1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/config.h> 80 #include <linux/cpu.h> 81 #include <linux/types.h> 82 #include <linux/kernel.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/sock.h> 97 #include <linux/rtnetlink.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/stat.h> 101 #include <linux/if_bridge.h> 102 #include <linux/divert.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/kmod.h> 109 #include <linux/module.h> 110 #include <linux/kallsyms.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <linux/wireless.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 120 /* 121 * The list of packet types we will receive (as opposed to discard) 122 * and the routines to invoke. 123 * 124 * Why 16. Because with 16 the only overlap we get on a hash of the 125 * low nibble of the protocol value is RARP/SNAP/X.25. 126 * 127 * NOTE: That is no longer true with the addition of VLAN tags. Not 128 * sure which should go first, but I bet it won't make much 129 * difference if we are running VLANs. The good news is that 130 * this protocol won't be in the list unless compiled in, so 131 * the average user (w/out VLANs) will not be adversely affected. 132 * --BLG 133 * 134 * 0800 IP 135 * 8100 802.1Q VLAN 136 * 0001 802.3 137 * 0002 AX.25 138 * 0004 802.2 139 * 8035 RARP 140 * 0005 SNAP 141 * 0805 X.25 142 * 0806 ARP 143 * 8137 IPX 144 * 0009 Localtalk 145 * 86DD IPv6 146 */ 147 148 static DEFINE_SPINLOCK(ptype_lock); 149 static struct list_head ptype_base[16]; /* 16 way hashed list */ 150 static struct list_head ptype_all; /* Taps */ 151 152 #ifdef CONFIG_NET_DMA 153 static struct dma_client *net_dma_client; 154 static unsigned int net_dma_count; 155 static spinlock_t net_dma_event_lock; 156 #endif 157 158 /* 159 * The @dev_base list is protected by @dev_base_lock and the rtnl 160 * semaphore. 161 * 162 * Pure readers hold dev_base_lock for reading. 163 * 164 * Writers must hold the rtnl semaphore while they loop through the 165 * dev_base list, and hold dev_base_lock for writing when they do the 166 * actual updates. This allows pure readers to access the list even 167 * while a writer is preparing to update it. 168 * 169 * To put it another way, dev_base_lock is held for writing only to 170 * protect against pure readers; the rtnl semaphore provides the 171 * protection against other writers. 172 * 173 * See, for example usages, register_netdevice() and 174 * unregister_netdevice(), which must be called with the rtnl 175 * semaphore held. 176 */ 177 struct net_device *dev_base; 178 static struct net_device **dev_tail = &dev_base; 179 DEFINE_RWLOCK(dev_base_lock); 180 181 EXPORT_SYMBOL(dev_base); 182 EXPORT_SYMBOL(dev_base_lock); 183 184 #define NETDEV_HASHBITS 8 185 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS]; 186 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS]; 187 188 static inline struct hlist_head *dev_name_hash(const char *name) 189 { 190 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 191 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)]; 192 } 193 194 static inline struct hlist_head *dev_index_hash(int ifindex) 195 { 196 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)]; 197 } 198 199 /* 200 * Our notifier list 201 */ 202 203 static RAW_NOTIFIER_HEAD(netdev_chain); 204 205 /* 206 * Device drivers call our routines to queue packets here. We empty the 207 * queue in the local softnet handler. 208 */ 209 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL }; 210 211 #ifdef CONFIG_SYSFS 212 extern int netdev_sysfs_init(void); 213 extern int netdev_register_sysfs(struct net_device *); 214 extern void netdev_unregister_sysfs(struct net_device *); 215 #else 216 #define netdev_sysfs_init() (0) 217 #define netdev_register_sysfs(dev) (0) 218 #define netdev_unregister_sysfs(dev) do { } while(0) 219 #endif 220 221 222 /******************************************************************************* 223 224 Protocol management and registration routines 225 226 *******************************************************************************/ 227 228 /* 229 * For efficiency 230 */ 231 232 int netdev_nit; 233 234 /* 235 * Add a protocol ID to the list. Now that the input handler is 236 * smarter we can dispense with all the messy stuff that used to be 237 * here. 238 * 239 * BEWARE!!! Protocol handlers, mangling input packets, 240 * MUST BE last in hash buckets and checking protocol handlers 241 * MUST start from promiscuous ptype_all chain in net_bh. 242 * It is true now, do not change it. 243 * Explanation follows: if protocol handler, mangling packet, will 244 * be the first on list, it is not able to sense, that packet 245 * is cloned and should be copied-on-write, so that it will 246 * change it and subsequent readers will get broken packet. 247 * --ANK (980803) 248 */ 249 250 /** 251 * dev_add_pack - add packet handler 252 * @pt: packet type declaration 253 * 254 * Add a protocol handler to the networking stack. The passed &packet_type 255 * is linked into kernel lists and may not be freed until it has been 256 * removed from the kernel lists. 257 * 258 * This call does not sleep therefore it can not 259 * guarantee all CPU's that are in middle of receiving packets 260 * will see the new packet type (until the next received packet). 261 */ 262 263 void dev_add_pack(struct packet_type *pt) 264 { 265 int hash; 266 267 spin_lock_bh(&ptype_lock); 268 if (pt->type == htons(ETH_P_ALL)) { 269 netdev_nit++; 270 list_add_rcu(&pt->list, &ptype_all); 271 } else { 272 hash = ntohs(pt->type) & 15; 273 list_add_rcu(&pt->list, &ptype_base[hash]); 274 } 275 spin_unlock_bh(&ptype_lock); 276 } 277 278 /** 279 * __dev_remove_pack - remove packet handler 280 * @pt: packet type declaration 281 * 282 * Remove a protocol handler that was previously added to the kernel 283 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 284 * from the kernel lists and can be freed or reused once this function 285 * returns. 286 * 287 * The packet type might still be in use by receivers 288 * and must not be freed until after all the CPU's have gone 289 * through a quiescent state. 290 */ 291 void __dev_remove_pack(struct packet_type *pt) 292 { 293 struct list_head *head; 294 struct packet_type *pt1; 295 296 spin_lock_bh(&ptype_lock); 297 298 if (pt->type == htons(ETH_P_ALL)) { 299 netdev_nit--; 300 head = &ptype_all; 301 } else 302 head = &ptype_base[ntohs(pt->type) & 15]; 303 304 list_for_each_entry(pt1, head, list) { 305 if (pt == pt1) { 306 list_del_rcu(&pt->list); 307 goto out; 308 } 309 } 310 311 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 312 out: 313 spin_unlock_bh(&ptype_lock); 314 } 315 /** 316 * dev_remove_pack - remove packet handler 317 * @pt: packet type declaration 318 * 319 * Remove a protocol handler that was previously added to the kernel 320 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 321 * from the kernel lists and can be freed or reused once this function 322 * returns. 323 * 324 * This call sleeps to guarantee that no CPU is looking at the packet 325 * type after return. 326 */ 327 void dev_remove_pack(struct packet_type *pt) 328 { 329 __dev_remove_pack(pt); 330 331 synchronize_net(); 332 } 333 334 /****************************************************************************** 335 336 Device Boot-time Settings Routines 337 338 *******************************************************************************/ 339 340 /* Boot time configuration table */ 341 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 342 343 /** 344 * netdev_boot_setup_add - add new setup entry 345 * @name: name of the device 346 * @map: configured settings for the device 347 * 348 * Adds new setup entry to the dev_boot_setup list. The function 349 * returns 0 on error and 1 on success. This is a generic routine to 350 * all netdevices. 351 */ 352 static int netdev_boot_setup_add(char *name, struct ifmap *map) 353 { 354 struct netdev_boot_setup *s; 355 int i; 356 357 s = dev_boot_setup; 358 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 359 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 360 memset(s[i].name, 0, sizeof(s[i].name)); 361 strcpy(s[i].name, name); 362 memcpy(&s[i].map, map, sizeof(s[i].map)); 363 break; 364 } 365 } 366 367 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 368 } 369 370 /** 371 * netdev_boot_setup_check - check boot time settings 372 * @dev: the netdevice 373 * 374 * Check boot time settings for the device. 375 * The found settings are set for the device to be used 376 * later in the device probing. 377 * Returns 0 if no settings found, 1 if they are. 378 */ 379 int netdev_boot_setup_check(struct net_device *dev) 380 { 381 struct netdev_boot_setup *s = dev_boot_setup; 382 int i; 383 384 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 385 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 386 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 387 dev->irq = s[i].map.irq; 388 dev->base_addr = s[i].map.base_addr; 389 dev->mem_start = s[i].map.mem_start; 390 dev->mem_end = s[i].map.mem_end; 391 return 1; 392 } 393 } 394 return 0; 395 } 396 397 398 /** 399 * netdev_boot_base - get address from boot time settings 400 * @prefix: prefix for network device 401 * @unit: id for network device 402 * 403 * Check boot time settings for the base address of device. 404 * The found settings are set for the device to be used 405 * later in the device probing. 406 * Returns 0 if no settings found. 407 */ 408 unsigned long netdev_boot_base(const char *prefix, int unit) 409 { 410 const struct netdev_boot_setup *s = dev_boot_setup; 411 char name[IFNAMSIZ]; 412 int i; 413 414 sprintf(name, "%s%d", prefix, unit); 415 416 /* 417 * If device already registered then return base of 1 418 * to indicate not to probe for this interface 419 */ 420 if (__dev_get_by_name(name)) 421 return 1; 422 423 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 424 if (!strcmp(name, s[i].name)) 425 return s[i].map.base_addr; 426 return 0; 427 } 428 429 /* 430 * Saves at boot time configured settings for any netdevice. 431 */ 432 int __init netdev_boot_setup(char *str) 433 { 434 int ints[5]; 435 struct ifmap map; 436 437 str = get_options(str, ARRAY_SIZE(ints), ints); 438 if (!str || !*str) 439 return 0; 440 441 /* Save settings */ 442 memset(&map, 0, sizeof(map)); 443 if (ints[0] > 0) 444 map.irq = ints[1]; 445 if (ints[0] > 1) 446 map.base_addr = ints[2]; 447 if (ints[0] > 2) 448 map.mem_start = ints[3]; 449 if (ints[0] > 3) 450 map.mem_end = ints[4]; 451 452 /* Add new entry to the list */ 453 return netdev_boot_setup_add(str, &map); 454 } 455 456 __setup("netdev=", netdev_boot_setup); 457 458 /******************************************************************************* 459 460 Device Interface Subroutines 461 462 *******************************************************************************/ 463 464 /** 465 * __dev_get_by_name - find a device by its name 466 * @name: name to find 467 * 468 * Find an interface by name. Must be called under RTNL semaphore 469 * or @dev_base_lock. If the name is found a pointer to the device 470 * is returned. If the name is not found then %NULL is returned. The 471 * reference counters are not incremented so the caller must be 472 * careful with locks. 