xref: /linux/net/core/dev.c (revision f6f3bac08ff9855d803081a353a1fafaa8845739)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 
149 #include "net-sysfs.h"
150 
151 #define MAX_GRO_SKBS 8
152 
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155 
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 static struct list_head offload_base __read_mostly;
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct netdev_notifier_info *info);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234 	struct net *net = dev_net(dev);
235 
236 	ASSERT_RTNL();
237 
238 	write_lock_bh(&dev_base_lock);
239 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 	hlist_add_head_rcu(&dev->index_hlist,
242 			   dev_index_hash(net, dev->ifindex));
243 	write_unlock_bh(&dev_base_lock);
244 
245 	dev_base_seq_inc(net);
246 }
247 
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253 	ASSERT_RTNL();
254 
255 	/* Unlink dev from the device chain */
256 	write_lock_bh(&dev_base_lock);
257 	list_del_rcu(&dev->dev_list);
258 	hlist_del_rcu(&dev->name_hlist);
259 	hlist_del_rcu(&dev->index_hlist);
260 	write_unlock_bh(&dev_base_lock);
261 
262 	dev_base_seq_inc(dev_net(dev));
263 }
264 
265 /*
266  *	Our notifier list
267  */
268 
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270 
271 /*
272  *	Device drivers call our routines to queue packets here. We empty the
273  *	queue in the local softnet handler.
274  */
275 
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278 
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300 
301 static const char *const netdev_lock_name[] = {
302 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317 
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323 	int i;
324 
325 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 		if (netdev_lock_type[i] == dev_type)
327 			return i;
328 	/* the last key is used by default */
329 	return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331 
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 						 unsigned short dev_type)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev_type);
338 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 				   netdev_lock_name[i]);
340 }
341 
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 	int i;
345 
346 	i = netdev_lock_pos(dev->type);
347 	lockdep_set_class_and_name(&dev->addr_list_lock,
348 				   &netdev_addr_lock_key[i],
349 				   netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 						 unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360 
361 /*******************************************************************************
362  *
363  *		Protocol management and registration routines
364  *
365  *******************************************************************************/
366 
367 
368 /*
369  *	Add a protocol ID to the list. Now that the input handler is
370  *	smarter we can dispense with all the messy stuff that used to be
371  *	here.
372  *
373  *	BEWARE!!! Protocol handlers, mangling input packets,
374  *	MUST BE last in hash buckets and checking protocol handlers
375  *	MUST start from promiscuous ptype_all chain in net_bh.
376  *	It is true now, do not change it.
377  *	Explanation follows: if protocol handler, mangling packet, will
378  *	be the first on list, it is not able to sense, that packet
379  *	is cloned and should be copied-on-write, so that it will
380  *	change it and subsequent readers will get broken packet.
381  *							--ANK (980803)
382  */
383 
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386 	if (pt->type == htons(ETH_P_ALL))
387 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 	else
389 		return pt->dev ? &pt->dev->ptype_specific :
390 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392 
393 /**
394  *	dev_add_pack - add packet handler
395  *	@pt: packet type declaration
396  *
397  *	Add a protocol handler to the networking stack. The passed &packet_type
398  *	is linked into kernel lists and may not be freed until it has been
399  *	removed from the kernel lists.
400  *
401  *	This call does not sleep therefore it can not
402  *	guarantee all CPU's that are in middle of receiving packets
403  *	will see the new packet type (until the next received packet).
404  */
405 
406 void dev_add_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 
410 	spin_lock(&ptype_lock);
411 	list_add_rcu(&pt->list, head);
412 	spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415 
416 /**
417  *	__dev_remove_pack	 - remove packet handler
418  *	@pt: packet type declaration
419  *
420  *	Remove a protocol handler that was previously added to the kernel
421  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *	from the kernel lists and can be freed or reused once this function
423  *	returns.
424  *
425  *      The packet type might still be in use by receivers
426  *	and must not be freed until after all the CPU's have gone
427  *	through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431 	struct list_head *head = ptype_head(pt);
432 	struct packet_type *pt1;
433 
434 	spin_lock(&ptype_lock);
435 
436 	list_for_each_entry(pt1, head, list) {
437 		if (pt == pt1) {
438 			list_del_rcu(&pt->list);
439 			goto out;
440 		}
441 	}
442 
443 	pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445 	spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448 
449 /**
450  *	dev_remove_pack	 - remove packet handler
451  *	@pt: packet type declaration
452  *
453  *	Remove a protocol handler that was previously added to the kernel
454  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *	from the kernel lists and can be freed or reused once this function
456  *	returns.
457  *
458  *	This call sleeps to guarantee that no CPU is looking at the packet
459  *	type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463 	__dev_remove_pack(pt);
464 
465 	synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468 
469 
470 /**
471  *	dev_add_offload - register offload handlers
472  *	@po: protocol offload declaration
473  *
474  *	Add protocol offload handlers to the networking stack. The passed
475  *	&proto_offload is linked into kernel lists and may not be freed until
476  *	it has been removed from the kernel lists.
477  *
478  *	This call does not sleep therefore it can not
479  *	guarantee all CPU's that are in middle of receiving packets
480  *	will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484 	struct packet_offload *elem;
485 
486 	spin_lock(&offload_lock);
487 	list_for_each_entry(elem, &offload_base, list) {
488 		if (po->priority < elem->priority)
489 			break;
490 	}
491 	list_add_rcu(&po->list, elem->list.prev);
492 	spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495 
496 /**
497  *	__dev_remove_offload	 - remove offload handler
498  *	@po: packet offload declaration
499  *
500  *	Remove a protocol offload handler that was previously added to the
501  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *	is removed from the kernel lists and can be freed or reused once this
503  *	function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *	and must not be freed until after all the CPU's have gone
507  *	through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511 	struct list_head *head = &offload_base;
512 	struct packet_offload *po1;
513 
514 	spin_lock(&offload_lock);
515 
516 	list_for_each_entry(po1, head, list) {
517 		if (po == po1) {
518 			list_del_rcu(&po->list);
519 			goto out;
520 		}
521 	}
522 
523 	pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525 	spin_unlock(&offload_lock);
526 }
527 
528 /**
529  *	dev_remove_offload	 - remove packet offload handler
530  *	@po: packet offload declaration
531  *
532  *	Remove a packet offload handler that was previously added to the kernel
533  *	offload handlers by dev_add_offload(). The passed &offload_type is
534  *	removed from the kernel lists and can be freed or reused once this
535  *	function returns.
536  *
537  *	This call sleeps to guarantee that no CPU is looking at the packet
538  *	type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542 	__dev_remove_offload(po);
543 
544 	synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547 
548 /******************************************************************************
549  *
550  *		      Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553 
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556 
557 /**
558  *	netdev_boot_setup_add	- add new setup entry
559  *	@name: name of the device
560  *	@map: configured settings for the device
561  *
562  *	Adds new setup entry to the dev_boot_setup list.  The function
563  *	returns 0 on error and 1 on success.  This is a generic routine to
564  *	all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568 	struct netdev_boot_setup *s;
569 	int i;
570 
571 	s = dev_boot_setup;
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 			memset(s[i].name, 0, sizeof(s[i].name));
575 			strlcpy(s[i].name, name, IFNAMSIZ);
576 			memcpy(&s[i].map, map, sizeof(s[i].map));
577 			break;
578 		}
579 	}
580 
581 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583 
584 /**
585  * netdev_boot_setup_check	- check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595 	struct netdev_boot_setup *s = dev_boot_setup;
596 	int i;
597 
598 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 		    !strcmp(dev->name, s[i].name)) {
601 			dev->irq = s[i].map.irq;
602 			dev->base_addr = s[i].map.base_addr;
603 			dev->mem_start = s[i].map.mem_start;
604 			dev->mem_end = s[i].map.mem_end;
605 			return 1;
606 		}
607 	}
608 	return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611 
612 
613 /**
614  * netdev_boot_base	- get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625 	const struct netdev_boot_setup *s = dev_boot_setup;
626 	char name[IFNAMSIZ];
627 	int i;
628 
629 	sprintf(name, "%s%d", prefix, unit);
630 
631 	/*
632 	 * If device already registered then return base of 1
633 	 * to indicate not to probe for this interface
634 	 */
635 	if (__dev_get_by_name(&init_net, name))
636 		return 1;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 		if (!strcmp(name, s[i].name))
640 			return s[i].map.base_addr;
641 	return 0;
642 }
643 
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649 	int ints[5];
650 	struct ifmap map;
651 
652 	str = get_options(str, ARRAY_SIZE(ints), ints);
653 	if (!str || !*str)
654 		return 0;
655 
656 	/* Save settings */
657 	memset(&map, 0, sizeof(map));
658 	if (ints[0] > 0)
659 		map.irq = ints[1];
660 	if (ints[0] > 1)
661 		map.base_addr = ints[2];
662 	if (ints[0] > 2)
663 		map.mem_start = ints[3];
664 	if (ints[0] > 3)
665 		map.mem_end = ints[4];
666 
667 	/* Add new entry to the list */
668 	return netdev_boot_setup_add(str, &map);
669 }
670 
671 __setup("netdev=", netdev_boot_setup);
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
722 /**
723  *	__dev_get_by_name	- find a device by its name
724  *	@net: the applicable net namespace
725  *	@name: name to find
726  *
727  *	Find an interface by name. Must be called under RTNL semaphore
728  *	or @dev_base_lock. If the name is found a pointer to the device
729  *	is returned. If the name is not found then %NULL is returned. The
730  *	reference counters are not incremented so the caller must be
731  *	careful with locks.
732  */
733 
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736 	struct net_device *dev;
737 	struct hlist_head *head = dev_name_hash(net, name);
738 
739 	hlist_for_each_entry(dev, head, name_hlist)
740 		if (!strncmp(dev->name, name, IFNAMSIZ))
741 			return dev;
742 
743 	return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746 
747 /**
748  * dev_get_by_name_rcu	- find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758 
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761 	struct net_device *dev;
762 	struct hlist_head *head = dev_name_hash(net, name);
763 
764 	hlist_for_each_entry_rcu(dev, head, name_hlist)
765 		if (!strncmp(dev->name, name, IFNAMSIZ))
766 			return dev;
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771 
772 /**
773  *	dev_get_by_name		- find a device by its name
774  *	@net: the applicable net namespace
775  *	@name: name to find
776  *
777  *	Find an interface by name. This can be called from any
778  *	context and does its own locking. The returned handle has
779  *	the usage count incremented and the caller must use dev_put() to
780  *	release it when it is no longer needed. %NULL is returned if no
781  *	matching device is found.
782  */
783 
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786 	struct net_device *dev;
787 
788 	rcu_read_lock();
789 	dev = dev_get_by_name_rcu(net, name);
790 	if (dev)
791 		dev_hold(dev);
792 	rcu_read_unlock();
793 	return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796 
797 /**
798  *	__dev_get_by_index - find a device by its ifindex
799  *	@net: the applicable net namespace
800  *	@ifindex: index of device
801  *
802  *	Search for an interface by index. Returns %NULL if the device
803  *	is not found or a pointer to the device. The device has not
804  *	had its reference counter increased so the caller must be careful
805  *	about locking. The caller must hold either the RTNL semaphore
806  *	or @dev_base_lock.
807  */
808 
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811 	struct net_device *dev;
812 	struct hlist_head *head = dev_index_hash(net, ifindex);
813 
814 	hlist_for_each_entry(dev, head, index_hlist)
815 		if (dev->ifindex == ifindex)
816 			return dev;
817 
818 	return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821 
822 /**
823  *	dev_get_by_index_rcu - find a device by its ifindex
824  *	@net: the applicable net namespace
825  *	@ifindex: index of device
826  *
827  *	Search for an interface by index. Returns %NULL if the device
828  *	is not found or a pointer to the device. The device has not
829  *	had its reference counter increased so the caller must be careful
830  *	about locking. The caller must hold RCU lock.
831  */
832 
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835 	struct net_device *dev;
836 	struct hlist_head *head = dev_index_hash(net, ifindex);
837 
838 	hlist_for_each_entry_rcu(dev, head, index_hlist)
839 		if (dev->ifindex == ifindex)
840 			return dev;
841 
842 	return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845 
846 
847 /**
848  *	dev_get_by_index - find a device by its ifindex
849  *	@net: the applicable net namespace
850  *	@ifindex: index of device
851  *
852  *	Search for an interface by index. Returns NULL if the device
853  *	is not found or a pointer to the device. The device returned has
854  *	had a reference added and the pointer is safe until the user calls
855  *	dev_put to indicate they have finished with it.
856  */
857 
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 
862 	rcu_read_lock();
863 	dev = dev_get_by_index_rcu(net, ifindex);
864 	if (dev)
865 		dev_hold(dev);
866 	rcu_read_unlock();
867 	return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870 
871 /**
872  *	dev_get_by_napi_id - find a device by napi_id
873  *	@napi_id: ID of the NAPI struct
874  *
875  *	Search for an interface by NAPI ID. Returns %NULL if the device
876  *	is not found or a pointer to the device. The device has not had
877  *	its reference counter increased so the caller must be careful
878  *	about locking. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883 	struct napi_struct *napi;
884 
885 	WARN_ON_ONCE(!rcu_read_lock_held());
886 
887 	if (napi_id < MIN_NAPI_ID)
888 		return NULL;
889 
890 	napi = napi_by_id(napi_id);
891 
892 	return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895 
896 /**
897  *	netdev_get_name - get a netdevice name, knowing its ifindex.
898  *	@net: network namespace
899  *	@name: a pointer to the buffer where the name will be stored.
900  *	@ifindex: the ifindex of the interface to get the name from.
901  *
902  *	The use of raw_seqcount_begin() and cond_resched() before
903  *	retrying is required as we want to give the writers a chance
904  *	to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908 	struct net_device *dev;
909 	unsigned int seq;
910 
911 retry:
912 	seq = raw_seqcount_begin(&devnet_rename_seq);
913 	rcu_read_lock();
914 	dev = dev_get_by_index_rcu(net, ifindex);
915 	if (!dev) {
916 		rcu_read_unlock();
917 		return -ENODEV;
918 	}
919 
920 	strcpy(name, dev->name);
921 	rcu_read_unlock();
922 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 		cond_resched();
924 		goto retry;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  *	dev_getbyhwaddr_rcu - find a device by its hardware address
932  *	@net: the applicable net namespace
933  *	@type: media type of device
934  *	@ha: hardware address
935  *
936  *	Search for an interface by MAC address. Returns NULL if the device
937  *	is not found or a pointer to the device.
938  *	The caller must hold RCU or RTNL.
939  *	The returned device has not had its ref count increased
940  *	and the caller must therefore be careful about locking
941  *
942  */
943 
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 				       const char *ha)
946 {
947 	struct net_device *dev;
948 
949 	for_each_netdev_rcu(net, dev)
950 		if (dev->type == type &&
951 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
952 			return dev;
953 
954 	return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957 
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960 	struct net_device *dev;
961 
962 	ASSERT_RTNL();
963 	for_each_netdev(net, dev)
964 		if (dev->type == type)
965 			return dev;
966 
967 	return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970 
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973 	struct net_device *dev, *ret = NULL;
974 
975 	rcu_read_lock();
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type) {
978 			dev_hold(dev);
979 			ret = dev;
980 			break;
981 		}
982 	rcu_read_unlock();
983 	return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986 
987 /**
988  *	__dev_get_by_flags - find any device with given flags
989  *	@net: the applicable net namespace
990  *	@if_flags: IFF_* values
991  *	@mask: bitmask of bits in if_flags to check
992  *
993  *	Search for any interface with the given flags. Returns NULL if a device
994  *	is not found or a pointer to the device. Must be called inside
995  *	rtnl_lock(), and result refcount is unchanged.
996  */
997 
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 				      unsigned short mask)
1000 {
1001 	struct net_device *dev, *ret;
1002 
1003 	ASSERT_RTNL();
1004 
1005 	ret = NULL;
1006 	for_each_netdev(net, dev) {
1007 		if (((dev->flags ^ if_flags) & mask) == 0) {
1008 			ret = dev;
1009 			break;
1010 		}
1011 	}
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015 
1016 /**
1017  *	dev_valid_name - check if name is okay for network device
1018  *	@name: name string
1019  *
1020  *	Network device names need to be valid file names to
1021  *	to allow sysfs to work.  We also disallow any kind of
1022  *	whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026 	if (*name == '\0')
1027 		return false;
1028 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 		return false;
1030 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 		return false;
1032 
1033 	while (*name) {
1034 		if (*name == '/' || *name == ':' || isspace(*name))
1035 			return false;
1036 		name++;
1037 	}
1038 	return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041 
1042 /**
1043  *	__dev_alloc_name - allocate a name for a device
1044  *	@net: network namespace to allocate the device name in
1045  *	@name: name format string
1046  *	@buf:  scratch buffer and result name string
1047  *
1048  *	Passed a format string - eg "lt%d" it will try and find a suitable
1049  *	id. It scans list of devices to build up a free map, then chooses
1050  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *	while allocating the name and adding the device in order to avoid
1052  *	duplicates.
1053  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *	Returns the number of the unit assigned or a negative errno code.
1055  */
1056 
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059 	int i = 0;
1060 	const char *p;
1061 	const int max_netdevices = 8*PAGE_SIZE;
1062 	unsigned long *inuse;
1063 	struct net_device *d;
1064 
1065 	if (!dev_valid_name(name))
1066 		return -EINVAL;
1067 
1068 	p = strchr(name, '%');
1069 	if (p) {
1070 		/*
1071 		 * Verify the string as this thing may have come from
1072 		 * the user.  There must be either one "%d" and no other "%"
1073 		 * characters.
1074 		 */
1075 		if (p[1] != 'd' || strchr(p + 2, '%'))
1076 			return -EINVAL;
1077 
1078 		/* Use one page as a bit array of possible slots */
1079 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 		if (!inuse)
1081 			return -ENOMEM;
1082 
1083 		for_each_netdev(net, d) {
1084 			if (!sscanf(d->name, name, &i))
1085 				continue;
1086 			if (i < 0 || i >= max_netdevices)
1087 				continue;
1088 
1089 			/*  avoid cases where sscanf is not exact inverse of printf */
1090 			snprintf(buf, IFNAMSIZ, name, i);
1091 			if (!strncmp(buf, d->name, IFNAMSIZ))
1092 				set_bit(i, inuse);
1093 		}
1094 
1095 		i = find_first_zero_bit(inuse, max_netdevices);
1096 		free_page((unsigned long) inuse);
1097 	}
1098 
1099 	snprintf(buf, IFNAMSIZ, name, i);
1100 	if (!__dev_get_by_name(net, buf))
1101 		return i;
1102 
1103 	/* It is possible to run out of possible slots
1104 	 * when the name is long and there isn't enough space left
1105 	 * for the digits, or if all bits are used.
1106 	 */
1107 	return -ENFILE;
1108 }
1109 
1110 static int dev_alloc_name_ns(struct net *net,
1111 			     struct net_device *dev,
1112 			     const char *name)
1113 {
1114 	char buf[IFNAMSIZ];
1115 	int ret;
1116 
1117 	BUG_ON(!net);
1118 	ret = __dev_alloc_name(net, name, buf);
1119 	if (ret >= 0)
1120 		strlcpy(dev->name, buf, IFNAMSIZ);
1121 	return ret;
1122 }
1123 
1124 /**
1125  *	dev_alloc_name - allocate a name for a device
1126  *	@dev: device
1127  *	@name: name format string
1128  *
1129  *	Passed a format string - eg "lt%d" it will try and find a suitable
1130  *	id. It scans list of devices to build up a free map, then chooses
1131  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *	while allocating the name and adding the device in order to avoid
1133  *	duplicates.
1134  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *	Returns the number of the unit assigned or a negative errno code.
1136  */
1137 
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143 
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 		       const char *name)
1146 {
1147 	BUG_ON(!net);
1148 
1149 	if (!dev_valid_name(name))
1150 		return -EINVAL;
1151 
1152 	if (strchr(name, '%'))
1153 		return dev_alloc_name_ns(net, dev, name);
1154 	else if (__dev_get_by_name(net, name))
1155 		return -EEXIST;
1156 	else if (dev->name != name)
1157 		strlcpy(dev->name, name, IFNAMSIZ);
1158 
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162 
1163 /**
1164  *	dev_change_name - change name of a device
1165  *	@dev: device
1166  *	@newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *	Change name of a device, can pass format strings "eth%d".
1169  *	for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173 	unsigned char old_assign_type;
1174 	char oldname[IFNAMSIZ];
1175 	int err = 0;
1176 	int ret;
1177 	struct net *net;
1178 
1179 	ASSERT_RTNL();
1180 	BUG_ON(!dev_net(dev));
1181 
1182 	net = dev_net(dev);
1183 	if (dev->flags & IFF_UP)
1184 		return -EBUSY;
1185 
1186 	write_seqcount_begin(&devnet_rename_seq);
1187 
1188 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189 		write_seqcount_end(&devnet_rename_seq);
1190 		return 0;
1191 	}
1192 
1193 	memcpy(oldname, dev->name, IFNAMSIZ);
1194 
1195 	err = dev_get_valid_name(net, dev, newname);
1196 	if (err < 0) {
1197 		write_seqcount_end(&devnet_rename_seq);
1198 		return err;
1199 	}
1200 
1201 	if (oldname[0] && !strchr(oldname, '%'))
1202 		netdev_info(dev, "renamed from %s\n", oldname);
1203 
1204 	old_assign_type = dev->name_assign_type;
1205 	dev->name_assign_type = NET_NAME_RENAMED;
1206 
1207 rollback:
1208 	ret = device_rename(&dev->dev, dev->name);
1209 	if (ret) {
1210 		memcpy(dev->name, oldname, IFNAMSIZ);
1211 		dev->name_assign_type = old_assign_type;
1212 		write_seqcount_end(&devnet_rename_seq);
1213 		return ret;
1214 	}
1215 
1216 	write_seqcount_end(&devnet_rename_seq);
1217 
1218 	netdev_adjacent_rename_links(dev, oldname);
1219 
1220 	write_lock_bh(&dev_base_lock);
1221 	hlist_del_rcu(&dev->name_hlist);
1222 	write_unlock_bh(&dev_base_lock);
1223 
1224 	synchronize_rcu();
1225 
1226 	write_lock_bh(&dev_base_lock);
1227 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228 	write_unlock_bh(&dev_base_lock);
1229 
1230 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231 	ret = notifier_to_errno(ret);
1232 
1233 	if (ret) {
1234 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1235 		if (err >= 0) {
1236 			err = ret;
1237 			write_seqcount_begin(&devnet_rename_seq);
1238 			memcpy(dev->name, oldname, IFNAMSIZ);
1239 			memcpy(oldname, newname, IFNAMSIZ);
1240 			dev->name_assign_type = old_assign_type;
1241 			old_assign_type = NET_NAME_RENAMED;
1242 			goto rollback;
1243 		} else {
1244 			pr_err("%s: name change rollback failed: %d\n",
1245 			       dev->name, ret);
1246 		}
1247 	}
1248 
1249 	return err;
1250 }
1251 
1252 /**
1253  *	dev_set_alias - change ifalias of a device
1254  *	@dev: device
1255  *	@alias: name up to IFALIASZ
1256  *	@len: limit of bytes to copy from info
1257  *
1258  *	Set ifalias for a device,
1259  */
1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261 {
1262 	struct dev_ifalias *new_alias = NULL;
1263 
1264 	if (len >= IFALIASZ)
1265 		return -EINVAL;
1266 
1267 	if (len) {
1268 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269 		if (!new_alias)
1270 			return -ENOMEM;
1271 
1272 		memcpy(new_alias->ifalias, alias, len);
1273 		new_alias->ifalias[len] = 0;
1274 	}
1275 
1276 	mutex_lock(&ifalias_mutex);
1277 	rcu_swap_protected(dev->ifalias, new_alias,
1278 			   mutex_is_locked(&ifalias_mutex));
1279 	mutex_unlock(&ifalias_mutex);
1280 
1281 	if (new_alias)
1282 		kfree_rcu(new_alias, rcuhead);
1283 
1284 	return len;
1285 }
1286 EXPORT_SYMBOL(dev_set_alias);
1287 
1288 /**
1289  *	dev_get_alias - get ifalias of a device
1290  *	@dev: device
1291  *	@name: buffer to store name of ifalias
1292  *	@len: size of buffer
1293  *
1294  *	get ifalias for a device.  Caller must make sure dev cannot go
1295  *	away,  e.g. rcu read lock or own a reference count to device.
1296  */
1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298 {
1299 	const struct dev_ifalias *alias;
1300 	int ret = 0;
1301 
1302 	rcu_read_lock();
1303 	alias = rcu_dereference(dev->ifalias);
1304 	if (alias)
1305 		ret = snprintf(name, len, "%s", alias->ifalias);
1306 	rcu_read_unlock();
1307 
1308 	return ret;
1309 }
1310 
1311 /**
1312  *	netdev_features_change - device changes features
1313  *	@dev: device to cause notification
1314  *
1315  *	Called to indicate a device has changed features.
1316  */
1317 void netdev_features_change(struct net_device *dev)
1318 {
1319 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320 }
1321 EXPORT_SYMBOL(netdev_features_change);
1322 
1323 /**
1324  *	netdev_state_change - device changes state
1325  *	@dev: device to cause notification
1326  *
1327  *	Called to indicate a device has changed state. This function calls
1328  *	the notifier chains for netdev_chain and sends a NEWLINK message
1329  *	to the routing socket.
1330  */
1331 void netdev_state_change(struct net_device *dev)
1332 {
1333 	if (dev->flags & IFF_UP) {
1334 		struct netdev_notifier_change_info change_info = {
1335 			.info.dev = dev,
1336 		};
1337 
1338 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1339 					      &change_info.info);
1340 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341 	}
1342 }
1343 EXPORT_SYMBOL(netdev_state_change);
1344 
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357 	rtnl_lock();
1358 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360 	rtnl_unlock();
1361 }
1362 EXPORT_SYMBOL(netdev_notify_peers);
1363 
1364 static int __dev_open(struct net_device *dev)
1365 {
1366 	const struct net_device_ops *ops = dev->netdev_ops;
1367 	int ret;
1368 
1369 	ASSERT_RTNL();
1370 
1371 	if (!netif_device_present(dev))
1372 		return -ENODEV;
1373 
1374 	/* Block netpoll from trying to do any rx path servicing.
1375 	 * If we don't do this there is a chance ndo_poll_controller
1376 	 * or ndo_poll may be running while we open the device
1377 	 */
1378 	netpoll_poll_disable(dev);
1379 
1380 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381 	ret = notifier_to_errno(ret);
1382 	if (ret)
1383 		return ret;
1384 
1385 	set_bit(__LINK_STATE_START, &dev->state);
1386 
1387 	if (ops->ndo_validate_addr)
1388 		ret = ops->ndo_validate_addr(dev);
1389 
1390 	if (!ret && ops->ndo_open)
1391 		ret = ops->ndo_open(dev);
1392 
1393 	netpoll_poll_enable(dev);
1394 
1395 	if (ret)
1396 		clear_bit(__LINK_STATE_START, &dev->state);
1397 	else {
1398 		dev->flags |= IFF_UP;
1399 		dev_set_rx_mode(dev);
1400 		dev_activate(dev);
1401 		add_device_randomness(dev->dev_addr, dev->addr_len);
1402 	}
1403 
1404 	return ret;
1405 }
1406 
1407 /**
1408  *	dev_open	- prepare an interface for use.
1409  *	@dev:	device to open
1410  *
1411  *	Takes a device from down to up state. The device's private open
1412  *	function is invoked and then the multicast lists are loaded. Finally
1413  *	the device is moved into the up state and a %NETDEV_UP message is
1414  *	sent to the netdev notifier chain.
1415  *
1416  *	Calling this function on an active interface is a nop. On a failure
1417  *	a negative errno code is returned.
1418  */
1419 int dev_open(struct net_device *dev)
1420 {
1421 	int ret;
1422 
1423 	if (dev->flags & IFF_UP)
1424 		return 0;
1425 
1426 	ret = __dev_open(dev);
1427 	if (ret < 0)
1428 		return ret;
1429 
1430 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431 	call_netdevice_notifiers(NETDEV_UP, dev);
1432 
1433 	return ret;
1434 }
1435 EXPORT_SYMBOL(dev_open);
1436 
1437 static void __dev_close_many(struct list_head *head)
1438 {
1439 	struct net_device *dev;
1440 
1441 	ASSERT_RTNL();
1442 	might_sleep();
1443 
1444 	list_for_each_entry(dev, head, close_list) {
1445 		/* Temporarily disable netpoll until the interface is down */
1446 		netpoll_poll_disable(dev);
1447 
1448 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1449 
1450 		clear_bit(__LINK_STATE_START, &dev->state);
1451 
1452 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1453 		 * can be even on different cpu. So just clear netif_running().
1454 		 *
1455 		 * dev->stop() will invoke napi_disable() on all of it's
1456 		 * napi_struct instances on this device.
1457 		 */
1458 		smp_mb__after_atomic(); /* Commit netif_running(). */
1459 	}
1460 
1461 	dev_deactivate_many(head);
1462 
1463 	list_for_each_entry(dev, head, close_list) {
1464 		const struct net_device_ops *ops = dev->netdev_ops;
1465 
1466 		/*
1467 		 *	Call the device specific close. This cannot fail.
1468 		 *	Only if device is UP
1469 		 *
1470 		 *	We allow it to be called even after a DETACH hot-plug
1471 		 *	event.
1472 		 */
1473 		if (ops->ndo_stop)
1474 			ops->ndo_stop(dev);
1475 
1476 		dev->flags &= ~IFF_UP;
1477 		netpoll_poll_enable(dev);
1478 	}
1479 }
1480 
1481 static void __dev_close(struct net_device *dev)
1482 {
1483 	LIST_HEAD(single);
1484 
1485 	list_add(&dev->close_list, &single);
1486 	__dev_close_many(&single);
1487 	list_del(&single);
1488 }
1489 
1490 void dev_close_many(struct list_head *head, bool unlink)
1491 {
1492 	struct net_device *dev, *tmp;
1493 
1494 	/* Remove the devices that don't need to be closed */
1495 	list_for_each_entry_safe(dev, tmp, head, close_list)
1496 		if (!(dev->flags & IFF_UP))
1497 			list_del_init(&dev->close_list);
1498 
1499 	__dev_close_many(head);
1500 
1501 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1502 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1504 		if (unlink)
1505 			list_del_init(&dev->close_list);
1506 	}
1507 }
1508 EXPORT_SYMBOL(dev_close_many);
1509 
1510 /**
1511  *	dev_close - shutdown an interface.
1512  *	@dev: device to shutdown
1513  *
1514  *	This function moves an active device into down state. A
1515  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1517  *	chain.
1518  */
1519 void dev_close(struct net_device *dev)
1520 {
1521 	if (dev->flags & IFF_UP) {
1522 		LIST_HEAD(single);
1523 
1524 		list_add(&dev->close_list, &single);
1525 		dev_close_many(&single, true);
1526 		list_del(&single);
1527 	}
1528 }
1529 EXPORT_SYMBOL(dev_close);
1530 
1531 
1532 /**
1533  *	dev_disable_lro - disable Large Receive Offload on a device
1534  *	@dev: device
1535  *
1536  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1537  *	called under RTNL.  This is needed if received packets may be
1538  *	forwarded to another interface.
1539  */
1540 void dev_disable_lro(struct net_device *dev)
1541 {
1542 	struct net_device *lower_dev;
1543 	struct list_head *iter;
1544 
1545 	dev->wanted_features &= ~NETIF_F_LRO;
1546 	netdev_update_features(dev);
1547 
1548 	if (unlikely(dev->features & NETIF_F_LRO))
1549 		netdev_WARN(dev, "failed to disable LRO!\n");
1550 
1551 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1552 		dev_disable_lro(lower_dev);
1553 }
1554 EXPORT_SYMBOL(dev_disable_lro);
1555 
1556 /**
1557  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1558  *	@dev: device
1559  *
1560  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1561  *	called under RTNL.  This is needed if Generic XDP is installed on
1562  *	the device.
1563  */
1564 static void dev_disable_gro_hw(struct net_device *dev)
1565 {
1566 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1567 	netdev_update_features(dev);
1568 
1569 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1570 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1571 }
1572 
1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1574 {
1575 #define N(val) 						\
1576 	case NETDEV_##val:				\
1577 		return "NETDEV_" __stringify(val);
1578 	switch (cmd) {
1579 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1588 	}
1589 #undef N
1590 	return "UNKNOWN_NETDEV_EVENT";
1591 }
1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593 
1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595 				   struct net_device *dev)
1596 {
1597 	struct netdev_notifier_info info = {
1598 		.dev = dev,
1599 	};
1600 
1601 	return nb->notifier_call(nb, val, &info);
1602 }
1603 
1604 static int dev_boot_phase = 1;
1605 
1606 /**
1607  * register_netdevice_notifier - register a network notifier block
1608  * @nb: notifier
1609  *
1610  * Register a notifier to be called when network device events occur.
1611  * The notifier passed is linked into the kernel structures and must
1612  * not be reused until it has been unregistered. A negative errno code
1613  * is returned on a failure.
1614  *
1615  * When registered all registration and up events are replayed
1616  * to the new notifier to allow device to have a race free
1617  * view of the network device list.
1618  */
1619 
1620 int register_netdevice_notifier(struct notifier_block *nb)
1621 {
1622 	struct net_device *dev;
1623 	struct net_device *last;
1624 	struct net *net;
1625 	int err;
1626 
1627 	/* Close race with setup_net() and cleanup_net() */
1628 	down_write(&pernet_ops_rwsem);
1629 	rtnl_lock();
1630 	err = raw_notifier_chain_register(&netdev_chain, nb);
1631 	if (err)
1632 		goto unlock;
1633 	if (dev_boot_phase)
1634 		goto unlock;
1635 	for_each_net(net) {
1636 		for_each_netdev(net, dev) {
1637 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638 			err = notifier_to_errno(err);
1639 			if (err)
1640 				goto rollback;
1641 
1642 			if (!(dev->flags & IFF_UP))
1643 				continue;
1644 
1645 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1646 		}
1647 	}
1648 
1649 unlock:
1650 	rtnl_unlock();
1651 	up_write(&pernet_ops_rwsem);
1652 	return err;
1653 
1654 rollback:
1655 	last = dev;
1656 	for_each_net(net) {
1657 		for_each_netdev(net, dev) {
1658 			if (dev == last)
1659 				goto outroll;
1660 
1661 			if (dev->flags & IFF_UP) {
1662 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663 							dev);
1664 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665 			}
1666 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667 		}
1668 	}
1669 
1670 outroll:
1671 	raw_notifier_chain_unregister(&netdev_chain, nb);
1672 	goto unlock;
1673 }
1674 EXPORT_SYMBOL(register_netdevice_notifier);
1675 
1676 /**
1677  * unregister_netdevice_notifier - unregister a network notifier block
1678  * @nb: notifier
1679  *
1680  * Unregister a notifier previously registered by
1681  * register_netdevice_notifier(). The notifier is unlinked into the
1682  * kernel structures and may then be reused. A negative errno code
1683  * is returned on a failure.
