1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/kmod.h> 111 #include <linux/module.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 #include <trace/events/napi.h> 131 #include <trace/events/net.h> 132 #include <trace/events/skb.h> 133 #include <linux/pci.h> 134 #include <linux/inetdevice.h> 135 #include <linux/cpu_rmap.h> 136 #include <linux/if_tunnel.h> 137 #include <linux/if_pppox.h> 138 #include <linux/ppp_defs.h> 139 #include <linux/net_tstamp.h> 140 141 #include "net-sysfs.h" 142 143 /* Instead of increasing this, you should create a hash table. */ 144 #define MAX_GRO_SKBS 8 145 146 /* This should be increased if a protocol with a bigger head is added. */ 147 #define GRO_MAX_HEAD (MAX_HEADER + 128) 148 149 /* 150 * The list of packet types we will receive (as opposed to discard) 151 * and the routines to invoke. 152 * 153 * Why 16. Because with 16 the only overlap we get on a hash of the 154 * low nibble of the protocol value is RARP/SNAP/X.25. 155 * 156 * NOTE: That is no longer true with the addition of VLAN tags. Not 157 * sure which should go first, but I bet it won't make much 158 * difference if we are running VLANs. The good news is that 159 * this protocol won't be in the list unless compiled in, so 160 * the average user (w/out VLANs) will not be adversely affected. 161 * --BLG 162 * 163 * 0800 IP 164 * 8100 802.1Q VLAN 165 * 0001 802.3 166 * 0002 AX.25 167 * 0004 802.2 168 * 8035 RARP 169 * 0005 SNAP 170 * 0805 X.25 171 * 0806 ARP 172 * 8137 IPX 173 * 0009 Localtalk 174 * 86DD IPv6 175 */ 176 177 #define PTYPE_HASH_SIZE (16) 178 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 179 180 static DEFINE_SPINLOCK(ptype_lock); 181 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 182 static struct list_head ptype_all __read_mostly; /* Taps */ 183 184 /* 185 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 186 * semaphore. 187 * 188 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 189 * 190 * Writers must hold the rtnl semaphore while they loop through the 191 * dev_base_head list, and hold dev_base_lock for writing when they do the 192 * actual updates. This allows pure readers to access the list even 193 * while a writer is preparing to update it. 194 * 195 * To put it another way, dev_base_lock is held for writing only to 196 * protect against pure readers; the rtnl semaphore provides the 197 * protection against other writers. 198 * 199 * See, for example usages, register_netdevice() and 200 * unregister_netdevice(), which must be called with the rtnl 201 * semaphore held. 202 */ 203 DEFINE_RWLOCK(dev_base_lock); 204 EXPORT_SYMBOL(dev_base_lock); 205 206 static inline void dev_base_seq_inc(struct net *net) 207 { 208 while (++net->dev_base_seq == 0); 209 } 210 211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 212 { 213 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 214 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 215 } 216 217 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 218 { 219 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 220 } 221 222 static inline void rps_lock(struct softnet_data *sd) 223 { 224 #ifdef CONFIG_RPS 225 spin_lock(&sd->input_pkt_queue.lock); 226 #endif 227 } 228 229 static inline void rps_unlock(struct softnet_data *sd) 230 { 231 #ifdef CONFIG_RPS 232 spin_unlock(&sd->input_pkt_queue.lock); 233 #endif 234 } 235 236 /* Device list insertion */ 237 static int list_netdevice(struct net_device *dev) 238 { 239 struct net *net = dev_net(dev); 240 241 ASSERT_RTNL(); 242 243 write_lock_bh(&dev_base_lock); 244 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 245 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 246 hlist_add_head_rcu(&dev->index_hlist, 247 dev_index_hash(net, dev->ifindex)); 248 write_unlock_bh(&dev_base_lock); 249 250 dev_base_seq_inc(net); 251 252 return 0; 253 } 254 255 /* Device list removal 256 * caller must respect a RCU grace period before freeing/reusing dev 257 */ 258 static void unlist_netdevice(struct net_device *dev) 259 { 260 ASSERT_RTNL(); 261 262 /* Unlink dev from the device chain */ 263 write_lock_bh(&dev_base_lock); 264 list_del_rcu(&dev->dev_list); 265 hlist_del_rcu(&dev->name_hlist); 266 hlist_del_rcu(&dev->index_hlist); 267 write_unlock_bh(&dev_base_lock); 268 269 dev_base_seq_inc(dev_net(dev)); 270 } 271 272 /* 273 * Our notifier list 274 */ 275 276 static RAW_NOTIFIER_HEAD(netdev_chain); 277 278 /* 279 * Device drivers call our routines to queue packets here. We empty the 280 * queue in the local softnet handler. 281 */ 282 283 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 284 EXPORT_PER_CPU_SYMBOL(softnet_data); 285 286 #ifdef CONFIG_LOCKDEP 287 /* 288 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 289 * according to dev->type 290 */ 291 static const unsigned short netdev_lock_type[] = 292 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 293 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 294 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 295 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 296 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 297 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 298 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 299 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 300 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 301 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 302 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 303 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 304 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 305 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 306 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 307 ARPHRD_VOID, ARPHRD_NONE}; 308 309 static const char *const netdev_lock_name[] = 310 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 311 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 312 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 313 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 314 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 315 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 316 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 317 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 318 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 319 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 320 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 321 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 322 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 323 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 324 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 325 "_xmit_VOID", "_xmit_NONE"}; 326 327 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 328 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 329 330 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 331 { 332 int i; 333 334 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 335 if (netdev_lock_type[i] == dev_type) 336 return i; 337 /* the last key is used by default */ 338 return ARRAY_SIZE(netdev_lock_type) - 1; 339 } 340 341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 342 unsigned short dev_type) 343 { 344 int i; 345 346 i = netdev_lock_pos(dev_type); 347 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 348 netdev_lock_name[i]); 349 } 350 351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 352 { 353 int i; 354 355 i = netdev_lock_pos(dev->type); 356 lockdep_set_class_and_name(&dev->addr_list_lock, 357 &netdev_addr_lock_key[i], 358 netdev_lock_name[i]); 359 } 360 #else 361 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 362 unsigned short dev_type) 363 { 364 } 365 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 366 { 367 } 368 #endif 369 370 /******************************************************************************* 371 372 Protocol management and registration routines 373 374 *******************************************************************************/ 375 376 /* 377 * Add a protocol ID to the list. Now that the input handler is 378 * smarter we can dispense with all the messy stuff that used to be 379 * here. 380 * 381 * BEWARE!!! Protocol handlers, mangling input packets, 382 * MUST BE last in hash buckets and checking protocol handlers 383 * MUST start from promiscuous ptype_all chain in net_bh. 384 * It is true now, do not change it. 385 * Explanation follows: if protocol handler, mangling packet, will 386 * be the first on list, it is not able to sense, that packet 387 * is cloned and should be copied-on-write, so that it will 388 * change it and subsequent readers will get broken packet. 389 * --ANK (980803) 390 */ 391 392 static inline struct list_head *ptype_head(const struct packet_type *pt) 393 { 394 if (pt->type == htons(ETH_P_ALL)) 395 return &ptype_all; 396 else 397 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 398 } 399 400 /** 401 * dev_add_pack - add packet handler 402 * @pt: packet type declaration 403 * 404 * Add a protocol handler to the networking stack. The passed &packet_type 405 * is linked into kernel lists and may not be freed until it has been 406 * removed from the kernel lists. 407 * 408 * This call does not sleep therefore it can not 409 * guarantee all CPU's that are in middle of receiving packets 410 * will see the new packet type (until the next received packet). 411 */ 412 413 void dev_add_pack(struct packet_type *pt) 414 { 415 struct list_head *head = ptype_head(pt); 416 417 spin_lock(&ptype_lock); 418 list_add_rcu(&pt->list, head); 419 spin_unlock(&ptype_lock); 420 } 421 EXPORT_SYMBOL(dev_add_pack); 422 423 /** 424 * __dev_remove_pack - remove packet handler 425 * @pt: packet type declaration 426 * 427 * Remove a protocol handler that was previously added to the kernel 428 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 429 * from the kernel lists and can be freed or reused once this function 430 * returns. 431 * 432 * The packet type might still be in use by receivers 433 * and must not be freed until after all the CPU's have gone 434 * through a quiescent state. 435 */ 436 void __dev_remove_pack(struct packet_type *pt) 437 { 438 struct list_head *head = ptype_head(pt); 439 struct packet_type *pt1; 440 441 spin_lock(&ptype_lock); 442 443 list_for_each_entry(pt1, head, list) { 444 if (pt == pt1) { 445 list_del_rcu(&pt->list); 446 goto out; 447 } 448 } 449 450 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 451 out: 452 spin_unlock(&ptype_lock); 453 } 454 EXPORT_SYMBOL(__dev_remove_pack); 455 456 /** 457 * dev_remove_pack - remove packet handler 458 * @pt: packet type declaration 459 * 460 * Remove a protocol handler that was previously added to the kernel 461 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 462 * from the kernel lists and can be freed or reused once this function 463 * returns. 464 * 465 * This call sleeps to guarantee that no CPU is looking at the packet 466 * type after return. 467 */ 468 void dev_remove_pack(struct packet_type *pt) 469 { 470 __dev_remove_pack(pt); 471 472 synchronize_net(); 473 } 474 EXPORT_SYMBOL(dev_remove_pack); 475 476 /****************************************************************************** 477 478 Device Boot-time Settings Routines 479 480 *******************************************************************************/ 481 482 /* Boot time configuration table */ 483 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 484 485 /** 486 * netdev_boot_setup_add - add new setup entry 487 * @name: name of the device 488 * @map: configured settings for the device 489 * 490 * Adds new setup entry to the dev_boot_setup list. The function 491 * returns 0 on error and 1 on success. This is a generic routine to 492 * all netdevices. 493 */ 494 static int netdev_boot_setup_add(char *name, struct ifmap *map) 495 { 496 struct netdev_boot_setup *s; 497 int i; 498 499 s = dev_boot_setup; 500 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 501 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 502 memset(s[i].name, 0, sizeof(s[i].name)); 503 strlcpy(s[i].name, name, IFNAMSIZ); 504 memcpy(&s[i].map, map, sizeof(s[i].map)); 505 break; 506 } 507 } 508 509 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 510 } 511 512 /** 513 * netdev_boot_setup_check - check boot time settings 514 * @dev: the netdevice 515 * 516 * Check boot time settings for the device. 517 * The found settings are set for the device to be used 518 * later in the device probing. 519 * Returns 0 if no settings found, 1 if they are. 520 */ 521 int netdev_boot_setup_check(struct net_device *dev) 522 { 523 struct netdev_boot_setup *s = dev_boot_setup; 524 int i; 525 526 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 527 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 528 !strcmp(dev->name, s[i].name)) { 529 dev->irq = s[i].map.irq; 530 dev->base_addr = s[i].map.base_addr; 531 dev->mem_start = s[i].map.mem_start; 532 dev->mem_end = s[i].map.mem_end; 533 return 1; 534 } 535 } 536 return 0; 537 } 538 EXPORT_SYMBOL(netdev_boot_setup_check); 539 540 541 /** 542 * netdev_boot_base - get address from boot time settings 543 * @prefix: prefix for network device 544 * @unit: id for network device 545 * 546 * Check boot time settings for the base address of device. 547 * The found settings are set for the device to be used 548 * later in the device probing. 549 * Returns 0 if no settings found. 550 */ 551 unsigned long netdev_boot_base(const char *prefix, int unit) 552 { 553 const struct netdev_boot_setup *s = dev_boot_setup; 554 char name[IFNAMSIZ]; 555 int i; 556 557 sprintf(name, "%s%d", prefix, unit); 558 559 /* 560 * If device already registered then return base of 1 561 * to indicate not to probe for this interface 562 */ 563 if (__dev_get_by_name(&init_net, name)) 564 return 1; 565 566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 567 if (!strcmp(name, s[i].name)) 568 return s[i].map.base_addr; 569 return 0; 570 } 571 572 /* 573 * Saves at boot time configured settings for any netdevice. 574 */ 575 int __init netdev_boot_setup(char *str) 576 { 577 int ints[5]; 578 struct ifmap map; 579 580 str = get_options(str, ARRAY_SIZE(ints), ints); 581 if (!str || !*str) 582 return 0; 583 584 /* Save settings */ 585 memset(&map, 0, sizeof(map)); 586 if (ints[0] > 0) 587 map.irq = ints[1]; 588 if (ints[0] > 1) 589 map.base_addr = ints[2]; 590 if (ints[0] > 2) 591 map.mem_start = ints[3]; 592 if (ints[0] > 3) 593 map.mem_end = ints[4]; 594 595 /* Add new entry to the list */ 596 return netdev_boot_setup_add(str, &map); 597 } 598 599 __setup("netdev=", netdev_boot_setup); 600 601 /******************************************************************************* 602 603 Device Interface Subroutines 604 605 *******************************************************************************/ 606 607 /** 608 * __dev_get_by_name - find a device by its name 609 * @net: the applicable net namespace 610 * @name: name to find 611 * 612 * Find an interface by name. Must be called under RTNL semaphore 613 * or @dev_base_lock. If the name is found a pointer to the device 614 * is returned. If the name is not found then %NULL is returned. The 615 * reference counters are not incremented so the caller must be 616 * careful with locks. 617 */ 618 619 struct net_device *__dev_get_by_name(struct net *net, const char *name) 620 { 621 struct hlist_node *p; 622 struct net_device *dev; 623 struct hlist_head *head = dev_name_hash(net, name); 624 625 hlist_for_each_entry(dev, p, head, name_hlist) 626 if (!strncmp(dev->name, name, IFNAMSIZ)) 627 return dev; 628 629 return NULL; 630 } 631 EXPORT_SYMBOL(__dev_get_by_name); 632 633 /** 634 * dev_get_by_name_rcu - find a device by its name 635 * @net: the applicable net namespace 636 * @name: name to find 637 * 638 * Find an interface by name. 639 * If the name is found a pointer to the device is returned. 640 * If the name is not found then %NULL is returned. 641 * The reference counters are not incremented so the caller must be 642 * careful with locks. The caller must hold RCU lock. 643 */ 644 645 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 646 { 647 struct hlist_node *p; 648 struct net_device *dev; 649 struct hlist_head *head = dev_name_hash(net, name); 650 651 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 652 if (!strncmp(dev->name, name, IFNAMSIZ)) 653 return dev; 654 655 return NULL; 656 } 657 EXPORT_SYMBOL(dev_get_by_name_rcu); 658 659 /** 660 * dev_get_by_name - find a device by its name 661 * @net: the applicable net namespace 662 * @name: name to find 663 * 664 * Find an interface by name. This can be called from any 665 * context and does its own locking. The returned handle has 666 * the usage count incremented and the caller must use dev_put() to 667 * release it when it is no longer needed. %NULL is returned if no 668 * matching device is found. 669 */ 670 671 struct net_device *dev_get_by_name(struct net *net, const char *name) 672 { 673 struct net_device *dev; 674 675 rcu_read_lock(); 676 dev = dev_get_by_name_rcu(net, name); 677 if (dev) 678 dev_hold(dev); 679 rcu_read_unlock(); 680 return dev; 681 } 682 EXPORT_SYMBOL(dev_get_by_name); 683 684 /** 685 * __dev_get_by_index - find a device by its ifindex 686 * @net: the applicable net namespace 687 * @ifindex: index of device 688 * 689 * Search for an interface by index. Returns %NULL if the device 690 * is not found or a pointer to the device. The device has not 691 * had its reference counter increased so the caller must be careful 692 * about locking. The caller must hold either the RTNL semaphore 693 * or @dev_base_lock. 694 */ 695 696 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 697 { 698 struct hlist_node *p; 699 struct net_device *dev; 700 struct hlist_head *head = dev_index_hash(net, ifindex); 701 702 hlist_for_each_entry(dev, p, head, index_hlist) 703 if (dev->ifindex == ifindex) 704 return dev; 705 706 return NULL; 707 } 708 EXPORT_SYMBOL(__dev_get_by_index); 709 710 /** 711 * dev_get_by_index_rcu - find a device by its ifindex 712 * @net: the applicable net namespace 713 * @ifindex: index of device 714 * 715 * Search for an interface by index. Returns %NULL if the device 716 * is not found or a pointer to the device. The device has not 717 * had its reference counter increased so the caller must be careful 718 * about locking. The caller must hold RCU lock. 719 */ 720 721 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 722 { 723 struct hlist_node *p; 724 struct net_device *dev; 725 struct hlist_head *head = dev_index_hash(net, ifindex); 726 727 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 728 if (dev->ifindex == ifindex) 729 return dev; 730 731 return NULL; 732 } 733 EXPORT_SYMBOL(dev_get_by_index_rcu); 734 735 736 /** 737 * dev_get_by_index - find a device by its ifindex 738 * @net: the applicable net namespace 739 * @ifindex: index of device 740 * 741 * Search for an interface by index. Returns NULL if the device 742 * is not found or a pointer to the device. The device returned has 743 * had a reference added and the pointer is safe until the user calls 744 * dev_put to indicate they have finished with it. 745 */ 746 747 struct net_device *dev_get_by_index(struct net *net, int ifindex) 748 { 749 struct net_device *dev; 750 751 rcu_read_lock(); 752 dev = dev_get_by_index_rcu(net, ifindex); 753 if (dev) 754 dev_hold(dev); 755 rcu_read_unlock(); 756 return dev; 757 } 758 EXPORT_SYMBOL(dev_get_by_index); 759 760 /** 761 * dev_getbyhwaddr_rcu - find a device by its hardware address 762 * @net: the applicable net namespace 763 * @type: media type of device 764 * @ha: hardware address 765 * 766 * Search for an interface by MAC address. Returns NULL if the device 767 * is not found or a pointer to the device. 768 * The caller must hold RCU or RTNL. 769 * The returned device has not had its ref count increased 770 * and the caller must therefore be careful about locking 771 * 772 */ 773 774 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 775 const char *ha) 776 { 777 struct net_device *dev; 778 779 for_each_netdev_rcu(net, dev) 780 if (dev->type == type && 781 !memcmp(dev->dev_addr, ha, dev->addr_len)) 782 return dev; 783 784 return NULL; 785 } 786 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 787 788 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 789 { 790 struct net_device *dev; 791 792 ASSERT_RTNL(); 793 for_each_netdev(net, dev) 794 if (dev->type == type) 795 return dev; 796 797 return NULL; 798 } 799 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 800 801 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 802 { 803 struct net_device *dev, *ret = NULL; 804 805 rcu_read_lock(); 806 for_each_netdev_rcu(net, dev) 807 if (dev->type == type) { 808 dev_hold(dev); 809 ret = dev; 810 break; 811 } 812 rcu_read_unlock(); 813 return ret; 814 } 815 EXPORT_SYMBOL(dev_getfirstbyhwtype); 816 817 /** 818 * dev_get_by_flags_rcu - find any device with given flags 819 * @net: the applicable net namespace 820 * @if_flags: IFF_* values 821 * @mask: bitmask of bits in if_flags to check 822 * 823 * Search for any interface with the given flags. Returns NULL if a device 824 * is not found or a pointer to the device. Must be called inside 825 * rcu_read_lock(), and result refcount is unchanged. 826 */ 827 828 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 829 unsigned short mask) 830 { 831 struct net_device *dev, *ret; 832 833 ret = NULL; 834 for_each_netdev_rcu(net, dev) { 835 if (((dev->flags ^ if_flags) & mask) == 0) { 836 ret = dev; 837 break; 838 } 839 } 840 return ret; 841 } 842 EXPORT_SYMBOL(dev_get_by_flags_rcu); 843 844 /** 845 * dev_valid_name - check if name is okay for network device 846 * @name: name string 847 * 848 * Network device names need to be valid file names to 849 * to allow sysfs to work. We also disallow any kind of 850 * whitespace. 851 */ 852 int dev_valid_name(const char *name) 853 { 854 if (*name == '\0') 855 return 0; 856 if (strlen(name) >= IFNAMSIZ) 857 return 0; 858 if (!strcmp(name, ".") || !strcmp(name, "..")) 859 return 0; 860 861 while (*name) { 862 if (*name == '/' || isspace(*name)) 863 return 0; 864 name++; 865 } 866 return 1; 867 } 868 EXPORT_SYMBOL(dev_valid_name); 869 870 /** 871 * __dev_alloc_name - allocate a name for a device 872 * @net: network namespace to allocate the device name in 873 * @name: name format string 874 * @buf: scratch buffer and result name string 875 * 876 * Passed a format string - eg "lt%d" it will try and find a suitable 877 * id. It scans list of devices to build up a free map, then chooses 878 * the first empty slot. The caller must hold the dev_base or rtnl lock 879 * while allocating the name and adding the device in order to avoid 880 * duplicates. 