1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/notifier.h> 94 #include <linux/skbuff.h> 95 #include <net/sock.h> 96 #include <linux/rtnetlink.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/stat.h> 100 #include <linux/if_bridge.h> 101 #include <linux/divert.h> 102 #include <net/dst.h> 103 #include <net/pkt_sched.h> 104 #include <net/checksum.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/kmod.h> 108 #include <linux/module.h> 109 #include <linux/kallsyms.h> 110 #include <linux/netpoll.h> 111 #include <linux/rcupdate.h> 112 #include <linux/delay.h> 113 #include <linux/wireless.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 #include <linux/ctype.h> 120 121 /* 122 * The list of packet types we will receive (as opposed to discard) 123 * and the routines to invoke. 124 * 125 * Why 16. Because with 16 the only overlap we get on a hash of the 126 * low nibble of the protocol value is RARP/SNAP/X.25. 127 * 128 * NOTE: That is no longer true with the addition of VLAN tags. Not 129 * sure which should go first, but I bet it won't make much 130 * difference if we are running VLANs. The good news is that 131 * this protocol won't be in the list unless compiled in, so 132 * the average user (w/out VLANs) will not be adversely affected. 133 * --BLG 134 * 135 * 0800 IP 136 * 8100 802.1Q VLAN 137 * 0001 802.3 138 * 0002 AX.25 139 * 0004 802.2 140 * 8035 RARP 141 * 0005 SNAP 142 * 0805 X.25 143 * 0806 ARP 144 * 8137 IPX 145 * 0009 Localtalk 146 * 86DD IPv6 147 */ 148 149 static DEFINE_SPINLOCK(ptype_lock); 150 static struct list_head ptype_base[16]; /* 16 way hashed list */ 151 static struct list_head ptype_all; /* Taps */ 152 153 #ifdef CONFIG_NET_DMA 154 static struct dma_client *net_dma_client; 155 static unsigned int net_dma_count; 156 static spinlock_t net_dma_event_lock; 157 #endif 158 159 /* 160 * The @dev_base list is protected by @dev_base_lock and the rtnl 161 * semaphore. 162 * 163 * Pure readers hold dev_base_lock for reading. 164 * 165 * Writers must hold the rtnl semaphore while they loop through the 166 * dev_base list, and hold dev_base_lock for writing when they do the 167 * actual updates. This allows pure readers to access the list even 168 * while a writer is preparing to update it. 169 * 170 * To put it another way, dev_base_lock is held for writing only to 171 * protect against pure readers; the rtnl semaphore provides the 172 * protection against other writers. 173 * 174 * See, for example usages, register_netdevice() and 175 * unregister_netdevice(), which must be called with the rtnl 176 * semaphore held. 177 */ 178 struct net_device *dev_base; 179 static struct net_device **dev_tail = &dev_base; 180 DEFINE_RWLOCK(dev_base_lock); 181 182 EXPORT_SYMBOL(dev_base); 183 EXPORT_SYMBOL(dev_base_lock); 184 185 #define NETDEV_HASHBITS 8 186 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS]; 187 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS]; 188 189 static inline struct hlist_head *dev_name_hash(const char *name) 190 { 191 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 192 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)]; 193 } 194 195 static inline struct hlist_head *dev_index_hash(int ifindex) 196 { 197 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)]; 198 } 199 200 /* 201 * Our notifier list 202 */ 203 204 static RAW_NOTIFIER_HEAD(netdev_chain); 205 206 /* 207 * Device drivers call our routines to queue packets here. We empty the 208 * queue in the local softnet handler. 209 */ 210 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL }; 211 212 #ifdef CONFIG_SYSFS 213 extern int netdev_sysfs_init(void); 214 extern int netdev_register_sysfs(struct net_device *); 215 extern void netdev_unregister_sysfs(struct net_device *); 216 #else 217 #define netdev_sysfs_init() (0) 218 #define netdev_register_sysfs(dev) (0) 219 #define netdev_unregister_sysfs(dev) do { } while(0) 220 #endif 221 222 223 /******************************************************************************* 224 225 Protocol management and registration routines 226 227 *******************************************************************************/ 228 229 /* 230 * For efficiency 231 */ 232 233 static int netdev_nit; 234 235 /* 236 * Add a protocol ID to the list. Now that the input handler is 237 * smarter we can dispense with all the messy stuff that used to be 238 * here. 239 * 240 * BEWARE!!! Protocol handlers, mangling input packets, 241 * MUST BE last in hash buckets and checking protocol handlers 242 * MUST start from promiscuous ptype_all chain in net_bh. 243 * It is true now, do not change it. 244 * Explanation follows: if protocol handler, mangling packet, will 245 * be the first on list, it is not able to sense, that packet 246 * is cloned and should be copied-on-write, so that it will 247 * change it and subsequent readers will get broken packet. 248 * --ANK (980803) 249 */ 250 251 /** 252 * dev_add_pack - add packet handler 253 * @pt: packet type declaration 254 * 255 * Add a protocol handler to the networking stack. The passed &packet_type 256 * is linked into kernel lists and may not be freed until it has been 257 * removed from the kernel lists. 258 * 259 * This call does not sleep therefore it can not 260 * guarantee all CPU's that are in middle of receiving packets 261 * will see the new packet type (until the next received packet). 262 */ 263 264 void dev_add_pack(struct packet_type *pt) 265 { 266 int hash; 267 268 spin_lock_bh(&ptype_lock); 269 if (pt->type == htons(ETH_P_ALL)) { 270 netdev_nit++; 271 list_add_rcu(&pt->list, &ptype_all); 272 } else { 273 hash = ntohs(pt->type) & 15; 274 list_add_rcu(&pt->list, &ptype_base[hash]); 275 } 276 spin_unlock_bh(&ptype_lock); 277 } 278 279 /** 280 * __dev_remove_pack - remove packet handler 281 * @pt: packet type declaration 282 * 283 * Remove a protocol handler that was previously added to the kernel 284 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 285 * from the kernel lists and can be freed or reused once this function 286 * returns. 287 * 288 * The packet type might still be in use by receivers 289 * and must not be freed until after all the CPU's have gone 290 * through a quiescent state. 291 */ 292 void __dev_remove_pack(struct packet_type *pt) 293 { 294 struct list_head *head; 295 struct packet_type *pt1; 296 297 spin_lock_bh(&ptype_lock); 298 299 if (pt->type == htons(ETH_P_ALL)) { 300 netdev_nit--; 301 head = &ptype_all; 302 } else 303 head = &ptype_base[ntohs(pt->type) & 15]; 304 305 list_for_each_entry(pt1, head, list) { 306 if (pt == pt1) { 307 list_del_rcu(&pt->list); 308 goto out; 309 } 310 } 311 312 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 313 out: 314 spin_unlock_bh(&ptype_lock); 315 } 316 /** 317 * dev_remove_pack - remove packet handler 318 * @pt: packet type declaration 319 * 320 * Remove a protocol handler that was previously added to the kernel 321 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 322 * from the kernel lists and can be freed or reused once this function 323 * returns. 324 * 325 * This call sleeps to guarantee that no CPU is looking at the packet 326 * type after return. 327 */ 328 void dev_remove_pack(struct packet_type *pt) 329 { 330 __dev_remove_pack(pt); 331 332 synchronize_net(); 333 } 334 335 /****************************************************************************** 336 337 Device Boot-time Settings Routines 338 339 *******************************************************************************/ 340 341 /* Boot time configuration table */ 342 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 343 344 /** 345 * netdev_boot_setup_add - add new setup entry 346 * @name: name of the device 347 * @map: configured settings for the device 348 * 349 * Adds new setup entry to the dev_boot_setup list. The function 350 * returns 0 on error and 1 on success. This is a generic routine to 351 * all netdevices. 352 */ 353 static int netdev_boot_setup_add(char *name, struct ifmap *map) 354 { 355 struct netdev_boot_setup *s; 356 int i; 357 358 s = dev_boot_setup; 359 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 360 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 361 memset(s[i].name, 0, sizeof(s[i].name)); 362 strcpy(s[i].name, name); 363 memcpy(&s[i].map, map, sizeof(s[i].map)); 364 break; 365 } 366 } 367 368 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 369 } 370 371 /** 372 * netdev_boot_setup_check - check boot time settings 373 * @dev: the netdevice 374 * 375 * Check boot time settings for the device. 376 * The found settings are set for the device to be used 377 * later in the device probing. 378 * Returns 0 if no settings found, 1 if they are. 379 */ 380 int netdev_boot_setup_check(struct net_device *dev) 381 { 382 struct netdev_boot_setup *s = dev_boot_setup; 383 int i; 384 385 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 386 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 387 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 388 dev->irq = s[i].map.irq; 389 dev->base_addr = s[i].map.base_addr; 390 dev->mem_start = s[i].map.mem_start; 391 dev->mem_end = s[i].map.mem_end; 392 return 1; 393 } 394 } 395 return 0; 396 } 397 398 399 /** 400 * netdev_boot_base - get address from boot time settings 401 * @prefix: prefix for network device 402 * @unit: id for network device 403 * 404 * Check boot time settings for the base address of device. 405 * The found settings are set for the device to be used 406 * later in the device probing. 407 * Returns 0 if no settings found. 408 */ 409 unsigned long netdev_boot_base(const char *prefix, int unit) 410 { 411 const struct netdev_boot_setup *s = dev_boot_setup; 412 char name[IFNAMSIZ]; 413 int i; 414 415 sprintf(name, "%s%d", prefix, unit); 416 417 /* 418 * If device already registered then return base of 1 419 * to indicate not to probe for this interface 420 */ 421 if (__dev_get_by_name(name)) 422 return 1; 423 424 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 425 if (!strcmp(name, s[i].name)) 426 return s[i].map.base_addr; 427 return 0; 428 } 429 430 /* 431 * Saves at boot time configured settings for any netdevice. 432 */ 433 int __init netdev_boot_setup(char *str) 434 { 435 int ints[5]; 436 struct ifmap map; 437 438 str = get_options(str, ARRAY_SIZE(ints), ints); 439 if (!str || !*str) 440 return 0; 441 442 /* Save settings */ 443 memset(&map, 0, sizeof(map)); 444 if (ints[0] > 0) 445 map.irq = ints[1]; 446 if (ints[0] > 1) 447 map.base_addr = ints[2]; 448 if (ints[0] > 2) 449 map.mem_start = ints[3]; 450 if (ints[0] > 3) 451 map.mem_end = ints[4]; 452 453 /* Add new entry to the list */ 454 return netdev_boot_setup_add(str, &map); 455 } 456 457 __setup("netdev=", netdev_boot_setup); 458 459 /******************************************************************************* 460 461 Device Interface Subroutines 462 463 *******************************************************************************/ 464 465 /** 466 * __dev_get_by_name - find a device by its name 467 * @name: name to find 468 * 469 * Find an interface by name. Must be called under RTNL semaphore 470 * or @dev_base_lock. If the name is found a pointer to the device 471 * is returned. If the name is not found then %NULL is returned. The 472 * reference counters are not incremented so the caller must be 473 * careful with locks. 474 */ 475 476 struct net_device *__dev_get_by_name(const char *name) 477 { 478 struct hlist_node *p; 479 480 hlist_for_each(p, dev_name_hash(name)) { 481 struct net_device *dev 482 = hlist_entry(p, struct net_device, name_hlist); 483 if (!strncmp(dev->name, name, IFNAMSIZ)) 484 return dev; 485 } 486 return NULL; 487 } 488 489 /** 490 * dev_get_by_name - find a device by its name 491 * @name: name to find 492 * 493 * Find an interface by name. This can be called from any 494 * context and does its own locking. The returned handle has 495 * the usage count incremented and the caller must use dev_put() to 496 * release it when it is no longer needed. %NULL is returned if no 497 * matching device is found. 