xref: /linux/net/core/dev.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/config.h>
80 #include <linux/cpu.h>
81 #include <linux/types.h>
82 #include <linux/kernel.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/divert.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <linux/wireless.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 
120 /*
121  *	The list of packet types we will receive (as opposed to discard)
122  *	and the routines to invoke.
123  *
124  *	Why 16. Because with 16 the only overlap we get on a hash of the
125  *	low nibble of the protocol value is RARP/SNAP/X.25.
126  *
127  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
128  *             sure which should go first, but I bet it won't make much
129  *             difference if we are running VLANs.  The good news is that
130  *             this protocol won't be in the list unless compiled in, so
131  *             the average user (w/out VLANs) will not be adversely affected.
132  *             --BLG
133  *
134  *		0800	IP
135  *		8100    802.1Q VLAN
136  *		0001	802.3
137  *		0002	AX.25
138  *		0004	802.2
139  *		8035	RARP
140  *		0005	SNAP
141  *		0805	X.25
142  *		0806	ARP
143  *		8137	IPX
144  *		0009	Localtalk
145  *		86DD	IPv6
146  */
147 
148 static DEFINE_SPINLOCK(ptype_lock);
149 static struct list_head ptype_base[16];	/* 16 way hashed list */
150 static struct list_head ptype_all;		/* Taps */
151 
152 #ifdef CONFIG_NET_DMA
153 static struct dma_client *net_dma_client;
154 static unsigned int net_dma_count;
155 static spinlock_t net_dma_event_lock;
156 #endif
157 
158 /*
159  * The @dev_base list is protected by @dev_base_lock and the rtnl
160  * semaphore.
161  *
162  * Pure readers hold dev_base_lock for reading.
163  *
164  * Writers must hold the rtnl semaphore while they loop through the
165  * dev_base list, and hold dev_base_lock for writing when they do the
166  * actual updates.  This allows pure readers to access the list even
167  * while a writer is preparing to update it.
168  *
169  * To put it another way, dev_base_lock is held for writing only to
170  * protect against pure readers; the rtnl semaphore provides the
171  * protection against other writers.
172  *
173  * See, for example usages, register_netdevice() and
174  * unregister_netdevice(), which must be called with the rtnl
175  * semaphore held.
176  */
177 struct net_device *dev_base;
178 static struct net_device **dev_tail = &dev_base;
179 DEFINE_RWLOCK(dev_base_lock);
180 
181 EXPORT_SYMBOL(dev_base);
182 EXPORT_SYMBOL(dev_base_lock);
183 
184 #define NETDEV_HASHBITS	8
185 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS];
186 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS];
187 
188 static inline struct hlist_head *dev_name_hash(const char *name)
189 {
190 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
191 	return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)];
192 }
193 
194 static inline struct hlist_head *dev_index_hash(int ifindex)
195 {
196 	return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)];
197 }
198 
199 /*
200  *	Our notifier list
201  */
202 
203 static RAW_NOTIFIER_HEAD(netdev_chain);
204 
205 /*
206  *	Device drivers call our routines to queue packets here. We empty the
207  *	queue in the local softnet handler.
208  */
209 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL };
210 
211 #ifdef CONFIG_SYSFS
212 extern int netdev_sysfs_init(void);
213 extern int netdev_register_sysfs(struct net_device *);
214 extern void netdev_unregister_sysfs(struct net_device *);
215 #else
216 #define netdev_sysfs_init()	 	(0)
217 #define netdev_register_sysfs(dev)	(0)
218 #define	netdev_unregister_sysfs(dev)	do { } while(0)
219 #endif
220 
221 
222 /*******************************************************************************
223 
224 		Protocol management and registration routines
225 
226 *******************************************************************************/
227 
228 /*
229  *	For efficiency
230  */
231 
232 int netdev_nit;
233 
234 /*
235  *	Add a protocol ID to the list. Now that the input handler is
236  *	smarter we can dispense with all the messy stuff that used to be
237  *	here.
238  *
239  *	BEWARE!!! Protocol handlers, mangling input packets,
240  *	MUST BE last in hash buckets and checking protocol handlers
241  *	MUST start from promiscuous ptype_all chain in net_bh.
242  *	It is true now, do not change it.
243  *	Explanation follows: if protocol handler, mangling packet, will
244  *	be the first on list, it is not able to sense, that packet
245  *	is cloned and should be copied-on-write, so that it will
246  *	change it and subsequent readers will get broken packet.
247  *							--ANK (980803)
248  */
249 
250 /**
251  *	dev_add_pack - add packet handler
252  *	@pt: packet type declaration
253  *
254  *	Add a protocol handler to the networking stack. The passed &packet_type
255  *	is linked into kernel lists and may not be freed until it has been
256  *	removed from the kernel lists.
257  *
258  *	This call does not sleep therefore it can not
259  *	guarantee all CPU's that are in middle of receiving packets
260  *	will see the new packet type (until the next received packet).
261  */
262 
263 void dev_add_pack(struct packet_type *pt)
264 {
265 	int hash;
266 
267 	spin_lock_bh(&ptype_lock);
268 	if (pt->type == htons(ETH_P_ALL)) {
269 		netdev_nit++;
270 		list_add_rcu(&pt->list, &ptype_all);
271 	} else {
272 		hash = ntohs(pt->type) & 15;
273 		list_add_rcu(&pt->list, &ptype_base[hash]);
274 	}
275 	spin_unlock_bh(&ptype_lock);
276 }
277 
278 /**
279  *	__dev_remove_pack	 - remove packet handler
280  *	@pt: packet type declaration
281  *
282  *	Remove a protocol handler that was previously added to the kernel
283  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
284  *	from the kernel lists and can be freed or reused once this function
285  *	returns.
286  *
287  *      The packet type might still be in use by receivers
288  *	and must not be freed until after all the CPU's have gone
289  *	through a quiescent state.
290  */
291 void __dev_remove_pack(struct packet_type *pt)
292 {
293 	struct list_head *head;
294 	struct packet_type *pt1;
295 
296 	spin_lock_bh(&ptype_lock);
297 
298 	if (pt->type == htons(ETH_P_ALL)) {
299 		netdev_nit--;
300 		head = &ptype_all;
301 	} else
302 		head = &ptype_base[ntohs(pt->type) & 15];
303 
304 	list_for_each_entry(pt1, head, list) {
305 		if (pt == pt1) {
306 			list_del_rcu(&pt->list);
307 			goto out;
308 		}
309 	}
310 
311 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
312 out:
313 	spin_unlock_bh(&ptype_lock);
314 }
315 /**
316  *	dev_remove_pack	 - remove packet handler
317  *	@pt: packet type declaration
318  *
319  *	Remove a protocol handler that was previously added to the kernel
320  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
321  *	from the kernel lists and can be freed or reused once this function
322  *	returns.
323  *
324  *	This call sleeps to guarantee that no CPU is looking at the packet
325  *	type after return.
326  */
327 void dev_remove_pack(struct packet_type *pt)
328 {
329 	__dev_remove_pack(pt);
330 
331 	synchronize_net();
332 }
333 
334 /******************************************************************************
335 
336 		      Device Boot-time Settings Routines
337 
338 *******************************************************************************/
339 
340 /* Boot time configuration table */
341 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
342 
343 /**
344  *	netdev_boot_setup_add	- add new setup entry
345  *	@name: name of the device
346  *	@map: configured settings for the device
347  *
348  *	Adds new setup entry to the dev_boot_setup list.  The function
349  *	returns 0 on error and 1 on success.  This is a generic routine to
350  *	all netdevices.
351  */
352 static int netdev_boot_setup_add(char *name, struct ifmap *map)
353 {
354 	struct netdev_boot_setup *s;
355 	int i;
356 
357 	s = dev_boot_setup;
358 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
359 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
360 			memset(s[i].name, 0, sizeof(s[i].name));
361 			strcpy(s[i].name, name);
362 			memcpy(&s[i].map, map, sizeof(s[i].map));
363 			break;
364 		}
365 	}
366 
367 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
368 }
369 
370 /**
371  *	netdev_boot_setup_check	- check boot time settings
372  *	@dev: the netdevice
373  *
374  * 	Check boot time settings for the device.
375  *	The found settings are set for the device to be used
376  *	later in the device probing.
377  *	Returns 0 if no settings found, 1 if they are.
378  */
379 int netdev_boot_setup_check(struct net_device *dev)
380 {
381 	struct netdev_boot_setup *s = dev_boot_setup;
382 	int i;
383 
384 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
385 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
386 		    !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
387 			dev->irq 	= s[i].map.irq;
388 			dev->base_addr 	= s[i].map.base_addr;
389 			dev->mem_start 	= s[i].map.mem_start;
390 			dev->mem_end 	= s[i].map.mem_end;
391 			return 1;
392 		}
393 	}
394 	return 0;
395 }
396 
397 
398 /**
399  *	netdev_boot_base	- get address from boot time settings
400  *	@prefix: prefix for network device
401  *	@unit: id for network device
402  *
403  * 	Check boot time settings for the base address of device.
404  *	The found settings are set for the device to be used
405  *	later in the device probing.
406  *	Returns 0 if no settings found.
407  */
408 unsigned long netdev_boot_base(const char *prefix, int unit)
409 {
410 	const struct netdev_boot_setup *s = dev_boot_setup;
411 	char name[IFNAMSIZ];
412 	int i;
413 
414 	sprintf(name, "%s%d", prefix, unit);
415 
416 	/*
417 	 * If device already registered then return base of 1
418 	 * to indicate not to probe for this interface
419 	 */
420 	if (__dev_get_by_name(name))
421 		return 1;
422 
423 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
424 		if (!strcmp(name, s[i].name))
425 			return s[i].map.base_addr;
426 	return 0;
427 }
428 
429 /*
430  * Saves at boot time configured settings for any netdevice.
431  */
432 int __init netdev_boot_setup(char *str)
433 {
434 	int ints[5];
435 	struct ifmap map;
436 
437 	str = get_options(str, ARRAY_SIZE(ints), ints);
438 	if (!str || !*str)
439 		return 0;
440 
441 	/* Save settings */
442 	memset(&map, 0, sizeof(map));
443 	if (ints[0] > 0)
444 		map.irq = ints[1];
445 	if (ints[0] > 1)
446 		map.base_addr = ints[2];
447 	if (ints[0] > 2)
448 		map.mem_start = ints[3];
449 	if (ints[0] > 3)
450 		map.mem_end = ints[4];
451 
452 	/* Add new entry to the list */
453 	return netdev_boot_setup_add(str, &map);
454 }
455 
456 __setup("netdev=", netdev_boot_setup);
457 
458 /*******************************************************************************
459 
460 			    Device Interface Subroutines
461 
462 *******************************************************************************/
463 
464 /**
465  *	__dev_get_by_name	- find a device by its name
466  *	@name: name to find
467  *
468  *	Find an interface by name. Must be called under RTNL semaphore
469  *	or @dev_base_lock. If the name is found a pointer to the device
470  *	is returned. If the name is not found then %NULL is returned. The
471  *	reference counters are not incremented so the caller must be
472  *	careful with locks.
473  */
474 
475 struct net_device *__dev_get_by_name(const char *name)
476 {
477 	struct hlist_node *p;
478 
479 	hlist_for_each(p, dev_name_hash(name)) {
480 		struct net_device *dev
481 			= hlist_entry(p, struct net_device, name_hlist);
482 		if (!strncmp(dev->name, name, IFNAMSIZ))
483 			return dev;
484 	}
485 	return NULL;
486 }
487 
488 /**
489  *	dev_get_by_name		- find a device by its name
490  *	@name: name to find
491  *
492  *	Find an interface by name. This can be called from any
493  *	context and does its own locking. The returned handle has
494  *	the usage count incremented and the caller must use dev_put() to
495  *	release it when it is no longer needed. %NULL is returned if no
496  *	matching device is found.
497  */
498 
499 struct net_device *dev_get_by_name(const char *name)
500 {
501 	struct net_device *dev;
502 
503 	read_lock(&dev_base_lock);
504 	dev = __dev_get_by_name(name);
505 	if (dev)
506 		dev_hold(dev);
507 	read_unlock(&dev_base_lock);
508 	return dev;
509 }
510 
511 /**
512  *	__dev_get_by_index - find a device by its ifindex
513  *	@ifindex: index of device
514  *
515  *	Search for an interface by index. Returns %NULL if the device
516  *	is not found or a pointer to the device. The device has not
517  *	had its reference counter increased so the caller must be careful
518  *	about locking. The caller must hold either the RTNL semaphore
519  *	or @dev_base_lock.
520  */
521 
522 struct net_device *__dev_get_by_index(int ifindex)
523 {
524 	struct hlist_node *p;
525 
526 	hlist_for_each(p, dev_index_hash(ifindex)) {
527 		struct net_device *dev
528 			= hlist_entry(p, struct net_device, index_hlist);
529 		if (dev->ifindex == ifindex)
530 			return dev;
531 	}
532 	return NULL;
533 }
534 
535 
536 /**
537  *	dev_get_by_index - find a device by its ifindex
538  *	@ifindex: index of device
539  *
540  *	Search for an interface by index. Returns NULL if the device
541  *	is not found or a pointer to the device. The device returned has
542  *	had a reference added and the pointer is safe until the user calls
543  *	dev_put to indicate they have finished with it.
