1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/skbuff.h> 96 #include <linux/kthread.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dsa.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/gro.h> 108 #include <net/pkt_sched.h> 109 #include <net/pkt_cls.h> 110 #include <net/checksum.h> 111 #include <net/xfrm.h> 112 #include <net/tcx.h> 113 #include <linux/highmem.h> 114 #include <linux/init.h> 115 #include <linux/module.h> 116 #include <linux/netpoll.h> 117 #include <linux/rcupdate.h> 118 #include <linux/delay.h> 119 #include <net/iw_handler.h> 120 #include <asm/current.h> 121 #include <linux/audit.h> 122 #include <linux/dmaengine.h> 123 #include <linux/err.h> 124 #include <linux/ctype.h> 125 #include <linux/if_arp.h> 126 #include <linux/if_vlan.h> 127 #include <linux/ip.h> 128 #include <net/ip.h> 129 #include <net/mpls.h> 130 #include <linux/ipv6.h> 131 #include <linux/in.h> 132 #include <linux/jhash.h> 133 #include <linux/random.h> 134 #include <trace/events/napi.h> 135 #include <trace/events/net.h> 136 #include <trace/events/skb.h> 137 #include <trace/events/qdisc.h> 138 #include <trace/events/xdp.h> 139 #include <linux/inetdevice.h> 140 #include <linux/cpu_rmap.h> 141 #include <linux/static_key.h> 142 #include <linux/hashtable.h> 143 #include <linux/vmalloc.h> 144 #include <linux/if_macvlan.h> 145 #include <linux/errqueue.h> 146 #include <linux/hrtimer.h> 147 #include <linux/netfilter_netdev.h> 148 #include <linux/crash_dump.h> 149 #include <linux/sctp.h> 150 #include <net/udp_tunnel.h> 151 #include <linux/net_namespace.h> 152 #include <linux/indirect_call_wrapper.h> 153 #include <net/devlink.h> 154 #include <linux/pm_runtime.h> 155 #include <linux/prandom.h> 156 #include <linux/once_lite.h> 157 #include <net/netdev_rx_queue.h> 158 #include <net/page_pool/types.h> 159 #include <net/page_pool/helpers.h> 160 #include <net/rps.h> 161 #include <linux/phy_link_topology.h> 162 163 #include "dev.h" 164 #include "net-sysfs.h" 165 166 static DEFINE_SPINLOCK(ptype_lock); 167 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 168 169 static int netif_rx_internal(struct sk_buff *skb); 170 static int call_netdevice_notifiers_extack(unsigned long val, 171 struct net_device *dev, 172 struct netlink_ext_ack *extack); 173 174 static DEFINE_MUTEX(ifalias_mutex); 175 176 /* protects napi_hash addition/deletion and napi_gen_id */ 177 static DEFINE_SPINLOCK(napi_hash_lock); 178 179 static unsigned int napi_gen_id = NR_CPUS; 180 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 181 182 static DECLARE_RWSEM(devnet_rename_sem); 183 184 static inline void dev_base_seq_inc(struct net *net) 185 { 186 unsigned int val = net->dev_base_seq + 1; 187 188 WRITE_ONCE(net->dev_base_seq, val ?: 1); 189 } 190 191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 192 { 193 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 194 195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 196 } 197 198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 199 { 200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 201 } 202 203 #ifndef CONFIG_PREEMPT_RT 204 205 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 206 207 static int __init setup_backlog_napi_threads(char *arg) 208 { 209 static_branch_enable(&use_backlog_threads_key); 210 return 0; 211 } 212 early_param("thread_backlog_napi", setup_backlog_napi_threads); 213 214 static bool use_backlog_threads(void) 215 { 216 return static_branch_unlikely(&use_backlog_threads_key); 217 } 218 219 #else 220 221 static bool use_backlog_threads(void) 222 { 223 return true; 224 } 225 226 #endif 227 228 static inline void backlog_lock_irq_save(struct softnet_data *sd, 229 unsigned long *flags) 230 { 231 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 232 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 233 else 234 local_irq_save(*flags); 235 } 236 237 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 238 { 239 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 240 spin_lock_irq(&sd->input_pkt_queue.lock); 241 else 242 local_irq_disable(); 243 } 244 245 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 246 unsigned long *flags) 247 { 248 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 249 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 250 else 251 local_irq_restore(*flags); 252 } 253 254 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 255 { 256 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 257 spin_unlock_irq(&sd->input_pkt_queue.lock); 258 else 259 local_irq_enable(); 260 } 261 262 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 263 const char *name) 264 { 265 struct netdev_name_node *name_node; 266 267 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 268 if (!name_node) 269 return NULL; 270 INIT_HLIST_NODE(&name_node->hlist); 271 name_node->dev = dev; 272 name_node->name = name; 273 return name_node; 274 } 275 276 static struct netdev_name_node * 277 netdev_name_node_head_alloc(struct net_device *dev) 278 { 279 struct netdev_name_node *name_node; 280 281 name_node = netdev_name_node_alloc(dev, dev->name); 282 if (!name_node) 283 return NULL; 284 INIT_LIST_HEAD(&name_node->list); 285 return name_node; 286 } 287 288 static void netdev_name_node_free(struct netdev_name_node *name_node) 289 { 290 kfree(name_node); 291 } 292 293 static void netdev_name_node_add(struct net *net, 294 struct netdev_name_node *name_node) 295 { 296 hlist_add_head_rcu(&name_node->hlist, 297 dev_name_hash(net, name_node->name)); 298 } 299 300 static void netdev_name_node_del(struct netdev_name_node *name_node) 301 { 302 hlist_del_rcu(&name_node->hlist); 303 } 304 305 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 306 const char *name) 307 { 308 struct hlist_head *head = dev_name_hash(net, name); 309 struct netdev_name_node *name_node; 310 311 hlist_for_each_entry(name_node, head, hlist) 312 if (!strcmp(name_node->name, name)) 313 return name_node; 314 return NULL; 315 } 316 317 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 318 const char *name) 319 { 320 struct hlist_head *head = dev_name_hash(net, name); 321 struct netdev_name_node *name_node; 322 323 hlist_for_each_entry_rcu(name_node, head, hlist) 324 if (!strcmp(name_node->name, name)) 325 return name_node; 326 return NULL; 327 } 328 329 bool netdev_name_in_use(struct net *net, const char *name) 330 { 331 return netdev_name_node_lookup(net, name); 332 } 333 EXPORT_SYMBOL(netdev_name_in_use); 334 335 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 336 { 337 struct netdev_name_node *name_node; 338 struct net *net = dev_net(dev); 339 340 name_node = netdev_name_node_lookup(net, name); 341 if (name_node) 342 return -EEXIST; 343 name_node = netdev_name_node_alloc(dev, name); 344 if (!name_node) 345 return -ENOMEM; 346 netdev_name_node_add(net, name_node); 347 /* The node that holds dev->name acts as a head of per-device list. */ 348 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 349 350 return 0; 351 } 352 353 static void netdev_name_node_alt_free(struct rcu_head *head) 354 { 355 struct netdev_name_node *name_node = 356 container_of(head, struct netdev_name_node, rcu); 357 358 kfree(name_node->name); 359 netdev_name_node_free(name_node); 360 } 361 362 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 363 { 364 netdev_name_node_del(name_node); 365 list_del(&name_node->list); 366 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 367 } 368 369 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 370 { 371 struct netdev_name_node *name_node; 372 struct net *net = dev_net(dev); 373 374 name_node = netdev_name_node_lookup(net, name); 375 if (!name_node) 376 return -ENOENT; 377 /* lookup might have found our primary name or a name belonging 378 * to another device. 379 */ 380 if (name_node == dev->name_node || name_node->dev != dev) 381 return -EINVAL; 382 383 __netdev_name_node_alt_destroy(name_node); 384 return 0; 385 } 386 387 static void netdev_name_node_alt_flush(struct net_device *dev) 388 { 389 struct netdev_name_node *name_node, *tmp; 390 391 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 392 list_del(&name_node->list); 393 netdev_name_node_alt_free(&name_node->rcu); 394 } 395 } 396 397 /* Device list insertion */ 398 static void list_netdevice(struct net_device *dev) 399 { 400 struct netdev_name_node *name_node; 401 struct net *net = dev_net(dev); 402 403 ASSERT_RTNL(); 404 405 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 406 netdev_name_node_add(net, dev->name_node); 407 hlist_add_head_rcu(&dev->index_hlist, 408 dev_index_hash(net, dev->ifindex)); 409 410 netdev_for_each_altname(dev, name_node) 411 netdev_name_node_add(net, name_node); 412 413 /* We reserved the ifindex, this can't fail */ 414 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 415 416 dev_base_seq_inc(net); 417 } 418 419 /* Device list removal 420 * caller must respect a RCU grace period before freeing/reusing dev 421 */ 422 static void unlist_netdevice(struct net_device *dev) 423 { 424 struct netdev_name_node *name_node; 425 struct net *net = dev_net(dev); 426 427 ASSERT_RTNL(); 428 429 xa_erase(&net->dev_by_index, dev->ifindex); 430 431 netdev_for_each_altname(dev, name_node) 432 netdev_name_node_del(name_node); 433 434 /* Unlink dev from the device chain */ 435 list_del_rcu(&dev->dev_list); 436 netdev_name_node_del(dev->name_node); 437 hlist_del_rcu(&dev->index_hlist); 438 439 dev_base_seq_inc(dev_net(dev)); 440 } 441 442 /* 443 * Our notifier list 444 */ 445 446 static RAW_NOTIFIER_HEAD(netdev_chain); 447 448 /* 449 * Device drivers call our routines to queue packets here. We empty the 450 * queue in the local softnet handler. 451 */ 452 453 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 454 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 455 }; 456 EXPORT_PER_CPU_SYMBOL(softnet_data); 457 458 /* Page_pool has a lockless array/stack to alloc/recycle pages. 459 * PP consumers must pay attention to run APIs in the appropriate context 460 * (e.g. NAPI context). 461 */ 462 static DEFINE_PER_CPU(struct page_pool *, system_page_pool); 463 464 #ifdef CONFIG_LOCKDEP 465 /* 466 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 467 * according to dev->type 468 */ 469 static const unsigned short netdev_lock_type[] = { 470 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 471 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 472 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 473 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 474 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 475 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 476 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 477 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 478 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 479 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 480 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 481 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 482 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 483 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 484 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 485 486 static const char *const netdev_lock_name[] = { 487 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 488 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 489 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 490 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 491 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 492 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 493 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 494 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 495 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 496 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 497 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 498 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 499 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 500 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 501 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 502 503 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 504 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 505 506 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 507 { 508 int i; 509 510 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 511 if (netdev_lock_type[i] == dev_type) 512 return i; 513 /* the last key is used by default */ 514 return ARRAY_SIZE(netdev_lock_type) - 1; 515 } 516 517 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 518 unsigned short dev_type) 519 { 520 int i; 521 522 i = netdev_lock_pos(dev_type); 523 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 524 netdev_lock_name[i]); 525 } 526 527 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 528 { 529 int i; 530 531 i = netdev_lock_pos(dev->type); 532 lockdep_set_class_and_name(&dev->addr_list_lock, 533 &netdev_addr_lock_key[i], 534 netdev_lock_name[i]); 535 } 536 #else 537 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 538 unsigned short dev_type) 539 { 540 } 541 542 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 543 { 544 } 545 #endif 546 547 /******************************************************************************* 548 * 549 * Protocol management and registration routines 550 * 551 *******************************************************************************/ 552 553 554 /* 555 * Add a protocol ID to the list. Now that the input handler is 556 * smarter we can dispense with all the messy stuff that used to be 557 * here. 558 * 559 * BEWARE!!! Protocol handlers, mangling input packets, 560 * MUST BE last in hash buckets and checking protocol handlers 561 * MUST start from promiscuous ptype_all chain in net_bh. 562 * It is true now, do not change it. 563 * Explanation follows: if protocol handler, mangling packet, will 564 * be the first on list, it is not able to sense, that packet 565 * is cloned and should be copied-on-write, so that it will 566 * change it and subsequent readers will get broken packet. 567 * --ANK (980803) 568 */ 569 570 static inline struct list_head *ptype_head(const struct packet_type *pt) 571 { 572 if (pt->type == htons(ETH_P_ALL)) 573 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all; 574 else 575 return pt->dev ? &pt->dev->ptype_specific : 576 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 577 } 578 579 /** 580 * dev_add_pack - add packet handler 581 * @pt: packet type declaration 582 * 583 * Add a protocol handler to the networking stack. The passed &packet_type 584 * is linked into kernel lists and may not be freed until it has been 585 * removed from the kernel lists. 586 * 587 * This call does not sleep therefore it can not 588 * guarantee all CPU's that are in middle of receiving packets 589 * will see the new packet type (until the next received packet). 590 */ 591 592 void dev_add_pack(struct packet_type *pt) 593 { 594 struct list_head *head = ptype_head(pt); 595 596 spin_lock(&ptype_lock); 597 list_add_rcu(&pt->list, head); 598 spin_unlock(&ptype_lock); 599 } 600 EXPORT_SYMBOL(dev_add_pack); 601 602 /** 603 * __dev_remove_pack - remove packet handler 604 * @pt: packet type declaration 605 * 606 * Remove a protocol handler that was previously added to the kernel 607 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 608 * from the kernel lists and can be freed or reused once this function 609 * returns. 610 * 611 * The packet type might still be in use by receivers 612 * and must not be freed until after all the CPU's have gone 613 * through a quiescent state. 614 */ 615 void __dev_remove_pack(struct packet_type *pt) 616 { 617 struct list_head *head = ptype_head(pt); 618 struct packet_type *pt1; 619 620 spin_lock(&ptype_lock); 621 622 list_for_each_entry(pt1, head, list) { 623 if (pt == pt1) { 624 list_del_rcu(&pt->list); 625 goto out; 626 } 627 } 628 629 pr_warn("dev_remove_pack: %p not found\n", pt); 630 out: 631 spin_unlock(&ptype_lock); 632 } 633 EXPORT_SYMBOL(__dev_remove_pack); 634 635 /** 636 * dev_remove_pack - remove packet handler 637 * @pt: packet type declaration 638 * 639 * Remove a protocol handler that was previously added to the kernel 640 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 641 * from the kernel lists and can be freed or reused once this function 642 * returns. 643 * 644 * This call sleeps to guarantee that no CPU is looking at the packet 645 * type after return. 646 */ 647 void dev_remove_pack(struct packet_type *pt) 648 { 649 __dev_remove_pack(pt); 650 651 synchronize_net(); 652 } 653 EXPORT_SYMBOL(dev_remove_pack); 654 655 656 /******************************************************************************* 657 * 658 * Device Interface Subroutines 659 * 660 *******************************************************************************/ 661 662 /** 663 * dev_get_iflink - get 'iflink' value of a interface 664 * @dev: targeted interface 665 * 666 * Indicates the ifindex the interface is linked to. 667 * Physical interfaces have the same 'ifindex' and 'iflink' values. 668 */ 669 670 int dev_get_iflink(const struct net_device *dev) 671 { 672 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 673 return dev->netdev_ops->ndo_get_iflink(dev); 674 675 return READ_ONCE(dev->ifindex); 676 } 677 EXPORT_SYMBOL(dev_get_iflink); 678 679 /** 680 * dev_fill_metadata_dst - Retrieve tunnel egress information. 681 * @dev: targeted interface 682 * @skb: The packet. 683 * 684 * For better visibility of tunnel traffic OVS needs to retrieve 685 * egress tunnel information for a packet. Following API allows 686 * user to get this info. 687 */ 688 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 689 { 690 struct ip_tunnel_info *info; 691 692 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 693 return -EINVAL; 694 695 info = skb_tunnel_info_unclone(skb); 696 if (!info) 697 return -ENOMEM; 698 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 699 return -EINVAL; 700 701 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 702 } 703 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 704 705 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 706 { 707 int k = stack->num_paths++; 708 709 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 710 return NULL; 711 712 return &stack->path[k]; 713 } 714 715 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 716 struct net_device_path_stack *stack) 717 { 718 const struct net_device *last_dev; 719 struct net_device_path_ctx ctx = { 720 .dev = dev, 721 }; 722 struct net_device_path *path; 723 int ret = 0; 724 725 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 726 stack->num_paths = 0; 727 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 728 last_dev = ctx.dev; 729 path = dev_fwd_path(stack); 730 if (!path) 731 return -1; 732 733 memset(path, 0, sizeof(struct net_device_path)); 734 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 735 if (ret < 0) 736 return -1; 737 738 if (WARN_ON_ONCE(last_dev == ctx.dev)) 739 return -1; 740 } 741 742 if (!ctx.dev) 743 return ret; 744 745 path = dev_fwd_path(stack); 746 if (!path) 747 return -1; 748 path->type = DEV_PATH_ETHERNET; 749 path->dev = ctx.dev; 750 751 return ret; 752 } 753 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 754 755 /** 756 * __dev_get_by_name - find a device by its name 757 * @net: the applicable net namespace 758 * @name: name to find 759 * 760 * Find an interface by name. Must be called under RTNL semaphore. 761 * If the name is found a pointer to the device is returned. 762 * If the name is not found then %NULL is returned. The 763 * reference counters are not incremented so the caller must be 764 * careful with locks. 765 */ 766 767 struct net_device *__dev_get_by_name(struct net *net, const char *name) 768 { 769 struct netdev_name_node *node_name; 770 771 node_name = netdev_name_node_lookup(net, name); 772 return node_name ? node_name->dev : NULL; 773 } 774 EXPORT_SYMBOL(__dev_get_by_name); 775 776 /** 777 * dev_get_by_name_rcu - find a device by its name 778 * @net: the applicable net namespace 779 * @name: name to find 780 * 781 * Find an interface by name. 782 * If the name is found a pointer to the device is returned. 783 * If the name is not found then %NULL is returned. 784 * The reference counters are not incremented so the caller must be 785 * careful with locks. The caller must hold RCU lock. 786 */ 787 788 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 789 { 790 struct netdev_name_node *node_name; 791 792 node_name = netdev_name_node_lookup_rcu(net, name); 793 return node_name ? node_name->dev : NULL; 794 } 795 EXPORT_SYMBOL(dev_get_by_name_rcu); 796 797 /* Deprecated for new users, call netdev_get_by_name() instead */ 798 struct net_device *dev_get_by_name(struct net *net, const char *name) 799 { 800 struct net_device *dev; 801 802 rcu_read_lock(); 803 dev = dev_get_by_name_rcu(net, name); 804 dev_hold(dev); 805 rcu_read_unlock(); 806 return dev; 807 } 808 EXPORT_SYMBOL(dev_get_by_name); 809 810 /** 811 * netdev_get_by_name() - find a device by its name 812 * @net: the applicable net namespace 813 * @name: name to find 814 * @tracker: tracking object for the acquired reference 815 * @gfp: allocation flags for the tracker 816 * 817 * Find an interface by name. This can be called from any 818 * context and does its own locking. The returned handle has 819 * the usage count incremented and the caller must use netdev_put() to 820 * release it when it is no longer needed. %NULL is returned if no 821 * matching device is found. 822 */ 823 struct net_device *netdev_get_by_name(struct net *net, const char *name, 824 netdevice_tracker *tracker, gfp_t gfp) 825 { 826 struct net_device *dev; 827 828 dev = dev_get_by_name(net, name); 829 if (dev) 830 netdev_tracker_alloc(dev, tracker, gfp); 831 return dev; 832 } 833 EXPORT_SYMBOL(netdev_get_by_name); 834 835 /** 836 * __dev_get_by_index - find a device by its ifindex 837 * @net: the applicable net namespace 838 * @ifindex: index of device 839 * 840 * Search for an interface by index. Returns %NULL if the device 841 * is not found or a pointer to the device. The device has not 842 * had its reference counter increased so the caller must be careful 843 * about locking. The caller must hold the RTNL semaphore. 844 */ 845 846 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 847 { 848 struct net_device *dev; 849 struct hlist_head *head = dev_index_hash(net, ifindex); 850 851 hlist_for_each_entry(dev, head, index_hlist) 852 if (dev->ifindex == ifindex) 853 return dev; 854 855 return NULL; 856 } 857 EXPORT_SYMBOL(__dev_get_by_index); 858 859 /** 860 * dev_get_by_index_rcu - find a device by its ifindex 861 * @net: the applicable net namespace 862 * @ifindex: index of device 863 * 864 * Search for an interface by index. Returns %NULL if the device 865 * is not found or a pointer to the device. The device has not 866 * had its reference counter increased so the caller must be careful 867 * about locking. The caller must hold RCU lock. 868 */ 869 870 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 871 { 872 struct net_device *dev; 873 struct hlist_head *head = dev_index_hash(net, ifindex); 874 875 hlist_for_each_entry_rcu(dev, head, index_hlist) 876 if (dev->ifindex == ifindex) 877 return dev; 878 879 return NULL; 880 } 881 EXPORT_SYMBOL(dev_get_by_index_rcu); 882 883 /* Deprecated for new users, call netdev_get_by_index() instead */ 884 struct net_device *dev_get_by_index(struct net *net, int ifindex) 885 { 886 struct net_device *dev; 887 888 rcu_read_lock(); 889 dev = dev_get_by_index_rcu(net, ifindex); 890 dev_hold(dev); 891 rcu_read_unlock(); 892 return dev; 893 } 894 EXPORT_SYMBOL(dev_get_by_index); 895 896 /** 897 * netdev_get_by_index() - find a device by its ifindex 898 * @net: the applicable net namespace 899 * @ifindex: index of device 900 * @tracker: tracking object for the acquired reference 901 * @gfp: allocation flags for the tracker 902 * 903 * Search for an interface by index. Returns NULL if the device 904 * is not found or a pointer to the device. The device returned has 905 * had a reference added and the pointer is safe until the user calls 906 * netdev_put() to indicate they have finished with it. 907 */ 908 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 909 netdevice_tracker *tracker, gfp_t gfp) 910 { 911 struct net_device *dev; 912 913 dev = dev_get_by_index(net, ifindex); 914 if (dev) 915 netdev_tracker_alloc(dev, tracker, gfp); 916 return dev; 917 } 918 EXPORT_SYMBOL(netdev_get_by_index); 919 920 /** 921 * dev_get_by_napi_id - find a device by napi_id 922 * @napi_id: ID of the NAPI struct 923 * 924 * Search for an interface by NAPI ID. Returns %NULL if the device 925 * is not found or a pointer to the device. The device has not had 926 * its reference counter increased so the caller must be careful 927 * about locking. The caller must hold RCU lock. 928 */ 929 930 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 931 { 932 struct napi_struct *napi; 933 934 WARN_ON_ONCE(!rcu_read_lock_held()); 935 936 if (napi_id < MIN_NAPI_ID) 937 return NULL; 938 939 napi = napi_by_id(napi_id); 940 941 return napi ? napi->dev : NULL; 942 } 943 EXPORT_SYMBOL(dev_get_by_napi_id); 944 945 static DEFINE_SEQLOCK(netdev_rename_lock); 946 947 void netdev_copy_name(struct net_device *dev, char *name) 948 { 949 unsigned int seq; 950 951 do { 952 seq = read_seqbegin(&netdev_rename_lock); 953 strscpy(name, dev->name, IFNAMSIZ); 954 } while (read_seqretry(&netdev_rename_lock, seq)); 955 } 956 957 /** 958 * netdev_get_name - get a netdevice name, knowing its ifindex. 959 * @net: network namespace 960 * @name: a pointer to the buffer where the name will be stored. 961 * @ifindex: the ifindex of the interface to get the name from. 962 */ 963 int netdev_get_name(struct net *net, char *name, int ifindex) 964 { 965 struct net_device *dev; 966 int ret; 967 968 rcu_read_lock(); 969 970 dev = dev_get_by_index_rcu(net, ifindex); 971 if (!dev) { 972 ret = -ENODEV; 973 goto out; 974 } 975 976 netdev_copy_name(dev, name); 977 978 ret = 0; 979 out: 980 rcu_read_unlock(); 981 return ret; 982 } 983 984 /** 985 * dev_getbyhwaddr_rcu - find a device by its hardware address 986 * @net: the applicable net namespace 987 * @type: media type of device 988 * @ha: hardware address 989 * 990 * Search for an interface by MAC address. Returns NULL if the device 991 * is not found or a pointer to the device. 992 * The caller must hold RCU or RTNL. 993 * The returned device has not had its ref count increased 994 * and the caller must therefore be careful about locking 995 * 996 */ 997 998 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 999 const char *ha) 1000 { 1001 struct net_device *dev; 1002 1003 for_each_netdev_rcu(net, dev) 1004 if (dev->type == type && 1005 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1006 return dev; 1007 1008 return NULL; 1009 } 1010 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1011 1012 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1013 { 1014 struct net_device *dev, *ret = NULL; 1015 1016 rcu_read_lock(); 1017 for_each_netdev_rcu(net, dev) 1018 if (dev->type == type) { 1019 dev_hold(dev); 1020 ret = dev; 1021 break; 1022 } 1023 rcu_read_unlock(); 1024 return ret; 1025 } 1026 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1027 1028 /** 1029 * __dev_get_by_flags - find any device with given flags 1030 * @net: the applicable net namespace 1031 * @if_flags: IFF_* values 1032 * @mask: bitmask of bits in if_flags to check 1033 * 1034 * Search for any interface with the given flags. Returns NULL if a device 1035 * is not found or a pointer to the device. Must be called inside 1036 * rtnl_lock(), and result refcount is unchanged. 1037 */ 1038 1039 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1040 unsigned short mask) 1041 { 1042 struct net_device *dev, *ret; 1043 1044 ASSERT_RTNL(); 1045 1046 ret = NULL; 1047 for_each_netdev(net, dev) { 1048 if (((dev->flags ^ if_flags) & mask) == 0) { 1049 ret = dev; 1050 break; 1051 } 1052 } 1053 return ret; 1054 } 1055 EXPORT_SYMBOL(__dev_get_by_flags); 1056 1057 /** 1058 * dev_valid_name - check if name is okay for network device 1059 * @name: name string 1060 * 1061 * Network device names need to be valid file names to 1062 * allow sysfs to work. We also disallow any kind of 1063 * whitespace. 1064 */ 1065 bool dev_valid_name(const char *name) 1066 { 1067 if (*name == '\0') 1068 return false; 1069 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1070 return false; 1071 if (!strcmp(name, ".") || !strcmp(name, "..")) 1072 return false; 1073 1074 while (*name) { 1075 if (*name == '/' || *name == ':' || isspace(*name)) 1076 return false; 1077 name++; 1078 } 1079 return true; 1080 } 1081 EXPORT_SYMBOL(dev_valid_name); 1082 1083 /** 1084 * __dev_alloc_name - allocate a name for a device 1085 * @net: network namespace to allocate the device name in 1086 * @name: name format string 1087 * @res: result name string 1088 * 1089 * Passed a format string - eg "lt%d" it will try and find a suitable 1090 * id. It scans list of devices to build up a free map, then chooses 1091 * the first empty slot. The caller must hold the dev_base or rtnl lock 1092 * while allocating the name and adding the device in order to avoid 1093 * duplicates. 1094 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1095 * Returns the number of the unit assigned or a negative errno code. 1096 */ 1097 1098 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1099 { 1100 int i = 0; 1101 const char *p; 1102 const int max_netdevices = 8*PAGE_SIZE; 1103 unsigned long *inuse; 1104 struct net_device *d; 1105 char buf[IFNAMSIZ]; 1106 1107 /* Verify the string as this thing may have come from the user. 1108 * There must be one "%d" and no other "%" characters. 1109 */ 1110 p = strchr(name, '%'); 1111 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1112 return -EINVAL; 1113 1114 /* Use one page as a bit array of possible slots */ 1115 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1116 if (!inuse) 1117 return -ENOMEM; 1118 1119 for_each_netdev(net, d) { 1120 struct netdev_name_node *name_node; 1121 1122 netdev_for_each_altname(d, name_node) { 1123 if (!sscanf(name_node->name, name, &i)) 1124 continue; 1125 if (i < 0 || i >= max_netdevices) 1126 continue; 1127 1128 /* avoid cases where sscanf is not exact inverse of printf */ 1129 snprintf(buf, IFNAMSIZ, name, i); 1130 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1131 __set_bit(i, inuse); 1132 } 1133 if (!sscanf(d->name, name, &i)) 1134 continue; 1135 if (i < 0 || i >= max_netdevices) 1136 continue; 1137 1138 /* avoid cases where sscanf is not exact inverse of printf */ 1139 snprintf(buf, IFNAMSIZ, name, i); 1140 if (!strncmp(buf, d->name, IFNAMSIZ)) 1141 __set_bit(i, inuse); 1142 } 1143 1144 i = find_first_zero_bit(inuse, max_netdevices); 1145 bitmap_free(inuse); 1146 if (i == max_netdevices) 1147 return -ENFILE; 1148 1149 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1150 strscpy(buf, name, IFNAMSIZ); 1151 snprintf(res, IFNAMSIZ, buf, i); 1152 return i; 1153 } 1154 1155 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1156 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1157 const char *want_name, char *out_name, 1158 int dup_errno) 1159 { 1160 if (!dev_valid_name(want_name)) 1161 return -EINVAL; 1162 1163 if (strchr(want_name, '%')) 1164 return __dev_alloc_name(net, want_name, out_name); 1165 1166 if (netdev_name_in_use(net, want_name)) 1167 return -dup_errno; 1168 if (out_name != want_name) 1169 strscpy(out_name, want_name, IFNAMSIZ); 1170 return 0; 1171 } 1172 1173 /** 1174 * dev_alloc_name - allocate a name for a device 1175 * @dev: device 1176 * @name: name format string 1177 * 1178 * Passed a format string - eg "lt%d" it will try and find a suitable 1179 * id. It scans list of devices to build up a free map, then chooses 1180 * the first empty slot. The caller must hold the dev_base or rtnl lock 1181 * while allocating the name and adding the device in order to avoid 1182 * duplicates. 1183 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1184 * Returns the number of the unit assigned or a negative errno code. 1185 */ 1186 1187 int dev_alloc_name(struct net_device *dev, const char *name) 1188 { 1189 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1190 } 1191 EXPORT_SYMBOL(dev_alloc_name); 1192 1193 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1194 const char *name) 1195 { 1196 int ret; 1197 1198 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1199 return ret < 0 ? ret : 0; 1200 } 1201 1202 /** 1203 * dev_change_name - change name of a device 1204 * @dev: device 1205 * @newname: name (or format string) must be at least IFNAMSIZ 1206 * 1207 * Change name of a device, can pass format strings "eth%d". 1208 * for wildcarding. 1209 */ 1210 int dev_change_name(struct net_device *dev, const char *newname) 1211 { 1212 unsigned char old_assign_type; 1213 char oldname[IFNAMSIZ]; 1214 int err = 0; 1215 int ret; 1216 struct net *net; 1217 1218 ASSERT_RTNL(); 1219 BUG_ON(!dev_net(dev)); 1220 1221 net = dev_net(dev); 1222 1223 down_write(&devnet_rename_sem); 1224 1225 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1226 up_write(&devnet_rename_sem); 1227 return 0; 1228 } 1229 1230 memcpy(oldname, dev->name, IFNAMSIZ); 1231 1232 write_seqlock_bh(&netdev_rename_lock); 1233 err = dev_get_valid_name(net, dev, newname); 1234 write_sequnlock_bh(&netdev_rename_lock); 1235 1236 if (err < 0) { 1237 up_write(&devnet_rename_sem); 1238 return err; 1239 } 1240 1241 if (oldname[0] && !strchr(oldname, '%')) 1242 netdev_info(dev, "renamed from %s%s\n", oldname, 1243 dev->flags & IFF_UP ? " (while UP)" : ""); 1244 1245 old_assign_type = dev->name_assign_type; 1246 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1247 1248 rollback: 1249 ret = device_rename(&dev->dev, dev->name); 1250 if (ret) { 1251 memcpy(dev->name, oldname, IFNAMSIZ); 1252 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1253 up_write(&devnet_rename_sem); 1254 return ret; 1255 } 1256 1257 up_write(&devnet_rename_sem); 1258 1259 netdev_adjacent_rename_links(dev, oldname); 1260 1261 netdev_name_node_del(dev->name_node); 1262 1263 synchronize_net(); 1264 1265 netdev_name_node_add(net, dev->name_node); 1266 1267 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1268 ret = notifier_to_errno(ret); 1269 1270 if (ret) { 1271 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1272 if (err >= 0) { 1273 err = ret; 1274 down_write(&devnet_rename_sem); 1275 write_seqlock_bh(&netdev_rename_lock); 1276 memcpy(dev->name, oldname, IFNAMSIZ); 1277 write_sequnlock_bh(&netdev_rename_lock); 1278 memcpy(oldname, newname, IFNAMSIZ); 1279 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1280 old_assign_type = NET_NAME_RENAMED; 1281 goto rollback; 1282 } else { 1283 netdev_err(dev, "name change rollback failed: %d\n", 1284 ret); 1285 } 1286 } 1287 1288 return err; 1289 } 1290 1291 /** 1292 * dev_set_alias - change ifalias of a device 1293 * @dev: device 1294 * @alias: name up to IFALIASZ 1295 * @len: limit of bytes to copy from info 1296 * 1297 * Set ifalias for a device, 1298 */ 1299 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1300 { 1301 struct dev_ifalias *new_alias = NULL; 1302 1303 if (len >= IFALIASZ) 1304 return -EINVAL; 1305 1306 if (len) { 1307 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1308 if (!new_alias) 1309 return -ENOMEM; 1310 1311 memcpy(new_alias->ifalias, alias, len); 1312 new_alias->ifalias[len] = 0; 1313 } 1314 1315 mutex_lock(&ifalias_mutex); 1316 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1317 mutex_is_locked(&ifalias_mutex)); 1318 mutex_unlock(&ifalias_mutex); 1319 1320 if (new_alias) 1321 kfree_rcu(new_alias, rcuhead); 1322 1323 return len; 1324 } 1325 EXPORT_SYMBOL(dev_set_alias); 1326 1327 /** 1328 * dev_get_alias - get ifalias of a device 1329 * @dev: device 1330 * @name: buffer to store name of ifalias 1331 * @len: size of buffer 1332 * 1333 * get ifalias for a device. Caller must make sure dev cannot go 1334 * away, e.g. rcu read lock or own a reference count to device. 1335 */ 1336 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1337 { 1338 const struct dev_ifalias *alias; 1339 int ret = 0; 1340 1341 rcu_read_lock(); 1342 alias = rcu_dereference(dev->ifalias); 1343 if (alias) 1344 ret = snprintf(name, len, "%s", alias->ifalias); 1345 rcu_read_unlock(); 1346 1347 return ret; 1348 } 1349 1350 /** 1351 * netdev_features_change - device changes features 1352 * @dev: device to cause notification 1353 * 1354 * Called to indicate a device has changed features. 1355 */ 1356 void netdev_features_change(struct net_device *dev) 1357 { 1358 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1359 } 1360 EXPORT_SYMBOL(netdev_features_change); 1361 1362 /** 1363 * netdev_state_change - device changes state 1364 * @dev: device to cause notification 1365 * 1366 * Called to indicate a device has changed state. This function calls 1367 * the notifier chains for netdev_chain and sends a NEWLINK message 1368 * to the routing socket. 1369 */ 1370 void netdev_state_change(struct net_device *dev) 1371 { 1372 if (dev->flags & IFF_UP) { 1373 struct netdev_notifier_change_info change_info = { 1374 .info.dev = dev, 1375 }; 1376 1377 call_netdevice_notifiers_info(NETDEV_CHANGE, 1378 &change_info.info); 1379 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1380 } 1381 } 1382 EXPORT_SYMBOL(netdev_state_change); 1383 1384 /** 1385 * __netdev_notify_peers - notify network peers about existence of @dev, 1386 * to be called when rtnl lock is already held. 1387 * @dev: network device 1388 * 1389 * Generate traffic such that interested network peers are aware of 1390 * @dev, such as by generating a gratuitous ARP. This may be used when 1391 * a device wants to inform the rest of the network about some sort of 1392 * reconfiguration such as a failover event or virtual machine 1393 * migration. 1394 */ 1395 void __netdev_notify_peers(struct net_device *dev) 1396 { 1397 ASSERT_RTNL(); 1398 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1399 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1400 } 1401 EXPORT_SYMBOL(__netdev_notify_peers); 1402 1403 /** 1404 * netdev_notify_peers - notify network peers about existence of @dev 1405 * @dev: network device 1406 * 1407 * Generate traffic such that interested network peers are aware of 1408 * @dev, such as by generating a gratuitous ARP. This may be used when 1409 * a device wants to inform the rest of the network about some sort of 1410 * reconfiguration such as a failover event or virtual machine 1411 * migration. 1412 */ 1413 void netdev_notify_peers(struct net_device *dev) 1414 { 1415 rtnl_lock(); 1416 __netdev_notify_peers(dev); 1417 rtnl_unlock(); 1418 } 1419 EXPORT_SYMBOL(netdev_notify_peers); 1420 1421 static int napi_threaded_poll(void *data); 1422 1423 static int napi_kthread_create(struct napi_struct *n) 1424 { 1425 int err = 0; 1426 1427 /* Create and wake up the kthread once to put it in 1428 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1429 * warning and work with loadavg. 1430 */ 1431 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1432 n->dev->name, n->napi_id); 1433 if (IS_ERR(n->thread)) { 1434 err = PTR_ERR(n->thread); 1435 pr_err("kthread_run failed with err %d\n", err); 1436 n->thread = NULL; 1437 } 1438 1439 return err; 1440 } 1441 1442 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1443 { 1444 const struct net_device_ops *ops = dev->netdev_ops; 1445 int ret; 1446 1447 ASSERT_RTNL(); 1448 dev_addr_check(dev); 1449 1450 if (!netif_device_present(dev)) { 1451 /* may be detached because parent is runtime-suspended */ 1452 if (dev->dev.parent) 1453 pm_runtime_resume(dev->dev.parent); 1454 if (!netif_device_present(dev)) 1455 return -ENODEV; 1456 } 1457 1458 /* Block netpoll from trying to do any rx path servicing. 1459 * If we don't do this there is a chance ndo_poll_controller 1460 * or ndo_poll may be running while we open the device 1461 */ 1462 netpoll_poll_disable(dev); 1463 1464 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1465 ret = notifier_to_errno(ret); 1466 if (ret) 1467 return ret; 1468 1469 set_bit(__LINK_STATE_START, &dev->state); 1470 1471 if (ops->ndo_validate_addr) 1472 ret = ops->ndo_validate_addr(dev); 1473 1474 if (!ret && ops->ndo_open) 1475 ret = ops->ndo_open(dev); 1476 1477 netpoll_poll_enable(dev); 1478 1479 if (ret) 1480 clear_bit(__LINK_STATE_START, &dev->state); 1481 else { 1482 dev->flags |= IFF_UP; 1483 dev_set_rx_mode(dev); 1484 dev_activate(dev); 1485 add_device_randomness(dev->dev_addr, dev->addr_len); 1486 } 1487 1488 return ret; 1489 } 1490 1491 /** 1492 * dev_open - prepare an interface for use. 1493 * @dev: device to open 1494 * @extack: netlink extended ack 1495 * 1496 * Takes a device from down to up state. The device's private open 1497 * function is invoked and then the multicast lists are loaded. Finally 1498 * the device is moved into the up state and a %NETDEV_UP message is 1499 * sent to the netdev notifier chain. 1500 * 1501 * Calling this function on an active interface is a nop. On a failure 1502 * a negative errno code is returned. 1503 */ 1504 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1505 { 1506 int ret; 1507 1508 if (dev->flags & IFF_UP) 1509 return 0; 1510 1511 ret = __dev_open(dev, extack); 1512 if (ret < 0) 1513 return ret; 1514 1515 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1516 call_netdevice_notifiers(NETDEV_UP, dev); 1517 1518 return ret; 1519 } 1520 EXPORT_SYMBOL(dev_open); 1521 1522 static void __dev_close_many(struct list_head *head) 1523 { 1524 struct net_device *dev; 1525 1526 ASSERT_RTNL(); 1527 might_sleep(); 1528 1529 list_for_each_entry(dev, head, close_list) { 1530 /* Temporarily disable netpoll until the interface is down */ 1531 netpoll_poll_disable(dev); 1532 1533 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1534 1535 clear_bit(__LINK_STATE_START, &dev->state); 1536 1537 /* Synchronize to scheduled poll. We cannot touch poll list, it 1538 * can be even on different cpu. So just clear netif_running(). 1539 * 1540 * dev->stop() will invoke napi_disable() on all of it's 1541 * napi_struct instances on this device. 1542 */ 1543 smp_mb__after_atomic(); /* Commit netif_running(). */ 1544 } 1545 1546 dev_deactivate_many(head); 1547 1548 list_for_each_entry(dev, head, close_list) { 1549 const struct net_device_ops *ops = dev->netdev_ops; 1550 1551 /* 1552 * Call the device specific close. This cannot fail. 1553 * Only if device is UP 1554 * 1555 * We allow it to be called even after a DETACH hot-plug 1556 * event. 1557 */ 1558 if (ops->ndo_stop) 1559 ops->ndo_stop(dev); 1560 1561 dev->flags &= ~IFF_UP; 1562 netpoll_poll_enable(dev); 1563 } 1564 } 1565 1566 static void __dev_close(struct net_device *dev) 1567 { 1568 LIST_HEAD(single); 1569 1570 list_add(&dev->close_list, &single); 1571 __dev_close_many(&single); 1572 list_del(&single); 1573 } 1574 1575 void dev_close_many(struct list_head *head, bool unlink) 1576 { 1577 struct net_device *dev, *tmp; 1578 1579 /* Remove the devices that don't need to be closed */ 1580 list_for_each_entry_safe(dev, tmp, head, close_list) 1581 if (!