xref: /linux/net/core/dev.c (revision f19900b2e608b604777a74d6d711bbf744657756)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 
130 #include "net-sysfs.h"
131 
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134 
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
137 
138 /*
139  *	The list of packet types we will receive (as opposed to discard)
140  *	and the routines to invoke.
141  *
142  *	Why 16. Because with 16 the only overlap we get on a hash of the
143  *	low nibble of the protocol value is RARP/SNAP/X.25.
144  *
145  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
146  *             sure which should go first, but I bet it won't make much
147  *             difference if we are running VLANs.  The good news is that
148  *             this protocol won't be in the list unless compiled in, so
149  *             the average user (w/out VLANs) will not be adversely affected.
150  *             --BLG
151  *
152  *		0800	IP
153  *		8100    802.1Q VLAN
154  *		0001	802.3
155  *		0002	AX.25
156  *		0004	802.2
157  *		8035	RARP
158  *		0005	SNAP
159  *		0805	X.25
160  *		0806	ARP
161  *		8137	IPX
162  *		0009	Localtalk
163  *		86DD	IPv6
164  */
165 
166 #define PTYPE_HASH_SIZE	(16)
167 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
168 
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly;	/* Taps */
172 
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading.
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 
194 EXPORT_SYMBOL(dev_base_lock);
195 
196 #define NETDEV_HASHBITS	8
197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
198 
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
203 }
204 
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
208 }
209 
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 	struct net *net = dev_net(dev);
214 
215 	ASSERT_RTNL();
216 
217 	write_lock_bh(&dev_base_lock);
218 	list_add_tail(&dev->dev_list, &net->dev_base_head);
219 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 	write_unlock_bh(&dev_base_lock);
222 	return 0;
223 }
224 
225 /* Device list removal */
226 static void unlist_netdevice(struct net_device *dev)
227 {
228 	ASSERT_RTNL();
229 
230 	/* Unlink dev from the device chain */
231 	write_lock_bh(&dev_base_lock);
232 	list_del(&dev->dev_list);
233 	hlist_del(&dev->name_hlist);
234 	hlist_del(&dev->index_hlist);
235 	write_unlock_bh(&dev_base_lock);
236 }
237 
238 /*
239  *	Our notifier list
240  */
241 
242 static RAW_NOTIFIER_HEAD(netdev_chain);
243 
244 /*
245  *	Device drivers call our routines to queue packets here. We empty the
246  *	queue in the local softnet handler.
247  */
248 
249 DEFINE_PER_CPU(struct softnet_data, softnet_data);
250 
251 #ifdef CONFIG_LOCKDEP
252 /*
253  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
254  * according to dev->type
255  */
256 static const unsigned short netdev_lock_type[] =
257 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
258 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
259 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
260 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
261 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
262 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
263 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
264 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
265 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
266 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
267 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
268 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
269 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
270 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
271 	 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
272 
273 static const char *netdev_lock_name[] =
274 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
275 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
276 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
277 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
278 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
279 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
280 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
281 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
282 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
283 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
284 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
285 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
286 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
287 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
288 	 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
289 
290 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
291 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
292 
293 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
294 {
295 	int i;
296 
297 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
298 		if (netdev_lock_type[i] == dev_type)
299 			return i;
300 	/* the last key is used by default */
301 	return ARRAY_SIZE(netdev_lock_type) - 1;
302 }
303 
304 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
305 						 unsigned short dev_type)
306 {
307 	int i;
308 
309 	i = netdev_lock_pos(dev_type);
310 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
311 				   netdev_lock_name[i]);
312 }
313 
314 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
315 {
316 	int i;
317 
318 	i = netdev_lock_pos(dev->type);
319 	lockdep_set_class_and_name(&dev->addr_list_lock,
320 				   &netdev_addr_lock_key[i],
321 				   netdev_lock_name[i]);
322 }
323 #else
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 						 unsigned short dev_type)
326 {
327 }
328 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329 {
330 }
331 #endif
332 
333 /*******************************************************************************
334 
335 		Protocol management and registration routines
336 
337 *******************************************************************************/
338 
339 /*
340  *	Add a protocol ID to the list. Now that the input handler is
341  *	smarter we can dispense with all the messy stuff that used to be
342  *	here.
343  *
344  *	BEWARE!!! Protocol handlers, mangling input packets,
345  *	MUST BE last in hash buckets and checking protocol handlers
346  *	MUST start from promiscuous ptype_all chain in net_bh.
347  *	It is true now, do not change it.
348  *	Explanation follows: if protocol handler, mangling packet, will
349  *	be the first on list, it is not able to sense, that packet
350  *	is cloned and should be copied-on-write, so that it will
351  *	change it and subsequent readers will get broken packet.
352  *							--ANK (980803)
353  */
354 
355 /**
356  *	dev_add_pack - add packet handler
357  *	@pt: packet type declaration
358  *
359  *	Add a protocol handler to the networking stack. The passed &packet_type
360  *	is linked into kernel lists and may not be freed until it has been
361  *	removed from the kernel lists.
362  *
363  *	This call does not sleep therefore it can not
364  *	guarantee all CPU's that are in middle of receiving packets
365  *	will see the new packet type (until the next received packet).
366  */
367 
368 void dev_add_pack(struct packet_type *pt)
369 {
370 	int hash;
371 
372 	spin_lock_bh(&ptype_lock);
373 	if (pt->type == htons(ETH_P_ALL))
374 		list_add_rcu(&pt->list, &ptype_all);
375 	else {
376 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
377 		list_add_rcu(&pt->list, &ptype_base[hash]);
378 	}
379 	spin_unlock_bh(&ptype_lock);
380 }
381 
382 /**
383  *	__dev_remove_pack	 - remove packet handler
384  *	@pt: packet type declaration
385  *
386  *	Remove a protocol handler that was previously added to the kernel
387  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
388  *	from the kernel lists and can be freed or reused once this function
389  *	returns.
390  *
391  *      The packet type might still be in use by receivers
392  *	and must not be freed until after all the CPU's have gone
393  *	through a quiescent state.
394  */
395 void __dev_remove_pack(struct packet_type *pt)
396 {
397 	struct list_head *head;
398 	struct packet_type *pt1;
399 
400 	spin_lock_bh(&ptype_lock);
401 
402 	if (pt->type == htons(ETH_P_ALL))
403 		head = &ptype_all;
404 	else
405 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
406 
407 	list_for_each_entry(pt1, head, list) {
408 		if (pt == pt1) {
409 			list_del_rcu(&pt->list);
410 			goto out;
411 		}
412 	}
413 
414 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
415 out:
416 	spin_unlock_bh(&ptype_lock);
417 }
418 /**
419  *	dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *	This call sleeps to guarantee that no CPU is looking at the packet
428  *	type after return.
429  */
430 void dev_remove_pack(struct packet_type *pt)
431 {
432 	__dev_remove_pack(pt);
433 
434 	synchronize_net();
435 }
436 
437 /******************************************************************************
438 
439 		      Device Boot-time Settings Routines
440 
441 *******************************************************************************/
442 
443 /* Boot time configuration table */
444 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
445 
446 /**
447  *	netdev_boot_setup_add	- add new setup entry
448  *	@name: name of the device
449  *	@map: configured settings for the device
450  *
451  *	Adds new setup entry to the dev_boot_setup list.  The function
452  *	returns 0 on error and 1 on success.  This is a generic routine to
453  *	all netdevices.
454  */
455 static int netdev_boot_setup_add(char *name, struct ifmap *map)
456 {
457 	struct netdev_boot_setup *s;
458 	int i;
459 
460 	s = dev_boot_setup;
461 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
462 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
463 			memset(s[i].name, 0, sizeof(s[i].name));
464 			strlcpy(s[i].name, name, IFNAMSIZ);
465 			memcpy(&s[i].map, map, sizeof(s[i].map));
466 			break;
467 		}
468 	}
469 
470 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
471 }
472 
473 /**
474  *	netdev_boot_setup_check	- check boot time settings
475  *	@dev: the netdevice
476  *
477  * 	Check boot time settings for the device.
478  *	The found settings are set for the device to be used
479  *	later in the device probing.
480  *	Returns 0 if no settings found, 1 if they are.
481  */
482 int netdev_boot_setup_check(struct net_device *dev)
483 {
484 	struct netdev_boot_setup *s = dev_boot_setup;
485 	int i;
486 
487 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
488 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
489 		    !strcmp(dev->name, s[i].name)) {
490 			dev->irq 	= s[i].map.irq;
491 			dev->base_addr 	= s[i].map.base_addr;
492 			dev->mem_start 	= s[i].map.mem_start;
493 			dev->mem_end 	= s[i].map.mem_end;
494 			return 1;
495 		}
496 	}
497 	return 0;
498 }
499 
500 
501 /**
502  *	netdev_boot_base	- get address from boot time settings
503  *	@prefix: prefix for network device
504  *	@unit: id for network device
505  *
506  * 	Check boot time settings for the base address of device.
507  *	The found settings are set for the device to be used
508  *	later in the device probing.
509  *	Returns 0 if no settings found.
510  */
511 unsigned long netdev_boot_base(const char *prefix, int unit)
512 {
513 	const struct netdev_boot_setup *s = dev_boot_setup;
514 	char name[IFNAMSIZ];
515 	int i;
516 
517 	sprintf(name, "%s%d", prefix, unit);
518 
519 	/*
520 	 * If device already registered then return base of 1
521 	 * to indicate not to probe for this interface
522 	 */
523 	if (__dev_get_by_name(&init_net, name))
524 		return 1;
525 
526 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
527 		if (!strcmp(name, s[i].name))
528 			return s[i].map.base_addr;
529 	return 0;
530 }
531 
532 /*
533  * Saves at boot time configured settings for any netdevice.
534  */
535 int __init netdev_boot_setup(char *str)
536 {
537 	int ints[5];
538 	struct ifmap map;
539 
540 	str = get_options(str, ARRAY_SIZE(ints), ints);
541 	if (!str || !*str)
542 		return 0;
543 
544 	/* Save settings */
545 	memset(&map, 0, sizeof(map));
546 	if (ints[0] > 0)
547 		map.irq = ints[1];
548 	if (ints[0] > 1)
549 		map.base_addr = ints[2];
550 	if (ints[0] > 2)
551 		map.mem_start = ints[3];
552 	if (ints[0] > 3)
553 		map.mem_end = ints[4];
554 
555 	/* Add new entry to the list */
556 	return netdev_boot_setup_add(str, &map);
557 }
558 
559 __setup("netdev=", netdev_boot_setup);
560 
561 /*******************************************************************************
562 
563 			    Device Interface Subroutines
564 
565 *******************************************************************************/
566 
567 /**
568  *	__dev_get_by_name	- find a device by its name
569  *	@net: the applicable net namespace
570  *	@name: name to find
571  *
572  *	Find an interface by name. Must be called under RTNL semaphore
573  *	or @dev_base_lock. If the name is found a pointer to the device
574  *	is returned. If the name is not found then %NULL is returned. The
575  *	reference counters are not incremented so the caller must be
576  *	careful with locks.