544  */
545 
546 struct net_device *dev_get_by_index(int ifindex)
547 {
548 	struct net_device *dev;
549 
550 	read_lock(&dev_base_lock);
551 	dev = __dev_get_by_index(ifindex);
552 	if (dev)
553 		dev_hold(dev);
554 	read_unlock(&dev_base_lock);
555 	return dev;
556 }
557 
558 /**
559  *	dev_getbyhwaddr - find a device by its hardware address
560  *	@type: media type of device
561  *	@ha: hardware address
562  *
563  *	Search for an interface by MAC address. Returns NULL if the device
564  *	is not found or a pointer to the device. The caller must hold the
565  *	rtnl semaphore. The returned device has not had its ref count increased
566  *	and the caller must therefore be careful about locking
567  *
568  *	BUGS:
569  *	If the API was consistent this would be __dev_get_by_hwaddr
570  */
571 
572 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha)
573 {
574 	struct net_device *dev;
575 
576 	ASSERT_RTNL();
577 
578 	for (dev = dev_base; dev; dev = dev->next)
579 		if (dev->type == type &&
580 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
581 			break;
582 	return dev;
583 }
584 
585 EXPORT_SYMBOL(dev_getbyhwaddr);
586 
587 struct net_device *dev_getfirstbyhwtype(unsigned short type)
588 {
589 	struct net_device *dev;
590 
591 	rtnl_lock();
592 	for (dev = dev_base; dev; dev = dev->next) {
593 		if (dev->type == type) {
594 			dev_hold(dev);
595 			break;
596 		}
597 	}
598 	rtnl_unlock();
599 	return dev;
600 }
601 
602 EXPORT_SYMBOL(dev_getfirstbyhwtype);
603 
604 /**
605  *	dev_get_by_flags - find any device with given flags
606  *	@if_flags: IFF_* values
607  *	@mask: bitmask of bits in if_flags to check
608  *
609  *	Search for any interface with the given flags. Returns NULL if a device
610  *	is not found or a pointer to the device. The device returned has
611  *	had a reference added and the pointer is safe until the user calls
612  *	dev_put to indicate they have finished with it.
613  */
614 
615 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask)
616 {
617 	struct net_device *dev;
618 
619 	read_lock(&dev_base_lock);
620 	for (dev = dev_base; dev != NULL; dev = dev->next) {
621 		if (((dev->flags ^ if_flags) & mask) == 0) {
622 			dev_hold(dev);
623 			break;
624 		}
625 	}
626 	read_unlock(&dev_base_lock);
627 	return dev;
628 }
629 
630 /**
631  *	dev_valid_name - check if name is okay for network device
632  *	@name: name string
633  *
634  *	Network device names need to be valid file names to
635  *	to allow sysfs to work
636  */
637 int dev_valid_name(const char *name)
638 {
639 	return !(*name == '\0'
640 		 || !strcmp(name, ".")
641 		 || !strcmp(name, "..")
642 		 || strchr(name, '/'));
643 }
644 
645 /**
646  *	dev_alloc_name - allocate a name for a device
647  *	@dev: device
648  *	@name: name format string
649  *
650  *	Passed a format string - eg "lt%d" it will try and find a suitable
651  *	id. It scans list of devices to build up a free map, then chooses
652  *	the first empty slot. The caller must hold the dev_base or rtnl lock
653  *	while allocating the name and adding the device in order to avoid
654  *	duplicates.
655  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
656  *	Returns the number of the unit assigned or a negative errno code.
657  */
658 
659 int dev_alloc_name(struct net_device *dev, const char *name)
660 {
661 	int i = 0;
662 	char buf[IFNAMSIZ];
663 	const char *p;
664 	const int max_netdevices = 8*PAGE_SIZE;
665 	long *inuse;
666 	struct net_device *d;
667 
668 	p = strnchr(name, IFNAMSIZ-1, '%');
669 	if (p) {
670 		/*
671 		 * Verify the string as this thing may have come from
672 		 * the user.  There must be either one "%d" and no other "%"
673 		 * characters.
674 		 */
675 		if (p[1] != 'd' || strchr(p + 2, '%'))
676 			return -EINVAL;
677 
678 		/* Use one page as a bit array of possible slots */
679 		inuse = (long *) get_zeroed_page(GFP_ATOMIC);
680 		if (!inuse)
681 			return -ENOMEM;
682 
683 		for (d = dev_base; d; d = d->next) {
684 			if (!sscanf(d->name, name, &i))
685 				continue;
686 			if (i < 0 || i >= max_netdevices)
687 				continue;
688 
689 			/*  avoid cases where sscanf is not exact inverse of printf */
690 			snprintf(buf, sizeof(buf), name, i);
691 			if (!strncmp(buf, d->name, IFNAMSIZ))
692 				set_bit(i, inuse);
693 		}
694 
695 		i = find_first_zero_bit(inuse, max_netdevices);
696 		free_page((unsigned long) inuse);
697 	}
698 
699 	snprintf(buf, sizeof(buf), name, i);
700 	if (!__dev_get_by_name(buf)) {
701 		strlcpy(dev->name, buf, IFNAMSIZ);
702 		return i;
703 	}
704 
705 	/* It is possible to run out of possible slots
706 	 * when the name is long and there isn't enough space left
707 	 * for the digits, or if all bits are used.
708 	 */
709 	return -ENFILE;
710 }
711 
712 
713 /**
714  *	dev_change_name - change name of a device
715  *	@dev: device
716  *	@newname: name (or format string) must be at least IFNAMSIZ
717  *
718  *	Change name of a device, can pass format strings "eth%d".
719  *	for wildcarding.
720  */
721 int dev_change_name(struct net_device *dev, char *newname)
722 {
723 	int err = 0;
724 
725 	ASSERT_RTNL();
726 
727 	if (dev->flags & IFF_UP)
728 		return -EBUSY;
729 
730 	if (!dev_valid_name(newname))
731 		return -EINVAL;
732 
733 	if (strchr(newname, '%')) {
734 		err = dev_alloc_name(dev, newname);
735 		if (err < 0)
736 			return err;
737 		strcpy(newname, dev->name);
738 	}
739 	else if (__dev_get_by_name(newname))
740 		return -EEXIST;
741 	else
742 		strlcpy(dev->name, newname, IFNAMSIZ);
743 
744 	err = class_device_rename(&dev->class_dev, dev->name);
745 	if (!err) {
746 		hlist_del(&dev->name_hlist);
747 		hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name));
748 		raw_notifier_call_chain(&netdev_chain,
749 				NETDEV_CHANGENAME, dev);
750 	}
751 
752 	return err;
753 }
754 
755 /**
756  *	netdev_features_change - device changes features
757  *	@dev: device to cause notification
758  *
759  *	Called to indicate a device has changed features.
760  */
761 void netdev_features_change(struct net_device *dev)
762 {
763 	raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev);
764 }
765 EXPORT_SYMBOL(netdev_features_change);
766 
767 /**
768  *	netdev_state_change - device changes state
769  *	@dev: device to cause notification
770  *
771  *	Called to indicate a device has changed state. This function calls
772  *	the notifier chains for netdev_chain and sends a NEWLINK message
773  *	to the routing socket.
774  */
775 void netdev_state_change(struct net_device *dev)
776 {
777 	if (dev->flags & IFF_UP) {
778 		raw_notifier_call_chain(&netdev_chain,
779 				NETDEV_CHANGE, dev);
780 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
781 	}
782 }
783 
784 /**
785  *	dev_load 	- load a network module
786  *	@name: name of interface
787  *
788  *	If a network interface is not present and the process has suitable
789  *	privileges this function loads the module. If module loading is not
790  *	available in this kernel then it becomes a nop.
791  */
792 
793 void dev_load(const char *name)
794 {
795 	struct net_device *dev;
796 
797 	read_lock(&dev_base_lock);
798 	dev = __dev_get_by_name(name);
799 	read_unlock(&dev_base_lock);
800 
801 	if (!dev && capable(CAP_SYS_MODULE))
802 		request_module("%s", name);
803 }
804 
805 static int default_rebuild_header(struct sk_buff *skb)
806 {
807 	printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n",
808 	       skb->dev ? skb->dev->name : "NULL!!!");
809 	kfree_skb(skb);
810 	return 1;
811 }
812 
813 
814 /**
815  *	dev_open	- prepare an interface for use.
816  *	@dev:	device to open
817  *
818  *	Takes a device from down to up state. The device's private open
819  *	function is invoked and then the multicast lists are loaded. Finally
820  *	the device is moved into the up state and a %NETDEV_UP message is
821  *	sent to the netdev notifier chain.
822  *
823  *	Calling this function on an active interface is a nop. On a failure
824  *	a negative errno code is returned.
825  */
826 int dev_open(struct net_device *dev)
827 {
828 	int ret = 0;
829 
830 	/*
831 	 *	Is it already up?
832 	 */
833 
834 	if (dev->flags & IFF_UP)
835 		return 0;
836 
837 	/*
838 	 *	Is it even present?
839 	 */
840 	if (!netif_device_present(dev))
841 		return -ENODEV;
842 
843 	/*
844 	 *	Call device private open method
845 	 */
846 	set_bit(__LINK_STATE_START, &dev->state);
847 	if (dev->open) {
848 		ret = dev->open(dev);
849 		if (ret)
850 			clear_bit(__LINK_STATE_START, &dev->state);
851 	}
852 
853  	/*
854 	 *	If it went open OK then:
855 	 */
856 
857 	if (!ret) {
858 		/*
859 		 *	Set the flags.
860 		 */
861 		dev->flags |= IFF_UP;
862 
863 		/*
864 		 *	Initialize multicasting status
865 		 */
866 		dev_mc_upload(dev);
867 
868 		/*
869 		 *	Wakeup transmit queue engine
870 		 */
871 		dev_activate(dev);
872 
873 		/*
874 		 *	... and announce new interface.
875 		 */
876 		raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev);
877 	}
878 	return ret;
879 }
880 
881 /**
882  *	dev_close - shutdown an interface.
883  *	@dev: device to shutdown
884  *
885  *	This function moves an active device into down state. A
886  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
887  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
888  *	chain.
889  */
890 int dev_close(struct net_device *dev)
891 {
892 	if (!(dev->flags & IFF_UP))
893 		return 0;
894 
895 	/*
896 	 *	Tell people we are going down, so that they can
897 	 *	prepare to death, when device is still operating.
898 	 */
899 	raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev);
900 
901 	dev_deactivate(dev);
902 
903 	clear_bit(__LINK_STATE_START, &dev->state);
904 
905 	/* Synchronize to scheduled poll. We cannot touch poll list,
906 	 * it can be even on different cpu. So just clear netif_running(),
907 	 * and wait when poll really will happen. Actually, the best place
908 	 * for this is inside dev->stop() after device stopped its irq
909 	 * engine, but this requires more changes in devices. */
910 
911 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
912 	while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) {
913 		/* No hurry. */
914 		msleep(1);
915 	}
916 
917 	/*
918 	 *	Call the device specific close. This cannot fail.
919 	 *	Only if device is UP
920 	 *
921 	 *	We allow it to be called even after a DETACH hot-plug
922 	 *	event.
923 	 */
924 	if (dev->stop)
925 		dev->stop(dev);
926 
927 	/*
928 	 *	Device is now down.
929 	 */
930 
931 	dev->flags &= ~IFF_UP;
932 
933 	/*
934 	 * Tell people we are down
935 	 */
936 	raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev);
937 
938 	return 0;
939 }
940 
941 
942 /*
943  *	Device change register/unregister. These are not inline or static
944  *	as we export them to the world.
945  */
946 
947 /**
948  *	register_netdevice_notifier - register a network notifier block
949  *	@nb: notifier
950  *
951  *	Register a notifier to be called when network device events occur.
952  *	The notifier passed is linked into the kernel structures and must
953  *	not be reused until it has been unregistered. A negative errno code
954  *	is returned on a failure.
955  *
956  * 	When registered all registration and up events are replayed
957  *	to the new notifier to allow device to have a race free
958  *	view of the network device list.
959  */
960 
961 int register_netdevice_notifier(struct notifier_block *nb)
962 {
963 	struct net_device *dev;
964 	int err;
965 
966 	rtnl_lock();
967 	err = raw_notifier_chain_register(&netdev_chain, nb);
968 	if (!err) {
969 		for (dev = dev_base; dev; dev = dev->next) {
970 			nb->notifier_call(nb, NETDEV_REGISTER, dev);
971 
972 			if (dev->flags & IFF_UP)
973 				nb->notifier_call(nb, NETDEV_UP, dev);
974 		}
975 	}
976 	rtnl_unlock();
977 	return err;
978 }
979 
980 /**
981  *	unregister_netdevice_notifier - unregister a network notifier block
982  *	@nb: notifier
983  *
984  *	Unregister a notifier previously registered by
985  *	register_netdevice_notifier(). The notifier is unlinked into the
986  *	kernel structures and may then be reused. A negative errno code
987  *	is returned on a failure.
988  */
989 
990 int unregister_netdevice_notifier(struct notifier_block *nb)
991 {
992 	int err;
993 
994 	rtnl_lock();
995 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
996 	rtnl_unlock();
997 	return err;
998 }
999 
1000 /**
1001  *	call_netdevice_notifiers - call all network notifier blocks
1002  *      @val: value passed unmodified to notifier function
1003  *      @v:   pointer passed unmodified to notifier function
1004  *
1005  *	Call all network notifier blocks.  Parameters and return value
1006  *	are as for raw_notifier_call_chain().
1007  */
1008 
1009 int call_netdevice_notifiers(unsigned long val, void *v)
1010 {
1011 	return raw_notifier_call_chain(&netdev_chain, val, v);
1012 }
1013 
1014 /* When > 0 there are consumers of rx skb time stamps */
1015 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1016 
1017 void net_enable_timestamp(void)
1018 {
1019 	atomic_inc(&netstamp_needed);
1020 }
1021 
1022 void net_disable_timestamp(void)
1023 {
1024 	atomic_dec(&netstamp_needed);
1025 }
1026 
1027 void __net_timestamp(struct sk_buff *skb)
1028 {
1029 	struct timeval tv;
1030 
1031 	do_gettimeofday(&tv);
1032 	skb_set_timestamp(skb, &tv);
1033 }
1034 EXPORT_SYMBOL(__net_timestamp);
1035 
1036 static inline void net_timestamp(struct sk_buff *skb)
1037 {
1038 	if (atomic_read(&netstamp_needed))
1039 		__net_timestamp(skb);
1040 	else {
1041 		skb->tstamp.off_sec = 0;
1042 		skb->tstamp.off_usec = 0;
1043 	}
1044 }
1045 
1046 /*
1047  *	Support routine. Sends outgoing frames to any network
1048  *	taps currently in use.
