xref: /linux/net/core/dev.c (revision f694f30e81c4ade358eb8c75273bac1a48f0cb8f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool *, system_page_pool);
466 
467 #ifdef CONFIG_LOCKDEP
468 /*
469  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
470  * according to dev->type
471  */
472 static const unsigned short netdev_lock_type[] = {
473 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
474 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
475 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
476 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
477 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
478 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
479 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
480 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
481 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
482 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
483 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
484 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
485 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
486 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
487 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
488 
489 static const char *const netdev_lock_name[] = {
490 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
491 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
492 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
493 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
494 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
495 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
496 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
497 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
498 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
499 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
500 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
501 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
502 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
503 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
504 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
505 
506 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
507 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
508 
509 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
510 {
511 	int i;
512 
513 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
514 		if (netdev_lock_type[i] == dev_type)
515 			return i;
516 	/* the last key is used by default */
517 	return ARRAY_SIZE(netdev_lock_type) - 1;
518 }
519 
520 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
521 						 unsigned short dev_type)
522 {
523 	int i;
524 
525 	i = netdev_lock_pos(dev_type);
526 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
527 				   netdev_lock_name[i]);
528 }
529 
530 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
531 {
532 	int i;
533 
534 	i = netdev_lock_pos(dev->type);
535 	lockdep_set_class_and_name(&dev->addr_list_lock,
536 				   &netdev_addr_lock_key[i],
537 				   netdev_lock_name[i]);
538 }
539 #else
540 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
541 						 unsigned short dev_type)
542 {
543 }
544 
545 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
546 {
547 }
548 #endif
549 
550 /*******************************************************************************
551  *
552  *		Protocol management and registration routines
553  *
554  *******************************************************************************/
555 
556 
557 /*
558  *	Add a protocol ID to the list. Now that the input handler is
559  *	smarter we can dispense with all the messy stuff that used to be
560  *	here.
561  *
562  *	BEWARE!!! Protocol handlers, mangling input packets,
563  *	MUST BE last in hash buckets and checking protocol handlers
564  *	MUST start from promiscuous ptype_all chain in net_bh.
565  *	It is true now, do not change it.
566  *	Explanation follows: if protocol handler, mangling packet, will
567  *	be the first on list, it is not able to sense, that packet
568  *	is cloned and should be copied-on-write, so that it will
569  *	change it and subsequent readers will get broken packet.
570  *							--ANK (980803)
571  */
572 
573 static inline struct list_head *ptype_head(const struct packet_type *pt)
574 {
575 	if (pt->type == htons(ETH_P_ALL)) {
576 		if (!pt->af_packet_net && !pt->dev)
577 			return NULL;
578 
579 		return pt->dev ? &pt->dev->ptype_all :
580 				 &pt->af_packet_net->ptype_all;
581 	}
582 
583 	if (pt->dev)
584 		return &pt->dev->ptype_specific;
585 
586 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
587 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
588 }
589 
590 /**
591  *	dev_add_pack - add packet handler
592  *	@pt: packet type declaration
593  *
594  *	Add a protocol handler to the networking stack. The passed &packet_type
595  *	is linked into kernel lists and may not be freed until it has been
596  *	removed from the kernel lists.
597  *
598  *	This call does not sleep therefore it can not
599  *	guarantee all CPU's that are in middle of receiving packets
600  *	will see the new packet type (until the next received packet).
601  */
602 
603 void dev_add_pack(struct packet_type *pt)
604 {
605 	struct list_head *head = ptype_head(pt);
606 
607 	if (WARN_ON_ONCE(!head))
608 		return;
609 
610 	spin_lock(&ptype_lock);
611 	list_add_rcu(&pt->list, head);
612 	spin_unlock(&ptype_lock);
613 }
614 EXPORT_SYMBOL(dev_add_pack);
615 
616 /**
617  *	__dev_remove_pack	 - remove packet handler
618  *	@pt: packet type declaration
619  *
620  *	Remove a protocol handler that was previously added to the kernel
621  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
622  *	from the kernel lists and can be freed or reused once this function
623  *	returns.
624  *
625  *      The packet type might still be in use by receivers
626  *	and must not be freed until after all the CPU's have gone
627  *	through a quiescent state.
628  */
629 void __dev_remove_pack(struct packet_type *pt)
630 {
631 	struct list_head *head = ptype_head(pt);
632 	struct packet_type *pt1;
633 
634 	if (!head)
635 		return;
636 
637 	spin_lock(&ptype_lock);
638 
639 	list_for_each_entry(pt1, head, list) {
640 		if (pt == pt1) {
641 			list_del_rcu(&pt->list);
642 			goto out;
643 		}
644 	}
645 
646 	pr_warn("dev_remove_pack: %p not found\n", pt);
647 out:
648 	spin_unlock(&ptype_lock);
649 }
650 EXPORT_SYMBOL(__dev_remove_pack);
651 
652 /**
653  *	dev_remove_pack	 - remove packet handler
654  *	@pt: packet type declaration
655  *
656  *	Remove a protocol handler that was previously added to the kernel
657  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
658  *	from the kernel lists and can be freed or reused once this function
659  *	returns.
660  *
661  *	This call sleeps to guarantee that no CPU is looking at the packet
662  *	type after return.
663  */
664 void dev_remove_pack(struct packet_type *pt)
665 {
666 	__dev_remove_pack(pt);
667 
668 	synchronize_net();
669 }
670 EXPORT_SYMBOL(dev_remove_pack);
671 
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return READ_ONCE(dev->ifindex);
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
722 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
723 {
724 	int k = stack->num_paths++;
725 
726 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
727 		return NULL;
728 
729 	return &stack->path[k];
730 }
731 
732 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
733 			  struct net_device_path_stack *stack)
734 {
735 	const struct net_device *last_dev;
736 	struct net_device_path_ctx ctx = {
737 		.dev	= dev,
738 	};
739 	struct net_device_path *path;
740 	int ret = 0;
741 
742 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
743 	stack->num_paths = 0;
744 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
745 		last_dev = ctx.dev;
746 		path = dev_fwd_path(stack);
747 		if (!path)
748 			return -1;
749 
750 		memset(path, 0, sizeof(struct net_device_path));
751 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
752 		if (ret < 0)
753 			return -1;
754 
755 		if (WARN_ON_ONCE(last_dev == ctx.dev))
756 			return -1;
757 	}
758 
759 	if (!ctx.dev)
760 		return ret;
761 
762 	path = dev_fwd_path(stack);
763 	if (!path)
764 		return -1;
765 	path->type = DEV_PATH_ETHERNET;
766 	path->dev = ctx.dev;
767 
768 	return ret;
769 }
770 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
771 
772 /* must be called under rcu_read_lock(), as we dont take a reference */
773 static struct napi_struct *napi_by_id(unsigned int napi_id)
774 {
775 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
776 	struct napi_struct *napi;
777 
778 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
779 		if (napi->napi_id == napi_id)
780 			return napi;
781 
782 	return NULL;
783 }
784 
785 /* must be called under rcu_read_lock(), as we dont take a reference */
786 static struct napi_struct *
787 netdev_napi_by_id(struct net *net, unsigned int napi_id)
788 {
789 	struct napi_struct *napi;
790 
791 	napi = napi_by_id(napi_id);
792 	if (!napi)
793 		return NULL;
794 
795 	if (WARN_ON_ONCE(!napi->dev))
796 		return NULL;
797 	if (!net_eq(net, dev_net(napi->dev)))
798 		return NULL;
799 
800 	return napi;
801 }
802 
803 /**
804  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
805  *	@net: the applicable net namespace
806  *	@napi_id: ID of a NAPI of a target device
807  *
808  *	Find a NAPI instance with @napi_id. Lock its device.
809  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
810  *	netdev_unlock() must be called to release it.
811  *
812  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
813  */
814 struct napi_struct *
815 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
816 {
817 	struct napi_struct *napi;
818 	struct net_device *dev;
819 
820 	rcu_read_lock();
821 	napi = netdev_napi_by_id(net, napi_id);
822 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
823 		rcu_read_unlock();
824 		return NULL;
825 	}
826 
827 	dev = napi->dev;
828 	dev_hold(dev);
829 	rcu_read_unlock();
830 
831 	dev = __netdev_put_lock(dev);
832 	if (!dev)
833 		return NULL;
834 
835 	rcu_read_lock();
836 	napi = netdev_napi_by_id(net, napi_id);
837 	if (napi && napi->dev != dev)
838 		napi = NULL;
839 	rcu_read_unlock();
840 
841 	if (!napi)
842 		netdev_unlock(dev);
843 	return napi;
844 }
845 
846 /**
847  *	__dev_get_by_name	- find a device by its name
848  *	@net: the applicable net namespace
849  *	@name: name to find
850  *
851  *	Find an interface by name. Must be called under RTNL semaphore.
852  *	If the name is found a pointer to the device is returned.
853  *	If the name is not found then %NULL is returned. The
854  *	reference counters are not incremented so the caller must be
855  *	careful with locks.
856  */
857 
858 struct net_device *__dev_get_by_name(struct net *net, const char *name)
859 {
860 	struct netdev_name_node *node_name;
861 
862 	node_name = netdev_name_node_lookup(net, name);
863 	return node_name ? node_name->dev : NULL;
864 }
865 EXPORT_SYMBOL(__dev_get_by_name);
866 
867 /**
868  * dev_get_by_name_rcu	- find a device by its name
869  * @net: the applicable net namespace
870  * @name: name to find
871  *
872  * Find an interface by name.
873  * If the name is found a pointer to the device is returned.
874  * If the name is not found then %NULL is returned.
875  * The reference counters are not incremented so the caller must be
876  * careful with locks. The caller must hold RCU lock.
877  */
878 
879 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
880 {
881 	struct netdev_name_node *node_name;
882 
883 	node_name = netdev_name_node_lookup_rcu(net, name);
884 	return node_name ? node_name->dev : NULL;
885 }
886 EXPORT_SYMBOL(dev_get_by_name_rcu);
887 
888 /* Deprecated for new users, call netdev_get_by_name() instead */
889 struct net_device *dev_get_by_name(struct net *net, const char *name)
890 {
891 	struct net_device *dev;
892 
893 	rcu_read_lock();
894 	dev = dev_get_by_name_rcu(net, name);
895 	dev_hold(dev);
896 	rcu_read_unlock();
897 	return dev;
898 }
899 EXPORT_SYMBOL(dev_get_by_name);
900 
901 /**
902  *	netdev_get_by_name() - find a device by its name
903  *	@net: the applicable net namespace
904  *	@name: name to find
905  *	@tracker: tracking object for the acquired reference
906  *	@gfp: allocation flags for the tracker
907  *
908  *	Find an interface by name. This can be called from any
909  *	context and does its own locking. The returned handle has
910  *	the usage count incremented and the caller must use netdev_put() to
911  *	release it when it is no longer needed. %NULL is returned if no
912  *	matching device is found.
913  */
914 struct net_device *netdev_get_by_name(struct net *net, const char *name,
915 				      netdevice_tracker *tracker, gfp_t gfp)
916 {
917 	struct net_device *dev;
918 
919 	dev = dev_get_by_name(net, name);
920 	if (dev)
921 		netdev_tracker_alloc(dev, tracker, gfp);
922 	return dev;
923 }
924 EXPORT_SYMBOL(netdev_get_by_name);
925 
926 /**
927  *	__dev_get_by_index - find a device by its ifindex
928  *	@net: the applicable net namespace
929  *	@ifindex: index of device
930  *
931  *	Search for an interface by index. Returns %NULL if the device
932  *	is not found or a pointer to the device. The device has not
933  *	had its reference counter increased so the caller must be careful
934  *	about locking. The caller must hold the RTNL semaphore.
935  */
936 
937 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
938 {
939 	struct net_device *dev;
940 	struct hlist_head *head = dev_index_hash(net, ifindex);
941 
942 	hlist_for_each_entry(dev, head, index_hlist)
943 		if (dev->ifindex == ifindex)
944 			return dev;
945 
946 	return NULL;
947 }
948 EXPORT_SYMBOL(__dev_get_by_index);
949 
950 /**
951  *	dev_get_by_index_rcu - find a device by its ifindex
952  *	@net: the applicable net namespace
953  *	@ifindex: index of device
954  *
955  *	Search for an interface by index. Returns %NULL if the device
956  *	is not found or a pointer to the device. The device has not
957  *	had its reference counter increased so the caller must be careful
958  *	about locking. The caller must hold RCU lock.
959  */
960 
961 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
962 {
963 	struct net_device *dev;
964 	struct hlist_head *head = dev_index_hash(net, ifindex);
965 
966 	hlist_for_each_entry_rcu(dev, head, index_hlist)
967 		if (dev->ifindex == ifindex)
968 			return dev;
969 
970 	return NULL;
971 }
972 EXPORT_SYMBOL(dev_get_by_index_rcu);
973 
974 /* Deprecated for new users, call netdev_get_by_index() instead */
975 struct net_device *dev_get_by_index(struct net *net, int ifindex)
976 {
977 	struct net_device *dev;
978 
979 	rcu_read_lock();
980 	dev = dev_get_by_index_rcu(net, ifindex);
981 	dev_hold(dev);
982 	rcu_read_unlock();
983 	return dev;
984 }
985 EXPORT_SYMBOL(dev_get_by_index);
986 
987 /**
988  *	netdev_get_by_index() - find a device by its ifindex
989  *	@net: the applicable net namespace
990  *	@ifindex: index of device
991  *	@tracker: tracking object for the acquired reference
992  *	@gfp: allocation flags for the tracker
993  *
994  *	Search for an interface by index. Returns NULL if the device
995  *	is not found or a pointer to the device. The device returned has
996  *	had a reference added and the pointer is safe until the user calls
997  *	netdev_put() to indicate they have finished with it.
998  */
999 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1000 				       netdevice_tracker *tracker, gfp_t gfp)
1001 {
1002 	struct net_device *dev;
1003 
1004 	dev = dev_get_by_index(net, ifindex);
1005 	if (dev)
1006 		netdev_tracker_alloc(dev, tracker, gfp);
1007 	return dev;
1008 }
1009 EXPORT_SYMBOL(netdev_get_by_index);
1010 
1011 /**
1012  *	dev_get_by_napi_id - find a device by napi_id
1013  *	@napi_id: ID of the NAPI struct
1014  *
1015  *	Search for an interface by NAPI ID. Returns %NULL if the device
1016  *	is not found or a pointer to the device. The device has not had
1017  *	its reference counter increased so the caller must be careful
1018  *	about locking. The caller must hold RCU lock.
1019  */
1020 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1021 {
1022 	struct napi_struct *napi;
1023 
1024 	WARN_ON_ONCE(!rcu_read_lock_held());
1025 
1026 	if (!napi_id_valid(napi_id))
1027 		return NULL;
1028 
1029 	napi = napi_by_id(napi_id);
1030 
1031 	return napi ? napi->dev : NULL;
1032 }
1033 
1034 /* Release the held reference on the net_device, and if the net_device
1035  * is still registered try to lock the instance lock. If device is being
1036  * unregistered NULL will be returned (but the reference has been released,
1037  * either way!)
1038  *
1039  * This helper is intended for locking net_device after it has been looked up
1040  * using a lockless lookup helper. Lock prevents the instance from going away.
1041  */
1042 struct net_device *__netdev_put_lock(struct net_device *dev)
1043 {
1044 	netdev_lock(dev);
1045 	if (dev->reg_state > NETREG_REGISTERED) {
1046 		netdev_unlock(dev);
1047 		dev_put(dev);
1048 		return NULL;
1049 	}
1050 	dev_put(dev);
1051 	return dev;
1052 }
1053 
1054 /**
1055  *	netdev_get_by_index_lock() - find a device by its ifindex
1056  *	@net: the applicable net namespace
1057  *	@ifindex: index of device
1058  *
1059  *	Search for an interface by index. If a valid device
1060  *	with @ifindex is found it will be returned with netdev->lock held.
1061  *	netdev_unlock() must be called to release it.
1062  *
1063  *	Return: pointer to a device with lock held, NULL if not found.
1064  */
1065 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1066 {
1067 	struct net_device *dev;
1068 
1069 	dev = dev_get_by_index(net, ifindex);
1070 	if (!dev)
1071 		return NULL;
1072 
1073 	return __netdev_put_lock(dev);
1074 }
1075 
1076 struct net_device *
1077 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1078 		    unsigned long *index)
1079 {
1080 	if (dev)
1081 		netdev_unlock(dev);
1082 
1083 	do {
1084 		rcu_read_lock();
1085 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1086 		if (!dev) {
1087 			rcu_read_unlock();
1088 			return NULL;
1089 		}
1090 		dev_hold(dev);
1091 		rcu_read_unlock();
1092 
1093 		dev = __netdev_put_lock(dev);
1094 		if (dev)
1095 			return dev;
1096 
1097 		(*index)++;
1098 	} while (true);
1099 }
1100 
1101 static DEFINE_SEQLOCK(netdev_rename_lock);
1102 
1103 void netdev_copy_name(struct net_device *dev, char *name)
1104 {
1105 	unsigned int seq;
1106 
1107 	do {
1108 		seq = read_seqbegin(&netdev_rename_lock);
1109 		strscpy(name, dev->name, IFNAMSIZ);
1110 	} while (read_seqretry(&netdev_rename_lock, seq));
1111 }
1112 
1113 /**
1114  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1115  *	@net: network namespace
1116  *	@name: a pointer to the buffer where the name will be stored.
1117  *	@ifindex: the ifindex of the interface to get the name from.
1118  */
1119 int netdev_get_name(struct net *net, char *name, int ifindex)
1120 {
1121 	struct net_device *dev;
1122 	int ret;
1123 
1124 	rcu_read_lock();
1125 
1126 	dev = dev_get_by_index_rcu(net, ifindex);
1127 	if (!dev) {
1128 		ret = -ENODEV;
1129 		goto out;
1130 	}
1131 
1132 	netdev_copy_name(dev, name);
1133 
1134 	ret = 0;
1135 out:
1136 	rcu_read_unlock();
1137 	return ret;
1138 }
1139 
1140 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1141 			 const char *ha)
1142 {
1143 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1144 }
1145 
1146 /**
1147  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1148  *	@net: the applicable net namespace
1149  *	@type: media type of device
1150  *	@ha: hardware address
1151  *
1152  *	Search for an interface by MAC address. Returns NULL if the device
1153  *	is not found or a pointer to the device.
1154  *	The caller must hold RCU.
1155  *	The returned device has not had its ref count increased
1156  *	and the caller must therefore be careful about locking
1157  *
1158  */
1159 
1160 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1161 				       const char *ha)
1162 {
1163 	struct net_device *dev;
1164 
1165 	for_each_netdev_rcu(net, dev)
1166 		if (dev_addr_cmp(dev, type, ha))
1167 			return dev;
1168 
1169 	return NULL;
1170 }
1171 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1172 
1173 /**
1174  * dev_getbyhwaddr() - find a device by its hardware address
1175  * @net: the applicable net namespace
1176  * @type: media type of device
1177  * @ha: hardware address
1178  *
1179  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1180  * rtnl_lock.
1181  *
1182  * Context: rtnl_lock() must be held.
1183  * Return: pointer to the net_device, or NULL if not found
1184  */
1185 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1186 				   const char *ha)
1187 {
1188 	struct net_device *dev;
1189 
1190 	ASSERT_RTNL();
1191 	for_each_netdev(net, dev)
1192 		if (dev_addr_cmp(dev, type, ha))
1193 			return dev;
1194 
1195 	return NULL;
1196 }
1197 EXPORT_SYMBOL(dev_getbyhwaddr);
1198 
1199 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1200 {
1201 	struct net_device *dev, *ret = NULL;
1202 
1203 	rcu_read_lock();
1204 	for_each_netdev_rcu(net, dev)
1205 		if (dev->type == type) {
1206 			dev_hold(dev);
1207 			ret = dev;
1208 			break;
1209 		}
1210 	rcu_read_unlock();
1211 	return ret;
1212 }
1213 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1214 
1215 /**
1216  *	__dev_get_by_flags - find any device with given flags
1217  *	@net: the applicable net namespace
1218  *	@if_flags: IFF_* values
1219  *	@mask: bitmask of bits in if_flags to check
1220  *
1221  *	Search for any interface with the given flags. Returns NULL if a device
1222  *	is not found or a pointer to the device. Must be called inside
1223  *	rtnl_lock(), and result refcount is unchanged.
1224  */
1225 
1226 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1227 				      unsigned short mask)
1228 {
1229 	struct net_device *dev, *ret;
1230 
1231 	ASSERT_RTNL();
1232 
1233 	ret = NULL;
1234 	for_each_netdev(net, dev) {
1235 		if (((dev->flags ^ if_flags) & mask) == 0) {
1236 			ret = dev;
1237 			break;
1238 		}
1239 	}
1240 	return ret;
1241 }
1242 EXPORT_SYMBOL(__dev_get_by_flags);
1243 
1244 /**
1245  *	dev_valid_name - check if name is okay for network device
1246  *	@name: name string
1247  *
1248  *	Network device names need to be valid file names to
1249  *	allow sysfs to work.  We also disallow any kind of
1250  *	whitespace.
1251  */
1252 bool dev_valid_name(const char *name)
1253 {
1254 	if (*name == '\0')
1255 		return false;
1256 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1257 		return false;
1258 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1259 		return false;
1260 
1261 	while (*name) {
1262 		if (*name == '/' || *name == ':' || isspace(*name))
1263 			return false;
1264 		name++;
1265 	}
1266 	return true;
1267 }
1268 EXPORT_SYMBOL(dev_valid_name);
1269 
1270 /**
1271  *	__dev_alloc_name - allocate a name for a device
1272  *	@net: network namespace to allocate the device name in
1273  *	@name: name format string
1274  *	@res: result name string
1275  *
1276  *	Passed a format string - eg "lt%d" it will try and find a suitable
1277  *	id. It scans list of devices to build up a free map, then chooses
1278  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1279  *	while allocating the name and adding the device in order to avoid
1280  *	duplicates.
1281  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1282  *	Returns the number of the unit assigned or a negative errno code.
1283  */
1284 
1285 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1286 {
1287 	int i = 0;
1288 	const char *p;
1289 	const int max_netdevices = 8*PAGE_SIZE;
1290 	unsigned long *inuse;
1291 	struct net_device *d;
1292 	char buf[IFNAMSIZ];
1293 
1294 	/* Verify the string as this thing may have come from the user.
1295 	 * There must be one "%d" and no other "%" characters.
1296 	 */
1297 	p = strchr(name, '%');
1298 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1299 		return -EINVAL;
1300 
1301 	/* Use one page as a bit array of possible slots */
1302 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1303 	if (!inuse)
1304 		return -ENOMEM;
1305 
1306 	for_each_netdev(net, d) {
1307 		struct netdev_name_node *name_node;
1308 
1309 		netdev_for_each_altname(d, name_node) {
1310 			if (!sscanf(name_node->name, name, &i))
1311 				continue;
1312 			if (i < 0 || i >= max_netdevices)
1313 				continue;
1314 
1315 			/* avoid cases where sscanf is not exact inverse of printf */
1316 			snprintf(buf, IFNAMSIZ, name, i);
1317 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1318 				__set_bit(i, inuse);
1319 		}
1320 		if (!sscanf(d->name, name, &i))
1321 			continue;
1322 		if (i < 0 || i >= max_netdevices)
1323 			continue;
1324 
1325 		/* avoid cases where sscanf is not exact inverse of printf */
1326 		snprintf(buf, IFNAMSIZ, name, i);
1327 		if (!strncmp(buf, d->name, IFNAMSIZ))
1328 			__set_bit(i, inuse);
1329 	}
1330 
1331 	i = find_first_zero_bit(inuse, max_netdevices);
1332 	bitmap_free(inuse);
1333 	if (i == max_netdevices)
1334 		return -ENFILE;
1335 
1336 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1337 	strscpy(buf, name, IFNAMSIZ);
1338 	snprintf(res, IFNAMSIZ, buf, i);
1339 	return i;
1340 }
1341 
1342 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1343 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1344 			       const char *want_name, char *out_name,
1345 			       int dup_errno)
1346 {
1347 	if (!dev_valid_name(want_name))
1348 		return -EINVAL;
1349 
1350 	if (strchr(want_name, '%'))
1351 		return __dev_alloc_name(net, want_name, out_name);
1352 
1353 	if (netdev_name_in_use(net, want_name))
1354 		return -dup_errno;
1355 	if (out_name != want_name)
1356 		strscpy(out_name, want_name, IFNAMSIZ);
1357 	return 0;
1358 }
1359 
1360 /**
1361  *	dev_alloc_name - allocate a name for a device
1362  *	@dev: device
1363  *	@name: name format string
1364  *
1365  *	Passed a format string - eg "lt%d" it will try and find a suitable
1366  *	id. It scans list of devices to build up a free map, then chooses
1367  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1368  *	while allocating the name and adding the device in order to avoid
1369  *	duplicates.
1370  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1371  *	Returns the number of the unit assigned or a negative errno code.
1372  */
1373 
1374 int dev_alloc_name(struct net_device *dev, const char *name)
1375 {
1376 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1377 }
1378 EXPORT_SYMBOL(dev_alloc_name);
1379 
1380 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1381 			      const char *name)
1382 {
1383 	int ret;
1384 
1385 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1386 	return ret < 0 ? ret : 0;
1387 }
1388 
1389 int netif_change_name(struct net_device *dev, const char *newname)
1390 {
1391 	struct net *net = dev_net(dev);
1392 	unsigned char old_assign_type;
1393 	char oldname[IFNAMSIZ];
1394 	int err = 0;
1395 	int ret;
1396 
1397 	ASSERT_RTNL_NET(net);
1398 
1399 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1400 		return 0;
1401 
1402 	memcpy(oldname, dev->name, IFNAMSIZ);
1403 
1404 	write_seqlock_bh(&netdev_rename_lock);
1405 	err = dev_get_valid_name(net, dev, newname);
1406 	write_sequnlock_bh(&netdev_rename_lock);
1407 
1408 	if (err < 0)
1409 		return err;
1410 
1411 	if (oldname[0] && !strchr(oldname, '%'))
1412 		netdev_info(dev, "renamed from %s%s\n", oldname,
1413 			    dev->flags & IFF_UP ? " (while UP)" : "");
1414 
1415 	old_assign_type = dev->name_assign_type;
1416 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1417 
1418 rollback:
1419 	ret = device_rename(&dev->dev, dev->name);
1420 	if (ret) {
1421 		write_seqlock_bh(&netdev_rename_lock);
1422 		memcpy(dev->name, oldname, IFNAMSIZ);
1423 		write_sequnlock_bh(&netdev_rename_lock);
1424 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1425 		return ret;
1426 	}
1427 
1428 	netdev_adjacent_rename_links(dev, oldname);
1429 
1430 	netdev_name_node_del(dev->name_node);
1431 
1432 	synchronize_net();
1433 
1434 	netdev_name_node_add(net, dev->name_node);
1435 
1436 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1437 	ret = notifier_to_errno(ret);
1438 
1439 	if (ret) {
1440 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1441 		if (err >= 0) {
1442 			err = ret;
1443 			write_seqlock_bh(&netdev_rename_lock);
1444 			memcpy(dev->name, oldname, IFNAMSIZ);
1445 			write_sequnlock_bh(&netdev_rename_lock);
1446 			memcpy(oldname, newname, IFNAMSIZ);
1447 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1448 			old_assign_type = NET_NAME_RENAMED;
1449 			goto rollback;
1450 		} else {
1451 			netdev_err(dev, "name change rollback failed: %d\n",
1452 				   ret);
1453 		}
1454 	}
1455 
1456 	return err;
1457 }
1458 
1459 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1460 {
1461 	struct dev_ifalias *new_alias = NULL;
1462 
1463 	if (len >= IFALIASZ)
1464 		return -EINVAL;
1465 
1466 	if (len) {
1467 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1468 		if (!new_alias)
1469 			return -ENOMEM;
1470 
1471 		memcpy(new_alias->ifalias, alias, len);
1472 		new_alias->ifalias[len] = 0;
1473 	}
1474 
1475 	mutex_lock(&ifalias_mutex);
1476 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1477 					mutex_is_locked(&ifalias_mutex));
1478 	mutex_unlock(&ifalias_mutex);
1479 
1480 	if (new_alias)
1481 		kfree_rcu(new_alias, rcuhead);
1482 
1483 	return len;
1484 }
1485 
1486 /**
1487  *	dev_get_alias - get ifalias of a device
1488  *	@dev: device
1489  *	@name: buffer to store name of ifalias
1490  *	@len: size of buffer
1491  *
1492  *	get ifalias for a device.  Caller must make sure dev cannot go
1493  *	away,  e.g. rcu read lock or own a reference count to device.
1494  */
1495 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1496 {
1497 	const struct dev_ifalias *alias;
1498 	int ret = 0;
1499 
1500 	rcu_read_lock();
1501 	alias = rcu_dereference(dev->ifalias);
1502 	if (alias)
1503 		ret = snprintf(name, len, "%s", alias->ifalias);
1504 	rcu_read_unlock();
1505 
1506 	return ret;
1507 }
1508 
1509 /**
1510  *	netdev_features_change - device changes features
1511  *	@dev: device to cause notification
1512  *
1513  *	Called to indicate a device has changed features.
1514  */
1515 void netdev_features_change(struct net_device *dev)
1516 {
1517 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1518 }
1519 EXPORT_SYMBOL(netdev_features_change);
1520 
1521 void netif_state_change(struct net_device *dev)
1522 {
1523 	if (dev->flags & IFF_UP) {
1524 		struct netdev_notifier_change_info change_info = {
1525 			.info.dev = dev,
1526 		};
1527 
1528 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1529 					      &change_info.info);
1530 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1531 	}
1532 }
1533 
1534 /**
1535  * __netdev_notify_peers - notify network peers about existence of @dev,
1536  * to be called when rtnl lock is already held.
1537  * @dev: network device
1538  *
1539  * Generate traffic such that interested network peers are aware of
1540  * @dev, such as by generating a gratuitous ARP. This may be used when
1541  * a device wants to inform the rest of the network about some sort of
1542  * reconfiguration such as a failover event or virtual machine
1543  * migration.
1544  */
1545 void __netdev_notify_peers(struct net_device *dev)
1546 {
1547 	ASSERT_RTNL();
1548 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1549 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1550 }
1551 EXPORT_SYMBOL(__netdev_notify_peers);
1552 
1553 /**
1554  * netdev_notify_peers - notify network peers about existence of @dev
1555  * @dev: network device
1556  *
1557  * Generate traffic such that interested network peers are aware of
1558  * @dev, such as by generating a gratuitous ARP. This may be used when
1559  * a device wants to inform the rest of the network about some sort of
1560  * reconfiguration such as a failover event or virtual machine
1561  * migration.
1562  */
1563 void netdev_notify_peers(struct net_device *dev)
1564 {
1565 	rtnl_lock();
1566 	__netdev_notify_peers(dev);
1567 	rtnl_unlock();
1568 }
1569 EXPORT_SYMBOL(netdev_notify_peers);
1570 
1571 static int napi_threaded_poll(void *data);
1572 
1573 static int napi_kthread_create(struct napi_struct *n)
1574 {
1575 	int err = 0;
1576 
1577 	/* Create and wake up the kthread once to put it in
1578 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1579 	 * warning and work with loadavg.
1580 	 */
1581 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1582 				n->dev->name, n->napi_id);
1583 	if (IS_ERR(n->thread)) {
1584 		err = PTR_ERR(n->thread);
1585 		pr_err("kthread_run failed with err %d\n", err);
1586 		n->thread = NULL;
1587 	}
1588 
1589 	return err;
1590 }
1591 
1592 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1593 {
1594 	const struct net_device_ops *ops = dev->netdev_ops;
1595 	int ret;
1596 
1597 	ASSERT_RTNL();
1598 	dev_addr_check(dev);
1599 
1600 	if (!netif_device_present(dev)) {
1601 		/* may be detached because parent is runtime-suspended */
1602 		if (dev->dev.parent)
1603 			pm_runtime_resume(dev->dev.parent);
1604 		if (!netif_device_present(dev))
1605 			return -ENODEV;
1606 	}
1607 
1608 	/* Block netpoll from trying to do any rx path servicing.
1609 	 * If we don't do this there is a chance ndo_poll_controller
1610 	 * or ndo_poll may be running while we open the device
1611 	 */
1612 	netpoll_poll_disable(dev);
1613 
1614 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1615 	ret = notifier_to_errno(ret);
1616 	if (ret)
1617 		return ret;
1618 
1619 	set_bit(__LINK_STATE_START, &dev->state);
1620 
1621 	netdev_ops_assert_locked(dev);
1622 
1623 	if (ops->ndo_validate_addr)
1624 		ret = ops->ndo_validate_addr(dev);
1625 
1626 	if (!ret && ops->ndo_open)
1627 		ret = ops->ndo_open(dev);
1628 
1629 	netpoll_poll_enable(dev);
1630 
1631 	if (ret)
1632 		clear_bit(__LINK_STATE_START, &dev->state);
1633 	else {
1634 		netif_set_up(dev, true);
1635 		dev_set_rx_mode(dev);
1636 		dev_activate(dev);
1637 		add_device_randomness(dev->dev_addr, dev->addr_len);
1638 	}
1639 
1640 	return ret;
1641 }
1642 
1643 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1644 {
1645 	int ret;
1646 
1647 	if (dev->flags & IFF_UP)
1648 		return 0;
1649 
1650 	ret = __dev_open(dev, extack);
1651 	if (ret < 0)
1652 		return ret;
1653 
1654 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1655 	call_netdevice_notifiers(NETDEV_UP, dev);
1656 
1657 	return ret;
1658 }
1659 
1660 static void __dev_close_many(struct list_head *head)
1661 {
1662 	struct net_device *dev;
1663 
1664 	ASSERT_RTNL();
1665 	might_sleep();
1666 
1667 	list_for_each_entry(dev, head, close_list) {
1668 		/* Temporarily disable netpoll until the interface is down */
1669 		netpoll_poll_disable(dev);
1670 
1671 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1672 
1673 		clear_bit(__LINK_STATE_START, &dev->state);
1674 
1675 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1676 		 * can be even on different cpu. So just clear netif_running().
1677 		 *
1678 		 * dev->stop() will invoke napi_disable() on all of it's
1679 		 * napi_struct instances on this device.
1680 		 */
1681 		smp_mb__after_atomic(); /* Commit netif_running(). */
1682 	}
1683 
1684 	dev_deactivate_many(head);
1685 
1686 	list_for_each_entry(dev, head, close_list) {
1687 		const struct net_device_ops *ops = dev->netdev_ops;
1688 
1689 		/*
1690 		 *	Call the device specific close. This cannot fail.
1691 		 *	Only if device is UP
1692 		 *
1693 		 *	We allow it to be called even after a DETACH hot-plug
1694 		 *	event.
1695 		 */
1696 
1697 		netdev_ops_assert_locked(dev);
1698 
1699 		if (ops->ndo_stop)
1700 			ops->ndo_stop(dev);
1701 
1702 		netif_set_up(dev, false);
1703 		netpoll_poll_enable(dev);
1704 	}
1705 }
1706 
1707 static void __dev_close(struct net_device *dev)
1708 {
1709 	LIST_HEAD(single);
1710 
1711 	list_add(&dev->close_list, &single);
1712 	__dev_close_many(&single);
1713 	list_del(&single);
1714 }
1715 
1716 void dev_close_many(struct list_head *head, bool unlink)
1717 {
1718 	struct net_device *dev, *tmp;
1719 
1720 	/* Remove the devices that don't need to be closed */
1721 	list_for_each_entry_safe(dev, tmp, head, close_list)
1722 		if (!(dev->flags & IFF_UP))
1723 			list_del_init(&dev->close_list);
1724 
1725 	__dev_close_many(head);
1726 
1727 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1728 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1729 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1730 		if (unlink)
1731 			list_del_init(&dev->close_list);
1732 	}
1733 }
1734 EXPORT_SYMBOL(dev_close_many);
1735 
1736 void netif_close(struct net_device *dev)
1737 {
1738 	if (dev->flags & IFF_UP) {
1739 		LIST_HEAD(single);
1740 
1741 		list_add(&dev->close_list, &single);
1742 		dev_close_many(&single, true);
1743 		list_del(&single);
1744 	}
1745 }
1746 EXPORT_SYMBOL(netif_close);
1747 
1748 void netif_disable_lro(struct net_device *dev)
1749 {
1750 	struct net_device *lower_dev;
1751 	struct list_head *iter;
1752 
1753 	dev->wanted_features &= ~NETIF_F_LRO;
1754 	netdev_update_features(dev);
1755 
1756 	if (unlikely(dev->features & NETIF_F_LRO))
1757 		netdev_WARN(dev, "failed to disable LRO!\n");
1758 
1759 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1760 		netdev_lock_ops(lower_dev);
1761 		netif_disable_lro(lower_dev);
1762 		netdev_unlock_ops(lower_dev);
1763 	}
1764 }
1765 EXPORT_IPV6_MOD(netif_disable_lro);
1766 
1767 /**
1768  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1769  *	@dev: device
1770  *
1771  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1772  *	called under RTNL.  This is needed if Generic XDP is installed on
1773  *	the device.
1774  */
1775 static void dev_disable_gro_hw(struct net_device *dev)
1776 {
1777 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1778 	netdev_update_features(dev);
1779 
1780 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1781 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1782 }
1783 
1784 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1785 {
1786 #define N(val) 						\
1787 	case NETDEV_##val:				\
1788 		return "NETDEV_" __stringify(val);
1789 	switch (cmd) {
1790 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1791 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1792 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1793 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1794 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1795 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1796 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1797 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1798 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1799 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1800 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1801 	N(XDP_FEAT_CHANGE)
1802 	}
1803 #undef N
1804 	return "UNKNOWN_NETDEV_EVENT";
1805 }
1806 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1807 
1808 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1809 				   struct net_device *dev)
1810 {
1811 	struct netdev_notifier_info info = {
1812 		.dev = dev,
1813 	};
1814 
1815 	return nb->notifier_call(nb, val, &info);
1816 }
1817 
1818 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1819 					     struct net_device *dev)
1820 {
1821 	int err;
1822 
1823 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1824 	err = notifier_to_errno(err);
1825 	if (err)
1826 		return err;
1827 
1828 	if (!(dev->flags & IFF_UP))
1829 		return 0;
1830 
1831 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1832 	return 0;
1833 }
1834 
1835 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1836 						struct net_device *dev)
1837 {
1838 	if (dev->flags & IFF_UP) {
1839 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1840 					dev);
1841 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1842 	}
1843 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1844 }
1845 
1846 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1847 						 struct net *net)
1848 {
1849 	struct net_device *dev;
1850 	int err;
1851 
1852 	for_each_netdev(net, dev) {
1853 		netdev_lock_ops(dev);
1854 		err = call_netdevice_register_notifiers(nb, dev);
1855 		netdev_unlock_ops(dev);
1856 		if (err)
1857 			goto rollback;
1858 	}
1859 	return 0;
1860 
1861 rollback:
1862 	for_each_netdev_continue_reverse(net, dev)
1863 		call_netdevice_unregister_notifiers(nb, dev);
1864 	return err;
1865 }
1866 
1867 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1868 						    struct net *net)
1869 {
1870 	struct net_device *dev;
1871 
1872 	for_each_netdev(net, dev)
1873 		call_netdevice_unregister_notifiers(nb, dev);
1874 }
1875 
1876 static int dev_boot_phase = 1;
1877 
1878 /**
1879  * register_netdevice_notifier - register a network notifier block
1880  * @nb: notifier
1881  *
1882  * Register a notifier to be called when network device events occur.
1883  * The notifier passed is linked into the kernel structures and must
1884  * not be reused until it has been unregistered. A negative errno code
1885  * is returned on a failure.
1886  *
1887  * When registered all registration and up events are replayed
1888  * to the new notifier to allow device to have a race free
1889  * view of the network device list.
1890  */
1891 
1892 int register_netdevice_notifier(struct notifier_block *nb)
1893 {
1894 	struct net *net;
1895 	int err;
1896 
1897 	/* Close race with setup_net() and cleanup_net() */
1898 	down_write(&pernet_ops_rwsem);
1899 
1900 	/* When RTNL is removed, we need protection for netdev_chain. */
1901 	rtnl_lock();
1902 
1903 	err = raw_notifier_chain_register(&netdev_chain, nb);
1904 	if (err)
1905 		goto unlock;
1906 	if (dev_boot_phase)
1907 		goto unlock;
1908 	for_each_net(net) {
1909 		__rtnl_net_lock(net);
1910 		err = call_netdevice_register_net_notifiers(nb, net);
1911 		__rtnl_net_unlock(net);
1912 		if (err)
1913 			goto rollback;
1914 	}
1915 
1916 unlock:
1917 	rtnl_unlock();
1918 	up_write(&pernet_ops_rwsem);
1919 	return err;
1920 
1921 rollback:
1922 	for_each_net_continue_reverse(net) {
1923 		__rtnl_net_lock(net);
1924 		call_netdevice_unregister_net_notifiers(nb, net);
1925 		__rtnl_net_unlock(net);
1926 	}
1927 
1928 	raw_notifier_chain_unregister(&netdev_chain, nb);
1929 	goto unlock;
1930 }
1931 EXPORT_SYMBOL(register_netdevice_notifier);
1932 
1933 /**
1934  * unregister_netdevice_notifier - unregister a network notifier block
1935  * @nb: notifier
1936  *
1937  * Unregister a notifier previously registered by
1938  * register_netdevice_notifier(). The notifier is unlinked into the
1939  * kernel structures and may then be reused. A negative errno code
1940  * is returned on a failure.
1941  *
1942  * After unregistering unregister and down device events are synthesized
1943  * for all devices on the device list to the removed notifier to remove
1944  * the need for special case cleanup code.
1945  */
1946 
1947 int unregister_netdevice_notifier(struct notifier_block *nb)
1948 {
1949 	struct net *net;
1950 	int err;
1951 
1952 	/* Close race with setup_net() and cleanup_net() */
1953 	down_write(&pernet_ops_rwsem);
1954 	rtnl_lock();
1955 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1956 	if (err)
1957 		goto unlock;
1958 
1959 	for_each_net(net) {
1960 		__rtnl_net_lock(net);
1961 		call_netdevice_unregister_net_notifiers(nb, net);
1962 		__rtnl_net_unlock(net);
1963 	}
1964 
1965 unlock:
1966 	rtnl_unlock();
1967 	up_write(&pernet_ops_rwsem);
1968 	return err;
1969 }
1970 EXPORT_SYMBOL(unregister_netdevice_notifier);
1971 
1972 static int __register_netdevice_notifier_net(struct net *net,
1973 					     struct notifier_block *nb,
1974 					     bool ignore_call_fail)
1975 {
1976 	int err;
1977 
1978 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1979 	if (err)
1980 		return err;
1981 	if (dev_boot_phase)
1982 		return 0;
1983 
1984 	err = call_netdevice_register_net_notifiers(nb, net);
1985 	if (err && !ignore_call_fail)
1986 		goto chain_unregister;
1987 
1988 	return 0;
1989 
1990 chain_unregister:
1991 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1992 	return err;
1993 }
1994 
1995 static int __unregister_netdevice_notifier_net(struct net *net,
1996 					       struct notifier_block *nb)
1997 {
1998 	int err;
1999 
2000 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2001 	if (err)
2002 		return err;
2003 
2004 	call_netdevice_unregister_net_notifiers(nb, net);
2005 	return 0;
2006 }
2007 
2008 /**
2009  * register_netdevice_notifier_net - register a per-netns network notifier block
2010  * @net: network namespace
2011  * @nb: notifier
2012  *
2013  * Register a notifier to be called when network device events occur.
2014  * The notifier passed is linked into the kernel structures and must
2015  * not be reused until it has been unregistered. A negative errno code
2016  * is returned on a failure.
2017  *
2018  * When registered all registration and up events are replayed
2019  * to the new notifier to allow device to have a race free
2020  * view of the network device list.
2021  */
2022 
2023 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2024 {
2025 	int err;
2026 
2027 	rtnl_net_lock(net);
2028 	err = __register_netdevice_notifier_net(net, nb, false);
2029 	rtnl_net_unlock(net);
2030 
2031 	return err;
2032 }
2033 EXPORT_SYMBOL(register_netdevice_notifier_net);
2034 
2035 /**
2036  * unregister_netdevice_notifier_net - unregister a per-netns
2037  *                                     network notifier block
2038  * @net: network namespace
2039  * @nb: notifier
2040  *
2041  * Unregister a notifier previously registered by
2042  * register_netdevice_notifier_net(). The notifier is unlinked from the
2043  * kernel structures and may then be reused. A negative errno code
2044  * is returned on a failure.
2045  *
2046  * After unregistering unregister and down device events are synthesized
2047  * for all devices on the device list to the removed notifier to remove
2048  * the need for special case cleanup code.