498 */ 499 500 struct net_device *dev_get_by_name(const char *name) 501 { 502 struct net_device *dev; 503 504 read_lock(&dev_base_lock); 505 dev = __dev_get_by_name(name); 506 if (dev) 507 dev_hold(dev); 508 read_unlock(&dev_base_lock); 509 return dev; 510 } 511 512 /** 513 * __dev_get_by_index - find a device by its ifindex 514 * @ifindex: index of device 515 * 516 * Search for an interface by index. Returns %NULL if the device 517 * is not found or a pointer to the device. The device has not 518 * had its reference counter increased so the caller must be careful 519 * about locking. The caller must hold either the RTNL semaphore 520 * or @dev_base_lock. 521 */ 522 523 struct net_device *__dev_get_by_index(int ifindex) 524 { 525 struct hlist_node *p; 526 527 hlist_for_each(p, dev_index_hash(ifindex)) { 528 struct net_device *dev 529 = hlist_entry(p, struct net_device, index_hlist); 530 if (dev->ifindex == ifindex) 531 return dev; 532 } 533 return NULL; 534 } 535 536 537 /** 538 * dev_get_by_index - find a device by its ifindex 539 * @ifindex: index of device 540 * 541 * Search for an interface by index. Returns NULL if the device 542 * is not found or a pointer to the device. The device returned has 543 * had a reference added and the pointer is safe until the user calls 544 * dev_put to indicate they have finished with it. 545 */ 546 547 struct net_device *dev_get_by_index(int ifindex) 548 { 549 struct net_device *dev; 550 551 read_lock(&dev_base_lock); 552 dev = __dev_get_by_index(ifindex); 553 if (dev) 554 dev_hold(dev); 555 read_unlock(&dev_base_lock); 556 return dev; 557 } 558 559 /** 560 * dev_getbyhwaddr - find a device by its hardware address 561 * @type: media type of device 562 * @ha: hardware address 563 * 564 * Search for an interface by MAC address. Returns NULL if the device 565 * is not found or a pointer to the device. The caller must hold the 566 * rtnl semaphore. The returned device has not had its ref count increased 567 * and the caller must therefore be careful about locking 568 * 569 * BUGS: 570 * If the API was consistent this would be __dev_get_by_hwaddr 571 */ 572 573 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha) 574 { 575 struct net_device *dev; 576 577 ASSERT_RTNL(); 578 579 for (dev = dev_base; dev; dev = dev->next) 580 if (dev->type == type && 581 !memcmp(dev->dev_addr, ha, dev->addr_len)) 582 break; 583 return dev; 584 } 585 586 EXPORT_SYMBOL(dev_getbyhwaddr); 587 588 struct net_device *dev_getfirstbyhwtype(unsigned short type) 589 { 590 struct net_device *dev; 591 592 rtnl_lock(); 593 for (dev = dev_base; dev; dev = dev->next) { 594 if (dev->type == type) { 595 dev_hold(dev); 596 break; 597 } 598 } 599 rtnl_unlock(); 600 return dev; 601 } 602 603 EXPORT_SYMBOL(dev_getfirstbyhwtype); 604 605 /** 606 * dev_get_by_flags - find any device with given flags 607 * @if_flags: IFF_* values 608 * @mask: bitmask of bits in if_flags to check 609 * 610 * Search for any interface with the given flags. Returns NULL if a device 611 * is not found or a pointer to the device. The device returned has 612 * had a reference added and the pointer is safe until the user calls 613 * dev_put to indicate they have finished with it. 614 */ 615 616 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask) 617 { 618 struct net_device *dev; 619 620 read_lock(&dev_base_lock); 621 for (dev = dev_base; dev != NULL; dev = dev->next) { 622 if (((dev->flags ^ if_flags) & mask) == 0) { 623 dev_hold(dev); 624 break; 625 } 626 } 627 read_unlock(&dev_base_lock); 628 return dev; 629 } 630 631 /** 632 * dev_valid_name - check if name is okay for network device 633 * @name: name string 634 * 635 * Network device names need to be valid file names to 636 * to allow sysfs to work. We also disallow any kind of 637 * whitespace. 638 */ 639 int dev_valid_name(const char *name) 640 { 641 if (*name == '\0') 642 return 0; 643 if (!strcmp(name, ".") || !strcmp(name, "..")) 644 return 0; 645 646 while (*name) { 647 if (*name == '/' || isspace(*name)) 648 return 0; 649 name++; 650 } 651 return 1; 652 } 653 654 /** 655 * dev_alloc_name - allocate a name for a device 656 * @dev: device 657 * @name: name format string 658 * 659 * Passed a format string - eg "lt%d" it will try and find a suitable 660 * id. It scans list of devices to build up a free map, then chooses 661 * the first empty slot. The caller must hold the dev_base or rtnl lock 662 * while allocating the name and adding the device in order to avoid 663 * duplicates. 664 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 665 * Returns the number of the unit assigned or a negative errno code. 666 */ 667 668 int dev_alloc_name(struct net_device *dev, const char *name) 669 { 670 int i = 0; 671 char buf[IFNAMSIZ]; 672 const char *p; 673 const int max_netdevices = 8*PAGE_SIZE; 674 long *inuse; 675 struct net_device *d; 676 677 p = strnchr(name, IFNAMSIZ-1, '%'); 678 if (p) { 679 /* 680 * Verify the string as this thing may have come from 681 * the user. There must be either one "%d" and no other "%" 682 * characters. 683 */ 684 if (p[1] != 'd' || strchr(p + 2, '%')) 685 return -EINVAL; 686 687 /* Use one page as a bit array of possible slots */ 688 inuse = (long *) get_zeroed_page(GFP_ATOMIC); 689 if (!inuse) 690 return -ENOMEM; 691 692 for (d = dev_base; d; d = d->next) { 693 if (!sscanf(d->name, name, &i)) 694 continue; 695 if (i < 0 || i >= max_netdevices) 696 continue; 697 698 /* avoid cases where sscanf is not exact inverse of printf */ 699 snprintf(buf, sizeof(buf), name, i); 700 if (!strncmp(buf, d->name, IFNAMSIZ)) 701 set_bit(i, inuse); 702 } 703 704 i = find_first_zero_bit(inuse, max_netdevices); 705 free_page((unsigned long) inuse); 706 } 707 708 snprintf(buf, sizeof(buf), name, i); 709 if (!__dev_get_by_name(buf)) { 710 strlcpy(dev->name, buf, IFNAMSIZ); 711 return i; 712 } 713 714 /* It is possible to run out of possible slots 715 * when the name is long and there isn't enough space left 716 * for the digits, or if all bits are used. 717 */ 718 return -ENFILE; 719 } 720 721 722 /** 723 * dev_change_name - change name of a device 724 * @dev: device 725 * @newname: name (or format string) must be at least IFNAMSIZ 726 * 727 * Change name of a device, can pass format strings "eth%d". 728 * for wildcarding. 729 */ 730 int dev_change_name(struct net_device *dev, char *newname) 731 { 732 int err = 0; 733 734 ASSERT_RTNL(); 735 736 if (dev->flags & IFF_UP) 737 return -EBUSY; 738 739 if (!dev_valid_name(newname)) 740 return -EINVAL; 741 742 if (strchr(newname, '%')) { 743 err = dev_alloc_name(dev, newname); 744 if (err < 0) 745 return err; 746 strcpy(newname, dev->name); 747 } 748 else if (__dev_get_by_name(newname)) 749 return -EEXIST; 750 else 751 strlcpy(dev->name, newname, IFNAMSIZ); 752 753 err = class_device_rename(&dev->class_dev, dev->name); 754 if (!err) { 755 hlist_del(&dev->name_hlist); 756 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name)); 757 raw_notifier_call_chain(&netdev_chain, 758 NETDEV_CHANGENAME, dev); 759 } 760 761 return err; 762 } 763 764 /** 765 * netdev_features_change - device changes features 766 * @dev: device to cause notification 767 * 768 * Called to indicate a device has changed features. 769 */ 770 void netdev_features_change(struct net_device *dev) 771 { 772 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev); 773 } 774 EXPORT_SYMBOL(netdev_features_change); 775 776 /** 777 * netdev_state_change - device changes state 778 * @dev: device to cause notification 779 * 780 * Called to indicate a device has changed state. This function calls 781 * the notifier chains for netdev_chain and sends a NEWLINK message 782 * to the routing socket. 783 */ 784 void netdev_state_change(struct net_device *dev) 785 { 786 if (dev->flags & IFF_UP) { 787 raw_notifier_call_chain(&netdev_chain, 788 NETDEV_CHANGE, dev); 789 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 790 } 791 } 792 793 /** 794 * dev_load - load a network module 795 * @name: name of interface 796 * 797 * If a network interface is not present and the process has suitable 798 * privileges this function loads the module. If module loading is not 799 * available in this kernel then it becomes a nop. 800 */ 801 802 void dev_load(const char *name) 803 { 804 struct net_device *dev; 805 806 read_lock(&dev_base_lock); 807 dev = __dev_get_by_name(name); 808 read_unlock(&dev_base_lock); 809 810 if (!dev && capable(CAP_SYS_MODULE)) 811 request_module("%s", name); 812 } 813 814 static int default_rebuild_header(struct sk_buff *skb) 815 { 816 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n", 817 skb->dev ? skb->dev->name : "NULL!!!"); 818 kfree_skb(skb); 819 return 1; 820 } 821 822 823 /** 824 * dev_open - prepare an interface for use. 825 * @dev: device to open 826 * 827 * Takes a device from down to up state. The device's private open 828 * function is invoked and then the multicast lists are loaded. Finally 829 * the device is moved into the up state and a %NETDEV_UP message is 830 * sent to the netdev notifier chain. 831 * 832 * Calling this function on an active interface is a nop. On a failure 833 * a negative errno code is returned. 834 */ 835 int dev_open(struct net_device *dev) 836 { 837 int ret = 0; 838 839 /* 840 * Is it already up? 841 */ 842 843 if (dev->flags & IFF_UP) 844 return 0; 845 846 /* 847 * Is it even present? 848 */ 849 if (!netif_device_present(dev)) 850 return -ENODEV; 851 852 /* 853 * Call device private open method 854 */ 855 set_bit(__LINK_STATE_START, &dev->state); 856 if (dev->open) { 857 ret = dev->open(dev); 858 if (ret) 859 clear_bit(__LINK_STATE_START, &dev->state); 860 } 861 862 /* 863 * If it went open OK then: 864 */ 865 866 if (!ret) { 867 /* 868 * Set the flags. 869 */ 870 dev->flags |= IFF_UP; 871 872 /* 873 * Initialize multicasting status 874 */ 875 dev_mc_upload(dev); 876 877 /* 878 * Wakeup transmit queue engine 879 */ 880 dev_activate(dev); 881 882 /* 883 * ... and announce new interface. 884 */ 885 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev); 886 } 887 return ret; 888 } 889 890 /** 891 * dev_close - shutdown an interface. 892 * @dev: device to shutdown 893 * 894 * This function moves an active device into down state. A 895 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 896 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 897 * chain. 898 */ 899 int dev_close(struct net_device *dev) 900 { 901 if (!(dev->flags & IFF_UP)) 902 return 0; 903 904 /* 905 * Tell people we are going down, so that they can 906 * prepare to death, when device is still operating. 907 */ 908 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev); 909 910 dev_deactivate(dev); 911 912 clear_bit(__LINK_STATE_START, &dev->state); 913 914 /* Synchronize to scheduled poll. We cannot touch poll list, 915 * it can be even on different cpu. So just clear netif_running(), 916 * and wait when poll really will happen. Actually, the best place 917 * for this is inside dev->stop() after device stopped its irq 918 * engine, but this requires more changes in devices. */ 919 920 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 921 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) { 922 /* No hurry. */ 923 msleep(1); 924 } 925 926 /* 927 * Call the device specific close. This cannot fail. 928 * Only if device is UP 929 * 930 * We allow it to be called even after a DETACH hot-plug 931 * event. 932 */ 933 if (dev->stop) 934 dev->stop(dev); 935 936 /* 937 * Device is now down. 938 */ 939 940 dev->flags &= ~IFF_UP; 941 942 /* 943 * Tell people we are down 944 */ 945 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev); 946 947 return 0; 948 } 949 950 951 /* 952 * Device change register/unregister. These are not inline or static 953 * as we export them to the world. 