xref: /linux/net/core/dev.c (revision f412eed9dfdeeb6becd7de2ffe8b5d0a8b3f81ca)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static seqcount_t devnet_rename_seq;
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  *
904  *	The use of raw_seqcount_begin() and cond_resched() before
905  *	retrying is required as we want to give the writers a chance
906  *	to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 	struct net_device *dev;
911 	unsigned int seq;
912 
913 retry:
914 	seq = raw_seqcount_begin(&devnet_rename_seq);
915 	rcu_read_lock();
916 	dev = dev_get_by_index_rcu(net, ifindex);
917 	if (!dev) {
918 		rcu_read_unlock();
919 		return -ENODEV;
920 	}
921 
922 	strcpy(name, dev->name);
923 	rcu_read_unlock();
924 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 		cond_resched();
926 		goto retry;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  *	dev_getbyhwaddr_rcu - find a device by its hardware address
934  *	@net: the applicable net namespace
935  *	@type: media type of device
936  *	@ha: hardware address
937  *
938  *	Search for an interface by MAC address. Returns NULL if the device
939  *	is not found or a pointer to the device.
940  *	The caller must hold RCU or RTNL.
941  *	The returned device has not had its ref count increased
942  *	and the caller must therefore be careful about locking
943  *
944  */
945 
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 				       const char *ha)
948 {
949 	struct net_device *dev;
950 
951 	for_each_netdev_rcu(net, dev)
952 		if (dev->type == type &&
953 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 	struct net_device *dev;
963 
964 	ASSERT_RTNL();
965 	for_each_netdev(net, dev)
966 		if (dev->type == type)
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	to allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	if (!dev_valid_name(name))
1068 		return -EINVAL;
1069 
1070 	p = strchr(name, '%');
1071 	if (p) {
1072 		/*
1073 		 * Verify the string as this thing may have come from
1074 		 * the user.  There must be either one "%d" and no other "%"
1075 		 * characters.
1076 		 */
1077 		if (p[1] != 'd' || strchr(p + 2, '%'))
1078 			return -EINVAL;
1079 
1080 		/* Use one page as a bit array of possible slots */
1081 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 		if (!inuse)
1083 			return -ENOMEM;
1084 
1085 		for_each_netdev(net, d) {
1086 			if (!sscanf(d->name, name, &i))
1087 				continue;
1088 			if (i < 0 || i >= max_netdevices)
1089 				continue;
1090 
1091 			/*  avoid cases where sscanf is not exact inverse of printf */
1092 			snprintf(buf, IFNAMSIZ, name, i);
1093 			if (!strncmp(buf, d->name, IFNAMSIZ))
1094 				set_bit(i, inuse);
1095 		}
1096 
1097 		i = find_first_zero_bit(inuse, max_netdevices);
1098 		free_page((unsigned long) inuse);
1099 	}
1100 
1101 	snprintf(buf, IFNAMSIZ, name, i);
1102 	if (!__dev_get_by_name(net, buf))
1103 		return i;
1104 
1105 	/* It is possible to run out of possible slots
1106 	 * when the name is long and there isn't enough space left
1107 	 * for the digits, or if all bits are used.
1108 	 */
1109 	return -ENFILE;
1110 }
1111 
1112 static int dev_alloc_name_ns(struct net *net,
1113 			     struct net_device *dev,
1114 			     const char *name)
1115 {
1116 	char buf[IFNAMSIZ];
1117 	int ret;
1118 
1119 	BUG_ON(!net);
1120 	ret = __dev_alloc_name(net, name, buf);
1121 	if (ret >= 0)
1122 		strlcpy(dev->name, buf, IFNAMSIZ);
1123 	return ret;
1124 }
1125 
1126 /**
1127  *	dev_alloc_name - allocate a name for a device
1128  *	@dev: device
1129  *	@name: name format string
1130  *
1131  *	Passed a format string - eg "lt%d" it will try and find a suitable
1132  *	id. It scans list of devices to build up a free map, then chooses
1133  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *	while allocating the name and adding the device in order to avoid
1135  *	duplicates.
1136  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *	Returns the number of the unit assigned or a negative errno code.
1138  */
1139 
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145 
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 		       const char *name)
1148 {
1149 	BUG_ON(!net);
1150 
1151 	if (!dev_valid_name(name))
1152 		return -EINVAL;
1153 
1154 	if (strchr(name, '%'))
1155 		return dev_alloc_name_ns(net, dev, name);
1156 	else if (__dev_get_by_name(net, name))
1157 		return -EEXIST;
1158 	else if (dev->name != name)
1159 		strlcpy(dev->name, name, IFNAMSIZ);
1160 
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164 
1165 /**
1166  *	dev_change_name - change name of a device
1167  *	@dev: device
1168  *	@newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *	Change name of a device, can pass format strings "eth%d".
1171  *	for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175 	unsigned char old_assign_type;
1176 	char oldname[IFNAMSIZ];
1177 	int err = 0;
1178 	int ret;
1179 	struct net *net;
1180 
1181 	ASSERT_RTNL();
1182 	BUG_ON(!dev_net(dev));
1183 
1184 	net = dev_net(dev);
1185 	if (dev->flags & IFF_UP)
1186 		return -EBUSY;
1187 
1188 	write_seqcount_begin(&devnet_rename_seq);
1189 
1190 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 		write_seqcount_end(&devnet_rename_seq);
1192 		return 0;
1193 	}
1194 
1195 	memcpy(oldname, dev->name, IFNAMSIZ);
1196 
1197 	err = dev_get_valid_name(net, dev, newname);
1198 	if (err < 0) {
1199 		write_seqcount_end(&devnet_rename_seq);
1200 		return err;
1201 	}
1202 
1203 	if (oldname[0] && !strchr(oldname, '%'))
1204 		netdev_info(dev, "renamed from %s\n", oldname);
1205 
1206 	old_assign_type = dev->name_assign_type;
1207 	dev->name_assign_type = NET_NAME_RENAMED;
1208 
1209 rollback:
1210 	ret = device_rename(&dev->dev, dev->name);
1211 	if (ret) {
1212 		memcpy(dev->name, oldname, IFNAMSIZ);
1213 		dev->name_assign_type = old_assign_type;
1214 		write_seqcount_end(&devnet_rename_seq);
1215 		return ret;
1216 	}
1217 
1218 	write_seqcount_end(&devnet_rename_seq);
1219 
1220 	netdev_adjacent_rename_links(dev, oldname);
1221 
1222 	write_lock_bh(&dev_base_lock);
1223 	hlist_del_rcu(&dev->name_hlist);
1224 	write_unlock_bh(&dev_base_lock);
1225 
1226 	synchronize_rcu();
1227 
1228 	write_lock_bh(&dev_base_lock);
1229 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 	write_unlock_bh(&dev_base_lock);
1231 
1232 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 	ret = notifier_to_errno(ret);
1234 
1235 	if (ret) {
1236 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1237 		if (err >= 0) {
1238 			err = ret;
1239 			write_seqcount_begin(&devnet_rename_seq);
1240 			memcpy(dev->name, oldname, IFNAMSIZ);
1241 			memcpy(oldname, newname, IFNAMSIZ);
1242 			dev->name_assign_type = old_assign_type;
1243 			old_assign_type = NET_NAME_RENAMED;
1244 			goto rollback;
1245 		} else {
1246 			pr_err("%s: name change rollback failed: %d\n",
1247 			       dev->name, ret);
1248 		}
1249 	}
1250 
1251 	return err;
1252 }
1253 
1254 /**
1255  *	dev_set_alias - change ifalias of a device
1256  *	@dev: device
1257  *	@alias: name up to IFALIASZ
1258  *	@len: limit of bytes to copy from info
1259  *
1260  *	Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264 	struct dev_ifalias *new_alias = NULL;
1265 
1266 	if (len >= IFALIASZ)
1267 		return -EINVAL;
1268 
1269 	if (len) {
1270 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 		if (!new_alias)
1272 			return -ENOMEM;
1273 
1274 		memcpy(new_alias->ifalias, alias, len);
1275 		new_alias->ifalias[len] = 0;
1276 	}
1277 
1278 	mutex_lock(&ifalias_mutex);
1279 	rcu_swap_protected(dev->ifalias, new_alias,
1280 			   mutex_is_locked(&ifalias_mutex));
1281 	mutex_unlock(&ifalias_mutex);
1282 
1283 	if (new_alias)
1284 		kfree_rcu(new_alias, rcuhead);
1285 
1286 	return len;
1287 }
1288 EXPORT_SYMBOL(dev_set_alias);
1289 
1290 /**
1291  *	dev_get_alias - get ifalias of a device
1292  *	@dev: device
1293  *	@name: buffer to store name of ifalias
1294  *	@len: size of buffer
1295  *
1296  *	get ifalias for a device.  Caller must make sure dev cannot go
1297  *	away,  e.g. rcu read lock or own a reference count to device.
1298  */
1299 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1300 {
1301 	const struct dev_ifalias *alias;
1302 	int ret = 0;
1303 
1304 	rcu_read_lock();
1305 	alias = rcu_dereference(dev->ifalias);
1306 	if (alias)
1307 		ret = snprintf(name, len, "%s", alias->ifalias);
1308 	rcu_read_unlock();
1309 
1310 	return ret;
1311 }
1312 
1313 /**
1314  *	netdev_features_change - device changes features
1315  *	@dev: device to cause notification
1316  *
1317  *	Called to indicate a device has changed features.
1318  */
1319 void netdev_features_change(struct net_device *dev)
1320 {
1321 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1322 }
1323 EXPORT_SYMBOL(netdev_features_change);
1324 
1325 /**
1326  *	netdev_state_change - device changes state
1327  *	@dev: device to cause notification
1328  *
1329  *	Called to indicate a device has changed state. This function calls
1330  *	the notifier chains for netdev_chain and sends a NEWLINK message
1331  *	to the routing socket.
1332  */
1333 void netdev_state_change(struct net_device *dev)
1334 {
1335 	if (dev->flags & IFF_UP) {
1336 		struct netdev_notifier_change_info change_info = {
1337 			.info.dev = dev,
1338 		};
1339 
1340 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1341 					      &change_info.info);
1342 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1343 	}
1344 }
1345 EXPORT_SYMBOL(netdev_state_change);
1346 
1347 /**
1348  * netdev_notify_peers - notify network peers about existence of @dev
1349  * @dev: network device
1350  *
1351  * Generate traffic such that interested network peers are aware of
1352  * @dev, such as by generating a gratuitous ARP. This may be used when
1353  * a device wants to inform the rest of the network about some sort of
1354  * reconfiguration such as a failover event or virtual machine
1355  * migration.
1356  */
1357 void netdev_notify_peers(struct net_device *dev)
1358 {
1359 	rtnl_lock();
1360 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1361 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1362 	rtnl_unlock();
1363 }
1364 EXPORT_SYMBOL(netdev_notify_peers);
1365 
1366 static int __dev_open(struct net_device *dev)
1367 {
1368 	const struct net_device_ops *ops = dev->netdev_ops;
1369 	int ret;
1370 
1371 	ASSERT_RTNL();
1372 
1373 	if (!netif_device_present(dev))
1374 		return -ENODEV;
1375 
1376 	/* Block netpoll from trying to do any rx path servicing.
1377 	 * If we don't do this there is a chance ndo_poll_controller
1378 	 * or ndo_poll may be running while we open the device
1379 	 */
1380 	netpoll_poll_disable(dev);
1381 
1382 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1383 	ret = notifier_to_errno(ret);
1384 	if (ret)
1385 		return ret;
1386 
1387 	set_bit(__LINK_STATE_START, &dev->state);
1388 
1389 	if (ops->ndo_validate_addr)
1390 		ret = ops->ndo_validate_addr(dev);
1391 
1392 	if (!ret && ops->ndo_open)
1393 		ret = ops->ndo_open(dev);
1394 
1395 	netpoll_poll_enable(dev);
1396 
1397 	if (ret)
1398 		clear_bit(__LINK_STATE_START, &dev->state);
1399 	else {
1400 		dev->flags |= IFF_UP;
1401 		dev_set_rx_mode(dev);
1402 		dev_activate(dev);
1403 		add_device_randomness(dev->dev_addr, dev->addr_len);
1404 	}
1405 
1406 	return ret;
1407 }
1408 
1409 /**
1410  *	dev_open	- prepare an interface for use.
1411  *	@dev:	device to open
1412  *
1413  *	Takes a device from down to up state. The device's private open
1414  *	function is invoked and then the multicast lists are loaded. Finally
1415  *	the device is moved into the up state and a %NETDEV_UP message is
1416  *	sent to the netdev notifier chain.
1417  *
1418  *	Calling this function on an active interface is a nop. On a failure
1419  *	a negative errno code is returned.
1420  */
1421 int dev_open(struct net_device *dev)
1422 {
1423 	int ret;
1424 
1425 	if (dev->flags & IFF_UP)
1426 		return 0;
1427 
1428 	ret = __dev_open(dev);
1429 	if (ret < 0)
1430 		return ret;
1431 
1432 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1433 	call_netdevice_notifiers(NETDEV_UP, dev);
1434 
1435 	return ret;
1436 }
1437 EXPORT_SYMBOL(dev_open);
1438 
1439 static void __dev_close_many(struct list_head *head)
1440 {
1441 	struct net_device *dev;
1442 
1443 	ASSERT_RTNL();
1444 	might_sleep();
1445 
1446 	list_for_each_entry(dev, head, close_list) {
1447 		/* Temporarily disable netpoll until the interface is down */
1448 		netpoll_poll_disable(dev);
1449 
1450 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1451 
1452 		clear_bit(__LINK_STATE_START, &dev->state);
1453 
1454 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1455 		 * can be even on different cpu. So just clear netif_running().
1456 		 *
1457 		 * dev->stop() will invoke napi_disable() on all of it's
1458 		 * napi_struct instances on this device.
1459 		 */
1460 		smp_mb__after_atomic(); /* Commit netif_running(). */
1461 	}
1462 
1463 	dev_deactivate_many(head);
1464 
1465 	list_for_each_entry(dev, head, close_list) {
1466 		const struct net_device_ops *ops = dev->netdev_ops;
1467 
1468 		/*
1469 		 *	Call the device specific close. This cannot fail.
1470 		 *	Only if device is UP
1471 		 *
1472 		 *	We allow it to be called even after a DETACH hot-plug
1473 		 *	event.
1474 		 */
1475 		if (ops->ndo_stop)
1476 			ops->ndo_stop(dev);
1477 
1478 		dev->flags &= ~IFF_UP;
1479 		netpoll_poll_enable(dev);
1480 	}
1481 }
1482 
1483 static void __dev_close(struct net_device *dev)
1484 {
1485 	LIST_HEAD(single);
1486 
1487 	list_add(&dev->close_list, &single);
1488 	__dev_close_many(&single);
1489 	list_del(&single);
1490 }
1491 
1492 void dev_close_many(struct list_head *head, bool unlink)
1493 {
1494 	struct net_device *dev, *tmp;
1495 
1496 	/* Remove the devices that don't need to be closed */
1497 	list_for_each_entry_safe(dev, tmp, head, close_list)
1498 		if (!(dev->flags & IFF_UP))
1499 			list_del_init(&dev->close_list);
1500 
1501 	__dev_close_many(head);
1502 
1503 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1504 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1505 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1506 		if (unlink)
1507 			list_del_init(&dev->close_list);
1508 	}
1509 }
1510 EXPORT_SYMBOL(dev_close_many);
1511 
1512 /**
1513  *	dev_close - shutdown an interface.
1514  *	@dev: device to shutdown
1515  *
1516  *	This function moves an active device into down state. A
1517  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1518  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1519  *	chain.
1520  */
1521 void dev_close(struct net_device *dev)
1522 {
1523 	if (dev->flags & IFF_UP) {
1524 		LIST_HEAD(single);
1525 
1526 		list_add(&dev->close_list, &single);
1527 		dev_close_many(&single, true);
1528 		list_del(&single);
1529 	}
1530 }
1531 EXPORT_SYMBOL(dev_close);
1532 
1533 
1534 /**
1535  *	dev_disable_lro - disable Large Receive Offload on a device
1536  *	@dev: device
1537  *
1538  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1539  *	called under RTNL.  This is needed if received packets may be
1540  *	forwarded to another interface.
1541  */
1542 void dev_disable_lro(struct net_device *dev)
1543 {
1544 	struct net_device *lower_dev;
1545 	struct list_head *iter;
1546 
1547 	dev->wanted_features &= ~NETIF_F_LRO;
1548 	netdev_update_features(dev);
1549 
1550 	if (unlikely(dev->features & NETIF_F_LRO))
1551 		netdev_WARN(dev, "failed to disable LRO!\n");
1552 
1553 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1554 		dev_disable_lro(lower_dev);
1555 }
1556 EXPORT_SYMBOL(dev_disable_lro);
1557 
1558 /**
1559  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1560  *	@dev: device
1561  *
1562  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1563  *	called under RTNL.  This is needed if Generic XDP is installed on
1564  *	the device.
1565  */
1566 static void dev_disable_gro_hw(struct net_device *dev)
1567 {
1568 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1569 	netdev_update_features(dev);
1570 
1571 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1572 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1573 }
1574 
1575 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1576 {
1577 #define N(val) 						\
1578 	case NETDEV_##val:				\
1579 		return "NETDEV_" __stringify(val);
1580 	switch (cmd) {
1581 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1582 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1583 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1584 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1585 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1586 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1587 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1588 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1589 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1590 	};
1591 #undef N
1592 	return "UNKNOWN_NETDEV_EVENT";
1593 }
1594 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1595 
1596 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1597 				   struct net_device *dev)
1598 {
1599 	struct netdev_notifier_info info = {
1600 		.dev = dev,
1601 	};
1602 
1603 	return nb->notifier_call(nb, val, &info);
1604 }
1605 
1606 static int dev_boot_phase = 1;
1607 
1608 /**
1609  * register_netdevice_notifier - register a network notifier block
1610  * @nb: notifier
1611  *
1612  * Register a notifier to be called when network device events occur.
1613  * The notifier passed is linked into the kernel structures and must
1614  * not be reused until it has been unregistered. A negative errno code
1615  * is returned on a failure.
1616  *
1617  * When registered all registration and up events are replayed
1618  * to the new notifier to allow device to have a race free
1619  * view of the network device list.
1620  */
1621 
1622 int register_netdevice_notifier(struct notifier_block *nb)
1623 {
1624 	struct net_device *dev;
1625 	struct net_device *last;
1626 	struct net *net;
1627 	int err;
1628 
1629 	/* Close race with setup_net() and cleanup_net() */
1630 	down_write(&pernet_ops_rwsem);
1631 	rtnl_lock();
1632 	err = raw_notifier_chain_register(&netdev_chain, nb);
1633 	if (err)
1634 		goto unlock;
1635 	if (dev_boot_phase)
1636 		goto unlock;
1637 	for_each_net(net) {
1638 		for_each_netdev(net, dev) {
1639 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1640 			err = notifier_to_errno(err);
1641 			if (err)
1642 				goto rollback;
1643 
1644 			if (!(dev->flags & IFF_UP))
1645 				continue;
1646 
1647 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1648 		}
1649 	}
1650 
1651 unlock:
1652 	rtnl_unlock();
1653 	up_write(&pernet_ops_rwsem);
1654 	return err;
1655 
1656 rollback:
1657 	last = dev;
1658 	for_each_net(net) {
1659 		for_each_netdev(net, dev) {
1660 			if (dev == last)
1661 				goto outroll;
1662 
1663 			if (dev->flags & IFF_UP) {
1664 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665 							dev);
1666 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1667 			}
1668 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1669 		}
1670 	}
1671 
1672 outroll:
1673 	raw_notifier_chain_unregister(&netdev_chain, nb);
1674 	goto unlock;
1675 }
1676 EXPORT_SYMBOL(register_netdevice_notifier);
1677 
1678 /**
1679  * unregister_netdevice_notifier - unregister a network notifier block
1680  * @nb: notifier
1681  *
1682  * Unregister a notifier previously registered by
1683  * register_netdevice_notifier(). The notifier is unlinked into the
1684  * kernel structures and may then be reused. A negative errno code
1685  * is returned on a failure.
1686  *
1687  * After unregistering unregister and down device events are synthesized
1688  * for all devices on the device list to the removed notifier to remove
1689  * the need for special case cleanup code.
1690  */
1691 
1692 int unregister_netdevice_notifier(struct notifier_block *nb)
1693 {
1694 	struct net_device *dev;
1695 	struct net *net;
1696 	int err;
1697 
1698 	/* Close race with setup_net() and cleanup_net() */
1699 	down_write(&pernet_ops_rwsem);
1700 	rtnl_lock();
1701 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1702 	if (err)
1703 		goto unlock;
1704 
1705 	for_each_net(net) {
1706 		for_each_netdev(net, dev) {
1707 			if (dev->flags & IFF_UP) {
1708 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1709 							dev);
1710 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1711 			}
1712 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1713 		}
1714 	}
1715 unlock:
1716 	rtnl_unlock();
1717 	up_write(&pernet_ops_rwsem);
1718 	return err;
1719 }
1720 EXPORT_SYMBOL(unregister_netdevice_notifier);
1721 
1722 /**
1723  *	call_netdevice_notifiers_info - call all network notifier blocks
1724  *	@val: value passed unmodified to notifier function
1725  *	@info: notifier information data
1726  *
1727  *	Call all network notifier blocks.  Parameters and return value
1728  *	are as for raw_notifier_call_chain().
1729  */
1730 
1731 static int call_netdevice_notifiers_info(unsigned long val,
1732 					 struct netdev_notifier_info *info)
1733 {
1734 	ASSERT_RTNL();
1735 	return raw_notifier_call_chain(&netdev_chain, val, info);
1736 }
1737 
1738 /**
1739  *	call_netdevice_notifiers - call all network notifier blocks
1740  *      @val: value passed unmodified to notifier function
1741  *      @dev: net_device pointer passed unmodified to notifier function
1742  *
1743  *	Call all network notifier blocks.  Parameters and return value
1744  *	are as for raw_notifier_call_chain().
1745  */
1746 
1747 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1748 {
1749 	struct netdev_notifier_info info = {
1750 		.dev = dev,
1751 	};
1752 
1753 	return call_netdevice_notifiers_info(val, &info);
1754 }
1755 EXPORT_SYMBOL(call_netdevice_notifiers);
1756 
1757 #ifdef CONFIG_NET_INGRESS
1758 static struct static_key ingress_needed __read_mostly;
1759 
1760 void net_inc_ingress_queue(void)
1761 {
1762 	static_key_slow_inc(&ingress_needed);
1763 }
1764 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1765 
1766 void net_dec_ingress_queue(void)
1767 {
1768 	static_key_slow_dec(&ingress_needed);
1769 }
1770 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1771 #endif
1772 
1773 #ifdef CONFIG_NET_EGRESS
1774 static struct static_key egress_needed __read_mostly;
1775 
1776 void net_inc_egress_queue(void)
1777 {
1778 	static_key_slow_inc(&egress_needed);
1779 }
1780 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1781 
1782 void net_dec_egress_queue(void)
1783 {
1784 	static_key_slow_dec(&egress_needed);
1785 }
1786 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1787 #endif
1788 
1789 static struct static_key netstamp_needed __read_mostly;
1790 #ifdef HAVE_JUMP_LABEL
1791 static atomic_t netstamp_needed_deferred;
1792 static atomic_t netstamp_wanted;
1793 static void netstamp_clear(struct work_struct *work)
1794 {
1795 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1796 	int wanted;
1797 
1798 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1799 	if (wanted > 0)
1800 		static_key_enable(&netstamp_needed);
1801 	else
1802 		static_key_disable(&netstamp_needed);
1803 }
1804 static DECLARE_WORK(netstamp_work, netstamp_clear);
1805 #endif
1806 
1807 void net_enable_timestamp(void)
1808 {
1809 #ifdef HAVE_JUMP_LABEL
1810 	int wanted;
1811 
1812 	while (1) {
1813 		wanted = atomic_read(&netstamp_wanted);
1814 		if (wanted <= 0)
1815 			break;
1816 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1817 			return;
1818 	}
1819 	atomic_inc(&netstamp_needed_deferred);
1820 	schedule_work(&netstamp_work);
1821 #else
1822 	static_key_slow_inc(&netstamp_needed);
1823 #endif
1824 }
1825 EXPORT_SYMBOL(net_enable_timestamp);
1826 
1827 void net_disable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830 	int wanted;
1831 
1832 	while (1) {
1833 		wanted = atomic_read(&netstamp_wanted);
1834 		if (wanted <= 1)
1835 			break;
1836 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1837 			return;
1838 	}
1839 	atomic_dec(&netstamp_needed_deferred);
1840 	schedule_work(&netstamp_work);
1841 #else
1842 	static_key_slow_dec(&netstamp_needed);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_disable_timestamp);
1846 
1847 static inline void net_timestamp_set(struct sk_buff *skb)
1848 {
1849 	skb->tstamp = 0;
1850 	if (static_key_false(&netstamp_needed))
1851 		__net_timestamp(skb);
1852 }
1853 
1854 #define net_timestamp_check(COND, SKB)			\
1855 	if (static_key_false(&netstamp_needed)) {		\
1856 		if ((COND) && !(SKB)->tstamp)	\
1857 			__net_timestamp(SKB);		\
1858 	}						\
1859 
1860 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1861 {
1862 	unsigned int len;
1863 
1864 	if (!(dev->flags & IFF_UP))
1865 		return false;
1866 
1867 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1868 	if (skb->len <= len)
1869 		return true;
1870 
1871 	/* if TSO is enabled, we don't care about the length as the packet
1872 	 * could be forwarded without being segmented before
1873 	 */
1874 	if (skb_is_gso(skb))
1875 		return true;
1876 
1877 	return false;
1878 }
1879 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1880 
1881 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1882 {
1883 	int ret = ____dev_forward_skb(dev, skb);
1884 
1885 	if (likely(!ret)) {
1886 		skb->protocol = eth_type_trans(skb, dev);
1887 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1888 	}
1889 
1890 	return ret;
1891 }
1892 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1893 
1894 /**
1895  * dev_forward_skb - loopback an skb to another netif
1896  *
1897  * @dev: destination network device
1898  * @skb: buffer to forward
1899  *
1900  * return values:
1901  *	NET_RX_SUCCESS	(no congestion)
1902  *	NET_RX_DROP     (packet was dropped, but freed)
1903  *
1904  * dev_forward_skb can be used for injecting an skb from the
1905  * start_xmit function of one device into the receive queue
1906  * of another device.
1907  *
1908  * The receiving device may be in another namespace, so
1909  * we have to clear all information in the skb that could
1910  * impact namespace isolation.
1911  */
1912 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1913 {
1914 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1915 }
1916 EXPORT_SYMBOL_GPL(dev_forward_skb);
1917 
1918 static inline int deliver_skb(struct sk_buff *skb,
1919 			      struct packet_type *pt_prev,
1920 			      struct net_device *orig_dev)
1921 {
1922 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1923 		return -ENOMEM;
1924 	refcount_inc(&skb->users);
1925 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1926 }
1927 
1928 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1929 					  struct packet_type **pt,
1930 					  struct net_device *orig_dev,
1931 					  __be16 type,
1932 					  struct list_head *ptype_list)
1933 {
1934 	struct packet_type *ptype, *pt_prev = *pt;
1935 
1936 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1937 		if (ptype->type != type)
1938 			continue;
1939 		if (pt_prev)
1940 			deliver_skb(skb, pt_prev, orig_dev);
1941 		pt_prev = ptype;
1942 	}
1943 	*pt = pt_prev;
1944 }
1945 
1946 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1947 {
1948 	if (!ptype->af_packet_priv || !skb->sk)
1949 		return false;
1950 
1951 	if (ptype->id_match)
1952 		return ptype->id_match(ptype, skb->sk);
1953 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1954 		return true;
1955 
1956 	return false;
1957 }
1958 
1959 /*
1960  *	Support routine. Sends outgoing frames to any network
1961  *	taps currently in use.
1962  */
1963 
1964 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1965 {
1966 	struct packet_type *ptype;
1967 	struct sk_buff *skb2 = NULL;
1968 	struct packet_type *pt_prev = NULL;
1969 	struct list_head *ptype_list = &ptype_all;
1970 
1971 	rcu_read_lock();
1972 again:
1973 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1974 		/* Never send packets back to the socket
1975 		 * they originated from - MvS (miquels@drinkel.ow.org)
1976 		 */
1977 		if (skb_loop_sk(ptype, skb))
1978 			continue;
1979 
1980 		if (pt_prev) {
1981 			deliver_skb(skb2, pt_prev, skb->dev);
1982 			pt_prev = ptype;
1983 			continue;
1984 		}
1985 
1986 		/* need to clone skb, done only once */
1987 		skb2 = skb_clone(skb, GFP_ATOMIC);
1988 		if (!skb2)
1989 			goto out_unlock;
1990 
1991 		net_timestamp_set(skb2);
1992 
1993 		/* skb->nh should be correctly
1994 		 * set by sender, so that the second statement is
1995 		 * just protection against buggy protocols.
1996 		 */
1997 		skb_reset_mac_header(skb2);
1998 
1999 		if (skb_network_header(skb2) < skb2->data ||
2000 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2001 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2002 					     ntohs(skb2->protocol),
2003 					     dev->name);
2004 			skb_reset_network_header(skb2);
2005 		}
2006 
2007 		skb2->transport_header = skb2->network_header;
2008 		skb2->pkt_type = PACKET_OUTGOING;
2009 		pt_prev = ptype;
2010 	}
2011 
2012 	if (ptype_list == &ptype_all) {
2013 		ptype_list = &dev->ptype_all;
2014 		goto again;
2015 	}
2016 out_unlock:
2017 	if (pt_prev) {
2018 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2019 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2020 		else
2021 			kfree_skb(skb2);
2022 	}
2023 	rcu_read_unlock();
2024 }
2025 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2026 
2027 /**
2028  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2029  * @dev: Network device
2030  * @txq: number of queues available
2031  *
2032  * If real_num_tx_queues is changed the tc mappings may no longer be
2033  * valid. To resolve this verify the tc mapping remains valid and if
2034  * not NULL the mapping. With no priorities mapping to this
2035  * offset/count pair it will no longer be used. In the worst case TC0
2036  * is invalid nothing can be done so disable priority mappings. If is
2037  * expected that drivers will fix this mapping if they can before
2038  * calling netif_set_real_num_tx_queues.