2049  */
2050 
2051 int unregister_netdevice_notifier_net(struct net *net,
2052 				      struct notifier_block *nb)
2053 {
2054 	int err;
2055 
2056 	rtnl_net_lock(net);
2057 	err = __unregister_netdevice_notifier_net(net, nb);
2058 	rtnl_net_unlock(net);
2059 
2060 	return err;
2061 }
2062 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2063 
2064 static void __move_netdevice_notifier_net(struct net *src_net,
2065 					  struct net *dst_net,
2066 					  struct notifier_block *nb)
2067 {
2068 	__unregister_netdevice_notifier_net(src_net, nb);
2069 	__register_netdevice_notifier_net(dst_net, nb, true);
2070 }
2071 
2072 static void rtnl_net_dev_lock(struct net_device *dev)
2073 {
2074 	bool again;
2075 
2076 	do {
2077 		struct net *net;
2078 
2079 		again = false;
2080 
2081 		/* netns might be being dismantled. */
2082 		rcu_read_lock();
2083 		net = dev_net_rcu(dev);
2084 		net_passive_inc(net);
2085 		rcu_read_unlock();
2086 
2087 		rtnl_net_lock(net);
2088 
2089 #ifdef CONFIG_NET_NS
2090 		/* dev might have been moved to another netns. */
2091 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2092 			rtnl_net_unlock(net);
2093 			net_passive_dec(net);
2094 			again = true;
2095 		}
2096 #endif
2097 	} while (again);
2098 }
2099 
2100 static void rtnl_net_dev_unlock(struct net_device *dev)
2101 {
2102 	struct net *net = dev_net(dev);
2103 
2104 	rtnl_net_unlock(net);
2105 	net_passive_dec(net);
2106 }
2107 
2108 int register_netdevice_notifier_dev_net(struct net_device *dev,
2109 					struct notifier_block *nb,
2110 					struct netdev_net_notifier *nn)
2111 {
2112 	int err;
2113 
2114 	rtnl_net_dev_lock(dev);
2115 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2116 	if (!err) {
2117 		nn->nb = nb;
2118 		list_add(&nn->list, &dev->net_notifier_list);
2119 	}
2120 	rtnl_net_dev_unlock(dev);
2121 
2122 	return err;
2123 }
2124 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2125 
2126 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2127 					  struct notifier_block *nb,
2128 					  struct netdev_net_notifier *nn)
2129 {
2130 	int err;
2131 
2132 	rtnl_net_dev_lock(dev);
2133 	list_del(&nn->list);
2134 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2135 	rtnl_net_dev_unlock(dev);
2136 
2137 	return err;
2138 }
2139 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2140 
2141 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2142 					     struct net *net)
2143 {
2144 	struct netdev_net_notifier *nn;
2145 
2146 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2147 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2148 }
2149 
2150 /**
2151  *	call_netdevice_notifiers_info - call all network notifier blocks
2152  *	@val: value passed unmodified to notifier function
2153  *	@info: notifier information data
2154  *
2155  *	Call all network notifier blocks.  Parameters and return value
2156  *	are as for raw_notifier_call_chain().
2157  */
2158 
2159 int call_netdevice_notifiers_info(unsigned long val,
2160 				  struct netdev_notifier_info *info)
2161 {
2162 	struct net *net = dev_net(info->dev);
2163 	int ret;
2164 
2165 	ASSERT_RTNL();
2166 
2167 	/* Run per-netns notifier block chain first, then run the global one.
2168 	 * Hopefully, one day, the global one is going to be removed after
2169 	 * all notifier block registrators get converted to be per-netns.
2170 	 */
2171 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2172 	if (ret & NOTIFY_STOP_MASK)
2173 		return ret;
2174 	return raw_notifier_call_chain(&netdev_chain, val, info);
2175 }
2176 
2177 /**
2178  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2179  *	                                       for and rollback on error
2180  *	@val_up: value passed unmodified to notifier function
2181  *	@val_down: value passed unmodified to the notifier function when
2182  *	           recovering from an error on @val_up
2183  *	@info: notifier information data
2184  *
2185  *	Call all per-netns network notifier blocks, but not notifier blocks on
2186  *	the global notifier chain. Parameters and return value are as for
2187  *	raw_notifier_call_chain_robust().
2188  */
2189 
2190 static int
2191 call_netdevice_notifiers_info_robust(unsigned long val_up,
2192 				     unsigned long val_down,
2193 				     struct netdev_notifier_info *info)
2194 {
2195 	struct net *net = dev_net(info->dev);
2196 
2197 	ASSERT_RTNL();
2198 
2199 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2200 					      val_up, val_down, info);
2201 }
2202 
2203 static int call_netdevice_notifiers_extack(unsigned long val,
2204 					   struct net_device *dev,
2205 					   struct netlink_ext_ack *extack)
2206 {
2207 	struct netdev_notifier_info info = {
2208 		.dev = dev,
2209 		.extack = extack,
2210 	};
2211 
2212 	return call_netdevice_notifiers_info(val, &info);
2213 }
2214 
2215 /**
2216  *	call_netdevice_notifiers - call all network notifier blocks
2217  *      @val: value passed unmodified to notifier function
2218  *      @dev: net_device pointer passed unmodified to notifier function
2219  *
2220  *	Call all network notifier blocks.  Parameters and return value
2221  *	are as for raw_notifier_call_chain().
2222  */
2223 
2224 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2225 {
2226 	return call_netdevice_notifiers_extack(val, dev, NULL);
2227 }
2228 EXPORT_SYMBOL(call_netdevice_notifiers);
2229 
2230 /**
2231  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2232  *	@val: value passed unmodified to notifier function
2233  *	@dev: net_device pointer passed unmodified to notifier function
2234  *	@arg: additional u32 argument passed to the notifier function
2235  *
2236  *	Call all network notifier blocks.  Parameters and return value
2237  *	are as for raw_notifier_call_chain().
2238  */
2239 static int call_netdevice_notifiers_mtu(unsigned long val,
2240 					struct net_device *dev, u32 arg)
2241 {
2242 	struct netdev_notifier_info_ext info = {
2243 		.info.dev = dev,
2244 		.ext.mtu = arg,
2245 	};
2246 
2247 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2248 
2249 	return call_netdevice_notifiers_info(val, &info.info);
2250 }
2251 
2252 #ifdef CONFIG_NET_INGRESS
2253 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2254 
2255 void net_inc_ingress_queue(void)
2256 {
2257 	static_branch_inc(&ingress_needed_key);
2258 }
2259 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2260 
2261 void net_dec_ingress_queue(void)
2262 {
2263 	static_branch_dec(&ingress_needed_key);
2264 }
2265 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2266 #endif
2267 
2268 #ifdef CONFIG_NET_EGRESS
2269 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2270 
2271 void net_inc_egress_queue(void)
2272 {
2273 	static_branch_inc(&egress_needed_key);
2274 }
2275 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2276 
2277 void net_dec_egress_queue(void)
2278 {
2279 	static_branch_dec(&egress_needed_key);
2280 }
2281 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2282 #endif
2283 
2284 #ifdef CONFIG_NET_CLS_ACT
2285 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2286 EXPORT_SYMBOL(tcf_sw_enabled_key);
2287 #endif
2288 
2289 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2290 EXPORT_SYMBOL(netstamp_needed_key);
2291 #ifdef CONFIG_JUMP_LABEL
2292 static atomic_t netstamp_needed_deferred;
2293 static atomic_t netstamp_wanted;
2294 static void netstamp_clear(struct work_struct *work)
2295 {
2296 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2297 	int wanted;
2298 
2299 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2300 	if (wanted > 0)
2301 		static_branch_enable(&netstamp_needed_key);
2302 	else
2303 		static_branch_disable(&netstamp_needed_key);
2304 }
2305 static DECLARE_WORK(netstamp_work, netstamp_clear);
2306 #endif
2307 
2308 void net_enable_timestamp(void)
2309 {
2310 #ifdef CONFIG_JUMP_LABEL
2311 	int wanted = atomic_read(&netstamp_wanted);
2312 
2313 	while (wanted > 0) {
2314 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2315 			return;
2316 	}
2317 	atomic_inc(&netstamp_needed_deferred);
2318 	schedule_work(&netstamp_work);
2319 #else
2320 	static_branch_inc(&netstamp_needed_key);
2321 #endif
2322 }
2323 EXPORT_SYMBOL(net_enable_timestamp);
2324 
2325 void net_disable_timestamp(void)
2326 {
2327 #ifdef CONFIG_JUMP_LABEL
2328 	int wanted = atomic_read(&netstamp_wanted);
2329 
2330 	while (wanted > 1) {
2331 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2332 			return;
2333 	}
2334 	atomic_dec(&netstamp_needed_deferred);
2335 	schedule_work(&netstamp_work);
2336 #else
2337 	static_branch_dec(&netstamp_needed_key);
2338 #endif
2339 }
2340 EXPORT_SYMBOL(net_disable_timestamp);
2341 
2342 static inline void net_timestamp_set(struct sk_buff *skb)
2343 {
2344 	skb->tstamp = 0;
2345 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2346 	if (static_branch_unlikely(&netstamp_needed_key))
2347 		skb->tstamp = ktime_get_real();
2348 }
2349 
2350 #define net_timestamp_check(COND, SKB)				\
2351 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2352 		if ((COND) && !(SKB)->tstamp)			\
2353 			(SKB)->tstamp = ktime_get_real();	\
2354 	}							\
2355 
2356 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2357 {
2358 	return __is_skb_forwardable(dev, skb, true);
2359 }
2360 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2361 
2362 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2363 			      bool check_mtu)
2364 {
2365 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2366 
2367 	if (likely(!ret)) {
2368 		skb->protocol = eth_type_trans(skb, dev);
2369 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2370 	}
2371 
2372 	return ret;
2373 }
2374 
2375 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2376 {
2377 	return __dev_forward_skb2(dev, skb, true);
2378 }
2379 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2380 
2381 /**
2382  * dev_forward_skb - loopback an skb to another netif
2383  *
2384  * @dev: destination network device
2385  * @skb: buffer to forward
2386  *
2387  * return values:
2388  *	NET_RX_SUCCESS	(no congestion)
2389  *	NET_RX_DROP     (packet was dropped, but freed)
2390  *
2391  * dev_forward_skb can be used for injecting an skb from the
2392  * start_xmit function of one device into the receive queue
2393  * of another device.
2394  *
2395  * The receiving device may be in another namespace, so
2396  * we have to clear all information in the skb that could
2397  * impact namespace isolation.
2398  */
2399 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2400 {
2401 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2402 }
2403 EXPORT_SYMBOL_GPL(dev_forward_skb);
2404 
2405 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2406 {
2407 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2408 }
2409 
2410 static inline int deliver_skb(struct sk_buff *skb,
2411 			      struct packet_type *pt_prev,
2412 			      struct net_device *orig_dev)
2413 {
2414 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2415 		return -ENOMEM;
2416 	refcount_inc(&skb->users);
2417 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2418 }
2419 
2420 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2421 					  struct packet_type **pt,
2422 					  struct net_device *orig_dev,
2423 					  __be16 type,
2424 					  struct list_head *ptype_list)
2425 {
2426 	struct packet_type *ptype, *pt_prev = *pt;
2427 
2428 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2429 		if (ptype->type != type)
2430 			continue;
2431 		if (pt_prev)
2432 			deliver_skb(skb, pt_prev, orig_dev);
2433 		pt_prev = ptype;
2434 	}
2435 	*pt = pt_prev;
2436 }
2437 
2438 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2439 {
2440 	if (!ptype->af_packet_priv || !skb->sk)
2441 		return false;
2442 
2443 	if (ptype->id_match)
2444 		return ptype->id_match(ptype, skb->sk);
2445 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2446 		return true;
2447 
2448 	return false;
2449 }
2450 
2451 /**
2452  * dev_nit_active_rcu - return true if any network interface taps are in use
2453  *
2454  * The caller must hold the RCU lock
2455  *
2456  * @dev: network device to check for the presence of taps
2457  */
2458 bool dev_nit_active_rcu(const struct net_device *dev)
2459 {
2460 	/* Callers may hold either RCU or RCU BH lock */
2461 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2462 
2463 	return !list_empty(&dev_net(dev)->ptype_all) ||
2464 	       !list_empty(&dev->ptype_all);
2465 }
2466 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2467 
2468 /*
2469  *	Support routine. Sends outgoing frames to any network
2470  *	taps currently in use.
2471  */
2472 
2473 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2474 {
2475 	struct packet_type *ptype, *pt_prev = NULL;
2476 	struct list_head *ptype_list;
2477 	struct sk_buff *skb2 = NULL;
2478 
2479 	rcu_read_lock();
2480 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2481 again:
2482 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2483 		if (READ_ONCE(ptype->ignore_outgoing))
2484 			continue;
2485 
2486 		/* Never send packets back to the socket
2487 		 * they originated from - MvS (miquels@drinkel.ow.org)
2488 		 */
2489 		if (skb_loop_sk(ptype, skb))
2490 			continue;
2491 
2492 		if (pt_prev) {
2493 			deliver_skb(skb2, pt_prev, skb->dev);
2494 			pt_prev = ptype;
2495 			continue;
2496 		}
2497 
2498 		/* need to clone skb, done only once */
2499 		skb2 = skb_clone(skb, GFP_ATOMIC);
2500 		if (!skb2)
2501 			goto out_unlock;
2502 
2503 		net_timestamp_set(skb2);
2504 
2505 		/* skb->nh should be correctly
2506 		 * set by sender, so that the second statement is
2507 		 * just protection against buggy protocols.
2508 		 */
2509 		skb_reset_mac_header(skb2);
2510 
2511 		if (skb_network_header(skb2) < skb2->data ||
2512 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2513 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2514 					     ntohs(skb2->protocol),
2515 					     dev->name);
2516 			skb_reset_network_header(skb2);
2517 		}
2518 
2519 		skb2->transport_header = skb2->network_header;
2520 		skb2->pkt_type = PACKET_OUTGOING;
2521 		pt_prev = ptype;
2522 	}
2523 
2524 	if (ptype_list != &dev->ptype_all) {
2525 		ptype_list = &dev->ptype_all;
2526 		goto again;
2527 	}
2528 out_unlock:
2529 	if (pt_prev) {
2530 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2531 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2532 		else
2533 			kfree_skb(skb2);
2534 	}
2535 	rcu_read_unlock();
2536 }
2537 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2538 
2539 /**
2540  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2541  * @dev: Network device
2542  * @txq: number of queues available
2543  *
2544  * If real_num_tx_queues is changed the tc mappings may no longer be
2545  * valid. To resolve this verify the tc mapping remains valid and if
2546  * not NULL the mapping. With no priorities mapping to this
2547  * offset/count pair it will no longer be used. In the worst case TC0
2548  * is invalid nothing can be done so disable priority mappings. If is
2549  * expected that drivers will fix this mapping if they can before
2550  * calling netif_set_real_num_tx_queues.
2551  */
2552 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2553 {
2554 	int i;
2555 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2556 
2557 	/* If TC0 is invalidated disable TC mapping */
2558 	if (tc->offset + tc->count > txq) {
2559 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2560 		dev->num_tc = 0;
2561 		return;
2562 	}
2563 
2564 	/* Invalidated prio to tc mappings set to TC0 */
2565 	for (i = 1; i < TC_BITMASK + 1; i++) {
2566 		int q = netdev_get_prio_tc_map(dev, i);
2567 
2568 		tc = &dev->tc_to_txq[q];
2569 		if (tc->offset + tc->count > txq) {
2570 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2571 				    i, q);
2572 			netdev_set_prio_tc_map(dev, i, 0);
2573 		}
2574 	}
2575 }
2576 
2577 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2578 {
2579 	if (dev->num_tc) {
2580 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2581 		int i;
2582 
2583 		/* walk through the TCs and see if it falls into any of them */
2584 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2585 			if ((txq - tc->offset) < tc->count)
2586 				return i;
2587 		}
2588 
2589 		/* didn't find it, just return -1 to indicate no match */
2590 		return -1;
2591 	}
2592 
2593 	return 0;
2594 }
2595 EXPORT_SYMBOL(netdev_txq_to_tc);
2596 
2597 #ifdef CONFIG_XPS
2598 static struct static_key xps_needed __read_mostly;
2599 static struct static_key xps_rxqs_needed __read_mostly;
2600 static DEFINE_MUTEX(xps_map_mutex);
2601 #define xmap_dereference(P)		\
2602 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2603 
2604 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2605 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2606 {
2607 	struct xps_map *map = NULL;
2608 	int pos;
2609 
2610 	map = xmap_dereference(dev_maps->attr_map[tci]);
2611 	if (!map)
2612 		return false;
2613 
2614 	for (pos = map->len; pos--;) {
2615 		if (map->queues[pos] != index)
2616 			continue;
2617 
2618 		if (map->len > 1) {
2619 			map->queues[pos] = map->queues[--map->len];
2620 			break;
2621 		}
2622 
2623 		if (old_maps)
2624 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2625 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2626 		kfree_rcu(map, rcu);
2627 		return false;
2628 	}
2629 
2630 	return true;
2631 }
2632 
2633 static bool remove_xps_queue_cpu(struct net_device *dev,
2634 				 struct xps_dev_maps *dev_maps,
2635 				 int cpu, u16 offset, u16 count)
2636 {
2637 	int num_tc = dev_maps->num_tc;
2638 	bool active = false;
2639 	int tci;
2640 
2641 	for (tci = cpu * num_tc; num_tc--; tci++) {
2642 		int i, j;
2643 
2644 		for (i = count, j = offset; i--; j++) {
2645 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2646 				break;
2647 		}
2648 
2649 		active |= i < 0;
2650 	}
2651 
2652 	return active;
2653 }
2654 
2655 static void reset_xps_maps(struct net_device *dev,
2656 			   struct xps_dev_maps *dev_maps,
2657 			   enum xps_map_type type)
2658 {
2659 	static_key_slow_dec_cpuslocked(&xps_needed);
2660 	if (type == XPS_RXQS)
2661 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2662 
2663 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2664 
2665 	kfree_rcu(dev_maps, rcu);
2666 }
2667 
2668 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2669 			   u16 offset, u16 count)
2670 {
2671 	struct xps_dev_maps *dev_maps;
2672 	bool active = false;
2673 	int i, j;
2674 
2675 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2676 	if (!dev_maps)
2677 		return;
2678 
2679 	for (j = 0; j < dev_maps->nr_ids; j++)
2680 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2681 	if (!active)
2682 		reset_xps_maps(dev, dev_maps, type);
2683 
2684 	if (type == XPS_CPUS) {
2685 		for (i = offset + (count - 1); count--; i--)
2686 			netdev_queue_numa_node_write(
2687 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2688 	}
2689 }
2690 
2691 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2692 				   u16 count)
2693 {
2694 	if (!static_key_false(&xps_needed))
2695 		return;
2696 
2697 	cpus_read_lock();
2698 	mutex_lock(&xps_map_mutex);
2699 
2700 	if (static_key_false(&xps_rxqs_needed))
2701 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2702 
2703 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2704 
2705 	mutex_unlock(&xps_map_mutex);
2706 	cpus_read_unlock();
2707 }
2708 
2709 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2710 {
2711 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2712 }
2713 
2714 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2715 				      u16 index, bool is_rxqs_map)
2716 {
2717 	struct xps_map *new_map;
2718 	int alloc_len = XPS_MIN_MAP_ALLOC;
2719 	int i, pos;
2720 
2721 	for (pos = 0; map && pos < map->len; pos++) {
2722 		if (map->queues[pos] != index)
2723 			continue;
2724 		return map;
2725 	}
2726 
2727 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2728 	if (map) {
2729 		if (pos < map->alloc_len)
2730 			return map;
2731 
2732 		alloc_len = map->alloc_len * 2;
2733 	}
2734 
2735 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2736 	 *  map
2737 	 */
2738 	if (is_rxqs_map)
2739 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2740 	else
2741 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2742 				       cpu_to_node(attr_index));
2743 	if (!new_map)
2744 		return NULL;
2745 
2746 	for (i = 0; i < pos; i++)
2747 		new_map->queues[i] = map->queues[i];
2748 	new_map->alloc_len = alloc_len;
2749 	new_map->len = pos;
2750 
2751 	return new_map;
2752 }
2753 
2754 /* Copy xps maps at a given index */
2755 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2756 			      struct xps_dev_maps *new_dev_maps, int index,
2757 			      int tc, bool skip_tc)
2758 {
2759 	int i, tci = index * dev_maps->num_tc;
2760 	struct xps_map *map;
2761 
2762 	/* copy maps belonging to foreign traffic classes */
2763 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2764 		if (i == tc && skip_tc)
2765 			continue;
2766 
2767 		/* fill in the new device map from the old device map */
2768 		map = xmap_dereference(dev_maps->attr_map[tci]);
2769 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2770 	}
2771 }
2772 
2773 /* Must be called under cpus_read_lock */
2774 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2775 			  u16 index, enum xps_map_type type)
2776 {
2777 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2778 	const unsigned long *online_mask = NULL;
2779 	bool active = false, copy = false;
2780 	int i, j, tci, numa_node_id = -2;
2781 	int maps_sz, num_tc = 1, tc = 0;
2782 	struct xps_map *map, *new_map;
2783 	unsigned int nr_ids;
2784 
2785 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2786 
2787 	if (dev->num_tc) {
2788 		/* Do not allow XPS on subordinate device directly */
2789 		num_tc = dev->num_tc;
2790 		if (num_tc < 0)
2791 			return -EINVAL;
2792 
2793 		/* If queue belongs to subordinate dev use its map */
2794 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2795 
2796 		tc = netdev_txq_to_tc(dev, index);
2797 		if (tc < 0)
2798 			return -EINVAL;
2799 	}
2800 
2801 	mutex_lock(&xps_map_mutex);
2802 
2803 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2804 	if (type == XPS_RXQS) {
2805 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2806 		nr_ids = dev->num_rx_queues;
2807 	} else {
2808 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2809 		if (num_possible_cpus() > 1)
2810 			online_mask = cpumask_bits(cpu_online_mask);
2811 		nr_ids = nr_cpu_ids;
2812 	}
2813 
2814 	if (maps_sz < L1_CACHE_BYTES)
2815 		maps_sz = L1_CACHE_BYTES;
2816 
2817 	/* The old dev_maps could be larger or smaller than the one we're
2818 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2819 	 * between. We could try to be smart, but let's be safe instead and only
2820 	 * copy foreign traffic classes if the two map sizes match.
2821 	 */
2822 	if (dev_maps &&
2823 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2824 		copy = true;
2825 
2826 	/* allocate memory for queue storage */
2827 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2828 	     j < nr_ids;) {
2829 		if (!new_dev_maps) {
2830 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2831 			if (!new_dev_maps) {
2832 				mutex_unlock(&xps_map_mutex);
2833 				return -ENOMEM;
2834 			}
2835 
2836 			new_dev_maps->nr_ids = nr_ids;
2837 			new_dev_maps->num_tc = num_tc;
2838 		}
2839 
2840 		tci = j * num_tc + tc;
2841 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2842 
2843 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2844 		if (!map)
2845 			goto error;
2846 
2847 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2848 	}
2849 
2850 	if (!new_dev_maps)
2851 		goto out_no_new_maps;
2852 
2853 	if (!dev_maps) {
2854 		/* Increment static keys at most once per type */
2855 		static_key_slow_inc_cpuslocked(&xps_needed);
2856 		if (type == XPS_RXQS)
2857 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2858 	}
2859 
2860 	for (j = 0; j < nr_ids; j++) {
2861 		bool skip_tc = false;
2862 
2863 		tci = j * num_tc + tc;
2864 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2865 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2866 			/* add tx-queue to CPU/rx-queue maps */
2867 			int pos = 0;
2868 
2869 			skip_tc = true;
2870 
2871 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2872 			while ((pos < map->len) && (map->queues[pos] != index))
2873 				pos++;
2874 
2875 			if (pos == map->len)
2876 				map->queues[map->len++] = index;
2877 #ifdef CONFIG_NUMA
2878 			if (type == XPS_CPUS) {
2879 				if (numa_node_id == -2)
2880 					numa_node_id = cpu_to_node(j);
2881 				else if (numa_node_id != cpu_to_node(j))
2882 					numa_node_id = -1;
2883 			}
2884 #endif
2885 		}
2886 
2887 		if (copy)
2888 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2889 					  skip_tc);
2890 	}
2891 
2892 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2893 
2894 	/* Cleanup old maps */
2895 	if (!dev_maps)
2896 		goto out_no_old_maps;
2897 
2898 	for (j = 0; j < dev_maps->nr_ids; j++) {
2899 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2900 			map = xmap_dereference(dev_maps->attr_map[tci]);
2901 			if (!map)
2902 				continue;
2903 
2904 			if (copy) {
2905 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2906 				if (map == new_map)
2907 					continue;
2908 			}
2909 
2910 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2911 			kfree_rcu(map, rcu);
2912 		}
2913 	}
2914 
2915 	old_dev_maps = dev_maps;
2916 
2917 out_no_old_maps:
2918 	dev_maps = new_dev_maps;
2919 	active = true;
2920 
2921 out_no_new_maps:
2922 	if (type == XPS_CPUS)
2923 		/* update Tx queue numa node */
2924 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2925 					     (numa_node_id >= 0) ?
2926 					     numa_node_id : NUMA_NO_NODE);
2927 
2928 	if (!dev_maps)
2929 		goto out_no_maps;
2930 
2931 	/* removes tx-queue from unused CPUs/rx-queues */
2932 	for (j = 0; j < dev_maps->nr_ids; j++) {
2933 		tci = j * dev_maps->num_tc;
2934 
2935 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2936 			if (i == tc &&
2937 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2938 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2939 				continue;
2940 
2941 			active |= remove_xps_queue(dev_maps,
2942 						   copy ? old_dev_maps : NULL,
2943 						   tci, index);
2944 		}
2945 	}
2946 
2947 	if (old_dev_maps)
2948 		kfree_rcu(old_dev_maps, rcu);
2949 
2950 	/* free map if not active */
2951 	if (!active)
2952 		reset_xps_maps(dev, dev_maps, type);
2953 
2954 out_no_maps:
2955 	mutex_unlock(&xps_map_mutex);
2956 
2957 	return 0;
2958 error:
2959 	/* remove any maps that we added */
2960 	for (j = 0; j < nr_ids; j++) {
2961 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2962 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2963 			map = copy ?
2964 			      xmap_dereference(dev_maps->attr_map[tci]) :
2965 			      NULL;
2966 			if (new_map && new_map != map)
2967 				kfree(new_map);
2968 		}
2969 	}
2970 
2971 	mutex_unlock(&xps_map_mutex);
2972 
2973 	kfree(new_dev_maps);
2974 	return -ENOMEM;
2975 }
2976 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2977 
2978 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2979 			u16 index)
2980 {
2981 	int ret;
2982 
2983 	cpus_read_lock();
2984 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2985 	cpus_read_unlock();
2986 
2987 	return ret;
2988 }
2989 EXPORT_SYMBOL(netif_set_xps_queue);
2990 
2991 #endif
2992 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2993 {
2994 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2995 
2996 	/* Unbind any subordinate channels */
2997 	while (txq-- != &dev->_tx[0]) {
2998 		if (txq->sb_dev)
2999 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3000 	}
3001 }
3002 
3003 void netdev_reset_tc(struct net_device *dev)
3004 {
3005 #ifdef CONFIG_XPS
3006 	netif_reset_xps_queues_gt(dev, 0);
3007 #endif
3008 	netdev_unbind_all_sb_channels(dev);
3009 
3010 	/* Reset TC configuration of device */
3011 	dev->num_tc = 0;
3012 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3013 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3014 }
3015 EXPORT_SYMBOL(netdev_reset_tc);
3016 
3017 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3018 {
3019 	if (tc >= dev->num_tc)
3020 		return -EINVAL;
3021 
3022 #ifdef CONFIG_XPS
3023 	netif_reset_xps_queues(dev, offset, count);
3024 #endif
3025 	dev->tc_to_txq[tc].count = count;
3026 	dev->tc_to_txq[tc].offset = offset;
3027 	return 0;
3028 }
3029 EXPORT_SYMBOL(netdev_set_tc_queue);
3030 
3031 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3032 {
3033 	if (num_tc > TC_MAX_QUEUE)
3034 		return -EINVAL;
3035 
3036 #ifdef CONFIG_XPS
3037 	netif_reset_xps_queues_gt(dev, 0);
3038 #endif
3039 	netdev_unbind_all_sb_channels(dev);
3040 
3041 	dev->num_tc = num_tc;
3042 	return 0;
3043 }
3044 EXPORT_SYMBOL(netdev_set_num_tc);
3045 
3046 void netdev_unbind_sb_channel(struct net_device *dev,
3047 			      struct net_device *sb_dev)
3048 {
3049 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3050 
3051 #ifdef CONFIG_XPS
3052 	netif_reset_xps_queues_gt(sb_dev, 0);
3053 #endif
3054 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3055 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3056 
3057 	while (txq-- != &dev->_tx[0]) {
3058 		if (txq->sb_dev == sb_dev)
3059 			txq->sb_dev = NULL;
3060 	}
3061 }
3062 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3063 
3064 int netdev_bind_sb_channel_queue(struct net_device *dev,
3065 				 struct net_device *sb_dev,
3066 				 u8 tc, u16 count, u16 offset)
3067 {
3068 	/* Make certain the sb_dev and dev are already configured */
3069 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3070 		return -EINVAL;
3071 
3072 	/* We cannot hand out queues we don't have */
3073 	if ((offset + count) > dev->real_num_tx_queues)
3074 		return -EINVAL;
3075 
3076 	/* Record the mapping */
3077 	sb_dev->tc_to_txq[tc].count = count;
3078 	sb_dev->tc_to_txq[tc].offset = offset;
3079 
3080 	/* Provide a way for Tx queue to find the tc_to_txq map or
3081 	 * XPS map for itself.
3082 	 */
3083 	while (count--)
3084 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3085 
3086 	return 0;
3087 }
3088 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3089 
3090 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3091 {
3092 	/* Do not use a multiqueue device to represent a subordinate channel */
3093 	if (netif_is_multiqueue(dev))
3094 		return -ENODEV;
3095 
3096 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3097 	 * Channel 0 is meant to be "native" mode and used only to represent
3098 	 * the main root device. We allow writing 0 to reset the device back
3099 	 * to normal mode after being used as a subordinate channel.
3100 	 */
3101 	if (channel > S16_MAX)
3102 		return -EINVAL;
3103 
3104 	dev->num_tc = -channel;
3105 
3106 	return 0;
3107 }
3108 EXPORT_SYMBOL(netdev_set_sb_channel);
3109 
3110 /*
3111  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3112  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3113  */
3114 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3115 {
3116 	bool disabling;
3117 	int rc;
3118 
3119 	disabling = txq < dev->real_num_tx_queues;
3120 
3121 	if (txq < 1 || txq > dev->num_tx_queues)
3122 		return -EINVAL;
3123 
3124 	if (dev->reg_state == NETREG_REGISTERED ||
3125 	    dev->reg_state == NETREG_UNREGISTERING) {
3126 		ASSERT_RTNL();
3127 		netdev_ops_assert_locked(dev);
3128 
3129 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3130 						  txq);
3131 		if (rc)
3132 			return rc;
3133 
3134 		if (dev->num_tc)
3135 			netif_setup_tc(dev, txq);
3136 
3137 		net_shaper_set_real_num_tx_queues(dev, txq);
3138 
3139 		dev_qdisc_change_real_num_tx(dev, txq);
3140 
3141 		dev->real_num_tx_queues = txq;
3142 
3143 		if (disabling) {
3144 			synchronize_net();
3145 			qdisc_reset_all_tx_gt(dev, txq);
3146 #ifdef CONFIG_XPS
3147 			netif_reset_xps_queues_gt(dev, txq);
3148 #endif
3149 		}
3150 	} else {
3151 		dev->real_num_tx_queues = txq;
3152 	}
3153 
3154 	return 0;
3155 }
3156 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3157 
3158 /**
3159  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3160  *	@dev: Network device
3161  *	@rxq: Actual number of RX queues
3162  *
3163  *	This must be called either with the rtnl_lock held or before
3164  *	registration of the net device.  Returns 0 on success, or a
3165  *	negative error code.  If called before registration, it always
3166  *	succeeds.
3167  */
3168 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3169 {
3170 	int rc;
3171 
3172 	if (rxq < 1 || rxq > dev->num_rx_queues)
3173 		return -EINVAL;
3174 
3175 	if (dev->reg_state == NETREG_REGISTERED) {
3176 		ASSERT_RTNL();
3177 		netdev_ops_assert_locked(dev);
3178 
3179 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3180 						  rxq);
3181 		if (rc)
3182 			return rc;
3183 	}
3184 
3185 	dev->real_num_rx_queues = rxq;
3186 	return 0;
3187 }
3188 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3189 
3190 /**
3191  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3192  *	@dev: Network device
3193  *	@txq: Actual number of TX queues
3194  *	@rxq: Actual number of RX queues
3195  *
3196  *	Set the real number of both TX and RX queues.
3197  *	Does nothing if the number of queues is already correct.
3198  */
3199 int netif_set_real_num_queues(struct net_device *dev,
3200 			      unsigned int txq, unsigned int rxq)
3201 {
3202 	unsigned int old_rxq = dev->real_num_rx_queues;
3203 	int err;
3204 
3205 	if (txq < 1 || txq > dev->num_tx_queues ||
3206 	    rxq < 1 || rxq > dev->num_rx_queues)
3207 		return -EINVAL;
3208 
3209 	/* Start from increases, so the error path only does decreases -
3210 	 * decreases can't fail.
3211 	 */
3212 	if (rxq > dev->real_num_rx_queues) {
3213 		err = netif_set_real_num_rx_queues(dev, rxq);
3214 		if (err)
3215 			return err;
3216 	}
3217 	if (txq > dev->real_num_tx_queues) {
3218 		err = netif_set_real_num_tx_queues(dev, txq);
3219 		if (err)
3220 			goto undo_rx;
3221 	}
3222 	if (rxq < dev->real_num_rx_queues)
3223 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3224 	if (txq < dev->real_num_tx_queues)
3225 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3226 
3227 	return 0;
3228 undo_rx:
3229 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3230 	return err;
3231 }
3232 EXPORT_SYMBOL(netif_set_real_num_queues);
3233 
3234 /**
3235  * netif_set_tso_max_size() - set the max size of TSO frames supported
3236  * @dev:	netdev to update
3237  * @size:	max skb->len of a TSO frame
3238  *
3239  * Set the limit on the size of TSO super-frames the device can handle.
3240  * Unless explicitly set the stack will assume the value of
3241  * %GSO_LEGACY_MAX_SIZE.
3242  */
3243 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3244 {
3245 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3246 	if (size < READ_ONCE(dev->gso_max_size))
3247 		netif_set_gso_max_size(dev, size);
3248 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3249 		netif_set_gso_ipv4_max_size(dev, size);
3250 }
3251 EXPORT_SYMBOL(netif_set_tso_max_size);
3252 
3253 /**
3254  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3255  * @dev:	netdev to update
3256  * @segs:	max number of TCP segments
3257  *
3258  * Set the limit on the number of TCP segments the device can generate from
3259  * a single TSO super-frame.
3260  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3261  */
3262 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3263 {
3264 	dev->tso_max_segs = segs;
3265 	if (segs < READ_ONCE(dev->gso_max_segs))
3266 		netif_set_gso_max_segs(dev, segs);
3267 }
3268 EXPORT_SYMBOL(netif_set_tso_max_segs);
3269 
3270 /**
3271  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3272  * @to:		netdev to update
3273  * @from:	netdev from which to copy the limits
3274  */
3275 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3276 {
3277 	netif_set_tso_max_size(to, from->tso_max_size);
3278 	netif_set_tso_max_segs(to, from->tso_max_segs);
3279 }
3280 EXPORT_SYMBOL(netif_inherit_tso_max);
3281 
3282 /**
3283  * netif_get_num_default_rss_queues - default number of RSS queues
3284  *
3285  * Default value is the number of physical cores if there are only 1 or 2, or
3286  * divided by 2 if there are more.
3287  */
3288 int netif_get_num_default_rss_queues(void)
3289 {
3290 	cpumask_var_t cpus;
3291 	int cpu, count = 0;
3292 
3293 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3294 		return 1;
3295 
3296 	cpumask_copy(cpus, cpu_online_mask);
3297 	for_each_cpu(cpu, cpus) {
3298 		++count;
3299 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3300 	}
3301 	free_cpumask_var(cpus);
3302 
3303 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3304 }
3305 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3306 
3307 static void __netif_reschedule(struct Qdisc *q)
3308 {
3309 	struct softnet_data *sd;
3310 	unsigned long flags;
3311 
3312 	local_irq_save(flags);
3313 	sd = this_cpu_ptr(&softnet_data);
3314 	q->next_sched = NULL;
3315 	*sd->output_queue_tailp = q;
3316 	sd->output_queue_tailp = &q->next_sched;
3317 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3318 	local_irq_restore(flags);
3319 }
3320 
3321 void __netif_schedule(struct Qdisc *q)
3322 {
3323 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3324 		__netif_reschedule(q);
3325 }
3326 EXPORT_SYMBOL(__netif_schedule);
3327 
3328 struct dev_kfree_skb_cb {
3329 	enum skb_drop_reason reason;
3330 };
3331 
3332 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3333 {
3334 	return (struct dev_kfree_skb_cb *)skb->cb;
3335 }
3336 
3337 void netif_schedule_queue(struct netdev_queue *txq)
3338 {
3339 	rcu_read_lock();
3340 	if (!netif_xmit_stopped(txq)) {
3341 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3342 
3343 		__netif_schedule(q);
3344 	}
3345 	rcu_read_unlock();
3346 }
3347 EXPORT_SYMBOL(netif_schedule_queue);
3348 
3349 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3350 {
3351 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3352 		struct Qdisc *q;
3353 
3354 		rcu_read_lock();
3355 		q = rcu_dereference(dev_queue->qdisc);
3356 		__netif_schedule(q);
3357 		rcu_read_unlock();
3358 	}
3359 }
3360 EXPORT_SYMBOL(netif_tx_wake_queue);
3361 
3362 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3363 {
3364 	unsigned long flags;
3365 
3366 	if (unlikely(!skb))
3367 		return;
3368 
3369 	if (likely(refcount_read(&skb->users) == 1)) {
3370 		smp_rmb();
3371 		refcount_set(&skb->users, 0);
3372 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3373 		return;
3374 	}
3375 	get_kfree_skb_cb(skb)->reason = reason;
3376 	local_irq_save(flags);
3377 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3378 	__this_cpu_write(softnet_data.completion_queue, skb);
3379 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3380 	local_irq_restore(flags);
3381 }
3382 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3383 
3384 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3385 {
3386 	if (in_hardirq() || irqs_disabled())
3387 		dev_kfree_skb_irq_reason(skb, reason);
3388 	else
3389 		kfree_skb_reason(skb, reason);
3390 }
3391 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3392 
3393 
3394 /**
3395  * netif_device_detach - mark device as removed
3396  * @dev: network device
3397  *
3398  * Mark device as removed from system and therefore no longer available.
3399  */
3400 void netif_device_detach(struct net_device *dev)
3401 {
3402 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3403 	    netif_running(dev)) {
3404 		netif_tx_stop_all_queues(dev);
3405 	}
3406 }
3407 EXPORT_SYMBOL(netif_device_detach);
3408 
3409 /**
3410  * netif_device_attach - mark device as attached
3411  * @dev: network device
3412  *
3413  * Mark device as attached from system and restart if needed.
3414  */
3415 void netif_device_attach(struct net_device *dev)
3416 {
3417 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3418 	    netif_running(dev)) {
3419 		netif_tx_wake_all_queues(dev);
3420 		netdev_watchdog_up(dev);
3421 	}
3422 }
3423 EXPORT_SYMBOL(netif_device_attach);
3424 
3425 /*
3426  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3427  * to be used as a distribution range.
3428  */
3429 static u16 skb_tx_hash(const struct net_device *dev,
3430 		       const struct net_device *sb_dev,
3431 		       struct sk_buff *skb)
3432 {
3433 	u32 hash;
3434 	u16 qoffset = 0;
3435 	u16 qcount = dev->real_num_tx_queues;
3436 
3437 	if (dev->num_tc) {
3438 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3439 
3440 		qoffset = sb_dev->tc_to_txq[tc].offset;
3441 		qcount = sb_dev->tc_to_txq[tc].count;
3442 		if (unlikely(!qcount)) {
3443 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3444 					     sb_dev->name, qoffset, tc);
3445 			qoffset = 0;
3446 			qcount = dev->real_num_tx_queues;
3447 		}
3448 	}
3449 
3450 	if (skb_rx_queue_recorded(skb)) {
3451 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3452 		hash = skb_get_rx_queue(skb);
3453 		if (hash >= qoffset)
3454 			hash -= qoffset;
3455 		while (unlikely(hash >= qcount))
3456 			hash -= qcount;
3457 		return hash + qoffset;
3458 	}
3459 
3460 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3461 }
3462 
3463 void skb_warn_bad_offload(const struct sk_buff *skb)
3464 {
3465 	static const netdev_features_t null_features;
3466 	struct net_device *dev = skb->dev;
3467 	const char *name = "";
3468 
3469 	if (!net_ratelimit())
3470 		return;
3471 
3472 	if (dev) {
3473 		if (dev->dev.parent)
3474 			name = dev_driver_string(dev->dev.parent);
3475 		else
3476 			name = netdev_name(dev);
3477 	}
3478 	skb_dump(KERN_WARNING, skb, false);
3479 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3480 	     name, dev ? &dev->features : &null_features,
3481 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3482 }
3483 
3484 /*
3485  * Invalidate hardware checksum when packet is to be mangled, and
3486  * complete checksum manually on outgoing path.
3487  */
3488 int skb_checksum_help(struct sk_buff *skb)
3489 {
3490 	__wsum csum;
3491 	int ret = 0, offset;
3492 
3493 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3494 		goto out_set_summed;
3495 
3496 	if (unlikely(skb_is_gso(skb))) {
3497 		skb_warn_bad_offload(skb);
3498 		return -EINVAL;
3499 	}
3500 
3501 	if (!skb_frags_readable(skb)) {
3502 		return -EFAULT;
3503 	}
3504 
3505 	/* Before computing a checksum, we should make sure no frag could
3506 	 * be modified by an external entity : checksum could be wrong.
3507 	 */
3508 	if (skb_has_shared_frag(skb)) {
3509 		ret = __skb_linearize(skb);
3510 		if (ret)
3511 			goto out;
3512 	}
3513 
3514 	offset = skb_checksum_start_offset(skb);
3515 	ret = -EINVAL;
3516 	if (unlikely(offset >= skb_headlen(skb))) {
3517 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3518 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3519 			  offset, skb_headlen(skb));
3520 		goto out;
3521 	}
3522 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3523 
3524 	offset += skb->csum_offset;
3525 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3526 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3527 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3528 			  offset + sizeof(__sum16), skb_headlen(skb));
3529 		goto out;
3530 	}
3531 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3532 	if (ret)
3533 		goto out;
3534 
3535 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3536 out_set_summed:
3537 	skb->ip_summed = CHECKSUM_NONE;
3538 out:
3539 	return ret;
3540 }
3541 EXPORT_SYMBOL(skb_checksum_help);
3542 
3543 int skb_crc32c_csum_help(struct sk_buff *skb)
3544 {
3545 	__le32 crc32c_csum;
3546 	int ret = 0, offset, start;
3547 
3548 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3549 		goto out;
3550 
3551 	if (unlikely(skb_is_gso(skb)))
3552 		goto out;
3553 
3554 	/* Before computing a checksum, we should make sure no frag could
3555 	 * be modified by an external entity : checksum could be wrong.
3556 	 */
3557 	if (unlikely(skb_has_shared_frag(skb))) {
3558 		ret = __skb_linearize(skb);
3559 		if (ret)
3560 			goto out;
3561 	}
3562 	start = skb_checksum_start_offset(skb);
3563 	offset = start + offsetof(struct sctphdr, checksum);
3564 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3565 		ret = -EINVAL;
3566 		goto out;
3567 	}
3568 
3569 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3570 	if (ret)
3571 		goto out;
3572 
3573 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3574 						  skb->len - start, ~(__u32)0,
3575 						  crc32c_csum_stub));
3576 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3577 	skb_reset_csum_not_inet(skb);
3578 out:
3579 	return ret;
3580 }
3581 EXPORT_SYMBOL(skb_crc32c_csum_help);
3582 
3583 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3584 {
3585 	__be16 type = skb->protocol;
3586 
3587 	/* Tunnel gso handlers can set protocol to ethernet. */
3588 	if (type == htons(ETH_P_TEB)) {
3589 		struct ethhdr *eth;
3590 
3591 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3592 			return 0;
3593 
3594 		eth = (struct ethhdr *)skb->data;
3595 		type = eth->h_proto;
3596 	}
3597 
3598 	return vlan_get_protocol_and_depth(skb, type, depth);
3599 }
3600 
3601 
3602 /* Take action when hardware reception checksum errors are detected. */
3603 #ifdef CONFIG_BUG
3604 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3605 {
3606 	netdev_err(dev, "hw csum failure\n");
3607 	skb_dump(KERN_ERR, skb, true);
3608 	dump_stack();
3609 }
3610 
3611 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3612 {
3613 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3614 }
3615 EXPORT_SYMBOL(netdev_rx_csum_fault);
3616 #endif
3617 
3618 /* XXX: check that highmem exists at all on the given machine. */
3619 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3620 {
3621 #ifdef CONFIG_HIGHMEM
3622 	int i;
3623 
3624 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3625 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3626 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3627 			struct page *page = skb_frag_page(frag);
3628 
3629 			if (page && PageHighMem(page))
3630 				return 1;
3631 		}
3632 	}
3633 #endif
3634 	return 0;
3635 }
3636 
3637 /* If MPLS offload request, verify we are testing hardware MPLS features
3638  * instead of standard features for the netdev.
