xref: /linux/net/core/dev.c (revision f26b118031205135c23b43a311712fe8f34febf9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 
157 #include "dev.h"
158 #include "net-sysfs.h"
159 
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	netdev_name_node_del(name_node);
349 	kfree(name_node->name);
350 	netdev_name_node_free(name_node);
351 }
352 
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355 	struct netdev_name_node *name_node;
356 	struct net *net = dev_net(dev);
357 
358 	name_node = netdev_name_node_lookup(net, name);
359 	if (!name_node)
360 		return -ENOENT;
361 	/* lookup might have found our primary name or a name belonging
362 	 * to another device.
363 	 */
364 	if (name_node == dev->name_node || name_node->dev != dev)
365 		return -EINVAL;
366 
367 	__netdev_name_node_alt_destroy(name_node);
368 
369 	return 0;
370 }
371 
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374 	struct netdev_name_node *name_node, *tmp;
375 
376 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 		__netdev_name_node_alt_destroy(name_node);
378 }
379 
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383 	struct net *net = dev_net(dev);
384 
385 	ASSERT_RTNL();
386 
387 	write_lock(&dev_base_lock);
388 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 	netdev_name_node_add(net, dev->name_node);
390 	hlist_add_head_rcu(&dev->index_hlist,
391 			   dev_index_hash(net, dev->ifindex));
392 	write_unlock(&dev_base_lock);
393 	/* We reserved the ifindex, this can't fail */
394 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
395 
396 	dev_base_seq_inc(net);
397 }
398 
399 /* Device list removal
400  * caller must respect a RCU grace period before freeing/reusing dev
401  */
402 static void unlist_netdevice(struct net_device *dev, bool lock)
403 {
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	xa_erase(&net->dev_by_index, dev->ifindex);
409 
410 	/* Unlink dev from the device chain */
411 	if (lock)
412 		write_lock(&dev_base_lock);
413 	list_del_rcu(&dev->dev_list);
414 	netdev_name_node_del(dev->name_node);
415 	hlist_del_rcu(&dev->index_hlist);
416 	if (lock)
417 		write_unlock(&dev_base_lock);
418 
419 	dev_base_seq_inc(dev_net(dev));
420 }
421 
422 /*
423  *	Our notifier list
424  */
425 
426 static RAW_NOTIFIER_HEAD(netdev_chain);
427 
428 /*
429  *	Device drivers call our routines to queue packets here. We empty the
430  *	queue in the local softnet handler.
431  */
432 
433 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
434 EXPORT_PER_CPU_SYMBOL(softnet_data);
435 
436 #ifdef CONFIG_LOCKDEP
437 /*
438  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
439  * according to dev->type
440  */
441 static const unsigned short netdev_lock_type[] = {
442 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
443 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
444 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
445 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
446 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
447 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
448 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
449 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
450 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
451 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
452 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
453 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
454 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
455 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
456 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
457 
458 static const char *const netdev_lock_name[] = {
459 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
460 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
461 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
462 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
463 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
464 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
465 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
466 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
467 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
468 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
469 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
470 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
471 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
472 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
473 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
474 
475 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
476 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
477 
478 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
479 {
480 	int i;
481 
482 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
483 		if (netdev_lock_type[i] == dev_type)
484 			return i;
485 	/* the last key is used by default */
486 	return ARRAY_SIZE(netdev_lock_type) - 1;
487 }
488 
489 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
490 						 unsigned short dev_type)
491 {
492 	int i;
493 
494 	i = netdev_lock_pos(dev_type);
495 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
496 				   netdev_lock_name[i]);
497 }
498 
499 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
500 {
501 	int i;
502 
503 	i = netdev_lock_pos(dev->type);
504 	lockdep_set_class_and_name(&dev->addr_list_lock,
505 				   &netdev_addr_lock_key[i],
506 				   netdev_lock_name[i]);
507 }
508 #else
509 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
510 						 unsigned short dev_type)
511 {
512 }
513 
514 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
515 {
516 }
517 #endif
518 
519 /*******************************************************************************
520  *
521  *		Protocol management and registration routines
522  *
523  *******************************************************************************/
524 
525 
526 /*
527  *	Add a protocol ID to the list. Now that the input handler is
528  *	smarter we can dispense with all the messy stuff that used to be
529  *	here.
530  *
531  *	BEWARE!!! Protocol handlers, mangling input packets,
532  *	MUST BE last in hash buckets and checking protocol handlers
533  *	MUST start from promiscuous ptype_all chain in net_bh.
534  *	It is true now, do not change it.
535  *	Explanation follows: if protocol handler, mangling packet, will
536  *	be the first on list, it is not able to sense, that packet
537  *	is cloned and should be copied-on-write, so that it will
538  *	change it and subsequent readers will get broken packet.
539  *							--ANK (980803)
540  */
541 
542 static inline struct list_head *ptype_head(const struct packet_type *pt)
543 {
544 	if (pt->type == htons(ETH_P_ALL))
545 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
546 	else
547 		return pt->dev ? &pt->dev->ptype_specific :
548 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
549 }
550 
551 /**
552  *	dev_add_pack - add packet handler
553  *	@pt: packet type declaration
554  *
555  *	Add a protocol handler to the networking stack. The passed &packet_type
556  *	is linked into kernel lists and may not be freed until it has been
557  *	removed from the kernel lists.
558  *
559  *	This call does not sleep therefore it can not
560  *	guarantee all CPU's that are in middle of receiving packets
561  *	will see the new packet type (until the next received packet).
562  */
563 
564 void dev_add_pack(struct packet_type *pt)
565 {
566 	struct list_head *head = ptype_head(pt);
567 
568 	spin_lock(&ptype_lock);
569 	list_add_rcu(&pt->list, head);
570 	spin_unlock(&ptype_lock);
571 }
572 EXPORT_SYMBOL(dev_add_pack);
573 
574 /**
575  *	__dev_remove_pack	 - remove packet handler
576  *	@pt: packet type declaration
577  *
578  *	Remove a protocol handler that was previously added to the kernel
579  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
580  *	from the kernel lists and can be freed or reused once this function
581  *	returns.
582  *
583  *      The packet type might still be in use by receivers
584  *	and must not be freed until after all the CPU's have gone
585  *	through a quiescent state.
586  */
587 void __dev_remove_pack(struct packet_type *pt)
588 {
589 	struct list_head *head = ptype_head(pt);
590 	struct packet_type *pt1;
591 
592 	spin_lock(&ptype_lock);
593 
594 	list_for_each_entry(pt1, head, list) {
595 		if (pt == pt1) {
596 			list_del_rcu(&pt->list);
597 			goto out;
598 		}
599 	}
600 
601 	pr_warn("dev_remove_pack: %p not found\n", pt);
602 out:
603 	spin_unlock(&ptype_lock);
604 }
605 EXPORT_SYMBOL(__dev_remove_pack);
606 
607 /**
608  *	dev_remove_pack	 - remove packet handler
609  *	@pt: packet type declaration
610  *
611  *	Remove a protocol handler that was previously added to the kernel
612  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
613  *	from the kernel lists and can be freed or reused once this function
614  *	returns.
615  *
616  *	This call sleeps to guarantee that no CPU is looking at the packet
617  *	type after return.
618  */
619 void dev_remove_pack(struct packet_type *pt)
620 {
621 	__dev_remove_pack(pt);
622 
623 	synchronize_net();
624 }
625 EXPORT_SYMBOL(dev_remove_pack);
626 
627 
628 /*******************************************************************************
629  *
630  *			    Device Interface Subroutines
631  *
632  *******************************************************************************/
633 
634 /**
635  *	dev_get_iflink	- get 'iflink' value of a interface
636  *	@dev: targeted interface
637  *
638  *	Indicates the ifindex the interface is linked to.
639  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
640  */
641 
642 int dev_get_iflink(const struct net_device *dev)
643 {
644 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
645 		return dev->netdev_ops->ndo_get_iflink(dev);
646 
647 	return dev->ifindex;
648 }
649 EXPORT_SYMBOL(dev_get_iflink);
650 
651 /**
652  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
653  *	@dev: targeted interface
654  *	@skb: The packet.
655  *
656  *	For better visibility of tunnel traffic OVS needs to retrieve
657  *	egress tunnel information for a packet. Following API allows
658  *	user to get this info.
659  */
660 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
661 {
662 	struct ip_tunnel_info *info;
663 
664 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
665 		return -EINVAL;
666 
667 	info = skb_tunnel_info_unclone(skb);
668 	if (!info)
669 		return -ENOMEM;
670 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
671 		return -EINVAL;
672 
673 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
674 }
675 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
676 
677 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
678 {
679 	int k = stack->num_paths++;
680 
681 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
682 		return NULL;
683 
684 	return &stack->path[k];
685 }
686 
687 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
688 			  struct net_device_path_stack *stack)
689 {
690 	const struct net_device *last_dev;
691 	struct net_device_path_ctx ctx = {
692 		.dev	= dev,
693 	};
694 	struct net_device_path *path;
695 	int ret = 0;
696 
697 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
698 	stack->num_paths = 0;
699 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
700 		last_dev = ctx.dev;
701 		path = dev_fwd_path(stack);
702 		if (!path)
703 			return -1;
704 
705 		memset(path, 0, sizeof(struct net_device_path));
706 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
707 		if (ret < 0)
708 			return -1;
709 
710 		if (WARN_ON_ONCE(last_dev == ctx.dev))
711 			return -1;
712 	}
713 
714 	if (!ctx.dev)
715 		return ret;
716 
717 	path = dev_fwd_path(stack);
718 	if (!path)
719 		return -1;
720 	path->type = DEV_PATH_ETHERNET;
721 	path->dev = ctx.dev;
722 
723 	return ret;
724 }
725 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
726 
727 /**
728  *	__dev_get_by_name	- find a device by its name
729  *	@net: the applicable net namespace
730  *	@name: name to find
731  *
732  *	Find an interface by name. Must be called under RTNL semaphore
733  *	or @dev_base_lock. If the name is found a pointer to the device
734  *	is returned. If the name is not found then %NULL is returned. The
735  *	reference counters are not incremented so the caller must be
736  *	careful with locks.
737  */
738 
739 struct net_device *__dev_get_by_name(struct net *net, const char *name)
740 {
741 	struct netdev_name_node *node_name;
742 
743 	node_name = netdev_name_node_lookup(net, name);
744 	return node_name ? node_name->dev : NULL;
745 }
746 EXPORT_SYMBOL(__dev_get_by_name);
747 
748 /**
749  * dev_get_by_name_rcu	- find a device by its name
750  * @net: the applicable net namespace
751  * @name: name to find
752  *
753  * Find an interface by name.
754  * If the name is found a pointer to the device is returned.
755  * If the name is not found then %NULL is returned.
756  * The reference counters are not incremented so the caller must be
757  * careful with locks. The caller must hold RCU lock.
758  */
759 
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 {
762 	struct netdev_name_node *node_name;
763 
764 	node_name = netdev_name_node_lookup_rcu(net, name);
765 	return node_name ? node_name->dev : NULL;
766 }
767 EXPORT_SYMBOL(dev_get_by_name_rcu);
768 
769 /* Deprecated for new users, call netdev_get_by_name() instead */
770 struct net_device *dev_get_by_name(struct net *net, const char *name)
771 {
772 	struct net_device *dev;
773 
774 	rcu_read_lock();
775 	dev = dev_get_by_name_rcu(net, name);
776 	dev_hold(dev);
777 	rcu_read_unlock();
778 	return dev;
779 }
780 EXPORT_SYMBOL(dev_get_by_name);
781 
782 /**
783  *	netdev_get_by_name() - find a device by its name
784  *	@net: the applicable net namespace
785  *	@name: name to find
786  *	@tracker: tracking object for the acquired reference
787  *	@gfp: allocation flags for the tracker
788  *
789  *	Find an interface by name. This can be called from any
790  *	context and does its own locking. The returned handle has
791  *	the usage count incremented and the caller must use netdev_put() to
792  *	release it when it is no longer needed. %NULL is returned if no
793  *	matching device is found.
794  */
795 struct net_device *netdev_get_by_name(struct net *net, const char *name,
796 				      netdevice_tracker *tracker, gfp_t gfp)
797 {
798 	struct net_device *dev;
799 
800 	dev = dev_get_by_name(net, name);
801 	if (dev)
802 		netdev_tracker_alloc(dev, tracker, gfp);
803 	return dev;
804 }
805 EXPORT_SYMBOL(netdev_get_by_name);
806 
807 /**
808  *	__dev_get_by_index - find a device by its ifindex
809  *	@net: the applicable net namespace
810  *	@ifindex: index of device
811  *
812  *	Search for an interface by index. Returns %NULL if the device
813  *	is not found or a pointer to the device. The device has not
814  *	had its reference counter increased so the caller must be careful
815  *	about locking. The caller must hold either the RTNL semaphore
816  *	or @dev_base_lock.
817  */
818 
819 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
820 {
821 	struct net_device *dev;
822 	struct hlist_head *head = dev_index_hash(net, ifindex);
823 
824 	hlist_for_each_entry(dev, head, index_hlist)
825 		if (dev->ifindex == ifindex)
826 			return dev;
827 
828 	return NULL;
829 }
830 EXPORT_SYMBOL(__dev_get_by_index);
831 
832 /**
833  *	dev_get_by_index_rcu - find a device by its ifindex
834  *	@net: the applicable net namespace
835  *	@ifindex: index of device
836  *
837  *	Search for an interface by index. Returns %NULL if the device
838  *	is not found or a pointer to the device. The device has not
839  *	had its reference counter increased so the caller must be careful
840  *	about locking. The caller must hold RCU lock.
841  */
842 
843 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
844 {
845 	struct net_device *dev;
846 	struct hlist_head *head = dev_index_hash(net, ifindex);
847 
848 	hlist_for_each_entry_rcu(dev, head, index_hlist)
849 		if (dev->ifindex == ifindex)
850 			return dev;
851 
852 	return NULL;
853 }
854 EXPORT_SYMBOL(dev_get_by_index_rcu);
855 
856 /* Deprecated for new users, call netdev_get_by_index() instead */
857 struct net_device *dev_get_by_index(struct net *net, int ifindex)
858 {
859 	struct net_device *dev;
860 
861 	rcu_read_lock();
862 	dev = dev_get_by_index_rcu(net, ifindex);
863 	dev_hold(dev);
864 	rcu_read_unlock();
865 	return dev;
866 }
867 EXPORT_SYMBOL(dev_get_by_index);
868 
869 /**
870  *	netdev_get_by_index() - find a device by its ifindex
871  *	@net: the applicable net namespace
872  *	@ifindex: index of device
873  *	@tracker: tracking object for the acquired reference
874  *	@gfp: allocation flags for the tracker
875  *
876  *	Search for an interface by index. Returns NULL if the device
877  *	is not found or a pointer to the device. The device returned has
878  *	had a reference added and the pointer is safe until the user calls
879  *	netdev_put() to indicate they have finished with it.
880  */
881 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
882 				       netdevice_tracker *tracker, gfp_t gfp)
883 {
884 	struct net_device *dev;
885 
886 	dev = dev_get_by_index(net, ifindex);
887 	if (dev)
888 		netdev_tracker_alloc(dev, tracker, gfp);
889 	return dev;
890 }
891 EXPORT_SYMBOL(netdev_get_by_index);
892 
893 /**
894  *	dev_get_by_napi_id - find a device by napi_id
895  *	@napi_id: ID of the NAPI struct
896  *
897  *	Search for an interface by NAPI ID. Returns %NULL if the device
898  *	is not found or a pointer to the device. The device has not had
899  *	its reference counter increased so the caller must be careful
900  *	about locking. The caller must hold RCU lock.
901  */
902 
903 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
904 {
905 	struct napi_struct *napi;
906 
907 	WARN_ON_ONCE(!rcu_read_lock_held());
908 
909 	if (napi_id < MIN_NAPI_ID)
910 		return NULL;
911 
912 	napi = napi_by_id(napi_id);
913 
914 	return napi ? napi->dev : NULL;
915 }
916 EXPORT_SYMBOL(dev_get_by_napi_id);
917 
918 /**
919  *	netdev_get_name - get a netdevice name, knowing its ifindex.
920  *	@net: network namespace
921  *	@name: a pointer to the buffer where the name will be stored.
922  *	@ifindex: the ifindex of the interface to get the name from.
923  */
924 int netdev_get_name(struct net *net, char *name, int ifindex)
925 {
926 	struct net_device *dev;
927 	int ret;
928 
929 	down_read(&devnet_rename_sem);
930 	rcu_read_lock();
931 
932 	dev = dev_get_by_index_rcu(net, ifindex);
933 	if (!dev) {
934 		ret = -ENODEV;
935 		goto out;
936 	}
937 
938 	strcpy(name, dev->name);
939 
940 	ret = 0;
941 out:
942 	rcu_read_unlock();
943 	up_read(&devnet_rename_sem);
944 	return ret;
945 }
946 
947 /**
948  *	dev_getbyhwaddr_rcu - find a device by its hardware address
949  *	@net: the applicable net namespace
950  *	@type: media type of device
951  *	@ha: hardware address
952  *
953  *	Search for an interface by MAC address. Returns NULL if the device
954  *	is not found or a pointer to the device.
955  *	The caller must hold RCU or RTNL.
956  *	The returned device has not had its ref count increased
957  *	and the caller must therefore be careful about locking
958  *
959  */
960 
961 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
962 				       const char *ha)
963 {
964 	struct net_device *dev;
965 
966 	for_each_netdev_rcu(net, dev)
967 		if (dev->type == type &&
968 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
969 			return dev;
970 
971 	return NULL;
972 }
973 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
974 
975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976 {
977 	struct net_device *dev, *ret = NULL;
978 
979 	rcu_read_lock();
980 	for_each_netdev_rcu(net, dev)
981 		if (dev->type == type) {
982 			dev_hold(dev);
983 			ret = dev;
984 			break;
985 		}
986 	rcu_read_unlock();
987 	return ret;
988 }
989 EXPORT_SYMBOL(dev_getfirstbyhwtype);
990 
991 /**
992  *	__dev_get_by_flags - find any device with given flags
993  *	@net: the applicable net namespace
994  *	@if_flags: IFF_* values
995  *	@mask: bitmask of bits in if_flags to check
996  *
997  *	Search for any interface with the given flags. Returns NULL if a device
998  *	is not found or a pointer to the device. Must be called inside
999  *	rtnl_lock(), and result refcount is unchanged.
1000  */
1001 
1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003 				      unsigned short mask)
1004 {
1005 	struct net_device *dev, *ret;
1006 
1007 	ASSERT_RTNL();
1008 
1009 	ret = NULL;
1010 	for_each_netdev(net, dev) {
1011 		if (((dev->flags ^ if_flags) & mask) == 0) {
1012 			ret = dev;
1013 			break;
1014 		}
1015 	}
1016 	return ret;
1017 }
1018 EXPORT_SYMBOL(__dev_get_by_flags);
1019 
1020 /**
1021  *	dev_valid_name - check if name is okay for network device
1022  *	@name: name string
1023  *
1024  *	Network device names need to be valid file names to
1025  *	allow sysfs to work.  We also disallow any kind of
1026  *	whitespace.
1027  */
1028 bool dev_valid_name(const char *name)
1029 {
1030 	if (*name == '\0')
1031 		return false;
1032 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033 		return false;
1034 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1035 		return false;
1036 
1037 	while (*name) {
1038 		if (*name == '/' || *name == ':' || isspace(*name))
1039 			return false;
1040 		name++;
1041 	}
1042 	return true;
1043 }
1044 EXPORT_SYMBOL(dev_valid_name);
1045 
1046 /**
1047  *	__dev_alloc_name - allocate a name for a device
1048  *	@net: network namespace to allocate the device name in
1049  *	@name: name format string
1050  *	@buf:  scratch buffer and result name string
1051  *
1052  *	Passed a format string - eg "lt%d" it will try and find a suitable
1053  *	id. It scans list of devices to build up a free map, then chooses
1054  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1055  *	while allocating the name and adding the device in order to avoid
1056  *	duplicates.
1057  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058  *	Returns the number of the unit assigned or a negative errno code.
1059  */
1060 
1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062 {
1063 	int i = 0;
1064 	const char *p;
1065 	const int max_netdevices = 8*PAGE_SIZE;
1066 	unsigned long *inuse;
1067 	struct net_device *d;
1068 
1069 	if (!dev_valid_name(name))
1070 		return -EINVAL;
1071 
1072 	p = strchr(name, '%');
1073 	if (p) {
1074 		/*
1075 		 * Verify the string as this thing may have come from
1076 		 * the user.  There must be either one "%d" and no other "%"
1077 		 * characters.
1078 		 */
1079 		if (p[1] != 'd' || strchr(p + 2, '%'))
1080 			return -EINVAL;
1081 
1082 		/* Use one page as a bit array of possible slots */
1083 		inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1084 		if (!inuse)
1085 			return -ENOMEM;
1086 
1087 		for_each_netdev(net, d) {
1088 			struct netdev_name_node *name_node;
1089 			list_for_each_entry(name_node, &d->name_node->list, list) {
1090 				if (!sscanf(name_node->name, name, &i))
1091 					continue;
1092 				if (i < 0 || i >= max_netdevices)
1093 					continue;
1094 
1095 				/*  avoid cases where sscanf is not exact inverse of printf */
1096 				snprintf(buf, IFNAMSIZ, name, i);
1097 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1098 					__set_bit(i, inuse);
1099 			}
1100 			if (!sscanf(d->name, name, &i))
1101 				continue;
1102 			if (i < 0 || i >= max_netdevices)
1103 				continue;
1104 
1105 			/*  avoid cases where sscanf is not exact inverse of printf */
1106 			snprintf(buf, IFNAMSIZ, name, i);
1107 			if (!strncmp(buf, d->name, IFNAMSIZ))
1108 				__set_bit(i, inuse);
1109 		}
1110 
1111 		i = find_first_zero_bit(inuse, max_netdevices);
1112 		bitmap_free(inuse);
1113 	}
1114 
1115 	snprintf(buf, IFNAMSIZ, name, i);
1116 	if (!netdev_name_in_use(net, buf))
1117 		return i;
1118 
1119 	/* It is possible to run out of possible slots
1120 	 * when the name is long and there isn't enough space left
1121 	 * for the digits, or if all bits are used.
1122 	 */
1123 	return -ENFILE;
1124 }
1125 
1126 static int dev_alloc_name_ns(struct net *net,
1127 			     struct net_device *dev,
1128 			     const char *name)
1129 {
1130 	char buf[IFNAMSIZ];
1131 	int ret;
1132 
1133 	BUG_ON(!net);
1134 	ret = __dev_alloc_name(net, name, buf);
1135 	if (ret >= 0)
1136 		strscpy(dev->name, buf, IFNAMSIZ);
1137 	return ret;
1138 }
1139 
1140 /**
1141  *	dev_alloc_name - allocate a name for a device
1142  *	@dev: device
1143  *	@name: name format string
1144  *
1145  *	Passed a format string - eg "lt%d" it will try and find a suitable
1146  *	id. It scans list of devices to build up a free map, then chooses
1147  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1148  *	while allocating the name and adding the device in order to avoid
1149  *	duplicates.
1150  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1151  *	Returns the number of the unit assigned or a negative errno code.
1152  */
1153 
1154 int dev_alloc_name(struct net_device *dev, const char *name)
1155 {
1156 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1157 }
1158 EXPORT_SYMBOL(dev_alloc_name);
1159 
1160 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1161 			      const char *name)
1162 {
1163 	BUG_ON(!net);
1164 
1165 	if (!dev_valid_name(name))
1166 		return -EINVAL;
1167 
1168 	if (strchr(name, '%'))
1169 		return dev_alloc_name_ns(net, dev, name);
1170 	else if (netdev_name_in_use(net, name))
1171 		return -EEXIST;
1172 	else if (dev->name != name)
1173 		strscpy(dev->name, name, IFNAMSIZ);
1174 
1175 	return 0;
1176 }
1177 
1178 /**
1179  *	dev_change_name - change name of a device
1180  *	@dev: device
1181  *	@newname: name (or format string) must be at least IFNAMSIZ
1182  *
1183  *	Change name of a device, can pass format strings "eth%d".
1184  *	for wildcarding.
1185  */
1186 int dev_change_name(struct net_device *dev, const char *newname)
1187 {
1188 	unsigned char old_assign_type;
1189 	char oldname[IFNAMSIZ];
1190 	int err = 0;
1191 	int ret;
1192 	struct net *net;
1193 
1194 	ASSERT_RTNL();
1195 	BUG_ON(!dev_net(dev));
1196 
1197 	net = dev_net(dev);
1198 
1199 	down_write(&devnet_rename_sem);
1200 
1201 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1202 		up_write(&devnet_rename_sem);
1203 		return 0;
1204 	}
1205 
1206 	memcpy(oldname, dev->name, IFNAMSIZ);
1207 
1208 	err = dev_get_valid_name(net, dev, newname);
1209 	if (err < 0) {
1210 		up_write(&devnet_rename_sem);
1211 		return err;
1212 	}
1213 
1214 	if (oldname[0] && !strchr(oldname, '%'))
1215 		netdev_info(dev, "renamed from %s%s\n", oldname,
1216 			    dev->flags & IFF_UP ? " (while UP)" : "");
1217 
1218 	old_assign_type = dev->name_assign_type;
1219 	dev->name_assign_type = NET_NAME_RENAMED;
1220 
1221 rollback:
1222 	ret = device_rename(&dev->dev, dev->name);
1223 	if (ret) {
1224 		memcpy(dev->name, oldname, IFNAMSIZ);
1225 		dev->name_assign_type = old_assign_type;
1226 		up_write(&devnet_rename_sem);
1227 		return ret;
1228 	}
1229 
1230 	up_write(&devnet_rename_sem);
1231 
1232 	netdev_adjacent_rename_links(dev, oldname);
1233 
1234 	write_lock(&dev_base_lock);
1235 	netdev_name_node_del(dev->name_node);
1236 	write_unlock(&dev_base_lock);
1237 
1238 	synchronize_rcu();
1239 
1240 	write_lock(&dev_base_lock);
1241 	netdev_name_node_add(net, dev->name_node);
1242 	write_unlock(&dev_base_lock);
1243 
1244 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245 	ret = notifier_to_errno(ret);
1246 
1247 	if (ret) {
1248 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1249 		if (err >= 0) {
1250 			err = ret;
1251 			down_write(&devnet_rename_sem);
1252 			memcpy(dev->name, oldname, IFNAMSIZ);
1253 			memcpy(oldname, newname, IFNAMSIZ);
1254 			dev->name_assign_type = old_assign_type;
1255 			old_assign_type = NET_NAME_RENAMED;
1256 			goto rollback;
1257 		} else {
1258 			netdev_err(dev, "name change rollback failed: %d\n",
1259 				   ret);
1260 		}
1261 	}
1262 
1263 	return err;
1264 }
1265 
1266 /**
1267  *	dev_set_alias - change ifalias of a device
1268  *	@dev: device
1269  *	@alias: name up to IFALIASZ
1270  *	@len: limit of bytes to copy from info
1271  *
1272  *	Set ifalias for a device,
1273  */
1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275 {
1276 	struct dev_ifalias *new_alias = NULL;
1277 
1278 	if (len >= IFALIASZ)
1279 		return -EINVAL;
1280 
1281 	if (len) {
1282 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283 		if (!new_alias)
1284 			return -ENOMEM;
1285 
1286 		memcpy(new_alias->ifalias, alias, len);
1287 		new_alias->ifalias[len] = 0;
1288 	}
1289 
1290 	mutex_lock(&ifalias_mutex);
1291 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1292 					mutex_is_locked(&ifalias_mutex));
1293 	mutex_unlock(&ifalias_mutex);
1294 
1295 	if (new_alias)
1296 		kfree_rcu(new_alias, rcuhead);
1297 
1298 	return len;
1299 }
1300 EXPORT_SYMBOL(dev_set_alias);
1301 
1302 /**
1303  *	dev_get_alias - get ifalias of a device
1304  *	@dev: device
1305  *	@name: buffer to store name of ifalias
1306  *	@len: size of buffer
1307  *
1308  *	get ifalias for a device.  Caller must make sure dev cannot go
1309  *	away,  e.g. rcu read lock or own a reference count to device.
1310  */
1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312 {
1313 	const struct dev_ifalias *alias;
1314 	int ret = 0;
1315 
1316 	rcu_read_lock();
1317 	alias = rcu_dereference(dev->ifalias);
1318 	if (alias)
1319 		ret = snprintf(name, len, "%s", alias->ifalias);
1320 	rcu_read_unlock();
1321 
1322 	return ret;
1323 }
1324 
1325 /**
1326  *	netdev_features_change - device changes features
1327  *	@dev: device to cause notification
1328  *
1329  *	Called to indicate a device has changed features.
1330  */
1331 void netdev_features_change(struct net_device *dev)
1332 {
1333 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334 }
1335 EXPORT_SYMBOL(netdev_features_change);
1336 
1337 /**
1338  *	netdev_state_change - device changes state
1339  *	@dev: device to cause notification
1340  *
1341  *	Called to indicate a device has changed state. This function calls
1342  *	the notifier chains for netdev_chain and sends a NEWLINK message
1343  *	to the routing socket.
1344  */
1345 void netdev_state_change(struct net_device *dev)
1346 {
1347 	if (dev->flags & IFF_UP) {
1348 		struct netdev_notifier_change_info change_info = {
1349 			.info.dev = dev,
1350 		};
1351 
1352 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1353 					      &change_info.info);
1354 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1355 	}
1356 }
1357 EXPORT_SYMBOL(netdev_state_change);
1358 
1359 /**
1360  * __netdev_notify_peers - notify network peers about existence of @dev,
1361  * to be called when rtnl lock is already held.
1362  * @dev: network device
1363  *
1364  * Generate traffic such that interested network peers are aware of
1365  * @dev, such as by generating a gratuitous ARP. This may be used when
1366  * a device wants to inform the rest of the network about some sort of
1367  * reconfiguration such as a failover event or virtual machine
1368  * migration.
1369  */
1370 void __netdev_notify_peers(struct net_device *dev)
1371 {
1372 	ASSERT_RTNL();
1373 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1374 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1375 }
1376 EXPORT_SYMBOL(__netdev_notify_peers);
1377 
1378 /**
1379  * netdev_notify_peers - notify network peers about existence of @dev
1380  * @dev: network device
1381  *
1382  * Generate traffic such that interested network peers are aware of
1383  * @dev, such as by generating a gratuitous ARP. This may be used when
1384  * a device wants to inform the rest of the network about some sort of
1385  * reconfiguration such as a failover event or virtual machine
1386  * migration.
1387  */
1388 void netdev_notify_peers(struct net_device *dev)
1389 {
1390 	rtnl_lock();
1391 	__netdev_notify_peers(dev);
1392 	rtnl_unlock();
1393 }
1394 EXPORT_SYMBOL(netdev_notify_peers);
1395 
1396 static int napi_threaded_poll(void *data);
1397 
1398 static int napi_kthread_create(struct napi_struct *n)
1399 {
1400 	int err = 0;
1401 
1402 	/* Create and wake up the kthread once to put it in
1403 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1404 	 * warning and work with loadavg.
1405 	 */
1406 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1407 				n->dev->name, n->napi_id);
1408 	if (IS_ERR(n->thread)) {
1409 		err = PTR_ERR(n->thread);
1410 		pr_err("kthread_run failed with err %d\n", err);
1411 		n->thread = NULL;
1412 	}
1413 
1414 	return err;
1415 }
1416 
1417 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1418 {
1419 	const struct net_device_ops *ops = dev->netdev_ops;
1420 	int ret;
1421 
1422 	ASSERT_RTNL();
1423 	dev_addr_check(dev);
1424 
1425 	if (!netif_device_present(dev)) {
1426 		/* may be detached because parent is runtime-suspended */
1427 		if (dev->dev.parent)
1428 			pm_runtime_resume(dev->dev.parent);
1429 		if (!netif_device_present(dev))
1430 			return -ENODEV;
1431 	}
1432 
1433 	/* Block netpoll from trying to do any rx path servicing.
1434 	 * If we don't do this there is a chance ndo_poll_controller
1435 	 * or ndo_poll may be running while we open the device
1436 	 */
1437 	netpoll_poll_disable(dev);
1438 
1439 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1440 	ret = notifier_to_errno(ret);
1441 	if (ret)
1442 		return ret;
1443 
1444 	set_bit(__LINK_STATE_START, &dev->state);
1445 
1446 	if (ops->ndo_validate_addr)
1447 		ret = ops->ndo_validate_addr(dev);
1448 
1449 	if (!ret && ops->ndo_open)
1450 		ret = ops->ndo_open(dev);
1451 
1452 	netpoll_poll_enable(dev);
1453 
1454 	if (ret)
1455 		clear_bit(__LINK_STATE_START, &dev->state);
1456 	else {
1457 		dev->flags |= IFF_UP;
1458 		dev_set_rx_mode(dev);
1459 		dev_activate(dev);
1460 		add_device_randomness(dev->dev_addr, dev->addr_len);
1461 	}
1462 
1463 	return ret;
1464 }
1465 
1466 /**
1467  *	dev_open	- prepare an interface for use.
1468  *	@dev: device to open
1469  *	@extack: netlink extended ack
1470  *
1471  *	Takes a device from down to up state. The device's private open
1472  *	function is invoked and then the multicast lists are loaded. Finally
1473  *	the device is moved into the up state and a %NETDEV_UP message is
1474  *	sent to the netdev notifier chain.
1475  *
1476  *	Calling this function on an active interface is a nop. On a failure
1477  *	a negative errno code is returned.
1478  */
1479 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1480 {
1481 	int ret;
1482 
1483 	if (dev->flags & IFF_UP)
1484 		return 0;
1485 
1486 	ret = __dev_open(dev, extack);
1487 	if (ret < 0)
1488 		return ret;
1489 
1490 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1491 	call_netdevice_notifiers(NETDEV_UP, dev);
1492 
1493 	return ret;
1494 }
1495 EXPORT_SYMBOL(dev_open);
1496 
1497 static void __dev_close_many(struct list_head *head)
1498 {
1499 	struct net_device *dev;
1500 
1501 	ASSERT_RTNL();
1502 	might_sleep();
1503 
1504 	list_for_each_entry(dev, head, close_list) {
1505 		/* Temporarily disable netpoll until the interface is down */
1506 		netpoll_poll_disable(dev);
1507 
1508 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1509 
1510 		clear_bit(__LINK_STATE_START, &dev->state);
1511 
1512 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1513 		 * can be even on different cpu. So just clear netif_running().
1514 		 *
1515 		 * dev->stop() will invoke napi_disable() on all of it's
1516 		 * napi_struct instances on this device.
1517 		 */
1518 		smp_mb__after_atomic(); /* Commit netif_running(). */
1519 	}
1520 
1521 	dev_deactivate_many(head);
1522 
1523 	list_for_each_entry(dev, head, close_list) {
1524 		const struct net_device_ops *ops = dev->netdev_ops;
1525 
1526 		/*
1527 		 *	Call the device specific close. This cannot fail.
1528 		 *	Only if device is UP
1529 		 *
1530 		 *	We allow it to be called even after a DETACH hot-plug
1531 		 *	event.
1532 		 */
1533 		if (ops->ndo_stop)
1534 			ops->ndo_stop(dev);
1535 
1536 		dev->flags &= ~IFF_UP;
1537 		netpoll_poll_enable(dev);
1538 	}
1539 }
1540 
1541 static void __dev_close(struct net_device *dev)
1542 {
1543 	LIST_HEAD(single);
1544 
1545 	list_add(&dev->close_list, &single);
1546 	__dev_close_many(&single);
1547 	list_del(&single);
1548 }
1549 
1550 void dev_close_many(struct list_head *head, bool unlink)
1551 {
1552 	struct net_device *dev, *tmp;
1553 
1554 	/* Remove the devices that don't need to be closed */
1555 	list_for_each_entry_safe(dev, tmp, head, close_list)
1556 		if (!(dev->flags & IFF_UP))
1557 			list_del_init(&dev->close_list);
1558 
1559 	__dev_close_many(head);
1560 
1561 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1562 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1563 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1564 		if (unlink)
1565 			list_del_init(&dev->close_list);
1566 	}
1567 }
1568 EXPORT_SYMBOL(dev_close_many);
1569 
1570 /**
1571  *	dev_close - shutdown an interface.
1572  *	@dev: device to shutdown
1573  *
1574  *	This function moves an active device into down state. A
1575  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1576  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1577  *	chain.
1578  */
1579 void dev_close(struct net_device *dev)
1580 {
1581 	if (dev->flags & IFF_UP) {
1582 		LIST_HEAD(single);
1583 
1584 		list_add(&dev->close_list, &single);
1585 		dev_close_many(&single, true);
1586 		list_del(&single);
1587 	}
1588 }
1589 EXPORT_SYMBOL(dev_close);
1590 
1591 
1592 /**
1593  *	dev_disable_lro - disable Large Receive Offload on a device
1594  *	@dev: device
1595  *
1596  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1597  *	called under RTNL.  This is needed if received packets may be
1598  *	forwarded to another interface.
1599  */
1600 void dev_disable_lro(struct net_device *dev)
1601 {
1602 	struct net_device *lower_dev;
1603 	struct list_head *iter;
1604 
1605 	dev->wanted_features &= ~NETIF_F_LRO;
1606 	netdev_update_features(dev);
1607 
1608 	if (unlikely(dev->features & NETIF_F_LRO))
1609 		netdev_WARN(dev, "failed to disable LRO!\n");
1610 
1611 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1612 		dev_disable_lro(lower_dev);
1613 }
1614 EXPORT_SYMBOL(dev_disable_lro);
1615 
1616 /**
1617  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1618  *	@dev: device
1619  *
1620  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1621  *	called under RTNL.  This is needed if Generic XDP is installed on
1622  *	the device.
1623  */
1624 static void dev_disable_gro_hw(struct net_device *dev)
1625 {
1626 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1627 	netdev_update_features(dev);
1628 
1629 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1630 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1631 }
1632 
1633 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1634 {
1635 #define N(val) 						\
1636 	case NETDEV_##val:				\
1637 		return "NETDEV_" __stringify(val);
1638 	switch (cmd) {
1639 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1640 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1641 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1642 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1643 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1644 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1645 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1646 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1647 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1648 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1649 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1650 	N(XDP_FEAT_CHANGE)
1651 	}
1652 #undef N
1653 	return "UNKNOWN_NETDEV_EVENT";
1654 }
1655 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1656 
1657 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1658 				   struct net_device *dev)
1659 {
1660 	struct netdev_notifier_info info = {
1661 		.dev = dev,
1662 	};
1663 
1664 	return nb->notifier_call(nb, val, &info);
1665 }
1666 
1667 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1668 					     struct net_device *dev)
1669 {
1670 	int err;
1671 
1672 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1673 	err = notifier_to_errno(err);
1674 	if (err)
1675 		return err;
1676 
1677 	if (!(dev->flags & IFF_UP))
1678 		return 0;
1679 
1680 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1681 	return 0;
1682 }
1683 
1684 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1685 						struct net_device *dev)
1686 {
1687 	if (dev->flags & IFF_UP) {
1688 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1689 					dev);
1690 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1691 	}
1692 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1693 }
1694 
1695 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1696 						 struct net *net)
1697 {
1698 	struct net_device *dev;
1699 	int err;
1700 
1701 	for_each_netdev(net, dev) {
1702 		err = call_netdevice_register_notifiers(nb, dev);
1703 		if (err)
1704 			goto rollback;
1705 	}
1706 	return 0;
1707 
1708 rollback:
1709 	for_each_netdev_continue_reverse(net, dev)
1710 		call_netdevice_unregister_notifiers(nb, dev);
1711 	return err;
1712 }
1713 
1714 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1715 						    struct net *net)
1716 {
1717 	struct net_device *dev;
1718 
1719 	for_each_netdev(net, dev)
1720 		call_netdevice_unregister_notifiers(nb, dev);
1721 }
1722 
1723 static int dev_boot_phase = 1;
1724 
1725 /**
1726  * register_netdevice_notifier - register a network notifier block
1727  * @nb: notifier
1728  *
1729  * Register a notifier to be called when network device events occur.
1730  * The notifier passed is linked into the kernel structures and must
1731  * not be reused until it has been unregistered. A negative errno code
1732  * is returned on a failure.
1733  *
1734  * When registered all registration and up events are replayed
1735  * to the new notifier to allow device to have a race free
1736  * view of the network device list.
1737  */
1738 
1739 int register_netdevice_notifier(struct notifier_block *nb)
1740 {
1741 	struct net *net;
1742 	int err;
1743 
1744 	/* Close race with setup_net() and cleanup_net() */
1745 	down_write(&pernet_ops_rwsem);
1746 	rtnl_lock();
1747 	err = raw_notifier_chain_register(&netdev_chain, nb);
1748 	if (err)
1749 		goto unlock;
1750 	if (dev_boot_phase)
1751 		goto unlock;
1752 	for_each_net(net) {
1753 		err = call_netdevice_register_net_notifiers(nb, net);
1754 		if (err)
1755 			goto rollback;
1756 	}
1757 
1758 unlock:
1759 	rtnl_unlock();
1760 	up_write(&pernet_ops_rwsem);
1761 	return err;
1762 
1763 rollback:
1764 	for_each_net_continue_reverse(net)
1765 		call_netdevice_unregister_net_notifiers(nb, net);
1766 
1767 	raw_notifier_chain_unregister(&netdev_chain, nb);
1768 	goto unlock;
1769 }
1770 EXPORT_SYMBOL(register_netdevice_notifier);
1771 
1772 /**
1773  * unregister_netdevice_notifier - unregister a network notifier block
1774  * @nb: notifier
1775  *
1776  * Unregister a notifier previously registered by
1777  * register_netdevice_notifier(). The notifier is unlinked into the
1778  * kernel structures and may then be reused. A negative errno code
1779  * is returned on a failure.