473 */ 474 475 struct net_device *__dev_get_by_name(const char *name) 476 { 477 struct hlist_node *p; 478 479 hlist_for_each(p, dev_name_hash(name)) { 480 struct net_device *dev 481 = hlist_entry(p, struct net_device, name_hlist); 482 if (!strncmp(dev->name, name, IFNAMSIZ)) 483 return dev; 484 } 485 return NULL; 486 } 487 488 /** 489 * dev_get_by_name - find a device by its name 490 * @name: name to find 491 * 492 * Find an interface by name. This can be called from any 493 * context and does its own locking. The returned handle has 494 * the usage count incremented and the caller must use dev_put() to 495 * release it when it is no longer needed. %NULL is returned if no 496 * matching device is found. 497 */ 498 499 struct net_device *dev_get_by_name(const char *name) 500 { 501 struct net_device *dev; 502 503 read_lock(&dev_base_lock); 504 dev = __dev_get_by_name(name); 505 if (dev) 506 dev_hold(dev); 507 read_unlock(&dev_base_lock); 508 return dev; 509 } 510 511 /** 512 * __dev_get_by_index - find a device by its ifindex 513 * @ifindex: index of device 514 * 515 * Search for an interface by index. Returns %NULL if the device 516 * is not found or a pointer to the device. The device has not 517 * had its reference counter increased so the caller must be careful 518 * about locking. The caller must hold either the RTNL semaphore 519 * or @dev_base_lock. 520 */ 521 522 struct net_device *__dev_get_by_index(int ifindex) 523 { 524 struct hlist_node *p; 525 526 hlist_for_each(p, dev_index_hash(ifindex)) { 527 struct net_device *dev 528 = hlist_entry(p, struct net_device, index_hlist); 529 if (dev->ifindex == ifindex) 530 return dev; 531 } 532 return NULL; 533 } 534 535 536 /** 537 * dev_get_by_index - find a device by its ifindex 538 * @ifindex: index of device 539 * 540 * Search for an interface by index. Returns NULL if the device 541 * is not found or a pointer to the device. The device returned has 542 * had a reference added and the pointer is safe until the user calls 543 * dev_put to indicate they have finished with it. 544 */ 545 546 struct net_device *dev_get_by_index(int ifindex) 547 { 548 struct net_device *dev; 549 550 read_lock(&dev_base_lock); 551 dev = __dev_get_by_index(ifindex); 552 if (dev) 553 dev_hold(dev); 554 read_unlock(&dev_base_lock); 555 return dev; 556 } 557 558 /** 559 * dev_getbyhwaddr - find a device by its hardware address 560 * @type: media type of device 561 * @ha: hardware address 562 * 563 * Search for an interface by MAC address. Returns NULL if the device 564 * is not found or a pointer to the device. The caller must hold the 565 * rtnl semaphore. The returned device has not had its ref count increased 566 * and the caller must therefore be careful about locking 567 * 568 * BUGS: 569 * If the API was consistent this would be __dev_get_by_hwaddr 570 */ 571 572 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha) 573 { 574 struct net_device *dev; 575 576 ASSERT_RTNL(); 577 578 for (dev = dev_base; dev; dev = dev->next) 579 if (dev->type == type && 580 !memcmp(dev->dev_addr, ha, dev->addr_len)) 581 break; 582 return dev; 583 } 584 585 EXPORT_SYMBOL(dev_getbyhwaddr); 586 587 struct net_device *dev_getfirstbyhwtype(unsigned short type) 588 { 589 struct net_device *dev; 590 591 rtnl_lock(); 592 for (dev = dev_base; dev; dev = dev->next) { 593 if (dev->type == type) { 594 dev_hold(dev); 595 break; 596 } 597 } 598 rtnl_unlock(); 599 return dev; 600 } 601 602 EXPORT_SYMBOL(dev_getfirstbyhwtype); 603 604 /** 605 * dev_get_by_flags - find any device with given flags 606 * @if_flags: IFF_* values 607 * @mask: bitmask of bits in if_flags to check 608 * 609 * Search for any interface with the given flags. Returns NULL if a device 610 * is not found or a pointer to the device. The device returned has 611 * had a reference added and the pointer is safe until the user calls 612 * dev_put to indicate they have finished with it. 613 */ 614 615 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask) 616 { 617 struct net_device *dev; 618 619 read_lock(&dev_base_lock); 620 for (dev = dev_base; dev != NULL; dev = dev->next) { 621 if (((dev->flags ^ if_flags) & mask) == 0) { 622 dev_hold(dev); 623 break; 624 } 625 } 626 read_unlock(&dev_base_lock); 627 return dev; 628 } 629 630 /** 631 * dev_valid_name - check if name is okay for network device 632 * @name: name string 633 * 634 * Network device names need to be valid file names to 635 * to allow sysfs to work 636 */ 637 int dev_valid_name(const char *name) 638 { 639 return !(*name == '\0' 640 || !strcmp(name, ".") 641 || !strcmp(name, "..") 642 || strchr(name, '/')); 643 } 644 645 /** 646 * dev_alloc_name - allocate a name for a device 647 * @dev: device 648 * @name: name format string 649 * 650 * Passed a format string - eg "lt%d" it will try and find a suitable 651 * id. It scans list of devices to build up a free map, then chooses 652 * the first empty slot. The caller must hold the dev_base or rtnl lock 653 * while allocating the name and adding the device in order to avoid 654 * duplicates. 655 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 656 * Returns the number of the unit assigned or a negative errno code. 657 */ 658 659 int dev_alloc_name(struct net_device *dev, const char *name) 660 { 661 int i = 0; 662 char buf[IFNAMSIZ]; 663 const char *p; 664 const int max_netdevices = 8*PAGE_SIZE; 665 long *inuse; 666 struct net_device *d; 667 668 p = strnchr(name, IFNAMSIZ-1, '%'); 669 if (p) { 670 /* 671 * Verify the string as this thing may have come from 672 * the user. There must be either one "%d" and no other "%" 673 * characters. 674 */ 675 if (p[1] != 'd' || strchr(p + 2, '%')) 676 return -EINVAL; 677 678 /* Use one page as a bit array of possible slots */ 679 inuse = (long *) get_zeroed_page(GFP_ATOMIC); 680 if (!inuse) 681 return -ENOMEM; 682 683 for (d = dev_base; d; d = d->next) { 684 if (!sscanf(d->name, name, &i)) 685 continue; 686 if (i < 0 || i >= max_netdevices) 687 continue; 688 689 /* avoid cases where sscanf is not exact inverse of printf */ 690 snprintf(buf, sizeof(buf), name, i); 691 if (!strncmp(buf, d->name, IFNAMSIZ)) 692 set_bit(i, inuse); 693 } 694 695 i = find_first_zero_bit(inuse, max_netdevices); 696 free_page((unsigned long) inuse); 697 } 698 699 snprintf(buf, sizeof(buf), name, i); 700 if (!__dev_get_by_name(buf)) { 701 strlcpy(dev->name, buf, IFNAMSIZ); 702 return i; 703 } 704 705 /* It is possible to run out of possible slots 706 * when the name is long and there isn't enough space left 707 * for the digits, or if all bits are used. 708 */ 709 return -ENFILE; 710 } 711 712 713 /** 714 * dev_change_name - change name of a device 715 * @dev: device 716 * @newname: name (or format string) must be at least IFNAMSIZ 717 * 718 * Change name of a device, can pass format strings "eth%d". 719 * for wildcarding. 720 */ 721 int dev_change_name(struct net_device *dev, char *newname) 722 { 723 int err = 0; 724 725 ASSERT_RTNL(); 726 727 if (dev->flags & IFF_UP) 728 return -EBUSY; 729 730 if (!dev_valid_name(newname)) 731 return -EINVAL; 732 733 if (strchr(newname, '%')) { 734 err = dev_alloc_name(dev, newname); 735 if (err < 0) 736 return err; 737 strcpy(newname, dev->name); 738 } 739 else if (__dev_get_by_name(newname)) 740 return -EEXIST; 741 else 742 strlcpy(dev->name, newname, IFNAMSIZ); 743 744 err = class_device_rename(&dev->class_dev, dev->name); 745 if (!err) { 746 hlist_del(&dev->name_hlist); 747 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name)); 748 raw_notifier_call_chain(&netdev_chain, 749 NETDEV_CHANGENAME, dev); 750 } 751 752 return err; 753 } 754 755 /** 756 * netdev_features_change - device changes features 757 * @dev: device to cause notification 758 * 759 * Called to indicate a device has changed features. 760 */ 761 void netdev_features_change(struct net_device *dev) 762 { 763 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev); 764 } 765 EXPORT_SYMBOL(netdev_features_change); 766 767 /** 768 * netdev_state_change - device changes state 769 * @dev: device to cause notification 770 * 771 * Called to indicate a device has changed state. This function calls 772 * the notifier chains for netdev_chain and sends a NEWLINK message 773 * to the routing socket. 774 */ 775 void netdev_state_change(struct net_device *dev) 776 { 777 if (dev->flags & IFF_UP) { 778 raw_notifier_call_chain(&netdev_chain, 779 NETDEV_CHANGE, dev); 780 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 781 } 782 } 783 784 /** 785 * dev_load - load a network module 786 * @name: name of interface 787 * 788 * If a network interface is not present and the process has suitable 789 * privileges this function loads the module. If module loading is not 790 * available in this kernel then it becomes a nop. 791 */ 792 793 void dev_load(const char *name) 794 { 795 struct net_device *dev; 796 797 read_lock(&dev_base_lock); 798 dev = __dev_get_by_name(name); 799 read_unlock(&dev_base_lock); 800 801 if (!dev && capable(CAP_SYS_MODULE)) 802 request_module("%s", name); 803 } 804 805 static int default_rebuild_header(struct sk_buff *skb) 806 { 807 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n", 808 skb->dev ? skb->dev->name : "NULL!!!"); 809 kfree_skb(skb); 810 return 1; 811 } 812 813 814 /** 815 * dev_open - prepare an interface for use. 816 * @dev: device to open 817 * 818 * Takes a device from down to up state. The device's private open 819 * function is invoked and then the multicast lists are loaded. Finally 820 * the device is moved into the up state and a %NETDEV_UP message is 821 * sent to the netdev notifier chain. 822 * 823 * Calling this function on an active interface is a nop. On a failure 824 * a negative errno code is returned. 825 */ 826 int dev_open(struct net_device *dev) 827 { 828 int ret = 0; 829 830 /* 831 * Is it already up? 832 */ 833 834 if (dev->flags & IFF_UP) 835 return 0; 836 837 /* 838 * Is it even present? 839 */ 840 if (!netif_device_present(dev)) 841 return -ENODEV; 842 843 /* 844 * Call device private open method 845 */ 846 set_bit(__LINK_STATE_START, &dev->state); 847 if (dev->open) { 848 ret = dev->open(dev); 849 if (ret) 850 clear_bit(__LINK_STATE_START, &dev->state); 851 } 852 853 /* 854 * If it went open OK then: 855 */ 856 857 if (!ret) { 858 /* 859 * Set the flags. 860 */ 861 dev->flags |= IFF_UP; 862 863 /* 864 * Initialize multicasting status 865 */ 866 dev_mc_upload(dev); 867 868 /* 869 * Wakeup transmit queue engine 870 */ 871 dev_activate(dev); 872 873 /* 874 * ... and announce new interface. 875 */ 876 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev); 877 } 878 return ret; 879 } 880 881 /** 882 * dev_close - shutdown an interface. 883 * @dev: device to shutdown 884 * 885 * This function moves an active device into down state. A 886 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 887 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 888 * chain. 889 */ 890 int dev_close(struct net_device *dev) 891 { 892 if (!(dev->flags & IFF_UP)) 893 return 0; 894 895 /* 896 * Tell people we are going down, so that they can 897 * prepare to death, when device is still operating. 898 */ 899 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev); 900 901 dev_deactivate(dev); 902 903 clear_bit(__LINK_STATE_START, &dev->state); 904 905 /* Synchronize to scheduled poll. We cannot touch poll list, 906 * it can be even on different cpu. So just clear netif_running(), 907 * and wait when poll really will happen. Actually, the best place 908 * for this is inside dev->stop() after device stopped its irq 909 * engine, but this requires more changes in devices. */ 910 911 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 912 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) { 913 /* No hurry. */ 914 msleep(1); 915 } 916 917 /* 918 * Call the device specific close. This cannot fail. 919 * Only if device is UP 920 * 921 * We allow it to be called even after a DETACH hot-plug 922 * event. 