3639  */
3640 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3641 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3642 					   netdev_features_t features,
3643 					   __be16 type)
3644 {
3645 	if (eth_p_mpls(type))
3646 		features &= skb->dev->mpls_features;
3647 
3648 	return features;
3649 }
3650 #else
3651 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3652 					   netdev_features_t features,
3653 					   __be16 type)
3654 {
3655 	return features;
3656 }
3657 #endif
3658 
3659 static netdev_features_t harmonize_features(struct sk_buff *skb,
3660 	netdev_features_t features)
3661 {
3662 	__be16 type;
3663 
3664 	type = skb_network_protocol(skb, NULL);
3665 	features = net_mpls_features(skb, features, type);
3666 
3667 	if (skb->ip_summed != CHECKSUM_NONE &&
3668 	    !can_checksum_protocol(features, type)) {
3669 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3670 	}
3671 	if (illegal_highdma(skb->dev, skb))
3672 		features &= ~NETIF_F_SG;
3673 
3674 	return features;
3675 }
3676 
3677 netdev_features_t passthru_features_check(struct sk_buff *skb,
3678 					  struct net_device *dev,
3679 					  netdev_features_t features)
3680 {
3681 	return features;
3682 }
3683 EXPORT_SYMBOL(passthru_features_check);
3684 
3685 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3686 					     struct net_device *dev,
3687 					     netdev_features_t features)
3688 {
3689 	return vlan_features_check(skb, features);
3690 }
3691 
3692 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3693 					    struct net_device *dev,
3694 					    netdev_features_t features)
3695 {
3696 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3697 
3698 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3699 		return features & ~NETIF_F_GSO_MASK;
3700 
3701 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3702 		return features & ~NETIF_F_GSO_MASK;
3703 
3704 	if (!skb_shinfo(skb)->gso_type) {
3705 		skb_warn_bad_offload(skb);
3706 		return features & ~NETIF_F_GSO_MASK;
3707 	}
3708 
3709 	/* Support for GSO partial features requires software
3710 	 * intervention before we can actually process the packets
3711 	 * so we need to strip support for any partial features now
3712 	 * and we can pull them back in after we have partially
3713 	 * segmented the frame.
3714 	 */
3715 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3716 		features &= ~dev->gso_partial_features;
3717 
3718 	/* Make sure to clear the IPv4 ID mangling feature if the
3719 	 * IPv4 header has the potential to be fragmented.
3720 	 */
3721 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3722 		struct iphdr *iph = skb->encapsulation ?
3723 				    inner_ip_hdr(skb) : ip_hdr(skb);
3724 
3725 		if (!(iph->frag_off & htons(IP_DF)))
3726 			features &= ~NETIF_F_TSO_MANGLEID;
3727 	}
3728 
3729 	return features;
3730 }
3731 
3732 netdev_features_t netif_skb_features(struct sk_buff *skb)
3733 {
3734 	struct net_device *dev = skb->dev;
3735 	netdev_features_t features = dev->features;
3736 
3737 	if (skb_is_gso(skb))
3738 		features = gso_features_check(skb, dev, features);
3739 
3740 	/* If encapsulation offload request, verify we are testing
3741 	 * hardware encapsulation features instead of standard
3742 	 * features for the netdev
3743 	 */
3744 	if (skb->encapsulation)
3745 		features &= dev->hw_enc_features;
3746 
3747 	if (skb_vlan_tagged(skb))
3748 		features = netdev_intersect_features(features,
3749 						     dev->vlan_features |
3750 						     NETIF_F_HW_VLAN_CTAG_TX |
3751 						     NETIF_F_HW_VLAN_STAG_TX);
3752 
3753 	if (dev->netdev_ops->ndo_features_check)
3754 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3755 								features);
3756 	else
3757 		features &= dflt_features_check(skb, dev, features);
3758 
3759 	return harmonize_features(skb, features);
3760 }
3761 EXPORT_SYMBOL(netif_skb_features);
3762 
3763 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3764 		    struct netdev_queue *txq, bool more)
3765 {
3766 	unsigned int len;
3767 	int rc;
3768 
3769 	if (dev_nit_active_rcu(dev))
3770 		dev_queue_xmit_nit(skb, dev);
3771 
3772 	len = skb->len;
3773 	trace_net_dev_start_xmit(skb, dev);
3774 	rc = netdev_start_xmit(skb, dev, txq, more);
3775 	trace_net_dev_xmit(skb, rc, dev, len);
3776 
3777 	return rc;
3778 }
3779 
3780 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3781 				    struct netdev_queue *txq, int *ret)
3782 {
3783 	struct sk_buff *skb = first;
3784 	int rc = NETDEV_TX_OK;
3785 
3786 	while (skb) {
3787 		struct sk_buff *next = skb->next;
3788 
3789 		skb_mark_not_on_list(skb);
3790 		rc = xmit_one(skb, dev, txq, next != NULL);
3791 		if (unlikely(!dev_xmit_complete(rc))) {
3792 			skb->next = next;
3793 			goto out;
3794 		}
3795 
3796 		skb = next;
3797 		if (netif_tx_queue_stopped(txq) && skb) {
3798 			rc = NETDEV_TX_BUSY;
3799 			break;
3800 		}
3801 	}
3802 
3803 out:
3804 	*ret = rc;
3805 	return skb;
3806 }
3807 
3808 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3809 					  netdev_features_t features)
3810 {
3811 	if (skb_vlan_tag_present(skb) &&
3812 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3813 		skb = __vlan_hwaccel_push_inside(skb);
3814 	return skb;
3815 }
3816 
3817 int skb_csum_hwoffload_help(struct sk_buff *skb,
3818 			    const netdev_features_t features)
3819 {
3820 	if (unlikely(skb_csum_is_sctp(skb)))
3821 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3822 			skb_crc32c_csum_help(skb);
3823 
3824 	if (features & NETIF_F_HW_CSUM)
3825 		return 0;
3826 
3827 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3828 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3829 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3830 		    !ipv6_has_hopopt_jumbo(skb))
3831 			goto sw_checksum;
3832 
3833 		switch (skb->csum_offset) {
3834 		case offsetof(struct tcphdr, check):
3835 		case offsetof(struct udphdr, check):
3836 			return 0;
3837 		}
3838 	}
3839 
3840 sw_checksum:
3841 	return skb_checksum_help(skb);
3842 }
3843 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3844 
3845 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3846 {
3847 	netdev_features_t features;
3848 
3849 	if (!skb_frags_readable(skb))
3850 		goto out_kfree_skb;
3851 
3852 	features = netif_skb_features(skb);
3853 	skb = validate_xmit_vlan(skb, features);
3854 	if (unlikely(!skb))
3855 		goto out_null;
3856 
3857 	skb = sk_validate_xmit_skb(skb, dev);
3858 	if (unlikely(!skb))
3859 		goto out_null;
3860 
3861 	if (netif_needs_gso(skb, features)) {
3862 		struct sk_buff *segs;
3863 
3864 		segs = skb_gso_segment(skb, features);
3865 		if (IS_ERR(segs)) {
3866 			goto out_kfree_skb;
3867 		} else if (segs) {
3868 			consume_skb(skb);
3869 			skb = segs;
3870 		}
3871 	} else {
3872 		if (skb_needs_linearize(skb, features) &&
3873 		    __skb_linearize(skb))
3874 			goto out_kfree_skb;
3875 
3876 		/* If packet is not checksummed and device does not
3877 		 * support checksumming for this protocol, complete
3878 		 * checksumming here.
3879 		 */
3880 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3881 			if (skb->encapsulation)
3882 				skb_set_inner_transport_header(skb,
3883 							       skb_checksum_start_offset(skb));
3884 			else
3885 				skb_set_transport_header(skb,
3886 							 skb_checksum_start_offset(skb));
3887 			if (skb_csum_hwoffload_help(skb, features))
3888 				goto out_kfree_skb;
3889 		}
3890 	}
3891 
3892 	skb = validate_xmit_xfrm(skb, features, again);
3893 
3894 	return skb;
3895 
3896 out_kfree_skb:
3897 	kfree_skb(skb);
3898 out_null:
3899 	dev_core_stats_tx_dropped_inc(dev);
3900 	return NULL;
3901 }
3902 
3903 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3904 {
3905 	struct sk_buff *next, *head = NULL, *tail;
3906 
3907 	for (; skb != NULL; skb = next) {
3908 		next = skb->next;
3909 		skb_mark_not_on_list(skb);
3910 
3911 		/* in case skb won't be segmented, point to itself */
3912 		skb->prev = skb;
3913 
3914 		skb = validate_xmit_skb(skb, dev, again);
3915 		if (!skb)
3916 			continue;
3917 
3918 		if (!head)
3919 			head = skb;
3920 		else
3921 			tail->next = skb;
3922 		/* If skb was segmented, skb->prev points to
3923 		 * the last segment. If not, it still contains skb.
3924 		 */
3925 		tail = skb->prev;
3926 	}
3927 	return head;
3928 }
3929 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3930 
3931 static void qdisc_pkt_len_init(struct sk_buff *skb)
3932 {
3933 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3934 
3935 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3936 
3937 	/* To get more precise estimation of bytes sent on wire,
3938 	 * we add to pkt_len the headers size of all segments
3939 	 */
3940 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3941 		u16 gso_segs = shinfo->gso_segs;
3942 		unsigned int hdr_len;
3943 
3944 		/* mac layer + network layer */
3945 		hdr_len = skb_transport_offset(skb);
3946 
3947 		/* + transport layer */
3948 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3949 			const struct tcphdr *th;
3950 			struct tcphdr _tcphdr;
3951 
3952 			th = skb_header_pointer(skb, hdr_len,
3953 						sizeof(_tcphdr), &_tcphdr);
3954 			if (likely(th))
3955 				hdr_len += __tcp_hdrlen(th);
3956 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3957 			struct udphdr _udphdr;
3958 
3959 			if (skb_header_pointer(skb, hdr_len,
3960 					       sizeof(_udphdr), &_udphdr))
3961 				hdr_len += sizeof(struct udphdr);
3962 		}
3963 
3964 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3965 			int payload = skb->len - hdr_len;
3966 
3967 			/* Malicious packet. */
3968 			if (payload <= 0)
3969 				return;
3970 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3971 		}
3972 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3973 	}
3974 }
3975 
3976 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3977 			     struct sk_buff **to_free,
3978 			     struct netdev_queue *txq)
3979 {
3980 	int rc;
3981 
3982 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3983 	if (rc == NET_XMIT_SUCCESS)
3984 		trace_qdisc_enqueue(q, txq, skb);
3985 	return rc;
3986 }
3987 
3988 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3989 				 struct net_device *dev,
3990 				 struct netdev_queue *txq)
3991 {
3992 	spinlock_t *root_lock = qdisc_lock(q);
3993 	struct sk_buff *to_free = NULL;
3994 	bool contended;
3995 	int rc;
3996 
3997 	qdisc_calculate_pkt_len(skb, q);
3998 
3999 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4000 
4001 	if (q->flags & TCQ_F_NOLOCK) {
4002 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4003 		    qdisc_run_begin(q)) {
4004 			/* Retest nolock_qdisc_is_empty() within the protection
4005 			 * of q->seqlock to protect from racing with requeuing.
4006 			 */
4007 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4008 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4009 				__qdisc_run(q);
4010 				qdisc_run_end(q);
4011 
4012 				goto no_lock_out;
4013 			}
4014 
4015 			qdisc_bstats_cpu_update(q, skb);
4016 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4017 			    !nolock_qdisc_is_empty(q))
4018 				__qdisc_run(q);
4019 
4020 			qdisc_run_end(q);
4021 			return NET_XMIT_SUCCESS;
4022 		}
4023 
4024 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4025 		qdisc_run(q);
4026 
4027 no_lock_out:
4028 		if (unlikely(to_free))
4029 			kfree_skb_list_reason(to_free,
4030 					      tcf_get_drop_reason(to_free));
4031 		return rc;
4032 	}
4033 
4034 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4035 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4036 		return NET_XMIT_DROP;
4037 	}
4038 	/*
4039 	 * Heuristic to force contended enqueues to serialize on a
4040 	 * separate lock before trying to get qdisc main lock.
4041 	 * This permits qdisc->running owner to get the lock more
4042 	 * often and dequeue packets faster.
4043 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4044 	 * and then other tasks will only enqueue packets. The packets will be
4045 	 * sent after the qdisc owner is scheduled again. To prevent this
4046 	 * scenario the task always serialize on the lock.
4047 	 */
4048 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4049 	if (unlikely(contended))
4050 		spin_lock(&q->busylock);
4051 
4052 	spin_lock(root_lock);
4053 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4054 		__qdisc_drop(skb, &to_free);
4055 		rc = NET_XMIT_DROP;
4056 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4057 		   qdisc_run_begin(q)) {
4058 		/*
4059 		 * This is a work-conserving queue; there are no old skbs
4060 		 * waiting to be sent out; and the qdisc is not running -
4061 		 * xmit the skb directly.
4062 		 */
4063 
4064 		qdisc_bstats_update(q, skb);
4065 
4066 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4067 			if (unlikely(contended)) {
4068 				spin_unlock(&q->busylock);
4069 				contended = false;
4070 			}
4071 			__qdisc_run(q);
4072 		}
4073 
4074 		qdisc_run_end(q);
4075 		rc = NET_XMIT_SUCCESS;
4076 	} else {
4077 		WRITE_ONCE(q->owner, smp_processor_id());
4078 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4079 		WRITE_ONCE(q->owner, -1);
4080 		if (qdisc_run_begin(q)) {
4081 			if (unlikely(contended)) {
4082 				spin_unlock(&q->busylock);
4083 				contended = false;
4084 			}
4085 			__qdisc_run(q);
4086 			qdisc_run_end(q);
4087 		}
4088 	}
4089 	spin_unlock(root_lock);
4090 	if (unlikely(to_free))
4091 		kfree_skb_list_reason(to_free,
4092 				      tcf_get_drop_reason(to_free));
4093 	if (unlikely(contended))
4094 		spin_unlock(&q->busylock);
4095 	return rc;
4096 }
4097 
4098 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4099 static void skb_update_prio(struct sk_buff *skb)
4100 {
4101 	const struct netprio_map *map;
4102 	const struct sock *sk;
4103 	unsigned int prioidx;
4104 
4105 	if (skb->priority)
4106 		return;
4107 	map = rcu_dereference_bh(skb->dev->priomap);
4108 	if (!map)
4109 		return;
4110 	sk = skb_to_full_sk(skb);
4111 	if (!sk)
4112 		return;
4113 
4114 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4115 
4116 	if (prioidx < map->priomap_len)
4117 		skb->priority = map->priomap[prioidx];
4118 }
4119 #else
4120 #define skb_update_prio(skb)
4121 #endif
4122 
4123 /**
4124  *	dev_loopback_xmit - loop back @skb
4125  *	@net: network namespace this loopback is happening in
4126  *	@sk:  sk needed to be a netfilter okfn
4127  *	@skb: buffer to transmit
4128  */
4129 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4130 {
4131 	skb_reset_mac_header(skb);
4132 	__skb_pull(skb, skb_network_offset(skb));
4133 	skb->pkt_type = PACKET_LOOPBACK;
4134 	if (skb->ip_summed == CHECKSUM_NONE)
4135 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4136 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4137 	skb_dst_force(skb);
4138 	netif_rx(skb);
4139 	return 0;
4140 }
4141 EXPORT_SYMBOL(dev_loopback_xmit);
4142 
4143 #ifdef CONFIG_NET_EGRESS
4144 static struct netdev_queue *
4145 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4146 {
4147 	int qm = skb_get_queue_mapping(skb);
4148 
4149 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4150 }
4151 
4152 #ifndef CONFIG_PREEMPT_RT
4153 static bool netdev_xmit_txqueue_skipped(void)
4154 {
4155 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4156 }
4157 
4158 void netdev_xmit_skip_txqueue(bool skip)
4159 {
4160 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4161 }
4162 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4163 
4164 #else
4165 static bool netdev_xmit_txqueue_skipped(void)
4166 {
4167 	return current->net_xmit.skip_txqueue;
4168 }
4169 
4170 void netdev_xmit_skip_txqueue(bool skip)
4171 {
4172 	current->net_xmit.skip_txqueue = skip;
4173 }
4174 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4175 #endif
4176 #endif /* CONFIG_NET_EGRESS */
4177 
4178 #ifdef CONFIG_NET_XGRESS
4179 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4180 		  enum skb_drop_reason *drop_reason)
4181 {
4182 	int ret = TC_ACT_UNSPEC;
4183 #ifdef CONFIG_NET_CLS_ACT
4184 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4185 	struct tcf_result res;
4186 
4187 	if (!miniq)
4188 		return ret;
4189 
4190 	/* Global bypass */
4191 	if (!static_branch_likely(&tcf_sw_enabled_key))
4192 		return ret;
4193 
4194 	/* Block-wise bypass */
4195 	if (tcf_block_bypass_sw(miniq->block))
4196 		return ret;
4197 
4198 	tc_skb_cb(skb)->mru = 0;
4199 	tc_skb_cb(skb)->post_ct = false;
4200 	tcf_set_drop_reason(skb, *drop_reason);
4201 
4202 	mini_qdisc_bstats_cpu_update(miniq, skb);
4203 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4204 	/* Only tcf related quirks below. */
4205 	switch (ret) {
4206 	case TC_ACT_SHOT:
4207 		*drop_reason = tcf_get_drop_reason(skb);
4208 		mini_qdisc_qstats_cpu_drop(miniq);
4209 		break;
4210 	case TC_ACT_OK:
4211 	case TC_ACT_RECLASSIFY:
4212 		skb->tc_index = TC_H_MIN(res.classid);
4213 		break;
4214 	}
4215 #endif /* CONFIG_NET_CLS_ACT */
4216 	return ret;
4217 }
4218 
4219 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4220 
4221 void tcx_inc(void)
4222 {
4223 	static_branch_inc(&tcx_needed_key);
4224 }
4225 
4226 void tcx_dec(void)
4227 {
4228 	static_branch_dec(&tcx_needed_key);
4229 }
4230 
4231 static __always_inline enum tcx_action_base
4232 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4233 	const bool needs_mac)
4234 {
4235 	const struct bpf_mprog_fp *fp;
4236 	const struct bpf_prog *prog;
4237 	int ret = TCX_NEXT;
4238 
4239 	if (needs_mac)
4240 		__skb_push(skb, skb->mac_len);
4241 	bpf_mprog_foreach_prog(entry, fp, prog) {
4242 		bpf_compute_data_pointers(skb);
4243 		ret = bpf_prog_run(prog, skb);
4244 		if (ret != TCX_NEXT)
4245 			break;
4246 	}
4247 	if (needs_mac)
4248 		__skb_pull(skb, skb->mac_len);
4249 	return tcx_action_code(skb, ret);
4250 }
4251 
4252 static __always_inline struct sk_buff *
4253 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4254 		   struct net_device *orig_dev, bool *another)
4255 {
4256 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4257 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4258 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4259 	int sch_ret;
4260 
4261 	if (!entry)
4262 		return skb;
4263 
4264 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4265 	if (*pt_prev) {
4266 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4267 		*pt_prev = NULL;
4268 	}
4269 
4270 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4271 	tcx_set_ingress(skb, true);
4272 
4273 	if (static_branch_unlikely(&tcx_needed_key)) {
4274 		sch_ret = tcx_run(entry, skb, true);
4275 		if (sch_ret != TC_ACT_UNSPEC)
4276 			goto ingress_verdict;
4277 	}
4278 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4279 ingress_verdict:
4280 	switch (sch_ret) {
4281 	case TC_ACT_REDIRECT:
4282 		/* skb_mac_header check was done by BPF, so we can safely
4283 		 * push the L2 header back before redirecting to another
4284 		 * netdev.
4285 		 */
4286 		__skb_push(skb, skb->mac_len);
4287 		if (skb_do_redirect(skb) == -EAGAIN) {
4288 			__skb_pull(skb, skb->mac_len);
4289 			*another = true;
4290 			break;
4291 		}
4292 		*ret = NET_RX_SUCCESS;
4293 		bpf_net_ctx_clear(bpf_net_ctx);
4294 		return NULL;
4295 	case TC_ACT_SHOT:
4296 		kfree_skb_reason(skb, drop_reason);
4297 		*ret = NET_RX_DROP;
4298 		bpf_net_ctx_clear(bpf_net_ctx);
4299 		return NULL;
4300 	/* used by tc_run */
4301 	case TC_ACT_STOLEN:
4302 	case TC_ACT_QUEUED:
4303 	case TC_ACT_TRAP:
4304 		consume_skb(skb);
4305 		fallthrough;
4306 	case TC_ACT_CONSUMED:
4307 		*ret = NET_RX_SUCCESS;
4308 		bpf_net_ctx_clear(bpf_net_ctx);
4309 		return NULL;
4310 	}
4311 	bpf_net_ctx_clear(bpf_net_ctx);
4312 
4313 	return skb;
4314 }
4315 
4316 static __always_inline struct sk_buff *
4317 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4318 {
4319 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4320 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4321 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4322 	int sch_ret;
4323 
4324 	if (!entry)
4325 		return skb;
4326 
4327 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4328 
4329 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4330 	 * already set by the caller.
4331 	 */
4332 	if (static_branch_unlikely(&tcx_needed_key)) {
4333 		sch_ret = tcx_run(entry, skb, false);
4334 		if (sch_ret != TC_ACT_UNSPEC)
4335 			goto egress_verdict;
4336 	}
4337 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4338 egress_verdict:
4339 	switch (sch_ret) {
4340 	case TC_ACT_REDIRECT:
4341 		/* No need to push/pop skb's mac_header here on egress! */
4342 		skb_do_redirect(skb);
4343 		*ret = NET_XMIT_SUCCESS;
4344 		bpf_net_ctx_clear(bpf_net_ctx);
4345 		return NULL;
4346 	case TC_ACT_SHOT:
4347 		kfree_skb_reason(skb, drop_reason);
4348 		*ret = NET_XMIT_DROP;
4349 		bpf_net_ctx_clear(bpf_net_ctx);
4350 		return NULL;
4351 	/* used by tc_run */
4352 	case TC_ACT_STOLEN:
4353 	case TC_ACT_QUEUED:
4354 	case TC_ACT_TRAP:
4355 		consume_skb(skb);
4356 		fallthrough;
4357 	case TC_ACT_CONSUMED:
4358 		*ret = NET_XMIT_SUCCESS;
4359 		bpf_net_ctx_clear(bpf_net_ctx);
4360 		return NULL;
4361 	}
4362 	bpf_net_ctx_clear(bpf_net_ctx);
4363 
4364 	return skb;
4365 }
4366 #else
4367 static __always_inline struct sk_buff *
4368 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4369 		   struct net_device *orig_dev, bool *another)
4370 {
4371 	return skb;
4372 }
4373 
4374 static __always_inline struct sk_buff *
4375 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4376 {
4377 	return skb;
4378 }
4379 #endif /* CONFIG_NET_XGRESS */
4380 
4381 #ifdef CONFIG_XPS
4382 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4383 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4384 {
4385 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4386 	struct xps_map *map;
4387 	int queue_index = -1;
4388 
4389 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4390 		return queue_index;
4391 
4392 	tci *= dev_maps->num_tc;
4393 	tci += tc;
4394 
4395 	map = rcu_dereference(dev_maps->attr_map[tci]);
4396 	if (map) {
4397 		if (map->len == 1)
4398 			queue_index = map->queues[0];
4399 		else
4400 			queue_index = map->queues[reciprocal_scale(
4401 						skb_get_hash(skb), map->len)];
4402 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4403 			queue_index = -1;
4404 	}
4405 	return queue_index;
4406 }
4407 #endif
4408 
4409 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4410 			 struct sk_buff *skb)
4411 {
4412 #ifdef CONFIG_XPS
4413 	struct xps_dev_maps *dev_maps;
4414 	struct sock *sk = skb->sk;
4415 	int queue_index = -1;
4416 
4417 	if (!static_key_false(&xps_needed))
4418 		return -1;
4419 
4420 	rcu_read_lock();
4421 	if (!static_key_false(&xps_rxqs_needed))
4422 		goto get_cpus_map;
4423 
4424 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4425 	if (dev_maps) {
4426 		int tci = sk_rx_queue_get(sk);
4427 
4428 		if (tci >= 0)
4429 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4430 							  tci);
4431 	}
4432 
4433 get_cpus_map:
4434 	if (queue_index < 0) {
4435 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4436 		if (dev_maps) {
4437 			unsigned int tci = skb->sender_cpu - 1;
4438 
4439 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4440 							  tci);
4441 		}
4442 	}
4443 	rcu_read_unlock();
4444 
4445 	return queue_index;
4446 #else
4447 	return -1;
4448 #endif
4449 }
4450 
4451 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4452 		     struct net_device *sb_dev)
4453 {
4454 	return 0;
4455 }
4456 EXPORT_SYMBOL(dev_pick_tx_zero);
4457 
4458 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4459 		     struct net_device *sb_dev)
4460 {
4461 	struct sock *sk = skb->sk;
4462 	int queue_index = sk_tx_queue_get(sk);
4463 
4464 	sb_dev = sb_dev ? : dev;
4465 
4466 	if (queue_index < 0 || skb->ooo_okay ||
4467 	    queue_index >= dev->real_num_tx_queues) {
4468 		int new_index = get_xps_queue(dev, sb_dev, skb);
4469 
4470 		if (new_index < 0)
4471 			new_index = skb_tx_hash(dev, sb_dev, skb);
4472 
4473 		if (queue_index != new_index && sk &&
4474 		    sk_fullsock(sk) &&
4475 		    rcu_access_pointer(sk->sk_dst_cache))
4476 			sk_tx_queue_set(sk, new_index);
4477 
4478 		queue_index = new_index;
4479 	}
4480 
4481 	return queue_index;
4482 }
4483 EXPORT_SYMBOL(netdev_pick_tx);
4484 
4485 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4486 					 struct sk_buff *skb,
4487 					 struct net_device *sb_dev)
4488 {
4489 	int queue_index = 0;
4490 
4491 #ifdef CONFIG_XPS
4492 	u32 sender_cpu = skb->sender_cpu - 1;
4493 
4494 	if (sender_cpu >= (u32)NR_CPUS)
4495 		skb->sender_cpu = raw_smp_processor_id() + 1;
4496 #endif
4497 
4498 	if (dev->real_num_tx_queues != 1) {
4499 		const struct net_device_ops *ops = dev->netdev_ops;
4500 
4501 		if (ops->ndo_select_queue)
4502 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4503 		else
4504 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4505 
4506 		queue_index = netdev_cap_txqueue(dev, queue_index);
4507 	}
4508 
4509 	skb_set_queue_mapping(skb, queue_index);
4510 	return netdev_get_tx_queue(dev, queue_index);
4511 }
4512 
4513 /**
4514  * __dev_queue_xmit() - transmit a buffer
4515  * @skb:	buffer to transmit
4516  * @sb_dev:	suboordinate device used for L2 forwarding offload
4517  *
4518  * Queue a buffer for transmission to a network device. The caller must
4519  * have set the device and priority and built the buffer before calling
4520  * this function. The function can be called from an interrupt.
4521  *
4522  * When calling this method, interrupts MUST be enabled. This is because
4523  * the BH enable code must have IRQs enabled so that it will not deadlock.
4524  *
4525  * Regardless of the return value, the skb is consumed, so it is currently
4526  * difficult to retry a send to this method. (You can bump the ref count
4527  * before sending to hold a reference for retry if you are careful.)
4528  *
4529  * Return:
4530  * * 0				- buffer successfully transmitted
4531  * * positive qdisc return code	- NET_XMIT_DROP etc.
4532  * * negative errno		- other errors
4533  */
4534 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4535 {
4536 	struct net_device *dev = skb->dev;
4537 	struct netdev_queue *txq = NULL;
4538 	struct Qdisc *q;
4539 	int rc = -ENOMEM;
4540 	bool again = false;
4541 
4542 	skb_reset_mac_header(skb);
4543 	skb_assert_len(skb);
4544 
4545 	if (unlikely(skb_shinfo(skb)->tx_flags &
4546 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4547 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4548 
4549 	/* Disable soft irqs for various locks below. Also
4550 	 * stops preemption for RCU.
4551 	 */
4552 	rcu_read_lock_bh();
4553 
4554 	skb_update_prio(skb);
4555 
4556 	qdisc_pkt_len_init(skb);
4557 	tcx_set_ingress(skb, false);
4558 #ifdef CONFIG_NET_EGRESS
4559 	if (static_branch_unlikely(&egress_needed_key)) {
4560 		if (nf_hook_egress_active()) {
4561 			skb = nf_hook_egress(skb, &rc, dev);
4562 			if (!skb)
4563 				goto out;
4564 		}
4565 
4566 		netdev_xmit_skip_txqueue(false);
4567 
4568 		nf_skip_egress(skb, true);
4569 		skb = sch_handle_egress(skb, &rc, dev);
4570 		if (!skb)
4571 			goto out;
4572 		nf_skip_egress(skb, false);
4573 
4574 		if (netdev_xmit_txqueue_skipped())
4575 			txq = netdev_tx_queue_mapping(dev, skb);
4576 	}
4577 #endif
4578 	/* If device/qdisc don't need skb->dst, release it right now while
4579 	 * its hot in this cpu cache.
4580 	 */
4581 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4582 		skb_dst_drop(skb);
4583 	else
4584 		skb_dst_force(skb);
4585 
4586 	if (!txq)
4587 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4588 
4589 	q = rcu_dereference_bh(txq->qdisc);
4590 
4591 	trace_net_dev_queue(skb);
4592 	if (q->enqueue) {
4593 		rc = __dev_xmit_skb(skb, q, dev, txq);
4594 		goto out;
4595 	}
4596 
4597 	/* The device has no queue. Common case for software devices:
4598 	 * loopback, all the sorts of tunnels...
4599 
4600 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4601 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4602 	 * counters.)
4603 	 * However, it is possible, that they rely on protection
4604 	 * made by us here.
4605 
4606 	 * Check this and shot the lock. It is not prone from deadlocks.
4607 	 *Either shot noqueue qdisc, it is even simpler 8)
4608 	 */
4609 	if (dev->flags & IFF_UP) {
4610 		int cpu = smp_processor_id(); /* ok because BHs are off */
4611 
4612 		/* Other cpus might concurrently change txq->xmit_lock_owner
4613 		 * to -1 or to their cpu id, but not to our id.
4614 		 */
4615 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4616 			if (dev_xmit_recursion())
4617 				goto recursion_alert;
4618 
4619 			skb = validate_xmit_skb(skb, dev, &again);
4620 			if (!skb)
4621 				goto out;
4622 
4623 			HARD_TX_LOCK(dev, txq, cpu);
4624 
4625 			if (!netif_xmit_stopped(txq)) {
4626 				dev_xmit_recursion_inc();
4627 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4628 				dev_xmit_recursion_dec();
4629 				if (dev_xmit_complete(rc)) {
4630 					HARD_TX_UNLOCK(dev, txq);
4631 					goto out;
4632 				}
4633 			}
4634 			HARD_TX_UNLOCK(dev, txq);
4635 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4636 					     dev->name);
4637 		} else {
4638 			/* Recursion is detected! It is possible,
4639 			 * unfortunately
4640 			 */
4641 recursion_alert:
4642 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4643 					     dev->name);
4644 		}
4645 	}
4646 
4647 	rc = -ENETDOWN;
4648 	rcu_read_unlock_bh();
4649 
4650 	dev_core_stats_tx_dropped_inc(dev);
4651 	kfree_skb_list(skb);
4652 	return rc;
4653 out:
4654 	rcu_read_unlock_bh();
4655 	return rc;
4656 }
4657 EXPORT_SYMBOL(__dev_queue_xmit);
4658 
4659 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4660 {
4661 	struct net_device *dev = skb->dev;
4662 	struct sk_buff *orig_skb = skb;
4663 	struct netdev_queue *txq;
4664 	int ret = NETDEV_TX_BUSY;
4665 	bool again = false;
4666 
4667 	if (unlikely(!netif_running(dev) ||
4668 		     !netif_carrier_ok(dev)))
4669 		goto drop;
4670 
4671 	skb = validate_xmit_skb_list(skb, dev, &again);
4672 	if (skb != orig_skb)
4673 		goto drop;
4674 
4675 	skb_set_queue_mapping(skb, queue_id);
4676 	txq = skb_get_tx_queue(dev, skb);
4677 
4678 	local_bh_disable();
4679 
4680 	dev_xmit_recursion_inc();
4681 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4682 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4683 		ret = netdev_start_xmit(skb, dev, txq, false);
4684 	HARD_TX_UNLOCK(dev, txq);
4685 	dev_xmit_recursion_dec();
4686 
4687 	local_bh_enable();
4688 	return ret;
4689 drop:
4690 	dev_core_stats_tx_dropped_inc(dev);
4691 	kfree_skb_list(skb);
4692 	return NET_XMIT_DROP;
4693 }
4694 EXPORT_SYMBOL(__dev_direct_xmit);
4695 
4696 /*************************************************************************
4697  *			Receiver routines
4698  *************************************************************************/
4699 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4700 
4701 int weight_p __read_mostly = 64;           /* old backlog weight */
4702 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4703 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4704 
4705 /* Called with irq disabled */
4706 static inline void ____napi_schedule(struct softnet_data *sd,
4707 				     struct napi_struct *napi)
4708 {
4709 	struct task_struct *thread;
4710 
4711 	lockdep_assert_irqs_disabled();
4712 
4713 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4714 		/* Paired with smp_mb__before_atomic() in
4715 		 * napi_enable()/dev_set_threaded().
4716 		 * Use READ_ONCE() to guarantee a complete
4717 		 * read on napi->thread. Only call
4718 		 * wake_up_process() when it's not NULL.
4719 		 */
4720 		thread = READ_ONCE(napi->thread);
4721 		if (thread) {
4722 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4723 				goto use_local_napi;
4724 
4725 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4726 			wake_up_process(thread);
4727 			return;
4728 		}
4729 	}
4730 
4731 use_local_napi:
4732 	list_add_tail(&napi->poll_list, &sd->poll_list);
4733 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4734 	/* If not called from net_rx_action()
4735 	 * we have to raise NET_RX_SOFTIRQ.
4736 	 */
4737 	if (!sd->in_net_rx_action)
4738 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4739 }
4740 
4741 #ifdef CONFIG_RPS
4742 
4743 struct static_key_false rps_needed __read_mostly;
4744 EXPORT_SYMBOL(rps_needed);
4745 struct static_key_false rfs_needed __read_mostly;
4746 EXPORT_SYMBOL(rfs_needed);
4747 
4748 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4749 {
4750 	return hash_32(hash, flow_table->log);
4751 }
4752 
4753 static struct rps_dev_flow *
4754 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4755 	    struct rps_dev_flow *rflow, u16 next_cpu)
4756 {
4757 	if (next_cpu < nr_cpu_ids) {
4758 		u32 head;
4759 #ifdef CONFIG_RFS_ACCEL
4760 		struct netdev_rx_queue *rxqueue;
4761 		struct rps_dev_flow_table *flow_table;
4762 		struct rps_dev_flow *old_rflow;
4763 		u16 rxq_index;
4764 		u32 flow_id;
4765 		int rc;
4766 
4767 		/* Should we steer this flow to a different hardware queue? */
4768 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4769 		    !(dev->features & NETIF_F_NTUPLE))
4770 			goto out;
4771 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4772 		if (rxq_index == skb_get_rx_queue(skb))
4773 			goto out;
4774 
4775 		rxqueue = dev->_rx + rxq_index;
4776 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4777 		if (!flow_table)
4778 			goto out;
4779 		flow_id = rfs_slot(skb_get_hash(skb), flow_table);
4780 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4781 							rxq_index, flow_id);
4782 		if (rc < 0)
4783 			goto out;
4784 		old_rflow = rflow;
4785 		rflow = &flow_table->flows[flow_id];
4786 		WRITE_ONCE(rflow->filter, rc);
4787 		if (old_rflow->filter == rc)
4788 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4789 	out:
4790 #endif
4791 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4792 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4793 	}
4794 
4795 	WRITE_ONCE(rflow->cpu, next_cpu);
4796 	return rflow;
4797 }
4798 
4799 /*
4800  * get_rps_cpu is called from netif_receive_skb and returns the target
4801  * CPU from the RPS map of the receiving queue for a given skb.
4802  * rcu_read_lock must be held on entry.
4803  */
4804 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4805 		       struct rps_dev_flow **rflowp)
4806 {
4807 	const struct rps_sock_flow_table *sock_flow_table;
4808 	struct netdev_rx_queue *rxqueue = dev->_rx;
4809 	struct rps_dev_flow_table *flow_table;
4810 	struct rps_map *map;
4811 	int cpu = -1;
4812 	u32 tcpu;
4813 	u32 hash;
4814 
4815 	if (skb_rx_queue_recorded(skb)) {
4816 		u16 index = skb_get_rx_queue(skb);
4817 
4818 		if (unlikely(index >= dev->real_num_rx_queues)) {
4819 			WARN_ONCE(dev->real_num_rx_queues > 1,
4820 				  "%s received packet on queue %u, but number "
4821 				  "of RX queues is %u\n",
4822 				  dev->name, index, dev->real_num_rx_queues);
4823 			goto done;
4824 		}
4825 		rxqueue += index;
4826 	}
4827 
4828 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4829 
4830 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4831 	map = rcu_dereference(rxqueue->rps_map);
4832 	if (!flow_table && !map)
4833 		goto done;
4834 
4835 	skb_reset_network_header(skb);
4836 	hash = skb_get_hash(skb);
4837 	if (!hash)
4838 		goto done;
4839 
4840 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4841 	if (flow_table && sock_flow_table) {
4842 		struct rps_dev_flow *rflow;
4843 		u32 next_cpu;
4844 		u32 ident;
4845 
4846 		/* First check into global flow table if there is a match.
4847 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4848 		 */
4849 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4850 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4851 			goto try_rps;
4852 
4853 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4854 
4855 		/* OK, now we know there is a match,
4856 		 * we can look at the local (per receive queue) flow table
4857 		 */
4858 		rflow = &flow_table->flows[rfs_slot(hash, flow_table)];
4859 		tcpu = rflow->cpu;
4860 
4861 		/*
4862 		 * If the desired CPU (where last recvmsg was done) is
4863 		 * different from current CPU (one in the rx-queue flow
4864 		 * table entry), switch if one of the following holds:
4865 		 *   - Current CPU is unset (>= nr_cpu_ids).
4866 		 *   - Current CPU is offline.
4867 		 *   - The current CPU's queue tail has advanced beyond the
4868 		 *     last packet that was enqueued using this table entry.
4869 		 *     This guarantees that all previous packets for the flow
4870 		 *     have been dequeued, thus preserving in order delivery.
4871 		 */
4872 		if (unlikely(tcpu != next_cpu) &&
4873 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4874 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4875 		      rflow->last_qtail)) >= 0)) {
4876 			tcpu = next_cpu;
4877 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4878 		}
4879 
4880 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4881 			*rflowp = rflow;
4882 			cpu = tcpu;
4883 			goto done;
4884 		}
4885 	}
4886 
4887 try_rps:
4888 
4889 	if (map) {
4890 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4891 		if (cpu_online(tcpu)) {
4892 			cpu = tcpu;
4893 			goto done;
4894 		}
4895 	}
4896 
4897 done:
4898 	return cpu;
4899 }
4900 
4901 #ifdef CONFIG_RFS_ACCEL
4902 
4903 /**
4904  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4905  * @dev: Device on which the filter was set
4906  * @rxq_index: RX queue index
4907  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4908  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4909  *
4910  * Drivers that implement ndo_rx_flow_steer() should periodically call
4911  * this function for each installed filter and remove the filters for
4912  * which it returns %true.
4913  */
4914 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4915 			 u32 flow_id, u16 filter_id)
4916 {
4917 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4918 	struct rps_dev_flow_table *flow_table;
4919 	struct rps_dev_flow *rflow;
4920 	bool expire = true;
4921 	unsigned int cpu;
4922 
4923 	rcu_read_lock();
4924 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4925 	if (flow_table && flow_id < (1UL << flow_table->log)) {
4926 		rflow = &flow_table->flows[flow_id];
4927 		cpu = READ_ONCE(rflow->cpu);
4928 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4929 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4930 			   READ_ONCE(rflow->last_qtail)) <
4931 		     (int)(10 << flow_table->log)))
4932 			expire = false;
4933 	}
4934 	rcu_read_unlock();
4935 	return expire;
4936 }
4937 EXPORT_SYMBOL(rps_may_expire_flow);
4938 
4939 #endif /* CONFIG_RFS_ACCEL */
4940 
4941 /* Called from hardirq (IPI) context */
4942 static void rps_trigger_softirq(void *data)
4943 {
4944 	struct softnet_data *sd = data;
4945 
4946 	____napi_schedule(sd, &sd->backlog);
4947 	sd->received_rps++;
4948 }
4949 
4950 #endif /* CONFIG_RPS */
4951 
4952 /* Called from hardirq (IPI) context */
4953 static void trigger_rx_softirq(void *data)
4954 {
4955 	struct softnet_data *sd = data;
4956 
4957 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4958 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4959 }
4960 
4961 /*
4962  * After we queued a packet into sd->input_pkt_queue,
4963  * we need to make sure this queue is serviced soon.
4964  *
4965  * - If this is another cpu queue, link it to our rps_ipi_list,
4966  *   and make sure we will process rps_ipi_list from net_rx_action().
4967  *
4968  * - If this is our own queue, NAPI schedule our backlog.
4969  *   Note that this also raises NET_RX_SOFTIRQ.
4970  */
4971 static void napi_schedule_rps(struct softnet_data *sd)
4972 {
4973 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4974 
4975 #ifdef CONFIG_RPS
4976 	if (sd != mysd) {
4977 		if (use_backlog_threads()) {
4978 			__napi_schedule_irqoff(&sd->backlog);
4979 			return;
4980 		}
4981 
4982 		sd->rps_ipi_next = mysd->rps_ipi_list;
4983 		mysd->rps_ipi_list = sd;
4984 
4985 		/* If not called from net_rx_action() or napi_threaded_poll()
4986 		 * we have to raise NET_RX_SOFTIRQ.
4987 		 */
4988 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4989 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4990 		return;
4991 	}
4992 #endif /* CONFIG_RPS */
4993 	__napi_schedule_irqoff(&mysd->backlog);
4994 }
4995 
4996 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4997 {
4998 	unsigned long flags;
4999 
5000 	if (use_backlog_threads()) {
5001 		backlog_lock_irq_save(sd, &flags);
5002 
5003 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5004 			__napi_schedule_irqoff(&sd->backlog);
5005 
5006 		backlog_unlock_irq_restore(sd, &flags);
5007 
5008 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5009 		smp_call_function_single_async(cpu, &sd->defer_csd);
5010 	}
5011 }
5012 
5013 #ifdef CONFIG_NET_FLOW_LIMIT
5014 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5015 #endif
5016 
5017 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5018 {
5019 #ifdef CONFIG_NET_FLOW_LIMIT
5020 	struct sd_flow_limit *fl;
5021 	struct softnet_data *sd;
5022 	unsigned int old_flow, new_flow;
5023 
5024 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5025 		return false;
5026 
5027 	sd = this_cpu_ptr(&softnet_data);
5028 
5029 	rcu_read_lock();
5030 	fl = rcu_dereference(sd->flow_limit);
5031 	if (fl) {
5032 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
5033 		old_flow = fl->history[fl->history_head];
5034 		fl->history[fl->history_head] = new_flow;
5035 
5036 		fl->history_head++;
5037 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5038 
5039 		if (likely(fl->buckets[old_flow]))
5040 			fl->buckets[old_flow]--;
5041 
5042 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5043 			fl->count++;
5044 			rcu_read_unlock();
5045 			return true;
5046 		}
5047 	}
5048 	rcu_read_unlock();
5049 #endif
5050 	return false;
5051 }
5052 
5053 /*
5054  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5055  * queue (may be a remote CPU queue).
5056  */
5057 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5058 			      unsigned int *qtail)
5059 {
5060 	enum skb_drop_reason reason;
5061 	struct softnet_data *sd;
5062 	unsigned long flags;
5063 	unsigned int qlen;
5064 	int max_backlog;
5065 	u32 tail;
5066 
5067 	reason = SKB_DROP_REASON_DEV_READY;
5068 	if (!netif_running(skb->dev))
5069 		goto bad_dev;
5070 
5071 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5072 	sd = &per_cpu(softnet_data, cpu);
5073 
5074 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5075 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5076 	if (unlikely(qlen > max_backlog))
5077 		goto cpu_backlog_drop;
5078 	backlog_lock_irq_save(sd, &flags);
5079 	qlen = skb_queue_len(&sd->input_pkt_queue);
5080 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5081 		if (!qlen) {
5082 			/* Schedule NAPI for backlog device. We can use
5083 			 * non atomic operation as we own the queue lock.