2039  */
2040 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2041 {
2042 	int i;
2043 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2044 
2045 	/* If TC0 is invalidated disable TC mapping */
2046 	if (tc->offset + tc->count > txq) {
2047 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2048 		dev->num_tc = 0;
2049 		return;
2050 	}
2051 
2052 	/* Invalidated prio to tc mappings set to TC0 */
2053 	for (i = 1; i < TC_BITMASK + 1; i++) {
2054 		int q = netdev_get_prio_tc_map(dev, i);
2055 
2056 		tc = &dev->tc_to_txq[q];
2057 		if (tc->offset + tc->count > txq) {
2058 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2059 				i, q);
2060 			netdev_set_prio_tc_map(dev, i, 0);
2061 		}
2062 	}
2063 }
2064 
2065 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2066 {
2067 	if (dev->num_tc) {
2068 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2069 		int i;
2070 
2071 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072 			if ((txq - tc->offset) < tc->count)
2073 				return i;
2074 		}
2075 
2076 		return -1;
2077 	}
2078 
2079 	return 0;
2080 }
2081 EXPORT_SYMBOL(netdev_txq_to_tc);
2082 
2083 #ifdef CONFIG_XPS
2084 static DEFINE_MUTEX(xps_map_mutex);
2085 #define xmap_dereference(P)		\
2086 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2087 
2088 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2089 			     int tci, u16 index)
2090 {
2091 	struct xps_map *map = NULL;
2092 	int pos;
2093 
2094 	if (dev_maps)
2095 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2096 	if (!map)
2097 		return false;
2098 
2099 	for (pos = map->len; pos--;) {
2100 		if (map->queues[pos] != index)
2101 			continue;
2102 
2103 		if (map->len > 1) {
2104 			map->queues[pos] = map->queues[--map->len];
2105 			break;
2106 		}
2107 
2108 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2109 		kfree_rcu(map, rcu);
2110 		return false;
2111 	}
2112 
2113 	return true;
2114 }
2115 
2116 static bool remove_xps_queue_cpu(struct net_device *dev,
2117 				 struct xps_dev_maps *dev_maps,
2118 				 int cpu, u16 offset, u16 count)
2119 {
2120 	int num_tc = dev->num_tc ? : 1;
2121 	bool active = false;
2122 	int tci;
2123 
2124 	for (tci = cpu * num_tc; num_tc--; tci++) {
2125 		int i, j;
2126 
2127 		for (i = count, j = offset; i--; j++) {
2128 			if (!remove_xps_queue(dev_maps, cpu, j))
2129 				break;
2130 		}
2131 
2132 		active |= i < 0;
2133 	}
2134 
2135 	return active;
2136 }
2137 
2138 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2139 				   u16 count)
2140 {
2141 	struct xps_dev_maps *dev_maps;
2142 	int cpu, i;
2143 	bool active = false;
2144 
2145 	mutex_lock(&xps_map_mutex);
2146 	dev_maps = xmap_dereference(dev->xps_maps);
2147 
2148 	if (!dev_maps)
2149 		goto out_no_maps;
2150 
2151 	for_each_possible_cpu(cpu)
2152 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2153 					       offset, count);
2154 
2155 	if (!active) {
2156 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2157 		kfree_rcu(dev_maps, rcu);
2158 	}
2159 
2160 	for (i = offset + (count - 1); count--; i--)
2161 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2162 					     NUMA_NO_NODE);
2163 
2164 out_no_maps:
2165 	mutex_unlock(&xps_map_mutex);
2166 }
2167 
2168 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2169 {
2170 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2171 }
2172 
2173 static struct xps_map *expand_xps_map(struct xps_map *map,
2174 				      int cpu, u16 index)
2175 {
2176 	struct xps_map *new_map;
2177 	int alloc_len = XPS_MIN_MAP_ALLOC;
2178 	int i, pos;
2179 
2180 	for (pos = 0; map && pos < map->len; pos++) {
2181 		if (map->queues[pos] != index)
2182 			continue;
2183 		return map;
2184 	}
2185 
2186 	/* Need to add queue to this CPU's existing map */
2187 	if (map) {
2188 		if (pos < map->alloc_len)
2189 			return map;
2190 
2191 		alloc_len = map->alloc_len * 2;
2192 	}
2193 
2194 	/* Need to allocate new map to store queue on this CPU's map */
2195 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2196 			       cpu_to_node(cpu));
2197 	if (!new_map)
2198 		return NULL;
2199 
2200 	for (i = 0; i < pos; i++)
2201 		new_map->queues[i] = map->queues[i];
2202 	new_map->alloc_len = alloc_len;
2203 	new_map->len = pos;
2204 
2205 	return new_map;
2206 }
2207 
2208 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2209 			u16 index)
2210 {
2211 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2212 	int i, cpu, tci, numa_node_id = -2;
2213 	int maps_sz, num_tc = 1, tc = 0;
2214 	struct xps_map *map, *new_map;
2215 	bool active = false;
2216 
2217 	if (dev->num_tc) {
2218 		num_tc = dev->num_tc;
2219 		tc = netdev_txq_to_tc(dev, index);
2220 		if (tc < 0)
2221 			return -EINVAL;
2222 	}
2223 
2224 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2225 	if (maps_sz < L1_CACHE_BYTES)
2226 		maps_sz = L1_CACHE_BYTES;
2227 
2228 	mutex_lock(&xps_map_mutex);
2229 
2230 	dev_maps = xmap_dereference(dev->xps_maps);
2231 
2232 	/* allocate memory for queue storage */
2233 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2234 		if (!new_dev_maps)
2235 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2236 		if (!new_dev_maps) {
2237 			mutex_unlock(&xps_map_mutex);
2238 			return -ENOMEM;
2239 		}
2240 
2241 		tci = cpu * num_tc + tc;
2242 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2243 				 NULL;
2244 
2245 		map = expand_xps_map(map, cpu, index);
2246 		if (!map)
2247 			goto error;
2248 
2249 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2250 	}
2251 
2252 	if (!new_dev_maps)
2253 		goto out_no_new_maps;
2254 
2255 	for_each_possible_cpu(cpu) {
2256 		/* copy maps belonging to foreign traffic classes */
2257 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2258 			/* fill in the new device map from the old device map */
2259 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2260 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2261 		}
2262 
2263 		/* We need to explicitly update tci as prevous loop
2264 		 * could break out early if dev_maps is NULL.
2265 		 */
2266 		tci = cpu * num_tc + tc;
2267 
2268 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2269 			/* add queue to CPU maps */
2270 			int pos = 0;
2271 
2272 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2273 			while ((pos < map->len) && (map->queues[pos] != index))
2274 				pos++;
2275 
2276 			if (pos == map->len)
2277 				map->queues[map->len++] = index;
2278 #ifdef CONFIG_NUMA
2279 			if (numa_node_id == -2)
2280 				numa_node_id = cpu_to_node(cpu);
2281 			else if (numa_node_id != cpu_to_node(cpu))
2282 				numa_node_id = -1;
2283 #endif
2284 		} else if (dev_maps) {
2285 			/* fill in the new device map from the old device map */
2286 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2287 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2288 		}
2289 
2290 		/* copy maps belonging to foreign traffic classes */
2291 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2292 			/* fill in the new device map from the old device map */
2293 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2294 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2295 		}
2296 	}
2297 
2298 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2299 
2300 	/* Cleanup old maps */
2301 	if (!dev_maps)
2302 		goto out_no_old_maps;
2303 
2304 	for_each_possible_cpu(cpu) {
2305 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2306 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2307 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2308 			if (map && map != new_map)
2309 				kfree_rcu(map, rcu);
2310 		}
2311 	}
2312 
2313 	kfree_rcu(dev_maps, rcu);
2314 
2315 out_no_old_maps:
2316 	dev_maps = new_dev_maps;
2317 	active = true;
2318 
2319 out_no_new_maps:
2320 	/* update Tx queue numa node */
2321 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2322 				     (numa_node_id >= 0) ? numa_node_id :
2323 				     NUMA_NO_NODE);
2324 
2325 	if (!dev_maps)
2326 		goto out_no_maps;
2327 
2328 	/* removes queue from unused CPUs */
2329 	for_each_possible_cpu(cpu) {
2330 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2331 			active |= remove_xps_queue(dev_maps, tci, index);
2332 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2333 			active |= remove_xps_queue(dev_maps, tci, index);
2334 		for (i = num_tc - tc, tci++; --i; tci++)
2335 			active |= remove_xps_queue(dev_maps, tci, index);
2336 	}
2337 
2338 	/* free map if not active */
2339 	if (!active) {
2340 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2341 		kfree_rcu(dev_maps, rcu);
2342 	}
2343 
2344 out_no_maps:
2345 	mutex_unlock(&xps_map_mutex);
2346 
2347 	return 0;
2348 error:
2349 	/* remove any maps that we added */
2350 	for_each_possible_cpu(cpu) {
2351 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2352 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2353 			map = dev_maps ?
2354 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2355 			      NULL;
2356 			if (new_map && new_map != map)
2357 				kfree(new_map);
2358 		}
2359 	}
2360 
2361 	mutex_unlock(&xps_map_mutex);
2362 
2363 	kfree(new_dev_maps);
2364 	return -ENOMEM;
2365 }
2366 EXPORT_SYMBOL(netif_set_xps_queue);
2367 
2368 #endif
2369 void netdev_reset_tc(struct net_device *dev)
2370 {
2371 #ifdef CONFIG_XPS
2372 	netif_reset_xps_queues_gt(dev, 0);
2373 #endif
2374 	dev->num_tc = 0;
2375 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2376 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2377 }
2378 EXPORT_SYMBOL(netdev_reset_tc);
2379 
2380 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2381 {
2382 	if (tc >= dev->num_tc)
2383 		return -EINVAL;
2384 
2385 #ifdef CONFIG_XPS
2386 	netif_reset_xps_queues(dev, offset, count);
2387 #endif
2388 	dev->tc_to_txq[tc].count = count;
2389 	dev->tc_to_txq[tc].offset = offset;
2390 	return 0;
2391 }
2392 EXPORT_SYMBOL(netdev_set_tc_queue);
2393 
2394 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2395 {
2396 	if (num_tc > TC_MAX_QUEUE)
2397 		return -EINVAL;
2398 
2399 #ifdef CONFIG_XPS
2400 	netif_reset_xps_queues_gt(dev, 0);
2401 #endif
2402 	dev->num_tc = num_tc;
2403 	return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_set_num_tc);
2406 
2407 /*
2408  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2409  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2410  */
2411 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2412 {
2413 	bool disabling;
2414 	int rc;
2415 
2416 	disabling = txq < dev->real_num_tx_queues;
2417 
2418 	if (txq < 1 || txq > dev->num_tx_queues)
2419 		return -EINVAL;
2420 
2421 	if (dev->reg_state == NETREG_REGISTERED ||
2422 	    dev->reg_state == NETREG_UNREGISTERING) {
2423 		ASSERT_RTNL();
2424 
2425 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2426 						  txq);
2427 		if (rc)
2428 			return rc;
2429 
2430 		if (dev->num_tc)
2431 			netif_setup_tc(dev, txq);
2432 
2433 		dev->real_num_tx_queues = txq;
2434 
2435 		if (disabling) {
2436 			synchronize_net();
2437 			qdisc_reset_all_tx_gt(dev, txq);
2438 #ifdef CONFIG_XPS
2439 			netif_reset_xps_queues_gt(dev, txq);
2440 #endif
2441 		}
2442 	} else {
2443 		dev->real_num_tx_queues = txq;
2444 	}
2445 
2446 	return 0;
2447 }
2448 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2449 
2450 #ifdef CONFIG_SYSFS
2451 /**
2452  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2453  *	@dev: Network device
2454  *	@rxq: Actual number of RX queues
2455  *
2456  *	This must be called either with the rtnl_lock held or before
2457  *	registration of the net device.  Returns 0 on success, or a
2458  *	negative error code.  If called before registration, it always
2459  *	succeeds.
2460  */
2461 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2462 {
2463 	int rc;
2464 
2465 	if (rxq < 1 || rxq > dev->num_rx_queues)
2466 		return -EINVAL;
2467 
2468 	if (dev->reg_state == NETREG_REGISTERED) {
2469 		ASSERT_RTNL();
2470 
2471 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2472 						  rxq);
2473 		if (rc)
2474 			return rc;
2475 	}
2476 
2477 	dev->real_num_rx_queues = rxq;
2478 	return 0;
2479 }
2480 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2481 #endif
2482 
2483 /**
2484  * netif_get_num_default_rss_queues - default number of RSS queues
2485  *
2486  * This routine should set an upper limit on the number of RSS queues
2487  * used by default by multiqueue devices.
2488  */
2489 int netif_get_num_default_rss_queues(void)
2490 {
2491 	return is_kdump_kernel() ?
2492 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2493 }
2494 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2495 
2496 static void __netif_reschedule(struct Qdisc *q)
2497 {
2498 	struct softnet_data *sd;
2499 	unsigned long flags;
2500 
2501 	local_irq_save(flags);
2502 	sd = this_cpu_ptr(&softnet_data);
2503 	q->next_sched = NULL;
2504 	*sd->output_queue_tailp = q;
2505 	sd->output_queue_tailp = &q->next_sched;
2506 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2507 	local_irq_restore(flags);
2508 }
2509 
2510 void __netif_schedule(struct Qdisc *q)
2511 {
2512 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2513 		__netif_reschedule(q);
2514 }
2515 EXPORT_SYMBOL(__netif_schedule);
2516 
2517 struct dev_kfree_skb_cb {
2518 	enum skb_free_reason reason;
2519 };
2520 
2521 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2522 {
2523 	return (struct dev_kfree_skb_cb *)skb->cb;
2524 }
2525 
2526 void netif_schedule_queue(struct netdev_queue *txq)
2527 {
2528 	rcu_read_lock();
2529 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2530 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2531 
2532 		__netif_schedule(q);
2533 	}
2534 	rcu_read_unlock();
2535 }
2536 EXPORT_SYMBOL(netif_schedule_queue);
2537 
2538 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2539 {
2540 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2541 		struct Qdisc *q;
2542 
2543 		rcu_read_lock();
2544 		q = rcu_dereference(dev_queue->qdisc);
2545 		__netif_schedule(q);
2546 		rcu_read_unlock();
2547 	}
2548 }
2549 EXPORT_SYMBOL(netif_tx_wake_queue);
2550 
2551 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2552 {
2553 	unsigned long flags;
2554 
2555 	if (unlikely(!skb))
2556 		return;
2557 
2558 	if (likely(refcount_read(&skb->users) == 1)) {
2559 		smp_rmb();
2560 		refcount_set(&skb->users, 0);
2561 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2562 		return;
2563 	}
2564 	get_kfree_skb_cb(skb)->reason = reason;
2565 	local_irq_save(flags);
2566 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2567 	__this_cpu_write(softnet_data.completion_queue, skb);
2568 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2569 	local_irq_restore(flags);
2570 }
2571 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2572 
2573 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2574 {
2575 	if (in_irq() || irqs_disabled())
2576 		__dev_kfree_skb_irq(skb, reason);
2577 	else
2578 		dev_kfree_skb(skb);
2579 }
2580 EXPORT_SYMBOL(__dev_kfree_skb_any);
2581 
2582 
2583 /**
2584  * netif_device_detach - mark device as removed
2585  * @dev: network device
2586  *
2587  * Mark device as removed from system and therefore no longer available.
2588  */
2589 void netif_device_detach(struct net_device *dev)
2590 {
2591 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2592 	    netif_running(dev)) {
2593 		netif_tx_stop_all_queues(dev);
2594 	}
2595 }
2596 EXPORT_SYMBOL(netif_device_detach);
2597 
2598 /**
2599  * netif_device_attach - mark device as attached
2600  * @dev: network device
2601  *
2602  * Mark device as attached from system and restart if needed.
2603  */
2604 void netif_device_attach(struct net_device *dev)
2605 {
2606 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2607 	    netif_running(dev)) {
2608 		netif_tx_wake_all_queues(dev);
2609 		__netdev_watchdog_up(dev);
2610 	}
2611 }
2612 EXPORT_SYMBOL(netif_device_attach);
2613 
2614 /*
2615  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2616  * to be used as a distribution range.
2617  */
2618 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2619 		  unsigned int num_tx_queues)
2620 {
2621 	u32 hash;
2622 	u16 qoffset = 0;
2623 	u16 qcount = num_tx_queues;
2624 
2625 	if (skb_rx_queue_recorded(skb)) {
2626 		hash = skb_get_rx_queue(skb);
2627 		while (unlikely(hash >= num_tx_queues))
2628 			hash -= num_tx_queues;
2629 		return hash;
2630 	}
2631 
2632 	if (dev->num_tc) {
2633 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2634 
2635 		qoffset = dev->tc_to_txq[tc].offset;
2636 		qcount = dev->tc_to_txq[tc].count;
2637 	}
2638 
2639 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2640 }
2641 EXPORT_SYMBOL(__skb_tx_hash);
2642 
2643 static void skb_warn_bad_offload(const struct sk_buff *skb)
2644 {
2645 	static const netdev_features_t null_features;
2646 	struct net_device *dev = skb->dev;
2647 	const char *name = "";
2648 
2649 	if (!net_ratelimit())
2650 		return;
2651 
2652 	if (dev) {
2653 		if (dev->dev.parent)
2654 			name = dev_driver_string(dev->dev.parent);
2655 		else
2656 			name = netdev_name(dev);
2657 	}
2658 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2659 	     "gso_type=%d ip_summed=%d\n",
2660 	     name, dev ? &dev->features : &null_features,
2661 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2662 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2663 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2664 }
2665 
2666 /*
2667  * Invalidate hardware checksum when packet is to be mangled, and
2668  * complete checksum manually on outgoing path.
2669  */
2670 int skb_checksum_help(struct sk_buff *skb)
2671 {
2672 	__wsum csum;
2673 	int ret = 0, offset;
2674 
2675 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2676 		goto out_set_summed;
2677 
2678 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2679 		skb_warn_bad_offload(skb);
2680 		return -EINVAL;
2681 	}
2682 
2683 	/* Before computing a checksum, we should make sure no frag could
2684 	 * be modified by an external entity : checksum could be wrong.
2685 	 */
2686 	if (skb_has_shared_frag(skb)) {
2687 		ret = __skb_linearize(skb);
2688 		if (ret)
2689 			goto out;
2690 	}
2691 
2692 	offset = skb_checksum_start_offset(skb);
2693 	BUG_ON(offset >= skb_headlen(skb));
2694 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2695 
2696 	offset += skb->csum_offset;
2697 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2698 
2699 	if (skb_cloned(skb) &&
2700 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2701 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2702 		if (ret)
2703 			goto out;
2704 	}
2705 
2706 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2707 out_set_summed:
2708 	skb->ip_summed = CHECKSUM_NONE;
2709 out:
2710 	return ret;
2711 }
2712 EXPORT_SYMBOL(skb_checksum_help);
2713 
2714 int skb_crc32c_csum_help(struct sk_buff *skb)
2715 {
2716 	__le32 crc32c_csum;
2717 	int ret = 0, offset, start;
2718 
2719 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2720 		goto out;
2721 
2722 	if (unlikely(skb_is_gso(skb)))
2723 		goto out;
2724 
2725 	/* Before computing a checksum, we should make sure no frag could
2726 	 * be modified by an external entity : checksum could be wrong.
2727 	 */
2728 	if (unlikely(skb_has_shared_frag(skb))) {
2729 		ret = __skb_linearize(skb);
2730 		if (ret)
2731 			goto out;
2732 	}
2733 	start = skb_checksum_start_offset(skb);
2734 	offset = start + offsetof(struct sctphdr, checksum);
2735 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2736 		ret = -EINVAL;
2737 		goto out;
2738 	}
2739 	if (skb_cloned(skb) &&
2740 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2741 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2742 		if (ret)
2743 			goto out;
2744 	}
2745 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2746 						  skb->len - start, ~(__u32)0,
2747 						  crc32c_csum_stub));
2748 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2749 	skb->ip_summed = CHECKSUM_NONE;
2750 	skb->csum_not_inet = 0;
2751 out:
2752 	return ret;
2753 }
2754 
2755 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2756 {
2757 	__be16 type = skb->protocol;
2758 
2759 	/* Tunnel gso handlers can set protocol to ethernet. */
2760 	if (type == htons(ETH_P_TEB)) {
2761 		struct ethhdr *eth;
2762 
2763 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2764 			return 0;
2765 
2766 		eth = (struct ethhdr *)skb->data;
2767 		type = eth->h_proto;
2768 	}
2769 
2770 	return __vlan_get_protocol(skb, type, depth);
2771 }
2772 
2773 /**
2774  *	skb_mac_gso_segment - mac layer segmentation handler.
2775  *	@skb: buffer to segment
2776  *	@features: features for the output path (see dev->features)
2777  */
2778 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2779 				    netdev_features_t features)
2780 {
2781 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2782 	struct packet_offload *ptype;
2783 	int vlan_depth = skb->mac_len;
2784 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2785 
2786 	if (unlikely(!type))
2787 		return ERR_PTR(-EINVAL);
2788 
2789 	__skb_pull(skb, vlan_depth);
2790 
2791 	rcu_read_lock();
2792 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2793 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2794 			segs = ptype->callbacks.gso_segment(skb, features);
2795 			break;
2796 		}
2797 	}
2798 	rcu_read_unlock();
2799 
2800 	__skb_push(skb, skb->data - skb_mac_header(skb));
2801 
2802 	return segs;
2803 }
2804 EXPORT_SYMBOL(skb_mac_gso_segment);
2805 
2806 
2807 /* openvswitch calls this on rx path, so we need a different check.
2808  */
2809 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2810 {
2811 	if (tx_path)
2812 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2813 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2814 
2815 	return skb->ip_summed == CHECKSUM_NONE;
2816 }
2817 
2818 /**
2819  *	__skb_gso_segment - Perform segmentation on skb.
2820  *	@skb: buffer to segment
2821  *	@features: features for the output path (see dev->features)
2822  *	@tx_path: whether it is called in TX path
2823  *
2824  *	This function segments the given skb and returns a list of segments.
2825  *
2826  *	It may return NULL if the skb requires no segmentation.  This is
2827  *	only possible when GSO is used for verifying header integrity.
2828  *
2829  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2830  */
2831 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2832 				  netdev_features_t features, bool tx_path)
2833 {
2834 	struct sk_buff *segs;
2835 
2836 	if (unlikely(skb_needs_check(skb, tx_path))) {
2837 		int err;
2838 
2839 		/* We're going to init ->check field in TCP or UDP header */
2840 		err = skb_cow_head(skb, 0);
2841 		if (err < 0)
2842 			return ERR_PTR(err);
2843 	}
2844 
2845 	/* Only report GSO partial support if it will enable us to
2846 	 * support segmentation on this frame without needing additional
2847 	 * work.
2848 	 */
2849 	if (features & NETIF_F_GSO_PARTIAL) {
2850 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2851 		struct net_device *dev = skb->dev;
2852 
2853 		partial_features |= dev->features & dev->gso_partial_features;
2854 		if (!skb_gso_ok(skb, features | partial_features))
2855 			features &= ~NETIF_F_GSO_PARTIAL;
2856 	}
2857 
2858 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2859 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2860 
2861 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2862 	SKB_GSO_CB(skb)->encap_level = 0;
2863 
2864 	skb_reset_mac_header(skb);
2865 	skb_reset_mac_len(skb);
2866 
2867 	segs = skb_mac_gso_segment(skb, features);
2868 
2869 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2870 		skb_warn_bad_offload(skb);
2871 
2872 	return segs;
2873 }
2874 EXPORT_SYMBOL(__skb_gso_segment);
2875 
2876 /* Take action when hardware reception checksum errors are detected. */
2877 #ifdef CONFIG_BUG
2878 void netdev_rx_csum_fault(struct net_device *dev)
2879 {
2880 	if (net_ratelimit()) {
2881 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2882 		dump_stack();
2883 	}
2884 }
2885 EXPORT_SYMBOL(netdev_rx_csum_fault);
2886 #endif
2887 
2888 /* Actually, we should eliminate this check as soon as we know, that:
2889  * 1. IOMMU is present and allows to map all the memory.
2890  * 2. No high memory really exists on this machine.
2891  */
2892 
2893 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2894 {
2895 #ifdef CONFIG_HIGHMEM
2896 	int i;
2897 
2898 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2899 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2900 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2901 
2902 			if (PageHighMem(skb_frag_page(frag)))
2903 				return 1;
2904 		}
2905 	}
2906 
2907 	if (PCI_DMA_BUS_IS_PHYS) {
2908 		struct device *pdev = dev->dev.parent;
2909 
2910 		if (!pdev)
2911 			return 0;
2912 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2913 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2914 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2915 
2916 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2917 				return 1;
2918 		}
2919 	}
2920 #endif
2921 	return 0;
2922 }
2923 
2924 /* If MPLS offload request, verify we are testing hardware MPLS features
2925  * instead of standard features for the netdev.
2926  */
2927 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2928 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2929 					   netdev_features_t features,
2930 					   __be16 type)
2931 {
2932 	if (eth_p_mpls(type))
2933 		features &= skb->dev->mpls_features;
2934 
2935 	return features;
2936 }
2937 #else
2938 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2939 					   netdev_features_t features,
2940 					   __be16 type)
2941 {
2942 	return features;
2943 }
2944 #endif
2945 
2946 static netdev_features_t harmonize_features(struct sk_buff *skb,
2947 	netdev_features_t features)
2948 {
2949 	int tmp;
2950 	__be16 type;
2951 
2952 	type = skb_network_protocol(skb, &tmp);
2953 	features = net_mpls_features(skb, features, type);
2954 
2955 	if (skb->ip_summed != CHECKSUM_NONE &&
2956 	    !can_checksum_protocol(features, type)) {
2957 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2958 	}
2959 	if (illegal_highdma(skb->dev, skb))
2960 		features &= ~NETIF_F_SG;
2961 
2962 	return features;
2963 }
2964 
2965 netdev_features_t passthru_features_check(struct sk_buff *skb,
2966 					  struct net_device *dev,
2967 					  netdev_features_t features)
2968 {
2969 	return features;
2970 }
2971 EXPORT_SYMBOL(passthru_features_check);
2972 
2973 static netdev_features_t dflt_features_check(struct sk_buff *skb,
2974 					     struct net_device *dev,
2975 					     netdev_features_t features)
2976 {
2977 	return vlan_features_check(skb, features);
2978 }
2979 
2980 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2981 					    struct net_device *dev,
2982 					    netdev_features_t features)
2983 {
2984 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2985 
2986 	if (gso_segs > dev->gso_max_segs)
2987 		return features & ~NETIF_F_GSO_MASK;
2988 
2989 	/* Support for GSO partial features requires software
2990 	 * intervention before we can actually process the packets
2991 	 * so we need to strip support for any partial features now
2992 	 * and we can pull them back in after we have partially
2993 	 * segmented the frame.
2994 	 */
2995 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2996 		features &= ~dev->gso_partial_features;
2997 
2998 	/* Make sure to clear the IPv4 ID mangling feature if the
2999 	 * IPv4 header has the potential to be fragmented.
3000 	 */
3001 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3002 		struct iphdr *iph = skb->encapsulation ?
3003 				    inner_ip_hdr(skb) : ip_hdr(skb);
3004 
3005 		if (!(iph->frag_off & htons(IP_DF)))
3006 			features &= ~NETIF_F_TSO_MANGLEID;
3007 	}
3008 
3009 	return features;
3010 }
3011 
3012 netdev_features_t netif_skb_features(struct sk_buff *skb)
3013 {
3014 	struct net_device *dev = skb->dev;
3015 	netdev_features_t features = dev->features;
3016 
3017 	if (skb_is_gso(skb))
3018 		features = gso_features_check(skb, dev, features);
3019 
3020 	/* If encapsulation offload request, verify we are testing
3021 	 * hardware encapsulation features instead of standard
3022 	 * features for the netdev
3023 	 */
3024 	if (skb->encapsulation)
3025 		features &= dev->hw_enc_features;
3026 
3027 	if (skb_vlan_tagged(skb))
3028 		features = netdev_intersect_features(features,
3029 						     dev->vlan_features |
3030 						     NETIF_F_HW_VLAN_CTAG_TX |
3031 						     NETIF_F_HW_VLAN_STAG_TX);
3032 
3033 	if (dev->netdev_ops->ndo_features_check)
3034 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3035 								features);
3036 	else
3037 		features &= dflt_features_check(skb, dev, features);
3038 
3039 	return harmonize_features(skb, features);
3040 }
3041 EXPORT_SYMBOL(netif_skb_features);
3042 
3043 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3044 		    struct netdev_queue *txq, bool more)
3045 {
3046 	unsigned int len;
3047 	int rc;
3048 
3049 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3050 		dev_queue_xmit_nit(skb, dev);
3051 
3052 	len = skb->len;
3053 	trace_net_dev_start_xmit(skb, dev);
3054 	rc = netdev_start_xmit(skb, dev, txq, more);
3055 	trace_net_dev_xmit(skb, rc, dev, len);
3056 
3057 	return rc;
3058 }
3059 
3060 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3061 				    struct netdev_queue *txq, int *ret)
3062 {
3063 	struct sk_buff *skb = first;
3064 	int rc = NETDEV_TX_OK;
3065 
3066 	while (skb) {
3067 		struct sk_buff *next = skb->next;
3068 
3069 		skb->next = NULL;
3070 		rc = xmit_one(skb, dev, txq, next != NULL);
3071 		if (unlikely(!dev_xmit_complete(rc))) {
3072 			skb->next = next;
3073 			goto out;
3074 		}
3075 
3076 		skb = next;
3077 		if (netif_xmit_stopped(txq) && skb) {
3078 			rc = NETDEV_TX_BUSY;
3079 			break;
3080 		}
3081 	}
3082 
3083 out:
3084 	*ret = rc;
3085 	return skb;
3086 }
3087 
3088 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3089 					  netdev_features_t features)
3090 {
3091 	if (skb_vlan_tag_present(skb) &&
3092 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3093 		skb = __vlan_hwaccel_push_inside(skb);
3094 	return skb;
3095 }
3096 
3097 int skb_csum_hwoffload_help(struct sk_buff *skb,
3098 			    const netdev_features_t features)
3099 {
3100 	if (unlikely(skb->csum_not_inet))
3101 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3102 			skb_crc32c_csum_help(skb);
3103 
3104 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3105 }
3106 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3107 
3108 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3109 {
3110 	netdev_features_t features;
3111 
3112 	features = netif_skb_features(skb);
3113 	skb = validate_xmit_vlan(skb, features);
3114 	if (unlikely(!skb))
3115 		goto out_null;
3116 
3117 	if (netif_needs_gso(skb, features)) {
3118 		struct sk_buff *segs;
3119 
3120 		segs = skb_gso_segment(skb, features);
3121 		if (IS_ERR(segs)) {
3122 			goto out_kfree_skb;
3123 		} else if (segs) {
3124 			consume_skb(skb);
3125 			skb = segs;
3126 		}
3127 	} else {
3128 		if (skb_needs_linearize(skb, features) &&
3129 		    __skb_linearize(skb))
3130 			goto out_kfree_skb;
3131 
3132 		/* If packet is not checksummed and device does not
3133 		 * support checksumming for this protocol, complete
3134 		 * checksumming here.