923 */ 924 if (dev->stop) 925 dev->stop(dev); 926 927 /* 928 * Device is now down. 929 */ 930 931 dev->flags &= ~IFF_UP; 932 933 /* 934 * Tell people we are down 935 */ 936 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev); 937 938 return 0; 939 } 940 941 942 /* 943 * Device change register/unregister. These are not inline or static 944 * as we export them to the world. 945 */ 946 947 /** 948 * register_netdevice_notifier - register a network notifier block 949 * @nb: notifier 950 * 951 * Register a notifier to be called when network device events occur. 952 * The notifier passed is linked into the kernel structures and must 953 * not be reused until it has been unregistered. A negative errno code 954 * is returned on a failure. 955 * 956 * When registered all registration and up events are replayed 957 * to the new notifier to allow device to have a race free 958 * view of the network device list. 959 */ 960 961 int register_netdevice_notifier(struct notifier_block *nb) 962 { 963 struct net_device *dev; 964 int err; 965 966 rtnl_lock(); 967 err = raw_notifier_chain_register(&netdev_chain, nb); 968 if (!err) { 969 for (dev = dev_base; dev; dev = dev->next) { 970 nb->notifier_call(nb, NETDEV_REGISTER, dev); 971 972 if (dev->flags & IFF_UP) 973 nb->notifier_call(nb, NETDEV_UP, dev); 974 } 975 } 976 rtnl_unlock(); 977 return err; 978 } 979 980 /** 981 * unregister_netdevice_notifier - unregister a network notifier block 982 * @nb: notifier 983 * 984 * Unregister a notifier previously registered by 985 * register_netdevice_notifier(). The notifier is unlinked into the 986 * kernel structures and may then be reused. A negative errno code 987 * is returned on a failure. 988 */ 989 990 int unregister_netdevice_notifier(struct notifier_block *nb) 991 { 992 int err; 993 994 rtnl_lock(); 995 err = raw_notifier_chain_unregister(&netdev_chain, nb); 996 rtnl_unlock(); 997 return err; 998 } 999 1000 /** 1001 * call_netdevice_notifiers - call all network notifier blocks 1002 * @val: value passed unmodified to notifier function 1003 * @v: pointer passed unmodified to notifier function 1004 * 1005 * Call all network notifier blocks. Parameters and return value 1006 * are as for raw_notifier_call_chain(). 1007 */ 1008 1009 int call_netdevice_notifiers(unsigned long val, void *v) 1010 { 1011 return raw_notifier_call_chain(&netdev_chain, val, v); 1012 } 1013 1014 /* When > 0 there are consumers of rx skb time stamps */ 1015 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1016 1017 void net_enable_timestamp(void) 1018 { 1019 atomic_inc(&netstamp_needed); 1020 } 1021 1022 void net_disable_timestamp(void) 1023 { 1024 atomic_dec(&netstamp_needed); 1025 } 1026 1027 void __net_timestamp(struct sk_buff *skb) 1028 { 1029 struct timeval tv; 1030 1031 do_gettimeofday(&tv); 1032 skb_set_timestamp(skb, &tv); 1033 } 1034 EXPORT_SYMBOL(__net_timestamp); 1035 1036 static inline void net_timestamp(struct sk_buff *skb) 1037 { 1038 if (atomic_read(&netstamp_needed)) 1039 __net_timestamp(skb); 1040 else { 1041 skb->tstamp.off_sec = 0; 1042 skb->tstamp.off_usec = 0; 1043 } 1044 } 1045 1046 /* 1047 * Support routine. Sends outgoing frames to any network 1048 * taps currently in use. 1049 */ 1050 1051 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1052 { 1053 struct packet_type *ptype; 1054 1055 net_timestamp(skb); 1056 1057 rcu_read_lock(); 1058 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1059 /* Never send packets back to the socket 1060 * they originated from - MvS (miquels@drinkel.ow.org) 1061 */ 1062 if ((ptype->dev == dev || !ptype->dev) && 1063 (ptype->af_packet_priv == NULL || 1064 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1065 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1066 if (!skb2) 1067 break; 1068 1069 /* skb->nh should be correctly 1070 set by sender, so that the second statement is 1071 just protection against buggy protocols. 1072 */ 1073 skb2->mac.raw = skb2->data; 1074 1075 if (skb2->nh.raw < skb2->data || 1076 skb2->nh.raw > skb2->tail) { 1077 if (net_ratelimit()) 1078 printk(KERN_CRIT "protocol %04x is " 1079 "buggy, dev %s\n", 1080 skb2->protocol, dev->name); 1081 skb2->nh.raw = skb2->data; 1082 } 1083 1084 skb2->h.raw = skb2->nh.raw; 1085 skb2->pkt_type = PACKET_OUTGOING; 1086 ptype->func(skb2, skb->dev, ptype, skb->dev); 1087 } 1088 } 1089 rcu_read_unlock(); 1090 } 1091 1092 1093 void __netif_schedule(struct net_device *dev) 1094 { 1095 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1096 unsigned long flags; 1097 struct softnet_data *sd; 1098 1099 local_irq_save(flags); 1100 sd = &__get_cpu_var(softnet_data); 1101 dev->next_sched = sd->output_queue; 1102 sd->output_queue = dev; 1103 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1104 local_irq_restore(flags); 1105 } 1106 } 1107 EXPORT_SYMBOL(__netif_schedule); 1108 1109 void __netif_rx_schedule(struct net_device *dev) 1110 { 1111 unsigned long flags; 1112 1113 local_irq_save(flags); 1114 dev_hold(dev); 1115 list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list); 1116 if (dev->quota < 0) 1117 dev->quota += dev->weight; 1118 else 1119 dev->quota = dev->weight; 1120 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1121 local_irq_restore(flags); 1122 } 1123 EXPORT_SYMBOL(__netif_rx_schedule); 1124 1125 void dev_kfree_skb_any(struct sk_buff *skb) 1126 { 1127 if (in_irq() || irqs_disabled()) 1128 dev_kfree_skb_irq(skb); 1129 else 1130 dev_kfree_skb(skb); 1131 } 1132 EXPORT_SYMBOL(dev_kfree_skb_any); 1133 1134 1135 /* Hot-plugging. */ 1136 void netif_device_detach(struct net_device *dev) 1137 { 1138 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1139 netif_running(dev)) { 1140 netif_stop_queue(dev); 1141 } 1142 } 1143 EXPORT_SYMBOL(netif_device_detach); 1144 1145 void netif_device_attach(struct net_device *dev) 1146 { 1147 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1148 netif_running(dev)) { 1149 netif_wake_queue(dev); 1150 __netdev_watchdog_up(dev); 1151 } 1152 } 1153 EXPORT_SYMBOL(netif_device_attach); 1154 1155 1156 /* 1157 * Invalidate hardware checksum when packet is to be mangled, and 1158 * complete checksum manually on outgoing path. 1159 */ 1160 int skb_checksum_help(struct sk_buff *skb, int inward) 1161 { 1162 unsigned int csum; 1163 int ret = 0, offset = skb->h.raw - skb->data; 1164 1165 if (inward) { 1166 skb->ip_summed = CHECKSUM_NONE; 1167 goto out; 1168 } 1169 1170 if (skb_cloned(skb)) { 1171 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1172 if (ret) 1173 goto out; 1174 } 1175 1176 BUG_ON(offset > (int)skb->len); 1177 csum = skb_checksum(skb, offset, skb->len-offset, 0); 1178 1179 offset = skb->tail - skb->h.raw; 1180 BUG_ON(offset <= 0); 1181 BUG_ON(skb->csum + 2 > offset); 1182 1183 *(u16*)(skb->h.raw + skb->csum) = csum_fold(csum); 1184 skb->ip_summed = CHECKSUM_NONE; 1185 out: 1186 return ret; 1187 } 1188 1189 /* Take action when hardware reception checksum errors are detected. */ 1190 #ifdef CONFIG_BUG 1191 void netdev_rx_csum_fault(struct net_device *dev) 1192 { 1193 if (net_ratelimit()) { 1194 printk(KERN_ERR "%s: hw csum failure.\n", 1195 dev ? dev->name : "<unknown>"); 1196 dump_stack(); 1197 } 1198 } 1199 EXPORT_SYMBOL(netdev_rx_csum_fault); 1200 #endif 1201 1202 #ifdef CONFIG_HIGHMEM 1203 /* Actually, we should eliminate this check as soon as we know, that: 1204 * 1. IOMMU is present and allows to map all the memory. 1205 * 2. No high memory really exists on this machine. 1206 */ 1207 1208 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1209 { 1210 int i; 1211 1212 if (dev->features & NETIF_F_HIGHDMA) 1213 return 0; 1214 1215 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1216 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1217 return 1; 1218 1219 return 0; 1220 } 1221 #else 1222 #define illegal_highdma(dev, skb) (0) 1223 #endif 1224 1225 #define HARD_TX_LOCK(dev, cpu) { \ 1226 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1227 netif_tx_lock(dev); \ 1228 } \ 1229 } 1230 1231 #define HARD_TX_UNLOCK(dev) { \ 1232 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1233 netif_tx_unlock(dev); \ 1234 } \ 1235 } 1236 1237 /** 1238 * dev_queue_xmit - transmit a buffer 1239 * @skb: buffer to transmit 1240 * 1241 * Queue a buffer for transmission to a network device. The caller must 1242 * have set the device and priority and built the buffer before calling 1243 * this function. The function can be called from an interrupt. 1244 * 1245 * A negative errno code is returned on a failure. A success does not 1246 * guarantee the frame will be transmitted as it may be dropped due 1247 * to congestion or traffic shaping. 1248 * 1249 * ----------------------------------------------------------------------------------- 1250 * I notice this method can also return errors from the queue disciplines, 1251 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1252 * be positive. 1253 * 1254 * Regardless of the return value, the skb is consumed, so it is currently 1255 * difficult to retry a send to this method. (You can bump the ref count 1256 * before sending to hold a reference for retry if you are careful.) 1257 * 1258 * When calling this method, interrupts MUST be enabled. This is because 1259 * the BH enable code must have IRQs enabled so that it will not deadlock. 1260 * --BLG 1261 */ 1262 1263 int dev_queue_xmit(struct sk_buff *skb) 1264 { 1265 struct net_device *dev = skb->dev; 1266 struct Qdisc *q; 1267 int rc = -ENOMEM; 1268 1269 if (skb_shinfo(skb)->frag_list && 1270 !(dev->features & NETIF_F_FRAGLIST) && 1271 __skb_linearize(skb)) 1272 goto out_kfree_skb; 1273 1274 /* Fragmented skb is linearized if device does not support SG, 1275 * or if at least one of fragments is in highmem and device 1276 * does not support DMA from it. 1277 */ 1278 if (skb_shinfo(skb)->nr_frags && 1279 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1280 __skb_linearize(skb)) 1281 goto out_kfree_skb; 1282 1283 /* If packet is not checksummed and device does not support 1284 * checksumming for this protocol, complete checksumming here. 1285 */ 1286 if (skb->ip_summed == CHECKSUM_HW && 1287 (!(dev->features & NETIF_F_GEN_CSUM) && 1288 (!(dev->features & NETIF_F_IP_CSUM) || 1289 skb->protocol != htons(ETH_P_IP)))) 1290 if (skb_checksum_help(skb, 0)) 1291 goto out_kfree_skb; 1292 1293 spin_lock_prefetch(&dev->queue_lock); 1294 1295 /* Disable soft irqs for various locks below. Also 1296 * stops preemption for RCU. 1297 */ 1298 local_bh_disable(); 1299 1300 /* Updates of qdisc are serialized by queue_lock. 1301 * The struct Qdisc which is pointed to by qdisc is now a 1302 * rcu structure - it may be accessed without acquiring 1303 * a lock (but the structure may be stale.) The freeing of the 1304 * qdisc will be deferred until it's known that there are no 1305 * more references to it. 1306 * 1307 * If the qdisc has an enqueue function, we still need to 1308 * hold the queue_lock before calling it, since queue_lock 1309 * also serializes access to the device queue. 