1780  *
1781  * After unregistering unregister and down device events are synthesized
1782  * for all devices on the device list to the removed notifier to remove
1783  * the need for special case cleanup code.
1784  */
1785 
1786 int unregister_netdevice_notifier(struct notifier_block *nb)
1787 {
1788 	struct net *net;
1789 	int err;
1790 
1791 	/* Close race with setup_net() and cleanup_net() */
1792 	down_write(&pernet_ops_rwsem);
1793 	rtnl_lock();
1794 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1795 	if (err)
1796 		goto unlock;
1797 
1798 	for_each_net(net)
1799 		call_netdevice_unregister_net_notifiers(nb, net);
1800 
1801 unlock:
1802 	rtnl_unlock();
1803 	up_write(&pernet_ops_rwsem);
1804 	return err;
1805 }
1806 EXPORT_SYMBOL(unregister_netdevice_notifier);
1807 
1808 static int __register_netdevice_notifier_net(struct net *net,
1809 					     struct notifier_block *nb,
1810 					     bool ignore_call_fail)
1811 {
1812 	int err;
1813 
1814 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1815 	if (err)
1816 		return err;
1817 	if (dev_boot_phase)
1818 		return 0;
1819 
1820 	err = call_netdevice_register_net_notifiers(nb, net);
1821 	if (err && !ignore_call_fail)
1822 		goto chain_unregister;
1823 
1824 	return 0;
1825 
1826 chain_unregister:
1827 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1828 	return err;
1829 }
1830 
1831 static int __unregister_netdevice_notifier_net(struct net *net,
1832 					       struct notifier_block *nb)
1833 {
1834 	int err;
1835 
1836 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1837 	if (err)
1838 		return err;
1839 
1840 	call_netdevice_unregister_net_notifiers(nb, net);
1841 	return 0;
1842 }
1843 
1844 /**
1845  * register_netdevice_notifier_net - register a per-netns network notifier block
1846  * @net: network namespace
1847  * @nb: notifier
1848  *
1849  * Register a notifier to be called when network device events occur.
1850  * The notifier passed is linked into the kernel structures and must
1851  * not be reused until it has been unregistered. A negative errno code
1852  * is returned on a failure.
1853  *
1854  * When registered all registration and up events are replayed
1855  * to the new notifier to allow device to have a race free
1856  * view of the network device list.
1857  */
1858 
1859 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1860 {
1861 	int err;
1862 
1863 	rtnl_lock();
1864 	err = __register_netdevice_notifier_net(net, nb, false);
1865 	rtnl_unlock();
1866 	return err;
1867 }
1868 EXPORT_SYMBOL(register_netdevice_notifier_net);
1869 
1870 /**
1871  * unregister_netdevice_notifier_net - unregister a per-netns
1872  *                                     network notifier block
1873  * @net: network namespace
1874  * @nb: notifier
1875  *
1876  * Unregister a notifier previously registered by
1877  * register_netdevice_notifier_net(). The notifier is unlinked from the
1878  * kernel structures and may then be reused. A negative errno code
1879  * is returned on a failure.
1880  *
1881  * After unregistering unregister and down device events are synthesized
1882  * for all devices on the device list to the removed notifier to remove
1883  * the need for special case cleanup code.
1884  */
1885 
1886 int unregister_netdevice_notifier_net(struct net *net,
1887 				      struct notifier_block *nb)
1888 {
1889 	int err;
1890 
1891 	rtnl_lock();
1892 	err = __unregister_netdevice_notifier_net(net, nb);
1893 	rtnl_unlock();
1894 	return err;
1895 }
1896 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1897 
1898 static void __move_netdevice_notifier_net(struct net *src_net,
1899 					  struct net *dst_net,
1900 					  struct notifier_block *nb)
1901 {
1902 	__unregister_netdevice_notifier_net(src_net, nb);
1903 	__register_netdevice_notifier_net(dst_net, nb, true);
1904 }
1905 
1906 int register_netdevice_notifier_dev_net(struct net_device *dev,
1907 					struct notifier_block *nb,
1908 					struct netdev_net_notifier *nn)
1909 {
1910 	int err;
1911 
1912 	rtnl_lock();
1913 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1914 	if (!err) {
1915 		nn->nb = nb;
1916 		list_add(&nn->list, &dev->net_notifier_list);
1917 	}
1918 	rtnl_unlock();
1919 	return err;
1920 }
1921 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1922 
1923 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1924 					  struct notifier_block *nb,
1925 					  struct netdev_net_notifier *nn)
1926 {
1927 	int err;
1928 
1929 	rtnl_lock();
1930 	list_del(&nn->list);
1931 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1932 	rtnl_unlock();
1933 	return err;
1934 }
1935 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1936 
1937 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1938 					     struct net *net)
1939 {
1940 	struct netdev_net_notifier *nn;
1941 
1942 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1943 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1944 }
1945 
1946 /**
1947  *	call_netdevice_notifiers_info - call all network notifier blocks
1948  *	@val: value passed unmodified to notifier function
1949  *	@info: notifier information data
1950  *
1951  *	Call all network notifier blocks.  Parameters and return value
1952  *	are as for raw_notifier_call_chain().
1953  */
1954 
1955 int call_netdevice_notifiers_info(unsigned long val,
1956 				  struct netdev_notifier_info *info)
1957 {
1958 	struct net *net = dev_net(info->dev);
1959 	int ret;
1960 
1961 	ASSERT_RTNL();
1962 
1963 	/* Run per-netns notifier block chain first, then run the global one.
1964 	 * Hopefully, one day, the global one is going to be removed after
1965 	 * all notifier block registrators get converted to be per-netns.
1966 	 */
1967 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1968 	if (ret & NOTIFY_STOP_MASK)
1969 		return ret;
1970 	return raw_notifier_call_chain(&netdev_chain, val, info);
1971 }
1972 
1973 /**
1974  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1975  *	                                       for and rollback on error
1976  *	@val_up: value passed unmodified to notifier function
1977  *	@val_down: value passed unmodified to the notifier function when
1978  *	           recovering from an error on @val_up
1979  *	@info: notifier information data
1980  *
1981  *	Call all per-netns network notifier blocks, but not notifier blocks on
1982  *	the global notifier chain. Parameters and return value are as for
1983  *	raw_notifier_call_chain_robust().
1984  */
1985 
1986 static int
1987 call_netdevice_notifiers_info_robust(unsigned long val_up,
1988 				     unsigned long val_down,
1989 				     struct netdev_notifier_info *info)
1990 {
1991 	struct net *net = dev_net(info->dev);
1992 
1993 	ASSERT_RTNL();
1994 
1995 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1996 					      val_up, val_down, info);
1997 }
1998 
1999 static int call_netdevice_notifiers_extack(unsigned long val,
2000 					   struct net_device *dev,
2001 					   struct netlink_ext_ack *extack)
2002 {
2003 	struct netdev_notifier_info info = {
2004 		.dev = dev,
2005 		.extack = extack,
2006 	};
2007 
2008 	return call_netdevice_notifiers_info(val, &info);
2009 }
2010 
2011 /**
2012  *	call_netdevice_notifiers - call all network notifier blocks
2013  *      @val: value passed unmodified to notifier function
2014  *      @dev: net_device pointer passed unmodified to notifier function
2015  *
2016  *	Call all network notifier blocks.  Parameters and return value
2017  *	are as for raw_notifier_call_chain().
2018  */
2019 
2020 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2021 {
2022 	return call_netdevice_notifiers_extack(val, dev, NULL);
2023 }
2024 EXPORT_SYMBOL(call_netdevice_notifiers);
2025 
2026 /**
2027  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2028  *	@val: value passed unmodified to notifier function
2029  *	@dev: net_device pointer passed unmodified to notifier function
2030  *	@arg: additional u32 argument passed to the notifier function
2031  *
2032  *	Call all network notifier blocks.  Parameters and return value
2033  *	are as for raw_notifier_call_chain().
2034  */
2035 static int call_netdevice_notifiers_mtu(unsigned long val,
2036 					struct net_device *dev, u32 arg)
2037 {
2038 	struct netdev_notifier_info_ext info = {
2039 		.info.dev = dev,
2040 		.ext.mtu = arg,
2041 	};
2042 
2043 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2044 
2045 	return call_netdevice_notifiers_info(val, &info.info);
2046 }
2047 
2048 #ifdef CONFIG_NET_INGRESS
2049 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2050 
2051 void net_inc_ingress_queue(void)
2052 {
2053 	static_branch_inc(&ingress_needed_key);
2054 }
2055 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2056 
2057 void net_dec_ingress_queue(void)
2058 {
2059 	static_branch_dec(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2062 #endif
2063 
2064 #ifdef CONFIG_NET_EGRESS
2065 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2066 
2067 void net_inc_egress_queue(void)
2068 {
2069 	static_branch_inc(&egress_needed_key);
2070 }
2071 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2072 
2073 void net_dec_egress_queue(void)
2074 {
2075 	static_branch_dec(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2078 #endif
2079 
2080 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2081 EXPORT_SYMBOL(netstamp_needed_key);
2082 #ifdef CONFIG_JUMP_LABEL
2083 static atomic_t netstamp_needed_deferred;
2084 static atomic_t netstamp_wanted;
2085 static void netstamp_clear(struct work_struct *work)
2086 {
2087 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2088 	int wanted;
2089 
2090 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2091 	if (wanted > 0)
2092 		static_branch_enable(&netstamp_needed_key);
2093 	else
2094 		static_branch_disable(&netstamp_needed_key);
2095 }
2096 static DECLARE_WORK(netstamp_work, netstamp_clear);
2097 #endif
2098 
2099 void net_enable_timestamp(void)
2100 {
2101 #ifdef CONFIG_JUMP_LABEL
2102 	int wanted = atomic_read(&netstamp_wanted);
2103 
2104 	while (wanted > 0) {
2105 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2106 			return;
2107 	}
2108 	atomic_inc(&netstamp_needed_deferred);
2109 	schedule_work(&netstamp_work);
2110 #else
2111 	static_branch_inc(&netstamp_needed_key);
2112 #endif
2113 }
2114 EXPORT_SYMBOL(net_enable_timestamp);
2115 
2116 void net_disable_timestamp(void)
2117 {
2118 #ifdef CONFIG_JUMP_LABEL
2119 	int wanted = atomic_read(&netstamp_wanted);
2120 
2121 	while (wanted > 1) {
2122 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2123 			return;
2124 	}
2125 	atomic_dec(&netstamp_needed_deferred);
2126 	schedule_work(&netstamp_work);
2127 #else
2128 	static_branch_dec(&netstamp_needed_key);
2129 #endif
2130 }
2131 EXPORT_SYMBOL(net_disable_timestamp);
2132 
2133 static inline void net_timestamp_set(struct sk_buff *skb)
2134 {
2135 	skb->tstamp = 0;
2136 	skb->mono_delivery_time = 0;
2137 	if (static_branch_unlikely(&netstamp_needed_key))
2138 		skb->tstamp = ktime_get_real();
2139 }
2140 
2141 #define net_timestamp_check(COND, SKB)				\
2142 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2143 		if ((COND) && !(SKB)->tstamp)			\
2144 			(SKB)->tstamp = ktime_get_real();	\
2145 	}							\
2146 
2147 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2148 {
2149 	return __is_skb_forwardable(dev, skb, true);
2150 }
2151 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2152 
2153 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2154 			      bool check_mtu)
2155 {
2156 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2157 
2158 	if (likely(!ret)) {
2159 		skb->protocol = eth_type_trans(skb, dev);
2160 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2161 	}
2162 
2163 	return ret;
2164 }
2165 
2166 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2167 {
2168 	return __dev_forward_skb2(dev, skb, true);
2169 }
2170 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2171 
2172 /**
2173  * dev_forward_skb - loopback an skb to another netif
2174  *
2175  * @dev: destination network device
2176  * @skb: buffer to forward
2177  *
2178  * return values:
2179  *	NET_RX_SUCCESS	(no congestion)
2180  *	NET_RX_DROP     (packet was dropped, but freed)
2181  *
2182  * dev_forward_skb can be used for injecting an skb from the
2183  * start_xmit function of one device into the receive queue
2184  * of another device.
2185  *
2186  * The receiving device may be in another namespace, so
2187  * we have to clear all information in the skb that could
2188  * impact namespace isolation.
2189  */
2190 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2191 {
2192 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2193 }
2194 EXPORT_SYMBOL_GPL(dev_forward_skb);
2195 
2196 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2197 {
2198 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2199 }
2200 
2201 static inline int deliver_skb(struct sk_buff *skb,
2202 			      struct packet_type *pt_prev,
2203 			      struct net_device *orig_dev)
2204 {
2205 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2206 		return -ENOMEM;
2207 	refcount_inc(&skb->users);
2208 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2209 }
2210 
2211 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2212 					  struct packet_type **pt,
2213 					  struct net_device *orig_dev,
2214 					  __be16 type,
2215 					  struct list_head *ptype_list)
2216 {
2217 	struct packet_type *ptype, *pt_prev = *pt;
2218 
2219 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2220 		if (ptype->type != type)
2221 			continue;
2222 		if (pt_prev)
2223 			deliver_skb(skb, pt_prev, orig_dev);
2224 		pt_prev = ptype;
2225 	}
2226 	*pt = pt_prev;
2227 }
2228 
2229 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2230 {
2231 	if (!ptype->af_packet_priv || !skb->sk)
2232 		return false;
2233 
2234 	if (ptype->id_match)
2235 		return ptype->id_match(ptype, skb->sk);
2236 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2237 		return true;
2238 
2239 	return false;
2240 }
2241 
2242 /**
2243  * dev_nit_active - return true if any network interface taps are in use
2244  *
2245  * @dev: network device to check for the presence of taps
2246  */
2247 bool dev_nit_active(struct net_device *dev)
2248 {
2249 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2250 }
2251 EXPORT_SYMBOL_GPL(dev_nit_active);
2252 
2253 /*
2254  *	Support routine. Sends outgoing frames to any network
2255  *	taps currently in use.
2256  */
2257 
2258 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2259 {
2260 	struct packet_type *ptype;
2261 	struct sk_buff *skb2 = NULL;
2262 	struct packet_type *pt_prev = NULL;
2263 	struct list_head *ptype_list = &ptype_all;
2264 
2265 	rcu_read_lock();
2266 again:
2267 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2268 		if (ptype->ignore_outgoing)
2269 			continue;
2270 
2271 		/* Never send packets back to the socket
2272 		 * they originated from - MvS (miquels@drinkel.ow.org)
2273 		 */
2274 		if (skb_loop_sk(ptype, skb))
2275 			continue;
2276 
2277 		if (pt_prev) {
2278 			deliver_skb(skb2, pt_prev, skb->dev);
2279 			pt_prev = ptype;
2280 			continue;
2281 		}
2282 
2283 		/* need to clone skb, done only once */
2284 		skb2 = skb_clone(skb, GFP_ATOMIC);
2285 		if (!skb2)
2286 			goto out_unlock;
2287 
2288 		net_timestamp_set(skb2);
2289 
2290 		/* skb->nh should be correctly
2291 		 * set by sender, so that the second statement is
2292 		 * just protection against buggy protocols.
2293 		 */
2294 		skb_reset_mac_header(skb2);
2295 
2296 		if (skb_network_header(skb2) < skb2->data ||
2297 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2298 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2299 					     ntohs(skb2->protocol),
2300 					     dev->name);
2301 			skb_reset_network_header(skb2);
2302 		}
2303 
2304 		skb2->transport_header = skb2->network_header;
2305 		skb2->pkt_type = PACKET_OUTGOING;
2306 		pt_prev = ptype;
2307 	}
2308 
2309 	if (ptype_list == &ptype_all) {
2310 		ptype_list = &dev->ptype_all;
2311 		goto again;
2312 	}
2313 out_unlock:
2314 	if (pt_prev) {
2315 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2316 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2317 		else
2318 			kfree_skb(skb2);
2319 	}
2320 	rcu_read_unlock();
2321 }
2322 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2323 
2324 /**
2325  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2326  * @dev: Network device
2327  * @txq: number of queues available
2328  *
2329  * If real_num_tx_queues is changed the tc mappings may no longer be
2330  * valid. To resolve this verify the tc mapping remains valid and if
2331  * not NULL the mapping. With no priorities mapping to this
2332  * offset/count pair it will no longer be used. In the worst case TC0
2333  * is invalid nothing can be done so disable priority mappings. If is
2334  * expected that drivers will fix this mapping if they can before
2335  * calling netif_set_real_num_tx_queues.
2336  */
2337 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2338 {
2339 	int i;
2340 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2341 
2342 	/* If TC0 is invalidated disable TC mapping */
2343 	if (tc->offset + tc->count > txq) {
2344 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2345 		dev->num_tc = 0;
2346 		return;
2347 	}
2348 
2349 	/* Invalidated prio to tc mappings set to TC0 */
2350 	for (i = 1; i < TC_BITMASK + 1; i++) {
2351 		int q = netdev_get_prio_tc_map(dev, i);
2352 
2353 		tc = &dev->tc_to_txq[q];
2354 		if (tc->offset + tc->count > txq) {
2355 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2356 				    i, q);
2357 			netdev_set_prio_tc_map(dev, i, 0);
2358 		}
2359 	}
2360 }
2361 
2362 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2363 {
2364 	if (dev->num_tc) {
2365 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366 		int i;
2367 
2368 		/* walk through the TCs and see if it falls into any of them */
2369 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2370 			if ((txq - tc->offset) < tc->count)
2371 				return i;
2372 		}
2373 
2374 		/* didn't find it, just return -1 to indicate no match */
2375 		return -1;
2376 	}
2377 
2378 	return 0;
2379 }
2380 EXPORT_SYMBOL(netdev_txq_to_tc);
2381 
2382 #ifdef CONFIG_XPS
2383 static struct static_key xps_needed __read_mostly;
2384 static struct static_key xps_rxqs_needed __read_mostly;
2385 static DEFINE_MUTEX(xps_map_mutex);
2386 #define xmap_dereference(P)		\
2387 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2388 
2389 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2390 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2391 {
2392 	struct xps_map *map = NULL;
2393 	int pos;
2394 
2395 	map = xmap_dereference(dev_maps->attr_map[tci]);
2396 	if (!map)
2397 		return false;
2398 
2399 	for (pos = map->len; pos--;) {
2400 		if (map->queues[pos] != index)
2401 			continue;
2402 
2403 		if (map->len > 1) {
2404 			map->queues[pos] = map->queues[--map->len];
2405 			break;
2406 		}
2407 
2408 		if (old_maps)
2409 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2410 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2411 		kfree_rcu(map, rcu);
2412 		return false;
2413 	}
2414 
2415 	return true;
2416 }
2417 
2418 static bool remove_xps_queue_cpu(struct net_device *dev,
2419 				 struct xps_dev_maps *dev_maps,
2420 				 int cpu, u16 offset, u16 count)
2421 {
2422 	int num_tc = dev_maps->num_tc;
2423 	bool active = false;
2424 	int tci;
2425 
2426 	for (tci = cpu * num_tc; num_tc--; tci++) {
2427 		int i, j;
2428 
2429 		for (i = count, j = offset; i--; j++) {
2430 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2431 				break;
2432 		}
2433 
2434 		active |= i < 0;
2435 	}
2436 
2437 	return active;
2438 }
2439 
2440 static void reset_xps_maps(struct net_device *dev,
2441 			   struct xps_dev_maps *dev_maps,
2442 			   enum xps_map_type type)
2443 {
2444 	static_key_slow_dec_cpuslocked(&xps_needed);
2445 	if (type == XPS_RXQS)
2446 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2447 
2448 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2449 
2450 	kfree_rcu(dev_maps, rcu);
2451 }
2452 
2453 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2454 			   u16 offset, u16 count)
2455 {
2456 	struct xps_dev_maps *dev_maps;
2457 	bool active = false;
2458 	int i, j;
2459 
2460 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2461 	if (!dev_maps)
2462 		return;
2463 
2464 	for (j = 0; j < dev_maps->nr_ids; j++)
2465 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2466 	if (!active)
2467 		reset_xps_maps(dev, dev_maps, type);
2468 
2469 	if (type == XPS_CPUS) {
2470 		for (i = offset + (count - 1); count--; i--)
2471 			netdev_queue_numa_node_write(
2472 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2473 	}
2474 }
2475 
2476 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2477 				   u16 count)
2478 {
2479 	if (!static_key_false(&xps_needed))
2480 		return;
2481 
2482 	cpus_read_lock();
2483 	mutex_lock(&xps_map_mutex);
2484 
2485 	if (static_key_false(&xps_rxqs_needed))
2486 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2487 
2488 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2489 
2490 	mutex_unlock(&xps_map_mutex);
2491 	cpus_read_unlock();
2492 }
2493 
2494 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2495 {
2496 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2497 }
2498 
2499 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2500 				      u16 index, bool is_rxqs_map)
2501 {
2502 	struct xps_map *new_map;
2503 	int alloc_len = XPS_MIN_MAP_ALLOC;
2504 	int i, pos;
2505 
2506 	for (pos = 0; map && pos < map->len; pos++) {
2507 		if (map->queues[pos] != index)
2508 			continue;
2509 		return map;
2510 	}
2511 
2512 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2513 	if (map) {
2514 		if (pos < map->alloc_len)
2515 			return map;
2516 
2517 		alloc_len = map->alloc_len * 2;
2518 	}
2519 
2520 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2521 	 *  map
2522 	 */
2523 	if (is_rxqs_map)
2524 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2525 	else
2526 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2527 				       cpu_to_node(attr_index));
2528 	if (!new_map)
2529 		return NULL;
2530 
2531 	for (i = 0; i < pos; i++)
2532 		new_map->queues[i] = map->queues[i];
2533 	new_map->alloc_len = alloc_len;
2534 	new_map->len = pos;
2535 
2536 	return new_map;
2537 }
2538 
2539 /* Copy xps maps at a given index */
2540 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2541 			      struct xps_dev_maps *new_dev_maps, int index,
2542 			      int tc, bool skip_tc)
2543 {
2544 	int i, tci = index * dev_maps->num_tc;
2545 	struct xps_map *map;
2546 
2547 	/* copy maps belonging to foreign traffic classes */
2548 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2549 		if (i == tc && skip_tc)
2550 			continue;
2551 
2552 		/* fill in the new device map from the old device map */
2553 		map = xmap_dereference(dev_maps->attr_map[tci]);
2554 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2555 	}
2556 }
2557 
2558 /* Must be called under cpus_read_lock */
2559 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2560 			  u16 index, enum xps_map_type type)
2561 {
2562 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2563 	const unsigned long *online_mask = NULL;
2564 	bool active = false, copy = false;
2565 	int i, j, tci, numa_node_id = -2;
2566 	int maps_sz, num_tc = 1, tc = 0;
2567 	struct xps_map *map, *new_map;
2568 	unsigned int nr_ids;
2569 
2570 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2571 
2572 	if (dev->num_tc) {
2573 		/* Do not allow XPS on subordinate device directly */
2574 		num_tc = dev->num_tc;
2575 		if (num_tc < 0)
2576 			return -EINVAL;
2577 
2578 		/* If queue belongs to subordinate dev use its map */
2579 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2580 
2581 		tc = netdev_txq_to_tc(dev, index);
2582 		if (tc < 0)
2583 			return -EINVAL;
2584 	}
2585 
2586 	mutex_lock(&xps_map_mutex);
2587 
2588 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2589 	if (type == XPS_RXQS) {
2590 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2591 		nr_ids = dev->num_rx_queues;
2592 	} else {
2593 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2594 		if (num_possible_cpus() > 1)
2595 			online_mask = cpumask_bits(cpu_online_mask);
2596 		nr_ids = nr_cpu_ids;
2597 	}
2598 
2599 	if (maps_sz < L1_CACHE_BYTES)
2600 		maps_sz = L1_CACHE_BYTES;
2601 
2602 	/* The old dev_maps could be larger or smaller than the one we're
2603 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2604 	 * between. We could try to be smart, but let's be safe instead and only
2605 	 * copy foreign traffic classes if the two map sizes match.
2606 	 */
2607 	if (dev_maps &&
2608 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2609 		copy = true;
2610 
2611 	/* allocate memory for queue storage */
2612 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2613 	     j < nr_ids;) {
2614 		if (!new_dev_maps) {
2615 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2616 			if (!new_dev_maps) {
2617 				mutex_unlock(&xps_map_mutex);
2618 				return -ENOMEM;
2619 			}
2620 
2621 			new_dev_maps->nr_ids = nr_ids;
2622 			new_dev_maps->num_tc = num_tc;
2623 		}
2624 
2625 		tci = j * num_tc + tc;
2626 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2627 
2628 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2629 		if (!map)
2630 			goto error;
2631 
2632 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2633 	}
2634 
2635 	if (!new_dev_maps)
2636 		goto out_no_new_maps;
2637 
2638 	if (!dev_maps) {
2639 		/* Increment static keys at most once per type */
2640 		static_key_slow_inc_cpuslocked(&xps_needed);
2641 		if (type == XPS_RXQS)
2642 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2643 	}
2644 
2645 	for (j = 0; j < nr_ids; j++) {
2646 		bool skip_tc = false;
2647 
2648 		tci = j * num_tc + tc;
2649 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2650 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2651 			/* add tx-queue to CPU/rx-queue maps */
2652 			int pos = 0;
2653 
2654 			skip_tc = true;
2655 
2656 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2657 			while ((pos < map->len) && (map->queues[pos] != index))
2658 				pos++;
2659 
2660 			if (pos == map->len)
2661 				map->queues[map->len++] = index;
2662 #ifdef CONFIG_NUMA
2663 			if (type == XPS_CPUS) {
2664 				if (numa_node_id == -2)
2665 					numa_node_id = cpu_to_node(j);
2666 				else if (numa_node_id != cpu_to_node(j))
2667 					numa_node_id = -1;
2668 			}
2669 #endif
2670 		}
2671 
2672 		if (copy)
2673 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2674 					  skip_tc);
2675 	}
2676 
2677 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2678 
2679 	/* Cleanup old maps */
2680 	if (!dev_maps)
2681 		goto out_no_old_maps;
2682 
2683 	for (j = 0; j < dev_maps->nr_ids; j++) {
2684 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2685 			map = xmap_dereference(dev_maps->attr_map[tci]);
2686 			if (!map)
2687 				continue;
2688 
2689 			if (copy) {
2690 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2691 				if (map == new_map)
2692 					continue;
2693 			}
2694 
2695 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2696 			kfree_rcu(map, rcu);
2697 		}
2698 	}
2699 
2700 	old_dev_maps = dev_maps;
2701 
2702 out_no_old_maps:
2703 	dev_maps = new_dev_maps;
2704 	active = true;
2705 
2706 out_no_new_maps:
2707 	if (type == XPS_CPUS)
2708 		/* update Tx queue numa node */
2709 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2710 					     (numa_node_id >= 0) ?
2711 					     numa_node_id : NUMA_NO_NODE);
2712 
2713 	if (!dev_maps)
2714 		goto out_no_maps;
2715 
2716 	/* removes tx-queue from unused CPUs/rx-queues */
2717 	for (j = 0; j < dev_maps->nr_ids; j++) {
2718 		tci = j * dev_maps->num_tc;
2719 
2720 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2721 			if (i == tc &&
2722 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2723 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2724 				continue;
2725 
2726 			active |= remove_xps_queue(dev_maps,
2727 						   copy ? old_dev_maps : NULL,
2728 						   tci, index);
2729 		}
2730 	}
2731 
2732 	if (old_dev_maps)
2733 		kfree_rcu(old_dev_maps, rcu);
2734 
2735 	/* free map if not active */
2736 	if (!active)
2737 		reset_xps_maps(dev, dev_maps, type);
2738 
2739 out_no_maps:
2740 	mutex_unlock(&xps_map_mutex);
2741 
2742 	return 0;
2743 error:
2744 	/* remove any maps that we added */
2745 	for (j = 0; j < nr_ids; j++) {
2746 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2747 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2748 			map = copy ?
2749 			      xmap_dereference(dev_maps->attr_map[tci]) :
2750 			      NULL;
2751 			if (new_map && new_map != map)
2752 				kfree(new_map);
2753 		}
2754 	}
2755 
2756 	mutex_unlock(&xps_map_mutex);
2757 
2758 	kfree(new_dev_maps);
2759 	return -ENOMEM;
2760 }
2761 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2762 
2763 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2764 			u16 index)
2765 {
2766 	int ret;
2767 
2768 	cpus_read_lock();
2769 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2770 	cpus_read_unlock();
2771 
2772 	return ret;
2773 }
2774 EXPORT_SYMBOL(netif_set_xps_queue);
2775 
2776 #endif
2777 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2778 {
2779 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2780 
2781 	/* Unbind any subordinate channels */
2782 	while (txq-- != &dev->_tx[0]) {
2783 		if (txq->sb_dev)
2784 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2785 	}
2786 }
2787 
2788 void netdev_reset_tc(struct net_device *dev)
2789 {
2790 #ifdef CONFIG_XPS
2791 	netif_reset_xps_queues_gt(dev, 0);
2792 #endif
2793 	netdev_unbind_all_sb_channels(dev);
2794 
2795 	/* Reset TC configuration of device */
2796 	dev->num_tc = 0;
2797 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2798 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2799 }
2800 EXPORT_SYMBOL(netdev_reset_tc);
2801 
2802 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2803 {
2804 	if (tc >= dev->num_tc)
2805 		return -EINVAL;
2806 
2807 #ifdef CONFIG_XPS
2808 	netif_reset_xps_queues(dev, offset, count);
2809 #endif
2810 	dev->tc_to_txq[tc].count = count;
2811 	dev->tc_to_txq[tc].offset = offset;
2812 	return 0;
2813 }
2814 EXPORT_SYMBOL(netdev_set_tc_queue);
2815 
2816 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2817 {
2818 	if (num_tc > TC_MAX_QUEUE)
2819 		return -EINVAL;
2820 
2821 #ifdef CONFIG_XPS
2822 	netif_reset_xps_queues_gt(dev, 0);
2823 #endif
2824 	netdev_unbind_all_sb_channels(dev);
2825 
2826 	dev->num_tc = num_tc;
2827 	return 0;
2828 }
2829 EXPORT_SYMBOL(netdev_set_num_tc);
2830 
2831 void netdev_unbind_sb_channel(struct net_device *dev,
2832 			      struct net_device *sb_dev)
2833 {
2834 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2835 
2836 #ifdef CONFIG_XPS
2837 	netif_reset_xps_queues_gt(sb_dev, 0);
2838 #endif
2839 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2840 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2841 
2842 	while (txq-- != &dev->_tx[0]) {
2843 		if (txq->sb_dev == sb_dev)
2844 			txq->sb_dev = NULL;
2845 	}
2846 }
2847 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2848 
2849 int netdev_bind_sb_channel_queue(struct net_device *dev,
2850 				 struct net_device *sb_dev,
2851 				 u8 tc, u16 count, u16 offset)
2852 {
2853 	/* Make certain the sb_dev and dev are already configured */
2854 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2855 		return -EINVAL;
2856 
2857 	/* We cannot hand out queues we don't have */
2858 	if ((offset + count) > dev->real_num_tx_queues)
2859 		return -EINVAL;
2860 
2861 	/* Record the mapping */
2862 	sb_dev->tc_to_txq[tc].count = count;
2863 	sb_dev->tc_to_txq[tc].offset = offset;
2864 
2865 	/* Provide a way for Tx queue to find the tc_to_txq map or
2866 	 * XPS map for itself.
2867 	 */
2868 	while (count--)
2869 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2870 
2871 	return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2874 
2875 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2876 {
2877 	/* Do not use a multiqueue device to represent a subordinate channel */
2878 	if (netif_is_multiqueue(dev))
2879 		return -ENODEV;
2880 
2881 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2882 	 * Channel 0 is meant to be "native" mode and used only to represent
2883 	 * the main root device. We allow writing 0 to reset the device back
2884 	 * to normal mode after being used as a subordinate channel.
2885 	 */
2886 	if (channel > S16_MAX)
2887 		return -EINVAL;
2888 
2889 	dev->num_tc = -channel;
2890 
2891 	return 0;
2892 }
2893 EXPORT_SYMBOL(netdev_set_sb_channel);
2894 
2895 /*
2896  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2897  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2898  */
2899 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2900 {
2901 	bool disabling;
2902 	int rc;
2903 
2904 	disabling = txq < dev->real_num_tx_queues;
2905 
2906 	if (txq < 1 || txq > dev->num_tx_queues)
2907 		return -EINVAL;
2908 
2909 	if (dev->reg_state == NETREG_REGISTERED ||
2910 	    dev->reg_state == NETREG_UNREGISTERING) {
2911 		ASSERT_RTNL();
2912 
2913 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2914 						  txq);
2915 		if (rc)
2916 			return rc;
2917 
2918 		if (dev->num_tc)
2919 			netif_setup_tc(dev, txq);
2920 
2921 		dev_qdisc_change_real_num_tx(dev, txq);
2922 
2923 		dev->real_num_tx_queues = txq;
2924 
2925 		if (disabling) {
2926 			synchronize_net();
2927 			qdisc_reset_all_tx_gt(dev, txq);
2928 #ifdef CONFIG_XPS
2929 			netif_reset_xps_queues_gt(dev, txq);
2930 #endif
2931 		}
2932 	} else {
2933 		dev->real_num_tx_queues = txq;
2934 	}
2935 
2936 	return 0;
2937 }
2938 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2939 
2940 #ifdef CONFIG_SYSFS
2941 /**
2942  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2943  *	@dev: Network device
2944  *	@rxq: Actual number of RX queues
2945  *
2946  *	This must be called either with the rtnl_lock held or before
2947  *	registration of the net device.  Returns 0 on success, or a
2948  *	negative error code.  If called before registration, it always
2949  *	succeeds.
2950  */
2951 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2952 {
2953 	int rc;
2954 
2955 	if (rxq < 1 || rxq > dev->num_rx_queues)
2956 		return -EINVAL;
2957 
2958 	if (dev->reg_state == NETREG_REGISTERED) {
2959 		ASSERT_RTNL();
2960 
2961 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2962 						  rxq);
2963 		if (rc)
2964 			return rc;
2965 	}
2966 
2967 	dev->real_num_rx_queues = rxq;
2968 	return 0;
2969 }
2970 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2971 #endif
2972 
2973 /**
2974  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2975  *	@dev: Network device
2976  *	@txq: Actual number of TX queues
2977  *	@rxq: Actual number of RX queues
2978  *
2979  *	Set the real number of both TX and RX queues.
2980  *	Does nothing if the number of queues is already correct.
2981  */
2982 int netif_set_real_num_queues(struct net_device *dev,
2983 			      unsigned int txq, unsigned int rxq)
2984 {
2985 	unsigned int old_rxq = dev->real_num_rx_queues;
2986 	int err;
2987 
2988 	if (txq < 1 || txq > dev->num_tx_queues ||
2989 	    rxq < 1 || rxq > dev->num_rx_queues)
2990 		return -EINVAL;
2991 
2992 	/* Start from increases, so the error path only does decreases -
2993 	 * decreases can't fail.
2994 	 */
2995 	if (rxq > dev->real_num_rx_queues) {
2996 		err = netif_set_real_num_rx_queues(dev, rxq);
2997 		if (err)
2998 			return err;
2999 	}
3000 	if (txq > dev->real_num_tx_queues) {
3001 		err = netif_set_real_num_tx_queues(dev, txq);
3002 		if (err)
3003 			goto undo_rx;
3004 	}
3005 	if (rxq < dev->real_num_rx_queues)
3006 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3007 	if (txq < dev->real_num_tx_queues)
3008 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3009 
3010 	return 0;
3011 undo_rx:
3012 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3013 	return err;
3014 }
3015 EXPORT_SYMBOL(netif_set_real_num_queues);
3016 
3017 /**
3018  * netif_set_tso_max_size() - set the max size of TSO frames supported
3019  * @dev:	netdev to update
3020  * @size:	max skb->len of a TSO frame
3021  *
3022  * Set the limit on the size of TSO super-frames the device can handle.
3023  * Unless explicitly set the stack will assume the value of
3024  * %GSO_LEGACY_MAX_SIZE.
3025  */
3026 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3027 {
3028 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3029 	if (size < READ_ONCE(dev->gso_max_size))
3030 		netif_set_gso_max_size(dev, size);
3031 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3032 		netif_set_gso_ipv4_max_size(dev, size);
3033 }
3034 EXPORT_SYMBOL(netif_set_tso_max_size);
3035 
3036 /**
3037  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3038  * @dev:	netdev to update
3039  * @segs:	max number of TCP segments
3040  *
3041  * Set the limit on the number of TCP segments the device can generate from
3042  * a single TSO super-frame.
3043  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3044  */
3045 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3046 {
3047 	dev->tso_max_segs = segs;
3048 	if (segs < READ_ONCE(dev->gso_max_segs))
3049 		netif_set_gso_max_segs(dev, segs);
3050 }
3051 EXPORT_SYMBOL(netif_set_tso_max_segs);
3052 
3053 /**
3054  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3055  * @to:		netdev to update
3056  * @from:	netdev from which to copy the limits
3057  */
3058 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3059 {
3060 	netif_set_tso_max_size(to, from->tso_max_size);
3061 	netif_set_tso_max_segs(to, from->tso_max_segs);
3062 }
3063 EXPORT_SYMBOL(netif_inherit_tso_max);
3064 
3065 /**
3066  * netif_get_num_default_rss_queues - default number of RSS queues
3067  *
3068  * Default value is the number of physical cores if there are only 1 or 2, or
3069  * divided by 2 if there are more.
3070  */
3071 int netif_get_num_default_rss_queues(void)
3072 {
3073 	cpumask_var_t cpus;
3074 	int cpu, count = 0;
3075 
3076 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3077 		return 1;
3078 
3079 	cpumask_copy(cpus, cpu_online_mask);
3080 	for_each_cpu(cpu, cpus) {
3081 		++count;
3082 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3083 	}
3084 	free_cpumask_var(cpus);
3085 
3086 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3087 }
3088 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3089 
3090 static void __netif_reschedule(struct Qdisc *q)
3091 {
3092 	struct softnet_data *sd;
3093 	unsigned long flags;
3094 
3095 	local_irq_save(flags);
3096 	sd = this_cpu_ptr(&softnet_data);
3097 	q->next_sched = NULL;
3098 	*sd->output_queue_tailp = q;
3099 	sd->output_queue_tailp = &q->next_sched;
3100 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3101 	local_irq_restore(flags);
3102 }
3103 
3104 void __netif_schedule(struct Qdisc *q)
3105 {
3106 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3107 		__netif_reschedule(q);
3108 }
3109 EXPORT_SYMBOL(__netif_schedule);
3110 
3111 struct dev_kfree_skb_cb {
3112 	enum skb_drop_reason reason;
3113 };
3114 
3115 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3116 {
3117 	return (struct dev_kfree_skb_cb *)skb->cb;
3118 }
3119 
3120 void netif_schedule_queue(struct netdev_queue *txq)
3121 {
3122 	rcu_read_lock();
3123 	if (!netif_xmit_stopped(txq)) {
3124 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3125 
3126 		__netif_schedule(q);
3127 	}
3128 	rcu_read_unlock();
3129 }
3130 EXPORT_SYMBOL(netif_schedule_queue);
3131 
3132 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3133 {
3134 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3135 		struct Qdisc *q;
3136 
3137 		rcu_read_lock();
3138 		q = rcu_dereference(dev_queue->qdisc);
3139 		__netif_schedule(q);
3140 		rcu_read_unlock();
3141 	}
3142 }
3143 EXPORT_SYMBOL(netif_tx_wake_queue);
3144 
3145 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3146 {
3147 	unsigned long flags;
3148 
3149 	if (unlikely(!skb))
3150 		return;
3151 
3152 	if (likely(refcount_read(&skb->users) == 1)) {
3153 		smp_rmb();
3154 		refcount_set(&skb->users, 0);
3155 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3156 		return;
3157 	}
3158 	get_kfree_skb_cb(skb)->reason = reason;
3159 	local_irq_save(flags);
3160 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3161 	__this_cpu_write(softnet_data.completion_queue, skb);
3162 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3163 	local_irq_restore(flags);
3164 }
3165 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3166 
3167 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3168 {
3169 	if (in_hardirq() || irqs_disabled())
3170 		dev_kfree_skb_irq_reason(skb, reason);
3171 	else
3172 		kfree_skb_reason(skb, reason);
3173 }
3174 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3175 
3176 
3177 /**
3178  * netif_device_detach - mark device as removed
3179  * @dev: network device
3180  *
3181  * Mark device as removed from system and therefore no longer available.
3182  */
3183 void netif_device_detach(struct net_device *dev)
3184 {
3185 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3186 	    netif_running(dev)) {
3187 		netif_tx_stop_all_queues(dev);
3188 	}
3189 }
3190 EXPORT_SYMBOL(netif_device_detach);
3191 
3192 /**
3193  * netif_device_attach - mark device as attached
3194  * @dev: network device
3195  *
3196  * Mark device as attached from system and restart if needed.
3197  */
3198 void netif_device_attach(struct net_device *dev)
3199 {
3200 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3201 	    netif_running(dev)) {
3202 		netif_tx_wake_all_queues(dev);
3203 		__netdev_watchdog_up(dev);
3204 	}
3205 }
3206 EXPORT_SYMBOL(netif_device_attach);
3207 
3208 /*
3209  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3210  * to be used as a distribution range.
