out_free: 3922 kfree_skb(skb); 3923 return NULL; 3924 } 3925 3926 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3927 { 3928 netdev_features_t features; 3929 3930 skb = validate_xmit_unreadable_skb(skb, dev); 3931 if (unlikely(!skb)) 3932 goto out_null; 3933 3934 features = netif_skb_features(skb); 3935 skb = validate_xmit_vlan(skb, features); 3936 if (unlikely(!skb)) 3937 goto out_null; 3938 3939 skb = sk_validate_xmit_skb(skb, dev); 3940 if (unlikely(!skb)) 3941 goto out_null; 3942 3943 if (netif_needs_gso(skb, features)) { 3944 struct sk_buff *segs; 3945 3946 segs = skb_gso_segment(skb, features); 3947 if (IS_ERR(segs)) { 3948 goto out_kfree_skb; 3949 } else if (segs) { 3950 consume_skb(skb); 3951 skb = segs; 3952 } 3953 } else { 3954 if (skb_needs_linearize(skb, features) && 3955 __skb_linearize(skb)) 3956 goto out_kfree_skb; 3957 3958 /* If packet is not checksummed and device does not 3959 * support checksumming for this protocol, complete 3960 * checksumming here. 3961 */ 3962 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3963 if (skb->encapsulation) 3964 skb_set_inner_transport_header(skb, 3965 skb_checksum_start_offset(skb)); 3966 else 3967 skb_set_transport_header(skb, 3968 skb_checksum_start_offset(skb)); 3969 if (skb_csum_hwoffload_help(skb, features)) 3970 goto out_kfree_skb; 3971 } 3972 } 3973 3974 skb = validate_xmit_xfrm(skb, features, again); 3975 3976 return skb; 3977 3978 out_kfree_skb: 3979 kfree_skb(skb); 3980 out_null: 3981 dev_core_stats_tx_dropped_inc(dev); 3982 return NULL; 3983 } 3984 3985 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3986 { 3987 struct sk_buff *next, *head = NULL, *tail; 3988 3989 for (; skb != NULL; skb = next) { 3990 next = skb->next; 3991 skb_mark_not_on_list(skb); 3992 3993 /* in case skb won't be segmented, point to itself */ 3994 skb->prev = skb; 3995 3996 skb = validate_xmit_skb(skb, dev, again); 3997 if (!skb) 3998 continue; 3999 4000 if (!head) 4001 head = skb; 4002 else 4003 tail->next = skb; 4004 /* If skb was segmented, skb->prev points to 4005 * the last segment. If not, it still contains skb. 4006 */ 4007 tail = skb->prev; 4008 } 4009 return head; 4010 } 4011 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 4012 4013 static void qdisc_pkt_len_init(struct sk_buff *skb) 4014 { 4015 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4016 4017 qdisc_skb_cb(skb)->pkt_len = skb->len; 4018 4019 /* To get more precise estimation of bytes sent on wire, 4020 * we add to pkt_len the headers size of all segments 4021 */ 4022 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 4023 u16 gso_segs = shinfo->gso_segs; 4024 unsigned int hdr_len; 4025 4026 /* mac layer + network layer */ 4027 if (!skb->encapsulation) 4028 hdr_len = skb_transport_offset(skb); 4029 else 4030 hdr_len = skb_inner_transport_offset(skb); 4031 4032 /* + transport layer */ 4033 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4034 const struct tcphdr *th; 4035 struct tcphdr _tcphdr; 4036 4037 th = skb_header_pointer(skb, hdr_len, 4038 sizeof(_tcphdr), &_tcphdr); 4039 if (likely(th)) 4040 hdr_len += __tcp_hdrlen(th); 4041 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4042 struct udphdr _udphdr; 4043 4044 if (skb_header_pointer(skb, hdr_len, 4045 sizeof(_udphdr), &_udphdr)) 4046 hdr_len += sizeof(struct udphdr); 4047 } 4048 4049 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 4050 int payload = skb->len - hdr_len; 4051 4052 /* Malicious packet. */ 4053 if (payload <= 0) 4054 return; 4055 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 4056 } 4057 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 4058 } 4059 } 4060 4061 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 4062 struct sk_buff **to_free, 4063 struct netdev_queue *txq) 4064 { 4065 int rc; 4066 4067 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 4068 if (rc == NET_XMIT_SUCCESS) 4069 trace_qdisc_enqueue(q, txq, skb); 4070 return rc; 4071 } 4072 4073 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 4074 struct net_device *dev, 4075 struct netdev_queue *txq) 4076 { 4077 spinlock_t *root_lock = qdisc_lock(q); 4078 struct sk_buff *to_free = NULL; 4079 bool contended; 4080 int rc; 4081 4082 qdisc_calculate_pkt_len(skb, q); 4083 4084 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4085 4086 if (q->flags & TCQ_F_NOLOCK) { 4087 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 4088 qdisc_run_begin(q)) { 4089 /* Retest nolock_qdisc_is_empty() within the protection 4090 * of q->seqlock to protect from racing with requeuing. 4091 */ 4092 if (unlikely(!nolock_qdisc_is_empty(q))) { 4093 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4094 __qdisc_run(q); 4095 qdisc_run_end(q); 4096 4097 goto no_lock_out; 4098 } 4099 4100 qdisc_bstats_cpu_update(q, skb); 4101 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 4102 !nolock_qdisc_is_empty(q)) 4103 __qdisc_run(q); 4104 4105 qdisc_run_end(q); 4106 return NET_XMIT_SUCCESS; 4107 } 4108 4109 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4110 qdisc_run(q); 4111 4112 no_lock_out: 4113 if (unlikely(to_free)) 4114 kfree_skb_list_reason(to_free, 4115 tcf_get_drop_reason(to_free)); 4116 return rc; 4117 } 4118 4119 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 4120 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 4121 return NET_XMIT_DROP; 4122 } 4123 /* 4124 * Heuristic to force contended enqueues to serialize on a 4125 * separate lock before trying to get qdisc main lock. 4126 * This permits qdisc->running owner to get the lock more 4127 * often and dequeue packets faster. 4128 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 4129 * and then other tasks will only enqueue packets. The packets will be 4130 * sent after the qdisc owner is scheduled again. To prevent this 4131 * scenario the task always serialize on the lock. 4132 */ 4133 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 4134 if (unlikely(contended)) 4135 spin_lock(&q->busylock); 4136 4137 spin_lock(root_lock); 4138 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 4139 __qdisc_drop(skb, &to_free); 4140 rc = NET_XMIT_DROP; 4141 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 4142 qdisc_run_begin(q)) { 4143 /* 4144 * This is a work-conserving queue; there are no old skbs 4145 * waiting to be sent out; and the qdisc is not running - 4146 * xmit the skb directly. 4147 */ 4148 4149 qdisc_bstats_update(q, skb); 4150 4151 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 4152 if (unlikely(contended)) { 4153 spin_unlock(&q->busylock); 4154 contended = false; 4155 } 4156 __qdisc_run(q); 4157 } 4158 4159 qdisc_run_end(q); 4160 rc = NET_XMIT_SUCCESS; 4161 } else { 4162 WRITE_ONCE(q->owner, smp_processor_id()); 4163 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4164 WRITE_ONCE(q->owner, -1); 4165 if (qdisc_run_begin(q)) { 4166 if (unlikely(contended)) { 4167 spin_unlock(&q->busylock); 4168 contended = false; 4169 } 4170 __qdisc_run(q); 4171 qdisc_run_end(q); 4172 } 4173 } 4174 spin_unlock(root_lock); 4175 if (unlikely(to_free)) 4176 kfree_skb_list_reason(to_free, 4177 tcf_get_drop_reason(to_free)); 4178 if (unlikely(contended)) 4179 spin_unlock(&q->busylock); 4180 return rc; 4181 } 4182 4183 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 4184 static void skb_update_prio(struct sk_buff *skb) 4185 { 4186 const struct netprio_map *map; 4187 const struct sock *sk; 4188 unsigned int prioidx; 4189 4190 if (skb->priority) 4191 return; 4192 map = rcu_dereference_bh(skb->dev->priomap); 4193 if (!map) 4194 return; 4195 sk = skb_to_full_sk(skb); 4196 if (!sk) 4197 return; 4198 4199 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 4200 4201 if (prioidx < map->priomap_len) 4202 skb->priority = map->priomap[prioidx]; 4203 } 4204 #else 4205 #define skb_update_prio(skb) 4206 #endif 4207 4208 /** 4209 * dev_loopback_xmit - loop back @skb 4210 * @net: network namespace this loopback is happening in 4211 * @sk: sk needed to be a netfilter okfn 4212 * @skb: buffer to transmit 4213 */ 4214 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 4215 { 4216 skb_reset_mac_header(skb); 4217 __skb_pull(skb, skb_network_offset(skb)); 4218 skb->pkt_type = PACKET_LOOPBACK; 4219 if (skb->ip_summed == CHECKSUM_NONE) 4220 skb->ip_summed = CHECKSUM_UNNECESSARY; 4221 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 4222 skb_dst_force(skb); 4223 netif_rx(skb); 4224 return 0; 4225 } 4226 EXPORT_SYMBOL(dev_loopback_xmit); 4227 4228 #ifdef CONFIG_NET_EGRESS 4229 static struct netdev_queue * 4230 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 4231 { 4232 int qm = skb_get_queue_mapping(skb); 4233 4234 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 4235 } 4236 4237 #ifndef CONFIG_PREEMPT_RT 4238 static bool netdev_xmit_txqueue_skipped(void) 4239 { 4240 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 4241 } 4242 4243 void netdev_xmit_skip_txqueue(bool skip) 4244 { 4245 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4246 } 4247 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4248 4249 #else 4250 static bool netdev_xmit_txqueue_skipped(void) 4251 { 4252 return current->net_xmit.skip_txqueue; 4253 } 4254 4255 void netdev_xmit_skip_txqueue(bool skip) 4256 { 4257 current->net_xmit.skip_txqueue = skip; 4258 } 4259 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4260 #endif 4261 #endif /* CONFIG_NET_EGRESS */ 4262 4263 #ifdef CONFIG_NET_XGRESS 4264 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4265 enum skb_drop_reason *drop_reason) 4266 { 4267 int ret = TC_ACT_UNSPEC; 4268 #ifdef CONFIG_NET_CLS_ACT 4269 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4270 struct tcf_result res; 4271 4272 if (!miniq) 4273 return ret; 4274 4275 /* Global bypass */ 4276 if (!static_branch_likely(&tcf_sw_enabled_key)) 4277 return ret; 4278 4279 /* Block-wise bypass */ 4280 if (tcf_block_bypass_sw(miniq->block)) 4281 return ret; 4282 4283 tc_skb_cb(skb)->mru = 0; 4284 tc_skb_cb(skb)->post_ct = false; 4285 tcf_set_drop_reason(skb, *drop_reason); 4286 4287 mini_qdisc_bstats_cpu_update(miniq, skb); 4288 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4289 /* Only tcf related quirks below. */ 4290 switch (ret) { 4291 case TC_ACT_SHOT: 4292 *drop_reason = tcf_get_drop_reason(skb); 4293 mini_qdisc_qstats_cpu_drop(miniq); 4294 break; 4295 case TC_ACT_OK: 4296 case TC_ACT_RECLASSIFY: 4297 skb->tc_index = TC_H_MIN(res.classid); 4298 break; 4299 } 4300 #endif /* CONFIG_NET_CLS_ACT */ 4301 return ret; 4302 } 4303 4304 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4305 4306 void tcx_inc(void) 4307 { 4308 static_branch_inc(&tcx_needed_key); 4309 } 4310 4311 void tcx_dec(void) 4312 { 4313 static_branch_dec(&tcx_needed_key); 4314 } 4315 4316 static __always_inline enum tcx_action_base 4317 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4318 const bool needs_mac) 4319 { 4320 const struct bpf_mprog_fp *fp; 4321 const struct bpf_prog *prog; 4322 int ret = TCX_NEXT; 4323 4324 if (needs_mac) 4325 __skb_push(skb, skb->mac_len); 4326 bpf_mprog_foreach_prog(entry, fp, prog) { 4327 bpf_compute_data_pointers(skb); 4328 ret = bpf_prog_run(prog, skb); 4329 if (ret != TCX_NEXT) 4330 break; 4331 } 4332 if (needs_mac) 4333 __skb_pull(skb, skb->mac_len); 4334 return tcx_action_code(skb, ret); 4335 } 4336 4337 static __always_inline struct sk_buff * 4338 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4339 struct net_device *orig_dev, bool *another) 4340 { 4341 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4342 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4343 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4344 int sch_ret; 4345 4346 if (!entry) 4347 return skb; 4348 4349 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4350 if (*pt_prev) { 4351 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4352 *pt_prev = NULL; 4353 } 4354 4355 qdisc_skb_cb(skb)->pkt_len = skb->len; 4356 tcx_set_ingress(skb, true); 4357 4358 if (static_branch_unlikely(&tcx_needed_key)) { 4359 sch_ret = tcx_run(entry, skb, true); 4360 if (sch_ret != TC_ACT_UNSPEC) 4361 goto ingress_verdict; 4362 } 4363 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4364 ingress_verdict: 4365 switch (sch_ret) { 4366 case TC_ACT_REDIRECT: 4367 /* skb_mac_header check was done by BPF, so we can safely 4368 * push the L2 header back before redirecting to another 4369 * netdev. 4370 */ 4371 __skb_push(skb, skb->mac_len); 4372 if (skb_do_redirect(skb) == -EAGAIN) { 4373 __skb_pull(skb, skb->mac_len); 4374 *another = true; 4375 break; 4376 } 4377 *ret = NET_RX_SUCCESS; 4378 bpf_net_ctx_clear(bpf_net_ctx); 4379 return NULL; 4380 case TC_ACT_SHOT: 4381 kfree_skb_reason(skb, drop_reason); 4382 *ret = NET_RX_DROP; 4383 bpf_net_ctx_clear(bpf_net_ctx); 4384 return NULL; 4385 /* used by tc_run */ 4386 case TC_ACT_STOLEN: 4387 case TC_ACT_QUEUED: 4388 case TC_ACT_TRAP: 4389 consume_skb(skb); 4390 fallthrough; 4391 case TC_ACT_CONSUMED: 4392 *ret = NET_RX_SUCCESS; 4393 bpf_net_ctx_clear(bpf_net_ctx); 4394 return NULL; 4395 } 4396 bpf_net_ctx_clear(bpf_net_ctx); 4397 4398 return skb; 4399 } 4400 4401 static __always_inline struct sk_buff * 4402 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4403 { 4404 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4405 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4406 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4407 int sch_ret; 4408 4409 if (!entry) 4410 return skb; 4411 4412 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4413 4414 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4415 * already set by the caller. 4416 */ 4417 if (static_branch_unlikely(&tcx_needed_key)) { 4418 sch_ret = tcx_run(entry, skb, false); 4419 if (sch_ret != TC_ACT_UNSPEC) 4420 goto egress_verdict; 4421 } 4422 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4423 egress_verdict: 4424 switch (sch_ret) { 4425 case TC_ACT_REDIRECT: 4426 /* No need to push/pop skb's mac_header here on egress! */ 4427 skb_do_redirect(skb); 4428 *ret = NET_XMIT_SUCCESS; 4429 bpf_net_ctx_clear(bpf_net_ctx); 4430 return NULL; 4431 case TC_ACT_SHOT: 4432 kfree_skb_reason(skb, drop_reason); 4433 *ret = NET_XMIT_DROP; 4434 bpf_net_ctx_clear(bpf_net_ctx); 4435 return NULL; 4436 /* used by tc_run */ 4437 case TC_ACT_STOLEN: 4438 case TC_ACT_QUEUED: 4439 case TC_ACT_TRAP: 4440 consume_skb(skb); 4441 fallthrough; 4442 case TC_ACT_CONSUMED: 4443 *ret = NET_XMIT_SUCCESS; 4444 bpf_net_ctx_clear(bpf_net_ctx); 4445 return NULL; 4446 } 4447 bpf_net_ctx_clear(bpf_net_ctx); 4448 4449 return skb; 4450 } 4451 #else 4452 static __always_inline struct sk_buff * 4453 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4454 struct net_device *orig_dev, bool *another) 4455 { 4456 return skb; 4457 } 4458 4459 static __always_inline struct sk_buff * 4460 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4461 { 4462 return skb; 4463 } 4464 #endif /* CONFIG_NET_XGRESS */ 4465 4466 #ifdef CONFIG_XPS 4467 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4468 struct xps_dev_maps *dev_maps, unsigned int tci) 4469 { 4470 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4471 struct xps_map *map; 4472 int queue_index = -1; 4473 4474 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4475 return queue_index; 4476 4477 tci *= dev_maps->num_tc; 4478 tci += tc; 4479 4480 map = rcu_dereference(dev_maps->attr_map[tci]); 4481 if (map) { 4482 if (map->len == 1) 4483 queue_index = map->queues[0]; 4484 else 4485 queue_index = map->queues[reciprocal_scale( 4486 skb_get_hash(skb), map->len)]; 4487 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4488 queue_index = -1; 4489 } 4490 return queue_index; 4491 } 4492 #endif 4493 4494 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4495 struct sk_buff *skb) 4496 { 4497 #ifdef CONFIG_XPS 4498 struct xps_dev_maps *dev_maps; 4499 struct sock *sk = skb->sk; 4500 int queue_index = -1; 4501 4502 if (!static_key_false(&xps_needed)) 4503 return -1; 4504 4505 rcu_read_lock(); 4506 if (!static_key_false(&xps_rxqs_needed)) 4507 goto get_cpus_map; 4508 4509 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4510 if (dev_maps) { 4511 int tci = sk_rx_queue_get(sk); 4512 4513 if (tci >= 0) 4514 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4515 tci); 4516 } 4517 4518 get_cpus_map: 4519 if (queue_index < 0) { 4520 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4521 if (dev_maps) { 4522 unsigned int tci = skb->sender_cpu - 1; 4523 4524 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4525 tci); 4526 } 4527 } 4528 rcu_read_unlock(); 4529 4530 return queue_index; 4531 #else 4532 return -1; 4533 #endif 4534 } 4535 4536 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4537 struct net_device *sb_dev) 4538 { 4539 return 0; 4540 } 4541 EXPORT_SYMBOL(dev_pick_tx_zero); 4542 4543 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4544 struct net_device *sb_dev) 4545 { 4546 struct sock *sk = skb->sk; 4547 int queue_index = sk_tx_queue_get(sk); 4548 4549 sb_dev = sb_dev ? : dev; 4550 4551 if (queue_index < 0 || skb->ooo_okay || 4552 queue_index >= dev->real_num_tx_queues) { 4553 int new_index = get_xps_queue(dev, sb_dev, skb); 4554 4555 if (new_index < 0) 4556 new_index = skb_tx_hash(dev, sb_dev, skb); 4557 4558 if (queue_index != new_index && sk && 4559 sk_fullsock(sk) && 4560 rcu_access_pointer(sk->sk_dst_cache)) 4561 sk_tx_queue_set(sk, new_index); 4562 4563 queue_index = new_index; 4564 } 4565 4566 return queue_index; 4567 } 4568 EXPORT_SYMBOL(netdev_pick_tx); 4569 4570 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4571 struct sk_buff *skb, 4572 struct net_device *sb_dev) 4573 { 4574 int queue_index = 0; 4575 4576 #ifdef CONFIG_XPS 4577 u32 sender_cpu = skb->sender_cpu - 1; 4578 4579 if (sender_cpu >= (u32)NR_CPUS) 4580 skb->sender_cpu = raw_smp_processor_id() + 1; 4581 #endif 4582 4583 if (dev->real_num_tx_queues != 1) { 4584 const struct net_device_ops *ops = dev->netdev_ops; 4585 4586 if (ops->ndo_select_queue) 4587 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4588 else 4589 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4590 4591 queue_index = netdev_cap_txqueue(dev, queue_index); 4592 } 4593 4594 skb_set_queue_mapping(skb, queue_index); 4595 return netdev_get_tx_queue(dev, queue_index); 4596 } 4597 4598 /** 4599 * __dev_queue_xmit() - transmit a buffer 4600 * @skb: buffer to transmit 4601 * @sb_dev: suboordinate device used for L2 forwarding offload 4602 * 4603 * Queue a buffer for transmission to a network device. The caller must 4604 * have set the device and priority and built the buffer before calling 4605 * this function. The function can be called from an interrupt. 4606 * 4607 * When calling this method, interrupts MUST be enabled. This is because 4608 * the BH enable code must have IRQs enabled so that it will not deadlock. 4609 * 4610 * Regardless of the return value, the skb is consumed, so it is currently 4611 * difficult to retry a send to this method. (You can bump the ref count 4612 * before sending to hold a reference for retry if you are careful.) 4613 * 4614 * Return: 4615 * * 0 - buffer successfully transmitted 4616 * * positive qdisc return code - NET_XMIT_DROP etc. 4617 * * negative errno - other errors 4618 */ 4619 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4620 { 4621 struct net_device *dev = skb->dev; 4622 struct netdev_queue *txq = NULL; 4623 struct Qdisc *q; 4624 int rc = -ENOMEM; 4625 bool again = false; 4626 4627 skb_reset_mac_header(skb); 4628 skb_assert_len(skb); 4629 4630 if (unlikely(skb_shinfo(skb)->tx_flags & 4631 (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) 4632 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4633 4634 /* Disable soft irqs for various locks below. Also 4635 * stops preemption for RCU. 4636 */ 4637 rcu_read_lock_bh(); 4638 4639 skb_update_prio(skb); 4640 4641 qdisc_pkt_len_init(skb); 4642 tcx_set_ingress(skb, false); 4643 #ifdef CONFIG_NET_EGRESS 4644 if (static_branch_unlikely(&egress_needed_key)) { 4645 if (nf_hook_egress_active()) { 4646 skb = nf_hook_egress(skb, &rc, dev); 4647 if (!skb) 4648 goto out; 4649 } 4650 4651 netdev_xmit_skip_txqueue(false); 4652 4653 nf_skip_egress(skb, true); 4654 skb = sch_handle_egress(skb, &rc, dev); 4655 if (!skb) 4656 goto out; 4657 nf_skip_egress(skb, false); 4658 4659 if (netdev_xmit_txqueue_skipped()) 4660 txq = netdev_tx_queue_mapping(dev, skb); 4661 } 4662 #endif 4663 /* If device/qdisc don't need skb->dst, release it right now while 4664 * its hot in this cpu cache. 4665 */ 4666 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4667 skb_dst_drop(skb); 4668 else 4669 skb_dst_force(skb); 4670 4671 if (!txq) 4672 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4673 4674 q = rcu_dereference_bh(txq->qdisc); 4675 4676 trace_net_dev_queue(skb); 4677 if (q->enqueue) { 4678 rc = __dev_xmit_skb(skb, q, dev, txq); 4679 goto out; 4680 } 4681 4682 /* The device has no queue. Common case for software devices: 4683 * loopback, all the sorts of tunnels... 4684 4685 * Really, it is unlikely that netif_tx_lock protection is necessary 4686 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4687 * counters.) 4688 * However, it is possible, that they rely on protection 4689 * made by us here. 4690 4691 * Check this and shot the lock. It is not prone from deadlocks. 4692 *Either shot noqueue qdisc, it is even simpler 8) 4693 */ 4694 if (dev->flags & IFF_UP) { 4695 int cpu = smp_processor_id(); /* ok because BHs are off */ 4696 4697 /* Other cpus might concurrently change txq->xmit_lock_owner 4698 * to -1 or to their cpu id, but not to our id. 4699 */ 4700 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4701 if (dev_xmit_recursion()) 4702 goto recursion_alert; 4703 4704 skb = validate_xmit_skb(skb, dev, &again); 4705 if (!skb) 4706 goto out; 4707 4708 HARD_TX_LOCK(dev, txq, cpu); 4709 4710 if (!netif_xmit_stopped(txq)) { 4711 dev_xmit_recursion_inc(); 4712 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4713 dev_xmit_recursion_dec(); 4714 if (dev_xmit_complete(rc)) { 4715 HARD_TX_UNLOCK(dev, txq); 4716 goto out; 4717 } 4718 } 4719 HARD_TX_UNLOCK(dev, txq); 4720 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4721 dev->name); 4722 } else { 4723 /* Recursion is detected! It is possible, 4724 * unfortunately 4725 */ 4726 recursion_alert: 4727 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4728 dev->name); 4729 } 4730 } 4731 4732 rc = -ENETDOWN; 4733 rcu_read_unlock_bh(); 4734 4735 dev_core_stats_tx_dropped_inc(dev); 4736 kfree_skb_list(skb); 4737 return rc; 4738 out: 4739 rcu_read_unlock_bh(); 4740 return rc; 4741 } 4742 EXPORT_SYMBOL(__dev_queue_xmit); 4743 4744 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4745 { 4746 struct net_device *dev = skb->dev; 4747 struct sk_buff *orig_skb = skb; 4748 struct netdev_queue *txq; 4749 int ret = NETDEV_TX_BUSY; 4750 bool again = false; 4751 4752 if (unlikely(!netif_running(dev) || 4753 !netif_carrier_ok(dev))) 4754 goto drop; 4755 4756 skb = validate_xmit_skb_list(skb, dev, &again); 4757 if (skb != orig_skb) 4758 goto drop; 4759 4760 skb_set_queue_mapping(skb, queue_id); 4761 txq = skb_get_tx_queue(dev, skb); 4762 4763 local_bh_disable(); 4764 4765 dev_xmit_recursion_inc(); 4766 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4767 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4768 ret = netdev_start_xmit(skb, dev, txq, false); 4769 HARD_TX_UNLOCK(dev, txq); 4770 dev_xmit_recursion_dec(); 4771 4772 local_bh_enable(); 4773 return ret; 4774 drop: 4775 dev_core_stats_tx_dropped_inc(dev); 4776 kfree_skb_list(skb); 4777 return NET_XMIT_DROP; 4778 } 4779 EXPORT_SYMBOL(__dev_direct_xmit); 4780 4781 /************************************************************************* 4782 * Receiver routines 4783 *************************************************************************/ 4784 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4785 4786 int weight_p __read_mostly = 64; /* old backlog weight */ 4787 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4788 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4789 4790 /* Called with irq disabled */ 4791 static inline void ____napi_schedule(struct softnet_data *sd, 4792 struct napi_struct *napi) 4793 { 4794 struct task_struct *thread; 4795 4796 lockdep_assert_irqs_disabled(); 4797 4798 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4799 /* Paired with smp_mb__before_atomic() in 4800 * napi_enable()/dev_set_threaded(). 4801 * Use READ_ONCE() to guarantee a complete 4802 * read on napi->thread. Only call 4803 * wake_up_process() when it's not NULL. 4804 */ 4805 thread = READ_ONCE(napi->thread); 4806 if (thread) { 4807 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4808 goto use_local_napi; 4809 4810 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4811 wake_up_process(thread); 4812 return; 4813 } 4814 } 4815 4816 use_local_napi: 4817 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list)); 4818 list_add_tail(&napi->poll_list, &sd->poll_list); 4819 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4820 /* If not called from net_rx_action() 4821 * we have to raise NET_RX_SOFTIRQ. 4822 */ 4823 if (!sd->in_net_rx_action) 4824 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4825 } 4826 4827 #ifdef CONFIG_RPS 4828 4829 struct static_key_false rps_needed __read_mostly; 4830 EXPORT_SYMBOL(rps_needed); 4831 struct static_key_false rfs_needed __read_mostly; 4832 EXPORT_SYMBOL(rfs_needed); 4833 4834 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) 4835 { 4836 return hash_32(hash, flow_table->log); 4837 } 4838 4839 static struct rps_dev_flow * 4840 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4841 struct rps_dev_flow *rflow, u16 next_cpu) 4842 { 4843 if (next_cpu < nr_cpu_ids) { 4844 u32 head; 4845 #ifdef CONFIG_RFS_ACCEL 4846 struct netdev_rx_queue *rxqueue; 4847 struct rps_dev_flow_table *flow_table; 4848 struct rps_dev_flow *old_rflow; 4849 u16 rxq_index; 4850 u32 flow_id; 4851 int rc; 4852 4853 /* Should we steer this flow to a different hardware queue? */ 4854 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4855 !(dev->features & NETIF_F_NTUPLE)) 4856 goto out; 4857 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4858 if (rxq_index == skb_get_rx_queue(skb)) 4859 goto out; 4860 4861 rxqueue = dev->_rx + rxq_index; 4862 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4863 if (!flow_table) 4864 goto out; 4865 flow_id = rfs_slot(skb_get_hash(skb), flow_table); 4866 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4867 rxq_index, flow_id); 4868 if (rc < 0) 4869 goto out; 4870 old_rflow = rflow; 4871 rflow = &flow_table->flows[flow_id]; 4872 WRITE_ONCE(rflow->filter, rc); 4873 if (old_rflow->filter == rc) 4874 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4875 out: 4876 #endif 4877 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4878 rps_input_queue_tail_save(&rflow->last_qtail, head); 4879 } 4880 4881 WRITE_ONCE(rflow->cpu, next_cpu); 4882 return rflow; 4883 } 4884 4885 /* 4886 * get_rps_cpu is called from netif_receive_skb and returns the target 4887 * CPU from the RPS map of the receiving queue for a given skb. 4888 * rcu_read_lock must be held on entry. 4889 */ 4890 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4891 struct rps_dev_flow **rflowp) 4892 { 4893 const struct rps_sock_flow_table *sock_flow_table; 4894 struct netdev_rx_queue *rxqueue = dev->_rx; 4895 struct rps_dev_flow_table *flow_table; 4896 struct rps_map *map; 4897 int cpu = -1; 4898 u32 tcpu; 4899 u32 hash; 4900 4901 if (skb_rx_queue_recorded(skb)) { 4902 u16 index = skb_get_rx_queue(skb); 4903 4904 if (unlikely(index >= dev->real_num_rx_queues)) { 4905 WARN_ONCE(dev->real_num_rx_queues > 1, 4906 "%s received packet on queue %u, but number " 4907 "of RX queues is %u\n", 4908 dev->name, index, dev->real_num_rx_queues); 4909 goto done; 4910 } 4911 rxqueue += index; 4912 } 4913 4914 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4915 4916 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4917 map = rcu_dereference(rxqueue->rps_map); 4918 if (!flow_table && !map) 4919 goto done; 4920 4921 skb_reset_network_header(skb); 4922 hash = skb_get_hash(skb); 4923 if (!hash) 4924 goto done; 4925 4926 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 4927 if (flow_table && sock_flow_table) { 4928 struct rps_dev_flow *rflow; 4929 u32 next_cpu; 4930 u32 ident; 4931 4932 /* First check into global flow table if there is a match. 4933 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4934 */ 4935 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4936 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 4937 goto try_rps; 4938 4939 next_cpu = ident & net_hotdata.rps_cpu_mask; 4940 4941 /* OK, now we know there is a match, 4942 * we can look at the local (per receive queue) flow table 4943 */ 4944 rflow = &flow_table->flows[rfs_slot(hash, flow_table)]; 4945 tcpu = rflow->cpu; 4946 4947 /* 4948 * If the desired CPU (where last recvmsg was done) is 4949 * different from current CPU (one in the rx-queue flow 4950 * table entry), switch if one of the following holds: 4951 * - Current CPU is unset (>= nr_cpu_ids). 4952 * - Current CPU is offline. 4953 * - The current CPU's queue tail has advanced beyond the 4954 * last packet that was enqueued using this table entry. 4955 * This guarantees that all previous packets for the flow 4956 * have been dequeued, thus preserving in order delivery. 4957 */ 4958 if (unlikely(tcpu != next_cpu) && 4959 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4960 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 4961 rflow->last_qtail)) >= 0)) { 4962 tcpu = next_cpu; 4963 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4964 } 4965 4966 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4967 *rflowp = rflow; 4968 cpu = tcpu; 4969 goto done; 4970 } 4971 } 4972 4973 try_rps: 4974 4975 if (map) { 4976 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4977 if (cpu_online(tcpu)) { 4978 cpu = tcpu; 4979 goto done; 4980 } 4981 } 4982 4983 done: 4984 return cpu; 4985 } 4986 4987 #ifdef CONFIG_RFS_ACCEL 4988 4989 /** 4990 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4991 * @dev: Device on which the filter was set 4992 * @rxq_index: RX queue index 4993 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4994 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4995 * 4996 * Drivers that implement ndo_rx_flow_steer() should periodically call 4997 * this function for each installed filter and remove the filters for 4998 * which it returns %true. 4999 */ 5000 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 5001 u32 flow_id, u16 filter_id) 5002 { 5003 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 5004 struct rps_dev_flow_table *flow_table; 5005 struct rps_dev_flow *rflow; 5006 bool expire = true; 5007 unsigned int cpu; 5008 5009 rcu_read_lock(); 5010 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5011 if (flow_table && flow_id < (1UL << flow_table->log)) { 5012 rflow = &flow_table->flows[flow_id]; 5013 cpu = READ_ONCE(rflow->cpu); 5014 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && 5015 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - 5016 READ_ONCE(rflow->last_qtail)) < 5017 (int)(10 << flow_table->log))) 5018 expire = false; 5019 } 5020 rcu_read_unlock(); 5021 return expire; 5022 } 5023 EXPORT_SYMBOL(rps_may_expire_flow); 5024 5025 #endif /* CONFIG_RFS_ACCEL */ 5026 5027 /* Called from hardirq (IPI) context */ 5028 static void rps_trigger_softirq(void *data) 5029 { 5030 struct softnet_data *sd = data; 5031 5032 ____napi_schedule(sd, &sd->backlog); 5033 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5034 WRITE_ONCE(sd->received_rps, sd->received_rps + 1); 5035 } 5036 5037 #endif /* CONFIG_RPS */ 5038 5039 /* Called from hardirq (IPI) context */ 5040 static void trigger_rx_softirq(void *data) 5041 { 5042 struct softnet_data *sd = data; 5043 5044 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5045 smp_store_release(&sd->defer_ipi_scheduled, 0); 5046 } 5047 5048 /* 5049 * After we queued a packet into sd->input_pkt_queue, 5050 * we need to make sure this queue is serviced soon. 5051 * 5052 * - If this is another cpu queue, link it to our rps_ipi_list, 5053 * and make sure we will process rps_ipi_list from net_rx_action(). 5054 * 5055 * - If this is our own queue, NAPI schedule our backlog. 5056 * Note that this also raises NET_RX_SOFTIRQ. 