1310 */ 1311 1312 q = rcu_dereference(dev->qdisc); 1313 #ifdef CONFIG_NET_CLS_ACT 1314 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1315 #endif 1316 if (q->enqueue) { 1317 /* Grab device queue */ 1318 spin_lock(&dev->queue_lock); 1319 1320 rc = q->enqueue(skb, q); 1321 1322 qdisc_run(dev); 1323 1324 spin_unlock(&dev->queue_lock); 1325 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1326 goto out; 1327 } 1328 1329 /* The device has no queue. Common case for software devices: 1330 loopback, all the sorts of tunnels... 1331 1332 Really, it is unlikely that netif_tx_lock protection is necessary 1333 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1334 counters.) 1335 However, it is possible, that they rely on protection 1336 made by us here. 1337 1338 Check this and shot the lock. It is not prone from deadlocks. 1339 Either shot noqueue qdisc, it is even simpler 8) 1340 */ 1341 if (dev->flags & IFF_UP) { 1342 int cpu = smp_processor_id(); /* ok because BHs are off */ 1343 1344 if (dev->xmit_lock_owner != cpu) { 1345 1346 HARD_TX_LOCK(dev, cpu); 1347 1348 if (!netif_queue_stopped(dev)) { 1349 if (netdev_nit) 1350 dev_queue_xmit_nit(skb, dev); 1351 1352 rc = 0; 1353 if (!dev->hard_start_xmit(skb, dev)) { 1354 HARD_TX_UNLOCK(dev); 1355 goto out; 1356 } 1357 } 1358 HARD_TX_UNLOCK(dev); 1359 if (net_ratelimit()) 1360 printk(KERN_CRIT "Virtual device %s asks to " 1361 "queue packet!\n", dev->name); 1362 } else { 1363 /* Recursion is detected! It is possible, 1364 * unfortunately */ 1365 if (net_ratelimit()) 1366 printk(KERN_CRIT "Dead loop on virtual device " 1367 "%s, fix it urgently!\n", dev->name); 1368 } 1369 } 1370 1371 rc = -ENETDOWN; 1372 local_bh_enable(); 1373 1374 out_kfree_skb: 1375 kfree_skb(skb); 1376 return rc; 1377 out: 1378 local_bh_enable(); 1379 return rc; 1380 } 1381 1382 1383 /*======================================================================= 1384 Receiver routines 1385 =======================================================================*/ 1386 1387 int netdev_max_backlog = 1000; 1388 int netdev_budget = 300; 1389 int weight_p = 64; /* old backlog weight */ 1390 1391 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1392 1393 1394 /** 1395 * netif_rx - post buffer to the network code 1396 * @skb: buffer to post 1397 * 1398 * This function receives a packet from a device driver and queues it for 1399 * the upper (protocol) levels to process. It always succeeds. The buffer 1400 * may be dropped during processing for congestion control or by the 1401 * protocol layers. 1402 * 1403 * return values: 1404 * NET_RX_SUCCESS (no congestion) 1405 * NET_RX_CN_LOW (low congestion) 1406 * NET_RX_CN_MOD (moderate congestion) 1407 * NET_RX_CN_HIGH (high congestion) 1408 * NET_RX_DROP (packet was dropped) 1409 * 1410 */ 1411 1412 int netif_rx(struct sk_buff *skb) 1413 { 1414 struct softnet_data *queue; 1415 unsigned long flags; 1416 1417 /* if netpoll wants it, pretend we never saw it */ 1418 if (netpoll_rx(skb)) 1419 return NET_RX_DROP; 1420 1421 if (!skb->tstamp.off_sec) 1422 net_timestamp(skb); 1423 1424 /* 1425 * The code is rearranged so that the path is the most 1426 * short when CPU is congested, but is still operating. 1427 */ 1428 local_irq_save(flags); 1429 queue = &__get_cpu_var(softnet_data); 1430 1431 __get_cpu_var(netdev_rx_stat).total++; 1432 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1433 if (queue->input_pkt_queue.qlen) { 1434 enqueue: 1435 dev_hold(skb->dev); 1436 __skb_queue_tail(&queue->input_pkt_queue, skb); 1437 local_irq_restore(flags); 1438 return NET_RX_SUCCESS; 1439 } 1440 1441 netif_rx_schedule(&queue->backlog_dev); 1442 goto enqueue; 1443 } 1444 1445 __get_cpu_var(netdev_rx_stat).dropped++; 1446 local_irq_restore(flags); 1447 1448 kfree_skb(skb); 1449 return NET_RX_DROP; 1450 } 1451 1452 int netif_rx_ni(struct sk_buff *skb) 1453 { 1454 int err; 1455 1456 preempt_disable(); 1457 err = netif_rx(skb); 1458 if (local_softirq_pending()) 1459 do_softirq(); 1460 preempt_enable(); 1461 1462 return err; 1463 } 1464 1465 EXPORT_SYMBOL(netif_rx_ni); 1466 1467 static inline struct net_device *skb_bond(struct sk_buff *skb) 1468 { 1469 struct net_device *dev = skb->dev; 1470 1471 if (dev->master) { 1472 /* 1473 * On bonding slaves other than the currently active 1474 * slave, suppress duplicates except for 802.3ad 1475 * ETH_P_SLOW and alb non-mcast/bcast. 1476 */ 1477 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 1478 if (dev->master->priv_flags & IFF_MASTER_ALB) { 1479 if (skb->pkt_type != PACKET_BROADCAST && 1480 skb->pkt_type != PACKET_MULTICAST) 1481 goto keep; 1482 } 1483 1484 if (dev->master->priv_flags & IFF_MASTER_8023AD && 1485 skb->protocol == __constant_htons(ETH_P_SLOW)) 1486 goto keep; 1487 1488 kfree_skb(skb); 1489 return NULL; 1490 } 1491 keep: 1492 skb->dev = dev->master; 1493 } 1494 1495 return dev; 1496 } 1497 1498 static void net_tx_action(struct softirq_action *h) 1499 { 1500 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1501 1502 if (sd->completion_queue) { 1503 struct sk_buff *clist; 1504 1505 local_irq_disable(); 1506 clist = sd->completion_queue; 1507 sd->completion_queue = NULL; 1508 local_irq_enable(); 1509 1510 while (clist) { 1511 struct sk_buff *skb = clist; 1512 clist = clist->next; 1513 1514 BUG_TRAP(!atomic_read(&skb->users)); 1515 __kfree_skb(skb); 1516 } 1517 } 1518 1519 if (sd->output_queue) { 1520 struct net_device *head; 1521 1522 local_irq_disable(); 1523 head = sd->output_queue; 1524 sd->output_queue = NULL; 1525 local_irq_enable(); 1526 1527 while (head) { 1528 struct net_device *dev = head; 1529 head = head->next_sched; 1530 1531 smp_mb__before_clear_bit(); 1532 clear_bit(__LINK_STATE_SCHED, &dev->state); 1533 1534 if (spin_trylock(&dev->queue_lock)) { 1535 qdisc_run(dev); 1536 spin_unlock(&dev->queue_lock); 1537 } else { 1538 netif_schedule(dev); 1539 } 1540 } 1541 } 1542 } 1543 1544 static __inline__ int deliver_skb(struct sk_buff *skb, 1545 struct packet_type *pt_prev, 1546 struct net_device *orig_dev) 1547 { 1548 atomic_inc(&skb->users); 1549 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1550 } 1551 1552 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1553 int (*br_handle_frame_hook)(struct net_bridge_port *p, struct sk_buff **pskb); 1554 struct net_bridge; 1555 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1556 unsigned char *addr); 1557 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent); 1558 1559 static __inline__ int handle_bridge(struct sk_buff **pskb, 1560 struct packet_type **pt_prev, int *ret, 1561 struct net_device *orig_dev) 1562 { 1563 struct net_bridge_port *port; 1564 1565 if ((*pskb)->pkt_type == PACKET_LOOPBACK || 1566 (port = rcu_dereference((*pskb)->dev->br_port)) == NULL) 1567 return 0; 1568 1569 if (*pt_prev) { 1570 *ret = deliver_skb(*pskb, *pt_prev, orig_dev); 1571 *pt_prev = NULL; 1572 } 1573 1574 return br_handle_frame_hook(port, pskb); 1575 } 1576 #else 1577 #define handle_bridge(skb, pt_prev, ret, orig_dev) (0) 1578 #endif 1579 1580 #ifdef CONFIG_NET_CLS_ACT 1581 /* TODO: Maybe we should just force sch_ingress to be compiled in 1582 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1583 * a compare and 2 stores extra right now if we dont have it on 1584 * but have CONFIG_NET_CLS_ACT 1585 * NOTE: This doesnt stop any functionality; if you dont have 1586 * the ingress scheduler, you just cant add policies on ingress. 1587 * 1588 */ 1589 static int ing_filter(struct sk_buff *skb) 1590 { 1591 struct Qdisc *q; 1592 struct net_device *dev = skb->dev; 1593 int result = TC_ACT_OK; 1594 1595 if (dev->qdisc_ingress) { 1596 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd); 1597 if (MAX_RED_LOOP < ttl++) { 1598 printk("Redir loop detected Dropping packet (%s->%s)\n", 1599 skb->input_dev->name, skb->dev->name); 1600 return TC_ACT_SHOT; 1601 } 1602 1603 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl); 1604 1605 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS); 1606 1607 spin_lock(&dev->ingress_lock); 1608 if ((q = dev->qdisc_ingress) != NULL) 1609 result = q->enqueue(skb, q); 1610 spin_unlock(&dev->ingress_lock); 1611 1612 } 1613 1614 return result; 1615 } 1616 #endif 1617 1618 int netif_receive_skb(struct sk_buff *skb) 1619 { 1620 struct packet_type *ptype, *pt_prev; 1621 struct net_device *orig_dev; 1622 int ret = NET_RX_DROP; 1623 unsigned short type; 1624 1625 /* if we've gotten here through NAPI, check netpoll */ 1626 if (skb->dev->poll && netpoll_rx(skb)) 1627 return NET_RX_DROP; 1628 1629 if (!skb->tstamp.off_sec) 1630 net_timestamp(skb); 1631 1632 if (!skb->input_dev) 1633 skb->input_dev = skb->dev; 1634 1635 orig_dev = skb_bond(skb); 1636 1637 if (!orig_dev) 1638 return NET_RX_DROP; 1639 1640 __get_cpu_var(netdev_rx_stat).total++; 1641 1642 skb->h.raw = skb->nh.raw = skb->data; 1643 skb->mac_len = skb->nh.raw - skb->mac.raw; 1644 1645 pt_prev = NULL; 1646 1647 rcu_read_lock(); 1648 1649 #ifdef CONFIG_NET_CLS_ACT 1650 if (skb->tc_verd & TC_NCLS) { 1651 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 1652 goto ncls; 1653 } 1654 #endif 1655 1656 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1657 if (!ptype->dev || ptype->dev == skb->dev) { 1658 if (pt_prev) 1659 ret = deliver_skb(skb, pt_prev, orig_dev); 1660 pt_prev = ptype; 1661 } 1662 } 1663 1664 #ifdef CONFIG_NET_CLS_ACT 1665 if (pt_prev) { 1666 ret = deliver_skb(skb, pt_prev, orig_dev); 1667 pt_prev = NULL; /* noone else should process this after*/ 1668 } else { 1669 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1670 } 1671 1672 ret = ing_filter(skb); 1673 1674 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) { 1675 kfree_skb(skb); 1676 goto out; 1677 } 1678 1679 skb->tc_verd = 0; 1680 ncls: 1681 #endif 1682 1683 handle_diverter(skb); 1684 1685 if (handle_bridge(&skb, &pt_prev, &ret, orig_dev)) 1686 goto out; 1687 1688 type = skb->protocol; 1689 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 1690 if (ptype->type == type && 1691 (!ptype->dev || ptype->dev == skb->dev)) { 1692 if (pt_prev) 1693 ret = deliver_skb(skb, pt_prev, orig_dev); 1694 pt_prev = ptype; 1695 } 1696 } 1697 1698 if (pt_prev) { 1699 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1700 } else { 1701 kfree_skb(skb); 1702 /* Jamal, now you will not able to escape explaining 1703 * me how you were going to use this. :-) 1704 */ 1705 ret = NET_RX_DROP; 1706 } 1707 1708 out: 1709 rcu_read_unlock(); 1710 return ret; 1711 } 1712 1713 static int process_backlog(struct net_device *backlog_dev, int *budget) 1714 { 1715 int work = 0; 1716 int quota = min(backlog_dev->quota, *budget); 1717 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1718 unsigned long start_time = jiffies; 1719 1720 backlog_dev->weight = weight_p; 1721 for (;;) { 1722 struct sk_buff *skb; 1723 struct net_device *dev; 1724 1725 local_irq_disable(); 1726 skb = __skb_dequeue(&queue->input_pkt_queue); 1727 if (!skb) 1728 goto job_done; 1729 local_irq_enable(); 1730 1731 dev = skb->dev; 1732 1733 netif_receive_skb(skb); 1734 1735 dev_put(dev); 1736 1737 work++; 1738 1739 if (work >= quota || jiffies - start_time > 1) 1740 break; 1741 1742 } 1743 1744 backlog_dev->quota -= work; 1745 *budget -= work; 1746 return -1; 1747 1748 job_done: 1749 backlog_dev->quota -= work; 1750 *budget -= work; 1751 1752 list_del(&backlog_dev->poll_list); 1753 smp_mb__before_clear_bit(); 1754 netif_poll_enable(backlog_dev); 1755 1756 local_irq_enable(); 1757 return 0; 1758 } 1759 1760 static void net_rx_action(struct softirq_action *h) 1761 { 1762 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1763 unsigned long start_time = jiffies; 1764 int budget = netdev_budget; 1765 void *have; 1766 1767 local_irq_disable(); 1768 1769 while (!list_empty(&queue->poll_list)) { 1770 struct net_device *dev; 1771 1772 if (budget <= 0 || jiffies - start_time > 1) 1773 goto softnet_break; 1774 1775 local_irq_enable(); 1776 1777 dev = list_entry(queue->poll_list.next, 1778 struct net_device, poll_list); 1779 have = netpoll_poll_lock(dev); 1780 1781 if (dev->quota <= 0 || dev->poll(dev, &budget)) { 1782 netpoll_poll_unlock(have); 1783 local_irq_disable(); 1784 list_move_tail(&dev->poll_list, &queue->poll_list); 1785 if (dev->quota < 0) 1786 dev->quota += dev->weight; 1787 else 1788 dev->quota = dev->weight; 1789 } else { 1790 netpoll_poll_unlock(have); 1791 dev_put(dev); 1792 local_irq_disable(); 1793 } 1794 } 1795 out: 1796 #ifdef CONFIG_NET_DMA 1797 /* 1798 * There may not be any more sk_buffs coming right now, so push 1799 * any pending DMA copies to hardware 1800 */ 1801 if (net_dma_client) { 1802 struct dma_chan *chan; 1803 rcu_read_lock(); 1804 list_for_each_entry_rcu(chan, &net_dma_client->channels, client_node) 1805 dma_async_memcpy_issue_pending(chan); 1806 rcu_read_unlock(); 1807 } 1808 #endif 1809 local_irq_enable(); 1810 return; 1811 1812 softnet_break: 1813 __get_cpu_var(netdev_rx_stat).time_squeeze++; 1814 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1815 goto out; 1816 } 1817 1818 static gifconf_func_t * gifconf_list [NPROTO]; 1819 1820 /** 1821 * register_gifconf - register a SIOCGIF handler 1822 * @family: Address family 1823 * @gifconf: Function handler 1824 * 1825 * Register protocol dependent address dumping routines. The handler 1826 * that is passed must not be freed or reused until it has been replaced 1827 * by another handler. 1828 */ 1829 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 1830 { 1831 if (family >= NPROTO) 1832 return -EINVAL; 1833 gifconf_list[family] = gifconf; 1834 return 0; 1835 } 1836 1837 1838 /* 1839 * Map an interface index to its name (SIOCGIFNAME) 1840 */ 1841 1842 /* 1843 * We need this ioctl for efficient implementation of the 1844 * if_indextoname() function required by the IPv6 API. Without 1845 * it, we would have to search all the interfaces to find a 1846 * match. --pb 1847 */ 1848 1849 static int dev_ifname(struct ifreq __user *arg) 1850 { 1851 struct net_device *dev; 1852 struct ifreq ifr; 1853 1854 /* 1855 * Fetch the caller's info block. 1856 */ 1857 1858 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 1859 return -EFAULT; 1860 1861 read_lock(&dev_base_lock); 1862 dev = __dev_get_by_index(ifr.ifr_ifindex); 1863 if (!dev) { 1864 read_unlock(&dev_base_lock); 1865 return -ENODEV; 1866 } 1867 1868 strcpy(ifr.ifr_name, dev->name); 1869 read_unlock(&dev_base_lock); 1870 1871 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 1872 return -EFAULT; 1873 return 0; 1874 } 1875 1876 /* 1877 * Perform a SIOCGIFCONF call. This structure will change 1878 * size eventually, and there is nothing I can do about it. 1879 * Thus we will need a 'compatibility mode'. 1880 */ 1881 1882 static int dev_ifconf(char __user *arg) 1883 { 1884 struct ifconf ifc; 1885 struct net_device *dev; 1886 char __user *pos; 1887 int len; 1888 int total; 1889 int i; 1890 1891 /* 1892 * Fetch the caller's info block. 1893 */ 1894 1895 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 1896 return -EFAULT; 1897 1898 pos = ifc.ifc_buf; 1899 len = ifc.ifc_len; 1900 1901 /* 1902 * Loop over the interfaces, and write an info block for each. 1903 */ 1904 1905 total = 0; 1906 for (dev = dev_base; dev; dev = dev->next) { 1907 for (i = 0; i < NPROTO; i++) { 1908 if (gifconf_list[i]) { 1909 int done; 1910 if (!pos) 1911 done = gifconf_list[i](dev, NULL, 0); 1912 else 1913 done = gifconf_list[i](dev, pos + total, 1914 len - total); 1915 if (done < 0) 1916 return -EFAULT; 1917 total += done; 1918 } 1919 } 1920 } 1921 1922 /* 1923 * All done. Write the updated control block back to the caller. 1924 */ 1925 ifc.ifc_len = total; 1926 1927 /* 1928 * Both BSD and Solaris return 0 here, so we do too. 1929 */ 1930 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 1931 } 1932 1933 #ifdef CONFIG_PROC_FS 1934 /* 1935 * This is invoked by the /proc filesystem handler to display a device 1936 * in detail. 1937 */ 1938 static __inline__ struct net_device *dev_get_idx(loff_t pos) 1939 { 1940 struct net_device *dev; 1941 loff_t i; 1942 1943 for (i = 0, dev = dev_base; dev && i < pos; ++i, dev = dev->next); 1944 1945 return i == pos ? dev : NULL; 1946 } 1947 1948 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 1949 { 1950 read_lock(&dev_base_lock); 1951 return *pos ? dev_get_idx(*pos - 1) : SEQ_START_TOKEN; 1952 } 1953 1954 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1955 { 1956 ++*pos; 1957 return v == SEQ_START_TOKEN ? dev_base : ((struct net_device *)v)->next; 1958 } 1959 1960 void dev_seq_stop(struct seq_file *seq, void *v) 1961 { 1962 read_unlock(&dev_base_lock); 1963 } 1964 1965 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 1966 { 1967 if (dev->get_stats) { 1968 struct net_device_stats *stats = dev->get_stats(dev); 1969 1970 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 1971 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 1972 dev->name, stats->rx_bytes, stats->rx_packets, 1973 stats->rx_errors, 1974 stats->rx_dropped + stats->rx_missed_errors, 1975 stats->rx_fifo_errors, 1976 stats->rx_length_errors + stats->rx_over_errors + 1977 stats->rx_crc_errors + stats->rx_frame_errors, 1978 stats->rx_compressed, stats->multicast, 1979 stats->tx_bytes, stats->tx_packets, 1980 stats->tx_errors, stats->tx_dropped, 1981 stats->tx_fifo_errors, stats->collisions, 1982 stats->tx_carrier_errors + 1983 stats->tx_aborted_errors + 1984 stats->tx_window_errors + 1985 stats->tx_heartbeat_errors, 1986 stats->tx_compressed); 1987 } else 1988 seq_printf(seq, "%6s: No statistics available.\n", dev->name); 1989 } 1990 1991 /* 1992 * Called from the PROCfs module. This now uses the new arbitrary sized 1993 * /proc/net interface to create /proc/net/dev 1994 */ 1995 static int dev_seq_show(struct seq_file *seq, void *v) 1996 { 1997 if (v == SEQ_START_TOKEN) 1998 seq_puts(seq, "Inter-| Receive " 1999 " | Transmit\n" 2000 " face |bytes packets errs drop fifo frame " 2001 "compressed multicast|bytes packets errs " 2002 "drop fifo colls carrier compressed\n"); 2003 else 2004 dev_seq_printf_stats(seq, v); 2005 return 0; 2006 } 2007 2008 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2009 { 2010 struct netif_rx_stats *rc = NULL; 2011 2012 while (*pos < NR_CPUS) 2013 if (cpu_online(*pos)) { 2014 rc = &per_cpu(netdev_rx_stat, *pos); 2015 break; 2016 } else 2017 ++*pos; 2018 return rc; 2019 } 2020 2021 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2022 { 2023 return softnet_get_online(pos); 2024 } 2025 2026 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2027 { 2028 ++*pos; 2029 return softnet_get_online(pos); 2030 } 2031 2032 static void softnet_seq_stop(struct seq_file *seq, void *v) 2033 { 2034 } 2035 2036 static int softnet_seq_show(struct seq_file *seq, void *v) 2037 { 2038 struct netif_rx_stats *s = v; 2039 2040 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2041 s->total, s->dropped, s->time_squeeze, 0, 2042 0, 0, 0, 0, /* was fastroute */ 2043 s->cpu_collision ); 2044 return 0; 2045 } 2046 2047 static struct seq_operations dev_seq_ops = { 2048 .start = dev_seq_start, 2049 .next = dev_seq_next, 2050 .stop = dev_seq_stop, 2051 .show = dev_seq_show, 2052 }; 2053 2054 static int dev_seq_open(struct inode *inode, struct file *file) 2055 { 2056 return seq_open(file, &dev_seq_ops); 2057 } 2058 2059 static struct file_operations dev_seq_fops = { 2060 .owner = THIS_MODULE, 2061 .open = dev_seq_open, 2062 .read = seq_read, 2063 .llseek = seq_lseek, 2064 .release = seq_release, 2065 }; 2066 2067 static struct seq_operations softnet_seq_ops = { 2068 .start = softnet_seq_start, 2069 .next = softnet_seq_next, 2070 .stop = softnet_seq_stop, 2071 .show = softnet_seq_show, 2072 }; 2073 2074 static int softnet_seq_open(struct inode *inode, struct file *file) 2075 { 2076 return seq_open(file, &softnet_seq_ops); 2077 } 2078 2079 static struct file_operations softnet_seq_fops = { 2080 .owner = THIS_MODULE, 2081 .open = softnet_seq_open, 2082 .read = seq_read, 2083 .llseek = seq_lseek, 2084 .release = seq_release, 2085 }; 2086 2087 #ifdef CONFIG_WIRELESS_EXT 2088 extern int wireless_proc_init(void); 2089 #else 2090 #define wireless_proc_init() 0 2091 #endif 2092 2093 static int __init dev_proc_init(void) 2094 { 2095 int rc = -ENOMEM; 2096 2097 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops)) 2098 goto out; 2099 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops)) 2100 goto out_dev; 2101 if (wireless_proc_init()) 2102 goto out_softnet; 2103 rc = 0; 2104 out: 2105 return rc; 2106 out_softnet: 2107 proc_net_remove("softnet_stat"); 2108 out_dev: 2109 proc_net_remove("dev"); 2110 goto out; 2111 } 2112 #else 2113 #define dev_proc_init() 0 2114 #endif /* CONFIG_PROC_FS */ 2115 2116 2117 /** 2118 * netdev_set_master - set up master/slave pair 2119 * @slave: slave device 2120 * @master: new master device 2121 * 2122 * Changes the master device of the slave. Pass %NULL to break the 2123 * bonding. The caller must hold the RTNL semaphore. On a failure 2124 * a negative errno code is returned. On success the reference counts 2125 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2126 * function returns zero. 2127 */ 2128 int netdev_set_master(struct net_device *slave, struct net_device *master) 2129 { 2130 struct net_device *old = slave->master; 2131 2132 ASSERT_RTNL(); 2133 2134 if (master) { 2135 if (old) 2136 return -EBUSY; 2137 dev_hold(master); 2138 } 2139 2140 slave->master = master; 2141 2142 synchronize_net(); 2143 2144 if (old) 2145 dev_put(old); 2146 2147 if (master) 2148 slave->flags |= IFF_SLAVE; 2149 else 2150 slave->flags &= ~IFF_SLAVE; 2151 2152 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2153 return 0; 2154 } 2155 2156 /** 2157 * dev_set_promiscuity - update promiscuity count on a device 2158 * @dev: device 2159 * @inc: modifier 2160 * 2161 * Add or remove promiscuity from a device. While the count in the device 2162 * remains above zero the interface remains promiscuous. Once it hits zero 2163 * the device reverts back to normal filtering operation. A negative inc 2164 * value is used to drop promiscuity on the device. 2165 */ 2166 void dev_set_promiscuity(struct net_device *dev, int inc) 2167 { 2168 unsigned short old_flags = dev->flags; 2169 2170 if ((dev->promiscuity += inc) == 0) 2171 dev->flags &= ~IFF_PROMISC; 2172 else 2173 dev->flags |= IFF_PROMISC; 2174 if (dev->flags != old_flags) { 2175 dev_mc_upload(dev); 2176 printk(KERN_INFO "device %s %s promiscuous mode\n", 2177 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2178 "left"); 2179 audit_log(current->audit_context, GFP_ATOMIC, 2180 AUDIT_ANOM_PROMISCUOUS, 2181 "dev=%s prom=%d old_prom=%d auid=%u", 2182 dev->name, (dev->flags & IFF_PROMISC), 2183 (old_flags & IFF_PROMISC), 2184 audit_get_loginuid(current->audit_context)); 2185 } 2186 } 2187 2188 /** 2189 * dev_set_allmulti - update allmulti count on a device 2190 * @dev: device 2191 * @inc: modifier 2192 * 2193 * Add or remove reception of all multicast frames to a device. While the 2194 * count in the device remains above zero the interface remains listening 2195 * to all interfaces. Once it hits zero the device reverts back to normal 2196 * filtering operation. A negative @inc value is used to drop the counter 2197 * when releasing a resource needing all multicasts. 