3211  */
3212 static u16 skb_tx_hash(const struct net_device *dev,
3213 		       const struct net_device *sb_dev,
3214 		       struct sk_buff *skb)
3215 {
3216 	u32 hash;
3217 	u16 qoffset = 0;
3218 	u16 qcount = dev->real_num_tx_queues;
3219 
3220 	if (dev->num_tc) {
3221 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3222 
3223 		qoffset = sb_dev->tc_to_txq[tc].offset;
3224 		qcount = sb_dev->tc_to_txq[tc].count;
3225 		if (unlikely(!qcount)) {
3226 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3227 					     sb_dev->name, qoffset, tc);
3228 			qoffset = 0;
3229 			qcount = dev->real_num_tx_queues;
3230 		}
3231 	}
3232 
3233 	if (skb_rx_queue_recorded(skb)) {
3234 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3235 		hash = skb_get_rx_queue(skb);
3236 		if (hash >= qoffset)
3237 			hash -= qoffset;
3238 		while (unlikely(hash >= qcount))
3239 			hash -= qcount;
3240 		return hash + qoffset;
3241 	}
3242 
3243 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3244 }
3245 
3246 void skb_warn_bad_offload(const struct sk_buff *skb)
3247 {
3248 	static const netdev_features_t null_features;
3249 	struct net_device *dev = skb->dev;
3250 	const char *name = "";
3251 
3252 	if (!net_ratelimit())
3253 		return;
3254 
3255 	if (dev) {
3256 		if (dev->dev.parent)
3257 			name = dev_driver_string(dev->dev.parent);
3258 		else
3259 			name = netdev_name(dev);
3260 	}
3261 	skb_dump(KERN_WARNING, skb, false);
3262 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3263 	     name, dev ? &dev->features : &null_features,
3264 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3265 }
3266 
3267 /*
3268  * Invalidate hardware checksum when packet is to be mangled, and
3269  * complete checksum manually on outgoing path.
3270  */
3271 int skb_checksum_help(struct sk_buff *skb)
3272 {
3273 	__wsum csum;
3274 	int ret = 0, offset;
3275 
3276 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3277 		goto out_set_summed;
3278 
3279 	if (unlikely(skb_is_gso(skb))) {
3280 		skb_warn_bad_offload(skb);
3281 		return -EINVAL;
3282 	}
3283 
3284 	/* Before computing a checksum, we should make sure no frag could
3285 	 * be modified by an external entity : checksum could be wrong.
3286 	 */
3287 	if (skb_has_shared_frag(skb)) {
3288 		ret = __skb_linearize(skb);
3289 		if (ret)
3290 			goto out;
3291 	}
3292 
3293 	offset = skb_checksum_start_offset(skb);
3294 	ret = -EINVAL;
3295 	if (unlikely(offset >= skb_headlen(skb))) {
3296 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3297 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3298 			  offset, skb_headlen(skb));
3299 		goto out;
3300 	}
3301 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3302 
3303 	offset += skb->csum_offset;
3304 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3305 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3306 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3307 			  offset + sizeof(__sum16), skb_headlen(skb));
3308 		goto out;
3309 	}
3310 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3311 	if (ret)
3312 		goto out;
3313 
3314 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3315 out_set_summed:
3316 	skb->ip_summed = CHECKSUM_NONE;
3317 out:
3318 	return ret;
3319 }
3320 EXPORT_SYMBOL(skb_checksum_help);
3321 
3322 int skb_crc32c_csum_help(struct sk_buff *skb)
3323 {
3324 	__le32 crc32c_csum;
3325 	int ret = 0, offset, start;
3326 
3327 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3328 		goto out;
3329 
3330 	if (unlikely(skb_is_gso(skb)))
3331 		goto out;
3332 
3333 	/* Before computing a checksum, we should make sure no frag could
3334 	 * be modified by an external entity : checksum could be wrong.
3335 	 */
3336 	if (unlikely(skb_has_shared_frag(skb))) {
3337 		ret = __skb_linearize(skb);
3338 		if (ret)
3339 			goto out;
3340 	}
3341 	start = skb_checksum_start_offset(skb);
3342 	offset = start + offsetof(struct sctphdr, checksum);
3343 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3344 		ret = -EINVAL;
3345 		goto out;
3346 	}
3347 
3348 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3349 	if (ret)
3350 		goto out;
3351 
3352 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3353 						  skb->len - start, ~(__u32)0,
3354 						  crc32c_csum_stub));
3355 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3356 	skb_reset_csum_not_inet(skb);
3357 out:
3358 	return ret;
3359 }
3360 
3361 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3362 {
3363 	__be16 type = skb->protocol;
3364 
3365 	/* Tunnel gso handlers can set protocol to ethernet. */
3366 	if (type == htons(ETH_P_TEB)) {
3367 		struct ethhdr *eth;
3368 
3369 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3370 			return 0;
3371 
3372 		eth = (struct ethhdr *)skb->data;
3373 		type = eth->h_proto;
3374 	}
3375 
3376 	return vlan_get_protocol_and_depth(skb, type, depth);
3377 }
3378 
3379 
3380 /* Take action when hardware reception checksum errors are detected. */
3381 #ifdef CONFIG_BUG
3382 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3383 {
3384 	netdev_err(dev, "hw csum failure\n");
3385 	skb_dump(KERN_ERR, skb, true);
3386 	dump_stack();
3387 }
3388 
3389 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3390 {
3391 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3392 }
3393 EXPORT_SYMBOL(netdev_rx_csum_fault);
3394 #endif
3395 
3396 /* XXX: check that highmem exists at all on the given machine. */
3397 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3398 {
3399 #ifdef CONFIG_HIGHMEM
3400 	int i;
3401 
3402 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3403 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3404 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3405 
3406 			if (PageHighMem(skb_frag_page(frag)))
3407 				return 1;
3408 		}
3409 	}
3410 #endif
3411 	return 0;
3412 }
3413 
3414 /* If MPLS offload request, verify we are testing hardware MPLS features
3415  * instead of standard features for the netdev.
3416  */
3417 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3418 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3419 					   netdev_features_t features,
3420 					   __be16 type)
3421 {
3422 	if (eth_p_mpls(type))
3423 		features &= skb->dev->mpls_features;
3424 
3425 	return features;
3426 }
3427 #else
3428 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3429 					   netdev_features_t features,
3430 					   __be16 type)
3431 {
3432 	return features;
3433 }
3434 #endif
3435 
3436 static netdev_features_t harmonize_features(struct sk_buff *skb,
3437 	netdev_features_t features)
3438 {
3439 	__be16 type;
3440 
3441 	type = skb_network_protocol(skb, NULL);
3442 	features = net_mpls_features(skb, features, type);
3443 
3444 	if (skb->ip_summed != CHECKSUM_NONE &&
3445 	    !can_checksum_protocol(features, type)) {
3446 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3447 	}
3448 	if (illegal_highdma(skb->dev, skb))
3449 		features &= ~NETIF_F_SG;
3450 
3451 	return features;
3452 }
3453 
3454 netdev_features_t passthru_features_check(struct sk_buff *skb,
3455 					  struct net_device *dev,
3456 					  netdev_features_t features)
3457 {
3458 	return features;
3459 }
3460 EXPORT_SYMBOL(passthru_features_check);
3461 
3462 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3463 					     struct net_device *dev,
3464 					     netdev_features_t features)
3465 {
3466 	return vlan_features_check(skb, features);
3467 }
3468 
3469 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3470 					    struct net_device *dev,
3471 					    netdev_features_t features)
3472 {
3473 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3474 
3475 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3476 		return features & ~NETIF_F_GSO_MASK;
3477 
3478 	if (!skb_shinfo(skb)->gso_type) {
3479 		skb_warn_bad_offload(skb);
3480 		return features & ~NETIF_F_GSO_MASK;
3481 	}
3482 
3483 	/* Support for GSO partial features requires software
3484 	 * intervention before we can actually process the packets
3485 	 * so we need to strip support for any partial features now
3486 	 * and we can pull them back in after we have partially
3487 	 * segmented the frame.
3488 	 */
3489 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3490 		features &= ~dev->gso_partial_features;
3491 
3492 	/* Make sure to clear the IPv4 ID mangling feature if the
3493 	 * IPv4 header has the potential to be fragmented.
3494 	 */
3495 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3496 		struct iphdr *iph = skb->encapsulation ?
3497 				    inner_ip_hdr(skb) : ip_hdr(skb);
3498 
3499 		if (!(iph->frag_off & htons(IP_DF)))
3500 			features &= ~NETIF_F_TSO_MANGLEID;
3501 	}
3502 
3503 	return features;
3504 }
3505 
3506 netdev_features_t netif_skb_features(struct sk_buff *skb)
3507 {
3508 	struct net_device *dev = skb->dev;
3509 	netdev_features_t features = dev->features;
3510 
3511 	if (skb_is_gso(skb))
3512 		features = gso_features_check(skb, dev, features);
3513 
3514 	/* If encapsulation offload request, verify we are testing
3515 	 * hardware encapsulation features instead of standard
3516 	 * features for the netdev
3517 	 */
3518 	if (skb->encapsulation)
3519 		features &= dev->hw_enc_features;
3520 
3521 	if (skb_vlan_tagged(skb))
3522 		features = netdev_intersect_features(features,
3523 						     dev->vlan_features |
3524 						     NETIF_F_HW_VLAN_CTAG_TX |
3525 						     NETIF_F_HW_VLAN_STAG_TX);
3526 
3527 	if (dev->netdev_ops->ndo_features_check)
3528 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3529 								features);
3530 	else
3531 		features &= dflt_features_check(skb, dev, features);
3532 
3533 	return harmonize_features(skb, features);
3534 }
3535 EXPORT_SYMBOL(netif_skb_features);
3536 
3537 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3538 		    struct netdev_queue *txq, bool more)
3539 {
3540 	unsigned int len;
3541 	int rc;
3542 
3543 	if (dev_nit_active(dev))
3544 		dev_queue_xmit_nit(skb, dev);
3545 
3546 	len = skb->len;
3547 	trace_net_dev_start_xmit(skb, dev);
3548 	rc = netdev_start_xmit(skb, dev, txq, more);
3549 	trace_net_dev_xmit(skb, rc, dev, len);
3550 
3551 	return rc;
3552 }
3553 
3554 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3555 				    struct netdev_queue *txq, int *ret)
3556 {
3557 	struct sk_buff *skb = first;
3558 	int rc = NETDEV_TX_OK;
3559 
3560 	while (skb) {
3561 		struct sk_buff *next = skb->next;
3562 
3563 		skb_mark_not_on_list(skb);
3564 		rc = xmit_one(skb, dev, txq, next != NULL);
3565 		if (unlikely(!dev_xmit_complete(rc))) {
3566 			skb->next = next;
3567 			goto out;
3568 		}
3569 
3570 		skb = next;
3571 		if (netif_tx_queue_stopped(txq) && skb) {
3572 			rc = NETDEV_TX_BUSY;
3573 			break;
3574 		}
3575 	}
3576 
3577 out:
3578 	*ret = rc;
3579 	return skb;
3580 }
3581 
3582 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3583 					  netdev_features_t features)
3584 {
3585 	if (skb_vlan_tag_present(skb) &&
3586 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3587 		skb = __vlan_hwaccel_push_inside(skb);
3588 	return skb;
3589 }
3590 
3591 int skb_csum_hwoffload_help(struct sk_buff *skb,
3592 			    const netdev_features_t features)
3593 {
3594 	if (unlikely(skb_csum_is_sctp(skb)))
3595 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3596 			skb_crc32c_csum_help(skb);
3597 
3598 	if (features & NETIF_F_HW_CSUM)
3599 		return 0;
3600 
3601 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3602 		switch (skb->csum_offset) {
3603 		case offsetof(struct tcphdr, check):
3604 		case offsetof(struct udphdr, check):
3605 			return 0;
3606 		}
3607 	}
3608 
3609 	return skb_checksum_help(skb);
3610 }
3611 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3612 
3613 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3614 {
3615 	netdev_features_t features;
3616 
3617 	features = netif_skb_features(skb);
3618 	skb = validate_xmit_vlan(skb, features);
3619 	if (unlikely(!skb))
3620 		goto out_null;
3621 
3622 	skb = sk_validate_xmit_skb(skb, dev);
3623 	if (unlikely(!skb))
3624 		goto out_null;
3625 
3626 	if (netif_needs_gso(skb, features)) {
3627 		struct sk_buff *segs;
3628 
3629 		segs = skb_gso_segment(skb, features);
3630 		if (IS_ERR(segs)) {
3631 			goto out_kfree_skb;
3632 		} else if (segs) {
3633 			consume_skb(skb);
3634 			skb = segs;
3635 		}
3636 	} else {
3637 		if (skb_needs_linearize(skb, features) &&
3638 		    __skb_linearize(skb))
3639 			goto out_kfree_skb;
3640 
3641 		/* If packet is not checksummed and device does not
3642 		 * support checksumming for this protocol, complete
3643 		 * checksumming here.
3644 		 */
3645 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3646 			if (skb->encapsulation)
3647 				skb_set_inner_transport_header(skb,
3648 							       skb_checksum_start_offset(skb));
3649 			else
3650 				skb_set_transport_header(skb,
3651 							 skb_checksum_start_offset(skb));
3652 			if (skb_csum_hwoffload_help(skb, features))
3653 				goto out_kfree_skb;
3654 		}
3655 	}
3656 
3657 	skb = validate_xmit_xfrm(skb, features, again);
3658 
3659 	return skb;
3660 
3661 out_kfree_skb:
3662 	kfree_skb(skb);
3663 out_null:
3664 	dev_core_stats_tx_dropped_inc(dev);
3665 	return NULL;
3666 }
3667 
3668 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3669 {
3670 	struct sk_buff *next, *head = NULL, *tail;
3671 
3672 	for (; skb != NULL; skb = next) {
3673 		next = skb->next;
3674 		skb_mark_not_on_list(skb);
3675 
3676 		/* in case skb wont be segmented, point to itself */
3677 		skb->prev = skb;
3678 
3679 		skb = validate_xmit_skb(skb, dev, again);
3680 		if (!skb)
3681 			continue;
3682 
3683 		if (!head)
3684 			head = skb;
3685 		else
3686 			tail->next = skb;
3687 		/* If skb was segmented, skb->prev points to
3688 		 * the last segment. If not, it still contains skb.
3689 		 */
3690 		tail = skb->prev;
3691 	}
3692 	return head;
3693 }
3694 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3695 
3696 static void qdisc_pkt_len_init(struct sk_buff *skb)
3697 {
3698 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3699 
3700 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3701 
3702 	/* To get more precise estimation of bytes sent on wire,
3703 	 * we add to pkt_len the headers size of all segments
3704 	 */
3705 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3706 		u16 gso_segs = shinfo->gso_segs;
3707 		unsigned int hdr_len;
3708 
3709 		/* mac layer + network layer */
3710 		hdr_len = skb_transport_offset(skb);
3711 
3712 		/* + transport layer */
3713 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3714 			const struct tcphdr *th;
3715 			struct tcphdr _tcphdr;
3716 
3717 			th = skb_header_pointer(skb, hdr_len,
3718 						sizeof(_tcphdr), &_tcphdr);
3719 			if (likely(th))
3720 				hdr_len += __tcp_hdrlen(th);
3721 		} else {
3722 			struct udphdr _udphdr;
3723 
3724 			if (skb_header_pointer(skb, hdr_len,
3725 					       sizeof(_udphdr), &_udphdr))
3726 				hdr_len += sizeof(struct udphdr);
3727 		}
3728 
3729 		if (shinfo->gso_type & SKB_GSO_DODGY)
3730 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3731 						shinfo->gso_size);
3732 
3733 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3734 	}
3735 }
3736 
3737 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3738 			     struct sk_buff **to_free,
3739 			     struct netdev_queue *txq)
3740 {
3741 	int rc;
3742 
3743 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3744 	if (rc == NET_XMIT_SUCCESS)
3745 		trace_qdisc_enqueue(q, txq, skb);
3746 	return rc;
3747 }
3748 
3749 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3750 				 struct net_device *dev,
3751 				 struct netdev_queue *txq)
3752 {
3753 	spinlock_t *root_lock = qdisc_lock(q);
3754 	struct sk_buff *to_free = NULL;
3755 	bool contended;
3756 	int rc;
3757 
3758 	qdisc_calculate_pkt_len(skb, q);
3759 
3760 	if (q->flags & TCQ_F_NOLOCK) {
3761 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3762 		    qdisc_run_begin(q)) {
3763 			/* Retest nolock_qdisc_is_empty() within the protection
3764 			 * of q->seqlock to protect from racing with requeuing.
3765 			 */
3766 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3767 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3768 				__qdisc_run(q);
3769 				qdisc_run_end(q);
3770 
3771 				goto no_lock_out;
3772 			}
3773 
3774 			qdisc_bstats_cpu_update(q, skb);
3775 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3776 			    !nolock_qdisc_is_empty(q))
3777 				__qdisc_run(q);
3778 
3779 			qdisc_run_end(q);
3780 			return NET_XMIT_SUCCESS;
3781 		}
3782 
3783 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3784 		qdisc_run(q);
3785 
3786 no_lock_out:
3787 		if (unlikely(to_free))
3788 			kfree_skb_list_reason(to_free,
3789 					      SKB_DROP_REASON_QDISC_DROP);
3790 		return rc;
3791 	}
3792 
3793 	/*
3794 	 * Heuristic to force contended enqueues to serialize on a
3795 	 * separate lock before trying to get qdisc main lock.
3796 	 * This permits qdisc->running owner to get the lock more
3797 	 * often and dequeue packets faster.
3798 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3799 	 * and then other tasks will only enqueue packets. The packets will be
3800 	 * sent after the qdisc owner is scheduled again. To prevent this
3801 	 * scenario the task always serialize on the lock.
3802 	 */
3803 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3804 	if (unlikely(contended))
3805 		spin_lock(&q->busylock);
3806 
3807 	spin_lock(root_lock);
3808 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3809 		__qdisc_drop(skb, &to_free);
3810 		rc = NET_XMIT_DROP;
3811 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3812 		   qdisc_run_begin(q)) {
3813 		/*
3814 		 * This is a work-conserving queue; there are no old skbs
3815 		 * waiting to be sent out; and the qdisc is not running -
3816 		 * xmit the skb directly.
3817 		 */
3818 
3819 		qdisc_bstats_update(q, skb);
3820 
3821 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3822 			if (unlikely(contended)) {
3823 				spin_unlock(&q->busylock);
3824 				contended = false;
3825 			}
3826 			__qdisc_run(q);
3827 		}
3828 
3829 		qdisc_run_end(q);
3830 		rc = NET_XMIT_SUCCESS;
3831 	} else {
3832 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3833 		if (qdisc_run_begin(q)) {
3834 			if (unlikely(contended)) {
3835 				spin_unlock(&q->busylock);
3836 				contended = false;
3837 			}
3838 			__qdisc_run(q);
3839 			qdisc_run_end(q);
3840 		}
3841 	}
3842 	spin_unlock(root_lock);
3843 	if (unlikely(to_free))
3844 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3845 	if (unlikely(contended))
3846 		spin_unlock(&q->busylock);
3847 	return rc;
3848 }
3849 
3850 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3851 static void skb_update_prio(struct sk_buff *skb)
3852 {
3853 	const struct netprio_map *map;
3854 	const struct sock *sk;
3855 	unsigned int prioidx;
3856 
3857 	if (skb->priority)
3858 		return;
3859 	map = rcu_dereference_bh(skb->dev->priomap);
3860 	if (!map)
3861 		return;
3862 	sk = skb_to_full_sk(skb);
3863 	if (!sk)
3864 		return;
3865 
3866 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3867 
3868 	if (prioidx < map->priomap_len)
3869 		skb->priority = map->priomap[prioidx];
3870 }
3871 #else
3872 #define skb_update_prio(skb)
3873 #endif
3874 
3875 /**
3876  *	dev_loopback_xmit - loop back @skb
3877  *	@net: network namespace this loopback is happening in
3878  *	@sk:  sk needed to be a netfilter okfn
3879  *	@skb: buffer to transmit
3880  */
3881 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3882 {
3883 	skb_reset_mac_header(skb);
3884 	__skb_pull(skb, skb_network_offset(skb));
3885 	skb->pkt_type = PACKET_LOOPBACK;
3886 	if (skb->ip_summed == CHECKSUM_NONE)
3887 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3888 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3889 	skb_dst_force(skb);
3890 	netif_rx(skb);
3891 	return 0;
3892 }
3893 EXPORT_SYMBOL(dev_loopback_xmit);
3894 
3895 #ifdef CONFIG_NET_EGRESS
3896 static struct netdev_queue *
3897 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3898 {
3899 	int qm = skb_get_queue_mapping(skb);
3900 
3901 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3902 }
3903 
3904 static bool netdev_xmit_txqueue_skipped(void)
3905 {
3906 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3907 }
3908 
3909 void netdev_xmit_skip_txqueue(bool skip)
3910 {
3911 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3912 }
3913 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3914 #endif /* CONFIG_NET_EGRESS */
3915 
3916 #ifdef CONFIG_NET_XGRESS
3917 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3918 		  enum skb_drop_reason *drop_reason)
3919 {
3920 	int ret = TC_ACT_UNSPEC;
3921 #ifdef CONFIG_NET_CLS_ACT
3922 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3923 	struct tcf_result res;
3924 
3925 	if (!miniq)
3926 		return ret;
3927 
3928 	tc_skb_cb(skb)->mru = 0;
3929 	tc_skb_cb(skb)->post_ct = false;
3930 	res.drop_reason = *drop_reason;
3931 
3932 	mini_qdisc_bstats_cpu_update(miniq, skb);
3933 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3934 	/* Only tcf related quirks below. */
3935 	switch (ret) {
3936 	case TC_ACT_SHOT:
3937 		*drop_reason = res.drop_reason;
3938 		mini_qdisc_qstats_cpu_drop(miniq);
3939 		break;
3940 	case TC_ACT_OK:
3941 	case TC_ACT_RECLASSIFY:
3942 		skb->tc_index = TC_H_MIN(res.classid);
3943 		break;
3944 	}
3945 #endif /* CONFIG_NET_CLS_ACT */
3946 	return ret;
3947 }
3948 
3949 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3950 
3951 void tcx_inc(void)
3952 {
3953 	static_branch_inc(&tcx_needed_key);
3954 }
3955 
3956 void tcx_dec(void)
3957 {
3958 	static_branch_dec(&tcx_needed_key);
3959 }
3960 
3961 static __always_inline enum tcx_action_base
3962 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3963 	const bool needs_mac)
3964 {
3965 	const struct bpf_mprog_fp *fp;
3966 	const struct bpf_prog *prog;
3967 	int ret = TCX_NEXT;
3968 
3969 	if (needs_mac)
3970 		__skb_push(skb, skb->mac_len);
3971 	bpf_mprog_foreach_prog(entry, fp, prog) {
3972 		bpf_compute_data_pointers(skb);
3973 		ret = bpf_prog_run(prog, skb);
3974 		if (ret != TCX_NEXT)
3975 			break;
3976 	}
3977 	if (needs_mac)
3978 		__skb_pull(skb, skb->mac_len);
3979 	return tcx_action_code(skb, ret);
3980 }
3981 
3982 static __always_inline struct sk_buff *
3983 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3984 		   struct net_device *orig_dev, bool *another)
3985 {
3986 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3987 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3988 	int sch_ret;
3989 
3990 	if (!entry)
3991 		return skb;
3992 	if (*pt_prev) {
3993 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3994 		*pt_prev = NULL;
3995 	}
3996 
3997 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3998 	tcx_set_ingress(skb, true);
3999 
4000 	if (static_branch_unlikely(&tcx_needed_key)) {
4001 		sch_ret = tcx_run(entry, skb, true);
4002 		if (sch_ret != TC_ACT_UNSPEC)
4003 			goto ingress_verdict;
4004 	}
4005 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4006 ingress_verdict:
4007 	switch (sch_ret) {
4008 	case TC_ACT_REDIRECT:
4009 		/* skb_mac_header check was done by BPF, so we can safely
4010 		 * push the L2 header back before redirecting to another
4011 		 * netdev.
4012 		 */
4013 		__skb_push(skb, skb->mac_len);
4014 		if (skb_do_redirect(skb) == -EAGAIN) {
4015 			__skb_pull(skb, skb->mac_len);
4016 			*another = true;
4017 			break;
4018 		}
4019 		*ret = NET_RX_SUCCESS;
4020 		return NULL;
4021 	case TC_ACT_SHOT:
4022 		kfree_skb_reason(skb, drop_reason);
4023 		*ret = NET_RX_DROP;
4024 		return NULL;
4025 	/* used by tc_run */
4026 	case TC_ACT_STOLEN:
4027 	case TC_ACT_QUEUED:
4028 	case TC_ACT_TRAP:
4029 		consume_skb(skb);
4030 		fallthrough;
4031 	case TC_ACT_CONSUMED:
4032 		*ret = NET_RX_SUCCESS;
4033 		return NULL;
4034 	}
4035 
4036 	return skb;
4037 }
4038 
4039 static __always_inline struct sk_buff *
4040 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4041 {
4042 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4043 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4044 	int sch_ret;
4045 
4046 	if (!entry)
4047 		return skb;
4048 
4049 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4050 	 * already set by the caller.
4051 	 */
4052 	if (static_branch_unlikely(&tcx_needed_key)) {
4053 		sch_ret = tcx_run(entry, skb, false);
4054 		if (sch_ret != TC_ACT_UNSPEC)
4055 			goto egress_verdict;
4056 	}
4057 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4058 egress_verdict:
4059 	switch (sch_ret) {
4060 	case TC_ACT_REDIRECT:
4061 		/* No need to push/pop skb's mac_header here on egress! */
4062 		skb_do_redirect(skb);
4063 		*ret = NET_XMIT_SUCCESS;
4064 		return NULL;
4065 	case TC_ACT_SHOT:
4066 		kfree_skb_reason(skb, drop_reason);
4067 		*ret = NET_XMIT_DROP;
4068 		return NULL;
4069 	/* used by tc_run */
4070 	case TC_ACT_STOLEN:
4071 	case TC_ACT_QUEUED:
4072 	case TC_ACT_TRAP:
4073 		consume_skb(skb);
4074 		fallthrough;
4075 	case TC_ACT_CONSUMED:
4076 		*ret = NET_XMIT_SUCCESS;
4077 		return NULL;
4078 	}
4079 
4080 	return skb;
4081 }
4082 #else
4083 static __always_inline struct sk_buff *
4084 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4085 		   struct net_device *orig_dev, bool *another)
4086 {
4087 	return skb;
4088 }
4089 
4090 static __always_inline struct sk_buff *
4091 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4092 {
4093 	return skb;
4094 }
4095 #endif /* CONFIG_NET_XGRESS */
4096 
4097 #ifdef CONFIG_XPS
4098 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4099 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4100 {
4101 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4102 	struct xps_map *map;
4103 	int queue_index = -1;
4104 
4105 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4106 		return queue_index;
4107 
4108 	tci *= dev_maps->num_tc;
4109 	tci += tc;
4110 
4111 	map = rcu_dereference(dev_maps->attr_map[tci]);
4112 	if (map) {
4113 		if (map->len == 1)
4114 			queue_index = map->queues[0];
4115 		else
4116 			queue_index = map->queues[reciprocal_scale(
4117 						skb_get_hash(skb), map->len)];
4118 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4119 			queue_index = -1;
4120 	}
4121 	return queue_index;
4122 }
4123 #endif
4124 
4125 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4126 			 struct sk_buff *skb)
4127 {
4128 #ifdef CONFIG_XPS
4129 	struct xps_dev_maps *dev_maps;
4130 	struct sock *sk = skb->sk;
4131 	int queue_index = -1;
4132 
4133 	if (!static_key_false(&xps_needed))
4134 		return -1;
4135 
4136 	rcu_read_lock();
4137 	if (!static_key_false(&xps_rxqs_needed))
4138 		goto get_cpus_map;
4139 
4140 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4141 	if (dev_maps) {
4142 		int tci = sk_rx_queue_get(sk);
4143 
4144 		if (tci >= 0)
4145 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4146 							  tci);
4147 	}
4148 
4149 get_cpus_map:
4150 	if (queue_index < 0) {
4151 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4152 		if (dev_maps) {
4153 			unsigned int tci = skb->sender_cpu - 1;
4154 
4155 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4156 							  tci);
4157 		}
4158 	}
4159 	rcu_read_unlock();
4160 
4161 	return queue_index;
4162 #else
4163 	return -1;
4164 #endif
4165 }
4166 
4167 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4168 		     struct net_device *sb_dev)
4169 {
4170 	return 0;
4171 }
4172 EXPORT_SYMBOL(dev_pick_tx_zero);
4173 
4174 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4175 		       struct net_device *sb_dev)
4176 {
4177 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4178 }
4179 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4180 
4181 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4182 		     struct net_device *sb_dev)
4183 {
4184 	struct sock *sk = skb->sk;
4185 	int queue_index = sk_tx_queue_get(sk);
4186 
4187 	sb_dev = sb_dev ? : dev;
4188 
4189 	if (queue_index < 0 || skb->ooo_okay ||
4190 	    queue_index >= dev->real_num_tx_queues) {
4191 		int new_index = get_xps_queue(dev, sb_dev, skb);
4192 
4193 		if (new_index < 0)
4194 			new_index = skb_tx_hash(dev, sb_dev, skb);
4195 
4196 		if (queue_index != new_index && sk &&
4197 		    sk_fullsock(sk) &&
4198 		    rcu_access_pointer(sk->sk_dst_cache))
4199 			sk_tx_queue_set(sk, new_index);
4200 
4201 		queue_index = new_index;
4202 	}
4203 
4204 	return queue_index;
4205 }
4206 EXPORT_SYMBOL(netdev_pick_tx);
4207 
4208 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4209 					 struct sk_buff *skb,
4210 					 struct net_device *sb_dev)
4211 {
4212 	int queue_index = 0;
4213 
4214 #ifdef CONFIG_XPS
4215 	u32 sender_cpu = skb->sender_cpu - 1;
4216 
4217 	if (sender_cpu >= (u32)NR_CPUS)
4218 		skb->sender_cpu = raw_smp_processor_id() + 1;
4219 #endif
4220 
4221 	if (dev->real_num_tx_queues != 1) {
4222 		const struct net_device_ops *ops = dev->netdev_ops;
4223 
4224 		if (ops->ndo_select_queue)
4225 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4226 		else
4227 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4228 
4229 		queue_index = netdev_cap_txqueue(dev, queue_index);
4230 	}
4231 
4232 	skb_set_queue_mapping(skb, queue_index);
4233 	return netdev_get_tx_queue(dev, queue_index);
4234 }
4235 
4236 /**
4237  * __dev_queue_xmit() - transmit a buffer
4238  * @skb:	buffer to transmit
4239  * @sb_dev:	suboordinate device used for L2 forwarding offload
4240  *
4241  * Queue a buffer for transmission to a network device. The caller must
4242  * have set the device and priority and built the buffer before calling
4243  * this function. The function can be called from an interrupt.
4244  *
4245  * When calling this method, interrupts MUST be enabled. This is because
4246  * the BH enable code must have IRQs enabled so that it will not deadlock.
4247  *
4248  * Regardless of the return value, the skb is consumed, so it is currently
4249  * difficult to retry a send to this method. (You can bump the ref count
4250  * before sending to hold a reference for retry if you are careful.)
4251  *
4252  * Return:
4253  * * 0				- buffer successfully transmitted
4254  * * positive qdisc return code	- NET_XMIT_DROP etc.
4255  * * negative errno		- other errors
4256  */
4257 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4258 {
4259 	struct net_device *dev = skb->dev;
4260 	struct netdev_queue *txq = NULL;
4261 	struct Qdisc *q;
4262 	int rc = -ENOMEM;
4263 	bool again = false;
4264 
4265 	skb_reset_mac_header(skb);
4266 	skb_assert_len(skb);
4267 
4268 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4269 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4270 
4271 	/* Disable soft irqs for various locks below. Also
4272 	 * stops preemption for RCU.
4273 	 */
4274 	rcu_read_lock_bh();
4275 
4276 	skb_update_prio(skb);
4277 
4278 	qdisc_pkt_len_init(skb);
4279 	tcx_set_ingress(skb, false);
4280 #ifdef CONFIG_NET_EGRESS
4281 	if (static_branch_unlikely(&egress_needed_key)) {
4282 		if (nf_hook_egress_active()) {
4283 			skb = nf_hook_egress(skb, &rc, dev);
4284 			if (!skb)
4285 				goto out;
4286 		}
4287 
4288 		netdev_xmit_skip_txqueue(false);
4289 
4290 		nf_skip_egress(skb, true);
4291 		skb = sch_handle_egress(skb, &rc, dev);
4292 		if (!skb)
4293 			goto out;
4294 		nf_skip_egress(skb, false);
4295 
4296 		if (netdev_xmit_txqueue_skipped())
4297 			txq = netdev_tx_queue_mapping(dev, skb);
4298 	}
4299 #endif
4300 	/* If device/qdisc don't need skb->dst, release it right now while
4301 	 * its hot in this cpu cache.
4302 	 */
4303 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4304 		skb_dst_drop(skb);
4305 	else
4306 		skb_dst_force(skb);
4307 
4308 	if (!txq)
4309 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4310 
4311 	q = rcu_dereference_bh(txq->qdisc);
4312 
4313 	trace_net_dev_queue(skb);
4314 	if (q->enqueue) {
4315 		rc = __dev_xmit_skb(skb, q, dev, txq);
4316 		goto out;
4317 	}
4318 
4319 	/* The device has no queue. Common case for software devices:
4320 	 * loopback, all the sorts of tunnels...
4321 
4322 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4323 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4324 	 * counters.)
4325 	 * However, it is possible, that they rely on protection
4326 	 * made by us here.
4327 
4328 	 * Check this and shot the lock. It is not prone from deadlocks.
4329 	 *Either shot noqueue qdisc, it is even simpler 8)
4330 	 */
4331 	if (dev->flags & IFF_UP) {
4332 		int cpu = smp_processor_id(); /* ok because BHs are off */
4333 
4334 		/* Other cpus might concurrently change txq->xmit_lock_owner
4335 		 * to -1 or to their cpu id, but not to our id.
4336 		 */
4337 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4338 			if (dev_xmit_recursion())
4339 				goto recursion_alert;
4340 
4341 			skb = validate_xmit_skb(skb, dev, &again);
4342 			if (!skb)
4343 				goto out;
4344 
4345 			HARD_TX_LOCK(dev, txq, cpu);
4346 
4347 			if (!netif_xmit_stopped(txq)) {
4348 				dev_xmit_recursion_inc();
4349 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4350 				dev_xmit_recursion_dec();
4351 				if (dev_xmit_complete(rc)) {
4352 					HARD_TX_UNLOCK(dev, txq);
4353 					goto out;
4354 				}
4355 			}
4356 			HARD_TX_UNLOCK(dev, txq);
4357 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4358 					     dev->name);
4359 		} else {
4360 			/* Recursion is detected! It is possible,
4361 			 * unfortunately
4362 			 */
4363 recursion_alert:
4364 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4365 					     dev->name);
4366 		}
4367 	}
4368 
4369 	rc = -ENETDOWN;
4370 	rcu_read_unlock_bh();
4371 
4372 	dev_core_stats_tx_dropped_inc(dev);
4373 	kfree_skb_list(skb);
4374 	return rc;
4375 out:
4376 	rcu_read_unlock_bh();
4377 	return rc;
4378 }
4379 EXPORT_SYMBOL(__dev_queue_xmit);
4380 
4381 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4382 {
4383 	struct net_device *dev = skb->dev;
4384 	struct sk_buff *orig_skb = skb;
4385 	struct netdev_queue *txq;
4386 	int ret = NETDEV_TX_BUSY;
4387 	bool again = false;
4388 
4389 	if (unlikely(!netif_running(dev) ||
4390 		     !netif_carrier_ok(dev)))
4391 		goto drop;
4392 
4393 	skb = validate_xmit_skb_list(skb, dev, &again);
4394 	if (skb != orig_skb)
4395 		goto drop;
4396 
4397 	skb_set_queue_mapping(skb, queue_id);
4398 	txq = skb_get_tx_queue(dev, skb);
4399 
4400 	local_bh_disable();
4401 
4402 	dev_xmit_recursion_inc();
4403 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4404 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4405 		ret = netdev_start_xmit(skb, dev, txq, false);
4406 	HARD_TX_UNLOCK(dev, txq);
4407 	dev_xmit_recursion_dec();
4408 
4409 	local_bh_enable();
4410 	return ret;
4411 drop:
4412 	dev_core_stats_tx_dropped_inc(dev);
4413 	kfree_skb_list(skb);
4414 	return NET_XMIT_DROP;
4415 }
4416 EXPORT_SYMBOL(__dev_direct_xmit);
4417 
4418 /*************************************************************************
4419  *			Receiver routines
4420  *************************************************************************/
4421 
4422 int netdev_max_backlog __read_mostly = 1000;
4423 EXPORT_SYMBOL(netdev_max_backlog);
4424 
4425 int netdev_tstamp_prequeue __read_mostly = 1;
4426 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4427 int netdev_budget __read_mostly = 300;
4428 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4429 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4430 int weight_p __read_mostly = 64;           /* old backlog weight */
4431 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4432 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4433 int dev_rx_weight __read_mostly = 64;
4434 int dev_tx_weight __read_mostly = 64;
4435 
4436 /* Called with irq disabled */
4437 static inline void ____napi_schedule(struct softnet_data *sd,
4438 				     struct napi_struct *napi)
4439 {
4440 	struct task_struct *thread;
4441 
4442 	lockdep_assert_irqs_disabled();
4443 
4444 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4445 		/* Paired with smp_mb__before_atomic() in
4446 		 * napi_enable()/dev_set_threaded().
4447 		 * Use READ_ONCE() to guarantee a complete
4448 		 * read on napi->thread. Only call
4449 		 * wake_up_process() when it's not NULL.
4450 		 */
4451 		thread = READ_ONCE(napi->thread);
4452 		if (thread) {
4453 			/* Avoid doing set_bit() if the thread is in
4454 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4455 			 * makes sure to proceed with napi polling
4456 			 * if the thread is explicitly woken from here.
4457 			 */
4458 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4459 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4460 			wake_up_process(thread);
4461 			return;
4462 		}
4463 	}
4464 
4465 	list_add_tail(&napi->poll_list, &sd->poll_list);
4466 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4467 	/* If not called from net_rx_action()
4468 	 * we have to raise NET_RX_SOFTIRQ.
4469 	 */
4470 	if (!sd->in_net_rx_action)
4471 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4472 }
4473 
4474 #ifdef CONFIG_RPS
4475 
4476 /* One global table that all flow-based protocols share. */
4477 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4478 EXPORT_SYMBOL(rps_sock_flow_table);
4479 u32 rps_cpu_mask __read_mostly;
4480 EXPORT_SYMBOL(rps_cpu_mask);
4481 
4482 struct static_key_false rps_needed __read_mostly;
4483 EXPORT_SYMBOL(rps_needed);
4484 struct static_key_false rfs_needed __read_mostly;
4485 EXPORT_SYMBOL(rfs_needed);
4486 
4487 static struct rps_dev_flow *
4488 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4489 	    struct rps_dev_flow *rflow, u16 next_cpu)
4490 {
4491 	if (next_cpu < nr_cpu_ids) {
4492 #ifdef CONFIG_RFS_ACCEL
4493 		struct netdev_rx_queue *rxqueue;
4494 		struct rps_dev_flow_table *flow_table;
4495 		struct rps_dev_flow *old_rflow;
4496 		u32 flow_id;
4497 		u16 rxq_index;
4498 		int rc;
4499 
4500 		/* Should we steer this flow to a different hardware queue? */
4501 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4502 		    !(dev->features & NETIF_F_NTUPLE))
4503 			goto out;
4504 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4505 		if (rxq_index == skb_get_rx_queue(skb))
4506 			goto out;
4507 
4508 		rxqueue = dev->_rx + rxq_index;
4509 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4510 		if (!flow_table)
4511 			goto out;
4512 		flow_id = skb_get_hash(skb) & flow_table->mask;
4513 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4514 							rxq_index, flow_id);
4515 		if (rc < 0)
4516 			goto out;
4517 		old_rflow = rflow;
4518 		rflow = &flow_table->flows[flow_id];
4519 		rflow->filter = rc;
4520 		if (old_rflow->filter == rflow->filter)
4521 			old_rflow->filter = RPS_NO_FILTER;
4522 	out:
4523 #endif
4524 		rflow->last_qtail =
4525 			per_cpu(softnet_data, next_cpu).input_queue_head;
4526 	}
4527 
4528 	rflow->cpu = next_cpu;
4529 	return rflow;
4530 }
4531 
4532 /*
4533  * get_rps_cpu is called from netif_receive_skb and returns the target
4534  * CPU from the RPS map of the receiving queue for a given skb.
4535  * rcu_read_lock must be held on entry.
4536  */
4537 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4538 		       struct rps_dev_flow **rflowp)
4539 {
4540 	const struct rps_sock_flow_table *sock_flow_table;
4541 	struct netdev_rx_queue *rxqueue = dev->_rx;
4542 	struct rps_dev_flow_table *flow_table;
4543 	struct rps_map *map;
4544 	int cpu = -1;
4545 	u32 tcpu;
4546 	u32 hash;
4547 
4548 	if (skb_rx_queue_recorded(skb)) {
4549 		u16 index = skb_get_rx_queue(skb);
4550 
4551 		if (unlikely(index >= dev->real_num_rx_queues)) {
4552 			WARN_ONCE(dev->real_num_rx_queues > 1,
4553 				  "%s received packet on queue %u, but number "
4554 				  "of RX queues is %u\n",
4555 				  dev->name, index, dev->real_num_rx_queues);
4556 			goto done;
4557 		}
4558 		rxqueue += index;
4559 	}
4560 
4561 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4562 
4563 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4564 	map = rcu_dereference(rxqueue->rps_map);
4565 	if (!flow_table && !map)
4566 		goto done;
4567 
4568 	skb_reset_network_header(skb);
4569 	hash = skb_get_hash(skb);
4570 	if (!hash)
4571 		goto done;
4572 
4573 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4574 	if (flow_table && sock_flow_table) {
4575 		struct rps_dev_flow *rflow;
4576 		u32 next_cpu;
4577 		u32 ident;
4578 
4579 		/* First check into global flow table if there is a match.