5057 */ 5058 static void napi_schedule_rps(struct softnet_data *sd) 5059 { 5060 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 5061 5062 #ifdef CONFIG_RPS 5063 if (sd != mysd) { 5064 if (use_backlog_threads()) { 5065 __napi_schedule_irqoff(&sd->backlog); 5066 return; 5067 } 5068 5069 sd->rps_ipi_next = mysd->rps_ipi_list; 5070 mysd->rps_ipi_list = sd; 5071 5072 /* If not called from net_rx_action() or napi_threaded_poll() 5073 * we have to raise NET_RX_SOFTIRQ. 5074 */ 5075 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 5076 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5077 return; 5078 } 5079 #endif /* CONFIG_RPS */ 5080 __napi_schedule_irqoff(&mysd->backlog); 5081 } 5082 5083 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 5084 { 5085 unsigned long flags; 5086 5087 if (use_backlog_threads()) { 5088 backlog_lock_irq_save(sd, &flags); 5089 5090 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 5091 __napi_schedule_irqoff(&sd->backlog); 5092 5093 backlog_unlock_irq_restore(sd, &flags); 5094 5095 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 5096 smp_call_function_single_async(cpu, &sd->defer_csd); 5097 } 5098 } 5099 5100 #ifdef CONFIG_NET_FLOW_LIMIT 5101 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 5102 #endif 5103 5104 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 5105 { 5106 #ifdef CONFIG_NET_FLOW_LIMIT 5107 struct sd_flow_limit *fl; 5108 struct softnet_data *sd; 5109 unsigned int old_flow, new_flow; 5110 5111 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 5112 return false; 5113 5114 sd = this_cpu_ptr(&softnet_data); 5115 5116 rcu_read_lock(); 5117 fl = rcu_dereference(sd->flow_limit); 5118 if (fl) { 5119 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets); 5120 old_flow = fl->history[fl->history_head]; 5121 fl->history[fl->history_head] = new_flow; 5122 5123 fl->history_head++; 5124 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 5125 5126 if (likely(fl->buckets[old_flow])) 5127 fl->buckets[old_flow]--; 5128 5129 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 5130 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5131 WRITE_ONCE(fl->count, fl->count + 1); 5132 rcu_read_unlock(); 5133 return true; 5134 } 5135 } 5136 rcu_read_unlock(); 5137 #endif 5138 return false; 5139 } 5140 5141 /* 5142 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 5143 * queue (may be a remote CPU queue). 5144 */ 5145 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 5146 unsigned int *qtail) 5147 { 5148 enum skb_drop_reason reason; 5149 struct softnet_data *sd; 5150 unsigned long flags; 5151 unsigned int qlen; 5152 int max_backlog; 5153 u32 tail; 5154 5155 reason = SKB_DROP_REASON_DEV_READY; 5156 if (!netif_running(skb->dev)) 5157 goto bad_dev; 5158 5159 reason = SKB_DROP_REASON_CPU_BACKLOG; 5160 sd = &per_cpu(softnet_data, cpu); 5161 5162 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 5163 max_backlog = READ_ONCE(net_hotdata.max_backlog); 5164 if (unlikely(qlen > max_backlog)) 5165 goto cpu_backlog_drop; 5166 backlog_lock_irq_save(sd, &flags); 5167 qlen = skb_queue_len(&sd->input_pkt_queue); 5168 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 5169 if (!qlen) { 5170 /* Schedule NAPI for backlog device. We can use 5171 * non atomic operation as we own the queue lock. 5172 */ 5173 if (!__test_and_set_bit(NAPI_STATE_SCHED, 5174 &sd->backlog.state)) 5175 napi_schedule_rps(sd); 5176 } 5177 __skb_queue_tail(&sd->input_pkt_queue, skb); 5178 tail = rps_input_queue_tail_incr(sd); 5179 backlog_unlock_irq_restore(sd, &flags); 5180 5181 /* save the tail outside of the critical section */ 5182 rps_input_queue_tail_save(qtail, tail); 5183 return NET_RX_SUCCESS; 5184 } 5185 5186 backlog_unlock_irq_restore(sd, &flags); 5187 5188 cpu_backlog_drop: 5189 atomic_inc(&sd->dropped); 5190 bad_dev: 5191 dev_core_stats_rx_dropped_inc(skb->dev); 5192 kfree_skb_reason(skb, reason); 5193 return NET_RX_DROP; 5194 } 5195 5196 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 5197 { 5198 struct net_device *dev = skb->dev; 5199 struct netdev_rx_queue *rxqueue; 5200 5201 rxqueue = dev->_rx; 5202 5203 if (skb_rx_queue_recorded(skb)) { 5204 u16 index = skb_get_rx_queue(skb); 5205 5206 if (unlikely(index >= dev->real_num_rx_queues)) { 5207 WARN_ONCE(dev->real_num_rx_queues > 1, 5208 "%s received packet on queue %u, but number " 5209 "of RX queues is %u\n", 5210 dev->name, index, dev->real_num_rx_queues); 5211 5212 return rxqueue; /* Return first rxqueue */ 5213 } 5214 rxqueue += index; 5215 } 5216 return rxqueue; 5217 } 5218 5219 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 5220 const struct bpf_prog *xdp_prog) 5221 { 5222 void *orig_data, *orig_data_end, *hard_start; 5223 struct netdev_rx_queue *rxqueue; 5224 bool orig_bcast, orig_host; 5225 u32 mac_len, frame_sz; 5226 __be16 orig_eth_type; 5227 struct ethhdr *eth; 5228 u32 metalen, act; 5229 int off; 5230 5231 /* The XDP program wants to see the packet starting at the MAC 5232 * header. 5233 */ 5234 mac_len = skb->data - skb_mac_header(skb); 5235 hard_start = skb->data - skb_headroom(skb); 5236 5237 /* SKB "head" area always have tailroom for skb_shared_info */ 5238 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 5239 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5240 5241 rxqueue = netif_get_rxqueue(skb); 5242 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 5243 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 5244 skb_headlen(skb) + mac_len, true); 5245 if (skb_is_nonlinear(skb)) { 5246 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 5247 xdp_buff_set_frags_flag(xdp); 5248 } else { 5249 xdp_buff_clear_frags_flag(xdp); 5250 } 5251 5252 orig_data_end = xdp->data_end; 5253 orig_data = xdp->data; 5254 eth = (struct ethhdr *)xdp->data; 5255 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5256 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5257 orig_eth_type = eth->h_proto; 5258 5259 act = bpf_prog_run_xdp(xdp_prog, xdp); 5260 5261 /* check if bpf_xdp_adjust_head was used */ 5262 off = xdp->data - orig_data; 5263 if (off) { 5264 if (off > 0) 5265 __skb_pull(skb, off); 5266 else if (off < 0) 5267 __skb_push(skb, -off); 5268 5269 skb->mac_header += off; 5270 skb_reset_network_header(skb); 5271 } 5272 5273 /* check if bpf_xdp_adjust_tail was used */ 5274 off = xdp->data_end - orig_data_end; 5275 if (off != 0) { 5276 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5277 skb->len += off; /* positive on grow, negative on shrink */ 5278 } 5279 5280 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5281 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5282 */ 5283 if (xdp_buff_has_frags(xdp)) 5284 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5285 else 5286 skb->data_len = 0; 5287 5288 /* check if XDP changed eth hdr such SKB needs update */ 5289 eth = (struct ethhdr *)xdp->data; 5290 if ((orig_eth_type != eth->h_proto) || 5291 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5292 skb->dev->dev_addr)) || 5293 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5294 __skb_push(skb, ETH_HLEN); 5295 skb->pkt_type = PACKET_HOST; 5296 skb->protocol = eth_type_trans(skb, skb->dev); 5297 } 5298 5299 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5300 * before calling us again on redirect path. We do not call do_redirect 5301 * as we leave that up to the caller. 5302 * 5303 * Caller is responsible for managing lifetime of skb (i.e. calling 5304 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5305 */ 5306 switch (act) { 5307 case XDP_REDIRECT: 5308 case XDP_TX: 5309 __skb_push(skb, mac_len); 5310 break; 5311 case XDP_PASS: 5312 metalen = xdp->data - xdp->data_meta; 5313 if (metalen) 5314 skb_metadata_set(skb, metalen); 5315 break; 5316 } 5317 5318 return act; 5319 } 5320 5321 static int 5322 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) 5323 { 5324 struct sk_buff *skb = *pskb; 5325 int err, hroom, troom; 5326 5327 local_lock_nested_bh(&system_page_pool.bh_lock); 5328 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog); 5329 local_unlock_nested_bh(&system_page_pool.bh_lock); 5330 if (!err) 5331 return 0; 5332 5333 /* In case we have to go down the path and also linearize, 5334 * then lets do the pskb_expand_head() work just once here. 5335 */ 5336 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5337 troom = skb->tail + skb->data_len - skb->end; 5338 err = pskb_expand_head(skb, 5339 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5340 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5341 if (err) 5342 return err; 5343 5344 return skb_linearize(skb); 5345 } 5346 5347 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5348 struct xdp_buff *xdp, 5349 const struct bpf_prog *xdp_prog) 5350 { 5351 struct sk_buff *skb = *pskb; 5352 u32 mac_len, act = XDP_DROP; 5353 5354 /* Reinjected packets coming from act_mirred or similar should 5355 * not get XDP generic processing. 5356 */ 5357 if (skb_is_redirected(skb)) 5358 return XDP_PASS; 5359 5360 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5361 * bytes. This is the guarantee that also native XDP provides, 5362 * thus we need to do it here as well. 5363 */ 5364 mac_len = skb->data - skb_mac_header(skb); 5365 __skb_push(skb, mac_len); 5366 5367 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5368 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5369 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5370 goto do_drop; 5371 } 5372 5373 __skb_pull(*pskb, mac_len); 5374 5375 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5376 switch (act) { 5377 case XDP_REDIRECT: 5378 case XDP_TX: 5379 case XDP_PASS: 5380 break; 5381 default: 5382 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5383 fallthrough; 5384 case XDP_ABORTED: 5385 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5386 fallthrough; 5387 case XDP_DROP: 5388 do_drop: 5389 kfree_skb(*pskb); 5390 break; 5391 } 5392 5393 return act; 5394 } 5395 5396 /* When doing generic XDP we have to bypass the qdisc layer and the 5397 * network taps in order to match in-driver-XDP behavior. This also means 5398 * that XDP packets are able to starve other packets going through a qdisc, 5399 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5400 * queues, so they do not have this starvation issue. 5401 */ 5402 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) 5403 { 5404 struct net_device *dev = skb->dev; 5405 struct netdev_queue *txq; 5406 bool free_skb = true; 5407 int cpu, rc; 5408 5409 txq = netdev_core_pick_tx(dev, skb, NULL); 5410 cpu = smp_processor_id(); 5411 HARD_TX_LOCK(dev, txq, cpu); 5412 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5413 rc = netdev_start_xmit(skb, dev, txq, 0); 5414 if (dev_xmit_complete(rc)) 5415 free_skb = false; 5416 } 5417 HARD_TX_UNLOCK(dev, txq); 5418 if (free_skb) { 5419 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5420 dev_core_stats_tx_dropped_inc(dev); 5421 kfree_skb(skb); 5422 } 5423 } 5424 5425 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5426 5427 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5428 { 5429 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5430 5431 if (xdp_prog) { 5432 struct xdp_buff xdp; 5433 u32 act; 5434 int err; 5435 5436 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5437 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5438 if (act != XDP_PASS) { 5439 switch (act) { 5440 case XDP_REDIRECT: 5441 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5442 &xdp, xdp_prog); 5443 if (err) 5444 goto out_redir; 5445 break; 5446 case XDP_TX: 5447 generic_xdp_tx(*pskb, xdp_prog); 5448 break; 5449 } 5450 bpf_net_ctx_clear(bpf_net_ctx); 5451 return XDP_DROP; 5452 } 5453 bpf_net_ctx_clear(bpf_net_ctx); 5454 } 5455 return XDP_PASS; 5456 out_redir: 5457 bpf_net_ctx_clear(bpf_net_ctx); 5458 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5459 return XDP_DROP; 5460 } 5461 EXPORT_SYMBOL_GPL(do_xdp_generic); 5462 5463 static int netif_rx_internal(struct sk_buff *skb) 5464 { 5465 int ret; 5466 5467 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5468 5469 trace_netif_rx(skb); 5470 5471 #ifdef CONFIG_RPS 5472 if (static_branch_unlikely(&rps_needed)) { 5473 struct rps_dev_flow voidflow, *rflow = &voidflow; 5474 int cpu; 5475 5476 rcu_read_lock(); 5477 5478 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5479 if (cpu < 0) 5480 cpu = smp_processor_id(); 5481 5482 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5483 5484 rcu_read_unlock(); 5485 } else 5486 #endif 5487 { 5488 unsigned int qtail; 5489 5490 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5491 } 5492 return ret; 5493 } 5494 5495 /** 5496 * __netif_rx - Slightly optimized version of netif_rx 5497 * @skb: buffer to post 5498 * 5499 * This behaves as netif_rx except that it does not disable bottom halves. 5500 * As a result this function may only be invoked from the interrupt context 5501 * (either hard or soft interrupt). 5502 */ 5503 int __netif_rx(struct sk_buff *skb) 5504 { 5505 int ret; 5506 5507 lockdep_assert_once(hardirq_count() | softirq_count()); 5508 5509 trace_netif_rx_entry(skb); 5510 ret = netif_rx_internal(skb); 5511 trace_netif_rx_exit(ret); 5512 return ret; 5513 } 5514 EXPORT_SYMBOL(__netif_rx); 5515 5516 /** 5517 * netif_rx - post buffer to the network code 5518 * @skb: buffer to post 5519 * 5520 * This function receives a packet from a device driver and queues it for 5521 * the upper (protocol) levels to process via the backlog NAPI device. It 5522 * always succeeds. The buffer may be dropped during processing for 5523 * congestion control or by the protocol layers. 5524 * The network buffer is passed via the backlog NAPI device. Modern NIC 5525 * driver should use NAPI and GRO. 5526 * This function can used from interrupt and from process context. The 5527 * caller from process context must not disable interrupts before invoking 5528 * this function. 5529 * 5530 * return values: 5531 * NET_RX_SUCCESS (no congestion) 5532 * NET_RX_DROP (packet was dropped) 5533 * 5534 */ 5535 int netif_rx(struct sk_buff *skb) 5536 { 5537 bool need_bh_off = !(hardirq_count() | softirq_count()); 5538 int ret; 5539 5540 if (need_bh_off) 5541 local_bh_disable(); 5542 trace_netif_rx_entry(skb); 5543 ret = netif_rx_internal(skb); 5544 trace_netif_rx_exit(ret); 5545 if (need_bh_off) 5546 local_bh_enable(); 5547 return ret; 5548 } 5549 EXPORT_SYMBOL(netif_rx); 5550 5551 static __latent_entropy void net_tx_action(void) 5552 { 5553 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5554 5555 if (sd->completion_queue) { 5556 struct sk_buff *clist; 5557 5558 local_irq_disable(); 5559 clist = sd->completion_queue; 5560 sd->completion_queue = NULL; 5561 local_irq_enable(); 5562 5563 while (clist) { 5564 struct sk_buff *skb = clist; 5565 5566 clist = clist->next; 5567 5568 WARN_ON(refcount_read(&skb->users)); 5569 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5570 trace_consume_skb(skb, net_tx_action); 5571 else 5572 trace_kfree_skb(skb, net_tx_action, 5573 get_kfree_skb_cb(skb)->reason, NULL); 5574 5575 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5576 __kfree_skb(skb); 5577 else 5578 __napi_kfree_skb(skb, 5579 get_kfree_skb_cb(skb)->reason); 5580 } 5581 } 5582 5583 if (sd->output_queue) { 5584 struct Qdisc *head; 5585 5586 local_irq_disable(); 5587 head = sd->output_queue; 5588 sd->output_queue = NULL; 5589 sd->output_queue_tailp = &sd->output_queue; 5590 local_irq_enable(); 5591 5592 rcu_read_lock(); 5593 5594 while (head) { 5595 struct Qdisc *q = head; 5596 spinlock_t *root_lock = NULL; 5597 5598 head = head->next_sched; 5599 5600 /* We need to make sure head->next_sched is read 5601 * before clearing __QDISC_STATE_SCHED 5602 */ 5603 smp_mb__before_atomic(); 5604 5605 if (!(q->flags & TCQ_F_NOLOCK)) { 5606 root_lock = qdisc_lock(q); 5607 spin_lock(root_lock); 5608 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5609 &q->state))) { 5610 /* There is a synchronize_net() between 5611 * STATE_DEACTIVATED flag being set and 5612 * qdisc_reset()/some_qdisc_is_busy() in 5613 * dev_deactivate(), so we can safely bail out 5614 * early here to avoid data race between 5615 * qdisc_deactivate() and some_qdisc_is_busy() 5616 * for lockless qdisc. 5617 */ 5618 clear_bit(__QDISC_STATE_SCHED, &q->state); 5619 continue; 5620 } 5621 5622 clear_bit(__QDISC_STATE_SCHED, &q->state); 5623 qdisc_run(q); 5624 if (root_lock) 5625 spin_unlock(root_lock); 5626 } 5627 5628 rcu_read_unlock(); 5629 } 5630 5631 xfrm_dev_backlog(sd); 5632 } 5633 5634 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5635 /* This hook is defined here for ATM LANE */ 5636 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5637 unsigned char *addr) __read_mostly; 5638 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5639 #endif 5640 5641 /** 5642 * netdev_is_rx_handler_busy - check if receive handler is registered 5643 * @dev: device to check 5644 * 5645 * Check if a receive handler is already registered for a given device. 5646 * Return true if there one. 5647 * 5648 * The caller must hold the rtnl_mutex. 5649 */ 5650 bool netdev_is_rx_handler_busy(struct net_device *dev) 5651 { 5652 ASSERT_RTNL(); 5653 return dev && rtnl_dereference(dev->rx_handler); 5654 } 5655 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5656 5657 /** 5658 * netdev_rx_handler_register - register receive handler 5659 * @dev: device to register a handler for 5660 * @rx_handler: receive handler to register 5661 * @rx_handler_data: data pointer that is used by rx handler 5662 * 5663 * Register a receive handler for a device. This handler will then be 5664 * called from __netif_receive_skb. A negative errno code is returned 5665 * on a failure. 5666 * 5667 * The caller must hold the rtnl_mutex. 5668 * 5669 * For a general description of rx_handler, see enum rx_handler_result. 5670 */ 5671 int netdev_rx_handler_register(struct net_device *dev, 5672 rx_handler_func_t *rx_handler, 5673 void *rx_handler_data) 5674 { 5675 if (netdev_is_rx_handler_busy(dev)) 5676 return -EBUSY; 5677 5678 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5679 return -EINVAL; 5680 5681 /* Note: rx_handler_data must be set before rx_handler */ 5682 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5683 rcu_assign_pointer(dev->rx_handler, rx_handler); 5684 5685 return 0; 5686 } 5687 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5688 5689 /** 5690 * netdev_rx_handler_unregister - unregister receive handler 5691 * @dev: device to unregister a handler from 5692 * 5693 * Unregister a receive handler from a device. 5694 * 5695 * The caller must hold the rtnl_mutex. 5696 */ 5697 void netdev_rx_handler_unregister(struct net_device *dev) 5698 { 5699 5700 ASSERT_RTNL(); 5701 RCU_INIT_POINTER(dev->rx_handler, NULL); 5702 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5703 * section has a guarantee to see a non NULL rx_handler_data 5704 * as well. 5705 */ 5706 synchronize_net(); 5707 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5708 } 5709 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5710 5711 /* 5712 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5713 * the special handling of PFMEMALLOC skbs. 5714 */ 5715 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5716 { 5717 switch (skb->protocol) { 5718 case htons(ETH_P_ARP): 5719 case htons(ETH_P_IP): 5720 case htons(ETH_P_IPV6): 5721 case htons(ETH_P_8021Q): 5722 case htons(ETH_P_8021AD): 5723 return true; 5724 default: 5725 return false; 5726 } 5727 } 5728 5729 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5730 int *ret, struct net_device *orig_dev) 5731 { 5732 if (nf_hook_ingress_active(skb)) { 5733 int ingress_retval; 5734 5735 if (*pt_prev) { 5736 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5737 *pt_prev = NULL; 5738 } 5739 5740 rcu_read_lock(); 5741 ingress_retval = nf_hook_ingress(skb); 5742 rcu_read_unlock(); 5743 return ingress_retval; 5744 } 5745 return 0; 5746 } 5747 5748 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5749 struct packet_type **ppt_prev) 5750 { 5751 struct packet_type *ptype, *pt_prev; 5752 rx_handler_func_t *rx_handler; 5753 struct sk_buff *skb = *pskb; 5754 struct net_device *orig_dev; 5755 bool deliver_exact = false; 5756 int ret = NET_RX_DROP; 5757 __be16 type; 5758 5759 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5760 5761 trace_netif_receive_skb(skb); 5762 5763 orig_dev = skb->dev; 5764 5765 skb_reset_network_header(skb); 5766 #if !defined(CONFIG_DEBUG_NET) 5767 /* We plan to no longer reset the transport header here. 5768 * Give some time to fuzzers and dev build to catch bugs 5769 * in network stacks. 5770 */ 5771 if (!skb_transport_header_was_set(skb)) 5772 skb_reset_transport_header(skb); 5773 #endif 5774 skb_reset_mac_len(skb); 5775 5776 pt_prev = NULL; 5777 5778 another_round: 5779 skb->skb_iif = skb->dev->ifindex; 5780 5781 __this_cpu_inc(softnet_data.processed); 5782 5783 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5784 int ret2; 5785 5786 migrate_disable(); 5787 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5788 &skb); 5789 migrate_enable(); 5790 5791 if (ret2 != XDP_PASS) { 5792 ret = NET_RX_DROP; 5793 goto out; 5794 } 5795 } 5796 5797 if (eth_type_vlan(skb->protocol)) { 5798 skb = skb_vlan_untag(skb); 5799 if (unlikely(!skb)) 5800 goto out; 5801 } 5802 5803 if (skb_skip_tc_classify(skb)) 5804 goto skip_classify; 5805 5806 if (pfmemalloc) 5807 goto skip_taps; 5808 5809 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, 5810 list) { 5811 if (pt_prev) 5812 ret = deliver_skb(skb, pt_prev, orig_dev); 5813 pt_prev = ptype; 5814 } 5815 5816 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5817 if (pt_prev) 5818 ret = deliver_skb(skb, pt_prev, orig_dev); 5819 pt_prev = ptype; 5820 } 5821 5822 skip_taps: 5823 #ifdef CONFIG_NET_INGRESS 5824 if (static_branch_unlikely(&ingress_needed_key)) { 5825 bool another = false; 5826 5827 nf_skip_egress(skb, true); 5828 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5829 &another); 5830 if (another) 5831 goto another_round; 5832 if (!skb) 5833 goto out; 5834 5835 nf_skip_egress(skb, false); 5836 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5837 goto out; 5838 } 5839 #endif 5840 skb_reset_redirect(skb); 5841 skip_classify: 5842 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5843 goto drop; 5844 5845 if (skb_vlan_tag_present(skb)) { 5846 if (pt_prev) { 5847 ret = deliver_skb(skb, pt_prev, orig_dev); 5848 pt_prev = NULL; 5849 } 5850 if (vlan_do_receive(&skb)) 5851 goto another_round; 5852 else if (unlikely(!skb)) 5853 goto out; 5854 } 5855 5856 rx_handler = rcu_dereference(skb->dev->rx_handler); 5857 if (rx_handler) { 5858 if (pt_prev) { 5859 ret = deliver_skb(skb, pt_prev, orig_dev); 5860 pt_prev = NULL; 5861 } 5862 switch (rx_handler(&skb)) { 5863 case RX_HANDLER_CONSUMED: 5864 ret = NET_RX_SUCCESS; 5865 goto out; 5866 case RX_HANDLER_ANOTHER: 5867 goto another_round; 5868 case RX_HANDLER_EXACT: 5869 deliver_exact = true; 5870 break; 5871 case RX_HANDLER_PASS: 5872 break; 5873 default: 5874 BUG(); 5875 } 5876 } 5877 5878 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5879 check_vlan_id: 5880 if (skb_vlan_tag_get_id(skb)) { 5881 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5882 * find vlan device. 5883 */ 5884 skb->pkt_type = PACKET_OTHERHOST; 5885 } else if (eth_type_vlan(skb->protocol)) { 5886 /* Outer header is 802.1P with vlan 0, inner header is 5887 * 802.1Q or 802.1AD and vlan_do_receive() above could 5888 * not find vlan dev for vlan id 0. 5889 */ 5890 __vlan_hwaccel_clear_tag(skb); 5891 skb = skb_vlan_untag(skb); 5892 if (unlikely(!skb)) 5893 goto out; 5894 if (vlan_do_receive(&skb)) 5895 /* After stripping off 802.1P header with vlan 0 5896 * vlan dev is found for inner header. 5897 */ 5898 goto another_round; 5899 else if (unlikely(!skb)) 5900 goto out; 5901 else 5902 /* We have stripped outer 802.1P vlan 0 header. 5903 * But could not find vlan dev. 5904 * check again for vlan id to set OTHERHOST. 5905 */ 5906 goto check_vlan_id; 5907 } 5908 /* Note: we might in the future use prio bits 5909 * and set skb->priority like in vlan_do_receive() 5910 * For the time being, just ignore Priority Code Point 5911 */ 5912 __vlan_hwaccel_clear_tag(skb); 5913 } 5914 5915 type = skb->protocol; 5916 5917 /* deliver only exact match when indicated */ 5918 if (likely(!deliver_exact)) { 5919 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5920 &ptype_base[ntohs(type) & 5921 PTYPE_HASH_MASK]); 5922 5923 /* orig_dev and skb->dev could belong to different netns; 5924 * Even in such case we need to traverse only the list 5925 * coming from skb->dev, as the ptype owner (packet socket) 5926 * will use dev_net(skb->dev) to do namespace filtering. 5927 */ 5928 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5929 &dev_net_rcu(skb->dev)->ptype_specific); 5930 } 5931 5932 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5933 &orig_dev->ptype_specific); 5934 5935 if (unlikely(skb->dev != orig_dev)) { 5936 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5937 &skb->dev->ptype_specific); 5938 } 5939 5940 if (pt_prev) { 5941 *ppt_prev = pt_prev; 5942 } else { 5943 drop: 5944 if (!deliver_exact) 5945 dev_core_stats_rx_dropped_inc(skb->dev); 5946 else 5947 dev_core_stats_rx_nohandler_inc(skb->dev); 5948 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5949 /* Jamal, now you will not able to escape explaining 5950 * me how you were going to use this. :-) 5951 */ 5952 ret = NET_RX_DROP; 5953 } 5954 5955 out: 5956 /* The invariant here is that if *ppt_prev is not NULL 5957 * then skb should also be non-NULL. 5958 * 5959 * Apparently *ppt_prev assignment above holds this invariant due to 5960 * skb dereferencing near it. 5961 */ 5962 *pskb = skb; 5963 return ret; 5964 } 5965 5966 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5967 { 5968 struct net_device *orig_dev = skb->dev; 5969 struct packet_type *pt_prev = NULL; 5970 int ret; 5971 5972 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5973 if (pt_prev) 5974 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5975 skb->dev, pt_prev, orig_dev); 5976 return ret; 5977 } 5978 5979 /** 5980 * netif_receive_skb_core - special purpose version of netif_receive_skb 5981 * @skb: buffer to process 5982 * 5983 * More direct receive version of netif_receive_skb(). It should 5984 * only be used by callers that have a need to skip RPS and Generic XDP. 5985 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5986 * 5987 * This function may only be called from softirq context and interrupts 5988 * should be enabled. 5989 * 5990 * Return values (usually ignored): 5991 * NET_RX_SUCCESS: no congestion 5992 * NET_RX_DROP: packet was dropped 5993 */ 5994 int netif_receive_skb_core(struct sk_buff *skb) 5995 { 5996 int ret; 5997 5998 rcu_read_lock(); 5999 ret = __netif_receive_skb_one_core(skb, false); 6000 rcu_read_unlock(); 6001 6002 return ret; 6003 } 6004 EXPORT_SYMBOL(netif_receive_skb_core); 6005 6006 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 6007 struct packet_type *pt_prev, 6008 struct net_device *orig_dev) 6009 { 6010 struct sk_buff *skb, *next; 6011 6012 if (!pt_prev) 6013 return; 6014 if (list_empty(head)) 6015 return; 6016 if (pt_prev->list_func != NULL) 6017 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 6018 ip_list_rcv, head, pt_prev, orig_dev); 6019 else 6020 list_for_each_entry_safe(skb, next, head, list) { 6021 skb_list_del_init(skb); 6022 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 6023 } 6024 } 6025 6026 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 6027 { 6028 /* Fast-path assumptions: 6029 * - There is no RX handler. 6030 * - Only one packet_type matches. 6031 * If either of these fails, we will end up doing some per-packet 6032 * processing in-line, then handling the 'last ptype' for the whole 6033 * sublist. This can't cause out-of-order delivery to any single ptype, 6034 * because the 'last ptype' must be constant across the sublist, and all 6035 * other ptypes are handled per-packet. 6036 */ 6037 /* Current (common) ptype of sublist */ 6038 struct packet_type *pt_curr = NULL; 6039 /* Current (common) orig_dev of sublist */ 6040 struct net_device *od_curr = NULL; 6041 struct sk_buff *skb, *next; 6042 LIST_HEAD(sublist); 6043 6044 list_for_each_entry_safe(skb, next, head, list) { 6045 struct net_device *orig_dev = skb->dev; 6046 struct packet_type *pt_prev = NULL; 6047 6048 skb_list_del_init(skb); 6049 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6050 if (!pt_prev) 6051 continue; 6052 if (pt_curr != pt_prev || od_curr != orig_dev) { 6053 /* dispatch old sublist */ 6054 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6055 /* start new sublist */ 6056 INIT_LIST_HEAD(&sublist); 6057 pt_curr = pt_prev; 6058 od_curr = orig_dev; 6059 } 6060 list_add_tail(&skb->list, &sublist); 6061 } 6062 6063 /* dispatch final sublist */ 6064 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6065 } 6066 6067 static int __netif_receive_skb(struct sk_buff *skb) 6068 { 6069 int ret; 6070 6071 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 6072 unsigned int noreclaim_flag; 6073 6074 /* 6075 * PFMEMALLOC skbs are special, they should 6076 * - be delivered to SOCK_MEMALLOC sockets only 6077 * - stay away from userspace 6078 * - have bounded memory usage 6079 * 6080 * Use PF_MEMALLOC as this saves us from propagating the allocation 6081 * context down to all allocation sites. 6082 */ 6083 noreclaim_flag = memalloc_noreclaim_save(); 6084 ret = __netif_receive_skb_one_core(skb, true); 6085 memalloc_noreclaim_restore(noreclaim_flag); 6086 } else 6087 ret = __netif_receive_skb_one_core(skb, false); 6088 6089 return ret; 6090 } 6091 6092 static void __netif_receive_skb_list(struct list_head *head) 6093 { 6094 unsigned long noreclaim_flag = 0; 6095 struct sk_buff *skb, *next; 6096 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 6097 6098 list_for_each_entry_safe(skb, next, head, list) { 6099 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 6100 struct list_head sublist; 6101 6102 /* Handle the previous sublist */ 6103 list_cut_before(&sublist, head, &skb->list); 6104 if (!list_empty(&sublist)) 6105 __netif_receive_skb_list_core(&sublist, pfmemalloc); 6106 pfmemalloc = !pfmemalloc; 6107 /* See comments in __netif_receive_skb */ 6108 if (pfmemalloc) 6109 noreclaim_flag = memalloc_noreclaim_save(); 6110 else 6111 memalloc_noreclaim_restore(noreclaim_flag); 6112 } 6113 } 6114 /* Handle the remaining sublist */ 6115 if (!list_empty(head)) 6116 __netif_receive_skb_list_core(head, pfmemalloc); 6117 /* Restore pflags */ 6118 if (pfmemalloc) 6119 memalloc_noreclaim_restore(noreclaim_flag); 6120 } 6121 6122 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 6123 { 6124 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 6125 struct bpf_prog *new = xdp->prog; 6126 int ret = 0; 6127 6128 switch (xdp->command) { 6129 case XDP_SETUP_PROG: 6130 rcu_assign_pointer(dev->xdp_prog, new); 6131 if (old) 6132 bpf_prog_put(old); 6133 6134 if (old && !new) { 6135 static_branch_dec(&generic_xdp_needed_key); 6136 } else if (new && !old) { 6137 static_branch_inc(&generic_xdp_needed_key); 6138 netif_disable_lro(dev); 6139 dev_disable_gro_hw(dev); 6140 } 6141 break; 6142 6143 default: 6144 ret = -EINVAL; 6145 break; 6146 } 6147 6148 return ret; 6149 } 6150 6151 static int netif_receive_skb_internal(struct sk_buff *skb) 6152 { 6153 int ret; 6154 6155 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 6156 6157 if (skb_defer_rx_timestamp(skb)) 6158 return NET_RX_SUCCESS; 6159 6160 rcu_read_lock(); 6161 #ifdef CONFIG_RPS 6162 if (static_branch_unlikely(&rps_needed)) { 6163 struct rps_dev_flow voidflow, *rflow = &voidflow; 6164 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6165 6166 if (cpu >= 0) { 6167 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6168 rcu_read_unlock(); 6169 return ret; 6170 } 6171 } 6172 #endif 6173 ret = __netif_receive_skb(skb); 6174 rcu_read_unlock(); 6175 return ret; 6176 } 6177 6178 void netif_receive_skb_list_internal(struct list_head *head) 6179 { 6180 struct sk_buff *skb, *next; 6181 LIST_HEAD(sublist); 6182 6183 list_for_each_entry_safe(skb, next, head, list) { 6184 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 6185 skb); 6186 skb_list_del_init(skb); 6187 if (!skb_defer_rx_timestamp(skb)) 6188 list_add_tail(&skb->list, &sublist); 6189 } 6190 list_splice_init(&sublist, head); 6191 6192 rcu_read_lock(); 6193 #ifdef CONFIG_RPS 6194 if (static_branch_unlikely(&rps_needed)) { 6195 list_for_each_entry_safe(skb, next, head, list) { 6196 struct rps_dev_flow voidflow, *rflow = &voidflow; 6197 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6198 6199 if (cpu >= 0) { 6200 /* Will be handled, remove from list */ 6201 skb_list_del_init(skb); 6202 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6203 } 6204 } 6205 } 6206 #endif 6207 __netif_receive_skb_list(head); 6208 rcu_read_unlock(); 6209 } 6210 6211 /** 6212 * netif_receive_skb - process receive buffer from network 6213 * @skb: buffer to process 6214 * 6215 * netif_receive_skb() is the main receive data processing function. 