(dev->flags & IFF_UP)) 1582 list_del_init(&dev->close_list); 1583 1584 __dev_close_many(head); 1585 1586 list_for_each_entry_safe(dev, tmp, head, close_list) { 1587 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1588 call_netdevice_notifiers(NETDEV_DOWN, dev); 1589 if (unlink) 1590 list_del_init(&dev->close_list); 1591 } 1592 } 1593 EXPORT_SYMBOL(dev_close_many); 1594 1595 /** 1596 * dev_close - shutdown an interface. 1597 * @dev: device to shutdown 1598 * 1599 * This function moves an active device into down state. A 1600 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1601 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1602 * chain. 1603 */ 1604 void dev_close(struct net_device *dev) 1605 { 1606 if (dev->flags & IFF_UP) { 1607 LIST_HEAD(single); 1608 1609 list_add(&dev->close_list, &single); 1610 dev_close_many(&single, true); 1611 list_del(&single); 1612 } 1613 } 1614 EXPORT_SYMBOL(dev_close); 1615 1616 1617 /** 1618 * dev_disable_lro - disable Large Receive Offload on a device 1619 * @dev: device 1620 * 1621 * Disable Large Receive Offload (LRO) on a net device. Must be 1622 * called under RTNL. This is needed if received packets may be 1623 * forwarded to another interface. 1624 */ 1625 void dev_disable_lro(struct net_device *dev) 1626 { 1627 struct net_device *lower_dev; 1628 struct list_head *iter; 1629 1630 dev->wanted_features &= ~NETIF_F_LRO; 1631 netdev_update_features(dev); 1632 1633 if (unlikely(dev->features & NETIF_F_LRO)) 1634 netdev_WARN(dev, "failed to disable LRO!\n"); 1635 1636 netdev_for_each_lower_dev(dev, lower_dev, iter) 1637 dev_disable_lro(lower_dev); 1638 } 1639 EXPORT_SYMBOL(dev_disable_lro); 1640 1641 /** 1642 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1643 * @dev: device 1644 * 1645 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1646 * called under RTNL. This is needed if Generic XDP is installed on 1647 * the device. 1648 */ 1649 static void dev_disable_gro_hw(struct net_device *dev) 1650 { 1651 dev->wanted_features &= ~NETIF_F_GRO_HW; 1652 netdev_update_features(dev); 1653 1654 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1655 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1656 } 1657 1658 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1659 { 1660 #define N(val) \ 1661 case NETDEV_##val: \ 1662 return "NETDEV_" __stringify(val); 1663 switch (cmd) { 1664 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1665 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1666 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1667 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1668 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1669 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1670 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1671 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1672 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1673 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1674 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1675 N(XDP_FEAT_CHANGE) 1676 } 1677 #undef N 1678 return "UNKNOWN_NETDEV_EVENT"; 1679 } 1680 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1681 1682 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1683 struct net_device *dev) 1684 { 1685 struct netdev_notifier_info info = { 1686 .dev = dev, 1687 }; 1688 1689 return nb->notifier_call(nb, val, &info); 1690 } 1691 1692 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1693 struct net_device *dev) 1694 { 1695 int err; 1696 1697 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1698 err = notifier_to_errno(err); 1699 if (err) 1700 return err; 1701 1702 if (!(dev->flags & IFF_UP)) 1703 return 0; 1704 1705 call_netdevice_notifier(nb, NETDEV_UP, dev); 1706 return 0; 1707 } 1708 1709 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1710 struct net_device *dev) 1711 { 1712 if (dev->flags & IFF_UP) { 1713 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1714 dev); 1715 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1716 } 1717 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1718 } 1719 1720 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1721 struct net *net) 1722 { 1723 struct net_device *dev; 1724 int err; 1725 1726 for_each_netdev(net, dev) { 1727 err = call_netdevice_register_notifiers(nb, dev); 1728 if (err) 1729 goto rollback; 1730 } 1731 return 0; 1732 1733 rollback: 1734 for_each_netdev_continue_reverse(net, dev) 1735 call_netdevice_unregister_notifiers(nb, dev); 1736 return err; 1737 } 1738 1739 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1740 struct net *net) 1741 { 1742 struct net_device *dev; 1743 1744 for_each_netdev(net, dev) 1745 call_netdevice_unregister_notifiers(nb, dev); 1746 } 1747 1748 static int dev_boot_phase = 1; 1749 1750 /** 1751 * register_netdevice_notifier - register a network notifier block 1752 * @nb: notifier 1753 * 1754 * Register a notifier to be called when network device events occur. 1755 * The notifier passed is linked into the kernel structures and must 1756 * not be reused until it has been unregistered. A negative errno code 1757 * is returned on a failure. 1758 * 1759 * When registered all registration and up events are replayed 1760 * to the new notifier to allow device to have a race free 1761 * view of the network device list. 1762 */ 1763 1764 int register_netdevice_notifier(struct notifier_block *nb) 1765 { 1766 struct net *net; 1767 int err; 1768 1769 /* Close race with setup_net() and cleanup_net() */ 1770 down_write(&pernet_ops_rwsem); 1771 rtnl_lock(); 1772 err = raw_notifier_chain_register(&netdev_chain, nb); 1773 if (err) 1774 goto unlock; 1775 if (dev_boot_phase) 1776 goto unlock; 1777 for_each_net(net) { 1778 err = call_netdevice_register_net_notifiers(nb, net); 1779 if (err) 1780 goto rollback; 1781 } 1782 1783 unlock: 1784 rtnl_unlock(); 1785 up_write(&pernet_ops_rwsem); 1786 return err; 1787 1788 rollback: 1789 for_each_net_continue_reverse(net) 1790 call_netdevice_unregister_net_notifiers(nb, net); 1791 1792 raw_notifier_chain_unregister(&netdev_chain, nb); 1793 goto unlock; 1794 } 1795 EXPORT_SYMBOL(register_netdevice_notifier); 1796 1797 /** 1798 * unregister_netdevice_notifier - unregister a network notifier block 1799 * @nb: notifier 1800 * 1801 * Unregister a notifier previously registered by 1802 * register_netdevice_notifier(). The notifier is unlinked into the 1803 * kernel structures and may then be reused. A negative errno code 1804 * is returned on a failure. 1805 * 1806 * After unregistering unregister and down device events are synthesized 1807 * for all devices on the device list to the removed notifier to remove 1808 * the need for special case cleanup code. 1809 */ 1810 1811 int unregister_netdevice_notifier(struct notifier_block *nb) 1812 { 1813 struct net *net; 1814 int err; 1815 1816 /* Close race with setup_net() and cleanup_net() */ 1817 down_write(&pernet_ops_rwsem); 1818 rtnl_lock(); 1819 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1820 if (err) 1821 goto unlock; 1822 1823 for_each_net(net) 1824 call_netdevice_unregister_net_notifiers(nb, net); 1825 1826 unlock: 1827 rtnl_unlock(); 1828 up_write(&pernet_ops_rwsem); 1829 return err; 1830 } 1831 EXPORT_SYMBOL(unregister_netdevice_notifier); 1832 1833 static int __register_netdevice_notifier_net(struct net *net, 1834 struct notifier_block *nb, 1835 bool ignore_call_fail) 1836 { 1837 int err; 1838 1839 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1840 if (err) 1841 return err; 1842 if (dev_boot_phase) 1843 return 0; 1844 1845 err = call_netdevice_register_net_notifiers(nb, net); 1846 if (err && !ignore_call_fail) 1847 goto chain_unregister; 1848 1849 return 0; 1850 1851 chain_unregister: 1852 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1853 return err; 1854 } 1855 1856 static int __unregister_netdevice_notifier_net(struct net *net, 1857 struct notifier_block *nb) 1858 { 1859 int err; 1860 1861 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1862 if (err) 1863 return err; 1864 1865 call_netdevice_unregister_net_notifiers(nb, net); 1866 return 0; 1867 } 1868 1869 /** 1870 * register_netdevice_notifier_net - register a per-netns network notifier block 1871 * @net: network namespace 1872 * @nb: notifier 1873 * 1874 * Register a notifier to be called when network device events occur. 1875 * The notifier passed is linked into the kernel structures and must 1876 * not be reused until it has been unregistered. A negative errno code 1877 * is returned on a failure. 1878 * 1879 * When registered all registration and up events are replayed 1880 * to the new notifier to allow device to have a race free 1881 * view of the network device list. 1882 */ 1883 1884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1885 { 1886 int err; 1887 1888 rtnl_lock(); 1889 err = __register_netdevice_notifier_net(net, nb, false); 1890 rtnl_unlock(); 1891 return err; 1892 } 1893 EXPORT_SYMBOL(register_netdevice_notifier_net); 1894 1895 /** 1896 * unregister_netdevice_notifier_net - unregister a per-netns 1897 * network notifier block 1898 * @net: network namespace 1899 * @nb: notifier 1900 * 1901 * Unregister a notifier previously registered by 1902 * register_netdevice_notifier_net(). The notifier is unlinked from the 1903 * kernel structures and may then be reused. A negative errno code 1904 * is returned on a failure. 1905 * 1906 * After unregistering unregister and down device events are synthesized 1907 * for all devices on the device list to the removed notifier to remove 1908 * the need for special case cleanup code. 1909 */ 1910 1911 int unregister_netdevice_notifier_net(struct net *net, 1912 struct notifier_block *nb) 1913 { 1914 int err; 1915 1916 rtnl_lock(); 1917 err = __unregister_netdevice_notifier_net(net, nb); 1918 rtnl_unlock(); 1919 return err; 1920 } 1921 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1922 1923 static void __move_netdevice_notifier_net(struct net *src_net, 1924 struct net *dst_net, 1925 struct notifier_block *nb) 1926 { 1927 __unregister_netdevice_notifier_net(src_net, nb); 1928 __register_netdevice_notifier_net(dst_net, nb, true); 1929 } 1930 1931 int register_netdevice_notifier_dev_net(struct net_device *dev, 1932 struct notifier_block *nb, 1933 struct netdev_net_notifier *nn) 1934 { 1935 int err; 1936 1937 rtnl_lock(); 1938 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1939 if (!err) { 1940 nn->nb = nb; 1941 list_add(&nn->list, &dev->net_notifier_list); 1942 } 1943 rtnl_unlock(); 1944 return err; 1945 } 1946 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1947 1948 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1949 struct notifier_block *nb, 1950 struct netdev_net_notifier *nn) 1951 { 1952 int err; 1953 1954 rtnl_lock(); 1955 list_del(&nn->list); 1956 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1957 rtnl_unlock(); 1958 return err; 1959 } 1960 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1961 1962 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1963 struct net *net) 1964 { 1965 struct netdev_net_notifier *nn; 1966 1967 list_for_each_entry(nn, &dev->net_notifier_list, list) 1968 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 1969 } 1970 1971 /** 1972 * call_netdevice_notifiers_info - call all network notifier blocks 1973 * @val: value passed unmodified to notifier function 1974 * @info: notifier information data 1975 * 1976 * Call all network notifier blocks. Parameters and return value 1977 * are as for raw_notifier_call_chain(). 1978 */ 1979 1980 int call_netdevice_notifiers_info(unsigned long val, 1981 struct netdev_notifier_info *info) 1982 { 1983 struct net *net = dev_net(info->dev); 1984 int ret; 1985 1986 ASSERT_RTNL(); 1987 1988 /* Run per-netns notifier block chain first, then run the global one. 1989 * Hopefully, one day, the global one is going to be removed after 1990 * all notifier block registrators get converted to be per-netns. 1991 */ 1992 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1993 if (ret & NOTIFY_STOP_MASK) 1994 return ret; 1995 return raw_notifier_call_chain(&netdev_chain, val, info); 1996 } 1997 1998 /** 1999 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2000 * for and rollback on error 2001 * @val_up: value passed unmodified to notifier function 2002 * @val_down: value passed unmodified to the notifier function when 2003 * recovering from an error on @val_up 2004 * @info: notifier information data 2005 * 2006 * Call all per-netns network notifier blocks, but not notifier blocks on 2007 * the global notifier chain. Parameters and return value are as for 2008 * raw_notifier_call_chain_robust(). 2009 */ 2010 2011 static int 2012 call_netdevice_notifiers_info_robust(unsigned long val_up, 2013 unsigned long val_down, 2014 struct netdev_notifier_info *info) 2015 { 2016 struct net *net = dev_net(info->dev); 2017 2018 ASSERT_RTNL(); 2019 2020 return raw_notifier_call_chain_robust(&net->netdev_chain, 2021 val_up, val_down, info); 2022 } 2023 2024 static int call_netdevice_notifiers_extack(unsigned long val, 2025 struct net_device *dev, 2026 struct netlink_ext_ack *extack) 2027 { 2028 struct netdev_notifier_info info = { 2029 .dev = dev, 2030 .extack = extack, 2031 }; 2032 2033 return call_netdevice_notifiers_info(val, &info); 2034 } 2035 2036 /** 2037 * call_netdevice_notifiers - call all network notifier blocks 2038 * @val: value passed unmodified to notifier function 2039 * @dev: net_device pointer passed unmodified to notifier function 2040 * 2041 * Call all network notifier blocks. Parameters and return value 2042 * are as for raw_notifier_call_chain(). 2043 */ 2044 2045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2046 { 2047 return call_netdevice_notifiers_extack(val, dev, NULL); 2048 } 2049 EXPORT_SYMBOL(call_netdevice_notifiers); 2050 2051 /** 2052 * call_netdevice_notifiers_mtu - call all network notifier blocks 2053 * @val: value passed unmodified to notifier function 2054 * @dev: net_device pointer passed unmodified to notifier function 2055 * @arg: additional u32 argument passed to the notifier function 2056 * 2057 * Call all network notifier blocks. Parameters and return value 2058 * are as for raw_notifier_call_chain(). 2059 */ 2060 static int call_netdevice_notifiers_mtu(unsigned long val, 2061 struct net_device *dev, u32 arg) 2062 { 2063 struct netdev_notifier_info_ext info = { 2064 .info.dev = dev, 2065 .ext.mtu = arg, 2066 }; 2067 2068 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2069 2070 return call_netdevice_notifiers_info(val, &info.info); 2071 } 2072 2073 #ifdef CONFIG_NET_INGRESS 2074 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2075 2076 void net_inc_ingress_queue(void) 2077 { 2078 static_branch_inc(&ingress_needed_key); 2079 } 2080 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2081 2082 void net_dec_ingress_queue(void) 2083 { 2084 static_branch_dec(&ingress_needed_key); 2085 } 2086 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2087 #endif 2088 2089 #ifdef CONFIG_NET_EGRESS 2090 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2091 2092 void net_inc_egress_queue(void) 2093 { 2094 static_branch_inc(&egress_needed_key); 2095 } 2096 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2097 2098 void net_dec_egress_queue(void) 2099 { 2100 static_branch_dec(&egress_needed_key); 2101 } 2102 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2103 #endif 2104 2105 #ifdef CONFIG_NET_CLS_ACT 2106 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key); 2107 EXPORT_SYMBOL(tcf_bypass_check_needed_key); 2108 #endif 2109 2110 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2111 EXPORT_SYMBOL(netstamp_needed_key); 2112 #ifdef CONFIG_JUMP_LABEL 2113 static atomic_t netstamp_needed_deferred; 2114 static atomic_t netstamp_wanted; 2115 static void netstamp_clear(struct work_struct *work) 2116 { 2117 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2118 int wanted; 2119 2120 wanted = atomic_add_return(deferred, &netstamp_wanted); 2121 if (wanted > 0) 2122 static_branch_enable(&netstamp_needed_key); 2123 else 2124 static_branch_disable(&netstamp_needed_key); 2125 } 2126 static DECLARE_WORK(netstamp_work, netstamp_clear); 2127 #endif 2128 2129 void net_enable_timestamp(void) 2130 { 2131 #ifdef CONFIG_JUMP_LABEL 2132 int wanted = atomic_read(&netstamp_wanted); 2133 2134 while (wanted > 0) { 2135 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2136 return; 2137 } 2138 atomic_inc(&netstamp_needed_deferred); 2139 schedule_work(&netstamp_work); 2140 #else 2141 static_branch_inc(&netstamp_needed_key); 2142 #endif 2143 } 2144 EXPORT_SYMBOL(net_enable_timestamp); 2145 2146 void net_disable_timestamp(void) 2147 { 2148 #ifdef CONFIG_JUMP_LABEL 2149 int wanted = atomic_read(&netstamp_wanted); 2150 2151 while (wanted > 1) { 2152 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2153 return; 2154 } 2155 atomic_dec(&netstamp_needed_deferred); 2156 schedule_work(&netstamp_work); 2157 #else 2158 static_branch_dec(&netstamp_needed_key); 2159 #endif 2160 } 2161 EXPORT_SYMBOL(net_disable_timestamp); 2162 2163 static inline void net_timestamp_set(struct sk_buff *skb) 2164 { 2165 skb->tstamp = 0; 2166 skb->tstamp_type = SKB_CLOCK_REALTIME; 2167 if (static_branch_unlikely(&netstamp_needed_key)) 2168 skb->tstamp = ktime_get_real(); 2169 } 2170 2171 #define net_timestamp_check(COND, SKB) \ 2172 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2173 if ((COND) && !(SKB)->tstamp) \ 2174 (SKB)->tstamp = ktime_get_real(); \ 2175 } \ 2176 2177 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2178 { 2179 return __is_skb_forwardable(dev, skb, true); 2180 } 2181 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2182 2183 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2184 bool check_mtu) 2185 { 2186 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2187 2188 if (likely(!ret)) { 2189 skb->protocol = eth_type_trans(skb, dev); 2190 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2191 } 2192 2193 return ret; 2194 } 2195 2196 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2197 { 2198 return __dev_forward_skb2(dev, skb, true); 2199 } 2200 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2201 2202 /** 2203 * dev_forward_skb - loopback an skb to another netif 2204 * 2205 * @dev: destination network device 2206 * @skb: buffer to forward 2207 * 2208 * return values: 2209 * NET_RX_SUCCESS (no congestion) 2210 * NET_RX_DROP (packet was dropped, but freed) 2211 * 2212 * dev_forward_skb can be used for injecting an skb from the 2213 * start_xmit function of one device into the receive queue 2214 * of another device. 2215 * 2216 * The receiving device may be in another namespace, so 2217 * we have to clear all information in the skb that could 2218 * impact namespace isolation. 2219 */ 2220 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2221 { 2222 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2223 } 2224 EXPORT_SYMBOL_GPL(dev_forward_skb); 2225 2226 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2227 { 2228 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2229 } 2230 2231 static inline int deliver_skb(struct sk_buff *skb, 2232 struct packet_type *pt_prev, 2233 struct net_device *orig_dev) 2234 { 2235 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2236 return -ENOMEM; 2237 refcount_inc(&skb->users); 2238 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2239 } 2240 2241 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2242 struct packet_type **pt, 2243 struct net_device *orig_dev, 2244 __be16 type, 2245 struct list_head *ptype_list) 2246 { 2247 struct packet_type *ptype, *pt_prev = *pt; 2248 2249 list_for_each_entry_rcu(ptype, ptype_list, list) { 2250 if (ptype->type != type) 2251 continue; 2252 if (pt_prev) 2253 deliver_skb(skb, pt_prev, orig_dev); 2254 pt_prev = ptype; 2255 } 2256 *pt = pt_prev; 2257 } 2258 2259 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2260 { 2261 if (!ptype->af_packet_priv || !skb->sk) 2262 return false; 2263 2264 if (ptype->id_match) 2265 return ptype->id_match(ptype, skb->sk); 2266 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2267 return true; 2268 2269 return false; 2270 } 2271 2272 /** 2273 * dev_nit_active - return true if any network interface taps are in use 2274 * 2275 * @dev: network device to check for the presence of taps 2276 */ 2277 bool dev_nit_active(struct net_device *dev) 2278 { 2279 return !list_empty(&net_hotdata.ptype_all) || 2280 !list_empty(&dev->ptype_all); 2281 } 2282 EXPORT_SYMBOL_GPL(dev_nit_active); 2283 2284 /* 2285 * Support routine. Sends outgoing frames to any network 2286 * taps currently in use. 2287 */ 2288 2289 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2290 { 2291 struct list_head *ptype_list = &net_hotdata.ptype_all; 2292 struct packet_type *ptype, *pt_prev = NULL; 2293 struct sk_buff *skb2 = NULL; 2294 2295 rcu_read_lock(); 2296 again: 2297 list_for_each_entry_rcu(ptype, ptype_list, list) { 2298 if (READ_ONCE(ptype->ignore_outgoing)) 2299 continue; 2300 2301 /* Never send packets back to the socket 2302 * they originated from - MvS (miquels@drinkel.ow.org) 2303 */ 2304 if (skb_loop_sk(ptype, skb)) 2305 continue; 2306 2307 if (pt_prev) { 2308 deliver_skb(skb2, pt_prev, skb->dev); 2309 pt_prev = ptype; 2310 continue; 2311 } 2312 2313 /* need to clone skb, done only once */ 2314 skb2 = skb_clone(skb, GFP_ATOMIC); 2315 if (!skb2) 2316 goto out_unlock; 2317 2318 net_timestamp_set(skb2); 2319 2320 /* skb->nh should be correctly 2321 * set by sender, so that the second statement is 2322 * just protection against buggy protocols. 2323 */ 2324 skb_reset_mac_header(skb2); 2325 2326 if (skb_network_header(skb2) < skb2->data || 2327 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2328 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2329 ntohs(skb2->protocol), 2330 dev->name); 2331 skb_reset_network_header(skb2); 2332 } 2333 2334 skb2->transport_header = skb2->network_header; 2335 skb2->pkt_type = PACKET_OUTGOING; 2336 pt_prev = ptype; 2337 } 2338 2339 if (ptype_list == &net_hotdata.ptype_all) { 2340 ptype_list = &dev->ptype_all; 2341 goto again; 2342 } 2343 out_unlock: 2344 if (pt_prev) { 2345 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2346 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2347 else 2348 kfree_skb(skb2); 2349 } 2350 rcu_read_unlock(); 2351 } 2352 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2353 2354 /** 2355 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2356 * @dev: Network device 2357 * @txq: number of queues available 2358 * 2359 * If real_num_tx_queues is changed the tc mappings may no longer be 2360 * valid. To resolve this verify the tc mapping remains valid and if 2361 * not NULL the mapping. With no priorities mapping to this 2362 * offset/count pair it will no longer be used. In the worst case TC0 2363 * is invalid nothing can be done so disable priority mappings. If is 2364 * expected that drivers will fix this mapping if they can before 2365 * calling netif_set_real_num_tx_queues. 2366 */ 2367 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2368 { 2369 int i; 2370 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2371 2372 /* If TC0 is invalidated disable TC mapping */ 2373 if (tc->offset + tc->count > txq) { 2374 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2375 dev->num_tc = 0; 2376 return; 2377 } 2378 2379 /* Invalidated prio to tc mappings set to TC0 */ 2380 for (i = 1; i < TC_BITMASK + 1; i++) { 2381 int q = netdev_get_prio_tc_map(dev, i); 2382 2383 tc = &dev->tc_to_txq[q]; 2384 if (tc->offset + tc->count > txq) { 2385 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2386 i, q); 2387 netdev_set_prio_tc_map(dev, i, 0); 2388 } 2389 } 2390 } 2391 2392 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2393 { 2394 if (dev->num_tc) { 2395 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2396 int i; 2397 2398 /* walk through the TCs and see if it falls into any of them */ 2399 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2400 if ((txq - tc->offset) < tc->count) 2401 return i; 2402 } 2403 2404 /* didn't find it, just return -1 to indicate no match */ 2405 return -1; 2406 } 2407 2408 return 0; 2409 } 2410 EXPORT_SYMBOL(netdev_txq_to_tc); 2411 2412 #ifdef CONFIG_XPS 2413 static struct static_key xps_needed __read_mostly; 2414 static struct static_key xps_rxqs_needed __read_mostly; 2415 static DEFINE_MUTEX(xps_map_mutex); 2416 #define xmap_dereference(P) \ 2417 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2418 2419 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2420 struct xps_dev_maps *old_maps, int tci, u16 index) 2421 { 2422 struct xps_map *map = NULL; 2423 int pos; 2424 2425 map = xmap_dereference(dev_maps->attr_map[tci]); 2426 if (!map) 2427 return false; 2428 2429 for (pos = map->len; pos--;) { 2430 if (map->queues[pos] != index) 2431 continue; 2432 2433 if (map->len > 1) { 2434 map->queues[pos] = map->queues[--map->len]; 2435 break; 2436 } 2437 2438 if (old_maps) 2439 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2440 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2441 kfree_rcu(map, rcu); 2442 return false; 2443 } 2444 2445 return true; 2446 } 2447 2448 static bool remove_xps_queue_cpu(struct net_device *dev, 2449 struct xps_dev_maps *dev_maps, 2450 int cpu, u16 offset, u16 count) 2451 { 2452 int num_tc = dev_maps->num_tc; 2453 bool active = false; 2454 int tci; 2455 2456 for (tci = cpu * num_tc; num_tc--; tci++) { 2457 int i, j; 2458 2459 for (i = count, j = offset; i--; j++) { 2460 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2461 break; 2462 } 2463 2464 active |= i < 0; 2465 } 2466 2467 return active; 2468 } 2469 2470 static void reset_xps_maps(struct net_device *dev, 2471 struct xps_dev_maps *dev_maps, 2472 enum xps_map_type type) 2473 { 2474 static_key_slow_dec_cpuslocked(&xps_needed); 2475 if (type == XPS_RXQS) 2476 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2477 2478 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2479 2480 kfree_rcu(dev_maps, rcu); 2481 } 2482 2483 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2484 u16 offset, u16 count) 2485 { 2486 struct xps_dev_maps *dev_maps; 2487 bool active = false; 2488 int i, j; 2489 2490 dev_maps = xmap_dereference(dev->xps_maps[type]); 2491 if (!dev_maps) 2492 return; 2493 2494 for (j = 0; j < dev_maps->nr_ids; j++) 2495 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2496 if (!active) 2497 reset_xps_maps(dev, dev_maps, type); 2498 2499 if (type == XPS_CPUS) { 2500 for (i = offset + (count - 1); count--; i--) 2501 netdev_queue_numa_node_write( 2502 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2503 } 2504 } 2505 2506 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2507 u16 count) 2508 { 2509 if (!static_key_false(&xps_needed)) 2510 return; 2511 2512 cpus_read_lock(); 2513 mutex_lock(&xps_map_mutex); 2514 2515 if (static_key_false(&xps_rxqs_needed)) 2516 clean_xps_maps(dev, XPS_RXQS, offset, count); 2517 2518 clean_xps_maps(dev, XPS_CPUS, offset, count); 2519 2520 mutex_unlock(&xps_map_mutex); 2521 cpus_read_unlock(); 2522 } 2523 2524 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2525 { 2526 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2527 } 2528 2529 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2530 u16 index, bool is_rxqs_map) 2531 { 2532 struct xps_map *new_map; 2533 int alloc_len = XPS_MIN_MAP_ALLOC; 2534 int i, pos; 2535 2536 for (pos = 0; map && pos < map->len; pos++) { 2537 if (map->queues[pos] != index) 2538 continue; 2539 return map; 2540 } 2541 2542 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2543 if (map) { 2544 if (pos < map->alloc_len) 2545 return map; 2546 2547 alloc_len = map->alloc_len * 2; 2548 } 2549 2550 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2551 * map 2552 */ 2553 if (is_rxqs_map) 2554 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2555 else 2556 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2557 cpu_to_node(attr_index)); 2558 if (!new_map) 2559 return NULL; 2560 2561 for (i = 0; i < pos; i++) 2562 new_map->queues[i] = map->queues[i]; 2563 new_map->alloc_len = alloc_len; 2564 new_map->len = pos; 2565 2566 return new_map; 2567 } 2568 2569 /* Copy xps maps at a given index */ 2570 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2571 struct xps_dev_maps *new_dev_maps, int index, 2572 int tc, bool skip_tc) 2573 { 2574 int i, tci = index * dev_maps->num_tc; 2575 struct xps_map *map; 2576 2577 /* copy maps belonging to foreign traffic classes */ 2578 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2579 if (i == tc && skip_tc) 2580 continue; 2581 2582 /* fill in the new device map from the old device map */ 2583 map = xmap_dereference(dev_maps->attr_map[tci]); 2584 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2585 } 2586 } 2587 2588 /* Must be called under cpus_read_lock */ 2589 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2590 u16 index, enum xps_map_type type) 2591 { 2592 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2593 const unsigned long *online_mask = NULL; 2594 bool active = false, copy = false; 2595 int i, j, tci, numa_node_id = -2; 2596 int maps_sz, num_tc = 1, tc = 0; 2597 struct xps_map *map, *new_map; 2598 unsigned int nr_ids; 2599 2600 WARN_ON_ONCE(index >= dev->num_tx_queues); 2601 2602 if (dev->num_tc) { 2603 /* Do not allow XPS on subordinate device directly */ 2604 num_tc = dev->num_tc; 2605 if (num_tc < 0) 2606 return -EINVAL; 2607 2608 /* If queue belongs to subordinate dev use its map */ 2609 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2610 2611 tc = netdev_txq_to_tc(dev, index); 2612 if (tc < 0) 2613 return -EINVAL; 2614 } 2615 2616 mutex_lock(&xps_map_mutex); 2617 2618 dev_maps = xmap_dereference(dev->xps_maps[type]); 2619 if (type == XPS_RXQS) { 2620 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2621 nr_ids = dev->num_rx_queues; 2622 } else { 2623 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2624 if (num_possible_cpus() > 1) 2625 online_mask = cpumask_bits(cpu_online_mask); 2626 nr_ids = nr_cpu_ids; 2627 } 2628 2629 if (maps_sz < L1_CACHE_BYTES) 2630 maps_sz = L1_CACHE_BYTES; 2631 2632 /* The old dev_maps could be larger or smaller than the one we're 2633 * setting up now, as dev->num_tc or nr_ids could have been updated in 2634 * between. We could try to be smart, but let's be safe instead and only 2635 * copy foreign traffic classes if the two map sizes match. 2636 */ 2637 if (dev_maps && 2638 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2639 copy = true; 2640 2641 /* allocate memory for queue storage */ 2642 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2643 j < nr_ids;) { 2644 if (!new_dev_maps) { 2645 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2646 if (!new_dev_maps) { 2647 mutex_unlock(&xps_map_mutex); 2648 return -ENOMEM; 2649 } 2650 2651 new_dev_maps->nr_ids = nr_ids; 2652 new_dev_maps->num_tc = num_tc; 2653 } 2654 2655 tci = j * num_tc + tc; 2656 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2657 2658 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2659 if (!map) 2660 goto error; 2661 2662 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2663 } 2664 2665 if (!new_dev_maps) 2666 goto out_no_new_maps; 2667 2668 if (!dev_maps) { 2669 /* Increment static keys at most once per type */ 2670 static_key_slow_inc_cpuslocked(&xps_needed); 2671 if (type == XPS_RXQS) 2672 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2673 } 2674 2675 for (j = 0; j < nr_ids; j++) { 2676 bool skip_tc = false; 2677 2678 tci = j * num_tc + tc; 2679 if (netif_attr_test_mask(j, mask, nr_ids) && 2680 netif_attr_test_online(j, online_mask, nr_ids)) { 2681 /* add tx-queue to CPU/rx-queue maps */ 2682 int pos = 0; 2683 2684 skip_tc = true; 2685 2686 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2687 while ((pos < map->len) && (map->queues[pos] != index)) 2688 pos++; 2689 2690 if (pos == map->len) 2691 map->queues[map->len++] = index; 2692 #ifdef CONFIG_NUMA 2693 if (type == XPS_CPUS) { 2694 if (numa_node_id == -2) 2695 numa_node_id = cpu_to_node(j); 2696 else if (numa_node_id != cpu_to_node(j)) 2697 numa_node_id = -1; 2698 } 2699 #endif 2700 } 2701 2702 if (copy) 2703 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2704 skip_tc); 2705 } 2706 2707 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2708 2709 /* Cleanup old maps */ 2710 if (!dev_maps) 2711 goto out_no_old_maps; 2712 2713 for (j = 0; j < dev_maps->nr_ids; j++) { 2714 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2715 map = xmap_dereference(dev_maps->attr_map[tci]); 2716 if (!map) 2717 continue; 2718 2719 if (copy) { 2720 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2721 if (map == new_map) 2722 continue; 2723 } 2724 2725 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2726 kfree_rcu(map, rcu); 2727 } 2728 } 2729 2730 old_dev_maps = dev_maps; 2731 2732 out_no_old_maps: 2733 dev_maps = new_dev_maps; 2734 active = true; 2735 2736 out_no_new_maps: 2737 if (type == XPS_CPUS) 2738 /* update Tx queue numa node */ 2739 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2740 (numa_node_id >= 0) ? 2741 numa_node_id : NUMA_NO_NODE); 2742 2743 if (!dev_maps) 2744 goto out_no_maps; 2745 2746 /* removes tx-queue from unused CPUs/rx-queues */ 2747 for (j = 0; j < dev_maps->nr_ids; j++) { 2748 tci = j * dev_maps->num_tc; 2749 2750 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2751 if (i == tc && 2752 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2753 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2754 continue; 2755 2756 active |= remove_xps_queue(dev_maps, 2757 copy ? old_dev_maps : NULL, 2758 tci, index); 2759 } 2760 } 2761 2762 if (old_dev_maps) 2763 kfree_rcu(old_dev_maps, rcu); 2764 2765 /* free map if not active */ 2766 if (!active) 2767 reset_xps_maps(dev, dev_maps, type); 2768 2769 out_no_maps: 2770 mutex_unlock(&xps_map_mutex); 2771 2772 return 0; 2773 error: 2774 /* remove any maps that we added */ 2775 for (j = 0; j < nr_ids; j++) { 2776 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2777 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2778 map = copy ? 2779 xmap_dereference(dev_maps->attr_map[tci]) : 2780 NULL; 2781 if (new_map && new_map != map) 2782 kfree(new_map); 2783 } 2784 } 2785 2786 mutex_unlock(&xps_map_mutex); 2787 2788 kfree(new_dev_maps); 2789 return -ENOMEM; 2790 } 2791 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2792 2793 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2794 u16 index) 2795 { 2796 int ret; 2797 2798 cpus_read_lock(); 2799 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2800 cpus_read_unlock(); 2801 2802 return ret; 2803 } 2804 EXPORT_SYMBOL(netif_set_xps_queue); 2805 2806 #endif 2807 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2808 { 2809 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2810 2811 /* Unbind any subordinate channels */ 2812 while (txq-- != &dev->_tx[0]) { 2813 if (txq->sb_dev) 2814 netdev_unbind_sb_channel(dev, txq->sb_dev); 2815 } 2816 } 2817 2818 void netdev_reset_tc(struct net_device *dev) 2819 { 2820 #ifdef CONFIG_XPS 2821 netif_reset_xps_queues_gt(dev, 0); 2822 #endif 2823 netdev_unbind_all_sb_channels(dev); 2824 2825 /* Reset TC configuration of device */ 2826 dev->num_tc = 0; 2827 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2828 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2829 } 2830 EXPORT_SYMBOL(netdev_reset_tc); 2831 2832 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2833 { 2834 if (tc >= dev->num_tc) 2835 return -EINVAL; 2836 2837 #ifdef CONFIG_XPS 2838 netif_reset_xps_queues(dev, offset, count); 2839 #endif 2840 dev->tc_to_txq[tc].count = count; 2841 dev->tc_to_txq[tc].offset = offset; 2842 return 0; 2843 } 2844 EXPORT_SYMBOL(netdev_set_tc_queue); 2845 2846 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2847 { 2848 if (num_tc > TC_MAX_QUEUE) 2849 return -EINVAL; 2850 2851 #ifdef CONFIG_XPS 2852 netif_reset_xps_queues_gt(dev, 0); 2853 #endif 2854 netdev_unbind_all_sb_channels(dev); 2855 2856 dev->num_tc = num_tc; 2857 return 0; 2858 } 2859 EXPORT_SYMBOL(netdev_set_num_tc); 2860 2861 void netdev_unbind_sb_channel(struct net_device *dev, 2862 struct net_device *sb_dev) 2863 { 2864 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2865 2866 #ifdef CONFIG_XPS 2867 netif_reset_xps_queues_gt(sb_dev, 0); 2868 #endif 2869 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2870 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2871 2872 while (txq-- != &dev->_tx[0]) { 2873 if (txq->sb_dev == sb_dev) 2874 txq->sb_dev = NULL; 2875 } 2876 } 2877 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2878 2879 int netdev_bind_sb_channel_queue(struct net_device *dev, 2880 struct net_device *sb_dev, 2881 u8 tc, u16 count, u16 offset) 2882 { 2883 /* Make certain the sb_dev and dev are already configured */ 2884 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2885 return -EINVAL; 2886 2887 /* We cannot hand out queues we don't have */ 2888 if ((offset + count) > dev->real_num_tx_queues) 2889 return -EINVAL; 2890 2891 /* Record the mapping */ 2892 sb_dev->tc_to_txq[tc].count = count; 2893 sb_dev->tc_to_txq[tc].offset = offset; 2894 2895 /* Provide a way for Tx queue to find the tc_to_txq map or 2896 * XPS map for itself. 2897 */ 2898 while (count--) 2899 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2900 2901 return 0; 2902 } 2903 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2904 2905 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2906 { 2907 /* Do not use a multiqueue device to represent a subordinate channel */ 2908 if (netif_is_multiqueue(dev)) 2909 return -ENODEV; 2910 2911 /* We allow channels 1 - 32767 to be used for subordinate channels. 2912 * Channel 0 is meant to be "native" mode and used only to represent 2913 * the main root device. We allow writing 0 to reset the device back 2914 * to normal mode after being used as a subordinate channel. 2915 */ 2916 if (channel > S16_MAX) 2917 return -EINVAL; 2918 2919 dev->num_tc = -channel; 2920 2921 return 0; 2922 } 2923 EXPORT_SYMBOL(netdev_set_sb_channel); 2924 2925 /* 2926 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2927 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2928 */ 2929 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2930 { 2931 bool disabling; 2932 int rc; 2933 2934 disabling = txq < dev->real_num_tx_queues; 2935 2936 if (txq < 1 || txq > dev->num_tx_queues) 2937 return -EINVAL; 2938 2939 if (dev->reg_state == NETREG_REGISTERED || 2940 dev->reg_state == NETREG_UNREGISTERING) { 2941 ASSERT_RTNL(); 2942 2943 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2944 txq); 2945 if (rc) 2946 return rc; 2947 2948 if (dev->num_tc) 2949 netif_setup_tc(dev, txq); 2950 2951 dev_qdisc_change_real_num_tx(dev, txq); 2952 2953 dev->real_num_tx_queues = txq; 2954 2955 if (disabling) { 2956 synchronize_net(); 2957 qdisc_reset_all_tx_gt(dev, txq); 2958 #ifdef CONFIG_XPS 2959 netif_reset_xps_queues_gt(dev, txq); 2960 #endif 2961 } 2962 } else { 2963 dev->real_num_tx_queues = txq; 2964 } 2965 2966 return 0; 2967 } 2968 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2969 2970 #ifdef CONFIG_SYSFS 2971 /** 2972 * netif_set_real_num_rx_queues - set actual number of RX queues used 2973 * @dev: Network device 2974 * @rxq: Actual number of RX queues 2975 * 2976 * This must be called either with the rtnl_lock held or before 2977 * registration of the net device. Returns 0 on success, or a 2978 * negative error code. If called before registration, it always 2979 * succeeds. 2980 */ 2981 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2982 { 2983 int rc; 2984 2985 if (rxq < 1 || rxq > dev->num_rx_queues) 2986 return -EINVAL; 2987 2988 if (dev->reg_state == NETREG_REGISTERED) { 2989 ASSERT_RTNL(); 2990 2991 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2992 rxq); 2993 if (rc) 2994 return rc; 2995 } 2996 2997 dev->real_num_rx_queues = rxq; 2998 return 0; 2999 } 3000 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3001 #endif 3002 3003 /** 3004 * netif_set_real_num_queues - set actual number of RX and TX queues used 3005 * @dev: Network device 3006 * @txq: Actual number of TX queues 3007 * @rxq: Actual number of RX queues 3008 * 3009 * Set the real number of both TX and RX queues. 3010 * Does nothing if the number of queues is already correct. 3011 */ 3012 int netif_set_real_num_queues(struct net_device *dev, 3013 unsigned int txq, unsigned int rxq) 3014 { 3015 unsigned int old_rxq = dev->real_num_rx_queues; 3016 int err; 3017 3018 if (txq < 1 || txq > dev->num_tx_queues || 3019 rxq < 1 || rxq > dev->num_rx_queues) 3020 return -EINVAL; 3021 3022 /* Start from increases, so the error path only does decreases - 3023 * decreases can't fail. 3024 */ 3025 if (rxq > dev->real_num_rx_queues) { 3026 err = netif_set_real_num_rx_queues(dev, rxq); 3027 if (err) 3028 return err; 3029 } 3030 if (txq > dev->real_num_tx_queues) { 3031 err = netif_set_real_num_tx_queues(dev, txq); 3032 if (err) 3033 goto undo_rx; 3034 } 3035 if (rxq < dev->real_num_rx_queues) 3036 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3037 if (txq < dev->real_num_tx_queues) 3038 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3039 3040 return 0; 3041 undo_rx: 3042 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3043 return err; 3044 } 3045 EXPORT_SYMBOL(netif_set_real_num_queues); 3046 3047 /** 3048 * netif_set_tso_max_size() - set the max size of TSO frames supported 3049 * @dev: netdev to update 3050 * @size: max skb->len of a TSO frame 3051 * 3052 * Set the limit on the size of TSO super-frames the device can handle. 3053 * Unless explicitly set the stack will assume the value of 3054 * %GSO_LEGACY_MAX_SIZE. 3055 */ 3056 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3057 { 3058 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3059 if (size < READ_ONCE(dev->gso_max_size)) 3060 netif_set_gso_max_size(dev, size); 3061 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3062 netif_set_gso_ipv4_max_size(dev, size); 3063 } 3064 EXPORT_SYMBOL(netif_set_tso_max_size); 3065 3066 /** 3067 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3068 * @dev: netdev to update 3069 * @segs: max number of TCP segments 3070 * 3071 * Set the limit on the number of TCP segments the device can generate from 3072 * a single TSO super-frame. 