2198 */ 2199 2200 void dev_set_allmulti(struct net_device *dev, int inc) 2201 { 2202 unsigned short old_flags = dev->flags; 2203 2204 dev->flags |= IFF_ALLMULTI; 2205 if ((dev->allmulti += inc) == 0) 2206 dev->flags &= ~IFF_ALLMULTI; 2207 if (dev->flags ^ old_flags) 2208 dev_mc_upload(dev); 2209 } 2210 2211 unsigned dev_get_flags(const struct net_device *dev) 2212 { 2213 unsigned flags; 2214 2215 flags = (dev->flags & ~(IFF_PROMISC | 2216 IFF_ALLMULTI | 2217 IFF_RUNNING | 2218 IFF_LOWER_UP | 2219 IFF_DORMANT)) | 2220 (dev->gflags & (IFF_PROMISC | 2221 IFF_ALLMULTI)); 2222 2223 if (netif_running(dev)) { 2224 if (netif_oper_up(dev)) 2225 flags |= IFF_RUNNING; 2226 if (netif_carrier_ok(dev)) 2227 flags |= IFF_LOWER_UP; 2228 if (netif_dormant(dev)) 2229 flags |= IFF_DORMANT; 2230 } 2231 2232 return flags; 2233 } 2234 2235 int dev_change_flags(struct net_device *dev, unsigned flags) 2236 { 2237 int ret; 2238 int old_flags = dev->flags; 2239 2240 /* 2241 * Set the flags on our device. 2242 */ 2243 2244 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 2245 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 2246 IFF_AUTOMEDIA)) | 2247 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 2248 IFF_ALLMULTI)); 2249 2250 /* 2251 * Load in the correct multicast list now the flags have changed. 2252 */ 2253 2254 dev_mc_upload(dev); 2255 2256 /* 2257 * Have we downed the interface. We handle IFF_UP ourselves 2258 * according to user attempts to set it, rather than blindly 2259 * setting it. 2260 */ 2261 2262 ret = 0; 2263 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 2264 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 2265 2266 if (!ret) 2267 dev_mc_upload(dev); 2268 } 2269 2270 if (dev->flags & IFF_UP && 2271 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 2272 IFF_VOLATILE))) 2273 raw_notifier_call_chain(&netdev_chain, 2274 NETDEV_CHANGE, dev); 2275 2276 if ((flags ^ dev->gflags) & IFF_PROMISC) { 2277 int inc = (flags & IFF_PROMISC) ? +1 : -1; 2278 dev->gflags ^= IFF_PROMISC; 2279 dev_set_promiscuity(dev, inc); 2280 } 2281 2282 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 2283 is important. Some (broken) drivers set IFF_PROMISC, when 2284 IFF_ALLMULTI is requested not asking us and not reporting. 2285 */ 2286 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 2287 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 2288 dev->gflags ^= IFF_ALLMULTI; 2289 dev_set_allmulti(dev, inc); 2290 } 2291 2292 if (old_flags ^ dev->flags) 2293 rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags); 2294 2295 return ret; 2296 } 2297 2298 int dev_set_mtu(struct net_device *dev, int new_mtu) 2299 { 2300 int err; 2301 2302 if (new_mtu == dev->mtu) 2303 return 0; 2304 2305 /* MTU must be positive. */ 2306 if (new_mtu < 0) 2307 return -EINVAL; 2308 2309 if (!netif_device_present(dev)) 2310 return -ENODEV; 2311 2312 err = 0; 2313 if (dev->change_mtu) 2314 err = dev->change_mtu(dev, new_mtu); 2315 else 2316 dev->mtu = new_mtu; 2317 if (!err && dev->flags & IFF_UP) 2318 raw_notifier_call_chain(&netdev_chain, 2319 NETDEV_CHANGEMTU, dev); 2320 return err; 2321 } 2322 2323 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 2324 { 2325 int err; 2326 2327 if (!dev->set_mac_address) 2328 return -EOPNOTSUPP; 2329 if (sa->sa_family != dev->type) 2330 return -EINVAL; 2331 if (!netif_device_present(dev)) 2332 return -ENODEV; 2333 err = dev->set_mac_address(dev, sa); 2334 if (!err) 2335 raw_notifier_call_chain(&netdev_chain, 2336 NETDEV_CHANGEADDR, dev); 2337 return err; 2338 } 2339 2340 /* 2341 * Perform the SIOCxIFxxx calls. 2342 */ 2343 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd) 2344 { 2345 int err; 2346 struct net_device *dev = __dev_get_by_name(ifr->ifr_name); 2347 2348 if (!dev) 2349 return -ENODEV; 2350 2351 switch (cmd) { 2352 case SIOCGIFFLAGS: /* Get interface flags */ 2353 ifr->ifr_flags = dev_get_flags(dev); 2354 return 0; 2355 2356 case SIOCSIFFLAGS: /* Set interface flags */ 2357 return dev_change_flags(dev, ifr->ifr_flags); 2358 2359 case SIOCGIFMETRIC: /* Get the metric on the interface 2360 (currently unused) */ 2361 ifr->ifr_metric = 0; 2362 return 0; 2363 2364 case SIOCSIFMETRIC: /* Set the metric on the interface 2365 (currently unused) */ 2366 return -EOPNOTSUPP; 2367 2368 case SIOCGIFMTU: /* Get the MTU of a device */ 2369 ifr->ifr_mtu = dev->mtu; 2370 return 0; 2371 2372 case SIOCSIFMTU: /* Set the MTU of a device */ 2373 return dev_set_mtu(dev, ifr->ifr_mtu); 2374 2375 case SIOCGIFHWADDR: 2376 if (!dev->addr_len) 2377 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 2378 else 2379 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 2380 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2381 ifr->ifr_hwaddr.sa_family = dev->type; 2382 return 0; 2383 2384 case SIOCSIFHWADDR: 2385 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 2386 2387 case SIOCSIFHWBROADCAST: 2388 if (ifr->ifr_hwaddr.sa_family != dev->type) 2389 return -EINVAL; 2390 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 2391 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2392 raw_notifier_call_chain(&netdev_chain, 2393 NETDEV_CHANGEADDR, dev); 2394 return 0; 2395 2396 case SIOCGIFMAP: 2397 ifr->ifr_map.mem_start = dev->mem_start; 2398 ifr->ifr_map.mem_end = dev->mem_end; 2399 ifr->ifr_map.base_addr = dev->base_addr; 2400 ifr->ifr_map.irq = dev->irq; 2401 ifr->ifr_map.dma = dev->dma; 2402 ifr->ifr_map.port = dev->if_port; 2403 return 0; 2404 2405 case SIOCSIFMAP: 2406 if (dev->set_config) { 2407 if (!netif_device_present(dev)) 2408 return -ENODEV; 2409 return dev->set_config(dev, &ifr->ifr_map); 2410 } 2411 return -EOPNOTSUPP; 2412 2413 case SIOCADDMULTI: 2414 if (!dev->set_multicast_list || 2415 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2416 return -EINVAL; 2417 if (!netif_device_present(dev)) 2418 return -ENODEV; 2419 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 2420 dev->addr_len, 1); 2421 2422 case SIOCDELMULTI: 2423 if (!dev->set_multicast_list || 2424 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2425 return -EINVAL; 2426 if (!netif_device_present(dev)) 2427 return -ENODEV; 2428 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 2429 dev->addr_len, 1); 2430 2431 case SIOCGIFINDEX: 2432 ifr->ifr_ifindex = dev->ifindex; 2433 return 0; 2434 2435 case SIOCGIFTXQLEN: 2436 ifr->ifr_qlen = dev->tx_queue_len; 2437 return 0; 2438 2439 case SIOCSIFTXQLEN: 2440 if (ifr->ifr_qlen < 0) 2441 return -EINVAL; 2442 dev->tx_queue_len = ifr->ifr_qlen; 2443 return 0; 2444 2445 case SIOCSIFNAME: 2446 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 2447 return dev_change_name(dev, ifr->ifr_newname); 2448 2449 /* 2450 * Unknown or private ioctl 2451 */ 2452 2453 default: 2454 if ((cmd >= SIOCDEVPRIVATE && 2455 cmd <= SIOCDEVPRIVATE + 15) || 2456 cmd == SIOCBONDENSLAVE || 2457 cmd == SIOCBONDRELEASE || 2458 cmd == SIOCBONDSETHWADDR || 2459 cmd == SIOCBONDSLAVEINFOQUERY || 2460 cmd == SIOCBONDINFOQUERY || 2461 cmd == SIOCBONDCHANGEACTIVE || 2462 cmd == SIOCGMIIPHY || 2463 cmd == SIOCGMIIREG || 2464 cmd == SIOCSMIIREG || 2465 cmd == SIOCBRADDIF || 2466 cmd == SIOCBRDELIF || 2467 cmd == SIOCWANDEV) { 2468 err = -EOPNOTSUPP; 2469 if (dev->do_ioctl) { 2470 if (netif_device_present(dev)) 2471 err = dev->do_ioctl(dev, ifr, 2472 cmd); 2473 else 2474 err = -ENODEV; 2475 } 2476 } else 2477 err = -EINVAL; 2478 2479 } 2480 return err; 2481 } 2482 2483 /* 2484 * This function handles all "interface"-type I/O control requests. The actual 2485 * 'doing' part of this is dev_ifsioc above. 2486 */ 2487 2488 /** 2489 * dev_ioctl - network device ioctl 2490 * @cmd: command to issue 2491 * @arg: pointer to a struct ifreq in user space 2492 * 2493 * Issue ioctl functions to devices. This is normally called by the 2494 * user space syscall interfaces but can sometimes be useful for 2495 * other purposes. The return value is the return from the syscall if 2496 * positive or a negative errno code on error. 2497 */ 2498 2499 int dev_ioctl(unsigned int cmd, void __user *arg) 2500 { 2501 struct ifreq ifr; 2502 int ret; 2503 char *colon; 2504 2505 /* One special case: SIOCGIFCONF takes ifconf argument 2506 and requires shared lock, because it sleeps writing 2507 to user space. 2508 */ 2509 2510 if (cmd == SIOCGIFCONF) { 2511 rtnl_lock(); 2512 ret = dev_ifconf((char __user *) arg); 2513 rtnl_unlock(); 2514 return ret; 2515 } 2516 if (cmd == SIOCGIFNAME) 2517 return dev_ifname((struct ifreq __user *)arg); 2518 2519 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2520 return -EFAULT; 2521 2522 ifr.ifr_name[IFNAMSIZ-1] = 0; 2523 2524 colon = strchr(ifr.ifr_name, ':'); 2525 if (colon) 2526 *colon = 0; 2527 2528 /* 2529 * See which interface the caller is talking about. 2530 */ 2531 2532 switch (cmd) { 2533 /* 2534 * These ioctl calls: 2535 * - can be done by all. 2536 * - atomic and do not require locking. 2537 * - return a value 2538 */ 2539 case SIOCGIFFLAGS: 2540 case SIOCGIFMETRIC: 2541 case SIOCGIFMTU: 2542 case SIOCGIFHWADDR: 2543 case SIOCGIFSLAVE: 2544 case SIOCGIFMAP: 2545 case SIOCGIFINDEX: 2546 case SIOCGIFTXQLEN: 2547 dev_load(ifr.ifr_name); 2548 read_lock(&dev_base_lock); 2549 ret = dev_ifsioc(&ifr, cmd); 2550 read_unlock(&dev_base_lock); 2551 if (!ret) { 2552 if (colon) 2553 *colon = ':'; 2554 if (copy_to_user(arg, &ifr, 2555 sizeof(struct ifreq))) 2556 ret = -EFAULT; 2557 } 2558 return ret; 2559 2560 case SIOCETHTOOL: 2561 dev_load(ifr.ifr_name); 2562 rtnl_lock(); 2563 ret = dev_ethtool(&ifr); 2564 rtnl_unlock(); 2565 if (!ret) { 2566 if (colon) 2567 *colon = ':'; 2568 if (copy_to_user(arg, &ifr, 2569 sizeof(struct ifreq))) 2570 ret = -EFAULT; 2571 } 2572 return ret; 2573 2574 /* 2575 * These ioctl calls: 2576 * - require superuser power. 2577 * - require strict serialization. 2578 * - return a value 2579 */ 2580 case SIOCGMIIPHY: 2581 case SIOCGMIIREG: 2582 case SIOCSIFNAME: 2583 if (!capable(CAP_NET_ADMIN)) 2584 return -EPERM; 2585 dev_load(ifr.ifr_name); 2586 rtnl_lock(); 2587 ret = dev_ifsioc(&ifr, cmd); 2588 rtnl_unlock(); 2589 if (!ret) { 2590 if (colon) 2591 *colon = ':'; 2592 if (copy_to_user(arg, &ifr, 2593 sizeof(struct ifreq))) 2594 ret = -EFAULT; 2595 } 2596 return ret; 2597 2598 /* 2599 * These ioctl calls: 2600 * - require superuser power. 2601 * - require strict serialization. 2602 * - do not return a value 2603 */ 2604 case SIOCSIFFLAGS: 2605 case SIOCSIFMETRIC: 2606 case SIOCSIFMTU: 2607 case SIOCSIFMAP: 2608 case SIOCSIFHWADDR: 2609 case SIOCSIFSLAVE: 2610 case SIOCADDMULTI: 2611 case SIOCDELMULTI: 2612 case SIOCSIFHWBROADCAST: 2613 case SIOCSIFTXQLEN: 2614 case SIOCSMIIREG: 2615 case SIOCBONDENSLAVE: 2616 case SIOCBONDRELEASE: 2617 case SIOCBONDSETHWADDR: 2618 case SIOCBONDCHANGEACTIVE: 2619 case SIOCBRADDIF: 2620 case SIOCBRDELIF: 2621 if (!capable(CAP_NET_ADMIN)) 2622 return -EPERM; 2623 /* fall through */ 2624 case SIOCBONDSLAVEINFOQUERY: 2625 case SIOCBONDINFOQUERY: 2626 dev_load(ifr.ifr_name); 2627 rtnl_lock(); 2628 ret = dev_ifsioc(&ifr, cmd); 2629 rtnl_unlock(); 2630 return ret; 2631 2632 case SIOCGIFMEM: 2633 /* Get the per device memory space. We can add this but 2634 * currently do not support it */ 2635 case SIOCSIFMEM: 2636 /* Set the per device memory buffer space. 