6216 * It always succeeds. The buffer may be dropped during processing 6217 * for congestion control or by the protocol layers. 6218 * 6219 * This function may only be called from softirq context and interrupts 6220 * should be enabled. 6221 * 6222 * Return values (usually ignored): 6223 * NET_RX_SUCCESS: no congestion 6224 * NET_RX_DROP: packet was dropped 6225 */ 6226 int netif_receive_skb(struct sk_buff *skb) 6227 { 6228 int ret; 6229 6230 trace_netif_receive_skb_entry(skb); 6231 6232 ret = netif_receive_skb_internal(skb); 6233 trace_netif_receive_skb_exit(ret); 6234 6235 return ret; 6236 } 6237 EXPORT_SYMBOL(netif_receive_skb); 6238 6239 /** 6240 * netif_receive_skb_list - process many receive buffers from network 6241 * @head: list of skbs to process. 6242 * 6243 * Since return value of netif_receive_skb() is normally ignored, and 6244 * wouldn't be meaningful for a list, this function returns void. 6245 * 6246 * This function may only be called from softirq context and interrupts 6247 * should be enabled. 6248 */ 6249 void netif_receive_skb_list(struct list_head *head) 6250 { 6251 struct sk_buff *skb; 6252 6253 if (list_empty(head)) 6254 return; 6255 if (trace_netif_receive_skb_list_entry_enabled()) { 6256 list_for_each_entry(skb, head, list) 6257 trace_netif_receive_skb_list_entry(skb); 6258 } 6259 netif_receive_skb_list_internal(head); 6260 trace_netif_receive_skb_list_exit(0); 6261 } 6262 EXPORT_SYMBOL(netif_receive_skb_list); 6263 6264 /* Network device is going away, flush any packets still pending */ 6265 static void flush_backlog(struct work_struct *work) 6266 { 6267 struct sk_buff *skb, *tmp; 6268 struct sk_buff_head list; 6269 struct softnet_data *sd; 6270 6271 __skb_queue_head_init(&list); 6272 local_bh_disable(); 6273 sd = this_cpu_ptr(&softnet_data); 6274 6275 backlog_lock_irq_disable(sd); 6276 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6277 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6278 __skb_unlink(skb, &sd->input_pkt_queue); 6279 __skb_queue_tail(&list, skb); 6280 rps_input_queue_head_incr(sd); 6281 } 6282 } 6283 backlog_unlock_irq_enable(sd); 6284 6285 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6286 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6287 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6288 __skb_unlink(skb, &sd->process_queue); 6289 __skb_queue_tail(&list, skb); 6290 rps_input_queue_head_incr(sd); 6291 } 6292 } 6293 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6294 local_bh_enable(); 6295 6296 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY); 6297 } 6298 6299 static bool flush_required(int cpu) 6300 { 6301 #if IS_ENABLED(CONFIG_RPS) 6302 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6303 bool do_flush; 6304 6305 backlog_lock_irq_disable(sd); 6306 6307 /* as insertion into process_queue happens with the rps lock held, 6308 * process_queue access may race only with dequeue 6309 */ 6310 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6311 !skb_queue_empty_lockless(&sd->process_queue); 6312 backlog_unlock_irq_enable(sd); 6313 6314 return do_flush; 6315 #endif 6316 /* without RPS we can't safely check input_pkt_queue: during a 6317 * concurrent remote skb_queue_splice() we can detect as empty both 6318 * input_pkt_queue and process_queue even if the latter could end-up 6319 * containing a lot of packets. 6320 */ 6321 return true; 6322 } 6323 6324 struct flush_backlogs { 6325 cpumask_t flush_cpus; 6326 struct work_struct w[]; 6327 }; 6328 6329 static struct flush_backlogs *flush_backlogs_alloc(void) 6330 { 6331 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), 6332 GFP_KERNEL); 6333 } 6334 6335 static struct flush_backlogs *flush_backlogs_fallback; 6336 static DEFINE_MUTEX(flush_backlogs_mutex); 6337 6338 static void flush_all_backlogs(void) 6339 { 6340 struct flush_backlogs *ptr = flush_backlogs_alloc(); 6341 unsigned int cpu; 6342 6343 if (!ptr) { 6344 mutex_lock(&flush_backlogs_mutex); 6345 ptr = flush_backlogs_fallback; 6346 } 6347 cpumask_clear(&ptr->flush_cpus); 6348 6349 cpus_read_lock(); 6350 6351 for_each_online_cpu(cpu) { 6352 if (flush_required(cpu)) { 6353 INIT_WORK(&ptr->w[cpu], flush_backlog); 6354 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]); 6355 __cpumask_set_cpu(cpu, &ptr->flush_cpus); 6356 } 6357 } 6358 6359 /* we can have in flight packet[s] on the cpus we are not flushing, 6360 * synchronize_net() in unregister_netdevice_many() will take care of 6361 * them. 6362 */ 6363 for_each_cpu(cpu, &ptr->flush_cpus) 6364 flush_work(&ptr->w[cpu]); 6365 6366 cpus_read_unlock(); 6367 6368 if (ptr != flush_backlogs_fallback) 6369 kfree(ptr); 6370 else 6371 mutex_unlock(&flush_backlogs_mutex); 6372 } 6373 6374 static void net_rps_send_ipi(struct softnet_data *remsd) 6375 { 6376 #ifdef CONFIG_RPS 6377 while (remsd) { 6378 struct softnet_data *next = remsd->rps_ipi_next; 6379 6380 if (cpu_online(remsd->cpu)) 6381 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6382 remsd = next; 6383 } 6384 #endif 6385 } 6386 6387 /* 6388 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6389 * Note: called with local irq disabled, but exits with local irq enabled. 6390 */ 6391 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6392 { 6393 #ifdef CONFIG_RPS 6394 struct softnet_data *remsd = sd->rps_ipi_list; 6395 6396 if (!use_backlog_threads() && remsd) { 6397 sd->rps_ipi_list = NULL; 6398 6399 local_irq_enable(); 6400 6401 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6402 net_rps_send_ipi(remsd); 6403 } else 6404 #endif 6405 local_irq_enable(); 6406 } 6407 6408 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6409 { 6410 #ifdef CONFIG_RPS 6411 return !use_backlog_threads() && sd->rps_ipi_list; 6412 #else 6413 return false; 6414 #endif 6415 } 6416 6417 static int process_backlog(struct napi_struct *napi, int quota) 6418 { 6419 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6420 bool again = true; 6421 int work = 0; 6422 6423 /* Check if we have pending ipi, its better to send them now, 6424 * not waiting net_rx_action() end. 6425 */ 6426 if (sd_has_rps_ipi_waiting(sd)) { 6427 local_irq_disable(); 6428 net_rps_action_and_irq_enable(sd); 6429 } 6430 6431 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6432 while (again) { 6433 struct sk_buff *skb; 6434 6435 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6436 while ((skb = __skb_dequeue(&sd->process_queue))) { 6437 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6438 rcu_read_lock(); 6439 __netif_receive_skb(skb); 6440 rcu_read_unlock(); 6441 if (++work >= quota) { 6442 rps_input_queue_head_add(sd, work); 6443 return work; 6444 } 6445 6446 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6447 } 6448 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6449 6450 backlog_lock_irq_disable(sd); 6451 if (skb_queue_empty(&sd->input_pkt_queue)) { 6452 /* 6453 * Inline a custom version of __napi_complete(). 6454 * only current cpu owns and manipulates this napi, 6455 * and NAPI_STATE_SCHED is the only possible flag set 6456 * on backlog. 6457 * We can use a plain write instead of clear_bit(), 6458 * and we dont need an smp_mb() memory barrier. 6459 */ 6460 napi->state &= NAPIF_STATE_THREADED; 6461 again = false; 6462 } else { 6463 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6464 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6465 &sd->process_queue); 6466 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6467 } 6468 backlog_unlock_irq_enable(sd); 6469 } 6470 6471 if (work) 6472 rps_input_queue_head_add(sd, work); 6473 return work; 6474 } 6475 6476 /** 6477 * __napi_schedule - schedule for receive 6478 * @n: entry to schedule 6479 * 6480 * The entry's receive function will be scheduled to run. 6481 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6482 */ 6483 void __napi_schedule(struct napi_struct *n) 6484 { 6485 unsigned long flags; 6486 6487 local_irq_save(flags); 6488 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6489 local_irq_restore(flags); 6490 } 6491 EXPORT_SYMBOL(__napi_schedule); 6492 6493 /** 6494 * napi_schedule_prep - check if napi can be scheduled 6495 * @n: napi context 6496 * 6497 * Test if NAPI routine is already running, and if not mark 6498 * it as running. This is used as a condition variable to 6499 * insure only one NAPI poll instance runs. We also make 6500 * sure there is no pending NAPI disable. 6501 */ 6502 bool napi_schedule_prep(struct napi_struct *n) 6503 { 6504 unsigned long new, val = READ_ONCE(n->state); 6505 6506 do { 6507 if (unlikely(val & NAPIF_STATE_DISABLE)) 6508 return false; 6509 new = val | NAPIF_STATE_SCHED; 6510 6511 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6512 * This was suggested by Alexander Duyck, as compiler 6513 * emits better code than : 6514 * if (val & NAPIF_STATE_SCHED) 6515 * new |= NAPIF_STATE_MISSED; 6516 */ 6517 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6518 NAPIF_STATE_MISSED; 6519 } while (!try_cmpxchg(&n->state, &val, new)); 6520 6521 return !(val & NAPIF_STATE_SCHED); 6522 } 6523 EXPORT_SYMBOL(napi_schedule_prep); 6524 6525 /** 6526 * __napi_schedule_irqoff - schedule for receive 6527 * @n: entry to schedule 6528 * 6529 * Variant of __napi_schedule() assuming hard irqs are masked. 6530 * 6531 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6532 * because the interrupt disabled assumption might not be true 6533 * due to force-threaded interrupts and spinlock substitution. 6534 */ 6535 void __napi_schedule_irqoff(struct napi_struct *n) 6536 { 6537 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6538 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6539 else 6540 __napi_schedule(n); 6541 } 6542 EXPORT_SYMBOL(__napi_schedule_irqoff); 6543 6544 bool napi_complete_done(struct napi_struct *n, int work_done) 6545 { 6546 unsigned long flags, val, new, timeout = 0; 6547 bool ret = true; 6548 6549 /* 6550 * 1) Don't let napi dequeue from the cpu poll list 6551 * just in case its running on a different cpu. 6552 * 2) If we are busy polling, do nothing here, we have 6553 * the guarantee we will be called later. 6554 */ 6555 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6556 NAPIF_STATE_IN_BUSY_POLL))) 6557 return false; 6558 6559 if (work_done) { 6560 if (n->gro.bitmask) 6561 timeout = napi_get_gro_flush_timeout(n); 6562 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6563 } 6564 if (n->defer_hard_irqs_count > 0) { 6565 n->defer_hard_irqs_count--; 6566 timeout = napi_get_gro_flush_timeout(n); 6567 if (timeout) 6568 ret = false; 6569 } 6570 6571 /* 6572 * When the NAPI instance uses a timeout and keeps postponing 6573 * it, we need to bound somehow the time packets are kept in 6574 * the GRO layer. 6575 */ 6576 gro_flush(&n->gro, !!timeout); 6577 gro_normal_list(&n->gro); 6578 6579 if (unlikely(!list_empty(&n->poll_list))) { 6580 /* If n->poll_list is not empty, we need to mask irqs */ 6581 local_irq_save(flags); 6582 list_del_init(&n->poll_list); 6583 local_irq_restore(flags); 6584 } 6585 WRITE_ONCE(n->list_owner, -1); 6586 6587 val = READ_ONCE(n->state); 6588 do { 6589 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6590 6591 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6592 NAPIF_STATE_SCHED_THREADED | 6593 NAPIF_STATE_PREFER_BUSY_POLL); 6594 6595 /* If STATE_MISSED was set, leave STATE_SCHED set, 6596 * because we will call napi->poll() one more time. 6597 * This C code was suggested by Alexander Duyck to help gcc. 6598 */ 6599 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6600 NAPIF_STATE_SCHED; 6601 } while (!try_cmpxchg(&n->state, &val, new)); 6602 6603 if (unlikely(val & NAPIF_STATE_MISSED)) { 6604 __napi_schedule(n); 6605 return false; 6606 } 6607 6608 if (timeout) 6609 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6610 HRTIMER_MODE_REL_PINNED); 6611 return ret; 6612 } 6613 EXPORT_SYMBOL(napi_complete_done); 6614 6615 static void skb_defer_free_flush(struct softnet_data *sd) 6616 { 6617 struct sk_buff *skb, *next; 6618 6619 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6620 if (!READ_ONCE(sd->defer_list)) 6621 return; 6622 6623 spin_lock(&sd->defer_lock); 6624 skb = sd->defer_list; 6625 sd->defer_list = NULL; 6626 sd->defer_count = 0; 6627 spin_unlock(&sd->defer_lock); 6628 6629 while (skb != NULL) { 6630 next = skb->next; 6631 napi_consume_skb(skb, 1); 6632 skb = next; 6633 } 6634 } 6635 6636 #if defined(CONFIG_NET_RX_BUSY_POLL) 6637 6638 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6639 { 6640 if (!skip_schedule) { 6641 gro_normal_list(&napi->gro); 6642 __napi_schedule(napi); 6643 return; 6644 } 6645 6646 /* Flush too old packets. If HZ < 1000, flush all packets */ 6647 gro_flush(&napi->gro, HZ >= 1000); 6648 gro_normal_list(&napi->gro); 6649 6650 clear_bit(NAPI_STATE_SCHED, &napi->state); 6651 } 6652 6653 enum { 6654 NAPI_F_PREFER_BUSY_POLL = 1, 6655 NAPI_F_END_ON_RESCHED = 2, 6656 }; 6657 6658 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6659 unsigned flags, u16 budget) 6660 { 6661 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6662 bool skip_schedule = false; 6663 unsigned long timeout; 6664 int rc; 6665 6666 /* Busy polling means there is a high chance device driver hard irq 6667 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6668 * set in napi_schedule_prep(). 6669 * Since we are about to call napi->poll() once more, we can safely 6670 * clear NAPI_STATE_MISSED. 6671 * 6672 * Note: x86 could use a single "lock and ..." instruction 6673 * to perform these two clear_bit() 6674 */ 6675 clear_bit(NAPI_STATE_MISSED, &napi->state); 6676 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6677 6678 local_bh_disable(); 6679 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6680 6681 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6682 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6683 timeout = napi_get_gro_flush_timeout(napi); 6684 if (napi->defer_hard_irqs_count && timeout) { 6685 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6686 skip_schedule = true; 6687 } 6688 } 6689 6690 /* All we really want here is to re-enable device interrupts. 6691 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6692 */ 6693 rc = napi->poll(napi, budget); 6694 /* We can't gro_normal_list() here, because napi->poll() might have 6695 * rearmed the napi (napi_complete_done()) in which case it could 6696 * already be running on another CPU. 6697 */ 6698 trace_napi_poll(napi, rc, budget); 6699 netpoll_poll_unlock(have_poll_lock); 6700 if (rc == budget) 6701 __busy_poll_stop(napi, skip_schedule); 6702 bpf_net_ctx_clear(bpf_net_ctx); 6703 local_bh_enable(); 6704 } 6705 6706 static void __napi_busy_loop(unsigned int napi_id, 6707 bool (*loop_end)(void *, unsigned long), 6708 void *loop_end_arg, unsigned flags, u16 budget) 6709 { 6710 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6711 int (*napi_poll)(struct napi_struct *napi, int budget); 6712 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6713 void *have_poll_lock = NULL; 6714 struct napi_struct *napi; 6715 6716 WARN_ON_ONCE(!rcu_read_lock_held()); 6717 6718 restart: 6719 napi_poll = NULL; 6720 6721 napi = napi_by_id(napi_id); 6722 if (!napi) 6723 return; 6724 6725 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6726 preempt_disable(); 6727 for (;;) { 6728 int work = 0; 6729 6730 local_bh_disable(); 6731 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6732 if (!napi_poll) { 6733 unsigned long val = READ_ONCE(napi->state); 6734 6735 /* If multiple threads are competing for this napi, 6736 * we avoid dirtying napi->state as much as we can. 6737 */ 6738 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6739 NAPIF_STATE_IN_BUSY_POLL)) { 6740 if (flags & NAPI_F_PREFER_BUSY_POLL) 6741 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6742 goto count; 6743 } 6744 if (cmpxchg(&napi->state, val, 6745 val | NAPIF_STATE_IN_BUSY_POLL | 6746 NAPIF_STATE_SCHED) != val) { 6747 if (flags & NAPI_F_PREFER_BUSY_POLL) 6748 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6749 goto count; 6750 } 6751 have_poll_lock = netpoll_poll_lock(napi); 6752 napi_poll = napi->poll; 6753 } 6754 work = napi_poll(napi, budget); 6755 trace_napi_poll(napi, work, budget); 6756 gro_normal_list(&napi->gro); 6757 count: 6758 if (work > 0) 6759 __NET_ADD_STATS(dev_net(napi->dev), 6760 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6761 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6762 bpf_net_ctx_clear(bpf_net_ctx); 6763 local_bh_enable(); 6764 6765 if (!loop_end || loop_end(loop_end_arg, start_time)) 6766 break; 6767 6768 if (unlikely(need_resched())) { 6769 if (flags & NAPI_F_END_ON_RESCHED) 6770 break; 6771 if (napi_poll) 6772 busy_poll_stop(napi, have_poll_lock, flags, budget); 6773 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6774 preempt_enable(); 6775 rcu_read_unlock(); 6776 cond_resched(); 6777 rcu_read_lock(); 6778 if (loop_end(loop_end_arg, start_time)) 6779 return; 6780 goto restart; 6781 } 6782 cpu_relax(); 6783 } 6784 if (napi_poll) 6785 busy_poll_stop(napi, have_poll_lock, flags, budget); 6786 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6787 preempt_enable(); 6788 } 6789 6790 void napi_busy_loop_rcu(unsigned int napi_id, 6791 bool (*loop_end)(void *, unsigned long), 6792 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6793 { 6794 unsigned flags = NAPI_F_END_ON_RESCHED; 6795 6796 if (prefer_busy_poll) 6797 flags |= NAPI_F_PREFER_BUSY_POLL; 6798 6799 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6800 } 6801 6802 void napi_busy_loop(unsigned int napi_id, 6803 bool (*loop_end)(void *, unsigned long), 6804 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6805 { 6806 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6807 6808 rcu_read_lock(); 6809 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6810 rcu_read_unlock(); 6811 } 6812 EXPORT_SYMBOL(napi_busy_loop); 6813 6814 void napi_suspend_irqs(unsigned int napi_id) 6815 { 6816 struct napi_struct *napi; 6817 6818 rcu_read_lock(); 6819 napi = napi_by_id(napi_id); 6820 if (napi) { 6821 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6822 6823 if (timeout) 6824 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6825 HRTIMER_MODE_REL_PINNED); 6826 } 6827 rcu_read_unlock(); 6828 } 6829 6830 void napi_resume_irqs(unsigned int napi_id) 6831 { 6832 struct napi_struct *napi; 6833 6834 rcu_read_lock(); 6835 napi = napi_by_id(napi_id); 6836 if (napi) { 6837 /* If irq_suspend_timeout is set to 0 between the call to 6838 * napi_suspend_irqs and now, the original value still 6839 * determines the safety timeout as intended and napi_watchdog 6840 * will resume irq processing. 6841 */ 6842 if (napi_get_irq_suspend_timeout(napi)) { 6843 local_bh_disable(); 6844 napi_schedule(napi); 6845 local_bh_enable(); 6846 } 6847 } 6848 rcu_read_unlock(); 6849 } 6850 6851 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6852 6853 static void __napi_hash_add_with_id(struct napi_struct *napi, 6854 unsigned int napi_id) 6855 { 6856 napi->gro.cached_napi_id = napi_id; 6857 6858 WRITE_ONCE(napi->napi_id, napi_id); 6859 hlist_add_head_rcu(&napi->napi_hash_node, 6860 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6861 } 6862 6863 static void napi_hash_add_with_id(struct napi_struct *napi, 6864 unsigned int napi_id) 6865 { 6866 unsigned long flags; 6867 6868 spin_lock_irqsave(&napi_hash_lock, flags); 6869 WARN_ON_ONCE(napi_by_id(napi_id)); 6870 __napi_hash_add_with_id(napi, napi_id); 6871 spin_unlock_irqrestore(&napi_hash_lock, flags); 6872 } 6873 6874 static void napi_hash_add(struct napi_struct *napi) 6875 { 6876 unsigned long flags; 6877 6878 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6879 return; 6880 6881 spin_lock_irqsave(&napi_hash_lock, flags); 6882 6883 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6884 do { 6885 if (unlikely(!napi_id_valid(++napi_gen_id))) 6886 napi_gen_id = MIN_NAPI_ID; 6887 } while (napi_by_id(napi_gen_id)); 6888 6889 __napi_hash_add_with_id(napi, napi_gen_id); 6890 6891 spin_unlock_irqrestore(&napi_hash_lock, flags); 6892 } 6893 6894 /* Warning : caller is responsible to make sure rcu grace period 6895 * is respected before freeing memory containing @napi 6896 */ 6897 static void napi_hash_del(struct napi_struct *napi) 6898 { 6899 unsigned long flags; 6900 6901 spin_lock_irqsave(&napi_hash_lock, flags); 6902 6903 hlist_del_init_rcu(&napi->napi_hash_node); 6904 6905 spin_unlock_irqrestore(&napi_hash_lock, flags); 6906 } 6907 6908 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6909 { 6910 struct napi_struct *napi; 6911 6912 napi = container_of(timer, struct napi_struct, timer); 6913 6914 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6915 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6916 */ 6917 if (!napi_disable_pending(napi) && 6918 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6919 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6920 __napi_schedule_irqoff(napi); 6921 } 6922 6923 return HRTIMER_NORESTART; 6924 } 6925 6926 static void napi_stop_kthread(struct napi_struct *napi) 6927 { 6928 unsigned long val, new; 6929 6930 /* Wait until the napi STATE_THREADED is unset. */ 6931 while (true) { 6932 val = READ_ONCE(napi->state); 6933 6934 /* If napi kthread own this napi or the napi is idle, 6935 * STATE_THREADED can be unset here. 6936 */ 6937 if ((val & NAPIF_STATE_SCHED_THREADED) || 6938 !(val & NAPIF_STATE_SCHED)) { 6939 new = val & (~NAPIF_STATE_THREADED); 6940 } else { 6941 msleep(20); 6942 continue; 6943 } 6944 6945 if (try_cmpxchg(&napi->state, &val, new)) 6946 break; 6947 } 6948 6949 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by 6950 * the kthread. 6951 */ 6952 while (true) { 6953 if (!test_bit(NAPIF_STATE_SCHED_THREADED, &napi->state)) 6954 break; 6955 6956 msleep(20); 6957 } 6958 6959 kthread_stop(napi->thread); 6960 napi->thread = NULL; 6961 } 6962 6963 int dev_set_threaded(struct net_device *dev, bool threaded) 6964 { 6965 struct napi_struct *napi; 6966 int err = 0; 6967 6968 netdev_assert_locked_or_invisible(dev); 6969 6970 if (dev->threaded == threaded) 6971 return 0; 6972 6973 if (threaded) { 6974 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6975 if (!napi->thread) { 6976 err = napi_kthread_create(napi); 6977 if (err) { 6978 threaded = false; 6979 break; 6980 } 6981 } 6982 } 6983 } 6984 6985 WRITE_ONCE(dev->threaded, threaded); 6986 6987 /* Make sure kthread is created before THREADED bit 6988 * is set. 6989 */ 6990 smp_mb__before_atomic(); 6991 6992 /* Setting/unsetting threaded mode on a napi might not immediately 6993 * take effect, if the current napi instance is actively being 6994 * polled. In this case, the switch between threaded mode and 6995 * softirq mode will happen in the next round of napi_schedule(). 6996 * This should not cause hiccups/stalls to the live traffic. 6997 */ 6998 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6999 if (!threaded && napi->thread) 7000 napi_stop_kthread(napi); 7001 else 7002 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 7003 } 7004 7005 return err; 7006 } 7007 EXPORT_SYMBOL(dev_set_threaded); 7008 7009 /** 7010 * netif_queue_set_napi - Associate queue with the napi 7011 * @dev: device to which NAPI and queue belong 7012 * @queue_index: Index of queue 7013 * @type: queue type as RX or TX 7014 * @napi: NAPI context, pass NULL to clear previously set NAPI 7015 * 7016 * Set queue with its corresponding napi context. This should be done after 7017 * registering the NAPI handler for the queue-vector and the queues have been 7018 * mapped to the corresponding interrupt vector. 7019 */ 7020 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 7021 enum netdev_queue_type type, struct napi_struct *napi) 7022 { 7023 struct netdev_rx_queue *rxq; 7024 struct netdev_queue *txq; 7025 7026 if (WARN_ON_ONCE(napi && !napi->dev)) 7027 return; 7028 netdev_ops_assert_locked_or_invisible(dev); 7029 7030 switch (type) { 7031 case NETDEV_QUEUE_TYPE_RX: 7032 rxq = __netif_get_rx_queue(dev, queue_index); 7033 rxq->napi = napi; 7034 return; 7035 case NETDEV_QUEUE_TYPE_TX: 7036 txq = netdev_get_tx_queue(dev, queue_index); 7037 txq->napi = napi; 7038 return; 7039 default: 7040 return; 7041 } 7042 } 7043 EXPORT_SYMBOL(netif_queue_set_napi); 7044 7045 static void 7046 netif_napi_irq_notify(struct irq_affinity_notify *notify, 7047 const cpumask_t *mask) 7048 { 7049 struct napi_struct *napi = 7050 container_of(notify, struct napi_struct, notify); 7051 #ifdef CONFIG_RFS_ACCEL 7052 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7053 int err; 7054 #endif 7055 7056 if (napi->config && napi->dev->irq_affinity_auto) 7057 cpumask_copy(&napi->config->affinity_mask, mask); 7058 7059 #ifdef CONFIG_RFS_ACCEL 7060 if (napi->dev->rx_cpu_rmap_auto) { 7061 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask); 7062 if (err) 7063 netdev_warn(napi->dev, "RMAP update failed (%d)\n", 7064 err); 7065 } 7066 #endif 7067 } 7068 7069 #ifdef CONFIG_RFS_ACCEL 7070 static void netif_napi_affinity_release(struct kref *ref) 7071 { 7072 struct napi_struct *napi = 7073 container_of(ref, struct napi_struct, notify.kref); 7074 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7075 7076 netdev_assert_locked(napi->dev); 7077 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, 7078 &napi->state)); 7079 7080 if (!napi->dev->rx_cpu_rmap_auto) 7081 return; 7082 rmap->obj[napi->napi_rmap_idx] = NULL; 7083 napi->napi_rmap_idx = -1; 7084 cpu_rmap_put(rmap); 7085 } 7086 7087 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7088 { 7089 if (dev->rx_cpu_rmap_auto) 7090 return 0; 7091 7092 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs); 7093 if (!dev->rx_cpu_rmap) 7094 return -ENOMEM; 7095 7096 dev->rx_cpu_rmap_auto = true; 7097 return 0; 7098 } 7099 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7100 7101 static void netif_del_cpu_rmap(struct net_device *dev) 7102 { 7103 struct cpu_rmap *rmap = dev->rx_cpu_rmap; 7104 7105 if (!dev->rx_cpu_rmap_auto) 7106 return; 7107 7108 /* Free the rmap */ 7109 cpu_rmap_put(rmap); 7110 dev->rx_cpu_rmap = NULL; 7111 dev->rx_cpu_rmap_auto = false; 7112 } 7113 7114 #else 7115 static void netif_napi_affinity_release(struct kref *ref) 7116 { 7117 } 7118 7119 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7120 { 7121 return 0; 7122 } 7123 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7124 7125 static void netif_del_cpu_rmap(struct net_device *dev) 7126 { 7127 } 7128 #endif 7129 7130 void netif_set_affinity_auto(struct net_device *dev) 7131 { 7132 unsigned int i, maxqs, numa; 7133 7134 maxqs = max(dev->num_tx_queues, dev->num_rx_queues); 7135 numa = dev_to_node(&dev->dev); 7136 7137 for (i = 0; i < maxqs; i++) 7138 cpumask_set_cpu(cpumask_local_spread(i, numa), 7139 &dev->napi_config[i].affinity_mask); 7140 7141 dev->irq_affinity_auto = true; 7142 } 7143 EXPORT_SYMBOL(netif_set_affinity_auto); 7144 7145 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) 7146 { 7147 int rc; 7148 7149 netdev_assert_locked_or_invisible(napi->dev); 7150 7151 if (napi->irq == irq) 7152 return; 7153 7154 /* Remove existing resources */ 7155 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7156 irq_set_affinity_notifier(napi->irq, NULL); 7157 7158 napi->irq = irq; 7159 if (irq < 0 || 7160 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) 7161 return; 7162 7163 /* Abort for buggy drivers */ 7164 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) 7165 return; 7166 7167 #ifdef CONFIG_RFS_ACCEL 7168 if (napi->dev->rx_cpu_rmap_auto) { 7169 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi); 7170 if (rc < 0) 7171 return; 7172 7173 cpu_rmap_get(napi->dev->rx_cpu_rmap); 7174 napi->napi_rmap_idx = rc; 7175 } 7176 #endif 7177 7178 /* Use core IRQ notifier */ 7179 napi->notify.notify = netif_napi_irq_notify; 7180 napi->notify.release = netif_napi_affinity_release; 7181 rc = irq_set_affinity_notifier(irq, &napi->notify); 7182 if (rc) { 7183 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n", 7184 rc); 7185 goto put_rmap; 7186 } 7187 7188 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state); 7189 return; 7190 7191 put_rmap: 7192 #ifdef CONFIG_RFS_ACCEL 7193 if (napi->dev->rx_cpu_rmap_auto) { 7194 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; 7195 cpu_rmap_put(napi->dev->rx_cpu_rmap); 7196 napi->napi_rmap_idx = -1; 7197 } 7198 #endif 7199 napi->notify.notify = NULL; 7200 napi->notify.release = NULL; 7201 } 7202 EXPORT_SYMBOL(netif_napi_set_irq_locked); 7203 7204 static void napi_restore_config(struct napi_struct *n) 7205 { 7206 n->defer_hard_irqs = n->config->defer_hard_irqs; 7207 n->gro_flush_timeout = n->config->gro_flush_timeout; 7208 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 7209 7210 if (n->dev->irq_affinity_auto && 7211 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) 7212 irq_set_affinity(n->irq, &n->config->affinity_mask); 7213 7214 /* a NAPI ID might be stored in the config, if so use it. if not, use 7215 * napi_hash_add to generate one for us. 7216 */ 7217 if (n->config->napi_id) { 7218 napi_hash_add_with_id(n, n->config->napi_id); 7219 } else { 7220 napi_hash_add(n); 7221 n->config->napi_id = n->napi_id; 7222 } 7223 } 7224 7225 static void napi_save_config(struct napi_struct *n) 7226 { 7227 n->config->defer_hard_irqs = n->defer_hard_irqs; 7228 n->config->gro_flush_timeout = n->gro_flush_timeout; 7229 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 7230 napi_hash_del(n); 7231 } 7232 7233 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will 7234 * inherit an existing ID try to insert it at the right position. 7235 */ 7236 static void 7237 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) 7238 { 7239 unsigned int new_id, pos_id; 7240 struct list_head *higher; 7241 struct napi_struct *pos; 7242 7243 new_id = UINT_MAX; 7244 if (napi->config && napi->config->napi_id) 7245 new_id = napi->config->napi_id; 7246 7247 higher = &dev->napi_list; 7248 list_for_each_entry(pos, &dev->napi_list, dev_list) { 7249 if (napi_id_valid(pos->napi_id)) 7250 pos_id = pos->napi_id; 7251 else if (pos->config) 7252 pos_id = pos->config->napi_id; 7253 else 7254 pos_id = UINT_MAX; 7255 7256 if (pos_id <= new_id) 7257 break; 7258 higher = &pos->dev_list; 7259 } 7260 list_add_rcu(&napi->dev_list, higher); /* adds after higher */ 7261 } 7262 7263 /* Double check that napi_get_frags() allocates skbs with 7264 * skb->head being backed by slab, not a page fragment. 7265 * This is to make sure bug fixed in 3226b158e67c 7266 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 7267 * does not accidentally come back. 7268 */ 7269 static void napi_get_frags_check(struct napi_struct *napi) 7270 { 7271 struct sk_buff *skb; 7272 7273 local_bh_disable(); 7274 skb = napi_get_frags(napi); 7275 WARN_ON_ONCE(skb && skb->head_frag); 7276 napi_free_frags(napi); 7277 local_bh_enable(); 7278 } 7279 7280 void netif_napi_add_weight_locked(struct net_device *dev, 7281 struct napi_struct *napi, 7282 int (*poll)(struct napi_struct *, int), 7283 int weight) 7284 { 7285 netdev_assert_locked(dev); 7286 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 7287 return; 7288 7289 INIT_LIST_HEAD(&napi->poll_list); 7290 INIT_HLIST_NODE(&napi->napi_hash_node); 7291 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 7292 gro_init(&napi->gro); 7293 napi->skb = NULL; 7294 napi->poll = poll; 7295 if (weight > NAPI_POLL_WEIGHT) 7296 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 7297 weight); 7298 napi->weight = weight; 7299 napi->dev = dev; 7300 #ifdef CONFIG_NETPOLL 7301 napi->poll_owner = -1; 7302 #endif 7303 napi->list_owner = -1; 7304 set_bit(NAPI_STATE_SCHED, &napi->state); 7305 set_bit(NAPI_STATE_NPSVC, &napi->state); 7306 netif_napi_dev_list_add(dev, napi); 7307 7308 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 7309 * configuration will be loaded in napi_enable 7310 */ 7311 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 7312 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 7313 7314 napi_get_frags_check(napi); 7315 /* Create kthread for this napi if dev->threaded is set. 7316 * Clear dev->threaded if kthread creation failed so that 7317 * threaded mode will not be enabled in napi_enable(). 