3073 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3074 */ 3075 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3076 { 3077 dev->tso_max_segs = segs; 3078 if (segs < READ_ONCE(dev->gso_max_segs)) 3079 netif_set_gso_max_segs(dev, segs); 3080 } 3081 EXPORT_SYMBOL(netif_set_tso_max_segs); 3082 3083 /** 3084 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3085 * @to: netdev to update 3086 * @from: netdev from which to copy the limits 3087 */ 3088 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3089 { 3090 netif_set_tso_max_size(to, from->tso_max_size); 3091 netif_set_tso_max_segs(to, from->tso_max_segs); 3092 } 3093 EXPORT_SYMBOL(netif_inherit_tso_max); 3094 3095 /** 3096 * netif_get_num_default_rss_queues - default number of RSS queues 3097 * 3098 * Default value is the number of physical cores if there are only 1 or 2, or 3099 * divided by 2 if there are more. 3100 */ 3101 int netif_get_num_default_rss_queues(void) 3102 { 3103 cpumask_var_t cpus; 3104 int cpu, count = 0; 3105 3106 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3107 return 1; 3108 3109 cpumask_copy(cpus, cpu_online_mask); 3110 for_each_cpu(cpu, cpus) { 3111 ++count; 3112 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3113 } 3114 free_cpumask_var(cpus); 3115 3116 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3117 } 3118 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3119 3120 static void __netif_reschedule(struct Qdisc *q) 3121 { 3122 struct softnet_data *sd; 3123 unsigned long flags; 3124 3125 local_irq_save(flags); 3126 sd = this_cpu_ptr(&softnet_data); 3127 q->next_sched = NULL; 3128 *sd->output_queue_tailp = q; 3129 sd->output_queue_tailp = &q->next_sched; 3130 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3131 local_irq_restore(flags); 3132 } 3133 3134 void __netif_schedule(struct Qdisc *q) 3135 { 3136 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3137 __netif_reschedule(q); 3138 } 3139 EXPORT_SYMBOL(__netif_schedule); 3140 3141 struct dev_kfree_skb_cb { 3142 enum skb_drop_reason reason; 3143 }; 3144 3145 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3146 { 3147 return (struct dev_kfree_skb_cb *)skb->cb; 3148 } 3149 3150 void netif_schedule_queue(struct netdev_queue *txq) 3151 { 3152 rcu_read_lock(); 3153 if (!netif_xmit_stopped(txq)) { 3154 struct Qdisc *q = rcu_dereference(txq->qdisc); 3155 3156 __netif_schedule(q); 3157 } 3158 rcu_read_unlock(); 3159 } 3160 EXPORT_SYMBOL(netif_schedule_queue); 3161 3162 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3163 { 3164 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3165 struct Qdisc *q; 3166 3167 rcu_read_lock(); 3168 q = rcu_dereference(dev_queue->qdisc); 3169 __netif_schedule(q); 3170 rcu_read_unlock(); 3171 } 3172 } 3173 EXPORT_SYMBOL(netif_tx_wake_queue); 3174 3175 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3176 { 3177 unsigned long flags; 3178 3179 if (unlikely(!skb)) 3180 return; 3181 3182 if (likely(refcount_read(&skb->users) == 1)) { 3183 smp_rmb(); 3184 refcount_set(&skb->users, 0); 3185 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3186 return; 3187 } 3188 get_kfree_skb_cb(skb)->reason = reason; 3189 local_irq_save(flags); 3190 skb->next = __this_cpu_read(softnet_data.completion_queue); 3191 __this_cpu_write(softnet_data.completion_queue, skb); 3192 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3193 local_irq_restore(flags); 3194 } 3195 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3196 3197 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3198 { 3199 if (in_hardirq() || irqs_disabled()) 3200 dev_kfree_skb_irq_reason(skb, reason); 3201 else 3202 kfree_skb_reason(skb, reason); 3203 } 3204 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3205 3206 3207 /** 3208 * netif_device_detach - mark device as removed 3209 * @dev: network device 3210 * 3211 * Mark device as removed from system and therefore no longer available. 3212 */ 3213 void netif_device_detach(struct net_device *dev) 3214 { 3215 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3216 netif_running(dev)) { 3217 netif_tx_stop_all_queues(dev); 3218 } 3219 } 3220 EXPORT_SYMBOL(netif_device_detach); 3221 3222 /** 3223 * netif_device_attach - mark device as attached 3224 * @dev: network device 3225 * 3226 * Mark device as attached from system and restart if needed. 3227 */ 3228 void netif_device_attach(struct net_device *dev) 3229 { 3230 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3231 netif_running(dev)) { 3232 netif_tx_wake_all_queues(dev); 3233 __netdev_watchdog_up(dev); 3234 } 3235 } 3236 EXPORT_SYMBOL(netif_device_attach); 3237 3238 /* 3239 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3240 * to be used as a distribution range. 3241 */ 3242 static u16 skb_tx_hash(const struct net_device *dev, 3243 const struct net_device *sb_dev, 3244 struct sk_buff *skb) 3245 { 3246 u32 hash; 3247 u16 qoffset = 0; 3248 u16 qcount = dev->real_num_tx_queues; 3249 3250 if (dev->num_tc) { 3251 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3252 3253 qoffset = sb_dev->tc_to_txq[tc].offset; 3254 qcount = sb_dev->tc_to_txq[tc].count; 3255 if (unlikely(!qcount)) { 3256 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3257 sb_dev->name, qoffset, tc); 3258 qoffset = 0; 3259 qcount = dev->real_num_tx_queues; 3260 } 3261 } 3262 3263 if (skb_rx_queue_recorded(skb)) { 3264 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3265 hash = skb_get_rx_queue(skb); 3266 if (hash >= qoffset) 3267 hash -= qoffset; 3268 while (unlikely(hash >= qcount)) 3269 hash -= qcount; 3270 return hash + qoffset; 3271 } 3272 3273 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3274 } 3275 3276 void skb_warn_bad_offload(const struct sk_buff *skb) 3277 { 3278 static const netdev_features_t null_features; 3279 struct net_device *dev = skb->dev; 3280 const char *name = ""; 3281 3282 if (!net_ratelimit()) 3283 return; 3284 3285 if (dev) { 3286 if (dev->dev.parent) 3287 name = dev_driver_string(dev->dev.parent); 3288 else 3289 name = netdev_name(dev); 3290 } 3291 skb_dump(KERN_WARNING, skb, false); 3292 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3293 name, dev ? &dev->features : &null_features, 3294 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3295 } 3296 3297 /* 3298 * Invalidate hardware checksum when packet is to be mangled, and 3299 * complete checksum manually on outgoing path. 3300 */ 3301 int skb_checksum_help(struct sk_buff *skb) 3302 { 3303 __wsum csum; 3304 int ret = 0, offset; 3305 3306 if (skb->ip_summed == CHECKSUM_COMPLETE) 3307 goto out_set_summed; 3308 3309 if (unlikely(skb_is_gso(skb))) { 3310 skb_warn_bad_offload(skb); 3311 return -EINVAL; 3312 } 3313 3314 /* Before computing a checksum, we should make sure no frag could 3315 * be modified by an external entity : checksum could be wrong. 3316 */ 3317 if (skb_has_shared_frag(skb)) { 3318 ret = __skb_linearize(skb); 3319 if (ret) 3320 goto out; 3321 } 3322 3323 offset = skb_checksum_start_offset(skb); 3324 ret = -EINVAL; 3325 if (unlikely(offset >= skb_headlen(skb))) { 3326 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3327 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3328 offset, skb_headlen(skb)); 3329 goto out; 3330 } 3331 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3332 3333 offset += skb->csum_offset; 3334 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3335 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3336 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3337 offset + sizeof(__sum16), skb_headlen(skb)); 3338 goto out; 3339 } 3340 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3341 if (ret) 3342 goto out; 3343 3344 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3345 out_set_summed: 3346 skb->ip_summed = CHECKSUM_NONE; 3347 out: 3348 return ret; 3349 } 3350 EXPORT_SYMBOL(skb_checksum_help); 3351 3352 int skb_crc32c_csum_help(struct sk_buff *skb) 3353 { 3354 __le32 crc32c_csum; 3355 int ret = 0, offset, start; 3356 3357 if (skb->ip_summed != CHECKSUM_PARTIAL) 3358 goto out; 3359 3360 if (unlikely(skb_is_gso(skb))) 3361 goto out; 3362 3363 /* Before computing a checksum, we should make sure no frag could 3364 * be modified by an external entity : checksum could be wrong. 3365 */ 3366 if (unlikely(skb_has_shared_frag(skb))) { 3367 ret = __skb_linearize(skb); 3368 if (ret) 3369 goto out; 3370 } 3371 start = skb_checksum_start_offset(skb); 3372 offset = start + offsetof(struct sctphdr, checksum); 3373 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3374 ret = -EINVAL; 3375 goto out; 3376 } 3377 3378 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3379 if (ret) 3380 goto out; 3381 3382 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3383 skb->len - start, ~(__u32)0, 3384 crc32c_csum_stub)); 3385 *(__le32 *)(skb->data + offset) = crc32c_csum; 3386 skb_reset_csum_not_inet(skb); 3387 out: 3388 return ret; 3389 } 3390 EXPORT_SYMBOL(skb_crc32c_csum_help); 3391 3392 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3393 { 3394 __be16 type = skb->protocol; 3395 3396 /* Tunnel gso handlers can set protocol to ethernet. */ 3397 if (type == htons(ETH_P_TEB)) { 3398 struct ethhdr *eth; 3399 3400 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3401 return 0; 3402 3403 eth = (struct ethhdr *)skb->data; 3404 type = eth->h_proto; 3405 } 3406 3407 return vlan_get_protocol_and_depth(skb, type, depth); 3408 } 3409 3410 3411 /* Take action when hardware reception checksum errors are detected. */ 3412 #ifdef CONFIG_BUG 3413 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3414 { 3415 netdev_err(dev, "hw csum failure\n"); 3416 skb_dump(KERN_ERR, skb, true); 3417 dump_stack(); 3418 } 3419 3420 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3421 { 3422 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3423 } 3424 EXPORT_SYMBOL(netdev_rx_csum_fault); 3425 #endif 3426 3427 /* XXX: check that highmem exists at all on the given machine. */ 3428 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3429 { 3430 #ifdef CONFIG_HIGHMEM 3431 int i; 3432 3433 if (!(dev->features & NETIF_F_HIGHDMA)) { 3434 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3435 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3436 3437 if (PageHighMem(skb_frag_page(frag))) 3438 return 1; 3439 } 3440 } 3441 #endif 3442 return 0; 3443 } 3444 3445 /* If MPLS offload request, verify we are testing hardware MPLS features 3446 * instead of standard features for the netdev. 3447 */ 3448 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3449 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3450 netdev_features_t features, 3451 __be16 type) 3452 { 3453 if (eth_p_mpls(type)) 3454 features &= skb->dev->mpls_features; 3455 3456 return features; 3457 } 3458 #else 3459 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3460 netdev_features_t features, 3461 __be16 type) 3462 { 3463 return features; 3464 } 3465 #endif 3466 3467 static netdev_features_t harmonize_features(struct sk_buff *skb, 3468 netdev_features_t features) 3469 { 3470 __be16 type; 3471 3472 type = skb_network_protocol(skb, NULL); 3473 features = net_mpls_features(skb, features, type); 3474 3475 if (skb->ip_summed != CHECKSUM_NONE && 3476 !can_checksum_protocol(features, type)) { 3477 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3478 } 3479 if (illegal_highdma(skb->dev, skb)) 3480 features &= ~NETIF_F_SG; 3481 3482 return features; 3483 } 3484 3485 netdev_features_t passthru_features_check(struct sk_buff *skb, 3486 struct net_device *dev, 3487 netdev_features_t features) 3488 { 3489 return features; 3490 } 3491 EXPORT_SYMBOL(passthru_features_check); 3492 3493 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3494 struct net_device *dev, 3495 netdev_features_t features) 3496 { 3497 return vlan_features_check(skb, features); 3498 } 3499 3500 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3501 struct net_device *dev, 3502 netdev_features_t features) 3503 { 3504 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3505 3506 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3507 return features & ~NETIF_F_GSO_MASK; 3508 3509 if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size))) 3510 return features & ~NETIF_F_GSO_MASK; 3511 3512 if (!skb_shinfo(skb)->gso_type) { 3513 skb_warn_bad_offload(skb); 3514 return features & ~NETIF_F_GSO_MASK; 3515 } 3516 3517 /* Support for GSO partial features requires software 3518 * intervention before we can actually process the packets 3519 * so we need to strip support for any partial features now 3520 * and we can pull them back in after we have partially 3521 * segmented the frame. 3522 */ 3523 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3524 features &= ~dev->gso_partial_features; 3525 3526 /* Make sure to clear the IPv4 ID mangling feature if the 3527 * IPv4 header has the potential to be fragmented. 3528 */ 3529 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3530 struct iphdr *iph = skb->encapsulation ? 3531 inner_ip_hdr(skb) : ip_hdr(skb); 3532 3533 if (!(iph->frag_off & htons(IP_DF))) 3534 features &= ~NETIF_F_TSO_MANGLEID; 3535 } 3536 3537 return features; 3538 } 3539 3540 netdev_features_t netif_skb_features(struct sk_buff *skb) 3541 { 3542 struct net_device *dev = skb->dev; 3543 netdev_features_t features = dev->features; 3544 3545 if (skb_is_gso(skb)) 3546 features = gso_features_check(skb, dev, features); 3547 3548 /* If encapsulation offload request, verify we are testing 3549 * hardware encapsulation features instead of standard 3550 * features for the netdev 3551 */ 3552 if (skb->encapsulation) 3553 features &= dev->hw_enc_features; 3554 3555 if (skb_vlan_tagged(skb)) 3556 features = netdev_intersect_features(features, 3557 dev->vlan_features | 3558 NETIF_F_HW_VLAN_CTAG_TX | 3559 NETIF_F_HW_VLAN_STAG_TX); 3560 3561 if (dev->netdev_ops->ndo_features_check) 3562 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3563 features); 3564 else 3565 features &= dflt_features_check(skb, dev, features); 3566 3567 return harmonize_features(skb, features); 3568 } 3569 EXPORT_SYMBOL(netif_skb_features); 3570 3571 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3572 struct netdev_queue *txq, bool more) 3573 { 3574 unsigned int len; 3575 int rc; 3576 3577 if (dev_nit_active(dev)) 3578 dev_queue_xmit_nit(skb, dev); 3579 3580 len = skb->len; 3581 trace_net_dev_start_xmit(skb, dev); 3582 rc = netdev_start_xmit(skb, dev, txq, more); 3583 trace_net_dev_xmit(skb, rc, dev, len); 3584 3585 return rc; 3586 } 3587 3588 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3589 struct netdev_queue *txq, int *ret) 3590 { 3591 struct sk_buff *skb = first; 3592 int rc = NETDEV_TX_OK; 3593 3594 while (skb) { 3595 struct sk_buff *next = skb->next; 3596 3597 skb_mark_not_on_list(skb); 3598 rc = xmit_one(skb, dev, txq, next != NULL); 3599 if (unlikely(!dev_xmit_complete(rc))) { 3600 skb->next = next; 3601 goto out; 3602 } 3603 3604 skb = next; 3605 if (netif_tx_queue_stopped(txq) && skb) { 3606 rc = NETDEV_TX_BUSY; 3607 break; 3608 } 3609 } 3610 3611 out: 3612 *ret = rc; 3613 return skb; 3614 } 3615 3616 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3617 netdev_features_t features) 3618 { 3619 if (skb_vlan_tag_present(skb) && 3620 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3621 skb = __vlan_hwaccel_push_inside(skb); 3622 return skb; 3623 } 3624 3625 int skb_csum_hwoffload_help(struct sk_buff *skb, 3626 const netdev_features_t features) 3627 { 3628 if (unlikely(skb_csum_is_sctp(skb))) 3629 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3630 skb_crc32c_csum_help(skb); 3631 3632 if (features & NETIF_F_HW_CSUM) 3633 return 0; 3634 3635 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3636 switch (skb->csum_offset) { 3637 case offsetof(struct tcphdr, check): 3638 case offsetof(struct udphdr, check): 3639 return 0; 3640 } 3641 } 3642 3643 return skb_checksum_help(skb); 3644 } 3645 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3646 3647 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3648 { 3649 netdev_features_t features; 3650 3651 features = netif_skb_features(skb); 3652 skb = validate_xmit_vlan(skb, features); 3653 if (unlikely(!skb)) 3654 goto out_null; 3655 3656 skb = sk_validate_xmit_skb(skb, dev); 3657 if (unlikely(!skb)) 3658 goto out_null; 3659 3660 if (netif_needs_gso(skb, features)) { 3661 struct sk_buff *segs; 3662 3663 segs = skb_gso_segment(skb, features); 3664 if (IS_ERR(segs)) { 3665 goto out_kfree_skb; 3666 } else if (segs) { 3667 consume_skb(skb); 3668 skb = segs; 3669 } 3670 } else { 3671 if (skb_needs_linearize(skb, features) && 3672 __skb_linearize(skb)) 3673 goto out_kfree_skb; 3674 3675 /* If packet is not checksummed and device does not 3676 * support checksumming for this protocol, complete 3677 * checksumming here. 3678 */ 3679 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3680 if (skb->encapsulation) 3681 skb_set_inner_transport_header(skb, 3682 skb_checksum_start_offset(skb)); 3683 else 3684 skb_set_transport_header(skb, 3685 skb_checksum_start_offset(skb)); 3686 if (skb_csum_hwoffload_help(skb, features)) 3687 goto out_kfree_skb; 3688 } 3689 } 3690 3691 skb = validate_xmit_xfrm(skb, features, again); 3692 3693 return skb; 3694 3695 out_kfree_skb: 3696 kfree_skb(skb); 3697 out_null: 3698 dev_core_stats_tx_dropped_inc(dev); 3699 return NULL; 3700 } 3701 3702 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3703 { 3704 struct sk_buff *next, *head = NULL, *tail; 3705 3706 for (; skb != NULL; skb = next) { 3707 next = skb->next; 3708 skb_mark_not_on_list(skb); 3709 3710 /* in case skb won't be segmented, point to itself */ 3711 skb->prev = skb; 3712 3713 skb = validate_xmit_skb(skb, dev, again); 3714 if (!skb) 3715 continue; 3716 3717 if (!head) 3718 head = skb; 3719 else 3720 tail->next = skb; 3721 /* If skb was segmented, skb->prev points to 3722 * the last segment. If not, it still contains skb. 3723 */ 3724 tail = skb->prev; 3725 } 3726 return head; 3727 } 3728 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3729 3730 static void qdisc_pkt_len_init(struct sk_buff *skb) 3731 { 3732 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3733 3734 qdisc_skb_cb(skb)->pkt_len = skb->len; 3735 3736 /* To get more precise estimation of bytes sent on wire, 3737 * we add to pkt_len the headers size of all segments 3738 */ 3739 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3740 u16 gso_segs = shinfo->gso_segs; 3741 unsigned int hdr_len; 3742 3743 /* mac layer + network layer */ 3744 hdr_len = skb_transport_offset(skb); 3745 3746 /* + transport layer */ 3747 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3748 const struct tcphdr *th; 3749 struct tcphdr _tcphdr; 3750 3751 th = skb_header_pointer(skb, hdr_len, 3752 sizeof(_tcphdr), &_tcphdr); 3753 if (likely(th)) 3754 hdr_len += __tcp_hdrlen(th); 3755 } else { 3756 struct udphdr _udphdr; 3757 3758 if (skb_header_pointer(skb, hdr_len, 3759 sizeof(_udphdr), &_udphdr)) 3760 hdr_len += sizeof(struct udphdr); 3761 } 3762 3763 if (shinfo->gso_type & SKB_GSO_DODGY) 3764 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3765 shinfo->gso_size); 3766 3767 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3768 } 3769 } 3770 3771 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3772 struct sk_buff **to_free, 3773 struct netdev_queue *txq) 3774 { 3775 int rc; 3776 3777 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3778 if (rc == NET_XMIT_SUCCESS) 3779 trace_qdisc_enqueue(q, txq, skb); 3780 return rc; 3781 } 3782 3783 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3784 struct net_device *dev, 3785 struct netdev_queue *txq) 3786 { 3787 spinlock_t *root_lock = qdisc_lock(q); 3788 struct sk_buff *to_free = NULL; 3789 bool contended; 3790 int rc; 3791 3792 qdisc_calculate_pkt_len(skb, q); 3793 3794 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 3795 3796 if (q->flags & TCQ_F_NOLOCK) { 3797 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3798 qdisc_run_begin(q)) { 3799 /* Retest nolock_qdisc_is_empty() within the protection 3800 * of q->seqlock to protect from racing with requeuing. 3801 */ 3802 if (unlikely(!nolock_qdisc_is_empty(q))) { 3803 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3804 __qdisc_run(q); 3805 qdisc_run_end(q); 3806 3807 goto no_lock_out; 3808 } 3809 3810 qdisc_bstats_cpu_update(q, skb); 3811 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3812 !nolock_qdisc_is_empty(q)) 3813 __qdisc_run(q); 3814 3815 qdisc_run_end(q); 3816 return NET_XMIT_SUCCESS; 3817 } 3818 3819 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3820 qdisc_run(q); 3821 3822 no_lock_out: 3823 if (unlikely(to_free)) 3824 kfree_skb_list_reason(to_free, 3825 tcf_get_drop_reason(to_free)); 3826 return rc; 3827 } 3828 3829 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 3830 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 3831 return NET_XMIT_DROP; 3832 } 3833 /* 3834 * Heuristic to force contended enqueues to serialize on a 3835 * separate lock before trying to get qdisc main lock. 3836 * This permits qdisc->running owner to get the lock more 3837 * often and dequeue packets faster. 3838 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3839 * and then other tasks will only enqueue packets. The packets will be 3840 * sent after the qdisc owner is scheduled again. To prevent this 3841 * scenario the task always serialize on the lock. 3842 */ 3843 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3844 if (unlikely(contended)) 3845 spin_lock(&q->busylock); 3846 3847 spin_lock(root_lock); 3848 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3849 __qdisc_drop(skb, &to_free); 3850 rc = NET_XMIT_DROP; 3851 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3852 qdisc_run_begin(q)) { 3853 /* 3854 * This is a work-conserving queue; there are no old skbs 3855 * waiting to be sent out; and the qdisc is not running - 3856 * xmit the skb directly. 3857 */ 3858 3859 qdisc_bstats_update(q, skb); 3860 3861 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3862 if (unlikely(contended)) { 3863 spin_unlock(&q->busylock); 3864 contended = false; 3865 } 3866 __qdisc_run(q); 3867 } 3868 3869 qdisc_run_end(q); 3870 rc = NET_XMIT_SUCCESS; 3871 } else { 3872 WRITE_ONCE(q->owner, smp_processor_id()); 3873 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3874 WRITE_ONCE(q->owner, -1); 3875 if (qdisc_run_begin(q)) { 3876 if (unlikely(contended)) { 3877 spin_unlock(&q->busylock); 3878 contended = false; 3879 } 3880 __qdisc_run(q); 3881 qdisc_run_end(q); 3882 } 3883 } 3884 spin_unlock(root_lock); 3885 if (unlikely(to_free)) 3886 kfree_skb_list_reason(to_free, 3887 tcf_get_drop_reason(to_free)); 3888 if (unlikely(contended)) 3889 spin_unlock(&q->busylock); 3890 return rc; 3891 } 3892 3893 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3894 static void skb_update_prio(struct sk_buff *skb) 3895 { 3896 const struct netprio_map *map; 3897 const struct sock *sk; 3898 unsigned int prioidx; 3899 3900 if (skb->priority) 3901 return; 3902 map = rcu_dereference_bh(skb->dev->priomap); 3903 if (!map) 3904 return; 3905 sk = skb_to_full_sk(skb); 3906 if (!sk) 3907 return; 3908 3909 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3910 3911 if (prioidx < map->priomap_len) 3912 skb->priority = map->priomap[prioidx]; 3913 } 3914 #else 3915 #define skb_update_prio(skb) 3916 #endif 3917 3918 /** 3919 * dev_loopback_xmit - loop back @skb 3920 * @net: network namespace this loopback is happening in 3921 * @sk: sk needed to be a netfilter okfn 3922 * @skb: buffer to transmit 3923 */ 3924 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3925 { 3926 skb_reset_mac_header(skb); 3927 __skb_pull(skb, skb_network_offset(skb)); 3928 skb->pkt_type = PACKET_LOOPBACK; 3929 if (skb->ip_summed == CHECKSUM_NONE) 3930 skb->ip_summed = CHECKSUM_UNNECESSARY; 3931 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 3932 skb_dst_force(skb); 3933 netif_rx(skb); 3934 return 0; 3935 } 3936 EXPORT_SYMBOL(dev_loopback_xmit); 3937 3938 #ifdef CONFIG_NET_EGRESS 3939 static struct netdev_queue * 3940 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 3941 { 3942 int qm = skb_get_queue_mapping(skb); 3943 3944 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 3945 } 3946 3947 #ifndef CONFIG_PREEMPT_RT 3948 static bool netdev_xmit_txqueue_skipped(void) 3949 { 3950 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 3951 } 3952 3953 void netdev_xmit_skip_txqueue(bool skip) 3954 { 3955 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 3956 } 3957 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3958 3959 #else 3960 static bool netdev_xmit_txqueue_skipped(void) 3961 { 3962 return current->net_xmit.skip_txqueue; 3963 } 3964 3965 void netdev_xmit_skip_txqueue(bool skip) 3966 { 3967 current->net_xmit.skip_txqueue = skip; 3968 } 3969 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3970 #endif 3971 #endif /* CONFIG_NET_EGRESS */ 3972 3973 #ifdef CONFIG_NET_XGRESS 3974 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 3975 enum skb_drop_reason *drop_reason) 3976 { 3977 int ret = TC_ACT_UNSPEC; 3978 #ifdef CONFIG_NET_CLS_ACT 3979 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 3980 struct tcf_result res; 3981 3982 if (!miniq) 3983 return ret; 3984 3985 if (static_branch_unlikely(&tcf_bypass_check_needed_key)) { 3986 if (tcf_block_bypass_sw(miniq->block)) 3987 return ret; 3988 } 3989 3990 tc_skb_cb(skb)->mru = 0; 3991 tc_skb_cb(skb)->post_ct = false; 3992 tcf_set_drop_reason(skb, *drop_reason); 3993 3994 mini_qdisc_bstats_cpu_update(miniq, skb); 3995 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 3996 /* Only tcf related quirks below. */ 3997 switch (ret) { 3998 case TC_ACT_SHOT: 3999 *drop_reason = tcf_get_drop_reason(skb); 4000 mini_qdisc_qstats_cpu_drop(miniq); 4001 break; 4002 case TC_ACT_OK: 4003 case TC_ACT_RECLASSIFY: 4004 skb->tc_index = TC_H_MIN(res.classid); 4005 break; 4006 } 4007 #endif /* CONFIG_NET_CLS_ACT */ 4008 return ret; 4009 } 4010 4011 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4012 4013 void tcx_inc(void) 4014 { 4015 static_branch_inc(&tcx_needed_key); 4016 } 4017 4018 void tcx_dec(void) 4019 { 4020 static_branch_dec(&tcx_needed_key); 4021 } 4022 4023 static __always_inline enum tcx_action_base 4024 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4025 const bool needs_mac) 4026 { 4027 const struct bpf_mprog_fp *fp; 4028 const struct bpf_prog *prog; 4029 int ret = TCX_NEXT; 4030 4031 if (needs_mac) 4032 __skb_push(skb, skb->mac_len); 4033 bpf_mprog_foreach_prog(entry, fp, prog) { 4034 bpf_compute_data_pointers(skb); 4035 ret = bpf_prog_run(prog, skb); 4036 if (ret != TCX_NEXT) 4037 break; 4038 } 4039 if (needs_mac) 4040 __skb_pull(skb, skb->mac_len); 4041 return tcx_action_code(skb, ret); 4042 } 4043 4044 static __always_inline struct sk_buff * 4045 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4046 struct net_device *orig_dev, bool *another) 4047 { 4048 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4049 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4050 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4051 int sch_ret; 4052 4053 if (!entry) 4054 return skb; 4055 4056 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4057 if (*pt_prev) { 4058 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4059 *pt_prev = NULL; 4060 } 4061 4062 qdisc_skb_cb(skb)->pkt_len = skb->len; 4063 tcx_set_ingress(skb, true); 4064 4065 if (static_branch_unlikely(&tcx_needed_key)) { 4066 sch_ret = tcx_run(entry, skb, true); 4067 if (sch_ret != TC_ACT_UNSPEC) 4068 goto ingress_verdict; 4069 } 4070 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4071 ingress_verdict: 4072 switch (sch_ret) { 4073 case TC_ACT_REDIRECT: 4074 /* skb_mac_header check was done by BPF, so we can safely 4075 * push the L2 header back before redirecting to another 4076 * netdev. 4077 */ 4078 __skb_push(skb, skb->mac_len); 4079 if (skb_do_redirect(skb) == -EAGAIN) { 4080 __skb_pull(skb, skb->mac_len); 4081 *another = true; 4082 break; 4083 } 4084 *ret = NET_RX_SUCCESS; 4085 bpf_net_ctx_clear(bpf_net_ctx); 4086 return NULL; 4087 case TC_ACT_SHOT: 4088 kfree_skb_reason(skb, drop_reason); 4089 *ret = NET_RX_DROP; 4090 bpf_net_ctx_clear(bpf_net_ctx); 4091 return NULL; 4092 /* used by tc_run */ 4093 case TC_ACT_STOLEN: 4094 case TC_ACT_QUEUED: 4095 case TC_ACT_TRAP: 4096 consume_skb(skb); 4097 fallthrough; 4098 case TC_ACT_CONSUMED: 4099 *ret = NET_RX_SUCCESS; 4100 bpf_net_ctx_clear(bpf_net_ctx); 4101 return NULL; 4102 } 4103 bpf_net_ctx_clear(bpf_net_ctx); 4104 4105 return skb; 4106 } 4107 4108 static __always_inline struct sk_buff * 4109 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4110 { 4111 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4112 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4113 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4114 int sch_ret; 4115 4116 if (!entry) 4117 return skb; 4118 4119 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4120 4121 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4122 * already set by the caller. 4123 */ 4124 if (static_branch_unlikely(&tcx_needed_key)) { 4125 sch_ret = tcx_run(entry, skb, false); 4126 if (sch_ret != TC_ACT_UNSPEC) 4127 goto egress_verdict; 4128 } 4129 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4130 egress_verdict: 4131 switch (sch_ret) { 4132 case TC_ACT_REDIRECT: 4133 /* No need to push/pop skb's mac_header here on egress! */ 4134 skb_do_redirect(skb); 4135 *ret = NET_XMIT_SUCCESS; 4136 bpf_net_ctx_clear(bpf_net_ctx); 4137 return NULL; 4138 case TC_ACT_SHOT: 4139 kfree_skb_reason(skb, drop_reason); 4140 *ret = NET_XMIT_DROP; 4141 bpf_net_ctx_clear(bpf_net_ctx); 4142 return NULL; 4143 /* used by tc_run */ 4144 case TC_ACT_STOLEN: 4145 case TC_ACT_QUEUED: 4146 case TC_ACT_TRAP: 4147 consume_skb(skb); 4148 fallthrough; 4149 case TC_ACT_CONSUMED: 4150 *ret = NET_XMIT_SUCCESS; 4151 bpf_net_ctx_clear(bpf_net_ctx); 4152 return NULL; 4153 } 4154 bpf_net_ctx_clear(bpf_net_ctx); 4155 4156 return skb; 4157 } 4158 #else 4159 static __always_inline struct sk_buff * 4160 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4161 struct net_device *orig_dev, bool *another) 4162 { 4163 return skb; 4164 } 4165 4166 static __always_inline struct sk_buff * 4167 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4168 { 4169 return skb; 4170 } 4171 #endif /* CONFIG_NET_XGRESS */ 4172 4173 #ifdef CONFIG_XPS 4174 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4175 struct xps_dev_maps *dev_maps, unsigned int tci) 4176 { 4177 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4178 struct xps_map *map; 4179 int queue_index = -1; 4180 4181 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4182 return queue_index; 4183 4184 tci *= dev_maps->num_tc; 4185 tci += tc; 4186 4187 map = rcu_dereference(dev_maps->attr_map[tci]); 4188 if (map) { 4189 if (map->len == 1) 4190 queue_index = map->queues[0]; 4191 else 4192 queue_index = map->queues[reciprocal_scale( 4193 skb_get_hash(skb), map->len)]; 4194 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4195 queue_index = -1; 4196 } 4197 return queue_index; 4198 } 4199 #endif 4200 4201 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4202 struct sk_buff *skb) 4203 { 4204 #ifdef CONFIG_XPS 4205 struct xps_dev_maps *dev_maps; 4206 struct sock *sk = skb->sk; 4207 int queue_index = -1; 4208 4209 if (!static_key_false(&xps_needed)) 4210 return -1; 4211 4212 rcu_read_lock(); 4213 if (!static_key_false(&xps_rxqs_needed)) 4214 goto get_cpus_map; 4215 4216 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4217 if (dev_maps) { 4218 int tci = sk_rx_queue_get(sk); 4219 4220 if (tci >= 0) 4221 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4222 tci); 4223 } 4224 4225 get_cpus_map: 4226 if (queue_index < 0) { 4227 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4228 if (dev_maps) { 4229 unsigned int tci = skb->sender_cpu - 1; 4230 4231 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4232 tci); 4233 } 4234 } 4235 rcu_read_unlock(); 4236 4237 return queue_index; 4238 #else 4239 return -1; 4240 #endif 4241 } 4242 4243 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4244 struct net_device *sb_dev) 4245 { 4246 return 0; 4247 } 4248 EXPORT_SYMBOL(dev_pick_tx_zero); 4249 4250 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4251 struct net_device *sb_dev) 4252 { 4253 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4254 } 4255 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4256 4257 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4258 struct net_device *sb_dev) 4259 { 4260 struct sock *sk = skb->sk; 4261 int queue_index = sk_tx_queue_get(sk); 4262 4263 sb_dev = sb_dev ? : dev; 4264 4265 if (queue_index < 0 || skb->ooo_okay || 4266 queue_index >= dev->real_num_tx_queues) { 4267 int new_index = get_xps_queue(dev, sb_dev, skb); 4268 4269 if (new_index < 0) 4270 new_index = skb_tx_hash(dev, sb_dev, skb); 4271 4272 if (queue_index != new_index && sk && 4273 sk_fullsock(sk) && 4274 rcu_access_pointer(sk->sk_dst_cache)) 4275 sk_tx_queue_set(sk, new_index); 4276 4277 queue_index = new_index; 4278 } 4279 4280 return queue_index; 4281 } 4282 EXPORT_SYMBOL(netdev_pick_tx); 4283 4284 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4285 struct sk_buff *skb, 4286 struct net_device *sb_dev) 4287 { 4288 int queue_index = 0; 4289 4290 #ifdef CONFIG_XPS 4291 u32 sender_cpu = skb->sender_cpu - 1; 4292 4293 if (sender_cpu >= (u32)NR_CPUS) 4294 skb->sender_cpu = raw_smp_processor_id() + 1; 4295 #endif 4296 4297 if (dev->real_num_tx_queues != 1) { 4298 const struct net_device_ops *ops = dev->netdev_ops; 4299 4300 if (ops->ndo_select_queue) 4301 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4302 else 4303 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4304 4305 queue_index = netdev_cap_txqueue(dev, queue_index); 4306 } 4307 4308 skb_set_queue_mapping(skb, queue_index); 4309 return netdev_get_tx_queue(dev, queue_index); 4310 } 4311 4312 /** 4313 * __dev_queue_xmit() - transmit a buffer 4314 * @skb: buffer to transmit 4315 * @sb_dev: suboordinate device used for L2 forwarding offload 4316 * 4317 * Queue a buffer for transmission to a network device. The caller must 4318 * have set the device and priority and built the buffer before calling 4319 * this function. The function can be called from an interrupt. 4320 * 4321 * When calling this method, interrupts MUST be enabled. This is because 4322 * the BH enable code must have IRQs enabled so that it will not deadlock. 4323 * 4324 * Regardless of the return value, the skb is consumed, so it is currently 4325 * difficult to retry a send to this method. (You can bump the ref count 4326 * before sending to hold a reference for retry if you are careful.) 4327 * 4328 * Return: 4329 * * 0 - buffer successfully transmitted 4330 * * positive qdisc return code - NET_XMIT_DROP etc. 4331 * * negative errno - other errors 4332 */ 4333 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4334 { 4335 struct net_device *dev = skb->dev; 4336 struct netdev_queue *txq = NULL; 4337 struct Qdisc *q; 4338 int rc = -ENOMEM; 4339 bool again = false; 4340 4341 skb_reset_mac_header(skb); 4342 skb_assert_len(skb); 4343 4344 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4345 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4346 4347 /* Disable soft irqs for various locks below. Also 4348 * stops preemption for RCU. 4349 */ 4350 rcu_read_lock_bh(); 4351 4352 skb_update_prio(skb); 4353 4354 qdisc_pkt_len_init(skb); 4355 tcx_set_ingress(skb, false); 4356 #ifdef CONFIG_NET_EGRESS 4357 if (static_branch_unlikely(&egress_needed_key)) { 4358 if (nf_hook_egress_active()) { 4359 skb = nf_hook_egress(skb, &rc, dev); 4360 if (!skb) 4361 goto out; 4362 } 4363 4364 netdev_xmit_skip_txqueue(false); 4365 4366 nf_skip_egress(skb, true); 4367 skb = sch_handle_egress(skb, &rc, dev); 4368 if (!skb) 4369 goto out; 4370 nf_skip_egress(skb, false); 4371 4372 if (netdev_xmit_txqueue_skipped()) 4373 txq = netdev_tx_queue_mapping(dev, skb); 4374 } 4375 #endif 4376 /* If device/qdisc don't need skb->dst, release it right now while 4377 * its hot in this cpu cache. 4378 */ 4379 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4380 skb_dst_drop(skb); 4381 else 4382 skb_dst_force(skb); 4383 4384 if (!txq) 4385 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4386 4387 q = rcu_dereference_bh(txq->qdisc); 4388 4389 trace_net_dev_queue(skb); 4390 if (q->enqueue) { 4391 rc = __dev_xmit_skb(skb, q, dev, txq); 4392 goto out; 4393 } 4394 4395 /* The device has no queue. Common case for software devices: 4396 * loopback, all the sorts of tunnels... 4397 4398 * Really, it is unlikely that netif_tx_lock protection is necessary 4399 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4400 * counters.) 4401 * However, it is possible, that they rely on protection 4402 * made by us here. 4403 4404 * Check this and shot the lock. It is not prone from deadlocks. 4405 *Either shot noqueue qdisc, it is even simpler 8) 4406 */ 4407 if (dev->flags & IFF_UP) { 4408 int cpu = smp_processor_id(); /* ok because BHs are off */ 4409 4410 /* Other cpus might concurrently change txq->xmit_lock_owner 4411 * to -1 or to their cpu id, but not to our id. 4412 */ 4413 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4414 if (dev_xmit_recursion()) 4415 goto recursion_alert; 4416 4417 skb = validate_xmit_skb(skb, dev, &again); 4418 if (!skb) 4419 goto out; 4420 4421 HARD_TX_LOCK(dev, txq, cpu); 4422 4423 if (!netif_xmit_stopped(txq)) { 4424 dev_xmit_recursion_inc(); 4425 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4426 dev_xmit_recursion_dec(); 4427 if (dev_xmit_complete(rc)) { 4428 HARD_TX_UNLOCK(dev, txq); 4429 goto out; 4430 } 4431 } 4432 HARD_TX_UNLOCK(dev, txq); 4433 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4434 dev->name); 4435 } else { 4436 /* Recursion is detected! It is possible, 4437 * unfortunately 4438 */ 4439 recursion_alert: 4440 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4441 dev->name); 4442 } 4443 } 4444 4445 rc = -ENETDOWN; 4446 rcu_read_unlock_bh(); 4447 4448 dev_core_stats_tx_dropped_inc(dev); 4449 kfree_skb_list(skb); 4450 return rc; 4451 out: 4452 rcu_read_unlock_bh(); 4453 return rc; 4454 } 4455 EXPORT_SYMBOL(__dev_queue_xmit); 4456 4457 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4458 { 4459 struct net_device *dev = skb->dev; 4460 struct sk_buff *orig_skb = skb; 4461 struct netdev_queue *txq; 4462 int ret = NETDEV_TX_BUSY; 4463 bool again = false; 4464 4465 if (unlikely(!netif_running(dev) || 4466 !netif_carrier_ok(dev))) 4467 goto drop; 4468 4469 skb = validate_xmit_skb_list(skb, dev, &again); 4470 if (skb != orig_skb) 4471 goto drop; 4472 4473 skb_set_queue_mapping(skb, queue_id); 4474 txq = skb_get_tx_queue(dev, skb); 4475 4476 local_bh_disable(); 4477 4478 dev_xmit_recursion_inc(); 4479 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4480 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4481 ret = netdev_start_xmit(skb, dev, txq, false); 4482 HARD_TX_UNLOCK(dev, txq); 4483 dev_xmit_recursion_dec(); 4484 4485 local_bh_enable(); 4486 return ret; 4487 drop: 4488 dev_core_stats_tx_dropped_inc(dev); 4489 kfree_skb_list(skb); 4490 return NET_XMIT_DROP; 4491 } 4492 EXPORT_SYMBOL(__dev_direct_xmit); 4493 4494 /************************************************************************* 4495 * Receiver routines 4496 *************************************************************************/ 4497 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4498 4499 int weight_p __read_mostly = 64; /* old backlog weight */ 4500 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4501 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4502 4503 /* Called with irq disabled */ 4504 static inline void ____napi_schedule(struct softnet_data *sd, 4505 struct napi_struct *napi) 4506 { 4507 struct task_struct *thread; 4508 4509 lockdep_assert_irqs_disabled(); 4510 4511 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4512 /* Paired with smp_mb__before_atomic() in 4513 * napi_enable()/dev_set_threaded(). 4514 * Use READ_ONCE() to guarantee a complete 4515 * read on napi->thread. Only call 4516 * wake_up_process() when it's not NULL. 4517 */ 4518 thread = READ_ONCE(napi->thread); 4519 if (thread) { 4520 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4521 goto use_local_napi; 4522 4523 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4524 wake_up_process(thread); 4525 return; 4526 } 4527 } 4528 4529 use_local_napi: 4530 list_add_tail(&napi->poll_list, &sd->poll_list); 4531 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4532 /* If not called from net_rx_action() 4533 * we have to raise NET_RX_SOFTIRQ. 4534 */ 4535 if (!sd->in_net_rx_action) 4536 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4537 } 4538 4539 #ifdef CONFIG_RPS 4540 4541 struct static_key_false rps_needed __read_mostly; 4542 EXPORT_SYMBOL(rps_needed); 4543 struct static_key_false rfs_needed __read_mostly; 4544 EXPORT_SYMBOL(rfs_needed); 4545 4546 static struct rps_dev_flow * 4547 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4548 struct rps_dev_flow *rflow, u16 next_cpu) 4549 { 4550 if (next_cpu < nr_cpu_ids) { 4551 u32 head; 4552 #ifdef CONFIG_RFS_ACCEL 4553 struct netdev_rx_queue *rxqueue; 4554 struct rps_dev_flow_table *flow_table; 4555 struct rps_dev_flow *old_rflow; 4556 u16 rxq_index; 4557 u32 flow_id; 4558 int rc; 4559 4560 /* Should we steer this flow to a different hardware queue? */ 4561 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4562 !(dev->features & NETIF_F_NTUPLE)) 4563 goto out; 4564 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4565 if (rxq_index == skb_get_rx_queue(skb)) 4566 goto out; 4567 4568 rxqueue = dev->_rx + rxq_index; 4569 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4570 if (!flow_table) 4571 goto out; 4572 flow_id = skb_get_hash(skb) & flow_table->mask; 4573 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4574 rxq_index, flow_id); 4575 if (rc < 0) 4576 goto out; 4577 old_rflow = rflow; 4578 rflow = &flow_table->flows[flow_id]; 4579 WRITE_ONCE(rflow->filter, rc); 4580 if (old_rflow->filter == rc) 4581 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4582 out: 4583 #endif 4584 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4585 rps_input_queue_tail_save(&rflow->last_qtail, head); 4586 } 4587 4588 WRITE_ONCE(rflow->cpu, next_cpu); 4589 return rflow; 4590 } 4591 4592 /* 4593 * get_rps_cpu is called from netif_receive_skb and returns the target 4594 * CPU from the RPS map of the receiving queue for a given skb. 4595 * rcu_read_lock must be held on entry. 4596 */ 4597 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4598 struct rps_dev_flow **rflowp) 4599 { 4600 const struct rps_sock_flow_table *sock_flow_table; 4601 struct netdev_rx_queue *rxqueue = dev->_rx; 4602 struct rps_dev_flow_table *flow_table; 4603 struct rps_map *map; 4604 int cpu = -1; 4605 u32 tcpu; 4606 u32 hash; 4607 4608 if (skb_rx_queue_recorded(skb)) { 4609 u16 index = skb_get_rx_queue(skb); 4610 4611 if (unlikely(index >= dev->real_num_rx_queues)) { 4612 WARN_ONCE(dev->real_num_rx_queues > 1, 4613 "%s received packet on queue %u, but number " 4614 "of RX queues is %u\n", 4615 dev->name, index, dev->real_num_rx_queues); 4616 goto done; 4617 } 4618 rxqueue += index; 4619 } 4620 4621 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4622 4623 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4624 map = rcu_dereference(rxqueue->rps_map); 4625 if (!flow_table && !map) 4626 goto done; 4627 4628 skb_reset_network_header(skb); 4629 hash = skb_get_hash(skb); 4630 if (!hash) 4631 goto done; 4632 4633 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 4634 if (flow_table && sock_flow_table) { 4635 struct rps_dev_flow *rflow; 4636 u32 next_cpu; 4637 u32 ident; 4638 4639 /* First check into global flow table if there is a match. 4640 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4641 */ 4642 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4643 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 4644 goto try_rps; 4645 4646 next_cpu = ident & net_hotdata.rps_cpu_mask; 4647 4648 /* OK, now we know there is a match, 4649 * we can look at the local (per receive queue) flow table 4650 */ 4651 rflow = &flow_table->flows[hash & flow_table->mask]; 4652 tcpu = rflow->cpu; 4653 4654 /* 4655 * If the desired CPU (where last recvmsg was done) is 4656 * different from current CPU (one in the rx-queue flow 4657 * table entry), switch if one of the following holds: 4658 * - Current CPU is unset (>= nr_cpu_ids). 