954 */ 955 956 /** 957 * register_netdevice_notifier - register a network notifier block 958 * @nb: notifier 959 * 960 * Register a notifier to be called when network device events occur. 961 * The notifier passed is linked into the kernel structures and must 962 * not be reused until it has been unregistered. A negative errno code 963 * is returned on a failure. 964 * 965 * When registered all registration and up events are replayed 966 * to the new notifier to allow device to have a race free 967 * view of the network device list. 968 */ 969 970 int register_netdevice_notifier(struct notifier_block *nb) 971 { 972 struct net_device *dev; 973 int err; 974 975 rtnl_lock(); 976 err = raw_notifier_chain_register(&netdev_chain, nb); 977 if (!err) { 978 for (dev = dev_base; dev; dev = dev->next) { 979 nb->notifier_call(nb, NETDEV_REGISTER, dev); 980 981 if (dev->flags & IFF_UP) 982 nb->notifier_call(nb, NETDEV_UP, dev); 983 } 984 } 985 rtnl_unlock(); 986 return err; 987 } 988 989 /** 990 * unregister_netdevice_notifier - unregister a network notifier block 991 * @nb: notifier 992 * 993 * Unregister a notifier previously registered by 994 * register_netdevice_notifier(). The notifier is unlinked into the 995 * kernel structures and may then be reused. A negative errno code 996 * is returned on a failure. 997 */ 998 999 int unregister_netdevice_notifier(struct notifier_block *nb) 1000 { 1001 int err; 1002 1003 rtnl_lock(); 1004 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1005 rtnl_unlock(); 1006 return err; 1007 } 1008 1009 /** 1010 * call_netdevice_notifiers - call all network notifier blocks 1011 * @val: value passed unmodified to notifier function 1012 * @v: pointer passed unmodified to notifier function 1013 * 1014 * Call all network notifier blocks. Parameters and return value 1015 * are as for raw_notifier_call_chain(). 1016 */ 1017 1018 int call_netdevice_notifiers(unsigned long val, void *v) 1019 { 1020 return raw_notifier_call_chain(&netdev_chain, val, v); 1021 } 1022 1023 /* When > 0 there are consumers of rx skb time stamps */ 1024 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1025 1026 void net_enable_timestamp(void) 1027 { 1028 atomic_inc(&netstamp_needed); 1029 } 1030 1031 void net_disable_timestamp(void) 1032 { 1033 atomic_dec(&netstamp_needed); 1034 } 1035 1036 void __net_timestamp(struct sk_buff *skb) 1037 { 1038 struct timeval tv; 1039 1040 do_gettimeofday(&tv); 1041 skb_set_timestamp(skb, &tv); 1042 } 1043 EXPORT_SYMBOL(__net_timestamp); 1044 1045 static inline void net_timestamp(struct sk_buff *skb) 1046 { 1047 if (atomic_read(&netstamp_needed)) 1048 __net_timestamp(skb); 1049 else { 1050 skb->tstamp.off_sec = 0; 1051 skb->tstamp.off_usec = 0; 1052 } 1053 } 1054 1055 /* 1056 * Support routine. Sends outgoing frames to any network 1057 * taps currently in use. 1058 */ 1059 1060 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1061 { 1062 struct packet_type *ptype; 1063 1064 net_timestamp(skb); 1065 1066 rcu_read_lock(); 1067 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1068 /* Never send packets back to the socket 1069 * they originated from - MvS (miquels@drinkel.ow.org) 1070 */ 1071 if ((ptype->dev == dev || !ptype->dev) && 1072 (ptype->af_packet_priv == NULL || 1073 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1074 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1075 if (!skb2) 1076 break; 1077 1078 /* skb->nh should be correctly 1079 set by sender, so that the second statement is 1080 just protection against buggy protocols. 1081 */ 1082 skb2->mac.raw = skb2->data; 1083 1084 if (skb2->nh.raw < skb2->data || 1085 skb2->nh.raw > skb2->tail) { 1086 if (net_ratelimit()) 1087 printk(KERN_CRIT "protocol %04x is " 1088 "buggy, dev %s\n", 1089 skb2->protocol, dev->name); 1090 skb2->nh.raw = skb2->data; 1091 } 1092 1093 skb2->h.raw = skb2->nh.raw; 1094 skb2->pkt_type = PACKET_OUTGOING; 1095 ptype->func(skb2, skb->dev, ptype, skb->dev); 1096 } 1097 } 1098 rcu_read_unlock(); 1099 } 1100 1101 1102 void __netif_schedule(struct net_device *dev) 1103 { 1104 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1105 unsigned long flags; 1106 struct softnet_data *sd; 1107 1108 local_irq_save(flags); 1109 sd = &__get_cpu_var(softnet_data); 1110 dev->next_sched = sd->output_queue; 1111 sd->output_queue = dev; 1112 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1113 local_irq_restore(flags); 1114 } 1115 } 1116 EXPORT_SYMBOL(__netif_schedule); 1117 1118 void __netif_rx_schedule(struct net_device *dev) 1119 { 1120 unsigned long flags; 1121 1122 local_irq_save(flags); 1123 dev_hold(dev); 1124 list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list); 1125 if (dev->quota < 0) 1126 dev->quota += dev->weight; 1127 else 1128 dev->quota = dev->weight; 1129 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1130 local_irq_restore(flags); 1131 } 1132 EXPORT_SYMBOL(__netif_rx_schedule); 1133 1134 void dev_kfree_skb_any(struct sk_buff *skb) 1135 { 1136 if (in_irq() || irqs_disabled()) 1137 dev_kfree_skb_irq(skb); 1138 else 1139 dev_kfree_skb(skb); 1140 } 1141 EXPORT_SYMBOL(dev_kfree_skb_any); 1142 1143 1144 /* Hot-plugging. */ 1145 void netif_device_detach(struct net_device *dev) 1146 { 1147 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1148 netif_running(dev)) { 1149 netif_stop_queue(dev); 1150 } 1151 } 1152 EXPORT_SYMBOL(netif_device_detach); 1153 1154 void netif_device_attach(struct net_device *dev) 1155 { 1156 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1157 netif_running(dev)) { 1158 netif_wake_queue(dev); 1159 __netdev_watchdog_up(dev); 1160 } 1161 } 1162 EXPORT_SYMBOL(netif_device_attach); 1163 1164 1165 /* 1166 * Invalidate hardware checksum when packet is to be mangled, and 1167 * complete checksum manually on outgoing path. 1168 */ 1169 int skb_checksum_help(struct sk_buff *skb, int inward) 1170 { 1171 unsigned int csum; 1172 int ret = 0, offset = skb->h.raw - skb->data; 1173 1174 if (inward) 1175 goto out_set_summed; 1176 1177 if (unlikely(skb_shinfo(skb)->gso_size)) { 1178 /* Let GSO fix up the checksum. */ 1179 goto out_set_summed; 1180 } 1181 1182 if (skb_cloned(skb)) { 1183 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1184 if (ret) 1185 goto out; 1186 } 1187 1188 BUG_ON(offset > (int)skb->len); 1189 csum = skb_checksum(skb, offset, skb->len-offset, 0); 1190 1191 offset = skb->tail - skb->h.raw; 1192 BUG_ON(offset <= 0); 1193 BUG_ON(skb->csum + 2 > offset); 1194 1195 *(u16*)(skb->h.raw + skb->csum) = csum_fold(csum); 1196 1197 out_set_summed: 1198 skb->ip_summed = CHECKSUM_NONE; 1199 out: 1200 return ret; 1201 } 1202 1203 /** 1204 * skb_gso_segment - Perform segmentation on skb. 1205 * @skb: buffer to segment 1206 * @features: features for the output path (see dev->features) 1207 * 1208 * This function segments the given skb and returns a list of segments. 1209 * 1210 * It may return NULL if the skb requires no segmentation. This is 1211 * only possible when GSO is used for verifying header integrity. 1212 */ 1213 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1214 { 1215 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1216 struct packet_type *ptype; 1217 int type = skb->protocol; 1218 int err; 1219 1220 BUG_ON(skb_shinfo(skb)->frag_list); 1221 1222 skb->mac.raw = skb->data; 1223 skb->mac_len = skb->nh.raw - skb->data; 1224 __skb_pull(skb, skb->mac_len); 1225 1226 if (unlikely(skb->ip_summed != CHECKSUM_HW)) { 1227 if (skb_header_cloned(skb) && 1228 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1229 return ERR_PTR(err); 1230 } 1231 1232 rcu_read_lock(); 1233 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) { 1234 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1235 if (unlikely(skb->ip_summed != CHECKSUM_HW)) { 1236 err = ptype->gso_send_check(skb); 1237 segs = ERR_PTR(err); 1238 if (err || skb_gso_ok(skb, features)) 1239 break; 1240 __skb_push(skb, skb->data - skb->nh.raw); 1241 } 1242 segs = ptype->gso_segment(skb, features); 1243 break; 1244 } 1245 } 1246 rcu_read_unlock(); 1247 1248 __skb_push(skb, skb->data - skb->mac.raw); 1249 1250 return segs; 1251 } 1252 1253 EXPORT_SYMBOL(skb_gso_segment); 1254 1255 /* Take action when hardware reception checksum errors are detected. */ 1256 #ifdef CONFIG_BUG 1257 void netdev_rx_csum_fault(struct net_device *dev) 1258 { 1259 if (net_ratelimit()) { 1260 printk(KERN_ERR "%s: hw csum failure.\n", 1261 dev ? dev->name : "<unknown>"); 1262 dump_stack(); 1263 } 1264 } 1265 EXPORT_SYMBOL(netdev_rx_csum_fault); 1266 #endif 1267 1268 /* Actually, we should eliminate this check as soon as we know, that: 1269 * 1. IOMMU is present and allows to map all the memory. 1270 * 2. No high memory really exists on this machine. 1271 */ 1272 1273 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1274 { 1275 #ifdef CONFIG_HIGHMEM 1276 int i; 1277 1278 if (dev->features & NETIF_F_HIGHDMA) 1279 return 0; 1280 1281 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1282 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1283 return 1; 1284 1285 #endif 1286 return 0; 1287 } 1288 1289 struct dev_gso_cb { 1290 void (*destructor)(struct sk_buff *skb); 1291 }; 1292 1293 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1294 1295 static void dev_gso_skb_destructor(struct sk_buff *skb) 1296 { 1297 struct dev_gso_cb *cb; 1298 1299 do { 1300 struct sk_buff *nskb = skb->next; 1301 1302 skb->next = nskb->next; 1303 nskb->next = NULL; 1304 kfree_skb(nskb); 1305 } while (skb->next); 1306 1307 cb = DEV_GSO_CB(skb); 1308 if (cb->destructor) 1309 cb->destructor(skb); 1310 } 1311 1312 /** 1313 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1314 * @skb: buffer to segment 1315 * 1316 * This function segments the given skb and stores the list of segments 1317 * in skb->next. 1318 */ 1319 static int dev_gso_segment(struct sk_buff *skb) 1320 { 1321 struct net_device *dev = skb->dev; 1322 struct sk_buff *segs; 1323 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1324 NETIF_F_SG : 0); 1325 1326 segs = skb_gso_segment(skb, features); 1327 1328 /* Verifying header integrity only. */ 1329 if (!segs) 1330 return 0; 1331 1332 if (unlikely(IS_ERR(segs))) 1333 return PTR_ERR(segs); 1334 1335 skb->next = segs; 1336 DEV_GSO_CB(skb)->destructor = skb->destructor; 1337 skb->destructor = dev_gso_skb_destructor; 1338 1339 return 0; 1340 } 1341 1342 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1343 { 1344 if (likely(!skb->next)) { 1345 if (netdev_nit) 1346 dev_queue_xmit_nit(skb, dev); 1347 1348 if (netif_needs_gso(dev, skb)) { 1349 if (unlikely(dev_gso_segment(skb))) 1350 goto out_kfree_skb; 1351 if (skb->next) 1352 goto gso; 1353 } 1354 1355 return dev->hard_start_xmit(skb, dev); 1356 } 1357 1358 gso: 1359 do { 1360 struct sk_buff *nskb = skb->next; 1361 int rc; 1362 1363 skb->next = nskb->next; 1364 nskb->next = NULL; 1365 rc = dev->hard_start_xmit(nskb, dev); 1366 if (unlikely(rc)) { 1367 nskb->next = skb->next; 1368 skb->next = nskb; 1369 return rc; 1370 } 1371 if (unlikely(netif_queue_stopped(dev) && skb->next)) 1372 return NETDEV_TX_BUSY; 1373 } while (skb->next); 1374 1375 skb->destructor = DEV_GSO_CB(skb)->destructor; 1376 1377 out_kfree_skb: 1378 kfree_skb(skb); 1379 return 0; 1380 } 1381 1382 #define HARD_TX_LOCK(dev, cpu) { \ 1383 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1384 netif_tx_lock(dev); \ 1385 } \ 1386 } 1387 1388 #define HARD_TX_UNLOCK(dev) { \ 1389 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1390 netif_tx_unlock(dev); \ 1391 } \ 1392 } 1393 1394 /** 1395 * dev_queue_xmit - transmit a buffer 1396 * @skb: buffer to transmit 1397 * 1398 * Queue a buffer for transmission to a network device. The caller must 1399 * have set the device and priority and built the buffer before calling 1400 * this function. The function can be called from an interrupt. 