7318 */ 7319 if (dev->threaded && napi_kthread_create(napi)) 7320 dev->threaded = false; 7321 netif_napi_set_irq_locked(napi, -1); 7322 } 7323 EXPORT_SYMBOL(netif_napi_add_weight_locked); 7324 7325 void napi_disable_locked(struct napi_struct *n) 7326 { 7327 unsigned long val, new; 7328 7329 might_sleep(); 7330 netdev_assert_locked(n->dev); 7331 7332 set_bit(NAPI_STATE_DISABLE, &n->state); 7333 7334 val = READ_ONCE(n->state); 7335 do { 7336 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 7337 usleep_range(20, 200); 7338 val = READ_ONCE(n->state); 7339 } 7340 7341 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 7342 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 7343 } while (!try_cmpxchg(&n->state, &val, new)); 7344 7345 hrtimer_cancel(&n->timer); 7346 7347 if (n->config) 7348 napi_save_config(n); 7349 else 7350 napi_hash_del(n); 7351 7352 clear_bit(NAPI_STATE_DISABLE, &n->state); 7353 } 7354 EXPORT_SYMBOL(napi_disable_locked); 7355 7356 /** 7357 * napi_disable() - prevent NAPI from scheduling 7358 * @n: NAPI context 7359 * 7360 * Stop NAPI from being scheduled on this context. 7361 * Waits till any outstanding processing completes. 7362 * Takes netdev_lock() for associated net_device. 7363 */ 7364 void napi_disable(struct napi_struct *n) 7365 { 7366 netdev_lock(n->dev); 7367 napi_disable_locked(n); 7368 netdev_unlock(n->dev); 7369 } 7370 EXPORT_SYMBOL(napi_disable); 7371 7372 void napi_enable_locked(struct napi_struct *n) 7373 { 7374 unsigned long new, val = READ_ONCE(n->state); 7375 7376 if (n->config) 7377 napi_restore_config(n); 7378 else 7379 napi_hash_add(n); 7380 7381 do { 7382 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 7383 7384 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 7385 if (n->dev->threaded && n->thread) 7386 new |= NAPIF_STATE_THREADED; 7387 } while (!try_cmpxchg(&n->state, &val, new)); 7388 } 7389 EXPORT_SYMBOL(napi_enable_locked); 7390 7391 /** 7392 * napi_enable() - enable NAPI scheduling 7393 * @n: NAPI context 7394 * 7395 * Enable scheduling of a NAPI instance. 7396 * Must be paired with napi_disable(). 7397 * Takes netdev_lock() for associated net_device. 7398 */ 7399 void napi_enable(struct napi_struct *n) 7400 { 7401 netdev_lock(n->dev); 7402 napi_enable_locked(n); 7403 netdev_unlock(n->dev); 7404 } 7405 EXPORT_SYMBOL(napi_enable); 7406 7407 /* Must be called in process context */ 7408 void __netif_napi_del_locked(struct napi_struct *napi) 7409 { 7410 netdev_assert_locked(napi->dev); 7411 7412 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7413 return; 7414 7415 /* Make sure NAPI is disabled (or was never enabled). */ 7416 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); 7417 7418 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7419 irq_set_affinity_notifier(napi->irq, NULL); 7420 7421 if (napi->config) { 7422 napi->index = -1; 7423 napi->config = NULL; 7424 } 7425 7426 list_del_rcu(&napi->dev_list); 7427 napi_free_frags(napi); 7428 7429 gro_cleanup(&napi->gro); 7430 7431 if (napi->thread) { 7432 kthread_stop(napi->thread); 7433 napi->thread = NULL; 7434 } 7435 } 7436 EXPORT_SYMBOL(__netif_napi_del_locked); 7437 7438 static int __napi_poll(struct napi_struct *n, bool *repoll) 7439 { 7440 int work, weight; 7441 7442 weight = n->weight; 7443 7444 /* This NAPI_STATE_SCHED test is for avoiding a race 7445 * with netpoll's poll_napi(). Only the entity which 7446 * obtains the lock and sees NAPI_STATE_SCHED set will 7447 * actually make the ->poll() call. Therefore we avoid 7448 * accidentally calling ->poll() when NAPI is not scheduled. 7449 */ 7450 work = 0; 7451 if (napi_is_scheduled(n)) { 7452 work = n->poll(n, weight); 7453 trace_napi_poll(n, work, weight); 7454 7455 xdp_do_check_flushed(n); 7456 } 7457 7458 if (unlikely(work > weight)) 7459 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7460 n->poll, work, weight); 7461 7462 if (likely(work < weight)) 7463 return work; 7464 7465 /* Drivers must not modify the NAPI state if they 7466 * consume the entire weight. In such cases this code 7467 * still "owns" the NAPI instance and therefore can 7468 * move the instance around on the list at-will. 7469 */ 7470 if (unlikely(napi_disable_pending(n))) { 7471 napi_complete(n); 7472 return work; 7473 } 7474 7475 /* The NAPI context has more processing work, but busy-polling 7476 * is preferred. Exit early. 7477 */ 7478 if (napi_prefer_busy_poll(n)) { 7479 if (napi_complete_done(n, work)) { 7480 /* If timeout is not set, we need to make sure 7481 * that the NAPI is re-scheduled. 7482 */ 7483 napi_schedule(n); 7484 } 7485 return work; 7486 } 7487 7488 /* Flush too old packets. If HZ < 1000, flush all packets */ 7489 gro_flush(&n->gro, HZ >= 1000); 7490 gro_normal_list(&n->gro); 7491 7492 /* Some drivers may have called napi_schedule 7493 * prior to exhausting their budget. 7494 */ 7495 if (unlikely(!list_empty(&n->poll_list))) { 7496 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7497 n->dev ? n->dev->name : "backlog"); 7498 return work; 7499 } 7500 7501 *repoll = true; 7502 7503 return work; 7504 } 7505 7506 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7507 { 7508 bool do_repoll = false; 7509 void *have; 7510 int work; 7511 7512 list_del_init(&n->poll_list); 7513 7514 have = netpoll_poll_lock(n); 7515 7516 work = __napi_poll(n, &do_repoll); 7517 7518 if (do_repoll) { 7519 #if defined(CONFIG_DEBUG_NET) 7520 if (unlikely(!napi_is_scheduled(n))) 7521 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n", 7522 n->dev->name, n->poll); 7523 #endif 7524 list_add_tail(&n->poll_list, repoll); 7525 } 7526 netpoll_poll_unlock(have); 7527 7528 return work; 7529 } 7530 7531 static int napi_thread_wait(struct napi_struct *napi) 7532 { 7533 set_current_state(TASK_INTERRUPTIBLE); 7534 7535 while (!kthread_should_stop()) { 7536 /* Testing SCHED_THREADED bit here to make sure the current 7537 * kthread owns this napi and could poll on this napi. 7538 * Testing SCHED bit is not enough because SCHED bit might be 7539 * set by some other busy poll thread or by napi_disable(). 7540 */ 7541 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 7542 WARN_ON(!list_empty(&napi->poll_list)); 7543 __set_current_state(TASK_RUNNING); 7544 return 0; 7545 } 7546 7547 schedule(); 7548 set_current_state(TASK_INTERRUPTIBLE); 7549 } 7550 __set_current_state(TASK_RUNNING); 7551 7552 return -1; 7553 } 7554 7555 static void napi_threaded_poll_loop(struct napi_struct *napi) 7556 { 7557 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7558 struct softnet_data *sd; 7559 unsigned long last_qs = jiffies; 7560 7561 for (;;) { 7562 bool repoll = false; 7563 void *have; 7564 7565 local_bh_disable(); 7566 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7567 7568 sd = this_cpu_ptr(&softnet_data); 7569 sd->in_napi_threaded_poll = true; 7570 7571 have = netpoll_poll_lock(napi); 7572 __napi_poll(napi, &repoll); 7573 netpoll_poll_unlock(have); 7574 7575 sd->in_napi_threaded_poll = false; 7576 barrier(); 7577 7578 if (sd_has_rps_ipi_waiting(sd)) { 7579 local_irq_disable(); 7580 net_rps_action_and_irq_enable(sd); 7581 } 7582 skb_defer_free_flush(sd); 7583 bpf_net_ctx_clear(bpf_net_ctx); 7584 local_bh_enable(); 7585 7586 if (!repoll) 7587 break; 7588 7589 rcu_softirq_qs_periodic(last_qs); 7590 cond_resched(); 7591 } 7592 } 7593 7594 static int napi_threaded_poll(void *data) 7595 { 7596 struct napi_struct *napi = data; 7597 7598 while (!napi_thread_wait(napi)) 7599 napi_threaded_poll_loop(napi); 7600 7601 return 0; 7602 } 7603 7604 static __latent_entropy void net_rx_action(void) 7605 { 7606 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7607 unsigned long time_limit = jiffies + 7608 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7609 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7610 int budget = READ_ONCE(net_hotdata.netdev_budget); 7611 LIST_HEAD(list); 7612 LIST_HEAD(repoll); 7613 7614 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7615 start: 7616 sd->in_net_rx_action = true; 7617 local_irq_disable(); 7618 list_splice_init(&sd->poll_list, &list); 7619 local_irq_enable(); 7620 7621 for (;;) { 7622 struct napi_struct *n; 7623 7624 skb_defer_free_flush(sd); 7625 7626 if (list_empty(&list)) { 7627 if (list_empty(&repoll)) { 7628 sd->in_net_rx_action = false; 7629 barrier(); 7630 /* We need to check if ____napi_schedule() 7631 * had refilled poll_list while 7632 * sd->in_net_rx_action was true. 7633 */ 7634 if (!list_empty(&sd->poll_list)) 7635 goto start; 7636 if (!sd_has_rps_ipi_waiting(sd)) 7637 goto end; 7638 } 7639 break; 7640 } 7641 7642 n = list_first_entry(&list, struct napi_struct, poll_list); 7643 budget -= napi_poll(n, &repoll); 7644 7645 /* If softirq window is exhausted then punt. 7646 * Allow this to run for 2 jiffies since which will allow 7647 * an average latency of 1.5/HZ. 7648 */ 7649 if (unlikely(budget <= 0 || 7650 time_after_eq(jiffies, time_limit))) { 7651 /* Pairs with READ_ONCE() in softnet_seq_show() */ 7652 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); 7653 break; 7654 } 7655 } 7656 7657 local_irq_disable(); 7658 7659 list_splice_tail_init(&sd->poll_list, &list); 7660 list_splice_tail(&repoll, &list); 7661 list_splice(&list, &sd->poll_list); 7662 if (!list_empty(&sd->poll_list)) 7663 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7664 else 7665 sd->in_net_rx_action = false; 7666 7667 net_rps_action_and_irq_enable(sd); 7668 end: 7669 bpf_net_ctx_clear(bpf_net_ctx); 7670 } 7671 7672 struct netdev_adjacent { 7673 struct net_device *dev; 7674 netdevice_tracker dev_tracker; 7675 7676 /* upper master flag, there can only be one master device per list */ 7677 bool master; 7678 7679 /* lookup ignore flag */ 7680 bool ignore; 7681 7682 /* counter for the number of times this device was added to us */ 7683 u16 ref_nr; 7684 7685 /* private field for the users */ 7686 void *private; 7687 7688 struct list_head list; 7689 struct rcu_head rcu; 7690 }; 7691 7692 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7693 struct list_head *adj_list) 7694 { 7695 struct netdev_adjacent *adj; 7696 7697 list_for_each_entry(adj, adj_list, list) { 7698 if (adj->dev == adj_dev) 7699 return adj; 7700 } 7701 return NULL; 7702 } 7703 7704 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7705 struct netdev_nested_priv *priv) 7706 { 7707 struct net_device *dev = (struct net_device *)priv->data; 7708 7709 return upper_dev == dev; 7710 } 7711 7712 /** 7713 * netdev_has_upper_dev - Check if device is linked to an upper device 7714 * @dev: device 7715 * @upper_dev: upper device to check 7716 * 7717 * Find out if a device is linked to specified upper device and return true 7718 * in case it is. Note that this checks only immediate upper device, 7719 * not through a complete stack of devices. The caller must hold the RTNL lock. 7720 */ 7721 bool netdev_has_upper_dev(struct net_device *dev, 7722 struct net_device *upper_dev) 7723 { 7724 struct netdev_nested_priv priv = { 7725 .data = (void *)upper_dev, 7726 }; 7727 7728 ASSERT_RTNL(); 7729 7730 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7731 &priv); 7732 } 7733 EXPORT_SYMBOL(netdev_has_upper_dev); 7734 7735 /** 7736 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7737 * @dev: device 7738 * @upper_dev: upper device to check 7739 * 7740 * Find out if a device is linked to specified upper device and return true 7741 * in case it is. Note that this checks the entire upper device chain. 7742 * The caller must hold rcu lock. 7743 */ 7744 7745 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7746 struct net_device *upper_dev) 7747 { 7748 struct netdev_nested_priv priv = { 7749 .data = (void *)upper_dev, 7750 }; 7751 7752 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7753 &priv); 7754 } 7755 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7756 7757 /** 7758 * netdev_has_any_upper_dev - Check if device is linked to some device 7759 * @dev: device 7760 * 7761 * Find out if a device is linked to an upper device and return true in case 7762 * it is. The caller must hold the RTNL lock. 7763 */ 7764 bool netdev_has_any_upper_dev(struct net_device *dev) 7765 { 7766 ASSERT_RTNL(); 7767 7768 return !list_empty(&dev->adj_list.upper); 7769 } 7770 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7771 7772 /** 7773 * netdev_master_upper_dev_get - Get master upper device 7774 * @dev: device 7775 * 7776 * Find a master upper device and return pointer to it or NULL in case 7777 * it's not there. The caller must hold the RTNL lock. 7778 */ 7779 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7780 { 7781 struct netdev_adjacent *upper; 7782 7783 ASSERT_RTNL(); 7784 7785 if (list_empty(&dev->adj_list.upper)) 7786 return NULL; 7787 7788 upper = list_first_entry(&dev->adj_list.upper, 7789 struct netdev_adjacent, list); 7790 if (likely(upper->master)) 7791 return upper->dev; 7792 return NULL; 7793 } 7794 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7795 7796 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7797 { 7798 struct netdev_adjacent *upper; 7799 7800 ASSERT_RTNL(); 7801 7802 if (list_empty(&dev->adj_list.upper)) 7803 return NULL; 7804 7805 upper = list_first_entry(&dev->adj_list.upper, 7806 struct netdev_adjacent, list); 7807 if (likely(upper->master) && !upper->ignore) 7808 return upper->dev; 7809 return NULL; 7810 } 7811 7812 /** 7813 * netdev_has_any_lower_dev - Check if device is linked to some device 7814 * @dev: device 7815 * 7816 * Find out if a device is linked to a lower device and return true in case 7817 * it is. The caller must hold the RTNL lock. 7818 */ 7819 static bool netdev_has_any_lower_dev(struct net_device *dev) 7820 { 7821 ASSERT_RTNL(); 7822 7823 return !list_empty(&dev->adj_list.lower); 7824 } 7825 7826 void *netdev_adjacent_get_private(struct list_head *adj_list) 7827 { 7828 struct netdev_adjacent *adj; 7829 7830 adj = list_entry(adj_list, struct netdev_adjacent, list); 7831 7832 return adj->private; 7833 } 7834 EXPORT_SYMBOL(netdev_adjacent_get_private); 7835 7836 /** 7837 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7838 * @dev: device 7839 * @iter: list_head ** of the current position 7840 * 7841 * Gets the next device from the dev's upper list, starting from iter 7842 * position. The caller must hold RCU read lock. 7843 */ 7844 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7845 struct list_head **iter) 7846 { 7847 struct netdev_adjacent *upper; 7848 7849 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7850 7851 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7852 7853 if (&upper->list == &dev->adj_list.upper) 7854 return NULL; 7855 7856 *iter = &upper->list; 7857 7858 return upper->dev; 7859 } 7860 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7861 7862 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7863 struct list_head **iter, 7864 bool *ignore) 7865 { 7866 struct netdev_adjacent *upper; 7867 7868 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7869 7870 if (&upper->list == &dev->adj_list.upper) 7871 return NULL; 7872 7873 *iter = &upper->list; 7874 *ignore = upper->ignore; 7875 7876 return upper->dev; 7877 } 7878 7879 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7880 struct list_head **iter) 7881 { 7882 struct netdev_adjacent *upper; 7883 7884 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7885 7886 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7887 7888 if (&upper->list == &dev->adj_list.upper) 7889 return NULL; 7890 7891 *iter = &upper->list; 7892 7893 return upper->dev; 7894 } 7895 7896 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7897 int (*fn)(struct net_device *dev, 7898 struct netdev_nested_priv *priv), 7899 struct netdev_nested_priv *priv) 7900 { 7901 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7902 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7903 int ret, cur = 0; 7904 bool ignore; 7905 7906 now = dev; 7907 iter = &dev->adj_list.upper; 7908 7909 while (1) { 7910 if (now != dev) { 7911 ret = fn(now, priv); 7912 if (ret) 7913 return ret; 7914 } 7915 7916 next = NULL; 7917 while (1) { 7918 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7919 if (!udev) 7920 break; 7921 if (ignore) 7922 continue; 7923 7924 next = udev; 7925 niter = &udev->adj_list.upper; 7926 dev_stack[cur] = now; 7927 iter_stack[cur++] = iter; 7928 break; 7929 } 7930 7931 if (!next) { 7932 if (!cur) 7933 return 0; 7934 next = dev_stack[--cur]; 7935 niter = iter_stack[cur]; 7936 } 7937 7938 now = next; 7939 iter = niter; 7940 } 7941 7942 return 0; 7943 } 7944 7945 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7946 int (*fn)(struct net_device *dev, 7947 struct netdev_nested_priv *priv), 7948 struct netdev_nested_priv *priv) 7949 { 7950 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7951 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7952 int ret, cur = 0; 7953 7954 now = dev; 7955 iter = &dev->adj_list.upper; 7956 7957 while (1) { 7958 if (now != dev) { 7959 ret = fn(now, priv); 7960 if (ret) 7961 return ret; 7962 } 7963 7964 next = NULL; 7965 while (1) { 7966 udev = netdev_next_upper_dev_rcu(now, &iter); 7967 if (!udev) 7968 break; 7969 7970 next = udev; 7971 niter = &udev->adj_list.upper; 7972 dev_stack[cur] = now; 7973 iter_stack[cur++] = iter; 7974 break; 7975 } 7976 7977 if (!next) { 7978 if (!cur) 7979 return 0; 7980 next = dev_stack[--cur]; 7981 niter = iter_stack[cur]; 7982 } 7983 7984 now = next; 7985 iter = niter; 7986 } 7987 7988 return 0; 7989 } 7990 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7991 7992 static bool __netdev_has_upper_dev(struct net_device *dev, 7993 struct net_device *upper_dev) 7994 { 7995 struct netdev_nested_priv priv = { 7996 .flags = 0, 7997 .data = (void *)upper_dev, 7998 }; 7999 8000 ASSERT_RTNL(); 8001 8002 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 8003 &priv); 8004 } 8005 8006 /** 8007 * netdev_lower_get_next_private - Get the next ->private from the 8008 * lower neighbour list 8009 * @dev: device 8010 * @iter: list_head ** of the current position 8011 * 8012 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8013 * list, starting from iter position. The caller must hold either hold the 8014 * RTNL lock or its own locking that guarantees that the neighbour lower 8015 * list will remain unchanged. 8016 */ 8017 void *netdev_lower_get_next_private(struct net_device *dev, 8018 struct list_head **iter) 8019 { 8020 struct netdev_adjacent *lower; 8021 8022 lower = list_entry(*iter, struct netdev_adjacent, list); 8023 8024 if (&lower->list == &dev->adj_list.lower) 8025 return NULL; 8026 8027 *iter = lower->list.next; 8028 8029 return lower->private; 8030 } 8031 EXPORT_SYMBOL(netdev_lower_get_next_private); 8032 8033 /** 8034 * netdev_lower_get_next_private_rcu - Get the next ->private from the 8035 * lower neighbour list, RCU 8036 * variant 8037 * @dev: device 8038 * @iter: list_head ** of the current position 8039 * 8040 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8041 * list, starting from iter position. The caller must hold RCU read lock. 8042 */ 8043 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 8044 struct list_head **iter) 8045 { 8046 struct netdev_adjacent *lower; 8047 8048 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 8049 8050 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8051 8052 if (&lower->list == &dev->adj_list.lower) 8053 return NULL; 8054 8055 *iter = &lower->list; 8056 8057 return lower->private; 8058 } 8059 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 8060 8061 /** 8062 * netdev_lower_get_next - Get the next device from the lower neighbour 8063 * list 8064 * @dev: device 8065 * @iter: list_head ** of the current position 8066 * 8067 * Gets the next netdev_adjacent from the dev's lower neighbour 8068 * list, starting from iter position. The caller must hold RTNL lock or 8069 * its own locking that guarantees that the neighbour lower 8070 * list will remain unchanged. 8071 */ 8072 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 8073 { 8074 struct netdev_adjacent *lower; 8075 8076 lower = list_entry(*iter, struct netdev_adjacent, list); 8077 8078 if (&lower->list == &dev->adj_list.lower) 8079 return NULL; 8080 8081 *iter = lower->list.next; 8082 8083 return lower->dev; 8084 } 8085 EXPORT_SYMBOL(netdev_lower_get_next); 8086 8087 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 8088 struct list_head **iter) 8089 { 8090 struct netdev_adjacent *lower; 8091 8092 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8093 8094 if (&lower->list == &dev->adj_list.lower) 8095 return NULL; 8096 8097 *iter = &lower->list; 8098 8099 return lower->dev; 8100 } 8101 8102 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 8103 struct list_head **iter, 8104 bool *ignore) 8105 { 8106 struct netdev_adjacent *lower; 8107 8108 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8109 8110 if (&lower->list == &dev->adj_list.lower) 8111 return NULL; 8112 8113 *iter = &lower->list; 8114 *ignore = lower->ignore; 8115 8116 return lower->dev; 8117 } 8118 8119 int netdev_walk_all_lower_dev(struct net_device *dev, 8120 int (*fn)(struct net_device *dev, 8121 struct netdev_nested_priv *priv), 8122 struct netdev_nested_priv *priv) 8123 { 8124 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8125 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8126 int ret, cur = 0; 8127 8128 now = dev; 8129 iter = &dev->adj_list.lower; 8130 8131 while (1) { 8132 if (now != dev) { 8133 ret = fn(now, priv); 8134 if (ret) 8135 return ret; 8136 } 8137 8138 next = NULL; 8139 while (1) { 8140 ldev = netdev_next_lower_dev(now, &iter); 8141 if (!ldev) 8142 break; 8143 8144 next = ldev; 8145 niter = &ldev->adj_list.lower; 8146 dev_stack[cur] = now; 8147 iter_stack[cur++] = iter; 8148 break; 8149 } 8150 8151 if (!next) { 8152 if (!cur) 8153 return 0; 8154 next = dev_stack[--cur]; 8155 niter = iter_stack[cur]; 8156 } 8157 8158 now = next; 8159 iter = niter; 8160 } 8161 8162 return 0; 8163 } 8164 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 8165 8166 static int __netdev_walk_all_lower_dev(struct net_device *dev, 8167 int (*fn)(struct net_device *dev, 8168 struct netdev_nested_priv *priv), 8169 struct netdev_nested_priv *priv) 8170 { 8171 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8172 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8173 int ret, cur = 0; 8174 bool ignore; 8175 8176 now = dev; 8177 iter = &dev->adj_list.lower; 8178 8179 while (1) { 8180 if (now != dev) { 8181 ret = fn(now, priv); 8182 if (ret) 8183 return ret; 8184 } 8185 8186 next = NULL; 8187 while (1) { 8188 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 8189 if (!ldev) 8190 break; 8191 if (ignore) 8192 continue; 8193 8194 next = ldev; 8195 niter = &ldev->adj_list.lower; 8196 dev_stack[cur] = now; 8197 iter_stack[cur++] = iter; 8198 break; 8199 } 8200 8201 if (!next) { 8202 if (!cur) 8203 return 0; 8204 next = dev_stack[--cur]; 8205 niter = iter_stack[cur]; 8206 } 8207 8208 now = next; 8209 iter = niter; 8210 } 8211 8212 return 0; 8213 } 8214 8215 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 8216 struct list_head **iter) 8217 { 8218 struct netdev_adjacent *lower; 8219 8220 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8221 if (&lower->list == &dev->adj_list.lower) 8222 return NULL; 8223 8224 *iter = &lower->list; 8225 8226 return lower->dev; 8227 } 8228 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 8229 8230 static u8 __netdev_upper_depth(struct net_device *dev) 8231 { 8232 struct net_device *udev; 8233 struct list_head *iter; 8234 u8 max_depth = 0; 8235 bool ignore; 8236 8237 for (iter = &dev->adj_list.upper, 8238 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 8239 udev; 8240 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 8241 if (ignore) 8242 continue; 8243 if (max_depth < udev->upper_level) 8244 max_depth = udev->upper_level; 8245 } 8246 8247 return max_depth; 8248 } 8249 8250 static u8 __netdev_lower_depth(struct net_device *dev) 8251 { 8252 struct net_device *ldev; 8253 struct list_head *iter; 8254 u8 max_depth = 0; 8255 bool ignore; 8256 8257 for (iter = &dev->adj_list.lower, 8258 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 8259 ldev; 8260 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 8261 if (ignore) 8262 continue; 8263 if (max_depth < ldev->lower_level) 8264 max_depth = ldev->lower_level; 8265 } 8266 8267 return max_depth; 8268 } 8269 8270 static int __netdev_update_upper_level(struct net_device *dev, 8271 struct netdev_nested_priv *__unused) 8272 { 8273 dev->upper_level = __netdev_upper_depth(dev) + 1; 8274 return 0; 8275 } 8276 8277 #ifdef CONFIG_LOCKDEP 8278 static LIST_HEAD(net_unlink_list); 8279 8280 static void net_unlink_todo(struct net_device *dev) 8281 { 8282 if (list_empty(&dev->unlink_list)) 8283 list_add_tail(&dev->unlink_list, &net_unlink_list); 8284 } 8285 #endif 8286 8287 static int __netdev_update_lower_level(struct net_device *dev, 8288 struct netdev_nested_priv *priv) 8289 { 8290 dev->lower_level = __netdev_lower_depth(dev) + 1; 8291 8292 #ifdef CONFIG_LOCKDEP 8293 if (!priv) 8294 return 0; 8295 8296 if (priv->flags & NESTED_SYNC_IMM) 8297 dev->nested_level = dev->lower_level - 1; 8298 if (priv->flags & NESTED_SYNC_TODO) 8299 net_unlink_todo(dev); 8300 #endif 8301 return 0; 8302 } 8303 8304 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 8305 int (*fn)(struct net_device *dev, 8306 struct netdev_nested_priv *priv), 8307 struct netdev_nested_priv *priv) 8308 { 8309 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8310 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8311 int ret, cur = 0; 8312 8313 now = dev; 8314 iter = &dev->adj_list.lower; 8315 8316 while (1) { 8317 if (now != dev) { 8318 ret = fn(now, priv); 8319 if (ret) 8320 return ret; 8321 } 8322 8323 next = NULL; 8324 while (1) { 8325 ldev = netdev_next_lower_dev_rcu(now, &iter); 8326 if (!ldev) 8327 break; 8328 8329 next = ldev; 8330 niter = &ldev->adj_list.lower; 8331 dev_stack[cur] = now; 8332 iter_stack[cur++] = iter; 8333 break; 8334 } 8335 8336 if (!next) { 8337 if (!cur) 8338 return 0; 8339 next = dev_stack[--cur]; 8340 niter = iter_stack[cur]; 8341 } 8342 8343 now = next; 8344 iter = niter; 8345 } 8346 8347 return 0; 8348 } 8349 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 8350 8351 /** 8352 * netdev_lower_get_first_private_rcu - Get the first ->private from the 8353 * lower neighbour list, RCU 8354 * variant 8355 * @dev: device 8356 * 8357 * Gets the first netdev_adjacent->private from the dev's lower neighbour 8358 * list. The caller must hold RCU read lock. 8359 */ 8360 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 8361 { 8362 struct netdev_adjacent *lower; 8363 8364 lower = list_first_or_null_rcu(&dev->adj_list.lower, 8365 struct netdev_adjacent, list); 8366 if (lower) 8367 return lower->private; 8368 return NULL; 8369 } 8370 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 8371 8372 /** 8373 * netdev_master_upper_dev_get_rcu - Get master upper device 8374 * @dev: device 8375 * 8376 * Find a master upper device and return pointer to it or NULL in case 8377 * it's not there. The caller must hold the RCU read lock. 8378 */ 8379 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 8380 { 8381 struct netdev_adjacent *upper; 8382 8383 upper = list_first_or_null_rcu(&dev->adj_list.upper, 8384 struct netdev_adjacent, list); 8385 if (upper && likely(upper->master)) 8386 return upper->dev; 8387 return NULL; 8388 } 8389 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 8390 8391 static int netdev_adjacent_sysfs_add(struct net_device *dev, 8392 struct net_device *adj_dev, 8393 struct list_head *dev_list) 8394 { 8395 char linkname[IFNAMSIZ+7]; 8396 8397 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8398 "upper_%s" : "lower_%s", adj_dev->name); 8399 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 8400 linkname); 8401 } 8402 static void netdev_adjacent_sysfs_del(struct net_device *dev, 8403 char *name, 8404 struct list_head *dev_list) 8405 { 8406 char linkname[IFNAMSIZ+7]; 8407 8408 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8409 "upper_%s" : "lower_%s", name); 8410 sysfs_remove_link(&(dev->dev.kobj), linkname); 8411 } 8412 8413 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 8414 struct net_device *adj_dev, 8415 struct list_head *dev_list) 8416 { 8417 return (dev_list == &dev->adj_list.upper || 8418 dev_list == &dev->adj_list.lower) && 8419 net_eq(dev_net(dev), dev_net(adj_dev)); 8420 } 8421 8422 static int __netdev_adjacent_dev_insert(struct net_device *dev, 8423 struct net_device *adj_dev, 8424 struct list_head *dev_list, 8425 void *private, bool master) 8426 { 8427 struct netdev_adjacent *adj; 8428 int ret; 8429 8430 adj = __netdev_find_adj(adj_dev, dev_list); 8431 8432 if (adj) { 8433 adj->ref_nr += 1; 8434 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 8435 dev->name, adj_dev->name, adj->ref_nr); 8436 8437 return 0; 8438 } 8439 8440 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 8441 if (!adj) 8442 return -ENOMEM; 8443 8444 adj->dev = adj_dev; 8445 adj->master = master; 8446 adj->ref_nr = 1; 8447 adj->private = private; 8448 adj->ignore = false; 8449 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 8450 8451 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 8452 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 8453 8454 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 8455 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 8456 if (ret) 8457 goto free_adj; 8458 } 8459 8460 /* Ensure that master link is always the first item in list. */ 8461 if (master) { 8462 ret = sysfs_create_link(&(dev->dev.kobj), 8463 &(adj_dev->dev.kobj), "master"); 8464 if (ret) 8465 goto remove_symlinks; 8466 8467 list_add_rcu(&adj->list, dev_list); 8468 } else { 8469 list_add_tail_rcu(&adj->list, dev_list); 8470 } 8471 8472 return 0; 8473 8474 remove_symlinks: 8475 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8476 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8477 free_adj: 8478 netdev_put(adj_dev, &adj->dev_tracker); 8479 kfree(adj); 8480 8481 return ret; 8482 } 8483 8484 static void __netdev_adjacent_dev_remove(struct net_device *dev, 8485 struct net_device *adj_dev, 8486 u16 ref_nr, 8487 struct list_head *dev_list) 8488 { 8489 struct netdev_adjacent *adj; 8490 8491 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8492 dev->name, adj_dev->name, ref_nr); 8493 8494 adj = __netdev_find_adj(adj_dev, dev_list); 8495 8496 if (!adj) { 8497 pr_err("Adjacency does not exist for device %s from %s\n", 8498 dev->name, adj_dev->name); 8499 WARN_ON(1); 8500 return; 8501 } 8502 8503 if (adj->ref_nr > ref_nr) { 8504 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8505 dev->name, adj_dev->name, ref_nr, 8506 adj->ref_nr - ref_nr); 8507 adj->ref_nr -= ref_nr; 8508 return; 8509 } 8510 8511 if (adj->master) 8512 sysfs_remove_link(&(dev->dev.kobj), "master"); 8513 8514 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8515 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8516 8517 list_del_rcu(&adj->list); 8518 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8519 adj_dev->name, dev->name, adj_dev->name); 8520 netdev_put(adj_dev, &adj->dev_tracker); 8521 kfree_rcu(adj, rcu); 8522 } 8523 8524 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8525 struct net_device *upper_dev, 8526 struct list_head *up_list, 8527 struct list_head *down_list, 8528 void *private, bool master) 8529 { 8530 int ret; 8531 8532 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8533 private, master); 8534 if (ret) 8535 return ret; 8536 8537 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8538 private, false); 8539 if (ret) { 8540 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8541 return ret; 8542 } 8543 8544 return 0; 8545 } 8546 8547 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8548 struct net_device *upper_dev, 8549 u16 ref_nr, 8550 struct list_head *up_list, 8551 struct list_head *down_list) 8552 { 8553 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8554 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8555 } 8556 8557 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8558 struct net_device *upper_dev, 8559 void *private, bool master) 8560 { 8561 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8562 &dev->adj_list.upper, 8563 &upper_dev->adj_list.lower, 8564 private, master); 8565 } 8566 8567 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8568 struct net_device *upper_dev) 8569 { 8570 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8571 &dev->adj_list.upper, 8572 &upper_dev->adj_list.lower); 8573 } 8574 8575 static int __netdev_upper_dev_link(struct net_device *dev, 8576 struct net_device *upper_dev, bool master, 8577 void *upper_priv, void *upper_info, 8578 struct netdev_nested_priv *priv, 8579 struct netlink_ext_ack *extack) 8580 { 8581 struct netdev_notifier_changeupper_info changeupper_info = { 8582 .info = { 8583 .dev = dev, 8584 .extack = extack, 8585 }, 8586 .upper_dev = upper_dev, 8587 .master = master, 8588 .linking = true, 8589 .upper_info = upper_info, 8590 }; 8591 struct net_device *master_dev; 8592 int ret = 0; 8593 8594 ASSERT_RTNL(); 8595 8596 if (dev == upper_dev) 8597 return -EBUSY; 8598 8599 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8600 if (__netdev_has_upper_dev(upper_dev, dev)) 8601 return -EBUSY; 8602 8603 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8604 return -EMLINK; 8605 8606 if (!master) { 8607 if (__netdev_has_upper_dev(dev, upper_dev)) 8608 return -EEXIST; 8609 } else { 8610 master_dev = __netdev_master_upper_dev_get(dev); 8611 if (master_dev) 8612 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8613 } 8614 8615 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8616 &changeupper_info.info); 8617 ret = notifier_to_errno(ret); 8618 if (ret) 8619 return ret; 8620 8621 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8622 master); 8623 if (ret) 8624 return ret; 8625 8626 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8627 &changeupper_info.info); 8628 ret = notifier_to_errno(ret); 8629 if (ret) 8630 goto rollback; 8631 8632 __netdev_update_upper_level(dev, NULL); 8633 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8634 8635 __netdev_update_lower_level(upper_dev, priv); 8636 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8637 priv); 8638 8639 return 0; 8640 8641 rollback: 8642 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8643 8644 return ret; 8645 } 8646 8647 /** 8648 * netdev_upper_dev_link - Add a link to the upper device 8649 * @dev: device 8650 * @upper_dev: new upper device 8651 * @extack: netlink extended ack 8652 * 8653 * Adds a link to device which is upper to this one. The caller must hold 8654 * the RTNL lock. On a failure a negative errno code is returned. 