3135 		 */
3136 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3137 			if (skb->encapsulation)
3138 				skb_set_inner_transport_header(skb,
3139 							       skb_checksum_start_offset(skb));
3140 			else
3141 				skb_set_transport_header(skb,
3142 							 skb_checksum_start_offset(skb));
3143 			if (skb_csum_hwoffload_help(skb, features))
3144 				goto out_kfree_skb;
3145 		}
3146 	}
3147 
3148 	skb = validate_xmit_xfrm(skb, features, again);
3149 
3150 	return skb;
3151 
3152 out_kfree_skb:
3153 	kfree_skb(skb);
3154 out_null:
3155 	atomic_long_inc(&dev->tx_dropped);
3156 	return NULL;
3157 }
3158 
3159 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3160 {
3161 	struct sk_buff *next, *head = NULL, *tail;
3162 
3163 	for (; skb != NULL; skb = next) {
3164 		next = skb->next;
3165 		skb->next = NULL;
3166 
3167 		/* in case skb wont be segmented, point to itself */
3168 		skb->prev = skb;
3169 
3170 		skb = validate_xmit_skb(skb, dev, again);
3171 		if (!skb)
3172 			continue;
3173 
3174 		if (!head)
3175 			head = skb;
3176 		else
3177 			tail->next = skb;
3178 		/* If skb was segmented, skb->prev points to
3179 		 * the last segment. If not, it still contains skb.
3180 		 */
3181 		tail = skb->prev;
3182 	}
3183 	return head;
3184 }
3185 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3186 
3187 static void qdisc_pkt_len_init(struct sk_buff *skb)
3188 {
3189 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3190 
3191 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3192 
3193 	/* To get more precise estimation of bytes sent on wire,
3194 	 * we add to pkt_len the headers size of all segments
3195 	 */
3196 	if (shinfo->gso_size)  {
3197 		unsigned int hdr_len;
3198 		u16 gso_segs = shinfo->gso_segs;
3199 
3200 		/* mac layer + network layer */
3201 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3202 
3203 		/* + transport layer */
3204 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3205 			const struct tcphdr *th;
3206 			struct tcphdr _tcphdr;
3207 
3208 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3209 						sizeof(_tcphdr), &_tcphdr);
3210 			if (likely(th))
3211 				hdr_len += __tcp_hdrlen(th);
3212 		} else {
3213 			struct udphdr _udphdr;
3214 
3215 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3216 					       sizeof(_udphdr), &_udphdr))
3217 				hdr_len += sizeof(struct udphdr);
3218 		}
3219 
3220 		if (shinfo->gso_type & SKB_GSO_DODGY)
3221 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3222 						shinfo->gso_size);
3223 
3224 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3225 	}
3226 }
3227 
3228 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3229 				 struct net_device *dev,
3230 				 struct netdev_queue *txq)
3231 {
3232 	spinlock_t *root_lock = qdisc_lock(q);
3233 	struct sk_buff *to_free = NULL;
3234 	bool contended;
3235 	int rc;
3236 
3237 	qdisc_calculate_pkt_len(skb, q);
3238 
3239 	if (q->flags & TCQ_F_NOLOCK) {
3240 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3241 			__qdisc_drop(skb, &to_free);
3242 			rc = NET_XMIT_DROP;
3243 		} else {
3244 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3245 			__qdisc_run(q);
3246 		}
3247 
3248 		if (unlikely(to_free))
3249 			kfree_skb_list(to_free);
3250 		return rc;
3251 	}
3252 
3253 	/*
3254 	 * Heuristic to force contended enqueues to serialize on a
3255 	 * separate lock before trying to get qdisc main lock.
3256 	 * This permits qdisc->running owner to get the lock more
3257 	 * often and dequeue packets faster.
3258 	 */
3259 	contended = qdisc_is_running(q);
3260 	if (unlikely(contended))
3261 		spin_lock(&q->busylock);
3262 
3263 	spin_lock(root_lock);
3264 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3265 		__qdisc_drop(skb, &to_free);
3266 		rc = NET_XMIT_DROP;
3267 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3268 		   qdisc_run_begin(q)) {
3269 		/*
3270 		 * This is a work-conserving queue; there are no old skbs
3271 		 * waiting to be sent out; and the qdisc is not running -
3272 		 * xmit the skb directly.
3273 		 */
3274 
3275 		qdisc_bstats_update(q, skb);
3276 
3277 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3278 			if (unlikely(contended)) {
3279 				spin_unlock(&q->busylock);
3280 				contended = false;
3281 			}
3282 			__qdisc_run(q);
3283 		}
3284 
3285 		qdisc_run_end(q);
3286 		rc = NET_XMIT_SUCCESS;
3287 	} else {
3288 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3289 		if (qdisc_run_begin(q)) {
3290 			if (unlikely(contended)) {
3291 				spin_unlock(&q->busylock);
3292 				contended = false;
3293 			}
3294 			__qdisc_run(q);
3295 			qdisc_run_end(q);
3296 		}
3297 	}
3298 	spin_unlock(root_lock);
3299 	if (unlikely(to_free))
3300 		kfree_skb_list(to_free);
3301 	if (unlikely(contended))
3302 		spin_unlock(&q->busylock);
3303 	return rc;
3304 }
3305 
3306 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3307 static void skb_update_prio(struct sk_buff *skb)
3308 {
3309 	const struct netprio_map *map;
3310 	const struct sock *sk;
3311 	unsigned int prioidx;
3312 
3313 	if (skb->priority)
3314 		return;
3315 	map = rcu_dereference_bh(skb->dev->priomap);
3316 	if (!map)
3317 		return;
3318 	sk = skb_to_full_sk(skb);
3319 	if (!sk)
3320 		return;
3321 
3322 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3323 
3324 	if (prioidx < map->priomap_len)
3325 		skb->priority = map->priomap[prioidx];
3326 }
3327 #else
3328 #define skb_update_prio(skb)
3329 #endif
3330 
3331 DEFINE_PER_CPU(int, xmit_recursion);
3332 EXPORT_SYMBOL(xmit_recursion);
3333 
3334 /**
3335  *	dev_loopback_xmit - loop back @skb
3336  *	@net: network namespace this loopback is happening in
3337  *	@sk:  sk needed to be a netfilter okfn
3338  *	@skb: buffer to transmit
3339  */
3340 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3341 {
3342 	skb_reset_mac_header(skb);
3343 	__skb_pull(skb, skb_network_offset(skb));
3344 	skb->pkt_type = PACKET_LOOPBACK;
3345 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3346 	WARN_ON(!skb_dst(skb));
3347 	skb_dst_force(skb);
3348 	netif_rx_ni(skb);
3349 	return 0;
3350 }
3351 EXPORT_SYMBOL(dev_loopback_xmit);
3352 
3353 #ifdef CONFIG_NET_EGRESS
3354 static struct sk_buff *
3355 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3356 {
3357 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3358 	struct tcf_result cl_res;
3359 
3360 	if (!miniq)
3361 		return skb;
3362 
3363 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3364 	mini_qdisc_bstats_cpu_update(miniq, skb);
3365 
3366 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3367 	case TC_ACT_OK:
3368 	case TC_ACT_RECLASSIFY:
3369 		skb->tc_index = TC_H_MIN(cl_res.classid);
3370 		break;
3371 	case TC_ACT_SHOT:
3372 		mini_qdisc_qstats_cpu_drop(miniq);
3373 		*ret = NET_XMIT_DROP;
3374 		kfree_skb(skb);
3375 		return NULL;
3376 	case TC_ACT_STOLEN:
3377 	case TC_ACT_QUEUED:
3378 	case TC_ACT_TRAP:
3379 		*ret = NET_XMIT_SUCCESS;
3380 		consume_skb(skb);
3381 		return NULL;
3382 	case TC_ACT_REDIRECT:
3383 		/* No need to push/pop skb's mac_header here on egress! */
3384 		skb_do_redirect(skb);
3385 		*ret = NET_XMIT_SUCCESS;
3386 		return NULL;
3387 	default:
3388 		break;
3389 	}
3390 
3391 	return skb;
3392 }
3393 #endif /* CONFIG_NET_EGRESS */
3394 
3395 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3396 {
3397 #ifdef CONFIG_XPS
3398 	struct xps_dev_maps *dev_maps;
3399 	struct xps_map *map;
3400 	int queue_index = -1;
3401 
3402 	rcu_read_lock();
3403 	dev_maps = rcu_dereference(dev->xps_maps);
3404 	if (dev_maps) {
3405 		unsigned int tci = skb->sender_cpu - 1;
3406 
3407 		if (dev->num_tc) {
3408 			tci *= dev->num_tc;
3409 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3410 		}
3411 
3412 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3413 		if (map) {
3414 			if (map->len == 1)
3415 				queue_index = map->queues[0];
3416 			else
3417 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3418 									   map->len)];
3419 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3420 				queue_index = -1;
3421 		}
3422 	}
3423 	rcu_read_unlock();
3424 
3425 	return queue_index;
3426 #else
3427 	return -1;
3428 #endif
3429 }
3430 
3431 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3432 {
3433 	struct sock *sk = skb->sk;
3434 	int queue_index = sk_tx_queue_get(sk);
3435 
3436 	if (queue_index < 0 || skb->ooo_okay ||
3437 	    queue_index >= dev->real_num_tx_queues) {
3438 		int new_index = get_xps_queue(dev, skb);
3439 
3440 		if (new_index < 0)
3441 			new_index = skb_tx_hash(dev, skb);
3442 
3443 		if (queue_index != new_index && sk &&
3444 		    sk_fullsock(sk) &&
3445 		    rcu_access_pointer(sk->sk_dst_cache))
3446 			sk_tx_queue_set(sk, new_index);
3447 
3448 		queue_index = new_index;
3449 	}
3450 
3451 	return queue_index;
3452 }
3453 
3454 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3455 				    struct sk_buff *skb,
3456 				    void *accel_priv)
3457 {
3458 	int queue_index = 0;
3459 
3460 #ifdef CONFIG_XPS
3461 	u32 sender_cpu = skb->sender_cpu - 1;
3462 
3463 	if (sender_cpu >= (u32)NR_CPUS)
3464 		skb->sender_cpu = raw_smp_processor_id() + 1;
3465 #endif
3466 
3467 	if (dev->real_num_tx_queues != 1) {
3468 		const struct net_device_ops *ops = dev->netdev_ops;
3469 
3470 		if (ops->ndo_select_queue)
3471 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3472 							    __netdev_pick_tx);
3473 		else
3474 			queue_index = __netdev_pick_tx(dev, skb);
3475 
3476 		queue_index = netdev_cap_txqueue(dev, queue_index);
3477 	}
3478 
3479 	skb_set_queue_mapping(skb, queue_index);
3480 	return netdev_get_tx_queue(dev, queue_index);
3481 }
3482 
3483 /**
3484  *	__dev_queue_xmit - transmit a buffer
3485  *	@skb: buffer to transmit
3486  *	@accel_priv: private data used for L2 forwarding offload
3487  *
3488  *	Queue a buffer for transmission to a network device. The caller must
3489  *	have set the device and priority and built the buffer before calling
3490  *	this function. The function can be called from an interrupt.
3491  *
3492  *	A negative errno code is returned on a failure. A success does not
3493  *	guarantee the frame will be transmitted as it may be dropped due
3494  *	to congestion or traffic shaping.
3495  *
3496  * -----------------------------------------------------------------------------------
3497  *      I notice this method can also return errors from the queue disciplines,
3498  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3499  *      be positive.
3500  *
3501  *      Regardless of the return value, the skb is consumed, so it is currently
3502  *      difficult to retry a send to this method.  (You can bump the ref count
3503  *      before sending to hold a reference for retry if you are careful.)
3504  *
3505  *      When calling this method, interrupts MUST be enabled.  This is because
3506  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3507  *          --BLG
3508  */
3509 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3510 {
3511 	struct net_device *dev = skb->dev;
3512 	struct netdev_queue *txq;
3513 	struct Qdisc *q;
3514 	int rc = -ENOMEM;
3515 	bool again = false;
3516 
3517 	skb_reset_mac_header(skb);
3518 
3519 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3520 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3521 
3522 	/* Disable soft irqs for various locks below. Also
3523 	 * stops preemption for RCU.
3524 	 */
3525 	rcu_read_lock_bh();
3526 
3527 	skb_update_prio(skb);
3528 
3529 	qdisc_pkt_len_init(skb);
3530 #ifdef CONFIG_NET_CLS_ACT
3531 	skb->tc_at_ingress = 0;
3532 # ifdef CONFIG_NET_EGRESS
3533 	if (static_key_false(&egress_needed)) {
3534 		skb = sch_handle_egress(skb, &rc, dev);
3535 		if (!skb)
3536 			goto out;
3537 	}
3538 # endif
3539 #endif
3540 	/* If device/qdisc don't need skb->dst, release it right now while
3541 	 * its hot in this cpu cache.
3542 	 */
3543 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3544 		skb_dst_drop(skb);
3545 	else
3546 		skb_dst_force(skb);
3547 
3548 	txq = netdev_pick_tx(dev, skb, accel_priv);
3549 	q = rcu_dereference_bh(txq->qdisc);
3550 
3551 	trace_net_dev_queue(skb);
3552 	if (q->enqueue) {
3553 		rc = __dev_xmit_skb(skb, q, dev, txq);
3554 		goto out;
3555 	}
3556 
3557 	/* The device has no queue. Common case for software devices:
3558 	 * loopback, all the sorts of tunnels...
3559 
3560 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3561 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3562 	 * counters.)
3563 	 * However, it is possible, that they rely on protection
3564 	 * made by us here.
3565 
3566 	 * Check this and shot the lock. It is not prone from deadlocks.
3567 	 *Either shot noqueue qdisc, it is even simpler 8)
3568 	 */
3569 	if (dev->flags & IFF_UP) {
3570 		int cpu = smp_processor_id(); /* ok because BHs are off */
3571 
3572 		if (txq->xmit_lock_owner != cpu) {
3573 			if (unlikely(__this_cpu_read(xmit_recursion) >
3574 				     XMIT_RECURSION_LIMIT))
3575 				goto recursion_alert;
3576 
3577 			skb = validate_xmit_skb(skb, dev, &again);
3578 			if (!skb)
3579 				goto out;
3580 
3581 			HARD_TX_LOCK(dev, txq, cpu);
3582 
3583 			if (!netif_xmit_stopped(txq)) {
3584 				__this_cpu_inc(xmit_recursion);
3585 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3586 				__this_cpu_dec(xmit_recursion);
3587 				if (dev_xmit_complete(rc)) {
3588 					HARD_TX_UNLOCK(dev, txq);
3589 					goto out;
3590 				}
3591 			}
3592 			HARD_TX_UNLOCK(dev, txq);
3593 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3594 					     dev->name);
3595 		} else {
3596 			/* Recursion is detected! It is possible,
3597 			 * unfortunately
3598 			 */
3599 recursion_alert:
3600 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3601 					     dev->name);
3602 		}
3603 	}
3604 
3605 	rc = -ENETDOWN;
3606 	rcu_read_unlock_bh();
3607 
3608 	atomic_long_inc(&dev->tx_dropped);
3609 	kfree_skb_list(skb);
3610 	return rc;
3611 out:
3612 	rcu_read_unlock_bh();
3613 	return rc;
3614 }
3615 
3616 int dev_queue_xmit(struct sk_buff *skb)
3617 {
3618 	return __dev_queue_xmit(skb, NULL);
3619 }
3620 EXPORT_SYMBOL(dev_queue_xmit);
3621 
3622 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3623 {
3624 	return __dev_queue_xmit(skb, accel_priv);
3625 }
3626 EXPORT_SYMBOL(dev_queue_xmit_accel);
3627 
3628 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3629 {
3630 	struct net_device *dev = skb->dev;
3631 	struct sk_buff *orig_skb = skb;
3632 	struct netdev_queue *txq;
3633 	int ret = NETDEV_TX_BUSY;
3634 	bool again = false;
3635 
3636 	if (unlikely(!netif_running(dev) ||
3637 		     !netif_carrier_ok(dev)))
3638 		goto drop;
3639 
3640 	skb = validate_xmit_skb_list(skb, dev, &again);
3641 	if (skb != orig_skb)
3642 		goto drop;
3643 
3644 	skb_set_queue_mapping(skb, queue_id);
3645 	txq = skb_get_tx_queue(dev, skb);
3646 
3647 	local_bh_disable();
3648 
3649 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3650 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3651 		ret = netdev_start_xmit(skb, dev, txq, false);
3652 	HARD_TX_UNLOCK(dev, txq);
3653 
3654 	local_bh_enable();
3655 
3656 	if (!dev_xmit_complete(ret))
3657 		kfree_skb(skb);
3658 
3659 	return ret;
3660 drop:
3661 	atomic_long_inc(&dev->tx_dropped);
3662 	kfree_skb_list(skb);
3663 	return NET_XMIT_DROP;
3664 }
3665 EXPORT_SYMBOL(dev_direct_xmit);
3666 
3667 /*************************************************************************
3668  *			Receiver routines
3669  *************************************************************************/
3670 
3671 int netdev_max_backlog __read_mostly = 1000;
3672 EXPORT_SYMBOL(netdev_max_backlog);
3673 
3674 int netdev_tstamp_prequeue __read_mostly = 1;
3675 int netdev_budget __read_mostly = 300;
3676 unsigned int __read_mostly netdev_budget_usecs = 2000;
3677 int weight_p __read_mostly = 64;           /* old backlog weight */
3678 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3679 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3680 int dev_rx_weight __read_mostly = 64;
3681 int dev_tx_weight __read_mostly = 64;
3682 
3683 /* Called with irq disabled */
3684 static inline void ____napi_schedule(struct softnet_data *sd,
3685 				     struct napi_struct *napi)
3686 {
3687 	list_add_tail(&napi->poll_list, &sd->poll_list);
3688 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3689 }
3690 
3691 #ifdef CONFIG_RPS
3692 
3693 /* One global table that all flow-based protocols share. */
3694 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3695 EXPORT_SYMBOL(rps_sock_flow_table);
3696 u32 rps_cpu_mask __read_mostly;
3697 EXPORT_SYMBOL(rps_cpu_mask);
3698 
3699 struct static_key rps_needed __read_mostly;
3700 EXPORT_SYMBOL(rps_needed);
3701 struct static_key rfs_needed __read_mostly;
3702 EXPORT_SYMBOL(rfs_needed);
3703 
3704 static struct rps_dev_flow *
3705 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3706 	    struct rps_dev_flow *rflow, u16 next_cpu)
3707 {
3708 	if (next_cpu < nr_cpu_ids) {
3709 #ifdef CONFIG_RFS_ACCEL
3710 		struct netdev_rx_queue *rxqueue;
3711 		struct rps_dev_flow_table *flow_table;
3712 		struct rps_dev_flow *old_rflow;
3713 		u32 flow_id;
3714 		u16 rxq_index;
3715 		int rc;
3716 
3717 		/* Should we steer this flow to a different hardware queue? */
3718 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3719 		    !(dev->features & NETIF_F_NTUPLE))
3720 			goto out;
3721 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3722 		if (rxq_index == skb_get_rx_queue(skb))
3723 			goto out;
3724 
3725 		rxqueue = dev->_rx + rxq_index;
3726 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3727 		if (!flow_table)
3728 			goto out;
3729 		flow_id = skb_get_hash(skb) & flow_table->mask;
3730 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3731 							rxq_index, flow_id);
3732 		if (rc < 0)
3733 			goto out;
3734 		old_rflow = rflow;
3735 		rflow = &flow_table->flows[flow_id];
3736 		rflow->filter = rc;
3737 		if (old_rflow->filter == rflow->filter)
3738 			old_rflow->filter = RPS_NO_FILTER;
3739 	out:
3740 #endif
3741 		rflow->last_qtail =
3742 			per_cpu(softnet_data, next_cpu).input_queue_head;
3743 	}
3744 
3745 	rflow->cpu = next_cpu;
3746 	return rflow;
3747 }
3748 
3749 /*
3750  * get_rps_cpu is called from netif_receive_skb and returns the target
3751  * CPU from the RPS map of the receiving queue for a given skb.
3752  * rcu_read_lock must be held on entry.
3753  */
3754 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3755 		       struct rps_dev_flow **rflowp)
3756 {
3757 	const struct rps_sock_flow_table *sock_flow_table;
3758 	struct netdev_rx_queue *rxqueue = dev->_rx;
3759 	struct rps_dev_flow_table *flow_table;
3760 	struct rps_map *map;
3761 	int cpu = -1;
3762 	u32 tcpu;
3763 	u32 hash;
3764 
3765 	if (skb_rx_queue_recorded(skb)) {
3766 		u16 index = skb_get_rx_queue(skb);
3767 
3768 		if (unlikely(index >= dev->real_num_rx_queues)) {
3769 			WARN_ONCE(dev->real_num_rx_queues > 1,
3770 				  "%s received packet on queue %u, but number "
3771 				  "of RX queues is %u\n",
3772 				  dev->name, index, dev->real_num_rx_queues);
3773 			goto done;
3774 		}
3775 		rxqueue += index;
3776 	}
3777 
3778 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3779 
3780 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3781 	map = rcu_dereference(rxqueue->rps_map);
3782 	if (!flow_table && !map)
3783 		goto done;
3784 
3785 	skb_reset_network_header(skb);
3786 	hash = skb_get_hash(skb);
3787 	if (!hash)
3788 		goto done;
3789 
3790 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3791 	if (flow_table && sock_flow_table) {
3792 		struct rps_dev_flow *rflow;
3793 		u32 next_cpu;
3794 		u32 ident;
3795 
3796 		/* First check into global flow table if there is a match */
3797 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3798 		if ((ident ^ hash) & ~rps_cpu_mask)
3799 			goto try_rps;
3800 
3801 		next_cpu = ident & rps_cpu_mask;
3802 
3803 		/* OK, now we know there is a match,
3804 		 * we can look at the local (per receive queue) flow table
3805 		 */
3806 		rflow = &flow_table->flows[hash & flow_table->mask];
3807 		tcpu = rflow->cpu;
3808 
3809 		/*
3810 		 * If the desired CPU (where last recvmsg was done) is
3811 		 * different from current CPU (one in the rx-queue flow
3812 		 * table entry), switch if one of the following holds:
3813 		 *   - Current CPU is unset (>= nr_cpu_ids).
3814 		 *   - Current CPU is offline.
3815 		 *   - The current CPU's queue tail has advanced beyond the
3816 		 *     last packet that was enqueued using this table entry.
3817 		 *     This guarantees that all previous packets for the flow
3818 		 *     have been dequeued, thus preserving in order delivery.
3819 		 */
3820 		if (unlikely(tcpu != next_cpu) &&
3821 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3822 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3823 		      rflow->last_qtail)) >= 0)) {
3824 			tcpu = next_cpu;
3825 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3826 		}
3827 
3828 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3829 			*rflowp = rflow;
3830 			cpu = tcpu;
3831 			goto done;
3832 		}
3833 	}
3834 
3835 try_rps:
3836 
3837 	if (map) {
3838 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3839 		if (cpu_online(tcpu)) {
3840 			cpu = tcpu;
3841 			goto done;
3842 		}
3843 	}
3844 
3845 done:
3846 	return cpu;
3847 }
3848 
3849 #ifdef CONFIG_RFS_ACCEL
3850 
3851 /**
3852  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3853  * @dev: Device on which the filter was set
3854  * @rxq_index: RX queue index
3855  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3856  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3857  *
3858  * Drivers that implement ndo_rx_flow_steer() should periodically call
3859  * this function for each installed filter and remove the filters for
3860  * which it returns %true.
3861  */
3862 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3863 			 u32 flow_id, u16 filter_id)
3864 {
3865 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3866 	struct rps_dev_flow_table *flow_table;
3867 	struct rps_dev_flow *rflow;
3868 	bool expire = true;
3869 	unsigned int cpu;
3870 
3871 	rcu_read_lock();
3872 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3873 	if (flow_table && flow_id <= flow_table->mask) {
3874 		rflow = &flow_table->flows[flow_id];
3875 		cpu = READ_ONCE(rflow->cpu);
3876 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3877 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3878 			   rflow->last_qtail) <
3879 		     (int)(10 * flow_table->mask)))
3880 			expire = false;
3881 	}
3882 	rcu_read_unlock();
3883 	return expire;
3884 }
3885 EXPORT_SYMBOL(rps_may_expire_flow);
3886 
3887 #endif /* CONFIG_RFS_ACCEL */
3888 
3889 /* Called from hardirq (IPI) context */
3890 static void rps_trigger_softirq(void *data)
3891 {
3892 	struct softnet_data *sd = data;
3893 
3894 	____napi_schedule(sd, &sd->backlog);
3895 	sd->received_rps++;
3896 }
3897 
3898 #endif /* CONFIG_RPS */
3899 
3900 /*
3901  * Check if this softnet_data structure is another cpu one
3902  * If yes, queue it to our IPI list and return 1
3903  * If no, return 0
3904  */
3905 static int rps_ipi_queued(struct softnet_data *sd)
3906 {
3907 #ifdef CONFIG_RPS
3908 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3909 
3910 	if (sd != mysd) {
3911 		sd->rps_ipi_next = mysd->rps_ipi_list;
3912 		mysd->rps_ipi_list = sd;
3913 
3914 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3915 		return 1;
3916 	}
3917 #endif /* CONFIG_RPS */
3918 	return 0;
3919 }
3920 
3921 #ifdef CONFIG_NET_FLOW_LIMIT
3922 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3923 #endif
3924 
3925 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3926 {
3927 #ifdef CONFIG_NET_FLOW_LIMIT
3928 	struct sd_flow_limit *fl;
3929 	struct softnet_data *sd;
3930 	unsigned int old_flow, new_flow;
3931 
3932 	if (qlen < (netdev_max_backlog >> 1))
3933 		return false;
3934 
3935 	sd = this_cpu_ptr(&softnet_data);
3936 
3937 	rcu_read_lock();
3938 	fl = rcu_dereference(sd->flow_limit);
3939 	if (fl) {
3940 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3941 		old_flow = fl->history[fl->history_head];
3942 		fl->history[fl->history_head] = new_flow;
3943 
3944 		fl->history_head++;
3945 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3946 
3947 		if (likely(fl->buckets[old_flow]))
3948 			fl->buckets[old_flow]--;
3949 
3950 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3951 			fl->count++;
3952 			rcu_read_unlock();
3953 			return true;
3954 		}
3955 	}
3956 	rcu_read_unlock();
3957 #endif
3958 	return false;
3959 }
3960 
3961 /*
3962  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3963  * queue (may be a remote CPU queue).
3964  */
3965 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3966 			      unsigned int *qtail)
3967 {
3968 	struct softnet_data *sd;
3969 	unsigned long flags;
3970 	unsigned int qlen;
3971 
3972 	sd = &per_cpu(softnet_data, cpu);
3973 
3974 	local_irq_save(flags);
3975 
3976 	rps_lock(sd);
3977 	if (!netif_running(skb->dev))
3978 		goto drop;
3979 	qlen = skb_queue_len(&sd->input_pkt_queue);
3980 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3981 		if (qlen) {
3982 enqueue:
3983 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3984 			input_queue_tail_incr_save(sd, qtail);
3985 			rps_unlock(sd);
3986 			local_irq_restore(flags);
3987 			return NET_RX_SUCCESS;
3988 		}
3989 
3990 		/* Schedule NAPI for backlog device
3991 		 * We can use non atomic operation since we own the queue lock
3992 		 */
3993 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3994 			if (!rps_ipi_queued(sd))
3995 				____napi_schedule(sd, &sd->backlog);
3996 		}
3997 		goto enqueue;
3998 	}
3999 
4000 drop:
4001 	sd->dropped++;
4002 	rps_unlock(sd);
4003 
4004 	local_irq_restore(flags);
4005 
4006 	atomic_long_inc(&skb->dev->rx_dropped);
4007 	kfree_skb(skb);
4008 	return NET_RX_DROP;
4009 }
4010 
4011 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4012 {
4013 	struct net_device *dev = skb->dev;
4014 	struct netdev_rx_queue *rxqueue;
4015 
4016 	rxqueue = dev->_rx;
4017 
4018 	if (skb_rx_queue_recorded(skb)) {
4019 		u16 index = skb_get_rx_queue(skb);
4020 
4021 		if (unlikely(index >= dev->real_num_rx_queues)) {
4022 			WARN_ONCE(dev->real_num_rx_queues > 1,
4023 				  "%s received packet on queue %u, but number "
4024 				  "of RX queues is %u\n",
4025 				  dev->name, index, dev->real_num_rx_queues);
4026 
4027 			return rxqueue; /* Return first rxqueue */
4028 		}
4029 		rxqueue += index;
4030 	}
4031 	return rxqueue;
4032 }
4033 
4034 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4035 				     struct xdp_buff *xdp,
4036 				     struct bpf_prog *xdp_prog)
4037 {
4038 	struct netdev_rx_queue *rxqueue;
4039 	void *orig_data, *orig_data_end;
4040 	u32 metalen, act = XDP_DROP;
4041 	int hlen, off;
4042 	u32 mac_len;
4043 
4044 	/* Reinjected packets coming from act_mirred or similar should
4045 	 * not get XDP generic processing.
4046 	 */
4047 	if (skb_cloned(skb))
4048 		return XDP_PASS;
4049 
4050 	/* XDP packets must be linear and must have sufficient headroom
4051 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4052 	 * native XDP provides, thus we need to do it here as well.
4053 	 */
4054 	if (skb_is_nonlinear(skb) ||
4055 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4056 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4057 		int troom = skb->tail + skb->data_len - skb->end;
4058 
4059 		/* In case we have to go down the path and also linearize,
4060 		 * then lets do the pskb_expand_head() work just once here.
4061 		 */
4062 		if (pskb_expand_head(skb,
4063 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4064 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4065 			goto do_drop;
4066 		if (skb_linearize(skb))
4067 			goto do_drop;
4068 	}
4069 
4070 	/* The XDP program wants to see the packet starting at the MAC
4071 	 * header.
4072 	 */
4073 	mac_len = skb->data - skb_mac_header(skb);
4074 	hlen = skb_headlen(skb) + mac_len;
4075 	xdp->data = skb->data - mac_len;
4076 	xdp->data_meta = xdp->data;
4077 	xdp->data_end = xdp->data + hlen;
4078 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4079 	orig_data_end = xdp->data_end;
4080 	orig_data = xdp->data;
4081 
4082 	rxqueue = netif_get_rxqueue(skb);
4083 	xdp->rxq = &rxqueue->xdp_rxq;
4084 
4085 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4086 
4087 	off = xdp->data - orig_data;
4088 	if (off > 0)
4089 		__skb_pull(skb, off);
4090 	else if (off < 0)
4091 		__skb_push(skb, -off);
4092 	skb->mac_header += off;
4093 
4094 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4095 	 * pckt.