1401 * 1402 * A negative errno code is returned on a failure. A success does not 1403 * guarantee the frame will be transmitted as it may be dropped due 1404 * to congestion or traffic shaping. 1405 * 1406 * ----------------------------------------------------------------------------------- 1407 * I notice this method can also return errors from the queue disciplines, 1408 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1409 * be positive. 1410 * 1411 * Regardless of the return value, the skb is consumed, so it is currently 1412 * difficult to retry a send to this method. (You can bump the ref count 1413 * before sending to hold a reference for retry if you are careful.) 1414 * 1415 * When calling this method, interrupts MUST be enabled. This is because 1416 * the BH enable code must have IRQs enabled so that it will not deadlock. 1417 * --BLG 1418 */ 1419 1420 int dev_queue_xmit(struct sk_buff *skb) 1421 { 1422 struct net_device *dev = skb->dev; 1423 struct Qdisc *q; 1424 int rc = -ENOMEM; 1425 1426 /* GSO will handle the following emulations directly. */ 1427 if (netif_needs_gso(dev, skb)) 1428 goto gso; 1429 1430 if (skb_shinfo(skb)->frag_list && 1431 !(dev->features & NETIF_F_FRAGLIST) && 1432 __skb_linearize(skb)) 1433 goto out_kfree_skb; 1434 1435 /* Fragmented skb is linearized if device does not support SG, 1436 * or if at least one of fragments is in highmem and device 1437 * does not support DMA from it. 1438 */ 1439 if (skb_shinfo(skb)->nr_frags && 1440 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1441 __skb_linearize(skb)) 1442 goto out_kfree_skb; 1443 1444 /* If packet is not checksummed and device does not support 1445 * checksumming for this protocol, complete checksumming here. 1446 */ 1447 if (skb->ip_summed == CHECKSUM_HW && 1448 (!(dev->features & NETIF_F_GEN_CSUM) && 1449 (!(dev->features & NETIF_F_IP_CSUM) || 1450 skb->protocol != htons(ETH_P_IP)))) 1451 if (skb_checksum_help(skb, 0)) 1452 goto out_kfree_skb; 1453 1454 gso: 1455 spin_lock_prefetch(&dev->queue_lock); 1456 1457 /* Disable soft irqs for various locks below. Also 1458 * stops preemption for RCU. 1459 */ 1460 rcu_read_lock_bh(); 1461 1462 /* Updates of qdisc are serialized by queue_lock. 1463 * The struct Qdisc which is pointed to by qdisc is now a 1464 * rcu structure - it may be accessed without acquiring 1465 * a lock (but the structure may be stale.) The freeing of the 1466 * qdisc will be deferred until it's known that there are no 1467 * more references to it. 1468 * 1469 * If the qdisc has an enqueue function, we still need to 1470 * hold the queue_lock before calling it, since queue_lock 1471 * also serializes access to the device queue. 1472 */ 1473 1474 q = rcu_dereference(dev->qdisc); 1475 #ifdef CONFIG_NET_CLS_ACT 1476 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1477 #endif 1478 if (q->enqueue) { 1479 /* Grab device queue */ 1480 spin_lock(&dev->queue_lock); 1481 1482 rc = q->enqueue(skb, q); 1483 1484 qdisc_run(dev); 1485 1486 spin_unlock(&dev->queue_lock); 1487 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1488 goto out; 1489 } 1490 1491 /* The device has no queue. Common case for software devices: 1492 loopback, all the sorts of tunnels... 1493 1494 Really, it is unlikely that netif_tx_lock protection is necessary 1495 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1496 counters.) 1497 However, it is possible, that they rely on protection 1498 made by us here. 1499 1500 Check this and shot the lock. It is not prone from deadlocks. 1501 Either shot noqueue qdisc, it is even simpler 8) 1502 */ 1503 if (dev->flags & IFF_UP) { 1504 int cpu = smp_processor_id(); /* ok because BHs are off */ 1505 1506 if (dev->xmit_lock_owner != cpu) { 1507 1508 HARD_TX_LOCK(dev, cpu); 1509 1510 if (!netif_queue_stopped(dev)) { 1511 rc = 0; 1512 if (!dev_hard_start_xmit(skb, dev)) { 1513 HARD_TX_UNLOCK(dev); 1514 goto out; 1515 } 1516 } 1517 HARD_TX_UNLOCK(dev); 1518 if (net_ratelimit()) 1519 printk(KERN_CRIT "Virtual device %s asks to " 1520 "queue packet!\n", dev->name); 1521 } else { 1522 /* Recursion is detected! It is possible, 1523 * unfortunately */ 1524 if (net_ratelimit()) 1525 printk(KERN_CRIT "Dead loop on virtual device " 1526 "%s, fix it urgently!\n", dev->name); 1527 } 1528 } 1529 1530 rc = -ENETDOWN; 1531 rcu_read_unlock_bh(); 1532 1533 out_kfree_skb: 1534 kfree_skb(skb); 1535 return rc; 1536 out: 1537 rcu_read_unlock_bh(); 1538 return rc; 1539 } 1540 1541 1542 /*======================================================================= 1543 Receiver routines 1544 =======================================================================*/ 1545 1546 int netdev_max_backlog = 1000; 1547 int netdev_budget = 300; 1548 int weight_p = 64; /* old backlog weight */ 1549 1550 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1551 1552 1553 /** 1554 * netif_rx - post buffer to the network code 1555 * @skb: buffer to post 1556 * 1557 * This function receives a packet from a device driver and queues it for 1558 * the upper (protocol) levels to process. It always succeeds. The buffer 1559 * may be dropped during processing for congestion control or by the 1560 * protocol layers. 1561 * 1562 * return values: 1563 * NET_RX_SUCCESS (no congestion) 1564 * NET_RX_CN_LOW (low congestion) 1565 * NET_RX_CN_MOD (moderate congestion) 1566 * NET_RX_CN_HIGH (high congestion) 1567 * NET_RX_DROP (packet was dropped) 1568 * 1569 */ 1570 1571 int netif_rx(struct sk_buff *skb) 1572 { 1573 struct softnet_data *queue; 1574 unsigned long flags; 1575 1576 /* if netpoll wants it, pretend we never saw it */ 1577 if (netpoll_rx(skb)) 1578 return NET_RX_DROP; 1579 1580 if (!skb->tstamp.off_sec) 1581 net_timestamp(skb); 1582 1583 /* 1584 * The code is rearranged so that the path is the most 1585 * short when CPU is congested, but is still operating. 1586 */ 1587 local_irq_save(flags); 1588 queue = &__get_cpu_var(softnet_data); 1589 1590 __get_cpu_var(netdev_rx_stat).total++; 1591 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1592 if (queue->input_pkt_queue.qlen) { 1593 enqueue: 1594 dev_hold(skb->dev); 1595 __skb_queue_tail(&queue->input_pkt_queue, skb); 1596 local_irq_restore(flags); 1597 return NET_RX_SUCCESS; 1598 } 1599 1600 netif_rx_schedule(&queue->backlog_dev); 1601 goto enqueue; 1602 } 1603 1604 __get_cpu_var(netdev_rx_stat).dropped++; 1605 local_irq_restore(flags); 1606 1607 kfree_skb(skb); 1608 return NET_RX_DROP; 1609 } 1610 1611 int netif_rx_ni(struct sk_buff *skb) 1612 { 1613 int err; 1614 1615 preempt_disable(); 1616 err = netif_rx(skb); 1617 if (local_softirq_pending()) 1618 do_softirq(); 1619 preempt_enable(); 1620 1621 return err; 1622 } 1623 1624 EXPORT_SYMBOL(netif_rx_ni); 1625 1626 static inline struct net_device *skb_bond(struct sk_buff *skb) 1627 { 1628 struct net_device *dev = skb->dev; 1629 1630 if (dev->master) { 1631 if (skb_bond_should_drop(skb)) { 1632 kfree_skb(skb); 1633 return NULL; 1634 } 1635 skb->dev = dev->master; 1636 } 1637 1638 return dev; 1639 } 1640 1641 static void net_tx_action(struct softirq_action *h) 1642 { 1643 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1644 1645 if (sd->completion_queue) { 1646 struct sk_buff *clist; 1647 1648 local_irq_disable(); 1649 clist = sd->completion_queue; 1650 sd->completion_queue = NULL; 1651 local_irq_enable(); 1652 1653 while (clist) { 1654 struct sk_buff *skb = clist; 1655 clist = clist->next; 1656 1657 BUG_TRAP(!atomic_read(&skb->users)); 1658 __kfree_skb(skb); 1659 } 1660 } 1661 1662 if (sd->output_queue) { 1663 struct net_device *head; 1664 1665 local_irq_disable(); 1666 head = sd->output_queue; 1667 sd->output_queue = NULL; 1668 local_irq_enable(); 1669 1670 while (head) { 1671 struct net_device *dev = head; 1672 head = head->next_sched; 1673 1674 smp_mb__before_clear_bit(); 1675 clear_bit(__LINK_STATE_SCHED, &dev->state); 1676 1677 if (spin_trylock(&dev->queue_lock)) { 1678 qdisc_run(dev); 1679 spin_unlock(&dev->queue_lock); 1680 } else { 1681 netif_schedule(dev); 1682 } 1683 } 1684 } 1685 } 1686 1687 static __inline__ int deliver_skb(struct sk_buff *skb, 1688 struct packet_type *pt_prev, 1689 struct net_device *orig_dev) 1690 { 1691 atomic_inc(&skb->users); 1692 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1693 } 1694 1695 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1696 int (*br_handle_frame_hook)(struct net_bridge_port *p, struct sk_buff **pskb); 1697 struct net_bridge; 1698 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1699 unsigned char *addr); 1700 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent); 1701 1702 static __inline__ int handle_bridge(struct sk_buff **pskb, 1703 struct packet_type **pt_prev, int *ret, 1704 struct net_device *orig_dev) 1705 { 1706 struct net_bridge_port *port; 1707 1708 if ((*pskb)->pkt_type == PACKET_LOOPBACK || 1709 (port = rcu_dereference((*pskb)->dev->br_port)) == NULL) 1710 return 0; 1711 1712 if (*pt_prev) { 1713 *ret = deliver_skb(*pskb, *pt_prev, orig_dev); 1714 *pt_prev = NULL; 1715 } 1716 1717 return br_handle_frame_hook(port, pskb); 1718 } 1719 #else 1720 #define handle_bridge(skb, pt_prev, ret, orig_dev) (0) 1721 #endif 1722 1723 #ifdef CONFIG_NET_CLS_ACT 1724 /* TODO: Maybe we should just force sch_ingress to be compiled in 1725 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1726 * a compare and 2 stores extra right now if we dont have it on 1727 * but have CONFIG_NET_CLS_ACT 1728 * NOTE: This doesnt stop any functionality; if you dont have 1729 * the ingress scheduler, you just cant add policies on ingress. 1730 * 1731 */ 1732 static int ing_filter(struct sk_buff *skb) 1733 { 1734 struct Qdisc *q; 1735 struct net_device *dev = skb->dev; 1736 int result = TC_ACT_OK; 1737 1738 if (dev->qdisc_ingress) { 1739 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd); 1740 if (MAX_RED_LOOP < ttl++) { 1741 printk(KERN_WARNING "Redir loop detected Dropping packet (%s->%s)\n", 1742 skb->input_dev->name, skb->dev->name); 1743 return TC_ACT_SHOT; 1744 } 1745 1746 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl); 1747 1748 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS); 1749 1750 spin_lock(&dev->ingress_lock); 1751 if ((q = dev->qdisc_ingress) != NULL) 1752 result = q->enqueue(skb, q); 1753 spin_unlock(&dev->ingress_lock); 1754 1755 } 1756 1757 return result; 1758 } 1759 #endif 1760 1761 int netif_receive_skb(struct sk_buff *skb) 1762 { 1763 struct packet_type *ptype, *pt_prev; 1764 struct net_device *orig_dev; 1765 int ret = NET_RX_DROP; 1766 unsigned short type; 1767 1768 /* if we've gotten here through NAPI, check netpoll */ 1769 if (skb->dev->poll && netpoll_rx(skb)) 1770 return NET_RX_DROP; 1771 1772 if (!skb->tstamp.off_sec) 1773 net_timestamp(skb); 1774 1775 if (!skb->input_dev) 1776 skb->input_dev = skb->dev; 1777 1778 orig_dev = skb_bond(skb); 1779 1780 if (!orig_dev) 1781 return NET_RX_DROP; 1782 1783 __get_cpu_var(netdev_rx_stat).total++; 1784 1785 skb->h.raw = skb->nh.raw = skb->data; 1786 skb->mac_len = skb->nh.raw - skb->mac.raw; 1787 1788 pt_prev = NULL; 1789 1790 rcu_read_lock(); 1791 1792 #ifdef CONFIG_NET_CLS_ACT 1793 if (skb->tc_verd & TC_NCLS) { 1794 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 1795 goto ncls; 1796 } 1797 #endif 1798 1799 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1800 if (!ptype->dev || ptype->dev == skb->dev) { 1801 if (pt_prev) 1802 ret = deliver_skb(skb, pt_prev, orig_dev); 1803 pt_prev = ptype; 1804 } 1805 } 1806 1807 #ifdef CONFIG_NET_CLS_ACT 1808 if (pt_prev) { 1809 ret = deliver_skb(skb, pt_prev, orig_dev); 1810 pt_prev = NULL; /* noone else should process this after*/ 1811 } else { 1812 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1813 } 1814 1815 ret = ing_filter(skb); 1816 1817 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) { 1818 kfree_skb(skb); 1819 goto out; 1820 } 1821 1822 skb->tc_verd = 0; 1823 ncls: 1824 #endif 1825 1826 handle_diverter(skb); 