4580 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4581 		 */
4582 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4583 		if ((ident ^ hash) & ~rps_cpu_mask)
4584 			goto try_rps;
4585 
4586 		next_cpu = ident & rps_cpu_mask;
4587 
4588 		/* OK, now we know there is a match,
4589 		 * we can look at the local (per receive queue) flow table
4590 		 */
4591 		rflow = &flow_table->flows[hash & flow_table->mask];
4592 		tcpu = rflow->cpu;
4593 
4594 		/*
4595 		 * If the desired CPU (where last recvmsg was done) is
4596 		 * different from current CPU (one in the rx-queue flow
4597 		 * table entry), switch if one of the following holds:
4598 		 *   - Current CPU is unset (>= nr_cpu_ids).
4599 		 *   - Current CPU is offline.
4600 		 *   - The current CPU's queue tail has advanced beyond the
4601 		 *     last packet that was enqueued using this table entry.
4602 		 *     This guarantees that all previous packets for the flow
4603 		 *     have been dequeued, thus preserving in order delivery.
4604 		 */
4605 		if (unlikely(tcpu != next_cpu) &&
4606 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4607 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4608 		      rflow->last_qtail)) >= 0)) {
4609 			tcpu = next_cpu;
4610 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4611 		}
4612 
4613 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4614 			*rflowp = rflow;
4615 			cpu = tcpu;
4616 			goto done;
4617 		}
4618 	}
4619 
4620 try_rps:
4621 
4622 	if (map) {
4623 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4624 		if (cpu_online(tcpu)) {
4625 			cpu = tcpu;
4626 			goto done;
4627 		}
4628 	}
4629 
4630 done:
4631 	return cpu;
4632 }
4633 
4634 #ifdef CONFIG_RFS_ACCEL
4635 
4636 /**
4637  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4638  * @dev: Device on which the filter was set
4639  * @rxq_index: RX queue index
4640  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4641  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4642  *
4643  * Drivers that implement ndo_rx_flow_steer() should periodically call
4644  * this function for each installed filter and remove the filters for
4645  * which it returns %true.
4646  */
4647 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4648 			 u32 flow_id, u16 filter_id)
4649 {
4650 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4651 	struct rps_dev_flow_table *flow_table;
4652 	struct rps_dev_flow *rflow;
4653 	bool expire = true;
4654 	unsigned int cpu;
4655 
4656 	rcu_read_lock();
4657 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4658 	if (flow_table && flow_id <= flow_table->mask) {
4659 		rflow = &flow_table->flows[flow_id];
4660 		cpu = READ_ONCE(rflow->cpu);
4661 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4662 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4663 			   rflow->last_qtail) <
4664 		     (int)(10 * flow_table->mask)))
4665 			expire = false;
4666 	}
4667 	rcu_read_unlock();
4668 	return expire;
4669 }
4670 EXPORT_SYMBOL(rps_may_expire_flow);
4671 
4672 #endif /* CONFIG_RFS_ACCEL */
4673 
4674 /* Called from hardirq (IPI) context */
4675 static void rps_trigger_softirq(void *data)
4676 {
4677 	struct softnet_data *sd = data;
4678 
4679 	____napi_schedule(sd, &sd->backlog);
4680 	sd->received_rps++;
4681 }
4682 
4683 #endif /* CONFIG_RPS */
4684 
4685 /* Called from hardirq (IPI) context */
4686 static void trigger_rx_softirq(void *data)
4687 {
4688 	struct softnet_data *sd = data;
4689 
4690 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4691 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4692 }
4693 
4694 /*
4695  * After we queued a packet into sd->input_pkt_queue,
4696  * we need to make sure this queue is serviced soon.
4697  *
4698  * - If this is another cpu queue, link it to our rps_ipi_list,
4699  *   and make sure we will process rps_ipi_list from net_rx_action().
4700  *
4701  * - If this is our own queue, NAPI schedule our backlog.
4702  *   Note that this also raises NET_RX_SOFTIRQ.
4703  */
4704 static void napi_schedule_rps(struct softnet_data *sd)
4705 {
4706 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4707 
4708 #ifdef CONFIG_RPS
4709 	if (sd != mysd) {
4710 		sd->rps_ipi_next = mysd->rps_ipi_list;
4711 		mysd->rps_ipi_list = sd;
4712 
4713 		/* If not called from net_rx_action() or napi_threaded_poll()
4714 		 * we have to raise NET_RX_SOFTIRQ.
4715 		 */
4716 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4717 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4718 		return;
4719 	}
4720 #endif /* CONFIG_RPS */
4721 	__napi_schedule_irqoff(&mysd->backlog);
4722 }
4723 
4724 #ifdef CONFIG_NET_FLOW_LIMIT
4725 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4726 #endif
4727 
4728 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4729 {
4730 #ifdef CONFIG_NET_FLOW_LIMIT
4731 	struct sd_flow_limit *fl;
4732 	struct softnet_data *sd;
4733 	unsigned int old_flow, new_flow;
4734 
4735 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4736 		return false;
4737 
4738 	sd = this_cpu_ptr(&softnet_data);
4739 
4740 	rcu_read_lock();
4741 	fl = rcu_dereference(sd->flow_limit);
4742 	if (fl) {
4743 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4744 		old_flow = fl->history[fl->history_head];
4745 		fl->history[fl->history_head] = new_flow;
4746 
4747 		fl->history_head++;
4748 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4749 
4750 		if (likely(fl->buckets[old_flow]))
4751 			fl->buckets[old_flow]--;
4752 
4753 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4754 			fl->count++;
4755 			rcu_read_unlock();
4756 			return true;
4757 		}
4758 	}
4759 	rcu_read_unlock();
4760 #endif
4761 	return false;
4762 }
4763 
4764 /*
4765  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4766  * queue (may be a remote CPU queue).
4767  */
4768 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4769 			      unsigned int *qtail)
4770 {
4771 	enum skb_drop_reason reason;
4772 	struct softnet_data *sd;
4773 	unsigned long flags;
4774 	unsigned int qlen;
4775 
4776 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4777 	sd = &per_cpu(softnet_data, cpu);
4778 
4779 	rps_lock_irqsave(sd, &flags);
4780 	if (!netif_running(skb->dev))
4781 		goto drop;
4782 	qlen = skb_queue_len(&sd->input_pkt_queue);
4783 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4784 		if (qlen) {
4785 enqueue:
4786 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4787 			input_queue_tail_incr_save(sd, qtail);
4788 			rps_unlock_irq_restore(sd, &flags);
4789 			return NET_RX_SUCCESS;
4790 		}
4791 
4792 		/* Schedule NAPI for backlog device
4793 		 * We can use non atomic operation since we own the queue lock
4794 		 */
4795 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4796 			napi_schedule_rps(sd);
4797 		goto enqueue;
4798 	}
4799 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4800 
4801 drop:
4802 	sd->dropped++;
4803 	rps_unlock_irq_restore(sd, &flags);
4804 
4805 	dev_core_stats_rx_dropped_inc(skb->dev);
4806 	kfree_skb_reason(skb, reason);
4807 	return NET_RX_DROP;
4808 }
4809 
4810 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4811 {
4812 	struct net_device *dev = skb->dev;
4813 	struct netdev_rx_queue *rxqueue;
4814 
4815 	rxqueue = dev->_rx;
4816 
4817 	if (skb_rx_queue_recorded(skb)) {
4818 		u16 index = skb_get_rx_queue(skb);
4819 
4820 		if (unlikely(index >= dev->real_num_rx_queues)) {
4821 			WARN_ONCE(dev->real_num_rx_queues > 1,
4822 				  "%s received packet on queue %u, but number "
4823 				  "of RX queues is %u\n",
4824 				  dev->name, index, dev->real_num_rx_queues);
4825 
4826 			return rxqueue; /* Return first rxqueue */
4827 		}
4828 		rxqueue += index;
4829 	}
4830 	return rxqueue;
4831 }
4832 
4833 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4834 			     struct bpf_prog *xdp_prog)
4835 {
4836 	void *orig_data, *orig_data_end, *hard_start;
4837 	struct netdev_rx_queue *rxqueue;
4838 	bool orig_bcast, orig_host;
4839 	u32 mac_len, frame_sz;
4840 	__be16 orig_eth_type;
4841 	struct ethhdr *eth;
4842 	u32 metalen, act;
4843 	int off;
4844 
4845 	/* The XDP program wants to see the packet starting at the MAC
4846 	 * header.
4847 	 */
4848 	mac_len = skb->data - skb_mac_header(skb);
4849 	hard_start = skb->data - skb_headroom(skb);
4850 
4851 	/* SKB "head" area always have tailroom for skb_shared_info */
4852 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4853 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4854 
4855 	rxqueue = netif_get_rxqueue(skb);
4856 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4857 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4858 			 skb_headlen(skb) + mac_len, true);
4859 
4860 	orig_data_end = xdp->data_end;
4861 	orig_data = xdp->data;
4862 	eth = (struct ethhdr *)xdp->data;
4863 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4864 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4865 	orig_eth_type = eth->h_proto;
4866 
4867 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4868 
4869 	/* check if bpf_xdp_adjust_head was used */
4870 	off = xdp->data - orig_data;
4871 	if (off) {
4872 		if (off > 0)
4873 			__skb_pull(skb, off);
4874 		else if (off < 0)
4875 			__skb_push(skb, -off);
4876 
4877 		skb->mac_header += off;
4878 		skb_reset_network_header(skb);
4879 	}
4880 
4881 	/* check if bpf_xdp_adjust_tail was used */
4882 	off = xdp->data_end - orig_data_end;
4883 	if (off != 0) {
4884 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4885 		skb->len += off; /* positive on grow, negative on shrink */
4886 	}
4887 
4888 	/* check if XDP changed eth hdr such SKB needs update */
4889 	eth = (struct ethhdr *)xdp->data;
4890 	if ((orig_eth_type != eth->h_proto) ||
4891 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4892 						  skb->dev->dev_addr)) ||
4893 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4894 		__skb_push(skb, ETH_HLEN);
4895 		skb->pkt_type = PACKET_HOST;
4896 		skb->protocol = eth_type_trans(skb, skb->dev);
4897 	}
4898 
4899 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4900 	 * before calling us again on redirect path. We do not call do_redirect
4901 	 * as we leave that up to the caller.
4902 	 *
4903 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4904 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4905 	 */
4906 	switch (act) {
4907 	case XDP_REDIRECT:
4908 	case XDP_TX:
4909 		__skb_push(skb, mac_len);
4910 		break;
4911 	case XDP_PASS:
4912 		metalen = xdp->data - xdp->data_meta;
4913 		if (metalen)
4914 			skb_metadata_set(skb, metalen);
4915 		break;
4916 	}
4917 
4918 	return act;
4919 }
4920 
4921 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4922 				     struct xdp_buff *xdp,
4923 				     struct bpf_prog *xdp_prog)
4924 {
4925 	u32 act = XDP_DROP;
4926 
4927 	/* Reinjected packets coming from act_mirred or similar should
4928 	 * not get XDP generic processing.
4929 	 */
4930 	if (skb_is_redirected(skb))
4931 		return XDP_PASS;
4932 
4933 	/* XDP packets must be linear and must have sufficient headroom
4934 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4935 	 * native XDP provides, thus we need to do it here as well.
4936 	 */
4937 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4938 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4939 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4940 		int troom = skb->tail + skb->data_len - skb->end;
4941 
4942 		/* In case we have to go down the path and also linearize,
4943 		 * then lets do the pskb_expand_head() work just once here.
4944 		 */
4945 		if (pskb_expand_head(skb,
4946 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4947 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4948 			goto do_drop;
4949 		if (skb_linearize(skb))
4950 			goto do_drop;
4951 	}
4952 
4953 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4954 	switch (act) {
4955 	case XDP_REDIRECT:
4956 	case XDP_TX:
4957 	case XDP_PASS:
4958 		break;
4959 	default:
4960 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4961 		fallthrough;
4962 	case XDP_ABORTED:
4963 		trace_xdp_exception(skb->dev, xdp_prog, act);
4964 		fallthrough;
4965 	case XDP_DROP:
4966 	do_drop:
4967 		kfree_skb(skb);
4968 		break;
4969 	}
4970 
4971 	return act;
4972 }
4973 
4974 /* When doing generic XDP we have to bypass the qdisc layer and the
4975  * network taps in order to match in-driver-XDP behavior. This also means
4976  * that XDP packets are able to starve other packets going through a qdisc,
4977  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4978  * queues, so they do not have this starvation issue.
4979  */
4980 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4981 {
4982 	struct net_device *dev = skb->dev;
4983 	struct netdev_queue *txq;
4984 	bool free_skb = true;
4985 	int cpu, rc;
4986 
4987 	txq = netdev_core_pick_tx(dev, skb, NULL);
4988 	cpu = smp_processor_id();
4989 	HARD_TX_LOCK(dev, txq, cpu);
4990 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4991 		rc = netdev_start_xmit(skb, dev, txq, 0);
4992 		if (dev_xmit_complete(rc))
4993 			free_skb = false;
4994 	}
4995 	HARD_TX_UNLOCK(dev, txq);
4996 	if (free_skb) {
4997 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4998 		dev_core_stats_tx_dropped_inc(dev);
4999 		kfree_skb(skb);
5000 	}
5001 }
5002 
5003 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5004 
5005 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5006 {
5007 	if (xdp_prog) {
5008 		struct xdp_buff xdp;
5009 		u32 act;
5010 		int err;
5011 
5012 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5013 		if (act != XDP_PASS) {
5014 			switch (act) {
5015 			case XDP_REDIRECT:
5016 				err = xdp_do_generic_redirect(skb->dev, skb,
5017 							      &xdp, xdp_prog);
5018 				if (err)
5019 					goto out_redir;
5020 				break;
5021 			case XDP_TX:
5022 				generic_xdp_tx(skb, xdp_prog);
5023 				break;
5024 			}
5025 			return XDP_DROP;
5026 		}
5027 	}
5028 	return XDP_PASS;
5029 out_redir:
5030 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5031 	return XDP_DROP;
5032 }
5033 EXPORT_SYMBOL_GPL(do_xdp_generic);
5034 
5035 static int netif_rx_internal(struct sk_buff *skb)
5036 {
5037 	int ret;
5038 
5039 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5040 
5041 	trace_netif_rx(skb);
5042 
5043 #ifdef CONFIG_RPS
5044 	if (static_branch_unlikely(&rps_needed)) {
5045 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5046 		int cpu;
5047 
5048 		rcu_read_lock();
5049 
5050 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5051 		if (cpu < 0)
5052 			cpu = smp_processor_id();
5053 
5054 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5055 
5056 		rcu_read_unlock();
5057 	} else
5058 #endif
5059 	{
5060 		unsigned int qtail;
5061 
5062 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5063 	}
5064 	return ret;
5065 }
5066 
5067 /**
5068  *	__netif_rx	-	Slightly optimized version of netif_rx
5069  *	@skb: buffer to post
5070  *
5071  *	This behaves as netif_rx except that it does not disable bottom halves.
5072  *	As a result this function may only be invoked from the interrupt context
5073  *	(either hard or soft interrupt).
5074  */
5075 int __netif_rx(struct sk_buff *skb)
5076 {
5077 	int ret;
5078 
5079 	lockdep_assert_once(hardirq_count() | softirq_count());
5080 
5081 	trace_netif_rx_entry(skb);
5082 	ret = netif_rx_internal(skb);
5083 	trace_netif_rx_exit(ret);
5084 	return ret;
5085 }
5086 EXPORT_SYMBOL(__netif_rx);
5087 
5088 /**
5089  *	netif_rx	-	post buffer to the network code
5090  *	@skb: buffer to post
5091  *
5092  *	This function receives a packet from a device driver and queues it for
5093  *	the upper (protocol) levels to process via the backlog NAPI device. It
5094  *	always succeeds. The buffer may be dropped during processing for
5095  *	congestion control or by the protocol layers.
5096  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5097  *	driver should use NAPI and GRO.
5098  *	This function can used from interrupt and from process context. The
5099  *	caller from process context must not disable interrupts before invoking
5100  *	this function.
5101  *
5102  *	return values:
5103  *	NET_RX_SUCCESS	(no congestion)
5104  *	NET_RX_DROP     (packet was dropped)
5105  *
5106  */
5107 int netif_rx(struct sk_buff *skb)
5108 {
5109 	bool need_bh_off = !(hardirq_count() | softirq_count());
5110 	int ret;
5111 
5112 	if (need_bh_off)
5113 		local_bh_disable();
5114 	trace_netif_rx_entry(skb);
5115 	ret = netif_rx_internal(skb);
5116 	trace_netif_rx_exit(ret);
5117 	if (need_bh_off)
5118 		local_bh_enable();
5119 	return ret;
5120 }
5121 EXPORT_SYMBOL(netif_rx);
5122 
5123 static __latent_entropy void net_tx_action(struct softirq_action *h)
5124 {
5125 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5126 
5127 	if (sd->completion_queue) {
5128 		struct sk_buff *clist;
5129 
5130 		local_irq_disable();
5131 		clist = sd->completion_queue;
5132 		sd->completion_queue = NULL;
5133 		local_irq_enable();
5134 
5135 		while (clist) {
5136 			struct sk_buff *skb = clist;
5137 
5138 			clist = clist->next;
5139 
5140 			WARN_ON(refcount_read(&skb->users));
5141 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5142 				trace_consume_skb(skb, net_tx_action);
5143 			else
5144 				trace_kfree_skb(skb, net_tx_action,
5145 						get_kfree_skb_cb(skb)->reason);
5146 
5147 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5148 				__kfree_skb(skb);
5149 			else
5150 				__napi_kfree_skb(skb,
5151 						 get_kfree_skb_cb(skb)->reason);
5152 		}
5153 	}
5154 
5155 	if (sd->output_queue) {
5156 		struct Qdisc *head;
5157 
5158 		local_irq_disable();
5159 		head = sd->output_queue;
5160 		sd->output_queue = NULL;
5161 		sd->output_queue_tailp = &sd->output_queue;
5162 		local_irq_enable();
5163 
5164 		rcu_read_lock();
5165 
5166 		while (head) {
5167 			struct Qdisc *q = head;
5168 			spinlock_t *root_lock = NULL;
5169 
5170 			head = head->next_sched;
5171 
5172 			/* We need to make sure head->next_sched is read
5173 			 * before clearing __QDISC_STATE_SCHED
5174 			 */
5175 			smp_mb__before_atomic();
5176 
5177 			if (!(q->flags & TCQ_F_NOLOCK)) {
5178 				root_lock = qdisc_lock(q);
5179 				spin_lock(root_lock);
5180 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5181 						     &q->state))) {
5182 				/* There is a synchronize_net() between
5183 				 * STATE_DEACTIVATED flag being set and
5184 				 * qdisc_reset()/some_qdisc_is_busy() in
5185 				 * dev_deactivate(), so we can safely bail out
5186 				 * early here to avoid data race between
5187 				 * qdisc_deactivate() and some_qdisc_is_busy()
5188 				 * for lockless qdisc.
5189 				 */
5190 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5191 				continue;
5192 			}
5193 
5194 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5195 			qdisc_run(q);
5196 			if (root_lock)
5197 				spin_unlock(root_lock);
5198 		}
5199 
5200 		rcu_read_unlock();
5201 	}
5202 
5203 	xfrm_dev_backlog(sd);
5204 }
5205 
5206 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5207 /* This hook is defined here for ATM LANE */
5208 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5209 			     unsigned char *addr) __read_mostly;
5210 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5211 #endif
5212 
5213 /**
5214  *	netdev_is_rx_handler_busy - check if receive handler is registered
5215  *	@dev: device to check
5216  *
5217  *	Check if a receive handler is already registered for a given device.
5218  *	Return true if there one.
5219  *
5220  *	The caller must hold the rtnl_mutex.
5221  */
5222 bool netdev_is_rx_handler_busy(struct net_device *dev)
5223 {
5224 	ASSERT_RTNL();
5225 	return dev && rtnl_dereference(dev->rx_handler);
5226 }
5227 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5228 
5229 /**
5230  *	netdev_rx_handler_register - register receive handler
5231  *	@dev: device to register a handler for
5232  *	@rx_handler: receive handler to register
5233  *	@rx_handler_data: data pointer that is used by rx handler
5234  *
5235  *	Register a receive handler for a device. This handler will then be
5236  *	called from __netif_receive_skb. A negative errno code is returned
5237  *	on a failure.
5238  *
5239  *	The caller must hold the rtnl_mutex.
5240  *
5241  *	For a general description of rx_handler, see enum rx_handler_result.
5242  */
5243 int netdev_rx_handler_register(struct net_device *dev,
5244 			       rx_handler_func_t *rx_handler,
5245 			       void *rx_handler_data)
5246 {
5247 	if (netdev_is_rx_handler_busy(dev))
5248 		return -EBUSY;
5249 
5250 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5251 		return -EINVAL;
5252 
5253 	/* Note: rx_handler_data must be set before rx_handler */
5254 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5255 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5256 
5257 	return 0;
5258 }
5259 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5260 
5261 /**
5262  *	netdev_rx_handler_unregister - unregister receive handler
5263  *	@dev: device to unregister a handler from
5264  *
5265  *	Unregister a receive handler from a device.
5266  *
5267  *	The caller must hold the rtnl_mutex.
5268  */
5269 void netdev_rx_handler_unregister(struct net_device *dev)
5270 {
5271 
5272 	ASSERT_RTNL();
5273 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5274 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5275 	 * section has a guarantee to see a non NULL rx_handler_data
5276 	 * as well.
5277 	 */
5278 	synchronize_net();
5279 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5280 }
5281 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5282 
5283 /*
5284  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5285  * the special handling of PFMEMALLOC skbs.
5286  */
5287 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5288 {
5289 	switch (skb->protocol) {
5290 	case htons(ETH_P_ARP):
5291 	case htons(ETH_P_IP):
5292 	case htons(ETH_P_IPV6):
5293 	case htons(ETH_P_8021Q):
5294 	case htons(ETH_P_8021AD):
5295 		return true;
5296 	default:
5297 		return false;
5298 	}
5299 }
5300 
5301 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5302 			     int *ret, struct net_device *orig_dev)
5303 {
5304 	if (nf_hook_ingress_active(skb)) {
5305 		int ingress_retval;
5306 
5307 		if (*pt_prev) {
5308 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5309 			*pt_prev = NULL;
5310 		}
5311 
5312 		rcu_read_lock();
5313 		ingress_retval = nf_hook_ingress(skb);
5314 		rcu_read_unlock();
5315 		return ingress_retval;
5316 	}
5317 	return 0;
5318 }
5319 
5320 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5321 				    struct packet_type **ppt_prev)
5322 {
5323 	struct packet_type *ptype, *pt_prev;
5324 	rx_handler_func_t *rx_handler;
5325 	struct sk_buff *skb = *pskb;
5326 	struct net_device *orig_dev;
5327 	bool deliver_exact = false;
5328 	int ret = NET_RX_DROP;
5329 	__be16 type;
5330 
5331 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5332 
5333 	trace_netif_receive_skb(skb);
5334 
5335 	orig_dev = skb->dev;
5336 
5337 	skb_reset_network_header(skb);
5338 	if (!skb_transport_header_was_set(skb))
5339 		skb_reset_transport_header(skb);
5340 	skb_reset_mac_len(skb);
5341 
5342 	pt_prev = NULL;
5343 
5344 another_round:
5345 	skb->skb_iif = skb->dev->ifindex;
5346 
5347 	__this_cpu_inc(softnet_data.processed);
5348 
5349 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5350 		int ret2;
5351 
5352 		migrate_disable();
5353 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5354 		migrate_enable();
5355 
5356 		if (ret2 != XDP_PASS) {
5357 			ret = NET_RX_DROP;
5358 			goto out;
5359 		}
5360 	}
5361 
5362 	if (eth_type_vlan(skb->protocol)) {
5363 		skb = skb_vlan_untag(skb);
5364 		if (unlikely(!skb))
5365 			goto out;
5366 	}
5367 
5368 	if (skb_skip_tc_classify(skb))
5369 		goto skip_classify;
5370 
5371 	if (pfmemalloc)
5372 		goto skip_taps;
5373 
5374 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5375 		if (pt_prev)
5376 			ret = deliver_skb(skb, pt_prev, orig_dev);
5377 		pt_prev = ptype;
5378 	}
5379 
5380 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5381 		if (pt_prev)
5382 			ret = deliver_skb(skb, pt_prev, orig_dev);
5383 		pt_prev = ptype;
5384 	}
5385 
5386 skip_taps:
5387 #ifdef CONFIG_NET_INGRESS
5388 	if (static_branch_unlikely(&ingress_needed_key)) {
5389 		bool another = false;
5390 
5391 		nf_skip_egress(skb, true);
5392 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5393 					 &another);
5394 		if (another)
5395 			goto another_round;
5396 		if (!skb)
5397 			goto out;
5398 
5399 		nf_skip_egress(skb, false);
5400 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5401 			goto out;
5402 	}
5403 #endif
5404 	skb_reset_redirect(skb);
5405 skip_classify:
5406 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5407 		goto drop;
5408 
5409 	if (skb_vlan_tag_present(skb)) {
5410 		if (pt_prev) {
5411 			ret = deliver_skb(skb, pt_prev, orig_dev);
5412 			pt_prev = NULL;
5413 		}
5414 		if (vlan_do_receive(&skb))
5415 			goto another_round;
5416 		else if (unlikely(!skb))
5417 			goto out;
5418 	}
5419 
5420 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5421 	if (rx_handler) {
5422 		if (pt_prev) {
5423 			ret = deliver_skb(skb, pt_prev, orig_dev);
5424 			pt_prev = NULL;
5425 		}
5426 		switch (rx_handler(&skb)) {
5427 		case RX_HANDLER_CONSUMED:
5428 			ret = NET_RX_SUCCESS;
5429 			goto out;
5430 		case RX_HANDLER_ANOTHER:
5431 			goto another_round;
5432 		case RX_HANDLER_EXACT:
5433 			deliver_exact = true;
5434 			break;
5435 		case RX_HANDLER_PASS:
5436 			break;
5437 		default:
5438 			BUG();
5439 		}
5440 	}
5441 
5442 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5443 check_vlan_id:
5444 		if (skb_vlan_tag_get_id(skb)) {
5445 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5446 			 * find vlan device.
5447 			 */
5448 			skb->pkt_type = PACKET_OTHERHOST;
5449 		} else if (eth_type_vlan(skb->protocol)) {
5450 			/* Outer header is 802.1P with vlan 0, inner header is
5451 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5452 			 * not find vlan dev for vlan id 0.
5453 			 */
5454 			__vlan_hwaccel_clear_tag(skb);
5455 			skb = skb_vlan_untag(skb);
5456 			if (unlikely(!skb))
5457 				goto out;
5458 			if (vlan_do_receive(&skb))
5459 				/* After stripping off 802.1P header with vlan 0
5460 				 * vlan dev is found for inner header.
5461 				 */
5462 				goto another_round;
5463 			else if (unlikely(!skb))
5464 				goto out;
5465 			else
5466 				/* We have stripped outer 802.1P vlan 0 header.
5467 				 * But could not find vlan dev.
5468 				 * check again for vlan id to set OTHERHOST.
5469 				 */
5470 				goto check_vlan_id;
5471 		}
5472 		/* Note: we might in the future use prio bits
5473 		 * and set skb->priority like in vlan_do_receive()
5474 		 * For the time being, just ignore Priority Code Point
5475 		 */
5476 		__vlan_hwaccel_clear_tag(skb);
5477 	}
5478 
5479 	type = skb->protocol;
5480 
5481 	/* deliver only exact match when indicated */
5482 	if (likely(!deliver_exact)) {
5483 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5484 				       &ptype_base[ntohs(type) &
5485 						   PTYPE_HASH_MASK]);
5486 	}
5487 
5488 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5489 			       &orig_dev->ptype_specific);
5490 
5491 	if (unlikely(skb->dev != orig_dev)) {
5492 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5493 				       &skb->dev->ptype_specific);
5494 	}
5495 
5496 	if (pt_prev) {
5497 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5498 			goto drop;
5499 		*ppt_prev = pt_prev;
5500 	} else {
5501 drop:
5502 		if (!deliver_exact)
5503 			dev_core_stats_rx_dropped_inc(skb->dev);
5504 		else
5505 			dev_core_stats_rx_nohandler_inc(skb->dev);
5506 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5507 		/* Jamal, now you will not able to escape explaining
5508 		 * me how you were going to use this. :-)
5509 		 */
5510 		ret = NET_RX_DROP;
5511 	}
5512 
5513 out:
5514 	/* The invariant here is that if *ppt_prev is not NULL
5515 	 * then skb should also be non-NULL.
5516 	 *
5517 	 * Apparently *ppt_prev assignment above holds this invariant due to
5518 	 * skb dereferencing near it.
5519 	 */
5520 	*pskb = skb;
5521 	return ret;
5522 }
5523 
5524 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5525 {
5526 	struct net_device *orig_dev = skb->dev;
5527 	struct packet_type *pt_prev = NULL;
5528 	int ret;
5529 
5530 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5531 	if (pt_prev)
5532 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5533 					 skb->dev, pt_prev, orig_dev);
5534 	return ret;
5535 }
5536 
5537 /**
5538  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5539  *	@skb: buffer to process
5540  *
5541  *	More direct receive version of netif_receive_skb().  It should
5542  *	only be used by callers that have a need to skip RPS and Generic XDP.
5543  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5544  *
5545  *	This function may only be called from softirq context and interrupts
5546  *	should be enabled.
5547  *
5548  *	Return values (usually ignored):
5549  *	NET_RX_SUCCESS: no congestion
5550  *	NET_RX_DROP: packet was dropped
5551  */
5552 int netif_receive_skb_core(struct sk_buff *skb)
5553 {
5554 	int ret;
5555 
5556 	rcu_read_lock();
5557 	ret = __netif_receive_skb_one_core(skb, false);
5558 	rcu_read_unlock();
5559 
5560 	return ret;
5561 }
5562 EXPORT_SYMBOL(netif_receive_skb_core);
5563 
5564 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5565 						  struct packet_type *pt_prev,
5566 						  struct net_device *orig_dev)
5567 {
5568 	struct sk_buff *skb, *next;
5569 
5570 	if (!pt_prev)
5571 		return;
5572 	if (list_empty(head))
5573 		return;
5574 	if (pt_prev->list_func != NULL)
5575 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5576 				   ip_list_rcv, head, pt_prev, orig_dev);
5577 	else
5578 		list_for_each_entry_safe(skb, next, head, list) {
5579 			skb_list_del_init(skb);
5580 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5581 		}
5582 }
5583 
5584 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5585 {
5586 	/* Fast-path assumptions:
5587 	 * - There is no RX handler.
5588 	 * - Only one packet_type matches.
5589 	 * If either of these fails, we will end up doing some per-packet
5590 	 * processing in-line, then handling the 'last ptype' for the whole
5591 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5592 	 * because the 'last ptype' must be constant across the sublist, and all
5593 	 * other ptypes are handled per-packet.
5594 	 */
5595 	/* Current (common) ptype of sublist */
5596 	struct packet_type *pt_curr = NULL;
5597 	/* Current (common) orig_dev of sublist */
5598 	struct net_device *od_curr = NULL;
5599 	struct list_head sublist;
5600 	struct sk_buff *skb, *next;
5601 
5602 	INIT_LIST_HEAD(&sublist);
5603 	list_for_each_entry_safe(skb, next, head, list) {
5604 		struct net_device *orig_dev = skb->dev;
5605 		struct packet_type *pt_prev = NULL;
5606 
5607 		skb_list_del_init(skb);
5608 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5609 		if (!pt_prev)
5610 			continue;
5611 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5612 			/* dispatch old sublist */
5613 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5614 			/* start new sublist */
5615 			INIT_LIST_HEAD(&sublist);
5616 			pt_curr = pt_prev;
5617 			od_curr = orig_dev;
5618 		}
5619 		list_add_tail(&skb->list, &sublist);
5620 	}
5621 
5622 	/* dispatch final sublist */
5623 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5624 }
5625 
5626 static int __netif_receive_skb(struct sk_buff *skb)
5627 {
5628 	int ret;
5629 
5630 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5631 		unsigned int noreclaim_flag;
5632 
5633 		/*
5634 		 * PFMEMALLOC skbs are special, they should
5635 		 * - be delivered to SOCK_MEMALLOC sockets only
5636 		 * - stay away from userspace
5637 		 * - have bounded memory usage
5638 		 *
5639 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5640 		 * context down to all allocation sites.
5641 		 */
5642 		noreclaim_flag = memalloc_noreclaim_save();
5643 		ret = __netif_receive_skb_one_core(skb, true);
5644 		memalloc_noreclaim_restore(noreclaim_flag);
5645 	} else
5646 		ret = __netif_receive_skb_one_core(skb, false);
5647 
5648 	return ret;
5649 }
5650 
5651 static void __netif_receive_skb_list(struct list_head *head)
5652 {
5653 	unsigned long noreclaim_flag = 0;
5654 	struct sk_buff *skb, *next;
5655 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5656 
5657 	list_for_each_entry_safe(skb, next, head, list) {
5658 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5659 			struct list_head sublist;
5660 
5661 			/* Handle the previous sublist */
5662 			list_cut_before(&sublist, head, &skb->list);
5663 			if (!list_empty(&sublist))
5664 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5665 			pfmemalloc = !pfmemalloc;
5666 			/* See comments in __netif_receive_skb */
5667 			if (pfmemalloc)
5668 				noreclaim_flag = memalloc_noreclaim_save();
5669 			else
5670 				memalloc_noreclaim_restore(noreclaim_flag);
5671 		}
5672 	}
5673 	/* Handle the remaining sublist */
5674 	if (!list_empty(head))
5675 		__netif_receive_skb_list_core(head, pfmemalloc);
5676 	/* Restore pflags */
5677 	if (pfmemalloc)
5678 		memalloc_noreclaim_restore(noreclaim_flag);
5679 }
5680 
5681 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5682 {
5683 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5684 	struct bpf_prog *new = xdp->prog;
5685 	int ret = 0;
5686 
5687 	switch (xdp->command) {
5688 	case XDP_SETUP_PROG:
5689 		rcu_assign_pointer(dev->xdp_prog, new);
5690 		if (old)
5691 			bpf_prog_put(old);
5692 
5693 		if (old && !new) {
5694 			static_branch_dec(&generic_xdp_needed_key);
5695 		} else if (new && !old) {
5696 			static_branch_inc(&generic_xdp_needed_key);
5697 			dev_disable_lro(dev);
5698 			dev_disable_gro_hw(dev);
5699 		}
5700 		break;
5701 
5702 	default:
5703 		ret = -EINVAL;
5704 		break;
5705 	}
5706 
5707 	return ret;
5708 }
5709 
5710 static int netif_receive_skb_internal(struct sk_buff *skb)
5711 {
5712 	int ret;
5713 
5714 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5715 
5716 	if (skb_defer_rx_timestamp(skb))
5717 		return NET_RX_SUCCESS;
5718 
5719 	rcu_read_lock();
5720 #ifdef CONFIG_RPS
5721 	if (static_branch_unlikely(&rps_needed)) {
5722 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5723 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5724 
5725 		if (cpu >= 0) {
5726 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5727 			rcu_read_unlock();
5728 			return ret;
5729 		}
5730 	}
5731 #endif
5732 	ret = __netif_receive_skb(skb);
5733 	rcu_read_unlock();
5734 	return ret;
5735 }
5736 
5737 void netif_receive_skb_list_internal(struct list_head *head)
5738 {
5739 	struct sk_buff *skb, *next;
5740 	struct list_head sublist;
5741 
5742 	INIT_LIST_HEAD(&sublist);
5743 	list_for_each_entry_safe(skb, next, head, list) {
5744 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5745 		skb_list_del_init(skb);
5746 		if (!skb_defer_rx_timestamp(skb))
5747 			list_add_tail(&skb->list, &sublist);
5748 	}
5749 	list_splice_init(&sublist, head);
5750 
5751 	rcu_read_lock();
5752 #ifdef CONFIG_RPS
5753 	if (static_branch_unlikely(&rps_needed)) {
5754 		list_for_each_entry_safe(skb, next, head, list) {
5755 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5756 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5757 
5758 			if (cpu >= 0) {
5759 				/* Will be handled, remove from list */
5760 				skb_list_del_init(skb);
5761 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5762 			}
5763 		}
5764 	}
5765 #endif
5766 	__netif_receive_skb_list(head);
5767 	rcu_read_unlock();
5768 }
5769 
5770 /**
5771  *	netif_receive_skb - process receive buffer from network
5772  *	@skb: buffer to process
5773  *
5774  *	netif_receive_skb() is the main receive data processing function.
5775  *	It always succeeds. The buffer may be dropped during processing
5776  *	for congestion control or by the protocol layers.
5777  *
5778  *	This function may only be called from softirq context and interrupts
5779  *	should be enabled.
5780  *
5781  *	Return values (usually ignored):
5782  *	NET_RX_SUCCESS: no congestion
5783  *	NET_RX_DROP: packet was dropped
5784  */
5785 int netif_receive_skb(struct sk_buff *skb)
5786 {
5787 	int ret;
5788 
5789 	trace_netif_receive_skb_entry(skb);
5790 
5791 	ret = netif_receive_skb_internal(skb);
5792 	trace_netif_receive_skb_exit(ret);
5793 
5794 	return ret;
5795 }
5796 EXPORT_SYMBOL(netif_receive_skb);
5797 
5798 /**
5799  *	netif_receive_skb_list - process many receive buffers from network
5800  *	@head: list of skbs to process.
5801  *
5802  *	Since return value of netif_receive_skb() is normally ignored, and
5803  *	wouldn't be meaningful for a list, this function returns void.
5804  *
5805  *	This function may only be called from softirq context and interrupts
5806  *	should be enabled.
5807  */
5808 void netif_receive_skb_list(struct list_head *head)
5809 {
5810 	struct sk_buff *skb;
5811 
5812 	if (list_empty(head))
5813 		return;
5814 	if (trace_netif_receive_skb_list_entry_enabled()) {
5815 		list_for_each_entry(skb, head, list)
5816 			trace_netif_receive_skb_list_entry(skb);
5817 	}
5818 	netif_receive_skb_list_internal(head);
5819 	trace_netif_receive_skb_list_exit(0);
5820 }
5821 EXPORT_SYMBOL(netif_receive_skb_list);
5822 
5823 static DEFINE_PER_CPU(struct work_struct, flush_works);
5824 
5825 /* Network device is going away, flush any packets still pending */
5826 static void flush_backlog(struct work_struct *work)
5827 {
5828 	struct sk_buff *skb, *tmp;
5829 	struct softnet_data *sd;
5830 
5831 	local_bh_disable();
5832 	sd = this_cpu_ptr(&softnet_data);
5833 
5834 	rps_lock_irq_disable(sd);
5835 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5836 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5837 			__skb_unlink(skb, &sd->input_pkt_queue);
5838 			dev_kfree_skb_irq(skb);
5839 			input_queue_head_incr(sd);
5840 		}
5841 	}
5842 	rps_unlock_irq_enable(sd);
5843 
5844 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5845 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5846 			__skb_unlink(skb, &sd->process_queue);
5847 			kfree_skb(skb);
5848 			input_queue_head_incr(sd);
5849 		}
5850 	}
5851 	local_bh_enable();
5852 }
5853 
5854 static bool flush_required(int cpu)
5855 {
5856 #if IS_ENABLED(CONFIG_RPS)
5857 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5858 	bool do_flush;
5859 
5860 	rps_lock_irq_disable(sd);
5861 
5862 	/* as insertion into process_queue happens with the rps lock held,
5863 	 * process_queue access may race only with dequeue
5864 	 */
5865 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5866 		   !skb_queue_empty_lockless(&sd->process_queue);
5867 	rps_unlock_irq_enable(sd);
5868 
5869 	return do_flush;
5870 #endif
5871 	/* without RPS we can't safely check input_pkt_queue: during a
5872 	 * concurrent remote skb_queue_splice() we can detect as empty both
5873 	 * input_pkt_queue and process_queue even if the latter could end-up
5874 	 * containing a lot of packets.
5875 	 */
5876 	return true;
5877 }
5878 
5879 static void flush_all_backlogs(void)
5880 {
5881 	static cpumask_t flush_cpus;
5882 	unsigned int cpu;
5883 
5884 	/* since we are under rtnl lock protection we can use static data
5885 	 * for the cpumask and avoid allocating on stack the possibly
5886 	 * large mask
5887 	 */
5888 	ASSERT_RTNL();
5889 
5890 	cpus_read_lock();
5891 
5892 	cpumask_clear(&flush_cpus);
5893 	for_each_online_cpu(cpu) {
5894 		if (flush_required(cpu)) {
5895 			queue_work_on(cpu, system_highpri_wq,
5896 				      per_cpu_ptr(&flush_works, cpu));
5897 			cpumask_set_cpu(cpu, &flush_cpus);
5898 		}
5899 	}
5900 
5901 	/* we can have in flight packet[s] on the cpus we are not flushing,
5902 	 * synchronize_net() in unregister_netdevice_many() will take care of
5903 	 * them
5904 	 */
5905 	for_each_cpu(cpu, &flush_cpus)
5906 		flush_work(per_cpu_ptr(&flush_works, cpu));
5907 
5908 	cpus_read_unlock();
5909 }
5910 
5911 static void net_rps_send_ipi(struct softnet_data *remsd)
5912 {
5913 #ifdef CONFIG_RPS
5914 	while (remsd) {
5915 		struct softnet_data *next = remsd->rps_ipi_next;
5916 
5917 		if (cpu_online(remsd->cpu))
5918 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5919 		remsd = next;
5920 	}
5921 #endif
5922 }
5923 
5924 /*
5925  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5926  * Note: called with local irq disabled, but exits with local irq enabled.
