xref: /linux/net/core/dev.c (revision f58817c852e9c9eb8116c24d8271a35159636605)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dsa.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/gro.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <net/tcx.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
128 #include <net/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
160 #include <net/rps.h>
161 #include <linux/phy_link_topology.h>
162 
163 #include "dev.h"
164 #include "net-sysfs.h"
165 
166 static DEFINE_SPINLOCK(ptype_lock);
167 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
168 
169 static int netif_rx_internal(struct sk_buff *skb);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171 					   struct net_device *dev,
172 					   struct netlink_ext_ack *extack);
173 
174 static DEFINE_MUTEX(ifalias_mutex);
175 
176 /* protects napi_hash addition/deletion and napi_gen_id */
177 static DEFINE_SPINLOCK(napi_hash_lock);
178 
179 static unsigned int napi_gen_id = NR_CPUS;
180 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
181 
182 static DECLARE_RWSEM(devnet_rename_sem);
183 
184 static inline void dev_base_seq_inc(struct net *net)
185 {
186 	unsigned int val = net->dev_base_seq + 1;
187 
188 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
189 }
190 
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
194 
195 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197 
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202 
203 #ifndef CONFIG_PREEMPT_RT
204 
205 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
206 
207 static int __init setup_backlog_napi_threads(char *arg)
208 {
209 	static_branch_enable(&use_backlog_threads_key);
210 	return 0;
211 }
212 early_param("thread_backlog_napi", setup_backlog_napi_threads);
213 
214 static bool use_backlog_threads(void)
215 {
216 	return static_branch_unlikely(&use_backlog_threads_key);
217 }
218 
219 #else
220 
221 static bool use_backlog_threads(void)
222 {
223 	return true;
224 }
225 
226 #endif
227 
228 static inline void backlog_lock_irq_save(struct softnet_data *sd,
229 					 unsigned long *flags)
230 {
231 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
232 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
233 	else
234 		local_irq_save(*flags);
235 }
236 
237 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
238 {
239 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
240 		spin_lock_irq(&sd->input_pkt_queue.lock);
241 	else
242 		local_irq_disable();
243 }
244 
245 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
246 					      unsigned long *flags)
247 {
248 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
249 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
250 	else
251 		local_irq_restore(*flags);
252 }
253 
254 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
255 {
256 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
257 		spin_unlock_irq(&sd->input_pkt_queue.lock);
258 	else
259 		local_irq_enable();
260 }
261 
262 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
263 						       const char *name)
264 {
265 	struct netdev_name_node *name_node;
266 
267 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
268 	if (!name_node)
269 		return NULL;
270 	INIT_HLIST_NODE(&name_node->hlist);
271 	name_node->dev = dev;
272 	name_node->name = name;
273 	return name_node;
274 }
275 
276 static struct netdev_name_node *
277 netdev_name_node_head_alloc(struct net_device *dev)
278 {
279 	struct netdev_name_node *name_node;
280 
281 	name_node = netdev_name_node_alloc(dev, dev->name);
282 	if (!name_node)
283 		return NULL;
284 	INIT_LIST_HEAD(&name_node->list);
285 	return name_node;
286 }
287 
288 static void netdev_name_node_free(struct netdev_name_node *name_node)
289 {
290 	kfree(name_node);
291 }
292 
293 static void netdev_name_node_add(struct net *net,
294 				 struct netdev_name_node *name_node)
295 {
296 	hlist_add_head_rcu(&name_node->hlist,
297 			   dev_name_hash(net, name_node->name));
298 }
299 
300 static void netdev_name_node_del(struct netdev_name_node *name_node)
301 {
302 	hlist_del_rcu(&name_node->hlist);
303 }
304 
305 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
306 							const char *name)
307 {
308 	struct hlist_head *head = dev_name_hash(net, name);
309 	struct netdev_name_node *name_node;
310 
311 	hlist_for_each_entry(name_node, head, hlist)
312 		if (!strcmp(name_node->name, name))
313 			return name_node;
314 	return NULL;
315 }
316 
317 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
318 							    const char *name)
319 {
320 	struct hlist_head *head = dev_name_hash(net, name);
321 	struct netdev_name_node *name_node;
322 
323 	hlist_for_each_entry_rcu(name_node, head, hlist)
324 		if (!strcmp(name_node->name, name))
325 			return name_node;
326 	return NULL;
327 }
328 
329 bool netdev_name_in_use(struct net *net, const char *name)
330 {
331 	return netdev_name_node_lookup(net, name);
332 }
333 EXPORT_SYMBOL(netdev_name_in_use);
334 
335 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
336 {
337 	struct netdev_name_node *name_node;
338 	struct net *net = dev_net(dev);
339 
340 	name_node = netdev_name_node_lookup(net, name);
341 	if (name_node)
342 		return -EEXIST;
343 	name_node = netdev_name_node_alloc(dev, name);
344 	if (!name_node)
345 		return -ENOMEM;
346 	netdev_name_node_add(net, name_node);
347 	/* The node that holds dev->name acts as a head of per-device list. */
348 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
349 
350 	return 0;
351 }
352 
353 static void netdev_name_node_alt_free(struct rcu_head *head)
354 {
355 	struct netdev_name_node *name_node =
356 		container_of(head, struct netdev_name_node, rcu);
357 
358 	kfree(name_node->name);
359 	netdev_name_node_free(name_node);
360 }
361 
362 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
363 {
364 	netdev_name_node_del(name_node);
365 	list_del(&name_node->list);
366 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
367 }
368 
369 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
370 {
371 	struct netdev_name_node *name_node;
372 	struct net *net = dev_net(dev);
373 
374 	name_node = netdev_name_node_lookup(net, name);
375 	if (!name_node)
376 		return -ENOENT;
377 	/* lookup might have found our primary name or a name belonging
378 	 * to another device.
379 	 */
380 	if (name_node == dev->name_node || name_node->dev != dev)
381 		return -EINVAL;
382 
383 	__netdev_name_node_alt_destroy(name_node);
384 	return 0;
385 }
386 
387 static void netdev_name_node_alt_flush(struct net_device *dev)
388 {
389 	struct netdev_name_node *name_node, *tmp;
390 
391 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
392 		list_del(&name_node->list);
393 		netdev_name_node_alt_free(&name_node->rcu);
394 	}
395 }
396 
397 /* Device list insertion */
398 static void list_netdevice(struct net_device *dev)
399 {
400 	struct netdev_name_node *name_node;
401 	struct net *net = dev_net(dev);
402 
403 	ASSERT_RTNL();
404 
405 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
406 	netdev_name_node_add(net, dev->name_node);
407 	hlist_add_head_rcu(&dev->index_hlist,
408 			   dev_index_hash(net, dev->ifindex));
409 
410 	netdev_for_each_altname(dev, name_node)
411 		netdev_name_node_add(net, name_node);
412 
413 	/* We reserved the ifindex, this can't fail */
414 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
415 
416 	dev_base_seq_inc(net);
417 }
418 
419 /* Device list removal
420  * caller must respect a RCU grace period before freeing/reusing dev
421  */
422 static void unlist_netdevice(struct net_device *dev)
423 {
424 	struct netdev_name_node *name_node;
425 	struct net *net = dev_net(dev);
426 
427 	ASSERT_RTNL();
428 
429 	xa_erase(&net->dev_by_index, dev->ifindex);
430 
431 	netdev_for_each_altname(dev, name_node)
432 		netdev_name_node_del(name_node);
433 
434 	/* Unlink dev from the device chain */
435 	list_del_rcu(&dev->dev_list);
436 	netdev_name_node_del(dev->name_node);
437 	hlist_del_rcu(&dev->index_hlist);
438 
439 	dev_base_seq_inc(dev_net(dev));
440 }
441 
442 /*
443  *	Our notifier list
444  */
445 
446 static RAW_NOTIFIER_HEAD(netdev_chain);
447 
448 /*
449  *	Device drivers call our routines to queue packets here. We empty the
450  *	queue in the local softnet handler.
451  */
452 
453 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
454 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
455 };
456 EXPORT_PER_CPU_SYMBOL(softnet_data);
457 
458 /* Page_pool has a lockless array/stack to alloc/recycle pages.
459  * PP consumers must pay attention to run APIs in the appropriate context
460  * (e.g. NAPI context).
461  */
462 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
463 
464 #ifdef CONFIG_LOCKDEP
465 /*
466  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
467  * according to dev->type
468  */
469 static const unsigned short netdev_lock_type[] = {
470 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
471 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
472 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
473 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
474 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
475 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
476 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
477 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
478 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
479 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
480 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
481 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
482 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
483 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
484 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
485 
486 static const char *const netdev_lock_name[] = {
487 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
488 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
489 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
490 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
491 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
492 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
493 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
494 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
495 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
496 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
497 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
498 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
499 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
500 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
501 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
502 
503 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
504 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
505 
506 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
507 {
508 	int i;
509 
510 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
511 		if (netdev_lock_type[i] == dev_type)
512 			return i;
513 	/* the last key is used by default */
514 	return ARRAY_SIZE(netdev_lock_type) - 1;
515 }
516 
517 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
518 						 unsigned short dev_type)
519 {
520 	int i;
521 
522 	i = netdev_lock_pos(dev_type);
523 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
524 				   netdev_lock_name[i]);
525 }
526 
527 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
528 {
529 	int i;
530 
531 	i = netdev_lock_pos(dev->type);
532 	lockdep_set_class_and_name(&dev->addr_list_lock,
533 				   &netdev_addr_lock_key[i],
534 				   netdev_lock_name[i]);
535 }
536 #else
537 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
538 						 unsigned short dev_type)
539 {
540 }
541 
542 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
543 {
544 }
545 #endif
546 
547 /*******************************************************************************
548  *
549  *		Protocol management and registration routines
550  *
551  *******************************************************************************/
552 
553 
554 /*
555  *	Add a protocol ID to the list. Now that the input handler is
556  *	smarter we can dispense with all the messy stuff that used to be
557  *	here.
558  *
559  *	BEWARE!!! Protocol handlers, mangling input packets,
560  *	MUST BE last in hash buckets and checking protocol handlers
561  *	MUST start from promiscuous ptype_all chain in net_bh.
562  *	It is true now, do not change it.
563  *	Explanation follows: if protocol handler, mangling packet, will
564  *	be the first on list, it is not able to sense, that packet
565  *	is cloned and should be copied-on-write, so that it will
566  *	change it and subsequent readers will get broken packet.
567  *							--ANK (980803)
568  */
569 
570 static inline struct list_head *ptype_head(const struct packet_type *pt)
571 {
572 	if (pt->type == htons(ETH_P_ALL))
573 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
574 	else
575 		return pt->dev ? &pt->dev->ptype_specific :
576 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
577 }
578 
579 /**
580  *	dev_add_pack - add packet handler
581  *	@pt: packet type declaration
582  *
583  *	Add a protocol handler to the networking stack. The passed &packet_type
584  *	is linked into kernel lists and may not be freed until it has been
585  *	removed from the kernel lists.
586  *
587  *	This call does not sleep therefore it can not
588  *	guarantee all CPU's that are in middle of receiving packets
589  *	will see the new packet type (until the next received packet).
590  */
591 
592 void dev_add_pack(struct packet_type *pt)
593 {
594 	struct list_head *head = ptype_head(pt);
595 
596 	spin_lock(&ptype_lock);
597 	list_add_rcu(&pt->list, head);
598 	spin_unlock(&ptype_lock);
599 }
600 EXPORT_SYMBOL(dev_add_pack);
601 
602 /**
603  *	__dev_remove_pack	 - remove packet handler
604  *	@pt: packet type declaration
605  *
606  *	Remove a protocol handler that was previously added to the kernel
607  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
608  *	from the kernel lists and can be freed or reused once this function
609  *	returns.
610  *
611  *      The packet type might still be in use by receivers
612  *	and must not be freed until after all the CPU's have gone
613  *	through a quiescent state.
614  */
615 void __dev_remove_pack(struct packet_type *pt)
616 {
617 	struct list_head *head = ptype_head(pt);
618 	struct packet_type *pt1;
619 
620 	spin_lock(&ptype_lock);
621 
622 	list_for_each_entry(pt1, head, list) {
623 		if (pt == pt1) {
624 			list_del_rcu(&pt->list);
625 			goto out;
626 		}
627 	}
628 
629 	pr_warn("dev_remove_pack: %p not found\n", pt);
630 out:
631 	spin_unlock(&ptype_lock);
632 }
633 EXPORT_SYMBOL(__dev_remove_pack);
634 
635 /**
636  *	dev_remove_pack	 - remove packet handler
637  *	@pt: packet type declaration
638  *
639  *	Remove a protocol handler that was previously added to the kernel
640  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
641  *	from the kernel lists and can be freed or reused once this function
642  *	returns.
643  *
644  *	This call sleeps to guarantee that no CPU is looking at the packet
645  *	type after return.
646  */
647 void dev_remove_pack(struct packet_type *pt)
648 {
649 	__dev_remove_pack(pt);
650 
651 	synchronize_net();
652 }
653 EXPORT_SYMBOL(dev_remove_pack);
654 
655 
656 /*******************************************************************************
657  *
658  *			    Device Interface Subroutines
659  *
660  *******************************************************************************/
661 
662 /**
663  *	dev_get_iflink	- get 'iflink' value of a interface
664  *	@dev: targeted interface
665  *
666  *	Indicates the ifindex the interface is linked to.
667  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
668  */
669 
670 int dev_get_iflink(const struct net_device *dev)
671 {
672 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
673 		return dev->netdev_ops->ndo_get_iflink(dev);
674 
675 	return READ_ONCE(dev->ifindex);
676 }
677 EXPORT_SYMBOL(dev_get_iflink);
678 
679 /**
680  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
681  *	@dev: targeted interface
682  *	@skb: The packet.
683  *
684  *	For better visibility of tunnel traffic OVS needs to retrieve
685  *	egress tunnel information for a packet. Following API allows
686  *	user to get this info.
687  */
688 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
689 {
690 	struct ip_tunnel_info *info;
691 
692 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
693 		return -EINVAL;
694 
695 	info = skb_tunnel_info_unclone(skb);
696 	if (!info)
697 		return -ENOMEM;
698 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
699 		return -EINVAL;
700 
701 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
702 }
703 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
704 
705 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
706 {
707 	int k = stack->num_paths++;
708 
709 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
710 		return NULL;
711 
712 	return &stack->path[k];
713 }
714 
715 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
716 			  struct net_device_path_stack *stack)
717 {
718 	const struct net_device *last_dev;
719 	struct net_device_path_ctx ctx = {
720 		.dev	= dev,
721 	};
722 	struct net_device_path *path;
723 	int ret = 0;
724 
725 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
726 	stack->num_paths = 0;
727 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
728 		last_dev = ctx.dev;
729 		path = dev_fwd_path(stack);
730 		if (!path)
731 			return -1;
732 
733 		memset(path, 0, sizeof(struct net_device_path));
734 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
735 		if (ret < 0)
736 			return -1;
737 
738 		if (WARN_ON_ONCE(last_dev == ctx.dev))
739 			return -1;
740 	}
741 
742 	if (!ctx.dev)
743 		return ret;
744 
745 	path = dev_fwd_path(stack);
746 	if (!path)
747 		return -1;
748 	path->type = DEV_PATH_ETHERNET;
749 	path->dev = ctx.dev;
750 
751 	return ret;
752 }
753 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
754 
755 /**
756  *	__dev_get_by_name	- find a device by its name
757  *	@net: the applicable net namespace
758  *	@name: name to find
759  *
760  *	Find an interface by name. Must be called under RTNL semaphore.
761  *	If the name is found a pointer to the device is returned.
762  *	If the name is not found then %NULL is returned. The
763  *	reference counters are not incremented so the caller must be
764  *	careful with locks.
765  */
766 
767 struct net_device *__dev_get_by_name(struct net *net, const char *name)
768 {
769 	struct netdev_name_node *node_name;
770 
771 	node_name = netdev_name_node_lookup(net, name);
772 	return node_name ? node_name->dev : NULL;
773 }
774 EXPORT_SYMBOL(__dev_get_by_name);
775 
776 /**
777  * dev_get_by_name_rcu	- find a device by its name
778  * @net: the applicable net namespace
779  * @name: name to find
780  *
781  * Find an interface by name.
782  * If the name is found a pointer to the device is returned.
783  * If the name is not found then %NULL is returned.
784  * The reference counters are not incremented so the caller must be
785  * careful with locks. The caller must hold RCU lock.
786  */
787 
788 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
789 {
790 	struct netdev_name_node *node_name;
791 
792 	node_name = netdev_name_node_lookup_rcu(net, name);
793 	return node_name ? node_name->dev : NULL;
794 }
795 EXPORT_SYMBOL(dev_get_by_name_rcu);
796 
797 /* Deprecated for new users, call netdev_get_by_name() instead */
798 struct net_device *dev_get_by_name(struct net *net, const char *name)
799 {
800 	struct net_device *dev;
801 
802 	rcu_read_lock();
803 	dev = dev_get_by_name_rcu(net, name);
804 	dev_hold(dev);
805 	rcu_read_unlock();
806 	return dev;
807 }
808 EXPORT_SYMBOL(dev_get_by_name);
809 
810 /**
811  *	netdev_get_by_name() - find a device by its name
812  *	@net: the applicable net namespace
813  *	@name: name to find
814  *	@tracker: tracking object for the acquired reference
815  *	@gfp: allocation flags for the tracker
816  *
817  *	Find an interface by name. This can be called from any
818  *	context and does its own locking. The returned handle has
819  *	the usage count incremented and the caller must use netdev_put() to
820  *	release it when it is no longer needed. %NULL is returned if no
821  *	matching device is found.
822  */
823 struct net_device *netdev_get_by_name(struct net *net, const char *name,
824 				      netdevice_tracker *tracker, gfp_t gfp)
825 {
826 	struct net_device *dev;
827 
828 	dev = dev_get_by_name(net, name);
829 	if (dev)
830 		netdev_tracker_alloc(dev, tracker, gfp);
831 	return dev;
832 }
833 EXPORT_SYMBOL(netdev_get_by_name);
834 
835 /**
836  *	__dev_get_by_index - find a device by its ifindex
837  *	@net: the applicable net namespace
838  *	@ifindex: index of device
839  *
840  *	Search for an interface by index. Returns %NULL if the device
841  *	is not found or a pointer to the device. The device has not
842  *	had its reference counter increased so the caller must be careful
843  *	about locking. The caller must hold the RTNL semaphore.
844  */
845 
846 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
847 {
848 	struct net_device *dev;
849 	struct hlist_head *head = dev_index_hash(net, ifindex);
850 
851 	hlist_for_each_entry(dev, head, index_hlist)
852 		if (dev->ifindex == ifindex)
853 			return dev;
854 
855 	return NULL;
856 }
857 EXPORT_SYMBOL(__dev_get_by_index);
858 
859 /**
860  *	dev_get_by_index_rcu - find a device by its ifindex
861  *	@net: the applicable net namespace
862  *	@ifindex: index of device
863  *
864  *	Search for an interface by index. Returns %NULL if the device
865  *	is not found or a pointer to the device. The device has not
866  *	had its reference counter increased so the caller must be careful
867  *	about locking. The caller must hold RCU lock.
868  */
869 
870 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
871 {
872 	struct net_device *dev;
873 	struct hlist_head *head = dev_index_hash(net, ifindex);
874 
875 	hlist_for_each_entry_rcu(dev, head, index_hlist)
876 		if (dev->ifindex == ifindex)
877 			return dev;
878 
879 	return NULL;
880 }
881 EXPORT_SYMBOL(dev_get_by_index_rcu);
882 
883 /* Deprecated for new users, call netdev_get_by_index() instead */
884 struct net_device *dev_get_by_index(struct net *net, int ifindex)
885 {
886 	struct net_device *dev;
887 
888 	rcu_read_lock();
889 	dev = dev_get_by_index_rcu(net, ifindex);
890 	dev_hold(dev);
891 	rcu_read_unlock();
892 	return dev;
893 }
894 EXPORT_SYMBOL(dev_get_by_index);
895 
896 /**
897  *	netdev_get_by_index() - find a device by its ifindex
898  *	@net: the applicable net namespace
899  *	@ifindex: index of device
900  *	@tracker: tracking object for the acquired reference
901  *	@gfp: allocation flags for the tracker
902  *
903  *	Search for an interface by index. Returns NULL if the device
904  *	is not found or a pointer to the device. The device returned has
905  *	had a reference added and the pointer is safe until the user calls
906  *	netdev_put() to indicate they have finished with it.
907  */
908 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
909 				       netdevice_tracker *tracker, gfp_t gfp)
910 {
911 	struct net_device *dev;
912 
913 	dev = dev_get_by_index(net, ifindex);
914 	if (dev)
915 		netdev_tracker_alloc(dev, tracker, gfp);
916 	return dev;
917 }
918 EXPORT_SYMBOL(netdev_get_by_index);
919 
920 /**
921  *	dev_get_by_napi_id - find a device by napi_id
922  *	@napi_id: ID of the NAPI struct
923  *
924  *	Search for an interface by NAPI ID. Returns %NULL if the device
925  *	is not found or a pointer to the device. The device has not had
926  *	its reference counter increased so the caller must be careful
927  *	about locking. The caller must hold RCU lock.
928  */
929 
930 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
931 {
932 	struct napi_struct *napi;
933 
934 	WARN_ON_ONCE(!rcu_read_lock_held());
935 
936 	if (napi_id < MIN_NAPI_ID)
937 		return NULL;
938 
939 	napi = napi_by_id(napi_id);
940 
941 	return napi ? napi->dev : NULL;
942 }
943 EXPORT_SYMBOL(dev_get_by_napi_id);
944 
945 static DEFINE_SEQLOCK(netdev_rename_lock);
946 
947 void netdev_copy_name(struct net_device *dev, char *name)
948 {
949 	unsigned int seq;
950 
951 	do {
952 		seq = read_seqbegin(&netdev_rename_lock);
953 		strscpy(name, dev->name, IFNAMSIZ);
954 	} while (read_seqretry(&netdev_rename_lock, seq));
955 }
956 
957 /**
958  *	netdev_get_name - get a netdevice name, knowing its ifindex.
959  *	@net: network namespace
960  *	@name: a pointer to the buffer where the name will be stored.
961  *	@ifindex: the ifindex of the interface to get the name from.
962  */
963 int netdev_get_name(struct net *net, char *name, int ifindex)
964 {
965 	struct net_device *dev;
966 	int ret;
967 
968 	rcu_read_lock();
969 
970 	dev = dev_get_by_index_rcu(net, ifindex);
971 	if (!dev) {
972 		ret = -ENODEV;
973 		goto out;
974 	}
975 
976 	netdev_copy_name(dev, name);
977 
978 	ret = 0;
979 out:
980 	rcu_read_unlock();
981 	return ret;
982 }
983 
984 /**
985  *	dev_getbyhwaddr_rcu - find a device by its hardware address
986  *	@net: the applicable net namespace
987  *	@type: media type of device
988  *	@ha: hardware address
989  *
990  *	Search for an interface by MAC address. Returns NULL if the device
991  *	is not found or a pointer to the device.
992  *	The caller must hold RCU or RTNL.
993  *	The returned device has not had its ref count increased
994  *	and the caller must therefore be careful about locking
995  *
996  */
997 
998 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
999 				       const char *ha)
1000 {
1001 	struct net_device *dev;
1002 
1003 	for_each_netdev_rcu(net, dev)
1004 		if (dev->type == type &&
1005 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1006 			return dev;
1007 
1008 	return NULL;
1009 }
1010 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1011 
1012 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1013 {
1014 	struct net_device *dev, *ret = NULL;
1015 
1016 	rcu_read_lock();
1017 	for_each_netdev_rcu(net, dev)
1018 		if (dev->type == type) {
1019 			dev_hold(dev);
1020 			ret = dev;
1021 			break;
1022 		}
1023 	rcu_read_unlock();
1024 	return ret;
1025 }
1026 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1027 
1028 /**
1029  *	__dev_get_by_flags - find any device with given flags
1030  *	@net: the applicable net namespace
1031  *	@if_flags: IFF_* values
1032  *	@mask: bitmask of bits in if_flags to check
1033  *
1034  *	Search for any interface with the given flags. Returns NULL if a device
1035  *	is not found or a pointer to the device. Must be called inside
1036  *	rtnl_lock(), and result refcount is unchanged.
1037  */
1038 
1039 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1040 				      unsigned short mask)
1041 {
1042 	struct net_device *dev, *ret;
1043 
1044 	ASSERT_RTNL();
1045 
1046 	ret = NULL;
1047 	for_each_netdev(net, dev) {
1048 		if (((dev->flags ^ if_flags) & mask) == 0) {
1049 			ret = dev;
1050 			break;
1051 		}
1052 	}
1053 	return ret;
1054 }
1055 EXPORT_SYMBOL(__dev_get_by_flags);
1056 
1057 /**
1058  *	dev_valid_name - check if name is okay for network device
1059  *	@name: name string
1060  *
1061  *	Network device names need to be valid file names to
1062  *	allow sysfs to work.  We also disallow any kind of
1063  *	whitespace.
1064  */
1065 bool dev_valid_name(const char *name)
1066 {
1067 	if (*name == '\0')
1068 		return false;
1069 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1070 		return false;
1071 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1072 		return false;
1073 
1074 	while (*name) {
1075 		if (*name == '/' || *name == ':' || isspace(*name))
1076 			return false;
1077 		name++;
1078 	}
1079 	return true;
1080 }
1081 EXPORT_SYMBOL(dev_valid_name);
1082 
1083 /**
1084  *	__dev_alloc_name - allocate a name for a device
1085  *	@net: network namespace to allocate the device name in
1086  *	@name: name format string
1087  *	@res: result name string
1088  *
1089  *	Passed a format string - eg "lt%d" it will try and find a suitable
1090  *	id. It scans list of devices to build up a free map, then chooses
1091  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1092  *	while allocating the name and adding the device in order to avoid
1093  *	duplicates.
1094  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1095  *	Returns the number of the unit assigned or a negative errno code.
1096  */
1097 
1098 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1099 {
1100 	int i = 0;
1101 	const char *p;
1102 	const int max_netdevices = 8*PAGE_SIZE;
1103 	unsigned long *inuse;
1104 	struct net_device *d;
1105 	char buf[IFNAMSIZ];
1106 
1107 	/* Verify the string as this thing may have come from the user.
1108 	 * There must be one "%d" and no other "%" characters.
1109 	 */
1110 	p = strchr(name, '%');
1111 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1112 		return -EINVAL;
1113 
1114 	/* Use one page as a bit array of possible slots */
1115 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1116 	if (!inuse)
1117 		return -ENOMEM;
1118 
1119 	for_each_netdev(net, d) {
1120 		struct netdev_name_node *name_node;
1121 
1122 		netdev_for_each_altname(d, name_node) {
1123 			if (!sscanf(name_node->name, name, &i))
1124 				continue;
1125 			if (i < 0 || i >= max_netdevices)
1126 				continue;
1127 
1128 			/* avoid cases where sscanf is not exact inverse of printf */
1129 			snprintf(buf, IFNAMSIZ, name, i);
1130 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1131 				__set_bit(i, inuse);
1132 		}
1133 		if (!sscanf(d->name, name, &i))
1134 			continue;
1135 		if (i < 0 || i >= max_netdevices)
1136 			continue;
1137 
1138 		/* avoid cases where sscanf is not exact inverse of printf */
1139 		snprintf(buf, IFNAMSIZ, name, i);
1140 		if (!strncmp(buf, d->name, IFNAMSIZ))
1141 			__set_bit(i, inuse);
1142 	}
1143 
1144 	i = find_first_zero_bit(inuse, max_netdevices);
1145 	bitmap_free(inuse);
1146 	if (i == max_netdevices)
1147 		return -ENFILE;
1148 
1149 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1150 	strscpy(buf, name, IFNAMSIZ);
1151 	snprintf(res, IFNAMSIZ, buf, i);
1152 	return i;
1153 }
1154 
1155 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1156 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1157 			       const char *want_name, char *out_name,
1158 			       int dup_errno)
1159 {
1160 	if (!dev_valid_name(want_name))
1161 		return -EINVAL;
1162 
1163 	if (strchr(want_name, '%'))
1164 		return __dev_alloc_name(net, want_name, out_name);
1165 
1166 	if (netdev_name_in_use(net, want_name))
1167 		return -dup_errno;
1168 	if (out_name != want_name)
1169 		strscpy(out_name, want_name, IFNAMSIZ);
1170 	return 0;
1171 }
1172 
1173 /**
1174  *	dev_alloc_name - allocate a name for a device
1175  *	@dev: device
1176  *	@name: name format string
1177  *
1178  *	Passed a format string - eg "lt%d" it will try and find a suitable
1179  *	id. It scans list of devices to build up a free map, then chooses
1180  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1181  *	while allocating the name and adding the device in order to avoid
1182  *	duplicates.
1183  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1184  *	Returns the number of the unit assigned or a negative errno code.
1185  */
1186 
1187 int dev_alloc_name(struct net_device *dev, const char *name)
1188 {
1189 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1190 }
1191 EXPORT_SYMBOL(dev_alloc_name);
1192 
1193 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1194 			      const char *name)
1195 {
1196 	int ret;
1197 
1198 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1199 	return ret < 0 ? ret : 0;
1200 }
1201 
1202 /**
1203  *	dev_change_name - change name of a device
1204  *	@dev: device
1205  *	@newname: name (or format string) must be at least IFNAMSIZ
1206  *
1207  *	Change name of a device, can pass format strings "eth%d".
1208  *	for wildcarding.
1209  */
1210 int dev_change_name(struct net_device *dev, const char *newname)
1211 {
1212 	unsigned char old_assign_type;
1213 	char oldname[IFNAMSIZ];
1214 	int err = 0;
1215 	int ret;
1216 	struct net *net;
1217 
1218 	ASSERT_RTNL();
1219 	BUG_ON(!dev_net(dev));
1220 
1221 	net = dev_net(dev);
1222 
1223 	down_write(&devnet_rename_sem);
1224 
1225 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1226 		up_write(&devnet_rename_sem);
1227 		return 0;
1228 	}
1229 
1230 	memcpy(oldname, dev->name, IFNAMSIZ);
1231 
1232 	write_seqlock_bh(&netdev_rename_lock);
1233 	err = dev_get_valid_name(net, dev, newname);
1234 	write_sequnlock_bh(&netdev_rename_lock);
1235 
1236 	if (err < 0) {
1237 		up_write(&devnet_rename_sem);
1238 		return err;
1239 	}
1240 
1241 	if (oldname[0] && !strchr(oldname, '%'))
1242 		netdev_info(dev, "renamed from %s%s\n", oldname,
1243 			    dev->flags & IFF_UP ? " (while UP)" : "");
1244 
1245 	old_assign_type = dev->name_assign_type;
1246 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1247 
1248 rollback:
1249 	ret = device_rename(&dev->dev, dev->name);
1250 	if (ret) {
1251 		memcpy(dev->name, oldname, IFNAMSIZ);
1252 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1253 		up_write(&devnet_rename_sem);
1254 		return ret;
1255 	}
1256 
1257 	up_write(&devnet_rename_sem);
1258 
1259 	netdev_adjacent_rename_links(dev, oldname);
1260 
1261 	netdev_name_node_del(dev->name_node);
1262 
1263 	synchronize_net();
1264 
1265 	netdev_name_node_add(net, dev->name_node);
1266 
1267 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1268 	ret = notifier_to_errno(ret);
1269 
1270 	if (ret) {
1271 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1272 		if (err >= 0) {
1273 			err = ret;
1274 			down_write(&devnet_rename_sem);
1275 			write_seqlock_bh(&netdev_rename_lock);
1276 			memcpy(dev->name, oldname, IFNAMSIZ);
1277 			write_sequnlock_bh(&netdev_rename_lock);
1278 			memcpy(oldname, newname, IFNAMSIZ);
1279 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1280 			old_assign_type = NET_NAME_RENAMED;
1281 			goto rollback;
1282 		} else {
1283 			netdev_err(dev, "name change rollback failed: %d\n",
1284 				   ret);
1285 		}
1286 	}
1287 
1288 	return err;
1289 }
1290 
1291 /**
1292  *	dev_set_alias - change ifalias of a device
1293  *	@dev: device
1294  *	@alias: name up to IFALIASZ
1295  *	@len: limit of bytes to copy from info
1296  *
1297  *	Set ifalias for a device,
1298  */
1299 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1300 {
1301 	struct dev_ifalias *new_alias = NULL;
1302 
1303 	if (len >= IFALIASZ)
1304 		return -EINVAL;
1305 
1306 	if (len) {
1307 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1308 		if (!new_alias)
1309 			return -ENOMEM;
1310 
1311 		memcpy(new_alias->ifalias, alias, len);
1312 		new_alias->ifalias[len] = 0;
1313 	}
1314 
1315 	mutex_lock(&ifalias_mutex);
1316 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1317 					mutex_is_locked(&ifalias_mutex));
1318 	mutex_unlock(&ifalias_mutex);
1319 
1320 	if (new_alias)
1321 		kfree_rcu(new_alias, rcuhead);
1322 
1323 	return len;
1324 }
1325 EXPORT_SYMBOL(dev_set_alias);
1326 
1327 /**
1328  *	dev_get_alias - get ifalias of a device
1329  *	@dev: device
1330  *	@name: buffer to store name of ifalias
1331  *	@len: size of buffer
1332  *
1333  *	get ifalias for a device.  Caller must make sure dev cannot go
1334  *	away,  e.g. rcu read lock or own a reference count to device.
1335  */
1336 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1337 {
1338 	const struct dev_ifalias *alias;
1339 	int ret = 0;
1340 
1341 	rcu_read_lock();
1342 	alias = rcu_dereference(dev->ifalias);
1343 	if (alias)
1344 		ret = snprintf(name, len, "%s", alias->ifalias);
1345 	rcu_read_unlock();
1346 
1347 	return ret;
1348 }
1349 
1350 /**
1351  *	netdev_features_change - device changes features
1352  *	@dev: device to cause notification
1353  *
1354  *	Called to indicate a device has changed features.
1355  */
1356 void netdev_features_change(struct net_device *dev)
1357 {
1358 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1359 }
1360 EXPORT_SYMBOL(netdev_features_change);
1361 
1362 /**
1363  *	netdev_state_change - device changes state
1364  *	@dev: device to cause notification
1365  *
1366  *	Called to indicate a device has changed state. This function calls
1367  *	the notifier chains for netdev_chain and sends a NEWLINK message
1368  *	to the routing socket.
1369  */
1370 void netdev_state_change(struct net_device *dev)
1371 {
1372 	if (dev->flags & IFF_UP) {
1373 		struct netdev_notifier_change_info change_info = {
1374 			.info.dev = dev,
1375 		};
1376 
1377 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1378 					      &change_info.info);
1379 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1380 	}
1381 }
1382 EXPORT_SYMBOL(netdev_state_change);
1383 
1384 /**
1385  * __netdev_notify_peers - notify network peers about existence of @dev,
1386  * to be called when rtnl lock is already held.
1387  * @dev: network device
1388  *
1389  * Generate traffic such that interested network peers are aware of
1390  * @dev, such as by generating a gratuitous ARP. This may be used when
1391  * a device wants to inform the rest of the network about some sort of
1392  * reconfiguration such as a failover event or virtual machine
1393  * migration.
1394  */
1395 void __netdev_notify_peers(struct net_device *dev)
1396 {
1397 	ASSERT_RTNL();
1398 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 }
1401 EXPORT_SYMBOL(__netdev_notify_peers);
1402 
1403 /**
1404  * netdev_notify_peers - notify network peers about existence of @dev
1405  * @dev: network device
1406  *
1407  * Generate traffic such that interested network peers are aware of
1408  * @dev, such as by generating a gratuitous ARP. This may be used when
1409  * a device wants to inform the rest of the network about some sort of
1410  * reconfiguration such as a failover event or virtual machine
1411  * migration.
1412  */
1413 void netdev_notify_peers(struct net_device *dev)
1414 {
1415 	rtnl_lock();
1416 	__netdev_notify_peers(dev);
1417 	rtnl_unlock();
1418 }
1419 EXPORT_SYMBOL(netdev_notify_peers);
1420 
1421 static int napi_threaded_poll(void *data);
1422 
1423 static int napi_kthread_create(struct napi_struct *n)
1424 {
1425 	int err = 0;
1426 
1427 	/* Create and wake up the kthread once to put it in
1428 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1429 	 * warning and work with loadavg.
1430 	 */
1431 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1432 				n->dev->name, n->napi_id);
1433 	if (IS_ERR(n->thread)) {
1434 		err = PTR_ERR(n->thread);
1435 		pr_err("kthread_run failed with err %d\n", err);
1436 		n->thread = NULL;
1437 	}
1438 
1439 	return err;
1440 }
1441 
1442 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1443 {
1444 	const struct net_device_ops *ops = dev->netdev_ops;
1445 	int ret;
1446 
1447 	ASSERT_RTNL();
1448 	dev_addr_check(dev);
1449 
1450 	if (!netif_device_present(dev)) {
1451 		/* may be detached because parent is runtime-suspended */
1452 		if (dev->dev.parent)
1453 			pm_runtime_resume(dev->dev.parent);
1454 		if (!netif_device_present(dev))
1455 			return -ENODEV;
1456 	}
1457 
1458 	/* Block netpoll from trying to do any rx path servicing.
1459 	 * If we don't do this there is a chance ndo_poll_controller
1460 	 * or ndo_poll may be running while we open the device
1461 	 */
1462 	netpoll_poll_disable(dev);
1463 
1464 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1465 	ret = notifier_to_errno(ret);
1466 	if (ret)
1467 		return ret;
1468 
1469 	set_bit(__LINK_STATE_START, &dev->state);
1470 
1471 	if (ops->ndo_validate_addr)
1472 		ret = ops->ndo_validate_addr(dev);
1473 
1474 	if (!ret && ops->ndo_open)
1475 		ret = ops->ndo_open(dev);
1476 
1477 	netpoll_poll_enable(dev);
1478 
1479 	if (ret)
1480 		clear_bit(__LINK_STATE_START, &dev->state);
1481 	else {
1482 		dev->flags |= IFF_UP;
1483 		dev_set_rx_mode(dev);
1484 		dev_activate(dev);
1485 		add_device_randomness(dev->dev_addr, dev->addr_len);
1486 	}
1487 
1488 	return ret;
1489 }
1490 
1491 /**
1492  *	dev_open	- prepare an interface for use.
1493  *	@dev: device to open
1494  *	@extack: netlink extended ack
1495  *
1496  *	Takes a device from down to up state. The device's private open
1497  *	function is invoked and then the multicast lists are loaded. Finally
1498  *	the device is moved into the up state and a %NETDEV_UP message is
1499  *	sent to the netdev notifier chain.
1500  *
1501  *	Calling this function on an active interface is a nop. On a failure
1502  *	a negative errno code is returned.
1503  */
1504 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1505 {
1506 	int ret;
1507 
1508 	if (dev->flags & IFF_UP)
1509 		return 0;
1510 
1511 	ret = __dev_open(dev, extack);
1512 	if (ret < 0)
1513 		return ret;
1514 
1515 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1516 	call_netdevice_notifiers(NETDEV_UP, dev);
1517 
1518 	return ret;
1519 }
1520 EXPORT_SYMBOL(dev_open);
1521 
1522 static void __dev_close_many(struct list_head *head)
1523 {
1524 	struct net_device *dev;
1525 
1526 	ASSERT_RTNL();
1527 	might_sleep();
1528 
1529 	list_for_each_entry(dev, head, close_list) {
1530 		/* Temporarily disable netpoll until the interface is down */
1531 		netpoll_poll_disable(dev);
1532 
1533 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1534 
1535 		clear_bit(__LINK_STATE_START, &dev->state);
1536 
1537 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1538 		 * can be even on different cpu. So just clear netif_running().
1539 		 *
1540 		 * dev->stop() will invoke napi_disable() on all of it's
1541 		 * napi_struct instances on this device.
1542 		 */
1543 		smp_mb__after_atomic(); /* Commit netif_running(). */
1544 	}
1545 
1546 	dev_deactivate_many(head);
1547 
1548 	list_for_each_entry(dev, head, close_list) {
1549 		const struct net_device_ops *ops = dev->netdev_ops;
1550 
1551 		/*
1552 		 *	Call the device specific close. This cannot fail.
1553 		 *	Only if device is UP
1554 		 *
1555 		 *	We allow it to be called even after a DETACH hot-plug
1556 		 *	event.
1557 		 */
1558 		if (ops->ndo_stop)
1559 			ops->ndo_stop(dev);
1560 
1561 		dev->flags &= ~IFF_UP;
1562 		netpoll_poll_enable(dev);
1563 	}
1564 }
1565 
1566 static void __dev_close(struct net_device *dev)
1567 {
1568 	LIST_HEAD(single);
1569 
1570 	list_add(&dev->close_list, &single);
1571 	__dev_close_many(&single);
1572 	list_del(&single);
1573 }
1574 
1575 void dev_close_many(struct list_head *head, bool unlink)
1576 {
1577 	struct net_device *dev, *tmp;
1578 
1579 	/* Remove the devices that don't need to be closed */
1580 	list_for_each_entry_safe(dev, tmp, head, close_list)
1581 		if (!(dev->flags & IFF_UP))
1582 			list_del_init(&dev->close_list);
1583 
1584 	__dev_close_many(head);
1585 
1586 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1587 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1588 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1589 		if (unlink)
1590 			list_del_init(&dev->close_list);
1591 	}
1592 }
1593 EXPORT_SYMBOL(dev_close_many);
1594 
1595 /**
1596  *	dev_close - shutdown an interface.
1597  *	@dev: device to shutdown
1598  *
1599  *	This function moves an active device into down state. A
1600  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1601  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1602  *	chain.
1603  */
1604 void dev_close(struct net_device *dev)
1605 {
1606 	if (dev->flags & IFF_UP) {
1607 		LIST_HEAD(single);
1608 
1609 		list_add(&dev->close_list, &single);
1610 		dev_close_many(&single, true);
1611 		list_del(&single);
1612 	}
1613 }
1614 EXPORT_SYMBOL(dev_close);
1615 
1616 
1617 /**
1618  *	dev_disable_lro - disable Large Receive Offload on a device
1619  *	@dev: device
1620  *
1621  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1622  *	called under RTNL.  This is needed if received packets may be
1623  *	forwarded to another interface.
1624  */
1625 void dev_disable_lro(struct net_device *dev)
1626 {
1627 	struct net_device *lower_dev;
1628 	struct list_head *iter;
1629 
1630 	dev->wanted_features &= ~NETIF_F_LRO;
1631 	netdev_update_features(dev);
1632 
1633 	if (unlikely(dev->features & NETIF_F_LRO))
1634 		netdev_WARN(dev, "failed to disable LRO!\n");
1635 
1636 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1637 		dev_disable_lro(lower_dev);
1638 }
1639 EXPORT_SYMBOL(dev_disable_lro);
1640 
1641 /**
1642  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1643  *	@dev: device
1644  *
1645  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1646  *	called under RTNL.  This is needed if Generic XDP is installed on
1647  *	the device.
1648  */
1649 static void dev_disable_gro_hw(struct net_device *dev)
1650 {
1651 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1652 	netdev_update_features(dev);
1653 
1654 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1655 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1656 }
1657 
1658 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1659 {
1660 #define N(val) 						\
1661 	case NETDEV_##val:				\
1662 		return "NETDEV_" __stringify(val);
1663 	switch (cmd) {
1664 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1665 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1666 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1667 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1668 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1669 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1670 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1671 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1672 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1673 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1674 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1675 	N(XDP_FEAT_CHANGE)
1676 	}
1677 #undef N
1678 	return "UNKNOWN_NETDEV_EVENT";
1679 }
1680 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1681 
1682 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1683 				   struct net_device *dev)
1684 {
1685 	struct netdev_notifier_info info = {
1686 		.dev = dev,
1687 	};
1688 
1689 	return nb->notifier_call(nb, val, &info);
1690 }
1691 
1692 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1693 					     struct net_device *dev)
1694 {
1695 	int err;
1696 
1697 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1698 	err = notifier_to_errno(err);
1699 	if (err)
1700 		return err;
1701 
1702 	if (!(dev->flags & IFF_UP))
1703 		return 0;
1704 
1705 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1706 	return 0;
1707 }
1708 
1709 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1710 						struct net_device *dev)
1711 {
1712 	if (dev->flags & IFF_UP) {
1713 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1714 					dev);
1715 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1716 	}
1717 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1718 }
1719 
1720 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1721 						 struct net *net)
1722 {
1723 	struct net_device *dev;
1724 	int err;
1725 
1726 	for_each_netdev(net, dev) {
1727 		err = call_netdevice_register_notifiers(nb, dev);
1728 		if (err)
1729 			goto rollback;
1730 	}
1731 	return 0;
1732 
1733 rollback:
1734 	for_each_netdev_continue_reverse(net, dev)
1735 		call_netdevice_unregister_notifiers(nb, dev);
1736 	return err;
1737 }
1738 
1739 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1740 						    struct net *net)
1741 {
1742 	struct net_device *dev;
1743 
1744 	for_each_netdev(net, dev)
1745 		call_netdevice_unregister_notifiers(nb, dev);
1746 }
1747 
1748 static int dev_boot_phase = 1;
1749 
1750 /**
1751  * register_netdevice_notifier - register a network notifier block
1752  * @nb: notifier
1753  *
1754  * Register a notifier to be called when network device events occur.