1827 1828 if (handle_bridge(&skb, &pt_prev, &ret, orig_dev)) 1829 goto out; 1830 1831 type = skb->protocol; 1832 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 1833 if (ptype->type == type && 1834 (!ptype->dev || ptype->dev == skb->dev)) { 1835 if (pt_prev) 1836 ret = deliver_skb(skb, pt_prev, orig_dev); 1837 pt_prev = ptype; 1838 } 1839 } 1840 1841 if (pt_prev) { 1842 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1843 } else { 1844 kfree_skb(skb); 1845 /* Jamal, now you will not able to escape explaining 1846 * me how you were going to use this. :-) 1847 */ 1848 ret = NET_RX_DROP; 1849 } 1850 1851 out: 1852 rcu_read_unlock(); 1853 return ret; 1854 } 1855 1856 static int process_backlog(struct net_device *backlog_dev, int *budget) 1857 { 1858 int work = 0; 1859 int quota = min(backlog_dev->quota, *budget); 1860 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1861 unsigned long start_time = jiffies; 1862 1863 backlog_dev->weight = weight_p; 1864 for (;;) { 1865 struct sk_buff *skb; 1866 struct net_device *dev; 1867 1868 local_irq_disable(); 1869 skb = __skb_dequeue(&queue->input_pkt_queue); 1870 if (!skb) 1871 goto job_done; 1872 local_irq_enable(); 1873 1874 dev = skb->dev; 1875 1876 netif_receive_skb(skb); 1877 1878 dev_put(dev); 1879 1880 work++; 1881 1882 if (work >= quota || jiffies - start_time > 1) 1883 break; 1884 1885 } 1886 1887 backlog_dev->quota -= work; 1888 *budget -= work; 1889 return -1; 1890 1891 job_done: 1892 backlog_dev->quota -= work; 1893 *budget -= work; 1894 1895 list_del(&backlog_dev->poll_list); 1896 smp_mb__before_clear_bit(); 1897 netif_poll_enable(backlog_dev); 1898 1899 local_irq_enable(); 1900 return 0; 1901 } 1902 1903 static void net_rx_action(struct softirq_action *h) 1904 { 1905 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1906 unsigned long start_time = jiffies; 1907 int budget = netdev_budget; 1908 void *have; 1909 1910 local_irq_disable(); 1911 1912 while (!list_empty(&queue->poll_list)) { 1913 struct net_device *dev; 1914 1915 if (budget <= 0 || jiffies - start_time > 1) 1916 goto softnet_break; 1917 1918 local_irq_enable(); 1919 1920 dev = list_entry(queue->poll_list.next, 1921 struct net_device, poll_list); 1922 have = netpoll_poll_lock(dev); 1923 1924 if (dev->quota <= 0 || dev->poll(dev, &budget)) { 1925 netpoll_poll_unlock(have); 1926 local_irq_disable(); 1927 list_move_tail(&dev->poll_list, &queue->poll_list); 1928 if (dev->quota < 0) 1929 dev->quota += dev->weight; 1930 else 1931 dev->quota = dev->weight; 1932 } else { 1933 netpoll_poll_unlock(have); 1934 dev_put(dev); 1935 local_irq_disable(); 1936 } 1937 } 1938 out: 1939 #ifdef CONFIG_NET_DMA 1940 /* 1941 * There may not be any more sk_buffs coming right now, so push 1942 * any pending DMA copies to hardware 1943 */ 1944 if (net_dma_client) { 1945 struct dma_chan *chan; 1946 rcu_read_lock(); 1947 list_for_each_entry_rcu(chan, &net_dma_client->channels, client_node) 1948 dma_async_memcpy_issue_pending(chan); 1949 rcu_read_unlock(); 1950 } 1951 #endif 1952 local_irq_enable(); 1953 return; 1954 1955 softnet_break: 1956 __get_cpu_var(netdev_rx_stat).time_squeeze++; 1957 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1958 goto out; 1959 } 1960 1961 static gifconf_func_t * gifconf_list [NPROTO]; 1962 1963 /** 1964 * register_gifconf - register a SIOCGIF handler 1965 * @family: Address family 1966 * @gifconf: Function handler 1967 * 1968 * Register protocol dependent address dumping routines. The handler 1969 * that is passed must not be freed or reused until it has been replaced 1970 * by another handler. 1971 */ 1972 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 1973 { 1974 if (family >= NPROTO) 1975 return -EINVAL; 1976 gifconf_list[family] = gifconf; 1977 return 0; 1978 } 1979 1980 1981 /* 1982 * Map an interface index to its name (SIOCGIFNAME) 1983 */ 1984 1985 /* 1986 * We need this ioctl for efficient implementation of the 1987 * if_indextoname() function required by the IPv6 API. Without 1988 * it, we would have to search all the interfaces to find a 1989 * match. --pb 1990 */ 1991 1992 static int dev_ifname(struct ifreq __user *arg) 1993 { 1994 struct net_device *dev; 1995 struct ifreq ifr; 1996 1997 /* 1998 * Fetch the caller's info block. 1999 */ 2000 2001 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2002 return -EFAULT; 2003 2004 read_lock(&dev_base_lock); 2005 dev = __dev_get_by_index(ifr.ifr_ifindex); 2006 if (!dev) { 2007 read_unlock(&dev_base_lock); 2008 return -ENODEV; 2009 } 2010 2011 strcpy(ifr.ifr_name, dev->name); 2012 read_unlock(&dev_base_lock); 2013 2014 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2015 return -EFAULT; 2016 return 0; 2017 } 2018 2019 /* 2020 * Perform a SIOCGIFCONF call. This structure will change 2021 * size eventually, and there is nothing I can do about it. 2022 * Thus we will need a 'compatibility mode'. 2023 */ 2024 2025 static int dev_ifconf(char __user *arg) 2026 { 2027 struct ifconf ifc; 2028 struct net_device *dev; 2029 char __user *pos; 2030 int len; 2031 int total; 2032 int i; 2033 2034 /* 2035 * Fetch the caller's info block. 2036 */ 2037 2038 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2039 return -EFAULT; 2040 2041 pos = ifc.ifc_buf; 2042 len = ifc.ifc_len; 2043 2044 /* 2045 * Loop over the interfaces, and write an info block for each. 2046 */ 2047 2048 total = 0; 2049 for (dev = dev_base; dev; dev = dev->next) { 2050 for (i = 0; i < NPROTO; i++) { 2051 if (gifconf_list[i]) { 2052 int done; 2053 if (!pos) 2054 done = gifconf_list[i](dev, NULL, 0); 2055 else 2056 done = gifconf_list[i](dev, pos + total, 2057 len - total); 2058 if (done < 0) 2059 return -EFAULT; 2060 total += done; 2061 } 2062 } 2063 } 2064 2065 /* 2066 * All done. Write the updated control block back to the caller. 2067 */ 2068 ifc.ifc_len = total; 2069 2070 /* 2071 * Both BSD and Solaris return 0 here, so we do too. 2072 */ 2073 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2074 } 2075 2076 #ifdef CONFIG_PROC_FS 2077 /* 2078 * This is invoked by the /proc filesystem handler to display a device 2079 * in detail. 2080 */ 2081 static __inline__ struct net_device *dev_get_idx(loff_t pos) 2082 { 2083 struct net_device *dev; 2084 loff_t i; 2085 2086 for (i = 0, dev = dev_base; dev && i < pos; ++i, dev = dev->next); 2087 2088 return i == pos ? dev : NULL; 2089 } 2090 2091 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2092 { 2093 read_lock(&dev_base_lock); 2094 return *pos ? dev_get_idx(*pos - 1) : SEQ_START_TOKEN; 2095 } 2096 2097 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2098 { 2099 ++*pos; 2100 return v == SEQ_START_TOKEN ? dev_base : ((struct net_device *)v)->next; 2101 } 2102 2103 void dev_seq_stop(struct seq_file *seq, void *v) 2104 { 2105 read_unlock(&dev_base_lock); 2106 } 2107 2108 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2109 { 2110 if (dev->get_stats) { 2111 struct net_device_stats *stats = dev->get_stats(dev); 2112 2113 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2114 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2115 dev->name, stats->rx_bytes, stats->rx_packets, 2116 stats->rx_errors, 2117 stats->rx_dropped + stats->rx_missed_errors, 2118 stats->rx_fifo_errors, 2119 stats->rx_length_errors + stats->rx_over_errors + 2120 stats->rx_crc_errors + stats->rx_frame_errors, 2121 stats->rx_compressed, stats->multicast, 2122 stats->tx_bytes, stats->tx_packets, 2123 stats->tx_errors, stats->tx_dropped, 2124 stats->tx_fifo_errors, stats->collisions, 2125 stats->tx_carrier_errors + 2126 stats->tx_aborted_errors + 2127 stats->tx_window_errors + 2128 stats->tx_heartbeat_errors, 2129 stats->tx_compressed); 2130 } else 2131 seq_printf(seq, "%6s: No statistics available.\n", dev->name); 2132 } 2133 2134 /* 2135 * Called from the PROCfs module. This now uses the new arbitrary sized 2136 * /proc/net interface to create /proc/net/dev 2137 */ 2138 static int dev_seq_show(struct seq_file *seq, void *v) 2139 { 2140 if (v == SEQ_START_TOKEN) 2141 seq_puts(seq, "Inter-| Receive " 2142 " | Transmit\n" 2143 " face |bytes packets errs drop fifo frame " 2144 "compressed multicast|bytes packets errs " 2145 "drop fifo colls carrier compressed\n"); 2146 else 2147 dev_seq_printf_stats(seq, v); 2148 return 0; 2149 } 2150 2151 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2152 { 2153 struct netif_rx_stats *rc = NULL; 2154 2155 while (*pos < NR_CPUS) 2156 if (cpu_online(*pos)) { 2157 rc = &per_cpu(netdev_rx_stat, *pos); 2158 break; 2159 } else 2160 ++*pos; 2161 return rc; 2162 } 2163 2164 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2165 { 2166 return softnet_get_online(pos); 2167 } 2168 2169 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2170 { 2171 ++*pos; 2172 return softnet_get_online(pos); 2173 } 2174 2175 static void softnet_seq_stop(struct seq_file *seq, void *v) 2176 { 2177 } 2178 2179 static int softnet_seq_show(struct seq_file *seq, void *v) 2180 { 2181 struct netif_rx_stats *s = v; 2182 2183 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2184 s->total, s->dropped, s->time_squeeze, 0, 2185 0, 0, 0, 0, /* was fastroute */ 2186 s->cpu_collision ); 2187 return 0; 2188 } 2189 2190 static struct seq_operations dev_seq_ops = { 2191 .start = dev_seq_start, 2192 .next = dev_seq_next, 2193 .stop = dev_seq_stop, 2194 .show = dev_seq_show, 2195 }; 2196 2197 static int dev_seq_open(struct inode *inode, struct file *file) 2198 { 2199 return seq_open(file, &dev_seq_ops); 2200 } 2201 2202 static struct file_operations dev_seq_fops = { 2203 .owner = THIS_MODULE, 2204 .open = dev_seq_open, 2205 .read = seq_read, 2206 .llseek = seq_lseek, 2207 .release = seq_release, 2208 }; 2209 2210 static struct seq_operations softnet_seq_ops = { 2211 .start = softnet_seq_start, 2212 .next = softnet_seq_next, 2213 .stop = softnet_seq_stop, 2214 .show = softnet_seq_show, 2215 }; 2216 2217 static int softnet_seq_open(struct inode *inode, struct file *file) 2218 { 2219 return seq_open(file, &softnet_seq_ops); 2220 } 2221 2222 static struct file_operations softnet_seq_fops = { 2223 .owner = THIS_MODULE, 2224 .open = softnet_seq_open, 2225 .read = seq_read, 2226 .llseek = seq_lseek, 2227 .release = seq_release, 2228 }; 2229 2230 #ifdef CONFIG_WIRELESS_EXT 2231 extern int wireless_proc_init(void); 2232 #else 2233 #define wireless_proc_init() 0 2234 #endif 2235 2236 static int __init dev_proc_init(void) 2237 { 2238 int rc = -ENOMEM; 2239 2240 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops)) 2241 goto out; 2242 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops)) 2243 goto out_dev; 2244 if (wireless_proc_init()) 2245 goto out_softnet; 2246 rc = 0; 2247 out: 2248 return rc; 2249 out_softnet: 2250 proc_net_remove("softnet_stat"); 2251 out_dev: 2252 proc_net_remove("dev"); 2253 goto out; 2254 } 2255 #else 2256 #define dev_proc_init() 0 2257 #endif /* CONFIG_PROC_FS */ 2258 2259 2260 /** 2261 * netdev_set_master - set up master/slave pair 2262 * @slave: slave device 2263 * @master: new master device 2264 * 2265 * Changes the master device of the slave. Pass %NULL to break the 2266 * bonding. The caller must hold the RTNL semaphore. On a failure 2267 * a negative errno code is returned. On success the reference counts 2268 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2269 * function returns zero. 2270 */ 2271 int netdev_set_master(struct net_device *slave, struct net_device *master) 2272 { 2273 struct net_device *old = slave->master; 2274 2275 ASSERT_RTNL(); 2276 2277 if (master) { 2278 if (old) 2279 return -EBUSY; 2280 dev_hold(master); 2281 } 2282 2283 slave->master = master; 2284 2285 synchronize_net(); 2286 2287 if (old) 2288 dev_put(old); 2289 2290 if (master) 2291 slave->flags |= IFF_SLAVE; 2292 else 2293 slave->flags &= ~IFF_SLAVE; 2294 2295 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2296 return 0; 2297 } 2298 2299 /** 2300 * dev_set_promiscuity - update promiscuity count on a device 2301 * @dev: device 2302 * @inc: modifier 2303 * 2304 * Add or remove promiscuity from a device. While the count in the device 2305 * remains above zero the interface remains promiscuous. Once it hits zero 2306 * the device reverts back to normal filtering operation. A negative inc 2307 * value is used to drop promiscuity on the device. 