5084 			 */
5085 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5086 						&sd->backlog.state))
5087 				napi_schedule_rps(sd);
5088 		}
5089 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5090 		tail = rps_input_queue_tail_incr(sd);
5091 		backlog_unlock_irq_restore(sd, &flags);
5092 
5093 		/* save the tail outside of the critical section */
5094 		rps_input_queue_tail_save(qtail, tail);
5095 		return NET_RX_SUCCESS;
5096 	}
5097 
5098 	backlog_unlock_irq_restore(sd, &flags);
5099 
5100 cpu_backlog_drop:
5101 	atomic_inc(&sd->dropped);
5102 bad_dev:
5103 	dev_core_stats_rx_dropped_inc(skb->dev);
5104 	kfree_skb_reason(skb, reason);
5105 	return NET_RX_DROP;
5106 }
5107 
5108 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5109 {
5110 	struct net_device *dev = skb->dev;
5111 	struct netdev_rx_queue *rxqueue;
5112 
5113 	rxqueue = dev->_rx;
5114 
5115 	if (skb_rx_queue_recorded(skb)) {
5116 		u16 index = skb_get_rx_queue(skb);
5117 
5118 		if (unlikely(index >= dev->real_num_rx_queues)) {
5119 			WARN_ONCE(dev->real_num_rx_queues > 1,
5120 				  "%s received packet on queue %u, but number "
5121 				  "of RX queues is %u\n",
5122 				  dev->name, index, dev->real_num_rx_queues);
5123 
5124 			return rxqueue; /* Return first rxqueue */
5125 		}
5126 		rxqueue += index;
5127 	}
5128 	return rxqueue;
5129 }
5130 
5131 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5132 			     const struct bpf_prog *xdp_prog)
5133 {
5134 	void *orig_data, *orig_data_end, *hard_start;
5135 	struct netdev_rx_queue *rxqueue;
5136 	bool orig_bcast, orig_host;
5137 	u32 mac_len, frame_sz;
5138 	__be16 orig_eth_type;
5139 	struct ethhdr *eth;
5140 	u32 metalen, act;
5141 	int off;
5142 
5143 	/* The XDP program wants to see the packet starting at the MAC
5144 	 * header.
5145 	 */
5146 	mac_len = skb->data - skb_mac_header(skb);
5147 	hard_start = skb->data - skb_headroom(skb);
5148 
5149 	/* SKB "head" area always have tailroom for skb_shared_info */
5150 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5151 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5152 
5153 	rxqueue = netif_get_rxqueue(skb);
5154 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5155 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5156 			 skb_headlen(skb) + mac_len, true);
5157 	if (skb_is_nonlinear(skb)) {
5158 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5159 		xdp_buff_set_frags_flag(xdp);
5160 	} else {
5161 		xdp_buff_clear_frags_flag(xdp);
5162 	}
5163 
5164 	orig_data_end = xdp->data_end;
5165 	orig_data = xdp->data;
5166 	eth = (struct ethhdr *)xdp->data;
5167 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5168 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5169 	orig_eth_type = eth->h_proto;
5170 
5171 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5172 
5173 	/* check if bpf_xdp_adjust_head was used */
5174 	off = xdp->data - orig_data;
5175 	if (off) {
5176 		if (off > 0)
5177 			__skb_pull(skb, off);
5178 		else if (off < 0)
5179 			__skb_push(skb, -off);
5180 
5181 		skb->mac_header += off;
5182 		skb_reset_network_header(skb);
5183 	}
5184 
5185 	/* check if bpf_xdp_adjust_tail was used */
5186 	off = xdp->data_end - orig_data_end;
5187 	if (off != 0) {
5188 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5189 		skb->len += off; /* positive on grow, negative on shrink */
5190 	}
5191 
5192 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5193 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5194 	 */
5195 	if (xdp_buff_has_frags(xdp))
5196 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5197 	else
5198 		skb->data_len = 0;
5199 
5200 	/* check if XDP changed eth hdr such SKB needs update */
5201 	eth = (struct ethhdr *)xdp->data;
5202 	if ((orig_eth_type != eth->h_proto) ||
5203 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5204 						  skb->dev->dev_addr)) ||
5205 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5206 		__skb_push(skb, ETH_HLEN);
5207 		skb->pkt_type = PACKET_HOST;
5208 		skb->protocol = eth_type_trans(skb, skb->dev);
5209 	}
5210 
5211 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5212 	 * before calling us again on redirect path. We do not call do_redirect
5213 	 * as we leave that up to the caller.
5214 	 *
5215 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5216 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5217 	 */
5218 	switch (act) {
5219 	case XDP_REDIRECT:
5220 	case XDP_TX:
5221 		__skb_push(skb, mac_len);
5222 		break;
5223 	case XDP_PASS:
5224 		metalen = xdp->data - xdp->data_meta;
5225 		if (metalen)
5226 			skb_metadata_set(skb, metalen);
5227 		break;
5228 	}
5229 
5230 	return act;
5231 }
5232 
5233 static int
5234 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5235 {
5236 	struct sk_buff *skb = *pskb;
5237 	int err, hroom, troom;
5238 
5239 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5240 		return 0;
5241 
5242 	/* In case we have to go down the path and also linearize,
5243 	 * then lets do the pskb_expand_head() work just once here.
5244 	 */
5245 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5246 	troom = skb->tail + skb->data_len - skb->end;
5247 	err = pskb_expand_head(skb,
5248 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5249 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5250 	if (err)
5251 		return err;
5252 
5253 	return skb_linearize(skb);
5254 }
5255 
5256 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5257 				     struct xdp_buff *xdp,
5258 				     const struct bpf_prog *xdp_prog)
5259 {
5260 	struct sk_buff *skb = *pskb;
5261 	u32 mac_len, act = XDP_DROP;
5262 
5263 	/* Reinjected packets coming from act_mirred or similar should
5264 	 * not get XDP generic processing.
5265 	 */
5266 	if (skb_is_redirected(skb))
5267 		return XDP_PASS;
5268 
5269 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5270 	 * bytes. This is the guarantee that also native XDP provides,
5271 	 * thus we need to do it here as well.
5272 	 */
5273 	mac_len = skb->data - skb_mac_header(skb);
5274 	__skb_push(skb, mac_len);
5275 
5276 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5277 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5278 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5279 			goto do_drop;
5280 	}
5281 
5282 	__skb_pull(*pskb, mac_len);
5283 
5284 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5285 	switch (act) {
5286 	case XDP_REDIRECT:
5287 	case XDP_TX:
5288 	case XDP_PASS:
5289 		break;
5290 	default:
5291 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5292 		fallthrough;
5293 	case XDP_ABORTED:
5294 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5295 		fallthrough;
5296 	case XDP_DROP:
5297 	do_drop:
5298 		kfree_skb(*pskb);
5299 		break;
5300 	}
5301 
5302 	return act;
5303 }
5304 
5305 /* When doing generic XDP we have to bypass the qdisc layer and the
5306  * network taps in order to match in-driver-XDP behavior. This also means
5307  * that XDP packets are able to starve other packets going through a qdisc,
5308  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5309  * queues, so they do not have this starvation issue.
5310  */
5311 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5312 {
5313 	struct net_device *dev = skb->dev;
5314 	struct netdev_queue *txq;
5315 	bool free_skb = true;
5316 	int cpu, rc;
5317 
5318 	txq = netdev_core_pick_tx(dev, skb, NULL);
5319 	cpu = smp_processor_id();
5320 	HARD_TX_LOCK(dev, txq, cpu);
5321 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5322 		rc = netdev_start_xmit(skb, dev, txq, 0);
5323 		if (dev_xmit_complete(rc))
5324 			free_skb = false;
5325 	}
5326 	HARD_TX_UNLOCK(dev, txq);
5327 	if (free_skb) {
5328 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5329 		dev_core_stats_tx_dropped_inc(dev);
5330 		kfree_skb(skb);
5331 	}
5332 }
5333 
5334 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5335 
5336 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5337 {
5338 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5339 
5340 	if (xdp_prog) {
5341 		struct xdp_buff xdp;
5342 		u32 act;
5343 		int err;
5344 
5345 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5346 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5347 		if (act != XDP_PASS) {
5348 			switch (act) {
5349 			case XDP_REDIRECT:
5350 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5351 							      &xdp, xdp_prog);
5352 				if (err)
5353 					goto out_redir;
5354 				break;
5355 			case XDP_TX:
5356 				generic_xdp_tx(*pskb, xdp_prog);
5357 				break;
5358 			}
5359 			bpf_net_ctx_clear(bpf_net_ctx);
5360 			return XDP_DROP;
5361 		}
5362 		bpf_net_ctx_clear(bpf_net_ctx);
5363 	}
5364 	return XDP_PASS;
5365 out_redir:
5366 	bpf_net_ctx_clear(bpf_net_ctx);
5367 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5368 	return XDP_DROP;
5369 }
5370 EXPORT_SYMBOL_GPL(do_xdp_generic);
5371 
5372 static int netif_rx_internal(struct sk_buff *skb)
5373 {
5374 	int ret;
5375 
5376 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5377 
5378 	trace_netif_rx(skb);
5379 
5380 #ifdef CONFIG_RPS
5381 	if (static_branch_unlikely(&rps_needed)) {
5382 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5383 		int cpu;
5384 
5385 		rcu_read_lock();
5386 
5387 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5388 		if (cpu < 0)
5389 			cpu = smp_processor_id();
5390 
5391 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5392 
5393 		rcu_read_unlock();
5394 	} else
5395 #endif
5396 	{
5397 		unsigned int qtail;
5398 
5399 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5400 	}
5401 	return ret;
5402 }
5403 
5404 /**
5405  *	__netif_rx	-	Slightly optimized version of netif_rx
5406  *	@skb: buffer to post
5407  *
5408  *	This behaves as netif_rx except that it does not disable bottom halves.
5409  *	As a result this function may only be invoked from the interrupt context
5410  *	(either hard or soft interrupt).
5411  */
5412 int __netif_rx(struct sk_buff *skb)
5413 {
5414 	int ret;
5415 
5416 	lockdep_assert_once(hardirq_count() | softirq_count());
5417 
5418 	trace_netif_rx_entry(skb);
5419 	ret = netif_rx_internal(skb);
5420 	trace_netif_rx_exit(ret);
5421 	return ret;
5422 }
5423 EXPORT_SYMBOL(__netif_rx);
5424 
5425 /**
5426  *	netif_rx	-	post buffer to the network code
5427  *	@skb: buffer to post
5428  *
5429  *	This function receives a packet from a device driver and queues it for
5430  *	the upper (protocol) levels to process via the backlog NAPI device. It
5431  *	always succeeds. The buffer may be dropped during processing for
5432  *	congestion control or by the protocol layers.
5433  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5434  *	driver should use NAPI and GRO.
5435  *	This function can used from interrupt and from process context. The
5436  *	caller from process context must not disable interrupts before invoking
5437  *	this function.
5438  *
5439  *	return values:
5440  *	NET_RX_SUCCESS	(no congestion)
5441  *	NET_RX_DROP     (packet was dropped)
5442  *
5443  */
5444 int netif_rx(struct sk_buff *skb)
5445 {
5446 	bool need_bh_off = !(hardirq_count() | softirq_count());
5447 	int ret;
5448 
5449 	if (need_bh_off)
5450 		local_bh_disable();
5451 	trace_netif_rx_entry(skb);
5452 	ret = netif_rx_internal(skb);
5453 	trace_netif_rx_exit(ret);
5454 	if (need_bh_off)
5455 		local_bh_enable();
5456 	return ret;
5457 }
5458 EXPORT_SYMBOL(netif_rx);
5459 
5460 static __latent_entropy void net_tx_action(void)
5461 {
5462 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5463 
5464 	if (sd->completion_queue) {
5465 		struct sk_buff *clist;
5466 
5467 		local_irq_disable();
5468 		clist = sd->completion_queue;
5469 		sd->completion_queue = NULL;
5470 		local_irq_enable();
5471 
5472 		while (clist) {
5473 			struct sk_buff *skb = clist;
5474 
5475 			clist = clist->next;
5476 
5477 			WARN_ON(refcount_read(&skb->users));
5478 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5479 				trace_consume_skb(skb, net_tx_action);
5480 			else
5481 				trace_kfree_skb(skb, net_tx_action,
5482 						get_kfree_skb_cb(skb)->reason, NULL);
5483 
5484 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5485 				__kfree_skb(skb);
5486 			else
5487 				__napi_kfree_skb(skb,
5488 						 get_kfree_skb_cb(skb)->reason);
5489 		}
5490 	}
5491 
5492 	if (sd->output_queue) {
5493 		struct Qdisc *head;
5494 
5495 		local_irq_disable();
5496 		head = sd->output_queue;
5497 		sd->output_queue = NULL;
5498 		sd->output_queue_tailp = &sd->output_queue;
5499 		local_irq_enable();
5500 
5501 		rcu_read_lock();
5502 
5503 		while (head) {
5504 			struct Qdisc *q = head;
5505 			spinlock_t *root_lock = NULL;
5506 
5507 			head = head->next_sched;
5508 
5509 			/* We need to make sure head->next_sched is read
5510 			 * before clearing __QDISC_STATE_SCHED
5511 			 */
5512 			smp_mb__before_atomic();
5513 
5514 			if (!(q->flags & TCQ_F_NOLOCK)) {
5515 				root_lock = qdisc_lock(q);
5516 				spin_lock(root_lock);
5517 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5518 						     &q->state))) {
5519 				/* There is a synchronize_net() between
5520 				 * STATE_DEACTIVATED flag being set and
5521 				 * qdisc_reset()/some_qdisc_is_busy() in
5522 				 * dev_deactivate(), so we can safely bail out
5523 				 * early here to avoid data race between
5524 				 * qdisc_deactivate() and some_qdisc_is_busy()
5525 				 * for lockless qdisc.
5526 				 */
5527 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5528 				continue;
5529 			}
5530 
5531 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5532 			qdisc_run(q);
5533 			if (root_lock)
5534 				spin_unlock(root_lock);
5535 		}
5536 
5537 		rcu_read_unlock();
5538 	}
5539 
5540 	xfrm_dev_backlog(sd);
5541 }
5542 
5543 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5544 /* This hook is defined here for ATM LANE */
5545 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5546 			     unsigned char *addr) __read_mostly;
5547 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5548 #endif
5549 
5550 /**
5551  *	netdev_is_rx_handler_busy - check if receive handler is registered
5552  *	@dev: device to check
5553  *
5554  *	Check if a receive handler is already registered for a given device.
5555  *	Return true if there one.
5556  *
5557  *	The caller must hold the rtnl_mutex.
5558  */
5559 bool netdev_is_rx_handler_busy(struct net_device *dev)
5560 {
5561 	ASSERT_RTNL();
5562 	return dev && rtnl_dereference(dev->rx_handler);
5563 }
5564 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5565 
5566 /**
5567  *	netdev_rx_handler_register - register receive handler
5568  *	@dev: device to register a handler for
5569  *	@rx_handler: receive handler to register
5570  *	@rx_handler_data: data pointer that is used by rx handler
5571  *
5572  *	Register a receive handler for a device. This handler will then be
5573  *	called from __netif_receive_skb. A negative errno code is returned
5574  *	on a failure.
5575  *
5576  *	The caller must hold the rtnl_mutex.
5577  *
5578  *	For a general description of rx_handler, see enum rx_handler_result.
5579  */
5580 int netdev_rx_handler_register(struct net_device *dev,
5581 			       rx_handler_func_t *rx_handler,
5582 			       void *rx_handler_data)
5583 {
5584 	if (netdev_is_rx_handler_busy(dev))
5585 		return -EBUSY;
5586 
5587 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5588 		return -EINVAL;
5589 
5590 	/* Note: rx_handler_data must be set before rx_handler */
5591 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5592 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5593 
5594 	return 0;
5595 }
5596 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5597 
5598 /**
5599  *	netdev_rx_handler_unregister - unregister receive handler
5600  *	@dev: device to unregister a handler from
5601  *
5602  *	Unregister a receive handler from a device.
5603  *
5604  *	The caller must hold the rtnl_mutex.
5605  */
5606 void netdev_rx_handler_unregister(struct net_device *dev)
5607 {
5608 
5609 	ASSERT_RTNL();
5610 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5611 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5612 	 * section has a guarantee to see a non NULL rx_handler_data
5613 	 * as well.
5614 	 */
5615 	synchronize_net();
5616 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5617 }
5618 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5619 
5620 /*
5621  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5622  * the special handling of PFMEMALLOC skbs.
5623  */
5624 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5625 {
5626 	switch (skb->protocol) {
5627 	case htons(ETH_P_ARP):
5628 	case htons(ETH_P_IP):
5629 	case htons(ETH_P_IPV6):
5630 	case htons(ETH_P_8021Q):
5631 	case htons(ETH_P_8021AD):
5632 		return true;
5633 	default:
5634 		return false;
5635 	}
5636 }
5637 
5638 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5639 			     int *ret, struct net_device *orig_dev)
5640 {
5641 	if (nf_hook_ingress_active(skb)) {
5642 		int ingress_retval;
5643 
5644 		if (*pt_prev) {
5645 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5646 			*pt_prev = NULL;
5647 		}
5648 
5649 		rcu_read_lock();
5650 		ingress_retval = nf_hook_ingress(skb);
5651 		rcu_read_unlock();
5652 		return ingress_retval;
5653 	}
5654 	return 0;
5655 }
5656 
5657 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5658 				    struct packet_type **ppt_prev)
5659 {
5660 	struct packet_type *ptype, *pt_prev;
5661 	rx_handler_func_t *rx_handler;
5662 	struct sk_buff *skb = *pskb;
5663 	struct net_device *orig_dev;
5664 	bool deliver_exact = false;
5665 	int ret = NET_RX_DROP;
5666 	__be16 type;
5667 
5668 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5669 
5670 	trace_netif_receive_skb(skb);
5671 
5672 	orig_dev = skb->dev;
5673 
5674 	skb_reset_network_header(skb);
5675 #if !defined(CONFIG_DEBUG_NET)
5676 	/* We plan to no longer reset the transport header here.
5677 	 * Give some time to fuzzers and dev build to catch bugs
5678 	 * in network stacks.
5679 	 */
5680 	if (!skb_transport_header_was_set(skb))
5681 		skb_reset_transport_header(skb);
5682 #endif
5683 	skb_reset_mac_len(skb);
5684 
5685 	pt_prev = NULL;
5686 
5687 another_round:
5688 	skb->skb_iif = skb->dev->ifindex;
5689 
5690 	__this_cpu_inc(softnet_data.processed);
5691 
5692 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5693 		int ret2;
5694 
5695 		migrate_disable();
5696 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5697 				      &skb);
5698 		migrate_enable();
5699 
5700 		if (ret2 != XDP_PASS) {
5701 			ret = NET_RX_DROP;
5702 			goto out;
5703 		}
5704 	}
5705 
5706 	if (eth_type_vlan(skb->protocol)) {
5707 		skb = skb_vlan_untag(skb);
5708 		if (unlikely(!skb))
5709 			goto out;
5710 	}
5711 
5712 	if (skb_skip_tc_classify(skb))
5713 		goto skip_classify;
5714 
5715 	if (pfmemalloc)
5716 		goto skip_taps;
5717 
5718 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5719 				list) {
5720 		if (pt_prev)
5721 			ret = deliver_skb(skb, pt_prev, orig_dev);
5722 		pt_prev = ptype;
5723 	}
5724 
5725 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5726 		if (pt_prev)
5727 			ret = deliver_skb(skb, pt_prev, orig_dev);
5728 		pt_prev = ptype;
5729 	}
5730 
5731 skip_taps:
5732 #ifdef CONFIG_NET_INGRESS
5733 	if (static_branch_unlikely(&ingress_needed_key)) {
5734 		bool another = false;
5735 
5736 		nf_skip_egress(skb, true);
5737 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5738 					 &another);
5739 		if (another)
5740 			goto another_round;
5741 		if (!skb)
5742 			goto out;
5743 
5744 		nf_skip_egress(skb, false);
5745 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5746 			goto out;
5747 	}
5748 #endif
5749 	skb_reset_redirect(skb);
5750 skip_classify:
5751 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5752 		goto drop;
5753 
5754 	if (skb_vlan_tag_present(skb)) {
5755 		if (pt_prev) {
5756 			ret = deliver_skb(skb, pt_prev, orig_dev);
5757 			pt_prev = NULL;
5758 		}
5759 		if (vlan_do_receive(&skb))
5760 			goto another_round;
5761 		else if (unlikely(!skb))
5762 			goto out;
5763 	}
5764 
5765 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5766 	if (rx_handler) {
5767 		if (pt_prev) {
5768 			ret = deliver_skb(skb, pt_prev, orig_dev);
5769 			pt_prev = NULL;
5770 		}
5771 		switch (rx_handler(&skb)) {
5772 		case RX_HANDLER_CONSUMED:
5773 			ret = NET_RX_SUCCESS;
5774 			goto out;
5775 		case RX_HANDLER_ANOTHER:
5776 			goto another_round;
5777 		case RX_HANDLER_EXACT:
5778 			deliver_exact = true;
5779 			break;
5780 		case RX_HANDLER_PASS:
5781 			break;
5782 		default:
5783 			BUG();
5784 		}
5785 	}
5786 
5787 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5788 check_vlan_id:
5789 		if (skb_vlan_tag_get_id(skb)) {
5790 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5791 			 * find vlan device.
5792 			 */
5793 			skb->pkt_type = PACKET_OTHERHOST;
5794 		} else if (eth_type_vlan(skb->protocol)) {
5795 			/* Outer header is 802.1P with vlan 0, inner header is
5796 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5797 			 * not find vlan dev for vlan id 0.
5798 			 */
5799 			__vlan_hwaccel_clear_tag(skb);
5800 			skb = skb_vlan_untag(skb);
5801 			if (unlikely(!skb))
5802 				goto out;
5803 			if (vlan_do_receive(&skb))
5804 				/* After stripping off 802.1P header with vlan 0
5805 				 * vlan dev is found for inner header.
5806 				 */
5807 				goto another_round;
5808 			else if (unlikely(!skb))
5809 				goto out;
5810 			else
5811 				/* We have stripped outer 802.1P vlan 0 header.
5812 				 * But could not find vlan dev.
5813 				 * check again for vlan id to set OTHERHOST.
5814 				 */
5815 				goto check_vlan_id;
5816 		}
5817 		/* Note: we might in the future use prio bits
5818 		 * and set skb->priority like in vlan_do_receive()
5819 		 * For the time being, just ignore Priority Code Point
5820 		 */
5821 		__vlan_hwaccel_clear_tag(skb);
5822 	}
5823 
5824 	type = skb->protocol;
5825 
5826 	/* deliver only exact match when indicated */
5827 	if (likely(!deliver_exact)) {
5828 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5829 				       &ptype_base[ntohs(type) &
5830 						   PTYPE_HASH_MASK]);
5831 
5832 		/* orig_dev and skb->dev could belong to different netns;
5833 		 * Even in such case we need to traverse only the list
5834 		 * coming from skb->dev, as the ptype owner (packet socket)
5835 		 * will use dev_net(skb->dev) to do namespace filtering.
5836 		 */
5837 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5838 				       &dev_net_rcu(skb->dev)->ptype_specific);
5839 	}
5840 
5841 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5842 			       &orig_dev->ptype_specific);
5843 
5844 	if (unlikely(skb->dev != orig_dev)) {
5845 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5846 				       &skb->dev->ptype_specific);
5847 	}
5848 
5849 	if (pt_prev) {
5850 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5851 			goto drop;
5852 		*ppt_prev = pt_prev;
5853 	} else {
5854 drop:
5855 		if (!deliver_exact)
5856 			dev_core_stats_rx_dropped_inc(skb->dev);
5857 		else
5858 			dev_core_stats_rx_nohandler_inc(skb->dev);
5859 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5860 		/* Jamal, now you will not able to escape explaining
5861 		 * me how you were going to use this. :-)
5862 		 */
5863 		ret = NET_RX_DROP;
5864 	}
5865 
5866 out:
5867 	/* The invariant here is that if *ppt_prev is not NULL
5868 	 * then skb should also be non-NULL.
5869 	 *
5870 	 * Apparently *ppt_prev assignment above holds this invariant due to
5871 	 * skb dereferencing near it.
5872 	 */
5873 	*pskb = skb;
5874 	return ret;
5875 }
5876 
5877 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5878 {
5879 	struct net_device *orig_dev = skb->dev;
5880 	struct packet_type *pt_prev = NULL;
5881 	int ret;
5882 
5883 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5884 	if (pt_prev)
5885 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5886 					 skb->dev, pt_prev, orig_dev);
5887 	return ret;
5888 }
5889 
5890 /**
5891  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5892  *	@skb: buffer to process
5893  *
5894  *	More direct receive version of netif_receive_skb().  It should
5895  *	only be used by callers that have a need to skip RPS and Generic XDP.
5896  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5897  *
5898  *	This function may only be called from softirq context and interrupts
5899  *	should be enabled.
5900  *
5901  *	Return values (usually ignored):
5902  *	NET_RX_SUCCESS: no congestion
5903  *	NET_RX_DROP: packet was dropped
5904  */
5905 int netif_receive_skb_core(struct sk_buff *skb)
5906 {
5907 	int ret;
5908 
5909 	rcu_read_lock();
5910 	ret = __netif_receive_skb_one_core(skb, false);
5911 	rcu_read_unlock();
5912 
5913 	return ret;
5914 }
5915 EXPORT_SYMBOL(netif_receive_skb_core);
5916 
5917 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5918 						  struct packet_type *pt_prev,
5919 						  struct net_device *orig_dev)
5920 {
5921 	struct sk_buff *skb, *next;
5922 
5923 	if (!pt_prev)
5924 		return;
5925 	if (list_empty(head))
5926 		return;
5927 	if (pt_prev->list_func != NULL)
5928 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5929 				   ip_list_rcv, head, pt_prev, orig_dev);
5930 	else
5931 		list_for_each_entry_safe(skb, next, head, list) {
5932 			skb_list_del_init(skb);
5933 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5934 		}
5935 }
5936 
5937 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5938 {
5939 	/* Fast-path assumptions:
5940 	 * - There is no RX handler.
5941 	 * - Only one packet_type matches.
5942 	 * If either of these fails, we will end up doing some per-packet
5943 	 * processing in-line, then handling the 'last ptype' for the whole
5944 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5945 	 * because the 'last ptype' must be constant across the sublist, and all
5946 	 * other ptypes are handled per-packet.
5947 	 */
5948 	/* Current (common) ptype of sublist */
5949 	struct packet_type *pt_curr = NULL;
5950 	/* Current (common) orig_dev of sublist */
5951 	struct net_device *od_curr = NULL;
5952 	struct sk_buff *skb, *next;
5953 	LIST_HEAD(sublist);
5954 
5955 	list_for_each_entry_safe(skb, next, head, list) {
5956 		struct net_device *orig_dev = skb->dev;
5957 		struct packet_type *pt_prev = NULL;
5958 
5959 		skb_list_del_init(skb);
5960 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5961 		if (!pt_prev)
5962 			continue;
5963 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5964 			/* dispatch old sublist */
5965 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5966 			/* start new sublist */
5967 			INIT_LIST_HEAD(&sublist);
5968 			pt_curr = pt_prev;
5969 			od_curr = orig_dev;
5970 		}
5971 		list_add_tail(&skb->list, &sublist);
5972 	}
5973 
5974 	/* dispatch final sublist */
5975 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5976 }
5977 
5978 static int __netif_receive_skb(struct sk_buff *skb)
5979 {
5980 	int ret;
5981 
5982 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5983 		unsigned int noreclaim_flag;
5984 
5985 		/*
5986 		 * PFMEMALLOC skbs are special, they should
5987 		 * - be delivered to SOCK_MEMALLOC sockets only
5988 		 * - stay away from userspace
5989 		 * - have bounded memory usage
5990 		 *
5991 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5992 		 * context down to all allocation sites.
5993 		 */
5994 		noreclaim_flag = memalloc_noreclaim_save();
5995 		ret = __netif_receive_skb_one_core(skb, true);
5996 		memalloc_noreclaim_restore(noreclaim_flag);
5997 	} else
5998 		ret = __netif_receive_skb_one_core(skb, false);
5999 
6000 	return ret;
6001 }
6002 
6003 static void __netif_receive_skb_list(struct list_head *head)
6004 {
6005 	unsigned long noreclaim_flag = 0;
6006 	struct sk_buff *skb, *next;
6007 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6008 
6009 	list_for_each_entry_safe(skb, next, head, list) {
6010 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6011 			struct list_head sublist;
6012 
6013 			/* Handle the previous sublist */
6014 			list_cut_before(&sublist, head, &skb->list);
6015 			if (!list_empty(&sublist))
6016 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6017 			pfmemalloc = !pfmemalloc;
6018 			/* See comments in __netif_receive_skb */
6019 			if (pfmemalloc)
6020 				noreclaim_flag = memalloc_noreclaim_save();
6021 			else
6022 				memalloc_noreclaim_restore(noreclaim_flag);
6023 		}
6024 	}
6025 	/* Handle the remaining sublist */
6026 	if (!list_empty(head))
6027 		__netif_receive_skb_list_core(head, pfmemalloc);
6028 	/* Restore pflags */
6029 	if (pfmemalloc)
6030 		memalloc_noreclaim_restore(noreclaim_flag);
6031 }
6032 
6033 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6034 {
6035 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6036 	struct bpf_prog *new = xdp->prog;
6037 	int ret = 0;
6038 
6039 	switch (xdp->command) {
6040 	case XDP_SETUP_PROG:
6041 		rcu_assign_pointer(dev->xdp_prog, new);
6042 		if (old)
6043 			bpf_prog_put(old);
6044 
6045 		if (old && !new) {
6046 			static_branch_dec(&generic_xdp_needed_key);
6047 		} else if (new && !old) {
6048 			static_branch_inc(&generic_xdp_needed_key);
6049 			netif_disable_lro(dev);
6050 			dev_disable_gro_hw(dev);
6051 		}
6052 		break;
6053 
6054 	default:
6055 		ret = -EINVAL;
6056 		break;
6057 	}
6058 
6059 	return ret;
6060 }
6061 
6062 static int netif_receive_skb_internal(struct sk_buff *skb)
6063 {
6064 	int ret;
6065 
6066 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6067 
6068 	if (skb_defer_rx_timestamp(skb))
6069 		return NET_RX_SUCCESS;
6070 
6071 	rcu_read_lock();
6072 #ifdef CONFIG_RPS
6073 	if (static_branch_unlikely(&rps_needed)) {
6074 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6075 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6076 
6077 		if (cpu >= 0) {
6078 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6079 			rcu_read_unlock();
6080 			return ret;
6081 		}
6082 	}
6083 #endif
6084 	ret = __netif_receive_skb(skb);
6085 	rcu_read_unlock();
6086 	return ret;
6087 }
6088 
6089 void netif_receive_skb_list_internal(struct list_head *head)
6090 {
6091 	struct sk_buff *skb, *next;
6092 	LIST_HEAD(sublist);
6093 
6094 	list_for_each_entry_safe(skb, next, head, list) {
6095 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6096 				    skb);
6097 		skb_list_del_init(skb);
6098 		if (!skb_defer_rx_timestamp(skb))
6099 			list_add_tail(&skb->list, &sublist);
6100 	}
6101 	list_splice_init(&sublist, head);
6102 
6103 	rcu_read_lock();
6104 #ifdef CONFIG_RPS
6105 	if (static_branch_unlikely(&rps_needed)) {
6106 		list_for_each_entry_safe(skb, next, head, list) {
6107 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6108 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6109 
6110 			if (cpu >= 0) {
6111 				/* Will be handled, remove from list */
6112 				skb_list_del_init(skb);
6113 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6114 			}
6115 		}
6116 	}
6117 #endif
6118 	__netif_receive_skb_list(head);
6119 	rcu_read_unlock();
6120 }
6121 
6122 /**
6123  *	netif_receive_skb - process receive buffer from network
6124  *	@skb: buffer to process
6125  *
6126  *	netif_receive_skb() is the main receive data processing function.
6127  *	It always succeeds. The buffer may be dropped during processing
6128  *	for congestion control or by the protocol layers.
6129  *
6130  *	This function may only be called from softirq context and interrupts
6131  *	should be enabled.
6132  *
6133  *	Return values (usually ignored):
6134  *	NET_RX_SUCCESS: no congestion
6135  *	NET_RX_DROP: packet was dropped
6136  */
6137 int netif_receive_skb(struct sk_buff *skb)
6138 {
6139 	int ret;
6140 
6141 	trace_netif_receive_skb_entry(skb);
6142 
6143 	ret = netif_receive_skb_internal(skb);
6144 	trace_netif_receive_skb_exit(ret);
6145 
6146 	return ret;
6147 }
6148 EXPORT_SYMBOL(netif_receive_skb);
6149 
6150 /**
6151  *	netif_receive_skb_list - process many receive buffers from network
6152  *	@head: list of skbs to process.
6153  *
6154  *	Since return value of netif_receive_skb() is normally ignored, and
6155  *	wouldn't be meaningful for a list, this function returns void.
6156  *
6157  *	This function may only be called from softirq context and interrupts
6158  *	should be enabled.
6159  */
6160 void netif_receive_skb_list(struct list_head *head)
6161 {
6162 	struct sk_buff *skb;
6163 
6164 	if (list_empty(head))
6165 		return;
6166 	if (trace_netif_receive_skb_list_entry_enabled()) {
6167 		list_for_each_entry(skb, head, list)
6168 			trace_netif_receive_skb_list_entry(skb);
6169 	}
6170 	netif_receive_skb_list_internal(head);
6171 	trace_netif_receive_skb_list_exit(0);
6172 }
6173 EXPORT_SYMBOL(netif_receive_skb_list);
6174 
6175 /* Network device is going away, flush any packets still pending */
6176 static void flush_backlog(struct work_struct *work)
6177 {
6178 	struct sk_buff *skb, *tmp;
6179 	struct sk_buff_head list;
6180 	struct softnet_data *sd;
6181 
6182 	__skb_queue_head_init(&list);
6183 	local_bh_disable();
6184 	sd = this_cpu_ptr(&softnet_data);
6185 
6186 	backlog_lock_irq_disable(sd);
6187 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6188 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6189 			__skb_unlink(skb, &sd->input_pkt_queue);
6190 			__skb_queue_tail(&list, skb);
6191 			rps_input_queue_head_incr(sd);
6192 		}
6193 	}
6194 	backlog_unlock_irq_enable(sd);
6195 
6196 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6197 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6198 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6199 			__skb_unlink(skb, &sd->process_queue);
6200 			__skb_queue_tail(&list, skb);
6201 			rps_input_queue_head_incr(sd);
6202 		}
6203 	}
6204 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6205 	local_bh_enable();
6206 
6207 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6208 }
6209 
6210 static bool flush_required(int cpu)
6211 {
6212 #if IS_ENABLED(CONFIG_RPS)
6213 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6214 	bool do_flush;
6215 
6216 	backlog_lock_irq_disable(sd);
6217 
6218 	/* as insertion into process_queue happens with the rps lock held,
6219 	 * process_queue access may race only with dequeue
6220 	 */
6221 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6222 		   !skb_queue_empty_lockless(&sd->process_queue);
6223 	backlog_unlock_irq_enable(sd);
6224 
6225 	return do_flush;
6226 #endif
6227 	/* without RPS we can't safely check input_pkt_queue: during a
6228 	 * concurrent remote skb_queue_splice() we can detect as empty both
6229 	 * input_pkt_queue and process_queue even if the latter could end-up
6230 	 * containing a lot of packets.
6231 	 */
6232 	return true;
6233 }
6234 
6235 struct flush_backlogs {
6236 	cpumask_t		flush_cpus;
6237 	struct work_struct	w[];
6238 };
6239 
6240 static struct flush_backlogs *flush_backlogs_alloc(void)
6241 {
6242 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6243 		       GFP_KERNEL);
6244 }
6245 
6246 static struct flush_backlogs *flush_backlogs_fallback;
6247 static DEFINE_MUTEX(flush_backlogs_mutex);
6248 
6249 static void flush_all_backlogs(void)
6250 {
6251 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6252 	unsigned int cpu;
6253 
6254 	if (!ptr) {
6255 		mutex_lock(&flush_backlogs_mutex);
6256 		ptr = flush_backlogs_fallback;
6257 	}
6258 	cpumask_clear(&ptr->flush_cpus);
6259 
6260 	cpus_read_lock();
6261 
6262 	for_each_online_cpu(cpu) {
6263 		if (flush_required(cpu)) {
6264 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6265 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6266 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6267 		}
6268 	}
6269 
6270 	/* we can have in flight packet[s] on the cpus we are not flushing,
6271 	 * synchronize_net() in unregister_netdevice_many() will take care of
6272 	 * them.
6273 	 */
6274 	for_each_cpu(cpu, &ptr->flush_cpus)
6275 		flush_work(&ptr->w[cpu]);
6276 
6277 	cpus_read_unlock();
6278 
6279 	if (ptr != flush_backlogs_fallback)
6280 		kfree(ptr);
6281 	else
6282 		mutex_unlock(&flush_backlogs_mutex);
6283 }
6284 
6285 static void net_rps_send_ipi(struct softnet_data *remsd)
6286 {
6287 #ifdef CONFIG_RPS
6288 	while (remsd) {
6289 		struct softnet_data *next = remsd->rps_ipi_next;
6290 
6291 		if (cpu_online(remsd->cpu))
6292 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6293 		remsd = next;
6294 	}
6295 #endif
6296 }
6297 
6298 /*
6299  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6300  * Note: called with local irq disabled, but exits with local irq enabled.
6301  */
6302 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6303 {
6304 #ifdef CONFIG_RPS
6305 	struct softnet_data *remsd = sd->rps_ipi_list;
6306 
6307 	if (!use_backlog_threads() && remsd) {
6308 		sd->rps_ipi_list = NULL;
6309 
6310 		local_irq_enable();
6311 
6312 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6313 		net_rps_send_ipi(remsd);
6314 	} else
6315 #endif
6316 		local_irq_enable();
6317 }
6318 
6319 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6320 {
6321 #ifdef CONFIG_RPS
6322 	return !use_backlog_threads() && sd->rps_ipi_list;
6323 #else
6324 	return false;
6325 #endif
6326 }
6327 
6328 static int process_backlog(struct napi_struct *napi, int quota)
6329 {
6330 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6331 	bool again = true;
6332 	int work = 0;
6333 
6334 	/* Check if we have pending ipi, its better to send them now,
6335 	 * not waiting net_rx_action() end.
6336 	 */
6337 	if (sd_has_rps_ipi_waiting(sd)) {
6338 		local_irq_disable();
6339 		net_rps_action_and_irq_enable(sd);
6340 	}
6341 
6342 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6343 	while (again) {
6344 		struct sk_buff *skb;
6345 
6346 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6347 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6348 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6349 			rcu_read_lock();
6350 			__netif_receive_skb(skb);
6351 			rcu_read_unlock();
6352 			if (++work >= quota) {
6353 				rps_input_queue_head_add(sd, work);
6354 				return work;
6355 			}
6356 
6357 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6358 		}
6359 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6360 
6361 		backlog_lock_irq_disable(sd);
6362 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6363 			/*
6364 			 * Inline a custom version of __napi_complete().
6365 			 * only current cpu owns and manipulates this napi,
6366 			 * and NAPI_STATE_SCHED is the only possible flag set
6367 			 * on backlog.
6368 			 * We can use a plain write instead of clear_bit(),
6369 			 * and we dont need an smp_mb() memory barrier.
6370 			 */
6371 			napi->state &= NAPIF_STATE_THREADED;
6372 			again = false;
6373 		} else {
6374 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6375 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6376 						   &sd->process_queue);
6377 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6378 		}
6379 		backlog_unlock_irq_enable(sd);
6380 	}
6381 
6382 	if (work)
6383 		rps_input_queue_head_add(sd, work);
6384 	return work;
6385 }
6386 
6387 /**
6388  * __napi_schedule - schedule for receive
6389  * @n: entry to schedule
6390  *
6391  * The entry's receive function will be scheduled to run.
6392  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6393  */
6394 void __napi_schedule(struct napi_struct *n)
6395 {
6396 	unsigned long flags;
6397 
6398 	local_irq_save(flags);
6399 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6400 	local_irq_restore(flags);
6401 }
6402 EXPORT_SYMBOL(__napi_schedule);
6403 
6404 /**
6405  *	napi_schedule_prep - check if napi can be scheduled
6406  *	@n: napi context
6407  *
6408  * Test if NAPI routine is already running, and if not mark
6409  * it as running.  This is used as a condition variable to
6410  * insure only one NAPI poll instance runs.  We also make
6411  * sure there is no pending NAPI disable.
6412  */
6413 bool napi_schedule_prep(struct napi_struct *n)
6414 {
6415 	unsigned long new, val = READ_ONCE(n->state);
6416 
6417 	do {
6418 		if (unlikely(val & NAPIF_STATE_DISABLE))
6419 			return false;
6420 		new = val | NAPIF_STATE_SCHED;
6421 
6422 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6423 		 * This was suggested by Alexander Duyck, as compiler
6424 		 * emits better code than :
6425 		 * if (val & NAPIF_STATE_SCHED)
6426 		 *     new |= NAPIF_STATE_MISSED;
6427 		 */
6428 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6429 						   NAPIF_STATE_MISSED;
6430 	} while (!try_cmpxchg(&n->state, &val, new));
6431 
6432 	return !(val & NAPIF_STATE_SCHED);
6433 }
6434 EXPORT_SYMBOL(napi_schedule_prep);
6435 
6436 /**
6437  * __napi_schedule_irqoff - schedule for receive
6438  * @n: entry to schedule
6439  *
6440  * Variant of __napi_schedule() assuming hard irqs are masked.
6441  *
6442  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6443  * because the interrupt disabled assumption might not be true
6444  * due to force-threaded interrupts and spinlock substitution.
6445  */
6446 void __napi_schedule_irqoff(struct napi_struct *n)
6447 {
6448 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6449 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6450 	else
6451 		__napi_schedule(n);
6452 }
6453 EXPORT_SYMBOL(__napi_schedule_irqoff);
6454 
6455 bool napi_complete_done(struct napi_struct *n, int work_done)
6456 {
6457 	unsigned long flags, val, new, timeout = 0;
6458 	bool ret = true;
6459 
6460 	/*
6461 	 * 1) Don't let napi dequeue from the cpu poll list
6462 	 *    just in case its running on a different cpu.
6463 	 * 2) If we are busy polling, do nothing here, we have
6464 	 *    the guarantee we will be called later.
6465 	 */
6466 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6467 				 NAPIF_STATE_IN_BUSY_POLL)))
6468 		return false;
6469 
6470 	if (work_done) {
6471 		if (n->gro.bitmask)
6472 			timeout = napi_get_gro_flush_timeout(n);
6473 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6474 	}
6475 	if (n->defer_hard_irqs_count > 0) {
6476 		n->defer_hard_irqs_count--;
6477 		timeout = napi_get_gro_flush_timeout(n);
6478 		if (timeout)
6479 			ret = false;
6480 	}
6481 
6482 	/*
6483 	 * When the NAPI instance uses a timeout and keeps postponing
6484 	 * it, we need to bound somehow the time packets are kept in
6485 	 * the GRO layer.
6486 	 */
6487 	gro_flush(&n->gro, !!timeout);
6488 	gro_normal_list(&n->gro);
6489 
6490 	if (unlikely(!list_empty(&n->poll_list))) {
6491 		/* If n->poll_list is not empty, we need to mask irqs */
6492 		local_irq_save(flags);
6493 		list_del_init(&n->poll_list);
6494 		local_irq_restore(flags);
6495 	}
6496 	WRITE_ONCE(n->list_owner, -1);
6497 
6498 	val = READ_ONCE(n->state);
6499 	do {
6500 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6501 
6502 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6503 			      NAPIF_STATE_SCHED_THREADED |
6504 			      NAPIF_STATE_PREFER_BUSY_POLL);
6505 
6506 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6507 		 * because we will call napi->poll() one more time.
6508 		 * This C code was suggested by Alexander Duyck to help gcc.
6509 		 */
6510 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6511 						    NAPIF_STATE_SCHED;
6512 	} while (!try_cmpxchg(&n->state, &val, new));
6513 
6514 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6515 		__napi_schedule(n);
6516 		return false;
6517 	}
6518 
6519 	if (timeout)
6520 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6521 			      HRTIMER_MODE_REL_PINNED);
6522 	return ret;
6523 }
6524 EXPORT_SYMBOL(napi_complete_done);
6525 
6526 static void skb_defer_free_flush(struct softnet_data *sd)
6527 {
6528 	struct sk_buff *skb, *next;
6529 
6530 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6531 	if (!READ_ONCE(sd->defer_list))
6532 		return;
6533 
6534 	spin_lock(&sd->defer_lock);
6535 	skb = sd->defer_list;
6536 	sd->defer_list = NULL;
6537 	sd->defer_count = 0;
6538 	spin_unlock(&sd->defer_lock);
6539 
6540 	while (skb != NULL) {
6541 		next = skb->next;
6542 		napi_consume_skb(skb, 1);
6543 		skb = next;
6544 	}
6545 }
6546 
6547 #if defined(CONFIG_NET_RX_BUSY_POLL)
6548 
6549 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6550 {
6551 	if (!skip_schedule) {
6552 		gro_normal_list(&napi->gro);
6553 		__napi_schedule(napi);
6554 		return;
6555 	}
6556 
6557 	/* Flush too old packets. If HZ < 1000, flush all packets */
6558 	gro_flush(&napi->gro, HZ >= 1000);
6559 	gro_normal_list(&napi->gro);
6560 
6561 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6562 }
6563 
6564 enum {
6565 	NAPI_F_PREFER_BUSY_POLL	= 1,
6566 	NAPI_F_END_ON_RESCHED	= 2,
6567 };
6568 
6569 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6570 			   unsigned flags, u16 budget)
6571 {
6572 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6573 	bool skip_schedule = false;
6574 	unsigned long timeout;
6575 	int rc;
6576 
6577 	/* Busy polling means there is a high chance device driver hard irq
6578 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6579 	 * set in napi_schedule_prep().
6580 	 * Since we are about to call napi->poll() once more, we can safely
6581 	 * clear NAPI_STATE_MISSED.
6582 	 *
6583 	 * Note: x86 could use a single "lock and ..." instruction
6584 	 * to perform these two clear_bit()
6585 	 */
6586 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6587 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6588 
6589 	local_bh_disable();
6590 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6591 
6592 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6593 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6594 		timeout = napi_get_gro_flush_timeout(napi);
6595 		if (napi->defer_hard_irqs_count && timeout) {
6596 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6597 			skip_schedule = true;
6598 		}
6599 	}
6600 
6601 	/* All we really want here is to re-enable device interrupts.