577  */
578 
579 struct net_device *__dev_get_by_name(struct net *net, const char *name)
580 {
581 	struct hlist_node *p;
582 
583 	hlist_for_each(p, dev_name_hash(net, name)) {
584 		struct net_device *dev
585 			= hlist_entry(p, struct net_device, name_hlist);
586 		if (!strncmp(dev->name, name, IFNAMSIZ))
587 			return dev;
588 	}
589 	return NULL;
590 }
591 
592 /**
593  *	dev_get_by_name		- find a device by its name
594  *	@net: the applicable net namespace
595  *	@name: name to find
596  *
597  *	Find an interface by name. This can be called from any
598  *	context and does its own locking. The returned handle has
599  *	the usage count incremented and the caller must use dev_put() to
600  *	release it when it is no longer needed. %NULL is returned if no
601  *	matching device is found.
602  */
603 
604 struct net_device *dev_get_by_name(struct net *net, const char *name)
605 {
606 	struct net_device *dev;
607 
608 	read_lock(&dev_base_lock);
609 	dev = __dev_get_by_name(net, name);
610 	if (dev)
611 		dev_hold(dev);
612 	read_unlock(&dev_base_lock);
613 	return dev;
614 }
615 
616 /**
617  *	__dev_get_by_index - find a device by its ifindex
618  *	@net: the applicable net namespace
619  *	@ifindex: index of device
620  *
621  *	Search for an interface by index. Returns %NULL if the device
622  *	is not found or a pointer to the device. The device has not
623  *	had its reference counter increased so the caller must be careful
624  *	about locking. The caller must hold either the RTNL semaphore
625  *	or @dev_base_lock.
626  */
627 
628 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
629 {
630 	struct hlist_node *p;
631 
632 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
633 		struct net_device *dev
634 			= hlist_entry(p, struct net_device, index_hlist);
635 		if (dev->ifindex == ifindex)
636 			return dev;
637 	}
638 	return NULL;
639 }
640 
641 
642 /**
643  *	dev_get_by_index - find a device by its ifindex
644  *	@net: the applicable net namespace
645  *	@ifindex: index of device
646  *
647  *	Search for an interface by index. Returns NULL if the device
648  *	is not found or a pointer to the device. The device returned has
649  *	had a reference added and the pointer is safe until the user calls
650  *	dev_put to indicate they have finished with it.
651  */
652 
653 struct net_device *dev_get_by_index(struct net *net, int ifindex)
654 {
655 	struct net_device *dev;
656 
657 	read_lock(&dev_base_lock);
658 	dev = __dev_get_by_index(net, ifindex);
659 	if (dev)
660 		dev_hold(dev);
661 	read_unlock(&dev_base_lock);
662 	return dev;
663 }
664 
665 /**
666  *	dev_getbyhwaddr - find a device by its hardware address
667  *	@net: the applicable net namespace
668  *	@type: media type of device
669  *	@ha: hardware address
670  *
671  *	Search for an interface by MAC address. Returns NULL if the device
672  *	is not found or a pointer to the device. The caller must hold the
673  *	rtnl semaphore. The returned device has not had its ref count increased
674  *	and the caller must therefore be careful about locking
675  *
676  *	BUGS:
677  *	If the API was consistent this would be __dev_get_by_hwaddr
678  */
679 
680 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
681 {
682 	struct net_device *dev;
683 
684 	ASSERT_RTNL();
685 
686 	for_each_netdev(net, dev)
687 		if (dev->type == type &&
688 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
689 			return dev;
690 
691 	return NULL;
692 }
693 
694 EXPORT_SYMBOL(dev_getbyhwaddr);
695 
696 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
697 {
698 	struct net_device *dev;
699 
700 	ASSERT_RTNL();
701 	for_each_netdev(net, dev)
702 		if (dev->type == type)
703 			return dev;
704 
705 	return NULL;
706 }
707 
708 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
709 
710 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
711 {
712 	struct net_device *dev;
713 
714 	rtnl_lock();
715 	dev = __dev_getfirstbyhwtype(net, type);
716 	if (dev)
717 		dev_hold(dev);
718 	rtnl_unlock();
719 	return dev;
720 }
721 
722 EXPORT_SYMBOL(dev_getfirstbyhwtype);
723 
724 /**
725  *	dev_get_by_flags - find any device with given flags
726  *	@net: the applicable net namespace
727  *	@if_flags: IFF_* values
728  *	@mask: bitmask of bits in if_flags to check
729  *
730  *	Search for any interface with the given flags. Returns NULL if a device
731  *	is not found or a pointer to the device. The device returned has
732  *	had a reference added and the pointer is safe until the user calls
733  *	dev_put to indicate they have finished with it.
734  */
735 
736 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
737 {
738 	struct net_device *dev, *ret;
739 
740 	ret = NULL;
741 	read_lock(&dev_base_lock);
742 	for_each_netdev(net, dev) {
743 		if (((dev->flags ^ if_flags) & mask) == 0) {
744 			dev_hold(dev);
745 			ret = dev;
746 			break;
747 		}
748 	}
749 	read_unlock(&dev_base_lock);
750 	return ret;
751 }
752 
753 /**
754  *	dev_valid_name - check if name is okay for network device
755  *	@name: name string
756  *
757  *	Network device names need to be valid file names to
758  *	to allow sysfs to work.  We also disallow any kind of
759  *	whitespace.
760  */
761 int dev_valid_name(const char *name)
762 {
763 	if (*name == '\0')
764 		return 0;
765 	if (strlen(name) >= IFNAMSIZ)
766 		return 0;
767 	if (!strcmp(name, ".") || !strcmp(name, ".."))
768 		return 0;
769 
770 	while (*name) {
771 		if (*name == '/' || isspace(*name))
772 			return 0;
773 		name++;
774 	}
775 	return 1;
776 }
777 
778 /**
779  *	__dev_alloc_name - allocate a name for a device
780  *	@net: network namespace to allocate the device name in
781  *	@name: name format string
782  *	@buf:  scratch buffer and result name string
783  *
784  *	Passed a format string - eg "lt%d" it will try and find a suitable
785  *	id. It scans list of devices to build up a free map, then chooses
786  *	the first empty slot. The caller must hold the dev_base or rtnl lock
787  *	while allocating the name and adding the device in order to avoid
788  *	duplicates.
789  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
790  *	Returns the number of the unit assigned or a negative errno code.
791  */
792 
793 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
794 {
795 	int i = 0;
796 	const char *p;
797 	const int max_netdevices = 8*PAGE_SIZE;
798 	unsigned long *inuse;
799 	struct net_device *d;
800 
801 	p = strnchr(name, IFNAMSIZ-1, '%');
802 	if (p) {
803 		/*
804 		 * Verify the string as this thing may have come from
805 		 * the user.  There must be either one "%d" and no other "%"
806 		 * characters.
807 		 */
808 		if (p[1] != 'd' || strchr(p + 2, '%'))
809 			return -EINVAL;
810 
811 		/* Use one page as a bit array of possible slots */
812 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
813 		if (!inuse)
814 			return -ENOMEM;
815 
816 		for_each_netdev(net, d) {
817 			if (!sscanf(d->name, name, &i))
818 				continue;
819 			if (i < 0 || i >= max_netdevices)
820 				continue;
821 
822 			/*  avoid cases where sscanf is not exact inverse of printf */
823 			snprintf(buf, IFNAMSIZ, name, i);
824 			if (!strncmp(buf, d->name, IFNAMSIZ))
825 				set_bit(i, inuse);
826 		}
827 
828 		i = find_first_zero_bit(inuse, max_netdevices);
829 		free_page((unsigned long) inuse);
830 	}
831 
832 	snprintf(buf, IFNAMSIZ, name, i);
833 	if (!__dev_get_by_name(net, buf))
834 		return i;
835 
836 	/* It is possible to run out of possible slots
837 	 * when the name is long and there isn't enough space left
838 	 * for the digits, or if all bits are used.
839 	 */
840 	return -ENFILE;
841 }
842 
843 /**
844  *	dev_alloc_name - allocate a name for a device
845  *	@dev: device
846  *	@name: name format string
847  *
848  *	Passed a format string - eg "lt%d" it will try and find a suitable
849  *	id. It scans list of devices to build up a free map, then chooses
850  *	the first empty slot. The caller must hold the dev_base or rtnl lock
851  *	while allocating the name and adding the device in order to avoid
852  *	duplicates.
853  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
854  *	Returns the number of the unit assigned or a negative errno code.
855  */
856 
857 int dev_alloc_name(struct net_device *dev, const char *name)
858 {
859 	char buf[IFNAMSIZ];
860 	struct net *net;
861 	int ret;
862 
863 	BUG_ON(!dev_net(dev));
864 	net = dev_net(dev);
865 	ret = __dev_alloc_name(net, name, buf);
866 	if (ret >= 0)
867 		strlcpy(dev->name, buf, IFNAMSIZ);
868 	return ret;
869 }
870 
871 
872 /**
873  *	dev_change_name - change name of a device
874  *	@dev: device
875  *	@newname: name (or format string) must be at least IFNAMSIZ
876  *
877  *	Change name of a device, can pass format strings "eth%d".
878  *	for wildcarding.
879  */
880 int dev_change_name(struct net_device *dev, const char *newname)
881 {
882 	char oldname[IFNAMSIZ];
883 	int err = 0;
884 	int ret;
885 	struct net *net;
886 
887 	ASSERT_RTNL();
888 	BUG_ON(!dev_net(dev));
889 
890 	net = dev_net(dev);
891 	if (dev->flags & IFF_UP)
892 		return -EBUSY;
893 
894 	if (!dev_valid_name(newname))
895 		return -EINVAL;
896 
897 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
898 		return 0;
899 
900 	memcpy(oldname, dev->name, IFNAMSIZ);
901 
902 	if (strchr(newname, '%')) {
903 		err = dev_alloc_name(dev, newname);
904 		if (err < 0)
905 			return err;
906 	}
907 	else if (__dev_get_by_name(net, newname))
908 		return -EEXIST;
909 	else
910 		strlcpy(dev->name, newname, IFNAMSIZ);
911 
912 rollback:
913 	/* For now only devices in the initial network namespace
914 	 * are in sysfs.