8655 * On success the reference counts are adjusted and the function 8656 * returns zero. 8657 */ 8658 int netdev_upper_dev_link(struct net_device *dev, 8659 struct net_device *upper_dev, 8660 struct netlink_ext_ack *extack) 8661 { 8662 struct netdev_nested_priv priv = { 8663 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8664 .data = NULL, 8665 }; 8666 8667 return __netdev_upper_dev_link(dev, upper_dev, false, 8668 NULL, NULL, &priv, extack); 8669 } 8670 EXPORT_SYMBOL(netdev_upper_dev_link); 8671 8672 /** 8673 * netdev_master_upper_dev_link - Add a master link to the upper device 8674 * @dev: device 8675 * @upper_dev: new upper device 8676 * @upper_priv: upper device private 8677 * @upper_info: upper info to be passed down via notifier 8678 * @extack: netlink extended ack 8679 * 8680 * Adds a link to device which is upper to this one. In this case, only 8681 * one master upper device can be linked, although other non-master devices 8682 * might be linked as well. The caller must hold the RTNL lock. 8683 * On a failure a negative errno code is returned. On success the reference 8684 * counts are adjusted and the function returns zero. 8685 */ 8686 int netdev_master_upper_dev_link(struct net_device *dev, 8687 struct net_device *upper_dev, 8688 void *upper_priv, void *upper_info, 8689 struct netlink_ext_ack *extack) 8690 { 8691 struct netdev_nested_priv priv = { 8692 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8693 .data = NULL, 8694 }; 8695 8696 return __netdev_upper_dev_link(dev, upper_dev, true, 8697 upper_priv, upper_info, &priv, extack); 8698 } 8699 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8700 8701 static void __netdev_upper_dev_unlink(struct net_device *dev, 8702 struct net_device *upper_dev, 8703 struct netdev_nested_priv *priv) 8704 { 8705 struct netdev_notifier_changeupper_info changeupper_info = { 8706 .info = { 8707 .dev = dev, 8708 }, 8709 .upper_dev = upper_dev, 8710 .linking = false, 8711 }; 8712 8713 ASSERT_RTNL(); 8714 8715 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8716 8717 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8718 &changeupper_info.info); 8719 8720 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8721 8722 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8723 &changeupper_info.info); 8724 8725 __netdev_update_upper_level(dev, NULL); 8726 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8727 8728 __netdev_update_lower_level(upper_dev, priv); 8729 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8730 priv); 8731 } 8732 8733 /** 8734 * netdev_upper_dev_unlink - Removes a link to upper device 8735 * @dev: device 8736 * @upper_dev: new upper device 8737 * 8738 * Removes a link to device which is upper to this one. The caller must hold 8739 * the RTNL lock. 8740 */ 8741 void netdev_upper_dev_unlink(struct net_device *dev, 8742 struct net_device *upper_dev) 8743 { 8744 struct netdev_nested_priv priv = { 8745 .flags = NESTED_SYNC_TODO, 8746 .data = NULL, 8747 }; 8748 8749 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8750 } 8751 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8752 8753 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8754 struct net_device *lower_dev, 8755 bool val) 8756 { 8757 struct netdev_adjacent *adj; 8758 8759 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8760 if (adj) 8761 adj->ignore = val; 8762 8763 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8764 if (adj) 8765 adj->ignore = val; 8766 } 8767 8768 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8769 struct net_device *lower_dev) 8770 { 8771 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8772 } 8773 8774 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8775 struct net_device *lower_dev) 8776 { 8777 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8778 } 8779 8780 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8781 struct net_device *new_dev, 8782 struct net_device *dev, 8783 struct netlink_ext_ack *extack) 8784 { 8785 struct netdev_nested_priv priv = { 8786 .flags = 0, 8787 .data = NULL, 8788 }; 8789 int err; 8790 8791 if (!new_dev) 8792 return 0; 8793 8794 if (old_dev && new_dev != old_dev) 8795 netdev_adjacent_dev_disable(dev, old_dev); 8796 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8797 extack); 8798 if (err) { 8799 if (old_dev && new_dev != old_dev) 8800 netdev_adjacent_dev_enable(dev, old_dev); 8801 return err; 8802 } 8803 8804 return 0; 8805 } 8806 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8807 8808 void netdev_adjacent_change_commit(struct net_device *old_dev, 8809 struct net_device *new_dev, 8810 struct net_device *dev) 8811 { 8812 struct netdev_nested_priv priv = { 8813 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8814 .data = NULL, 8815 }; 8816 8817 if (!new_dev || !old_dev) 8818 return; 8819 8820 if (new_dev == old_dev) 8821 return; 8822 8823 netdev_adjacent_dev_enable(dev, old_dev); 8824 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8825 } 8826 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8827 8828 void netdev_adjacent_change_abort(struct net_device *old_dev, 8829 struct net_device *new_dev, 8830 struct net_device *dev) 8831 { 8832 struct netdev_nested_priv priv = { 8833 .flags = 0, 8834 .data = NULL, 8835 }; 8836 8837 if (!new_dev) 8838 return; 8839 8840 if (old_dev && new_dev != old_dev) 8841 netdev_adjacent_dev_enable(dev, old_dev); 8842 8843 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8844 } 8845 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8846 8847 /** 8848 * netdev_bonding_info_change - Dispatch event about slave change 8849 * @dev: device 8850 * @bonding_info: info to dispatch 8851 * 8852 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8853 * The caller must hold the RTNL lock. 8854 */ 8855 void netdev_bonding_info_change(struct net_device *dev, 8856 struct netdev_bonding_info *bonding_info) 8857 { 8858 struct netdev_notifier_bonding_info info = { 8859 .info.dev = dev, 8860 }; 8861 8862 memcpy(&info.bonding_info, bonding_info, 8863 sizeof(struct netdev_bonding_info)); 8864 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8865 &info.info); 8866 } 8867 EXPORT_SYMBOL(netdev_bonding_info_change); 8868 8869 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8870 struct netlink_ext_ack *extack) 8871 { 8872 struct netdev_notifier_offload_xstats_info info = { 8873 .info.dev = dev, 8874 .info.extack = extack, 8875 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8876 }; 8877 int err; 8878 int rc; 8879 8880 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8881 GFP_KERNEL); 8882 if (!dev->offload_xstats_l3) 8883 return -ENOMEM; 8884 8885 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8886 NETDEV_OFFLOAD_XSTATS_DISABLE, 8887 &info.info); 8888 err = notifier_to_errno(rc); 8889 if (err) 8890 goto free_stats; 8891 8892 return 0; 8893 8894 free_stats: 8895 kfree(dev->offload_xstats_l3); 8896 dev->offload_xstats_l3 = NULL; 8897 return err; 8898 } 8899 8900 int netdev_offload_xstats_enable(struct net_device *dev, 8901 enum netdev_offload_xstats_type type, 8902 struct netlink_ext_ack *extack) 8903 { 8904 ASSERT_RTNL(); 8905 8906 if (netdev_offload_xstats_enabled(dev, type)) 8907 return -EALREADY; 8908 8909 switch (type) { 8910 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8911 return netdev_offload_xstats_enable_l3(dev, extack); 8912 } 8913 8914 WARN_ON(1); 8915 return -EINVAL; 8916 } 8917 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8918 8919 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8920 { 8921 struct netdev_notifier_offload_xstats_info info = { 8922 .info.dev = dev, 8923 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8924 }; 8925 8926 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8927 &info.info); 8928 kfree(dev->offload_xstats_l3); 8929 dev->offload_xstats_l3 = NULL; 8930 } 8931 8932 int netdev_offload_xstats_disable(struct net_device *dev, 8933 enum netdev_offload_xstats_type type) 8934 { 8935 ASSERT_RTNL(); 8936 8937 if (!netdev_offload_xstats_enabled(dev, type)) 8938 return -EALREADY; 8939 8940 switch (type) { 8941 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8942 netdev_offload_xstats_disable_l3(dev); 8943 return 0; 8944 } 8945 8946 WARN_ON(1); 8947 return -EINVAL; 8948 } 8949 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8950 8951 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8952 { 8953 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8954 } 8955 8956 static struct rtnl_hw_stats64 * 8957 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8958 enum netdev_offload_xstats_type type) 8959 { 8960 switch (type) { 8961 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8962 return dev->offload_xstats_l3; 8963 } 8964 8965 WARN_ON(1); 8966 return NULL; 8967 } 8968 8969 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8970 enum netdev_offload_xstats_type type) 8971 { 8972 ASSERT_RTNL(); 8973 8974 return netdev_offload_xstats_get_ptr(dev, type); 8975 } 8976 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8977 8978 struct netdev_notifier_offload_xstats_ru { 8979 bool used; 8980 }; 8981 8982 struct netdev_notifier_offload_xstats_rd { 8983 struct rtnl_hw_stats64 stats; 8984 bool used; 8985 }; 8986 8987 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8988 const struct rtnl_hw_stats64 *src) 8989 { 8990 dest->rx_packets += src->rx_packets; 8991 dest->tx_packets += src->tx_packets; 8992 dest->rx_bytes += src->rx_bytes; 8993 dest->tx_bytes += src->tx_bytes; 8994 dest->rx_errors += src->rx_errors; 8995 dest->tx_errors += src->tx_errors; 8996 dest->rx_dropped += src->rx_dropped; 8997 dest->tx_dropped += src->tx_dropped; 8998 dest->multicast += src->multicast; 8999 } 9000 9001 static int netdev_offload_xstats_get_used(struct net_device *dev, 9002 enum netdev_offload_xstats_type type, 9003 bool *p_used, 9004 struct netlink_ext_ack *extack) 9005 { 9006 struct netdev_notifier_offload_xstats_ru report_used = {}; 9007 struct netdev_notifier_offload_xstats_info info = { 9008 .info.dev = dev, 9009 .info.extack = extack, 9010 .type = type, 9011 .report_used = &report_used, 9012 }; 9013 int rc; 9014 9015 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 9016 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 9017 &info.info); 9018 *p_used = report_used.used; 9019 return notifier_to_errno(rc); 9020 } 9021 9022 static int netdev_offload_xstats_get_stats(struct net_device *dev, 9023 enum netdev_offload_xstats_type type, 9024 struct rtnl_hw_stats64 *p_stats, 9025 bool *p_used, 9026 struct netlink_ext_ack *extack) 9027 { 9028 struct netdev_notifier_offload_xstats_rd report_delta = {}; 9029 struct netdev_notifier_offload_xstats_info info = { 9030 .info.dev = dev, 9031 .info.extack = extack, 9032 .type = type, 9033 .report_delta = &report_delta, 9034 }; 9035 struct rtnl_hw_stats64 *stats; 9036 int rc; 9037 9038 stats = netdev_offload_xstats_get_ptr(dev, type); 9039 if (WARN_ON(!stats)) 9040 return -EINVAL; 9041 9042 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 9043 &info.info); 9044 9045 /* Cache whatever we got, even if there was an error, otherwise the 9046 * successful stats retrievals would get lost. 9047 */ 9048 netdev_hw_stats64_add(stats, &report_delta.stats); 9049 9050 if (p_stats) 9051 *p_stats = *stats; 9052 *p_used = report_delta.used; 9053 9054 return notifier_to_errno(rc); 9055 } 9056 9057 int netdev_offload_xstats_get(struct net_device *dev, 9058 enum netdev_offload_xstats_type type, 9059 struct rtnl_hw_stats64 *p_stats, bool *p_used, 9060 struct netlink_ext_ack *extack) 9061 { 9062 ASSERT_RTNL(); 9063 9064 if (p_stats) 9065 return netdev_offload_xstats_get_stats(dev, type, p_stats, 9066 p_used, extack); 9067 else 9068 return netdev_offload_xstats_get_used(dev, type, p_used, 9069 extack); 9070 } 9071 EXPORT_SYMBOL(netdev_offload_xstats_get); 9072 9073 void 9074 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 9075 const struct rtnl_hw_stats64 *stats) 9076 { 9077 report_delta->used = true; 9078 netdev_hw_stats64_add(&report_delta->stats, stats); 9079 } 9080 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 9081 9082 void 9083 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 9084 { 9085 report_used->used = true; 9086 } 9087 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 9088 9089 void netdev_offload_xstats_push_delta(struct net_device *dev, 9090 enum netdev_offload_xstats_type type, 9091 const struct rtnl_hw_stats64 *p_stats) 9092 { 9093 struct rtnl_hw_stats64 *stats; 9094 9095 ASSERT_RTNL(); 9096 9097 stats = netdev_offload_xstats_get_ptr(dev, type); 9098 if (WARN_ON(!stats)) 9099 return; 9100 9101 netdev_hw_stats64_add(stats, p_stats); 9102 } 9103 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 9104 9105 /** 9106 * netdev_get_xmit_slave - Get the xmit slave of master device 9107 * @dev: device 9108 * @skb: The packet 9109 * @all_slaves: assume all the slaves are active 9110 * 9111 * The reference counters are not incremented so the caller must be 9112 * careful with locks. The caller must hold RCU lock. 9113 * %NULL is returned if no slave is found. 9114 */ 9115 9116 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 9117 struct sk_buff *skb, 9118 bool all_slaves) 9119 { 9120 const struct net_device_ops *ops = dev->netdev_ops; 9121 9122 if (!ops->ndo_get_xmit_slave) 9123 return NULL; 9124 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 9125 } 9126 EXPORT_SYMBOL(netdev_get_xmit_slave); 9127 9128 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 9129 struct sock *sk) 9130 { 9131 const struct net_device_ops *ops = dev->netdev_ops; 9132 9133 if (!ops->ndo_sk_get_lower_dev) 9134 return NULL; 9135 return ops->ndo_sk_get_lower_dev(dev, sk); 9136 } 9137 9138 /** 9139 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 9140 * @dev: device 9141 * @sk: the socket 9142 * 9143 * %NULL is returned if no lower device is found. 9144 */ 9145 9146 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 9147 struct sock *sk) 9148 { 9149 struct net_device *lower; 9150 9151 lower = netdev_sk_get_lower_dev(dev, sk); 9152 while (lower) { 9153 dev = lower; 9154 lower = netdev_sk_get_lower_dev(dev, sk); 9155 } 9156 9157 return dev; 9158 } 9159 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 9160 9161 static void netdev_adjacent_add_links(struct net_device *dev) 9162 { 9163 struct netdev_adjacent *iter; 9164 9165 struct net *net = dev_net(dev); 9166 9167 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9168 if (!net_eq(net, dev_net(iter->dev))) 9169 continue; 9170 netdev_adjacent_sysfs_add(iter->dev, dev, 9171 &iter->dev->adj_list.lower); 9172 netdev_adjacent_sysfs_add(dev, iter->dev, 9173 &dev->adj_list.upper); 9174 } 9175 9176 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9177 if (!net_eq(net, dev_net(iter->dev))) 9178 continue; 9179 netdev_adjacent_sysfs_add(iter->dev, dev, 9180 &iter->dev->adj_list.upper); 9181 netdev_adjacent_sysfs_add(dev, iter->dev, 9182 &dev->adj_list.lower); 9183 } 9184 } 9185 9186 static void netdev_adjacent_del_links(struct net_device *dev) 9187 { 9188 struct netdev_adjacent *iter; 9189 9190 struct net *net = dev_net(dev); 9191 9192 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9193 if (!net_eq(net, dev_net(iter->dev))) 9194 continue; 9195 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9196 &iter->dev->adj_list.lower); 9197 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9198 &dev->adj_list.upper); 9199 } 9200 9201 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9202 if (!net_eq(net, dev_net(iter->dev))) 9203 continue; 9204 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9205 &iter->dev->adj_list.upper); 9206 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9207 &dev->adj_list.lower); 9208 } 9209 } 9210 9211 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 9212 { 9213 struct netdev_adjacent *iter; 9214 9215 struct net *net = dev_net(dev); 9216 9217 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9218 if (!net_eq(net, dev_net(iter->dev))) 9219 continue; 9220 netdev_adjacent_sysfs_del(iter->dev, oldname, 9221 &iter->dev->adj_list.lower); 9222 netdev_adjacent_sysfs_add(iter->dev, dev, 9223 &iter->dev->adj_list.lower); 9224 } 9225 9226 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9227 if (!net_eq(net, dev_net(iter->dev))) 9228 continue; 9229 netdev_adjacent_sysfs_del(iter->dev, oldname, 9230 &iter->dev->adj_list.upper); 9231 netdev_adjacent_sysfs_add(iter->dev, dev, 9232 &iter->dev->adj_list.upper); 9233 } 9234 } 9235 9236 void *netdev_lower_dev_get_private(struct net_device *dev, 9237 struct net_device *lower_dev) 9238 { 9239 struct netdev_adjacent *lower; 9240 9241 if (!lower_dev) 9242 return NULL; 9243 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 9244 if (!lower) 9245 return NULL; 9246 9247 return lower->private; 9248 } 9249 EXPORT_SYMBOL(netdev_lower_dev_get_private); 9250 9251 9252 /** 9253 * netdev_lower_state_changed - Dispatch event about lower device state change 9254 * @lower_dev: device 9255 * @lower_state_info: state to dispatch 9256 * 9257 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 9258 * The caller must hold the RTNL lock. 9259 */ 9260 void netdev_lower_state_changed(struct net_device *lower_dev, 9261 void *lower_state_info) 9262 { 9263 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 9264 .info.dev = lower_dev, 9265 }; 9266 9267 ASSERT_RTNL(); 9268 changelowerstate_info.lower_state_info = lower_state_info; 9269 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 9270 &changelowerstate_info.info); 9271 } 9272 EXPORT_SYMBOL(netdev_lower_state_changed); 9273 9274 static void dev_change_rx_flags(struct net_device *dev, int flags) 9275 { 9276 const struct net_device_ops *ops = dev->netdev_ops; 9277 9278 if (ops->ndo_change_rx_flags) 9279 ops->ndo_change_rx_flags(dev, flags); 9280 } 9281 9282 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 9283 { 9284 unsigned int old_flags = dev->flags; 9285 unsigned int promiscuity, flags; 9286 kuid_t uid; 9287 kgid_t gid; 9288 9289 ASSERT_RTNL(); 9290 9291 promiscuity = dev->promiscuity + inc; 9292 if (promiscuity == 0) { 9293 /* 9294 * Avoid overflow. 9295 * If inc causes overflow, untouch promisc and return error. 9296 */ 9297 if (unlikely(inc > 0)) { 9298 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 9299 return -EOVERFLOW; 9300 } 9301 flags = old_flags & ~IFF_PROMISC; 9302 } else { 9303 flags = old_flags | IFF_PROMISC; 9304 } 9305 WRITE_ONCE(dev->promiscuity, promiscuity); 9306 if (flags != old_flags) { 9307 WRITE_ONCE(dev->flags, flags); 9308 netdev_info(dev, "%s promiscuous mode\n", 9309 dev->flags & IFF_PROMISC ? "entered" : "left"); 9310 if (audit_enabled) { 9311 current_uid_gid(&uid, &gid); 9312 audit_log(audit_context(), GFP_ATOMIC, 9313 AUDIT_ANOM_PROMISCUOUS, 9314 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 9315 dev->name, (dev->flags & IFF_PROMISC), 9316 (old_flags & IFF_PROMISC), 9317 from_kuid(&init_user_ns, audit_get_loginuid(current)), 9318 from_kuid(&init_user_ns, uid), 9319 from_kgid(&init_user_ns, gid), 9320 audit_get_sessionid(current)); 9321 } 9322 9323 dev_change_rx_flags(dev, IFF_PROMISC); 9324 } 9325 if (notify) { 9326 /* The ops lock is only required to ensure consistent locking 9327 * for `NETDEV_CHANGE` notifiers. This function is sometimes 9328 * called without the lock, even for devices that are ops 9329 * locked, such as in `dev_uc_sync_multiple` when using 9330 * bonding or teaming. 9331 */ 9332 netdev_ops_assert_locked(dev); 9333 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 9334 } 9335 return 0; 9336 } 9337 9338 int netif_set_promiscuity(struct net_device *dev, int inc) 9339 { 9340 unsigned int old_flags = dev->flags; 9341 int err; 9342 9343 err = __dev_set_promiscuity(dev, inc, true); 9344 if (err < 0) 9345 return err; 9346 if (dev->flags != old_flags) 9347 dev_set_rx_mode(dev); 9348 return err; 9349 } 9350 9351 int netif_set_allmulti(struct net_device *dev, int inc, bool notify) 9352 { 9353 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 9354 unsigned int allmulti, flags; 9355 9356 ASSERT_RTNL(); 9357 9358 allmulti = dev->allmulti + inc; 9359 if (allmulti == 0) { 9360 /* 9361 * Avoid overflow. 9362 * If inc causes overflow, untouch allmulti and return error. 9363 */ 9364 if (unlikely(inc > 0)) { 9365 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 9366 return -EOVERFLOW; 9367 } 9368 flags = old_flags & ~IFF_ALLMULTI; 9369 } else { 9370 flags = old_flags | IFF_ALLMULTI; 9371 } 9372 WRITE_ONCE(dev->allmulti, allmulti); 9373 if (flags != old_flags) { 9374 WRITE_ONCE(dev->flags, flags); 9375 netdev_info(dev, "%s allmulticast mode\n", 9376 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 9377 dev_change_rx_flags(dev, IFF_ALLMULTI); 9378 dev_set_rx_mode(dev); 9379 if (notify) 9380 __dev_notify_flags(dev, old_flags, 9381 dev->gflags ^ old_gflags, 0, NULL); 9382 } 9383 return 0; 9384 } 9385 9386 /* 9387 * Upload unicast and multicast address lists to device and 9388 * configure RX filtering. When the device doesn't support unicast 9389 * filtering it is put in promiscuous mode while unicast addresses 9390 * are present. 9391 */ 9392 void __dev_set_rx_mode(struct net_device *dev) 9393 { 9394 const struct net_device_ops *ops = dev->netdev_ops; 9395 9396 /* dev_open will call this function so the list will stay sane. */ 9397 if (!(dev->flags&IFF_UP)) 9398 return; 9399 9400 if (!netif_device_present(dev)) 9401 return; 9402 9403 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 9404 /* Unicast addresses changes may only happen under the rtnl, 9405 * therefore calling __dev_set_promiscuity here is safe. 9406 */ 9407 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 9408 __dev_set_promiscuity(dev, 1, false); 9409 dev->uc_promisc = true; 9410 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 9411 __dev_set_promiscuity(dev, -1, false); 9412 dev->uc_promisc = false; 9413 } 9414 } 9415 9416 if (ops->ndo_set_rx_mode) 9417 ops->ndo_set_rx_mode(dev); 9418 } 9419 9420 void dev_set_rx_mode(struct net_device *dev) 9421 { 9422 netif_addr_lock_bh(dev); 9423 __dev_set_rx_mode(dev); 9424 netif_addr_unlock_bh(dev); 9425 } 9426 9427 /** 9428 * dev_get_flags - get flags reported to userspace 9429 * @dev: device 9430 * 9431 * Get the combination of flag bits exported through APIs to userspace. 9432 */ 9433 unsigned int dev_get_flags(const struct net_device *dev) 9434 { 9435 unsigned int flags; 9436 9437 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 9438 IFF_ALLMULTI | 9439 IFF_RUNNING | 9440 IFF_LOWER_UP | 9441 IFF_DORMANT)) | 9442 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 9443 IFF_ALLMULTI)); 9444 9445 if (netif_running(dev)) { 9446 if (netif_oper_up(dev)) 9447 flags |= IFF_RUNNING; 9448 if (netif_carrier_ok(dev)) 9449 flags |= IFF_LOWER_UP; 9450 if (netif_dormant(dev)) 9451 flags |= IFF_DORMANT; 9452 } 9453 9454 return flags; 9455 } 9456 EXPORT_SYMBOL(dev_get_flags); 9457 9458 int __dev_change_flags(struct net_device *dev, unsigned int flags, 9459 struct netlink_ext_ack *extack) 9460 { 9461 unsigned int old_flags = dev->flags; 9462 int ret; 9463 9464 ASSERT_RTNL(); 9465 9466 /* 9467 * Set the flags on our device. 9468 */ 9469 9470 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 9471 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 9472 IFF_AUTOMEDIA)) | 9473 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 9474 IFF_ALLMULTI)); 9475 9476 /* 9477 * Load in the correct multicast list now the flags have changed. 9478 */ 9479 9480 if ((old_flags ^ flags) & IFF_MULTICAST) 9481 dev_change_rx_flags(dev, IFF_MULTICAST); 9482 9483 dev_set_rx_mode(dev); 9484 9485 /* 9486 * Have we downed the interface. We handle IFF_UP ourselves 9487 * according to user attempts to set it, rather than blindly 9488 * setting it. 9489 */ 9490 9491 ret = 0; 9492 if ((old_flags ^ flags) & IFF_UP) { 9493 if (old_flags & IFF_UP) 9494 __dev_close(dev); 9495 else 9496 ret = __dev_open(dev, extack); 9497 } 9498 9499 if ((flags ^ dev->gflags) & IFF_PROMISC) { 9500 int inc = (flags & IFF_PROMISC) ? 1 : -1; 9501 old_flags = dev->flags; 9502 9503 dev->gflags ^= IFF_PROMISC; 9504 9505 if (__dev_set_promiscuity(dev, inc, false) >= 0) 9506 if (dev->flags != old_flags) 9507 dev_set_rx_mode(dev); 9508 } 9509 9510 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 9511 * is important. Some (broken) drivers set IFF_PROMISC, when 9512 * IFF_ALLMULTI is requested not asking us and not reporting. 9513 */ 9514 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 9515 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 9516 9517 dev->gflags ^= IFF_ALLMULTI; 9518 netif_set_allmulti(dev, inc, false); 9519 } 9520 9521 return ret; 9522 } 9523 9524 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 9525 unsigned int gchanges, u32 portid, 9526 const struct nlmsghdr *nlh) 9527 { 9528 unsigned int changes = dev->flags ^ old_flags; 9529 9530 if (gchanges) 9531 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9532 9533 if (changes & IFF_UP) { 9534 if (dev->flags & IFF_UP) 9535 call_netdevice_notifiers(NETDEV_UP, dev); 9536 else 9537 call_netdevice_notifiers(NETDEV_DOWN, dev); 9538 } 9539 9540 if (dev->flags & IFF_UP && 9541 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9542 struct netdev_notifier_change_info change_info = { 9543 .info = { 9544 .dev = dev, 9545 }, 9546 .flags_changed = changes, 9547 }; 9548 9549 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9550 } 9551 } 9552 9553 int netif_change_flags(struct net_device *dev, unsigned int flags, 9554 struct netlink_ext_ack *extack) 9555 { 9556 int ret; 9557 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9558 9559 ret = __dev_change_flags(dev, flags, extack); 9560 if (ret < 0) 9561 return ret; 9562 9563 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9564 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9565 return ret; 9566 } 9567 9568 int __dev_set_mtu(struct net_device *dev, int new_mtu) 9569 { 9570 const struct net_device_ops *ops = dev->netdev_ops; 9571 9572 if (ops->ndo_change_mtu) 9573 return ops->ndo_change_mtu(dev, new_mtu); 9574 9575 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9576 WRITE_ONCE(dev->mtu, new_mtu); 9577 return 0; 9578 } 9579 EXPORT_SYMBOL(__dev_set_mtu); 9580 9581 int dev_validate_mtu(struct net_device *dev, int new_mtu, 9582 struct netlink_ext_ack *extack) 9583 { 9584 /* MTU must be positive, and in range */ 9585 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9586 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9587 return -EINVAL; 9588 } 9589 9590 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9591 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9592 return -EINVAL; 9593 } 9594 return 0; 9595 } 9596 9597 /** 9598 * netif_set_mtu_ext - Change maximum transfer unit 9599 * @dev: device 9600 * @new_mtu: new transfer unit 9601 * @extack: netlink extended ack 9602 * 9603 * Change the maximum transfer size of the network device. 9604 */ 9605 int netif_set_mtu_ext(struct net_device *dev, int new_mtu, 9606 struct netlink_ext_ack *extack) 9607 { 9608 int err, orig_mtu; 9609 9610 if (new_mtu == dev->mtu) 9611 return 0; 9612 9613 err = dev_validate_mtu(dev, new_mtu, extack); 9614 if (err) 9615 return err; 9616 9617 if (!netif_device_present(dev)) 9618 return -ENODEV; 9619 9620 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9621 err = notifier_to_errno(err); 9622 if (err) 9623 return err; 9624 9625 orig_mtu = dev->mtu; 9626 err = __dev_set_mtu(dev, new_mtu); 9627 9628 if (!err) { 9629 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9630 orig_mtu); 9631 err = notifier_to_errno(err); 9632 if (err) { 9633 /* setting mtu back and notifying everyone again, 9634 * so that they have a chance to revert changes. 