6602 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6603 	 */
6604 	rc = napi->poll(napi, budget);
6605 	/* We can't gro_normal_list() here, because napi->poll() might have
6606 	 * rearmed the napi (napi_complete_done()) in which case it could
6607 	 * already be running on another CPU.
6608 	 */
6609 	trace_napi_poll(napi, rc, budget);
6610 	netpoll_poll_unlock(have_poll_lock);
6611 	if (rc == budget)
6612 		__busy_poll_stop(napi, skip_schedule);
6613 	bpf_net_ctx_clear(bpf_net_ctx);
6614 	local_bh_enable();
6615 }
6616 
6617 static void __napi_busy_loop(unsigned int napi_id,
6618 		      bool (*loop_end)(void *, unsigned long),
6619 		      void *loop_end_arg, unsigned flags, u16 budget)
6620 {
6621 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6622 	int (*napi_poll)(struct napi_struct *napi, int budget);
6623 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6624 	void *have_poll_lock = NULL;
6625 	struct napi_struct *napi;
6626 
6627 	WARN_ON_ONCE(!rcu_read_lock_held());
6628 
6629 restart:
6630 	napi_poll = NULL;
6631 
6632 	napi = napi_by_id(napi_id);
6633 	if (!napi)
6634 		return;
6635 
6636 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6637 		preempt_disable();
6638 	for (;;) {
6639 		int work = 0;
6640 
6641 		local_bh_disable();
6642 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6643 		if (!napi_poll) {
6644 			unsigned long val = READ_ONCE(napi->state);
6645 
6646 			/* If multiple threads are competing for this napi,
6647 			 * we avoid dirtying napi->state as much as we can.
6648 			 */
6649 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6650 				   NAPIF_STATE_IN_BUSY_POLL)) {
6651 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6652 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6653 				goto count;
6654 			}
6655 			if (cmpxchg(&napi->state, val,
6656 				    val | NAPIF_STATE_IN_BUSY_POLL |
6657 					  NAPIF_STATE_SCHED) != val) {
6658 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6659 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6660 				goto count;
6661 			}
6662 			have_poll_lock = netpoll_poll_lock(napi);
6663 			napi_poll = napi->poll;
6664 		}
6665 		work = napi_poll(napi, budget);
6666 		trace_napi_poll(napi, work, budget);
6667 		gro_normal_list(&napi->gro);
6668 count:
6669 		if (work > 0)
6670 			__NET_ADD_STATS(dev_net(napi->dev),
6671 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6672 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6673 		bpf_net_ctx_clear(bpf_net_ctx);
6674 		local_bh_enable();
6675 
6676 		if (!loop_end || loop_end(loop_end_arg, start_time))
6677 			break;
6678 
6679 		if (unlikely(need_resched())) {
6680 			if (flags & NAPI_F_END_ON_RESCHED)
6681 				break;
6682 			if (napi_poll)
6683 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6684 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6685 				preempt_enable();
6686 			rcu_read_unlock();
6687 			cond_resched();
6688 			rcu_read_lock();
6689 			if (loop_end(loop_end_arg, start_time))
6690 				return;
6691 			goto restart;
6692 		}
6693 		cpu_relax();
6694 	}
6695 	if (napi_poll)
6696 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6697 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6698 		preempt_enable();
6699 }
6700 
6701 void napi_busy_loop_rcu(unsigned int napi_id,
6702 			bool (*loop_end)(void *, unsigned long),
6703 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6704 {
6705 	unsigned flags = NAPI_F_END_ON_RESCHED;
6706 
6707 	if (prefer_busy_poll)
6708 		flags |= NAPI_F_PREFER_BUSY_POLL;
6709 
6710 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6711 }
6712 
6713 void napi_busy_loop(unsigned int napi_id,
6714 		    bool (*loop_end)(void *, unsigned long),
6715 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6716 {
6717 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6718 
6719 	rcu_read_lock();
6720 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6721 	rcu_read_unlock();
6722 }
6723 EXPORT_SYMBOL(napi_busy_loop);
6724 
6725 void napi_suspend_irqs(unsigned int napi_id)
6726 {
6727 	struct napi_struct *napi;
6728 
6729 	rcu_read_lock();
6730 	napi = napi_by_id(napi_id);
6731 	if (napi) {
6732 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6733 
6734 		if (timeout)
6735 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6736 				      HRTIMER_MODE_REL_PINNED);
6737 	}
6738 	rcu_read_unlock();
6739 }
6740 
6741 void napi_resume_irqs(unsigned int napi_id)
6742 {
6743 	struct napi_struct *napi;
6744 
6745 	rcu_read_lock();
6746 	napi = napi_by_id(napi_id);
6747 	if (napi) {
6748 		/* If irq_suspend_timeout is set to 0 between the call to
6749 		 * napi_suspend_irqs and now, the original value still
6750 		 * determines the safety timeout as intended and napi_watchdog
6751 		 * will resume irq processing.
6752 		 */
6753 		if (napi_get_irq_suspend_timeout(napi)) {
6754 			local_bh_disable();
6755 			napi_schedule(napi);
6756 			local_bh_enable();
6757 		}
6758 	}
6759 	rcu_read_unlock();
6760 }
6761 
6762 #endif /* CONFIG_NET_RX_BUSY_POLL */
6763 
6764 static void __napi_hash_add_with_id(struct napi_struct *napi,
6765 				    unsigned int napi_id)
6766 {
6767 	napi->gro.cached_napi_id = napi_id;
6768 
6769 	WRITE_ONCE(napi->napi_id, napi_id);
6770 	hlist_add_head_rcu(&napi->napi_hash_node,
6771 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6772 }
6773 
6774 static void napi_hash_add_with_id(struct napi_struct *napi,
6775 				  unsigned int napi_id)
6776 {
6777 	unsigned long flags;
6778 
6779 	spin_lock_irqsave(&napi_hash_lock, flags);
6780 	WARN_ON_ONCE(napi_by_id(napi_id));
6781 	__napi_hash_add_with_id(napi, napi_id);
6782 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6783 }
6784 
6785 static void napi_hash_add(struct napi_struct *napi)
6786 {
6787 	unsigned long flags;
6788 
6789 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6790 		return;
6791 
6792 	spin_lock_irqsave(&napi_hash_lock, flags);
6793 
6794 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6795 	do {
6796 		if (unlikely(!napi_id_valid(++napi_gen_id)))
6797 			napi_gen_id = MIN_NAPI_ID;
6798 	} while (napi_by_id(napi_gen_id));
6799 
6800 	__napi_hash_add_with_id(napi, napi_gen_id);
6801 
6802 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6803 }
6804 
6805 /* Warning : caller is responsible to make sure rcu grace period
6806  * is respected before freeing memory containing @napi
6807  */
6808 static void napi_hash_del(struct napi_struct *napi)
6809 {
6810 	unsigned long flags;
6811 
6812 	spin_lock_irqsave(&napi_hash_lock, flags);
6813 
6814 	hlist_del_init_rcu(&napi->napi_hash_node);
6815 
6816 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6817 }
6818 
6819 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6820 {
6821 	struct napi_struct *napi;
6822 
6823 	napi = container_of(timer, struct napi_struct, timer);
6824 
6825 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6826 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6827 	 */
6828 	if (!napi_disable_pending(napi) &&
6829 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6830 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6831 		__napi_schedule_irqoff(napi);
6832 	}
6833 
6834 	return HRTIMER_NORESTART;
6835 }
6836 
6837 int dev_set_threaded(struct net_device *dev, bool threaded)
6838 {
6839 	struct napi_struct *napi;
6840 	int err = 0;
6841 
6842 	netdev_assert_locked_or_invisible(dev);
6843 
6844 	if (dev->threaded == threaded)
6845 		return 0;
6846 
6847 	if (threaded) {
6848 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6849 			if (!napi->thread) {
6850 				err = napi_kthread_create(napi);
6851 				if (err) {
6852 					threaded = false;
6853 					break;
6854 				}
6855 			}
6856 		}
6857 	}
6858 
6859 	WRITE_ONCE(dev->threaded, threaded);
6860 
6861 	/* Make sure kthread is created before THREADED bit
6862 	 * is set.
6863 	 */
6864 	smp_mb__before_atomic();
6865 
6866 	/* Setting/unsetting threaded mode on a napi might not immediately
6867 	 * take effect, if the current napi instance is actively being
6868 	 * polled. In this case, the switch between threaded mode and
6869 	 * softirq mode will happen in the next round of napi_schedule().
6870 	 * This should not cause hiccups/stalls to the live traffic.
6871 	 */
6872 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6873 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6874 
6875 	return err;
6876 }
6877 EXPORT_SYMBOL(dev_set_threaded);
6878 
6879 /**
6880  * netif_queue_set_napi - Associate queue with the napi
6881  * @dev: device to which NAPI and queue belong
6882  * @queue_index: Index of queue
6883  * @type: queue type as RX or TX
6884  * @napi: NAPI context, pass NULL to clear previously set NAPI
6885  *
6886  * Set queue with its corresponding napi context. This should be done after
6887  * registering the NAPI handler for the queue-vector and the queues have been
6888  * mapped to the corresponding interrupt vector.
6889  */
6890 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6891 			  enum netdev_queue_type type, struct napi_struct *napi)
6892 {
6893 	struct netdev_rx_queue *rxq;
6894 	struct netdev_queue *txq;
6895 
6896 	if (WARN_ON_ONCE(napi && !napi->dev))
6897 		return;
6898 	netdev_ops_assert_locked_or_invisible(dev);
6899 
6900 	switch (type) {
6901 	case NETDEV_QUEUE_TYPE_RX:
6902 		rxq = __netif_get_rx_queue(dev, queue_index);
6903 		rxq->napi = napi;
6904 		return;
6905 	case NETDEV_QUEUE_TYPE_TX:
6906 		txq = netdev_get_tx_queue(dev, queue_index);
6907 		txq->napi = napi;
6908 		return;
6909 	default:
6910 		return;
6911 	}
6912 }
6913 EXPORT_SYMBOL(netif_queue_set_napi);
6914 
6915 static void
6916 netif_napi_irq_notify(struct irq_affinity_notify *notify,
6917 		      const cpumask_t *mask)
6918 {
6919 	struct napi_struct *napi =
6920 		container_of(notify, struct napi_struct, notify);
6921 #ifdef CONFIG_RFS_ACCEL
6922 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6923 	int err;
6924 #endif
6925 
6926 	if (napi->config && napi->dev->irq_affinity_auto)
6927 		cpumask_copy(&napi->config->affinity_mask, mask);
6928 
6929 #ifdef CONFIG_RFS_ACCEL
6930 	if (napi->dev->rx_cpu_rmap_auto) {
6931 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
6932 		if (err)
6933 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
6934 				    err);
6935 	}
6936 #endif
6937 }
6938 
6939 #ifdef CONFIG_RFS_ACCEL
6940 static void netif_napi_affinity_release(struct kref *ref)
6941 {
6942 	struct napi_struct *napi =
6943 		container_of(ref, struct napi_struct, notify.kref);
6944 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6945 
6946 	netdev_assert_locked(napi->dev);
6947 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
6948 				   &napi->state));
6949 
6950 	if (!napi->dev->rx_cpu_rmap_auto)
6951 		return;
6952 	rmap->obj[napi->napi_rmap_idx] = NULL;
6953 	napi->napi_rmap_idx = -1;
6954 	cpu_rmap_put(rmap);
6955 }
6956 
6957 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6958 {
6959 	if (dev->rx_cpu_rmap_auto)
6960 		return 0;
6961 
6962 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
6963 	if (!dev->rx_cpu_rmap)
6964 		return -ENOMEM;
6965 
6966 	dev->rx_cpu_rmap_auto = true;
6967 	return 0;
6968 }
6969 EXPORT_SYMBOL(netif_enable_cpu_rmap);
6970 
6971 static void netif_del_cpu_rmap(struct net_device *dev)
6972 {
6973 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
6974 
6975 	if (!dev->rx_cpu_rmap_auto)
6976 		return;
6977 
6978 	/* Free the rmap */
6979 	cpu_rmap_put(rmap);
6980 	dev->rx_cpu_rmap = NULL;
6981 	dev->rx_cpu_rmap_auto = false;
6982 }
6983 
6984 #else
6985 static void netif_napi_affinity_release(struct kref *ref)
6986 {
6987 }
6988 
6989 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6990 {
6991 	return 0;
6992 }
6993 EXPORT_SYMBOL(netif_enable_cpu_rmap);
6994 
6995 static void netif_del_cpu_rmap(struct net_device *dev)
6996 {
6997 }
6998 #endif
6999 
7000 void netif_set_affinity_auto(struct net_device *dev)
7001 {
7002 	unsigned int i, maxqs, numa;
7003 
7004 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7005 	numa = dev_to_node(&dev->dev);
7006 
7007 	for (i = 0; i < maxqs; i++)
7008 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7009 				&dev->napi_config[i].affinity_mask);
7010 
7011 	dev->irq_affinity_auto = true;
7012 }
7013 EXPORT_SYMBOL(netif_set_affinity_auto);
7014 
7015 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7016 {
7017 	int rc;
7018 
7019 	netdev_assert_locked_or_invisible(napi->dev);
7020 
7021 	if (napi->irq == irq)
7022 		return;
7023 
7024 	/* Remove existing resources */
7025 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7026 		irq_set_affinity_notifier(napi->irq, NULL);
7027 
7028 	napi->irq = irq;
7029 	if (irq < 0 ||
7030 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7031 		return;
7032 
7033 	/* Abort for buggy drivers */
7034 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7035 		return;
7036 
7037 #ifdef CONFIG_RFS_ACCEL
7038 	if (napi->dev->rx_cpu_rmap_auto) {
7039 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7040 		if (rc < 0)
7041 			return;
7042 
7043 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7044 		napi->napi_rmap_idx = rc;
7045 	}
7046 #endif
7047 
7048 	/* Use core IRQ notifier */
7049 	napi->notify.notify = netif_napi_irq_notify;
7050 	napi->notify.release = netif_napi_affinity_release;
7051 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7052 	if (rc) {
7053 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7054 			    rc);
7055 		goto put_rmap;
7056 	}
7057 
7058 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7059 	return;
7060 
7061 put_rmap:
7062 #ifdef CONFIG_RFS_ACCEL
7063 	if (napi->dev->rx_cpu_rmap_auto) {
7064 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7065 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7066 		napi->napi_rmap_idx = -1;
7067 	}
7068 #endif
7069 	napi->notify.notify = NULL;
7070 	napi->notify.release = NULL;
7071 }
7072 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7073 
7074 static void napi_restore_config(struct napi_struct *n)
7075 {
7076 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7077 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7078 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7079 
7080 	if (n->dev->irq_affinity_auto &&
7081 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7082 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7083 
7084 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7085 	 * napi_hash_add to generate one for us.
7086 	 */
7087 	if (n->config->napi_id) {
7088 		napi_hash_add_with_id(n, n->config->napi_id);
7089 	} else {
7090 		napi_hash_add(n);
7091 		n->config->napi_id = n->napi_id;
7092 	}
7093 }
7094 
7095 static void napi_save_config(struct napi_struct *n)
7096 {
7097 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7098 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7099 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7100 	napi_hash_del(n);
7101 }
7102 
7103 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7104  * inherit an existing ID try to insert it at the right position.
7105  */
7106 static void
7107 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7108 {
7109 	unsigned int new_id, pos_id;
7110 	struct list_head *higher;
7111 	struct napi_struct *pos;
7112 
7113 	new_id = UINT_MAX;
7114 	if (napi->config && napi->config->napi_id)
7115 		new_id = napi->config->napi_id;
7116 
7117 	higher = &dev->napi_list;
7118 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7119 		if (napi_id_valid(pos->napi_id))
7120 			pos_id = pos->napi_id;
7121 		else if (pos->config)
7122 			pos_id = pos->config->napi_id;
7123 		else
7124 			pos_id = UINT_MAX;
7125 
7126 		if (pos_id <= new_id)
7127 			break;
7128 		higher = &pos->dev_list;
7129 	}
7130 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7131 }
7132 
7133 /* Double check that napi_get_frags() allocates skbs with
7134  * skb->head being backed by slab, not a page fragment.
7135  * This is to make sure bug fixed in 3226b158e67c
7136  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7137  * does not accidentally come back.
7138  */
7139 static void napi_get_frags_check(struct napi_struct *napi)
7140 {
7141 	struct sk_buff *skb;
7142 
7143 	local_bh_disable();
7144 	skb = napi_get_frags(napi);
7145 	WARN_ON_ONCE(skb && skb->head_frag);
7146 	napi_free_frags(napi);
7147 	local_bh_enable();
7148 }
7149 
7150 void netif_napi_add_weight_locked(struct net_device *dev,
7151 				  struct napi_struct *napi,
7152 				  int (*poll)(struct napi_struct *, int),
7153 				  int weight)
7154 {
7155 	netdev_assert_locked(dev);
7156 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7157 		return;
7158 
7159 	INIT_LIST_HEAD(&napi->poll_list);
7160 	INIT_HLIST_NODE(&napi->napi_hash_node);
7161 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7162 	gro_init(&napi->gro);
7163 	napi->skb = NULL;
7164 	napi->poll = poll;
7165 	if (weight > NAPI_POLL_WEIGHT)
7166 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7167 				weight);
7168 	napi->weight = weight;
7169 	napi->dev = dev;
7170 #ifdef CONFIG_NETPOLL
7171 	napi->poll_owner = -1;
7172 #endif
7173 	napi->list_owner = -1;
7174 	set_bit(NAPI_STATE_SCHED, &napi->state);
7175 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7176 	netif_napi_dev_list_add(dev, napi);
7177 
7178 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7179 	 * configuration will be loaded in napi_enable
7180 	 */
7181 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7182 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7183 
7184 	napi_get_frags_check(napi);
7185 	/* Create kthread for this napi if dev->threaded is set.
7186 	 * Clear dev->threaded if kthread creation failed so that
7187 	 * threaded mode will not be enabled in napi_enable().
7188 	 */
7189 	if (dev->threaded && napi_kthread_create(napi))
7190 		dev->threaded = false;
7191 	netif_napi_set_irq_locked(napi, -1);
7192 }
7193 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7194 
7195 void napi_disable_locked(struct napi_struct *n)
7196 {
7197 	unsigned long val, new;
7198 
7199 	might_sleep();
7200 	netdev_assert_locked(n->dev);
7201 
7202 	set_bit(NAPI_STATE_DISABLE, &n->state);
7203 
7204 	val = READ_ONCE(n->state);
7205 	do {
7206 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7207 			usleep_range(20, 200);
7208 			val = READ_ONCE(n->state);
7209 		}
7210 
7211 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7212 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7213 	} while (!try_cmpxchg(&n->state, &val, new));
7214 
7215 	hrtimer_cancel(&n->timer);
7216 
7217 	if (n->config)
7218 		napi_save_config(n);
7219 	else
7220 		napi_hash_del(n);
7221 
7222 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7223 }
7224 EXPORT_SYMBOL(napi_disable_locked);
7225 
7226 /**
7227  * napi_disable() - prevent NAPI from scheduling
7228  * @n: NAPI context
7229  *
7230  * Stop NAPI from being scheduled on this context.
7231  * Waits till any outstanding processing completes.
7232  * Takes netdev_lock() for associated net_device.
7233  */
7234 void napi_disable(struct napi_struct *n)
7235 {
7236 	netdev_lock(n->dev);
7237 	napi_disable_locked(n);
7238 	netdev_unlock(n->dev);
7239 }
7240 EXPORT_SYMBOL(napi_disable);
7241 
7242 void napi_enable_locked(struct napi_struct *n)
7243 {
7244 	unsigned long new, val = READ_ONCE(n->state);
7245 
7246 	if (n->config)
7247 		napi_restore_config(n);
7248 	else
7249 		napi_hash_add(n);
7250 
7251 	do {
7252 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7253 
7254 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7255 		if (n->dev->threaded && n->thread)
7256 			new |= NAPIF_STATE_THREADED;
7257 	} while (!try_cmpxchg(&n->state, &val, new));
7258 }
7259 EXPORT_SYMBOL(napi_enable_locked);
7260 
7261 /**
7262  * napi_enable() - enable NAPI scheduling
7263  * @n: NAPI context
7264  *
7265  * Enable scheduling of a NAPI instance.
7266  * Must be paired with napi_disable().
7267  * Takes netdev_lock() for associated net_device.
7268  */
7269 void napi_enable(struct napi_struct *n)
7270 {
7271 	netdev_lock(n->dev);
7272 	napi_enable_locked(n);
7273 	netdev_unlock(n->dev);
7274 }
7275 EXPORT_SYMBOL(napi_enable);
7276 
7277 /* Must be called in process context */
7278 void __netif_napi_del_locked(struct napi_struct *napi)
7279 {
7280 	netdev_assert_locked(napi->dev);
7281 
7282 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7283 		return;
7284 
7285 	/* Make sure NAPI is disabled (or was never enabled). */
7286 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7287 
7288 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7289 		irq_set_affinity_notifier(napi->irq, NULL);
7290 
7291 	if (napi->config) {
7292 		napi->index = -1;
7293 		napi->config = NULL;
7294 	}
7295 
7296 	list_del_rcu(&napi->dev_list);
7297 	napi_free_frags(napi);
7298 
7299 	gro_cleanup(&napi->gro);
7300 
7301 	if (napi->thread) {
7302 		kthread_stop(napi->thread);
7303 		napi->thread = NULL;
7304 	}
7305 }
7306 EXPORT_SYMBOL(__netif_napi_del_locked);
7307 
7308 static int __napi_poll(struct napi_struct *n, bool *repoll)
7309 {
7310 	int work, weight;
7311 
7312 	weight = n->weight;
7313 
7314 	/* This NAPI_STATE_SCHED test is for avoiding a race
7315 	 * with netpoll's poll_napi().  Only the entity which
7316 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7317 	 * actually make the ->poll() call.  Therefore we avoid
7318 	 * accidentally calling ->poll() when NAPI is not scheduled.
7319 	 */
7320 	work = 0;
7321 	if (napi_is_scheduled(n)) {
7322 		work = n->poll(n, weight);
7323 		trace_napi_poll(n, work, weight);
7324 
7325 		xdp_do_check_flushed(n);
7326 	}
7327 
7328 	if (unlikely(work > weight))
7329 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7330 				n->poll, work, weight);
7331 
7332 	if (likely(work < weight))
7333 		return work;
7334 
7335 	/* Drivers must not modify the NAPI state if they
7336 	 * consume the entire weight.  In such cases this code
7337 	 * still "owns" the NAPI instance and therefore can
7338 	 * move the instance around on the list at-will.
7339 	 */
7340 	if (unlikely(napi_disable_pending(n))) {
7341 		napi_complete(n);
7342 		return work;
7343 	}
7344 
7345 	/* The NAPI context has more processing work, but busy-polling
7346 	 * is preferred. Exit early.
7347 	 */
7348 	if (napi_prefer_busy_poll(n)) {
7349 		if (napi_complete_done(n, work)) {
7350 			/* If timeout is not set, we need to make sure
7351 			 * that the NAPI is re-scheduled.
7352 			 */
7353 			napi_schedule(n);
7354 		}
7355 		return work;
7356 	}
7357 
7358 	/* Flush too old packets. If HZ < 1000, flush all packets */
7359 	gro_flush(&n->gro, HZ >= 1000);
7360 	gro_normal_list(&n->gro);
7361 
7362 	/* Some drivers may have called napi_schedule
7363 	 * prior to exhausting their budget.
7364 	 */
7365 	if (unlikely(!list_empty(&n->poll_list))) {
7366 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7367 			     n->dev ? n->dev->name : "backlog");
7368 		return work;
7369 	}
7370 
7371 	*repoll = true;
7372 
7373 	return work;
7374 }
7375 
7376 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7377 {
7378 	bool do_repoll = false;
7379 	void *have;
7380 	int work;
7381 
7382 	list_del_init(&n->poll_list);
7383 
7384 	have = netpoll_poll_lock(n);
7385 
7386 	work = __napi_poll(n, &do_repoll);
7387 
7388 	if (do_repoll)
7389 		list_add_tail(&n->poll_list, repoll);
7390 
7391 	netpoll_poll_unlock(have);
7392 
7393 	return work;
7394 }
7395 
7396 static int napi_thread_wait(struct napi_struct *napi)
7397 {
7398 	set_current_state(TASK_INTERRUPTIBLE);
7399 
7400 	while (!kthread_should_stop()) {
7401 		/* Testing SCHED_THREADED bit here to make sure the current
7402 		 * kthread owns this napi and could poll on this napi.
7403 		 * Testing SCHED bit is not enough because SCHED bit might be
7404 		 * set by some other busy poll thread or by napi_disable().
7405 		 */
7406 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7407 			WARN_ON(!list_empty(&napi->poll_list));
7408 			__set_current_state(TASK_RUNNING);
7409 			return 0;
7410 		}
7411 
7412 		schedule();
7413 		set_current_state(TASK_INTERRUPTIBLE);
7414 	}
7415 	__set_current_state(TASK_RUNNING);
7416 
7417 	return -1;
7418 }
7419 
7420 static void napi_threaded_poll_loop(struct napi_struct *napi)
7421 {
7422 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7423 	struct softnet_data *sd;
7424 	unsigned long last_qs = jiffies;
7425 
7426 	for (;;) {
7427 		bool repoll = false;
7428 		void *have;
7429 
7430 		local_bh_disable();
7431 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7432 
7433 		sd = this_cpu_ptr(&softnet_data);
7434 		sd->in_napi_threaded_poll = true;
7435 
7436 		have = netpoll_poll_lock(napi);
7437 		__napi_poll(napi, &repoll);
7438 		netpoll_poll_unlock(have);
7439 
7440 		sd->in_napi_threaded_poll = false;
7441 		barrier();
7442 
7443 		if (sd_has_rps_ipi_waiting(sd)) {
7444 			local_irq_disable();
7445 			net_rps_action_and_irq_enable(sd);
7446 		}
7447 		skb_defer_free_flush(sd);
7448 		bpf_net_ctx_clear(bpf_net_ctx);
7449 		local_bh_enable();
7450 
7451 		if (!repoll)
7452 			break;
7453 
7454 		rcu_softirq_qs_periodic(last_qs);
7455 		cond_resched();
7456 	}
7457 }
7458 
7459 static int napi_threaded_poll(void *data)
7460 {
7461 	struct napi_struct *napi = data;
7462 
7463 	while (!napi_thread_wait(napi))
7464 		napi_threaded_poll_loop(napi);
7465 
7466 	return 0;
7467 }
7468 
7469 static __latent_entropy void net_rx_action(void)
7470 {
7471 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7472 	unsigned long time_limit = jiffies +
7473 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7474 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7475 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7476 	LIST_HEAD(list);
7477 	LIST_HEAD(repoll);
7478 
7479 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7480 start:
7481 	sd->in_net_rx_action = true;
7482 	local_irq_disable();
7483 	list_splice_init(&sd->poll_list, &list);
7484 	local_irq_enable();
7485 
7486 	for (;;) {
7487 		struct napi_struct *n;
7488 
7489 		skb_defer_free_flush(sd);
7490 
7491 		if (list_empty(&list)) {
7492 			if (list_empty(&repoll)) {
7493 				sd->in_net_rx_action = false;
7494 				barrier();
7495 				/* We need to check if ____napi_schedule()
7496 				 * had refilled poll_list while
7497 				 * sd->in_net_rx_action was true.
7498 				 */
7499 				if (!list_empty(&sd->poll_list))
7500 					goto start;
7501 				if (!sd_has_rps_ipi_waiting(sd))
7502 					goto end;
7503 			}
7504 			break;
7505 		}
7506 
7507 		n = list_first_entry(&list, struct napi_struct, poll_list);
7508 		budget -= napi_poll(n, &repoll);
7509 
7510 		/* If softirq window is exhausted then punt.
7511 		 * Allow this to run for 2 jiffies since which will allow
7512 		 * an average latency of 1.5/HZ.
7513 		 */
7514 		if (unlikely(budget <= 0 ||
7515 			     time_after_eq(jiffies, time_limit))) {
7516 			sd->time_squeeze++;
7517 			break;
7518 		}
7519 	}
7520 
7521 	local_irq_disable();
7522 
7523 	list_splice_tail_init(&sd->poll_list, &list);
7524 	list_splice_tail(&repoll, &list);
7525 	list_splice(&list, &sd->poll_list);
7526 	if (!list_empty(&sd->poll_list))
7527 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7528 	else
7529 		sd->in_net_rx_action = false;
7530 
7531 	net_rps_action_and_irq_enable(sd);
7532 end:
7533 	bpf_net_ctx_clear(bpf_net_ctx);
7534 }
7535 
7536 struct netdev_adjacent {
7537 	struct net_device *dev;
7538 	netdevice_tracker dev_tracker;
7539 
7540 	/* upper master flag, there can only be one master device per list */
7541 	bool master;
7542 
7543 	/* lookup ignore flag */
7544 	bool ignore;
7545 
7546 	/* counter for the number of times this device was added to us */
7547 	u16 ref_nr;
7548 
7549 	/* private field for the users */
7550 	void *private;
7551 
7552 	struct list_head list;
7553 	struct rcu_head rcu;
7554 };
7555 
7556 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7557 						 struct list_head *adj_list)
7558 {
7559 	struct netdev_adjacent *adj;
7560 
7561 	list_for_each_entry(adj, adj_list, list) {
7562 		if (adj->dev == adj_dev)
7563 			return adj;
7564 	}
7565 	return NULL;
7566 }
7567 
7568 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7569 				    struct netdev_nested_priv *priv)
7570 {
7571 	struct net_device *dev = (struct net_device *)priv->data;
7572 
7573 	return upper_dev == dev;
7574 }
7575 
7576 /**
7577  * netdev_has_upper_dev - Check if device is linked to an upper device
7578  * @dev: device
7579  * @upper_dev: upper device to check
7580  *
7581  * Find out if a device is linked to specified upper device and return true
7582  * in case it is. Note that this checks only immediate upper device,
7583  * not through a complete stack of devices. The caller must hold the RTNL lock.
7584  */
7585 bool netdev_has_upper_dev(struct net_device *dev,
7586 			  struct net_device *upper_dev)
7587 {
7588 	struct netdev_nested_priv priv = {
7589 		.data = (void *)upper_dev,
7590 	};
7591 
7592 	ASSERT_RTNL();
7593 
7594 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7595 					     &priv);
7596 }
7597 EXPORT_SYMBOL(netdev_has_upper_dev);
7598 
7599 /**
7600  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7601  * @dev: device
7602  * @upper_dev: upper device to check
7603  *
7604  * Find out if a device is linked to specified upper device and return true
7605  * in case it is. Note that this checks the entire upper device chain.
7606  * The caller must hold rcu lock.
7607  */
7608 
7609 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7610 				  struct net_device *upper_dev)
7611 {
7612 	struct netdev_nested_priv priv = {
7613 		.data = (void *)upper_dev,
7614 	};
7615 
7616 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7617 					       &priv);
7618 }
7619 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7620 
7621 /**
7622  * netdev_has_any_upper_dev - Check if device is linked to some device
7623  * @dev: device
7624  *
7625  * Find out if a device is linked to an upper device and return true in case
7626  * it is. The caller must hold the RTNL lock.
7627  */
7628 bool netdev_has_any_upper_dev(struct net_device *dev)
7629 {
7630 	ASSERT_RTNL();
7631 
7632 	return !list_empty(&dev->adj_list.upper);
7633 }
7634 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7635 
7636 /**
7637  * netdev_master_upper_dev_get - Get master upper device
7638  * @dev: device
7639  *
7640  * Find a master upper device and return pointer to it or NULL in case
7641  * it's not there. The caller must hold the RTNL lock.
7642  */
7643 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7644 {
7645 	struct netdev_adjacent *upper;
7646 
7647 	ASSERT_RTNL();
7648 
7649 	if (list_empty(&dev->adj_list.upper))
7650 		return NULL;
7651 
7652 	upper = list_first_entry(&dev->adj_list.upper,
7653 				 struct netdev_adjacent, list);
7654 	if (likely(upper->master))
7655 		return upper->dev;
7656 	return NULL;
7657 }
7658 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7659 
7660 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7661 {
7662 	struct netdev_adjacent *upper;
7663 
7664 	ASSERT_RTNL();
7665 
7666 	if (list_empty(&dev->adj_list.upper))
7667 		return NULL;
7668 
7669 	upper = list_first_entry(&dev->adj_list.upper,
7670 				 struct netdev_adjacent, list);
7671 	if (likely(upper->master) && !upper->ignore)
7672 		return upper->dev;
7673 	return NULL;
7674 }
7675 
7676 /**
7677  * netdev_has_any_lower_dev - Check if device is linked to some device
7678  * @dev: device
7679  *
7680  * Find out if a device is linked to a lower device and return true in case
7681  * it is. The caller must hold the RTNL lock.
7682  */
7683 static bool netdev_has_any_lower_dev(struct net_device *dev)
7684 {
7685 	ASSERT_RTNL();
7686 
7687 	return !list_empty(&dev->adj_list.lower);
7688 }
7689 
7690 void *netdev_adjacent_get_private(struct list_head *adj_list)
7691 {
7692 	struct netdev_adjacent *adj;
7693 
7694 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7695 
7696 	return adj->private;
7697 }
7698 EXPORT_SYMBOL(netdev_adjacent_get_private);
7699 
7700 /**
7701  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7702  * @dev: device
7703  * @iter: list_head ** of the current position
7704  *
7705  * Gets the next device from the dev's upper list, starting from iter
7706  * position. The caller must hold RCU read lock.
7707  */
7708 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7709 						 struct list_head **iter)
7710 {
7711 	struct netdev_adjacent *upper;
7712 
7713 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7714 
7715 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7716 
7717 	if (&upper->list == &dev->adj_list.upper)
7718 		return NULL;
7719 
7720 	*iter = &upper->list;
7721 
7722 	return upper->dev;
7723 }
7724 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7725 
7726 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7727 						  struct list_head **iter,
7728 						  bool *ignore)
7729 {
7730 	struct netdev_adjacent *upper;
7731 
7732 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7733 
7734 	if (&upper->list == &dev->adj_list.upper)
7735 		return NULL;
7736 
7737 	*iter = &upper->list;
7738 	*ignore = upper->ignore;
7739 
7740 	return upper->dev;
7741 }
7742 
7743 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7744 						    struct list_head **iter)
7745 {
7746 	struct netdev_adjacent *upper;
7747 
7748 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7749 
7750 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7751 
7752 	if (&upper->list == &dev->adj_list.upper)
7753 		return NULL;
7754 
7755 	*iter = &upper->list;
7756 
7757 	return upper->dev;
7758 }
7759 
7760 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7761 				       int (*fn)(struct net_device *dev,
7762 					 struct netdev_nested_priv *priv),
7763 				       struct netdev_nested_priv *priv)
7764 {
7765 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7766 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7767 	int ret, cur = 0;
7768 	bool ignore;
7769 
7770 	now = dev;
7771 	iter = &dev->adj_list.upper;
7772 
7773 	while (1) {
7774 		if (now != dev) {
7775 			ret = fn(now, priv);
7776 			if (ret)
7777 				return ret;
7778 		}
7779 
7780 		next = NULL;
7781 		while (1) {
7782 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7783 			if (!udev)
7784 				break;
7785 			if (ignore)
7786 				continue;
7787 
7788 			next = udev;
7789 			niter = &udev->adj_list.upper;
7790 			dev_stack[cur] = now;
7791 			iter_stack[cur++] = iter;
7792 			break;
7793 		}
7794 
7795 		if (!next) {
7796 			if (!cur)
7797 				return 0;
7798 			next = dev_stack[--cur];
7799 			niter = iter_stack[cur];
7800 		}
7801 
7802 		now = next;
7803 		iter = niter;
7804 	}
7805 
7806 	return 0;
7807 }
7808 
7809 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7810 				  int (*fn)(struct net_device *dev,
7811 					    struct netdev_nested_priv *priv),
7812 				  struct netdev_nested_priv *priv)
7813 {
7814 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7815 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7816 	int ret, cur = 0;
7817 
7818 	now = dev;
7819 	iter = &dev->adj_list.upper;
7820 
7821 	while (1) {
7822 		if (now != dev) {
7823 			ret = fn(now, priv);
7824 			if (ret)
7825 				return ret;
7826 		}
7827 
7828 		next = NULL;
7829 		while (1) {
7830 			udev = netdev_next_upper_dev_rcu(now, &iter);
7831 			if (!udev)
7832 				break;
7833 
7834 			next = udev;
7835 			niter = &udev->adj_list.upper;
7836 			dev_stack[cur] = now;
7837 			iter_stack[cur++] = iter;
7838 			break;
7839 		}
7840 
7841 		if (!next) {
7842 			if (!cur)
7843 				return 0;
7844 			next = dev_stack[--cur];
7845 			niter = iter_stack[cur];
7846 		}
7847 
7848 		now = next;
7849 		iter = niter;
7850 	}
7851 
7852 	return 0;
7853 }
7854 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7855 
7856 static bool __netdev_has_upper_dev(struct net_device *dev,
7857 				   struct net_device *upper_dev)
7858 {
7859 	struct netdev_nested_priv priv = {
7860 		.flags = 0,
7861 		.data = (void *)upper_dev,
7862 	};
7863 
7864 	ASSERT_RTNL();
7865 
7866 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7867 					   &priv);
7868 }
7869 
7870 /**
7871  * netdev_lower_get_next_private - Get the next ->private from the
7872  *				   lower neighbour list
7873  * @dev: device
7874  * @iter: list_head ** of the current position
7875  *
7876  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7877  * list, starting from iter position. The caller must hold either hold the
7878  * RTNL lock or its own locking that guarantees that the neighbour lower
7879  * list will remain unchanged.
7880  */
7881 void *netdev_lower_get_next_private(struct net_device *dev,
7882 				    struct list_head **iter)
7883 {
7884 	struct netdev_adjacent *lower;
7885 
7886 	lower = list_entry(*iter, struct netdev_adjacent, list);
7887 
7888 	if (&lower->list == &dev->adj_list.lower)
7889 		return NULL;
7890 
7891 	*iter = lower->list.next;
7892 
7893 	return lower->private;
7894 }
7895 EXPORT_SYMBOL(netdev_lower_get_next_private);
7896 
7897 /**
7898  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7899  *				       lower neighbour list, RCU
7900  *				       variant
7901  * @dev: device
7902  * @iter: list_head ** of the current position
7903  *
7904  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7905  * list, starting from iter position. The caller must hold RCU read lock.
7906  */
7907 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7908 					struct list_head **iter)
7909 {
7910 	struct netdev_adjacent *lower;
7911 
7912 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7913 
7914 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7915 
7916 	if (&lower->list == &dev->adj_list.lower)
7917 		return NULL;
7918 
7919 	*iter = &lower->list;
7920 
7921 	return lower->private;
7922 }
7923 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7924 
7925 /**
7926  * netdev_lower_get_next - Get the next device from the lower neighbour
7927  *                         list
7928  * @dev: device
7929  * @iter: list_head ** of the current position
7930  *
7931  * Gets the next netdev_adjacent from the dev's lower neighbour
7932  * list, starting from iter position. The caller must hold RTNL lock or
7933  * its own locking that guarantees that the neighbour lower
7934  * list will remain unchanged.
7935  */
7936 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7937 {
7938 	struct netdev_adjacent *lower;
7939 
7940 	lower = list_entry(*iter, struct netdev_adjacent, list);
7941 
7942 	if (&lower->list == &dev->adj_list.lower)
7943 		return NULL;
7944 
7945 	*iter = lower->list.next;
7946 
7947 	return lower->dev;
7948 }
7949 EXPORT_SYMBOL(netdev_lower_get_next);
7950 
7951 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7952 						struct list_head **iter)
7953 {
7954 	struct netdev_adjacent *lower;
7955 
7956 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7957 
7958 	if (&lower->list == &dev->adj_list.lower)
7959 		return NULL;
7960 
7961 	*iter = &lower->list;
7962 
7963 	return lower->dev;
7964 }
7965 
7966 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7967 						  struct list_head **iter,
7968 						  bool *ignore)
7969 {
7970 	struct netdev_adjacent *lower;
7971 
7972 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7973 
7974 	if (&lower->list == &dev->adj_list.lower)
7975 		return NULL;
7976 
7977 	*iter = &lower->list;
7978 	*ignore = lower->ignore;
7979 
7980 	return lower->dev;
7981 }
7982 
7983 int netdev_walk_all_lower_dev(struct net_device *dev,
7984 			      int (*fn)(struct net_device *dev,
7985 					struct netdev_nested_priv *priv),
7986 			      struct netdev_nested_priv *priv)
7987 {
7988 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7989 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7990 	int ret, cur = 0;
7991 
7992 	now = dev;
7993 	iter = &dev->adj_list.lower;
7994 
7995 	while (1) {
7996 		if (now != dev) {
7997 			ret = fn(now, priv);
7998 			if (ret)
7999 				return ret;
8000 		}
8001 
8002 		next = NULL;
8003 		while (1) {
8004 			ldev = netdev_next_lower_dev(now, &iter);
8005 			if (!ldev)
8006 				break;
8007 
8008 			next = ldev;
8009 			niter = &ldev->adj_list.lower;
8010 			dev_stack[cur] = now;
8011 			iter_stack[cur++] = iter;
8012 			break;
8013 		}
8014 
8015 		if (!next) {
8016 			if (!cur)
8017 				return 0;
8018 			next = dev_stack[--cur];
8019 			niter = iter_stack[cur];
8020 		}
8021 
8022 		now = next;
8023 		iter = niter;
8024 	}
8025 
8026 	return 0;
8027 }
8028 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8029 
8030 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8031 				       int (*fn)(struct net_device *dev,
8032 					 struct netdev_nested_priv *priv),
8033 				       struct netdev_nested_priv *priv)
8034 {
8035 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8036 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8037 	int ret, cur = 0;
8038 	bool ignore;
8039 
8040 	now = dev;
8041 	iter = &dev->adj_list.lower;
8042 
8043 	while (1) {
8044 		if (now != dev) {
8045 			ret = fn(now, priv);
8046 			if (ret)
8047 				return ret;
8048 		}
8049 
8050 		next = NULL;
8051 		while (1) {
8052 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8053 			if (!ldev)
8054 				break;
8055 			if (ignore)
8056 				continue;
8057 
8058 			next = ldev;
8059 			niter = &ldev->adj_list.lower;
8060 			dev_stack[cur] = now;
8061 			iter_stack[cur++] = iter;
8062 			break;
8063 		}
8064 
8065 		if (!next) {
8066 			if (!cur)
8067 				return 0;
8068 			next = dev_stack[--cur];
8069 			niter = iter_stack[cur];
8070 		}
8071 
8072 		now = next;
8073 		iter = niter;
8074 	}
8075 
8076 	return 0;
8077 }
8078 
8079 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8080 					     struct list_head **iter)
8081 {
8082 	struct netdev_adjacent *lower;
8083 
8084 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8085 	if (&lower->list == &dev->adj_list.lower)
8086 		return NULL;
8087 
8088 	*iter = &lower->list;
8089 
8090 	return lower->dev;
8091 }
8092 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8093 
8094 static u8 __netdev_upper_depth(struct net_device *dev)
8095 {
8096 	struct net_device *udev;
8097 	struct list_head *iter;
8098 	u8 max_depth = 0;
8099 	bool ignore;
8100 
8101 	for (iter = &dev->adj_list.upper,
8102 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8103 	     udev;
8104 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8105 		if (ignore)
8106 			continue;
8107 		if (max_depth < udev->upper_level)
8108 			max_depth = udev->upper_level;
8109 	}
8110 
8111 	return max_depth;
8112 }
8113 
8114 static u8 __netdev_lower_depth(struct net_device *dev)
8115 {
8116 	struct net_device *ldev;
8117 	struct list_head *iter;
8118 	u8 max_depth = 0;
8119 	bool ignore;
8120 
8121 	for (iter = &dev->adj_list.lower,
8122 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8123 	     ldev;
8124 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8125 		if (ignore)
8126 			continue;
8127 		if (max_depth < ldev->lower_level)
8128 			max_depth = ldev->lower_level;
8129 	}
8130 
8131 	return max_depth;
8132 }
8133 
8134 static int __netdev_update_upper_level(struct net_device *dev,
8135 				       struct netdev_nested_priv *__unused)
8136 {
8137 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8138 	return 0;
8139 }
8140 
8141 #ifdef CONFIG_LOCKDEP
8142 static LIST_HEAD(net_unlink_list);
8143 
8144 static void net_unlink_todo(struct net_device *dev)
8145 {
8146 	if (list_empty(&dev->unlink_list))
8147 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8148 }
8149 #endif
8150 
8151 static int __netdev_update_lower_level(struct net_device *dev,
8152 				       struct netdev_nested_priv *priv)
8153 {
8154 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8155 
8156 #ifdef CONFIG_LOCKDEP
8157 	if (!priv)
8158 		return 0;
8159 
8160 	if (priv->flags & NESTED_SYNC_IMM)
8161 		dev->nested_level = dev->lower_level - 1;
8162 	if (priv->flags & NESTED_SYNC_TODO)
8163 		net_unlink_todo(dev);
8164 #endif
8165 	return 0;
8166 }
8167 
8168 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8169 				  int (*fn)(struct net_device *dev,
8170 					    struct netdev_nested_priv *priv),
8171 				  struct netdev_nested_priv *priv)
8172 {
8173 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8174 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8175 	int ret, cur = 0;
8176 
8177 	now = dev;
8178 	iter = &dev->adj_list.lower;
8179 
8180 	while (1) {
8181 		if (now != dev) {
8182 			ret = fn(now, priv);
8183 			if (ret)
8184 				return ret;
8185 		}
8186 
8187 		next = NULL;
8188 		while (1) {
8189 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8190 			if (!ldev)
8191 				break;
8192 
8193 			next = ldev;
8194 			niter = &ldev->adj_list.lower;
8195 			dev_stack[cur] = now;
8196 			iter_stack[cur++] = iter;
8197 			break;
8198 		}
8199 
8200 		if (!next) {
8201 			if (!cur)
8202 				return 0;
8203 			next = dev_stack[--cur];
8204 			niter = iter_stack[cur];
8205 		}
8206 
8207 		now = next;
8208 		iter = niter;
8209 	}
8210 
8211 	return 0;
8212 }
8213 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8214 
8215 /**
8216  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8217  *				       lower neighbour list, RCU
8218  *				       variant
8219  * @dev: device
8220  *
8221  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8222  * list. The caller must hold RCU read lock.
