1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 #include <linux/net_namespace.h> 149 150 #include "net-sysfs.h" 151 152 /* Instead of increasing this, you should create a hash table. */ 153 #define MAX_GRO_SKBS 8 154 155 /* This should be increased if a protocol with a bigger head is added. */ 156 #define GRO_MAX_HEAD (MAX_HEADER + 128) 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 static DEFINE_SPINLOCK(offload_lock); 160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 161 struct list_head ptype_all __read_mostly; /* Taps */ 162 static struct list_head offload_base __read_mostly; 163 164 static int netif_rx_internal(struct sk_buff *skb); 165 static int call_netdevice_notifiers_info(unsigned long val, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 static DEFINE_MUTEX(ifalias_mutex); 192 193 /* protects napi_hash addition/deletion and napi_gen_id */ 194 static DEFINE_SPINLOCK(napi_hash_lock); 195 196 static unsigned int napi_gen_id = NR_CPUS; 197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199 static seqcount_t devnet_rename_seq; 200 201 static inline void dev_base_seq_inc(struct net *net) 202 { 203 while (++net->dev_base_seq == 0) 204 ; 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212 } 213 214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215 { 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217 } 218 219 static inline void rps_lock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_lock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 static inline void rps_unlock(struct softnet_data *sd) 227 { 228 #ifdef CONFIG_RPS 229 spin_unlock(&sd->input_pkt_queue.lock); 230 #endif 231 } 232 233 /* Device list insertion */ 234 static void list_netdevice(struct net_device *dev) 235 { 236 struct net *net = dev_net(dev); 237 238 ASSERT_RTNL(); 239 240 write_lock_bh(&dev_base_lock); 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 243 hlist_add_head_rcu(&dev->index_hlist, 244 dev_index_hash(net, dev->ifindex)); 245 write_unlock_bh(&dev_base_lock); 246 247 dev_base_seq_inc(net); 248 } 249 250 /* Device list removal 251 * caller must respect a RCU grace period before freeing/reusing dev 252 */ 253 static void unlist_netdevice(struct net_device *dev) 254 { 255 ASSERT_RTNL(); 256 257 /* Unlink dev from the device chain */ 258 write_lock_bh(&dev_base_lock); 259 list_del_rcu(&dev->dev_list); 260 hlist_del_rcu(&dev->name_hlist); 261 hlist_del_rcu(&dev->index_hlist); 262 write_unlock_bh(&dev_base_lock); 263 264 dev_base_seq_inc(dev_net(dev)); 265 } 266 267 /* 268 * Our notifier list 269 */ 270 271 static RAW_NOTIFIER_HEAD(netdev_chain); 272 273 /* 274 * Device drivers call our routines to queue packets here. We empty the 275 * queue in the local softnet handler. 276 */ 277 278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 279 EXPORT_PER_CPU_SYMBOL(softnet_data); 280 281 #ifdef CONFIG_LOCKDEP 282 /* 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 284 * according to dev->type 285 */ 286 static const unsigned short netdev_lock_type[] = { 287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 302 303 static const char *const netdev_lock_name[] = { 304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 319 320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 322 323 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 324 { 325 int i; 326 327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 328 if (netdev_lock_type[i] == dev_type) 329 return i; 330 /* the last key is used by default */ 331 return ARRAY_SIZE(netdev_lock_type) - 1; 332 } 333 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev_type); 340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 341 netdev_lock_name[i]); 342 } 343 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 int i; 347 348 i = netdev_lock_pos(dev->type); 349 lockdep_set_class_and_name(&dev->addr_list_lock, 350 &netdev_addr_lock_key[i], 351 netdev_lock_name[i]); 352 } 353 #else 354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 355 unsigned short dev_type) 356 { 357 } 358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 359 { 360 } 361 #endif 362 363 /******************************************************************************* 364 * 365 * Protocol management and registration routines 366 * 367 *******************************************************************************/ 368 369 370 /* 371 * Add a protocol ID to the list. Now that the input handler is 372 * smarter we can dispense with all the messy stuff that used to be 373 * here. 374 * 375 * BEWARE!!! Protocol handlers, mangling input packets, 376 * MUST BE last in hash buckets and checking protocol handlers 377 * MUST start from promiscuous ptype_all chain in net_bh. 378 * It is true now, do not change it. 379 * Explanation follows: if protocol handler, mangling packet, will 380 * be the first on list, it is not able to sense, that packet 381 * is cloned and should be copied-on-write, so that it will 382 * change it and subsequent readers will get broken packet. 383 * --ANK (980803) 384 */ 385 386 static inline struct list_head *ptype_head(const struct packet_type *pt) 387 { 388 if (pt->type == htons(ETH_P_ALL)) 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 390 else 391 return pt->dev ? &pt->dev->ptype_specific : 392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 393 } 394 395 /** 396 * dev_add_pack - add packet handler 397 * @pt: packet type declaration 398 * 399 * Add a protocol handler to the networking stack. The passed &packet_type 400 * is linked into kernel lists and may not be freed until it has been 401 * removed from the kernel lists. 402 * 403 * This call does not sleep therefore it can not 404 * guarantee all CPU's that are in middle of receiving packets 405 * will see the new packet type (until the next received packet). 406 */ 407 408 void dev_add_pack(struct packet_type *pt) 409 { 410 struct list_head *head = ptype_head(pt); 411 412 spin_lock(&ptype_lock); 413 list_add_rcu(&pt->list, head); 414 spin_unlock(&ptype_lock); 415 } 416 EXPORT_SYMBOL(dev_add_pack); 417 418 /** 419 * __dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * The packet type might still be in use by receivers 428 * and must not be freed until after all the CPU's have gone 429 * through a quiescent state. 430 */ 431 void __dev_remove_pack(struct packet_type *pt) 432 { 433 struct list_head *head = ptype_head(pt); 434 struct packet_type *pt1; 435 436 spin_lock(&ptype_lock); 437 438 list_for_each_entry(pt1, head, list) { 439 if (pt == pt1) { 440 list_del_rcu(&pt->list); 441 goto out; 442 } 443 } 444 445 pr_warn("dev_remove_pack: %p not found\n", pt); 446 out: 447 spin_unlock(&ptype_lock); 448 } 449 EXPORT_SYMBOL(__dev_remove_pack); 450 451 /** 452 * dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * This call sleeps to guarantee that no CPU is looking at the packet 461 * type after return. 462 */ 463 void dev_remove_pack(struct packet_type *pt) 464 { 465 __dev_remove_pack(pt); 466 467 synchronize_net(); 468 } 469 EXPORT_SYMBOL(dev_remove_pack); 470 471 472 /** 473 * dev_add_offload - register offload handlers 474 * @po: protocol offload declaration 475 * 476 * Add protocol offload handlers to the networking stack. The passed 477 * &proto_offload is linked into kernel lists and may not be freed until 478 * it has been removed from the kernel lists. 479 * 480 * This call does not sleep therefore it can not 481 * guarantee all CPU's that are in middle of receiving packets 482 * will see the new offload handlers (until the next received packet). 483 */ 484 void dev_add_offload(struct packet_offload *po) 485 { 486 struct packet_offload *elem; 487 488 spin_lock(&offload_lock); 489 list_for_each_entry(elem, &offload_base, list) { 490 if (po->priority < elem->priority) 491 break; 492 } 493 list_add_rcu(&po->list, elem->list.prev); 494 spin_unlock(&offload_lock); 495 } 496 EXPORT_SYMBOL(dev_add_offload); 497 498 /** 499 * __dev_remove_offload - remove offload handler 500 * @po: packet offload declaration 501 * 502 * Remove a protocol offload handler that was previously added to the 503 * kernel offload handlers by dev_add_offload(). The passed &offload_type 504 * is removed from the kernel lists and can be freed or reused once this 505 * function returns. 506 * 507 * The packet type might still be in use by receivers 508 * and must not be freed until after all the CPU's have gone 509 * through a quiescent state. 510 */ 511 static void __dev_remove_offload(struct packet_offload *po) 512 { 513 struct list_head *head = &offload_base; 514 struct packet_offload *po1; 515 516 spin_lock(&offload_lock); 517 518 list_for_each_entry(po1, head, list) { 519 if (po == po1) { 520 list_del_rcu(&po->list); 521 goto out; 522 } 523 } 524 525 pr_warn("dev_remove_offload: %p not found\n", po); 526 out: 527 spin_unlock(&offload_lock); 528 } 529 530 /** 531 * dev_remove_offload - remove packet offload handler 532 * @po: packet offload declaration 533 * 534 * Remove a packet offload handler that was previously added to the kernel 535 * offload handlers by dev_add_offload(). The passed &offload_type is 536 * removed from the kernel lists and can be freed or reused once this 537 * function returns. 538 * 539 * This call sleeps to guarantee that no CPU is looking at the packet 540 * type after return. 541 */ 542 void dev_remove_offload(struct packet_offload *po) 543 { 544 __dev_remove_offload(po); 545 546 synchronize_net(); 547 } 548 EXPORT_SYMBOL(dev_remove_offload); 549 550 /****************************************************************************** 551 * 552 * Device Boot-time Settings Routines 553 * 554 ******************************************************************************/ 555 556 /* Boot time configuration table */ 557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 558 559 /** 560 * netdev_boot_setup_add - add new setup entry 561 * @name: name of the device 562 * @map: configured settings for the device 563 * 564 * Adds new setup entry to the dev_boot_setup list. The function 565 * returns 0 on error and 1 on success. This is a generic routine to 566 * all netdevices. 567 */ 568 static int netdev_boot_setup_add(char *name, struct ifmap *map) 569 { 570 struct netdev_boot_setup *s; 571 int i; 572 573 s = dev_boot_setup; 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 576 memset(s[i].name, 0, sizeof(s[i].name)); 577 strlcpy(s[i].name, name, IFNAMSIZ); 578 memcpy(&s[i].map, map, sizeof(s[i].map)); 579 break; 580 } 581 } 582 583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 584 } 585 586 /** 587 * netdev_boot_setup_check - check boot time settings 588 * @dev: the netdevice 589 * 590 * Check boot time settings for the device. 591 * The found settings are set for the device to be used 592 * later in the device probing. 593 * Returns 0 if no settings found, 1 if they are. 594 */ 595 int netdev_boot_setup_check(struct net_device *dev) 596 { 597 struct netdev_boot_setup *s = dev_boot_setup; 598 int i; 599 600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 602 !strcmp(dev->name, s[i].name)) { 603 dev->irq = s[i].map.irq; 604 dev->base_addr = s[i].map.base_addr; 605 dev->mem_start = s[i].map.mem_start; 606 dev->mem_end = s[i].map.mem_end; 607 return 1; 608 } 609 } 610 return 0; 611 } 612 EXPORT_SYMBOL(netdev_boot_setup_check); 613 614 615 /** 616 * netdev_boot_base - get address from boot time settings 617 * @prefix: prefix for network device 618 * @unit: id for network device 619 * 620 * Check boot time settings for the base address of device. 621 * The found settings are set for the device to be used 622 * later in the device probing. 623 * Returns 0 if no settings found. 624 */ 625 unsigned long netdev_boot_base(const char *prefix, int unit) 626 { 627 const struct netdev_boot_setup *s = dev_boot_setup; 628 char name[IFNAMSIZ]; 629 int i; 630 631 sprintf(name, "%s%d", prefix, unit); 632 633 /* 634 * If device already registered then return base of 1 635 * to indicate not to probe for this interface 636 */ 637 if (__dev_get_by_name(&init_net, name)) 638 return 1; 639 640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 641 if (!strcmp(name, s[i].name)) 642 return s[i].map.base_addr; 643 return 0; 644 } 645 646 /* 647 * Saves at boot time configured settings for any netdevice. 648 */ 649 int __init netdev_boot_setup(char *str) 650 { 651 int ints[5]; 652 struct ifmap map; 653 654 str = get_options(str, ARRAY_SIZE(ints), ints); 655 if (!str || !*str) 656 return 0; 657 658 /* Save settings */ 659 memset(&map, 0, sizeof(map)); 660 if (ints[0] > 0) 661 map.irq = ints[1]; 662 if (ints[0] > 1) 663 map.base_addr = ints[2]; 664 if (ints[0] > 2) 665 map.mem_start = ints[3]; 666 if (ints[0] > 3) 667 map.mem_end = ints[4]; 668 669 /* Add new entry to the list */ 670 return netdev_boot_setup_add(str, &map); 671 } 672 673 __setup("netdev=", netdev_boot_setup); 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return dev->ifindex; 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 /** 725 * __dev_get_by_name - find a device by its name 726 * @net: the applicable net namespace 727 * @name: name to find 728 * 729 * Find an interface by name. Must be called under RTNL semaphore 730 * or @dev_base_lock. If the name is found a pointer to the device 731 * is returned. If the name is not found then %NULL is returned. The 732 * reference counters are not incremented so the caller must be 733 * careful with locks. 734 */ 735 736 struct net_device *__dev_get_by_name(struct net *net, const char *name) 737 { 738 struct net_device *dev; 739 struct hlist_head *head = dev_name_hash(net, name); 740 741 hlist_for_each_entry(dev, head, name_hlist) 742 if (!strncmp(dev->name, name, IFNAMSIZ)) 743 return dev; 744 745 return NULL; 746 } 747 EXPORT_SYMBOL(__dev_get_by_name); 748 749 /** 750 * dev_get_by_name_rcu - find a device by its name 751 * @net: the applicable net namespace 752 * @name: name to find 753 * 754 * Find an interface by name. 755 * If the name is found a pointer to the device is returned. 756 * If the name is not found then %NULL is returned. 757 * The reference counters are not incremented so the caller must be 758 * careful with locks. The caller must hold RCU lock. 759 */ 760 761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 762 { 763 struct net_device *dev; 764 struct hlist_head *head = dev_name_hash(net, name); 765 766 hlist_for_each_entry_rcu(dev, head, name_hlist) 767 if (!strncmp(dev->name, name, IFNAMSIZ)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_get_by_name_rcu); 773 774 /** 775 * dev_get_by_name - find a device by its name 776 * @net: the applicable net namespace 777 * @name: name to find 778 * 779 * Find an interface by name. This can be called from any 780 * context and does its own locking. The returned handle has 781 * the usage count incremented and the caller must use dev_put() to 782 * release it when it is no longer needed. %NULL is returned if no 783 * matching device is found. 784 */ 785 786 struct net_device *dev_get_by_name(struct net *net, const char *name) 787 { 788 struct net_device *dev; 789 790 rcu_read_lock(); 791 dev = dev_get_by_name_rcu(net, name); 792 if (dev) 793 dev_hold(dev); 794 rcu_read_unlock(); 795 return dev; 796 } 797 EXPORT_SYMBOL(dev_get_by_name); 798 799 /** 800 * __dev_get_by_index - find a device by its ifindex 801 * @net: the applicable net namespace 802 * @ifindex: index of device 803 * 804 * Search for an interface by index. Returns %NULL if the device 805 * is not found or a pointer to the device. The device has not 806 * had its reference counter increased so the caller must be careful 807 * about locking. The caller must hold either the RTNL semaphore 808 * or @dev_base_lock. 809 */ 810 811 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 812 { 813 struct net_device *dev; 814 struct hlist_head *head = dev_index_hash(net, ifindex); 815 816 hlist_for_each_entry(dev, head, index_hlist) 817 if (dev->ifindex == ifindex) 818 return dev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL(__dev_get_by_index); 823 824 /** 825 * dev_get_by_index_rcu - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold RCU lock. 833 */ 834 835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 836 { 837 struct net_device *dev; 838 struct hlist_head *head = dev_index_hash(net, ifindex); 839 840 hlist_for_each_entry_rcu(dev, head, index_hlist) 841 if (dev->ifindex == ifindex) 842 return dev; 843 844 return NULL; 845 } 846 EXPORT_SYMBOL(dev_get_by_index_rcu); 847 848 849 /** 850 * dev_get_by_index - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns NULL if the device 855 * is not found or a pointer to the device. The device returned has 856 * had a reference added and the pointer is safe until the user calls 857 * dev_put to indicate they have finished with it. 858 */ 859 860 struct net_device *dev_get_by_index(struct net *net, int ifindex) 861 { 862 struct net_device *dev; 863 864 rcu_read_lock(); 865 dev = dev_get_by_index_rcu(net, ifindex); 866 if (dev) 867 dev_hold(dev); 868 rcu_read_unlock(); 869 return dev; 870 } 871 EXPORT_SYMBOL(dev_get_by_index); 872 873 /** 874 * dev_get_by_napi_id - find a device by napi_id 875 * @napi_id: ID of the NAPI struct 876 * 877 * Search for an interface by NAPI ID. Returns %NULL if the device 878 * is not found or a pointer to the device. The device has not had 879 * its reference counter increased so the caller must be careful 880 * about locking. The caller must hold RCU lock. 881 */ 882 883 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 884 { 885 struct napi_struct *napi; 886 887 WARN_ON_ONCE(!rcu_read_lock_held()); 888 889 if (napi_id < MIN_NAPI_ID) 890 return NULL; 891 892 napi = napi_by_id(napi_id); 893 894 return napi ? napi->dev : NULL; 895 } 896 EXPORT_SYMBOL(dev_get_by_napi_id); 897 898 /** 899 * netdev_get_name - get a netdevice name, knowing its ifindex. 900 * @net: network namespace 901 * @name: a pointer to the buffer where the name will be stored. 902 * @ifindex: the ifindex of the interface to get the name from. 903 * 904 * The use of raw_seqcount_begin() and cond_resched() before 905 * retrying is required as we want to give the writers a chance 906 * to complete when CONFIG_PREEMPT is not set. 907 */ 908 int netdev_get_name(struct net *net, char *name, int ifindex) 909 { 910 struct net_device *dev; 911 unsigned int seq; 912 913 retry: 914 seq = raw_seqcount_begin(&devnet_rename_seq); 915 rcu_read_lock(); 916 dev = dev_get_by_index_rcu(net, ifindex); 917 if (!dev) { 918 rcu_read_unlock(); 919 return -ENODEV; 920 } 921 922 strcpy(name, dev->name); 923 rcu_read_unlock(); 924 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 925 cond_resched(); 926 goto retry; 927 } 928 929 return 0; 930 } 931 932 /** 933 * dev_getbyhwaddr_rcu - find a device by its hardware address 934 * @net: the applicable net namespace 935 * @type: media type of device 936 * @ha: hardware address 937 * 938 * Search for an interface by MAC address. Returns NULL if the device 939 * is not found or a pointer to the device. 940 * The caller must hold RCU or RTNL. 941 * The returned device has not had its ref count increased 942 * and the caller must therefore be careful about locking 943 * 944 */ 945 946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 947 const char *ha) 948 { 949 struct net_device *dev; 950 951 for_each_netdev_rcu(net, dev) 952 if (dev->type == type && 953 !memcmp(dev->dev_addr, ha, dev->addr_len)) 954 return dev; 955 956 return NULL; 957 } 958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 959 960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 961 { 962 struct net_device *dev; 963 964 ASSERT_RTNL(); 965 for_each_netdev(net, dev) 966 if (dev->type == type) 967 return dev; 968 969 return NULL; 970 } 971 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 972 973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 974 { 975 struct net_device *dev, *ret = NULL; 976 977 rcu_read_lock(); 978 for_each_netdev_rcu(net, dev) 979 if (dev->type == type) { 980 dev_hold(dev); 981 ret = dev; 982 break; 983 } 984 rcu_read_unlock(); 985 return ret; 986 } 987 EXPORT_SYMBOL(dev_getfirstbyhwtype); 988 989 /** 990 * __dev_get_by_flags - find any device with given flags 991 * @net: the applicable net namespace 992 * @if_flags: IFF_* values 993 * @mask: bitmask of bits in if_flags to check 994 * 995 * Search for any interface with the given flags. Returns NULL if a device 996 * is not found or a pointer to the device. Must be called inside 997 * rtnl_lock(), and result refcount is unchanged. 998 */ 999 1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1001 unsigned short mask) 1002 { 1003 struct net_device *dev, *ret; 1004 1005 ASSERT_RTNL(); 1006 1007 ret = NULL; 1008 for_each_netdev(net, dev) { 1009 if (((dev->flags ^ if_flags) & mask) == 0) { 1010 ret = dev; 1011 break; 1012 } 1013 } 1014 return ret; 1015 } 1016 EXPORT_SYMBOL(__dev_get_by_flags); 1017 1018 /** 1019 * dev_valid_name - check if name is okay for network device 1020 * @name: name string 1021 * 1022 * Network device names need to be valid file names to 1023 * to allow sysfs to work. We also disallow any kind of 1024 * whitespace. 1025 */ 1026 bool dev_valid_name(const char *name) 1027 { 1028 if (*name == '\0') 1029 return false; 1030 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1031 return false; 1032 if (!strcmp(name, ".") || !strcmp(name, "..")) 1033 return false; 1034 1035 while (*name) { 1036 if (*name == '/' || *name == ':' || isspace(*name)) 1037 return false; 1038 name++; 1039 } 1040 return true; 1041 } 1042 EXPORT_SYMBOL(dev_valid_name); 1043 1044 /** 1045 * __dev_alloc_name - allocate a name for a device 1046 * @net: network namespace to allocate the device name in 1047 * @name: name format string 1048 * @buf: scratch buffer and result name string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1060 { 1061 int i = 0; 1062 const char *p; 1063 const int max_netdevices = 8*PAGE_SIZE; 1064 unsigned long *inuse; 1065 struct net_device *d; 1066 1067 if (!dev_valid_name(name)) 1068 return -EINVAL; 1069 1070 p = strchr(name, '%'); 1071 if (p) { 1072 /* 1073 * Verify the string as this thing may have come from 1074 * the user. There must be either one "%d" and no other "%" 1075 * characters. 1076 */ 1077 if (p[1] != 'd' || strchr(p + 2, '%')) 1078 return -EINVAL; 1079 1080 /* Use one page as a bit array of possible slots */ 1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1082 if (!inuse) 1083 return -ENOMEM; 1084 1085 for_each_netdev(net, d) { 1086 if (!sscanf(d->name, name, &i)) 1087 continue; 1088 if (i < 0 || i >= max_netdevices) 1089 continue; 1090 1091 /* avoid cases where sscanf is not exact inverse of printf */ 1092 snprintf(buf, IFNAMSIZ, name, i); 1093 if (!strncmp(buf, d->name, IFNAMSIZ)) 1094 set_bit(i, inuse); 1095 } 1096 1097 i = find_first_zero_bit(inuse, max_netdevices); 1098 free_page((unsigned long) inuse); 1099 } 1100 1101 snprintf(buf, IFNAMSIZ, name, i); 1102 if (!__dev_get_by_name(net, buf)) 1103 return i; 1104 1105 /* It is possible to run out of possible slots 1106 * when the name is long and there isn't enough space left 1107 * for the digits, or if all bits are used. 1108 */ 1109 return -ENFILE; 1110 } 1111 1112 static int dev_alloc_name_ns(struct net *net, 1113 struct net_device *dev, 1114 const char *name) 1115 { 1116 char buf[IFNAMSIZ]; 1117 int ret; 1118 1119 BUG_ON(!net); 1120 ret = __dev_alloc_name(net, name, buf); 1121 if (ret >= 0) 1122 strlcpy(dev->name, buf, IFNAMSIZ); 1123 return ret; 1124 } 1125 1126 /** 1127 * dev_alloc_name - allocate a name for a device 1128 * @dev: device 1129 * @name: name format string 1130 * 1131 * Passed a format string - eg "lt%d" it will try and find a suitable 1132 * id. It scans list of devices to build up a free map, then chooses 1133 * the first empty slot. The caller must hold the dev_base or rtnl lock 1134 * while allocating the name and adding the device in order to avoid 1135 * duplicates. 1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1137 * Returns the number of the unit assigned or a negative errno code. 1138 */ 1139 1140 int dev_alloc_name(struct net_device *dev, const char *name) 1141 { 1142 return dev_alloc_name_ns(dev_net(dev), dev, name); 1143 } 1144 EXPORT_SYMBOL(dev_alloc_name); 1145 1146 int dev_get_valid_name(struct net *net, struct net_device *dev, 1147 const char *name) 1148 { 1149 BUG_ON(!net); 1150 1151 if (!dev_valid_name(name)) 1152 return -EINVAL; 1153 1154 if (strchr(name, '%')) 1155 return dev_alloc_name_ns(net, dev, name); 1156 else if (__dev_get_by_name(net, name)) 1157 return -EEXIST; 1158 else if (dev->name != name) 1159 strlcpy(dev->name, name, IFNAMSIZ); 1160 1161 return 0; 1162 } 1163 EXPORT_SYMBOL(dev_get_valid_name); 1164 1165 /** 1166 * dev_change_name - change name of a device 1167 * @dev: device 1168 * @newname: name (or format string) must be at least IFNAMSIZ 1169 * 1170 * Change name of a device, can pass format strings "eth%d". 1171 * for wildcarding. 1172 */ 1173 int dev_change_name(struct net_device *dev, const char *newname) 1174 { 1175 unsigned char old_assign_type; 1176 char oldname[IFNAMSIZ]; 1177 int err = 0; 1178 int ret; 1179 struct net *net; 1180 1181 ASSERT_RTNL(); 1182 BUG_ON(!dev_net(dev)); 1183 1184 net = dev_net(dev); 1185 if (dev->flags & IFF_UP) 1186 return -EBUSY; 1187 1188 write_seqcount_begin(&devnet_rename_seq); 1189 1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1191 write_seqcount_end(&devnet_rename_seq); 1192 return 0; 1193 } 1194 1195 memcpy(oldname, dev->name, IFNAMSIZ); 1196 1197 err = dev_get_valid_name(net, dev, newname); 1198 if (err < 0) { 1199 write_seqcount_end(&devnet_rename_seq); 1200 return err; 1201 } 1202 1203 if (oldname[0] && !strchr(oldname, '%')) 1204 netdev_info(dev, "renamed from %s\n", oldname); 1205 1206 old_assign_type = dev->name_assign_type; 1207 dev->name_assign_type = NET_NAME_RENAMED; 1208 1209 rollback: 1210 ret = device_rename(&dev->dev, dev->name); 1211 if (ret) { 1212 memcpy(dev->name, oldname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 write_seqcount_end(&devnet_rename_seq); 1215 return ret; 1216 } 1217 1218 write_seqcount_end(&devnet_rename_seq); 1219 1220 netdev_adjacent_rename_links(dev, oldname); 1221 1222 write_lock_bh(&dev_base_lock); 1223 hlist_del_rcu(&dev->name_hlist); 1224 write_unlock_bh(&dev_base_lock); 1225 1226 synchronize_rcu(); 1227 1228 write_lock_bh(&dev_base_lock); 1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1230 write_unlock_bh(&dev_base_lock); 1231 1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1233 ret = notifier_to_errno(ret); 1234 1235 if (ret) { 1236 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1237 if (err >= 0) { 1238 err = ret; 1239 write_seqcount_begin(&devnet_rename_seq); 1240 memcpy(dev->name, oldname, IFNAMSIZ); 1241 memcpy(oldname, newname, IFNAMSIZ); 1242 dev->name_assign_type = old_assign_type; 1243 old_assign_type = NET_NAME_RENAMED; 1244 goto rollback; 1245 } else { 1246 pr_err("%s: name change rollback failed: %d\n", 1247 dev->name, ret); 1248 } 1249 } 1250 1251 return err; 1252 } 1253 1254 /** 1255 * dev_set_alias - change ifalias of a device 1256 * @dev: device 1257 * @alias: name up to IFALIASZ 1258 * @len: limit of bytes to copy from info 1259 * 1260 * Set ifalias for a device, 1261 */ 1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1263 { 1264 struct dev_ifalias *new_alias = NULL; 1265 1266 if (len >= IFALIASZ) 1267 return -EINVAL; 1268 1269 if (len) { 1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1271 if (!new_alias) 1272 return -ENOMEM; 1273 1274 memcpy(new_alias->ifalias, alias, len); 1275 new_alias->ifalias[len] = 0; 1276 } 1277 1278 mutex_lock(&ifalias_mutex); 1279 rcu_swap_protected(dev->ifalias, new_alias, 1280 mutex_is_locked(&ifalias_mutex)); 1281 mutex_unlock(&ifalias_mutex); 1282 1283 if (new_alias) 1284 kfree_rcu(new_alias, rcuhead); 1285 1286 return len; 1287 } 1288 EXPORT_SYMBOL(dev_set_alias); 1289 1290 /** 1291 * dev_get_alias - get ifalias of a device 1292 * @dev: device 1293 * @name: buffer to store name of ifalias 1294 * @len: size of buffer 1295 * 1296 * get ifalias for a device. Caller must make sure dev cannot go 1297 * away, e.g. rcu read lock or own a reference count to device. 1298 */ 1299 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1300 { 1301 const struct dev_ifalias *alias; 1302 int ret = 0; 1303 1304 rcu_read_lock(); 1305 alias = rcu_dereference(dev->ifalias); 1306 if (alias) 1307 ret = snprintf(name, len, "%s", alias->ifalias); 1308 rcu_read_unlock(); 1309 1310 return ret; 1311 } 1312 1313 /** 1314 * netdev_features_change - device changes features 1315 * @dev: device to cause notification 1316 * 1317 * Called to indicate a device has changed features. 1318 */ 1319 void netdev_features_change(struct net_device *dev) 1320 { 1321 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1322 } 1323 EXPORT_SYMBOL(netdev_features_change); 1324 1325 /** 1326 * netdev_state_change - device changes state 1327 * @dev: device to cause notification 1328 * 1329 * Called to indicate a device has changed state. This function calls 1330 * the notifier chains for netdev_chain and sends a NEWLINK message 1331 * to the routing socket. 1332 */ 1333 void netdev_state_change(struct net_device *dev) 1334 { 1335 if (dev->flags & IFF_UP) { 1336 struct netdev_notifier_change_info change_info = { 1337 .info.dev = dev, 1338 }; 1339 1340 call_netdevice_notifiers_info(NETDEV_CHANGE, 1341 &change_info.info); 1342 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1343 } 1344 } 1345 EXPORT_SYMBOL(netdev_state_change); 1346 1347 /** 1348 * netdev_notify_peers - notify network peers about existence of @dev 1349 * @dev: network device 1350 * 1351 * Generate traffic such that interested network peers are aware of 1352 * @dev, such as by generating a gratuitous ARP. This may be used when 1353 * a device wants to inform the rest of the network about some sort of 1354 * reconfiguration such as a failover event or virtual machine 1355 * migration. 1356 */ 1357 void netdev_notify_peers(struct net_device *dev) 1358 { 1359 rtnl_lock(); 1360 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1361 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1362 rtnl_unlock(); 1363 } 1364 EXPORT_SYMBOL(netdev_notify_peers); 1365 1366 static int __dev_open(struct net_device *dev) 1367 { 1368 const struct net_device_ops *ops = dev->netdev_ops; 1369 int ret; 1370 1371 ASSERT_RTNL(); 1372 1373 if (!netif_device_present(dev)) 1374 return -ENODEV; 1375 1376 /* Block netpoll from trying to do any rx path servicing. 