5927  */
5928 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5929 {
5930 #ifdef CONFIG_RPS
5931 	struct softnet_data *remsd = sd->rps_ipi_list;
5932 
5933 	if (remsd) {
5934 		sd->rps_ipi_list = NULL;
5935 
5936 		local_irq_enable();
5937 
5938 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5939 		net_rps_send_ipi(remsd);
5940 	} else
5941 #endif
5942 		local_irq_enable();
5943 }
5944 
5945 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5946 {
5947 #ifdef CONFIG_RPS
5948 	return sd->rps_ipi_list != NULL;
5949 #else
5950 	return false;
5951 #endif
5952 }
5953 
5954 static int process_backlog(struct napi_struct *napi, int quota)
5955 {
5956 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5957 	bool again = true;
5958 	int work = 0;
5959 
5960 	/* Check if we have pending ipi, its better to send them now,
5961 	 * not waiting net_rx_action() end.
5962 	 */
5963 	if (sd_has_rps_ipi_waiting(sd)) {
5964 		local_irq_disable();
5965 		net_rps_action_and_irq_enable(sd);
5966 	}
5967 
5968 	napi->weight = READ_ONCE(dev_rx_weight);
5969 	while (again) {
5970 		struct sk_buff *skb;
5971 
5972 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5973 			rcu_read_lock();
5974 			__netif_receive_skb(skb);
5975 			rcu_read_unlock();
5976 			input_queue_head_incr(sd);
5977 			if (++work >= quota)
5978 				return work;
5979 
5980 		}
5981 
5982 		rps_lock_irq_disable(sd);
5983 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5984 			/*
5985 			 * Inline a custom version of __napi_complete().
5986 			 * only current cpu owns and manipulates this napi,
5987 			 * and NAPI_STATE_SCHED is the only possible flag set
5988 			 * on backlog.
5989 			 * We can use a plain write instead of clear_bit(),
5990 			 * and we dont need an smp_mb() memory barrier.
5991 			 */
5992 			napi->state = 0;
5993 			again = false;
5994 		} else {
5995 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5996 						   &sd->process_queue);
5997 		}
5998 		rps_unlock_irq_enable(sd);
5999 	}
6000 
6001 	return work;
6002 }
6003 
6004 /**
6005  * __napi_schedule - schedule for receive
6006  * @n: entry to schedule
6007  *
6008  * The entry's receive function will be scheduled to run.
6009  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6010  */
6011 void __napi_schedule(struct napi_struct *n)
6012 {
6013 	unsigned long flags;
6014 
6015 	local_irq_save(flags);
6016 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6017 	local_irq_restore(flags);
6018 }
6019 EXPORT_SYMBOL(__napi_schedule);
6020 
6021 /**
6022  *	napi_schedule_prep - check if napi can be scheduled
6023  *	@n: napi context
6024  *
6025  * Test if NAPI routine is already running, and if not mark
6026  * it as running.  This is used as a condition variable to
6027  * insure only one NAPI poll instance runs.  We also make
6028  * sure there is no pending NAPI disable.
6029  */
6030 bool napi_schedule_prep(struct napi_struct *n)
6031 {
6032 	unsigned long new, val = READ_ONCE(n->state);
6033 
6034 	do {
6035 		if (unlikely(val & NAPIF_STATE_DISABLE))
6036 			return false;
6037 		new = val | NAPIF_STATE_SCHED;
6038 
6039 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6040 		 * This was suggested by Alexander Duyck, as compiler
6041 		 * emits better code than :
6042 		 * if (val & NAPIF_STATE_SCHED)
6043 		 *     new |= NAPIF_STATE_MISSED;
6044 		 */
6045 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6046 						   NAPIF_STATE_MISSED;
6047 	} while (!try_cmpxchg(&n->state, &val, new));
6048 
6049 	return !(val & NAPIF_STATE_SCHED);
6050 }
6051 EXPORT_SYMBOL(napi_schedule_prep);
6052 
6053 /**
6054  * __napi_schedule_irqoff - schedule for receive
6055  * @n: entry to schedule
6056  *
6057  * Variant of __napi_schedule() assuming hard irqs are masked.
6058  *
6059  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6060  * because the interrupt disabled assumption might not be true
6061  * due to force-threaded interrupts and spinlock substitution.
6062  */
6063 void __napi_schedule_irqoff(struct napi_struct *n)
6064 {
6065 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6066 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6067 	else
6068 		__napi_schedule(n);
6069 }
6070 EXPORT_SYMBOL(__napi_schedule_irqoff);
6071 
6072 bool napi_complete_done(struct napi_struct *n, int work_done)
6073 {
6074 	unsigned long flags, val, new, timeout = 0;
6075 	bool ret = true;
6076 
6077 	/*
6078 	 * 1) Don't let napi dequeue from the cpu poll list
6079 	 *    just in case its running on a different cpu.
6080 	 * 2) If we are busy polling, do nothing here, we have
6081 	 *    the guarantee we will be called later.
6082 	 */
6083 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6084 				 NAPIF_STATE_IN_BUSY_POLL)))
6085 		return false;
6086 
6087 	if (work_done) {
6088 		if (n->gro_bitmask)
6089 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6090 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6091 	}
6092 	if (n->defer_hard_irqs_count > 0) {
6093 		n->defer_hard_irqs_count--;
6094 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6095 		if (timeout)
6096 			ret = false;
6097 	}
6098 	if (n->gro_bitmask) {
6099 		/* When the NAPI instance uses a timeout and keeps postponing
6100 		 * it, we need to bound somehow the time packets are kept in
6101 		 * the GRO layer
6102 		 */
6103 		napi_gro_flush(n, !!timeout);
6104 	}
6105 
6106 	gro_normal_list(n);
6107 
6108 	if (unlikely(!list_empty(&n->poll_list))) {
6109 		/* If n->poll_list is not empty, we need to mask irqs */
6110 		local_irq_save(flags);
6111 		list_del_init(&n->poll_list);
6112 		local_irq_restore(flags);
6113 	}
6114 	WRITE_ONCE(n->list_owner, -1);
6115 
6116 	val = READ_ONCE(n->state);
6117 	do {
6118 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6119 
6120 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6121 			      NAPIF_STATE_SCHED_THREADED |
6122 			      NAPIF_STATE_PREFER_BUSY_POLL);
6123 
6124 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6125 		 * because we will call napi->poll() one more time.
6126 		 * This C code was suggested by Alexander Duyck to help gcc.
6127 		 */
6128 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6129 						    NAPIF_STATE_SCHED;
6130 	} while (!try_cmpxchg(&n->state, &val, new));
6131 
6132 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6133 		__napi_schedule(n);
6134 		return false;
6135 	}
6136 
6137 	if (timeout)
6138 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6139 			      HRTIMER_MODE_REL_PINNED);
6140 	return ret;
6141 }
6142 EXPORT_SYMBOL(napi_complete_done);
6143 
6144 /* must be called under rcu_read_lock(), as we dont take a reference */
6145 static struct napi_struct *napi_by_id(unsigned int napi_id)
6146 {
6147 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6148 	struct napi_struct *napi;
6149 
6150 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6151 		if (napi->napi_id == napi_id)
6152 			return napi;
6153 
6154 	return NULL;
6155 }
6156 
6157 #if defined(CONFIG_NET_RX_BUSY_POLL)
6158 
6159 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6160 {
6161 	if (!skip_schedule) {
6162 		gro_normal_list(napi);
6163 		__napi_schedule(napi);
6164 		return;
6165 	}
6166 
6167 	if (napi->gro_bitmask) {
6168 		/* flush too old packets
6169 		 * If HZ < 1000, flush all packets.
6170 		 */
6171 		napi_gro_flush(napi, HZ >= 1000);
6172 	}
6173 
6174 	gro_normal_list(napi);
6175 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6176 }
6177 
6178 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6179 			   u16 budget)
6180 {
6181 	bool skip_schedule = false;
6182 	unsigned long timeout;
6183 	int rc;
6184 
6185 	/* Busy polling means there is a high chance device driver hard irq
6186 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6187 	 * set in napi_schedule_prep().
6188 	 * Since we are about to call napi->poll() once more, we can safely
6189 	 * clear NAPI_STATE_MISSED.
6190 	 *
6191 	 * Note: x86 could use a single "lock and ..." instruction
6192 	 * to perform these two clear_bit()
6193 	 */
6194 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6195 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6196 
6197 	local_bh_disable();
6198 
6199 	if (prefer_busy_poll) {
6200 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6201 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6202 		if (napi->defer_hard_irqs_count && timeout) {
6203 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6204 			skip_schedule = true;
6205 		}
6206 	}
6207 
6208 	/* All we really want here is to re-enable device interrupts.
6209 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6210 	 */
6211 	rc = napi->poll(napi, budget);
6212 	/* We can't gro_normal_list() here, because napi->poll() might have
6213 	 * rearmed the napi (napi_complete_done()) in which case it could
6214 	 * already be running on another CPU.
6215 	 */
6216 	trace_napi_poll(napi, rc, budget);
6217 	netpoll_poll_unlock(have_poll_lock);
6218 	if (rc == budget)
6219 		__busy_poll_stop(napi, skip_schedule);
6220 	local_bh_enable();
6221 }
6222 
6223 void napi_busy_loop(unsigned int napi_id,
6224 		    bool (*loop_end)(void *, unsigned long),
6225 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6226 {
6227 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6228 	int (*napi_poll)(struct napi_struct *napi, int budget);
6229 	void *have_poll_lock = NULL;
6230 	struct napi_struct *napi;
6231 
6232 restart:
6233 	napi_poll = NULL;
6234 
6235 	rcu_read_lock();
6236 
6237 	napi = napi_by_id(napi_id);
6238 	if (!napi)
6239 		goto out;
6240 
6241 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6242 		preempt_disable();
6243 	for (;;) {
6244 		int work = 0;
6245 
6246 		local_bh_disable();
6247 		if (!napi_poll) {
6248 			unsigned long val = READ_ONCE(napi->state);
6249 
6250 			/* If multiple threads are competing for this napi,
6251 			 * we avoid dirtying napi->state as much as we can.
6252 			 */
6253 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6254 				   NAPIF_STATE_IN_BUSY_POLL)) {
6255 				if (prefer_busy_poll)
6256 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6257 				goto count;
6258 			}
6259 			if (cmpxchg(&napi->state, val,
6260 				    val | NAPIF_STATE_IN_BUSY_POLL |
6261 					  NAPIF_STATE_SCHED) != val) {
6262 				if (prefer_busy_poll)
6263 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6264 				goto count;
6265 			}
6266 			have_poll_lock = netpoll_poll_lock(napi);
6267 			napi_poll = napi->poll;
6268 		}
6269 		work = napi_poll(napi, budget);
6270 		trace_napi_poll(napi, work, budget);
6271 		gro_normal_list(napi);
6272 count:
6273 		if (work > 0)
6274 			__NET_ADD_STATS(dev_net(napi->dev),
6275 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6276 		local_bh_enable();
6277 
6278 		if (!loop_end || loop_end(loop_end_arg, start_time))
6279 			break;
6280 
6281 		if (unlikely(need_resched())) {
6282 			if (napi_poll)
6283 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6284 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6285 				preempt_enable();
6286 			rcu_read_unlock();
6287 			cond_resched();
6288 			if (loop_end(loop_end_arg, start_time))
6289 				return;
6290 			goto restart;
6291 		}
6292 		cpu_relax();
6293 	}
6294 	if (napi_poll)
6295 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6296 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6297 		preempt_enable();
6298 out:
6299 	rcu_read_unlock();
6300 }
6301 EXPORT_SYMBOL(napi_busy_loop);
6302 
6303 #endif /* CONFIG_NET_RX_BUSY_POLL */
6304 
6305 static void napi_hash_add(struct napi_struct *napi)
6306 {
6307 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6308 		return;
6309 
6310 	spin_lock(&napi_hash_lock);
6311 
6312 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6313 	do {
6314 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6315 			napi_gen_id = MIN_NAPI_ID;
6316 	} while (napi_by_id(napi_gen_id));
6317 	napi->napi_id = napi_gen_id;
6318 
6319 	hlist_add_head_rcu(&napi->napi_hash_node,
6320 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6321 
6322 	spin_unlock(&napi_hash_lock);
6323 }
6324 
6325 /* Warning : caller is responsible to make sure rcu grace period
6326  * is respected before freeing memory containing @napi
6327  */
6328 static void napi_hash_del(struct napi_struct *napi)
6329 {
6330 	spin_lock(&napi_hash_lock);
6331 
6332 	hlist_del_init_rcu(&napi->napi_hash_node);
6333 
6334 	spin_unlock(&napi_hash_lock);
6335 }
6336 
6337 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6338 {
6339 	struct napi_struct *napi;
6340 
6341 	napi = container_of(timer, struct napi_struct, timer);
6342 
6343 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6344 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6345 	 */
6346 	if (!napi_disable_pending(napi) &&
6347 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6348 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6349 		__napi_schedule_irqoff(napi);
6350 	}
6351 
6352 	return HRTIMER_NORESTART;
6353 }
6354 
6355 static void init_gro_hash(struct napi_struct *napi)
6356 {
6357 	int i;
6358 
6359 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6360 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6361 		napi->gro_hash[i].count = 0;
6362 	}
6363 	napi->gro_bitmask = 0;
6364 }
6365 
6366 int dev_set_threaded(struct net_device *dev, bool threaded)
6367 {
6368 	struct napi_struct *napi;
6369 	int err = 0;
6370 
6371 	if (dev->threaded == threaded)
6372 		return 0;
6373 
6374 	if (threaded) {
6375 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6376 			if (!napi->thread) {
6377 				err = napi_kthread_create(napi);
6378 				if (err) {
6379 					threaded = false;
6380 					break;
6381 				}
6382 			}
6383 		}
6384 	}
6385 
6386 	dev->threaded = threaded;
6387 
6388 	/* Make sure kthread is created before THREADED bit
6389 	 * is set.
6390 	 */
6391 	smp_mb__before_atomic();
6392 
6393 	/* Setting/unsetting threaded mode on a napi might not immediately
6394 	 * take effect, if the current napi instance is actively being
6395 	 * polled. In this case, the switch between threaded mode and
6396 	 * softirq mode will happen in the next round of napi_schedule().
6397 	 * This should not cause hiccups/stalls to the live traffic.
6398 	 */
6399 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6400 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6401 
6402 	return err;
6403 }
6404 EXPORT_SYMBOL(dev_set_threaded);
6405 
6406 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6407 			   int (*poll)(struct napi_struct *, int), int weight)
6408 {
6409 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6410 		return;
6411 
6412 	INIT_LIST_HEAD(&napi->poll_list);
6413 	INIT_HLIST_NODE(&napi->napi_hash_node);
6414 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6415 	napi->timer.function = napi_watchdog;
6416 	init_gro_hash(napi);
6417 	napi->skb = NULL;
6418 	INIT_LIST_HEAD(&napi->rx_list);
6419 	napi->rx_count = 0;
6420 	napi->poll = poll;
6421 	if (weight > NAPI_POLL_WEIGHT)
6422 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6423 				weight);
6424 	napi->weight = weight;
6425 	napi->dev = dev;
6426 #ifdef CONFIG_NETPOLL
6427 	napi->poll_owner = -1;
6428 #endif
6429 	napi->list_owner = -1;
6430 	set_bit(NAPI_STATE_SCHED, &napi->state);
6431 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6432 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6433 	napi_hash_add(napi);
6434 	napi_get_frags_check(napi);
6435 	/* Create kthread for this napi if dev->threaded is set.
6436 	 * Clear dev->threaded if kthread creation failed so that
6437 	 * threaded mode will not be enabled in napi_enable().
6438 	 */
6439 	if (dev->threaded && napi_kthread_create(napi))
6440 		dev->threaded = 0;
6441 }
6442 EXPORT_SYMBOL(netif_napi_add_weight);
6443 
6444 void napi_disable(struct napi_struct *n)
6445 {
6446 	unsigned long val, new;
6447 
6448 	might_sleep();
6449 	set_bit(NAPI_STATE_DISABLE, &n->state);
6450 
6451 	val = READ_ONCE(n->state);
6452 	do {
6453 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6454 			usleep_range(20, 200);
6455 			val = READ_ONCE(n->state);
6456 		}
6457 
6458 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6459 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6460 	} while (!try_cmpxchg(&n->state, &val, new));
6461 
6462 	hrtimer_cancel(&n->timer);
6463 
6464 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6465 }
6466 EXPORT_SYMBOL(napi_disable);
6467 
6468 /**
6469  *	napi_enable - enable NAPI scheduling
6470  *	@n: NAPI context
6471  *
6472  * Resume NAPI from being scheduled on this context.
6473  * Must be paired with napi_disable.
6474  */
6475 void napi_enable(struct napi_struct *n)
6476 {
6477 	unsigned long new, val = READ_ONCE(n->state);
6478 
6479 	do {
6480 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6481 
6482 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6483 		if (n->dev->threaded && n->thread)
6484 			new |= NAPIF_STATE_THREADED;
6485 	} while (!try_cmpxchg(&n->state, &val, new));
6486 }
6487 EXPORT_SYMBOL(napi_enable);
6488 
6489 static void flush_gro_hash(struct napi_struct *napi)
6490 {
6491 	int i;
6492 
6493 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6494 		struct sk_buff *skb, *n;
6495 
6496 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6497 			kfree_skb(skb);
6498 		napi->gro_hash[i].count = 0;
6499 	}
6500 }
6501 
6502 /* Must be called in process context */
6503 void __netif_napi_del(struct napi_struct *napi)
6504 {
6505 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6506 		return;
6507 
6508 	napi_hash_del(napi);
6509 	list_del_rcu(&napi->dev_list);
6510 	napi_free_frags(napi);
6511 
6512 	flush_gro_hash(napi);
6513 	napi->gro_bitmask = 0;
6514 
6515 	if (napi->thread) {
6516 		kthread_stop(napi->thread);
6517 		napi->thread = NULL;
6518 	}
6519 }
6520 EXPORT_SYMBOL(__netif_napi_del);
6521 
6522 static int __napi_poll(struct napi_struct *n, bool *repoll)
6523 {
6524 	int work, weight;
6525 
6526 	weight = n->weight;
6527 
6528 	/* This NAPI_STATE_SCHED test is for avoiding a race
6529 	 * with netpoll's poll_napi().  Only the entity which
6530 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6531 	 * actually make the ->poll() call.  Therefore we avoid
6532 	 * accidentally calling ->poll() when NAPI is not scheduled.
6533 	 */
6534 	work = 0;
6535 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6536 		work = n->poll(n, weight);
6537 		trace_napi_poll(n, work, weight);
6538 	}
6539 
6540 	if (unlikely(work > weight))
6541 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6542 				n->poll, work, weight);
6543 
6544 	if (likely(work < weight))
6545 		return work;
6546 
6547 	/* Drivers must not modify the NAPI state if they
6548 	 * consume the entire weight.  In such cases this code
6549 	 * still "owns" the NAPI instance and therefore can
6550 	 * move the instance around on the list at-will.
6551 	 */
6552 	if (unlikely(napi_disable_pending(n))) {
6553 		napi_complete(n);
6554 		return work;
6555 	}
6556 
6557 	/* The NAPI context has more processing work, but busy-polling
6558 	 * is preferred. Exit early.
6559 	 */
6560 	if (napi_prefer_busy_poll(n)) {
6561 		if (napi_complete_done(n, work)) {
6562 			/* If timeout is not set, we need to make sure
6563 			 * that the NAPI is re-scheduled.
6564 			 */
6565 			napi_schedule(n);
6566 		}
6567 		return work;
6568 	}
6569 
6570 	if (n->gro_bitmask) {
6571 		/* flush too old packets
6572 		 * If HZ < 1000, flush all packets.
6573 		 */
6574 		napi_gro_flush(n, HZ >= 1000);
6575 	}
6576 
6577 	gro_normal_list(n);
6578 
6579 	/* Some drivers may have called napi_schedule
6580 	 * prior to exhausting their budget.
6581 	 */
6582 	if (unlikely(!list_empty(&n->poll_list))) {
6583 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6584 			     n->dev ? n->dev->name : "backlog");
6585 		return work;
6586 	}
6587 
6588 	*repoll = true;
6589 
6590 	return work;
6591 }
6592 
6593 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6594 {
6595 	bool do_repoll = false;
6596 	void *have;
6597 	int work;
6598 
6599 	list_del_init(&n->poll_list);
6600 
6601 	have = netpoll_poll_lock(n);
6602 
6603 	work = __napi_poll(n, &do_repoll);
6604 
6605 	if (do_repoll)
6606 		list_add_tail(&n->poll_list, repoll);
6607 
6608 	netpoll_poll_unlock(have);
6609 
6610 	return work;
6611 }
6612 
6613 static int napi_thread_wait(struct napi_struct *napi)
6614 {
6615 	bool woken = false;
6616 
6617 	set_current_state(TASK_INTERRUPTIBLE);
6618 
6619 	while (!kthread_should_stop()) {
6620 		/* Testing SCHED_THREADED bit here to make sure the current
6621 		 * kthread owns this napi and could poll on this napi.
6622 		 * Testing SCHED bit is not enough because SCHED bit might be
6623 		 * set by some other busy poll thread or by napi_disable().
6624 		 */
6625 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6626 			WARN_ON(!list_empty(&napi->poll_list));
6627 			__set_current_state(TASK_RUNNING);
6628 			return 0;
6629 		}
6630 
6631 		schedule();
6632 		/* woken being true indicates this thread owns this napi. */
6633 		woken = true;
6634 		set_current_state(TASK_INTERRUPTIBLE);
6635 	}
6636 	__set_current_state(TASK_RUNNING);
6637 
6638 	return -1;
6639 }
6640 
6641 static void skb_defer_free_flush(struct softnet_data *sd)
6642 {
6643 	struct sk_buff *skb, *next;
6644 
6645 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6646 	if (!READ_ONCE(sd->defer_list))
6647 		return;
6648 
6649 	spin_lock(&sd->defer_lock);
6650 	skb = sd->defer_list;
6651 	sd->defer_list = NULL;
6652 	sd->defer_count = 0;
6653 	spin_unlock(&sd->defer_lock);
6654 
6655 	while (skb != NULL) {
6656 		next = skb->next;
6657 		napi_consume_skb(skb, 1);
6658 		skb = next;
6659 	}
6660 }
6661 
6662 static int napi_threaded_poll(void *data)
6663 {
6664 	struct napi_struct *napi = data;
6665 	struct softnet_data *sd;
6666 	void *have;
6667 
6668 	while (!napi_thread_wait(napi)) {
6669 		for (;;) {
6670 			bool repoll = false;
6671 
6672 			local_bh_disable();
6673 			sd = this_cpu_ptr(&softnet_data);
6674 			sd->in_napi_threaded_poll = true;
6675 
6676 			have = netpoll_poll_lock(napi);
6677 			__napi_poll(napi, &repoll);
6678 			netpoll_poll_unlock(have);
6679 
6680 			sd->in_napi_threaded_poll = false;
6681 			barrier();
6682 
6683 			if (sd_has_rps_ipi_waiting(sd)) {
6684 				local_irq_disable();
6685 				net_rps_action_and_irq_enable(sd);
6686 			}
6687 			skb_defer_free_flush(sd);
6688 			local_bh_enable();
6689 
6690 			if (!repoll)
6691 				break;
6692 
6693 			cond_resched();
6694 		}
6695 	}
6696 	return 0;
6697 }
6698 
6699 static __latent_entropy void net_rx_action(struct softirq_action *h)
6700 {
6701 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6702 	unsigned long time_limit = jiffies +
6703 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6704 	int budget = READ_ONCE(netdev_budget);
6705 	LIST_HEAD(list);
6706 	LIST_HEAD(repoll);
6707 
6708 start:
6709 	sd->in_net_rx_action = true;
6710 	local_irq_disable();
6711 	list_splice_init(&sd->poll_list, &list);
6712 	local_irq_enable();
6713 
6714 	for (;;) {
6715 		struct napi_struct *n;
6716 
6717 		skb_defer_free_flush(sd);
6718 
6719 		if (list_empty(&list)) {
6720 			if (list_empty(&repoll)) {
6721 				sd->in_net_rx_action = false;
6722 				barrier();
6723 				/* We need to check if ____napi_schedule()
6724 				 * had refilled poll_list while
6725 				 * sd->in_net_rx_action was true.
6726 				 */
6727 				if (!list_empty(&sd->poll_list))
6728 					goto start;
6729 				if (!sd_has_rps_ipi_waiting(sd))
6730 					goto end;
6731 			}
6732 			break;
6733 		}
6734 
6735 		n = list_first_entry(&list, struct napi_struct, poll_list);
6736 		budget -= napi_poll(n, &repoll);
6737 
6738 		/* If softirq window is exhausted then punt.
6739 		 * Allow this to run for 2 jiffies since which will allow
6740 		 * an average latency of 1.5/HZ.
6741 		 */
6742 		if (unlikely(budget <= 0 ||
6743 			     time_after_eq(jiffies, time_limit))) {
6744 			sd->time_squeeze++;
6745 			break;
6746 		}
6747 	}
6748 
6749 	local_irq_disable();
6750 
6751 	list_splice_tail_init(&sd->poll_list, &list);
6752 	list_splice_tail(&repoll, &list);
6753 	list_splice(&list, &sd->poll_list);
6754 	if (!list_empty(&sd->poll_list))
6755 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6756 	else
6757 		sd->in_net_rx_action = false;
6758 
6759 	net_rps_action_and_irq_enable(sd);
6760 end:;
6761 }
6762 
6763 struct netdev_adjacent {
6764 	struct net_device *dev;
6765 	netdevice_tracker dev_tracker;
6766 
6767 	/* upper master flag, there can only be one master device per list */
6768 	bool master;
6769 
6770 	/* lookup ignore flag */
6771 	bool ignore;
6772 
6773 	/* counter for the number of times this device was added to us */
6774 	u16 ref_nr;
6775 
6776 	/* private field for the users */
6777 	void *private;
6778 
6779 	struct list_head list;
6780 	struct rcu_head rcu;
6781 };
6782 
6783 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6784 						 struct list_head *adj_list)
6785 {
6786 	struct netdev_adjacent *adj;
6787 
6788 	list_for_each_entry(adj, adj_list, list) {
6789 		if (adj->dev == adj_dev)
6790 			return adj;
6791 	}
6792 	return NULL;
6793 }
6794 
6795 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6796 				    struct netdev_nested_priv *priv)
6797 {
6798 	struct net_device *dev = (struct net_device *)priv->data;
6799 
6800 	return upper_dev == dev;
6801 }
6802 
6803 /**
6804  * netdev_has_upper_dev - Check if device is linked to an upper device
6805  * @dev: device
6806  * @upper_dev: upper device to check
6807  *
6808  * Find out if a device is linked to specified upper device and return true
6809  * in case it is. Note that this checks only immediate upper device,
6810  * not through a complete stack of devices. The caller must hold the RTNL lock.
6811  */
6812 bool netdev_has_upper_dev(struct net_device *dev,
6813 			  struct net_device *upper_dev)
6814 {
6815 	struct netdev_nested_priv priv = {
6816 		.data = (void *)upper_dev,
6817 	};
6818 
6819 	ASSERT_RTNL();
6820 
6821 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6822 					     &priv);
6823 }
6824 EXPORT_SYMBOL(netdev_has_upper_dev);
6825 
6826 /**
6827  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6828  * @dev: device
6829  * @upper_dev: upper device to check
6830  *
6831  * Find out if a device is linked to specified upper device and return true
6832  * in case it is. Note that this checks the entire upper device chain.
6833  * The caller must hold rcu lock.
6834  */
6835 
6836 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6837 				  struct net_device *upper_dev)
6838 {
6839 	struct netdev_nested_priv priv = {
6840 		.data = (void *)upper_dev,
6841 	};
6842 
6843 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6844 					       &priv);
6845 }
6846 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6847 
6848 /**
6849  * netdev_has_any_upper_dev - Check if device is linked to some device
6850  * @dev: device
6851  *
6852  * Find out if a device is linked to an upper device and return true in case
6853  * it is. The caller must hold the RTNL lock.
6854  */
6855 bool netdev_has_any_upper_dev(struct net_device *dev)
6856 {
6857 	ASSERT_RTNL();
6858 
6859 	return !list_empty(&dev->adj_list.upper);
6860 }
6861 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6862 
6863 /**
6864  * netdev_master_upper_dev_get - Get master upper device
6865  * @dev: device
6866  *
6867  * Find a master upper device and return pointer to it or NULL in case
6868  * it's not there. The caller must hold the RTNL lock.
6869  */
6870 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6871 {
6872 	struct netdev_adjacent *upper;
6873 
6874 	ASSERT_RTNL();
6875 
6876 	if (list_empty(&dev->adj_list.upper))
6877 		return NULL;
6878 
6879 	upper = list_first_entry(&dev->adj_list.upper,
6880 				 struct netdev_adjacent, list);
6881 	if (likely(upper->master))
6882 		return upper->dev;
6883 	return NULL;
6884 }
6885 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6886 
6887 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6888 {
6889 	struct netdev_adjacent *upper;
6890 
6891 	ASSERT_RTNL();
6892 
6893 	if (list_empty(&dev->adj_list.upper))
6894 		return NULL;
6895 
6896 	upper = list_first_entry(&dev->adj_list.upper,
6897 				 struct netdev_adjacent, list);
6898 	if (likely(upper->master) && !upper->ignore)
6899 		return upper->dev;
6900 	return NULL;
6901 }
6902 
6903 /**
6904  * netdev_has_any_lower_dev - Check if device is linked to some device
6905  * @dev: device
6906  *
6907  * Find out if a device is linked to a lower device and return true in case
6908  * it is. The caller must hold the RTNL lock.
6909  */
6910 static bool netdev_has_any_lower_dev(struct net_device *dev)
6911 {
6912 	ASSERT_RTNL();
6913 
6914 	return !list_empty(&dev->adj_list.lower);
6915 }
6916 
6917 void *netdev_adjacent_get_private(struct list_head *adj_list)
6918 {
6919 	struct netdev_adjacent *adj;
6920 
6921 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6922 
6923 	return adj->private;
6924 }
6925 EXPORT_SYMBOL(netdev_adjacent_get_private);
6926 
6927 /**
6928  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6929  * @dev: device
6930  * @iter: list_head ** of the current position
6931  *
6932  * Gets the next device from the dev's upper list, starting from iter
6933  * position. The caller must hold RCU read lock.
6934  */
6935 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6936 						 struct list_head **iter)
6937 {
6938 	struct netdev_adjacent *upper;
6939 
6940 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6941 
6942 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6943 
6944 	if (&upper->list == &dev->adj_list.upper)
6945 		return NULL;
6946 
6947 	*iter = &upper->list;
6948 
6949 	return upper->dev;
6950 }
6951 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6952 
6953 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6954 						  struct list_head **iter,
6955 						  bool *ignore)
6956 {
6957 	struct netdev_adjacent *upper;
6958 
6959 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6960 
6961 	if (&upper->list == &dev->adj_list.upper)
6962 		return NULL;
6963 
6964 	*iter = &upper->list;
6965 	*ignore = upper->ignore;
6966 
6967 	return upper->dev;
6968 }
6969 
6970 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6971 						    struct list_head **iter)
6972 {
6973 	struct netdev_adjacent *upper;
6974 
6975 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6976 
6977 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6978 
6979 	if (&upper->list == &dev->adj_list.upper)
6980 		return NULL;
6981 
6982 	*iter = &upper->list;
6983 
6984 	return upper->dev;
6985 }
6986 
6987 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6988 				       int (*fn)(struct net_device *dev,
6989 					 struct netdev_nested_priv *priv),
6990 				       struct netdev_nested_priv *priv)
6991 {
6992 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6993 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6994 	int ret, cur = 0;
6995 	bool ignore;
6996 
6997 	now = dev;
6998 	iter = &dev->adj_list.upper;
6999 
7000 	while (1) {
7001 		if (now != dev) {
7002 			ret = fn(now, priv);
7003 			if (ret)
7004 				return ret;
7005 		}
7006 
7007 		next = NULL;
7008 		while (1) {
7009 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7010 			if (!udev)
7011 				break;
7012 			if (ignore)
7013 				continue;
7014 
7015 			next = udev;
7016 			niter = &udev->adj_list.upper;
7017 			dev_stack[cur] = now;
7018 			iter_stack[cur++] = iter;
7019 			break;
7020 		}
7021 
7022 		if (!next) {
7023 			if (!cur)
7024 				return 0;
7025 			next = dev_stack[--cur];
7026 			niter = iter_stack[cur];
7027 		}
7028 
7029 		now = next;
7030 		iter = niter;
7031 	}
7032 
7033 	return 0;
7034 }
7035 
7036 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7037 				  int (*fn)(struct net_device *dev,
7038 					    struct netdev_nested_priv *priv),
7039 				  struct netdev_nested_priv *priv)
7040 {
7041 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7042 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7043 	int ret, cur = 0;
7044 
7045 	now = dev;
7046 	iter = &dev->adj_list.upper;
7047 
7048 	while (1) {
7049 		if (now != dev) {
7050 			ret = fn(now, priv);
7051 			if (ret)
7052 				return ret;
7053 		}
7054 
7055 		next = NULL;
7056 		while (1) {
7057 			udev = netdev_next_upper_dev_rcu(now, &iter);
7058 			if (!udev)
7059 				break;
7060 
7061 			next = udev;
7062 			niter = &udev->adj_list.upper;
7063 			dev_stack[cur] = now;
7064 			iter_stack[cur++] = iter;
7065 			break;
7066 		}
7067 
7068 		if (!next) {
7069 			if (!cur)
7070 				return 0;
7071 			next = dev_stack[--cur];
7072 			niter = iter_stack[cur];
7073 		}
7074 
7075 		now = next;
7076 		iter = niter;
7077 	}
7078 
7079 	return 0;
7080 }
7081 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7082 
7083 static bool __netdev_has_upper_dev(struct net_device *dev,
7084 				   struct net_device *upper_dev)
7085 {
7086 	struct netdev_nested_priv priv = {
7087 		.flags = 0,
7088 		.data = (void *)upper_dev,
7089 	};
7090 
7091 	ASSERT_RTNL();
7092 
7093 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7094 					   &priv);
7095 }
7096 
7097 /**
7098  * netdev_lower_get_next_private - Get the next ->private from the
7099  *				   lower neighbour list
7100  * @dev: device
7101  * @iter: list_head ** of the current position
7102  *
7103  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7104  * list, starting from iter position. The caller must hold either hold the
7105  * RTNL lock or its own locking that guarantees that the neighbour lower
7106  * list will remain unchanged.
7107  */
7108 void *netdev_lower_get_next_private(struct net_device *dev,
7109 				    struct list_head **iter)
7110 {
7111 	struct netdev_adjacent *lower;
7112 
7113 	lower = list_entry(*iter, struct netdev_adjacent, list);
7114 
7115 	if (&lower->list == &dev->adj_list.lower)
7116 		return NULL;
7117 
7118 	*iter = lower->list.next;
7119 
7120 	return lower->private;
7121 }
7122 EXPORT_SYMBOL(netdev_lower_get_next_private);
7123 
7124 /**
7125  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7126  *				       lower neighbour list, RCU
7127  *				       variant
7128  * @dev: device
7129  * @iter: list_head ** of the current position
7130  *
7131  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7132  * list, starting from iter position. The caller must hold RCU read lock.
7133  */
7134 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7135 					struct list_head **iter)
7136 {
7137 	struct netdev_adjacent *lower;
7138 
7139 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7140 
7141 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7142 
7143 	if (&lower->list == &dev->adj_list.lower)
7144 		return NULL;
7145 
7146 	*iter = &lower->list;
7147 
7148 	return lower->private;
7149 }
7150 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7151 
7152 /**
7153  * netdev_lower_get_next - Get the next device from the lower neighbour
7154  *                         list
7155  * @dev: device
7156  * @iter: list_head ** of the current position
7157  *
7158  * Gets the next netdev_adjacent from the dev's lower neighbour
7159  * list, starting from iter position. The caller must hold RTNL lock or
7160  * its own locking that guarantees that the neighbour lower
7161  * list will remain unchanged.
7162  */
7163 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7164 {
7165 	struct netdev_adjacent *lower;
7166 
7167 	lower = list_entry(*iter, struct netdev_adjacent, list);
7168 
7169 	if (&lower->list == &dev->adj_list.lower)
7170 		return NULL;
7171 
7172 	*iter = lower->list.next;
7173 
7174 	return lower->dev;
7175 }
7176 EXPORT_SYMBOL(netdev_lower_get_next);
7177 
7178 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7179 						struct list_head **iter)
7180 {
7181 	struct netdev_adjacent *lower;
7182 
7183 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7184 
7185 	if (&lower->list == &dev->adj_list.lower)
7186 		return NULL;
7187 
7188 	*iter = &lower->list;
7189 
7190 	return lower->dev;
7191 }
7192 
7193 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7194 						  struct list_head **iter,
7195 						  bool *ignore)
7196 {
7197 	struct netdev_adjacent *lower;
7198 
7199 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7200 
7201 	if (&lower->list == &dev->adj_list.lower)
7202 		return NULL;
7203 
7204 	*iter = &lower->list;
7205 	*ignore = lower->ignore;
7206 
7207 	return lower->dev;
7208 }
7209 
7210 int netdev_walk_all_lower_dev(struct net_device *dev,
7211 			      int (*fn)(struct net_device *dev,
7212 					struct netdev_nested_priv *priv),
7213 			      struct netdev_nested_priv *priv)
7214 {
7215 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7216 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7217 	int ret, cur = 0;
7218 
7219 	now = dev;
7220 	iter = &dev->adj_list.lower;
7221 
7222 	while (1) {
7223 		if (now != dev) {
7224 			ret = fn(now, priv);
7225 			if (ret)
7226 				return ret;
7227 		}
7228 
7229 		next = NULL;
7230 		while (1) {
7231 			ldev = netdev_next_lower_dev(now, &iter);
7232 			if (!ldev)
7233 				break;
7234 
7235 			next = ldev;
7236 			niter = &ldev->adj_list.lower;
7237 			dev_stack[cur] = now;
7238 			iter_stack[cur++] = iter;
7239 			break;
7240 		}
7241 
7242 		if (!next) {
7243 			if (!cur)
7244 				return 0;
7245 			next = dev_stack[--cur];
7246 			niter = iter_stack[cur];
7247 		}
7248 
7249 		now = next;
7250 		iter = niter;
7251 	}
7252 
7253 	return 0;
7254 }
7255 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7256 
7257 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7258 				       int (*fn)(struct net_device *dev,
7259 					 struct netdev_nested_priv *priv),
7260 				       struct netdev_nested_priv *priv)
7261 {
7262 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7263 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7264 	int ret, cur = 0;
7265 	bool ignore;
7266 
7267 	now = dev;
7268 	iter = &dev->adj_list.lower;
7269 
7270 	while (1) {
7271 		if (now != dev) {
7272 			ret = fn(now, priv);
7273 			if (ret)
7274 				return ret;
7275 		}
7276 
7277 		next = NULL;
7278 		while (1) {
7279 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7280 			if (!ldev)
7281 				break;
7282 			if (ignore)
7283 				continue;
7284 
7285 			next = ldev;
7286 			niter = &ldev->adj_list.lower;
7287 			dev_stack[cur] = now;
7288 			iter_stack[cur++] = iter;
7289 			break;
7290 		}
7291 
7292 		if (!next) {
7293 			if (!cur)
7294 				return 0;
7295 			next = dev_stack[--cur];
7296 			niter = iter_stack[cur];
7297 		}
7298 
7299 		now = next;
7300 		iter = niter;
7301 	}
7302 
7303 	return 0;
7304 }
7305 
7306 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7307 					     struct list_head **iter)
7308 {
7309 	struct netdev_adjacent *lower;
7310 
7311 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7312 	if (&lower->list == &dev->adj_list.lower)
7313 		return NULL;
7314 
7315 	*iter = &lower->list;
7316 
7317 	return lower->dev;
7318 }
7319 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7320 
7321 static u8 __netdev_upper_depth(struct net_device *dev)
7322 {
7323 	struct net_device *udev;
7324 	struct list_head *iter;
7325 	u8 max_depth = 0;
7326 	bool ignore;
7327 
7328 	for (iter = &dev->adj_list.upper,
7329 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7330 	     udev;
7331 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7332 		if (ignore)
7333 			continue;
7334 		if (max_depth < udev->upper_level)
7335 			max_depth = udev->upper_level;
7336 	}
7337 
7338 	return max_depth;
7339 }
7340 
7341 static u8 __netdev_lower_depth(struct net_device *dev)
7342 {
7343 	struct net_device *ldev;
7344 	struct list_head *iter;
7345 	u8 max_depth = 0;
7346 	bool ignore;
7347 
7348 	for (iter = &dev->adj_list.lower,
7349 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7350 	     ldev;
7351 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7352 		if (ignore)
7353 			continue;
7354 		if (max_depth < ldev->lower_level)
7355 			max_depth = ldev->lower_level;
7356 	}
7357 
7358 	return max_depth;
7359 }
7360 
7361 static int __netdev_update_upper_level(struct net_device *dev,
7362 				       struct netdev_nested_priv *__unused)
7363 {
7364 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7365 	return 0;
7366 }
7367 
7368 #ifdef CONFIG_LOCKDEP
7369 static LIST_HEAD(net_unlink_list);
7370 
7371 static void net_unlink_todo(struct net_device *dev)
7372 {
7373 	if (list_empty(&dev->unlink_list))
7374 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7375 }
7376 #endif
7377 
7378 static int __netdev_update_lower_level(struct net_device *dev,
7379 				       struct netdev_nested_priv *priv)
7380 {
7381 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7382 
7383 #ifdef CONFIG_LOCKDEP
7384 	if (!priv)
7385 		return 0;
7386 
7387 	if (priv->flags & NESTED_SYNC_IMM)
7388 		dev->nested_level = dev->lower_level - 1;
7389 	if (priv->flags & NESTED_SYNC_TODO)
7390 		net_unlink_todo(dev);
7391 #endif
7392 	return 0;
7393 }
7394 
7395 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7396 				  int (*fn)(struct net_device *dev,
7397 					    struct netdev_nested_priv *priv),
7398 				  struct netdev_nested_priv *priv)
7399 {
7400 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7401 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7402 	int ret, cur = 0;
7403 
7404 	now = dev;
7405 	iter = &dev->adj_list.lower;
7406 
7407 	while (1) {
7408 		if (now != dev) {
7409 			ret = fn(now, priv);
7410 			if (ret)
7411 				return ret;
7412 		}
7413 
7414 		next = NULL;
7415 		while (1) {
7416 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7417 			if (!ldev)
7418 				break;
7419 
7420 			next = ldev;
7421 			niter = &ldev->adj_list.lower;
7422 			dev_stack[cur] = now;
7423 			iter_stack[cur++] = iter;
7424 			break;
7425 		}
7426 
7427 		if (!next) {
7428 			if (!cur)
7429 				return 0;
7430 			next = dev_stack[--cur];
7431 			niter = iter_stack[cur];
7432 		}
7433 
7434 		now = next;
7435 		iter = niter;
7436 	}
7437 
7438 	return 0;
7439 }
7440 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7441 
7442 /**
7443  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7444  *				       lower neighbour list, RCU
7445  *				       variant
7446  * @dev: device
7447  *
7448  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7449  * list. The caller must hold RCU read lock.