8223  */
8224 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8225 {
8226 	struct netdev_adjacent *lower;
8227 
8228 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8229 			struct netdev_adjacent, list);
8230 	if (lower)
8231 		return lower->private;
8232 	return NULL;
8233 }
8234 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8235 
8236 /**
8237  * netdev_master_upper_dev_get_rcu - Get master upper device
8238  * @dev: device
8239  *
8240  * Find a master upper device and return pointer to it or NULL in case
8241  * it's not there. The caller must hold the RCU read lock.
8242  */
8243 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8244 {
8245 	struct netdev_adjacent *upper;
8246 
8247 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8248 				       struct netdev_adjacent, list);
8249 	if (upper && likely(upper->master))
8250 		return upper->dev;
8251 	return NULL;
8252 }
8253 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8254 
8255 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8256 			      struct net_device *adj_dev,
8257 			      struct list_head *dev_list)
8258 {
8259 	char linkname[IFNAMSIZ+7];
8260 
8261 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8262 		"upper_%s" : "lower_%s", adj_dev->name);
8263 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8264 				 linkname);
8265 }
8266 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8267 			       char *name,
8268 			       struct list_head *dev_list)
8269 {
8270 	char linkname[IFNAMSIZ+7];
8271 
8272 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8273 		"upper_%s" : "lower_%s", name);
8274 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8275 }
8276 
8277 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8278 						 struct net_device *adj_dev,
8279 						 struct list_head *dev_list)
8280 {
8281 	return (dev_list == &dev->adj_list.upper ||
8282 		dev_list == &dev->adj_list.lower) &&
8283 		net_eq(dev_net(dev), dev_net(adj_dev));
8284 }
8285 
8286 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8287 					struct net_device *adj_dev,
8288 					struct list_head *dev_list,
8289 					void *private, bool master)
8290 {
8291 	struct netdev_adjacent *adj;
8292 	int ret;
8293 
8294 	adj = __netdev_find_adj(adj_dev, dev_list);
8295 
8296 	if (adj) {
8297 		adj->ref_nr += 1;
8298 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8299 			 dev->name, adj_dev->name, adj->ref_nr);
8300 
8301 		return 0;
8302 	}
8303 
8304 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8305 	if (!adj)
8306 		return -ENOMEM;
8307 
8308 	adj->dev = adj_dev;
8309 	adj->master = master;
8310 	adj->ref_nr = 1;
8311 	adj->private = private;
8312 	adj->ignore = false;
8313 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8314 
8315 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8316 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8317 
8318 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8319 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8320 		if (ret)
8321 			goto free_adj;
8322 	}
8323 
8324 	/* Ensure that master link is always the first item in list. */
8325 	if (master) {
8326 		ret = sysfs_create_link(&(dev->dev.kobj),
8327 					&(adj_dev->dev.kobj), "master");
8328 		if (ret)
8329 			goto remove_symlinks;
8330 
8331 		list_add_rcu(&adj->list, dev_list);
8332 	} else {
8333 		list_add_tail_rcu(&adj->list, dev_list);
8334 	}
8335 
8336 	return 0;
8337 
8338 remove_symlinks:
8339 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8340 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8341 free_adj:
8342 	netdev_put(adj_dev, &adj->dev_tracker);
8343 	kfree(adj);
8344 
8345 	return ret;
8346 }
8347 
8348 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8349 					 struct net_device *adj_dev,
8350 					 u16 ref_nr,
8351 					 struct list_head *dev_list)
8352 {
8353 	struct netdev_adjacent *adj;
8354 
8355 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8356 		 dev->name, adj_dev->name, ref_nr);
8357 
8358 	adj = __netdev_find_adj(adj_dev, dev_list);
8359 
8360 	if (!adj) {
8361 		pr_err("Adjacency does not exist for device %s from %s\n",
8362 		       dev->name, adj_dev->name);
8363 		WARN_ON(1);
8364 		return;
8365 	}
8366 
8367 	if (adj->ref_nr > ref_nr) {
8368 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8369 			 dev->name, adj_dev->name, ref_nr,
8370 			 adj->ref_nr - ref_nr);
8371 		adj->ref_nr -= ref_nr;
8372 		return;
8373 	}
8374 
8375 	if (adj->master)
8376 		sysfs_remove_link(&(dev->dev.kobj), "master");
8377 
8378 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8379 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8380 
8381 	list_del_rcu(&adj->list);
8382 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8383 		 adj_dev->name, dev->name, adj_dev->name);
8384 	netdev_put(adj_dev, &adj->dev_tracker);
8385 	kfree_rcu(adj, rcu);
8386 }
8387 
8388 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8389 					    struct net_device *upper_dev,
8390 					    struct list_head *up_list,
8391 					    struct list_head *down_list,
8392 					    void *private, bool master)
8393 {
8394 	int ret;
8395 
8396 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8397 					   private, master);
8398 	if (ret)
8399 		return ret;
8400 
8401 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8402 					   private, false);
8403 	if (ret) {
8404 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8405 		return ret;
8406 	}
8407 
8408 	return 0;
8409 }
8410 
8411 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8412 					       struct net_device *upper_dev,
8413 					       u16 ref_nr,
8414 					       struct list_head *up_list,
8415 					       struct list_head *down_list)
8416 {
8417 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8418 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8419 }
8420 
8421 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8422 						struct net_device *upper_dev,
8423 						void *private, bool master)
8424 {
8425 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8426 						&dev->adj_list.upper,
8427 						&upper_dev->adj_list.lower,
8428 						private, master);
8429 }
8430 
8431 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8432 						   struct net_device *upper_dev)
8433 {
8434 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8435 					   &dev->adj_list.upper,
8436 					   &upper_dev->adj_list.lower);
8437 }
8438 
8439 static int __netdev_upper_dev_link(struct net_device *dev,
8440 				   struct net_device *upper_dev, bool master,
8441 				   void *upper_priv, void *upper_info,
8442 				   struct netdev_nested_priv *priv,
8443 				   struct netlink_ext_ack *extack)
8444 {
8445 	struct netdev_notifier_changeupper_info changeupper_info = {
8446 		.info = {
8447 			.dev = dev,
8448 			.extack = extack,
8449 		},
8450 		.upper_dev = upper_dev,
8451 		.master = master,
8452 		.linking = true,
8453 		.upper_info = upper_info,
8454 	};
8455 	struct net_device *master_dev;
8456 	int ret = 0;
8457 
8458 	ASSERT_RTNL();
8459 
8460 	if (dev == upper_dev)
8461 		return -EBUSY;
8462 
8463 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8464 	if (__netdev_has_upper_dev(upper_dev, dev))
8465 		return -EBUSY;
8466 
8467 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8468 		return -EMLINK;
8469 
8470 	if (!master) {
8471 		if (__netdev_has_upper_dev(dev, upper_dev))
8472 			return -EEXIST;
8473 	} else {
8474 		master_dev = __netdev_master_upper_dev_get(dev);
8475 		if (master_dev)
8476 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8477 	}
8478 
8479 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8480 					    &changeupper_info.info);
8481 	ret = notifier_to_errno(ret);
8482 	if (ret)
8483 		return ret;
8484 
8485 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8486 						   master);
8487 	if (ret)
8488 		return ret;
8489 
8490 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8491 					    &changeupper_info.info);
8492 	ret = notifier_to_errno(ret);
8493 	if (ret)
8494 		goto rollback;
8495 
8496 	__netdev_update_upper_level(dev, NULL);
8497 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8498 
8499 	__netdev_update_lower_level(upper_dev, priv);
8500 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8501 				    priv);
8502 
8503 	return 0;
8504 
8505 rollback:
8506 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8507 
8508 	return ret;
8509 }
8510 
8511 /**
8512  * netdev_upper_dev_link - Add a link to the upper device
8513  * @dev: device
8514  * @upper_dev: new upper device
8515  * @extack: netlink extended ack
8516  *
8517  * Adds a link to device which is upper to this one. The caller must hold
8518  * the RTNL lock. On a failure a negative errno code is returned.
8519  * On success the reference counts are adjusted and the function
8520  * returns zero.
8521  */
8522 int netdev_upper_dev_link(struct net_device *dev,
8523 			  struct net_device *upper_dev,
8524 			  struct netlink_ext_ack *extack)
8525 {
8526 	struct netdev_nested_priv priv = {
8527 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8528 		.data = NULL,
8529 	};
8530 
8531 	return __netdev_upper_dev_link(dev, upper_dev, false,
8532 				       NULL, NULL, &priv, extack);
8533 }
8534 EXPORT_SYMBOL(netdev_upper_dev_link);
8535 
8536 /**
8537  * netdev_master_upper_dev_link - Add a master link to the upper device
8538  * @dev: device
8539  * @upper_dev: new upper device
8540  * @upper_priv: upper device private
8541  * @upper_info: upper info to be passed down via notifier
8542  * @extack: netlink extended ack
8543  *
8544  * Adds a link to device which is upper to this one. In this case, only
8545  * one master upper device can be linked, although other non-master devices
8546  * might be linked as well. The caller must hold the RTNL lock.
8547  * On a failure a negative errno code is returned. On success the reference
8548  * counts are adjusted and the function returns zero.
8549  */
8550 int netdev_master_upper_dev_link(struct net_device *dev,
8551 				 struct net_device *upper_dev,
8552 				 void *upper_priv, void *upper_info,
8553 				 struct netlink_ext_ack *extack)
8554 {
8555 	struct netdev_nested_priv priv = {
8556 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8557 		.data = NULL,
8558 	};
8559 
8560 	return __netdev_upper_dev_link(dev, upper_dev, true,
8561 				       upper_priv, upper_info, &priv, extack);
8562 }
8563 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8564 
8565 static void __netdev_upper_dev_unlink(struct net_device *dev,
8566 				      struct net_device *upper_dev,
8567 				      struct netdev_nested_priv *priv)
8568 {
8569 	struct netdev_notifier_changeupper_info changeupper_info = {
8570 		.info = {
8571 			.dev = dev,
8572 		},
8573 		.upper_dev = upper_dev,
8574 		.linking = false,
8575 	};
8576 
8577 	ASSERT_RTNL();
8578 
8579 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8580 
8581 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8582 				      &changeupper_info.info);
8583 
8584 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8585 
8586 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8587 				      &changeupper_info.info);
8588 
8589 	__netdev_update_upper_level(dev, NULL);
8590 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8591 
8592 	__netdev_update_lower_level(upper_dev, priv);
8593 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8594 				    priv);
8595 }
8596 
8597 /**
8598  * netdev_upper_dev_unlink - Removes a link to upper device
8599  * @dev: device
8600  * @upper_dev: new upper device
8601  *
8602  * Removes a link to device which is upper to this one. The caller must hold
8603  * the RTNL lock.
8604  */
8605 void netdev_upper_dev_unlink(struct net_device *dev,
8606 			     struct net_device *upper_dev)
8607 {
8608 	struct netdev_nested_priv priv = {
8609 		.flags = NESTED_SYNC_TODO,
8610 		.data = NULL,
8611 	};
8612 
8613 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8614 }
8615 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8616 
8617 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8618 				      struct net_device *lower_dev,
8619 				      bool val)
8620 {
8621 	struct netdev_adjacent *adj;
8622 
8623 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8624 	if (adj)
8625 		adj->ignore = val;
8626 
8627 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8628 	if (adj)
8629 		adj->ignore = val;
8630 }
8631 
8632 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8633 					struct net_device *lower_dev)
8634 {
8635 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8636 }
8637 
8638 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8639 				       struct net_device *lower_dev)
8640 {
8641 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8642 }
8643 
8644 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8645 				   struct net_device *new_dev,
8646 				   struct net_device *dev,
8647 				   struct netlink_ext_ack *extack)
8648 {
8649 	struct netdev_nested_priv priv = {
8650 		.flags = 0,
8651 		.data = NULL,
8652 	};
8653 	int err;
8654 
8655 	if (!new_dev)
8656 		return 0;
8657 
8658 	if (old_dev && new_dev != old_dev)
8659 		netdev_adjacent_dev_disable(dev, old_dev);
8660 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8661 				      extack);
8662 	if (err) {
8663 		if (old_dev && new_dev != old_dev)
8664 			netdev_adjacent_dev_enable(dev, old_dev);
8665 		return err;
8666 	}
8667 
8668 	return 0;
8669 }
8670 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8671 
8672 void netdev_adjacent_change_commit(struct net_device *old_dev,
8673 				   struct net_device *new_dev,
8674 				   struct net_device *dev)
8675 {
8676 	struct netdev_nested_priv priv = {
8677 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8678 		.data = NULL,
8679 	};
8680 
8681 	if (!new_dev || !old_dev)
8682 		return;
8683 
8684 	if (new_dev == old_dev)
8685 		return;
8686 
8687 	netdev_adjacent_dev_enable(dev, old_dev);
8688 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8689 }
8690 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8691 
8692 void netdev_adjacent_change_abort(struct net_device *old_dev,
8693 				  struct net_device *new_dev,
8694 				  struct net_device *dev)
8695 {
8696 	struct netdev_nested_priv priv = {
8697 		.flags = 0,
8698 		.data = NULL,
8699 	};
8700 
8701 	if (!new_dev)
8702 		return;
8703 
8704 	if (old_dev && new_dev != old_dev)
8705 		netdev_adjacent_dev_enable(dev, old_dev);
8706 
8707 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8708 }
8709 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8710 
8711 /**
8712  * netdev_bonding_info_change - Dispatch event about slave change
8713  * @dev: device
8714  * @bonding_info: info to dispatch
8715  *
8716  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8717  * The caller must hold the RTNL lock.
8718  */
8719 void netdev_bonding_info_change(struct net_device *dev,
8720 				struct netdev_bonding_info *bonding_info)
8721 {
8722 	struct netdev_notifier_bonding_info info = {
8723 		.info.dev = dev,
8724 	};
8725 
8726 	memcpy(&info.bonding_info, bonding_info,
8727 	       sizeof(struct netdev_bonding_info));
8728 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8729 				      &info.info);
8730 }
8731 EXPORT_SYMBOL(netdev_bonding_info_change);
8732 
8733 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8734 					   struct netlink_ext_ack *extack)
8735 {
8736 	struct netdev_notifier_offload_xstats_info info = {
8737 		.info.dev = dev,
8738 		.info.extack = extack,
8739 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8740 	};
8741 	int err;
8742 	int rc;
8743 
8744 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8745 					 GFP_KERNEL);
8746 	if (!dev->offload_xstats_l3)
8747 		return -ENOMEM;
8748 
8749 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8750 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8751 						  &info.info);
8752 	err = notifier_to_errno(rc);
8753 	if (err)
8754 		goto free_stats;
8755 
8756 	return 0;
8757 
8758 free_stats:
8759 	kfree(dev->offload_xstats_l3);
8760 	dev->offload_xstats_l3 = NULL;
8761 	return err;
8762 }
8763 
8764 int netdev_offload_xstats_enable(struct net_device *dev,
8765 				 enum netdev_offload_xstats_type type,
8766 				 struct netlink_ext_ack *extack)
8767 {
8768 	ASSERT_RTNL();
8769 
8770 	if (netdev_offload_xstats_enabled(dev, type))
8771 		return -EALREADY;
8772 
8773 	switch (type) {
8774 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8775 		return netdev_offload_xstats_enable_l3(dev, extack);
8776 	}
8777 
8778 	WARN_ON(1);
8779 	return -EINVAL;
8780 }
8781 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8782 
8783 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8784 {
8785 	struct netdev_notifier_offload_xstats_info info = {
8786 		.info.dev = dev,
8787 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8788 	};
8789 
8790 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8791 				      &info.info);
8792 	kfree(dev->offload_xstats_l3);
8793 	dev->offload_xstats_l3 = NULL;
8794 }
8795 
8796 int netdev_offload_xstats_disable(struct net_device *dev,
8797 				  enum netdev_offload_xstats_type type)
8798 {
8799 	ASSERT_RTNL();
8800 
8801 	if (!netdev_offload_xstats_enabled(dev, type))
8802 		return -EALREADY;
8803 
8804 	switch (type) {
8805 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8806 		netdev_offload_xstats_disable_l3(dev);
8807 		return 0;
8808 	}
8809 
8810 	WARN_ON(1);
8811 	return -EINVAL;
8812 }
8813 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8814 
8815 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8816 {
8817 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8818 }
8819 
8820 static struct rtnl_hw_stats64 *
8821 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8822 			      enum netdev_offload_xstats_type type)
8823 {
8824 	switch (type) {
8825 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8826 		return dev->offload_xstats_l3;
8827 	}
8828 
8829 	WARN_ON(1);
8830 	return NULL;
8831 }
8832 
8833 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8834 				   enum netdev_offload_xstats_type type)
8835 {
8836 	ASSERT_RTNL();
8837 
8838 	return netdev_offload_xstats_get_ptr(dev, type);
8839 }
8840 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8841 
8842 struct netdev_notifier_offload_xstats_ru {
8843 	bool used;
8844 };
8845 
8846 struct netdev_notifier_offload_xstats_rd {
8847 	struct rtnl_hw_stats64 stats;
8848 	bool used;
8849 };
8850 
8851 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8852 				  const struct rtnl_hw_stats64 *src)
8853 {
8854 	dest->rx_packets	  += src->rx_packets;
8855 	dest->tx_packets	  += src->tx_packets;
8856 	dest->rx_bytes		  += src->rx_bytes;
8857 	dest->tx_bytes		  += src->tx_bytes;
8858 	dest->rx_errors		  += src->rx_errors;
8859 	dest->tx_errors		  += src->tx_errors;
8860 	dest->rx_dropped	  += src->rx_dropped;
8861 	dest->tx_dropped	  += src->tx_dropped;
8862 	dest->multicast		  += src->multicast;
8863 }
8864 
8865 static int netdev_offload_xstats_get_used(struct net_device *dev,
8866 					  enum netdev_offload_xstats_type type,
8867 					  bool *p_used,
8868 					  struct netlink_ext_ack *extack)
8869 {
8870 	struct netdev_notifier_offload_xstats_ru report_used = {};
8871 	struct netdev_notifier_offload_xstats_info info = {
8872 		.info.dev = dev,
8873 		.info.extack = extack,
8874 		.type = type,
8875 		.report_used = &report_used,
8876 	};
8877 	int rc;
8878 
8879 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8880 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8881 					   &info.info);
8882 	*p_used = report_used.used;
8883 	return notifier_to_errno(rc);
8884 }
8885 
8886 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8887 					   enum netdev_offload_xstats_type type,
8888 					   struct rtnl_hw_stats64 *p_stats,
8889 					   bool *p_used,
8890 					   struct netlink_ext_ack *extack)
8891 {
8892 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8893 	struct netdev_notifier_offload_xstats_info info = {
8894 		.info.dev = dev,
8895 		.info.extack = extack,
8896 		.type = type,
8897 		.report_delta = &report_delta,
8898 	};
8899 	struct rtnl_hw_stats64 *stats;
8900 	int rc;
8901 
8902 	stats = netdev_offload_xstats_get_ptr(dev, type);
8903 	if (WARN_ON(!stats))
8904 		return -EINVAL;
8905 
8906 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8907 					   &info.info);
8908 
8909 	/* Cache whatever we got, even if there was an error, otherwise the
8910 	 * successful stats retrievals would get lost.
8911 	 */
8912 	netdev_hw_stats64_add(stats, &report_delta.stats);
8913 
8914 	if (p_stats)
8915 		*p_stats = *stats;
8916 	*p_used = report_delta.used;
8917 
8918 	return notifier_to_errno(rc);
8919 }
8920 
8921 int netdev_offload_xstats_get(struct net_device *dev,
8922 			      enum netdev_offload_xstats_type type,
8923 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8924 			      struct netlink_ext_ack *extack)
8925 {
8926 	ASSERT_RTNL();
8927 
8928 	if (p_stats)
8929 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8930 						       p_used, extack);
8931 	else
8932 		return netdev_offload_xstats_get_used(dev, type, p_used,
8933 						      extack);
8934 }
8935 EXPORT_SYMBOL(netdev_offload_xstats_get);
8936 
8937 void
8938 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8939 				   const struct rtnl_hw_stats64 *stats)
8940 {
8941 	report_delta->used = true;
8942 	netdev_hw_stats64_add(&report_delta->stats, stats);
8943 }
8944 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8945 
8946 void
8947 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8948 {
8949 	report_used->used = true;
8950 }
8951 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8952 
8953 void netdev_offload_xstats_push_delta(struct net_device *dev,
8954 				      enum netdev_offload_xstats_type type,
8955 				      const struct rtnl_hw_stats64 *p_stats)
8956 {
8957 	struct rtnl_hw_stats64 *stats;
8958 
8959 	ASSERT_RTNL();
8960 
8961 	stats = netdev_offload_xstats_get_ptr(dev, type);
8962 	if (WARN_ON(!stats))
8963 		return;
8964 
8965 	netdev_hw_stats64_add(stats, p_stats);
8966 }
8967 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8968 
8969 /**
8970  * netdev_get_xmit_slave - Get the xmit slave of master device
8971  * @dev: device
8972  * @skb: The packet
8973  * @all_slaves: assume all the slaves are active
8974  *
8975  * The reference counters are not incremented so the caller must be
8976  * careful with locks. The caller must hold RCU lock.
8977  * %NULL is returned if no slave is found.
8978  */
8979 
8980 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8981 					 struct sk_buff *skb,
8982 					 bool all_slaves)
8983 {
8984 	const struct net_device_ops *ops = dev->netdev_ops;
8985 
8986 	if (!ops->ndo_get_xmit_slave)
8987 		return NULL;
8988 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8989 }
8990 EXPORT_SYMBOL(netdev_get_xmit_slave);
8991 
8992 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8993 						  struct sock *sk)
8994 {
8995 	const struct net_device_ops *ops = dev->netdev_ops;
8996 
8997 	if (!ops->ndo_sk_get_lower_dev)
8998 		return NULL;
8999 	return ops->ndo_sk_get_lower_dev(dev, sk);
9000 }
9001 
9002 /**
9003  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9004  * @dev: device
9005  * @sk: the socket
9006  *
9007  * %NULL is returned if no lower device is found.
9008  */
9009 
9010 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9011 					    struct sock *sk)
9012 {
9013 	struct net_device *lower;
9014 
9015 	lower = netdev_sk_get_lower_dev(dev, sk);
9016 	while (lower) {
9017 		dev = lower;
9018 		lower = netdev_sk_get_lower_dev(dev, sk);
9019 	}
9020 
9021 	return dev;
9022 }
9023 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9024 
9025 static void netdev_adjacent_add_links(struct net_device *dev)
9026 {
9027 	struct netdev_adjacent *iter;
9028 
9029 	struct net *net = dev_net(dev);
9030 
9031 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9032 		if (!net_eq(net, dev_net(iter->dev)))
9033 			continue;
9034 		netdev_adjacent_sysfs_add(iter->dev, dev,
9035 					  &iter->dev->adj_list.lower);
9036 		netdev_adjacent_sysfs_add(dev, iter->dev,
9037 					  &dev->adj_list.upper);
9038 	}
9039 
9040 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9041 		if (!net_eq(net, dev_net(iter->dev)))
9042 			continue;
9043 		netdev_adjacent_sysfs_add(iter->dev, dev,
9044 					  &iter->dev->adj_list.upper);
9045 		netdev_adjacent_sysfs_add(dev, iter->dev,
9046 					  &dev->adj_list.lower);
9047 	}
9048 }
9049 
9050 static void netdev_adjacent_del_links(struct net_device *dev)
9051 {
9052 	struct netdev_adjacent *iter;
9053 
9054 	struct net *net = dev_net(dev);
9055 
9056 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9057 		if (!net_eq(net, dev_net(iter->dev)))
9058 			continue;
9059 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9060 					  &iter->dev->adj_list.lower);
9061 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9062 					  &dev->adj_list.upper);
9063 	}
9064 
9065 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9066 		if (!net_eq(net, dev_net(iter->dev)))
9067 			continue;
9068 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9069 					  &iter->dev->adj_list.upper);
9070 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9071 					  &dev->adj_list.lower);
9072 	}
9073 }
9074 
9075 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9076 {
9077 	struct netdev_adjacent *iter;
9078 
9079 	struct net *net = dev_net(dev);
9080 
9081 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9082 		if (!net_eq(net, dev_net(iter->dev)))
9083 			continue;
9084 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9085 					  &iter->dev->adj_list.lower);
9086 		netdev_adjacent_sysfs_add(iter->dev, dev,
9087 					  &iter->dev->adj_list.lower);
9088 	}
9089 
9090 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9091 		if (!net_eq(net, dev_net(iter->dev)))
9092 			continue;
9093 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9094 					  &iter->dev->adj_list.upper);
9095 		netdev_adjacent_sysfs_add(iter->dev, dev,
9096 					  &iter->dev->adj_list.upper);
9097 	}
9098 }
9099 
9100 void *netdev_lower_dev_get_private(struct net_device *dev,
9101 				   struct net_device *lower_dev)
9102 {
9103 	struct netdev_adjacent *lower;
9104 
9105 	if (!lower_dev)
9106 		return NULL;
9107 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9108 	if (!lower)
9109 		return NULL;
9110 
9111 	return lower->private;
9112 }
9113 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9114 
9115 
9116 /**
9117  * netdev_lower_state_changed - Dispatch event about lower device state change
9118  * @lower_dev: device
9119  * @lower_state_info: state to dispatch
9120  *
9121  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9122  * The caller must hold the RTNL lock.
9123  */
9124 void netdev_lower_state_changed(struct net_device *lower_dev,
9125 				void *lower_state_info)
9126 {
9127 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9128 		.info.dev = lower_dev,
9129 	};
9130 
9131 	ASSERT_RTNL();
9132 	changelowerstate_info.lower_state_info = lower_state_info;
9133 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9134 				      &changelowerstate_info.info);
9135 }
9136 EXPORT_SYMBOL(netdev_lower_state_changed);
9137 
9138 static void dev_change_rx_flags(struct net_device *dev, int flags)
9139 {
9140 	const struct net_device_ops *ops = dev->netdev_ops;
9141 
9142 	if (ops->ndo_change_rx_flags)
9143 		ops->ndo_change_rx_flags(dev, flags);
9144 }
9145 
9146 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9147 {
9148 	unsigned int old_flags = dev->flags;
9149 	unsigned int promiscuity, flags;
9150 	kuid_t uid;
9151 	kgid_t gid;
9152 
9153 	ASSERT_RTNL();
9154 
9155 	promiscuity = dev->promiscuity + inc;
9156 	if (promiscuity == 0) {
9157 		/*
9158 		 * Avoid overflow.
9159 		 * If inc causes overflow, untouch promisc and return error.
9160 		 */
9161 		if (unlikely(inc > 0)) {
9162 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9163 			return -EOVERFLOW;
9164 		}
9165 		flags = old_flags & ~IFF_PROMISC;
9166 	} else {
9167 		flags = old_flags | IFF_PROMISC;
9168 	}
9169 	WRITE_ONCE(dev->promiscuity, promiscuity);
9170 	if (flags != old_flags) {
9171 		WRITE_ONCE(dev->flags, flags);
9172 		netdev_info(dev, "%s promiscuous mode\n",
9173 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9174 		if (audit_enabled) {
9175 			current_uid_gid(&uid, &gid);
9176 			audit_log(audit_context(), GFP_ATOMIC,
9177 				  AUDIT_ANOM_PROMISCUOUS,
9178 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9179 				  dev->name, (dev->flags & IFF_PROMISC),
9180 				  (old_flags & IFF_PROMISC),
9181 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9182 				  from_kuid(&init_user_ns, uid),
9183 				  from_kgid(&init_user_ns, gid),
9184 				  audit_get_sessionid(current));
9185 		}
9186 
9187 		dev_change_rx_flags(dev, IFF_PROMISC);
9188 	}
9189 	if (notify)
9190 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9191 	return 0;
9192 }
9193 
9194 /**
9195  *	dev_set_promiscuity	- update promiscuity count on a device
9196  *	@dev: device
9197  *	@inc: modifier
9198  *
9199  *	Add or remove promiscuity from a device. While the count in the device
9200  *	remains above zero the interface remains promiscuous. Once it hits zero
9201  *	the device reverts back to normal filtering operation. A negative inc
9202  *	value is used to drop promiscuity on the device.
9203  *	Return 0 if successful or a negative errno code on error.
9204  */
9205 int dev_set_promiscuity(struct net_device *dev, int inc)
9206 {
9207 	unsigned int old_flags = dev->flags;
9208 	int err;
9209 
9210 	err = __dev_set_promiscuity(dev, inc, true);
9211 	if (err < 0)
9212 		return err;
9213 	if (dev->flags != old_flags)
9214 		dev_set_rx_mode(dev);
9215 	return err;
9216 }
9217 EXPORT_SYMBOL(dev_set_promiscuity);
9218 
9219 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9220 {
9221 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9222 	unsigned int allmulti, flags;
9223 
9224 	ASSERT_RTNL();
9225 
9226 	allmulti = dev->allmulti + inc;
9227 	if (allmulti == 0) {
9228 		/*
9229 		 * Avoid overflow.
9230 		 * If inc causes overflow, untouch allmulti and return error.
9231 		 */
9232 		if (unlikely(inc > 0)) {
9233 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9234 			return -EOVERFLOW;
9235 		}
9236 		flags = old_flags & ~IFF_ALLMULTI;
9237 	} else {
9238 		flags = old_flags | IFF_ALLMULTI;
9239 	}
9240 	WRITE_ONCE(dev->allmulti, allmulti);
9241 	if (flags != old_flags) {
9242 		WRITE_ONCE(dev->flags, flags);
9243 		netdev_info(dev, "%s allmulticast mode\n",
9244 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9245 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9246 		dev_set_rx_mode(dev);
9247 		if (notify)
9248 			__dev_notify_flags(dev, old_flags,
9249 					   dev->gflags ^ old_gflags, 0, NULL);
9250 	}
9251 	return 0;
9252 }
9253 
9254 /*
9255  *	Upload unicast and multicast address lists to device and
9256  *	configure RX filtering. When the device doesn't support unicast
9257  *	filtering it is put in promiscuous mode while unicast addresses
9258  *	are present.
9259  */
9260 void __dev_set_rx_mode(struct net_device *dev)
9261 {
9262 	const struct net_device_ops *ops = dev->netdev_ops;
9263 
9264 	/* dev_open will call this function so the list will stay sane. */
9265 	if (!(dev->flags&IFF_UP))
9266 		return;
9267 
9268 	if (!netif_device_present(dev))
9269 		return;
9270 
9271 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9272 		/* Unicast addresses changes may only happen under the rtnl,
9273 		 * therefore calling __dev_set_promiscuity here is safe.
9274 		 */
9275 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9276 			__dev_set_promiscuity(dev, 1, false);
9277 			dev->uc_promisc = true;
9278 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9279 			__dev_set_promiscuity(dev, -1, false);
9280 			dev->uc_promisc = false;
9281 		}
9282 	}
9283 
9284 	if (ops->ndo_set_rx_mode)
9285 		ops->ndo_set_rx_mode(dev);
9286 }
9287 
9288 void dev_set_rx_mode(struct net_device *dev)
9289 {
9290 	netif_addr_lock_bh(dev);
9291 	__dev_set_rx_mode(dev);
9292 	netif_addr_unlock_bh(dev);
9293 }
9294 
9295 /**
9296  *	dev_get_flags - get flags reported to userspace
9297  *	@dev: device
9298  *
9299  *	Get the combination of flag bits exported through APIs to userspace.
9300  */
9301 unsigned int dev_get_flags(const struct net_device *dev)
9302 {
9303 	unsigned int flags;
9304 
9305 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9306 				IFF_ALLMULTI |
9307 				IFF_RUNNING |
9308 				IFF_LOWER_UP |
9309 				IFF_DORMANT)) |
9310 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9311 				IFF_ALLMULTI));
9312 
9313 	if (netif_running(dev)) {
9314 		if (netif_oper_up(dev))
9315 			flags |= IFF_RUNNING;
9316 		if (netif_carrier_ok(dev))
9317 			flags |= IFF_LOWER_UP;
9318 		if (netif_dormant(dev))
9319 			flags |= IFF_DORMANT;
9320 	}
9321 
9322 	return flags;
9323 }
9324 EXPORT_SYMBOL(dev_get_flags);
9325 
9326 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9327 		       struct netlink_ext_ack *extack)
9328 {
9329 	unsigned int old_flags = dev->flags;
9330 	int ret;
9331 
9332 	ASSERT_RTNL();
9333 
9334 	/*
9335 	 *	Set the flags on our device.
9336 	 */
9337 
9338 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9339 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9340 			       IFF_AUTOMEDIA)) |
9341 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9342 				    IFF_ALLMULTI));
9343 
9344 	/*
9345 	 *	Load in the correct multicast list now the flags have changed.
9346 	 */
9347 
9348 	if ((old_flags ^ flags) & IFF_MULTICAST)
9349 		dev_change_rx_flags(dev, IFF_MULTICAST);
9350 
9351 	dev_set_rx_mode(dev);
9352 
9353 	/*
9354 	 *	Have we downed the interface. We handle IFF_UP ourselves
9355 	 *	according to user attempts to set it, rather than blindly
9356 	 *	setting it.
9357 	 */
9358 
9359 	ret = 0;
9360 	if ((old_flags ^ flags) & IFF_UP) {
9361 		if (old_flags & IFF_UP)
9362 			__dev_close(dev);
9363 		else
9364 			ret = __dev_open(dev, extack);
9365 	}
9366 
9367 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9368 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9369 		old_flags = dev->flags;
9370 
9371 		dev->gflags ^= IFF_PROMISC;
9372 
9373 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9374 			if (dev->flags != old_flags)
9375 				dev_set_rx_mode(dev);
9376 	}
9377 
9378 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9379 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9380 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9381 	 */
9382 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9383 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9384 
9385 		dev->gflags ^= IFF_ALLMULTI;
9386 		netif_set_allmulti(dev, inc, false);
9387 	}
9388 
9389 	return ret;
9390 }
9391 
9392 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9393 			unsigned int gchanges, u32 portid,
9394 			const struct nlmsghdr *nlh)
9395 {
9396 	unsigned int changes = dev->flags ^ old_flags;
9397 
9398 	if (gchanges)
9399 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9400 
9401 	if (changes & IFF_UP) {
9402 		if (dev->flags & IFF_UP)
9403 			call_netdevice_notifiers(NETDEV_UP, dev);
9404 		else
9405 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9406 	}
9407 
9408 	if (dev->flags & IFF_UP &&
9409 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9410 		struct netdev_notifier_change_info change_info = {
9411 			.info = {
9412 				.dev = dev,
9413 			},
9414 			.flags_changed = changes,
9415 		};
9416 
9417 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9418 	}
9419 }
9420 
9421 int netif_change_flags(struct net_device *dev, unsigned int flags,
9422 		       struct netlink_ext_ack *extack)
9423 {
9424 	int ret;
9425 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9426 
9427 	ret = __dev_change_flags(dev, flags, extack);
9428 	if (ret < 0)
9429 		return ret;
9430 
9431 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9432 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9433 	return ret;
9434 }
9435 
9436 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9437 {
9438 	const struct net_device_ops *ops = dev->netdev_ops;
9439 
9440 	if (ops->ndo_change_mtu)
9441 		return ops->ndo_change_mtu(dev, new_mtu);
9442 
9443 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9444 	WRITE_ONCE(dev->mtu, new_mtu);
9445 	return 0;
9446 }
9447 EXPORT_SYMBOL(__dev_set_mtu);
9448 
9449 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9450 		     struct netlink_ext_ack *extack)
9451 {
9452 	/* MTU must be positive, and in range */
9453 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9454 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9455 		return -EINVAL;
9456 	}
9457 
9458 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9459 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9460 		return -EINVAL;
9461 	}
9462 	return 0;
9463 }
9464 
9465 /**
9466  *	netif_set_mtu_ext - Change maximum transfer unit
9467  *	@dev: device
9468  *	@new_mtu: new transfer unit
9469  *	@extack: netlink extended ack
9470  *
9471  *	Change the maximum transfer size of the network device.
9472  */
9473 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9474 		      struct netlink_ext_ack *extack)
9475 {
9476 	int err, orig_mtu;
9477 
9478 	if (new_mtu == dev->mtu)
9479 		return 0;
9480 
9481 	err = dev_validate_mtu(dev, new_mtu, extack);
9482 	if (err)
9483 		return err;
9484 
9485 	if (!netif_device_present(dev))
9486 		return -ENODEV;
9487 
9488 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9489 	err = notifier_to_errno(err);
9490 	if (err)
9491 		return err;
9492 
9493 	orig_mtu = dev->mtu;
9494 	err = __dev_set_mtu(dev, new_mtu);
9495 
9496 	if (!err) {
9497 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9498 						   orig_mtu);
9499 		err = notifier_to_errno(err);
9500 		if (err) {
9501 			/* setting mtu back and notifying everyone again,
9502 			 * so that they have a chance to revert changes.
9503 			 */
9504 			__dev_set_mtu(dev, orig_mtu);
9505 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9506 						     new_mtu);
9507 		}
9508 	}
9509 	return err;
9510 }
9511 
9512 int netif_set_mtu(struct net_device *dev, int new_mtu)
9513 {
9514 	struct netlink_ext_ack extack;
9515 	int err;
9516 
9517 	memset(&extack, 0, sizeof(extack));
9518 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9519 	if (err && extack._msg)
9520 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9521 	return err;
9522 }
9523 EXPORT_SYMBOL(netif_set_mtu);
9524 
9525 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9526 {
9527 	unsigned int orig_len = dev->tx_queue_len;
9528 	int res;
9529 
9530 	if (new_len != (unsigned int)new_len)
9531 		return -ERANGE;
9532 
9533 	if (new_len != orig_len) {
9534 		WRITE_ONCE(dev->tx_queue_len, new_len);
9535 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9536 		res = notifier_to_errno(res);
9537 		if (res)
9538 			goto err_rollback;
9539 		res = dev_qdisc_change_tx_queue_len(dev);
9540 		if (res)
9541 			goto err_rollback;
9542 	}
9543 
9544 	return 0;
9545 
9546 err_rollback:
9547 	netdev_err(dev, "refused to change device tx_queue_len\n");
9548 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9549 	return res;
9550 }
9551 
9552 void netif_set_group(struct net_device *dev, int new_group)
9553 {
9554 	dev->group = new_group;
9555 }
9556 
9557 /**
9558  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9559  *	@dev: device
9560  *	@addr: new address
9561  *	@extack: netlink extended ack
9562  */
9563 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9564 			      struct netlink_ext_ack *extack)
9565 {
9566 	struct netdev_notifier_pre_changeaddr_info info = {
9567 		.info.dev = dev,
9568 		.info.extack = extack,
9569 		.dev_addr = addr,
9570 	};
9571 	int rc;
9572 
9573 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9574 	return notifier_to_errno(rc);
9575 }
9576 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9577 
9578 int netif_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9579 			  struct netlink_ext_ack *extack)
9580 {
9581 	const struct net_device_ops *ops = dev->netdev_ops;
9582 	int err;
9583 
9584 	if (!ops->ndo_set_mac_address)
9585 		return -EOPNOTSUPP;
9586 	if (sa->sa_family != dev->type)
9587 		return -EINVAL;
9588 	if (!netif_device_present(dev))
9589 		return -ENODEV;
9590 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9591 	if (err)
9592 		return err;
9593 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9594 		err = ops->ndo_set_mac_address(dev, sa);
9595 		if (err)
9596 			return err;
9597 	}
9598 	dev->addr_assign_type = NET_ADDR_SET;
9599 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9600 	add_device_randomness(dev->dev_addr, dev->addr_len);
9601 	return 0;
9602 }
9603 
9604 DECLARE_RWSEM(dev_addr_sem);
9605 
9606 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9607 {
9608 	size_t size = sizeof(sa->sa_data_min);
9609 	struct net_device *dev;
9610 	int ret = 0;
9611 
9612 	down_read(&dev_addr_sem);
9613 	rcu_read_lock();
9614 
9615 	dev = dev_get_by_name_rcu(net, dev_name);
9616 	if (!dev) {
9617 		ret = -ENODEV;
9618 		goto unlock;
9619 	}
9620 	if (!dev->addr_len)
9621 		memset(sa->sa_data, 0, size);
9622 	else
9623 		memcpy(sa->sa_data, dev->dev_addr,
9624 		       min_t(size_t, size, dev->addr_len));
9625 	sa->sa_family = dev->type;
9626 
9627 unlock:
9628 	rcu_read_unlock();
9629 	up_read(&dev_addr_sem);
9630 	return ret;
9631 }
9632 EXPORT_SYMBOL(dev_get_mac_address);
9633 
9634 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9635 {
9636 	const struct net_device_ops *ops = dev->netdev_ops;
9637 
9638 	if (!ops->ndo_change_carrier)
9639 		return -EOPNOTSUPP;
9640 	if (!netif_device_present(dev))
9641 		return -ENODEV;
9642 	return ops->ndo_change_carrier(dev, new_carrier);
9643 }
9644 
9645 /**
9646  *	dev_get_phys_port_id - Get device physical port ID
9647  *	@dev: device
9648  *	@ppid: port ID
9649  *
9650  *	Get device physical port ID
9651  */
9652 int dev_get_phys_port_id(struct net_device *dev,
9653 			 struct netdev_phys_item_id *ppid)
9654 {
9655 	const struct net_device_ops *ops = dev->netdev_ops;
9656 
9657 	if (!ops->ndo_get_phys_port_id)
9658 		return -EOPNOTSUPP;
9659 	return ops->ndo_get_phys_port_id(dev, ppid);
9660 }
9661 
9662 /**
9663  *	dev_get_phys_port_name - Get device physical port name
9664  *	@dev: device
9665  *	@name: port name
9666  *	@len: limit of bytes to copy to name
9667  *
9668  *	Get device physical port name
9669  */
9670 int dev_get_phys_port_name(struct net_device *dev,
9671 			   char *name, size_t len)
9672 {
9673 	const struct net_device_ops *ops = dev->netdev_ops;
9674 	int err;
9675 
9676 	if (ops->ndo_get_phys_port_name) {
9677 		err = ops->ndo_get_phys_port_name(dev, name, len);
9678 		if (err != -EOPNOTSUPP)
9679 			return err;
9680 	}
9681 	return devlink_compat_phys_port_name_get(dev, name, len);
9682 }
9683 
9684 /**
9685  *	dev_get_port_parent_id - Get the device's port parent identifier
9686  *	@dev: network device
9687  *	@ppid: pointer to a storage for the port's parent identifier
9688  *	@recurse: allow/disallow recursion to lower devices
9689  *
9690  *	Get the devices's port parent identifier
9691  */
9692 int dev_get_port_parent_id(struct net_device *dev,
9693 			   struct netdev_phys_item_id *ppid,
9694 			   bool recurse)
9695 {
9696 	const struct net_device_ops *ops = dev->netdev_ops;
9697 	struct netdev_phys_item_id first = { };
9698 	struct net_device *lower_dev;
9699 	struct list_head *iter;
9700 	int err;
9701 
9702 	if (ops->ndo_get_port_parent_id) {
9703 		err = ops->ndo_get_port_parent_id(dev, ppid);
9704 		if (err != -EOPNOTSUPP)
9705 			return err;
9706 	}
9707 
9708 	err = devlink_compat_switch_id_get(dev, ppid);
9709 	if (!recurse || err != -EOPNOTSUPP)
9710 		return err;
9711 
9712 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9713 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9714 		if (err)
9715 			break;
9716 		if (!first.id_len)
9717 			first = *ppid;
9718 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9719 			return -EOPNOTSUPP;
9720 	}
9721 
9722 	return err;
9723 }
9724 EXPORT_SYMBOL(dev_get_port_parent_id);
9725 
9726 /**
9727  *	netdev_port_same_parent_id - Indicate if two network devices have
9728  *	the same port parent identifier
9729  *	@a: first network device
9730  *	@b: second network device
9731  */
9732 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9733 {
9734 	struct netdev_phys_item_id a_id = { };
9735 	struct netdev_phys_item_id b_id = { };
9736 
9737 	if (dev_get_port_parent_id(a, &a_id, true) ||
9738 	    dev_get_port_parent_id(b, &b_id, true))
9739 		return false;
9740 
9741 	return netdev_phys_item_id_same(&a_id, &b_id);
9742 }
9743 EXPORT_SYMBOL(netdev_port_same_parent_id);
9744 
9745 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9746 {
9747 	if (!dev->change_proto_down)
9748 		return -EOPNOTSUPP;
9749 	if (!netif_device_present(dev))
9750 		return -ENODEV;
9751 	if (proto_down)
9752 		netif_carrier_off(dev);
9753 	else
9754 		netif_carrier_on(dev);
9755 	WRITE_ONCE(dev->proto_down, proto_down);
9756 	return 0;
9757 }
9758 
9759 /**
9760  *	netdev_change_proto_down_reason_locked - proto down reason
9761  *
9762  *	@dev: device
9763  *	@mask: proto down mask
9764  *	@value: proto down value
9765  */
9766 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9767 					    unsigned long mask, u32 value)
9768 {
9769 	u32 proto_down_reason;
9770 	int b;
9771 
9772 	if (!mask) {
9773 		proto_down_reason = value;
9774 	} else {
9775 		proto_down_reason = dev->proto_down_reason;
9776 		for_each_set_bit(b, &mask, 32) {
9777 			if (value & (1 << b))
9778 				proto_down_reason |= BIT(b);
9779 			else
9780 				proto_down_reason &= ~BIT(b);
9781 		}
9782 	}
9783 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9784 }
9785 
9786 struct bpf_xdp_link {
9787 	struct bpf_link link;
9788 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9789 	int flags;
9790 };
9791 
9792 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9793 {
9794 	if (flags & XDP_FLAGS_HW_MODE)
9795 		return XDP_MODE_HW;
9796 	if (flags & XDP_FLAGS_DRV_MODE)
9797 		return XDP_MODE_DRV;
9798 	if (flags & XDP_FLAGS_SKB_MODE)
9799 		return XDP_MODE_SKB;
9800 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9801 }
9802 
9803 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9804 {
9805 	switch (mode) {
9806 	case XDP_MODE_SKB:
9807 		return generic_xdp_install;
9808 	case XDP_MODE_DRV:
9809 	case XDP_MODE_HW:
9810 		return dev->netdev_ops->ndo_bpf;
9811 	default:
9812 		return NULL;
9813 	}
9814 }
9815 
9816 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9817 					 enum bpf_xdp_mode mode)
9818 {
9819 	return dev->xdp_state[mode].link;
9820 }
9821 
9822 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9823 				     enum bpf_xdp_mode mode)
9824 {
9825 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9826 
9827 	if (link)
9828 		return link->link.prog;
9829 	return dev->xdp_state[mode].prog;
9830 }
9831 
9832 u8 dev_xdp_prog_count(struct net_device *dev)
9833 {
9834 	u8 count = 0;
9835 	int i;
9836 
9837 	for (i = 0; i < __MAX_XDP_MODE; i++)
9838 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9839 			count++;
9840 	return count;
9841 }
9842 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9843 
9844 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9845 {
9846 	u8 count = 0;
9847 	int i;
9848 
9849 	for (i = 0; i < __MAX_XDP_MODE; i++)
9850 		if (dev->xdp_state[i].prog &&
9851 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
9852 			count++;
9853 	return count;
9854 }
9855 
9856 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9857 {
9858 	if (!dev->netdev_ops->ndo_bpf)
9859 		return -EOPNOTSUPP;
9860 
9861 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9862 	    bpf->command == XDP_SETUP_PROG &&
9863 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9864 		NL_SET_ERR_MSG(bpf->extack,
9865 			       "unable to propagate XDP to device using tcp-data-split");
9866 		return -EBUSY;
9867 	}
9868 
9869 	if (dev_get_min_mp_channel_count(dev)) {
9870 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9871 		return -EBUSY;
9872 	}
9873 
9874 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9875 }
9876 
9877 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9878 {
9879 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9880 
9881 	return prog ? prog->aux->id : 0;
9882 }
9883 
9884 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9885 			     struct bpf_xdp_link *link)
9886 {
9887 	dev->xdp_state[mode].link = link;
9888 	dev->xdp_state[mode].prog = NULL;
9889 }
9890 
9891 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9892 			     struct bpf_prog *prog)
9893 {
9894 	dev->xdp_state[mode].link = NULL;
9895 	dev->xdp_state[mode].prog = prog;
9896 }
9897 
9898 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9899 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9900 			   u32 flags, struct bpf_prog *prog)
9901 {
9902 	struct netdev_bpf xdp;
9903 	int err;
9904 
9905 	netdev_ops_assert_locked(dev);
9906 
9907 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9908 	    prog && !prog->aux->xdp_has_frags) {
9909 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9910 		return -EBUSY;
9911 	}
9912 
9913 	if (dev_get_min_mp_channel_count(dev)) {
9914 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9915 		return -EBUSY;
9916 	}
9917 
9918 	memset(&xdp, 0, sizeof(xdp));
9919 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9920 	xdp.extack = extack;
9921 	xdp.flags = flags;
9922 	xdp.prog = prog;
9923 
9924 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9925 	 * "moved" into driver), so they don't increment it on their own, but
9926 	 * they do decrement refcnt when program is detached or replaced.