2637 * Not applicable in our case */ 2638 case SIOCSIFLINK: 2639 return -EINVAL; 2640 2641 /* 2642 * Unknown or private ioctl. 2643 */ 2644 default: 2645 if (cmd == SIOCWANDEV || 2646 (cmd >= SIOCDEVPRIVATE && 2647 cmd <= SIOCDEVPRIVATE + 15)) { 2648 dev_load(ifr.ifr_name); 2649 rtnl_lock(); 2650 ret = dev_ifsioc(&ifr, cmd); 2651 rtnl_unlock(); 2652 if (!ret && copy_to_user(arg, &ifr, 2653 sizeof(struct ifreq))) 2654 ret = -EFAULT; 2655 return ret; 2656 } 2657 #ifdef CONFIG_WIRELESS_EXT 2658 /* Take care of Wireless Extensions */ 2659 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 2660 /* If command is `set a parameter', or 2661 * `get the encoding parameters', check if 2662 * the user has the right to do it */ 2663 if (IW_IS_SET(cmd) || cmd == SIOCGIWENCODE 2664 || cmd == SIOCGIWENCODEEXT) { 2665 if (!capable(CAP_NET_ADMIN)) 2666 return -EPERM; 2667 } 2668 dev_load(ifr.ifr_name); 2669 rtnl_lock(); 2670 /* Follow me in net/core/wireless.c */ 2671 ret = wireless_process_ioctl(&ifr, cmd); 2672 rtnl_unlock(); 2673 if (IW_IS_GET(cmd) && 2674 copy_to_user(arg, &ifr, 2675 sizeof(struct ifreq))) 2676 ret = -EFAULT; 2677 return ret; 2678 } 2679 #endif /* CONFIG_WIRELESS_EXT */ 2680 return -EINVAL; 2681 } 2682 } 2683 2684 2685 /** 2686 * dev_new_index - allocate an ifindex 2687 * 2688 * Returns a suitable unique value for a new device interface 2689 * number. The caller must hold the rtnl semaphore or the 2690 * dev_base_lock to be sure it remains unique. 2691 */ 2692 static int dev_new_index(void) 2693 { 2694 static int ifindex; 2695 for (;;) { 2696 if (++ifindex <= 0) 2697 ifindex = 1; 2698 if (!__dev_get_by_index(ifindex)) 2699 return ifindex; 2700 } 2701 } 2702 2703 static int dev_boot_phase = 1; 2704 2705 /* Delayed registration/unregisteration */ 2706 static DEFINE_SPINLOCK(net_todo_list_lock); 2707 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 2708 2709 static inline void net_set_todo(struct net_device *dev) 2710 { 2711 spin_lock(&net_todo_list_lock); 2712 list_add_tail(&dev->todo_list, &net_todo_list); 2713 spin_unlock(&net_todo_list_lock); 2714 } 2715 2716 /** 2717 * register_netdevice - register a network device 2718 * @dev: device to register 2719 * 2720 * Take a completed network device structure and add it to the kernel 2721 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 2722 * chain. 0 is returned on success. A negative errno code is returned 2723 * on a failure to set up the device, or if the name is a duplicate. 2724 * 2725 * Callers must hold the rtnl semaphore. You may want 2726 * register_netdev() instead of this. 2727 * 2728 * BUGS: 2729 * The locking appears insufficient to guarantee two parallel registers 2730 * will not get the same name. 2731 */ 2732 2733 int register_netdevice(struct net_device *dev) 2734 { 2735 struct hlist_head *head; 2736 struct hlist_node *p; 2737 int ret; 2738 2739 BUG_ON(dev_boot_phase); 2740 ASSERT_RTNL(); 2741 2742 might_sleep(); 2743 2744 /* When net_device's are persistent, this will be fatal. */ 2745 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 2746 2747 spin_lock_init(&dev->queue_lock); 2748 spin_lock_init(&dev->_xmit_lock); 2749 dev->xmit_lock_owner = -1; 2750 #ifdef CONFIG_NET_CLS_ACT 2751 spin_lock_init(&dev->ingress_lock); 2752 #endif 2753 2754 ret = alloc_divert_blk(dev); 2755 if (ret) 2756 goto out; 2757 2758 dev->iflink = -1; 2759 2760 /* Init, if this function is available */ 2761 if (dev->init) { 2762 ret = dev->init(dev); 2763 if (ret) { 2764 if (ret > 0) 2765 ret = -EIO; 2766 goto out_err; 2767 } 2768 } 2769 2770 if (!dev_valid_name(dev->name)) { 2771 ret = -EINVAL; 2772 goto out_err; 2773 } 2774 2775 dev->ifindex = dev_new_index(); 2776 if (dev->iflink == -1) 2777 dev->iflink = dev->ifindex; 2778 2779 /* Check for existence of name */ 2780 head = dev_name_hash(dev->name); 2781 hlist_for_each(p, head) { 2782 struct net_device *d 2783 = hlist_entry(p, struct net_device, name_hlist); 2784 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 2785 ret = -EEXIST; 2786 goto out_err; 2787 } 2788 } 2789 2790 /* Fix illegal SG+CSUM combinations. */ 2791 if ((dev->features & NETIF_F_SG) && 2792 !(dev->features & NETIF_F_ALL_CSUM)) { 2793 printk("%s: Dropping NETIF_F_SG since no checksum feature.\n", 2794 dev->name); 2795 dev->features &= ~NETIF_F_SG; 2796 } 2797 2798 /* TSO requires that SG is present as well. */ 2799 if ((dev->features & NETIF_F_TSO) && 2800 !(dev->features & NETIF_F_SG)) { 2801 printk("%s: Dropping NETIF_F_TSO since no SG feature.\n", 2802 dev->name); 2803 dev->features &= ~NETIF_F_TSO; 2804 } 2805 if (dev->features & NETIF_F_UFO) { 2806 if (!(dev->features & NETIF_F_HW_CSUM)) { 2807 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 2808 "NETIF_F_HW_CSUM feature.\n", 2809 dev->name); 2810 dev->features &= ~NETIF_F_UFO; 2811 } 2812 if (!(dev->features & NETIF_F_SG)) { 2813 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 2814 "NETIF_F_SG feature.\n", 2815 dev->name); 2816 dev->features &= ~NETIF_F_UFO; 2817 } 2818 } 2819 2820 /* 2821 * nil rebuild_header routine, 2822 * that should be never called and used as just bug trap. 2823 */ 2824 2825 if (!dev->rebuild_header) 2826 dev->rebuild_header = default_rebuild_header; 2827 2828 ret = netdev_register_sysfs(dev); 2829 if (ret) 2830 goto out_err; 2831 dev->reg_state = NETREG_REGISTERED; 2832 2833 /* 2834 * Default initial state at registry is that the 2835 * device is present. 2836 */ 2837 2838 set_bit(__LINK_STATE_PRESENT, &dev->state); 2839 2840 dev->next = NULL; 2841 dev_init_scheduler(dev); 2842 write_lock_bh(&dev_base_lock); 2843 *dev_tail = dev; 2844 dev_tail = &dev->next; 2845 hlist_add_head(&dev->name_hlist, head); 2846 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex)); 2847 dev_hold(dev); 2848 write_unlock_bh(&dev_base_lock); 2849 2850 /* Notify protocols, that a new device appeared. */ 2851 raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev); 2852 2853 ret = 0; 2854 2855 out: 2856 return ret; 2857 out_err: 2858 free_divert_blk(dev); 2859 goto out; 2860 } 2861 2862 /** 2863 * register_netdev - register a network device 2864 * @dev: device to register 2865 * 2866 * Take a completed network device structure and add it to the kernel 2867 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 2868 * chain. 0 is returned on success. A negative errno code is returned 2869 * on a failure to set up the device, or if the name is a duplicate. 2870 * 2871 * This is a wrapper around register_netdev that takes the rtnl semaphore 2872 * and expands the device name if you passed a format string to 2873 * alloc_netdev. 2874 */ 2875 int register_netdev(struct net_device *dev) 2876 { 2877 int err; 2878 2879 rtnl_lock(); 2880 2881 /* 2882 * If the name is a format string the caller wants us to do a 2883 * name allocation. 2884 */ 2885 if (strchr(dev->name, '%')) { 2886 err = dev_alloc_name(dev, dev->name); 2887 if (err < 0) 2888 goto out; 2889 } 2890 2891 /* 2892 * Back compatibility hook. Kill this one in 2.5 2893 */ 2894 if (dev->name[0] == 0 || dev->name[0] == ' ') { 2895 err = dev_alloc_name(dev, "eth%d"); 2896 if (err < 0) 2897 goto out; 2898 } 2899 2900 err = register_netdevice(dev); 2901 out: 2902 rtnl_unlock(); 2903 return err; 2904 } 2905 EXPORT_SYMBOL(register_netdev); 2906 2907 /* 2908 * netdev_wait_allrefs - wait until all references are gone. 2909 * 2910 * This is called when unregistering network devices. 2911 * 2912 * Any protocol or device that holds a reference should register 2913 * for netdevice notification, and cleanup and put back the 2914 * reference if they receive an UNREGISTER event. 2915 * We can get stuck here if buggy protocols don't correctly 2916 * call dev_put. 2917 */ 2918 static void netdev_wait_allrefs(struct net_device *dev) 2919 { 2920 unsigned long rebroadcast_time, warning_time; 2921 2922 rebroadcast_time = warning_time = jiffies; 2923 while (atomic_read(&dev->refcnt) != 0) { 2924 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 2925 rtnl_lock(); 2926 2927 /* Rebroadcast unregister notification */ 2928 raw_notifier_call_chain(&netdev_chain, 2929 NETDEV_UNREGISTER, dev); 2930 2931 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 2932 &dev->state)) { 2933 /* We must not have linkwatch events 2934 * pending on unregister. If this 2935 * happens, we simply run the queue 2936 * unscheduled, resulting in a noop 2937 * for this device. 2938 */ 2939 linkwatch_run_queue(); 2940 } 2941 2942 __rtnl_unlock(); 2943 2944 rebroadcast_time = jiffies; 2945 } 2946 2947 msleep(250); 2948 2949 if (time_after(jiffies, warning_time + 10 * HZ)) { 2950 printk(KERN_EMERG "unregister_netdevice: " 2951 "waiting for %s to become free. Usage " 2952 "count = %d\n", 2953 dev->name, atomic_read(&dev->refcnt)); 2954 warning_time = jiffies; 2955 } 2956 } 2957 } 2958 2959 /* The sequence is: 2960 * 2961 * rtnl_lock(); 2962 * ... 2963 * register_netdevice(x1); 2964 * register_netdevice(x2); 2965 * ... 2966 * unregister_netdevice(y1); 2967 * unregister_netdevice(y2); 2968 * ... 2969 * rtnl_unlock(); 2970 * free_netdev(y1); 2971 * free_netdev(y2); 2972 * 2973 * We are invoked by rtnl_unlock() after it drops the semaphore. 2974 * This allows us to deal with problems: 2975 * 1) We can delete sysfs objects which invoke hotplug 2976 * without deadlocking with linkwatch via keventd. 2977 * 2) Since we run with the RTNL semaphore not held, we can sleep 2978 * safely in order to wait for the netdev refcnt to drop to zero. 2979 */ 2980 static DEFINE_MUTEX(net_todo_run_mutex); 2981 void netdev_run_todo(void) 2982 { 2983 struct list_head list = LIST_HEAD_INIT(list); 2984 2985 /* Need to guard against multiple cpu's getting out of order. */ 2986 mutex_lock(&net_todo_run_mutex); 2987 2988 /* Not safe to do outside the semaphore. We must not return 2989 * until all unregister events invoked by the local processor 2990 * have been completed (either by this todo run, or one on 2991 * another cpu). 2992 */ 2993 if (list_empty(&net_todo_list)) 2994 goto out; 2995 2996 /* Snapshot list, allow later requests */ 2997 spin_lock(&net_todo_list_lock); 2998 list_splice_init(&net_todo_list, &list); 2999 spin_unlock(&net_todo_list_lock); 3000 3001 while (!list_empty(&list)) { 3002 struct net_device *dev 3003 = list_entry(list.next, struct net_device, todo_list); 3004 list_del(&dev->todo_list); 3005 3006 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3007 printk(KERN_ERR "network todo '%s' but state %d\n", 3008 dev->name, dev->reg_state); 3009 dump_stack(); 3010 continue; 3011 } 3012 3013 netdev_unregister_sysfs(dev); 3014 dev->reg_state = NETREG_UNREGISTERED; 3015 3016 netdev_wait_allrefs(dev); 3017 3018 /* paranoia */ 3019 BUG_ON(atomic_read(&dev->refcnt)); 3020 BUG_TRAP(!dev->ip_ptr); 3021 BUG_TRAP(!dev->ip6_ptr); 3022 BUG_TRAP(!dev->dn_ptr); 3023 3024 /* It must be the very last action, 3025 * after this 'dev' may point to freed up memory. 3026 */ 3027 if (dev->destructor) 3028 dev->destructor(dev); 3029 } 3030 3031 out: 3032 mutex_unlock(&net_todo_run_mutex); 3033 } 3034 3035 /** 3036 * alloc_netdev - allocate network device 3037 * @sizeof_priv: size of private data to allocate space for 3038 * @name: device name format string 3039 * @setup: callback to initialize device 3040 * 3041 * Allocates a struct net_device with private data area for driver use 3042 * and performs basic initialization. 