1684  *
1685  * After unregistering unregister and down device events are synthesized
1686  * for all devices on the device list to the removed notifier to remove
1687  * the need for special case cleanup code.
1688  */
1689 
1690 int unregister_netdevice_notifier(struct notifier_block *nb)
1691 {
1692 	struct net_device *dev;
1693 	struct net *net;
1694 	int err;
1695 
1696 	/* Close race with setup_net() and cleanup_net() */
1697 	down_write(&pernet_ops_rwsem);
1698 	rtnl_lock();
1699 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1700 	if (err)
1701 		goto unlock;
1702 
1703 	for_each_net(net) {
1704 		for_each_netdev(net, dev) {
1705 			if (dev->flags & IFF_UP) {
1706 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1707 							dev);
1708 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1709 			}
1710 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1711 		}
1712 	}
1713 unlock:
1714 	rtnl_unlock();
1715 	up_write(&pernet_ops_rwsem);
1716 	return err;
1717 }
1718 EXPORT_SYMBOL(unregister_netdevice_notifier);
1719 
1720 /**
1721  *	call_netdevice_notifiers_info - call all network notifier blocks
1722  *	@val: value passed unmodified to notifier function
1723  *	@info: notifier information data
1724  *
1725  *	Call all network notifier blocks.  Parameters and return value
1726  *	are as for raw_notifier_call_chain().
1727  */
1728 
1729 static int call_netdevice_notifiers_info(unsigned long val,
1730 					 struct netdev_notifier_info *info)
1731 {
1732 	ASSERT_RTNL();
1733 	return raw_notifier_call_chain(&netdev_chain, val, info);
1734 }
1735 
1736 /**
1737  *	call_netdevice_notifiers - call all network notifier blocks
1738  *      @val: value passed unmodified to notifier function
1739  *      @dev: net_device pointer passed unmodified to notifier function
1740  *
1741  *	Call all network notifier blocks.  Parameters and return value
1742  *	are as for raw_notifier_call_chain().
1743  */
1744 
1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1746 {
1747 	struct netdev_notifier_info info = {
1748 		.dev = dev,
1749 	};
1750 
1751 	return call_netdevice_notifiers_info(val, &info);
1752 }
1753 EXPORT_SYMBOL(call_netdevice_notifiers);
1754 
1755 #ifdef CONFIG_NET_INGRESS
1756 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1757 
1758 void net_inc_ingress_queue(void)
1759 {
1760 	static_branch_inc(&ingress_needed_key);
1761 }
1762 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1763 
1764 void net_dec_ingress_queue(void)
1765 {
1766 	static_branch_dec(&ingress_needed_key);
1767 }
1768 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1769 #endif
1770 
1771 #ifdef CONFIG_NET_EGRESS
1772 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1773 
1774 void net_inc_egress_queue(void)
1775 {
1776 	static_branch_inc(&egress_needed_key);
1777 }
1778 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1779 
1780 void net_dec_egress_queue(void)
1781 {
1782 	static_branch_dec(&egress_needed_key);
1783 }
1784 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1785 #endif
1786 
1787 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1788 #ifdef HAVE_JUMP_LABEL
1789 static atomic_t netstamp_needed_deferred;
1790 static atomic_t netstamp_wanted;
1791 static void netstamp_clear(struct work_struct *work)
1792 {
1793 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1794 	int wanted;
1795 
1796 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1797 	if (wanted > 0)
1798 		static_branch_enable(&netstamp_needed_key);
1799 	else
1800 		static_branch_disable(&netstamp_needed_key);
1801 }
1802 static DECLARE_WORK(netstamp_work, netstamp_clear);
1803 #endif
1804 
1805 void net_enable_timestamp(void)
1806 {
1807 #ifdef HAVE_JUMP_LABEL
1808 	int wanted;
1809 
1810 	while (1) {
1811 		wanted = atomic_read(&netstamp_wanted);
1812 		if (wanted <= 0)
1813 			break;
1814 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1815 			return;
1816 	}
1817 	atomic_inc(&netstamp_needed_deferred);
1818 	schedule_work(&netstamp_work);
1819 #else
1820 	static_branch_inc(&netstamp_needed_key);
1821 #endif
1822 }
1823 EXPORT_SYMBOL(net_enable_timestamp);
1824 
1825 void net_disable_timestamp(void)
1826 {
1827 #ifdef HAVE_JUMP_LABEL
1828 	int wanted;
1829 
1830 	while (1) {
1831 		wanted = atomic_read(&netstamp_wanted);
1832 		if (wanted <= 1)
1833 			break;
1834 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1835 			return;
1836 	}
1837 	atomic_dec(&netstamp_needed_deferred);
1838 	schedule_work(&netstamp_work);
1839 #else
1840 	static_branch_dec(&netstamp_needed_key);
1841 #endif
1842 }
1843 EXPORT_SYMBOL(net_disable_timestamp);
1844 
1845 static inline void net_timestamp_set(struct sk_buff *skb)
1846 {
1847 	skb->tstamp = 0;
1848 	if (static_branch_unlikely(&netstamp_needed_key))
1849 		__net_timestamp(skb);
1850 }
1851 
1852 #define net_timestamp_check(COND, SKB)				\
1853 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1854 		if ((COND) && !(SKB)->tstamp)			\
1855 			__net_timestamp(SKB);			\
1856 	}							\
1857 
1858 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1859 {
1860 	unsigned int len;
1861 
1862 	if (!(dev->flags & IFF_UP))
1863 		return false;
1864 
1865 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1866 	if (skb->len <= len)
1867 		return true;
1868 
1869 	/* if TSO is enabled, we don't care about the length as the packet
1870 	 * could be forwarded without being segmented before
1871 	 */
1872 	if (skb_is_gso(skb))
1873 		return true;
1874 
1875 	return false;
1876 }
1877 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1878 
1879 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1880 {
1881 	int ret = ____dev_forward_skb(dev, skb);
1882 
1883 	if (likely(!ret)) {
1884 		skb->protocol = eth_type_trans(skb, dev);
1885 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1886 	}
1887 
1888 	return ret;
1889 }
1890 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1891 
1892 /**
1893  * dev_forward_skb - loopback an skb to another netif
1894  *
1895  * @dev: destination network device
1896  * @skb: buffer to forward
1897  *
1898  * return values:
1899  *	NET_RX_SUCCESS	(no congestion)
1900  *	NET_RX_DROP     (packet was dropped, but freed)
1901  *
1902  * dev_forward_skb can be used for injecting an skb from the
1903  * start_xmit function of one device into the receive queue
1904  * of another device.
1905  *
1906  * The receiving device may be in another namespace, so
1907  * we have to clear all information in the skb that could
1908  * impact namespace isolation.
1909  */
1910 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1911 {
1912 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1913 }
1914 EXPORT_SYMBOL_GPL(dev_forward_skb);
1915 
1916 static inline int deliver_skb(struct sk_buff *skb,
1917 			      struct packet_type *pt_prev,
1918 			      struct net_device *orig_dev)
1919 {
1920 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1921 		return -ENOMEM;
1922 	refcount_inc(&skb->users);
1923 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1924 }
1925 
1926 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1927 					  struct packet_type **pt,
1928 					  struct net_device *orig_dev,
1929 					  __be16 type,
1930 					  struct list_head *ptype_list)
1931 {
1932 	struct packet_type *ptype, *pt_prev = *pt;
1933 
1934 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1935 		if (ptype->type != type)
1936 			continue;
1937 		if (pt_prev)
1938 			deliver_skb(skb, pt_prev, orig_dev);
1939 		pt_prev = ptype;
1940 	}
1941 	*pt = pt_prev;
1942 }
1943 
1944 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1945 {
1946 	if (!ptype->af_packet_priv || !skb->sk)
1947 		return false;
1948 
1949 	if (ptype->id_match)
1950 		return ptype->id_match(ptype, skb->sk);
1951 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1952 		return true;
1953 
1954 	return false;
1955 }
1956 
1957 /*
1958  *	Support routine. Sends outgoing frames to any network
1959  *	taps currently in use.
1960  */
1961 
1962 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1963 {
1964 	struct packet_type *ptype;
1965 	struct sk_buff *skb2 = NULL;
1966 	struct packet_type *pt_prev = NULL;
1967 	struct list_head *ptype_list = &ptype_all;
1968 
1969 	rcu_read_lock();
1970 again:
1971 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1972 		if (ptype->ignore_outgoing)
1973 			continue;
1974 
1975 		/* Never send packets back to the socket
1976 		 * they originated from - MvS (miquels@drinkel.ow.org)
1977 		 */
1978 		if (skb_loop_sk(ptype, skb))
1979 			continue;
1980 
1981 		if (pt_prev) {
1982 			deliver_skb(skb2, pt_prev, skb->dev);
1983 			pt_prev = ptype;
1984 			continue;
1985 		}
1986 
1987 		/* need to clone skb, done only once */
1988 		skb2 = skb_clone(skb, GFP_ATOMIC);
1989 		if (!skb2)
1990 			goto out_unlock;
1991 
1992 		net_timestamp_set(skb2);
1993 
1994 		/* skb->nh should be correctly
1995 		 * set by sender, so that the second statement is
1996 		 * just protection against buggy protocols.
1997 		 */
1998 		skb_reset_mac_header(skb2);
1999 
2000 		if (skb_network_header(skb2) < skb2->data ||
2001 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2002 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2003 					     ntohs(skb2->protocol),
2004 					     dev->name);
2005 			skb_reset_network_header(skb2);
2006 		}
2007 
2008 		skb2->transport_header = skb2->network_header;
2009 		skb2->pkt_type = PACKET_OUTGOING;
2010 		pt_prev = ptype;
2011 	}
2012 
2013 	if (ptype_list == &ptype_all) {
2014 		ptype_list = &dev->ptype_all;
2015 		goto again;
2016 	}
2017 out_unlock:
2018 	if (pt_prev) {
2019 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2020 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2021 		else
2022 			kfree_skb(skb2);
2023 	}
2024 	rcu_read_unlock();
2025 }
2026 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2027 
2028 /**
2029  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2030  * @dev: Network device
2031  * @txq: number of queues available
2032  *
2033  * If real_num_tx_queues is changed the tc mappings may no longer be
2034  * valid. To resolve this verify the tc mapping remains valid and if
2035  * not NULL the mapping. With no priorities mapping to this
2036  * offset/count pair it will no longer be used. In the worst case TC0
2037  * is invalid nothing can be done so disable priority mappings. If is
2038  * expected that drivers will fix this mapping if they can before
2039  * calling netif_set_real_num_tx_queues.
2040  */
2041 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2042 {
2043 	int i;
2044 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2045 
2046 	/* If TC0 is invalidated disable TC mapping */
2047 	if (tc->offset + tc->count > txq) {
2048 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2049 		dev->num_tc = 0;
2050 		return;
2051 	}
2052 
2053 	/* Invalidated prio to tc mappings set to TC0 */
2054 	for (i = 1; i < TC_BITMASK + 1; i++) {
2055 		int q = netdev_get_prio_tc_map(dev, i);
2056 
2057 		tc = &dev->tc_to_txq[q];
2058 		if (tc->offset + tc->count > txq) {
2059 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2060 				i, q);
2061 			netdev_set_prio_tc_map(dev, i, 0);
2062 		}
2063 	}
2064 }
2065 
2066 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2067 {
2068 	if (dev->num_tc) {
2069 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2070 		int i;
2071 
2072 		/* walk through the TCs and see if it falls into any of them */
2073 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2074 			if ((txq - tc->offset) < tc->count)
2075 				return i;
2076 		}
2077 
2078 		/* didn't find it, just return -1 to indicate no match */
2079 		return -1;
2080 	}
2081 
2082 	return 0;
2083 }
2084 EXPORT_SYMBOL(netdev_txq_to_tc);
2085 
2086 #ifdef CONFIG_XPS
2087 struct static_key xps_needed __read_mostly;
2088 EXPORT_SYMBOL(xps_needed);
2089 struct static_key xps_rxqs_needed __read_mostly;
2090 EXPORT_SYMBOL(xps_rxqs_needed);
2091 static DEFINE_MUTEX(xps_map_mutex);
2092 #define xmap_dereference(P)		\
2093 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2094 
2095 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2096 			     int tci, u16 index)
2097 {
2098 	struct xps_map *map = NULL;
2099 	int pos;
2100 
2101 	if (dev_maps)
2102 		map = xmap_dereference(dev_maps->attr_map[tci]);
2103 	if (!map)
2104 		return false;
2105 
2106 	for (pos = map->len; pos--;) {
2107 		if (map->queues[pos] != index)
2108 			continue;
2109 
2110 		if (map->len > 1) {
2111 			map->queues[pos] = map->queues[--map->len];
2112 			break;
2113 		}
2114 
2115 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2116 		kfree_rcu(map, rcu);
2117 		return false;
2118 	}
2119 
2120 	return true;
2121 }
2122 
2123 static bool remove_xps_queue_cpu(struct net_device *dev,
2124 				 struct xps_dev_maps *dev_maps,
2125 				 int cpu, u16 offset, u16 count)
2126 {
2127 	int num_tc = dev->num_tc ? : 1;
2128 	bool active = false;
2129 	int tci;
2130 
2131 	for (tci = cpu * num_tc; num_tc--; tci++) {
2132 		int i, j;
2133 
2134 		for (i = count, j = offset; i--; j++) {
2135 			if (!remove_xps_queue(dev_maps, tci, j))
2136 				break;
2137 		}
2138 
2139 		active |= i < 0;
2140 	}
2141 
2142 	return active;
2143 }
2144 
2145 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2146 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2147 			   u16 offset, u16 count, bool is_rxqs_map)
2148 {
2149 	bool active = false;
2150 	int i, j;
2151 
2152 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2153 	     j < nr_ids;)
2154 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2155 					       count);
2156 	if (!active) {
2157 		if (is_rxqs_map) {
2158 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2159 		} else {
2160 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2161 
2162 			for (i = offset + (count - 1); count--; i--)
2163 				netdev_queue_numa_node_write(
2164 					netdev_get_tx_queue(dev, i),
2165 							NUMA_NO_NODE);
2166 		}
2167 		kfree_rcu(dev_maps, rcu);
2168 	}
2169 }
2170 
2171 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2172 				   u16 count)
2173 {
2174 	const unsigned long *possible_mask = NULL;
2175 	struct xps_dev_maps *dev_maps;
2176 	unsigned int nr_ids;
2177 
2178 	if (!static_key_false(&xps_needed))
2179 		return;
2180 
2181 	cpus_read_lock();
2182 	mutex_lock(&xps_map_mutex);
2183 
2184 	if (static_key_false(&xps_rxqs_needed)) {
2185 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2186 		if (dev_maps) {
2187 			nr_ids = dev->num_rx_queues;
2188 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2189 				       offset, count, true);
2190 		}
2191 	}
2192 
2193 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2194 	if (!dev_maps)
2195 		goto out_no_maps;
2196 
2197 	if (num_possible_cpus() > 1)
2198 		possible_mask = cpumask_bits(cpu_possible_mask);
2199 	nr_ids = nr_cpu_ids;
2200 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2201 		       false);
2202 
2203 out_no_maps:
2204 	if (static_key_enabled(&xps_rxqs_needed))
2205 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2206 
2207 	static_key_slow_dec_cpuslocked(&xps_needed);
2208 	mutex_unlock(&xps_map_mutex);
2209 	cpus_read_unlock();
2210 }
2211 
2212 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2213 {
2214 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2215 }
2216 
2217 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2218 				      u16 index, bool is_rxqs_map)
2219 {
2220 	struct xps_map *new_map;
2221 	int alloc_len = XPS_MIN_MAP_ALLOC;
2222 	int i, pos;
2223 
2224 	for (pos = 0; map && pos < map->len; pos++) {
2225 		if (map->queues[pos] != index)
2226 			continue;
2227 		return map;
2228 	}
2229 
2230 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2231 	if (map) {
2232 		if (pos < map->alloc_len)
2233 			return map;
2234 
2235 		alloc_len = map->alloc_len * 2;
2236 	}
2237 
2238 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2239 	 *  map
2240 	 */
2241 	if (is_rxqs_map)
2242 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2243 	else
2244 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2245 				       cpu_to_node(attr_index));
2246 	if (!new_map)
2247 		return NULL;
2248 
2249 	for (i = 0; i < pos; i++)
2250 		new_map->queues[i] = map->queues[i];
2251 	new_map->alloc_len = alloc_len;
2252 	new_map->len = pos;
2253 
2254 	return new_map;
2255 }
2256 
2257 /* Must be called under cpus_read_lock */
2258 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2259 			  u16 index, bool is_rxqs_map)
2260 {
2261 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2262 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2263 	int i, j, tci, numa_node_id = -2;
2264 	int maps_sz, num_tc = 1, tc = 0;
2265 	struct xps_map *map, *new_map;
2266 	bool active = false;
2267 	unsigned int nr_ids;
2268 
2269 	if (dev->num_tc) {
2270 		/* Do not allow XPS on subordinate device directly */
2271 		num_tc = dev->num_tc;
2272 		if (num_tc < 0)
2273 			return -EINVAL;
2274 
2275 		/* If queue belongs to subordinate dev use its map */
2276 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2277 
2278 		tc = netdev_txq_to_tc(dev, index);
2279 		if (tc < 0)
2280 			return -EINVAL;
2281 	}
2282 
2283 	mutex_lock(&xps_map_mutex);
2284 	if (is_rxqs_map) {
2285 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2286 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2287 		nr_ids = dev->num_rx_queues;
2288 	} else {
2289 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2290 		if (num_possible_cpus() > 1) {
2291 			online_mask = cpumask_bits(cpu_online_mask);
2292 			possible_mask = cpumask_bits(cpu_possible_mask);
2293 		}
2294 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2295 		nr_ids = nr_cpu_ids;
2296 	}
2297 
2298 	if (maps_sz < L1_CACHE_BYTES)
2299 		maps_sz = L1_CACHE_BYTES;
2300 
2301 	/* allocate memory for queue storage */
2302 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2303 	     j < nr_ids;) {
2304 		if (!new_dev_maps)
2305 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2306 		if (!new_dev_maps) {
2307 			mutex_unlock(&xps_map_mutex);
2308 			return -ENOMEM;
2309 		}
2310 
2311 		tci = j * num_tc + tc;
2312 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2313 				 NULL;
2314 
2315 		map = expand_xps_map(map, j, index, is_rxqs_map);
2316 		if (!map)
2317 			goto error;
2318 
2319 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2320 	}
2321 
2322 	if (!new_dev_maps)
2323 		goto out_no_new_maps;
2324 
2325 	static_key_slow_inc_cpuslocked(&xps_needed);
2326 	if (is_rxqs_map)
2327 		static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2328 
2329 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2330 	     j < nr_ids;) {
2331 		/* copy maps belonging to foreign traffic classes */
2332 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2333 			/* fill in the new device map from the old device map */
2334 			map = xmap_dereference(dev_maps->attr_map[tci]);
2335 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2336 		}
2337 
2338 		/* We need to explicitly update tci as prevous loop
2339 		 * could break out early if dev_maps is NULL.
2340 		 */
2341 		tci = j * num_tc + tc;
2342 
2343 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2344 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2345 			/* add tx-queue to CPU/rx-queue maps */
2346 			int pos = 0;
2347 
2348 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2349 			while ((pos < map->len) && (map->queues[pos] != index))
2350 				pos++;
2351 
2352 			if (pos == map->len)
2353 				map->queues[map->len++] = index;
2354 #ifdef CONFIG_NUMA
2355 			if (!is_rxqs_map) {
2356 				if (numa_node_id == -2)
2357 					numa_node_id = cpu_to_node(j);
2358 				else if (numa_node_id != cpu_to_node(j))
2359 					numa_node_id = -1;
2360 			}
2361 #endif
2362 		} else if (dev_maps) {
2363 			/* fill in the new device map from the old device map */
2364 			map = xmap_dereference(dev_maps->attr_map[tci]);
2365 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2366 		}
2367 
2368 		/* copy maps belonging to foreign traffic classes */
2369 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2370 			/* fill in the new device map from the old device map */
2371 			map = xmap_dereference(dev_maps->attr_map[tci]);
2372 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2373 		}
2374 	}
2375 
2376 	if (is_rxqs_map)
2377 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2378 	else
2379 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2380 
2381 	/* Cleanup old maps */
2382 	if (!dev_maps)
2383 		goto out_no_old_maps;
2384 
2385 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2386 	     j < nr_ids;) {
2387 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2388 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2389 			map = xmap_dereference(dev_maps->attr_map[tci]);
2390 			if (map && map != new_map)
2391 				kfree_rcu(map, rcu);
2392 		}
2393 	}
2394 
2395 	kfree_rcu(dev_maps, rcu);
2396 
2397 out_no_old_maps:
2398 	dev_maps = new_dev_maps;
2399 	active = true;
2400 
2401 out_no_new_maps:
2402 	if (!is_rxqs_map) {
2403 		/* update Tx queue numa node */
2404 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2405 					     (numa_node_id >= 0) ?
2406 					     numa_node_id : NUMA_NO_NODE);
2407 	}
2408 
2409 	if (!dev_maps)
2410 		goto out_no_maps;
2411 
2412 	/* removes tx-queue from unused CPUs/rx-queues */
2413 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2414 	     j < nr_ids;) {
2415 		for (i = tc, tci = j * num_tc; i--; tci++)
2416 			active |= remove_xps_queue(dev_maps, tci, index);
2417 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2418 		    !netif_attr_test_online(j, online_mask, nr_ids))
2419 			active |= remove_xps_queue(dev_maps, tci, index);
2420 		for (i = num_tc - tc, tci++; --i; tci++)
2421 			active |= remove_xps_queue(dev_maps, tci, index);
2422 	}
2423 
2424 	/* free map if not active */
2425 	if (!active) {
2426 		if (is_rxqs_map)
2427 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2428 		else
2429 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2430 		kfree_rcu(dev_maps, rcu);
2431 	}
2432 
2433 out_no_maps:
2434 	mutex_unlock(&xps_map_mutex);
2435 
2436 	return 0;
2437 error:
2438 	/* remove any maps that we added */
2439 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2440 	     j < nr_ids;) {
2441 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2442 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2443 			map = dev_maps ?
2444 			      xmap_dereference(dev_maps->attr_map[tci]) :
2445 			      NULL;
2446 			if (new_map && new_map != map)
2447 				kfree(new_map);
2448 		}
2449 	}
2450 
2451 	mutex_unlock(&xps_map_mutex);
2452 
2453 	kfree(new_dev_maps);
2454 	return -ENOMEM;
2455 }
2456 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2457 
2458 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2459 			u16 index)
2460 {
2461 	int ret;
2462 
2463 	cpus_read_lock();
2464 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2465 	cpus_read_unlock();
2466 
2467 	return ret;
2468 }
2469 EXPORT_SYMBOL(netif_set_xps_queue);
2470 
2471 #endif
2472 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2473 {
2474 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2475 
2476 	/* Unbind any subordinate channels */
2477 	while (txq-- != &dev->_tx[0]) {
2478 		if (txq->sb_dev)
2479 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2480 	}
2481 }
2482 
2483 void netdev_reset_tc(struct net_device *dev)
2484 {
2485 #ifdef CONFIG_XPS
2486 	netif_reset_xps_queues_gt(dev, 0);
2487 #endif
2488 	netdev_unbind_all_sb_channels(dev);
2489 
2490 	/* Reset TC configuration of device */
2491 	dev->num_tc = 0;
2492 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2493 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2494 }
2495 EXPORT_SYMBOL(netdev_reset_tc);
2496 
2497 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2498 {
2499 	if (tc >= dev->num_tc)
2500 		return -EINVAL;
2501 
2502 #ifdef CONFIG_XPS
2503 	netif_reset_xps_queues(dev, offset, count);
2504 #endif
2505 	dev->tc_to_txq[tc].count = count;
2506 	dev->tc_to_txq[tc].offset = offset;
2507 	return 0;
2508 }
2509 EXPORT_SYMBOL(netdev_set_tc_queue);
2510 
2511 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2512 {
2513 	if (num_tc > TC_MAX_QUEUE)
2514 		return -EINVAL;
2515 
2516 #ifdef CONFIG_XPS
2517 	netif_reset_xps_queues_gt(dev, 0);
2518 #endif
2519 	netdev_unbind_all_sb_channels(dev);
2520 
2521 	dev->num_tc = num_tc;
2522 	return 0;
2523 }
2524 EXPORT_SYMBOL(netdev_set_num_tc);
2525 
2526 void netdev_unbind_sb_channel(struct net_device *dev,
2527 			      struct net_device *sb_dev)
2528 {
2529 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2530 
2531 #ifdef CONFIG_XPS
2532 	netif_reset_xps_queues_gt(sb_dev, 0);
2533 #endif
2534 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2535 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2536 
2537 	while (txq-- != &dev->_tx[0]) {
2538 		if (txq->sb_dev == sb_dev)
2539 			txq->sb_dev = NULL;
2540 	}
2541 }
2542 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2543 
2544 int netdev_bind_sb_channel_queue(struct net_device *dev,
2545 				 struct net_device *sb_dev,
2546 				 u8 tc, u16 count, u16 offset)
2547 {
2548 	/* Make certain the sb_dev and dev are already configured */
2549 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2550 		return -EINVAL;
2551 
2552 	/* We cannot hand out queues we don't have */
2553 	if ((offset + count) > dev->real_num_tx_queues)
2554 		return -EINVAL;
2555 
2556 	/* Record the mapping */
2557 	sb_dev->tc_to_txq[tc].count = count;
2558 	sb_dev->tc_to_txq[tc].offset = offset;
2559 
2560 	/* Provide a way for Tx queue to find the tc_to_txq map or
2561 	 * XPS map for itself.
2562 	 */
2563 	while (count--)
2564 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2565 
2566 	return 0;
2567 }
2568 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2569 
2570 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2571 {
2572 	/* Do not use a multiqueue device to represent a subordinate channel */
2573 	if (netif_is_multiqueue(dev))
2574 		return -ENODEV;
2575 
2576 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2577 	 * Channel 0 is meant to be "native" mode and used only to represent
2578 	 * the main root device. We allow writing 0 to reset the device back
2579 	 * to normal mode after being used as a subordinate channel.
2580 	 */
2581 	if (channel > S16_MAX)
2582 		return -EINVAL;
2583 
2584 	dev->num_tc = -channel;
2585 
2586 	return 0;
2587 }
2588 EXPORT_SYMBOL(netdev_set_sb_channel);
2589 
2590 /*
2591  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2592  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2593  */
2594 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2595 {
2596 	bool disabling;
2597 	int rc;
2598 
2599 	disabling = txq < dev->real_num_tx_queues;
2600 
2601 	if (txq < 1 || txq > dev->num_tx_queues)
2602 		return -EINVAL;
2603 
2604 	if (dev->reg_state == NETREG_REGISTERED ||
2605 	    dev->reg_state == NETREG_UNREGISTERING) {
2606 		ASSERT_RTNL();
2607 
2608 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2609 						  txq);
2610 		if (rc)
2611 			return rc;
2612 
2613 		if (dev->num_tc)
2614 			netif_setup_tc(dev, txq);
2615 
2616 		dev->real_num_tx_queues = txq;
2617 
2618 		if (disabling) {
2619 			synchronize_net();
2620 			qdisc_reset_all_tx_gt(dev, txq);
2621 #ifdef CONFIG_XPS
2622 			netif_reset_xps_queues_gt(dev, txq);
2623 #endif
2624 		}
2625 	} else {
2626 		dev->real_num_tx_queues = txq;
2627 	}
2628 
2629 	return 0;
2630 }
2631 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2632 
2633 #ifdef CONFIG_SYSFS
2634 /**
2635  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2636  *	@dev: Network device
2637  *	@rxq: Actual number of RX queues
2638  *
2639  *	This must be called either with the rtnl_lock held or before
2640  *	registration of the net device.  Returns 0 on success, or a
2641  *	negative error code.  If called before registration, it always
2642  *	succeeds.
2643  */
2644 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2645 {
2646 	int rc;
2647 
2648 	if (rxq < 1 || rxq > dev->num_rx_queues)
2649 		return -EINVAL;
2650 
2651 	if (dev->reg_state == NETREG_REGISTERED) {
2652 		ASSERT_RTNL();
2653 
2654 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2655 						  rxq);
2656 		if (rc)
2657 			return rc;
2658 	}
2659 
2660 	dev->real_num_rx_queues = rxq;
2661 	return 0;
2662 }
2663 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2664 #endif
2665 
2666 /**
2667  * netif_get_num_default_rss_queues - default number of RSS queues
2668  *
2669  * This routine should set an upper limit on the number of RSS queues
2670  * used by default by multiqueue devices.
2671  */
2672 int netif_get_num_default_rss_queues(void)
2673 {
2674 	return is_kdump_kernel() ?
2675 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2676 }
2677 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2678 
2679 static void __netif_reschedule(struct Qdisc *q)
2680 {
2681 	struct softnet_data *sd;
2682 	unsigned long flags;
2683 
2684 	local_irq_save(flags);
2685 	sd = this_cpu_ptr(&softnet_data);
2686 	q->next_sched = NULL;
2687 	*sd->output_queue_tailp = q;
2688 	sd->output_queue_tailp = &q->next_sched;
2689 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2690 	local_irq_restore(flags);
2691 }
2692 
2693 void __netif_schedule(struct Qdisc *q)
2694 {
2695 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2696 		__netif_reschedule(q);
2697 }
2698 EXPORT_SYMBOL(__netif_schedule);
2699 
2700 struct dev_kfree_skb_cb {
2701 	enum skb_free_reason reason;
2702 };
2703 
2704 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2705 {
2706 	return (struct dev_kfree_skb_cb *)skb->cb;
2707 }
2708 
2709 void netif_schedule_queue(struct netdev_queue *txq)
2710 {
2711 	rcu_read_lock();
2712 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2713 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2714 
2715 		__netif_schedule(q);
2716 	}
2717 	rcu_read_unlock();
2718 }
2719 EXPORT_SYMBOL(netif_schedule_queue);
2720 
2721 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2722 {
2723 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2724 		struct Qdisc *q;
2725 
2726 		rcu_read_lock();
2727 		q = rcu_dereference(dev_queue->qdisc);
2728 		__netif_schedule(q);
2729 		rcu_read_unlock();
2730 	}
2731 }
2732 EXPORT_SYMBOL(netif_tx_wake_queue);
2733 
2734 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2735 {
2736 	unsigned long flags;
2737 
2738 	if (unlikely(!skb))
2739 		return;
2740 
2741 	if (likely(refcount_read(&skb->users) == 1)) {
2742 		smp_rmb();
2743 		refcount_set(&skb->users, 0);
2744 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2745 		return;
2746 	}
2747 	get_kfree_skb_cb(skb)->reason = reason;
2748 	local_irq_save(flags);
2749 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2750 	__this_cpu_write(softnet_data.completion_queue, skb);
2751 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752 	local_irq_restore(flags);
2753 }
2754 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2755 
2756 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2757 {
2758 	if (in_irq() || irqs_disabled())
2759 		__dev_kfree_skb_irq(skb, reason);
2760 	else
2761 		dev_kfree_skb(skb);
2762 }
2763 EXPORT_SYMBOL(__dev_kfree_skb_any);
2764 
2765 
2766 /**
2767  * netif_device_detach - mark device as removed
2768  * @dev: network device
2769  *
2770  * Mark device as removed from system and therefore no longer available.
2771  */
2772 void netif_device_detach(struct net_device *dev)
2773 {
2774 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2775 	    netif_running(dev)) {
2776 		netif_tx_stop_all_queues(dev);
2777 	}
2778 }
2779 EXPORT_SYMBOL(netif_device_detach);
2780 
2781 /**
2782  * netif_device_attach - mark device as attached
2783  * @dev: network device
2784  *
2785  * Mark device as attached from system and restart if needed.
2786  */
2787 void netif_device_attach(struct net_device *dev)
2788 {
2789 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2790 	    netif_running(dev)) {
2791 		netif_tx_wake_all_queues(dev);
2792 		__netdev_watchdog_up(dev);
2793 	}
2794 }
2795 EXPORT_SYMBOL(netif_device_attach);
2796 
2797 /*
2798  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2799  * to be used as a distribution range.
2800  */
2801 static u16 skb_tx_hash(const struct net_device *dev,
2802 		       const struct net_device *sb_dev,
2803 		       struct sk_buff *skb)
2804 {
2805 	u32 hash;
2806 	u16 qoffset = 0;
2807 	u16 qcount = dev->real_num_tx_queues;
2808 
2809 	if (dev->num_tc) {
2810 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2811 
2812 		qoffset = sb_dev->tc_to_txq[tc].offset;
2813 		qcount = sb_dev->tc_to_txq[tc].count;
2814 	}
2815 
2816 	if (skb_rx_queue_recorded(skb)) {
2817 		hash = skb_get_rx_queue(skb);
2818 		while (unlikely(hash >= qcount))
2819 			hash -= qcount;
2820 		return hash + qoffset;
2821 	}
2822 
2823 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2824 }
2825 
2826 static void skb_warn_bad_offload(const struct sk_buff *skb)
2827 {
2828 	static const netdev_features_t null_features;
2829 	struct net_device *dev = skb->dev;
2830 	const char *name = "";
2831 
2832 	if (!net_ratelimit())
2833 		return;
2834 
2835 	if (dev) {
2836 		if (dev->dev.parent)
2837 			name = dev_driver_string(dev->dev.parent);
2838 		else
2839 			name = netdev_name(dev);
2840 	}
2841 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2842 	     "gso_type=%d ip_summed=%d\n",
2843 	     name, dev ? &dev->features : &null_features,
2844 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2845 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2846 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2847 }
2848 
2849 /*
2850  * Invalidate hardware checksum when packet is to be mangled, and
2851  * complete checksum manually on outgoing path.