9927 	 * Given net_device also owns link/prog, we need to bump refcnt here
9928 	 * to prevent drivers from underflowing it.
9929 	 */
9930 	if (prog)
9931 		bpf_prog_inc(prog);
9932 	err = bpf_op(dev, &xdp);
9933 	if (err) {
9934 		if (prog)
9935 			bpf_prog_put(prog);
9936 		return err;
9937 	}
9938 
9939 	if (mode != XDP_MODE_HW)
9940 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9941 
9942 	return 0;
9943 }
9944 
9945 static void dev_xdp_uninstall(struct net_device *dev)
9946 {
9947 	struct bpf_xdp_link *link;
9948 	struct bpf_prog *prog;
9949 	enum bpf_xdp_mode mode;
9950 	bpf_op_t bpf_op;
9951 
9952 	ASSERT_RTNL();
9953 
9954 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9955 		prog = dev_xdp_prog(dev, mode);
9956 		if (!prog)
9957 			continue;
9958 
9959 		bpf_op = dev_xdp_bpf_op(dev, mode);
9960 		if (!bpf_op)
9961 			continue;
9962 
9963 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9964 
9965 		/* auto-detach link from net device */
9966 		link = dev_xdp_link(dev, mode);
9967 		if (link)
9968 			link->dev = NULL;
9969 		else
9970 			bpf_prog_put(prog);
9971 
9972 		dev_xdp_set_link(dev, mode, NULL);
9973 	}
9974 }
9975 
9976 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9977 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9978 			  struct bpf_prog *old_prog, u32 flags)
9979 {
9980 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9981 	struct bpf_prog *cur_prog;
9982 	struct net_device *upper;
9983 	struct list_head *iter;
9984 	enum bpf_xdp_mode mode;
9985 	bpf_op_t bpf_op;
9986 	int err;
9987 
9988 	ASSERT_RTNL();
9989 
9990 	/* either link or prog attachment, never both */
9991 	if (link && (new_prog || old_prog))
9992 		return -EINVAL;
9993 	/* link supports only XDP mode flags */
9994 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9995 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9996 		return -EINVAL;
9997 	}
9998 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9999 	if (num_modes > 1) {
10000 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10001 		return -EINVAL;
10002 	}
10003 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10004 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10005 		NL_SET_ERR_MSG(extack,
10006 			       "More than one program loaded, unset mode is ambiguous");
10007 		return -EINVAL;
10008 	}
10009 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10010 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10011 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10012 		return -EINVAL;
10013 	}
10014 
10015 	mode = dev_xdp_mode(dev, flags);
10016 	/* can't replace attached link */
10017 	if (dev_xdp_link(dev, mode)) {
10018 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10019 		return -EBUSY;
10020 	}
10021 
10022 	/* don't allow if an upper device already has a program */
10023 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10024 		if (dev_xdp_prog_count(upper) > 0) {
10025 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10026 			return -EEXIST;
10027 		}
10028 	}
10029 
10030 	cur_prog = dev_xdp_prog(dev, mode);
10031 	/* can't replace attached prog with link */
10032 	if (link && cur_prog) {
10033 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10034 		return -EBUSY;
10035 	}
10036 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10037 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10038 		return -EEXIST;
10039 	}
10040 
10041 	/* put effective new program into new_prog */
10042 	if (link)
10043 		new_prog = link->link.prog;
10044 
10045 	if (new_prog) {
10046 		bool offload = mode == XDP_MODE_HW;
10047 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10048 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10049 
10050 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10051 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10052 			return -EBUSY;
10053 		}
10054 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10055 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10056 			return -EEXIST;
10057 		}
10058 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10059 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10060 			return -EINVAL;
10061 		}
10062 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10063 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10064 			return -EINVAL;
10065 		}
10066 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10067 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10068 			return -EINVAL;
10069 		}
10070 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10071 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10072 			return -EINVAL;
10073 		}
10074 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10075 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10076 			return -EINVAL;
10077 		}
10078 	}
10079 
10080 	/* don't call drivers if the effective program didn't change */
10081 	if (new_prog != cur_prog) {
10082 		bpf_op = dev_xdp_bpf_op(dev, mode);
10083 		if (!bpf_op) {
10084 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10085 			return -EOPNOTSUPP;
10086 		}
10087 
10088 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10089 		if (err)
10090 			return err;
10091 	}
10092 
10093 	if (link)
10094 		dev_xdp_set_link(dev, mode, link);
10095 	else
10096 		dev_xdp_set_prog(dev, mode, new_prog);
10097 	if (cur_prog)
10098 		bpf_prog_put(cur_prog);
10099 
10100 	return 0;
10101 }
10102 
10103 static int dev_xdp_attach_link(struct net_device *dev,
10104 			       struct netlink_ext_ack *extack,
10105 			       struct bpf_xdp_link *link)
10106 {
10107 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10108 }
10109 
10110 static int dev_xdp_detach_link(struct net_device *dev,
10111 			       struct netlink_ext_ack *extack,
10112 			       struct bpf_xdp_link *link)
10113 {
10114 	enum bpf_xdp_mode mode;
10115 	bpf_op_t bpf_op;
10116 
10117 	ASSERT_RTNL();
10118 
10119 	mode = dev_xdp_mode(dev, link->flags);
10120 	if (dev_xdp_link(dev, mode) != link)
10121 		return -EINVAL;
10122 
10123 	bpf_op = dev_xdp_bpf_op(dev, mode);
10124 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10125 	dev_xdp_set_link(dev, mode, NULL);
10126 	return 0;
10127 }
10128 
10129 static void bpf_xdp_link_release(struct bpf_link *link)
10130 {
10131 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10132 
10133 	rtnl_lock();
10134 
10135 	/* if racing with net_device's tear down, xdp_link->dev might be
10136 	 * already NULL, in which case link was already auto-detached
10137 	 */
10138 	if (xdp_link->dev) {
10139 		netdev_lock_ops(xdp_link->dev);
10140 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10141 		netdev_unlock_ops(xdp_link->dev);
10142 		xdp_link->dev = NULL;
10143 	}
10144 
10145 	rtnl_unlock();
10146 }
10147 
10148 static int bpf_xdp_link_detach(struct bpf_link *link)
10149 {
10150 	bpf_xdp_link_release(link);
10151 	return 0;
10152 }
10153 
10154 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10155 {
10156 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10157 
10158 	kfree(xdp_link);
10159 }
10160 
10161 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10162 				     struct seq_file *seq)
10163 {
10164 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10165 	u32 ifindex = 0;
10166 
10167 	rtnl_lock();
10168 	if (xdp_link->dev)
10169 		ifindex = xdp_link->dev->ifindex;
10170 	rtnl_unlock();
10171 
10172 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10173 }
10174 
10175 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10176 				       struct bpf_link_info *info)
10177 {
10178 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10179 	u32 ifindex = 0;
10180 
10181 	rtnl_lock();
10182 	if (xdp_link->dev)
10183 		ifindex = xdp_link->dev->ifindex;
10184 	rtnl_unlock();
10185 
10186 	info->xdp.ifindex = ifindex;
10187 	return 0;
10188 }
10189 
10190 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10191 			       struct bpf_prog *old_prog)
10192 {
10193 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10194 	enum bpf_xdp_mode mode;
10195 	bpf_op_t bpf_op;
10196 	int err = 0;
10197 
10198 	rtnl_lock();
10199 
10200 	/* link might have been auto-released already, so fail */
10201 	if (!xdp_link->dev) {
10202 		err = -ENOLINK;
10203 		goto out_unlock;
10204 	}
10205 
10206 	if (old_prog && link->prog != old_prog) {
10207 		err = -EPERM;
10208 		goto out_unlock;
10209 	}
10210 	old_prog = link->prog;
10211 	if (old_prog->type != new_prog->type ||
10212 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10213 		err = -EINVAL;
10214 		goto out_unlock;
10215 	}
10216 
10217 	if (old_prog == new_prog) {
10218 		/* no-op, don't disturb drivers */
10219 		bpf_prog_put(new_prog);
10220 		goto out_unlock;
10221 	}
10222 
10223 	netdev_lock_ops(xdp_link->dev);
10224 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10225 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10226 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10227 			      xdp_link->flags, new_prog);
10228 	netdev_unlock_ops(xdp_link->dev);
10229 	if (err)
10230 		goto out_unlock;
10231 
10232 	old_prog = xchg(&link->prog, new_prog);
10233 	bpf_prog_put(old_prog);
10234 
10235 out_unlock:
10236 	rtnl_unlock();
10237 	return err;
10238 }
10239 
10240 static const struct bpf_link_ops bpf_xdp_link_lops = {
10241 	.release = bpf_xdp_link_release,
10242 	.dealloc = bpf_xdp_link_dealloc,
10243 	.detach = bpf_xdp_link_detach,
10244 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10245 	.fill_link_info = bpf_xdp_link_fill_link_info,
10246 	.update_prog = bpf_xdp_link_update,
10247 };
10248 
10249 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10250 {
10251 	struct net *net = current->nsproxy->net_ns;
10252 	struct bpf_link_primer link_primer;
10253 	struct netlink_ext_ack extack = {};
10254 	struct bpf_xdp_link *link;
10255 	struct net_device *dev;
10256 	int err, fd;
10257 
10258 	rtnl_lock();
10259 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10260 	if (!dev) {
10261 		rtnl_unlock();
10262 		return -EINVAL;
10263 	}
10264 
10265 	link = kzalloc(sizeof(*link), GFP_USER);
10266 	if (!link) {
10267 		err = -ENOMEM;
10268 		goto unlock;
10269 	}
10270 
10271 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10272 	link->dev = dev;
10273 	link->flags = attr->link_create.flags;
10274 
10275 	err = bpf_link_prime(&link->link, &link_primer);
10276 	if (err) {
10277 		kfree(link);
10278 		goto unlock;
10279 	}
10280 
10281 	netdev_lock_ops(dev);
10282 	err = dev_xdp_attach_link(dev, &extack, link);
10283 	netdev_unlock_ops(dev);
10284 	rtnl_unlock();
10285 
10286 	if (err) {
10287 		link->dev = NULL;
10288 		bpf_link_cleanup(&link_primer);
10289 		trace_bpf_xdp_link_attach_failed(extack._msg);
10290 		goto out_put_dev;
10291 	}
10292 
10293 	fd = bpf_link_settle(&link_primer);
10294 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10295 	dev_put(dev);
10296 	return fd;
10297 
10298 unlock:
10299 	rtnl_unlock();
10300 
10301 out_put_dev:
10302 	dev_put(dev);
10303 	return err;
10304 }
10305 
10306 /**
10307  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10308  *	@dev: device
10309  *	@extack: netlink extended ack
10310  *	@fd: new program fd or negative value to clear
10311  *	@expected_fd: old program fd that userspace expects to replace or clear
10312  *	@flags: xdp-related flags
10313  *
10314  *	Set or clear a bpf program for a device
10315  */
10316 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10317 		      int fd, int expected_fd, u32 flags)
10318 {
10319 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10320 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10321 	int err;
10322 
10323 	ASSERT_RTNL();
10324 
10325 	if (fd >= 0) {
10326 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10327 						 mode != XDP_MODE_SKB);
10328 		if (IS_ERR(new_prog))
10329 			return PTR_ERR(new_prog);
10330 	}
10331 
10332 	if (expected_fd >= 0) {
10333 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10334 						 mode != XDP_MODE_SKB);
10335 		if (IS_ERR(old_prog)) {
10336 			err = PTR_ERR(old_prog);
10337 			old_prog = NULL;
10338 			goto err_out;
10339 		}
10340 	}
10341 
10342 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10343 
10344 err_out:
10345 	if (err && new_prog)
10346 		bpf_prog_put(new_prog);
10347 	if (old_prog)
10348 		bpf_prog_put(old_prog);
10349 	return err;
10350 }
10351 
10352 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10353 {
10354 	int i;
10355 
10356 	netdev_ops_assert_locked(dev);
10357 
10358 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10359 		if (dev->_rx[i].mp_params.mp_priv)
10360 			/* The channel count is the idx plus 1. */
10361 			return i + 1;
10362 
10363 	return 0;
10364 }
10365 
10366 /**
10367  * dev_index_reserve() - allocate an ifindex in a namespace
10368  * @net: the applicable net namespace
10369  * @ifindex: requested ifindex, pass %0 to get one allocated
10370  *
10371  * Allocate a ifindex for a new device. Caller must either use the ifindex
10372  * to store the device (via list_netdevice()) or call dev_index_release()
10373  * to give the index up.
10374  *
10375  * Return: a suitable unique value for a new device interface number or -errno.
10376  */
10377 static int dev_index_reserve(struct net *net, u32 ifindex)
10378 {
10379 	int err;
10380 
10381 	if (ifindex > INT_MAX) {
10382 		DEBUG_NET_WARN_ON_ONCE(1);
10383 		return -EINVAL;
10384 	}
10385 
10386 	if (!ifindex)
10387 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10388 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10389 	else
10390 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10391 	if (err < 0)
10392 		return err;
10393 
10394 	return ifindex;
10395 }
10396 
10397 static void dev_index_release(struct net *net, int ifindex)
10398 {
10399 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10400 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10401 }
10402 
10403 static bool from_cleanup_net(void)
10404 {
10405 #ifdef CONFIG_NET_NS
10406 	return current == cleanup_net_task;
10407 #else
10408 	return false;
10409 #endif
10410 }
10411 
10412 /* Delayed registration/unregisteration */
10413 LIST_HEAD(net_todo_list);
10414 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10415 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10416 
10417 static void net_set_todo(struct net_device *dev)
10418 {
10419 	list_add_tail(&dev->todo_list, &net_todo_list);
10420 }
10421 
10422 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10423 	struct net_device *upper, netdev_features_t features)
10424 {
10425 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10426 	netdev_features_t feature;
10427 	int feature_bit;
10428 
10429 	for_each_netdev_feature(upper_disables, feature_bit) {
10430 		feature = __NETIF_F_BIT(feature_bit);
10431 		if (!(upper->wanted_features & feature)
10432 		    && (features & feature)) {
10433 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10434 				   &feature, upper->name);
10435 			features &= ~feature;
10436 		}
10437 	}
10438 
10439 	return features;
10440 }
10441 
10442 static void netdev_sync_lower_features(struct net_device *upper,
10443 	struct net_device *lower, netdev_features_t features)
10444 {
10445 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10446 	netdev_features_t feature;
10447 	int feature_bit;
10448 
10449 	for_each_netdev_feature(upper_disables, feature_bit) {
10450 		feature = __NETIF_F_BIT(feature_bit);
10451 		if (!(features & feature) && (lower->features & feature)) {
10452 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10453 				   &feature, lower->name);
10454 			lower->wanted_features &= ~feature;
10455 			__netdev_update_features(lower);
10456 
10457 			if (unlikely(lower->features & feature))
10458 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10459 					    &feature, lower->name);
10460 			else
10461 				netdev_features_change(lower);
10462 		}
10463 	}
10464 }
10465 
10466 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10467 {
10468 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10469 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10470 	bool hw_csum = features & NETIF_F_HW_CSUM;
10471 
10472 	return ip_csum || hw_csum;
10473 }
10474 
10475 static netdev_features_t netdev_fix_features(struct net_device *dev,
10476 	netdev_features_t features)
10477 {
10478 	/* Fix illegal checksum combinations */
10479 	if ((features & NETIF_F_HW_CSUM) &&
10480 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10481 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10482 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10483 	}
10484 
10485 	/* TSO requires that SG is present as well. */
10486 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10487 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10488 		features &= ~NETIF_F_ALL_TSO;
10489 	}
10490 
10491 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10492 					!(features & NETIF_F_IP_CSUM)) {
10493 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10494 		features &= ~NETIF_F_TSO;
10495 		features &= ~NETIF_F_TSO_ECN;
10496 	}
10497 
10498 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10499 					 !(features & NETIF_F_IPV6_CSUM)) {
10500 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10501 		features &= ~NETIF_F_TSO6;
10502 	}
10503 
10504 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10505 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10506 		features &= ~NETIF_F_TSO_MANGLEID;
10507 
10508 	/* TSO ECN requires that TSO is present as well. */
10509 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10510 		features &= ~NETIF_F_TSO_ECN;
10511 
10512 	/* Software GSO depends on SG. */
10513 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10514 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10515 		features &= ~NETIF_F_GSO;
10516 	}
10517 
10518 	/* GSO partial features require GSO partial be set */
10519 	if ((features & dev->gso_partial_features) &&
10520 	    !(features & NETIF_F_GSO_PARTIAL)) {
10521 		netdev_dbg(dev,
10522 			   "Dropping partially supported GSO features since no GSO partial.\n");
10523 		features &= ~dev->gso_partial_features;
10524 	}
10525 
10526 	if (!(features & NETIF_F_RXCSUM)) {
10527 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10528 		 * successfully merged by hardware must also have the
10529 		 * checksum verified by hardware.  If the user does not
10530 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10531 		 */
10532 		if (features & NETIF_F_GRO_HW) {
10533 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10534 			features &= ~NETIF_F_GRO_HW;
10535 		}
10536 	}
10537 
10538 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10539 	if (features & NETIF_F_RXFCS) {
10540 		if (features & NETIF_F_LRO) {
10541 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10542 			features &= ~NETIF_F_LRO;
10543 		}
10544 
10545 		if (features & NETIF_F_GRO_HW) {
10546 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10547 			features &= ~NETIF_F_GRO_HW;
10548 		}
10549 	}
10550 
10551 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10552 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10553 		features &= ~NETIF_F_LRO;
10554 	}
10555 
10556 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10557 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10558 		features &= ~NETIF_F_HW_TLS_TX;
10559 	}
10560 
10561 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10562 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10563 		features &= ~NETIF_F_HW_TLS_RX;
10564 	}
10565 
10566 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10567 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10568 		features &= ~NETIF_F_GSO_UDP_L4;
10569 	}
10570 
10571 	return features;
10572 }
10573 
10574 int __netdev_update_features(struct net_device *dev)
10575 {
10576 	struct net_device *upper, *lower;
10577 	netdev_features_t features;
10578 	struct list_head *iter;
10579 	int err = -1;
10580 
10581 	ASSERT_RTNL();
10582 	netdev_ops_assert_locked(dev);
10583 
10584 	features = netdev_get_wanted_features(dev);
10585 
10586 	if (dev->netdev_ops->ndo_fix_features)
10587 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10588 
10589 	/* driver might be less strict about feature dependencies */
10590 	features = netdev_fix_features(dev, features);
10591 
10592 	/* some features can't be enabled if they're off on an upper device */
10593 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10594 		features = netdev_sync_upper_features(dev, upper, features);
10595 
10596 	if (dev->features == features)
10597 		goto sync_lower;
10598 
10599 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10600 		&dev->features, &features);
10601 
10602 	if (dev->netdev_ops->ndo_set_features)
10603 		err = dev->netdev_ops->ndo_set_features(dev, features);
10604 	else
10605 		err = 0;
10606 
10607 	if (unlikely(err < 0)) {
10608 		netdev_err(dev,
10609 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10610 			err, &features, &dev->features);
10611 		/* return non-0 since some features might have changed and
10612 		 * it's better to fire a spurious notification than miss it
10613 		 */
10614 		return -1;
10615 	}
10616 
10617 sync_lower:
10618 	/* some features must be disabled on lower devices when disabled
10619 	 * on an upper device (think: bonding master or bridge)
10620 	 */
10621 	netdev_for_each_lower_dev(dev, lower, iter)
10622 		netdev_sync_lower_features(dev, lower, features);
10623 
10624 	if (!err) {
10625 		netdev_features_t diff = features ^ dev->features;
10626 
10627 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10628 			/* udp_tunnel_{get,drop}_rx_info both need
10629 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10630 			 * device, or they won't do anything.
10631 			 * Thus we need to update dev->features
10632 			 * *before* calling udp_tunnel_get_rx_info,
10633 			 * but *after* calling udp_tunnel_drop_rx_info.
10634 			 */
10635 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10636 				dev->features = features;
10637 				udp_tunnel_get_rx_info(dev);
10638 			} else {
10639 				udp_tunnel_drop_rx_info(dev);
10640 			}
10641 		}
10642 
10643 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10644 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10645 				dev->features = features;
10646 				err |= vlan_get_rx_ctag_filter_info(dev);
10647 			} else {
10648 				vlan_drop_rx_ctag_filter_info(dev);
10649 			}
10650 		}
10651 
10652 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10653 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10654 				dev->features = features;
10655 				err |= vlan_get_rx_stag_filter_info(dev);
10656 			} else {
10657 				vlan_drop_rx_stag_filter_info(dev);
10658 			}
10659 		}
10660 
10661 		dev->features = features;
10662 	}
10663 
10664 	return err < 0 ? 0 : 1;
10665 }
10666 
10667 /**
10668  *	netdev_update_features - recalculate device features
10669  *	@dev: the device to check
10670  *
10671  *	Recalculate dev->features set and send notifications if it
10672  *	has changed. Should be called after driver or hardware dependent
10673  *	conditions might have changed that influence the features.
10674  */
10675 void netdev_update_features(struct net_device *dev)
10676 {
10677 	if (__netdev_update_features(dev))
10678 		netdev_features_change(dev);
10679 }
10680 EXPORT_SYMBOL(netdev_update_features);
10681 
10682 /**
10683  *	netdev_change_features - recalculate device features
10684  *	@dev: the device to check
10685  *
10686  *	Recalculate dev->features set and send notifications even
10687  *	if they have not changed. Should be called instead of
10688  *	netdev_update_features() if also dev->vlan_features might
10689  *	have changed to allow the changes to be propagated to stacked
10690  *	VLAN devices.
10691  */
10692 void netdev_change_features(struct net_device *dev)
10693 {
10694 	__netdev_update_features(dev);
10695 	netdev_features_change(dev);
10696 }
10697 EXPORT_SYMBOL(netdev_change_features);
10698 
10699 /**
10700  *	netif_stacked_transfer_operstate -	transfer operstate
10701  *	@rootdev: the root or lower level device to transfer state from
10702  *	@dev: the device to transfer operstate to
10703  *
10704  *	Transfer operational state from root to device. This is normally
10705  *	called when a stacking relationship exists between the root
10706  *	device and the device(a leaf device).
10707  */
10708 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10709 					struct net_device *dev)
10710 {
10711 	if (rootdev->operstate == IF_OPER_DORMANT)
10712 		netif_dormant_on(dev);
10713 	else
10714 		netif_dormant_off(dev);
10715 
10716 	if (rootdev->operstate == IF_OPER_TESTING)
10717 		netif_testing_on(dev);
10718 	else
10719 		netif_testing_off(dev);
10720 
10721 	if (netif_carrier_ok(rootdev))
10722 		netif_carrier_on(dev);
10723 	else
10724 		netif_carrier_off(dev);
10725 }
10726 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10727 
10728 static int netif_alloc_rx_queues(struct net_device *dev)
10729 {
10730 	unsigned int i, count = dev->num_rx_queues;
10731 	struct netdev_rx_queue *rx;
10732 	size_t sz = count * sizeof(*rx);
10733 	int err = 0;
10734 
10735 	BUG_ON(count < 1);
10736 
10737 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10738 	if (!rx)
10739 		return -ENOMEM;
10740 
10741 	dev->_rx = rx;
10742 
10743 	for (i = 0; i < count; i++) {
10744 		rx[i].dev = dev;
10745 
10746 		/* XDP RX-queue setup */
10747 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10748 		if (err < 0)
10749 			goto err_rxq_info;
10750 	}
10751 	return 0;
10752 
10753 err_rxq_info:
10754 	/* Rollback successful reg's and free other resources */
10755 	while (i--)
10756 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10757 	kvfree(dev->_rx);
10758 	dev->_rx = NULL;
10759 	return err;
10760 }
10761 
10762 static void netif_free_rx_queues(struct net_device *dev)
10763 {
10764 	unsigned int i, count = dev->num_rx_queues;
10765 
10766 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10767 	if (!dev->_rx)
10768 		return;
10769 
10770 	for (i = 0; i < count; i++)
10771 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10772 
10773 	kvfree(dev->_rx);
10774 }
10775 
10776 static void netdev_init_one_queue(struct net_device *dev,
10777 				  struct netdev_queue *queue, void *_unused)
10778 {
10779 	/* Initialize queue lock */
10780 	spin_lock_init(&queue->_xmit_lock);
10781 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10782 	queue->xmit_lock_owner = -1;
10783 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10784 	queue->dev = dev;
10785 #ifdef CONFIG_BQL
10786 	dql_init(&queue->dql, HZ);
10787 #endif
10788 }
10789 
10790 static void netif_free_tx_queues(struct net_device *dev)
10791 {
10792 	kvfree(dev->_tx);
10793 }
10794 
10795 static int netif_alloc_netdev_queues(struct net_device *dev)
10796 {
10797 	unsigned int count = dev->num_tx_queues;
10798 	struct netdev_queue *tx;
10799 	size_t sz = count * sizeof(*tx);
10800 
10801 	if (count < 1 || count > 0xffff)
10802 		return -EINVAL;
10803 
10804 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10805 	if (!tx)
10806 		return -ENOMEM;
10807 
10808 	dev->_tx = tx;
10809 
10810 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10811 	spin_lock_init(&dev->tx_global_lock);
10812 
10813 	return 0;
10814 }
10815 
10816 void netif_tx_stop_all_queues(struct net_device *dev)
10817 {
10818 	unsigned int i;
10819 
10820 	for (i = 0; i < dev->num_tx_queues; i++) {
10821 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10822 
10823 		netif_tx_stop_queue(txq);
10824 	}
10825 }
10826 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10827 
10828 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10829 {
10830 	void __percpu *v;
10831 
10832 	/* Drivers implementing ndo_get_peer_dev must support tstat
10833 	 * accounting, so that skb_do_redirect() can bump the dev's
10834 	 * RX stats upon network namespace switch.
10835 	 */
10836 	if (dev->netdev_ops->ndo_get_peer_dev &&
10837 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10838 		return -EOPNOTSUPP;
10839 
10840 	switch (dev->pcpu_stat_type) {
10841 	case NETDEV_PCPU_STAT_NONE:
10842 		return 0;
10843 	case NETDEV_PCPU_STAT_LSTATS:
10844 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10845 		break;
10846 	case NETDEV_PCPU_STAT_TSTATS:
10847 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10848 		break;
10849 	case NETDEV_PCPU_STAT_DSTATS:
10850 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10851 		break;
10852 	default:
10853 		return -EINVAL;
10854 	}
10855 
10856 	return v ? 0 : -ENOMEM;
10857 }
10858 
10859 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10860 {
10861 	switch (dev->pcpu_stat_type) {
10862 	case NETDEV_PCPU_STAT_NONE:
10863 		return;
10864 	case NETDEV_PCPU_STAT_LSTATS:
10865 		free_percpu(dev->lstats);
10866 		break;
10867 	case NETDEV_PCPU_STAT_TSTATS:
10868 		free_percpu(dev->tstats);
10869 		break;
10870 	case NETDEV_PCPU_STAT_DSTATS:
10871 		free_percpu(dev->dstats);
10872 		break;
10873 	}
10874 }
10875 
10876 static void netdev_free_phy_link_topology(struct net_device *dev)
10877 {
10878 	struct phy_link_topology *topo = dev->link_topo;
10879 
10880 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10881 		xa_destroy(&topo->phys);
10882 		kfree(topo);
10883 		dev->link_topo = NULL;
10884 	}
10885 }
10886 
10887 /**
10888  * register_netdevice() - register a network device
10889  * @dev: device to register
10890  *
10891  * Take a prepared network device structure and make it externally accessible.
10892  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10893  * Callers must hold the rtnl lock - you may want register_netdev()
10894  * instead of this.
10895  */
10896 int register_netdevice(struct net_device *dev)
10897 {
10898 	int ret;
10899 	struct net *net = dev_net(dev);
10900 
10901 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10902 		     NETDEV_FEATURE_COUNT);
10903 	BUG_ON(dev_boot_phase);
10904 	ASSERT_RTNL();
10905 
10906 	might_sleep();
10907 
10908 	/* When net_device's are persistent, this will be fatal. */
10909 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10910 	BUG_ON(!net);
10911 
10912 	ret = ethtool_check_ops(dev->ethtool_ops);
10913 	if (ret)
10914 		return ret;
10915 
10916 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10917 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10918 	mutex_init(&dev->ethtool->rss_lock);
10919 
10920 	spin_lock_init(&dev->addr_list_lock);
10921 	netdev_set_addr_lockdep_class(dev);
10922 
10923 	ret = dev_get_valid_name(net, dev, dev->name);
10924 	if (ret < 0)
10925 		goto out;
10926 
10927 	ret = -ENOMEM;
10928 	dev->name_node = netdev_name_node_head_alloc(dev);
10929 	if (!dev->name_node)
10930 		goto out;
10931 
10932 	/* Init, if this function is available */
10933 	if (dev->netdev_ops->ndo_init) {
10934 		ret = dev->netdev_ops->ndo_init(dev);
10935 		if (ret) {
10936 			if (ret > 0)
10937 				ret = -EIO;
10938 			goto err_free_name;
10939 		}
10940 	}
10941 
10942 	if (((dev->hw_features | dev->features) &
10943 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10944 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10945 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10946 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10947 		ret = -EINVAL;
10948 		goto err_uninit;
10949 	}
10950 
10951 	ret = netdev_do_alloc_pcpu_stats(dev);
10952 	if (ret)
10953 		goto err_uninit;
10954 
10955 	ret = dev_index_reserve(net, dev->ifindex);
10956 	if (ret < 0)
10957 		goto err_free_pcpu;
10958 	dev->ifindex = ret;
10959 
10960 	/* Transfer changeable features to wanted_features and enable
10961 	 * software offloads (GSO and GRO).
10962 	 */
10963 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10964 	dev->features |= NETIF_F_SOFT_FEATURES;
10965 
10966 	if (dev->udp_tunnel_nic_info) {
10967 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10968 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10969 	}
10970 
10971 	dev->wanted_features = dev->features & dev->hw_features;
10972 
10973 	if (!(dev->flags & IFF_LOOPBACK))
10974 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10975 
10976 	/* If IPv4 TCP segmentation offload is supported we should also
10977 	 * allow the device to enable segmenting the frame with the option
10978 	 * of ignoring a static IP ID value.  This doesn't enable the
10979 	 * feature itself but allows the user to enable it later.
10980 	 */
10981 	if (dev->hw_features & NETIF_F_TSO)
10982 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10983 	if (dev->vlan_features & NETIF_F_TSO)
10984 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10985 	if (dev->mpls_features & NETIF_F_TSO)
10986 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10987 	if (dev->hw_enc_features & NETIF_F_TSO)
10988 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10989 
10990 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10991 	 */
10992 	dev->vlan_features |= NETIF_F_HIGHDMA;
10993 
10994 	/* Make NETIF_F_SG inheritable to tunnel devices.
10995 	 */
10996 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10997 
10998 	/* Make NETIF_F_SG inheritable to MPLS.
10999 	 */
11000 	dev->mpls_features |= NETIF_F_SG;
11001 
11002 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11003 	ret = notifier_to_errno(ret);
11004 	if (ret)
11005 		goto err_ifindex_release;
11006 
11007 	ret = netdev_register_kobject(dev);
11008 
11009 	netdev_lock(dev);
11010 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11011 	netdev_unlock(dev);
11012 
11013 	if (ret)
11014 		goto err_uninit_notify;
11015 
11016 	netdev_lock_ops(dev);
11017 	__netdev_update_features(dev);
11018 	netdev_unlock_ops(dev);
11019 
11020 	/*
11021 	 *	Default initial state at registry is that the
11022 	 *	device is present.
11023 	 */
11024 
11025 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11026 
11027 	linkwatch_init_dev(dev);
11028 
11029 	dev_init_scheduler(dev);
11030 
11031 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11032 	list_netdevice(dev);
11033 
11034 	add_device_randomness(dev->dev_addr, dev->addr_len);
11035 
11036 	/* If the device has permanent device address, driver should
11037 	 * set dev_addr and also addr_assign_type should be set to
11038 	 * NET_ADDR_PERM (default value).
11039 	 */
11040 	if (dev->addr_assign_type == NET_ADDR_PERM)
11041 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11042 
11043 	/* Notify protocols, that a new device appeared. */
11044 	netdev_lock_ops(dev);
11045 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11046 	netdev_unlock_ops(dev);
11047 	ret = notifier_to_errno(ret);
11048 	if (ret) {
11049 		/* Expect explicit free_netdev() on failure */
11050 		dev->needs_free_netdev = false;
11051 		unregister_netdevice_queue(dev, NULL);
11052 		goto out;
11053 	}
11054 	/*
11055 	 *	Prevent userspace races by waiting until the network
11056 	 *	device is fully setup before sending notifications.
11057 	 */
11058 	if (!dev->rtnl_link_ops ||
11059 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11060 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11061 
11062 out:
11063 	return ret;
11064 
11065 err_uninit_notify:
11066 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11067 err_ifindex_release:
11068 	dev_index_release(net, dev->ifindex);
11069 err_free_pcpu:
11070 	netdev_do_free_pcpu_stats(dev);
11071 err_uninit:
11072 	if (dev->netdev_ops->ndo_uninit)
11073 		dev->netdev_ops->ndo_uninit(dev);
11074 	if (dev->priv_destructor)
11075 		dev->priv_destructor(dev);
11076 err_free_name:
11077 	netdev_name_node_free(dev->name_node);
11078 	goto out;
11079 }
11080 EXPORT_SYMBOL(register_netdevice);
11081 
11082 /* Initialize the core of a dummy net device.
11083  * The setup steps dummy netdevs need which normal netdevs get by going
11084  * through register_netdevice().
11085  */
11086 static void init_dummy_netdev(struct net_device *dev)
11087 {
11088 	/* make sure we BUG if trying to hit standard
11089 	 * register/unregister code path
11090 	 */
11091 	dev->reg_state = NETREG_DUMMY;
11092 
11093 	/* a dummy interface is started by default */
11094 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11095 	set_bit(__LINK_STATE_START, &dev->state);
11096 
11097 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11098 	 * because users of this 'device' dont need to change
11099 	 * its refcount.
11100 	 */
11101 }
11102 
11103 /**
11104  *	register_netdev	- register a network device
11105  *	@dev: device to register
11106  *
11107  *	Take a completed network device structure and add it to the kernel
11108  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11109  *	chain. 0 is returned on success. A negative errno code is returned
11110  *	on a failure to set up the device, or if the name is a duplicate.
11111  *
11112  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11113  *	and expands the device name if you passed a format string to
11114  *	alloc_netdev.
11115  */
11116 int register_netdev(struct net_device *dev)
11117 {
11118 	struct net *net = dev_net(dev);
11119 	int err;
11120 
11121 	if (rtnl_net_lock_killable(net))
11122 		return -EINTR;
11123 
11124 	err = register_netdevice(dev);
11125 
11126 	rtnl_net_unlock(net);
11127 
11128 	return err;
11129 }
11130 EXPORT_SYMBOL(register_netdev);
11131 
11132 int netdev_refcnt_read(const struct net_device *dev)
11133 {
11134 #ifdef CONFIG_PCPU_DEV_REFCNT
11135 	int i, refcnt = 0;
11136 
11137 	for_each_possible_cpu(i)
11138 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11139 	return refcnt;
11140 #else
11141 	return refcount_read(&dev->dev_refcnt);
11142 #endif
11143 }
11144 EXPORT_SYMBOL(netdev_refcnt_read);
11145 
11146 int netdev_unregister_timeout_secs __read_mostly = 10;
11147 
11148 #define WAIT_REFS_MIN_MSECS 1
11149 #define WAIT_REFS_MAX_MSECS 250
11150 /**
11151  * netdev_wait_allrefs_any - wait until all references are gone.
11152  * @list: list of net_devices to wait on
11153  *
11154  * This is called when unregistering network devices.
11155  *
11156  * Any protocol or device that holds a reference should register
11157  * for netdevice notification, and cleanup and put back the
11158  * reference if they receive an UNREGISTER event.
11159  * We can get stuck here if buggy protocols don't correctly
11160  * call dev_put.
11161  */
11162 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11163 {
11164 	unsigned long rebroadcast_time, warning_time;
11165 	struct net_device *dev;
11166 	int wait = 0;
11167 
11168 	rebroadcast_time = warning_time = jiffies;
11169 
11170 	list_for_each_entry(dev, list, todo_list)
11171 		if (netdev_refcnt_read(dev) == 1)
11172 			return dev;
11173 
11174 	while (true) {
11175 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11176 			rtnl_lock();
11177 
11178 			/* Rebroadcast unregister notification */
11179 			list_for_each_entry(dev, list, todo_list)
11180 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11181 
11182 			__rtnl_unlock();
11183 			rcu_barrier();
11184 			rtnl_lock();
11185 
11186 			list_for_each_entry(dev, list, todo_list)
11187 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11188 					     &dev->state)) {
11189 					/* We must not have linkwatch events
11190 					 * pending on unregister. If this
11191 					 * happens, we simply run the queue
11192 					 * unscheduled, resulting in a noop
11193 					 * for this device.
11194 					 */
11195 					linkwatch_run_queue();
11196 					break;
11197 				}
11198 
11199 			__rtnl_unlock();
11200 
11201 			rebroadcast_time = jiffies;
11202 		}
11203 
11204 		rcu_barrier();
11205 
11206 		if (!wait) {
11207 			wait = WAIT_REFS_MIN_MSECS;
11208 		} else {
11209 			msleep(wait);
11210 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11211 		}
11212 
11213 		list_for_each_entry(dev, list, todo_list)
11214 			if (netdev_refcnt_read(dev) == 1)
11215 				return dev;
11216 
11217 		if (time_after(jiffies, warning_time +
11218 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11219 			list_for_each_entry(dev, list, todo_list) {
11220 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11221 					 dev->name, netdev_refcnt_read(dev));
11222 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11223 			}
11224 
11225 			warning_time = jiffies;
11226 		}
11227 	}
11228 }
11229 
11230 /* The sequence is:
11231  *
11232  *	rtnl_lock();
11233  *	...
11234  *	register_netdevice(x1);
11235  *	register_netdevice(x2);
11236  *	...
11237  *	unregister_netdevice(y1);
11238  *	unregister_netdevice(y2);
11239  *      ...
11240  *	rtnl_unlock();
11241  *	free_netdev(y1);
11242  *	free_netdev(y2);
11243  *
11244  * We are invoked by rtnl_unlock().
11245  * This allows us to deal with problems:
11246  * 1) We can delete sysfs objects which invoke hotplug
11247  *    without deadlocking with linkwatch via keventd.
11248  * 2) Since we run with the RTNL semaphore not held, we can sleep
11249  *    safely in order to wait for the netdev refcnt to drop to zero.
11250  *
11251  * We must not return until all unregister events added during
11252  * the interval the lock was held have been completed.
11253  */
11254 void netdev_run_todo(void)
11255 {
11256 	struct net_device *dev, *tmp;
11257 	struct list_head list;
11258 	int cnt;
11259 #ifdef CONFIG_LOCKDEP
11260 	struct list_head unlink_list;
11261 
11262 	list_replace_init(&net_unlink_list, &unlink_list);
11263 
11264 	while (!list_empty(&unlink_list)) {
11265 		dev = list_first_entry(&unlink_list, struct net_device,
11266 				       unlink_list);
11267 		list_del_init(&dev->unlink_list);
11268 		dev->nested_level = dev->lower_level - 1;
11269 	}
11270 #endif
11271 
11272 	/* Snapshot list, allow later requests */
11273 	list_replace_init(&net_todo_list, &list);
11274 
11275 	__rtnl_unlock();
11276 
11277 	/* Wait for rcu callbacks to finish before next phase */
11278 	if (!list_empty(&list))
11279 		rcu_barrier();
11280 
11281 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11282 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11283 			netdev_WARN(dev, "run_todo but not unregistering\n");
11284 			list_del(&dev->todo_list);
11285 			continue;
11286 		}
11287 
11288 		netdev_lock(dev);
11289 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11290 		netdev_unlock(dev);
11291 		linkwatch_sync_dev(dev);
11292 	}
11293 
11294 	cnt = 0;
11295 	while (!list_empty(&list)) {
11296 		dev = netdev_wait_allrefs_any(&list);
11297 		list_del(&dev->todo_list);
11298 
11299 		/* paranoia */
11300 		BUG_ON(netdev_refcnt_read(dev) != 1);
11301 		BUG_ON(!list_empty(&dev->ptype_all));
11302 		BUG_ON(!list_empty(&dev->ptype_specific));
11303 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11304 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11305 
11306 		netdev_do_free_pcpu_stats(dev);
11307 		if (dev->priv_destructor)
11308 			dev->priv_destructor(dev);
11309 		if (dev->needs_free_netdev)
11310 			free_netdev(dev);
11311 
11312 		cnt++;
11313 
11314 		/* Free network device */
11315 		kobject_put(&dev->dev.kobj);
11316 	}
11317 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11318 		wake_up(&netdev_unregistering_wq);
11319 }
11320 
11321 /* Collate per-cpu network dstats statistics
11322  *
11323  * Read per-cpu network statistics from dev->dstats and populate the related
11324  * fields in @s.