915 	 */
916 	if (net == &init_net) {
917 		ret = device_rename(&dev->dev, dev->name);
918 		if (ret) {
919 			memcpy(dev->name, oldname, IFNAMSIZ);
920 			return ret;
921 		}
922 	}
923 
924 	write_lock_bh(&dev_base_lock);
925 	hlist_del(&dev->name_hlist);
926 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
927 	write_unlock_bh(&dev_base_lock);
928 
929 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
930 	ret = notifier_to_errno(ret);
931 
932 	if (ret) {
933 		if (err) {
934 			printk(KERN_ERR
935 			       "%s: name change rollback failed: %d.\n",
936 			       dev->name, ret);
937 		} else {
938 			err = ret;
939 			memcpy(dev->name, oldname, IFNAMSIZ);
940 			goto rollback;
941 		}
942 	}
943 
944 	return err;
945 }
946 
947 /**
948  *	dev_set_alias - change ifalias of a device
949  *	@dev: device
950  *	@alias: name up to IFALIASZ
951  *	@len: limit of bytes to copy from info
952  *
953  *	Set ifalias for a device,
954  */
955 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
956 {
957 	ASSERT_RTNL();
958 
959 	if (len >= IFALIASZ)
960 		return -EINVAL;
961 
962 	if (!len) {
963 		if (dev->ifalias) {
964 			kfree(dev->ifalias);
965 			dev->ifalias = NULL;
966 		}
967 		return 0;
968 	}
969 
970 	dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
971 	if (!dev->ifalias)
972 		return -ENOMEM;
973 
974 	strlcpy(dev->ifalias, alias, len+1);
975 	return len;
976 }
977 
978 
979 /**
980  *	netdev_features_change - device changes features
981  *	@dev: device to cause notification
982  *
983  *	Called to indicate a device has changed features.
984  */
985 void netdev_features_change(struct net_device *dev)
986 {
987 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
988 }
989 EXPORT_SYMBOL(netdev_features_change);
990 
991 /**
992  *	netdev_state_change - device changes state
993  *	@dev: device to cause notification
994  *
995  *	Called to indicate a device has changed state. This function calls
996  *	the notifier chains for netdev_chain and sends a NEWLINK message
997  *	to the routing socket.
998  */
999 void netdev_state_change(struct net_device *dev)
1000 {
1001 	if (dev->flags & IFF_UP) {
1002 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1003 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1004 	}
1005 }
1006 
1007 void netdev_bonding_change(struct net_device *dev)
1008 {
1009 	call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1010 }
1011 EXPORT_SYMBOL(netdev_bonding_change);
1012 
1013 /**
1014  *	dev_load 	- load a network module
1015  *	@net: the applicable net namespace
1016  *	@name: name of interface
1017  *
1018  *	If a network interface is not present and the process has suitable
1019  *	privileges this function loads the module. If module loading is not
1020  *	available in this kernel then it becomes a nop.
1021  */
1022 
1023 void dev_load(struct net *net, const char *name)
1024 {
1025 	struct net_device *dev;
1026 
1027 	read_lock(&dev_base_lock);
1028 	dev = __dev_get_by_name(net, name);
1029 	read_unlock(&dev_base_lock);
1030 
1031 	if (!dev && capable(CAP_SYS_MODULE))
1032 		request_module("%s", name);
1033 }
1034 
1035 /**
1036  *	dev_open	- prepare an interface for use.
1037  *	@dev:	device to open
1038  *
1039  *	Takes a device from down to up state. The device's private open
1040  *	function is invoked and then the multicast lists are loaded. Finally
1041  *	the device is moved into the up state and a %NETDEV_UP message is
1042  *	sent to the netdev notifier chain.
1043  *
1044  *	Calling this function on an active interface is a nop. On a failure
1045  *	a negative errno code is returned.
1046  */
1047 int dev_open(struct net_device *dev)
1048 {
1049 	const struct net_device_ops *ops = dev->netdev_ops;
1050 	int ret = 0;
1051 
1052 	ASSERT_RTNL();
1053 
1054 	/*
1055 	 *	Is it already up?
1056 	 */
1057 
1058 	if (dev->flags & IFF_UP)
1059 		return 0;
1060 
1061 	/*
1062 	 *	Is it even present?
1063 	 */
1064 	if (!netif_device_present(dev))
1065 		return -ENODEV;
1066 
1067 	/*
1068 	 *	Call device private open method
1069 	 */
1070 	set_bit(__LINK_STATE_START, &dev->state);
1071 
1072 	if (ops->ndo_validate_addr)
1073 		ret = ops->ndo_validate_addr(dev);
1074 
1075 	if (!ret && ops->ndo_open)
1076 		ret = ops->ndo_open(dev);
1077 
1078 	/*
1079 	 *	If it went open OK then:
1080 	 */
1081 
1082 	if (ret)
1083 		clear_bit(__LINK_STATE_START, &dev->state);
1084 	else {
1085 		/*
1086 		 *	Set the flags.
1087 		 */
1088 		dev->flags |= IFF_UP;
1089 
1090 		/*
1091 		 *	Enable NET_DMA
1092 		 */
1093 		net_dmaengine_get();
1094 
1095 		/*
1096 		 *	Initialize multicasting status
1097 		 */
1098 		dev_set_rx_mode(dev);
1099 
1100 		/*
1101 		 *	Wakeup transmit queue engine
1102 		 */
1103 		dev_activate(dev);
1104 
1105 		/*
1106 		 *	... and announce new interface.
1107 		 */
1108 		call_netdevice_notifiers(NETDEV_UP, dev);
1109 	}
1110 
1111 	return ret;
1112 }
1113 
1114 /**
1115  *	dev_close - shutdown an interface.
1116  *	@dev: device to shutdown
1117  *
1118  *	This function moves an active device into down state. A
1119  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1120  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1121  *	chain.
1122  */
1123 int dev_close(struct net_device *dev)
1124 {
1125 	const struct net_device_ops *ops = dev->netdev_ops;
1126 	ASSERT_RTNL();
1127 
1128 	might_sleep();
1129 
1130 	if (!(dev->flags & IFF_UP))
1131 		return 0;
1132 
1133 	/*
1134 	 *	Tell people we are going down, so that they can
1135 	 *	prepare to death, when device is still operating.
1136 	 */
1137 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1138 
1139 	clear_bit(__LINK_STATE_START, &dev->state);
1140 
1141 	/* Synchronize to scheduled poll. We cannot touch poll list,
1142 	 * it can be even on different cpu. So just clear netif_running().
1143 	 *
1144 	 * dev->stop() will invoke napi_disable() on all of it's
1145 	 * napi_struct instances on this device.
1146 	 */
1147 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1148 
1149 	dev_deactivate(dev);
1150 
1151 	/*
1152 	 *	Call the device specific close. This cannot fail.
1153 	 *	Only if device is UP
1154 	 *
1155 	 *	We allow it to be called even after a DETACH hot-plug
1156 	 *	event.
1157 	 */
1158 	if (ops->ndo_stop)
1159 		ops->ndo_stop(dev);
1160 
1161 	/*
1162 	 *	Device is now down.
1163 	 */
1164 
1165 	dev->flags &= ~IFF_UP;
1166 
1167 	/*
1168 	 * Tell people we are down
1169 	 */
1170 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1171 
1172 	/*
1173 	 *	Shutdown NET_DMA
1174 	 */
1175 	net_dmaengine_put();
1176 
1177 	return 0;
1178 }
1179 
1180 
1181 /**
1182  *	dev_disable_lro - disable Large Receive Offload on a device
1183  *	@dev: device
1184  *
1185  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1186  *	called under RTNL.  This is needed if received packets may be
1187  *	forwarded to another interface.
1188  */
1189 void dev_disable_lro(struct net_device *dev)
1190 {
1191 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1192 	    dev->ethtool_ops->set_flags) {
1193 		u32 flags = dev->ethtool_ops->get_flags(dev);
1194 		if (flags & ETH_FLAG_LRO) {
1195 			flags &= ~ETH_FLAG_LRO;
1196 			dev->ethtool_ops->set_flags(dev, flags);
1197 		}
1198 	}
1199 	WARN_ON(dev->features & NETIF_F_LRO);
1200 }
1201 EXPORT_SYMBOL(dev_disable_lro);
1202 
1203 
1204 static int dev_boot_phase = 1;
1205 
1206 /*
1207  *	Device change register/unregister. These are not inline or static
1208  *	as we export them to the world.
1209  */
1210 
1211 /**
1212  *	register_netdevice_notifier - register a network notifier block
1213  *	@nb: notifier
1214  *
1215  *	Register a notifier to be called when network device events occur.
1216  *	The notifier passed is linked into the kernel structures and must
1217  *	not be reused until it has been unregistered. A negative errno code
1218  *	is returned on a failure.
1219  *
1220  * 	When registered all registration and up events are replayed
1221  *	to the new notifier to allow device to have a race free
1222  *	view of the network device list.
1223  */
1224 
1225 int register_netdevice_notifier(struct notifier_block *nb)
1226 {
1227 	struct net_device *dev;
1228 	struct net_device *last;
1229 	struct net *net;
1230 	int err;
1231 
1232 	rtnl_lock();
1233 	err = raw_notifier_chain_register(&netdev_chain, nb);
1234 	if (err)
1235 		goto unlock;
1236 	if (dev_boot_phase)
1237 		goto unlock;
1238 	for_each_net(net) {
1239 		for_each_netdev(net, dev) {
1240 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1241 			err = notifier_to_errno(err);
1242 			if (err)
1243 				goto rollback;
1244 
1245 			if (!(dev->flags & IFF_UP))
1246 				continue;
1247 
1248 			nb->notifier_call(nb, NETDEV_UP, dev);
1249 		}
1250 	}
1251 
1252 unlock:
1253 	rtnl_unlock();
1254 	return err;
1255 
1256 rollback:
1257 	last = dev;
1258 	for_each_net(net) {
1259 		for_each_netdev(net, dev) {
1260 			if (dev == last)
1261 				break;
1262 
1263 			if (dev->flags & IFF_UP) {
1264 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1265 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1266 			}
1267 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1268 		}
1269 	}
1270 
1271 	raw_notifier_chain_unregister(&netdev_chain, nb);
1272 	goto unlock;
1273 }
1274 
1275 /**
1276  *	unregister_netdevice_notifier - unregister a network notifier block
1277  *	@nb: notifier
1278  *
1279  *	Unregister a notifier previously registered by
1280  *	register_netdevice_notifier(). The notifier is unlinked into the
1281  *	kernel structures and may then be reused. A negative errno code
1282  *	is returned on a failure.