1377 * If we don't do this there is a chance ndo_poll_controller 1378 * or ndo_poll may be running while we open the device 1379 */ 1380 netpoll_poll_disable(dev); 1381 1382 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1383 ret = notifier_to_errno(ret); 1384 if (ret) 1385 return ret; 1386 1387 set_bit(__LINK_STATE_START, &dev->state); 1388 1389 if (ops->ndo_validate_addr) 1390 ret = ops->ndo_validate_addr(dev); 1391 1392 if (!ret && ops->ndo_open) 1393 ret = ops->ndo_open(dev); 1394 1395 netpoll_poll_enable(dev); 1396 1397 if (ret) 1398 clear_bit(__LINK_STATE_START, &dev->state); 1399 else { 1400 dev->flags |= IFF_UP; 1401 dev_set_rx_mode(dev); 1402 dev_activate(dev); 1403 add_device_randomness(dev->dev_addr, dev->addr_len); 1404 } 1405 1406 return ret; 1407 } 1408 1409 /** 1410 * dev_open - prepare an interface for use. 1411 * @dev: device to open 1412 * 1413 * Takes a device from down to up state. The device's private open 1414 * function is invoked and then the multicast lists are loaded. Finally 1415 * the device is moved into the up state and a %NETDEV_UP message is 1416 * sent to the netdev notifier chain. 1417 * 1418 * Calling this function on an active interface is a nop. On a failure 1419 * a negative errno code is returned. 1420 */ 1421 int dev_open(struct net_device *dev) 1422 { 1423 int ret; 1424 1425 if (dev->flags & IFF_UP) 1426 return 0; 1427 1428 ret = __dev_open(dev); 1429 if (ret < 0) 1430 return ret; 1431 1432 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1433 call_netdevice_notifiers(NETDEV_UP, dev); 1434 1435 return ret; 1436 } 1437 EXPORT_SYMBOL(dev_open); 1438 1439 static void __dev_close_many(struct list_head *head) 1440 { 1441 struct net_device *dev; 1442 1443 ASSERT_RTNL(); 1444 might_sleep(); 1445 1446 list_for_each_entry(dev, head, close_list) { 1447 /* Temporarily disable netpoll until the interface is down */ 1448 netpoll_poll_disable(dev); 1449 1450 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1451 1452 clear_bit(__LINK_STATE_START, &dev->state); 1453 1454 /* Synchronize to scheduled poll. We cannot touch poll list, it 1455 * can be even on different cpu. So just clear netif_running(). 1456 * 1457 * dev->stop() will invoke napi_disable() on all of it's 1458 * napi_struct instances on this device. 1459 */ 1460 smp_mb__after_atomic(); /* Commit netif_running(). */ 1461 } 1462 1463 dev_deactivate_many(head); 1464 1465 list_for_each_entry(dev, head, close_list) { 1466 const struct net_device_ops *ops = dev->netdev_ops; 1467 1468 /* 1469 * Call the device specific close. This cannot fail. 1470 * Only if device is UP 1471 * 1472 * We allow it to be called even after a DETACH hot-plug 1473 * event. 1474 */ 1475 if (ops->ndo_stop) 1476 ops->ndo_stop(dev); 1477 1478 dev->flags &= ~IFF_UP; 1479 netpoll_poll_enable(dev); 1480 } 1481 } 1482 1483 static void __dev_close(struct net_device *dev) 1484 { 1485 LIST_HEAD(single); 1486 1487 list_add(&dev->close_list, &single); 1488 __dev_close_many(&single); 1489 list_del(&single); 1490 } 1491 1492 void dev_close_many(struct list_head *head, bool unlink) 1493 { 1494 struct net_device *dev, *tmp; 1495 1496 /* Remove the devices that don't need to be closed */ 1497 list_for_each_entry_safe(dev, tmp, head, close_list) 1498 if (!(dev->flags & IFF_UP)) 1499 list_del_init(&dev->close_list); 1500 1501 __dev_close_many(head); 1502 1503 list_for_each_entry_safe(dev, tmp, head, close_list) { 1504 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1505 call_netdevice_notifiers(NETDEV_DOWN, dev); 1506 if (unlink) 1507 list_del_init(&dev->close_list); 1508 } 1509 } 1510 EXPORT_SYMBOL(dev_close_many); 1511 1512 /** 1513 * dev_close - shutdown an interface. 1514 * @dev: device to shutdown 1515 * 1516 * This function moves an active device into down state. A 1517 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1518 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1519 * chain. 1520 */ 1521 void dev_close(struct net_device *dev) 1522 { 1523 if (dev->flags & IFF_UP) { 1524 LIST_HEAD(single); 1525 1526 list_add(&dev->close_list, &single); 1527 dev_close_many(&single, true); 1528 list_del(&single); 1529 } 1530 } 1531 EXPORT_SYMBOL(dev_close); 1532 1533 1534 /** 1535 * dev_disable_lro - disable Large Receive Offload on a device 1536 * @dev: device 1537 * 1538 * Disable Large Receive Offload (LRO) on a net device. Must be 1539 * called under RTNL. This is needed if received packets may be 1540 * forwarded to another interface. 1541 */ 1542 void dev_disable_lro(struct net_device *dev) 1543 { 1544 struct net_device *lower_dev; 1545 struct list_head *iter; 1546 1547 dev->wanted_features &= ~NETIF_F_LRO; 1548 netdev_update_features(dev); 1549 1550 if (unlikely(dev->features & NETIF_F_LRO)) 1551 netdev_WARN(dev, "failed to disable LRO!\n"); 1552 1553 netdev_for_each_lower_dev(dev, lower_dev, iter) 1554 dev_disable_lro(lower_dev); 1555 } 1556 EXPORT_SYMBOL(dev_disable_lro); 1557 1558 /** 1559 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1560 * @dev: device 1561 * 1562 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1563 * called under RTNL. This is needed if Generic XDP is installed on 1564 * the device. 1565 */ 1566 static void dev_disable_gro_hw(struct net_device *dev) 1567 { 1568 dev->wanted_features &= ~NETIF_F_GRO_HW; 1569 netdev_update_features(dev); 1570 1571 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1572 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1573 } 1574 1575 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1576 { 1577 #define N(val) \ 1578 case NETDEV_##val: \ 1579 return "NETDEV_" __stringify(val); 1580 switch (cmd) { 1581 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1582 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1583 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1584 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1585 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1586 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1587 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1588 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1589 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1590 }; 1591 #undef N 1592 return "UNKNOWN_NETDEV_EVENT"; 1593 } 1594 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1595 1596 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1597 struct net_device *dev) 1598 { 1599 struct netdev_notifier_info info = { 1600 .dev = dev, 1601 }; 1602 1603 return nb->notifier_call(nb, val, &info); 1604 } 1605 1606 static int dev_boot_phase = 1; 1607 1608 /** 1609 * register_netdevice_notifier - register a network notifier block 1610 * @nb: notifier 1611 * 1612 * Register a notifier to be called when network device events occur. 1613 * The notifier passed is linked into the kernel structures and must 1614 * not be reused until it has been unregistered. A negative errno code 1615 * is returned on a failure. 1616 * 1617 * When registered all registration and up events are replayed 1618 * to the new notifier to allow device to have a race free 1619 * view of the network device list. 1620 */ 1621 1622 int register_netdevice_notifier(struct notifier_block *nb) 1623 { 1624 struct net_device *dev; 1625 struct net_device *last; 1626 struct net *net; 1627 int err; 1628 1629 /* Close race with setup_net() and cleanup_net() */ 1630 down_write(&pernet_ops_rwsem); 1631 rtnl_lock(); 1632 err = raw_notifier_chain_register(&netdev_chain, nb); 1633 if (err) 1634 goto unlock; 1635 if (dev_boot_phase) 1636 goto unlock; 1637 for_each_net(net) { 1638 for_each_netdev(net, dev) { 1639 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1640 err = notifier_to_errno(err); 1641 if (err) 1642 goto rollback; 1643 1644 if (!(dev->flags & IFF_UP)) 1645 continue; 1646 1647 call_netdevice_notifier(nb, NETDEV_UP, dev); 1648 } 1649 } 1650 1651 unlock: 1652 rtnl_unlock(); 1653 up_write(&pernet_ops_rwsem); 1654 return err; 1655 1656 rollback: 1657 last = dev; 1658 for_each_net(net) { 1659 for_each_netdev(net, dev) { 1660 if (dev == last) 1661 goto outroll; 1662 1663 if (dev->flags & IFF_UP) { 1664 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1665 dev); 1666 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1667 } 1668 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1669 } 1670 } 1671 1672 outroll: 1673 raw_notifier_chain_unregister(&netdev_chain, nb); 1674 goto unlock; 1675 } 1676 EXPORT_SYMBOL(register_netdevice_notifier); 1677 1678 /** 1679 * unregister_netdevice_notifier - unregister a network notifier block 1680 * @nb: notifier 1681 * 1682 * Unregister a notifier previously registered by 1683 * register_netdevice_notifier(). The notifier is unlinked into the 1684 * kernel structures and may then be reused. A negative errno code 1685 * is returned on a failure. 1686 * 1687 * After unregistering unregister and down device events are synthesized 1688 * for all devices on the device list to the removed notifier to remove 1689 * the need for special case cleanup code. 1690 */ 1691 1692 int unregister_netdevice_notifier(struct notifier_block *nb) 1693 { 1694 struct net_device *dev; 1695 struct net *net; 1696 int err; 1697 1698 /* Close race with setup_net() and cleanup_net() */ 1699 down_write(&pernet_ops_rwsem); 1700 rtnl_lock(); 1701 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1702 if (err) 1703 goto unlock; 1704 1705 for_each_net(net) { 1706 for_each_netdev(net, dev) { 1707 if (dev->flags & IFF_UP) { 1708 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1709 dev); 1710 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1711 } 1712 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1713 } 1714 } 1715 unlock: 1716 rtnl_unlock(); 1717 up_write(&pernet_ops_rwsem); 1718 return err; 1719 } 1720 EXPORT_SYMBOL(unregister_netdevice_notifier); 1721 1722 /** 1723 * call_netdevice_notifiers_info - call all network notifier blocks 1724 * @val: value passed unmodified to notifier function 1725 * @info: notifier information data 1726 * 1727 * Call all network notifier blocks. Parameters and return value 1728 * are as for raw_notifier_call_chain(). 1729 */ 1730 1731 static int call_netdevice_notifiers_info(unsigned long val, 1732 struct netdev_notifier_info *info) 1733 { 1734 ASSERT_RTNL(); 1735 return raw_notifier_call_chain(&netdev_chain, val, info); 1736 } 1737 1738 /** 1739 * call_netdevice_notifiers - call all network notifier blocks 1740 * @val: value passed unmodified to notifier function 1741 * @dev: net_device pointer passed unmodified to notifier function 1742 * 1743 * Call all network notifier blocks. Parameters and return value 1744 * are as for raw_notifier_call_chain(). 1745 */ 1746 1747 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1748 { 1749 struct netdev_notifier_info info = { 1750 .dev = dev, 1751 }; 1752 1753 return call_netdevice_notifiers_info(val, &info); 1754 } 1755 EXPORT_SYMBOL(call_netdevice_notifiers); 1756 1757 #ifdef CONFIG_NET_INGRESS 1758 static struct static_key ingress_needed __read_mostly; 1759 1760 void net_inc_ingress_queue(void) 1761 { 1762 static_key_slow_inc(&ingress_needed); 1763 } 1764 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1765 1766 void net_dec_ingress_queue(void) 1767 { 1768 static_key_slow_dec(&ingress_needed); 1769 } 1770 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1771 #endif 1772 1773 #ifdef CONFIG_NET_EGRESS 1774 static struct static_key egress_needed __read_mostly; 1775 1776 void net_inc_egress_queue(void) 1777 { 1778 static_key_slow_inc(&egress_needed); 1779 } 1780 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1781 1782 void net_dec_egress_queue(void) 1783 { 1784 static_key_slow_dec(&egress_needed); 1785 } 1786 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1787 #endif 1788 1789 static struct static_key netstamp_needed __read_mostly; 1790 #ifdef HAVE_JUMP_LABEL 1791 static atomic_t netstamp_needed_deferred; 1792 static atomic_t netstamp_wanted; 1793 static void netstamp_clear(struct work_struct *work) 1794 { 1795 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1796 int wanted; 1797 1798 wanted = atomic_add_return(deferred, &netstamp_wanted); 1799 if (wanted > 0) 1800 static_key_enable(&netstamp_needed); 1801 else 1802 static_key_disable(&netstamp_needed); 1803 } 1804 static DECLARE_WORK(netstamp_work, netstamp_clear); 1805 #endif 1806 1807 void net_enable_timestamp(void) 1808 { 1809 #ifdef HAVE_JUMP_LABEL 1810 int wanted; 1811 1812 while (1) { 1813 wanted = atomic_read(&netstamp_wanted); 1814 if (wanted <= 0) 1815 break; 1816 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1817 return; 1818 } 1819 atomic_inc(&netstamp_needed_deferred); 1820 schedule_work(&netstamp_work); 1821 #else 1822 static_key_slow_inc(&netstamp_needed); 1823 #endif 1824 } 1825 EXPORT_SYMBOL(net_enable_timestamp); 1826 1827 void net_disable_timestamp(void) 1828 { 1829 #ifdef HAVE_JUMP_LABEL 1830 int wanted; 1831 1832 while (1) { 1833 wanted = atomic_read(&netstamp_wanted); 1834 if (wanted <= 1) 1835 break; 1836 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1837 return; 1838 } 1839 atomic_dec(&netstamp_needed_deferred); 1840 schedule_work(&netstamp_work); 1841 #else 1842 static_key_slow_dec(&netstamp_needed); 1843 #endif 1844 } 1845 EXPORT_SYMBOL(net_disable_timestamp); 1846 1847 static inline void net_timestamp_set(struct sk_buff *skb) 1848 { 1849 skb->tstamp = 0; 1850 if (static_key_false(&netstamp_needed)) 1851 __net_timestamp(skb); 1852 } 1853 1854 #define net_timestamp_check(COND, SKB) \ 1855 if (static_key_false(&netstamp_needed)) { \ 1856 if ((COND) && !(SKB)->tstamp) \ 1857 __net_timestamp(SKB); \ 1858 } \ 1859 1860 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1861 { 1862 unsigned int len; 1863 1864 if (!(dev->flags & IFF_UP)) 1865 return false; 1866 1867 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1868 if (skb->len <= len) 1869 return true; 1870 1871 /* if TSO is enabled, we don't care about the length as the packet 1872 * could be forwarded without being segmented before 1873 */ 1874 if (skb_is_gso(skb)) 1875 return true; 1876 1877 return false; 1878 } 1879 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1880 1881 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1882 { 1883 int ret = ____dev_forward_skb(dev, skb); 1884 1885 if (likely(!ret)) { 1886 skb->protocol = eth_type_trans(skb, dev); 1887 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1888 } 1889 1890 return ret; 1891 } 1892 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1893 1894 /** 1895 * dev_forward_skb - loopback an skb to another netif 1896 * 1897 * @dev: destination network device 1898 * @skb: buffer to forward 1899 * 1900 * return values: 1901 * NET_RX_SUCCESS (no congestion) 1902 * NET_RX_DROP (packet was dropped, but freed) 1903 * 1904 * dev_forward_skb can be used for injecting an skb from the 1905 * start_xmit function of one device into the receive queue 1906 * of another device. 1907 * 1908 * The receiving device may be in another namespace, so 1909 * we have to clear all information in the skb that could 1910 * impact namespace isolation. 1911 */ 1912 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1913 { 1914 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1915 } 1916 EXPORT_SYMBOL_GPL(dev_forward_skb); 1917 1918 static inline int deliver_skb(struct sk_buff *skb, 1919 struct packet_type *pt_prev, 1920 struct net_device *orig_dev) 1921 { 1922 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1923 return -ENOMEM; 1924 refcount_inc(&skb->users); 1925 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1926 } 1927 1928 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1929 struct packet_type **pt, 1930 struct net_device *orig_dev, 1931 __be16 type, 1932 struct list_head *ptype_list) 1933 { 1934 struct packet_type *ptype, *pt_prev = *pt; 1935 1936 list_for_each_entry_rcu(ptype, ptype_list, list) { 1937 if (ptype->type != type) 1938 continue; 1939 if (pt_prev) 1940 deliver_skb(skb, pt_prev, orig_dev); 1941 pt_prev = ptype; 1942 } 1943 *pt = pt_prev; 1944 } 1945 1946 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1947 { 1948 if (!ptype->af_packet_priv || !skb->sk) 1949 return false; 1950 1951 if (ptype->id_match) 1952 return ptype->id_match(ptype, skb->sk); 1953 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1954 return true; 1955 1956 return false; 1957 } 1958 1959 /* 1960 * Support routine. Sends outgoing frames to any network 1961 * taps currently in use. 1962 */ 1963 1964 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1965 { 1966 struct packet_type *ptype; 1967 struct sk_buff *skb2 = NULL; 1968 struct packet_type *pt_prev = NULL; 1969 struct list_head *ptype_list = &ptype_all; 1970 1971 rcu_read_lock(); 1972 again: 1973 list_for_each_entry_rcu(ptype, ptype_list, list) { 1974 /* Never send packets back to the socket 1975 * they originated from - MvS (miquels@drinkel.ow.org) 1976 */ 1977 if (skb_loop_sk(ptype, skb)) 1978 continue; 1979 1980 if (pt_prev) { 1981 deliver_skb(skb2, pt_prev, skb->dev); 1982 pt_prev = ptype; 1983 continue; 1984 } 1985 1986 /* need to clone skb, done only once */ 1987 skb2 = skb_clone(skb, GFP_ATOMIC); 1988 if (!skb2) 1989 goto out_unlock; 1990 1991 net_timestamp_set(skb2); 1992 1993 /* skb->nh should be correctly 1994 * set by sender, so that the second statement is 1995 * just protection against buggy protocols. 1996 */ 1997 skb_reset_mac_header(skb2); 1998 1999 if (skb_network_header(skb2) < skb2->data || 2000 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2001 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2002 ntohs(skb2->protocol), 2003 dev->name); 2004 skb_reset_network_header(skb2); 2005 } 2006 2007 skb2->transport_header = skb2->network_header; 2008 skb2->pkt_type = PACKET_OUTGOING; 2009 pt_prev = ptype; 2010 } 2011 2012 if (ptype_list == &ptype_all) { 2013 ptype_list = &dev->ptype_all; 2014 goto again; 2015 } 2016 out_unlock: 2017 if (pt_prev) { 2018 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2019 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2020 else 2021 kfree_skb(skb2); 2022 } 2023 rcu_read_unlock(); 2024 } 2025 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2026 2027 /** 2028 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2029 * @dev: Network device 2030 * @txq: number of queues available 2031 * 2032 * If real_num_tx_queues is changed the tc mappings may no longer be 2033 * valid. To resolve this verify the tc mapping remains valid and if 2034 * not NULL the mapping. With no priorities mapping to this 2035 * offset/count pair it will no longer be used. In the worst case TC0 2036 * is invalid nothing can be done so disable priority mappings. If is 2037 * expected that drivers will fix this mapping if they can before 2038 * calling netif_set_real_num_tx_queues. 2039 */ 2040 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2041 { 2042 int i; 2043 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2044 2045 /* If TC0 is invalidated disable TC mapping */ 2046 if (tc->offset + tc->count > txq) { 2047 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2048 dev->num_tc = 0; 2049 return; 2050 } 2051 2052 /* Invalidated prio to tc mappings set to TC0 */ 2053 for (i = 1; i < TC_BITMASK + 1; i++) { 2054 int q = netdev_get_prio_tc_map(dev, i); 2055 2056 tc = &dev->tc_to_txq[q]; 2057 if (tc->offset + tc->count > txq) { 2058 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2059 i, q); 2060 netdev_set_prio_tc_map(dev, i, 0); 2061 } 2062 } 2063 } 2064 2065 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2066 { 2067 if (dev->num_tc) { 2068 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2069 int i; 2070 2071 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2072 if ((txq - tc->offset) < tc->count) 2073 return i; 2074 } 2075 2076 return -1; 2077 } 2078 2079 return 0; 2080 } 2081 EXPORT_SYMBOL(netdev_txq_to_tc); 2082 2083 #ifdef CONFIG_XPS 2084 static DEFINE_MUTEX(xps_map_mutex); 2085 #define xmap_dereference(P) \ 2086 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2087 2088 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2089 int tci, u16 index) 2090 { 2091 struct xps_map *map = NULL; 2092 int pos; 2093 2094 if (dev_maps) 2095 map = xmap_dereference(dev_maps->cpu_map[tci]); 2096 if (!map) 2097 return false; 2098 2099 for (pos = map->len; pos--;) { 2100 if (map->queues[pos] != index) 2101 continue; 2102 2103 if (map->len > 1) { 2104 map->queues[pos] = map->queues[--map->len]; 2105 break; 2106 } 2107 2108 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2109 kfree_rcu(map, rcu); 2110 return false; 2111 } 2112 2113 return true; 2114 } 2115 2116 static bool remove_xps_queue_cpu(struct net_device *dev, 2117 struct xps_dev_maps *dev_maps, 2118 int cpu, u16 offset, u16 count) 2119 { 2120 int num_tc = dev->num_tc ? : 1; 2121 bool active = false; 2122 int tci; 2123 2124 for (tci = cpu * num_tc; num_tc--; tci++) { 2125 int i, j; 2126 2127 for (i = count, j = offset; i--; j++) { 2128 if (!remove_xps_queue(dev_maps, cpu, j)) 2129 break; 2130 } 2131 2132 active |= i < 0; 2133 } 2134 2135 return active; 2136 } 2137 2138 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2139 u16 count) 2140 { 2141 struct xps_dev_maps *dev_maps; 2142 int cpu, i; 2143 bool active = false; 2144 2145 mutex_lock(&xps_map_mutex); 2146 dev_maps = xmap_dereference(dev->xps_maps); 2147 2148 if (!dev_maps) 2149 goto out_no_maps; 2150 2151 for_each_possible_cpu(cpu) 2152 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2153 offset, count); 2154 2155 if (!active) { 2156 RCU_INIT_POINTER(dev->xps_maps, NULL); 2157 kfree_rcu(dev_maps, rcu); 2158 } 2159 2160 for (i = offset + (count - 1); count--; i--) 2161 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2162 NUMA_NO_NODE); 2163 2164 out_no_maps: 2165 mutex_unlock(&xps_map_mutex); 2166 } 2167 2168 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2169 { 2170 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2171 } 2172 2173 static struct xps_map *expand_xps_map(struct xps_map *map, 2174 int cpu, u16 index) 2175 { 2176 struct xps_map *new_map; 2177 int alloc_len = XPS_MIN_MAP_ALLOC; 2178 int i, pos; 2179 2180 for (pos = 0; map && pos < map->len; pos++) { 2181 if (map->queues[pos] != index) 2182 continue; 2183 return map; 2184 } 2185 2186 /* Need to add queue to this CPU's existing map */ 2187 if (map) { 2188 if (pos < map->alloc_len) 2189 return map; 2190 2191 alloc_len = map->alloc_len * 2; 2192 } 2193 2194 /* Need to allocate new map to store queue on this CPU's map */ 2195 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2196 cpu_to_node(cpu)); 2197 if (!new_map) 2198 return NULL; 2199 2200 for (i = 0; i < pos; i++) 2201 new_map->queues[i] = map->queues[i]; 2202 new_map->alloc_len = alloc_len; 2203 new_map->len = pos; 2204 2205 return new_map; 2206 } 2207 2208 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2209 u16 index) 2210 { 2211 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2212 int i, cpu, tci, numa_node_id = -2; 2213 int maps_sz, num_tc = 1, tc = 0; 2214 struct xps_map *map, *new_map; 2215 bool active = false; 2216 2217 if (dev->num_tc) { 2218 num_tc = dev->num_tc; 2219 tc = netdev_txq_to_tc(dev, index); 2220 if (tc < 0) 2221 return -EINVAL; 2222 } 2223 2224 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2225 if (maps_sz < L1_CACHE_BYTES) 2226 maps_sz = L1_CACHE_BYTES; 2227 2228 mutex_lock(&xps_map_mutex); 2229 2230 dev_maps = xmap_dereference(dev->xps_maps); 2231 2232 /* allocate memory for queue storage */ 2233 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2234 if (!new_dev_maps) 2235 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2236 if (!new_dev_maps) { 2237 mutex_unlock(&xps_map_mutex); 2238 return -ENOMEM; 2239 } 2240 2241 tci = cpu * num_tc + tc; 2242 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2243 NULL; 2244 2245 map = expand_xps_map(map, cpu, index); 2246 if (!map) 2247 goto error; 2248 2249 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2250 } 2251 2252 if (!new_dev_maps) 2253 goto out_no_new_maps; 2254 2255 for_each_possible_cpu(cpu) { 2256 /* copy maps belonging to foreign traffic classes */ 2257 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2258 /* fill in the new device map from the old device map */ 2259 map = xmap_dereference(dev_maps->cpu_map[tci]); 2260 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2261 } 2262 2263 /* We need to explicitly update tci as prevous loop 2264 * could break out early if dev_maps is NULL. 2265 */ 2266 tci = cpu * num_tc + tc; 2267 2268 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2269 /* add queue to CPU maps */ 2270 int pos = 0; 2271 2272 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2273 while ((pos < map->len) && (map->queues[pos] != index)) 2274 pos++; 2275 2276 if (pos == map->len) 2277 map->queues[map->len++] = index; 2278 #ifdef CONFIG_NUMA 2279 if (numa_node_id == -2) 2280 numa_node_id = cpu_to_node(cpu); 2281 else if (numa_node_id != cpu_to_node(cpu)) 2282 numa_node_id = -1; 2283 #endif 2284 } else if (dev_maps) { 2285 /* fill in the new device map from the old device map */ 2286 map = xmap_dereference(dev_maps->cpu_map[tci]); 2287 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2288 } 2289 2290 /* copy maps belonging to foreign traffic classes */ 2291 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2292 /* fill in the new device map from the old device map */ 2293 map = xmap_dereference(dev_maps->cpu_map[tci]); 2294 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2295 } 2296 } 2297 2298 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2299 2300 /* Cleanup old maps */ 2301 if (!dev_maps) 2302 goto out_no_old_maps; 2303 2304 for_each_possible_cpu(cpu) { 2305 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2306 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2307 map = xmap_dereference(dev_maps->cpu_map[tci]); 2308 if (map && map != new_map) 2309 kfree_rcu(map, rcu); 2310 } 2311 } 2312 2313 kfree_rcu(dev_maps, rcu); 2314 2315 out_no_old_maps: 2316 dev_maps = new_dev_maps; 2317 active = true; 2318 2319 out_no_new_maps: 2320 /* update Tx queue numa node */ 2321 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2322 (numa_node_id >= 0) ? numa_node_id : 2323 NUMA_NO_NODE); 2324 2325 if (!dev_maps) 2326 goto out_no_maps; 2327 2328 /* removes queue from unused CPUs */ 2329 for_each_possible_cpu(cpu) { 2330 for (i = tc, tci = cpu * num_tc; i--; tci++) 2331 active |= remove_xps_queue(dev_maps, tci, index); 2332 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2333 active |= remove_xps_queue(dev_maps, tci, index); 2334 for (i = num_tc - tc, tci++; --i; tci++) 2335 active |= remove_xps_queue(dev_maps, tci, index); 2336 } 2337 2338 /* free map if not active */ 2339 if (!active) { 2340 RCU_INIT_POINTER(dev->xps_maps, NULL); 2341 kfree_rcu(dev_maps, rcu); 2342 } 2343 2344 out_no_maps: 2345 mutex_unlock(&xps_map_mutex); 2346 2347 return 0; 2348 error: 2349 /* remove any maps that we added */ 2350 for_each_possible_cpu(cpu) { 2351 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2352 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2353 map = dev_maps ? 2354 xmap_dereference(dev_maps->cpu_map[tci]) : 2355 NULL; 2356 if (new_map && new_map != map) 2357 kfree(new_map); 2358 } 2359 } 2360 2361 mutex_unlock(&xps_map_mutex); 2362 2363 kfree(new_dev_maps); 2364 return -ENOMEM; 2365 } 2366 EXPORT_SYMBOL(netif_set_xps_queue); 2367 2368 #endif 2369 void netdev_reset_tc(struct net_device *dev) 2370 { 2371 #ifdef CONFIG_XPS 2372 netif_reset_xps_queues_gt(dev, 0); 2373 #endif 2374 dev->num_tc = 0; 2375 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2376 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2377 } 2378 EXPORT_SYMBOL(netdev_reset_tc); 2379 2380 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2381 { 2382 if (tc >= dev->num_tc) 2383 return -EINVAL; 2384 2385 #ifdef CONFIG_XPS 2386 netif_reset_xps_queues(dev, offset, count); 2387 #endif 2388 dev->tc_to_txq[tc].count = count; 2389 dev->tc_to_txq[tc].offset = offset; 2390 return 0; 2391 } 2392 EXPORT_SYMBOL(netdev_set_tc_queue); 2393 2394 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2395 { 2396 if (num_tc > TC_MAX_QUEUE) 2397 return -EINVAL; 2398 2399 #ifdef CONFIG_XPS 2400 netif_reset_xps_queues_gt(dev, 0); 2401 #endif 2402 dev->num_tc = num_tc; 2403 return 0; 2404 } 2405 EXPORT_SYMBOL(netdev_set_num_tc); 2406 2407 /* 2408 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2409 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2410 */ 2411 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2412 { 2413 bool disabling; 2414 int rc; 2415 2416 disabling = txq < dev->real_num_tx_queues; 2417 2418 if (txq < 1 || txq > dev->num_tx_queues) 2419 return -EINVAL; 2420 2421 if (dev->reg_state == NETREG_REGISTERED || 2422 dev->reg_state == NETREG_UNREGISTERING) { 2423 ASSERT_RTNL(); 2424 2425 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2426 txq); 2427 if (rc) 2428 return rc; 2429 2430 if (dev->num_tc) 2431 netif_setup_tc(dev, txq); 2432 2433 dev->real_num_tx_queues = txq; 2434 2435 if (disabling) { 2436 synchronize_net(); 2437 qdisc_reset_all_tx_gt(dev, txq); 2438 #ifdef CONFIG_XPS 2439 netif_reset_xps_queues_gt(dev, txq); 2440 #endif 2441 } 2442 } else { 2443 dev->real_num_tx_queues = txq; 2444 } 2445 2446 return 0; 2447 } 2448 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2449 2450 #ifdef CONFIG_SYSFS 2451 /** 2452 * netif_set_real_num_rx_queues - set actual number of RX queues used 2453 * @dev: Network device 2454 * @rxq: Actual number of RX queues 2455 * 2456 * This must be called either with the rtnl_lock held or before 2457 * registration of the net device. Returns 0 on success, or a 2458 * negative error code. If called before registration, it always 2459 * succeeds. 2460 */ 2461 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2462 { 2463 int rc; 2464 2465 if (rxq < 1 || rxq > dev->num_rx_queues) 2466 return -EINVAL; 2467 2468 if (dev->reg_state == NETREG_REGISTERED) { 2469 ASSERT_RTNL(); 2470 2471 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2472 rxq); 2473 if (rc) 2474 return rc; 2475 } 2476 2477 dev->real_num_rx_queues = rxq; 2478 return 0; 2479 } 2480 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2481 #endif 2482 2483 /** 2484 * netif_get_num_default_rss_queues - default number of RSS queues 2485 * 2486 * This routine should set an upper limit on the number of RSS queues 2487 * used by default by multiqueue devices. 2488 */ 2489 int netif_get_num_default_rss_queues(void) 2490 { 2491 return is_kdump_kernel() ? 