881 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 882 * Returns the number of the unit assigned or a negative errno code. 883 */ 884 885 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 886 { 887 int i = 0; 888 const char *p; 889 const int max_netdevices = 8*PAGE_SIZE; 890 unsigned long *inuse; 891 struct net_device *d; 892 893 p = strnchr(name, IFNAMSIZ-1, '%'); 894 if (p) { 895 /* 896 * Verify the string as this thing may have come from 897 * the user. There must be either one "%d" and no other "%" 898 * characters. 899 */ 900 if (p[1] != 'd' || strchr(p + 2, '%')) 901 return -EINVAL; 902 903 /* Use one page as a bit array of possible slots */ 904 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 905 if (!inuse) 906 return -ENOMEM; 907 908 for_each_netdev(net, d) { 909 if (!sscanf(d->name, name, &i)) 910 continue; 911 if (i < 0 || i >= max_netdevices) 912 continue; 913 914 /* avoid cases where sscanf is not exact inverse of printf */ 915 snprintf(buf, IFNAMSIZ, name, i); 916 if (!strncmp(buf, d->name, IFNAMSIZ)) 917 set_bit(i, inuse); 918 } 919 920 i = find_first_zero_bit(inuse, max_netdevices); 921 free_page((unsigned long) inuse); 922 } 923 924 if (buf != name) 925 snprintf(buf, IFNAMSIZ, name, i); 926 if (!__dev_get_by_name(net, buf)) 927 return i; 928 929 /* It is possible to run out of possible slots 930 * when the name is long and there isn't enough space left 931 * for the digits, or if all bits are used. 932 */ 933 return -ENFILE; 934 } 935 936 /** 937 * dev_alloc_name - allocate a name for a device 938 * @dev: device 939 * @name: name format string 940 * 941 * Passed a format string - eg "lt%d" it will try and find a suitable 942 * id. It scans list of devices to build up a free map, then chooses 943 * the first empty slot. The caller must hold the dev_base or rtnl lock 944 * while allocating the name and adding the device in order to avoid 945 * duplicates. 946 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 947 * Returns the number of the unit assigned or a negative errno code. 948 */ 949 950 int dev_alloc_name(struct net_device *dev, const char *name) 951 { 952 char buf[IFNAMSIZ]; 953 struct net *net; 954 int ret; 955 956 BUG_ON(!dev_net(dev)); 957 net = dev_net(dev); 958 ret = __dev_alloc_name(net, name, buf); 959 if (ret >= 0) 960 strlcpy(dev->name, buf, IFNAMSIZ); 961 return ret; 962 } 963 EXPORT_SYMBOL(dev_alloc_name); 964 965 static int dev_get_valid_name(struct net_device *dev, const char *name) 966 { 967 struct net *net; 968 969 BUG_ON(!dev_net(dev)); 970 net = dev_net(dev); 971 972 if (!dev_valid_name(name)) 973 return -EINVAL; 974 975 if (strchr(name, '%')) 976 return dev_alloc_name(dev, name); 977 else if (__dev_get_by_name(net, name)) 978 return -EEXIST; 979 else if (dev->name != name) 980 strlcpy(dev->name, name, IFNAMSIZ); 981 982 return 0; 983 } 984 985 /** 986 * dev_change_name - change name of a device 987 * @dev: device 988 * @newname: name (or format string) must be at least IFNAMSIZ 989 * 990 * Change name of a device, can pass format strings "eth%d". 991 * for wildcarding. 992 */ 993 int dev_change_name(struct net_device *dev, const char *newname) 994 { 995 char oldname[IFNAMSIZ]; 996 int err = 0; 997 int ret; 998 struct net *net; 999 1000 ASSERT_RTNL(); 1001 BUG_ON(!dev_net(dev)); 1002 1003 net = dev_net(dev); 1004 if (dev->flags & IFF_UP) 1005 return -EBUSY; 1006 1007 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1008 return 0; 1009 1010 memcpy(oldname, dev->name, IFNAMSIZ); 1011 1012 err = dev_get_valid_name(dev, newname); 1013 if (err < 0) 1014 return err; 1015 1016 rollback: 1017 ret = device_rename(&dev->dev, dev->name); 1018 if (ret) { 1019 memcpy(dev->name, oldname, IFNAMSIZ); 1020 return ret; 1021 } 1022 1023 write_lock_bh(&dev_base_lock); 1024 hlist_del_rcu(&dev->name_hlist); 1025 write_unlock_bh(&dev_base_lock); 1026 1027 synchronize_rcu(); 1028 1029 write_lock_bh(&dev_base_lock); 1030 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1031 write_unlock_bh(&dev_base_lock); 1032 1033 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1034 ret = notifier_to_errno(ret); 1035 1036 if (ret) { 1037 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1038 if (err >= 0) { 1039 err = ret; 1040 memcpy(dev->name, oldname, IFNAMSIZ); 1041 goto rollback; 1042 } else { 1043 printk(KERN_ERR 1044 "%s: name change rollback failed: %d.\n", 1045 dev->name, ret); 1046 } 1047 } 1048 1049 return err; 1050 } 1051 1052 /** 1053 * dev_set_alias - change ifalias of a device 1054 * @dev: device 1055 * @alias: name up to IFALIASZ 1056 * @len: limit of bytes to copy from info 1057 * 1058 * Set ifalias for a device, 1059 */ 1060 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1061 { 1062 ASSERT_RTNL(); 1063 1064 if (len >= IFALIASZ) 1065 return -EINVAL; 1066 1067 if (!len) { 1068 if (dev->ifalias) { 1069 kfree(dev->ifalias); 1070 dev->ifalias = NULL; 1071 } 1072 return 0; 1073 } 1074 1075 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1076 if (!dev->ifalias) 1077 return -ENOMEM; 1078 1079 strlcpy(dev->ifalias, alias, len+1); 1080 return len; 1081 } 1082 1083 1084 /** 1085 * netdev_features_change - device changes features 1086 * @dev: device to cause notification 1087 * 1088 * Called to indicate a device has changed features. 1089 */ 1090 void netdev_features_change(struct net_device *dev) 1091 { 1092 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1093 } 1094 EXPORT_SYMBOL(netdev_features_change); 1095 1096 /** 1097 * netdev_state_change - device changes state 1098 * @dev: device to cause notification 1099 * 1100 * Called to indicate a device has changed state. This function calls 1101 * the notifier chains for netdev_chain and sends a NEWLINK message 1102 * to the routing socket. 1103 */ 1104 void netdev_state_change(struct net_device *dev) 1105 { 1106 if (dev->flags & IFF_UP) { 1107 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1108 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1109 } 1110 } 1111 EXPORT_SYMBOL(netdev_state_change); 1112 1113 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1114 { 1115 return call_netdevice_notifiers(event, dev); 1116 } 1117 EXPORT_SYMBOL(netdev_bonding_change); 1118 1119 /** 1120 * dev_load - load a network module 1121 * @net: the applicable net namespace 1122 * @name: name of interface 1123 * 1124 * If a network interface is not present and the process has suitable 1125 * privileges this function loads the module. If module loading is not 1126 * available in this kernel then it becomes a nop. 1127 */ 1128 1129 void dev_load(struct net *net, const char *name) 1130 { 1131 struct net_device *dev; 1132 int no_module; 1133 1134 rcu_read_lock(); 1135 dev = dev_get_by_name_rcu(net, name); 1136 rcu_read_unlock(); 1137 1138 no_module = !dev; 1139 if (no_module && capable(CAP_NET_ADMIN)) 1140 no_module = request_module("netdev-%s", name); 1141 if (no_module && capable(CAP_SYS_MODULE)) { 1142 if (!request_module("%s", name)) 1143 pr_err("Loading kernel module for a network device " 1144 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s " 1145 "instead\n", name); 1146 } 1147 } 1148 EXPORT_SYMBOL(dev_load); 1149 1150 static int __dev_open(struct net_device *dev) 1151 { 1152 const struct net_device_ops *ops = dev->netdev_ops; 1153 int ret; 1154 1155 ASSERT_RTNL(); 1156 1157 if (!netif_device_present(dev)) 1158 return -ENODEV; 1159 1160 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1161 ret = notifier_to_errno(ret); 1162 if (ret) 1163 return ret; 1164 1165 set_bit(__LINK_STATE_START, &dev->state); 1166 1167 if (ops->ndo_validate_addr) 1168 ret = ops->ndo_validate_addr(dev); 1169 1170 if (!ret && ops->ndo_open) 1171 ret = ops->ndo_open(dev); 1172 1173 if (ret) 1174 clear_bit(__LINK_STATE_START, &dev->state); 1175 else { 1176 dev->flags |= IFF_UP; 1177 net_dmaengine_get(); 1178 dev_set_rx_mode(dev); 1179 dev_activate(dev); 1180 } 1181 1182 return ret; 1183 } 1184 1185 /** 1186 * dev_open - prepare an interface for use. 1187 * @dev: device to open 1188 * 1189 * Takes a device from down to up state. The device's private open 1190 * function is invoked and then the multicast lists are loaded. Finally 1191 * the device is moved into the up state and a %NETDEV_UP message is 1192 * sent to the netdev notifier chain. 1193 * 1194 * Calling this function on an active interface is a nop. On a failure 1195 * a negative errno code is returned. 1196 */ 1197 int dev_open(struct net_device *dev) 1198 { 1199 int ret; 1200 1201 if (dev->flags & IFF_UP) 1202 return 0; 1203 1204 ret = __dev_open(dev); 1205 if (ret < 0) 1206 return ret; 1207 1208 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1209 call_netdevice_notifiers(NETDEV_UP, dev); 1210 1211 return ret; 1212 } 1213 EXPORT_SYMBOL(dev_open); 1214 1215 static int __dev_close_many(struct list_head *head) 1216 { 1217 struct net_device *dev; 1218 1219 ASSERT_RTNL(); 1220 might_sleep(); 1221 1222 list_for_each_entry(dev, head, unreg_list) { 1223 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1224 1225 clear_bit(__LINK_STATE_START, &dev->state); 1226 1227 /* Synchronize to scheduled poll. We cannot touch poll list, it 1228 * can be even on different cpu. So just clear netif_running(). 1229 * 1230 * dev->stop() will invoke napi_disable() on all of it's 1231 * napi_struct instances on this device. 1232 */ 1233 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1234 } 1235 1236 dev_deactivate_many(head); 1237 1238 list_for_each_entry(dev, head, unreg_list) { 1239 const struct net_device_ops *ops = dev->netdev_ops; 1240 1241 /* 1242 * Call the device specific close. This cannot fail. 1243 * Only if device is UP 1244 * 1245 * We allow it to be called even after a DETACH hot-plug 1246 * event. 1247 */ 1248 if (ops->ndo_stop) 1249 ops->ndo_stop(dev); 1250 1251 dev->flags &= ~IFF_UP; 1252 net_dmaengine_put(); 1253 } 1254 1255 return 0; 1256 } 1257 1258 static int __dev_close(struct net_device *dev) 1259 { 1260 int retval; 1261 LIST_HEAD(single); 1262 1263 list_add(&dev->unreg_list, &single); 1264 retval = __dev_close_many(&single); 1265 list_del(&single); 1266 return retval; 1267 } 1268 1269 static int dev_close_many(struct list_head *head) 1270 { 1271 struct net_device *dev, *tmp; 1272 LIST_HEAD(tmp_list); 1273 1274 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1275 if (!(dev->flags & IFF_UP)) 1276 list_move(&dev->unreg_list, &tmp_list); 1277 1278 __dev_close_many(head); 1279 1280 list_for_each_entry(dev, head, unreg_list) { 1281 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1282 call_netdevice_notifiers(NETDEV_DOWN, dev); 1283 } 1284 1285 /* rollback_registered_many needs the complete original list */ 1286 list_splice(&tmp_list, head); 1287 return 0; 1288 } 1289 1290 /** 1291 * dev_close - shutdown an interface. 1292 * @dev: device to shutdown 1293 * 1294 * This function moves an active device into down state. A 1295 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1296 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1297 * chain. 1298 */ 1299 int dev_close(struct net_device *dev) 1300 { 1301 if (dev->flags & IFF_UP) { 1302 LIST_HEAD(single); 1303 1304 list_add(&dev->unreg_list, &single); 1305 dev_close_many(&single); 1306 list_del(&single); 1307 } 1308 return 0; 1309 } 1310 EXPORT_SYMBOL(dev_close); 1311 1312 1313 /** 1314 * dev_disable_lro - disable Large Receive Offload on a device 1315 * @dev: device 1316 * 1317 * Disable Large Receive Offload (LRO) on a net device. Must be 1318 * called under RTNL. This is needed if received packets may be 1319 * forwarded to another interface. 1320 */ 1321 void dev_disable_lro(struct net_device *dev) 1322 { 1323 u32 flags; 1324 1325 /* 1326 * If we're trying to disable lro on a vlan device 1327 * use the underlying physical device instead 1328 */ 1329 if (is_vlan_dev(dev)) 1330 dev = vlan_dev_real_dev(dev); 1331 1332 if (dev->ethtool_ops && dev->ethtool_ops->get_flags) 1333 flags = dev->ethtool_ops->get_flags(dev); 1334 else 1335 flags = ethtool_op_get_flags(dev); 1336 1337 if (!(flags & ETH_FLAG_LRO)) 1338 return; 1339 1340 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO); 1341 if (unlikely(dev->features & NETIF_F_LRO)) 1342 netdev_WARN(dev, "failed to disable LRO!\n"); 1343 } 1344 EXPORT_SYMBOL(dev_disable_lro); 1345 1346 1347 static int dev_boot_phase = 1; 1348 1349 /** 1350 * register_netdevice_notifier - register a network notifier block 1351 * @nb: notifier 1352 * 1353 * Register a notifier to be called when network device events occur. 1354 * The notifier passed is linked into the kernel structures and must 1355 * not be reused until it has been unregistered. A negative errno code 1356 * is returned on a failure. 1357 * 1358 * When registered all registration and up events are replayed 1359 * to the new notifier to allow device to have a race free 1360 * view of the network device list. 1361 */ 1362 1363 int register_netdevice_notifier(struct notifier_block *nb) 1364 { 1365 struct net_device *dev; 1366 struct net_device *last; 1367 struct net *net; 1368 int err; 1369 1370 rtnl_lock(); 1371 err = raw_notifier_chain_register(&netdev_chain, nb); 1372 if (err) 1373 goto unlock; 1374 if (dev_boot_phase) 1375 goto unlock; 1376 for_each_net(net) { 1377 for_each_netdev(net, dev) { 1378 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1379 err = notifier_to_errno(err); 1380 if (err) 1381 goto rollback; 1382 1383 if (!(dev->flags & IFF_UP)) 1384 continue; 1385 1386 nb->notifier_call(nb, NETDEV_UP, dev); 1387 } 1388 } 1389 1390 unlock: 1391 rtnl_unlock(); 1392 return err; 1393 1394 rollback: 1395 last = dev; 1396 for_each_net(net) { 1397 for_each_netdev(net, dev) { 1398 if (dev == last) 1399 break; 1400 1401 if (dev->flags & IFF_UP) { 1402 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1403 nb->notifier_call(nb, NETDEV_DOWN, dev); 1404 } 1405 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1406 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1407 } 1408 } 1409 1410 raw_notifier_chain_unregister(&netdev_chain, nb); 1411 goto unlock; 1412 } 1413 EXPORT_SYMBOL(register_netdevice_notifier); 1414 1415 /** 1416 * unregister_netdevice_notifier - unregister a network notifier block 1417 * @nb: notifier 1418 * 1419 * Unregister a notifier previously registered by 1420 * register_netdevice_notifier(). The notifier is unlinked into the 1421 * kernel structures and may then be reused. A negative errno code 1422 * is returned on a failure. 1423 */ 1424 1425 int unregister_netdevice_notifier(struct notifier_block *nb) 1426 { 1427 int err; 1428 1429 rtnl_lock(); 1430 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1431 rtnl_unlock(); 1432 return err; 1433 } 1434 EXPORT_SYMBOL(unregister_netdevice_notifier); 1435 1436 /** 1437 * call_netdevice_notifiers - call all network notifier blocks 1438 * @val: value passed unmodified to notifier function 1439 * @dev: net_device pointer passed unmodified to notifier function 1440 * 1441 * Call all network notifier blocks. Parameters and return value 1442 * are as for raw_notifier_call_chain(). 1443 */ 1444 1445 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1446 { 1447 ASSERT_RTNL(); 1448 return raw_notifier_call_chain(&netdev_chain, val, dev); 1449 } 1450 EXPORT_SYMBOL(call_netdevice_notifiers); 1451 1452 /* When > 0 there are consumers of rx skb time stamps */ 1453 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1454 1455 void net_enable_timestamp(void) 1456 { 1457 atomic_inc(&netstamp_needed); 1458 } 1459 EXPORT_SYMBOL(net_enable_timestamp); 1460 1461 void net_disable_timestamp(void) 1462 { 1463 atomic_dec(&netstamp_needed); 1464 } 1465 EXPORT_SYMBOL(net_disable_timestamp); 1466 1467 static inline void net_timestamp_set(struct sk_buff *skb) 1468 { 1469 if (atomic_read(&netstamp_needed)) 1470 __net_timestamp(skb); 1471 else 1472 skb->tstamp.tv64 = 0; 1473 } 1474 1475 static inline void net_timestamp_check(struct sk_buff *skb) 1476 { 1477 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1478 __net_timestamp(skb); 1479 } 1480 1481 static int net_hwtstamp_validate(struct ifreq *ifr) 1482 { 1483 struct hwtstamp_config cfg; 1484 enum hwtstamp_tx_types tx_type; 1485 enum hwtstamp_rx_filters rx_filter; 1486 int tx_type_valid = 0; 1487 int rx_filter_valid = 0; 1488 1489 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1490 return -EFAULT; 1491 1492 if (cfg.flags) /* reserved for future extensions */ 1493 return -EINVAL; 1494 1495 tx_type = cfg.tx_type; 1496 rx_filter = cfg.rx_filter; 1497 1498 switch (tx_type) { 1499 case HWTSTAMP_TX_OFF: 1500 case HWTSTAMP_TX_ON: 1501 case HWTSTAMP_TX_ONESTEP_SYNC: 1502 tx_type_valid = 1; 1503 break; 1504 } 1505 1506 switch (rx_filter) { 1507 case HWTSTAMP_FILTER_NONE: 1508 case HWTSTAMP_FILTER_ALL: 1509 case HWTSTAMP_FILTER_SOME: 1510 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1511 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1512 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1513 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1514 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1515 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1516 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1517 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1518 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1519 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1520 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1521 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1522 rx_filter_valid = 1; 1523 break; 1524 } 1525 1526 if (!tx_type_valid || !rx_filter_valid) 1527 return -ERANGE; 1528 1529 return 0; 1530 } 1531 1532 static inline bool is_skb_forwardable(struct net_device *dev, 1533 struct sk_buff *skb) 1534 { 1535 unsigned int len; 1536 1537 if (!(dev->flags & IFF_UP)) 1538 return false; 1539 1540 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1541 if (skb->len <= len) 1542 return true; 1543 1544 /* if TSO is enabled, we don't care about the length as the packet 1545 * could be forwarded without being segmented before 1546 */ 1547 if (skb_is_gso(skb)) 1548 return true; 1549 1550 return false; 1551 } 1552 1553 /** 1554 * dev_forward_skb - loopback an skb to another netif 1555 * 1556 * @dev: destination network device 1557 * @skb: buffer to forward 1558 * 1559 * return values: 1560 * NET_RX_SUCCESS (no congestion) 1561 * NET_RX_DROP (packet was dropped, but freed) 1562 * 1563 * dev_forward_skb can be used for injecting an skb from the 1564 * start_xmit function of one device into the receive queue 1565 * of another device. 1566 * 1567 * The receiving device may be in another namespace, so 1568 * we have to clear all information in the skb that could 1569 * impact namespace isolation. 1570 */ 1571 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1572 { 1573 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1574 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1575 atomic_long_inc(&dev->rx_dropped); 1576 kfree_skb(skb); 1577 return NET_RX_DROP; 1578 } 1579 } 1580 1581 skb_orphan(skb); 1582 nf_reset(skb); 1583 1584 if (unlikely(!is_skb_forwardable(dev, skb))) { 1585 atomic_long_inc(&dev->rx_dropped); 1586 kfree_skb(skb); 1587 return NET_RX_DROP; 1588 } 1589 skb_set_dev(skb, dev); 1590 skb->tstamp.tv64 = 0; 1591 skb->pkt_type = PACKET_HOST; 1592 skb->protocol = eth_type_trans(skb, dev); 1593 return netif_rx(skb); 1594 } 1595 EXPORT_SYMBOL_GPL(dev_forward_skb); 1596 1597 static inline int deliver_skb(struct sk_buff *skb, 1598 struct packet_type *pt_prev, 1599 struct net_device *orig_dev) 1600 { 1601 atomic_inc(&skb->users); 1602 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1603 } 1604 1605 /* 1606 * Support routine. Sends outgoing frames to any network 1607 * taps currently in use. 1608 */ 1609 1610 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1611 { 1612 struct packet_type *ptype; 1613 struct sk_buff *skb2 = NULL; 1614 struct packet_type *pt_prev = NULL; 1615 1616 rcu_read_lock(); 1617 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1618 /* Never send packets back to the socket 1619 * they originated from - MvS (miquels@drinkel.ow.org) 1620 */ 1621 if ((ptype->dev == dev || !ptype->dev) && 1622 (ptype->af_packet_priv == NULL || 1623 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1624 if (pt_prev) { 1625 deliver_skb(skb2, pt_prev, skb->dev); 1626 pt_prev = ptype; 1627 continue; 1628 } 1629 1630 skb2 = skb_clone(skb, GFP_ATOMIC); 1631 if (!skb2) 1632 break; 1633 1634 net_timestamp_set(skb2); 1635 1636 /* skb->nh should be correctly 1637 set by sender, so that the second statement is 1638 just protection against buggy protocols. 1639 */ 1640 skb_reset_mac_header(skb2); 1641 1642 if (skb_network_header(skb2) < skb2->data || 1643 skb2->network_header > skb2->tail) { 1644 if (net_ratelimit()) 1645 printk(KERN_CRIT "protocol %04x is " 1646 "buggy, dev %s\n", 1647 ntohs(skb2->protocol), 1648 dev->name); 1649 skb_reset_network_header(skb2); 1650 } 1651 1652 skb2->transport_header = skb2->network_header; 1653 skb2->pkt_type = PACKET_OUTGOING; 1654 pt_prev = ptype; 1655 } 1656 } 1657 if (pt_prev) 1658 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1659 rcu_read_unlock(); 1660 } 1661 1662 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1663 * @dev: Network device 1664 * @txq: number of queues available 1665 * 1666 * If real_num_tx_queues is changed the tc mappings may no longer be 1667 * valid. To resolve this verify the tc mapping remains valid and if 1668 * not NULL the mapping. With no priorities mapping to this 1669 * offset/count pair it will no longer be used. In the worst case TC0 1670 * is invalid nothing can be done so disable priority mappings. If is 1671 * expected that drivers will fix this mapping if they can before 1672 * calling netif_set_real_num_tx_queues. 1673 */ 1674 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1675 { 1676 int i; 1677 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1678 1679 /* If TC0 is invalidated disable TC mapping */ 1680 if (tc->offset + tc->count > txq) { 1681 pr_warning("Number of in use tx queues changed " 1682 "invalidating tc mappings. Priority " 1683 "traffic classification disabled!