1283  */
1284 
1285 int unregister_netdevice_notifier(struct notifier_block *nb)
1286 {
1287 	int err;
1288 
1289 	rtnl_lock();
1290 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1291 	rtnl_unlock();
1292 	return err;
1293 }
1294 
1295 /**
1296  *	call_netdevice_notifiers - call all network notifier blocks
1297  *      @val: value passed unmodified to notifier function
1298  *      @dev: net_device pointer passed unmodified to notifier function
1299  *
1300  *	Call all network notifier blocks.  Parameters and return value
1301  *	are as for raw_notifier_call_chain().
1302  */
1303 
1304 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1305 {
1306 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1307 }
1308 
1309 /* When > 0 there are consumers of rx skb time stamps */
1310 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1311 
1312 void net_enable_timestamp(void)
1313 {
1314 	atomic_inc(&netstamp_needed);
1315 }
1316 
1317 void net_disable_timestamp(void)
1318 {
1319 	atomic_dec(&netstamp_needed);
1320 }
1321 
1322 static inline void net_timestamp(struct sk_buff *skb)
1323 {
1324 	if (atomic_read(&netstamp_needed))
1325 		__net_timestamp(skb);
1326 	else
1327 		skb->tstamp.tv64 = 0;
1328 }
1329 
1330 /*
1331  *	Support routine. Sends outgoing frames to any network
1332  *	taps currently in use.
1333  */
1334 
1335 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1336 {
1337 	struct packet_type *ptype;
1338 
1339 #ifdef CONFIG_NET_CLS_ACT
1340 	if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1341 		net_timestamp(skb);
1342 #else
1343 	net_timestamp(skb);
1344 #endif
1345 
1346 	rcu_read_lock();
1347 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1348 		/* Never send packets back to the socket
1349 		 * they originated from - MvS (miquels@drinkel.ow.org)
1350 		 */
1351 		if ((ptype->dev == dev || !ptype->dev) &&
1352 		    (ptype->af_packet_priv == NULL ||
1353 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1354 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1355 			if (!skb2)
1356 				break;
1357 
1358 			/* skb->nh should be correctly
1359 			   set by sender, so that the second statement is
1360 			   just protection against buggy protocols.
1361 			 */
1362 			skb_reset_mac_header(skb2);
1363 
1364 			if (skb_network_header(skb2) < skb2->data ||
1365 			    skb2->network_header > skb2->tail) {
1366 				if (net_ratelimit())
1367 					printk(KERN_CRIT "protocol %04x is "
1368 					       "buggy, dev %s\n",
1369 					       skb2->protocol, dev->name);
1370 				skb_reset_network_header(skb2);
1371 			}
1372 
1373 			skb2->transport_header = skb2->network_header;
1374 			skb2->pkt_type = PACKET_OUTGOING;
1375 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1376 		}
1377 	}
1378 	rcu_read_unlock();
1379 }
1380 
1381 
1382 static inline void __netif_reschedule(struct Qdisc *q)
1383 {
1384 	struct softnet_data *sd;
1385 	unsigned long flags;
1386 
1387 	local_irq_save(flags);
1388 	sd = &__get_cpu_var(softnet_data);
1389 	q->next_sched = sd->output_queue;
1390 	sd->output_queue = q;
1391 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1392 	local_irq_restore(flags);
1393 }
1394 
1395 void __netif_schedule(struct Qdisc *q)
1396 {
1397 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1398 		__netif_reschedule(q);
1399 }
1400 EXPORT_SYMBOL(__netif_schedule);
1401 
1402 void dev_kfree_skb_irq(struct sk_buff *skb)
1403 {
1404 	if (atomic_dec_and_test(&skb->users)) {
1405 		struct softnet_data *sd;
1406 		unsigned long flags;
1407 
1408 		local_irq_save(flags);
1409 		sd = &__get_cpu_var(softnet_data);
1410 		skb->next = sd->completion_queue;
1411 		sd->completion_queue = skb;
1412 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1413 		local_irq_restore(flags);
1414 	}
1415 }
1416 EXPORT_SYMBOL(dev_kfree_skb_irq);
1417 
1418 void dev_kfree_skb_any(struct sk_buff *skb)
1419 {
1420 	if (in_irq() || irqs_disabled())
1421 		dev_kfree_skb_irq(skb);
1422 	else
1423 		dev_kfree_skb(skb);
1424 }
1425 EXPORT_SYMBOL(dev_kfree_skb_any);
1426 
1427 
1428 /**
1429  * netif_device_detach - mark device as removed
1430  * @dev: network device
1431  *
1432  * Mark device as removed from system and therefore no longer available.
1433  */
1434 void netif_device_detach(struct net_device *dev)
1435 {
1436 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1437 	    netif_running(dev)) {
1438 		netif_tx_stop_all_queues(dev);
1439 	}
1440 }
1441 EXPORT_SYMBOL(netif_device_detach);
1442 
1443 /**
1444  * netif_device_attach - mark device as attached
1445  * @dev: network device
1446  *
1447  * Mark device as attached from system and restart if needed.
1448  */
1449 void netif_device_attach(struct net_device *dev)
1450 {
1451 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1452 	    netif_running(dev)) {
1453 		netif_tx_wake_all_queues(dev);
1454 		__netdev_watchdog_up(dev);
1455 	}
1456 }
1457 EXPORT_SYMBOL(netif_device_attach);
1458 
1459 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1460 {
1461 	return ((features & NETIF_F_GEN_CSUM) ||
1462 		((features & NETIF_F_IP_CSUM) &&
1463 		 protocol == htons(ETH_P_IP)) ||
1464 		((features & NETIF_F_IPV6_CSUM) &&
1465 		 protocol == htons(ETH_P_IPV6)) ||
1466 		((features & NETIF_F_FCOE_CRC) &&
1467 		 protocol == htons(ETH_P_FCOE)));
1468 }
1469 
1470 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1471 {
1472 	if (can_checksum_protocol(dev->features, skb->protocol))
1473 		return true;
1474 
1475 	if (skb->protocol == htons(ETH_P_8021Q)) {
1476 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1477 		if (can_checksum_protocol(dev->features & dev->vlan_features,
1478 					  veh->h_vlan_encapsulated_proto))
1479 			return true;
1480 	}
1481 
1482 	return false;
1483 }
1484 
1485 /*
1486  * Invalidate hardware checksum when packet is to be mangled, and
1487  * complete checksum manually on outgoing path.
1488  */
1489 int skb_checksum_help(struct sk_buff *skb)
1490 {
1491 	__wsum csum;
1492 	int ret = 0, offset;
1493 
1494 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1495 		goto out_set_summed;
1496 
1497 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1498 		/* Let GSO fix up the checksum. */
1499 		goto out_set_summed;
1500 	}
1501 
1502 	offset = skb->csum_start - skb_headroom(skb);
1503 	BUG_ON(offset >= skb_headlen(skb));
1504 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1505 
1506 	offset += skb->csum_offset;
1507 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1508 
1509 	if (skb_cloned(skb) &&
1510 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1511 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1512 		if (ret)
1513 			goto out;
1514 	}
1515 
1516 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1517 out_set_summed:
1518 	skb->ip_summed = CHECKSUM_NONE;
1519 out:
1520 	return ret;
1521 }
1522 
1523 /**
1524  *	skb_gso_segment - Perform segmentation on skb.
1525  *	@skb: buffer to segment
1526  *	@features: features for the output path (see dev->features)
1527  *
1528  *	This function segments the given skb and returns a list of segments.
1529  *
1530  *	It may return NULL if the skb requires no segmentation.  This is
1531  *	only possible when GSO is used for verifying header integrity.
1532  */
1533 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1534 {
1535 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1536 	struct packet_type *ptype;
1537 	__be16 type = skb->protocol;
1538 	int err;
1539 
1540 	skb_reset_mac_header(skb);
1541 	skb->mac_len = skb->network_header - skb->mac_header;
1542 	__skb_pull(skb, skb->mac_len);
1543 
1544 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1545 		struct net_device *dev = skb->dev;
1546 		struct ethtool_drvinfo info = {};
1547 
1548 		if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1549 			dev->ethtool_ops->get_drvinfo(dev, &info);
1550 
1551 		WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1552 			"ip_summed=%d",
1553 		     info.driver, dev ? dev->features : 0L,
1554 		     skb->sk ? skb->sk->sk_route_caps : 0L,
1555 		     skb->len, skb->data_len, skb->ip_summed);
1556 
1557 		if (skb_header_cloned(skb) &&
1558 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1559 			return ERR_PTR(err);
1560 	}
1561 
1562 	rcu_read_lock();
1563 	list_for_each_entry_rcu(ptype,
1564 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1565 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1566 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1567 				err = ptype->gso_send_check(skb);
1568 				segs = ERR_PTR(err);
1569 				if (err || skb_gso_ok(skb, features))
1570 					break;
1571 				__skb_push(skb, (skb->data -
1572 						 skb_network_header(skb)));
1573 			}
1574 			segs = ptype->gso_segment(skb, features);
1575 			break;
1576 		}
1577 	}
1578 	rcu_read_unlock();
1579 
1580 	__skb_push(skb, skb->data - skb_mac_header(skb));
1581 
1582 	return segs;
1583 }
1584 
1585 EXPORT_SYMBOL(skb_gso_segment);
1586 
1587 /* Take action when hardware reception checksum errors are detected. */
1588 #ifdef CONFIG_BUG
1589 void netdev_rx_csum_fault(struct net_device *dev)
1590 {
1591 	if (net_ratelimit()) {
1592 		printk(KERN_ERR "%s: hw csum failure.\n",
1593 			dev ? dev->name : "<unknown>");
1594 		dump_stack();
1595 	}
1596 }
1597 EXPORT_SYMBOL(netdev_rx_csum_fault);
1598 #endif
1599 
1600 /* Actually, we should eliminate this check as soon as we know, that:
1601  * 1. IOMMU is present and allows to map all the memory.
1602  * 2. No high memory really exists on this machine.