3043 */ 3044 struct net_device *alloc_netdev(int sizeof_priv, const char *name, 3045 void (*setup)(struct net_device *)) 3046 { 3047 void *p; 3048 struct net_device *dev; 3049 int alloc_size; 3050 3051 /* ensure 32-byte alignment of both the device and private area */ 3052 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 3053 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 3054 3055 p = kzalloc(alloc_size, GFP_KERNEL); 3056 if (!p) { 3057 printk(KERN_ERR "alloc_dev: Unable to allocate device.\n"); 3058 return NULL; 3059 } 3060 3061 dev = (struct net_device *) 3062 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 3063 dev->padded = (char *)dev - (char *)p; 3064 3065 if (sizeof_priv) 3066 dev->priv = netdev_priv(dev); 3067 3068 setup(dev); 3069 strcpy(dev->name, name); 3070 return dev; 3071 } 3072 EXPORT_SYMBOL(alloc_netdev); 3073 3074 /** 3075 * free_netdev - free network device 3076 * @dev: device 3077 * 3078 * This function does the last stage of destroying an allocated device 3079 * interface. The reference to the device object is released. 3080 * If this is the last reference then it will be freed. 3081 */ 3082 void free_netdev(struct net_device *dev) 3083 { 3084 #ifdef CONFIG_SYSFS 3085 /* Compatibility with error handling in drivers */ 3086 if (dev->reg_state == NETREG_UNINITIALIZED) { 3087 kfree((char *)dev - dev->padded); 3088 return; 3089 } 3090 3091 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3092 dev->reg_state = NETREG_RELEASED; 3093 3094 /* will free via class release */ 3095 class_device_put(&dev->class_dev); 3096 #else 3097 kfree((char *)dev - dev->padded); 3098 #endif 3099 } 3100 3101 /* Synchronize with packet receive processing. */ 3102 void synchronize_net(void) 3103 { 3104 might_sleep(); 3105 synchronize_rcu(); 3106 } 3107 3108 /** 3109 * unregister_netdevice - remove device from the kernel 3110 * @dev: device 3111 * 3112 * This function shuts down a device interface and removes it 3113 * from the kernel tables. On success 0 is returned, on a failure 3114 * a negative errno code is returned. 3115 * 3116 * Callers must hold the rtnl semaphore. You may want 3117 * unregister_netdev() instead of this. 3118 */ 3119 3120 int unregister_netdevice(struct net_device *dev) 3121 { 3122 struct net_device *d, **dp; 3123 3124 BUG_ON(dev_boot_phase); 3125 ASSERT_RTNL(); 3126 3127 /* Some devices call without registering for initialization unwind. */ 3128 if (dev->reg_state == NETREG_UNINITIALIZED) { 3129 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3130 "was registered\n", dev->name, dev); 3131 return -ENODEV; 3132 } 3133 3134 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3135 3136 /* If device is running, close it first. */ 3137 if (dev->flags & IFF_UP) 3138 dev_close(dev); 3139 3140 /* And unlink it from device chain. */ 3141 for (dp = &dev_base; (d = *dp) != NULL; dp = &d->next) { 3142 if (d == dev) { 3143 write_lock_bh(&dev_base_lock); 3144 hlist_del(&dev->name_hlist); 3145 hlist_del(&dev->index_hlist); 3146 if (dev_tail == &dev->next) 3147 dev_tail = dp; 3148 *dp = d->next; 3149 write_unlock_bh(&dev_base_lock); 3150 break; 3151 } 3152 } 3153 if (!d) { 3154 printk(KERN_ERR "unregister net_device: '%s' not found\n", 3155 dev->name); 3156 return -ENODEV; 3157 } 3158 3159 dev->reg_state = NETREG_UNREGISTERING; 3160 3161 synchronize_net(); 3162 3163 /* Shutdown queueing discipline. */ 3164 dev_shutdown(dev); 3165 3166 3167 /* Notify protocols, that we are about to destroy 3168 this device. They should clean all the things. 3169 */ 3170 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev); 3171 3172 /* 3173 * Flush the multicast chain 3174 */ 3175 dev_mc_discard(dev); 3176 3177 if (dev->uninit) 3178 dev->uninit(dev); 3179 3180 /* Notifier chain MUST detach us from master device. */ 3181 BUG_TRAP(!dev->master); 3182 3183 free_divert_blk(dev); 3184 3185 /* Finish processing unregister after unlock */ 3186 net_set_todo(dev); 3187 3188 synchronize_net(); 3189 3190 dev_put(dev); 3191 return 0; 3192 } 3193 3194 /** 3195 * unregister_netdev - remove device from the kernel 3196 * @dev: device 3197 * 3198 * This function shuts down a device interface and removes it 3199 * from the kernel tables. On success 0 is returned, on a failure 3200 * a negative errno code is returned. 3201 * 3202 * This is just a wrapper for unregister_netdevice that takes 3203 * the rtnl semaphore. In general you want to use this and not 3204 * unregister_netdevice. 3205 */ 3206 void unregister_netdev(struct net_device *dev) 3207 { 3208 rtnl_lock(); 3209 unregister_netdevice(dev); 3210 rtnl_unlock(); 3211 } 3212 3213 EXPORT_SYMBOL(unregister_netdev); 3214 3215 #ifdef CONFIG_HOTPLUG_CPU 3216 static int dev_cpu_callback(struct notifier_block *nfb, 3217 unsigned long action, 3218 void *ocpu) 3219 { 3220 struct sk_buff **list_skb; 3221 struct net_device **list_net; 3222 struct sk_buff *skb; 3223 unsigned int cpu, oldcpu = (unsigned long)ocpu; 3224 struct softnet_data *sd, *oldsd; 3225 3226 if (action != CPU_DEAD) 3227 return NOTIFY_OK; 3228 3229 local_irq_disable(); 3230 cpu = smp_processor_id(); 3231 sd = &per_cpu(softnet_data, cpu); 3232 oldsd = &per_cpu(softnet_data, oldcpu); 3233 3234 /* Find end of our completion_queue. */ 3235 list_skb = &sd->completion_queue; 3236 while (*list_skb) 3237 list_skb = &(*list_skb)->next; 3238 /* Append completion queue from offline CPU. */ 3239 *list_skb = oldsd->completion_queue; 3240 oldsd->completion_queue = NULL; 3241 3242 /* Find end of our output_queue. */ 3243 list_net = &sd->output_queue; 3244 while (*list_net) 3245 list_net = &(*list_net)->next_sched; 3246 /* Append output queue from offline CPU. */ 3247 *list_net = oldsd->output_queue; 3248 oldsd->output_queue = NULL; 3249 3250 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3251 local_irq_enable(); 3252 3253 /* Process offline CPU's input_pkt_queue */ 3254 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 3255 netif_rx(skb); 3256 3257 return NOTIFY_OK; 3258 } 3259 #endif /* CONFIG_HOTPLUG_CPU */ 3260 3261 #ifdef CONFIG_NET_DMA 3262 /** 3263 * net_dma_rebalance - 3264 * This is called when the number of channels allocated to the net_dma_client 3265 * changes. The net_dma_client tries to have one DMA channel per CPU. 3266 */ 3267 static void net_dma_rebalance(void) 3268 { 3269 unsigned int cpu, i, n; 3270 struct dma_chan *chan; 3271 3272 lock_cpu_hotplug(); 3273 3274 if (net_dma_count == 0) { 3275 for_each_online_cpu(cpu) 3276 rcu_assign_pointer(per_cpu(softnet_data.net_dma, cpu), NULL); 3277 unlock_cpu_hotplug(); 3278 return; 3279 } 3280 3281 i = 0; 3282 cpu = first_cpu(cpu_online_map); 3283 3284 rcu_read_lock(); 3285 list_for_each_entry(chan, &net_dma_client->channels, client_node) { 3286 n = ((num_online_cpus() / net_dma_count) 3287 + (i < (num_online_cpus() % net_dma_count) ? 1 : 0)); 3288 3289 while(n) { 3290 per_cpu(softnet_data.net_dma, cpu) = chan; 3291 cpu = next_cpu(cpu, cpu_online_map); 3292 n--; 3293 } 3294 i++; 3295 } 3296 rcu_read_unlock(); 3297 3298 unlock_cpu_hotplug(); 3299 } 3300 3301 /** 3302 * netdev_dma_event - event callback for the net_dma_client 3303 * @client: should always be net_dma_client 3304 * @chan: 3305 * @event: 3306 */ 3307 static void netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 3308 enum dma_event event) 3309 { 3310 spin_lock(&net_dma_event_lock); 3311 switch (event) { 3312 case DMA_RESOURCE_ADDED: 3313 net_dma_count++; 3314 net_dma_rebalance(); 3315 break; 3316 case DMA_RESOURCE_REMOVED: 3317 net_dma_count--; 3318 net_dma_rebalance(); 3319 break; 3320 default: 3321 break; 3322 } 3323 spin_unlock(&net_dma_event_lock); 3324 } 3325 3326 /** 3327 * netdev_dma_regiser - register the networking subsystem as a DMA client 3328 */ 3329 static int __init netdev_dma_register(void) 3330 { 3331 spin_lock_init(&net_dma_event_lock); 3332 net_dma_client = dma_async_client_register(netdev_dma_event); 3333 if (net_dma_client == NULL) 3334 return -ENOMEM; 3335 3336 dma_async_client_chan_request(net_dma_client, num_online_cpus()); 3337 return 0; 3338 } 3339 3340 #else 3341 static int __init netdev_dma_register(void) { return -ENODEV; } 3342 #endif /* CONFIG_NET_DMA */ 3343 3344 /* 3345 * Initialize the DEV module. At boot time this walks the device list and 3346 * unhooks any devices that fail to initialise (normally hardware not 3347 * present) and leaves us with a valid list of present and active devices. 3348 * 3349 */ 3350 3351 /* 3352 * This is called single threaded during boot, so no need 3353 * to take the rtnl semaphore. 3354 */ 3355 static int __init net_dev_init(void) 3356 { 3357 int i, rc = -ENOMEM; 3358 3359 BUG_ON(!dev_boot_phase); 3360 3361 net_random_init(); 3362 3363 if (dev_proc_init()) 3364 goto out; 3365 3366 if (netdev_sysfs_init()) 3367 goto out; 3368 3369 INIT_LIST_HEAD(&ptype_all); 3370 for (i = 0; i < 16; i++) 3371 INIT_LIST_HEAD(&ptype_base[i]); 3372 3373 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++) 3374 INIT_HLIST_HEAD(&dev_name_head[i]); 3375 3376 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++) 3377 INIT_HLIST_HEAD(&dev_index_head[i]); 3378 3379 /* 3380 * Initialise the packet receive queues. 3381 */ 3382 3383 for_each_possible_cpu(i) { 3384 struct softnet_data *queue; 3385 3386 queue = &per_cpu(softnet_data, i); 3387 skb_queue_head_init(&queue->input_pkt_queue); 3388 queue->completion_queue = NULL; 3389 INIT_LIST_HEAD(&queue->poll_list); 3390 set_bit(__LINK_STATE_START, &queue->backlog_dev.state); 3391 queue->backlog_dev.weight = weight_p; 3392 queue->backlog_dev.poll = process_backlog; 3393 atomic_set(&queue->backlog_dev.refcnt, 1); 3394 } 3395 3396 netdev_dma_register(); 3397 3398 dev_boot_phase = 0; 3399 3400 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 3401 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 3402 3403 hotcpu_notifier(dev_cpu_callback, 0); 3404 dst_init(); 3405 dev_mcast_init(); 3406 rc = 0; 3407 out: 3408 return rc; 3409 } 3410 3411 subsys_initcall(net_dev_init); 3412 3413 EXPORT_SYMBOL(__dev_get_by_index); 3414 EXPORT_SYMBOL(__dev_get_by_name); 3415 EXPORT_SYMBOL(__dev_remove_pack); 3416 EXPORT_SYMBOL(dev_valid_name); 3417 EXPORT_SYMBOL(dev_add_pack); 3418 EXPORT_SYMBOL(dev_alloc_name); 3419 EXPORT_SYMBOL(dev_close); 3420 EXPORT_SYMBOL(dev_get_by_flags); 3421 EXPORT_SYMBOL(dev_get_by_index); 3422 EXPORT_SYMBOL(dev_get_by_name); 3423 EXPORT_SYMBOL(dev_open); 3424 EXPORT_SYMBOL(dev_queue_xmit); 3425 EXPORT_SYMBOL(dev_remove_pack); 3426 EXPORT_SYMBOL(dev_set_allmulti); 3427 EXPORT_SYMBOL(dev_set_promiscuity); 3428 EXPORT_SYMBOL(dev_change_flags); 3429 EXPORT_SYMBOL(dev_set_mtu); 3430 EXPORT_SYMBOL(dev_set_mac_address); 3431 EXPORT_SYMBOL(free_netdev); 3432 EXPORT_SYMBOL(netdev_boot_setup_check); 3433 EXPORT_SYMBOL(netdev_set_master); 3434 EXPORT_SYMBOL(netdev_state_change); 3435 EXPORT_SYMBOL(netif_receive_skb); 3436 EXPORT_SYMBOL(netif_rx); 3437 EXPORT_SYMBOL(register_gifconf); 3438 EXPORT_SYMBOL(register_netdevice); 3439 EXPORT_SYMBOL(register_netdevice_notifier); 3440 EXPORT_SYMBOL(skb_checksum_help); 3441 EXPORT_SYMBOL(synchronize_net); 3442 EXPORT_SYMBOL(unregister_netdevice); 3443 EXPORT_SYMBOL(unregister_netdevice_notifier); 3444 EXPORT_SYMBOL(net_enable_timestamp); 3445 EXPORT_SYMBOL(net_disable_timestamp); 3446 EXPORT_SYMBOL(dev_get_flags); 3447 3448 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 3449 EXPORT_SYMBOL(br_handle_frame_hook); 3450 EXPORT_SYMBOL(br_fdb_get_hook); 3451 EXPORT_SYMBOL(br_fdb_put_hook); 3452 #endif 3453 3454 #ifdef CONFIG_KMOD 3455 EXPORT_SYMBOL(dev_load); 3456 #endif 3457 3458 EXPORT_PER_CPU_SYMBOL(softnet_data); 3459