\n"); 1684 dev->num_tc = 0; 1685 return; 1686 } 1687 1688 /* Invalidated prio to tc mappings set to TC0 */ 1689 for (i = 1; i < TC_BITMASK + 1; i++) { 1690 int q = netdev_get_prio_tc_map(dev, i); 1691 1692 tc = &dev->tc_to_txq[q]; 1693 if (tc->offset + tc->count > txq) { 1694 pr_warning("Number of in use tx queues " 1695 "changed. Priority %i to tc " 1696 "mapping %i is no longer valid " 1697 "setting map to 0\n", 1698 i, q); 1699 netdev_set_prio_tc_map(dev, i, 0); 1700 } 1701 } 1702 } 1703 1704 /* 1705 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1706 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1707 */ 1708 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1709 { 1710 int rc; 1711 1712 if (txq < 1 || txq > dev->num_tx_queues) 1713 return -EINVAL; 1714 1715 if (dev->reg_state == NETREG_REGISTERED || 1716 dev->reg_state == NETREG_UNREGISTERING) { 1717 ASSERT_RTNL(); 1718 1719 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1720 txq); 1721 if (rc) 1722 return rc; 1723 1724 if (dev->num_tc) 1725 netif_setup_tc(dev, txq); 1726 1727 if (txq < dev->real_num_tx_queues) 1728 qdisc_reset_all_tx_gt(dev, txq); 1729 } 1730 1731 dev->real_num_tx_queues = txq; 1732 return 0; 1733 } 1734 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1735 1736 #ifdef CONFIG_RPS 1737 /** 1738 * netif_set_real_num_rx_queues - set actual number of RX queues used 1739 * @dev: Network device 1740 * @rxq: Actual number of RX queues 1741 * 1742 * This must be called either with the rtnl_lock held or before 1743 * registration of the net device. Returns 0 on success, or a 1744 * negative error code. If called before registration, it always 1745 * succeeds. 1746 */ 1747 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1748 { 1749 int rc; 1750 1751 if (rxq < 1 || rxq > dev->num_rx_queues) 1752 return -EINVAL; 1753 1754 if (dev->reg_state == NETREG_REGISTERED) { 1755 ASSERT_RTNL(); 1756 1757 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1758 rxq); 1759 if (rc) 1760 return rc; 1761 } 1762 1763 dev->real_num_rx_queues = rxq; 1764 return 0; 1765 } 1766 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1767 #endif 1768 1769 static inline void __netif_reschedule(struct Qdisc *q) 1770 { 1771 struct softnet_data *sd; 1772 unsigned long flags; 1773 1774 local_irq_save(flags); 1775 sd = &__get_cpu_var(softnet_data); 1776 q->next_sched = NULL; 1777 *sd->output_queue_tailp = q; 1778 sd->output_queue_tailp = &q->next_sched; 1779 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1780 local_irq_restore(flags); 1781 } 1782 1783 void __netif_schedule(struct Qdisc *q) 1784 { 1785 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1786 __netif_reschedule(q); 1787 } 1788 EXPORT_SYMBOL(__netif_schedule); 1789 1790 void dev_kfree_skb_irq(struct sk_buff *skb) 1791 { 1792 if (atomic_dec_and_test(&skb->users)) { 1793 struct softnet_data *sd; 1794 unsigned long flags; 1795 1796 local_irq_save(flags); 1797 sd = &__get_cpu_var(softnet_data); 1798 skb->next = sd->completion_queue; 1799 sd->completion_queue = skb; 1800 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1801 local_irq_restore(flags); 1802 } 1803 } 1804 EXPORT_SYMBOL(dev_kfree_skb_irq); 1805 1806 void dev_kfree_skb_any(struct sk_buff *skb) 1807 { 1808 if (in_irq() || irqs_disabled()) 1809 dev_kfree_skb_irq(skb); 1810 else 1811 dev_kfree_skb(skb); 1812 } 1813 EXPORT_SYMBOL(dev_kfree_skb_any); 1814 1815 1816 /** 1817 * netif_device_detach - mark device as removed 1818 * @dev: network device 1819 * 1820 * Mark device as removed from system and therefore no longer available. 1821 */ 1822 void netif_device_detach(struct net_device *dev) 1823 { 1824 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1825 netif_running(dev)) { 1826 netif_tx_stop_all_queues(dev); 1827 } 1828 } 1829 EXPORT_SYMBOL(netif_device_detach); 1830 1831 /** 1832 * netif_device_attach - mark device as attached 1833 * @dev: network device 1834 * 1835 * Mark device as attached from system and restart if needed. 1836 */ 1837 void netif_device_attach(struct net_device *dev) 1838 { 1839 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1840 netif_running(dev)) { 1841 netif_tx_wake_all_queues(dev); 1842 __netdev_watchdog_up(dev); 1843 } 1844 } 1845 EXPORT_SYMBOL(netif_device_attach); 1846 1847 /** 1848 * skb_dev_set -- assign a new device to a buffer 1849 * @skb: buffer for the new device 1850 * @dev: network device 1851 * 1852 * If an skb is owned by a device already, we have to reset 1853 * all data private to the namespace a device belongs to 1854 * before assigning it a new device. 1855 */ 1856 #ifdef CONFIG_NET_NS 1857 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1858 { 1859 skb_dst_drop(skb); 1860 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1861 secpath_reset(skb); 1862 nf_reset(skb); 1863 skb_init_secmark(skb); 1864 skb->mark = 0; 1865 skb->priority = 0; 1866 skb->nf_trace = 0; 1867 skb->ipvs_property = 0; 1868 #ifdef CONFIG_NET_SCHED 1869 skb->tc_index = 0; 1870 #endif 1871 } 1872 skb->dev = dev; 1873 } 1874 EXPORT_SYMBOL(skb_set_dev); 1875 #endif /* CONFIG_NET_NS */ 1876 1877 /* 1878 * Invalidate hardware checksum when packet is to be mangled, and 1879 * complete checksum manually on outgoing path. 1880 */ 1881 int skb_checksum_help(struct sk_buff *skb) 1882 { 1883 __wsum csum; 1884 int ret = 0, offset; 1885 1886 if (skb->ip_summed == CHECKSUM_COMPLETE) 1887 goto out_set_summed; 1888 1889 if (unlikely(skb_shinfo(skb)->gso_size)) { 1890 /* Let GSO fix up the checksum. */ 1891 goto out_set_summed; 1892 } 1893 1894 offset = skb_checksum_start_offset(skb); 1895 BUG_ON(offset >= skb_headlen(skb)); 1896 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1897 1898 offset += skb->csum_offset; 1899 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1900 1901 if (skb_cloned(skb) && 1902 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1903 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1904 if (ret) 1905 goto out; 1906 } 1907 1908 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1909 out_set_summed: 1910 skb->ip_summed = CHECKSUM_NONE; 1911 out: 1912 return ret; 1913 } 1914 EXPORT_SYMBOL(skb_checksum_help); 1915 1916 /** 1917 * skb_gso_segment - Perform segmentation on skb. 1918 * @skb: buffer to segment 1919 * @features: features for the output path (see dev->features) 1920 * 1921 * This function segments the given skb and returns a list of segments. 1922 * 1923 * It may return NULL if the skb requires no segmentation. This is 1924 * only possible when GSO is used for verifying header integrity. 1925 */ 1926 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features) 1927 { 1928 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1929 struct packet_type *ptype; 1930 __be16 type = skb->protocol; 1931 int vlan_depth = ETH_HLEN; 1932 int err; 1933 1934 while (type == htons(ETH_P_8021Q)) { 1935 struct vlan_hdr *vh; 1936 1937 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1938 return ERR_PTR(-EINVAL); 1939 1940 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1941 type = vh->h_vlan_encapsulated_proto; 1942 vlan_depth += VLAN_HLEN; 1943 } 1944 1945 skb_reset_mac_header(skb); 1946 skb->mac_len = skb->network_header - skb->mac_header; 1947 __skb_pull(skb, skb->mac_len); 1948 1949 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1950 struct net_device *dev = skb->dev; 1951 struct ethtool_drvinfo info = {}; 1952 1953 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1954 dev->ethtool_ops->get_drvinfo(dev, &info); 1955 1956 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n", 1957 info.driver, dev ? dev->features : 0L, 1958 skb->sk ? skb->sk->sk_route_caps : 0L, 1959 skb->len, skb->data_len, skb->ip_summed); 1960 1961 if (skb_header_cloned(skb) && 1962 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1963 return ERR_PTR(err); 1964 } 1965 1966 rcu_read_lock(); 1967 list_for_each_entry_rcu(ptype, 1968 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1969 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1970 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1971 err = ptype->gso_send_check(skb); 1972 segs = ERR_PTR(err); 1973 if (err || skb_gso_ok(skb, features)) 1974 break; 1975 __skb_push(skb, (skb->data - 1976 skb_network_header(skb))); 1977 } 1978 segs = ptype->gso_segment(skb, features); 1979 break; 1980 } 1981 } 1982 rcu_read_unlock(); 1983 1984 __skb_push(skb, skb->data - skb_mac_header(skb)); 1985 1986 return segs; 1987 } 1988 EXPORT_SYMBOL(skb_gso_segment); 1989 1990 /* Take action when hardware reception checksum errors are detected. */ 1991 #ifdef CONFIG_BUG 1992 void netdev_rx_csum_fault(struct net_device *dev) 1993 { 1994 if (net_ratelimit()) { 1995 printk(KERN_ERR "%s: hw csum failure.\n", 1996 dev ? dev->name : "<unknown>"); 1997 dump_stack(); 1998 } 1999 } 2000 EXPORT_SYMBOL(netdev_rx_csum_fault); 2001 #endif 2002 2003 /* Actually, we should eliminate this check as soon as we know, that: 2004 * 1. IOMMU is present and allows to map all the memory. 2005 * 2. No high memory really exists on this machine. 2006 */ 2007 2008 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2009 { 2010 #ifdef CONFIG_HIGHMEM 2011 int i; 2012 if (!(dev->features & NETIF_F_HIGHDMA)) { 2013 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2014 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2015 if (PageHighMem(skb_frag_page(frag))) 2016 return 1; 2017 } 2018 } 2019 2020 if (PCI_DMA_BUS_IS_PHYS) { 2021 struct device *pdev = dev->dev.parent; 2022 2023 if (!pdev) 2024 return 0; 2025 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2026 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2027 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2028 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2029 return 1; 2030 } 2031 } 2032 #endif 2033 return 0; 2034 } 2035 2036 struct dev_gso_cb { 2037 void (*destructor)(struct sk_buff *skb); 2038 }; 2039 2040 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2041 2042 static void dev_gso_skb_destructor(struct sk_buff *skb) 2043 { 2044 struct dev_gso_cb *cb; 2045 2046 do { 2047 struct sk_buff *nskb = skb->next; 2048 2049 skb->next = nskb->next; 2050 nskb->next = NULL; 2051 kfree_skb(nskb); 2052 } while (skb->next); 2053 2054 cb = DEV_GSO_CB(skb); 2055 if (cb->destructor) 2056 cb->destructor(skb); 2057 } 2058 2059 /** 2060 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2061 * @skb: buffer to segment 2062 * @features: device features as applicable to this skb 2063 * 2064 * This function segments the given skb and stores the list of segments 2065 * in skb->next. 2066 */ 2067 static int dev_gso_segment(struct sk_buff *skb, int features) 2068 { 2069 struct sk_buff *segs; 2070 2071 segs = skb_gso_segment(skb, features); 2072 2073 /* Verifying header integrity only. */ 2074 if (!segs) 2075 return 0; 2076 2077 if (IS_ERR(segs)) 2078 return PTR_ERR(segs); 2079 2080 skb->next = segs; 2081 DEV_GSO_CB(skb)->destructor = skb->destructor; 2082 skb->destructor = dev_gso_skb_destructor; 2083 2084 return 0; 2085 } 2086 2087 /* 2088 * Try to orphan skb early, right before transmission by the device. 2089 * We cannot orphan skb if tx timestamp is requested or the sk-reference 2090 * is needed on driver level for other reasons, e.g. see net/can/raw.c 2091 */ 2092 static inline void skb_orphan_try(struct sk_buff *skb) 2093 { 2094 struct sock *sk = skb->sk; 2095 2096 if (sk && !skb_shinfo(skb)->tx_flags) { 2097 /* skb_tx_hash() wont be able to get sk. 2098 * We copy sk_hash into skb->rxhash 2099 */ 2100 if (!skb->rxhash) 2101 skb->rxhash = sk->sk_hash; 2102 skb_orphan(skb); 2103 } 2104 } 2105 2106 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 2107 { 2108 return ((features & NETIF_F_GEN_CSUM) || 2109 ((features & NETIF_F_V4_CSUM) && 2110 protocol == htons(ETH_P_IP)) || 2111 ((features & NETIF_F_V6_CSUM) && 2112 protocol == htons(ETH_P_IPV6)) || 2113 ((features & NETIF_F_FCOE_CRC) && 2114 protocol == htons(ETH_P_FCOE))); 2115 } 2116 2117 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features) 2118 { 2119 if (!can_checksum_protocol(features, protocol)) { 2120 features &= ~NETIF_F_ALL_CSUM; 2121 features &= ~NETIF_F_SG; 2122 } else if (illegal_highdma(skb->dev, skb)) { 2123 features &= ~NETIF_F_SG; 2124 } 2125 2126 return features; 2127 } 2128 2129 u32 netif_skb_features(struct sk_buff *skb) 2130 { 2131 __be16 protocol = skb->protocol; 2132 u32 features = skb->dev->features; 2133 2134 if (protocol == htons(ETH_P_8021Q)) { 2135 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2136 protocol = veh->h_vlan_encapsulated_proto; 2137 } else if (!vlan_tx_tag_present(skb)) { 2138 return harmonize_features(skb, protocol, features); 2139 } 2140 2141 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2142 2143 if (protocol != htons(ETH_P_8021Q)) { 2144 return harmonize_features(skb, protocol, features); 2145 } else { 2146 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2147 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2148 return harmonize_features(skb, protocol, features); 2149 } 2150 } 2151 EXPORT_SYMBOL(netif_skb_features); 2152 2153 /* 2154 * Returns true if either: 2155 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2156 * 2. skb is fragmented and the device does not support SG, or if 2157 * at least one of fragments is in highmem and device does not 2158 * support DMA from it. 2159 */ 2160 static inline int skb_needs_linearize(struct sk_buff *skb, 2161 int features) 2162 { 2163 return skb_is_nonlinear(skb) && 2164 ((skb_has_frag_list(skb) && 2165 !(features & NETIF_F_FRAGLIST)) || 2166 (skb_shinfo(skb)->nr_frags && 2167 !(features & NETIF_F_SG))); 2168 } 2169 2170 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2171 struct netdev_queue *txq) 2172 { 2173 const struct net_device_ops *ops = dev->netdev_ops; 2174 int rc = NETDEV_TX_OK; 2175 unsigned int skb_len; 2176 2177 if (likely(!skb->next)) { 2178 u32 features; 2179 2180 /* 2181 * If device doesn't need skb->dst, release it right now while 2182 * its hot in this cpu cache 2183 */ 2184 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2185 skb_dst_drop(skb); 2186 2187 if (!list_empty(&ptype_all)) 2188 dev_queue_xmit_nit(skb, dev); 2189 2190 skb_orphan_try(skb); 2191 2192 features = netif_skb_features(skb); 2193 2194 if (vlan_tx_tag_present(skb) && 2195 !(features & NETIF_F_HW_VLAN_TX)) { 2196 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2197 if (unlikely(!skb)) 2198 goto out; 2199 2200 skb->vlan_tci = 0; 2201 } 2202 2203 if (netif_needs_gso(skb, features)) { 2204 if (unlikely(dev_gso_segment(skb, features))) 2205 goto out_kfree_skb; 2206 if (skb->next) 2207 goto gso; 2208 } else { 2209 if (skb_needs_linearize(skb, features) && 2210 __skb_linearize(skb)) 2211 goto out_kfree_skb; 2212 2213 /* If packet is not checksummed and device does not 2214 * support checksumming for this protocol, complete 2215 * checksumming here. 2216 */ 2217 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2218 skb_set_transport_header(skb, 2219 skb_checksum_start_offset(skb)); 2220 if (!(features & NETIF_F_ALL_CSUM) && 2221 skb_checksum_help(skb)) 2222 goto out_kfree_skb; 2223 } 2224 } 2225 2226 skb_len = skb->len; 2227 rc = ops->ndo_start_xmit(skb, dev); 2228 trace_net_dev_xmit(skb, rc, dev, skb_len); 2229 if (rc == NETDEV_TX_OK) 2230 txq_trans_update(txq); 2231 return rc; 2232 } 2233 2234 gso: 2235 do { 2236 struct sk_buff *nskb = skb->next; 2237 2238 skb->next = nskb->next; 2239 nskb->next = NULL; 2240 2241 /* 2242 * If device doesn't need nskb->dst, release it right now while 2243 * its hot in this cpu cache 2244 */ 2245 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2246 skb_dst_drop(nskb); 2247 2248 skb_len = nskb->len; 2249 rc = ops->ndo_start_xmit(nskb, dev); 2250 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2251 if (unlikely(rc != NETDEV_TX_OK)) { 2252 if (rc & ~NETDEV_TX_MASK) 2253 goto out_kfree_gso_skb; 2254 nskb->next = skb->next; 2255 skb->next = nskb; 2256 return rc; 2257 } 2258 txq_trans_update(txq); 2259 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 2260 return NETDEV_TX_BUSY; 2261 } while (skb->next); 2262 2263 out_kfree_gso_skb: 2264 if (likely(skb->next == NULL)) 2265 skb->destructor = DEV_GSO_CB(skb)->destructor; 2266 out_kfree_skb: 2267 kfree_skb(skb); 2268 out: 2269 return rc; 2270 } 2271 2272 static u32 hashrnd __read_mostly; 2273 2274 /* 2275 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2276 * to be used as a distribution range. 2277 */ 2278 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2279 unsigned int num_tx_queues) 2280 { 2281 u32 hash; 2282 u16 qoffset = 0; 2283 u16 qcount = num_tx_queues; 2284 2285 if (skb_rx_queue_recorded(skb)) { 2286 hash = skb_get_rx_queue(skb); 2287 while (unlikely(hash >= num_tx_queues)) 2288 hash -= num_tx_queues; 2289 return hash; 2290 } 2291 2292 if (dev->num_tc) { 2293 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2294 qoffset = dev->tc_to_txq[tc].offset; 2295 qcount = dev->tc_to_txq[tc].count; 2296 } 2297 2298 if (skb->sk && skb->sk->sk_hash) 2299 hash = skb->sk->sk_hash; 2300 else 2301 hash = (__force u16) skb->protocol ^ skb->rxhash; 2302 hash = jhash_1word(hash, hashrnd); 2303 2304 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2305 } 2306 EXPORT_SYMBOL(__skb_tx_hash); 2307 2308 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2309 { 2310 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2311 if (net_ratelimit()) { 2312 pr_warning("%s selects TX queue %d, but " 2313 "real number of TX queues is %d\n", 2314 dev->name, queue_index, dev->real_num_tx_queues); 2315 } 2316 return 0; 2317 } 2318 return queue_index; 2319 } 2320 2321 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2322 { 2323 #ifdef CONFIG_XPS 2324 struct xps_dev_maps *dev_maps; 2325 struct xps_map *map; 2326 int queue_index = -1; 2327 2328 rcu_read_lock(); 2329 dev_maps = rcu_dereference(dev->xps_maps); 2330 if (dev_maps) { 2331 map = rcu_dereference( 2332 dev_maps->cpu_map[raw_smp_processor_id()]); 2333 if (map) { 2334 if (map->len == 1) 2335 queue_index = map->queues[0]; 2336 else { 2337 u32 hash; 2338 if (skb->sk && skb->sk->sk_hash) 2339 hash = skb->sk->sk_hash; 2340 else 2341 hash = (__force u16) skb->protocol ^ 2342 skb->rxhash; 2343 hash = jhash_1word(hash, hashrnd); 2344 queue_index = map->queues[ 2345 ((u64)hash * map->len) >> 32]; 2346 } 2347 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2348 queue_index = -1; 2349 } 2350 } 2351 rcu_read_unlock(); 2352 2353 return queue_index; 2354 #else 2355 return -1; 2356 #endif 2357 } 2358 2359 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2360 struct sk_buff *skb) 2361 { 2362 int queue_index; 2363 const struct net_device_ops *ops = dev->netdev_ops; 2364 2365 if (dev->real_num_tx_queues == 1) 2366 queue_index = 0; 2367 else if (ops->ndo_select_queue) { 2368 queue_index = ops->ndo_select_queue(dev, skb); 2369 queue_index = dev_cap_txqueue(dev, queue_index); 2370 } else { 2371 struct sock *sk = skb->sk; 2372 queue_index = sk_tx_queue_get(sk); 2373 2374 if (queue_index < 0 || skb->ooo_okay || 2375 queue_index >= dev->real_num_tx_queues) { 2376 int old_index = queue_index; 2377 2378 queue_index = get_xps_queue(dev, skb); 2379 if (queue_index < 0) 2380 queue_index = skb_tx_hash(dev, skb); 2381 2382 if (queue_index != old_index && sk) { 2383 struct dst_entry *dst = 2384 rcu_dereference_check(sk->sk_dst_cache, 1); 2385 2386 if (dst && skb_dst(skb) == dst) 2387 sk_tx_queue_set(sk, queue_index); 2388 } 2389 } 2390 } 2391 2392 skb_set_queue_mapping(skb, queue_index); 2393 return netdev_get_tx_queue(dev, queue_index); 2394 } 2395 2396 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2397 struct net_device *dev, 2398 struct netdev_queue *txq) 2399 { 2400 spinlock_t *root_lock = qdisc_lock(q); 2401 bool contended; 2402 int rc; 2403 2404 qdisc_skb_cb(skb)->pkt_len = skb->len; 2405 qdisc_calculate_pkt_len(skb, q); 2406 /* 2407 * Heuristic to force contended enqueues to serialize on a 2408 * separate lock before trying to get qdisc main lock. 2409 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2410 * and dequeue packets faster. 2411 */ 2412 contended = qdisc_is_running(q); 2413 if (unlikely(contended)) 2414 spin_lock(&q->busylock); 2415 2416 spin_lock(root_lock); 2417 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2418 kfree_skb(skb); 2419 rc = NET_XMIT_DROP; 2420 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2421 qdisc_run_begin(q)) { 2422 /* 2423 * This is a work-conserving queue; there are no old skbs 2424 * waiting to be sent out; and the qdisc is not running - 2425 * xmit the skb directly. 2426 */ 2427 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2428 skb_dst_force(skb); 2429 2430 qdisc_bstats_update(q, skb); 2431 2432 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2433 if (unlikely(contended)) { 2434 spin_unlock(&q->busylock); 2435 contended = false; 2436 } 2437 __qdisc_run(q); 2438 } else 2439 qdisc_run_end(q); 2440 2441 rc = NET_XMIT_SUCCESS; 2442 } else { 2443 skb_dst_force(skb); 2444 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2445 if (qdisc_run_begin(q)) { 2446 if (unlikely(contended)) { 2447 spin_unlock(&q->busylock); 2448 contended = false; 2449 } 2450 __qdisc_run(q); 2451 } 2452 } 2453 spin_unlock(root_lock); 2454 if (unlikely(contended)) 2455 spin_unlock(&q->busylock); 2456 return rc; 2457 } 2458 2459 static DEFINE_PER_CPU(int, xmit_recursion); 2460 #define RECURSION_LIMIT 10 2461 2462 /** 2463 * dev_queue_xmit - transmit a buffer 2464 * @skb: buffer to transmit 2465 * 2466 * Queue a buffer for transmission to a network device. The caller must 2467 * have set the device and priority and built the buffer before calling 2468 * this function. The function can be called from an interrupt. 2469 * 2470 * A negative errno code is returned on a failure. A success does not 2471 * guarantee the frame will be transmitted as it may be dropped due 2472 * to congestion or traffic shaping. 2473 * 2474 * ----------------------------------------------------------------------------------- 2475 * I notice this method can also return errors from the queue disciplines, 2476 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2477 * be positive. 2478 * 2479 * Regardless of the return value, the skb is consumed, so it is currently 2480 * difficult to retry a send to this method. (You can bump the ref count 2481 * before sending to hold a reference for retry if you are careful.) 2482 * 2483 * When calling this method, interrupts MUST be enabled. This is because 2484 * the BH enable code must have IRQs enabled so that it will not deadlock. 2485 * --BLG 2486 */ 2487 int dev_queue_xmit(struct sk_buff *skb) 2488 { 2489 struct net_device *dev = skb->dev; 2490 struct netdev_queue *txq; 2491 struct Qdisc *q; 2492 int rc = -ENOMEM; 2493 2494 /* Disable soft irqs for various locks below. Also 2495 * stops preemption for RCU. 2496 */ 2497 rcu_read_lock_bh(); 2498 2499 txq = dev_pick_tx(dev, skb); 2500 q = rcu_dereference_bh(txq->qdisc); 2501 2502 #ifdef CONFIG_NET_CLS_ACT 2503 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2504 #endif 2505 trace_net_dev_queue(skb); 2506 if (q->enqueue) { 2507 rc = __dev_xmit_skb(skb, q, dev, txq); 2508 goto out; 2509 } 2510 2511 /* The device has no queue. Common case for software devices: 2512 loopback, all the sorts of tunnels... 