1049  */
1050 
1051 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1052 {
1053 	struct packet_type *ptype;
1054 
1055 	net_timestamp(skb);
1056 
1057 	rcu_read_lock();
1058 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1059 		/* Never send packets back to the socket
1060 		 * they originated from - MvS (miquels@drinkel.ow.org)
1061 		 */
1062 		if ((ptype->dev == dev || !ptype->dev) &&
1063 		    (ptype->af_packet_priv == NULL ||
1064 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1065 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1066 			if (!skb2)
1067 				break;
1068 
1069 			/* skb->nh should be correctly
1070 			   set by sender, so that the second statement is
1071 			   just protection against buggy protocols.
1072 			 */
1073 			skb2->mac.raw = skb2->data;
1074 
1075 			if (skb2->nh.raw < skb2->data ||
1076 			    skb2->nh.raw > skb2->tail) {
1077 				if (net_ratelimit())
1078 					printk(KERN_CRIT "protocol %04x is "
1079 					       "buggy, dev %s\n",
1080 					       skb2->protocol, dev->name);
1081 				skb2->nh.raw = skb2->data;
1082 			}
1083 
1084 			skb2->h.raw = skb2->nh.raw;
1085 			skb2->pkt_type = PACKET_OUTGOING;
1086 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1087 		}
1088 	}
1089 	rcu_read_unlock();
1090 }
1091 
1092 
1093 void __netif_schedule(struct net_device *dev)
1094 {
1095 	if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1096 		unsigned long flags;
1097 		struct softnet_data *sd;
1098 
1099 		local_irq_save(flags);
1100 		sd = &__get_cpu_var(softnet_data);
1101 		dev->next_sched = sd->output_queue;
1102 		sd->output_queue = dev;
1103 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1104 		local_irq_restore(flags);
1105 	}
1106 }
1107 EXPORT_SYMBOL(__netif_schedule);
1108 
1109 void __netif_rx_schedule(struct net_device *dev)
1110 {
1111 	unsigned long flags;
1112 
1113 	local_irq_save(flags);
1114 	dev_hold(dev);
1115 	list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list);
1116 	if (dev->quota < 0)
1117 		dev->quota += dev->weight;
1118 	else
1119 		dev->quota = dev->weight;
1120 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
1121 	local_irq_restore(flags);
1122 }
1123 EXPORT_SYMBOL(__netif_rx_schedule);
1124 
1125 void dev_kfree_skb_any(struct sk_buff *skb)
1126 {
1127 	if (in_irq() || irqs_disabled())
1128 		dev_kfree_skb_irq(skb);
1129 	else
1130 		dev_kfree_skb(skb);
1131 }
1132 EXPORT_SYMBOL(dev_kfree_skb_any);
1133 
1134 
1135 /* Hot-plugging. */
1136 void netif_device_detach(struct net_device *dev)
1137 {
1138 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1139 	    netif_running(dev)) {
1140 		netif_stop_queue(dev);
1141 	}
1142 }
1143 EXPORT_SYMBOL(netif_device_detach);
1144 
1145 void netif_device_attach(struct net_device *dev)
1146 {
1147 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1148 	    netif_running(dev)) {
1149 		netif_wake_queue(dev);
1150  		__netdev_watchdog_up(dev);
1151 	}
1152 }
1153 EXPORT_SYMBOL(netif_device_attach);
1154 
1155 
1156 /*
1157  * Invalidate hardware checksum when packet is to be mangled, and
1158  * complete checksum manually on outgoing path.
1159  */
1160 int skb_checksum_help(struct sk_buff *skb, int inward)
1161 {
1162 	unsigned int csum;
1163 	int ret = 0, offset = skb->h.raw - skb->data;
1164 
1165 	if (inward) {
1166 		skb->ip_summed = CHECKSUM_NONE;
1167 		goto out;
1168 	}
1169 
1170 	if (skb_cloned(skb)) {
1171 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1172 		if (ret)
1173 			goto out;
1174 	}
1175 
1176 	BUG_ON(offset > (int)skb->len);
1177 	csum = skb_checksum(skb, offset, skb->len-offset, 0);
1178 
1179 	offset = skb->tail - skb->h.raw;
1180 	BUG_ON(offset <= 0);
1181 	BUG_ON(skb->csum + 2 > offset);
1182 
1183 	*(u16*)(skb->h.raw + skb->csum) = csum_fold(csum);
1184 	skb->ip_summed = CHECKSUM_NONE;
1185 out:
1186 	return ret;
1187 }
1188 
1189 /* Take action when hardware reception checksum errors are detected. */
1190 #ifdef CONFIG_BUG
1191 void netdev_rx_csum_fault(struct net_device *dev)
1192 {
1193 	if (net_ratelimit()) {
1194 		printk(KERN_ERR "%s: hw csum failure.\n",
1195 			dev ? dev->name : "<unknown>");
1196 		dump_stack();
1197 	}
1198 }
1199 EXPORT_SYMBOL(netdev_rx_csum_fault);
1200 #endif
1201 
1202 #ifdef CONFIG_HIGHMEM
1203 /* Actually, we should eliminate this check as soon as we know, that:
1204  * 1. IOMMU is present and allows to map all the memory.
1205  * 2. No high memory really exists on this machine.
1206  */
1207 
1208 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1209 {
1210 	int i;
1211 
1212 	if (dev->features & NETIF_F_HIGHDMA)
1213 		return 0;
1214 
1215 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1216 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1217 			return 1;
1218 
1219 	return 0;
1220 }
1221 #else
1222 #define illegal_highdma(dev, skb)	(0)
1223 #endif
1224 
1225 #define HARD_TX_LOCK(dev, cpu) {			\
1226 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
1227 		netif_tx_lock(dev);			\
1228 	}						\
1229 }
1230 
1231 #define HARD_TX_UNLOCK(dev) {				\
1232 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
1233 		netif_tx_unlock(dev);			\
1234 	}						\
1235 }
1236 
1237 /**
1238  *	dev_queue_xmit - transmit a buffer
1239  *	@skb: buffer to transmit
1240  *
1241  *	Queue a buffer for transmission to a network device. The caller must
1242  *	have set the device and priority and built the buffer before calling
1243  *	this function. The function can be called from an interrupt.
1244  *
1245  *	A negative errno code is returned on a failure. A success does not
1246  *	guarantee the frame will be transmitted as it may be dropped due
1247  *	to congestion or traffic shaping.
1248  *
1249  * -----------------------------------------------------------------------------------
1250  *      I notice this method can also return errors from the queue disciplines,
1251  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1252  *      be positive.
1253  *
1254  *      Regardless of the return value, the skb is consumed, so it is currently
1255  *      difficult to retry a send to this method.  (You can bump the ref count
1256  *      before sending to hold a reference for retry if you are careful.)
1257  *
1258  *      When calling this method, interrupts MUST be enabled.  This is because
1259  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1260  *          --BLG
1261  */
1262 
1263 int dev_queue_xmit(struct sk_buff *skb)
1264 {
1265 	struct net_device *dev = skb->dev;
1266 	struct Qdisc *q;
1267 	int rc = -ENOMEM;
1268 
1269 	if (skb_shinfo(skb)->frag_list &&
1270 	    !(dev->features & NETIF_F_FRAGLIST) &&
1271 	    __skb_linearize(skb))
1272 		goto out_kfree_skb;
1273 
1274 	/* Fragmented skb is linearized if device does not support SG,
1275 	 * or if at least one of fragments is in highmem and device
1276 	 * does not support DMA from it.
1277 	 */
1278 	if (skb_shinfo(skb)->nr_frags &&
1279 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1280 	    __skb_linearize(skb))
1281 		goto out_kfree_skb;
1282 
1283 	/* If packet is not checksummed and device does not support
1284 	 * checksumming for this protocol, complete checksumming here.
1285 	 */
1286 	if (skb->ip_summed == CHECKSUM_HW &&
1287 	    (!(dev->features & NETIF_F_GEN_CSUM) &&
1288 	     (!(dev->features & NETIF_F_IP_CSUM) ||
1289 	      skb->protocol != htons(ETH_P_IP))))
1290 	      	if (skb_checksum_help(skb, 0))
1291 	      		goto out_kfree_skb;
1292 
1293 	spin_lock_prefetch(&dev->queue_lock);
1294 
1295 	/* Disable soft irqs for various locks below. Also
1296 	 * stops preemption for RCU.
1297 	 */
1298 	local_bh_disable();
1299 
1300 	/* Updates of qdisc are serialized by queue_lock.
1301 	 * The struct Qdisc which is pointed to by qdisc is now a
1302 	 * rcu structure - it may be accessed without acquiring
1303 	 * a lock (but the structure may be stale.) The freeing of the
1304 	 * qdisc will be deferred until it's known that there are no
1305 	 * more references to it.
1306 	 *
1307 	 * If the qdisc has an enqueue function, we still need to
1308 	 * hold the queue_lock before calling it, since queue_lock
1309 	 * also serializes access to the device queue.
1310 	 */
1311 
1312 	q = rcu_dereference(dev->qdisc);
1313 #ifdef CONFIG_NET_CLS_ACT
1314 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1315 #endif
1316 	if (q->enqueue) {
1317 		/* Grab device queue */
1318 		spin_lock(&dev->queue_lock);
1319 
1320 		rc = q->enqueue(skb, q);
1321 
1322 		qdisc_run(dev);
1323 
1324 		spin_unlock(&dev->queue_lock);
1325 		rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1326 		goto out;
1327 	}
1328 
1329 	/* The device has no queue. Common case for software devices:
1330 	   loopback, all the sorts of tunnels...
1331 
1332 	   Really, it is unlikely that netif_tx_lock protection is necessary
1333 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1334 	   counters.)
1335 	   However, it is possible, that they rely on protection
1336 	   made by us here.
1337 
1338 	   Check this and shot the lock. It is not prone from deadlocks.
1339 	   Either shot noqueue qdisc, it is even simpler 8)
1340 	 */
1341 	if (dev->flags & IFF_UP) {
1342 		int cpu = smp_processor_id(); /* ok because BHs are off */
1343 
1344 		if (dev->xmit_lock_owner != cpu) {
1345 
1346 			HARD_TX_LOCK(dev, cpu);
1347 
1348 			if (!netif_queue_stopped(dev)) {
1349 				if (netdev_nit)
1350 					dev_queue_xmit_nit(skb, dev);
1351 
1352 				rc = 0;
1353 				if (!dev->hard_start_xmit(skb, dev)) {
1354 					HARD_TX_UNLOCK(dev);
1355 					goto out;
1356 				}
1357 			}
1358 			HARD_TX_UNLOCK(dev);
1359 			if (net_ratelimit())
1360 				printk(KERN_CRIT "Virtual device %s asks to "
1361 				       "queue packet!\n", dev->name);
1362 		} else {
1363 			/* Recursion is detected! It is possible,
1364 			 * unfortunately */
1365 			if (net_ratelimit())
1366 				printk(KERN_CRIT "Dead loop on virtual device "
1367 				       "%s, fix it urgently!\n", dev->name);
1368 		}
1369 	}
1370 
1371 	rc = -ENETDOWN;
1372 	local_bh_enable();
1373 
1374 out_kfree_skb:
1375 	kfree_skb(skb);
1376 	return rc;
1377 out:
1378 	local_bh_enable();
1379 	return rc;
1380 }
1381 
1382 
1383 /*=======================================================================
1384 			Receiver routines
1385   =======================================================================*/
1386 
1387 int netdev_max_backlog = 1000;
1388 int netdev_budget = 300;
1389 int weight_p = 64;            /* old backlog weight */
1390 
1391 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1392 
1393 
1394 /**
1395  *	netif_rx	-	post buffer to the network code
1396  *	@skb: buffer to post
1397  *
1398  *	This function receives a packet from a device driver and queues it for
1399  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1400  *	may be dropped during processing for congestion control or by the
1401  *	protocol layers.
1402  *
1403  *	return values:
1404  *	NET_RX_SUCCESS	(no congestion)
1405  *	NET_RX_CN_LOW   (low congestion)
1406  *	NET_RX_CN_MOD   (moderate congestion)
1407  *	NET_RX_CN_HIGH  (high congestion)
1408  *	NET_RX_DROP     (packet was dropped)
1409  *
1410  */
1411 
1412 int netif_rx(struct sk_buff *skb)
1413 {
1414 	struct softnet_data *queue;
1415 	unsigned long flags;
1416 
1417 	/* if netpoll wants it, pretend we never saw it */
1418 	if (netpoll_rx(skb))
1419 		return NET_RX_DROP;
1420 
1421 	if (!skb->tstamp.off_sec)
1422 		net_timestamp(skb);
1423 
1424 	/*
1425 	 * The code is rearranged so that the path is the most
1426 	 * short when CPU is congested, but is still operating.