4096 	 */
4097 	off = orig_data_end - xdp->data_end;
4098 	if (off != 0) {
4099 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4100 		skb->len -= off;
4101 
4102 	}
4103 
4104 	switch (act) {
4105 	case XDP_REDIRECT:
4106 	case XDP_TX:
4107 		__skb_push(skb, mac_len);
4108 		break;
4109 	case XDP_PASS:
4110 		metalen = xdp->data - xdp->data_meta;
4111 		if (metalen)
4112 			skb_metadata_set(skb, metalen);
4113 		break;
4114 	default:
4115 		bpf_warn_invalid_xdp_action(act);
4116 		/* fall through */
4117 	case XDP_ABORTED:
4118 		trace_xdp_exception(skb->dev, xdp_prog, act);
4119 		/* fall through */
4120 	case XDP_DROP:
4121 	do_drop:
4122 		kfree_skb(skb);
4123 		break;
4124 	}
4125 
4126 	return act;
4127 }
4128 
4129 /* When doing generic XDP we have to bypass the qdisc layer and the
4130  * network taps in order to match in-driver-XDP behavior.
4131  */
4132 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4133 {
4134 	struct net_device *dev = skb->dev;
4135 	struct netdev_queue *txq;
4136 	bool free_skb = true;
4137 	int cpu, rc;
4138 
4139 	txq = netdev_pick_tx(dev, skb, NULL);
4140 	cpu = smp_processor_id();
4141 	HARD_TX_LOCK(dev, txq, cpu);
4142 	if (!netif_xmit_stopped(txq)) {
4143 		rc = netdev_start_xmit(skb, dev, txq, 0);
4144 		if (dev_xmit_complete(rc))
4145 			free_skb = false;
4146 	}
4147 	HARD_TX_UNLOCK(dev, txq);
4148 	if (free_skb) {
4149 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4150 		kfree_skb(skb);
4151 	}
4152 }
4153 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4154 
4155 static struct static_key generic_xdp_needed __read_mostly;
4156 
4157 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4158 {
4159 	if (xdp_prog) {
4160 		struct xdp_buff xdp;
4161 		u32 act;
4162 		int err;
4163 
4164 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4165 		if (act != XDP_PASS) {
4166 			switch (act) {
4167 			case XDP_REDIRECT:
4168 				err = xdp_do_generic_redirect(skb->dev, skb,
4169 							      &xdp, xdp_prog);
4170 				if (err)
4171 					goto out_redir;
4172 				break;
4173 			case XDP_TX:
4174 				generic_xdp_tx(skb, xdp_prog);
4175 				break;
4176 			}
4177 			return XDP_DROP;
4178 		}
4179 	}
4180 	return XDP_PASS;
4181 out_redir:
4182 	kfree_skb(skb);
4183 	return XDP_DROP;
4184 }
4185 EXPORT_SYMBOL_GPL(do_xdp_generic);
4186 
4187 static int netif_rx_internal(struct sk_buff *skb)
4188 {
4189 	int ret;
4190 
4191 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4192 
4193 	trace_netif_rx(skb);
4194 
4195 	if (static_key_false(&generic_xdp_needed)) {
4196 		int ret;
4197 
4198 		preempt_disable();
4199 		rcu_read_lock();
4200 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4201 		rcu_read_unlock();
4202 		preempt_enable();
4203 
4204 		/* Consider XDP consuming the packet a success from
4205 		 * the netdev point of view we do not want to count
4206 		 * this as an error.
4207 		 */
4208 		if (ret != XDP_PASS)
4209 			return NET_RX_SUCCESS;
4210 	}
4211 
4212 #ifdef CONFIG_RPS
4213 	if (static_key_false(&rps_needed)) {
4214 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4215 		int cpu;
4216 
4217 		preempt_disable();
4218 		rcu_read_lock();
4219 
4220 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4221 		if (cpu < 0)
4222 			cpu = smp_processor_id();
4223 
4224 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4225 
4226 		rcu_read_unlock();
4227 		preempt_enable();
4228 	} else
4229 #endif
4230 	{
4231 		unsigned int qtail;
4232 
4233 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4234 		put_cpu();
4235 	}
4236 	return ret;
4237 }
4238 
4239 /**
4240  *	netif_rx	-	post buffer to the network code
4241  *	@skb: buffer to post
4242  *
4243  *	This function receives a packet from a device driver and queues it for
4244  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4245  *	may be dropped during processing for congestion control or by the
4246  *	protocol layers.
4247  *
4248  *	return values:
4249  *	NET_RX_SUCCESS	(no congestion)
4250  *	NET_RX_DROP     (packet was dropped)
4251  *
4252  */
4253 
4254 int netif_rx(struct sk_buff *skb)
4255 {
4256 	trace_netif_rx_entry(skb);
4257 
4258 	return netif_rx_internal(skb);
4259 }
4260 EXPORT_SYMBOL(netif_rx);
4261 
4262 int netif_rx_ni(struct sk_buff *skb)
4263 {
4264 	int err;
4265 
4266 	trace_netif_rx_ni_entry(skb);
4267 
4268 	preempt_disable();
4269 	err = netif_rx_internal(skb);
4270 	if (local_softirq_pending())
4271 		do_softirq();
4272 	preempt_enable();
4273 
4274 	return err;
4275 }
4276 EXPORT_SYMBOL(netif_rx_ni);
4277 
4278 static __latent_entropy void net_tx_action(struct softirq_action *h)
4279 {
4280 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4281 
4282 	if (sd->completion_queue) {
4283 		struct sk_buff *clist;
4284 
4285 		local_irq_disable();
4286 		clist = sd->completion_queue;
4287 		sd->completion_queue = NULL;
4288 		local_irq_enable();
4289 
4290 		while (clist) {
4291 			struct sk_buff *skb = clist;
4292 
4293 			clist = clist->next;
4294 
4295 			WARN_ON(refcount_read(&skb->users));
4296 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4297 				trace_consume_skb(skb);
4298 			else
4299 				trace_kfree_skb(skb, net_tx_action);
4300 
4301 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4302 				__kfree_skb(skb);
4303 			else
4304 				__kfree_skb_defer(skb);
4305 		}
4306 
4307 		__kfree_skb_flush();
4308 	}
4309 
4310 	if (sd->output_queue) {
4311 		struct Qdisc *head;
4312 
4313 		local_irq_disable();
4314 		head = sd->output_queue;
4315 		sd->output_queue = NULL;
4316 		sd->output_queue_tailp = &sd->output_queue;
4317 		local_irq_enable();
4318 
4319 		while (head) {
4320 			struct Qdisc *q = head;
4321 			spinlock_t *root_lock = NULL;
4322 
4323 			head = head->next_sched;
4324 
4325 			if (!(q->flags & TCQ_F_NOLOCK)) {
4326 				root_lock = qdisc_lock(q);
4327 				spin_lock(root_lock);
4328 			}
4329 			/* We need to make sure head->next_sched is read
4330 			 * before clearing __QDISC_STATE_SCHED
4331 			 */
4332 			smp_mb__before_atomic();
4333 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4334 			qdisc_run(q);
4335 			if (root_lock)
4336 				spin_unlock(root_lock);
4337 		}
4338 	}
4339 
4340 	xfrm_dev_backlog(sd);
4341 }
4342 
4343 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4344 /* This hook is defined here for ATM LANE */
4345 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4346 			     unsigned char *addr) __read_mostly;
4347 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4348 #endif
4349 
4350 static inline struct sk_buff *
4351 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4352 		   struct net_device *orig_dev)
4353 {
4354 #ifdef CONFIG_NET_CLS_ACT
4355 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4356 	struct tcf_result cl_res;
4357 
4358 	/* If there's at least one ingress present somewhere (so
4359 	 * we get here via enabled static key), remaining devices
4360 	 * that are not configured with an ingress qdisc will bail
4361 	 * out here.
4362 	 */
4363 	if (!miniq)
4364 		return skb;
4365 
4366 	if (*pt_prev) {
4367 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4368 		*pt_prev = NULL;
4369 	}
4370 
4371 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4372 	skb->tc_at_ingress = 1;
4373 	mini_qdisc_bstats_cpu_update(miniq, skb);
4374 
4375 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4376 	case TC_ACT_OK:
4377 	case TC_ACT_RECLASSIFY:
4378 		skb->tc_index = TC_H_MIN(cl_res.classid);
4379 		break;
4380 	case TC_ACT_SHOT:
4381 		mini_qdisc_qstats_cpu_drop(miniq);
4382 		kfree_skb(skb);
4383 		return NULL;
4384 	case TC_ACT_STOLEN:
4385 	case TC_ACT_QUEUED:
4386 	case TC_ACT_TRAP:
4387 		consume_skb(skb);
4388 		return NULL;
4389 	case TC_ACT_REDIRECT:
4390 		/* skb_mac_header check was done by cls/act_bpf, so
4391 		 * we can safely push the L2 header back before
4392 		 * redirecting to another netdev
4393 		 */
4394 		__skb_push(skb, skb->mac_len);
4395 		skb_do_redirect(skb);
4396 		return NULL;
4397 	default:
4398 		break;
4399 	}
4400 #endif /* CONFIG_NET_CLS_ACT */
4401 	return skb;
4402 }
4403 
4404 /**
4405  *	netdev_is_rx_handler_busy - check if receive handler is registered
4406  *	@dev: device to check
4407  *
4408  *	Check if a receive handler is already registered for a given device.
4409  *	Return true if there one.
4410  *
4411  *	The caller must hold the rtnl_mutex.
4412  */
4413 bool netdev_is_rx_handler_busy(struct net_device *dev)
4414 {
4415 	ASSERT_RTNL();
4416 	return dev && rtnl_dereference(dev->rx_handler);
4417 }
4418 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4419 
4420 /**
4421  *	netdev_rx_handler_register - register receive handler
4422  *	@dev: device to register a handler for
4423  *	@rx_handler: receive handler to register
4424  *	@rx_handler_data: data pointer that is used by rx handler
4425  *
4426  *	Register a receive handler for a device. This handler will then be
4427  *	called from __netif_receive_skb. A negative errno code is returned
4428  *	on a failure.
4429  *
4430  *	The caller must hold the rtnl_mutex.
4431  *
4432  *	For a general description of rx_handler, see enum rx_handler_result.
4433  */
4434 int netdev_rx_handler_register(struct net_device *dev,
4435 			       rx_handler_func_t *rx_handler,
4436 			       void *rx_handler_data)
4437 {
4438 	if (netdev_is_rx_handler_busy(dev))
4439 		return -EBUSY;
4440 
4441 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4442 		return -EINVAL;
4443 
4444 	/* Note: rx_handler_data must be set before rx_handler */
4445 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4446 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4447 
4448 	return 0;
4449 }
4450 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4451 
4452 /**
4453  *	netdev_rx_handler_unregister - unregister receive handler
4454  *	@dev: device to unregister a handler from
4455  *
4456  *	Unregister a receive handler from a device.
4457  *
4458  *	The caller must hold the rtnl_mutex.
4459  */
4460 void netdev_rx_handler_unregister(struct net_device *dev)
4461 {
4462 
4463 	ASSERT_RTNL();
4464 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4465 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4466 	 * section has a guarantee to see a non NULL rx_handler_data
4467 	 * as well.
4468 	 */
4469 	synchronize_net();
4470 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4471 }
4472 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4473 
4474 /*
4475  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4476  * the special handling of PFMEMALLOC skbs.
4477  */
4478 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4479 {
4480 	switch (skb->protocol) {
4481 	case htons(ETH_P_ARP):
4482 	case htons(ETH_P_IP):
4483 	case htons(ETH_P_IPV6):
4484 	case htons(ETH_P_8021Q):
4485 	case htons(ETH_P_8021AD):
4486 		return true;
4487 	default:
4488 		return false;
4489 	}
4490 }
4491 
4492 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4493 			     int *ret, struct net_device *orig_dev)
4494 {
4495 #ifdef CONFIG_NETFILTER_INGRESS
4496 	if (nf_hook_ingress_active(skb)) {
4497 		int ingress_retval;
4498 
4499 		if (*pt_prev) {
4500 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4501 			*pt_prev = NULL;
4502 		}
4503 
4504 		rcu_read_lock();
4505 		ingress_retval = nf_hook_ingress(skb);
4506 		rcu_read_unlock();
4507 		return ingress_retval;
4508 	}
4509 #endif /* CONFIG_NETFILTER_INGRESS */
4510 	return 0;
4511 }
4512 
4513 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4514 {
4515 	struct packet_type *ptype, *pt_prev;
4516 	rx_handler_func_t *rx_handler;
4517 	struct net_device *orig_dev;
4518 	bool deliver_exact = false;
4519 	int ret = NET_RX_DROP;
4520 	__be16 type;
4521 
4522 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4523 
4524 	trace_netif_receive_skb(skb);
4525 
4526 	orig_dev = skb->dev;
4527 
4528 	skb_reset_network_header(skb);
4529 	if (!skb_transport_header_was_set(skb))
4530 		skb_reset_transport_header(skb);
4531 	skb_reset_mac_len(skb);
4532 
4533 	pt_prev = NULL;
4534 
4535 another_round:
4536 	skb->skb_iif = skb->dev->ifindex;
4537 
4538 	__this_cpu_inc(softnet_data.processed);
4539 
4540 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4541 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4542 		skb = skb_vlan_untag(skb);
4543 		if (unlikely(!skb))
4544 			goto out;
4545 	}
4546 
4547 	if (skb_skip_tc_classify(skb))
4548 		goto skip_classify;
4549 
4550 	if (pfmemalloc)
4551 		goto skip_taps;
4552 
4553 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4554 		if (pt_prev)
4555 			ret = deliver_skb(skb, pt_prev, orig_dev);
4556 		pt_prev = ptype;
4557 	}
4558 
4559 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4560 		if (pt_prev)
4561 			ret = deliver_skb(skb, pt_prev, orig_dev);
4562 		pt_prev = ptype;
4563 	}
4564 
4565 skip_taps:
4566 #ifdef CONFIG_NET_INGRESS
4567 	if (static_key_false(&ingress_needed)) {
4568 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4569 		if (!skb)
4570 			goto out;
4571 
4572 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4573 			goto out;
4574 	}
4575 #endif
4576 	skb_reset_tc(skb);
4577 skip_classify:
4578 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4579 		goto drop;
4580 
4581 	if (skb_vlan_tag_present(skb)) {
4582 		if (pt_prev) {
4583 			ret = deliver_skb(skb, pt_prev, orig_dev);
4584 			pt_prev = NULL;
4585 		}
4586 		if (vlan_do_receive(&skb))
4587 			goto another_round;
4588 		else if (unlikely(!skb))
4589 			goto out;
4590 	}
4591 
4592 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4593 	if (rx_handler) {
4594 		if (pt_prev) {
4595 			ret = deliver_skb(skb, pt_prev, orig_dev);
4596 			pt_prev = NULL;
4597 		}
4598 		switch (rx_handler(&skb)) {
4599 		case RX_HANDLER_CONSUMED:
4600 			ret = NET_RX_SUCCESS;
4601 			goto out;
4602 		case RX_HANDLER_ANOTHER:
4603 			goto another_round;
4604 		case RX_HANDLER_EXACT:
4605 			deliver_exact = true;
4606 		case RX_HANDLER_PASS:
4607 			break;
4608 		default:
4609 			BUG();
4610 		}
4611 	}
4612 
4613 	if (unlikely(skb_vlan_tag_present(skb))) {
4614 		if (skb_vlan_tag_get_id(skb))
4615 			skb->pkt_type = PACKET_OTHERHOST;
4616 		/* Note: we might in the future use prio bits
4617 		 * and set skb->priority like in vlan_do_receive()
4618 		 * For the time being, just ignore Priority Code Point
4619 		 */
4620 		skb->vlan_tci = 0;
4621 	}
4622 
4623 	type = skb->protocol;
4624 
4625 	/* deliver only exact match when indicated */
4626 	if (likely(!deliver_exact)) {
4627 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4628 				       &ptype_base[ntohs(type) &
4629 						   PTYPE_HASH_MASK]);
4630 	}
4631 
4632 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4633 			       &orig_dev->ptype_specific);
4634 
4635 	if (unlikely(skb->dev != orig_dev)) {
4636 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4637 				       &skb->dev->ptype_specific);
4638 	}
4639 
4640 	if (pt_prev) {
4641 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4642 			goto drop;
4643 		else
4644 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4645 	} else {
4646 drop:
4647 		if (!deliver_exact)
4648 			atomic_long_inc(&skb->dev->rx_dropped);
4649 		else
4650 			atomic_long_inc(&skb->dev->rx_nohandler);
4651 		kfree_skb(skb);
4652 		/* Jamal, now you will not able to escape explaining
4653 		 * me how you were going to use this. :-)
4654 		 */
4655 		ret = NET_RX_DROP;
4656 	}
4657 
4658 out:
4659 	return ret;
4660 }
4661 
4662 /**
4663  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4664  *	@skb: buffer to process
4665  *
4666  *	More direct receive version of netif_receive_skb().  It should
4667  *	only be used by callers that have a need to skip RPS and Generic XDP.
4668  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4669  *
4670  *	This function may only be called from softirq context and interrupts
4671  *	should be enabled.
4672  *
4673  *	Return values (usually ignored):
4674  *	NET_RX_SUCCESS: no congestion
4675  *	NET_RX_DROP: packet was dropped
4676  */
4677 int netif_receive_skb_core(struct sk_buff *skb)
4678 {
4679 	int ret;
4680 
4681 	rcu_read_lock();
4682 	ret = __netif_receive_skb_core(skb, false);
4683 	rcu_read_unlock();
4684 
4685 	return ret;
4686 }
4687 EXPORT_SYMBOL(netif_receive_skb_core);
4688 
4689 static int __netif_receive_skb(struct sk_buff *skb)
4690 {
4691 	int ret;
4692 
4693 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4694 		unsigned int noreclaim_flag;
4695 
4696 		/*
4697 		 * PFMEMALLOC skbs are special, they should
4698 		 * - be delivered to SOCK_MEMALLOC sockets only
4699 		 * - stay away from userspace
4700 		 * - have bounded memory usage
4701 		 *
4702 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4703 		 * context down to all allocation sites.
4704 		 */
4705 		noreclaim_flag = memalloc_noreclaim_save();
4706 		ret = __netif_receive_skb_core(skb, true);
4707 		memalloc_noreclaim_restore(noreclaim_flag);
4708 	} else
4709 		ret = __netif_receive_skb_core(skb, false);
4710 
4711 	return ret;
4712 }
4713 
4714 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4715 {
4716 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4717 	struct bpf_prog *new = xdp->prog;
4718 	int ret = 0;
4719 
4720 	switch (xdp->command) {
4721 	case XDP_SETUP_PROG:
4722 		rcu_assign_pointer(dev->xdp_prog, new);
4723 		if (old)
4724 			bpf_prog_put(old);
4725 
4726 		if (old && !new) {
4727 			static_key_slow_dec(&generic_xdp_needed);
4728 		} else if (new && !old) {
4729 			static_key_slow_inc(&generic_xdp_needed);
4730 			dev_disable_lro(dev);
4731 			dev_disable_gro_hw(dev);
4732 		}
4733 		break;
4734 
4735 	case XDP_QUERY_PROG:
4736 		xdp->prog_attached = !!old;
4737 		xdp->prog_id = old ? old->aux->id : 0;
4738 		break;
4739 
4740 	default:
4741 		ret = -EINVAL;
4742 		break;
4743 	}
4744 
4745 	return ret;
4746 }
4747 
4748 static int netif_receive_skb_internal(struct sk_buff *skb)
4749 {
4750 	int ret;
4751 
4752 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4753 
4754 	if (skb_defer_rx_timestamp(skb))
4755 		return NET_RX_SUCCESS;
4756 
4757 	if (static_key_false(&generic_xdp_needed)) {
4758 		int ret;
4759 
4760 		preempt_disable();
4761 		rcu_read_lock();
4762 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4763 		rcu_read_unlock();
4764 		preempt_enable();
4765 
4766 		if (ret != XDP_PASS)
4767 			return NET_RX_DROP;
4768 	}
4769 
4770 	rcu_read_lock();
4771 #ifdef CONFIG_RPS
4772 	if (static_key_false(&rps_needed)) {
4773 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4774 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4775 
4776 		if (cpu >= 0) {
4777 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4778 			rcu_read_unlock();
4779 			return ret;
4780 		}
4781 	}
4782 #endif
4783 	ret = __netif_receive_skb(skb);
4784 	rcu_read_unlock();
4785 	return ret;
4786 }
4787 
4788 /**
4789  *	netif_receive_skb - process receive buffer from network
4790  *	@skb: buffer to process
4791  *
4792  *	netif_receive_skb() is the main receive data processing function.
4793  *	It always succeeds. The buffer may be dropped during processing
4794  *	for congestion control or by the protocol layers.
4795  *
4796  *	This function may only be called from softirq context and interrupts
4797  *	should be enabled.
4798  *
4799  *	Return values (usually ignored):
4800  *	NET_RX_SUCCESS: no congestion
4801  *	NET_RX_DROP: packet was dropped
4802  */
4803 int netif_receive_skb(struct sk_buff *skb)
4804 {
4805 	trace_netif_receive_skb_entry(skb);
4806 
4807 	return netif_receive_skb_internal(skb);
4808 }
4809 EXPORT_SYMBOL(netif_receive_skb);
4810 
4811 DEFINE_PER_CPU(struct work_struct, flush_works);
4812 
4813 /* Network device is going away, flush any packets still pending */
4814 static void flush_backlog(struct work_struct *work)
4815 {
4816 	struct sk_buff *skb, *tmp;
4817 	struct softnet_data *sd;
4818 
4819 	local_bh_disable();
4820 	sd = this_cpu_ptr(&softnet_data);
4821 
4822 	local_irq_disable();
4823 	rps_lock(sd);
4824 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4825 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4826 			__skb_unlink(skb, &sd->input_pkt_queue);
4827 			kfree_skb(skb);
4828 			input_queue_head_incr(sd);
4829 		}
4830 	}
4831 	rps_unlock(sd);
4832 	local_irq_enable();
4833 
4834 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4835 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4836 			__skb_unlink(skb, &sd->process_queue);
4837 			kfree_skb(skb);
4838 			input_queue_head_incr(sd);
4839 		}
4840 	}
4841 	local_bh_enable();
4842 }
4843 
4844 static void flush_all_backlogs(void)
4845 {
4846 	unsigned int cpu;
4847 
4848 	get_online_cpus();
4849 
4850 	for_each_online_cpu(cpu)
4851 		queue_work_on(cpu, system_highpri_wq,
4852 			      per_cpu_ptr(&flush_works, cpu));
4853 
4854 	for_each_online_cpu(cpu)
4855 		flush_work(per_cpu_ptr(&flush_works, cpu));
4856 
4857 	put_online_cpus();
4858 }
4859 
4860 static int napi_gro_complete(struct sk_buff *skb)
4861 {
4862 	struct packet_offload *ptype;
4863 	__be16 type = skb->protocol;
4864 	struct list_head *head = &offload_base;
4865 	int err = -ENOENT;
4866 
4867 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4868 
4869 	if (NAPI_GRO_CB(skb)->count == 1) {
4870 		skb_shinfo(skb)->gso_size = 0;
4871 		goto out;
4872 	}
4873 
4874 	rcu_read_lock();
4875 	list_for_each_entry_rcu(ptype, head, list) {
4876 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4877 			continue;
4878 
4879 		err = ptype->callbacks.gro_complete(skb, 0);
4880 		break;
4881 	}
4882 	rcu_read_unlock();
4883 
4884 	if (err) {
4885 		WARN_ON(&ptype->list == head);
4886 		kfree_skb(skb);
4887 		return NET_RX_SUCCESS;
4888 	}
4889 
4890 out:
4891 	return netif_receive_skb_internal(skb);
4892 }
4893 
4894 /* napi->gro_list contains packets ordered by age.
4895  * youngest packets at the head of it.
4896  * Complete skbs in reverse order to reduce latencies.
4897  */
4898 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4899 {
4900 	struct sk_buff *skb, *prev = NULL;
4901 
4902 	/* scan list and build reverse chain */
4903 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4904 		skb->prev = prev;
4905 		prev = skb;
4906 	}
4907 
4908 	for (skb = prev; skb; skb = prev) {
4909 		skb->next = NULL;
4910 
4911 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4912 			return;
4913 
4914 		prev = skb->prev;
4915 		napi_gro_complete(skb);
4916 		napi->gro_count--;
4917 	}
4918 
4919 	napi->gro_list = NULL;
4920 }
4921 EXPORT_SYMBOL(napi_gro_flush);
4922 
4923 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4924 {
4925 	struct sk_buff *p;
4926 	unsigned int maclen = skb->dev->hard_header_len;
4927 	u32 hash = skb_get_hash_raw(skb);
4928 
4929 	for (p = napi->gro_list; p; p = p->next) {
4930 		unsigned long diffs;
4931 
4932 		NAPI_GRO_CB(p)->flush = 0;
4933 
4934 		if (hash != skb_get_hash_raw(p)) {
4935 			NAPI_GRO_CB(p)->same_flow = 0;
4936 			continue;
4937 		}
4938 
4939 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4940 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4941 		diffs |= skb_metadata_dst_cmp(p, skb);
4942 		diffs |= skb_metadata_differs(p, skb);
4943 		if (maclen == ETH_HLEN)
4944 			diffs |= compare_ether_header(skb_mac_header(p),
4945 						      skb_mac_header(skb));
4946 		else if (!diffs)
4947 			diffs = memcmp(skb_mac_header(p),
4948 				       skb_mac_header(skb),
4949 				       maclen);
4950 		NAPI_GRO_CB(p)->same_flow = !diffs;
4951 	}
4952 }
4953 
4954 static void skb_gro_reset_offset(struct sk_buff *skb)
4955 {
4956 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4957 	const skb_frag_t *frag0 = &pinfo->frags[0];
4958 
4959 	NAPI_GRO_CB(skb)->data_offset = 0;
4960 	NAPI_GRO_CB(skb)->frag0 = NULL;
4961 	NAPI_GRO_CB(skb)->frag0_len = 0;
4962 
4963 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4964 	    pinfo->nr_frags &&
4965 	    !PageHighMem(skb_frag_page(frag0))) {
4966 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4967 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4968 						    skb_frag_size(frag0),
4969 						    skb->end - skb->tail);
4970 	}
4971 }
4972 
4973 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4974 {
4975 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4976 
4977 	BUG_ON(skb->end - skb->tail < grow);
4978 
4979 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4980 
4981 	skb->data_len -= grow;
4982 	skb->tail += grow;
4983 
4984 	pinfo->frags[0].page_offset += grow;
4985 	skb_frag_size_sub(&pinfo->frags[0], grow);
4986 
4987 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4988 		skb_frag_unref(skb, 0);
4989 		memmove(pinfo->frags, pinfo->frags + 1,
4990 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4991 	}
4992 }
4993 
4994 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4995 {
4996 	struct sk_buff **pp = NULL;
4997 	struct packet_offload *ptype;
4998 	__be16 type = skb->protocol;
4999 	struct list_head *head = &offload_base;
5000 	int same_flow;
5001 	enum gro_result ret;
5002 	int grow;
5003 
5004 	if (netif_elide_gro(skb->dev))
5005 		goto normal;
5006 
5007 	gro_list_prepare(napi, skb);
5008 
5009 	rcu_read_lock();
5010 	list_for_each_entry_rcu(ptype, head, list) {
5011 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5012 			continue;
5013 
5014 		skb_set_network_header(skb, skb_gro_offset(skb));
5015 		skb_reset_mac_len(skb);
5016 		NAPI_GRO_CB(skb)->same_flow = 0;
5017 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5018 		NAPI_GRO_CB(skb)->free = 0;
5019 		NAPI_GRO_CB(skb)->encap_mark = 0;
5020 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5021 		NAPI_GRO_CB(skb)->is_fou = 0;
5022 		NAPI_GRO_CB(skb)->is_atomic = 1;
5023 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5024 
5025 		/* Setup for GRO checksum validation */
5026 		switch (skb->ip_summed) {
5027 		case CHECKSUM_COMPLETE:
5028 			NAPI_GRO_CB(skb)->csum = skb->csum;
5029 			NAPI_GRO_CB(skb)->csum_valid = 1;
5030 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5031 			break;
5032 		case CHECKSUM_UNNECESSARY:
5033 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5034 			NAPI_GRO_CB(skb)->csum_valid = 0;
5035 			break;
5036 		default:
5037 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5038 			NAPI_GRO_CB(skb)->csum_valid = 0;
5039 		}
5040 
5041 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
5042 		break;
5043 	}
5044 	rcu_read_unlock();
5045 
5046 	if (&ptype->list == head)
5047 		goto normal;
5048 
5049 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5050 		ret = GRO_CONSUMED;
5051 		goto ok;
5052 	}
5053 
5054 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5055 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5056 
5057 	if (pp) {
5058 		struct sk_buff *nskb = *pp;
5059 
5060 		*pp = nskb->next;
5061 		nskb->next = NULL;
5062 		napi_gro_complete(nskb);
5063 		napi->gro_count--;
5064 	}
5065 
5066 	if (same_flow)
5067 		goto ok;
5068 
5069 	if (NAPI_GRO_CB(skb)->flush)
5070 		goto normal;
5071 
5072 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5073 		struct sk_buff *nskb = napi->gro_list;
5074 
5075 		/* locate the end of the list to select the 'oldest' flow */
5076 		while (nskb->next) {
5077 			pp = &nskb->next;
5078 			nskb = *pp;
5079 		}
5080 		*pp = NULL;
5081 		nskb->next = NULL;
5082 		napi_gro_complete(nskb);
5083 	} else {
5084 		napi->gro_count++;
5085 	}
5086 	NAPI_GRO_CB(skb)->count = 1;
5087 	NAPI_GRO_CB(skb)->age = jiffies;
5088 	NAPI_GRO_CB(skb)->last = skb;
5089 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5090 	skb->next = napi->gro_list;
5091 	napi->gro_list = skb;
5092 	ret = GRO_HELD;
5093 
5094 pull:
5095 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5096 	if (grow > 0)
5097 		gro_pull_from_frag0(skb, grow);
5098 ok:
5099 	return ret;
5100 
5101 normal:
5102 	ret = GRO_NORMAL;
5103 	goto pull;
5104 }
5105 
5106 struct packet_offload *gro_find_receive_by_type(__be16 type)
5107 {
5108 	struct list_head *offload_head = &offload_base;
5109 	struct packet_offload *ptype;
5110 
5111 	list_for_each_entry_rcu(ptype, offload_head, list) {
5112 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5113 			continue;
5114 		return ptype;
5115 	}
5116 	return NULL;
5117 }
5118 EXPORT_SYMBOL(gro_find_receive_by_type);
5119 
5120 struct packet_offload *gro_find_complete_by_type(__be16 type)
5121 {
5122 	struct list_head *offload_head = &offload_base;
5123 	struct packet_offload *ptype;
5124 
5125 	list_for_each_entry_rcu(ptype, offload_head, list) {
5126 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5127 			continue;
5128 		return ptype;
5129 	}
5130 	return NULL;
5131 }
5132 EXPORT_SYMBOL(gro_find_complete_by_type);
5133 
5134 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5135 {
5136 	skb_dst_drop(skb);
5137 	secpath_reset(skb);
5138 	kmem_cache_free(skbuff_head_cache, skb);
5139 }
5140 
5141 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5142 {
5143 	switch (ret) {
5144 	case GRO_NORMAL:
5145 		if (netif_receive_skb_internal(skb))
5146 			ret = GRO_DROP;
5147 		break;
5148 
5149 	case GRO_DROP:
5150 		kfree_skb(skb);
5151 		break;
5152 
5153 	case GRO_MERGED_FREE:
5154 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5155 			napi_skb_free_stolen_head(skb);
5156 		else
5157 			__kfree_skb(skb);
5158 		break;
5159 
5160 	case GRO_HELD:
5161 	case GRO_MERGED:
5162 	case GRO_CONSUMED:
5163 		break;
5164 	}
5165 
5166 	return ret;
5167 }
5168 
5169 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5170 {
5171 	skb_mark_napi_id(skb, napi);
5172 	trace_napi_gro_receive_entry(skb);
5173 
5174 	skb_gro_reset_offset(skb);
5175 
5176 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5177 }
5178 EXPORT_SYMBOL(napi_gro_receive);
5179 
5180 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5181 {
5182 	if (unlikely(skb->pfmemalloc)) {
5183 		consume_skb(skb);
5184 		return;
5185 	}
5186 	__skb_pull(skb, skb_headlen(skb));
5187 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5188 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5189 	skb->vlan_tci = 0;
5190 	skb->dev = napi->dev;
5191 	skb->skb_iif = 0;
5192 	skb->encapsulation = 0;
5193 	skb_shinfo(skb)->gso_type = 0;
5194 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5195 	secpath_reset(skb);
5196 
5197 	napi->skb = skb;
5198 }
5199 
5200 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5201 {
5202 	struct sk_buff *skb = napi->skb;
5203 
5204 	if (!skb) {
5205 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5206 		if (skb) {
5207 			napi->skb = skb;
5208 			skb_mark_napi_id(skb, napi);
5209 		}
5210 	}
5211 	return skb;
5212 }
5213 EXPORT_SYMBOL(napi_get_frags);
5214 
5215 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5216 				      struct sk_buff *skb,
5217 				      gro_result_t ret)
5218 {
5219 	switch (ret) {
5220 	case GRO_NORMAL:
5221 	case GRO_HELD:
5222 		__skb_push(skb, ETH_HLEN);
5223 		skb->protocol = eth_type_trans(skb, skb->dev);
5224 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5225 			ret = GRO_DROP;
5226 		break;
5227 
5228 	case GRO_DROP:
5229 		napi_reuse_skb(napi, skb);
5230 		break;
5231 
5232 	case GRO_MERGED_FREE:
5233 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5234 			napi_skb_free_stolen_head(skb);
5235 		else
5236 			napi_reuse_skb(napi, skb);
5237 		break;
5238 
5239 	case GRO_MERGED:
5240 	case GRO_CONSUMED:
5241 		break;
5242 	}
5243 
5244 	return ret;
5245 }
5246 
5247 /* Upper GRO stack assumes network header starts at gro_offset=0
5248  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5249  * We copy ethernet header into skb->data to have a common layout.