2513 2514 Really, it is unlikely that netif_tx_lock protection is necessary 2515 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2516 counters.) 2517 However, it is possible, that they rely on protection 2518 made by us here. 2519 2520 Check this and shot the lock. It is not prone from deadlocks. 2521 Either shot noqueue qdisc, it is even simpler 8) 2522 */ 2523 if (dev->flags & IFF_UP) { 2524 int cpu = smp_processor_id(); /* ok because BHs are off */ 2525 2526 if (txq->xmit_lock_owner != cpu) { 2527 2528 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2529 goto recursion_alert; 2530 2531 HARD_TX_LOCK(dev, txq, cpu); 2532 2533 if (!netif_tx_queue_stopped(txq)) { 2534 __this_cpu_inc(xmit_recursion); 2535 rc = dev_hard_start_xmit(skb, dev, txq); 2536 __this_cpu_dec(xmit_recursion); 2537 if (dev_xmit_complete(rc)) { 2538 HARD_TX_UNLOCK(dev, txq); 2539 goto out; 2540 } 2541 } 2542 HARD_TX_UNLOCK(dev, txq); 2543 if (net_ratelimit()) 2544 printk(KERN_CRIT "Virtual device %s asks to " 2545 "queue packet!\n", dev->name); 2546 } else { 2547 /* Recursion is detected! It is possible, 2548 * unfortunately 2549 */ 2550 recursion_alert: 2551 if (net_ratelimit()) 2552 printk(KERN_CRIT "Dead loop on virtual device " 2553 "%s, fix it urgently!\n", dev->name); 2554 } 2555 } 2556 2557 rc = -ENETDOWN; 2558 rcu_read_unlock_bh(); 2559 2560 kfree_skb(skb); 2561 return rc; 2562 out: 2563 rcu_read_unlock_bh(); 2564 return rc; 2565 } 2566 EXPORT_SYMBOL(dev_queue_xmit); 2567 2568 2569 /*======================================================================= 2570 Receiver routines 2571 =======================================================================*/ 2572 2573 int netdev_max_backlog __read_mostly = 1000; 2574 int netdev_tstamp_prequeue __read_mostly = 1; 2575 int netdev_budget __read_mostly = 300; 2576 int weight_p __read_mostly = 64; /* old backlog weight */ 2577 2578 /* Called with irq disabled */ 2579 static inline void ____napi_schedule(struct softnet_data *sd, 2580 struct napi_struct *napi) 2581 { 2582 list_add_tail(&napi->poll_list, &sd->poll_list); 2583 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2584 } 2585 2586 /* 2587 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2588 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2589 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2590 * if hash is a canonical 4-tuple hash over transport ports. 2591 */ 2592 void __skb_get_rxhash(struct sk_buff *skb) 2593 { 2594 int nhoff, hash = 0, poff; 2595 const struct ipv6hdr *ip6; 2596 const struct iphdr *ip; 2597 const struct vlan_hdr *vlan; 2598 u8 ip_proto; 2599 u32 addr1, addr2; 2600 u16 proto; 2601 union { 2602 u32 v32; 2603 u16 v16[2]; 2604 } ports; 2605 2606 nhoff = skb_network_offset(skb); 2607 proto = skb->protocol; 2608 2609 again: 2610 switch (proto) { 2611 case __constant_htons(ETH_P_IP): 2612 ip: 2613 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff)) 2614 goto done; 2615 2616 ip = (const struct iphdr *) (skb->data + nhoff); 2617 if (ip_is_fragment(ip)) 2618 ip_proto = 0; 2619 else 2620 ip_proto = ip->protocol; 2621 addr1 = (__force u32) ip->saddr; 2622 addr2 = (__force u32) ip->daddr; 2623 nhoff += ip->ihl * 4; 2624 break; 2625 case __constant_htons(ETH_P_IPV6): 2626 ipv6: 2627 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff)) 2628 goto done; 2629 2630 ip6 = (const struct ipv6hdr *) (skb->data + nhoff); 2631 ip_proto = ip6->nexthdr; 2632 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2633 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2634 nhoff += 40; 2635 break; 2636 case __constant_htons(ETH_P_8021Q): 2637 if (!pskb_may_pull(skb, sizeof(*vlan) + nhoff)) 2638 goto done; 2639 vlan = (const struct vlan_hdr *) (skb->data + nhoff); 2640 proto = vlan->h_vlan_encapsulated_proto; 2641 nhoff += sizeof(*vlan); 2642 goto again; 2643 case __constant_htons(ETH_P_PPP_SES): 2644 if (!pskb_may_pull(skb, PPPOE_SES_HLEN + nhoff)) 2645 goto done; 2646 proto = *((__be16 *) (skb->data + nhoff + 2647 sizeof(struct pppoe_hdr))); 2648 nhoff += PPPOE_SES_HLEN; 2649 switch (proto) { 2650 case __constant_htons(PPP_IP): 2651 goto ip; 2652 case __constant_htons(PPP_IPV6): 2653 goto ipv6; 2654 default: 2655 goto done; 2656 } 2657 default: 2658 goto done; 2659 } 2660 2661 switch (ip_proto) { 2662 case IPPROTO_GRE: 2663 if (pskb_may_pull(skb, nhoff + 16)) { 2664 u8 *h = skb->data + nhoff; 2665 __be16 flags = *(__be16 *)h; 2666 2667 /* 2668 * Only look inside GRE if version zero and no 2669 * routing 2670 */ 2671 if (!(flags & (GRE_VERSION|GRE_ROUTING))) { 2672 proto = *(__be16 *)(h + 2); 2673 nhoff += 4; 2674 if (flags & GRE_CSUM) 2675 nhoff += 4; 2676 if (flags & GRE_KEY) 2677 nhoff += 4; 2678 if (flags & GRE_SEQ) 2679 nhoff += 4; 2680 goto again; 2681 } 2682 } 2683 break; 2684 case IPPROTO_IPIP: 2685 goto again; 2686 default: 2687 break; 2688 } 2689 2690 ports.v32 = 0; 2691 poff = proto_ports_offset(ip_proto); 2692 if (poff >= 0) { 2693 nhoff += poff; 2694 if (pskb_may_pull(skb, nhoff + 4)) { 2695 ports.v32 = * (__force u32 *) (skb->data + nhoff); 2696 if (ports.v16[1] < ports.v16[0]) 2697 swap(ports.v16[0], ports.v16[1]); 2698 skb->l4_rxhash = 1; 2699 } 2700 } 2701 2702 /* get a consistent hash (same value on both flow directions) */ 2703 if (addr2 < addr1) 2704 swap(addr1, addr2); 2705 2706 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2707 if (!hash) 2708 hash = 1; 2709 2710 done: 2711 skb->rxhash = hash; 2712 } 2713 EXPORT_SYMBOL(__skb_get_rxhash); 2714 2715 #ifdef CONFIG_RPS 2716 2717 /* One global table that all flow-based protocols share. */ 2718 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2719 EXPORT_SYMBOL(rps_sock_flow_table); 2720 2721 static struct rps_dev_flow * 2722 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2723 struct rps_dev_flow *rflow, u16 next_cpu) 2724 { 2725 if (next_cpu != RPS_NO_CPU) { 2726 #ifdef CONFIG_RFS_ACCEL 2727 struct netdev_rx_queue *rxqueue; 2728 struct rps_dev_flow_table *flow_table; 2729 struct rps_dev_flow *old_rflow; 2730 u32 flow_id; 2731 u16 rxq_index; 2732 int rc; 2733 2734 /* Should we steer this flow to a different hardware queue? */ 2735 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2736 !(dev->features & NETIF_F_NTUPLE)) 2737 goto out; 2738 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2739 if (rxq_index == skb_get_rx_queue(skb)) 2740 goto out; 2741 2742 rxqueue = dev->_rx + rxq_index; 2743 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2744 if (!flow_table) 2745 goto out; 2746 flow_id = skb->rxhash & flow_table->mask; 2747 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2748 rxq_index, flow_id); 2749 if (rc < 0) 2750 goto out; 2751 old_rflow = rflow; 2752 rflow = &flow_table->flows[flow_id]; 2753 rflow->filter = rc; 2754 if (old_rflow->filter == rflow->filter) 2755 old_rflow->filter = RPS_NO_FILTER; 2756 out: 2757 #endif 2758 rflow->last_qtail = 2759 per_cpu(softnet_data, next_cpu).input_queue_head; 2760 } 2761 2762 rflow->cpu = next_cpu; 2763 return rflow; 2764 } 2765 2766 /* 2767 * get_rps_cpu is called from netif_receive_skb and returns the target 2768 * CPU from the RPS map of the receiving queue for a given skb. 2769 * rcu_read_lock must be held on entry. 2770 */ 2771 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2772 struct rps_dev_flow **rflowp) 2773 { 2774 struct netdev_rx_queue *rxqueue; 2775 struct rps_map *map; 2776 struct rps_dev_flow_table *flow_table; 2777 struct rps_sock_flow_table *sock_flow_table; 2778 int cpu = -1; 2779 u16 tcpu; 2780 2781 if (skb_rx_queue_recorded(skb)) { 2782 u16 index = skb_get_rx_queue(skb); 2783 if (unlikely(index >= dev->real_num_rx_queues)) { 2784 WARN_ONCE(dev->real_num_rx_queues > 1, 2785 "%s received packet on queue %u, but number " 2786 "of RX queues is %u\n", 2787 dev->name, index, dev->real_num_rx_queues); 2788 goto done; 2789 } 2790 rxqueue = dev->_rx + index; 2791 } else 2792 rxqueue = dev->_rx; 2793 2794 map = rcu_dereference(rxqueue->rps_map); 2795 if (map) { 2796 if (map->len == 1 && 2797 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2798 tcpu = map->cpus[0]; 2799 if (cpu_online(tcpu)) 2800 cpu = tcpu; 2801 goto done; 2802 } 2803 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2804 goto done; 2805 } 2806 2807 skb_reset_network_header(skb); 2808 if (!skb_get_rxhash(skb)) 2809 goto done; 2810 2811 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2812 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2813 if (flow_table && sock_flow_table) { 2814 u16 next_cpu; 2815 struct rps_dev_flow *rflow; 2816 2817 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2818 tcpu = rflow->cpu; 2819 2820 next_cpu = sock_flow_table->ents[skb->rxhash & 2821 sock_flow_table->mask]; 2822 2823 /* 2824 * If the desired CPU (where last recvmsg was done) is 2825 * different from current CPU (one in the rx-queue flow 2826 * table entry), switch if one of the following holds: 2827 * - Current CPU is unset (equal to RPS_NO_CPU). 2828 * - Current CPU is offline. 2829 * - The current CPU's queue tail has advanced beyond the 2830 * last packet that was enqueued using this table entry. 2831 * This guarantees that all previous packets for the flow 2832 * have been dequeued, thus preserving in order delivery. 2833 */ 2834 if (unlikely(tcpu != next_cpu) && 2835 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2836 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2837 rflow->last_qtail)) >= 0)) 2838 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2839 2840 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2841 *rflowp = rflow; 2842 cpu = tcpu; 2843 goto done; 2844 } 2845 } 2846 2847 if (map) { 2848 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2849 2850 if (cpu_online(tcpu)) { 2851 cpu = tcpu; 2852 goto done; 2853 } 2854 } 2855 2856 done: 2857 return cpu; 2858 } 2859 2860 #ifdef CONFIG_RFS_ACCEL 2861 2862 /** 2863 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2864 * @dev: Device on which the filter was set 2865 * @rxq_index: RX queue index 2866 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2867 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2868 * 2869 * Drivers that implement ndo_rx_flow_steer() should periodically call 2870 * this function for each installed filter and remove the filters for 2871 * which it returns %true. 2872 */ 2873 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2874 u32 flow_id, u16 filter_id) 2875 { 2876 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2877 struct rps_dev_flow_table *flow_table; 2878 struct rps_dev_flow *rflow; 2879 bool expire = true; 2880 int cpu; 2881 2882 rcu_read_lock(); 2883 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2884 if (flow_table && flow_id <= flow_table->mask) { 2885 rflow = &flow_table->flows[flow_id]; 2886 cpu = ACCESS_ONCE(rflow->cpu); 2887 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2888 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2889 rflow->last_qtail) < 2890 (int)(10 * flow_table->mask))) 2891 expire = false; 2892 } 2893 rcu_read_unlock(); 2894 return expire; 2895 } 2896 EXPORT_SYMBOL(rps_may_expire_flow); 2897 2898 #endif /* CONFIG_RFS_ACCEL */ 2899 2900 /* Called from hardirq (IPI) context */ 2901 static void rps_trigger_softirq(void *data) 2902 { 2903 struct softnet_data *sd = data; 2904 2905 ____napi_schedule(sd, &sd->backlog); 2906 sd->received_rps++; 2907 } 2908 2909 #endif /* CONFIG_RPS */ 2910 2911 /* 2912 * Check if this softnet_data structure is another cpu one 2913 * If yes, queue it to our IPI list and return 1 2914 * If no, return 0 2915 */ 2916 static int rps_ipi_queued(struct softnet_data *sd) 2917 { 2918 #ifdef CONFIG_RPS 2919 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2920 2921 if (sd != mysd) { 2922 sd->rps_ipi_next = mysd->rps_ipi_list; 2923 mysd->rps_ipi_list = sd; 2924 2925 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2926 return 1; 2927 } 2928 #endif /* CONFIG_RPS */ 2929 return 0; 2930 } 2931 2932 /* 2933 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2934 * queue (may be a remote CPU queue). 2935 */ 2936 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2937 unsigned int *qtail) 2938 { 2939 struct softnet_data *sd; 2940 unsigned long flags; 2941 2942 sd = &per_cpu(softnet_data, cpu); 2943 2944 local_irq_save(flags); 2945 2946 rps_lock(sd); 2947 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2948 if (skb_queue_len(&sd->input_pkt_queue)) { 2949 enqueue: 2950 __skb_queue_tail(&sd->input_pkt_queue, skb); 2951 input_queue_tail_incr_save(sd, qtail); 2952 rps_unlock(sd); 2953 local_irq_restore(flags); 2954 return NET_RX_SUCCESS; 2955 } 2956 2957 /* Schedule NAPI for backlog device 2958 * We can use non atomic operation since we own the queue lock 2959 */ 2960 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2961 if (!rps_ipi_queued(sd)) 2962 ____napi_schedule(sd, &sd->backlog); 2963 } 2964 goto enqueue; 2965 } 2966 2967 sd->dropped++; 2968 rps_unlock(sd); 2969 2970 local_irq_restore(flags); 2971 2972 atomic_long_inc(&skb->dev->rx_dropped); 2973 kfree_skb(skb); 2974 return NET_RX_DROP; 2975 } 2976 2977 /** 2978 * netif_rx - post buffer to the network code 2979 * @skb: buffer to post 2980 * 2981 * This function receives a packet from a device driver and queues it for 2982 * the upper (protocol) levels to process. It always succeeds. The buffer 2983 * may be dropped during processing for congestion control or by the 2984 * protocol layers. 2985 * 2986 * return values: 2987 * NET_RX_SUCCESS (no congestion) 2988 * NET_RX_DROP (packet was dropped) 2989 * 2990 */ 2991 2992 int netif_rx(struct sk_buff *skb) 2993 { 2994 int ret; 2995 2996 /* if netpoll wants it, pretend we never saw it */ 2997 if (netpoll_rx(skb)) 2998 return NET_RX_DROP; 2999 3000 if (netdev_tstamp_prequeue) 3001 net_timestamp_check(skb); 3002 3003 trace_netif_rx(skb); 3004 #ifdef CONFIG_RPS 3005 { 3006 struct rps_dev_flow voidflow, *rflow = &voidflow; 3007 int cpu; 3008 3009 preempt_disable(); 3010 rcu_read_lock(); 3011 3012 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3013 if (cpu < 0) 3014 cpu = smp_processor_id(); 3015 3016 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3017 3018 rcu_read_unlock(); 3019 preempt_enable(); 3020 } 3021 #else 3022 { 3023 unsigned int qtail; 3024 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3025 put_cpu(); 3026 } 3027 #endif 3028 return ret; 3029 } 3030 EXPORT_SYMBOL(netif_rx); 3031 3032 int netif_rx_ni(struct sk_buff *skb) 3033 { 3034 int err; 3035 3036 preempt_disable(); 3037 err = netif_rx(skb); 3038 if (local_softirq_pending()) 3039 do_softirq(); 3040 preempt_enable(); 3041 3042 return err; 3043 } 3044 EXPORT_SYMBOL(netif_rx_ni); 3045 3046 static void net_tx_action(struct softirq_action *h) 3047 { 3048 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3049 3050 if (sd->completion_queue) { 3051 struct sk_buff *clist; 3052 3053 local_irq_disable(); 3054 clist = sd->completion_queue; 3055 sd->completion_queue = NULL; 3056 local_irq_enable(); 3057 3058 while (clist) { 3059 struct sk_buff *skb = clist; 3060 clist = clist->next; 3061 3062 WARN_ON(atomic_read(&skb->users)); 3063 trace_kfree_skb(skb, net_tx_action); 3064 __kfree_skb(skb); 3065 } 3066 } 3067 3068 if (sd->output_queue) { 3069 struct Qdisc *head; 3070 3071 local_irq_disable(); 3072 head = sd->output_queue; 3073 sd->output_queue = NULL; 3074 sd->output_queue_tailp = &sd->output_queue; 3075 local_irq_enable(); 3076 3077 while (head) { 3078 struct Qdisc *q = head; 3079 spinlock_t *root_lock; 3080 3081 head = head->next_sched; 3082 3083 root_lock = qdisc_lock(q); 3084 if (spin_trylock(root_lock)) { 3085 smp_mb__before_clear_bit(); 3086 clear_bit(__QDISC_STATE_SCHED, 3087 &q->state); 3088 qdisc_run(q); 3089 spin_unlock(root_lock); 3090 } else { 3091 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3092 &q->state)) { 3093 __netif_reschedule(q); 3094 } else { 3095 smp_mb__before_clear_bit(); 3096 clear_bit(__QDISC_STATE_SCHED, 3097 &q->state); 3098 } 3099 } 3100 } 3101 } 3102 } 3103 3104 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3105 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3106 /* This hook is defined here for ATM LANE */ 3107 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3108 unsigned char *addr) __read_mostly; 3109 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3110 #endif 3111 3112 #ifdef CONFIG_NET_CLS_ACT 3113 /* TODO: Maybe we should just force sch_ingress to be compiled in 3114 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3115 * a compare and 2 stores extra right now if we dont have it on 3116 * but have CONFIG_NET_CLS_ACT 3117 * NOTE: This doesn't stop any functionality; if you dont have 3118 * the ingress scheduler, you just can't add policies on ingress. 3119 * 3120 */ 3121 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3122 { 3123 struct net_device *dev = skb->dev; 3124 u32 ttl = G_TC_RTTL(skb->tc_verd); 3125 int result = TC_ACT_OK; 3126 struct Qdisc *q; 3127 3128 if (unlikely(MAX_RED_LOOP < ttl++)) { 3129 if (net_ratelimit()) 3130 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 3131 skb->skb_iif, dev->ifindex); 3132 return TC_ACT_SHOT; 3133 } 3134 3135 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3136 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3137 3138 q = rxq->qdisc; 3139 if (q != &noop_qdisc) { 3140 spin_lock(qdisc_lock(q)); 3141 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3142 result = qdisc_enqueue_root(skb, q); 3143 spin_unlock(qdisc_lock(q)); 3144 } 3145 3146 return result; 3147 } 3148 3149 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3150 struct packet_type **pt_prev, 3151 int *ret, struct net_device *orig_dev) 3152 { 3153 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3154 3155 if (!rxq || rxq->qdisc == &noop_qdisc) 3156 goto out; 3157 3158 if (*pt_prev) { 3159 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3160 *pt_prev = NULL; 3161 } 3162 3163 switch (ing_filter(skb, rxq)) { 3164 case TC_ACT_SHOT: 3165 case TC_ACT_STOLEN: 3166 kfree_skb(skb); 3167 return NULL; 3168 } 3169 3170 out: 3171 skb->tc_verd = 0; 3172 return skb; 3173 } 3174 #endif 3175 3176 /** 3177 * netdev_rx_handler_register - register receive handler 3178 * @dev: device to register a handler for 3179 * @rx_handler: receive handler to register 3180 * @rx_handler_data: data pointer that is used by rx handler 3181 * 3182 * Register a receive hander for a device. This handler will then be 3183 * called from __netif_receive_skb. A negative errno code is returned 3184 * on a failure. 3185 * 3186 * The caller must hold the rtnl_mutex. 3187 * 3188 * For a general description of rx_handler, see enum rx_handler_result. 3189 */ 3190 int netdev_rx_handler_register(struct net_device *dev, 3191 rx_handler_func_t *rx_handler, 3192 void *rx_handler_data) 3193 { 3194 ASSERT_RTNL(); 3195 3196 if (dev->rx_handler) 3197 return -EBUSY; 3198 3199 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3200 rcu_assign_pointer(dev->rx_handler, rx_handler); 3201 3202 return 0; 3203 } 3204 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3205 3206 /** 3207 * netdev_rx_handler_unregister - unregister receive handler 3208 * @dev: device to unregister a handler from 3209 * 3210 * Unregister a receive hander from a device. 3211 * 3212 * The caller must hold the rtnl_mutex. 3213 */ 3214 void netdev_rx_handler_unregister(struct net_device *dev) 3215 { 3216 3217 ASSERT_RTNL(); 3218 RCU_INIT_POINTER(dev->rx_handler, NULL); 3219 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3220 } 3221 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3222 3223 static int __netif_receive_skb(struct sk_buff *skb) 3224 { 3225 struct packet_type *ptype, *pt_prev; 3226 rx_handler_func_t *rx_handler; 3227 struct net_device *orig_dev; 3228 struct net_device *null_or_dev; 3229 bool deliver_exact = false; 3230 int ret = NET_RX_DROP; 3231 __be16 type; 3232 3233 if (!netdev_tstamp_prequeue) 3234 net_timestamp_check(skb); 3235 3236 trace_netif_receive_skb(skb); 3237 3238 /* if we've gotten here through NAPI, check netpoll */ 3239 if (netpoll_receive_skb(skb)) 3240 return NET_RX_DROP; 3241 3242 if (!skb->skb_iif) 3243 skb->skb_iif = skb->dev->ifindex; 3244 orig_dev = skb->dev; 3245 3246 skb_reset_network_header(skb); 3247 skb_reset_transport_header(skb); 3248 skb_reset_mac_len(skb); 3249 3250 pt_prev = NULL; 3251 3252 rcu_read_lock(); 3253 3254 another_round: 3255 3256 __this_cpu_inc(softnet_data.processed); 3257 3258 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3259 skb = vlan_untag(skb); 3260 if (unlikely(!skb)) 3261 goto out; 3262 } 3263 3264 #ifdef CONFIG_NET_CLS_ACT 3265 if (skb->tc_verd & TC_NCLS) { 3266 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3267 goto ncls; 3268 } 3269 #endif 3270 3271 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3272 if (!ptype->dev || ptype->dev == skb->dev) { 3273 if (pt_prev) 3274 ret = deliver_skb(skb, pt_prev, orig_dev); 3275 pt_prev = ptype; 3276 } 3277 } 3278 3279 #ifdef CONFIG_NET_CLS_ACT 3280 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3281 if (!skb) 3282 goto out; 3283 ncls: 3284 #endif 3285 3286 rx_handler = rcu_dereference(skb->dev->rx_handler); 3287 if (vlan_tx_tag_present(skb)) { 3288 if (pt_prev) { 3289 ret = deliver_skb(skb, pt_prev, orig_dev); 3290 pt_prev = NULL; 3291 } 3292 if (vlan_do_receive(&skb, !rx_handler)) 3293 goto another_round; 3294 else if (unlikely(!skb)) 3295 goto out; 3296 } 3297 3298 if (rx_handler) { 3299 if (pt_prev) { 3300 ret = deliver_skb(skb, pt_prev, orig_dev); 3301 pt_prev = NULL; 3302 } 3303 switch (rx_handler(&skb)) { 3304 case RX_HANDLER_CONSUMED: 3305 goto out; 3306 case RX_HANDLER_ANOTHER: 3307 goto another_round; 3308 case RX_HANDLER_EXACT: 3309 deliver_exact = true; 3310 case RX_HANDLER_PASS: 3311 break; 3312 default: 3313 BUG(); 3314 } 3315 } 3316 3317 /* deliver only exact match when indicated */ 3318 null_or_dev = deliver_exact ? skb->dev : NULL; 3319 3320 type = skb->protocol; 3321 list_for_each_entry_rcu(ptype, 3322 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3323 if (ptype->type == type && 3324 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3325 ptype->dev == orig_dev)) { 3326 if (pt_prev) 3327 ret = deliver_skb(skb, pt_prev, orig_dev); 3328 pt_prev = ptype; 3329 } 3330 } 3331 3332 if (pt_prev) { 3333 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3334 } else { 3335 atomic_long_inc(&skb->dev->rx_dropped); 3336 kfree_skb(skb); 3337 /* Jamal, now you will not able to escape explaining 3338 * me how you were going to use this. :-) 3339 */ 3340 ret = NET_RX_DROP; 3341 } 3342 3343 out: 3344 rcu_read_unlock(); 3345 return ret; 3346 } 3347 3348 /** 3349 * netif_receive_skb - process receive buffer from network 3350 * @skb: buffer to process 3351 * 3352 * netif_receive_skb() is the main receive data processing function. 