1427 	 */
1428 	local_irq_save(flags);
1429 	queue = &__get_cpu_var(softnet_data);
1430 
1431 	__get_cpu_var(netdev_rx_stat).total++;
1432 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1433 		if (queue->input_pkt_queue.qlen) {
1434 enqueue:
1435 			dev_hold(skb->dev);
1436 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1437 			local_irq_restore(flags);
1438 			return NET_RX_SUCCESS;
1439 		}
1440 
1441 		netif_rx_schedule(&queue->backlog_dev);
1442 		goto enqueue;
1443 	}
1444 
1445 	__get_cpu_var(netdev_rx_stat).dropped++;
1446 	local_irq_restore(flags);
1447 
1448 	kfree_skb(skb);
1449 	return NET_RX_DROP;
1450 }
1451 
1452 int netif_rx_ni(struct sk_buff *skb)
1453 {
1454 	int err;
1455 
1456 	preempt_disable();
1457 	err = netif_rx(skb);
1458 	if (local_softirq_pending())
1459 		do_softirq();
1460 	preempt_enable();
1461 
1462 	return err;
1463 }
1464 
1465 EXPORT_SYMBOL(netif_rx_ni);
1466 
1467 static inline struct net_device *skb_bond(struct sk_buff *skb)
1468 {
1469 	struct net_device *dev = skb->dev;
1470 
1471 	if (dev->master) {
1472 		/*
1473 		 * On bonding slaves other than the currently active
1474 		 * slave, suppress duplicates except for 802.3ad
1475 		 * ETH_P_SLOW and alb non-mcast/bcast.
1476 		 */
1477 		if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
1478 			if (dev->master->priv_flags & IFF_MASTER_ALB) {
1479 				if (skb->pkt_type != PACKET_BROADCAST &&
1480 				    skb->pkt_type != PACKET_MULTICAST)
1481 					goto keep;
1482 			}
1483 
1484 			if (dev->master->priv_flags & IFF_MASTER_8023AD &&
1485 			    skb->protocol == __constant_htons(ETH_P_SLOW))
1486 				goto keep;
1487 
1488 			kfree_skb(skb);
1489 			return NULL;
1490 		}
1491 keep:
1492 		skb->dev = dev->master;
1493 	}
1494 
1495 	return dev;
1496 }
1497 
1498 static void net_tx_action(struct softirq_action *h)
1499 {
1500 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1501 
1502 	if (sd->completion_queue) {
1503 		struct sk_buff *clist;
1504 
1505 		local_irq_disable();
1506 		clist = sd->completion_queue;
1507 		sd->completion_queue = NULL;
1508 		local_irq_enable();
1509 
1510 		while (clist) {
1511 			struct sk_buff *skb = clist;
1512 			clist = clist->next;
1513 
1514 			BUG_TRAP(!atomic_read(&skb->users));
1515 			__kfree_skb(skb);
1516 		}
1517 	}
1518 
1519 	if (sd->output_queue) {
1520 		struct net_device *head;
1521 
1522 		local_irq_disable();
1523 		head = sd->output_queue;
1524 		sd->output_queue = NULL;
1525 		local_irq_enable();
1526 
1527 		while (head) {
1528 			struct net_device *dev = head;
1529 			head = head->next_sched;
1530 
1531 			smp_mb__before_clear_bit();
1532 			clear_bit(__LINK_STATE_SCHED, &dev->state);
1533 
1534 			if (spin_trylock(&dev->queue_lock)) {
1535 				qdisc_run(dev);
1536 				spin_unlock(&dev->queue_lock);
1537 			} else {
1538 				netif_schedule(dev);
1539 			}
1540 		}
1541 	}
1542 }
1543 
1544 static __inline__ int deliver_skb(struct sk_buff *skb,
1545 				  struct packet_type *pt_prev,
1546 				  struct net_device *orig_dev)
1547 {
1548 	atomic_inc(&skb->users);
1549 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1550 }
1551 
1552 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1553 int (*br_handle_frame_hook)(struct net_bridge_port *p, struct sk_buff **pskb);
1554 struct net_bridge;
1555 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1556 						unsigned char *addr);
1557 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent);
1558 
1559 static __inline__ int handle_bridge(struct sk_buff **pskb,
1560 				    struct packet_type **pt_prev, int *ret,
1561 				    struct net_device *orig_dev)
1562 {
1563 	struct net_bridge_port *port;
1564 
1565 	if ((*pskb)->pkt_type == PACKET_LOOPBACK ||
1566 	    (port = rcu_dereference((*pskb)->dev->br_port)) == NULL)
1567 		return 0;
1568 
1569 	if (*pt_prev) {
1570 		*ret = deliver_skb(*pskb, *pt_prev, orig_dev);
1571 		*pt_prev = NULL;
1572 	}
1573 
1574 	return br_handle_frame_hook(port, pskb);
1575 }
1576 #else
1577 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(0)
1578 #endif
1579 
1580 #ifdef CONFIG_NET_CLS_ACT
1581 /* TODO: Maybe we should just force sch_ingress to be compiled in
1582  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1583  * a compare and 2 stores extra right now if we dont have it on
1584  * but have CONFIG_NET_CLS_ACT
1585  * NOTE: This doesnt stop any functionality; if you dont have
1586  * the ingress scheduler, you just cant add policies on ingress.
1587  *
1588  */
1589 static int ing_filter(struct sk_buff *skb)
1590 {
1591 	struct Qdisc *q;
1592 	struct net_device *dev = skb->dev;
1593 	int result = TC_ACT_OK;
1594 
1595 	if (dev->qdisc_ingress) {
1596 		__u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd);
1597 		if (MAX_RED_LOOP < ttl++) {
1598 			printk("Redir loop detected Dropping packet (%s->%s)\n",
1599 				skb->input_dev->name, skb->dev->name);
1600 			return TC_ACT_SHOT;
1601 		}
1602 
1603 		skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl);
1604 
1605 		skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS);
1606 
1607 		spin_lock(&dev->ingress_lock);
1608 		if ((q = dev->qdisc_ingress) != NULL)
1609 			result = q->enqueue(skb, q);
1610 		spin_unlock(&dev->ingress_lock);
1611 
1612 	}
1613 
1614 	return result;
1615 }
1616 #endif
1617 
1618 int netif_receive_skb(struct sk_buff *skb)
1619 {
1620 	struct packet_type *ptype, *pt_prev;
1621 	struct net_device *orig_dev;
1622 	int ret = NET_RX_DROP;
1623 	unsigned short type;
1624 
1625 	/* if we've gotten here through NAPI, check netpoll */
1626 	if (skb->dev->poll && netpoll_rx(skb))
1627 		return NET_RX_DROP;
1628 
1629 	if (!skb->tstamp.off_sec)
1630 		net_timestamp(skb);
1631 
1632 	if (!skb->input_dev)
1633 		skb->input_dev = skb->dev;
1634 
1635 	orig_dev = skb_bond(skb);
1636 
1637 	if (!orig_dev)
1638 		return NET_RX_DROP;
1639 
1640 	__get_cpu_var(netdev_rx_stat).total++;
1641 
1642 	skb->h.raw = skb->nh.raw = skb->data;
1643 	skb->mac_len = skb->nh.raw - skb->mac.raw;
1644 
1645 	pt_prev = NULL;
1646 
1647 	rcu_read_lock();
1648 
1649 #ifdef CONFIG_NET_CLS_ACT
1650 	if (skb->tc_verd & TC_NCLS) {
1651 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
1652 		goto ncls;
1653 	}
1654 #endif
1655 
1656 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1657 		if (!ptype->dev || ptype->dev == skb->dev) {
1658 			if (pt_prev)
1659 				ret = deliver_skb(skb, pt_prev, orig_dev);
1660 			pt_prev = ptype;
1661 		}
1662 	}
1663 
1664 #ifdef CONFIG_NET_CLS_ACT
1665 	if (pt_prev) {
1666 		ret = deliver_skb(skb, pt_prev, orig_dev);
1667 		pt_prev = NULL; /* noone else should process this after*/
1668 	} else {
1669 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1670 	}
1671 
1672 	ret = ing_filter(skb);
1673 
1674 	if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) {
1675 		kfree_skb(skb);
1676 		goto out;
1677 	}
1678 
1679 	skb->tc_verd = 0;
1680 ncls:
1681 #endif
1682 
1683 	handle_diverter(skb);
1684 
1685 	if (handle_bridge(&skb, &pt_prev, &ret, orig_dev))
1686 		goto out;
1687 
1688 	type = skb->protocol;
1689 	list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
1690 		if (ptype->type == type &&
1691 		    (!ptype->dev || ptype->dev == skb->dev)) {
1692 			if (pt_prev)
1693 				ret = deliver_skb(skb, pt_prev, orig_dev);
1694 			pt_prev = ptype;
1695 		}
1696 	}
1697 
1698 	if (pt_prev) {
1699 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1700 	} else {
1701 		kfree_skb(skb);
1702 		/* Jamal, now you will not able to escape explaining
1703 		 * me how you were going to use this. :-)
1704 		 */
1705 		ret = NET_RX_DROP;
1706 	}
1707 
1708 out:
1709 	rcu_read_unlock();
1710 	return ret;
1711 }
1712 
1713 static int process_backlog(struct net_device *backlog_dev, int *budget)
1714 {
1715 	int work = 0;
1716 	int quota = min(backlog_dev->quota, *budget);
1717 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
1718 	unsigned long start_time = jiffies;
1719 
1720 	backlog_dev->weight = weight_p;
1721 	for (;;) {
1722 		struct sk_buff *skb;
1723 		struct net_device *dev;
1724 
1725 		local_irq_disable();
1726 		skb = __skb_dequeue(&queue->input_pkt_queue);
1727 		if (!skb)
1728 			goto job_done;
1729 		local_irq_enable();
1730 
1731 		dev = skb->dev;
1732 
1733 		netif_receive_skb(skb);
1734 
1735 		dev_put(dev);
1736 
1737 		work++;
1738 
1739 		if (work >= quota || jiffies - start_time > 1)
1740 			break;
1741 
1742 	}
1743 
1744 	backlog_dev->quota -= work;
1745 	*budget -= work;
1746 	return -1;
1747 
1748 job_done:
1749 	backlog_dev->quota -= work;
1750 	*budget -= work;
1751 
1752 	list_del(&backlog_dev->poll_list);
1753 	smp_mb__before_clear_bit();
1754 	netif_poll_enable(backlog_dev);
1755 
1756 	local_irq_enable();
1757 	return 0;
1758 }
1759 
1760 static void net_rx_action(struct softirq_action *h)
1761 {
1762 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
1763 	unsigned long start_time = jiffies;
1764 	int budget = netdev_budget;
1765 	void *have;
1766 
1767 	local_irq_disable();
1768 
1769 	while (!list_empty(&queue->poll_list)) {
1770 		struct net_device *dev;
1771 
1772 		if (budget <= 0 || jiffies - start_time > 1)
1773 			goto softnet_break;
1774 
1775 		local_irq_enable();
1776 
1777 		dev = list_entry(queue->poll_list.next,
1778 				 struct net_device, poll_list);
1779 		have = netpoll_poll_lock(dev);
1780 
1781 		if (dev->quota <= 0 || dev->poll(dev, &budget)) {
1782 			netpoll_poll_unlock(have);
1783 			local_irq_disable();
1784 			list_move_tail(&dev->poll_list, &queue->poll_list);
1785 			if (dev->quota < 0)
1786 				dev->quota += dev->weight;
1787 			else
1788 				dev->quota = dev->weight;
1789 		} else {
1790 			netpoll_poll_unlock(have);
1791 			dev_put(dev);
1792 			local_irq_disable();
1793 		}
1794 	}
1795 out:
1796 #ifdef CONFIG_NET_DMA
1797 	/*
1798 	 * There may not be any more sk_buffs coming right now, so push
1799 	 * any pending DMA copies to hardware
1800 	 */
1801 	if (net_dma_client) {
1802 		struct dma_chan *chan;
1803 		rcu_read_lock();
1804 		list_for_each_entry_rcu(chan, &net_dma_client->channels, client_node)
1805 			dma_async_memcpy_issue_pending(chan);
1806 		rcu_read_unlock();
1807 	}
1808 #endif
1809 	local_irq_enable();
1810 	return;
1811 
1812 softnet_break:
1813 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
1814 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
1815 	goto out;
1816 }
1817 
1818 static gifconf_func_t * gifconf_list [NPROTO];
1819 
1820 /**
1821  *	register_gifconf	-	register a SIOCGIF handler
1822  *	@family: Address family
1823  *	@gifconf: Function handler
1824  *
1825  *	Register protocol dependent address dumping routines. The handler
1826  *	that is passed must not be freed or reused until it has been replaced
1827  *	by another handler.
1828  */
1829 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
1830 {
1831 	if (family >= NPROTO)
1832 		return -EINVAL;
1833 	gifconf_list[family] = gifconf;
1834 	return 0;
1835 }
1836 
1837 
1838 /*
1839  *	Map an interface index to its name (SIOCGIFNAME)
1840  */
1841 
1842 /*
1843  *	We need this ioctl for efficient implementation of the
1844  *	if_indextoname() function required by the IPv6 API.  Without
1845  *	it, we would have to search all the interfaces to find a
1846  *	match.  --pb
1847  */
1848 
1849 static int dev_ifname(struct ifreq __user *arg)
1850 {
1851 	struct net_device *dev;
1852 	struct ifreq ifr;
1853 
1854 	/*
1855 	 *	Fetch the caller's info block.
1856 	 */
1857 
1858 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
1859 		return -EFAULT;
1860 
1861 	read_lock(&dev_base_lock);
1862 	dev = __dev_get_by_index(ifr.ifr_ifindex);
1863 	if (!dev) {
1864 		read_unlock(&dev_base_lock);
1865 		return -ENODEV;
1866 	}
1867 
1868 	strcpy(ifr.ifr_name, dev->name);
1869 	read_unlock(&dev_base_lock);
1870 
1871 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
1872 		return -EFAULT;
1873 	return 0;
1874 }
1875 
1876 /*
1877  *	Perform a SIOCGIFCONF call. This structure will change
1878  *	size eventually, and there is nothing I can do about it.