9635 */ 9636 __dev_set_mtu(dev, orig_mtu); 9637 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9638 new_mtu); 9639 } 9640 } 9641 return err; 9642 } 9643 9644 int netif_set_mtu(struct net_device *dev, int new_mtu) 9645 { 9646 struct netlink_ext_ack extack; 9647 int err; 9648 9649 memset(&extack, 0, sizeof(extack)); 9650 err = netif_set_mtu_ext(dev, new_mtu, &extack); 9651 if (err && extack._msg) 9652 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9653 return err; 9654 } 9655 EXPORT_SYMBOL(netif_set_mtu); 9656 9657 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9658 { 9659 unsigned int orig_len = dev->tx_queue_len; 9660 int res; 9661 9662 if (new_len != (unsigned int)new_len) 9663 return -ERANGE; 9664 9665 if (new_len != orig_len) { 9666 WRITE_ONCE(dev->tx_queue_len, new_len); 9667 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9668 res = notifier_to_errno(res); 9669 if (res) 9670 goto err_rollback; 9671 res = dev_qdisc_change_tx_queue_len(dev); 9672 if (res) 9673 goto err_rollback; 9674 } 9675 9676 return 0; 9677 9678 err_rollback: 9679 netdev_err(dev, "refused to change device tx_queue_len\n"); 9680 WRITE_ONCE(dev->tx_queue_len, orig_len); 9681 return res; 9682 } 9683 9684 void netif_set_group(struct net_device *dev, int new_group) 9685 { 9686 dev->group = new_group; 9687 } 9688 9689 /** 9690 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 9691 * @dev: device 9692 * @addr: new address 9693 * @extack: netlink extended ack 9694 */ 9695 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9696 struct netlink_ext_ack *extack) 9697 { 9698 struct netdev_notifier_pre_changeaddr_info info = { 9699 .info.dev = dev, 9700 .info.extack = extack, 9701 .dev_addr = addr, 9702 }; 9703 int rc; 9704 9705 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9706 return notifier_to_errno(rc); 9707 } 9708 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 9709 9710 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 9711 struct netlink_ext_ack *extack) 9712 { 9713 const struct net_device_ops *ops = dev->netdev_ops; 9714 int err; 9715 9716 if (!ops->ndo_set_mac_address) 9717 return -EOPNOTSUPP; 9718 if (ss->ss_family != dev->type) 9719 return -EINVAL; 9720 if (!netif_device_present(dev)) 9721 return -ENODEV; 9722 err = dev_pre_changeaddr_notify(dev, ss->__data, extack); 9723 if (err) 9724 return err; 9725 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) { 9726 err = ops->ndo_set_mac_address(dev, ss); 9727 if (err) 9728 return err; 9729 } 9730 dev->addr_assign_type = NET_ADDR_SET; 9731 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9732 add_device_randomness(dev->dev_addr, dev->addr_len); 9733 return 0; 9734 } 9735 9736 DECLARE_RWSEM(dev_addr_sem); 9737 9738 /* "sa" is a true struct sockaddr with limited "sa_data" member. */ 9739 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9740 { 9741 size_t size = sizeof(sa->sa_data_min); 9742 struct net_device *dev; 9743 int ret = 0; 9744 9745 down_read(&dev_addr_sem); 9746 rcu_read_lock(); 9747 9748 dev = dev_get_by_name_rcu(net, dev_name); 9749 if (!dev) { 9750 ret = -ENODEV; 9751 goto unlock; 9752 } 9753 if (!dev->addr_len) 9754 memset(sa->sa_data, 0, size); 9755 else 9756 memcpy(sa->sa_data, dev->dev_addr, 9757 min_t(size_t, size, dev->addr_len)); 9758 sa->sa_family = dev->type; 9759 9760 unlock: 9761 rcu_read_unlock(); 9762 up_read(&dev_addr_sem); 9763 return ret; 9764 } 9765 EXPORT_SYMBOL(dev_get_mac_address); 9766 9767 int netif_change_carrier(struct net_device *dev, bool new_carrier) 9768 { 9769 const struct net_device_ops *ops = dev->netdev_ops; 9770 9771 if (!ops->ndo_change_carrier) 9772 return -EOPNOTSUPP; 9773 if (!netif_device_present(dev)) 9774 return -ENODEV; 9775 return ops->ndo_change_carrier(dev, new_carrier); 9776 } 9777 9778 /** 9779 * dev_get_phys_port_id - Get device physical port ID 9780 * @dev: device 9781 * @ppid: port ID 9782 * 9783 * Get device physical port ID 9784 */ 9785 int dev_get_phys_port_id(struct net_device *dev, 9786 struct netdev_phys_item_id *ppid) 9787 { 9788 const struct net_device_ops *ops = dev->netdev_ops; 9789 9790 if (!ops->ndo_get_phys_port_id) 9791 return -EOPNOTSUPP; 9792 return ops->ndo_get_phys_port_id(dev, ppid); 9793 } 9794 9795 /** 9796 * dev_get_phys_port_name - Get device physical port name 9797 * @dev: device 9798 * @name: port name 9799 * @len: limit of bytes to copy to name 9800 * 9801 * Get device physical port name 9802 */ 9803 int dev_get_phys_port_name(struct net_device *dev, 9804 char *name, size_t len) 9805 { 9806 const struct net_device_ops *ops = dev->netdev_ops; 9807 int err; 9808 9809 if (ops->ndo_get_phys_port_name) { 9810 err = ops->ndo_get_phys_port_name(dev, name, len); 9811 if (err != -EOPNOTSUPP) 9812 return err; 9813 } 9814 return devlink_compat_phys_port_name_get(dev, name, len); 9815 } 9816 9817 /** 9818 * dev_get_port_parent_id - Get the device's port parent identifier 9819 * @dev: network device 9820 * @ppid: pointer to a storage for the port's parent identifier 9821 * @recurse: allow/disallow recursion to lower devices 9822 * 9823 * Get the devices's port parent identifier 9824 */ 9825 int dev_get_port_parent_id(struct net_device *dev, 9826 struct netdev_phys_item_id *ppid, 9827 bool recurse) 9828 { 9829 const struct net_device_ops *ops = dev->netdev_ops; 9830 struct netdev_phys_item_id first = { }; 9831 struct net_device *lower_dev; 9832 struct list_head *iter; 9833 int err; 9834 9835 if (ops->ndo_get_port_parent_id) { 9836 err = ops->ndo_get_port_parent_id(dev, ppid); 9837 if (err != -EOPNOTSUPP) 9838 return err; 9839 } 9840 9841 err = devlink_compat_switch_id_get(dev, ppid); 9842 if (!recurse || err != -EOPNOTSUPP) 9843 return err; 9844 9845 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9846 err = dev_get_port_parent_id(lower_dev, ppid, true); 9847 if (err) 9848 break; 9849 if (!first.id_len) 9850 first = *ppid; 9851 else if (memcmp(&first, ppid, sizeof(*ppid))) 9852 return -EOPNOTSUPP; 9853 } 9854 9855 return err; 9856 } 9857 EXPORT_SYMBOL(dev_get_port_parent_id); 9858 9859 /** 9860 * netdev_port_same_parent_id - Indicate if two network devices have 9861 * the same port parent identifier 9862 * @a: first network device 9863 * @b: second network device 9864 */ 9865 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9866 { 9867 struct netdev_phys_item_id a_id = { }; 9868 struct netdev_phys_item_id b_id = { }; 9869 9870 if (dev_get_port_parent_id(a, &a_id, true) || 9871 dev_get_port_parent_id(b, &b_id, true)) 9872 return false; 9873 9874 return netdev_phys_item_id_same(&a_id, &b_id); 9875 } 9876 EXPORT_SYMBOL(netdev_port_same_parent_id); 9877 9878 int netif_change_proto_down(struct net_device *dev, bool proto_down) 9879 { 9880 if (!dev->change_proto_down) 9881 return -EOPNOTSUPP; 9882 if (!netif_device_present(dev)) 9883 return -ENODEV; 9884 if (proto_down) 9885 netif_carrier_off(dev); 9886 else 9887 netif_carrier_on(dev); 9888 WRITE_ONCE(dev->proto_down, proto_down); 9889 return 0; 9890 } 9891 9892 /** 9893 * netdev_change_proto_down_reason_locked - proto down reason 9894 * 9895 * @dev: device 9896 * @mask: proto down mask 9897 * @value: proto down value 9898 */ 9899 void netdev_change_proto_down_reason_locked(struct net_device *dev, 9900 unsigned long mask, u32 value) 9901 { 9902 u32 proto_down_reason; 9903 int b; 9904 9905 if (!mask) { 9906 proto_down_reason = value; 9907 } else { 9908 proto_down_reason = dev->proto_down_reason; 9909 for_each_set_bit(b, &mask, 32) { 9910 if (value & (1 << b)) 9911 proto_down_reason |= BIT(b); 9912 else 9913 proto_down_reason &= ~BIT(b); 9914 } 9915 } 9916 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 9917 } 9918 9919 struct bpf_xdp_link { 9920 struct bpf_link link; 9921 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9922 int flags; 9923 }; 9924 9925 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9926 { 9927 if (flags & XDP_FLAGS_HW_MODE) 9928 return XDP_MODE_HW; 9929 if (flags & XDP_FLAGS_DRV_MODE) 9930 return XDP_MODE_DRV; 9931 if (flags & XDP_FLAGS_SKB_MODE) 9932 return XDP_MODE_SKB; 9933 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9934 } 9935 9936 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9937 { 9938 switch (mode) { 9939 case XDP_MODE_SKB: 9940 return generic_xdp_install; 9941 case XDP_MODE_DRV: 9942 case XDP_MODE_HW: 9943 return dev->netdev_ops->ndo_bpf; 9944 default: 9945 return NULL; 9946 } 9947 } 9948 9949 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9950 enum bpf_xdp_mode mode) 9951 { 9952 return dev->xdp_state[mode].link; 9953 } 9954 9955 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9956 enum bpf_xdp_mode mode) 9957 { 9958 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9959 9960 if (link) 9961 return link->link.prog; 9962 return dev->xdp_state[mode].prog; 9963 } 9964 9965 u8 dev_xdp_prog_count(struct net_device *dev) 9966 { 9967 u8 count = 0; 9968 int i; 9969 9970 for (i = 0; i < __MAX_XDP_MODE; i++) 9971 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9972 count++; 9973 return count; 9974 } 9975 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9976 9977 u8 dev_xdp_sb_prog_count(struct net_device *dev) 9978 { 9979 u8 count = 0; 9980 int i; 9981 9982 for (i = 0; i < __MAX_XDP_MODE; i++) 9983 if (dev->xdp_state[i].prog && 9984 !dev->xdp_state[i].prog->aux->xdp_has_frags) 9985 count++; 9986 return count; 9987 } 9988 9989 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 9990 { 9991 if (!dev->netdev_ops->ndo_bpf) 9992 return -EOPNOTSUPP; 9993 9994 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 9995 bpf->command == XDP_SETUP_PROG && 9996 bpf->prog && !bpf->prog->aux->xdp_has_frags) { 9997 NL_SET_ERR_MSG(bpf->extack, 9998 "unable to propagate XDP to device using tcp-data-split"); 9999 return -EBUSY; 10000 } 10001 10002 if (dev_get_min_mp_channel_count(dev)) { 10003 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 10004 return -EBUSY; 10005 } 10006 10007 return dev->netdev_ops->ndo_bpf(dev, bpf); 10008 } 10009 EXPORT_SYMBOL_GPL(netif_xdp_propagate); 10010 10011 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 10012 { 10013 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 10014 10015 return prog ? prog->aux->id : 0; 10016 } 10017 10018 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 10019 struct bpf_xdp_link *link) 10020 { 10021 dev->xdp_state[mode].link = link; 10022 dev->xdp_state[mode].prog = NULL; 10023 } 10024 10025 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 10026 struct bpf_prog *prog) 10027 { 10028 dev->xdp_state[mode].link = NULL; 10029 dev->xdp_state[mode].prog = prog; 10030 } 10031 10032 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 10033 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 10034 u32 flags, struct bpf_prog *prog) 10035 { 10036 struct netdev_bpf xdp; 10037 int err; 10038 10039 netdev_ops_assert_locked(dev); 10040 10041 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10042 prog && !prog->aux->xdp_has_frags) { 10043 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); 10044 return -EBUSY; 10045 } 10046 10047 if (dev_get_min_mp_channel_count(dev)) { 10048 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 10049 return -EBUSY; 10050 } 10051 10052 memset(&xdp, 0, sizeof(xdp)); 10053 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 10054 xdp.extack = extack; 10055 xdp.flags = flags; 10056 xdp.prog = prog; 10057 10058 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 10059 * "moved" into driver), so they don't increment it on their own, but 10060 * they do decrement refcnt when program is detached or replaced. 10061 * Given net_device also owns link/prog, we need to bump refcnt here 10062 * to prevent drivers from underflowing it. 10063 */ 10064 if (prog) 10065 bpf_prog_inc(prog); 10066 err = bpf_op(dev, &xdp); 10067 if (err) { 10068 if (prog) 10069 bpf_prog_put(prog); 10070 return err; 10071 } 10072 10073 if (mode != XDP_MODE_HW) 10074 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 10075 10076 return 0; 10077 } 10078 10079 static void dev_xdp_uninstall(struct net_device *dev) 10080 { 10081 struct bpf_xdp_link *link; 10082 struct bpf_prog *prog; 10083 enum bpf_xdp_mode mode; 10084 bpf_op_t bpf_op; 10085 10086 ASSERT_RTNL(); 10087 10088 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 10089 prog = dev_xdp_prog(dev, mode); 10090 if (!prog) 10091 continue; 10092 10093 bpf_op = dev_xdp_bpf_op(dev, mode); 10094 if (!bpf_op) 10095 continue; 10096 10097 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10098 10099 /* auto-detach link from net device */ 10100 link = dev_xdp_link(dev, mode); 10101 if (link) 10102 link->dev = NULL; 10103 else 10104 bpf_prog_put(prog); 10105 10106 dev_xdp_set_link(dev, mode, NULL); 10107 } 10108 } 10109 10110 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 10111 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 10112 struct bpf_prog *old_prog, u32 flags) 10113 { 10114 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 10115 struct bpf_prog *cur_prog; 10116 struct net_device *upper; 10117 struct list_head *iter; 10118 enum bpf_xdp_mode mode; 10119 bpf_op_t bpf_op; 10120 int err; 10121 10122 ASSERT_RTNL(); 10123 10124 /* either link or prog attachment, never both */ 10125 if (link && (new_prog || old_prog)) 10126 return -EINVAL; 10127 /* link supports only XDP mode flags */ 10128 if (link && (flags & ~XDP_FLAGS_MODES)) { 10129 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 10130 return -EINVAL; 10131 } 10132 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 10133 if (num_modes > 1) { 10134 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 10135 return -EINVAL; 10136 } 10137 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 10138 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 10139 NL_SET_ERR_MSG(extack, 10140 "More than one program loaded, unset mode is ambiguous"); 10141 return -EINVAL; 10142 } 10143 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 10144 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 10145 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 10146 return -EINVAL; 10147 } 10148 10149 mode = dev_xdp_mode(dev, flags); 10150 /* can't replace attached link */ 10151 if (dev_xdp_link(dev, mode)) { 10152 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 10153 return -EBUSY; 10154 } 10155 10156 /* don't allow if an upper device already has a program */ 10157 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 10158 if (dev_xdp_prog_count(upper) > 0) { 10159 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 10160 return -EEXIST; 10161 } 10162 } 10163 10164 cur_prog = dev_xdp_prog(dev, mode); 10165 /* can't replace attached prog with link */ 10166 if (link && cur_prog) { 10167 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 10168 return -EBUSY; 10169 } 10170 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 10171 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 10172 return -EEXIST; 10173 } 10174 10175 /* put effective new program into new_prog */ 10176 if (link) 10177 new_prog = link->link.prog; 10178 10179 if (new_prog) { 10180 bool offload = mode == XDP_MODE_HW; 10181 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 10182 ? XDP_MODE_DRV : XDP_MODE_SKB; 10183 10184 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 10185 NL_SET_ERR_MSG(extack, "XDP program already attached"); 10186 return -EBUSY; 10187 } 10188 if (!offload && dev_xdp_prog(dev, other_mode)) { 10189 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 10190 return -EEXIST; 10191 } 10192 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 10193 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 10194 return -EINVAL; 10195 } 10196 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 10197 NL_SET_ERR_MSG(extack, "Program bound to different device"); 10198 return -EINVAL; 10199 } 10200 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 10201 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 10202 return -EINVAL; 10203 } 10204 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 10205 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 10206 return -EINVAL; 10207 } 10208 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 10209 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 10210 return -EINVAL; 10211 } 10212 } 10213 10214 /* don't call drivers if the effective program didn't change */ 10215 if (new_prog != cur_prog) { 10216 bpf_op = dev_xdp_bpf_op(dev, mode); 10217 if (!bpf_op) { 10218 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 10219 return -EOPNOTSUPP; 10220 } 10221 10222 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 10223 if (err) 10224 return err; 10225 } 10226 10227 if (link) 10228 dev_xdp_set_link(dev, mode, link); 10229 else 10230 dev_xdp_set_prog(dev, mode, new_prog); 10231 if (cur_prog) 10232 bpf_prog_put(cur_prog); 10233 10234 return 0; 10235 } 10236 10237 static int dev_xdp_attach_link(struct net_device *dev, 10238 struct netlink_ext_ack *extack, 10239 struct bpf_xdp_link *link) 10240 { 10241 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 10242 } 10243 10244 static int dev_xdp_detach_link(struct net_device *dev, 10245 struct netlink_ext_ack *extack, 10246 struct bpf_xdp_link *link) 10247 { 10248 enum bpf_xdp_mode mode; 10249 bpf_op_t bpf_op; 10250 10251 ASSERT_RTNL(); 10252 10253 mode = dev_xdp_mode(dev, link->flags); 10254 if (dev_xdp_link(dev, mode) != link) 10255 return -EINVAL; 10256 10257 bpf_op = dev_xdp_bpf_op(dev, mode); 10258 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10259 dev_xdp_set_link(dev, mode, NULL); 10260 return 0; 10261 } 10262 10263 static void bpf_xdp_link_release(struct bpf_link *link) 10264 { 10265 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10266 10267 rtnl_lock(); 10268 10269 /* if racing with net_device's tear down, xdp_link->dev might be 10270 * already NULL, in which case link was already auto-detached 10271 */ 10272 if (xdp_link->dev) { 10273 netdev_lock_ops(xdp_link->dev); 10274 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 10275 netdev_unlock_ops(xdp_link->dev); 10276 xdp_link->dev = NULL; 10277 } 10278 10279 rtnl_unlock(); 10280 } 10281 10282 static int bpf_xdp_link_detach(struct bpf_link *link) 10283 { 10284 bpf_xdp_link_release(link); 10285 return 0; 10286 } 10287 10288 static void bpf_xdp_link_dealloc(struct bpf_link *link) 10289 { 10290 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10291 10292 kfree(xdp_link); 10293 } 10294 10295 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 10296 struct seq_file *seq) 10297 { 10298 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10299 u32 ifindex = 0; 10300 10301 rtnl_lock(); 10302 if (xdp_link->dev) 10303 ifindex = xdp_link->dev->ifindex; 10304 rtnl_unlock(); 10305 10306 seq_printf(seq, "ifindex:\t%u\n", ifindex); 10307 } 10308 10309 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 10310 struct bpf_link_info *info) 10311 { 10312 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10313 u32 ifindex = 0; 10314 10315 rtnl_lock(); 10316 if (xdp_link->dev) 10317 ifindex = xdp_link->dev->ifindex; 10318 rtnl_unlock(); 10319 10320 info->xdp.ifindex = ifindex; 10321 return 0; 10322 } 10323 10324 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 10325 struct bpf_prog *old_prog) 10326 { 10327 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10328 enum bpf_xdp_mode mode; 10329 bpf_op_t bpf_op; 10330 int err = 0; 10331 10332 rtnl_lock(); 10333 10334 /* link might have been auto-released already, so fail */ 10335 if (!xdp_link->dev) { 10336 err = -ENOLINK; 10337 goto out_unlock; 10338 } 10339 10340 if (old_prog && link->prog != old_prog) { 10341 err = -EPERM; 10342 goto out_unlock; 10343 } 10344 old_prog = link->prog; 10345 if (old_prog->type != new_prog->type || 10346 old_prog->expected_attach_type != new_prog->expected_attach_type) { 10347 err = -EINVAL; 10348 goto out_unlock; 10349 } 10350 10351 if (old_prog == new_prog) { 10352 /* no-op, don't disturb drivers */ 10353 bpf_prog_put(new_prog); 10354 goto out_unlock; 10355 } 10356 10357 netdev_lock_ops(xdp_link->dev); 10358 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 10359 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 10360 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 10361 xdp_link->flags, new_prog); 10362 netdev_unlock_ops(xdp_link->dev); 10363 if (err) 10364 goto out_unlock; 10365 10366 old_prog = xchg(&link->prog, new_prog); 10367 bpf_prog_put(old_prog); 10368 10369 out_unlock: 10370 rtnl_unlock(); 10371 return err; 10372 } 10373 10374 static const struct bpf_link_ops bpf_xdp_link_lops = { 10375 .release = bpf_xdp_link_release, 10376 .dealloc = bpf_xdp_link_dealloc, 10377 .detach = bpf_xdp_link_detach, 10378 .show_fdinfo = bpf_xdp_link_show_fdinfo, 10379 .fill_link_info = bpf_xdp_link_fill_link_info, 10380 .update_prog = bpf_xdp_link_update, 10381 }; 10382 10383 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 10384 { 10385 struct net *net = current->nsproxy->net_ns; 10386 struct bpf_link_primer link_primer; 10387 struct netlink_ext_ack extack = {}; 10388 struct bpf_xdp_link *link; 10389 struct net_device *dev; 10390 int err, fd; 10391 10392 rtnl_lock(); 10393 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 10394 if (!dev) { 10395 rtnl_unlock(); 10396 return -EINVAL; 10397 } 10398 10399 link = kzalloc(sizeof(*link), GFP_USER); 10400 if (!link) { 10401 err = -ENOMEM; 10402 goto unlock; 10403 } 10404 10405 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 10406 link->dev = dev; 10407 link->flags = attr->link_create.flags; 10408 10409 err = bpf_link_prime(&link->link, &link_primer); 10410 if (err) { 10411 kfree(link); 10412 goto unlock; 10413 } 10414 10415 netdev_lock_ops(dev); 10416 err = dev_xdp_attach_link(dev, &extack, link); 10417 netdev_unlock_ops(dev); 10418 rtnl_unlock(); 10419 10420 if (err) { 10421 link->dev = NULL; 10422 bpf_link_cleanup(&link_primer); 10423 trace_bpf_xdp_link_attach_failed(extack._msg); 10424 goto out_put_dev; 10425 } 10426 10427 fd = bpf_link_settle(&link_primer); 10428 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 10429 dev_put(dev); 10430 return fd; 10431 10432 unlock: 10433 rtnl_unlock(); 10434 10435 out_put_dev: 10436 dev_put(dev); 10437 return err; 10438 } 10439 10440 /** 10441 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 10442 * @dev: device 10443 * @extack: netlink extended ack 10444 * @fd: new program fd or negative value to clear 10445 * @expected_fd: old program fd that userspace expects to replace or clear 10446 * @flags: xdp-related flags 10447 * 10448 * Set or clear a bpf program for a device 10449 */ 10450 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 10451 int fd, int expected_fd, u32 flags) 10452 { 10453 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 10454 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 10455 int err; 10456 10457 ASSERT_RTNL(); 10458 10459 if (fd >= 0) { 10460 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 10461 mode != XDP_MODE_SKB); 10462 if (IS_ERR(new_prog)) 10463 return PTR_ERR(new_prog); 10464 } 10465 10466 if (expected_fd >= 0) { 10467 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 10468 mode != XDP_MODE_SKB); 10469 if (IS_ERR(old_prog)) { 10470 err = PTR_ERR(old_prog); 10471 old_prog = NULL; 10472 goto err_out; 10473 } 10474 } 10475 10476 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 10477 10478 err_out: 10479 if (err && new_prog) 10480 bpf_prog_put(new_prog); 10481 if (old_prog) 10482 bpf_prog_put(old_prog); 10483 return err; 10484 } 10485 10486 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 10487 { 10488 int i; 10489 10490 netdev_ops_assert_locked(dev); 10491 10492 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 10493 if (dev->_rx[i].mp_params.mp_priv) 10494 /* The channel count is the idx plus 1. */ 10495 return i + 1; 10496 10497 return 0; 10498 } 10499 10500 /** 10501 * dev_index_reserve() - allocate an ifindex in a namespace 10502 * @net: the applicable net namespace 10503 * @ifindex: requested ifindex, pass %0 to get one allocated 10504 * 10505 * Allocate a ifindex for a new device. Caller must either use the ifindex 10506 * to store the device (via list_netdevice()) or call dev_index_release() 10507 * to give the index up. 10508 * 10509 * Return: a suitable unique value for a new device interface number or -errno. 10510 */ 10511 static int dev_index_reserve(struct net *net, u32 ifindex) 10512 { 10513 int err; 10514 10515 if (ifindex > INT_MAX) { 10516 DEBUG_NET_WARN_ON_ONCE(1); 10517 return -EINVAL; 10518 } 10519 10520 if (!ifindex) 10521 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10522 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10523 else 10524 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10525 if (err < 0) 10526 return err; 10527 10528 return ifindex; 10529 } 10530 10531 static void dev_index_release(struct net *net, int ifindex) 10532 { 10533 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10534 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10535 } 10536 10537 static bool from_cleanup_net(void) 10538 { 10539 #ifdef CONFIG_NET_NS 10540 return current == READ_ONCE(cleanup_net_task); 10541 #else 10542 return false; 10543 #endif 10544 } 10545 10546 /* Delayed registration/unregisteration */ 10547 LIST_HEAD(net_todo_list); 10548 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10549 atomic_t dev_unreg_count = ATOMIC_INIT(0); 10550 10551 static void net_set_todo(struct net_device *dev) 10552 { 10553 list_add_tail(&dev->todo_list, &net_todo_list); 10554 } 10555 10556 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10557 struct net_device *upper, netdev_features_t features) 10558 { 10559 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10560 netdev_features_t feature; 10561 int feature_bit; 10562 10563 for_each_netdev_feature(upper_disables, feature_bit) { 10564 feature = __NETIF_F_BIT(feature_bit); 10565 if (!(upper->wanted_features & feature) 10566 && (features & feature)) { 10567 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10568 &feature, upper->name); 10569 features &= ~feature; 10570 } 10571 } 10572 10573 return features; 10574 } 10575 10576 static void netdev_sync_lower_features(struct net_device *upper, 10577 struct net_device *lower, netdev_features_t features) 10578 { 10579 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10580 netdev_features_t feature; 10581 int feature_bit; 10582 10583 for_each_netdev_feature(upper_disables, feature_bit) { 10584 feature = __NETIF_F_BIT(feature_bit); 10585 if (!(features & feature) && (lower->features & feature)) { 10586 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10587 &feature, lower->name); 10588 netdev_lock_ops(lower); 10589 lower->wanted_features &= ~feature; 10590 __netdev_update_features(lower); 10591 10592 if (unlikely(lower->features & feature)) 10593 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10594 &feature, lower->name); 10595 else 10596 netdev_features_change(lower); 10597 netdev_unlock_ops(lower); 10598 } 10599 } 10600 } 10601 10602 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10603 { 10604 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10605 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10606 bool hw_csum = features & NETIF_F_HW_CSUM; 10607 10608 return ip_csum || hw_csum; 10609 } 10610 10611 static netdev_features_t netdev_fix_features(struct net_device *dev, 10612 netdev_features_t features) 10613 { 10614 /* Fix illegal checksum combinations */ 10615 if ((features & NETIF_F_HW_CSUM) && 10616 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10617 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10618 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10619 } 10620 10621 /* TSO requires that SG is present as well. */ 10622 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10623 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10624 features &= ~NETIF_F_ALL_TSO; 10625 } 10626 10627 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10628 !(features & NETIF_F_IP_CSUM)) { 10629 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10630 features &= ~NETIF_F_TSO; 10631 features &= ~NETIF_F_TSO_ECN; 10632 } 10633 10634 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10635 !(features & NETIF_F_IPV6_CSUM)) { 10636 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10637 features &= ~NETIF_F_TSO6; 10638 } 10639 10640 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10641 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10642 features &= ~NETIF_F_TSO_MANGLEID; 10643 10644 /* TSO ECN requires that TSO is present as well. */ 10645 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10646 features &= ~NETIF_F_TSO_ECN; 10647 10648 /* Software GSO depends on SG. */ 10649 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10650 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10651 features &= ~NETIF_F_GSO; 10652 } 10653 10654 /* GSO partial features require GSO partial be set */ 10655 if ((features & dev->gso_partial_features) && 10656 !(features & NETIF_F_GSO_PARTIAL)) { 10657 netdev_dbg(dev, 10658 "Dropping partially supported GSO features since no GSO partial.\n"); 10659 features &= ~dev->gso_partial_features; 10660 } 10661 10662 if (!(features & NETIF_F_RXCSUM)) { 10663 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10664 * successfully merged by hardware must also have the 10665 * checksum verified by hardware. If the user does not 10666 * want to enable RXCSUM, logically, we should disable GRO_HW. 10667 */ 10668 if (features & NETIF_F_GRO_HW) { 10669 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10670 features &= ~NETIF_F_GRO_HW; 10671 } 10672 } 10673 10674 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10675 if (features & NETIF_F_RXFCS) { 10676 if (features & NETIF_F_LRO) { 10677 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10678 features &= ~NETIF_F_LRO; 10679 } 10680 10681 if (features & NETIF_F_GRO_HW) { 10682 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10683 features &= ~NETIF_F_GRO_HW; 10684 } 10685 } 10686 10687 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10688 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10689 features &= ~NETIF_F_LRO; 10690 } 10691 10692 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10693 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10694 features &= ~NETIF_F_HW_TLS_TX; 10695 } 10696 10697 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10698 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10699 features &= ~NETIF_F_HW_TLS_RX; 10700 } 10701 10702 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10703 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10704 features &= ~NETIF_F_GSO_UDP_L4; 10705 } 10706 10707 return features; 10708 } 10709 10710 int __netdev_update_features(struct net_device *dev) 10711 { 10712 struct net_device *upper, *lower; 10713 netdev_features_t features; 10714 struct list_head *iter; 10715 int err = -1; 10716 10717 ASSERT_RTNL(); 10718 netdev_ops_assert_locked(dev); 10719 10720 features = netdev_get_wanted_features(dev); 10721 10722 if (dev->netdev_ops->ndo_fix_features) 10723 features = dev->netdev_ops->ndo_fix_features(dev, features); 10724 10725 /* driver might be less strict about feature dependencies */ 10726 features = netdev_fix_features(dev, features); 10727 10728 /* some features can't be enabled if they're off on an upper device */ 10729 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10730 features = netdev_sync_upper_features(dev, upper, features); 10731 10732 if (dev->features == features) 10733 goto sync_lower; 10734 10735 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10736 &dev->features, &features); 10737 10738 if (dev->netdev_ops->ndo_set_features) 10739 err = dev->netdev_ops->ndo_set_features(dev, features); 10740 else 10741 err = 0; 10742 10743 if (unlikely(err < 0)) { 10744 netdev_err(dev, 10745 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10746 err, &features, &dev->features); 10747 /* return non-0 since some features might have changed and 10748 * it's better to fire a spurious notification than miss it 10749 */ 10750 return -1; 10751 } 10752 10753 sync_lower: 10754 /* some features must be disabled on lower devices when disabled 10755 * on an upper device (think: bonding master or bridge) 10756 */ 10757 netdev_for_each_lower_dev(dev, lower, iter) 10758 netdev_sync_lower_features(dev, lower, features); 10759 10760 if (!err) { 10761 netdev_features_t diff = features ^ dev->features; 10762 10763 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10764 /* udp_tunnel_{get,drop}_rx_info both need 10765 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10766 * device, or they won't do anything. 10767 * Thus we need to update dev->features 10768 * *before* calling udp_tunnel_get_rx_info, 10769 * but *after* calling udp_tunnel_drop_rx_info. 10770 */ 10771 udp_tunnel_nic_lock(dev); 10772 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10773 dev->features = features; 10774 udp_tunnel_get_rx_info(dev); 10775 } else { 10776 udp_tunnel_drop_rx_info(dev); 10777 } 10778 udp_tunnel_nic_unlock(dev); 10779 } 10780 10781 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10782 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10783 dev->features = features; 10784 err |= vlan_get_rx_ctag_filter_info(dev); 10785 } else { 10786 vlan_drop_rx_ctag_filter_info(dev); 10787 } 10788 } 10789 10790 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10791 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10792 dev->features = features; 10793 err |= vlan_get_rx_stag_filter_info(dev); 10794 } else { 10795 vlan_drop_rx_stag_filter_info(dev); 10796 } 10797 } 10798 10799 dev->features = features; 10800 } 10801 10802 return err < 0 ? 0 : 1; 10803 } 10804 10805 /** 10806 * netdev_update_features - recalculate device features 10807 * @dev: the device to check 10808 * 10809 * Recalculate dev->features set and send notifications if it 10810 * has changed. Should be called after driver or hardware dependent 10811 * conditions might have changed that influence the features. 