5250  */
5251 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5252 {
5253 	struct sk_buff *skb = napi->skb;
5254 	const struct ethhdr *eth;
5255 	unsigned int hlen = sizeof(*eth);
5256 
5257 	napi->skb = NULL;
5258 
5259 	skb_reset_mac_header(skb);
5260 	skb_gro_reset_offset(skb);
5261 
5262 	eth = skb_gro_header_fast(skb, 0);
5263 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5264 		eth = skb_gro_header_slow(skb, hlen, 0);
5265 		if (unlikely(!eth)) {
5266 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5267 					     __func__, napi->dev->name);
5268 			napi_reuse_skb(napi, skb);
5269 			return NULL;
5270 		}
5271 	} else {
5272 		gro_pull_from_frag0(skb, hlen);
5273 		NAPI_GRO_CB(skb)->frag0 += hlen;
5274 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5275 	}
5276 	__skb_pull(skb, hlen);
5277 
5278 	/*
5279 	 * This works because the only protocols we care about don't require
5280 	 * special handling.
5281 	 * We'll fix it up properly in napi_frags_finish()
5282 	 */
5283 	skb->protocol = eth->h_proto;
5284 
5285 	return skb;
5286 }
5287 
5288 gro_result_t napi_gro_frags(struct napi_struct *napi)
5289 {
5290 	struct sk_buff *skb = napi_frags_skb(napi);
5291 
5292 	if (!skb)
5293 		return GRO_DROP;
5294 
5295 	trace_napi_gro_frags_entry(skb);
5296 
5297 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5298 }
5299 EXPORT_SYMBOL(napi_gro_frags);
5300 
5301 /* Compute the checksum from gro_offset and return the folded value
5302  * after adding in any pseudo checksum.
5303  */
5304 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5305 {
5306 	__wsum wsum;
5307 	__sum16 sum;
5308 
5309 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5310 
5311 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5312 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5313 	if (likely(!sum)) {
5314 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5315 		    !skb->csum_complete_sw)
5316 			netdev_rx_csum_fault(skb->dev);
5317 	}
5318 
5319 	NAPI_GRO_CB(skb)->csum = wsum;
5320 	NAPI_GRO_CB(skb)->csum_valid = 1;
5321 
5322 	return sum;
5323 }
5324 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5325 
5326 static void net_rps_send_ipi(struct softnet_data *remsd)
5327 {
5328 #ifdef CONFIG_RPS
5329 	while (remsd) {
5330 		struct softnet_data *next = remsd->rps_ipi_next;
5331 
5332 		if (cpu_online(remsd->cpu))
5333 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5334 		remsd = next;
5335 	}
5336 #endif
5337 }
5338 
5339 /*
5340  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5341  * Note: called with local irq disabled, but exits with local irq enabled.
5342  */
5343 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5344 {
5345 #ifdef CONFIG_RPS
5346 	struct softnet_data *remsd = sd->rps_ipi_list;
5347 
5348 	if (remsd) {
5349 		sd->rps_ipi_list = NULL;
5350 
5351 		local_irq_enable();
5352 
5353 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5354 		net_rps_send_ipi(remsd);
5355 	} else
5356 #endif
5357 		local_irq_enable();
5358 }
5359 
5360 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5361 {
5362 #ifdef CONFIG_RPS
5363 	return sd->rps_ipi_list != NULL;
5364 #else
5365 	return false;
5366 #endif
5367 }
5368 
5369 static int process_backlog(struct napi_struct *napi, int quota)
5370 {
5371 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5372 	bool again = true;
5373 	int work = 0;
5374 
5375 	/* Check if we have pending ipi, its better to send them now,
5376 	 * not waiting net_rx_action() end.
5377 	 */
5378 	if (sd_has_rps_ipi_waiting(sd)) {
5379 		local_irq_disable();
5380 		net_rps_action_and_irq_enable(sd);
5381 	}
5382 
5383 	napi->weight = dev_rx_weight;
5384 	while (again) {
5385 		struct sk_buff *skb;
5386 
5387 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5388 			rcu_read_lock();
5389 			__netif_receive_skb(skb);
5390 			rcu_read_unlock();
5391 			input_queue_head_incr(sd);
5392 			if (++work >= quota)
5393 				return work;
5394 
5395 		}
5396 
5397 		local_irq_disable();
5398 		rps_lock(sd);
5399 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5400 			/*
5401 			 * Inline a custom version of __napi_complete().
5402 			 * only current cpu owns and manipulates this napi,
5403 			 * and NAPI_STATE_SCHED is the only possible flag set
5404 			 * on backlog.
5405 			 * We can use a plain write instead of clear_bit(),
5406 			 * and we dont need an smp_mb() memory barrier.
5407 			 */
5408 			napi->state = 0;
5409 			again = false;
5410 		} else {
5411 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5412 						   &sd->process_queue);
5413 		}
5414 		rps_unlock(sd);
5415 		local_irq_enable();
5416 	}
5417 
5418 	return work;
5419 }
5420 
5421 /**
5422  * __napi_schedule - schedule for receive
5423  * @n: entry to schedule
5424  *
5425  * The entry's receive function will be scheduled to run.
5426  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5427  */
5428 void __napi_schedule(struct napi_struct *n)
5429 {
5430 	unsigned long flags;
5431 
5432 	local_irq_save(flags);
5433 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5434 	local_irq_restore(flags);
5435 }
5436 EXPORT_SYMBOL(__napi_schedule);
5437 
5438 /**
5439  *	napi_schedule_prep - check if napi can be scheduled
5440  *	@n: napi context
5441  *
5442  * Test if NAPI routine is already running, and if not mark
5443  * it as running.  This is used as a condition variable
5444  * insure only one NAPI poll instance runs.  We also make
5445  * sure there is no pending NAPI disable.
5446  */
5447 bool napi_schedule_prep(struct napi_struct *n)
5448 {
5449 	unsigned long val, new;
5450 
5451 	do {
5452 		val = READ_ONCE(n->state);
5453 		if (unlikely(val & NAPIF_STATE_DISABLE))
5454 			return false;
5455 		new = val | NAPIF_STATE_SCHED;
5456 
5457 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5458 		 * This was suggested by Alexander Duyck, as compiler
5459 		 * emits better code than :
5460 		 * if (val & NAPIF_STATE_SCHED)
5461 		 *     new |= NAPIF_STATE_MISSED;
5462 		 */
5463 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5464 						   NAPIF_STATE_MISSED;
5465 	} while (cmpxchg(&n->state, val, new) != val);
5466 
5467 	return !(val & NAPIF_STATE_SCHED);
5468 }
5469 EXPORT_SYMBOL(napi_schedule_prep);
5470 
5471 /**
5472  * __napi_schedule_irqoff - schedule for receive
5473  * @n: entry to schedule
5474  *
5475  * Variant of __napi_schedule() assuming hard irqs are masked
5476  */
5477 void __napi_schedule_irqoff(struct napi_struct *n)
5478 {
5479 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5480 }
5481 EXPORT_SYMBOL(__napi_schedule_irqoff);
5482 
5483 bool napi_complete_done(struct napi_struct *n, int work_done)
5484 {
5485 	unsigned long flags, val, new;
5486 
5487 	/*
5488 	 * 1) Don't let napi dequeue from the cpu poll list
5489 	 *    just in case its running on a different cpu.
5490 	 * 2) If we are busy polling, do nothing here, we have
5491 	 *    the guarantee we will be called later.
5492 	 */
5493 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5494 				 NAPIF_STATE_IN_BUSY_POLL)))
5495 		return false;
5496 
5497 	if (n->gro_list) {
5498 		unsigned long timeout = 0;
5499 
5500 		if (work_done)
5501 			timeout = n->dev->gro_flush_timeout;
5502 
5503 		if (timeout)
5504 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5505 				      HRTIMER_MODE_REL_PINNED);
5506 		else
5507 			napi_gro_flush(n, false);
5508 	}
5509 	if (unlikely(!list_empty(&n->poll_list))) {
5510 		/* If n->poll_list is not empty, we need to mask irqs */
5511 		local_irq_save(flags);
5512 		list_del_init(&n->poll_list);
5513 		local_irq_restore(flags);
5514 	}
5515 
5516 	do {
5517 		val = READ_ONCE(n->state);
5518 
5519 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5520 
5521 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5522 
5523 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5524 		 * because we will call napi->poll() one more time.
5525 		 * This C code was suggested by Alexander Duyck to help gcc.
5526 		 */
5527 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5528 						    NAPIF_STATE_SCHED;
5529 	} while (cmpxchg(&n->state, val, new) != val);
5530 
5531 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5532 		__napi_schedule(n);
5533 		return false;
5534 	}
5535 
5536 	return true;
5537 }
5538 EXPORT_SYMBOL(napi_complete_done);
5539 
5540 /* must be called under rcu_read_lock(), as we dont take a reference */
5541 static struct napi_struct *napi_by_id(unsigned int napi_id)
5542 {
5543 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5544 	struct napi_struct *napi;
5545 
5546 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5547 		if (napi->napi_id == napi_id)
5548 			return napi;
5549 
5550 	return NULL;
5551 }
5552 
5553 #if defined(CONFIG_NET_RX_BUSY_POLL)
5554 
5555 #define BUSY_POLL_BUDGET 8
5556 
5557 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5558 {
5559 	int rc;
5560 
5561 	/* Busy polling means there is a high chance device driver hard irq
5562 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5563 	 * set in napi_schedule_prep().
5564 	 * Since we are about to call napi->poll() once more, we can safely
5565 	 * clear NAPI_STATE_MISSED.
5566 	 *
5567 	 * Note: x86 could use a single "lock and ..." instruction
5568 	 * to perform these two clear_bit()
5569 	 */
5570 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5571 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5572 
5573 	local_bh_disable();
5574 
5575 	/* All we really want here is to re-enable device interrupts.
5576 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5577 	 */
5578 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5579 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5580 	netpoll_poll_unlock(have_poll_lock);
5581 	if (rc == BUSY_POLL_BUDGET)
5582 		__napi_schedule(napi);
5583 	local_bh_enable();
5584 }
5585 
5586 void napi_busy_loop(unsigned int napi_id,
5587 		    bool (*loop_end)(void *, unsigned long),
5588 		    void *loop_end_arg)
5589 {
5590 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5591 	int (*napi_poll)(struct napi_struct *napi, int budget);
5592 	void *have_poll_lock = NULL;
5593 	struct napi_struct *napi;
5594 
5595 restart:
5596 	napi_poll = NULL;
5597 
5598 	rcu_read_lock();
5599 
5600 	napi = napi_by_id(napi_id);
5601 	if (!napi)
5602 		goto out;
5603 
5604 	preempt_disable();
5605 	for (;;) {
5606 		int work = 0;
5607 
5608 		local_bh_disable();
5609 		if (!napi_poll) {
5610 			unsigned long val = READ_ONCE(napi->state);
5611 
5612 			/* If multiple threads are competing for this napi,
5613 			 * we avoid dirtying napi->state as much as we can.
5614 			 */
5615 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5616 				   NAPIF_STATE_IN_BUSY_POLL))
5617 				goto count;
5618 			if (cmpxchg(&napi->state, val,
5619 				    val | NAPIF_STATE_IN_BUSY_POLL |
5620 					  NAPIF_STATE_SCHED) != val)
5621 				goto count;
5622 			have_poll_lock = netpoll_poll_lock(napi);
5623 			napi_poll = napi->poll;
5624 		}
5625 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5626 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5627 count:
5628 		if (work > 0)
5629 			__NET_ADD_STATS(dev_net(napi->dev),
5630 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5631 		local_bh_enable();
5632 
5633 		if (!loop_end || loop_end(loop_end_arg, start_time))
5634 			break;
5635 
5636 		if (unlikely(need_resched())) {
5637 			if (napi_poll)
5638 				busy_poll_stop(napi, have_poll_lock);
5639 			preempt_enable();
5640 			rcu_read_unlock();
5641 			cond_resched();
5642 			if (loop_end(loop_end_arg, start_time))
5643 				return;
5644 			goto restart;
5645 		}
5646 		cpu_relax();
5647 	}
5648 	if (napi_poll)
5649 		busy_poll_stop(napi, have_poll_lock);
5650 	preempt_enable();
5651 out:
5652 	rcu_read_unlock();
5653 }
5654 EXPORT_SYMBOL(napi_busy_loop);
5655 
5656 #endif /* CONFIG_NET_RX_BUSY_POLL */
5657 
5658 static void napi_hash_add(struct napi_struct *napi)
5659 {
5660 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5661 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5662 		return;
5663 
5664 	spin_lock(&napi_hash_lock);
5665 
5666 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5667 	do {
5668 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5669 			napi_gen_id = MIN_NAPI_ID;
5670 	} while (napi_by_id(napi_gen_id));
5671 	napi->napi_id = napi_gen_id;
5672 
5673 	hlist_add_head_rcu(&napi->napi_hash_node,
5674 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5675 
5676 	spin_unlock(&napi_hash_lock);
5677 }
5678 
5679 /* Warning : caller is responsible to make sure rcu grace period
5680  * is respected before freeing memory containing @napi
5681  */
5682 bool napi_hash_del(struct napi_struct *napi)
5683 {
5684 	bool rcu_sync_needed = false;
5685 
5686 	spin_lock(&napi_hash_lock);
5687 
5688 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5689 		rcu_sync_needed = true;
5690 		hlist_del_rcu(&napi->napi_hash_node);
5691 	}
5692 	spin_unlock(&napi_hash_lock);
5693 	return rcu_sync_needed;
5694 }
5695 EXPORT_SYMBOL_GPL(napi_hash_del);
5696 
5697 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5698 {
5699 	struct napi_struct *napi;
5700 
5701 	napi = container_of(timer, struct napi_struct, timer);
5702 
5703 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5704 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5705 	 */
5706 	if (napi->gro_list && !napi_disable_pending(napi) &&
5707 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5708 		__napi_schedule_irqoff(napi);
5709 
5710 	return HRTIMER_NORESTART;
5711 }
5712 
5713 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5714 		    int (*poll)(struct napi_struct *, int), int weight)
5715 {
5716 	INIT_LIST_HEAD(&napi->poll_list);
5717 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5718 	napi->timer.function = napi_watchdog;
5719 	napi->gro_count = 0;
5720 	napi->gro_list = NULL;
5721 	napi->skb = NULL;
5722 	napi->poll = poll;
5723 	if (weight > NAPI_POLL_WEIGHT)
5724 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5725 			    weight, dev->name);
5726 	napi->weight = weight;
5727 	list_add(&napi->dev_list, &dev->napi_list);
5728 	napi->dev = dev;
5729 #ifdef CONFIG_NETPOLL
5730 	napi->poll_owner = -1;
5731 #endif
5732 	set_bit(NAPI_STATE_SCHED, &napi->state);
5733 	napi_hash_add(napi);
5734 }
5735 EXPORT_SYMBOL(netif_napi_add);
5736 
5737 void napi_disable(struct napi_struct *n)
5738 {
5739 	might_sleep();
5740 	set_bit(NAPI_STATE_DISABLE, &n->state);
5741 
5742 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5743 		msleep(1);
5744 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5745 		msleep(1);
5746 
5747 	hrtimer_cancel(&n->timer);
5748 
5749 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5750 }
5751 EXPORT_SYMBOL(napi_disable);
5752 
5753 /* Must be called in process context */
5754 void netif_napi_del(struct napi_struct *napi)
5755 {
5756 	might_sleep();
5757 	if (napi_hash_del(napi))
5758 		synchronize_net();
5759 	list_del_init(&napi->dev_list);
5760 	napi_free_frags(napi);
5761 
5762 	kfree_skb_list(napi->gro_list);
5763 	napi->gro_list = NULL;
5764 	napi->gro_count = 0;
5765 }
5766 EXPORT_SYMBOL(netif_napi_del);
5767 
5768 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5769 {
5770 	void *have;
5771 	int work, weight;
5772 
5773 	list_del_init(&n->poll_list);
5774 
5775 	have = netpoll_poll_lock(n);
5776 
5777 	weight = n->weight;
5778 
5779 	/* This NAPI_STATE_SCHED test is for avoiding a race
5780 	 * with netpoll's poll_napi().  Only the entity which
5781 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5782 	 * actually make the ->poll() call.  Therefore we avoid
5783 	 * accidentally calling ->poll() when NAPI is not scheduled.
5784 	 */
5785 	work = 0;
5786 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5787 		work = n->poll(n, weight);
5788 		trace_napi_poll(n, work, weight);
5789 	}
5790 
5791 	WARN_ON_ONCE(work > weight);
5792 
5793 	if (likely(work < weight))
5794 		goto out_unlock;
5795 
5796 	/* Drivers must not modify the NAPI state if they
5797 	 * consume the entire weight.  In such cases this code
5798 	 * still "owns" the NAPI instance and therefore can
5799 	 * move the instance around on the list at-will.
5800 	 */
5801 	if (unlikely(napi_disable_pending(n))) {
5802 		napi_complete(n);
5803 		goto out_unlock;
5804 	}
5805 
5806 	if (n->gro_list) {
5807 		/* flush too old packets
5808 		 * If HZ < 1000, flush all packets.
5809 		 */
5810 		napi_gro_flush(n, HZ >= 1000);
5811 	}
5812 
5813 	/* Some drivers may have called napi_schedule
5814 	 * prior to exhausting their budget.
5815 	 */
5816 	if (unlikely(!list_empty(&n->poll_list))) {
5817 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5818 			     n->dev ? n->dev->name : "backlog");
5819 		goto out_unlock;
5820 	}
5821 
5822 	list_add_tail(&n->poll_list, repoll);
5823 
5824 out_unlock:
5825 	netpoll_poll_unlock(have);
5826 
5827 	return work;
5828 }
5829 
5830 static __latent_entropy void net_rx_action(struct softirq_action *h)
5831 {
5832 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5833 	unsigned long time_limit = jiffies +
5834 		usecs_to_jiffies(netdev_budget_usecs);
5835 	int budget = netdev_budget;
5836 	LIST_HEAD(list);
5837 	LIST_HEAD(repoll);
5838 
5839 	local_irq_disable();
5840 	list_splice_init(&sd->poll_list, &list);
5841 	local_irq_enable();
5842 
5843 	for (;;) {
5844 		struct napi_struct *n;
5845 
5846 		if (list_empty(&list)) {
5847 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5848 				goto out;
5849 			break;
5850 		}
5851 
5852 		n = list_first_entry(&list, struct napi_struct, poll_list);
5853 		budget -= napi_poll(n, &repoll);
5854 
5855 		/* If softirq window is exhausted then punt.
5856 		 * Allow this to run for 2 jiffies since which will allow
5857 		 * an average latency of 1.5/HZ.
5858 		 */
5859 		if (unlikely(budget <= 0 ||
5860 			     time_after_eq(jiffies, time_limit))) {
5861 			sd->time_squeeze++;
5862 			break;
5863 		}
5864 	}
5865 
5866 	local_irq_disable();
5867 
5868 	list_splice_tail_init(&sd->poll_list, &list);
5869 	list_splice_tail(&repoll, &list);
5870 	list_splice(&list, &sd->poll_list);
5871 	if (!list_empty(&sd->poll_list))
5872 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5873 
5874 	net_rps_action_and_irq_enable(sd);
5875 out:
5876 	__kfree_skb_flush();
5877 }
5878 
5879 struct netdev_adjacent {
5880 	struct net_device *dev;
5881 
5882 	/* upper master flag, there can only be one master device per list */
5883 	bool master;
5884 
5885 	/* counter for the number of times this device was added to us */
5886 	u16 ref_nr;
5887 
5888 	/* private field for the users */
5889 	void *private;
5890 
5891 	struct list_head list;
5892 	struct rcu_head rcu;
5893 };
5894 
5895 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5896 						 struct list_head *adj_list)
5897 {
5898 	struct netdev_adjacent *adj;
5899 
5900 	list_for_each_entry(adj, adj_list, list) {
5901 		if (adj->dev == adj_dev)
5902 			return adj;
5903 	}
5904 	return NULL;
5905 }
5906 
5907 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5908 {
5909 	struct net_device *dev = data;
5910 
5911 	return upper_dev == dev;
5912 }
5913 
5914 /**
5915  * netdev_has_upper_dev - Check if device is linked to an upper device
5916  * @dev: device
5917  * @upper_dev: upper device to check
5918  *
5919  * Find out if a device is linked to specified upper device and return true
5920  * in case it is. Note that this checks only immediate upper device,
5921  * not through a complete stack of devices. The caller must hold the RTNL lock.
5922  */
5923 bool netdev_has_upper_dev(struct net_device *dev,
5924 			  struct net_device *upper_dev)
5925 {
5926 	ASSERT_RTNL();
5927 
5928 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5929 					     upper_dev);
5930 }
5931 EXPORT_SYMBOL(netdev_has_upper_dev);
5932 
5933 /**
5934  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5935  * @dev: device
5936  * @upper_dev: upper device to check
5937  *
5938  * Find out if a device is linked to specified upper device and return true
5939  * in case it is. Note that this checks the entire upper device chain.
5940  * The caller must hold rcu lock.
5941  */
5942 
5943 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5944 				  struct net_device *upper_dev)
5945 {
5946 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5947 					       upper_dev);
5948 }
5949 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5950 
5951 /**
5952  * netdev_has_any_upper_dev - Check if device is linked to some device
5953  * @dev: device
5954  *
5955  * Find out if a device is linked to an upper device and return true in case
5956  * it is. The caller must hold the RTNL lock.
5957  */
5958 bool netdev_has_any_upper_dev(struct net_device *dev)
5959 {
5960 	ASSERT_RTNL();
5961 
5962 	return !list_empty(&dev->adj_list.upper);
5963 }
5964 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5965 
5966 /**
5967  * netdev_master_upper_dev_get - Get master upper device
5968  * @dev: device
5969  *
5970  * Find a master upper device and return pointer to it or NULL in case
5971  * it's not there. The caller must hold the RTNL lock.
5972  */
5973 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5974 {
5975 	struct netdev_adjacent *upper;
5976 
5977 	ASSERT_RTNL();
5978 
5979 	if (list_empty(&dev->adj_list.upper))
5980 		return NULL;
5981 
5982 	upper = list_first_entry(&dev->adj_list.upper,
5983 				 struct netdev_adjacent, list);
5984 	if (likely(upper->master))
5985 		return upper->dev;
5986 	return NULL;
5987 }
5988 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5989 
5990 /**
5991  * netdev_has_any_lower_dev - Check if device is linked to some device
5992  * @dev: device
5993  *
5994  * Find out if a device is linked to a lower device and return true in case
5995  * it is. The caller must hold the RTNL lock.
5996  */
5997 static bool netdev_has_any_lower_dev(struct net_device *dev)
5998 {
5999 	ASSERT_RTNL();
6000 
6001 	return !list_empty(&dev->adj_list.lower);
6002 }
6003 
6004 void *netdev_adjacent_get_private(struct list_head *adj_list)
6005 {
6006 	struct netdev_adjacent *adj;
6007 
6008 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6009 
6010 	return adj->private;
6011 }
6012 EXPORT_SYMBOL(netdev_adjacent_get_private);
6013 
6014 /**
6015  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6016  * @dev: device
6017  * @iter: list_head ** of the current position
6018  *
6019  * Gets the next device from the dev's upper list, starting from iter
6020  * position. The caller must hold RCU read lock.
6021  */
6022 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6023 						 struct list_head **iter)
6024 {
6025 	struct netdev_adjacent *upper;
6026 
6027 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6028 
6029 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6030 
6031 	if (&upper->list == &dev->adj_list.upper)
6032 		return NULL;
6033 
6034 	*iter = &upper->list;
6035 
6036 	return upper->dev;
6037 }
6038 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6039 
6040 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6041 						    struct list_head **iter)
6042 {
6043 	struct netdev_adjacent *upper;
6044 
6045 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6046 
6047 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6048 
6049 	if (&upper->list == &dev->adj_list.upper)
6050 		return NULL;
6051 
6052 	*iter = &upper->list;
6053 
6054 	return upper->dev;
6055 }
6056 
6057 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6058 				  int (*fn)(struct net_device *dev,
6059 					    void *data),
6060 				  void *data)
6061 {
6062 	struct net_device *udev;
6063 	struct list_head *iter;
6064 	int ret;
6065 
6066 	for (iter = &dev->adj_list.upper,
6067 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6068 	     udev;
6069 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6070 		/* first is the upper device itself */
6071 		ret = fn(udev, data);
6072 		if (ret)
6073 			return ret;
6074 
6075 		/* then look at all of its upper devices */
6076 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6077 		if (ret)
6078 			return ret;
6079 	}
6080 
6081 	return 0;
6082 }
6083 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6084 
6085 /**
6086  * netdev_lower_get_next_private - Get the next ->private from the
6087  *				   lower neighbour list
6088  * @dev: device
6089  * @iter: list_head ** of the current position
6090  *
6091  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6092  * list, starting from iter position. The caller must hold either hold the
6093  * RTNL lock or its own locking that guarantees that the neighbour lower
6094  * list will remain unchanged.
6095  */
6096 void *netdev_lower_get_next_private(struct net_device *dev,
6097 				    struct list_head **iter)
6098 {
6099 	struct netdev_adjacent *lower;
6100 
6101 	lower = list_entry(*iter, struct netdev_adjacent, list);
6102 
6103 	if (&lower->list == &dev->adj_list.lower)
6104 		return NULL;
6105 
6106 	*iter = lower->list.next;
6107 
6108 	return lower->private;
6109 }
6110 EXPORT_SYMBOL(netdev_lower_get_next_private);
6111 
6112 /**
6113  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6114  *				       lower neighbour list, RCU
6115  *				       variant
6116  * @dev: device
6117  * @iter: list_head ** of the current position
6118  *
6119  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6120  * list, starting from iter position. The caller must hold RCU read lock.
6121  */
6122 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6123 					struct list_head **iter)
6124 {
6125 	struct netdev_adjacent *lower;
6126 
6127 	WARN_ON_ONCE(!rcu_read_lock_held());
6128 
6129 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6130 
6131 	if (&lower->list == &dev->adj_list.lower)
6132 		return NULL;
6133 
6134 	*iter = &lower->list;
6135 
6136 	return lower->private;
6137 }
6138 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6139 
6140 /**
6141  * netdev_lower_get_next - Get the next device from the lower neighbour
6142  *                         list
6143  * @dev: device
6144  * @iter: list_head ** of the current position
6145  *
6146  * Gets the next netdev_adjacent from the dev's lower neighbour
6147  * list, starting from iter position. The caller must hold RTNL lock or
6148  * its own locking that guarantees that the neighbour lower
6149  * list will remain unchanged.