1755  * The notifier passed is linked into the kernel structures and must
1756  * not be reused until it has been unregistered. A negative errno code
1757  * is returned on a failure.
1758  *
1759  * When registered all registration and up events are replayed
1760  * to the new notifier to allow device to have a race free
1761  * view of the network device list.
1762  */
1763 
1764 int register_netdevice_notifier(struct notifier_block *nb)
1765 {
1766 	struct net *net;
1767 	int err;
1768 
1769 	/* Close race with setup_net() and cleanup_net() */
1770 	down_write(&pernet_ops_rwsem);
1771 	rtnl_lock();
1772 	err = raw_notifier_chain_register(&netdev_chain, nb);
1773 	if (err)
1774 		goto unlock;
1775 	if (dev_boot_phase)
1776 		goto unlock;
1777 	for_each_net(net) {
1778 		err = call_netdevice_register_net_notifiers(nb, net);
1779 		if (err)
1780 			goto rollback;
1781 	}
1782 
1783 unlock:
1784 	rtnl_unlock();
1785 	up_write(&pernet_ops_rwsem);
1786 	return err;
1787 
1788 rollback:
1789 	for_each_net_continue_reverse(net)
1790 		call_netdevice_unregister_net_notifiers(nb, net);
1791 
1792 	raw_notifier_chain_unregister(&netdev_chain, nb);
1793 	goto unlock;
1794 }
1795 EXPORT_SYMBOL(register_netdevice_notifier);
1796 
1797 /**
1798  * unregister_netdevice_notifier - unregister a network notifier block
1799  * @nb: notifier
1800  *
1801  * Unregister a notifier previously registered by
1802  * register_netdevice_notifier(). The notifier is unlinked into the
1803  * kernel structures and may then be reused. A negative errno code
1804  * is returned on a failure.
1805  *
1806  * After unregistering unregister and down device events are synthesized
1807  * for all devices on the device list to the removed notifier to remove
1808  * the need for special case cleanup code.
1809  */
1810 
1811 int unregister_netdevice_notifier(struct notifier_block *nb)
1812 {
1813 	struct net *net;
1814 	int err;
1815 
1816 	/* Close race with setup_net() and cleanup_net() */
1817 	down_write(&pernet_ops_rwsem);
1818 	rtnl_lock();
1819 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1820 	if (err)
1821 		goto unlock;
1822 
1823 	for_each_net(net)
1824 		call_netdevice_unregister_net_notifiers(nb, net);
1825 
1826 unlock:
1827 	rtnl_unlock();
1828 	up_write(&pernet_ops_rwsem);
1829 	return err;
1830 }
1831 EXPORT_SYMBOL(unregister_netdevice_notifier);
1832 
1833 static int __register_netdevice_notifier_net(struct net *net,
1834 					     struct notifier_block *nb,
1835 					     bool ignore_call_fail)
1836 {
1837 	int err;
1838 
1839 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1840 	if (err)
1841 		return err;
1842 	if (dev_boot_phase)
1843 		return 0;
1844 
1845 	err = call_netdevice_register_net_notifiers(nb, net);
1846 	if (err && !ignore_call_fail)
1847 		goto chain_unregister;
1848 
1849 	return 0;
1850 
1851 chain_unregister:
1852 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1853 	return err;
1854 }
1855 
1856 static int __unregister_netdevice_notifier_net(struct net *net,
1857 					       struct notifier_block *nb)
1858 {
1859 	int err;
1860 
1861 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862 	if (err)
1863 		return err;
1864 
1865 	call_netdevice_unregister_net_notifiers(nb, net);
1866 	return 0;
1867 }
1868 
1869 /**
1870  * register_netdevice_notifier_net - register a per-netns network notifier block
1871  * @net: network namespace
1872  * @nb: notifier
1873  *
1874  * Register a notifier to be called when network device events occur.
1875  * The notifier passed is linked into the kernel structures and must
1876  * not be reused until it has been unregistered. A negative errno code
1877  * is returned on a failure.
1878  *
1879  * When registered all registration and up events are replayed
1880  * to the new notifier to allow device to have a race free
1881  * view of the network device list.
1882  */
1883 
1884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1885 {
1886 	int err;
1887 
1888 	rtnl_lock();
1889 	err = __register_netdevice_notifier_net(net, nb, false);
1890 	rtnl_unlock();
1891 	return err;
1892 }
1893 EXPORT_SYMBOL(register_netdevice_notifier_net);
1894 
1895 /**
1896  * unregister_netdevice_notifier_net - unregister a per-netns
1897  *                                     network notifier block
1898  * @net: network namespace
1899  * @nb: notifier
1900  *
1901  * Unregister a notifier previously registered by
1902  * register_netdevice_notifier_net(). The notifier is unlinked from the
1903  * kernel structures and may then be reused. A negative errno code
1904  * is returned on a failure.
1905  *
1906  * After unregistering unregister and down device events are synthesized
1907  * for all devices on the device list to the removed notifier to remove
1908  * the need for special case cleanup code.
1909  */
1910 
1911 int unregister_netdevice_notifier_net(struct net *net,
1912 				      struct notifier_block *nb)
1913 {
1914 	int err;
1915 
1916 	rtnl_lock();
1917 	err = __unregister_netdevice_notifier_net(net, nb);
1918 	rtnl_unlock();
1919 	return err;
1920 }
1921 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1922 
1923 static void __move_netdevice_notifier_net(struct net *src_net,
1924 					  struct net *dst_net,
1925 					  struct notifier_block *nb)
1926 {
1927 	__unregister_netdevice_notifier_net(src_net, nb);
1928 	__register_netdevice_notifier_net(dst_net, nb, true);
1929 }
1930 
1931 int register_netdevice_notifier_dev_net(struct net_device *dev,
1932 					struct notifier_block *nb,
1933 					struct netdev_net_notifier *nn)
1934 {
1935 	int err;
1936 
1937 	rtnl_lock();
1938 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1939 	if (!err) {
1940 		nn->nb = nb;
1941 		list_add(&nn->list, &dev->net_notifier_list);
1942 	}
1943 	rtnl_unlock();
1944 	return err;
1945 }
1946 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1947 
1948 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1949 					  struct notifier_block *nb,
1950 					  struct netdev_net_notifier *nn)
1951 {
1952 	int err;
1953 
1954 	rtnl_lock();
1955 	list_del(&nn->list);
1956 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1957 	rtnl_unlock();
1958 	return err;
1959 }
1960 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1961 
1962 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1963 					     struct net *net)
1964 {
1965 	struct netdev_net_notifier *nn;
1966 
1967 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1968 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1969 }
1970 
1971 /**
1972  *	call_netdevice_notifiers_info - call all network notifier blocks
1973  *	@val: value passed unmodified to notifier function
1974  *	@info: notifier information data
1975  *
1976  *	Call all network notifier blocks.  Parameters and return value
1977  *	are as for raw_notifier_call_chain().
1978  */
1979 
1980 int call_netdevice_notifiers_info(unsigned long val,
1981 				  struct netdev_notifier_info *info)
1982 {
1983 	struct net *net = dev_net(info->dev);
1984 	int ret;
1985 
1986 	ASSERT_RTNL();
1987 
1988 	/* Run per-netns notifier block chain first, then run the global one.
1989 	 * Hopefully, one day, the global one is going to be removed after
1990 	 * all notifier block registrators get converted to be per-netns.
1991 	 */
1992 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1993 	if (ret & NOTIFY_STOP_MASK)
1994 		return ret;
1995 	return raw_notifier_call_chain(&netdev_chain, val, info);
1996 }
1997 
1998 /**
1999  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2000  *	                                       for and rollback on error
2001  *	@val_up: value passed unmodified to notifier function
2002  *	@val_down: value passed unmodified to the notifier function when
2003  *	           recovering from an error on @val_up
2004  *	@info: notifier information data
2005  *
2006  *	Call all per-netns network notifier blocks, but not notifier blocks on
2007  *	the global notifier chain. Parameters and return value are as for
2008  *	raw_notifier_call_chain_robust().
2009  */
2010 
2011 static int
2012 call_netdevice_notifiers_info_robust(unsigned long val_up,
2013 				     unsigned long val_down,
2014 				     struct netdev_notifier_info *info)
2015 {
2016 	struct net *net = dev_net(info->dev);
2017 
2018 	ASSERT_RTNL();
2019 
2020 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2021 					      val_up, val_down, info);
2022 }
2023 
2024 static int call_netdevice_notifiers_extack(unsigned long val,
2025 					   struct net_device *dev,
2026 					   struct netlink_ext_ack *extack)
2027 {
2028 	struct netdev_notifier_info info = {
2029 		.dev = dev,
2030 		.extack = extack,
2031 	};
2032 
2033 	return call_netdevice_notifiers_info(val, &info);
2034 }
2035 
2036 /**
2037  *	call_netdevice_notifiers - call all network notifier blocks
2038  *      @val: value passed unmodified to notifier function
2039  *      @dev: net_device pointer passed unmodified to notifier function
2040  *
2041  *	Call all network notifier blocks.  Parameters and return value
2042  *	are as for raw_notifier_call_chain().
2043  */
2044 
2045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2046 {
2047 	return call_netdevice_notifiers_extack(val, dev, NULL);
2048 }
2049 EXPORT_SYMBOL(call_netdevice_notifiers);
2050 
2051 /**
2052  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2053  *	@val: value passed unmodified to notifier function
2054  *	@dev: net_device pointer passed unmodified to notifier function
2055  *	@arg: additional u32 argument passed to the notifier function
2056  *
2057  *	Call all network notifier blocks.  Parameters and return value
2058  *	are as for raw_notifier_call_chain().
2059  */
2060 static int call_netdevice_notifiers_mtu(unsigned long val,
2061 					struct net_device *dev, u32 arg)
2062 {
2063 	struct netdev_notifier_info_ext info = {
2064 		.info.dev = dev,
2065 		.ext.mtu = arg,
2066 	};
2067 
2068 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2069 
2070 	return call_netdevice_notifiers_info(val, &info.info);
2071 }
2072 
2073 #ifdef CONFIG_NET_INGRESS
2074 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2075 
2076 void net_inc_ingress_queue(void)
2077 {
2078 	static_branch_inc(&ingress_needed_key);
2079 }
2080 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2081 
2082 void net_dec_ingress_queue(void)
2083 {
2084 	static_branch_dec(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2087 #endif
2088 
2089 #ifdef CONFIG_NET_EGRESS
2090 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2091 
2092 void net_inc_egress_queue(void)
2093 {
2094 	static_branch_inc(&egress_needed_key);
2095 }
2096 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2097 
2098 void net_dec_egress_queue(void)
2099 {
2100 	static_branch_dec(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2103 #endif
2104 
2105 #ifdef CONFIG_NET_CLS_ACT
2106 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2107 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2108 #endif
2109 
2110 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2111 EXPORT_SYMBOL(netstamp_needed_key);
2112 #ifdef CONFIG_JUMP_LABEL
2113 static atomic_t netstamp_needed_deferred;
2114 static atomic_t netstamp_wanted;
2115 static void netstamp_clear(struct work_struct *work)
2116 {
2117 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2118 	int wanted;
2119 
2120 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2121 	if (wanted > 0)
2122 		static_branch_enable(&netstamp_needed_key);
2123 	else
2124 		static_branch_disable(&netstamp_needed_key);
2125 }
2126 static DECLARE_WORK(netstamp_work, netstamp_clear);
2127 #endif
2128 
2129 void net_enable_timestamp(void)
2130 {
2131 #ifdef CONFIG_JUMP_LABEL
2132 	int wanted = atomic_read(&netstamp_wanted);
2133 
2134 	while (wanted > 0) {
2135 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2136 			return;
2137 	}
2138 	atomic_inc(&netstamp_needed_deferred);
2139 	schedule_work(&netstamp_work);
2140 #else
2141 	static_branch_inc(&netstamp_needed_key);
2142 #endif
2143 }
2144 EXPORT_SYMBOL(net_enable_timestamp);
2145 
2146 void net_disable_timestamp(void)
2147 {
2148 #ifdef CONFIG_JUMP_LABEL
2149 	int wanted = atomic_read(&netstamp_wanted);
2150 
2151 	while (wanted > 1) {
2152 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2153 			return;
2154 	}
2155 	atomic_dec(&netstamp_needed_deferred);
2156 	schedule_work(&netstamp_work);
2157 #else
2158 	static_branch_dec(&netstamp_needed_key);
2159 #endif
2160 }
2161 EXPORT_SYMBOL(net_disable_timestamp);
2162 
2163 static inline void net_timestamp_set(struct sk_buff *skb)
2164 {
2165 	skb->tstamp = 0;
2166 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2167 	if (static_branch_unlikely(&netstamp_needed_key))
2168 		skb->tstamp = ktime_get_real();
2169 }
2170 
2171 #define net_timestamp_check(COND, SKB)				\
2172 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2173 		if ((COND) && !(SKB)->tstamp)			\
2174 			(SKB)->tstamp = ktime_get_real();	\
2175 	}							\
2176 
2177 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2178 {
2179 	return __is_skb_forwardable(dev, skb, true);
2180 }
2181 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2182 
2183 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2184 			      bool check_mtu)
2185 {
2186 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2187 
2188 	if (likely(!ret)) {
2189 		skb->protocol = eth_type_trans(skb, dev);
2190 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2191 	}
2192 
2193 	return ret;
2194 }
2195 
2196 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2197 {
2198 	return __dev_forward_skb2(dev, skb, true);
2199 }
2200 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2201 
2202 /**
2203  * dev_forward_skb - loopback an skb to another netif
2204  *
2205  * @dev: destination network device
2206  * @skb: buffer to forward
2207  *
2208  * return values:
2209  *	NET_RX_SUCCESS	(no congestion)
2210  *	NET_RX_DROP     (packet was dropped, but freed)
2211  *
2212  * dev_forward_skb can be used for injecting an skb from the
2213  * start_xmit function of one device into the receive queue
2214  * of another device.
2215  *
2216  * The receiving device may be in another namespace, so
2217  * we have to clear all information in the skb that could
2218  * impact namespace isolation.
2219  */
2220 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2221 {
2222 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2223 }
2224 EXPORT_SYMBOL_GPL(dev_forward_skb);
2225 
2226 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2227 {
2228 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2229 }
2230 
2231 static inline int deliver_skb(struct sk_buff *skb,
2232 			      struct packet_type *pt_prev,
2233 			      struct net_device *orig_dev)
2234 {
2235 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2236 		return -ENOMEM;
2237 	refcount_inc(&skb->users);
2238 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2239 }
2240 
2241 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2242 					  struct packet_type **pt,
2243 					  struct net_device *orig_dev,
2244 					  __be16 type,
2245 					  struct list_head *ptype_list)
2246 {
2247 	struct packet_type *ptype, *pt_prev = *pt;
2248 
2249 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2250 		if (ptype->type != type)
2251 			continue;
2252 		if (pt_prev)
2253 			deliver_skb(skb, pt_prev, orig_dev);
2254 		pt_prev = ptype;
2255 	}
2256 	*pt = pt_prev;
2257 }
2258 
2259 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2260 {
2261 	if (!ptype->af_packet_priv || !skb->sk)
2262 		return false;
2263 
2264 	if (ptype->id_match)
2265 		return ptype->id_match(ptype, skb->sk);
2266 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2267 		return true;
2268 
2269 	return false;
2270 }
2271 
2272 /**
2273  * dev_nit_active - return true if any network interface taps are in use
2274  *
2275  * @dev: network device to check for the presence of taps
2276  */
2277 bool dev_nit_active(struct net_device *dev)
2278 {
2279 	return !list_empty(&net_hotdata.ptype_all) ||
2280 	       !list_empty(&dev->ptype_all);
2281 }
2282 EXPORT_SYMBOL_GPL(dev_nit_active);
2283 
2284 /*
2285  *	Support routine. Sends outgoing frames to any network
2286  *	taps currently in use.
2287  */
2288 
2289 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2290 {
2291 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2292 	struct packet_type *ptype, *pt_prev = NULL;
2293 	struct sk_buff *skb2 = NULL;
2294 
2295 	rcu_read_lock();
2296 again:
2297 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2298 		if (READ_ONCE(ptype->ignore_outgoing))
2299 			continue;
2300 
2301 		/* Never send packets back to the socket
2302 		 * they originated from - MvS (miquels@drinkel.ow.org)
2303 		 */
2304 		if (skb_loop_sk(ptype, skb))
2305 			continue;
2306 
2307 		if (pt_prev) {
2308 			deliver_skb(skb2, pt_prev, skb->dev);
2309 			pt_prev = ptype;
2310 			continue;
2311 		}
2312 
2313 		/* need to clone skb, done only once */
2314 		skb2 = skb_clone(skb, GFP_ATOMIC);
2315 		if (!skb2)
2316 			goto out_unlock;
2317 
2318 		net_timestamp_set(skb2);
2319 
2320 		/* skb->nh should be correctly
2321 		 * set by sender, so that the second statement is
2322 		 * just protection against buggy protocols.
2323 		 */
2324 		skb_reset_mac_header(skb2);
2325 
2326 		if (skb_network_header(skb2) < skb2->data ||
2327 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2328 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2329 					     ntohs(skb2->protocol),
2330 					     dev->name);
2331 			skb_reset_network_header(skb2);
2332 		}
2333 
2334 		skb2->transport_header = skb2->network_header;
2335 		skb2->pkt_type = PACKET_OUTGOING;
2336 		pt_prev = ptype;
2337 	}
2338 
2339 	if (ptype_list == &net_hotdata.ptype_all) {
2340 		ptype_list = &dev->ptype_all;
2341 		goto again;
2342 	}
2343 out_unlock:
2344 	if (pt_prev) {
2345 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2346 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2347 		else
2348 			kfree_skb(skb2);
2349 	}
2350 	rcu_read_unlock();
2351 }
2352 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2353 
2354 /**
2355  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2356  * @dev: Network device
2357  * @txq: number of queues available
2358  *
2359  * If real_num_tx_queues is changed the tc mappings may no longer be
2360  * valid. To resolve this verify the tc mapping remains valid and if
2361  * not NULL the mapping. With no priorities mapping to this
2362  * offset/count pair it will no longer be used. In the worst case TC0
2363  * is invalid nothing can be done so disable priority mappings. If is
2364  * expected that drivers will fix this mapping if they can before
2365  * calling netif_set_real_num_tx_queues.
2366  */
2367 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2368 {
2369 	int i;
2370 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2371 
2372 	/* If TC0 is invalidated disable TC mapping */
2373 	if (tc->offset + tc->count > txq) {
2374 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2375 		dev->num_tc = 0;
2376 		return;
2377 	}
2378 
2379 	/* Invalidated prio to tc mappings set to TC0 */
2380 	for (i = 1; i < TC_BITMASK + 1; i++) {
2381 		int q = netdev_get_prio_tc_map(dev, i);
2382 
2383 		tc = &dev->tc_to_txq[q];
2384 		if (tc->offset + tc->count > txq) {
2385 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2386 				    i, q);
2387 			netdev_set_prio_tc_map(dev, i, 0);
2388 		}
2389 	}
2390 }
2391 
2392 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2393 {
2394 	if (dev->num_tc) {
2395 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2396 		int i;
2397 
2398 		/* walk through the TCs and see if it falls into any of them */
2399 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2400 			if ((txq - tc->offset) < tc->count)
2401 				return i;
2402 		}
2403 
2404 		/* didn't find it, just return -1 to indicate no match */
2405 		return -1;
2406 	}
2407 
2408 	return 0;
2409 }
2410 EXPORT_SYMBOL(netdev_txq_to_tc);
2411 
2412 #ifdef CONFIG_XPS
2413 static struct static_key xps_needed __read_mostly;
2414 static struct static_key xps_rxqs_needed __read_mostly;
2415 static DEFINE_MUTEX(xps_map_mutex);
2416 #define xmap_dereference(P)		\
2417 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2418 
2419 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2420 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2421 {
2422 	struct xps_map *map = NULL;
2423 	int pos;
2424 
2425 	map = xmap_dereference(dev_maps->attr_map[tci]);
2426 	if (!map)
2427 		return false;
2428 
2429 	for (pos = map->len; pos--;) {
2430 		if (map->queues[pos] != index)
2431 			continue;
2432 
2433 		if (map->len > 1) {
2434 			map->queues[pos] = map->queues[--map->len];
2435 			break;
2436 		}
2437 
2438 		if (old_maps)
2439 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2440 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2441 		kfree_rcu(map, rcu);
2442 		return false;
2443 	}
2444 
2445 	return true;
2446 }
2447 
2448 static bool remove_xps_queue_cpu(struct net_device *dev,
2449 				 struct xps_dev_maps *dev_maps,
2450 				 int cpu, u16 offset, u16 count)
2451 {
2452 	int num_tc = dev_maps->num_tc;
2453 	bool active = false;
2454 	int tci;
2455 
2456 	for (tci = cpu * num_tc; num_tc--; tci++) {
2457 		int i, j;
2458 
2459 		for (i = count, j = offset; i--; j++) {
2460 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2461 				break;
2462 		}
2463 
2464 		active |= i < 0;
2465 	}
2466 
2467 	return active;
2468 }
2469 
2470 static void reset_xps_maps(struct net_device *dev,
2471 			   struct xps_dev_maps *dev_maps,
2472 			   enum xps_map_type type)
2473 {
2474 	static_key_slow_dec_cpuslocked(&xps_needed);
2475 	if (type == XPS_RXQS)
2476 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2477 
2478 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2479 
2480 	kfree_rcu(dev_maps, rcu);
2481 }
2482 
2483 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2484 			   u16 offset, u16 count)
2485 {
2486 	struct xps_dev_maps *dev_maps;
2487 	bool active = false;
2488 	int i, j;
2489 
2490 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2491 	if (!dev_maps)
2492 		return;
2493 
2494 	for (j = 0; j < dev_maps->nr_ids; j++)
2495 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2496 	if (!active)
2497 		reset_xps_maps(dev, dev_maps, type);
2498 
2499 	if (type == XPS_CPUS) {
2500 		for (i = offset + (count - 1); count--; i--)
2501 			netdev_queue_numa_node_write(
2502 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2503 	}
2504 }
2505 
2506 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2507 				   u16 count)
2508 {
2509 	if (!static_key_false(&xps_needed))
2510 		return;
2511 
2512 	cpus_read_lock();
2513 	mutex_lock(&xps_map_mutex);
2514 
2515 	if (static_key_false(&xps_rxqs_needed))
2516 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2517 
2518 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2519 
2520 	mutex_unlock(&xps_map_mutex);
2521 	cpus_read_unlock();
2522 }
2523 
2524 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2525 {
2526 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2527 }
2528 
2529 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2530 				      u16 index, bool is_rxqs_map)
2531 {
2532 	struct xps_map *new_map;
2533 	int alloc_len = XPS_MIN_MAP_ALLOC;
2534 	int i, pos;
2535 
2536 	for (pos = 0; map && pos < map->len; pos++) {
2537 		if (map->queues[pos] != index)
2538 			continue;
2539 		return map;
2540 	}
2541 
2542 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2543 	if (map) {
2544 		if (pos < map->alloc_len)
2545 			return map;
2546 
2547 		alloc_len = map->alloc_len * 2;
2548 	}
2549 
2550 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2551 	 *  map
2552 	 */
2553 	if (is_rxqs_map)
2554 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2555 	else
2556 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2557 				       cpu_to_node(attr_index));
2558 	if (!new_map)
2559 		return NULL;
2560 
2561 	for (i = 0; i < pos; i++)
2562 		new_map->queues[i] = map->queues[i];
2563 	new_map->alloc_len = alloc_len;
2564 	new_map->len = pos;
2565 
2566 	return new_map;
2567 }
2568 
2569 /* Copy xps maps at a given index */
2570 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2571 			      struct xps_dev_maps *new_dev_maps, int index,
2572 			      int tc, bool skip_tc)
2573 {
2574 	int i, tci = index * dev_maps->num_tc;
2575 	struct xps_map *map;
2576 
2577 	/* copy maps belonging to foreign traffic classes */
2578 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2579 		if (i == tc && skip_tc)
2580 			continue;
2581 
2582 		/* fill in the new device map from the old device map */
2583 		map = xmap_dereference(dev_maps->attr_map[tci]);
2584 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2585 	}
2586 }
2587 
2588 /* Must be called under cpus_read_lock */
2589 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2590 			  u16 index, enum xps_map_type type)
2591 {
2592 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2593 	const unsigned long *online_mask = NULL;
2594 	bool active = false, copy = false;
2595 	int i, j, tci, numa_node_id = -2;
2596 	int maps_sz, num_tc = 1, tc = 0;
2597 	struct xps_map *map, *new_map;
2598 	unsigned int nr_ids;
2599 
2600 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2601 
2602 	if (dev->num_tc) {
2603 		/* Do not allow XPS on subordinate device directly */
2604 		num_tc = dev->num_tc;
2605 		if (num_tc < 0)
2606 			return -EINVAL;
2607 
2608 		/* If queue belongs to subordinate dev use its map */
2609 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2610 
2611 		tc = netdev_txq_to_tc(dev, index);
2612 		if (tc < 0)
2613 			return -EINVAL;
2614 	}
2615 
2616 	mutex_lock(&xps_map_mutex);
2617 
2618 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2619 	if (type == XPS_RXQS) {
2620 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2621 		nr_ids = dev->num_rx_queues;
2622 	} else {
2623 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2624 		if (num_possible_cpus() > 1)
2625 			online_mask = cpumask_bits(cpu_online_mask);
2626 		nr_ids = nr_cpu_ids;
2627 	}
2628 
2629 	if (maps_sz < L1_CACHE_BYTES)
2630 		maps_sz = L1_CACHE_BYTES;
2631 
2632 	/* The old dev_maps could be larger or smaller than the one we're
2633 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2634 	 * between. We could try to be smart, but let's be safe instead and only
2635 	 * copy foreign traffic classes if the two map sizes match.
2636 	 */
2637 	if (dev_maps &&
2638 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2639 		copy = true;
2640 
2641 	/* allocate memory for queue storage */
2642 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2643 	     j < nr_ids;) {
2644 		if (!new_dev_maps) {
2645 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2646 			if (!new_dev_maps) {
2647 				mutex_unlock(&xps_map_mutex);
2648 				return -ENOMEM;
2649 			}
2650 
2651 			new_dev_maps->nr_ids = nr_ids;
2652 			new_dev_maps->num_tc = num_tc;
2653 		}
2654 
2655 		tci = j * num_tc + tc;
2656 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2657 
2658 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2659 		if (!map)
2660 			goto error;
2661 
2662 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2663 	}
2664 
2665 	if (!new_dev_maps)
2666 		goto out_no_new_maps;
2667 
2668 	if (!dev_maps) {
2669 		/* Increment static keys at most once per type */
2670 		static_key_slow_inc_cpuslocked(&xps_needed);
2671 		if (type == XPS_RXQS)
2672 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2673 	}
2674 
2675 	for (j = 0; j < nr_ids; j++) {
2676 		bool skip_tc = false;
2677 
2678 		tci = j * num_tc + tc;
2679 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2680 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2681 			/* add tx-queue to CPU/rx-queue maps */
2682 			int pos = 0;
2683 
2684 			skip_tc = true;
2685 
2686 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2687 			while ((pos < map->len) && (map->queues[pos] != index))
2688 				pos++;
2689 
2690 			if (pos == map->len)
2691 				map->queues[map->len++] = index;
2692 #ifdef CONFIG_NUMA
2693 			if (type == XPS_CPUS) {
2694 				if (numa_node_id == -2)
2695 					numa_node_id = cpu_to_node(j);
2696 				else if (numa_node_id != cpu_to_node(j))
2697 					numa_node_id = -1;
2698 			}
2699 #endif
2700 		}
2701 
2702 		if (copy)
2703 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2704 					  skip_tc);
2705 	}
2706 
2707 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2708 
2709 	/* Cleanup old maps */
2710 	if (!dev_maps)
2711 		goto out_no_old_maps;
2712 
2713 	for (j = 0; j < dev_maps->nr_ids; j++) {
2714 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2715 			map = xmap_dereference(dev_maps->attr_map[tci]);
2716 			if (!map)
2717 				continue;
2718 
2719 			if (copy) {
2720 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2721 				if (map == new_map)
2722 					continue;
2723 			}
2724 
2725 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2726 			kfree_rcu(map, rcu);
2727 		}
2728 	}
2729 
2730 	old_dev_maps = dev_maps;
2731 
2732 out_no_old_maps:
2733 	dev_maps = new_dev_maps;
2734 	active = true;
2735 
2736 out_no_new_maps:
2737 	if (type == XPS_CPUS)
2738 		/* update Tx queue numa node */
2739 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2740 					     (numa_node_id >= 0) ?
2741 					     numa_node_id : NUMA_NO_NODE);
2742 
2743 	if (!dev_maps)
2744 		goto out_no_maps;
2745 
2746 	/* removes tx-queue from unused CPUs/rx-queues */
2747 	for (j = 0; j < dev_maps->nr_ids; j++) {
2748 		tci = j * dev_maps->num_tc;
2749 
2750 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2751 			if (i == tc &&
2752 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2753 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2754 				continue;
2755 
2756 			active |= remove_xps_queue(dev_maps,
2757 						   copy ? old_dev_maps : NULL,
2758 						   tci, index);
2759 		}
2760 	}
2761 
2762 	if (old_dev_maps)
2763 		kfree_rcu(old_dev_maps, rcu);
2764 
2765 	/* free map if not active */
2766 	if (!active)
2767 		reset_xps_maps(dev, dev_maps, type);
2768 
2769 out_no_maps:
2770 	mutex_unlock(&xps_map_mutex);
2771 
2772 	return 0;
2773 error:
2774 	/* remove any maps that we added */
2775 	for (j = 0; j < nr_ids; j++) {
2776 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2777 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2778 			map = copy ?
2779 			      xmap_dereference(dev_maps->attr_map[tci]) :
2780 			      NULL;
2781 			if (new_map && new_map != map)
2782 				kfree(new_map);
2783 		}
2784 	}
2785 
2786 	mutex_unlock(&xps_map_mutex);
2787 
2788 	kfree(new_dev_maps);
2789 	return -ENOMEM;
2790 }
2791 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2792 
2793 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2794 			u16 index)
2795 {
2796 	int ret;
2797 
2798 	cpus_read_lock();
2799 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2800 	cpus_read_unlock();
2801 
2802 	return ret;
2803 }
2804 EXPORT_SYMBOL(netif_set_xps_queue);
2805 
2806 #endif
2807 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2808 {
2809 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2810 
2811 	/* Unbind any subordinate channels */
2812 	while (txq-- != &dev->_tx[0]) {
2813 		if (txq->sb_dev)
2814 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2815 	}
2816 }
2817 
2818 void netdev_reset_tc(struct net_device *dev)
2819 {
2820 #ifdef CONFIG_XPS
2821 	netif_reset_xps_queues_gt(dev, 0);
2822 #endif
2823 	netdev_unbind_all_sb_channels(dev);
2824 
2825 	/* Reset TC configuration of device */
2826 	dev->num_tc = 0;
2827 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2828 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2829 }
2830 EXPORT_SYMBOL(netdev_reset_tc);
2831 
2832 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2833 {
2834 	if (tc >= dev->num_tc)
2835 		return -EINVAL;
2836 
2837 #ifdef CONFIG_XPS
2838 	netif_reset_xps_queues(dev, offset, count);
2839 #endif
2840 	dev->tc_to_txq[tc].count = count;
2841 	dev->tc_to_txq[tc].offset = offset;
2842 	return 0;
2843 }
2844 EXPORT_SYMBOL(netdev_set_tc_queue);
2845 
2846 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2847 {
2848 	if (num_tc > TC_MAX_QUEUE)
2849 		return -EINVAL;
2850 
2851 #ifdef CONFIG_XPS
2852 	netif_reset_xps_queues_gt(dev, 0);
2853 #endif
2854 	netdev_unbind_all_sb_channels(dev);
2855 
2856 	dev->num_tc = num_tc;
2857 	return 0;
2858 }
2859 EXPORT_SYMBOL(netdev_set_num_tc);
2860 
2861 void netdev_unbind_sb_channel(struct net_device *dev,
2862 			      struct net_device *sb_dev)
2863 {
2864 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2865 
2866 #ifdef CONFIG_XPS
2867 	netif_reset_xps_queues_gt(sb_dev, 0);
2868 #endif
2869 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2870 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2871 
2872 	while (txq-- != &dev->_tx[0]) {
2873 		if (txq->sb_dev == sb_dev)
2874 			txq->sb_dev = NULL;
2875 	}
2876 }
2877 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2878 
2879 int netdev_bind_sb_channel_queue(struct net_device *dev,
2880 				 struct net_device *sb_dev,
2881 				 u8 tc, u16 count, u16 offset)
2882 {
2883 	/* Make certain the sb_dev and dev are already configured */
2884 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2885 		return -EINVAL;
2886 
2887 	/* We cannot hand out queues we don't have */
2888 	if ((offset + count) > dev->real_num_tx_queues)
2889 		return -EINVAL;
2890 
2891 	/* Record the mapping */
2892 	sb_dev->tc_to_txq[tc].count = count;
2893 	sb_dev->tc_to_txq[tc].offset = offset;
2894 
2895 	/* Provide a way for Tx queue to find the tc_to_txq map or
2896 	 * XPS map for itself.
2897 	 */
2898 	while (count--)
2899 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2900 
2901 	return 0;
2902 }
2903 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2904 
2905 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2906 {
2907 	/* Do not use a multiqueue device to represent a subordinate channel */
2908 	if (netif_is_multiqueue(dev))
2909 		return -ENODEV;
2910 
2911 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2912 	 * Channel 0 is meant to be "native" mode and used only to represent
2913 	 * the main root device. We allow writing 0 to reset the device back
2914 	 * to normal mode after being used as a subordinate channel.
2915 	 */
2916 	if (channel > S16_MAX)
2917 		return -EINVAL;
2918 
2919 	dev->num_tc = -channel;
2920 
2921 	return 0;
2922 }
2923 EXPORT_SYMBOL(netdev_set_sb_channel);
2924 
2925 /*
2926  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2927  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2928  */
2929 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2930 {
2931 	bool disabling;
2932 	int rc;
2933 
2934 	disabling = txq < dev->real_num_tx_queues;
2935 
2936 	if (txq < 1 || txq > dev->num_tx_queues)
2937 		return -EINVAL;
2938 
2939 	if (dev->reg_state == NETREG_REGISTERED ||
2940 	    dev->reg_state == NETREG_UNREGISTERING) {
2941 		ASSERT_RTNL();
2942 
2943 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2944 						  txq);
2945 		if (rc)
2946 			return rc;
2947 
2948 		if (dev->num_tc)
2949 			netif_setup_tc(dev, txq);
2950 
2951 		dev_qdisc_change_real_num_tx(dev, txq);
2952 
2953 		dev->real_num_tx_queues = txq;
2954 
2955 		if (disabling) {
2956 			synchronize_net();
2957 			qdisc_reset_all_tx_gt(dev, txq);
2958 #ifdef CONFIG_XPS
2959 			netif_reset_xps_queues_gt(dev, txq);
2960 #endif
2961 		}
2962 	} else {
2963 		dev->real_num_tx_queues = txq;
2964 	}
2965 
2966 	return 0;
2967 }
2968 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2969 
2970 #ifdef CONFIG_SYSFS
2971 /**
2972  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2973  *	@dev: Network device
2974  *	@rxq: Actual number of RX queues
2975  *
2976  *	This must be called either with the rtnl_lock held or before
2977  *	registration of the net device.  Returns 0 on success, or a
2978  *	negative error code.  If called before registration, it always
2979  *	succeeds.
2980  */
2981 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2982 {
2983 	int rc;
2984 
2985 	if (rxq < 1 || rxq > dev->num_rx_queues)
2986 		return -EINVAL;
2987 
2988 	if (dev->reg_state == NETREG_REGISTERED) {
2989 		ASSERT_RTNL();
2990 
2991 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2992 						  rxq);
2993 		if (rc)
2994 			return rc;
2995 	}
2996 
2997 	dev->real_num_rx_queues = rxq;
2998 	return 0;
2999 }
3000 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3001 #endif
3002 
3003 /**
3004  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3005  *	@dev: Network device
3006  *	@txq: Actual number of TX queues
3007  *	@rxq: Actual number of RX queues
3008  *
3009  *	Set the real number of both TX and RX queues.
3010  *	Does nothing if the number of queues is already correct.
3011  */
3012 int netif_set_real_num_queues(struct net_device *dev,
3013 			      unsigned int txq, unsigned int rxq)
3014 {
3015 	unsigned int old_rxq = dev->real_num_rx_queues;
3016 	int err;
3017 
3018 	if (txq < 1 || txq > dev->num_tx_queues ||
3019 	    rxq < 1 || rxq > dev->num_rx_queues)
3020 		return -EINVAL;
3021 
3022 	/* Start from increases, so the error path only does decreases -
3023 	 * decreases can't fail.
3024 	 */
3025 	if (rxq > dev->real_num_rx_queues) {
3026 		err = netif_set_real_num_rx_queues(dev, rxq);
3027 		if (err)
3028 			return err;
3029 	}
3030 	if (txq > dev->real_num_tx_queues) {
3031 		err = netif_set_real_num_tx_queues(dev, txq);
3032 		if (err)
3033 			goto undo_rx;
3034 	}
3035 	if (rxq < dev->real_num_rx_queues)
3036 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3037 	if (txq < dev->real_num_tx_queues)
3038 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3039 
3040 	return 0;
3041 undo_rx:
3042 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3043 	return err;
3044 }
3045 EXPORT_SYMBOL(netif_set_real_num_queues);
3046 
3047 /**
3048  * netif_set_tso_max_size() - set the max size of TSO frames supported
3049  * @dev:	netdev to update
3050  * @size:	max skb->len of a TSO frame
3051  *
3052  * Set the limit on the size of TSO super-frames the device can handle.
3053  * Unless explicitly set the stack will assume the value of
3054  * %GSO_LEGACY_MAX_SIZE.
3055  */
3056 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3057 {
3058 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3059 	if (size < READ_ONCE(dev->gso_max_size))
3060 		netif_set_gso_max_size(dev, size);
3061 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3062 		netif_set_gso_ipv4_max_size(dev, size);
3063 }
3064 EXPORT_SYMBOL(netif_set_tso_max_size);
3065 
3066 /**
3067  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3068  * @dev:	netdev to update
3069  * @segs:	max number of TCP segments
3070  *
3071  * Set the limit on the number of TCP segments the device can generate from
3072  * a single TSO super-frame.
3073  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3074  */
3075 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3076 {
3077 	dev->tso_max_segs = segs;
3078 	if (segs < READ_ONCE(dev->gso_max_segs))
3079 		netif_set_gso_max_segs(dev, segs);
3080 }
3081 EXPORT_SYMBOL(netif_set_tso_max_segs);
3082 
3083 /**
3084  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3085  * @to:		netdev to update
3086  * @from:	netdev from which to copy the limits
3087  */
3088 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3089 {
3090 	netif_set_tso_max_size(to, from->tso_max_size);
3091 	netif_set_tso_max_segs(to, from->tso_max_segs);
3092 }
3093 EXPORT_SYMBOL(netif_inherit_tso_max);
3094 
3095 /**
3096  * netif_get_num_default_rss_queues - default number of RSS queues
3097  *
3098  * Default value is the number of physical cores if there are only 1 or 2, or
3099  * divided by 2 if there are more.
3100  */
3101 int netif_get_num_default_rss_queues(void)
3102 {
3103 	cpumask_var_t cpus;
3104 	int cpu, count = 0;
3105 
3106 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3107 		return 1;
3108 
3109 	cpumask_copy(cpus, cpu_online_mask);
3110 	for_each_cpu(cpu, cpus) {
3111 		++count;
3112 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3113 	}
3114 	free_cpumask_var(cpus);
3115 
3116 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3117 }
3118 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3119 
3120 static void __netif_reschedule(struct Qdisc *q)
3121 {
3122 	struct softnet_data *sd;
3123 	unsigned long flags;
3124 
3125 	local_irq_save(flags);
3126 	sd = this_cpu_ptr(&softnet_data);
3127 	q->next_sched = NULL;
3128 	*sd->output_queue_tailp = q;
3129 	sd->output_queue_tailp = &q->next_sched;
3130 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3131 	local_irq_restore(flags);
3132 }
3133 
3134 void __netif_schedule(struct Qdisc *q)
3135 {
3136 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3137 		__netif_reschedule(q);
3138 }
3139 EXPORT_SYMBOL(__netif_schedule);
3140 
3141 struct dev_kfree_skb_cb {
3142 	enum skb_drop_reason reason;
3143 };
3144 
3145 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3146 {
3147 	return (struct dev_kfree_skb_cb *)skb->cb;
3148 }
3149 
3150 void netif_schedule_queue(struct netdev_queue *txq)
3151 {
3152 	rcu_read_lock();
3153 	if (!netif_xmit_stopped(txq)) {
3154 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3155 
3156 		__netif_schedule(q);
3157 	}
3158 	rcu_read_unlock();
3159 }
3160 EXPORT_SYMBOL(netif_schedule_queue);
3161 
3162 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3163 {
3164 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3165 		struct Qdisc *q;
3166 
3167 		rcu_read_lock();
3168 		q = rcu_dereference(dev_queue->qdisc);
3169 		__netif_schedule(q);
3170 		rcu_read_unlock();
3171 	}
3172 }
3173 EXPORT_SYMBOL(netif_tx_wake_queue);
3174 
3175 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3176 {
3177 	unsigned long flags;
3178 
3179 	if (unlikely(!skb))
3180 		return;
3181 
3182 	if (likely(refcount_read(&skb->users) == 1)) {
3183 		smp_rmb();
3184 		refcount_set(&skb->users, 0);
3185 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3186 		return;
3187 	}
3188 	get_kfree_skb_cb(skb)->reason = reason;
3189 	local_irq_save(flags);
3190 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3191 	__this_cpu_write(softnet_data.completion_queue, skb);
3192 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3193 	local_irq_restore(flags);
3194 }
3195 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3196 
3197 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3198 {
3199 	if (in_hardirq() || irqs_disabled())
3200 		dev_kfree_skb_irq_reason(skb, reason);
3201 	else
3202 		kfree_skb_reason(skb, reason);
3203 }
3204 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3205 
3206 
3207 /**
3208  * netif_device_detach - mark device as removed
3209  * @dev: network device
3210  *
3211  * Mark device as removed from system and therefore no longer available.
3212  */
3213 void netif_device_detach(struct net_device *dev)
3214 {
3215 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3216 	    netif_running(dev)) {
3217 		netif_tx_stop_all_queues(dev);
3218 	}
3219 }
3220 EXPORT_SYMBOL(netif_device_detach);
3221 
3222 /**
3223  * netif_device_attach - mark device as attached
3224  * @dev: network device
3225  *
3226  * Mark device as attached from system and restart if needed.
3227  */
3228 void netif_device_attach(struct net_device *dev)
3229 {
3230 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3231 	    netif_running(dev)) {
3232 		netif_tx_wake_all_queues(dev);
3233 		__netdev_watchdog_up(dev);
3234 	}
3235 }
3236 EXPORT_SYMBOL(netif_device_attach);
3237 
3238 /*
3239  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3240  * to be used as a distribution range.