1879  *	Thus we will need a 'compatibility mode'.
1880  */
1881 
1882 static int dev_ifconf(char __user *arg)
1883 {
1884 	struct ifconf ifc;
1885 	struct net_device *dev;
1886 	char __user *pos;
1887 	int len;
1888 	int total;
1889 	int i;
1890 
1891 	/*
1892 	 *	Fetch the caller's info block.
1893 	 */
1894 
1895 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
1896 		return -EFAULT;
1897 
1898 	pos = ifc.ifc_buf;
1899 	len = ifc.ifc_len;
1900 
1901 	/*
1902 	 *	Loop over the interfaces, and write an info block for each.
1903 	 */
1904 
1905 	total = 0;
1906 	for (dev = dev_base; dev; dev = dev->next) {
1907 		for (i = 0; i < NPROTO; i++) {
1908 			if (gifconf_list[i]) {
1909 				int done;
1910 				if (!pos)
1911 					done = gifconf_list[i](dev, NULL, 0);
1912 				else
1913 					done = gifconf_list[i](dev, pos + total,
1914 							       len - total);
1915 				if (done < 0)
1916 					return -EFAULT;
1917 				total += done;
1918 			}
1919 		}
1920   	}
1921 
1922 	/*
1923 	 *	All done.  Write the updated control block back to the caller.
1924 	 */
1925 	ifc.ifc_len = total;
1926 
1927 	/*
1928 	 * 	Both BSD and Solaris return 0 here, so we do too.
1929 	 */
1930 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
1931 }
1932 
1933 #ifdef CONFIG_PROC_FS
1934 /*
1935  *	This is invoked by the /proc filesystem handler to display a device
1936  *	in detail.
1937  */
1938 static __inline__ struct net_device *dev_get_idx(loff_t pos)
1939 {
1940 	struct net_device *dev;
1941 	loff_t i;
1942 
1943 	for (i = 0, dev = dev_base; dev && i < pos; ++i, dev = dev->next);
1944 
1945 	return i == pos ? dev : NULL;
1946 }
1947 
1948 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
1949 {
1950 	read_lock(&dev_base_lock);
1951 	return *pos ? dev_get_idx(*pos - 1) : SEQ_START_TOKEN;
1952 }
1953 
1954 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1955 {
1956 	++*pos;
1957 	return v == SEQ_START_TOKEN ? dev_base : ((struct net_device *)v)->next;
1958 }
1959 
1960 void dev_seq_stop(struct seq_file *seq, void *v)
1961 {
1962 	read_unlock(&dev_base_lock);
1963 }
1964 
1965 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
1966 {
1967 	if (dev->get_stats) {
1968 		struct net_device_stats *stats = dev->get_stats(dev);
1969 
1970 		seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
1971 				"%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
1972 			   dev->name, stats->rx_bytes, stats->rx_packets,
1973 			   stats->rx_errors,
1974 			   stats->rx_dropped + stats->rx_missed_errors,
1975 			   stats->rx_fifo_errors,
1976 			   stats->rx_length_errors + stats->rx_over_errors +
1977 			     stats->rx_crc_errors + stats->rx_frame_errors,
1978 			   stats->rx_compressed, stats->multicast,
1979 			   stats->tx_bytes, stats->tx_packets,
1980 			   stats->tx_errors, stats->tx_dropped,
1981 			   stats->tx_fifo_errors, stats->collisions,
1982 			   stats->tx_carrier_errors +
1983 			     stats->tx_aborted_errors +
1984 			     stats->tx_window_errors +
1985 			     stats->tx_heartbeat_errors,
1986 			   stats->tx_compressed);
1987 	} else
1988 		seq_printf(seq, "%6s: No statistics available.\n", dev->name);
1989 }
1990 
1991 /*
1992  *	Called from the PROCfs module. This now uses the new arbitrary sized
1993  *	/proc/net interface to create /proc/net/dev
1994  */
1995 static int dev_seq_show(struct seq_file *seq, void *v)
1996 {
1997 	if (v == SEQ_START_TOKEN)
1998 		seq_puts(seq, "Inter-|   Receive                            "
1999 			      "                    |  Transmit\n"
2000 			      " face |bytes    packets errs drop fifo frame "
2001 			      "compressed multicast|bytes    packets errs "
2002 			      "drop fifo colls carrier compressed\n");
2003 	else
2004 		dev_seq_printf_stats(seq, v);
2005 	return 0;
2006 }
2007 
2008 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2009 {
2010 	struct netif_rx_stats *rc = NULL;
2011 
2012 	while (*pos < NR_CPUS)
2013 	       	if (cpu_online(*pos)) {
2014 			rc = &per_cpu(netdev_rx_stat, *pos);
2015 			break;
2016 		} else
2017 			++*pos;
2018 	return rc;
2019 }
2020 
2021 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2022 {
2023 	return softnet_get_online(pos);
2024 }
2025 
2026 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2027 {
2028 	++*pos;
2029 	return softnet_get_online(pos);
2030 }
2031 
2032 static void softnet_seq_stop(struct seq_file *seq, void *v)
2033 {
2034 }
2035 
2036 static int softnet_seq_show(struct seq_file *seq, void *v)
2037 {
2038 	struct netif_rx_stats *s = v;
2039 
2040 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2041 		   s->total, s->dropped, s->time_squeeze, 0,
2042 		   0, 0, 0, 0, /* was fastroute */
2043 		   s->cpu_collision );
2044 	return 0;
2045 }
2046 
2047 static struct seq_operations dev_seq_ops = {
2048 	.start = dev_seq_start,
2049 	.next  = dev_seq_next,
2050 	.stop  = dev_seq_stop,
2051 	.show  = dev_seq_show,
2052 };
2053 
2054 static int dev_seq_open(struct inode *inode, struct file *file)
2055 {
2056 	return seq_open(file, &dev_seq_ops);
2057 }
2058 
2059 static struct file_operations dev_seq_fops = {
2060 	.owner	 = THIS_MODULE,
2061 	.open    = dev_seq_open,
2062 	.read    = seq_read,
2063 	.llseek  = seq_lseek,
2064 	.release = seq_release,
2065 };
2066 
2067 static struct seq_operations softnet_seq_ops = {
2068 	.start = softnet_seq_start,
2069 	.next  = softnet_seq_next,
2070 	.stop  = softnet_seq_stop,
2071 	.show  = softnet_seq_show,
2072 };
2073 
2074 static int softnet_seq_open(struct inode *inode, struct file *file)
2075 {
2076 	return seq_open(file, &softnet_seq_ops);
2077 }
2078 
2079 static struct file_operations softnet_seq_fops = {
2080 	.owner	 = THIS_MODULE,
2081 	.open    = softnet_seq_open,
2082 	.read    = seq_read,
2083 	.llseek  = seq_lseek,
2084 	.release = seq_release,
2085 };
2086 
2087 #ifdef CONFIG_WIRELESS_EXT
2088 extern int wireless_proc_init(void);
2089 #else
2090 #define wireless_proc_init() 0
2091 #endif
2092 
2093 static int __init dev_proc_init(void)
2094 {
2095 	int rc = -ENOMEM;
2096 
2097 	if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops))
2098 		goto out;
2099 	if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops))
2100 		goto out_dev;
2101 	if (wireless_proc_init())
2102 		goto out_softnet;
2103 	rc = 0;
2104 out:
2105 	return rc;
2106 out_softnet:
2107 	proc_net_remove("softnet_stat");
2108 out_dev:
2109 	proc_net_remove("dev");
2110 	goto out;
2111 }
2112 #else
2113 #define dev_proc_init() 0
2114 #endif	/* CONFIG_PROC_FS */
2115 
2116 
2117 /**
2118  *	netdev_set_master	-	set up master/slave pair
2119  *	@slave: slave device
2120  *	@master: new master device
2121  *
2122  *	Changes the master device of the slave. Pass %NULL to break the
2123  *	bonding. The caller must hold the RTNL semaphore. On a failure
2124  *	a negative errno code is returned. On success the reference counts
2125  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2126  *	function returns zero.
2127  */
2128 int netdev_set_master(struct net_device *slave, struct net_device *master)
2129 {
2130 	struct net_device *old = slave->master;
2131 
2132 	ASSERT_RTNL();
2133 
2134 	if (master) {
2135 		if (old)
2136 			return -EBUSY;
2137 		dev_hold(master);
2138 	}
2139 
2140 	slave->master = master;
2141 
2142 	synchronize_net();
2143 
2144 	if (old)
2145 		dev_put(old);
2146 
2147 	if (master)
2148 		slave->flags |= IFF_SLAVE;
2149 	else
2150 		slave->flags &= ~IFF_SLAVE;
2151 
2152 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2153 	return 0;
2154 }
2155 
2156 /**
2157  *	dev_set_promiscuity	- update promiscuity count on a device
2158  *	@dev: device
2159  *	@inc: modifier
2160  *
2161  *	Add or remove promiscuity from a device. While the count in the device
2162  *	remains above zero the interface remains promiscuous. Once it hits zero
2163  *	the device reverts back to normal filtering operation. A negative inc
2164  *	value is used to drop promiscuity on the device.
2165  */
2166 void dev_set_promiscuity(struct net_device *dev, int inc)
2167 {
2168 	unsigned short old_flags = dev->flags;
2169 
2170 	if ((dev->promiscuity += inc) == 0)
2171 		dev->flags &= ~IFF_PROMISC;
2172 	else
2173 		dev->flags |= IFF_PROMISC;
2174 	if (dev->flags != old_flags) {
2175 		dev_mc_upload(dev);
2176 		printk(KERN_INFO "device %s %s promiscuous mode\n",
2177 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2178 		       					       "left");
2179 		audit_log(current->audit_context, GFP_ATOMIC,
2180 			AUDIT_ANOM_PROMISCUOUS,
2181 			"dev=%s prom=%d old_prom=%d auid=%u",
2182 			dev->name, (dev->flags & IFF_PROMISC),
2183 			(old_flags & IFF_PROMISC),
2184 			audit_get_loginuid(current->audit_context));
2185 	}
2186 }
2187 
2188 /**
2189  *	dev_set_allmulti	- update allmulti count on a device
2190  *	@dev: device
2191  *	@inc: modifier
2192  *
2193  *	Add or remove reception of all multicast frames to a device. While the
2194  *	count in the device remains above zero the interface remains listening
2195  *	to all interfaces. Once it hits zero the device reverts back to normal
2196  *	filtering operation. A negative @inc value is used to drop the counter
2197  *	when releasing a resource needing all multicasts.
2198  */
2199 
2200 void dev_set_allmulti(struct net_device *dev, int inc)
2201 {
2202 	unsigned short old_flags = dev->flags;
2203 
2204 	dev->flags |= IFF_ALLMULTI;
2205 	if ((dev->allmulti += inc) == 0)
2206 		dev->flags &= ~IFF_ALLMULTI;
2207 	if (dev->flags ^ old_flags)
2208 		dev_mc_upload(dev);
2209 }
2210 
2211 unsigned dev_get_flags(const struct net_device *dev)
2212 {
2213 	unsigned flags;
2214 
2215 	flags = (dev->flags & ~(IFF_PROMISC |
2216 				IFF_ALLMULTI |
2217 				IFF_RUNNING |
2218 				IFF_LOWER_UP |
2219 				IFF_DORMANT)) |
2220 		(dev->gflags & (IFF_PROMISC |
2221 				IFF_ALLMULTI));
2222 
2223 	if (netif_running(dev)) {
2224 		if (netif_oper_up(dev))
2225 			flags |= IFF_RUNNING;
2226 		if (netif_carrier_ok(dev))
2227 			flags |= IFF_LOWER_UP;
2228 		if (netif_dormant(dev))
2229 			flags |= IFF_DORMANT;
2230 	}
2231 
2232 	return flags;
2233 }
2234 
2235 int dev_change_flags(struct net_device *dev, unsigned flags)
2236 {
2237 	int ret;
2238 	int old_flags = dev->flags;
2239 
2240 	/*
2241 	 *	Set the flags on our device.
2242 	 */
2243 
2244 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
2245 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
2246 			       IFF_AUTOMEDIA)) |
2247 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
2248 				    IFF_ALLMULTI));
2249 
2250 	/*
2251 	 *	Load in the correct multicast list now the flags have changed.
2252 	 */
2253 
2254 	dev_mc_upload(dev);
2255 
2256 	/*
2257 	 *	Have we downed the interface. We handle IFF_UP ourselves
2258 	 *	according to user attempts to set it, rather than blindly
2259 	 *	setting it.