1603  */
1604 
1605 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1606 {
1607 #ifdef CONFIG_HIGHMEM
1608 	int i;
1609 
1610 	if (dev->features & NETIF_F_HIGHDMA)
1611 		return 0;
1612 
1613 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1614 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1615 			return 1;
1616 
1617 #endif
1618 	return 0;
1619 }
1620 
1621 struct dev_gso_cb {
1622 	void (*destructor)(struct sk_buff *skb);
1623 };
1624 
1625 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1626 
1627 static void dev_gso_skb_destructor(struct sk_buff *skb)
1628 {
1629 	struct dev_gso_cb *cb;
1630 
1631 	do {
1632 		struct sk_buff *nskb = skb->next;
1633 
1634 		skb->next = nskb->next;
1635 		nskb->next = NULL;
1636 		kfree_skb(nskb);
1637 	} while (skb->next);
1638 
1639 	cb = DEV_GSO_CB(skb);
1640 	if (cb->destructor)
1641 		cb->destructor(skb);
1642 }
1643 
1644 /**
1645  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1646  *	@skb: buffer to segment
1647  *
1648  *	This function segments the given skb and stores the list of segments
1649  *	in skb->next.
1650  */
1651 static int dev_gso_segment(struct sk_buff *skb)
1652 {
1653 	struct net_device *dev = skb->dev;
1654 	struct sk_buff *segs;
1655 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1656 					 NETIF_F_SG : 0);
1657 
1658 	segs = skb_gso_segment(skb, features);
1659 
1660 	/* Verifying header integrity only. */
1661 	if (!segs)
1662 		return 0;
1663 
1664 	if (IS_ERR(segs))
1665 		return PTR_ERR(segs);
1666 
1667 	skb->next = segs;
1668 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1669 	skb->destructor = dev_gso_skb_destructor;
1670 
1671 	return 0;
1672 }
1673 
1674 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1675 			struct netdev_queue *txq)
1676 {
1677 	const struct net_device_ops *ops = dev->netdev_ops;
1678 	int rc;
1679 
1680 	if (likely(!skb->next)) {
1681 		if (!list_empty(&ptype_all))
1682 			dev_queue_xmit_nit(skb, dev);
1683 
1684 		if (netif_needs_gso(dev, skb)) {
1685 			if (unlikely(dev_gso_segment(skb)))
1686 				goto out_kfree_skb;
1687 			if (skb->next)
1688 				goto gso;
1689 		}
1690 
1691 		rc = ops->ndo_start_xmit(skb, dev);
1692 		/*
1693 		 * TODO: if skb_orphan() was called by
1694 		 * dev->hard_start_xmit() (for example, the unmodified
1695 		 * igb driver does that; bnx2 doesn't), then
1696 		 * skb_tx_software_timestamp() will be unable to send
1697 		 * back the time stamp.
1698 		 *
1699 		 * How can this be prevented? Always create another
1700 		 * reference to the socket before calling
1701 		 * dev->hard_start_xmit()? Prevent that skb_orphan()
1702 		 * does anything in dev->hard_start_xmit() by clearing
1703 		 * the skb destructor before the call and restoring it
1704 		 * afterwards, then doing the skb_orphan() ourselves?
1705 		 */
1706 		return rc;
1707 	}
1708 
1709 gso:
1710 	do {
1711 		struct sk_buff *nskb = skb->next;
1712 
1713 		skb->next = nskb->next;
1714 		nskb->next = NULL;
1715 		rc = ops->ndo_start_xmit(nskb, dev);
1716 		if (unlikely(rc)) {
1717 			nskb->next = skb->next;
1718 			skb->next = nskb;
1719 			return rc;
1720 		}
1721 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1722 			return NETDEV_TX_BUSY;
1723 	} while (skb->next);
1724 
1725 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1726 
1727 out_kfree_skb:
1728 	kfree_skb(skb);
1729 	return 0;
1730 }
1731 
1732 static u32 skb_tx_hashrnd;
1733 
1734 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1735 {
1736 	u32 hash;
1737 
1738 	if (skb_rx_queue_recorded(skb)) {
1739 		hash = skb_get_rx_queue(skb);
1740 	} else if (skb->sk && skb->sk->sk_hash) {
1741 		hash = skb->sk->sk_hash;
1742 	} else
1743 		hash = skb->protocol;
1744 
1745 	hash = jhash_1word(hash, skb_tx_hashrnd);
1746 
1747 	return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1748 }
1749 EXPORT_SYMBOL(skb_tx_hash);
1750 
1751 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1752 					struct sk_buff *skb)
1753 {
1754 	const struct net_device_ops *ops = dev->netdev_ops;
1755 	u16 queue_index = 0;
1756 
1757 	if (ops->ndo_select_queue)
1758 		queue_index = ops->ndo_select_queue(dev, skb);
1759 	else if (dev->real_num_tx_queues > 1)
1760 		queue_index = skb_tx_hash(dev, skb);
1761 
1762 	skb_set_queue_mapping(skb, queue_index);
1763 	return netdev_get_tx_queue(dev, queue_index);
1764 }
1765 
1766 /**
1767  *	dev_queue_xmit - transmit a buffer
1768  *	@skb: buffer to transmit
1769  *
1770  *	Queue a buffer for transmission to a network device. The caller must
1771  *	have set the device and priority and built the buffer before calling
1772  *	this function. The function can be called from an interrupt.
1773  *
1774  *	A negative errno code is returned on a failure. A success does not
1775  *	guarantee the frame will be transmitted as it may be dropped due
1776  *	to congestion or traffic shaping.
1777  *
1778  * -----------------------------------------------------------------------------------
1779  *      I notice this method can also return errors from the queue disciplines,
1780  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1781  *      be positive.
1782  *
1783  *      Regardless of the return value, the skb is consumed, so it is currently
1784  *      difficult to retry a send to this method.  (You can bump the ref count
1785  *      before sending to hold a reference for retry if you are careful.)
1786  *
1787  *      When calling this method, interrupts MUST be enabled.  This is because
1788  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1789  *          --BLG
1790  */
1791 int dev_queue_xmit(struct sk_buff *skb)
1792 {
1793 	struct net_device *dev = skb->dev;
1794 	struct netdev_queue *txq;
1795 	struct Qdisc *q;
1796 	int rc = -ENOMEM;
1797 
1798 	/* GSO will handle the following emulations directly. */
1799 	if (netif_needs_gso(dev, skb))
1800 		goto gso;
1801 
1802 	if (skb_shinfo(skb)->frag_list &&
1803 	    !(dev->features & NETIF_F_FRAGLIST) &&
1804 	    __skb_linearize(skb))
1805 		goto out_kfree_skb;
1806 
1807 	/* Fragmented skb is linearized if device does not support SG,
1808 	 * or if at least one of fragments is in highmem and device
1809 	 * does not support DMA from it.
1810 	 */
1811 	if (skb_shinfo(skb)->nr_frags &&
1812 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1813 	    __skb_linearize(skb))
1814 		goto out_kfree_skb;
1815 
1816 	/* If packet is not checksummed and device does not support
1817 	 * checksumming for this protocol, complete checksumming here.
1818 	 */
1819 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1820 		skb_set_transport_header(skb, skb->csum_start -
1821 					      skb_headroom(skb));
1822 		if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1823 			goto out_kfree_skb;
1824 	}
1825 
1826 gso:
1827 	/* Disable soft irqs for various locks below. Also
1828 	 * stops preemption for RCU.
1829 	 */
1830 	rcu_read_lock_bh();
1831 
1832 	txq = dev_pick_tx(dev, skb);
1833 	q = rcu_dereference(txq->qdisc);
1834 
1835 #ifdef CONFIG_NET_CLS_ACT
1836 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1837 #endif
1838 	if (q->enqueue) {
1839 		spinlock_t *root_lock = qdisc_lock(q);
1840 
1841 		spin_lock(root_lock);
1842 
1843 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1844 			kfree_skb(skb);
1845 			rc = NET_XMIT_DROP;
1846 		} else {
1847 			rc = qdisc_enqueue_root(skb, q);
1848 			qdisc_run(q);
1849 		}
1850 		spin_unlock(root_lock);
1851 
1852 		goto out;
1853 	}
1854 
1855 	/* The device has no queue. Common case for software devices:
1856 	   loopback, all the sorts of tunnels...
1857 
1858 	   Really, it is unlikely that netif_tx_lock protection is necessary
1859 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1860 	   counters.)
1861 	   However, it is possible, that they rely on protection
1862 	   made by us here.
1863 
1864 	   Check this and shot the lock. It is not prone from deadlocks.
1865 	   Either shot noqueue qdisc, it is even simpler 8)
1866 	 */
1867 	if (dev->flags & IFF_UP) {
1868 		int cpu = smp_processor_id(); /* ok because BHs are off */
1869 
1870 		if (txq->xmit_lock_owner != cpu) {
1871 
1872 			HARD_TX_LOCK(dev, txq, cpu);
1873 
1874 			if (!netif_tx_queue_stopped(txq)) {
1875 				rc = 0;
1876 				if (!dev_hard_start_xmit(skb, dev, txq)) {
1877 					HARD_TX_UNLOCK(dev, txq);
1878 					goto out;
1879 				}
1880 			}
1881 			HARD_TX_UNLOCK(dev, txq);
1882 			if (net_ratelimit())
1883 				printk(KERN_CRIT "Virtual device %s asks to "
1884 				       "queue packet!\n", dev->name);
1885 		} else {
1886 			/* Recursion is detected! It is possible,
1887 			 * unfortunately */
1888 			if (net_ratelimit())
1889 				printk(KERN_CRIT "Dead loop on virtual device "
1890 				       "%s, fix it urgently!\n", dev->name);
1891 		}
1892 	}
1893 
1894 	rc = -ENETDOWN;
1895 	rcu_read_unlock_bh();
1896 
1897 out_kfree_skb:
1898 	kfree_skb(skb);
1899 	return rc;
1900 out:
1901 	rcu_read_unlock_bh();
1902 	return rc;
1903 }
1904 
1905 
1906 /*=======================================================================
1907 			Receiver routines
1908   =======================================================================*/
1909 
1910 int netdev_max_backlog __read_mostly = 1000;
1911 int netdev_budget __read_mostly = 300;
1912 int weight_p __read_mostly = 64;            /* old backlog weight */
1913 
1914 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1915 
1916 
1917 /**
1918  *	netif_rx	-	post buffer to the network code
1919  *	@skb: buffer to post
1920  *
1921  *	This function receives a packet from a device driver and queues it for
1922  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1923  *	may be dropped during processing for congestion control or by the
1924  *	protocol layers.