2852  */
2853 int skb_checksum_help(struct sk_buff *skb)
2854 {
2855 	__wsum csum;
2856 	int ret = 0, offset;
2857 
2858 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2859 		goto out_set_summed;
2860 
2861 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2862 		skb_warn_bad_offload(skb);
2863 		return -EINVAL;
2864 	}
2865 
2866 	/* Before computing a checksum, we should make sure no frag could
2867 	 * be modified by an external entity : checksum could be wrong.
2868 	 */
2869 	if (skb_has_shared_frag(skb)) {
2870 		ret = __skb_linearize(skb);
2871 		if (ret)
2872 			goto out;
2873 	}
2874 
2875 	offset = skb_checksum_start_offset(skb);
2876 	BUG_ON(offset >= skb_headlen(skb));
2877 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2878 
2879 	offset += skb->csum_offset;
2880 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2881 
2882 	if (skb_cloned(skb) &&
2883 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2884 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2885 		if (ret)
2886 			goto out;
2887 	}
2888 
2889 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2890 out_set_summed:
2891 	skb->ip_summed = CHECKSUM_NONE;
2892 out:
2893 	return ret;
2894 }
2895 EXPORT_SYMBOL(skb_checksum_help);
2896 
2897 int skb_crc32c_csum_help(struct sk_buff *skb)
2898 {
2899 	__le32 crc32c_csum;
2900 	int ret = 0, offset, start;
2901 
2902 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2903 		goto out;
2904 
2905 	if (unlikely(skb_is_gso(skb)))
2906 		goto out;
2907 
2908 	/* Before computing a checksum, we should make sure no frag could
2909 	 * be modified by an external entity : checksum could be wrong.
2910 	 */
2911 	if (unlikely(skb_has_shared_frag(skb))) {
2912 		ret = __skb_linearize(skb);
2913 		if (ret)
2914 			goto out;
2915 	}
2916 	start = skb_checksum_start_offset(skb);
2917 	offset = start + offsetof(struct sctphdr, checksum);
2918 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2919 		ret = -EINVAL;
2920 		goto out;
2921 	}
2922 	if (skb_cloned(skb) &&
2923 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2924 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2925 		if (ret)
2926 			goto out;
2927 	}
2928 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2929 						  skb->len - start, ~(__u32)0,
2930 						  crc32c_csum_stub));
2931 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2932 	skb->ip_summed = CHECKSUM_NONE;
2933 	skb->csum_not_inet = 0;
2934 out:
2935 	return ret;
2936 }
2937 
2938 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2939 {
2940 	__be16 type = skb->protocol;
2941 
2942 	/* Tunnel gso handlers can set protocol to ethernet. */
2943 	if (type == htons(ETH_P_TEB)) {
2944 		struct ethhdr *eth;
2945 
2946 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2947 			return 0;
2948 
2949 		eth = (struct ethhdr *)skb->data;
2950 		type = eth->h_proto;
2951 	}
2952 
2953 	return __vlan_get_protocol(skb, type, depth);
2954 }
2955 
2956 /**
2957  *	skb_mac_gso_segment - mac layer segmentation handler.
2958  *	@skb: buffer to segment
2959  *	@features: features for the output path (see dev->features)
2960  */
2961 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2962 				    netdev_features_t features)
2963 {
2964 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2965 	struct packet_offload *ptype;
2966 	int vlan_depth = skb->mac_len;
2967 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2968 
2969 	if (unlikely(!type))
2970 		return ERR_PTR(-EINVAL);
2971 
2972 	__skb_pull(skb, vlan_depth);
2973 
2974 	rcu_read_lock();
2975 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2976 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2977 			segs = ptype->callbacks.gso_segment(skb, features);
2978 			break;
2979 		}
2980 	}
2981 	rcu_read_unlock();
2982 
2983 	__skb_push(skb, skb->data - skb_mac_header(skb));
2984 
2985 	return segs;
2986 }
2987 EXPORT_SYMBOL(skb_mac_gso_segment);
2988 
2989 
2990 /* openvswitch calls this on rx path, so we need a different check.
2991  */
2992 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2993 {
2994 	if (tx_path)
2995 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2996 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2997 
2998 	return skb->ip_summed == CHECKSUM_NONE;
2999 }
3000 
3001 /**
3002  *	__skb_gso_segment - Perform segmentation on skb.
3003  *	@skb: buffer to segment
3004  *	@features: features for the output path (see dev->features)
3005  *	@tx_path: whether it is called in TX path
3006  *
3007  *	This function segments the given skb and returns a list of segments.
3008  *
3009  *	It may return NULL if the skb requires no segmentation.  This is
3010  *	only possible when GSO is used for verifying header integrity.
3011  *
3012  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3013  */
3014 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3015 				  netdev_features_t features, bool tx_path)
3016 {
3017 	struct sk_buff *segs;
3018 
3019 	if (unlikely(skb_needs_check(skb, tx_path))) {
3020 		int err;
3021 
3022 		/* We're going to init ->check field in TCP or UDP header */
3023 		err = skb_cow_head(skb, 0);
3024 		if (err < 0)
3025 			return ERR_PTR(err);
3026 	}
3027 
3028 	/* Only report GSO partial support if it will enable us to
3029 	 * support segmentation on this frame without needing additional
3030 	 * work.
3031 	 */
3032 	if (features & NETIF_F_GSO_PARTIAL) {
3033 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3034 		struct net_device *dev = skb->dev;
3035 
3036 		partial_features |= dev->features & dev->gso_partial_features;
3037 		if (!skb_gso_ok(skb, features | partial_features))
3038 			features &= ~NETIF_F_GSO_PARTIAL;
3039 	}
3040 
3041 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3042 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3043 
3044 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3045 	SKB_GSO_CB(skb)->encap_level = 0;
3046 
3047 	skb_reset_mac_header(skb);
3048 	skb_reset_mac_len(skb);
3049 
3050 	segs = skb_mac_gso_segment(skb, features);
3051 
3052 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3053 		skb_warn_bad_offload(skb);
3054 
3055 	return segs;
3056 }
3057 EXPORT_SYMBOL(__skb_gso_segment);
3058 
3059 /* Take action when hardware reception checksum errors are detected. */
3060 #ifdef CONFIG_BUG
3061 void netdev_rx_csum_fault(struct net_device *dev)
3062 {
3063 	if (net_ratelimit()) {
3064 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3065 		dump_stack();
3066 	}
3067 }
3068 EXPORT_SYMBOL(netdev_rx_csum_fault);
3069 #endif
3070 
3071 /* XXX: check that highmem exists at all on the given machine. */
3072 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3073 {
3074 #ifdef CONFIG_HIGHMEM
3075 	int i;
3076 
3077 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3078 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3079 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3080 
3081 			if (PageHighMem(skb_frag_page(frag)))
3082 				return 1;
3083 		}
3084 	}
3085 #endif
3086 	return 0;
3087 }
3088 
3089 /* If MPLS offload request, verify we are testing hardware MPLS features
3090  * instead of standard features for the netdev.
3091  */
3092 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3093 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3094 					   netdev_features_t features,
3095 					   __be16 type)
3096 {
3097 	if (eth_p_mpls(type))
3098 		features &= skb->dev->mpls_features;
3099 
3100 	return features;
3101 }
3102 #else
3103 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3104 					   netdev_features_t features,
3105 					   __be16 type)
3106 {
3107 	return features;
3108 }
3109 #endif
3110 
3111 static netdev_features_t harmonize_features(struct sk_buff *skb,
3112 	netdev_features_t features)
3113 {
3114 	int tmp;
3115 	__be16 type;
3116 
3117 	type = skb_network_protocol(skb, &tmp);
3118 	features = net_mpls_features(skb, features, type);
3119 
3120 	if (skb->ip_summed != CHECKSUM_NONE &&
3121 	    !can_checksum_protocol(features, type)) {
3122 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3123 	}
3124 	if (illegal_highdma(skb->dev, skb))
3125 		features &= ~NETIF_F_SG;
3126 
3127 	return features;
3128 }
3129 
3130 netdev_features_t passthru_features_check(struct sk_buff *skb,
3131 					  struct net_device *dev,
3132 					  netdev_features_t features)
3133 {
3134 	return features;
3135 }
3136 EXPORT_SYMBOL(passthru_features_check);
3137 
3138 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3139 					     struct net_device *dev,
3140 					     netdev_features_t features)
3141 {
3142 	return vlan_features_check(skb, features);
3143 }
3144 
3145 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3146 					    struct net_device *dev,
3147 					    netdev_features_t features)
3148 {
3149 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3150 
3151 	if (gso_segs > dev->gso_max_segs)
3152 		return features & ~NETIF_F_GSO_MASK;
3153 
3154 	/* Support for GSO partial features requires software
3155 	 * intervention before we can actually process the packets
3156 	 * so we need to strip support for any partial features now
3157 	 * and we can pull them back in after we have partially
3158 	 * segmented the frame.
3159 	 */
3160 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3161 		features &= ~dev->gso_partial_features;
3162 
3163 	/* Make sure to clear the IPv4 ID mangling feature if the
3164 	 * IPv4 header has the potential to be fragmented.
3165 	 */
3166 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3167 		struct iphdr *iph = skb->encapsulation ?
3168 				    inner_ip_hdr(skb) : ip_hdr(skb);
3169 
3170 		if (!(iph->frag_off & htons(IP_DF)))
3171 			features &= ~NETIF_F_TSO_MANGLEID;
3172 	}
3173 
3174 	return features;
3175 }
3176 
3177 netdev_features_t netif_skb_features(struct sk_buff *skb)
3178 {
3179 	struct net_device *dev = skb->dev;
3180 	netdev_features_t features = dev->features;
3181 
3182 	if (skb_is_gso(skb))
3183 		features = gso_features_check(skb, dev, features);
3184 
3185 	/* If encapsulation offload request, verify we are testing
3186 	 * hardware encapsulation features instead of standard
3187 	 * features for the netdev
3188 	 */
3189 	if (skb->encapsulation)
3190 		features &= dev->hw_enc_features;
3191 
3192 	if (skb_vlan_tagged(skb))
3193 		features = netdev_intersect_features(features,
3194 						     dev->vlan_features |
3195 						     NETIF_F_HW_VLAN_CTAG_TX |
3196 						     NETIF_F_HW_VLAN_STAG_TX);
3197 
3198 	if (dev->netdev_ops->ndo_features_check)
3199 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3200 								features);
3201 	else
3202 		features &= dflt_features_check(skb, dev, features);
3203 
3204 	return harmonize_features(skb, features);
3205 }
3206 EXPORT_SYMBOL(netif_skb_features);
3207 
3208 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3209 		    struct netdev_queue *txq, bool more)
3210 {
3211 	unsigned int len;
3212 	int rc;
3213 
3214 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3215 		dev_queue_xmit_nit(skb, dev);
3216 
3217 	len = skb->len;
3218 	trace_net_dev_start_xmit(skb, dev);
3219 	rc = netdev_start_xmit(skb, dev, txq, more);
3220 	trace_net_dev_xmit(skb, rc, dev, len);
3221 
3222 	return rc;
3223 }
3224 
3225 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3226 				    struct netdev_queue *txq, int *ret)
3227 {
3228 	struct sk_buff *skb = first;
3229 	int rc = NETDEV_TX_OK;
3230 
3231 	while (skb) {
3232 		struct sk_buff *next = skb->next;
3233 
3234 		skb->next = NULL;
3235 		rc = xmit_one(skb, dev, txq, next != NULL);
3236 		if (unlikely(!dev_xmit_complete(rc))) {
3237 			skb->next = next;
3238 			goto out;
3239 		}
3240 
3241 		skb = next;
3242 		if (netif_xmit_stopped(txq) && skb) {
3243 			rc = NETDEV_TX_BUSY;
3244 			break;
3245 		}
3246 	}
3247 
3248 out:
3249 	*ret = rc;
3250 	return skb;
3251 }
3252 
3253 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3254 					  netdev_features_t features)
3255 {
3256 	if (skb_vlan_tag_present(skb) &&
3257 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3258 		skb = __vlan_hwaccel_push_inside(skb);
3259 	return skb;
3260 }
3261 
3262 int skb_csum_hwoffload_help(struct sk_buff *skb,
3263 			    const netdev_features_t features)
3264 {
3265 	if (unlikely(skb->csum_not_inet))
3266 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3267 			skb_crc32c_csum_help(skb);
3268 
3269 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3270 }
3271 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3272 
3273 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3274 {
3275 	netdev_features_t features;
3276 
3277 	features = netif_skb_features(skb);
3278 	skb = validate_xmit_vlan(skb, features);
3279 	if (unlikely(!skb))
3280 		goto out_null;
3281 
3282 	skb = sk_validate_xmit_skb(skb, dev);
3283 	if (unlikely(!skb))
3284 		goto out_null;
3285 
3286 	if (netif_needs_gso(skb, features)) {
3287 		struct sk_buff *segs;
3288 
3289 		segs = skb_gso_segment(skb, features);
3290 		if (IS_ERR(segs)) {
3291 			goto out_kfree_skb;
3292 		} else if (segs) {
3293 			consume_skb(skb);
3294 			skb = segs;
3295 		}
3296 	} else {
3297 		if (skb_needs_linearize(skb, features) &&
3298 		    __skb_linearize(skb))
3299 			goto out_kfree_skb;
3300 
3301 		/* If packet is not checksummed and device does not
3302 		 * support checksumming for this protocol, complete
3303 		 * checksumming here.
3304 		 */
3305 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3306 			if (skb->encapsulation)
3307 				skb_set_inner_transport_header(skb,
3308 							       skb_checksum_start_offset(skb));
3309 			else
3310 				skb_set_transport_header(skb,
3311 							 skb_checksum_start_offset(skb));
3312 			if (skb_csum_hwoffload_help(skb, features))
3313 				goto out_kfree_skb;
3314 		}
3315 	}
3316 
3317 	skb = validate_xmit_xfrm(skb, features, again);
3318 
3319 	return skb;
3320 
3321 out_kfree_skb:
3322 	kfree_skb(skb);
3323 out_null:
3324 	atomic_long_inc(&dev->tx_dropped);
3325 	return NULL;
3326 }
3327 
3328 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3329 {
3330 	struct sk_buff *next, *head = NULL, *tail;
3331 
3332 	for (; skb != NULL; skb = next) {
3333 		next = skb->next;
3334 		skb->next = NULL;
3335 
3336 		/* in case skb wont be segmented, point to itself */
3337 		skb->prev = skb;
3338 
3339 		skb = validate_xmit_skb(skb, dev, again);
3340 		if (!skb)
3341 			continue;
3342 
3343 		if (!head)
3344 			head = skb;
3345 		else
3346 			tail->next = skb;
3347 		/* If skb was segmented, skb->prev points to
3348 		 * the last segment. If not, it still contains skb.
3349 		 */
3350 		tail = skb->prev;
3351 	}
3352 	return head;
3353 }
3354 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3355 
3356 static void qdisc_pkt_len_init(struct sk_buff *skb)
3357 {
3358 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3359 
3360 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3361 
3362 	/* To get more precise estimation of bytes sent on wire,
3363 	 * we add to pkt_len the headers size of all segments
3364 	 */
3365 	if (shinfo->gso_size)  {
3366 		unsigned int hdr_len;
3367 		u16 gso_segs = shinfo->gso_segs;
3368 
3369 		/* mac layer + network layer */
3370 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3371 
3372 		/* + transport layer */
3373 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3374 			const struct tcphdr *th;
3375 			struct tcphdr _tcphdr;
3376 
3377 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3378 						sizeof(_tcphdr), &_tcphdr);
3379 			if (likely(th))
3380 				hdr_len += __tcp_hdrlen(th);
3381 		} else {
3382 			struct udphdr _udphdr;
3383 
3384 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3385 					       sizeof(_udphdr), &_udphdr))
3386 				hdr_len += sizeof(struct udphdr);
3387 		}
3388 
3389 		if (shinfo->gso_type & SKB_GSO_DODGY)
3390 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3391 						shinfo->gso_size);
3392 
3393 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3394 	}
3395 }
3396 
3397 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3398 				 struct net_device *dev,
3399 				 struct netdev_queue *txq)
3400 {
3401 	spinlock_t *root_lock = qdisc_lock(q);
3402 	struct sk_buff *to_free = NULL;
3403 	bool contended;
3404 	int rc;
3405 
3406 	qdisc_calculate_pkt_len(skb, q);
3407 
3408 	if (q->flags & TCQ_F_NOLOCK) {
3409 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3410 			__qdisc_drop(skb, &to_free);
3411 			rc = NET_XMIT_DROP;
3412 		} else {
3413 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3414 			qdisc_run(q);
3415 		}
3416 
3417 		if (unlikely(to_free))
3418 			kfree_skb_list(to_free);
3419 		return rc;
3420 	}
3421 
3422 	/*
3423 	 * Heuristic to force contended enqueues to serialize on a
3424 	 * separate lock before trying to get qdisc main lock.
3425 	 * This permits qdisc->running owner to get the lock more
3426 	 * often and dequeue packets faster.
3427 	 */
3428 	contended = qdisc_is_running(q);
3429 	if (unlikely(contended))
3430 		spin_lock(&q->busylock);
3431 
3432 	spin_lock(root_lock);
3433 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3434 		__qdisc_drop(skb, &to_free);
3435 		rc = NET_XMIT_DROP;
3436 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3437 		   qdisc_run_begin(q)) {
3438 		/*
3439 		 * This is a work-conserving queue; there are no old skbs
3440 		 * waiting to be sent out; and the qdisc is not running -
3441 		 * xmit the skb directly.
3442 		 */
3443 
3444 		qdisc_bstats_update(q, skb);
3445 
3446 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3447 			if (unlikely(contended)) {
3448 				spin_unlock(&q->busylock);
3449 				contended = false;
3450 			}
3451 			__qdisc_run(q);
3452 		}
3453 
3454 		qdisc_run_end(q);
3455 		rc = NET_XMIT_SUCCESS;
3456 	} else {
3457 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3458 		if (qdisc_run_begin(q)) {
3459 			if (unlikely(contended)) {
3460 				spin_unlock(&q->busylock);
3461 				contended = false;
3462 			}
3463 			__qdisc_run(q);
3464 			qdisc_run_end(q);
3465 		}
3466 	}
3467 	spin_unlock(root_lock);
3468 	if (unlikely(to_free))
3469 		kfree_skb_list(to_free);
3470 	if (unlikely(contended))
3471 		spin_unlock(&q->busylock);
3472 	return rc;
3473 }
3474 
3475 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3476 static void skb_update_prio(struct sk_buff *skb)
3477 {
3478 	const struct netprio_map *map;
3479 	const struct sock *sk;
3480 	unsigned int prioidx;
3481 
3482 	if (skb->priority)
3483 		return;
3484 	map = rcu_dereference_bh(skb->dev->priomap);
3485 	if (!map)
3486 		return;
3487 	sk = skb_to_full_sk(skb);
3488 	if (!sk)
3489 		return;
3490 
3491 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3492 
3493 	if (prioidx < map->priomap_len)
3494 		skb->priority = map->priomap[prioidx];
3495 }
3496 #else
3497 #define skb_update_prio(skb)
3498 #endif
3499 
3500 DEFINE_PER_CPU(int, xmit_recursion);
3501 EXPORT_SYMBOL(xmit_recursion);
3502 
3503 /**
3504  *	dev_loopback_xmit - loop back @skb
3505  *	@net: network namespace this loopback is happening in
3506  *	@sk:  sk needed to be a netfilter okfn
3507  *	@skb: buffer to transmit
3508  */
3509 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3510 {
3511 	skb_reset_mac_header(skb);
3512 	__skb_pull(skb, skb_network_offset(skb));
3513 	skb->pkt_type = PACKET_LOOPBACK;
3514 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3515 	WARN_ON(!skb_dst(skb));
3516 	skb_dst_force(skb);
3517 	netif_rx_ni(skb);
3518 	return 0;
3519 }
3520 EXPORT_SYMBOL(dev_loopback_xmit);
3521 
3522 #ifdef CONFIG_NET_EGRESS
3523 static struct sk_buff *
3524 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3525 {
3526 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3527 	struct tcf_result cl_res;
3528 
3529 	if (!miniq)
3530 		return skb;
3531 
3532 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3533 	mini_qdisc_bstats_cpu_update(miniq, skb);
3534 
3535 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3536 	case TC_ACT_OK:
3537 	case TC_ACT_RECLASSIFY:
3538 		skb->tc_index = TC_H_MIN(cl_res.classid);
3539 		break;
3540 	case TC_ACT_SHOT:
3541 		mini_qdisc_qstats_cpu_drop(miniq);
3542 		*ret = NET_XMIT_DROP;
3543 		kfree_skb(skb);
3544 		return NULL;
3545 	case TC_ACT_STOLEN:
3546 	case TC_ACT_QUEUED:
3547 	case TC_ACT_TRAP:
3548 		*ret = NET_XMIT_SUCCESS;
3549 		consume_skb(skb);
3550 		return NULL;
3551 	case TC_ACT_REDIRECT:
3552 		/* No need to push/pop skb's mac_header here on egress! */
3553 		skb_do_redirect(skb);
3554 		*ret = NET_XMIT_SUCCESS;
3555 		return NULL;
3556 	default:
3557 		break;
3558 	}
3559 
3560 	return skb;
3561 }
3562 #endif /* CONFIG_NET_EGRESS */
3563 
3564 #ifdef CONFIG_XPS
3565 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3566 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3567 {
3568 	struct xps_map *map;
3569 	int queue_index = -1;
3570 
3571 	if (dev->num_tc) {
3572 		tci *= dev->num_tc;
3573 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3574 	}
3575 
3576 	map = rcu_dereference(dev_maps->attr_map[tci]);
3577 	if (map) {
3578 		if (map->len == 1)
3579 			queue_index = map->queues[0];
3580 		else
3581 			queue_index = map->queues[reciprocal_scale(
3582 						skb_get_hash(skb), map->len)];
3583 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3584 			queue_index = -1;
3585 	}
3586 	return queue_index;
3587 }
3588 #endif
3589 
3590 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3591 			 struct sk_buff *skb)
3592 {
3593 #ifdef CONFIG_XPS
3594 	struct xps_dev_maps *dev_maps;
3595 	struct sock *sk = skb->sk;
3596 	int queue_index = -1;
3597 
3598 	if (!static_key_false(&xps_needed))
3599 		return -1;
3600 
3601 	rcu_read_lock();
3602 	if (!static_key_false(&xps_rxqs_needed))
3603 		goto get_cpus_map;
3604 
3605 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3606 	if (dev_maps) {
3607 		int tci = sk_rx_queue_get(sk);
3608 
3609 		if (tci >= 0 && tci < dev->num_rx_queues)
3610 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3611 							  tci);
3612 	}
3613 
3614 get_cpus_map:
3615 	if (queue_index < 0) {
3616 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3617 		if (dev_maps) {
3618 			unsigned int tci = skb->sender_cpu - 1;
3619 
3620 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3621 							  tci);
3622 		}
3623 	}
3624 	rcu_read_unlock();
3625 
3626 	return queue_index;
3627 #else
3628 	return -1;
3629 #endif
3630 }
3631 
3632 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3633 		     struct net_device *sb_dev,
3634 		     select_queue_fallback_t fallback)
3635 {
3636 	return 0;
3637 }
3638 EXPORT_SYMBOL(dev_pick_tx_zero);
3639 
3640 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3641 		       struct net_device *sb_dev,
3642 		       select_queue_fallback_t fallback)
3643 {
3644 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3645 }
3646 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3647 
3648 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3649 			    struct net_device *sb_dev)
3650 {
3651 	struct sock *sk = skb->sk;
3652 	int queue_index = sk_tx_queue_get(sk);
3653 
3654 	sb_dev = sb_dev ? : dev;
3655 
3656 	if (queue_index < 0 || skb->ooo_okay ||
3657 	    queue_index >= dev->real_num_tx_queues) {
3658 		int new_index = get_xps_queue(dev, sb_dev, skb);
3659 
3660 		if (new_index < 0)
3661 			new_index = skb_tx_hash(dev, sb_dev, skb);
3662 
3663 		if (queue_index != new_index && sk &&
3664 		    sk_fullsock(sk) &&
3665 		    rcu_access_pointer(sk->sk_dst_cache))
3666 			sk_tx_queue_set(sk, new_index);
3667 
3668 		queue_index = new_index;
3669 	}
3670 
3671 	return queue_index;
3672 }
3673 
3674 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3675 				    struct sk_buff *skb,
3676 				    struct net_device *sb_dev)
3677 {
3678 	int queue_index = 0;
3679 
3680 #ifdef CONFIG_XPS
3681 	u32 sender_cpu = skb->sender_cpu - 1;
3682 
3683 	if (sender_cpu >= (u32)NR_CPUS)
3684 		skb->sender_cpu = raw_smp_processor_id() + 1;
3685 #endif
3686 
3687 	if (dev->real_num_tx_queues != 1) {
3688 		const struct net_device_ops *ops = dev->netdev_ops;
3689 
3690 		if (ops->ndo_select_queue)
3691 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3692 							    __netdev_pick_tx);
3693 		else
3694 			queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3695 
3696 		queue_index = netdev_cap_txqueue(dev, queue_index);
3697 	}
3698 
3699 	skb_set_queue_mapping(skb, queue_index);
3700 	return netdev_get_tx_queue(dev, queue_index);
3701 }
3702 
3703 /**
3704  *	__dev_queue_xmit - transmit a buffer
3705  *	@skb: buffer to transmit
3706  *	@sb_dev: suboordinate device used for L2 forwarding offload
3707  *
3708  *	Queue a buffer for transmission to a network device. The caller must
3709  *	have set the device and priority and built the buffer before calling
3710  *	this function. The function can be called from an interrupt.
3711  *
3712  *	A negative errno code is returned on a failure. A success does not
3713  *	guarantee the frame will be transmitted as it may be dropped due
3714  *	to congestion or traffic shaping.
3715  *
3716  * -----------------------------------------------------------------------------------
3717  *      I notice this method can also return errors from the queue disciplines,
3718  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3719  *      be positive.
3720  *
3721  *      Regardless of the return value, the skb is consumed, so it is currently
3722  *      difficult to retry a send to this method.  (You can bump the ref count
3723  *      before sending to hold a reference for retry if you are careful.)
3724  *
3725  *      When calling this method, interrupts MUST be enabled.  This is because
3726  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3727  *          --BLG
3728  */
3729 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3730 {
3731 	struct net_device *dev = skb->dev;
3732 	struct netdev_queue *txq;
3733 	struct Qdisc *q;
3734 	int rc = -ENOMEM;
3735 	bool again = false;
3736 
3737 	skb_reset_mac_header(skb);
3738 
3739 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3740 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3741 
3742 	/* Disable soft irqs for various locks below. Also
3743 	 * stops preemption for RCU.
3744 	 */
3745 	rcu_read_lock_bh();
3746 
3747 	skb_update_prio(skb);
3748 
3749 	qdisc_pkt_len_init(skb);
3750 #ifdef CONFIG_NET_CLS_ACT
3751 	skb->tc_at_ingress = 0;
3752 # ifdef CONFIG_NET_EGRESS
3753 	if (static_branch_unlikely(&egress_needed_key)) {
3754 		skb = sch_handle_egress(skb, &rc, dev);
3755 		if (!skb)
3756 			goto out;
3757 	}
3758 # endif
3759 #endif
3760 	/* If device/qdisc don't need skb->dst, release it right now while
3761 	 * its hot in this cpu cache.
3762 	 */
3763 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3764 		skb_dst_drop(skb);
3765 	else
3766 		skb_dst_force(skb);
3767 
3768 	txq = netdev_pick_tx(dev, skb, sb_dev);
3769 	q = rcu_dereference_bh(txq->qdisc);
3770 
3771 	trace_net_dev_queue(skb);
3772 	if (q->enqueue) {
3773 		rc = __dev_xmit_skb(skb, q, dev, txq);
3774 		goto out;
3775 	}
3776 
3777 	/* The device has no queue. Common case for software devices:
3778 	 * loopback, all the sorts of tunnels...
3779 
3780 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3781 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3782 	 * counters.)
3783 	 * However, it is possible, that they rely on protection
3784 	 * made by us here.
3785 
3786 	 * Check this and shot the lock. It is not prone from deadlocks.
3787 	 *Either shot noqueue qdisc, it is even simpler 8)
3788 	 */
3789 	if (dev->flags & IFF_UP) {
3790 		int cpu = smp_processor_id(); /* ok because BHs are off */
3791 
3792 		if (txq->xmit_lock_owner != cpu) {
3793 			if (unlikely(__this_cpu_read(xmit_recursion) >
3794 				     XMIT_RECURSION_LIMIT))
3795 				goto recursion_alert;
3796 
3797 			skb = validate_xmit_skb(skb, dev, &again);
3798 			if (!skb)
3799 				goto out;
3800 
3801 			HARD_TX_LOCK(dev, txq, cpu);
3802 
3803 			if (!netif_xmit_stopped(txq)) {
3804 				__this_cpu_inc(xmit_recursion);
3805 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3806 				__this_cpu_dec(xmit_recursion);
3807 				if (dev_xmit_complete(rc)) {
3808 					HARD_TX_UNLOCK(dev, txq);
3809 					goto out;
3810 				}
3811 			}
3812 			HARD_TX_UNLOCK(dev, txq);
3813 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3814 					     dev->name);
3815 		} else {
3816 			/* Recursion is detected! It is possible,
3817 			 * unfortunately
3818 			 */
3819 recursion_alert:
3820 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3821 					     dev->name);
3822 		}
3823 	}
3824 
3825 	rc = -ENETDOWN;
3826 	rcu_read_unlock_bh();
3827 
3828 	atomic_long_inc(&dev->tx_dropped);
3829 	kfree_skb_list(skb);
3830 	return rc;
3831 out:
3832 	rcu_read_unlock_bh();
3833 	return rc;
3834 }
3835 
3836 int dev_queue_xmit(struct sk_buff *skb)
3837 {
3838 	return __dev_queue_xmit(skb, NULL);
3839 }
3840 EXPORT_SYMBOL(dev_queue_xmit);
3841 
3842 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3843 {
3844 	return __dev_queue_xmit(skb, sb_dev);
3845 }
3846 EXPORT_SYMBOL(dev_queue_xmit_accel);
3847 
3848 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3849 {
3850 	struct net_device *dev = skb->dev;
3851 	struct sk_buff *orig_skb = skb;
3852 	struct netdev_queue *txq;
3853 	int ret = NETDEV_TX_BUSY;
3854 	bool again = false;
3855 
3856 	if (unlikely(!netif_running(dev) ||
3857 		     !netif_carrier_ok(dev)))
3858 		goto drop;
3859 
3860 	skb = validate_xmit_skb_list(skb, dev, &again);
3861 	if (skb != orig_skb)
3862 		goto drop;
3863 
3864 	skb_set_queue_mapping(skb, queue_id);
3865 	txq = skb_get_tx_queue(dev, skb);
3866 
3867 	local_bh_disable();
3868 
3869 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3870 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3871 		ret = netdev_start_xmit(skb, dev, txq, false);
3872 	HARD_TX_UNLOCK(dev, txq);
3873 
3874 	local_bh_enable();
3875 
3876 	if (!dev_xmit_complete(ret))
3877 		kfree_skb(skb);
3878 
3879 	return ret;
3880 drop:
3881 	atomic_long_inc(&dev->tx_dropped);
3882 	kfree_skb_list(skb);
3883 	return NET_XMIT_DROP;
3884 }
3885 EXPORT_SYMBOL(dev_direct_xmit);
3886 
3887 /*************************************************************************
3888  *			Receiver routines
3889  *************************************************************************/
3890 
3891 int netdev_max_backlog __read_mostly = 1000;
3892 EXPORT_SYMBOL(netdev_max_backlog);
3893 
3894 int netdev_tstamp_prequeue __read_mostly = 1;
3895 int netdev_budget __read_mostly = 300;
3896 unsigned int __read_mostly netdev_budget_usecs = 2000;
3897 int weight_p __read_mostly = 64;           /* old backlog weight */
3898 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3899 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3900 int dev_rx_weight __read_mostly = 64;
3901 int dev_tx_weight __read_mostly = 64;
3902 
3903 /* Called with irq disabled */
3904 static inline void ____napi_schedule(struct softnet_data *sd,
3905 				     struct napi_struct *napi)
3906 {
3907 	list_add_tail(&napi->poll_list, &sd->poll_list);
3908 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3909 }
3910 
3911 #ifdef CONFIG_RPS
3912 
3913 /* One global table that all flow-based protocols share. */
3914 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3915 EXPORT_SYMBOL(rps_sock_flow_table);
3916 u32 rps_cpu_mask __read_mostly;
3917 EXPORT_SYMBOL(rps_cpu_mask);
3918 
3919 struct static_key rps_needed __read_mostly;
3920 EXPORT_SYMBOL(rps_needed);
3921 struct static_key rfs_needed __read_mostly;
3922 EXPORT_SYMBOL(rfs_needed);
3923 
3924 static struct rps_dev_flow *
3925 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3926 	    struct rps_dev_flow *rflow, u16 next_cpu)
3927 {
3928 	if (next_cpu < nr_cpu_ids) {
3929 #ifdef CONFIG_RFS_ACCEL
3930 		struct netdev_rx_queue *rxqueue;
3931 		struct rps_dev_flow_table *flow_table;
3932 		struct rps_dev_flow *old_rflow;
3933 		u32 flow_id;
3934 		u16 rxq_index;
3935 		int rc;
3936 
3937 		/* Should we steer this flow to a different hardware queue? */
3938 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3939 		    !(dev->features & NETIF_F_NTUPLE))
3940 			goto out;
3941 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3942 		if (rxq_index == skb_get_rx_queue(skb))
3943 			goto out;
3944 
3945 		rxqueue = dev->_rx + rxq_index;
3946 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3947 		if (!flow_table)
3948 			goto out;
3949 		flow_id = skb_get_hash(skb) & flow_table->mask;
3950 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3951 							rxq_index, flow_id);
3952 		if (rc < 0)
3953 			goto out;
3954 		old_rflow = rflow;
3955 		rflow = &flow_table->flows[flow_id];
3956 		rflow->filter = rc;
3957 		if (old_rflow->filter == rflow->filter)
3958 			old_rflow->filter = RPS_NO_FILTER;
3959 	out:
3960 #endif
3961 		rflow->last_qtail =
3962 			per_cpu(softnet_data, next_cpu).input_queue_head;
3963 	}
3964 
3965 	rflow->cpu = next_cpu;
3966 	return rflow;
3967 }
3968 
3969 /*
3970  * get_rps_cpu is called from netif_receive_skb and returns the target
3971  * CPU from the RPS map of the receiving queue for a given skb.