2260 	 */
2261 
2262 	ret = 0;
2263 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
2264 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
2265 
2266 		if (!ret)
2267 			dev_mc_upload(dev);
2268 	}
2269 
2270 	if (dev->flags & IFF_UP &&
2271 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
2272 					  IFF_VOLATILE)))
2273 		raw_notifier_call_chain(&netdev_chain,
2274 				NETDEV_CHANGE, dev);
2275 
2276 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
2277 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
2278 		dev->gflags ^= IFF_PROMISC;
2279 		dev_set_promiscuity(dev, inc);
2280 	}
2281 
2282 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
2283 	   is important. Some (broken) drivers set IFF_PROMISC, when
2284 	   IFF_ALLMULTI is requested not asking us and not reporting.
2285 	 */
2286 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
2287 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
2288 		dev->gflags ^= IFF_ALLMULTI;
2289 		dev_set_allmulti(dev, inc);
2290 	}
2291 
2292 	if (old_flags ^ dev->flags)
2293 		rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags);
2294 
2295 	return ret;
2296 }
2297 
2298 int dev_set_mtu(struct net_device *dev, int new_mtu)
2299 {
2300 	int err;
2301 
2302 	if (new_mtu == dev->mtu)
2303 		return 0;
2304 
2305 	/*	MTU must be positive.	 */
2306 	if (new_mtu < 0)
2307 		return -EINVAL;
2308 
2309 	if (!netif_device_present(dev))
2310 		return -ENODEV;
2311 
2312 	err = 0;
2313 	if (dev->change_mtu)
2314 		err = dev->change_mtu(dev, new_mtu);
2315 	else
2316 		dev->mtu = new_mtu;
2317 	if (!err && dev->flags & IFF_UP)
2318 		raw_notifier_call_chain(&netdev_chain,
2319 				NETDEV_CHANGEMTU, dev);
2320 	return err;
2321 }
2322 
2323 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
2324 {
2325 	int err;
2326 
2327 	if (!dev->set_mac_address)
2328 		return -EOPNOTSUPP;
2329 	if (sa->sa_family != dev->type)
2330 		return -EINVAL;
2331 	if (!netif_device_present(dev))
2332 		return -ENODEV;
2333 	err = dev->set_mac_address(dev, sa);
2334 	if (!err)
2335 		raw_notifier_call_chain(&netdev_chain,
2336 				NETDEV_CHANGEADDR, dev);
2337 	return err;
2338 }
2339 
2340 /*
2341  *	Perform the SIOCxIFxxx calls.
2342  */
2343 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd)
2344 {
2345 	int err;
2346 	struct net_device *dev = __dev_get_by_name(ifr->ifr_name);
2347 
2348 	if (!dev)
2349 		return -ENODEV;
2350 
2351 	switch (cmd) {
2352 		case SIOCGIFFLAGS:	/* Get interface flags */
2353 			ifr->ifr_flags = dev_get_flags(dev);
2354 			return 0;
2355 
2356 		case SIOCSIFFLAGS:	/* Set interface flags */
2357 			return dev_change_flags(dev, ifr->ifr_flags);
2358 
2359 		case SIOCGIFMETRIC:	/* Get the metric on the interface
2360 					   (currently unused) */
2361 			ifr->ifr_metric = 0;
2362 			return 0;
2363 
2364 		case SIOCSIFMETRIC:	/* Set the metric on the interface
2365 					   (currently unused) */
2366 			return -EOPNOTSUPP;
2367 
2368 		case SIOCGIFMTU:	/* Get the MTU of a device */
2369 			ifr->ifr_mtu = dev->mtu;
2370 			return 0;
2371 
2372 		case SIOCSIFMTU:	/* Set the MTU of a device */
2373 			return dev_set_mtu(dev, ifr->ifr_mtu);
2374 
2375 		case SIOCGIFHWADDR:
2376 			if (!dev->addr_len)
2377 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
2378 			else
2379 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
2380 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2381 			ifr->ifr_hwaddr.sa_family = dev->type;
2382 			return 0;
2383 
2384 		case SIOCSIFHWADDR:
2385 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
2386 
2387 		case SIOCSIFHWBROADCAST:
2388 			if (ifr->ifr_hwaddr.sa_family != dev->type)
2389 				return -EINVAL;
2390 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
2391 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
2392 			raw_notifier_call_chain(&netdev_chain,
2393 					    NETDEV_CHANGEADDR, dev);
2394 			return 0;
2395 
2396 		case SIOCGIFMAP:
2397 			ifr->ifr_map.mem_start = dev->mem_start;
2398 			ifr->ifr_map.mem_end   = dev->mem_end;
2399 			ifr->ifr_map.base_addr = dev->base_addr;
2400 			ifr->ifr_map.irq       = dev->irq;
2401 			ifr->ifr_map.dma       = dev->dma;
2402 			ifr->ifr_map.port      = dev->if_port;
2403 			return 0;
2404 
2405 		case SIOCSIFMAP:
2406 			if (dev->set_config) {
2407 				if (!netif_device_present(dev))
2408 					return -ENODEV;
2409 				return dev->set_config(dev, &ifr->ifr_map);
2410 			}
2411 			return -EOPNOTSUPP;
2412 
2413 		case SIOCADDMULTI:
2414 			if (!dev->set_multicast_list ||
2415 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2416 				return -EINVAL;
2417 			if (!netif_device_present(dev))
2418 				return -ENODEV;
2419 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
2420 					  dev->addr_len, 1);
2421 
2422 		case SIOCDELMULTI:
2423 			if (!dev->set_multicast_list ||
2424 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
2425 				return -EINVAL;
2426 			if (!netif_device_present(dev))
2427 				return -ENODEV;
2428 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
2429 					     dev->addr_len, 1);
2430 
2431 		case SIOCGIFINDEX:
2432 			ifr->ifr_ifindex = dev->ifindex;
2433 			return 0;
2434 
2435 		case SIOCGIFTXQLEN:
2436 			ifr->ifr_qlen = dev->tx_queue_len;
2437 			return 0;
2438 
2439 		case SIOCSIFTXQLEN:
2440 			if (ifr->ifr_qlen < 0)
2441 				return -EINVAL;
2442 			dev->tx_queue_len = ifr->ifr_qlen;
2443 			return 0;
2444 
2445 		case SIOCSIFNAME:
2446 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
2447 			return dev_change_name(dev, ifr->ifr_newname);
2448 
2449 		/*
2450 		 *	Unknown or private ioctl
2451 		 */
2452 
2453 		default:
2454 			if ((cmd >= SIOCDEVPRIVATE &&
2455 			    cmd <= SIOCDEVPRIVATE + 15) ||
2456 			    cmd == SIOCBONDENSLAVE ||
2457 			    cmd == SIOCBONDRELEASE ||
2458 			    cmd == SIOCBONDSETHWADDR ||
2459 			    cmd == SIOCBONDSLAVEINFOQUERY ||
2460 			    cmd == SIOCBONDINFOQUERY ||
2461 			    cmd == SIOCBONDCHANGEACTIVE ||
2462 			    cmd == SIOCGMIIPHY ||
2463 			    cmd == SIOCGMIIREG ||
2464 			    cmd == SIOCSMIIREG ||
2465 			    cmd == SIOCBRADDIF ||
2466 			    cmd == SIOCBRDELIF ||
2467 			    cmd == SIOCWANDEV) {
2468 				err = -EOPNOTSUPP;
2469 				if (dev->do_ioctl) {
2470 					if (netif_device_present(dev))
2471 						err = dev->do_ioctl(dev, ifr,
2472 								    cmd);
2473 					else
2474 						err = -ENODEV;
2475 				}
2476 			} else
2477 				err = -EINVAL;
2478 
2479 	}
2480 	return err;
2481 }
2482 
2483 /*
2484  *	This function handles all "interface"-type I/O control requests. The actual
2485  *	'doing' part of this is dev_ifsioc above.
2486  */
2487 
2488 /**
2489  *	dev_ioctl	-	network device ioctl
2490  *	@cmd: command to issue
2491  *	@arg: pointer to a struct ifreq in user space
2492  *
2493  *	Issue ioctl functions to devices. This is normally called by the
2494  *	user space syscall interfaces but can sometimes be useful for
2495  *	other purposes. The return value is the return from the syscall if
2496  *	positive or a negative errno code on error.
2497  */
2498 
2499 int dev_ioctl(unsigned int cmd, void __user *arg)
2500 {
2501 	struct ifreq ifr;
2502 	int ret;
2503 	char *colon;
2504 
2505 	/* One special case: SIOCGIFCONF takes ifconf argument
2506 	   and requires shared lock, because it sleeps writing
2507 	   to user space.
2508 	 */
2509 
2510 	if (cmd == SIOCGIFCONF) {
2511 		rtnl_lock();
2512 		ret = dev_ifconf((char __user *) arg);
2513 		rtnl_unlock();
2514 		return ret;
2515 	}
2516 	if (cmd == SIOCGIFNAME)
2517 		return dev_ifname((struct ifreq __user *)arg);
2518 
2519 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2520 		return -EFAULT;
2521 
2522 	ifr.ifr_name[IFNAMSIZ-1] = 0;
2523 
2524 	colon = strchr(ifr.ifr_name, ':');
2525 	if (colon)
2526 		*colon = 0;
2527 
2528 	/*
2529 	 *	See which interface the caller is talking about.
2530 	 */
2531 
2532 	switch (cmd) {
2533 		/*
2534 		 *	These ioctl calls:
2535 		 *	- can be done by all.
2536 		 *	- atomic and do not require locking.
2537 		 *	- return a value
2538 		 */
2539 		case SIOCGIFFLAGS:
2540 		case SIOCGIFMETRIC:
2541 		case SIOCGIFMTU:
2542 		case SIOCGIFHWADDR:
2543 		case SIOCGIFSLAVE:
2544 		case SIOCGIFMAP:
2545 		case SIOCGIFINDEX:
2546 		case SIOCGIFTXQLEN:
2547 			dev_load(ifr.ifr_name);
2548 			read_lock(&dev_base_lock);
2549 			ret = dev_ifsioc(&ifr, cmd);
2550 			read_unlock(&dev_base_lock);
2551 			if (!ret) {
2552 				if (colon)
2553 					*colon = ':';
2554 				if (copy_to_user(arg, &ifr,
2555 						 sizeof(struct ifreq)))
2556 					ret = -EFAULT;
2557 			}
2558 			return ret;
2559 
2560 		case SIOCETHTOOL:
2561 			dev_load(ifr.ifr_name);
2562 			rtnl_lock();
2563 			ret = dev_ethtool(&ifr);
2564 			rtnl_unlock();
2565 			if (!ret) {
2566 				if (colon)
2567 					*colon = ':';
2568 				if (copy_to_user(arg, &ifr,
2569 						 sizeof(struct ifreq)))
2570 					ret = -EFAULT;
2571 			}
2572 			return ret;
2573 
2574 		/*
2575 		 *	These ioctl calls:
2576 		 *	- require superuser power.
2577 		 *	- require strict serialization.
2578 		 *	- return a value
2579 		 */
2580 		case SIOCGMIIPHY:
2581 		case SIOCGMIIREG:
2582 		case SIOCSIFNAME:
2583 			if (!capable(CAP_NET_ADMIN))
2584 				return -EPERM;
2585 			dev_load(ifr.ifr_name);
2586 			rtnl_lock();
2587 			ret = dev_ifsioc(&ifr, cmd);
2588 			rtnl_unlock();
2589 			if (!ret) {
2590 				if (colon)
2591 					*colon = ':';
2592 				if (copy_to_user(arg, &ifr,
2593 						 sizeof(struct ifreq)))
2594 					ret = -EFAULT;
2595 			}
2596 			return ret;
2597 
2598 		/*
2599 		 *	These ioctl calls:
2600 		 *	- require superuser power.
2601 		 *	- require strict serialization.
2602 		 *	- do not return a value
2603 		 */
2604 		case SIOCSIFFLAGS:
2605 		case SIOCSIFMETRIC:
2606 		case SIOCSIFMTU:
2607 		case SIOCSIFMAP:
2608 		case SIOCSIFHWADDR:
2609 		case SIOCSIFSLAVE:
2610 		case SIOCADDMULTI:
2611 		case SIOCDELMULTI:
2612 		case SIOCSIFHWBROADCAST:
2613 		case SIOCSIFTXQLEN:
2614 		case SIOCSMIIREG:
2615 		case SIOCBONDENSLAVE:
2616 		case SIOCBONDRELEASE:
2617 		case SIOCBONDSETHWADDR:
2618 		case SIOCBONDCHANGEACTIVE:
2619 		case SIOCBRADDIF:
2620 		case SIOCBRDELIF:
2621 			if (!capable(CAP_NET_ADMIN))
2622 				return -EPERM;
2623 			/* fall through */
2624 		case SIOCBONDSLAVEINFOQUERY:
2625 		case SIOCBONDINFOQUERY:
2626 			dev_load(ifr.ifr_name);
2627 			rtnl_lock();
2628 			ret = dev_ifsioc(&ifr, cmd);
2629 			rtnl_unlock();
2630 			return ret;
2631 
2632 		case SIOCGIFMEM:
2633 			/* Get the per device memory space. We can add this but
2634 			 * currently do not support it */
2635 		case SIOCSIFMEM:
2636 			/* Set the per device memory buffer space.
2637 			 * Not applicable in our case */
2638 		case SIOCSIFLINK:
2639 			return -EINVAL;
2640 
2641 		/*
2642 		 *	Unknown or private ioctl.
2643 		 */
2644 		default:
2645 			if (cmd == SIOCWANDEV ||
2646 			    (cmd >= SIOCDEVPRIVATE &&
2647 			     cmd <= SIOCDEVPRIVATE + 15)) {
2648 				dev_load(ifr.ifr_name);
2649 				rtnl_lock();
2650 				ret = dev_ifsioc(&ifr, cmd);
2651 				rtnl_unlock();
2652 				if (!ret && copy_to_user(arg, &ifr,
2653 							 sizeof(struct ifreq)))
2654 					ret = -EFAULT;
2655 				return ret;
2656 			}
2657 #ifdef CONFIG_WIRELESS_EXT
2658 			/* Take care of Wireless Extensions */
2659 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
2660 				/* If command is `set a parameter', or
2661 				 * `get the encoding parameters', check if
2662 				 * the user has the right to do it */
2663 				if (IW_IS_SET(cmd) || cmd == SIOCGIWENCODE
2664 				    || cmd == SIOCGIWENCODEEXT) {
2665 					if (!capable(CAP_NET_ADMIN))
2666 						return -EPERM;
2667 				}
2668 				dev_load(ifr.ifr_name);
2669 				rtnl_lock();
2670 				/* Follow me in net/core/wireless.c */
2671 				ret = wireless_process_ioctl(&ifr, cmd);
2672 				rtnl_unlock();
2673 				if (IW_IS_GET(cmd) &&
2674 				    copy_to_user(arg, &ifr,
2675 					    	 sizeof(struct ifreq)))
2676 					ret = -EFAULT;
2677 				return ret;
2678 			}
2679 #endif	/* CONFIG_WIRELESS_EXT */
2680 			return -EINVAL;
2681 	}
2682 }
2683 
2684 
2685 /**
2686  *	dev_new_index	-	allocate an ifindex
2687  *
2688  *	Returns a suitable unique value for a new device interface
2689  *	number.  The caller must hold the rtnl semaphore or the
2690  *	dev_base_lock to be sure it remains unique.