7450  */
7451 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7452 {
7453 	struct netdev_adjacent *lower;
7454 
7455 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7456 			struct netdev_adjacent, list);
7457 	if (lower)
7458 		return lower->private;
7459 	return NULL;
7460 }
7461 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7462 
7463 /**
7464  * netdev_master_upper_dev_get_rcu - Get master upper device
7465  * @dev: device
7466  *
7467  * Find a master upper device and return pointer to it or NULL in case
7468  * it's not there. The caller must hold the RCU read lock.
7469  */
7470 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7471 {
7472 	struct netdev_adjacent *upper;
7473 
7474 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7475 				       struct netdev_adjacent, list);
7476 	if (upper && likely(upper->master))
7477 		return upper->dev;
7478 	return NULL;
7479 }
7480 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7481 
7482 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7483 			      struct net_device *adj_dev,
7484 			      struct list_head *dev_list)
7485 {
7486 	char linkname[IFNAMSIZ+7];
7487 
7488 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7489 		"upper_%s" : "lower_%s", adj_dev->name);
7490 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7491 				 linkname);
7492 }
7493 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7494 			       char *name,
7495 			       struct list_head *dev_list)
7496 {
7497 	char linkname[IFNAMSIZ+7];
7498 
7499 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7500 		"upper_%s" : "lower_%s", name);
7501 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7502 }
7503 
7504 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7505 						 struct net_device *adj_dev,
7506 						 struct list_head *dev_list)
7507 {
7508 	return (dev_list == &dev->adj_list.upper ||
7509 		dev_list == &dev->adj_list.lower) &&
7510 		net_eq(dev_net(dev), dev_net(adj_dev));
7511 }
7512 
7513 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7514 					struct net_device *adj_dev,
7515 					struct list_head *dev_list,
7516 					void *private, bool master)
7517 {
7518 	struct netdev_adjacent *adj;
7519 	int ret;
7520 
7521 	adj = __netdev_find_adj(adj_dev, dev_list);
7522 
7523 	if (adj) {
7524 		adj->ref_nr += 1;
7525 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7526 			 dev->name, adj_dev->name, adj->ref_nr);
7527 
7528 		return 0;
7529 	}
7530 
7531 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7532 	if (!adj)
7533 		return -ENOMEM;
7534 
7535 	adj->dev = adj_dev;
7536 	adj->master = master;
7537 	adj->ref_nr = 1;
7538 	adj->private = private;
7539 	adj->ignore = false;
7540 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7541 
7542 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7543 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7544 
7545 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7546 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7547 		if (ret)
7548 			goto free_adj;
7549 	}
7550 
7551 	/* Ensure that master link is always the first item in list. */
7552 	if (master) {
7553 		ret = sysfs_create_link(&(dev->dev.kobj),
7554 					&(adj_dev->dev.kobj), "master");
7555 		if (ret)
7556 			goto remove_symlinks;
7557 
7558 		list_add_rcu(&adj->list, dev_list);
7559 	} else {
7560 		list_add_tail_rcu(&adj->list, dev_list);
7561 	}
7562 
7563 	return 0;
7564 
7565 remove_symlinks:
7566 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7567 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7568 free_adj:
7569 	netdev_put(adj_dev, &adj->dev_tracker);
7570 	kfree(adj);
7571 
7572 	return ret;
7573 }
7574 
7575 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7576 					 struct net_device *adj_dev,
7577 					 u16 ref_nr,
7578 					 struct list_head *dev_list)
7579 {
7580 	struct netdev_adjacent *adj;
7581 
7582 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7583 		 dev->name, adj_dev->name, ref_nr);
7584 
7585 	adj = __netdev_find_adj(adj_dev, dev_list);
7586 
7587 	if (!adj) {
7588 		pr_err("Adjacency does not exist for device %s from %s\n",
7589 		       dev->name, adj_dev->name);
7590 		WARN_ON(1);
7591 		return;
7592 	}
7593 
7594 	if (adj->ref_nr > ref_nr) {
7595 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7596 			 dev->name, adj_dev->name, ref_nr,
7597 			 adj->ref_nr - ref_nr);
7598 		adj->ref_nr -= ref_nr;
7599 		return;
7600 	}
7601 
7602 	if (adj->master)
7603 		sysfs_remove_link(&(dev->dev.kobj), "master");
7604 
7605 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7606 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7607 
7608 	list_del_rcu(&adj->list);
7609 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7610 		 adj_dev->name, dev->name, adj_dev->name);
7611 	netdev_put(adj_dev, &adj->dev_tracker);
7612 	kfree_rcu(adj, rcu);
7613 }
7614 
7615 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7616 					    struct net_device *upper_dev,
7617 					    struct list_head *up_list,
7618 					    struct list_head *down_list,
7619 					    void *private, bool master)
7620 {
7621 	int ret;
7622 
7623 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7624 					   private, master);
7625 	if (ret)
7626 		return ret;
7627 
7628 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7629 					   private, false);
7630 	if (ret) {
7631 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7632 		return ret;
7633 	}
7634 
7635 	return 0;
7636 }
7637 
7638 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7639 					       struct net_device *upper_dev,
7640 					       u16 ref_nr,
7641 					       struct list_head *up_list,
7642 					       struct list_head *down_list)
7643 {
7644 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7645 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7646 }
7647 
7648 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7649 						struct net_device *upper_dev,
7650 						void *private, bool master)
7651 {
7652 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7653 						&dev->adj_list.upper,
7654 						&upper_dev->adj_list.lower,
7655 						private, master);
7656 }
7657 
7658 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7659 						   struct net_device *upper_dev)
7660 {
7661 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7662 					   &dev->adj_list.upper,
7663 					   &upper_dev->adj_list.lower);
7664 }
7665 
7666 static int __netdev_upper_dev_link(struct net_device *dev,
7667 				   struct net_device *upper_dev, bool master,
7668 				   void *upper_priv, void *upper_info,
7669 				   struct netdev_nested_priv *priv,
7670 				   struct netlink_ext_ack *extack)
7671 {
7672 	struct netdev_notifier_changeupper_info changeupper_info = {
7673 		.info = {
7674 			.dev = dev,
7675 			.extack = extack,
7676 		},
7677 		.upper_dev = upper_dev,
7678 		.master = master,
7679 		.linking = true,
7680 		.upper_info = upper_info,
7681 	};
7682 	struct net_device *master_dev;
7683 	int ret = 0;
7684 
7685 	ASSERT_RTNL();
7686 
7687 	if (dev == upper_dev)
7688 		return -EBUSY;
7689 
7690 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7691 	if (__netdev_has_upper_dev(upper_dev, dev))
7692 		return -EBUSY;
7693 
7694 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7695 		return -EMLINK;
7696 
7697 	if (!master) {
7698 		if (__netdev_has_upper_dev(dev, upper_dev))
7699 			return -EEXIST;
7700 	} else {
7701 		master_dev = __netdev_master_upper_dev_get(dev);
7702 		if (master_dev)
7703 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7704 	}
7705 
7706 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7707 					    &changeupper_info.info);
7708 	ret = notifier_to_errno(ret);
7709 	if (ret)
7710 		return ret;
7711 
7712 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7713 						   master);
7714 	if (ret)
7715 		return ret;
7716 
7717 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7718 					    &changeupper_info.info);
7719 	ret = notifier_to_errno(ret);
7720 	if (ret)
7721 		goto rollback;
7722 
7723 	__netdev_update_upper_level(dev, NULL);
7724 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7725 
7726 	__netdev_update_lower_level(upper_dev, priv);
7727 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7728 				    priv);
7729 
7730 	return 0;
7731 
7732 rollback:
7733 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7734 
7735 	return ret;
7736 }
7737 
7738 /**
7739  * netdev_upper_dev_link - Add a link to the upper device
7740  * @dev: device
7741  * @upper_dev: new upper device
7742  * @extack: netlink extended ack
7743  *
7744  * Adds a link to device which is upper to this one. The caller must hold
7745  * the RTNL lock. On a failure a negative errno code is returned.
7746  * On success the reference counts are adjusted and the function
7747  * returns zero.
7748  */
7749 int netdev_upper_dev_link(struct net_device *dev,
7750 			  struct net_device *upper_dev,
7751 			  struct netlink_ext_ack *extack)
7752 {
7753 	struct netdev_nested_priv priv = {
7754 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7755 		.data = NULL,
7756 	};
7757 
7758 	return __netdev_upper_dev_link(dev, upper_dev, false,
7759 				       NULL, NULL, &priv, extack);
7760 }
7761 EXPORT_SYMBOL(netdev_upper_dev_link);
7762 
7763 /**
7764  * netdev_master_upper_dev_link - Add a master link to the upper device
7765  * @dev: device
7766  * @upper_dev: new upper device
7767  * @upper_priv: upper device private
7768  * @upper_info: upper info to be passed down via notifier
7769  * @extack: netlink extended ack
7770  *
7771  * Adds a link to device which is upper to this one. In this case, only
7772  * one master upper device can be linked, although other non-master devices
7773  * might be linked as well. The caller must hold the RTNL lock.
7774  * On a failure a negative errno code is returned. On success the reference
7775  * counts are adjusted and the function returns zero.
7776  */
7777 int netdev_master_upper_dev_link(struct net_device *dev,
7778 				 struct net_device *upper_dev,
7779 				 void *upper_priv, void *upper_info,
7780 				 struct netlink_ext_ack *extack)
7781 {
7782 	struct netdev_nested_priv priv = {
7783 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7784 		.data = NULL,
7785 	};
7786 
7787 	return __netdev_upper_dev_link(dev, upper_dev, true,
7788 				       upper_priv, upper_info, &priv, extack);
7789 }
7790 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7791 
7792 static void __netdev_upper_dev_unlink(struct net_device *dev,
7793 				      struct net_device *upper_dev,
7794 				      struct netdev_nested_priv *priv)
7795 {
7796 	struct netdev_notifier_changeupper_info changeupper_info = {
7797 		.info = {
7798 			.dev = dev,
7799 		},
7800 		.upper_dev = upper_dev,
7801 		.linking = false,
7802 	};
7803 
7804 	ASSERT_RTNL();
7805 
7806 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7807 
7808 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7809 				      &changeupper_info.info);
7810 
7811 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7812 
7813 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7814 				      &changeupper_info.info);
7815 
7816 	__netdev_update_upper_level(dev, NULL);
7817 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7818 
7819 	__netdev_update_lower_level(upper_dev, priv);
7820 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7821 				    priv);
7822 }
7823 
7824 /**
7825  * netdev_upper_dev_unlink - Removes a link to upper device
7826  * @dev: device
7827  * @upper_dev: new upper device
7828  *
7829  * Removes a link to device which is upper to this one. The caller must hold
7830  * the RTNL lock.
7831  */
7832 void netdev_upper_dev_unlink(struct net_device *dev,
7833 			     struct net_device *upper_dev)
7834 {
7835 	struct netdev_nested_priv priv = {
7836 		.flags = NESTED_SYNC_TODO,
7837 		.data = NULL,
7838 	};
7839 
7840 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7841 }
7842 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7843 
7844 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7845 				      struct net_device *lower_dev,
7846 				      bool val)
7847 {
7848 	struct netdev_adjacent *adj;
7849 
7850 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7851 	if (adj)
7852 		adj->ignore = val;
7853 
7854 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7855 	if (adj)
7856 		adj->ignore = val;
7857 }
7858 
7859 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7860 					struct net_device *lower_dev)
7861 {
7862 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7863 }
7864 
7865 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7866 				       struct net_device *lower_dev)
7867 {
7868 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7869 }
7870 
7871 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7872 				   struct net_device *new_dev,
7873 				   struct net_device *dev,
7874 				   struct netlink_ext_ack *extack)
7875 {
7876 	struct netdev_nested_priv priv = {
7877 		.flags = 0,
7878 		.data = NULL,
7879 	};
7880 	int err;
7881 
7882 	if (!new_dev)
7883 		return 0;
7884 
7885 	if (old_dev && new_dev != old_dev)
7886 		netdev_adjacent_dev_disable(dev, old_dev);
7887 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7888 				      extack);
7889 	if (err) {
7890 		if (old_dev && new_dev != old_dev)
7891 			netdev_adjacent_dev_enable(dev, old_dev);
7892 		return err;
7893 	}
7894 
7895 	return 0;
7896 }
7897 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7898 
7899 void netdev_adjacent_change_commit(struct net_device *old_dev,
7900 				   struct net_device *new_dev,
7901 				   struct net_device *dev)
7902 {
7903 	struct netdev_nested_priv priv = {
7904 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7905 		.data = NULL,
7906 	};
7907 
7908 	if (!new_dev || !old_dev)
7909 		return;
7910 
7911 	if (new_dev == old_dev)
7912 		return;
7913 
7914 	netdev_adjacent_dev_enable(dev, old_dev);
7915 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7916 }
7917 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7918 
7919 void netdev_adjacent_change_abort(struct net_device *old_dev,
7920 				  struct net_device *new_dev,
7921 				  struct net_device *dev)
7922 {
7923 	struct netdev_nested_priv priv = {
7924 		.flags = 0,
7925 		.data = NULL,
7926 	};
7927 
7928 	if (!new_dev)
7929 		return;
7930 
7931 	if (old_dev && new_dev != old_dev)
7932 		netdev_adjacent_dev_enable(dev, old_dev);
7933 
7934 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7935 }
7936 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7937 
7938 /**
7939  * netdev_bonding_info_change - Dispatch event about slave change
7940  * @dev: device
7941  * @bonding_info: info to dispatch
7942  *
7943  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7944  * The caller must hold the RTNL lock.
7945  */
7946 void netdev_bonding_info_change(struct net_device *dev,
7947 				struct netdev_bonding_info *bonding_info)
7948 {
7949 	struct netdev_notifier_bonding_info info = {
7950 		.info.dev = dev,
7951 	};
7952 
7953 	memcpy(&info.bonding_info, bonding_info,
7954 	       sizeof(struct netdev_bonding_info));
7955 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7956 				      &info.info);
7957 }
7958 EXPORT_SYMBOL(netdev_bonding_info_change);
7959 
7960 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7961 					   struct netlink_ext_ack *extack)
7962 {
7963 	struct netdev_notifier_offload_xstats_info info = {
7964 		.info.dev = dev,
7965 		.info.extack = extack,
7966 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7967 	};
7968 	int err;
7969 	int rc;
7970 
7971 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7972 					 GFP_KERNEL);
7973 	if (!dev->offload_xstats_l3)
7974 		return -ENOMEM;
7975 
7976 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7977 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7978 						  &info.info);
7979 	err = notifier_to_errno(rc);
7980 	if (err)
7981 		goto free_stats;
7982 
7983 	return 0;
7984 
7985 free_stats:
7986 	kfree(dev->offload_xstats_l3);
7987 	dev->offload_xstats_l3 = NULL;
7988 	return err;
7989 }
7990 
7991 int netdev_offload_xstats_enable(struct net_device *dev,
7992 				 enum netdev_offload_xstats_type type,
7993 				 struct netlink_ext_ack *extack)
7994 {
7995 	ASSERT_RTNL();
7996 
7997 	if (netdev_offload_xstats_enabled(dev, type))
7998 		return -EALREADY;
7999 
8000 	switch (type) {
8001 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8002 		return netdev_offload_xstats_enable_l3(dev, extack);
8003 	}
8004 
8005 	WARN_ON(1);
8006 	return -EINVAL;
8007 }
8008 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8009 
8010 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8011 {
8012 	struct netdev_notifier_offload_xstats_info info = {
8013 		.info.dev = dev,
8014 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8015 	};
8016 
8017 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8018 				      &info.info);
8019 	kfree(dev->offload_xstats_l3);
8020 	dev->offload_xstats_l3 = NULL;
8021 }
8022 
8023 int netdev_offload_xstats_disable(struct net_device *dev,
8024 				  enum netdev_offload_xstats_type type)
8025 {
8026 	ASSERT_RTNL();
8027 
8028 	if (!netdev_offload_xstats_enabled(dev, type))
8029 		return -EALREADY;
8030 
8031 	switch (type) {
8032 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8033 		netdev_offload_xstats_disable_l3(dev);
8034 		return 0;
8035 	}
8036 
8037 	WARN_ON(1);
8038 	return -EINVAL;
8039 }
8040 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8041 
8042 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8043 {
8044 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8045 }
8046 
8047 static struct rtnl_hw_stats64 *
8048 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8049 			      enum netdev_offload_xstats_type type)
8050 {
8051 	switch (type) {
8052 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8053 		return dev->offload_xstats_l3;
8054 	}
8055 
8056 	WARN_ON(1);
8057 	return NULL;
8058 }
8059 
8060 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8061 				   enum netdev_offload_xstats_type type)
8062 {
8063 	ASSERT_RTNL();
8064 
8065 	return netdev_offload_xstats_get_ptr(dev, type);
8066 }
8067 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8068 
8069 struct netdev_notifier_offload_xstats_ru {
8070 	bool used;
8071 };
8072 
8073 struct netdev_notifier_offload_xstats_rd {
8074 	struct rtnl_hw_stats64 stats;
8075 	bool used;
8076 };
8077 
8078 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8079 				  const struct rtnl_hw_stats64 *src)
8080 {
8081 	dest->rx_packets	  += src->rx_packets;
8082 	dest->tx_packets	  += src->tx_packets;
8083 	dest->rx_bytes		  += src->rx_bytes;
8084 	dest->tx_bytes		  += src->tx_bytes;
8085 	dest->rx_errors		  += src->rx_errors;
8086 	dest->tx_errors		  += src->tx_errors;
8087 	dest->rx_dropped	  += src->rx_dropped;
8088 	dest->tx_dropped	  += src->tx_dropped;
8089 	dest->multicast		  += src->multicast;
8090 }
8091 
8092 static int netdev_offload_xstats_get_used(struct net_device *dev,
8093 					  enum netdev_offload_xstats_type type,
8094 					  bool *p_used,
8095 					  struct netlink_ext_ack *extack)
8096 {
8097 	struct netdev_notifier_offload_xstats_ru report_used = {};
8098 	struct netdev_notifier_offload_xstats_info info = {
8099 		.info.dev = dev,
8100 		.info.extack = extack,
8101 		.type = type,
8102 		.report_used = &report_used,
8103 	};
8104 	int rc;
8105 
8106 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8107 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8108 					   &info.info);
8109 	*p_used = report_used.used;
8110 	return notifier_to_errno(rc);
8111 }
8112 
8113 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8114 					   enum netdev_offload_xstats_type type,
8115 					   struct rtnl_hw_stats64 *p_stats,
8116 					   bool *p_used,
8117 					   struct netlink_ext_ack *extack)
8118 {
8119 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8120 	struct netdev_notifier_offload_xstats_info info = {
8121 		.info.dev = dev,
8122 		.info.extack = extack,
8123 		.type = type,
8124 		.report_delta = &report_delta,
8125 	};
8126 	struct rtnl_hw_stats64 *stats;
8127 	int rc;
8128 
8129 	stats = netdev_offload_xstats_get_ptr(dev, type);
8130 	if (WARN_ON(!stats))
8131 		return -EINVAL;
8132 
8133 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8134 					   &info.info);
8135 
8136 	/* Cache whatever we got, even if there was an error, otherwise the
8137 	 * successful stats retrievals would get lost.
8138 	 */
8139 	netdev_hw_stats64_add(stats, &report_delta.stats);
8140 
8141 	if (p_stats)
8142 		*p_stats = *stats;
8143 	*p_used = report_delta.used;
8144 
8145 	return notifier_to_errno(rc);
8146 }
8147 
8148 int netdev_offload_xstats_get(struct net_device *dev,
8149 			      enum netdev_offload_xstats_type type,
8150 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8151 			      struct netlink_ext_ack *extack)
8152 {
8153 	ASSERT_RTNL();
8154 
8155 	if (p_stats)
8156 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8157 						       p_used, extack);
8158 	else
8159 		return netdev_offload_xstats_get_used(dev, type, p_used,
8160 						      extack);
8161 }
8162 EXPORT_SYMBOL(netdev_offload_xstats_get);
8163 
8164 void
8165 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8166 				   const struct rtnl_hw_stats64 *stats)
8167 {
8168 	report_delta->used = true;
8169 	netdev_hw_stats64_add(&report_delta->stats, stats);
8170 }
8171 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8172 
8173 void
8174 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8175 {
8176 	report_used->used = true;
8177 }
8178 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8179 
8180 void netdev_offload_xstats_push_delta(struct net_device *dev,
8181 				      enum netdev_offload_xstats_type type,
8182 				      const struct rtnl_hw_stats64 *p_stats)
8183 {
8184 	struct rtnl_hw_stats64 *stats;
8185 
8186 	ASSERT_RTNL();
8187 
8188 	stats = netdev_offload_xstats_get_ptr(dev, type);
8189 	if (WARN_ON(!stats))
8190 		return;
8191 
8192 	netdev_hw_stats64_add(stats, p_stats);
8193 }
8194 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8195 
8196 /**
8197  * netdev_get_xmit_slave - Get the xmit slave of master device
8198  * @dev: device
8199  * @skb: The packet
8200  * @all_slaves: assume all the slaves are active
8201  *
8202  * The reference counters are not incremented so the caller must be
8203  * careful with locks. The caller must hold RCU lock.
8204  * %NULL is returned if no slave is found.
8205  */
8206 
8207 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8208 					 struct sk_buff *skb,
8209 					 bool all_slaves)
8210 {
8211 	const struct net_device_ops *ops = dev->netdev_ops;
8212 
8213 	if (!ops->ndo_get_xmit_slave)
8214 		return NULL;
8215 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8216 }
8217 EXPORT_SYMBOL(netdev_get_xmit_slave);
8218 
8219 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8220 						  struct sock *sk)
8221 {
8222 	const struct net_device_ops *ops = dev->netdev_ops;
8223 
8224 	if (!ops->ndo_sk_get_lower_dev)
8225 		return NULL;
8226 	return ops->ndo_sk_get_lower_dev(dev, sk);
8227 }
8228 
8229 /**
8230  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8231  * @dev: device
8232  * @sk: the socket
8233  *
8234  * %NULL is returned if no lower device is found.
8235  */
8236 
8237 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8238 					    struct sock *sk)
8239 {
8240 	struct net_device *lower;
8241 
8242 	lower = netdev_sk_get_lower_dev(dev, sk);
8243 	while (lower) {
8244 		dev = lower;
8245 		lower = netdev_sk_get_lower_dev(dev, sk);
8246 	}
8247 
8248 	return dev;
8249 }
8250 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8251 
8252 static void netdev_adjacent_add_links(struct net_device *dev)
8253 {
8254 	struct netdev_adjacent *iter;
8255 
8256 	struct net *net = dev_net(dev);
8257 
8258 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8259 		if (!net_eq(net, dev_net(iter->dev)))
8260 			continue;
8261 		netdev_adjacent_sysfs_add(iter->dev, dev,
8262 					  &iter->dev->adj_list.lower);
8263 		netdev_adjacent_sysfs_add(dev, iter->dev,
8264 					  &dev->adj_list.upper);
8265 	}
8266 
8267 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8268 		if (!net_eq(net, dev_net(iter->dev)))
8269 			continue;
8270 		netdev_adjacent_sysfs_add(iter->dev, dev,
8271 					  &iter->dev->adj_list.upper);
8272 		netdev_adjacent_sysfs_add(dev, iter->dev,
8273 					  &dev->adj_list.lower);
8274 	}
8275 }
8276 
8277 static void netdev_adjacent_del_links(struct net_device *dev)
8278 {
8279 	struct netdev_adjacent *iter;
8280 
8281 	struct net *net = dev_net(dev);
8282 
8283 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8284 		if (!net_eq(net, dev_net(iter->dev)))
8285 			continue;
8286 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8287 					  &iter->dev->adj_list.lower);
8288 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8289 					  &dev->adj_list.upper);
8290 	}
8291 
8292 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8293 		if (!net_eq(net, dev_net(iter->dev)))
8294 			continue;
8295 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8296 					  &iter->dev->adj_list.upper);
8297 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8298 					  &dev->adj_list.lower);
8299 	}
8300 }
8301 
8302 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8303 {
8304 	struct netdev_adjacent *iter;
8305 
8306 	struct net *net = dev_net(dev);
8307 
8308 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8309 		if (!net_eq(net, dev_net(iter->dev)))
8310 			continue;
8311 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8312 					  &iter->dev->adj_list.lower);
8313 		netdev_adjacent_sysfs_add(iter->dev, dev,
8314 					  &iter->dev->adj_list.lower);
8315 	}
8316 
8317 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8318 		if (!net_eq(net, dev_net(iter->dev)))
8319 			continue;
8320 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8321 					  &iter->dev->adj_list.upper);
8322 		netdev_adjacent_sysfs_add(iter->dev, dev,
8323 					  &iter->dev->adj_list.upper);
8324 	}
8325 }
8326 
8327 void *netdev_lower_dev_get_private(struct net_device *dev,
8328 				   struct net_device *lower_dev)
8329 {
8330 	struct netdev_adjacent *lower;
8331 
8332 	if (!lower_dev)
8333 		return NULL;
8334 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8335 	if (!lower)
8336 		return NULL;
8337 
8338 	return lower->private;
8339 }
8340 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8341 
8342 
8343 /**
8344  * netdev_lower_state_changed - Dispatch event about lower device state change
8345  * @lower_dev: device
8346  * @lower_state_info: state to dispatch
8347  *
8348  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8349  * The caller must hold the RTNL lock.
8350  */
8351 void netdev_lower_state_changed(struct net_device *lower_dev,
8352 				void *lower_state_info)
8353 {
8354 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8355 		.info.dev = lower_dev,
8356 	};
8357 
8358 	ASSERT_RTNL();
8359 	changelowerstate_info.lower_state_info = lower_state_info;
8360 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8361 				      &changelowerstate_info.info);
8362 }
8363 EXPORT_SYMBOL(netdev_lower_state_changed);
8364 
8365 static void dev_change_rx_flags(struct net_device *dev, int flags)
8366 {
8367 	const struct net_device_ops *ops = dev->netdev_ops;
8368 
8369 	if (ops->ndo_change_rx_flags)
8370 		ops->ndo_change_rx_flags(dev, flags);
8371 }
8372 
8373 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8374 {
8375 	unsigned int old_flags = dev->flags;
8376 	kuid_t uid;
8377 	kgid_t gid;
8378 
8379 	ASSERT_RTNL();
8380 
8381 	dev->flags |= IFF_PROMISC;
8382 	dev->promiscuity += inc;
8383 	if (dev->promiscuity == 0) {
8384 		/*
8385 		 * Avoid overflow.
8386 		 * If inc causes overflow, untouch promisc and return error.
8387 		 */
8388 		if (inc < 0)
8389 			dev->flags &= ~IFF_PROMISC;
8390 		else {
8391 			dev->promiscuity -= inc;
8392 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8393 			return -EOVERFLOW;
8394 		}
8395 	}
8396 	if (dev->flags != old_flags) {
8397 		netdev_info(dev, "%s promiscuous mode\n",
8398 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8399 		if (audit_enabled) {
8400 			current_uid_gid(&uid, &gid);
8401 			audit_log(audit_context(), GFP_ATOMIC,
8402 				  AUDIT_ANOM_PROMISCUOUS,
8403 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8404 				  dev->name, (dev->flags & IFF_PROMISC),
8405 				  (old_flags & IFF_PROMISC),
8406 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8407 				  from_kuid(&init_user_ns, uid),
8408 				  from_kgid(&init_user_ns, gid),
8409 				  audit_get_sessionid(current));
8410 		}
8411 
8412 		dev_change_rx_flags(dev, IFF_PROMISC);
8413 	}
8414 	if (notify)
8415 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8416 	return 0;
8417 }
8418 
8419 /**
8420  *	dev_set_promiscuity	- update promiscuity count on a device
8421  *	@dev: device
8422  *	@inc: modifier
8423  *
8424  *	Add or remove promiscuity from a device. While the count in the device
8425  *	remains above zero the interface remains promiscuous. Once it hits zero
8426  *	the device reverts back to normal filtering operation. A negative inc
8427  *	value is used to drop promiscuity on the device.
8428  *	Return 0 if successful or a negative errno code on error.
8429  */
8430 int dev_set_promiscuity(struct net_device *dev, int inc)
8431 {
8432 	unsigned int old_flags = dev->flags;
8433 	int err;
8434 
8435 	err = __dev_set_promiscuity(dev, inc, true);
8436 	if (err < 0)
8437 		return err;
8438 	if (dev->flags != old_flags)
8439 		dev_set_rx_mode(dev);
8440 	return err;
8441 }
8442 EXPORT_SYMBOL(dev_set_promiscuity);
8443 
8444 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8445 {
8446 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8447 
8448 	ASSERT_RTNL();
8449 
8450 	dev->flags |= IFF_ALLMULTI;
8451 	dev->allmulti += inc;
8452 	if (dev->allmulti == 0) {
8453 		/*
8454 		 * Avoid overflow.
8455 		 * If inc causes overflow, untouch allmulti and return error.
8456 		 */
8457 		if (inc < 0)
8458 			dev->flags &= ~IFF_ALLMULTI;
8459 		else {
8460 			dev->allmulti -= inc;
8461 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8462 			return -EOVERFLOW;
8463 		}
8464 	}
8465 	if (dev->flags ^ old_flags) {
8466 		netdev_info(dev, "%s allmulticast mode\n",
8467 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8468 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8469 		dev_set_rx_mode(dev);
8470 		if (notify)
8471 			__dev_notify_flags(dev, old_flags,
8472 					   dev->gflags ^ old_gflags, 0, NULL);
8473 	}
8474 	return 0;
8475 }
8476 
8477 /**
8478  *	dev_set_allmulti	- update allmulti count on a device
8479  *	@dev: device
8480  *	@inc: modifier
8481  *
8482  *	Add or remove reception of all multicast frames to a device. While the
8483  *	count in the device remains above zero the interface remains listening
8484  *	to all interfaces. Once it hits zero the device reverts back to normal
8485  *	filtering operation. A negative @inc value is used to drop the counter
8486  *	when releasing a resource needing all multicasts.
8487  *	Return 0 if successful or a negative errno code on error.
8488  */
8489 
8490 int dev_set_allmulti(struct net_device *dev, int inc)
8491 {
8492 	return __dev_set_allmulti(dev, inc, true);
8493 }
8494 EXPORT_SYMBOL(dev_set_allmulti);
8495 
8496 /*
8497  *	Upload unicast and multicast address lists to device and
8498  *	configure RX filtering. When the device doesn't support unicast
8499  *	filtering it is put in promiscuous mode while unicast addresses
8500  *	are present.
8501  */
8502 void __dev_set_rx_mode(struct net_device *dev)
8503 {
8504 	const struct net_device_ops *ops = dev->netdev_ops;
8505 
8506 	/* dev_open will call this function so the list will stay sane. */
8507 	if (!(dev->flags&IFF_UP))
8508 		return;
8509 
8510 	if (!netif_device_present(dev))
8511 		return;
8512 
8513 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8514 		/* Unicast addresses changes may only happen under the rtnl,
8515 		 * therefore calling __dev_set_promiscuity here is safe.
8516 		 */
8517 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8518 			__dev_set_promiscuity(dev, 1, false);
8519 			dev->uc_promisc = true;
8520 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8521 			__dev_set_promiscuity(dev, -1, false);
8522 			dev->uc_promisc = false;
8523 		}
8524 	}
8525 
8526 	if (ops->ndo_set_rx_mode)
8527 		ops->ndo_set_rx_mode(dev);
8528 }
8529 
8530 void dev_set_rx_mode(struct net_device *dev)
8531 {
8532 	netif_addr_lock_bh(dev);
8533 	__dev_set_rx_mode(dev);
8534 	netif_addr_unlock_bh(dev);
8535 }
8536 
8537 /**
8538  *	dev_get_flags - get flags reported to userspace
8539  *	@dev: device
8540  *
8541  *	Get the combination of flag bits exported through APIs to userspace.
8542  */
8543 unsigned int dev_get_flags(const struct net_device *dev)
8544 {
8545 	unsigned int flags;
8546 
8547 	flags = (dev->flags & ~(IFF_PROMISC |
8548 				IFF_ALLMULTI |
8549 				IFF_RUNNING |
8550 				IFF_LOWER_UP |
8551 				IFF_DORMANT)) |
8552 		(dev->gflags & (IFF_PROMISC |
8553 				IFF_ALLMULTI));
8554 
8555 	if (netif_running(dev)) {
8556 		if (netif_oper_up(dev))
8557 			flags |= IFF_RUNNING;
8558 		if (netif_carrier_ok(dev))
8559 			flags |= IFF_LOWER_UP;
8560 		if (netif_dormant(dev))
8561 			flags |= IFF_DORMANT;
8562 	}
8563 
8564 	return flags;
8565 }
8566 EXPORT_SYMBOL(dev_get_flags);
8567 
8568 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8569 		       struct netlink_ext_ack *extack)
8570 {
8571 	unsigned int old_flags = dev->flags;
8572 	int ret;
8573 
8574 	ASSERT_RTNL();
8575 
8576 	/*
8577 	 *	Set the flags on our device.
8578 	 */
8579 
8580 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8581 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8582 			       IFF_AUTOMEDIA)) |
8583 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8584 				    IFF_ALLMULTI));
8585 
8586 	/*
8587 	 *	Load in the correct multicast list now the flags have changed.
8588 	 */
8589 
8590 	if ((old_flags ^ flags) & IFF_MULTICAST)
8591 		dev_change_rx_flags(dev, IFF_MULTICAST);
8592 
8593 	dev_set_rx_mode(dev);
8594 
8595 	/*
8596 	 *	Have we downed the interface. We handle IFF_UP ourselves
8597 	 *	according to user attempts to set it, rather than blindly
8598 	 *	setting it.
8599 	 */
8600 
8601 	ret = 0;
8602 	if ((old_flags ^ flags) & IFF_UP) {
8603 		if (old_flags & IFF_UP)
8604 			__dev_close(dev);
8605 		else
8606 			ret = __dev_open(dev, extack);
8607 	}
8608 
8609 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8610 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8611 		unsigned int old_flags = dev->flags;
8612 
8613 		dev->gflags ^= IFF_PROMISC;
8614 
8615 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8616 			if (dev->flags != old_flags)
8617 				dev_set_rx_mode(dev);
8618 	}
8619 
8620 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8621 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8622 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8623 	 */
8624 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8625 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8626 
8627 		dev->gflags ^= IFF_ALLMULTI;
8628 		__dev_set_allmulti(dev, inc, false);
8629 	}
8630 
8631 	return ret;
8632 }
8633 
8634 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8635 			unsigned int gchanges, u32 portid,
8636 			const struct nlmsghdr *nlh)
8637 {
8638 	unsigned int changes = dev->flags ^ old_flags;
8639 
8640 	if (gchanges)
8641 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8642 
8643 	if (changes & IFF_UP) {
8644 		if (dev->flags & IFF_UP)
8645 			call_netdevice_notifiers(NETDEV_UP, dev);
8646 		else
8647 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8648 	}
8649 
8650 	if (dev->flags & IFF_UP &&
8651 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8652 		struct netdev_notifier_change_info change_info = {
8653 			.info = {
8654 				.dev = dev,
8655 			},
8656 			.flags_changed = changes,
8657 		};
8658 
8659 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8660 	}
8661 }
8662 
8663 /**
8664  *	dev_change_flags - change device settings
8665  *	@dev: device
8666  *	@flags: device state flags
8667  *	@extack: netlink extended ack
8668  *
8669  *	Change settings on device based state flags. The flags are
8670  *	in the userspace exported format.
8671  */
8672 int dev_change_flags(struct net_device *dev, unsigned int flags,
8673 		     struct netlink_ext_ack *extack)
8674 {
8675 	int ret;
8676 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8677 
8678 	ret = __dev_change_flags(dev, flags, extack);
8679 	if (ret < 0)
8680 		return ret;
8681 
8682 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8683 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8684 	return ret;
8685 }
8686 EXPORT_SYMBOL(dev_change_flags);
8687 
8688 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8689 {
8690 	const struct net_device_ops *ops = dev->netdev_ops;
8691 
8692 	if (ops->ndo_change_mtu)
8693 		return ops->ndo_change_mtu(dev, new_mtu);
8694 
8695 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8696 	WRITE_ONCE(dev->mtu, new_mtu);
8697 	return 0;
8698 }
8699 EXPORT_SYMBOL(__dev_set_mtu);
8700 
8701 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8702 		     struct netlink_ext_ack *extack)
8703 {
8704 	/* MTU must be positive, and in range */
8705 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8706 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8707 		return -EINVAL;
8708 	}
8709 
8710 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8711 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8712 		return -EINVAL;
8713 	}
8714 	return 0;
8715 }
8716 
8717 /**
8718  *	dev_set_mtu_ext - Change maximum transfer unit
8719  *	@dev: device
8720  *	@new_mtu: new transfer unit
8721  *	@extack: netlink extended ack
8722  *
8723  *	Change the maximum transfer size of the network device.
8724  */
8725 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8726 		    struct netlink_ext_ack *extack)
8727 {
8728 	int err, orig_mtu;
8729 
8730 	if (new_mtu == dev->mtu)
8731 		return 0;
8732 
8733 	err = dev_validate_mtu(dev, new_mtu, extack);
8734 	if (err)
8735 		return err;
8736 
8737 	if (!netif_device_present(dev))
8738 		return -ENODEV;
8739 
8740 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8741 	err = notifier_to_errno(err);
8742 	if (err)
8743 		return err;
8744 
8745 	orig_mtu = dev->mtu;
8746 	err = __dev_set_mtu(dev, new_mtu);
8747 
8748 	if (!err) {
8749 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8750 						   orig_mtu);
8751 		err = notifier_to_errno(err);
8752 		if (err) {
8753 			/* setting mtu back and notifying everyone again,
8754 			 * so that they have a chance to revert changes.