3972  * rcu_read_lock must be held on entry.
3973  */
3974 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3975 		       struct rps_dev_flow **rflowp)
3976 {
3977 	const struct rps_sock_flow_table *sock_flow_table;
3978 	struct netdev_rx_queue *rxqueue = dev->_rx;
3979 	struct rps_dev_flow_table *flow_table;
3980 	struct rps_map *map;
3981 	int cpu = -1;
3982 	u32 tcpu;
3983 	u32 hash;
3984 
3985 	if (skb_rx_queue_recorded(skb)) {
3986 		u16 index = skb_get_rx_queue(skb);
3987 
3988 		if (unlikely(index >= dev->real_num_rx_queues)) {
3989 			WARN_ONCE(dev->real_num_rx_queues > 1,
3990 				  "%s received packet on queue %u, but number "
3991 				  "of RX queues is %u\n",
3992 				  dev->name, index, dev->real_num_rx_queues);
3993 			goto done;
3994 		}
3995 		rxqueue += index;
3996 	}
3997 
3998 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3999 
4000 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4001 	map = rcu_dereference(rxqueue->rps_map);
4002 	if (!flow_table && !map)
4003 		goto done;
4004 
4005 	skb_reset_network_header(skb);
4006 	hash = skb_get_hash(skb);
4007 	if (!hash)
4008 		goto done;
4009 
4010 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4011 	if (flow_table && sock_flow_table) {
4012 		struct rps_dev_flow *rflow;
4013 		u32 next_cpu;
4014 		u32 ident;
4015 
4016 		/* First check into global flow table if there is a match */
4017 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4018 		if ((ident ^ hash) & ~rps_cpu_mask)
4019 			goto try_rps;
4020 
4021 		next_cpu = ident & rps_cpu_mask;
4022 
4023 		/* OK, now we know there is a match,
4024 		 * we can look at the local (per receive queue) flow table
4025 		 */
4026 		rflow = &flow_table->flows[hash & flow_table->mask];
4027 		tcpu = rflow->cpu;
4028 
4029 		/*
4030 		 * If the desired CPU (where last recvmsg was done) is
4031 		 * different from current CPU (one in the rx-queue flow
4032 		 * table entry), switch if one of the following holds:
4033 		 *   - Current CPU is unset (>= nr_cpu_ids).
4034 		 *   - Current CPU is offline.
4035 		 *   - The current CPU's queue tail has advanced beyond the
4036 		 *     last packet that was enqueued using this table entry.
4037 		 *     This guarantees that all previous packets for the flow
4038 		 *     have been dequeued, thus preserving in order delivery.
4039 		 */
4040 		if (unlikely(tcpu != next_cpu) &&
4041 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4042 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4043 		      rflow->last_qtail)) >= 0)) {
4044 			tcpu = next_cpu;
4045 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4046 		}
4047 
4048 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4049 			*rflowp = rflow;
4050 			cpu = tcpu;
4051 			goto done;
4052 		}
4053 	}
4054 
4055 try_rps:
4056 
4057 	if (map) {
4058 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4059 		if (cpu_online(tcpu)) {
4060 			cpu = tcpu;
4061 			goto done;
4062 		}
4063 	}
4064 
4065 done:
4066 	return cpu;
4067 }
4068 
4069 #ifdef CONFIG_RFS_ACCEL
4070 
4071 /**
4072  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4073  * @dev: Device on which the filter was set
4074  * @rxq_index: RX queue index
4075  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4076  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4077  *
4078  * Drivers that implement ndo_rx_flow_steer() should periodically call
4079  * this function for each installed filter and remove the filters for
4080  * which it returns %true.
4081  */
4082 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4083 			 u32 flow_id, u16 filter_id)
4084 {
4085 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4086 	struct rps_dev_flow_table *flow_table;
4087 	struct rps_dev_flow *rflow;
4088 	bool expire = true;
4089 	unsigned int cpu;
4090 
4091 	rcu_read_lock();
4092 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4093 	if (flow_table && flow_id <= flow_table->mask) {
4094 		rflow = &flow_table->flows[flow_id];
4095 		cpu = READ_ONCE(rflow->cpu);
4096 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4097 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4098 			   rflow->last_qtail) <
4099 		     (int)(10 * flow_table->mask)))
4100 			expire = false;
4101 	}
4102 	rcu_read_unlock();
4103 	return expire;
4104 }
4105 EXPORT_SYMBOL(rps_may_expire_flow);
4106 
4107 #endif /* CONFIG_RFS_ACCEL */
4108 
4109 /* Called from hardirq (IPI) context */
4110 static void rps_trigger_softirq(void *data)
4111 {
4112 	struct softnet_data *sd = data;
4113 
4114 	____napi_schedule(sd, &sd->backlog);
4115 	sd->received_rps++;
4116 }
4117 
4118 #endif /* CONFIG_RPS */
4119 
4120 /*
4121  * Check if this softnet_data structure is another cpu one
4122  * If yes, queue it to our IPI list and return 1
4123  * If no, return 0
4124  */
4125 static int rps_ipi_queued(struct softnet_data *sd)
4126 {
4127 #ifdef CONFIG_RPS
4128 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4129 
4130 	if (sd != mysd) {
4131 		sd->rps_ipi_next = mysd->rps_ipi_list;
4132 		mysd->rps_ipi_list = sd;
4133 
4134 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4135 		return 1;
4136 	}
4137 #endif /* CONFIG_RPS */
4138 	return 0;
4139 }
4140 
4141 #ifdef CONFIG_NET_FLOW_LIMIT
4142 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4143 #endif
4144 
4145 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4146 {
4147 #ifdef CONFIG_NET_FLOW_LIMIT
4148 	struct sd_flow_limit *fl;
4149 	struct softnet_data *sd;
4150 	unsigned int old_flow, new_flow;
4151 
4152 	if (qlen < (netdev_max_backlog >> 1))
4153 		return false;
4154 
4155 	sd = this_cpu_ptr(&softnet_data);
4156 
4157 	rcu_read_lock();
4158 	fl = rcu_dereference(sd->flow_limit);
4159 	if (fl) {
4160 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4161 		old_flow = fl->history[fl->history_head];
4162 		fl->history[fl->history_head] = new_flow;
4163 
4164 		fl->history_head++;
4165 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4166 
4167 		if (likely(fl->buckets[old_flow]))
4168 			fl->buckets[old_flow]--;
4169 
4170 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4171 			fl->count++;
4172 			rcu_read_unlock();
4173 			return true;
4174 		}
4175 	}
4176 	rcu_read_unlock();
4177 #endif
4178 	return false;
4179 }
4180 
4181 /*
4182  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4183  * queue (may be a remote CPU queue).
4184  */
4185 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4186 			      unsigned int *qtail)
4187 {
4188 	struct softnet_data *sd;
4189 	unsigned long flags;
4190 	unsigned int qlen;
4191 
4192 	sd = &per_cpu(softnet_data, cpu);
4193 
4194 	local_irq_save(flags);
4195 
4196 	rps_lock(sd);
4197 	if (!netif_running(skb->dev))
4198 		goto drop;
4199 	qlen = skb_queue_len(&sd->input_pkt_queue);
4200 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4201 		if (qlen) {
4202 enqueue:
4203 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4204 			input_queue_tail_incr_save(sd, qtail);
4205 			rps_unlock(sd);
4206 			local_irq_restore(flags);
4207 			return NET_RX_SUCCESS;
4208 		}
4209 
4210 		/* Schedule NAPI for backlog device
4211 		 * We can use non atomic operation since we own the queue lock
4212 		 */
4213 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4214 			if (!rps_ipi_queued(sd))
4215 				____napi_schedule(sd, &sd->backlog);
4216 		}
4217 		goto enqueue;
4218 	}
4219 
4220 drop:
4221 	sd->dropped++;
4222 	rps_unlock(sd);
4223 
4224 	local_irq_restore(flags);
4225 
4226 	atomic_long_inc(&skb->dev->rx_dropped);
4227 	kfree_skb(skb);
4228 	return NET_RX_DROP;
4229 }
4230 
4231 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4232 {
4233 	struct net_device *dev = skb->dev;
4234 	struct netdev_rx_queue *rxqueue;
4235 
4236 	rxqueue = dev->_rx;
4237 
4238 	if (skb_rx_queue_recorded(skb)) {
4239 		u16 index = skb_get_rx_queue(skb);
4240 
4241 		if (unlikely(index >= dev->real_num_rx_queues)) {
4242 			WARN_ONCE(dev->real_num_rx_queues > 1,
4243 				  "%s received packet on queue %u, but number "
4244 				  "of RX queues is %u\n",
4245 				  dev->name, index, dev->real_num_rx_queues);
4246 
4247 			return rxqueue; /* Return first rxqueue */
4248 		}
4249 		rxqueue += index;
4250 	}
4251 	return rxqueue;
4252 }
4253 
4254 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4255 				     struct xdp_buff *xdp,
4256 				     struct bpf_prog *xdp_prog)
4257 {
4258 	struct netdev_rx_queue *rxqueue;
4259 	void *orig_data, *orig_data_end;
4260 	u32 metalen, act = XDP_DROP;
4261 	int hlen, off;
4262 	u32 mac_len;
4263 
4264 	/* Reinjected packets coming from act_mirred or similar should
4265 	 * not get XDP generic processing.
4266 	 */
4267 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4268 		return XDP_PASS;
4269 
4270 	/* XDP packets must be linear and must have sufficient headroom
4271 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4272 	 * native XDP provides, thus we need to do it here as well.
4273 	 */
4274 	if (skb_is_nonlinear(skb) ||
4275 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4276 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4277 		int troom = skb->tail + skb->data_len - skb->end;
4278 
4279 		/* In case we have to go down the path and also linearize,
4280 		 * then lets do the pskb_expand_head() work just once here.
4281 		 */
4282 		if (pskb_expand_head(skb,
4283 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4284 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4285 			goto do_drop;
4286 		if (skb_linearize(skb))
4287 			goto do_drop;
4288 	}
4289 
4290 	/* The XDP program wants to see the packet starting at the MAC
4291 	 * header.
4292 	 */
4293 	mac_len = skb->data - skb_mac_header(skb);
4294 	hlen = skb_headlen(skb) + mac_len;
4295 	xdp->data = skb->data - mac_len;
4296 	xdp->data_meta = xdp->data;
4297 	xdp->data_end = xdp->data + hlen;
4298 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4299 	orig_data_end = xdp->data_end;
4300 	orig_data = xdp->data;
4301 
4302 	rxqueue = netif_get_rxqueue(skb);
4303 	xdp->rxq = &rxqueue->xdp_rxq;
4304 
4305 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4306 
4307 	off = xdp->data - orig_data;
4308 	if (off > 0)
4309 		__skb_pull(skb, off);
4310 	else if (off < 0)
4311 		__skb_push(skb, -off);
4312 	skb->mac_header += off;
4313 
4314 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4315 	 * pckt.
4316 	 */
4317 	off = orig_data_end - xdp->data_end;
4318 	if (off != 0) {
4319 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4320 		skb->len -= off;
4321 
4322 	}
4323 
4324 	switch (act) {
4325 	case XDP_REDIRECT:
4326 	case XDP_TX:
4327 		__skb_push(skb, mac_len);
4328 		break;
4329 	case XDP_PASS:
4330 		metalen = xdp->data - xdp->data_meta;
4331 		if (metalen)
4332 			skb_metadata_set(skb, metalen);
4333 		break;
4334 	default:
4335 		bpf_warn_invalid_xdp_action(act);
4336 		/* fall through */
4337 	case XDP_ABORTED:
4338 		trace_xdp_exception(skb->dev, xdp_prog, act);
4339 		/* fall through */
4340 	case XDP_DROP:
4341 	do_drop:
4342 		kfree_skb(skb);
4343 		break;
4344 	}
4345 
4346 	return act;
4347 }
4348 
4349 /* When doing generic XDP we have to bypass the qdisc layer and the
4350  * network taps in order to match in-driver-XDP behavior.
4351  */
4352 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4353 {
4354 	struct net_device *dev = skb->dev;
4355 	struct netdev_queue *txq;
4356 	bool free_skb = true;
4357 	int cpu, rc;
4358 
4359 	txq = netdev_pick_tx(dev, skb, NULL);
4360 	cpu = smp_processor_id();
4361 	HARD_TX_LOCK(dev, txq, cpu);
4362 	if (!netif_xmit_stopped(txq)) {
4363 		rc = netdev_start_xmit(skb, dev, txq, 0);
4364 		if (dev_xmit_complete(rc))
4365 			free_skb = false;
4366 	}
4367 	HARD_TX_UNLOCK(dev, txq);
4368 	if (free_skb) {
4369 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4370 		kfree_skb(skb);
4371 	}
4372 }
4373 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4374 
4375 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4376 
4377 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4378 {
4379 	if (xdp_prog) {
4380 		struct xdp_buff xdp;
4381 		u32 act;
4382 		int err;
4383 
4384 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4385 		if (act != XDP_PASS) {
4386 			switch (act) {
4387 			case XDP_REDIRECT:
4388 				err = xdp_do_generic_redirect(skb->dev, skb,
4389 							      &xdp, xdp_prog);
4390 				if (err)
4391 					goto out_redir;
4392 				break;
4393 			case XDP_TX:
4394 				generic_xdp_tx(skb, xdp_prog);
4395 				break;
4396 			}
4397 			return XDP_DROP;
4398 		}
4399 	}
4400 	return XDP_PASS;
4401 out_redir:
4402 	kfree_skb(skb);
4403 	return XDP_DROP;
4404 }
4405 EXPORT_SYMBOL_GPL(do_xdp_generic);
4406 
4407 static int netif_rx_internal(struct sk_buff *skb)
4408 {
4409 	int ret;
4410 
4411 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4412 
4413 	trace_netif_rx(skb);
4414 
4415 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4416 		int ret;
4417 
4418 		preempt_disable();
4419 		rcu_read_lock();
4420 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4421 		rcu_read_unlock();
4422 		preempt_enable();
4423 
4424 		/* Consider XDP consuming the packet a success from
4425 		 * the netdev point of view we do not want to count
4426 		 * this as an error.
4427 		 */
4428 		if (ret != XDP_PASS)
4429 			return NET_RX_SUCCESS;
4430 	}
4431 
4432 #ifdef CONFIG_RPS
4433 	if (static_key_false(&rps_needed)) {
4434 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4435 		int cpu;
4436 
4437 		preempt_disable();
4438 		rcu_read_lock();
4439 
4440 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4441 		if (cpu < 0)
4442 			cpu = smp_processor_id();
4443 
4444 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4445 
4446 		rcu_read_unlock();
4447 		preempt_enable();
4448 	} else
4449 #endif
4450 	{
4451 		unsigned int qtail;
4452 
4453 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4454 		put_cpu();
4455 	}
4456 	return ret;
4457 }
4458 
4459 /**
4460  *	netif_rx	-	post buffer to the network code
4461  *	@skb: buffer to post
4462  *
4463  *	This function receives a packet from a device driver and queues it for
4464  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4465  *	may be dropped during processing for congestion control or by the
4466  *	protocol layers.
4467  *
4468  *	return values:
4469  *	NET_RX_SUCCESS	(no congestion)
4470  *	NET_RX_DROP     (packet was dropped)
4471  *
4472  */
4473 
4474 int netif_rx(struct sk_buff *skb)
4475 {
4476 	trace_netif_rx_entry(skb);
4477 
4478 	return netif_rx_internal(skb);
4479 }
4480 EXPORT_SYMBOL(netif_rx);
4481 
4482 int netif_rx_ni(struct sk_buff *skb)
4483 {
4484 	int err;
4485 
4486 	trace_netif_rx_ni_entry(skb);
4487 
4488 	preempt_disable();
4489 	err = netif_rx_internal(skb);
4490 	if (local_softirq_pending())
4491 		do_softirq();
4492 	preempt_enable();
4493 
4494 	return err;
4495 }
4496 EXPORT_SYMBOL(netif_rx_ni);
4497 
4498 static __latent_entropy void net_tx_action(struct softirq_action *h)
4499 {
4500 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4501 
4502 	if (sd->completion_queue) {
4503 		struct sk_buff *clist;
4504 
4505 		local_irq_disable();
4506 		clist = sd->completion_queue;
4507 		sd->completion_queue = NULL;
4508 		local_irq_enable();
4509 
4510 		while (clist) {
4511 			struct sk_buff *skb = clist;
4512 
4513 			clist = clist->next;
4514 
4515 			WARN_ON(refcount_read(&skb->users));
4516 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4517 				trace_consume_skb(skb);
4518 			else
4519 				trace_kfree_skb(skb, net_tx_action);
4520 
4521 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4522 				__kfree_skb(skb);
4523 			else
4524 				__kfree_skb_defer(skb);
4525 		}
4526 
4527 		__kfree_skb_flush();
4528 	}
4529 
4530 	if (sd->output_queue) {
4531 		struct Qdisc *head;
4532 
4533 		local_irq_disable();
4534 		head = sd->output_queue;
4535 		sd->output_queue = NULL;
4536 		sd->output_queue_tailp = &sd->output_queue;
4537 		local_irq_enable();
4538 
4539 		while (head) {
4540 			struct Qdisc *q = head;
4541 			spinlock_t *root_lock = NULL;
4542 
4543 			head = head->next_sched;
4544 
4545 			if (!(q->flags & TCQ_F_NOLOCK)) {
4546 				root_lock = qdisc_lock(q);
4547 				spin_lock(root_lock);
4548 			}
4549 			/* We need to make sure head->next_sched is read
4550 			 * before clearing __QDISC_STATE_SCHED
4551 			 */
4552 			smp_mb__before_atomic();
4553 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4554 			qdisc_run(q);
4555 			if (root_lock)
4556 				spin_unlock(root_lock);
4557 		}
4558 	}
4559 
4560 	xfrm_dev_backlog(sd);
4561 }
4562 
4563 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4564 /* This hook is defined here for ATM LANE */
4565 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4566 			     unsigned char *addr) __read_mostly;
4567 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4568 #endif
4569 
4570 static inline struct sk_buff *
4571 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4572 		   struct net_device *orig_dev)
4573 {
4574 #ifdef CONFIG_NET_CLS_ACT
4575 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4576 	struct tcf_result cl_res;
4577 
4578 	/* If there's at least one ingress present somewhere (so
4579 	 * we get here via enabled static key), remaining devices
4580 	 * that are not configured with an ingress qdisc will bail
4581 	 * out here.
4582 	 */
4583 	if (!miniq)
4584 		return skb;
4585 
4586 	if (*pt_prev) {
4587 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4588 		*pt_prev = NULL;
4589 	}
4590 
4591 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4592 	skb->tc_at_ingress = 1;
4593 	mini_qdisc_bstats_cpu_update(miniq, skb);
4594 
4595 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4596 	case TC_ACT_OK:
4597 	case TC_ACT_RECLASSIFY:
4598 		skb->tc_index = TC_H_MIN(cl_res.classid);
4599 		break;
4600 	case TC_ACT_SHOT:
4601 		mini_qdisc_qstats_cpu_drop(miniq);
4602 		kfree_skb(skb);
4603 		return NULL;
4604 	case TC_ACT_STOLEN:
4605 	case TC_ACT_QUEUED:
4606 	case TC_ACT_TRAP:
4607 		consume_skb(skb);
4608 		return NULL;
4609 	case TC_ACT_REDIRECT:
4610 		/* skb_mac_header check was done by cls/act_bpf, so
4611 		 * we can safely push the L2 header back before
4612 		 * redirecting to another netdev
4613 		 */
4614 		__skb_push(skb, skb->mac_len);
4615 		skb_do_redirect(skb);
4616 		return NULL;
4617 	case TC_ACT_REINSERT:
4618 		/* this does not scrub the packet, and updates stats on error */
4619 		skb_tc_reinsert(skb, &cl_res);
4620 		return NULL;
4621 	default:
4622 		break;
4623 	}
4624 #endif /* CONFIG_NET_CLS_ACT */
4625 	return skb;
4626 }
4627 
4628 /**
4629  *	netdev_is_rx_handler_busy - check if receive handler is registered
4630  *	@dev: device to check
4631  *
4632  *	Check if a receive handler is already registered for a given device.
4633  *	Return true if there one.
4634  *
4635  *	The caller must hold the rtnl_mutex.
4636  */
4637 bool netdev_is_rx_handler_busy(struct net_device *dev)
4638 {
4639 	ASSERT_RTNL();
4640 	return dev && rtnl_dereference(dev->rx_handler);
4641 }
4642 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4643 
4644 /**
4645  *	netdev_rx_handler_register - register receive handler
4646  *	@dev: device to register a handler for
4647  *	@rx_handler: receive handler to register
4648  *	@rx_handler_data: data pointer that is used by rx handler
4649  *
4650  *	Register a receive handler for a device. This handler will then be
4651  *	called from __netif_receive_skb. A negative errno code is returned
4652  *	on a failure.
4653  *
4654  *	The caller must hold the rtnl_mutex.
4655  *
4656  *	For a general description of rx_handler, see enum rx_handler_result.
4657  */
4658 int netdev_rx_handler_register(struct net_device *dev,
4659 			       rx_handler_func_t *rx_handler,
4660 			       void *rx_handler_data)
4661 {
4662 	if (netdev_is_rx_handler_busy(dev))
4663 		return -EBUSY;
4664 
4665 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4666 		return -EINVAL;
4667 
4668 	/* Note: rx_handler_data must be set before rx_handler */
4669 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4670 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4671 
4672 	return 0;
4673 }
4674 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4675 
4676 /**
4677  *	netdev_rx_handler_unregister - unregister receive handler
4678  *	@dev: device to unregister a handler from
4679  *
4680  *	Unregister a receive handler from a device.
4681  *
4682  *	The caller must hold the rtnl_mutex.
4683  */
4684 void netdev_rx_handler_unregister(struct net_device *dev)
4685 {
4686 
4687 	ASSERT_RTNL();
4688 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4689 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4690 	 * section has a guarantee to see a non NULL rx_handler_data
4691 	 * as well.
4692 	 */
4693 	synchronize_net();
4694 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4695 }
4696 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4697 
4698 /*
4699  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4700  * the special handling of PFMEMALLOC skbs.
4701  */
4702 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4703 {
4704 	switch (skb->protocol) {
4705 	case htons(ETH_P_ARP):
4706 	case htons(ETH_P_IP):
4707 	case htons(ETH_P_IPV6):
4708 	case htons(ETH_P_8021Q):
4709 	case htons(ETH_P_8021AD):
4710 		return true;
4711 	default:
4712 		return false;
4713 	}
4714 }
4715 
4716 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4717 			     int *ret, struct net_device *orig_dev)
4718 {
4719 #ifdef CONFIG_NETFILTER_INGRESS
4720 	if (nf_hook_ingress_active(skb)) {
4721 		int ingress_retval;
4722 
4723 		if (*pt_prev) {
4724 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4725 			*pt_prev = NULL;
4726 		}
4727 
4728 		rcu_read_lock();
4729 		ingress_retval = nf_hook_ingress(skb);
4730 		rcu_read_unlock();
4731 		return ingress_retval;
4732 	}
4733 #endif /* CONFIG_NETFILTER_INGRESS */
4734 	return 0;
4735 }
4736 
4737 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4738 				    struct packet_type **ppt_prev)
4739 {
4740 	struct packet_type *ptype, *pt_prev;
4741 	rx_handler_func_t *rx_handler;
4742 	struct net_device *orig_dev;
4743 	bool deliver_exact = false;
4744 	int ret = NET_RX_DROP;
4745 	__be16 type;
4746 
4747 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4748 
4749 	trace_netif_receive_skb(skb);
4750 
4751 	orig_dev = skb->dev;
4752 
4753 	skb_reset_network_header(skb);
4754 	if (!skb_transport_header_was_set(skb))
4755 		skb_reset_transport_header(skb);
4756 	skb_reset_mac_len(skb);
4757 
4758 	pt_prev = NULL;
4759 
4760 another_round:
4761 	skb->skb_iif = skb->dev->ifindex;
4762 
4763 	__this_cpu_inc(softnet_data.processed);
4764 
4765 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4766 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4767 		skb = skb_vlan_untag(skb);
4768 		if (unlikely(!skb))
4769 			goto out;
4770 	}
4771 
4772 	if (skb_skip_tc_classify(skb))
4773 		goto skip_classify;
4774 
4775 	if (pfmemalloc)
4776 		goto skip_taps;
4777 
4778 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4779 		if (pt_prev)
4780 			ret = deliver_skb(skb, pt_prev, orig_dev);
4781 		pt_prev = ptype;
4782 	}
4783 
4784 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4785 		if (pt_prev)
4786 			ret = deliver_skb(skb, pt_prev, orig_dev);
4787 		pt_prev = ptype;
4788 	}
4789 
4790 skip_taps:
4791 #ifdef CONFIG_NET_INGRESS
4792 	if (static_branch_unlikely(&ingress_needed_key)) {
4793 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4794 		if (!skb)
4795 			goto out;
4796 
4797 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4798 			goto out;
4799 	}
4800 #endif
4801 	skb_reset_tc(skb);
4802 skip_classify:
4803 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4804 		goto drop;
4805 
4806 	if (skb_vlan_tag_present(skb)) {
4807 		if (pt_prev) {
4808 			ret = deliver_skb(skb, pt_prev, orig_dev);
4809 			pt_prev = NULL;
4810 		}
4811 		if (vlan_do_receive(&skb))
4812 			goto another_round;
4813 		else if (unlikely(!skb))
4814 			goto out;
4815 	}
4816 
4817 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4818 	if (rx_handler) {
4819 		if (pt_prev) {
4820 			ret = deliver_skb(skb, pt_prev, orig_dev);
4821 			pt_prev = NULL;
4822 		}
4823 		switch (rx_handler(&skb)) {
4824 		case RX_HANDLER_CONSUMED:
4825 			ret = NET_RX_SUCCESS;
4826 			goto out;
4827 		case RX_HANDLER_ANOTHER:
4828 			goto another_round;
4829 		case RX_HANDLER_EXACT:
4830 			deliver_exact = true;
4831 		case RX_HANDLER_PASS:
4832 			break;
4833 		default:
4834 			BUG();
4835 		}
4836 	}
4837 
4838 	if (unlikely(skb_vlan_tag_present(skb))) {
4839 		if (skb_vlan_tag_get_id(skb))
4840 			skb->pkt_type = PACKET_OTHERHOST;
4841 		/* Note: we might in the future use prio bits
4842 		 * and set skb->priority like in vlan_do_receive()
4843 		 * For the time being, just ignore Priority Code Point
4844 		 */
4845 		skb->vlan_tci = 0;
4846 	}
4847 
4848 	type = skb->protocol;
4849 
4850 	/* deliver only exact match when indicated */
4851 	if (likely(!deliver_exact)) {
4852 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4853 				       &ptype_base[ntohs(type) &
4854 						   PTYPE_HASH_MASK]);
4855 	}
4856 
4857 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4858 			       &orig_dev->ptype_specific);
4859 
4860 	if (unlikely(skb->dev != orig_dev)) {
4861 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4862 				       &skb->dev->ptype_specific);
4863 	}
4864 
4865 	if (pt_prev) {
4866 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4867 			goto drop;
4868 		*ppt_prev = pt_prev;
4869 	} else {
4870 drop:
4871 		if (!deliver_exact)
4872 			atomic_long_inc(&skb->dev->rx_dropped);
4873 		else
4874 			atomic_long_inc(&skb->dev->rx_nohandler);
4875 		kfree_skb(skb);
4876 		/* Jamal, now you will not able to escape explaining
4877 		 * me how you were going to use this. :-)
4878 		 */
4879 		ret = NET_RX_DROP;
4880 	}
4881 
4882 out:
4883 	return ret;
4884 }
4885 
4886 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4887 {
4888 	struct net_device *orig_dev = skb->dev;
4889 	struct packet_type *pt_prev = NULL;
4890 	int ret;
4891 
4892 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4893 	if (pt_prev)
4894 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4895 	return ret;
4896 }
4897 
4898 /**
4899  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4900  *	@skb: buffer to process
4901  *
4902  *	More direct receive version of netif_receive_skb().  It should
4903  *	only be used by callers that have a need to skip RPS and Generic XDP.
4904  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4905  *
4906  *	This function may only be called from softirq context and interrupts
4907  *	should be enabled.
4908  *
4909  *	Return values (usually ignored):
4910  *	NET_RX_SUCCESS: no congestion
4911  *	NET_RX_DROP: packet was dropped
4912  */
4913 int netif_receive_skb_core(struct sk_buff *skb)
4914 {
4915 	int ret;
4916 
4917 	rcu_read_lock();
4918 	ret = __netif_receive_skb_one_core(skb, false);
4919 	rcu_read_unlock();
4920 
4921 	return ret;
4922 }
4923 EXPORT_SYMBOL(netif_receive_skb_core);
4924 
4925 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4926 						  struct packet_type *pt_prev,
4927 						  struct net_device *orig_dev)
4928 {
4929 	struct sk_buff *skb, *next;
4930 
4931 	if (!pt_prev)
4932 		return;
4933 	if (list_empty(head))
4934 		return;
4935 	if (pt_prev->list_func != NULL)
4936 		pt_prev->list_func(head, pt_prev, orig_dev);
4937 	else
4938 		list_for_each_entry_safe(skb, next, head, list)
4939 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4940 }
4941 
4942 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4943 {
4944 	/* Fast-path assumptions:
4945 	 * - There is no RX handler.
4946 	 * - Only one packet_type matches.
4947 	 * If either of these fails, we will end up doing some per-packet
4948 	 * processing in-line, then handling the 'last ptype' for the whole
4949 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
4950 	 * because the 'last ptype' must be constant across the sublist, and all
4951 	 * other ptypes are handled per-packet.
4952 	 */
4953 	/* Current (common) ptype of sublist */
4954 	struct packet_type *pt_curr = NULL;
4955 	/* Current (common) orig_dev of sublist */
4956 	struct net_device *od_curr = NULL;
4957 	struct list_head sublist;
4958 	struct sk_buff *skb, *next;
4959 
4960 	INIT_LIST_HEAD(&sublist);
4961 	list_for_each_entry_safe(skb, next, head, list) {
4962 		struct net_device *orig_dev = skb->dev;
4963 		struct packet_type *pt_prev = NULL;
4964 
4965 		list_del(&skb->list);
4966 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4967 		if (!pt_prev)
4968 			continue;
4969 		if (pt_curr != pt_prev || od_curr != orig_dev) {
4970 			/* dispatch old sublist */
4971 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4972 			/* start new sublist */
4973 			INIT_LIST_HEAD(&sublist);
4974 			pt_curr = pt_prev;
4975 			od_curr = orig_dev;
4976 		}
4977 		list_add_tail(&skb->list, &sublist);
4978 	}
4979 
4980 	/* dispatch final sublist */
4981 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4982 }
4983 
4984 static int __netif_receive_skb(struct sk_buff *skb)
4985 {
4986 	int ret;
4987 
4988 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4989 		unsigned int noreclaim_flag;
4990 
4991 		/*
4992 		 * PFMEMALLOC skbs are special, they should
4993 		 * - be delivered to SOCK_MEMALLOC sockets only
4994 		 * - stay away from userspace
4995 		 * - have bounded memory usage
4996 		 *
4997 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4998 		 * context down to all allocation sites.
4999 		 */
5000 		noreclaim_flag = memalloc_noreclaim_save();
5001 		ret = __netif_receive_skb_one_core(skb, true);
5002 		memalloc_noreclaim_restore(noreclaim_flag);
5003 	} else
5004 		ret = __netif_receive_skb_one_core(skb, false);
5005 
5006 	return ret;
5007 }
5008 
5009 static void __netif_receive_skb_list(struct list_head *head)
5010 {
5011 	unsigned long noreclaim_flag = 0;
5012 	struct sk_buff *skb, *next;
5013 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5014 
5015 	list_for_each_entry_safe(skb, next, head, list) {
5016 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5017 			struct list_head sublist;
5018 
5019 			/* Handle the previous sublist */
5020 			list_cut_before(&sublist, head, &skb->list);
5021 			if (!list_empty(&sublist))
5022 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5023 			pfmemalloc = !pfmemalloc;
5024 			/* See comments in __netif_receive_skb */
5025 			if (pfmemalloc)
5026 				noreclaim_flag = memalloc_noreclaim_save();
5027 			else
5028 				memalloc_noreclaim_restore(noreclaim_flag);
5029 		}
5030 	}
5031 	/* Handle the remaining sublist */
5032 	if (!list_empty(head))
5033 		__netif_receive_skb_list_core(head, pfmemalloc);
5034 	/* Restore pflags */
5035 	if (pfmemalloc)
5036 		memalloc_noreclaim_restore(noreclaim_flag);
5037 }
5038 
5039 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5040 {
5041 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5042 	struct bpf_prog *new = xdp->prog;
5043 	int ret = 0;
5044 
5045 	switch (xdp->command) {
5046 	case XDP_SETUP_PROG:
5047 		rcu_assign_pointer(dev->xdp_prog, new);
5048 		if (old)
5049 			bpf_prog_put(old);
5050 
5051 		if (old && !new) {
5052 			static_branch_dec(&generic_xdp_needed_key);
5053 		} else if (new && !old) {
5054 			static_branch_inc(&generic_xdp_needed_key);
5055 			dev_disable_lro(dev);
5056 			dev_disable_gro_hw(dev);
5057 		}
5058 		break;
5059 
5060 	case XDP_QUERY_PROG:
5061 		xdp->prog_id = old ? old->aux->id : 0;
5062 		break;
5063 
5064 	default:
5065 		ret = -EINVAL;
5066 		break;
5067 	}
5068 
5069 	return ret;
5070 }
5071 
5072 static int netif_receive_skb_internal(struct sk_buff *skb)
5073 {
5074 	int ret;
5075 
5076 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5077 
5078 	if (skb_defer_rx_timestamp(skb))
5079 		return NET_RX_SUCCESS;
5080 
5081 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5082 		int ret;
5083 
5084 		preempt_disable();
5085 		rcu_read_lock();
5086 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5087 		rcu_read_unlock();
5088 		preempt_enable();
5089 
5090 		if (ret != XDP_PASS)
5091 			return NET_RX_DROP;
5092 	}
5093 
5094 	rcu_read_lock();
5095 #ifdef CONFIG_RPS
5096 	if (static_key_false(&rps_needed)) {
5097 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5098 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5099 
5100 		if (cpu >= 0) {
5101 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5102 			rcu_read_unlock();
5103 			return ret;
5104 		}
5105 	}
5106 #endif
5107 	ret = __netif_receive_skb(skb);
5108 	rcu_read_unlock();
5109 	return ret;
5110 }
5111 
5112 static void netif_receive_skb_list_internal(struct list_head *head)
5113 {
5114 	struct bpf_prog *xdp_prog = NULL;
5115 	struct sk_buff *skb, *next;
5116 	struct list_head sublist;
5117 
5118 	INIT_LIST_HEAD(&sublist);
5119 	list_for_each_entry_safe(skb, next, head, list) {
5120 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5121 		list_del(&skb->list);
5122 		if (!skb_defer_rx_timestamp(skb))
5123 			list_add_tail(&skb->list, &sublist);
5124 	}
5125 	list_splice_init(&sublist, head);
5126 
5127 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5128 		preempt_disable();
5129 		rcu_read_lock();
5130 		list_for_each_entry_safe(skb, next, head, list) {
5131 			xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5132 			list_del(&skb->list);
5133 			if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5134 				list_add_tail(&skb->list, &sublist);
5135 		}
5136 		rcu_read_unlock();
5137 		preempt_enable();
5138 		/* Put passed packets back on main list */
5139 		list_splice_init(&sublist, head);
5140 	}
5141 
5142 	rcu_read_lock();
5143 #ifdef CONFIG_RPS
5144 	if (static_key_false(&rps_needed)) {
5145 		list_for_each_entry_safe(skb, next, head, list) {
5146 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5147 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5148 
5149 			if (cpu >= 0) {
5150 				/* Will be handled, remove from list */
5151 				list_del(&skb->list);
5152 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5153 			}
5154 		}
5155 	}
5156 #endif
5157 	__netif_receive_skb_list(head);
5158 	rcu_read_unlock();
5159 }
5160 
5161 /**
5162  *	netif_receive_skb - process receive buffer from network
5163  *	@skb: buffer to process
5164  *
5165  *	netif_receive_skb() is the main receive data processing function.