10812 */ 10813 void netdev_update_features(struct net_device *dev) 10814 { 10815 if (__netdev_update_features(dev)) 10816 netdev_features_change(dev); 10817 } 10818 EXPORT_SYMBOL(netdev_update_features); 10819 10820 /** 10821 * netdev_change_features - recalculate device features 10822 * @dev: the device to check 10823 * 10824 * Recalculate dev->features set and send notifications even 10825 * if they have not changed. Should be called instead of 10826 * netdev_update_features() if also dev->vlan_features might 10827 * have changed to allow the changes to be propagated to stacked 10828 * VLAN devices. 10829 */ 10830 void netdev_change_features(struct net_device *dev) 10831 { 10832 __netdev_update_features(dev); 10833 netdev_features_change(dev); 10834 } 10835 EXPORT_SYMBOL(netdev_change_features); 10836 10837 /** 10838 * netif_stacked_transfer_operstate - transfer operstate 10839 * @rootdev: the root or lower level device to transfer state from 10840 * @dev: the device to transfer operstate to 10841 * 10842 * Transfer operational state from root to device. This is normally 10843 * called when a stacking relationship exists between the root 10844 * device and the device(a leaf device). 10845 */ 10846 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10847 struct net_device *dev) 10848 { 10849 if (rootdev->operstate == IF_OPER_DORMANT) 10850 netif_dormant_on(dev); 10851 else 10852 netif_dormant_off(dev); 10853 10854 if (rootdev->operstate == IF_OPER_TESTING) 10855 netif_testing_on(dev); 10856 else 10857 netif_testing_off(dev); 10858 10859 if (netif_carrier_ok(rootdev)) 10860 netif_carrier_on(dev); 10861 else 10862 netif_carrier_off(dev); 10863 } 10864 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10865 10866 static int netif_alloc_rx_queues(struct net_device *dev) 10867 { 10868 unsigned int i, count = dev->num_rx_queues; 10869 struct netdev_rx_queue *rx; 10870 size_t sz = count * sizeof(*rx); 10871 int err = 0; 10872 10873 BUG_ON(count < 1); 10874 10875 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10876 if (!rx) 10877 return -ENOMEM; 10878 10879 dev->_rx = rx; 10880 10881 for (i = 0; i < count; i++) { 10882 rx[i].dev = dev; 10883 10884 /* XDP RX-queue setup */ 10885 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10886 if (err < 0) 10887 goto err_rxq_info; 10888 } 10889 return 0; 10890 10891 err_rxq_info: 10892 /* Rollback successful reg's and free other resources */ 10893 while (i--) 10894 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10895 kvfree(dev->_rx); 10896 dev->_rx = NULL; 10897 return err; 10898 } 10899 10900 static void netif_free_rx_queues(struct net_device *dev) 10901 { 10902 unsigned int i, count = dev->num_rx_queues; 10903 10904 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10905 if (!dev->_rx) 10906 return; 10907 10908 for (i = 0; i < count; i++) 10909 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10910 10911 kvfree(dev->_rx); 10912 } 10913 10914 static void netdev_init_one_queue(struct net_device *dev, 10915 struct netdev_queue *queue, void *_unused) 10916 { 10917 /* Initialize queue lock */ 10918 spin_lock_init(&queue->_xmit_lock); 10919 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10920 queue->xmit_lock_owner = -1; 10921 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10922 queue->dev = dev; 10923 #ifdef CONFIG_BQL 10924 dql_init(&queue->dql, HZ); 10925 #endif 10926 } 10927 10928 static void netif_free_tx_queues(struct net_device *dev) 10929 { 10930 kvfree(dev->_tx); 10931 } 10932 10933 static int netif_alloc_netdev_queues(struct net_device *dev) 10934 { 10935 unsigned int count = dev->num_tx_queues; 10936 struct netdev_queue *tx; 10937 size_t sz = count * sizeof(*tx); 10938 10939 if (count < 1 || count > 0xffff) 10940 return -EINVAL; 10941 10942 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10943 if (!tx) 10944 return -ENOMEM; 10945 10946 dev->_tx = tx; 10947 10948 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10949 spin_lock_init(&dev->tx_global_lock); 10950 10951 return 0; 10952 } 10953 10954 void netif_tx_stop_all_queues(struct net_device *dev) 10955 { 10956 unsigned int i; 10957 10958 for (i = 0; i < dev->num_tx_queues; i++) { 10959 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10960 10961 netif_tx_stop_queue(txq); 10962 } 10963 } 10964 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10965 10966 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 10967 { 10968 void __percpu *v; 10969 10970 /* Drivers implementing ndo_get_peer_dev must support tstat 10971 * accounting, so that skb_do_redirect() can bump the dev's 10972 * RX stats upon network namespace switch. 10973 */ 10974 if (dev->netdev_ops->ndo_get_peer_dev && 10975 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 10976 return -EOPNOTSUPP; 10977 10978 switch (dev->pcpu_stat_type) { 10979 case NETDEV_PCPU_STAT_NONE: 10980 return 0; 10981 case NETDEV_PCPU_STAT_LSTATS: 10982 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 10983 break; 10984 case NETDEV_PCPU_STAT_TSTATS: 10985 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 10986 break; 10987 case NETDEV_PCPU_STAT_DSTATS: 10988 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 10989 break; 10990 default: 10991 return -EINVAL; 10992 } 10993 10994 return v ? 0 : -ENOMEM; 10995 } 10996 10997 static void netdev_do_free_pcpu_stats(struct net_device *dev) 10998 { 10999 switch (dev->pcpu_stat_type) { 11000 case NETDEV_PCPU_STAT_NONE: 11001 return; 11002 case NETDEV_PCPU_STAT_LSTATS: 11003 free_percpu(dev->lstats); 11004 break; 11005 case NETDEV_PCPU_STAT_TSTATS: 11006 free_percpu(dev->tstats); 11007 break; 11008 case NETDEV_PCPU_STAT_DSTATS: 11009 free_percpu(dev->dstats); 11010 break; 11011 } 11012 } 11013 11014 static void netdev_free_phy_link_topology(struct net_device *dev) 11015 { 11016 struct phy_link_topology *topo = dev->link_topo; 11017 11018 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 11019 xa_destroy(&topo->phys); 11020 kfree(topo); 11021 dev->link_topo = NULL; 11022 } 11023 } 11024 11025 /** 11026 * register_netdevice() - register a network device 11027 * @dev: device to register 11028 * 11029 * Take a prepared network device structure and make it externally accessible. 11030 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 11031 * Callers must hold the rtnl lock - you may want register_netdev() 11032 * instead of this. 11033 */ 11034 int register_netdevice(struct net_device *dev) 11035 { 11036 int ret; 11037 struct net *net = dev_net(dev); 11038 11039 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 11040 NETDEV_FEATURE_COUNT); 11041 BUG_ON(dev_boot_phase); 11042 ASSERT_RTNL(); 11043 11044 might_sleep(); 11045 11046 /* When net_device's are persistent, this will be fatal. */ 11047 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 11048 BUG_ON(!net); 11049 11050 ret = ethtool_check_ops(dev->ethtool_ops); 11051 if (ret) 11052 return ret; 11053 11054 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 11055 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 11056 mutex_init(&dev->ethtool->rss_lock); 11057 11058 spin_lock_init(&dev->addr_list_lock); 11059 netdev_set_addr_lockdep_class(dev); 11060 11061 ret = dev_get_valid_name(net, dev, dev->name); 11062 if (ret < 0) 11063 goto out; 11064 11065 ret = -ENOMEM; 11066 dev->name_node = netdev_name_node_head_alloc(dev); 11067 if (!dev->name_node) 11068 goto out; 11069 11070 /* Init, if this function is available */ 11071 if (dev->netdev_ops->ndo_init) { 11072 ret = dev->netdev_ops->ndo_init(dev); 11073 if (ret) { 11074 if (ret > 0) 11075 ret = -EIO; 11076 goto err_free_name; 11077 } 11078 } 11079 11080 if (((dev->hw_features | dev->features) & 11081 NETIF_F_HW_VLAN_CTAG_FILTER) && 11082 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 11083 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 11084 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 11085 ret = -EINVAL; 11086 goto err_uninit; 11087 } 11088 11089 ret = netdev_do_alloc_pcpu_stats(dev); 11090 if (ret) 11091 goto err_uninit; 11092 11093 ret = dev_index_reserve(net, dev->ifindex); 11094 if (ret < 0) 11095 goto err_free_pcpu; 11096 dev->ifindex = ret; 11097 11098 /* Transfer changeable features to wanted_features and enable 11099 * software offloads (GSO and GRO). 11100 */ 11101 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 11102 dev->features |= NETIF_F_SOFT_FEATURES; 11103 11104 if (dev->udp_tunnel_nic_info) { 11105 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11106 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11107 } 11108 11109 dev->wanted_features = dev->features & dev->hw_features; 11110 11111 if (!(dev->flags & IFF_LOOPBACK)) 11112 dev->hw_features |= NETIF_F_NOCACHE_COPY; 11113 11114 /* If IPv4 TCP segmentation offload is supported we should also 11115 * allow the device to enable segmenting the frame with the option 11116 * of ignoring a static IP ID value. This doesn't enable the 11117 * feature itself but allows the user to enable it later. 11118 */ 11119 if (dev->hw_features & NETIF_F_TSO) 11120 dev->hw_features |= NETIF_F_TSO_MANGLEID; 11121 if (dev->vlan_features & NETIF_F_TSO) 11122 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 11123 if (dev->mpls_features & NETIF_F_TSO) 11124 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 11125 if (dev->hw_enc_features & NETIF_F_TSO) 11126 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11127 11128 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 11129 */ 11130 dev->vlan_features |= NETIF_F_HIGHDMA; 11131 11132 /* Make NETIF_F_SG inheritable to tunnel devices. 11133 */ 11134 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 11135 11136 /* Make NETIF_F_SG inheritable to MPLS. 11137 */ 11138 dev->mpls_features |= NETIF_F_SG; 11139 11140 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 11141 ret = notifier_to_errno(ret); 11142 if (ret) 11143 goto err_ifindex_release; 11144 11145 ret = netdev_register_kobject(dev); 11146 11147 netdev_lock(dev); 11148 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 11149 netdev_unlock(dev); 11150 11151 if (ret) 11152 goto err_uninit_notify; 11153 11154 netdev_lock_ops(dev); 11155 __netdev_update_features(dev); 11156 netdev_unlock_ops(dev); 11157 11158 /* 11159 * Default initial state at registry is that the 11160 * device is present. 11161 */ 11162 11163 set_bit(__LINK_STATE_PRESENT, &dev->state); 11164 11165 linkwatch_init_dev(dev); 11166 11167 dev_init_scheduler(dev); 11168 11169 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 11170 list_netdevice(dev); 11171 11172 add_device_randomness(dev->dev_addr, dev->addr_len); 11173 11174 /* If the device has permanent device address, driver should 11175 * set dev_addr and also addr_assign_type should be set to 11176 * NET_ADDR_PERM (default value). 11177 */ 11178 if (dev->addr_assign_type == NET_ADDR_PERM) 11179 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 11180 11181 /* Notify protocols, that a new device appeared. */ 11182 netdev_lock_ops(dev); 11183 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 11184 netdev_unlock_ops(dev); 11185 ret = notifier_to_errno(ret); 11186 if (ret) { 11187 /* Expect explicit free_netdev() on failure */ 11188 dev->needs_free_netdev = false; 11189 unregister_netdevice_queue(dev, NULL); 11190 goto out; 11191 } 11192 /* 11193 * Prevent userspace races by waiting until the network 11194 * device is fully setup before sending notifications. 11195 */ 11196 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 11197 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11198 11199 out: 11200 return ret; 11201 11202 err_uninit_notify: 11203 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11204 err_ifindex_release: 11205 dev_index_release(net, dev->ifindex); 11206 err_free_pcpu: 11207 netdev_do_free_pcpu_stats(dev); 11208 err_uninit: 11209 if (dev->netdev_ops->ndo_uninit) 11210 dev->netdev_ops->ndo_uninit(dev); 11211 if (dev->priv_destructor) 11212 dev->priv_destructor(dev); 11213 err_free_name: 11214 netdev_name_node_free(dev->name_node); 11215 goto out; 11216 } 11217 EXPORT_SYMBOL(register_netdevice); 11218 11219 /* Initialize the core of a dummy net device. 11220 * The setup steps dummy netdevs need which normal netdevs get by going 11221 * through register_netdevice(). 11222 */ 11223 static void init_dummy_netdev(struct net_device *dev) 11224 { 11225 /* make sure we BUG if trying to hit standard 11226 * register/unregister code path 11227 */ 11228 dev->reg_state = NETREG_DUMMY; 11229 11230 /* a dummy interface is started by default */ 11231 set_bit(__LINK_STATE_PRESENT, &dev->state); 11232 set_bit(__LINK_STATE_START, &dev->state); 11233 11234 /* Note : We dont allocate pcpu_refcnt for dummy devices, 11235 * because users of this 'device' dont need to change 11236 * its refcount. 11237 */ 11238 } 11239 11240 /** 11241 * register_netdev - register a network device 11242 * @dev: device to register 11243 * 11244 * Take a completed network device structure and add it to the kernel 11245 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 11246 * chain. 0 is returned on success. A negative errno code is returned 11247 * on a failure to set up the device, or if the name is a duplicate. 11248 * 11249 * This is a wrapper around register_netdevice that takes the rtnl semaphore 11250 * and expands the device name if you passed a format string to 11251 * alloc_netdev. 11252 */ 11253 int register_netdev(struct net_device *dev) 11254 { 11255 struct net *net = dev_net(dev); 11256 int err; 11257 11258 if (rtnl_net_lock_killable(net)) 11259 return -EINTR; 11260 11261 err = register_netdevice(dev); 11262 11263 rtnl_net_unlock(net); 11264 11265 return err; 11266 } 11267 EXPORT_SYMBOL(register_netdev); 11268 11269 int netdev_refcnt_read(const struct net_device *dev) 11270 { 11271 #ifdef CONFIG_PCPU_DEV_REFCNT 11272 int i, refcnt = 0; 11273 11274 for_each_possible_cpu(i) 11275 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 11276 return refcnt; 11277 #else 11278 return refcount_read(&dev->dev_refcnt); 11279 #endif 11280 } 11281 EXPORT_SYMBOL(netdev_refcnt_read); 11282 11283 int netdev_unregister_timeout_secs __read_mostly = 10; 11284 11285 #define WAIT_REFS_MIN_MSECS 1 11286 #define WAIT_REFS_MAX_MSECS 250 11287 /** 11288 * netdev_wait_allrefs_any - wait until all references are gone. 11289 * @list: list of net_devices to wait on 11290 * 11291 * This is called when unregistering network devices. 11292 * 11293 * Any protocol or device that holds a reference should register 11294 * for netdevice notification, and cleanup and put back the 11295 * reference if they receive an UNREGISTER event. 11296 * We can get stuck here if buggy protocols don't correctly 11297 * call dev_put. 11298 */ 11299 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 11300 { 11301 unsigned long rebroadcast_time, warning_time; 11302 struct net_device *dev; 11303 int wait = 0; 11304 11305 rebroadcast_time = warning_time = jiffies; 11306 11307 list_for_each_entry(dev, list, todo_list) 11308 if (netdev_refcnt_read(dev) == 1) 11309 return dev; 11310 11311 while (true) { 11312 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 11313 rtnl_lock(); 11314 11315 /* Rebroadcast unregister notification */ 11316 list_for_each_entry(dev, list, todo_list) 11317 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11318 11319 __rtnl_unlock(); 11320 rcu_barrier(); 11321 rtnl_lock(); 11322 11323 list_for_each_entry(dev, list, todo_list) 11324 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 11325 &dev->state)) { 11326 /* We must not have linkwatch events 11327 * pending on unregister. If this 11328 * happens, we simply run the queue 11329 * unscheduled, resulting in a noop 11330 * for this device. 11331 */ 11332 linkwatch_run_queue(); 11333 break; 11334 } 11335 11336 __rtnl_unlock(); 11337 11338 rebroadcast_time = jiffies; 11339 } 11340 11341 rcu_barrier(); 11342 11343 if (!wait) { 11344 wait = WAIT_REFS_MIN_MSECS; 11345 } else { 11346 msleep(wait); 11347 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 11348 } 11349 11350 list_for_each_entry(dev, list, todo_list) 11351 if (netdev_refcnt_read(dev) == 1) 11352 return dev; 11353 11354 if (time_after(jiffies, warning_time + 11355 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 11356 list_for_each_entry(dev, list, todo_list) { 11357 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 11358 dev->name, netdev_refcnt_read(dev)); 11359 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 11360 } 11361 11362 warning_time = jiffies; 11363 } 11364 } 11365 } 11366 11367 /* The sequence is: 11368 * 11369 * rtnl_lock(); 11370 * ... 11371 * register_netdevice(x1); 11372 * register_netdevice(x2); 11373 * ... 11374 * unregister_netdevice(y1); 11375 * unregister_netdevice(y2); 11376 * ... 11377 * rtnl_unlock(); 11378 * free_netdev(y1); 11379 * free_netdev(y2); 11380 * 11381 * We are invoked by rtnl_unlock(). 11382 * This allows us to deal with problems: 11383 * 1) We can delete sysfs objects which invoke hotplug 11384 * without deadlocking with linkwatch via keventd. 11385 * 2) Since we run with the RTNL semaphore not held, we can sleep 11386 * safely in order to wait for the netdev refcnt to drop to zero. 11387 * 11388 * We must not return until all unregister events added during 11389 * the interval the lock was held have been completed. 11390 */ 11391 void netdev_run_todo(void) 11392 { 11393 struct net_device *dev, *tmp; 11394 struct list_head list; 11395 int cnt; 11396 #ifdef CONFIG_LOCKDEP 11397 struct list_head unlink_list; 11398 11399 list_replace_init(&net_unlink_list, &unlink_list); 11400 11401 while (!list_empty(&unlink_list)) { 11402 dev = list_first_entry(&unlink_list, struct net_device, 11403 unlink_list); 11404 list_del_init(&dev->unlink_list); 11405 dev->nested_level = dev->lower_level - 1; 11406 } 11407 #endif 11408 11409 /* Snapshot list, allow later requests */ 11410 list_replace_init(&net_todo_list, &list); 11411 11412 __rtnl_unlock(); 11413 11414 /* Wait for rcu callbacks to finish before next phase */ 11415 if (!list_empty(&list)) 11416 rcu_barrier(); 11417 11418 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 11419 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 11420 netdev_WARN(dev, "run_todo but not unregistering\n"); 11421 list_del(&dev->todo_list); 11422 continue; 11423 } 11424 11425 netdev_lock(dev); 11426 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 11427 netdev_unlock(dev); 11428 linkwatch_sync_dev(dev); 11429 } 11430 11431 cnt = 0; 11432 while (!list_empty(&list)) { 11433 dev = netdev_wait_allrefs_any(&list); 11434 list_del(&dev->todo_list); 11435 11436 /* paranoia */ 11437 BUG_ON(netdev_refcnt_read(dev) != 1); 11438 BUG_ON(!list_empty(&dev->ptype_all)); 11439 BUG_ON(!list_empty(&dev->ptype_specific)); 11440 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 11441 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 11442 11443 netdev_do_free_pcpu_stats(dev); 11444 if (dev->priv_destructor) 11445 dev->priv_destructor(dev); 11446 if (dev->needs_free_netdev) 11447 free_netdev(dev); 11448 11449 cnt++; 11450 11451 /* Free network device */ 11452 kobject_put(&dev->dev.kobj); 11453 } 11454 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 11455 wake_up(&netdev_unregistering_wq); 11456 } 11457 11458 /* Collate per-cpu network dstats statistics 11459 * 11460 * Read per-cpu network statistics from dev->dstats and populate the related 11461 * fields in @s. 11462 */ 11463 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 11464 const struct pcpu_dstats __percpu *dstats) 11465 { 11466 int cpu; 11467 11468 for_each_possible_cpu(cpu) { 11469 u64 rx_packets, rx_bytes, rx_drops; 11470 u64 tx_packets, tx_bytes, tx_drops; 11471 const struct pcpu_dstats *stats; 11472 unsigned int start; 11473 11474 stats = per_cpu_ptr(dstats, cpu); 11475 do { 11476 start = u64_stats_fetch_begin(&stats->syncp); 11477 rx_packets = u64_stats_read(&stats->rx_packets); 11478 rx_bytes = u64_stats_read(&stats->rx_bytes); 11479 rx_drops = u64_stats_read(&stats->rx_drops); 11480 tx_packets = u64_stats_read(&stats->tx_packets); 11481 tx_bytes = u64_stats_read(&stats->tx_bytes); 11482 tx_drops = u64_stats_read(&stats->tx_drops); 11483 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11484 11485 s->rx_packets += rx_packets; 11486 s->rx_bytes += rx_bytes; 11487 s->rx_dropped += rx_drops; 11488 s->tx_packets += tx_packets; 11489 s->tx_bytes += tx_bytes; 11490 s->tx_dropped += tx_drops; 11491 } 11492 } 11493 11494 /* ndo_get_stats64 implementation for dtstats-based accounting. 11495 * 11496 * Populate @s from dev->stats and dev->dstats. This is used internally by the 11497 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 11498 */ 11499 static void dev_get_dstats64(const struct net_device *dev, 11500 struct rtnl_link_stats64 *s) 11501 { 11502 netdev_stats_to_stats64(s, &dev->stats); 11503 dev_fetch_dstats(s, dev->dstats); 11504 } 11505 11506 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 11507 * all the same fields in the same order as net_device_stats, with only 11508 * the type differing, but rtnl_link_stats64 may have additional fields 11509 * at the end for newer counters. 11510 */ 11511 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11512 const struct net_device_stats *netdev_stats) 11513 { 11514 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11515 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11516 u64 *dst = (u64 *)stats64; 11517 11518 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11519 for (i = 0; i < n; i++) 11520 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11521 /* zero out counters that only exist in rtnl_link_stats64 */ 11522 memset((char *)stats64 + n * sizeof(u64), 0, 11523 sizeof(*stats64) - n * sizeof(u64)); 11524 } 11525 EXPORT_SYMBOL(netdev_stats_to_stats64); 11526 11527 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11528 struct net_device *dev) 11529 { 11530 struct net_device_core_stats __percpu *p; 11531 11532 p = alloc_percpu_gfp(struct net_device_core_stats, 11533 GFP_ATOMIC | __GFP_NOWARN); 11534 11535 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11536 free_percpu(p); 11537 11538 /* This READ_ONCE() pairs with the cmpxchg() above */ 11539 return READ_ONCE(dev->core_stats); 11540 } 11541 11542 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11543 { 11544 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11545 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11546 unsigned long __percpu *field; 11547 11548 if (unlikely(!p)) { 11549 p = netdev_core_stats_alloc(dev); 11550 if (!p) 11551 return; 11552 } 11553 11554 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11555 this_cpu_inc(*field); 11556 } 11557 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11558 11559 /** 11560 * dev_get_stats - get network device statistics 11561 * @dev: device to get statistics from 11562 * @storage: place to store stats 11563 * 11564 * Get network statistics from device. Return @storage. 11565 * The device driver may provide its own method by setting 11566 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11567 * otherwise the internal statistics structure is used. 11568 */ 11569 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11570 struct rtnl_link_stats64 *storage) 11571 { 11572 const struct net_device_ops *ops = dev->netdev_ops; 11573 const struct net_device_core_stats __percpu *p; 11574 11575 /* 11576 * IPv{4,6} and udp tunnels share common stat helpers and use 11577 * different stat type (NETDEV_PCPU_STAT_TSTATS vs 11578 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. 11579 */ 11580 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != 11581 offsetof(struct pcpu_dstats, rx_bytes)); 11582 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != 11583 offsetof(struct pcpu_dstats, rx_packets)); 11584 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != 11585 offsetof(struct pcpu_dstats, tx_bytes)); 11586 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != 11587 offsetof(struct pcpu_dstats, tx_packets)); 11588 11589 if (ops->ndo_get_stats64) { 11590 memset(storage, 0, sizeof(*storage)); 11591 ops->ndo_get_stats64(dev, storage); 11592 } else if (ops->ndo_get_stats) { 11593 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11594 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11595 dev_get_tstats64(dev, storage); 11596 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11597 dev_get_dstats64(dev, storage); 11598 } else { 11599 netdev_stats_to_stats64(storage, &dev->stats); 11600 } 11601 11602 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11603 p = READ_ONCE(dev->core_stats); 11604 if (p) { 11605 const struct net_device_core_stats *core_stats; 11606 int i; 11607 11608 for_each_possible_cpu(i) { 11609 core_stats = per_cpu_ptr(p, i); 11610 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11611 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11612 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11613 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11614 } 11615 } 11616 return storage; 11617 } 11618 EXPORT_SYMBOL(dev_get_stats); 11619 11620 /** 11621 * dev_fetch_sw_netstats - get per-cpu network device statistics 11622 * @s: place to store stats 11623 * @netstats: per-cpu network stats to read from 11624 * 11625 * Read per-cpu network statistics and populate the related fields in @s. 11626 */ 11627 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11628 const struct pcpu_sw_netstats __percpu *netstats) 11629 { 11630 int cpu; 11631 11632 for_each_possible_cpu(cpu) { 11633 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11634 const struct pcpu_sw_netstats *stats; 11635 unsigned int start; 11636 11637 stats = per_cpu_ptr(netstats, cpu); 11638 do { 11639 start = u64_stats_fetch_begin(&stats->syncp); 11640 rx_packets = u64_stats_read(&stats->rx_packets); 11641 rx_bytes = u64_stats_read(&stats->rx_bytes); 11642 tx_packets = u64_stats_read(&stats->tx_packets); 11643 tx_bytes = u64_stats_read(&stats->tx_bytes); 11644 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11645 11646 s->rx_packets += rx_packets; 11647 s->rx_bytes += rx_bytes; 11648 s->tx_packets += tx_packets; 11649 s->tx_bytes += tx_bytes; 11650 } 11651 } 11652 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11653 11654 /** 11655 * dev_get_tstats64 - ndo_get_stats64 implementation 11656 * @dev: device to get statistics from 11657 * @s: place to store stats 11658 * 11659 * Populate @s from dev->stats and dev->tstats. Can be used as 11660 * ndo_get_stats64() callback. 11661 */ 11662 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11663 { 11664 netdev_stats_to_stats64(s, &dev->stats); 11665 dev_fetch_sw_netstats(s, dev->tstats); 11666 } 11667 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11668 11669 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11670 { 11671 struct netdev_queue *queue = dev_ingress_queue(dev); 11672 11673 #ifdef CONFIG_NET_CLS_ACT 11674 if (queue) 11675 return queue; 11676 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11677 if (!queue) 11678 return NULL; 11679 netdev_init_one_queue(dev, queue, NULL); 11680 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11681 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11682 rcu_assign_pointer(dev->ingress_queue, queue); 11683 #endif 11684 return queue; 11685 } 11686 11687 static const struct ethtool_ops default_ethtool_ops; 11688 11689 void netdev_set_default_ethtool_ops(struct net_device *dev, 11690 const struct ethtool_ops *ops) 11691 { 11692 if (dev->ethtool_ops == &default_ethtool_ops) 11693 dev->ethtool_ops = ops; 11694 } 11695 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11696 11697 /** 11698 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11699 * @dev: netdev to enable the IRQ coalescing on 11700 * 11701 * Sets a conservative default for SW IRQ coalescing. Users can use 11702 * sysfs attributes to override the default values. 11703 */ 11704 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11705 { 11706 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11707 11708 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11709 netdev_set_gro_flush_timeout(dev, 20000); 11710 netdev_set_defer_hard_irqs(dev, 1); 11711 } 11712 } 11713 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11714 11715 /** 11716 * alloc_netdev_mqs - allocate network device 11717 * @sizeof_priv: size of private data to allocate space for 11718 * @name: device name format string 11719 * @name_assign_type: origin of device name 11720 * @setup: callback to initialize device 11721 * @txqs: the number of TX subqueues to allocate 11722 * @rxqs: the number of RX subqueues to allocate 11723 * 11724 * Allocates a struct net_device with private data area for driver use 11725 * and performs basic initialization. Also allocates subqueue structs 11726 * for each queue on the device. 11727 */ 11728 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11729 unsigned char name_assign_type, 11730 void (*setup)(struct net_device *), 11731 unsigned int txqs, unsigned int rxqs) 11732 { 11733 struct net_device *dev; 11734 size_t napi_config_sz; 11735 unsigned int maxqs; 11736 11737 BUG_ON(strlen(name) >= sizeof(dev->name)); 11738 11739 if (txqs < 1) { 11740 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11741 return NULL; 11742 } 11743 11744 if (rxqs < 1) { 11745 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11746 return NULL; 11747 } 11748 11749 maxqs = max(txqs, rxqs); 11750 11751 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11752 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11753 if (!dev) 11754 return NULL; 11755 11756 dev->priv_len = sizeof_priv; 11757 11758 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev"); 11759 #ifdef CONFIG_PCPU_DEV_REFCNT 11760 dev->pcpu_refcnt = alloc_percpu(int); 11761 if (!dev->pcpu_refcnt) 11762 goto free_dev; 11763 __dev_hold(dev); 11764 #else 11765 refcount_set(&dev->dev_refcnt, 1); 11766 #endif 11767 11768 if (dev_addr_init(dev)) 11769 goto free_pcpu; 11770 11771 dev_mc_init(dev); 11772 dev_uc_init(dev); 11773 11774 dev_net_set(dev, &init_net); 11775 11776 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11777 dev->xdp_zc_max_segs = 1; 11778 dev->gso_max_segs = GSO_MAX_SEGS; 11779 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11780 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11781 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11782 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11783 dev->tso_max_segs = TSO_MAX_SEGS; 11784 dev->upper_level = 1; 11785 dev->lower_level = 1; 11786 #ifdef CONFIG_LOCKDEP 11787 dev->nested_level = 0; 11788 INIT_LIST_HEAD(&dev->unlink_list); 11789 #endif 11790 11791 INIT_LIST_HEAD(&dev->napi_list); 11792 INIT_LIST_HEAD(&dev->unreg_list); 11793 INIT_LIST_HEAD(&dev->close_list); 11794 INIT_LIST_HEAD(&dev->link_watch_list); 11795 INIT_LIST_HEAD(&dev->adj_list.upper); 11796 INIT_LIST_HEAD(&dev->adj_list.lower); 11797 INIT_LIST_HEAD(&dev->ptype_all); 11798 INIT_LIST_HEAD(&dev->ptype_specific); 11799 INIT_LIST_HEAD(&dev->net_notifier_list); 11800 #ifdef CONFIG_NET_SCHED 11801 hash_init(dev->qdisc_hash); 11802 #endif 11803 11804 mutex_init(&dev->lock); 11805 11806 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11807 setup(dev); 11808 11809 if (!dev->tx_queue_len) { 11810 dev->priv_flags |= IFF_NO_QUEUE; 11811 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11812 } 11813 11814 dev->num_tx_queues = txqs; 11815 dev->real_num_tx_queues = txqs; 11816 if (netif_alloc_netdev_queues(dev)) 11817 goto free_all; 11818 11819 dev->num_rx_queues = rxqs; 11820 dev->real_num_rx_queues = rxqs; 11821 if (netif_alloc_rx_queues(dev)) 11822 goto free_all; 11823 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11824 if (!dev->ethtool) 11825 goto free_all; 11826 11827 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); 11828 if (!dev->cfg) 11829 goto free_all; 11830 dev->cfg_pending = dev->cfg; 11831 11832 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 11833 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 11834 if (!dev->napi_config) 11835 goto free_all; 11836 11837 strscpy(dev->name, name); 11838 dev->name_assign_type = name_assign_type; 11839 dev->group = INIT_NETDEV_GROUP; 11840 if (!dev->ethtool_ops) 11841 dev->ethtool_ops = &default_ethtool_ops; 11842 11843 nf_hook_netdev_init(dev); 11844 11845 return dev; 11846 11847 free_all: 11848 free_netdev(dev); 11849 return NULL; 11850 11851 free_pcpu: 11852 #ifdef CONFIG_PCPU_DEV_REFCNT 11853 free_percpu(dev->pcpu_refcnt); 11854 free_dev: 11855 #endif 11856 kvfree(dev); 11857 return NULL; 11858 } 11859 EXPORT_SYMBOL(alloc_netdev_mqs); 11860 11861 static void netdev_napi_exit(struct net_device *dev) 11862 { 11863 if (!list_empty(&dev->napi_list)) { 11864 struct napi_struct *p, *n; 11865 11866 netdev_lock(dev); 11867 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 11868 __netif_napi_del_locked(p); 11869 netdev_unlock(dev); 11870 11871 synchronize_net(); 11872 } 11873 11874 kvfree(dev->napi_config); 11875 } 11876 11877 /** 11878 * free_netdev - free network device 11879 * @dev: device 11880 * 11881 * This function does the last stage of destroying an allocated device 11882 * interface. The reference to the device object is released. If this 11883 * is the last reference then it will be freed.Must be called in process 11884 * context. 