2492 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2493 } 2494 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2495 2496 static void __netif_reschedule(struct Qdisc *q) 2497 { 2498 struct softnet_data *sd; 2499 unsigned long flags; 2500 2501 local_irq_save(flags); 2502 sd = this_cpu_ptr(&softnet_data); 2503 q->next_sched = NULL; 2504 *sd->output_queue_tailp = q; 2505 sd->output_queue_tailp = &q->next_sched; 2506 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2507 local_irq_restore(flags); 2508 } 2509 2510 void __netif_schedule(struct Qdisc *q) 2511 { 2512 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2513 __netif_reschedule(q); 2514 } 2515 EXPORT_SYMBOL(__netif_schedule); 2516 2517 struct dev_kfree_skb_cb { 2518 enum skb_free_reason reason; 2519 }; 2520 2521 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2522 { 2523 return (struct dev_kfree_skb_cb *)skb->cb; 2524 } 2525 2526 void netif_schedule_queue(struct netdev_queue *txq) 2527 { 2528 rcu_read_lock(); 2529 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2530 struct Qdisc *q = rcu_dereference(txq->qdisc); 2531 2532 __netif_schedule(q); 2533 } 2534 rcu_read_unlock(); 2535 } 2536 EXPORT_SYMBOL(netif_schedule_queue); 2537 2538 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2539 { 2540 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2541 struct Qdisc *q; 2542 2543 rcu_read_lock(); 2544 q = rcu_dereference(dev_queue->qdisc); 2545 __netif_schedule(q); 2546 rcu_read_unlock(); 2547 } 2548 } 2549 EXPORT_SYMBOL(netif_tx_wake_queue); 2550 2551 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2552 { 2553 unsigned long flags; 2554 2555 if (unlikely(!skb)) 2556 return; 2557 2558 if (likely(refcount_read(&skb->users) == 1)) { 2559 smp_rmb(); 2560 refcount_set(&skb->users, 0); 2561 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2562 return; 2563 } 2564 get_kfree_skb_cb(skb)->reason = reason; 2565 local_irq_save(flags); 2566 skb->next = __this_cpu_read(softnet_data.completion_queue); 2567 __this_cpu_write(softnet_data.completion_queue, skb); 2568 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2569 local_irq_restore(flags); 2570 } 2571 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2572 2573 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2574 { 2575 if (in_irq() || irqs_disabled()) 2576 __dev_kfree_skb_irq(skb, reason); 2577 else 2578 dev_kfree_skb(skb); 2579 } 2580 EXPORT_SYMBOL(__dev_kfree_skb_any); 2581 2582 2583 /** 2584 * netif_device_detach - mark device as removed 2585 * @dev: network device 2586 * 2587 * Mark device as removed from system and therefore no longer available. 2588 */ 2589 void netif_device_detach(struct net_device *dev) 2590 { 2591 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2592 netif_running(dev)) { 2593 netif_tx_stop_all_queues(dev); 2594 } 2595 } 2596 EXPORT_SYMBOL(netif_device_detach); 2597 2598 /** 2599 * netif_device_attach - mark device as attached 2600 * @dev: network device 2601 * 2602 * Mark device as attached from system and restart if needed. 2603 */ 2604 void netif_device_attach(struct net_device *dev) 2605 { 2606 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2607 netif_running(dev)) { 2608 netif_tx_wake_all_queues(dev); 2609 __netdev_watchdog_up(dev); 2610 } 2611 } 2612 EXPORT_SYMBOL(netif_device_attach); 2613 2614 /* 2615 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2616 * to be used as a distribution range. 2617 */ 2618 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2619 unsigned int num_tx_queues) 2620 { 2621 u32 hash; 2622 u16 qoffset = 0; 2623 u16 qcount = num_tx_queues; 2624 2625 if (skb_rx_queue_recorded(skb)) { 2626 hash = skb_get_rx_queue(skb); 2627 while (unlikely(hash >= num_tx_queues)) 2628 hash -= num_tx_queues; 2629 return hash; 2630 } 2631 2632 if (dev->num_tc) { 2633 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2634 2635 qoffset = dev->tc_to_txq[tc].offset; 2636 qcount = dev->tc_to_txq[tc].count; 2637 } 2638 2639 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2640 } 2641 EXPORT_SYMBOL(__skb_tx_hash); 2642 2643 static void skb_warn_bad_offload(const struct sk_buff *skb) 2644 { 2645 static const netdev_features_t null_features; 2646 struct net_device *dev = skb->dev; 2647 const char *name = ""; 2648 2649 if (!net_ratelimit()) 2650 return; 2651 2652 if (dev) { 2653 if (dev->dev.parent) 2654 name = dev_driver_string(dev->dev.parent); 2655 else 2656 name = netdev_name(dev); 2657 } 2658 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2659 "gso_type=%d ip_summed=%d\n", 2660 name, dev ? &dev->features : &null_features, 2661 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2662 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2663 skb_shinfo(skb)->gso_type, skb->ip_summed); 2664 } 2665 2666 /* 2667 * Invalidate hardware checksum when packet is to be mangled, and 2668 * complete checksum manually on outgoing path. 2669 */ 2670 int skb_checksum_help(struct sk_buff *skb) 2671 { 2672 __wsum csum; 2673 int ret = 0, offset; 2674 2675 if (skb->ip_summed == CHECKSUM_COMPLETE) 2676 goto out_set_summed; 2677 2678 if (unlikely(skb_shinfo(skb)->gso_size)) { 2679 skb_warn_bad_offload(skb); 2680 return -EINVAL; 2681 } 2682 2683 /* Before computing a checksum, we should make sure no frag could 2684 * be modified by an external entity : checksum could be wrong. 2685 */ 2686 if (skb_has_shared_frag(skb)) { 2687 ret = __skb_linearize(skb); 2688 if (ret) 2689 goto out; 2690 } 2691 2692 offset = skb_checksum_start_offset(skb); 2693 BUG_ON(offset >= skb_headlen(skb)); 2694 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2695 2696 offset += skb->csum_offset; 2697 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2698 2699 if (skb_cloned(skb) && 2700 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2701 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2702 if (ret) 2703 goto out; 2704 } 2705 2706 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2707 out_set_summed: 2708 skb->ip_summed = CHECKSUM_NONE; 2709 out: 2710 return ret; 2711 } 2712 EXPORT_SYMBOL(skb_checksum_help); 2713 2714 int skb_crc32c_csum_help(struct sk_buff *skb) 2715 { 2716 __le32 crc32c_csum; 2717 int ret = 0, offset, start; 2718 2719 if (skb->ip_summed != CHECKSUM_PARTIAL) 2720 goto out; 2721 2722 if (unlikely(skb_is_gso(skb))) 2723 goto out; 2724 2725 /* Before computing a checksum, we should make sure no frag could 2726 * be modified by an external entity : checksum could be wrong. 2727 */ 2728 if (unlikely(skb_has_shared_frag(skb))) { 2729 ret = __skb_linearize(skb); 2730 if (ret) 2731 goto out; 2732 } 2733 start = skb_checksum_start_offset(skb); 2734 offset = start + offsetof(struct sctphdr, checksum); 2735 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2736 ret = -EINVAL; 2737 goto out; 2738 } 2739 if (skb_cloned(skb) && 2740 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2741 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2742 if (ret) 2743 goto out; 2744 } 2745 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2746 skb->len - start, ~(__u32)0, 2747 crc32c_csum_stub)); 2748 *(__le32 *)(skb->data + offset) = crc32c_csum; 2749 skb->ip_summed = CHECKSUM_NONE; 2750 skb->csum_not_inet = 0; 2751 out: 2752 return ret; 2753 } 2754 2755 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2756 { 2757 __be16 type = skb->protocol; 2758 2759 /* Tunnel gso handlers can set protocol to ethernet. */ 2760 if (type == htons(ETH_P_TEB)) { 2761 struct ethhdr *eth; 2762 2763 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2764 return 0; 2765 2766 eth = (struct ethhdr *)skb->data; 2767 type = eth->h_proto; 2768 } 2769 2770 return __vlan_get_protocol(skb, type, depth); 2771 } 2772 2773 /** 2774 * skb_mac_gso_segment - mac layer segmentation handler. 2775 * @skb: buffer to segment 2776 * @features: features for the output path (see dev->features) 2777 */ 2778 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2779 netdev_features_t features) 2780 { 2781 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2782 struct packet_offload *ptype; 2783 int vlan_depth = skb->mac_len; 2784 __be16 type = skb_network_protocol(skb, &vlan_depth); 2785 2786 if (unlikely(!type)) 2787 return ERR_PTR(-EINVAL); 2788 2789 __skb_pull(skb, vlan_depth); 2790 2791 rcu_read_lock(); 2792 list_for_each_entry_rcu(ptype, &offload_base, list) { 2793 if (ptype->type == type && ptype->callbacks.gso_segment) { 2794 segs = ptype->callbacks.gso_segment(skb, features); 2795 break; 2796 } 2797 } 2798 rcu_read_unlock(); 2799 2800 __skb_push(skb, skb->data - skb_mac_header(skb)); 2801 2802 return segs; 2803 } 2804 EXPORT_SYMBOL(skb_mac_gso_segment); 2805 2806 2807 /* openvswitch calls this on rx path, so we need a different check. 2808 */ 2809 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2810 { 2811 if (tx_path) 2812 return skb->ip_summed != CHECKSUM_PARTIAL && 2813 skb->ip_summed != CHECKSUM_UNNECESSARY; 2814 2815 return skb->ip_summed == CHECKSUM_NONE; 2816 } 2817 2818 /** 2819 * __skb_gso_segment - Perform segmentation on skb. 2820 * @skb: buffer to segment 2821 * @features: features for the output path (see dev->features) 2822 * @tx_path: whether it is called in TX path 2823 * 2824 * This function segments the given skb and returns a list of segments. 2825 * 2826 * It may return NULL if the skb requires no segmentation. This is 2827 * only possible when GSO is used for verifying header integrity. 2828 * 2829 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2830 */ 2831 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2832 netdev_features_t features, bool tx_path) 2833 { 2834 struct sk_buff *segs; 2835 2836 if (unlikely(skb_needs_check(skb, tx_path))) { 2837 int err; 2838 2839 /* We're going to init ->check field in TCP or UDP header */ 2840 err = skb_cow_head(skb, 0); 2841 if (err < 0) 2842 return ERR_PTR(err); 2843 } 2844 2845 /* Only report GSO partial support if it will enable us to 2846 * support segmentation on this frame without needing additional 2847 * work. 2848 */ 2849 if (features & NETIF_F_GSO_PARTIAL) { 2850 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2851 struct net_device *dev = skb->dev; 2852 2853 partial_features |= dev->features & dev->gso_partial_features; 2854 if (!skb_gso_ok(skb, features | partial_features)) 2855 features &= ~NETIF_F_GSO_PARTIAL; 2856 } 2857 2858 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2859 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2860 2861 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2862 SKB_GSO_CB(skb)->encap_level = 0; 2863 2864 skb_reset_mac_header(skb); 2865 skb_reset_mac_len(skb); 2866 2867 segs = skb_mac_gso_segment(skb, features); 2868 2869 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 2870 skb_warn_bad_offload(skb); 2871 2872 return segs; 2873 } 2874 EXPORT_SYMBOL(__skb_gso_segment); 2875 2876 /* Take action when hardware reception checksum errors are detected. */ 2877 #ifdef CONFIG_BUG 2878 void netdev_rx_csum_fault(struct net_device *dev) 2879 { 2880 if (net_ratelimit()) { 2881 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2882 dump_stack(); 2883 } 2884 } 2885 EXPORT_SYMBOL(netdev_rx_csum_fault); 2886 #endif 2887 2888 /* Actually, we should eliminate this check as soon as we know, that: 2889 * 1. IOMMU is present and allows to map all the memory. 2890 * 2. No high memory really exists on this machine. 2891 */ 2892 2893 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2894 { 2895 #ifdef CONFIG_HIGHMEM 2896 int i; 2897 2898 if (!(dev->features & NETIF_F_HIGHDMA)) { 2899 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2900 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2901 2902 if (PageHighMem(skb_frag_page(frag))) 2903 return 1; 2904 } 2905 } 2906 2907 if (PCI_DMA_BUS_IS_PHYS) { 2908 struct device *pdev = dev->dev.parent; 2909 2910 if (!pdev) 2911 return 0; 2912 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2913 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2914 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2915 2916 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2917 return 1; 2918 } 2919 } 2920 #endif 2921 return 0; 2922 } 2923 2924 /* If MPLS offload request, verify we are testing hardware MPLS features 2925 * instead of standard features for the netdev. 2926 */ 2927 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2928 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2929 netdev_features_t features, 2930 __be16 type) 2931 { 2932 if (eth_p_mpls(type)) 2933 features &= skb->dev->mpls_features; 2934 2935 return features; 2936 } 2937 #else 2938 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2939 netdev_features_t features, 2940 __be16 type) 2941 { 2942 return features; 2943 } 2944 #endif 2945 2946 static netdev_features_t harmonize_features(struct sk_buff *skb, 2947 netdev_features_t features) 2948 { 2949 int tmp; 2950 __be16 type; 2951 2952 type = skb_network_protocol(skb, &tmp); 2953 features = net_mpls_features(skb, features, type); 2954 2955 if (skb->ip_summed != CHECKSUM_NONE && 2956 !can_checksum_protocol(features, type)) { 2957 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2958 } 2959 if (illegal_highdma(skb->dev, skb)) 2960 features &= ~NETIF_F_SG; 2961 2962 return features; 2963 } 2964 2965 netdev_features_t passthru_features_check(struct sk_buff *skb, 2966 struct net_device *dev, 2967 netdev_features_t features) 2968 { 2969 return features; 2970 } 2971 EXPORT_SYMBOL(passthru_features_check); 2972 2973 static netdev_features_t dflt_features_check(struct sk_buff *skb, 2974 struct net_device *dev, 2975 netdev_features_t features) 2976 { 2977 return vlan_features_check(skb, features); 2978 } 2979 2980 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2981 struct net_device *dev, 2982 netdev_features_t features) 2983 { 2984 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2985 2986 if (gso_segs > dev->gso_max_segs) 2987 return features & ~NETIF_F_GSO_MASK; 2988 2989 /* Support for GSO partial features requires software 2990 * intervention before we can actually process the packets 2991 * so we need to strip support for any partial features now 2992 * and we can pull them back in after we have partially 2993 * segmented the frame. 2994 */ 2995 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2996 features &= ~dev->gso_partial_features; 2997 2998 /* Make sure to clear the IPv4 ID mangling feature if the 2999 * IPv4 header has the potential to be fragmented. 3000 */ 3001 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3002 struct iphdr *iph = skb->encapsulation ? 3003 inner_ip_hdr(skb) : ip_hdr(skb); 3004 3005 if (!(iph->frag_off & htons(IP_DF))) 3006 features &= ~NETIF_F_TSO_MANGLEID; 3007 } 3008 3009 return features; 3010 } 3011 3012 netdev_features_t netif_skb_features(struct sk_buff *skb) 3013 { 3014 struct net_device *dev = skb->dev; 3015 netdev_features_t features = dev->features; 3016 3017 if (skb_is_gso(skb)) 3018 features = gso_features_check(skb, dev, features); 3019 3020 /* If encapsulation offload request, verify we are testing 3021 * hardware encapsulation features instead of standard 3022 * features for the netdev 3023 */ 3024 if (skb->encapsulation) 3025 features &= dev->hw_enc_features; 3026 3027 if (skb_vlan_tagged(skb)) 3028 features = netdev_intersect_features(features, 3029 dev->vlan_features | 3030 NETIF_F_HW_VLAN_CTAG_TX | 3031 NETIF_F_HW_VLAN_STAG_TX); 3032 3033 if (dev->netdev_ops->ndo_features_check) 3034 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3035 features); 3036 else 3037 features &= dflt_features_check(skb, dev, features); 3038 3039 return harmonize_features(skb, features); 3040 } 3041 EXPORT_SYMBOL(netif_skb_features); 3042 3043 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3044 struct netdev_queue *txq, bool more) 3045 { 3046 unsigned int len; 3047 int rc; 3048 3049 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 3050 dev_queue_xmit_nit(skb, dev); 3051 3052 len = skb->len; 3053 trace_net_dev_start_xmit(skb, dev); 3054 rc = netdev_start_xmit(skb, dev, txq, more); 3055 trace_net_dev_xmit(skb, rc, dev, len); 3056 3057 return rc; 3058 } 3059 3060 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3061 struct netdev_queue *txq, int *ret) 3062 { 3063 struct sk_buff *skb = first; 3064 int rc = NETDEV_TX_OK; 3065 3066 while (skb) { 3067 struct sk_buff *next = skb->next; 3068 3069 skb->next = NULL; 3070 rc = xmit_one(skb, dev, txq, next != NULL); 3071 if (unlikely(!dev_xmit_complete(rc))) { 3072 skb->next = next; 3073 goto out; 3074 } 3075 3076 skb = next; 3077 if (netif_xmit_stopped(txq) && skb) { 3078 rc = NETDEV_TX_BUSY; 3079 break; 3080 } 3081 } 3082 3083 out: 3084 *ret = rc; 3085 return skb; 3086 } 3087 3088 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3089 netdev_features_t features) 3090 { 3091 if (skb_vlan_tag_present(skb) && 3092 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3093 skb = __vlan_hwaccel_push_inside(skb); 3094 return skb; 3095 } 3096 3097 int skb_csum_hwoffload_help(struct sk_buff *skb, 3098 const netdev_features_t features) 3099 { 3100 if (unlikely(skb->csum_not_inet)) 3101 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3102 skb_crc32c_csum_help(skb); 3103 3104 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3105 } 3106 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3107 3108 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3109 { 3110 netdev_features_t features; 3111 3112 features = netif_skb_features(skb); 3113 skb = validate_xmit_vlan(skb, features); 3114 if (unlikely(!skb)) 3115 goto out_null; 3116 3117 if (netif_needs_gso(skb, features)) { 3118 struct sk_buff *segs; 3119 3120 segs = skb_gso_segment(skb, features); 3121 if (IS_ERR(segs)) { 3122 goto out_kfree_skb; 3123 } else if (segs) { 3124 consume_skb(skb); 3125 skb = segs; 3126 } 3127 } else { 3128 if (skb_needs_linearize(skb, features) && 3129 __skb_linearize(skb)) 3130 goto out_kfree_skb; 3131 3132 /* If packet is not checksummed and device does not 3133 * support checksumming for this protocol, complete 3134 * checksumming here. 3135 */ 3136 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3137 if (skb->encapsulation) 3138 skb_set_inner_transport_header(skb, 3139 skb_checksum_start_offset(skb)); 3140 else 3141 skb_set_transport_header(skb, 3142 skb_checksum_start_offset(skb)); 3143 if (skb_csum_hwoffload_help(skb, features)) 3144 goto out_kfree_skb; 3145 } 3146 } 3147 3148 skb = validate_xmit_xfrm(skb, features, again); 3149 3150 return skb; 3151 3152 out_kfree_skb: 3153 kfree_skb(skb); 3154 out_null: 3155 atomic_long_inc(&dev->tx_dropped); 3156 return NULL; 3157 } 3158 3159 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3160 { 3161 struct sk_buff *next, *head = NULL, *tail; 3162 3163 for (; skb != NULL; skb = next) { 3164 next = skb->next; 3165 skb->next = NULL; 3166 3167 /* in case skb wont be segmented, point to itself */ 3168 skb->prev = skb; 3169 3170 skb = validate_xmit_skb(skb, dev, again); 3171 if (!skb) 3172 continue; 3173 3174 if (!head) 3175 head = skb; 3176 else 3177 tail->next = skb; 3178 /* If skb was segmented, skb->prev points to 3179 * the last segment. If not, it still contains skb. 3180 */ 3181 tail = skb->prev; 3182 } 3183 return head; 3184 } 3185 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3186 3187 static void qdisc_pkt_len_init(struct sk_buff *skb) 3188 { 3189 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3190 3191 qdisc_skb_cb(skb)->pkt_len = skb->len; 3192 3193 /* To get more precise estimation of bytes sent on wire, 3194 * we add to pkt_len the headers size of all segments 3195 */ 3196 if (shinfo->gso_size) { 3197 unsigned int hdr_len; 3198 u16 gso_segs = shinfo->gso_segs; 3199 3200 /* mac layer + network layer */ 3201 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3202 3203 /* + transport layer */ 3204 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3205 const struct tcphdr *th; 3206 struct tcphdr _tcphdr; 3207 3208 th = skb_header_pointer(skb, skb_transport_offset(skb), 3209 sizeof(_tcphdr), &_tcphdr); 3210 if (likely(th)) 3211 hdr_len += __tcp_hdrlen(th); 3212 } else { 3213 struct udphdr _udphdr; 3214 3215 if (skb_header_pointer(skb, skb_transport_offset(skb), 3216 sizeof(_udphdr), &_udphdr)) 3217 hdr_len += sizeof(struct udphdr); 3218 } 3219 3220 if (shinfo->gso_type & SKB_GSO_DODGY) 3221 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3222 shinfo->gso_size); 3223 3224 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3225 } 3226 } 3227 3228 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3229 struct net_device *dev, 3230 struct netdev_queue *txq) 3231 { 3232 spinlock_t *root_lock = qdisc_lock(q); 3233 struct sk_buff *to_free = NULL; 3234 bool contended; 3235 int rc; 3236 3237 qdisc_calculate_pkt_len(skb, q); 3238 3239 if (q->flags & TCQ_F_NOLOCK) { 3240 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3241 __qdisc_drop(skb, &to_free); 3242 rc = NET_XMIT_DROP; 3243 } else { 3244 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3245 __qdisc_run(q); 3246 } 3247 3248 if (unlikely(to_free)) 3249 kfree_skb_list(to_free); 3250 return rc; 3251 } 3252 3253 /* 3254 * Heuristic to force contended enqueues to serialize on a 3255 * separate lock before trying to get qdisc main lock. 3256 * This permits qdisc->running owner to get the lock more 3257 * often and dequeue packets faster. 3258 */ 3259 contended = qdisc_is_running(q); 3260 if (unlikely(contended)) 3261 spin_lock(&q->busylock); 3262 3263 spin_lock(root_lock); 3264 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3265 __qdisc_drop(skb, &to_free); 3266 rc = NET_XMIT_DROP; 3267 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3268 qdisc_run_begin(q)) { 3269 /* 3270 * This is a work-conserving queue; there are no old skbs 3271 * waiting to be sent out; and the qdisc is not running - 3272 * xmit the skb directly. 3273 */ 3274 3275 qdisc_bstats_update(q, skb); 3276 3277 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3278 if (unlikely(contended)) { 3279 spin_unlock(&q->busylock); 3280 contended = false; 3281 } 3282 __qdisc_run(q); 3283 } 3284 3285 qdisc_run_end(q); 3286 rc = NET_XMIT_SUCCESS; 3287 } else { 3288 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3289 if (qdisc_run_begin(q)) { 3290 if (unlikely(contended)) { 3291 spin_unlock(&q->busylock); 3292 contended = false; 3293 } 3294 __qdisc_run(q); 3295 qdisc_run_end(q); 3296 } 3297 } 3298 spin_unlock(root_lock); 3299 if (unlikely(to_free)) 3300 kfree_skb_list(to_free); 3301 if (unlikely(contended)) 3302 spin_unlock(&q->busylock); 3303 return rc; 3304 } 3305 3306 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3307 static void skb_update_prio(struct sk_buff *skb) 3308 { 3309 const struct netprio_map *map; 3310 const struct sock *sk; 3311 unsigned int prioidx; 3312 3313 if (skb->priority) 3314 return; 3315 map = rcu_dereference_bh(skb->dev->priomap); 3316 if (!map) 3317 return; 3318 sk = skb_to_full_sk(skb); 3319 if (!sk) 3320 return; 3321 3322 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3323 3324 if (prioidx < map->priomap_len) 3325 skb->priority = map->priomap[prioidx]; 3326 } 3327 #else 3328 #define skb_update_prio(skb) 3329 #endif 3330 3331 DEFINE_PER_CPU(int, xmit_recursion); 3332 EXPORT_SYMBOL(xmit_recursion); 3333 3334 /** 3335 * dev_loopback_xmit - loop back @skb 3336 * @net: network namespace this loopback is happening in 3337 * @sk: sk needed to be a netfilter okfn 3338 * @skb: buffer to transmit 3339 */ 3340 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3341 { 3342 skb_reset_mac_header(skb); 3343 __skb_pull(skb, skb_network_offset(skb)); 3344 skb->pkt_type = PACKET_LOOPBACK; 3345 skb->ip_summed = CHECKSUM_UNNECESSARY; 3346 WARN_ON(!skb_dst(skb)); 3347 skb_dst_force(skb); 3348 netif_rx_ni(skb); 3349 return 0; 3350 } 3351 EXPORT_SYMBOL(dev_loopback_xmit); 3352 3353 #ifdef CONFIG_NET_EGRESS 3354 static struct sk_buff * 3355 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3356 { 3357 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3358 struct tcf_result cl_res; 3359 3360 if (!miniq) 3361 return skb; 3362 3363 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3364 mini_qdisc_bstats_cpu_update(miniq, skb); 3365 3366 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3367 case TC_ACT_OK: 3368 case TC_ACT_RECLASSIFY: 3369 skb->tc_index = TC_H_MIN(cl_res.classid); 3370 break; 3371 case TC_ACT_SHOT: 3372 mini_qdisc_qstats_cpu_drop(miniq); 3373 *ret = NET_XMIT_DROP; 3374 kfree_skb(skb); 3375 return NULL; 3376 case TC_ACT_STOLEN: 3377 case TC_ACT_QUEUED: 3378 case TC_ACT_TRAP: 3379 *ret = NET_XMIT_SUCCESS; 3380 consume_skb(skb); 3381 return NULL; 3382 case TC_ACT_REDIRECT: 3383 /* No need to push/pop skb's mac_header here on egress! */ 3384 skb_do_redirect(skb); 3385 *ret = NET_XMIT_SUCCESS; 3386 return NULL; 3387 default: 3388 break; 3389 } 3390 3391 return skb; 3392 } 3393 #endif /* CONFIG_NET_EGRESS */ 3394 3395 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3396 { 3397 #ifdef CONFIG_XPS 3398 struct xps_dev_maps *dev_maps; 3399 struct xps_map *map; 3400 int queue_index = -1; 3401 3402 rcu_read_lock(); 3403 dev_maps = rcu_dereference(dev->xps_maps); 3404 if (dev_maps) { 3405 unsigned int tci = skb->sender_cpu - 1; 3406 3407 if (dev->num_tc) { 3408 tci *= dev->num_tc; 3409 tci += netdev_get_prio_tc_map(dev, skb->priority); 3410 } 3411 3412 map = rcu_dereference(dev_maps->cpu_map[tci]); 3413 if (map) { 3414 if (map->len == 1) 3415 queue_index = map->queues[0]; 3416 else 3417 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3418 map->len)]; 3419 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3420 queue_index = -1; 3421 } 3422 } 3423 rcu_read_unlock(); 3424 3425 return queue_index; 3426 #else 3427 return -1; 3428 #endif 3429 } 3430 3431 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3432 { 3433 struct sock *sk = skb->sk; 3434 int queue_index = sk_tx_queue_get(sk); 3435 3436 if (queue_index < 0 || skb->ooo_okay || 3437 queue_index >= dev->real_num_tx_queues) { 3438 int new_index = get_xps_queue(dev, skb); 3439 3440 if (new_index < 0) 3441 new_index = skb_tx_hash(dev, skb); 3442 3443 if (queue_index != new_index && sk && 3444 sk_fullsock(sk) && 3445 rcu_access_pointer(sk->sk_dst_cache)) 3446 sk_tx_queue_set(sk, new_index); 3447 3448 queue_index = new_index; 3449 } 3450 3451 return queue_index; 3452 } 3453 3454 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3455 struct sk_buff *skb, 3456 void *accel_priv) 3457 { 3458 int queue_index = 0; 3459 3460 #ifdef CONFIG_XPS 3461 u32 sender_cpu = skb->sender_cpu - 1; 3462 3463 if (sender_cpu >= (u32)NR_CPUS) 3464 skb->sender_cpu = raw_smp_processor_id() + 1; 3465 #endif 3466 3467 if (dev->real_num_tx_queues != 1) { 3468 const struct net_device_ops *ops = dev->netdev_ops; 3469 3470 if (ops->ndo_select_queue) 3471 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3472 __netdev_pick_tx); 3473 else 3474 queue_index = __netdev_pick_tx(dev, skb); 3475 3476 queue_index = netdev_cap_txqueue(dev, queue_index); 3477 } 3478 3479 skb_set_queue_mapping(skb, queue_index); 3480 return netdev_get_tx_queue(dev, queue_index); 3481 } 3482 3483 /** 3484 * __dev_queue_xmit - transmit a buffer 3485 * @skb: buffer to transmit 3486 * @accel_priv: private data used for L2 forwarding offload 3487 * 3488 * Queue a buffer for transmission to a network device. The caller must 3489 * have set the device and priority and built the buffer before calling 3490 * this function. The function can be called from an interrupt. 3491 * 3492 * A negative errno code is returned on a failure. A success does not 3493 * guarantee the frame will be transmitted as it may be dropped due 3494 * to congestion or traffic shaping. 3495 * 3496 * ----------------------------------------------------------------------------------- 3497 * I notice this method can also return errors from the queue disciplines, 3498 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3499 * be positive. 3500 * 3501 * Regardless of the return value, the skb is consumed, so it is currently 3502 * difficult to retry a send to this method. (You can bump the ref count 3503 * before sending to hold a reference for retry if you are careful.) 3504 * 3505 * When calling this method, interrupts MUST be enabled. This is because 3506 * the BH enable code must have IRQs enabled so that it will not deadlock. 3507 * --BLG 3508 */ 3509 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3510 { 3511 struct net_device *dev = skb->dev; 3512 struct netdev_queue *txq; 3513 struct Qdisc *q; 3514 int rc = -ENOMEM; 3515 bool again = false; 3516 3517 skb_reset_mac_header(skb); 3518 3519 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3520 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3521 3522 /* Disable soft irqs for various locks below. Also 3523 * stops preemption for RCU. 3524 */ 3525 rcu_read_lock_bh(); 3526 3527 skb_update_prio(skb); 3528 3529 qdisc_pkt_len_init(skb); 3530 #ifdef CONFIG_NET_CLS_ACT 3531 skb->tc_at_ingress = 0; 3532 # ifdef CONFIG_NET_EGRESS 3533 if (static_key_false(&egress_needed)) { 3534 skb = sch_handle_egress(skb, &rc, dev); 3535 if (!skb) 3536 goto out; 3537 } 3538 # endif 3539 #endif 3540 /* If device/qdisc don't need skb->dst, release it right now while 3541 * its hot in this cpu cache. 3542 */ 3543 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3544 skb_dst_drop(skb); 3545 else 3546 skb_dst_force(skb); 3547 3548 txq = netdev_pick_tx(dev, skb, accel_priv); 3549 q = rcu_dereference_bh(txq->qdisc); 3550 3551 trace_net_dev_queue(skb); 3552 if (q->enqueue) { 3553 rc = __dev_xmit_skb(skb, q, dev, txq); 3554 goto out; 3555 } 3556 3557 /* The device has no queue. Common case for software devices: 3558 * loopback, all the sorts of tunnels... 3559 3560 * Really, it is unlikely that netif_tx_lock protection is necessary 3561 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3562 * counters.) 3563 * However, it is possible, that they rely on protection 3564 * made by us here. 3565 3566 * Check this and shot the lock. It is not prone from deadlocks. 