3241  */
3242 static u16 skb_tx_hash(const struct net_device *dev,
3243 		       const struct net_device *sb_dev,
3244 		       struct sk_buff *skb)
3245 {
3246 	u32 hash;
3247 	u16 qoffset = 0;
3248 	u16 qcount = dev->real_num_tx_queues;
3249 
3250 	if (dev->num_tc) {
3251 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3252 
3253 		qoffset = sb_dev->tc_to_txq[tc].offset;
3254 		qcount = sb_dev->tc_to_txq[tc].count;
3255 		if (unlikely(!qcount)) {
3256 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3257 					     sb_dev->name, qoffset, tc);
3258 			qoffset = 0;
3259 			qcount = dev->real_num_tx_queues;
3260 		}
3261 	}
3262 
3263 	if (skb_rx_queue_recorded(skb)) {
3264 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3265 		hash = skb_get_rx_queue(skb);
3266 		if (hash >= qoffset)
3267 			hash -= qoffset;
3268 		while (unlikely(hash >= qcount))
3269 			hash -= qcount;
3270 		return hash + qoffset;
3271 	}
3272 
3273 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3274 }
3275 
3276 void skb_warn_bad_offload(const struct sk_buff *skb)
3277 {
3278 	static const netdev_features_t null_features;
3279 	struct net_device *dev = skb->dev;
3280 	const char *name = "";
3281 
3282 	if (!net_ratelimit())
3283 		return;
3284 
3285 	if (dev) {
3286 		if (dev->dev.parent)
3287 			name = dev_driver_string(dev->dev.parent);
3288 		else
3289 			name = netdev_name(dev);
3290 	}
3291 	skb_dump(KERN_WARNING, skb, false);
3292 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3293 	     name, dev ? &dev->features : &null_features,
3294 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3295 }
3296 
3297 /*
3298  * Invalidate hardware checksum when packet is to be mangled, and
3299  * complete checksum manually on outgoing path.
3300  */
3301 int skb_checksum_help(struct sk_buff *skb)
3302 {
3303 	__wsum csum;
3304 	int ret = 0, offset;
3305 
3306 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3307 		goto out_set_summed;
3308 
3309 	if (unlikely(skb_is_gso(skb))) {
3310 		skb_warn_bad_offload(skb);
3311 		return -EINVAL;
3312 	}
3313 
3314 	/* Before computing a checksum, we should make sure no frag could
3315 	 * be modified by an external entity : checksum could be wrong.
3316 	 */
3317 	if (skb_has_shared_frag(skb)) {
3318 		ret = __skb_linearize(skb);
3319 		if (ret)
3320 			goto out;
3321 	}
3322 
3323 	offset = skb_checksum_start_offset(skb);
3324 	ret = -EINVAL;
3325 	if (unlikely(offset >= skb_headlen(skb))) {
3326 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3327 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3328 			  offset, skb_headlen(skb));
3329 		goto out;
3330 	}
3331 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3332 
3333 	offset += skb->csum_offset;
3334 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3335 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3336 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3337 			  offset + sizeof(__sum16), skb_headlen(skb));
3338 		goto out;
3339 	}
3340 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3341 	if (ret)
3342 		goto out;
3343 
3344 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3345 out_set_summed:
3346 	skb->ip_summed = CHECKSUM_NONE;
3347 out:
3348 	return ret;
3349 }
3350 EXPORT_SYMBOL(skb_checksum_help);
3351 
3352 int skb_crc32c_csum_help(struct sk_buff *skb)
3353 {
3354 	__le32 crc32c_csum;
3355 	int ret = 0, offset, start;
3356 
3357 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3358 		goto out;
3359 
3360 	if (unlikely(skb_is_gso(skb)))
3361 		goto out;
3362 
3363 	/* Before computing a checksum, we should make sure no frag could
3364 	 * be modified by an external entity : checksum could be wrong.
3365 	 */
3366 	if (unlikely(skb_has_shared_frag(skb))) {
3367 		ret = __skb_linearize(skb);
3368 		if (ret)
3369 			goto out;
3370 	}
3371 	start = skb_checksum_start_offset(skb);
3372 	offset = start + offsetof(struct sctphdr, checksum);
3373 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3374 		ret = -EINVAL;
3375 		goto out;
3376 	}
3377 
3378 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3379 	if (ret)
3380 		goto out;
3381 
3382 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3383 						  skb->len - start, ~(__u32)0,
3384 						  crc32c_csum_stub));
3385 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3386 	skb_reset_csum_not_inet(skb);
3387 out:
3388 	return ret;
3389 }
3390 EXPORT_SYMBOL(skb_crc32c_csum_help);
3391 
3392 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3393 {
3394 	__be16 type = skb->protocol;
3395 
3396 	/* Tunnel gso handlers can set protocol to ethernet. */
3397 	if (type == htons(ETH_P_TEB)) {
3398 		struct ethhdr *eth;
3399 
3400 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3401 			return 0;
3402 
3403 		eth = (struct ethhdr *)skb->data;
3404 		type = eth->h_proto;
3405 	}
3406 
3407 	return vlan_get_protocol_and_depth(skb, type, depth);
3408 }
3409 
3410 
3411 /* Take action when hardware reception checksum errors are detected. */
3412 #ifdef CONFIG_BUG
3413 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3414 {
3415 	netdev_err(dev, "hw csum failure\n");
3416 	skb_dump(KERN_ERR, skb, true);
3417 	dump_stack();
3418 }
3419 
3420 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3421 {
3422 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3423 }
3424 EXPORT_SYMBOL(netdev_rx_csum_fault);
3425 #endif
3426 
3427 /* XXX: check that highmem exists at all on the given machine. */
3428 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3429 {
3430 #ifdef CONFIG_HIGHMEM
3431 	int i;
3432 
3433 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3434 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3435 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3436 
3437 			if (PageHighMem(skb_frag_page(frag)))
3438 				return 1;
3439 		}
3440 	}
3441 #endif
3442 	return 0;
3443 }
3444 
3445 /* If MPLS offload request, verify we are testing hardware MPLS features
3446  * instead of standard features for the netdev.
3447  */
3448 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3449 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3450 					   netdev_features_t features,
3451 					   __be16 type)
3452 {
3453 	if (eth_p_mpls(type))
3454 		features &= skb->dev->mpls_features;
3455 
3456 	return features;
3457 }
3458 #else
3459 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3460 					   netdev_features_t features,
3461 					   __be16 type)
3462 {
3463 	return features;
3464 }
3465 #endif
3466 
3467 static netdev_features_t harmonize_features(struct sk_buff *skb,
3468 	netdev_features_t features)
3469 {
3470 	__be16 type;
3471 
3472 	type = skb_network_protocol(skb, NULL);
3473 	features = net_mpls_features(skb, features, type);
3474 
3475 	if (skb->ip_summed != CHECKSUM_NONE &&
3476 	    !can_checksum_protocol(features, type)) {
3477 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3478 	}
3479 	if (illegal_highdma(skb->dev, skb))
3480 		features &= ~NETIF_F_SG;
3481 
3482 	return features;
3483 }
3484 
3485 netdev_features_t passthru_features_check(struct sk_buff *skb,
3486 					  struct net_device *dev,
3487 					  netdev_features_t features)
3488 {
3489 	return features;
3490 }
3491 EXPORT_SYMBOL(passthru_features_check);
3492 
3493 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3494 					     struct net_device *dev,
3495 					     netdev_features_t features)
3496 {
3497 	return vlan_features_check(skb, features);
3498 }
3499 
3500 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3501 					    struct net_device *dev,
3502 					    netdev_features_t features)
3503 {
3504 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3505 
3506 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3507 		return features & ~NETIF_F_GSO_MASK;
3508 
3509 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3510 		return features & ~NETIF_F_GSO_MASK;
3511 
3512 	if (!skb_shinfo(skb)->gso_type) {
3513 		skb_warn_bad_offload(skb);
3514 		return features & ~NETIF_F_GSO_MASK;
3515 	}
3516 
3517 	/* Support for GSO partial features requires software
3518 	 * intervention before we can actually process the packets
3519 	 * so we need to strip support for any partial features now
3520 	 * and we can pull them back in after we have partially
3521 	 * segmented the frame.
3522 	 */
3523 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3524 		features &= ~dev->gso_partial_features;
3525 
3526 	/* Make sure to clear the IPv4 ID mangling feature if the
3527 	 * IPv4 header has the potential to be fragmented.
3528 	 */
3529 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3530 		struct iphdr *iph = skb->encapsulation ?
3531 				    inner_ip_hdr(skb) : ip_hdr(skb);
3532 
3533 		if (!(iph->frag_off & htons(IP_DF)))
3534 			features &= ~NETIF_F_TSO_MANGLEID;
3535 	}
3536 
3537 	return features;
3538 }
3539 
3540 netdev_features_t netif_skb_features(struct sk_buff *skb)
3541 {
3542 	struct net_device *dev = skb->dev;
3543 	netdev_features_t features = dev->features;
3544 
3545 	if (skb_is_gso(skb))
3546 		features = gso_features_check(skb, dev, features);
3547 
3548 	/* If encapsulation offload request, verify we are testing
3549 	 * hardware encapsulation features instead of standard
3550 	 * features for the netdev
3551 	 */
3552 	if (skb->encapsulation)
3553 		features &= dev->hw_enc_features;
3554 
3555 	if (skb_vlan_tagged(skb))
3556 		features = netdev_intersect_features(features,
3557 						     dev->vlan_features |
3558 						     NETIF_F_HW_VLAN_CTAG_TX |
3559 						     NETIF_F_HW_VLAN_STAG_TX);
3560 
3561 	if (dev->netdev_ops->ndo_features_check)
3562 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3563 								features);
3564 	else
3565 		features &= dflt_features_check(skb, dev, features);
3566 
3567 	return harmonize_features(skb, features);
3568 }
3569 EXPORT_SYMBOL(netif_skb_features);
3570 
3571 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3572 		    struct netdev_queue *txq, bool more)
3573 {
3574 	unsigned int len;
3575 	int rc;
3576 
3577 	if (dev_nit_active(dev))
3578 		dev_queue_xmit_nit(skb, dev);
3579 
3580 	len = skb->len;
3581 	trace_net_dev_start_xmit(skb, dev);
3582 	rc = netdev_start_xmit(skb, dev, txq, more);
3583 	trace_net_dev_xmit(skb, rc, dev, len);
3584 
3585 	return rc;
3586 }
3587 
3588 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3589 				    struct netdev_queue *txq, int *ret)
3590 {
3591 	struct sk_buff *skb = first;
3592 	int rc = NETDEV_TX_OK;
3593 
3594 	while (skb) {
3595 		struct sk_buff *next = skb->next;
3596 
3597 		skb_mark_not_on_list(skb);
3598 		rc = xmit_one(skb, dev, txq, next != NULL);
3599 		if (unlikely(!dev_xmit_complete(rc))) {
3600 			skb->next = next;
3601 			goto out;
3602 		}
3603 
3604 		skb = next;
3605 		if (netif_tx_queue_stopped(txq) && skb) {
3606 			rc = NETDEV_TX_BUSY;
3607 			break;
3608 		}
3609 	}
3610 
3611 out:
3612 	*ret = rc;
3613 	return skb;
3614 }
3615 
3616 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3617 					  netdev_features_t features)
3618 {
3619 	if (skb_vlan_tag_present(skb) &&
3620 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3621 		skb = __vlan_hwaccel_push_inside(skb);
3622 	return skb;
3623 }
3624 
3625 int skb_csum_hwoffload_help(struct sk_buff *skb,
3626 			    const netdev_features_t features)
3627 {
3628 	if (unlikely(skb_csum_is_sctp(skb)))
3629 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3630 			skb_crc32c_csum_help(skb);
3631 
3632 	if (features & NETIF_F_HW_CSUM)
3633 		return 0;
3634 
3635 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3636 		switch (skb->csum_offset) {
3637 		case offsetof(struct tcphdr, check):
3638 		case offsetof(struct udphdr, check):
3639 			return 0;
3640 		}
3641 	}
3642 
3643 	return skb_checksum_help(skb);
3644 }
3645 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3646 
3647 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3648 {
3649 	netdev_features_t features;
3650 
3651 	features = netif_skb_features(skb);
3652 	skb = validate_xmit_vlan(skb, features);
3653 	if (unlikely(!skb))
3654 		goto out_null;
3655 
3656 	skb = sk_validate_xmit_skb(skb, dev);
3657 	if (unlikely(!skb))
3658 		goto out_null;
3659 
3660 	if (netif_needs_gso(skb, features)) {
3661 		struct sk_buff *segs;
3662 
3663 		segs = skb_gso_segment(skb, features);
3664 		if (IS_ERR(segs)) {
3665 			goto out_kfree_skb;
3666 		} else if (segs) {
3667 			consume_skb(skb);
3668 			skb = segs;
3669 		}
3670 	} else {
3671 		if (skb_needs_linearize(skb, features) &&
3672 		    __skb_linearize(skb))
3673 			goto out_kfree_skb;
3674 
3675 		/* If packet is not checksummed and device does not
3676 		 * support checksumming for this protocol, complete
3677 		 * checksumming here.
3678 		 */
3679 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3680 			if (skb->encapsulation)
3681 				skb_set_inner_transport_header(skb,
3682 							       skb_checksum_start_offset(skb));
3683 			else
3684 				skb_set_transport_header(skb,
3685 							 skb_checksum_start_offset(skb));
3686 			if (skb_csum_hwoffload_help(skb, features))
3687 				goto out_kfree_skb;
3688 		}
3689 	}
3690 
3691 	skb = validate_xmit_xfrm(skb, features, again);
3692 
3693 	return skb;
3694 
3695 out_kfree_skb:
3696 	kfree_skb(skb);
3697 out_null:
3698 	dev_core_stats_tx_dropped_inc(dev);
3699 	return NULL;
3700 }
3701 
3702 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3703 {
3704 	struct sk_buff *next, *head = NULL, *tail;
3705 
3706 	for (; skb != NULL; skb = next) {
3707 		next = skb->next;
3708 		skb_mark_not_on_list(skb);
3709 
3710 		/* in case skb won't be segmented, point to itself */
3711 		skb->prev = skb;
3712 
3713 		skb = validate_xmit_skb(skb, dev, again);
3714 		if (!skb)
3715 			continue;
3716 
3717 		if (!head)
3718 			head = skb;
3719 		else
3720 			tail->next = skb;
3721 		/* If skb was segmented, skb->prev points to
3722 		 * the last segment. If not, it still contains skb.
3723 		 */
3724 		tail = skb->prev;
3725 	}
3726 	return head;
3727 }
3728 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3729 
3730 static void qdisc_pkt_len_init(struct sk_buff *skb)
3731 {
3732 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3733 
3734 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3735 
3736 	/* To get more precise estimation of bytes sent on wire,
3737 	 * we add to pkt_len the headers size of all segments
3738 	 */
3739 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3740 		u16 gso_segs = shinfo->gso_segs;
3741 		unsigned int hdr_len;
3742 
3743 		/* mac layer + network layer */
3744 		hdr_len = skb_transport_offset(skb);
3745 
3746 		/* + transport layer */
3747 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3748 			const struct tcphdr *th;
3749 			struct tcphdr _tcphdr;
3750 
3751 			th = skb_header_pointer(skb, hdr_len,
3752 						sizeof(_tcphdr), &_tcphdr);
3753 			if (likely(th))
3754 				hdr_len += __tcp_hdrlen(th);
3755 		} else {
3756 			struct udphdr _udphdr;
3757 
3758 			if (skb_header_pointer(skb, hdr_len,
3759 					       sizeof(_udphdr), &_udphdr))
3760 				hdr_len += sizeof(struct udphdr);
3761 		}
3762 
3763 		if (shinfo->gso_type & SKB_GSO_DODGY)
3764 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3765 						shinfo->gso_size);
3766 
3767 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3768 	}
3769 }
3770 
3771 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3772 			     struct sk_buff **to_free,
3773 			     struct netdev_queue *txq)
3774 {
3775 	int rc;
3776 
3777 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3778 	if (rc == NET_XMIT_SUCCESS)
3779 		trace_qdisc_enqueue(q, txq, skb);
3780 	return rc;
3781 }
3782 
3783 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3784 				 struct net_device *dev,
3785 				 struct netdev_queue *txq)
3786 {
3787 	spinlock_t *root_lock = qdisc_lock(q);
3788 	struct sk_buff *to_free = NULL;
3789 	bool contended;
3790 	int rc;
3791 
3792 	qdisc_calculate_pkt_len(skb, q);
3793 
3794 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3795 
3796 	if (q->flags & TCQ_F_NOLOCK) {
3797 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3798 		    qdisc_run_begin(q)) {
3799 			/* Retest nolock_qdisc_is_empty() within the protection
3800 			 * of q->seqlock to protect from racing with requeuing.
3801 			 */
3802 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3803 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3804 				__qdisc_run(q);
3805 				qdisc_run_end(q);
3806 
3807 				goto no_lock_out;
3808 			}
3809 
3810 			qdisc_bstats_cpu_update(q, skb);
3811 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3812 			    !nolock_qdisc_is_empty(q))
3813 				__qdisc_run(q);
3814 
3815 			qdisc_run_end(q);
3816 			return NET_XMIT_SUCCESS;
3817 		}
3818 
3819 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3820 		qdisc_run(q);
3821 
3822 no_lock_out:
3823 		if (unlikely(to_free))
3824 			kfree_skb_list_reason(to_free,
3825 					      tcf_get_drop_reason(to_free));
3826 		return rc;
3827 	}
3828 
3829 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3830 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3831 		return NET_XMIT_DROP;
3832 	}
3833 	/*
3834 	 * Heuristic to force contended enqueues to serialize on a
3835 	 * separate lock before trying to get qdisc main lock.
3836 	 * This permits qdisc->running owner to get the lock more
3837 	 * often and dequeue packets faster.
3838 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3839 	 * and then other tasks will only enqueue packets. The packets will be
3840 	 * sent after the qdisc owner is scheduled again. To prevent this
3841 	 * scenario the task always serialize on the lock.
3842 	 */
3843 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3844 	if (unlikely(contended))
3845 		spin_lock(&q->busylock);
3846 
3847 	spin_lock(root_lock);
3848 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3849 		__qdisc_drop(skb, &to_free);
3850 		rc = NET_XMIT_DROP;
3851 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3852 		   qdisc_run_begin(q)) {
3853 		/*
3854 		 * This is a work-conserving queue; there are no old skbs
3855 		 * waiting to be sent out; and the qdisc is not running -
3856 		 * xmit the skb directly.
3857 		 */
3858 
3859 		qdisc_bstats_update(q, skb);
3860 
3861 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3862 			if (unlikely(contended)) {
3863 				spin_unlock(&q->busylock);
3864 				contended = false;
3865 			}
3866 			__qdisc_run(q);
3867 		}
3868 
3869 		qdisc_run_end(q);
3870 		rc = NET_XMIT_SUCCESS;
3871 	} else {
3872 		WRITE_ONCE(q->owner, smp_processor_id());
3873 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3874 		WRITE_ONCE(q->owner, -1);
3875 		if (qdisc_run_begin(q)) {
3876 			if (unlikely(contended)) {
3877 				spin_unlock(&q->busylock);
3878 				contended = false;
3879 			}
3880 			__qdisc_run(q);
3881 			qdisc_run_end(q);
3882 		}
3883 	}
3884 	spin_unlock(root_lock);
3885 	if (unlikely(to_free))
3886 		kfree_skb_list_reason(to_free,
3887 				      tcf_get_drop_reason(to_free));
3888 	if (unlikely(contended))
3889 		spin_unlock(&q->busylock);
3890 	return rc;
3891 }
3892 
3893 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3894 static void skb_update_prio(struct sk_buff *skb)
3895 {
3896 	const struct netprio_map *map;
3897 	const struct sock *sk;
3898 	unsigned int prioidx;
3899 
3900 	if (skb->priority)
3901 		return;
3902 	map = rcu_dereference_bh(skb->dev->priomap);
3903 	if (!map)
3904 		return;
3905 	sk = skb_to_full_sk(skb);
3906 	if (!sk)
3907 		return;
3908 
3909 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3910 
3911 	if (prioidx < map->priomap_len)
3912 		skb->priority = map->priomap[prioidx];
3913 }
3914 #else
3915 #define skb_update_prio(skb)
3916 #endif
3917 
3918 /**
3919  *	dev_loopback_xmit - loop back @skb
3920  *	@net: network namespace this loopback is happening in
3921  *	@sk:  sk needed to be a netfilter okfn
3922  *	@skb: buffer to transmit
3923  */
3924 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3925 {
3926 	skb_reset_mac_header(skb);
3927 	__skb_pull(skb, skb_network_offset(skb));
3928 	skb->pkt_type = PACKET_LOOPBACK;
3929 	if (skb->ip_summed == CHECKSUM_NONE)
3930 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3931 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3932 	skb_dst_force(skb);
3933 	netif_rx(skb);
3934 	return 0;
3935 }
3936 EXPORT_SYMBOL(dev_loopback_xmit);
3937 
3938 #ifdef CONFIG_NET_EGRESS
3939 static struct netdev_queue *
3940 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3941 {
3942 	int qm = skb_get_queue_mapping(skb);
3943 
3944 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3945 }
3946 
3947 #ifndef CONFIG_PREEMPT_RT
3948 static bool netdev_xmit_txqueue_skipped(void)
3949 {
3950 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3951 }
3952 
3953 void netdev_xmit_skip_txqueue(bool skip)
3954 {
3955 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3956 }
3957 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3958 
3959 #else
3960 static bool netdev_xmit_txqueue_skipped(void)
3961 {
3962 	return current->net_xmit.skip_txqueue;
3963 }
3964 
3965 void netdev_xmit_skip_txqueue(bool skip)
3966 {
3967 	current->net_xmit.skip_txqueue = skip;
3968 }
3969 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3970 #endif
3971 #endif /* CONFIG_NET_EGRESS */
3972 
3973 #ifdef CONFIG_NET_XGRESS
3974 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3975 		  enum skb_drop_reason *drop_reason)
3976 {
3977 	int ret = TC_ACT_UNSPEC;
3978 #ifdef CONFIG_NET_CLS_ACT
3979 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3980 	struct tcf_result res;
3981 
3982 	if (!miniq)
3983 		return ret;
3984 
3985 	if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
3986 		if (tcf_block_bypass_sw(miniq->block))
3987 			return ret;
3988 	}
3989 
3990 	tc_skb_cb(skb)->mru = 0;
3991 	tc_skb_cb(skb)->post_ct = false;
3992 	tcf_set_drop_reason(skb, *drop_reason);
3993 
3994 	mini_qdisc_bstats_cpu_update(miniq, skb);
3995 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3996 	/* Only tcf related quirks below. */
3997 	switch (ret) {
3998 	case TC_ACT_SHOT:
3999 		*drop_reason = tcf_get_drop_reason(skb);
4000 		mini_qdisc_qstats_cpu_drop(miniq);
4001 		break;
4002 	case TC_ACT_OK:
4003 	case TC_ACT_RECLASSIFY:
4004 		skb->tc_index = TC_H_MIN(res.classid);
4005 		break;
4006 	}
4007 #endif /* CONFIG_NET_CLS_ACT */
4008 	return ret;
4009 }
4010 
4011 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4012 
4013 void tcx_inc(void)
4014 {
4015 	static_branch_inc(&tcx_needed_key);
4016 }
4017 
4018 void tcx_dec(void)
4019 {
4020 	static_branch_dec(&tcx_needed_key);
4021 }
4022 
4023 static __always_inline enum tcx_action_base
4024 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4025 	const bool needs_mac)
4026 {
4027 	const struct bpf_mprog_fp *fp;
4028 	const struct bpf_prog *prog;
4029 	int ret = TCX_NEXT;
4030 
4031 	if (needs_mac)
4032 		__skb_push(skb, skb->mac_len);
4033 	bpf_mprog_foreach_prog(entry, fp, prog) {
4034 		bpf_compute_data_pointers(skb);
4035 		ret = bpf_prog_run(prog, skb);
4036 		if (ret != TCX_NEXT)
4037 			break;
4038 	}
4039 	if (needs_mac)
4040 		__skb_pull(skb, skb->mac_len);
4041 	return tcx_action_code(skb, ret);
4042 }
4043 
4044 static __always_inline struct sk_buff *
4045 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4046 		   struct net_device *orig_dev, bool *another)
4047 {
4048 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4049 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4050 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4051 	int sch_ret;
4052 
4053 	if (!entry)
4054 		return skb;
4055 
4056 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4057 	if (*pt_prev) {
4058 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4059 		*pt_prev = NULL;
4060 	}
4061 
4062 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4063 	tcx_set_ingress(skb, true);
4064 
4065 	if (static_branch_unlikely(&tcx_needed_key)) {
4066 		sch_ret = tcx_run(entry, skb, true);
4067 		if (sch_ret != TC_ACT_UNSPEC)
4068 			goto ingress_verdict;
4069 	}
4070 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4071 ingress_verdict:
4072 	switch (sch_ret) {
4073 	case TC_ACT_REDIRECT:
4074 		/* skb_mac_header check was done by BPF, so we can safely
4075 		 * push the L2 header back before redirecting to another
4076 		 * netdev.
4077 		 */
4078 		__skb_push(skb, skb->mac_len);
4079 		if (skb_do_redirect(skb) == -EAGAIN) {
4080 			__skb_pull(skb, skb->mac_len);
4081 			*another = true;
4082 			break;
4083 		}
4084 		*ret = NET_RX_SUCCESS;
4085 		bpf_net_ctx_clear(bpf_net_ctx);
4086 		return NULL;
4087 	case TC_ACT_SHOT:
4088 		kfree_skb_reason(skb, drop_reason);
4089 		*ret = NET_RX_DROP;
4090 		bpf_net_ctx_clear(bpf_net_ctx);
4091 		return NULL;
4092 	/* used by tc_run */
4093 	case TC_ACT_STOLEN:
4094 	case TC_ACT_QUEUED:
4095 	case TC_ACT_TRAP:
4096 		consume_skb(skb);
4097 		fallthrough;
4098 	case TC_ACT_CONSUMED:
4099 		*ret = NET_RX_SUCCESS;
4100 		bpf_net_ctx_clear(bpf_net_ctx);
4101 		return NULL;
4102 	}
4103 	bpf_net_ctx_clear(bpf_net_ctx);
4104 
4105 	return skb;
4106 }
4107 
4108 static __always_inline struct sk_buff *
4109 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4110 {
4111 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4112 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4113 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4114 	int sch_ret;
4115 
4116 	if (!entry)
4117 		return skb;
4118 
4119 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4120 
4121 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4122 	 * already set by the caller.
4123 	 */
4124 	if (static_branch_unlikely(&tcx_needed_key)) {
4125 		sch_ret = tcx_run(entry, skb, false);
4126 		if (sch_ret != TC_ACT_UNSPEC)
4127 			goto egress_verdict;
4128 	}
4129 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4130 egress_verdict:
4131 	switch (sch_ret) {
4132 	case TC_ACT_REDIRECT:
4133 		/* No need to push/pop skb's mac_header here on egress! */
4134 		skb_do_redirect(skb);
4135 		*ret = NET_XMIT_SUCCESS;
4136 		bpf_net_ctx_clear(bpf_net_ctx);
4137 		return NULL;
4138 	case TC_ACT_SHOT:
4139 		kfree_skb_reason(skb, drop_reason);
4140 		*ret = NET_XMIT_DROP;
4141 		bpf_net_ctx_clear(bpf_net_ctx);
4142 		return NULL;
4143 	/* used by tc_run */
4144 	case TC_ACT_STOLEN:
4145 	case TC_ACT_QUEUED:
4146 	case TC_ACT_TRAP:
4147 		consume_skb(skb);
4148 		fallthrough;
4149 	case TC_ACT_CONSUMED:
4150 		*ret = NET_XMIT_SUCCESS;
4151 		bpf_net_ctx_clear(bpf_net_ctx);
4152 		return NULL;
4153 	}
4154 	bpf_net_ctx_clear(bpf_net_ctx);
4155 
4156 	return skb;
4157 }
4158 #else
4159 static __always_inline struct sk_buff *
4160 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4161 		   struct net_device *orig_dev, bool *another)
4162 {
4163 	return skb;
4164 }
4165 
4166 static __always_inline struct sk_buff *
4167 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4168 {
4169 	return skb;
4170 }
4171 #endif /* CONFIG_NET_XGRESS */
4172 
4173 #ifdef CONFIG_XPS
4174 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4175 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4176 {
4177 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4178 	struct xps_map *map;
4179 	int queue_index = -1;
4180 
4181 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4182 		return queue_index;
4183 
4184 	tci *= dev_maps->num_tc;
4185 	tci += tc;
4186 
4187 	map = rcu_dereference(dev_maps->attr_map[tci]);
4188 	if (map) {
4189 		if (map->len == 1)
4190 			queue_index = map->queues[0];
4191 		else
4192 			queue_index = map->queues[reciprocal_scale(
4193 						skb_get_hash(skb), map->len)];
4194 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4195 			queue_index = -1;
4196 	}
4197 	return queue_index;
4198 }
4199 #endif
4200 
4201 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4202 			 struct sk_buff *skb)
4203 {
4204 #ifdef CONFIG_XPS
4205 	struct xps_dev_maps *dev_maps;
4206 	struct sock *sk = skb->sk;
4207 	int queue_index = -1;
4208 
4209 	if (!static_key_false(&xps_needed))
4210 		return -1;
4211 
4212 	rcu_read_lock();
4213 	if (!static_key_false(&xps_rxqs_needed))
4214 		goto get_cpus_map;
4215 
4216 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4217 	if (dev_maps) {
4218 		int tci = sk_rx_queue_get(sk);
4219 
4220 		if (tci >= 0)
4221 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4222 							  tci);
4223 	}
4224 
4225 get_cpus_map:
4226 	if (queue_index < 0) {
4227 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4228 		if (dev_maps) {
4229 			unsigned int tci = skb->sender_cpu - 1;
4230 
4231 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4232 							  tci);
4233 		}
4234 	}
4235 	rcu_read_unlock();
4236 
4237 	return queue_index;
4238 #else
4239 	return -1;
4240 #endif
4241 }
4242 
4243 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4244 		     struct net_device *sb_dev)
4245 {
4246 	return 0;
4247 }
4248 EXPORT_SYMBOL(dev_pick_tx_zero);
4249 
4250 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4251 		       struct net_device *sb_dev)
4252 {
4253 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4254 }
4255 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4256 
4257 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4258 		     struct net_device *sb_dev)
4259 {
4260 	struct sock *sk = skb->sk;
4261 	int queue_index = sk_tx_queue_get(sk);
4262 
4263 	sb_dev = sb_dev ? : dev;
4264 
4265 	if (queue_index < 0 || skb->ooo_okay ||
4266 	    queue_index >= dev->real_num_tx_queues) {
4267 		int new_index = get_xps_queue(dev, sb_dev, skb);
4268 
4269 		if (new_index < 0)
4270 			new_index = skb_tx_hash(dev, sb_dev, skb);
4271 
4272 		if (queue_index != new_index && sk &&
4273 		    sk_fullsock(sk) &&
4274 		    rcu_access_pointer(sk->sk_dst_cache))
4275 			sk_tx_queue_set(sk, new_index);
4276 
4277 		queue_index = new_index;
4278 	}
4279 
4280 	return queue_index;
4281 }
4282 EXPORT_SYMBOL(netdev_pick_tx);
4283 
4284 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4285 					 struct sk_buff *skb,
4286 					 struct net_device *sb_dev)
4287 {
4288 	int queue_index = 0;
4289 
4290 #ifdef CONFIG_XPS
4291 	u32 sender_cpu = skb->sender_cpu - 1;
4292 
4293 	if (sender_cpu >= (u32)NR_CPUS)
4294 		skb->sender_cpu = raw_smp_processor_id() + 1;
4295 #endif
4296 
4297 	if (dev->real_num_tx_queues != 1) {
4298 		const struct net_device_ops *ops = dev->netdev_ops;
4299 
4300 		if (ops->ndo_select_queue)
4301 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4302 		else
4303 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4304 
4305 		queue_index = netdev_cap_txqueue(dev, queue_index);
4306 	}
4307 
4308 	skb_set_queue_mapping(skb, queue_index);
4309 	return netdev_get_tx_queue(dev, queue_index);
4310 }
4311 
4312 /**
4313  * __dev_queue_xmit() - transmit a buffer
4314  * @skb:	buffer to transmit
4315  * @sb_dev:	suboordinate device used for L2 forwarding offload
4316  *
4317  * Queue a buffer for transmission to a network device. The caller must
4318  * have set the device and priority and built the buffer before calling
4319  * this function. The function can be called from an interrupt.
4320  *
4321  * When calling this method, interrupts MUST be enabled. This is because
4322  * the BH enable code must have IRQs enabled so that it will not deadlock.
4323  *
4324  * Regardless of the return value, the skb is consumed, so it is currently
4325  * difficult to retry a send to this method. (You can bump the ref count
4326  * before sending to hold a reference for retry if you are careful.)
4327  *
4328  * Return:
4329  * * 0				- buffer successfully transmitted
4330  * * positive qdisc return code	- NET_XMIT_DROP etc.
4331  * * negative errno		- other errors
4332  */
4333 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4334 {
4335 	struct net_device *dev = skb->dev;
4336 	struct netdev_queue *txq = NULL;
4337 	struct Qdisc *q;
4338 	int rc = -ENOMEM;
4339 	bool again = false;
4340 
4341 	skb_reset_mac_header(skb);
4342 	skb_assert_len(skb);
4343 
4344 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4345 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4346 
4347 	/* Disable soft irqs for various locks below. Also
4348 	 * stops preemption for RCU.
4349 	 */
4350 	rcu_read_lock_bh();
4351 
4352 	skb_update_prio(skb);
4353 
4354 	qdisc_pkt_len_init(skb);
4355 	tcx_set_ingress(skb, false);
4356 #ifdef CONFIG_NET_EGRESS
4357 	if (static_branch_unlikely(&egress_needed_key)) {
4358 		if (nf_hook_egress_active()) {
4359 			skb = nf_hook_egress(skb, &rc, dev);
4360 			if (!skb)
4361 				goto out;
4362 		}
4363 
4364 		netdev_xmit_skip_txqueue(false);
4365 
4366 		nf_skip_egress(skb, true);
4367 		skb = sch_handle_egress(skb, &rc, dev);
4368 		if (!skb)
4369 			goto out;
4370 		nf_skip_egress(skb, false);
4371 
4372 		if (netdev_xmit_txqueue_skipped())
4373 			txq = netdev_tx_queue_mapping(dev, skb);
4374 	}
4375 #endif
4376 	/* If device/qdisc don't need skb->dst, release it right now while
4377 	 * its hot in this cpu cache.
4378 	 */
4379 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4380 		skb_dst_drop(skb);
4381 	else
4382 		skb_dst_force(skb);
4383 
4384 	if (!txq)
4385 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4386 
4387 	q = rcu_dereference_bh(txq->qdisc);
4388 
4389 	trace_net_dev_queue(skb);
4390 	if (q->enqueue) {
4391 		rc = __dev_xmit_skb(skb, q, dev, txq);
4392 		goto out;
4393 	}
4394 
4395 	/* The device has no queue. Common case for software devices:
4396 	 * loopback, all the sorts of tunnels...
4397 
4398 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4399 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4400 	 * counters.)
4401 	 * However, it is possible, that they rely on protection
4402 	 * made by us here.
4403 
4404 	 * Check this and shot the lock. It is not prone from deadlocks.
4405 	 *Either shot noqueue qdisc, it is even simpler 8)
4406 	 */
4407 	if (dev->flags & IFF_UP) {
4408 		int cpu = smp_processor_id(); /* ok because BHs are off */
4409 
4410 		/* Other cpus might concurrently change txq->xmit_lock_owner
4411 		 * to -1 or to their cpu id, but not to our id.
4412 		 */
4413 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4414 			if (dev_xmit_recursion())
4415 				goto recursion_alert;
4416 
4417 			skb = validate_xmit_skb(skb, dev, &again);
4418 			if (!skb)
4419 				goto out;
4420 
4421 			HARD_TX_LOCK(dev, txq, cpu);
4422 
4423 			if (!netif_xmit_stopped(txq)) {
4424 				dev_xmit_recursion_inc();
4425 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4426 				dev_xmit_recursion_dec();
4427 				if (dev_xmit_complete(rc)) {
4428 					HARD_TX_UNLOCK(dev, txq);
4429 					goto out;
4430 				}
4431 			}
4432 			HARD_TX_UNLOCK(dev, txq);
4433 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4434 					     dev->name);
4435 		} else {
4436 			/* Recursion is detected! It is possible,
4437 			 * unfortunately
4438 			 */
4439 recursion_alert:
4440 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4441 					     dev->name);
4442 		}
4443 	}
4444 
4445 	rc = -ENETDOWN;
4446 	rcu_read_unlock_bh();
4447 
4448 	dev_core_stats_tx_dropped_inc(dev);
4449 	kfree_skb_list(skb);
4450 	return rc;
4451 out:
4452 	rcu_read_unlock_bh();
4453 	return rc;
4454 }
4455 EXPORT_SYMBOL(__dev_queue_xmit);
4456 
4457 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4458 {
4459 	struct net_device *dev = skb->dev;
4460 	struct sk_buff *orig_skb = skb;
4461 	struct netdev_queue *txq;
4462 	int ret = NETDEV_TX_BUSY;
4463 	bool again = false;
4464 
4465 	if (unlikely(!netif_running(dev) ||
4466 		     !netif_carrier_ok(dev)))
4467 		goto drop;
4468 
4469 	skb = validate_xmit_skb_list(skb, dev, &again);
4470 	if (skb != orig_skb)
4471 		goto drop;
4472 
4473 	skb_set_queue_mapping(skb, queue_id);
4474 	txq = skb_get_tx_queue(dev, skb);
4475 
4476 	local_bh_disable();
4477 
4478 	dev_xmit_recursion_inc();
4479 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4480 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4481 		ret = netdev_start_xmit(skb, dev, txq, false);
4482 	HARD_TX_UNLOCK(dev, txq);
4483 	dev_xmit_recursion_dec();
4484 
4485 	local_bh_enable();
4486 	return ret;
4487 drop:
4488 	dev_core_stats_tx_dropped_inc(dev);
4489 	kfree_skb_list(skb);
4490 	return NET_XMIT_DROP;
4491 }
4492 EXPORT_SYMBOL(__dev_direct_xmit);
4493 
4494 /*************************************************************************
4495  *			Receiver routines
4496  *************************************************************************/
4497 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4498 
4499 int weight_p __read_mostly = 64;           /* old backlog weight */
4500 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4501 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4502 
4503 /* Called with irq disabled */
4504 static inline void ____napi_schedule(struct softnet_data *sd,
4505 				     struct napi_struct *napi)
4506 {
4507 	struct task_struct *thread;
4508 
4509 	lockdep_assert_irqs_disabled();
4510 
4511 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4512 		/* Paired with smp_mb__before_atomic() in
4513 		 * napi_enable()/dev_set_threaded().
4514 		 * Use READ_ONCE() to guarantee a complete
4515 		 * read on napi->thread. Only call
4516 		 * wake_up_process() when it's not NULL.
4517 		 */
4518 		thread = READ_ONCE(napi->thread);
4519 		if (thread) {
4520 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4521 				goto use_local_napi;
4522 
4523 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4524 			wake_up_process(thread);
4525 			return;
4526 		}
4527 	}
4528 
4529 use_local_napi:
4530 	list_add_tail(&napi->poll_list, &sd->poll_list);
4531 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4532 	/* If not called from net_rx_action()
4533 	 * we have to raise NET_RX_SOFTIRQ.
4534 	 */
4535 	if (!sd->in_net_rx_action)
4536 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4537 }
4538 
4539 #ifdef CONFIG_RPS
4540 
4541 struct static_key_false rps_needed __read_mostly;
4542 EXPORT_SYMBOL(rps_needed);
4543 struct static_key_false rfs_needed __read_mostly;
4544 EXPORT_SYMBOL(rfs_needed);
4545 
4546 static struct rps_dev_flow *
4547 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4548 	    struct rps_dev_flow *rflow, u16 next_cpu)
4549 {
4550 	if (next_cpu < nr_cpu_ids) {
4551 		u32 head;
4552 #ifdef CONFIG_RFS_ACCEL
4553 		struct netdev_rx_queue *rxqueue;
4554 		struct rps_dev_flow_table *flow_table;
4555 		struct rps_dev_flow *old_rflow;
4556 		u16 rxq_index;
4557 		u32 flow_id;
4558 		int rc;
4559 
4560 		/* Should we steer this flow to a different hardware queue? */
4561 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4562 		    !(dev->features & NETIF_F_NTUPLE))
4563 			goto out;
4564 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4565 		if (rxq_index == skb_get_rx_queue(skb))
4566 			goto out;
4567 
4568 		rxqueue = dev->_rx + rxq_index;
4569 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4570 		if (!flow_table)
4571 			goto out;
4572 		flow_id = skb_get_hash(skb) & flow_table->mask;
4573 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4574 							rxq_index, flow_id);
4575 		if (rc < 0)
4576 			goto out;
4577 		old_rflow = rflow;
4578 		rflow = &flow_table->flows[flow_id];
4579 		WRITE_ONCE(rflow->filter, rc);
4580 		if (old_rflow->filter == rc)
4581 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4582 	out:
4583 #endif
4584 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4585 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4586 	}
4587 
4588 	WRITE_ONCE(rflow->cpu, next_cpu);
4589 	return rflow;
4590 }
4591 
4592 /*
4593  * get_rps_cpu is called from netif_receive_skb and returns the target
4594  * CPU from the RPS map of the receiving queue for a given skb.
4595  * rcu_read_lock must be held on entry.
4596  */
4597 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4598 		       struct rps_dev_flow **rflowp)
4599 {
4600 	const struct rps_sock_flow_table *sock_flow_table;
4601 	struct netdev_rx_queue *rxqueue = dev->_rx;
4602 	struct rps_dev_flow_table *flow_table;
4603 	struct rps_map *map;
4604 	int cpu = -1;
4605 	u32 tcpu;
4606 	u32 hash;
4607 
4608 	if (skb_rx_queue_recorded(skb)) {
4609 		u16 index = skb_get_rx_queue(skb);
4610 
4611 		if (unlikely(index >= dev->real_num_rx_queues)) {
4612 			WARN_ONCE(dev->real_num_rx_queues > 1,
4613 				  "%s received packet on queue %u, but number "
4614 				  "of RX queues is %u\n",
4615 				  dev->name, index, dev->real_num_rx_queues);
4616 			goto done;
4617 		}
4618 		rxqueue += index;
4619 	}
4620 
4621 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4622 
4623 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4624 	map = rcu_dereference(rxqueue->rps_map);
4625 	if (!flow_table && !map)
4626 		goto done;
4627 
4628 	skb_reset_network_header(skb);
4629 	hash = skb_get_hash(skb);
4630 	if (!hash)
4631 		goto done;
4632 
4633 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4634 	if (flow_table && sock_flow_table) {
4635 		struct rps_dev_flow *rflow;
4636 		u32 next_cpu;
4637 		u32 ident;
4638 
4639 		/* First check into global flow table if there is a match.
4640 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4641 		 */
4642 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4643 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4644 			goto try_rps;
4645 
4646 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4647 
4648 		/* OK, now we know there is a match,
4649 		 * we can look at the local (per receive queue) flow table
4650 		 */
4651 		rflow = &flow_table->flows[hash & flow_table->mask];
4652 		tcpu = rflow->cpu;
4653 
4654 		/*
4655 		 * If the desired CPU (where last recvmsg was done) is
4656 		 * different from current CPU (one in the rx-queue flow
4657 		 * table entry), switch if one of the following holds:
4658 		 *   - Current CPU is unset (>= nr_cpu_ids).
4659 		 *   - Current CPU is offline.
4660 		 *   - The current CPU's queue tail has advanced beyond the
4661 		 *     last packet that was enqueued using this table entry.
4662 		 *     This guarantees that all previous packets for the flow
4663 		 *     have been dequeued, thus preserving in order delivery.
4664 		 */
4665 		if (unlikely(tcpu != next_cpu) &&
4666 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4667 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4668 		      rflow->last_qtail)) >= 0)) {
4669 			tcpu = next_cpu;
4670 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4671 		}
4672 
4673 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4674 			*rflowp = rflow;
4675 			cpu = tcpu;
4676 			goto done;
4677 		}
4678 	}
4679 
4680 try_rps:
4681 
4682 	if (map) {
4683 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4684 		if (cpu_online(tcpu)) {
4685 			cpu = tcpu;
4686 			goto done;
4687 		}
4688 	}
4689 
4690 done:
4691 	return cpu;
4692 }
4693 
4694 #ifdef CONFIG_RFS_ACCEL
4695 
4696 /**
4697  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4698  * @dev: Device on which the filter was set
4699  * @rxq_index: RX queue index
4700  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4701  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4702  *
4703  * Drivers that implement ndo_rx_flow_steer() should periodically call
4704  * this function for each installed filter and remove the filters for
4705  * which it returns %true.