3353 * It always succeeds. The buffer may be dropped during processing 3354 * for congestion control or by the protocol layers. 3355 * 3356 * This function may only be called from softirq context and interrupts 3357 * should be enabled. 3358 * 3359 * Return values (usually ignored): 3360 * NET_RX_SUCCESS: no congestion 3361 * NET_RX_DROP: packet was dropped 3362 */ 3363 int netif_receive_skb(struct sk_buff *skb) 3364 { 3365 if (netdev_tstamp_prequeue) 3366 net_timestamp_check(skb); 3367 3368 if (skb_defer_rx_timestamp(skb)) 3369 return NET_RX_SUCCESS; 3370 3371 #ifdef CONFIG_RPS 3372 { 3373 struct rps_dev_flow voidflow, *rflow = &voidflow; 3374 int cpu, ret; 3375 3376 rcu_read_lock(); 3377 3378 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3379 3380 if (cpu >= 0) { 3381 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3382 rcu_read_unlock(); 3383 } else { 3384 rcu_read_unlock(); 3385 ret = __netif_receive_skb(skb); 3386 } 3387 3388 return ret; 3389 } 3390 #else 3391 return __netif_receive_skb(skb); 3392 #endif 3393 } 3394 EXPORT_SYMBOL(netif_receive_skb); 3395 3396 /* Network device is going away, flush any packets still pending 3397 * Called with irqs disabled. 3398 */ 3399 static void flush_backlog(void *arg) 3400 { 3401 struct net_device *dev = arg; 3402 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3403 struct sk_buff *skb, *tmp; 3404 3405 rps_lock(sd); 3406 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3407 if (skb->dev == dev) { 3408 __skb_unlink(skb, &sd->input_pkt_queue); 3409 kfree_skb(skb); 3410 input_queue_head_incr(sd); 3411 } 3412 } 3413 rps_unlock(sd); 3414 3415 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3416 if (skb->dev == dev) { 3417 __skb_unlink(skb, &sd->process_queue); 3418 kfree_skb(skb); 3419 input_queue_head_incr(sd); 3420 } 3421 } 3422 } 3423 3424 static int napi_gro_complete(struct sk_buff *skb) 3425 { 3426 struct packet_type *ptype; 3427 __be16 type = skb->protocol; 3428 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3429 int err = -ENOENT; 3430 3431 if (NAPI_GRO_CB(skb)->count == 1) { 3432 skb_shinfo(skb)->gso_size = 0; 3433 goto out; 3434 } 3435 3436 rcu_read_lock(); 3437 list_for_each_entry_rcu(ptype, head, list) { 3438 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3439 continue; 3440 3441 err = ptype->gro_complete(skb); 3442 break; 3443 } 3444 rcu_read_unlock(); 3445 3446 if (err) { 3447 WARN_ON(&ptype->list == head); 3448 kfree_skb(skb); 3449 return NET_RX_SUCCESS; 3450 } 3451 3452 out: 3453 return netif_receive_skb(skb); 3454 } 3455 3456 inline void napi_gro_flush(struct napi_struct *napi) 3457 { 3458 struct sk_buff *skb, *next; 3459 3460 for (skb = napi->gro_list; skb; skb = next) { 3461 next = skb->next; 3462 skb->next = NULL; 3463 napi_gro_complete(skb); 3464 } 3465 3466 napi->gro_count = 0; 3467 napi->gro_list = NULL; 3468 } 3469 EXPORT_SYMBOL(napi_gro_flush); 3470 3471 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3472 { 3473 struct sk_buff **pp = NULL; 3474 struct packet_type *ptype; 3475 __be16 type = skb->protocol; 3476 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3477 int same_flow; 3478 int mac_len; 3479 enum gro_result ret; 3480 3481 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3482 goto normal; 3483 3484 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3485 goto normal; 3486 3487 rcu_read_lock(); 3488 list_for_each_entry_rcu(ptype, head, list) { 3489 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3490 continue; 3491 3492 skb_set_network_header(skb, skb_gro_offset(skb)); 3493 mac_len = skb->network_header - skb->mac_header; 3494 skb->mac_len = mac_len; 3495 NAPI_GRO_CB(skb)->same_flow = 0; 3496 NAPI_GRO_CB(skb)->flush = 0; 3497 NAPI_GRO_CB(skb)->free = 0; 3498 3499 pp = ptype->gro_receive(&napi->gro_list, skb); 3500 break; 3501 } 3502 rcu_read_unlock(); 3503 3504 if (&ptype->list == head) 3505 goto normal; 3506 3507 same_flow = NAPI_GRO_CB(skb)->same_flow; 3508 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3509 3510 if (pp) { 3511 struct sk_buff *nskb = *pp; 3512 3513 *pp = nskb->next; 3514 nskb->next = NULL; 3515 napi_gro_complete(nskb); 3516 napi->gro_count--; 3517 } 3518 3519 if (same_flow) 3520 goto ok; 3521 3522 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3523 goto normal; 3524 3525 napi->gro_count++; 3526 NAPI_GRO_CB(skb)->count = 1; 3527 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3528 skb->next = napi->gro_list; 3529 napi->gro_list = skb; 3530 ret = GRO_HELD; 3531 3532 pull: 3533 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3534 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3535 3536 BUG_ON(skb->end - skb->tail < grow); 3537 3538 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3539 3540 skb->tail += grow; 3541 skb->data_len -= grow; 3542 3543 skb_shinfo(skb)->frags[0].page_offset += grow; 3544 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3545 3546 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3547 skb_frag_unref(skb, 0); 3548 memmove(skb_shinfo(skb)->frags, 3549 skb_shinfo(skb)->frags + 1, 3550 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3551 } 3552 } 3553 3554 ok: 3555 return ret; 3556 3557 normal: 3558 ret = GRO_NORMAL; 3559 goto pull; 3560 } 3561 EXPORT_SYMBOL(dev_gro_receive); 3562 3563 static inline gro_result_t 3564 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3565 { 3566 struct sk_buff *p; 3567 3568 for (p = napi->gro_list; p; p = p->next) { 3569 unsigned long diffs; 3570 3571 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3572 diffs |= p->vlan_tci ^ skb->vlan_tci; 3573 diffs |= compare_ether_header(skb_mac_header(p), 3574 skb_gro_mac_header(skb)); 3575 NAPI_GRO_CB(p)->same_flow = !diffs; 3576 NAPI_GRO_CB(p)->flush = 0; 3577 } 3578 3579 return dev_gro_receive(napi, skb); 3580 } 3581 3582 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3583 { 3584 switch (ret) { 3585 case GRO_NORMAL: 3586 if (netif_receive_skb(skb)) 3587 ret = GRO_DROP; 3588 break; 3589 3590 case GRO_DROP: 3591 case GRO_MERGED_FREE: 3592 kfree_skb(skb); 3593 break; 3594 3595 case GRO_HELD: 3596 case GRO_MERGED: 3597 break; 3598 } 3599 3600 return ret; 3601 } 3602 EXPORT_SYMBOL(napi_skb_finish); 3603 3604 void skb_gro_reset_offset(struct sk_buff *skb) 3605 { 3606 NAPI_GRO_CB(skb)->data_offset = 0; 3607 NAPI_GRO_CB(skb)->frag0 = NULL; 3608 NAPI_GRO_CB(skb)->frag0_len = 0; 3609 3610 if (skb->mac_header == skb->tail && 3611 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) { 3612 NAPI_GRO_CB(skb)->frag0 = 3613 skb_frag_address(&skb_shinfo(skb)->frags[0]); 3614 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]); 3615 } 3616 } 3617 EXPORT_SYMBOL(skb_gro_reset_offset); 3618 3619 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3620 { 3621 skb_gro_reset_offset(skb); 3622 3623 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3624 } 3625 EXPORT_SYMBOL(napi_gro_receive); 3626 3627 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3628 { 3629 __skb_pull(skb, skb_headlen(skb)); 3630 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3631 skb->vlan_tci = 0; 3632 skb->dev = napi->dev; 3633 skb->skb_iif = 0; 3634 3635 napi->skb = skb; 3636 } 3637 3638 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3639 { 3640 struct sk_buff *skb = napi->skb; 3641 3642 if (!skb) { 3643 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3644 if (skb) 3645 napi->skb = skb; 3646 } 3647 return skb; 3648 } 3649 EXPORT_SYMBOL(napi_get_frags); 3650 3651 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3652 gro_result_t ret) 3653 { 3654 switch (ret) { 3655 case GRO_NORMAL: 3656 case GRO_HELD: 3657 skb->protocol = eth_type_trans(skb, skb->dev); 3658 3659 if (ret == GRO_HELD) 3660 skb_gro_pull(skb, -ETH_HLEN); 3661 else if (netif_receive_skb(skb)) 3662 ret = GRO_DROP; 3663 break; 3664 3665 case GRO_DROP: 3666 case GRO_MERGED_FREE: 3667 napi_reuse_skb(napi, skb); 3668 break; 3669 3670 case GRO_MERGED: 3671 break; 3672 } 3673 3674 return ret; 3675 } 3676 EXPORT_SYMBOL(napi_frags_finish); 3677 3678 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3679 { 3680 struct sk_buff *skb = napi->skb; 3681 struct ethhdr *eth; 3682 unsigned int hlen; 3683 unsigned int off; 3684 3685 napi->skb = NULL; 3686 3687 skb_reset_mac_header(skb); 3688 skb_gro_reset_offset(skb); 3689 3690 off = skb_gro_offset(skb); 3691 hlen = off + sizeof(*eth); 3692 eth = skb_gro_header_fast(skb, off); 3693 if (skb_gro_header_hard(skb, hlen)) { 3694 eth = skb_gro_header_slow(skb, hlen, off); 3695 if (unlikely(!eth)) { 3696 napi_reuse_skb(napi, skb); 3697 skb = NULL; 3698 goto out; 3699 } 3700 } 3701 3702 skb_gro_pull(skb, sizeof(*eth)); 3703 3704 /* 3705 * This works because the only protocols we care about don't require 3706 * special handling. We'll fix it up properly at the end. 3707 */ 3708 skb->protocol = eth->h_proto; 3709 3710 out: 3711 return skb; 3712 } 3713 EXPORT_SYMBOL(napi_frags_skb); 3714 3715 gro_result_t napi_gro_frags(struct napi_struct *napi) 3716 { 3717 struct sk_buff *skb = napi_frags_skb(napi); 3718 3719 if (!skb) 3720 return GRO_DROP; 3721 3722 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3723 } 3724 EXPORT_SYMBOL(napi_gro_frags); 3725 3726 /* 3727 * net_rps_action sends any pending IPI's for rps. 3728 * Note: called with local irq disabled, but exits with local irq enabled. 3729 */ 3730 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3731 { 3732 #ifdef CONFIG_RPS 3733 struct softnet_data *remsd = sd->rps_ipi_list; 3734 3735 if (remsd) { 3736 sd->rps_ipi_list = NULL; 3737 3738 local_irq_enable(); 3739 3740 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3741 while (remsd) { 3742 struct softnet_data *next = remsd->rps_ipi_next; 3743 3744 if (cpu_online(remsd->cpu)) 3745 __smp_call_function_single(remsd->cpu, 3746 &remsd->csd, 0); 3747 remsd = next; 3748 } 3749 } else 3750 #endif 3751 local_irq_enable(); 3752 } 3753 3754 static int process_backlog(struct napi_struct *napi, int quota) 3755 { 3756 int work = 0; 3757 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3758 3759 #ifdef CONFIG_RPS 3760 /* Check if we have pending ipi, its better to send them now, 3761 * not waiting net_rx_action() end. 3762 */ 3763 if (sd->rps_ipi_list) { 3764 local_irq_disable(); 3765 net_rps_action_and_irq_enable(sd); 3766 } 3767 #endif 3768 napi->weight = weight_p; 3769 local_irq_disable(); 3770 while (work < quota) { 3771 struct sk_buff *skb; 3772 unsigned int qlen; 3773 3774 while ((skb = __skb_dequeue(&sd->process_queue))) { 3775 local_irq_enable(); 3776 __netif_receive_skb(skb); 3777 local_irq_disable(); 3778 input_queue_head_incr(sd); 3779 if (++work >= quota) { 3780 local_irq_enable(); 3781 return work; 3782 } 3783 } 3784 3785 rps_lock(sd); 3786 qlen = skb_queue_len(&sd->input_pkt_queue); 3787 if (qlen) 3788 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3789 &sd->process_queue); 3790 3791 if (qlen < quota - work) { 3792 /* 3793 * Inline a custom version of __napi_complete(). 3794 * only current cpu owns and manipulates this napi, 3795 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3796 * we can use a plain write instead of clear_bit(), 3797 * and we dont need an smp_mb() memory barrier. 3798 */ 3799 list_del(&napi->poll_list); 3800 napi->state = 0; 3801 3802 quota = work + qlen; 3803 } 3804 rps_unlock(sd); 3805 } 3806 local_irq_enable(); 3807 3808 return work; 3809 } 3810 3811 /** 3812 * __napi_schedule - schedule for receive 3813 * @n: entry to schedule 3814 * 3815 * The entry's receive function will be scheduled to run 3816 */ 3817 void __napi_schedule(struct napi_struct *n) 3818 { 3819 unsigned long flags; 3820 3821 local_irq_save(flags); 3822 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3823 local_irq_restore(flags); 3824 } 3825 EXPORT_SYMBOL(__napi_schedule); 3826 3827 void __napi_complete(struct napi_struct *n) 3828 { 3829 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3830 BUG_ON(n->gro_list); 3831 3832 list_del(&n->poll_list); 3833 smp_mb__before_clear_bit(); 3834 clear_bit(NAPI_STATE_SCHED, &n->state); 3835 } 3836 EXPORT_SYMBOL(__napi_complete); 3837 3838 void napi_complete(struct napi_struct *n) 3839 { 3840 unsigned long flags; 3841 3842 /* 3843 * don't let napi dequeue from the cpu poll list 3844 * just in case its running on a different cpu 3845 */ 3846 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3847 return; 3848 3849 napi_gro_flush(n); 3850 local_irq_save(flags); 3851 __napi_complete(n); 3852 local_irq_restore(flags); 3853 } 3854 EXPORT_SYMBOL(napi_complete); 3855 3856 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3857 int (*poll)(struct napi_struct *, int), int weight) 3858 { 3859 INIT_LIST_HEAD(&napi->poll_list); 3860 napi->gro_count = 0; 3861 napi->gro_list = NULL; 3862 napi->skb = NULL; 3863 napi->poll = poll; 3864 napi->weight = weight; 3865 list_add(&napi->dev_list, &dev->napi_list); 3866 napi->dev = dev; 3867 #ifdef CONFIG_NETPOLL 3868 spin_lock_init(&napi->poll_lock); 3869 napi->poll_owner = -1; 3870 #endif 3871 set_bit(NAPI_STATE_SCHED, &napi->state); 3872 } 3873 EXPORT_SYMBOL(netif_napi_add); 3874 3875 void netif_napi_del(struct napi_struct *napi) 3876 { 3877 struct sk_buff *skb, *next; 3878 3879 list_del_init(&napi->dev_list); 3880 napi_free_frags(napi); 3881 3882 for (skb = napi->gro_list; skb; skb = next) { 3883 next = skb->next; 3884 skb->next = NULL; 3885 kfree_skb(skb); 3886 } 3887 3888 napi->gro_list = NULL; 3889 napi->gro_count = 0; 3890 } 3891 EXPORT_SYMBOL(netif_napi_del); 3892 3893 static void net_rx_action(struct softirq_action *h) 3894 { 3895 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3896 unsigned long time_limit = jiffies + 2; 3897 int budget = netdev_budget; 3898 void *have; 3899 3900 local_irq_disable(); 3901 3902 while (!list_empty(&sd->poll_list)) { 3903 struct napi_struct *n; 3904 int work, weight; 3905 3906 /* If softirq window is exhuasted then punt. 3907 * Allow this to run for 2 jiffies since which will allow 3908 * an average latency of 1.5/HZ. 3909 */ 3910 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3911 goto softnet_break; 3912 3913 local_irq_enable(); 3914 3915 /* Even though interrupts have been re-enabled, this 3916 * access is safe because interrupts can only add new 3917 * entries to the tail of this list, and only ->poll() 3918 * calls can remove this head entry from the list. 3919 */ 3920 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3921 3922 have = netpoll_poll_lock(n); 3923 3924 weight = n->weight; 3925 3926 /* This NAPI_STATE_SCHED test is for avoiding a race 3927 * with netpoll's poll_napi(). Only the entity which 3928 * obtains the lock and sees NAPI_STATE_SCHED set will 3929 * actually make the ->poll() call. Therefore we avoid 3930 * accidentally calling ->poll() when NAPI is not scheduled. 3931 */ 3932 work = 0; 3933 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3934 work = n->poll(n, weight); 3935 trace_napi_poll(n); 3936 } 3937 3938 WARN_ON_ONCE(work > weight); 3939 3940 budget -= work; 3941 3942 local_irq_disable(); 3943 3944 /* Drivers must not modify the NAPI state if they 3945 * consume the entire weight. In such cases this code 3946 * still "owns" the NAPI instance and therefore can 3947 * move the instance around on the list at-will. 3948 */ 3949 if (unlikely(work == weight)) { 3950 if (unlikely(napi_disable_pending(n))) { 3951 local_irq_enable(); 3952 napi_complete(n); 3953 local_irq_disable(); 3954 } else 3955 list_move_tail(&n->poll_list, &sd->poll_list); 3956 } 3957 3958 netpoll_poll_unlock(have); 3959 } 3960 out: 3961 net_rps_action_and_irq_enable(sd); 3962 3963 #ifdef CONFIG_NET_DMA 3964 /* 3965 * There may not be any more sk_buffs coming right now, so push 3966 * any pending DMA copies to hardware 3967 */ 3968 dma_issue_pending_all(); 3969 #endif 3970 3971 return; 3972 3973 softnet_break: 3974 sd->time_squeeze++; 3975 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3976 goto out; 3977 } 3978 3979 static gifconf_func_t *gifconf_list[NPROTO]; 3980 3981 /** 3982 * register_gifconf - register a SIOCGIF handler 3983 * @family: Address family 3984 * @gifconf: Function handler 3985 * 3986 * Register protocol dependent address dumping routines. The handler 3987 * that is passed must not be freed or reused until it has been replaced 3988 * by another handler. 3989 */ 3990 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3991 { 3992 if (family >= NPROTO) 3993 return -EINVAL; 3994 gifconf_list[family] = gifconf; 3995 return 0; 3996 } 3997 EXPORT_SYMBOL(register_gifconf); 3998 3999 4000 /* 4001 * Map an interface index to its name (SIOCGIFNAME) 4002 */ 4003 4004 /* 4005 * We need this ioctl for efficient implementation of the 4006 * if_indextoname() function required by the IPv6 API. Without 4007 * it, we would have to search all the interfaces to find a 4008 * match. --pb 4009 */ 4010 4011 static int dev_ifname(struct net *net, struct ifreq __user *arg) 4012 { 4013 struct net_device *dev; 4014 struct ifreq ifr; 4015 4016 /* 4017 * Fetch the caller's info block. 4018 */ 4019 4020 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4021 return -EFAULT; 4022 4023 rcu_read_lock(); 4024 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 4025 if (!dev) { 4026 rcu_read_unlock(); 4027 return -ENODEV; 4028 } 4029 4030 strcpy(ifr.ifr_name, dev->name); 4031 rcu_read_unlock(); 4032 4033 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 4034 return -EFAULT; 4035 return 0; 4036 } 4037 4038 /* 4039 * Perform a SIOCGIFCONF call. This structure will change 4040 * size eventually, and there is nothing I can do about it. 4041 * Thus we will need a 'compatibility mode'. 4042 */ 4043 4044 static int dev_ifconf(struct net *net, char __user *arg) 4045 { 4046 struct ifconf ifc; 4047 struct net_device *dev; 4048 char __user *pos; 4049 int len; 4050 int total; 4051 int i; 4052 4053 /* 4054 * Fetch the caller's info block. 4055 */ 4056 4057 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 4058 return -EFAULT; 4059 4060 pos = ifc.ifc_buf; 4061 len = ifc.ifc_len; 4062 4063 /* 4064 * Loop over the interfaces, and write an info block for each. 4065 */ 4066 4067 total = 0; 4068 for_each_netdev(net, dev) { 4069 for (i = 0; i < NPROTO; i++) { 4070 if (gifconf_list[i]) { 4071 int done; 4072 if (!pos) 4073 done = gifconf_list[i](dev, NULL, 0); 4074 else 4075 done = gifconf_list[i](dev, pos + total, 4076 len - total); 4077 if (done < 0) 4078 return -EFAULT; 4079 total += done; 4080 } 4081 } 4082 } 4083 4084 /* 4085 * All done. Write the updated control block back to the caller. 4086 */ 4087 ifc.ifc_len = total; 4088 4089 /* 4090 * Both BSD and Solaris return 0 here, so we do too. 4091 */ 4092 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4093 } 4094 4095 #ifdef CONFIG_PROC_FS 4096 4097 #define BUCKET_SPACE (32 - NETDEV_HASHBITS) 4098 4099 struct dev_iter_state { 4100 struct seq_net_private p; 4101 unsigned int pos; /* bucket << BUCKET_SPACE + offset */ 4102 }; 4103 4104 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4105 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4106 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4107 4108 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq) 4109 { 4110 struct dev_iter_state *state = seq->private; 4111 struct net *net = seq_file_net(seq); 4112 struct net_device *dev; 4113 struct hlist_node *p; 4114 struct hlist_head *h; 4115 unsigned int count, bucket, offset; 4116 4117 bucket = get_bucket(state->pos); 4118 offset = get_offset(state->pos); 4119 h = &net->dev_name_head[bucket]; 4120 count = 0; 4121 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4122 if (count++ == offset) { 4123 state->pos = set_bucket_offset(bucket, count); 4124 return dev; 4125 } 4126 } 4127 4128 return NULL; 4129 } 4130 4131 static inline struct net_device *dev_from_new_bucket(struct seq_file *seq) 4132 { 4133 struct dev_iter_state *state = seq->private; 4134 struct net_device *dev; 4135 unsigned int bucket; 4136 4137 bucket = get_bucket(state->pos); 4138 do { 4139 dev = dev_from_same_bucket(seq); 4140 if (dev) 4141 return dev; 4142 4143 bucket++; 4144 state->pos = set_bucket_offset(bucket, 0); 4145 } while (bucket < NETDEV_HASHENTRIES); 4146 4147 return NULL; 4148 } 4149 4150 /* 4151 * This is invoked by the /proc filesystem handler to display a device 4152 * in detail. 4153 */ 4154 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4155 __acquires(RCU) 4156 { 4157 struct dev_iter_state *state = seq->private; 4158 4159 rcu_read_lock(); 4160 if (!