3567 *Either shot noqueue qdisc, it is even simpler 8) 3568 */ 3569 if (dev->flags & IFF_UP) { 3570 int cpu = smp_processor_id(); /* ok because BHs are off */ 3571 3572 if (txq->xmit_lock_owner != cpu) { 3573 if (unlikely(__this_cpu_read(xmit_recursion) > 3574 XMIT_RECURSION_LIMIT)) 3575 goto recursion_alert; 3576 3577 skb = validate_xmit_skb(skb, dev, &again); 3578 if (!skb) 3579 goto out; 3580 3581 HARD_TX_LOCK(dev, txq, cpu); 3582 3583 if (!netif_xmit_stopped(txq)) { 3584 __this_cpu_inc(xmit_recursion); 3585 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3586 __this_cpu_dec(xmit_recursion); 3587 if (dev_xmit_complete(rc)) { 3588 HARD_TX_UNLOCK(dev, txq); 3589 goto out; 3590 } 3591 } 3592 HARD_TX_UNLOCK(dev, txq); 3593 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3594 dev->name); 3595 } else { 3596 /* Recursion is detected! It is possible, 3597 * unfortunately 3598 */ 3599 recursion_alert: 3600 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3601 dev->name); 3602 } 3603 } 3604 3605 rc = -ENETDOWN; 3606 rcu_read_unlock_bh(); 3607 3608 atomic_long_inc(&dev->tx_dropped); 3609 kfree_skb_list(skb); 3610 return rc; 3611 out: 3612 rcu_read_unlock_bh(); 3613 return rc; 3614 } 3615 3616 int dev_queue_xmit(struct sk_buff *skb) 3617 { 3618 return __dev_queue_xmit(skb, NULL); 3619 } 3620 EXPORT_SYMBOL(dev_queue_xmit); 3621 3622 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3623 { 3624 return __dev_queue_xmit(skb, accel_priv); 3625 } 3626 EXPORT_SYMBOL(dev_queue_xmit_accel); 3627 3628 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3629 { 3630 struct net_device *dev = skb->dev; 3631 struct sk_buff *orig_skb = skb; 3632 struct netdev_queue *txq; 3633 int ret = NETDEV_TX_BUSY; 3634 bool again = false; 3635 3636 if (unlikely(!netif_running(dev) || 3637 !netif_carrier_ok(dev))) 3638 goto drop; 3639 3640 skb = validate_xmit_skb_list(skb, dev, &again); 3641 if (skb != orig_skb) 3642 goto drop; 3643 3644 skb_set_queue_mapping(skb, queue_id); 3645 txq = skb_get_tx_queue(dev, skb); 3646 3647 local_bh_disable(); 3648 3649 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3650 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3651 ret = netdev_start_xmit(skb, dev, txq, false); 3652 HARD_TX_UNLOCK(dev, txq); 3653 3654 local_bh_enable(); 3655 3656 if (!dev_xmit_complete(ret)) 3657 kfree_skb(skb); 3658 3659 return ret; 3660 drop: 3661 atomic_long_inc(&dev->tx_dropped); 3662 kfree_skb_list(skb); 3663 return NET_XMIT_DROP; 3664 } 3665 EXPORT_SYMBOL(dev_direct_xmit); 3666 3667 /************************************************************************* 3668 * Receiver routines 3669 *************************************************************************/ 3670 3671 int netdev_max_backlog __read_mostly = 1000; 3672 EXPORT_SYMBOL(netdev_max_backlog); 3673 3674 int netdev_tstamp_prequeue __read_mostly = 1; 3675 int netdev_budget __read_mostly = 300; 3676 unsigned int __read_mostly netdev_budget_usecs = 2000; 3677 int weight_p __read_mostly = 64; /* old backlog weight */ 3678 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3679 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3680 int dev_rx_weight __read_mostly = 64; 3681 int dev_tx_weight __read_mostly = 64; 3682 3683 /* Called with irq disabled */ 3684 static inline void ____napi_schedule(struct softnet_data *sd, 3685 struct napi_struct *napi) 3686 { 3687 list_add_tail(&napi->poll_list, &sd->poll_list); 3688 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3689 } 3690 3691 #ifdef CONFIG_RPS 3692 3693 /* One global table that all flow-based protocols share. */ 3694 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3695 EXPORT_SYMBOL(rps_sock_flow_table); 3696 u32 rps_cpu_mask __read_mostly; 3697 EXPORT_SYMBOL(rps_cpu_mask); 3698 3699 struct static_key rps_needed __read_mostly; 3700 EXPORT_SYMBOL(rps_needed); 3701 struct static_key rfs_needed __read_mostly; 3702 EXPORT_SYMBOL(rfs_needed); 3703 3704 static struct rps_dev_flow * 3705 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3706 struct rps_dev_flow *rflow, u16 next_cpu) 3707 { 3708 if (next_cpu < nr_cpu_ids) { 3709 #ifdef CONFIG_RFS_ACCEL 3710 struct netdev_rx_queue *rxqueue; 3711 struct rps_dev_flow_table *flow_table; 3712 struct rps_dev_flow *old_rflow; 3713 u32 flow_id; 3714 u16 rxq_index; 3715 int rc; 3716 3717 /* Should we steer this flow to a different hardware queue? */ 3718 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3719 !(dev->features & NETIF_F_NTUPLE)) 3720 goto out; 3721 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3722 if (rxq_index == skb_get_rx_queue(skb)) 3723 goto out; 3724 3725 rxqueue = dev->_rx + rxq_index; 3726 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3727 if (!flow_table) 3728 goto out; 3729 flow_id = skb_get_hash(skb) & flow_table->mask; 3730 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3731 rxq_index, flow_id); 3732 if (rc < 0) 3733 goto out; 3734 old_rflow = rflow; 3735 rflow = &flow_table->flows[flow_id]; 3736 rflow->filter = rc; 3737 if (old_rflow->filter == rflow->filter) 3738 old_rflow->filter = RPS_NO_FILTER; 3739 out: 3740 #endif 3741 rflow->last_qtail = 3742 per_cpu(softnet_data, next_cpu).input_queue_head; 3743 } 3744 3745 rflow->cpu = next_cpu; 3746 return rflow; 3747 } 3748 3749 /* 3750 * get_rps_cpu is called from netif_receive_skb and returns the target 3751 * CPU from the RPS map of the receiving queue for a given skb. 3752 * rcu_read_lock must be held on entry. 3753 */ 3754 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3755 struct rps_dev_flow **rflowp) 3756 { 3757 const struct rps_sock_flow_table *sock_flow_table; 3758 struct netdev_rx_queue *rxqueue = dev->_rx; 3759 struct rps_dev_flow_table *flow_table; 3760 struct rps_map *map; 3761 int cpu = -1; 3762 u32 tcpu; 3763 u32 hash; 3764 3765 if (skb_rx_queue_recorded(skb)) { 3766 u16 index = skb_get_rx_queue(skb); 3767 3768 if (unlikely(index >= dev->real_num_rx_queues)) { 3769 WARN_ONCE(dev->real_num_rx_queues > 1, 3770 "%s received packet on queue %u, but number " 3771 "of RX queues is %u\n", 3772 dev->name, index, dev->real_num_rx_queues); 3773 goto done; 3774 } 3775 rxqueue += index; 3776 } 3777 3778 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3779 3780 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3781 map = rcu_dereference(rxqueue->rps_map); 3782 if (!flow_table && !map) 3783 goto done; 3784 3785 skb_reset_network_header(skb); 3786 hash = skb_get_hash(skb); 3787 if (!hash) 3788 goto done; 3789 3790 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3791 if (flow_table && sock_flow_table) { 3792 struct rps_dev_flow *rflow; 3793 u32 next_cpu; 3794 u32 ident; 3795 3796 /* First check into global flow table if there is a match */ 3797 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3798 if ((ident ^ hash) & ~rps_cpu_mask) 3799 goto try_rps; 3800 3801 next_cpu = ident & rps_cpu_mask; 3802 3803 /* OK, now we know there is a match, 3804 * we can look at the local (per receive queue) flow table 3805 */ 3806 rflow = &flow_table->flows[hash & flow_table->mask]; 3807 tcpu = rflow->cpu; 3808 3809 /* 3810 * If the desired CPU (where last recvmsg was done) is 3811 * different from current CPU (one in the rx-queue flow 3812 * table entry), switch if one of the following holds: 3813 * - Current CPU is unset (>= nr_cpu_ids). 3814 * - Current CPU is offline. 3815 * - The current CPU's queue tail has advanced beyond the 3816 * last packet that was enqueued using this table entry. 3817 * This guarantees that all previous packets for the flow 3818 * have been dequeued, thus preserving in order delivery. 3819 */ 3820 if (unlikely(tcpu != next_cpu) && 3821 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3822 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3823 rflow->last_qtail)) >= 0)) { 3824 tcpu = next_cpu; 3825 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3826 } 3827 3828 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3829 *rflowp = rflow; 3830 cpu = tcpu; 3831 goto done; 3832 } 3833 } 3834 3835 try_rps: 3836 3837 if (map) { 3838 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3839 if (cpu_online(tcpu)) { 3840 cpu = tcpu; 3841 goto done; 3842 } 3843 } 3844 3845 done: 3846 return cpu; 3847 } 3848 3849 #ifdef CONFIG_RFS_ACCEL 3850 3851 /** 3852 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3853 * @dev: Device on which the filter was set 3854 * @rxq_index: RX queue index 3855 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3856 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3857 * 3858 * Drivers that implement ndo_rx_flow_steer() should periodically call 3859 * this function for each installed filter and remove the filters for 3860 * which it returns %true. 3861 */ 3862 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3863 u32 flow_id, u16 filter_id) 3864 { 3865 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3866 struct rps_dev_flow_table *flow_table; 3867 struct rps_dev_flow *rflow; 3868 bool expire = true; 3869 unsigned int cpu; 3870 3871 rcu_read_lock(); 3872 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3873 if (flow_table && flow_id <= flow_table->mask) { 3874 rflow = &flow_table->flows[flow_id]; 3875 cpu = READ_ONCE(rflow->cpu); 3876 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3877 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3878 rflow->last_qtail) < 3879 (int)(10 * flow_table->mask))) 3880 expire = false; 3881 } 3882 rcu_read_unlock(); 3883 return expire; 3884 } 3885 EXPORT_SYMBOL(rps_may_expire_flow); 3886 3887 #endif /* CONFIG_RFS_ACCEL */ 3888 3889 /* Called from hardirq (IPI) context */ 3890 static void rps_trigger_softirq(void *data) 3891 { 3892 struct softnet_data *sd = data; 3893 3894 ____napi_schedule(sd, &sd->backlog); 3895 sd->received_rps++; 3896 } 3897 3898 #endif /* CONFIG_RPS */ 3899 3900 /* 3901 * Check if this softnet_data structure is another cpu one 3902 * If yes, queue it to our IPI list and return 1 3903 * If no, return 0 3904 */ 3905 static int rps_ipi_queued(struct softnet_data *sd) 3906 { 3907 #ifdef CONFIG_RPS 3908 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3909 3910 if (sd != mysd) { 3911 sd->rps_ipi_next = mysd->rps_ipi_list; 3912 mysd->rps_ipi_list = sd; 3913 3914 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3915 return 1; 3916 } 3917 #endif /* CONFIG_RPS */ 3918 return 0; 3919 } 3920 3921 #ifdef CONFIG_NET_FLOW_LIMIT 3922 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3923 #endif 3924 3925 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3926 { 3927 #ifdef CONFIG_NET_FLOW_LIMIT 3928 struct sd_flow_limit *fl; 3929 struct softnet_data *sd; 3930 unsigned int old_flow, new_flow; 3931 3932 if (qlen < (netdev_max_backlog >> 1)) 3933 return false; 3934 3935 sd = this_cpu_ptr(&softnet_data); 3936 3937 rcu_read_lock(); 3938 fl = rcu_dereference(sd->flow_limit); 3939 if (fl) { 3940 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3941 old_flow = fl->history[fl->history_head]; 3942 fl->history[fl->history_head] = new_flow; 3943 3944 fl->history_head++; 3945 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3946 3947 if (likely(fl->buckets[old_flow])) 3948 fl->buckets[old_flow]--; 3949 3950 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3951 fl->count++; 3952 rcu_read_unlock(); 3953 return true; 3954 } 3955 } 3956 rcu_read_unlock(); 3957 #endif 3958 return false; 3959 } 3960 3961 /* 3962 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3963 * queue (may be a remote CPU queue). 3964 */ 3965 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3966 unsigned int *qtail) 3967 { 3968 struct softnet_data *sd; 3969 unsigned long flags; 3970 unsigned int qlen; 3971 3972 sd = &per_cpu(softnet_data, cpu); 3973 3974 local_irq_save(flags); 3975 3976 rps_lock(sd); 3977 if (!netif_running(skb->dev)) 3978 goto drop; 3979 qlen = skb_queue_len(&sd->input_pkt_queue); 3980 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3981 if (qlen) { 3982 enqueue: 3983 __skb_queue_tail(&sd->input_pkt_queue, skb); 3984 input_queue_tail_incr_save(sd, qtail); 3985 rps_unlock(sd); 3986 local_irq_restore(flags); 3987 return NET_RX_SUCCESS; 3988 } 3989 3990 /* Schedule NAPI for backlog device 3991 * We can use non atomic operation since we own the queue lock 3992 */ 3993 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3994 if (!rps_ipi_queued(sd)) 3995 ____napi_schedule(sd, &sd->backlog); 3996 } 3997 goto enqueue; 3998 } 3999 4000 drop: 4001 sd->dropped++; 4002 rps_unlock(sd); 4003 4004 local_irq_restore(flags); 4005 4006 atomic_long_inc(&skb->dev->rx_dropped); 4007 kfree_skb(skb); 4008 return NET_RX_DROP; 4009 } 4010 4011 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4012 { 4013 struct net_device *dev = skb->dev; 4014 struct netdev_rx_queue *rxqueue; 4015 4016 rxqueue = dev->_rx; 4017 4018 if (skb_rx_queue_recorded(skb)) { 4019 u16 index = skb_get_rx_queue(skb); 4020 4021 if (unlikely(index >= dev->real_num_rx_queues)) { 4022 WARN_ONCE(dev->real_num_rx_queues > 1, 4023 "%s received packet on queue %u, but number " 4024 "of RX queues is %u\n", 4025 dev->name, index, dev->real_num_rx_queues); 4026 4027 return rxqueue; /* Return first rxqueue */ 4028 } 4029 rxqueue += index; 4030 } 4031 return rxqueue; 4032 } 4033 4034 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4035 struct xdp_buff *xdp, 4036 struct bpf_prog *xdp_prog) 4037 { 4038 struct netdev_rx_queue *rxqueue; 4039 void *orig_data, *orig_data_end; 4040 u32 metalen, act = XDP_DROP; 4041 int hlen, off; 4042 u32 mac_len; 4043 4044 /* Reinjected packets coming from act_mirred or similar should 4045 * not get XDP generic processing. 4046 */ 4047 if (skb_cloned(skb)) 4048 return XDP_PASS; 4049 4050 /* XDP packets must be linear and must have sufficient headroom 4051 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4052 * native XDP provides, thus we need to do it here as well. 4053 */ 4054 if (skb_is_nonlinear(skb) || 4055 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4056 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4057 int troom = skb->tail + skb->data_len - skb->end; 4058 4059 /* In case we have to go down the path and also linearize, 4060 * then lets do the pskb_expand_head() work just once here. 4061 */ 4062 if (pskb_expand_head(skb, 4063 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4064 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4065 goto do_drop; 4066 if (skb_linearize(skb)) 4067 goto do_drop; 4068 } 4069 4070 /* The XDP program wants to see the packet starting at the MAC 4071 * header. 4072 */ 4073 mac_len = skb->data - skb_mac_header(skb); 4074 hlen = skb_headlen(skb) + mac_len; 4075 xdp->data = skb->data - mac_len; 4076 xdp->data_meta = xdp->data; 4077 xdp->data_end = xdp->data + hlen; 4078 xdp->data_hard_start = skb->data - skb_headroom(skb); 4079 orig_data_end = xdp->data_end; 4080 orig_data = xdp->data; 4081 4082 rxqueue = netif_get_rxqueue(skb); 4083 xdp->rxq = &rxqueue->xdp_rxq; 4084 4085 act = bpf_prog_run_xdp(xdp_prog, xdp); 4086 4087 off = xdp->data - orig_data; 4088 if (off > 0) 4089 __skb_pull(skb, off); 4090 else if (off < 0) 4091 __skb_push(skb, -off); 4092 skb->mac_header += off; 4093 4094 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4095 * pckt. 4096 */ 4097 off = orig_data_end - xdp->data_end; 4098 if (off != 0) { 4099 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4100 skb->len -= off; 4101 4102 } 4103 4104 switch (act) { 4105 case XDP_REDIRECT: 4106 case XDP_TX: 4107 __skb_push(skb, mac_len); 4108 break; 4109 case XDP_PASS: 4110 metalen = xdp->data - xdp->data_meta; 4111 if (metalen) 4112 skb_metadata_set(skb, metalen); 4113 break; 4114 default: 4115 bpf_warn_invalid_xdp_action(act); 4116 /* fall through */ 4117 case XDP_ABORTED: 4118 trace_xdp_exception(skb->dev, xdp_prog, act); 4119 /* fall through */ 4120 case XDP_DROP: 4121 do_drop: 4122 kfree_skb(skb); 4123 break; 4124 } 4125 4126 return act; 4127 } 4128 4129 /* When doing generic XDP we have to bypass the qdisc layer and the 4130 * network taps in order to match in-driver-XDP behavior. 4131 */ 4132 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4133 { 4134 struct net_device *dev = skb->dev; 4135 struct netdev_queue *txq; 4136 bool free_skb = true; 4137 int cpu, rc; 4138 4139 txq = netdev_pick_tx(dev, skb, NULL); 4140 cpu = smp_processor_id(); 4141 HARD_TX_LOCK(dev, txq, cpu); 4142 if (!netif_xmit_stopped(txq)) { 4143 rc = netdev_start_xmit(skb, dev, txq, 0); 4144 if (dev_xmit_complete(rc)) 4145 free_skb = false; 4146 } 4147 HARD_TX_UNLOCK(dev, txq); 4148 if (free_skb) { 4149 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4150 kfree_skb(skb); 4151 } 4152 } 4153 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4154 4155 static struct static_key generic_xdp_needed __read_mostly; 4156 4157 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4158 { 4159 if (xdp_prog) { 4160 struct xdp_buff xdp; 4161 u32 act; 4162 int err; 4163 4164 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4165 if (act != XDP_PASS) { 4166 switch (act) { 4167 case XDP_REDIRECT: 4168 err = xdp_do_generic_redirect(skb->dev, skb, 4169 &xdp, xdp_prog); 4170 if (err) 4171 goto out_redir; 4172 break; 4173 case XDP_TX: 4174 generic_xdp_tx(skb, xdp_prog); 4175 break; 4176 } 4177 return XDP_DROP; 4178 } 4179 } 4180 return XDP_PASS; 4181 out_redir: 4182 kfree_skb(skb); 4183 return XDP_DROP; 4184 } 4185 EXPORT_SYMBOL_GPL(do_xdp_generic); 4186 4187 static int netif_rx_internal(struct sk_buff *skb) 4188 { 4189 int ret; 4190 4191 net_timestamp_check(netdev_tstamp_prequeue, skb); 4192 4193 trace_netif_rx(skb); 4194 4195 if (static_key_false(&generic_xdp_needed)) { 4196 int ret; 4197 4198 preempt_disable(); 4199 rcu_read_lock(); 4200 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4201 rcu_read_unlock(); 4202 preempt_enable(); 4203 4204 /* Consider XDP consuming the packet a success from 4205 * the netdev point of view we do not want to count 4206 * this as an error. 4207 */ 4208 if (ret != XDP_PASS) 4209 return NET_RX_SUCCESS; 4210 } 4211 4212 #ifdef CONFIG_RPS 4213 if (static_key_false(&rps_needed)) { 4214 struct rps_dev_flow voidflow, *rflow = &voidflow; 4215 int cpu; 4216 4217 preempt_disable(); 4218 rcu_read_lock(); 4219 4220 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4221 if (cpu < 0) 4222 cpu = smp_processor_id(); 4223 4224 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4225 4226 rcu_read_unlock(); 4227 preempt_enable(); 4228 } else 4229 #endif 4230 { 4231 unsigned int qtail; 4232 4233 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4234 put_cpu(); 4235 } 4236 return ret; 4237 } 4238 4239 /** 4240 * netif_rx - post buffer to the network code 4241 * @skb: buffer to post 4242 * 4243 * This function receives a packet from a device driver and queues it for 4244 * the upper (protocol) levels to process. It always succeeds. The buffer 4245 * may be dropped during processing for congestion control or by the 4246 * protocol layers. 4247 * 4248 * return values: 4249 * NET_RX_SUCCESS (no congestion) 4250 * NET_RX_DROP (packet was dropped) 4251 * 4252 */ 4253 4254 int netif_rx(struct sk_buff *skb) 4255 { 4256 trace_netif_rx_entry(skb); 4257 4258 return netif_rx_internal(skb); 4259 } 4260 EXPORT_SYMBOL(netif_rx); 4261 4262 int netif_rx_ni(struct sk_buff *skb) 4263 { 4264 int err; 4265 4266 trace_netif_rx_ni_entry(skb); 4267 4268 preempt_disable(); 4269 err = netif_rx_internal(skb); 4270 if (local_softirq_pending()) 4271 do_softirq(); 4272 preempt_enable(); 4273 4274 return err; 4275 } 4276 EXPORT_SYMBOL(netif_rx_ni); 4277 4278 static __latent_entropy void net_tx_action(struct softirq_action *h) 4279 { 4280 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4281 4282 if (sd->completion_queue) { 4283 struct sk_buff *clist; 4284 4285 local_irq_disable(); 4286 clist = sd->completion_queue; 4287 sd->completion_queue = NULL; 4288 local_irq_enable(); 4289 4290 while (clist) { 4291 struct sk_buff *skb = clist; 4292 4293 clist = clist->next; 4294 4295 WARN_ON(refcount_read(&skb->users)); 4296 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4297 trace_consume_skb(skb); 4298 else 4299 trace_kfree_skb(skb, net_tx_action); 4300 4301 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4302 __kfree_skb(skb); 4303 else 4304 __kfree_skb_defer(skb); 4305 } 4306 4307 __kfree_skb_flush(); 4308 } 4309 4310 if (sd->output_queue) { 4311 struct Qdisc *head; 4312 4313 local_irq_disable(); 4314 head = sd->output_queue; 4315 sd->output_queue = NULL; 4316 sd->output_queue_tailp = &sd->output_queue; 4317 local_irq_enable(); 4318 4319 while (head) { 4320 struct Qdisc *q = head; 4321 spinlock_t *root_lock = NULL; 4322 4323 head = head->next_sched; 4324 4325 if (!(q->flags & TCQ_F_NOLOCK)) { 4326 root_lock = qdisc_lock(q); 4327 spin_lock(root_lock); 4328 } 4329 /* We need to make sure head->next_sched is read 4330 * before clearing __QDISC_STATE_SCHED 4331 */ 4332 smp_mb__before_atomic(); 4333 clear_bit(__QDISC_STATE_SCHED, &q->state); 4334 qdisc_run(q); 4335 if (root_lock) 4336 spin_unlock(root_lock); 4337 } 4338 } 4339 4340 xfrm_dev_backlog(sd); 4341 } 4342 4343 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4344 /* This hook is defined here for ATM LANE */ 4345 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4346 unsigned char *addr) __read_mostly; 4347 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4348 #endif 4349 4350 static inline struct sk_buff * 4351 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4352 struct net_device *orig_dev) 4353 { 4354 #ifdef CONFIG_NET_CLS_ACT 4355 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4356 struct tcf_result cl_res; 4357 4358 /* If there's at least one ingress present somewhere (so 4359 * we get here via enabled static key), remaining devices 4360 * that are not configured with an ingress qdisc will bail 4361 * out here. 4362 */ 4363 if (!miniq) 4364 return skb; 4365 4366 if (*pt_prev) { 4367 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4368 *pt_prev = NULL; 4369 } 4370 4371 qdisc_skb_cb(skb)->pkt_len = skb->len; 4372 skb->tc_at_ingress = 1; 4373 mini_qdisc_bstats_cpu_update(miniq, skb); 4374 4375 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4376 case TC_ACT_OK: 4377 case TC_ACT_RECLASSIFY: 4378 skb->tc_index = TC_H_MIN(cl_res.classid); 4379 break; 4380 case TC_ACT_SHOT: 4381 mini_qdisc_qstats_cpu_drop(miniq); 4382 kfree_skb(skb); 4383 return NULL; 4384 case TC_ACT_STOLEN: 4385 case TC_ACT_QUEUED: 4386 case TC_ACT_TRAP: 4387 consume_skb(skb); 4388 return NULL; 4389 case TC_ACT_REDIRECT: 4390 /* skb_mac_header check was done by cls/act_bpf, so 4391 * we can safely push the L2 header back before 4392 * redirecting to another netdev 4393 */ 4394 __skb_push(skb, skb->mac_len); 4395 skb_do_redirect(skb); 4396 return NULL; 4397 default: 4398 break; 4399 } 4400 #endif /* CONFIG_NET_CLS_ACT */ 4401 return skb; 4402 } 4403 4404 /** 4405 * netdev_is_rx_handler_busy - check if receive handler is registered 4406 * @dev: device to check 4407 * 4408 * Check if a receive handler is already registered for a given device. 4409 * Return true if there one. 4410 * 4411 * The caller must hold the rtnl_mutex. 4412 */ 4413 bool netdev_is_rx_handler_busy(struct net_device *dev) 4414 { 4415 ASSERT_RTNL(); 4416 return dev && rtnl_dereference(dev->rx_handler); 4417 } 4418 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4419 4420 /** 4421 * netdev_rx_handler_register - register receive handler 4422 * @dev: device to register a handler for 4423 * @rx_handler: receive handler to register 4424 * @rx_handler_data: data pointer that is used by rx handler 4425 * 4426 * Register a receive handler for a device. This handler will then be 4427 * called from __netif_receive_skb. A negative errno code is returned 4428 * on a failure. 4429 * 4430 * The caller must hold the rtnl_mutex. 4431 * 4432 * For a general description of rx_handler, see enum rx_handler_result. 4433 */ 4434 int netdev_rx_handler_register(struct net_device *dev, 4435 rx_handler_func_t *rx_handler, 4436 void *rx_handler_data) 4437 { 4438 if (netdev_is_rx_handler_busy(dev)) 4439 return -EBUSY; 4440 4441 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4442 return -EINVAL; 4443 4444 /* Note: rx_handler_data must be set before rx_handler */ 4445 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4446 rcu_assign_pointer(dev->rx_handler, rx_handler); 4447 4448 return 0; 4449 } 4450 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4451 4452 /** 4453 * netdev_rx_handler_unregister - unregister receive handler 4454 * @dev: device to unregister a handler from 4455 * 4456 * Unregister a receive handler from a device. 4457 * 4458 * The caller must hold the rtnl_mutex. 4459 */ 4460 void netdev_rx_handler_unregister(struct net_device *dev) 4461 { 4462 4463 ASSERT_RTNL(); 4464 RCU_INIT_POINTER(dev->rx_handler, NULL); 4465 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4466 * section has a guarantee to see a non NULL rx_handler_data 4467 * as well. 4468 */ 4469 synchronize_net(); 4470 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4471 } 4472 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4473 4474 /* 4475 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4476 * the special handling of PFMEMALLOC skbs. 4477 */ 4478 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4479 { 4480 switch (skb->protocol) { 4481 case htons(ETH_P_ARP): 4482 case htons(ETH_P_IP): 4483 case htons(ETH_P_IPV6): 4484 case htons(ETH_P_8021Q): 4485 case htons(ETH_P_8021AD): 4486 return true; 4487 default: 4488 return false; 4489 } 4490 } 4491 4492 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4493 int *ret, struct net_device *orig_dev) 4494 { 4495 #ifdef CONFIG_NETFILTER_INGRESS 4496 if (nf_hook_ingress_active(skb)) { 4497 int ingress_retval; 4498 4499 if (*pt_prev) { 4500 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4501 *pt_prev = NULL; 4502 } 4503 4504 rcu_read_lock(); 4505 ingress_retval = nf_hook_ingress(skb); 4506 rcu_read_unlock(); 4507 return ingress_retval; 4508 } 4509 #endif /* CONFIG_NETFILTER_INGRESS */ 4510 return 0; 4511 } 4512 4513 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4514 { 4515 struct packet_type *ptype, *pt_prev; 4516 rx_handler_func_t *rx_handler; 4517 struct net_device *orig_dev; 4518 bool deliver_exact = false; 4519 int ret = NET_RX_DROP; 4520 __be16 type; 4521 4522 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4523 4524 trace_netif_receive_skb(skb); 4525 4526 orig_dev = skb->dev; 4527 4528 skb_reset_network_header(skb); 4529 if (!skb_transport_header_was_set(skb)) 4530 skb_reset_transport_header(skb); 4531 skb_reset_mac_len(skb); 4532 4533 pt_prev = NULL; 4534 4535 another_round: 4536 skb->skb_iif = skb->dev->ifindex; 4537 4538 __this_cpu_inc(softnet_data.processed); 4539 4540 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4541 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4542 skb = skb_vlan_untag(skb); 4543 if (unlikely(!skb)) 4544 goto out; 4545 } 4546 4547 if (skb_skip_tc_classify(skb)) 4548 goto skip_classify; 4549 4550 if (pfmemalloc) 4551 goto skip_taps; 4552 4553 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4554 if (pt_prev) 4555 ret = deliver_skb(skb, pt_prev, orig_dev); 4556 pt_prev = ptype; 4557 } 4558 4559 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4560 if (pt_prev) 4561 ret = deliver_skb(skb, pt_prev, orig_dev); 4562 pt_prev = ptype; 4563 } 4564 4565 skip_taps: 4566 #ifdef CONFIG_NET_INGRESS 4567 if (static_key_false(&ingress_needed)) { 4568 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4569 if (!skb) 4570 goto out; 4571 4572 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4573 goto out; 4574 } 4575 #endif 4576 skb_reset_tc(skb); 4577 skip_classify: 4578 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4579 goto drop; 4580 4581 if (skb_vlan_tag_present(skb)) { 4582 if (pt_prev) { 4583 ret = deliver_skb(skb, pt_prev, orig_dev); 4584 pt_prev = NULL; 4585 } 4586 if (vlan_do_receive(&skb)) 4587 goto another_round; 4588 else if (unlikely(!skb)) 4589 goto out; 4590 } 4591 4592 rx_handler = rcu_dereference(skb->dev->rx_handler); 4593 if (rx_handler) { 4594 if (pt_prev) { 4595 ret = deliver_skb(skb, pt_prev, orig_dev); 4596 pt_prev = NULL; 4597 } 4598 switch (rx_handler(&skb)) { 4599 case RX_HANDLER_CONSUMED: 4600 ret = NET_RX_SUCCESS; 4601 goto out; 4602 case RX_HANDLER_ANOTHER: 4603 goto another_round; 4604 case RX_HANDLER_EXACT: 4605 deliver_exact = true; 4606 case RX_HANDLER_PASS: 4607 break; 4608 default: 4609 BUG(); 4610 } 4611 } 4612 4613 if (unlikely(skb_vlan_tag_present(skb))) { 4614 if (skb_vlan_tag_get_id(skb)) 4615 skb->pkt_type = PACKET_OTHERHOST; 4616 /* Note: we might in the future use prio bits 4617 * and set skb->priority like in vlan_do_receive() 4618 * For the time being, just ignore Priority Code Point 4619 */ 4620 skb->vlan_tci = 0; 4621 } 4622 4623 type = skb->protocol; 4624 4625 /* deliver only exact match when indicated */ 4626 if (likely(!deliver_exact)) { 4627 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4628 &ptype_base[ntohs(type) & 4629 PTYPE_HASH_MASK]); 4630 } 4631 4632 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4633 &orig_dev->ptype_specific); 4634 4635 if (unlikely(skb->dev != orig_dev)) { 4636 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4637 &skb->dev->ptype_specific); 4638 } 4639 4640 if (pt_prev) { 4641 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4642 goto drop; 4643 else 4644 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4645 } else { 4646 drop: 4647 if (!deliver_exact) 4648 atomic_long_inc(&skb->dev->rx_dropped); 4649 else 4650 atomic_long_inc(&skb->dev->rx_nohandler); 4651 kfree_skb(skb); 4652 /* Jamal, now you will not able to escape explaining 4653 * me how you were going to use this. :-) 4654 */ 4655 ret = NET_RX_DROP; 4656 } 4657 4658 out: 4659 return ret; 4660 } 4661 4662 /** 4663 * netif_receive_skb_core - special purpose version of netif_receive_skb 4664 * @skb: buffer to process 4665 * 4666 * More direct receive version of netif_receive_skb(). It should 4667 * only be used by callers that have a need to skip RPS and Generic XDP. 4668 * Caller must also take care of handling if (page_is_)pfmemalloc. 4669 * 4670 * This function may only be called from softirq context and interrupts 4671 * should be enabled. 4672 * 4673 * Return values (usually ignored): 4674 * NET_RX_SUCCESS: no congestion 4675 * NET_RX_DROP: packet was dropped 4676 */ 4677 int netif_receive_skb_core(struct sk_buff *skb) 4678 { 4679 int ret; 4680 4681 rcu_read_lock(); 4682 ret = __netif_receive_skb_core(skb, false); 4683 rcu_read_unlock(); 4684 4685 return ret; 4686 } 4687 EXPORT_SYMBOL(netif_receive_skb_core); 4688 4689 static int __netif_receive_skb(struct sk_buff *skb) 4690 { 4691 int ret; 4692 4693 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4694 unsigned int noreclaim_flag; 4695 4696 /* 4697 * PFMEMALLOC skbs are special, they should 4698 * - be delivered to SOCK_MEMALLOC sockets only 4699 * - stay away from userspace 4700 * - have bounded memory usage 4701 * 4702 * Use PF_MEMALLOC as this saves us from propagating the allocation 4703 * context down to all allocation sites. 4704 */ 4705 noreclaim_flag = memalloc_noreclaim_save(); 4706 ret = __netif_receive_skb_core(skb, true); 4707 memalloc_noreclaim_restore(noreclaim_flag); 4708 } else 4709 ret = __netif_receive_skb_core(skb, false); 4710 4711 return ret; 4712 } 4713 4714 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 4715 { 4716 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4717 struct bpf_prog *new = xdp->prog; 4718 int ret = 0; 4719 4720 switch (xdp->command) { 4721 case XDP_SETUP_PROG: 4722 rcu_assign_pointer(dev->xdp_prog, new); 4723 if (old) 4724 bpf_prog_put(old); 4725 4726 if (old && !new) { 4727 static_key_slow_dec(&generic_xdp_needed); 4728 } else if (new && !old) { 4729 static_key_slow_inc(&generic_xdp_needed); 4730 dev_disable_lro(dev); 4731 dev_disable_gro_hw(dev); 4732 } 4733 break; 4734 4735 case XDP_QUERY_PROG: 4736 xdp->prog_attached = !!old; 4737 xdp->prog_id = old ? old->aux->id : 0; 4738 break; 4739 4740 default: 4741 ret = -EINVAL; 4742 break; 4743 } 4744 4745 return ret; 4746 } 4747 4748 static int netif_receive_skb_internal(struct sk_buff *skb) 4749 { 4750 int ret; 4751 4752 net_timestamp_check(netdev_tstamp_prequeue, skb); 4753 4754 if (skb_defer_rx_timestamp(skb)) 4755 return NET_RX_SUCCESS; 4756 4757 if (static_key_false(&generic_xdp_needed)) { 4758 int ret; 4759 4760 preempt_disable(); 4761 rcu_read_lock(); 4762 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4763 rcu_read_unlock(); 4764 preempt_enable(); 4765 4766 if (ret != XDP_PASS) 4767 return NET_RX_DROP; 4768 } 4769 4770 rcu_read_lock(); 4771 #ifdef CONFIG_RPS 4772 if (static_key_false(&rps_needed)) { 4773 struct rps_dev_flow voidflow, *rflow = &voidflow; 4774 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4775 4776 if (cpu >= 0) { 4777 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4778 rcu_read_unlock(); 4779 return ret; 4780 } 4781 } 4782 #endif 4783 ret = __netif_receive_skb(skb); 4784 rcu_read_unlock(); 4785 return ret; 4786 } 4787 4788 /** 4789 * netif_receive_skb - process receive buffer from network 4790 * @skb: buffer to process 4791 * 4792 * netif_receive_skb() is the main receive data processing function. 