4706  */
4707 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4708 			 u32 flow_id, u16 filter_id)
4709 {
4710 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4711 	struct rps_dev_flow_table *flow_table;
4712 	struct rps_dev_flow *rflow;
4713 	bool expire = true;
4714 	unsigned int cpu;
4715 
4716 	rcu_read_lock();
4717 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4718 	if (flow_table && flow_id <= flow_table->mask) {
4719 		rflow = &flow_table->flows[flow_id];
4720 		cpu = READ_ONCE(rflow->cpu);
4721 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4722 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4723 			   READ_ONCE(rflow->last_qtail)) <
4724 		     (int)(10 * flow_table->mask)))
4725 			expire = false;
4726 	}
4727 	rcu_read_unlock();
4728 	return expire;
4729 }
4730 EXPORT_SYMBOL(rps_may_expire_flow);
4731 
4732 #endif /* CONFIG_RFS_ACCEL */
4733 
4734 /* Called from hardirq (IPI) context */
4735 static void rps_trigger_softirq(void *data)
4736 {
4737 	struct softnet_data *sd = data;
4738 
4739 	____napi_schedule(sd, &sd->backlog);
4740 	sd->received_rps++;
4741 }
4742 
4743 #endif /* CONFIG_RPS */
4744 
4745 /* Called from hardirq (IPI) context */
4746 static void trigger_rx_softirq(void *data)
4747 {
4748 	struct softnet_data *sd = data;
4749 
4750 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4751 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4752 }
4753 
4754 /*
4755  * After we queued a packet into sd->input_pkt_queue,
4756  * we need to make sure this queue is serviced soon.
4757  *
4758  * - If this is another cpu queue, link it to our rps_ipi_list,
4759  *   and make sure we will process rps_ipi_list from net_rx_action().
4760  *
4761  * - If this is our own queue, NAPI schedule our backlog.
4762  *   Note that this also raises NET_RX_SOFTIRQ.
4763  */
4764 static void napi_schedule_rps(struct softnet_data *sd)
4765 {
4766 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4767 
4768 #ifdef CONFIG_RPS
4769 	if (sd != mysd) {
4770 		if (use_backlog_threads()) {
4771 			__napi_schedule_irqoff(&sd->backlog);
4772 			return;
4773 		}
4774 
4775 		sd->rps_ipi_next = mysd->rps_ipi_list;
4776 		mysd->rps_ipi_list = sd;
4777 
4778 		/* If not called from net_rx_action() or napi_threaded_poll()
4779 		 * we have to raise NET_RX_SOFTIRQ.
4780 		 */
4781 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4782 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4783 		return;
4784 	}
4785 #endif /* CONFIG_RPS */
4786 	__napi_schedule_irqoff(&mysd->backlog);
4787 }
4788 
4789 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4790 {
4791 	unsigned long flags;
4792 
4793 	if (use_backlog_threads()) {
4794 		backlog_lock_irq_save(sd, &flags);
4795 
4796 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4797 			__napi_schedule_irqoff(&sd->backlog);
4798 
4799 		backlog_unlock_irq_restore(sd, &flags);
4800 
4801 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4802 		smp_call_function_single_async(cpu, &sd->defer_csd);
4803 	}
4804 }
4805 
4806 #ifdef CONFIG_NET_FLOW_LIMIT
4807 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4808 #endif
4809 
4810 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4811 {
4812 #ifdef CONFIG_NET_FLOW_LIMIT
4813 	struct sd_flow_limit *fl;
4814 	struct softnet_data *sd;
4815 	unsigned int old_flow, new_flow;
4816 
4817 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4818 		return false;
4819 
4820 	sd = this_cpu_ptr(&softnet_data);
4821 
4822 	rcu_read_lock();
4823 	fl = rcu_dereference(sd->flow_limit);
4824 	if (fl) {
4825 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4826 		old_flow = fl->history[fl->history_head];
4827 		fl->history[fl->history_head] = new_flow;
4828 
4829 		fl->history_head++;
4830 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4831 
4832 		if (likely(fl->buckets[old_flow]))
4833 			fl->buckets[old_flow]--;
4834 
4835 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4836 			fl->count++;
4837 			rcu_read_unlock();
4838 			return true;
4839 		}
4840 	}
4841 	rcu_read_unlock();
4842 #endif
4843 	return false;
4844 }
4845 
4846 /*
4847  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4848  * queue (may be a remote CPU queue).
4849  */
4850 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4851 			      unsigned int *qtail)
4852 {
4853 	enum skb_drop_reason reason;
4854 	struct softnet_data *sd;
4855 	unsigned long flags;
4856 	unsigned int qlen;
4857 	int max_backlog;
4858 	u32 tail;
4859 
4860 	reason = SKB_DROP_REASON_DEV_READY;
4861 	if (!netif_running(skb->dev))
4862 		goto bad_dev;
4863 
4864 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4865 	sd = &per_cpu(softnet_data, cpu);
4866 
4867 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4868 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
4869 	if (unlikely(qlen > max_backlog))
4870 		goto cpu_backlog_drop;
4871 	backlog_lock_irq_save(sd, &flags);
4872 	qlen = skb_queue_len(&sd->input_pkt_queue);
4873 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4874 		if (!qlen) {
4875 			/* Schedule NAPI for backlog device. We can use
4876 			 * non atomic operation as we own the queue lock.
4877 			 */
4878 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
4879 						&sd->backlog.state))
4880 				napi_schedule_rps(sd);
4881 		}
4882 		__skb_queue_tail(&sd->input_pkt_queue, skb);
4883 		tail = rps_input_queue_tail_incr(sd);
4884 		backlog_unlock_irq_restore(sd, &flags);
4885 
4886 		/* save the tail outside of the critical section */
4887 		rps_input_queue_tail_save(qtail, tail);
4888 		return NET_RX_SUCCESS;
4889 	}
4890 
4891 	backlog_unlock_irq_restore(sd, &flags);
4892 
4893 cpu_backlog_drop:
4894 	atomic_inc(&sd->dropped);
4895 bad_dev:
4896 	dev_core_stats_rx_dropped_inc(skb->dev);
4897 	kfree_skb_reason(skb, reason);
4898 	return NET_RX_DROP;
4899 }
4900 
4901 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4902 {
4903 	struct net_device *dev = skb->dev;
4904 	struct netdev_rx_queue *rxqueue;
4905 
4906 	rxqueue = dev->_rx;
4907 
4908 	if (skb_rx_queue_recorded(skb)) {
4909 		u16 index = skb_get_rx_queue(skb);
4910 
4911 		if (unlikely(index >= dev->real_num_rx_queues)) {
4912 			WARN_ONCE(dev->real_num_rx_queues > 1,
4913 				  "%s received packet on queue %u, but number "
4914 				  "of RX queues is %u\n",
4915 				  dev->name, index, dev->real_num_rx_queues);
4916 
4917 			return rxqueue; /* Return first rxqueue */
4918 		}
4919 		rxqueue += index;
4920 	}
4921 	return rxqueue;
4922 }
4923 
4924 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4925 			     struct bpf_prog *xdp_prog)
4926 {
4927 	void *orig_data, *orig_data_end, *hard_start;
4928 	struct netdev_rx_queue *rxqueue;
4929 	bool orig_bcast, orig_host;
4930 	u32 mac_len, frame_sz;
4931 	__be16 orig_eth_type;
4932 	struct ethhdr *eth;
4933 	u32 metalen, act;
4934 	int off;
4935 
4936 	/* The XDP program wants to see the packet starting at the MAC
4937 	 * header.
4938 	 */
4939 	mac_len = skb->data - skb_mac_header(skb);
4940 	hard_start = skb->data - skb_headroom(skb);
4941 
4942 	/* SKB "head" area always have tailroom for skb_shared_info */
4943 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4944 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4945 
4946 	rxqueue = netif_get_rxqueue(skb);
4947 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4948 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4949 			 skb_headlen(skb) + mac_len, true);
4950 	if (skb_is_nonlinear(skb)) {
4951 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4952 		xdp_buff_set_frags_flag(xdp);
4953 	} else {
4954 		xdp_buff_clear_frags_flag(xdp);
4955 	}
4956 
4957 	orig_data_end = xdp->data_end;
4958 	orig_data = xdp->data;
4959 	eth = (struct ethhdr *)xdp->data;
4960 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4961 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4962 	orig_eth_type = eth->h_proto;
4963 
4964 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4965 
4966 	/* check if bpf_xdp_adjust_head was used */
4967 	off = xdp->data - orig_data;
4968 	if (off) {
4969 		if (off > 0)
4970 			__skb_pull(skb, off);
4971 		else if (off < 0)
4972 			__skb_push(skb, -off);
4973 
4974 		skb->mac_header += off;
4975 		skb_reset_network_header(skb);
4976 	}
4977 
4978 	/* check if bpf_xdp_adjust_tail was used */
4979 	off = xdp->data_end - orig_data_end;
4980 	if (off != 0) {
4981 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4982 		skb->len += off; /* positive on grow, negative on shrink */
4983 	}
4984 
4985 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4986 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4987 	 */
4988 	if (xdp_buff_has_frags(xdp))
4989 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4990 	else
4991 		skb->data_len = 0;
4992 
4993 	/* check if XDP changed eth hdr such SKB needs update */
4994 	eth = (struct ethhdr *)xdp->data;
4995 	if ((orig_eth_type != eth->h_proto) ||
4996 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4997 						  skb->dev->dev_addr)) ||
4998 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4999 		__skb_push(skb, ETH_HLEN);
5000 		skb->pkt_type = PACKET_HOST;
5001 		skb->protocol = eth_type_trans(skb, skb->dev);
5002 	}
5003 
5004 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5005 	 * before calling us again on redirect path. We do not call do_redirect
5006 	 * as we leave that up to the caller.
5007 	 *
5008 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5009 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5010 	 */
5011 	switch (act) {
5012 	case XDP_REDIRECT:
5013 	case XDP_TX:
5014 		__skb_push(skb, mac_len);
5015 		break;
5016 	case XDP_PASS:
5017 		metalen = xdp->data - xdp->data_meta;
5018 		if (metalen)
5019 			skb_metadata_set(skb, metalen);
5020 		break;
5021 	}
5022 
5023 	return act;
5024 }
5025 
5026 static int
5027 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5028 {
5029 	struct sk_buff *skb = *pskb;
5030 	int err, hroom, troom;
5031 
5032 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5033 		return 0;
5034 
5035 	/* In case we have to go down the path and also linearize,
5036 	 * then lets do the pskb_expand_head() work just once here.
5037 	 */
5038 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5039 	troom = skb->tail + skb->data_len - skb->end;
5040 	err = pskb_expand_head(skb,
5041 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5042 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5043 	if (err)
5044 		return err;
5045 
5046 	return skb_linearize(skb);
5047 }
5048 
5049 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5050 				     struct xdp_buff *xdp,
5051 				     struct bpf_prog *xdp_prog)
5052 {
5053 	struct sk_buff *skb = *pskb;
5054 	u32 mac_len, act = XDP_DROP;
5055 
5056 	/* Reinjected packets coming from act_mirred or similar should
5057 	 * not get XDP generic processing.
5058 	 */
5059 	if (skb_is_redirected(skb))
5060 		return XDP_PASS;
5061 
5062 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5063 	 * bytes. This is the guarantee that also native XDP provides,
5064 	 * thus we need to do it here as well.
5065 	 */
5066 	mac_len = skb->data - skb_mac_header(skb);
5067 	__skb_push(skb, mac_len);
5068 
5069 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5070 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5071 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5072 			goto do_drop;
5073 	}
5074 
5075 	__skb_pull(*pskb, mac_len);
5076 
5077 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5078 	switch (act) {
5079 	case XDP_REDIRECT:
5080 	case XDP_TX:
5081 	case XDP_PASS:
5082 		break;
5083 	default:
5084 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5085 		fallthrough;
5086 	case XDP_ABORTED:
5087 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5088 		fallthrough;
5089 	case XDP_DROP:
5090 	do_drop:
5091 		kfree_skb(*pskb);
5092 		break;
5093 	}
5094 
5095 	return act;
5096 }
5097 
5098 /* When doing generic XDP we have to bypass the qdisc layer and the
5099  * network taps in order to match in-driver-XDP behavior. This also means
5100  * that XDP packets are able to starve other packets going through a qdisc,
5101  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5102  * queues, so they do not have this starvation issue.
5103  */
5104 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5105 {
5106 	struct net_device *dev = skb->dev;
5107 	struct netdev_queue *txq;
5108 	bool free_skb = true;
5109 	int cpu, rc;
5110 
5111 	txq = netdev_core_pick_tx(dev, skb, NULL);
5112 	cpu = smp_processor_id();
5113 	HARD_TX_LOCK(dev, txq, cpu);
5114 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5115 		rc = netdev_start_xmit(skb, dev, txq, 0);
5116 		if (dev_xmit_complete(rc))
5117 			free_skb = false;
5118 	}
5119 	HARD_TX_UNLOCK(dev, txq);
5120 	if (free_skb) {
5121 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5122 		dev_core_stats_tx_dropped_inc(dev);
5123 		kfree_skb(skb);
5124 	}
5125 }
5126 
5127 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5128 
5129 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5130 {
5131 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5132 
5133 	if (xdp_prog) {
5134 		struct xdp_buff xdp;
5135 		u32 act;
5136 		int err;
5137 
5138 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5139 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5140 		if (act != XDP_PASS) {
5141 			switch (act) {
5142 			case XDP_REDIRECT:
5143 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5144 							      &xdp, xdp_prog);
5145 				if (err)
5146 					goto out_redir;
5147 				break;
5148 			case XDP_TX:
5149 				generic_xdp_tx(*pskb, xdp_prog);
5150 				break;
5151 			}
5152 			bpf_net_ctx_clear(bpf_net_ctx);
5153 			return XDP_DROP;
5154 		}
5155 		bpf_net_ctx_clear(bpf_net_ctx);
5156 	}
5157 	return XDP_PASS;
5158 out_redir:
5159 	bpf_net_ctx_clear(bpf_net_ctx);
5160 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5161 	return XDP_DROP;
5162 }
5163 EXPORT_SYMBOL_GPL(do_xdp_generic);
5164 
5165 static int netif_rx_internal(struct sk_buff *skb)
5166 {
5167 	int ret;
5168 
5169 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5170 
5171 	trace_netif_rx(skb);
5172 
5173 #ifdef CONFIG_RPS
5174 	if (static_branch_unlikely(&rps_needed)) {
5175 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5176 		int cpu;
5177 
5178 		rcu_read_lock();
5179 
5180 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5181 		if (cpu < 0)
5182 			cpu = smp_processor_id();
5183 
5184 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5185 
5186 		rcu_read_unlock();
5187 	} else
5188 #endif
5189 	{
5190 		unsigned int qtail;
5191 
5192 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5193 	}
5194 	return ret;
5195 }
5196 
5197 /**
5198  *	__netif_rx	-	Slightly optimized version of netif_rx
5199  *	@skb: buffer to post
5200  *
5201  *	This behaves as netif_rx except that it does not disable bottom halves.
5202  *	As a result this function may only be invoked from the interrupt context
5203  *	(either hard or soft interrupt).
5204  */
5205 int __netif_rx(struct sk_buff *skb)
5206 {
5207 	int ret;
5208 
5209 	lockdep_assert_once(hardirq_count() | softirq_count());
5210 
5211 	trace_netif_rx_entry(skb);
5212 	ret = netif_rx_internal(skb);
5213 	trace_netif_rx_exit(ret);
5214 	return ret;
5215 }
5216 EXPORT_SYMBOL(__netif_rx);
5217 
5218 /**
5219  *	netif_rx	-	post buffer to the network code
5220  *	@skb: buffer to post
5221  *
5222  *	This function receives a packet from a device driver and queues it for
5223  *	the upper (protocol) levels to process via the backlog NAPI device. It
5224  *	always succeeds. The buffer may be dropped during processing for
5225  *	congestion control or by the protocol layers.
5226  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5227  *	driver should use NAPI and GRO.
5228  *	This function can used from interrupt and from process context. The
5229  *	caller from process context must not disable interrupts before invoking
5230  *	this function.
5231  *
5232  *	return values:
5233  *	NET_RX_SUCCESS	(no congestion)
5234  *	NET_RX_DROP     (packet was dropped)
5235  *
5236  */
5237 int netif_rx(struct sk_buff *skb)
5238 {
5239 	bool need_bh_off = !(hardirq_count() | softirq_count());
5240 	int ret;
5241 
5242 	if (need_bh_off)
5243 		local_bh_disable();
5244 	trace_netif_rx_entry(skb);
5245 	ret = netif_rx_internal(skb);
5246 	trace_netif_rx_exit(ret);
5247 	if (need_bh_off)
5248 		local_bh_enable();
5249 	return ret;
5250 }
5251 EXPORT_SYMBOL(netif_rx);
5252 
5253 static __latent_entropy void net_tx_action(struct softirq_action *h)
5254 {
5255 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5256 
5257 	if (sd->completion_queue) {
5258 		struct sk_buff *clist;
5259 
5260 		local_irq_disable();
5261 		clist = sd->completion_queue;
5262 		sd->completion_queue = NULL;
5263 		local_irq_enable();
5264 
5265 		while (clist) {
5266 			struct sk_buff *skb = clist;
5267 
5268 			clist = clist->next;
5269 
5270 			WARN_ON(refcount_read(&skb->users));
5271 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5272 				trace_consume_skb(skb, net_tx_action);
5273 			else
5274 				trace_kfree_skb(skb, net_tx_action,
5275 						get_kfree_skb_cb(skb)->reason, NULL);
5276 
5277 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5278 				__kfree_skb(skb);
5279 			else
5280 				__napi_kfree_skb(skb,
5281 						 get_kfree_skb_cb(skb)->reason);
5282 		}
5283 	}
5284 
5285 	if (sd->output_queue) {
5286 		struct Qdisc *head;
5287 
5288 		local_irq_disable();
5289 		head = sd->output_queue;
5290 		sd->output_queue = NULL;
5291 		sd->output_queue_tailp = &sd->output_queue;
5292 		local_irq_enable();
5293 
5294 		rcu_read_lock();
5295 
5296 		while (head) {
5297 			struct Qdisc *q = head;
5298 			spinlock_t *root_lock = NULL;
5299 
5300 			head = head->next_sched;
5301 
5302 			/* We need to make sure head->next_sched is read
5303 			 * before clearing __QDISC_STATE_SCHED
5304 			 */
5305 			smp_mb__before_atomic();
5306 
5307 			if (!(q->flags & TCQ_F_NOLOCK)) {
5308 				root_lock = qdisc_lock(q);
5309 				spin_lock(root_lock);
5310 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5311 						     &q->state))) {
5312 				/* There is a synchronize_net() between
5313 				 * STATE_DEACTIVATED flag being set and
5314 				 * qdisc_reset()/some_qdisc_is_busy() in
5315 				 * dev_deactivate(), so we can safely bail out
5316 				 * early here to avoid data race between
5317 				 * qdisc_deactivate() and some_qdisc_is_busy()
5318 				 * for lockless qdisc.
5319 				 */
5320 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5321 				continue;
5322 			}
5323 
5324 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5325 			qdisc_run(q);
5326 			if (root_lock)
5327 				spin_unlock(root_lock);
5328 		}
5329 
5330 		rcu_read_unlock();
5331 	}
5332 
5333 	xfrm_dev_backlog(sd);
5334 }
5335 
5336 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5337 /* This hook is defined here for ATM LANE */
5338 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5339 			     unsigned char *addr) __read_mostly;
5340 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5341 #endif
5342 
5343 /**
5344  *	netdev_is_rx_handler_busy - check if receive handler is registered
5345  *	@dev: device to check
5346  *
5347  *	Check if a receive handler is already registered for a given device.
5348  *	Return true if there one.
5349  *
5350  *	The caller must hold the rtnl_mutex.
5351  */
5352 bool netdev_is_rx_handler_busy(struct net_device *dev)
5353 {
5354 	ASSERT_RTNL();
5355 	return dev && rtnl_dereference(dev->rx_handler);
5356 }
5357 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5358 
5359 /**
5360  *	netdev_rx_handler_register - register receive handler
5361  *	@dev: device to register a handler for
5362  *	@rx_handler: receive handler to register
5363  *	@rx_handler_data: data pointer that is used by rx handler
5364  *
5365  *	Register a receive handler for a device. This handler will then be
5366  *	called from __netif_receive_skb. A negative errno code is returned
5367  *	on a failure.
5368  *
5369  *	The caller must hold the rtnl_mutex.
5370  *
5371  *	For a general description of rx_handler, see enum rx_handler_result.
5372  */
5373 int netdev_rx_handler_register(struct net_device *dev,
5374 			       rx_handler_func_t *rx_handler,
5375 			       void *rx_handler_data)
5376 {
5377 	if (netdev_is_rx_handler_busy(dev))
5378 		return -EBUSY;
5379 
5380 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5381 		return -EINVAL;
5382 
5383 	/* Note: rx_handler_data must be set before rx_handler */
5384 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5385 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5386 
5387 	return 0;
5388 }
5389 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5390 
5391 /**
5392  *	netdev_rx_handler_unregister - unregister receive handler
5393  *	@dev: device to unregister a handler from
5394  *
5395  *	Unregister a receive handler from a device.
5396  *
5397  *	The caller must hold the rtnl_mutex.
5398  */
5399 void netdev_rx_handler_unregister(struct net_device *dev)
5400 {
5401 
5402 	ASSERT_RTNL();
5403 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5404 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5405 	 * section has a guarantee to see a non NULL rx_handler_data
5406 	 * as well.
5407 	 */
5408 	synchronize_net();
5409 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5410 }
5411 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5412 
5413 /*
5414  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5415  * the special handling of PFMEMALLOC skbs.
5416  */
5417 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5418 {
5419 	switch (skb->protocol) {
5420 	case htons(ETH_P_ARP):
5421 	case htons(ETH_P_IP):
5422 	case htons(ETH_P_IPV6):
5423 	case htons(ETH_P_8021Q):
5424 	case htons(ETH_P_8021AD):
5425 		return true;
5426 	default:
5427 		return false;
5428 	}
5429 }
5430 
5431 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5432 			     int *ret, struct net_device *orig_dev)
5433 {
5434 	if (nf_hook_ingress_active(skb)) {
5435 		int ingress_retval;
5436 
5437 		if (*pt_prev) {
5438 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5439 			*pt_prev = NULL;
5440 		}
5441 
5442 		rcu_read_lock();
5443 		ingress_retval = nf_hook_ingress(skb);
5444 		rcu_read_unlock();
5445 		return ingress_retval;
5446 	}
5447 	return 0;
5448 }
5449 
5450 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5451 				    struct packet_type **ppt_prev)
5452 {
5453 	struct packet_type *ptype, *pt_prev;
5454 	rx_handler_func_t *rx_handler;
5455 	struct sk_buff *skb = *pskb;
5456 	struct net_device *orig_dev;
5457 	bool deliver_exact = false;
5458 	int ret = NET_RX_DROP;
5459 	__be16 type;
5460 
5461 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5462 
5463 	trace_netif_receive_skb(skb);
5464 
5465 	orig_dev = skb->dev;
5466 
5467 	skb_reset_network_header(skb);
5468 	if (!skb_transport_header_was_set(skb))
5469 		skb_reset_transport_header(skb);
5470 	skb_reset_mac_len(skb);
5471 
5472 	pt_prev = NULL;
5473 
5474 another_round:
5475 	skb->skb_iif = skb->dev->ifindex;
5476 
5477 	__this_cpu_inc(softnet_data.processed);
5478 
5479 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5480 		int ret2;
5481 
5482 		migrate_disable();
5483 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5484 				      &skb);
5485 		migrate_enable();
5486 
5487 		if (ret2 != XDP_PASS) {
5488 			ret = NET_RX_DROP;
5489 			goto out;
5490 		}
5491 	}
5492 
5493 	if (eth_type_vlan(skb->protocol)) {
5494 		skb = skb_vlan_untag(skb);
5495 		if (unlikely(!skb))
5496 			goto out;
5497 	}
5498 
5499 	if (skb_skip_tc_classify(skb))
5500 		goto skip_classify;
5501 
5502 	if (pfmemalloc)
5503 		goto skip_taps;
5504 
5505 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5506 		if (pt_prev)
5507 			ret = deliver_skb(skb, pt_prev, orig_dev);
5508 		pt_prev = ptype;
5509 	}
5510 
5511 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5512 		if (pt_prev)
5513 			ret = deliver_skb(skb, pt_prev, orig_dev);
5514 		pt_prev = ptype;
5515 	}
5516 
5517 skip_taps:
5518 #ifdef CONFIG_NET_INGRESS
5519 	if (static_branch_unlikely(&ingress_needed_key)) {
5520 		bool another = false;
5521 
5522 		nf_skip_egress(skb, true);
5523 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5524 					 &another);
5525 		if (another)
5526 			goto another_round;
5527 		if (!skb)
5528 			goto out;
5529 
5530 		nf_skip_egress(skb, false);
5531 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5532 			goto out;
5533 	}
5534 #endif
5535 	skb_reset_redirect(skb);
5536 skip_classify:
5537 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5538 		goto drop;
5539 
5540 	if (skb_vlan_tag_present(skb)) {
5541 		if (pt_prev) {
5542 			ret = deliver_skb(skb, pt_prev, orig_dev);
5543 			pt_prev = NULL;
5544 		}
5545 		if (vlan_do_receive(&skb))
5546 			goto another_round;
5547 		else if (unlikely(!skb))
5548 			goto out;
5549 	}
5550 
5551 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5552 	if (rx_handler) {
5553 		if (pt_prev) {
5554 			ret = deliver_skb(skb, pt_prev, orig_dev);
5555 			pt_prev = NULL;
5556 		}
5557 		switch (rx_handler(&skb)) {
5558 		case RX_HANDLER_CONSUMED:
5559 			ret = NET_RX_SUCCESS;
5560 			goto out;
5561 		case RX_HANDLER_ANOTHER:
5562 			goto another_round;
5563 		case RX_HANDLER_EXACT:
5564 			deliver_exact = true;
5565 			break;
5566 		case RX_HANDLER_PASS:
5567 			break;
5568 		default:
5569 			BUG();
5570 		}
5571 	}
5572 
5573 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5574 check_vlan_id:
5575 		if (skb_vlan_tag_get_id(skb)) {
5576 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5577 			 * find vlan device.
5578 			 */
5579 			skb->pkt_type = PACKET_OTHERHOST;
5580 		} else if (eth_type_vlan(skb->protocol)) {
5581 			/* Outer header is 802.1P with vlan 0, inner header is
5582 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5583 			 * not find vlan dev for vlan id 0.
5584 			 */
5585 			__vlan_hwaccel_clear_tag(skb);
5586 			skb = skb_vlan_untag(skb);
5587 			if (unlikely(!skb))
5588 				goto out;
5589 			if (vlan_do_receive(&skb))
5590 				/* After stripping off 802.1P header with vlan 0
5591 				 * vlan dev is found for inner header.
5592 				 */
5593 				goto another_round;
5594 			else if (unlikely(!skb))
5595 				goto out;
5596 			else
5597 				/* We have stripped outer 802.1P vlan 0 header.
5598 				 * But could not find vlan dev.
5599 				 * check again for vlan id to set OTHERHOST.
5600 				 */
5601 				goto check_vlan_id;
5602 		}
5603 		/* Note: we might in the future use prio bits
5604 		 * and set skb->priority like in vlan_do_receive()
5605 		 * For the time being, just ignore Priority Code Point
5606 		 */
5607 		__vlan_hwaccel_clear_tag(skb);
5608 	}
5609 
5610 	type = skb->protocol;
5611 
5612 	/* deliver only exact match when indicated */
5613 	if (likely(!deliver_exact)) {
5614 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5615 				       &ptype_base[ntohs(type) &
5616 						   PTYPE_HASH_MASK]);
5617 	}
5618 
5619 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5620 			       &orig_dev->ptype_specific);
5621 
5622 	if (unlikely(skb->dev != orig_dev)) {
5623 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5624 				       &skb->dev->ptype_specific);
5625 	}
5626 
5627 	if (pt_prev) {
5628 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5629 			goto drop;
5630 		*ppt_prev = pt_prev;
5631 	} else {
5632 drop:
5633 		if (!deliver_exact)
5634 			dev_core_stats_rx_dropped_inc(skb->dev);
5635 		else
5636 			dev_core_stats_rx_nohandler_inc(skb->dev);
5637 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5638 		/* Jamal, now you will not able to escape explaining
5639 		 * me how you were going to use this. :-)
5640 		 */
5641 		ret = NET_RX_DROP;
5642 	}
5643 
5644 out:
5645 	/* The invariant here is that if *ppt_prev is not NULL
5646 	 * then skb should also be non-NULL.
5647 	 *
5648 	 * Apparently *ppt_prev assignment above holds this invariant due to
5649 	 * skb dereferencing near it.
5650 	 */
5651 	*pskb = skb;
5652 	return ret;
5653 }
5654 
5655 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5656 {
5657 	struct net_device *orig_dev = skb->dev;
5658 	struct packet_type *pt_prev = NULL;
5659 	int ret;
5660 
5661 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5662 	if (pt_prev)
5663 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5664 					 skb->dev, pt_prev, orig_dev);
5665 	return ret;
5666 }
5667 
5668 /**
5669  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5670  *	@skb: buffer to process
5671  *
5672  *	More direct receive version of netif_receive_skb().  It should
5673  *	only be used by callers that have a need to skip RPS and Generic XDP.
5674  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5675  *
5676  *	This function may only be called from softirq context and interrupts
5677  *	should be enabled.
5678  *
5679  *	Return values (usually ignored):
5680  *	NET_RX_SUCCESS: no congestion
5681  *	NET_RX_DROP: packet was dropped
5682  */
5683 int netif_receive_skb_core(struct sk_buff *skb)
5684 {
5685 	int ret;
5686 
5687 	rcu_read_lock();
5688 	ret = __netif_receive_skb_one_core(skb, false);
5689 	rcu_read_unlock();
5690 
5691 	return ret;
5692 }
5693 EXPORT_SYMBOL(netif_receive_skb_core);
5694 
5695 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5696 						  struct packet_type *pt_prev,
5697 						  struct net_device *orig_dev)
5698 {
5699 	struct sk_buff *skb, *next;
5700 
5701 	if (!pt_prev)
5702 		return;
5703 	if (list_empty(head))
5704 		return;
5705 	if (pt_prev->list_func != NULL)
5706 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5707 				   ip_list_rcv, head, pt_prev, orig_dev);
5708 	else
5709 		list_for_each_entry_safe(skb, next, head, list) {
5710 			skb_list_del_init(skb);
5711 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5712 		}
5713 }
5714 
5715 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5716 {
5717 	/* Fast-path assumptions:
5718 	 * - There is no RX handler.
5719 	 * - Only one packet_type matches.
5720 	 * If either of these fails, we will end up doing some per-packet
5721 	 * processing in-line, then handling the 'last ptype' for the whole
5722 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5723 	 * because the 'last ptype' must be constant across the sublist, and all
5724 	 * other ptypes are handled per-packet.
5725 	 */
5726 	/* Current (common) ptype of sublist */
5727 	struct packet_type *pt_curr = NULL;
5728 	/* Current (common) orig_dev of sublist */
5729 	struct net_device *od_curr = NULL;
5730 	struct sk_buff *skb, *next;
5731 	LIST_HEAD(sublist);
5732 
5733 	list_for_each_entry_safe(skb, next, head, list) {
5734 		struct net_device *orig_dev = skb->dev;
5735 		struct packet_type *pt_prev = NULL;
5736 
5737 		skb_list_del_init(skb);
5738 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5739 		if (!pt_prev)
5740 			continue;
5741 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5742 			/* dispatch old sublist */
5743 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5744 			/* start new sublist */
5745 			INIT_LIST_HEAD(&sublist);
5746 			pt_curr = pt_prev;
5747 			od_curr = orig_dev;
5748 		}
5749 		list_add_tail(&skb->list, &sublist);
5750 	}
5751 
5752 	/* dispatch final sublist */
5753 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5754 }
5755 
5756 static int __netif_receive_skb(struct sk_buff *skb)
5757 {
5758 	int ret;
5759 
5760 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5761 		unsigned int noreclaim_flag;
5762 
5763 		/*
5764 		 * PFMEMALLOC skbs are special, they should
5765 		 * - be delivered to SOCK_MEMALLOC sockets only
5766 		 * - stay away from userspace
5767 		 * - have bounded memory usage
5768 		 *
5769 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5770 		 * context down to all allocation sites.
5771 		 */
5772 		noreclaim_flag = memalloc_noreclaim_save();
5773 		ret = __netif_receive_skb_one_core(skb, true);
5774 		memalloc_noreclaim_restore(noreclaim_flag);
5775 	} else
5776 		ret = __netif_receive_skb_one_core(skb, false);
5777 
5778 	return ret;
5779 }
5780 
5781 static void __netif_receive_skb_list(struct list_head *head)
5782 {
5783 	unsigned long noreclaim_flag = 0;
5784 	struct sk_buff *skb, *next;
5785 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5786 
5787 	list_for_each_entry_safe(skb, next, head, list) {
5788 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5789 			struct list_head sublist;
5790 
5791 			/* Handle the previous sublist */
5792 			list_cut_before(&sublist, head, &skb->list);
5793 			if (!list_empty(&sublist))
5794 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5795 			pfmemalloc = !pfmemalloc;
5796 			/* See comments in __netif_receive_skb */
5797 			if (pfmemalloc)
5798 				noreclaim_flag = memalloc_noreclaim_save();
5799 			else
5800 				memalloc_noreclaim_restore(noreclaim_flag);
5801 		}
5802 	}
5803 	/* Handle the remaining sublist */
5804 	if (!list_empty(head))
5805 		__netif_receive_skb_list_core(head, pfmemalloc);
5806 	/* Restore pflags */
5807 	if (pfmemalloc)
5808 		memalloc_noreclaim_restore(noreclaim_flag);
5809 }
5810 
5811 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5812 {
5813 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5814 	struct bpf_prog *new = xdp->prog;
5815 	int ret = 0;
5816 
5817 	switch (xdp->command) {
5818 	case XDP_SETUP_PROG:
5819 		rcu_assign_pointer(dev->xdp_prog, new);
5820 		if (old)
5821 			bpf_prog_put(old);
5822 
5823 		if (old && !new) {
5824 			static_branch_dec(&generic_xdp_needed_key);
5825 		} else if (new && !old) {
5826 			static_branch_inc(&generic_xdp_needed_key);
5827 			dev_disable_lro(dev);
5828 			dev_disable_gro_hw(dev);
5829 		}
5830 		break;
5831 
5832 	default:
5833 		ret = -EINVAL;
5834 		break;
5835 	}
5836 
5837 	return ret;
5838 }
5839 
5840 static int netif_receive_skb_internal(struct sk_buff *skb)
5841 {
5842 	int ret;
5843 
5844 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5845 
5846 	if (skb_defer_rx_timestamp(skb))
5847 		return NET_RX_SUCCESS;
5848 
5849 	rcu_read_lock();
5850 #ifdef CONFIG_RPS
5851 	if (static_branch_unlikely(&rps_needed)) {
5852 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5853 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5854 
5855 		if (cpu >= 0) {
5856 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5857 			rcu_read_unlock();
5858 			return ret;
5859 		}
5860 	}
5861 #endif
5862 	ret = __netif_receive_skb(skb);
5863 	rcu_read_unlock();
5864 	return ret;
5865 }
5866 
5867 void netif_receive_skb_list_internal(struct list_head *head)
5868 {
5869 	struct sk_buff *skb, *next;
5870 	LIST_HEAD(sublist);
5871 
5872 	list_for_each_entry_safe(skb, next, head, list) {
5873 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5874 				    skb);
5875 		skb_list_del_init(skb);
5876 		if (!skb_defer_rx_timestamp(skb))
5877 			list_add_tail(&skb->list, &sublist);
5878 	}
5879 	list_splice_init(&sublist, head);
5880 
5881 	rcu_read_lock();
5882 #ifdef CONFIG_RPS
5883 	if (static_branch_unlikely(&rps_needed)) {
5884 		list_for_each_entry_safe(skb, next, head, list) {
5885 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5886 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5887 
5888 			if (cpu >= 0) {
5889 				/* Will be handled, remove from list */
5890 				skb_list_del_init(skb);
5891 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5892 			}
5893 		}
5894 	}
5895 #endif
5896 	__netif_receive_skb_list(head);
5897 	rcu_read_unlock();
5898 }
5899 
5900 /**
5901  *	netif_receive_skb - process receive buffer from network
5902  *	@skb: buffer to process
5903  *
5904  *	netif_receive_skb() is the main receive data processing function.
5905  *	It always succeeds. The buffer may be dropped during processing
5906  *	for congestion control or by the protocol layers.
5907  *
5908  *	This function may only be called from softirq context and interrupts
5909  *	should be enabled.
5910  *
5911  *	Return values (usually ignored):
5912  *	NET_RX_SUCCESS: no congestion
5913  *	NET_RX_DROP: packet was dropped
5914  */
5915 int netif_receive_skb(struct sk_buff *skb)
5916 {
5917 	int ret;
5918 
5919 	trace_netif_receive_skb_entry(skb);
5920 
5921 	ret = netif_receive_skb_internal(skb);
5922 	trace_netif_receive_skb_exit(ret);
5923 
5924 	return ret;
5925 }
5926 EXPORT_SYMBOL(netif_receive_skb);
5927 
5928 /**
5929  *	netif_receive_skb_list - process many receive buffers from network
5930  *	@head: list of skbs to process.
5931  *
5932  *	Since return value of netif_receive_skb() is normally ignored, and
5933  *	wouldn't be meaningful for a list, this function returns void.
5934  *
5935  *	This function may only be called from softirq context and interrupts
5936  *	should be enabled.
5937  */
5938 void netif_receive_skb_list(struct list_head *head)
5939 {
5940 	struct sk_buff *skb;
5941 
5942 	if (list_empty(head))
5943 		return;
5944 	if (trace_netif_receive_skb_list_entry_enabled()) {
5945 		list_for_each_entry(skb, head, list)
5946 			trace_netif_receive_skb_list_entry(skb);
5947 	}
5948 	netif_receive_skb_list_internal(head);
5949 	trace_netif_receive_skb_list_exit(0);
5950 }
5951 EXPORT_SYMBOL(netif_receive_skb_list);
5952 
5953 static DEFINE_PER_CPU(struct work_struct, flush_works);
5954 
5955 /* Network device is going away, flush any packets still pending */
5956 static void flush_backlog(struct work_struct *work)
5957 {
5958 	struct sk_buff *skb, *tmp;
5959 	struct softnet_data *sd;
5960 
5961 	local_bh_disable();
5962 	sd = this_cpu_ptr(&softnet_data);
5963 
5964 	backlog_lock_irq_disable(sd);
5965 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5966 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5967 			__skb_unlink(skb, &sd->input_pkt_queue);
5968 			dev_kfree_skb_irq(skb);
5969 			rps_input_queue_head_incr(sd);
5970 		}
5971 	}
5972 	backlog_unlock_irq_enable(sd);
5973 
5974 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
5975 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5976 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5977 			__skb_unlink(skb, &sd->process_queue);
5978 			kfree_skb(skb);
5979 			rps_input_queue_head_incr(sd);
5980 		}
5981 	}
5982 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
5983 	local_bh_enable();
5984 }
5985 
5986 static bool flush_required(int cpu)
5987 {
5988 #if IS_ENABLED(CONFIG_RPS)
5989 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5990 	bool do_flush;
5991 
5992 	backlog_lock_irq_disable(sd);
5993 
5994 	/* as insertion into process_queue happens with the rps lock held,
5995 	 * process_queue access may race only with dequeue
5996 	 */
5997 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5998 		   !skb_queue_empty_lockless(&sd->process_queue);
5999 	backlog_unlock_irq_enable(sd);
6000 
6001 	return do_flush;
6002 #endif
6003 	/* without RPS we can't safely check input_pkt_queue: during a
6004 	 * concurrent remote skb_queue_splice() we can detect as empty both
6005 	 * input_pkt_queue and process_queue even if the latter could end-up
6006 	 * containing a lot of packets.
6007 	 */
6008 	return true;
6009 }
6010 
6011 static void flush_all_backlogs(void)
6012 {
6013 	static cpumask_t flush_cpus;
6014 	unsigned int cpu;
6015 
6016 	/* since we are under rtnl lock protection we can use static data
6017 	 * for the cpumask and avoid allocating on stack the possibly
6018 	 * large mask
6019 	 */
6020 	ASSERT_RTNL();
6021 
6022 	cpus_read_lock();
6023 
6024 	cpumask_clear(&flush_cpus);
6025 	for_each_online_cpu(cpu) {
6026 		if (flush_required(cpu)) {
6027 			queue_work_on(cpu, system_highpri_wq,
6028 				      per_cpu_ptr(&flush_works, cpu));
6029 			cpumask_set_cpu(cpu, &flush_cpus);
6030 		}
6031 	}
6032 
6033 	/* we can have in flight packet[s] on the cpus we are not flushing,
6034 	 * synchronize_net() in unregister_netdevice_many() will take care of
6035 	 * them
6036 	 */
6037 	for_each_cpu(cpu, &flush_cpus)
6038 		flush_work(per_cpu_ptr(&flush_works, cpu));
6039 
6040 	cpus_read_unlock();
6041 }
6042 
6043 static void net_rps_send_ipi(struct softnet_data *remsd)
6044 {
6045 #ifdef CONFIG_RPS
6046 	while (remsd) {
6047 		struct softnet_data *next = remsd->rps_ipi_next;
6048 
6049 		if (cpu_online(remsd->cpu))
6050 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6051 		remsd = next;
6052 	}
6053 #endif
6054 }
6055 
6056 /*
6057  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6058  * Note: called with local irq disabled, but exits with local irq enabled.
6059  */
6060 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6061 {
6062 #ifdef CONFIG_RPS
6063 	struct softnet_data *remsd = sd->rps_ipi_list;
6064 
6065 	if (!use_backlog_threads() && remsd) {
6066 		sd->rps_ipi_list = NULL;
6067 
6068 		local_irq_enable();
6069 
6070 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6071 		net_rps_send_ipi(remsd);
6072 	} else
6073 #endif
6074 		local_irq_enable();
6075 }
6076 
6077 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6078 {
6079 #ifdef CONFIG_RPS
6080 	return !use_backlog_threads() && sd->rps_ipi_list;
6081 #else
6082 	return false;
6083 #endif
6084 }
6085 
6086 static int process_backlog(struct napi_struct *napi, int quota)
6087 {
6088 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6089 	bool again = true;
6090 	int work = 0;
6091 
6092 	/* Check if we have pending ipi, its better to send them now,
6093 	 * not waiting net_rx_action() end.
6094 	 */
6095 	if (sd_has_rps_ipi_waiting(sd)) {
6096 		local_irq_disable();
6097 		net_rps_action_and_irq_enable(sd);
6098 	}
6099 
6100 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6101 	while (again) {
6102 		struct sk_buff *skb;
6103 
6104 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6105 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6106 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6107 			rcu_read_lock();
6108 			__netif_receive_skb(skb);
6109 			rcu_read_unlock();
6110 			if (++work >= quota) {
6111 				rps_input_queue_head_add(sd, work);
6112 				return work;
6113 			}
6114 
6115 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6116 		}
6117 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6118 
6119 		backlog_lock_irq_disable(sd);
6120 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6121 			/*
6122 			 * Inline a custom version of __napi_complete().
6123 			 * only current cpu owns and manipulates this napi,
6124 			 * and NAPI_STATE_SCHED is the only possible flag set
6125 			 * on backlog.
6126 			 * We can use a plain write instead of clear_bit(),
6127 			 * and we dont need an smp_mb() memory barrier.
6128 			 */
6129 			napi->state &= NAPIF_STATE_THREADED;
6130 			again = false;
6131 		} else {
6132 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6133 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6134 						   &sd->process_queue);
6135 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6136 		}
6137 		backlog_unlock_irq_enable(sd);
6138 	}
6139 
6140 	if (work)
6141 		rps_input_queue_head_add(sd, work);
6142 	return work;
6143 }
6144 
6145 /**
6146  * __napi_schedule - schedule for receive
6147  * @n: entry to schedule
6148  *
6149  * The entry's receive function will be scheduled to run.