4659 * - Current CPU is offline. 4660 * - The current CPU's queue tail has advanced beyond the 4661 * last packet that was enqueued using this table entry. 4662 * This guarantees that all previous packets for the flow 4663 * have been dequeued, thus preserving in order delivery. 4664 */ 4665 if (unlikely(tcpu != next_cpu) && 4666 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4667 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 4668 rflow->last_qtail)) >= 0)) { 4669 tcpu = next_cpu; 4670 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4671 } 4672 4673 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4674 *rflowp = rflow; 4675 cpu = tcpu; 4676 goto done; 4677 } 4678 } 4679 4680 try_rps: 4681 4682 if (map) { 4683 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4684 if (cpu_online(tcpu)) { 4685 cpu = tcpu; 4686 goto done; 4687 } 4688 } 4689 4690 done: 4691 return cpu; 4692 } 4693 4694 #ifdef CONFIG_RFS_ACCEL 4695 4696 /** 4697 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4698 * @dev: Device on which the filter was set 4699 * @rxq_index: RX queue index 4700 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4701 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4702 * 4703 * Drivers that implement ndo_rx_flow_steer() should periodically call 4704 * this function for each installed filter and remove the filters for 4705 * which it returns %true. 4706 */ 4707 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4708 u32 flow_id, u16 filter_id) 4709 { 4710 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4711 struct rps_dev_flow_table *flow_table; 4712 struct rps_dev_flow *rflow; 4713 bool expire = true; 4714 unsigned int cpu; 4715 4716 rcu_read_lock(); 4717 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4718 if (flow_table && flow_id <= flow_table->mask) { 4719 rflow = &flow_table->flows[flow_id]; 4720 cpu = READ_ONCE(rflow->cpu); 4721 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && 4722 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - 4723 READ_ONCE(rflow->last_qtail)) < 4724 (int)(10 * flow_table->mask))) 4725 expire = false; 4726 } 4727 rcu_read_unlock(); 4728 return expire; 4729 } 4730 EXPORT_SYMBOL(rps_may_expire_flow); 4731 4732 #endif /* CONFIG_RFS_ACCEL */ 4733 4734 /* Called from hardirq (IPI) context */ 4735 static void rps_trigger_softirq(void *data) 4736 { 4737 struct softnet_data *sd = data; 4738 4739 ____napi_schedule(sd, &sd->backlog); 4740 sd->received_rps++; 4741 } 4742 4743 #endif /* CONFIG_RPS */ 4744 4745 /* Called from hardirq (IPI) context */ 4746 static void trigger_rx_softirq(void *data) 4747 { 4748 struct softnet_data *sd = data; 4749 4750 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4751 smp_store_release(&sd->defer_ipi_scheduled, 0); 4752 } 4753 4754 /* 4755 * After we queued a packet into sd->input_pkt_queue, 4756 * we need to make sure this queue is serviced soon. 4757 * 4758 * - If this is another cpu queue, link it to our rps_ipi_list, 4759 * and make sure we will process rps_ipi_list from net_rx_action(). 4760 * 4761 * - If this is our own queue, NAPI schedule our backlog. 4762 * Note that this also raises NET_RX_SOFTIRQ. 4763 */ 4764 static void napi_schedule_rps(struct softnet_data *sd) 4765 { 4766 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4767 4768 #ifdef CONFIG_RPS 4769 if (sd != mysd) { 4770 if (use_backlog_threads()) { 4771 __napi_schedule_irqoff(&sd->backlog); 4772 return; 4773 } 4774 4775 sd->rps_ipi_next = mysd->rps_ipi_list; 4776 mysd->rps_ipi_list = sd; 4777 4778 /* If not called from net_rx_action() or napi_threaded_poll() 4779 * we have to raise NET_RX_SOFTIRQ. 4780 */ 4781 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 4782 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4783 return; 4784 } 4785 #endif /* CONFIG_RPS */ 4786 __napi_schedule_irqoff(&mysd->backlog); 4787 } 4788 4789 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 4790 { 4791 unsigned long flags; 4792 4793 if (use_backlog_threads()) { 4794 backlog_lock_irq_save(sd, &flags); 4795 4796 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4797 __napi_schedule_irqoff(&sd->backlog); 4798 4799 backlog_unlock_irq_restore(sd, &flags); 4800 4801 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 4802 smp_call_function_single_async(cpu, &sd->defer_csd); 4803 } 4804 } 4805 4806 #ifdef CONFIG_NET_FLOW_LIMIT 4807 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4808 #endif 4809 4810 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4811 { 4812 #ifdef CONFIG_NET_FLOW_LIMIT 4813 struct sd_flow_limit *fl; 4814 struct softnet_data *sd; 4815 unsigned int old_flow, new_flow; 4816 4817 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 4818 return false; 4819 4820 sd = this_cpu_ptr(&softnet_data); 4821 4822 rcu_read_lock(); 4823 fl = rcu_dereference(sd->flow_limit); 4824 if (fl) { 4825 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4826 old_flow = fl->history[fl->history_head]; 4827 fl->history[fl->history_head] = new_flow; 4828 4829 fl->history_head++; 4830 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4831 4832 if (likely(fl->buckets[old_flow])) 4833 fl->buckets[old_flow]--; 4834 4835 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4836 fl->count++; 4837 rcu_read_unlock(); 4838 return true; 4839 } 4840 } 4841 rcu_read_unlock(); 4842 #endif 4843 return false; 4844 } 4845 4846 /* 4847 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4848 * queue (may be a remote CPU queue). 4849 */ 4850 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4851 unsigned int *qtail) 4852 { 4853 enum skb_drop_reason reason; 4854 struct softnet_data *sd; 4855 unsigned long flags; 4856 unsigned int qlen; 4857 int max_backlog; 4858 u32 tail; 4859 4860 reason = SKB_DROP_REASON_DEV_READY; 4861 if (!netif_running(skb->dev)) 4862 goto bad_dev; 4863 4864 reason = SKB_DROP_REASON_CPU_BACKLOG; 4865 sd = &per_cpu(softnet_data, cpu); 4866 4867 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 4868 max_backlog = READ_ONCE(net_hotdata.max_backlog); 4869 if (unlikely(qlen > max_backlog)) 4870 goto cpu_backlog_drop; 4871 backlog_lock_irq_save(sd, &flags); 4872 qlen = skb_queue_len(&sd->input_pkt_queue); 4873 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 4874 if (!qlen) { 4875 /* Schedule NAPI for backlog device. We can use 4876 * non atomic operation as we own the queue lock. 4877 */ 4878 if (!__test_and_set_bit(NAPI_STATE_SCHED, 4879 &sd->backlog.state)) 4880 napi_schedule_rps(sd); 4881 } 4882 __skb_queue_tail(&sd->input_pkt_queue, skb); 4883 tail = rps_input_queue_tail_incr(sd); 4884 backlog_unlock_irq_restore(sd, &flags); 4885 4886 /* save the tail outside of the critical section */ 4887 rps_input_queue_tail_save(qtail, tail); 4888 return NET_RX_SUCCESS; 4889 } 4890 4891 backlog_unlock_irq_restore(sd, &flags); 4892 4893 cpu_backlog_drop: 4894 atomic_inc(&sd->dropped); 4895 bad_dev: 4896 dev_core_stats_rx_dropped_inc(skb->dev); 4897 kfree_skb_reason(skb, reason); 4898 return NET_RX_DROP; 4899 } 4900 4901 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4902 { 4903 struct net_device *dev = skb->dev; 4904 struct netdev_rx_queue *rxqueue; 4905 4906 rxqueue = dev->_rx; 4907 4908 if (skb_rx_queue_recorded(skb)) { 4909 u16 index = skb_get_rx_queue(skb); 4910 4911 if (unlikely(index >= dev->real_num_rx_queues)) { 4912 WARN_ONCE(dev->real_num_rx_queues > 1, 4913 "%s received packet on queue %u, but number " 4914 "of RX queues is %u\n", 4915 dev->name, index, dev->real_num_rx_queues); 4916 4917 return rxqueue; /* Return first rxqueue */ 4918 } 4919 rxqueue += index; 4920 } 4921 return rxqueue; 4922 } 4923 4924 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4925 struct bpf_prog *xdp_prog) 4926 { 4927 void *orig_data, *orig_data_end, *hard_start; 4928 struct netdev_rx_queue *rxqueue; 4929 bool orig_bcast, orig_host; 4930 u32 mac_len, frame_sz; 4931 __be16 orig_eth_type; 4932 struct ethhdr *eth; 4933 u32 metalen, act; 4934 int off; 4935 4936 /* The XDP program wants to see the packet starting at the MAC 4937 * header. 4938 */ 4939 mac_len = skb->data - skb_mac_header(skb); 4940 hard_start = skb->data - skb_headroom(skb); 4941 4942 /* SKB "head" area always have tailroom for skb_shared_info */ 4943 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4944 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4945 4946 rxqueue = netif_get_rxqueue(skb); 4947 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4948 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4949 skb_headlen(skb) + mac_len, true); 4950 if (skb_is_nonlinear(skb)) { 4951 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 4952 xdp_buff_set_frags_flag(xdp); 4953 } else { 4954 xdp_buff_clear_frags_flag(xdp); 4955 } 4956 4957 orig_data_end = xdp->data_end; 4958 orig_data = xdp->data; 4959 eth = (struct ethhdr *)xdp->data; 4960 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4961 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4962 orig_eth_type = eth->h_proto; 4963 4964 act = bpf_prog_run_xdp(xdp_prog, xdp); 4965 4966 /* check if bpf_xdp_adjust_head was used */ 4967 off = xdp->data - orig_data; 4968 if (off) { 4969 if (off > 0) 4970 __skb_pull(skb, off); 4971 else if (off < 0) 4972 __skb_push(skb, -off); 4973 4974 skb->mac_header += off; 4975 skb_reset_network_header(skb); 4976 } 4977 4978 /* check if bpf_xdp_adjust_tail was used */ 4979 off = xdp->data_end - orig_data_end; 4980 if (off != 0) { 4981 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4982 skb->len += off; /* positive on grow, negative on shrink */ 4983 } 4984 4985 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 4986 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 4987 */ 4988 if (xdp_buff_has_frags(xdp)) 4989 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 4990 else 4991 skb->data_len = 0; 4992 4993 /* check if XDP changed eth hdr such SKB needs update */ 4994 eth = (struct ethhdr *)xdp->data; 4995 if ((orig_eth_type != eth->h_proto) || 4996 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4997 skb->dev->dev_addr)) || 4998 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4999 __skb_push(skb, ETH_HLEN); 5000 skb->pkt_type = PACKET_HOST; 5001 skb->protocol = eth_type_trans(skb, skb->dev); 5002 } 5003 5004 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5005 * before calling us again on redirect path. We do not call do_redirect 5006 * as we leave that up to the caller. 5007 * 5008 * Caller is responsible for managing lifetime of skb (i.e. calling 5009 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5010 */ 5011 switch (act) { 5012 case XDP_REDIRECT: 5013 case XDP_TX: 5014 __skb_push(skb, mac_len); 5015 break; 5016 case XDP_PASS: 5017 metalen = xdp->data - xdp->data_meta; 5018 if (metalen) 5019 skb_metadata_set(skb, metalen); 5020 break; 5021 } 5022 5023 return act; 5024 } 5025 5026 static int 5027 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog) 5028 { 5029 struct sk_buff *skb = *pskb; 5030 int err, hroom, troom; 5031 5032 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog)) 5033 return 0; 5034 5035 /* In case we have to go down the path and also linearize, 5036 * then lets do the pskb_expand_head() work just once here. 5037 */ 5038 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5039 troom = skb->tail + skb->data_len - skb->end; 5040 err = pskb_expand_head(skb, 5041 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5042 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5043 if (err) 5044 return err; 5045 5046 return skb_linearize(skb); 5047 } 5048 5049 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5050 struct xdp_buff *xdp, 5051 struct bpf_prog *xdp_prog) 5052 { 5053 struct sk_buff *skb = *pskb; 5054 u32 mac_len, act = XDP_DROP; 5055 5056 /* Reinjected packets coming from act_mirred or similar should 5057 * not get XDP generic processing. 5058 */ 5059 if (skb_is_redirected(skb)) 5060 return XDP_PASS; 5061 5062 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5063 * bytes. This is the guarantee that also native XDP provides, 5064 * thus we need to do it here as well. 5065 */ 5066 mac_len = skb->data - skb_mac_header(skb); 5067 __skb_push(skb, mac_len); 5068 5069 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5070 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5071 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5072 goto do_drop; 5073 } 5074 5075 __skb_pull(*pskb, mac_len); 5076 5077 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5078 switch (act) { 5079 case XDP_REDIRECT: 5080 case XDP_TX: 5081 case XDP_PASS: 5082 break; 5083 default: 5084 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5085 fallthrough; 5086 case XDP_ABORTED: 5087 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5088 fallthrough; 5089 case XDP_DROP: 5090 do_drop: 5091 kfree_skb(*pskb); 5092 break; 5093 } 5094 5095 return act; 5096 } 5097 5098 /* When doing generic XDP we have to bypass the qdisc layer and the 5099 * network taps in order to match in-driver-XDP behavior. This also means 5100 * that XDP packets are able to starve other packets going through a qdisc, 5101 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5102 * queues, so they do not have this starvation issue. 5103 */ 5104 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 5105 { 5106 struct net_device *dev = skb->dev; 5107 struct netdev_queue *txq; 5108 bool free_skb = true; 5109 int cpu, rc; 5110 5111 txq = netdev_core_pick_tx(dev, skb, NULL); 5112 cpu = smp_processor_id(); 5113 HARD_TX_LOCK(dev, txq, cpu); 5114 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5115 rc = netdev_start_xmit(skb, dev, txq, 0); 5116 if (dev_xmit_complete(rc)) 5117 free_skb = false; 5118 } 5119 HARD_TX_UNLOCK(dev, txq); 5120 if (free_skb) { 5121 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5122 dev_core_stats_tx_dropped_inc(dev); 5123 kfree_skb(skb); 5124 } 5125 } 5126 5127 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5128 5129 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5130 { 5131 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5132 5133 if (xdp_prog) { 5134 struct xdp_buff xdp; 5135 u32 act; 5136 int err; 5137 5138 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5139 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5140 if (act != XDP_PASS) { 5141 switch (act) { 5142 case XDP_REDIRECT: 5143 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5144 &xdp, xdp_prog); 5145 if (err) 5146 goto out_redir; 5147 break; 5148 case XDP_TX: 5149 generic_xdp_tx(*pskb, xdp_prog); 5150 break; 5151 } 5152 bpf_net_ctx_clear(bpf_net_ctx); 5153 return XDP_DROP; 5154 } 5155 bpf_net_ctx_clear(bpf_net_ctx); 5156 } 5157 return XDP_PASS; 5158 out_redir: 5159 bpf_net_ctx_clear(bpf_net_ctx); 5160 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5161 return XDP_DROP; 5162 } 5163 EXPORT_SYMBOL_GPL(do_xdp_generic); 5164 5165 static int netif_rx_internal(struct sk_buff *skb) 5166 { 5167 int ret; 5168 5169 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5170 5171 trace_netif_rx(skb); 5172 5173 #ifdef CONFIG_RPS 5174 if (static_branch_unlikely(&rps_needed)) { 5175 struct rps_dev_flow voidflow, *rflow = &voidflow; 5176 int cpu; 5177 5178 rcu_read_lock(); 5179 5180 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5181 if (cpu < 0) 5182 cpu = smp_processor_id(); 5183 5184 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5185 5186 rcu_read_unlock(); 5187 } else 5188 #endif 5189 { 5190 unsigned int qtail; 5191 5192 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5193 } 5194 return ret; 5195 } 5196 5197 /** 5198 * __netif_rx - Slightly optimized version of netif_rx 5199 * @skb: buffer to post 5200 * 5201 * This behaves as netif_rx except that it does not disable bottom halves. 5202 * As a result this function may only be invoked from the interrupt context 5203 * (either hard or soft interrupt). 5204 */ 5205 int __netif_rx(struct sk_buff *skb) 5206 { 5207 int ret; 5208 5209 lockdep_assert_once(hardirq_count() | softirq_count()); 5210 5211 trace_netif_rx_entry(skb); 5212 ret = netif_rx_internal(skb); 5213 trace_netif_rx_exit(ret); 5214 return ret; 5215 } 5216 EXPORT_SYMBOL(__netif_rx); 5217 5218 /** 5219 * netif_rx - post buffer to the network code 5220 * @skb: buffer to post 5221 * 5222 * This function receives a packet from a device driver and queues it for 5223 * the upper (protocol) levels to process via the backlog NAPI device. It 5224 * always succeeds. The buffer may be dropped during processing for 5225 * congestion control or by the protocol layers. 5226 * The network buffer is passed via the backlog NAPI device. Modern NIC 5227 * driver should use NAPI and GRO. 5228 * This function can used from interrupt and from process context. The 5229 * caller from process context must not disable interrupts before invoking 5230 * this function. 5231 * 5232 * return values: 5233 * NET_RX_SUCCESS (no congestion) 5234 * NET_RX_DROP (packet was dropped) 5235 * 5236 */ 5237 int netif_rx(struct sk_buff *skb) 5238 { 5239 bool need_bh_off = !(hardirq_count() | softirq_count()); 5240 int ret; 5241 5242 if (need_bh_off) 5243 local_bh_disable(); 5244 trace_netif_rx_entry(skb); 5245 ret = netif_rx_internal(skb); 5246 trace_netif_rx_exit(ret); 5247 if (need_bh_off) 5248 local_bh_enable(); 5249 return ret; 5250 } 5251 EXPORT_SYMBOL(netif_rx); 5252 5253 static __latent_entropy void net_tx_action(struct softirq_action *h) 5254 { 5255 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5256 5257 if (sd->completion_queue) { 5258 struct sk_buff *clist; 5259 5260 local_irq_disable(); 5261 clist = sd->completion_queue; 5262 sd->completion_queue = NULL; 5263 local_irq_enable(); 5264 5265 while (clist) { 5266 struct sk_buff *skb = clist; 5267 5268 clist = clist->next; 5269 5270 WARN_ON(refcount_read(&skb->users)); 5271 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5272 trace_consume_skb(skb, net_tx_action); 5273 else 5274 trace_kfree_skb(skb, net_tx_action, 5275 get_kfree_skb_cb(skb)->reason, NULL); 5276 5277 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5278 __kfree_skb(skb); 5279 else 5280 __napi_kfree_skb(skb, 5281 get_kfree_skb_cb(skb)->reason); 5282 } 5283 } 5284 5285 if (sd->output_queue) { 5286 struct Qdisc *head; 5287 5288 local_irq_disable(); 5289 head = sd->output_queue; 5290 sd->output_queue = NULL; 5291 sd->output_queue_tailp = &sd->output_queue; 5292 local_irq_enable(); 5293 5294 rcu_read_lock(); 5295 5296 while (head) { 5297 struct Qdisc *q = head; 5298 spinlock_t *root_lock = NULL; 5299 5300 head = head->next_sched; 5301 5302 /* We need to make sure head->next_sched is read 5303 * before clearing __QDISC_STATE_SCHED 5304 */ 5305 smp_mb__before_atomic(); 5306 5307 if (!(q->flags & TCQ_F_NOLOCK)) { 5308 root_lock = qdisc_lock(q); 5309 spin_lock(root_lock); 5310 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5311 &q->state))) { 5312 /* There is a synchronize_net() between 5313 * STATE_DEACTIVATED flag being set and 5314 * qdisc_reset()/some_qdisc_is_busy() in 5315 * dev_deactivate(), so we can safely bail out 5316 * early here to avoid data race between 5317 * qdisc_deactivate() and some_qdisc_is_busy() 5318 * for lockless qdisc. 5319 */ 5320 clear_bit(__QDISC_STATE_SCHED, &q->state); 5321 continue; 5322 } 5323 5324 clear_bit(__QDISC_STATE_SCHED, &q->state); 5325 qdisc_run(q); 5326 if (root_lock) 5327 spin_unlock(root_lock); 5328 } 5329 5330 rcu_read_unlock(); 5331 } 5332 5333 xfrm_dev_backlog(sd); 5334 } 5335 5336 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5337 /* This hook is defined here for ATM LANE */ 5338 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5339 unsigned char *addr) __read_mostly; 5340 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5341 #endif 5342 5343 /** 5344 * netdev_is_rx_handler_busy - check if receive handler is registered 5345 * @dev: device to check 5346 * 5347 * Check if a receive handler is already registered for a given device. 5348 * Return true if there one. 5349 * 5350 * The caller must hold the rtnl_mutex. 5351 */ 5352 bool netdev_is_rx_handler_busy(struct net_device *dev) 5353 { 5354 ASSERT_RTNL(); 5355 return dev && rtnl_dereference(dev->rx_handler); 5356 } 5357 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5358 5359 /** 5360 * netdev_rx_handler_register - register receive handler 5361 * @dev: device to register a handler for 5362 * @rx_handler: receive handler to register 5363 * @rx_handler_data: data pointer that is used by rx handler 5364 * 5365 * Register a receive handler for a device. This handler will then be 5366 * called from __netif_receive_skb. A negative errno code is returned 5367 * on a failure. 5368 * 5369 * The caller must hold the rtnl_mutex. 5370 * 5371 * For a general description of rx_handler, see enum rx_handler_result. 5372 */ 5373 int netdev_rx_handler_register(struct net_device *dev, 5374 rx_handler_func_t *rx_handler, 5375 void *rx_handler_data) 5376 { 5377 if (netdev_is_rx_handler_busy(dev)) 5378 return -EBUSY; 5379 5380 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5381 return -EINVAL; 5382 5383 /* Note: rx_handler_data must be set before rx_handler */ 5384 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5385 rcu_assign_pointer(dev->rx_handler, rx_handler); 5386 5387 return 0; 5388 } 5389 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5390 5391 /** 5392 * netdev_rx_handler_unregister - unregister receive handler 5393 * @dev: device to unregister a handler from 5394 * 5395 * Unregister a receive handler from a device. 5396 * 5397 * The caller must hold the rtnl_mutex. 5398 */ 5399 void netdev_rx_handler_unregister(struct net_device *dev) 5400 { 5401 5402 ASSERT_RTNL(); 5403 RCU_INIT_POINTER(dev->rx_handler, NULL); 5404 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5405 * section has a guarantee to see a non NULL rx_handler_data 5406 * as well. 5407 */ 5408 synchronize_net(); 5409 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5410 } 5411 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5412 5413 /* 5414 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5415 * the special handling of PFMEMALLOC skbs. 5416 */ 5417 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5418 { 5419 switch (skb->protocol) { 5420 case htons(ETH_P_ARP): 5421 case htons(ETH_P_IP): 5422 case htons(ETH_P_IPV6): 5423 case htons(ETH_P_8021Q): 5424 case htons(ETH_P_8021AD): 5425 return true; 5426 default: 5427 return false; 5428 } 5429 } 5430 5431 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5432 int *ret, struct net_device *orig_dev) 5433 { 5434 if (nf_hook_ingress_active(skb)) { 5435 int ingress_retval; 5436 5437 if (*pt_prev) { 5438 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5439 *pt_prev = NULL; 5440 } 5441 5442 rcu_read_lock(); 5443 ingress_retval = nf_hook_ingress(skb); 5444 rcu_read_unlock(); 5445 return ingress_retval; 5446 } 5447 return 0; 5448 } 5449 5450 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5451 struct packet_type **ppt_prev) 5452 { 5453 struct packet_type *ptype, *pt_prev; 5454 rx_handler_func_t *rx_handler; 5455 struct sk_buff *skb = *pskb; 5456 struct net_device *orig_dev; 5457 bool deliver_exact = false; 5458 int ret = NET_RX_DROP; 5459 __be16 type; 5460 5461 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5462 5463 trace_netif_receive_skb(skb); 5464 5465 orig_dev = skb->dev; 5466 5467 skb_reset_network_header(skb); 5468 if (!skb_transport_header_was_set(skb)) 5469 skb_reset_transport_header(skb); 5470 skb_reset_mac_len(skb); 5471 5472 pt_prev = NULL; 5473 5474 another_round: 5475 skb->skb_iif = skb->dev->ifindex; 5476 5477 __this_cpu_inc(softnet_data.processed); 5478 5479 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5480 int ret2; 5481 5482 migrate_disable(); 5483 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5484 &skb); 5485 migrate_enable(); 5486 5487 if (ret2 != XDP_PASS) { 5488 ret = NET_RX_DROP; 5489 goto out; 5490 } 5491 } 5492 5493 if (eth_type_vlan(skb->protocol)) { 5494 skb = skb_vlan_untag(skb); 5495 if (unlikely(!skb)) 5496 goto out; 5497 } 5498 5499 if (skb_skip_tc_classify(skb)) 5500 goto skip_classify; 5501 5502 if (pfmemalloc) 5503 goto skip_taps; 5504 5505 list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) { 5506 if (pt_prev) 5507 ret = deliver_skb(skb, pt_prev, orig_dev); 5508 pt_prev = ptype; 5509 } 5510 5511 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5512 if (pt_prev) 5513 ret = deliver_skb(skb, pt_prev, orig_dev); 5514 pt_prev = ptype; 5515 } 5516 5517 skip_taps: 5518 #ifdef CONFIG_NET_INGRESS 5519 if (static_branch_unlikely(&ingress_needed_key)) { 5520 bool another = false; 5521 5522 nf_skip_egress(skb, true); 5523 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5524 &another); 5525 if (another) 5526 goto another_round; 5527 if (!skb) 5528 goto out; 5529 5530 nf_skip_egress(skb, false); 5531 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5532 goto out; 5533 } 5534 #endif 5535 skb_reset_redirect(skb); 5536 skip_classify: 5537 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5538 goto drop; 5539 5540 if (skb_vlan_tag_present(skb)) { 5541 if (pt_prev) { 5542 ret = deliver_skb(skb, pt_prev, orig_dev); 5543 pt_prev = NULL; 5544 } 5545 if (vlan_do_receive(&skb)) 5546 goto another_round; 5547 else if (unlikely(!skb)) 5548 goto out; 5549 } 5550 5551 rx_handler = rcu_dereference(skb->dev->rx_handler); 5552 if (rx_handler) { 5553 if (pt_prev) { 5554 ret = deliver_skb(skb, pt_prev, orig_dev); 5555 pt_prev = NULL; 5556 } 5557 switch (rx_handler(&skb)) { 5558 case RX_HANDLER_CONSUMED: 5559 ret = NET_RX_SUCCESS; 5560 goto out; 5561 case RX_HANDLER_ANOTHER: 5562 goto another_round; 5563 case RX_HANDLER_EXACT: 5564 deliver_exact = true; 5565 break; 5566 case RX_HANDLER_PASS: 5567 break; 5568 default: 5569 BUG(); 5570 } 5571 } 5572 5573 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5574 check_vlan_id: 5575 if (skb_vlan_tag_get_id(skb)) { 5576 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5577 * find vlan device. 5578 */ 5579 skb->pkt_type = PACKET_OTHERHOST; 5580 } else if (eth_type_vlan(skb->protocol)) { 5581 /* Outer header is 802.1P with vlan 0, inner header is 5582 * 802.1Q or 802.1AD and vlan_do_receive() above could 5583 * not find vlan dev for vlan id 0. 5584 */ 5585 __vlan_hwaccel_clear_tag(skb); 5586 skb = skb_vlan_untag(skb); 5587 if (unlikely(!skb)) 5588 goto out; 5589 if (vlan_do_receive(&skb)) 5590 /* After stripping off 802.1P header with vlan 0 5591 * vlan dev is found for inner header. 5592 */ 5593 goto another_round; 5594 else if (unlikely(!skb)) 5595 goto out; 5596 else 5597 /* We have stripped outer 802.1P vlan 0 header. 5598 * But could not find vlan dev. 5599 * check again for vlan id to set OTHERHOST. 5600 */ 5601 goto check_vlan_id; 5602 } 5603 /* Note: we might in the future use prio bits 5604 * and set skb->priority like in vlan_do_receive() 5605 * For the time being, just ignore Priority Code Point 5606 */ 5607 __vlan_hwaccel_clear_tag(skb); 5608 } 5609 5610 type = skb->protocol; 5611 5612 /* deliver only exact match when indicated */ 5613 if (likely(!deliver_exact)) { 5614 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5615 &ptype_base[ntohs(type) & 5616 PTYPE_HASH_MASK]); 5617 } 5618 5619 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5620 &orig_dev->ptype_specific); 5621 5622 if (unlikely(skb->dev != orig_dev)) { 5623 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5624 &skb->dev->ptype_specific); 5625 } 5626 5627 if (pt_prev) { 5628 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5629 goto drop; 5630 *ppt_prev = pt_prev; 5631 } else { 5632 drop: 5633 if (!deliver_exact) 5634 dev_core_stats_rx_dropped_inc(skb->dev); 5635 else 5636 dev_core_stats_rx_nohandler_inc(skb->dev); 5637 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5638 /* Jamal, now you will not able to escape explaining 5639 * me how you were going to use this. :-) 5640 */ 5641 ret = NET_RX_DROP; 5642 } 5643 5644 out: 5645 /* The invariant here is that if *ppt_prev is not NULL 5646 * then skb should also be non-NULL. 5647 * 5648 * Apparently *ppt_prev assignment above holds this invariant due to 5649 * skb dereferencing near it. 5650 */ 5651 *pskb = skb; 5652 return ret; 5653 } 5654 5655 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5656 { 5657 struct net_device *orig_dev = skb->dev; 5658 struct packet_type *pt_prev = NULL; 5659 int ret; 5660 5661 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5662 if (pt_prev) 5663 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5664 skb->dev, pt_prev, orig_dev); 5665 return ret; 5666 } 5667 5668 /** 5669 * netif_receive_skb_core - special purpose version of netif_receive_skb 5670 * @skb: buffer to process 5671 * 5672 * More direct receive version of netif_receive_skb(). It should 5673 * only be used by callers that have a need to skip RPS and Generic XDP. 5674 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5675 * 5676 * This function may only be called from softirq context and interrupts 5677 * should be enabled. 5678 * 5679 * Return values (usually ignored): 5680 * NET_RX_SUCCESS: no congestion 5681 * NET_RX_DROP: packet was dropped 5682 */ 5683 int netif_receive_skb_core(struct sk_buff *skb) 5684 { 5685 int ret; 5686 5687 rcu_read_lock(); 5688 ret = __netif_receive_skb_one_core(skb, false); 5689 rcu_read_unlock(); 5690 5691 return ret; 5692 } 5693 EXPORT_SYMBOL(netif_receive_skb_core); 5694 5695 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5696 struct packet_type *pt_prev, 5697 struct net_device *orig_dev) 5698 { 5699 struct sk_buff *skb, *next; 5700 5701 if (!pt_prev) 5702 return; 5703 if (list_empty(head)) 5704 return; 5705 if (pt_prev->list_func != NULL) 5706 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5707 ip_list_rcv, head, pt_prev, orig_dev); 5708 else 5709 list_for_each_entry_safe(skb, next, head, list) { 5710 skb_list_del_init(skb); 5711 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5712 } 5713 } 5714 5715 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5716 { 5717 /* Fast-path assumptions: 5718 * - There is no RX handler. 5719 * - Only one packet_type matches. 5720 * If either of these fails, we will end up doing some per-packet 5721 * processing in-line, then handling the 'last ptype' for the whole 5722 * sublist. This can't cause out-of-order delivery to any single ptype, 5723 * because the 'last ptype' must be constant across the sublist, and all 5724 * other ptypes are handled per-packet. 5725 */ 5726 /* Current (common) ptype of sublist */ 5727 struct packet_type *pt_curr = NULL; 5728 /* Current (common) orig_dev of sublist */ 5729 struct net_device *od_curr = NULL; 5730 struct sk_buff *skb, *next; 5731 LIST_HEAD(sublist); 5732 5733 list_for_each_entry_safe(skb, next, head, list) { 5734 struct net_device *orig_dev = skb->dev; 5735 struct packet_type *pt_prev = NULL; 5736 5737 skb_list_del_init(skb); 5738 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5739 if (!pt_prev) 5740 continue; 5741 if (pt_curr != pt_prev || od_curr != orig_dev) { 5742 /* dispatch old sublist */ 5743 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5744 /* start new sublist */ 5745 INIT_LIST_HEAD(&sublist); 5746 pt_curr = pt_prev; 5747 od_curr = orig_dev; 5748 } 5749 list_add_tail(&skb->list, &sublist); 5750 } 5751 5752 /* dispatch final sublist */ 5753 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5754 } 5755 5756 static int __netif_receive_skb(struct sk_buff *skb) 5757 { 5758 int ret; 5759 5760 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5761 unsigned int noreclaim_flag; 5762 5763 /* 5764 * PFMEMALLOC skbs are special, they should 5765 * - be delivered to SOCK_MEMALLOC sockets only 5766 * - stay away from userspace 5767 * - have bounded memory usage 5768 * 5769 * Use PF_MEMALLOC as this saves us from propagating the allocation 5770 * context down to all allocation sites. 5771 */ 5772 noreclaim_flag = memalloc_noreclaim_save(); 5773 ret = __netif_receive_skb_one_core(skb, true); 5774 memalloc_noreclaim_restore(noreclaim_flag); 5775 } else 5776 ret = __netif_receive_skb_one_core(skb, false); 5777 5778 return ret; 5779 } 5780 5781 static void __netif_receive_skb_list(struct list_head *head) 5782 { 5783 unsigned long noreclaim_flag = 0; 5784 struct sk_buff *skb, *next; 5785 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5786 5787 list_for_each_entry_safe(skb, next, head, list) { 5788 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5789 struct list_head sublist; 5790 5791 /* Handle the previous sublist */ 5792 list_cut_before(&sublist, head, &skb->list); 5793 if (!list_empty(&sublist)) 5794 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5795 pfmemalloc = !pfmemalloc; 5796 /* See comments in __netif_receive_skb */ 5797 if (pfmemalloc) 5798 noreclaim_flag = memalloc_noreclaim_save(); 5799 else 5800 memalloc_noreclaim_restore(noreclaim_flag); 5801 } 5802 } 5803 /* Handle the remaining sublist */ 5804 if (!list_empty(head)) 5805 __netif_receive_skb_list_core(head, pfmemalloc); 5806 /* Restore pflags */ 5807 if (pfmemalloc) 5808 memalloc_noreclaim_restore(noreclaim_flag); 5809 } 5810 5811 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5812 { 5813 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5814 struct bpf_prog *new = xdp->prog; 5815 int ret = 0; 5816 5817 switch (xdp->command) { 5818 case XDP_SETUP_PROG: 5819 rcu_assign_pointer(dev->xdp_prog, new); 5820 if (old) 5821 bpf_prog_put(old); 5822 5823 if (old && !new) { 5824 static_branch_dec(&generic_xdp_needed_key); 5825 } else if (new && !old) { 5826 static_branch_inc(&generic_xdp_needed_key); 5827 dev_disable_lro(dev); 5828 dev_disable_gro_hw(dev); 5829 } 5830 break; 5831 5832 default: 5833 ret = -EINVAL; 5834 break; 5835 } 5836 5837 return ret; 5838 } 5839 5840 static int netif_receive_skb_internal(struct sk_buff *skb) 5841 { 5842 int ret; 5843 5844 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5845 5846 if (skb_defer_rx_timestamp(skb)) 5847 return NET_RX_SUCCESS; 5848 5849 rcu_read_lock(); 5850 #ifdef CONFIG_RPS 5851 if (static_branch_unlikely(&rps_needed)) { 5852 struct rps_dev_flow voidflow, *rflow = &voidflow; 5853 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5854 5855 if (cpu >= 0) { 5856 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5857 rcu_read_unlock(); 5858 return ret; 5859 } 5860 } 5861 #endif 5862 ret = __netif_receive_skb(skb); 5863 rcu_read_unlock(); 5864 return ret; 5865 } 5866 5867 void netif_receive_skb_list_internal(struct list_head *head) 5868 { 5869 struct sk_buff *skb, *next; 5870 LIST_HEAD(sublist); 5871 5872 list_for_each_entry_safe(skb, next, head, list) { 5873 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 5874 skb); 5875 skb_list_del_init(skb); 5876 if (!skb_defer_rx_timestamp(skb)) 5877 list_add_tail(&skb->list, &sublist); 5878 } 5879 list_splice_init(&sublist, head); 5880 5881 rcu_read_lock(); 5882 #ifdef CONFIG_RPS 5883 if (static_branch_unlikely(&rps_needed)) { 5884 list_for_each_entry_safe(skb, next, head, list) { 5885 struct rps_dev_flow voidflow, *rflow = &voidflow; 5886 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5887 5888 if (cpu >= 0) { 5889 /* Will be handled, remove from list */ 5890 skb_list_del_init(skb); 5891 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5892 } 5893 } 5894 } 5895 #endif 5896 __netif_receive_skb_list(head); 5897 rcu_read_unlock(); 5898 } 5899 5900 /** 5901 * netif_receive_skb - process receive buffer from network 5902 * @skb: buffer to process 5903 * 5904 * netif_receive_skb() is the main receive data processing function. 5905 * It always succeeds. The buffer may be dropped during processing 5906 * for congestion control or by the protocol layers. 5907 * 5908 * This function may only be called from softirq context and interrupts 5909 * should be enabled. 5910 * 5911 * Return values (usually ignored): 5912 * NET_RX_SUCCESS: no congestion 5913 * NET_RX_DROP: packet was dropped 5914 */ 5915 int netif_receive_skb(struct sk_buff *skb) 5916 { 5917 int ret; 5918 5919 trace_netif_receive_skb_entry(skb); 5920 5921 ret = netif_receive_skb_internal(skb); 5922 trace_netif_receive_skb_exit(ret); 5923 5924 return ret; 5925 } 5926 EXPORT_SYMBOL(netif_receive_skb); 5927 5928 /** 5929 * netif_receive_skb_list - process many receive buffers from network 5930 * @head: list of skbs to process. 5931 * 5932 * Since return value of netif_receive_skb() is normally ignored, and 5933 * wouldn't be meaningful for a list, this function returns void. 5934 * 5935 * This function may only be called from softirq context and interrupts 5936 * should be enabled. 5937 */ 5938 void netif_receive_skb_list(struct list_head *head) 5939 { 5940 struct sk_buff *skb; 5941 5942 if (list_empty(head)) 5943 return; 5944 if (trace_netif_receive_skb_list_entry_enabled()) { 5945 list_for_each_entry(skb, head, list) 5946 trace_netif_receive_skb_list_entry(skb); 5947 } 5948 netif_receive_skb_list_internal(head); 5949 trace_netif_receive_skb_list_exit(0); 5950 } 5951 EXPORT_SYMBOL(netif_receive_skb_list); 5952 5953 static DEFINE_PER_CPU(struct work_struct, flush_works); 5954 5955 /* Network device is going away, flush any packets still pending */ 5956 static void flush_backlog(struct work_struct *work) 5957 { 5958 struct sk_buff *skb, *tmp; 5959 struct softnet_data *sd; 5960 5961 local_bh_disable(); 5962 sd = this_cpu_ptr(&softnet_data); 5963 5964 backlog_lock_irq_disable(sd); 5965 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5966 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5967 __skb_unlink(skb, &sd->input_pkt_queue); 5968 dev_kfree_skb_irq(skb); 5969 rps_input_queue_head_incr(sd); 5970 } 5971 } 5972 backlog_unlock_irq_enable(sd); 5973 5974 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 5975 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5976 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5977 __skb_unlink(skb, &sd->process_queue); 5978 kfree_skb(skb); 5979 rps_input_queue_head_incr(sd); 5980 } 5981 } 5982 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 5983 local_bh_enable(); 5984 } 5985 5986 static bool flush_required(int cpu) 5987 { 5988 #if IS_ENABLED(CONFIG_RPS) 5989 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5990 bool do_flush; 5991 5992 backlog_lock_irq_disable(sd); 5993 5994 /* as insertion into process_queue happens with the rps lock held, 5995 * process_queue access may race only with dequeue 5996 */ 5997 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5998 !skb_queue_empty_lockless(&sd->process_queue); 5999 backlog_unlock_irq_enable(sd); 6000 6001 return do_flush; 6002 #endif 6003 /* without RPS we can't safely check input_pkt_queue: during a 6004 * concurrent remote skb_queue_splice() we can detect as empty both 6005 * input_pkt_queue and process_queue even if the latter could end-up 6006 * containing a lot of packets. 6007 */ 6008 return true; 6009 } 6010 6011 static void flush_all_backlogs(void) 6012 { 6013 static cpumask_t flush_cpus; 6014 unsigned int cpu; 6015 6016 /* since we are under rtnl lock protection we can use static data 6017 * for the cpumask and avoid allocating on stack the possibly 6018 * large mask 6019 */ 6020 ASSERT_RTNL(); 6021 6022 cpus_read_lock(); 6023 6024 cpumask_clear(&flush_cpus); 6025 for_each_online_cpu(cpu) { 6026 if (flush_required(cpu)) { 6027 queue_work_on(cpu, system_highpri_wq, 6028 per_cpu_ptr(&flush_works, cpu)); 6029 cpumask_set_cpu(cpu, &flush_cpus); 6030 } 6031 } 6032 6033 /* we can have in flight packet[s] on the cpus we are not flushing, 6034 * synchronize_net() in unregister_netdevice_many() will take care of 6035 * them 6036 */ 6037 for_each_cpu(cpu, &flush_cpus) 6038 flush_work(per_cpu_ptr(&flush_works, cpu)); 6039 6040 cpus_read_unlock(); 6041 } 6042 6043 static void net_rps_send_ipi(struct softnet_data *remsd) 6044 { 6045 #ifdef CONFIG_RPS 6046 while (remsd) { 6047 struct softnet_data *next = remsd->rps_ipi_next; 6048 6049 if (cpu_online(remsd->cpu)) 6050 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6051 remsd = next; 6052 } 6053 #endif 6054 } 6055 6056 /* 6057 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6058 * Note: called with local irq disabled, but exits with local irq enabled. 6059 */ 6060 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6061 { 6062 #ifdef CONFIG_RPS 6063 struct softnet_data *remsd = sd->rps_ipi_list; 6064 6065 if (!use_backlog_threads() && remsd) { 6066 sd->rps_ipi_list = NULL; 6067 6068 local_irq_enable(); 6069 6070 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6071 net_rps_send_ipi(remsd); 6072 } else 6073 #endif 6074 local_irq_enable(); 6075 } 6076 6077 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6078 { 6079 #ifdef CONFIG_RPS 6080 return !use_backlog_threads() && sd->rps_ipi_list; 6081 #else 6082 return false; 6083 #endif 6084 } 6085 6086 static int process_backlog(struct napi_struct *napi, int quota) 6087 { 6088 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6089 bool again = true; 6090 int work = 0; 6091 6092 /* Check if we have pending ipi, its better to send them now, 6093 * not waiting net_rx_action() end. 6094 */ 6095 if (sd_has_rps_ipi_waiting(sd)) { 6096 local_irq_disable(); 6097 net_rps_action_and_irq_enable(sd); 6098 } 6099 6100 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6101 while (again) { 6102 struct sk_buff *skb; 6103 6104 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6105 while ((skb = __skb_dequeue(&sd->process_queue))) { 6106 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6107 rcu_read_lock(); 6108 __netif_receive_skb(skb); 6109 rcu_read_unlock(); 6110 if (++work >= quota) { 6111 rps_input_queue_head_add(sd, work); 6112 return work; 6113 } 6114 6115 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6116 } 6117 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6118 6119 backlog_lock_irq_disable(sd); 6120 if (skb_queue_empty(&sd->input_pkt_queue)) { 6121 /* 6122 * Inline a custom version of __napi_complete(). 6123 * only current cpu owns and manipulates this napi, 6124 * and NAPI_STATE_SCHED is the only possible flag set 6125 * on backlog. 6126 * We can use a plain write instead of clear_bit(), 6127 * and we dont need an smp_mb() memory barrier. 6128 */ 6129 napi->state &= NAPIF_STATE_THREADED; 6130 again = false; 6131 } else { 6132 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6133 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6134 &sd->process_queue); 6135 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6136 } 6137 backlog_unlock_irq_enable(sd); 6138 } 6139 6140 if (work) 6141 rps_input_queue_head_add(sd, work); 6142 return work; 6143 } 6144 6145 /** 6146 * __napi_schedule - schedule for receive 6147 * @n: entry to schedule 6148 * 6149 * The entry's receive function will be scheduled to run. 6150 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6151 */ 6152 void __napi_schedule(struct napi_struct *n) 6153 { 6154 unsigned long flags; 6155 6156 local_irq_save(flags); 6157 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6158 local_irq_restore(flags); 6159 } 6160 EXPORT_SYMBOL(__napi_schedule); 6161 6162 /** 6163 * napi_schedule_prep - check if napi can be scheduled 6164 * @n: napi context 6165 * 6166 * Test if NAPI routine is already running, and if not mark 6167 * it as running. This is used as a condition variable to 6168 * insure only one NAPI poll instance runs. We also make 6169 * sure there is no pending NAPI disable. 