1925  *
1926  *	return values:
1927  *	NET_RX_SUCCESS	(no congestion)
1928  *	NET_RX_DROP     (packet was dropped)
1929  *
1930  */
1931 
1932 int netif_rx(struct sk_buff *skb)
1933 {
1934 	struct softnet_data *queue;
1935 	unsigned long flags;
1936 
1937 	/* if netpoll wants it, pretend we never saw it */
1938 	if (netpoll_rx(skb))
1939 		return NET_RX_DROP;
1940 
1941 	if (!skb->tstamp.tv64)
1942 		net_timestamp(skb);
1943 
1944 	/*
1945 	 * The code is rearranged so that the path is the most
1946 	 * short when CPU is congested, but is still operating.
1947 	 */
1948 	local_irq_save(flags);
1949 	queue = &__get_cpu_var(softnet_data);
1950 
1951 	__get_cpu_var(netdev_rx_stat).total++;
1952 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1953 		if (queue->input_pkt_queue.qlen) {
1954 enqueue:
1955 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1956 			local_irq_restore(flags);
1957 			return NET_RX_SUCCESS;
1958 		}
1959 
1960 		napi_schedule(&queue->backlog);
1961 		goto enqueue;
1962 	}
1963 
1964 	__get_cpu_var(netdev_rx_stat).dropped++;
1965 	local_irq_restore(flags);
1966 
1967 	kfree_skb(skb);
1968 	return NET_RX_DROP;
1969 }
1970 
1971 int netif_rx_ni(struct sk_buff *skb)
1972 {
1973 	int err;
1974 
1975 	preempt_disable();
1976 	err = netif_rx(skb);
1977 	if (local_softirq_pending())
1978 		do_softirq();
1979 	preempt_enable();
1980 
1981 	return err;
1982 }
1983 
1984 EXPORT_SYMBOL(netif_rx_ni);
1985 
1986 static void net_tx_action(struct softirq_action *h)
1987 {
1988 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1989 
1990 	if (sd->completion_queue) {
1991 		struct sk_buff *clist;
1992 
1993 		local_irq_disable();
1994 		clist = sd->completion_queue;
1995 		sd->completion_queue = NULL;
1996 		local_irq_enable();
1997 
1998 		while (clist) {
1999 			struct sk_buff *skb = clist;
2000 			clist = clist->next;
2001 
2002 			WARN_ON(atomic_read(&skb->users));
2003 			__kfree_skb(skb);
2004 		}
2005 	}
2006 
2007 	if (sd->output_queue) {
2008 		struct Qdisc *head;
2009 
2010 		local_irq_disable();
2011 		head = sd->output_queue;
2012 		sd->output_queue = NULL;
2013 		local_irq_enable();
2014 
2015 		while (head) {
2016 			struct Qdisc *q = head;
2017 			spinlock_t *root_lock;
2018 
2019 			head = head->next_sched;
2020 
2021 			root_lock = qdisc_lock(q);
2022 			if (spin_trylock(root_lock)) {
2023 				smp_mb__before_clear_bit();
2024 				clear_bit(__QDISC_STATE_SCHED,
2025 					  &q->state);
2026 				qdisc_run(q);
2027 				spin_unlock(root_lock);
2028 			} else {
2029 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2030 					      &q->state)) {
2031 					__netif_reschedule(q);
2032 				} else {
2033 					smp_mb__before_clear_bit();
2034 					clear_bit(__QDISC_STATE_SCHED,
2035 						  &q->state);
2036 				}
2037 			}
2038 		}
2039 	}
2040 }
2041 
2042 static inline int deliver_skb(struct sk_buff *skb,
2043 			      struct packet_type *pt_prev,
2044 			      struct net_device *orig_dev)
2045 {
2046 	atomic_inc(&skb->users);
2047 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2048 }
2049 
2050 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2051 /* These hooks defined here for ATM */
2052 struct net_bridge;
2053 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2054 						unsigned char *addr);
2055 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2056 
2057 /*
2058  * If bridge module is loaded call bridging hook.
2059  *  returns NULL if packet was consumed.
2060  */
2061 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2062 					struct sk_buff *skb) __read_mostly;
2063 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2064 					    struct packet_type **pt_prev, int *ret,
2065 					    struct net_device *orig_dev)
2066 {
2067 	struct net_bridge_port *port;
2068 
2069 	if (skb->pkt_type == PACKET_LOOPBACK ||
2070 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
2071 		return skb;
2072 
2073 	if (*pt_prev) {
2074 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2075 		*pt_prev = NULL;
2076 	}
2077 
2078 	return br_handle_frame_hook(port, skb);
2079 }
2080 #else
2081 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
2082 #endif
2083 
2084 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2085 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2086 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2087 
2088 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2089 					     struct packet_type **pt_prev,
2090 					     int *ret,
2091 					     struct net_device *orig_dev)
2092 {
2093 	if (skb->dev->macvlan_port == NULL)
2094 		return skb;
2095 
2096 	if (*pt_prev) {
2097 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2098 		*pt_prev = NULL;
2099 	}
2100 	return macvlan_handle_frame_hook(skb);
2101 }
2102 #else
2103 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
2104 #endif
2105 
2106 #ifdef CONFIG_NET_CLS_ACT
2107 /* TODO: Maybe we should just force sch_ingress to be compiled in
2108  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2109  * a compare and 2 stores extra right now if we dont have it on
2110  * but have CONFIG_NET_CLS_ACT
2111  * NOTE: This doesnt stop any functionality; if you dont have
2112  * the ingress scheduler, you just cant add policies on ingress.
2113  *
2114  */
2115 static int ing_filter(struct sk_buff *skb)
2116 {
2117 	struct net_device *dev = skb->dev;
2118 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2119 	struct netdev_queue *rxq;
2120 	int result = TC_ACT_OK;
2121 	struct Qdisc *q;
2122 
2123 	if (MAX_RED_LOOP < ttl++) {
2124 		printk(KERN_WARNING
2125 		       "Redir loop detected Dropping packet (%d->%d)\n",
2126 		       skb->iif, dev->ifindex);
2127 		return TC_ACT_SHOT;
2128 	}
2129 
2130 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2131 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2132 
2133 	rxq = &dev->rx_queue;
2134 
2135 	q = rxq->qdisc;
2136 	if (q != &noop_qdisc) {
2137 		spin_lock(qdisc_lock(q));
2138 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2139 			result = qdisc_enqueue_root(skb, q);
2140 		spin_unlock(qdisc_lock(q));
2141 	}
2142 
2143 	return result;
2144 }
2145 
2146 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2147 					 struct packet_type **pt_prev,
2148 					 int *ret, struct net_device *orig_dev)
2149 {
2150 	if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2151 		goto out;
2152 
2153 	if (*pt_prev) {
2154 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2155 		*pt_prev = NULL;
2156 	} else {
2157 		/* Huh? Why does turning on AF_PACKET affect this? */
2158 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2159 	}
2160 
2161 	switch (ing_filter(skb)) {
2162 	case TC_ACT_SHOT:
2163 	case TC_ACT_STOLEN:
2164 		kfree_skb(skb);
2165 		return NULL;
2166 	}
2167 
2168 out:
2169 	skb->tc_verd = 0;
2170 	return skb;
2171 }
2172 #endif
2173 
2174 /*
2175  * 	netif_nit_deliver - deliver received packets to network taps
2176  * 	@skb: buffer
2177  *
2178  * 	This function is used to deliver incoming packets to network
2179  * 	taps. It should be used when the normal netif_receive_skb path
2180  * 	is bypassed, for example because of VLAN acceleration.
2181  */
2182 void netif_nit_deliver(struct sk_buff *skb)
2183 {
2184 	struct packet_type *ptype;
2185 
2186 	if (list_empty(&ptype_all))
2187 		return;
2188 
2189 	skb_reset_network_header(skb);
2190 	skb_reset_transport_header(skb);
2191 	skb->mac_len = skb->network_header - skb->mac_header;
2192 
2193 	rcu_read_lock();
2194 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2195 		if (!ptype->dev || ptype->dev == skb->dev)
2196 			deliver_skb(skb, ptype, skb->dev);
2197 	}
2198 	rcu_read_unlock();
2199 }
2200 
2201 /**
2202  *	netif_receive_skb - process receive buffer from network
2203  *	@skb: buffer to process
2204  *
2205  *	netif_receive_skb() is the main receive data processing function.
2206  *	It always succeeds. The buffer may be dropped during processing
2207  *	for congestion control or by the protocol layers.
2208  *
2209  *	This function may only be called from softirq context and interrupts
2210  *	should be enabled.