6150  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6151  */
6152 void __napi_schedule(struct napi_struct *n)
6153 {
6154 	unsigned long flags;
6155 
6156 	local_irq_save(flags);
6157 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6158 	local_irq_restore(flags);
6159 }
6160 EXPORT_SYMBOL(__napi_schedule);
6161 
6162 /**
6163  *	napi_schedule_prep - check if napi can be scheduled
6164  *	@n: napi context
6165  *
6166  * Test if NAPI routine is already running, and if not mark
6167  * it as running.  This is used as a condition variable to
6168  * insure only one NAPI poll instance runs.  We also make
6169  * sure there is no pending NAPI disable.
6170  */
6171 bool napi_schedule_prep(struct napi_struct *n)
6172 {
6173 	unsigned long new, val = READ_ONCE(n->state);
6174 
6175 	do {
6176 		if (unlikely(val & NAPIF_STATE_DISABLE))
6177 			return false;
6178 		new = val | NAPIF_STATE_SCHED;
6179 
6180 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6181 		 * This was suggested by Alexander Duyck, as compiler
6182 		 * emits better code than :
6183 		 * if (val & NAPIF_STATE_SCHED)
6184 		 *     new |= NAPIF_STATE_MISSED;
6185 		 */
6186 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6187 						   NAPIF_STATE_MISSED;
6188 	} while (!try_cmpxchg(&n->state, &val, new));
6189 
6190 	return !(val & NAPIF_STATE_SCHED);
6191 }
6192 EXPORT_SYMBOL(napi_schedule_prep);
6193 
6194 /**
6195  * __napi_schedule_irqoff - schedule for receive
6196  * @n: entry to schedule
6197  *
6198  * Variant of __napi_schedule() assuming hard irqs are masked.
6199  *
6200  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6201  * because the interrupt disabled assumption might not be true
6202  * due to force-threaded interrupts and spinlock substitution.
6203  */
6204 void __napi_schedule_irqoff(struct napi_struct *n)
6205 {
6206 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6207 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6208 	else
6209 		__napi_schedule(n);
6210 }
6211 EXPORT_SYMBOL(__napi_schedule_irqoff);
6212 
6213 bool napi_complete_done(struct napi_struct *n, int work_done)
6214 {
6215 	unsigned long flags, val, new, timeout = 0;
6216 	bool ret = true;
6217 
6218 	/*
6219 	 * 1) Don't let napi dequeue from the cpu poll list
6220 	 *    just in case its running on a different cpu.
6221 	 * 2) If we are busy polling, do nothing here, we have
6222 	 *    the guarantee we will be called later.
6223 	 */
6224 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6225 				 NAPIF_STATE_IN_BUSY_POLL)))
6226 		return false;
6227 
6228 	if (work_done) {
6229 		if (n->gro_bitmask)
6230 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6231 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6232 	}
6233 	if (n->defer_hard_irqs_count > 0) {
6234 		n->defer_hard_irqs_count--;
6235 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6236 		if (timeout)
6237 			ret = false;
6238 	}
6239 	if (n->gro_bitmask) {
6240 		/* When the NAPI instance uses a timeout and keeps postponing
6241 		 * it, we need to bound somehow the time packets are kept in
6242 		 * the GRO layer
6243 		 */
6244 		napi_gro_flush(n, !!timeout);
6245 	}
6246 
6247 	gro_normal_list(n);
6248 
6249 	if (unlikely(!list_empty(&n->poll_list))) {
6250 		/* If n->poll_list is not empty, we need to mask irqs */
6251 		local_irq_save(flags);
6252 		list_del_init(&n->poll_list);
6253 		local_irq_restore(flags);
6254 	}
6255 	WRITE_ONCE(n->list_owner, -1);
6256 
6257 	val = READ_ONCE(n->state);
6258 	do {
6259 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6260 
6261 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6262 			      NAPIF_STATE_SCHED_THREADED |
6263 			      NAPIF_STATE_PREFER_BUSY_POLL);
6264 
6265 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6266 		 * because we will call napi->poll() one more time.
6267 		 * This C code was suggested by Alexander Duyck to help gcc.
6268 		 */
6269 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6270 						    NAPIF_STATE_SCHED;
6271 	} while (!try_cmpxchg(&n->state, &val, new));
6272 
6273 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6274 		__napi_schedule(n);
6275 		return false;
6276 	}
6277 
6278 	if (timeout)
6279 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6280 			      HRTIMER_MODE_REL_PINNED);
6281 	return ret;
6282 }
6283 EXPORT_SYMBOL(napi_complete_done);
6284 
6285 /* must be called under rcu_read_lock(), as we dont take a reference */
6286 struct napi_struct *napi_by_id(unsigned int napi_id)
6287 {
6288 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6289 	struct napi_struct *napi;
6290 
6291 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6292 		if (napi->napi_id == napi_id)
6293 			return napi;
6294 
6295 	return NULL;
6296 }
6297 
6298 static void skb_defer_free_flush(struct softnet_data *sd)
6299 {
6300 	struct sk_buff *skb, *next;
6301 
6302 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6303 	if (!READ_ONCE(sd->defer_list))
6304 		return;
6305 
6306 	spin_lock(&sd->defer_lock);
6307 	skb = sd->defer_list;
6308 	sd->defer_list = NULL;
6309 	sd->defer_count = 0;
6310 	spin_unlock(&sd->defer_lock);
6311 
6312 	while (skb != NULL) {
6313 		next = skb->next;
6314 		napi_consume_skb(skb, 1);
6315 		skb = next;
6316 	}
6317 }
6318 
6319 #if defined(CONFIG_NET_RX_BUSY_POLL)
6320 
6321 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6322 {
6323 	if (!skip_schedule) {
6324 		gro_normal_list(napi);
6325 		__napi_schedule(napi);
6326 		return;
6327 	}
6328 
6329 	if (napi->gro_bitmask) {
6330 		/* flush too old packets
6331 		 * If HZ < 1000, flush all packets.
6332 		 */
6333 		napi_gro_flush(napi, HZ >= 1000);
6334 	}
6335 
6336 	gro_normal_list(napi);
6337 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6338 }
6339 
6340 enum {
6341 	NAPI_F_PREFER_BUSY_POLL	= 1,
6342 	NAPI_F_END_ON_RESCHED	= 2,
6343 };
6344 
6345 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6346 			   unsigned flags, u16 budget)
6347 {
6348 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6349 	bool skip_schedule = false;
6350 	unsigned long timeout;
6351 	int rc;
6352 
6353 	/* Busy polling means there is a high chance device driver hard irq
6354 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6355 	 * set in napi_schedule_prep().
6356 	 * Since we are about to call napi->poll() once more, we can safely
6357 	 * clear NAPI_STATE_MISSED.
6358 	 *
6359 	 * Note: x86 could use a single "lock and ..." instruction
6360 	 * to perform these two clear_bit()
6361 	 */
6362 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6363 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6364 
6365 	local_bh_disable();
6366 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6367 
6368 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6369 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6370 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6371 		if (napi->defer_hard_irqs_count && timeout) {
6372 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6373 			skip_schedule = true;
6374 		}
6375 	}
6376 
6377 	/* All we really want here is to re-enable device interrupts.
6378 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6379 	 */
6380 	rc = napi->poll(napi, budget);
6381 	/* We can't gro_normal_list() here, because napi->poll() might have
6382 	 * rearmed the napi (napi_complete_done()) in which case it could
6383 	 * already be running on another CPU.
6384 	 */
6385 	trace_napi_poll(napi, rc, budget);
6386 	netpoll_poll_unlock(have_poll_lock);
6387 	if (rc == budget)
6388 		__busy_poll_stop(napi, skip_schedule);
6389 	bpf_net_ctx_clear(bpf_net_ctx);
6390 	local_bh_enable();
6391 }
6392 
6393 static void __napi_busy_loop(unsigned int napi_id,
6394 		      bool (*loop_end)(void *, unsigned long),
6395 		      void *loop_end_arg, unsigned flags, u16 budget)
6396 {
6397 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6398 	int (*napi_poll)(struct napi_struct *napi, int budget);
6399 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6400 	void *have_poll_lock = NULL;
6401 	struct napi_struct *napi;
6402 
6403 	WARN_ON_ONCE(!rcu_read_lock_held());
6404 
6405 restart:
6406 	napi_poll = NULL;
6407 
6408 	napi = napi_by_id(napi_id);
6409 	if (!napi)
6410 		return;
6411 
6412 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6413 		preempt_disable();
6414 	for (;;) {
6415 		int work = 0;
6416 
6417 		local_bh_disable();
6418 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6419 		if (!napi_poll) {
6420 			unsigned long val = READ_ONCE(napi->state);
6421 
6422 			/* If multiple threads are competing for this napi,
6423 			 * we avoid dirtying napi->state as much as we can.
6424 			 */
6425 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6426 				   NAPIF_STATE_IN_BUSY_POLL)) {
6427 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6428 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6429 				goto count;
6430 			}
6431 			if (cmpxchg(&napi->state, val,
6432 				    val | NAPIF_STATE_IN_BUSY_POLL |
6433 					  NAPIF_STATE_SCHED) != val) {
6434 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6435 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6436 				goto count;
6437 			}
6438 			have_poll_lock = netpoll_poll_lock(napi);
6439 			napi_poll = napi->poll;
6440 		}
6441 		work = napi_poll(napi, budget);
6442 		trace_napi_poll(napi, work, budget);
6443 		gro_normal_list(napi);
6444 count:
6445 		if (work > 0)
6446 			__NET_ADD_STATS(dev_net(napi->dev),
6447 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6448 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6449 		bpf_net_ctx_clear(bpf_net_ctx);
6450 		local_bh_enable();
6451 
6452 		if (!loop_end || loop_end(loop_end_arg, start_time))
6453 			break;
6454 
6455 		if (unlikely(need_resched())) {
6456 			if (flags & NAPI_F_END_ON_RESCHED)
6457 				break;
6458 			if (napi_poll)
6459 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6460 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6461 				preempt_enable();
6462 			rcu_read_unlock();
6463 			cond_resched();
6464 			rcu_read_lock();
6465 			if (loop_end(loop_end_arg, start_time))
6466 				return;
6467 			goto restart;
6468 		}
6469 		cpu_relax();
6470 	}
6471 	if (napi_poll)
6472 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6473 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6474 		preempt_enable();
6475 }
6476 
6477 void napi_busy_loop_rcu(unsigned int napi_id,
6478 			bool (*loop_end)(void *, unsigned long),
6479 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6480 {
6481 	unsigned flags = NAPI_F_END_ON_RESCHED;
6482 
6483 	if (prefer_busy_poll)
6484 		flags |= NAPI_F_PREFER_BUSY_POLL;
6485 
6486 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6487 }
6488 
6489 void napi_busy_loop(unsigned int napi_id,
6490 		    bool (*loop_end)(void *, unsigned long),
6491 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6492 {
6493 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6494 
6495 	rcu_read_lock();
6496 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6497 	rcu_read_unlock();
6498 }
6499 EXPORT_SYMBOL(napi_busy_loop);
6500 
6501 #endif /* CONFIG_NET_RX_BUSY_POLL */
6502 
6503 static void napi_hash_add(struct napi_struct *napi)
6504 {
6505 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6506 		return;
6507 
6508 	spin_lock(&napi_hash_lock);
6509 
6510 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6511 	do {
6512 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6513 			napi_gen_id = MIN_NAPI_ID;
6514 	} while (napi_by_id(napi_gen_id));
6515 	napi->napi_id = napi_gen_id;
6516 
6517 	hlist_add_head_rcu(&napi->napi_hash_node,
6518 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6519 
6520 	spin_unlock(&napi_hash_lock);
6521 }
6522 
6523 /* Warning : caller is responsible to make sure rcu grace period
6524  * is respected before freeing memory containing @napi
6525  */
6526 static void napi_hash_del(struct napi_struct *napi)
6527 {
6528 	spin_lock(&napi_hash_lock);
6529 
6530 	hlist_del_init_rcu(&napi->napi_hash_node);
6531 
6532 	spin_unlock(&napi_hash_lock);
6533 }
6534 
6535 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6536 {
6537 	struct napi_struct *napi;
6538 
6539 	napi = container_of(timer, struct napi_struct, timer);
6540 
6541 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6542 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6543 	 */
6544 	if (!napi_disable_pending(napi) &&
6545 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6546 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6547 		__napi_schedule_irqoff(napi);
6548 	}
6549 
6550 	return HRTIMER_NORESTART;
6551 }
6552 
6553 static void init_gro_hash(struct napi_struct *napi)
6554 {
6555 	int i;
6556 
6557 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6558 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6559 		napi->gro_hash[i].count = 0;
6560 	}
6561 	napi->gro_bitmask = 0;
6562 }
6563 
6564 int dev_set_threaded(struct net_device *dev, bool threaded)
6565 {
6566 	struct napi_struct *napi;
6567 	int err = 0;
6568 
6569 	if (dev->threaded == threaded)
6570 		return 0;
6571 
6572 	if (threaded) {
6573 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6574 			if (!napi->thread) {
6575 				err = napi_kthread_create(napi);
6576 				if (err) {
6577 					threaded = false;
6578 					break;
6579 				}
6580 			}
6581 		}
6582 	}
6583 
6584 	WRITE_ONCE(dev->threaded, threaded);
6585 
6586 	/* Make sure kthread is created before THREADED bit
6587 	 * is set.
6588 	 */
6589 	smp_mb__before_atomic();
6590 
6591 	/* Setting/unsetting threaded mode on a napi might not immediately
6592 	 * take effect, if the current napi instance is actively being
6593 	 * polled. In this case, the switch between threaded mode and
6594 	 * softirq mode will happen in the next round of napi_schedule().
6595 	 * This should not cause hiccups/stalls to the live traffic.
6596 	 */
6597 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6598 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6599 
6600 	return err;
6601 }
6602 EXPORT_SYMBOL(dev_set_threaded);
6603 
6604 /**
6605  * netif_queue_set_napi - Associate queue with the napi
6606  * @dev: device to which NAPI and queue belong
6607  * @queue_index: Index of queue
6608  * @type: queue type as RX or TX
6609  * @napi: NAPI context, pass NULL to clear previously set NAPI
6610  *
6611  * Set queue with its corresponding napi context. This should be done after
6612  * registering the NAPI handler for the queue-vector and the queues have been
6613  * mapped to the corresponding interrupt vector.
6614  */
6615 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6616 			  enum netdev_queue_type type, struct napi_struct *napi)
6617 {
6618 	struct netdev_rx_queue *rxq;
6619 	struct netdev_queue *txq;
6620 
6621 	if (WARN_ON_ONCE(napi && !napi->dev))
6622 		return;
6623 	if (dev->reg_state >= NETREG_REGISTERED)
6624 		ASSERT_RTNL();
6625 
6626 	switch (type) {
6627 	case NETDEV_QUEUE_TYPE_RX:
6628 		rxq = __netif_get_rx_queue(dev, queue_index);
6629 		rxq->napi = napi;
6630 		return;
6631 	case NETDEV_QUEUE_TYPE_TX:
6632 		txq = netdev_get_tx_queue(dev, queue_index);
6633 		txq->napi = napi;
6634 		return;
6635 	default:
6636 		return;
6637 	}
6638 }
6639 EXPORT_SYMBOL(netif_queue_set_napi);
6640 
6641 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6642 			   int (*poll)(struct napi_struct *, int), int weight)
6643 {
6644 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6645 		return;
6646 
6647 	INIT_LIST_HEAD(&napi->poll_list);
6648 	INIT_HLIST_NODE(&napi->napi_hash_node);
6649 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6650 	napi->timer.function = napi_watchdog;
6651 	init_gro_hash(napi);
6652 	napi->skb = NULL;
6653 	INIT_LIST_HEAD(&napi->rx_list);
6654 	napi->rx_count = 0;
6655 	napi->poll = poll;
6656 	if (weight > NAPI_POLL_WEIGHT)
6657 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6658 				weight);
6659 	napi->weight = weight;
6660 	napi->dev = dev;
6661 #ifdef CONFIG_NETPOLL
6662 	napi->poll_owner = -1;
6663 #endif
6664 	napi->list_owner = -1;
6665 	set_bit(NAPI_STATE_SCHED, &napi->state);
6666 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6667 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6668 	napi_hash_add(napi);
6669 	napi_get_frags_check(napi);
6670 	/* Create kthread for this napi if dev->threaded is set.
6671 	 * Clear dev->threaded if kthread creation failed so that
6672 	 * threaded mode will not be enabled in napi_enable().
6673 	 */
6674 	if (dev->threaded && napi_kthread_create(napi))
6675 		dev->threaded = false;
6676 	netif_napi_set_irq(napi, -1);
6677 }
6678 EXPORT_SYMBOL(netif_napi_add_weight);
6679 
6680 void napi_disable(struct napi_struct *n)
6681 {
6682 	unsigned long val, new;
6683 
6684 	might_sleep();
6685 	set_bit(NAPI_STATE_DISABLE, &n->state);
6686 
6687 	val = READ_ONCE(n->state);
6688 	do {
6689 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6690 			usleep_range(20, 200);
6691 			val = READ_ONCE(n->state);
6692 		}
6693 
6694 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6695 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6696 	} while (!try_cmpxchg(&n->state, &val, new));
6697 
6698 	hrtimer_cancel(&n->timer);
6699 
6700 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6701 }
6702 EXPORT_SYMBOL(napi_disable);
6703 
6704 /**
6705  *	napi_enable - enable NAPI scheduling
6706  *	@n: NAPI context
6707  *
6708  * Resume NAPI from being scheduled on this context.
6709  * Must be paired with napi_disable.
6710  */
6711 void napi_enable(struct napi_struct *n)
6712 {
6713 	unsigned long new, val = READ_ONCE(n->state);
6714 
6715 	do {
6716 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6717 
6718 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6719 		if (n->dev->threaded && n->thread)
6720 			new |= NAPIF_STATE_THREADED;
6721 	} while (!try_cmpxchg(&n->state, &val, new));
6722 }
6723 EXPORT_SYMBOL(napi_enable);
6724 
6725 static void flush_gro_hash(struct napi_struct *napi)
6726 {
6727 	int i;
6728 
6729 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6730 		struct sk_buff *skb, *n;
6731 
6732 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6733 			kfree_skb(skb);
6734 		napi->gro_hash[i].count = 0;
6735 	}
6736 }
6737 
6738 /* Must be called in process context */
6739 void __netif_napi_del(struct napi_struct *napi)
6740 {
6741 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6742 		return;
6743 
6744 	napi_hash_del(napi);
6745 	list_del_rcu(&napi->dev_list);
6746 	napi_free_frags(napi);
6747 
6748 	flush_gro_hash(napi);
6749 	napi->gro_bitmask = 0;
6750 
6751 	if (napi->thread) {
6752 		kthread_stop(napi->thread);
6753 		napi->thread = NULL;
6754 	}
6755 }
6756 EXPORT_SYMBOL(__netif_napi_del);
6757 
6758 static int __napi_poll(struct napi_struct *n, bool *repoll)
6759 {
6760 	int work, weight;
6761 
6762 	weight = n->weight;
6763 
6764 	/* This NAPI_STATE_SCHED test is for avoiding a race
6765 	 * with netpoll's poll_napi().  Only the entity which
6766 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6767 	 * actually make the ->poll() call.  Therefore we avoid
6768 	 * accidentally calling ->poll() when NAPI is not scheduled.
6769 	 */
6770 	work = 0;
6771 	if (napi_is_scheduled(n)) {
6772 		work = n->poll(n, weight);
6773 		trace_napi_poll(n, work, weight);
6774 
6775 		xdp_do_check_flushed(n);
6776 	}
6777 
6778 	if (unlikely(work > weight))
6779 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6780 				n->poll, work, weight);
6781 
6782 	if (likely(work < weight))
6783 		return work;
6784 
6785 	/* Drivers must not modify the NAPI state if they
6786 	 * consume the entire weight.  In such cases this code
6787 	 * still "owns" the NAPI instance and therefore can
6788 	 * move the instance around on the list at-will.
6789 	 */
6790 	if (unlikely(napi_disable_pending(n))) {
6791 		napi_complete(n);
6792 		return work;
6793 	}
6794 
6795 	/* The NAPI context has more processing work, but busy-polling
6796 	 * is preferred. Exit early.
6797 	 */
6798 	if (napi_prefer_busy_poll(n)) {
6799 		if (napi_complete_done(n, work)) {
6800 			/* If timeout is not set, we need to make sure
6801 			 * that the NAPI is re-scheduled.
6802 			 */
6803 			napi_schedule(n);
6804 		}
6805 		return work;
6806 	}
6807 
6808 	if (n->gro_bitmask) {
6809 		/* flush too old packets
6810 		 * If HZ < 1000, flush all packets.
6811 		 */
6812 		napi_gro_flush(n, HZ >= 1000);
6813 	}
6814 
6815 	gro_normal_list(n);
6816 
6817 	/* Some drivers may have called napi_schedule
6818 	 * prior to exhausting their budget.
6819 	 */
6820 	if (unlikely(!list_empty(&n->poll_list))) {
6821 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6822 			     n->dev ? n->dev->name : "backlog");
6823 		return work;
6824 	}
6825 
6826 	*repoll = true;
6827 
6828 	return work;
6829 }
6830 
6831 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6832 {
6833 	bool do_repoll = false;
6834 	void *have;
6835 	int work;
6836 
6837 	list_del_init(&n->poll_list);
6838 
6839 	have = netpoll_poll_lock(n);
6840 
6841 	work = __napi_poll(n, &do_repoll);
6842 
6843 	if (do_repoll)
6844 		list_add_tail(&n->poll_list, repoll);
6845 
6846 	netpoll_poll_unlock(have);
6847 
6848 	return work;
6849 }
6850 
6851 static int napi_thread_wait(struct napi_struct *napi)
6852 {
6853 	set_current_state(TASK_INTERRUPTIBLE);
6854 
6855 	while (!kthread_should_stop()) {
6856 		/* Testing SCHED_THREADED bit here to make sure the current
6857 		 * kthread owns this napi and could poll on this napi.
6858 		 * Testing SCHED bit is not enough because SCHED bit might be
6859 		 * set by some other busy poll thread or by napi_disable().
6860 		 */
6861 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6862 			WARN_ON(!list_empty(&napi->poll_list));
6863 			__set_current_state(TASK_RUNNING);
6864 			return 0;
6865 		}
6866 
6867 		schedule();
6868 		set_current_state(TASK_INTERRUPTIBLE);
6869 	}
6870 	__set_current_state(TASK_RUNNING);
6871 
6872 	return -1;
6873 }
6874 
6875 static void napi_threaded_poll_loop(struct napi_struct *napi)
6876 {
6877 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6878 	struct softnet_data *sd;
6879 	unsigned long last_qs = jiffies;
6880 
6881 	for (;;) {
6882 		bool repoll = false;
6883 		void *have;
6884 
6885 		local_bh_disable();
6886 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6887 
6888 		sd = this_cpu_ptr(&softnet_data);
6889 		sd->in_napi_threaded_poll = true;
6890 
6891 		have = netpoll_poll_lock(napi);
6892 		__napi_poll(napi, &repoll);
6893 		netpoll_poll_unlock(have);
6894 
6895 		sd->in_napi_threaded_poll = false;
6896 		barrier();
6897 
6898 		if (sd_has_rps_ipi_waiting(sd)) {
6899 			local_irq_disable();
6900 			net_rps_action_and_irq_enable(sd);
6901 		}
6902 		skb_defer_free_flush(sd);
6903 		bpf_net_ctx_clear(bpf_net_ctx);
6904 		local_bh_enable();
6905 
6906 		if (!repoll)
6907 			break;
6908 
6909 		rcu_softirq_qs_periodic(last_qs);
6910 		cond_resched();
6911 	}
6912 }
6913 
6914 static int napi_threaded_poll(void *data)
6915 {
6916 	struct napi_struct *napi = data;
6917 
6918 	while (!napi_thread_wait(napi))
6919 		napi_threaded_poll_loop(napi);
6920 
6921 	return 0;
6922 }
6923 
6924 static __latent_entropy void net_rx_action(struct softirq_action *h)
6925 {
6926 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6927 	unsigned long time_limit = jiffies +
6928 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6929 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6930 	int budget = READ_ONCE(net_hotdata.netdev_budget);
6931 	LIST_HEAD(list);
6932 	LIST_HEAD(repoll);
6933 
6934 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6935 start:
6936 	sd->in_net_rx_action = true;
6937 	local_irq_disable();
6938 	list_splice_init(&sd->poll_list, &list);
6939 	local_irq_enable();
6940 
6941 	for (;;) {
6942 		struct napi_struct *n;
6943 
6944 		skb_defer_free_flush(sd);
6945 
6946 		if (list_empty(&list)) {
6947 			if (list_empty(&repoll)) {
6948 				sd->in_net_rx_action = false;
6949 				barrier();
6950 				/* We need to check if ____napi_schedule()
6951 				 * had refilled poll_list while
6952 				 * sd->in_net_rx_action was true.
6953 				 */
6954 				if (!list_empty(&sd->poll_list))
6955 					goto start;
6956 				if (!sd_has_rps_ipi_waiting(sd))
6957 					goto end;
6958 			}
6959 			break;
6960 		}
6961 
6962 		n = list_first_entry(&list, struct napi_struct, poll_list);
6963 		budget -= napi_poll(n, &repoll);
6964 
6965 		/* If softirq window is exhausted then punt.
6966 		 * Allow this to run for 2 jiffies since which will allow
6967 		 * an average latency of 1.5/HZ.
6968 		 */
6969 		if (unlikely(budget <= 0 ||
6970 			     time_after_eq(jiffies, time_limit))) {
6971 			sd->time_squeeze++;
6972 			break;
6973 		}
6974 	}
6975 
6976 	local_irq_disable();
6977 
6978 	list_splice_tail_init(&sd->poll_list, &list);
6979 	list_splice_tail(&repoll, &list);
6980 	list_splice(&list, &sd->poll_list);
6981 	if (!list_empty(&sd->poll_list))
6982 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6983 	else
6984 		sd->in_net_rx_action = false;
6985 
6986 	net_rps_action_and_irq_enable(sd);
6987 end:
6988 	bpf_net_ctx_clear(bpf_net_ctx);
6989 }
6990 
6991 struct netdev_adjacent {
6992 	struct net_device *dev;
6993 	netdevice_tracker dev_tracker;
6994 
6995 	/* upper master flag, there can only be one master device per list */
6996 	bool master;
6997 
6998 	/* lookup ignore flag */
6999 	bool ignore;
7000 
7001 	/* counter for the number of times this device was added to us */
7002 	u16 ref_nr;
7003 
7004 	/* private field for the users */
7005 	void *private;
7006 
7007 	struct list_head list;
7008 	struct rcu_head rcu;
7009 };
7010 
7011 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7012 						 struct list_head *adj_list)
7013 {
7014 	struct netdev_adjacent *adj;
7015 
7016 	list_for_each_entry(adj, adj_list, list) {
7017 		if (adj->dev == adj_dev)
7018 			return adj;
7019 	}
7020 	return NULL;
7021 }
7022 
7023 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7024 				    struct netdev_nested_priv *priv)
7025 {
7026 	struct net_device *dev = (struct net_device *)priv->data;
7027 
7028 	return upper_dev == dev;
7029 }
7030 
7031 /**
7032  * netdev_has_upper_dev - Check if device is linked to an upper device
7033  * @dev: device
7034  * @upper_dev: upper device to check
7035  *
7036  * Find out if a device is linked to specified upper device and return true
7037  * in case it is. Note that this checks only immediate upper device,
7038  * not through a complete stack of devices. The caller must hold the RTNL lock.
7039  */
7040 bool netdev_has_upper_dev(struct net_device *dev,
7041 			  struct net_device *upper_dev)
7042 {
7043 	struct netdev_nested_priv priv = {
7044 		.data = (void *)upper_dev,
7045 	};
7046 
7047 	ASSERT_RTNL();
7048 
7049 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7050 					     &priv);
7051 }
7052 EXPORT_SYMBOL(netdev_has_upper_dev);
7053 
7054 /**
7055  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7056  * @dev: device
7057  * @upper_dev: upper device to check
7058  *
7059  * Find out if a device is linked to specified upper device and return true
7060  * in case it is. Note that this checks the entire upper device chain.
7061  * The caller must hold rcu lock.
7062  */
7063 
7064 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7065 				  struct net_device *upper_dev)
7066 {
7067 	struct netdev_nested_priv priv = {
7068 		.data = (void *)upper_dev,
7069 	};
7070 
7071 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7072 					       &priv);
7073 }
7074 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7075 
7076 /**
7077  * netdev_has_any_upper_dev - Check if device is linked to some device
7078  * @dev: device
7079  *
7080  * Find out if a device is linked to an upper device and return true in case
7081  * it is. The caller must hold the RTNL lock.
7082  */
7083 bool netdev_has_any_upper_dev(struct net_device *dev)
7084 {
7085 	ASSERT_RTNL();
7086 
7087 	return !list_empty(&dev->adj_list.upper);
7088 }
7089 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7090 
7091 /**
7092  * netdev_master_upper_dev_get - Get master upper device
7093  * @dev: device
7094  *
7095  * Find a master upper device and return pointer to it or NULL in case
7096  * it's not there. The caller must hold the RTNL lock.
7097  */
7098 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7099 {
7100 	struct netdev_adjacent *upper;
7101 
7102 	ASSERT_RTNL();
7103 
7104 	if (list_empty(&dev->adj_list.upper))
7105 		return NULL;
7106 
7107 	upper = list_first_entry(&dev->adj_list.upper,
7108 				 struct netdev_adjacent, list);
7109 	if (likely(upper->master))
7110 		return upper->dev;
7111 	return NULL;
7112 }
7113 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7114 
7115 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7116 {
7117 	struct netdev_adjacent *upper;
7118 
7119 	ASSERT_RTNL();
7120 
7121 	if (list_empty(&dev->adj_list.upper))
7122 		return NULL;
7123 
7124 	upper = list_first_entry(&dev->adj_list.upper,
7125 				 struct netdev_adjacent, list);
7126 	if (likely(upper->master) && !upper->ignore)
7127 		return upper->dev;
7128 	return NULL;
7129 }
7130 
7131 /**
7132  * netdev_has_any_lower_dev - Check if device is linked to some device
7133  * @dev: device
7134  *
7135  * Find out if a device is linked to a lower device and return true in case
7136  * it is. The caller must hold the RTNL lock.
7137  */
7138 static bool netdev_has_any_lower_dev(struct net_device *dev)
7139 {
7140 	ASSERT_RTNL();
7141 
7142 	return !list_empty(&dev->adj_list.lower);
7143 }
7144 
7145 void *netdev_adjacent_get_private(struct list_head *adj_list)
7146 {
7147 	struct netdev_adjacent *adj;
7148 
7149 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7150 
7151 	return adj->private;
7152 }
7153 EXPORT_SYMBOL(netdev_adjacent_get_private);
7154 
7155 /**
7156  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7157  * @dev: device
7158  * @iter: list_head ** of the current position
7159  *
7160  * Gets the next device from the dev's upper list, starting from iter
7161  * position. The caller must hold RCU read lock.
7162  */
7163 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7164 						 struct list_head **iter)
7165 {
7166 	struct netdev_adjacent *upper;
7167 
7168 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7169 
7170 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7171 
7172 	if (&upper->list == &dev->adj_list.upper)
7173 		return NULL;
7174 
7175 	*iter = &upper->list;
7176 
7177 	return upper->dev;
7178 }
7179 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7180 
7181 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7182 						  struct list_head **iter,
7183 						  bool *ignore)
7184 {
7185 	struct netdev_adjacent *upper;
7186 
7187 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7188 
7189 	if (&upper->list == &dev->adj_list.upper)
7190 		return NULL;
7191 
7192 	*iter = &upper->list;
7193 	*ignore = upper->ignore;
7194 
7195 	return upper->dev;
7196 }
7197 
7198 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7199 						    struct list_head **iter)
7200 {
7201 	struct netdev_adjacent *upper;
7202 
7203 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7204 
7205 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7206 
7207 	if (&upper->list == &dev->adj_list.upper)
7208 		return NULL;
7209 
7210 	*iter = &upper->list;
7211 
7212 	return upper->dev;
7213 }
7214 
7215 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7216 				       int (*fn)(struct net_device *dev,
7217 					 struct netdev_nested_priv *priv),
7218 				       struct netdev_nested_priv *priv)
7219 {
7220 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7221 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7222 	int ret, cur = 0;
7223 	bool ignore;
7224 
7225 	now = dev;
7226 	iter = &dev->adj_list.upper;
7227 
7228 	while (1) {
7229 		if (now != dev) {
7230 			ret = fn(now, priv);
7231 			if (ret)
7232 				return ret;
7233 		}
7234 
7235 		next = NULL;
7236 		while (1) {
7237 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7238 			if (!udev)
7239 				break;
7240 			if (ignore)
7241 				continue;
7242 
7243 			next = udev;
7244 			niter = &udev->adj_list.upper;
7245 			dev_stack[cur] = now;
7246 			iter_stack[cur++] = iter;
7247 			break;
7248 		}
7249 
7250 		if (!next) {
7251 			if (!cur)
7252 				return 0;
7253 			next = dev_stack[--cur];
7254 			niter = iter_stack[cur];
7255 		}
7256 
7257 		now = next;
7258 		iter = niter;
7259 	}
7260 
7261 	return 0;
7262 }
7263 
7264 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7265 				  int (*fn)(struct net_device *dev,
7266 					    struct netdev_nested_priv *priv),
7267 				  struct netdev_nested_priv *priv)
7268 {
7269 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7270 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7271 	int ret, cur = 0;
7272 
7273 	now = dev;
7274 	iter = &dev->adj_list.upper;
7275 
7276 	while (1) {
7277 		if (now != dev) {
7278 			ret = fn(now, priv);
7279 			if (ret)
7280 				return ret;
7281 		}
7282 
7283 		next = NULL;
7284 		while (1) {
7285 			udev = netdev_next_upper_dev_rcu(now, &iter);
7286 			if (!udev)
7287 				break;
7288 
7289 			next = udev;
7290 			niter = &udev->adj_list.upper;
7291 			dev_stack[cur] = now;
7292 			iter_stack[cur++] = iter;
7293 			break;
7294 		}
7295 
7296 		if (!next) {
7297 			if (!cur)
7298 				return 0;
7299 			next = dev_stack[--cur];
7300 			niter = iter_stack[cur];
7301 		}
7302 
7303 		now = next;
7304 		iter = niter;
7305 	}
7306 
7307 	return 0;
7308 }
7309 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7310 
7311 static bool __netdev_has_upper_dev(struct net_device *dev,
7312 				   struct net_device *upper_dev)
7313 {
7314 	struct netdev_nested_priv priv = {
7315 		.flags = 0,
7316 		.data = (void *)upper_dev,
7317 	};
7318 
7319 	ASSERT_RTNL();
7320 
7321 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7322 					   &priv);
7323 }
7324 
7325 /**
7326  * netdev_lower_get_next_private - Get the next ->private from the
7327  *				   lower neighbour list
7328  * @dev: device
7329  * @iter: list_head ** of the current position
7330  *
7331  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7332  * list, starting from iter position. The caller must hold either hold the
7333  * RTNL lock or its own locking that guarantees that the neighbour lower
7334  * list will remain unchanged.
7335  */
7336 void *netdev_lower_get_next_private(struct net_device *dev,
7337 				    struct list_head **iter)
7338 {
7339 	struct netdev_adjacent *lower;
7340 
7341 	lower = list_entry(*iter, struct netdev_adjacent, list);
7342 
7343 	if (&lower->list == &dev->adj_list.lower)
7344 		return NULL;
7345 
7346 	*iter = lower->list.next;
7347 
7348 	return lower->private;
7349 }
7350 EXPORT_SYMBOL(netdev_lower_get_next_private);
7351 
7352 /**
7353  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7354  *				       lower neighbour list, RCU
7355  *				       variant
7356  * @dev: device
7357  * @iter: list_head ** of the current position
7358  *
7359  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7360  * list, starting from iter position. The caller must hold RCU read lock.
7361  */
7362 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7363 					struct list_head **iter)
7364 {
7365 	struct netdev_adjacent *lower;
7366 
7367 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7368 
7369 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7370 
7371 	if (&lower->list == &dev->adj_list.lower)
7372 		return NULL;
7373 
7374 	*iter = &lower->list;
7375 
7376 	return lower->private;
7377 }
7378 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7379 
7380 /**
7381  * netdev_lower_get_next - Get the next device from the lower neighbour
7382  *                         list
7383  * @dev: device
7384  * @iter: list_head ** of the current position
7385  *
7386  * Gets the next netdev_adjacent from the dev's lower neighbour
7387  * list, starting from iter position. The caller must hold RTNL lock or
7388  * its own locking that guarantees that the neighbour lower
7389  * list will remain unchanged.
7390  */
7391 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7392 {
7393 	struct netdev_adjacent *lower;
7394 
7395 	lower = list_entry(*iter, struct netdev_adjacent, list);
7396 
7397 	if (&lower->list == &dev->adj_list.lower)
7398 		return NULL;
7399 
7400 	*iter = lower->list.next;
7401 
7402 	return lower->dev;
7403 }
7404 EXPORT_SYMBOL(netdev_lower_get_next);
7405 
7406 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7407 						struct list_head **iter)
7408 {
7409 	struct netdev_adjacent *lower;
7410 
7411 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7412 
7413 	if (&lower->list == &dev->adj_list.lower)
7414 		return NULL;
7415 
7416 	*iter = &lower->list;
7417 
7418 	return lower->dev;
7419 }
7420 
7421 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7422 						  struct list_head **iter,
7423 						  bool *ignore)
7424 {
7425 	struct netdev_adjacent *lower;
7426 
7427 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7428 
7429 	if (&lower->list == &dev->adj_list.lower)
7430 		return NULL;
7431 
7432 	*iter = &lower->list;
7433 	*ignore = lower->ignore;
7434 
7435 	return lower->dev;
7436 }
7437 
7438 int netdev_walk_all_lower_dev(struct net_device *dev,
7439 			      int (*fn)(struct net_device *dev,
7440 					struct netdev_nested_priv *priv),
7441 			      struct netdev_nested_priv *priv)
7442 {
7443 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7444 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7445 	int ret, cur = 0;
7446 
7447 	now = dev;
7448 	iter = &dev->adj_list.lower;
7449 
7450 	while (1) {
7451 		if (now != dev) {
7452 			ret = fn(now, priv);
7453 			if (ret)
7454 				return ret;
7455 		}
7456 
7457 		next = NULL;
7458 		while (1) {
7459 			ldev = netdev_next_lower_dev(now, &iter);
7460 			if (!ldev)
7461 				break;
7462 
7463 			next = ldev;
7464 			niter = &ldev->adj_list.lower;
7465 			dev_stack[cur] = now;
7466 			iter_stack[cur++] = iter;
7467 			break;
7468 		}
7469 
7470 		if (!next) {
7471 			if (!cur)
7472 				return 0;
7473 			next = dev_stack[--cur];
7474 			niter = iter_stack[cur];
7475 		}
7476 
7477 		now = next;
7478 		iter = niter;
7479 	}
7480 
7481 	return 0;
7482 }
7483 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7484 
7485 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7486 				       int (*fn)(struct net_device *dev,
7487 					 struct netdev_nested_priv *priv),
7488 				       struct netdev_nested_priv *priv)
7489 {
7490 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7491 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7492 	int ret, cur = 0;
7493 	bool ignore;
7494 
7495 	now = dev;
7496 	iter = &dev->adj_list.lower;
7497 
7498 	while (1) {
7499 		if (now != dev) {
7500 			ret = fn(now, priv);
7501 			if (ret)
7502 				return ret;
7503 		}
7504 
7505 		next = NULL;
7506 		while (1) {
7507 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7508 			if (!ldev)
7509 				break;
7510 			if (ignore)
7511 				continue;
7512 
7513 			next = ldev;
7514 			niter = &ldev->adj_list.lower;
7515 			dev_stack[cur] = now;
7516 			iter_stack[cur++] = iter;
7517 			break;
7518 		}
7519 
7520 		if (!next) {
7521 			if (!cur)
7522 				return 0;
7523 			next = dev_stack[--cur];
7524 			niter = iter_stack[cur];
7525 		}
7526 
7527 		now = next;
7528 		iter = niter;
7529 	}
7530 
7531 	return 0;
7532 }
7533 
7534 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7535 					     struct list_head **iter)
7536 {
7537 	struct netdev_adjacent *lower;
7538 
7539 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7540 	if (&lower->list == &dev->adj_list.lower)
7541 		return NULL;
7542 
7543 	*iter = &lower->list;
7544 
7545 	return lower->dev;
7546 }
7547 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7548 
7549 static u8 __netdev_upper_depth(struct net_device *dev)
7550 {
7551 	struct net_device *udev;
7552 	struct list_head *iter;
7553 	u8 max_depth = 0;
7554 	bool ignore;
7555 
7556 	for (iter = &dev->adj_list.upper,
7557 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7558 	     udev;
7559 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7560 		if (ignore)
7561 			continue;
7562 		if (max_depth < udev->upper_level)
7563 			max_depth = udev->upper_level;
7564 	}
7565 
7566 	return max_depth;
7567 }
7568 
7569 static u8 __netdev_lower_depth(struct net_device *dev)
7570 {
7571 	struct net_device *ldev;
7572 	struct list_head *iter;
7573 	u8 max_depth = 0;
7574 	bool ignore;
7575 
7576 	for (iter = &dev->adj_list.lower,
7577 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7578 	     ldev;
7579 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7580 		if (ignore)
7581 			continue;
7582 		if (max_depth < ldev->lower_level)
7583 			max_depth = ldev->lower_level;
7584 	}
7585 
7586 	return max_depth;
7587 }
7588 
7589 static int __netdev_update_upper_level(struct net_device *dev,
7590 				       struct netdev_nested_priv *__unused)
7591 {
7592 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7593 	return 0;
7594 }
7595 
7596 #ifdef CONFIG_LOCKDEP
7597 static LIST_HEAD(net_unlink_list);
7598 
7599 static void net_unlink_todo(struct net_device *dev)
7600 {
7601 	if (list_empty(&dev->unlink_list))
7602 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7603 }
7604 #endif
7605 
7606 static int __netdev_update_lower_level(struct net_device *dev,
7607 				       struct netdev_nested_priv *priv)
7608 {
7609 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7610 
7611 #ifdef CONFIG_LOCKDEP
7612 	if (!priv)
7613 		return 0;
7614 
7615 	if (priv->flags & NESTED_SYNC_IMM)
7616 		dev->nested_level = dev->lower_level - 1;
7617 	if (priv->flags & NESTED_SYNC_TODO)
7618 		net_unlink_todo(dev);
7619 #endif
7620 	return 0;
7621 }
7622 
7623 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7624 				  int (*fn)(struct net_device *dev,
7625 					    struct netdev_nested_priv *priv),
7626 				  struct netdev_nested_priv *priv)
7627 {
7628 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7629 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7630 	int ret, cur = 0;
7631 
7632 	now = dev;
7633 	iter = &dev->adj_list.lower;
7634 
7635 	while (1) {
7636 		if (now != dev) {
7637 			ret = fn(now, priv);
7638 			if (ret)
7639 				return ret;
7640 		}
7641 
7642 		next = NULL;
7643 		while (1) {
7644 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7645 			if (!ldev)
7646 				break;
7647 
7648 			next = ldev;
7649 			niter = &ldev->adj_list.lower;
7650 			dev_stack[cur] = now;
7651 			iter_stack[cur++] = iter;
7652 			break;
7653 		}
7654 
7655 		if (!next) {
7656 			if (!cur)
7657 				return 0;
7658 			next = dev_stack[--cur];
7659 			niter = iter_stack[cur];
7660 		}
7661 
7662 		now = next;
7663 		iter = niter;
7664 	}
7665 
7666 	return 0;
7667 }
7668 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7669 
7670 /**
7671  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7672  *				       lower neighbour list, RCU
7673  *				       variant
7674  * @dev: device
7675  *
7676  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7677  * list. The caller must hold RCU read lock.