4793 * It always succeeds. The buffer may be dropped during processing 4794 * for congestion control or by the protocol layers. 4795 * 4796 * This function may only be called from softirq context and interrupts 4797 * should be enabled. 4798 * 4799 * Return values (usually ignored): 4800 * NET_RX_SUCCESS: no congestion 4801 * NET_RX_DROP: packet was dropped 4802 */ 4803 int netif_receive_skb(struct sk_buff *skb) 4804 { 4805 trace_netif_receive_skb_entry(skb); 4806 4807 return netif_receive_skb_internal(skb); 4808 } 4809 EXPORT_SYMBOL(netif_receive_skb); 4810 4811 DEFINE_PER_CPU(struct work_struct, flush_works); 4812 4813 /* Network device is going away, flush any packets still pending */ 4814 static void flush_backlog(struct work_struct *work) 4815 { 4816 struct sk_buff *skb, *tmp; 4817 struct softnet_data *sd; 4818 4819 local_bh_disable(); 4820 sd = this_cpu_ptr(&softnet_data); 4821 4822 local_irq_disable(); 4823 rps_lock(sd); 4824 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4825 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4826 __skb_unlink(skb, &sd->input_pkt_queue); 4827 kfree_skb(skb); 4828 input_queue_head_incr(sd); 4829 } 4830 } 4831 rps_unlock(sd); 4832 local_irq_enable(); 4833 4834 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4835 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4836 __skb_unlink(skb, &sd->process_queue); 4837 kfree_skb(skb); 4838 input_queue_head_incr(sd); 4839 } 4840 } 4841 local_bh_enable(); 4842 } 4843 4844 static void flush_all_backlogs(void) 4845 { 4846 unsigned int cpu; 4847 4848 get_online_cpus(); 4849 4850 for_each_online_cpu(cpu) 4851 queue_work_on(cpu, system_highpri_wq, 4852 per_cpu_ptr(&flush_works, cpu)); 4853 4854 for_each_online_cpu(cpu) 4855 flush_work(per_cpu_ptr(&flush_works, cpu)); 4856 4857 put_online_cpus(); 4858 } 4859 4860 static int napi_gro_complete(struct sk_buff *skb) 4861 { 4862 struct packet_offload *ptype; 4863 __be16 type = skb->protocol; 4864 struct list_head *head = &offload_base; 4865 int err = -ENOENT; 4866 4867 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4868 4869 if (NAPI_GRO_CB(skb)->count == 1) { 4870 skb_shinfo(skb)->gso_size = 0; 4871 goto out; 4872 } 4873 4874 rcu_read_lock(); 4875 list_for_each_entry_rcu(ptype, head, list) { 4876 if (ptype->type != type || !ptype->callbacks.gro_complete) 4877 continue; 4878 4879 err = ptype->callbacks.gro_complete(skb, 0); 4880 break; 4881 } 4882 rcu_read_unlock(); 4883 4884 if (err) { 4885 WARN_ON(&ptype->list == head); 4886 kfree_skb(skb); 4887 return NET_RX_SUCCESS; 4888 } 4889 4890 out: 4891 return netif_receive_skb_internal(skb); 4892 } 4893 4894 /* napi->gro_list contains packets ordered by age. 4895 * youngest packets at the head of it. 4896 * Complete skbs in reverse order to reduce latencies. 4897 */ 4898 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4899 { 4900 struct sk_buff *skb, *prev = NULL; 4901 4902 /* scan list and build reverse chain */ 4903 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4904 skb->prev = prev; 4905 prev = skb; 4906 } 4907 4908 for (skb = prev; skb; skb = prev) { 4909 skb->next = NULL; 4910 4911 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4912 return; 4913 4914 prev = skb->prev; 4915 napi_gro_complete(skb); 4916 napi->gro_count--; 4917 } 4918 4919 napi->gro_list = NULL; 4920 } 4921 EXPORT_SYMBOL(napi_gro_flush); 4922 4923 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4924 { 4925 struct sk_buff *p; 4926 unsigned int maclen = skb->dev->hard_header_len; 4927 u32 hash = skb_get_hash_raw(skb); 4928 4929 for (p = napi->gro_list; p; p = p->next) { 4930 unsigned long diffs; 4931 4932 NAPI_GRO_CB(p)->flush = 0; 4933 4934 if (hash != skb_get_hash_raw(p)) { 4935 NAPI_GRO_CB(p)->same_flow = 0; 4936 continue; 4937 } 4938 4939 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4940 diffs |= p->vlan_tci ^ skb->vlan_tci; 4941 diffs |= skb_metadata_dst_cmp(p, skb); 4942 diffs |= skb_metadata_differs(p, skb); 4943 if (maclen == ETH_HLEN) 4944 diffs |= compare_ether_header(skb_mac_header(p), 4945 skb_mac_header(skb)); 4946 else if (!diffs) 4947 diffs = memcmp(skb_mac_header(p), 4948 skb_mac_header(skb), 4949 maclen); 4950 NAPI_GRO_CB(p)->same_flow = !diffs; 4951 } 4952 } 4953 4954 static void skb_gro_reset_offset(struct sk_buff *skb) 4955 { 4956 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4957 const skb_frag_t *frag0 = &pinfo->frags[0]; 4958 4959 NAPI_GRO_CB(skb)->data_offset = 0; 4960 NAPI_GRO_CB(skb)->frag0 = NULL; 4961 NAPI_GRO_CB(skb)->frag0_len = 0; 4962 4963 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4964 pinfo->nr_frags && 4965 !PageHighMem(skb_frag_page(frag0))) { 4966 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4967 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4968 skb_frag_size(frag0), 4969 skb->end - skb->tail); 4970 } 4971 } 4972 4973 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4974 { 4975 struct skb_shared_info *pinfo = skb_shinfo(skb); 4976 4977 BUG_ON(skb->end - skb->tail < grow); 4978 4979 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4980 4981 skb->data_len -= grow; 4982 skb->tail += grow; 4983 4984 pinfo->frags[0].page_offset += grow; 4985 skb_frag_size_sub(&pinfo->frags[0], grow); 4986 4987 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4988 skb_frag_unref(skb, 0); 4989 memmove(pinfo->frags, pinfo->frags + 1, 4990 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4991 } 4992 } 4993 4994 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4995 { 4996 struct sk_buff **pp = NULL; 4997 struct packet_offload *ptype; 4998 __be16 type = skb->protocol; 4999 struct list_head *head = &offload_base; 5000 int same_flow; 5001 enum gro_result ret; 5002 int grow; 5003 5004 if (netif_elide_gro(skb->dev)) 5005 goto normal; 5006 5007 gro_list_prepare(napi, skb); 5008 5009 rcu_read_lock(); 5010 list_for_each_entry_rcu(ptype, head, list) { 5011 if (ptype->type != type || !ptype->callbacks.gro_receive) 5012 continue; 5013 5014 skb_set_network_header(skb, skb_gro_offset(skb)); 5015 skb_reset_mac_len(skb); 5016 NAPI_GRO_CB(skb)->same_flow = 0; 5017 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5018 NAPI_GRO_CB(skb)->free = 0; 5019 NAPI_GRO_CB(skb)->encap_mark = 0; 5020 NAPI_GRO_CB(skb)->recursion_counter = 0; 5021 NAPI_GRO_CB(skb)->is_fou = 0; 5022 NAPI_GRO_CB(skb)->is_atomic = 1; 5023 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5024 5025 /* Setup for GRO checksum validation */ 5026 switch (skb->ip_summed) { 5027 case CHECKSUM_COMPLETE: 5028 NAPI_GRO_CB(skb)->csum = skb->csum; 5029 NAPI_GRO_CB(skb)->csum_valid = 1; 5030 NAPI_GRO_CB(skb)->csum_cnt = 0; 5031 break; 5032 case CHECKSUM_UNNECESSARY: 5033 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5034 NAPI_GRO_CB(skb)->csum_valid = 0; 5035 break; 5036 default: 5037 NAPI_GRO_CB(skb)->csum_cnt = 0; 5038 NAPI_GRO_CB(skb)->csum_valid = 0; 5039 } 5040 5041 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 5042 break; 5043 } 5044 rcu_read_unlock(); 5045 5046 if (&ptype->list == head) 5047 goto normal; 5048 5049 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5050 ret = GRO_CONSUMED; 5051 goto ok; 5052 } 5053 5054 same_flow = NAPI_GRO_CB(skb)->same_flow; 5055 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5056 5057 if (pp) { 5058 struct sk_buff *nskb = *pp; 5059 5060 *pp = nskb->next; 5061 nskb->next = NULL; 5062 napi_gro_complete(nskb); 5063 napi->gro_count--; 5064 } 5065 5066 if (same_flow) 5067 goto ok; 5068 5069 if (NAPI_GRO_CB(skb)->flush) 5070 goto normal; 5071 5072 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 5073 struct sk_buff *nskb = napi->gro_list; 5074 5075 /* locate the end of the list to select the 'oldest' flow */ 5076 while (nskb->next) { 5077 pp = &nskb->next; 5078 nskb = *pp; 5079 } 5080 *pp = NULL; 5081 nskb->next = NULL; 5082 napi_gro_complete(nskb); 5083 } else { 5084 napi->gro_count++; 5085 } 5086 NAPI_GRO_CB(skb)->count = 1; 5087 NAPI_GRO_CB(skb)->age = jiffies; 5088 NAPI_GRO_CB(skb)->last = skb; 5089 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5090 skb->next = napi->gro_list; 5091 napi->gro_list = skb; 5092 ret = GRO_HELD; 5093 5094 pull: 5095 grow = skb_gro_offset(skb) - skb_headlen(skb); 5096 if (grow > 0) 5097 gro_pull_from_frag0(skb, grow); 5098 ok: 5099 return ret; 5100 5101 normal: 5102 ret = GRO_NORMAL; 5103 goto pull; 5104 } 5105 5106 struct packet_offload *gro_find_receive_by_type(__be16 type) 5107 { 5108 struct list_head *offload_head = &offload_base; 5109 struct packet_offload *ptype; 5110 5111 list_for_each_entry_rcu(ptype, offload_head, list) { 5112 if (ptype->type != type || !ptype->callbacks.gro_receive) 5113 continue; 5114 return ptype; 5115 } 5116 return NULL; 5117 } 5118 EXPORT_SYMBOL(gro_find_receive_by_type); 5119 5120 struct packet_offload *gro_find_complete_by_type(__be16 type) 5121 { 5122 struct list_head *offload_head = &offload_base; 5123 struct packet_offload *ptype; 5124 5125 list_for_each_entry_rcu(ptype, offload_head, list) { 5126 if (ptype->type != type || !ptype->callbacks.gro_complete) 5127 continue; 5128 return ptype; 5129 } 5130 return NULL; 5131 } 5132 EXPORT_SYMBOL(gro_find_complete_by_type); 5133 5134 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5135 { 5136 skb_dst_drop(skb); 5137 secpath_reset(skb); 5138 kmem_cache_free(skbuff_head_cache, skb); 5139 } 5140 5141 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5142 { 5143 switch (ret) { 5144 case GRO_NORMAL: 5145 if (netif_receive_skb_internal(skb)) 5146 ret = GRO_DROP; 5147 break; 5148 5149 case GRO_DROP: 5150 kfree_skb(skb); 5151 break; 5152 5153 case GRO_MERGED_FREE: 5154 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5155 napi_skb_free_stolen_head(skb); 5156 else 5157 __kfree_skb(skb); 5158 break; 5159 5160 case GRO_HELD: 5161 case GRO_MERGED: 5162 case GRO_CONSUMED: 5163 break; 5164 } 5165 5166 return ret; 5167 } 5168 5169 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5170 { 5171 skb_mark_napi_id(skb, napi); 5172 trace_napi_gro_receive_entry(skb); 5173 5174 skb_gro_reset_offset(skb); 5175 5176 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5177 } 5178 EXPORT_SYMBOL(napi_gro_receive); 5179 5180 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5181 { 5182 if (unlikely(skb->pfmemalloc)) { 5183 consume_skb(skb); 5184 return; 5185 } 5186 __skb_pull(skb, skb_headlen(skb)); 5187 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5188 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5189 skb->vlan_tci = 0; 5190 skb->dev = napi->dev; 5191 skb->skb_iif = 0; 5192 skb->encapsulation = 0; 5193 skb_shinfo(skb)->gso_type = 0; 5194 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5195 secpath_reset(skb); 5196 5197 napi->skb = skb; 5198 } 5199 5200 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5201 { 5202 struct sk_buff *skb = napi->skb; 5203 5204 if (!skb) { 5205 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5206 if (skb) { 5207 napi->skb = skb; 5208 skb_mark_napi_id(skb, napi); 5209 } 5210 } 5211 return skb; 5212 } 5213 EXPORT_SYMBOL(napi_get_frags); 5214 5215 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5216 struct sk_buff *skb, 5217 gro_result_t ret) 5218 { 5219 switch (ret) { 5220 case GRO_NORMAL: 5221 case GRO_HELD: 5222 __skb_push(skb, ETH_HLEN); 5223 skb->protocol = eth_type_trans(skb, skb->dev); 5224 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5225 ret = GRO_DROP; 5226 break; 5227 5228 case GRO_DROP: 5229 napi_reuse_skb(napi, skb); 5230 break; 5231 5232 case GRO_MERGED_FREE: 5233 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5234 napi_skb_free_stolen_head(skb); 5235 else 5236 napi_reuse_skb(napi, skb); 5237 break; 5238 5239 case GRO_MERGED: 5240 case GRO_CONSUMED: 5241 break; 5242 } 5243 5244 return ret; 5245 } 5246 5247 /* Upper GRO stack assumes network header starts at gro_offset=0 5248 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5249 * We copy ethernet header into skb->data to have a common layout. 5250 */ 5251 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5252 { 5253 struct sk_buff *skb = napi->skb; 5254 const struct ethhdr *eth; 5255 unsigned int hlen = sizeof(*eth); 5256 5257 napi->skb = NULL; 5258 5259 skb_reset_mac_header(skb); 5260 skb_gro_reset_offset(skb); 5261 5262 eth = skb_gro_header_fast(skb, 0); 5263 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5264 eth = skb_gro_header_slow(skb, hlen, 0); 5265 if (unlikely(!eth)) { 5266 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5267 __func__, napi->dev->name); 5268 napi_reuse_skb(napi, skb); 5269 return NULL; 5270 } 5271 } else { 5272 gro_pull_from_frag0(skb, hlen); 5273 NAPI_GRO_CB(skb)->frag0 += hlen; 5274 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5275 } 5276 __skb_pull(skb, hlen); 5277 5278 /* 5279 * This works because the only protocols we care about don't require 5280 * special handling. 5281 * We'll fix it up properly in napi_frags_finish() 5282 */ 5283 skb->protocol = eth->h_proto; 5284 5285 return skb; 5286 } 5287 5288 gro_result_t napi_gro_frags(struct napi_struct *napi) 5289 { 5290 struct sk_buff *skb = napi_frags_skb(napi); 5291 5292 if (!skb) 5293 return GRO_DROP; 5294 5295 trace_napi_gro_frags_entry(skb); 5296 5297 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5298 } 5299 EXPORT_SYMBOL(napi_gro_frags); 5300 5301 /* Compute the checksum from gro_offset and return the folded value 5302 * after adding in any pseudo checksum. 5303 */ 5304 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5305 { 5306 __wsum wsum; 5307 __sum16 sum; 5308 5309 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5310 5311 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5312 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5313 if (likely(!sum)) { 5314 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5315 !skb->csum_complete_sw) 5316 netdev_rx_csum_fault(skb->dev); 5317 } 5318 5319 NAPI_GRO_CB(skb)->csum = wsum; 5320 NAPI_GRO_CB(skb)->csum_valid = 1; 5321 5322 return sum; 5323 } 5324 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5325 5326 static void net_rps_send_ipi(struct softnet_data *remsd) 5327 { 5328 #ifdef CONFIG_RPS 5329 while (remsd) { 5330 struct softnet_data *next = remsd->rps_ipi_next; 5331 5332 if (cpu_online(remsd->cpu)) 5333 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5334 remsd = next; 5335 } 5336 #endif 5337 } 5338 5339 /* 5340 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5341 * Note: called with local irq disabled, but exits with local irq enabled. 5342 */ 5343 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5344 { 5345 #ifdef CONFIG_RPS 5346 struct softnet_data *remsd = sd->rps_ipi_list; 5347 5348 if (remsd) { 5349 sd->rps_ipi_list = NULL; 5350 5351 local_irq_enable(); 5352 5353 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5354 net_rps_send_ipi(remsd); 5355 } else 5356 #endif 5357 local_irq_enable(); 5358 } 5359 5360 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5361 { 5362 #ifdef CONFIG_RPS 5363 return sd->rps_ipi_list != NULL; 5364 #else 5365 return false; 5366 #endif 5367 } 5368 5369 static int process_backlog(struct napi_struct *napi, int quota) 5370 { 5371 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5372 bool again = true; 5373 int work = 0; 5374 5375 /* Check if we have pending ipi, its better to send them now, 5376 * not waiting net_rx_action() end. 5377 */ 5378 if (sd_has_rps_ipi_waiting(sd)) { 5379 local_irq_disable(); 5380 net_rps_action_and_irq_enable(sd); 5381 } 5382 5383 napi->weight = dev_rx_weight; 5384 while (again) { 5385 struct sk_buff *skb; 5386 5387 while ((skb = __skb_dequeue(&sd->process_queue))) { 5388 rcu_read_lock(); 5389 __netif_receive_skb(skb); 5390 rcu_read_unlock(); 5391 input_queue_head_incr(sd); 5392 if (++work >= quota) 5393 return work; 5394 5395 } 5396 5397 local_irq_disable(); 5398 rps_lock(sd); 5399 if (skb_queue_empty(&sd->input_pkt_queue)) { 5400 /* 5401 * Inline a custom version of __napi_complete(). 5402 * only current cpu owns and manipulates this napi, 5403 * and NAPI_STATE_SCHED is the only possible flag set 5404 * on backlog. 5405 * We can use a plain write instead of clear_bit(), 5406 * and we dont need an smp_mb() memory barrier. 5407 */ 5408 napi->state = 0; 5409 again = false; 5410 } else { 5411 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5412 &sd->process_queue); 5413 } 5414 rps_unlock(sd); 5415 local_irq_enable(); 5416 } 5417 5418 return work; 5419 } 5420 5421 /** 5422 * __napi_schedule - schedule for receive 5423 * @n: entry to schedule 5424 * 5425 * The entry's receive function will be scheduled to run. 5426 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5427 */ 5428 void __napi_schedule(struct napi_struct *n) 5429 { 5430 unsigned long flags; 5431 5432 local_irq_save(flags); 5433 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5434 local_irq_restore(flags); 5435 } 5436 EXPORT_SYMBOL(__napi_schedule); 5437 5438 /** 5439 * napi_schedule_prep - check if napi can be scheduled 5440 * @n: napi context 5441 * 5442 * Test if NAPI routine is already running, and if not mark 5443 * it as running. This is used as a condition variable 5444 * insure only one NAPI poll instance runs. We also make 5445 * sure there is no pending NAPI disable. 5446 */ 5447 bool napi_schedule_prep(struct napi_struct *n) 5448 { 5449 unsigned long val, new; 5450 5451 do { 5452 val = READ_ONCE(n->state); 5453 if (unlikely(val & NAPIF_STATE_DISABLE)) 5454 return false; 5455 new = val | NAPIF_STATE_SCHED; 5456 5457 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5458 * This was suggested by Alexander Duyck, as compiler 5459 * emits better code than : 5460 * if (val & NAPIF_STATE_SCHED) 5461 * new |= NAPIF_STATE_MISSED; 5462 */ 5463 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5464 NAPIF_STATE_MISSED; 5465 } while (cmpxchg(&n->state, val, new) != val); 5466 5467 return !(val & NAPIF_STATE_SCHED); 5468 } 5469 EXPORT_SYMBOL(napi_schedule_prep); 5470 5471 /** 5472 * __napi_schedule_irqoff - schedule for receive 5473 * @n: entry to schedule 5474 * 5475 * Variant of __napi_schedule() assuming hard irqs are masked 5476 */ 5477 void __napi_schedule_irqoff(struct napi_struct *n) 5478 { 5479 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5480 } 5481 EXPORT_SYMBOL(__napi_schedule_irqoff); 5482 5483 bool napi_complete_done(struct napi_struct *n, int work_done) 5484 { 5485 unsigned long flags, val, new; 5486 5487 /* 5488 * 1) Don't let napi dequeue from the cpu poll list 5489 * just in case its running on a different cpu. 5490 * 2) If we are busy polling, do nothing here, we have 5491 * the guarantee we will be called later. 5492 */ 5493 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5494 NAPIF_STATE_IN_BUSY_POLL))) 5495 return false; 5496 5497 if (n->gro_list) { 5498 unsigned long timeout = 0; 5499 5500 if (work_done) 5501 timeout = n->dev->gro_flush_timeout; 5502 5503 if (timeout) 5504 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5505 HRTIMER_MODE_REL_PINNED); 5506 else 5507 napi_gro_flush(n, false); 5508 } 5509 if (unlikely(!list_empty(&n->poll_list))) { 5510 /* If n->poll_list is not empty, we need to mask irqs */ 5511 local_irq_save(flags); 5512 list_del_init(&n->poll_list); 5513 local_irq_restore(flags); 5514 } 5515 5516 do { 5517 val = READ_ONCE(n->state); 5518 5519 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5520 5521 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5522 5523 /* If STATE_MISSED was set, leave STATE_SCHED set, 5524 * because we will call napi->poll() one more time. 5525 * This C code was suggested by Alexander Duyck to help gcc. 5526 */ 5527 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5528 NAPIF_STATE_SCHED; 5529 } while (cmpxchg(&n->state, val, new) != val); 5530 5531 if (unlikely(val & NAPIF_STATE_MISSED)) { 5532 __napi_schedule(n); 5533 return false; 5534 } 5535 5536 return true; 5537 } 5538 EXPORT_SYMBOL(napi_complete_done); 5539 5540 /* must be called under rcu_read_lock(), as we dont take a reference */ 5541 static struct napi_struct *napi_by_id(unsigned int napi_id) 5542 { 5543 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5544 struct napi_struct *napi; 5545 5546 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5547 if (napi->napi_id == napi_id) 5548 return napi; 5549 5550 return NULL; 5551 } 5552 5553 #if defined(CONFIG_NET_RX_BUSY_POLL) 5554 5555 #define BUSY_POLL_BUDGET 8 5556 5557 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5558 { 5559 int rc; 5560 5561 /* Busy polling means there is a high chance device driver hard irq 5562 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5563 * set in napi_schedule_prep(). 5564 * Since we are about to call napi->poll() once more, we can safely 5565 * clear NAPI_STATE_MISSED. 5566 * 5567 * Note: x86 could use a single "lock and ..." instruction 5568 * to perform these two clear_bit() 5569 */ 5570 clear_bit(NAPI_STATE_MISSED, &napi->state); 5571 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5572 5573 local_bh_disable(); 5574 5575 /* All we really want here is to re-enable device interrupts. 5576 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5577 */ 5578 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5579 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5580 netpoll_poll_unlock(have_poll_lock); 5581 if (rc == BUSY_POLL_BUDGET) 5582 __napi_schedule(napi); 5583 local_bh_enable(); 5584 } 5585 5586 void napi_busy_loop(unsigned int napi_id, 5587 bool (*loop_end)(void *, unsigned long), 5588 void *loop_end_arg) 5589 { 5590 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5591 int (*napi_poll)(struct napi_struct *napi, int budget); 5592 void *have_poll_lock = NULL; 5593 struct napi_struct *napi; 5594 5595 restart: 5596 napi_poll = NULL; 5597 5598 rcu_read_lock(); 5599 5600 napi = napi_by_id(napi_id); 5601 if (!napi) 5602 goto out; 5603 5604 preempt_disable(); 5605 for (;;) { 5606 int work = 0; 5607 5608 local_bh_disable(); 5609 if (!napi_poll) { 5610 unsigned long val = READ_ONCE(napi->state); 5611 5612 /* If multiple threads are competing for this napi, 5613 * we avoid dirtying napi->state as much as we can. 5614 */ 5615 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5616 NAPIF_STATE_IN_BUSY_POLL)) 5617 goto count; 5618 if (cmpxchg(&napi->state, val, 5619 val | NAPIF_STATE_IN_BUSY_POLL | 5620 NAPIF_STATE_SCHED) != val) 5621 goto count; 5622 have_poll_lock = netpoll_poll_lock(napi); 5623 napi_poll = napi->poll; 5624 } 5625 work = napi_poll(napi, BUSY_POLL_BUDGET); 5626 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5627 count: 5628 if (work > 0) 5629 __NET_ADD_STATS(dev_net(napi->dev), 5630 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5631 local_bh_enable(); 5632 5633 if (!loop_end || loop_end(loop_end_arg, start_time)) 5634 break; 5635 5636 if (unlikely(need_resched())) { 5637 if (napi_poll) 5638 busy_poll_stop(napi, have_poll_lock); 5639 preempt_enable(); 5640 rcu_read_unlock(); 5641 cond_resched(); 5642 if (loop_end(loop_end_arg, start_time)) 5643 return; 5644 goto restart; 5645 } 5646 cpu_relax(); 5647 } 5648 if (napi_poll) 5649 busy_poll_stop(napi, have_poll_lock); 5650 preempt_enable(); 5651 out: 5652 rcu_read_unlock(); 5653 } 5654 EXPORT_SYMBOL(napi_busy_loop); 5655 5656 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5657 5658 static void napi_hash_add(struct napi_struct *napi) 5659 { 5660 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5661 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5662 return; 5663 5664 spin_lock(&napi_hash_lock); 5665 5666 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5667 do { 5668 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5669 napi_gen_id = MIN_NAPI_ID; 5670 } while (napi_by_id(napi_gen_id)); 5671 napi->napi_id = napi_gen_id; 5672 5673 hlist_add_head_rcu(&napi->napi_hash_node, 5674 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5675 5676 spin_unlock(&napi_hash_lock); 5677 } 5678 5679 /* Warning : caller is responsible to make sure rcu grace period 5680 * is respected before freeing memory containing @napi 5681 */ 5682 bool napi_hash_del(struct napi_struct *napi) 5683 { 5684 bool rcu_sync_needed = false; 5685 5686 spin_lock(&napi_hash_lock); 5687 5688 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5689 rcu_sync_needed = true; 5690 hlist_del_rcu(&napi->napi_hash_node); 5691 } 5692 spin_unlock(&napi_hash_lock); 5693 return rcu_sync_needed; 5694 } 5695 EXPORT_SYMBOL_GPL(napi_hash_del); 5696 5697 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5698 { 5699 struct napi_struct *napi; 5700 5701 napi = container_of(timer, struct napi_struct, timer); 5702 5703 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5704 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5705 */ 5706 if (napi->gro_list && !napi_disable_pending(napi) && 5707 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5708 __napi_schedule_irqoff(napi); 5709 5710 return HRTIMER_NORESTART; 5711 } 5712 5713 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5714 int (*poll)(struct napi_struct *, int), int weight) 5715 { 5716 INIT_LIST_HEAD(&napi->poll_list); 5717 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5718 napi->timer.function = napi_watchdog; 5719 napi->gro_count = 0; 5720 napi->gro_list = NULL; 5721 napi->skb = NULL; 5722 napi->poll = poll; 5723 if (weight > NAPI_POLL_WEIGHT) 5724 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5725 weight, dev->name); 5726 napi->weight = weight; 5727 list_add(&napi->dev_list, &dev->napi_list); 5728 napi->dev = dev; 5729 #ifdef CONFIG_NETPOLL 5730 napi->poll_owner = -1; 5731 #endif 5732 set_bit(NAPI_STATE_SCHED, &napi->state); 5733 napi_hash_add(napi); 5734 } 5735 EXPORT_SYMBOL(netif_napi_add); 5736 5737 void napi_disable(struct napi_struct *n) 5738 { 5739 might_sleep(); 5740 set_bit(NAPI_STATE_DISABLE, &n->state); 5741 5742 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5743 msleep(1); 5744 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5745 msleep(1); 5746 5747 hrtimer_cancel(&n->timer); 5748 5749 clear_bit(NAPI_STATE_DISABLE, &n->state); 5750 } 5751 EXPORT_SYMBOL(napi_disable); 5752 5753 /* Must be called in process context */ 5754 void netif_napi_del(struct napi_struct *napi) 5755 { 5756 might_sleep(); 5757 if (napi_hash_del(napi)) 5758 synchronize_net(); 5759 list_del_init(&napi->dev_list); 5760 napi_free_frags(napi); 5761 5762 kfree_skb_list(napi->gro_list); 5763 napi->gro_list = NULL; 5764 napi->gro_count = 0; 5765 } 5766 EXPORT_SYMBOL(netif_napi_del); 5767 5768 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5769 { 5770 void *have; 5771 int work, weight; 5772 5773 list_del_init(&n->poll_list); 5774 5775 have = netpoll_poll_lock(n); 5776 5777 weight = n->weight; 5778 5779 /* This NAPI_STATE_SCHED test is for avoiding a race 5780 * with netpoll's poll_napi(). Only the entity which 5781 * obtains the lock and sees NAPI_STATE_SCHED set will 5782 * actually make the ->poll() call. Therefore we avoid 5783 * accidentally calling ->poll() when NAPI is not scheduled. 5784 */ 5785 work = 0; 5786 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5787 work = n->poll(n, weight); 5788 trace_napi_poll(n, work, weight); 5789 } 5790 5791 WARN_ON_ONCE(work > weight); 5792 5793 if (likely(work < weight)) 5794 goto out_unlock; 5795 5796 /* Drivers must not modify the NAPI state if they 5797 * consume the entire weight. In such cases this code 5798 * still "owns" the NAPI instance and therefore can 5799 * move the instance around on the list at-will. 5800 */ 5801 if (unlikely(napi_disable_pending(n))) { 5802 napi_complete(n); 5803 goto out_unlock; 5804 } 5805 5806 if (n->gro_list) { 5807 /* flush too old packets 5808 * If HZ < 1000, flush all packets. 5809 */ 5810 napi_gro_flush(n, HZ >= 1000); 5811 } 5812 5813 /* Some drivers may have called napi_schedule 5814 * prior to exhausting their budget. 5815 */ 5816 if (unlikely(!list_empty(&n->poll_list))) { 5817 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5818 n->dev ? n->dev->name : "backlog"); 5819 goto out_unlock; 5820 } 5821 5822 list_add_tail(&n->poll_list, repoll); 5823 5824 out_unlock: 5825 netpoll_poll_unlock(have); 5826 5827 return work; 5828 } 5829 5830 static __latent_entropy void net_rx_action(struct softirq_action *h) 5831 { 5832 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5833 unsigned long time_limit = jiffies + 5834 usecs_to_jiffies(netdev_budget_usecs); 5835 int budget = netdev_budget; 5836 LIST_HEAD(list); 5837 LIST_HEAD(repoll); 5838 5839 local_irq_disable(); 5840 list_splice_init(&sd->poll_list, &list); 5841 local_irq_enable(); 5842 5843 for (;;) { 5844 struct napi_struct *n; 5845 5846 if (list_empty(&list)) { 5847 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5848 goto out; 5849 break; 5850 } 5851 5852 n = list_first_entry(&list, struct napi_struct, poll_list); 5853 budget -= napi_poll(n, &repoll); 5854 5855 /* If softirq window is exhausted then punt. 5856 * Allow this to run for 2 jiffies since which will allow 5857 * an average latency of 1.5/HZ. 5858 */ 5859 if (unlikely(budget <= 0 || 5860 time_after_eq(jiffies, time_limit))) { 5861 sd->time_squeeze++; 5862 break; 5863 } 5864 } 5865 5866 local_irq_disable(); 5867 5868 list_splice_tail_init(&sd->poll_list, &list); 5869 list_splice_tail(&repoll, &list); 5870 list_splice(&list, &sd->poll_list); 5871 if (!list_empty(&sd->poll_list)) 5872 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5873 5874 net_rps_action_and_irq_enable(sd); 5875 out: 5876 __kfree_skb_flush(); 5877 } 5878 5879 struct netdev_adjacent { 5880 struct net_device *dev; 5881 5882 /* upper master flag, there can only be one master device per list */ 5883 bool master; 5884 5885 /* counter for the number of times this device was added to us */ 5886 u16 ref_nr; 5887 5888 /* private field for the users */ 5889 void *private; 5890 5891 struct list_head list; 5892 struct rcu_head rcu; 5893 }; 5894 5895 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5896 struct list_head *adj_list) 5897 { 5898 struct netdev_adjacent *adj; 5899 5900 list_for_each_entry(adj, adj_list, list) { 5901 if (adj->dev == adj_dev) 5902 return adj; 5903 } 5904 return NULL; 5905 } 5906 5907 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5908 { 5909 struct net_device *dev = data; 5910 5911 return upper_dev == dev; 5912 } 5913 5914 /** 5915 * netdev_has_upper_dev - Check if device is linked to an upper device 5916 * @dev: device 5917 * @upper_dev: upper device to check 5918 * 5919 * Find out if a device is linked to specified upper device and return true 5920 * in case it is. Note that this checks only immediate upper device, 5921 * not through a complete stack of devices. The caller must hold the RTNL lock. 5922 */ 5923 bool netdev_has_upper_dev(struct net_device *dev, 5924 struct net_device *upper_dev) 5925 { 5926 ASSERT_RTNL(); 5927 5928 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5929 upper_dev); 5930 } 5931 EXPORT_SYMBOL(netdev_has_upper_dev); 5932 5933 /** 5934 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5935 * @dev: device 5936 * @upper_dev: upper device to check 5937 * 5938 * Find out if a device is linked to specified upper device and return true 5939 * in case it is. Note that this checks the entire upper device chain. 