2211  *
2212  *	Return values (usually ignored):
2213  *	NET_RX_SUCCESS: no congestion
2214  *	NET_RX_DROP: packet was dropped
2215  */
2216 int netif_receive_skb(struct sk_buff *skb)
2217 {
2218 	struct packet_type *ptype, *pt_prev;
2219 	struct net_device *orig_dev;
2220 	struct net_device *null_or_orig;
2221 	int ret = NET_RX_DROP;
2222 	__be16 type;
2223 
2224 	if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2225 		return NET_RX_SUCCESS;
2226 
2227 	/* if we've gotten here through NAPI, check netpoll */
2228 	if (netpoll_receive_skb(skb))
2229 		return NET_RX_DROP;
2230 
2231 	if (!skb->tstamp.tv64)
2232 		net_timestamp(skb);
2233 
2234 	if (!skb->iif)
2235 		skb->iif = skb->dev->ifindex;
2236 
2237 	null_or_orig = NULL;
2238 	orig_dev = skb->dev;
2239 	if (orig_dev->master) {
2240 		if (skb_bond_should_drop(skb))
2241 			null_or_orig = orig_dev; /* deliver only exact match */
2242 		else
2243 			skb->dev = orig_dev->master;
2244 	}
2245 
2246 	__get_cpu_var(netdev_rx_stat).total++;
2247 
2248 	skb_reset_network_header(skb);
2249 	skb_reset_transport_header(skb);
2250 	skb->mac_len = skb->network_header - skb->mac_header;
2251 
2252 	pt_prev = NULL;
2253 
2254 	rcu_read_lock();
2255 
2256 #ifdef CONFIG_NET_CLS_ACT
2257 	if (skb->tc_verd & TC_NCLS) {
2258 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2259 		goto ncls;
2260 	}
2261 #endif
2262 
2263 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2264 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2265 		    ptype->dev == orig_dev) {
2266 			if (pt_prev)
2267 				ret = deliver_skb(skb, pt_prev, orig_dev);
2268 			pt_prev = ptype;
2269 		}
2270 	}
2271 
2272 #ifdef CONFIG_NET_CLS_ACT
2273 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2274 	if (!skb)
2275 		goto out;
2276 ncls:
2277 #endif
2278 
2279 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2280 	if (!skb)
2281 		goto out;
2282 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2283 	if (!skb)
2284 		goto out;
2285 
2286 	skb_orphan(skb);
2287 
2288 	type = skb->protocol;
2289 	list_for_each_entry_rcu(ptype,
2290 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2291 		if (ptype->type == type &&
2292 		    (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2293 		     ptype->dev == orig_dev)) {
2294 			if (pt_prev)
2295 				ret = deliver_skb(skb, pt_prev, orig_dev);
2296 			pt_prev = ptype;
2297 		}
2298 	}
2299 
2300 	if (pt_prev) {
2301 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2302 	} else {
2303 		kfree_skb(skb);
2304 		/* Jamal, now you will not able to escape explaining
2305 		 * me how you were going to use this. :-)
2306 		 */
2307 		ret = NET_RX_DROP;
2308 	}
2309 
2310 out:
2311 	rcu_read_unlock();
2312 	return ret;
2313 }
2314 
2315 /* Network device is going away, flush any packets still pending  */
2316 static void flush_backlog(void *arg)
2317 {
2318 	struct net_device *dev = arg;
2319 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2320 	struct sk_buff *skb, *tmp;
2321 
2322 	skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2323 		if (skb->dev == dev) {
2324 			__skb_unlink(skb, &queue->input_pkt_queue);
2325 			kfree_skb(skb);
2326 		}
2327 }
2328 
2329 static int napi_gro_complete(struct sk_buff *skb)
2330 {
2331 	struct packet_type *ptype;
2332 	__be16 type = skb->protocol;
2333 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2334 	int err = -ENOENT;
2335 
2336 	if (NAPI_GRO_CB(skb)->count == 1) {
2337 		skb_shinfo(skb)->gso_size = 0;
2338 		goto out;
2339 	}
2340 
2341 	rcu_read_lock();
2342 	list_for_each_entry_rcu(ptype, head, list) {
2343 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2344 			continue;
2345 
2346 		err = ptype->gro_complete(skb);
2347 		break;
2348 	}
2349 	rcu_read_unlock();
2350 
2351 	if (err) {
2352 		WARN_ON(&ptype->list == head);
2353 		kfree_skb(skb);
2354 		return NET_RX_SUCCESS;
2355 	}
2356 
2357 out:
2358 	return netif_receive_skb(skb);
2359 }
2360 
2361 void napi_gro_flush(struct napi_struct *napi)
2362 {
2363 	struct sk_buff *skb, *next;
2364 
2365 	for (skb = napi->gro_list; skb; skb = next) {
2366 		next = skb->next;
2367 		skb->next = NULL;
2368 		napi_gro_complete(skb);
2369 	}
2370 
2371 	napi->gro_count = 0;
2372 	napi->gro_list = NULL;
2373 }
2374 EXPORT_SYMBOL(napi_gro_flush);
2375 
2376 void *skb_gro_header(struct sk_buff *skb, unsigned int hlen)
2377 {
2378 	unsigned int offset = skb_gro_offset(skb);
2379 
2380 	hlen += offset;
2381 	if (hlen <= skb_headlen(skb))
2382 		return skb->data + offset;
2383 
2384 	if (unlikely(!skb_shinfo(skb)->nr_frags ||
2385 		     skb_shinfo(skb)->frags[0].size <=
2386 		     hlen - skb_headlen(skb) ||
2387 		     PageHighMem(skb_shinfo(skb)->frags[0].page)))
2388 		return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
2389 
2390 	return page_address(skb_shinfo(skb)->frags[0].page) +
2391 	       skb_shinfo(skb)->frags[0].page_offset +
2392 	       offset - skb_headlen(skb);
2393 }
2394 EXPORT_SYMBOL(skb_gro_header);
2395 
2396 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2397 {
2398 	struct sk_buff **pp = NULL;
2399 	struct packet_type *ptype;
2400 	__be16 type = skb->protocol;
2401 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2402 	int same_flow;
2403 	int mac_len;
2404 	int ret;
2405 
2406 	if (!(skb->dev->features & NETIF_F_GRO))
2407 		goto normal;
2408 
2409 	if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2410 		goto normal;
2411 
2412 	rcu_read_lock();
2413 	list_for_each_entry_rcu(ptype, head, list) {
2414 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2415 			continue;
2416 
2417 		skb_set_network_header(skb, skb_gro_offset(skb));
2418 		mac_len = skb->network_header - skb->mac_header;
2419 		skb->mac_len = mac_len;
2420 		NAPI_GRO_CB(skb)->same_flow = 0;
2421 		NAPI_GRO_CB(skb)->flush = 0;
2422 		NAPI_GRO_CB(skb)->free = 0;
2423 
2424 		pp = ptype->gro_receive(&napi->gro_list, skb);
2425 		break;
2426 	}
2427 	rcu_read_unlock();
2428 
2429 	if (&ptype->list == head)
2430 		goto normal;
2431 
2432 	same_flow = NAPI_GRO_CB(skb)->same_flow;
2433 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2434 
2435 	if (pp) {
2436 		struct sk_buff *nskb = *pp;
2437 
2438 		*pp = nskb->next;
2439 		nskb->next = NULL;
2440 		napi_gro_complete(nskb);
2441 		napi->gro_count--;
2442 	}
2443 
2444 	if (same_flow)
2445 		goto ok;
2446 
2447 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2448 		goto normal;
2449 
2450 	napi->gro_count++;
2451 	NAPI_GRO_CB(skb)->count = 1;
2452 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2453 	skb->next = napi->gro_list;
2454 	napi->gro_list = skb;
2455 	ret = GRO_HELD;
2456 
2457 pull:
2458 	if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) {
2459 		if (napi->gro_list == skb)
2460 			napi->gro_list = skb->next;
2461 		ret = GRO_DROP;
2462 	}
2463 
2464 ok:
2465 	return ret;
2466 
2467 normal:
2468 	ret = GRO_NORMAL;
2469 	goto pull;
2470 }
2471 EXPORT_SYMBOL(dev_gro_receive);
2472 
2473 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2474 {
2475 	struct sk_buff *p;
2476 
2477 	if (netpoll_rx_on(skb))
2478 		return GRO_NORMAL;
2479 
2480 	for (p = napi->gro_list; p; p = p->next) {
2481 		NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2482 			&& !compare_ether_header(skb_mac_header(p),
2483 						 skb_gro_mac_header(skb));
2484 		NAPI_GRO_CB(p)->flush = 0;
2485 	}
2486 
2487 	return dev_gro_receive(napi, skb);
2488 }
2489 
2490 int napi_skb_finish(int ret, struct sk_buff *skb)
2491 {
2492 	int err = NET_RX_SUCCESS;
2493 
2494 	switch (ret) {
2495 	case GRO_NORMAL:
2496 		return netif_receive_skb(skb);
2497 
2498 	case GRO_DROP:
2499 		err = NET_RX_DROP;
2500 		/* fall through */
2501 
2502 	case GRO_MERGED_FREE:
2503 		kfree_skb(skb);
2504 		break;
2505 	}
2506 
2507 	return err;
2508 }
2509 EXPORT_SYMBOL(napi_skb_finish);
2510 
2511 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2512 {
2513 	skb_gro_reset_offset(skb);
2514 
2515 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2516 }
2517 EXPORT_SYMBOL(napi_gro_receive);
2518 
2519 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2520 {
2521 	__skb_pull(skb, skb_headlen(skb));
2522 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2523 
2524 	napi->skb = skb;
2525 }
2526 EXPORT_SYMBOL(napi_reuse_skb);
2527 
2528 struct sk_buff *napi_fraginfo_skb(struct napi_struct *napi,
2529 				  struct napi_gro_fraginfo *info)
2530 {
2531 	struct net_device *dev = napi->dev;
2532 	struct sk_buff *skb = napi->skb;
2533 	struct ethhdr *eth;
2534 	skb_frag_t *frag;
2535 	int i;
2536 
2537 	napi->skb = NULL;
2538 
2539 	if (!skb) {
2540 		skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2541 		if (!skb)
2542 			goto out;
2543 
2544 		skb_reserve(skb, NET_IP_ALIGN);
2545 	}
2546 
2547 	BUG_ON(info->nr_frags > MAX_SKB_FRAGS);
2548 	frag = info->frags;
2549 
2550 	for (i = 0; i < info->nr_frags; i++) {
2551 		skb_fill_page_desc(skb, i, frag->page, frag->page_offset,
2552 				   frag->size);
2553 		frag++;
2554 	}
2555 	skb_shinfo(skb)->nr_frags = info->nr_frags;
2556 
2557 	skb->data_len = info->len;
2558 	skb->len += info->len;
2559 	skb->truesize += info->len;
2560 
2561 	skb_reset_mac_header(skb);
2562 	skb_gro_reset_offset(skb);
2563 
2564 	eth = skb_gro_header(skb, sizeof(*eth));
2565 	if (!eth) {
2566 		napi_reuse_skb(napi, skb);
2567 		skb = NULL;
2568 		goto out;
2569 	}
2570 
2571 	skb_gro_pull(skb, sizeof(*eth));
2572 
2573 	/*
2574 	 * This works because the only protocols we care about don't require
2575 	 * special handling.  We'll fix it up properly at the end.