7678  */
7679 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7680 {
7681 	struct netdev_adjacent *lower;
7682 
7683 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7684 			struct netdev_adjacent, list);
7685 	if (lower)
7686 		return lower->private;
7687 	return NULL;
7688 }
7689 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7690 
7691 /**
7692  * netdev_master_upper_dev_get_rcu - Get master upper device
7693  * @dev: device
7694  *
7695  * Find a master upper device and return pointer to it or NULL in case
7696  * it's not there. The caller must hold the RCU read lock.
7697  */
7698 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7699 {
7700 	struct netdev_adjacent *upper;
7701 
7702 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7703 				       struct netdev_adjacent, list);
7704 	if (upper && likely(upper->master))
7705 		return upper->dev;
7706 	return NULL;
7707 }
7708 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7709 
7710 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7711 			      struct net_device *adj_dev,
7712 			      struct list_head *dev_list)
7713 {
7714 	char linkname[IFNAMSIZ+7];
7715 
7716 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7717 		"upper_%s" : "lower_%s", adj_dev->name);
7718 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7719 				 linkname);
7720 }
7721 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7722 			       char *name,
7723 			       struct list_head *dev_list)
7724 {
7725 	char linkname[IFNAMSIZ+7];
7726 
7727 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7728 		"upper_%s" : "lower_%s", name);
7729 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7730 }
7731 
7732 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7733 						 struct net_device *adj_dev,
7734 						 struct list_head *dev_list)
7735 {
7736 	return (dev_list == &dev->adj_list.upper ||
7737 		dev_list == &dev->adj_list.lower) &&
7738 		net_eq(dev_net(dev), dev_net(adj_dev));
7739 }
7740 
7741 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7742 					struct net_device *adj_dev,
7743 					struct list_head *dev_list,
7744 					void *private, bool master)
7745 {
7746 	struct netdev_adjacent *adj;
7747 	int ret;
7748 
7749 	adj = __netdev_find_adj(adj_dev, dev_list);
7750 
7751 	if (adj) {
7752 		adj->ref_nr += 1;
7753 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7754 			 dev->name, adj_dev->name, adj->ref_nr);
7755 
7756 		return 0;
7757 	}
7758 
7759 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7760 	if (!adj)
7761 		return -ENOMEM;
7762 
7763 	adj->dev = adj_dev;
7764 	adj->master = master;
7765 	adj->ref_nr = 1;
7766 	adj->private = private;
7767 	adj->ignore = false;
7768 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7769 
7770 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7771 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7772 
7773 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7774 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7775 		if (ret)
7776 			goto free_adj;
7777 	}
7778 
7779 	/* Ensure that master link is always the first item in list. */
7780 	if (master) {
7781 		ret = sysfs_create_link(&(dev->dev.kobj),
7782 					&(adj_dev->dev.kobj), "master");
7783 		if (ret)
7784 			goto remove_symlinks;
7785 
7786 		list_add_rcu(&adj->list, dev_list);
7787 	} else {
7788 		list_add_tail_rcu(&adj->list, dev_list);
7789 	}
7790 
7791 	return 0;
7792 
7793 remove_symlinks:
7794 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7795 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7796 free_adj:
7797 	netdev_put(adj_dev, &adj->dev_tracker);
7798 	kfree(adj);
7799 
7800 	return ret;
7801 }
7802 
7803 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7804 					 struct net_device *adj_dev,
7805 					 u16 ref_nr,
7806 					 struct list_head *dev_list)
7807 {
7808 	struct netdev_adjacent *adj;
7809 
7810 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7811 		 dev->name, adj_dev->name, ref_nr);
7812 
7813 	adj = __netdev_find_adj(adj_dev, dev_list);
7814 
7815 	if (!adj) {
7816 		pr_err("Adjacency does not exist for device %s from %s\n",
7817 		       dev->name, adj_dev->name);
7818 		WARN_ON(1);
7819 		return;
7820 	}
7821 
7822 	if (adj->ref_nr > ref_nr) {
7823 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7824 			 dev->name, adj_dev->name, ref_nr,
7825 			 adj->ref_nr - ref_nr);
7826 		adj->ref_nr -= ref_nr;
7827 		return;
7828 	}
7829 
7830 	if (adj->master)
7831 		sysfs_remove_link(&(dev->dev.kobj), "master");
7832 
7833 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7834 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7835 
7836 	list_del_rcu(&adj->list);
7837 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7838 		 adj_dev->name, dev->name, adj_dev->name);
7839 	netdev_put(adj_dev, &adj->dev_tracker);
7840 	kfree_rcu(adj, rcu);
7841 }
7842 
7843 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7844 					    struct net_device *upper_dev,
7845 					    struct list_head *up_list,
7846 					    struct list_head *down_list,
7847 					    void *private, bool master)
7848 {
7849 	int ret;
7850 
7851 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7852 					   private, master);
7853 	if (ret)
7854 		return ret;
7855 
7856 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7857 					   private, false);
7858 	if (ret) {
7859 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7860 		return ret;
7861 	}
7862 
7863 	return 0;
7864 }
7865 
7866 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7867 					       struct net_device *upper_dev,
7868 					       u16 ref_nr,
7869 					       struct list_head *up_list,
7870 					       struct list_head *down_list)
7871 {
7872 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7873 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7874 }
7875 
7876 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7877 						struct net_device *upper_dev,
7878 						void *private, bool master)
7879 {
7880 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7881 						&dev->adj_list.upper,
7882 						&upper_dev->adj_list.lower,
7883 						private, master);
7884 }
7885 
7886 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7887 						   struct net_device *upper_dev)
7888 {
7889 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7890 					   &dev->adj_list.upper,
7891 					   &upper_dev->adj_list.lower);
7892 }
7893 
7894 static int __netdev_upper_dev_link(struct net_device *dev,
7895 				   struct net_device *upper_dev, bool master,
7896 				   void *upper_priv, void *upper_info,
7897 				   struct netdev_nested_priv *priv,
7898 				   struct netlink_ext_ack *extack)
7899 {
7900 	struct netdev_notifier_changeupper_info changeupper_info = {
7901 		.info = {
7902 			.dev = dev,
7903 			.extack = extack,
7904 		},
7905 		.upper_dev = upper_dev,
7906 		.master = master,
7907 		.linking = true,
7908 		.upper_info = upper_info,
7909 	};
7910 	struct net_device *master_dev;
7911 	int ret = 0;
7912 
7913 	ASSERT_RTNL();
7914 
7915 	if (dev == upper_dev)
7916 		return -EBUSY;
7917 
7918 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7919 	if (__netdev_has_upper_dev(upper_dev, dev))
7920 		return -EBUSY;
7921 
7922 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7923 		return -EMLINK;
7924 
7925 	if (!master) {
7926 		if (__netdev_has_upper_dev(dev, upper_dev))
7927 			return -EEXIST;
7928 	} else {
7929 		master_dev = __netdev_master_upper_dev_get(dev);
7930 		if (master_dev)
7931 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7932 	}
7933 
7934 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7935 					    &changeupper_info.info);
7936 	ret = notifier_to_errno(ret);
7937 	if (ret)
7938 		return ret;
7939 
7940 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7941 						   master);
7942 	if (ret)
7943 		return ret;
7944 
7945 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7946 					    &changeupper_info.info);
7947 	ret = notifier_to_errno(ret);
7948 	if (ret)
7949 		goto rollback;
7950 
7951 	__netdev_update_upper_level(dev, NULL);
7952 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7953 
7954 	__netdev_update_lower_level(upper_dev, priv);
7955 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7956 				    priv);
7957 
7958 	return 0;
7959 
7960 rollback:
7961 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7962 
7963 	return ret;
7964 }
7965 
7966 /**
7967  * netdev_upper_dev_link - Add a link to the upper device
7968  * @dev: device
7969  * @upper_dev: new upper device
7970  * @extack: netlink extended ack
7971  *
7972  * Adds a link to device which is upper to this one. The caller must hold
7973  * the RTNL lock. On a failure a negative errno code is returned.
7974  * On success the reference counts are adjusted and the function
7975  * returns zero.
7976  */
7977 int netdev_upper_dev_link(struct net_device *dev,
7978 			  struct net_device *upper_dev,
7979 			  struct netlink_ext_ack *extack)
7980 {
7981 	struct netdev_nested_priv priv = {
7982 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7983 		.data = NULL,
7984 	};
7985 
7986 	return __netdev_upper_dev_link(dev, upper_dev, false,
7987 				       NULL, NULL, &priv, extack);
7988 }
7989 EXPORT_SYMBOL(netdev_upper_dev_link);
7990 
7991 /**
7992  * netdev_master_upper_dev_link - Add a master link to the upper device
7993  * @dev: device
7994  * @upper_dev: new upper device
7995  * @upper_priv: upper device private
7996  * @upper_info: upper info to be passed down via notifier
7997  * @extack: netlink extended ack
7998  *
7999  * Adds a link to device which is upper to this one. In this case, only
8000  * one master upper device can be linked, although other non-master devices
8001  * might be linked as well. The caller must hold the RTNL lock.
8002  * On a failure a negative errno code is returned. On success the reference
8003  * counts are adjusted and the function returns zero.
8004  */
8005 int netdev_master_upper_dev_link(struct net_device *dev,
8006 				 struct net_device *upper_dev,
8007 				 void *upper_priv, void *upper_info,
8008 				 struct netlink_ext_ack *extack)
8009 {
8010 	struct netdev_nested_priv priv = {
8011 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8012 		.data = NULL,
8013 	};
8014 
8015 	return __netdev_upper_dev_link(dev, upper_dev, true,
8016 				       upper_priv, upper_info, &priv, extack);
8017 }
8018 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8019 
8020 static void __netdev_upper_dev_unlink(struct net_device *dev,
8021 				      struct net_device *upper_dev,
8022 				      struct netdev_nested_priv *priv)
8023 {
8024 	struct netdev_notifier_changeupper_info changeupper_info = {
8025 		.info = {
8026 			.dev = dev,
8027 		},
8028 		.upper_dev = upper_dev,
8029 		.linking = false,
8030 	};
8031 
8032 	ASSERT_RTNL();
8033 
8034 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8035 
8036 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8037 				      &changeupper_info.info);
8038 
8039 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8040 
8041 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8042 				      &changeupper_info.info);
8043 
8044 	__netdev_update_upper_level(dev, NULL);
8045 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8046 
8047 	__netdev_update_lower_level(upper_dev, priv);
8048 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8049 				    priv);
8050 }
8051 
8052 /**
8053  * netdev_upper_dev_unlink - Removes a link to upper device
8054  * @dev: device
8055  * @upper_dev: new upper device
8056  *
8057  * Removes a link to device which is upper to this one. The caller must hold
8058  * the RTNL lock.
8059  */
8060 void netdev_upper_dev_unlink(struct net_device *dev,
8061 			     struct net_device *upper_dev)
8062 {
8063 	struct netdev_nested_priv priv = {
8064 		.flags = NESTED_SYNC_TODO,
8065 		.data = NULL,
8066 	};
8067 
8068 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8069 }
8070 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8071 
8072 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8073 				      struct net_device *lower_dev,
8074 				      bool val)
8075 {
8076 	struct netdev_adjacent *adj;
8077 
8078 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8079 	if (adj)
8080 		adj->ignore = val;
8081 
8082 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8083 	if (adj)
8084 		adj->ignore = val;
8085 }
8086 
8087 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8088 					struct net_device *lower_dev)
8089 {
8090 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8091 }
8092 
8093 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8094 				       struct net_device *lower_dev)
8095 {
8096 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8097 }
8098 
8099 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8100 				   struct net_device *new_dev,
8101 				   struct net_device *dev,
8102 				   struct netlink_ext_ack *extack)
8103 {
8104 	struct netdev_nested_priv priv = {
8105 		.flags = 0,
8106 		.data = NULL,
8107 	};
8108 	int err;
8109 
8110 	if (!new_dev)
8111 		return 0;
8112 
8113 	if (old_dev && new_dev != old_dev)
8114 		netdev_adjacent_dev_disable(dev, old_dev);
8115 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8116 				      extack);
8117 	if (err) {
8118 		if (old_dev && new_dev != old_dev)
8119 			netdev_adjacent_dev_enable(dev, old_dev);
8120 		return err;
8121 	}
8122 
8123 	return 0;
8124 }
8125 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8126 
8127 void netdev_adjacent_change_commit(struct net_device *old_dev,
8128 				   struct net_device *new_dev,
8129 				   struct net_device *dev)
8130 {
8131 	struct netdev_nested_priv priv = {
8132 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8133 		.data = NULL,
8134 	};
8135 
8136 	if (!new_dev || !old_dev)
8137 		return;
8138 
8139 	if (new_dev == old_dev)
8140 		return;
8141 
8142 	netdev_adjacent_dev_enable(dev, old_dev);
8143 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8144 }
8145 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8146 
8147 void netdev_adjacent_change_abort(struct net_device *old_dev,
8148 				  struct net_device *new_dev,
8149 				  struct net_device *dev)
8150 {
8151 	struct netdev_nested_priv priv = {
8152 		.flags = 0,
8153 		.data = NULL,
8154 	};
8155 
8156 	if (!new_dev)
8157 		return;
8158 
8159 	if (old_dev && new_dev != old_dev)
8160 		netdev_adjacent_dev_enable(dev, old_dev);
8161 
8162 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8163 }
8164 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8165 
8166 /**
8167  * netdev_bonding_info_change - Dispatch event about slave change
8168  * @dev: device
8169  * @bonding_info: info to dispatch
8170  *
8171  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8172  * The caller must hold the RTNL lock.
8173  */
8174 void netdev_bonding_info_change(struct net_device *dev,
8175 				struct netdev_bonding_info *bonding_info)
8176 {
8177 	struct netdev_notifier_bonding_info info = {
8178 		.info.dev = dev,
8179 	};
8180 
8181 	memcpy(&info.bonding_info, bonding_info,
8182 	       sizeof(struct netdev_bonding_info));
8183 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8184 				      &info.info);
8185 }
8186 EXPORT_SYMBOL(netdev_bonding_info_change);
8187 
8188 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8189 					   struct netlink_ext_ack *extack)
8190 {
8191 	struct netdev_notifier_offload_xstats_info info = {
8192 		.info.dev = dev,
8193 		.info.extack = extack,
8194 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8195 	};
8196 	int err;
8197 	int rc;
8198 
8199 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8200 					 GFP_KERNEL);
8201 	if (!dev->offload_xstats_l3)
8202 		return -ENOMEM;
8203 
8204 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8205 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8206 						  &info.info);
8207 	err = notifier_to_errno(rc);
8208 	if (err)
8209 		goto free_stats;
8210 
8211 	return 0;
8212 
8213 free_stats:
8214 	kfree(dev->offload_xstats_l3);
8215 	dev->offload_xstats_l3 = NULL;
8216 	return err;
8217 }
8218 
8219 int netdev_offload_xstats_enable(struct net_device *dev,
8220 				 enum netdev_offload_xstats_type type,
8221 				 struct netlink_ext_ack *extack)
8222 {
8223 	ASSERT_RTNL();
8224 
8225 	if (netdev_offload_xstats_enabled(dev, type))
8226 		return -EALREADY;
8227 
8228 	switch (type) {
8229 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8230 		return netdev_offload_xstats_enable_l3(dev, extack);
8231 	}
8232 
8233 	WARN_ON(1);
8234 	return -EINVAL;
8235 }
8236 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8237 
8238 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8239 {
8240 	struct netdev_notifier_offload_xstats_info info = {
8241 		.info.dev = dev,
8242 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8243 	};
8244 
8245 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8246 				      &info.info);
8247 	kfree(dev->offload_xstats_l3);
8248 	dev->offload_xstats_l3 = NULL;
8249 }
8250 
8251 int netdev_offload_xstats_disable(struct net_device *dev,
8252 				  enum netdev_offload_xstats_type type)
8253 {
8254 	ASSERT_RTNL();
8255 
8256 	if (!netdev_offload_xstats_enabled(dev, type))
8257 		return -EALREADY;
8258 
8259 	switch (type) {
8260 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8261 		netdev_offload_xstats_disable_l3(dev);
8262 		return 0;
8263 	}
8264 
8265 	WARN_ON(1);
8266 	return -EINVAL;
8267 }
8268 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8269 
8270 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8271 {
8272 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8273 }
8274 
8275 static struct rtnl_hw_stats64 *
8276 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8277 			      enum netdev_offload_xstats_type type)
8278 {
8279 	switch (type) {
8280 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8281 		return dev->offload_xstats_l3;
8282 	}
8283 
8284 	WARN_ON(1);
8285 	return NULL;
8286 }
8287 
8288 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8289 				   enum netdev_offload_xstats_type type)
8290 {
8291 	ASSERT_RTNL();
8292 
8293 	return netdev_offload_xstats_get_ptr(dev, type);
8294 }
8295 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8296 
8297 struct netdev_notifier_offload_xstats_ru {
8298 	bool used;
8299 };
8300 
8301 struct netdev_notifier_offload_xstats_rd {
8302 	struct rtnl_hw_stats64 stats;
8303 	bool used;
8304 };
8305 
8306 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8307 				  const struct rtnl_hw_stats64 *src)
8308 {
8309 	dest->rx_packets	  += src->rx_packets;
8310 	dest->tx_packets	  += src->tx_packets;
8311 	dest->rx_bytes		  += src->rx_bytes;
8312 	dest->tx_bytes		  += src->tx_bytes;
8313 	dest->rx_errors		  += src->rx_errors;
8314 	dest->tx_errors		  += src->tx_errors;
8315 	dest->rx_dropped	  += src->rx_dropped;
8316 	dest->tx_dropped	  += src->tx_dropped;
8317 	dest->multicast		  += src->multicast;
8318 }
8319 
8320 static int netdev_offload_xstats_get_used(struct net_device *dev,
8321 					  enum netdev_offload_xstats_type type,
8322 					  bool *p_used,
8323 					  struct netlink_ext_ack *extack)
8324 {
8325 	struct netdev_notifier_offload_xstats_ru report_used = {};
8326 	struct netdev_notifier_offload_xstats_info info = {
8327 		.info.dev = dev,
8328 		.info.extack = extack,
8329 		.type = type,
8330 		.report_used = &report_used,
8331 	};
8332 	int rc;
8333 
8334 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8335 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8336 					   &info.info);
8337 	*p_used = report_used.used;
8338 	return notifier_to_errno(rc);
8339 }
8340 
8341 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8342 					   enum netdev_offload_xstats_type type,
8343 					   struct rtnl_hw_stats64 *p_stats,
8344 					   bool *p_used,
8345 					   struct netlink_ext_ack *extack)
8346 {
8347 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8348 	struct netdev_notifier_offload_xstats_info info = {
8349 		.info.dev = dev,
8350 		.info.extack = extack,
8351 		.type = type,
8352 		.report_delta = &report_delta,
8353 	};
8354 	struct rtnl_hw_stats64 *stats;
8355 	int rc;
8356 
8357 	stats = netdev_offload_xstats_get_ptr(dev, type);
8358 	if (WARN_ON(!stats))
8359 		return -EINVAL;
8360 
8361 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8362 					   &info.info);
8363 
8364 	/* Cache whatever we got, even if there was an error, otherwise the
8365 	 * successful stats retrievals would get lost.
8366 	 */
8367 	netdev_hw_stats64_add(stats, &report_delta.stats);
8368 
8369 	if (p_stats)
8370 		*p_stats = *stats;
8371 	*p_used = report_delta.used;
8372 
8373 	return notifier_to_errno(rc);
8374 }
8375 
8376 int netdev_offload_xstats_get(struct net_device *dev,
8377 			      enum netdev_offload_xstats_type type,
8378 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8379 			      struct netlink_ext_ack *extack)
8380 {
8381 	ASSERT_RTNL();
8382 
8383 	if (p_stats)
8384 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8385 						       p_used, extack);
8386 	else
8387 		return netdev_offload_xstats_get_used(dev, type, p_used,
8388 						      extack);
8389 }
8390 EXPORT_SYMBOL(netdev_offload_xstats_get);
8391 
8392 void
8393 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8394 				   const struct rtnl_hw_stats64 *stats)
8395 {
8396 	report_delta->used = true;
8397 	netdev_hw_stats64_add(&report_delta->stats, stats);
8398 }
8399 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8400 
8401 void
8402 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8403 {
8404 	report_used->used = true;
8405 }
8406 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8407 
8408 void netdev_offload_xstats_push_delta(struct net_device *dev,
8409 				      enum netdev_offload_xstats_type type,
8410 				      const struct rtnl_hw_stats64 *p_stats)
8411 {
8412 	struct rtnl_hw_stats64 *stats;
8413 
8414 	ASSERT_RTNL();
8415 
8416 	stats = netdev_offload_xstats_get_ptr(dev, type);
8417 	if (WARN_ON(!stats))
8418 		return;
8419 
8420 	netdev_hw_stats64_add(stats, p_stats);
8421 }
8422 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8423 
8424 /**
8425  * netdev_get_xmit_slave - Get the xmit slave of master device
8426  * @dev: device
8427  * @skb: The packet
8428  * @all_slaves: assume all the slaves are active
8429  *
8430  * The reference counters are not incremented so the caller must be
8431  * careful with locks. The caller must hold RCU lock.
8432  * %NULL is returned if no slave is found.
8433  */
8434 
8435 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8436 					 struct sk_buff *skb,
8437 					 bool all_slaves)
8438 {
8439 	const struct net_device_ops *ops = dev->netdev_ops;
8440 
8441 	if (!ops->ndo_get_xmit_slave)
8442 		return NULL;
8443 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8444 }
8445 EXPORT_SYMBOL(netdev_get_xmit_slave);
8446 
8447 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8448 						  struct sock *sk)
8449 {
8450 	const struct net_device_ops *ops = dev->netdev_ops;
8451 
8452 	if (!ops->ndo_sk_get_lower_dev)
8453 		return NULL;
8454 	return ops->ndo_sk_get_lower_dev(dev, sk);
8455 }
8456 
8457 /**
8458  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8459  * @dev: device
8460  * @sk: the socket
8461  *
8462  * %NULL is returned if no lower device is found.
8463  */
8464 
8465 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8466 					    struct sock *sk)
8467 {
8468 	struct net_device *lower;
8469 
8470 	lower = netdev_sk_get_lower_dev(dev, sk);
8471 	while (lower) {
8472 		dev = lower;
8473 		lower = netdev_sk_get_lower_dev(dev, sk);
8474 	}
8475 
8476 	return dev;
8477 }
8478 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8479 
8480 static void netdev_adjacent_add_links(struct net_device *dev)
8481 {
8482 	struct netdev_adjacent *iter;
8483 
8484 	struct net *net = dev_net(dev);
8485 
8486 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8487 		if (!net_eq(net, dev_net(iter->dev)))
8488 			continue;
8489 		netdev_adjacent_sysfs_add(iter->dev, dev,
8490 					  &iter->dev->adj_list.lower);
8491 		netdev_adjacent_sysfs_add(dev, iter->dev,
8492 					  &dev->adj_list.upper);
8493 	}
8494 
8495 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8496 		if (!net_eq(net, dev_net(iter->dev)))
8497 			continue;
8498 		netdev_adjacent_sysfs_add(iter->dev, dev,
8499 					  &iter->dev->adj_list.upper);
8500 		netdev_adjacent_sysfs_add(dev, iter->dev,
8501 					  &dev->adj_list.lower);
8502 	}
8503 }
8504 
8505 static void netdev_adjacent_del_links(struct net_device *dev)
8506 {
8507 	struct netdev_adjacent *iter;
8508 
8509 	struct net *net = dev_net(dev);
8510 
8511 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8512 		if (!net_eq(net, dev_net(iter->dev)))
8513 			continue;
8514 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8515 					  &iter->dev->adj_list.lower);
8516 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8517 					  &dev->adj_list.upper);
8518 	}
8519 
8520 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8521 		if (!net_eq(net, dev_net(iter->dev)))
8522 			continue;
8523 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8524 					  &iter->dev->adj_list.upper);
8525 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8526 					  &dev->adj_list.lower);
8527 	}
8528 }
8529 
8530 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8531 {
8532 	struct netdev_adjacent *iter;
8533 
8534 	struct net *net = dev_net(dev);
8535 
8536 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8537 		if (!net_eq(net, dev_net(iter->dev)))
8538 			continue;
8539 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8540 					  &iter->dev->adj_list.lower);
8541 		netdev_adjacent_sysfs_add(iter->dev, dev,
8542 					  &iter->dev->adj_list.lower);
8543 	}
8544 
8545 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8546 		if (!net_eq(net, dev_net(iter->dev)))
8547 			continue;
8548 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8549 					  &iter->dev->adj_list.upper);
8550 		netdev_adjacent_sysfs_add(iter->dev, dev,
8551 					  &iter->dev->adj_list.upper);
8552 	}
8553 }
8554 
8555 void *netdev_lower_dev_get_private(struct net_device *dev,
8556 				   struct net_device *lower_dev)
8557 {
8558 	struct netdev_adjacent *lower;
8559 
8560 	if (!lower_dev)
8561 		return NULL;
8562 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8563 	if (!lower)
8564 		return NULL;
8565 
8566 	return lower->private;
8567 }
8568 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8569 
8570 
8571 /**
8572  * netdev_lower_state_changed - Dispatch event about lower device state change
8573  * @lower_dev: device
8574  * @lower_state_info: state to dispatch
8575  *
8576  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8577  * The caller must hold the RTNL lock.
8578  */
8579 void netdev_lower_state_changed(struct net_device *lower_dev,
8580 				void *lower_state_info)
8581 {
8582 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8583 		.info.dev = lower_dev,
8584 	};
8585 
8586 	ASSERT_RTNL();
8587 	changelowerstate_info.lower_state_info = lower_state_info;
8588 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8589 				      &changelowerstate_info.info);
8590 }
8591 EXPORT_SYMBOL(netdev_lower_state_changed);
8592 
8593 static void dev_change_rx_flags(struct net_device *dev, int flags)
8594 {
8595 	const struct net_device_ops *ops = dev->netdev_ops;
8596 
8597 	if (ops->ndo_change_rx_flags)
8598 		ops->ndo_change_rx_flags(dev, flags);
8599 }
8600 
8601 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8602 {
8603 	unsigned int old_flags = dev->flags;
8604 	unsigned int promiscuity, flags;
8605 	kuid_t uid;
8606 	kgid_t gid;
8607 
8608 	ASSERT_RTNL();
8609 
8610 	promiscuity = dev->promiscuity + inc;
8611 	if (promiscuity == 0) {
8612 		/*
8613 		 * Avoid overflow.
8614 		 * If inc causes overflow, untouch promisc and return error.
8615 		 */
8616 		if (unlikely(inc > 0)) {
8617 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8618 			return -EOVERFLOW;
8619 		}
8620 		flags = old_flags & ~IFF_PROMISC;
8621 	} else {
8622 		flags = old_flags | IFF_PROMISC;
8623 	}
8624 	WRITE_ONCE(dev->promiscuity, promiscuity);
8625 	if (flags != old_flags) {
8626 		WRITE_ONCE(dev->flags, flags);
8627 		netdev_info(dev, "%s promiscuous mode\n",
8628 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8629 		if (audit_enabled) {
8630 			current_uid_gid(&uid, &gid);
8631 			audit_log(audit_context(), GFP_ATOMIC,
8632 				  AUDIT_ANOM_PROMISCUOUS,
8633 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8634 				  dev->name, (dev->flags & IFF_PROMISC),
8635 				  (old_flags & IFF_PROMISC),
8636 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8637 				  from_kuid(&init_user_ns, uid),
8638 				  from_kgid(&init_user_ns, gid),
8639 				  audit_get_sessionid(current));
8640 		}
8641 
8642 		dev_change_rx_flags(dev, IFF_PROMISC);
8643 	}
8644 	if (notify)
8645 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8646 	return 0;
8647 }
8648 
8649 /**
8650  *	dev_set_promiscuity	- update promiscuity count on a device
8651  *	@dev: device
8652  *	@inc: modifier
8653  *
8654  *	Add or remove promiscuity from a device. While the count in the device
8655  *	remains above zero the interface remains promiscuous. Once it hits zero
8656  *	the device reverts back to normal filtering operation. A negative inc
8657  *	value is used to drop promiscuity on the device.
8658  *	Return 0 if successful or a negative errno code on error.
8659  */
8660 int dev_set_promiscuity(struct net_device *dev, int inc)
8661 {
8662 	unsigned int old_flags = dev->flags;
8663 	int err;
8664 
8665 	err = __dev_set_promiscuity(dev, inc, true);
8666 	if (err < 0)
8667 		return err;
8668 	if (dev->flags != old_flags)
8669 		dev_set_rx_mode(dev);
8670 	return err;
8671 }
8672 EXPORT_SYMBOL(dev_set_promiscuity);
8673 
8674 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8675 {
8676 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8677 	unsigned int allmulti, flags;
8678 
8679 	ASSERT_RTNL();
8680 
8681 	allmulti = dev->allmulti + inc;
8682 	if (allmulti == 0) {
8683 		/*
8684 		 * Avoid overflow.
8685 		 * If inc causes overflow, untouch allmulti and return error.
8686 		 */
8687 		if (unlikely(inc > 0)) {
8688 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8689 			return -EOVERFLOW;
8690 		}
8691 		flags = old_flags & ~IFF_ALLMULTI;
8692 	} else {
8693 		flags = old_flags | IFF_ALLMULTI;
8694 	}
8695 	WRITE_ONCE(dev->allmulti, allmulti);
8696 	if (flags != old_flags) {
8697 		WRITE_ONCE(dev->flags, flags);
8698 		netdev_info(dev, "%s allmulticast mode\n",
8699 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8700 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8701 		dev_set_rx_mode(dev);
8702 		if (notify)
8703 			__dev_notify_flags(dev, old_flags,
8704 					   dev->gflags ^ old_gflags, 0, NULL);
8705 	}
8706 	return 0;
8707 }
8708 
8709 /**
8710  *	dev_set_allmulti	- update allmulti count on a device
8711  *	@dev: device
8712  *	@inc: modifier
8713  *
8714  *	Add or remove reception of all multicast frames to a device. While the
8715  *	count in the device remains above zero the interface remains listening
8716  *	to all interfaces. Once it hits zero the device reverts back to normal
8717  *	filtering operation. A negative @inc value is used to drop the counter
8718  *	when releasing a resource needing all multicasts.
8719  *	Return 0 if successful or a negative errno code on error.
8720  */
8721 
8722 int dev_set_allmulti(struct net_device *dev, int inc)
8723 {
8724 	return __dev_set_allmulti(dev, inc, true);
8725 }
8726 EXPORT_SYMBOL(dev_set_allmulti);
8727 
8728 /*
8729  *	Upload unicast and multicast address lists to device and
8730  *	configure RX filtering. When the device doesn't support unicast
8731  *	filtering it is put in promiscuous mode while unicast addresses
8732  *	are present.
8733  */
8734 void __dev_set_rx_mode(struct net_device *dev)
8735 {
8736 	const struct net_device_ops *ops = dev->netdev_ops;
8737 
8738 	/* dev_open will call this function so the list will stay sane. */
8739 	if (!(dev->flags&IFF_UP))
8740 		return;
8741 
8742 	if (!netif_device_present(dev))
8743 		return;
8744 
8745 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8746 		/* Unicast addresses changes may only happen under the rtnl,
8747 		 * therefore calling __dev_set_promiscuity here is safe.
8748 		 */
8749 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8750 			__dev_set_promiscuity(dev, 1, false);
8751 			dev->uc_promisc = true;
8752 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8753 			__dev_set_promiscuity(dev, -1, false);
8754 			dev->uc_promisc = false;
8755 		}
8756 	}
8757 
8758 	if (ops->ndo_set_rx_mode)
8759 		ops->ndo_set_rx_mode(dev);
8760 }
8761 
8762 void dev_set_rx_mode(struct net_device *dev)
8763 {
8764 	netif_addr_lock_bh(dev);
8765 	__dev_set_rx_mode(dev);
8766 	netif_addr_unlock_bh(dev);
8767 }
8768 
8769 /**
8770  *	dev_get_flags - get flags reported to userspace
8771  *	@dev: device
8772  *
8773  *	Get the combination of flag bits exported through APIs to userspace.
8774  */
8775 unsigned int dev_get_flags(const struct net_device *dev)
8776 {
8777 	unsigned int flags;
8778 
8779 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8780 				IFF_ALLMULTI |
8781 				IFF_RUNNING |
8782 				IFF_LOWER_UP |
8783 				IFF_DORMANT)) |
8784 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8785 				IFF_ALLMULTI));
8786 
8787 	if (netif_running(dev)) {
8788 		if (netif_oper_up(dev))
8789 			flags |= IFF_RUNNING;
8790 		if (netif_carrier_ok(dev))
8791 			flags |= IFF_LOWER_UP;
8792 		if (netif_dormant(dev))
8793 			flags |= IFF_DORMANT;
8794 	}
8795 
8796 	return flags;
8797 }
8798 EXPORT_SYMBOL(dev_get_flags);
8799 
8800 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8801 		       struct netlink_ext_ack *extack)
8802 {
8803 	unsigned int old_flags = dev->flags;
8804 	int ret;
8805 
8806 	ASSERT_RTNL();
8807 
8808 	/*
8809 	 *	Set the flags on our device.
8810 	 */
8811 
8812 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8813 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8814 			       IFF_AUTOMEDIA)) |
8815 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8816 				    IFF_ALLMULTI));
8817 
8818 	/*
8819 	 *	Load in the correct multicast list now the flags have changed.
8820 	 */
8821 
8822 	if ((old_flags ^ flags) & IFF_MULTICAST)
8823 		dev_change_rx_flags(dev, IFF_MULTICAST);
8824 
8825 	dev_set_rx_mode(dev);
8826 
8827 	/*
8828 	 *	Have we downed the interface. We handle IFF_UP ourselves
8829 	 *	according to user attempts to set it, rather than blindly
8830 	 *	setting it.
8831 	 */
8832 
8833 	ret = 0;
8834 	if ((old_flags ^ flags) & IFF_UP) {
8835 		if (old_flags & IFF_UP)
8836 			__dev_close(dev);
8837 		else
8838 			ret = __dev_open(dev, extack);
8839 	}
8840 
8841 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8842 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8843 		unsigned int old_flags = dev->flags;
8844 
8845 		dev->gflags ^= IFF_PROMISC;
8846 
8847 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8848 			if (dev->flags != old_flags)
8849 				dev_set_rx_mode(dev);
8850 	}
8851 
8852 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8853 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8854 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8855 	 */
8856 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8857 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8858 
8859 		dev->gflags ^= IFF_ALLMULTI;
8860 		__dev_set_allmulti(dev, inc, false);
8861 	}
8862 
8863 	return ret;
8864 }
8865 
8866 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8867 			unsigned int gchanges, u32 portid,
8868 			const struct nlmsghdr *nlh)
8869 {
8870 	unsigned int changes = dev->flags ^ old_flags;
8871 
8872 	if (gchanges)
8873 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8874 
8875 	if (changes & IFF_UP) {
8876 		if (dev->flags & IFF_UP)
8877 			call_netdevice_notifiers(NETDEV_UP, dev);
8878 		else
8879 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8880 	}
8881 
8882 	if (dev->flags & IFF_UP &&
8883 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8884 		struct netdev_notifier_change_info change_info = {
8885 			.info = {
8886 				.dev = dev,
8887 			},
8888 			.flags_changed = changes,
8889 		};
8890 
8891 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8892 	}
8893 }
8894 
8895 /**
8896  *	dev_change_flags - change device settings
8897  *	@dev: device
8898  *	@flags: device state flags
8899  *	@extack: netlink extended ack
8900  *
8901  *	Change settings on device based state flags. The flags are
8902  *	in the userspace exported format.
8903  */
8904 int dev_change_flags(struct net_device *dev, unsigned int flags,
8905 		     struct netlink_ext_ack *extack)
8906 {
8907 	int ret;
8908 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8909 
8910 	ret = __dev_change_flags(dev, flags, extack);
8911 	if (ret < 0)
8912 		return ret;
8913 
8914 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8915 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8916 	return ret;
8917 }
8918 EXPORT_SYMBOL(dev_change_flags);
8919 
8920 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8921 {
8922 	const struct net_device_ops *ops = dev->netdev_ops;
8923 
8924 	if (ops->ndo_change_mtu)
8925 		return ops->ndo_change_mtu(dev, new_mtu);
8926 
8927 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8928 	WRITE_ONCE(dev->mtu, new_mtu);
8929 	return 0;
8930 }
8931 EXPORT_SYMBOL(__dev_set_mtu);
8932 
8933 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8934 		     struct netlink_ext_ack *extack)
8935 {
8936 	/* MTU must be positive, and in range */
8937 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8938 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8939 		return -EINVAL;
8940 	}
8941 
8942 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8943 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8944 		return -EINVAL;
8945 	}
8946 	return 0;
8947 }
8948 
8949 /**
8950  *	dev_set_mtu_ext - Change maximum transfer unit
8951  *	@dev: device
8952  *	@new_mtu: new transfer unit
8953  *	@extack: netlink extended ack
8954  *
8955  *	Change the maximum transfer size of the network device.
8956  */
8957 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8958 		    struct netlink_ext_ack *extack)
8959 {
8960 	int err, orig_mtu;
8961 
8962 	if (new_mtu == dev->mtu)
8963 		return 0;
8964 
8965 	err = dev_validate_mtu(dev, new_mtu, extack);
8966 	if (err)
8967 		return err;
8968 
8969 	if (!netif_device_present(dev))
8970 		return -ENODEV;
8971 
8972 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8973 	err = notifier_to_errno(err);
8974 	if (err)
8975 		return err;
8976 
8977 	orig_mtu = dev->mtu;
8978 	err = __dev_set_mtu(dev, new_mtu);
8979 
8980 	if (!err) {
8981 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8982 						   orig_mtu);
8983 		err = notifier_to_errno(err);
8984 		if (err) {
8985 			/* setting mtu back and notifying everyone again,
8986 			 * so that they have a chance to revert changes.
8987 			 */
8988 			__dev_set_mtu(dev, orig_mtu);
8989 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8990 						     new_mtu);
8991 		}
8992 	}
8993 	return err;
8994 }
8995 
8996 int dev_set_mtu(struct net_device *dev, int new_mtu)
8997 {
8998 	struct netlink_ext_ack extack;
8999 	int err;
9000 
9001 	memset(&extack, 0, sizeof(extack));
9002 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
9003 	if (err && extack._msg)
9004 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9005 	return err;
9006 }
9007 EXPORT_SYMBOL(dev_set_mtu);
9008 
9009 /**
9010  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9011  *	@dev: device
9012  *	@new_len: new tx queue length
9013  */
9014 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9015 {
9016 	unsigned int orig_len = dev->tx_queue_len;
9017 	int res;
9018 
9019 	if (new_len != (unsigned int)new_len)
9020 		return -ERANGE;
9021 
9022 	if (new_len != orig_len) {
9023 		WRITE_ONCE(dev->tx_queue_len, new_len);
9024 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9025 		res = notifier_to_errno(res);
9026 		if (res)
9027 			goto err_rollback;
9028 		res = dev_qdisc_change_tx_queue_len(dev);
9029 		if (res)
9030 			goto err_rollback;
9031 	}
9032 
9033 	return 0;
9034 
9035 err_rollback:
9036 	netdev_err(dev, "refused to change device tx_queue_len\n");
9037 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9038 	return res;
9039 }
9040 
9041 /**
9042  *	dev_set_group - Change group this device belongs to
9043  *	@dev: device
9044  *	@new_group: group this device should belong to
9045  */
9046 void dev_set_group(struct net_device *dev, int new_group)
9047 {
9048 	dev->group = new_group;
9049 }
9050 
9051 /**
9052  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9053  *	@dev: device
9054  *	@addr: new address
9055  *	@extack: netlink extended ack
9056  */
9057 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9058 			      struct netlink_ext_ack *extack)
9059 {
9060 	struct netdev_notifier_pre_changeaddr_info info = {
9061 		.info.dev = dev,
9062 		.info.extack = extack,
9063 		.dev_addr = addr,
9064 	};
9065 	int rc;
9066 
9067 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9068 	return notifier_to_errno(rc);
9069 }
9070 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9071 
9072 /**
9073  *	dev_set_mac_address - Change Media Access Control Address
9074  *	@dev: device
9075  *	@sa: new address
9076  *	@extack: netlink extended ack
9077  *
9078  *	Change the hardware (MAC) address of the device
9079  */
9080 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9081 			struct netlink_ext_ack *extack)
9082 {
9083 	const struct net_device_ops *ops = dev->netdev_ops;
9084 	int err;
9085 
9086 	if (!ops->ndo_set_mac_address)
9087 		return -EOPNOTSUPP;
9088 	if (sa->sa_family != dev->type)
9089 		return -EINVAL;
9090 	if (!netif_device_present(dev))
9091 		return -ENODEV;
9092 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9093 	if (err)
9094 		return err;
9095 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9096 		err = ops->ndo_set_mac_address(dev, sa);
9097 		if (err)
9098 			return err;
9099 	}
9100 	dev->addr_assign_type = NET_ADDR_SET;
9101 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9102 	add_device_randomness(dev->dev_addr, dev->addr_len);
9103 	return 0;
9104 }
9105 EXPORT_SYMBOL(dev_set_mac_address);
9106 
9107 DECLARE_RWSEM(dev_addr_sem);
9108 
9109 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9110 			     struct netlink_ext_ack *extack)
9111 {
9112 	int ret;
9113 
9114 	down_write(&dev_addr_sem);
9115 	ret = dev_set_mac_address(dev, sa, extack);
9116 	up_write(&dev_addr_sem);
9117 	return ret;
9118 }
9119 EXPORT_SYMBOL(dev_set_mac_address_user);
9120 
9121 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9122 {
9123 	size_t size = sizeof(sa->sa_data_min);
9124 	struct net_device *dev;
9125 	int ret = 0;
9126 
9127 	down_read(&dev_addr_sem);
9128 	rcu_read_lock();
9129 
9130 	dev = dev_get_by_name_rcu(net, dev_name);
9131 	if (!dev) {
9132 		ret = -ENODEV;
9133 		goto unlock;
9134 	}
9135 	if (!dev->addr_len)
9136 		memset(sa->sa_data, 0, size);
9137 	else
9138 		memcpy(sa->sa_data, dev->dev_addr,
9139 		       min_t(size_t, size, dev->addr_len));
9140 	sa->sa_family = dev->type;
9141 
9142 unlock:
9143 	rcu_read_unlock();
9144 	up_read(&dev_addr_sem);
9145 	return ret;
9146 }
9147 EXPORT_SYMBOL(dev_get_mac_address);
9148 
9149 /**
9150  *	dev_change_carrier - Change device carrier
9151  *	@dev: device
9152  *	@new_carrier: new value
9153  *
9154  *	Change device carrier
9155  */
9156 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9157 {
9158 	const struct net_device_ops *ops = dev->netdev_ops;
9159 
9160 	if (!ops->ndo_change_carrier)
9161 		return -EOPNOTSUPP;
9162 	if (!netif_device_present(dev))
9163 		return -ENODEV;
9164 	return ops->ndo_change_carrier(dev, new_carrier);
9165 }
9166 
9167 /**
9168  *	dev_get_phys_port_id - Get device physical port ID
9169  *	@dev: device
9170  *	@ppid: port ID
9171  *
9172  *	Get device physical port ID
9173  */
9174 int dev_get_phys_port_id(struct net_device *dev,
9175 			 struct netdev_phys_item_id *ppid)
9176 {
9177 	const struct net_device_ops *ops = dev->netdev_ops;
9178 
9179 	if (!ops->ndo_get_phys_port_id)
9180 		return -EOPNOTSUPP;
9181 	return ops->ndo_get_phys_port_id(dev, ppid);
9182 }
9183 
9184 /**
9185  *	dev_get_phys_port_name - Get device physical port name
9186  *	@dev: device
9187  *	@name: port name
9188  *	@len: limit of bytes to copy to name
9189  *
9190  *	Get device physical port name
9191  */
9192 int dev_get_phys_port_name(struct net_device *dev,
9193 			   char *name, size_t len)
9194 {
9195 	const struct net_device_ops *ops = dev->netdev_ops;
9196 	int err;
9197 
9198 	if (ops->ndo_get_phys_port_name) {
9199 		err = ops->ndo_get_phys_port_name(dev, name, len);
9200 		if (err != -EOPNOTSUPP)
9201 			return err;
9202 	}
9203 	return devlink_compat_phys_port_name_get(dev, name, len);
9204 }
9205 
9206 /**
9207  *	dev_get_port_parent_id - Get the device's port parent identifier
9208  *	@dev: network device
9209  *	@ppid: pointer to a storage for the port's parent identifier
9210  *	@recurse: allow/disallow recursion to lower devices
9211  *
9212  *	Get the devices's port parent identifier
9213  */
9214 int dev_get_port_parent_id(struct net_device *dev,
9215 			   struct netdev_phys_item_id *ppid,
9216 			   bool recurse)
9217 {
9218 	const struct net_device_ops *ops = dev->netdev_ops;
9219 	struct netdev_phys_item_id first = { };
9220 	struct net_device *lower_dev;
9221 	struct list_head *iter;
9222 	int err;
9223 
9224 	if (ops->ndo_get_port_parent_id) {
9225 		err = ops->ndo_get_port_parent_id(dev, ppid);
9226 		if (err != -EOPNOTSUPP)
9227 			return err;
9228 	}
9229 
9230 	err = devlink_compat_switch_id_get(dev, ppid);
9231 	if (!recurse || err != -EOPNOTSUPP)
9232 		return err;
9233 
9234 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9235 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9236 		if (err)
9237 			break;
9238 		if (!first.id_len)
9239 			first = *ppid;
9240 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9241 			return -EOPNOTSUPP;
9242 	}
9243 
9244 	return err;
9245 }
9246 EXPORT_SYMBOL(dev_get_port_parent_id);
9247 
9248 /**
9249  *	netdev_port_same_parent_id - Indicate if two network devices have
9250  *	the same port parent identifier
9251  *	@a: first network device
9252  *	@b: second network device
9253  */
9254 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9255 {
9256 	struct netdev_phys_item_id a_id = { };
9257 	struct netdev_phys_item_id b_id = { };
9258 
9259 	if (dev_get_port_parent_id(a, &a_id, true) ||
9260 	    dev_get_port_parent_id(b, &b_id, true))
9261 		return false;
9262 
9263 	return netdev_phys_item_id_same(&a_id, &b_id);
9264 }
9265 EXPORT_SYMBOL(netdev_port_same_parent_id);
9266 
9267 /**
9268  *	dev_change_proto_down - set carrier according to proto_down.