6170 */ 6171 bool napi_schedule_prep(struct napi_struct *n) 6172 { 6173 unsigned long new, val = READ_ONCE(n->state); 6174 6175 do { 6176 if (unlikely(val & NAPIF_STATE_DISABLE)) 6177 return false; 6178 new = val | NAPIF_STATE_SCHED; 6179 6180 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6181 * This was suggested by Alexander Duyck, as compiler 6182 * emits better code than : 6183 * if (val & NAPIF_STATE_SCHED) 6184 * new |= NAPIF_STATE_MISSED; 6185 */ 6186 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6187 NAPIF_STATE_MISSED; 6188 } while (!try_cmpxchg(&n->state, &val, new)); 6189 6190 return !(val & NAPIF_STATE_SCHED); 6191 } 6192 EXPORT_SYMBOL(napi_schedule_prep); 6193 6194 /** 6195 * __napi_schedule_irqoff - schedule for receive 6196 * @n: entry to schedule 6197 * 6198 * Variant of __napi_schedule() assuming hard irqs are masked. 6199 * 6200 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6201 * because the interrupt disabled assumption might not be true 6202 * due to force-threaded interrupts and spinlock substitution. 6203 */ 6204 void __napi_schedule_irqoff(struct napi_struct *n) 6205 { 6206 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6207 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6208 else 6209 __napi_schedule(n); 6210 } 6211 EXPORT_SYMBOL(__napi_schedule_irqoff); 6212 6213 bool napi_complete_done(struct napi_struct *n, int work_done) 6214 { 6215 unsigned long flags, val, new, timeout = 0; 6216 bool ret = true; 6217 6218 /* 6219 * 1) Don't let napi dequeue from the cpu poll list 6220 * just in case its running on a different cpu. 6221 * 2) If we are busy polling, do nothing here, we have 6222 * the guarantee we will be called later. 6223 */ 6224 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6225 NAPIF_STATE_IN_BUSY_POLL))) 6226 return false; 6227 6228 if (work_done) { 6229 if (n->gro_bitmask) 6230 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6231 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6232 } 6233 if (n->defer_hard_irqs_count > 0) { 6234 n->defer_hard_irqs_count--; 6235 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6236 if (timeout) 6237 ret = false; 6238 } 6239 if (n->gro_bitmask) { 6240 /* When the NAPI instance uses a timeout and keeps postponing 6241 * it, we need to bound somehow the time packets are kept in 6242 * the GRO layer 6243 */ 6244 napi_gro_flush(n, !!timeout); 6245 } 6246 6247 gro_normal_list(n); 6248 6249 if (unlikely(!list_empty(&n->poll_list))) { 6250 /* If n->poll_list is not empty, we need to mask irqs */ 6251 local_irq_save(flags); 6252 list_del_init(&n->poll_list); 6253 local_irq_restore(flags); 6254 } 6255 WRITE_ONCE(n->list_owner, -1); 6256 6257 val = READ_ONCE(n->state); 6258 do { 6259 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6260 6261 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6262 NAPIF_STATE_SCHED_THREADED | 6263 NAPIF_STATE_PREFER_BUSY_POLL); 6264 6265 /* If STATE_MISSED was set, leave STATE_SCHED set, 6266 * because we will call napi->poll() one more time. 6267 * This C code was suggested by Alexander Duyck to help gcc. 6268 */ 6269 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6270 NAPIF_STATE_SCHED; 6271 } while (!try_cmpxchg(&n->state, &val, new)); 6272 6273 if (unlikely(val & NAPIF_STATE_MISSED)) { 6274 __napi_schedule(n); 6275 return false; 6276 } 6277 6278 if (timeout) 6279 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6280 HRTIMER_MODE_REL_PINNED); 6281 return ret; 6282 } 6283 EXPORT_SYMBOL(napi_complete_done); 6284 6285 /* must be called under rcu_read_lock(), as we dont take a reference */ 6286 struct napi_struct *napi_by_id(unsigned int napi_id) 6287 { 6288 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6289 struct napi_struct *napi; 6290 6291 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6292 if (napi->napi_id == napi_id) 6293 return napi; 6294 6295 return NULL; 6296 } 6297 6298 static void skb_defer_free_flush(struct softnet_data *sd) 6299 { 6300 struct sk_buff *skb, *next; 6301 6302 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6303 if (!READ_ONCE(sd->defer_list)) 6304 return; 6305 6306 spin_lock(&sd->defer_lock); 6307 skb = sd->defer_list; 6308 sd->defer_list = NULL; 6309 sd->defer_count = 0; 6310 spin_unlock(&sd->defer_lock); 6311 6312 while (skb != NULL) { 6313 next = skb->next; 6314 napi_consume_skb(skb, 1); 6315 skb = next; 6316 } 6317 } 6318 6319 #if defined(CONFIG_NET_RX_BUSY_POLL) 6320 6321 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6322 { 6323 if (!skip_schedule) { 6324 gro_normal_list(napi); 6325 __napi_schedule(napi); 6326 return; 6327 } 6328 6329 if (napi->gro_bitmask) { 6330 /* flush too old packets 6331 * If HZ < 1000, flush all packets. 6332 */ 6333 napi_gro_flush(napi, HZ >= 1000); 6334 } 6335 6336 gro_normal_list(napi); 6337 clear_bit(NAPI_STATE_SCHED, &napi->state); 6338 } 6339 6340 enum { 6341 NAPI_F_PREFER_BUSY_POLL = 1, 6342 NAPI_F_END_ON_RESCHED = 2, 6343 }; 6344 6345 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6346 unsigned flags, u16 budget) 6347 { 6348 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6349 bool skip_schedule = false; 6350 unsigned long timeout; 6351 int rc; 6352 6353 /* Busy polling means there is a high chance device driver hard irq 6354 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6355 * set in napi_schedule_prep(). 6356 * Since we are about to call napi->poll() once more, we can safely 6357 * clear NAPI_STATE_MISSED. 6358 * 6359 * Note: x86 could use a single "lock and ..." instruction 6360 * to perform these two clear_bit() 6361 */ 6362 clear_bit(NAPI_STATE_MISSED, &napi->state); 6363 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6364 6365 local_bh_disable(); 6366 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6367 6368 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6369 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6370 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6371 if (napi->defer_hard_irqs_count && timeout) { 6372 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6373 skip_schedule = true; 6374 } 6375 } 6376 6377 /* All we really want here is to re-enable device interrupts. 6378 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6379 */ 6380 rc = napi->poll(napi, budget); 6381 /* We can't gro_normal_list() here, because napi->poll() might have 6382 * rearmed the napi (napi_complete_done()) in which case it could 6383 * already be running on another CPU. 6384 */ 6385 trace_napi_poll(napi, rc, budget); 6386 netpoll_poll_unlock(have_poll_lock); 6387 if (rc == budget) 6388 __busy_poll_stop(napi, skip_schedule); 6389 bpf_net_ctx_clear(bpf_net_ctx); 6390 local_bh_enable(); 6391 } 6392 6393 static void __napi_busy_loop(unsigned int napi_id, 6394 bool (*loop_end)(void *, unsigned long), 6395 void *loop_end_arg, unsigned flags, u16 budget) 6396 { 6397 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6398 int (*napi_poll)(struct napi_struct *napi, int budget); 6399 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6400 void *have_poll_lock = NULL; 6401 struct napi_struct *napi; 6402 6403 WARN_ON_ONCE(!rcu_read_lock_held()); 6404 6405 restart: 6406 napi_poll = NULL; 6407 6408 napi = napi_by_id(napi_id); 6409 if (!napi) 6410 return; 6411 6412 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6413 preempt_disable(); 6414 for (;;) { 6415 int work = 0; 6416 6417 local_bh_disable(); 6418 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6419 if (!napi_poll) { 6420 unsigned long val = READ_ONCE(napi->state); 6421 6422 /* If multiple threads are competing for this napi, 6423 * we avoid dirtying napi->state as much as we can. 6424 */ 6425 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6426 NAPIF_STATE_IN_BUSY_POLL)) { 6427 if (flags & NAPI_F_PREFER_BUSY_POLL) 6428 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6429 goto count; 6430 } 6431 if (cmpxchg(&napi->state, val, 6432 val | NAPIF_STATE_IN_BUSY_POLL | 6433 NAPIF_STATE_SCHED) != val) { 6434 if (flags & NAPI_F_PREFER_BUSY_POLL) 6435 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6436 goto count; 6437 } 6438 have_poll_lock = netpoll_poll_lock(napi); 6439 napi_poll = napi->poll; 6440 } 6441 work = napi_poll(napi, budget); 6442 trace_napi_poll(napi, work, budget); 6443 gro_normal_list(napi); 6444 count: 6445 if (work > 0) 6446 __NET_ADD_STATS(dev_net(napi->dev), 6447 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6448 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6449 bpf_net_ctx_clear(bpf_net_ctx); 6450 local_bh_enable(); 6451 6452 if (!loop_end || loop_end(loop_end_arg, start_time)) 6453 break; 6454 6455 if (unlikely(need_resched())) { 6456 if (flags & NAPI_F_END_ON_RESCHED) 6457 break; 6458 if (napi_poll) 6459 busy_poll_stop(napi, have_poll_lock, flags, budget); 6460 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6461 preempt_enable(); 6462 rcu_read_unlock(); 6463 cond_resched(); 6464 rcu_read_lock(); 6465 if (loop_end(loop_end_arg, start_time)) 6466 return; 6467 goto restart; 6468 } 6469 cpu_relax(); 6470 } 6471 if (napi_poll) 6472 busy_poll_stop(napi, have_poll_lock, flags, budget); 6473 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6474 preempt_enable(); 6475 } 6476 6477 void napi_busy_loop_rcu(unsigned int napi_id, 6478 bool (*loop_end)(void *, unsigned long), 6479 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6480 { 6481 unsigned flags = NAPI_F_END_ON_RESCHED; 6482 6483 if (prefer_busy_poll) 6484 flags |= NAPI_F_PREFER_BUSY_POLL; 6485 6486 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6487 } 6488 6489 void napi_busy_loop(unsigned int napi_id, 6490 bool (*loop_end)(void *, unsigned long), 6491 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6492 { 6493 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6494 6495 rcu_read_lock(); 6496 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6497 rcu_read_unlock(); 6498 } 6499 EXPORT_SYMBOL(napi_busy_loop); 6500 6501 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6502 6503 static void napi_hash_add(struct napi_struct *napi) 6504 { 6505 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6506 return; 6507 6508 spin_lock(&napi_hash_lock); 6509 6510 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6511 do { 6512 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6513 napi_gen_id = MIN_NAPI_ID; 6514 } while (napi_by_id(napi_gen_id)); 6515 napi->napi_id = napi_gen_id; 6516 6517 hlist_add_head_rcu(&napi->napi_hash_node, 6518 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6519 6520 spin_unlock(&napi_hash_lock); 6521 } 6522 6523 /* Warning : caller is responsible to make sure rcu grace period 6524 * is respected before freeing memory containing @napi 6525 */ 6526 static void napi_hash_del(struct napi_struct *napi) 6527 { 6528 spin_lock(&napi_hash_lock); 6529 6530 hlist_del_init_rcu(&napi->napi_hash_node); 6531 6532 spin_unlock(&napi_hash_lock); 6533 } 6534 6535 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6536 { 6537 struct napi_struct *napi; 6538 6539 napi = container_of(timer, struct napi_struct, timer); 6540 6541 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6542 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6543 */ 6544 if (!napi_disable_pending(napi) && 6545 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6546 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6547 __napi_schedule_irqoff(napi); 6548 } 6549 6550 return HRTIMER_NORESTART; 6551 } 6552 6553 static void init_gro_hash(struct napi_struct *napi) 6554 { 6555 int i; 6556 6557 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6558 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6559 napi->gro_hash[i].count = 0; 6560 } 6561 napi->gro_bitmask = 0; 6562 } 6563 6564 int dev_set_threaded(struct net_device *dev, bool threaded) 6565 { 6566 struct napi_struct *napi; 6567 int err = 0; 6568 6569 if (dev->threaded == threaded) 6570 return 0; 6571 6572 if (threaded) { 6573 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6574 if (!napi->thread) { 6575 err = napi_kthread_create(napi); 6576 if (err) { 6577 threaded = false; 6578 break; 6579 } 6580 } 6581 } 6582 } 6583 6584 WRITE_ONCE(dev->threaded, threaded); 6585 6586 /* Make sure kthread is created before THREADED bit 6587 * is set. 6588 */ 6589 smp_mb__before_atomic(); 6590 6591 /* Setting/unsetting threaded mode on a napi might not immediately 6592 * take effect, if the current napi instance is actively being 6593 * polled. In this case, the switch between threaded mode and 6594 * softirq mode will happen in the next round of napi_schedule(). 6595 * This should not cause hiccups/stalls to the live traffic. 6596 */ 6597 list_for_each_entry(napi, &dev->napi_list, dev_list) 6598 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6599 6600 return err; 6601 } 6602 EXPORT_SYMBOL(dev_set_threaded); 6603 6604 /** 6605 * netif_queue_set_napi - Associate queue with the napi 6606 * @dev: device to which NAPI and queue belong 6607 * @queue_index: Index of queue 6608 * @type: queue type as RX or TX 6609 * @napi: NAPI context, pass NULL to clear previously set NAPI 6610 * 6611 * Set queue with its corresponding napi context. This should be done after 6612 * registering the NAPI handler for the queue-vector and the queues have been 6613 * mapped to the corresponding interrupt vector. 6614 */ 6615 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 6616 enum netdev_queue_type type, struct napi_struct *napi) 6617 { 6618 struct netdev_rx_queue *rxq; 6619 struct netdev_queue *txq; 6620 6621 if (WARN_ON_ONCE(napi && !napi->dev)) 6622 return; 6623 if (dev->reg_state >= NETREG_REGISTERED) 6624 ASSERT_RTNL(); 6625 6626 switch (type) { 6627 case NETDEV_QUEUE_TYPE_RX: 6628 rxq = __netif_get_rx_queue(dev, queue_index); 6629 rxq->napi = napi; 6630 return; 6631 case NETDEV_QUEUE_TYPE_TX: 6632 txq = netdev_get_tx_queue(dev, queue_index); 6633 txq->napi = napi; 6634 return; 6635 default: 6636 return; 6637 } 6638 } 6639 EXPORT_SYMBOL(netif_queue_set_napi); 6640 6641 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 6642 int (*poll)(struct napi_struct *, int), int weight) 6643 { 6644 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6645 return; 6646 6647 INIT_LIST_HEAD(&napi->poll_list); 6648 INIT_HLIST_NODE(&napi->napi_hash_node); 6649 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6650 napi->timer.function = napi_watchdog; 6651 init_gro_hash(napi); 6652 napi->skb = NULL; 6653 INIT_LIST_HEAD(&napi->rx_list); 6654 napi->rx_count = 0; 6655 napi->poll = poll; 6656 if (weight > NAPI_POLL_WEIGHT) 6657 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6658 weight); 6659 napi->weight = weight; 6660 napi->dev = dev; 6661 #ifdef CONFIG_NETPOLL 6662 napi->poll_owner = -1; 6663 #endif 6664 napi->list_owner = -1; 6665 set_bit(NAPI_STATE_SCHED, &napi->state); 6666 set_bit(NAPI_STATE_NPSVC, &napi->state); 6667 list_add_rcu(&napi->dev_list, &dev->napi_list); 6668 napi_hash_add(napi); 6669 napi_get_frags_check(napi); 6670 /* Create kthread for this napi if dev->threaded is set. 6671 * Clear dev->threaded if kthread creation failed so that 6672 * threaded mode will not be enabled in napi_enable(). 6673 */ 6674 if (dev->threaded && napi_kthread_create(napi)) 6675 dev->threaded = false; 6676 netif_napi_set_irq(napi, -1); 6677 } 6678 EXPORT_SYMBOL(netif_napi_add_weight); 6679 6680 void napi_disable(struct napi_struct *n) 6681 { 6682 unsigned long val, new; 6683 6684 might_sleep(); 6685 set_bit(NAPI_STATE_DISABLE, &n->state); 6686 6687 val = READ_ONCE(n->state); 6688 do { 6689 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6690 usleep_range(20, 200); 6691 val = READ_ONCE(n->state); 6692 } 6693 6694 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6695 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6696 } while (!try_cmpxchg(&n->state, &val, new)); 6697 6698 hrtimer_cancel(&n->timer); 6699 6700 clear_bit(NAPI_STATE_DISABLE, &n->state); 6701 } 6702 EXPORT_SYMBOL(napi_disable); 6703 6704 /** 6705 * napi_enable - enable NAPI scheduling 6706 * @n: NAPI context 6707 * 6708 * Resume NAPI from being scheduled on this context. 6709 * Must be paired with napi_disable. 6710 */ 6711 void napi_enable(struct napi_struct *n) 6712 { 6713 unsigned long new, val = READ_ONCE(n->state); 6714 6715 do { 6716 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6717 6718 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6719 if (n->dev->threaded && n->thread) 6720 new |= NAPIF_STATE_THREADED; 6721 } while (!try_cmpxchg(&n->state, &val, new)); 6722 } 6723 EXPORT_SYMBOL(napi_enable); 6724 6725 static void flush_gro_hash(struct napi_struct *napi) 6726 { 6727 int i; 6728 6729 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6730 struct sk_buff *skb, *n; 6731 6732 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6733 kfree_skb(skb); 6734 napi->gro_hash[i].count = 0; 6735 } 6736 } 6737 6738 /* Must be called in process context */ 6739 void __netif_napi_del(struct napi_struct *napi) 6740 { 6741 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6742 return; 6743 6744 napi_hash_del(napi); 6745 list_del_rcu(&napi->dev_list); 6746 napi_free_frags(napi); 6747 6748 flush_gro_hash(napi); 6749 napi->gro_bitmask = 0; 6750 6751 if (napi->thread) { 6752 kthread_stop(napi->thread); 6753 napi->thread = NULL; 6754 } 6755 } 6756 EXPORT_SYMBOL(__netif_napi_del); 6757 6758 static int __napi_poll(struct napi_struct *n, bool *repoll) 6759 { 6760 int work, weight; 6761 6762 weight = n->weight; 6763 6764 /* This NAPI_STATE_SCHED test is for avoiding a race 6765 * with netpoll's poll_napi(). Only the entity which 6766 * obtains the lock and sees NAPI_STATE_SCHED set will 6767 * actually make the ->poll() call. Therefore we avoid 6768 * accidentally calling ->poll() when NAPI is not scheduled. 6769 */ 6770 work = 0; 6771 if (napi_is_scheduled(n)) { 6772 work = n->poll(n, weight); 6773 trace_napi_poll(n, work, weight); 6774 6775 xdp_do_check_flushed(n); 6776 } 6777 6778 if (unlikely(work > weight)) 6779 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6780 n->poll, work, weight); 6781 6782 if (likely(work < weight)) 6783 return work; 6784 6785 /* Drivers must not modify the NAPI state if they 6786 * consume the entire weight. In such cases this code 6787 * still "owns" the NAPI instance and therefore can 6788 * move the instance around on the list at-will. 6789 */ 6790 if (unlikely(napi_disable_pending(n))) { 6791 napi_complete(n); 6792 return work; 6793 } 6794 6795 /* The NAPI context has more processing work, but busy-polling 6796 * is preferred. Exit early. 6797 */ 6798 if (napi_prefer_busy_poll(n)) { 6799 if (napi_complete_done(n, work)) { 6800 /* If timeout is not set, we need to make sure 6801 * that the NAPI is re-scheduled. 6802 */ 6803 napi_schedule(n); 6804 } 6805 return work; 6806 } 6807 6808 if (n->gro_bitmask) { 6809 /* flush too old packets 6810 * If HZ < 1000, flush all packets. 6811 */ 6812 napi_gro_flush(n, HZ >= 1000); 6813 } 6814 6815 gro_normal_list(n); 6816 6817 /* Some drivers may have called napi_schedule 6818 * prior to exhausting their budget. 6819 */ 6820 if (unlikely(!list_empty(&n->poll_list))) { 6821 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6822 n->dev ? n->dev->name : "backlog"); 6823 return work; 6824 } 6825 6826 *repoll = true; 6827 6828 return work; 6829 } 6830 6831 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6832 { 6833 bool do_repoll = false; 6834 void *have; 6835 int work; 6836 6837 list_del_init(&n->poll_list); 6838 6839 have = netpoll_poll_lock(n); 6840 6841 work = __napi_poll(n, &do_repoll); 6842 6843 if (do_repoll) 6844 list_add_tail(&n->poll_list, repoll); 6845 6846 netpoll_poll_unlock(have); 6847 6848 return work; 6849 } 6850 6851 static int napi_thread_wait(struct napi_struct *napi) 6852 { 6853 set_current_state(TASK_INTERRUPTIBLE); 6854 6855 while (!kthread_should_stop()) { 6856 /* Testing SCHED_THREADED bit here to make sure the current 6857 * kthread owns this napi and could poll on this napi. 6858 * Testing SCHED bit is not enough because SCHED bit might be 6859 * set by some other busy poll thread or by napi_disable(). 6860 */ 6861 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 6862 WARN_ON(!list_empty(&napi->poll_list)); 6863 __set_current_state(TASK_RUNNING); 6864 return 0; 6865 } 6866 6867 schedule(); 6868 set_current_state(TASK_INTERRUPTIBLE); 6869 } 6870 __set_current_state(TASK_RUNNING); 6871 6872 return -1; 6873 } 6874 6875 static void napi_threaded_poll_loop(struct napi_struct *napi) 6876 { 6877 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6878 struct softnet_data *sd; 6879 unsigned long last_qs = jiffies; 6880 6881 for (;;) { 6882 bool repoll = false; 6883 void *have; 6884 6885 local_bh_disable(); 6886 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6887 6888 sd = this_cpu_ptr(&softnet_data); 6889 sd->in_napi_threaded_poll = true; 6890 6891 have = netpoll_poll_lock(napi); 6892 __napi_poll(napi, &repoll); 6893 netpoll_poll_unlock(have); 6894 6895 sd->in_napi_threaded_poll = false; 6896 barrier(); 6897 6898 if (sd_has_rps_ipi_waiting(sd)) { 6899 local_irq_disable(); 6900 net_rps_action_and_irq_enable(sd); 6901 } 6902 skb_defer_free_flush(sd); 6903 bpf_net_ctx_clear(bpf_net_ctx); 6904 local_bh_enable(); 6905 6906 if (!repoll) 6907 break; 6908 6909 rcu_softirq_qs_periodic(last_qs); 6910 cond_resched(); 6911 } 6912 } 6913 6914 static int napi_threaded_poll(void *data) 6915 { 6916 struct napi_struct *napi = data; 6917 6918 while (!napi_thread_wait(napi)) 6919 napi_threaded_poll_loop(napi); 6920 6921 return 0; 6922 } 6923 6924 static __latent_entropy void net_rx_action(struct softirq_action *h) 6925 { 6926 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6927 unsigned long time_limit = jiffies + 6928 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 6929 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6930 int budget = READ_ONCE(net_hotdata.netdev_budget); 6931 LIST_HEAD(list); 6932 LIST_HEAD(repoll); 6933 6934 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6935 start: 6936 sd->in_net_rx_action = true; 6937 local_irq_disable(); 6938 list_splice_init(&sd->poll_list, &list); 6939 local_irq_enable(); 6940 6941 for (;;) { 6942 struct napi_struct *n; 6943 6944 skb_defer_free_flush(sd); 6945 6946 if (list_empty(&list)) { 6947 if (list_empty(&repoll)) { 6948 sd->in_net_rx_action = false; 6949 barrier(); 6950 /* We need to check if ____napi_schedule() 6951 * had refilled poll_list while 6952 * sd->in_net_rx_action was true. 6953 */ 6954 if (!list_empty(&sd->poll_list)) 6955 goto start; 6956 if (!sd_has_rps_ipi_waiting(sd)) 6957 goto end; 6958 } 6959 break; 6960 } 6961 6962 n = list_first_entry(&list, struct napi_struct, poll_list); 6963 budget -= napi_poll(n, &repoll); 6964 6965 /* If softirq window is exhausted then punt. 6966 * Allow this to run for 2 jiffies since which will allow 6967 * an average latency of 1.5/HZ. 6968 */ 6969 if (unlikely(budget <= 0 || 6970 time_after_eq(jiffies, time_limit))) { 6971 sd->time_squeeze++; 6972 break; 6973 } 6974 } 6975 6976 local_irq_disable(); 6977 6978 list_splice_tail_init(&sd->poll_list, &list); 6979 list_splice_tail(&repoll, &list); 6980 list_splice(&list, &sd->poll_list); 6981 if (!list_empty(&sd->poll_list)) 6982 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6983 else 6984 sd->in_net_rx_action = false; 6985 6986 net_rps_action_and_irq_enable(sd); 6987 end: 6988 bpf_net_ctx_clear(bpf_net_ctx); 6989 } 6990 6991 struct netdev_adjacent { 6992 struct net_device *dev; 6993 netdevice_tracker dev_tracker; 6994 6995 /* upper master flag, there can only be one master device per list */ 6996 bool master; 6997 6998 /* lookup ignore flag */ 6999 bool ignore; 7000 7001 /* counter for the number of times this device was added to us */ 7002 u16 ref_nr; 7003 7004 /* private field for the users */ 7005 void *private; 7006 7007 struct list_head list; 7008 struct rcu_head rcu; 7009 }; 7010 7011 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7012 struct list_head *adj_list) 7013 { 7014 struct netdev_adjacent *adj; 7015 7016 list_for_each_entry(adj, adj_list, list) { 7017 if (adj->dev == adj_dev) 7018 return adj; 7019 } 7020 return NULL; 7021 } 7022 7023 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7024 struct netdev_nested_priv *priv) 7025 { 7026 struct net_device *dev = (struct net_device *)priv->data; 7027 7028 return upper_dev == dev; 7029 } 7030 7031 /** 7032 * netdev_has_upper_dev - Check if device is linked to an upper device 7033 * @dev: device 7034 * @upper_dev: upper device to check 7035 * 7036 * Find out if a device is linked to specified upper device and return true 7037 * in case it is. Note that this checks only immediate upper device, 7038 * not through a complete stack of devices. The caller must hold the RTNL lock. 7039 */ 7040 bool netdev_has_upper_dev(struct net_device *dev, 7041 struct net_device *upper_dev) 7042 { 7043 struct netdev_nested_priv priv = { 7044 .data = (void *)upper_dev, 7045 }; 7046 7047 ASSERT_RTNL(); 7048 7049 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7050 &priv); 7051 } 7052 EXPORT_SYMBOL(netdev_has_upper_dev); 7053 7054 /** 7055 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7056 * @dev: device 7057 * @upper_dev: upper device to check 7058 * 7059 * Find out if a device is linked to specified upper device and return true 7060 * in case it is. Note that this checks the entire upper device chain. 7061 * The caller must hold rcu lock. 7062 */ 7063 7064 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7065 struct net_device *upper_dev) 7066 { 7067 struct netdev_nested_priv priv = { 7068 .data = (void *)upper_dev, 7069 }; 7070 7071 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7072 &priv); 7073 } 7074 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7075 7076 /** 7077 * netdev_has_any_upper_dev - Check if device is linked to some device 7078 * @dev: device 7079 * 7080 * Find out if a device is linked to an upper device and return true in case 7081 * it is. The caller must hold the RTNL lock. 7082 */ 7083 bool netdev_has_any_upper_dev(struct net_device *dev) 7084 { 7085 ASSERT_RTNL(); 7086 7087 return !list_empty(&dev->adj_list.upper); 7088 } 7089 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7090 7091 /** 7092 * netdev_master_upper_dev_get - Get master upper device 7093 * @dev: device 7094 * 7095 * Find a master upper device and return pointer to it or NULL in case 7096 * it's not there. The caller must hold the RTNL lock. 7097 */ 7098 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7099 { 7100 struct netdev_adjacent *upper; 7101 7102 ASSERT_RTNL(); 7103 7104 if (list_empty(&dev->adj_list.upper)) 7105 return NULL; 7106 7107 upper = list_first_entry(&dev->adj_list.upper, 7108 struct netdev_adjacent, list); 7109 if (likely(upper->master)) 7110 return upper->dev; 7111 return NULL; 7112 } 7113 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7114 7115 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7116 { 7117 struct netdev_adjacent *upper; 7118 7119 ASSERT_RTNL(); 7120 7121 if (list_empty(&dev->adj_list.upper)) 7122 return NULL; 7123 7124 upper = list_first_entry(&dev->adj_list.upper, 7125 struct netdev_adjacent, list); 7126 if (likely(upper->master) && !upper->ignore) 7127 return upper->dev; 7128 return NULL; 7129 } 7130 7131 /** 7132 * netdev_has_any_lower_dev - Check if device is linked to some device 7133 * @dev: device 7134 * 7135 * Find out if a device is linked to a lower device and return true in case 7136 * it is. The caller must hold the RTNL lock. 7137 */ 7138 static bool netdev_has_any_lower_dev(struct net_device *dev) 7139 { 7140 ASSERT_RTNL(); 7141 7142 return !list_empty(&dev->adj_list.lower); 7143 } 7144 7145 void *netdev_adjacent_get_private(struct list_head *adj_list) 7146 { 7147 struct netdev_adjacent *adj; 7148 7149 adj = list_entry(adj_list, struct netdev_adjacent, list); 7150 7151 return adj->private; 7152 } 7153 EXPORT_SYMBOL(netdev_adjacent_get_private); 7154 7155 /** 7156 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7157 * @dev: device 7158 * @iter: list_head ** of the current position 7159 * 7160 * Gets the next device from the dev's upper list, starting from iter 7161 * position. The caller must hold RCU read lock. 7162 */ 7163 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7164 struct list_head **iter) 7165 { 7166 struct netdev_adjacent *upper; 7167 7168 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7169 7170 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7171 7172 if (&upper->list == &dev->adj_list.upper) 7173 return NULL; 7174 7175 *iter = &upper->list; 7176 7177 return upper->dev; 7178 } 7179 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7180 7181 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7182 struct list_head **iter, 7183 bool *ignore) 7184 { 7185 struct netdev_adjacent *upper; 7186 7187 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7188 7189 if (&upper->list == &dev->adj_list.upper) 7190 return NULL; 7191 7192 *iter = &upper->list; 7193 *ignore = upper->ignore; 7194 7195 return upper->dev; 7196 } 7197 7198 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7199 struct list_head **iter) 7200 { 7201 struct netdev_adjacent *upper; 7202 7203 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7204 7205 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7206 7207 if (&upper->list == &dev->adj_list.upper) 7208 return NULL; 7209 7210 *iter = &upper->list; 7211 7212 return upper->dev; 7213 } 7214 7215 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7216 int (*fn)(struct net_device *dev, 7217 struct netdev_nested_priv *priv), 7218 struct netdev_nested_priv *priv) 7219 { 7220 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7221 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7222 int ret, cur = 0; 7223 bool ignore; 7224 7225 now = dev; 7226 iter = &dev->adj_list.upper; 7227 7228 while (1) { 7229 if (now != dev) { 7230 ret = fn(now, priv); 7231 if (ret) 7232 return ret; 7233 } 7234 7235 next = NULL; 7236 while (1) { 7237 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7238 if (!udev) 7239 break; 7240 if (ignore) 7241 continue; 7242 7243 next = udev; 7244 niter = &udev->adj_list.upper; 7245 dev_stack[cur] = now; 7246 iter_stack[cur++] = iter; 7247 break; 7248 } 7249 7250 if (!next) { 7251 if (!cur) 7252 return 0; 7253 next = dev_stack[--cur]; 7254 niter = iter_stack[cur]; 7255 } 7256 7257 now = next; 7258 iter = niter; 7259 } 7260 7261 return 0; 7262 } 7263 7264 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7265 int (*fn)(struct net_device *dev, 7266 struct netdev_nested_priv *priv), 7267 struct netdev_nested_priv *priv) 7268 { 7269 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7270 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7271 int ret, cur = 0; 7272 7273 now = dev; 7274 iter = &dev->adj_list.upper; 7275 7276 while (1) { 7277 if (now != dev) { 7278 ret = fn(now, priv); 7279 if (ret) 7280 return ret; 7281 } 7282 7283 next = NULL; 7284 while (1) { 7285 udev = netdev_next_upper_dev_rcu(now, &iter); 7286 if (!udev) 7287 break; 7288 7289 next = udev; 7290 niter = &udev->adj_list.upper; 7291 dev_stack[cur] = now; 7292 iter_stack[cur++] = iter; 7293 break; 7294 } 7295 7296 if (!next) { 7297 if (!cur) 7298 return 0; 7299 next = dev_stack[--cur]; 7300 niter = iter_stack[cur]; 7301 } 7302 7303 now = next; 7304 iter = niter; 7305 } 7306 7307 return 0; 7308 } 7309 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7310 7311 static bool __netdev_has_upper_dev(struct net_device *dev, 7312 struct net_device *upper_dev) 7313 { 7314 struct netdev_nested_priv priv = { 7315 .flags = 0, 7316 .data = (void *)upper_dev, 7317 }; 7318 7319 ASSERT_RTNL(); 7320 7321 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7322 &priv); 7323 } 7324 7325 /** 7326 * netdev_lower_get_next_private - Get the next ->private from the 7327 * lower neighbour list 7328 * @dev: device 7329 * @iter: list_head ** of the current position 7330 * 7331 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7332 * list, starting from iter position. The caller must hold either hold the 7333 * RTNL lock or its own locking that guarantees that the neighbour lower 7334 * list will remain unchanged. 7335 */ 7336 void *netdev_lower_get_next_private(struct net_device *dev, 7337 struct list_head **iter) 7338 { 7339 struct netdev_adjacent *lower; 7340 7341 lower = list_entry(*iter, struct netdev_adjacent, list); 7342 7343 if (&lower->list == &dev->adj_list.lower) 7344 return NULL; 7345 7346 *iter = lower->list.next; 7347 7348 return lower->private; 7349 } 7350 EXPORT_SYMBOL(netdev_lower_get_next_private); 7351 7352 /** 7353 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7354 * lower neighbour list, RCU 7355 * variant 7356 * @dev: device 7357 * @iter: list_head ** of the current position 7358 * 7359 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7360 * list, starting from iter position. The caller must hold RCU read lock. 7361 */ 7362 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7363 struct list_head **iter) 7364 { 7365 struct netdev_adjacent *lower; 7366 7367 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7368 7369 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7370 7371 if (&lower->list == &dev->adj_list.lower) 7372 return NULL; 7373 7374 *iter = &lower->list; 7375 7376 return lower->private; 7377 } 7378 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7379 7380 /** 7381 * netdev_lower_get_next - Get the next device from the lower neighbour 7382 * list 7383 * @dev: device 7384 * @iter: list_head ** of the current position 7385 * 7386 * Gets the next netdev_adjacent from the dev's lower neighbour 7387 * list, starting from iter position. The caller must hold RTNL lock or 7388 * its own locking that guarantees that the neighbour lower 7389 * list will remain unchanged. 7390 */ 7391 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7392 { 7393 struct netdev_adjacent *lower; 7394 7395 lower = list_entry(*iter, struct netdev_adjacent, list); 7396 7397 if (&lower->list == &dev->adj_list.lower) 7398 return NULL; 7399 7400 *iter = lower->list.next; 7401 7402 return lower->dev; 7403 } 7404 EXPORT_SYMBOL(netdev_lower_get_next); 7405 7406 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7407 struct list_head **iter) 7408 { 7409 struct netdev_adjacent *lower; 7410 7411 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7412 7413 if (&lower->list == &dev->adj_list.lower) 7414 return NULL; 7415 7416 *iter = &lower->list; 7417 7418 return lower->dev; 7419 } 7420 7421 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7422 struct list_head **iter, 7423 bool *ignore) 7424 { 7425 struct netdev_adjacent *lower; 7426 7427 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7428 7429 if (&lower->list == &dev->adj_list.lower) 7430 return NULL; 7431 7432 *iter = &lower->list; 7433 *ignore = lower->ignore; 7434 7435 return lower->dev; 7436 } 7437 7438 int netdev_walk_all_lower_dev(struct net_device *dev, 7439 int (*fn)(struct net_device *dev, 7440 struct netdev_nested_priv *priv), 7441 struct netdev_nested_priv *priv) 7442 { 7443 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7444 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7445 int ret, cur = 0; 7446 7447 now = dev; 7448 iter = &dev->adj_list.lower; 7449 7450 while (1) { 7451 if (now != dev) { 7452 ret = fn(now, priv); 7453 if (ret) 7454 return ret; 7455 } 7456 7457 next = NULL; 7458 while (1) { 7459 ldev = netdev_next_lower_dev(now, &iter); 7460 if (!ldev) 7461 break; 7462 7463 next = ldev; 7464 niter = &ldev->adj_list.lower; 7465 dev_stack[cur] = now; 7466 iter_stack[cur++] = iter; 7467 break; 7468 } 7469 7470 if (!next) { 7471 if (!cur) 7472 return 0; 7473 next = dev_stack[--cur]; 7474 niter = iter_stack[cur]; 7475 } 7476 7477 now = next; 7478 iter = niter; 7479 } 7480 7481 return 0; 7482 } 7483 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7484 7485 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7486 int (*fn)(struct net_device *dev, 7487 struct netdev_nested_priv *priv), 7488 struct netdev_nested_priv *priv) 7489 { 7490 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7491 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7492 int ret, cur = 0; 7493 bool ignore; 7494 7495 now = dev; 7496 iter = &dev->adj_list.lower; 7497 7498 while (1) { 7499 if (now != dev) { 7500 ret = fn(now, priv); 7501 if (ret) 7502 return ret; 7503 } 7504 7505 next = NULL; 7506 while (1) { 7507 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7508 if (!ldev) 7509 break; 7510 if (ignore) 7511 continue; 7512 7513 next = ldev; 7514 niter = &ldev->adj_list.lower; 7515 dev_stack[cur] = now; 7516 iter_stack[cur++] = iter; 7517 break; 7518 } 7519 7520 if (!next) { 7521 if (!cur) 7522 return 0; 7523 next = dev_stack[--cur]; 7524 niter = iter_stack[cur]; 7525 } 7526 7527 now = next; 7528 iter = niter; 7529 } 7530 7531 return 0; 7532 } 7533 7534 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7535 struct list_head **iter) 7536 { 7537 struct netdev_adjacent *lower; 7538 7539 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7540 if (&lower->list == &dev->adj_list.lower) 7541 return NULL; 7542 7543 *iter = &lower->list; 7544 7545 return lower->dev; 7546 } 7547 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7548 7549 static u8 __netdev_upper_depth(struct net_device *dev) 7550 { 7551 struct net_device *udev; 7552 struct list_head *iter; 7553 u8 max_depth = 0; 7554 bool ignore; 7555 7556 for (iter = &dev->adj_list.upper, 7557 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7558 udev; 7559 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7560 if (ignore) 7561 continue; 7562 if (max_depth < udev->upper_level) 7563 max_depth = udev->upper_level; 7564 } 7565 7566 return max_depth; 7567 } 7568 7569 static u8 __netdev_lower_depth(struct net_device *dev) 7570 { 7571 struct net_device *ldev; 7572 struct list_head *iter; 7573 u8 max_depth = 0; 7574 bool ignore; 7575 7576 for (iter = &dev->adj_list.lower, 7577 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7578 ldev; 7579 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7580 if (ignore) 7581 continue; 7582 if (max_depth < ldev->lower_level) 7583 max_depth = ldev->lower_level; 7584 } 7585 7586 return max_depth; 7587 } 7588 7589 static int __netdev_update_upper_level(struct net_device *dev, 7590 struct netdev_nested_priv *__unused) 7591 { 7592 dev->upper_level = __netdev_upper_depth(dev) + 1; 7593 return 0; 7594 } 7595 7596 #ifdef CONFIG_LOCKDEP 7597 static LIST_HEAD(net_unlink_list); 7598 7599 static void net_unlink_todo(struct net_device *dev) 7600 { 7601 if (list_empty(&dev->unlink_list)) 7602 list_add_tail(&dev->unlink_list, &net_unlink_list); 7603 } 7604 #endif 7605 7606 static int __netdev_update_lower_level(struct net_device *dev, 7607 struct netdev_nested_priv *priv) 7608 { 7609 dev->lower_level = __netdev_lower_depth(dev) + 1; 7610 7611 #ifdef CONFIG_LOCKDEP 7612 if (!priv) 7613 return 0; 7614 7615 if (priv->flags & NESTED_SYNC_IMM) 7616 dev->nested_level = dev->lower_level - 1; 7617 if (priv->flags & NESTED_SYNC_TODO) 7618 net_unlink_todo(dev); 7619 #endif 7620 return 0; 7621 } 7622 7623 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7624 int (*fn)(struct net_device *dev, 7625 struct netdev_nested_priv *priv), 7626 struct netdev_nested_priv *priv) 7627 { 7628 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7629 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7630 int ret, cur = 0; 7631 7632 now = dev; 7633 iter = &dev->adj_list.lower; 7634 7635 while (1) { 7636 if (now != dev) { 7637 ret = fn(now, priv); 7638 if (ret) 7639 return ret; 7640 } 7641 7642 next = NULL; 7643 while (1) { 7644 ldev = netdev_next_lower_dev_rcu(now, &iter); 7645 if (!ldev) 7646 break; 7647 7648 next = ldev; 7649 niter = &ldev->adj_list.lower; 7650 dev_stack[cur] = now; 7651 iter_stack[cur++] = iter; 7652 break; 7653 } 7654 7655 if (!next) { 7656 if (!cur) 7657 return 0; 7658 next = dev_stack[--cur]; 7659 niter = iter_stack[cur]; 7660 } 7661 7662 now = next; 7663 iter = niter; 7664 } 7665 7666 return 0; 7667 } 7668 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7669 7670 /** 7671 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7672 * lower neighbour list, RCU 7673 * variant 7674 * @dev: device 7675 * 7676 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7677 * list. The caller must hold RCU read lock. 7678 */ 7679 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7680 { 7681 struct netdev_adjacent *lower; 7682 7683 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7684 struct netdev_adjacent, list); 7685 if (lower) 7686 return lower->private; 7687 return NULL; 7688 } 7689 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7690 7691 /** 7692 * netdev_master_upper_dev_get_rcu - Get master upper device 7693 * @dev: device 7694 * 7695 * Find a master upper device and return pointer to it or NULL in case 7696 * it's not there. The caller must hold the RCU read lock. 7697 */ 7698 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7699 { 7700 struct netdev_adjacent *upper; 7701 7702 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7703 struct netdev_adjacent, list); 7704 if (upper && likely(upper->master)) 7705 return upper->dev; 7706 return NULL; 7707 } 7708 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7709 7710 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7711 struct net_device *adj_dev, 7712 struct list_head *dev_list) 7713 { 7714 char linkname[IFNAMSIZ+7]; 7715 7716 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7717 "upper_%s" : "lower_%s", adj_dev->name); 7718 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7719 linkname); 7720 } 7721 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7722 char *name, 7723 struct list_head *dev_list) 7724 { 7725 char linkname[IFNAMSIZ+7]; 7726 7727 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7728 "upper_%s" : "lower_%s", name); 7729 sysfs_remove_link(&(dev->dev.kobj), linkname); 7730 } 7731 7732 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7733 struct net_device *adj_dev, 7734 struct list_head *dev_list) 7735 { 7736 return (dev_list == &dev->adj_list.upper || 7737 dev_list == &dev->adj_list.lower) && 7738 net_eq(dev_net(dev), dev_net(adj_dev)); 7739 } 7740 7741 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7742 struct net_device *adj_dev, 7743 struct list_head *dev_list, 7744 void *private, bool master) 7745 { 7746 struct netdev_adjacent *adj; 7747 int ret; 7748 7749 adj = __netdev_find_adj(adj_dev, dev_list); 7750 7751 if (adj) { 7752 adj->ref_nr += 1; 7753 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7754 dev->name, adj_dev->name, adj->ref_nr); 7755 7756 return 0; 7757 } 7758 7759 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7760 if (!adj) 7761 return -ENOMEM; 7762 7763 adj->dev = adj_dev; 7764 adj->master = master; 7765 adj->ref_nr = 1; 7766 adj->private = private; 7767 adj->ignore = false; 7768 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7769 7770 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7771 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7772 7773 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7774 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7775 if (ret) 7776 goto free_adj; 7777 } 7778 7779 /* Ensure that master link is always the first item in list. */ 7780 if (master) { 7781 ret = sysfs_create_link(&(dev->dev.kobj), 7782 &(adj_dev->dev.kobj), "master"); 7783 if (ret) 7784 goto remove_symlinks; 7785 7786 list_add_rcu(&adj->list, dev_list); 7787 } else { 7788 list_add_tail_rcu(&adj->list, dev_list); 7789 } 7790 7791 return 0; 7792 7793 remove_symlinks: 7794 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7795 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7796 free_adj: 7797 netdev_put(adj_dev, &adj->dev_tracker); 7798 kfree(adj); 7799 7800 return ret; 7801 } 7802 7803 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7804 struct net_device *adj_dev, 7805 u16 ref_nr, 7806 struct list_head *dev_list) 7807 { 7808 struct netdev_adjacent *adj; 7809 7810 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7811 dev->name, adj_dev->name, ref_nr); 7812 7813 adj = __netdev_find_adj(adj_dev, dev_list); 7814 7815 if (!adj) { 7816 pr_err("Adjacency does not exist for device %s from %s\n", 7817 dev->name, adj_dev->name); 7818 WARN_ON(1); 7819 return; 7820 } 7821 7822 if (adj->ref_nr > ref_nr) { 7823 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7824 dev->name, adj_dev->name, ref_nr, 7825 adj->ref_nr - ref_nr); 7826 adj->ref_nr -= ref_nr; 7827 return; 7828 } 7829 7830 if (adj->master) 7831 sysfs_remove_link(&(dev->dev.kobj), "master"); 7832 7833 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7834 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7835 7836 list_del_rcu(&adj->list); 7837 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7838 adj_dev->name, dev->name, adj_dev->name); 7839 netdev_put(adj_dev, &adj->dev_tracker); 7840 kfree_rcu(adj, rcu); 7841 } 7842 7843 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7844 struct net_device *upper_dev, 7845 struct list_head *up_list, 7846 struct list_head *down_list, 7847 void *private, bool master) 7848 { 7849 int ret; 7850 7851 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7852 private, master); 7853 if (ret) 7854 return ret; 7855 7856 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7857 private, false); 7858 if (ret) { 7859 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7860 return ret; 7861 } 7862 7863 return 0; 7864 } 7865 7866 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7867 struct net_device *upper_dev, 7868 u16 ref_nr, 7869 struct list_head *up_list, 7870 struct list_head *down_list) 7871 { 7872 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7873 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7874 } 7875 7876 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7877 struct net_device *upper_dev, 7878 void *private, bool master) 7879 { 7880 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7881 &dev->adj_list.upper, 7882 &upper_dev->adj_list.lower, 7883 private, master); 7884 } 7885 7886 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7887 struct net_device *upper_dev) 7888 { 7889 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7890 &dev->adj_list.upper, 7891 &upper_dev->adj_list.lower); 7892 } 7893 7894 static int __netdev_upper_dev_link(struct net_device *dev, 7895 struct net_device *upper_dev, bool master, 7896 void *upper_priv, void *upper_info, 7897 struct netdev_nested_priv *priv, 7898 struct netlink_ext_ack *extack) 7899 { 7900 struct netdev_notifier_changeupper_info changeupper_info = { 7901 .info = { 7902 .dev = dev, 7903 .extack = extack, 7904 }, 7905 .upper_dev = upper_dev, 7906 .master = master, 7907 .linking = true, 7908 .upper_info = upper_info, 7909 }; 7910 struct net_device *master_dev; 7911 int ret = 0; 7912 7913 ASSERT_RTNL(); 7914 7915 if (dev == upper_dev) 7916 return -EBUSY; 7917 7918 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7919 if (__netdev_has_upper_dev(upper_dev, dev)) 7920 return -EBUSY; 7921 7922 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7923 return -EMLINK; 7924 7925 if (!master) { 7926 if (__netdev_has_upper_dev(dev, upper_dev)) 7927 return -EEXIST; 7928 } else { 7929 master_dev = __netdev_master_upper_dev_get(dev); 7930 if (master_dev) 7931 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7932 } 7933 7934 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7935 &changeupper_info.info); 7936 ret = notifier_to_errno(ret); 7937 if (ret) 7938 return ret; 7939 7940 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7941 master); 7942 if (ret) 7943 return ret; 7944 7945 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7946 &changeupper_info.info); 7947 ret = notifier_to_errno(ret); 7948 if (ret) 7949 goto rollback; 7950 7951 __netdev_update_upper_level(dev, NULL); 7952 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7953 7954 __netdev_update_lower_level(upper_dev, priv); 7955 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7956 priv); 7957 7958 return 0; 7959 7960 rollback: 7961 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7962 7963 return ret; 7964 } 7965 7966 /** 7967 * netdev_upper_dev_link - Add a link to the upper device 7968 * @dev: device 7969 * @upper_dev: new upper device 7970 * @extack: netlink extended ack 7971 * 7972 * Adds a link to device which is upper to this one. The caller must hold 7973 * the RTNL lock. On a failure a negative errno code is returned. 