6150  */
6151 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6152 {
6153 	struct netdev_adjacent *lower;
6154 
6155 	lower = list_entry(*iter, struct netdev_adjacent, list);
6156 
6157 	if (&lower->list == &dev->adj_list.lower)
6158 		return NULL;
6159 
6160 	*iter = lower->list.next;
6161 
6162 	return lower->dev;
6163 }
6164 EXPORT_SYMBOL(netdev_lower_get_next);
6165 
6166 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6167 						struct list_head **iter)
6168 {
6169 	struct netdev_adjacent *lower;
6170 
6171 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6172 
6173 	if (&lower->list == &dev->adj_list.lower)
6174 		return NULL;
6175 
6176 	*iter = &lower->list;
6177 
6178 	return lower->dev;
6179 }
6180 
6181 int netdev_walk_all_lower_dev(struct net_device *dev,
6182 			      int (*fn)(struct net_device *dev,
6183 					void *data),
6184 			      void *data)
6185 {
6186 	struct net_device *ldev;
6187 	struct list_head *iter;
6188 	int ret;
6189 
6190 	for (iter = &dev->adj_list.lower,
6191 	     ldev = netdev_next_lower_dev(dev, &iter);
6192 	     ldev;
6193 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6194 		/* first is the lower device itself */
6195 		ret = fn(ldev, data);
6196 		if (ret)
6197 			return ret;
6198 
6199 		/* then look at all of its lower devices */
6200 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6201 		if (ret)
6202 			return ret;
6203 	}
6204 
6205 	return 0;
6206 }
6207 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6208 
6209 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6210 						    struct list_head **iter)
6211 {
6212 	struct netdev_adjacent *lower;
6213 
6214 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6215 	if (&lower->list == &dev->adj_list.lower)
6216 		return NULL;
6217 
6218 	*iter = &lower->list;
6219 
6220 	return lower->dev;
6221 }
6222 
6223 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6224 				  int (*fn)(struct net_device *dev,
6225 					    void *data),
6226 				  void *data)
6227 {
6228 	struct net_device *ldev;
6229 	struct list_head *iter;
6230 	int ret;
6231 
6232 	for (iter = &dev->adj_list.lower,
6233 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6234 	     ldev;
6235 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6236 		/* first is the lower device itself */
6237 		ret = fn(ldev, data);
6238 		if (ret)
6239 			return ret;
6240 
6241 		/* then look at all of its lower devices */
6242 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6243 		if (ret)
6244 			return ret;
6245 	}
6246 
6247 	return 0;
6248 }
6249 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6250 
6251 /**
6252  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6253  *				       lower neighbour list, RCU
6254  *				       variant
6255  * @dev: device
6256  *
6257  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6258  * list. The caller must hold RCU read lock.
6259  */
6260 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6261 {
6262 	struct netdev_adjacent *lower;
6263 
6264 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6265 			struct netdev_adjacent, list);
6266 	if (lower)
6267 		return lower->private;
6268 	return NULL;
6269 }
6270 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6271 
6272 /**
6273  * netdev_master_upper_dev_get_rcu - Get master upper device
6274  * @dev: device
6275  *
6276  * Find a master upper device and return pointer to it or NULL in case
6277  * it's not there. The caller must hold the RCU read lock.
6278  */
6279 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6280 {
6281 	struct netdev_adjacent *upper;
6282 
6283 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6284 				       struct netdev_adjacent, list);
6285 	if (upper && likely(upper->master))
6286 		return upper->dev;
6287 	return NULL;
6288 }
6289 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6290 
6291 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6292 			      struct net_device *adj_dev,
6293 			      struct list_head *dev_list)
6294 {
6295 	char linkname[IFNAMSIZ+7];
6296 
6297 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6298 		"upper_%s" : "lower_%s", adj_dev->name);
6299 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6300 				 linkname);
6301 }
6302 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6303 			       char *name,
6304 			       struct list_head *dev_list)
6305 {
6306 	char linkname[IFNAMSIZ+7];
6307 
6308 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6309 		"upper_%s" : "lower_%s", name);
6310 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6311 }
6312 
6313 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6314 						 struct net_device *adj_dev,
6315 						 struct list_head *dev_list)
6316 {
6317 	return (dev_list == &dev->adj_list.upper ||
6318 		dev_list == &dev->adj_list.lower) &&
6319 		net_eq(dev_net(dev), dev_net(adj_dev));
6320 }
6321 
6322 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6323 					struct net_device *adj_dev,
6324 					struct list_head *dev_list,
6325 					void *private, bool master)
6326 {
6327 	struct netdev_adjacent *adj;
6328 	int ret;
6329 
6330 	adj = __netdev_find_adj(adj_dev, dev_list);
6331 
6332 	if (adj) {
6333 		adj->ref_nr += 1;
6334 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6335 			 dev->name, adj_dev->name, adj->ref_nr);
6336 
6337 		return 0;
6338 	}
6339 
6340 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6341 	if (!adj)
6342 		return -ENOMEM;
6343 
6344 	adj->dev = adj_dev;
6345 	adj->master = master;
6346 	adj->ref_nr = 1;
6347 	adj->private = private;
6348 	dev_hold(adj_dev);
6349 
6350 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6351 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6352 
6353 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6354 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6355 		if (ret)
6356 			goto free_adj;
6357 	}
6358 
6359 	/* Ensure that master link is always the first item in list. */
6360 	if (master) {
6361 		ret = sysfs_create_link(&(dev->dev.kobj),
6362 					&(adj_dev->dev.kobj), "master");
6363 		if (ret)
6364 			goto remove_symlinks;
6365 
6366 		list_add_rcu(&adj->list, dev_list);
6367 	} else {
6368 		list_add_tail_rcu(&adj->list, dev_list);
6369 	}
6370 
6371 	return 0;
6372 
6373 remove_symlinks:
6374 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6375 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6376 free_adj:
6377 	kfree(adj);
6378 	dev_put(adj_dev);
6379 
6380 	return ret;
6381 }
6382 
6383 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6384 					 struct net_device *adj_dev,
6385 					 u16 ref_nr,
6386 					 struct list_head *dev_list)
6387 {
6388 	struct netdev_adjacent *adj;
6389 
6390 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6391 		 dev->name, adj_dev->name, ref_nr);
6392 
6393 	adj = __netdev_find_adj(adj_dev, dev_list);
6394 
6395 	if (!adj) {
6396 		pr_err("Adjacency does not exist for device %s from %s\n",
6397 		       dev->name, adj_dev->name);
6398 		WARN_ON(1);
6399 		return;
6400 	}
6401 
6402 	if (adj->ref_nr > ref_nr) {
6403 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6404 			 dev->name, adj_dev->name, ref_nr,
6405 			 adj->ref_nr - ref_nr);
6406 		adj->ref_nr -= ref_nr;
6407 		return;
6408 	}
6409 
6410 	if (adj->master)
6411 		sysfs_remove_link(&(dev->dev.kobj), "master");
6412 
6413 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6414 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6415 
6416 	list_del_rcu(&adj->list);
6417 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6418 		 adj_dev->name, dev->name, adj_dev->name);
6419 	dev_put(adj_dev);
6420 	kfree_rcu(adj, rcu);
6421 }
6422 
6423 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6424 					    struct net_device *upper_dev,
6425 					    struct list_head *up_list,
6426 					    struct list_head *down_list,
6427 					    void *private, bool master)
6428 {
6429 	int ret;
6430 
6431 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6432 					   private, master);
6433 	if (ret)
6434 		return ret;
6435 
6436 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6437 					   private, false);
6438 	if (ret) {
6439 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6440 		return ret;
6441 	}
6442 
6443 	return 0;
6444 }
6445 
6446 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6447 					       struct net_device *upper_dev,
6448 					       u16 ref_nr,
6449 					       struct list_head *up_list,
6450 					       struct list_head *down_list)
6451 {
6452 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6453 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6454 }
6455 
6456 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6457 						struct net_device *upper_dev,
6458 						void *private, bool master)
6459 {
6460 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6461 						&dev->adj_list.upper,
6462 						&upper_dev->adj_list.lower,
6463 						private, master);
6464 }
6465 
6466 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6467 						   struct net_device *upper_dev)
6468 {
6469 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6470 					   &dev->adj_list.upper,
6471 					   &upper_dev->adj_list.lower);
6472 }
6473 
6474 static int __netdev_upper_dev_link(struct net_device *dev,
6475 				   struct net_device *upper_dev, bool master,
6476 				   void *upper_priv, void *upper_info,
6477 				   struct netlink_ext_ack *extack)
6478 {
6479 	struct netdev_notifier_changeupper_info changeupper_info = {
6480 		.info = {
6481 			.dev = dev,
6482 			.extack = extack,
6483 		},
6484 		.upper_dev = upper_dev,
6485 		.master = master,
6486 		.linking = true,
6487 		.upper_info = upper_info,
6488 	};
6489 	struct net_device *master_dev;
6490 	int ret = 0;
6491 
6492 	ASSERT_RTNL();
6493 
6494 	if (dev == upper_dev)
6495 		return -EBUSY;
6496 
6497 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6498 	if (netdev_has_upper_dev(upper_dev, dev))
6499 		return -EBUSY;
6500 
6501 	if (!master) {
6502 		if (netdev_has_upper_dev(dev, upper_dev))
6503 			return -EEXIST;
6504 	} else {
6505 		master_dev = netdev_master_upper_dev_get(dev);
6506 		if (master_dev)
6507 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
6508 	}
6509 
6510 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6511 					    &changeupper_info.info);
6512 	ret = notifier_to_errno(ret);
6513 	if (ret)
6514 		return ret;
6515 
6516 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6517 						   master);
6518 	if (ret)
6519 		return ret;
6520 
6521 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6522 					    &changeupper_info.info);
6523 	ret = notifier_to_errno(ret);
6524 	if (ret)
6525 		goto rollback;
6526 
6527 	return 0;
6528 
6529 rollback:
6530 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6531 
6532 	return ret;
6533 }
6534 
6535 /**
6536  * netdev_upper_dev_link - Add a link to the upper device
6537  * @dev: device
6538  * @upper_dev: new upper device
6539  * @extack: netlink extended ack
6540  *
6541  * Adds a link to device which is upper to this one. The caller must hold
6542  * the RTNL lock. On a failure a negative errno code is returned.
6543  * On success the reference counts are adjusted and the function
6544  * returns zero.
6545  */
6546 int netdev_upper_dev_link(struct net_device *dev,
6547 			  struct net_device *upper_dev,
6548 			  struct netlink_ext_ack *extack)
6549 {
6550 	return __netdev_upper_dev_link(dev, upper_dev, false,
6551 				       NULL, NULL, extack);
6552 }
6553 EXPORT_SYMBOL(netdev_upper_dev_link);
6554 
6555 /**
6556  * netdev_master_upper_dev_link - Add a master link to the upper device
6557  * @dev: device
6558  * @upper_dev: new upper device
6559  * @upper_priv: upper device private
6560  * @upper_info: upper info to be passed down via notifier
6561  * @extack: netlink extended ack
6562  *
6563  * Adds a link to device which is upper to this one. In this case, only
6564  * one master upper device can be linked, although other non-master devices
6565  * might be linked as well. The caller must hold the RTNL lock.
6566  * On a failure a negative errno code is returned. On success the reference
6567  * counts are adjusted and the function returns zero.
6568  */
6569 int netdev_master_upper_dev_link(struct net_device *dev,
6570 				 struct net_device *upper_dev,
6571 				 void *upper_priv, void *upper_info,
6572 				 struct netlink_ext_ack *extack)
6573 {
6574 	return __netdev_upper_dev_link(dev, upper_dev, true,
6575 				       upper_priv, upper_info, extack);
6576 }
6577 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6578 
6579 /**
6580  * netdev_upper_dev_unlink - Removes a link to upper device
6581  * @dev: device
6582  * @upper_dev: new upper device
6583  *
6584  * Removes a link to device which is upper to this one. The caller must hold
6585  * the RTNL lock.
6586  */
6587 void netdev_upper_dev_unlink(struct net_device *dev,
6588 			     struct net_device *upper_dev)
6589 {
6590 	struct netdev_notifier_changeupper_info changeupper_info = {
6591 		.info = {
6592 			.dev = dev,
6593 		},
6594 		.upper_dev = upper_dev,
6595 		.linking = false,
6596 	};
6597 
6598 	ASSERT_RTNL();
6599 
6600 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6601 
6602 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6603 				      &changeupper_info.info);
6604 
6605 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6606 
6607 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6608 				      &changeupper_info.info);
6609 }
6610 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6611 
6612 /**
6613  * netdev_bonding_info_change - Dispatch event about slave change
6614  * @dev: device
6615  * @bonding_info: info to dispatch
6616  *
6617  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6618  * The caller must hold the RTNL lock.
6619  */
6620 void netdev_bonding_info_change(struct net_device *dev,
6621 				struct netdev_bonding_info *bonding_info)
6622 {
6623 	struct netdev_notifier_bonding_info info = {
6624 		.info.dev = dev,
6625 	};
6626 
6627 	memcpy(&info.bonding_info, bonding_info,
6628 	       sizeof(struct netdev_bonding_info));
6629 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6630 				      &info.info);
6631 }
6632 EXPORT_SYMBOL(netdev_bonding_info_change);
6633 
6634 static void netdev_adjacent_add_links(struct net_device *dev)
6635 {
6636 	struct netdev_adjacent *iter;
6637 
6638 	struct net *net = dev_net(dev);
6639 
6640 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6641 		if (!net_eq(net, dev_net(iter->dev)))
6642 			continue;
6643 		netdev_adjacent_sysfs_add(iter->dev, dev,
6644 					  &iter->dev->adj_list.lower);
6645 		netdev_adjacent_sysfs_add(dev, iter->dev,
6646 					  &dev->adj_list.upper);
6647 	}
6648 
6649 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6650 		if (!net_eq(net, dev_net(iter->dev)))
6651 			continue;
6652 		netdev_adjacent_sysfs_add(iter->dev, dev,
6653 					  &iter->dev->adj_list.upper);
6654 		netdev_adjacent_sysfs_add(dev, iter->dev,
6655 					  &dev->adj_list.lower);
6656 	}
6657 }
6658 
6659 static void netdev_adjacent_del_links(struct net_device *dev)
6660 {
6661 	struct netdev_adjacent *iter;
6662 
6663 	struct net *net = dev_net(dev);
6664 
6665 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6666 		if (!net_eq(net, dev_net(iter->dev)))
6667 			continue;
6668 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6669 					  &iter->dev->adj_list.lower);
6670 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6671 					  &dev->adj_list.upper);
6672 	}
6673 
6674 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6675 		if (!net_eq(net, dev_net(iter->dev)))
6676 			continue;
6677 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6678 					  &iter->dev->adj_list.upper);
6679 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6680 					  &dev->adj_list.lower);
6681 	}
6682 }
6683 
6684 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6685 {
6686 	struct netdev_adjacent *iter;
6687 
6688 	struct net *net = dev_net(dev);
6689 
6690 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6691 		if (!net_eq(net, dev_net(iter->dev)))
6692 			continue;
6693 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6694 					  &iter->dev->adj_list.lower);
6695 		netdev_adjacent_sysfs_add(iter->dev, dev,
6696 					  &iter->dev->adj_list.lower);
6697 	}
6698 
6699 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6700 		if (!net_eq(net, dev_net(iter->dev)))
6701 			continue;
6702 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6703 					  &iter->dev->adj_list.upper);
6704 		netdev_adjacent_sysfs_add(iter->dev, dev,
6705 					  &iter->dev->adj_list.upper);
6706 	}
6707 }
6708 
6709 void *netdev_lower_dev_get_private(struct net_device *dev,
6710 				   struct net_device *lower_dev)
6711 {
6712 	struct netdev_adjacent *lower;
6713 
6714 	if (!lower_dev)
6715 		return NULL;
6716 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6717 	if (!lower)
6718 		return NULL;
6719 
6720 	return lower->private;
6721 }
6722 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6723 
6724 
6725 int dev_get_nest_level(struct net_device *dev)
6726 {
6727 	struct net_device *lower = NULL;
6728 	struct list_head *iter;
6729 	int max_nest = -1;
6730 	int nest;
6731 
6732 	ASSERT_RTNL();
6733 
6734 	netdev_for_each_lower_dev(dev, lower, iter) {
6735 		nest = dev_get_nest_level(lower);
6736 		if (max_nest < nest)
6737 			max_nest = nest;
6738 	}
6739 
6740 	return max_nest + 1;
6741 }
6742 EXPORT_SYMBOL(dev_get_nest_level);
6743 
6744 /**
6745  * netdev_lower_change - Dispatch event about lower device state change
6746  * @lower_dev: device
6747  * @lower_state_info: state to dispatch
6748  *
6749  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6750  * The caller must hold the RTNL lock.
6751  */
6752 void netdev_lower_state_changed(struct net_device *lower_dev,
6753 				void *lower_state_info)
6754 {
6755 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6756 		.info.dev = lower_dev,
6757 	};
6758 
6759 	ASSERT_RTNL();
6760 	changelowerstate_info.lower_state_info = lower_state_info;
6761 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6762 				      &changelowerstate_info.info);
6763 }
6764 EXPORT_SYMBOL(netdev_lower_state_changed);
6765 
6766 static void dev_change_rx_flags(struct net_device *dev, int flags)
6767 {
6768 	const struct net_device_ops *ops = dev->netdev_ops;
6769 
6770 	if (ops->ndo_change_rx_flags)
6771 		ops->ndo_change_rx_flags(dev, flags);
6772 }
6773 
6774 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6775 {
6776 	unsigned int old_flags = dev->flags;
6777 	kuid_t uid;
6778 	kgid_t gid;
6779 
6780 	ASSERT_RTNL();
6781 
6782 	dev->flags |= IFF_PROMISC;
6783 	dev->promiscuity += inc;
6784 	if (dev->promiscuity == 0) {
6785 		/*
6786 		 * Avoid overflow.
6787 		 * If inc causes overflow, untouch promisc and return error.
6788 		 */
6789 		if (inc < 0)
6790 			dev->flags &= ~IFF_PROMISC;
6791 		else {
6792 			dev->promiscuity -= inc;
6793 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6794 				dev->name);
6795 			return -EOVERFLOW;
6796 		}
6797 	}
6798 	if (dev->flags != old_flags) {
6799 		pr_info("device %s %s promiscuous mode\n",
6800 			dev->name,
6801 			dev->flags & IFF_PROMISC ? "entered" : "left");
6802 		if (audit_enabled) {
6803 			current_uid_gid(&uid, &gid);
6804 			audit_log(current->audit_context, GFP_ATOMIC,
6805 				AUDIT_ANOM_PROMISCUOUS,
6806 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6807 				dev->name, (dev->flags & IFF_PROMISC),
6808 				(old_flags & IFF_PROMISC),
6809 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6810 				from_kuid(&init_user_ns, uid),
6811 				from_kgid(&init_user_ns, gid),
6812 				audit_get_sessionid(current));
6813 		}
6814 
6815 		dev_change_rx_flags(dev, IFF_PROMISC);
6816 	}
6817 	if (notify)
6818 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6819 	return 0;
6820 }
6821 
6822 /**
6823  *	dev_set_promiscuity	- update promiscuity count on a device
6824  *	@dev: device
6825  *	@inc: modifier
6826  *
6827  *	Add or remove promiscuity from a device. While the count in the device
6828  *	remains above zero the interface remains promiscuous. Once it hits zero
6829  *	the device reverts back to normal filtering operation. A negative inc
6830  *	value is used to drop promiscuity on the device.
6831  *	Return 0 if successful or a negative errno code on error.
6832  */
6833 int dev_set_promiscuity(struct net_device *dev, int inc)
6834 {
6835 	unsigned int old_flags = dev->flags;
6836 	int err;
6837 
6838 	err = __dev_set_promiscuity(dev, inc, true);
6839 	if (err < 0)
6840 		return err;
6841 	if (dev->flags != old_flags)
6842 		dev_set_rx_mode(dev);
6843 	return err;
6844 }
6845 EXPORT_SYMBOL(dev_set_promiscuity);
6846 
6847 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6848 {
6849 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6850 
6851 	ASSERT_RTNL();
6852 
6853 	dev->flags |= IFF_ALLMULTI;
6854 	dev->allmulti += inc;
6855 	if (dev->allmulti == 0) {
6856 		/*
6857 		 * Avoid overflow.
6858 		 * If inc causes overflow, untouch allmulti and return error.
6859 		 */
6860 		if (inc < 0)
6861 			dev->flags &= ~IFF_ALLMULTI;
6862 		else {
6863 			dev->allmulti -= inc;
6864 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6865 				dev->name);
6866 			return -EOVERFLOW;
6867 		}
6868 	}
6869 	if (dev->flags ^ old_flags) {
6870 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6871 		dev_set_rx_mode(dev);
6872 		if (notify)
6873 			__dev_notify_flags(dev, old_flags,
6874 					   dev->gflags ^ old_gflags);
6875 	}
6876 	return 0;
6877 }
6878 
6879 /**
6880  *	dev_set_allmulti	- update allmulti count on a device
6881  *	@dev: device
6882  *	@inc: modifier
6883  *
6884  *	Add or remove reception of all multicast frames to a device. While the
6885  *	count in the device remains above zero the interface remains listening
6886  *	to all interfaces. Once it hits zero the device reverts back to normal
6887  *	filtering operation. A negative @inc value is used to drop the counter
6888  *	when releasing a resource needing all multicasts.
6889  *	Return 0 if successful or a negative errno code on error.
6890  */
6891 
6892 int dev_set_allmulti(struct net_device *dev, int inc)
6893 {
6894 	return __dev_set_allmulti(dev, inc, true);
6895 }
6896 EXPORT_SYMBOL(dev_set_allmulti);
6897 
6898 /*
6899  *	Upload unicast and multicast address lists to device and
6900  *	configure RX filtering. When the device doesn't support unicast
6901  *	filtering it is put in promiscuous mode while unicast addresses
6902  *	are present.
6903  */
6904 void __dev_set_rx_mode(struct net_device *dev)
6905 {
6906 	const struct net_device_ops *ops = dev->netdev_ops;
6907 
6908 	/* dev_open will call this function so the list will stay sane. */
6909 	if (!(dev->flags&IFF_UP))
6910 		return;
6911 
6912 	if (!netif_device_present(dev))
6913 		return;
6914 
6915 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6916 		/* Unicast addresses changes may only happen under the rtnl,
6917 		 * therefore calling __dev_set_promiscuity here is safe.
6918 		 */
6919 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6920 			__dev_set_promiscuity(dev, 1, false);
6921 			dev->uc_promisc = true;
6922 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6923 			__dev_set_promiscuity(dev, -1, false);
6924 			dev->uc_promisc = false;
6925 		}
6926 	}
6927 
6928 	if (ops->ndo_set_rx_mode)
6929 		ops->ndo_set_rx_mode(dev);
6930 }
6931 
6932 void dev_set_rx_mode(struct net_device *dev)
6933 {
6934 	netif_addr_lock_bh(dev);
6935 	__dev_set_rx_mode(dev);
6936 	netif_addr_unlock_bh(dev);
6937 }
6938 
6939 /**
6940  *	dev_get_flags - get flags reported to userspace
6941  *	@dev: device
6942  *
6943  *	Get the combination of flag bits exported through APIs to userspace.
6944  */
6945 unsigned int dev_get_flags(const struct net_device *dev)
6946 {
6947 	unsigned int flags;
6948 
6949 	flags = (dev->flags & ~(IFF_PROMISC |
6950 				IFF_ALLMULTI |
6951 				IFF_RUNNING |
6952 				IFF_LOWER_UP |
6953 				IFF_DORMANT)) |
6954 		(dev->gflags & (IFF_PROMISC |
6955 				IFF_ALLMULTI));
6956 
6957 	if (netif_running(dev)) {
6958 		if (netif_oper_up(dev))
6959 			flags |= IFF_RUNNING;
6960 		if (netif_carrier_ok(dev))
6961 			flags |= IFF_LOWER_UP;
6962 		if (netif_dormant(dev))
6963 			flags |= IFF_DORMANT;
6964 	}
6965 
6966 	return flags;
6967 }
6968 EXPORT_SYMBOL(dev_get_flags);
6969 
6970 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6971 {
6972 	unsigned int old_flags = dev->flags;
6973 	int ret;
6974 
6975 	ASSERT_RTNL();
6976 
6977 	/*
6978 	 *	Set the flags on our device.
6979 	 */
6980 
6981 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6982 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6983 			       IFF_AUTOMEDIA)) |
6984 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6985 				    IFF_ALLMULTI));
6986 
6987 	/*
6988 	 *	Load in the correct multicast list now the flags have changed.
6989 	 */
6990 
6991 	if ((old_flags ^ flags) & IFF_MULTICAST)
6992 		dev_change_rx_flags(dev, IFF_MULTICAST);
6993 
6994 	dev_set_rx_mode(dev);
6995 
6996 	/*
6997 	 *	Have we downed the interface. We handle IFF_UP ourselves
6998 	 *	according to user attempts to set it, rather than blindly
6999 	 *	setting it.
7000 	 */
7001 
7002 	ret = 0;
7003 	if ((old_flags ^ flags) & IFF_UP) {
7004 		if (old_flags & IFF_UP)
7005 			__dev_close(dev);
7006 		else
7007 			ret = __dev_open(dev);
7008 	}
7009 
7010 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7011 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7012 		unsigned int old_flags = dev->flags;
7013 
7014 		dev->gflags ^= IFF_PROMISC;
7015 
7016 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7017 			if (dev->flags != old_flags)
7018 				dev_set_rx_mode(dev);
7019 	}
7020 
7021 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7022 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7023 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7024 	 */
7025 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7026 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7027 
7028 		dev->gflags ^= IFF_ALLMULTI;
7029 		__dev_set_allmulti(dev, inc, false);
7030 	}
7031 
7032 	return ret;
7033 }
7034 
7035 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7036 			unsigned int gchanges)
7037 {
7038 	unsigned int changes = dev->flags ^ old_flags;
7039 
7040 	if (gchanges)
7041 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7042 
7043 	if (changes & IFF_UP) {
7044 		if (dev->flags & IFF_UP)
7045 			call_netdevice_notifiers(NETDEV_UP, dev);
7046 		else
7047 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7048 	}
7049 
7050 	if (dev->flags & IFF_UP &&
7051 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7052 		struct netdev_notifier_change_info change_info = {
7053 			.info = {
7054 				.dev = dev,
7055 			},
7056 			.flags_changed = changes,
7057 		};
7058 
7059 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7060 	}
7061 }
7062 
7063 /**
7064  *	dev_change_flags - change device settings
7065  *	@dev: device
7066  *	@flags: device state flags
7067  *
7068  *	Change settings on device based state flags. The flags are
7069  *	in the userspace exported format.
7070  */
7071 int dev_change_flags(struct net_device *dev, unsigned int flags)
7072 {
7073 	int ret;
7074 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7075 
7076 	ret = __dev_change_flags(dev, flags);
7077 	if (ret < 0)
7078 		return ret;
7079 
7080 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7081 	__dev_notify_flags(dev, old_flags, changes);
7082 	return ret;
7083 }
7084 EXPORT_SYMBOL(dev_change_flags);
7085 
7086 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7087 {
7088 	const struct net_device_ops *ops = dev->netdev_ops;
7089 
7090 	if (ops->ndo_change_mtu)
7091 		return ops->ndo_change_mtu(dev, new_mtu);
7092 
7093 	dev->mtu = new_mtu;
7094 	return 0;
7095 }
7096 EXPORT_SYMBOL(__dev_set_mtu);
7097 
7098 /**
7099  *	dev_set_mtu - Change maximum transfer unit
7100  *	@dev: device
7101  *	@new_mtu: new transfer unit
7102  *
7103  *	Change the maximum transfer size of the network device.
7104  */
7105 int dev_set_mtu(struct net_device *dev, int new_mtu)
7106 {
7107 	int err, orig_mtu;
7108 
7109 	if (new_mtu == dev->mtu)
7110 		return 0;
7111 
7112 	/* MTU must be positive, and in range */
7113 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7114 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7115 				    dev->name, new_mtu, dev->min_mtu);
7116 		return -EINVAL;
7117 	}
7118 
7119 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7120 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7121 				    dev->name, new_mtu, dev->max_mtu);
7122 		return -EINVAL;
7123 	}
7124 
7125 	if (!netif_device_present(dev))
7126 		return -ENODEV;
7127 
7128 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7129 	err = notifier_to_errno(err);
7130 	if (err)
7131 		return err;
7132 
7133 	orig_mtu = dev->mtu;
7134 	err = __dev_set_mtu(dev, new_mtu);
7135 
7136 	if (!err) {
7137 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7138 		err = notifier_to_errno(err);
7139 		if (err) {
7140 			/* setting mtu back and notifying everyone again,
7141 			 * so that they have a chance to revert changes.