2308 */ 2309 void dev_set_promiscuity(struct net_device *dev, int inc) 2310 { 2311 unsigned short old_flags = dev->flags; 2312 2313 if ((dev->promiscuity += inc) == 0) 2314 dev->flags &= ~IFF_PROMISC; 2315 else 2316 dev->flags |= IFF_PROMISC; 2317 if (dev->flags != old_flags) { 2318 dev_mc_upload(dev); 2319 printk(KERN_INFO "device %s %s promiscuous mode\n", 2320 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2321 "left"); 2322 audit_log(current->audit_context, GFP_ATOMIC, 2323 AUDIT_ANOM_PROMISCUOUS, 2324 "dev=%s prom=%d old_prom=%d auid=%u", 2325 dev->name, (dev->flags & IFF_PROMISC), 2326 (old_flags & IFF_PROMISC), 2327 audit_get_loginuid(current->audit_context)); 2328 } 2329 } 2330 2331 /** 2332 * dev_set_allmulti - update allmulti count on a device 2333 * @dev: device 2334 * @inc: modifier 2335 * 2336 * Add or remove reception of all multicast frames to a device. While the 2337 * count in the device remains above zero the interface remains listening 2338 * to all interfaces. Once it hits zero the device reverts back to normal 2339 * filtering operation. A negative @inc value is used to drop the counter 2340 * when releasing a resource needing all multicasts. 2341 */ 2342 2343 void dev_set_allmulti(struct net_device *dev, int inc) 2344 { 2345 unsigned short old_flags = dev->flags; 2346 2347 dev->flags |= IFF_ALLMULTI; 2348 if ((dev->allmulti += inc) == 0) 2349 dev->flags &= ~IFF_ALLMULTI; 2350 if (dev->flags ^ old_flags) 2351 dev_mc_upload(dev); 2352 } 2353 2354 unsigned dev_get_flags(const struct net_device *dev) 2355 { 2356 unsigned flags; 2357 2358 flags = (dev->flags & ~(IFF_PROMISC | 2359 IFF_ALLMULTI | 2360 IFF_RUNNING | 2361 IFF_LOWER_UP | 2362 IFF_DORMANT)) | 2363 (dev->gflags & (IFF_PROMISC | 2364 IFF_ALLMULTI)); 2365 2366 if (netif_running(dev)) { 2367 if (netif_oper_up(dev)) 2368 flags |= IFF_RUNNING; 2369 if (netif_carrier_ok(dev)) 2370 flags |= IFF_LOWER_UP; 2371 if (netif_dormant(dev)) 2372 flags |= IFF_DORMANT; 2373 } 2374 2375 return flags; 2376 } 2377 2378 int dev_change_flags(struct net_device *dev, unsigned flags) 2379 { 2380 int ret; 2381 int old_flags = dev->flags; 2382 2383 /* 2384 * Set the flags on our device. 2385 */ 2386 2387 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 2388 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 2389 IFF_AUTOMEDIA)) | 2390 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 2391 IFF_ALLMULTI)); 2392 2393 /* 2394 * Load in the correct multicast list now the flags have changed. 2395 */ 2396 2397 dev_mc_upload(dev); 2398 2399 /* 2400 * Have we downed the interface. We handle IFF_UP ourselves 2401 * according to user attempts to set it, rather than blindly 2402 * setting it. 2403 */ 2404 2405 ret = 0; 2406 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 2407 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 2408 2409 if (!ret) 2410 dev_mc_upload(dev); 2411 } 2412 2413 if (dev->flags & IFF_UP && 2414 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 2415 IFF_VOLATILE))) 2416 raw_notifier_call_chain(&netdev_chain, 2417 NETDEV_CHANGE, dev); 2418 2419 if ((flags ^ dev->gflags) & IFF_PROMISC) { 2420 int inc = (flags & IFF_PROMISC) ? +1 : -1; 2421 dev->gflags ^= IFF_PROMISC; 2422 dev_set_promiscuity(dev, inc); 2423 } 2424 2425 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 2426 is important. Some (broken) drivers set IFF_PROMISC, when 2427 IFF_ALLMULTI is requested not asking us and not reporting. 2428 */ 2429 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 2430 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 2431 dev->gflags ^= IFF_ALLMULTI; 2432 dev_set_allmulti(dev, inc); 2433 } 2434 2435 if (old_flags ^ dev->flags) 2436 rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags); 2437 2438 return ret; 2439 } 2440 2441 int dev_set_mtu(struct net_device *dev, int new_mtu) 2442 { 2443 int err; 2444 2445 if (new_mtu == dev->mtu) 2446 return 0; 2447 2448 /* MTU must be positive. */ 2449 if (new_mtu < 0) 2450 return -EINVAL; 2451 2452 if (!netif_device_present(dev)) 2453 return -ENODEV; 2454 2455 err = 0; 2456 if (dev->change_mtu) 2457 err = dev->change_mtu(dev, new_mtu); 2458 else 2459 dev->mtu = new_mtu; 2460 if (!err && dev->flags & IFF_UP) 2461 raw_notifier_call_chain(&netdev_chain, 2462 NETDEV_CHANGEMTU, dev); 2463 return err; 2464 } 2465 2466 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 2467 { 2468 int err; 2469 2470 if (!dev->set_mac_address) 2471 return -EOPNOTSUPP; 2472 if (sa->sa_family != dev->type) 2473 return -EINVAL; 2474 if (!netif_device_present(dev)) 2475 return -ENODEV; 2476 err = dev->set_mac_address(dev, sa); 2477 if (!err) 2478 raw_notifier_call_chain(&netdev_chain, 2479 NETDEV_CHANGEADDR, dev); 2480 return err; 2481 } 2482 2483 /* 2484 * Perform the SIOCxIFxxx calls. 2485 */ 2486 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd) 2487 { 2488 int err; 2489 struct net_device *dev = __dev_get_by_name(ifr->ifr_name); 2490 2491 if (!dev) 2492 return -ENODEV; 2493 2494 switch (cmd) { 2495 case SIOCGIFFLAGS: /* Get interface flags */ 2496 ifr->ifr_flags = dev_get_flags(dev); 2497 return 0; 2498 2499 case SIOCSIFFLAGS: /* Set interface flags */ 2500 return dev_change_flags(dev, ifr->ifr_flags); 2501 2502 case SIOCGIFMETRIC: /* Get the metric on the interface 2503 (currently unused) */ 2504 ifr->ifr_metric = 0; 2505 return 0; 2506 2507 case SIOCSIFMETRIC: /* Set the metric on the interface 2508 (currently unused) */ 2509 return -EOPNOTSUPP; 2510 2511 case SIOCGIFMTU: /* Get the MTU of a device */ 2512 ifr->ifr_mtu = dev->mtu; 2513 return 0; 2514 2515 case SIOCSIFMTU: /* Set the MTU of a device */ 2516 return dev_set_mtu(dev, ifr->ifr_mtu); 2517 2518 case SIOCGIFHWADDR: 2519 if (!dev->addr_len) 2520 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 2521 else 2522 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 2523 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2524 ifr->ifr_hwaddr.sa_family = dev->type; 2525 return 0; 2526 2527 case SIOCSIFHWADDR: 2528 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 2529 2530 case SIOCSIFHWBROADCAST: 2531 if (ifr->ifr_hwaddr.sa_family != dev->type) 2532 return -EINVAL; 2533 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 2534 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2535 raw_notifier_call_chain(&netdev_chain, 2536 NETDEV_CHANGEADDR, dev); 2537 return 0; 2538 2539 case SIOCGIFMAP: 2540 ifr->ifr_map.mem_start = dev->mem_start; 2541 ifr->ifr_map.mem_end = dev->mem_end; 2542 ifr->ifr_map.base_addr = dev->base_addr; 2543 ifr->ifr_map.irq = dev->irq; 2544 ifr->ifr_map.dma = dev->dma; 2545 ifr->ifr_map.port = dev->if_port; 2546 return 0; 2547 2548 case SIOCSIFMAP: 2549 if (dev->set_config) { 2550 if (!netif_device_present(dev)) 2551 return -ENODEV; 2552 return dev->set_config(dev, &ifr->ifr_map); 2553 } 2554 return -EOPNOTSUPP; 2555 2556 case SIOCADDMULTI: 2557 if (!dev->set_multicast_list || 2558 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2559 return -EINVAL; 2560 if (!netif_device_present(dev)) 2561 return -ENODEV; 2562 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 2563 dev->addr_len, 1); 2564 2565 case SIOCDELMULTI: 2566 if (!dev->set_multicast_list || 2567 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2568 return -EINVAL; 2569 if (!netif_device_present(dev)) 2570 return -ENODEV; 2571 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 2572 dev->addr_len, 1); 2573 2574 case SIOCGIFINDEX: 2575 ifr->ifr_ifindex = dev->ifindex; 2576 return 0; 2577 2578 case SIOCGIFTXQLEN: 2579 ifr->ifr_qlen = dev->tx_queue_len; 2580 return 0; 2581 2582 case SIOCSIFTXQLEN: 2583 if (ifr->ifr_qlen < 0) 2584 return -EINVAL; 2585 dev->tx_queue_len = ifr->ifr_qlen; 2586 return 0; 2587 2588 case SIOCSIFNAME: 2589 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 2590 return dev_change_name(dev, ifr->ifr_newname); 2591 2592 /* 2593 * Unknown or private ioctl 2594 */ 2595 2596 default: 2597 if ((cmd >= SIOCDEVPRIVATE && 2598 cmd <= SIOCDEVPRIVATE + 15) || 2599 cmd == SIOCBONDENSLAVE || 2600 cmd == SIOCBONDRELEASE || 2601 cmd == SIOCBONDSETHWADDR || 2602 cmd == SIOCBONDSLAVEINFOQUERY || 2603 cmd == SIOCBONDINFOQUERY || 2604 cmd == SIOCBONDCHANGEACTIVE || 2605 cmd == SIOCGMIIPHY || 2606 cmd == SIOCGMIIREG || 2607 cmd == SIOCSMIIREG || 2608 cmd == SIOCBRADDIF || 2609 cmd == SIOCBRDELIF || 2610 cmd == SIOCWANDEV) { 2611 err = -EOPNOTSUPP; 2612 if (dev->do_ioctl) { 2613 if (netif_device_present(dev)) 2614 err = dev->do_ioctl(dev, ifr, 2615 cmd); 2616 else 2617 err = -ENODEV; 2618 } 2619 } else 2620 err = -EINVAL; 2621 2622 } 2623 return err; 2624 } 2625 2626 /* 2627 * This function handles all "interface"-type I/O control requests. The actual 2628 * 'doing' part of this is dev_ifsioc above. 2629 */ 2630 2631 /** 2632 * dev_ioctl - network device ioctl 2633 * @cmd: command to issue 2634 * @arg: pointer to a struct ifreq in user space 2635 * 2636 * Issue ioctl functions to devices. This is normally called by the 2637 * user space syscall interfaces but can sometimes be useful for 2638 * other purposes. The return value is the return from the syscall if 2639 * positive or a negative errno code on error. 2640 */ 2641 2642 int dev_ioctl(unsigned int cmd, void __user *arg) 2643 { 2644 struct ifreq ifr; 2645 int ret; 2646 char *colon; 2647 2648 /* One special case: SIOCGIFCONF takes ifconf argument 2649 and requires shared lock, because it sleeps writing 2650 to user space. 2651 */ 2652 2653 if (cmd == SIOCGIFCONF) { 2654 rtnl_lock(); 2655 ret = dev_ifconf((char __user *) arg); 2656 rtnl_unlock(); 2657 return ret; 2658 } 2659 if (cmd == SIOCGIFNAME) 2660 return dev_ifname((struct ifreq __user *)arg); 2661 2662 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2663 return -EFAULT; 2664 2665 ifr.ifr_name[IFNAMSIZ-1] = 0; 2666 2667 colon = strchr(ifr.ifr_name, ':'); 2668 if (colon) 2669 *colon = 0; 2670 2671 /* 2672 * See which interface the caller is talking about. 2673 */ 2674 2675 switch (cmd) { 2676 /* 2677 * These ioctl calls: 2678 * - can be done by all. 2679 * - atomic and do not require locking. 2680 * - return a value 2681 */ 2682 case SIOCGIFFLAGS: 2683 case SIOCGIFMETRIC: 2684 case SIOCGIFMTU: 2685 case SIOCGIFHWADDR: 2686 case SIOCGIFSLAVE: 2687 case SIOCGIFMAP: 2688 case SIOCGIFINDEX: 2689 case SIOCGIFTXQLEN: 2690 dev_load(ifr.ifr_name); 2691 read_lock(&dev_base_lock); 2692 ret = dev_ifsioc(&ifr, cmd); 2693 read_unlock(&dev_base_lock); 2694 if (!ret) { 2695 if (colon) 2696 *colon = ':'; 2697 if (copy_to_user(arg, &ifr, 2698 sizeof(struct ifreq))) 2699 ret = -EFAULT; 2700 } 2701 return ret; 2702 2703 case SIOCETHTOOL: 2704 dev_load(ifr.ifr_name); 2705 rtnl_lock(); 2706 ret = dev_ethtool(&ifr); 2707 rtnl_unlock(); 2708 if (!ret) { 2709 if (colon) 2710 *colon = ':'; 2711 if (copy_to_user(arg, &ifr, 2712 sizeof(struct ifreq))) 2713 ret = -EFAULT; 2714 } 2715 return ret; 2716 2717 /* 2718 * These ioctl calls: 2719 * - require superuser power. 2720 * - require strict serialization. 2721 * - return a value 2722 */ 2723 case SIOCGMIIPHY: 2724 case SIOCGMIIREG: 2725 case SIOCSIFNAME: 2726 if (!capable(CAP_NET_ADMIN)) 2727 return -EPERM; 2728 dev_load(ifr.ifr_name); 2729 rtnl_lock(); 2730 ret = dev_ifsioc(&ifr, cmd); 2731 rtnl_unlock(); 2732 if (!ret) { 2733 if (colon) 2734 *colon = ':'; 2735 if (copy_to_user(arg, &ifr, 2736 sizeof(struct ifreq))) 2737 ret = -EFAULT; 2738 } 2739 return ret; 2740 2741 /* 2742 * These ioctl calls: 2743 * - require superuser power. 2744 * - require strict serialization. 