8755 			 */
8756 			__dev_set_mtu(dev, orig_mtu);
8757 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8758 						     new_mtu);
8759 		}
8760 	}
8761 	return err;
8762 }
8763 
8764 int dev_set_mtu(struct net_device *dev, int new_mtu)
8765 {
8766 	struct netlink_ext_ack extack;
8767 	int err;
8768 
8769 	memset(&extack, 0, sizeof(extack));
8770 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8771 	if (err && extack._msg)
8772 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8773 	return err;
8774 }
8775 EXPORT_SYMBOL(dev_set_mtu);
8776 
8777 /**
8778  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8779  *	@dev: device
8780  *	@new_len: new tx queue length
8781  */
8782 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8783 {
8784 	unsigned int orig_len = dev->tx_queue_len;
8785 	int res;
8786 
8787 	if (new_len != (unsigned int)new_len)
8788 		return -ERANGE;
8789 
8790 	if (new_len != orig_len) {
8791 		dev->tx_queue_len = new_len;
8792 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8793 		res = notifier_to_errno(res);
8794 		if (res)
8795 			goto err_rollback;
8796 		res = dev_qdisc_change_tx_queue_len(dev);
8797 		if (res)
8798 			goto err_rollback;
8799 	}
8800 
8801 	return 0;
8802 
8803 err_rollback:
8804 	netdev_err(dev, "refused to change device tx_queue_len\n");
8805 	dev->tx_queue_len = orig_len;
8806 	return res;
8807 }
8808 
8809 /**
8810  *	dev_set_group - Change group this device belongs to
8811  *	@dev: device
8812  *	@new_group: group this device should belong to
8813  */
8814 void dev_set_group(struct net_device *dev, int new_group)
8815 {
8816 	dev->group = new_group;
8817 }
8818 
8819 /**
8820  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8821  *	@dev: device
8822  *	@addr: new address
8823  *	@extack: netlink extended ack
8824  */
8825 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8826 			      struct netlink_ext_ack *extack)
8827 {
8828 	struct netdev_notifier_pre_changeaddr_info info = {
8829 		.info.dev = dev,
8830 		.info.extack = extack,
8831 		.dev_addr = addr,
8832 	};
8833 	int rc;
8834 
8835 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8836 	return notifier_to_errno(rc);
8837 }
8838 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8839 
8840 /**
8841  *	dev_set_mac_address - Change Media Access Control Address
8842  *	@dev: device
8843  *	@sa: new address
8844  *	@extack: netlink extended ack
8845  *
8846  *	Change the hardware (MAC) address of the device
8847  */
8848 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8849 			struct netlink_ext_ack *extack)
8850 {
8851 	const struct net_device_ops *ops = dev->netdev_ops;
8852 	int err;
8853 
8854 	if (!ops->ndo_set_mac_address)
8855 		return -EOPNOTSUPP;
8856 	if (sa->sa_family != dev->type)
8857 		return -EINVAL;
8858 	if (!netif_device_present(dev))
8859 		return -ENODEV;
8860 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8861 	if (err)
8862 		return err;
8863 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8864 		err = ops->ndo_set_mac_address(dev, sa);
8865 		if (err)
8866 			return err;
8867 	}
8868 	dev->addr_assign_type = NET_ADDR_SET;
8869 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8870 	add_device_randomness(dev->dev_addr, dev->addr_len);
8871 	return 0;
8872 }
8873 EXPORT_SYMBOL(dev_set_mac_address);
8874 
8875 static DECLARE_RWSEM(dev_addr_sem);
8876 
8877 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8878 			     struct netlink_ext_ack *extack)
8879 {
8880 	int ret;
8881 
8882 	down_write(&dev_addr_sem);
8883 	ret = dev_set_mac_address(dev, sa, extack);
8884 	up_write(&dev_addr_sem);
8885 	return ret;
8886 }
8887 EXPORT_SYMBOL(dev_set_mac_address_user);
8888 
8889 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8890 {
8891 	size_t size = sizeof(sa->sa_data_min);
8892 	struct net_device *dev;
8893 	int ret = 0;
8894 
8895 	down_read(&dev_addr_sem);
8896 	rcu_read_lock();
8897 
8898 	dev = dev_get_by_name_rcu(net, dev_name);
8899 	if (!dev) {
8900 		ret = -ENODEV;
8901 		goto unlock;
8902 	}
8903 	if (!dev->addr_len)
8904 		memset(sa->sa_data, 0, size);
8905 	else
8906 		memcpy(sa->sa_data, dev->dev_addr,
8907 		       min_t(size_t, size, dev->addr_len));
8908 	sa->sa_family = dev->type;
8909 
8910 unlock:
8911 	rcu_read_unlock();
8912 	up_read(&dev_addr_sem);
8913 	return ret;
8914 }
8915 EXPORT_SYMBOL(dev_get_mac_address);
8916 
8917 /**
8918  *	dev_change_carrier - Change device carrier
8919  *	@dev: device
8920  *	@new_carrier: new value
8921  *
8922  *	Change device carrier
8923  */
8924 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8925 {
8926 	const struct net_device_ops *ops = dev->netdev_ops;
8927 
8928 	if (!ops->ndo_change_carrier)
8929 		return -EOPNOTSUPP;
8930 	if (!netif_device_present(dev))
8931 		return -ENODEV;
8932 	return ops->ndo_change_carrier(dev, new_carrier);
8933 }
8934 
8935 /**
8936  *	dev_get_phys_port_id - Get device physical port ID
8937  *	@dev: device
8938  *	@ppid: port ID
8939  *
8940  *	Get device physical port ID
8941  */
8942 int dev_get_phys_port_id(struct net_device *dev,
8943 			 struct netdev_phys_item_id *ppid)
8944 {
8945 	const struct net_device_ops *ops = dev->netdev_ops;
8946 
8947 	if (!ops->ndo_get_phys_port_id)
8948 		return -EOPNOTSUPP;
8949 	return ops->ndo_get_phys_port_id(dev, ppid);
8950 }
8951 
8952 /**
8953  *	dev_get_phys_port_name - Get device physical port name
8954  *	@dev: device
8955  *	@name: port name
8956  *	@len: limit of bytes to copy to name
8957  *
8958  *	Get device physical port name
8959  */
8960 int dev_get_phys_port_name(struct net_device *dev,
8961 			   char *name, size_t len)
8962 {
8963 	const struct net_device_ops *ops = dev->netdev_ops;
8964 	int err;
8965 
8966 	if (ops->ndo_get_phys_port_name) {
8967 		err = ops->ndo_get_phys_port_name(dev, name, len);
8968 		if (err != -EOPNOTSUPP)
8969 			return err;
8970 	}
8971 	return devlink_compat_phys_port_name_get(dev, name, len);
8972 }
8973 
8974 /**
8975  *	dev_get_port_parent_id - Get the device's port parent identifier
8976  *	@dev: network device
8977  *	@ppid: pointer to a storage for the port's parent identifier
8978  *	@recurse: allow/disallow recursion to lower devices
8979  *
8980  *	Get the devices's port parent identifier
8981  */
8982 int dev_get_port_parent_id(struct net_device *dev,
8983 			   struct netdev_phys_item_id *ppid,
8984 			   bool recurse)
8985 {
8986 	const struct net_device_ops *ops = dev->netdev_ops;
8987 	struct netdev_phys_item_id first = { };
8988 	struct net_device *lower_dev;
8989 	struct list_head *iter;
8990 	int err;
8991 
8992 	if (ops->ndo_get_port_parent_id) {
8993 		err = ops->ndo_get_port_parent_id(dev, ppid);
8994 		if (err != -EOPNOTSUPP)
8995 			return err;
8996 	}
8997 
8998 	err = devlink_compat_switch_id_get(dev, ppid);
8999 	if (!recurse || err != -EOPNOTSUPP)
9000 		return err;
9001 
9002 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9003 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9004 		if (err)
9005 			break;
9006 		if (!first.id_len)
9007 			first = *ppid;
9008 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9009 			return -EOPNOTSUPP;
9010 	}
9011 
9012 	return err;
9013 }
9014 EXPORT_SYMBOL(dev_get_port_parent_id);
9015 
9016 /**
9017  *	netdev_port_same_parent_id - Indicate if two network devices have
9018  *	the same port parent identifier
9019  *	@a: first network device
9020  *	@b: second network device
9021  */
9022 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9023 {
9024 	struct netdev_phys_item_id a_id = { };
9025 	struct netdev_phys_item_id b_id = { };
9026 
9027 	if (dev_get_port_parent_id(a, &a_id, true) ||
9028 	    dev_get_port_parent_id(b, &b_id, true))
9029 		return false;
9030 
9031 	return netdev_phys_item_id_same(&a_id, &b_id);
9032 }
9033 EXPORT_SYMBOL(netdev_port_same_parent_id);
9034 
9035 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin)
9036 {
9037 #if IS_ENABLED(CONFIG_DPLL)
9038 	rtnl_lock();
9039 	dev->dpll_pin = dpll_pin;
9040 	rtnl_unlock();
9041 #endif
9042 }
9043 
9044 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin)
9045 {
9046 	WARN_ON(!dpll_pin);
9047 	netdev_dpll_pin_assign(dev, dpll_pin);
9048 }
9049 EXPORT_SYMBOL(netdev_dpll_pin_set);
9050 
9051 void netdev_dpll_pin_clear(struct net_device *dev)
9052 {
9053 	netdev_dpll_pin_assign(dev, NULL);
9054 }
9055 EXPORT_SYMBOL(netdev_dpll_pin_clear);
9056 
9057 /**
9058  *	dev_change_proto_down - set carrier according to proto_down.
9059  *
9060  *	@dev: device
9061  *	@proto_down: new value
9062  */
9063 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9064 {
9065 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9066 		return -EOPNOTSUPP;
9067 	if (!netif_device_present(dev))
9068 		return -ENODEV;
9069 	if (proto_down)
9070 		netif_carrier_off(dev);
9071 	else
9072 		netif_carrier_on(dev);
9073 	dev->proto_down = proto_down;
9074 	return 0;
9075 }
9076 
9077 /**
9078  *	dev_change_proto_down_reason - proto down reason
9079  *
9080  *	@dev: device
9081  *	@mask: proto down mask
9082  *	@value: proto down value
9083  */
9084 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9085 				  u32 value)
9086 {
9087 	int b;
9088 
9089 	if (!mask) {
9090 		dev->proto_down_reason = value;
9091 	} else {
9092 		for_each_set_bit(b, &mask, 32) {
9093 			if (value & (1 << b))
9094 				dev->proto_down_reason |= BIT(b);
9095 			else
9096 				dev->proto_down_reason &= ~BIT(b);
9097 		}
9098 	}
9099 }
9100 
9101 struct bpf_xdp_link {
9102 	struct bpf_link link;
9103 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9104 	int flags;
9105 };
9106 
9107 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9108 {
9109 	if (flags & XDP_FLAGS_HW_MODE)
9110 		return XDP_MODE_HW;
9111 	if (flags & XDP_FLAGS_DRV_MODE)
9112 		return XDP_MODE_DRV;
9113 	if (flags & XDP_FLAGS_SKB_MODE)
9114 		return XDP_MODE_SKB;
9115 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9116 }
9117 
9118 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9119 {
9120 	switch (mode) {
9121 	case XDP_MODE_SKB:
9122 		return generic_xdp_install;
9123 	case XDP_MODE_DRV:
9124 	case XDP_MODE_HW:
9125 		return dev->netdev_ops->ndo_bpf;
9126 	default:
9127 		return NULL;
9128 	}
9129 }
9130 
9131 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9132 					 enum bpf_xdp_mode mode)
9133 {
9134 	return dev->xdp_state[mode].link;
9135 }
9136 
9137 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9138 				     enum bpf_xdp_mode mode)
9139 {
9140 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9141 
9142 	if (link)
9143 		return link->link.prog;
9144 	return dev->xdp_state[mode].prog;
9145 }
9146 
9147 u8 dev_xdp_prog_count(struct net_device *dev)
9148 {
9149 	u8 count = 0;
9150 	int i;
9151 
9152 	for (i = 0; i < __MAX_XDP_MODE; i++)
9153 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9154 			count++;
9155 	return count;
9156 }
9157 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9158 
9159 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9160 {
9161 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9162 
9163 	return prog ? prog->aux->id : 0;
9164 }
9165 
9166 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9167 			     struct bpf_xdp_link *link)
9168 {
9169 	dev->xdp_state[mode].link = link;
9170 	dev->xdp_state[mode].prog = NULL;
9171 }
9172 
9173 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9174 			     struct bpf_prog *prog)
9175 {
9176 	dev->xdp_state[mode].link = NULL;
9177 	dev->xdp_state[mode].prog = prog;
9178 }
9179 
9180 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9181 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9182 			   u32 flags, struct bpf_prog *prog)
9183 {
9184 	struct netdev_bpf xdp;
9185 	int err;
9186 
9187 	memset(&xdp, 0, sizeof(xdp));
9188 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9189 	xdp.extack = extack;
9190 	xdp.flags = flags;
9191 	xdp.prog = prog;
9192 
9193 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9194 	 * "moved" into driver), so they don't increment it on their own, but
9195 	 * they do decrement refcnt when program is detached or replaced.
9196 	 * Given net_device also owns link/prog, we need to bump refcnt here
9197 	 * to prevent drivers from underflowing it.
9198 	 */
9199 	if (prog)
9200 		bpf_prog_inc(prog);
9201 	err = bpf_op(dev, &xdp);
9202 	if (err) {
9203 		if (prog)
9204 			bpf_prog_put(prog);
9205 		return err;
9206 	}
9207 
9208 	if (mode != XDP_MODE_HW)
9209 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9210 
9211 	return 0;
9212 }
9213 
9214 static void dev_xdp_uninstall(struct net_device *dev)
9215 {
9216 	struct bpf_xdp_link *link;
9217 	struct bpf_prog *prog;
9218 	enum bpf_xdp_mode mode;
9219 	bpf_op_t bpf_op;
9220 
9221 	ASSERT_RTNL();
9222 
9223 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9224 		prog = dev_xdp_prog(dev, mode);
9225 		if (!prog)
9226 			continue;
9227 
9228 		bpf_op = dev_xdp_bpf_op(dev, mode);
9229 		if (!bpf_op)
9230 			continue;
9231 
9232 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9233 
9234 		/* auto-detach link from net device */
9235 		link = dev_xdp_link(dev, mode);
9236 		if (link)
9237 			link->dev = NULL;
9238 		else
9239 			bpf_prog_put(prog);
9240 
9241 		dev_xdp_set_link(dev, mode, NULL);
9242 	}
9243 }
9244 
9245 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9246 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9247 			  struct bpf_prog *old_prog, u32 flags)
9248 {
9249 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9250 	struct bpf_prog *cur_prog;
9251 	struct net_device *upper;
9252 	struct list_head *iter;
9253 	enum bpf_xdp_mode mode;
9254 	bpf_op_t bpf_op;
9255 	int err;
9256 
9257 	ASSERT_RTNL();
9258 
9259 	/* either link or prog attachment, never both */
9260 	if (link && (new_prog || old_prog))
9261 		return -EINVAL;
9262 	/* link supports only XDP mode flags */
9263 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9264 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9265 		return -EINVAL;
9266 	}
9267 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9268 	if (num_modes > 1) {
9269 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9270 		return -EINVAL;
9271 	}
9272 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9273 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9274 		NL_SET_ERR_MSG(extack,
9275 			       "More than one program loaded, unset mode is ambiguous");
9276 		return -EINVAL;
9277 	}
9278 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9279 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9280 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9281 		return -EINVAL;
9282 	}
9283 
9284 	mode = dev_xdp_mode(dev, flags);
9285 	/* can't replace attached link */
9286 	if (dev_xdp_link(dev, mode)) {
9287 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9288 		return -EBUSY;
9289 	}
9290 
9291 	/* don't allow if an upper device already has a program */
9292 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9293 		if (dev_xdp_prog_count(upper) > 0) {
9294 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9295 			return -EEXIST;
9296 		}
9297 	}
9298 
9299 	cur_prog = dev_xdp_prog(dev, mode);
9300 	/* can't replace attached prog with link */
9301 	if (link && cur_prog) {
9302 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9303 		return -EBUSY;
9304 	}
9305 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9306 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9307 		return -EEXIST;
9308 	}
9309 
9310 	/* put effective new program into new_prog */
9311 	if (link)
9312 		new_prog = link->link.prog;
9313 
9314 	if (new_prog) {
9315 		bool offload = mode == XDP_MODE_HW;
9316 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9317 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9318 
9319 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9320 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9321 			return -EBUSY;
9322 		}
9323 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9324 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9325 			return -EEXIST;
9326 		}
9327 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9328 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9329 			return -EINVAL;
9330 		}
9331 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9332 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9333 			return -EINVAL;
9334 		}
9335 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9336 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9337 			return -EINVAL;
9338 		}
9339 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9340 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9341 			return -EINVAL;
9342 		}
9343 	}
9344 
9345 	/* don't call drivers if the effective program didn't change */
9346 	if (new_prog != cur_prog) {
9347 		bpf_op = dev_xdp_bpf_op(dev, mode);
9348 		if (!bpf_op) {
9349 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9350 			return -EOPNOTSUPP;
9351 		}
9352 
9353 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9354 		if (err)
9355 			return err;
9356 	}
9357 
9358 	if (link)
9359 		dev_xdp_set_link(dev, mode, link);
9360 	else
9361 		dev_xdp_set_prog(dev, mode, new_prog);
9362 	if (cur_prog)
9363 		bpf_prog_put(cur_prog);
9364 
9365 	return 0;
9366 }
9367 
9368 static int dev_xdp_attach_link(struct net_device *dev,
9369 			       struct netlink_ext_ack *extack,
9370 			       struct bpf_xdp_link *link)
9371 {
9372 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9373 }
9374 
9375 static int dev_xdp_detach_link(struct net_device *dev,
9376 			       struct netlink_ext_ack *extack,
9377 			       struct bpf_xdp_link *link)
9378 {
9379 	enum bpf_xdp_mode mode;
9380 	bpf_op_t bpf_op;
9381 
9382 	ASSERT_RTNL();
9383 
9384 	mode = dev_xdp_mode(dev, link->flags);
9385 	if (dev_xdp_link(dev, mode) != link)
9386 		return -EINVAL;
9387 
9388 	bpf_op = dev_xdp_bpf_op(dev, mode);
9389 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9390 	dev_xdp_set_link(dev, mode, NULL);
9391 	return 0;
9392 }
9393 
9394 static void bpf_xdp_link_release(struct bpf_link *link)
9395 {
9396 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9397 
9398 	rtnl_lock();
9399 
9400 	/* if racing with net_device's tear down, xdp_link->dev might be
9401 	 * already NULL, in which case link was already auto-detached
9402 	 */
9403 	if (xdp_link->dev) {
9404 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9405 		xdp_link->dev = NULL;
9406 	}
9407 
9408 	rtnl_unlock();
9409 }
9410 
9411 static int bpf_xdp_link_detach(struct bpf_link *link)
9412 {
9413 	bpf_xdp_link_release(link);
9414 	return 0;
9415 }
9416 
9417 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9418 {
9419 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9420 
9421 	kfree(xdp_link);
9422 }
9423 
9424 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9425 				     struct seq_file *seq)
9426 {
9427 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9428 	u32 ifindex = 0;
9429 
9430 	rtnl_lock();
9431 	if (xdp_link->dev)
9432 		ifindex = xdp_link->dev->ifindex;
9433 	rtnl_unlock();
9434 
9435 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9436 }
9437 
9438 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9439 				       struct bpf_link_info *info)
9440 {
9441 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9442 	u32 ifindex = 0;
9443 
9444 	rtnl_lock();
9445 	if (xdp_link->dev)
9446 		ifindex = xdp_link->dev->ifindex;
9447 	rtnl_unlock();
9448 
9449 	info->xdp.ifindex = ifindex;
9450 	return 0;
9451 }
9452 
9453 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9454 			       struct bpf_prog *old_prog)
9455 {
9456 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9457 	enum bpf_xdp_mode mode;
9458 	bpf_op_t bpf_op;
9459 	int err = 0;
9460 
9461 	rtnl_lock();
9462 
9463 	/* link might have been auto-released already, so fail */
9464 	if (!xdp_link->dev) {
9465 		err = -ENOLINK;
9466 		goto out_unlock;
9467 	}
9468 
9469 	if (old_prog && link->prog != old_prog) {
9470 		err = -EPERM;
9471 		goto out_unlock;
9472 	}
9473 	old_prog = link->prog;
9474 	if (old_prog->type != new_prog->type ||
9475 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9476 		err = -EINVAL;
9477 		goto out_unlock;
9478 	}
9479 
9480 	if (old_prog == new_prog) {
9481 		/* no-op, don't disturb drivers */
9482 		bpf_prog_put(new_prog);
9483 		goto out_unlock;
9484 	}
9485 
9486 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9487 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9488 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9489 			      xdp_link->flags, new_prog);
9490 	if (err)
9491 		goto out_unlock;
9492 
9493 	old_prog = xchg(&link->prog, new_prog);
9494 	bpf_prog_put(old_prog);
9495 
9496 out_unlock:
9497 	rtnl_unlock();
9498 	return err;
9499 }
9500 
9501 static const struct bpf_link_ops bpf_xdp_link_lops = {
9502 	.release = bpf_xdp_link_release,
9503 	.dealloc = bpf_xdp_link_dealloc,
9504 	.detach = bpf_xdp_link_detach,
9505 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9506 	.fill_link_info = bpf_xdp_link_fill_link_info,
9507 	.update_prog = bpf_xdp_link_update,
9508 };
9509 
9510 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9511 {
9512 	struct net *net = current->nsproxy->net_ns;
9513 	struct bpf_link_primer link_primer;
9514 	struct netlink_ext_ack extack = {};
9515 	struct bpf_xdp_link *link;
9516 	struct net_device *dev;
9517 	int err, fd;
9518 
9519 	rtnl_lock();
9520 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9521 	if (!dev) {
9522 		rtnl_unlock();
9523 		return -EINVAL;
9524 	}
9525 
9526 	link = kzalloc(sizeof(*link), GFP_USER);
9527 	if (!link) {
9528 		err = -ENOMEM;
9529 		goto unlock;
9530 	}
9531 
9532 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9533 	link->dev = dev;
9534 	link->flags = attr->link_create.flags;
9535 
9536 	err = bpf_link_prime(&link->link, &link_primer);
9537 	if (err) {
9538 		kfree(link);
9539 		goto unlock;
9540 	}
9541 
9542 	err = dev_xdp_attach_link(dev, &extack, link);
9543 	rtnl_unlock();
9544 
9545 	if (err) {
9546 		link->dev = NULL;
9547 		bpf_link_cleanup(&link_primer);
9548 		trace_bpf_xdp_link_attach_failed(extack._msg);
9549 		goto out_put_dev;
9550 	}
9551 
9552 	fd = bpf_link_settle(&link_primer);
9553 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9554 	dev_put(dev);
9555 	return fd;
9556 
9557 unlock:
9558 	rtnl_unlock();
9559 
9560 out_put_dev:
9561 	dev_put(dev);
9562 	return err;
9563 }
9564 
9565 /**
9566  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9567  *	@dev: device
9568  *	@extack: netlink extended ack
9569  *	@fd: new program fd or negative value to clear
9570  *	@expected_fd: old program fd that userspace expects to replace or clear
9571  *	@flags: xdp-related flags
9572  *
9573  *	Set or clear a bpf program for a device
9574  */
9575 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9576 		      int fd, int expected_fd, u32 flags)
9577 {
9578 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9579 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9580 	int err;
9581 
9582 	ASSERT_RTNL();
9583 
9584 	if (fd >= 0) {
9585 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9586 						 mode != XDP_MODE_SKB);
9587 		if (IS_ERR(new_prog))
9588 			return PTR_ERR(new_prog);
9589 	}
9590 
9591 	if (expected_fd >= 0) {
9592 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9593 						 mode != XDP_MODE_SKB);
9594 		if (IS_ERR(old_prog)) {
9595 			err = PTR_ERR(old_prog);
9596 			old_prog = NULL;
9597 			goto err_out;
9598 		}
9599 	}
9600 
9601 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9602 
9603 err_out:
9604 	if (err && new_prog)
9605 		bpf_prog_put(new_prog);
9606 	if (old_prog)
9607 		bpf_prog_put(old_prog);
9608 	return err;
9609 }
9610 
9611 /**
9612  * dev_index_reserve() - allocate an ifindex in a namespace
9613  * @net: the applicable net namespace
9614  * @ifindex: requested ifindex, pass %0 to get one allocated
9615  *
9616  * Allocate a ifindex for a new device. Caller must either use the ifindex
9617  * to store the device (via list_netdevice()) or call dev_index_release()
9618  * to give the index up.
9619  *
9620  * Return: a suitable unique value for a new device interface number or -errno.
9621  */
9622 static int dev_index_reserve(struct net *net, u32 ifindex)
9623 {
9624 	int err;
9625 
9626 	if (ifindex > INT_MAX) {
9627 		DEBUG_NET_WARN_ON_ONCE(1);
9628 		return -EINVAL;
9629 	}
9630 
9631 	if (!ifindex)
9632 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9633 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9634 	else
9635 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9636 	if (err < 0)
9637 		return err;
9638 
9639 	return ifindex;
9640 }
9641 
9642 static void dev_index_release(struct net *net, int ifindex)
9643 {
9644 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9645 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9646 }
9647 
9648 /* Delayed registration/unregisteration */
9649 LIST_HEAD(net_todo_list);
9650 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9651 
9652 static void net_set_todo(struct net_device *dev)
9653 {
9654 	list_add_tail(&dev->todo_list, &net_todo_list);
9655 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9656 }
9657 
9658 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9659 	struct net_device *upper, netdev_features_t features)
9660 {
9661 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9662 	netdev_features_t feature;
9663 	int feature_bit;
9664 
9665 	for_each_netdev_feature(upper_disables, feature_bit) {
9666 		feature = __NETIF_F_BIT(feature_bit);
9667 		if (!(upper->wanted_features & feature)
9668 		    && (features & feature)) {
9669 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9670 				   &feature, upper->name);
9671 			features &= ~feature;
9672 		}
9673 	}
9674 
9675 	return features;
9676 }
9677 
9678 static void netdev_sync_lower_features(struct net_device *upper,
9679 	struct net_device *lower, netdev_features_t features)
9680 {
9681 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9682 	netdev_features_t feature;
9683 	int feature_bit;
9684 
9685 	for_each_netdev_feature(upper_disables, feature_bit) {
9686 		feature = __NETIF_F_BIT(feature_bit);
9687 		if (!(features & feature) && (lower->features & feature)) {
9688 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9689 				   &feature, lower->name);
9690 			lower->wanted_features &= ~feature;
9691 			__netdev_update_features(lower);
9692 
9693 			if (unlikely(lower->features & feature))
9694 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9695 					    &feature, lower->name);
9696 			else
9697 				netdev_features_change(lower);
9698 		}
9699 	}
9700 }
9701 
9702 static netdev_features_t netdev_fix_features(struct net_device *dev,
9703 	netdev_features_t features)
9704 {
9705 	/* Fix illegal checksum combinations */
9706 	if ((features & NETIF_F_HW_CSUM) &&
9707 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9708 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9709 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9710 	}
9711 
9712 	/* TSO requires that SG is present as well. */
9713 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9714 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9715 		features &= ~NETIF_F_ALL_TSO;
9716 	}
9717 
9718 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9719 					!(features & NETIF_F_IP_CSUM)) {
9720 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9721 		features &= ~NETIF_F_TSO;
9722 		features &= ~NETIF_F_TSO_ECN;
9723 	}
9724 
9725 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9726 					 !(features & NETIF_F_IPV6_CSUM)) {
9727 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9728 		features &= ~NETIF_F_TSO6;
9729 	}
9730 
9731 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9732 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9733 		features &= ~NETIF_F_TSO_MANGLEID;
9734 
9735 	/* TSO ECN requires that TSO is present as well. */
9736 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9737 		features &= ~NETIF_F_TSO_ECN;
9738 
9739 	/* Software GSO depends on SG. */
9740 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9741 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9742 		features &= ~NETIF_F_GSO;
9743 	}
9744 
9745 	/* GSO partial features require GSO partial be set */
9746 	if ((features & dev->gso_partial_features) &&
9747 	    !(features & NETIF_F_GSO_PARTIAL)) {
9748 		netdev_dbg(dev,
9749 			   "Dropping partially supported GSO features since no GSO partial.\n");
9750 		features &= ~dev->gso_partial_features;
9751 	}
9752 
9753 	if (!(features & NETIF_F_RXCSUM)) {
9754 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9755 		 * successfully merged by hardware must also have the
9756 		 * checksum verified by hardware.  If the user does not
9757 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9758 		 */
9759 		if (features & NETIF_F_GRO_HW) {
9760 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9761 			features &= ~NETIF_F_GRO_HW;
9762 		}
9763 	}
9764 
9765 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9766 	if (features & NETIF_F_RXFCS) {
9767 		if (features & NETIF_F_LRO) {
9768 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9769 			features &= ~NETIF_F_LRO;
9770 		}
9771 
9772 		if (features & NETIF_F_GRO_HW) {
9773 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9774 			features &= ~NETIF_F_GRO_HW;
9775 		}
9776 	}
9777 
9778 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9779 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9780 		features &= ~NETIF_F_LRO;
9781 	}
9782 
9783 	if (features & NETIF_F_HW_TLS_TX) {
9784 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9785 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9786 		bool hw_csum = features & NETIF_F_HW_CSUM;
9787 
9788 		if (!ip_csum && !hw_csum) {
9789 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9790 			features &= ~NETIF_F_HW_TLS_TX;
9791 		}
9792 	}
9793 
9794 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9795 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9796 		features &= ~NETIF_F_HW_TLS_RX;
9797 	}
9798 
9799 	return features;
9800 }
9801 
9802 int __netdev_update_features(struct net_device *dev)
9803 {
9804 	struct net_device *upper, *lower;
9805 	netdev_features_t features;
9806 	struct list_head *iter;
9807 	int err = -1;
9808 
9809 	ASSERT_RTNL();
9810 
9811 	features = netdev_get_wanted_features(dev);
9812 
9813 	if (dev->netdev_ops->ndo_fix_features)
9814 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9815 
9816 	/* driver might be less strict about feature dependencies */
9817 	features = netdev_fix_features(dev, features);
9818 
9819 	/* some features can't be enabled if they're off on an upper device */
9820 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9821 		features = netdev_sync_upper_features(dev, upper, features);
9822 
9823 	if (dev->features == features)
9824 		goto sync_lower;
9825 
9826 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9827 		&dev->features, &features);
9828 
9829 	if (dev->netdev_ops->ndo_set_features)
9830 		err = dev->netdev_ops->ndo_set_features(dev, features);
9831 	else
9832 		err = 0;
9833 
9834 	if (unlikely(err < 0)) {
9835 		netdev_err(dev,
9836 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9837 			err, &features, &dev->features);
9838 		/* return non-0 since some features might have changed and
9839 		 * it's better to fire a spurious notification than miss it
9840 		 */
9841 		return -1;
9842 	}
9843 
9844 sync_lower:
9845 	/* some features must be disabled on lower devices when disabled
9846 	 * on an upper device (think: bonding master or bridge)
9847 	 */
9848 	netdev_for_each_lower_dev(dev, lower, iter)
9849 		netdev_sync_lower_features(dev, lower, features);
9850 
9851 	if (!err) {
9852 		netdev_features_t diff = features ^ dev->features;
9853 
9854 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9855 			/* udp_tunnel_{get,drop}_rx_info both need
9856 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9857 			 * device, or they won't do anything.
9858 			 * Thus we need to update dev->features
9859 			 * *before* calling udp_tunnel_get_rx_info,
9860 			 * but *after* calling udp_tunnel_drop_rx_info.
9861 			 */
9862 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9863 				dev->features = features;
9864 				udp_tunnel_get_rx_info(dev);
9865 			} else {
9866 				udp_tunnel_drop_rx_info(dev);
9867 			}
9868 		}
9869 
9870 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9871 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9872 				dev->features = features;
9873 				err |= vlan_get_rx_ctag_filter_info(dev);
9874 			} else {
9875 				vlan_drop_rx_ctag_filter_info(dev);
9876 			}
9877 		}
9878 
9879 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9880 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9881 				dev->features = features;
9882 				err |= vlan_get_rx_stag_filter_info(dev);
9883 			} else {
9884 				vlan_drop_rx_stag_filter_info(dev);
9885 			}
9886 		}
9887 
9888 		dev->features = features;
9889 	}
9890 
9891 	return err < 0 ? 0 : 1;
9892 }
9893 
9894 /**
9895  *	netdev_update_features - recalculate device features
9896  *	@dev: the device to check
9897  *
9898  *	Recalculate dev->features set and send notifications if it
9899  *	has changed. Should be called after driver or hardware dependent
9900  *	conditions might have changed that influence the features.
9901  */
9902 void netdev_update_features(struct net_device *dev)
9903 {
9904 	if (__netdev_update_features(dev))
9905 		netdev_features_change(dev);
9906 }
9907 EXPORT_SYMBOL(netdev_update_features);
9908 
9909 /**
9910  *	netdev_change_features - recalculate device features
9911  *	@dev: the device to check
9912  *
9913  *	Recalculate dev->features set and send notifications even
9914  *	if they have not changed. Should be called instead of
9915  *	netdev_update_features() if also dev->vlan_features might
9916  *	have changed to allow the changes to be propagated to stacked
9917  *	VLAN devices.
9918  */
9919 void netdev_change_features(struct net_device *dev)
9920 {
9921 	__netdev_update_features(dev);
9922 	netdev_features_change(dev);
9923 }
9924 EXPORT_SYMBOL(netdev_change_features);
9925 
9926 /**
9927  *	netif_stacked_transfer_operstate -	transfer operstate
9928  *	@rootdev: the root or lower level device to transfer state from
9929  *	@dev: the device to transfer operstate to
9930  *
9931  *	Transfer operational state from root to device. This is normally
9932  *	called when a stacking relationship exists between the root
9933  *	device and the device(a leaf device).
9934  */
9935 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9936 					struct net_device *dev)
9937 {
9938 	if (rootdev->operstate == IF_OPER_DORMANT)
9939 		netif_dormant_on(dev);
9940 	else
9941 		netif_dormant_off(dev);
9942 
9943 	if (rootdev->operstate == IF_OPER_TESTING)
9944 		netif_testing_on(dev);
9945 	else
9946 		netif_testing_off(dev);
9947 
9948 	if (netif_carrier_ok(rootdev))
9949 		netif_carrier_on(dev);
9950 	else
9951 		netif_carrier_off(dev);
9952 }
9953 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9954 
9955 static int netif_alloc_rx_queues(struct net_device *dev)
9956 {
9957 	unsigned int i, count = dev->num_rx_queues;
9958 	struct netdev_rx_queue *rx;
9959 	size_t sz = count * sizeof(*rx);
9960 	int err = 0;
9961 
9962 	BUG_ON(count < 1);
9963 
9964 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9965 	if (!rx)
9966 		return -ENOMEM;
9967 
9968 	dev->_rx = rx;
9969 
9970 	for (i = 0; i < count; i++) {
9971 		rx[i].dev = dev;
9972 
9973 		/* XDP RX-queue setup */
9974 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9975 		if (err < 0)
9976 			goto err_rxq_info;
9977 	}
9978 	return 0;
9979 
9980 err_rxq_info:
9981 	/* Rollback successful reg's and free other resources */
9982 	while (i--)
9983 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9984 	kvfree(dev->_rx);
9985 	dev->_rx = NULL;
9986 	return err;
9987 }
9988 
9989 static void netif_free_rx_queues(struct net_device *dev)
9990 {
9991 	unsigned int i, count = dev->num_rx_queues;
9992 
9993 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9994 	if (!dev->_rx)
9995 		return;
9996 
9997 	for (i = 0; i < count; i++)
9998 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9999 
10000 	kvfree(dev->_rx);
10001 }
10002 
10003 static void netdev_init_one_queue(struct net_device *dev,
10004 				  struct netdev_queue *queue, void *_unused)
10005 {
10006 	/* Initialize queue lock */
10007 	spin_lock_init(&queue->_xmit_lock);
10008 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10009 	queue->xmit_lock_owner = -1;
10010 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10011 	queue->dev = dev;
10012 #ifdef CONFIG_BQL
10013 	dql_init(&queue->dql, HZ);
10014 #endif
10015 }
10016 
10017 static void netif_free_tx_queues(struct net_device *dev)
10018 {
10019 	kvfree(dev->_tx);
10020 }
10021 
10022 static int netif_alloc_netdev_queues(struct net_device *dev)
10023 {
10024 	unsigned int count = dev->num_tx_queues;
10025 	struct netdev_queue *tx;
10026 	size_t sz = count * sizeof(*tx);
10027 
10028 	if (count < 1 || count > 0xffff)
10029 		return -EINVAL;
10030 
10031 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10032 	if (!tx)
10033 		return -ENOMEM;
10034 
10035 	dev->_tx = tx;
10036 
10037 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10038 	spin_lock_init(&dev->tx_global_lock);
10039 
10040 	return 0;
10041 }
10042 
10043 void netif_tx_stop_all_queues(struct net_device *dev)
10044 {
10045 	unsigned int i;
10046 
10047 	for (i = 0; i < dev->num_tx_queues; i++) {
10048 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10049 
10050 		netif_tx_stop_queue(txq);
10051 	}
10052 }
10053 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10054 
10055 /**
10056  * register_netdevice() - register a network device
10057  * @dev: device to register
10058  *
10059  * Take a prepared network device structure and make it externally accessible.
10060  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10061  * Callers must hold the rtnl lock - you may want register_netdev()
10062  * instead of this.
10063  */
10064 int register_netdevice(struct net_device *dev)
10065 {
10066 	int ret;
10067 	struct net *net = dev_net(dev);
10068 
10069 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10070 		     NETDEV_FEATURE_COUNT);
10071 	BUG_ON(dev_boot_phase);
10072 	ASSERT_RTNL();
10073 
10074 	might_sleep();
10075 
10076 	/* When net_device's are persistent, this will be fatal. */
10077 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10078 	BUG_ON(!net);
10079 
10080 	ret = ethtool_check_ops(dev->ethtool_ops);
10081 	if (ret)
10082 		return ret;
10083 
10084 	spin_lock_init(&dev->addr_list_lock);
10085 	netdev_set_addr_lockdep_class(dev);
10086 
10087 	ret = dev_get_valid_name(net, dev, dev->name);
10088 	if (ret < 0)
10089 		goto out;
10090 
10091 	ret = -ENOMEM;
10092 	dev->name_node = netdev_name_node_head_alloc(dev);
10093 	if (!dev->name_node)
10094 		goto out;
10095 
10096 	/* Init, if this function is available */
10097 	if (dev->netdev_ops->ndo_init) {
10098 		ret = dev->netdev_ops->ndo_init(dev);
10099 		if (ret) {
10100 			if (ret > 0)
10101 				ret = -EIO;
10102 			goto err_free_name;
10103 		}
10104 	}
10105 
10106 	if (((dev->hw_features | dev->features) &
10107 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10108 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10109 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10110 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10111 		ret = -EINVAL;
10112 		goto err_uninit;
10113 	}
10114 
10115 	ret = dev_index_reserve(net, dev->ifindex);
10116 	if (ret < 0)
10117 		goto err_uninit;
10118 	dev->ifindex = ret;
10119 
10120 	/* Transfer changeable features to wanted_features and enable
10121 	 * software offloads (GSO and GRO).
10122 	 */
10123 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10124 	dev->features |= NETIF_F_SOFT_FEATURES;
10125 
10126 	if (dev->udp_tunnel_nic_info) {
10127 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10128 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10129 	}
10130 
10131 	dev->wanted_features = dev->features & dev->hw_features;
10132 
10133 	if (!(dev->flags & IFF_LOOPBACK))
10134 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10135 
10136 	/* If IPv4 TCP segmentation offload is supported we should also
10137 	 * allow the device to enable segmenting the frame with the option
10138 	 * of ignoring a static IP ID value.  This doesn't enable the
10139 	 * feature itself but allows the user to enable it later.
10140 	 */
10141 	if (dev->hw_features & NETIF_F_TSO)
10142 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10143 	if (dev->vlan_features & NETIF_F_TSO)
10144 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10145 	if (dev->mpls_features & NETIF_F_TSO)
10146 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10147 	if (dev->hw_enc_features & NETIF_F_TSO)
10148 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10149 
10150 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10151 	 */
10152 	dev->vlan_features |= NETIF_F_HIGHDMA;
10153 
10154 	/* Make NETIF_F_SG inheritable to tunnel devices.
10155 	 */
10156 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10157 
10158 	/* Make NETIF_F_SG inheritable to MPLS.
10159 	 */
10160 	dev->mpls_features |= NETIF_F_SG;
10161 
10162 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10163 	ret = notifier_to_errno(ret);
10164 	if (ret)
10165 		goto err_ifindex_release;
10166 
10167 	ret = netdev_register_kobject(dev);
10168 	write_lock(&dev_base_lock);
10169 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10170 	write_unlock(&dev_base_lock);
10171 	if (ret)
10172 		goto err_uninit_notify;
10173 
10174 	__netdev_update_features(dev);
10175 
10176 	/*
10177 	 *	Default initial state at registry is that the
10178 	 *	device is present.
10179 	 */
10180 
10181 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10182 
10183 	linkwatch_init_dev(dev);
10184 
10185 	dev_init_scheduler(dev);
10186 
10187 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10188 	list_netdevice(dev);
10189 
10190 	add_device_randomness(dev->dev_addr, dev->addr_len);
10191 
10192 	/* If the device has permanent device address, driver should
10193 	 * set dev_addr and also addr_assign_type should be set to
10194 	 * NET_ADDR_PERM (default value).
10195 	 */
10196 	if (dev->addr_assign_type == NET_ADDR_PERM)
10197 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10198 
10199 	/* Notify protocols, that a new device appeared. */
10200 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10201 	ret = notifier_to_errno(ret);
10202 	if (ret) {
10203 		/* Expect explicit free_netdev() on failure */
10204 		dev->needs_free_netdev = false;
10205 		unregister_netdevice_queue(dev, NULL);
10206 		goto out;
10207 	}
10208 	/*
10209 	 *	Prevent userspace races by waiting until the network
10210 	 *	device is fully setup before sending notifications.
10211 	 */
10212 	if (!dev->rtnl_link_ops ||
10213 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10214 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10215 
10216 out:
10217 	return ret;
10218 
10219 err_uninit_notify:
10220 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10221 err_ifindex_release:
10222 	dev_index_release(net, dev->ifindex);
10223 err_uninit:
10224 	if (dev->netdev_ops->ndo_uninit)
10225 		dev->netdev_ops->ndo_uninit(dev);
10226 	if (dev->priv_destructor)
10227 		dev->priv_destructor(dev);
10228 err_free_name:
10229 	netdev_name_node_free(dev->name_node);
10230 	goto out;
10231 }
10232 EXPORT_SYMBOL(register_netdevice);
10233 
10234 /**
10235  *	init_dummy_netdev	- init a dummy network device for NAPI
10236  *	@dev: device to init
10237  *
10238  *	This takes a network device structure and initialize the minimum
10239  *	amount of fields so it can be used to schedule NAPI polls without
10240  *	registering a full blown interface. This is to be used by drivers
10241  *	that need to tie several hardware interfaces to a single NAPI
10242  *	poll scheduler due to HW limitations.
10243  */
10244 int init_dummy_netdev(struct net_device *dev)
10245 {
10246 	/* Clear everything. Note we don't initialize spinlocks
10247 	 * are they aren't supposed to be taken by any of the
10248 	 * NAPI code and this dummy netdev is supposed to be
10249 	 * only ever used for NAPI polls
10250 	 */
10251 	memset(dev, 0, sizeof(struct net_device));
10252 
10253 	/* make sure we BUG if trying to hit standard
10254 	 * register/unregister code path
10255 	 */
10256 	dev->reg_state = NETREG_DUMMY;
10257 
10258 	/* NAPI wants this */
10259 	INIT_LIST_HEAD(&dev->napi_list);
10260 
10261 	/* a dummy interface is started by default */
10262 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10263 	set_bit(__LINK_STATE_START, &dev->state);
10264 
10265 	/* napi_busy_loop stats accounting wants this */
10266 	dev_net_set(dev, &init_net);
10267 
10268 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10269 	 * because users of this 'device' dont need to change
10270 	 * its refcount.