5166  *	It always succeeds. The buffer may be dropped during processing
5167  *	for congestion control or by the protocol layers.
5168  *
5169  *	This function may only be called from softirq context and interrupts
5170  *	should be enabled.
5171  *
5172  *	Return values (usually ignored):
5173  *	NET_RX_SUCCESS: no congestion
5174  *	NET_RX_DROP: packet was dropped
5175  */
5176 int netif_receive_skb(struct sk_buff *skb)
5177 {
5178 	trace_netif_receive_skb_entry(skb);
5179 
5180 	return netif_receive_skb_internal(skb);
5181 }
5182 EXPORT_SYMBOL(netif_receive_skb);
5183 
5184 /**
5185  *	netif_receive_skb_list - process many receive buffers from network
5186  *	@head: list of skbs to process.
5187  *
5188  *	Since return value of netif_receive_skb() is normally ignored, and
5189  *	wouldn't be meaningful for a list, this function returns void.
5190  *
5191  *	This function may only be called from softirq context and interrupts
5192  *	should be enabled.
5193  */
5194 void netif_receive_skb_list(struct list_head *head)
5195 {
5196 	struct sk_buff *skb;
5197 
5198 	if (list_empty(head))
5199 		return;
5200 	list_for_each_entry(skb, head, list)
5201 		trace_netif_receive_skb_list_entry(skb);
5202 	netif_receive_skb_list_internal(head);
5203 }
5204 EXPORT_SYMBOL(netif_receive_skb_list);
5205 
5206 DEFINE_PER_CPU(struct work_struct, flush_works);
5207 
5208 /* Network device is going away, flush any packets still pending */
5209 static void flush_backlog(struct work_struct *work)
5210 {
5211 	struct sk_buff *skb, *tmp;
5212 	struct softnet_data *sd;
5213 
5214 	local_bh_disable();
5215 	sd = this_cpu_ptr(&softnet_data);
5216 
5217 	local_irq_disable();
5218 	rps_lock(sd);
5219 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5220 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5221 			__skb_unlink(skb, &sd->input_pkt_queue);
5222 			kfree_skb(skb);
5223 			input_queue_head_incr(sd);
5224 		}
5225 	}
5226 	rps_unlock(sd);
5227 	local_irq_enable();
5228 
5229 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5230 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5231 			__skb_unlink(skb, &sd->process_queue);
5232 			kfree_skb(skb);
5233 			input_queue_head_incr(sd);
5234 		}
5235 	}
5236 	local_bh_enable();
5237 }
5238 
5239 static void flush_all_backlogs(void)
5240 {
5241 	unsigned int cpu;
5242 
5243 	get_online_cpus();
5244 
5245 	for_each_online_cpu(cpu)
5246 		queue_work_on(cpu, system_highpri_wq,
5247 			      per_cpu_ptr(&flush_works, cpu));
5248 
5249 	for_each_online_cpu(cpu)
5250 		flush_work(per_cpu_ptr(&flush_works, cpu));
5251 
5252 	put_online_cpus();
5253 }
5254 
5255 static int napi_gro_complete(struct sk_buff *skb)
5256 {
5257 	struct packet_offload *ptype;
5258 	__be16 type = skb->protocol;
5259 	struct list_head *head = &offload_base;
5260 	int err = -ENOENT;
5261 
5262 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5263 
5264 	if (NAPI_GRO_CB(skb)->count == 1) {
5265 		skb_shinfo(skb)->gso_size = 0;
5266 		goto out;
5267 	}
5268 
5269 	rcu_read_lock();
5270 	list_for_each_entry_rcu(ptype, head, list) {
5271 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5272 			continue;
5273 
5274 		err = ptype->callbacks.gro_complete(skb, 0);
5275 		break;
5276 	}
5277 	rcu_read_unlock();
5278 
5279 	if (err) {
5280 		WARN_ON(&ptype->list == head);
5281 		kfree_skb(skb);
5282 		return NET_RX_SUCCESS;
5283 	}
5284 
5285 out:
5286 	return netif_receive_skb_internal(skb);
5287 }
5288 
5289 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5290 				   bool flush_old)
5291 {
5292 	struct list_head *head = &napi->gro_hash[index].list;
5293 	struct sk_buff *skb, *p;
5294 
5295 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5296 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5297 			return;
5298 		list_del(&skb->list);
5299 		skb->next = NULL;
5300 		napi_gro_complete(skb);
5301 		napi->gro_hash[index].count--;
5302 	}
5303 
5304 	if (!napi->gro_hash[index].count)
5305 		__clear_bit(index, &napi->gro_bitmask);
5306 }
5307 
5308 /* napi->gro_hash[].list contains packets ordered by age.
5309  * youngest packets at the head of it.
5310  * Complete skbs in reverse order to reduce latencies.
5311  */
5312 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5313 {
5314 	u32 i;
5315 
5316 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5317 		if (test_bit(i, &napi->gro_bitmask))
5318 			__napi_gro_flush_chain(napi, i, flush_old);
5319 	}
5320 }
5321 EXPORT_SYMBOL(napi_gro_flush);
5322 
5323 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5324 					  struct sk_buff *skb)
5325 {
5326 	unsigned int maclen = skb->dev->hard_header_len;
5327 	u32 hash = skb_get_hash_raw(skb);
5328 	struct list_head *head;
5329 	struct sk_buff *p;
5330 
5331 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5332 	list_for_each_entry(p, head, list) {
5333 		unsigned long diffs;
5334 
5335 		NAPI_GRO_CB(p)->flush = 0;
5336 
5337 		if (hash != skb_get_hash_raw(p)) {
5338 			NAPI_GRO_CB(p)->same_flow = 0;
5339 			continue;
5340 		}
5341 
5342 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5343 		diffs |= p->vlan_tci ^ skb->vlan_tci;
5344 		diffs |= skb_metadata_dst_cmp(p, skb);
5345 		diffs |= skb_metadata_differs(p, skb);
5346 		if (maclen == ETH_HLEN)
5347 			diffs |= compare_ether_header(skb_mac_header(p),
5348 						      skb_mac_header(skb));
5349 		else if (!diffs)
5350 			diffs = memcmp(skb_mac_header(p),
5351 				       skb_mac_header(skb),
5352 				       maclen);
5353 		NAPI_GRO_CB(p)->same_flow = !diffs;
5354 	}
5355 
5356 	return head;
5357 }
5358 
5359 static void skb_gro_reset_offset(struct sk_buff *skb)
5360 {
5361 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5362 	const skb_frag_t *frag0 = &pinfo->frags[0];
5363 
5364 	NAPI_GRO_CB(skb)->data_offset = 0;
5365 	NAPI_GRO_CB(skb)->frag0 = NULL;
5366 	NAPI_GRO_CB(skb)->frag0_len = 0;
5367 
5368 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5369 	    pinfo->nr_frags &&
5370 	    !PageHighMem(skb_frag_page(frag0))) {
5371 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5372 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5373 						    skb_frag_size(frag0),
5374 						    skb->end - skb->tail);
5375 	}
5376 }
5377 
5378 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5379 {
5380 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5381 
5382 	BUG_ON(skb->end - skb->tail < grow);
5383 
5384 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5385 
5386 	skb->data_len -= grow;
5387 	skb->tail += grow;
5388 
5389 	pinfo->frags[0].page_offset += grow;
5390 	skb_frag_size_sub(&pinfo->frags[0], grow);
5391 
5392 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5393 		skb_frag_unref(skb, 0);
5394 		memmove(pinfo->frags, pinfo->frags + 1,
5395 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5396 	}
5397 }
5398 
5399 static void gro_flush_oldest(struct list_head *head)
5400 {
5401 	struct sk_buff *oldest;
5402 
5403 	oldest = list_last_entry(head, struct sk_buff, list);
5404 
5405 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5406 	 * impossible.
5407 	 */
5408 	if (WARN_ON_ONCE(!oldest))
5409 		return;
5410 
5411 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5412 	 * SKB to the chain.
5413 	 */
5414 	list_del(&oldest->list);
5415 	napi_gro_complete(oldest);
5416 }
5417 
5418 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5419 {
5420 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5421 	struct list_head *head = &offload_base;
5422 	struct packet_offload *ptype;
5423 	__be16 type = skb->protocol;
5424 	struct list_head *gro_head;
5425 	struct sk_buff *pp = NULL;
5426 	enum gro_result ret;
5427 	int same_flow;
5428 	int grow;
5429 
5430 	if (netif_elide_gro(skb->dev))
5431 		goto normal;
5432 
5433 	gro_head = gro_list_prepare(napi, skb);
5434 
5435 	rcu_read_lock();
5436 	list_for_each_entry_rcu(ptype, head, list) {
5437 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5438 			continue;
5439 
5440 		skb_set_network_header(skb, skb_gro_offset(skb));
5441 		skb_reset_mac_len(skb);
5442 		NAPI_GRO_CB(skb)->same_flow = 0;
5443 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5444 		NAPI_GRO_CB(skb)->free = 0;
5445 		NAPI_GRO_CB(skb)->encap_mark = 0;
5446 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5447 		NAPI_GRO_CB(skb)->is_fou = 0;
5448 		NAPI_GRO_CB(skb)->is_atomic = 1;
5449 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5450 
5451 		/* Setup for GRO checksum validation */
5452 		switch (skb->ip_summed) {
5453 		case CHECKSUM_COMPLETE:
5454 			NAPI_GRO_CB(skb)->csum = skb->csum;
5455 			NAPI_GRO_CB(skb)->csum_valid = 1;
5456 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5457 			break;
5458 		case CHECKSUM_UNNECESSARY:
5459 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5460 			NAPI_GRO_CB(skb)->csum_valid = 0;
5461 			break;
5462 		default:
5463 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5464 			NAPI_GRO_CB(skb)->csum_valid = 0;
5465 		}
5466 
5467 		pp = ptype->callbacks.gro_receive(gro_head, skb);
5468 		break;
5469 	}
5470 	rcu_read_unlock();
5471 
5472 	if (&ptype->list == head)
5473 		goto normal;
5474 
5475 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5476 		ret = GRO_CONSUMED;
5477 		goto ok;
5478 	}
5479 
5480 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5481 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5482 
5483 	if (pp) {
5484 		list_del(&pp->list);
5485 		pp->next = NULL;
5486 		napi_gro_complete(pp);
5487 		napi->gro_hash[hash].count--;
5488 	}
5489 
5490 	if (same_flow)
5491 		goto ok;
5492 
5493 	if (NAPI_GRO_CB(skb)->flush)
5494 		goto normal;
5495 
5496 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5497 		gro_flush_oldest(gro_head);
5498 	} else {
5499 		napi->gro_hash[hash].count++;
5500 	}
5501 	NAPI_GRO_CB(skb)->count = 1;
5502 	NAPI_GRO_CB(skb)->age = jiffies;
5503 	NAPI_GRO_CB(skb)->last = skb;
5504 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5505 	list_add(&skb->list, gro_head);
5506 	ret = GRO_HELD;
5507 
5508 pull:
5509 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5510 	if (grow > 0)
5511 		gro_pull_from_frag0(skb, grow);
5512 ok:
5513 	if (napi->gro_hash[hash].count) {
5514 		if (!test_bit(hash, &napi->gro_bitmask))
5515 			__set_bit(hash, &napi->gro_bitmask);
5516 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5517 		__clear_bit(hash, &napi->gro_bitmask);
5518 	}
5519 
5520 	return ret;
5521 
5522 normal:
5523 	ret = GRO_NORMAL;
5524 	goto pull;
5525 }
5526 
5527 struct packet_offload *gro_find_receive_by_type(__be16 type)
5528 {
5529 	struct list_head *offload_head = &offload_base;
5530 	struct packet_offload *ptype;
5531 
5532 	list_for_each_entry_rcu(ptype, offload_head, list) {
5533 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5534 			continue;
5535 		return ptype;
5536 	}
5537 	return NULL;
5538 }
5539 EXPORT_SYMBOL(gro_find_receive_by_type);
5540 
5541 struct packet_offload *gro_find_complete_by_type(__be16 type)
5542 {
5543 	struct list_head *offload_head = &offload_base;
5544 	struct packet_offload *ptype;
5545 
5546 	list_for_each_entry_rcu(ptype, offload_head, list) {
5547 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5548 			continue;
5549 		return ptype;
5550 	}
5551 	return NULL;
5552 }
5553 EXPORT_SYMBOL(gro_find_complete_by_type);
5554 
5555 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5556 {
5557 	skb_dst_drop(skb);
5558 	secpath_reset(skb);
5559 	kmem_cache_free(skbuff_head_cache, skb);
5560 }
5561 
5562 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5563 {
5564 	switch (ret) {
5565 	case GRO_NORMAL:
5566 		if (netif_receive_skb_internal(skb))
5567 			ret = GRO_DROP;
5568 		break;
5569 
5570 	case GRO_DROP:
5571 		kfree_skb(skb);
5572 		break;
5573 
5574 	case GRO_MERGED_FREE:
5575 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5576 			napi_skb_free_stolen_head(skb);
5577 		else
5578 			__kfree_skb(skb);
5579 		break;
5580 
5581 	case GRO_HELD:
5582 	case GRO_MERGED:
5583 	case GRO_CONSUMED:
5584 		break;
5585 	}
5586 
5587 	return ret;
5588 }
5589 
5590 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5591 {
5592 	skb_mark_napi_id(skb, napi);
5593 	trace_napi_gro_receive_entry(skb);
5594 
5595 	skb_gro_reset_offset(skb);
5596 
5597 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5598 }
5599 EXPORT_SYMBOL(napi_gro_receive);
5600 
5601 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5602 {
5603 	if (unlikely(skb->pfmemalloc)) {
5604 		consume_skb(skb);
5605 		return;
5606 	}
5607 	__skb_pull(skb, skb_headlen(skb));
5608 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5609 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5610 	skb->vlan_tci = 0;
5611 	skb->dev = napi->dev;
5612 	skb->skb_iif = 0;
5613 	skb->encapsulation = 0;
5614 	skb_shinfo(skb)->gso_type = 0;
5615 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5616 	secpath_reset(skb);
5617 
5618 	napi->skb = skb;
5619 }
5620 
5621 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5622 {
5623 	struct sk_buff *skb = napi->skb;
5624 
5625 	if (!skb) {
5626 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5627 		if (skb) {
5628 			napi->skb = skb;
5629 			skb_mark_napi_id(skb, napi);
5630 		}
5631 	}
5632 	return skb;
5633 }
5634 EXPORT_SYMBOL(napi_get_frags);
5635 
5636 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5637 				      struct sk_buff *skb,
5638 				      gro_result_t ret)
5639 {
5640 	switch (ret) {
5641 	case GRO_NORMAL:
5642 	case GRO_HELD:
5643 		__skb_push(skb, ETH_HLEN);
5644 		skb->protocol = eth_type_trans(skb, skb->dev);
5645 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5646 			ret = GRO_DROP;
5647 		break;
5648 
5649 	case GRO_DROP:
5650 		napi_reuse_skb(napi, skb);
5651 		break;
5652 
5653 	case GRO_MERGED_FREE:
5654 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5655 			napi_skb_free_stolen_head(skb);
5656 		else
5657 			napi_reuse_skb(napi, skb);
5658 		break;
5659 
5660 	case GRO_MERGED:
5661 	case GRO_CONSUMED:
5662 		break;
5663 	}
5664 
5665 	return ret;
5666 }
5667 
5668 /* Upper GRO stack assumes network header starts at gro_offset=0
5669  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5670  * We copy ethernet header into skb->data to have a common layout.
5671  */
5672 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5673 {
5674 	struct sk_buff *skb = napi->skb;
5675 	const struct ethhdr *eth;
5676 	unsigned int hlen = sizeof(*eth);
5677 
5678 	napi->skb = NULL;
5679 
5680 	skb_reset_mac_header(skb);
5681 	skb_gro_reset_offset(skb);
5682 
5683 	eth = skb_gro_header_fast(skb, 0);
5684 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5685 		eth = skb_gro_header_slow(skb, hlen, 0);
5686 		if (unlikely(!eth)) {
5687 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5688 					     __func__, napi->dev->name);
5689 			napi_reuse_skb(napi, skb);
5690 			return NULL;
5691 		}
5692 	} else {
5693 		gro_pull_from_frag0(skb, hlen);
5694 		NAPI_GRO_CB(skb)->frag0 += hlen;
5695 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5696 	}
5697 	__skb_pull(skb, hlen);
5698 
5699 	/*
5700 	 * This works because the only protocols we care about don't require
5701 	 * special handling.
5702 	 * We'll fix it up properly in napi_frags_finish()
5703 	 */
5704 	skb->protocol = eth->h_proto;
5705 
5706 	return skb;
5707 }
5708 
5709 gro_result_t napi_gro_frags(struct napi_struct *napi)
5710 {
5711 	struct sk_buff *skb = napi_frags_skb(napi);
5712 
5713 	if (!skb)
5714 		return GRO_DROP;
5715 
5716 	trace_napi_gro_frags_entry(skb);
5717 
5718 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5719 }
5720 EXPORT_SYMBOL(napi_gro_frags);
5721 
5722 /* Compute the checksum from gro_offset and return the folded value
5723  * after adding in any pseudo checksum.
5724  */
5725 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5726 {
5727 	__wsum wsum;
5728 	__sum16 sum;
5729 
5730 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5731 
5732 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5733 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5734 	if (likely(!sum)) {
5735 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5736 		    !skb->csum_complete_sw)
5737 			netdev_rx_csum_fault(skb->dev);
5738 	}
5739 
5740 	NAPI_GRO_CB(skb)->csum = wsum;
5741 	NAPI_GRO_CB(skb)->csum_valid = 1;
5742 
5743 	return sum;
5744 }
5745 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5746 
5747 static void net_rps_send_ipi(struct softnet_data *remsd)
5748 {
5749 #ifdef CONFIG_RPS
5750 	while (remsd) {
5751 		struct softnet_data *next = remsd->rps_ipi_next;
5752 
5753 		if (cpu_online(remsd->cpu))
5754 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5755 		remsd = next;
5756 	}
5757 #endif
5758 }
5759 
5760 /*
5761  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5762  * Note: called with local irq disabled, but exits with local irq enabled.
5763  */
5764 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5765 {
5766 #ifdef CONFIG_RPS
5767 	struct softnet_data *remsd = sd->rps_ipi_list;
5768 
5769 	if (remsd) {
5770 		sd->rps_ipi_list = NULL;
5771 
5772 		local_irq_enable();
5773 
5774 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5775 		net_rps_send_ipi(remsd);
5776 	} else
5777 #endif
5778 		local_irq_enable();
5779 }
5780 
5781 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5782 {
5783 #ifdef CONFIG_RPS
5784 	return sd->rps_ipi_list != NULL;
5785 #else
5786 	return false;
5787 #endif
5788 }
5789 
5790 static int process_backlog(struct napi_struct *napi, int quota)
5791 {
5792 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5793 	bool again = true;
5794 	int work = 0;
5795 
5796 	/* Check if we have pending ipi, its better to send them now,
5797 	 * not waiting net_rx_action() end.
5798 	 */
5799 	if (sd_has_rps_ipi_waiting(sd)) {
5800 		local_irq_disable();
5801 		net_rps_action_and_irq_enable(sd);
5802 	}
5803 
5804 	napi->weight = dev_rx_weight;
5805 	while (again) {
5806 		struct sk_buff *skb;
5807 
5808 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5809 			rcu_read_lock();
5810 			__netif_receive_skb(skb);
5811 			rcu_read_unlock();
5812 			input_queue_head_incr(sd);
5813 			if (++work >= quota)
5814 				return work;
5815 
5816 		}
5817 
5818 		local_irq_disable();
5819 		rps_lock(sd);
5820 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5821 			/*
5822 			 * Inline a custom version of __napi_complete().
5823 			 * only current cpu owns and manipulates this napi,
5824 			 * and NAPI_STATE_SCHED is the only possible flag set
5825 			 * on backlog.
5826 			 * We can use a plain write instead of clear_bit(),
5827 			 * and we dont need an smp_mb() memory barrier.
5828 			 */
5829 			napi->state = 0;
5830 			again = false;
5831 		} else {
5832 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5833 						   &sd->process_queue);
5834 		}
5835 		rps_unlock(sd);
5836 		local_irq_enable();
5837 	}
5838 
5839 	return work;
5840 }
5841 
5842 /**
5843  * __napi_schedule - schedule for receive
5844  * @n: entry to schedule
5845  *
5846  * The entry's receive function will be scheduled to run.
5847  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5848  */
5849 void __napi_schedule(struct napi_struct *n)
5850 {
5851 	unsigned long flags;
5852 
5853 	local_irq_save(flags);
5854 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5855 	local_irq_restore(flags);
5856 }
5857 EXPORT_SYMBOL(__napi_schedule);
5858 
5859 /**
5860  *	napi_schedule_prep - check if napi can be scheduled
5861  *	@n: napi context
5862  *
5863  * Test if NAPI routine is already running, and if not mark
5864  * it as running.  This is used as a condition variable
5865  * insure only one NAPI poll instance runs.  We also make
5866  * sure there is no pending NAPI disable.
5867  */
5868 bool napi_schedule_prep(struct napi_struct *n)
5869 {
5870 	unsigned long val, new;
5871 
5872 	do {
5873 		val = READ_ONCE(n->state);
5874 		if (unlikely(val & NAPIF_STATE_DISABLE))
5875 			return false;
5876 		new = val | NAPIF_STATE_SCHED;
5877 
5878 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5879 		 * This was suggested by Alexander Duyck, as compiler
5880 		 * emits better code than :
5881 		 * if (val & NAPIF_STATE_SCHED)
5882 		 *     new |= NAPIF_STATE_MISSED;
5883 		 */
5884 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5885 						   NAPIF_STATE_MISSED;
5886 	} while (cmpxchg(&n->state, val, new) != val);
5887 
5888 	return !(val & NAPIF_STATE_SCHED);
5889 }
5890 EXPORT_SYMBOL(napi_schedule_prep);
5891 
5892 /**
5893  * __napi_schedule_irqoff - schedule for receive
5894  * @n: entry to schedule
5895  *
5896  * Variant of __napi_schedule() assuming hard irqs are masked
5897  */
5898 void __napi_schedule_irqoff(struct napi_struct *n)
5899 {
5900 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5901 }
5902 EXPORT_SYMBOL(__napi_schedule_irqoff);
5903 
5904 bool napi_complete_done(struct napi_struct *n, int work_done)
5905 {
5906 	unsigned long flags, val, new;
5907 
5908 	/*
5909 	 * 1) Don't let napi dequeue from the cpu poll list
5910 	 *    just in case its running on a different cpu.
5911 	 * 2) If we are busy polling, do nothing here, we have
5912 	 *    the guarantee we will be called later.
5913 	 */
5914 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5915 				 NAPIF_STATE_IN_BUSY_POLL)))
5916 		return false;
5917 
5918 	if (n->gro_bitmask) {
5919 		unsigned long timeout = 0;
5920 
5921 		if (work_done)
5922 			timeout = n->dev->gro_flush_timeout;
5923 
5924 		if (timeout)
5925 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5926 				      HRTIMER_MODE_REL_PINNED);
5927 		else
5928 			napi_gro_flush(n, false);
5929 	}
5930 	if (unlikely(!list_empty(&n->poll_list))) {
5931 		/* If n->poll_list is not empty, we need to mask irqs */
5932 		local_irq_save(flags);
5933 		list_del_init(&n->poll_list);
5934 		local_irq_restore(flags);
5935 	}
5936 
5937 	do {
5938 		val = READ_ONCE(n->state);
5939 
5940 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5941 
5942 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5943 
5944 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5945 		 * because we will call napi->poll() one more time.
5946 		 * This C code was suggested by Alexander Duyck to help gcc.
5947 		 */
5948 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5949 						    NAPIF_STATE_SCHED;
5950 	} while (cmpxchg(&n->state, val, new) != val);
5951 
5952 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5953 		__napi_schedule(n);
5954 		return false;
5955 	}
5956 
5957 	return true;
5958 }
5959 EXPORT_SYMBOL(napi_complete_done);
5960 
5961 /* must be called under rcu_read_lock(), as we dont take a reference */
5962 static struct napi_struct *napi_by_id(unsigned int napi_id)
5963 {
5964 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5965 	struct napi_struct *napi;
5966 
5967 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5968 		if (napi->napi_id == napi_id)
5969 			return napi;
5970 
5971 	return NULL;
5972 }
5973 
5974 #if defined(CONFIG_NET_RX_BUSY_POLL)
5975 
5976 #define BUSY_POLL_BUDGET 8
5977 
5978 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5979 {
5980 	int rc;
5981 
5982 	/* Busy polling means there is a high chance device driver hard irq
5983 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5984 	 * set in napi_schedule_prep().
5985 	 * Since we are about to call napi->poll() once more, we can safely
5986 	 * clear NAPI_STATE_MISSED.
5987 	 *
5988 	 * Note: x86 could use a single "lock and ..." instruction
5989 	 * to perform these two clear_bit()
5990 	 */
5991 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5992 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5993 
5994 	local_bh_disable();
5995 
5996 	/* All we really want here is to re-enable device interrupts.
5997 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5998 	 */
5999 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6000 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6001 	netpoll_poll_unlock(have_poll_lock);
6002 	if (rc == BUSY_POLL_BUDGET)
6003 		__napi_schedule(napi);
6004 	local_bh_enable();
6005 }
6006 
6007 void napi_busy_loop(unsigned int napi_id,
6008 		    bool (*loop_end)(void *, unsigned long),
6009 		    void *loop_end_arg)
6010 {
6011 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6012 	int (*napi_poll)(struct napi_struct *napi, int budget);
6013 	void *have_poll_lock = NULL;
6014 	struct napi_struct *napi;
6015 
6016 restart:
6017 	napi_poll = NULL;
6018 
6019 	rcu_read_lock();
6020 
6021 	napi = napi_by_id(napi_id);
6022 	if (!napi)
6023 		goto out;
6024 
6025 	preempt_disable();
6026 	for (;;) {
6027 		int work = 0;
6028 
6029 		local_bh_disable();
6030 		if (!napi_poll) {
6031 			unsigned long val = READ_ONCE(napi->state);
6032 
6033 			/* If multiple threads are competing for this napi,
6034 			 * we avoid dirtying napi->state as much as we can.
6035 			 */
6036 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6037 				   NAPIF_STATE_IN_BUSY_POLL))
6038 				goto count;
6039 			if (cmpxchg(&napi->state, val,
6040 				    val | NAPIF_STATE_IN_BUSY_POLL |
6041 					  NAPIF_STATE_SCHED) != val)
6042 				goto count;
6043 			have_poll_lock = netpoll_poll_lock(napi);
6044 			napi_poll = napi->poll;
6045 		}
6046 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6047 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6048 count:
6049 		if (work > 0)
6050 			__NET_ADD_STATS(dev_net(napi->dev),
6051 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6052 		local_bh_enable();
6053 
6054 		if (!loop_end || loop_end(loop_end_arg, start_time))
6055 			break;
6056 
6057 		if (unlikely(need_resched())) {
6058 			if (napi_poll)
6059 				busy_poll_stop(napi, have_poll_lock);
6060 			preempt_enable();
6061 			rcu_read_unlock();
6062 			cond_resched();
6063 			if (loop_end(loop_end_arg, start_time))
6064 				return;
6065 			goto restart;
6066 		}
6067 		cpu_relax();
6068 	}
6069 	if (napi_poll)
6070 		busy_poll_stop(napi, have_poll_lock);
6071 	preempt_enable();
6072 out:
6073 	rcu_read_unlock();
6074 }
6075 EXPORT_SYMBOL(napi_busy_loop);
6076 
6077 #endif /* CONFIG_NET_RX_BUSY_POLL */
6078 
6079 static void napi_hash_add(struct napi_struct *napi)
6080 {
6081 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6082 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6083 		return;
6084 
6085 	spin_lock(&napi_hash_lock);
6086 
6087 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6088 	do {
6089 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6090 			napi_gen_id = MIN_NAPI_ID;
6091 	} while (napi_by_id(napi_gen_id));
6092 	napi->napi_id = napi_gen_id;
6093 
6094 	hlist_add_head_rcu(&napi->napi_hash_node,
6095 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6096 
6097 	spin_unlock(&napi_hash_lock);
6098 }
6099 
6100 /* Warning : caller is responsible to make sure rcu grace period
6101  * is respected before freeing memory containing @napi
6102  */
6103 bool napi_hash_del(struct napi_struct *napi)
6104 {
6105 	bool rcu_sync_needed = false;
6106 
6107 	spin_lock(&napi_hash_lock);
6108 
6109 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6110 		rcu_sync_needed = true;
6111 		hlist_del_rcu(&napi->napi_hash_node);
6112 	}
6113 	spin_unlock(&napi_hash_lock);
6114 	return rcu_sync_needed;
6115 }
6116 EXPORT_SYMBOL_GPL(napi_hash_del);
6117 
6118 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6119 {
6120 	struct napi_struct *napi;
6121 
6122 	napi = container_of(timer, struct napi_struct, timer);
6123 
6124 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6125 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6126 	 */
6127 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6128 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6129 		__napi_schedule_irqoff(napi);
6130 
6131 	return HRTIMER_NORESTART;
6132 }
6133 
6134 static void init_gro_hash(struct napi_struct *napi)
6135 {
6136 	int i;
6137 
6138 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6139 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6140 		napi->gro_hash[i].count = 0;
6141 	}
6142 	napi->gro_bitmask = 0;
6143 }
6144 
6145 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6146 		    int (*poll)(struct napi_struct *, int), int weight)
6147 {
6148 	INIT_LIST_HEAD(&napi->poll_list);
6149 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6150 	napi->timer.function = napi_watchdog;
6151 	init_gro_hash(napi);
6152 	napi->skb = NULL;
6153 	napi->poll = poll;
6154 	if (weight > NAPI_POLL_WEIGHT)
6155 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6156 			    weight, dev->name);
6157 	napi->weight = weight;
6158 	list_add(&napi->dev_list, &dev->napi_list);
6159 	napi->dev = dev;
6160 #ifdef CONFIG_NETPOLL
6161 	napi->poll_owner = -1;
6162 #endif
6163 	set_bit(NAPI_STATE_SCHED, &napi->state);
6164 	napi_hash_add(napi);
6165 }
6166 EXPORT_SYMBOL(netif_napi_add);
6167 
6168 void napi_disable(struct napi_struct *n)
6169 {
6170 	might_sleep();
6171 	set_bit(NAPI_STATE_DISABLE, &n->state);
6172 
6173 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6174 		msleep(1);
6175 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6176 		msleep(1);
6177 
6178 	hrtimer_cancel(&n->timer);
6179 
6180 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6181 }
6182 EXPORT_SYMBOL(napi_disable);
6183 
6184 static void flush_gro_hash(struct napi_struct *napi)
6185 {
6186 	int i;
6187 
6188 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6189 		struct sk_buff *skb, *n;
6190 
6191 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6192 			kfree_skb(skb);
6193 		napi->gro_hash[i].count = 0;
6194 	}
6195 }
6196 
6197 /* Must be called in process context */
6198 void netif_napi_del(struct napi_struct *napi)
6199 {
6200 	might_sleep();
6201 	if (napi_hash_del(napi))
6202 		synchronize_net();
6203 	list_del_init(&napi->dev_list);
6204 	napi_free_frags(napi);
6205 
6206 	flush_gro_hash(napi);
6207 	napi->gro_bitmask = 0;
6208 }
6209 EXPORT_SYMBOL(netif_napi_del);
6210 
6211 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6212 {
6213 	void *have;
6214 	int work, weight;
6215 
6216 	list_del_init(&n->poll_list);
6217 
6218 	have = netpoll_poll_lock(n);
6219 
6220 	weight = n->weight;
6221 
6222 	/* This NAPI_STATE_SCHED test is for avoiding a race
6223 	 * with netpoll's poll_napi().  Only the entity which
6224 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6225 	 * actually make the ->poll() call.  Therefore we avoid
6226 	 * accidentally calling ->poll() when NAPI is not scheduled.