9269  *
9270  *	@dev: device
9271  *	@proto_down: new value
9272  */
9273 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9274 {
9275 	if (!dev->change_proto_down)
9276 		return -EOPNOTSUPP;
9277 	if (!netif_device_present(dev))
9278 		return -ENODEV;
9279 	if (proto_down)
9280 		netif_carrier_off(dev);
9281 	else
9282 		netif_carrier_on(dev);
9283 	WRITE_ONCE(dev->proto_down, proto_down);
9284 	return 0;
9285 }
9286 
9287 /**
9288  *	dev_change_proto_down_reason - proto down reason
9289  *
9290  *	@dev: device
9291  *	@mask: proto down mask
9292  *	@value: proto down value
9293  */
9294 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9295 				  u32 value)
9296 {
9297 	u32 proto_down_reason;
9298 	int b;
9299 
9300 	if (!mask) {
9301 		proto_down_reason = value;
9302 	} else {
9303 		proto_down_reason = dev->proto_down_reason;
9304 		for_each_set_bit(b, &mask, 32) {
9305 			if (value & (1 << b))
9306 				proto_down_reason |= BIT(b);
9307 			else
9308 				proto_down_reason &= ~BIT(b);
9309 		}
9310 	}
9311 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9312 }
9313 
9314 struct bpf_xdp_link {
9315 	struct bpf_link link;
9316 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9317 	int flags;
9318 };
9319 
9320 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9321 {
9322 	if (flags & XDP_FLAGS_HW_MODE)
9323 		return XDP_MODE_HW;
9324 	if (flags & XDP_FLAGS_DRV_MODE)
9325 		return XDP_MODE_DRV;
9326 	if (flags & XDP_FLAGS_SKB_MODE)
9327 		return XDP_MODE_SKB;
9328 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9329 }
9330 
9331 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9332 {
9333 	switch (mode) {
9334 	case XDP_MODE_SKB:
9335 		return generic_xdp_install;
9336 	case XDP_MODE_DRV:
9337 	case XDP_MODE_HW:
9338 		return dev->netdev_ops->ndo_bpf;
9339 	default:
9340 		return NULL;
9341 	}
9342 }
9343 
9344 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9345 					 enum bpf_xdp_mode mode)
9346 {
9347 	return dev->xdp_state[mode].link;
9348 }
9349 
9350 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9351 				     enum bpf_xdp_mode mode)
9352 {
9353 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9354 
9355 	if (link)
9356 		return link->link.prog;
9357 	return dev->xdp_state[mode].prog;
9358 }
9359 
9360 u8 dev_xdp_prog_count(struct net_device *dev)
9361 {
9362 	u8 count = 0;
9363 	int i;
9364 
9365 	for (i = 0; i < __MAX_XDP_MODE; i++)
9366 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9367 			count++;
9368 	return count;
9369 }
9370 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9371 
9372 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9373 {
9374 	if (!dev->netdev_ops->ndo_bpf)
9375 		return -EOPNOTSUPP;
9376 
9377 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9378 }
9379 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9380 
9381 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9382 {
9383 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9384 
9385 	return prog ? prog->aux->id : 0;
9386 }
9387 
9388 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9389 			     struct bpf_xdp_link *link)
9390 {
9391 	dev->xdp_state[mode].link = link;
9392 	dev->xdp_state[mode].prog = NULL;
9393 }
9394 
9395 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9396 			     struct bpf_prog *prog)
9397 {
9398 	dev->xdp_state[mode].link = NULL;
9399 	dev->xdp_state[mode].prog = prog;
9400 }
9401 
9402 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9403 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9404 			   u32 flags, struct bpf_prog *prog)
9405 {
9406 	struct netdev_bpf xdp;
9407 	int err;
9408 
9409 	memset(&xdp, 0, sizeof(xdp));
9410 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9411 	xdp.extack = extack;
9412 	xdp.flags = flags;
9413 	xdp.prog = prog;
9414 
9415 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9416 	 * "moved" into driver), so they don't increment it on their own, but
9417 	 * they do decrement refcnt when program is detached or replaced.
9418 	 * Given net_device also owns link/prog, we need to bump refcnt here
9419 	 * to prevent drivers from underflowing it.
9420 	 */
9421 	if (prog)
9422 		bpf_prog_inc(prog);
9423 	err = bpf_op(dev, &xdp);
9424 	if (err) {
9425 		if (prog)
9426 			bpf_prog_put(prog);
9427 		return err;
9428 	}
9429 
9430 	if (mode != XDP_MODE_HW)
9431 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9432 
9433 	return 0;
9434 }
9435 
9436 static void dev_xdp_uninstall(struct net_device *dev)
9437 {
9438 	struct bpf_xdp_link *link;
9439 	struct bpf_prog *prog;
9440 	enum bpf_xdp_mode mode;
9441 	bpf_op_t bpf_op;
9442 
9443 	ASSERT_RTNL();
9444 
9445 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9446 		prog = dev_xdp_prog(dev, mode);
9447 		if (!prog)
9448 			continue;
9449 
9450 		bpf_op = dev_xdp_bpf_op(dev, mode);
9451 		if (!bpf_op)
9452 			continue;
9453 
9454 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9455 
9456 		/* auto-detach link from net device */
9457 		link = dev_xdp_link(dev, mode);
9458 		if (link)
9459 			link->dev = NULL;
9460 		else
9461 			bpf_prog_put(prog);
9462 
9463 		dev_xdp_set_link(dev, mode, NULL);
9464 	}
9465 }
9466 
9467 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9468 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9469 			  struct bpf_prog *old_prog, u32 flags)
9470 {
9471 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9472 	struct bpf_prog *cur_prog;
9473 	struct net_device *upper;
9474 	struct list_head *iter;
9475 	enum bpf_xdp_mode mode;
9476 	bpf_op_t bpf_op;
9477 	int err;
9478 
9479 	ASSERT_RTNL();
9480 
9481 	/* either link or prog attachment, never both */
9482 	if (link && (new_prog || old_prog))
9483 		return -EINVAL;
9484 	/* link supports only XDP mode flags */
9485 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9486 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9487 		return -EINVAL;
9488 	}
9489 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9490 	if (num_modes > 1) {
9491 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9492 		return -EINVAL;
9493 	}
9494 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9495 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9496 		NL_SET_ERR_MSG(extack,
9497 			       "More than one program loaded, unset mode is ambiguous");
9498 		return -EINVAL;
9499 	}
9500 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9501 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9502 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9503 		return -EINVAL;
9504 	}
9505 
9506 	mode = dev_xdp_mode(dev, flags);
9507 	/* can't replace attached link */
9508 	if (dev_xdp_link(dev, mode)) {
9509 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9510 		return -EBUSY;
9511 	}
9512 
9513 	/* don't allow if an upper device already has a program */
9514 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9515 		if (dev_xdp_prog_count(upper) > 0) {
9516 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9517 			return -EEXIST;
9518 		}
9519 	}
9520 
9521 	cur_prog = dev_xdp_prog(dev, mode);
9522 	/* can't replace attached prog with link */
9523 	if (link && cur_prog) {
9524 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9525 		return -EBUSY;
9526 	}
9527 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9528 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9529 		return -EEXIST;
9530 	}
9531 
9532 	/* put effective new program into new_prog */
9533 	if (link)
9534 		new_prog = link->link.prog;
9535 
9536 	if (new_prog) {
9537 		bool offload = mode == XDP_MODE_HW;
9538 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9539 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9540 
9541 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9542 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9543 			return -EBUSY;
9544 		}
9545 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9546 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9547 			return -EEXIST;
9548 		}
9549 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9550 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9551 			return -EINVAL;
9552 		}
9553 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9554 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9555 			return -EINVAL;
9556 		}
9557 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9558 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9559 			return -EINVAL;
9560 		}
9561 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9562 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9563 			return -EINVAL;
9564 		}
9565 	}
9566 
9567 	/* don't call drivers if the effective program didn't change */
9568 	if (new_prog != cur_prog) {
9569 		bpf_op = dev_xdp_bpf_op(dev, mode);
9570 		if (!bpf_op) {
9571 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9572 			return -EOPNOTSUPP;
9573 		}
9574 
9575 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9576 		if (err)
9577 			return err;
9578 	}
9579 
9580 	if (link)
9581 		dev_xdp_set_link(dev, mode, link);
9582 	else
9583 		dev_xdp_set_prog(dev, mode, new_prog);
9584 	if (cur_prog)
9585 		bpf_prog_put(cur_prog);
9586 
9587 	return 0;
9588 }
9589 
9590 static int dev_xdp_attach_link(struct net_device *dev,
9591 			       struct netlink_ext_ack *extack,
9592 			       struct bpf_xdp_link *link)
9593 {
9594 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9595 }
9596 
9597 static int dev_xdp_detach_link(struct net_device *dev,
9598 			       struct netlink_ext_ack *extack,
9599 			       struct bpf_xdp_link *link)
9600 {
9601 	enum bpf_xdp_mode mode;
9602 	bpf_op_t bpf_op;
9603 
9604 	ASSERT_RTNL();
9605 
9606 	mode = dev_xdp_mode(dev, link->flags);
9607 	if (dev_xdp_link(dev, mode) != link)
9608 		return -EINVAL;
9609 
9610 	bpf_op = dev_xdp_bpf_op(dev, mode);
9611 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9612 	dev_xdp_set_link(dev, mode, NULL);
9613 	return 0;
9614 }
9615 
9616 static void bpf_xdp_link_release(struct bpf_link *link)
9617 {
9618 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9619 
9620 	rtnl_lock();
9621 
9622 	/* if racing with net_device's tear down, xdp_link->dev might be
9623 	 * already NULL, in which case link was already auto-detached
9624 	 */
9625 	if (xdp_link->dev) {
9626 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9627 		xdp_link->dev = NULL;
9628 	}
9629 
9630 	rtnl_unlock();
9631 }
9632 
9633 static int bpf_xdp_link_detach(struct bpf_link *link)
9634 {
9635 	bpf_xdp_link_release(link);
9636 	return 0;
9637 }
9638 
9639 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9640 {
9641 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9642 
9643 	kfree(xdp_link);
9644 }
9645 
9646 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9647 				     struct seq_file *seq)
9648 {
9649 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9650 	u32 ifindex = 0;
9651 
9652 	rtnl_lock();
9653 	if (xdp_link->dev)
9654 		ifindex = xdp_link->dev->ifindex;
9655 	rtnl_unlock();
9656 
9657 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9658 }
9659 
9660 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9661 				       struct bpf_link_info *info)
9662 {
9663 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9664 	u32 ifindex = 0;
9665 
9666 	rtnl_lock();
9667 	if (xdp_link->dev)
9668 		ifindex = xdp_link->dev->ifindex;
9669 	rtnl_unlock();
9670 
9671 	info->xdp.ifindex = ifindex;
9672 	return 0;
9673 }
9674 
9675 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9676 			       struct bpf_prog *old_prog)
9677 {
9678 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9679 	enum bpf_xdp_mode mode;
9680 	bpf_op_t bpf_op;
9681 	int err = 0;
9682 
9683 	rtnl_lock();
9684 
9685 	/* link might have been auto-released already, so fail */
9686 	if (!xdp_link->dev) {
9687 		err = -ENOLINK;
9688 		goto out_unlock;
9689 	}
9690 
9691 	if (old_prog && link->prog != old_prog) {
9692 		err = -EPERM;
9693 		goto out_unlock;
9694 	}
9695 	old_prog = link->prog;
9696 	if (old_prog->type != new_prog->type ||
9697 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9698 		err = -EINVAL;
9699 		goto out_unlock;
9700 	}
9701 
9702 	if (old_prog == new_prog) {
9703 		/* no-op, don't disturb drivers */
9704 		bpf_prog_put(new_prog);
9705 		goto out_unlock;
9706 	}
9707 
9708 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9709 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9710 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9711 			      xdp_link->flags, new_prog);
9712 	if (err)
9713 		goto out_unlock;
9714 
9715 	old_prog = xchg(&link->prog, new_prog);
9716 	bpf_prog_put(old_prog);
9717 
9718 out_unlock:
9719 	rtnl_unlock();
9720 	return err;
9721 }
9722 
9723 static const struct bpf_link_ops bpf_xdp_link_lops = {
9724 	.release = bpf_xdp_link_release,
9725 	.dealloc = bpf_xdp_link_dealloc,
9726 	.detach = bpf_xdp_link_detach,
9727 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9728 	.fill_link_info = bpf_xdp_link_fill_link_info,
9729 	.update_prog = bpf_xdp_link_update,
9730 };
9731 
9732 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9733 {
9734 	struct net *net = current->nsproxy->net_ns;
9735 	struct bpf_link_primer link_primer;
9736 	struct netlink_ext_ack extack = {};
9737 	struct bpf_xdp_link *link;
9738 	struct net_device *dev;
9739 	int err, fd;
9740 
9741 	rtnl_lock();
9742 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9743 	if (!dev) {
9744 		rtnl_unlock();
9745 		return -EINVAL;
9746 	}
9747 
9748 	link = kzalloc(sizeof(*link), GFP_USER);
9749 	if (!link) {
9750 		err = -ENOMEM;
9751 		goto unlock;
9752 	}
9753 
9754 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9755 	link->dev = dev;
9756 	link->flags = attr->link_create.flags;
9757 
9758 	err = bpf_link_prime(&link->link, &link_primer);
9759 	if (err) {
9760 		kfree(link);
9761 		goto unlock;
9762 	}
9763 
9764 	err = dev_xdp_attach_link(dev, &extack, link);
9765 	rtnl_unlock();
9766 
9767 	if (err) {
9768 		link->dev = NULL;
9769 		bpf_link_cleanup(&link_primer);
9770 		trace_bpf_xdp_link_attach_failed(extack._msg);
9771 		goto out_put_dev;
9772 	}
9773 
9774 	fd = bpf_link_settle(&link_primer);
9775 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9776 	dev_put(dev);
9777 	return fd;
9778 
9779 unlock:
9780 	rtnl_unlock();
9781 
9782 out_put_dev:
9783 	dev_put(dev);
9784 	return err;
9785 }
9786 
9787 /**
9788  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9789  *	@dev: device
9790  *	@extack: netlink extended ack
9791  *	@fd: new program fd or negative value to clear
9792  *	@expected_fd: old program fd that userspace expects to replace or clear
9793  *	@flags: xdp-related flags
9794  *
9795  *	Set or clear a bpf program for a device
9796  */
9797 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9798 		      int fd, int expected_fd, u32 flags)
9799 {
9800 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9801 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9802 	int err;
9803 
9804 	ASSERT_RTNL();
9805 
9806 	if (fd >= 0) {
9807 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9808 						 mode != XDP_MODE_SKB);
9809 		if (IS_ERR(new_prog))
9810 			return PTR_ERR(new_prog);
9811 	}
9812 
9813 	if (expected_fd >= 0) {
9814 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9815 						 mode != XDP_MODE_SKB);
9816 		if (IS_ERR(old_prog)) {
9817 			err = PTR_ERR(old_prog);
9818 			old_prog = NULL;
9819 			goto err_out;
9820 		}
9821 	}
9822 
9823 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9824 
9825 err_out:
9826 	if (err && new_prog)
9827 		bpf_prog_put(new_prog);
9828 	if (old_prog)
9829 		bpf_prog_put(old_prog);
9830 	return err;
9831 }
9832 
9833 /**
9834  * dev_index_reserve() - allocate an ifindex in a namespace
9835  * @net: the applicable net namespace
9836  * @ifindex: requested ifindex, pass %0 to get one allocated
9837  *
9838  * Allocate a ifindex for a new device. Caller must either use the ifindex
9839  * to store the device (via list_netdevice()) or call dev_index_release()
9840  * to give the index up.
9841  *
9842  * Return: a suitable unique value for a new device interface number or -errno.
9843  */
9844 static int dev_index_reserve(struct net *net, u32 ifindex)
9845 {
9846 	int err;
9847 
9848 	if (ifindex > INT_MAX) {
9849 		DEBUG_NET_WARN_ON_ONCE(1);
9850 		return -EINVAL;
9851 	}
9852 
9853 	if (!ifindex)
9854 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9855 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9856 	else
9857 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9858 	if (err < 0)
9859 		return err;
9860 
9861 	return ifindex;
9862 }
9863 
9864 static void dev_index_release(struct net *net, int ifindex)
9865 {
9866 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9867 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9868 }
9869 
9870 /* Delayed registration/unregisteration */
9871 LIST_HEAD(net_todo_list);
9872 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9873 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9874 
9875 static void net_set_todo(struct net_device *dev)
9876 {
9877 	list_add_tail(&dev->todo_list, &net_todo_list);
9878 }
9879 
9880 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9881 	struct net_device *upper, netdev_features_t features)
9882 {
9883 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9884 	netdev_features_t feature;
9885 	int feature_bit;
9886 
9887 	for_each_netdev_feature(upper_disables, feature_bit) {
9888 		feature = __NETIF_F_BIT(feature_bit);
9889 		if (!(upper->wanted_features & feature)
9890 		    && (features & feature)) {
9891 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9892 				   &feature, upper->name);
9893 			features &= ~feature;
9894 		}
9895 	}
9896 
9897 	return features;
9898 }
9899 
9900 static void netdev_sync_lower_features(struct net_device *upper,
9901 	struct net_device *lower, netdev_features_t features)
9902 {
9903 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9904 	netdev_features_t feature;
9905 	int feature_bit;
9906 
9907 	for_each_netdev_feature(upper_disables, feature_bit) {
9908 		feature = __NETIF_F_BIT(feature_bit);
9909 		if (!(features & feature) && (lower->features & feature)) {
9910 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9911 				   &feature, lower->name);
9912 			lower->wanted_features &= ~feature;
9913 			__netdev_update_features(lower);
9914 
9915 			if (unlikely(lower->features & feature))
9916 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9917 					    &feature, lower->name);
9918 			else
9919 				netdev_features_change(lower);
9920 		}
9921 	}
9922 }
9923 
9924 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
9925 {
9926 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
9927 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
9928 	bool hw_csum = features & NETIF_F_HW_CSUM;
9929 
9930 	return ip_csum || hw_csum;
9931 }
9932 
9933 static netdev_features_t netdev_fix_features(struct net_device *dev,
9934 	netdev_features_t features)
9935 {
9936 	/* Fix illegal checksum combinations */
9937 	if ((features & NETIF_F_HW_CSUM) &&
9938 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9939 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9940 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9941 	}
9942 
9943 	/* TSO requires that SG is present as well. */
9944 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9945 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9946 		features &= ~NETIF_F_ALL_TSO;
9947 	}
9948 
9949 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9950 					!(features & NETIF_F_IP_CSUM)) {
9951 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9952 		features &= ~NETIF_F_TSO;
9953 		features &= ~NETIF_F_TSO_ECN;
9954 	}
9955 
9956 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9957 					 !(features & NETIF_F_IPV6_CSUM)) {
9958 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9959 		features &= ~NETIF_F_TSO6;
9960 	}
9961 
9962 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9963 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9964 		features &= ~NETIF_F_TSO_MANGLEID;
9965 
9966 	/* TSO ECN requires that TSO is present as well. */
9967 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9968 		features &= ~NETIF_F_TSO_ECN;
9969 
9970 	/* Software GSO depends on SG. */
9971 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9972 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9973 		features &= ~NETIF_F_GSO;
9974 	}
9975 
9976 	/* GSO partial features require GSO partial be set */
9977 	if ((features & dev->gso_partial_features) &&
9978 	    !(features & NETIF_F_GSO_PARTIAL)) {
9979 		netdev_dbg(dev,
9980 			   "Dropping partially supported GSO features since no GSO partial.\n");
9981 		features &= ~dev->gso_partial_features;
9982 	}
9983 
9984 	if (!(features & NETIF_F_RXCSUM)) {
9985 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9986 		 * successfully merged by hardware must also have the
9987 		 * checksum verified by hardware.  If the user does not
9988 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9989 		 */
9990 		if (features & NETIF_F_GRO_HW) {
9991 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9992 			features &= ~NETIF_F_GRO_HW;
9993 		}
9994 	}
9995 
9996 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9997 	if (features & NETIF_F_RXFCS) {
9998 		if (features & NETIF_F_LRO) {
9999 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10000 			features &= ~NETIF_F_LRO;
10001 		}
10002 
10003 		if (features & NETIF_F_GRO_HW) {
10004 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10005 			features &= ~NETIF_F_GRO_HW;
10006 		}
10007 	}
10008 
10009 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10010 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10011 		features &= ~NETIF_F_LRO;
10012 	}
10013 
10014 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10015 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10016 		features &= ~NETIF_F_HW_TLS_TX;
10017 	}
10018 
10019 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10020 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10021 		features &= ~NETIF_F_HW_TLS_RX;
10022 	}
10023 
10024 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10025 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10026 		features &= ~NETIF_F_GSO_UDP_L4;
10027 	}
10028 
10029 	return features;
10030 }
10031 
10032 int __netdev_update_features(struct net_device *dev)
10033 {
10034 	struct net_device *upper, *lower;
10035 	netdev_features_t features;
10036 	struct list_head *iter;
10037 	int err = -1;
10038 
10039 	ASSERT_RTNL();
10040 
10041 	features = netdev_get_wanted_features(dev);
10042 
10043 	if (dev->netdev_ops->ndo_fix_features)
10044 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10045 
10046 	/* driver might be less strict about feature dependencies */
10047 	features = netdev_fix_features(dev, features);
10048 
10049 	/* some features can't be enabled if they're off on an upper device */
10050 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10051 		features = netdev_sync_upper_features(dev, upper, features);
10052 
10053 	if (dev->features == features)
10054 		goto sync_lower;
10055 
10056 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10057 		&dev->features, &features);
10058 
10059 	if (dev->netdev_ops->ndo_set_features)
10060 		err = dev->netdev_ops->ndo_set_features(dev, features);
10061 	else
10062 		err = 0;
10063 
10064 	if (unlikely(err < 0)) {
10065 		netdev_err(dev,
10066 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10067 			err, &features, &dev->features);
10068 		/* return non-0 since some features might have changed and
10069 		 * it's better to fire a spurious notification than miss it
10070 		 */
10071 		return -1;
10072 	}
10073 
10074 sync_lower:
10075 	/* some features must be disabled on lower devices when disabled
10076 	 * on an upper device (think: bonding master or bridge)
10077 	 */
10078 	netdev_for_each_lower_dev(dev, lower, iter)
10079 		netdev_sync_lower_features(dev, lower, features);
10080 
10081 	if (!err) {
10082 		netdev_features_t diff = features ^ dev->features;
10083 
10084 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10085 			/* udp_tunnel_{get,drop}_rx_info both need
10086 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10087 			 * device, or they won't do anything.
10088 			 * Thus we need to update dev->features
10089 			 * *before* calling udp_tunnel_get_rx_info,
10090 			 * but *after* calling udp_tunnel_drop_rx_info.
10091 			 */
10092 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10093 				dev->features = features;
10094 				udp_tunnel_get_rx_info(dev);
10095 			} else {
10096 				udp_tunnel_drop_rx_info(dev);
10097 			}
10098 		}
10099 
10100 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10101 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10102 				dev->features = features;
10103 				err |= vlan_get_rx_ctag_filter_info(dev);
10104 			} else {
10105 				vlan_drop_rx_ctag_filter_info(dev);
10106 			}
10107 		}
10108 
10109 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10110 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10111 				dev->features = features;
10112 				err |= vlan_get_rx_stag_filter_info(dev);
10113 			} else {
10114 				vlan_drop_rx_stag_filter_info(dev);
10115 			}
10116 		}
10117 
10118 		dev->features = features;
10119 	}
10120 
10121 	return err < 0 ? 0 : 1;
10122 }
10123 
10124 /**
10125  *	netdev_update_features - recalculate device features
10126  *	@dev: the device to check
10127  *
10128  *	Recalculate dev->features set and send notifications if it
10129  *	has changed. Should be called after driver or hardware dependent
10130  *	conditions might have changed that influence the features.
10131  */
10132 void netdev_update_features(struct net_device *dev)
10133 {
10134 	if (__netdev_update_features(dev))
10135 		netdev_features_change(dev);
10136 }
10137 EXPORT_SYMBOL(netdev_update_features);
10138 
10139 /**
10140  *	netdev_change_features - recalculate device features
10141  *	@dev: the device to check
10142  *
10143  *	Recalculate dev->features set and send notifications even
10144  *	if they have not changed. Should be called instead of
10145  *	netdev_update_features() if also dev->vlan_features might
10146  *	have changed to allow the changes to be propagated to stacked
10147  *	VLAN devices.
10148  */
10149 void netdev_change_features(struct net_device *dev)
10150 {
10151 	__netdev_update_features(dev);
10152 	netdev_features_change(dev);
10153 }
10154 EXPORT_SYMBOL(netdev_change_features);
10155 
10156 /**
10157  *	netif_stacked_transfer_operstate -	transfer operstate
10158  *	@rootdev: the root or lower level device to transfer state from
10159  *	@dev: the device to transfer operstate to
10160  *
10161  *	Transfer operational state from root to device. This is normally
10162  *	called when a stacking relationship exists between the root
10163  *	device and the device(a leaf device).
10164  */
10165 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10166 					struct net_device *dev)
10167 {
10168 	if (rootdev->operstate == IF_OPER_DORMANT)
10169 		netif_dormant_on(dev);
10170 	else
10171 		netif_dormant_off(dev);
10172 
10173 	if (rootdev->operstate == IF_OPER_TESTING)
10174 		netif_testing_on(dev);
10175 	else
10176 		netif_testing_off(dev);
10177 
10178 	if (netif_carrier_ok(rootdev))
10179 		netif_carrier_on(dev);
10180 	else
10181 		netif_carrier_off(dev);
10182 }
10183 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10184 
10185 static int netif_alloc_rx_queues(struct net_device *dev)
10186 {
10187 	unsigned int i, count = dev->num_rx_queues;
10188 	struct netdev_rx_queue *rx;
10189 	size_t sz = count * sizeof(*rx);
10190 	int err = 0;
10191 
10192 	BUG_ON(count < 1);
10193 
10194 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10195 	if (!rx)
10196 		return -ENOMEM;
10197 
10198 	dev->_rx = rx;
10199 
10200 	for (i = 0; i < count; i++) {
10201 		rx[i].dev = dev;
10202 
10203 		/* XDP RX-queue setup */
10204 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10205 		if (err < 0)
10206 			goto err_rxq_info;
10207 	}
10208 	return 0;
10209 
10210 err_rxq_info:
10211 	/* Rollback successful reg's and free other resources */
10212 	while (i--)
10213 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10214 	kvfree(dev->_rx);
10215 	dev->_rx = NULL;
10216 	return err;
10217 }
10218 
10219 static void netif_free_rx_queues(struct net_device *dev)
10220 {
10221 	unsigned int i, count = dev->num_rx_queues;
10222 
10223 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10224 	if (!dev->_rx)
10225 		return;
10226 
10227 	for (i = 0; i < count; i++)
10228 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10229 
10230 	kvfree(dev->_rx);
10231 }
10232 
10233 static void netdev_init_one_queue(struct net_device *dev,
10234 				  struct netdev_queue *queue, void *_unused)
10235 {
10236 	/* Initialize queue lock */
10237 	spin_lock_init(&queue->_xmit_lock);
10238 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10239 	queue->xmit_lock_owner = -1;
10240 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10241 	queue->dev = dev;
10242 #ifdef CONFIG_BQL
10243 	dql_init(&queue->dql, HZ);
10244 #endif
10245 }
10246 
10247 static void netif_free_tx_queues(struct net_device *dev)
10248 {
10249 	kvfree(dev->_tx);
10250 }
10251 
10252 static int netif_alloc_netdev_queues(struct net_device *dev)
10253 {
10254 	unsigned int count = dev->num_tx_queues;
10255 	struct netdev_queue *tx;
10256 	size_t sz = count * sizeof(*tx);
10257 
10258 	if (count < 1 || count > 0xffff)
10259 		return -EINVAL;
10260 
10261 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10262 	if (!tx)
10263 		return -ENOMEM;
10264 
10265 	dev->_tx = tx;
10266 
10267 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10268 	spin_lock_init(&dev->tx_global_lock);
10269 
10270 	return 0;
10271 }
10272 
10273 void netif_tx_stop_all_queues(struct net_device *dev)
10274 {
10275 	unsigned int i;
10276 
10277 	for (i = 0; i < dev->num_tx_queues; i++) {
10278 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10279 
10280 		netif_tx_stop_queue(txq);
10281 	}
10282 }
10283 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10284 
10285 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10286 {
10287 	void __percpu *v;
10288 
10289 	/* Drivers implementing ndo_get_peer_dev must support tstat
10290 	 * accounting, so that skb_do_redirect() can bump the dev's
10291 	 * RX stats upon network namespace switch.
10292 	 */
10293 	if (dev->netdev_ops->ndo_get_peer_dev &&
10294 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10295 		return -EOPNOTSUPP;
10296 
10297 	switch (dev->pcpu_stat_type) {
10298 	case NETDEV_PCPU_STAT_NONE:
10299 		return 0;
10300 	case NETDEV_PCPU_STAT_LSTATS:
10301 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10302 		break;
10303 	case NETDEV_PCPU_STAT_TSTATS:
10304 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10305 		break;
10306 	case NETDEV_PCPU_STAT_DSTATS:
10307 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10308 		break;
10309 	default:
10310 		return -EINVAL;
10311 	}
10312 
10313 	return v ? 0 : -ENOMEM;
10314 }
10315 
10316 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10317 {
10318 	switch (dev->pcpu_stat_type) {
10319 	case NETDEV_PCPU_STAT_NONE:
10320 		return;
10321 	case NETDEV_PCPU_STAT_LSTATS:
10322 		free_percpu(dev->lstats);
10323 		break;
10324 	case NETDEV_PCPU_STAT_TSTATS:
10325 		free_percpu(dev->tstats);
10326 		break;
10327 	case NETDEV_PCPU_STAT_DSTATS:
10328 		free_percpu(dev->dstats);
10329 		break;
10330 	}
10331 }
10332 
10333 static void netdev_free_phy_link_topology(struct net_device *dev)
10334 {
10335 	struct phy_link_topology *topo = dev->link_topo;
10336 
10337 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10338 		xa_destroy(&topo->phys);
10339 		kfree(topo);
10340 		dev->link_topo = NULL;
10341 	}
10342 }
10343 
10344 /**
10345  * register_netdevice() - register a network device
10346  * @dev: device to register
10347  *
10348  * Take a prepared network device structure and make it externally accessible.
10349  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10350  * Callers must hold the rtnl lock - you may want register_netdev()
10351  * instead of this.
10352  */
10353 int register_netdevice(struct net_device *dev)
10354 {
10355 	int ret;
10356 	struct net *net = dev_net(dev);
10357 
10358 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10359 		     NETDEV_FEATURE_COUNT);
10360 	BUG_ON(dev_boot_phase);
10361 	ASSERT_RTNL();
10362 
10363 	might_sleep();
10364 
10365 	/* When net_device's are persistent, this will be fatal. */
10366 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10367 	BUG_ON(!net);
10368 
10369 	ret = ethtool_check_ops(dev->ethtool_ops);
10370 	if (ret)
10371 		return ret;
10372 
10373 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10374 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10375 	mutex_init(&dev->ethtool->rss_lock);
10376 
10377 	spin_lock_init(&dev->addr_list_lock);
10378 	netdev_set_addr_lockdep_class(dev);
10379 
10380 	ret = dev_get_valid_name(net, dev, dev->name);
10381 	if (ret < 0)
10382 		goto out;
10383 
10384 	ret = -ENOMEM;
10385 	dev->name_node = netdev_name_node_head_alloc(dev);
10386 	if (!dev->name_node)
10387 		goto out;
10388 
10389 	/* Init, if this function is available */
10390 	if (dev->netdev_ops->ndo_init) {
10391 		ret = dev->netdev_ops->ndo_init(dev);
10392 		if (ret) {
10393 			if (ret > 0)
10394 				ret = -EIO;
10395 			goto err_free_name;
10396 		}
10397 	}
10398 
10399 	if (((dev->hw_features | dev->features) &
10400 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10401 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10402 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10403 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10404 		ret = -EINVAL;
10405 		goto err_uninit;
10406 	}
10407 
10408 	ret = netdev_do_alloc_pcpu_stats(dev);
10409 	if (ret)
10410 		goto err_uninit;
10411 
10412 	ret = dev_index_reserve(net, dev->ifindex);
10413 	if (ret < 0)
10414 		goto err_free_pcpu;
10415 	dev->ifindex = ret;
10416 
10417 	/* Transfer changeable features to wanted_features and enable
10418 	 * software offloads (GSO and GRO).
10419 	 */
10420 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10421 	dev->features |= NETIF_F_SOFT_FEATURES;
10422 
10423 	if (dev->udp_tunnel_nic_info) {
10424 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10425 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10426 	}
10427 
10428 	dev->wanted_features = dev->features & dev->hw_features;
10429 
10430 	if (!(dev->flags & IFF_LOOPBACK))
10431 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10432 
10433 	/* If IPv4 TCP segmentation offload is supported we should also
10434 	 * allow the device to enable segmenting the frame with the option
10435 	 * of ignoring a static IP ID value.  This doesn't enable the
10436 	 * feature itself but allows the user to enable it later.
10437 	 */
10438 	if (dev->hw_features & NETIF_F_TSO)
10439 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10440 	if (dev->vlan_features & NETIF_F_TSO)
10441 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10442 	if (dev->mpls_features & NETIF_F_TSO)
10443 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10444 	if (dev->hw_enc_features & NETIF_F_TSO)
10445 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10446 
10447 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10448 	 */
10449 	dev->vlan_features |= NETIF_F_HIGHDMA;
10450 
10451 	/* Make NETIF_F_SG inheritable to tunnel devices.
10452 	 */
10453 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10454 
10455 	/* Make NETIF_F_SG inheritable to MPLS.
10456 	 */
10457 	dev->mpls_features |= NETIF_F_SG;
10458 
10459 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10460 	ret = notifier_to_errno(ret);
10461 	if (ret)
10462 		goto err_ifindex_release;
10463 
10464 	ret = netdev_register_kobject(dev);
10465 
10466 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10467 
10468 	if (ret)
10469 		goto err_uninit_notify;
10470 
10471 	__netdev_update_features(dev);
10472 
10473 	/*
10474 	 *	Default initial state at registry is that the
10475 	 *	device is present.
10476 	 */
10477 
10478 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10479 
10480 	linkwatch_init_dev(dev);
10481 
10482 	dev_init_scheduler(dev);
10483 
10484 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10485 	list_netdevice(dev);
10486 
10487 	add_device_randomness(dev->dev_addr, dev->addr_len);
10488 
10489 	/* If the device has permanent device address, driver should
10490 	 * set dev_addr and also addr_assign_type should be set to
10491 	 * NET_ADDR_PERM (default value).
10492 	 */
10493 	if (dev->addr_assign_type == NET_ADDR_PERM)
10494 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10495 
10496 	/* Notify protocols, that a new device appeared. */
10497 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10498 	ret = notifier_to_errno(ret);
10499 	if (ret) {
10500 		/* Expect explicit free_netdev() on failure */
10501 		dev->needs_free_netdev = false;
10502 		unregister_netdevice_queue(dev, NULL);
10503 		goto out;
10504 	}
10505 	/*
10506 	 *	Prevent userspace races by waiting until the network
10507 	 *	device is fully setup before sending notifications.
10508 	 */
10509 	if (!dev->rtnl_link_ops ||
10510 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10511 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10512 
10513 out:
10514 	return ret;
10515 
10516 err_uninit_notify:
10517 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10518 err_ifindex_release:
10519 	dev_index_release(net, dev->ifindex);
10520 err_free_pcpu:
10521 	netdev_do_free_pcpu_stats(dev);
10522 err_uninit:
10523 	if (dev->netdev_ops->ndo_uninit)
10524 		dev->netdev_ops->ndo_uninit(dev);
10525 	if (dev->priv_destructor)
10526 		dev->priv_destructor(dev);
10527 err_free_name:
10528 	netdev_name_node_free(dev->name_node);
10529 	goto out;
10530 }
10531 EXPORT_SYMBOL(register_netdevice);
10532 
10533 /* Initialize the core of a dummy net device.
10534  * This is useful if you are calling this function after alloc_netdev(),
10535  * since it does not memset the net_device fields.
10536  */
10537 static void init_dummy_netdev_core(struct net_device *dev)
10538 {
10539 	/* make sure we BUG if trying to hit standard
10540 	 * register/unregister code path
10541 	 */
10542 	dev->reg_state = NETREG_DUMMY;
10543 
10544 	/* NAPI wants this */
10545 	INIT_LIST_HEAD(&dev->napi_list);
10546 
10547 	/* a dummy interface is started by default */
10548 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10549 	set_bit(__LINK_STATE_START, &dev->state);
10550 
10551 	/* napi_busy_loop stats accounting wants this */
10552 	dev_net_set(dev, &init_net);
10553 
10554 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10555 	 * because users of this 'device' dont need to change
10556 	 * its refcount.
10557 	 */
10558 }
10559 
10560 /**
10561  *	init_dummy_netdev	- init a dummy network device for NAPI
10562  *	@dev: device to init
10563  *
10564  *	This takes a network device structure and initializes the minimum
10565  *	amount of fields so it can be used to schedule NAPI polls without
10566  *	registering a full blown interface. This is to be used by drivers
10567  *	that need to tie several hardware interfaces to a single NAPI
10568  *	poll scheduler due to HW limitations.
10569  */
10570 void init_dummy_netdev(struct net_device *dev)
10571 {
10572 	/* Clear everything. Note we don't initialize spinlocks
10573 	 * as they aren't supposed to be taken by any of the
10574 	 * NAPI code and this dummy netdev is supposed to be
10575 	 * only ever used for NAPI polls
10576 	 */
10577 	memset(dev, 0, sizeof(struct net_device));
10578 	init_dummy_netdev_core(dev);
10579 }
10580 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10581 
10582 /**
10583  *	register_netdev	- register a network device
10584  *	@dev: device to register
10585  *
10586  *	Take a completed network device structure and add it to the kernel
10587  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10588  *	chain. 0 is returned on success. A negative errno code is returned
10589  *	on a failure to set up the device, or if the name is a duplicate.
10590  *
10591  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10592  *	and expands the device name if you passed a format string to
10593  *	alloc_netdev.
10594  */
10595 int register_netdev(struct net_device *dev)
10596 {
10597 	int err;
10598 
10599 	if (rtnl_lock_killable())
10600 		return -EINTR;
10601 	err = register_netdevice(dev);
10602 	rtnl_unlock();
10603 	return err;
10604 }
10605 EXPORT_SYMBOL(register_netdev);
10606 
10607 int netdev_refcnt_read(const struct net_device *dev)
10608 {
10609 #ifdef CONFIG_PCPU_DEV_REFCNT
10610 	int i, refcnt = 0;
10611 
10612 	for_each_possible_cpu(i)
10613 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10614 	return refcnt;
10615 #else
10616 	return refcount_read(&dev->dev_refcnt);
10617 #endif
10618 }
10619 EXPORT_SYMBOL(netdev_refcnt_read);
10620 
10621 int netdev_unregister_timeout_secs __read_mostly = 10;
10622 
10623 #define WAIT_REFS_MIN_MSECS 1
10624 #define WAIT_REFS_MAX_MSECS 250
10625 /**
10626  * netdev_wait_allrefs_any - wait until all references are gone.
10627  * @list: list of net_devices to wait on
10628  *
10629  * This is called when unregistering network devices.
10630  *
10631  * Any protocol or device that holds a reference should register
10632  * for netdevice notification, and cleanup and put back the
10633  * reference if they receive an UNREGISTER event.
10634  * We can get stuck here if buggy protocols don't correctly
10635  * call dev_put.
10636  */
10637 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10638 {
10639 	unsigned long rebroadcast_time, warning_time;
10640 	struct net_device *dev;
10641 	int wait = 0;
10642 
10643 	rebroadcast_time = warning_time = jiffies;
10644 
10645 	list_for_each_entry(dev, list, todo_list)
10646 		if (netdev_refcnt_read(dev) == 1)
10647 			return dev;
10648 
10649 	while (true) {
10650 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10651 			rtnl_lock();
10652 
10653 			/* Rebroadcast unregister notification */
10654 			list_for_each_entry(dev, list, todo_list)
10655 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10656 
10657 			__rtnl_unlock();
10658 			rcu_barrier();
10659 			rtnl_lock();
10660 
10661 			list_for_each_entry(dev, list, todo_list)
10662 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10663 					     &dev->state)) {
10664 					/* We must not have linkwatch events
10665 					 * pending on unregister. If this
10666 					 * happens, we simply run the queue
10667 					 * unscheduled, resulting in a noop
10668 					 * for this device.
10669 					 */
10670 					linkwatch_run_queue();
10671 					break;
10672 				}
10673 
10674 			__rtnl_unlock();
10675 
10676 			rebroadcast_time = jiffies;
10677 		}
10678 
10679 		rcu_barrier();
10680 
10681 		if (!wait) {
10682 			wait = WAIT_REFS_MIN_MSECS;
10683 		} else {
10684 			msleep(wait);
10685 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10686 		}
10687 
10688 		list_for_each_entry(dev, list, todo_list)
10689 			if (netdev_refcnt_read(dev) == 1)
10690 				return dev;
10691 
10692 		if (time_after(jiffies, warning_time +
10693 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10694 			list_for_each_entry(dev, list, todo_list) {
10695 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10696 					 dev->name, netdev_refcnt_read(dev));
10697 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10698 			}
10699 
10700 			warning_time = jiffies;
10701 		}
10702 	}
10703 }
10704 
10705 /* The sequence is:
10706  *
10707  *	rtnl_lock();
10708  *	...
10709  *	register_netdevice(x1);
10710  *	register_netdevice(x2);
10711  *	...
10712  *	unregister_netdevice(y1);
10713  *	unregister_netdevice(y2);
10714  *      ...
10715  *	rtnl_unlock();
10716  *	free_netdev(y1);
10717  *	free_netdev(y2);
10718  *
10719  * We are invoked by rtnl_unlock().
10720  * This allows us to deal with problems:
10721  * 1) We can delete sysfs objects which invoke hotplug
10722  *    without deadlocking with linkwatch via keventd.
10723  * 2) Since we run with the RTNL semaphore not held, we can sleep
10724  *    safely in order to wait for the netdev refcnt to drop to zero.
10725  *
10726  * We must not return until all unregister events added during
10727  * the interval the lock was held have been completed.