7142 			 */
7143 			__dev_set_mtu(dev, orig_mtu);
7144 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7145 		}
7146 	}
7147 	return err;
7148 }
7149 EXPORT_SYMBOL(dev_set_mtu);
7150 
7151 /**
7152  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7153  *	@dev: device
7154  *	@new_len: new tx queue length
7155  */
7156 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7157 {
7158 	unsigned int orig_len = dev->tx_queue_len;
7159 	int res;
7160 
7161 	if (new_len != (unsigned int)new_len)
7162 		return -ERANGE;
7163 
7164 	if (new_len != orig_len) {
7165 		dev->tx_queue_len = new_len;
7166 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7167 		res = notifier_to_errno(res);
7168 		if (res) {
7169 			netdev_err(dev,
7170 				   "refused to change device tx_queue_len\n");
7171 			dev->tx_queue_len = orig_len;
7172 			return res;
7173 		}
7174 		return dev_qdisc_change_tx_queue_len(dev);
7175 	}
7176 
7177 	return 0;
7178 }
7179 
7180 /**
7181  *	dev_set_group - Change group this device belongs to
7182  *	@dev: device
7183  *	@new_group: group this device should belong to
7184  */
7185 void dev_set_group(struct net_device *dev, int new_group)
7186 {
7187 	dev->group = new_group;
7188 }
7189 EXPORT_SYMBOL(dev_set_group);
7190 
7191 /**
7192  *	dev_set_mac_address - Change Media Access Control Address
7193  *	@dev: device
7194  *	@sa: new address
7195  *
7196  *	Change the hardware (MAC) address of the device
7197  */
7198 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7199 {
7200 	const struct net_device_ops *ops = dev->netdev_ops;
7201 	int err;
7202 
7203 	if (!ops->ndo_set_mac_address)
7204 		return -EOPNOTSUPP;
7205 	if (sa->sa_family != dev->type)
7206 		return -EINVAL;
7207 	if (!netif_device_present(dev))
7208 		return -ENODEV;
7209 	err = ops->ndo_set_mac_address(dev, sa);
7210 	if (err)
7211 		return err;
7212 	dev->addr_assign_type = NET_ADDR_SET;
7213 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7214 	add_device_randomness(dev->dev_addr, dev->addr_len);
7215 	return 0;
7216 }
7217 EXPORT_SYMBOL(dev_set_mac_address);
7218 
7219 /**
7220  *	dev_change_carrier - Change device carrier
7221  *	@dev: device
7222  *	@new_carrier: new value
7223  *
7224  *	Change device carrier
7225  */
7226 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7227 {
7228 	const struct net_device_ops *ops = dev->netdev_ops;
7229 
7230 	if (!ops->ndo_change_carrier)
7231 		return -EOPNOTSUPP;
7232 	if (!netif_device_present(dev))
7233 		return -ENODEV;
7234 	return ops->ndo_change_carrier(dev, new_carrier);
7235 }
7236 EXPORT_SYMBOL(dev_change_carrier);
7237 
7238 /**
7239  *	dev_get_phys_port_id - Get device physical port ID
7240  *	@dev: device
7241  *	@ppid: port ID
7242  *
7243  *	Get device physical port ID
7244  */
7245 int dev_get_phys_port_id(struct net_device *dev,
7246 			 struct netdev_phys_item_id *ppid)
7247 {
7248 	const struct net_device_ops *ops = dev->netdev_ops;
7249 
7250 	if (!ops->ndo_get_phys_port_id)
7251 		return -EOPNOTSUPP;
7252 	return ops->ndo_get_phys_port_id(dev, ppid);
7253 }
7254 EXPORT_SYMBOL(dev_get_phys_port_id);
7255 
7256 /**
7257  *	dev_get_phys_port_name - Get device physical port name
7258  *	@dev: device
7259  *	@name: port name
7260  *	@len: limit of bytes to copy to name
7261  *
7262  *	Get device physical port name
7263  */
7264 int dev_get_phys_port_name(struct net_device *dev,
7265 			   char *name, size_t len)
7266 {
7267 	const struct net_device_ops *ops = dev->netdev_ops;
7268 
7269 	if (!ops->ndo_get_phys_port_name)
7270 		return -EOPNOTSUPP;
7271 	return ops->ndo_get_phys_port_name(dev, name, len);
7272 }
7273 EXPORT_SYMBOL(dev_get_phys_port_name);
7274 
7275 /**
7276  *	dev_change_proto_down - update protocol port state information
7277  *	@dev: device
7278  *	@proto_down: new value
7279  *
7280  *	This info can be used by switch drivers to set the phys state of the
7281  *	port.
7282  */
7283 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7284 {
7285 	const struct net_device_ops *ops = dev->netdev_ops;
7286 
7287 	if (!ops->ndo_change_proto_down)
7288 		return -EOPNOTSUPP;
7289 	if (!netif_device_present(dev))
7290 		return -ENODEV;
7291 	return ops->ndo_change_proto_down(dev, proto_down);
7292 }
7293 EXPORT_SYMBOL(dev_change_proto_down);
7294 
7295 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7296 		     struct netdev_bpf *xdp)
7297 {
7298 	memset(xdp, 0, sizeof(*xdp));
7299 	xdp->command = XDP_QUERY_PROG;
7300 
7301 	/* Query must always succeed. */
7302 	WARN_ON(bpf_op(dev, xdp) < 0);
7303 }
7304 
7305 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7306 {
7307 	struct netdev_bpf xdp;
7308 
7309 	__dev_xdp_query(dev, bpf_op, &xdp);
7310 
7311 	return xdp.prog_attached;
7312 }
7313 
7314 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7315 			   struct netlink_ext_ack *extack, u32 flags,
7316 			   struct bpf_prog *prog)
7317 {
7318 	struct netdev_bpf xdp;
7319 
7320 	memset(&xdp, 0, sizeof(xdp));
7321 	if (flags & XDP_FLAGS_HW_MODE)
7322 		xdp.command = XDP_SETUP_PROG_HW;
7323 	else
7324 		xdp.command = XDP_SETUP_PROG;
7325 	xdp.extack = extack;
7326 	xdp.flags = flags;
7327 	xdp.prog = prog;
7328 
7329 	return bpf_op(dev, &xdp);
7330 }
7331 
7332 static void dev_xdp_uninstall(struct net_device *dev)
7333 {
7334 	struct netdev_bpf xdp;
7335 	bpf_op_t ndo_bpf;
7336 
7337 	/* Remove generic XDP */
7338 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7339 
7340 	/* Remove from the driver */
7341 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7342 	if (!ndo_bpf)
7343 		return;
7344 
7345 	__dev_xdp_query(dev, ndo_bpf, &xdp);
7346 	if (xdp.prog_attached == XDP_ATTACHED_NONE)
7347 		return;
7348 
7349 	/* Program removal should always succeed */
7350 	WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7351 }
7352 
7353 /**
7354  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7355  *	@dev: device
7356  *	@extack: netlink extended ack
7357  *	@fd: new program fd or negative value to clear
7358  *	@flags: xdp-related flags
7359  *
7360  *	Set or clear a bpf program for a device
7361  */
7362 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7363 		      int fd, u32 flags)
7364 {
7365 	const struct net_device_ops *ops = dev->netdev_ops;
7366 	struct bpf_prog *prog = NULL;
7367 	bpf_op_t bpf_op, bpf_chk;
7368 	int err;
7369 
7370 	ASSERT_RTNL();
7371 
7372 	bpf_op = bpf_chk = ops->ndo_bpf;
7373 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7374 		return -EOPNOTSUPP;
7375 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7376 		bpf_op = generic_xdp_install;
7377 	if (bpf_op == bpf_chk)
7378 		bpf_chk = generic_xdp_install;
7379 
7380 	if (fd >= 0) {
7381 		if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7382 			return -EEXIST;
7383 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7384 		    __dev_xdp_attached(dev, bpf_op))
7385 			return -EBUSY;
7386 
7387 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7388 					     bpf_op == ops->ndo_bpf);
7389 		if (IS_ERR(prog))
7390 			return PTR_ERR(prog);
7391 
7392 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7393 		    bpf_prog_is_dev_bound(prog->aux)) {
7394 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7395 			bpf_prog_put(prog);
7396 			return -EINVAL;
7397 		}
7398 	}
7399 
7400 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7401 	if (err < 0 && prog)
7402 		bpf_prog_put(prog);
7403 
7404 	return err;
7405 }
7406 
7407 /**
7408  *	dev_new_index	-	allocate an ifindex
7409  *	@net: the applicable net namespace
7410  *
7411  *	Returns a suitable unique value for a new device interface
7412  *	number.  The caller must hold the rtnl semaphore or the
7413  *	dev_base_lock to be sure it remains unique.
7414  */
7415 static int dev_new_index(struct net *net)
7416 {
7417 	int ifindex = net->ifindex;
7418 
7419 	for (;;) {
7420 		if (++ifindex <= 0)
7421 			ifindex = 1;
7422 		if (!__dev_get_by_index(net, ifindex))
7423 			return net->ifindex = ifindex;
7424 	}
7425 }
7426 
7427 /* Delayed registration/unregisteration */
7428 static LIST_HEAD(net_todo_list);
7429 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7430 
7431 static void net_set_todo(struct net_device *dev)
7432 {
7433 	list_add_tail(&dev->todo_list, &net_todo_list);
7434 	dev_net(dev)->dev_unreg_count++;
7435 }
7436 
7437 static void rollback_registered_many(struct list_head *head)
7438 {
7439 	struct net_device *dev, *tmp;
7440 	LIST_HEAD(close_head);
7441 
7442 	BUG_ON(dev_boot_phase);
7443 	ASSERT_RTNL();
7444 
7445 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7446 		/* Some devices call without registering
7447 		 * for initialization unwind. Remove those
7448 		 * devices and proceed with the remaining.
7449 		 */
7450 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7451 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7452 				 dev->name, dev);
7453 
7454 			WARN_ON(1);
7455 			list_del(&dev->unreg_list);
7456 			continue;
7457 		}
7458 		dev->dismantle = true;
7459 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7460 	}
7461 
7462 	/* If device is running, close it first. */
7463 	list_for_each_entry(dev, head, unreg_list)
7464 		list_add_tail(&dev->close_list, &close_head);
7465 	dev_close_many(&close_head, true);
7466 
7467 	list_for_each_entry(dev, head, unreg_list) {
7468 		/* And unlink it from device chain. */
7469 		unlist_netdevice(dev);
7470 
7471 		dev->reg_state = NETREG_UNREGISTERING;
7472 	}
7473 	flush_all_backlogs();
7474 
7475 	synchronize_net();
7476 
7477 	list_for_each_entry(dev, head, unreg_list) {
7478 		struct sk_buff *skb = NULL;
7479 
7480 		/* Shutdown queueing discipline. */
7481 		dev_shutdown(dev);
7482 
7483 		dev_xdp_uninstall(dev);
7484 
7485 		/* Notify protocols, that we are about to destroy
7486 		 * this device. They should clean all the things.
7487 		 */
7488 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7489 
7490 		if (!dev->rtnl_link_ops ||
7491 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7492 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7493 						     GFP_KERNEL, NULL, 0);
7494 
7495 		/*
7496 		 *	Flush the unicast and multicast chains
7497 		 */
7498 		dev_uc_flush(dev);
7499 		dev_mc_flush(dev);
7500 
7501 		if (dev->netdev_ops->ndo_uninit)
7502 			dev->netdev_ops->ndo_uninit(dev);
7503 
7504 		if (skb)
7505 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7506 
7507 		/* Notifier chain MUST detach us all upper devices. */
7508 		WARN_ON(netdev_has_any_upper_dev(dev));
7509 		WARN_ON(netdev_has_any_lower_dev(dev));
7510 
7511 		/* Remove entries from kobject tree */
7512 		netdev_unregister_kobject(dev);
7513 #ifdef CONFIG_XPS
7514 		/* Remove XPS queueing entries */
7515 		netif_reset_xps_queues_gt(dev, 0);
7516 #endif
7517 	}
7518 
7519 	synchronize_net();
7520 
7521 	list_for_each_entry(dev, head, unreg_list)
7522 		dev_put(dev);
7523 }
7524 
7525 static void rollback_registered(struct net_device *dev)
7526 {
7527 	LIST_HEAD(single);
7528 
7529 	list_add(&dev->unreg_list, &single);
7530 	rollback_registered_many(&single);
7531 	list_del(&single);
7532 }
7533 
7534 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7535 	struct net_device *upper, netdev_features_t features)
7536 {
7537 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7538 	netdev_features_t feature;
7539 	int feature_bit;
7540 
7541 	for_each_netdev_feature(&upper_disables, feature_bit) {
7542 		feature = __NETIF_F_BIT(feature_bit);
7543 		if (!(upper->wanted_features & feature)
7544 		    && (features & feature)) {
7545 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7546 				   &feature, upper->name);
7547 			features &= ~feature;
7548 		}
7549 	}
7550 
7551 	return features;
7552 }
7553 
7554 static void netdev_sync_lower_features(struct net_device *upper,
7555 	struct net_device *lower, netdev_features_t features)
7556 {
7557 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7558 	netdev_features_t feature;
7559 	int feature_bit;
7560 
7561 	for_each_netdev_feature(&upper_disables, feature_bit) {
7562 		feature = __NETIF_F_BIT(feature_bit);
7563 		if (!(features & feature) && (lower->features & feature)) {
7564 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7565 				   &feature, lower->name);
7566 			lower->wanted_features &= ~feature;
7567 			netdev_update_features(lower);
7568 
7569 			if (unlikely(lower->features & feature))
7570 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7571 					    &feature, lower->name);
7572 		}
7573 	}
7574 }
7575 
7576 static netdev_features_t netdev_fix_features(struct net_device *dev,
7577 	netdev_features_t features)
7578 {
7579 	/* Fix illegal checksum combinations */
7580 	if ((features & NETIF_F_HW_CSUM) &&
7581 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7582 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7583 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7584 	}
7585 
7586 	/* TSO requires that SG is present as well. */
7587 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7588 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7589 		features &= ~NETIF_F_ALL_TSO;
7590 	}
7591 
7592 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7593 					!(features & NETIF_F_IP_CSUM)) {
7594 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7595 		features &= ~NETIF_F_TSO;
7596 		features &= ~NETIF_F_TSO_ECN;
7597 	}
7598 
7599 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7600 					 !(features & NETIF_F_IPV6_CSUM)) {
7601 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7602 		features &= ~NETIF_F_TSO6;
7603 	}
7604 
7605 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7606 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7607 		features &= ~NETIF_F_TSO_MANGLEID;
7608 
7609 	/* TSO ECN requires that TSO is present as well. */
7610 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7611 		features &= ~NETIF_F_TSO_ECN;
7612 
7613 	/* Software GSO depends on SG. */
7614 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7615 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7616 		features &= ~NETIF_F_GSO;
7617 	}
7618 
7619 	/* GSO partial features require GSO partial be set */
7620 	if ((features & dev->gso_partial_features) &&
7621 	    !(features & NETIF_F_GSO_PARTIAL)) {
7622 		netdev_dbg(dev,
7623 			   "Dropping partially supported GSO features since no GSO partial.\n");
7624 		features &= ~dev->gso_partial_features;
7625 	}
7626 
7627 	if (!(features & NETIF_F_RXCSUM)) {
7628 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7629 		 * successfully merged by hardware must also have the
7630 		 * checksum verified by hardware.  If the user does not
7631 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
7632 		 */
7633 		if (features & NETIF_F_GRO_HW) {
7634 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7635 			features &= ~NETIF_F_GRO_HW;
7636 		}
7637 	}
7638 
7639 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
7640 	if (features & NETIF_F_RXFCS) {
7641 		if (features & NETIF_F_LRO) {
7642 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7643 			features &= ~NETIF_F_LRO;
7644 		}
7645 
7646 		if (features & NETIF_F_GRO_HW) {
7647 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7648 			features &= ~NETIF_F_GRO_HW;
7649 		}
7650 	}
7651 
7652 	return features;
7653 }
7654 
7655 int __netdev_update_features(struct net_device *dev)
7656 {
7657 	struct net_device *upper, *lower;
7658 	netdev_features_t features;
7659 	struct list_head *iter;
7660 	int err = -1;
7661 
7662 	ASSERT_RTNL();
7663 
7664 	features = netdev_get_wanted_features(dev);
7665 
7666 	if (dev->netdev_ops->ndo_fix_features)
7667 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7668 
7669 	/* driver might be less strict about feature dependencies */
7670 	features = netdev_fix_features(dev, features);
7671 
7672 	/* some features can't be enabled if they're off an an upper device */
7673 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7674 		features = netdev_sync_upper_features(dev, upper, features);
7675 
7676 	if (dev->features == features)
7677 		goto sync_lower;
7678 
7679 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7680 		&dev->features, &features);
7681 
7682 	if (dev->netdev_ops->ndo_set_features)
7683 		err = dev->netdev_ops->ndo_set_features(dev, features);
7684 	else
7685 		err = 0;
7686 
7687 	if (unlikely(err < 0)) {
7688 		netdev_err(dev,
7689 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7690 			err, &features, &dev->features);
7691 		/* return non-0 since some features might have changed and
7692 		 * it's better to fire a spurious notification than miss it
7693 		 */
7694 		return -1;
7695 	}
7696 
7697 sync_lower:
7698 	/* some features must be disabled on lower devices when disabled
7699 	 * on an upper device (think: bonding master or bridge)
7700 	 */
7701 	netdev_for_each_lower_dev(dev, lower, iter)
7702 		netdev_sync_lower_features(dev, lower, features);
7703 
7704 	if (!err) {
7705 		netdev_features_t diff = features ^ dev->features;
7706 
7707 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7708 			/* udp_tunnel_{get,drop}_rx_info both need
7709 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7710 			 * device, or they won't do anything.
7711 			 * Thus we need to update dev->features
7712 			 * *before* calling udp_tunnel_get_rx_info,
7713 			 * but *after* calling udp_tunnel_drop_rx_info.
7714 			 */
7715 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7716 				dev->features = features;
7717 				udp_tunnel_get_rx_info(dev);
7718 			} else {
7719 				udp_tunnel_drop_rx_info(dev);
7720 			}
7721 		}
7722 
7723 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
7724 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
7725 				dev->features = features;
7726 				err |= vlan_get_rx_ctag_filter_info(dev);
7727 			} else {
7728 				vlan_drop_rx_ctag_filter_info(dev);
7729 			}
7730 		}
7731 
7732 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
7733 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
7734 				dev->features = features;
7735 				err |= vlan_get_rx_stag_filter_info(dev);
7736 			} else {
7737 				vlan_drop_rx_stag_filter_info(dev);
7738 			}
7739 		}
7740 
7741 		dev->features = features;
7742 	}
7743 
7744 	return err < 0 ? 0 : 1;
7745 }
7746 
7747 /**
7748  *	netdev_update_features - recalculate device features
7749  *	@dev: the device to check
7750  *
7751  *	Recalculate dev->features set and send notifications if it
7752  *	has changed. Should be called after driver or hardware dependent
7753  *	conditions might have changed that influence the features.
7754  */
7755 void netdev_update_features(struct net_device *dev)
7756 {
7757 	if (__netdev_update_features(dev))
7758 		netdev_features_change(dev);
7759 }
7760 EXPORT_SYMBOL(netdev_update_features);
7761 
7762 /**
7763  *	netdev_change_features - recalculate device features
7764  *	@dev: the device to check
7765  *
7766  *	Recalculate dev->features set and send notifications even
7767  *	if they have not changed. Should be called instead of
7768  *	netdev_update_features() if also dev->vlan_features might
7769  *	have changed to allow the changes to be propagated to stacked
7770  *	VLAN devices.
7771  */
7772 void netdev_change_features(struct net_device *dev)
7773 {
7774 	__netdev_update_features(dev);
7775 	netdev_features_change(dev);
7776 }
7777 EXPORT_SYMBOL(netdev_change_features);
7778 
7779 /**
7780  *	netif_stacked_transfer_operstate -	transfer operstate
7781  *	@rootdev: the root or lower level device to transfer state from
7782  *	@dev: the device to transfer operstate to
7783  *
7784  *	Transfer operational state from root to device. This is normally
7785  *	called when a stacking relationship exists between the root
7786  *	device and the device(a leaf device).
7787  */
7788 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7789 					struct net_device *dev)
7790 {
7791 	if (rootdev->operstate == IF_OPER_DORMANT)
7792 		netif_dormant_on(dev);
7793 	else
7794 		netif_dormant_off(dev);
7795 
7796 	if (netif_carrier_ok(rootdev))
7797 		netif_carrier_on(dev);
7798 	else
7799 		netif_carrier_off(dev);
7800 }
7801 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7802 
7803 static int netif_alloc_rx_queues(struct net_device *dev)
7804 {
7805 	unsigned int i, count = dev->num_rx_queues;
7806 	struct netdev_rx_queue *rx;
7807 	size_t sz = count * sizeof(*rx);
7808 	int err = 0;
7809 
7810 	BUG_ON(count < 1);
7811 
7812 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7813 	if (!rx)
7814 		return -ENOMEM;
7815 
7816 	dev->_rx = rx;
7817 
7818 	for (i = 0; i < count; i++) {
7819 		rx[i].dev = dev;
7820 
7821 		/* XDP RX-queue setup */
7822 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7823 		if (err < 0)
7824 			goto err_rxq_info;
7825 	}
7826 	return 0;
7827 
7828 err_rxq_info:
7829 	/* Rollback successful reg's and free other resources */
7830 	while (i--)
7831 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7832 	kvfree(dev->_rx);
7833 	dev->_rx = NULL;
7834 	return err;
7835 }
7836 
7837 static void netif_free_rx_queues(struct net_device *dev)
7838 {
7839 	unsigned int i, count = dev->num_rx_queues;
7840 
7841 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7842 	if (!dev->_rx)
7843 		return;
7844 
7845 	for (i = 0; i < count; i++)
7846 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7847 
7848 	kvfree(dev->_rx);
7849 }
7850 
7851 static void netdev_init_one_queue(struct net_device *dev,
7852 				  struct netdev_queue *queue, void *_unused)
7853 {
7854 	/* Initialize queue lock */
7855 	spin_lock_init(&queue->_xmit_lock);
7856 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7857 	queue->xmit_lock_owner = -1;
7858 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7859 	queue->dev = dev;
7860 #ifdef CONFIG_BQL
7861 	dql_init(&queue->dql, HZ);
7862 #endif
7863 }
7864 
7865 static void netif_free_tx_queues(struct net_device *dev)
7866 {
7867 	kvfree(dev->_tx);
7868 }
7869 
7870 static int netif_alloc_netdev_queues(struct net_device *dev)
7871 {
7872 	unsigned int count = dev->num_tx_queues;
7873 	struct netdev_queue *tx;
7874 	size_t sz = count * sizeof(*tx);
7875 
7876 	if (count < 1 || count > 0xffff)
7877 		return -EINVAL;
7878 
7879 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7880 	if (!tx)
7881 		return -ENOMEM;
7882 
7883 	dev->_tx = tx;
7884 
7885 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7886 	spin_lock_init(&dev->tx_global_lock);
7887 
7888 	return 0;
7889 }
7890 
7891 void netif_tx_stop_all_queues(struct net_device *dev)
7892 {
7893 	unsigned int i;
7894 
7895 	for (i = 0; i < dev->num_tx_queues; i++) {
7896 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7897 
7898 		netif_tx_stop_queue(txq);
7899 	}
7900 }
7901 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7902 
7903 /**
7904  *	register_netdevice	- register a network device
7905  *	@dev: device to register
7906  *
7907  *	Take a completed network device structure and add it to the kernel
7908  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7909  *	chain. 0 is returned on success. A negative errno code is returned
7910  *	on a failure to set up the device, or if the name is a duplicate.
7911  *
7912  *	Callers must hold the rtnl semaphore. You may want
7913  *	register_netdev() instead of this.
7914  *
7915  *	BUGS:
7916  *	The locking appears insufficient to guarantee two parallel registers
7917  *	will not get the same name.
7918  */
7919 
7920 int register_netdevice(struct net_device *dev)
7921 {
7922 	int ret;
7923 	struct net *net = dev_net(dev);
7924 
7925 	BUG_ON(dev_boot_phase);
7926 	ASSERT_RTNL();
7927 
7928 	might_sleep();
7929 
7930 	/* When net_device's are persistent, this will be fatal. */
7931 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7932 	BUG_ON(!net);
7933 
7934 	spin_lock_init(&dev->addr_list_lock);
7935 	netdev_set_addr_lockdep_class(dev);
7936 
7937 	ret = dev_get_valid_name(net, dev, dev->name);
7938 	if (ret < 0)
7939 		goto out;
7940 
7941 	/* Init, if this function is available */
7942 	if (dev->netdev_ops->ndo_init) {
7943 		ret = dev->netdev_ops->ndo_init(dev);
7944 		if (ret) {
7945 			if (ret > 0)
7946 				ret = -EIO;
7947 			goto out;
7948 		}
7949 	}
7950 
7951 	if (((dev->hw_features | dev->features) &
7952 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7953 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7954 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7955 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7956 		ret = -EINVAL;
7957 		goto err_uninit;
7958 	}
7959 
7960 	ret = -EBUSY;
7961 	if (!dev->ifindex)
7962 		dev->ifindex = dev_new_index(net);
7963 	else if (__dev_get_by_index(net, dev->ifindex))
7964 		goto err_uninit;
7965 
7966 	/* Transfer changeable features to wanted_features and enable
7967 	 * software offloads (GSO and GRO).
7968 	 */
7969 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7970 	dev->features |= NETIF_F_SOFT_FEATURES;
7971 
7972 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7973 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7974 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7975 	}
7976 
7977 	dev->wanted_features = dev->features & dev->hw_features;
7978 
7979 	if (!(dev->flags & IFF_LOOPBACK))
7980 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7981 
7982 	/* If IPv4 TCP segmentation offload is supported we should also
7983 	 * allow the device to enable segmenting the frame with the option
7984 	 * of ignoring a static IP ID value.  This doesn't enable the
7985 	 * feature itself but allows the user to enable it later.
7986 	 */
7987 	if (dev->hw_features & NETIF_F_TSO)
7988 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7989 	if (dev->vlan_features & NETIF_F_TSO)
7990 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7991 	if (dev->mpls_features & NETIF_F_TSO)
7992 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7993 	if (dev->hw_enc_features & NETIF_F_TSO)
7994 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7995 
7996 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7997 	 */
7998 	dev->vlan_features |= NETIF_F_HIGHDMA;
7999 
8000 	/* Make NETIF_F_SG inheritable to tunnel devices.
8001 	 */
8002 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8003 
8004 	/* Make NETIF_F_SG inheritable to MPLS.
8005 	 */
8006 	dev->mpls_features |= NETIF_F_SG;
8007 
8008 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8009 	ret = notifier_to_errno(ret);
8010 	if (ret)
8011 		goto err_uninit;
8012 
8013 	ret = netdev_register_kobject(dev);
8014 	if (ret)
8015 		goto err_uninit;
8016 	dev->reg_state = NETREG_REGISTERED;
8017 
8018 	__netdev_update_features(dev);
8019 
8020 	/*
8021 	 *	Default initial state at registry is that the
8022 	 *	device is present.
8023 	 */
8024 
8025 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8026 
8027 	linkwatch_init_dev(dev);
8028 
8029 	dev_init_scheduler(dev);
8030 	dev_hold(dev);
8031 	list_netdevice(dev);
8032 	add_device_randomness(dev->dev_addr, dev->addr_len);
8033 
8034 	/* If the device has permanent device address, driver should
8035 	 * set dev_addr and also addr_assign_type should be set to
8036 	 * NET_ADDR_PERM (default value).
8037 	 */
8038 	if (dev->addr_assign_type == NET_ADDR_PERM)
8039 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8040 
8041 	/* Notify protocols, that a new device appeared. */
8042 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8043 	ret = notifier_to_errno(ret);
8044 	if (ret) {
8045 		rollback_registered(dev);
8046 		dev->reg_state = NETREG_UNREGISTERED;
8047 	}
8048 	/*
8049 	 *	Prevent userspace races by waiting until the network
8050 	 *	device is fully setup before sending notifications.
8051 	 */
8052 	if (!dev->rtnl_link_ops ||
8053 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8054 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8055 
8056 out:
8057 	return ret;
8058 
8059 err_uninit:
8060 	if (dev->netdev_ops->ndo_uninit)
8061 		dev->netdev_ops->ndo_uninit(dev);
8062 	if (dev->priv_destructor)
8063 		dev->priv_destructor(dev);
8064 	goto out;
8065 }
8066 EXPORT_SYMBOL(register_netdevice);
8067 
8068 /**
8069  *	init_dummy_netdev	- init a dummy network device for NAPI
8070  *	@dev: device to init
8071  *
8072  *	This takes a network device structure and initialize the minimum
8073  *	amount of fields so it can be used to schedule NAPI polls without
8074  *	registering a full blown interface. This is to be used by drivers
8075  *	that need to tie several hardware interfaces to a single NAPI
8076  *	poll scheduler due to HW limitations.
8077  */
8078 int init_dummy_netdev(struct net_device *dev)
8079 {
8080 	/* Clear everything. Note we don't initialize spinlocks
8081 	 * are they aren't supposed to be taken by any of the
8082 	 * NAPI code and this dummy netdev is supposed to be
8083 	 * only ever used for NAPI polls
8084 	 */
8085 	memset(dev, 0, sizeof(struct net_device));
8086 
8087 	/* make sure we BUG if trying to hit standard
8088 	 * register/unregister code path
8089 	 */
8090 	dev->reg_state = NETREG_DUMMY;
8091 
8092 	/* NAPI wants this */
8093 	INIT_LIST_HEAD(&dev->napi_list);
8094 
8095 	/* a dummy interface is started by default */
8096 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8097 	set_bit(__LINK_STATE_START, &dev->state);
8098 
8099 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8100 	 * because users of this 'device' dont need to change
8101 	 * its refcount.
8102 	 */
8103 
8104 	return 0;
8105 }
8106 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8107 
8108 
8109 /**
8110  *	register_netdev	- register a network device
8111  *	@dev: device to register
8112  *
8113  *	Take a completed network device structure and add it to the kernel
8114  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8115  *	chain. 0 is returned on success. A negative errno code is returned
8116  *	on a failure to set up the device, or if the name is a duplicate.
8117  *
8118  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8119  *	and expands the device name if you passed a format string to
8120  *	alloc_netdev.
8121  */
8122 int register_netdev(struct net_device *dev)
8123 {
8124 	int err;
8125 
8126 	if (rtnl_lock_killable())
8127 		return -EINTR;
8128 	err = register_netdevice(dev);
8129 	rtnl_unlock();
8130 	return err;
8131 }
8132 EXPORT_SYMBOL(register_netdev);
8133 
8134 int netdev_refcnt_read(const struct net_device *dev)
8135 {
8136 	int i, refcnt = 0;
8137 
8138 	for_each_possible_cpu(i)
8139 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8140 	return refcnt;
8141 }
8142 EXPORT_SYMBOL(netdev_refcnt_read);
8143 
8144 /**
8145  * netdev_wait_allrefs - wait until all references are gone.
8146  * @dev: target net_device
8147  *
8148  * This is called when unregistering network devices.
8149  *
8150  * Any protocol or device that holds a reference should register
8151  * for netdevice notification, and cleanup and put back the
8152  * reference if they receive an UNREGISTER event.
8153  * We can get stuck here if buggy protocols don't correctly
8154  * call dev_put.
8155  */
8156 static void netdev_wait_allrefs(struct net_device *dev)
8157 {
8158 	unsigned long rebroadcast_time, warning_time;
8159 	int refcnt;
8160 
8161 	linkwatch_forget_dev(dev);
8162 
8163 	rebroadcast_time = warning_time = jiffies;
8164 	refcnt = netdev_refcnt_read(dev);
8165 
8166 	while (refcnt != 0) {
8167 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8168 			rtnl_lock();
8169 
8170 			/* Rebroadcast unregister notification */
8171 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8172 
8173 			__rtnl_unlock();
8174 			rcu_barrier();
8175 			rtnl_lock();
8176 
8177 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8178 				     &dev->state)) {
8179 				/* We must not have linkwatch events
8180 				 * pending on unregister. If this
8181 				 * happens, we simply run the queue
8182 				 * unscheduled, resulting in a noop
8183 				 * for this device.
8184 				 */
8185 				linkwatch_run_queue();
8186 			}
8187 
8188 			__rtnl_unlock();
8189 
8190 			rebroadcast_time = jiffies;
8191 		}
8192 
8193 		msleep(250);
8194 
8195 		refcnt = netdev_refcnt_read(dev);
8196 
8197 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8198 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8199 				 dev->name, refcnt);
8200 			warning_time = jiffies;
8201 		}
8202 	}
8203 }
8204 
8205 /* The sequence is:
8206  *
8207  *	rtnl_lock();
8208  *	...