5940 * The caller must hold rcu lock. 5941 */ 5942 5943 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5944 struct net_device *upper_dev) 5945 { 5946 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5947 upper_dev); 5948 } 5949 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5950 5951 /** 5952 * netdev_has_any_upper_dev - Check if device is linked to some device 5953 * @dev: device 5954 * 5955 * Find out if a device is linked to an upper device and return true in case 5956 * it is. The caller must hold the RTNL lock. 5957 */ 5958 bool netdev_has_any_upper_dev(struct net_device *dev) 5959 { 5960 ASSERT_RTNL(); 5961 5962 return !list_empty(&dev->adj_list.upper); 5963 } 5964 EXPORT_SYMBOL(netdev_has_any_upper_dev); 5965 5966 /** 5967 * netdev_master_upper_dev_get - Get master upper device 5968 * @dev: device 5969 * 5970 * Find a master upper device and return pointer to it or NULL in case 5971 * it's not there. The caller must hold the RTNL lock. 5972 */ 5973 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5974 { 5975 struct netdev_adjacent *upper; 5976 5977 ASSERT_RTNL(); 5978 5979 if (list_empty(&dev->adj_list.upper)) 5980 return NULL; 5981 5982 upper = list_first_entry(&dev->adj_list.upper, 5983 struct netdev_adjacent, list); 5984 if (likely(upper->master)) 5985 return upper->dev; 5986 return NULL; 5987 } 5988 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5989 5990 /** 5991 * netdev_has_any_lower_dev - Check if device is linked to some device 5992 * @dev: device 5993 * 5994 * Find out if a device is linked to a lower device and return true in case 5995 * it is. The caller must hold the RTNL lock. 5996 */ 5997 static bool netdev_has_any_lower_dev(struct net_device *dev) 5998 { 5999 ASSERT_RTNL(); 6000 6001 return !list_empty(&dev->adj_list.lower); 6002 } 6003 6004 void *netdev_adjacent_get_private(struct list_head *adj_list) 6005 { 6006 struct netdev_adjacent *adj; 6007 6008 adj = list_entry(adj_list, struct netdev_adjacent, list); 6009 6010 return adj->private; 6011 } 6012 EXPORT_SYMBOL(netdev_adjacent_get_private); 6013 6014 /** 6015 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6016 * @dev: device 6017 * @iter: list_head ** of the current position 6018 * 6019 * Gets the next device from the dev's upper list, starting from iter 6020 * position. The caller must hold RCU read lock. 6021 */ 6022 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6023 struct list_head **iter) 6024 { 6025 struct netdev_adjacent *upper; 6026 6027 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6028 6029 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6030 6031 if (&upper->list == &dev->adj_list.upper) 6032 return NULL; 6033 6034 *iter = &upper->list; 6035 6036 return upper->dev; 6037 } 6038 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6039 6040 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6041 struct list_head **iter) 6042 { 6043 struct netdev_adjacent *upper; 6044 6045 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6046 6047 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6048 6049 if (&upper->list == &dev->adj_list.upper) 6050 return NULL; 6051 6052 *iter = &upper->list; 6053 6054 return upper->dev; 6055 } 6056 6057 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6058 int (*fn)(struct net_device *dev, 6059 void *data), 6060 void *data) 6061 { 6062 struct net_device *udev; 6063 struct list_head *iter; 6064 int ret; 6065 6066 for (iter = &dev->adj_list.upper, 6067 udev = netdev_next_upper_dev_rcu(dev, &iter); 6068 udev; 6069 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6070 /* first is the upper device itself */ 6071 ret = fn(udev, data); 6072 if (ret) 6073 return ret; 6074 6075 /* then look at all of its upper devices */ 6076 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6077 if (ret) 6078 return ret; 6079 } 6080 6081 return 0; 6082 } 6083 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6084 6085 /** 6086 * netdev_lower_get_next_private - Get the next ->private from the 6087 * lower neighbour list 6088 * @dev: device 6089 * @iter: list_head ** of the current position 6090 * 6091 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6092 * list, starting from iter position. The caller must hold either hold the 6093 * RTNL lock or its own locking that guarantees that the neighbour lower 6094 * list will remain unchanged. 6095 */ 6096 void *netdev_lower_get_next_private(struct net_device *dev, 6097 struct list_head **iter) 6098 { 6099 struct netdev_adjacent *lower; 6100 6101 lower = list_entry(*iter, struct netdev_adjacent, list); 6102 6103 if (&lower->list == &dev->adj_list.lower) 6104 return NULL; 6105 6106 *iter = lower->list.next; 6107 6108 return lower->private; 6109 } 6110 EXPORT_SYMBOL(netdev_lower_get_next_private); 6111 6112 /** 6113 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6114 * lower neighbour list, RCU 6115 * variant 6116 * @dev: device 6117 * @iter: list_head ** of the current position 6118 * 6119 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6120 * list, starting from iter position. The caller must hold RCU read lock. 6121 */ 6122 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6123 struct list_head **iter) 6124 { 6125 struct netdev_adjacent *lower; 6126 6127 WARN_ON_ONCE(!rcu_read_lock_held()); 6128 6129 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6130 6131 if (&lower->list == &dev->adj_list.lower) 6132 return NULL; 6133 6134 *iter = &lower->list; 6135 6136 return lower->private; 6137 } 6138 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6139 6140 /** 6141 * netdev_lower_get_next - Get the next device from the lower neighbour 6142 * list 6143 * @dev: device 6144 * @iter: list_head ** of the current position 6145 * 6146 * Gets the next netdev_adjacent from the dev's lower neighbour 6147 * list, starting from iter position. The caller must hold RTNL lock or 6148 * its own locking that guarantees that the neighbour lower 6149 * list will remain unchanged. 6150 */ 6151 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6152 { 6153 struct netdev_adjacent *lower; 6154 6155 lower = list_entry(*iter, struct netdev_adjacent, list); 6156 6157 if (&lower->list == &dev->adj_list.lower) 6158 return NULL; 6159 6160 *iter = lower->list.next; 6161 6162 return lower->dev; 6163 } 6164 EXPORT_SYMBOL(netdev_lower_get_next); 6165 6166 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6167 struct list_head **iter) 6168 { 6169 struct netdev_adjacent *lower; 6170 6171 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6172 6173 if (&lower->list == &dev->adj_list.lower) 6174 return NULL; 6175 6176 *iter = &lower->list; 6177 6178 return lower->dev; 6179 } 6180 6181 int netdev_walk_all_lower_dev(struct net_device *dev, 6182 int (*fn)(struct net_device *dev, 6183 void *data), 6184 void *data) 6185 { 6186 struct net_device *ldev; 6187 struct list_head *iter; 6188 int ret; 6189 6190 for (iter = &dev->adj_list.lower, 6191 ldev = netdev_next_lower_dev(dev, &iter); 6192 ldev; 6193 ldev = netdev_next_lower_dev(dev, &iter)) { 6194 /* first is the lower device itself */ 6195 ret = fn(ldev, data); 6196 if (ret) 6197 return ret; 6198 6199 /* then look at all of its lower devices */ 6200 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6201 if (ret) 6202 return ret; 6203 } 6204 6205 return 0; 6206 } 6207 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6208 6209 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6210 struct list_head **iter) 6211 { 6212 struct netdev_adjacent *lower; 6213 6214 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6215 if (&lower->list == &dev->adj_list.lower) 6216 return NULL; 6217 6218 *iter = &lower->list; 6219 6220 return lower->dev; 6221 } 6222 6223 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6224 int (*fn)(struct net_device *dev, 6225 void *data), 6226 void *data) 6227 { 6228 struct net_device *ldev; 6229 struct list_head *iter; 6230 int ret; 6231 6232 for (iter = &dev->adj_list.lower, 6233 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6234 ldev; 6235 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6236 /* first is the lower device itself */ 6237 ret = fn(ldev, data); 6238 if (ret) 6239 return ret; 6240 6241 /* then look at all of its lower devices */ 6242 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6243 if (ret) 6244 return ret; 6245 } 6246 6247 return 0; 6248 } 6249 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6250 6251 /** 6252 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6253 * lower neighbour list, RCU 6254 * variant 6255 * @dev: device 6256 * 6257 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6258 * list. The caller must hold RCU read lock. 6259 */ 6260 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6261 { 6262 struct netdev_adjacent *lower; 6263 6264 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6265 struct netdev_adjacent, list); 6266 if (lower) 6267 return lower->private; 6268 return NULL; 6269 } 6270 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6271 6272 /** 6273 * netdev_master_upper_dev_get_rcu - Get master upper device 6274 * @dev: device 6275 * 6276 * Find a master upper device and return pointer to it or NULL in case 6277 * it's not there. The caller must hold the RCU read lock. 6278 */ 6279 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6280 { 6281 struct netdev_adjacent *upper; 6282 6283 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6284 struct netdev_adjacent, list); 6285 if (upper && likely(upper->master)) 6286 return upper->dev; 6287 return NULL; 6288 } 6289 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6290 6291 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6292 struct net_device *adj_dev, 6293 struct list_head *dev_list) 6294 { 6295 char linkname[IFNAMSIZ+7]; 6296 6297 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6298 "upper_%s" : "lower_%s", adj_dev->name); 6299 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6300 linkname); 6301 } 6302 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6303 char *name, 6304 struct list_head *dev_list) 6305 { 6306 char linkname[IFNAMSIZ+7]; 6307 6308 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6309 "upper_%s" : "lower_%s", name); 6310 sysfs_remove_link(&(dev->dev.kobj), linkname); 6311 } 6312 6313 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6314 struct net_device *adj_dev, 6315 struct list_head *dev_list) 6316 { 6317 return (dev_list == &dev->adj_list.upper || 6318 dev_list == &dev->adj_list.lower) && 6319 net_eq(dev_net(dev), dev_net(adj_dev)); 6320 } 6321 6322 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6323 struct net_device *adj_dev, 6324 struct list_head *dev_list, 6325 void *private, bool master) 6326 { 6327 struct netdev_adjacent *adj; 6328 int ret; 6329 6330 adj = __netdev_find_adj(adj_dev, dev_list); 6331 6332 if (adj) { 6333 adj->ref_nr += 1; 6334 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6335 dev->name, adj_dev->name, adj->ref_nr); 6336 6337 return 0; 6338 } 6339 6340 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6341 if (!adj) 6342 return -ENOMEM; 6343 6344 adj->dev = adj_dev; 6345 adj->master = master; 6346 adj->ref_nr = 1; 6347 adj->private = private; 6348 dev_hold(adj_dev); 6349 6350 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6351 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6352 6353 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6354 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6355 if (ret) 6356 goto free_adj; 6357 } 6358 6359 /* Ensure that master link is always the first item in list. */ 6360 if (master) { 6361 ret = sysfs_create_link(&(dev->dev.kobj), 6362 &(adj_dev->dev.kobj), "master"); 6363 if (ret) 6364 goto remove_symlinks; 6365 6366 list_add_rcu(&adj->list, dev_list); 6367 } else { 6368 list_add_tail_rcu(&adj->list, dev_list); 6369 } 6370 6371 return 0; 6372 6373 remove_symlinks: 6374 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6375 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6376 free_adj: 6377 kfree(adj); 6378 dev_put(adj_dev); 6379 6380 return ret; 6381 } 6382 6383 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6384 struct net_device *adj_dev, 6385 u16 ref_nr, 6386 struct list_head *dev_list) 6387 { 6388 struct netdev_adjacent *adj; 6389 6390 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6391 dev->name, adj_dev->name, ref_nr); 6392 6393 adj = __netdev_find_adj(adj_dev, dev_list); 6394 6395 if (!adj) { 6396 pr_err("Adjacency does not exist for device %s from %s\n", 6397 dev->name, adj_dev->name); 6398 WARN_ON(1); 6399 return; 6400 } 6401 6402 if (adj->ref_nr > ref_nr) { 6403 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6404 dev->name, adj_dev->name, ref_nr, 6405 adj->ref_nr - ref_nr); 6406 adj->ref_nr -= ref_nr; 6407 return; 6408 } 6409 6410 if (adj->master) 6411 sysfs_remove_link(&(dev->dev.kobj), "master"); 6412 6413 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6414 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6415 6416 list_del_rcu(&adj->list); 6417 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6418 adj_dev->name, dev->name, adj_dev->name); 6419 dev_put(adj_dev); 6420 kfree_rcu(adj, rcu); 6421 } 6422 6423 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6424 struct net_device *upper_dev, 6425 struct list_head *up_list, 6426 struct list_head *down_list, 6427 void *private, bool master) 6428 { 6429 int ret; 6430 6431 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6432 private, master); 6433 if (ret) 6434 return ret; 6435 6436 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6437 private, false); 6438 if (ret) { 6439 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6440 return ret; 6441 } 6442 6443 return 0; 6444 } 6445 6446 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6447 struct net_device *upper_dev, 6448 u16 ref_nr, 6449 struct list_head *up_list, 6450 struct list_head *down_list) 6451 { 6452 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6453 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6454 } 6455 6456 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6457 struct net_device *upper_dev, 6458 void *private, bool master) 6459 { 6460 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6461 &dev->adj_list.upper, 6462 &upper_dev->adj_list.lower, 6463 private, master); 6464 } 6465 6466 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6467 struct net_device *upper_dev) 6468 { 6469 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6470 &dev->adj_list.upper, 6471 &upper_dev->adj_list.lower); 6472 } 6473 6474 static int __netdev_upper_dev_link(struct net_device *dev, 6475 struct net_device *upper_dev, bool master, 6476 void *upper_priv, void *upper_info, 6477 struct netlink_ext_ack *extack) 6478 { 6479 struct netdev_notifier_changeupper_info changeupper_info = { 6480 .info = { 6481 .dev = dev, 6482 .extack = extack, 6483 }, 6484 .upper_dev = upper_dev, 6485 .master = master, 6486 .linking = true, 6487 .upper_info = upper_info, 6488 }; 6489 struct net_device *master_dev; 6490 int ret = 0; 6491 6492 ASSERT_RTNL(); 6493 6494 if (dev == upper_dev) 6495 return -EBUSY; 6496 6497 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6498 if (netdev_has_upper_dev(upper_dev, dev)) 6499 return -EBUSY; 6500 6501 if (!master) { 6502 if (netdev_has_upper_dev(dev, upper_dev)) 6503 return -EEXIST; 6504 } else { 6505 master_dev = netdev_master_upper_dev_get(dev); 6506 if (master_dev) 6507 return master_dev == upper_dev ? -EEXIST : -EBUSY; 6508 } 6509 6510 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6511 &changeupper_info.info); 6512 ret = notifier_to_errno(ret); 6513 if (ret) 6514 return ret; 6515 6516 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6517 master); 6518 if (ret) 6519 return ret; 6520 6521 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6522 &changeupper_info.info); 6523 ret = notifier_to_errno(ret); 6524 if (ret) 6525 goto rollback; 6526 6527 return 0; 6528 6529 rollback: 6530 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6531 6532 return ret; 6533 } 6534 6535 /** 6536 * netdev_upper_dev_link - Add a link to the upper device 6537 * @dev: device 6538 * @upper_dev: new upper device 6539 * @extack: netlink extended ack 6540 * 6541 * Adds a link to device which is upper to this one. The caller must hold 6542 * the RTNL lock. On a failure a negative errno code is returned. 6543 * On success the reference counts are adjusted and the function 6544 * returns zero. 6545 */ 6546 int netdev_upper_dev_link(struct net_device *dev, 6547 struct net_device *upper_dev, 6548 struct netlink_ext_ack *extack) 6549 { 6550 return __netdev_upper_dev_link(dev, upper_dev, false, 6551 NULL, NULL, extack); 6552 } 6553 EXPORT_SYMBOL(netdev_upper_dev_link); 6554 6555 /** 6556 * netdev_master_upper_dev_link - Add a master link to the upper device 6557 * @dev: device 6558 * @upper_dev: new upper device 6559 * @upper_priv: upper device private 6560 * @upper_info: upper info to be passed down via notifier 6561 * @extack: netlink extended ack 6562 * 6563 * Adds a link to device which is upper to this one. In this case, only 6564 * one master upper device can be linked, although other non-master devices 6565 * might be linked as well. The caller must hold the RTNL lock. 6566 * On a failure a negative errno code is returned. On success the reference 6567 * counts are adjusted and the function returns zero. 6568 */ 6569 int netdev_master_upper_dev_link(struct net_device *dev, 6570 struct net_device *upper_dev, 6571 void *upper_priv, void *upper_info, 6572 struct netlink_ext_ack *extack) 6573 { 6574 return __netdev_upper_dev_link(dev, upper_dev, true, 6575 upper_priv, upper_info, extack); 6576 } 6577 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6578 6579 /** 6580 * netdev_upper_dev_unlink - Removes a link to upper device 6581 * @dev: device 6582 * @upper_dev: new upper device 6583 * 6584 * Removes a link to device which is upper to this one. The caller must hold 6585 * the RTNL lock. 6586 */ 6587 void netdev_upper_dev_unlink(struct net_device *dev, 6588 struct net_device *upper_dev) 6589 { 6590 struct netdev_notifier_changeupper_info changeupper_info = { 6591 .info = { 6592 .dev = dev, 6593 }, 6594 .upper_dev = upper_dev, 6595 .linking = false, 6596 }; 6597 6598 ASSERT_RTNL(); 6599 6600 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6601 6602 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6603 &changeupper_info.info); 6604 6605 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6606 6607 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6608 &changeupper_info.info); 6609 } 6610 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6611 6612 /** 6613 * netdev_bonding_info_change - Dispatch event about slave change 6614 * @dev: device 6615 * @bonding_info: info to dispatch 6616 * 6617 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6618 * The caller must hold the RTNL lock. 6619 */ 6620 void netdev_bonding_info_change(struct net_device *dev, 6621 struct netdev_bonding_info *bonding_info) 6622 { 6623 struct netdev_notifier_bonding_info info = { 6624 .info.dev = dev, 6625 }; 6626 6627 memcpy(&info.bonding_info, bonding_info, 6628 sizeof(struct netdev_bonding_info)); 6629 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 6630 &info.info); 6631 } 6632 EXPORT_SYMBOL(netdev_bonding_info_change); 6633 6634 static void netdev_adjacent_add_links(struct net_device *dev) 6635 { 6636 struct netdev_adjacent *iter; 6637 6638 struct net *net = dev_net(dev); 6639 6640 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6641 if (!net_eq(net, dev_net(iter->dev))) 6642 continue; 6643 netdev_adjacent_sysfs_add(iter->dev, dev, 6644 &iter->dev->adj_list.lower); 6645 netdev_adjacent_sysfs_add(dev, iter->dev, 6646 &dev->adj_list.upper); 6647 } 6648 6649 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6650 if (!net_eq(net, dev_net(iter->dev))) 6651 continue; 6652 netdev_adjacent_sysfs_add(iter->dev, dev, 6653 &iter->dev->adj_list.upper); 6654 netdev_adjacent_sysfs_add(dev, iter->dev, 6655 &dev->adj_list.lower); 6656 } 6657 } 6658 6659 static void netdev_adjacent_del_links(struct net_device *dev) 6660 { 6661 struct netdev_adjacent *iter; 6662 6663 struct net *net = dev_net(dev); 6664 6665 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6666 if (!net_eq(net, dev_net(iter->dev))) 6667 continue; 6668 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6669 &iter->dev->adj_list.lower); 6670 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6671 &dev->adj_list.upper); 6672 } 6673 6674 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6675 if (!net_eq(net, dev_net(iter->dev))) 6676 continue; 6677 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6678 &iter->dev->adj_list.upper); 6679 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6680 &dev->adj_list.lower); 6681 } 6682 } 6683 6684 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6685 { 6686 struct netdev_adjacent *iter; 6687 6688 struct net *net = dev_net(dev); 6689 6690 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6691 if (!net_eq(net, dev_net(iter->dev))) 6692 continue; 6693 netdev_adjacent_sysfs_del(iter->dev, oldname, 6694 &iter->dev->adj_list.lower); 6695 netdev_adjacent_sysfs_add(iter->dev, dev, 6696 &iter->dev->adj_list.lower); 6697 } 6698 6699 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6700 if (!net_eq(net, dev_net(iter->dev))) 6701 continue; 6702 netdev_adjacent_sysfs_del(iter->dev, oldname, 6703 &iter->dev->adj_list.upper); 6704 netdev_adjacent_sysfs_add(iter->dev, dev, 6705 &iter->dev->adj_list.upper); 6706 } 6707 } 6708 6709 void *netdev_lower_dev_get_private(struct net_device *dev, 6710 struct net_device *lower_dev) 6711 { 6712 struct netdev_adjacent *lower; 6713 6714 if (!lower_dev) 6715 return NULL; 6716 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6717 if (!lower) 6718 return NULL; 6719 6720 return lower->private; 6721 } 6722 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6723 6724 6725 int dev_get_nest_level(struct net_device *dev) 6726 { 6727 struct net_device *lower = NULL; 6728 struct list_head *iter; 6729 int max_nest = -1; 6730 int nest; 6731 6732 ASSERT_RTNL(); 6733 6734 netdev_for_each_lower_dev(dev, lower, iter) { 6735 nest = dev_get_nest_level(lower); 6736 if (max_nest < nest) 6737 max_nest = nest; 6738 } 6739 6740 return max_nest + 1; 6741 } 6742 EXPORT_SYMBOL(dev_get_nest_level); 6743 6744 /** 6745 * netdev_lower_change - Dispatch event about lower device state change 6746 * @lower_dev: device 6747 * @lower_state_info: state to dispatch 6748 * 6749 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6750 * The caller must hold the RTNL lock. 6751 */ 6752 void netdev_lower_state_changed(struct net_device *lower_dev, 6753 void *lower_state_info) 6754 { 6755 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 6756 .info.dev = lower_dev, 6757 }; 6758 6759 ASSERT_RTNL(); 6760 changelowerstate_info.lower_state_info = lower_state_info; 6761 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 6762 &changelowerstate_info.info); 6763 } 6764 EXPORT_SYMBOL(netdev_lower_state_changed); 6765 6766 static void dev_change_rx_flags(struct net_device *dev, int flags) 6767 { 6768 const struct net_device_ops *ops = dev->netdev_ops; 6769 6770 if (ops->ndo_change_rx_flags) 6771 ops->ndo_change_rx_flags(dev, flags); 6772 } 6773 6774 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6775 { 6776 unsigned int old_flags = dev->flags; 6777 kuid_t uid; 6778 kgid_t gid; 6779 6780 ASSERT_RTNL(); 6781 6782 dev->flags |= IFF_PROMISC; 6783 dev->promiscuity += inc; 6784 if (dev->promiscuity == 0) { 6785 /* 6786 * Avoid overflow. 6787 * If inc causes overflow, untouch promisc and return error. 6788 */ 6789 if (inc < 0) 6790 dev->flags &= ~IFF_PROMISC; 6791 else { 6792 dev->promiscuity -= inc; 6793 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6794 dev->name); 6795 return -EOVERFLOW; 6796 } 6797 } 6798 if (dev->flags != old_flags) { 6799 pr_info("device %s %s promiscuous mode\n", 6800 dev->name, 6801 dev->flags & IFF_PROMISC ? "entered" : "left"); 6802 if (audit_enabled) { 6803 current_uid_gid(&uid, &gid); 6804 audit_log(current->audit_context, GFP_ATOMIC, 6805 AUDIT_ANOM_PROMISCUOUS, 6806 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6807 dev->name, (dev->flags & IFF_PROMISC), 6808 (old_flags & IFF_PROMISC), 6809 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6810 from_kuid(&init_user_ns, uid), 6811 from_kgid(&init_user_ns, gid), 6812 audit_get_sessionid(current)); 6813 } 6814 6815 dev_change_rx_flags(dev, IFF_PROMISC); 6816 } 6817 if (notify) 6818 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6819 return 0; 6820 } 6821 6822 /** 6823 * dev_set_promiscuity - update promiscuity count on a device 6824 * @dev: device 6825 * @inc: modifier 6826 * 6827 * Add or remove promiscuity from a device. While the count in the device 6828 * remains above zero the interface remains promiscuous. Once it hits zero 6829 * the device reverts back to normal filtering operation. A negative inc 6830 * value is used to drop promiscuity on the device. 6831 * Return 0 if successful or a negative errno code on error. 6832 */ 6833 int dev_set_promiscuity(struct net_device *dev, int inc) 6834 { 6835 unsigned int old_flags = dev->flags; 6836 int err; 6837 6838 err = __dev_set_promiscuity(dev, inc, true); 6839 if (err < 0) 6840 return err; 6841 if (dev->flags != old_flags) 6842 dev_set_rx_mode(dev); 6843 return err; 6844 } 6845 EXPORT_SYMBOL(dev_set_promiscuity); 6846 6847 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6848 { 6849 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6850 6851 ASSERT_RTNL(); 6852 6853 dev->flags |= IFF_ALLMULTI; 6854 dev->allmulti += inc; 6855 if (dev->allmulti == 0) { 6856 /* 6857 * Avoid overflow. 6858 * If inc causes overflow, untouch allmulti and return error. 6859 */ 6860 if (inc < 0) 6861 dev->flags &= ~IFF_ALLMULTI; 6862 else { 6863 dev->allmulti -= inc; 6864 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6865 dev->name); 6866 return -EOVERFLOW; 6867 } 6868 } 6869 if (dev->flags ^ old_flags) { 6870 dev_change_rx_flags(dev, IFF_ALLMULTI); 6871 dev_set_rx_mode(dev); 6872 if (notify) 6873 __dev_notify_flags(dev, old_flags, 6874 dev->gflags ^ old_gflags); 6875 } 6876 return 0; 6877 } 6878 6879 /** 6880 * dev_set_allmulti - update allmulti count on a device 6881 * @dev: device 6882 * @inc: modifier 6883 * 6884 * Add or remove reception of all multicast frames to a device. While the 6885 * count in the device remains above zero the interface remains listening 6886 * to all interfaces. Once it hits zero the device reverts back to normal 6887 * filtering operation. A negative @inc value is used to drop the counter 6888 * when releasing a resource needing all multicasts. 6889 * Return 0 if successful or a negative errno code on error. 6890 */ 6891 6892 int dev_set_allmulti(struct net_device *dev, int inc) 6893 { 6894 return __dev_set_allmulti(dev, inc, true); 6895 } 6896 EXPORT_SYMBOL(dev_set_allmulti); 6897 6898 /* 6899 * Upload unicast and multicast address lists to device and 6900 * configure RX filtering. When the device doesn't support unicast 6901 * filtering it is put in promiscuous mode while unicast addresses 6902 * are present. 6903 */ 6904 void __dev_set_rx_mode(struct net_device *dev) 6905 { 6906 const struct net_device_ops *ops = dev->netdev_ops; 6907 6908 /* dev_open will call this function so the list will stay sane. */ 6909 if (!(dev->flags&IFF_UP)) 6910 return; 6911 6912 if (!netif_device_present(dev)) 6913 return; 6914 6915 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6916 /* Unicast addresses changes may only happen under the rtnl, 6917 * therefore calling __dev_set_promiscuity here is safe. 6918 */ 6919 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6920 __dev_set_promiscuity(dev, 1, false); 6921 dev->uc_promisc = true; 6922 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6923 __dev_set_promiscuity(dev, -1, false); 6924 dev->uc_promisc = false; 6925 } 6926 } 6927 6928 if (ops->ndo_set_rx_mode) 6929 ops->ndo_set_rx_mode(dev); 6930 } 6931 6932 void dev_set_rx_mode(struct net_device *dev) 6933 { 6934 netif_addr_lock_bh(dev); 6935 __dev_set_rx_mode(dev); 6936 netif_addr_unlock_bh(dev); 6937 } 6938 6939 /** 6940 * dev_get_flags - get flags reported to userspace 6941 * @dev: device 6942 * 6943 * Get the combination of flag bits exported through APIs to userspace. 6944 */ 6945 unsigned int dev_get_flags(const struct net_device *dev) 6946 { 6947 unsigned int flags; 6948 6949 flags = (dev->flags & ~(IFF_PROMISC | 6950 IFF_ALLMULTI | 6951 IFF_RUNNING | 6952 IFF_LOWER_UP | 6953 IFF_DORMANT)) | 6954 (dev->gflags & (IFF_PROMISC | 6955 IFF_ALLMULTI)); 6956 6957 if (netif_running(dev)) { 6958 if (netif_oper_up(dev)) 6959 flags |= IFF_RUNNING; 6960 if (netif_carrier_ok(dev)) 6961 flags |= IFF_LOWER_UP; 6962 if (netif_dormant(dev)) 6963 flags |= IFF_DORMANT; 6964 } 6965 6966 return flags; 6967 } 6968 EXPORT_SYMBOL(dev_get_flags); 6969 6970 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6971 { 6972 unsigned int old_flags = dev->flags; 6973 int ret; 6974 6975 ASSERT_RTNL(); 6976 6977 /* 6978 * Set the flags on our device. 6979 */ 6980 6981 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6982 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6983 IFF_AUTOMEDIA)) | 6984 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6985 IFF_ALLMULTI)); 6986 6987 /* 6988 * Load in the correct multicast list now the flags have changed. 6989 */ 6990 6991 if ((old_flags ^ flags) & IFF_MULTICAST) 6992 dev_change_rx_flags(dev, IFF_MULTICAST); 6993 6994 dev_set_rx_mode(dev); 6995 6996 /* 6997 * Have we downed the interface. We handle IFF_UP ourselves 6998 * according to user attempts to set it, rather than blindly 6999 * setting it. 7000 */ 7001 7002 ret = 0; 7003 if ((old_flags ^ flags) & IFF_UP) { 7004 if (old_flags & IFF_UP) 7005 __dev_close(dev); 7006 else 7007 ret = __dev_open(dev); 7008 } 7009 7010 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7011 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7012 unsigned int old_flags = dev->flags; 7013 7014 dev->gflags ^= IFF_PROMISC; 7015 7016 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7017 if (dev->flags != old_flags) 7018 dev_set_rx_mode(dev); 7019 } 7020 7021 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7022 * is important. Some (broken) drivers set IFF_PROMISC, when 7023 * IFF_ALLMULTI is requested not asking us and not reporting. 