6227 	 */
6228 	work = 0;
6229 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6230 		work = n->poll(n, weight);
6231 		trace_napi_poll(n, work, weight);
6232 	}
6233 
6234 	WARN_ON_ONCE(work > weight);
6235 
6236 	if (likely(work < weight))
6237 		goto out_unlock;
6238 
6239 	/* Drivers must not modify the NAPI state if they
6240 	 * consume the entire weight.  In such cases this code
6241 	 * still "owns" the NAPI instance and therefore can
6242 	 * move the instance around on the list at-will.
6243 	 */
6244 	if (unlikely(napi_disable_pending(n))) {
6245 		napi_complete(n);
6246 		goto out_unlock;
6247 	}
6248 
6249 	if (n->gro_bitmask) {
6250 		/* flush too old packets
6251 		 * If HZ < 1000, flush all packets.
6252 		 */
6253 		napi_gro_flush(n, HZ >= 1000);
6254 	}
6255 
6256 	/* Some drivers may have called napi_schedule
6257 	 * prior to exhausting their budget.
6258 	 */
6259 	if (unlikely(!list_empty(&n->poll_list))) {
6260 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6261 			     n->dev ? n->dev->name : "backlog");
6262 		goto out_unlock;
6263 	}
6264 
6265 	list_add_tail(&n->poll_list, repoll);
6266 
6267 out_unlock:
6268 	netpoll_poll_unlock(have);
6269 
6270 	return work;
6271 }
6272 
6273 static __latent_entropy void net_rx_action(struct softirq_action *h)
6274 {
6275 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6276 	unsigned long time_limit = jiffies +
6277 		usecs_to_jiffies(netdev_budget_usecs);
6278 	int budget = netdev_budget;
6279 	LIST_HEAD(list);
6280 	LIST_HEAD(repoll);
6281 
6282 	local_irq_disable();
6283 	list_splice_init(&sd->poll_list, &list);
6284 	local_irq_enable();
6285 
6286 	for (;;) {
6287 		struct napi_struct *n;
6288 
6289 		if (list_empty(&list)) {
6290 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6291 				goto out;
6292 			break;
6293 		}
6294 
6295 		n = list_first_entry(&list, struct napi_struct, poll_list);
6296 		budget -= napi_poll(n, &repoll);
6297 
6298 		/* If softirq window is exhausted then punt.
6299 		 * Allow this to run for 2 jiffies since which will allow
6300 		 * an average latency of 1.5/HZ.
6301 		 */
6302 		if (unlikely(budget <= 0 ||
6303 			     time_after_eq(jiffies, time_limit))) {
6304 			sd->time_squeeze++;
6305 			break;
6306 		}
6307 	}
6308 
6309 	local_irq_disable();
6310 
6311 	list_splice_tail_init(&sd->poll_list, &list);
6312 	list_splice_tail(&repoll, &list);
6313 	list_splice(&list, &sd->poll_list);
6314 	if (!list_empty(&sd->poll_list))
6315 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6316 
6317 	net_rps_action_and_irq_enable(sd);
6318 out:
6319 	__kfree_skb_flush();
6320 }
6321 
6322 struct netdev_adjacent {
6323 	struct net_device *dev;
6324 
6325 	/* upper master flag, there can only be one master device per list */
6326 	bool master;
6327 
6328 	/* counter for the number of times this device was added to us */
6329 	u16 ref_nr;
6330 
6331 	/* private field for the users */
6332 	void *private;
6333 
6334 	struct list_head list;
6335 	struct rcu_head rcu;
6336 };
6337 
6338 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6339 						 struct list_head *adj_list)
6340 {
6341 	struct netdev_adjacent *adj;
6342 
6343 	list_for_each_entry(adj, adj_list, list) {
6344 		if (adj->dev == adj_dev)
6345 			return adj;
6346 	}
6347 	return NULL;
6348 }
6349 
6350 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6351 {
6352 	struct net_device *dev = data;
6353 
6354 	return upper_dev == dev;
6355 }
6356 
6357 /**
6358  * netdev_has_upper_dev - Check if device is linked to an upper device
6359  * @dev: device
6360  * @upper_dev: upper device to check
6361  *
6362  * Find out if a device is linked to specified upper device and return true
6363  * in case it is. Note that this checks only immediate upper device,
6364  * not through a complete stack of devices. The caller must hold the RTNL lock.
6365  */
6366 bool netdev_has_upper_dev(struct net_device *dev,
6367 			  struct net_device *upper_dev)
6368 {
6369 	ASSERT_RTNL();
6370 
6371 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6372 					     upper_dev);
6373 }
6374 EXPORT_SYMBOL(netdev_has_upper_dev);
6375 
6376 /**
6377  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6378  * @dev: device
6379  * @upper_dev: upper device to check
6380  *
6381  * Find out if a device is linked to specified upper device and return true
6382  * in case it is. Note that this checks the entire upper device chain.
6383  * The caller must hold rcu lock.
6384  */
6385 
6386 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6387 				  struct net_device *upper_dev)
6388 {
6389 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6390 					       upper_dev);
6391 }
6392 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6393 
6394 /**
6395  * netdev_has_any_upper_dev - Check if device is linked to some device
6396  * @dev: device
6397  *
6398  * Find out if a device is linked to an upper device and return true in case
6399  * it is. The caller must hold the RTNL lock.
6400  */
6401 bool netdev_has_any_upper_dev(struct net_device *dev)
6402 {
6403 	ASSERT_RTNL();
6404 
6405 	return !list_empty(&dev->adj_list.upper);
6406 }
6407 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6408 
6409 /**
6410  * netdev_master_upper_dev_get - Get master upper device
6411  * @dev: device
6412  *
6413  * Find a master upper device and return pointer to it or NULL in case
6414  * it's not there. The caller must hold the RTNL lock.
6415  */
6416 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6417 {
6418 	struct netdev_adjacent *upper;
6419 
6420 	ASSERT_RTNL();
6421 
6422 	if (list_empty(&dev->adj_list.upper))
6423 		return NULL;
6424 
6425 	upper = list_first_entry(&dev->adj_list.upper,
6426 				 struct netdev_adjacent, list);
6427 	if (likely(upper->master))
6428 		return upper->dev;
6429 	return NULL;
6430 }
6431 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6432 
6433 /**
6434  * netdev_has_any_lower_dev - Check if device is linked to some device
6435  * @dev: device
6436  *
6437  * Find out if a device is linked to a lower device and return true in case
6438  * it is. The caller must hold the RTNL lock.
6439  */
6440 static bool netdev_has_any_lower_dev(struct net_device *dev)
6441 {
6442 	ASSERT_RTNL();
6443 
6444 	return !list_empty(&dev->adj_list.lower);
6445 }
6446 
6447 void *netdev_adjacent_get_private(struct list_head *adj_list)
6448 {
6449 	struct netdev_adjacent *adj;
6450 
6451 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6452 
6453 	return adj->private;
6454 }
6455 EXPORT_SYMBOL(netdev_adjacent_get_private);
6456 
6457 /**
6458  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6459  * @dev: device
6460  * @iter: list_head ** of the current position
6461  *
6462  * Gets the next device from the dev's upper list, starting from iter
6463  * position. The caller must hold RCU read lock.
6464  */
6465 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6466 						 struct list_head **iter)
6467 {
6468 	struct netdev_adjacent *upper;
6469 
6470 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6471 
6472 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6473 
6474 	if (&upper->list == &dev->adj_list.upper)
6475 		return NULL;
6476 
6477 	*iter = &upper->list;
6478 
6479 	return upper->dev;
6480 }
6481 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6482 
6483 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6484 						    struct list_head **iter)
6485 {
6486 	struct netdev_adjacent *upper;
6487 
6488 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6489 
6490 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6491 
6492 	if (&upper->list == &dev->adj_list.upper)
6493 		return NULL;
6494 
6495 	*iter = &upper->list;
6496 
6497 	return upper->dev;
6498 }
6499 
6500 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6501 				  int (*fn)(struct net_device *dev,
6502 					    void *data),
6503 				  void *data)
6504 {
6505 	struct net_device *udev;
6506 	struct list_head *iter;
6507 	int ret;
6508 
6509 	for (iter = &dev->adj_list.upper,
6510 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6511 	     udev;
6512 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6513 		/* first is the upper device itself */
6514 		ret = fn(udev, data);
6515 		if (ret)
6516 			return ret;
6517 
6518 		/* then look at all of its upper devices */
6519 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6520 		if (ret)
6521 			return ret;
6522 	}
6523 
6524 	return 0;
6525 }
6526 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6527 
6528 /**
6529  * netdev_lower_get_next_private - Get the next ->private from the
6530  *				   lower neighbour list
6531  * @dev: device
6532  * @iter: list_head ** of the current position
6533  *
6534  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6535  * list, starting from iter position. The caller must hold either hold the
6536  * RTNL lock or its own locking that guarantees that the neighbour lower
6537  * list will remain unchanged.
6538  */
6539 void *netdev_lower_get_next_private(struct net_device *dev,
6540 				    struct list_head **iter)
6541 {
6542 	struct netdev_adjacent *lower;
6543 
6544 	lower = list_entry(*iter, struct netdev_adjacent, list);
6545 
6546 	if (&lower->list == &dev->adj_list.lower)
6547 		return NULL;
6548 
6549 	*iter = lower->list.next;
6550 
6551 	return lower->private;
6552 }
6553 EXPORT_SYMBOL(netdev_lower_get_next_private);
6554 
6555 /**
6556  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6557  *				       lower neighbour list, RCU
6558  *				       variant
6559  * @dev: device
6560  * @iter: list_head ** of the current position
6561  *
6562  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6563  * list, starting from iter position. The caller must hold RCU read lock.
6564  */
6565 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6566 					struct list_head **iter)
6567 {
6568 	struct netdev_adjacent *lower;
6569 
6570 	WARN_ON_ONCE(!rcu_read_lock_held());
6571 
6572 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6573 
6574 	if (&lower->list == &dev->adj_list.lower)
6575 		return NULL;
6576 
6577 	*iter = &lower->list;
6578 
6579 	return lower->private;
6580 }
6581 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6582 
6583 /**
6584  * netdev_lower_get_next - Get the next device from the lower neighbour
6585  *                         list
6586  * @dev: device
6587  * @iter: list_head ** of the current position
6588  *
6589  * Gets the next netdev_adjacent from the dev's lower neighbour
6590  * list, starting from iter position. The caller must hold RTNL lock or
6591  * its own locking that guarantees that the neighbour lower
6592  * list will remain unchanged.
6593  */
6594 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6595 {
6596 	struct netdev_adjacent *lower;
6597 
6598 	lower = list_entry(*iter, struct netdev_adjacent, list);
6599 
6600 	if (&lower->list == &dev->adj_list.lower)
6601 		return NULL;
6602 
6603 	*iter = lower->list.next;
6604 
6605 	return lower->dev;
6606 }
6607 EXPORT_SYMBOL(netdev_lower_get_next);
6608 
6609 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6610 						struct list_head **iter)
6611 {
6612 	struct netdev_adjacent *lower;
6613 
6614 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6615 
6616 	if (&lower->list == &dev->adj_list.lower)
6617 		return NULL;
6618 
6619 	*iter = &lower->list;
6620 
6621 	return lower->dev;
6622 }
6623 
6624 int netdev_walk_all_lower_dev(struct net_device *dev,
6625 			      int (*fn)(struct net_device *dev,
6626 					void *data),
6627 			      void *data)
6628 {
6629 	struct net_device *ldev;
6630 	struct list_head *iter;
6631 	int ret;
6632 
6633 	for (iter = &dev->adj_list.lower,
6634 	     ldev = netdev_next_lower_dev(dev, &iter);
6635 	     ldev;
6636 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6637 		/* first is the lower device itself */
6638 		ret = fn(ldev, data);
6639 		if (ret)
6640 			return ret;
6641 
6642 		/* then look at all of its lower devices */
6643 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6644 		if (ret)
6645 			return ret;
6646 	}
6647 
6648 	return 0;
6649 }
6650 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6651 
6652 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6653 						    struct list_head **iter)
6654 {
6655 	struct netdev_adjacent *lower;
6656 
6657 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6658 	if (&lower->list == &dev->adj_list.lower)
6659 		return NULL;
6660 
6661 	*iter = &lower->list;
6662 
6663 	return lower->dev;
6664 }
6665 
6666 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6667 				  int (*fn)(struct net_device *dev,
6668 					    void *data),
6669 				  void *data)
6670 {
6671 	struct net_device *ldev;
6672 	struct list_head *iter;
6673 	int ret;
6674 
6675 	for (iter = &dev->adj_list.lower,
6676 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6677 	     ldev;
6678 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6679 		/* first is the lower device itself */
6680 		ret = fn(ldev, data);
6681 		if (ret)
6682 			return ret;
6683 
6684 		/* then look at all of its lower devices */
6685 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6686 		if (ret)
6687 			return ret;
6688 	}
6689 
6690 	return 0;
6691 }
6692 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6693 
6694 /**
6695  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6696  *				       lower neighbour list, RCU
6697  *				       variant
6698  * @dev: device
6699  *
6700  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6701  * list. The caller must hold RCU read lock.
6702  */
6703 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6704 {
6705 	struct netdev_adjacent *lower;
6706 
6707 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6708 			struct netdev_adjacent, list);
6709 	if (lower)
6710 		return lower->private;
6711 	return NULL;
6712 }
6713 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6714 
6715 /**
6716  * netdev_master_upper_dev_get_rcu - Get master upper device
6717  * @dev: device
6718  *
6719  * Find a master upper device and return pointer to it or NULL in case
6720  * it's not there. The caller must hold the RCU read lock.
6721  */
6722 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6723 {
6724 	struct netdev_adjacent *upper;
6725 
6726 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6727 				       struct netdev_adjacent, list);
6728 	if (upper && likely(upper->master))
6729 		return upper->dev;
6730 	return NULL;
6731 }
6732 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6733 
6734 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6735 			      struct net_device *adj_dev,
6736 			      struct list_head *dev_list)
6737 {
6738 	char linkname[IFNAMSIZ+7];
6739 
6740 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6741 		"upper_%s" : "lower_%s", adj_dev->name);
6742 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6743 				 linkname);
6744 }
6745 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6746 			       char *name,
6747 			       struct list_head *dev_list)
6748 {
6749 	char linkname[IFNAMSIZ+7];
6750 
6751 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6752 		"upper_%s" : "lower_%s", name);
6753 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6754 }
6755 
6756 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6757 						 struct net_device *adj_dev,
6758 						 struct list_head *dev_list)
6759 {
6760 	return (dev_list == &dev->adj_list.upper ||
6761 		dev_list == &dev->adj_list.lower) &&
6762 		net_eq(dev_net(dev), dev_net(adj_dev));
6763 }
6764 
6765 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6766 					struct net_device *adj_dev,
6767 					struct list_head *dev_list,
6768 					void *private, bool master)
6769 {
6770 	struct netdev_adjacent *adj;
6771 	int ret;
6772 
6773 	adj = __netdev_find_adj(adj_dev, dev_list);
6774 
6775 	if (adj) {
6776 		adj->ref_nr += 1;
6777 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6778 			 dev->name, adj_dev->name, adj->ref_nr);
6779 
6780 		return 0;
6781 	}
6782 
6783 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6784 	if (!adj)
6785 		return -ENOMEM;
6786 
6787 	adj->dev = adj_dev;
6788 	adj->master = master;
6789 	adj->ref_nr = 1;
6790 	adj->private = private;
6791 	dev_hold(adj_dev);
6792 
6793 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6794 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6795 
6796 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6797 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6798 		if (ret)
6799 			goto free_adj;
6800 	}
6801 
6802 	/* Ensure that master link is always the first item in list. */
6803 	if (master) {
6804 		ret = sysfs_create_link(&(dev->dev.kobj),
6805 					&(adj_dev->dev.kobj), "master");
6806 		if (ret)
6807 			goto remove_symlinks;
6808 
6809 		list_add_rcu(&adj->list, dev_list);
6810 	} else {
6811 		list_add_tail_rcu(&adj->list, dev_list);
6812 	}
6813 
6814 	return 0;
6815 
6816 remove_symlinks:
6817 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6818 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6819 free_adj:
6820 	kfree(adj);
6821 	dev_put(adj_dev);
6822 
6823 	return ret;
6824 }
6825 
6826 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6827 					 struct net_device *adj_dev,
6828 					 u16 ref_nr,
6829 					 struct list_head *dev_list)
6830 {
6831 	struct netdev_adjacent *adj;
6832 
6833 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6834 		 dev->name, adj_dev->name, ref_nr);
6835 
6836 	adj = __netdev_find_adj(adj_dev, dev_list);
6837 
6838 	if (!adj) {
6839 		pr_err("Adjacency does not exist for device %s from %s\n",
6840 		       dev->name, adj_dev->name);
6841 		WARN_ON(1);
6842 		return;
6843 	}
6844 
6845 	if (adj->ref_nr > ref_nr) {
6846 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6847 			 dev->name, adj_dev->name, ref_nr,
6848 			 adj->ref_nr - ref_nr);
6849 		adj->ref_nr -= ref_nr;
6850 		return;
6851 	}
6852 
6853 	if (adj->master)
6854 		sysfs_remove_link(&(dev->dev.kobj), "master");
6855 
6856 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6857 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6858 
6859 	list_del_rcu(&adj->list);
6860 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6861 		 adj_dev->name, dev->name, adj_dev->name);
6862 	dev_put(adj_dev);
6863 	kfree_rcu(adj, rcu);
6864 }
6865 
6866 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6867 					    struct net_device *upper_dev,
6868 					    struct list_head *up_list,
6869 					    struct list_head *down_list,
6870 					    void *private, bool master)
6871 {
6872 	int ret;
6873 
6874 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6875 					   private, master);
6876 	if (ret)
6877 		return ret;
6878 
6879 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6880 					   private, false);
6881 	if (ret) {
6882 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6883 		return ret;
6884 	}
6885 
6886 	return 0;
6887 }
6888 
6889 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6890 					       struct net_device *upper_dev,
6891 					       u16 ref_nr,
6892 					       struct list_head *up_list,
6893 					       struct list_head *down_list)
6894 {
6895 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6896 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6897 }
6898 
6899 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6900 						struct net_device *upper_dev,
6901 						void *private, bool master)
6902 {
6903 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6904 						&dev->adj_list.upper,
6905 						&upper_dev->adj_list.lower,
6906 						private, master);
6907 }
6908 
6909 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6910 						   struct net_device *upper_dev)
6911 {
6912 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6913 					   &dev->adj_list.upper,
6914 					   &upper_dev->adj_list.lower);
6915 }
6916 
6917 static int __netdev_upper_dev_link(struct net_device *dev,
6918 				   struct net_device *upper_dev, bool master,
6919 				   void *upper_priv, void *upper_info,
6920 				   struct netlink_ext_ack *extack)
6921 {
6922 	struct netdev_notifier_changeupper_info changeupper_info = {
6923 		.info = {
6924 			.dev = dev,
6925 			.extack = extack,
6926 		},
6927 		.upper_dev = upper_dev,
6928 		.master = master,
6929 		.linking = true,
6930 		.upper_info = upper_info,
6931 	};
6932 	struct net_device *master_dev;
6933 	int ret = 0;
6934 
6935 	ASSERT_RTNL();
6936 
6937 	if (dev == upper_dev)
6938 		return -EBUSY;
6939 
6940 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6941 	if (netdev_has_upper_dev(upper_dev, dev))
6942 		return -EBUSY;
6943 
6944 	if (!master) {
6945 		if (netdev_has_upper_dev(dev, upper_dev))
6946 			return -EEXIST;
6947 	} else {
6948 		master_dev = netdev_master_upper_dev_get(dev);
6949 		if (master_dev)
6950 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
6951 	}
6952 
6953 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6954 					    &changeupper_info.info);
6955 	ret = notifier_to_errno(ret);
6956 	if (ret)
6957 		return ret;
6958 
6959 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6960 						   master);
6961 	if (ret)
6962 		return ret;
6963 
6964 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6965 					    &changeupper_info.info);
6966 	ret = notifier_to_errno(ret);
6967 	if (ret)
6968 		goto rollback;
6969 
6970 	return 0;
6971 
6972 rollback:
6973 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6974 
6975 	return ret;
6976 }
6977 
6978 /**
6979  * netdev_upper_dev_link - Add a link to the upper device
6980  * @dev: device
6981  * @upper_dev: new upper device
6982  * @extack: netlink extended ack
6983  *
6984  * Adds a link to device which is upper to this one. The caller must hold
6985  * the RTNL lock. On a failure a negative errno code is returned.
6986  * On success the reference counts are adjusted and the function
6987  * returns zero.
6988  */
6989 int netdev_upper_dev_link(struct net_device *dev,
6990 			  struct net_device *upper_dev,
6991 			  struct netlink_ext_ack *extack)
6992 {
6993 	return __netdev_upper_dev_link(dev, upper_dev, false,
6994 				       NULL, NULL, extack);
6995 }
6996 EXPORT_SYMBOL(netdev_upper_dev_link);
6997 
6998 /**
6999  * netdev_master_upper_dev_link - Add a master link to the upper device
7000  * @dev: device
7001  * @upper_dev: new upper device
7002  * @upper_priv: upper device private
7003  * @upper_info: upper info to be passed down via notifier
7004  * @extack: netlink extended ack
7005  *
7006  * Adds a link to device which is upper to this one. In this case, only
7007  * one master upper device can be linked, although other non-master devices
7008  * might be linked as well. The caller must hold the RTNL lock.
7009  * On a failure a negative errno code is returned. On success the reference
7010  * counts are adjusted and the function returns zero.
7011  */
7012 int netdev_master_upper_dev_link(struct net_device *dev,
7013 				 struct net_device *upper_dev,
7014 				 void *upper_priv, void *upper_info,
7015 				 struct netlink_ext_ack *extack)
7016 {
7017 	return __netdev_upper_dev_link(dev, upper_dev, true,
7018 				       upper_priv, upper_info, extack);
7019 }
7020 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7021 
7022 /**
7023  * netdev_upper_dev_unlink - Removes a link to upper device
7024  * @dev: device
7025  * @upper_dev: new upper device
7026  *
7027  * Removes a link to device which is upper to this one. The caller must hold
7028  * the RTNL lock.
7029  */
7030 void netdev_upper_dev_unlink(struct net_device *dev,
7031 			     struct net_device *upper_dev)
7032 {
7033 	struct netdev_notifier_changeupper_info changeupper_info = {
7034 		.info = {
7035 			.dev = dev,
7036 		},
7037 		.upper_dev = upper_dev,
7038 		.linking = false,
7039 	};
7040 
7041 	ASSERT_RTNL();
7042 
7043 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7044 
7045 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7046 				      &changeupper_info.info);
7047 
7048 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7049 
7050 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7051 				      &changeupper_info.info);
7052 }
7053 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7054 
7055 /**
7056  * netdev_bonding_info_change - Dispatch event about slave change
7057  * @dev: device
7058  * @bonding_info: info to dispatch
7059  *
7060  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7061  * The caller must hold the RTNL lock.
7062  */
7063 void netdev_bonding_info_change(struct net_device *dev,
7064 				struct netdev_bonding_info *bonding_info)
7065 {
7066 	struct netdev_notifier_bonding_info info = {
7067 		.info.dev = dev,
7068 	};
7069 
7070 	memcpy(&info.bonding_info, bonding_info,
7071 	       sizeof(struct netdev_bonding_info));
7072 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7073 				      &info.info);
7074 }
7075 EXPORT_SYMBOL(netdev_bonding_info_change);
7076 
7077 static void netdev_adjacent_add_links(struct net_device *dev)
7078 {
7079 	struct netdev_adjacent *iter;
7080 
7081 	struct net *net = dev_net(dev);
7082 
7083 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7084 		if (!net_eq(net, dev_net(iter->dev)))
7085 			continue;
7086 		netdev_adjacent_sysfs_add(iter->dev, dev,
7087 					  &iter->dev->adj_list.lower);
7088 		netdev_adjacent_sysfs_add(dev, iter->dev,
7089 					  &dev->adj_list.upper);
7090 	}
7091 
7092 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7093 		if (!net_eq(net, dev_net(iter->dev)))
7094 			continue;
7095 		netdev_adjacent_sysfs_add(iter->dev, dev,
7096 					  &iter->dev->adj_list.upper);
7097 		netdev_adjacent_sysfs_add(dev, iter->dev,
7098 					  &dev->adj_list.lower);
7099 	}
7100 }
7101 
7102 static void netdev_adjacent_del_links(struct net_device *dev)
7103 {
7104 	struct netdev_adjacent *iter;
7105 
7106 	struct net *net = dev_net(dev);
7107 
7108 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7109 		if (!net_eq(net, dev_net(iter->dev)))
7110 			continue;
7111 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7112 					  &iter->dev->adj_list.lower);
7113 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7114 					  &dev->adj_list.upper);
7115 	}
7116 
7117 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7118 		if (!net_eq(net, dev_net(iter->dev)))
7119 			continue;
7120 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7121 					  &iter->dev->adj_list.upper);
7122 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7123 					  &dev->adj_list.lower);
7124 	}
7125 }
7126 
7127 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7128 {
7129 	struct netdev_adjacent *iter;
7130 
7131 	struct net *net = dev_net(dev);
7132 
7133 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7134 		if (!net_eq(net, dev_net(iter->dev)))
7135 			continue;
7136 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7137 					  &iter->dev->adj_list.lower);
7138 		netdev_adjacent_sysfs_add(iter->dev, dev,
7139 					  &iter->dev->adj_list.lower);
7140 	}
7141 
7142 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7143 		if (!net_eq(net, dev_net(iter->dev)))
7144 			continue;
7145 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7146 					  &iter->dev->adj_list.upper);
7147 		netdev_adjacent_sysfs_add(iter->dev, dev,
7148 					  &iter->dev->adj_list.upper);
7149 	}
7150 }
7151 
7152 void *netdev_lower_dev_get_private(struct net_device *dev,
7153 				   struct net_device *lower_dev)
7154 {
7155 	struct netdev_adjacent *lower;
7156 
7157 	if (!lower_dev)
7158 		return NULL;
7159 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7160 	if (!lower)
7161 		return NULL;
7162 
7163 	return lower->private;
7164 }
7165 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7166 
7167 
7168 int dev_get_nest_level(struct net_device *dev)
7169 {
7170 	struct net_device *lower = NULL;
7171 	struct list_head *iter;
7172 	int max_nest = -1;
7173 	int nest;
7174 
7175 	ASSERT_RTNL();
7176 
7177 	netdev_for_each_lower_dev(dev, lower, iter) {
7178 		nest = dev_get_nest_level(lower);
7179 		if (max_nest < nest)
7180 			max_nest = nest;
7181 	}
7182 
7183 	return max_nest + 1;
7184 }
7185 EXPORT_SYMBOL(dev_get_nest_level);
7186 
7187 /**
7188  * netdev_lower_change - Dispatch event about lower device state change
7189  * @lower_dev: device
7190  * @lower_state_info: state to dispatch
7191  *
7192  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7193  * The caller must hold the RTNL lock.
7194  */
7195 void netdev_lower_state_changed(struct net_device *lower_dev,
7196 				void *lower_state_info)
7197 {
7198 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7199 		.info.dev = lower_dev,
7200 	};
7201 
7202 	ASSERT_RTNL();
7203 	changelowerstate_info.lower_state_info = lower_state_info;
7204 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7205 				      &changelowerstate_info.info);
7206 }
7207 EXPORT_SYMBOL(netdev_lower_state_changed);
7208 
7209 static void dev_change_rx_flags(struct net_device *dev, int flags)
7210 {
7211 	const struct net_device_ops *ops = dev->netdev_ops;
7212 
7213 	if (ops->ndo_change_rx_flags)
7214 		ops->ndo_change_rx_flags(dev, flags);
7215 }
7216 
7217 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7218 {
7219 	unsigned int old_flags = dev->flags;
7220 	kuid_t uid;
7221 	kgid_t gid;
7222 
7223 	ASSERT_RTNL();
7224 
7225 	dev->flags |= IFF_PROMISC;
7226 	dev->promiscuity += inc;
7227 	if (dev->promiscuity == 0) {
7228 		/*
7229 		 * Avoid overflow.
7230 		 * If inc causes overflow, untouch promisc and return error.
7231 		 */
7232 		if (inc < 0)
7233 			dev->flags &= ~IFF_PROMISC;
7234 		else {
7235 			dev->promiscuity -= inc;
7236 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7237 				dev->name);
7238 			return -EOVERFLOW;
7239 		}
7240 	}
7241 	if (dev->flags != old_flags) {
7242 		pr_info("device %s %s promiscuous mode\n",
7243 			dev->name,
7244 			dev->flags & IFF_PROMISC ? "entered" : "left");
7245 		if (audit_enabled) {
7246 			current_uid_gid(&uid, &gid);
7247 			audit_log(audit_context(), GFP_ATOMIC,
7248 				  AUDIT_ANOM_PROMISCUOUS,
7249 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7250 				  dev->name, (dev->flags & IFF_PROMISC),
7251 				  (old_flags & IFF_PROMISC),
7252 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7253 				  from_kuid(&init_user_ns, uid),
7254 				  from_kgid(&init_user_ns, gid),
7255 				  audit_get_sessionid(current));
7256 		}
7257 
7258 		dev_change_rx_flags(dev, IFF_PROMISC);
7259 	}
7260 	if (notify)
7261 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7262 	return 0;
7263 }
7264 
7265 /**
7266  *	dev_set_promiscuity	- update promiscuity count on a device
7267  *	@dev: device
7268  *	@inc: modifier
7269  *
7270  *	Add or remove promiscuity from a device. While the count in the device
7271  *	remains above zero the interface remains promiscuous. Once it hits zero
7272  *	the device reverts back to normal filtering operation. A negative inc
7273  *	value is used to drop promiscuity on the device.
7274  *	Return 0 if successful or a negative errno code on error.
7275  */
7276 int dev_set_promiscuity(struct net_device *dev, int inc)
7277 {
7278 	unsigned int old_flags = dev->flags;
7279 	int err;
7280 
7281 	err = __dev_set_promiscuity(dev, inc, true);
7282 	if (err < 0)
7283 		return err;
7284 	if (dev->flags != old_flags)
7285 		dev_set_rx_mode(dev);
7286 	return err;
7287 }
7288 EXPORT_SYMBOL(dev_set_promiscuity);
7289 
7290 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7291 {
7292 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7293 
7294 	ASSERT_RTNL();
7295 
7296 	dev->flags |= IFF_ALLMULTI;
7297 	dev->allmulti += inc;
7298 	if (dev->allmulti == 0) {
7299 		/*
7300 		 * Avoid overflow.
7301 		 * If inc causes overflow, untouch allmulti and return error.
7302 		 */
7303 		if (inc < 0)
7304 			dev->flags &= ~IFF_ALLMULTI;
7305 		else {
7306 			dev->allmulti -= inc;
7307 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7308 				dev->name);
7309 			return -EOVERFLOW;
7310 		}
7311 	}
7312 	if (dev->flags ^ old_flags) {
7313 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7314 		dev_set_rx_mode(dev);
7315 		if (notify)
7316 			__dev_notify_flags(dev, old_flags,
7317 					   dev->gflags ^ old_gflags);
7318 	}
7319 	return 0;
7320 }
7321 
7322 /**
7323  *	dev_set_allmulti	- update allmulti count on a device
7324  *	@dev: device
7325  *	@inc: modifier
7326  *
7327  *	Add or remove reception of all multicast frames to a device. While the
7328  *	count in the device remains above zero the interface remains listening
7329  *	to all interfaces. Once it hits zero the device reverts back to normal
7330  *	filtering operation. A negative @inc value is used to drop the counter
7331  *	when releasing a resource needing all multicasts.
7332  *	Return 0 if successful or a negative errno code on error.
7333  */
7334 
7335 int dev_set_allmulti(struct net_device *dev, int inc)
7336 {
7337 	return __dev_set_allmulti(dev, inc, true);
7338 }
7339 EXPORT_SYMBOL(dev_set_allmulti);
7340 
7341 /*
7342  *	Upload unicast and multicast address lists to device and
7343  *	configure RX filtering. When the device doesn't support unicast
7344  *	filtering it is put in promiscuous mode while unicast addresses
7345  *	are present.
7346  */
7347 void __dev_set_rx_mode(struct net_device *dev)
7348 {
7349 	const struct net_device_ops *ops = dev->netdev_ops;
7350 
7351 	/* dev_open will call this function so the list will stay sane. */
7352 	if (!(dev->flags&IFF_UP))
7353 		return;
7354 
7355 	if (!netif_device_present(dev))
7356 		return;
7357 
7358 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7359 		/* Unicast addresses changes may only happen under the rtnl,
7360 		 * therefore calling __dev_set_promiscuity here is safe.
7361 		 */
7362 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7363 			__dev_set_promiscuity(dev, 1, false);
7364 			dev->uc_promisc = true;
7365 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7366 			__dev_set_promiscuity(dev, -1, false);
7367 			dev->uc_promisc = false;
7368 		}
7369 	}
7370 
7371 	if (ops->ndo_set_rx_mode)
7372 		ops->ndo_set_rx_mode(dev);
7373 }
7374 
7375 void dev_set_rx_mode(struct net_device *dev)
7376 {
7377 	netif_addr_lock_bh(dev);
7378 	__dev_set_rx_mode(dev);
7379 	netif_addr_unlock_bh(dev);
7380 }
7381 
7382 /**
7383  *	dev_get_flags - get flags reported to userspace
7384  *	@dev: device
7385  *
7386  *	Get the combination of flag bits exported through APIs to userspace.
7387  */
7388 unsigned int dev_get_flags(const struct net_device *dev)
7389 {
7390 	unsigned int flags;
7391 
7392 	flags = (dev->flags & ~(IFF_PROMISC |
7393 				IFF_ALLMULTI |
7394 				IFF_RUNNING |
7395 				IFF_LOWER_UP |
7396 				IFF_DORMANT)) |
7397 		(dev->gflags & (IFF_PROMISC |
7398 				IFF_ALLMULTI));
7399 
7400 	if (netif_running(dev)) {
7401 		if (netif_oper_up(dev))
7402 			flags |= IFF_RUNNING;
7403 		if (netif_carrier_ok(dev))
7404 			flags |= IFF_LOWER_UP;
7405 		if (netif_dormant(dev))
7406 			flags |= IFF_DORMANT;
7407 	}
7408 
7409 	return flags;
7410 }
7411 EXPORT_SYMBOL(dev_get_flags);
7412 
7413 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7414 {
7415 	unsigned int old_flags = dev->flags;
7416 	int ret;
7417 
7418 	ASSERT_RTNL();
7419 
7420 	/*
7421 	 *	Set the flags on our device.