2691  */
2692 static int dev_new_index(void)
2693 {
2694 	static int ifindex;
2695 	for (;;) {
2696 		if (++ifindex <= 0)
2697 			ifindex = 1;
2698 		if (!__dev_get_by_index(ifindex))
2699 			return ifindex;
2700 	}
2701 }
2702 
2703 static int dev_boot_phase = 1;
2704 
2705 /* Delayed registration/unregisteration */
2706 static DEFINE_SPINLOCK(net_todo_list_lock);
2707 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
2708 
2709 static inline void net_set_todo(struct net_device *dev)
2710 {
2711 	spin_lock(&net_todo_list_lock);
2712 	list_add_tail(&dev->todo_list, &net_todo_list);
2713 	spin_unlock(&net_todo_list_lock);
2714 }
2715 
2716 /**
2717  *	register_netdevice	- register a network device
2718  *	@dev: device to register
2719  *
2720  *	Take a completed network device structure and add it to the kernel
2721  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
2722  *	chain. 0 is returned on success. A negative errno code is returned
2723  *	on a failure to set up the device, or if the name is a duplicate.
2724  *
2725  *	Callers must hold the rtnl semaphore. You may want
2726  *	register_netdev() instead of this.
2727  *
2728  *	BUGS:
2729  *	The locking appears insufficient to guarantee two parallel registers
2730  *	will not get the same name.
2731  */
2732 
2733 int register_netdevice(struct net_device *dev)
2734 {
2735 	struct hlist_head *head;
2736 	struct hlist_node *p;
2737 	int ret;
2738 
2739 	BUG_ON(dev_boot_phase);
2740 	ASSERT_RTNL();
2741 
2742 	might_sleep();
2743 
2744 	/* When net_device's are persistent, this will be fatal. */
2745 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
2746 
2747 	spin_lock_init(&dev->queue_lock);
2748 	spin_lock_init(&dev->_xmit_lock);
2749 	dev->xmit_lock_owner = -1;
2750 #ifdef CONFIG_NET_CLS_ACT
2751 	spin_lock_init(&dev->ingress_lock);
2752 #endif
2753 
2754 	ret = alloc_divert_blk(dev);
2755 	if (ret)
2756 		goto out;
2757 
2758 	dev->iflink = -1;
2759 
2760 	/* Init, if this function is available */
2761 	if (dev->init) {
2762 		ret = dev->init(dev);
2763 		if (ret) {
2764 			if (ret > 0)
2765 				ret = -EIO;
2766 			goto out_err;
2767 		}
2768 	}
2769 
2770 	if (!dev_valid_name(dev->name)) {
2771 		ret = -EINVAL;
2772 		goto out_err;
2773 	}
2774 
2775 	dev->ifindex = dev_new_index();
2776 	if (dev->iflink == -1)
2777 		dev->iflink = dev->ifindex;
2778 
2779 	/* Check for existence of name */
2780 	head = dev_name_hash(dev->name);
2781 	hlist_for_each(p, head) {
2782 		struct net_device *d
2783 			= hlist_entry(p, struct net_device, name_hlist);
2784 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
2785 			ret = -EEXIST;
2786  			goto out_err;
2787 		}
2788  	}
2789 
2790 	/* Fix illegal SG+CSUM combinations. */
2791 	if ((dev->features & NETIF_F_SG) &&
2792 	    !(dev->features & NETIF_F_ALL_CSUM)) {
2793 		printk("%s: Dropping NETIF_F_SG since no checksum feature.\n",
2794 		       dev->name);
2795 		dev->features &= ~NETIF_F_SG;
2796 	}
2797 
2798 	/* TSO requires that SG is present as well. */
2799 	if ((dev->features & NETIF_F_TSO) &&
2800 	    !(dev->features & NETIF_F_SG)) {
2801 		printk("%s: Dropping NETIF_F_TSO since no SG feature.\n",
2802 		       dev->name);
2803 		dev->features &= ~NETIF_F_TSO;
2804 	}
2805 	if (dev->features & NETIF_F_UFO) {
2806 		if (!(dev->features & NETIF_F_HW_CSUM)) {
2807 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
2808 					"NETIF_F_HW_CSUM feature.\n",
2809 							dev->name);
2810 			dev->features &= ~NETIF_F_UFO;
2811 		}
2812 		if (!(dev->features & NETIF_F_SG)) {
2813 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
2814 					"NETIF_F_SG feature.\n",
2815 					dev->name);
2816 			dev->features &= ~NETIF_F_UFO;
2817 		}
2818 	}
2819 
2820 	/*
2821 	 *	nil rebuild_header routine,
2822 	 *	that should be never called and used as just bug trap.
2823 	 */
2824 
2825 	if (!dev->rebuild_header)
2826 		dev->rebuild_header = default_rebuild_header;
2827 
2828 	ret = netdev_register_sysfs(dev);
2829 	if (ret)
2830 		goto out_err;
2831 	dev->reg_state = NETREG_REGISTERED;
2832 
2833 	/*
2834 	 *	Default initial state at registry is that the
2835 	 *	device is present.
2836 	 */
2837 
2838 	set_bit(__LINK_STATE_PRESENT, &dev->state);
2839 
2840 	dev->next = NULL;
2841 	dev_init_scheduler(dev);
2842 	write_lock_bh(&dev_base_lock);
2843 	*dev_tail = dev;
2844 	dev_tail = &dev->next;
2845 	hlist_add_head(&dev->name_hlist, head);
2846 	hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex));
2847 	dev_hold(dev);
2848 	write_unlock_bh(&dev_base_lock);
2849 
2850 	/* Notify protocols, that a new device appeared. */
2851 	raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev);
2852 
2853 	ret = 0;
2854 
2855 out:
2856 	return ret;
2857 out_err:
2858 	free_divert_blk(dev);
2859 	goto out;
2860 }
2861 
2862 /**
2863  *	register_netdev	- register a network device
2864  *	@dev: device to register
2865  *
2866  *	Take a completed network device structure and add it to the kernel
2867  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
2868  *	chain. 0 is returned on success. A negative errno code is returned
2869  *	on a failure to set up the device, or if the name is a duplicate.
2870  *
2871  *	This is a wrapper around register_netdev that takes the rtnl semaphore
2872  *	and expands the device name if you passed a format string to
2873  *	alloc_netdev.
2874  */
2875 int register_netdev(struct net_device *dev)
2876 {
2877 	int err;
2878 
2879 	rtnl_lock();
2880 
2881 	/*
2882 	 * If the name is a format string the caller wants us to do a
2883 	 * name allocation.
2884 	 */
2885 	if (strchr(dev->name, '%')) {
2886 		err = dev_alloc_name(dev, dev->name);
2887 		if (err < 0)
2888 			goto out;
2889 	}
2890 
2891 	/*
2892 	 * Back compatibility hook. Kill this one in 2.5
2893 	 */
2894 	if (dev->name[0] == 0 || dev->name[0] == ' ') {
2895 		err = dev_alloc_name(dev, "eth%d");
2896 		if (err < 0)
2897 			goto out;
2898 	}
2899 
2900 	err = register_netdevice(dev);
2901 out:
2902 	rtnl_unlock();
2903 	return err;
2904 }
2905 EXPORT_SYMBOL(register_netdev);
2906 
2907 /*
2908  * netdev_wait_allrefs - wait until all references are gone.
2909  *
2910  * This is called when unregistering network devices.
2911  *
2912  * Any protocol or device that holds a reference should register
2913  * for netdevice notification, and cleanup and put back the
2914  * reference if they receive an UNREGISTER event.
2915  * We can get stuck here if buggy protocols don't correctly
2916  * call dev_put.
2917  */
2918 static void netdev_wait_allrefs(struct net_device *dev)
2919 {
2920 	unsigned long rebroadcast_time, warning_time;
2921 
2922 	rebroadcast_time = warning_time = jiffies;
2923 	while (atomic_read(&dev->refcnt) != 0) {
2924 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
2925 			rtnl_lock();
2926 
2927 			/* Rebroadcast unregister notification */
2928 			raw_notifier_call_chain(&netdev_chain,
2929 					    NETDEV_UNREGISTER, dev);
2930 
2931 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
2932 				     &dev->state)) {
2933 				/* We must not have linkwatch events
2934 				 * pending on unregister. If this
2935 				 * happens, we simply run the queue
2936 				 * unscheduled, resulting in a noop
2937 				 * for this device.
2938 				 */
2939 				linkwatch_run_queue();
2940 			}
2941 
2942 			__rtnl_unlock();
2943 
2944 			rebroadcast_time = jiffies;
2945 		}
2946 
2947 		msleep(250);
2948 
2949 		if (time_after(jiffies, warning_time + 10 * HZ)) {
2950 			printk(KERN_EMERG "unregister_netdevice: "
2951 			       "waiting for %s to become free. Usage "
2952 			       "count = %d\n",
2953 			       dev->name, atomic_read(&dev->refcnt));
2954 			warning_time = jiffies;
2955 		}
2956 	}
2957 }
2958 
2959 /* The sequence is:
2960  *
2961  *	rtnl_lock();
2962  *	...
2963  *	register_netdevice(x1);
2964  *	register_netdevice(x2);
2965  *	...
2966  *	unregister_netdevice(y1);
2967  *	unregister_netdevice(y2);
2968  *      ...
2969  *	rtnl_unlock();
2970  *	free_netdev(y1);
2971  *	free_netdev(y2);
2972  *
2973  * We are invoked by rtnl_unlock() after it drops the semaphore.
2974  * This allows us to deal with problems:
2975  * 1) We can delete sysfs objects which invoke hotplug
2976  *    without deadlocking with linkwatch via keventd.
2977  * 2) Since we run with the RTNL semaphore not held, we can sleep
2978  *    safely in order to wait for the netdev refcnt to drop to zero.
2979  */
2980 static DEFINE_MUTEX(net_todo_run_mutex);
2981 void netdev_run_todo(void)
2982 {
2983 	struct list_head list = LIST_HEAD_INIT(list);
2984 
2985 	/* Need to guard against multiple cpu's getting out of order. */
2986 	mutex_lock(&net_todo_run_mutex);
2987 
2988 	/* Not safe to do outside the semaphore.  We must not return
2989 	 * until all unregister events invoked by the local processor
2990 	 * have been completed (either by this todo run, or one on
2991 	 * another cpu).
2992 	 */
2993 	if (list_empty(&net_todo_list))
2994 		goto out;
2995 
2996 	/* Snapshot list, allow later requests */
2997 	spin_lock(&net_todo_list_lock);
2998 	list_splice_init(&net_todo_list, &list);
2999 	spin_unlock(&net_todo_list_lock);
3000 
3001 	while (!list_empty(&list)) {
3002 		struct net_device *dev
3003 			= list_entry(list.next, struct net_device, todo_list);
3004 		list_del(&dev->todo_list);
3005 
3006 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3007 			printk(KERN_ERR "network todo '%s' but state %d\n",
3008 			       dev->name, dev->reg_state);
3009 			dump_stack();
3010 			continue;
3011 		}
3012 
3013 		netdev_unregister_sysfs(dev);
3014 		dev->reg_state = NETREG_UNREGISTERED;
3015 
3016 		netdev_wait_allrefs(dev);
3017 
3018 		/* paranoia */
3019 		BUG_ON(atomic_read(&dev->refcnt));
3020 		BUG_TRAP(!dev->ip_ptr);
3021 		BUG_TRAP(!dev->ip6_ptr);
3022 		BUG_TRAP(!dev->dn_ptr);
3023 
3024 		/* It must be the very last action,
3025 		 * after this 'dev' may point to freed up memory.
3026 		 */
3027 		if (dev->destructor)
3028 			dev->destructor(dev);
3029 	}
3030 
3031 out:
3032 	mutex_unlock(&net_todo_run_mutex);
3033 }
3034 
3035 /**
3036  *	alloc_netdev - allocate network device
3037  *	@sizeof_priv:	size of private data to allocate space for
3038  *	@name:		device name format string
3039  *	@setup:		callback to initialize device
3040  *
3041  *	Allocates a struct net_device with private data area for driver use
3042  *	and performs basic initialization.
3043  */
3044 struct net_device *alloc_netdev(int sizeof_priv, const char *name,
3045 		void (*setup)(struct net_device *))
3046 {
3047 	void *p;
3048 	struct net_device *dev;
3049 	int alloc_size;
3050 
3051 	/* ensure 32-byte alignment of both the device and private area */
3052 	alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
3053 	alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3054 
3055 	p = kzalloc(alloc_size, GFP_KERNEL);
3056 	if (!p) {
3057 		printk(KERN_ERR "alloc_dev: Unable to allocate device.\n");
3058 		return NULL;
3059 	}
3060 
3061 	dev = (struct net_device *)
3062 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3063 	dev->padded = (char *)dev - (char *)p;
3064 
3065 	if (sizeof_priv)
3066 		dev->priv = netdev_priv(dev);
3067 
3068 	setup(dev);
3069 	strcpy(dev->name, name);
3070 	return dev;
3071 }
3072 EXPORT_SYMBOL(alloc_netdev);
3073 
3074 /**
3075  *	free_netdev - free network device
3076  *	@dev: device
3077  *
3078  *	This function does the last stage of destroying an allocated device
3079  * 	interface. The reference to the device object is released.