*pos) 4161 return SEQ_START_TOKEN; 4162 4163 /* check for end of the hash */ 4164 if (state->pos == 0 && *pos > 1) 4165 return NULL; 4166 4167 return dev_from_new_bucket(seq); 4168 } 4169 4170 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4171 { 4172 struct net_device *dev; 4173 4174 ++*pos; 4175 4176 if (v == SEQ_START_TOKEN) 4177 return dev_from_new_bucket(seq); 4178 4179 dev = dev_from_same_bucket(seq); 4180 if (dev) 4181 return dev; 4182 4183 return dev_from_new_bucket(seq); 4184 } 4185 4186 void dev_seq_stop(struct seq_file *seq, void *v) 4187 __releases(RCU) 4188 { 4189 rcu_read_unlock(); 4190 } 4191 4192 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4193 { 4194 struct rtnl_link_stats64 temp; 4195 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4196 4197 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4198 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4199 dev->name, stats->rx_bytes, stats->rx_packets, 4200 stats->rx_errors, 4201 stats->rx_dropped + stats->rx_missed_errors, 4202 stats->rx_fifo_errors, 4203 stats->rx_length_errors + stats->rx_over_errors + 4204 stats->rx_crc_errors + stats->rx_frame_errors, 4205 stats->rx_compressed, stats->multicast, 4206 stats->tx_bytes, stats->tx_packets, 4207 stats->tx_errors, stats->tx_dropped, 4208 stats->tx_fifo_errors, stats->collisions, 4209 stats->tx_carrier_errors + 4210 stats->tx_aborted_errors + 4211 stats->tx_window_errors + 4212 stats->tx_heartbeat_errors, 4213 stats->tx_compressed); 4214 } 4215 4216 /* 4217 * Called from the PROCfs module. This now uses the new arbitrary sized 4218 * /proc/net interface to create /proc/net/dev 4219 */ 4220 static int dev_seq_show(struct seq_file *seq, void *v) 4221 { 4222 if (v == SEQ_START_TOKEN) 4223 seq_puts(seq, "Inter-| Receive " 4224 " | Transmit\n" 4225 " face |bytes packets errs drop fifo frame " 4226 "compressed multicast|bytes packets errs " 4227 "drop fifo colls carrier compressed\n"); 4228 else 4229 dev_seq_printf_stats(seq, v); 4230 return 0; 4231 } 4232 4233 static struct softnet_data *softnet_get_online(loff_t *pos) 4234 { 4235 struct softnet_data *sd = NULL; 4236 4237 while (*pos < nr_cpu_ids) 4238 if (cpu_online(*pos)) { 4239 sd = &per_cpu(softnet_data, *pos); 4240 break; 4241 } else 4242 ++*pos; 4243 return sd; 4244 } 4245 4246 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4247 { 4248 return softnet_get_online(pos); 4249 } 4250 4251 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4252 { 4253 ++*pos; 4254 return softnet_get_online(pos); 4255 } 4256 4257 static void softnet_seq_stop(struct seq_file *seq, void *v) 4258 { 4259 } 4260 4261 static int softnet_seq_show(struct seq_file *seq, void *v) 4262 { 4263 struct softnet_data *sd = v; 4264 4265 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4266 sd->processed, sd->dropped, sd->time_squeeze, 0, 4267 0, 0, 0, 0, /* was fastroute */ 4268 sd->cpu_collision, sd->received_rps); 4269 return 0; 4270 } 4271 4272 static const struct seq_operations dev_seq_ops = { 4273 .start = dev_seq_start, 4274 .next = dev_seq_next, 4275 .stop = dev_seq_stop, 4276 .show = dev_seq_show, 4277 }; 4278 4279 static int dev_seq_open(struct inode *inode, struct file *file) 4280 { 4281 return seq_open_net(inode, file, &dev_seq_ops, 4282 sizeof(struct dev_iter_state)); 4283 } 4284 4285 static const struct file_operations dev_seq_fops = { 4286 .owner = THIS_MODULE, 4287 .open = dev_seq_open, 4288 .read = seq_read, 4289 .llseek = seq_lseek, 4290 .release = seq_release_net, 4291 }; 4292 4293 static const struct seq_operations softnet_seq_ops = { 4294 .start = softnet_seq_start, 4295 .next = softnet_seq_next, 4296 .stop = softnet_seq_stop, 4297 .show = softnet_seq_show, 4298 }; 4299 4300 static int softnet_seq_open(struct inode *inode, struct file *file) 4301 { 4302 return seq_open(file, &softnet_seq_ops); 4303 } 4304 4305 static const struct file_operations softnet_seq_fops = { 4306 .owner = THIS_MODULE, 4307 .open = softnet_seq_open, 4308 .read = seq_read, 4309 .llseek = seq_lseek, 4310 .release = seq_release, 4311 }; 4312 4313 static void *ptype_get_idx(loff_t pos) 4314 { 4315 struct packet_type *pt = NULL; 4316 loff_t i = 0; 4317 int t; 4318 4319 list_for_each_entry_rcu(pt, &ptype_all, list) { 4320 if (i == pos) 4321 return pt; 4322 ++i; 4323 } 4324 4325 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4326 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4327 if (i == pos) 4328 return pt; 4329 ++i; 4330 } 4331 } 4332 return NULL; 4333 } 4334 4335 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4336 __acquires(RCU) 4337 { 4338 rcu_read_lock(); 4339 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4340 } 4341 4342 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4343 { 4344 struct packet_type *pt; 4345 struct list_head *nxt; 4346 int hash; 4347 4348 ++*pos; 4349 if (v == SEQ_START_TOKEN) 4350 return ptype_get_idx(0); 4351 4352 pt = v; 4353 nxt = pt->list.next; 4354 if (pt->type == htons(ETH_P_ALL)) { 4355 if (nxt != &ptype_all) 4356 goto found; 4357 hash = 0; 4358 nxt = ptype_base[0].next; 4359 } else 4360 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4361 4362 while (nxt == &ptype_base[hash]) { 4363 if (++hash >= PTYPE_HASH_SIZE) 4364 return NULL; 4365 nxt = ptype_base[hash].next; 4366 } 4367 found: 4368 return list_entry(nxt, struct packet_type, list); 4369 } 4370 4371 static void ptype_seq_stop(struct seq_file *seq, void *v) 4372 __releases(RCU) 4373 { 4374 rcu_read_unlock(); 4375 } 4376 4377 static int ptype_seq_show(struct seq_file *seq, void *v) 4378 { 4379 struct packet_type *pt = v; 4380 4381 if (v == SEQ_START_TOKEN) 4382 seq_puts(seq, "Type Device Function\n"); 4383 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4384 if (pt->type == htons(ETH_P_ALL)) 4385 seq_puts(seq, "ALL "); 4386 else 4387 seq_printf(seq, "%04x", ntohs(pt->type)); 4388 4389 seq_printf(seq, " %-8s %pF\n", 4390 pt->dev ? pt->dev->name : "", pt->func); 4391 } 4392 4393 return 0; 4394 } 4395 4396 static const struct seq_operations ptype_seq_ops = { 4397 .start = ptype_seq_start, 4398 .next = ptype_seq_next, 4399 .stop = ptype_seq_stop, 4400 .show = ptype_seq_show, 4401 }; 4402 4403 static int ptype_seq_open(struct inode *inode, struct file *file) 4404 { 4405 return seq_open_net(inode, file, &ptype_seq_ops, 4406 sizeof(struct seq_net_private)); 4407 } 4408 4409 static const struct file_operations ptype_seq_fops = { 4410 .owner = THIS_MODULE, 4411 .open = ptype_seq_open, 4412 .read = seq_read, 4413 .llseek = seq_lseek, 4414 .release = seq_release_net, 4415 }; 4416 4417 4418 static int __net_init dev_proc_net_init(struct net *net) 4419 { 4420 int rc = -ENOMEM; 4421 4422 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4423 goto out; 4424 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4425 goto out_dev; 4426 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4427 goto out_softnet; 4428 4429 if (wext_proc_init(net)) 4430 goto out_ptype; 4431 rc = 0; 4432 out: 4433 return rc; 4434 out_ptype: 4435 proc_net_remove(net, "ptype"); 4436 out_softnet: 4437 proc_net_remove(net, "softnet_stat"); 4438 out_dev: 4439 proc_net_remove(net, "dev"); 4440 goto out; 4441 } 4442 4443 static void __net_exit dev_proc_net_exit(struct net *net) 4444 { 4445 wext_proc_exit(net); 4446 4447 proc_net_remove(net, "ptype"); 4448 proc_net_remove(net, "softnet_stat"); 4449 proc_net_remove(net, "dev"); 4450 } 4451 4452 static struct pernet_operations __net_initdata dev_proc_ops = { 4453 .init = dev_proc_net_init, 4454 .exit = dev_proc_net_exit, 4455 }; 4456 4457 static int __init dev_proc_init(void) 4458 { 4459 return register_pernet_subsys(&dev_proc_ops); 4460 } 4461 #else 4462 #define dev_proc_init() 0 4463 #endif /* CONFIG_PROC_FS */ 4464 4465 4466 /** 4467 * netdev_set_master - set up master pointer 4468 * @slave: slave device 4469 * @master: new master device 4470 * 4471 * Changes the master device of the slave. Pass %NULL to break the 4472 * bonding. The caller must hold the RTNL semaphore. On a failure 4473 * a negative errno code is returned. On success the reference counts 4474 * are adjusted and the function returns zero. 4475 */ 4476 int netdev_set_master(struct net_device *slave, struct net_device *master) 4477 { 4478 struct net_device *old = slave->master; 4479 4480 ASSERT_RTNL(); 4481 4482 if (master) { 4483 if (old) 4484 return -EBUSY; 4485 dev_hold(master); 4486 } 4487 4488 slave->master = master; 4489 4490 if (old) 4491 dev_put(old); 4492 return 0; 4493 } 4494 EXPORT_SYMBOL(netdev_set_master); 4495 4496 /** 4497 * netdev_set_bond_master - set up bonding master/slave pair 4498 * @slave: slave device 4499 * @master: new master device 4500 * 4501 * Changes the master device of the slave. Pass %NULL to break the 4502 * bonding. The caller must hold the RTNL semaphore. On a failure 4503 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4504 * to the routing socket and the function returns zero. 4505 */ 4506 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4507 { 4508 int err; 4509 4510 ASSERT_RTNL(); 4511 4512 err = netdev_set_master(slave, master); 4513 if (err) 4514 return err; 4515 if (master) 4516 slave->flags |= IFF_SLAVE; 4517 else 4518 slave->flags &= ~IFF_SLAVE; 4519 4520 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4521 return 0; 4522 } 4523 EXPORT_SYMBOL(netdev_set_bond_master); 4524 4525 static void dev_change_rx_flags(struct net_device *dev, int flags) 4526 { 4527 const struct net_device_ops *ops = dev->netdev_ops; 4528 4529 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4530 ops->ndo_change_rx_flags(dev, flags); 4531 } 4532 4533 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4534 { 4535 unsigned short old_flags = dev->flags; 4536 uid_t uid; 4537 gid_t gid; 4538 4539 ASSERT_RTNL(); 4540 4541 dev->flags |= IFF_PROMISC; 4542 dev->promiscuity += inc; 4543 if (dev->promiscuity == 0) { 4544 /* 4545 * Avoid overflow. 4546 * If inc causes overflow, untouch promisc and return error. 4547 */ 4548 if (inc < 0) 4549 dev->flags &= ~IFF_PROMISC; 4550 else { 4551 dev->promiscuity -= inc; 4552 printk(KERN_WARNING "%s: promiscuity touches roof, " 4553 "set promiscuity failed, promiscuity feature " 4554 "of device might be broken.\n", dev->name); 4555 return -EOVERFLOW; 4556 } 4557 } 4558 if (dev->flags != old_flags) { 4559 printk(KERN_INFO "device %s %s promiscuous mode\n", 4560 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4561 "left"); 4562 if (audit_enabled) { 4563 current_uid_gid(&uid, &gid); 4564 audit_log(current->audit_context, GFP_ATOMIC, 4565 AUDIT_ANOM_PROMISCUOUS, 4566 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4567 dev->name, (dev->flags & IFF_PROMISC), 4568 (old_flags & IFF_PROMISC), 4569 audit_get_loginuid(current), 4570 uid, gid, 4571 audit_get_sessionid(current)); 4572 } 4573 4574 dev_change_rx_flags(dev, IFF_PROMISC); 4575 } 4576 return 0; 4577 } 4578 4579 /** 4580 * dev_set_promiscuity - update promiscuity count on a device 4581 * @dev: device 4582 * @inc: modifier 4583 * 4584 * Add or remove promiscuity from a device. While the count in the device 4585 * remains above zero the interface remains promiscuous. Once it hits zero 4586 * the device reverts back to normal filtering operation. A negative inc 4587 * value is used to drop promiscuity on the device. 4588 * Return 0 if successful or a negative errno code on error. 4589 */ 4590 int dev_set_promiscuity(struct net_device *dev, int inc) 4591 { 4592 unsigned short old_flags = dev->flags; 4593 int err; 4594 4595 err = __dev_set_promiscuity(dev, inc); 4596 if (err < 0) 4597 return err; 4598 if (dev->flags != old_flags) 4599 dev_set_rx_mode(dev); 4600 return err; 4601 } 4602 EXPORT_SYMBOL(dev_set_promiscuity); 4603 4604 /** 4605 * dev_set_allmulti - update allmulti count on a device 4606 * @dev: device 4607 * @inc: modifier 4608 * 4609 * Add or remove reception of all multicast frames to a device. While the 4610 * count in the device remains above zero the interface remains listening 4611 * to all interfaces. Once it hits zero the device reverts back to normal 4612 * filtering operation. A negative @inc value is used to drop the counter 4613 * when releasing a resource needing all multicasts. 4614 * Return 0 if successful or a negative errno code on error. 4615 */ 4616 4617 int dev_set_allmulti(struct net_device *dev, int inc) 4618 { 4619 unsigned short old_flags = dev->flags; 4620 4621 ASSERT_RTNL(); 4622 4623 dev->flags |= IFF_ALLMULTI; 4624 dev->allmulti += inc; 4625 if (dev->allmulti == 0) { 4626 /* 4627 * Avoid overflow. 4628 * If inc causes overflow, untouch allmulti and return error. 4629 */ 4630 if (inc < 0) 4631 dev->flags &= ~IFF_ALLMULTI; 4632 else { 4633 dev->allmulti -= inc; 4634 printk(KERN_WARNING "%s: allmulti touches roof, " 4635 "set allmulti failed, allmulti feature of " 4636 "device might be broken.\n", dev->name); 4637 return -EOVERFLOW; 4638 } 4639 } 4640 if (dev->flags ^ old_flags) { 4641 dev_change_rx_flags(dev, IFF_ALLMULTI); 4642 dev_set_rx_mode(dev); 4643 } 4644 return 0; 4645 } 4646 EXPORT_SYMBOL(dev_set_allmulti); 4647 4648 /* 4649 * Upload unicast and multicast address lists to device and 4650 * configure RX filtering. When the device doesn't support unicast 4651 * filtering it is put in promiscuous mode while unicast addresses 4652 * are present. 4653 */ 4654 void __dev_set_rx_mode(struct net_device *dev) 4655 { 4656 const struct net_device_ops *ops = dev->netdev_ops; 4657 4658 /* dev_open will call this function so the list will stay sane. */ 4659 if (!(dev->flags&IFF_UP)) 4660 return; 4661 4662 if (!netif_device_present(dev)) 4663 return; 4664 4665 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4666 /* Unicast addresses changes may only happen under the rtnl, 4667 * therefore calling __dev_set_promiscuity here is safe. 4668 */ 4669 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4670 __dev_set_promiscuity(dev, 1); 4671 dev->uc_promisc = true; 4672 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4673 __dev_set_promiscuity(dev, -1); 4674 dev->uc_promisc = false; 4675 } 4676 } 4677 4678 if (ops->ndo_set_rx_mode) 4679 ops->ndo_set_rx_mode(dev); 4680 } 4681 4682 void dev_set_rx_mode(struct net_device *dev) 4683 { 4684 netif_addr_lock_bh(dev); 4685 __dev_set_rx_mode(dev); 4686 netif_addr_unlock_bh(dev); 4687 } 4688 4689 /** 4690 * dev_get_flags - get flags reported to userspace 4691 * @dev: device 4692 * 4693 * Get the combination of flag bits exported through APIs to userspace. 4694 */ 4695 unsigned dev_get_flags(const struct net_device *dev) 4696 { 4697 unsigned flags; 4698 4699 flags = (dev->flags & ~(IFF_PROMISC | 4700 IFF_ALLMULTI | 4701 IFF_RUNNING | 4702 IFF_LOWER_UP | 4703 IFF_DORMANT)) | 4704 (dev->gflags & (IFF_PROMISC | 4705 IFF_ALLMULTI)); 4706 4707 if (netif_running(dev)) { 4708 if (netif_oper_up(dev)) 4709 flags |= IFF_RUNNING; 4710 if (netif_carrier_ok(dev)) 4711 flags |= IFF_LOWER_UP; 4712 if (netif_dormant(dev)) 4713 flags |= IFF_DORMANT; 4714 } 4715 4716 return flags; 4717 } 4718 EXPORT_SYMBOL(dev_get_flags); 4719 4720 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4721 { 4722 int old_flags = dev->flags; 4723 int ret; 4724 4725 ASSERT_RTNL(); 4726 4727 /* 4728 * Set the flags on our device. 4729 */ 4730 4731 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4732 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4733 IFF_AUTOMEDIA)) | 4734 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4735 IFF_ALLMULTI)); 4736 4737 /* 4738 * Load in the correct multicast list now the flags have changed. 4739 */ 4740 4741 if ((old_flags ^ flags) & IFF_MULTICAST) 4742 dev_change_rx_flags(dev, IFF_MULTICAST); 4743 4744 dev_set_rx_mode(dev); 4745 4746 /* 4747 * Have we downed the interface. We handle IFF_UP ourselves 4748 * according to user attempts to set it, rather than blindly 4749 * setting it. 4750 */ 4751 4752 ret = 0; 4753 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4754 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4755 4756 if (!ret) 4757 dev_set_rx_mode(dev); 4758 } 4759 4760 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4761 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4762 4763 dev->gflags ^= IFF_PROMISC; 4764 dev_set_promiscuity(dev, inc); 4765 } 4766 4767 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4768 is important. Some (broken) drivers set IFF_PROMISC, when 4769 IFF_ALLMULTI is requested not asking us and not reporting. 4770 */ 4771 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4772 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4773 4774 dev->gflags ^= IFF_ALLMULTI; 4775 dev_set_allmulti(dev, inc); 4776 } 4777 4778 return ret; 4779 } 4780 4781 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4782 { 4783 unsigned int changes = dev->flags ^ old_flags; 4784 4785 if (changes & IFF_UP) { 4786 if (dev->flags & IFF_UP) 4787 call_netdevice_notifiers(NETDEV_UP, dev); 4788 else 4789 call_netdevice_notifiers(NETDEV_DOWN, dev); 4790 } 4791 4792 if (dev->flags & IFF_UP && 4793 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4794 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4795 } 4796 4797 /** 4798 * dev_change_flags - change device settings 4799 * @dev: device 4800 * @flags: device state flags 4801 * 4802 * Change settings on device based state flags. The flags are 4803 * in the userspace exported format. 4804 */ 4805 int dev_change_flags(struct net_device *dev, unsigned flags) 4806 { 4807 int ret, changes; 4808 int old_flags = dev->flags; 4809 4810 ret = __dev_change_flags(dev, flags); 4811 if (ret < 0) 4812 return ret; 4813 4814 changes = old_flags ^ dev->flags; 4815 if (changes) 4816 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4817 4818 __dev_notify_flags(dev, old_flags); 4819 return ret; 4820 } 4821 EXPORT_SYMBOL(dev_change_flags); 4822 4823 /** 4824 * dev_set_mtu - Change maximum transfer unit 4825 * @dev: device 4826 * @new_mtu: new transfer unit 4827 * 4828 * Change the maximum transfer size of the network device. 4829 */ 4830 int dev_set_mtu(struct net_device *dev, int new_mtu) 4831 { 4832 const struct net_device_ops *ops = dev->netdev_ops; 4833 int err; 4834 4835 if (new_mtu == dev->mtu) 4836 return 0; 4837 4838 /* MTU must be positive. */ 4839 if (new_mtu < 0) 4840 return -EINVAL; 4841 4842 if (!netif_device_present(dev)) 4843 return -ENODEV; 4844 4845 err = 0; 4846 if (ops->ndo_change_mtu) 4847 err = ops->ndo_change_mtu(dev, new_mtu); 4848 else 4849 dev->mtu = new_mtu; 4850 4851 if (!err && dev->flags & IFF_UP) 4852 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4853 return err; 4854 } 4855 EXPORT_SYMBOL(dev_set_mtu); 4856 4857 /** 4858 * dev_set_group - Change group this device belongs to 4859 * @dev: device 4860 * @new_group: group this device should belong to 4861 */ 4862 void dev_set_group(struct net_device *dev, int new_group) 4863 { 4864 dev->group = new_group; 4865 } 4866 EXPORT_SYMBOL(dev_set_group); 4867 4868 /** 4869 * dev_set_mac_address - Change Media Access Control Address 4870 * @dev: device 4871 * @sa: new address 4872 * 4873 * Change the hardware (MAC) address of the device 4874 */ 4875 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4876 { 4877 const struct net_device_ops *ops = dev->netdev_ops; 4878 int err; 4879 4880 if (!ops->ndo_set_mac_address) 4881 return -EOPNOTSUPP; 4882 if (sa->sa_family != dev->type) 4883 return -EINVAL; 4884 if (!netif_device_present(dev)) 4885 return -ENODEV; 4886 err = ops->ndo_set_mac_address(dev, sa); 4887 if (!err) 4888 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4889 return err; 4890 } 4891 EXPORT_SYMBOL(dev_set_mac_address); 4892 4893 /* 4894 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4895 */ 4896 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4897 { 4898 int err; 4899 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4900 4901 if (!dev) 4902 return -ENODEV; 4903 4904 switch (cmd) { 4905 case SIOCGIFFLAGS: /* Get interface flags */ 4906 ifr->ifr_flags = (short) dev_get_flags(dev); 4907 return 0; 4908 4909 case SIOCGIFMETRIC: /* Get the metric on the interface 4910 (currently unused) */ 4911 ifr->ifr_metric = 0; 4912 return 0; 4913 4914 case SIOCGIFMTU: /* Get the MTU of a device */ 4915 ifr->ifr_mtu = dev->mtu; 4916 return 0; 4917 4918 case SIOCGIFHWADDR: 4919 if (!dev->addr_len) 4920 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4921 else 4922 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4923 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4924 ifr->ifr_hwaddr.sa_family = dev->type; 4925 return 0; 4926 4927 case SIOCGIFSLAVE: 4928 err = -EINVAL; 4929 break; 4930 4931 case SIOCGIFMAP: 4932 ifr->ifr_map.mem_start = dev->mem_start; 4933 ifr->ifr_map.mem_end = dev->mem_end; 4934 ifr->ifr_map.base_addr = dev->base_addr; 4935 ifr->ifr_map.irq = dev->irq; 4936 ifr->ifr_map.dma = dev->dma; 4937 ifr->ifr_map.port = dev->if_port; 4938 return 0; 4939 4940 case SIOCGIFINDEX: 4941 ifr->ifr_ifindex = dev->ifindex; 4942 return 0; 4943 4944 case SIOCGIFTXQLEN: 4945 ifr->ifr_qlen = dev->tx_queue_len; 4946 return 0; 4947 4948 default: 4949 /* dev_ioctl() should ensure this case 4950 * is never reached 4951 */ 4952 WARN_ON(1); 4953 err = -ENOTTY; 4954 break; 4955 4956 } 4957 return err; 4958 } 4959 4960 /* 4961 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4962 */ 4963 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4964 { 4965 int err; 4966 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4967 const struct net_device_ops *ops; 4968 4969 if (!dev) 4970 return -ENODEV; 4971 4972 ops = dev->netdev_ops; 4973 4974 switch (cmd) { 4975 case SIOCSIFFLAGS: /* Set interface flags */ 4976 return dev_change_flags(dev, ifr->ifr_flags); 4977 4978 case SIOCSIFMETRIC: /* Set the metric on the interface 4979 (currently unused) */ 4980 return -EOPNOTSUPP; 4981 4982 case SIOCSIFMTU: /* Set the MTU of a device */ 4983 return dev_set_mtu(dev, ifr->ifr_mtu); 4984 4985 case SIOCSIFHWADDR: 4986 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4987 4988 case SIOCSIFHWBROADCAST: 4989 if (ifr->ifr_hwaddr.sa_family != dev->type) 4990 return -EINVAL; 4991 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4992 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4993 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4994 return 0; 4995 4996 case SIOCSIFMAP: 4997 if (ops->ndo_set_config) { 4998 if (!netif_device_present(dev)) 4999 return -ENODEV; 5000 return ops->ndo_set_config(dev, &ifr->ifr_map); 5001 } 5002 return -EOPNOTSUPP; 5003 5004 case SIOCADDMULTI: 5005 if (!ops->ndo_set_rx_mode || 5006 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 5007 return -EINVAL; 5008 if (!netif_device_present(dev)) 5009 return -ENODEV; 5010 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 5011 5012 case SIOCDELMULTI: 5013 if (!ops->ndo_set_rx_mode || 5014 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 5015 return -EINVAL; 5016 if (!netif_device_present(dev)) 5017 return -ENODEV; 5018 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 5019 5020 case SIOCSIFTXQLEN: 5021 if (ifr->ifr_qlen < 0) 5022 return -EINVAL; 5023 dev->tx_queue_len = ifr->ifr_qlen; 5024 return 0; 5025 5026 case SIOCSIFNAME: 5027 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 5028 return dev_change_name(dev, ifr->ifr_newname); 5029 5030 case SIOCSHWTSTAMP: 5031 err = net_hwtstamp_validate(ifr); 5032 if (err) 5033 return err; 5034 /* fall through */ 5035 5036 /* 5037 * Unknown or private ioctl 5038 */ 5039 default: 5040 if ((cmd >= SIOCDEVPRIVATE && 5041 cmd <= SIOCDEVPRIVATE + 15) || 5042 cmd == SIOCBONDENSLAVE || 5043 cmd == SIOCBONDRELEASE || 5044 cmd == SIOCBONDSETHWADDR || 5045 cmd == SIOCBONDSLAVEINFOQUERY || 5046 cmd == SIOCBONDINFOQUERY || 5047 cmd == SIOCBONDCHANGEACTIVE || 5048 cmd == SIOCGMIIPHY || 5049 cmd == SIOCGMIIREG || 5050 cmd == SIOCSMIIREG || 5051 cmd == SIOCBRADDIF || 5052 cmd == SIOCBRDELIF || 5053 cmd == SIOCSHWTSTAMP || 5054 cmd == SIOCWANDEV) { 5055 err = -EOPNOTSUPP; 5056 if (ops->ndo_do_ioctl) { 5057 if (netif_device_present(dev)) 5058 err = ops->ndo_do_ioctl(dev, ifr, cmd); 5059 else 5060 err = -ENODEV; 5061 } 5062 } else 5063 err = -EINVAL; 5064 5065 } 5066 return err; 5067 } 5068 5069 /* 5070 * This function handles all "interface"-type I/O control requests. The actual 5071 * 'doing' part of this is dev_ifsioc above. 5072 */ 5073 5074 /** 5075 * dev_ioctl - network device ioctl 5076 * @net: the applicable net namespace 5077 * @cmd: command to issue 5078 * @arg: pointer to a struct ifreq in user space 5079 * 5080 * Issue ioctl functions to devices. This is normally called by the 5081 * user space syscall interfaces but can sometimes be useful for 5082 * other purposes. The return value is the return from the syscall if 5083 * positive or a negative errno code on error. 