7422 	 */
7423 
7424 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7425 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7426 			       IFF_AUTOMEDIA)) |
7427 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7428 				    IFF_ALLMULTI));
7429 
7430 	/*
7431 	 *	Load in the correct multicast list now the flags have changed.
7432 	 */
7433 
7434 	if ((old_flags ^ flags) & IFF_MULTICAST)
7435 		dev_change_rx_flags(dev, IFF_MULTICAST);
7436 
7437 	dev_set_rx_mode(dev);
7438 
7439 	/*
7440 	 *	Have we downed the interface. We handle IFF_UP ourselves
7441 	 *	according to user attempts to set it, rather than blindly
7442 	 *	setting it.
7443 	 */
7444 
7445 	ret = 0;
7446 	if ((old_flags ^ flags) & IFF_UP) {
7447 		if (old_flags & IFF_UP)
7448 			__dev_close(dev);
7449 		else
7450 			ret = __dev_open(dev);
7451 	}
7452 
7453 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7454 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7455 		unsigned int old_flags = dev->flags;
7456 
7457 		dev->gflags ^= IFF_PROMISC;
7458 
7459 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7460 			if (dev->flags != old_flags)
7461 				dev_set_rx_mode(dev);
7462 	}
7463 
7464 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7465 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7466 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7467 	 */
7468 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7469 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7470 
7471 		dev->gflags ^= IFF_ALLMULTI;
7472 		__dev_set_allmulti(dev, inc, false);
7473 	}
7474 
7475 	return ret;
7476 }
7477 
7478 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7479 			unsigned int gchanges)
7480 {
7481 	unsigned int changes = dev->flags ^ old_flags;
7482 
7483 	if (gchanges)
7484 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7485 
7486 	if (changes & IFF_UP) {
7487 		if (dev->flags & IFF_UP)
7488 			call_netdevice_notifiers(NETDEV_UP, dev);
7489 		else
7490 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7491 	}
7492 
7493 	if (dev->flags & IFF_UP &&
7494 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7495 		struct netdev_notifier_change_info change_info = {
7496 			.info = {
7497 				.dev = dev,
7498 			},
7499 			.flags_changed = changes,
7500 		};
7501 
7502 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7503 	}
7504 }
7505 
7506 /**
7507  *	dev_change_flags - change device settings
7508  *	@dev: device
7509  *	@flags: device state flags
7510  *
7511  *	Change settings on device based state flags. The flags are
7512  *	in the userspace exported format.
7513  */
7514 int dev_change_flags(struct net_device *dev, unsigned int flags)
7515 {
7516 	int ret;
7517 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7518 
7519 	ret = __dev_change_flags(dev, flags);
7520 	if (ret < 0)
7521 		return ret;
7522 
7523 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7524 	__dev_notify_flags(dev, old_flags, changes);
7525 	return ret;
7526 }
7527 EXPORT_SYMBOL(dev_change_flags);
7528 
7529 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7530 {
7531 	const struct net_device_ops *ops = dev->netdev_ops;
7532 
7533 	if (ops->ndo_change_mtu)
7534 		return ops->ndo_change_mtu(dev, new_mtu);
7535 
7536 	dev->mtu = new_mtu;
7537 	return 0;
7538 }
7539 EXPORT_SYMBOL(__dev_set_mtu);
7540 
7541 /**
7542  *	dev_set_mtu_ext - Change maximum transfer unit
7543  *	@dev: device
7544  *	@new_mtu: new transfer unit
7545  *	@extack: netlink extended ack
7546  *
7547  *	Change the maximum transfer size of the network device.
7548  */
7549 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7550 		    struct netlink_ext_ack *extack)
7551 {
7552 	int err, orig_mtu;
7553 
7554 	if (new_mtu == dev->mtu)
7555 		return 0;
7556 
7557 	/* MTU must be positive, and in range */
7558 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7559 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7560 		return -EINVAL;
7561 	}
7562 
7563 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7564 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7565 		return -EINVAL;
7566 	}
7567 
7568 	if (!netif_device_present(dev))
7569 		return -ENODEV;
7570 
7571 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7572 	err = notifier_to_errno(err);
7573 	if (err)
7574 		return err;
7575 
7576 	orig_mtu = dev->mtu;
7577 	err = __dev_set_mtu(dev, new_mtu);
7578 
7579 	if (!err) {
7580 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7581 		err = notifier_to_errno(err);
7582 		if (err) {
7583 			/* setting mtu back and notifying everyone again,
7584 			 * so that they have a chance to revert changes.
7585 			 */
7586 			__dev_set_mtu(dev, orig_mtu);
7587 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7588 		}
7589 	}
7590 	return err;
7591 }
7592 
7593 int dev_set_mtu(struct net_device *dev, int new_mtu)
7594 {
7595 	struct netlink_ext_ack extack;
7596 	int err;
7597 
7598 	memset(&extack, 0, sizeof(extack));
7599 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7600 	if (err && extack._msg)
7601 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7602 	return err;
7603 }
7604 EXPORT_SYMBOL(dev_set_mtu);
7605 
7606 /**
7607  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7608  *	@dev: device
7609  *	@new_len: new tx queue length
7610  */
7611 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7612 {
7613 	unsigned int orig_len = dev->tx_queue_len;
7614 	int res;
7615 
7616 	if (new_len != (unsigned int)new_len)
7617 		return -ERANGE;
7618 
7619 	if (new_len != orig_len) {
7620 		dev->tx_queue_len = new_len;
7621 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7622 		res = notifier_to_errno(res);
7623 		if (res)
7624 			goto err_rollback;
7625 		res = dev_qdisc_change_tx_queue_len(dev);
7626 		if (res)
7627 			goto err_rollback;
7628 	}
7629 
7630 	return 0;
7631 
7632 err_rollback:
7633 	netdev_err(dev, "refused to change device tx_queue_len\n");
7634 	dev->tx_queue_len = orig_len;
7635 	return res;
7636 }
7637 
7638 /**
7639  *	dev_set_group - Change group this device belongs to
7640  *	@dev: device
7641  *	@new_group: group this device should belong to
7642  */
7643 void dev_set_group(struct net_device *dev, int new_group)
7644 {
7645 	dev->group = new_group;
7646 }
7647 EXPORT_SYMBOL(dev_set_group);
7648 
7649 /**
7650  *	dev_set_mac_address - Change Media Access Control Address
7651  *	@dev: device
7652  *	@sa: new address
7653  *
7654  *	Change the hardware (MAC) address of the device
7655  */
7656 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7657 {
7658 	const struct net_device_ops *ops = dev->netdev_ops;
7659 	int err;
7660 
7661 	if (!ops->ndo_set_mac_address)
7662 		return -EOPNOTSUPP;
7663 	if (sa->sa_family != dev->type)
7664 		return -EINVAL;
7665 	if (!netif_device_present(dev))
7666 		return -ENODEV;
7667 	err = ops->ndo_set_mac_address(dev, sa);
7668 	if (err)
7669 		return err;
7670 	dev->addr_assign_type = NET_ADDR_SET;
7671 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7672 	add_device_randomness(dev->dev_addr, dev->addr_len);
7673 	return 0;
7674 }
7675 EXPORT_SYMBOL(dev_set_mac_address);
7676 
7677 /**
7678  *	dev_change_carrier - Change device carrier
7679  *	@dev: device
7680  *	@new_carrier: new value
7681  *
7682  *	Change device carrier
7683  */
7684 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7685 {
7686 	const struct net_device_ops *ops = dev->netdev_ops;
7687 
7688 	if (!ops->ndo_change_carrier)
7689 		return -EOPNOTSUPP;
7690 	if (!netif_device_present(dev))
7691 		return -ENODEV;
7692 	return ops->ndo_change_carrier(dev, new_carrier);
7693 }
7694 EXPORT_SYMBOL(dev_change_carrier);
7695 
7696 /**
7697  *	dev_get_phys_port_id - Get device physical port ID
7698  *	@dev: device
7699  *	@ppid: port ID
7700  *
7701  *	Get device physical port ID
7702  */
7703 int dev_get_phys_port_id(struct net_device *dev,
7704 			 struct netdev_phys_item_id *ppid)
7705 {
7706 	const struct net_device_ops *ops = dev->netdev_ops;
7707 
7708 	if (!ops->ndo_get_phys_port_id)
7709 		return -EOPNOTSUPP;
7710 	return ops->ndo_get_phys_port_id(dev, ppid);
7711 }
7712 EXPORT_SYMBOL(dev_get_phys_port_id);
7713 
7714 /**
7715  *	dev_get_phys_port_name - Get device physical port name
7716  *	@dev: device
7717  *	@name: port name
7718  *	@len: limit of bytes to copy to name
7719  *
7720  *	Get device physical port name
7721  */
7722 int dev_get_phys_port_name(struct net_device *dev,
7723 			   char *name, size_t len)
7724 {
7725 	const struct net_device_ops *ops = dev->netdev_ops;
7726 
7727 	if (!ops->ndo_get_phys_port_name)
7728 		return -EOPNOTSUPP;
7729 	return ops->ndo_get_phys_port_name(dev, name, len);
7730 }
7731 EXPORT_SYMBOL(dev_get_phys_port_name);
7732 
7733 /**
7734  *	dev_change_proto_down - update protocol port state information
7735  *	@dev: device
7736  *	@proto_down: new value
7737  *
7738  *	This info can be used by switch drivers to set the phys state of the
7739  *	port.
7740  */
7741 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7742 {
7743 	const struct net_device_ops *ops = dev->netdev_ops;
7744 
7745 	if (!ops->ndo_change_proto_down)
7746 		return -EOPNOTSUPP;
7747 	if (!netif_device_present(dev))
7748 		return -ENODEV;
7749 	return ops->ndo_change_proto_down(dev, proto_down);
7750 }
7751 EXPORT_SYMBOL(dev_change_proto_down);
7752 
7753 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7754 		    enum bpf_netdev_command cmd)
7755 {
7756 	struct netdev_bpf xdp;
7757 
7758 	if (!bpf_op)
7759 		return 0;
7760 
7761 	memset(&xdp, 0, sizeof(xdp));
7762 	xdp.command = cmd;
7763 
7764 	/* Query must always succeed. */
7765 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7766 
7767 	return xdp.prog_id;
7768 }
7769 
7770 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7771 			   struct netlink_ext_ack *extack, u32 flags,
7772 			   struct bpf_prog *prog)
7773 {
7774 	struct netdev_bpf xdp;
7775 
7776 	memset(&xdp, 0, sizeof(xdp));
7777 	if (flags & XDP_FLAGS_HW_MODE)
7778 		xdp.command = XDP_SETUP_PROG_HW;
7779 	else
7780 		xdp.command = XDP_SETUP_PROG;
7781 	xdp.extack = extack;
7782 	xdp.flags = flags;
7783 	xdp.prog = prog;
7784 
7785 	return bpf_op(dev, &xdp);
7786 }
7787 
7788 static void dev_xdp_uninstall(struct net_device *dev)
7789 {
7790 	struct netdev_bpf xdp;
7791 	bpf_op_t ndo_bpf;
7792 
7793 	/* Remove generic XDP */
7794 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7795 
7796 	/* Remove from the driver */
7797 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7798 	if (!ndo_bpf)
7799 		return;
7800 
7801 	memset(&xdp, 0, sizeof(xdp));
7802 	xdp.command = XDP_QUERY_PROG;
7803 	WARN_ON(ndo_bpf(dev, &xdp));
7804 	if (xdp.prog_id)
7805 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7806 					NULL));
7807 
7808 	/* Remove HW offload */
7809 	memset(&xdp, 0, sizeof(xdp));
7810 	xdp.command = XDP_QUERY_PROG_HW;
7811 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7812 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7813 					NULL));
7814 }
7815 
7816 /**
7817  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7818  *	@dev: device
7819  *	@extack: netlink extended ack
7820  *	@fd: new program fd or negative value to clear
7821  *	@flags: xdp-related flags
7822  *
7823  *	Set or clear a bpf program for a device
7824  */
7825 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7826 		      int fd, u32 flags)
7827 {
7828 	const struct net_device_ops *ops = dev->netdev_ops;
7829 	enum bpf_netdev_command query;
7830 	struct bpf_prog *prog = NULL;
7831 	bpf_op_t bpf_op, bpf_chk;
7832 	int err;
7833 
7834 	ASSERT_RTNL();
7835 
7836 	query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7837 
7838 	bpf_op = bpf_chk = ops->ndo_bpf;
7839 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7840 		return -EOPNOTSUPP;
7841 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7842 		bpf_op = generic_xdp_install;
7843 	if (bpf_op == bpf_chk)
7844 		bpf_chk = generic_xdp_install;
7845 
7846 	if (fd >= 0) {
7847 		if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7848 		    __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7849 			return -EEXIST;
7850 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7851 		    __dev_xdp_query(dev, bpf_op, query))
7852 			return -EBUSY;
7853 
7854 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7855 					     bpf_op == ops->ndo_bpf);
7856 		if (IS_ERR(prog))
7857 			return PTR_ERR(prog);
7858 
7859 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7860 		    bpf_prog_is_dev_bound(prog->aux)) {
7861 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7862 			bpf_prog_put(prog);
7863 			return -EINVAL;
7864 		}
7865 	}
7866 
7867 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7868 	if (err < 0 && prog)
7869 		bpf_prog_put(prog);
7870 
7871 	return err;
7872 }
7873 
7874 /**
7875  *	dev_new_index	-	allocate an ifindex
7876  *	@net: the applicable net namespace
7877  *
7878  *	Returns a suitable unique value for a new device interface
7879  *	number.  The caller must hold the rtnl semaphore or the
7880  *	dev_base_lock to be sure it remains unique.
7881  */
7882 static int dev_new_index(struct net *net)
7883 {
7884 	int ifindex = net->ifindex;
7885 
7886 	for (;;) {
7887 		if (++ifindex <= 0)
7888 			ifindex = 1;
7889 		if (!__dev_get_by_index(net, ifindex))
7890 			return net->ifindex = ifindex;
7891 	}
7892 }
7893 
7894 /* Delayed registration/unregisteration */
7895 static LIST_HEAD(net_todo_list);
7896 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7897 
7898 static void net_set_todo(struct net_device *dev)
7899 {
7900 	list_add_tail(&dev->todo_list, &net_todo_list);
7901 	dev_net(dev)->dev_unreg_count++;
7902 }
7903 
7904 static void rollback_registered_many(struct list_head *head)
7905 {
7906 	struct net_device *dev, *tmp;
7907 	LIST_HEAD(close_head);
7908 
7909 	BUG_ON(dev_boot_phase);
7910 	ASSERT_RTNL();
7911 
7912 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7913 		/* Some devices call without registering
7914 		 * for initialization unwind. Remove those
7915 		 * devices and proceed with the remaining.
7916 		 */
7917 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7918 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7919 				 dev->name, dev);
7920 
7921 			WARN_ON(1);
7922 			list_del(&dev->unreg_list);
7923 			continue;
7924 		}
7925 		dev->dismantle = true;
7926 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7927 	}
7928 
7929 	/* If device is running, close it first. */
7930 	list_for_each_entry(dev, head, unreg_list)
7931 		list_add_tail(&dev->close_list, &close_head);
7932 	dev_close_many(&close_head, true);
7933 
7934 	list_for_each_entry(dev, head, unreg_list) {
7935 		/* And unlink it from device chain. */
7936 		unlist_netdevice(dev);
7937 
7938 		dev->reg_state = NETREG_UNREGISTERING;
7939 	}
7940 	flush_all_backlogs();
7941 
7942 	synchronize_net();
7943 
7944 	list_for_each_entry(dev, head, unreg_list) {
7945 		struct sk_buff *skb = NULL;
7946 
7947 		/* Shutdown queueing discipline. */
7948 		dev_shutdown(dev);
7949 
7950 		dev_xdp_uninstall(dev);
7951 
7952 		/* Notify protocols, that we are about to destroy
7953 		 * this device. They should clean all the things.
7954 		 */
7955 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7956 
7957 		if (!dev->rtnl_link_ops ||
7958 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7959 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7960 						     GFP_KERNEL, NULL, 0);
7961 
7962 		/*
7963 		 *	Flush the unicast and multicast chains
7964 		 */
7965 		dev_uc_flush(dev);
7966 		dev_mc_flush(dev);
7967 
7968 		if (dev->netdev_ops->ndo_uninit)
7969 			dev->netdev_ops->ndo_uninit(dev);
7970 
7971 		if (skb)
7972 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7973 
7974 		/* Notifier chain MUST detach us all upper devices. */
7975 		WARN_ON(netdev_has_any_upper_dev(dev));
7976 		WARN_ON(netdev_has_any_lower_dev(dev));
7977 
7978 		/* Remove entries from kobject tree */
7979 		netdev_unregister_kobject(dev);
7980 #ifdef CONFIG_XPS
7981 		/* Remove XPS queueing entries */
7982 		netif_reset_xps_queues_gt(dev, 0);
7983 #endif
7984 	}
7985 
7986 	synchronize_net();
7987 
7988 	list_for_each_entry(dev, head, unreg_list)
7989 		dev_put(dev);
7990 }
7991 
7992 static void rollback_registered(struct net_device *dev)
7993 {
7994 	LIST_HEAD(single);
7995 
7996 	list_add(&dev->unreg_list, &single);
7997 	rollback_registered_many(&single);
7998 	list_del(&single);
7999 }
8000 
8001 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8002 	struct net_device *upper, netdev_features_t features)
8003 {
8004 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8005 	netdev_features_t feature;
8006 	int feature_bit;
8007 
8008 	for_each_netdev_feature(&upper_disables, feature_bit) {
8009 		feature = __NETIF_F_BIT(feature_bit);
8010 		if (!(upper->wanted_features & feature)
8011 		    && (features & feature)) {
8012 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8013 				   &feature, upper->name);
8014 			features &= ~feature;
8015 		}
8016 	}
8017 
8018 	return features;
8019 }
8020 
8021 static void netdev_sync_lower_features(struct net_device *upper,
8022 	struct net_device *lower, netdev_features_t features)
8023 {
8024 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8025 	netdev_features_t feature;
8026 	int feature_bit;
8027 
8028 	for_each_netdev_feature(&upper_disables, feature_bit) {
8029 		feature = __NETIF_F_BIT(feature_bit);
8030 		if (!(features & feature) && (lower->features & feature)) {
8031 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8032 				   &feature, lower->name);
8033 			lower->wanted_features &= ~feature;
8034 			netdev_update_features(lower);
8035 
8036 			if (unlikely(lower->features & feature))
8037 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8038 					    &feature, lower->name);
8039 		}
8040 	}
8041 }
8042 
8043 static netdev_features_t netdev_fix_features(struct net_device *dev,
8044 	netdev_features_t features)
8045 {
8046 	/* Fix illegal checksum combinations */
8047 	if ((features & NETIF_F_HW_CSUM) &&
8048 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8049 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8050 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8051 	}
8052 
8053 	/* TSO requires that SG is present as well. */
8054 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8055 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8056 		features &= ~NETIF_F_ALL_TSO;
8057 	}
8058 
8059 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8060 					!(features & NETIF_F_IP_CSUM)) {
8061 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8062 		features &= ~NETIF_F_TSO;
8063 		features &= ~NETIF_F_TSO_ECN;
8064 	}
8065 
8066 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8067 					 !(features & NETIF_F_IPV6_CSUM)) {
8068 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8069 		features &= ~NETIF_F_TSO6;
8070 	}
8071 
8072 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8073 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8074 		features &= ~NETIF_F_TSO_MANGLEID;
8075 
8076 	/* TSO ECN requires that TSO is present as well. */
8077 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8078 		features &= ~NETIF_F_TSO_ECN;
8079 
8080 	/* Software GSO depends on SG. */
8081 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8082 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8083 		features &= ~NETIF_F_GSO;
8084 	}
8085 
8086 	/* GSO partial features require GSO partial be set */
8087 	if ((features & dev->gso_partial_features) &&
8088 	    !(features & NETIF_F_GSO_PARTIAL)) {
8089 		netdev_dbg(dev,
8090 			   "Dropping partially supported GSO features since no GSO partial.\n");
8091 		features &= ~dev->gso_partial_features;
8092 	}
8093 
8094 	if (!(features & NETIF_F_RXCSUM)) {
8095 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8096 		 * successfully merged by hardware must also have the
8097 		 * checksum verified by hardware.  If the user does not
8098 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8099 		 */
8100 		if (features & NETIF_F_GRO_HW) {
8101 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8102 			features &= ~NETIF_F_GRO_HW;
8103 		}
8104 	}
8105 
8106 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8107 	if (features & NETIF_F_RXFCS) {
8108 		if (features & NETIF_F_LRO) {
8109 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8110 			features &= ~NETIF_F_LRO;
8111 		}
8112 
8113 		if (features & NETIF_F_GRO_HW) {
8114 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8115 			features &= ~NETIF_F_GRO_HW;
8116 		}
8117 	}
8118 
8119 	return features;
8120 }
8121 
8122 int __netdev_update_features(struct net_device *dev)
8123 {
8124 	struct net_device *upper, *lower;
8125 	netdev_features_t features;
8126 	struct list_head *iter;
8127 	int err = -1;
8128 
8129 	ASSERT_RTNL();
8130 
8131 	features = netdev_get_wanted_features(dev);
8132 
8133 	if (dev->netdev_ops->ndo_fix_features)
8134 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8135 
8136 	/* driver might be less strict about feature dependencies */
8137 	features = netdev_fix_features(dev, features);
8138 
8139 	/* some features can't be enabled if they're off an an upper device */
8140 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8141 		features = netdev_sync_upper_features(dev, upper, features);
8142 
8143 	if (dev->features == features)
8144 		goto sync_lower;
8145 
8146 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8147 		&dev->features, &features);
8148 
8149 	if (dev->netdev_ops->ndo_set_features)
8150 		err = dev->netdev_ops->ndo_set_features(dev, features);
8151 	else
8152 		err = 0;
8153 
8154 	if (unlikely(err < 0)) {
8155 		netdev_err(dev,
8156 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8157 			err, &features, &dev->features);
8158 		/* return non-0 since some features might have changed and
8159 		 * it's better to fire a spurious notification than miss it
8160 		 */
8161 		return -1;
8162 	}
8163 
8164 sync_lower:
8165 	/* some features must be disabled on lower devices when disabled
8166 	 * on an upper device (think: bonding master or bridge)
8167 	 */
8168 	netdev_for_each_lower_dev(dev, lower, iter)
8169 		netdev_sync_lower_features(dev, lower, features);
8170 
8171 	if (!err) {
8172 		netdev_features_t diff = features ^ dev->features;
8173 
8174 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8175 			/* udp_tunnel_{get,drop}_rx_info both need
8176 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8177 			 * device, or they won't do anything.
8178 			 * Thus we need to update dev->features
8179 			 * *before* calling udp_tunnel_get_rx_info,
8180 			 * but *after* calling udp_tunnel_drop_rx_info.
8181 			 */
8182 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8183 				dev->features = features;
8184 				udp_tunnel_get_rx_info(dev);
8185 			} else {
8186 				udp_tunnel_drop_rx_info(dev);
8187 			}
8188 		}
8189 
8190 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8191 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8192 				dev->features = features;
8193 				err |= vlan_get_rx_ctag_filter_info(dev);
8194 			} else {
8195 				vlan_drop_rx_ctag_filter_info(dev);
8196 			}
8197 		}
8198 
8199 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8200 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8201 				dev->features = features;
8202 				err |= vlan_get_rx_stag_filter_info(dev);
8203 			} else {
8204 				vlan_drop_rx_stag_filter_info(dev);
8205 			}
8206 		}
8207 
8208 		dev->features = features;
8209 	}
8210 
8211 	return err < 0 ? 0 : 1;
8212 }
8213 
8214 /**
8215  *	netdev_update_features - recalculate device features
8216  *	@dev: the device to check
8217  *
8218  *	Recalculate dev->features set and send notifications if it
8219  *	has changed. Should be called after driver or hardware dependent
8220  *	conditions might have changed that influence the features.
8221  */
8222 void netdev_update_features(struct net_device *dev)
8223 {
8224 	if (__netdev_update_features(dev))
8225 		netdev_features_change(dev);
8226 }
8227 EXPORT_SYMBOL(netdev_update_features);
8228 
8229 /**
8230  *	netdev_change_features - recalculate device features
8231  *	@dev: the device to check
8232  *
8233  *	Recalculate dev->features set and send notifications even
8234  *	if they have not changed. Should be called instead of
8235  *	netdev_update_features() if also dev->vlan_features might
8236  *	have changed to allow the changes to be propagated to stacked
8237  *	VLAN devices.
8238  */
8239 void netdev_change_features(struct net_device *dev)
8240 {
8241 	__netdev_update_features(dev);
8242 	netdev_features_change(dev);
8243 }
8244 EXPORT_SYMBOL(netdev_change_features);
8245 
8246 /**
8247  *	netif_stacked_transfer_operstate -	transfer operstate
8248  *	@rootdev: the root or lower level device to transfer state from
8249  *	@dev: the device to transfer operstate to
8250  *
8251  *	Transfer operational state from root to device. This is normally
8252  *	called when a stacking relationship exists between the root
8253  *	device and the device(a leaf device).
8254  */
8255 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8256 					struct net_device *dev)
8257 {
8258 	if (rootdev->operstate == IF_OPER_DORMANT)
8259 		netif_dormant_on(dev);
8260 	else
8261 		netif_dormant_off(dev);
8262 
8263 	if (netif_carrier_ok(rootdev))
8264 		netif_carrier_on(dev);
8265 	else
8266 		netif_carrier_off(dev);
8267 }
8268 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8269 
8270 static int netif_alloc_rx_queues(struct net_device *dev)
8271 {
8272 	unsigned int i, count = dev->num_rx_queues;
8273 	struct netdev_rx_queue *rx;
8274 	size_t sz = count * sizeof(*rx);
8275 	int err = 0;
8276 
8277 	BUG_ON(count < 1);
8278 
8279 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8280 	if (!rx)
8281 		return -ENOMEM;
8282 
8283 	dev->_rx = rx;
8284 
8285 	for (i = 0; i < count; i++) {
8286 		rx[i].dev = dev;
8287 
8288 		/* XDP RX-queue setup */
8289 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8290 		if (err < 0)
8291 			goto err_rxq_info;
8292 	}
8293 	return 0;
8294 
8295 err_rxq_info:
8296 	/* Rollback successful reg's and free other resources */
8297 	while (i--)
8298 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8299 	kvfree(dev->_rx);
8300 	dev->_rx = NULL;
8301 	return err;
8302 }
8303 
8304 static void netif_free_rx_queues(struct net_device *dev)
8305 {
8306 	unsigned int i, count = dev->num_rx_queues;
8307 
8308 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8309 	if (!dev->_rx)
8310 		return;
8311 
8312 	for (i = 0; i < count; i++)
8313 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8314 
8315 	kvfree(dev->_rx);
8316 }
8317 
8318 static void netdev_init_one_queue(struct net_device *dev,
8319 				  struct netdev_queue *queue, void *_unused)
8320 {
8321 	/* Initialize queue lock */
8322 	spin_lock_init(&queue->_xmit_lock);
8323 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8324 	queue->xmit_lock_owner = -1;
8325 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8326 	queue->dev = dev;
8327 #ifdef CONFIG_BQL
8328 	dql_init(&queue->dql, HZ);
8329 #endif
8330 }
8331 
8332 static void netif_free_tx_queues(struct net_device *dev)
8333 {
8334 	kvfree(dev->_tx);
8335 }
8336 
8337 static int netif_alloc_netdev_queues(struct net_device *dev)
8338 {
8339 	unsigned int count = dev->num_tx_queues;
8340 	struct netdev_queue *tx;
8341 	size_t sz = count * sizeof(*tx);
8342 
8343 	if (count < 1 || count > 0xffff)
8344 		return -EINVAL;
8345 
8346 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8347 	if (!tx)
8348 		return -ENOMEM;
8349 
8350 	dev->_tx = tx;
8351 
8352 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8353 	spin_lock_init(&dev->tx_global_lock);
8354 
8355 	return 0;
8356 }
8357 
8358 void netif_tx_stop_all_queues(struct net_device *dev)
8359 {
8360 	unsigned int i;
8361 
8362 	for (i = 0; i < dev->num_tx_queues; i++) {
8363 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8364 
8365 		netif_tx_stop_queue(txq);
8366 	}
8367 }
8368 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8369 
8370 /**
8371  *	register_netdevice	- register a network device
8372  *	@dev: device to register
8373  *
8374  *	Take a completed network device structure and add it to the kernel
8375  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8376  *	chain. 0 is returned on success. A negative errno code is returned
8377  *	on a failure to set up the device, or if the name is a duplicate.
8378  *
8379  *	Callers must hold the rtnl semaphore. You may want
8380  *	register_netdev() instead of this.
8381  *
8382  *	BUGS:
8383  *	The locking appears insufficient to guarantee two parallel registers
8384  *	will not get the same name.
8385  */
8386 
8387 int register_netdevice(struct net_device *dev)
8388 {
8389 	int ret;
8390 	struct net *net = dev_net(dev);
8391 
8392 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8393 		     NETDEV_FEATURE_COUNT);
8394 	BUG_ON(dev_boot_phase);
8395 	ASSERT_RTNL();
8396 
8397 	might_sleep();
8398 
8399 	/* When net_device's are persistent, this will be fatal. */
8400 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8401 	BUG_ON(!net);
8402 
8403 	spin_lock_init(&dev->addr_list_lock);
8404 	netdev_set_addr_lockdep_class(dev);
8405 
8406 	ret = dev_get_valid_name(net, dev, dev->name);
8407 	if (ret < 0)
8408 		goto out;
8409 
8410 	/* Init, if this function is available */
8411 	if (dev->netdev_ops->ndo_init) {
8412 		ret = dev->netdev_ops->ndo_init(dev);
8413 		if (ret) {
8414 			if (ret > 0)
8415 				ret = -EIO;
8416 			goto out;
8417 		}
8418 	}
8419 
8420 	if (((dev->hw_features | dev->features) &
8421 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8422 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8423 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8424 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8425 		ret = -EINVAL;
8426 		goto err_uninit;
8427 	}
8428 
8429 	ret = -EBUSY;
8430 	if (!dev->ifindex)
8431 		dev->ifindex = dev_new_index(net);
8432 	else if (__dev_get_by_index(net, dev->ifindex))
8433 		goto err_uninit;
8434 
8435 	/* Transfer changeable features to wanted_features and enable
8436 	 * software offloads (GSO and GRO).
8437 	 */
8438 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8439 	dev->features |= NETIF_F_SOFT_FEATURES;
8440 
8441 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8442 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8443 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8444 	}
8445 
8446 	dev->wanted_features = dev->features & dev->hw_features;
8447 
8448 	if (!(dev->flags & IFF_LOOPBACK))
8449 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8450 
8451 	/* If IPv4 TCP segmentation offload is supported we should also
8452 	 * allow the device to enable segmenting the frame with the option
8453 	 * of ignoring a static IP ID value.  This doesn't enable the
8454 	 * feature itself but allows the user to enable it later.
8455 	 */
8456 	if (dev->hw_features & NETIF_F_TSO)
8457 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8458 	if (dev->vlan_features & NETIF_F_TSO)
8459 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8460 	if (dev->mpls_features & NETIF_F_TSO)
8461 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8462 	if (dev->hw_enc_features & NETIF_F_TSO)
8463 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8464 
8465 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8466 	 */
8467 	dev->vlan_features |= NETIF_F_HIGHDMA;
8468 
8469 	/* Make NETIF_F_SG inheritable to tunnel devices.
8470 	 */
8471 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8472 
8473 	/* Make NETIF_F_SG inheritable to MPLS.
8474 	 */
8475 	dev->mpls_features |= NETIF_F_SG;
8476 
8477 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8478 	ret = notifier_to_errno(ret);
8479 	if (ret)
8480 		goto err_uninit;
8481 
8482 	ret = netdev_register_kobject(dev);
8483 	if (ret)
8484 		goto err_uninit;
8485 	dev->reg_state = NETREG_REGISTERED;
8486 
8487 	__netdev_update_features(dev);
8488 
8489 	/*
8490 	 *	Default initial state at registry is that the
8491 	 *	device is present.
8492 	 */
8493 
8494 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8495 
8496 	linkwatch_init_dev(dev);
8497 
8498 	dev_init_scheduler(dev);
8499 	dev_hold(dev);
8500 	list_netdevice(dev);
8501 	add_device_randomness(dev->dev_addr, dev->addr_len);
8502 
8503 	/* If the device has permanent device address, driver should
8504 	 * set dev_addr and also addr_assign_type should be set to
8505 	 * NET_ADDR_PERM (default value).
8506 	 */
8507 	if (dev->addr_assign_type == NET_ADDR_PERM)
8508 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8509 
8510 	/* Notify protocols, that a new device appeared. */
8511 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8512 	ret = notifier_to_errno(ret);
8513 	if (ret) {
8514 		rollback_registered(dev);
8515 		dev->reg_state = NETREG_UNREGISTERED;
8516 	}
8517 	/*
8518 	 *	Prevent userspace races by waiting until the network
8519 	 *	device is fully setup before sending notifications.
8520 	 */
8521 	if (!dev->rtnl_link_ops ||
8522 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8523 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8524 
8525 out:
8526 	return ret;
8527 
8528 err_uninit:
8529 	if (dev->netdev_ops->ndo_uninit)
8530 		dev->netdev_ops->ndo_uninit(dev);
8531 	if (dev->priv_destructor)
8532 		dev->priv_destructor(dev);
8533 	goto out;
8534 }
8535 EXPORT_SYMBOL(register_netdevice);
8536 
8537 /**
8538  *	init_dummy_netdev	- init a dummy network device for NAPI
8539  *	@dev: device to init
8540  *
8541  *	This takes a network device structure and initialize the minimum
8542  *	amount of fields so it can be used to schedule NAPI polls without
8543  *	registering a full blown interface. This is to be used by drivers
8544  *	that need to tie several hardware interfaces to a single NAPI
8545  *	poll scheduler due to HW limitations.