7974 * On success the reference counts are adjusted and the function 7975 * returns zero. 7976 */ 7977 int netdev_upper_dev_link(struct net_device *dev, 7978 struct net_device *upper_dev, 7979 struct netlink_ext_ack *extack) 7980 { 7981 struct netdev_nested_priv priv = { 7982 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7983 .data = NULL, 7984 }; 7985 7986 return __netdev_upper_dev_link(dev, upper_dev, false, 7987 NULL, NULL, &priv, extack); 7988 } 7989 EXPORT_SYMBOL(netdev_upper_dev_link); 7990 7991 /** 7992 * netdev_master_upper_dev_link - Add a master link to the upper device 7993 * @dev: device 7994 * @upper_dev: new upper device 7995 * @upper_priv: upper device private 7996 * @upper_info: upper info to be passed down via notifier 7997 * @extack: netlink extended ack 7998 * 7999 * Adds a link to device which is upper to this one. In this case, only 8000 * one master upper device can be linked, although other non-master devices 8001 * might be linked as well. The caller must hold the RTNL lock. 8002 * On a failure a negative errno code is returned. On success the reference 8003 * counts are adjusted and the function returns zero. 8004 */ 8005 int netdev_master_upper_dev_link(struct net_device *dev, 8006 struct net_device *upper_dev, 8007 void *upper_priv, void *upper_info, 8008 struct netlink_ext_ack *extack) 8009 { 8010 struct netdev_nested_priv priv = { 8011 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8012 .data = NULL, 8013 }; 8014 8015 return __netdev_upper_dev_link(dev, upper_dev, true, 8016 upper_priv, upper_info, &priv, extack); 8017 } 8018 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8019 8020 static void __netdev_upper_dev_unlink(struct net_device *dev, 8021 struct net_device *upper_dev, 8022 struct netdev_nested_priv *priv) 8023 { 8024 struct netdev_notifier_changeupper_info changeupper_info = { 8025 .info = { 8026 .dev = dev, 8027 }, 8028 .upper_dev = upper_dev, 8029 .linking = false, 8030 }; 8031 8032 ASSERT_RTNL(); 8033 8034 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8035 8036 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8037 &changeupper_info.info); 8038 8039 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8040 8041 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8042 &changeupper_info.info); 8043 8044 __netdev_update_upper_level(dev, NULL); 8045 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8046 8047 __netdev_update_lower_level(upper_dev, priv); 8048 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8049 priv); 8050 } 8051 8052 /** 8053 * netdev_upper_dev_unlink - Removes a link to upper device 8054 * @dev: device 8055 * @upper_dev: new upper device 8056 * 8057 * Removes a link to device which is upper to this one. The caller must hold 8058 * the RTNL lock. 8059 */ 8060 void netdev_upper_dev_unlink(struct net_device *dev, 8061 struct net_device *upper_dev) 8062 { 8063 struct netdev_nested_priv priv = { 8064 .flags = NESTED_SYNC_TODO, 8065 .data = NULL, 8066 }; 8067 8068 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8069 } 8070 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8071 8072 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8073 struct net_device *lower_dev, 8074 bool val) 8075 { 8076 struct netdev_adjacent *adj; 8077 8078 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8079 if (adj) 8080 adj->ignore = val; 8081 8082 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8083 if (adj) 8084 adj->ignore = val; 8085 } 8086 8087 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8088 struct net_device *lower_dev) 8089 { 8090 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8091 } 8092 8093 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8094 struct net_device *lower_dev) 8095 { 8096 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8097 } 8098 8099 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8100 struct net_device *new_dev, 8101 struct net_device *dev, 8102 struct netlink_ext_ack *extack) 8103 { 8104 struct netdev_nested_priv priv = { 8105 .flags = 0, 8106 .data = NULL, 8107 }; 8108 int err; 8109 8110 if (!new_dev) 8111 return 0; 8112 8113 if (old_dev && new_dev != old_dev) 8114 netdev_adjacent_dev_disable(dev, old_dev); 8115 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8116 extack); 8117 if (err) { 8118 if (old_dev && new_dev != old_dev) 8119 netdev_adjacent_dev_enable(dev, old_dev); 8120 return err; 8121 } 8122 8123 return 0; 8124 } 8125 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8126 8127 void netdev_adjacent_change_commit(struct net_device *old_dev, 8128 struct net_device *new_dev, 8129 struct net_device *dev) 8130 { 8131 struct netdev_nested_priv priv = { 8132 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8133 .data = NULL, 8134 }; 8135 8136 if (!new_dev || !old_dev) 8137 return; 8138 8139 if (new_dev == old_dev) 8140 return; 8141 8142 netdev_adjacent_dev_enable(dev, old_dev); 8143 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8144 } 8145 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8146 8147 void netdev_adjacent_change_abort(struct net_device *old_dev, 8148 struct net_device *new_dev, 8149 struct net_device *dev) 8150 { 8151 struct netdev_nested_priv priv = { 8152 .flags = 0, 8153 .data = NULL, 8154 }; 8155 8156 if (!new_dev) 8157 return; 8158 8159 if (old_dev && new_dev != old_dev) 8160 netdev_adjacent_dev_enable(dev, old_dev); 8161 8162 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8163 } 8164 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8165 8166 /** 8167 * netdev_bonding_info_change - Dispatch event about slave change 8168 * @dev: device 8169 * @bonding_info: info to dispatch 8170 * 8171 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8172 * The caller must hold the RTNL lock. 8173 */ 8174 void netdev_bonding_info_change(struct net_device *dev, 8175 struct netdev_bonding_info *bonding_info) 8176 { 8177 struct netdev_notifier_bonding_info info = { 8178 .info.dev = dev, 8179 }; 8180 8181 memcpy(&info.bonding_info, bonding_info, 8182 sizeof(struct netdev_bonding_info)); 8183 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8184 &info.info); 8185 } 8186 EXPORT_SYMBOL(netdev_bonding_info_change); 8187 8188 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8189 struct netlink_ext_ack *extack) 8190 { 8191 struct netdev_notifier_offload_xstats_info info = { 8192 .info.dev = dev, 8193 .info.extack = extack, 8194 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8195 }; 8196 int err; 8197 int rc; 8198 8199 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8200 GFP_KERNEL); 8201 if (!dev->offload_xstats_l3) 8202 return -ENOMEM; 8203 8204 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8205 NETDEV_OFFLOAD_XSTATS_DISABLE, 8206 &info.info); 8207 err = notifier_to_errno(rc); 8208 if (err) 8209 goto free_stats; 8210 8211 return 0; 8212 8213 free_stats: 8214 kfree(dev->offload_xstats_l3); 8215 dev->offload_xstats_l3 = NULL; 8216 return err; 8217 } 8218 8219 int netdev_offload_xstats_enable(struct net_device *dev, 8220 enum netdev_offload_xstats_type type, 8221 struct netlink_ext_ack *extack) 8222 { 8223 ASSERT_RTNL(); 8224 8225 if (netdev_offload_xstats_enabled(dev, type)) 8226 return -EALREADY; 8227 8228 switch (type) { 8229 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8230 return netdev_offload_xstats_enable_l3(dev, extack); 8231 } 8232 8233 WARN_ON(1); 8234 return -EINVAL; 8235 } 8236 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8237 8238 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8239 { 8240 struct netdev_notifier_offload_xstats_info info = { 8241 .info.dev = dev, 8242 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8243 }; 8244 8245 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8246 &info.info); 8247 kfree(dev->offload_xstats_l3); 8248 dev->offload_xstats_l3 = NULL; 8249 } 8250 8251 int netdev_offload_xstats_disable(struct net_device *dev, 8252 enum netdev_offload_xstats_type type) 8253 { 8254 ASSERT_RTNL(); 8255 8256 if (!netdev_offload_xstats_enabled(dev, type)) 8257 return -EALREADY; 8258 8259 switch (type) { 8260 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8261 netdev_offload_xstats_disable_l3(dev); 8262 return 0; 8263 } 8264 8265 WARN_ON(1); 8266 return -EINVAL; 8267 } 8268 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8269 8270 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8271 { 8272 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8273 } 8274 8275 static struct rtnl_hw_stats64 * 8276 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8277 enum netdev_offload_xstats_type type) 8278 { 8279 switch (type) { 8280 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8281 return dev->offload_xstats_l3; 8282 } 8283 8284 WARN_ON(1); 8285 return NULL; 8286 } 8287 8288 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8289 enum netdev_offload_xstats_type type) 8290 { 8291 ASSERT_RTNL(); 8292 8293 return netdev_offload_xstats_get_ptr(dev, type); 8294 } 8295 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8296 8297 struct netdev_notifier_offload_xstats_ru { 8298 bool used; 8299 }; 8300 8301 struct netdev_notifier_offload_xstats_rd { 8302 struct rtnl_hw_stats64 stats; 8303 bool used; 8304 }; 8305 8306 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8307 const struct rtnl_hw_stats64 *src) 8308 { 8309 dest->rx_packets += src->rx_packets; 8310 dest->tx_packets += src->tx_packets; 8311 dest->rx_bytes += src->rx_bytes; 8312 dest->tx_bytes += src->tx_bytes; 8313 dest->rx_errors += src->rx_errors; 8314 dest->tx_errors += src->tx_errors; 8315 dest->rx_dropped += src->rx_dropped; 8316 dest->tx_dropped += src->tx_dropped; 8317 dest->multicast += src->multicast; 8318 } 8319 8320 static int netdev_offload_xstats_get_used(struct net_device *dev, 8321 enum netdev_offload_xstats_type type, 8322 bool *p_used, 8323 struct netlink_ext_ack *extack) 8324 { 8325 struct netdev_notifier_offload_xstats_ru report_used = {}; 8326 struct netdev_notifier_offload_xstats_info info = { 8327 .info.dev = dev, 8328 .info.extack = extack, 8329 .type = type, 8330 .report_used = &report_used, 8331 }; 8332 int rc; 8333 8334 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8335 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8336 &info.info); 8337 *p_used = report_used.used; 8338 return notifier_to_errno(rc); 8339 } 8340 8341 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8342 enum netdev_offload_xstats_type type, 8343 struct rtnl_hw_stats64 *p_stats, 8344 bool *p_used, 8345 struct netlink_ext_ack *extack) 8346 { 8347 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8348 struct netdev_notifier_offload_xstats_info info = { 8349 .info.dev = dev, 8350 .info.extack = extack, 8351 .type = type, 8352 .report_delta = &report_delta, 8353 }; 8354 struct rtnl_hw_stats64 *stats; 8355 int rc; 8356 8357 stats = netdev_offload_xstats_get_ptr(dev, type); 8358 if (WARN_ON(!stats)) 8359 return -EINVAL; 8360 8361 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8362 &info.info); 8363 8364 /* Cache whatever we got, even if there was an error, otherwise the 8365 * successful stats retrievals would get lost. 8366 */ 8367 netdev_hw_stats64_add(stats, &report_delta.stats); 8368 8369 if (p_stats) 8370 *p_stats = *stats; 8371 *p_used = report_delta.used; 8372 8373 return notifier_to_errno(rc); 8374 } 8375 8376 int netdev_offload_xstats_get(struct net_device *dev, 8377 enum netdev_offload_xstats_type type, 8378 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8379 struct netlink_ext_ack *extack) 8380 { 8381 ASSERT_RTNL(); 8382 8383 if (p_stats) 8384 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8385 p_used, extack); 8386 else 8387 return netdev_offload_xstats_get_used(dev, type, p_used, 8388 extack); 8389 } 8390 EXPORT_SYMBOL(netdev_offload_xstats_get); 8391 8392 void 8393 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8394 const struct rtnl_hw_stats64 *stats) 8395 { 8396 report_delta->used = true; 8397 netdev_hw_stats64_add(&report_delta->stats, stats); 8398 } 8399 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8400 8401 void 8402 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8403 { 8404 report_used->used = true; 8405 } 8406 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8407 8408 void netdev_offload_xstats_push_delta(struct net_device *dev, 8409 enum netdev_offload_xstats_type type, 8410 const struct rtnl_hw_stats64 *p_stats) 8411 { 8412 struct rtnl_hw_stats64 *stats; 8413 8414 ASSERT_RTNL(); 8415 8416 stats = netdev_offload_xstats_get_ptr(dev, type); 8417 if (WARN_ON(!stats)) 8418 return; 8419 8420 netdev_hw_stats64_add(stats, p_stats); 8421 } 8422 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8423 8424 /** 8425 * netdev_get_xmit_slave - Get the xmit slave of master device 8426 * @dev: device 8427 * @skb: The packet 8428 * @all_slaves: assume all the slaves are active 8429 * 8430 * The reference counters are not incremented so the caller must be 8431 * careful with locks. The caller must hold RCU lock. 8432 * %NULL is returned if no slave is found. 8433 */ 8434 8435 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8436 struct sk_buff *skb, 8437 bool all_slaves) 8438 { 8439 const struct net_device_ops *ops = dev->netdev_ops; 8440 8441 if (!ops->ndo_get_xmit_slave) 8442 return NULL; 8443 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8444 } 8445 EXPORT_SYMBOL(netdev_get_xmit_slave); 8446 8447 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8448 struct sock *sk) 8449 { 8450 const struct net_device_ops *ops = dev->netdev_ops; 8451 8452 if (!ops->ndo_sk_get_lower_dev) 8453 return NULL; 8454 return ops->ndo_sk_get_lower_dev(dev, sk); 8455 } 8456 8457 /** 8458 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8459 * @dev: device 8460 * @sk: the socket 8461 * 8462 * %NULL is returned if no lower device is found. 8463 */ 8464 8465 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8466 struct sock *sk) 8467 { 8468 struct net_device *lower; 8469 8470 lower = netdev_sk_get_lower_dev(dev, sk); 8471 while (lower) { 8472 dev = lower; 8473 lower = netdev_sk_get_lower_dev(dev, sk); 8474 } 8475 8476 return dev; 8477 } 8478 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8479 8480 static void netdev_adjacent_add_links(struct net_device *dev) 8481 { 8482 struct netdev_adjacent *iter; 8483 8484 struct net *net = dev_net(dev); 8485 8486 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8487 if (!net_eq(net, dev_net(iter->dev))) 8488 continue; 8489 netdev_adjacent_sysfs_add(iter->dev, dev, 8490 &iter->dev->adj_list.lower); 8491 netdev_adjacent_sysfs_add(dev, iter->dev, 8492 &dev->adj_list.upper); 8493 } 8494 8495 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8496 if (!net_eq(net, dev_net(iter->dev))) 8497 continue; 8498 netdev_adjacent_sysfs_add(iter->dev, dev, 8499 &iter->dev->adj_list.upper); 8500 netdev_adjacent_sysfs_add(dev, iter->dev, 8501 &dev->adj_list.lower); 8502 } 8503 } 8504 8505 static void netdev_adjacent_del_links(struct net_device *dev) 8506 { 8507 struct netdev_adjacent *iter; 8508 8509 struct net *net = dev_net(dev); 8510 8511 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8512 if (!net_eq(net, dev_net(iter->dev))) 8513 continue; 8514 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8515 &iter->dev->adj_list.lower); 8516 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8517 &dev->adj_list.upper); 8518 } 8519 8520 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8521 if (!net_eq(net, dev_net(iter->dev))) 8522 continue; 8523 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8524 &iter->dev->adj_list.upper); 8525 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8526 &dev->adj_list.lower); 8527 } 8528 } 8529 8530 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8531 { 8532 struct netdev_adjacent *iter; 8533 8534 struct net *net = dev_net(dev); 8535 8536 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8537 if (!net_eq(net, dev_net(iter->dev))) 8538 continue; 8539 netdev_adjacent_sysfs_del(iter->dev, oldname, 8540 &iter->dev->adj_list.lower); 8541 netdev_adjacent_sysfs_add(iter->dev, dev, 8542 &iter->dev->adj_list.lower); 8543 } 8544 8545 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8546 if (!net_eq(net, dev_net(iter->dev))) 8547 continue; 8548 netdev_adjacent_sysfs_del(iter->dev, oldname, 8549 &iter->dev->adj_list.upper); 8550 netdev_adjacent_sysfs_add(iter->dev, dev, 8551 &iter->dev->adj_list.upper); 8552 } 8553 } 8554 8555 void *netdev_lower_dev_get_private(struct net_device *dev, 8556 struct net_device *lower_dev) 8557 { 8558 struct netdev_adjacent *lower; 8559 8560 if (!lower_dev) 8561 return NULL; 8562 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8563 if (!lower) 8564 return NULL; 8565 8566 return lower->private; 8567 } 8568 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8569 8570 8571 /** 8572 * netdev_lower_state_changed - Dispatch event about lower device state change 8573 * @lower_dev: device 8574 * @lower_state_info: state to dispatch 8575 * 8576 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8577 * The caller must hold the RTNL lock. 8578 */ 8579 void netdev_lower_state_changed(struct net_device *lower_dev, 8580 void *lower_state_info) 8581 { 8582 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8583 .info.dev = lower_dev, 8584 }; 8585 8586 ASSERT_RTNL(); 8587 changelowerstate_info.lower_state_info = lower_state_info; 8588 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8589 &changelowerstate_info.info); 8590 } 8591 EXPORT_SYMBOL(netdev_lower_state_changed); 8592 8593 static void dev_change_rx_flags(struct net_device *dev, int flags) 8594 { 8595 const struct net_device_ops *ops = dev->netdev_ops; 8596 8597 if (ops->ndo_change_rx_flags) 8598 ops->ndo_change_rx_flags(dev, flags); 8599 } 8600 8601 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8602 { 8603 unsigned int old_flags = dev->flags; 8604 unsigned int promiscuity, flags; 8605 kuid_t uid; 8606 kgid_t gid; 8607 8608 ASSERT_RTNL(); 8609 8610 promiscuity = dev->promiscuity + inc; 8611 if (promiscuity == 0) { 8612 /* 8613 * Avoid overflow. 8614 * If inc causes overflow, untouch promisc and return error. 8615 */ 8616 if (unlikely(inc > 0)) { 8617 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8618 return -EOVERFLOW; 8619 } 8620 flags = old_flags & ~IFF_PROMISC; 8621 } else { 8622 flags = old_flags | IFF_PROMISC; 8623 } 8624 WRITE_ONCE(dev->promiscuity, promiscuity); 8625 if (flags != old_flags) { 8626 WRITE_ONCE(dev->flags, flags); 8627 netdev_info(dev, "%s promiscuous mode\n", 8628 dev->flags & IFF_PROMISC ? "entered" : "left"); 8629 if (audit_enabled) { 8630 current_uid_gid(&uid, &gid); 8631 audit_log(audit_context(), GFP_ATOMIC, 8632 AUDIT_ANOM_PROMISCUOUS, 8633 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8634 dev->name, (dev->flags & IFF_PROMISC), 8635 (old_flags & IFF_PROMISC), 8636 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8637 from_kuid(&init_user_ns, uid), 8638 from_kgid(&init_user_ns, gid), 8639 audit_get_sessionid(current)); 8640 } 8641 8642 dev_change_rx_flags(dev, IFF_PROMISC); 8643 } 8644 if (notify) 8645 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 8646 return 0; 8647 } 8648 8649 /** 8650 * dev_set_promiscuity - update promiscuity count on a device 8651 * @dev: device 8652 * @inc: modifier 8653 * 8654 * Add or remove promiscuity from a device. While the count in the device 8655 * remains above zero the interface remains promiscuous. Once it hits zero 8656 * the device reverts back to normal filtering operation. A negative inc 8657 * value is used to drop promiscuity on the device. 8658 * Return 0 if successful or a negative errno code on error. 8659 */ 8660 int dev_set_promiscuity(struct net_device *dev, int inc) 8661 { 8662 unsigned int old_flags = dev->flags; 8663 int err; 8664 8665 err = __dev_set_promiscuity(dev, inc, true); 8666 if (err < 0) 8667 return err; 8668 if (dev->flags != old_flags) 8669 dev_set_rx_mode(dev); 8670 return err; 8671 } 8672 EXPORT_SYMBOL(dev_set_promiscuity); 8673 8674 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8675 { 8676 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8677 unsigned int allmulti, flags; 8678 8679 ASSERT_RTNL(); 8680 8681 allmulti = dev->allmulti + inc; 8682 if (allmulti == 0) { 8683 /* 8684 * Avoid overflow. 8685 * If inc causes overflow, untouch allmulti and return error. 8686 */ 8687 if (unlikely(inc > 0)) { 8688 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8689 return -EOVERFLOW; 8690 } 8691 flags = old_flags & ~IFF_ALLMULTI; 8692 } else { 8693 flags = old_flags | IFF_ALLMULTI; 8694 } 8695 WRITE_ONCE(dev->allmulti, allmulti); 8696 if (flags != old_flags) { 8697 WRITE_ONCE(dev->flags, flags); 8698 netdev_info(dev, "%s allmulticast mode\n", 8699 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 8700 dev_change_rx_flags(dev, IFF_ALLMULTI); 8701 dev_set_rx_mode(dev); 8702 if (notify) 8703 __dev_notify_flags(dev, old_flags, 8704 dev->gflags ^ old_gflags, 0, NULL); 8705 } 8706 return 0; 8707 } 8708 8709 /** 8710 * dev_set_allmulti - update allmulti count on a device 8711 * @dev: device 8712 * @inc: modifier 8713 * 8714 * Add or remove reception of all multicast frames to a device. While the 8715 * count in the device remains above zero the interface remains listening 8716 * to all interfaces. Once it hits zero the device reverts back to normal 8717 * filtering operation. A negative @inc value is used to drop the counter 8718 * when releasing a resource needing all multicasts. 8719 * Return 0 if successful or a negative errno code on error. 8720 */ 8721 8722 int dev_set_allmulti(struct net_device *dev, int inc) 8723 { 8724 return __dev_set_allmulti(dev, inc, true); 8725 } 8726 EXPORT_SYMBOL(dev_set_allmulti); 8727 8728 /* 8729 * Upload unicast and multicast address lists to device and 8730 * configure RX filtering. When the device doesn't support unicast 8731 * filtering it is put in promiscuous mode while unicast addresses 8732 * are present. 8733 */ 8734 void __dev_set_rx_mode(struct net_device *dev) 8735 { 8736 const struct net_device_ops *ops = dev->netdev_ops; 8737 8738 /* dev_open will call this function so the list will stay sane. */ 8739 if (!(dev->flags&IFF_UP)) 8740 return; 8741 8742 if (!netif_device_present(dev)) 8743 return; 8744 8745 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8746 /* Unicast addresses changes may only happen under the rtnl, 8747 * therefore calling __dev_set_promiscuity here is safe. 8748 */ 8749 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8750 __dev_set_promiscuity(dev, 1, false); 8751 dev->uc_promisc = true; 8752 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8753 __dev_set_promiscuity(dev, -1, false); 8754 dev->uc_promisc = false; 8755 } 8756 } 8757 8758 if (ops->ndo_set_rx_mode) 8759 ops->ndo_set_rx_mode(dev); 8760 } 8761 8762 void dev_set_rx_mode(struct net_device *dev) 8763 { 8764 netif_addr_lock_bh(dev); 8765 __dev_set_rx_mode(dev); 8766 netif_addr_unlock_bh(dev); 8767 } 8768 8769 /** 8770 * dev_get_flags - get flags reported to userspace 8771 * @dev: device 8772 * 8773 * Get the combination of flag bits exported through APIs to userspace. 8774 */ 8775 unsigned int dev_get_flags(const struct net_device *dev) 8776 { 8777 unsigned int flags; 8778 8779 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 8780 IFF_ALLMULTI | 8781 IFF_RUNNING | 8782 IFF_LOWER_UP | 8783 IFF_DORMANT)) | 8784 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 8785 IFF_ALLMULTI)); 8786 8787 if (netif_running(dev)) { 8788 if (netif_oper_up(dev)) 8789 flags |= IFF_RUNNING; 8790 if (netif_carrier_ok(dev)) 8791 flags |= IFF_LOWER_UP; 8792 if (netif_dormant(dev)) 8793 flags |= IFF_DORMANT; 8794 } 8795 8796 return flags; 8797 } 8798 EXPORT_SYMBOL(dev_get_flags); 8799 8800 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8801 struct netlink_ext_ack *extack) 8802 { 8803 unsigned int old_flags = dev->flags; 8804 int ret; 8805 8806 ASSERT_RTNL(); 8807 8808 /* 8809 * Set the flags on our device. 8810 */ 8811 8812 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8813 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8814 IFF_AUTOMEDIA)) | 8815 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8816 IFF_ALLMULTI)); 8817 8818 /* 8819 * Load in the correct multicast list now the flags have changed. 8820 */ 8821 8822 if ((old_flags ^ flags) & IFF_MULTICAST) 8823 dev_change_rx_flags(dev, IFF_MULTICAST); 8824 8825 dev_set_rx_mode(dev); 8826 8827 /* 8828 * Have we downed the interface. We handle IFF_UP ourselves 8829 * according to user attempts to set it, rather than blindly 8830 * setting it. 8831 */ 8832 8833 ret = 0; 8834 if ((old_flags ^ flags) & IFF_UP) { 8835 if (old_flags & IFF_UP) 8836 __dev_close(dev); 8837 else 8838 ret = __dev_open(dev, extack); 8839 } 8840 8841 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8842 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8843 unsigned int old_flags = dev->flags; 8844 8845 dev->gflags ^= IFF_PROMISC; 8846 8847 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8848 if (dev->flags != old_flags) 8849 dev_set_rx_mode(dev); 8850 } 8851 8852 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8853 * is important. Some (broken) drivers set IFF_PROMISC, when 8854 * IFF_ALLMULTI is requested not asking us and not reporting. 8855 */ 8856 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8857 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8858 8859 dev->gflags ^= IFF_ALLMULTI; 8860 __dev_set_allmulti(dev, inc, false); 8861 } 8862 8863 return ret; 8864 } 8865 8866 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8867 unsigned int gchanges, u32 portid, 8868 const struct nlmsghdr *nlh) 8869 { 8870 unsigned int changes = dev->flags ^ old_flags; 8871 8872 if (gchanges) 8873 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 8874 8875 if (changes & IFF_UP) { 8876 if (dev->flags & IFF_UP) 8877 call_netdevice_notifiers(NETDEV_UP, dev); 8878 else 8879 call_netdevice_notifiers(NETDEV_DOWN, dev); 8880 } 8881 8882 if (dev->flags & IFF_UP && 8883 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8884 struct netdev_notifier_change_info change_info = { 8885 .info = { 8886 .dev = dev, 8887 }, 8888 .flags_changed = changes, 8889 }; 8890 8891 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8892 } 8893 } 8894 8895 /** 8896 * dev_change_flags - change device settings 8897 * @dev: device 8898 * @flags: device state flags 8899 * @extack: netlink extended ack 8900 * 8901 * Change settings on device based state flags. The flags are 8902 * in the userspace exported format. 8903 */ 8904 int dev_change_flags(struct net_device *dev, unsigned int flags, 8905 struct netlink_ext_ack *extack) 8906 { 8907 int ret; 8908 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8909 8910 ret = __dev_change_flags(dev, flags, extack); 8911 if (ret < 0) 8912 return ret; 8913 8914 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8915 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 8916 return ret; 8917 } 8918 EXPORT_SYMBOL(dev_change_flags); 8919 8920 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8921 { 8922 const struct net_device_ops *ops = dev->netdev_ops; 8923 8924 if (ops->ndo_change_mtu) 8925 return ops->ndo_change_mtu(dev, new_mtu); 8926 8927 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8928 WRITE_ONCE(dev->mtu, new_mtu); 8929 return 0; 8930 } 8931 EXPORT_SYMBOL(__dev_set_mtu); 8932 8933 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8934 struct netlink_ext_ack *extack) 8935 { 8936 /* MTU must be positive, and in range */ 8937 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8938 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8939 return -EINVAL; 8940 } 8941 8942 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8943 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8944 return -EINVAL; 8945 } 8946 return 0; 8947 } 8948 8949 /** 8950 * dev_set_mtu_ext - Change maximum transfer unit 8951 * @dev: device 8952 * @new_mtu: new transfer unit 8953 * @extack: netlink extended ack 8954 * 8955 * Change the maximum transfer size of the network device. 8956 */ 8957 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8958 struct netlink_ext_ack *extack) 8959 { 8960 int err, orig_mtu; 8961 8962 if (new_mtu == dev->mtu) 8963 return 0; 8964 8965 err = dev_validate_mtu(dev, new_mtu, extack); 8966 if (err) 8967 return err; 8968 8969 if (!netif_device_present(dev)) 8970 return -ENODEV; 8971 8972 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8973 err = notifier_to_errno(err); 8974 if (err) 8975 return err; 8976 8977 orig_mtu = dev->mtu; 8978 err = __dev_set_mtu(dev, new_mtu); 8979 8980 if (!err) { 8981 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8982 orig_mtu); 8983 err = notifier_to_errno(err); 8984 if (err) { 8985 /* setting mtu back and notifying everyone again, 8986 * so that they have a chance to revert changes. 8987 */ 8988 __dev_set_mtu(dev, orig_mtu); 8989 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8990 new_mtu); 8991 } 8992 } 8993 return err; 8994 } 8995 8996 int dev_set_mtu(struct net_device *dev, int new_mtu) 8997 { 8998 struct netlink_ext_ack extack; 8999 int err; 9000 9001 memset(&extack, 0, sizeof(extack)); 9002 err = dev_set_mtu_ext(dev, new_mtu, &extack); 9003 if (err && extack._msg) 9004 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9005 return err; 9006 } 9007 EXPORT_SYMBOL(dev_set_mtu); 9008 9009 /** 9010 * dev_change_tx_queue_len - Change TX queue length of a netdevice 9011 * @dev: device 9012 * @new_len: new tx queue length 9013 */ 9014 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9015 { 9016 unsigned int orig_len = dev->tx_queue_len; 9017 int res; 9018 9019 if (new_len != (unsigned int)new_len) 9020 return -ERANGE; 9021 9022 if (new_len != orig_len) { 9023 WRITE_ONCE(dev->tx_queue_len, new_len); 9024 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9025 res = notifier_to_errno(res); 9026 if (res) 9027 goto err_rollback; 9028 res = dev_qdisc_change_tx_queue_len(dev); 9029 if (res) 9030 goto err_rollback; 9031 } 9032 9033 return 0; 9034 9035 err_rollback: 9036 netdev_err(dev, "refused to change device tx_queue_len\n"); 9037 WRITE_ONCE(dev->tx_queue_len, orig_len); 9038 return res; 9039 } 9040 9041 /** 9042 * dev_set_group - Change group this device belongs to 9043 * @dev: device 9044 * @new_group: group this device should belong to 9045 */ 9046 void dev_set_group(struct net_device *dev, int new_group) 9047 { 9048 dev->group = new_group; 9049 } 9050 9051 /** 9052 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 9053 * @dev: device 9054 * @addr: new address 9055 * @extack: netlink extended ack 9056 */ 9057 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9058 struct netlink_ext_ack *extack) 9059 { 9060 struct netdev_notifier_pre_changeaddr_info info = { 9061 .info.dev = dev, 9062 .info.extack = extack, 9063 .dev_addr = addr, 9064 }; 9065 int rc; 9066 9067 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9068 return notifier_to_errno(rc); 9069 } 9070 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 9071 9072 /** 9073 * dev_set_mac_address - Change Media Access Control Address 9074 * @dev: device 9075 * @sa: new address 9076 * @extack: netlink extended ack 9077 * 9078 * Change the hardware (MAC) address of the device 9079 */ 9080 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 9081 struct netlink_ext_ack *extack) 9082 { 9083 const struct net_device_ops *ops = dev->netdev_ops; 9084 int err; 9085 9086 if (!ops->ndo_set_mac_address) 9087 return -EOPNOTSUPP; 9088 if (sa->sa_family != dev->type) 9089 return -EINVAL; 9090 if (!netif_device_present(dev)) 9091 return -ENODEV; 9092 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 9093 if (err) 9094 return err; 9095 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) { 9096 err = ops->ndo_set_mac_address(dev, sa); 9097 if (err) 9098 return err; 9099 } 9100 dev->addr_assign_type = NET_ADDR_SET; 9101 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9102 add_device_randomness(dev->dev_addr, dev->addr_len); 9103 return 0; 9104 } 9105 EXPORT_SYMBOL(dev_set_mac_address); 9106 9107 DECLARE_RWSEM(dev_addr_sem); 9108 9109 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 9110 struct netlink_ext_ack *extack) 9111 { 9112 int ret; 9113 9114 down_write(&dev_addr_sem); 9115 ret = dev_set_mac_address(dev, sa, extack); 9116 up_write(&dev_addr_sem); 9117 return ret; 9118 } 9119 EXPORT_SYMBOL(dev_set_mac_address_user); 9120 9121 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9122 { 9123 size_t size = sizeof(sa->sa_data_min); 9124 struct net_device *dev; 9125 int ret = 0; 9126 9127 down_read(&dev_addr_sem); 9128 rcu_read_lock(); 9129 9130 dev = dev_get_by_name_rcu(net, dev_name); 9131 if (!dev) { 9132 ret = -ENODEV; 9133 goto unlock; 9134 } 9135 if (!dev->addr_len) 9136 memset(sa->sa_data, 0, size); 9137 else 9138 memcpy(sa->sa_data, dev->dev_addr, 9139 min_t(size_t, size, dev->addr_len)); 9140 sa->sa_family = dev->type; 9141 9142 unlock: 9143 rcu_read_unlock(); 9144 up_read(&dev_addr_sem); 9145 return ret; 9146 } 9147 EXPORT_SYMBOL(dev_get_mac_address); 9148 9149 /** 9150 * dev_change_carrier - Change device carrier 9151 * @dev: device 9152 * @new_carrier: new value 9153 * 9154 * Change device carrier 9155 */ 9156 int dev_change_carrier(struct net_device *dev, bool new_carrier) 9157 { 9158 const struct net_device_ops *ops = dev->netdev_ops; 9159 9160 if (!ops->ndo_change_carrier) 9161 return -EOPNOTSUPP; 9162 if (!netif_device_present(dev)) 9163 return -ENODEV; 9164 return ops->ndo_change_carrier(dev, new_carrier); 9165 } 9166 9167 /** 9168 * dev_get_phys_port_id - Get device physical port ID 9169 * @dev: device 9170 * @ppid: port ID 9171 * 9172 * Get device physical port ID 9173 */ 9174 int dev_get_phys_port_id(struct net_device *dev, 9175 struct netdev_phys_item_id *ppid) 9176 { 9177 const struct net_device_ops *ops = dev->netdev_ops; 9178 9179 if (!ops->ndo_get_phys_port_id) 9180 return -EOPNOTSUPP; 9181 return ops->ndo_get_phys_port_id(dev, ppid); 9182 } 9183 9184 /** 9185 * dev_get_phys_port_name - Get device physical port name 9186 * @dev: device 9187 * @name: port name 9188 * @len: limit of bytes to copy to name 9189 * 9190 * Get device physical port name 9191 */ 9192 int dev_get_phys_port_name(struct net_device *dev, 9193 char *name, size_t len) 9194 { 9195 const struct net_device_ops *ops = dev->netdev_ops; 9196 int err; 9197 9198 if (ops->ndo_get_phys_port_name) { 9199 err = ops->ndo_get_phys_port_name(dev, name, len); 9200 if (err != -EOPNOTSUPP) 9201 return err; 9202 } 9203 return devlink_compat_phys_port_name_get(dev, name, len); 9204 } 9205 9206 /** 9207 * dev_get_port_parent_id - Get the device's port parent identifier 9208 * @dev: network device 9209 * @ppid: pointer to a storage for the port's parent identifier 9210 * @recurse: allow/disallow recursion to lower devices 9211 * 9212 * Get the devices's port parent identifier 9213 */ 9214 int dev_get_port_parent_id(struct net_device *dev, 9215 struct netdev_phys_item_id *ppid, 9216 bool recurse) 9217 { 9218 const struct net_device_ops *ops = dev->netdev_ops; 9219 struct netdev_phys_item_id first = { }; 9220 struct net_device *lower_dev; 9221 struct list_head *iter; 9222 int err; 9223 9224 if (ops->ndo_get_port_parent_id) { 9225 err = ops->ndo_get_port_parent_id(dev, ppid); 9226 if (err != -EOPNOTSUPP) 9227 return err; 9228 } 9229 9230 err = devlink_compat_switch_id_get(dev, ppid); 9231 if (!recurse || err != -EOPNOTSUPP) 9232 return err; 9233 9234 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9235 err = dev_get_port_parent_id(lower_dev, ppid, true); 9236 if (err) 9237 break; 9238 if (!first.id_len) 9239 first = *ppid; 9240 else if (memcmp(&first, ppid, sizeof(*ppid))) 9241 return -EOPNOTSUPP; 9242 } 9243 9244 return err; 9245 } 9246 EXPORT_SYMBOL(dev_get_port_parent_id); 9247 9248 /** 9249 * netdev_port_same_parent_id - Indicate if two network devices have 9250 * the same port parent identifier 9251 * @a: first network device 9252 * @b: second network device 9253 */ 9254 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9255 { 9256 struct netdev_phys_item_id a_id = { }; 9257 struct netdev_phys_item_id b_id = { }; 9258 9259 if (dev_get_port_parent_id(a, &a_id, true) || 9260 dev_get_port_parent_id(b, &b_id, true)) 9261 return false; 9262 9263 return netdev_phys_item_id_same(&a_id, &b_id); 9264 } 9265 EXPORT_SYMBOL(netdev_port_same_parent_id); 9266 9267 /** 9268 * dev_change_proto_down - set carrier according to proto_down. 9269 * 9270 * @dev: device 9271 * @proto_down: new value 9272 */ 9273 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9274 { 9275 if (!dev->change_proto_down) 9276 return -EOPNOTSUPP; 9277 if (!netif_device_present(dev)) 9278 return -ENODEV; 9279 if (proto_down) 9280 netif_carrier_off(dev); 9281 else 9282 netif_carrier_on(dev); 9283 WRITE_ONCE(dev->proto_down, proto_down); 9284 return 0; 9285 } 9286 9287 /** 9288 * dev_change_proto_down_reason - proto down reason 9289 * 9290 * @dev: device 9291 * @mask: proto down mask 9292 * @value: proto down value 9293 */ 9294 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9295 u32 value) 9296 { 9297 u32 proto_down_reason; 9298 int b; 9299 9300 if (!mask) { 9301 proto_down_reason = value; 9302 } else { 9303 proto_down_reason = dev->proto_down_reason; 9304 for_each_set_bit(b, &mask, 32) { 9305 if (value & (1 << b)) 9306 proto_down_reason |= BIT(b); 9307 else 9308 proto_down_reason &= ~BIT(b); 9309 } 9310 } 9311 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 9312 } 9313 9314 struct bpf_xdp_link { 9315 struct bpf_link link; 9316 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9317 int flags; 9318 }; 9319 9320 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9321 { 9322 if (flags & XDP_FLAGS_HW_MODE) 9323 return XDP_MODE_HW; 9324 if (flags & XDP_FLAGS_DRV_MODE) 9325 return XDP_MODE_DRV; 9326 if (flags & XDP_FLAGS_SKB_MODE) 9327 return XDP_MODE_SKB; 9328 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9329 } 9330 9331 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9332 { 9333 switch (mode) { 9334 case XDP_MODE_SKB: 9335 return generic_xdp_install; 9336 case XDP_MODE_DRV: 9337 case XDP_MODE_HW: 9338 return dev->netdev_ops->ndo_bpf; 9339 default: 9340 return NULL; 9341 } 9342 } 9343 9344 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9345 enum bpf_xdp_mode mode) 9346 { 9347 return dev->xdp_state[mode].link; 9348 } 9349 9350 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9351 enum bpf_xdp_mode mode) 9352 { 9353 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9354 9355 if (link) 9356 return link->link.prog; 9357 return dev->xdp_state[mode].prog; 9358 } 9359 9360 u8 dev_xdp_prog_count(struct net_device *dev) 9361 { 9362 u8 count = 0; 9363 int i; 9364 9365 for (i = 0; i < __MAX_XDP_MODE; i++) 9366 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9367 count++; 9368 return count; 9369 } 9370 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9371 9372 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 9373 { 9374 if (!dev->netdev_ops->ndo_bpf) 9375 return -EOPNOTSUPP; 9376 9377 return dev->netdev_ops->ndo_bpf(dev, bpf); 9378 } 9379 EXPORT_SYMBOL_GPL(dev_xdp_propagate); 9380 9381 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9382 { 9383 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9384 9385 return prog ? prog->aux->id : 0; 9386 } 9387 9388 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9389 struct bpf_xdp_link *link) 9390 { 9391 dev->xdp_state[mode].link = link; 9392 dev->xdp_state[mode].prog = NULL; 9393 } 9394 9395 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9396 struct bpf_prog *prog) 9397 { 9398 dev->xdp_state[mode].link = NULL; 9399 dev->xdp_state[mode].prog = prog; 9400 } 9401 9402 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9403 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9404 u32 flags, struct bpf_prog *prog) 9405 { 9406 struct netdev_bpf xdp; 9407 int err; 9408 9409 memset(&xdp, 0, sizeof(xdp)); 9410 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9411 xdp.extack = extack; 9412 xdp.flags = flags; 9413 xdp.prog = prog; 9414 9415 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9416 * "moved" into driver), so they don't increment it on their own, but 9417 * they do decrement refcnt when program is detached or replaced. 