7024 */ 7025 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7026 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7027 7028 dev->gflags ^= IFF_ALLMULTI; 7029 __dev_set_allmulti(dev, inc, false); 7030 } 7031 7032 return ret; 7033 } 7034 7035 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7036 unsigned int gchanges) 7037 { 7038 unsigned int changes = dev->flags ^ old_flags; 7039 7040 if (gchanges) 7041 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7042 7043 if (changes & IFF_UP) { 7044 if (dev->flags & IFF_UP) 7045 call_netdevice_notifiers(NETDEV_UP, dev); 7046 else 7047 call_netdevice_notifiers(NETDEV_DOWN, dev); 7048 } 7049 7050 if (dev->flags & IFF_UP && 7051 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7052 struct netdev_notifier_change_info change_info = { 7053 .info = { 7054 .dev = dev, 7055 }, 7056 .flags_changed = changes, 7057 }; 7058 7059 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7060 } 7061 } 7062 7063 /** 7064 * dev_change_flags - change device settings 7065 * @dev: device 7066 * @flags: device state flags 7067 * 7068 * Change settings on device based state flags. The flags are 7069 * in the userspace exported format. 7070 */ 7071 int dev_change_flags(struct net_device *dev, unsigned int flags) 7072 { 7073 int ret; 7074 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7075 7076 ret = __dev_change_flags(dev, flags); 7077 if (ret < 0) 7078 return ret; 7079 7080 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7081 __dev_notify_flags(dev, old_flags, changes); 7082 return ret; 7083 } 7084 EXPORT_SYMBOL(dev_change_flags); 7085 7086 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7087 { 7088 const struct net_device_ops *ops = dev->netdev_ops; 7089 7090 if (ops->ndo_change_mtu) 7091 return ops->ndo_change_mtu(dev, new_mtu); 7092 7093 dev->mtu = new_mtu; 7094 return 0; 7095 } 7096 EXPORT_SYMBOL(__dev_set_mtu); 7097 7098 /** 7099 * dev_set_mtu - Change maximum transfer unit 7100 * @dev: device 7101 * @new_mtu: new transfer unit 7102 * 7103 * Change the maximum transfer size of the network device. 7104 */ 7105 int dev_set_mtu(struct net_device *dev, int new_mtu) 7106 { 7107 int err, orig_mtu; 7108 7109 if (new_mtu == dev->mtu) 7110 return 0; 7111 7112 /* MTU must be positive, and in range */ 7113 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7114 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 7115 dev->name, new_mtu, dev->min_mtu); 7116 return -EINVAL; 7117 } 7118 7119 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7120 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 7121 dev->name, new_mtu, dev->max_mtu); 7122 return -EINVAL; 7123 } 7124 7125 if (!netif_device_present(dev)) 7126 return -ENODEV; 7127 7128 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7129 err = notifier_to_errno(err); 7130 if (err) 7131 return err; 7132 7133 orig_mtu = dev->mtu; 7134 err = __dev_set_mtu(dev, new_mtu); 7135 7136 if (!err) { 7137 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7138 err = notifier_to_errno(err); 7139 if (err) { 7140 /* setting mtu back and notifying everyone again, 7141 * so that they have a chance to revert changes. 7142 */ 7143 __dev_set_mtu(dev, orig_mtu); 7144 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 7145 } 7146 } 7147 return err; 7148 } 7149 EXPORT_SYMBOL(dev_set_mtu); 7150 7151 /** 7152 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7153 * @dev: device 7154 * @new_len: new tx queue length 7155 */ 7156 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7157 { 7158 unsigned int orig_len = dev->tx_queue_len; 7159 int res; 7160 7161 if (new_len != (unsigned int)new_len) 7162 return -ERANGE; 7163 7164 if (new_len != orig_len) { 7165 dev->tx_queue_len = new_len; 7166 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7167 res = notifier_to_errno(res); 7168 if (res) { 7169 netdev_err(dev, 7170 "refused to change device tx_queue_len\n"); 7171 dev->tx_queue_len = orig_len; 7172 return res; 7173 } 7174 return dev_qdisc_change_tx_queue_len(dev); 7175 } 7176 7177 return 0; 7178 } 7179 7180 /** 7181 * dev_set_group - Change group this device belongs to 7182 * @dev: device 7183 * @new_group: group this device should belong to 7184 */ 7185 void dev_set_group(struct net_device *dev, int new_group) 7186 { 7187 dev->group = new_group; 7188 } 7189 EXPORT_SYMBOL(dev_set_group); 7190 7191 /** 7192 * dev_set_mac_address - Change Media Access Control Address 7193 * @dev: device 7194 * @sa: new address 7195 * 7196 * Change the hardware (MAC) address of the device 7197 */ 7198 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7199 { 7200 const struct net_device_ops *ops = dev->netdev_ops; 7201 int err; 7202 7203 if (!ops->ndo_set_mac_address) 7204 return -EOPNOTSUPP; 7205 if (sa->sa_family != dev->type) 7206 return -EINVAL; 7207 if (!netif_device_present(dev)) 7208 return -ENODEV; 7209 err = ops->ndo_set_mac_address(dev, sa); 7210 if (err) 7211 return err; 7212 dev->addr_assign_type = NET_ADDR_SET; 7213 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7214 add_device_randomness(dev->dev_addr, dev->addr_len); 7215 return 0; 7216 } 7217 EXPORT_SYMBOL(dev_set_mac_address); 7218 7219 /** 7220 * dev_change_carrier - Change device carrier 7221 * @dev: device 7222 * @new_carrier: new value 7223 * 7224 * Change device carrier 7225 */ 7226 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7227 { 7228 const struct net_device_ops *ops = dev->netdev_ops; 7229 7230 if (!ops->ndo_change_carrier) 7231 return -EOPNOTSUPP; 7232 if (!netif_device_present(dev)) 7233 return -ENODEV; 7234 return ops->ndo_change_carrier(dev, new_carrier); 7235 } 7236 EXPORT_SYMBOL(dev_change_carrier); 7237 7238 /** 7239 * dev_get_phys_port_id - Get device physical port ID 7240 * @dev: device 7241 * @ppid: port ID 7242 * 7243 * Get device physical port ID 7244 */ 7245 int dev_get_phys_port_id(struct net_device *dev, 7246 struct netdev_phys_item_id *ppid) 7247 { 7248 const struct net_device_ops *ops = dev->netdev_ops; 7249 7250 if (!ops->ndo_get_phys_port_id) 7251 return -EOPNOTSUPP; 7252 return ops->ndo_get_phys_port_id(dev, ppid); 7253 } 7254 EXPORT_SYMBOL(dev_get_phys_port_id); 7255 7256 /** 7257 * dev_get_phys_port_name - Get device physical port name 7258 * @dev: device 7259 * @name: port name 7260 * @len: limit of bytes to copy to name 7261 * 7262 * Get device physical port name 7263 */ 7264 int dev_get_phys_port_name(struct net_device *dev, 7265 char *name, size_t len) 7266 { 7267 const struct net_device_ops *ops = dev->netdev_ops; 7268 7269 if (!ops->ndo_get_phys_port_name) 7270 return -EOPNOTSUPP; 7271 return ops->ndo_get_phys_port_name(dev, name, len); 7272 } 7273 EXPORT_SYMBOL(dev_get_phys_port_name); 7274 7275 /** 7276 * dev_change_proto_down - update protocol port state information 7277 * @dev: device 7278 * @proto_down: new value 7279 * 7280 * This info can be used by switch drivers to set the phys state of the 7281 * port. 7282 */ 7283 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7284 { 7285 const struct net_device_ops *ops = dev->netdev_ops; 7286 7287 if (!ops->ndo_change_proto_down) 7288 return -EOPNOTSUPP; 7289 if (!netif_device_present(dev)) 7290 return -ENODEV; 7291 return ops->ndo_change_proto_down(dev, proto_down); 7292 } 7293 EXPORT_SYMBOL(dev_change_proto_down); 7294 7295 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7296 struct netdev_bpf *xdp) 7297 { 7298 memset(xdp, 0, sizeof(*xdp)); 7299 xdp->command = XDP_QUERY_PROG; 7300 7301 /* Query must always succeed. */ 7302 WARN_ON(bpf_op(dev, xdp) < 0); 7303 } 7304 7305 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op) 7306 { 7307 struct netdev_bpf xdp; 7308 7309 __dev_xdp_query(dev, bpf_op, &xdp); 7310 7311 return xdp.prog_attached; 7312 } 7313 7314 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7315 struct netlink_ext_ack *extack, u32 flags, 7316 struct bpf_prog *prog) 7317 { 7318 struct netdev_bpf xdp; 7319 7320 memset(&xdp, 0, sizeof(xdp)); 7321 if (flags & XDP_FLAGS_HW_MODE) 7322 xdp.command = XDP_SETUP_PROG_HW; 7323 else 7324 xdp.command = XDP_SETUP_PROG; 7325 xdp.extack = extack; 7326 xdp.flags = flags; 7327 xdp.prog = prog; 7328 7329 return bpf_op(dev, &xdp); 7330 } 7331 7332 static void dev_xdp_uninstall(struct net_device *dev) 7333 { 7334 struct netdev_bpf xdp; 7335 bpf_op_t ndo_bpf; 7336 7337 /* Remove generic XDP */ 7338 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7339 7340 /* Remove from the driver */ 7341 ndo_bpf = dev->netdev_ops->ndo_bpf; 7342 if (!ndo_bpf) 7343 return; 7344 7345 __dev_xdp_query(dev, ndo_bpf, &xdp); 7346 if (xdp.prog_attached == XDP_ATTACHED_NONE) 7347 return; 7348 7349 /* Program removal should always succeed */ 7350 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL)); 7351 } 7352 7353 /** 7354 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7355 * @dev: device 7356 * @extack: netlink extended ack 7357 * @fd: new program fd or negative value to clear 7358 * @flags: xdp-related flags 7359 * 7360 * Set or clear a bpf program for a device 7361 */ 7362 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7363 int fd, u32 flags) 7364 { 7365 const struct net_device_ops *ops = dev->netdev_ops; 7366 struct bpf_prog *prog = NULL; 7367 bpf_op_t bpf_op, bpf_chk; 7368 int err; 7369 7370 ASSERT_RTNL(); 7371 7372 bpf_op = bpf_chk = ops->ndo_bpf; 7373 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7374 return -EOPNOTSUPP; 7375 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7376 bpf_op = generic_xdp_install; 7377 if (bpf_op == bpf_chk) 7378 bpf_chk = generic_xdp_install; 7379 7380 if (fd >= 0) { 7381 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk)) 7382 return -EEXIST; 7383 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7384 __dev_xdp_attached(dev, bpf_op)) 7385 return -EBUSY; 7386 7387 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7388 bpf_op == ops->ndo_bpf); 7389 if (IS_ERR(prog)) 7390 return PTR_ERR(prog); 7391 7392 if (!(flags & XDP_FLAGS_HW_MODE) && 7393 bpf_prog_is_dev_bound(prog->aux)) { 7394 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7395 bpf_prog_put(prog); 7396 return -EINVAL; 7397 } 7398 } 7399 7400 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7401 if (err < 0 && prog) 7402 bpf_prog_put(prog); 7403 7404 return err; 7405 } 7406 7407 /** 7408 * dev_new_index - allocate an ifindex 7409 * @net: the applicable net namespace 7410 * 7411 * Returns a suitable unique value for a new device interface 7412 * number. The caller must hold the rtnl semaphore or the 7413 * dev_base_lock to be sure it remains unique. 7414 */ 7415 static int dev_new_index(struct net *net) 7416 { 7417 int ifindex = net->ifindex; 7418 7419 for (;;) { 7420 if (++ifindex <= 0) 7421 ifindex = 1; 7422 if (!__dev_get_by_index(net, ifindex)) 7423 return net->ifindex = ifindex; 7424 } 7425 } 7426 7427 /* Delayed registration/unregisteration */ 7428 static LIST_HEAD(net_todo_list); 7429 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7430 7431 static void net_set_todo(struct net_device *dev) 7432 { 7433 list_add_tail(&dev->todo_list, &net_todo_list); 7434 dev_net(dev)->dev_unreg_count++; 7435 } 7436 7437 static void rollback_registered_many(struct list_head *head) 7438 { 7439 struct net_device *dev, *tmp; 7440 LIST_HEAD(close_head); 7441 7442 BUG_ON(dev_boot_phase); 7443 ASSERT_RTNL(); 7444 7445 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7446 /* Some devices call without registering 7447 * for initialization unwind. Remove those 7448 * devices and proceed with the remaining. 7449 */ 7450 if (dev->reg_state == NETREG_UNINITIALIZED) { 7451 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7452 dev->name, dev); 7453 7454 WARN_ON(1); 7455 list_del(&dev->unreg_list); 7456 continue; 7457 } 7458 dev->dismantle = true; 7459 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7460 } 7461 7462 /* If device is running, close it first. */ 7463 list_for_each_entry(dev, head, unreg_list) 7464 list_add_tail(&dev->close_list, &close_head); 7465 dev_close_many(&close_head, true); 7466 7467 list_for_each_entry(dev, head, unreg_list) { 7468 /* And unlink it from device chain. */ 7469 unlist_netdevice(dev); 7470 7471 dev->reg_state = NETREG_UNREGISTERING; 7472 } 7473 flush_all_backlogs(); 7474 7475 synchronize_net(); 7476 7477 list_for_each_entry(dev, head, unreg_list) { 7478 struct sk_buff *skb = NULL; 7479 7480 /* Shutdown queueing discipline. */ 7481 dev_shutdown(dev); 7482 7483 dev_xdp_uninstall(dev); 7484 7485 /* Notify protocols, that we are about to destroy 7486 * this device. They should clean all the things. 7487 */ 7488 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7489 7490 if (!dev->rtnl_link_ops || 7491 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7492 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7493 GFP_KERNEL, NULL, 0); 7494 7495 /* 7496 * Flush the unicast and multicast chains 7497 */ 7498 dev_uc_flush(dev); 7499 dev_mc_flush(dev); 7500 7501 if (dev->netdev_ops->ndo_uninit) 7502 dev->netdev_ops->ndo_uninit(dev); 7503 7504 if (skb) 7505 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7506 7507 /* Notifier chain MUST detach us all upper devices. */ 7508 WARN_ON(netdev_has_any_upper_dev(dev)); 7509 WARN_ON(netdev_has_any_lower_dev(dev)); 7510 7511 /* Remove entries from kobject tree */ 7512 netdev_unregister_kobject(dev); 7513 #ifdef CONFIG_XPS 7514 /* Remove XPS queueing entries */ 7515 netif_reset_xps_queues_gt(dev, 0); 7516 #endif 7517 } 7518 7519 synchronize_net(); 7520 7521 list_for_each_entry(dev, head, unreg_list) 7522 dev_put(dev); 7523 } 7524 7525 static void rollback_registered(struct net_device *dev) 7526 { 7527 LIST_HEAD(single); 7528 7529 list_add(&dev->unreg_list, &single); 7530 rollback_registered_many(&single); 7531 list_del(&single); 7532 } 7533 7534 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7535 struct net_device *upper, netdev_features_t features) 7536 { 7537 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7538 netdev_features_t feature; 7539 int feature_bit; 7540 7541 for_each_netdev_feature(&upper_disables, feature_bit) { 7542 feature = __NETIF_F_BIT(feature_bit); 7543 if (!(upper->wanted_features & feature) 7544 && (features & feature)) { 7545 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7546 &feature, upper->name); 7547 features &= ~feature; 7548 } 7549 } 7550 7551 return features; 7552 } 7553 7554 static void netdev_sync_lower_features(struct net_device *upper, 7555 struct net_device *lower, netdev_features_t features) 7556 { 7557 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7558 netdev_features_t feature; 7559 int feature_bit; 7560 7561 for_each_netdev_feature(&upper_disables, feature_bit) { 7562 feature = __NETIF_F_BIT(feature_bit); 7563 if (!(features & feature) && (lower->features & feature)) { 7564 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7565 &feature, lower->name); 7566 lower->wanted_features &= ~feature; 7567 netdev_update_features(lower); 7568 7569 if (unlikely(lower->features & feature)) 7570 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7571 &feature, lower->name); 7572 } 7573 } 7574 } 7575 7576 static netdev_features_t netdev_fix_features(struct net_device *dev, 7577 netdev_features_t features) 7578 { 7579 /* Fix illegal checksum combinations */ 7580 if ((features & NETIF_F_HW_CSUM) && 7581 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7582 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7583 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7584 } 7585 7586 /* TSO requires that SG is present as well. */ 7587 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7588 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7589 features &= ~NETIF_F_ALL_TSO; 7590 } 7591 7592 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7593 !(features & NETIF_F_IP_CSUM)) { 7594 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7595 features &= ~NETIF_F_TSO; 7596 features &= ~NETIF_F_TSO_ECN; 7597 } 7598 7599 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7600 !(features & NETIF_F_IPV6_CSUM)) { 7601 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7602 features &= ~NETIF_F_TSO6; 7603 } 7604 7605 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7606 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7607 features &= ~NETIF_F_TSO_MANGLEID; 7608 7609 /* TSO ECN requires that TSO is present as well. */ 7610 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7611 features &= ~NETIF_F_TSO_ECN; 7612 7613 /* Software GSO depends on SG. */ 7614 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7615 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7616 features &= ~NETIF_F_GSO; 7617 } 7618 7619 /* GSO partial features require GSO partial be set */ 7620 if ((features & dev->gso_partial_features) && 7621 !(features & NETIF_F_GSO_PARTIAL)) { 7622 netdev_dbg(dev, 7623 "Dropping partially supported GSO features since no GSO partial.\n"); 7624 features &= ~dev->gso_partial_features; 7625 } 7626 7627 if (!(features & NETIF_F_RXCSUM)) { 7628 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 7629 * successfully merged by hardware must also have the 7630 * checksum verified by hardware. If the user does not 7631 * want to enable RXCSUM, logically, we should disable GRO_HW. 7632 */ 7633 if (features & NETIF_F_GRO_HW) { 7634 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 7635 features &= ~NETIF_F_GRO_HW; 7636 } 7637 } 7638 7639 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 7640 if (features & NETIF_F_RXFCS) { 7641 if (features & NETIF_F_LRO) { 7642 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 7643 features &= ~NETIF_F_LRO; 7644 } 7645 7646 if (features & NETIF_F_GRO_HW) { 7647 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 7648 features &= ~NETIF_F_GRO_HW; 7649 } 7650 } 7651 7652 return features; 7653 } 7654 7655 int __netdev_update_features(struct net_device *dev) 7656 { 7657 struct net_device *upper, *lower; 7658 netdev_features_t features; 7659 struct list_head *iter; 7660 int err = -1; 7661 7662 ASSERT_RTNL(); 7663 7664 features = netdev_get_wanted_features(dev); 7665 7666 if (dev->netdev_ops->ndo_fix_features) 7667 features = dev->netdev_ops->ndo_fix_features(dev, features); 7668 7669 /* driver might be less strict about feature dependencies */ 7670 features = netdev_fix_features(dev, features); 7671 7672 /* some features can't be enabled if they're off an an upper device */ 7673 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7674 features = netdev_sync_upper_features(dev, upper, features); 7675 7676 if (dev->features == features) 7677 goto sync_lower; 7678 7679 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7680 &dev->features, &features); 7681 7682 if (dev->netdev_ops->ndo_set_features) 7683 err = dev->netdev_ops->ndo_set_features(dev, features); 7684 else 7685 err = 0; 7686 7687 if (unlikely(err < 0)) { 7688 netdev_err(dev, 7689 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7690 err, &features, &dev->features); 7691 /* return non-0 since some features might have changed and 7692 * it's better to fire a spurious notification than miss it 7693 */ 7694 return -1; 7695 } 7696 7697 sync_lower: 7698 /* some features must be disabled on lower devices when disabled 7699 * on an upper device (think: bonding master or bridge) 7700 */ 7701 netdev_for_each_lower_dev(dev, lower, iter) 7702 netdev_sync_lower_features(dev, lower, features); 7703 7704 if (!err) { 7705 netdev_features_t diff = features ^ dev->features; 7706 7707 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7708 /* udp_tunnel_{get,drop}_rx_info both need 7709 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7710 * device, or they won't do anything. 7711 * Thus we need to update dev->features 7712 * *before* calling udp_tunnel_get_rx_info, 7713 * but *after* calling udp_tunnel_drop_rx_info. 7714 */ 7715 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7716 dev->features = features; 7717 udp_tunnel_get_rx_info(dev); 7718 } else { 7719 udp_tunnel_drop_rx_info(dev); 7720 } 7721 } 7722 7723 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 7724 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 7725 dev->features = features; 7726 err |= vlan_get_rx_ctag_filter_info(dev); 7727 } else { 7728 vlan_drop_rx_ctag_filter_info(dev); 7729 } 7730 } 7731 7732 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 7733 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 7734 dev->features = features; 7735 err |= vlan_get_rx_stag_filter_info(dev); 7736 } else { 7737 vlan_drop_rx_stag_filter_info(dev); 7738 } 7739 } 7740 7741 dev->features = features; 7742 } 7743 7744 return err < 0 ? 0 : 1; 7745 } 7746 7747 /** 7748 * netdev_update_features - recalculate device features 7749 * @dev: the device to check 7750 * 7751 * Recalculate dev->features set and send notifications if it 7752 * has changed. Should be called after driver or hardware dependent 7753 * conditions might have changed that influence the features. 7754 */ 7755 void netdev_update_features(struct net_device *dev) 7756 { 7757 if (__netdev_update_features(dev)) 7758 netdev_features_change(dev); 7759 } 7760 EXPORT_SYMBOL(netdev_update_features); 7761 7762 /** 7763 * netdev_change_features - recalculate device features 7764 * @dev: the device to check 7765 * 7766 * Recalculate dev->features set and send notifications even 7767 * if they have not changed. Should be called instead of 7768 * netdev_update_features() if also dev->vlan_features might 7769 * have changed to allow the changes to be propagated to stacked 7770 * VLAN devices. 7771 */ 7772 void netdev_change_features(struct net_device *dev) 7773 { 7774 __netdev_update_features(dev); 7775 netdev_features_change(dev); 7776 } 7777 EXPORT_SYMBOL(netdev_change_features); 7778 7779 /** 7780 * netif_stacked_transfer_operstate - transfer operstate 7781 * @rootdev: the root or lower level device to transfer state from 7782 * @dev: the device to transfer operstate to 7783 * 7784 * Transfer operational state from root to device. This is normally 7785 * called when a stacking relationship exists between the root 7786 * device and the device(a leaf device). 7787 */ 7788 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7789 struct net_device *dev) 7790 { 7791 if (rootdev->operstate == IF_OPER_DORMANT) 7792 netif_dormant_on(dev); 7793 else 7794 netif_dormant_off(dev); 7795 7796 if (netif_carrier_ok(rootdev)) 7797 netif_carrier_on(dev); 7798 else 7799 netif_carrier_off(dev); 7800 } 7801 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7802 7803 static int netif_alloc_rx_queues(struct net_device *dev) 7804 { 7805 unsigned int i, count = dev->num_rx_queues; 7806 struct netdev_rx_queue *rx; 7807 size_t sz = count * sizeof(*rx); 7808 int err = 0; 7809 7810 BUG_ON(count < 1); 7811 7812 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7813 if (!rx) 7814 return -ENOMEM; 7815 7816 dev->_rx = rx; 7817 7818 for (i = 0; i < count; i++) { 7819 rx[i].dev = dev; 7820 7821 /* XDP RX-queue setup */ 7822 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 7823 if (err < 0) 7824 goto err_rxq_info; 7825 } 7826 return 0; 7827 7828 err_rxq_info: 7829 /* Rollback successful reg's and free other resources */ 7830 while (i--) 7831 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 7832 kvfree(dev->_rx); 7833 dev->_rx = NULL; 7834 return err; 7835 } 7836 7837 static void netif_free_rx_queues(struct net_device *dev) 7838 { 7839 unsigned int i, count = dev->num_rx_queues; 7840 7841 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 7842 if (!dev->_rx) 7843 return; 7844 7845 for (i = 0; i < count; i++) 7846 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 7847 7848 kvfree(dev->_rx); 7849 } 7850 7851 static void netdev_init_one_queue(struct net_device *dev, 7852 struct netdev_queue *queue, void *_unused) 7853 { 7854 /* Initialize queue lock */ 7855 spin_lock_init(&queue->_xmit_lock); 7856 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7857 queue->xmit_lock_owner = -1; 7858 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7859 queue->dev = dev; 7860 #ifdef CONFIG_BQL 7861 dql_init(&queue->dql, HZ); 7862 #endif 7863 } 7864 7865 static void netif_free_tx_queues(struct net_device *dev) 7866 { 7867 kvfree(dev->_tx); 7868 } 7869 7870 static int netif_alloc_netdev_queues(struct net_device *dev) 7871 { 7872 unsigned int count = dev->num_tx_queues; 7873 struct netdev_queue *tx; 7874 size_t sz = count * sizeof(*tx); 7875 7876 if (count < 1 || count > 0xffff) 7877 return -EINVAL; 7878 7879 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7880 if (!tx) 7881 return -ENOMEM; 7882 7883 dev->_tx = tx; 7884 7885 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7886 spin_lock_init(&dev->tx_global_lock); 7887 7888 return 0; 7889 } 7890 7891 void netif_tx_stop_all_queues(struct net_device *dev) 7892 { 7893 unsigned int i; 7894 7895 for (i = 0; i < dev->num_tx_queues; i++) { 7896 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7897 7898 netif_tx_stop_queue(txq); 7899 } 7900 } 7901 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7902 7903 /** 7904 * register_netdevice - register a network device 7905 * @dev: device to register 7906 * 7907 * Take a completed network device structure and add it to the kernel 7908 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7909 * chain. 0 is returned on success. A negative errno code is returned 7910 * on a failure to set up the device, or if the name is a duplicate. 7911 * 7912 * Callers must hold the rtnl semaphore. You may want 7913 * register_netdev() instead of this. 7914 * 7915 * BUGS: 7916 * The locking appears insufficient to guarantee two parallel registers 7917 * will not get the same name. 7918 */ 7919 7920 int register_netdevice(struct net_device *dev) 7921 { 7922 int ret; 7923 struct net *net = dev_net(dev); 7924 7925 BUG_ON(dev_boot_phase); 7926 ASSERT_RTNL(); 7927 7928 might_sleep(); 7929 7930 /* When net_device's are persistent, this will be fatal. */ 7931 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7932 BUG_ON(!net); 7933 7934 spin_lock_init(&dev->addr_list_lock); 7935 netdev_set_addr_lockdep_class(dev); 7936 7937 ret = dev_get_valid_name(net, dev, dev->name); 7938 if (ret < 0) 7939 goto out; 7940 7941 /* Init, if this function is available */ 7942 if (dev->netdev_ops->ndo_init) { 7943 ret = dev->netdev_ops->ndo_init(dev); 7944 if (ret) { 7945 if (ret > 0) 7946 ret = -EIO; 7947 goto out; 7948 } 7949 } 7950 7951 if (((dev->hw_features | dev->features) & 7952 NETIF_F_HW_VLAN_CTAG_FILTER) && 7953 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7954 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7955 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7956 ret = -EINVAL; 7957 goto err_uninit; 7958 } 7959 7960 ret = -EBUSY; 7961 if (!dev->ifindex) 7962 dev->ifindex = dev_new_index(net); 7963 else if (__dev_get_by_index(net, dev->ifindex)) 7964 goto err_uninit; 7965 7966 /* Transfer changeable features to wanted_features and enable 7967 * software offloads (GSO and GRO). 7968 */ 7969 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7970 dev->features |= NETIF_F_SOFT_FEATURES; 7971 7972 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7973 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7974 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7975 } 7976 7977 dev->wanted_features = dev->features & dev->hw_features; 7978 7979 if (!(dev->flags & IFF_LOOPBACK)) 7980 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7981 7982 /* If IPv4 TCP segmentation offload is supported we should also 7983 * allow the device to enable segmenting the frame with the option 7984 * of ignoring a static IP ID value. This doesn't enable the 7985 * feature itself but allows the user to enable it later. 7986 */ 7987 if (dev->hw_features & NETIF_F_TSO) 7988 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7989 if (dev->vlan_features & NETIF_F_TSO) 7990 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7991 if (dev->mpls_features & NETIF_F_TSO) 7992 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7993 if (dev->hw_enc_features & NETIF_F_TSO) 7994 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7995 7996 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7997 */ 7998 dev->vlan_features |= NETIF_F_HIGHDMA; 7999 8000 /* Make NETIF_F_SG inheritable to tunnel devices. 8001 */ 8002 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8003 8004 /* Make NETIF_F_SG inheritable to MPLS. 8005 */ 8006 dev->mpls_features |= NETIF_F_SG; 8007 8008 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8009 ret = notifier_to_errno(ret); 8010 if (ret) 8011 goto err_uninit; 8012 8013 ret = netdev_register_kobject(dev); 8014 if (ret) 8015 goto err_uninit; 8016 dev->reg_state = NETREG_REGISTERED; 8017 8018 __netdev_update_features(dev); 8019 8020 /* 8021 * Default initial state at registry is that the 8022 * device is present. 8023 */ 8024 8025 set_bit(__LINK_STATE_PRESENT, &dev->state); 8026 8027 linkwatch_init_dev(dev); 8028 8029 dev_init_scheduler(dev); 8030 dev_hold(dev); 8031 list_netdevice(dev); 8032 add_device_randomness(dev->dev_addr, dev->addr_len); 8033 8034 /* If the device has permanent device address, driver should 8035 * set dev_addr and also addr_assign_type should be set to 8036 * NET_ADDR_PERM (default value). 8037 */ 8038 if (dev->addr_assign_type == NET_ADDR_PERM) 8039 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8040 8041 /* Notify protocols, that a new device appeared. */ 8042 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8043 ret = notifier_to_errno(ret); 8044 if (ret) { 8045 rollback_registered(dev); 8046 dev->reg_state = NETREG_UNREGISTERED; 8047 } 8048 /* 8049 * Prevent userspace races by waiting until the network 8050 * device is fully setup before sending notifications. 8051 */ 8052 if (!dev->rtnl_link_ops || 8053 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8054 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8055 8056 out: 8057 return ret; 8058 8059 err_uninit: 8060 if (dev->netdev_ops->ndo_uninit) 8061 dev->netdev_ops->ndo_uninit(dev); 8062 if (dev->priv_destructor) 8063 dev->priv_destructor(dev); 8064 goto out; 8065 } 8066 EXPORT_SYMBOL(register_netdevice); 8067 8068 /** 8069 * init_dummy_netdev - init a dummy network device for NAPI 8070 * @dev: device to init 8071 * 8072 * This takes a network device structure and initialize the minimum 8073 * amount of fields so it can be used to schedule NAPI polls without 8074 * registering a full blown interface. This is to be used by drivers 8075 * that need to tie several hardware interfaces to a single NAPI 8076 * poll scheduler due to HW limitations. 8077 */ 8078 int init_dummy_netdev(struct net_device *dev) 8079 { 8080 /* Clear everything. Note we don't initialize spinlocks 8081 * are they aren't supposed to be taken by any of the 8082 * NAPI code and this dummy netdev is supposed to be 8083 * only ever used for NAPI polls 8084 */ 8085 memset(dev, 0, sizeof(struct net_device)); 8086 8087 /* make sure we BUG if trying to hit standard 8088 * register/unregister code path 8089 */ 8090 dev->reg_state = NETREG_DUMMY; 8091 8092 /* NAPI wants this */ 8093 INIT_LIST_HEAD(&dev->napi_list); 8094 8095 /* a dummy interface is started by default */ 8096 set_bit(__LINK_STATE_PRESENT, &dev->state); 8097 set_bit(__LINK_STATE_START, &dev->state); 8098 8099 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8100 * because users of this 'device' dont need to change 8101 * its refcount. 