3080  *	If this is the last reference then it will be freed.
3081  */
3082 void free_netdev(struct net_device *dev)
3083 {
3084 #ifdef CONFIG_SYSFS
3085 	/*  Compatibility with error handling in drivers */
3086 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3087 		kfree((char *)dev - dev->padded);
3088 		return;
3089 	}
3090 
3091 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3092 	dev->reg_state = NETREG_RELEASED;
3093 
3094 	/* will free via class release */
3095 	class_device_put(&dev->class_dev);
3096 #else
3097 	kfree((char *)dev - dev->padded);
3098 #endif
3099 }
3100 
3101 /* Synchronize with packet receive processing. */
3102 void synchronize_net(void)
3103 {
3104 	might_sleep();
3105 	synchronize_rcu();
3106 }
3107 
3108 /**
3109  *	unregister_netdevice - remove device from the kernel
3110  *	@dev: device
3111  *
3112  *	This function shuts down a device interface and removes it
3113  *	from the kernel tables. On success 0 is returned, on a failure
3114  *	a negative errno code is returned.
3115  *
3116  *	Callers must hold the rtnl semaphore.  You may want
3117  *	unregister_netdev() instead of this.
3118  */
3119 
3120 int unregister_netdevice(struct net_device *dev)
3121 {
3122 	struct net_device *d, **dp;
3123 
3124 	BUG_ON(dev_boot_phase);
3125 	ASSERT_RTNL();
3126 
3127 	/* Some devices call without registering for initialization unwind. */
3128 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3129 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3130 				  "was registered\n", dev->name, dev);
3131 		return -ENODEV;
3132 	}
3133 
3134 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
3135 
3136 	/* If device is running, close it first. */
3137 	if (dev->flags & IFF_UP)
3138 		dev_close(dev);
3139 
3140 	/* And unlink it from device chain. */
3141 	for (dp = &dev_base; (d = *dp) != NULL; dp = &d->next) {
3142 		if (d == dev) {
3143 			write_lock_bh(&dev_base_lock);
3144 			hlist_del(&dev->name_hlist);
3145 			hlist_del(&dev->index_hlist);
3146 			if (dev_tail == &dev->next)
3147 				dev_tail = dp;
3148 			*dp = d->next;
3149 			write_unlock_bh(&dev_base_lock);
3150 			break;
3151 		}
3152 	}
3153 	if (!d) {
3154 		printk(KERN_ERR "unregister net_device: '%s' not found\n",
3155 		       dev->name);
3156 		return -ENODEV;
3157 	}
3158 
3159 	dev->reg_state = NETREG_UNREGISTERING;
3160 
3161 	synchronize_net();
3162 
3163 	/* Shutdown queueing discipline. */
3164 	dev_shutdown(dev);
3165 
3166 
3167 	/* Notify protocols, that we are about to destroy
3168 	   this device. They should clean all the things.
3169 	*/
3170 	raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev);
3171 
3172 	/*
3173 	 *	Flush the multicast chain
3174 	 */
3175 	dev_mc_discard(dev);
3176 
3177 	if (dev->uninit)
3178 		dev->uninit(dev);
3179 
3180 	/* Notifier chain MUST detach us from master device. */
3181 	BUG_TRAP(!dev->master);
3182 
3183 	free_divert_blk(dev);
3184 
3185 	/* Finish processing unregister after unlock */
3186 	net_set_todo(dev);
3187 
3188 	synchronize_net();
3189 
3190 	dev_put(dev);
3191 	return 0;
3192 }
3193 
3194 /**
3195  *	unregister_netdev - remove device from the kernel
3196  *	@dev: device
3197  *
3198  *	This function shuts down a device interface and removes it
3199  *	from the kernel tables. On success 0 is returned, on a failure
3200  *	a negative errno code is returned.
3201  *
3202  *	This is just a wrapper for unregister_netdevice that takes
3203  *	the rtnl semaphore.  In general you want to use this and not
3204  *	unregister_netdevice.
3205  */
3206 void unregister_netdev(struct net_device *dev)
3207 {
3208 	rtnl_lock();
3209 	unregister_netdevice(dev);
3210 	rtnl_unlock();
3211 }
3212 
3213 EXPORT_SYMBOL(unregister_netdev);
3214 
3215 #ifdef CONFIG_HOTPLUG_CPU
3216 static int dev_cpu_callback(struct notifier_block *nfb,
3217 			    unsigned long action,
3218 			    void *ocpu)
3219 {
3220 	struct sk_buff **list_skb;
3221 	struct net_device **list_net;
3222 	struct sk_buff *skb;
3223 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
3224 	struct softnet_data *sd, *oldsd;
3225 
3226 	if (action != CPU_DEAD)
3227 		return NOTIFY_OK;
3228 
3229 	local_irq_disable();
3230 	cpu = smp_processor_id();
3231 	sd = &per_cpu(softnet_data, cpu);
3232 	oldsd = &per_cpu(softnet_data, oldcpu);
3233 
3234 	/* Find end of our completion_queue. */
3235 	list_skb = &sd->completion_queue;
3236 	while (*list_skb)
3237 		list_skb = &(*list_skb)->next;
3238 	/* Append completion queue from offline CPU. */
3239 	*list_skb = oldsd->completion_queue;
3240 	oldsd->completion_queue = NULL;
3241 
3242 	/* Find end of our output_queue. */
3243 	list_net = &sd->output_queue;
3244 	while (*list_net)
3245 		list_net = &(*list_net)->next_sched;
3246 	/* Append output queue from offline CPU. */
3247 	*list_net = oldsd->output_queue;
3248 	oldsd->output_queue = NULL;
3249 
3250 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3251 	local_irq_enable();
3252 
3253 	/* Process offline CPU's input_pkt_queue */
3254 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
3255 		netif_rx(skb);
3256 
3257 	return NOTIFY_OK;
3258 }
3259 #endif /* CONFIG_HOTPLUG_CPU */
3260 
3261 #ifdef CONFIG_NET_DMA
3262 /**
3263  * net_dma_rebalance -
3264  * This is called when the number of channels allocated to the net_dma_client
3265  * changes.  The net_dma_client tries to have one DMA channel per CPU.
3266  */
3267 static void net_dma_rebalance(void)
3268 {
3269 	unsigned int cpu, i, n;
3270 	struct dma_chan *chan;
3271 
3272 	lock_cpu_hotplug();
3273 
3274 	if (net_dma_count == 0) {
3275 		for_each_online_cpu(cpu)
3276 			rcu_assign_pointer(per_cpu(softnet_data.net_dma, cpu), NULL);
3277 		unlock_cpu_hotplug();
3278 		return;
3279 	}
3280 
3281 	i = 0;
3282 	cpu = first_cpu(cpu_online_map);
3283 
3284 	rcu_read_lock();
3285 	list_for_each_entry(chan, &net_dma_client->channels, client_node) {
3286 		n = ((num_online_cpus() / net_dma_count)
3287 		   + (i < (num_online_cpus() % net_dma_count) ? 1 : 0));
3288 
3289 		while(n) {
3290 			per_cpu(softnet_data.net_dma, cpu) = chan;
3291 			cpu = next_cpu(cpu, cpu_online_map);
3292 			n--;
3293 		}
3294 		i++;
3295 	}
3296 	rcu_read_unlock();
3297 
3298 	unlock_cpu_hotplug();
3299 }
3300 
3301 /**
3302  * netdev_dma_event - event callback for the net_dma_client
3303  * @client: should always be net_dma_client
3304  * @chan:
3305  * @event:
3306  */
3307 static void netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
3308 	enum dma_event event)
3309 {
3310 	spin_lock(&net_dma_event_lock);
3311 	switch (event) {
3312 	case DMA_RESOURCE_ADDED:
3313 		net_dma_count++;
3314 		net_dma_rebalance();
3315 		break;
3316 	case DMA_RESOURCE_REMOVED:
3317 		net_dma_count--;
3318 		net_dma_rebalance();
3319 		break;
3320 	default:
3321 		break;
3322 	}
3323 	spin_unlock(&net_dma_event_lock);
3324 }
3325 
3326 /**
3327  * netdev_dma_regiser - register the networking subsystem as a DMA client
3328  */
3329 static int __init netdev_dma_register(void)
3330 {
3331 	spin_lock_init(&net_dma_event_lock);
3332 	net_dma_client = dma_async_client_register(netdev_dma_event);
3333 	if (net_dma_client == NULL)
3334 		return -ENOMEM;
3335 
3336 	dma_async_client_chan_request(net_dma_client, num_online_cpus());
3337 	return 0;
3338 }
3339 
3340 #else
3341 static int __init netdev_dma_register(void) { return -ENODEV; }
3342 #endif /* CONFIG_NET_DMA */
3343 
3344 /*
3345  *	Initialize the DEV module. At boot time this walks the device list and
3346  *	unhooks any devices that fail to initialise (normally hardware not
3347  *	present) and leaves us with a valid list of present and active devices.
3348  *
3349  */
3350 
3351 /*
3352  *       This is called single threaded during boot, so no need
3353  *       to take the rtnl semaphore.
3354  */
3355 static int __init net_dev_init(void)
3356 {
3357 	int i, rc = -ENOMEM;
3358 
3359 	BUG_ON(!dev_boot_phase);
3360 
3361 	net_random_init();
3362 
3363 	if (dev_proc_init())
3364 		goto out;
3365 
3366 	if (netdev_sysfs_init())
3367 		goto out;
3368 
3369 	INIT_LIST_HEAD(&ptype_all);
3370 	for (i = 0; i < 16; i++)
3371 		INIT_LIST_HEAD(&ptype_base[i]);
3372 
3373 	for (i = 0; i < ARRAY_SIZE(dev_name_head); i++)
3374 		INIT_HLIST_HEAD(&dev_name_head[i]);
3375 
3376 	for (i = 0; i < ARRAY_SIZE(dev_index_head); i++)
3377 		INIT_HLIST_HEAD(&dev_index_head[i]);
3378 
3379 	/*
3380 	 *	Initialise the packet receive queues.
3381 	 */
3382 
3383 	for_each_possible_cpu(i) {
3384 		struct softnet_data *queue;
3385 
3386 		queue = &per_cpu(softnet_data, i);
3387 		skb_queue_head_init(&queue->input_pkt_queue);
3388 		queue->completion_queue = NULL;
3389 		INIT_LIST_HEAD(&queue->poll_list);
3390 		set_bit(__LINK_STATE_START, &queue->backlog_dev.state);
3391 		queue->backlog_dev.weight = weight_p;
3392 		queue->backlog_dev.poll = process_backlog;
3393 		atomic_set(&queue->backlog_dev.refcnt, 1);
3394 	}
3395 
3396 	netdev_dma_register();
3397 
3398 	dev_boot_phase = 0;
3399 
3400 	open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
3401 	open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
3402 
3403 	hotcpu_notifier(dev_cpu_callback, 0);
3404 	dst_init();
3405 	dev_mcast_init();
3406 	rc = 0;
3407 out:
3408 	return rc;
3409 }
3410 
3411 subsys_initcall(net_dev_init);
3412 
3413 EXPORT_SYMBOL(__dev_get_by_index);
3414 EXPORT_SYMBOL(__dev_get_by_name);
3415 EXPORT_SYMBOL(__dev_remove_pack);
3416 EXPORT_SYMBOL(dev_valid_name);
3417 EXPORT_SYMBOL(dev_add_pack);
3418 EXPORT_SYMBOL(dev_alloc_name);
3419 EXPORT_SYMBOL(dev_close);
3420 EXPORT_SYMBOL(dev_get_by_flags);
3421 EXPORT_SYMBOL(dev_get_by_index);
3422 EXPORT_SYMBOL(dev_get_by_name);
3423 EXPORT_SYMBOL(dev_open);
3424 EXPORT_SYMBOL(dev_queue_xmit);
3425 EXPORT_SYMBOL(dev_remove_pack);
3426 EXPORT_SYMBOL(dev_set_allmulti);
3427 EXPORT_SYMBOL(dev_set_promiscuity);
3428 EXPORT_SYMBOL(dev_change_flags);
3429 EXPORT_SYMBOL(dev_set_mtu);
3430 EXPORT_SYMBOL(dev_set_mac_address);
3431 EXPORT_SYMBOL(free_netdev);
3432 EXPORT_SYMBOL(netdev_boot_setup_check);
3433 EXPORT_SYMBOL(netdev_set_master);
3434 EXPORT_SYMBOL(netdev_state_change);
3435 EXPORT_SYMBOL(netif_receive_skb);
3436 EXPORT_SYMBOL(netif_rx);
3437 EXPORT_SYMBOL(register_gifconf);
3438 EXPORT_SYMBOL(register_netdevice);
3439 EXPORT_SYMBOL(register_netdevice_notifier);
3440 EXPORT_SYMBOL(skb_checksum_help);
3441 EXPORT_SYMBOL(synchronize_net);
3442 EXPORT_SYMBOL(unregister_netdevice);
3443 EXPORT_SYMBOL(unregister_netdevice_notifier);
3444 EXPORT_SYMBOL(net_enable_timestamp);
3445 EXPORT_SYMBOL(net_disable_timestamp);
3446 EXPORT_SYMBOL(dev_get_flags);
3447 
3448 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
3449 EXPORT_SYMBOL(br_handle_frame_hook);
3450 EXPORT_SYMBOL(br_fdb_get_hook);
3451 EXPORT_SYMBOL(br_fdb_put_hook);
3452 #endif
3453 
3454 #ifdef CONFIG_KMOD
3455 EXPORT_SYMBOL(dev_load);
3456 #endif
3457 
3458 EXPORT_PER_CPU_SYMBOL(softnet_data);
3459