9418 * Given net_device also owns link/prog, we need to bump refcnt here 9419 * to prevent drivers from underflowing it. 9420 */ 9421 if (prog) 9422 bpf_prog_inc(prog); 9423 err = bpf_op(dev, &xdp); 9424 if (err) { 9425 if (prog) 9426 bpf_prog_put(prog); 9427 return err; 9428 } 9429 9430 if (mode != XDP_MODE_HW) 9431 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9432 9433 return 0; 9434 } 9435 9436 static void dev_xdp_uninstall(struct net_device *dev) 9437 { 9438 struct bpf_xdp_link *link; 9439 struct bpf_prog *prog; 9440 enum bpf_xdp_mode mode; 9441 bpf_op_t bpf_op; 9442 9443 ASSERT_RTNL(); 9444 9445 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9446 prog = dev_xdp_prog(dev, mode); 9447 if (!prog) 9448 continue; 9449 9450 bpf_op = dev_xdp_bpf_op(dev, mode); 9451 if (!bpf_op) 9452 continue; 9453 9454 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9455 9456 /* auto-detach link from net device */ 9457 link = dev_xdp_link(dev, mode); 9458 if (link) 9459 link->dev = NULL; 9460 else 9461 bpf_prog_put(prog); 9462 9463 dev_xdp_set_link(dev, mode, NULL); 9464 } 9465 } 9466 9467 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9468 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9469 struct bpf_prog *old_prog, u32 flags) 9470 { 9471 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9472 struct bpf_prog *cur_prog; 9473 struct net_device *upper; 9474 struct list_head *iter; 9475 enum bpf_xdp_mode mode; 9476 bpf_op_t bpf_op; 9477 int err; 9478 9479 ASSERT_RTNL(); 9480 9481 /* either link or prog attachment, never both */ 9482 if (link && (new_prog || old_prog)) 9483 return -EINVAL; 9484 /* link supports only XDP mode flags */ 9485 if (link && (flags & ~XDP_FLAGS_MODES)) { 9486 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9487 return -EINVAL; 9488 } 9489 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9490 if (num_modes > 1) { 9491 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9492 return -EINVAL; 9493 } 9494 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9495 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9496 NL_SET_ERR_MSG(extack, 9497 "More than one program loaded, unset mode is ambiguous"); 9498 return -EINVAL; 9499 } 9500 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9501 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9502 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9503 return -EINVAL; 9504 } 9505 9506 mode = dev_xdp_mode(dev, flags); 9507 /* can't replace attached link */ 9508 if (dev_xdp_link(dev, mode)) { 9509 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9510 return -EBUSY; 9511 } 9512 9513 /* don't allow if an upper device already has a program */ 9514 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9515 if (dev_xdp_prog_count(upper) > 0) { 9516 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9517 return -EEXIST; 9518 } 9519 } 9520 9521 cur_prog = dev_xdp_prog(dev, mode); 9522 /* can't replace attached prog with link */ 9523 if (link && cur_prog) { 9524 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9525 return -EBUSY; 9526 } 9527 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9528 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9529 return -EEXIST; 9530 } 9531 9532 /* put effective new program into new_prog */ 9533 if (link) 9534 new_prog = link->link.prog; 9535 9536 if (new_prog) { 9537 bool offload = mode == XDP_MODE_HW; 9538 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9539 ? XDP_MODE_DRV : XDP_MODE_SKB; 9540 9541 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9542 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9543 return -EBUSY; 9544 } 9545 if (!offload && dev_xdp_prog(dev, other_mode)) { 9546 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9547 return -EEXIST; 9548 } 9549 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 9550 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 9551 return -EINVAL; 9552 } 9553 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 9554 NL_SET_ERR_MSG(extack, "Program bound to different device"); 9555 return -EINVAL; 9556 } 9557 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9558 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9559 return -EINVAL; 9560 } 9561 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9562 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9563 return -EINVAL; 9564 } 9565 } 9566 9567 /* don't call drivers if the effective program didn't change */ 9568 if (new_prog != cur_prog) { 9569 bpf_op = dev_xdp_bpf_op(dev, mode); 9570 if (!bpf_op) { 9571 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9572 return -EOPNOTSUPP; 9573 } 9574 9575 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9576 if (err) 9577 return err; 9578 } 9579 9580 if (link) 9581 dev_xdp_set_link(dev, mode, link); 9582 else 9583 dev_xdp_set_prog(dev, mode, new_prog); 9584 if (cur_prog) 9585 bpf_prog_put(cur_prog); 9586 9587 return 0; 9588 } 9589 9590 static int dev_xdp_attach_link(struct net_device *dev, 9591 struct netlink_ext_ack *extack, 9592 struct bpf_xdp_link *link) 9593 { 9594 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9595 } 9596 9597 static int dev_xdp_detach_link(struct net_device *dev, 9598 struct netlink_ext_ack *extack, 9599 struct bpf_xdp_link *link) 9600 { 9601 enum bpf_xdp_mode mode; 9602 bpf_op_t bpf_op; 9603 9604 ASSERT_RTNL(); 9605 9606 mode = dev_xdp_mode(dev, link->flags); 9607 if (dev_xdp_link(dev, mode) != link) 9608 return -EINVAL; 9609 9610 bpf_op = dev_xdp_bpf_op(dev, mode); 9611 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9612 dev_xdp_set_link(dev, mode, NULL); 9613 return 0; 9614 } 9615 9616 static void bpf_xdp_link_release(struct bpf_link *link) 9617 { 9618 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9619 9620 rtnl_lock(); 9621 9622 /* if racing with net_device's tear down, xdp_link->dev might be 9623 * already NULL, in which case link was already auto-detached 9624 */ 9625 if (xdp_link->dev) { 9626 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9627 xdp_link->dev = NULL; 9628 } 9629 9630 rtnl_unlock(); 9631 } 9632 9633 static int bpf_xdp_link_detach(struct bpf_link *link) 9634 { 9635 bpf_xdp_link_release(link); 9636 return 0; 9637 } 9638 9639 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9640 { 9641 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9642 9643 kfree(xdp_link); 9644 } 9645 9646 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9647 struct seq_file *seq) 9648 { 9649 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9650 u32 ifindex = 0; 9651 9652 rtnl_lock(); 9653 if (xdp_link->dev) 9654 ifindex = xdp_link->dev->ifindex; 9655 rtnl_unlock(); 9656 9657 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9658 } 9659 9660 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9661 struct bpf_link_info *info) 9662 { 9663 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9664 u32 ifindex = 0; 9665 9666 rtnl_lock(); 9667 if (xdp_link->dev) 9668 ifindex = xdp_link->dev->ifindex; 9669 rtnl_unlock(); 9670 9671 info->xdp.ifindex = ifindex; 9672 return 0; 9673 } 9674 9675 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9676 struct bpf_prog *old_prog) 9677 { 9678 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9679 enum bpf_xdp_mode mode; 9680 bpf_op_t bpf_op; 9681 int err = 0; 9682 9683 rtnl_lock(); 9684 9685 /* link might have been auto-released already, so fail */ 9686 if (!xdp_link->dev) { 9687 err = -ENOLINK; 9688 goto out_unlock; 9689 } 9690 9691 if (old_prog && link->prog != old_prog) { 9692 err = -EPERM; 9693 goto out_unlock; 9694 } 9695 old_prog = link->prog; 9696 if (old_prog->type != new_prog->type || 9697 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9698 err = -EINVAL; 9699 goto out_unlock; 9700 } 9701 9702 if (old_prog == new_prog) { 9703 /* no-op, don't disturb drivers */ 9704 bpf_prog_put(new_prog); 9705 goto out_unlock; 9706 } 9707 9708 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9709 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9710 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9711 xdp_link->flags, new_prog); 9712 if (err) 9713 goto out_unlock; 9714 9715 old_prog = xchg(&link->prog, new_prog); 9716 bpf_prog_put(old_prog); 9717 9718 out_unlock: 9719 rtnl_unlock(); 9720 return err; 9721 } 9722 9723 static const struct bpf_link_ops bpf_xdp_link_lops = { 9724 .release = bpf_xdp_link_release, 9725 .dealloc = bpf_xdp_link_dealloc, 9726 .detach = bpf_xdp_link_detach, 9727 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9728 .fill_link_info = bpf_xdp_link_fill_link_info, 9729 .update_prog = bpf_xdp_link_update, 9730 }; 9731 9732 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9733 { 9734 struct net *net = current->nsproxy->net_ns; 9735 struct bpf_link_primer link_primer; 9736 struct netlink_ext_ack extack = {}; 9737 struct bpf_xdp_link *link; 9738 struct net_device *dev; 9739 int err, fd; 9740 9741 rtnl_lock(); 9742 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9743 if (!dev) { 9744 rtnl_unlock(); 9745 return -EINVAL; 9746 } 9747 9748 link = kzalloc(sizeof(*link), GFP_USER); 9749 if (!link) { 9750 err = -ENOMEM; 9751 goto unlock; 9752 } 9753 9754 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9755 link->dev = dev; 9756 link->flags = attr->link_create.flags; 9757 9758 err = bpf_link_prime(&link->link, &link_primer); 9759 if (err) { 9760 kfree(link); 9761 goto unlock; 9762 } 9763 9764 err = dev_xdp_attach_link(dev, &extack, link); 9765 rtnl_unlock(); 9766 9767 if (err) { 9768 link->dev = NULL; 9769 bpf_link_cleanup(&link_primer); 9770 trace_bpf_xdp_link_attach_failed(extack._msg); 9771 goto out_put_dev; 9772 } 9773 9774 fd = bpf_link_settle(&link_primer); 9775 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9776 dev_put(dev); 9777 return fd; 9778 9779 unlock: 9780 rtnl_unlock(); 9781 9782 out_put_dev: 9783 dev_put(dev); 9784 return err; 9785 } 9786 9787 /** 9788 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9789 * @dev: device 9790 * @extack: netlink extended ack 9791 * @fd: new program fd or negative value to clear 9792 * @expected_fd: old program fd that userspace expects to replace or clear 9793 * @flags: xdp-related flags 9794 * 9795 * Set or clear a bpf program for a device 9796 */ 9797 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9798 int fd, int expected_fd, u32 flags) 9799 { 9800 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9801 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9802 int err; 9803 9804 ASSERT_RTNL(); 9805 9806 if (fd >= 0) { 9807 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9808 mode != XDP_MODE_SKB); 9809 if (IS_ERR(new_prog)) 9810 return PTR_ERR(new_prog); 9811 } 9812 9813 if (expected_fd >= 0) { 9814 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9815 mode != XDP_MODE_SKB); 9816 if (IS_ERR(old_prog)) { 9817 err = PTR_ERR(old_prog); 9818 old_prog = NULL; 9819 goto err_out; 9820 } 9821 } 9822 9823 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9824 9825 err_out: 9826 if (err && new_prog) 9827 bpf_prog_put(new_prog); 9828 if (old_prog) 9829 bpf_prog_put(old_prog); 9830 return err; 9831 } 9832 9833 /** 9834 * dev_index_reserve() - allocate an ifindex in a namespace 9835 * @net: the applicable net namespace 9836 * @ifindex: requested ifindex, pass %0 to get one allocated 9837 * 9838 * Allocate a ifindex for a new device. Caller must either use the ifindex 9839 * to store the device (via list_netdevice()) or call dev_index_release() 9840 * to give the index up. 9841 * 9842 * Return: a suitable unique value for a new device interface number or -errno. 9843 */ 9844 static int dev_index_reserve(struct net *net, u32 ifindex) 9845 { 9846 int err; 9847 9848 if (ifindex > INT_MAX) { 9849 DEBUG_NET_WARN_ON_ONCE(1); 9850 return -EINVAL; 9851 } 9852 9853 if (!ifindex) 9854 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 9855 xa_limit_31b, &net->ifindex, GFP_KERNEL); 9856 else 9857 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 9858 if (err < 0) 9859 return err; 9860 9861 return ifindex; 9862 } 9863 9864 static void dev_index_release(struct net *net, int ifindex) 9865 { 9866 /* Expect only unused indexes, unlist_netdevice() removes the used */ 9867 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 9868 } 9869 9870 /* Delayed registration/unregisteration */ 9871 LIST_HEAD(net_todo_list); 9872 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9873 atomic_t dev_unreg_count = ATOMIC_INIT(0); 9874 9875 static void net_set_todo(struct net_device *dev) 9876 { 9877 list_add_tail(&dev->todo_list, &net_todo_list); 9878 } 9879 9880 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9881 struct net_device *upper, netdev_features_t features) 9882 { 9883 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9884 netdev_features_t feature; 9885 int feature_bit; 9886 9887 for_each_netdev_feature(upper_disables, feature_bit) { 9888 feature = __NETIF_F_BIT(feature_bit); 9889 if (!(upper->wanted_features & feature) 9890 && (features & feature)) { 9891 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9892 &feature, upper->name); 9893 features &= ~feature; 9894 } 9895 } 9896 9897 return features; 9898 } 9899 9900 static void netdev_sync_lower_features(struct net_device *upper, 9901 struct net_device *lower, netdev_features_t features) 9902 { 9903 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9904 netdev_features_t feature; 9905 int feature_bit; 9906 9907 for_each_netdev_feature(upper_disables, feature_bit) { 9908 feature = __NETIF_F_BIT(feature_bit); 9909 if (!(features & feature) && (lower->features & feature)) { 9910 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9911 &feature, lower->name); 9912 lower->wanted_features &= ~feature; 9913 __netdev_update_features(lower); 9914 9915 if (unlikely(lower->features & feature)) 9916 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9917 &feature, lower->name); 9918 else 9919 netdev_features_change(lower); 9920 } 9921 } 9922 } 9923 9924 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 9925 { 9926 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 9927 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 9928 bool hw_csum = features & NETIF_F_HW_CSUM; 9929 9930 return ip_csum || hw_csum; 9931 } 9932 9933 static netdev_features_t netdev_fix_features(struct net_device *dev, 9934 netdev_features_t features) 9935 { 9936 /* Fix illegal checksum combinations */ 9937 if ((features & NETIF_F_HW_CSUM) && 9938 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9939 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9940 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9941 } 9942 9943 /* TSO requires that SG is present as well. */ 9944 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9945 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9946 features &= ~NETIF_F_ALL_TSO; 9947 } 9948 9949 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9950 !(features & NETIF_F_IP_CSUM)) { 9951 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9952 features &= ~NETIF_F_TSO; 9953 features &= ~NETIF_F_TSO_ECN; 9954 } 9955 9956 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9957 !(features & NETIF_F_IPV6_CSUM)) { 9958 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9959 features &= ~NETIF_F_TSO6; 9960 } 9961 9962 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9963 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9964 features &= ~NETIF_F_TSO_MANGLEID; 9965 9966 /* TSO ECN requires that TSO is present as well. */ 9967 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9968 features &= ~NETIF_F_TSO_ECN; 9969 9970 /* Software GSO depends on SG. */ 9971 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9972 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9973 features &= ~NETIF_F_GSO; 9974 } 9975 9976 /* GSO partial features require GSO partial be set */ 9977 if ((features & dev->gso_partial_features) && 9978 !(features & NETIF_F_GSO_PARTIAL)) { 9979 netdev_dbg(dev, 9980 "Dropping partially supported GSO features since no GSO partial.\n"); 9981 features &= ~dev->gso_partial_features; 9982 } 9983 9984 if (!(features & NETIF_F_RXCSUM)) { 9985 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9986 * successfully merged by hardware must also have the 9987 * checksum verified by hardware. If the user does not 9988 * want to enable RXCSUM, logically, we should disable GRO_HW. 9989 */ 9990 if (features & NETIF_F_GRO_HW) { 9991 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9992 features &= ~NETIF_F_GRO_HW; 9993 } 9994 } 9995 9996 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9997 if (features & NETIF_F_RXFCS) { 9998 if (features & NETIF_F_LRO) { 9999 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10000 features &= ~NETIF_F_LRO; 10001 } 10002 10003 if (features & NETIF_F_GRO_HW) { 10004 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10005 features &= ~NETIF_F_GRO_HW; 10006 } 10007 } 10008 10009 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10010 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10011 features &= ~NETIF_F_LRO; 10012 } 10013 10014 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10015 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10016 features &= ~NETIF_F_HW_TLS_TX; 10017 } 10018 10019 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10020 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10021 features &= ~NETIF_F_HW_TLS_RX; 10022 } 10023 10024 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10025 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10026 features &= ~NETIF_F_GSO_UDP_L4; 10027 } 10028 10029 return features; 10030 } 10031 10032 int __netdev_update_features(struct net_device *dev) 10033 { 10034 struct net_device *upper, *lower; 10035 netdev_features_t features; 10036 struct list_head *iter; 10037 int err = -1; 10038 10039 ASSERT_RTNL(); 10040 10041 features = netdev_get_wanted_features(dev); 10042 10043 if (dev->netdev_ops->ndo_fix_features) 10044 features = dev->netdev_ops->ndo_fix_features(dev, features); 10045 10046 /* driver might be less strict about feature dependencies */ 10047 features = netdev_fix_features(dev, features); 10048 10049 /* some features can't be enabled if they're off on an upper device */ 10050 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10051 features = netdev_sync_upper_features(dev, upper, features); 10052 10053 if (dev->features == features) 10054 goto sync_lower; 10055 10056 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10057 &dev->features, &features); 10058 10059 if (dev->netdev_ops->ndo_set_features) 10060 err = dev->netdev_ops->ndo_set_features(dev, features); 10061 else 10062 err = 0; 10063 10064 if (unlikely(err < 0)) { 10065 netdev_err(dev, 10066 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10067 err, &features, &dev->features); 10068 /* return non-0 since some features might have changed and 10069 * it's better to fire a spurious notification than miss it 10070 */ 10071 return -1; 10072 } 10073 10074 sync_lower: 10075 /* some features must be disabled on lower devices when disabled 10076 * on an upper device (think: bonding master or bridge) 10077 */ 10078 netdev_for_each_lower_dev(dev, lower, iter) 10079 netdev_sync_lower_features(dev, lower, features); 10080 10081 if (!err) { 10082 netdev_features_t diff = features ^ dev->features; 10083 10084 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10085 /* udp_tunnel_{get,drop}_rx_info both need 10086 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10087 * device, or they won't do anything. 10088 * Thus we need to update dev->features 10089 * *before* calling udp_tunnel_get_rx_info, 10090 * but *after* calling udp_tunnel_drop_rx_info. 10091 */ 10092 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10093 dev->features = features; 10094 udp_tunnel_get_rx_info(dev); 10095 } else { 10096 udp_tunnel_drop_rx_info(dev); 10097 } 10098 } 10099 10100 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10101 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10102 dev->features = features; 10103 err |= vlan_get_rx_ctag_filter_info(dev); 10104 } else { 10105 vlan_drop_rx_ctag_filter_info(dev); 10106 } 10107 } 10108 10109 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10110 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10111 dev->features = features; 10112 err |= vlan_get_rx_stag_filter_info(dev); 10113 } else { 10114 vlan_drop_rx_stag_filter_info(dev); 10115 } 10116 } 10117 10118 dev->features = features; 10119 } 10120 10121 return err < 0 ? 0 : 1; 10122 } 10123 10124 /** 10125 * netdev_update_features - recalculate device features 10126 * @dev: the device to check 10127 * 10128 * Recalculate dev->features set and send notifications if it 10129 * has changed. Should be called after driver or hardware dependent 10130 * conditions might have changed that influence the features. 10131 */ 10132 void netdev_update_features(struct net_device *dev) 10133 { 10134 if (__netdev_update_features(dev)) 10135 netdev_features_change(dev); 10136 } 10137 EXPORT_SYMBOL(netdev_update_features); 10138 10139 /** 10140 * netdev_change_features - recalculate device features 10141 * @dev: the device to check 10142 * 10143 * Recalculate dev->features set and send notifications even 10144 * if they have not changed. Should be called instead of 10145 * netdev_update_features() if also dev->vlan_features might 10146 * have changed to allow the changes to be propagated to stacked 10147 * VLAN devices. 10148 */ 10149 void netdev_change_features(struct net_device *dev) 10150 { 10151 __netdev_update_features(dev); 10152 netdev_features_change(dev); 10153 } 10154 EXPORT_SYMBOL(netdev_change_features); 10155 10156 /** 10157 * netif_stacked_transfer_operstate - transfer operstate 10158 * @rootdev: the root or lower level device to transfer state from 10159 * @dev: the device to transfer operstate to 10160 * 10161 * Transfer operational state from root to device. This is normally 10162 * called when a stacking relationship exists between the root 10163 * device and the device(a leaf device). 10164 */ 10165 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10166 struct net_device *dev) 10167 { 10168 if (rootdev->operstate == IF_OPER_DORMANT) 10169 netif_dormant_on(dev); 10170 else 10171 netif_dormant_off(dev); 10172 10173 if (rootdev->operstate == IF_OPER_TESTING) 10174 netif_testing_on(dev); 10175 else 10176 netif_testing_off(dev); 10177 10178 if (netif_carrier_ok(rootdev)) 10179 netif_carrier_on(dev); 10180 else 10181 netif_carrier_off(dev); 10182 } 10183 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10184 10185 static int netif_alloc_rx_queues(struct net_device *dev) 10186 { 10187 unsigned int i, count = dev->num_rx_queues; 10188 struct netdev_rx_queue *rx; 10189 size_t sz = count * sizeof(*rx); 10190 int err = 0; 10191 10192 BUG_ON(count < 1); 10193 10194 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10195 if (!rx) 10196 return -ENOMEM; 10197 10198 dev->_rx = rx; 10199 10200 for (i = 0; i < count; i++) { 10201 rx[i].dev = dev; 10202 10203 /* XDP RX-queue setup */ 10204 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10205 if (err < 0) 10206 goto err_rxq_info; 10207 } 10208 return 0; 10209 10210 err_rxq_info: 10211 /* Rollback successful reg's and free other resources */ 10212 while (i--) 10213 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10214 kvfree(dev->_rx); 10215 dev->_rx = NULL; 10216 return err; 10217 } 10218 10219 static void netif_free_rx_queues(struct net_device *dev) 10220 { 10221 unsigned int i, count = dev->num_rx_queues; 10222 10223 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10224 if (!dev->_rx) 10225 return; 10226 10227 for (i = 0; i < count; i++) 10228 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10229 10230 kvfree(dev->_rx); 10231 } 10232 10233 static void netdev_init_one_queue(struct net_device *dev, 10234 struct netdev_queue *queue, void *_unused) 10235 { 10236 /* Initialize queue lock */ 10237 spin_lock_init(&queue->_xmit_lock); 10238 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10239 queue->xmit_lock_owner = -1; 10240 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10241 queue->dev = dev; 10242 #ifdef CONFIG_BQL 10243 dql_init(&queue->dql, HZ); 10244 #endif 10245 } 10246 10247 static void netif_free_tx_queues(struct net_device *dev) 10248 { 10249 kvfree(dev->_tx); 10250 } 10251 10252 static int netif_alloc_netdev_queues(struct net_device *dev) 10253 { 10254 unsigned int count = dev->num_tx_queues; 10255 struct netdev_queue *tx; 10256 size_t sz = count * sizeof(*tx); 10257 10258 if (count < 1 || count > 0xffff) 10259 return -EINVAL; 10260 10261 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10262 if (!tx) 10263 return -ENOMEM; 10264 10265 dev->_tx = tx; 10266 10267 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10268 spin_lock_init(&dev->tx_global_lock); 10269 10270 return 0; 10271 } 10272 10273 void netif_tx_stop_all_queues(struct net_device *dev) 10274 { 10275 unsigned int i; 10276 10277 for (i = 0; i < dev->num_tx_queues; i++) { 10278 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10279 10280 netif_tx_stop_queue(txq); 10281 } 10282 } 10283 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10284 10285 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 10286 { 10287 void __percpu *v; 10288 10289 /* Drivers implementing ndo_get_peer_dev must support tstat 10290 * accounting, so that skb_do_redirect() can bump the dev's 10291 * RX stats upon network namespace switch. 10292 */ 10293 if (dev->netdev_ops->ndo_get_peer_dev && 10294 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 10295 return -EOPNOTSUPP; 10296 10297 switch (dev->pcpu_stat_type) { 10298 case NETDEV_PCPU_STAT_NONE: 10299 return 0; 10300 case NETDEV_PCPU_STAT_LSTATS: 10301 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 10302 break; 10303 case NETDEV_PCPU_STAT_TSTATS: 10304 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 10305 break; 10306 case NETDEV_PCPU_STAT_DSTATS: 10307 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 10308 break; 10309 default: 10310 return -EINVAL; 10311 } 10312 10313 return v ? 0 : -ENOMEM; 10314 } 10315 10316 static void netdev_do_free_pcpu_stats(struct net_device *dev) 10317 { 10318 switch (dev->pcpu_stat_type) { 10319 case NETDEV_PCPU_STAT_NONE: 10320 return; 10321 case NETDEV_PCPU_STAT_LSTATS: 10322 free_percpu(dev->lstats); 10323 break; 10324 case NETDEV_PCPU_STAT_TSTATS: 10325 free_percpu(dev->tstats); 10326 break; 10327 case NETDEV_PCPU_STAT_DSTATS: 10328 free_percpu(dev->dstats); 10329 break; 10330 } 10331 } 10332 10333 static void netdev_free_phy_link_topology(struct net_device *dev) 10334 { 10335 struct phy_link_topology *topo = dev->link_topo; 10336 10337 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 10338 xa_destroy(&topo->phys); 10339 kfree(topo); 10340 dev->link_topo = NULL; 10341 } 10342 } 10343 10344 /** 10345 * register_netdevice() - register a network device 10346 * @dev: device to register 10347 * 10348 * Take a prepared network device structure and make it externally accessible. 10349 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 10350 * Callers must hold the rtnl lock - you may want register_netdev() 10351 * instead of this. 10352 */ 10353 int register_netdevice(struct net_device *dev) 10354 { 10355 int ret; 10356 struct net *net = dev_net(dev); 10357 10358 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10359 NETDEV_FEATURE_COUNT); 10360 BUG_ON(dev_boot_phase); 10361 ASSERT_RTNL(); 10362 10363 might_sleep(); 10364 10365 /* When net_device's are persistent, this will be fatal. */ 10366 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10367 BUG_ON(!net); 10368 10369 ret = ethtool_check_ops(dev->ethtool_ops); 10370 if (ret) 10371 return ret; 10372 10373 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 10374 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 10375 mutex_init(&dev->ethtool->rss_lock); 10376 10377 spin_lock_init(&dev->addr_list_lock); 10378 netdev_set_addr_lockdep_class(dev); 10379 10380 ret = dev_get_valid_name(net, dev, dev->name); 10381 if (ret < 0) 10382 goto out; 10383 10384 ret = -ENOMEM; 10385 dev->name_node = netdev_name_node_head_alloc(dev); 10386 if (!dev->name_node) 10387 goto out; 10388 10389 /* Init, if this function is available */ 10390 if (dev->netdev_ops->ndo_init) { 10391 ret = dev->netdev_ops->ndo_init(dev); 10392 if (ret) { 10393 if (ret > 0) 10394 ret = -EIO; 10395 goto err_free_name; 10396 } 10397 } 10398 10399 if (((dev->hw_features | dev->features) & 10400 NETIF_F_HW_VLAN_CTAG_FILTER) && 10401 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10402 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10403 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10404 ret = -EINVAL; 10405 goto err_uninit; 10406 } 10407 10408 ret = netdev_do_alloc_pcpu_stats(dev); 10409 if (ret) 10410 goto err_uninit; 10411 10412 ret = dev_index_reserve(net, dev->ifindex); 10413 if (ret < 0) 10414 goto err_free_pcpu; 10415 dev->ifindex = ret; 10416 10417 /* Transfer changeable features to wanted_features and enable 10418 * software offloads (GSO and GRO). 10419 */ 10420 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10421 dev->features |= NETIF_F_SOFT_FEATURES; 10422 10423 if (dev->udp_tunnel_nic_info) { 10424 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10425 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10426 } 10427 10428 dev->wanted_features = dev->features & dev->hw_features; 10429 10430 if (!(dev->flags & IFF_LOOPBACK)) 10431 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10432 10433 /* If IPv4 TCP segmentation offload is supported we should also 10434 * allow the device to enable segmenting the frame with the option 10435 * of ignoring a static IP ID value. This doesn't enable the 10436 * feature itself but allows the user to enable it later. 10437 */ 10438 if (dev->hw_features & NETIF_F_TSO) 10439 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10440 if (dev->vlan_features & NETIF_F_TSO) 10441 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10442 if (dev->mpls_features & NETIF_F_TSO) 10443 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10444 if (dev->hw_enc_features & NETIF_F_TSO) 10445 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10446 10447 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10448 */ 10449 dev->vlan_features |= NETIF_F_HIGHDMA; 10450 10451 /* Make NETIF_F_SG inheritable to tunnel devices. 10452 */ 10453 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10454 10455 /* Make NETIF_F_SG inheritable to MPLS. 10456 */ 10457 dev->mpls_features |= NETIF_F_SG; 10458 10459 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10460 ret = notifier_to_errno(ret); 10461 if (ret) 10462 goto err_ifindex_release; 10463 10464 ret = netdev_register_kobject(dev); 10465 10466 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 10467 10468 if (ret) 10469 goto err_uninit_notify; 10470 10471 __netdev_update_features(dev); 10472 10473 /* 10474 * Default initial state at registry is that the 10475 * device is present. 10476 */ 10477 10478 set_bit(__LINK_STATE_PRESENT, &dev->state); 10479 10480 linkwatch_init_dev(dev); 10481 10482 dev_init_scheduler(dev); 10483 10484 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 10485 list_netdevice(dev); 10486 10487 add_device_randomness(dev->dev_addr, dev->addr_len); 10488 10489 /* If the device has permanent device address, driver should 10490 * set dev_addr and also addr_assign_type should be set to 10491 * NET_ADDR_PERM (default value). 10492 */ 10493 if (dev->addr_assign_type == NET_ADDR_PERM) 10494 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10495 10496 /* Notify protocols, that a new device appeared. */ 10497 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10498 ret = notifier_to_errno(ret); 10499 if (ret) { 10500 /* Expect explicit free_netdev() on failure */ 10501 dev->needs_free_netdev = false; 10502 unregister_netdevice_queue(dev, NULL); 10503 goto out; 10504 } 10505 /* 10506 * Prevent userspace races by waiting until the network 10507 * device is fully setup before sending notifications. 10508 */ 10509 if (!dev->rtnl_link_ops || 10510 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10511 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 10512 10513 out: 10514 return ret; 10515 10516 err_uninit_notify: 10517 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10518 err_ifindex_release: 10519 dev_index_release(net, dev->ifindex); 10520 err_free_pcpu: 10521 netdev_do_free_pcpu_stats(dev); 10522 err_uninit: 10523 if (dev->netdev_ops->ndo_uninit) 10524 dev->netdev_ops->ndo_uninit(dev); 10525 if (dev->priv_destructor) 10526 dev->priv_destructor(dev); 10527 err_free_name: 10528 netdev_name_node_free(dev->name_node); 10529 goto out; 10530 } 10531 EXPORT_SYMBOL(register_netdevice); 10532 10533 /* Initialize the core of a dummy net device. 10534 * This is useful if you are calling this function after alloc_netdev(), 10535 * since it does not memset the net_device fields. 10536 */ 10537 static void init_dummy_netdev_core(struct net_device *dev) 10538 { 10539 /* make sure we BUG if trying to hit standard 10540 * register/unregister code path 10541 */ 10542 dev->reg_state = NETREG_DUMMY; 10543 10544 /* NAPI wants this */ 10545 INIT_LIST_HEAD(&dev->napi_list); 10546 10547 /* a dummy interface is started by default */ 10548 set_bit(__LINK_STATE_PRESENT, &dev->state); 10549 set_bit(__LINK_STATE_START, &dev->state); 10550 10551 /* napi_busy_loop stats accounting wants this */ 10552 dev_net_set(dev, &init_net); 10553 10554 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10555 * because users of this 'device' dont need to change 10556 * its refcount. 10557 */ 10558 } 10559 10560 /** 10561 * init_dummy_netdev - init a dummy network device for NAPI 10562 * @dev: device to init 10563 * 10564 * This takes a network device structure and initializes the minimum 10565 * amount of fields so it can be used to schedule NAPI polls without 10566 * registering a full blown interface. This is to be used by drivers 10567 * that need to tie several hardware interfaces to a single NAPI 10568 * poll scheduler due to HW limitations. 10569 */ 10570 void init_dummy_netdev(struct net_device *dev) 10571 { 10572 /* Clear everything. Note we don't initialize spinlocks 10573 * as they aren't supposed to be taken by any of the 10574 * NAPI code and this dummy netdev is supposed to be 10575 * only ever used for NAPI polls 10576 */ 10577 memset(dev, 0, sizeof(struct net_device)); 10578 init_dummy_netdev_core(dev); 10579 } 10580 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10581 10582 /** 10583 * register_netdev - register a network device 10584 * @dev: device to register 10585 * 10586 * Take a completed network device structure and add it to the kernel 10587 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10588 * chain. 0 is returned on success. A negative errno code is returned 10589 * on a failure to set up the device, or if the name is a duplicate. 10590 * 10591 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10592 * and expands the device name if you passed a format string to 10593 * alloc_netdev. 10594 */ 10595 int register_netdev(struct net_device *dev) 10596 { 10597 int err; 10598 10599 if (rtnl_lock_killable()) 10600 return -EINTR; 10601 err = register_netdevice(dev); 10602 rtnl_unlock(); 10603 return err; 10604 } 10605 EXPORT_SYMBOL(register_netdev); 10606 10607 int netdev_refcnt_read(const struct net_device *dev) 10608 { 10609 #ifdef CONFIG_PCPU_DEV_REFCNT 10610 int i, refcnt = 0; 10611 10612 for_each_possible_cpu(i) 10613 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10614 return refcnt; 10615 #else 10616 return refcount_read(&dev->dev_refcnt); 10617 #endif 10618 } 10619 EXPORT_SYMBOL(netdev_refcnt_read); 10620 10621 int netdev_unregister_timeout_secs __read_mostly = 10; 10622 10623 #define WAIT_REFS_MIN_MSECS 1 10624 #define WAIT_REFS_MAX_MSECS 250 10625 /** 10626 * netdev_wait_allrefs_any - wait until all references are gone. 10627 * @list: list of net_devices to wait on 10628 * 10629 * This is called when unregistering network devices. 10630 * 10631 * Any protocol or device that holds a reference should register 10632 * for netdevice notification, and cleanup and put back the 10633 * reference if they receive an UNREGISTER event. 10634 * We can get stuck here if buggy protocols don't correctly 10635 * call dev_put. 10636 */ 10637 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10638 { 10639 unsigned long rebroadcast_time, warning_time; 10640 struct net_device *dev; 10641 int wait = 0; 10642 10643 rebroadcast_time = warning_time = jiffies; 10644 10645 list_for_each_entry(dev, list, todo_list) 10646 if (netdev_refcnt_read(dev) == 1) 10647 return dev; 10648 10649 while (true) { 10650 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10651 rtnl_lock(); 10652 10653 /* Rebroadcast unregister notification */ 10654 list_for_each_entry(dev, list, todo_list) 10655 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10656 10657 __rtnl_unlock(); 10658 rcu_barrier(); 10659 rtnl_lock(); 10660 10661 list_for_each_entry(dev, list, todo_list) 10662 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10663 &dev->state)) { 10664 /* We must not have linkwatch events 10665 * pending on unregister. If this 10666 * happens, we simply run the queue 10667 * unscheduled, resulting in a noop 10668 * for this device. 10669 */ 10670 linkwatch_run_queue(); 10671 break; 10672 } 10673 10674 __rtnl_unlock(); 10675 10676 rebroadcast_time = jiffies; 10677 } 10678 10679 rcu_barrier(); 10680 10681 if (!wait) { 10682 wait = WAIT_REFS_MIN_MSECS; 10683 } else { 10684 msleep(wait); 10685 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10686 } 10687 10688 list_for_each_entry(dev, list, todo_list) 10689 if (netdev_refcnt_read(dev) == 1) 10690 return dev; 10691 10692 if (time_after(jiffies, warning_time + 10693 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 10694 list_for_each_entry(dev, list, todo_list) { 10695 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10696 dev->name, netdev_refcnt_read(dev)); 10697 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10698 } 10699 10700 warning_time = jiffies; 10701 } 10702 } 10703 } 10704 10705 /* The sequence is: 10706 * 10707 * rtnl_lock(); 10708 * ... 10709 * register_netdevice(x1); 10710 * register_netdevice(x2); 10711 * ... 10712 * unregister_netdevice(y1); 10713 * unregister_netdevice(y2); 10714 * ... 10715 * rtnl_unlock(); 10716 * free_netdev(y1); 10717 * free_netdev(y2); 10718 * 10719 * We are invoked by rtnl_unlock(). 10720 * This allows us to deal with problems: 10721 * 1) We can delete sysfs objects which invoke hotplug 10722 * without deadlocking with linkwatch via keventd. 10723 * 2) Since we run with the RTNL semaphore not held, we can sleep 10724 * safely in order to wait for the netdev refcnt to drop to zero. 10725 * 10726 * We must not return until all unregister events added during 10727 * the interval the lock was held have been completed. 