11885 */ 11886 void free_netdev(struct net_device *dev) 11887 { 11888 might_sleep(); 11889 11890 /* When called immediately after register_netdevice() failed the unwind 11891 * handling may still be dismantling the device. Handle that case by 11892 * deferring the free. 11893 */ 11894 if (dev->reg_state == NETREG_UNREGISTERING) { 11895 ASSERT_RTNL(); 11896 dev->needs_free_netdev = true; 11897 return; 11898 } 11899 11900 WARN_ON(dev->cfg != dev->cfg_pending); 11901 kfree(dev->cfg); 11902 kfree(dev->ethtool); 11903 netif_free_tx_queues(dev); 11904 netif_free_rx_queues(dev); 11905 11906 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 11907 11908 /* Flush device addresses */ 11909 dev_addr_flush(dev); 11910 11911 netdev_napi_exit(dev); 11912 11913 netif_del_cpu_rmap(dev); 11914 11915 ref_tracker_dir_exit(&dev->refcnt_tracker); 11916 #ifdef CONFIG_PCPU_DEV_REFCNT 11917 free_percpu(dev->pcpu_refcnt); 11918 dev->pcpu_refcnt = NULL; 11919 #endif 11920 free_percpu(dev->core_stats); 11921 dev->core_stats = NULL; 11922 free_percpu(dev->xdp_bulkq); 11923 dev->xdp_bulkq = NULL; 11924 11925 netdev_free_phy_link_topology(dev); 11926 11927 mutex_destroy(&dev->lock); 11928 11929 /* Compatibility with error handling in drivers */ 11930 if (dev->reg_state == NETREG_UNINITIALIZED || 11931 dev->reg_state == NETREG_DUMMY) { 11932 kvfree(dev); 11933 return; 11934 } 11935 11936 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11937 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 11938 11939 /* will free via device release */ 11940 put_device(&dev->dev); 11941 } 11942 EXPORT_SYMBOL(free_netdev); 11943 11944 /** 11945 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 11946 * @sizeof_priv: size of private data to allocate space for 11947 * 11948 * Return: the allocated net_device on success, NULL otherwise 11949 */ 11950 struct net_device *alloc_netdev_dummy(int sizeof_priv) 11951 { 11952 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 11953 init_dummy_netdev); 11954 } 11955 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 11956 11957 /** 11958 * synchronize_net - Synchronize with packet receive processing 11959 * 11960 * Wait for packets currently being received to be done. 11961 * Does not block later packets from starting. 11962 */ 11963 void synchronize_net(void) 11964 { 11965 might_sleep(); 11966 if (from_cleanup_net() || rtnl_is_locked()) 11967 synchronize_rcu_expedited(); 11968 else 11969 synchronize_rcu(); 11970 } 11971 EXPORT_SYMBOL(synchronize_net); 11972 11973 static void netdev_rss_contexts_free(struct net_device *dev) 11974 { 11975 struct ethtool_rxfh_context *ctx; 11976 unsigned long context; 11977 11978 mutex_lock(&dev->ethtool->rss_lock); 11979 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 11980 xa_erase(&dev->ethtool->rss_ctx, context); 11981 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL); 11982 kfree(ctx); 11983 } 11984 xa_destroy(&dev->ethtool->rss_ctx); 11985 mutex_unlock(&dev->ethtool->rss_lock); 11986 } 11987 11988 /** 11989 * unregister_netdevice_queue - remove device from the kernel 11990 * @dev: device 11991 * @head: list 11992 * 11993 * This function shuts down a device interface and removes it 11994 * from the kernel tables. 11995 * If head not NULL, device is queued to be unregistered later. 11996 * 11997 * Callers must hold the rtnl semaphore. You may want 11998 * unregister_netdev() instead of this. 11999 */ 12000 12001 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 12002 { 12003 ASSERT_RTNL(); 12004 12005 if (head) { 12006 list_move_tail(&dev->unreg_list, head); 12007 } else { 12008 LIST_HEAD(single); 12009 12010 list_add(&dev->unreg_list, &single); 12011 unregister_netdevice_many(&single); 12012 } 12013 } 12014 EXPORT_SYMBOL(unregister_netdevice_queue); 12015 12016 static void dev_memory_provider_uninstall(struct net_device *dev) 12017 { 12018 unsigned int i; 12019 12020 for (i = 0; i < dev->real_num_rx_queues; i++) { 12021 struct netdev_rx_queue *rxq = &dev->_rx[i]; 12022 struct pp_memory_provider_params *p = &rxq->mp_params; 12023 12024 if (p->mp_ops && p->mp_ops->uninstall) 12025 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); 12026 } 12027 } 12028 12029 void unregister_netdevice_many_notify(struct list_head *head, 12030 u32 portid, const struct nlmsghdr *nlh) 12031 { 12032 struct net_device *dev, *tmp; 12033 LIST_HEAD(close_head); 12034 int cnt = 0; 12035 12036 BUG_ON(dev_boot_phase); 12037 ASSERT_RTNL(); 12038 12039 if (list_empty(head)) 12040 return; 12041 12042 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 12043 /* Some devices call without registering 12044 * for initialization unwind. Remove those 12045 * devices and proceed with the remaining. 12046 */ 12047 if (dev->reg_state == NETREG_UNINITIALIZED) { 12048 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 12049 dev->name, dev); 12050 12051 WARN_ON(1); 12052 list_del(&dev->unreg_list); 12053 continue; 12054 } 12055 dev->dismantle = true; 12056 BUG_ON(dev->reg_state != NETREG_REGISTERED); 12057 } 12058 12059 /* If device is running, close it first. Start with ops locked... */ 12060 list_for_each_entry(dev, head, unreg_list) { 12061 if (netdev_need_ops_lock(dev)) { 12062 list_add_tail(&dev->close_list, &close_head); 12063 netdev_lock(dev); 12064 } 12065 } 12066 dev_close_many(&close_head, true); 12067 /* ... now unlock them and go over the rest. */ 12068 list_for_each_entry(dev, head, unreg_list) { 12069 if (netdev_need_ops_lock(dev)) 12070 netdev_unlock(dev); 12071 else 12072 list_add_tail(&dev->close_list, &close_head); 12073 } 12074 dev_close_many(&close_head, true); 12075 12076 list_for_each_entry(dev, head, unreg_list) { 12077 /* And unlink it from device chain. */ 12078 unlist_netdevice(dev); 12079 netdev_lock(dev); 12080 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 12081 netdev_unlock(dev); 12082 } 12083 flush_all_backlogs(); 12084 12085 synchronize_net(); 12086 12087 list_for_each_entry(dev, head, unreg_list) { 12088 struct sk_buff *skb = NULL; 12089 12090 /* Shutdown queueing discipline. */ 12091 netdev_lock_ops(dev); 12092 dev_shutdown(dev); 12093 dev_tcx_uninstall(dev); 12094 dev_xdp_uninstall(dev); 12095 dev_memory_provider_uninstall(dev); 12096 netdev_unlock_ops(dev); 12097 bpf_dev_bound_netdev_unregister(dev); 12098 12099 netdev_offload_xstats_disable_all(dev); 12100 12101 /* Notify protocols, that we are about to destroy 12102 * this device. They should clean all the things. 12103 */ 12104 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12105 12106 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 12107 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 12108 GFP_KERNEL, NULL, 0, 12109 portid, nlh); 12110 12111 /* 12112 * Flush the unicast and multicast chains 12113 */ 12114 dev_uc_flush(dev); 12115 dev_mc_flush(dev); 12116 12117 netdev_name_node_alt_flush(dev); 12118 netdev_name_node_free(dev->name_node); 12119 12120 netdev_rss_contexts_free(dev); 12121 12122 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 12123 12124 if (dev->netdev_ops->ndo_uninit) 12125 dev->netdev_ops->ndo_uninit(dev); 12126 12127 mutex_destroy(&dev->ethtool->rss_lock); 12128 12129 net_shaper_flush_netdev(dev); 12130 12131 if (skb) 12132 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 12133 12134 /* Notifier chain MUST detach us all upper devices. */ 12135 WARN_ON(netdev_has_any_upper_dev(dev)); 12136 WARN_ON(netdev_has_any_lower_dev(dev)); 12137 12138 /* Remove entries from kobject tree */ 12139 netdev_unregister_kobject(dev); 12140 #ifdef CONFIG_XPS 12141 /* Remove XPS queueing entries */ 12142 netif_reset_xps_queues_gt(dev, 0); 12143 #endif 12144 } 12145 12146 synchronize_net(); 12147 12148 list_for_each_entry(dev, head, unreg_list) { 12149 netdev_put(dev, &dev->dev_registered_tracker); 12150 net_set_todo(dev); 12151 cnt++; 12152 } 12153 atomic_add(cnt, &dev_unreg_count); 12154 12155 list_del(head); 12156 } 12157 12158 /** 12159 * unregister_netdevice_many - unregister many devices 12160 * @head: list of devices 12161 * 12162 * Note: As most callers use a stack allocated list_head, 12163 * we force a list_del() to make sure stack won't be corrupted later. 12164 */ 12165 void unregister_netdevice_many(struct list_head *head) 12166 { 12167 unregister_netdevice_many_notify(head, 0, NULL); 12168 } 12169 EXPORT_SYMBOL(unregister_netdevice_many); 12170 12171 /** 12172 * unregister_netdev - remove device from the kernel 12173 * @dev: device 12174 * 12175 * This function shuts down a device interface and removes it 12176 * from the kernel tables. 12177 * 12178 * This is just a wrapper for unregister_netdevice that takes 12179 * the rtnl semaphore. In general you want to use this and not 12180 * unregister_netdevice. 12181 */ 12182 void unregister_netdev(struct net_device *dev) 12183 { 12184 rtnl_net_dev_lock(dev); 12185 unregister_netdevice(dev); 12186 rtnl_net_dev_unlock(dev); 12187 } 12188 EXPORT_SYMBOL(unregister_netdev); 12189 12190 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 12191 const char *pat, int new_ifindex, 12192 struct netlink_ext_ack *extack) 12193 { 12194 struct netdev_name_node *name_node; 12195 struct net *net_old = dev_net(dev); 12196 char new_name[IFNAMSIZ] = {}; 12197 int err, new_nsid; 12198 12199 ASSERT_RTNL(); 12200 12201 /* Don't allow namespace local devices to be moved. */ 12202 err = -EINVAL; 12203 if (dev->netns_immutable) { 12204 NL_SET_ERR_MSG(extack, "The interface netns is immutable"); 12205 goto out; 12206 } 12207 12208 /* Ensure the device has been registered */ 12209 if (dev->reg_state != NETREG_REGISTERED) { 12210 NL_SET_ERR_MSG(extack, "The interface isn't registered"); 12211 goto out; 12212 } 12213 12214 /* Get out if there is nothing todo */ 12215 err = 0; 12216 if (net_eq(net_old, net)) 12217 goto out; 12218 12219 /* Pick the destination device name, and ensure 12220 * we can use it in the destination network namespace. 12221 */ 12222 err = -EEXIST; 12223 if (netdev_name_in_use(net, dev->name)) { 12224 /* We get here if we can't use the current device name */ 12225 if (!pat) { 12226 NL_SET_ERR_MSG(extack, 12227 "An interface with the same name exists in the target netns"); 12228 goto out; 12229 } 12230 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 12231 if (err < 0) { 12232 NL_SET_ERR_MSG_FMT(extack, 12233 "Unable to use '%s' for the new interface name in the target netns", 12234 pat); 12235 goto out; 12236 } 12237 } 12238 /* Check that none of the altnames conflicts. */ 12239 err = -EEXIST; 12240 netdev_for_each_altname(dev, name_node) { 12241 if (netdev_name_in_use(net, name_node->name)) { 12242 NL_SET_ERR_MSG_FMT(extack, 12243 "An interface with the altname %s exists in the target netns", 12244 name_node->name); 12245 goto out; 12246 } 12247 } 12248 12249 /* Check that new_ifindex isn't used yet. */ 12250 if (new_ifindex) { 12251 err = dev_index_reserve(net, new_ifindex); 12252 if (err < 0) { 12253 NL_SET_ERR_MSG_FMT(extack, 12254 "The ifindex %d is not available in the target netns", 12255 new_ifindex); 12256 goto out; 12257 } 12258 } else { 12259 /* If there is an ifindex conflict assign a new one */ 12260 err = dev_index_reserve(net, dev->ifindex); 12261 if (err == -EBUSY) 12262 err = dev_index_reserve(net, 0); 12263 if (err < 0) { 12264 NL_SET_ERR_MSG(extack, 12265 "Unable to allocate a new ifindex in the target netns"); 12266 goto out; 12267 } 12268 new_ifindex = err; 12269 } 12270 12271 /* 12272 * And now a mini version of register_netdevice unregister_netdevice. 12273 */ 12274 12275 netdev_lock_ops(dev); 12276 /* If device is running close it first. */ 12277 netif_close(dev); 12278 /* And unlink it from device chain */ 12279 unlist_netdevice(dev); 12280 12281 if (!netdev_need_ops_lock(dev)) 12282 netdev_lock(dev); 12283 dev->moving_ns = true; 12284 netdev_unlock(dev); 12285 12286 synchronize_net(); 12287 12288 /* Shutdown queueing discipline. */ 12289 netdev_lock_ops(dev); 12290 dev_shutdown(dev); 12291 netdev_unlock_ops(dev); 12292 12293 /* Notify protocols, that we are about to destroy 12294 * this device. They should clean all the things. 12295 * 12296 * Note that dev->reg_state stays at NETREG_REGISTERED. 12297 * This is wanted because this way 8021q and macvlan know 12298 * the device is just moving and can keep their slaves up. 12299 */ 12300 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12301 rcu_barrier(); 12302 12303 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 12304 12305 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 12306 new_ifindex); 12307 12308 /* 12309 * Flush the unicast and multicast chains 12310 */ 12311 dev_uc_flush(dev); 12312 dev_mc_flush(dev); 12313 12314 /* Send a netdev-removed uevent to the old namespace */ 12315 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 12316 netdev_adjacent_del_links(dev); 12317 12318 /* Move per-net netdevice notifiers that are following the netdevice */ 12319 move_netdevice_notifiers_dev_net(dev, net); 12320 12321 /* Actually switch the network namespace */ 12322 netdev_lock(dev); 12323 dev_net_set(dev, net); 12324 netdev_unlock(dev); 12325 dev->ifindex = new_ifindex; 12326 12327 if (new_name[0]) { 12328 /* Rename the netdev to prepared name */ 12329 write_seqlock_bh(&netdev_rename_lock); 12330 strscpy(dev->name, new_name, IFNAMSIZ); 12331 write_sequnlock_bh(&netdev_rename_lock); 12332 } 12333 12334 /* Fixup kobjects */ 12335 dev_set_uevent_suppress(&dev->dev, 1); 12336 err = device_rename(&dev->dev, dev->name); 12337 dev_set_uevent_suppress(&dev->dev, 0); 12338 WARN_ON(err); 12339 12340 /* Send a netdev-add uevent to the new namespace */ 12341 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 12342 netdev_adjacent_add_links(dev); 12343 12344 /* Adapt owner in case owning user namespace of target network 12345 * namespace is different from the original one. 12346 */ 12347 err = netdev_change_owner(dev, net_old, net); 12348 WARN_ON(err); 12349 12350 netdev_lock(dev); 12351 dev->moving_ns = false; 12352 if (!netdev_need_ops_lock(dev)) 12353 netdev_unlock(dev); 12354 12355 /* Add the device back in the hashes */ 12356 list_netdevice(dev); 12357 /* Notify protocols, that a new device appeared. */ 12358 call_netdevice_notifiers(NETDEV_REGISTER, dev); 12359 netdev_unlock_ops(dev); 12360 12361 /* 12362 * Prevent userspace races by waiting until the network 12363 * device is fully setup before sending notifications. 12364 */ 12365 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 12366 12367 synchronize_net(); 12368 err = 0; 12369 out: 12370 return err; 12371 } 12372 12373 static int dev_cpu_dead(unsigned int oldcpu) 12374 { 12375 struct sk_buff **list_skb; 12376 struct sk_buff *skb; 12377 unsigned int cpu; 12378 struct softnet_data *sd, *oldsd, *remsd = NULL; 12379 12380 local_irq_disable(); 12381 cpu = smp_processor_id(); 12382 sd = &per_cpu(softnet_data, cpu); 12383 oldsd = &per_cpu(softnet_data, oldcpu); 12384 12385 /* Find end of our completion_queue. */ 12386 list_skb = &sd->completion_queue; 12387 while (*list_skb) 12388 list_skb = &(*list_skb)->next; 12389 /* Append completion queue from offline CPU. */ 12390 *list_skb = oldsd->completion_queue; 12391 oldsd->completion_queue = NULL; 12392 12393 /* Append output queue from offline CPU. */ 12394 if (oldsd->output_queue) { 12395 *sd->output_queue_tailp = oldsd->output_queue; 12396 sd->output_queue_tailp = oldsd->output_queue_tailp; 12397 oldsd->output_queue = NULL; 12398 oldsd->output_queue_tailp = &oldsd->output_queue; 12399 } 12400 /* Append NAPI poll list from offline CPU, with one exception : 12401 * process_backlog() must be called by cpu owning percpu backlog. 12402 * We properly handle process_queue & input_pkt_queue later. 12403 */ 12404 while (!list_empty(&oldsd->poll_list)) { 12405 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 12406 struct napi_struct, 12407 poll_list); 12408 12409 list_del_init(&napi->poll_list); 12410 if (napi->poll == process_backlog) 12411 napi->state &= NAPIF_STATE_THREADED; 12412 else 12413 ____napi_schedule(sd, napi); 12414 } 12415 12416 raise_softirq_irqoff(NET_TX_SOFTIRQ); 12417 local_irq_enable(); 12418 12419 if (!use_backlog_threads()) { 12420 #ifdef CONFIG_RPS 12421 remsd = oldsd->rps_ipi_list; 12422 oldsd->rps_ipi_list = NULL; 12423 #endif 12424 /* send out pending IPI's on offline CPU */ 12425 net_rps_send_ipi(remsd); 12426 } 12427 12428 /* Process offline CPU's input_pkt_queue */ 12429 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 12430 netif_rx(skb); 12431 rps_input_queue_head_incr(oldsd); 12432 } 12433 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 12434 netif_rx(skb); 12435 rps_input_queue_head_incr(oldsd); 12436 } 12437 12438 return 0; 12439 } 12440 12441 /** 12442 * netdev_increment_features - increment feature set by one 12443 * @all: current feature set 12444 * @one: new feature set 12445 * @mask: mask feature set 12446 * 12447 * Computes a new feature set after adding a device with feature set 12448 * @one to the master device with current feature set @all. Will not 12449 * enable anything that is off in @mask. Returns the new feature set. 12450 */ 12451 netdev_features_t netdev_increment_features(netdev_features_t all, 12452 netdev_features_t one, netdev_features_t mask) 12453 { 12454 if (mask & NETIF_F_HW_CSUM) 12455 mask |= NETIF_F_CSUM_MASK; 12456 mask |= NETIF_F_VLAN_CHALLENGED; 12457 12458 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 12459 all &= one | ~NETIF_F_ALL_FOR_ALL; 12460 12461 /* If one device supports hw checksumming, set for all. */ 12462 if (all & NETIF_F_HW_CSUM) 12463 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 12464 12465 return all; 12466 } 12467 EXPORT_SYMBOL(netdev_increment_features); 12468 12469 static struct hlist_head * __net_init netdev_create_hash(void) 12470 { 12471 int i; 12472 struct hlist_head *hash; 12473 12474 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 12475 if (hash != NULL) 12476 for (i = 0; i < NETDEV_HASHENTRIES; i++) 12477 INIT_HLIST_HEAD(&hash[i]); 12478 12479 return hash; 12480 } 12481 12482 /* Initialize per network namespace state */ 12483 static int __net_init netdev_init(struct net *net) 12484 { 12485 BUILD_BUG_ON(GRO_HASH_BUCKETS > 12486 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); 12487 12488 INIT_LIST_HEAD(&net->dev_base_head); 12489 12490 net->dev_name_head = netdev_create_hash(); 12491 if (net->dev_name_head == NULL) 12492 goto err_name; 12493 12494 net->dev_index_head = netdev_create_hash(); 12495 if (net->dev_index_head == NULL) 12496 goto err_idx; 12497 12498 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 12499 12500 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 12501 12502 return 0; 12503 12504 err_idx: 12505 kfree(net->dev_name_head); 12506 err_name: 12507 return -ENOMEM; 12508 } 12509 12510 /** 12511 * netdev_drivername - network driver for the device 12512 * @dev: network device 12513 * 12514 * Determine network driver for device. 12515 */ 12516 const char *netdev_drivername(const struct net_device *dev) 12517 { 12518 const struct device_driver *driver; 12519 const struct device *parent; 12520 const char *empty = ""; 12521 12522 parent = dev->dev.parent; 12523 if (!parent) 12524 return empty; 12525 12526 driver = parent->driver; 12527 if (driver && driver->name) 12528 return driver->name; 12529 return empty; 12530 } 12531 12532 static void __netdev_printk(const char *level, const struct net_device *dev, 12533 struct va_format *vaf) 12534 { 12535 if (dev && dev->dev.parent) { 12536 dev_printk_emit(level[1] - '0', 12537 dev->dev.parent, 12538 "%s %s %s%s: %pV", 12539 dev_driver_string(dev->dev.parent), 12540 dev_name(dev->dev.parent), 12541 netdev_name(dev), netdev_reg_state(dev), 12542 vaf); 12543 } else if (dev) { 12544 printk("%s%s%s: %pV", 12545 level, netdev_name(dev), netdev_reg_state(dev), vaf); 12546 } else { 12547 printk("%s(NULL net_device): %pV", level, vaf); 12548 } 12549 } 12550 12551 void netdev_printk(const char *level, const struct net_device *dev, 12552 const char *format, ...) 12553 { 12554 struct va_format vaf; 12555 va_list args; 12556 12557 va_start(args, format); 12558 12559 vaf.fmt = format; 12560 vaf.va = &args; 12561 12562 __netdev_printk(level, dev, &vaf); 12563 12564 va_end(args); 12565 } 12566 EXPORT_SYMBOL(netdev_printk); 12567 12568 #define define_netdev_printk_level(func, level) \ 12569 void func(const struct net_device *dev, const char *fmt, ...) \ 12570 { \ 12571 struct va_format vaf; \ 12572 va_list args; \ 12573 \ 12574 va_start(args, fmt); \ 12575 \ 12576 vaf.fmt = fmt; \ 12577 vaf.va = &args; \ 12578 \ 12579 __netdev_printk(level, dev, &vaf); \ 12580 \ 12581 va_end(args); \ 12582 } \ 12583 EXPORT_SYMBOL(func); 12584 12585 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12586 define_netdev_printk_level(netdev_alert, KERN_ALERT); 12587 define_netdev_printk_level(netdev_crit, KERN_CRIT); 12588 define_netdev_printk_level(netdev_err, KERN_ERR); 12589 define_netdev_printk_level(netdev_warn, KERN_WARNING); 12590 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12591 define_netdev_printk_level(netdev_info, KERN_INFO); 12592 12593 static void __net_exit netdev_exit(struct net *net) 12594 { 12595 kfree(net->dev_name_head); 12596 kfree(net->dev_index_head); 12597 xa_destroy(&net->dev_by_index); 12598 if (net != &init_net) 12599 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12600 } 12601 12602 static struct pernet_operations __net_initdata netdev_net_ops = { 12603 .init = netdev_init, 12604 .exit = netdev_exit, 12605 }; 12606 12607 static void __net_exit default_device_exit_net(struct net *net) 12608 { 12609 struct netdev_name_node *name_node, *tmp; 12610 struct net_device *dev, *aux; 12611 /* 12612 * Push all migratable network devices back to the 12613 * initial network namespace 12614 */ 12615 ASSERT_RTNL(); 12616 for_each_netdev_safe(net, dev, aux) { 12617 int err; 12618 char fb_name[IFNAMSIZ]; 12619 12620 /* Ignore unmoveable devices (i.e. loopback) */ 12621 if (dev->netns_immutable) 12622 continue; 12623 12624 /* Leave virtual devices for the generic cleanup */ 12625 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12626 continue; 12627 12628 /* Push remaining network devices to init_net */ 12629 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12630 if (netdev_name_in_use(&init_net, fb_name)) 12631 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12632 12633 netdev_for_each_altname_safe(dev, name_node, tmp) 12634 if (netdev_name_in_use(&init_net, name_node->name)) 12635 __netdev_name_node_alt_destroy(name_node); 12636 12637 err = dev_change_net_namespace(dev, &init_net, fb_name); 12638 if (err) { 12639 pr_emerg("%s: failed to move %s to init_net: %d\n", 12640 __func__, dev->name, err); 12641 BUG(); 12642 } 12643 } 12644 } 12645 12646 static void __net_exit default_device_exit_batch(struct list_head *net_list) 12647 { 12648 /* At exit all network devices most be removed from a network 12649 * namespace. Do this in the reverse order of registration. 12650 * Do this across as many network namespaces as possible to 12651 * improve batching efficiency. 12652 */ 12653 struct net_device *dev; 12654 struct net *net; 12655 LIST_HEAD(dev_kill_list); 12656 12657 rtnl_lock(); 12658 list_for_each_entry(net, net_list, exit_list) { 12659 default_device_exit_net(net); 12660 cond_resched(); 12661 } 12662 12663 list_for_each_entry(net, net_list, exit_list) { 12664 for_each_netdev_reverse(net, dev) { 12665 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 12666 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 12667 else 12668 unregister_netdevice_queue(dev, &dev_kill_list); 12669 } 12670 } 12671 unregister_netdevice_many(&dev_kill_list); 12672 rtnl_unlock(); 12673 } 12674 12675 static struct pernet_operations __net_initdata default_device_ops = { 12676 .exit_batch = default_device_exit_batch, 12677 }; 12678 12679 static void __init net_dev_struct_check(void) 12680 { 12681 /* TX read-mostly hotpath */ 12682 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 12683 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 12684 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 12685 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 12686 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 12687 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 12688 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 12689 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 12690 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 12691 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 12692 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 12693 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 12694 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 12695 #ifdef CONFIG_XPS 12696 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 12697 #endif 12698 #ifdef CONFIG_NETFILTER_EGRESS 12699 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 12700 #endif 12701 #ifdef CONFIG_NET_XGRESS 12702 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 12703 #endif 12704 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 12705 12706 /* TXRX read-mostly hotpath */ 12707 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 12708 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 12709 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 12710 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 12711 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 12712 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 12713 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 12714 12715 /* RX read-mostly hotpath */ 12716 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 12717 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 12718 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 12719 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 12720 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 12721 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 12722 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 12723 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 12724 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 12725 #ifdef CONFIG_NETPOLL 12726 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 12727 #endif 12728 #ifdef CONFIG_NET_XGRESS 12729 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 12730 #endif 12731 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 12732 } 12733 12734 /* 12735 * Initialize the DEV module. At boot time this walks the device list and 12736 * unhooks any devices that fail to initialise (normally hardware not 12737 * present) and leaves us with a valid list of present and active devices. 12738 * 12739 */ 12740 12741 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 12742 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 12743 12744 static int net_page_pool_create(int cpuid) 12745 { 12746 #if IS_ENABLED(CONFIG_PAGE_POOL) 12747 struct page_pool_params page_pool_params = { 12748 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 12749 .flags = PP_FLAG_SYSTEM_POOL, 12750 .nid = cpu_to_mem(cpuid), 12751 }; 12752 struct page_pool *pp_ptr; 12753 int err; 12754 12755 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 12756 if (IS_ERR(pp_ptr)) 12757 return -ENOMEM; 12758 12759 err = xdp_reg_page_pool(pp_ptr); 12760 if (err) { 12761 page_pool_destroy(pp_ptr); 12762 return err; 12763 } 12764 12765 per_cpu(system_page_pool.pool, cpuid) = pp_ptr; 12766 #endif 12767 return 0; 12768 } 12769 12770 static int backlog_napi_should_run(unsigned int cpu) 12771 { 12772 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12773 struct napi_struct *napi = &sd->backlog; 12774 12775 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12776 } 12777 12778 static void run_backlog_napi(unsigned int cpu) 12779 { 12780 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12781 12782 napi_threaded_poll_loop(&sd->backlog); 12783 } 12784 12785 static void backlog_napi_setup(unsigned int cpu) 12786 { 12787 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12788 struct napi_struct *napi = &sd->backlog; 12789 12790 napi->thread = this_cpu_read(backlog_napi); 12791 set_bit(NAPI_STATE_THREADED, &napi->state); 12792 } 12793 12794 static struct smp_hotplug_thread backlog_threads = { 12795 .store = &backlog_napi, 12796 .thread_should_run = backlog_napi_should_run, 12797 .thread_fn = run_backlog_napi, 12798 .thread_comm = "backlog_napi/%u", 12799 .setup = backlog_napi_setup, 12800 }; 12801 12802 /* 12803 * This is called single threaded during boot, so no need 12804 * to take the rtnl semaphore. 12805 */ 12806 static int __init net_dev_init(void) 12807 { 12808 int i, rc = -ENOMEM; 12809 12810 BUG_ON(!dev_boot_phase); 12811 12812 net_dev_struct_check(); 12813 12814 if (dev_proc_init()) 12815 goto out; 12816 12817 if (netdev_kobject_init()) 12818 goto out; 12819 12820 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12821 INIT_LIST_HEAD(&ptype_base[i]); 12822 12823 if (register_pernet_subsys(&netdev_net_ops)) 12824 goto out; 12825 12826 /* 12827 * Initialise the packet receive queues. 12828 */ 12829 12830 flush_backlogs_fallback = flush_backlogs_alloc(); 12831 if (!flush_backlogs_fallback) 12832 goto out; 12833 12834 for_each_possible_cpu(i) { 12835 struct softnet_data *sd = &per_cpu(softnet_data, i); 12836 12837 skb_queue_head_init(&sd->input_pkt_queue); 12838 skb_queue_head_init(&sd->process_queue); 12839 #ifdef CONFIG_XFRM_OFFLOAD 12840 skb_queue_head_init(&sd->xfrm_backlog); 12841 #endif 12842 INIT_LIST_HEAD(&sd->poll_list); 12843 sd->output_queue_tailp = &sd->output_queue; 12844 #ifdef CONFIG_RPS 12845 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 12846 sd->cpu = i; 12847 #endif 12848 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 12849 spin_lock_init(&sd->defer_lock); 12850 12851 gro_init(&sd->backlog.gro); 12852 sd->backlog.poll = process_backlog; 12853 sd->backlog.weight = weight_p; 12854 INIT_LIST_HEAD(&sd->backlog.poll_list); 12855 12856 if (net_page_pool_create(i)) 12857 goto out; 12858 } 12859 if (use_backlog_threads()) 12860 smpboot_register_percpu_thread(&backlog_threads); 12861 12862 dev_boot_phase = 0; 12863 12864 /* The loopback device is special if any other network devices 12865 * is present in a network namespace the loopback device must 12866 * be present. Since we now dynamically allocate and free the 12867 * loopback device ensure this invariant is maintained by 12868 * keeping the loopback device as the first device on the 12869 * list of network devices. Ensuring the loopback devices 12870 * is the first device that appears and the last network device 12871 * that disappears. 12872 */ 12873 if (register_pernet_device(&loopback_net_ops)) 12874 goto out; 12875 12876 if (register_pernet_device(&default_device_ops)) 12877 goto out; 12878 12879 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 12880 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 12881 12882 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 12883 NULL, dev_cpu_dead); 12884 WARN_ON(rc < 0); 12885 rc = 0; 12886 12887 /* avoid static key IPIs to isolated CPUs */ 12888 if (housekeeping_enabled(HK_TYPE_MISC)) 12889 net_enable_timestamp(); 12890 out: 12891 if (rc < 0) { 12892 for_each_possible_cpu(i) { 12893 struct page_pool *pp_ptr; 12894 12895 pp_ptr = per_cpu(system_page_pool.pool, i); 12896 if (!pp_ptr) 12897 continue; 12898 12899 xdp_unreg_page_pool(pp_ptr); 12900 page_pool_destroy(pp_ptr); 12901 per_cpu(system_page_pool.pool, i) = NULL; 12902 } 12903 } 12904 12905 return rc; 12906 } 12907 12908 subsys_initcall(net_dev_init); 12909