10271 	 */
10272 
10273 	return 0;
10274 }
10275 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10276 
10277 
10278 /**
10279  *	register_netdev	- register a network device
10280  *	@dev: device to register
10281  *
10282  *	Take a completed network device structure and add it to the kernel
10283  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10284  *	chain. 0 is returned on success. A negative errno code is returned
10285  *	on a failure to set up the device, or if the name is a duplicate.
10286  *
10287  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10288  *	and expands the device name if you passed a format string to
10289  *	alloc_netdev.
10290  */
10291 int register_netdev(struct net_device *dev)
10292 {
10293 	int err;
10294 
10295 	if (rtnl_lock_killable())
10296 		return -EINTR;
10297 	err = register_netdevice(dev);
10298 	rtnl_unlock();
10299 	return err;
10300 }
10301 EXPORT_SYMBOL(register_netdev);
10302 
10303 int netdev_refcnt_read(const struct net_device *dev)
10304 {
10305 #ifdef CONFIG_PCPU_DEV_REFCNT
10306 	int i, refcnt = 0;
10307 
10308 	for_each_possible_cpu(i)
10309 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10310 	return refcnt;
10311 #else
10312 	return refcount_read(&dev->dev_refcnt);
10313 #endif
10314 }
10315 EXPORT_SYMBOL(netdev_refcnt_read);
10316 
10317 int netdev_unregister_timeout_secs __read_mostly = 10;
10318 
10319 #define WAIT_REFS_MIN_MSECS 1
10320 #define WAIT_REFS_MAX_MSECS 250
10321 /**
10322  * netdev_wait_allrefs_any - wait until all references are gone.
10323  * @list: list of net_devices to wait on
10324  *
10325  * This is called when unregistering network devices.
10326  *
10327  * Any protocol or device that holds a reference should register
10328  * for netdevice notification, and cleanup and put back the
10329  * reference if they receive an UNREGISTER event.
10330  * We can get stuck here if buggy protocols don't correctly
10331  * call dev_put.
10332  */
10333 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10334 {
10335 	unsigned long rebroadcast_time, warning_time;
10336 	struct net_device *dev;
10337 	int wait = 0;
10338 
10339 	rebroadcast_time = warning_time = jiffies;
10340 
10341 	list_for_each_entry(dev, list, todo_list)
10342 		if (netdev_refcnt_read(dev) == 1)
10343 			return dev;
10344 
10345 	while (true) {
10346 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10347 			rtnl_lock();
10348 
10349 			/* Rebroadcast unregister notification */
10350 			list_for_each_entry(dev, list, todo_list)
10351 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10352 
10353 			__rtnl_unlock();
10354 			rcu_barrier();
10355 			rtnl_lock();
10356 
10357 			list_for_each_entry(dev, list, todo_list)
10358 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10359 					     &dev->state)) {
10360 					/* We must not have linkwatch events
10361 					 * pending on unregister. If this
10362 					 * happens, we simply run the queue
10363 					 * unscheduled, resulting in a noop
10364 					 * for this device.
10365 					 */
10366 					linkwatch_run_queue();
10367 					break;
10368 				}
10369 
10370 			__rtnl_unlock();
10371 
10372 			rebroadcast_time = jiffies;
10373 		}
10374 
10375 		if (!wait) {
10376 			rcu_barrier();
10377 			wait = WAIT_REFS_MIN_MSECS;
10378 		} else {
10379 			msleep(wait);
10380 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10381 		}
10382 
10383 		list_for_each_entry(dev, list, todo_list)
10384 			if (netdev_refcnt_read(dev) == 1)
10385 				return dev;
10386 
10387 		if (time_after(jiffies, warning_time +
10388 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10389 			list_for_each_entry(dev, list, todo_list) {
10390 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10391 					 dev->name, netdev_refcnt_read(dev));
10392 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10393 			}
10394 
10395 			warning_time = jiffies;
10396 		}
10397 	}
10398 }
10399 
10400 /* The sequence is:
10401  *
10402  *	rtnl_lock();
10403  *	...
10404  *	register_netdevice(x1);
10405  *	register_netdevice(x2);
10406  *	...
10407  *	unregister_netdevice(y1);
10408  *	unregister_netdevice(y2);
10409  *      ...
10410  *	rtnl_unlock();
10411  *	free_netdev(y1);
10412  *	free_netdev(y2);
10413  *
10414  * We are invoked by rtnl_unlock().
10415  * This allows us to deal with problems:
10416  * 1) We can delete sysfs objects which invoke hotplug
10417  *    without deadlocking with linkwatch via keventd.
10418  * 2) Since we run with the RTNL semaphore not held, we can sleep
10419  *    safely in order to wait for the netdev refcnt to drop to zero.
10420  *
10421  * We must not return until all unregister events added during
10422  * the interval the lock was held have been completed.
10423  */
10424 void netdev_run_todo(void)
10425 {
10426 	struct net_device *dev, *tmp;
10427 	struct list_head list;
10428 #ifdef CONFIG_LOCKDEP
10429 	struct list_head unlink_list;
10430 
10431 	list_replace_init(&net_unlink_list, &unlink_list);
10432 
10433 	while (!list_empty(&unlink_list)) {
10434 		struct net_device *dev = list_first_entry(&unlink_list,
10435 							  struct net_device,
10436 							  unlink_list);
10437 		list_del_init(&dev->unlink_list);
10438 		dev->nested_level = dev->lower_level - 1;
10439 	}
10440 #endif
10441 
10442 	/* Snapshot list, allow later requests */
10443 	list_replace_init(&net_todo_list, &list);
10444 
10445 	__rtnl_unlock();
10446 
10447 	/* Wait for rcu callbacks to finish before next phase */
10448 	if (!list_empty(&list))
10449 		rcu_barrier();
10450 
10451 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10452 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10453 			netdev_WARN(dev, "run_todo but not unregistering\n");
10454 			list_del(&dev->todo_list);
10455 			continue;
10456 		}
10457 
10458 		write_lock(&dev_base_lock);
10459 		dev->reg_state = NETREG_UNREGISTERED;
10460 		write_unlock(&dev_base_lock);
10461 		linkwatch_forget_dev(dev);
10462 	}
10463 
10464 	while (!list_empty(&list)) {
10465 		dev = netdev_wait_allrefs_any(&list);
10466 		list_del(&dev->todo_list);
10467 
10468 		/* paranoia */
10469 		BUG_ON(netdev_refcnt_read(dev) != 1);
10470 		BUG_ON(!list_empty(&dev->ptype_all));
10471 		BUG_ON(!list_empty(&dev->ptype_specific));
10472 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10473 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10474 
10475 		if (dev->priv_destructor)
10476 			dev->priv_destructor(dev);
10477 		if (dev->needs_free_netdev)
10478 			free_netdev(dev);
10479 
10480 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10481 			wake_up(&netdev_unregistering_wq);
10482 
10483 		/* Free network device */
10484 		kobject_put(&dev->dev.kobj);
10485 	}
10486 }
10487 
10488 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10489  * all the same fields in the same order as net_device_stats, with only
10490  * the type differing, but rtnl_link_stats64 may have additional fields
10491  * at the end for newer counters.
10492  */
10493 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10494 			     const struct net_device_stats *netdev_stats)
10495 {
10496 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10497 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10498 	u64 *dst = (u64 *)stats64;
10499 
10500 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10501 	for (i = 0; i < n; i++)
10502 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10503 	/* zero out counters that only exist in rtnl_link_stats64 */
10504 	memset((char *)stats64 + n * sizeof(u64), 0,
10505 	       sizeof(*stats64) - n * sizeof(u64));
10506 }
10507 EXPORT_SYMBOL(netdev_stats_to_stats64);
10508 
10509 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10510 		struct net_device *dev)
10511 {
10512 	struct net_device_core_stats __percpu *p;
10513 
10514 	p = alloc_percpu_gfp(struct net_device_core_stats,
10515 			     GFP_ATOMIC | __GFP_NOWARN);
10516 
10517 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10518 		free_percpu(p);
10519 
10520 	/* This READ_ONCE() pairs with the cmpxchg() above */
10521 	return READ_ONCE(dev->core_stats);
10522 }
10523 
10524 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10525 {
10526 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10527 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10528 	unsigned long __percpu *field;
10529 
10530 	if (unlikely(!p)) {
10531 		p = netdev_core_stats_alloc(dev);
10532 		if (!p)
10533 			return;
10534 	}
10535 
10536 	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10537 	this_cpu_inc(*field);
10538 }
10539 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10540 
10541 /**
10542  *	dev_get_stats	- get network device statistics
10543  *	@dev: device to get statistics from
10544  *	@storage: place to store stats
10545  *
10546  *	Get network statistics from device. Return @storage.
10547  *	The device driver may provide its own method by setting
10548  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10549  *	otherwise the internal statistics structure is used.
10550  */
10551 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10552 					struct rtnl_link_stats64 *storage)
10553 {
10554 	const struct net_device_ops *ops = dev->netdev_ops;
10555 	const struct net_device_core_stats __percpu *p;
10556 
10557 	if (ops->ndo_get_stats64) {
10558 		memset(storage, 0, sizeof(*storage));
10559 		ops->ndo_get_stats64(dev, storage);
10560 	} else if (ops->ndo_get_stats) {
10561 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10562 	} else {
10563 		netdev_stats_to_stats64(storage, &dev->stats);
10564 	}
10565 
10566 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10567 	p = READ_ONCE(dev->core_stats);
10568 	if (p) {
10569 		const struct net_device_core_stats *core_stats;
10570 		int i;
10571 
10572 		for_each_possible_cpu(i) {
10573 			core_stats = per_cpu_ptr(p, i);
10574 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10575 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10576 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10577 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10578 		}
10579 	}
10580 	return storage;
10581 }
10582 EXPORT_SYMBOL(dev_get_stats);
10583 
10584 /**
10585  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10586  *	@s: place to store stats
10587  *	@netstats: per-cpu network stats to read from
10588  *
10589  *	Read per-cpu network statistics and populate the related fields in @s.
10590  */
10591 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10592 			   const struct pcpu_sw_netstats __percpu *netstats)
10593 {
10594 	int cpu;
10595 
10596 	for_each_possible_cpu(cpu) {
10597 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10598 		const struct pcpu_sw_netstats *stats;
10599 		unsigned int start;
10600 
10601 		stats = per_cpu_ptr(netstats, cpu);
10602 		do {
10603 			start = u64_stats_fetch_begin(&stats->syncp);
10604 			rx_packets = u64_stats_read(&stats->rx_packets);
10605 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10606 			tx_packets = u64_stats_read(&stats->tx_packets);
10607 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10608 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10609 
10610 		s->rx_packets += rx_packets;
10611 		s->rx_bytes   += rx_bytes;
10612 		s->tx_packets += tx_packets;
10613 		s->tx_bytes   += tx_bytes;
10614 	}
10615 }
10616 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10617 
10618 /**
10619  *	dev_get_tstats64 - ndo_get_stats64 implementation
10620  *	@dev: device to get statistics from
10621  *	@s: place to store stats
10622  *
10623  *	Populate @s from dev->stats and dev->tstats. Can be used as
10624  *	ndo_get_stats64() callback.
10625  */
10626 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10627 {
10628 	netdev_stats_to_stats64(s, &dev->stats);
10629 	dev_fetch_sw_netstats(s, dev->tstats);
10630 }
10631 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10632 
10633 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10634 {
10635 	struct netdev_queue *queue = dev_ingress_queue(dev);
10636 
10637 #ifdef CONFIG_NET_CLS_ACT
10638 	if (queue)
10639 		return queue;
10640 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10641 	if (!queue)
10642 		return NULL;
10643 	netdev_init_one_queue(dev, queue, NULL);
10644 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10645 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10646 	rcu_assign_pointer(dev->ingress_queue, queue);
10647 #endif
10648 	return queue;
10649 }
10650 
10651 static const struct ethtool_ops default_ethtool_ops;
10652 
10653 void netdev_set_default_ethtool_ops(struct net_device *dev,
10654 				    const struct ethtool_ops *ops)
10655 {
10656 	if (dev->ethtool_ops == &default_ethtool_ops)
10657 		dev->ethtool_ops = ops;
10658 }
10659 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10660 
10661 /**
10662  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10663  * @dev: netdev to enable the IRQ coalescing on
10664  *
10665  * Sets a conservative default for SW IRQ coalescing. Users can use
10666  * sysfs attributes to override the default values.
10667  */
10668 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10669 {
10670 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10671 
10672 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10673 		dev->gro_flush_timeout = 20000;
10674 		dev->napi_defer_hard_irqs = 1;
10675 	}
10676 }
10677 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10678 
10679 void netdev_freemem(struct net_device *dev)
10680 {
10681 	char *addr = (char *)dev - dev->padded;
10682 
10683 	kvfree(addr);
10684 }
10685 
10686 /**
10687  * alloc_netdev_mqs - allocate network device
10688  * @sizeof_priv: size of private data to allocate space for
10689  * @name: device name format string
10690  * @name_assign_type: origin of device name
10691  * @setup: callback to initialize device
10692  * @txqs: the number of TX subqueues to allocate
10693  * @rxqs: the number of RX subqueues to allocate
10694  *
10695  * Allocates a struct net_device with private data area for driver use
10696  * and performs basic initialization.  Also allocates subqueue structs
10697  * for each queue on the device.
10698  */
10699 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10700 		unsigned char name_assign_type,
10701 		void (*setup)(struct net_device *),
10702 		unsigned int txqs, unsigned int rxqs)
10703 {
10704 	struct net_device *dev;
10705 	unsigned int alloc_size;
10706 	struct net_device *p;
10707 
10708 	BUG_ON(strlen(name) >= sizeof(dev->name));
10709 
10710 	if (txqs < 1) {
10711 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10712 		return NULL;
10713 	}
10714 
10715 	if (rxqs < 1) {
10716 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10717 		return NULL;
10718 	}
10719 
10720 	alloc_size = sizeof(struct net_device);
10721 	if (sizeof_priv) {
10722 		/* ensure 32-byte alignment of private area */
10723 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10724 		alloc_size += sizeof_priv;
10725 	}
10726 	/* ensure 32-byte alignment of whole construct */
10727 	alloc_size += NETDEV_ALIGN - 1;
10728 
10729 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10730 	if (!p)
10731 		return NULL;
10732 
10733 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10734 	dev->padded = (char *)dev - (char *)p;
10735 
10736 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10737 #ifdef CONFIG_PCPU_DEV_REFCNT
10738 	dev->pcpu_refcnt = alloc_percpu(int);
10739 	if (!dev->pcpu_refcnt)
10740 		goto free_dev;
10741 	__dev_hold(dev);
10742 #else
10743 	refcount_set(&dev->dev_refcnt, 1);
10744 #endif
10745 
10746 	if (dev_addr_init(dev))
10747 		goto free_pcpu;
10748 
10749 	dev_mc_init(dev);
10750 	dev_uc_init(dev);
10751 
10752 	dev_net_set(dev, &init_net);
10753 
10754 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10755 	dev->xdp_zc_max_segs = 1;
10756 	dev->gso_max_segs = GSO_MAX_SEGS;
10757 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10758 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10759 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10760 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10761 	dev->tso_max_segs = TSO_MAX_SEGS;
10762 	dev->upper_level = 1;
10763 	dev->lower_level = 1;
10764 #ifdef CONFIG_LOCKDEP
10765 	dev->nested_level = 0;
10766 	INIT_LIST_HEAD(&dev->unlink_list);
10767 #endif
10768 
10769 	INIT_LIST_HEAD(&dev->napi_list);
10770 	INIT_LIST_HEAD(&dev->unreg_list);
10771 	INIT_LIST_HEAD(&dev->close_list);
10772 	INIT_LIST_HEAD(&dev->link_watch_list);
10773 	INIT_LIST_HEAD(&dev->adj_list.upper);
10774 	INIT_LIST_HEAD(&dev->adj_list.lower);
10775 	INIT_LIST_HEAD(&dev->ptype_all);
10776 	INIT_LIST_HEAD(&dev->ptype_specific);
10777 	INIT_LIST_HEAD(&dev->net_notifier_list);
10778 #ifdef CONFIG_NET_SCHED
10779 	hash_init(dev->qdisc_hash);
10780 #endif
10781 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10782 	setup(dev);
10783 
10784 	if (!dev->tx_queue_len) {
10785 		dev->priv_flags |= IFF_NO_QUEUE;
10786 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10787 	}
10788 
10789 	dev->num_tx_queues = txqs;
10790 	dev->real_num_tx_queues = txqs;
10791 	if (netif_alloc_netdev_queues(dev))
10792 		goto free_all;
10793 
10794 	dev->num_rx_queues = rxqs;
10795 	dev->real_num_rx_queues = rxqs;
10796 	if (netif_alloc_rx_queues(dev))
10797 		goto free_all;
10798 
10799 	strcpy(dev->name, name);
10800 	dev->name_assign_type = name_assign_type;
10801 	dev->group = INIT_NETDEV_GROUP;
10802 	if (!dev->ethtool_ops)
10803 		dev->ethtool_ops = &default_ethtool_ops;
10804 
10805 	nf_hook_netdev_init(dev);
10806 
10807 	return dev;
10808 
10809 free_all:
10810 	free_netdev(dev);
10811 	return NULL;
10812 
10813 free_pcpu:
10814 #ifdef CONFIG_PCPU_DEV_REFCNT
10815 	free_percpu(dev->pcpu_refcnt);
10816 free_dev:
10817 #endif
10818 	netdev_freemem(dev);
10819 	return NULL;
10820 }
10821 EXPORT_SYMBOL(alloc_netdev_mqs);
10822 
10823 /**
10824  * free_netdev - free network device
10825  * @dev: device
10826  *
10827  * This function does the last stage of destroying an allocated device
10828  * interface. The reference to the device object is released. If this
10829  * is the last reference then it will be freed.Must be called in process
10830  * context.
10831  */
10832 void free_netdev(struct net_device *dev)
10833 {
10834 	struct napi_struct *p, *n;
10835 
10836 	might_sleep();
10837 
10838 	/* When called immediately after register_netdevice() failed the unwind
10839 	 * handling may still be dismantling the device. Handle that case by
10840 	 * deferring the free.
10841 	 */
10842 	if (dev->reg_state == NETREG_UNREGISTERING) {
10843 		ASSERT_RTNL();
10844 		dev->needs_free_netdev = true;
10845 		return;
10846 	}
10847 
10848 	netif_free_tx_queues(dev);
10849 	netif_free_rx_queues(dev);
10850 
10851 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10852 
10853 	/* Flush device addresses */
10854 	dev_addr_flush(dev);
10855 
10856 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10857 		netif_napi_del(p);
10858 
10859 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10860 #ifdef CONFIG_PCPU_DEV_REFCNT
10861 	free_percpu(dev->pcpu_refcnt);
10862 	dev->pcpu_refcnt = NULL;
10863 #endif
10864 	free_percpu(dev->core_stats);
10865 	dev->core_stats = NULL;
10866 	free_percpu(dev->xdp_bulkq);
10867 	dev->xdp_bulkq = NULL;
10868 
10869 	/*  Compatibility with error handling in drivers */
10870 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10871 		netdev_freemem(dev);
10872 		return;
10873 	}
10874 
10875 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10876 	dev->reg_state = NETREG_RELEASED;
10877 
10878 	/* will free via device release */
10879 	put_device(&dev->dev);
10880 }
10881 EXPORT_SYMBOL(free_netdev);
10882 
10883 /**
10884  *	synchronize_net -  Synchronize with packet receive processing
10885  *
10886  *	Wait for packets currently being received to be done.
10887  *	Does not block later packets from starting.
10888  */
10889 void synchronize_net(void)
10890 {
10891 	might_sleep();
10892 	if (rtnl_is_locked())
10893 		synchronize_rcu_expedited();
10894 	else
10895 		synchronize_rcu();
10896 }
10897 EXPORT_SYMBOL(synchronize_net);
10898 
10899 /**
10900  *	unregister_netdevice_queue - remove device from the kernel
10901  *	@dev: device
10902  *	@head: list
10903  *
10904  *	This function shuts down a device interface and removes it
10905  *	from the kernel tables.
10906  *	If head not NULL, device is queued to be unregistered later.
10907  *
10908  *	Callers must hold the rtnl semaphore.  You may want
10909  *	unregister_netdev() instead of this.
10910  */
10911 
10912 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10913 {
10914 	ASSERT_RTNL();
10915 
10916 	if (head) {
10917 		list_move_tail(&dev->unreg_list, head);
10918 	} else {
10919 		LIST_HEAD(single);
10920 
10921 		list_add(&dev->unreg_list, &single);
10922 		unregister_netdevice_many(&single);
10923 	}
10924 }
10925 EXPORT_SYMBOL(unregister_netdevice_queue);
10926 
10927 void unregister_netdevice_many_notify(struct list_head *head,
10928 				      u32 portid, const struct nlmsghdr *nlh)
10929 {
10930 	struct net_device *dev, *tmp;
10931 	LIST_HEAD(close_head);
10932 
10933 	BUG_ON(dev_boot_phase);
10934 	ASSERT_RTNL();
10935 
10936 	if (list_empty(head))
10937 		return;
10938 
10939 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10940 		/* Some devices call without registering
10941 		 * for initialization unwind. Remove those
10942 		 * devices and proceed with the remaining.
10943 		 */
10944 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10945 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10946 				 dev->name, dev);
10947 
10948 			WARN_ON(1);
10949 			list_del(&dev->unreg_list);
10950 			continue;
10951 		}
10952 		dev->dismantle = true;
10953 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10954 	}
10955 
10956 	/* If device is running, close it first. */
10957 	list_for_each_entry(dev, head, unreg_list)
10958 		list_add_tail(&dev->close_list, &close_head);
10959 	dev_close_many(&close_head, true);
10960 
10961 	list_for_each_entry(dev, head, unreg_list) {
10962 		/* And unlink it from device chain. */
10963 		write_lock(&dev_base_lock);
10964 		unlist_netdevice(dev, false);
10965 		dev->reg_state = NETREG_UNREGISTERING;
10966 		write_unlock(&dev_base_lock);
10967 	}
10968 	flush_all_backlogs();
10969 
10970 	synchronize_net();
10971 
10972 	list_for_each_entry(dev, head, unreg_list) {
10973 		struct sk_buff *skb = NULL;
10974 
10975 		/* Shutdown queueing discipline. */
10976 		dev_shutdown(dev);
10977 		dev_tcx_uninstall(dev);
10978 		dev_xdp_uninstall(dev);
10979 		bpf_dev_bound_netdev_unregister(dev);
10980 
10981 		netdev_offload_xstats_disable_all(dev);
10982 
10983 		/* Notify protocols, that we are about to destroy
10984 		 * this device. They should clean all the things.
10985 		 */
10986 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10987 
10988 		if (!dev->rtnl_link_ops ||
10989 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10990 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10991 						     GFP_KERNEL, NULL, 0,
10992 						     portid, nlh);
10993 
10994 		/*
10995 		 *	Flush the unicast and multicast chains
10996 		 */
10997 		dev_uc_flush(dev);
10998 		dev_mc_flush(dev);
10999 
11000 		netdev_name_node_alt_flush(dev);
11001 		netdev_name_node_free(dev->name_node);
11002 
11003 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11004 
11005 		if (dev->netdev_ops->ndo_uninit)
11006 			dev->netdev_ops->ndo_uninit(dev);
11007 
11008 		if (skb)
11009 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11010 
11011 		/* Notifier chain MUST detach us all upper devices. */
11012 		WARN_ON(netdev_has_any_upper_dev(dev));
11013 		WARN_ON(netdev_has_any_lower_dev(dev));
11014 
11015 		/* Remove entries from kobject tree */
11016 		netdev_unregister_kobject(dev);
11017 #ifdef CONFIG_XPS
11018 		/* Remove XPS queueing entries */
11019 		netif_reset_xps_queues_gt(dev, 0);
11020 #endif
11021 	}
11022 
11023 	synchronize_net();
11024 
11025 	list_for_each_entry(dev, head, unreg_list) {
11026 		netdev_put(dev, &dev->dev_registered_tracker);
11027 		net_set_todo(dev);
11028 	}
11029 
11030 	list_del(head);
11031 }
11032 
11033 /**
11034  *	unregister_netdevice_many - unregister many devices
11035  *	@head: list of devices
11036  *
11037  *  Note: As most callers use a stack allocated list_head,
11038  *  we force a list_del() to make sure stack wont be corrupted later.
11039  */
11040 void unregister_netdevice_many(struct list_head *head)
11041 {
11042 	unregister_netdevice_many_notify(head, 0, NULL);
11043 }
11044 EXPORT_SYMBOL(unregister_netdevice_many);
11045 
11046 /**
11047  *	unregister_netdev - remove device from the kernel
11048  *	@dev: device
11049  *
11050  *	This function shuts down a device interface and removes it
11051  *	from the kernel tables.
11052  *
11053  *	This is just a wrapper for unregister_netdevice that takes
11054  *	the rtnl semaphore.  In general you want to use this and not
11055  *	unregister_netdevice.
11056  */
11057 void unregister_netdev(struct net_device *dev)
11058 {
11059 	rtnl_lock();
11060 	unregister_netdevice(dev);
11061 	rtnl_unlock();
11062 }
11063 EXPORT_SYMBOL(unregister_netdev);
11064 
11065 /**
11066  *	__dev_change_net_namespace - move device to different nethost namespace
11067  *	@dev: device
11068  *	@net: network namespace
11069  *	@pat: If not NULL name pattern to try if the current device name
11070  *	      is already taken in the destination network namespace.
11071  *	@new_ifindex: If not zero, specifies device index in the target
11072  *	              namespace.
11073  *
11074  *	This function shuts down a device interface and moves it
11075  *	to a new network namespace. On success 0 is returned, on
11076  *	a failure a netagive errno code is returned.
11077  *
11078  *	Callers must hold the rtnl semaphore.
11079  */
11080 
11081 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11082 			       const char *pat, int new_ifindex)
11083 {
11084 	struct net *net_old = dev_net(dev);
11085 	int err, new_nsid;
11086 
11087 	ASSERT_RTNL();
11088 
11089 	/* Don't allow namespace local devices to be moved. */
11090 	err = -EINVAL;
11091 	if (dev->features & NETIF_F_NETNS_LOCAL)
11092 		goto out;
11093 
11094 	/* Ensure the device has been registrered */
11095 	if (dev->reg_state != NETREG_REGISTERED)
11096 		goto out;
11097 
11098 	/* Get out if there is nothing todo */
11099 	err = 0;
11100 	if (net_eq(net_old, net))
11101 		goto out;
11102 
11103 	/* Pick the destination device name, and ensure
11104 	 * we can use it in the destination network namespace.
11105 	 */
11106 	err = -EEXIST;
11107 	if (netdev_name_in_use(net, dev->name)) {
11108 		/* We get here if we can't use the current device name */
11109 		if (!pat)
11110 			goto out;
11111 		err = dev_get_valid_name(net, dev, pat);
11112 		if (err < 0)
11113 			goto out;
11114 	}
11115 
11116 	/* Check that new_ifindex isn't used yet. */
11117 	if (new_ifindex) {
11118 		err = dev_index_reserve(net, new_ifindex);
11119 		if (err < 0)
11120 			goto out;
11121 	} else {
11122 		/* If there is an ifindex conflict assign a new one */
11123 		err = dev_index_reserve(net, dev->ifindex);
11124 		if (err == -EBUSY)
11125 			err = dev_index_reserve(net, 0);
11126 		if (err < 0)
11127 			goto out;
11128 		new_ifindex = err;
11129 	}
11130 
11131 	/*
11132 	 * And now a mini version of register_netdevice unregister_netdevice.
11133 	 */
11134 
11135 	/* If device is running close it first. */
11136 	dev_close(dev);
11137 
11138 	/* And unlink it from device chain */
11139 	unlist_netdevice(dev, true);
11140 
11141 	synchronize_net();
11142 
11143 	/* Shutdown queueing discipline. */
11144 	dev_shutdown(dev);
11145 
11146 	/* Notify protocols, that we are about to destroy
11147 	 * this device. They should clean all the things.
11148 	 *
11149 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11150 	 * This is wanted because this way 8021q and macvlan know
11151 	 * the device is just moving and can keep their slaves up.
11152 	 */
11153 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11154 	rcu_barrier();
11155 
11156 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11157 
11158 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11159 			    new_ifindex);
11160 
11161 	/*
11162 	 *	Flush the unicast and multicast chains
11163 	 */
11164 	dev_uc_flush(dev);
11165 	dev_mc_flush(dev);
11166 
11167 	/* Send a netdev-removed uevent to the old namespace */
11168 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11169 	netdev_adjacent_del_links(dev);
11170 
11171 	/* Move per-net netdevice notifiers that are following the netdevice */
11172 	move_netdevice_notifiers_dev_net(dev, net);
11173 
11174 	/* Actually switch the network namespace */
11175 	dev_net_set(dev, net);
11176 	dev->ifindex = new_ifindex;
11177 
11178 	/* Send a netdev-add uevent to the new namespace */
11179 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11180 	netdev_adjacent_add_links(dev);
11181 
11182 	/* Fixup kobjects */
11183 	err = device_rename(&dev->dev, dev->name);
11184 	WARN_ON(err);
11185 
11186 	/* Adapt owner in case owning user namespace of target network
11187 	 * namespace is different from the original one.
11188 	 */
11189 	err = netdev_change_owner(dev, net_old, net);
11190 	WARN_ON(err);
11191 
11192 	/* Add the device back in the hashes */
11193 	list_netdevice(dev);
11194 
11195 	/* Notify protocols, that a new device appeared. */
11196 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11197 
11198 	/*
11199 	 *	Prevent userspace races by waiting until the network
11200 	 *	device is fully setup before sending notifications.
11201 	 */
11202 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11203 
11204 	synchronize_net();
11205 	err = 0;
11206 out:
11207 	return err;
11208 }
11209 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11210 
11211 static int dev_cpu_dead(unsigned int oldcpu)
11212 {
11213 	struct sk_buff **list_skb;
11214 	struct sk_buff *skb;
11215 	unsigned int cpu;
11216 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11217 
11218 	local_irq_disable();
11219 	cpu = smp_processor_id();
11220 	sd = &per_cpu(softnet_data, cpu);
11221 	oldsd = &per_cpu(softnet_data, oldcpu);
11222 
11223 	/* Find end of our completion_queue. */
11224 	list_skb = &sd->completion_queue;
11225 	while (*list_skb)
11226 		list_skb = &(*list_skb)->next;
11227 	/* Append completion queue from offline CPU. */
11228 	*list_skb = oldsd->completion_queue;
11229 	oldsd->completion_queue = NULL;
11230 
11231 	/* Append output queue from offline CPU. */
11232 	if (oldsd->output_queue) {
11233 		*sd->output_queue_tailp = oldsd->output_queue;
11234 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11235 		oldsd->output_queue = NULL;
11236 		oldsd->output_queue_tailp = &oldsd->output_queue;
11237 	}
11238 	/* Append NAPI poll list from offline CPU, with one exception :
11239 	 * process_backlog() must be called by cpu owning percpu backlog.
11240 	 * We properly handle process_queue & input_pkt_queue later.
11241 	 */
11242 	while (!list_empty(&oldsd->poll_list)) {
11243 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11244 							    struct napi_struct,
11245 							    poll_list);
11246 
11247 		list_del_init(&napi->poll_list);
11248 		if (napi->poll == process_backlog)
11249 			napi->state = 0;
11250 		else
11251 			____napi_schedule(sd, napi);
11252 	}
11253 
11254 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11255 	local_irq_enable();
11256 
11257 #ifdef CONFIG_RPS
11258 	remsd = oldsd->rps_ipi_list;
11259 	oldsd->rps_ipi_list = NULL;
11260 #endif
11261 	/* send out pending IPI's on offline CPU */
11262 	net_rps_send_ipi(remsd);
11263 
11264 	/* Process offline CPU's input_pkt_queue */
11265 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11266 		netif_rx(skb);
11267 		input_queue_head_incr(oldsd);
11268 	}
11269 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11270 		netif_rx(skb);
11271 		input_queue_head_incr(oldsd);
11272 	}
11273 
11274 	return 0;
11275 }
11276 
11277 /**
11278  *	netdev_increment_features - increment feature set by one
11279  *	@all: current feature set
11280  *	@one: new feature set
11281  *	@mask: mask feature set
11282  *
11283  *	Computes a new feature set after adding a device with feature set
11284  *	@one to the master device with current feature set @all.  Will not
11285  *	enable anything that is off in @mask. Returns the new feature set.
11286  */
11287 netdev_features_t netdev_increment_features(netdev_features_t all,
11288 	netdev_features_t one, netdev_features_t mask)
11289 {
11290 	if (mask & NETIF_F_HW_CSUM)
11291 		mask |= NETIF_F_CSUM_MASK;
11292 	mask |= NETIF_F_VLAN_CHALLENGED;
11293 
11294 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11295 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11296 
11297 	/* If one device supports hw checksumming, set for all. */
11298 	if (all & NETIF_F_HW_CSUM)
11299 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11300 
11301 	return all;
11302 }
11303 EXPORT_SYMBOL(netdev_increment_features);
11304 
11305 static struct hlist_head * __net_init netdev_create_hash(void)
11306 {
11307 	int i;
11308 	struct hlist_head *hash;
11309 
11310 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11311 	if (hash != NULL)
11312 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11313 			INIT_HLIST_HEAD(&hash[i]);
11314 
11315 	return hash;
11316 }
11317 
11318 /* Initialize per network namespace state */
11319 static int __net_init netdev_init(struct net *net)
11320 {
11321 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11322 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11323 
11324 	INIT_LIST_HEAD(&net->dev_base_head);
11325 
11326 	net->dev_name_head = netdev_create_hash();
11327 	if (net->dev_name_head == NULL)
11328 		goto err_name;
11329 
11330 	net->dev_index_head = netdev_create_hash();
11331 	if (net->dev_index_head == NULL)
11332 		goto err_idx;
11333 
11334 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11335 
11336 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11337 
11338 	return 0;
11339 
11340 err_idx:
11341 	kfree(net->dev_name_head);
11342 err_name:
11343 	return -ENOMEM;
11344 }
11345 
11346 /**
11347  *	netdev_drivername - network driver for the device
11348  *	@dev: network device
11349  *
11350  *	Determine network driver for device.
11351  */
11352 const char *netdev_drivername(const struct net_device *dev)
11353 {
11354 	const struct device_driver *driver;
11355 	const struct device *parent;
11356 	const char *empty = "";
11357 
11358 	parent = dev->dev.parent;
11359 	if (!parent)
11360 		return empty;
11361 
11362 	driver = parent->driver;
11363 	if (driver && driver->name)
11364 		return driver->name;
11365 	return empty;
11366 }
11367 
11368 static void __netdev_printk(const char *level, const struct net_device *dev,
11369 			    struct va_format *vaf)
11370 {
11371 	if (dev && dev->dev.parent) {
11372 		dev_printk_emit(level[1] - '0',
11373 				dev->dev.parent,
11374 				"%s %s %s%s: %pV",
11375 				dev_driver_string(dev->dev.parent),
11376 				dev_name(dev->dev.parent),
11377 				netdev_name(dev), netdev_reg_state(dev),
11378 				vaf);
11379 	} else if (dev) {
11380 		printk("%s%s%s: %pV",
11381 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11382 	} else {
11383 		printk("%s(NULL net_device): %pV", level, vaf);
11384 	}
11385 }
11386 
11387 void netdev_printk(const char *level, const struct net_device *dev,
11388 		   const char *format, ...)
11389 {
11390 	struct va_format vaf;
11391 	va_list args;
11392 
11393 	va_start(args, format);
11394 
11395 	vaf.fmt = format;
11396 	vaf.va = &args;
11397 
11398 	__netdev_printk(level, dev, &vaf);
11399 
11400 	va_end(args);
11401 }
11402 EXPORT_SYMBOL(netdev_printk);
11403 
11404 #define define_netdev_printk_level(func, level)			\
11405 void func(const struct net_device *dev, const char *fmt, ...)	\
11406 {								\
11407 	struct va_format vaf;					\
11408 	va_list args;						\
11409 								\
11410 	va_start(args, fmt);					\
11411 								\
11412 	vaf.fmt = fmt;						\
11413 	vaf.va = &args;						\
11414 								\
11415 	__netdev_printk(level, dev, &vaf);			\
11416 								\
11417 	va_end(args);						\
11418 }								\
11419 EXPORT_SYMBOL(func);
11420 
11421 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11422 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11423 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11424 define_netdev_printk_level(netdev_err, KERN_ERR);
11425 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11426 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11427 define_netdev_printk_level(netdev_info, KERN_INFO);
11428 
11429 static void __net_exit netdev_exit(struct net *net)
11430 {
11431 	kfree(net->dev_name_head);
11432 	kfree(net->dev_index_head);
11433 	xa_destroy(&net->dev_by_index);
11434 	if (net != &init_net)
11435 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11436 }
11437 
11438 static struct pernet_operations __net_initdata netdev_net_ops = {
11439 	.init = netdev_init,
11440 	.exit = netdev_exit,
11441 };
11442 
11443 static void __net_exit default_device_exit_net(struct net *net)
11444 {
11445 	struct net_device *dev, *aux;
11446 	/*
11447 	 * Push all migratable network devices back to the
11448 	 * initial network namespace
11449 	 */
11450 	ASSERT_RTNL();
11451 	for_each_netdev_safe(net, dev, aux) {
11452 		int err;
11453 		char fb_name[IFNAMSIZ];
11454 
11455 		/* Ignore unmoveable devices (i.e. loopback) */
11456 		if (dev->features & NETIF_F_NETNS_LOCAL)
11457 			continue;
11458 
11459 		/* Leave virtual devices for the generic cleanup */
11460 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11461 			continue;
11462 
11463 		/* Push remaining network devices to init_net */
11464 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11465 		if (netdev_name_in_use(&init_net, fb_name))
11466 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11467 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11468 		if (err) {
11469 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11470 				 __func__, dev->name, err);
11471 			BUG();
11472 		}
11473 	}
11474 }
11475 
11476 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11477 {
11478 	/* At exit all network devices most be removed from a network
11479 	 * namespace.  Do this in the reverse order of registration.
11480 	 * Do this across as many network namespaces as possible to
11481 	 * improve batching efficiency.
11482 	 */
11483 	struct net_device *dev;
11484 	struct net *net;
11485 	LIST_HEAD(dev_kill_list);
11486 
11487 	rtnl_lock();
11488 	list_for_each_entry(net, net_list, exit_list) {
11489 		default_device_exit_net(net);
11490 		cond_resched();
11491 	}
11492 
11493 	list_for_each_entry(net, net_list, exit_list) {
11494 		for_each_netdev_reverse(net, dev) {
11495 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11496 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11497 			else
11498 				unregister_netdevice_queue(dev, &dev_kill_list);
11499 		}
11500 	}
11501 	unregister_netdevice_many(&dev_kill_list);
11502 	rtnl_unlock();
11503 }
11504 
11505 static struct pernet_operations __net_initdata default_device_ops = {
11506 	.exit_batch = default_device_exit_batch,
11507 };
11508 
11509 /*
11510  *	Initialize the DEV module. At boot time this walks the device list and
11511  *	unhooks any devices that fail to initialise (normally hardware not
11512  *	present) and leaves us with a valid list of present and active devices.
11513  *
11514  */
11515 
11516 /*
11517  *       This is called single threaded during boot, so no need
11518  *       to take the rtnl semaphore.
11519  */
11520 static int __init net_dev_init(void)
11521 {
11522 	int i, rc = -ENOMEM;
11523 
11524 	BUG_ON(!dev_boot_phase);
11525 
11526 	if (dev_proc_init())
11527 		goto out;
11528 
11529 	if (netdev_kobject_init())
11530 		goto out;
11531 
11532 	INIT_LIST_HEAD(&ptype_all);
11533 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11534 		INIT_LIST_HEAD(&ptype_base[i]);
11535 
11536 	if (register_pernet_subsys(&netdev_net_ops))
11537 		goto out;
11538 
11539 	/*
11540 	 *	Initialise the packet receive queues.
11541 	 */
11542 
11543 	for_each_possible_cpu(i) {
11544 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11545 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11546 
11547 		INIT_WORK(flush, flush_backlog);
11548 
11549 		skb_queue_head_init(&sd->input_pkt_queue);
11550 		skb_queue_head_init(&sd->process_queue);
11551 #ifdef CONFIG_XFRM_OFFLOAD
11552 		skb_queue_head_init(&sd->xfrm_backlog);
11553 #endif
11554 		INIT_LIST_HEAD(&sd->poll_list);
11555 		sd->output_queue_tailp = &sd->output_queue;
11556 #ifdef CONFIG_RPS
11557 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11558 		sd->cpu = i;
11559 #endif
11560 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11561 		spin_lock_init(&sd->defer_lock);
11562 
11563 		init_gro_hash(&sd->backlog);
11564 		sd->backlog.poll = process_backlog;
11565 		sd->backlog.weight = weight_p;
11566 	}
11567 
11568 	dev_boot_phase = 0;
11569 
11570 	/* The loopback device is special if any other network devices
11571 	 * is present in a network namespace the loopback device must
11572 	 * be present. Since we now dynamically allocate and free the
11573 	 * loopback device ensure this invariant is maintained by
11574 	 * keeping the loopback device as the first device on the
11575 	 * list of network devices.  Ensuring the loopback devices
11576 	 * is the first device that appears and the last network device
11577 	 * that disappears.
11578 	 */
11579 	if (register_pernet_device(&loopback_net_ops))
11580 		goto out;
11581 
11582 	if (register_pernet_device(&default_device_ops))
11583 		goto out;
11584 
11585 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11586 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11587 
11588 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11589 				       NULL, dev_cpu_dead);
11590 	WARN_ON(rc < 0);
11591 	rc = 0;
11592 out:
11593 	return rc;
11594 }
11595 
11596 subsys_initcall(net_dev_init);
11597