10728 */ 10729 void netdev_run_todo(void) 10730 { 10731 struct net_device *dev, *tmp; 10732 struct list_head list; 10733 int cnt; 10734 #ifdef CONFIG_LOCKDEP 10735 struct list_head unlink_list; 10736 10737 list_replace_init(&net_unlink_list, &unlink_list); 10738 10739 while (!list_empty(&unlink_list)) { 10740 struct net_device *dev = list_first_entry(&unlink_list, 10741 struct net_device, 10742 unlink_list); 10743 list_del_init(&dev->unlink_list); 10744 dev->nested_level = dev->lower_level - 1; 10745 } 10746 #endif 10747 10748 /* Snapshot list, allow later requests */ 10749 list_replace_init(&net_todo_list, &list); 10750 10751 __rtnl_unlock(); 10752 10753 /* Wait for rcu callbacks to finish before next phase */ 10754 if (!list_empty(&list)) 10755 rcu_barrier(); 10756 10757 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10758 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10759 netdev_WARN(dev, "run_todo but not unregistering\n"); 10760 list_del(&dev->todo_list); 10761 continue; 10762 } 10763 10764 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 10765 linkwatch_sync_dev(dev); 10766 } 10767 10768 cnt = 0; 10769 while (!list_empty(&list)) { 10770 dev = netdev_wait_allrefs_any(&list); 10771 list_del(&dev->todo_list); 10772 10773 /* paranoia */ 10774 BUG_ON(netdev_refcnt_read(dev) != 1); 10775 BUG_ON(!list_empty(&dev->ptype_all)); 10776 BUG_ON(!list_empty(&dev->ptype_specific)); 10777 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10778 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10779 10780 netdev_do_free_pcpu_stats(dev); 10781 if (dev->priv_destructor) 10782 dev->priv_destructor(dev); 10783 if (dev->needs_free_netdev) 10784 free_netdev(dev); 10785 10786 cnt++; 10787 10788 /* Free network device */ 10789 kobject_put(&dev->dev.kobj); 10790 } 10791 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 10792 wake_up(&netdev_unregistering_wq); 10793 } 10794 10795 /* Collate per-cpu network dstats statistics 10796 * 10797 * Read per-cpu network statistics from dev->dstats and populate the related 10798 * fields in @s. 10799 */ 10800 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 10801 const struct pcpu_dstats __percpu *dstats) 10802 { 10803 int cpu; 10804 10805 for_each_possible_cpu(cpu) { 10806 u64 rx_packets, rx_bytes, rx_drops; 10807 u64 tx_packets, tx_bytes, tx_drops; 10808 const struct pcpu_dstats *stats; 10809 unsigned int start; 10810 10811 stats = per_cpu_ptr(dstats, cpu); 10812 do { 10813 start = u64_stats_fetch_begin(&stats->syncp); 10814 rx_packets = u64_stats_read(&stats->rx_packets); 10815 rx_bytes = u64_stats_read(&stats->rx_bytes); 10816 rx_drops = u64_stats_read(&stats->rx_drops); 10817 tx_packets = u64_stats_read(&stats->tx_packets); 10818 tx_bytes = u64_stats_read(&stats->tx_bytes); 10819 tx_drops = u64_stats_read(&stats->tx_drops); 10820 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10821 10822 s->rx_packets += rx_packets; 10823 s->rx_bytes += rx_bytes; 10824 s->rx_dropped += rx_drops; 10825 s->tx_packets += tx_packets; 10826 s->tx_bytes += tx_bytes; 10827 s->tx_dropped += tx_drops; 10828 } 10829 } 10830 10831 /* ndo_get_stats64 implementation for dtstats-based accounting. 10832 * 10833 * Populate @s from dev->stats and dev->dstats. This is used internally by the 10834 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 10835 */ 10836 static void dev_get_dstats64(const struct net_device *dev, 10837 struct rtnl_link_stats64 *s) 10838 { 10839 netdev_stats_to_stats64(s, &dev->stats); 10840 dev_fetch_dstats(s, dev->dstats); 10841 } 10842 10843 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10844 * all the same fields in the same order as net_device_stats, with only 10845 * the type differing, but rtnl_link_stats64 may have additional fields 10846 * at the end for newer counters. 10847 */ 10848 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10849 const struct net_device_stats *netdev_stats) 10850 { 10851 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 10852 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 10853 u64 *dst = (u64 *)stats64; 10854 10855 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10856 for (i = 0; i < n; i++) 10857 dst[i] = (unsigned long)atomic_long_read(&src[i]); 10858 /* zero out counters that only exist in rtnl_link_stats64 */ 10859 memset((char *)stats64 + n * sizeof(u64), 0, 10860 sizeof(*stats64) - n * sizeof(u64)); 10861 } 10862 EXPORT_SYMBOL(netdev_stats_to_stats64); 10863 10864 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 10865 struct net_device *dev) 10866 { 10867 struct net_device_core_stats __percpu *p; 10868 10869 p = alloc_percpu_gfp(struct net_device_core_stats, 10870 GFP_ATOMIC | __GFP_NOWARN); 10871 10872 if (p && cmpxchg(&dev->core_stats, NULL, p)) 10873 free_percpu(p); 10874 10875 /* This READ_ONCE() pairs with the cmpxchg() above */ 10876 return READ_ONCE(dev->core_stats); 10877 } 10878 10879 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 10880 { 10881 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10882 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 10883 unsigned long __percpu *field; 10884 10885 if (unlikely(!p)) { 10886 p = netdev_core_stats_alloc(dev); 10887 if (!p) 10888 return; 10889 } 10890 10891 field = (unsigned long __percpu *)((void __percpu *)p + offset); 10892 this_cpu_inc(*field); 10893 } 10894 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 10895 10896 /** 10897 * dev_get_stats - get network device statistics 10898 * @dev: device to get statistics from 10899 * @storage: place to store stats 10900 * 10901 * Get network statistics from device. Return @storage. 10902 * The device driver may provide its own method by setting 10903 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10904 * otherwise the internal statistics structure is used. 10905 */ 10906 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10907 struct rtnl_link_stats64 *storage) 10908 { 10909 const struct net_device_ops *ops = dev->netdev_ops; 10910 const struct net_device_core_stats __percpu *p; 10911 10912 if (ops->ndo_get_stats64) { 10913 memset(storage, 0, sizeof(*storage)); 10914 ops->ndo_get_stats64(dev, storage); 10915 } else if (ops->ndo_get_stats) { 10916 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10917 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 10918 dev_get_tstats64(dev, storage); 10919 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 10920 dev_get_dstats64(dev, storage); 10921 } else { 10922 netdev_stats_to_stats64(storage, &dev->stats); 10923 } 10924 10925 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10926 p = READ_ONCE(dev->core_stats); 10927 if (p) { 10928 const struct net_device_core_stats *core_stats; 10929 int i; 10930 10931 for_each_possible_cpu(i) { 10932 core_stats = per_cpu_ptr(p, i); 10933 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 10934 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 10935 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 10936 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 10937 } 10938 } 10939 return storage; 10940 } 10941 EXPORT_SYMBOL(dev_get_stats); 10942 10943 /** 10944 * dev_fetch_sw_netstats - get per-cpu network device statistics 10945 * @s: place to store stats 10946 * @netstats: per-cpu network stats to read from 10947 * 10948 * Read per-cpu network statistics and populate the related fields in @s. 10949 */ 10950 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10951 const struct pcpu_sw_netstats __percpu *netstats) 10952 { 10953 int cpu; 10954 10955 for_each_possible_cpu(cpu) { 10956 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 10957 const struct pcpu_sw_netstats *stats; 10958 unsigned int start; 10959 10960 stats = per_cpu_ptr(netstats, cpu); 10961 do { 10962 start = u64_stats_fetch_begin(&stats->syncp); 10963 rx_packets = u64_stats_read(&stats->rx_packets); 10964 rx_bytes = u64_stats_read(&stats->rx_bytes); 10965 tx_packets = u64_stats_read(&stats->tx_packets); 10966 tx_bytes = u64_stats_read(&stats->tx_bytes); 10967 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10968 10969 s->rx_packets += rx_packets; 10970 s->rx_bytes += rx_bytes; 10971 s->tx_packets += tx_packets; 10972 s->tx_bytes += tx_bytes; 10973 } 10974 } 10975 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10976 10977 /** 10978 * dev_get_tstats64 - ndo_get_stats64 implementation 10979 * @dev: device to get statistics from 10980 * @s: place to store stats 10981 * 10982 * Populate @s from dev->stats and dev->tstats. Can be used as 10983 * ndo_get_stats64() callback. 10984 */ 10985 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10986 { 10987 netdev_stats_to_stats64(s, &dev->stats); 10988 dev_fetch_sw_netstats(s, dev->tstats); 10989 } 10990 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10991 10992 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10993 { 10994 struct netdev_queue *queue = dev_ingress_queue(dev); 10995 10996 #ifdef CONFIG_NET_CLS_ACT 10997 if (queue) 10998 return queue; 10999 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11000 if (!queue) 11001 return NULL; 11002 netdev_init_one_queue(dev, queue, NULL); 11003 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11004 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11005 rcu_assign_pointer(dev->ingress_queue, queue); 11006 #endif 11007 return queue; 11008 } 11009 11010 static const struct ethtool_ops default_ethtool_ops; 11011 11012 void netdev_set_default_ethtool_ops(struct net_device *dev, 11013 const struct ethtool_ops *ops) 11014 { 11015 if (dev->ethtool_ops == &default_ethtool_ops) 11016 dev->ethtool_ops = ops; 11017 } 11018 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11019 11020 /** 11021 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11022 * @dev: netdev to enable the IRQ coalescing on 11023 * 11024 * Sets a conservative default for SW IRQ coalescing. Users can use 11025 * sysfs attributes to override the default values. 11026 */ 11027 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11028 { 11029 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11030 11031 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11032 dev->gro_flush_timeout = 20000; 11033 dev->napi_defer_hard_irqs = 1; 11034 } 11035 } 11036 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11037 11038 /** 11039 * alloc_netdev_mqs - allocate network device 11040 * @sizeof_priv: size of private data to allocate space for 11041 * @name: device name format string 11042 * @name_assign_type: origin of device name 11043 * @setup: callback to initialize device 11044 * @txqs: the number of TX subqueues to allocate 11045 * @rxqs: the number of RX subqueues to allocate 11046 * 11047 * Allocates a struct net_device with private data area for driver use 11048 * and performs basic initialization. Also allocates subqueue structs 11049 * for each queue on the device. 11050 */ 11051 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11052 unsigned char name_assign_type, 11053 void (*setup)(struct net_device *), 11054 unsigned int txqs, unsigned int rxqs) 11055 { 11056 struct net_device *dev; 11057 11058 BUG_ON(strlen(name) >= sizeof(dev->name)); 11059 11060 if (txqs < 1) { 11061 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11062 return NULL; 11063 } 11064 11065 if (rxqs < 1) { 11066 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11067 return NULL; 11068 } 11069 11070 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11071 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11072 if (!dev) 11073 return NULL; 11074 11075 dev->priv_len = sizeof_priv; 11076 11077 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 11078 #ifdef CONFIG_PCPU_DEV_REFCNT 11079 dev->pcpu_refcnt = alloc_percpu(int); 11080 if (!dev->pcpu_refcnt) 11081 goto free_dev; 11082 __dev_hold(dev); 11083 #else 11084 refcount_set(&dev->dev_refcnt, 1); 11085 #endif 11086 11087 if (dev_addr_init(dev)) 11088 goto free_pcpu; 11089 11090 dev_mc_init(dev); 11091 dev_uc_init(dev); 11092 11093 dev_net_set(dev, &init_net); 11094 11095 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11096 dev->xdp_zc_max_segs = 1; 11097 dev->gso_max_segs = GSO_MAX_SEGS; 11098 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11099 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11100 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11101 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11102 dev->tso_max_segs = TSO_MAX_SEGS; 11103 dev->upper_level = 1; 11104 dev->lower_level = 1; 11105 #ifdef CONFIG_LOCKDEP 11106 dev->nested_level = 0; 11107 INIT_LIST_HEAD(&dev->unlink_list); 11108 #endif 11109 11110 INIT_LIST_HEAD(&dev->napi_list); 11111 INIT_LIST_HEAD(&dev->unreg_list); 11112 INIT_LIST_HEAD(&dev->close_list); 11113 INIT_LIST_HEAD(&dev->link_watch_list); 11114 INIT_LIST_HEAD(&dev->adj_list.upper); 11115 INIT_LIST_HEAD(&dev->adj_list.lower); 11116 INIT_LIST_HEAD(&dev->ptype_all); 11117 INIT_LIST_HEAD(&dev->ptype_specific); 11118 INIT_LIST_HEAD(&dev->net_notifier_list); 11119 #ifdef CONFIG_NET_SCHED 11120 hash_init(dev->qdisc_hash); 11121 #endif 11122 11123 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11124 setup(dev); 11125 11126 if (!dev->tx_queue_len) { 11127 dev->priv_flags |= IFF_NO_QUEUE; 11128 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11129 } 11130 11131 dev->num_tx_queues = txqs; 11132 dev->real_num_tx_queues = txqs; 11133 if (netif_alloc_netdev_queues(dev)) 11134 goto free_all; 11135 11136 dev->num_rx_queues = rxqs; 11137 dev->real_num_rx_queues = rxqs; 11138 if (netif_alloc_rx_queues(dev)) 11139 goto free_all; 11140 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11141 if (!dev->ethtool) 11142 goto free_all; 11143 11144 strscpy(dev->name, name); 11145 dev->name_assign_type = name_assign_type; 11146 dev->group = INIT_NETDEV_GROUP; 11147 if (!dev->ethtool_ops) 11148 dev->ethtool_ops = &default_ethtool_ops; 11149 11150 nf_hook_netdev_init(dev); 11151 11152 return dev; 11153 11154 free_all: 11155 free_netdev(dev); 11156 return NULL; 11157 11158 free_pcpu: 11159 #ifdef CONFIG_PCPU_DEV_REFCNT 11160 free_percpu(dev->pcpu_refcnt); 11161 free_dev: 11162 #endif 11163 kvfree(dev); 11164 return NULL; 11165 } 11166 EXPORT_SYMBOL(alloc_netdev_mqs); 11167 11168 /** 11169 * free_netdev - free network device 11170 * @dev: device 11171 * 11172 * This function does the last stage of destroying an allocated device 11173 * interface. The reference to the device object is released. If this 11174 * is the last reference then it will be freed.Must be called in process 11175 * context. 11176 */ 11177 void free_netdev(struct net_device *dev) 11178 { 11179 struct napi_struct *p, *n; 11180 11181 might_sleep(); 11182 11183 /* When called immediately after register_netdevice() failed the unwind 11184 * handling may still be dismantling the device. Handle that case by 11185 * deferring the free. 11186 */ 11187 if (dev->reg_state == NETREG_UNREGISTERING) { 11188 ASSERT_RTNL(); 11189 dev->needs_free_netdev = true; 11190 return; 11191 } 11192 11193 kfree(dev->ethtool); 11194 netif_free_tx_queues(dev); 11195 netif_free_rx_queues(dev); 11196 11197 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 11198 11199 /* Flush device addresses */ 11200 dev_addr_flush(dev); 11201 11202 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 11203 netif_napi_del(p); 11204 11205 ref_tracker_dir_exit(&dev->refcnt_tracker); 11206 #ifdef CONFIG_PCPU_DEV_REFCNT 11207 free_percpu(dev->pcpu_refcnt); 11208 dev->pcpu_refcnt = NULL; 11209 #endif 11210 free_percpu(dev->core_stats); 11211 dev->core_stats = NULL; 11212 free_percpu(dev->xdp_bulkq); 11213 dev->xdp_bulkq = NULL; 11214 11215 netdev_free_phy_link_topology(dev); 11216 11217 /* Compatibility with error handling in drivers */ 11218 if (dev->reg_state == NETREG_UNINITIALIZED || 11219 dev->reg_state == NETREG_DUMMY) { 11220 kvfree(dev); 11221 return; 11222 } 11223 11224 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11225 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 11226 11227 /* will free via device release */ 11228 put_device(&dev->dev); 11229 } 11230 EXPORT_SYMBOL(free_netdev); 11231 11232 /** 11233 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 11234 * @sizeof_priv: size of private data to allocate space for 11235 * 11236 * Return: the allocated net_device on success, NULL otherwise 11237 */ 11238 struct net_device *alloc_netdev_dummy(int sizeof_priv) 11239 { 11240 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 11241 init_dummy_netdev_core); 11242 } 11243 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 11244 11245 /** 11246 * synchronize_net - Synchronize with packet receive processing 11247 * 11248 * Wait for packets currently being received to be done. 11249 * Does not block later packets from starting. 11250 */ 11251 void synchronize_net(void) 11252 { 11253 might_sleep(); 11254 if (rtnl_is_locked()) 11255 synchronize_rcu_expedited(); 11256 else 11257 synchronize_rcu(); 11258 } 11259 EXPORT_SYMBOL(synchronize_net); 11260 11261 static void netdev_rss_contexts_free(struct net_device *dev) 11262 { 11263 struct ethtool_rxfh_context *ctx; 11264 unsigned long context; 11265 11266 mutex_lock(&dev->ethtool->rss_lock); 11267 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 11268 struct ethtool_rxfh_param rxfh; 11269 11270 rxfh.indir = ethtool_rxfh_context_indir(ctx); 11271 rxfh.key = ethtool_rxfh_context_key(ctx); 11272 rxfh.hfunc = ctx->hfunc; 11273 rxfh.input_xfrm = ctx->input_xfrm; 11274 rxfh.rss_context = context; 11275 rxfh.rss_delete = true; 11276 11277 xa_erase(&dev->ethtool->rss_ctx, context); 11278 if (dev->ethtool_ops->create_rxfh_context) 11279 dev->ethtool_ops->remove_rxfh_context(dev, ctx, 11280 context, NULL); 11281 else 11282 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL); 11283 kfree(ctx); 11284 } 11285 xa_destroy(&dev->ethtool->rss_ctx); 11286 mutex_unlock(&dev->ethtool->rss_lock); 11287 } 11288 11289 /** 11290 * unregister_netdevice_queue - remove device from the kernel 11291 * @dev: device 11292 * @head: list 11293 * 11294 * This function shuts down a device interface and removes it 11295 * from the kernel tables. 11296 * If head not NULL, device is queued to be unregistered later. 11297 * 11298 * Callers must hold the rtnl semaphore. You may want 11299 * unregister_netdev() instead of this. 11300 */ 11301 11302 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 11303 { 11304 ASSERT_RTNL(); 11305 11306 if (head) { 11307 list_move_tail(&dev->unreg_list, head); 11308 } else { 11309 LIST_HEAD(single); 11310 11311 list_add(&dev->unreg_list, &single); 11312 unregister_netdevice_many(&single); 11313 } 11314 } 11315 EXPORT_SYMBOL(unregister_netdevice_queue); 11316 11317 void unregister_netdevice_many_notify(struct list_head *head, 11318 u32 portid, const struct nlmsghdr *nlh) 11319 { 11320 struct net_device *dev, *tmp; 11321 LIST_HEAD(close_head); 11322 int cnt = 0; 11323 11324 BUG_ON(dev_boot_phase); 11325 ASSERT_RTNL(); 11326 11327 if (list_empty(head)) 11328 return; 11329 11330 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 11331 /* Some devices call without registering 11332 * for initialization unwind. Remove those 11333 * devices and proceed with the remaining. 11334 */ 11335 if (dev->reg_state == NETREG_UNINITIALIZED) { 11336 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 11337 dev->name, dev); 11338 11339 WARN_ON(1); 11340 list_del(&dev->unreg_list); 11341 continue; 11342 } 11343 dev->dismantle = true; 11344 BUG_ON(dev->reg_state != NETREG_REGISTERED); 11345 } 11346 11347 /* If device is running, close it first. */ 11348 list_for_each_entry(dev, head, unreg_list) 11349 list_add_tail(&dev->close_list, &close_head); 11350 dev_close_many(&close_head, true); 11351 11352 list_for_each_entry(dev, head, unreg_list) { 11353 /* And unlink it from device chain. */ 11354 unlist_netdevice(dev); 11355 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 11356 } 11357 flush_all_backlogs(); 11358 11359 synchronize_net(); 11360 11361 list_for_each_entry(dev, head, unreg_list) { 11362 struct sk_buff *skb = NULL; 11363 11364 /* Shutdown queueing discipline. */ 11365 dev_shutdown(dev); 11366 dev_tcx_uninstall(dev); 11367 dev_xdp_uninstall(dev); 11368 bpf_dev_bound_netdev_unregister(dev); 11369 11370 netdev_offload_xstats_disable_all(dev); 11371 11372 /* Notify protocols, that we are about to destroy 11373 * this device. They should clean all the things. 11374 */ 11375 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11376 11377 if (!dev->rtnl_link_ops || 11378 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11379 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 11380 GFP_KERNEL, NULL, 0, 11381 portid, nlh); 11382 11383 /* 11384 * Flush the unicast and multicast chains 11385 */ 11386 dev_uc_flush(dev); 11387 dev_mc_flush(dev); 11388 11389 netdev_name_node_alt_flush(dev); 11390 netdev_name_node_free(dev->name_node); 11391 11392 netdev_rss_contexts_free(dev); 11393 11394 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11395 11396 if (dev->netdev_ops->ndo_uninit) 11397 dev->netdev_ops->ndo_uninit(dev); 11398 11399 mutex_destroy(&dev->ethtool->rss_lock); 11400 11401 if (skb) 11402 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 11403 11404 /* Notifier chain MUST detach us all upper devices. */ 11405 WARN_ON(netdev_has_any_upper_dev(dev)); 11406 WARN_ON(netdev_has_any_lower_dev(dev)); 11407 11408 /* Remove entries from kobject tree */ 11409 netdev_unregister_kobject(dev); 11410 #ifdef CONFIG_XPS 11411 /* Remove XPS queueing entries */ 11412 netif_reset_xps_queues_gt(dev, 0); 11413 #endif 11414 } 11415 11416 synchronize_net(); 11417 11418 list_for_each_entry(dev, head, unreg_list) { 11419 netdev_put(dev, &dev->dev_registered_tracker); 11420 net_set_todo(dev); 11421 cnt++; 11422 } 11423 atomic_add(cnt, &dev_unreg_count); 11424 11425 list_del(head); 11426 } 11427 11428 /** 11429 * unregister_netdevice_many - unregister many devices 11430 * @head: list of devices 11431 * 11432 * Note: As most callers use a stack allocated list_head, 11433 * we force a list_del() to make sure stack won't be corrupted later. 11434 */ 11435 void unregister_netdevice_many(struct list_head *head) 11436 { 11437 unregister_netdevice_many_notify(head, 0, NULL); 11438 } 11439 EXPORT_SYMBOL(unregister_netdevice_many); 11440 11441 /** 11442 * unregister_netdev - remove device from the kernel 11443 * @dev: device 11444 * 11445 * This function shuts down a device interface and removes it 11446 * from the kernel tables. 11447 * 11448 * This is just a wrapper for unregister_netdevice that takes 11449 * the rtnl semaphore. In general you want to use this and not 11450 * unregister_netdevice. 11451 */ 11452 void unregister_netdev(struct net_device *dev) 11453 { 11454 rtnl_lock(); 11455 unregister_netdevice(dev); 11456 rtnl_unlock(); 11457 } 11458 EXPORT_SYMBOL(unregister_netdev); 11459 11460 /** 11461 * __dev_change_net_namespace - move device to different nethost namespace 11462 * @dev: device 11463 * @net: network namespace 11464 * @pat: If not NULL name pattern to try if the current device name 11465 * is already taken in the destination network namespace. 11466 * @new_ifindex: If not zero, specifies device index in the target 11467 * namespace. 11468 * 11469 * This function shuts down a device interface and moves it 11470 * to a new network namespace. On success 0 is returned, on 11471 * a failure a netagive errno code is returned. 11472 * 11473 * Callers must hold the rtnl semaphore. 11474 */ 11475 11476 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 11477 const char *pat, int new_ifindex) 11478 { 11479 struct netdev_name_node *name_node; 11480 struct net *net_old = dev_net(dev); 11481 char new_name[IFNAMSIZ] = {}; 11482 int err, new_nsid; 11483 11484 ASSERT_RTNL(); 11485 11486 /* Don't allow namespace local devices to be moved. */ 11487 err = -EINVAL; 11488 if (dev->netns_local) 11489 goto out; 11490 11491 /* Ensure the device has been registered */ 11492 if (dev->reg_state != NETREG_REGISTERED) 11493 goto out; 11494 11495 /* Get out if there is nothing todo */ 11496 err = 0; 11497 if (net_eq(net_old, net)) 11498 goto out; 11499 11500 /* Pick the destination device name, and ensure 11501 * we can use it in the destination network namespace. 11502 */ 11503 err = -EEXIST; 11504 if (netdev_name_in_use(net, dev->name)) { 11505 /* We get here if we can't use the current device name */ 11506 if (!pat) 11507 goto out; 11508 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 11509 if (err < 0) 11510 goto out; 11511 } 11512 /* Check that none of the altnames conflicts. */ 11513 err = -EEXIST; 11514 netdev_for_each_altname(dev, name_node) 11515 if (netdev_name_in_use(net, name_node->name)) 11516 goto out; 11517 11518 /* Check that new_ifindex isn't used yet. */ 11519 if (new_ifindex) { 11520 err = dev_index_reserve(net, new_ifindex); 11521 if (err < 0) 11522 goto out; 11523 } else { 11524 /* If there is an ifindex conflict assign a new one */ 11525 err = dev_index_reserve(net, dev->ifindex); 11526 if (err == -EBUSY) 11527 err = dev_index_reserve(net, 0); 11528 if (err < 0) 11529 goto out; 11530 new_ifindex = err; 11531 } 11532 11533 /* 11534 * And now a mini version of register_netdevice unregister_netdevice. 11535 */ 11536 11537 /* If device is running close it first. */ 11538 dev_close(dev); 11539 11540 /* And unlink it from device chain */ 11541 unlist_netdevice(dev); 11542 11543 synchronize_net(); 11544 11545 /* Shutdown queueing discipline. */ 11546 dev_shutdown(dev); 11547 11548 /* Notify protocols, that we are about to destroy 11549 * this device. They should clean all the things. 11550 * 11551 * Note that dev->reg_state stays at NETREG_REGISTERED. 11552 * This is wanted because this way 8021q and macvlan know 11553 * the device is just moving and can keep their slaves up. 11554 */ 11555 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11556 rcu_barrier(); 11557 11558 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11559 11560 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11561 new_ifindex); 11562 11563 /* 11564 * Flush the unicast and multicast chains 11565 */ 11566 dev_uc_flush(dev); 11567 dev_mc_flush(dev); 11568 11569 /* Send a netdev-removed uevent to the old namespace */ 11570 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11571 netdev_adjacent_del_links(dev); 11572 11573 /* Move per-net netdevice notifiers that are following the netdevice */ 11574 move_netdevice_notifiers_dev_net(dev, net); 11575 11576 /* Actually switch the network namespace */ 11577 dev_net_set(dev, net); 11578 dev->ifindex = new_ifindex; 11579 11580 if (new_name[0]) { 11581 /* Rename the netdev to prepared name */ 11582 write_seqlock_bh(&netdev_rename_lock); 11583 strscpy(dev->name, new_name, IFNAMSIZ); 11584 write_sequnlock_bh(&netdev_rename_lock); 11585 } 11586 11587 /* Fixup kobjects */ 11588 dev_set_uevent_suppress(&dev->dev, 1); 11589 err = device_rename(&dev->dev, dev->name); 11590 dev_set_uevent_suppress(&dev->dev, 0); 11591 WARN_ON(err); 11592 11593 /* Send a netdev-add uevent to the new namespace */ 11594 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11595 netdev_adjacent_add_links(dev); 11596 11597 /* Adapt owner in case owning user namespace of target network 11598 * namespace is different from the original one. 11599 */ 11600 err = netdev_change_owner(dev, net_old, net); 11601 WARN_ON(err); 11602 11603 /* Add the device back in the hashes */ 11604 list_netdevice(dev); 11605 11606 /* Notify protocols, that a new device appeared. */ 11607 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11608 11609 /* 11610 * Prevent userspace races by waiting until the network 11611 * device is fully setup before sending notifications. 11612 */ 11613 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11614 11615 synchronize_net(); 11616 err = 0; 11617 out: 11618 return err; 11619 } 11620 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11621 11622 static int dev_cpu_dead(unsigned int oldcpu) 11623 { 11624 struct sk_buff **list_skb; 11625 struct sk_buff *skb; 11626 unsigned int cpu; 11627 struct softnet_data *sd, *oldsd, *remsd = NULL; 11628 11629 local_irq_disable(); 11630 cpu = smp_processor_id(); 11631 sd = &per_cpu(softnet_data, cpu); 11632 oldsd = &per_cpu(softnet_data, oldcpu); 11633 11634 /* Find end of our completion_queue. */ 11635 list_skb = &sd->completion_queue; 11636 while (*list_skb) 11637 list_skb = &(*list_skb)->next; 11638 /* Append completion queue from offline CPU. */ 11639 *list_skb = oldsd->completion_queue; 11640 oldsd->completion_queue = NULL; 11641 11642 /* Append output queue from offline CPU. */ 11643 if (oldsd->output_queue) { 11644 *sd->output_queue_tailp = oldsd->output_queue; 11645 sd->output_queue_tailp = oldsd->output_queue_tailp; 11646 oldsd->output_queue = NULL; 11647 oldsd->output_queue_tailp = &oldsd->output_queue; 11648 } 11649 /* Append NAPI poll list from offline CPU, with one exception : 11650 * process_backlog() must be called by cpu owning percpu backlog. 11651 * We properly handle process_queue & input_pkt_queue later. 11652 */ 11653 while (!list_empty(&oldsd->poll_list)) { 11654 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11655 struct napi_struct, 11656 poll_list); 11657 11658 list_del_init(&napi->poll_list); 11659 if (napi->poll == process_backlog) 11660 napi->state &= NAPIF_STATE_THREADED; 11661 else 11662 ____napi_schedule(sd, napi); 11663 } 11664 11665 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11666 local_irq_enable(); 11667 11668 if (!use_backlog_threads()) { 11669 #ifdef CONFIG_RPS 11670 remsd = oldsd->rps_ipi_list; 11671 oldsd->rps_ipi_list = NULL; 11672 #endif 11673 /* send out pending IPI's on offline CPU */ 11674 net_rps_send_ipi(remsd); 11675 } 11676 11677 /* Process offline CPU's input_pkt_queue */ 11678 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11679 netif_rx(skb); 11680 rps_input_queue_head_incr(oldsd); 11681 } 11682 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11683 netif_rx(skb); 11684 rps_input_queue_head_incr(oldsd); 11685 } 11686 11687 return 0; 11688 } 11689 11690 /** 11691 * netdev_increment_features - increment feature set by one 11692 * @all: current feature set 11693 * @one: new feature set 11694 * @mask: mask feature set 11695 * 11696 * Computes a new feature set after adding a device with feature set 11697 * @one to the master device with current feature set @all. Will not 11698 * enable anything that is off in @mask. Returns the new feature set. 11699 */ 11700 netdev_features_t netdev_increment_features(netdev_features_t all, 11701 netdev_features_t one, netdev_features_t mask) 11702 { 11703 if (mask & NETIF_F_HW_CSUM) 11704 mask |= NETIF_F_CSUM_MASK; 11705 mask |= NETIF_F_VLAN_CHALLENGED; 11706 11707 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11708 all &= one | ~NETIF_F_ALL_FOR_ALL; 11709 11710 /* If one device supports hw checksumming, set for all. */ 11711 if (all & NETIF_F_HW_CSUM) 11712 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11713 11714 return all; 11715 } 11716 EXPORT_SYMBOL(netdev_increment_features); 11717 11718 static struct hlist_head * __net_init netdev_create_hash(void) 11719 { 11720 int i; 11721 struct hlist_head *hash; 11722 11723 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11724 if (hash != NULL) 11725 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11726 INIT_HLIST_HEAD(&hash[i]); 11727 11728 return hash; 11729 } 11730 11731 /* Initialize per network namespace state */ 11732 static int __net_init netdev_init(struct net *net) 11733 { 11734 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11735 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11736 11737 INIT_LIST_HEAD(&net->dev_base_head); 11738 11739 net->dev_name_head = netdev_create_hash(); 11740 if (net->dev_name_head == NULL) 11741 goto err_name; 11742 11743 net->dev_index_head = netdev_create_hash(); 11744 if (net->dev_index_head == NULL) 11745 goto err_idx; 11746 11747 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 11748 11749 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11750 11751 return 0; 11752 11753 err_idx: 11754 kfree(net->dev_name_head); 11755 err_name: 11756 return -ENOMEM; 11757 } 11758 11759 /** 11760 * netdev_drivername - network driver for the device 11761 * @dev: network device 11762 * 11763 * Determine network driver for device. 11764 */ 11765 const char *netdev_drivername(const struct net_device *dev) 11766 { 11767 const struct device_driver *driver; 11768 const struct device *parent; 11769 const char *empty = ""; 11770 11771 parent = dev->dev.parent; 11772 if (!parent) 11773 return empty; 11774 11775 driver = parent->driver; 11776 if (driver && driver->name) 11777 return driver->name; 11778 return empty; 11779 } 11780 11781 static void __netdev_printk(const char *level, const struct net_device *dev, 11782 struct va_format *vaf) 11783 { 11784 if (dev && dev->dev.parent) { 11785 dev_printk_emit(level[1] - '0', 11786 dev->dev.parent, 11787 "%s %s %s%s: %pV", 11788 dev_driver_string(dev->dev.parent), 11789 dev_name(dev->dev.parent), 11790 netdev_name(dev), netdev_reg_state(dev), 11791 vaf); 11792 } else if (dev) { 11793 printk("%s%s%s: %pV", 11794 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11795 } else { 11796 printk("%s(NULL net_device): %pV", level, vaf); 11797 } 11798 } 11799 11800 void netdev_printk(const char *level, const struct net_device *dev, 11801 const char *format, ...) 11802 { 11803 struct va_format vaf; 11804 va_list args; 11805 11806 va_start(args, format); 11807 11808 vaf.fmt = format; 11809 vaf.va = &args; 11810 11811 __netdev_printk(level, dev, &vaf); 11812 11813 va_end(args); 11814 } 11815 EXPORT_SYMBOL(netdev_printk); 11816 11817 #define define_netdev_printk_level(func, level) \ 11818 void func(const struct net_device *dev, const char *fmt, ...) \ 11819 { \ 11820 struct va_format vaf; \ 11821 va_list args; \ 11822 \ 11823 va_start(args, fmt); \ 11824 \ 11825 vaf.fmt = fmt; \ 11826 vaf.va = &args; \ 11827 \ 11828 __netdev_printk(level, dev, &vaf); \ 11829 \ 11830 va_end(args); \ 11831 } \ 11832 EXPORT_SYMBOL(func); 11833 11834 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11835 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11836 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11837 define_netdev_printk_level(netdev_err, KERN_ERR); 11838 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11839 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11840 define_netdev_printk_level(netdev_info, KERN_INFO); 11841 11842 static void __net_exit netdev_exit(struct net *net) 11843 { 11844 kfree(net->dev_name_head); 11845 kfree(net->dev_index_head); 11846 xa_destroy(&net->dev_by_index); 11847 if (net != &init_net) 11848 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11849 } 11850 11851 static struct pernet_operations __net_initdata netdev_net_ops = { 11852 .init = netdev_init, 11853 .exit = netdev_exit, 11854 }; 11855 11856 static void __net_exit default_device_exit_net(struct net *net) 11857 { 11858 struct netdev_name_node *name_node, *tmp; 11859 struct net_device *dev, *aux; 11860 /* 11861 * Push all migratable network devices back to the 11862 * initial network namespace 11863 */ 11864 ASSERT_RTNL(); 11865 for_each_netdev_safe(net, dev, aux) { 11866 int err; 11867 char fb_name[IFNAMSIZ]; 11868 11869 /* Ignore unmoveable devices (i.e. loopback) */ 11870 if (dev->netns_local) 11871 continue; 11872 11873 /* Leave virtual devices for the generic cleanup */ 11874 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11875 continue; 11876 11877 /* Push remaining network devices to init_net */ 11878 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11879 if (netdev_name_in_use(&init_net, fb_name)) 11880 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11881 11882 netdev_for_each_altname_safe(dev, name_node, tmp) 11883 if (netdev_name_in_use(&init_net, name_node->name)) 11884 __netdev_name_node_alt_destroy(name_node); 11885 11886 err = dev_change_net_namespace(dev, &init_net, fb_name); 11887 if (err) { 11888 pr_emerg("%s: failed to move %s to init_net: %d\n", 11889 __func__, dev->name, err); 11890 BUG(); 11891 } 11892 } 11893 } 11894 11895 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11896 { 11897 /* At exit all network devices most be removed from a network 11898 * namespace. Do this in the reverse order of registration. 11899 * Do this across as many network namespaces as possible to 11900 * improve batching efficiency. 11901 */ 11902 struct net_device *dev; 11903 struct net *net; 11904 LIST_HEAD(dev_kill_list); 11905 11906 rtnl_lock(); 11907 list_for_each_entry(net, net_list, exit_list) { 11908 default_device_exit_net(net); 11909 cond_resched(); 11910 } 11911 11912 list_for_each_entry(net, net_list, exit_list) { 11913 for_each_netdev_reverse(net, dev) { 11914 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11915 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11916 else 11917 unregister_netdevice_queue(dev, &dev_kill_list); 11918 } 11919 } 11920 unregister_netdevice_many(&dev_kill_list); 11921 rtnl_unlock(); 11922 } 11923 11924 static struct pernet_operations __net_initdata default_device_ops = { 11925 .exit_batch = default_device_exit_batch, 11926 }; 11927 11928 static void __init net_dev_struct_check(void) 11929 { 11930 /* TX read-mostly hotpath */ 11931 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 11932 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 11933 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 11934 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 11935 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 11936 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 11937 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 11938 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 11939 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 11940 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 11941 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 11942 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 11943 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 11944 #ifdef CONFIG_XPS 11945 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 11946 #endif 11947 #ifdef CONFIG_NETFILTER_EGRESS 11948 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 11949 #endif 11950 #ifdef CONFIG_NET_XGRESS 11951 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 11952 #endif 11953 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 11954 11955 /* TXRX read-mostly hotpath */ 11956 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 11957 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 11958 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 11959 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 11960 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 11961 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 11962 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 11963 11964 /* RX read-mostly hotpath */ 11965 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 11966 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 11967 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 11968 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 11969 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout); 11970 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs); 11971 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 11972 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 11973 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 11974 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 11975 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 11976 #ifdef CONFIG_NETPOLL 11977 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 11978 #endif 11979 #ifdef CONFIG_NET_XGRESS 11980 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 11981 #endif 11982 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104); 11983 } 11984 11985 /* 11986 * Initialize the DEV module. At boot time this walks the device list and 11987 * unhooks any devices that fail to initialise (normally hardware not 11988 * present) and leaves us with a valid list of present and active devices. 11989 * 11990 */ 11991 11992 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 11993 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 11994 11995 static int net_page_pool_create(int cpuid) 11996 { 11997 #if IS_ENABLED(CONFIG_PAGE_POOL) 11998 struct page_pool_params page_pool_params = { 11999 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 12000 .flags = PP_FLAG_SYSTEM_POOL, 12001 .nid = cpu_to_mem(cpuid), 12002 }; 12003 struct page_pool *pp_ptr; 12004 12005 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 12006 if (IS_ERR(pp_ptr)) 12007 return -ENOMEM; 12008 12009 per_cpu(system_page_pool, cpuid) = pp_ptr; 12010 #endif 12011 return 0; 12012 } 12013 12014 static int backlog_napi_should_run(unsigned int cpu) 12015 { 12016 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12017 struct napi_struct *napi = &sd->backlog; 12018 12019 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12020 } 12021 12022 static void run_backlog_napi(unsigned int cpu) 12023 { 12024 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12025 12026 napi_threaded_poll_loop(&sd->backlog); 12027 } 12028 12029 static void backlog_napi_setup(unsigned int cpu) 12030 { 12031 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12032 struct napi_struct *napi = &sd->backlog; 12033 12034 napi->thread = this_cpu_read(backlog_napi); 12035 set_bit(NAPI_STATE_THREADED, &napi->state); 12036 } 12037 12038 static struct smp_hotplug_thread backlog_threads = { 12039 .store = &backlog_napi, 12040 .thread_should_run = backlog_napi_should_run, 12041 .thread_fn = run_backlog_napi, 12042 .thread_comm = "backlog_napi/%u", 12043 .setup = backlog_napi_setup, 12044 }; 12045 12046 /* 12047 * This is called single threaded during boot, so no need 12048 * to take the rtnl semaphore. 12049 */ 12050 static int __init net_dev_init(void) 12051 { 12052 int i, rc = -ENOMEM; 12053 12054 BUG_ON(!dev_boot_phase); 12055 12056 net_dev_struct_check(); 12057 12058 if (dev_proc_init()) 12059 goto out; 12060 12061 if (netdev_kobject_init()) 12062 goto out; 12063 12064 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12065 INIT_LIST_HEAD(&ptype_base[i]); 12066 12067 if (register_pernet_subsys(&netdev_net_ops)) 12068 goto out; 12069 12070 /* 12071 * Initialise the packet receive queues. 12072 */ 12073 12074 for_each_possible_cpu(i) { 12075 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 12076 struct softnet_data *sd = &per_cpu(softnet_data, i); 12077 12078 INIT_WORK(flush, flush_backlog); 12079 12080 skb_queue_head_init(&sd->input_pkt_queue); 12081 skb_queue_head_init(&sd->process_queue); 12082 #ifdef CONFIG_XFRM_OFFLOAD 12083 skb_queue_head_init(&sd->xfrm_backlog); 12084 #endif 12085 INIT_LIST_HEAD(&sd->poll_list); 12086 sd->output_queue_tailp = &sd->output_queue; 12087 #ifdef CONFIG_RPS 12088 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 12089 sd->cpu = i; 12090 #endif 12091 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 12092 spin_lock_init(&sd->defer_lock); 12093 12094 init_gro_hash(&sd->backlog); 12095 sd->backlog.poll = process_backlog; 12096 sd->backlog.weight = weight_p; 12097 INIT_LIST_HEAD(&sd->backlog.poll_list); 12098 12099 if (net_page_pool_create(i)) 12100 goto out; 12101 } 12102 if (use_backlog_threads()) 12103 smpboot_register_percpu_thread(&backlog_threads); 12104 12105 dev_boot_phase = 0; 12106 12107 /* The loopback device is special if any other network devices 12108 * is present in a network namespace the loopback device must 12109 * be present. Since we now dynamically allocate and free the 12110 * loopback device ensure this invariant is maintained by 12111 * keeping the loopback device as the first device on the 12112 * list of network devices. Ensuring the loopback devices 12113 * is the first device that appears and the last network device 12114 * that disappears. 12115 */ 12116 if (register_pernet_device(&loopback_net_ops)) 12117 goto out; 12118 12119 if (register_pernet_device(&default_device_ops)) 12120 goto out; 12121 12122 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 12123 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 12124 12125 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 12126 NULL, dev_cpu_dead); 12127 WARN_ON(rc < 0); 12128 rc = 0; 12129 12130 /* avoid static key IPIs to isolated CPUs */ 12131 if (housekeeping_enabled(HK_TYPE_MISC)) 12132 net_enable_timestamp(); 12133 out: 12134 if (rc < 0) { 12135 for_each_possible_cpu(i) { 12136 struct page_pool *pp_ptr; 12137 12138 pp_ptr = per_cpu(system_page_pool, i); 12139 if (!pp_ptr) 12140 continue; 12141 12142 page_pool_destroy(pp_ptr); 12143 per_cpu(system_page_pool, i) = NULL; 12144 } 12145 } 12146 12147 return rc; 12148 } 12149 12150 subsys_initcall(net_dev_init); 12151