8546  */
8547 int init_dummy_netdev(struct net_device *dev)
8548 {
8549 	/* Clear everything. Note we don't initialize spinlocks
8550 	 * are they aren't supposed to be taken by any of the
8551 	 * NAPI code and this dummy netdev is supposed to be
8552 	 * only ever used for NAPI polls
8553 	 */
8554 	memset(dev, 0, sizeof(struct net_device));
8555 
8556 	/* make sure we BUG if trying to hit standard
8557 	 * register/unregister code path
8558 	 */
8559 	dev->reg_state = NETREG_DUMMY;
8560 
8561 	/* NAPI wants this */
8562 	INIT_LIST_HEAD(&dev->napi_list);
8563 
8564 	/* a dummy interface is started by default */
8565 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8566 	set_bit(__LINK_STATE_START, &dev->state);
8567 
8568 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8569 	 * because users of this 'device' dont need to change
8570 	 * its refcount.
8571 	 */
8572 
8573 	return 0;
8574 }
8575 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8576 
8577 
8578 /**
8579  *	register_netdev	- register a network device
8580  *	@dev: device to register
8581  *
8582  *	Take a completed network device structure and add it to the kernel
8583  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8584  *	chain. 0 is returned on success. A negative errno code is returned
8585  *	on a failure to set up the device, or if the name is a duplicate.
8586  *
8587  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8588  *	and expands the device name if you passed a format string to
8589  *	alloc_netdev.
8590  */
8591 int register_netdev(struct net_device *dev)
8592 {
8593 	int err;
8594 
8595 	if (rtnl_lock_killable())
8596 		return -EINTR;
8597 	err = register_netdevice(dev);
8598 	rtnl_unlock();
8599 	return err;
8600 }
8601 EXPORT_SYMBOL(register_netdev);
8602 
8603 int netdev_refcnt_read(const struct net_device *dev)
8604 {
8605 	int i, refcnt = 0;
8606 
8607 	for_each_possible_cpu(i)
8608 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8609 	return refcnt;
8610 }
8611 EXPORT_SYMBOL(netdev_refcnt_read);
8612 
8613 /**
8614  * netdev_wait_allrefs - wait until all references are gone.
8615  * @dev: target net_device
8616  *
8617  * This is called when unregistering network devices.
8618  *
8619  * Any protocol or device that holds a reference should register
8620  * for netdevice notification, and cleanup and put back the
8621  * reference if they receive an UNREGISTER event.
8622  * We can get stuck here if buggy protocols don't correctly
8623  * call dev_put.
8624  */
8625 static void netdev_wait_allrefs(struct net_device *dev)
8626 {
8627 	unsigned long rebroadcast_time, warning_time;
8628 	int refcnt;
8629 
8630 	linkwatch_forget_dev(dev);
8631 
8632 	rebroadcast_time = warning_time = jiffies;
8633 	refcnt = netdev_refcnt_read(dev);
8634 
8635 	while (refcnt != 0) {
8636 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8637 			rtnl_lock();
8638 
8639 			/* Rebroadcast unregister notification */
8640 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8641 
8642 			__rtnl_unlock();
8643 			rcu_barrier();
8644 			rtnl_lock();
8645 
8646 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8647 				     &dev->state)) {
8648 				/* We must not have linkwatch events
8649 				 * pending on unregister. If this
8650 				 * happens, we simply run the queue
8651 				 * unscheduled, resulting in a noop
8652 				 * for this device.
8653 				 */
8654 				linkwatch_run_queue();
8655 			}
8656 
8657 			__rtnl_unlock();
8658 
8659 			rebroadcast_time = jiffies;
8660 		}
8661 
8662 		msleep(250);
8663 
8664 		refcnt = netdev_refcnt_read(dev);
8665 
8666 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8667 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8668 				 dev->name, refcnt);
8669 			warning_time = jiffies;
8670 		}
8671 	}
8672 }
8673 
8674 /* The sequence is:
8675  *
8676  *	rtnl_lock();
8677  *	...
8678  *	register_netdevice(x1);
8679  *	register_netdevice(x2);
8680  *	...
8681  *	unregister_netdevice(y1);
8682  *	unregister_netdevice(y2);
8683  *      ...
8684  *	rtnl_unlock();
8685  *	free_netdev(y1);
8686  *	free_netdev(y2);
8687  *
8688  * We are invoked by rtnl_unlock().
8689  * This allows us to deal with problems:
8690  * 1) We can delete sysfs objects which invoke hotplug
8691  *    without deadlocking with linkwatch via keventd.
8692  * 2) Since we run with the RTNL semaphore not held, we can sleep
8693  *    safely in order to wait for the netdev refcnt to drop to zero.
8694  *
8695  * We must not return until all unregister events added during
8696  * the interval the lock was held have been completed.
8697  */
8698 void netdev_run_todo(void)
8699 {
8700 	struct list_head list;
8701 
8702 	/* Snapshot list, allow later requests */
8703 	list_replace_init(&net_todo_list, &list);
8704 
8705 	__rtnl_unlock();
8706 
8707 
8708 	/* Wait for rcu callbacks to finish before next phase */
8709 	if (!list_empty(&list))
8710 		rcu_barrier();
8711 
8712 	while (!list_empty(&list)) {
8713 		struct net_device *dev
8714 			= list_first_entry(&list, struct net_device, todo_list);
8715 		list_del(&dev->todo_list);
8716 
8717 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8718 			pr_err("network todo '%s' but state %d\n",
8719 			       dev->name, dev->reg_state);
8720 			dump_stack();
8721 			continue;
8722 		}
8723 
8724 		dev->reg_state = NETREG_UNREGISTERED;
8725 
8726 		netdev_wait_allrefs(dev);
8727 
8728 		/* paranoia */
8729 		BUG_ON(netdev_refcnt_read(dev));
8730 		BUG_ON(!list_empty(&dev->ptype_all));
8731 		BUG_ON(!list_empty(&dev->ptype_specific));
8732 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8733 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8734 #if IS_ENABLED(CONFIG_DECNET)
8735 		WARN_ON(dev->dn_ptr);
8736 #endif
8737 		if (dev->priv_destructor)
8738 			dev->priv_destructor(dev);
8739 		if (dev->needs_free_netdev)
8740 			free_netdev(dev);
8741 
8742 		/* Report a network device has been unregistered */
8743 		rtnl_lock();
8744 		dev_net(dev)->dev_unreg_count--;
8745 		__rtnl_unlock();
8746 		wake_up(&netdev_unregistering_wq);
8747 
8748 		/* Free network device */
8749 		kobject_put(&dev->dev.kobj);
8750 	}
8751 }
8752 
8753 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8754  * all the same fields in the same order as net_device_stats, with only
8755  * the type differing, but rtnl_link_stats64 may have additional fields
8756  * at the end for newer counters.
8757  */
8758 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8759 			     const struct net_device_stats *netdev_stats)
8760 {
8761 #if BITS_PER_LONG == 64
8762 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8763 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8764 	/* zero out counters that only exist in rtnl_link_stats64 */
8765 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8766 	       sizeof(*stats64) - sizeof(*netdev_stats));
8767 #else
8768 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8769 	const unsigned long *src = (const unsigned long *)netdev_stats;
8770 	u64 *dst = (u64 *)stats64;
8771 
8772 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8773 	for (i = 0; i < n; i++)
8774 		dst[i] = src[i];
8775 	/* zero out counters that only exist in rtnl_link_stats64 */
8776 	memset((char *)stats64 + n * sizeof(u64), 0,
8777 	       sizeof(*stats64) - n * sizeof(u64));
8778 #endif
8779 }
8780 EXPORT_SYMBOL(netdev_stats_to_stats64);
8781 
8782 /**
8783  *	dev_get_stats	- get network device statistics
8784  *	@dev: device to get statistics from
8785  *	@storage: place to store stats
8786  *
8787  *	Get network statistics from device. Return @storage.
8788  *	The device driver may provide its own method by setting
8789  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8790  *	otherwise the internal statistics structure is used.
8791  */
8792 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8793 					struct rtnl_link_stats64 *storage)
8794 {
8795 	const struct net_device_ops *ops = dev->netdev_ops;
8796 
8797 	if (ops->ndo_get_stats64) {
8798 		memset(storage, 0, sizeof(*storage));
8799 		ops->ndo_get_stats64(dev, storage);
8800 	} else if (ops->ndo_get_stats) {
8801 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8802 	} else {
8803 		netdev_stats_to_stats64(storage, &dev->stats);
8804 	}
8805 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8806 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8807 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8808 	return storage;
8809 }
8810 EXPORT_SYMBOL(dev_get_stats);
8811 
8812 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8813 {
8814 	struct netdev_queue *queue = dev_ingress_queue(dev);
8815 
8816 #ifdef CONFIG_NET_CLS_ACT
8817 	if (queue)
8818 		return queue;
8819 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8820 	if (!queue)
8821 		return NULL;
8822 	netdev_init_one_queue(dev, queue, NULL);
8823 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8824 	queue->qdisc_sleeping = &noop_qdisc;
8825 	rcu_assign_pointer(dev->ingress_queue, queue);
8826 #endif
8827 	return queue;
8828 }
8829 
8830 static const struct ethtool_ops default_ethtool_ops;
8831 
8832 void netdev_set_default_ethtool_ops(struct net_device *dev,
8833 				    const struct ethtool_ops *ops)
8834 {
8835 	if (dev->ethtool_ops == &default_ethtool_ops)
8836 		dev->ethtool_ops = ops;
8837 }
8838 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8839 
8840 void netdev_freemem(struct net_device *dev)
8841 {
8842 	char *addr = (char *)dev - dev->padded;
8843 
8844 	kvfree(addr);
8845 }
8846 
8847 /**
8848  * alloc_netdev_mqs - allocate network device
8849  * @sizeof_priv: size of private data to allocate space for
8850  * @name: device name format string
8851  * @name_assign_type: origin of device name
8852  * @setup: callback to initialize device
8853  * @txqs: the number of TX subqueues to allocate
8854  * @rxqs: the number of RX subqueues to allocate
8855  *
8856  * Allocates a struct net_device with private data area for driver use
8857  * and performs basic initialization.  Also allocates subqueue structs
8858  * for each queue on the device.
8859  */
8860 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8861 		unsigned char name_assign_type,
8862 		void (*setup)(struct net_device *),
8863 		unsigned int txqs, unsigned int rxqs)
8864 {
8865 	struct net_device *dev;
8866 	unsigned int alloc_size;
8867 	struct net_device *p;
8868 
8869 	BUG_ON(strlen(name) >= sizeof(dev->name));
8870 
8871 	if (txqs < 1) {
8872 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8873 		return NULL;
8874 	}
8875 
8876 	if (rxqs < 1) {
8877 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8878 		return NULL;
8879 	}
8880 
8881 	alloc_size = sizeof(struct net_device);
8882 	if (sizeof_priv) {
8883 		/* ensure 32-byte alignment of private area */
8884 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8885 		alloc_size += sizeof_priv;
8886 	}
8887 	/* ensure 32-byte alignment of whole construct */
8888 	alloc_size += NETDEV_ALIGN - 1;
8889 
8890 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8891 	if (!p)
8892 		return NULL;
8893 
8894 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8895 	dev->padded = (char *)dev - (char *)p;
8896 
8897 	dev->pcpu_refcnt = alloc_percpu(int);
8898 	if (!dev->pcpu_refcnt)
8899 		goto free_dev;
8900 
8901 	if (dev_addr_init(dev))
8902 		goto free_pcpu;
8903 
8904 	dev_mc_init(dev);
8905 	dev_uc_init(dev);
8906 
8907 	dev_net_set(dev, &init_net);
8908 
8909 	dev->gso_max_size = GSO_MAX_SIZE;
8910 	dev->gso_max_segs = GSO_MAX_SEGS;
8911 
8912 	INIT_LIST_HEAD(&dev->napi_list);
8913 	INIT_LIST_HEAD(&dev->unreg_list);
8914 	INIT_LIST_HEAD(&dev->close_list);
8915 	INIT_LIST_HEAD(&dev->link_watch_list);
8916 	INIT_LIST_HEAD(&dev->adj_list.upper);
8917 	INIT_LIST_HEAD(&dev->adj_list.lower);
8918 	INIT_LIST_HEAD(&dev->ptype_all);
8919 	INIT_LIST_HEAD(&dev->ptype_specific);
8920 #ifdef CONFIG_NET_SCHED
8921 	hash_init(dev->qdisc_hash);
8922 #endif
8923 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8924 	setup(dev);
8925 
8926 	if (!dev->tx_queue_len) {
8927 		dev->priv_flags |= IFF_NO_QUEUE;
8928 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8929 	}
8930 
8931 	dev->num_tx_queues = txqs;
8932 	dev->real_num_tx_queues = txqs;
8933 	if (netif_alloc_netdev_queues(dev))
8934 		goto free_all;
8935 
8936 	dev->num_rx_queues = rxqs;
8937 	dev->real_num_rx_queues = rxqs;
8938 	if (netif_alloc_rx_queues(dev))
8939 		goto free_all;
8940 
8941 	strcpy(dev->name, name);
8942 	dev->name_assign_type = name_assign_type;
8943 	dev->group = INIT_NETDEV_GROUP;
8944 	if (!dev->ethtool_ops)
8945 		dev->ethtool_ops = &default_ethtool_ops;
8946 
8947 	nf_hook_ingress_init(dev);
8948 
8949 	return dev;
8950 
8951 free_all:
8952 	free_netdev(dev);
8953 	return NULL;
8954 
8955 free_pcpu:
8956 	free_percpu(dev->pcpu_refcnt);
8957 free_dev:
8958 	netdev_freemem(dev);
8959 	return NULL;
8960 }
8961 EXPORT_SYMBOL(alloc_netdev_mqs);
8962 
8963 /**
8964  * free_netdev - free network device
8965  * @dev: device
8966  *
8967  * This function does the last stage of destroying an allocated device
8968  * interface. The reference to the device object is released. If this
8969  * is the last reference then it will be freed.Must be called in process
8970  * context.
8971  */
8972 void free_netdev(struct net_device *dev)
8973 {
8974 	struct napi_struct *p, *n;
8975 
8976 	might_sleep();
8977 	netif_free_tx_queues(dev);
8978 	netif_free_rx_queues(dev);
8979 
8980 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8981 
8982 	/* Flush device addresses */
8983 	dev_addr_flush(dev);
8984 
8985 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8986 		netif_napi_del(p);
8987 
8988 	free_percpu(dev->pcpu_refcnt);
8989 	dev->pcpu_refcnt = NULL;
8990 
8991 	/*  Compatibility with error handling in drivers */
8992 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8993 		netdev_freemem(dev);
8994 		return;
8995 	}
8996 
8997 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8998 	dev->reg_state = NETREG_RELEASED;
8999 
9000 	/* will free via device release */
9001 	put_device(&dev->dev);
9002 }
9003 EXPORT_SYMBOL(free_netdev);
9004 
9005 /**
9006  *	synchronize_net -  Synchronize with packet receive processing
9007  *
9008  *	Wait for packets currently being received to be done.
9009  *	Does not block later packets from starting.
9010  */
9011 void synchronize_net(void)
9012 {
9013 	might_sleep();
9014 	if (rtnl_is_locked())
9015 		synchronize_rcu_expedited();
9016 	else
9017 		synchronize_rcu();
9018 }
9019 EXPORT_SYMBOL(synchronize_net);
9020 
9021 /**
9022  *	unregister_netdevice_queue - remove device from the kernel
9023  *	@dev: device
9024  *	@head: list
9025  *
9026  *	This function shuts down a device interface and removes it
9027  *	from the kernel tables.
9028  *	If head not NULL, device is queued to be unregistered later.
9029  *
9030  *	Callers must hold the rtnl semaphore.  You may want
9031  *	unregister_netdev() instead of this.
9032  */
9033 
9034 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9035 {
9036 	ASSERT_RTNL();
9037 
9038 	if (head) {
9039 		list_move_tail(&dev->unreg_list, head);
9040 	} else {
9041 		rollback_registered(dev);
9042 		/* Finish processing unregister after unlock */
9043 		net_set_todo(dev);
9044 	}
9045 }
9046 EXPORT_SYMBOL(unregister_netdevice_queue);
9047 
9048 /**
9049  *	unregister_netdevice_many - unregister many devices
9050  *	@head: list of devices
9051  *
9052  *  Note: As most callers use a stack allocated list_head,
9053  *  we force a list_del() to make sure stack wont be corrupted later.
9054  */
9055 void unregister_netdevice_many(struct list_head *head)
9056 {
9057 	struct net_device *dev;
9058 
9059 	if (!list_empty(head)) {
9060 		rollback_registered_many(head);
9061 		list_for_each_entry(dev, head, unreg_list)
9062 			net_set_todo(dev);
9063 		list_del(head);
9064 	}
9065 }
9066 EXPORT_SYMBOL(unregister_netdevice_many);
9067 
9068 /**
9069  *	unregister_netdev - remove device from the kernel
9070  *	@dev: device
9071  *
9072  *	This function shuts down a device interface and removes it
9073  *	from the kernel tables.
9074  *
9075  *	This is just a wrapper for unregister_netdevice that takes
9076  *	the rtnl semaphore.  In general you want to use this and not
9077  *	unregister_netdevice.
9078  */
9079 void unregister_netdev(struct net_device *dev)
9080 {
9081 	rtnl_lock();
9082 	unregister_netdevice(dev);
9083 	rtnl_unlock();
9084 }
9085 EXPORT_SYMBOL(unregister_netdev);
9086 
9087 /**
9088  *	dev_change_net_namespace - move device to different nethost namespace
9089  *	@dev: device
9090  *	@net: network namespace
9091  *	@pat: If not NULL name pattern to try if the current device name
9092  *	      is already taken in the destination network namespace.
9093  *
9094  *	This function shuts down a device interface and moves it
9095  *	to a new network namespace. On success 0 is returned, on
9096  *	a failure a netagive errno code is returned.
9097  *
9098  *	Callers must hold the rtnl semaphore.
9099  */
9100 
9101 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9102 {
9103 	int err, new_nsid, new_ifindex;
9104 
9105 	ASSERT_RTNL();
9106 
9107 	/* Don't allow namespace local devices to be moved. */
9108 	err = -EINVAL;
9109 	if (dev->features & NETIF_F_NETNS_LOCAL)
9110 		goto out;
9111 
9112 	/* Ensure the device has been registrered */
9113 	if (dev->reg_state != NETREG_REGISTERED)
9114 		goto out;
9115 
9116 	/* Get out if there is nothing todo */
9117 	err = 0;
9118 	if (net_eq(dev_net(dev), net))
9119 		goto out;
9120 
9121 	/* Pick the destination device name, and ensure
9122 	 * we can use it in the destination network namespace.
9123 	 */
9124 	err = -EEXIST;
9125 	if (__dev_get_by_name(net, dev->name)) {
9126 		/* We get here if we can't use the current device name */
9127 		if (!pat)
9128 			goto out;
9129 		err = dev_get_valid_name(net, dev, pat);
9130 		if (err < 0)
9131 			goto out;
9132 	}
9133 
9134 	/*
9135 	 * And now a mini version of register_netdevice unregister_netdevice.
9136 	 */
9137 
9138 	/* If device is running close it first. */
9139 	dev_close(dev);
9140 
9141 	/* And unlink it from device chain */
9142 	unlist_netdevice(dev);
9143 
9144 	synchronize_net();
9145 
9146 	/* Shutdown queueing discipline. */
9147 	dev_shutdown(dev);
9148 
9149 	/* Notify protocols, that we are about to destroy
9150 	 * this device. They should clean all the things.
9151 	 *
9152 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9153 	 * This is wanted because this way 8021q and macvlan know
9154 	 * the device is just moving and can keep their slaves up.
9155 	 */
9156 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9157 	rcu_barrier();
9158 
9159 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9160 	/* If there is an ifindex conflict assign a new one */
9161 	if (__dev_get_by_index(net, dev->ifindex))
9162 		new_ifindex = dev_new_index(net);
9163 	else
9164 		new_ifindex = dev->ifindex;
9165 
9166 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9167 			    new_ifindex);
9168 
9169 	/*
9170 	 *	Flush the unicast and multicast chains
9171 	 */
9172 	dev_uc_flush(dev);
9173 	dev_mc_flush(dev);
9174 
9175 	/* Send a netdev-removed uevent to the old namespace */
9176 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9177 	netdev_adjacent_del_links(dev);
9178 
9179 	/* Actually switch the network namespace */
9180 	dev_net_set(dev, net);
9181 	dev->ifindex = new_ifindex;
9182 
9183 	/* Send a netdev-add uevent to the new namespace */
9184 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9185 	netdev_adjacent_add_links(dev);
9186 
9187 	/* Fixup kobjects */
9188 	err = device_rename(&dev->dev, dev->name);
9189 	WARN_ON(err);
9190 
9191 	/* Add the device back in the hashes */
9192 	list_netdevice(dev);
9193 
9194 	/* Notify protocols, that a new device appeared. */
9195 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9196 
9197 	/*
9198 	 *	Prevent userspace races by waiting until the network
9199 	 *	device is fully setup before sending notifications.
9200 	 */
9201 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9202 
9203 	synchronize_net();
9204 	err = 0;
9205 out:
9206 	return err;
9207 }
9208 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9209 
9210 static int dev_cpu_dead(unsigned int oldcpu)
9211 {
9212 	struct sk_buff **list_skb;
9213 	struct sk_buff *skb;
9214 	unsigned int cpu;
9215 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9216 
9217 	local_irq_disable();
9218 	cpu = smp_processor_id();
9219 	sd = &per_cpu(softnet_data, cpu);
9220 	oldsd = &per_cpu(softnet_data, oldcpu);
9221 
9222 	/* Find end of our completion_queue. */
9223 	list_skb = &sd->completion_queue;
9224 	while (*list_skb)
9225 		list_skb = &(*list_skb)->next;
9226 	/* Append completion queue from offline CPU. */
9227 	*list_skb = oldsd->completion_queue;
9228 	oldsd->completion_queue = NULL;
9229 
9230 	/* Append output queue from offline CPU. */
9231 	if (oldsd->output_queue) {
9232 		*sd->output_queue_tailp = oldsd->output_queue;
9233 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9234 		oldsd->output_queue = NULL;
9235 		oldsd->output_queue_tailp = &oldsd->output_queue;
9236 	}
9237 	/* Append NAPI poll list from offline CPU, with one exception :
9238 	 * process_backlog() must be called by cpu owning percpu backlog.
9239 	 * We properly handle process_queue & input_pkt_queue later.
9240 	 */
9241 	while (!list_empty(&oldsd->poll_list)) {
9242 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9243 							    struct napi_struct,
9244 							    poll_list);
9245 
9246 		list_del_init(&napi->poll_list);
9247 		if (napi->poll == process_backlog)
9248 			napi->state = 0;
9249 		else
9250 			____napi_schedule(sd, napi);
9251 	}
9252 
9253 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9254 	local_irq_enable();
9255 
9256 #ifdef CONFIG_RPS
9257 	remsd = oldsd->rps_ipi_list;
9258 	oldsd->rps_ipi_list = NULL;
9259 #endif
9260 	/* send out pending IPI's on offline CPU */
9261 	net_rps_send_ipi(remsd);
9262 
9263 	/* Process offline CPU's input_pkt_queue */
9264 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9265 		netif_rx_ni(skb);
9266 		input_queue_head_incr(oldsd);
9267 	}
9268 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9269 		netif_rx_ni(skb);
9270 		input_queue_head_incr(oldsd);
9271 	}
9272 
9273 	return 0;
9274 }
9275 
9276 /**
9277  *	netdev_increment_features - increment feature set by one
9278  *	@all: current feature set
9279  *	@one: new feature set
9280  *	@mask: mask feature set
9281  *
9282  *	Computes a new feature set after adding a device with feature set
9283  *	@one to the master device with current feature set @all.  Will not
9284  *	enable anything that is off in @mask. Returns the new feature set.
9285  */
9286 netdev_features_t netdev_increment_features(netdev_features_t all,
9287 	netdev_features_t one, netdev_features_t mask)
9288 {
9289 	if (mask & NETIF_F_HW_CSUM)
9290 		mask |= NETIF_F_CSUM_MASK;
9291 	mask |= NETIF_F_VLAN_CHALLENGED;
9292 
9293 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9294 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9295 
9296 	/* If one device supports hw checksumming, set for all. */
9297 	if (all & NETIF_F_HW_CSUM)
9298 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9299 
9300 	return all;
9301 }
9302 EXPORT_SYMBOL(netdev_increment_features);
9303 
9304 static struct hlist_head * __net_init netdev_create_hash(void)
9305 {
9306 	int i;
9307 	struct hlist_head *hash;
9308 
9309 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9310 	if (hash != NULL)
9311 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9312 			INIT_HLIST_HEAD(&hash[i]);
9313 
9314 	return hash;
9315 }
9316 
9317 /* Initialize per network namespace state */
9318 static int __net_init netdev_init(struct net *net)
9319 {
9320 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9321 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9322 
9323 	if (net != &init_net)
9324 		INIT_LIST_HEAD(&net->dev_base_head);
9325 
9326 	net->dev_name_head = netdev_create_hash();
9327 	if (net->dev_name_head == NULL)
9328 		goto err_name;
9329 
9330 	net->dev_index_head = netdev_create_hash();
9331 	if (net->dev_index_head == NULL)
9332 		goto err_idx;
9333 
9334 	return 0;
9335 
9336 err_idx:
9337 	kfree(net->dev_name_head);
9338 err_name:
9339 	return -ENOMEM;
9340 }
9341 
9342 /**
9343  *	netdev_drivername - network driver for the device
9344  *	@dev: network device
9345  *
9346  *	Determine network driver for device.
9347  */
9348 const char *netdev_drivername(const struct net_device *dev)
9349 {
9350 	const struct device_driver *driver;
9351 	const struct device *parent;
9352 	const char *empty = "";
9353 
9354 	parent = dev->dev.parent;
9355 	if (!parent)
9356 		return empty;
9357 
9358 	driver = parent->driver;
9359 	if (driver && driver->name)
9360 		return driver->name;
9361 	return empty;
9362 }
9363 
9364 static void __netdev_printk(const char *level, const struct net_device *dev,
9365 			    struct va_format *vaf)
9366 {
9367 	if (dev && dev->dev.parent) {
9368 		dev_printk_emit(level[1] - '0',
9369 				dev->dev.parent,
9370 				"%s %s %s%s: %pV",
9371 				dev_driver_string(dev->dev.parent),
9372 				dev_name(dev->dev.parent),
9373 				netdev_name(dev), netdev_reg_state(dev),
9374 				vaf);
9375 	} else if (dev) {
9376 		printk("%s%s%s: %pV",
9377 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9378 	} else {
9379 		printk("%s(NULL net_device): %pV", level, vaf);
9380 	}
9381 }
9382 
9383 void netdev_printk(const char *level, const struct net_device *dev,
9384 		   const char *format, ...)
9385 {
9386 	struct va_format vaf;
9387 	va_list args;
9388 
9389 	va_start(args, format);
9390 
9391 	vaf.fmt = format;
9392 	vaf.va = &args;
9393 
9394 	__netdev_printk(level, dev, &vaf);
9395 
9396 	va_end(args);
9397 }
9398 EXPORT_SYMBOL(netdev_printk);
9399 
9400 #define define_netdev_printk_level(func, level)			\
9401 void func(const struct net_device *dev, const char *fmt, ...)	\
9402 {								\
9403 	struct va_format vaf;					\
9404 	va_list args;						\
9405 								\
9406 	va_start(args, fmt);					\
9407 								\
9408 	vaf.fmt = fmt;						\
9409 	vaf.va = &args;						\
9410 								\
9411 	__netdev_printk(level, dev, &vaf);			\
9412 								\
9413 	va_end(args);						\
9414 }								\
9415 EXPORT_SYMBOL(func);
9416 
9417 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9418 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9419 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9420 define_netdev_printk_level(netdev_err, KERN_ERR);
9421 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9422 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9423 define_netdev_printk_level(netdev_info, KERN_INFO);
9424 
9425 static void __net_exit netdev_exit(struct net *net)
9426 {
9427 	kfree(net->dev_name_head);
9428 	kfree(net->dev_index_head);
9429 	if (net != &init_net)
9430 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9431 }
9432 
9433 static struct pernet_operations __net_initdata netdev_net_ops = {
9434 	.init = netdev_init,
9435 	.exit = netdev_exit,
9436 };
9437 
9438 static void __net_exit default_device_exit(struct net *net)
9439 {
9440 	struct net_device *dev, *aux;
9441 	/*
9442 	 * Push all migratable network devices back to the
9443 	 * initial network namespace
9444 	 */
9445 	rtnl_lock();
9446 	for_each_netdev_safe(net, dev, aux) {
9447 		int err;
9448 		char fb_name[IFNAMSIZ];
9449 
9450 		/* Ignore unmoveable devices (i.e. loopback) */
9451 		if (dev->features & NETIF_F_NETNS_LOCAL)
9452 			continue;
9453 
9454 		/* Leave virtual devices for the generic cleanup */
9455 		if (dev->rtnl_link_ops)
9456 			continue;
9457 
9458 		/* Push remaining network devices to init_net */
9459 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9460 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9461 		if (err) {
9462 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9463 				 __func__, dev->name, err);
9464 			BUG();
9465 		}
9466 	}
9467 	rtnl_unlock();
9468 }
9469 
9470 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9471 {
9472 	/* Return with the rtnl_lock held when there are no network
9473 	 * devices unregistering in any network namespace in net_list.
9474 	 */
9475 	struct net *net;
9476 	bool unregistering;
9477 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9478 
9479 	add_wait_queue(&netdev_unregistering_wq, &wait);
9480 	for (;;) {
9481 		unregistering = false;
9482 		rtnl_lock();
9483 		list_for_each_entry(net, net_list, exit_list) {
9484 			if (net->dev_unreg_count > 0) {
9485 				unregistering = true;
9486 				break;
9487 			}
9488 		}
9489 		if (!unregistering)
9490 			break;
9491 		__rtnl_unlock();
9492 
9493 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9494 	}
9495 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9496 }
9497 
9498 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9499 {
9500 	/* At exit all network devices most be removed from a network
9501 	 * namespace.  Do this in the reverse order of registration.
9502 	 * Do this across as many network namespaces as possible to
9503 	 * improve batching efficiency.
9504 	 */
9505 	struct net_device *dev;
9506 	struct net *net;
9507 	LIST_HEAD(dev_kill_list);
9508 
9509 	/* To prevent network device cleanup code from dereferencing
9510 	 * loopback devices or network devices that have been freed
9511 	 * wait here for all pending unregistrations to complete,
9512 	 * before unregistring the loopback device and allowing the
9513 	 * network namespace be freed.
9514 	 *
9515 	 * The netdev todo list containing all network devices
9516 	 * unregistrations that happen in default_device_exit_batch
9517 	 * will run in the rtnl_unlock() at the end of
9518 	 * default_device_exit_batch.
9519 	 */
9520 	rtnl_lock_unregistering(net_list);
9521 	list_for_each_entry(net, net_list, exit_list) {
9522 		for_each_netdev_reverse(net, dev) {
9523 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9524 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9525 			else
9526 				unregister_netdevice_queue(dev, &dev_kill_list);
9527 		}
9528 	}
9529 	unregister_netdevice_many(&dev_kill_list);
9530 	rtnl_unlock();
9531 }
9532 
9533 static struct pernet_operations __net_initdata default_device_ops = {
9534 	.exit = default_device_exit,
9535 	.exit_batch = default_device_exit_batch,
9536 };
9537 
9538 /*
9539  *	Initialize the DEV module. At boot time this walks the device list and
9540  *	unhooks any devices that fail to initialise (normally hardware not
9541  *	present) and leaves us with a valid list of present and active devices.
9542  *
9543  */
9544 
9545 /*
9546  *       This is called single threaded during boot, so no need
9547  *       to take the rtnl semaphore.
9548  */
9549 static int __init net_dev_init(void)
9550 {
9551 	int i, rc = -ENOMEM;
9552 
9553 	BUG_ON(!dev_boot_phase);
9554 
9555 	if (dev_proc_init())
9556 		goto out;
9557 
9558 	if (netdev_kobject_init())
9559 		goto out;
9560 
9561 	INIT_LIST_HEAD(&ptype_all);
9562 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9563 		INIT_LIST_HEAD(&ptype_base[i]);
9564 
9565 	INIT_LIST_HEAD(&offload_base);
9566 
9567 	if (register_pernet_subsys(&netdev_net_ops))
9568 		goto out;
9569 
9570 	/*
9571 	 *	Initialise the packet receive queues.
9572 	 */
9573 
9574 	for_each_possible_cpu(i) {
9575 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9576 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9577 
9578 		INIT_WORK(flush, flush_backlog);
9579 
9580 		skb_queue_head_init(&sd->input_pkt_queue);
9581 		skb_queue_head_init(&sd->process_queue);
9582 #ifdef CONFIG_XFRM_OFFLOAD
9583 		skb_queue_head_init(&sd->xfrm_backlog);
9584 #endif
9585 		INIT_LIST_HEAD(&sd->poll_list);
9586 		sd->output_queue_tailp = &sd->output_queue;
9587 #ifdef CONFIG_RPS
9588 		sd->csd.func = rps_trigger_softirq;
9589 		sd->csd.info = sd;
9590 		sd->cpu = i;
9591 #endif
9592 
9593 		init_gro_hash(&sd->backlog);
9594 		sd->backlog.poll = process_backlog;
9595 		sd->backlog.weight = weight_p;
9596 	}
9597 
9598 	dev_boot_phase = 0;
9599 
9600 	/* The loopback device is special if any other network devices
9601 	 * is present in a network namespace the loopback device must
9602 	 * be present. Since we now dynamically allocate and free the
9603 	 * loopback device ensure this invariant is maintained by
9604 	 * keeping the loopback device as the first device on the
9605 	 * list of network devices.  Ensuring the loopback devices
9606 	 * is the first device that appears and the last network device
9607 	 * that disappears.
9608 	 */
9609 	if (register_pernet_device(&loopback_net_ops))
9610 		goto out;
9611 
9612 	if (register_pernet_device(&default_device_ops))
9613 		goto out;
9614 
9615 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9616 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9617 
9618 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9619 				       NULL, dev_cpu_dead);
9620 	WARN_ON(rc < 0);
9621 	rc = 0;
9622 out:
9623 	return rc;
9624 }
9625 
9626 subsys_initcall(net_dev_init);
9627