8209  *	register_netdevice(x1);
8210  *	register_netdevice(x2);
8211  *	...
8212  *	unregister_netdevice(y1);
8213  *	unregister_netdevice(y2);
8214  *      ...
8215  *	rtnl_unlock();
8216  *	free_netdev(y1);
8217  *	free_netdev(y2);
8218  *
8219  * We are invoked by rtnl_unlock().
8220  * This allows us to deal with problems:
8221  * 1) We can delete sysfs objects which invoke hotplug
8222  *    without deadlocking with linkwatch via keventd.
8223  * 2) Since we run with the RTNL semaphore not held, we can sleep
8224  *    safely in order to wait for the netdev refcnt to drop to zero.
8225  *
8226  * We must not return until all unregister events added during
8227  * the interval the lock was held have been completed.
8228  */
8229 void netdev_run_todo(void)
8230 {
8231 	struct list_head list;
8232 
8233 	/* Snapshot list, allow later requests */
8234 	list_replace_init(&net_todo_list, &list);
8235 
8236 	__rtnl_unlock();
8237 
8238 
8239 	/* Wait for rcu callbacks to finish before next phase */
8240 	if (!list_empty(&list))
8241 		rcu_barrier();
8242 
8243 	while (!list_empty(&list)) {
8244 		struct net_device *dev
8245 			= list_first_entry(&list, struct net_device, todo_list);
8246 		list_del(&dev->todo_list);
8247 
8248 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8249 			pr_err("network todo '%s' but state %d\n",
8250 			       dev->name, dev->reg_state);
8251 			dump_stack();
8252 			continue;
8253 		}
8254 
8255 		dev->reg_state = NETREG_UNREGISTERED;
8256 
8257 		netdev_wait_allrefs(dev);
8258 
8259 		/* paranoia */
8260 		BUG_ON(netdev_refcnt_read(dev));
8261 		BUG_ON(!list_empty(&dev->ptype_all));
8262 		BUG_ON(!list_empty(&dev->ptype_specific));
8263 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8264 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8265 #if IS_ENABLED(CONFIG_DECNET)
8266 		WARN_ON(dev->dn_ptr);
8267 #endif
8268 		if (dev->priv_destructor)
8269 			dev->priv_destructor(dev);
8270 		if (dev->needs_free_netdev)
8271 			free_netdev(dev);
8272 
8273 		/* Report a network device has been unregistered */
8274 		rtnl_lock();
8275 		dev_net(dev)->dev_unreg_count--;
8276 		__rtnl_unlock();
8277 		wake_up(&netdev_unregistering_wq);
8278 
8279 		/* Free network device */
8280 		kobject_put(&dev->dev.kobj);
8281 	}
8282 }
8283 
8284 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8285  * all the same fields in the same order as net_device_stats, with only
8286  * the type differing, but rtnl_link_stats64 may have additional fields
8287  * at the end for newer counters.
8288  */
8289 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8290 			     const struct net_device_stats *netdev_stats)
8291 {
8292 #if BITS_PER_LONG == 64
8293 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8294 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8295 	/* zero out counters that only exist in rtnl_link_stats64 */
8296 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8297 	       sizeof(*stats64) - sizeof(*netdev_stats));
8298 #else
8299 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8300 	const unsigned long *src = (const unsigned long *)netdev_stats;
8301 	u64 *dst = (u64 *)stats64;
8302 
8303 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8304 	for (i = 0; i < n; i++)
8305 		dst[i] = src[i];
8306 	/* zero out counters that only exist in rtnl_link_stats64 */
8307 	memset((char *)stats64 + n * sizeof(u64), 0,
8308 	       sizeof(*stats64) - n * sizeof(u64));
8309 #endif
8310 }
8311 EXPORT_SYMBOL(netdev_stats_to_stats64);
8312 
8313 /**
8314  *	dev_get_stats	- get network device statistics
8315  *	@dev: device to get statistics from
8316  *	@storage: place to store stats
8317  *
8318  *	Get network statistics from device. Return @storage.
8319  *	The device driver may provide its own method by setting
8320  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8321  *	otherwise the internal statistics structure is used.
8322  */
8323 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8324 					struct rtnl_link_stats64 *storage)
8325 {
8326 	const struct net_device_ops *ops = dev->netdev_ops;
8327 
8328 	if (ops->ndo_get_stats64) {
8329 		memset(storage, 0, sizeof(*storage));
8330 		ops->ndo_get_stats64(dev, storage);
8331 	} else if (ops->ndo_get_stats) {
8332 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8333 	} else {
8334 		netdev_stats_to_stats64(storage, &dev->stats);
8335 	}
8336 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8337 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8338 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8339 	return storage;
8340 }
8341 EXPORT_SYMBOL(dev_get_stats);
8342 
8343 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8344 {
8345 	struct netdev_queue *queue = dev_ingress_queue(dev);
8346 
8347 #ifdef CONFIG_NET_CLS_ACT
8348 	if (queue)
8349 		return queue;
8350 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8351 	if (!queue)
8352 		return NULL;
8353 	netdev_init_one_queue(dev, queue, NULL);
8354 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8355 	queue->qdisc_sleeping = &noop_qdisc;
8356 	rcu_assign_pointer(dev->ingress_queue, queue);
8357 #endif
8358 	return queue;
8359 }
8360 
8361 static const struct ethtool_ops default_ethtool_ops;
8362 
8363 void netdev_set_default_ethtool_ops(struct net_device *dev,
8364 				    const struct ethtool_ops *ops)
8365 {
8366 	if (dev->ethtool_ops == &default_ethtool_ops)
8367 		dev->ethtool_ops = ops;
8368 }
8369 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8370 
8371 void netdev_freemem(struct net_device *dev)
8372 {
8373 	char *addr = (char *)dev - dev->padded;
8374 
8375 	kvfree(addr);
8376 }
8377 
8378 /**
8379  * alloc_netdev_mqs - allocate network device
8380  * @sizeof_priv: size of private data to allocate space for
8381  * @name: device name format string
8382  * @name_assign_type: origin of device name
8383  * @setup: callback to initialize device
8384  * @txqs: the number of TX subqueues to allocate
8385  * @rxqs: the number of RX subqueues to allocate
8386  *
8387  * Allocates a struct net_device with private data area for driver use
8388  * and performs basic initialization.  Also allocates subqueue structs
8389  * for each queue on the device.
8390  */
8391 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8392 		unsigned char name_assign_type,
8393 		void (*setup)(struct net_device *),
8394 		unsigned int txqs, unsigned int rxqs)
8395 {
8396 	struct net_device *dev;
8397 	unsigned int alloc_size;
8398 	struct net_device *p;
8399 
8400 	BUG_ON(strlen(name) >= sizeof(dev->name));
8401 
8402 	if (txqs < 1) {
8403 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8404 		return NULL;
8405 	}
8406 
8407 	if (rxqs < 1) {
8408 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8409 		return NULL;
8410 	}
8411 
8412 	alloc_size = sizeof(struct net_device);
8413 	if (sizeof_priv) {
8414 		/* ensure 32-byte alignment of private area */
8415 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8416 		alloc_size += sizeof_priv;
8417 	}
8418 	/* ensure 32-byte alignment of whole construct */
8419 	alloc_size += NETDEV_ALIGN - 1;
8420 
8421 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8422 	if (!p)
8423 		return NULL;
8424 
8425 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8426 	dev->padded = (char *)dev - (char *)p;
8427 
8428 	dev->pcpu_refcnt = alloc_percpu(int);
8429 	if (!dev->pcpu_refcnt)
8430 		goto free_dev;
8431 
8432 	if (dev_addr_init(dev))
8433 		goto free_pcpu;
8434 
8435 	dev_mc_init(dev);
8436 	dev_uc_init(dev);
8437 
8438 	dev_net_set(dev, &init_net);
8439 
8440 	dev->gso_max_size = GSO_MAX_SIZE;
8441 	dev->gso_max_segs = GSO_MAX_SEGS;
8442 
8443 	INIT_LIST_HEAD(&dev->napi_list);
8444 	INIT_LIST_HEAD(&dev->unreg_list);
8445 	INIT_LIST_HEAD(&dev->close_list);
8446 	INIT_LIST_HEAD(&dev->link_watch_list);
8447 	INIT_LIST_HEAD(&dev->adj_list.upper);
8448 	INIT_LIST_HEAD(&dev->adj_list.lower);
8449 	INIT_LIST_HEAD(&dev->ptype_all);
8450 	INIT_LIST_HEAD(&dev->ptype_specific);
8451 #ifdef CONFIG_NET_SCHED
8452 	hash_init(dev->qdisc_hash);
8453 #endif
8454 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8455 	setup(dev);
8456 
8457 	if (!dev->tx_queue_len) {
8458 		dev->priv_flags |= IFF_NO_QUEUE;
8459 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8460 	}
8461 
8462 	dev->num_tx_queues = txqs;
8463 	dev->real_num_tx_queues = txqs;
8464 	if (netif_alloc_netdev_queues(dev))
8465 		goto free_all;
8466 
8467 	dev->num_rx_queues = rxqs;
8468 	dev->real_num_rx_queues = rxqs;
8469 	if (netif_alloc_rx_queues(dev))
8470 		goto free_all;
8471 
8472 	strcpy(dev->name, name);
8473 	dev->name_assign_type = name_assign_type;
8474 	dev->group = INIT_NETDEV_GROUP;
8475 	if (!dev->ethtool_ops)
8476 		dev->ethtool_ops = &default_ethtool_ops;
8477 
8478 	nf_hook_ingress_init(dev);
8479 
8480 	return dev;
8481 
8482 free_all:
8483 	free_netdev(dev);
8484 	return NULL;
8485 
8486 free_pcpu:
8487 	free_percpu(dev->pcpu_refcnt);
8488 free_dev:
8489 	netdev_freemem(dev);
8490 	return NULL;
8491 }
8492 EXPORT_SYMBOL(alloc_netdev_mqs);
8493 
8494 /**
8495  * free_netdev - free network device
8496  * @dev: device
8497  *
8498  * This function does the last stage of destroying an allocated device
8499  * interface. The reference to the device object is released. If this
8500  * is the last reference then it will be freed.Must be called in process
8501  * context.
8502  */
8503 void free_netdev(struct net_device *dev)
8504 {
8505 	struct napi_struct *p, *n;
8506 
8507 	might_sleep();
8508 	netif_free_tx_queues(dev);
8509 	netif_free_rx_queues(dev);
8510 
8511 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8512 
8513 	/* Flush device addresses */
8514 	dev_addr_flush(dev);
8515 
8516 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8517 		netif_napi_del(p);
8518 
8519 	free_percpu(dev->pcpu_refcnt);
8520 	dev->pcpu_refcnt = NULL;
8521 
8522 	/*  Compatibility with error handling in drivers */
8523 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8524 		netdev_freemem(dev);
8525 		return;
8526 	}
8527 
8528 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8529 	dev->reg_state = NETREG_RELEASED;
8530 
8531 	/* will free via device release */
8532 	put_device(&dev->dev);
8533 }
8534 EXPORT_SYMBOL(free_netdev);
8535 
8536 /**
8537  *	synchronize_net -  Synchronize with packet receive processing
8538  *
8539  *	Wait for packets currently being received to be done.
8540  *	Does not block later packets from starting.
8541  */
8542 void synchronize_net(void)
8543 {
8544 	might_sleep();
8545 	if (rtnl_is_locked())
8546 		synchronize_rcu_expedited();
8547 	else
8548 		synchronize_rcu();
8549 }
8550 EXPORT_SYMBOL(synchronize_net);
8551 
8552 /**
8553  *	unregister_netdevice_queue - remove device from the kernel
8554  *	@dev: device
8555  *	@head: list
8556  *
8557  *	This function shuts down a device interface and removes it
8558  *	from the kernel tables.
8559  *	If head not NULL, device is queued to be unregistered later.
8560  *
8561  *	Callers must hold the rtnl semaphore.  You may want
8562  *	unregister_netdev() instead of this.
8563  */
8564 
8565 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8566 {
8567 	ASSERT_RTNL();
8568 
8569 	if (head) {
8570 		list_move_tail(&dev->unreg_list, head);
8571 	} else {
8572 		rollback_registered(dev);
8573 		/* Finish processing unregister after unlock */
8574 		net_set_todo(dev);
8575 	}
8576 }
8577 EXPORT_SYMBOL(unregister_netdevice_queue);
8578 
8579 /**
8580  *	unregister_netdevice_many - unregister many devices
8581  *	@head: list of devices
8582  *
8583  *  Note: As most callers use a stack allocated list_head,
8584  *  we force a list_del() to make sure stack wont be corrupted later.
8585  */
8586 void unregister_netdevice_many(struct list_head *head)
8587 {
8588 	struct net_device *dev;
8589 
8590 	if (!list_empty(head)) {
8591 		rollback_registered_many(head);
8592 		list_for_each_entry(dev, head, unreg_list)
8593 			net_set_todo(dev);
8594 		list_del(head);
8595 	}
8596 }
8597 EXPORT_SYMBOL(unregister_netdevice_many);
8598 
8599 /**
8600  *	unregister_netdev - remove device from the kernel
8601  *	@dev: device
8602  *
8603  *	This function shuts down a device interface and removes it
8604  *	from the kernel tables.
8605  *
8606  *	This is just a wrapper for unregister_netdevice that takes
8607  *	the rtnl semaphore.  In general you want to use this and not
8608  *	unregister_netdevice.
8609  */
8610 void unregister_netdev(struct net_device *dev)
8611 {
8612 	rtnl_lock();
8613 	unregister_netdevice(dev);
8614 	rtnl_unlock();
8615 }
8616 EXPORT_SYMBOL(unregister_netdev);
8617 
8618 /**
8619  *	dev_change_net_namespace - move device to different nethost namespace
8620  *	@dev: device
8621  *	@net: network namespace
8622  *	@pat: If not NULL name pattern to try if the current device name
8623  *	      is already taken in the destination network namespace.
8624  *
8625  *	This function shuts down a device interface and moves it
8626  *	to a new network namespace. On success 0 is returned, on
8627  *	a failure a netagive errno code is returned.
8628  *
8629  *	Callers must hold the rtnl semaphore.
8630  */
8631 
8632 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8633 {
8634 	int err, new_nsid, new_ifindex;
8635 
8636 	ASSERT_RTNL();
8637 
8638 	/* Don't allow namespace local devices to be moved. */
8639 	err = -EINVAL;
8640 	if (dev->features & NETIF_F_NETNS_LOCAL)
8641 		goto out;
8642 
8643 	/* Ensure the device has been registrered */
8644 	if (dev->reg_state != NETREG_REGISTERED)
8645 		goto out;
8646 
8647 	/* Get out if there is nothing todo */
8648 	err = 0;
8649 	if (net_eq(dev_net(dev), net))
8650 		goto out;
8651 
8652 	/* Pick the destination device name, and ensure
8653 	 * we can use it in the destination network namespace.
8654 	 */
8655 	err = -EEXIST;
8656 	if (__dev_get_by_name(net, dev->name)) {
8657 		/* We get here if we can't use the current device name */
8658 		if (!pat)
8659 			goto out;
8660 		if (dev_get_valid_name(net, dev, pat) < 0)
8661 			goto out;
8662 	}
8663 
8664 	/*
8665 	 * And now a mini version of register_netdevice unregister_netdevice.
8666 	 */
8667 
8668 	/* If device is running close it first. */
8669 	dev_close(dev);
8670 
8671 	/* And unlink it from device chain */
8672 	err = -ENODEV;
8673 	unlist_netdevice(dev);
8674 
8675 	synchronize_net();
8676 
8677 	/* Shutdown queueing discipline. */
8678 	dev_shutdown(dev);
8679 
8680 	/* Notify protocols, that we are about to destroy
8681 	 * this device. They should clean all the things.
8682 	 *
8683 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8684 	 * This is wanted because this way 8021q and macvlan know
8685 	 * the device is just moving and can keep their slaves up.
8686 	 */
8687 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8688 	rcu_barrier();
8689 
8690 	new_nsid = peernet2id_alloc(dev_net(dev), net);
8691 	/* If there is an ifindex conflict assign a new one */
8692 	if (__dev_get_by_index(net, dev->ifindex))
8693 		new_ifindex = dev_new_index(net);
8694 	else
8695 		new_ifindex = dev->ifindex;
8696 
8697 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8698 			    new_ifindex);
8699 
8700 	/*
8701 	 *	Flush the unicast and multicast chains
8702 	 */
8703 	dev_uc_flush(dev);
8704 	dev_mc_flush(dev);
8705 
8706 	/* Send a netdev-removed uevent to the old namespace */
8707 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8708 	netdev_adjacent_del_links(dev);
8709 
8710 	/* Actually switch the network namespace */
8711 	dev_net_set(dev, net);
8712 	dev->ifindex = new_ifindex;
8713 
8714 	/* Send a netdev-add uevent to the new namespace */
8715 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8716 	netdev_adjacent_add_links(dev);
8717 
8718 	/* Fixup kobjects */
8719 	err = device_rename(&dev->dev, dev->name);
8720 	WARN_ON(err);
8721 
8722 	/* Add the device back in the hashes */
8723 	list_netdevice(dev);
8724 
8725 	/* Notify protocols, that a new device appeared. */
8726 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8727 
8728 	/*
8729 	 *	Prevent userspace races by waiting until the network
8730 	 *	device is fully setup before sending notifications.
8731 	 */
8732 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8733 
8734 	synchronize_net();
8735 	err = 0;
8736 out:
8737 	return err;
8738 }
8739 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8740 
8741 static int dev_cpu_dead(unsigned int oldcpu)
8742 {
8743 	struct sk_buff **list_skb;
8744 	struct sk_buff *skb;
8745 	unsigned int cpu;
8746 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8747 
8748 	local_irq_disable();
8749 	cpu = smp_processor_id();
8750 	sd = &per_cpu(softnet_data, cpu);
8751 	oldsd = &per_cpu(softnet_data, oldcpu);
8752 
8753 	/* Find end of our completion_queue. */
8754 	list_skb = &sd->completion_queue;
8755 	while (*list_skb)
8756 		list_skb = &(*list_skb)->next;
8757 	/* Append completion queue from offline CPU. */
8758 	*list_skb = oldsd->completion_queue;
8759 	oldsd->completion_queue = NULL;
8760 
8761 	/* Append output queue from offline CPU. */
8762 	if (oldsd->output_queue) {
8763 		*sd->output_queue_tailp = oldsd->output_queue;
8764 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8765 		oldsd->output_queue = NULL;
8766 		oldsd->output_queue_tailp = &oldsd->output_queue;
8767 	}
8768 	/* Append NAPI poll list from offline CPU, with one exception :
8769 	 * process_backlog() must be called by cpu owning percpu backlog.
8770 	 * We properly handle process_queue & input_pkt_queue later.
8771 	 */
8772 	while (!list_empty(&oldsd->poll_list)) {
8773 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8774 							    struct napi_struct,
8775 							    poll_list);
8776 
8777 		list_del_init(&napi->poll_list);
8778 		if (napi->poll == process_backlog)
8779 			napi->state = 0;
8780 		else
8781 			____napi_schedule(sd, napi);
8782 	}
8783 
8784 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8785 	local_irq_enable();
8786 
8787 #ifdef CONFIG_RPS
8788 	remsd = oldsd->rps_ipi_list;
8789 	oldsd->rps_ipi_list = NULL;
8790 #endif
8791 	/* send out pending IPI's on offline CPU */
8792 	net_rps_send_ipi(remsd);
8793 
8794 	/* Process offline CPU's input_pkt_queue */
8795 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8796 		netif_rx_ni(skb);
8797 		input_queue_head_incr(oldsd);
8798 	}
8799 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8800 		netif_rx_ni(skb);
8801 		input_queue_head_incr(oldsd);
8802 	}
8803 
8804 	return 0;
8805 }
8806 
8807 /**
8808  *	netdev_increment_features - increment feature set by one
8809  *	@all: current feature set
8810  *	@one: new feature set
8811  *	@mask: mask feature set
8812  *
8813  *	Computes a new feature set after adding a device with feature set
8814  *	@one to the master device with current feature set @all.  Will not
8815  *	enable anything that is off in @mask. Returns the new feature set.
8816  */
8817 netdev_features_t netdev_increment_features(netdev_features_t all,
8818 	netdev_features_t one, netdev_features_t mask)
8819 {
8820 	if (mask & NETIF_F_HW_CSUM)
8821 		mask |= NETIF_F_CSUM_MASK;
8822 	mask |= NETIF_F_VLAN_CHALLENGED;
8823 
8824 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8825 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8826 
8827 	/* If one device supports hw checksumming, set for all. */
8828 	if (all & NETIF_F_HW_CSUM)
8829 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8830 
8831 	return all;
8832 }
8833 EXPORT_SYMBOL(netdev_increment_features);
8834 
8835 static struct hlist_head * __net_init netdev_create_hash(void)
8836 {
8837 	int i;
8838 	struct hlist_head *hash;
8839 
8840 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8841 	if (hash != NULL)
8842 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8843 			INIT_HLIST_HEAD(&hash[i]);
8844 
8845 	return hash;
8846 }
8847 
8848 /* Initialize per network namespace state */
8849 static int __net_init netdev_init(struct net *net)
8850 {
8851 	if (net != &init_net)
8852 		INIT_LIST_HEAD(&net->dev_base_head);
8853 
8854 	net->dev_name_head = netdev_create_hash();
8855 	if (net->dev_name_head == NULL)
8856 		goto err_name;
8857 
8858 	net->dev_index_head = netdev_create_hash();
8859 	if (net->dev_index_head == NULL)
8860 		goto err_idx;
8861 
8862 	return 0;
8863 
8864 err_idx:
8865 	kfree(net->dev_name_head);
8866 err_name:
8867 	return -ENOMEM;
8868 }
8869 
8870 /**
8871  *	netdev_drivername - network driver for the device
8872  *	@dev: network device
8873  *
8874  *	Determine network driver for device.
8875  */
8876 const char *netdev_drivername(const struct net_device *dev)
8877 {
8878 	const struct device_driver *driver;
8879 	const struct device *parent;
8880 	const char *empty = "";
8881 
8882 	parent = dev->dev.parent;
8883 	if (!parent)
8884 		return empty;
8885 
8886 	driver = parent->driver;
8887 	if (driver && driver->name)
8888 		return driver->name;
8889 	return empty;
8890 }
8891 
8892 static void __netdev_printk(const char *level, const struct net_device *dev,
8893 			    struct va_format *vaf)
8894 {
8895 	if (dev && dev->dev.parent) {
8896 		dev_printk_emit(level[1] - '0',
8897 				dev->dev.parent,
8898 				"%s %s %s%s: %pV",
8899 				dev_driver_string(dev->dev.parent),
8900 				dev_name(dev->dev.parent),
8901 				netdev_name(dev), netdev_reg_state(dev),
8902 				vaf);
8903 	} else if (dev) {
8904 		printk("%s%s%s: %pV",
8905 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8906 	} else {
8907 		printk("%s(NULL net_device): %pV", level, vaf);
8908 	}
8909 }
8910 
8911 void netdev_printk(const char *level, const struct net_device *dev,
8912 		   const char *format, ...)
8913 {
8914 	struct va_format vaf;
8915 	va_list args;
8916 
8917 	va_start(args, format);
8918 
8919 	vaf.fmt = format;
8920 	vaf.va = &args;
8921 
8922 	__netdev_printk(level, dev, &vaf);
8923 
8924 	va_end(args);
8925 }
8926 EXPORT_SYMBOL(netdev_printk);
8927 
8928 #define define_netdev_printk_level(func, level)			\
8929 void func(const struct net_device *dev, const char *fmt, ...)	\
8930 {								\
8931 	struct va_format vaf;					\
8932 	va_list args;						\
8933 								\
8934 	va_start(args, fmt);					\
8935 								\
8936 	vaf.fmt = fmt;						\
8937 	vaf.va = &args;						\
8938 								\
8939 	__netdev_printk(level, dev, &vaf);			\
8940 								\
8941 	va_end(args);						\
8942 }								\
8943 EXPORT_SYMBOL(func);
8944 
8945 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8946 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8947 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8948 define_netdev_printk_level(netdev_err, KERN_ERR);
8949 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8950 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8951 define_netdev_printk_level(netdev_info, KERN_INFO);
8952 
8953 static void __net_exit netdev_exit(struct net *net)
8954 {
8955 	kfree(net->dev_name_head);
8956 	kfree(net->dev_index_head);
8957 	if (net != &init_net)
8958 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8959 }
8960 
8961 static struct pernet_operations __net_initdata netdev_net_ops = {
8962 	.init = netdev_init,
8963 	.exit = netdev_exit,
8964 };
8965 
8966 static void __net_exit default_device_exit(struct net *net)
8967 {
8968 	struct net_device *dev, *aux;
8969 	/*
8970 	 * Push all migratable network devices back to the
8971 	 * initial network namespace
8972 	 */
8973 	rtnl_lock();
8974 	for_each_netdev_safe(net, dev, aux) {
8975 		int err;
8976 		char fb_name[IFNAMSIZ];
8977 
8978 		/* Ignore unmoveable devices (i.e. loopback) */
8979 		if (dev->features & NETIF_F_NETNS_LOCAL)
8980 			continue;
8981 
8982 		/* Leave virtual devices for the generic cleanup */
8983 		if (dev->rtnl_link_ops)
8984 			continue;
8985 
8986 		/* Push remaining network devices to init_net */
8987 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8988 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8989 		if (err) {
8990 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8991 				 __func__, dev->name, err);
8992 			BUG();
8993 		}
8994 	}
8995 	rtnl_unlock();
8996 }
8997 
8998 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8999 {
9000 	/* Return with the rtnl_lock held when there are no network
9001 	 * devices unregistering in any network namespace in net_list.
9002 	 */
9003 	struct net *net;
9004 	bool unregistering;
9005 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9006 
9007 	add_wait_queue(&netdev_unregistering_wq, &wait);
9008 	for (;;) {
9009 		unregistering = false;
9010 		rtnl_lock();
9011 		list_for_each_entry(net, net_list, exit_list) {
9012 			if (net->dev_unreg_count > 0) {
9013 				unregistering = true;
9014 				break;
9015 			}
9016 		}
9017 		if (!unregistering)
9018 			break;
9019 		__rtnl_unlock();
9020 
9021 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9022 	}
9023 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9024 }
9025 
9026 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9027 {
9028 	/* At exit all network devices most be removed from a network
9029 	 * namespace.  Do this in the reverse order of registration.
9030 	 * Do this across as many network namespaces as possible to
9031 	 * improve batching efficiency.
9032 	 */
9033 	struct net_device *dev;
9034 	struct net *net;
9035 	LIST_HEAD(dev_kill_list);
9036 
9037 	/* To prevent network device cleanup code from dereferencing
9038 	 * loopback devices or network devices that have been freed
9039 	 * wait here for all pending unregistrations to complete,
9040 	 * before unregistring the loopback device and allowing the
9041 	 * network namespace be freed.
9042 	 *
9043 	 * The netdev todo list containing all network devices
9044 	 * unregistrations that happen in default_device_exit_batch
9045 	 * will run in the rtnl_unlock() at the end of
9046 	 * default_device_exit_batch.
9047 	 */
9048 	rtnl_lock_unregistering(net_list);
9049 	list_for_each_entry(net, net_list, exit_list) {
9050 		for_each_netdev_reverse(net, dev) {
9051 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9052 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9053 			else
9054 				unregister_netdevice_queue(dev, &dev_kill_list);
9055 		}
9056 	}
9057 	unregister_netdevice_many(&dev_kill_list);
9058 	rtnl_unlock();
9059 }
9060 
9061 static struct pernet_operations __net_initdata default_device_ops = {
9062 	.exit = default_device_exit,
9063 	.exit_batch = default_device_exit_batch,
9064 };
9065 
9066 /*
9067  *	Initialize the DEV module. At boot time this walks the device list and
9068  *	unhooks any devices that fail to initialise (normally hardware not
9069  *	present) and leaves us with a valid list of present and active devices.
9070  *
9071  */
9072 
9073 /*
9074  *       This is called single threaded during boot, so no need
9075  *       to take the rtnl semaphore.
9076  */
9077 static int __init net_dev_init(void)
9078 {
9079 	int i, rc = -ENOMEM;
9080 
9081 	BUG_ON(!dev_boot_phase);
9082 
9083 	if (dev_proc_init())
9084 		goto out;
9085 
9086 	if (netdev_kobject_init())
9087 		goto out;
9088 
9089 	INIT_LIST_HEAD(&ptype_all);
9090 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9091 		INIT_LIST_HEAD(&ptype_base[i]);
9092 
9093 	INIT_LIST_HEAD(&offload_base);
9094 
9095 	if (register_pernet_subsys(&netdev_net_ops))
9096 		goto out;
9097 
9098 	/*
9099 	 *	Initialise the packet receive queues.
9100 	 */
9101 
9102 	for_each_possible_cpu(i) {
9103 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9104 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9105 
9106 		INIT_WORK(flush, flush_backlog);
9107 
9108 		skb_queue_head_init(&sd->input_pkt_queue);
9109 		skb_queue_head_init(&sd->process_queue);
9110 #ifdef CONFIG_XFRM_OFFLOAD
9111 		skb_queue_head_init(&sd->xfrm_backlog);
9112 #endif
9113 		INIT_LIST_HEAD(&sd->poll_list);
9114 		sd->output_queue_tailp = &sd->output_queue;
9115 #ifdef CONFIG_RPS
9116 		sd->csd.func = rps_trigger_softirq;
9117 		sd->csd.info = sd;
9118 		sd->cpu = i;
9119 #endif
9120 
9121 		sd->backlog.poll = process_backlog;
9122 		sd->backlog.weight = weight_p;
9123 	}
9124 
9125 	dev_boot_phase = 0;
9126 
9127 	/* The loopback device is special if any other network devices
9128 	 * is present in a network namespace the loopback device must
9129 	 * be present. Since we now dynamically allocate and free the
9130 	 * loopback device ensure this invariant is maintained by
9131 	 * keeping the loopback device as the first device on the
9132 	 * list of network devices.  Ensuring the loopback devices
9133 	 * is the first device that appears and the last network device
9134 	 * that disappears.
9135 	 */
9136 	if (register_pernet_device(&loopback_net_ops))
9137 		goto out;
9138 
9139 	if (register_pernet_device(&default_device_ops))
9140 		goto out;
9141 
9142 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9143 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9144 
9145 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9146 				       NULL, dev_cpu_dead);
9147 	WARN_ON(rc < 0);
9148 	rc = 0;
9149 out:
9150 	return rc;
9151 }
9152 
9153 subsys_initcall(net_dev_init);
9154