2745 * - do not return a value 2746 */ 2747 case SIOCSIFFLAGS: 2748 case SIOCSIFMETRIC: 2749 case SIOCSIFMTU: 2750 case SIOCSIFMAP: 2751 case SIOCSIFHWADDR: 2752 case SIOCSIFSLAVE: 2753 case SIOCADDMULTI: 2754 case SIOCDELMULTI: 2755 case SIOCSIFHWBROADCAST: 2756 case SIOCSIFTXQLEN: 2757 case SIOCSMIIREG: 2758 case SIOCBONDENSLAVE: 2759 case SIOCBONDRELEASE: 2760 case SIOCBONDSETHWADDR: 2761 case SIOCBONDCHANGEACTIVE: 2762 case SIOCBRADDIF: 2763 case SIOCBRDELIF: 2764 if (!capable(CAP_NET_ADMIN)) 2765 return -EPERM; 2766 /* fall through */ 2767 case SIOCBONDSLAVEINFOQUERY: 2768 case SIOCBONDINFOQUERY: 2769 dev_load(ifr.ifr_name); 2770 rtnl_lock(); 2771 ret = dev_ifsioc(&ifr, cmd); 2772 rtnl_unlock(); 2773 return ret; 2774 2775 case SIOCGIFMEM: 2776 /* Get the per device memory space. We can add this but 2777 * currently do not support it */ 2778 case SIOCSIFMEM: 2779 /* Set the per device memory buffer space. 2780 * Not applicable in our case */ 2781 case SIOCSIFLINK: 2782 return -EINVAL; 2783 2784 /* 2785 * Unknown or private ioctl. 2786 */ 2787 default: 2788 if (cmd == SIOCWANDEV || 2789 (cmd >= SIOCDEVPRIVATE && 2790 cmd <= SIOCDEVPRIVATE + 15)) { 2791 dev_load(ifr.ifr_name); 2792 rtnl_lock(); 2793 ret = dev_ifsioc(&ifr, cmd); 2794 rtnl_unlock(); 2795 if (!ret && copy_to_user(arg, &ifr, 2796 sizeof(struct ifreq))) 2797 ret = -EFAULT; 2798 return ret; 2799 } 2800 #ifdef CONFIG_WIRELESS_EXT 2801 /* Take care of Wireless Extensions */ 2802 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 2803 /* If command is `set a parameter', or 2804 * `get the encoding parameters', check if 2805 * the user has the right to do it */ 2806 if (IW_IS_SET(cmd) || cmd == SIOCGIWENCODE 2807 || cmd == SIOCGIWENCODEEXT) { 2808 if (!capable(CAP_NET_ADMIN)) 2809 return -EPERM; 2810 } 2811 dev_load(ifr.ifr_name); 2812 rtnl_lock(); 2813 /* Follow me in net/core/wireless.c */ 2814 ret = wireless_process_ioctl(&ifr, cmd); 2815 rtnl_unlock(); 2816 if (IW_IS_GET(cmd) && 2817 copy_to_user(arg, &ifr, 2818 sizeof(struct ifreq))) 2819 ret = -EFAULT; 2820 return ret; 2821 } 2822 #endif /* CONFIG_WIRELESS_EXT */ 2823 return -EINVAL; 2824 } 2825 } 2826 2827 2828 /** 2829 * dev_new_index - allocate an ifindex 2830 * 2831 * Returns a suitable unique value for a new device interface 2832 * number. The caller must hold the rtnl semaphore or the 2833 * dev_base_lock to be sure it remains unique. 2834 */ 2835 static int dev_new_index(void) 2836 { 2837 static int ifindex; 2838 for (;;) { 2839 if (++ifindex <= 0) 2840 ifindex = 1; 2841 if (!__dev_get_by_index(ifindex)) 2842 return ifindex; 2843 } 2844 } 2845 2846 static int dev_boot_phase = 1; 2847 2848 /* Delayed registration/unregisteration */ 2849 static DEFINE_SPINLOCK(net_todo_list_lock); 2850 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 2851 2852 static inline void net_set_todo(struct net_device *dev) 2853 { 2854 spin_lock(&net_todo_list_lock); 2855 list_add_tail(&dev->todo_list, &net_todo_list); 2856 spin_unlock(&net_todo_list_lock); 2857 } 2858 2859 /** 2860 * register_netdevice - register a network device 2861 * @dev: device to register 2862 * 2863 * Take a completed network device structure and add it to the kernel 2864 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 2865 * chain. 0 is returned on success. A negative errno code is returned 2866 * on a failure to set up the device, or if the name is a duplicate. 2867 * 2868 * Callers must hold the rtnl semaphore. You may want 2869 * register_netdev() instead of this. 2870 * 2871 * BUGS: 2872 * The locking appears insufficient to guarantee two parallel registers 2873 * will not get the same name. 2874 */ 2875 2876 int register_netdevice(struct net_device *dev) 2877 { 2878 struct hlist_head *head; 2879 struct hlist_node *p; 2880 int ret; 2881 2882 BUG_ON(dev_boot_phase); 2883 ASSERT_RTNL(); 2884 2885 might_sleep(); 2886 2887 /* When net_device's are persistent, this will be fatal. */ 2888 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 2889 2890 spin_lock_init(&dev->queue_lock); 2891 spin_lock_init(&dev->_xmit_lock); 2892 dev->xmit_lock_owner = -1; 2893 #ifdef CONFIG_NET_CLS_ACT 2894 spin_lock_init(&dev->ingress_lock); 2895 #endif 2896 2897 ret = alloc_divert_blk(dev); 2898 if (ret) 2899 goto out; 2900 2901 dev->iflink = -1; 2902 2903 /* Init, if this function is available */ 2904 if (dev->init) { 2905 ret = dev->init(dev); 2906 if (ret) { 2907 if (ret > 0) 2908 ret = -EIO; 2909 goto out_err; 2910 } 2911 } 2912 2913 if (!dev_valid_name(dev->name)) { 2914 ret = -EINVAL; 2915 goto out_err; 2916 } 2917 2918 dev->ifindex = dev_new_index(); 2919 if (dev->iflink == -1) 2920 dev->iflink = dev->ifindex; 2921 2922 /* Check for existence of name */ 2923 head = dev_name_hash(dev->name); 2924 hlist_for_each(p, head) { 2925 struct net_device *d 2926 = hlist_entry(p, struct net_device, name_hlist); 2927 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 2928 ret = -EEXIST; 2929 goto out_err; 2930 } 2931 } 2932 2933 /* Fix illegal SG+CSUM combinations. */ 2934 if ((dev->features & NETIF_F_SG) && 2935 !(dev->features & NETIF_F_ALL_CSUM)) { 2936 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 2937 dev->name); 2938 dev->features &= ~NETIF_F_SG; 2939 } 2940 2941 /* TSO requires that SG is present as well. */ 2942 if ((dev->features & NETIF_F_TSO) && 2943 !(dev->features & NETIF_F_SG)) { 2944 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 2945 dev->name); 2946 dev->features &= ~NETIF_F_TSO; 2947 } 2948 if (dev->features & NETIF_F_UFO) { 2949 if (!(dev->features & NETIF_F_HW_CSUM)) { 2950 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 2951 "NETIF_F_HW_CSUM feature.\n", 2952 dev->name); 2953 dev->features &= ~NETIF_F_UFO; 2954 } 2955 if (!(dev->features & NETIF_F_SG)) { 2956 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 2957 "NETIF_F_SG feature.\n", 2958 dev->name); 2959 dev->features &= ~NETIF_F_UFO; 2960 } 2961 } 2962 2963 /* 2964 * nil rebuild_header routine, 2965 * that should be never called and used as just bug trap. 2966 */ 2967 2968 if (!dev->rebuild_header) 2969 dev->rebuild_header = default_rebuild_header; 2970 2971 ret = netdev_register_sysfs(dev); 2972 if (ret) 2973 goto out_err; 2974 dev->reg_state = NETREG_REGISTERED; 2975 2976 /* 2977 * Default initial state at registry is that the 2978 * device is present. 2979 */ 2980 2981 set_bit(__LINK_STATE_PRESENT, &dev->state); 2982 2983 dev->next = NULL; 2984 dev_init_scheduler(dev); 2985 write_lock_bh(&dev_base_lock); 2986 *dev_tail = dev; 2987 dev_tail = &dev->next; 2988 hlist_add_head(&dev->name_hlist, head); 2989 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex)); 2990 dev_hold(dev); 2991 write_unlock_bh(&dev_base_lock); 2992 2993 /* Notify protocols, that a new device appeared. */ 2994 raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev); 2995 2996 ret = 0; 2997 2998 out: 2999 return ret; 3000 out_err: 3001 free_divert_blk(dev); 3002 goto out; 3003 } 3004 3005 /** 3006 * register_netdev - register a network device 3007 * @dev: device to register 3008 * 3009 * Take a completed network device structure and add it to the kernel 3010 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3011 * chain. 0 is returned on success. A negative errno code is returned 3012 * on a failure to set up the device, or if the name is a duplicate. 3013 * 3014 * This is a wrapper around register_netdev that takes the rtnl semaphore 3015 * and expands the device name if you passed a format string to 3016 * alloc_netdev. 3017 */ 3018 int register_netdev(struct net_device *dev) 3019 { 3020 int err; 3021 3022 rtnl_lock(); 3023 3024 /* 3025 * If the name is a format string the caller wants us to do a 3026 * name allocation. 3027 */ 3028 if (strchr(dev->name, '%')) { 3029 err = dev_alloc_name(dev, dev->name); 3030 if (err < 0) 3031 goto out; 3032 } 3033 3034 /* 3035 * Back compatibility hook. Kill this one in 2.5 3036 */ 3037 if (dev->name[0] == 0 || dev->name[0] == ' ') { 3038 err = dev_alloc_name(dev, "eth%d"); 3039 if (err < 0) 3040 goto out; 3041 } 3042 3043 err = register_netdevice(dev); 3044 out: 3045 rtnl_unlock(); 3046 return err; 3047 } 3048 EXPORT_SYMBOL(register_netdev); 3049 3050 /* 3051 * netdev_wait_allrefs - wait until all references are gone. 3052 * 3053 * This is called when unregistering network devices. 3054 * 3055 * Any protocol or device that holds a reference should register 3056 * for netdevice notification, and cleanup and put back the 3057 * reference if they receive an UNREGISTER event. 3058 * We can get stuck here if buggy protocols don't correctly 3059 * call dev_put. 3060 */ 3061 static void netdev_wait_allrefs(struct net_device *dev) 3062 { 3063 unsigned long rebroadcast_time, warning_time; 3064 3065 rebroadcast_time = warning_time = jiffies; 3066 while (atomic_read(&dev->refcnt) != 0) { 3067 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3068 rtnl_lock(); 3069 3070 /* Rebroadcast unregister notification */ 3071 raw_notifier_call_chain(&netdev_chain, 3072 NETDEV_UNREGISTER, dev); 3073 3074 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3075 &dev->state)) { 3076 /* We must not have linkwatch events 3077 * pending on unregister. If this 3078 * happens, we simply run the queue 3079 * unscheduled, resulting in a noop 3080 * for this device. 3081 */ 3082 linkwatch_run_queue(); 3083 } 3084 3085 __rtnl_unlock(); 3086 3087 rebroadcast_time = jiffies; 3088 } 3089 3090 msleep(250); 3091 3092 if (time_after(jiffies, warning_time + 10 * HZ)) { 3093 printk(KERN_EMERG "unregister_netdevice: " 3094 "waiting for %s to become free. Usage " 3095 "count = %d\n", 3096 dev->name, atomic_read(&dev->refcnt)); 3097 warning_time = jiffies; 3098 } 3099 } 3100 } 3101 3102 /* The sequence is: 3103 * 3104 * rtnl_lock(); 3105 * ... 3106 * register_netdevice(x1); 3107 * register_netdevice(x2); 3108 * ... 3109 * unregister_netdevice(y1); 3110 * unregister_netdevice(y2); 3111 * ... 3112 * rtnl_unlock(); 3113 * free_netdev(y1); 3114 * free_netdev(y2); 3115 * 3116 * We are invoked by rtnl_unlock() after it drops the semaphore. 3117 * This allows us to deal with problems: 3118 * 1) We can delete sysfs objects which invoke hotplug 3119 * without deadlocking with linkwatch via keventd. 3120 * 2) Since we run with the RTNL semaphore not held, we can sleep 3121 * safely in order to wait for the netdev refcnt to drop to zero. 3122 */ 3123 static DEFINE_MUTEX(net_todo_run_mutex); 3124 void netdev_run_todo(void) 3125 { 3126 struct list_head list; 3127 3128 /* Need to guard against multiple cpu's getting out of order. */ 3129 mutex_lock(&net_todo_run_mutex); 3130 3131 /* Not safe to do outside the semaphore. We must not return 3132 * until all unregister events invoked by the local processor 3133 * have been completed (either by this todo run, or one on 3134 * another cpu). 3135 */ 3136 if (list_empty(&net_todo_list)) 3137 goto out; 3138 3139 /* Snapshot list, allow later requests */ 3140 spin_lock(&net_todo_list_lock); 3141 list_replace_init(&net_todo_list, &list); 3142 spin_unlock(&net_todo_list_lock); 3143 3144 while (!list_empty(&list)) { 3145 struct net_device *dev 3146 = list_entry(list.next, struct net_device, todo_list); 3147 list_del(&dev->todo_list); 3148 3149 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3150 printk(KERN_ERR "network todo '%s' but state %d\n", 3151 dev->name, dev->reg_state); 3152 dump_stack(); 3153 continue; 3154 } 3155 3156 netdev_unregister_sysfs(dev); 3157 dev->reg_state = NETREG_UNREGISTERED; 3158 3159 netdev_wait_allrefs(dev); 3160 3161 /* paranoia */ 3162 BUG_ON(atomic_read(&dev->refcnt)); 3163 BUG_TRAP(!dev->ip_ptr); 3164 BUG_TRAP(!dev->ip6_ptr); 3165 BUG_TRAP(!dev->dn_ptr); 3166 3167 /* It must be the very last action, 3168 * after this 'dev' may point to freed up memory. 