8102 */ 8103 8104 return 0; 8105 } 8106 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8107 8108 8109 /** 8110 * register_netdev - register a network device 8111 * @dev: device to register 8112 * 8113 * Take a completed network device structure and add it to the kernel 8114 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8115 * chain. 0 is returned on success. A negative errno code is returned 8116 * on a failure to set up the device, or if the name is a duplicate. 8117 * 8118 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8119 * and expands the device name if you passed a format string to 8120 * alloc_netdev. 8121 */ 8122 int register_netdev(struct net_device *dev) 8123 { 8124 int err; 8125 8126 if (rtnl_lock_killable()) 8127 return -EINTR; 8128 err = register_netdevice(dev); 8129 rtnl_unlock(); 8130 return err; 8131 } 8132 EXPORT_SYMBOL(register_netdev); 8133 8134 int netdev_refcnt_read(const struct net_device *dev) 8135 { 8136 int i, refcnt = 0; 8137 8138 for_each_possible_cpu(i) 8139 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8140 return refcnt; 8141 } 8142 EXPORT_SYMBOL(netdev_refcnt_read); 8143 8144 /** 8145 * netdev_wait_allrefs - wait until all references are gone. 8146 * @dev: target net_device 8147 * 8148 * This is called when unregistering network devices. 8149 * 8150 * Any protocol or device that holds a reference should register 8151 * for netdevice notification, and cleanup and put back the 8152 * reference if they receive an UNREGISTER event. 8153 * We can get stuck here if buggy protocols don't correctly 8154 * call dev_put. 8155 */ 8156 static void netdev_wait_allrefs(struct net_device *dev) 8157 { 8158 unsigned long rebroadcast_time, warning_time; 8159 int refcnt; 8160 8161 linkwatch_forget_dev(dev); 8162 8163 rebroadcast_time = warning_time = jiffies; 8164 refcnt = netdev_refcnt_read(dev); 8165 8166 while (refcnt != 0) { 8167 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8168 rtnl_lock(); 8169 8170 /* Rebroadcast unregister notification */ 8171 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8172 8173 __rtnl_unlock(); 8174 rcu_barrier(); 8175 rtnl_lock(); 8176 8177 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8178 &dev->state)) { 8179 /* We must not have linkwatch events 8180 * pending on unregister. If this 8181 * happens, we simply run the queue 8182 * unscheduled, resulting in a noop 8183 * for this device. 8184 */ 8185 linkwatch_run_queue(); 8186 } 8187 8188 __rtnl_unlock(); 8189 8190 rebroadcast_time = jiffies; 8191 } 8192 8193 msleep(250); 8194 8195 refcnt = netdev_refcnt_read(dev); 8196 8197 if (time_after(jiffies, warning_time + 10 * HZ)) { 8198 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8199 dev->name, refcnt); 8200 warning_time = jiffies; 8201 } 8202 } 8203 } 8204 8205 /* The sequence is: 8206 * 8207 * rtnl_lock(); 8208 * ... 8209 * register_netdevice(x1); 8210 * register_netdevice(x2); 8211 * ... 8212 * unregister_netdevice(y1); 8213 * unregister_netdevice(y2); 8214 * ... 8215 * rtnl_unlock(); 8216 * free_netdev(y1); 8217 * free_netdev(y2); 8218 * 8219 * We are invoked by rtnl_unlock(). 8220 * This allows us to deal with problems: 8221 * 1) We can delete sysfs objects which invoke hotplug 8222 * without deadlocking with linkwatch via keventd. 8223 * 2) Since we run with the RTNL semaphore not held, we can sleep 8224 * safely in order to wait for the netdev refcnt to drop to zero. 8225 * 8226 * We must not return until all unregister events added during 8227 * the interval the lock was held have been completed. 8228 */ 8229 void netdev_run_todo(void) 8230 { 8231 struct list_head list; 8232 8233 /* Snapshot list, allow later requests */ 8234 list_replace_init(&net_todo_list, &list); 8235 8236 __rtnl_unlock(); 8237 8238 8239 /* Wait for rcu callbacks to finish before next phase */ 8240 if (!list_empty(&list)) 8241 rcu_barrier(); 8242 8243 while (!list_empty(&list)) { 8244 struct net_device *dev 8245 = list_first_entry(&list, struct net_device, todo_list); 8246 list_del(&dev->todo_list); 8247 8248 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8249 pr_err("network todo '%s' but state %d\n", 8250 dev->name, dev->reg_state); 8251 dump_stack(); 8252 continue; 8253 } 8254 8255 dev->reg_state = NETREG_UNREGISTERED; 8256 8257 netdev_wait_allrefs(dev); 8258 8259 /* paranoia */ 8260 BUG_ON(netdev_refcnt_read(dev)); 8261 BUG_ON(!list_empty(&dev->ptype_all)); 8262 BUG_ON(!list_empty(&dev->ptype_specific)); 8263 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8264 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8265 #if IS_ENABLED(CONFIG_DECNET) 8266 WARN_ON(dev->dn_ptr); 8267 #endif 8268 if (dev->priv_destructor) 8269 dev->priv_destructor(dev); 8270 if (dev->needs_free_netdev) 8271 free_netdev(dev); 8272 8273 /* Report a network device has been unregistered */ 8274 rtnl_lock(); 8275 dev_net(dev)->dev_unreg_count--; 8276 __rtnl_unlock(); 8277 wake_up(&netdev_unregistering_wq); 8278 8279 /* Free network device */ 8280 kobject_put(&dev->dev.kobj); 8281 } 8282 } 8283 8284 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8285 * all the same fields in the same order as net_device_stats, with only 8286 * the type differing, but rtnl_link_stats64 may have additional fields 8287 * at the end for newer counters. 8288 */ 8289 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8290 const struct net_device_stats *netdev_stats) 8291 { 8292 #if BITS_PER_LONG == 64 8293 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8294 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8295 /* zero out counters that only exist in rtnl_link_stats64 */ 8296 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8297 sizeof(*stats64) - sizeof(*netdev_stats)); 8298 #else 8299 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8300 const unsigned long *src = (const unsigned long *)netdev_stats; 8301 u64 *dst = (u64 *)stats64; 8302 8303 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8304 for (i = 0; i < n; i++) 8305 dst[i] = src[i]; 8306 /* zero out counters that only exist in rtnl_link_stats64 */ 8307 memset((char *)stats64 + n * sizeof(u64), 0, 8308 sizeof(*stats64) - n * sizeof(u64)); 8309 #endif 8310 } 8311 EXPORT_SYMBOL(netdev_stats_to_stats64); 8312 8313 /** 8314 * dev_get_stats - get network device statistics 8315 * @dev: device to get statistics from 8316 * @storage: place to store stats 8317 * 8318 * Get network statistics from device. Return @storage. 8319 * The device driver may provide its own method by setting 8320 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8321 * otherwise the internal statistics structure is used. 8322 */ 8323 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8324 struct rtnl_link_stats64 *storage) 8325 { 8326 const struct net_device_ops *ops = dev->netdev_ops; 8327 8328 if (ops->ndo_get_stats64) { 8329 memset(storage, 0, sizeof(*storage)); 8330 ops->ndo_get_stats64(dev, storage); 8331 } else if (ops->ndo_get_stats) { 8332 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8333 } else { 8334 netdev_stats_to_stats64(storage, &dev->stats); 8335 } 8336 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8337 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8338 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8339 return storage; 8340 } 8341 EXPORT_SYMBOL(dev_get_stats); 8342 8343 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8344 { 8345 struct netdev_queue *queue = dev_ingress_queue(dev); 8346 8347 #ifdef CONFIG_NET_CLS_ACT 8348 if (queue) 8349 return queue; 8350 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8351 if (!queue) 8352 return NULL; 8353 netdev_init_one_queue(dev, queue, NULL); 8354 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8355 queue->qdisc_sleeping = &noop_qdisc; 8356 rcu_assign_pointer(dev->ingress_queue, queue); 8357 #endif 8358 return queue; 8359 } 8360 8361 static const struct ethtool_ops default_ethtool_ops; 8362 8363 void netdev_set_default_ethtool_ops(struct net_device *dev, 8364 const struct ethtool_ops *ops) 8365 { 8366 if (dev->ethtool_ops == &default_ethtool_ops) 8367 dev->ethtool_ops = ops; 8368 } 8369 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8370 8371 void netdev_freemem(struct net_device *dev) 8372 { 8373 char *addr = (char *)dev - dev->padded; 8374 8375 kvfree(addr); 8376 } 8377 8378 /** 8379 * alloc_netdev_mqs - allocate network device 8380 * @sizeof_priv: size of private data to allocate space for 8381 * @name: device name format string 8382 * @name_assign_type: origin of device name 8383 * @setup: callback to initialize device 8384 * @txqs: the number of TX subqueues to allocate 8385 * @rxqs: the number of RX subqueues to allocate 8386 * 8387 * Allocates a struct net_device with private data area for driver use 8388 * and performs basic initialization. Also allocates subqueue structs 8389 * for each queue on the device. 8390 */ 8391 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8392 unsigned char name_assign_type, 8393 void (*setup)(struct net_device *), 8394 unsigned int txqs, unsigned int rxqs) 8395 { 8396 struct net_device *dev; 8397 unsigned int alloc_size; 8398 struct net_device *p; 8399 8400 BUG_ON(strlen(name) >= sizeof(dev->name)); 8401 8402 if (txqs < 1) { 8403 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8404 return NULL; 8405 } 8406 8407 if (rxqs < 1) { 8408 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8409 return NULL; 8410 } 8411 8412 alloc_size = sizeof(struct net_device); 8413 if (sizeof_priv) { 8414 /* ensure 32-byte alignment of private area */ 8415 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8416 alloc_size += sizeof_priv; 8417 } 8418 /* ensure 32-byte alignment of whole construct */ 8419 alloc_size += NETDEV_ALIGN - 1; 8420 8421 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8422 if (!p) 8423 return NULL; 8424 8425 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8426 dev->padded = (char *)dev - (char *)p; 8427 8428 dev->pcpu_refcnt = alloc_percpu(int); 8429 if (!dev->pcpu_refcnt) 8430 goto free_dev; 8431 8432 if (dev_addr_init(dev)) 8433 goto free_pcpu; 8434 8435 dev_mc_init(dev); 8436 dev_uc_init(dev); 8437 8438 dev_net_set(dev, &init_net); 8439 8440 dev->gso_max_size = GSO_MAX_SIZE; 8441 dev->gso_max_segs = GSO_MAX_SEGS; 8442 8443 INIT_LIST_HEAD(&dev->napi_list); 8444 INIT_LIST_HEAD(&dev->unreg_list); 8445 INIT_LIST_HEAD(&dev->close_list); 8446 INIT_LIST_HEAD(&dev->link_watch_list); 8447 INIT_LIST_HEAD(&dev->adj_list.upper); 8448 INIT_LIST_HEAD(&dev->adj_list.lower); 8449 INIT_LIST_HEAD(&dev->ptype_all); 8450 INIT_LIST_HEAD(&dev->ptype_specific); 8451 #ifdef CONFIG_NET_SCHED 8452 hash_init(dev->qdisc_hash); 8453 #endif 8454 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8455 setup(dev); 8456 8457 if (!dev->tx_queue_len) { 8458 dev->priv_flags |= IFF_NO_QUEUE; 8459 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8460 } 8461 8462 dev->num_tx_queues = txqs; 8463 dev->real_num_tx_queues = txqs; 8464 if (netif_alloc_netdev_queues(dev)) 8465 goto free_all; 8466 8467 dev->num_rx_queues = rxqs; 8468 dev->real_num_rx_queues = rxqs; 8469 if (netif_alloc_rx_queues(dev)) 8470 goto free_all; 8471 8472 strcpy(dev->name, name); 8473 dev->name_assign_type = name_assign_type; 8474 dev->group = INIT_NETDEV_GROUP; 8475 if (!dev->ethtool_ops) 8476 dev->ethtool_ops = &default_ethtool_ops; 8477 8478 nf_hook_ingress_init(dev); 8479 8480 return dev; 8481 8482 free_all: 8483 free_netdev(dev); 8484 return NULL; 8485 8486 free_pcpu: 8487 free_percpu(dev->pcpu_refcnt); 8488 free_dev: 8489 netdev_freemem(dev); 8490 return NULL; 8491 } 8492 EXPORT_SYMBOL(alloc_netdev_mqs); 8493 8494 /** 8495 * free_netdev - free network device 8496 * @dev: device 8497 * 8498 * This function does the last stage of destroying an allocated device 8499 * interface. The reference to the device object is released. If this 8500 * is the last reference then it will be freed.Must be called in process 8501 * context. 8502 */ 8503 void free_netdev(struct net_device *dev) 8504 { 8505 struct napi_struct *p, *n; 8506 8507 might_sleep(); 8508 netif_free_tx_queues(dev); 8509 netif_free_rx_queues(dev); 8510 8511 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8512 8513 /* Flush device addresses */ 8514 dev_addr_flush(dev); 8515 8516 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8517 netif_napi_del(p); 8518 8519 free_percpu(dev->pcpu_refcnt); 8520 dev->pcpu_refcnt = NULL; 8521 8522 /* Compatibility with error handling in drivers */ 8523 if (dev->reg_state == NETREG_UNINITIALIZED) { 8524 netdev_freemem(dev); 8525 return; 8526 } 8527 8528 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8529 dev->reg_state = NETREG_RELEASED; 8530 8531 /* will free via device release */ 8532 put_device(&dev->dev); 8533 } 8534 EXPORT_SYMBOL(free_netdev); 8535 8536 /** 8537 * synchronize_net - Synchronize with packet receive processing 8538 * 8539 * Wait for packets currently being received to be done. 8540 * Does not block later packets from starting. 8541 */ 8542 void synchronize_net(void) 8543 { 8544 might_sleep(); 8545 if (rtnl_is_locked()) 8546 synchronize_rcu_expedited(); 8547 else 8548 synchronize_rcu(); 8549 } 8550 EXPORT_SYMBOL(synchronize_net); 8551 8552 /** 8553 * unregister_netdevice_queue - remove device from the kernel 8554 * @dev: device 8555 * @head: list 8556 * 8557 * This function shuts down a device interface and removes it 8558 * from the kernel tables. 8559 * If head not NULL, device is queued to be unregistered later. 8560 * 8561 * Callers must hold the rtnl semaphore. You may want 8562 * unregister_netdev() instead of this. 8563 */ 8564 8565 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8566 { 8567 ASSERT_RTNL(); 8568 8569 if (head) { 8570 list_move_tail(&dev->unreg_list, head); 8571 } else { 8572 rollback_registered(dev); 8573 /* Finish processing unregister after unlock */ 8574 net_set_todo(dev); 8575 } 8576 } 8577 EXPORT_SYMBOL(unregister_netdevice_queue); 8578 8579 /** 8580 * unregister_netdevice_many - unregister many devices 8581 * @head: list of devices 8582 * 8583 * Note: As most callers use a stack allocated list_head, 8584 * we force a list_del() to make sure stack wont be corrupted later. 8585 */ 8586 void unregister_netdevice_many(struct list_head *head) 8587 { 8588 struct net_device *dev; 8589 8590 if (!list_empty(head)) { 8591 rollback_registered_many(head); 8592 list_for_each_entry(dev, head, unreg_list) 8593 net_set_todo(dev); 8594 list_del(head); 8595 } 8596 } 8597 EXPORT_SYMBOL(unregister_netdevice_many); 8598 8599 /** 8600 * unregister_netdev - remove device from the kernel 8601 * @dev: device 8602 * 8603 * This function shuts down a device interface and removes it 8604 * from the kernel tables. 8605 * 8606 * This is just a wrapper for unregister_netdevice that takes 8607 * the rtnl semaphore. In general you want to use this and not 8608 * unregister_netdevice. 8609 */ 8610 void unregister_netdev(struct net_device *dev) 8611 { 8612 rtnl_lock(); 8613 unregister_netdevice(dev); 8614 rtnl_unlock(); 8615 } 8616 EXPORT_SYMBOL(unregister_netdev); 8617 8618 /** 8619 * dev_change_net_namespace - move device to different nethost namespace 8620 * @dev: device 8621 * @net: network namespace 8622 * @pat: If not NULL name pattern to try if the current device name 8623 * is already taken in the destination network namespace. 8624 * 8625 * This function shuts down a device interface and moves it 8626 * to a new network namespace. On success 0 is returned, on 8627 * a failure a netagive errno code is returned. 8628 * 8629 * Callers must hold the rtnl semaphore. 8630 */ 8631 8632 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8633 { 8634 int err, new_nsid, new_ifindex; 8635 8636 ASSERT_RTNL(); 8637 8638 /* Don't allow namespace local devices to be moved. */ 8639 err = -EINVAL; 8640 if (dev->features & NETIF_F_NETNS_LOCAL) 8641 goto out; 8642 8643 /* Ensure the device has been registrered */ 8644 if (dev->reg_state != NETREG_REGISTERED) 8645 goto out; 8646 8647 /* Get out if there is nothing todo */ 8648 err = 0; 8649 if (net_eq(dev_net(dev), net)) 8650 goto out; 8651 8652 /* Pick the destination device name, and ensure 8653 * we can use it in the destination network namespace. 8654 */ 8655 err = -EEXIST; 8656 if (__dev_get_by_name(net, dev->name)) { 8657 /* We get here if we can't use the current device name */ 8658 if (!pat) 8659 goto out; 8660 if (dev_get_valid_name(net, dev, pat) < 0) 8661 goto out; 8662 } 8663 8664 /* 8665 * And now a mini version of register_netdevice unregister_netdevice. 8666 */ 8667 8668 /* If device is running close it first. */ 8669 dev_close(dev); 8670 8671 /* And unlink it from device chain */ 8672 err = -ENODEV; 8673 unlist_netdevice(dev); 8674 8675 synchronize_net(); 8676 8677 /* Shutdown queueing discipline. */ 8678 dev_shutdown(dev); 8679 8680 /* Notify protocols, that we are about to destroy 8681 * this device. They should clean all the things. 8682 * 8683 * Note that dev->reg_state stays at NETREG_REGISTERED. 8684 * This is wanted because this way 8021q and macvlan know 8685 * the device is just moving and can keep their slaves up. 8686 */ 8687 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8688 rcu_barrier(); 8689 8690 new_nsid = peernet2id_alloc(dev_net(dev), net); 8691 /* If there is an ifindex conflict assign a new one */ 8692 if (__dev_get_by_index(net, dev->ifindex)) 8693 new_ifindex = dev_new_index(net); 8694 else 8695 new_ifindex = dev->ifindex; 8696 8697 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 8698 new_ifindex); 8699 8700 /* 8701 * Flush the unicast and multicast chains 8702 */ 8703 dev_uc_flush(dev); 8704 dev_mc_flush(dev); 8705 8706 /* Send a netdev-removed uevent to the old namespace */ 8707 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8708 netdev_adjacent_del_links(dev); 8709 8710 /* Actually switch the network namespace */ 8711 dev_net_set(dev, net); 8712 dev->ifindex = new_ifindex; 8713 8714 /* Send a netdev-add uevent to the new namespace */ 8715 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8716 netdev_adjacent_add_links(dev); 8717 8718 /* Fixup kobjects */ 8719 err = device_rename(&dev->dev, dev->name); 8720 WARN_ON(err); 8721 8722 /* Add the device back in the hashes */ 8723 list_netdevice(dev); 8724 8725 /* Notify protocols, that a new device appeared. */ 8726 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8727 8728 /* 8729 * Prevent userspace races by waiting until the network 8730 * device is fully setup before sending notifications. 8731 */ 8732 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8733 8734 synchronize_net(); 8735 err = 0; 8736 out: 8737 return err; 8738 } 8739 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8740 8741 static int dev_cpu_dead(unsigned int oldcpu) 8742 { 8743 struct sk_buff **list_skb; 8744 struct sk_buff *skb; 8745 unsigned int cpu; 8746 struct softnet_data *sd, *oldsd, *remsd = NULL; 8747 8748 local_irq_disable(); 8749 cpu = smp_processor_id(); 8750 sd = &per_cpu(softnet_data, cpu); 8751 oldsd = &per_cpu(softnet_data, oldcpu); 8752 8753 /* Find end of our completion_queue. */ 8754 list_skb = &sd->completion_queue; 8755 while (*list_skb) 8756 list_skb = &(*list_skb)->next; 8757 /* Append completion queue from offline CPU. */ 8758 *list_skb = oldsd->completion_queue; 8759 oldsd->completion_queue = NULL; 8760 8761 /* Append output queue from offline CPU. */ 8762 if (oldsd->output_queue) { 8763 *sd->output_queue_tailp = oldsd->output_queue; 8764 sd->output_queue_tailp = oldsd->output_queue_tailp; 8765 oldsd->output_queue = NULL; 8766 oldsd->output_queue_tailp = &oldsd->output_queue; 8767 } 8768 /* Append NAPI poll list from offline CPU, with one exception : 8769 * process_backlog() must be called by cpu owning percpu backlog. 8770 * We properly handle process_queue & input_pkt_queue later. 8771 */ 8772 while (!list_empty(&oldsd->poll_list)) { 8773 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8774 struct napi_struct, 8775 poll_list); 8776 8777 list_del_init(&napi->poll_list); 8778 if (napi->poll == process_backlog) 8779 napi->state = 0; 8780 else 8781 ____napi_schedule(sd, napi); 8782 } 8783 8784 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8785 local_irq_enable(); 8786 8787 #ifdef CONFIG_RPS 8788 remsd = oldsd->rps_ipi_list; 8789 oldsd->rps_ipi_list = NULL; 8790 #endif 8791 /* send out pending IPI's on offline CPU */ 8792 net_rps_send_ipi(remsd); 8793 8794 /* Process offline CPU's input_pkt_queue */ 8795 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8796 netif_rx_ni(skb); 8797 input_queue_head_incr(oldsd); 8798 } 8799 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8800 netif_rx_ni(skb); 8801 input_queue_head_incr(oldsd); 8802 } 8803 8804 return 0; 8805 } 8806 8807 /** 8808 * netdev_increment_features - increment feature set by one 8809 * @all: current feature set 8810 * @one: new feature set 8811 * @mask: mask feature set 8812 * 8813 * Computes a new feature set after adding a device with feature set 8814 * @one to the master device with current feature set @all. Will not 8815 * enable anything that is off in @mask. Returns the new feature set. 8816 */ 8817 netdev_features_t netdev_increment_features(netdev_features_t all, 8818 netdev_features_t one, netdev_features_t mask) 8819 { 8820 if (mask & NETIF_F_HW_CSUM) 8821 mask |= NETIF_F_CSUM_MASK; 8822 mask |= NETIF_F_VLAN_CHALLENGED; 8823 8824 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8825 all &= one | ~NETIF_F_ALL_FOR_ALL; 8826 8827 /* If one device supports hw checksumming, set for all. */ 8828 if (all & NETIF_F_HW_CSUM) 8829 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8830 8831 return all; 8832 } 8833 EXPORT_SYMBOL(netdev_increment_features); 8834 8835 static struct hlist_head * __net_init netdev_create_hash(void) 8836 { 8837 int i; 8838 struct hlist_head *hash; 8839 8840 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8841 if (hash != NULL) 8842 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8843 INIT_HLIST_HEAD(&hash[i]); 8844 8845 return hash; 8846 } 8847 8848 /* Initialize per network namespace state */ 8849 static int __net_init netdev_init(struct net *net) 8850 { 8851 if (net != &init_net) 8852 INIT_LIST_HEAD(&net->dev_base_head); 8853 8854 net->dev_name_head = netdev_create_hash(); 8855 if (net->dev_name_head == NULL) 8856 goto err_name; 8857 8858 net->dev_index_head = netdev_create_hash(); 8859 if (net->dev_index_head == NULL) 8860 goto err_idx; 8861 8862 return 0; 8863 8864 err_idx: 8865 kfree(net->dev_name_head); 8866 err_name: 8867 return -ENOMEM; 8868 } 8869 8870 /** 8871 * netdev_drivername - network driver for the device 8872 * @dev: network device 8873 * 8874 * Determine network driver for device. 8875 */ 8876 const char *netdev_drivername(const struct net_device *dev) 8877 { 8878 const struct device_driver *driver; 8879 const struct device *parent; 8880 const char *empty = ""; 8881 8882 parent = dev->dev.parent; 8883 if (!parent) 8884 return empty; 8885 8886 driver = parent->driver; 8887 if (driver && driver->name) 8888 return driver->name; 8889 return empty; 8890 } 8891 8892 static void __netdev_printk(const char *level, const struct net_device *dev, 8893 struct va_format *vaf) 8894 { 8895 if (dev && dev->dev.parent) { 8896 dev_printk_emit(level[1] - '0', 8897 dev->dev.parent, 8898 "%s %s %s%s: %pV", 8899 dev_driver_string(dev->dev.parent), 8900 dev_name(dev->dev.parent), 8901 netdev_name(dev), netdev_reg_state(dev), 8902 vaf); 8903 } else if (dev) { 8904 printk("%s%s%s: %pV", 8905 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8906 } else { 8907 printk("%s(NULL net_device): %pV", level, vaf); 8908 } 8909 } 8910 8911 void netdev_printk(const char *level, const struct net_device *dev, 8912 const char *format, ...) 8913 { 8914 struct va_format vaf; 8915 va_list args; 8916 8917 va_start(args, format); 8918 8919 vaf.fmt = format; 8920 vaf.va = &args; 8921 8922 __netdev_printk(level, dev, &vaf); 8923 8924 va_end(args); 8925 } 8926 EXPORT_SYMBOL(netdev_printk); 8927 8928 #define define_netdev_printk_level(func, level) \ 8929 void func(const struct net_device *dev, const char *fmt, ...) \ 8930 { \ 8931 struct va_format vaf; \ 8932 va_list args; \ 8933 \ 8934 va_start(args, fmt); \ 8935 \ 8936 vaf.fmt = fmt; \ 8937 vaf.va = &args; \ 8938 \ 8939 __netdev_printk(level, dev, &vaf); \ 8940 \ 8941 va_end(args); \ 8942 } \ 8943 EXPORT_SYMBOL(func); 8944 8945 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8946 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8947 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8948 define_netdev_printk_level(netdev_err, KERN_ERR); 8949 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8950 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8951 define_netdev_printk_level(netdev_info, KERN_INFO); 8952 8953 static void __net_exit netdev_exit(struct net *net) 8954 { 8955 kfree(net->dev_name_head); 8956 kfree(net->dev_index_head); 8957 if (net != &init_net) 8958 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 8959 } 8960 8961 static struct pernet_operations __net_initdata netdev_net_ops = { 8962 .init = netdev_init, 8963 .exit = netdev_exit, 8964 }; 8965 8966 static void __net_exit default_device_exit(struct net *net) 8967 { 8968 struct net_device *dev, *aux; 8969 /* 8970 * Push all migratable network devices back to the 8971 * initial network namespace 8972 */ 8973 rtnl_lock(); 8974 for_each_netdev_safe(net, dev, aux) { 8975 int err; 8976 char fb_name[IFNAMSIZ]; 8977 8978 /* Ignore unmoveable devices (i.e. loopback) */ 8979 if (dev->features & NETIF_F_NETNS_LOCAL) 8980 continue; 8981 8982 /* Leave virtual devices for the generic cleanup */ 8983 if (dev->rtnl_link_ops) 8984 continue; 8985 8986 /* Push remaining network devices to init_net */ 8987 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8988 err = dev_change_net_namespace(dev, &init_net, fb_name); 8989 if (err) { 8990 pr_emerg("%s: failed to move %s to init_net: %d\n", 8991 __func__, dev->name, err); 8992 BUG(); 8993 } 8994 } 8995 rtnl_unlock(); 8996 } 8997 8998 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8999 { 9000 /* Return with the rtnl_lock held when there are no network 9001 * devices unregistering in any network namespace in net_list. 9002 */ 9003 struct net *net; 9004 bool unregistering; 9005 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9006 9007 add_wait_queue(&netdev_unregistering_wq, &wait); 9008 for (;;) { 9009 unregistering = false; 9010 rtnl_lock(); 9011 list_for_each_entry(net, net_list, exit_list) { 9012 if (net->dev_unreg_count > 0) { 9013 unregistering = true; 9014 break; 9015 } 9016 } 9017 if (!unregistering) 9018 break; 9019 __rtnl_unlock(); 9020 9021 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9022 } 9023 remove_wait_queue(&netdev_unregistering_wq, &wait); 9024 } 9025 9026 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9027 { 9028 /* At exit all network devices most be removed from a network 9029 * namespace. Do this in the reverse order of registration. 9030 * Do this across as many network namespaces as possible to 9031 * improve batching efficiency. 9032 */ 9033 struct net_device *dev; 9034 struct net *net; 9035 LIST_HEAD(dev_kill_list); 9036 9037 /* To prevent network device cleanup code from dereferencing 9038 * loopback devices or network devices that have been freed 9039 * wait here for all pending unregistrations to complete, 9040 * before unregistring the loopback device and allowing the 9041 * network namespace be freed. 9042 * 9043 * The netdev todo list containing all network devices 9044 * unregistrations that happen in default_device_exit_batch 9045 * will run in the rtnl_unlock() at the end of 9046 * default_device_exit_batch. 9047 */ 9048 rtnl_lock_unregistering(net_list); 9049 list_for_each_entry(net, net_list, exit_list) { 9050 for_each_netdev_reverse(net, dev) { 9051 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9052 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9053 else 9054 unregister_netdevice_queue(dev, &dev_kill_list); 9055 } 9056 } 9057 unregister_netdevice_many(&dev_kill_list); 9058 rtnl_unlock(); 9059 } 9060 9061 static struct pernet_operations __net_initdata default_device_ops = { 9062 .exit = default_device_exit, 9063 .exit_batch = default_device_exit_batch, 9064 }; 9065 9066 /* 9067 * Initialize the DEV module. At boot time this walks the device list and 9068 * unhooks any devices that fail to initialise (normally hardware not 9069 * present) and leaves us with a valid list of present and active devices. 9070 * 9071 */ 9072 9073 /* 9074 * This is called single threaded during boot, so no need 9075 * to take the rtnl semaphore. 9076 */ 9077 static int __init net_dev_init(void) 9078 { 9079 int i, rc = -ENOMEM; 9080 9081 BUG_ON(!dev_boot_phase); 9082 9083 if (dev_proc_init()) 9084 goto out; 9085 9086 if (netdev_kobject_init()) 9087 goto out; 9088 9089 INIT_LIST_HEAD(&ptype_all); 9090 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9091 INIT_LIST_HEAD(&ptype_base[i]); 9092 9093 INIT_LIST_HEAD(&offload_base); 9094 9095 if (register_pernet_subsys(&netdev_net_ops)) 9096 goto out; 9097 9098 /* 9099 * Initialise the packet receive queues. 9100 */ 9101 9102 for_each_possible_cpu(i) { 9103 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9104 struct softnet_data *sd = &per_cpu(softnet_data, i); 9105 9106 INIT_WORK(flush, flush_backlog); 9107 9108 skb_queue_head_init(&sd->input_pkt_queue); 9109 skb_queue_head_init(&sd->process_queue); 9110 #ifdef CONFIG_XFRM_OFFLOAD 9111 skb_queue_head_init(&sd->xfrm_backlog); 9112 #endif 9113 INIT_LIST_HEAD(&sd->poll_list); 9114 sd->output_queue_tailp = &sd->output_queue; 9115 #ifdef CONFIG_RPS 9116 sd->csd.func = rps_trigger_softirq; 9117 sd->csd.info = sd; 9118 sd->cpu = i; 9119 #endif 9120 9121 sd->backlog.poll = process_backlog; 9122 sd->backlog.weight = weight_p; 9123 } 9124 9125 dev_boot_phase = 0; 9126 9127 /* The loopback device is special if any other network devices 9128 * is present in a network namespace the loopback device must 9129 * be present. Since we now dynamically allocate and free the 9130 * loopback device ensure this invariant is maintained by 9131 * keeping the loopback device as the first device on the 9132 * list of network devices. Ensuring the loopback devices 9133 * is the first device that appears and the last network device 9134 * that disappears. 9135 */ 9136 if (register_pernet_device(&loopback_net_ops)) 9137 goto out; 9138 9139 if (register_pernet_device(&default_device_ops)) 9140 goto out; 9141 9142 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9143 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9144 9145 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9146 NULL, dev_cpu_dead); 9147 WARN_ON(rc < 0); 9148 rc = 0; 9149 out: 9150 return rc; 9151 } 9152 9153 subsys_initcall(net_dev_init); 9154