11325  */
11326 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11327 			     const struct pcpu_dstats __percpu *dstats)
11328 {
11329 	int cpu;
11330 
11331 	for_each_possible_cpu(cpu) {
11332 		u64 rx_packets, rx_bytes, rx_drops;
11333 		u64 tx_packets, tx_bytes, tx_drops;
11334 		const struct pcpu_dstats *stats;
11335 		unsigned int start;
11336 
11337 		stats = per_cpu_ptr(dstats, cpu);
11338 		do {
11339 			start = u64_stats_fetch_begin(&stats->syncp);
11340 			rx_packets = u64_stats_read(&stats->rx_packets);
11341 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11342 			rx_drops   = u64_stats_read(&stats->rx_drops);
11343 			tx_packets = u64_stats_read(&stats->tx_packets);
11344 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11345 			tx_drops   = u64_stats_read(&stats->tx_drops);
11346 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11347 
11348 		s->rx_packets += rx_packets;
11349 		s->rx_bytes   += rx_bytes;
11350 		s->rx_dropped += rx_drops;
11351 		s->tx_packets += tx_packets;
11352 		s->tx_bytes   += tx_bytes;
11353 		s->tx_dropped += tx_drops;
11354 	}
11355 }
11356 
11357 /* ndo_get_stats64 implementation for dtstats-based accounting.
11358  *
11359  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11360  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11361  */
11362 static void dev_get_dstats64(const struct net_device *dev,
11363 			     struct rtnl_link_stats64 *s)
11364 {
11365 	netdev_stats_to_stats64(s, &dev->stats);
11366 	dev_fetch_dstats(s, dev->dstats);
11367 }
11368 
11369 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11370  * all the same fields in the same order as net_device_stats, with only
11371  * the type differing, but rtnl_link_stats64 may have additional fields
11372  * at the end for newer counters.
11373  */
11374 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11375 			     const struct net_device_stats *netdev_stats)
11376 {
11377 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11378 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11379 	u64 *dst = (u64 *)stats64;
11380 
11381 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11382 	for (i = 0; i < n; i++)
11383 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11384 	/* zero out counters that only exist in rtnl_link_stats64 */
11385 	memset((char *)stats64 + n * sizeof(u64), 0,
11386 	       sizeof(*stats64) - n * sizeof(u64));
11387 }
11388 EXPORT_SYMBOL(netdev_stats_to_stats64);
11389 
11390 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11391 		struct net_device *dev)
11392 {
11393 	struct net_device_core_stats __percpu *p;
11394 
11395 	p = alloc_percpu_gfp(struct net_device_core_stats,
11396 			     GFP_ATOMIC | __GFP_NOWARN);
11397 
11398 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11399 		free_percpu(p);
11400 
11401 	/* This READ_ONCE() pairs with the cmpxchg() above */
11402 	return READ_ONCE(dev->core_stats);
11403 }
11404 
11405 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11406 {
11407 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11408 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11409 	unsigned long __percpu *field;
11410 
11411 	if (unlikely(!p)) {
11412 		p = netdev_core_stats_alloc(dev);
11413 		if (!p)
11414 			return;
11415 	}
11416 
11417 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11418 	this_cpu_inc(*field);
11419 }
11420 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11421 
11422 /**
11423  *	dev_get_stats	- get network device statistics
11424  *	@dev: device to get statistics from
11425  *	@storage: place to store stats
11426  *
11427  *	Get network statistics from device. Return @storage.
11428  *	The device driver may provide its own method by setting
11429  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11430  *	otherwise the internal statistics structure is used.
11431  */
11432 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11433 					struct rtnl_link_stats64 *storage)
11434 {
11435 	const struct net_device_ops *ops = dev->netdev_ops;
11436 	const struct net_device_core_stats __percpu *p;
11437 
11438 	/*
11439 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11440 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11441 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11442 	 */
11443 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11444 		     offsetof(struct pcpu_dstats, rx_bytes));
11445 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11446 		     offsetof(struct pcpu_dstats, rx_packets));
11447 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11448 		     offsetof(struct pcpu_dstats, tx_bytes));
11449 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11450 		     offsetof(struct pcpu_dstats, tx_packets));
11451 
11452 	if (ops->ndo_get_stats64) {
11453 		memset(storage, 0, sizeof(*storage));
11454 		ops->ndo_get_stats64(dev, storage);
11455 	} else if (ops->ndo_get_stats) {
11456 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11457 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11458 		dev_get_tstats64(dev, storage);
11459 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11460 		dev_get_dstats64(dev, storage);
11461 	} else {
11462 		netdev_stats_to_stats64(storage, &dev->stats);
11463 	}
11464 
11465 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11466 	p = READ_ONCE(dev->core_stats);
11467 	if (p) {
11468 		const struct net_device_core_stats *core_stats;
11469 		int i;
11470 
11471 		for_each_possible_cpu(i) {
11472 			core_stats = per_cpu_ptr(p, i);
11473 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11474 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11475 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11476 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11477 		}
11478 	}
11479 	return storage;
11480 }
11481 EXPORT_SYMBOL(dev_get_stats);
11482 
11483 /**
11484  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11485  *	@s: place to store stats
11486  *	@netstats: per-cpu network stats to read from
11487  *
11488  *	Read per-cpu network statistics and populate the related fields in @s.
11489  */
11490 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11491 			   const struct pcpu_sw_netstats __percpu *netstats)
11492 {
11493 	int cpu;
11494 
11495 	for_each_possible_cpu(cpu) {
11496 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11497 		const struct pcpu_sw_netstats *stats;
11498 		unsigned int start;
11499 
11500 		stats = per_cpu_ptr(netstats, cpu);
11501 		do {
11502 			start = u64_stats_fetch_begin(&stats->syncp);
11503 			rx_packets = u64_stats_read(&stats->rx_packets);
11504 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11505 			tx_packets = u64_stats_read(&stats->tx_packets);
11506 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11507 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11508 
11509 		s->rx_packets += rx_packets;
11510 		s->rx_bytes   += rx_bytes;
11511 		s->tx_packets += tx_packets;
11512 		s->tx_bytes   += tx_bytes;
11513 	}
11514 }
11515 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11516 
11517 /**
11518  *	dev_get_tstats64 - ndo_get_stats64 implementation
11519  *	@dev: device to get statistics from
11520  *	@s: place to store stats
11521  *
11522  *	Populate @s from dev->stats and dev->tstats. Can be used as
11523  *	ndo_get_stats64() callback.
11524  */
11525 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11526 {
11527 	netdev_stats_to_stats64(s, &dev->stats);
11528 	dev_fetch_sw_netstats(s, dev->tstats);
11529 }
11530 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11531 
11532 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11533 {
11534 	struct netdev_queue *queue = dev_ingress_queue(dev);
11535 
11536 #ifdef CONFIG_NET_CLS_ACT
11537 	if (queue)
11538 		return queue;
11539 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11540 	if (!queue)
11541 		return NULL;
11542 	netdev_init_one_queue(dev, queue, NULL);
11543 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11544 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11545 	rcu_assign_pointer(dev->ingress_queue, queue);
11546 #endif
11547 	return queue;
11548 }
11549 
11550 static const struct ethtool_ops default_ethtool_ops;
11551 
11552 void netdev_set_default_ethtool_ops(struct net_device *dev,
11553 				    const struct ethtool_ops *ops)
11554 {
11555 	if (dev->ethtool_ops == &default_ethtool_ops)
11556 		dev->ethtool_ops = ops;
11557 }
11558 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11559 
11560 /**
11561  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11562  * @dev: netdev to enable the IRQ coalescing on
11563  *
11564  * Sets a conservative default for SW IRQ coalescing. Users can use
11565  * sysfs attributes to override the default values.
11566  */
11567 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11568 {
11569 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11570 
11571 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11572 		netdev_set_gro_flush_timeout(dev, 20000);
11573 		netdev_set_defer_hard_irqs(dev, 1);
11574 	}
11575 }
11576 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11577 
11578 /**
11579  * alloc_netdev_mqs - allocate network device
11580  * @sizeof_priv: size of private data to allocate space for
11581  * @name: device name format string
11582  * @name_assign_type: origin of device name
11583  * @setup: callback to initialize device
11584  * @txqs: the number of TX subqueues to allocate
11585  * @rxqs: the number of RX subqueues to allocate
11586  *
11587  * Allocates a struct net_device with private data area for driver use
11588  * and performs basic initialization.  Also allocates subqueue structs
11589  * for each queue on the device.
11590  */
11591 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11592 		unsigned char name_assign_type,
11593 		void (*setup)(struct net_device *),
11594 		unsigned int txqs, unsigned int rxqs)
11595 {
11596 	struct net_device *dev;
11597 	size_t napi_config_sz;
11598 	unsigned int maxqs;
11599 
11600 	BUG_ON(strlen(name) >= sizeof(dev->name));
11601 
11602 	if (txqs < 1) {
11603 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11604 		return NULL;
11605 	}
11606 
11607 	if (rxqs < 1) {
11608 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11609 		return NULL;
11610 	}
11611 
11612 	maxqs = max(txqs, rxqs);
11613 
11614 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11615 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11616 	if (!dev)
11617 		return NULL;
11618 
11619 	dev->priv_len = sizeof_priv;
11620 
11621 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11622 #ifdef CONFIG_PCPU_DEV_REFCNT
11623 	dev->pcpu_refcnt = alloc_percpu(int);
11624 	if (!dev->pcpu_refcnt)
11625 		goto free_dev;
11626 	__dev_hold(dev);
11627 #else
11628 	refcount_set(&dev->dev_refcnt, 1);
11629 #endif
11630 
11631 	if (dev_addr_init(dev))
11632 		goto free_pcpu;
11633 
11634 	dev_mc_init(dev);
11635 	dev_uc_init(dev);
11636 
11637 	dev_net_set(dev, &init_net);
11638 
11639 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11640 	dev->xdp_zc_max_segs = 1;
11641 	dev->gso_max_segs = GSO_MAX_SEGS;
11642 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11643 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11644 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11645 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11646 	dev->tso_max_segs = TSO_MAX_SEGS;
11647 	dev->upper_level = 1;
11648 	dev->lower_level = 1;
11649 #ifdef CONFIG_LOCKDEP
11650 	dev->nested_level = 0;
11651 	INIT_LIST_HEAD(&dev->unlink_list);
11652 #endif
11653 
11654 	INIT_LIST_HEAD(&dev->napi_list);
11655 	INIT_LIST_HEAD(&dev->unreg_list);
11656 	INIT_LIST_HEAD(&dev->close_list);
11657 	INIT_LIST_HEAD(&dev->link_watch_list);
11658 	INIT_LIST_HEAD(&dev->adj_list.upper);
11659 	INIT_LIST_HEAD(&dev->adj_list.lower);
11660 	INIT_LIST_HEAD(&dev->ptype_all);
11661 	INIT_LIST_HEAD(&dev->ptype_specific);
11662 	INIT_LIST_HEAD(&dev->net_notifier_list);
11663 #ifdef CONFIG_NET_SCHED
11664 	hash_init(dev->qdisc_hash);
11665 #endif
11666 
11667 	mutex_init(&dev->lock);
11668 
11669 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11670 	setup(dev);
11671 
11672 	if (!dev->tx_queue_len) {
11673 		dev->priv_flags |= IFF_NO_QUEUE;
11674 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11675 	}
11676 
11677 	dev->num_tx_queues = txqs;
11678 	dev->real_num_tx_queues = txqs;
11679 	if (netif_alloc_netdev_queues(dev))
11680 		goto free_all;
11681 
11682 	dev->num_rx_queues = rxqs;
11683 	dev->real_num_rx_queues = rxqs;
11684 	if (netif_alloc_rx_queues(dev))
11685 		goto free_all;
11686 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11687 	if (!dev->ethtool)
11688 		goto free_all;
11689 
11690 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11691 	if (!dev->cfg)
11692 		goto free_all;
11693 	dev->cfg_pending = dev->cfg;
11694 
11695 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11696 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11697 	if (!dev->napi_config)
11698 		goto free_all;
11699 
11700 	strscpy(dev->name, name);
11701 	dev->name_assign_type = name_assign_type;
11702 	dev->group = INIT_NETDEV_GROUP;
11703 	if (!dev->ethtool_ops)
11704 		dev->ethtool_ops = &default_ethtool_ops;
11705 
11706 	nf_hook_netdev_init(dev);
11707 
11708 	return dev;
11709 
11710 free_all:
11711 	free_netdev(dev);
11712 	return NULL;
11713 
11714 free_pcpu:
11715 #ifdef CONFIG_PCPU_DEV_REFCNT
11716 	free_percpu(dev->pcpu_refcnt);
11717 free_dev:
11718 #endif
11719 	kvfree(dev);
11720 	return NULL;
11721 }
11722 EXPORT_SYMBOL(alloc_netdev_mqs);
11723 
11724 static void netdev_napi_exit(struct net_device *dev)
11725 {
11726 	if (!list_empty(&dev->napi_list)) {
11727 		struct napi_struct *p, *n;
11728 
11729 		netdev_lock(dev);
11730 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11731 			__netif_napi_del_locked(p);
11732 		netdev_unlock(dev);
11733 
11734 		synchronize_net();
11735 	}
11736 
11737 	kvfree(dev->napi_config);
11738 }
11739 
11740 /**
11741  * free_netdev - free network device
11742  * @dev: device
11743  *
11744  * This function does the last stage of destroying an allocated device
11745  * interface. The reference to the device object is released. If this
11746  * is the last reference then it will be freed.Must be called in process
11747  * context.
11748  */
11749 void free_netdev(struct net_device *dev)
11750 {
11751 	might_sleep();
11752 
11753 	/* When called immediately after register_netdevice() failed the unwind
11754 	 * handling may still be dismantling the device. Handle that case by
11755 	 * deferring the free.
11756 	 */
11757 	if (dev->reg_state == NETREG_UNREGISTERING) {
11758 		ASSERT_RTNL();
11759 		dev->needs_free_netdev = true;
11760 		return;
11761 	}
11762 
11763 	WARN_ON(dev->cfg != dev->cfg_pending);
11764 	kfree(dev->cfg);
11765 	kfree(dev->ethtool);
11766 	netif_free_tx_queues(dev);
11767 	netif_free_rx_queues(dev);
11768 
11769 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11770 
11771 	/* Flush device addresses */
11772 	dev_addr_flush(dev);
11773 
11774 	netdev_napi_exit(dev);
11775 
11776 	netif_del_cpu_rmap(dev);
11777 
11778 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11779 #ifdef CONFIG_PCPU_DEV_REFCNT
11780 	free_percpu(dev->pcpu_refcnt);
11781 	dev->pcpu_refcnt = NULL;
11782 #endif
11783 	free_percpu(dev->core_stats);
11784 	dev->core_stats = NULL;
11785 	free_percpu(dev->xdp_bulkq);
11786 	dev->xdp_bulkq = NULL;
11787 
11788 	netdev_free_phy_link_topology(dev);
11789 
11790 	mutex_destroy(&dev->lock);
11791 
11792 	/*  Compatibility with error handling in drivers */
11793 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11794 	    dev->reg_state == NETREG_DUMMY) {
11795 		kvfree(dev);
11796 		return;
11797 	}
11798 
11799 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11800 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11801 
11802 	/* will free via device release */
11803 	put_device(&dev->dev);
11804 }
11805 EXPORT_SYMBOL(free_netdev);
11806 
11807 /**
11808  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11809  * @sizeof_priv: size of private data to allocate space for
11810  *
11811  * Return: the allocated net_device on success, NULL otherwise
11812  */
11813 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11814 {
11815 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11816 			    init_dummy_netdev);
11817 }
11818 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11819 
11820 /**
11821  *	synchronize_net -  Synchronize with packet receive processing
11822  *
11823  *	Wait for packets currently being received to be done.
11824  *	Does not block later packets from starting.
11825  */
11826 void synchronize_net(void)
11827 {
11828 	might_sleep();
11829 	if (from_cleanup_net() || rtnl_is_locked())
11830 		synchronize_rcu_expedited();
11831 	else
11832 		synchronize_rcu();
11833 }
11834 EXPORT_SYMBOL(synchronize_net);
11835 
11836 static void netdev_rss_contexts_free(struct net_device *dev)
11837 {
11838 	struct ethtool_rxfh_context *ctx;
11839 	unsigned long context;
11840 
11841 	mutex_lock(&dev->ethtool->rss_lock);
11842 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11843 		struct ethtool_rxfh_param rxfh;
11844 
11845 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11846 		rxfh.key = ethtool_rxfh_context_key(ctx);
11847 		rxfh.hfunc = ctx->hfunc;
11848 		rxfh.input_xfrm = ctx->input_xfrm;
11849 		rxfh.rss_context = context;
11850 		rxfh.rss_delete = true;
11851 
11852 		xa_erase(&dev->ethtool->rss_ctx, context);
11853 		if (dev->ethtool_ops->create_rxfh_context)
11854 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11855 							      context, NULL);
11856 		else
11857 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11858 		kfree(ctx);
11859 	}
11860 	xa_destroy(&dev->ethtool->rss_ctx);
11861 	mutex_unlock(&dev->ethtool->rss_lock);
11862 }
11863 
11864 /**
11865  *	unregister_netdevice_queue - remove device from the kernel
11866  *	@dev: device
11867  *	@head: list
11868  *
11869  *	This function shuts down a device interface and removes it
11870  *	from the kernel tables.
11871  *	If head not NULL, device is queued to be unregistered later.
11872  *
11873  *	Callers must hold the rtnl semaphore.  You may want
11874  *	unregister_netdev() instead of this.
11875  */
11876 
11877 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11878 {
11879 	ASSERT_RTNL();
11880 
11881 	if (head) {
11882 		list_move_tail(&dev->unreg_list, head);
11883 	} else {
11884 		LIST_HEAD(single);
11885 
11886 		list_add(&dev->unreg_list, &single);
11887 		unregister_netdevice_many(&single);
11888 	}
11889 }
11890 EXPORT_SYMBOL(unregister_netdevice_queue);
11891 
11892 static void dev_memory_provider_uninstall(struct net_device *dev)
11893 {
11894 	unsigned int i;
11895 
11896 	for (i = 0; i < dev->real_num_rx_queues; i++) {
11897 		struct netdev_rx_queue *rxq = &dev->_rx[i];
11898 		struct pp_memory_provider_params *p = &rxq->mp_params;
11899 
11900 		if (p->mp_ops && p->mp_ops->uninstall)
11901 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
11902 	}
11903 }
11904 
11905 void unregister_netdevice_many_notify(struct list_head *head,
11906 				      u32 portid, const struct nlmsghdr *nlh)
11907 {
11908 	struct net_device *dev, *tmp;
11909 	LIST_HEAD(close_head);
11910 	int cnt = 0;
11911 
11912 	BUG_ON(dev_boot_phase);
11913 	ASSERT_RTNL();
11914 
11915 	if (list_empty(head))
11916 		return;
11917 
11918 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11919 		/* Some devices call without registering
11920 		 * for initialization unwind. Remove those
11921 		 * devices and proceed with the remaining.
11922 		 */
11923 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11924 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11925 				 dev->name, dev);
11926 
11927 			WARN_ON(1);
11928 			list_del(&dev->unreg_list);
11929 			continue;
11930 		}
11931 		dev->dismantle = true;
11932 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11933 	}
11934 
11935 	/* If device is running, close it first. */
11936 	list_for_each_entry(dev, head, unreg_list) {
11937 		list_add_tail(&dev->close_list, &close_head);
11938 		netdev_lock_ops(dev);
11939 	}
11940 	dev_close_many(&close_head, true);
11941 
11942 	list_for_each_entry(dev, head, unreg_list) {
11943 		netdev_unlock_ops(dev);
11944 		/* And unlink it from device chain. */
11945 		unlist_netdevice(dev);
11946 		netdev_lock(dev);
11947 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11948 		netdev_unlock(dev);
11949 	}
11950 	flush_all_backlogs();
11951 
11952 	synchronize_net();
11953 
11954 	list_for_each_entry(dev, head, unreg_list) {
11955 		struct sk_buff *skb = NULL;
11956 
11957 		/* Shutdown queueing discipline. */
11958 		dev_shutdown(dev);
11959 		dev_tcx_uninstall(dev);
11960 		netdev_lock_ops(dev);
11961 		dev_xdp_uninstall(dev);
11962 		dev_memory_provider_uninstall(dev);
11963 		netdev_unlock_ops(dev);
11964 		bpf_dev_bound_netdev_unregister(dev);
11965 
11966 		netdev_offload_xstats_disable_all(dev);
11967 
11968 		/* Notify protocols, that we are about to destroy
11969 		 * this device. They should clean all the things.
11970 		 */
11971 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11972 
11973 		if (!dev->rtnl_link_ops ||
11974 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11975 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11976 						     GFP_KERNEL, NULL, 0,
11977 						     portid, nlh);
11978 
11979 		/*
11980 		 *	Flush the unicast and multicast chains
11981 		 */
11982 		dev_uc_flush(dev);
11983 		dev_mc_flush(dev);
11984 
11985 		netdev_name_node_alt_flush(dev);
11986 		netdev_name_node_free(dev->name_node);
11987 
11988 		netdev_rss_contexts_free(dev);
11989 
11990 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11991 
11992 		if (dev->netdev_ops->ndo_uninit)
11993 			dev->netdev_ops->ndo_uninit(dev);
11994 
11995 		mutex_destroy(&dev->ethtool->rss_lock);
11996 
11997 		net_shaper_flush_netdev(dev);
11998 
11999 		if (skb)
12000 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12001 
12002 		/* Notifier chain MUST detach us all upper devices. */
12003 		WARN_ON(netdev_has_any_upper_dev(dev));
12004 		WARN_ON(netdev_has_any_lower_dev(dev));
12005 
12006 		/* Remove entries from kobject tree */
12007 		netdev_unregister_kobject(dev);
12008 #ifdef CONFIG_XPS
12009 		/* Remove XPS queueing entries */
12010 		netif_reset_xps_queues_gt(dev, 0);
12011 #endif
12012 	}
12013 
12014 	synchronize_net();
12015 
12016 	list_for_each_entry(dev, head, unreg_list) {
12017 		netdev_put(dev, &dev->dev_registered_tracker);
12018 		net_set_todo(dev);
12019 		cnt++;
12020 	}
12021 	atomic_add(cnt, &dev_unreg_count);
12022 
12023 	list_del(head);
12024 }
12025 
12026 /**
12027  *	unregister_netdevice_many - unregister many devices
12028  *	@head: list of devices
12029  *
12030  *  Note: As most callers use a stack allocated list_head,
12031  *  we force a list_del() to make sure stack won't be corrupted later.
12032  */
12033 void unregister_netdevice_many(struct list_head *head)
12034 {
12035 	unregister_netdevice_many_notify(head, 0, NULL);
12036 }
12037 EXPORT_SYMBOL(unregister_netdevice_many);
12038 
12039 /**
12040  *	unregister_netdev - remove device from the kernel
12041  *	@dev: device
12042  *
12043  *	This function shuts down a device interface and removes it
12044  *	from the kernel tables.
12045  *
12046  *	This is just a wrapper for unregister_netdevice that takes
12047  *	the rtnl semaphore.  In general you want to use this and not
12048  *	unregister_netdevice.
12049  */
12050 void unregister_netdev(struct net_device *dev)
12051 {
12052 	rtnl_net_dev_lock(dev);
12053 	unregister_netdevice(dev);
12054 	rtnl_net_dev_unlock(dev);
12055 }
12056 EXPORT_SYMBOL(unregister_netdev);
12057 
12058 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12059 			       const char *pat, int new_ifindex,
12060 			       struct netlink_ext_ack *extack)
12061 {
12062 	struct netdev_name_node *name_node;
12063 	struct net *net_old = dev_net(dev);
12064 	char new_name[IFNAMSIZ] = {};
12065 	int err, new_nsid;
12066 
12067 	ASSERT_RTNL();
12068 
12069 	/* Don't allow namespace local devices to be moved. */
12070 	err = -EINVAL;
12071 	if (dev->netns_immutable) {
12072 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12073 		goto out;
12074 	}
12075 
12076 	/* Ensure the device has been registered */
12077 	if (dev->reg_state != NETREG_REGISTERED) {
12078 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12079 		goto out;
12080 	}
12081 
12082 	/* Get out if there is nothing todo */
12083 	err = 0;
12084 	if (net_eq(net_old, net))
12085 		goto out;
12086 
12087 	/* Pick the destination device name, and ensure
12088 	 * we can use it in the destination network namespace.
12089 	 */
12090 	err = -EEXIST;
12091 	if (netdev_name_in_use(net, dev->name)) {
12092 		/* We get here if we can't use the current device name */
12093 		if (!pat) {
12094 			NL_SET_ERR_MSG(extack,
12095 				       "An interface with the same name exists in the target netns");
12096 			goto out;
12097 		}
12098 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12099 		if (err < 0) {
12100 			NL_SET_ERR_MSG_FMT(extack,
12101 					   "Unable to use '%s' for the new interface name in the target netns",
12102 					   pat);
12103 			goto out;
12104 		}
12105 	}
12106 	/* Check that none of the altnames conflicts. */
12107 	err = -EEXIST;
12108 	netdev_for_each_altname(dev, name_node) {
12109 		if (netdev_name_in_use(net, name_node->name)) {
12110 			NL_SET_ERR_MSG_FMT(extack,
12111 					   "An interface with the altname %s exists in the target netns",
12112 					   name_node->name);
12113 			goto out;
12114 		}
12115 	}
12116 
12117 	/* Check that new_ifindex isn't used yet. */
12118 	if (new_ifindex) {
12119 		err = dev_index_reserve(net, new_ifindex);
12120 		if (err < 0) {
12121 			NL_SET_ERR_MSG_FMT(extack,
12122 					   "The ifindex %d is not available in the target netns",
12123 					   new_ifindex);
12124 			goto out;
12125 		}
12126 	} else {
12127 		/* If there is an ifindex conflict assign a new one */
12128 		err = dev_index_reserve(net, dev->ifindex);
12129 		if (err == -EBUSY)
12130 			err = dev_index_reserve(net, 0);
12131 		if (err < 0) {
12132 			NL_SET_ERR_MSG(extack,
12133 				       "Unable to allocate a new ifindex in the target netns");
12134 			goto out;
12135 		}
12136 		new_ifindex = err;
12137 	}
12138 
12139 	/*
12140 	 * And now a mini version of register_netdevice unregister_netdevice.
12141 	 */
12142 
12143 	netdev_lock_ops(dev);
12144 	/* If device is running close it first. */
12145 	netif_close(dev);
12146 	/* And unlink it from device chain */
12147 	unlist_netdevice(dev);
12148 	netdev_unlock_ops(dev);
12149 
12150 	synchronize_net();
12151 
12152 	/* Shutdown queueing discipline. */
12153 	dev_shutdown(dev);
12154 
12155 	/* Notify protocols, that we are about to destroy
12156 	 * this device. They should clean all the things.
12157 	 *
12158 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12159 	 * This is wanted because this way 8021q and macvlan know
12160 	 * the device is just moving and can keep their slaves up.
12161 	 */
12162 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12163 	rcu_barrier();
12164 
12165 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12166 
12167 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12168 			    new_ifindex);
12169 
12170 	/*
12171 	 *	Flush the unicast and multicast chains
12172 	 */
12173 	dev_uc_flush(dev);
12174 	dev_mc_flush(dev);
12175 
12176 	/* Send a netdev-removed uevent to the old namespace */
12177 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12178 	netdev_adjacent_del_links(dev);
12179 
12180 	/* Move per-net netdevice notifiers that are following the netdevice */
12181 	move_netdevice_notifiers_dev_net(dev, net);
12182 
12183 	/* Actually switch the network namespace */
12184 	dev_net_set(dev, net);
12185 	dev->ifindex = new_ifindex;
12186 
12187 	if (new_name[0]) {
12188 		/* Rename the netdev to prepared name */
12189 		write_seqlock_bh(&netdev_rename_lock);
12190 		strscpy(dev->name, new_name, IFNAMSIZ);
12191 		write_sequnlock_bh(&netdev_rename_lock);
12192 	}
12193 
12194 	/* Fixup kobjects */
12195 	dev_set_uevent_suppress(&dev->dev, 1);
12196 	err = device_rename(&dev->dev, dev->name);
12197 	dev_set_uevent_suppress(&dev->dev, 0);
12198 	WARN_ON(err);
12199 
12200 	/* Send a netdev-add uevent to the new namespace */
12201 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12202 	netdev_adjacent_add_links(dev);
12203 
12204 	/* Adapt owner in case owning user namespace of target network
12205 	 * namespace is different from the original one.
12206 	 */
12207 	err = netdev_change_owner(dev, net_old, net);
12208 	WARN_ON(err);
12209 
12210 	netdev_lock_ops(dev);
12211 	/* Add the device back in the hashes */
12212 	list_netdevice(dev);
12213 	/* Notify protocols, that a new device appeared. */
12214 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12215 	netdev_unlock_ops(dev);
12216 
12217 	/*
12218 	 *	Prevent userspace races by waiting until the network
12219 	 *	device is fully setup before sending notifications.
12220 	 */
12221 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12222 
12223 	synchronize_net();
12224 	err = 0;
12225 out:
12226 	return err;
12227 }
12228 
12229 static int dev_cpu_dead(unsigned int oldcpu)
12230 {
12231 	struct sk_buff **list_skb;
12232 	struct sk_buff *skb;
12233 	unsigned int cpu;
12234 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12235 
12236 	local_irq_disable();
12237 	cpu = smp_processor_id();
12238 	sd = &per_cpu(softnet_data, cpu);
12239 	oldsd = &per_cpu(softnet_data, oldcpu);
12240 
12241 	/* Find end of our completion_queue. */
12242 	list_skb = &sd->completion_queue;
12243 	while (*list_skb)
12244 		list_skb = &(*list_skb)->next;
12245 	/* Append completion queue from offline CPU. */
12246 	*list_skb = oldsd->completion_queue;
12247 	oldsd->completion_queue = NULL;
12248 
12249 	/* Append output queue from offline CPU. */
12250 	if (oldsd->output_queue) {
12251 		*sd->output_queue_tailp = oldsd->output_queue;
12252 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12253 		oldsd->output_queue = NULL;
12254 		oldsd->output_queue_tailp = &oldsd->output_queue;
12255 	}
12256 	/* Append NAPI poll list from offline CPU, with one exception :
12257 	 * process_backlog() must be called by cpu owning percpu backlog.
12258 	 * We properly handle process_queue & input_pkt_queue later.
12259 	 */
12260 	while (!list_empty(&oldsd->poll_list)) {
12261 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12262 							    struct napi_struct,
12263 							    poll_list);
12264 
12265 		list_del_init(&napi->poll_list);
12266 		if (napi->poll == process_backlog)
12267 			napi->state &= NAPIF_STATE_THREADED;
12268 		else
12269 			____napi_schedule(sd, napi);
12270 	}
12271 
12272 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12273 	local_irq_enable();
12274 
12275 	if (!use_backlog_threads()) {
12276 #ifdef CONFIG_RPS
12277 		remsd = oldsd->rps_ipi_list;
12278 		oldsd->rps_ipi_list = NULL;
12279 #endif
12280 		/* send out pending IPI's on offline CPU */
12281 		net_rps_send_ipi(remsd);
12282 	}
12283 
12284 	/* Process offline CPU's input_pkt_queue */
12285 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12286 		netif_rx(skb);
12287 		rps_input_queue_head_incr(oldsd);
12288 	}
12289 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12290 		netif_rx(skb);
12291 		rps_input_queue_head_incr(oldsd);
12292 	}
12293 
12294 	return 0;
12295 }
12296 
12297 /**
12298  *	netdev_increment_features - increment feature set by one
12299  *	@all: current feature set
12300  *	@one: new feature set
12301  *	@mask: mask feature set
12302  *
12303  *	Computes a new feature set after adding a device with feature set
12304  *	@one to the master device with current feature set @all.  Will not
12305  *	enable anything that is off in @mask. Returns the new feature set.
12306  */
12307 netdev_features_t netdev_increment_features(netdev_features_t all,
12308 	netdev_features_t one, netdev_features_t mask)
12309 {
12310 	if (mask & NETIF_F_HW_CSUM)
12311 		mask |= NETIF_F_CSUM_MASK;
12312 	mask |= NETIF_F_VLAN_CHALLENGED;
12313 
12314 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12315 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12316 
12317 	/* If one device supports hw checksumming, set for all. */
12318 	if (all & NETIF_F_HW_CSUM)
12319 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12320 
12321 	return all;
12322 }
12323 EXPORT_SYMBOL(netdev_increment_features);
12324 
12325 static struct hlist_head * __net_init netdev_create_hash(void)
12326 {
12327 	int i;
12328 	struct hlist_head *hash;
12329 
12330 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12331 	if (hash != NULL)
12332 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12333 			INIT_HLIST_HEAD(&hash[i]);
12334 
12335 	return hash;
12336 }
12337 
12338 /* Initialize per network namespace state */
12339 static int __net_init netdev_init(struct net *net)
12340 {
12341 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12342 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12343 
12344 	INIT_LIST_HEAD(&net->dev_base_head);
12345 
12346 	net->dev_name_head = netdev_create_hash();
12347 	if (net->dev_name_head == NULL)
12348 		goto err_name;
12349 
12350 	net->dev_index_head = netdev_create_hash();
12351 	if (net->dev_index_head == NULL)
12352 		goto err_idx;
12353 
12354 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12355 
12356 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12357 
12358 	return 0;
12359 
12360 err_idx:
12361 	kfree(net->dev_name_head);
12362 err_name:
12363 	return -ENOMEM;
12364 }
12365 
12366 /**
12367  *	netdev_drivername - network driver for the device
12368  *	@dev: network device
12369  *
12370  *	Determine network driver for device.
12371  */
12372 const char *netdev_drivername(const struct net_device *dev)
12373 {
12374 	const struct device_driver *driver;
12375 	const struct device *parent;
12376 	const char *empty = "";
12377 
12378 	parent = dev->dev.parent;
12379 	if (!parent)
12380 		return empty;
12381 
12382 	driver = parent->driver;
12383 	if (driver && driver->name)
12384 		return driver->name;
12385 	return empty;
12386 }
12387 
12388 static void __netdev_printk(const char *level, const struct net_device *dev,
12389 			    struct va_format *vaf)
12390 {
12391 	if (dev && dev->dev.parent) {
12392 		dev_printk_emit(level[1] - '0',
12393 				dev->dev.parent,
12394 				"%s %s %s%s: %pV",
12395 				dev_driver_string(dev->dev.parent),
12396 				dev_name(dev->dev.parent),
12397 				netdev_name(dev), netdev_reg_state(dev),
12398 				vaf);
12399 	} else if (dev) {
12400 		printk("%s%s%s: %pV",
12401 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12402 	} else {
12403 		printk("%s(NULL net_device): %pV", level, vaf);
12404 	}
12405 }
12406 
12407 void netdev_printk(const char *level, const struct net_device *dev,
12408 		   const char *format, ...)
12409 {
12410 	struct va_format vaf;
12411 	va_list args;
12412 
12413 	va_start(args, format);
12414 
12415 	vaf.fmt = format;
12416 	vaf.va = &args;
12417 
12418 	__netdev_printk(level, dev, &vaf);
12419 
12420 	va_end(args);
12421 }
12422 EXPORT_SYMBOL(netdev_printk);
12423 
12424 #define define_netdev_printk_level(func, level)			\
12425 void func(const struct net_device *dev, const char *fmt, ...)	\
12426 {								\
12427 	struct va_format vaf;					\
12428 	va_list args;						\
12429 								\
12430 	va_start(args, fmt);					\
12431 								\
12432 	vaf.fmt = fmt;						\
12433 	vaf.va = &args;						\
12434 								\
12435 	__netdev_printk(level, dev, &vaf);			\
12436 								\
12437 	va_end(args);						\
12438 }								\
12439 EXPORT_SYMBOL(func);
12440 
12441 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12442 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12443 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12444 define_netdev_printk_level(netdev_err, KERN_ERR);
12445 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12446 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12447 define_netdev_printk_level(netdev_info, KERN_INFO);
12448 
12449 static void __net_exit netdev_exit(struct net *net)
12450 {
12451 	kfree(net->dev_name_head);
12452 	kfree(net->dev_index_head);
12453 	xa_destroy(&net->dev_by_index);
12454 	if (net != &init_net)
12455 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12456 }
12457 
12458 static struct pernet_operations __net_initdata netdev_net_ops = {
12459 	.init = netdev_init,
12460 	.exit = netdev_exit,
12461 };
12462 
12463 static void __net_exit default_device_exit_net(struct net *net)
12464 {
12465 	struct netdev_name_node *name_node, *tmp;
12466 	struct net_device *dev, *aux;
12467 	/*
12468 	 * Push all migratable network devices back to the
12469 	 * initial network namespace
12470 	 */
12471 	ASSERT_RTNL();
12472 	for_each_netdev_safe(net, dev, aux) {
12473 		int err;
12474 		char fb_name[IFNAMSIZ];
12475 
12476 		/* Ignore unmoveable devices (i.e. loopback) */
12477 		if (dev->netns_immutable)
12478 			continue;
12479 
12480 		/* Leave virtual devices for the generic cleanup */
12481 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12482 			continue;
12483 
12484 		/* Push remaining network devices to init_net */
12485 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12486 		if (netdev_name_in_use(&init_net, fb_name))
12487 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12488 
12489 		netdev_for_each_altname_safe(dev, name_node, tmp)
12490 			if (netdev_name_in_use(&init_net, name_node->name))
12491 				__netdev_name_node_alt_destroy(name_node);
12492 
12493 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12494 		if (err) {
12495 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12496 				 __func__, dev->name, err);
12497 			BUG();
12498 		}
12499 	}
12500 }
12501 
12502 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12503 {
12504 	/* At exit all network devices most be removed from a network
12505 	 * namespace.  Do this in the reverse order of registration.
12506 	 * Do this across as many network namespaces as possible to
12507 	 * improve batching efficiency.
12508 	 */
12509 	struct net_device *dev;
12510 	struct net *net;
12511 	LIST_HEAD(dev_kill_list);
12512 
12513 	rtnl_lock();
12514 	list_for_each_entry(net, net_list, exit_list) {
12515 		default_device_exit_net(net);
12516 		cond_resched();
12517 	}
12518 
12519 	list_for_each_entry(net, net_list, exit_list) {
12520 		for_each_netdev_reverse(net, dev) {
12521 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12522 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12523 			else
12524 				unregister_netdevice_queue(dev, &dev_kill_list);
12525 		}
12526 	}
12527 	unregister_netdevice_many(&dev_kill_list);
12528 	rtnl_unlock();
12529 }
12530 
12531 static struct pernet_operations __net_initdata default_device_ops = {
12532 	.exit_batch = default_device_exit_batch,
12533 };
12534 
12535 static void __init net_dev_struct_check(void)
12536 {
12537 	/* TX read-mostly hotpath */
12538 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12539 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12540 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12541 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12542 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12543 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12544 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12545 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12546 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12547 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12548 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12549 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12550 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12551 #ifdef CONFIG_XPS
12552 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12553 #endif
12554 #ifdef CONFIG_NETFILTER_EGRESS
12555 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12556 #endif
12557 #ifdef CONFIG_NET_XGRESS
12558 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12559 #endif
12560 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12561 
12562 	/* TXRX read-mostly hotpath */
12563 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12564 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12565 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12566 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12567 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12568 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12569 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12570 
12571 	/* RX read-mostly hotpath */
12572 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12573 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12574 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12575 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12576 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12577 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12578 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12579 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12580 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12581 #ifdef CONFIG_NETPOLL
12582 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12583 #endif
12584 #ifdef CONFIG_NET_XGRESS
12585 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12586 #endif
12587 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12588 }
12589 
12590 /*
12591  *	Initialize the DEV module. At boot time this walks the device list and
12592  *	unhooks any devices that fail to initialise (normally hardware not
12593  *	present) and leaves us with a valid list of present and active devices.
12594  *
12595  */
12596 
12597 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12598 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12599 
12600 static int net_page_pool_create(int cpuid)
12601 {
12602 #if IS_ENABLED(CONFIG_PAGE_POOL)
12603 	struct page_pool_params page_pool_params = {
12604 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12605 		.flags = PP_FLAG_SYSTEM_POOL,
12606 		.nid = cpu_to_mem(cpuid),
12607 	};
12608 	struct page_pool *pp_ptr;
12609 	int err;
12610 
12611 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12612 	if (IS_ERR(pp_ptr))
12613 		return -ENOMEM;
12614 
12615 	err = xdp_reg_page_pool(pp_ptr);
12616 	if (err) {
12617 		page_pool_destroy(pp_ptr);
12618 		return err;
12619 	}
12620 
12621 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12622 #endif
12623 	return 0;
12624 }
12625 
12626 static int backlog_napi_should_run(unsigned int cpu)
12627 {
12628 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12629 	struct napi_struct *napi = &sd->backlog;
12630 
12631 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12632 }
12633 
12634 static void run_backlog_napi(unsigned int cpu)
12635 {
12636 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12637 
12638 	napi_threaded_poll_loop(&sd->backlog);
12639 }
12640 
12641 static void backlog_napi_setup(unsigned int cpu)
12642 {
12643 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12644 	struct napi_struct *napi = &sd->backlog;
12645 
12646 	napi->thread = this_cpu_read(backlog_napi);
12647 	set_bit(NAPI_STATE_THREADED, &napi->state);
12648 }
12649 
12650 static struct smp_hotplug_thread backlog_threads = {
12651 	.store			= &backlog_napi,
12652 	.thread_should_run	= backlog_napi_should_run,
12653 	.thread_fn		= run_backlog_napi,
12654 	.thread_comm		= "backlog_napi/%u",
12655 	.setup			= backlog_napi_setup,
12656 };
12657 
12658 /*
12659  *       This is called single threaded during boot, so no need
12660  *       to take the rtnl semaphore.
12661  */
12662 static int __init net_dev_init(void)
12663 {
12664 	int i, rc = -ENOMEM;
12665 
12666 	BUG_ON(!dev_boot_phase);
12667 
12668 	net_dev_struct_check();
12669 
12670 	if (dev_proc_init())
12671 		goto out;
12672 
12673 	if (netdev_kobject_init())
12674 		goto out;
12675 
12676 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12677 		INIT_LIST_HEAD(&ptype_base[i]);
12678 
12679 	if (register_pernet_subsys(&netdev_net_ops))
12680 		goto out;
12681 
12682 	/*
12683 	 *	Initialise the packet receive queues.
12684 	 */
12685 
12686 	flush_backlogs_fallback = flush_backlogs_alloc();
12687 	if (!flush_backlogs_fallback)
12688 		goto out;
12689 
12690 	for_each_possible_cpu(i) {
12691 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12692 
12693 		skb_queue_head_init(&sd->input_pkt_queue);
12694 		skb_queue_head_init(&sd->process_queue);
12695 #ifdef CONFIG_XFRM_OFFLOAD
12696 		skb_queue_head_init(&sd->xfrm_backlog);
12697 #endif
12698 		INIT_LIST_HEAD(&sd->poll_list);
12699 		sd->output_queue_tailp = &sd->output_queue;
12700 #ifdef CONFIG_RPS
12701 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12702 		sd->cpu = i;
12703 #endif
12704 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12705 		spin_lock_init(&sd->defer_lock);
12706 
12707 		gro_init(&sd->backlog.gro);
12708 		sd->backlog.poll = process_backlog;
12709 		sd->backlog.weight = weight_p;
12710 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12711 
12712 		if (net_page_pool_create(i))
12713 			goto out;
12714 	}
12715 	if (use_backlog_threads())
12716 		smpboot_register_percpu_thread(&backlog_threads);
12717 
12718 	dev_boot_phase = 0;
12719 
12720 	/* The loopback device is special if any other network devices
12721 	 * is present in a network namespace the loopback device must
12722 	 * be present. Since we now dynamically allocate and free the
12723 	 * loopback device ensure this invariant is maintained by
12724 	 * keeping the loopback device as the first device on the
12725 	 * list of network devices.  Ensuring the loopback devices
12726 	 * is the first device that appears and the last network device
12727 	 * that disappears.
12728 	 */
12729 	if (register_pernet_device(&loopback_net_ops))
12730 		goto out;
12731 
12732 	if (register_pernet_device(&default_device_ops))
12733 		goto out;
12734 
12735 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12736 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12737 
12738 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12739 				       NULL, dev_cpu_dead);
12740 	WARN_ON(rc < 0);
12741 	rc = 0;
12742 
12743 	/* avoid static key IPIs to isolated CPUs */
12744 	if (housekeeping_enabled(HK_TYPE_MISC))
12745 		net_enable_timestamp();
12746 out:
12747 	if (rc < 0) {
12748 		for_each_possible_cpu(i) {
12749 			struct page_pool *pp_ptr;
12750 
12751 			pp_ptr = per_cpu(system_page_pool, i);
12752 			if (!pp_ptr)
12753 				continue;
12754 
12755 			xdp_unreg_page_pool(pp_ptr);
12756 			page_pool_destroy(pp_ptr);
12757 			per_cpu(system_page_pool, i) = NULL;
12758 		}
12759 	}
12760 
12761 	return rc;
12762 }
12763 
12764 subsys_initcall(net_dev_init);
12765