10728  */
10729 void netdev_run_todo(void)
10730 {
10731 	struct net_device *dev, *tmp;
10732 	struct list_head list;
10733 	int cnt;
10734 #ifdef CONFIG_LOCKDEP
10735 	struct list_head unlink_list;
10736 
10737 	list_replace_init(&net_unlink_list, &unlink_list);
10738 
10739 	while (!list_empty(&unlink_list)) {
10740 		struct net_device *dev = list_first_entry(&unlink_list,
10741 							  struct net_device,
10742 							  unlink_list);
10743 		list_del_init(&dev->unlink_list);
10744 		dev->nested_level = dev->lower_level - 1;
10745 	}
10746 #endif
10747 
10748 	/* Snapshot list, allow later requests */
10749 	list_replace_init(&net_todo_list, &list);
10750 
10751 	__rtnl_unlock();
10752 
10753 	/* Wait for rcu callbacks to finish before next phase */
10754 	if (!list_empty(&list))
10755 		rcu_barrier();
10756 
10757 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10758 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10759 			netdev_WARN(dev, "run_todo but not unregistering\n");
10760 			list_del(&dev->todo_list);
10761 			continue;
10762 		}
10763 
10764 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10765 		linkwatch_sync_dev(dev);
10766 	}
10767 
10768 	cnt = 0;
10769 	while (!list_empty(&list)) {
10770 		dev = netdev_wait_allrefs_any(&list);
10771 		list_del(&dev->todo_list);
10772 
10773 		/* paranoia */
10774 		BUG_ON(netdev_refcnt_read(dev) != 1);
10775 		BUG_ON(!list_empty(&dev->ptype_all));
10776 		BUG_ON(!list_empty(&dev->ptype_specific));
10777 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10778 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10779 
10780 		netdev_do_free_pcpu_stats(dev);
10781 		if (dev->priv_destructor)
10782 			dev->priv_destructor(dev);
10783 		if (dev->needs_free_netdev)
10784 			free_netdev(dev);
10785 
10786 		cnt++;
10787 
10788 		/* Free network device */
10789 		kobject_put(&dev->dev.kobj);
10790 	}
10791 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10792 		wake_up(&netdev_unregistering_wq);
10793 }
10794 
10795 /* Collate per-cpu network dstats statistics
10796  *
10797  * Read per-cpu network statistics from dev->dstats and populate the related
10798  * fields in @s.
10799  */
10800 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10801 			     const struct pcpu_dstats __percpu *dstats)
10802 {
10803 	int cpu;
10804 
10805 	for_each_possible_cpu(cpu) {
10806 		u64 rx_packets, rx_bytes, rx_drops;
10807 		u64 tx_packets, tx_bytes, tx_drops;
10808 		const struct pcpu_dstats *stats;
10809 		unsigned int start;
10810 
10811 		stats = per_cpu_ptr(dstats, cpu);
10812 		do {
10813 			start = u64_stats_fetch_begin(&stats->syncp);
10814 			rx_packets = u64_stats_read(&stats->rx_packets);
10815 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10816 			rx_drops   = u64_stats_read(&stats->rx_drops);
10817 			tx_packets = u64_stats_read(&stats->tx_packets);
10818 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10819 			tx_drops   = u64_stats_read(&stats->tx_drops);
10820 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10821 
10822 		s->rx_packets += rx_packets;
10823 		s->rx_bytes   += rx_bytes;
10824 		s->rx_dropped += rx_drops;
10825 		s->tx_packets += tx_packets;
10826 		s->tx_bytes   += tx_bytes;
10827 		s->tx_dropped += tx_drops;
10828 	}
10829 }
10830 
10831 /* ndo_get_stats64 implementation for dtstats-based accounting.
10832  *
10833  * Populate @s from dev->stats and dev->dstats. This is used internally by the
10834  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10835  */
10836 static void dev_get_dstats64(const struct net_device *dev,
10837 			     struct rtnl_link_stats64 *s)
10838 {
10839 	netdev_stats_to_stats64(s, &dev->stats);
10840 	dev_fetch_dstats(s, dev->dstats);
10841 }
10842 
10843 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10844  * all the same fields in the same order as net_device_stats, with only
10845  * the type differing, but rtnl_link_stats64 may have additional fields
10846  * at the end for newer counters.
10847  */
10848 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10849 			     const struct net_device_stats *netdev_stats)
10850 {
10851 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10852 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10853 	u64 *dst = (u64 *)stats64;
10854 
10855 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10856 	for (i = 0; i < n; i++)
10857 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10858 	/* zero out counters that only exist in rtnl_link_stats64 */
10859 	memset((char *)stats64 + n * sizeof(u64), 0,
10860 	       sizeof(*stats64) - n * sizeof(u64));
10861 }
10862 EXPORT_SYMBOL(netdev_stats_to_stats64);
10863 
10864 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10865 		struct net_device *dev)
10866 {
10867 	struct net_device_core_stats __percpu *p;
10868 
10869 	p = alloc_percpu_gfp(struct net_device_core_stats,
10870 			     GFP_ATOMIC | __GFP_NOWARN);
10871 
10872 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10873 		free_percpu(p);
10874 
10875 	/* This READ_ONCE() pairs with the cmpxchg() above */
10876 	return READ_ONCE(dev->core_stats);
10877 }
10878 
10879 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10880 {
10881 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10882 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10883 	unsigned long __percpu *field;
10884 
10885 	if (unlikely(!p)) {
10886 		p = netdev_core_stats_alloc(dev);
10887 		if (!p)
10888 			return;
10889 	}
10890 
10891 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
10892 	this_cpu_inc(*field);
10893 }
10894 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10895 
10896 /**
10897  *	dev_get_stats	- get network device statistics
10898  *	@dev: device to get statistics from
10899  *	@storage: place to store stats
10900  *
10901  *	Get network statistics from device. Return @storage.
10902  *	The device driver may provide its own method by setting
10903  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10904  *	otherwise the internal statistics structure is used.
10905  */
10906 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10907 					struct rtnl_link_stats64 *storage)
10908 {
10909 	const struct net_device_ops *ops = dev->netdev_ops;
10910 	const struct net_device_core_stats __percpu *p;
10911 
10912 	if (ops->ndo_get_stats64) {
10913 		memset(storage, 0, sizeof(*storage));
10914 		ops->ndo_get_stats64(dev, storage);
10915 	} else if (ops->ndo_get_stats) {
10916 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10917 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10918 		dev_get_tstats64(dev, storage);
10919 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
10920 		dev_get_dstats64(dev, storage);
10921 	} else {
10922 		netdev_stats_to_stats64(storage, &dev->stats);
10923 	}
10924 
10925 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10926 	p = READ_ONCE(dev->core_stats);
10927 	if (p) {
10928 		const struct net_device_core_stats *core_stats;
10929 		int i;
10930 
10931 		for_each_possible_cpu(i) {
10932 			core_stats = per_cpu_ptr(p, i);
10933 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10934 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10935 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10936 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10937 		}
10938 	}
10939 	return storage;
10940 }
10941 EXPORT_SYMBOL(dev_get_stats);
10942 
10943 /**
10944  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10945  *	@s: place to store stats
10946  *	@netstats: per-cpu network stats to read from
10947  *
10948  *	Read per-cpu network statistics and populate the related fields in @s.
10949  */
10950 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10951 			   const struct pcpu_sw_netstats __percpu *netstats)
10952 {
10953 	int cpu;
10954 
10955 	for_each_possible_cpu(cpu) {
10956 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10957 		const struct pcpu_sw_netstats *stats;
10958 		unsigned int start;
10959 
10960 		stats = per_cpu_ptr(netstats, cpu);
10961 		do {
10962 			start = u64_stats_fetch_begin(&stats->syncp);
10963 			rx_packets = u64_stats_read(&stats->rx_packets);
10964 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10965 			tx_packets = u64_stats_read(&stats->tx_packets);
10966 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10967 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10968 
10969 		s->rx_packets += rx_packets;
10970 		s->rx_bytes   += rx_bytes;
10971 		s->tx_packets += tx_packets;
10972 		s->tx_bytes   += tx_bytes;
10973 	}
10974 }
10975 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10976 
10977 /**
10978  *	dev_get_tstats64 - ndo_get_stats64 implementation
10979  *	@dev: device to get statistics from
10980  *	@s: place to store stats
10981  *
10982  *	Populate @s from dev->stats and dev->tstats. Can be used as
10983  *	ndo_get_stats64() callback.
10984  */
10985 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10986 {
10987 	netdev_stats_to_stats64(s, &dev->stats);
10988 	dev_fetch_sw_netstats(s, dev->tstats);
10989 }
10990 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10991 
10992 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10993 {
10994 	struct netdev_queue *queue = dev_ingress_queue(dev);
10995 
10996 #ifdef CONFIG_NET_CLS_ACT
10997 	if (queue)
10998 		return queue;
10999 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11000 	if (!queue)
11001 		return NULL;
11002 	netdev_init_one_queue(dev, queue, NULL);
11003 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11004 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11005 	rcu_assign_pointer(dev->ingress_queue, queue);
11006 #endif
11007 	return queue;
11008 }
11009 
11010 static const struct ethtool_ops default_ethtool_ops;
11011 
11012 void netdev_set_default_ethtool_ops(struct net_device *dev,
11013 				    const struct ethtool_ops *ops)
11014 {
11015 	if (dev->ethtool_ops == &default_ethtool_ops)
11016 		dev->ethtool_ops = ops;
11017 }
11018 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11019 
11020 /**
11021  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11022  * @dev: netdev to enable the IRQ coalescing on
11023  *
11024  * Sets a conservative default for SW IRQ coalescing. Users can use
11025  * sysfs attributes to override the default values.
11026  */
11027 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11028 {
11029 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11030 
11031 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11032 		dev->gro_flush_timeout = 20000;
11033 		dev->napi_defer_hard_irqs = 1;
11034 	}
11035 }
11036 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11037 
11038 /**
11039  * alloc_netdev_mqs - allocate network device
11040  * @sizeof_priv: size of private data to allocate space for
11041  * @name: device name format string
11042  * @name_assign_type: origin of device name
11043  * @setup: callback to initialize device
11044  * @txqs: the number of TX subqueues to allocate
11045  * @rxqs: the number of RX subqueues to allocate
11046  *
11047  * Allocates a struct net_device with private data area for driver use
11048  * and performs basic initialization.  Also allocates subqueue structs
11049  * for each queue on the device.
11050  */
11051 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11052 		unsigned char name_assign_type,
11053 		void (*setup)(struct net_device *),
11054 		unsigned int txqs, unsigned int rxqs)
11055 {
11056 	struct net_device *dev;
11057 
11058 	BUG_ON(strlen(name) >= sizeof(dev->name));
11059 
11060 	if (txqs < 1) {
11061 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11062 		return NULL;
11063 	}
11064 
11065 	if (rxqs < 1) {
11066 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11067 		return NULL;
11068 	}
11069 
11070 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11071 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11072 	if (!dev)
11073 		return NULL;
11074 
11075 	dev->priv_len = sizeof_priv;
11076 
11077 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11078 #ifdef CONFIG_PCPU_DEV_REFCNT
11079 	dev->pcpu_refcnt = alloc_percpu(int);
11080 	if (!dev->pcpu_refcnt)
11081 		goto free_dev;
11082 	__dev_hold(dev);
11083 #else
11084 	refcount_set(&dev->dev_refcnt, 1);
11085 #endif
11086 
11087 	if (dev_addr_init(dev))
11088 		goto free_pcpu;
11089 
11090 	dev_mc_init(dev);
11091 	dev_uc_init(dev);
11092 
11093 	dev_net_set(dev, &init_net);
11094 
11095 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11096 	dev->xdp_zc_max_segs = 1;
11097 	dev->gso_max_segs = GSO_MAX_SEGS;
11098 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11099 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11100 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11101 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11102 	dev->tso_max_segs = TSO_MAX_SEGS;
11103 	dev->upper_level = 1;
11104 	dev->lower_level = 1;
11105 #ifdef CONFIG_LOCKDEP
11106 	dev->nested_level = 0;
11107 	INIT_LIST_HEAD(&dev->unlink_list);
11108 #endif
11109 
11110 	INIT_LIST_HEAD(&dev->napi_list);
11111 	INIT_LIST_HEAD(&dev->unreg_list);
11112 	INIT_LIST_HEAD(&dev->close_list);
11113 	INIT_LIST_HEAD(&dev->link_watch_list);
11114 	INIT_LIST_HEAD(&dev->adj_list.upper);
11115 	INIT_LIST_HEAD(&dev->adj_list.lower);
11116 	INIT_LIST_HEAD(&dev->ptype_all);
11117 	INIT_LIST_HEAD(&dev->ptype_specific);
11118 	INIT_LIST_HEAD(&dev->net_notifier_list);
11119 #ifdef CONFIG_NET_SCHED
11120 	hash_init(dev->qdisc_hash);
11121 #endif
11122 
11123 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11124 	setup(dev);
11125 
11126 	if (!dev->tx_queue_len) {
11127 		dev->priv_flags |= IFF_NO_QUEUE;
11128 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11129 	}
11130 
11131 	dev->num_tx_queues = txqs;
11132 	dev->real_num_tx_queues = txqs;
11133 	if (netif_alloc_netdev_queues(dev))
11134 		goto free_all;
11135 
11136 	dev->num_rx_queues = rxqs;
11137 	dev->real_num_rx_queues = rxqs;
11138 	if (netif_alloc_rx_queues(dev))
11139 		goto free_all;
11140 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11141 	if (!dev->ethtool)
11142 		goto free_all;
11143 
11144 	strscpy(dev->name, name);
11145 	dev->name_assign_type = name_assign_type;
11146 	dev->group = INIT_NETDEV_GROUP;
11147 	if (!dev->ethtool_ops)
11148 		dev->ethtool_ops = &default_ethtool_ops;
11149 
11150 	nf_hook_netdev_init(dev);
11151 
11152 	return dev;
11153 
11154 free_all:
11155 	free_netdev(dev);
11156 	return NULL;
11157 
11158 free_pcpu:
11159 #ifdef CONFIG_PCPU_DEV_REFCNT
11160 	free_percpu(dev->pcpu_refcnt);
11161 free_dev:
11162 #endif
11163 	kvfree(dev);
11164 	return NULL;
11165 }
11166 EXPORT_SYMBOL(alloc_netdev_mqs);
11167 
11168 /**
11169  * free_netdev - free network device
11170  * @dev: device
11171  *
11172  * This function does the last stage of destroying an allocated device
11173  * interface. The reference to the device object is released. If this
11174  * is the last reference then it will be freed.Must be called in process
11175  * context.
11176  */
11177 void free_netdev(struct net_device *dev)
11178 {
11179 	struct napi_struct *p, *n;
11180 
11181 	might_sleep();
11182 
11183 	/* When called immediately after register_netdevice() failed the unwind
11184 	 * handling may still be dismantling the device. Handle that case by
11185 	 * deferring the free.
11186 	 */
11187 	if (dev->reg_state == NETREG_UNREGISTERING) {
11188 		ASSERT_RTNL();
11189 		dev->needs_free_netdev = true;
11190 		return;
11191 	}
11192 
11193 	kfree(dev->ethtool);
11194 	netif_free_tx_queues(dev);
11195 	netif_free_rx_queues(dev);
11196 
11197 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11198 
11199 	/* Flush device addresses */
11200 	dev_addr_flush(dev);
11201 
11202 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11203 		netif_napi_del(p);
11204 
11205 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11206 #ifdef CONFIG_PCPU_DEV_REFCNT
11207 	free_percpu(dev->pcpu_refcnt);
11208 	dev->pcpu_refcnt = NULL;
11209 #endif
11210 	free_percpu(dev->core_stats);
11211 	dev->core_stats = NULL;
11212 	free_percpu(dev->xdp_bulkq);
11213 	dev->xdp_bulkq = NULL;
11214 
11215 	netdev_free_phy_link_topology(dev);
11216 
11217 	/*  Compatibility with error handling in drivers */
11218 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11219 	    dev->reg_state == NETREG_DUMMY) {
11220 		kvfree(dev);
11221 		return;
11222 	}
11223 
11224 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11225 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11226 
11227 	/* will free via device release */
11228 	put_device(&dev->dev);
11229 }
11230 EXPORT_SYMBOL(free_netdev);
11231 
11232 /**
11233  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11234  * @sizeof_priv: size of private data to allocate space for
11235  *
11236  * Return: the allocated net_device on success, NULL otherwise
11237  */
11238 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11239 {
11240 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11241 			    init_dummy_netdev_core);
11242 }
11243 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11244 
11245 /**
11246  *	synchronize_net -  Synchronize with packet receive processing
11247  *
11248  *	Wait for packets currently being received to be done.
11249  *	Does not block later packets from starting.
11250  */
11251 void synchronize_net(void)
11252 {
11253 	might_sleep();
11254 	if (rtnl_is_locked())
11255 		synchronize_rcu_expedited();
11256 	else
11257 		synchronize_rcu();
11258 }
11259 EXPORT_SYMBOL(synchronize_net);
11260 
11261 static void netdev_rss_contexts_free(struct net_device *dev)
11262 {
11263 	struct ethtool_rxfh_context *ctx;
11264 	unsigned long context;
11265 
11266 	mutex_lock(&dev->ethtool->rss_lock);
11267 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11268 		struct ethtool_rxfh_param rxfh;
11269 
11270 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11271 		rxfh.key = ethtool_rxfh_context_key(ctx);
11272 		rxfh.hfunc = ctx->hfunc;
11273 		rxfh.input_xfrm = ctx->input_xfrm;
11274 		rxfh.rss_context = context;
11275 		rxfh.rss_delete = true;
11276 
11277 		xa_erase(&dev->ethtool->rss_ctx, context);
11278 		if (dev->ethtool_ops->create_rxfh_context)
11279 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11280 							      context, NULL);
11281 		else
11282 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11283 		kfree(ctx);
11284 	}
11285 	xa_destroy(&dev->ethtool->rss_ctx);
11286 	mutex_unlock(&dev->ethtool->rss_lock);
11287 }
11288 
11289 /**
11290  *	unregister_netdevice_queue - remove device from the kernel
11291  *	@dev: device
11292  *	@head: list
11293  *
11294  *	This function shuts down a device interface and removes it
11295  *	from the kernel tables.
11296  *	If head not NULL, device is queued to be unregistered later.
11297  *
11298  *	Callers must hold the rtnl semaphore.  You may want
11299  *	unregister_netdev() instead of this.
11300  */
11301 
11302 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11303 {
11304 	ASSERT_RTNL();
11305 
11306 	if (head) {
11307 		list_move_tail(&dev->unreg_list, head);
11308 	} else {
11309 		LIST_HEAD(single);
11310 
11311 		list_add(&dev->unreg_list, &single);
11312 		unregister_netdevice_many(&single);
11313 	}
11314 }
11315 EXPORT_SYMBOL(unregister_netdevice_queue);
11316 
11317 void unregister_netdevice_many_notify(struct list_head *head,
11318 				      u32 portid, const struct nlmsghdr *nlh)
11319 {
11320 	struct net_device *dev, *tmp;
11321 	LIST_HEAD(close_head);
11322 	int cnt = 0;
11323 
11324 	BUG_ON(dev_boot_phase);
11325 	ASSERT_RTNL();
11326 
11327 	if (list_empty(head))
11328 		return;
11329 
11330 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11331 		/* Some devices call without registering
11332 		 * for initialization unwind. Remove those
11333 		 * devices and proceed with the remaining.
11334 		 */
11335 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11336 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11337 				 dev->name, dev);
11338 
11339 			WARN_ON(1);
11340 			list_del(&dev->unreg_list);
11341 			continue;
11342 		}
11343 		dev->dismantle = true;
11344 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11345 	}
11346 
11347 	/* If device is running, close it first. */
11348 	list_for_each_entry(dev, head, unreg_list)
11349 		list_add_tail(&dev->close_list, &close_head);
11350 	dev_close_many(&close_head, true);
11351 
11352 	list_for_each_entry(dev, head, unreg_list) {
11353 		/* And unlink it from device chain. */
11354 		unlist_netdevice(dev);
11355 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11356 	}
11357 	flush_all_backlogs();
11358 
11359 	synchronize_net();
11360 
11361 	list_for_each_entry(dev, head, unreg_list) {
11362 		struct sk_buff *skb = NULL;
11363 
11364 		/* Shutdown queueing discipline. */
11365 		dev_shutdown(dev);
11366 		dev_tcx_uninstall(dev);
11367 		dev_xdp_uninstall(dev);
11368 		bpf_dev_bound_netdev_unregister(dev);
11369 
11370 		netdev_offload_xstats_disable_all(dev);
11371 
11372 		/* Notify protocols, that we are about to destroy
11373 		 * this device. They should clean all the things.
11374 		 */
11375 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11376 
11377 		if (!dev->rtnl_link_ops ||
11378 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11379 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11380 						     GFP_KERNEL, NULL, 0,
11381 						     portid, nlh);
11382 
11383 		/*
11384 		 *	Flush the unicast and multicast chains
11385 		 */
11386 		dev_uc_flush(dev);
11387 		dev_mc_flush(dev);
11388 
11389 		netdev_name_node_alt_flush(dev);
11390 		netdev_name_node_free(dev->name_node);
11391 
11392 		netdev_rss_contexts_free(dev);
11393 
11394 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11395 
11396 		if (dev->netdev_ops->ndo_uninit)
11397 			dev->netdev_ops->ndo_uninit(dev);
11398 
11399 		mutex_destroy(&dev->ethtool->rss_lock);
11400 
11401 		if (skb)
11402 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11403 
11404 		/* Notifier chain MUST detach us all upper devices. */
11405 		WARN_ON(netdev_has_any_upper_dev(dev));
11406 		WARN_ON(netdev_has_any_lower_dev(dev));
11407 
11408 		/* Remove entries from kobject tree */
11409 		netdev_unregister_kobject(dev);
11410 #ifdef CONFIG_XPS
11411 		/* Remove XPS queueing entries */
11412 		netif_reset_xps_queues_gt(dev, 0);
11413 #endif
11414 	}
11415 
11416 	synchronize_net();
11417 
11418 	list_for_each_entry(dev, head, unreg_list) {
11419 		netdev_put(dev, &dev->dev_registered_tracker);
11420 		net_set_todo(dev);
11421 		cnt++;
11422 	}
11423 	atomic_add(cnt, &dev_unreg_count);
11424 
11425 	list_del(head);
11426 }
11427 
11428 /**
11429  *	unregister_netdevice_many - unregister many devices
11430  *	@head: list of devices
11431  *
11432  *  Note: As most callers use a stack allocated list_head,
11433  *  we force a list_del() to make sure stack won't be corrupted later.
11434  */
11435 void unregister_netdevice_many(struct list_head *head)
11436 {
11437 	unregister_netdevice_many_notify(head, 0, NULL);
11438 }
11439 EXPORT_SYMBOL(unregister_netdevice_many);
11440 
11441 /**
11442  *	unregister_netdev - remove device from the kernel
11443  *	@dev: device
11444  *
11445  *	This function shuts down a device interface and removes it
11446  *	from the kernel tables.
11447  *
11448  *	This is just a wrapper for unregister_netdevice that takes
11449  *	the rtnl semaphore.  In general you want to use this and not
11450  *	unregister_netdevice.
11451  */
11452 void unregister_netdev(struct net_device *dev)
11453 {
11454 	rtnl_lock();
11455 	unregister_netdevice(dev);
11456 	rtnl_unlock();
11457 }
11458 EXPORT_SYMBOL(unregister_netdev);
11459 
11460 /**
11461  *	__dev_change_net_namespace - move device to different nethost namespace
11462  *	@dev: device
11463  *	@net: network namespace
11464  *	@pat: If not NULL name pattern to try if the current device name
11465  *	      is already taken in the destination network namespace.
11466  *	@new_ifindex: If not zero, specifies device index in the target
11467  *	              namespace.
11468  *
11469  *	This function shuts down a device interface and moves it
11470  *	to a new network namespace. On success 0 is returned, on
11471  *	a failure a netagive errno code is returned.
11472  *
11473  *	Callers must hold the rtnl semaphore.
11474  */
11475 
11476 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11477 			       const char *pat, int new_ifindex)
11478 {
11479 	struct netdev_name_node *name_node;
11480 	struct net *net_old = dev_net(dev);
11481 	char new_name[IFNAMSIZ] = {};
11482 	int err, new_nsid;
11483 
11484 	ASSERT_RTNL();
11485 
11486 	/* Don't allow namespace local devices to be moved. */
11487 	err = -EINVAL;
11488 	if (dev->netns_local)
11489 		goto out;
11490 
11491 	/* Ensure the device has been registered */
11492 	if (dev->reg_state != NETREG_REGISTERED)
11493 		goto out;
11494 
11495 	/* Get out if there is nothing todo */
11496 	err = 0;
11497 	if (net_eq(net_old, net))
11498 		goto out;
11499 
11500 	/* Pick the destination device name, and ensure
11501 	 * we can use it in the destination network namespace.
11502 	 */
11503 	err = -EEXIST;
11504 	if (netdev_name_in_use(net, dev->name)) {
11505 		/* We get here if we can't use the current device name */
11506 		if (!pat)
11507 			goto out;
11508 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11509 		if (err < 0)
11510 			goto out;
11511 	}
11512 	/* Check that none of the altnames conflicts. */
11513 	err = -EEXIST;
11514 	netdev_for_each_altname(dev, name_node)
11515 		if (netdev_name_in_use(net, name_node->name))
11516 			goto out;
11517 
11518 	/* Check that new_ifindex isn't used yet. */
11519 	if (new_ifindex) {
11520 		err = dev_index_reserve(net, new_ifindex);
11521 		if (err < 0)
11522 			goto out;
11523 	} else {
11524 		/* If there is an ifindex conflict assign a new one */
11525 		err = dev_index_reserve(net, dev->ifindex);
11526 		if (err == -EBUSY)
11527 			err = dev_index_reserve(net, 0);
11528 		if (err < 0)
11529 			goto out;
11530 		new_ifindex = err;
11531 	}
11532 
11533 	/*
11534 	 * And now a mini version of register_netdevice unregister_netdevice.
11535 	 */
11536 
11537 	/* If device is running close it first. */
11538 	dev_close(dev);
11539 
11540 	/* And unlink it from device chain */
11541 	unlist_netdevice(dev);
11542 
11543 	synchronize_net();
11544 
11545 	/* Shutdown queueing discipline. */
11546 	dev_shutdown(dev);
11547 
11548 	/* Notify protocols, that we are about to destroy
11549 	 * this device. They should clean all the things.
11550 	 *
11551 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11552 	 * This is wanted because this way 8021q and macvlan know
11553 	 * the device is just moving and can keep their slaves up.
11554 	 */
11555 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11556 	rcu_barrier();
11557 
11558 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11559 
11560 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11561 			    new_ifindex);
11562 
11563 	/*
11564 	 *	Flush the unicast and multicast chains
11565 	 */
11566 	dev_uc_flush(dev);
11567 	dev_mc_flush(dev);
11568 
11569 	/* Send a netdev-removed uevent to the old namespace */
11570 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11571 	netdev_adjacent_del_links(dev);
11572 
11573 	/* Move per-net netdevice notifiers that are following the netdevice */
11574 	move_netdevice_notifiers_dev_net(dev, net);
11575 
11576 	/* Actually switch the network namespace */
11577 	dev_net_set(dev, net);
11578 	dev->ifindex = new_ifindex;
11579 
11580 	if (new_name[0]) {
11581 		/* Rename the netdev to prepared name */
11582 		write_seqlock_bh(&netdev_rename_lock);
11583 		strscpy(dev->name, new_name, IFNAMSIZ);
11584 		write_sequnlock_bh(&netdev_rename_lock);
11585 	}
11586 
11587 	/* Fixup kobjects */
11588 	dev_set_uevent_suppress(&dev->dev, 1);
11589 	err = device_rename(&dev->dev, dev->name);
11590 	dev_set_uevent_suppress(&dev->dev, 0);
11591 	WARN_ON(err);
11592 
11593 	/* Send a netdev-add uevent to the new namespace */
11594 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11595 	netdev_adjacent_add_links(dev);
11596 
11597 	/* Adapt owner in case owning user namespace of target network
11598 	 * namespace is different from the original one.
11599 	 */
11600 	err = netdev_change_owner(dev, net_old, net);
11601 	WARN_ON(err);
11602 
11603 	/* Add the device back in the hashes */
11604 	list_netdevice(dev);
11605 
11606 	/* Notify protocols, that a new device appeared. */
11607 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11608 
11609 	/*
11610 	 *	Prevent userspace races by waiting until the network
11611 	 *	device is fully setup before sending notifications.
11612 	 */
11613 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11614 
11615 	synchronize_net();
11616 	err = 0;
11617 out:
11618 	return err;
11619 }
11620 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11621 
11622 static int dev_cpu_dead(unsigned int oldcpu)
11623 {
11624 	struct sk_buff **list_skb;
11625 	struct sk_buff *skb;
11626 	unsigned int cpu;
11627 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11628 
11629 	local_irq_disable();
11630 	cpu = smp_processor_id();
11631 	sd = &per_cpu(softnet_data, cpu);
11632 	oldsd = &per_cpu(softnet_data, oldcpu);
11633 
11634 	/* Find end of our completion_queue. */
11635 	list_skb = &sd->completion_queue;
11636 	while (*list_skb)
11637 		list_skb = &(*list_skb)->next;
11638 	/* Append completion queue from offline CPU. */
11639 	*list_skb = oldsd->completion_queue;
11640 	oldsd->completion_queue = NULL;
11641 
11642 	/* Append output queue from offline CPU. */
11643 	if (oldsd->output_queue) {
11644 		*sd->output_queue_tailp = oldsd->output_queue;
11645 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11646 		oldsd->output_queue = NULL;
11647 		oldsd->output_queue_tailp = &oldsd->output_queue;
11648 	}
11649 	/* Append NAPI poll list from offline CPU, with one exception :
11650 	 * process_backlog() must be called by cpu owning percpu backlog.
11651 	 * We properly handle process_queue & input_pkt_queue later.
11652 	 */
11653 	while (!list_empty(&oldsd->poll_list)) {
11654 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11655 							    struct napi_struct,
11656 							    poll_list);
11657 
11658 		list_del_init(&napi->poll_list);
11659 		if (napi->poll == process_backlog)
11660 			napi->state &= NAPIF_STATE_THREADED;
11661 		else
11662 			____napi_schedule(sd, napi);
11663 	}
11664 
11665 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11666 	local_irq_enable();
11667 
11668 	if (!use_backlog_threads()) {
11669 #ifdef CONFIG_RPS
11670 		remsd = oldsd->rps_ipi_list;
11671 		oldsd->rps_ipi_list = NULL;
11672 #endif
11673 		/* send out pending IPI's on offline CPU */
11674 		net_rps_send_ipi(remsd);
11675 	}
11676 
11677 	/* Process offline CPU's input_pkt_queue */
11678 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11679 		netif_rx(skb);
11680 		rps_input_queue_head_incr(oldsd);
11681 	}
11682 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11683 		netif_rx(skb);
11684 		rps_input_queue_head_incr(oldsd);
11685 	}
11686 
11687 	return 0;
11688 }
11689 
11690 /**
11691  *	netdev_increment_features - increment feature set by one
11692  *	@all: current feature set
11693  *	@one: new feature set
11694  *	@mask: mask feature set
11695  *
11696  *	Computes a new feature set after adding a device with feature set
11697  *	@one to the master device with current feature set @all.  Will not
11698  *	enable anything that is off in @mask. Returns the new feature set.
11699  */
11700 netdev_features_t netdev_increment_features(netdev_features_t all,
11701 	netdev_features_t one, netdev_features_t mask)
11702 {
11703 	if (mask & NETIF_F_HW_CSUM)
11704 		mask |= NETIF_F_CSUM_MASK;
11705 	mask |= NETIF_F_VLAN_CHALLENGED;
11706 
11707 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11708 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11709 
11710 	/* If one device supports hw checksumming, set for all. */
11711 	if (all & NETIF_F_HW_CSUM)
11712 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11713 
11714 	return all;
11715 }
11716 EXPORT_SYMBOL(netdev_increment_features);
11717 
11718 static struct hlist_head * __net_init netdev_create_hash(void)
11719 {
11720 	int i;
11721 	struct hlist_head *hash;
11722 
11723 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11724 	if (hash != NULL)
11725 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11726 			INIT_HLIST_HEAD(&hash[i]);
11727 
11728 	return hash;
11729 }
11730 
11731 /* Initialize per network namespace state */
11732 static int __net_init netdev_init(struct net *net)
11733 {
11734 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11735 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11736 
11737 	INIT_LIST_HEAD(&net->dev_base_head);
11738 
11739 	net->dev_name_head = netdev_create_hash();
11740 	if (net->dev_name_head == NULL)
11741 		goto err_name;
11742 
11743 	net->dev_index_head = netdev_create_hash();
11744 	if (net->dev_index_head == NULL)
11745 		goto err_idx;
11746 
11747 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11748 
11749 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11750 
11751 	return 0;
11752 
11753 err_idx:
11754 	kfree(net->dev_name_head);
11755 err_name:
11756 	return -ENOMEM;
11757 }
11758 
11759 /**
11760  *	netdev_drivername - network driver for the device
11761  *	@dev: network device
11762  *
11763  *	Determine network driver for device.
11764  */
11765 const char *netdev_drivername(const struct net_device *dev)
11766 {
11767 	const struct device_driver *driver;
11768 	const struct device *parent;
11769 	const char *empty = "";
11770 
11771 	parent = dev->dev.parent;
11772 	if (!parent)
11773 		return empty;
11774 
11775 	driver = parent->driver;
11776 	if (driver && driver->name)
11777 		return driver->name;
11778 	return empty;
11779 }
11780 
11781 static void __netdev_printk(const char *level, const struct net_device *dev,
11782 			    struct va_format *vaf)
11783 {
11784 	if (dev && dev->dev.parent) {
11785 		dev_printk_emit(level[1] - '0',
11786 				dev->dev.parent,
11787 				"%s %s %s%s: %pV",
11788 				dev_driver_string(dev->dev.parent),
11789 				dev_name(dev->dev.parent),
11790 				netdev_name(dev), netdev_reg_state(dev),
11791 				vaf);
11792 	} else if (dev) {
11793 		printk("%s%s%s: %pV",
11794 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11795 	} else {
11796 		printk("%s(NULL net_device): %pV", level, vaf);
11797 	}
11798 }
11799 
11800 void netdev_printk(const char *level, const struct net_device *dev,
11801 		   const char *format, ...)
11802 {
11803 	struct va_format vaf;
11804 	va_list args;
11805 
11806 	va_start(args, format);
11807 
11808 	vaf.fmt = format;
11809 	vaf.va = &args;
11810 
11811 	__netdev_printk(level, dev, &vaf);
11812 
11813 	va_end(args);
11814 }
11815 EXPORT_SYMBOL(netdev_printk);
11816 
11817 #define define_netdev_printk_level(func, level)			\
11818 void func(const struct net_device *dev, const char *fmt, ...)	\
11819 {								\
11820 	struct va_format vaf;					\
11821 	va_list args;						\
11822 								\
11823 	va_start(args, fmt);					\
11824 								\
11825 	vaf.fmt = fmt;						\
11826 	vaf.va = &args;						\
11827 								\
11828 	__netdev_printk(level, dev, &vaf);			\
11829 								\
11830 	va_end(args);						\
11831 }								\
11832 EXPORT_SYMBOL(func);
11833 
11834 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11835 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11836 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11837 define_netdev_printk_level(netdev_err, KERN_ERR);
11838 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11839 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11840 define_netdev_printk_level(netdev_info, KERN_INFO);
11841 
11842 static void __net_exit netdev_exit(struct net *net)
11843 {
11844 	kfree(net->dev_name_head);
11845 	kfree(net->dev_index_head);
11846 	xa_destroy(&net->dev_by_index);
11847 	if (net != &init_net)
11848 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11849 }
11850 
11851 static struct pernet_operations __net_initdata netdev_net_ops = {
11852 	.init = netdev_init,
11853 	.exit = netdev_exit,
11854 };
11855 
11856 static void __net_exit default_device_exit_net(struct net *net)
11857 {
11858 	struct netdev_name_node *name_node, *tmp;
11859 	struct net_device *dev, *aux;
11860 	/*
11861 	 * Push all migratable network devices back to the
11862 	 * initial network namespace
11863 	 */
11864 	ASSERT_RTNL();
11865 	for_each_netdev_safe(net, dev, aux) {
11866 		int err;
11867 		char fb_name[IFNAMSIZ];
11868 
11869 		/* Ignore unmoveable devices (i.e. loopback) */
11870 		if (dev->netns_local)
11871 			continue;
11872 
11873 		/* Leave virtual devices for the generic cleanup */
11874 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11875 			continue;
11876 
11877 		/* Push remaining network devices to init_net */
11878 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11879 		if (netdev_name_in_use(&init_net, fb_name))
11880 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11881 
11882 		netdev_for_each_altname_safe(dev, name_node, tmp)
11883 			if (netdev_name_in_use(&init_net, name_node->name))
11884 				__netdev_name_node_alt_destroy(name_node);
11885 
11886 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11887 		if (err) {
11888 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11889 				 __func__, dev->name, err);
11890 			BUG();
11891 		}
11892 	}
11893 }
11894 
11895 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11896 {
11897 	/* At exit all network devices most be removed from a network
11898 	 * namespace.  Do this in the reverse order of registration.
11899 	 * Do this across as many network namespaces as possible to
11900 	 * improve batching efficiency.
11901 	 */
11902 	struct net_device *dev;
11903 	struct net *net;
11904 	LIST_HEAD(dev_kill_list);
11905 
11906 	rtnl_lock();
11907 	list_for_each_entry(net, net_list, exit_list) {
11908 		default_device_exit_net(net);
11909 		cond_resched();
11910 	}
11911 
11912 	list_for_each_entry(net, net_list, exit_list) {
11913 		for_each_netdev_reverse(net, dev) {
11914 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11915 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11916 			else
11917 				unregister_netdevice_queue(dev, &dev_kill_list);
11918 		}
11919 	}
11920 	unregister_netdevice_many(&dev_kill_list);
11921 	rtnl_unlock();
11922 }
11923 
11924 static struct pernet_operations __net_initdata default_device_ops = {
11925 	.exit_batch = default_device_exit_batch,
11926 };
11927 
11928 static void __init net_dev_struct_check(void)
11929 {
11930 	/* TX read-mostly hotpath */
11931 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
11932 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11933 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11934 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11935 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11936 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11937 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11938 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11939 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11940 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11941 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11942 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11943 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11944 #ifdef CONFIG_XPS
11945 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11946 #endif
11947 #ifdef CONFIG_NETFILTER_EGRESS
11948 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11949 #endif
11950 #ifdef CONFIG_NET_XGRESS
11951 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11952 #endif
11953 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11954 
11955 	/* TXRX read-mostly hotpath */
11956 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11957 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11958 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11959 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11960 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11961 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11962 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11963 
11964 	/* RX read-mostly hotpath */
11965 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11966 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11967 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11968 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11969 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11970 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11971 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11972 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11973 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11974 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11975 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11976 #ifdef CONFIG_NETPOLL
11977 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11978 #endif
11979 #ifdef CONFIG_NET_XGRESS
11980 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11981 #endif
11982 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11983 }
11984 
11985 /*
11986  *	Initialize the DEV module. At boot time this walks the device list and
11987  *	unhooks any devices that fail to initialise (normally hardware not
11988  *	present) and leaves us with a valid list of present and active devices.
11989  *
11990  */
11991 
11992 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
11993 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
11994 
11995 static int net_page_pool_create(int cpuid)
11996 {
11997 #if IS_ENABLED(CONFIG_PAGE_POOL)
11998 	struct page_pool_params page_pool_params = {
11999 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12000 		.flags = PP_FLAG_SYSTEM_POOL,
12001 		.nid = cpu_to_mem(cpuid),
12002 	};
12003 	struct page_pool *pp_ptr;
12004 
12005 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12006 	if (IS_ERR(pp_ptr))
12007 		return -ENOMEM;
12008 
12009 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12010 #endif
12011 	return 0;
12012 }
12013 
12014 static int backlog_napi_should_run(unsigned int cpu)
12015 {
12016 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12017 	struct napi_struct *napi = &sd->backlog;
12018 
12019 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12020 }
12021 
12022 static void run_backlog_napi(unsigned int cpu)
12023 {
12024 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12025 
12026 	napi_threaded_poll_loop(&sd->backlog);
12027 }
12028 
12029 static void backlog_napi_setup(unsigned int cpu)
12030 {
12031 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12032 	struct napi_struct *napi = &sd->backlog;
12033 
12034 	napi->thread = this_cpu_read(backlog_napi);
12035 	set_bit(NAPI_STATE_THREADED, &napi->state);
12036 }
12037 
12038 static struct smp_hotplug_thread backlog_threads = {
12039 	.store			= &backlog_napi,
12040 	.thread_should_run	= backlog_napi_should_run,
12041 	.thread_fn		= run_backlog_napi,
12042 	.thread_comm		= "backlog_napi/%u",
12043 	.setup			= backlog_napi_setup,
12044 };
12045 
12046 /*
12047  *       This is called single threaded during boot, so no need
12048  *       to take the rtnl semaphore.
12049  */
12050 static int __init net_dev_init(void)
12051 {
12052 	int i, rc = -ENOMEM;
12053 
12054 	BUG_ON(!dev_boot_phase);
12055 
12056 	net_dev_struct_check();
12057 
12058 	if (dev_proc_init())
12059 		goto out;
12060 
12061 	if (netdev_kobject_init())
12062 		goto out;
12063 
12064 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12065 		INIT_LIST_HEAD(&ptype_base[i]);
12066 
12067 	if (register_pernet_subsys(&netdev_net_ops))
12068 		goto out;
12069 
12070 	/*
12071 	 *	Initialise the packet receive queues.
12072 	 */
12073 
12074 	for_each_possible_cpu(i) {
12075 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12076 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12077 
12078 		INIT_WORK(flush, flush_backlog);
12079 
12080 		skb_queue_head_init(&sd->input_pkt_queue);
12081 		skb_queue_head_init(&sd->process_queue);
12082 #ifdef CONFIG_XFRM_OFFLOAD
12083 		skb_queue_head_init(&sd->xfrm_backlog);
12084 #endif
12085 		INIT_LIST_HEAD(&sd->poll_list);
12086 		sd->output_queue_tailp = &sd->output_queue;
12087 #ifdef CONFIG_RPS
12088 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12089 		sd->cpu = i;
12090 #endif
12091 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12092 		spin_lock_init(&sd->defer_lock);
12093 
12094 		init_gro_hash(&sd->backlog);
12095 		sd->backlog.poll = process_backlog;
12096 		sd->backlog.weight = weight_p;
12097 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12098 
12099 		if (net_page_pool_create(i))
12100 			goto out;
12101 	}
12102 	if (use_backlog_threads())
12103 		smpboot_register_percpu_thread(&backlog_threads);
12104 
12105 	dev_boot_phase = 0;
12106 
12107 	/* The loopback device is special if any other network devices
12108 	 * is present in a network namespace the loopback device must
12109 	 * be present. Since we now dynamically allocate and free the
12110 	 * loopback device ensure this invariant is maintained by
12111 	 * keeping the loopback device as the first device on the
12112 	 * list of network devices.  Ensuring the loopback devices
12113 	 * is the first device that appears and the last network device
12114 	 * that disappears.
12115 	 */
12116 	if (register_pernet_device(&loopback_net_ops))
12117 		goto out;
12118 
12119 	if (register_pernet_device(&default_device_ops))
12120 		goto out;
12121 
12122 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12123 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12124 
12125 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12126 				       NULL, dev_cpu_dead);
12127 	WARN_ON(rc < 0);
12128 	rc = 0;
12129 
12130 	/* avoid static key IPIs to isolated CPUs */
12131 	if (housekeeping_enabled(HK_TYPE_MISC))
12132 		net_enable_timestamp();
12133 out:
12134 	if (rc < 0) {
12135 		for_each_possible_cpu(i) {
12136 			struct page_pool *pp_ptr;
12137 
12138 			pp_ptr = per_cpu(system_page_pool, i);
12139 			if (!pp_ptr)
12140 				continue;
12141 
12142 			page_pool_destroy(pp_ptr);
12143 			per_cpu(system_page_pool, i) = NULL;
12144 		}
12145 	}
12146 
12147 	return rc;
12148 }
12149 
12150 subsys_initcall(net_dev_init);
12151