5084 */ 5085 5086 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 5087 { 5088 struct ifreq ifr; 5089 int ret; 5090 char *colon; 5091 5092 /* One special case: SIOCGIFCONF takes ifconf argument 5093 and requires shared lock, because it sleeps writing 5094 to user space. 5095 */ 5096 5097 if (cmd == SIOCGIFCONF) { 5098 rtnl_lock(); 5099 ret = dev_ifconf(net, (char __user *) arg); 5100 rtnl_unlock(); 5101 return ret; 5102 } 5103 if (cmd == SIOCGIFNAME) 5104 return dev_ifname(net, (struct ifreq __user *)arg); 5105 5106 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5107 return -EFAULT; 5108 5109 ifr.ifr_name[IFNAMSIZ-1] = 0; 5110 5111 colon = strchr(ifr.ifr_name, ':'); 5112 if (colon) 5113 *colon = 0; 5114 5115 /* 5116 * See which interface the caller is talking about. 5117 */ 5118 5119 switch (cmd) { 5120 /* 5121 * These ioctl calls: 5122 * - can be done by all. 5123 * - atomic and do not require locking. 5124 * - return a value 5125 */ 5126 case SIOCGIFFLAGS: 5127 case SIOCGIFMETRIC: 5128 case SIOCGIFMTU: 5129 case SIOCGIFHWADDR: 5130 case SIOCGIFSLAVE: 5131 case SIOCGIFMAP: 5132 case SIOCGIFINDEX: 5133 case SIOCGIFTXQLEN: 5134 dev_load(net, ifr.ifr_name); 5135 rcu_read_lock(); 5136 ret = dev_ifsioc_locked(net, &ifr, cmd); 5137 rcu_read_unlock(); 5138 if (!ret) { 5139 if (colon) 5140 *colon = ':'; 5141 if (copy_to_user(arg, &ifr, 5142 sizeof(struct ifreq))) 5143 ret = -EFAULT; 5144 } 5145 return ret; 5146 5147 case SIOCETHTOOL: 5148 dev_load(net, ifr.ifr_name); 5149 rtnl_lock(); 5150 ret = dev_ethtool(net, &ifr); 5151 rtnl_unlock(); 5152 if (!ret) { 5153 if (colon) 5154 *colon = ':'; 5155 if (copy_to_user(arg, &ifr, 5156 sizeof(struct ifreq))) 5157 ret = -EFAULT; 5158 } 5159 return ret; 5160 5161 /* 5162 * These ioctl calls: 5163 * - require superuser power. 5164 * - require strict serialization. 5165 * - return a value 5166 */ 5167 case SIOCGMIIPHY: 5168 case SIOCGMIIREG: 5169 case SIOCSIFNAME: 5170 if (!capable(CAP_NET_ADMIN)) 5171 return -EPERM; 5172 dev_load(net, ifr.ifr_name); 5173 rtnl_lock(); 5174 ret = dev_ifsioc(net, &ifr, cmd); 5175 rtnl_unlock(); 5176 if (!ret) { 5177 if (colon) 5178 *colon = ':'; 5179 if (copy_to_user(arg, &ifr, 5180 sizeof(struct ifreq))) 5181 ret = -EFAULT; 5182 } 5183 return ret; 5184 5185 /* 5186 * These ioctl calls: 5187 * - require superuser power. 5188 * - require strict serialization. 5189 * - do not return a value 5190 */ 5191 case SIOCSIFFLAGS: 5192 case SIOCSIFMETRIC: 5193 case SIOCSIFMTU: 5194 case SIOCSIFMAP: 5195 case SIOCSIFHWADDR: 5196 case SIOCSIFSLAVE: 5197 case SIOCADDMULTI: 5198 case SIOCDELMULTI: 5199 case SIOCSIFHWBROADCAST: 5200 case SIOCSIFTXQLEN: 5201 case SIOCSMIIREG: 5202 case SIOCBONDENSLAVE: 5203 case SIOCBONDRELEASE: 5204 case SIOCBONDSETHWADDR: 5205 case SIOCBONDCHANGEACTIVE: 5206 case SIOCBRADDIF: 5207 case SIOCBRDELIF: 5208 case SIOCSHWTSTAMP: 5209 if (!capable(CAP_NET_ADMIN)) 5210 return -EPERM; 5211 /* fall through */ 5212 case SIOCBONDSLAVEINFOQUERY: 5213 case SIOCBONDINFOQUERY: 5214 dev_load(net, ifr.ifr_name); 5215 rtnl_lock(); 5216 ret = dev_ifsioc(net, &ifr, cmd); 5217 rtnl_unlock(); 5218 return ret; 5219 5220 case SIOCGIFMEM: 5221 /* Get the per device memory space. We can add this but 5222 * currently do not support it */ 5223 case SIOCSIFMEM: 5224 /* Set the per device memory buffer space. 5225 * Not applicable in our case */ 5226 case SIOCSIFLINK: 5227 return -ENOTTY; 5228 5229 /* 5230 * Unknown or private ioctl. 5231 */ 5232 default: 5233 if (cmd == SIOCWANDEV || 5234 (cmd >= SIOCDEVPRIVATE && 5235 cmd <= SIOCDEVPRIVATE + 15)) { 5236 dev_load(net, ifr.ifr_name); 5237 rtnl_lock(); 5238 ret = dev_ifsioc(net, &ifr, cmd); 5239 rtnl_unlock(); 5240 if (!ret && copy_to_user(arg, &ifr, 5241 sizeof(struct ifreq))) 5242 ret = -EFAULT; 5243 return ret; 5244 } 5245 /* Take care of Wireless Extensions */ 5246 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5247 return wext_handle_ioctl(net, &ifr, cmd, arg); 5248 return -ENOTTY; 5249 } 5250 } 5251 5252 5253 /** 5254 * dev_new_index - allocate an ifindex 5255 * @net: the applicable net namespace 5256 * 5257 * Returns a suitable unique value for a new device interface 5258 * number. The caller must hold the rtnl semaphore or the 5259 * dev_base_lock to be sure it remains unique. 5260 */ 5261 static int dev_new_index(struct net *net) 5262 { 5263 static int ifindex; 5264 for (;;) { 5265 if (++ifindex <= 0) 5266 ifindex = 1; 5267 if (!__dev_get_by_index(net, ifindex)) 5268 return ifindex; 5269 } 5270 } 5271 5272 /* Delayed registration/unregisteration */ 5273 static LIST_HEAD(net_todo_list); 5274 5275 static void net_set_todo(struct net_device *dev) 5276 { 5277 list_add_tail(&dev->todo_list, &net_todo_list); 5278 } 5279 5280 static void rollback_registered_many(struct list_head *head) 5281 { 5282 struct net_device *dev, *tmp; 5283 5284 BUG_ON(dev_boot_phase); 5285 ASSERT_RTNL(); 5286 5287 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5288 /* Some devices call without registering 5289 * for initialization unwind. Remove those 5290 * devices and proceed with the remaining. 5291 */ 5292 if (dev->reg_state == NETREG_UNINITIALIZED) { 5293 pr_debug("unregister_netdevice: device %s/%p never " 5294 "was registered\n", dev->name, dev); 5295 5296 WARN_ON(1); 5297 list_del(&dev->unreg_list); 5298 continue; 5299 } 5300 dev->dismantle = true; 5301 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5302 } 5303 5304 /* If device is running, close it first. */ 5305 dev_close_many(head); 5306 5307 list_for_each_entry(dev, head, unreg_list) { 5308 /* And unlink it from device chain. */ 5309 unlist_netdevice(dev); 5310 5311 dev->reg_state = NETREG_UNREGISTERING; 5312 } 5313 5314 synchronize_net(); 5315 5316 list_for_each_entry(dev, head, unreg_list) { 5317 /* Shutdown queueing discipline. */ 5318 dev_shutdown(dev); 5319 5320 5321 /* Notify protocols, that we are about to destroy 5322 this device. They should clean all the things. 5323 */ 5324 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5325 5326 if (!dev->rtnl_link_ops || 5327 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5328 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5329 5330 /* 5331 * Flush the unicast and multicast chains 5332 */ 5333 dev_uc_flush(dev); 5334 dev_mc_flush(dev); 5335 5336 if (dev->netdev_ops->ndo_uninit) 5337 dev->netdev_ops->ndo_uninit(dev); 5338 5339 /* Notifier chain MUST detach us from master device. */ 5340 WARN_ON(dev->master); 5341 5342 /* Remove entries from kobject tree */ 5343 netdev_unregister_kobject(dev); 5344 } 5345 5346 /* Process any work delayed until the end of the batch */ 5347 dev = list_first_entry(head, struct net_device, unreg_list); 5348 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5349 5350 synchronize_net(); 5351 5352 list_for_each_entry(dev, head, unreg_list) 5353 dev_put(dev); 5354 } 5355 5356 static void rollback_registered(struct net_device *dev) 5357 { 5358 LIST_HEAD(single); 5359 5360 list_add(&dev->unreg_list, &single); 5361 rollback_registered_many(&single); 5362 list_del(&single); 5363 } 5364 5365 static u32 netdev_fix_features(struct net_device *dev, u32 features) 5366 { 5367 /* Fix illegal checksum combinations */ 5368 if ((features & NETIF_F_HW_CSUM) && 5369 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5370 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5371 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5372 } 5373 5374 if ((features & NETIF_F_NO_CSUM) && 5375 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5376 netdev_warn(dev, "mixed no checksumming and other settings.\n"); 5377 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5378 } 5379 5380 /* Fix illegal SG+CSUM combinations. */ 5381 if ((features & NETIF_F_SG) && 5382 !(features & NETIF_F_ALL_CSUM)) { 5383 netdev_dbg(dev, 5384 "Dropping NETIF_F_SG since no checksum feature.\n"); 5385 features &= ~NETIF_F_SG; 5386 } 5387 5388 /* TSO requires that SG is present as well. */ 5389 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5390 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5391 features &= ~NETIF_F_ALL_TSO; 5392 } 5393 5394 /* TSO ECN requires that TSO is present as well. */ 5395 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5396 features &= ~NETIF_F_TSO_ECN; 5397 5398 /* Software GSO depends on SG. */ 5399 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5400 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5401 features &= ~NETIF_F_GSO; 5402 } 5403 5404 /* UFO needs SG and checksumming */ 5405 if (features & NETIF_F_UFO) { 5406 /* maybe split UFO into V4 and V6? */ 5407 if (!((features & NETIF_F_GEN_CSUM) || 5408 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5409 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5410 netdev_dbg(dev, 5411 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5412 features &= ~NETIF_F_UFO; 5413 } 5414 5415 if (!(features & NETIF_F_SG)) { 5416 netdev_dbg(dev, 5417 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5418 features &= ~NETIF_F_UFO; 5419 } 5420 } 5421 5422 return features; 5423 } 5424 5425 int __netdev_update_features(struct net_device *dev) 5426 { 5427 u32 features; 5428 int err = 0; 5429 5430 ASSERT_RTNL(); 5431 5432 features = netdev_get_wanted_features(dev); 5433 5434 if (dev->netdev_ops->ndo_fix_features) 5435 features = dev->netdev_ops->ndo_fix_features(dev, features); 5436 5437 /* driver might be less strict about feature dependencies */ 5438 features = netdev_fix_features(dev, features); 5439 5440 if (dev->features == features) 5441 return 0; 5442 5443 netdev_dbg(dev, "Features changed: 0x%08x -> 0x%08x\n", 5444 dev->features, features); 5445 5446 if (dev->netdev_ops->ndo_set_features) 5447 err = dev->netdev_ops->ndo_set_features(dev, features); 5448 5449 if (unlikely(err < 0)) { 5450 netdev_err(dev, 5451 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n", 5452 err, features, dev->features); 5453 return -1; 5454 } 5455 5456 if (!err) 5457 dev->features = features; 5458 5459 return 1; 5460 } 5461 5462 /** 5463 * netdev_update_features - recalculate device features 5464 * @dev: the device to check 5465 * 5466 * Recalculate dev->features set and send notifications if it 5467 * has changed. Should be called after driver or hardware dependent 5468 * conditions might have changed that influence the features. 5469 */ 5470 void netdev_update_features(struct net_device *dev) 5471 { 5472 if (__netdev_update_features(dev)) 5473 netdev_features_change(dev); 5474 } 5475 EXPORT_SYMBOL(netdev_update_features); 5476 5477 /** 5478 * netdev_change_features - recalculate device features 5479 * @dev: the device to check 5480 * 5481 * Recalculate dev->features set and send notifications even 5482 * if they have not changed. Should be called instead of 5483 * netdev_update_features() if also dev->vlan_features might 5484 * have changed to allow the changes to be propagated to stacked 5485 * VLAN devices. 5486 */ 5487 void netdev_change_features(struct net_device *dev) 5488 { 5489 __netdev_update_features(dev); 5490 netdev_features_change(dev); 5491 } 5492 EXPORT_SYMBOL(netdev_change_features); 5493 5494 /** 5495 * netif_stacked_transfer_operstate - transfer operstate 5496 * @rootdev: the root or lower level device to transfer state from 5497 * @dev: the device to transfer operstate to 5498 * 5499 * Transfer operational state from root to device. This is normally 5500 * called when a stacking relationship exists between the root 5501 * device and the device(a leaf device). 5502 */ 5503 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5504 struct net_device *dev) 5505 { 5506 if (rootdev->operstate == IF_OPER_DORMANT) 5507 netif_dormant_on(dev); 5508 else 5509 netif_dormant_off(dev); 5510 5511 if (netif_carrier_ok(rootdev)) { 5512 if (!netif_carrier_ok(dev)) 5513 netif_carrier_on(dev); 5514 } else { 5515 if (netif_carrier_ok(dev)) 5516 netif_carrier_off(dev); 5517 } 5518 } 5519 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5520 5521 #ifdef CONFIG_RPS 5522 static int netif_alloc_rx_queues(struct net_device *dev) 5523 { 5524 unsigned int i, count = dev->num_rx_queues; 5525 struct netdev_rx_queue *rx; 5526 5527 BUG_ON(count < 1); 5528 5529 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5530 if (!rx) { 5531 pr_err("netdev: Unable to allocate %u rx queues.\n", count); 5532 return -ENOMEM; 5533 } 5534 dev->_rx = rx; 5535 5536 for (i = 0; i < count; i++) 5537 rx[i].dev = dev; 5538 return 0; 5539 } 5540 #endif 5541 5542 static void netdev_init_one_queue(struct net_device *dev, 5543 struct netdev_queue *queue, void *_unused) 5544 { 5545 /* Initialize queue lock */ 5546 spin_lock_init(&queue->_xmit_lock); 5547 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5548 queue->xmit_lock_owner = -1; 5549 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5550 queue->dev = dev; 5551 } 5552 5553 static int netif_alloc_netdev_queues(struct net_device *dev) 5554 { 5555 unsigned int count = dev->num_tx_queues; 5556 struct netdev_queue *tx; 5557 5558 BUG_ON(count < 1); 5559 5560 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5561 if (!tx) { 5562 pr_err("netdev: Unable to allocate %u tx queues.\n", 5563 count); 5564 return -ENOMEM; 5565 } 5566 dev->_tx = tx; 5567 5568 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5569 spin_lock_init(&dev->tx_global_lock); 5570 5571 return 0; 5572 } 5573 5574 /** 5575 * register_netdevice - register a network device 5576 * @dev: device to register 5577 * 5578 * Take a completed network device structure and add it to the kernel 5579 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5580 * chain. 0 is returned on success. A negative errno code is returned 5581 * on a failure to set up the device, or if the name is a duplicate. 5582 * 5583 * Callers must hold the rtnl semaphore. You may want 5584 * register_netdev() instead of this. 5585 * 5586 * BUGS: 5587 * The locking appears insufficient to guarantee two parallel registers 5588 * will not get the same name. 5589 */ 5590 5591 int register_netdevice(struct net_device *dev) 5592 { 5593 int ret; 5594 struct net *net = dev_net(dev); 5595 5596 BUG_ON(dev_boot_phase); 5597 ASSERT_RTNL(); 5598 5599 might_sleep(); 5600 5601 /* When net_device's are persistent, this will be fatal. */ 5602 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5603 BUG_ON(!net); 5604 5605 spin_lock_init(&dev->addr_list_lock); 5606 netdev_set_addr_lockdep_class(dev); 5607 5608 dev->iflink = -1; 5609 5610 ret = dev_get_valid_name(dev, dev->name); 5611 if (ret < 0) 5612 goto out; 5613 5614 /* Init, if this function is available */ 5615 if (dev->netdev_ops->ndo_init) { 5616 ret = dev->netdev_ops->ndo_init(dev); 5617 if (ret) { 5618 if (ret > 0) 5619 ret = -EIO; 5620 goto out; 5621 } 5622 } 5623 5624 dev->ifindex = dev_new_index(net); 5625 if (dev->iflink == -1) 5626 dev->iflink = dev->ifindex; 5627 5628 /* Transfer changeable features to wanted_features and enable 5629 * software offloads (GSO and GRO). 5630 */ 5631 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5632 dev->features |= NETIF_F_SOFT_FEATURES; 5633 dev->wanted_features = dev->features & dev->hw_features; 5634 5635 /* Turn on no cache copy if HW is doing checksum */ 5636 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5637 if ((dev->features & NETIF_F_ALL_CSUM) && 5638 !(dev->features & NETIF_F_NO_CSUM)) { 5639 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5640 dev->features |= NETIF_F_NOCACHE_COPY; 5641 } 5642 5643 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5644 */ 5645 dev->vlan_features |= NETIF_F_HIGHDMA; 5646 5647 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5648 ret = notifier_to_errno(ret); 5649 if (ret) 5650 goto err_uninit; 5651 5652 ret = netdev_register_kobject(dev); 5653 if (ret) 5654 goto err_uninit; 5655 dev->reg_state = NETREG_REGISTERED; 5656 5657 __netdev_update_features(dev); 5658 5659 /* 5660 * Default initial state at registry is that the 5661 * device is present. 5662 */ 5663 5664 set_bit(__LINK_STATE_PRESENT, &dev->state); 5665 5666 dev_init_scheduler(dev); 5667 dev_hold(dev); 5668 list_netdevice(dev); 5669 5670 /* Notify protocols, that a new device appeared. */ 5671 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5672 ret = notifier_to_errno(ret); 5673 if (ret) { 5674 rollback_registered(dev); 5675 dev->reg_state = NETREG_UNREGISTERED; 5676 } 5677 /* 5678 * Prevent userspace races by waiting until the network 5679 * device is fully setup before sending notifications. 5680 */ 5681 if (!dev->rtnl_link_ops || 5682 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5683 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5684 5685 out: 5686 return ret; 5687 5688 err_uninit: 5689 if (dev->netdev_ops->ndo_uninit) 5690 dev->netdev_ops->ndo_uninit(dev); 5691 goto out; 5692 } 5693 EXPORT_SYMBOL(register_netdevice); 5694 5695 /** 5696 * init_dummy_netdev - init a dummy network device for NAPI 5697 * @dev: device to init 5698 * 5699 * This takes a network device structure and initialize the minimum 5700 * amount of fields so it can be used to schedule NAPI polls without 5701 * registering a full blown interface. This is to be used by drivers 5702 * that need to tie several hardware interfaces to a single NAPI 5703 * poll scheduler due to HW limitations. 5704 */ 5705 int init_dummy_netdev(struct net_device *dev) 5706 { 5707 /* Clear everything. Note we don't initialize spinlocks 5708 * are they aren't supposed to be taken by any of the 5709 * NAPI code and this dummy netdev is supposed to be 5710 * only ever used for NAPI polls 5711 */ 5712 memset(dev, 0, sizeof(struct net_device)); 5713 5714 /* make sure we BUG if trying to hit standard 5715 * register/unregister code path 5716 */ 5717 dev->reg_state = NETREG_DUMMY; 5718 5719 /* NAPI wants this */ 5720 INIT_LIST_HEAD(&dev->napi_list); 5721 5722 /* a dummy interface is started by default */ 5723 set_bit(__LINK_STATE_PRESENT, &dev->state); 5724 set_bit(__LINK_STATE_START, &dev->state); 5725 5726 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5727 * because users of this 'device' dont need to change 5728 * its refcount. 5729 */ 5730 5731 return 0; 5732 } 5733 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5734 5735 5736 /** 5737 * register_netdev - register a network device 5738 * @dev: device to register 5739 * 5740 * Take a completed network device structure and add it to the kernel 5741 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5742 * chain. 0 is returned on success. A negative errno code is returned 5743 * on a failure to set up the device, or if the name is a duplicate. 5744 * 5745 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5746 * and expands the device name if you passed a format string to 5747 * alloc_netdev. 5748 */ 5749 int register_netdev(struct net_device *dev) 5750 { 5751 int err; 5752 5753 rtnl_lock(); 5754 err = register_netdevice(dev); 5755 rtnl_unlock(); 5756 return err; 5757 } 5758 EXPORT_SYMBOL(register_netdev); 5759 5760 int netdev_refcnt_read(const struct net_device *dev) 5761 { 5762 int i, refcnt = 0; 5763 5764 for_each_possible_cpu(i) 5765 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5766 return refcnt; 5767 } 5768 EXPORT_SYMBOL(netdev_refcnt_read); 5769 5770 /* 5771 * netdev_wait_allrefs - wait until all references are gone. 5772 * 5773 * This is called when unregistering network devices. 5774 * 5775 * Any protocol or device that holds a reference should register 5776 * for netdevice notification, and cleanup and put back the 5777 * reference if they receive an UNREGISTER event. 5778 * We can get stuck here if buggy protocols don't correctly 5779 * call dev_put. 5780 */ 5781 static void netdev_wait_allrefs(struct net_device *dev) 5782 { 5783 unsigned long rebroadcast_time, warning_time; 5784 int refcnt; 5785 5786 linkwatch_forget_dev(dev); 5787 5788 rebroadcast_time = warning_time = jiffies; 5789 refcnt = netdev_refcnt_read(dev); 5790 5791 while (refcnt != 0) { 5792 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5793 rtnl_lock(); 5794 5795 /* Rebroadcast unregister notification */ 5796 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5797 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5798 * should have already handle it the first time */ 5799 5800 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5801 &dev->state)) { 5802 /* We must not have linkwatch events 5803 * pending on unregister. If this 5804 * happens, we simply run the queue 5805 * unscheduled, resulting in a noop 5806 * for this device. 5807 */ 5808 linkwatch_run_queue(); 5809 } 5810 5811 __rtnl_unlock(); 5812 5813 rebroadcast_time = jiffies; 5814 } 5815 5816 msleep(250); 5817 5818 refcnt = netdev_refcnt_read(dev); 5819 5820 if (time_after(jiffies, warning_time + 10 * HZ)) { 5821 printk(KERN_EMERG "unregister_netdevice: " 5822 "waiting for %s to become free. Usage " 5823 "count = %d\n", 5824 dev->name, refcnt); 5825 warning_time = jiffies; 5826 } 5827 } 5828 } 5829 5830 /* The sequence is: 5831 * 5832 * rtnl_lock(); 5833 * ... 5834 * register_netdevice(x1); 5835 * register_netdevice(x2); 5836 * ... 5837 * unregister_netdevice(y1); 5838 * unregister_netdevice(y2); 5839 * ... 5840 * rtnl_unlock(); 5841 * free_netdev(y1); 5842 * free_netdev(y2); 5843 * 5844 * We are invoked by rtnl_unlock(). 5845 * This allows us to deal with problems: 5846 * 1) We can delete sysfs objects which invoke hotplug 5847 * without deadlocking with linkwatch via keventd. 5848 * 2) Since we run with the RTNL semaphore not held, we can sleep 5849 * safely in order to wait for the netdev refcnt to drop to zero. 5850 * 5851 * We must not return until all unregister events added during 5852 * the interval the lock was held have been completed. 5853 */ 5854 void netdev_run_todo(void) 5855 { 5856 struct list_head list; 5857 5858 /* Snapshot list, allow later requests */ 5859 list_replace_init(&net_todo_list, &list); 5860 5861 __rtnl_unlock(); 5862 5863 /* Wait for rcu callbacks to finish before attempting to drain 5864 * the device list. This usually avoids a 250ms wait. 5865 */ 5866 if (!list_empty(&list)) 5867 rcu_barrier(); 5868 5869 while (!list_empty(&list)) { 5870 struct net_device *dev 5871 = list_first_entry(&list, struct net_device, todo_list); 5872 list_del(&dev->todo_list); 5873 5874 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5875 printk(KERN_ERR "network todo '%s' but state %d\n", 5876 dev->name, dev->reg_state); 5877 dump_stack(); 5878 continue; 5879 } 5880 5881 dev->reg_state = NETREG_UNREGISTERED; 5882 5883 on_each_cpu(flush_backlog, dev, 1); 5884 5885 netdev_wait_allrefs(dev); 5886 5887 /* paranoia */ 5888 BUG_ON(netdev_refcnt_read(dev)); 5889 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5890 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5891 WARN_ON(dev->dn_ptr); 5892 5893 if (dev->destructor) 5894 dev->destructor(dev); 5895 5896 /* Free network device */ 5897 kobject_put(&dev->dev.kobj); 5898 } 5899 } 5900 5901 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5902 * fields in the same order, with only the type differing. 