3169 */ 3170 if (dev->destructor) 3171 dev->destructor(dev); 3172 } 3173 3174 out: 3175 mutex_unlock(&net_todo_run_mutex); 3176 } 3177 3178 /** 3179 * alloc_netdev - allocate network device 3180 * @sizeof_priv: size of private data to allocate space for 3181 * @name: device name format string 3182 * @setup: callback to initialize device 3183 * 3184 * Allocates a struct net_device with private data area for driver use 3185 * and performs basic initialization. 3186 */ 3187 struct net_device *alloc_netdev(int sizeof_priv, const char *name, 3188 void (*setup)(struct net_device *)) 3189 { 3190 void *p; 3191 struct net_device *dev; 3192 int alloc_size; 3193 3194 /* ensure 32-byte alignment of both the device and private area */ 3195 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 3196 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 3197 3198 p = kzalloc(alloc_size, GFP_KERNEL); 3199 if (!p) { 3200 printk(KERN_ERR "alloc_dev: Unable to allocate device.\n"); 3201 return NULL; 3202 } 3203 3204 dev = (struct net_device *) 3205 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 3206 dev->padded = (char *)dev - (char *)p; 3207 3208 if (sizeof_priv) 3209 dev->priv = netdev_priv(dev); 3210 3211 setup(dev); 3212 strcpy(dev->name, name); 3213 return dev; 3214 } 3215 EXPORT_SYMBOL(alloc_netdev); 3216 3217 /** 3218 * free_netdev - free network device 3219 * @dev: device 3220 * 3221 * This function does the last stage of destroying an allocated device 3222 * interface. The reference to the device object is released. 3223 * If this is the last reference then it will be freed. 3224 */ 3225 void free_netdev(struct net_device *dev) 3226 { 3227 #ifdef CONFIG_SYSFS 3228 /* Compatibility with error handling in drivers */ 3229 if (dev->reg_state == NETREG_UNINITIALIZED) { 3230 kfree((char *)dev - dev->padded); 3231 return; 3232 } 3233 3234 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3235 dev->reg_state = NETREG_RELEASED; 3236 3237 /* will free via class release */ 3238 class_device_put(&dev->class_dev); 3239 #else 3240 kfree((char *)dev - dev->padded); 3241 #endif 3242 } 3243 3244 /* Synchronize with packet receive processing. */ 3245 void synchronize_net(void) 3246 { 3247 might_sleep(); 3248 synchronize_rcu(); 3249 } 3250 3251 /** 3252 * unregister_netdevice - remove device from the kernel 3253 * @dev: device 3254 * 3255 * This function shuts down a device interface and removes it 3256 * from the kernel tables. On success 0 is returned, on a failure 3257 * a negative errno code is returned. 3258 * 3259 * Callers must hold the rtnl semaphore. You may want 3260 * unregister_netdev() instead of this. 3261 */ 3262 3263 int unregister_netdevice(struct net_device *dev) 3264 { 3265 struct net_device *d, **dp; 3266 3267 BUG_ON(dev_boot_phase); 3268 ASSERT_RTNL(); 3269 3270 /* Some devices call without registering for initialization unwind. */ 3271 if (dev->reg_state == NETREG_UNINITIALIZED) { 3272 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3273 "was registered\n", dev->name, dev); 3274 return -ENODEV; 3275 } 3276 3277 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3278 3279 /* If device is running, close it first. */ 3280 if (dev->flags & IFF_UP) 3281 dev_close(dev); 3282 3283 /* And unlink it from device chain. */ 3284 for (dp = &dev_base; (d = *dp) != NULL; dp = &d->next) { 3285 if (d == dev) { 3286 write_lock_bh(&dev_base_lock); 3287 hlist_del(&dev->name_hlist); 3288 hlist_del(&dev->index_hlist); 3289 if (dev_tail == &dev->next) 3290 dev_tail = dp; 3291 *dp = d->next; 3292 write_unlock_bh(&dev_base_lock); 3293 break; 3294 } 3295 } 3296 if (!d) { 3297 printk(KERN_ERR "unregister net_device: '%s' not found\n", 3298 dev->name); 3299 return -ENODEV; 3300 } 3301 3302 dev->reg_state = NETREG_UNREGISTERING; 3303 3304 synchronize_net(); 3305 3306 /* Shutdown queueing discipline. */ 3307 dev_shutdown(dev); 3308 3309 3310 /* Notify protocols, that we are about to destroy 3311 this device. They should clean all the things. 3312 */ 3313 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev); 3314 3315 /* 3316 * Flush the multicast chain 3317 */ 3318 dev_mc_discard(dev); 3319 3320 if (dev->uninit) 3321 dev->uninit(dev); 3322 3323 /* Notifier chain MUST detach us from master device. */ 3324 BUG_TRAP(!dev->master); 3325 3326 free_divert_blk(dev); 3327 3328 /* Finish processing unregister after unlock */ 3329 net_set_todo(dev); 3330 3331 synchronize_net(); 3332 3333 dev_put(dev); 3334 return 0; 3335 } 3336 3337 /** 3338 * unregister_netdev - remove device from the kernel 3339 * @dev: device 3340 * 3341 * This function shuts down a device interface and removes it 3342 * from the kernel tables. On success 0 is returned, on a failure 3343 * a negative errno code is returned. 3344 * 3345 * This is just a wrapper for unregister_netdevice that takes 3346 * the rtnl semaphore. In general you want to use this and not 3347 * unregister_netdevice. 3348 */ 3349 void unregister_netdev(struct net_device *dev) 3350 { 3351 rtnl_lock(); 3352 unregister_netdevice(dev); 3353 rtnl_unlock(); 3354 } 3355 3356 EXPORT_SYMBOL(unregister_netdev); 3357 3358 #ifdef CONFIG_HOTPLUG_CPU 3359 static int dev_cpu_callback(struct notifier_block *nfb, 3360 unsigned long action, 3361 void *ocpu) 3362 { 3363 struct sk_buff **list_skb; 3364 struct net_device **list_net; 3365 struct sk_buff *skb; 3366 unsigned int cpu, oldcpu = (unsigned long)ocpu; 3367 struct softnet_data *sd, *oldsd; 3368 3369 if (action != CPU_DEAD) 3370 return NOTIFY_OK; 3371 3372 local_irq_disable(); 3373 cpu = smp_processor_id(); 3374 sd = &per_cpu(softnet_data, cpu); 3375 oldsd = &per_cpu(softnet_data, oldcpu); 3376 3377 /* Find end of our completion_queue. */ 3378 list_skb = &sd->completion_queue; 3379 while (*list_skb) 3380 list_skb = &(*list_skb)->next; 3381 /* Append completion queue from offline CPU. */ 3382 *list_skb = oldsd->completion_queue; 3383 oldsd->completion_queue = NULL; 3384 3385 /* Find end of our output_queue. */ 3386 list_net = &sd->output_queue; 3387 while (*list_net) 3388 list_net = &(*list_net)->next_sched; 3389 /* Append output queue from offline CPU. */ 3390 *list_net = oldsd->output_queue; 3391 oldsd->output_queue = NULL; 3392 3393 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3394 local_irq_enable(); 3395 3396 /* Process offline CPU's input_pkt_queue */ 3397 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 3398 netif_rx(skb); 3399 3400 return NOTIFY_OK; 3401 } 3402 #endif /* CONFIG_HOTPLUG_CPU */ 3403 3404 #ifdef CONFIG_NET_DMA 3405 /** 3406 * net_dma_rebalance - 3407 * This is called when the number of channels allocated to the net_dma_client 3408 * changes. The net_dma_client tries to have one DMA channel per CPU. 3409 */ 3410 static void net_dma_rebalance(void) 3411 { 3412 unsigned int cpu, i, n; 3413 struct dma_chan *chan; 3414 3415 if (net_dma_count == 0) { 3416 for_each_online_cpu(cpu) 3417 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 3418 return; 3419 } 3420 3421 i = 0; 3422 cpu = first_cpu(cpu_online_map); 3423 3424 rcu_read_lock(); 3425 list_for_each_entry(chan, &net_dma_client->channels, client_node) { 3426 n = ((num_online_cpus() / net_dma_count) 3427 + (i < (num_online_cpus() % net_dma_count) ? 1 : 0)); 3428 3429 while(n) { 3430 per_cpu(softnet_data, cpu).net_dma = chan; 3431 cpu = next_cpu(cpu, cpu_online_map); 3432 n--; 3433 } 3434 i++; 3435 } 3436 rcu_read_unlock(); 3437 } 3438 3439 /** 3440 * netdev_dma_event - event callback for the net_dma_client 3441 * @client: should always be net_dma_client 3442 * @chan: DMA channel for the event 3443 * @event: event type 3444 */ 3445 static void netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 3446 enum dma_event event) 3447 { 3448 spin_lock(&net_dma_event_lock); 3449 switch (event) { 3450 case DMA_RESOURCE_ADDED: 3451 net_dma_count++; 3452 net_dma_rebalance(); 3453 break; 3454 case DMA_RESOURCE_REMOVED: 3455 net_dma_count--; 3456 net_dma_rebalance(); 3457 break; 3458 default: 3459 break; 3460 } 3461 spin_unlock(&net_dma_event_lock); 3462 } 3463 3464 /** 3465 * netdev_dma_regiser - register the networking subsystem as a DMA client 3466 */ 3467 static int __init netdev_dma_register(void) 3468 { 3469 spin_lock_init(&net_dma_event_lock); 3470 net_dma_client = dma_async_client_register(netdev_dma_event); 3471 if (net_dma_client == NULL) 3472 return -ENOMEM; 3473 3474 dma_async_client_chan_request(net_dma_client, num_online_cpus()); 3475 return 0; 3476 } 3477 3478 #else 3479 static int __init netdev_dma_register(void) { return -ENODEV; } 3480 #endif /* CONFIG_NET_DMA */ 3481 3482 /* 3483 * Initialize the DEV module. At boot time this walks the device list and 3484 * unhooks any devices that fail to initialise (normally hardware not 3485 * present) and leaves us with a valid list of present and active devices. 3486 * 3487 */ 3488 3489 /* 3490 * This is called single threaded during boot, so no need 3491 * to take the rtnl semaphore. 3492 */ 3493 static int __init net_dev_init(void) 3494 { 3495 int i, rc = -ENOMEM; 3496 3497 BUG_ON(!dev_boot_phase); 3498 3499 net_random_init(); 3500 3501 if (dev_proc_init()) 3502 goto out; 3503 3504 if (netdev_sysfs_init()) 3505 goto out; 3506 3507 INIT_LIST_HEAD(&ptype_all); 3508 for (i = 0; i < 16; i++) 3509 INIT_LIST_HEAD(&ptype_base[i]); 3510 3511 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++) 3512 INIT_HLIST_HEAD(&dev_name_head[i]); 3513 3514 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++) 3515 INIT_HLIST_HEAD(&dev_index_head[i]); 3516 3517 /* 3518 * Initialise the packet receive queues. 3519 */ 3520 3521 for_each_possible_cpu(i) { 3522 struct softnet_data *queue; 3523 3524 queue = &per_cpu(softnet_data, i); 3525 skb_queue_head_init(&queue->input_pkt_queue); 3526 queue->completion_queue = NULL; 3527 INIT_LIST_HEAD(&queue->poll_list); 3528 set_bit(__LINK_STATE_START, &queue->backlog_dev.state); 3529 queue->backlog_dev.weight = weight_p; 3530 queue->backlog_dev.poll = process_backlog; 3531 atomic_set(&queue->backlog_dev.refcnt, 1); 3532 } 3533 3534 netdev_dma_register(); 3535 3536 dev_boot_phase = 0; 3537 3538 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 3539 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 3540 3541 hotcpu_notifier(dev_cpu_callback, 0); 3542 dst_init(); 3543 dev_mcast_init(); 3544 rc = 0; 3545 out: 3546 return rc; 3547 } 3548 3549 subsys_initcall(net_dev_init); 3550 3551 EXPORT_SYMBOL(__dev_get_by_index); 3552 EXPORT_SYMBOL(__dev_get_by_name); 3553 EXPORT_SYMBOL(__dev_remove_pack); 3554 EXPORT_SYMBOL(dev_valid_name); 3555 EXPORT_SYMBOL(dev_add_pack); 3556 EXPORT_SYMBOL(dev_alloc_name); 3557 EXPORT_SYMBOL(dev_close); 3558 EXPORT_SYMBOL(dev_get_by_flags); 3559 EXPORT_SYMBOL(dev_get_by_index); 3560 EXPORT_SYMBOL(dev_get_by_name); 3561 EXPORT_SYMBOL(dev_open); 3562 EXPORT_SYMBOL(dev_queue_xmit); 3563 EXPORT_SYMBOL(dev_remove_pack); 3564 EXPORT_SYMBOL(dev_set_allmulti); 3565 EXPORT_SYMBOL(dev_set_promiscuity); 3566 EXPORT_SYMBOL(dev_change_flags); 3567 EXPORT_SYMBOL(dev_set_mtu); 3568 EXPORT_SYMBOL(dev_set_mac_address); 3569 EXPORT_SYMBOL(free_netdev); 3570 EXPORT_SYMBOL(netdev_boot_setup_check); 3571 EXPORT_SYMBOL(netdev_set_master); 3572 EXPORT_SYMBOL(netdev_state_change); 3573 EXPORT_SYMBOL(netif_receive_skb); 3574 EXPORT_SYMBOL(netif_rx); 3575 EXPORT_SYMBOL(register_gifconf); 3576 EXPORT_SYMBOL(register_netdevice); 3577 EXPORT_SYMBOL(register_netdevice_notifier); 3578 EXPORT_SYMBOL(skb_checksum_help); 3579 EXPORT_SYMBOL(synchronize_net); 3580 EXPORT_SYMBOL(unregister_netdevice); 3581 EXPORT_SYMBOL(unregister_netdevice_notifier); 3582 EXPORT_SYMBOL(net_enable_timestamp); 3583 EXPORT_SYMBOL(net_disable_timestamp); 3584 EXPORT_SYMBOL(dev_get_flags); 3585 3586 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 3587 EXPORT_SYMBOL(br_handle_frame_hook); 3588 EXPORT_SYMBOL(br_fdb_get_hook); 3589 EXPORT_SYMBOL(br_fdb_put_hook); 3590 #endif 3591 3592 #ifdef CONFIG_KMOD 3593 EXPORT_SYMBOL(dev_load); 3594 #endif 3595 3596 EXPORT_PER_CPU_SYMBOL(softnet_data); 3597