5903 */ 5904 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5905 const struct net_device_stats *netdev_stats) 5906 { 5907 #if BITS_PER_LONG == 64 5908 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5909 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5910 #else 5911 size_t i, n = sizeof(*stats64) / sizeof(u64); 5912 const unsigned long *src = (const unsigned long *)netdev_stats; 5913 u64 *dst = (u64 *)stats64; 5914 5915 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5916 sizeof(*stats64) / sizeof(u64)); 5917 for (i = 0; i < n; i++) 5918 dst[i] = src[i]; 5919 #endif 5920 } 5921 5922 /** 5923 * dev_get_stats - get network device statistics 5924 * @dev: device to get statistics from 5925 * @storage: place to store stats 5926 * 5927 * Get network statistics from device. Return @storage. 5928 * The device driver may provide its own method by setting 5929 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5930 * otherwise the internal statistics structure is used. 5931 */ 5932 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5933 struct rtnl_link_stats64 *storage) 5934 { 5935 const struct net_device_ops *ops = dev->netdev_ops; 5936 5937 if (ops->ndo_get_stats64) { 5938 memset(storage, 0, sizeof(*storage)); 5939 ops->ndo_get_stats64(dev, storage); 5940 } else if (ops->ndo_get_stats) { 5941 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5942 } else { 5943 netdev_stats_to_stats64(storage, &dev->stats); 5944 } 5945 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5946 return storage; 5947 } 5948 EXPORT_SYMBOL(dev_get_stats); 5949 5950 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5951 { 5952 struct netdev_queue *queue = dev_ingress_queue(dev); 5953 5954 #ifdef CONFIG_NET_CLS_ACT 5955 if (queue) 5956 return queue; 5957 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5958 if (!queue) 5959 return NULL; 5960 netdev_init_one_queue(dev, queue, NULL); 5961 queue->qdisc = &noop_qdisc; 5962 queue->qdisc_sleeping = &noop_qdisc; 5963 rcu_assign_pointer(dev->ingress_queue, queue); 5964 #endif 5965 return queue; 5966 } 5967 5968 /** 5969 * alloc_netdev_mqs - allocate network device 5970 * @sizeof_priv: size of private data to allocate space for 5971 * @name: device name format string 5972 * @setup: callback to initialize device 5973 * @txqs: the number of TX subqueues to allocate 5974 * @rxqs: the number of RX subqueues to allocate 5975 * 5976 * Allocates a struct net_device with private data area for driver use 5977 * and performs basic initialization. Also allocates subquue structs 5978 * for each queue on the device. 5979 */ 5980 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5981 void (*setup)(struct net_device *), 5982 unsigned int txqs, unsigned int rxqs) 5983 { 5984 struct net_device *dev; 5985 size_t alloc_size; 5986 struct net_device *p; 5987 5988 BUG_ON(strlen(name) >= sizeof(dev->name)); 5989 5990 if (txqs < 1) { 5991 pr_err("alloc_netdev: Unable to allocate device " 5992 "with zero queues.\n"); 5993 return NULL; 5994 } 5995 5996 #ifdef CONFIG_RPS 5997 if (rxqs < 1) { 5998 pr_err("alloc_netdev: Unable to allocate device " 5999 "with zero RX queues.\n"); 6000 return NULL; 6001 } 6002 #endif 6003 6004 alloc_size = sizeof(struct net_device); 6005 if (sizeof_priv) { 6006 /* ensure 32-byte alignment of private area */ 6007 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6008 alloc_size += sizeof_priv; 6009 } 6010 /* ensure 32-byte alignment of whole construct */ 6011 alloc_size += NETDEV_ALIGN - 1; 6012 6013 p = kzalloc(alloc_size, GFP_KERNEL); 6014 if (!p) { 6015 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 6016 return NULL; 6017 } 6018 6019 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6020 dev->padded = (char *)dev - (char *)p; 6021 6022 dev->pcpu_refcnt = alloc_percpu(int); 6023 if (!dev->pcpu_refcnt) 6024 goto free_p; 6025 6026 if (dev_addr_init(dev)) 6027 goto free_pcpu; 6028 6029 dev_mc_init(dev); 6030 dev_uc_init(dev); 6031 6032 dev_net_set(dev, &init_net); 6033 6034 dev->gso_max_size = GSO_MAX_SIZE; 6035 6036 INIT_LIST_HEAD(&dev->napi_list); 6037 INIT_LIST_HEAD(&dev->unreg_list); 6038 INIT_LIST_HEAD(&dev->link_watch_list); 6039 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6040 setup(dev); 6041 6042 dev->num_tx_queues = txqs; 6043 dev->real_num_tx_queues = txqs; 6044 if (netif_alloc_netdev_queues(dev)) 6045 goto free_all; 6046 6047 #ifdef CONFIG_RPS 6048 dev->num_rx_queues = rxqs; 6049 dev->real_num_rx_queues = rxqs; 6050 if (netif_alloc_rx_queues(dev)) 6051 goto free_all; 6052 #endif 6053 6054 strcpy(dev->name, name); 6055 dev->group = INIT_NETDEV_GROUP; 6056 return dev; 6057 6058 free_all: 6059 free_netdev(dev); 6060 return NULL; 6061 6062 free_pcpu: 6063 free_percpu(dev->pcpu_refcnt); 6064 kfree(dev->_tx); 6065 #ifdef CONFIG_RPS 6066 kfree(dev->_rx); 6067 #endif 6068 6069 free_p: 6070 kfree(p); 6071 return NULL; 6072 } 6073 EXPORT_SYMBOL(alloc_netdev_mqs); 6074 6075 /** 6076 * free_netdev - free network device 6077 * @dev: device 6078 * 6079 * This function does the last stage of destroying an allocated device 6080 * interface. The reference to the device object is released. 6081 * If this is the last reference then it will be freed. 6082 */ 6083 void free_netdev(struct net_device *dev) 6084 { 6085 struct napi_struct *p, *n; 6086 6087 release_net(dev_net(dev)); 6088 6089 kfree(dev->_tx); 6090 #ifdef CONFIG_RPS 6091 kfree(dev->_rx); 6092 #endif 6093 6094 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6095 6096 /* Flush device addresses */ 6097 dev_addr_flush(dev); 6098 6099 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6100 netif_napi_del(p); 6101 6102 free_percpu(dev->pcpu_refcnt); 6103 dev->pcpu_refcnt = NULL; 6104 6105 /* Compatibility with error handling in drivers */ 6106 if (dev->reg_state == NETREG_UNINITIALIZED) { 6107 kfree((char *)dev - dev->padded); 6108 return; 6109 } 6110 6111 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6112 dev->reg_state = NETREG_RELEASED; 6113 6114 /* will free via device release */ 6115 put_device(&dev->dev); 6116 } 6117 EXPORT_SYMBOL(free_netdev); 6118 6119 /** 6120 * synchronize_net - Synchronize with packet receive processing 6121 * 6122 * Wait for packets currently being received to be done. 6123 * Does not block later packets from starting. 6124 */ 6125 void synchronize_net(void) 6126 { 6127 might_sleep(); 6128 if (rtnl_is_locked()) 6129 synchronize_rcu_expedited(); 6130 else 6131 synchronize_rcu(); 6132 } 6133 EXPORT_SYMBOL(synchronize_net); 6134 6135 /** 6136 * unregister_netdevice_queue - remove device from the kernel 6137 * @dev: device 6138 * @head: list 6139 * 6140 * This function shuts down a device interface and removes it 6141 * from the kernel tables. 6142 * If head not NULL, device is queued to be unregistered later. 6143 * 6144 * Callers must hold the rtnl semaphore. You may want 6145 * unregister_netdev() instead of this. 6146 */ 6147 6148 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6149 { 6150 ASSERT_RTNL(); 6151 6152 if (head) { 6153 list_move_tail(&dev->unreg_list, head); 6154 } else { 6155 rollback_registered(dev); 6156 /* Finish processing unregister after unlock */ 6157 net_set_todo(dev); 6158 } 6159 } 6160 EXPORT_SYMBOL(unregister_netdevice_queue); 6161 6162 /** 6163 * unregister_netdevice_many - unregister many devices 6164 * @head: list of devices 6165 */ 6166 void unregister_netdevice_many(struct list_head *head) 6167 { 6168 struct net_device *dev; 6169 6170 if (!list_empty(head)) { 6171 rollback_registered_many(head); 6172 list_for_each_entry(dev, head, unreg_list) 6173 net_set_todo(dev); 6174 } 6175 } 6176 EXPORT_SYMBOL(unregister_netdevice_many); 6177 6178 /** 6179 * unregister_netdev - remove device from the kernel 6180 * @dev: device 6181 * 6182 * This function shuts down a device interface and removes it 6183 * from the kernel tables. 6184 * 6185 * This is just a wrapper for unregister_netdevice that takes 6186 * the rtnl semaphore. In general you want to use this and not 6187 * unregister_netdevice. 6188 */ 6189 void unregister_netdev(struct net_device *dev) 6190 { 6191 rtnl_lock(); 6192 unregister_netdevice(dev); 6193 rtnl_unlock(); 6194 } 6195 EXPORT_SYMBOL(unregister_netdev); 6196 6197 /** 6198 * dev_change_net_namespace - move device to different nethost namespace 6199 * @dev: device 6200 * @net: network namespace 6201 * @pat: If not NULL name pattern to try if the current device name 6202 * is already taken in the destination network namespace. 6203 * 6204 * This function shuts down a device interface and moves it 6205 * to a new network namespace. On success 0 is returned, on 6206 * a failure a netagive errno code is returned. 6207 * 6208 * Callers must hold the rtnl semaphore. 6209 */ 6210 6211 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6212 { 6213 int err; 6214 6215 ASSERT_RTNL(); 6216 6217 /* Don't allow namespace local devices to be moved. */ 6218 err = -EINVAL; 6219 if (dev->features & NETIF_F_NETNS_LOCAL) 6220 goto out; 6221 6222 /* Ensure the device has been registrered */ 6223 err = -EINVAL; 6224 if (dev->reg_state != NETREG_REGISTERED) 6225 goto out; 6226 6227 /* Get out if there is nothing todo */ 6228 err = 0; 6229 if (net_eq(dev_net(dev), net)) 6230 goto out; 6231 6232 /* Pick the destination device name, and ensure 6233 * we can use it in the destination network namespace. 6234 */ 6235 err = -EEXIST; 6236 if (__dev_get_by_name(net, dev->name)) { 6237 /* We get here if we can't use the current device name */ 6238 if (!pat) 6239 goto out; 6240 if (dev_get_valid_name(dev, pat) < 0) 6241 goto out; 6242 } 6243 6244 /* 6245 * And now a mini version of register_netdevice unregister_netdevice. 6246 */ 6247 6248 /* If device is running close it first. */ 6249 dev_close(dev); 6250 6251 /* And unlink it from device chain */ 6252 err = -ENODEV; 6253 unlist_netdevice(dev); 6254 6255 synchronize_net(); 6256 6257 /* Shutdown queueing discipline. */ 6258 dev_shutdown(dev); 6259 6260 /* Notify protocols, that we are about to destroy 6261 this device. They should clean all the things. 6262 6263 Note that dev->reg_state stays at NETREG_REGISTERED. 6264 This is wanted because this way 8021q and macvlan know 6265 the device is just moving and can keep their slaves up. 6266 */ 6267 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6268 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6269 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6270 6271 /* 6272 * Flush the unicast and multicast chains 6273 */ 6274 dev_uc_flush(dev); 6275 dev_mc_flush(dev); 6276 6277 /* Actually switch the network namespace */ 6278 dev_net_set(dev, net); 6279 6280 /* If there is an ifindex conflict assign a new one */ 6281 if (__dev_get_by_index(net, dev->ifindex)) { 6282 int iflink = (dev->iflink == dev->ifindex); 6283 dev->ifindex = dev_new_index(net); 6284 if (iflink) 6285 dev->iflink = dev->ifindex; 6286 } 6287 6288 /* Fixup kobjects */ 6289 err = device_rename(&dev->dev, dev->name); 6290 WARN_ON(err); 6291 6292 /* Add the device back in the hashes */ 6293 list_netdevice(dev); 6294 6295 /* Notify protocols, that a new device appeared. */ 6296 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6297 6298 /* 6299 * Prevent userspace races by waiting until the network 6300 * device is fully setup before sending notifications. 6301 */ 6302 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6303 6304 synchronize_net(); 6305 err = 0; 6306 out: 6307 return err; 6308 } 6309 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6310 6311 static int dev_cpu_callback(struct notifier_block *nfb, 6312 unsigned long action, 6313 void *ocpu) 6314 { 6315 struct sk_buff **list_skb; 6316 struct sk_buff *skb; 6317 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6318 struct softnet_data *sd, *oldsd; 6319 6320 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6321 return NOTIFY_OK; 6322 6323 local_irq_disable(); 6324 cpu = smp_processor_id(); 6325 sd = &per_cpu(softnet_data, cpu); 6326 oldsd = &per_cpu(softnet_data, oldcpu); 6327 6328 /* Find end of our completion_queue. */ 6329 list_skb = &sd->completion_queue; 6330 while (*list_skb) 6331 list_skb = &(*list_skb)->next; 6332 /* Append completion queue from offline CPU. */ 6333 *list_skb = oldsd->completion_queue; 6334 oldsd->completion_queue = NULL; 6335 6336 /* Append output queue from offline CPU. */ 6337 if (oldsd->output_queue) { 6338 *sd->output_queue_tailp = oldsd->output_queue; 6339 sd->output_queue_tailp = oldsd->output_queue_tailp; 6340 oldsd->output_queue = NULL; 6341 oldsd->output_queue_tailp = &oldsd->output_queue; 6342 } 6343 /* Append NAPI poll list from offline CPU. */ 6344 if (!list_empty(&oldsd->poll_list)) { 6345 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6346 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6347 } 6348 6349 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6350 local_irq_enable(); 6351 6352 /* Process offline CPU's input_pkt_queue */ 6353 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6354 netif_rx(skb); 6355 input_queue_head_incr(oldsd); 6356 } 6357 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6358 netif_rx(skb); 6359 input_queue_head_incr(oldsd); 6360 } 6361 6362 return NOTIFY_OK; 6363 } 6364 6365 6366 /** 6367 * netdev_increment_features - increment feature set by one 6368 * @all: current feature set 6369 * @one: new feature set 6370 * @mask: mask feature set 6371 * 6372 * Computes a new feature set after adding a device with feature set 6373 * @one to the master device with current feature set @all. Will not 6374 * enable anything that is off in @mask. Returns the new feature set. 6375 */ 6376 u32 netdev_increment_features(u32 all, u32 one, u32 mask) 6377 { 6378 if (mask & NETIF_F_GEN_CSUM) 6379 mask |= NETIF_F_ALL_CSUM; 6380 mask |= NETIF_F_VLAN_CHALLENGED; 6381 6382 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6383 all &= one | ~NETIF_F_ALL_FOR_ALL; 6384 6385 /* If device needs checksumming, downgrade to it. */ 6386 if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM)) 6387 all &= ~NETIF_F_NO_CSUM; 6388 6389 /* If one device supports hw checksumming, set for all. */ 6390 if (all & NETIF_F_GEN_CSUM) 6391 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6392 6393 return all; 6394 } 6395 EXPORT_SYMBOL(netdev_increment_features); 6396 6397 static struct hlist_head *netdev_create_hash(void) 6398 { 6399 int i; 6400 struct hlist_head *hash; 6401 6402 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6403 if (hash != NULL) 6404 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6405 INIT_HLIST_HEAD(&hash[i]); 6406 6407 return hash; 6408 } 6409 6410 /* Initialize per network namespace state */ 6411 static int __net_init netdev_init(struct net *net) 6412 { 6413 INIT_LIST_HEAD(&net->dev_base_head); 6414 6415 net->dev_name_head = netdev_create_hash(); 6416 if (net->dev_name_head == NULL) 6417 goto err_name; 6418 6419 net->dev_index_head = netdev_create_hash(); 6420 if (net->dev_index_head == NULL) 6421 goto err_idx; 6422 6423 return 0; 6424 6425 err_idx: 6426 kfree(net->dev_name_head); 6427 err_name: 6428 return -ENOMEM; 6429 } 6430 6431 /** 6432 * netdev_drivername - network driver for the device 6433 * @dev: network device 6434 * 6435 * Determine network driver for device. 6436 */ 6437 const char *netdev_drivername(const struct net_device *dev) 6438 { 6439 const struct device_driver *driver; 6440 const struct device *parent; 6441 const char *empty = ""; 6442 6443 parent = dev->dev.parent; 6444 if (!parent) 6445 return empty; 6446 6447 driver = parent->driver; 6448 if (driver && driver->name) 6449 return driver->name; 6450 return empty; 6451 } 6452 6453 int __netdev_printk(const char *level, const struct net_device *dev, 6454 struct va_format *vaf) 6455 { 6456 int r; 6457 6458 if (dev && dev->dev.parent) 6459 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6460 netdev_name(dev), vaf); 6461 else if (dev) 6462 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6463 else 6464 r = printk("%s(NULL net_device): %pV", level, vaf); 6465 6466 return r; 6467 } 6468 EXPORT_SYMBOL(__netdev_printk); 6469 6470 int netdev_printk(const char *level, const struct net_device *dev, 6471 const char *format, ...) 6472 { 6473 struct va_format vaf; 6474 va_list args; 6475 int r; 6476 6477 va_start(args, format); 6478 6479 vaf.fmt = format; 6480 vaf.va = &args; 6481 6482 r = __netdev_printk(level, dev, &vaf); 6483 va_end(args); 6484 6485 return r; 6486 } 6487 EXPORT_SYMBOL(netdev_printk); 6488 6489 #define define_netdev_printk_level(func, level) \ 6490 int func(const struct net_device *dev, const char *fmt, ...) \ 6491 { \ 6492 int r; \ 6493 struct va_format vaf; \ 6494 va_list args; \ 6495 \ 6496 va_start(args, fmt); \ 6497 \ 6498 vaf.fmt = fmt; \ 6499 vaf.va = &args; \ 6500 \ 6501 r = __netdev_printk(level, dev, &vaf); \ 6502 va_end(args); \ 6503 \ 6504 return r; \ 6505 } \ 6506 EXPORT_SYMBOL(func); 6507 6508 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6509 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6510 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6511 define_netdev_printk_level(netdev_err, KERN_ERR); 6512 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6513 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6514 define_netdev_printk_level(netdev_info, KERN_INFO); 6515 6516 static void __net_exit netdev_exit(struct net *net) 6517 { 6518 kfree(net->dev_name_head); 6519 kfree(net->dev_index_head); 6520 } 6521 6522 static struct pernet_operations __net_initdata netdev_net_ops = { 6523 .init = netdev_init, 6524 .exit = netdev_exit, 6525 }; 6526 6527 static void __net_exit default_device_exit(struct net *net) 6528 { 6529 struct net_device *dev, *aux; 6530 /* 6531 * Push all migratable network devices back to the 6532 * initial network namespace 6533 */ 6534 rtnl_lock(); 6535 for_each_netdev_safe(net, dev, aux) { 6536 int err; 6537 char fb_name[IFNAMSIZ]; 6538 6539 /* Ignore unmoveable devices (i.e. loopback) */ 6540 if (dev->features & NETIF_F_NETNS_LOCAL) 6541 continue; 6542 6543 /* Leave virtual devices for the generic cleanup */ 6544 if (dev->rtnl_link_ops) 6545 continue; 6546 6547 /* Push remaining network devices to init_net */ 6548 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6549 err = dev_change_net_namespace(dev, &init_net, fb_name); 6550 if (err) { 6551 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 6552 __func__, dev->name, err); 6553 BUG(); 6554 } 6555 } 6556 rtnl_unlock(); 6557 } 6558 6559 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6560 { 6561 /* At exit all network devices most be removed from a network 6562 * namespace. Do this in the reverse order of registration. 6563 * Do this across as many network namespaces as possible to 6564 * improve batching efficiency. 6565 */ 6566 struct net_device *dev; 6567 struct net *net; 6568 LIST_HEAD(dev_kill_list); 6569 6570 rtnl_lock(); 6571 list_for_each_entry(net, net_list, exit_list) { 6572 for_each_netdev_reverse(net, dev) { 6573 if (dev->rtnl_link_ops) 6574 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6575 else 6576 unregister_netdevice_queue(dev, &dev_kill_list); 6577 } 6578 } 6579 unregister_netdevice_many(&dev_kill_list); 6580 list_del(&dev_kill_list); 6581 rtnl_unlock(); 6582 } 6583 6584 static struct pernet_operations __net_initdata default_device_ops = { 6585 .exit = default_device_exit, 6586 .exit_batch = default_device_exit_batch, 6587 }; 6588 6589 /* 6590 * Initialize the DEV module. At boot time this walks the device list and 6591 * unhooks any devices that fail to initialise (normally hardware not 6592 * present) and leaves us with a valid list of present and active devices. 6593 * 6594 */ 6595 6596 /* 6597 * This is called single threaded during boot, so no need 6598 * to take the rtnl semaphore. 6599 */ 6600 static int __init net_dev_init(void) 6601 { 6602 int i, rc = -ENOMEM; 6603 6604 BUG_ON(!dev_boot_phase); 6605 6606 if (dev_proc_init()) 6607 goto out; 6608 6609 if (netdev_kobject_init()) 6610 goto out; 6611 6612 INIT_LIST_HEAD(&ptype_all); 6613 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6614 INIT_LIST_HEAD(&ptype_base[i]); 6615 6616 if (register_pernet_subsys(&netdev_net_ops)) 6617 goto out; 6618 6619 /* 6620 * Initialise the packet receive queues. 6621 */ 6622 6623 for_each_possible_cpu(i) { 6624 struct softnet_data *sd = &per_cpu(softnet_data, i); 6625 6626 memset(sd, 0, sizeof(*sd)); 6627 skb_queue_head_init(&sd->input_pkt_queue); 6628 skb_queue_head_init(&sd->process_queue); 6629 sd->completion_queue = NULL; 6630 INIT_LIST_HEAD(&sd->poll_list); 6631 sd->output_queue = NULL; 6632 sd->output_queue_tailp = &sd->output_queue; 6633 #ifdef CONFIG_RPS 6634 sd->csd.func = rps_trigger_softirq; 6635 sd->csd.info = sd; 6636 sd->csd.flags = 0; 6637 sd->cpu = i; 6638 #endif 6639 6640 sd->backlog.poll = process_backlog; 6641 sd->backlog.weight = weight_p; 6642 sd->backlog.gro_list = NULL; 6643 sd->backlog.gro_count = 0; 6644 } 6645 6646 dev_boot_phase = 0; 6647 6648 /* The loopback device is special if any other network devices 6649 * is present in a network namespace the loopback device must 6650 * be present. Since we now dynamically allocate and free the 6651 * loopback device ensure this invariant is maintained by 6652 * keeping the loopback device as the first device on the 6653 * list of network devices. Ensuring the loopback devices 6654 * is the first device that appears and the last network device 6655 * that disappears. 6656 */ 6657 if (register_pernet_device(&loopback_net_ops)) 6658 goto out; 6659 6660 if (register_pernet_device(&default_device_ops)) 6661 goto out; 6662 6663 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6664 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6665 6666 hotcpu_notifier(dev_cpu_callback, 0); 6667 dst_init(); 6668 dev_mcast_init(); 6669 rc = 0; 6670 out: 6671 return rc; 6672 } 6673 6674 subsys_initcall(net_dev_init); 6675 6676 static int __init initialize_hashrnd(void) 6677 { 6678 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6679 return 0; 6680 } 6681 6682 late_initcall_sync(initialize_hashrnd); 6683 6684