2576 	 */
2577 	skb->protocol = eth->h_proto;
2578 
2579 	skb->ip_summed = info->ip_summed;
2580 	skb->csum = info->csum;
2581 
2582 out:
2583 	return skb;
2584 }
2585 EXPORT_SYMBOL(napi_fraginfo_skb);
2586 
2587 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2588 {
2589 	int err = NET_RX_SUCCESS;
2590 
2591 	switch (ret) {
2592 	case GRO_NORMAL:
2593 	case GRO_HELD:
2594 		skb->protocol = eth_type_trans(skb, napi->dev);
2595 
2596 		if (ret == GRO_NORMAL)
2597 			return netif_receive_skb(skb);
2598 
2599 		skb_gro_pull(skb, -ETH_HLEN);
2600 		break;
2601 
2602 	case GRO_DROP:
2603 		err = NET_RX_DROP;
2604 		/* fall through */
2605 
2606 	case GRO_MERGED_FREE:
2607 		napi_reuse_skb(napi, skb);
2608 		break;
2609 	}
2610 
2611 	return err;
2612 }
2613 EXPORT_SYMBOL(napi_frags_finish);
2614 
2615 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info)
2616 {
2617 	struct sk_buff *skb = napi_fraginfo_skb(napi, info);
2618 
2619 	if (!skb)
2620 		return NET_RX_DROP;
2621 
2622 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2623 }
2624 EXPORT_SYMBOL(napi_gro_frags);
2625 
2626 static int process_backlog(struct napi_struct *napi, int quota)
2627 {
2628 	int work = 0;
2629 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2630 	unsigned long start_time = jiffies;
2631 
2632 	napi->weight = weight_p;
2633 	do {
2634 		struct sk_buff *skb;
2635 
2636 		local_irq_disable();
2637 		skb = __skb_dequeue(&queue->input_pkt_queue);
2638 		if (!skb) {
2639 			__napi_complete(napi);
2640 			local_irq_enable();
2641 			break;
2642 		}
2643 		local_irq_enable();
2644 
2645 		netif_receive_skb(skb);
2646 	} while (++work < quota && jiffies == start_time);
2647 
2648 	return work;
2649 }
2650 
2651 /**
2652  * __napi_schedule - schedule for receive
2653  * @n: entry to schedule
2654  *
2655  * The entry's receive function will be scheduled to run
2656  */
2657 void __napi_schedule(struct napi_struct *n)
2658 {
2659 	unsigned long flags;
2660 
2661 	local_irq_save(flags);
2662 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2663 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2664 	local_irq_restore(flags);
2665 }
2666 EXPORT_SYMBOL(__napi_schedule);
2667 
2668 void __napi_complete(struct napi_struct *n)
2669 {
2670 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2671 	BUG_ON(n->gro_list);
2672 
2673 	list_del(&n->poll_list);
2674 	smp_mb__before_clear_bit();
2675 	clear_bit(NAPI_STATE_SCHED, &n->state);
2676 }
2677 EXPORT_SYMBOL(__napi_complete);
2678 
2679 void napi_complete(struct napi_struct *n)
2680 {
2681 	unsigned long flags;
2682 
2683 	/*
2684 	 * don't let napi dequeue from the cpu poll list
2685 	 * just in case its running on a different cpu
2686 	 */
2687 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2688 		return;
2689 
2690 	napi_gro_flush(n);
2691 	local_irq_save(flags);
2692 	__napi_complete(n);
2693 	local_irq_restore(flags);
2694 }
2695 EXPORT_SYMBOL(napi_complete);
2696 
2697 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2698 		    int (*poll)(struct napi_struct *, int), int weight)
2699 {
2700 	INIT_LIST_HEAD(&napi->poll_list);
2701 	napi->gro_count = 0;
2702 	napi->gro_list = NULL;
2703 	napi->skb = NULL;
2704 	napi->poll = poll;
2705 	napi->weight = weight;
2706 	list_add(&napi->dev_list, &dev->napi_list);
2707 	napi->dev = dev;
2708 #ifdef CONFIG_NETPOLL
2709 	spin_lock_init(&napi->poll_lock);
2710 	napi->poll_owner = -1;
2711 #endif
2712 	set_bit(NAPI_STATE_SCHED, &napi->state);
2713 }
2714 EXPORT_SYMBOL(netif_napi_add);
2715 
2716 void netif_napi_del(struct napi_struct *napi)
2717 {
2718 	struct sk_buff *skb, *next;
2719 
2720 	list_del_init(&napi->dev_list);
2721 	kfree_skb(napi->skb);
2722 
2723 	for (skb = napi->gro_list; skb; skb = next) {
2724 		next = skb->next;
2725 		skb->next = NULL;
2726 		kfree_skb(skb);
2727 	}
2728 
2729 	napi->gro_list = NULL;
2730 	napi->gro_count = 0;
2731 }
2732 EXPORT_SYMBOL(netif_napi_del);
2733 
2734 
2735 static void net_rx_action(struct softirq_action *h)
2736 {
2737 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2738 	unsigned long time_limit = jiffies + 2;
2739 	int budget = netdev_budget;
2740 	void *have;
2741 
2742 	local_irq_disable();
2743 
2744 	while (!list_empty(list)) {
2745 		struct napi_struct *n;
2746 		int work, weight;
2747 
2748 		/* If softirq window is exhuasted then punt.
2749 		 * Allow this to run for 2 jiffies since which will allow
2750 		 * an average latency of 1.5/HZ.
2751 		 */
2752 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2753 			goto softnet_break;
2754 
2755 		local_irq_enable();
2756 
2757 		/* Even though interrupts have been re-enabled, this
2758 		 * access is safe because interrupts can only add new
2759 		 * entries to the tail of this list, and only ->poll()
2760 		 * calls can remove this head entry from the list.
2761 		 */
2762 		n = list_entry(list->next, struct napi_struct, poll_list);
2763 
2764 		have = netpoll_poll_lock(n);
2765 
2766 		weight = n->weight;
2767 
2768 		/* This NAPI_STATE_SCHED test is for avoiding a race
2769 		 * with netpoll's poll_napi().  Only the entity which
2770 		 * obtains the lock and sees NAPI_STATE_SCHED set will
2771 		 * actually make the ->poll() call.  Therefore we avoid
2772 		 * accidently calling ->poll() when NAPI is not scheduled.
2773 		 */
2774 		work = 0;
2775 		if (test_bit(NAPI_STATE_SCHED, &n->state))
2776 			work = n->poll(n, weight);
2777 
2778 		WARN_ON_ONCE(work > weight);
2779 
2780 		budget -= work;
2781 
2782 		local_irq_disable();
2783 
2784 		/* Drivers must not modify the NAPI state if they
2785 		 * consume the entire weight.  In such cases this code
2786 		 * still "owns" the NAPI instance and therefore can
2787 		 * move the instance around on the list at-will.
2788 		 */
2789 		if (unlikely(work == weight)) {
2790 			if (unlikely(napi_disable_pending(n)))
2791 				__napi_complete(n);
2792 			else
2793 				list_move_tail(&n->poll_list, list);
2794 		}
2795 
2796 		netpoll_poll_unlock(have);
2797 	}
2798 out:
2799 	local_irq_enable();
2800 
2801 #ifdef CONFIG_NET_DMA
2802 	/*
2803 	 * There may not be any more sk_buffs coming right now, so push
2804 	 * any pending DMA copies to hardware
2805 	 */
2806 	dma_issue_pending_all();
2807 #endif
2808 
2809 	return;
2810 
2811 softnet_break:
2812 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2813 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2814 	goto out;
2815 }
2816 
2817 static gifconf_func_t * gifconf_list [NPROTO];
2818 
2819 /**
2820  *	register_gifconf	-	register a SIOCGIF handler
2821  *	@family: Address family
2822  *	@gifconf: Function handler
2823  *
2824  *	Register protocol dependent address dumping routines. The handler
2825  *	that is passed must not be freed or reused until it has been replaced
2826  *	by another handler.
2827  */
2828 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2829 {
2830 	if (family >= NPROTO)
2831 		return -EINVAL;
2832 	gifconf_list[family] = gifconf;
2833 	return 0;
2834 }
2835 
2836 
2837 /*
2838  *	Map an interface index to its name (SIOCGIFNAME)
2839  */
2840 
2841 /*
2842  *	We need this ioctl for efficient implementation of the
2843  *	if_indextoname() function required by the IPv6 API.  Without
2844  *	it, we would have to search all the interfaces to find a
2845  *	match.  --pb
2846  */
2847 
2848 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2849 {
2850 	struct net_device *dev;
2851 	struct ifreq ifr;
2852 
2853 	/*
2854 	 *	Fetch the caller's info block.
2855 	 */
2856 
2857 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2858 		return -EFAULT;
2859 
2860 	read_lock(&dev_base_lock);
2861 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2862 	if (!dev) {
2863 		read_unlock(&dev_base_lock);
2864 		return -ENODEV;
2865 	}
2866 
2867 	strcpy(ifr.ifr_name, dev->name);
2868 	read_unlock(&dev_base_lock);
2869 
2870 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2871 		return -EFAULT;
2872 	return 0;
2873 }
2874 
2875 /*
2876  *	Perform a SIOCGIFCONF call. This structure will change
2877  *	size eventually, and there is nothing I can do about it.
2878  *	Thus we will need a 'compatibility mode'.
2879  */
2880 
2881 static int dev_ifconf(struct net *net, char __user *arg)
2882 {
2883 	struct ifconf ifc;
2884 	struct net_device *dev;
2885 	char __user *pos;
2886 	int len;
2887 	int total;
2888 	int i;
2889 
2890 	/*
2891 	 *	Fetch the caller's info block.
2892 	 */
2893 
2894 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2895 		return -EFAULT;
2896 
2897 	pos = ifc.ifc_buf;
2898 	len = ifc.ifc_len;
2899 
2900 	/*
2901 	 *	Loop over the interfaces, and write an info block for each.
2902 	 */
2903 
2904 	total = 0;
2905 	for_each_netdev(net, dev) {
2906 		for (i = 0; i < NPROTO; i++) {
2907 			if (gifconf_list[i]) {
2908 				int done;
2909 				if (!pos)
2910 					done = gifconf_list[i](dev, NULL, 0);
2911 				else
2912 					done = gifconf_list[i](dev, pos + total,
2913 							       len - total);
2914 				if (done < 0)
2915 					return -EFAULT;
2916 				total += done;
2917 			}
2918 		}
2919 	}
2920 
2921 	/*
2922 	 *	All done.  Write the updated control block back to the caller.
2923 	 */
2924 	ifc.ifc_len = total;
2925 
2926 	/*
2927 	 * 	Both BSD and Solaris return 0 here, so we do too.
2928 	 */
2929 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2930 }
2931 
2932 #ifdef CONFIG_PROC_FS
2933 /*
2934  *	This is invoked by the /proc filesystem handler to display a device
2935  *	in detail.
2936  */
2937 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2938 	__acquires(dev_base_lock)
2939 {
2940 	struct net *net = seq_file_net(seq);
2941 	loff_t off;
2942 	struct net_device *dev;
2943 
2944 	read_lock(&dev_base_lock);
2945 	if (!*pos)
2946 		return SEQ_START_TOKEN;
2947 
2948 	off = 1;
2949 	for_each_netdev(net, dev)
2950 		if (off++ == *pos)
2951 			return dev;
2952 
2953 	return NULL;
2954 }
2955 
2956 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2957 {
2958 	struct net *net = seq_file_net(seq);
2959 	++*pos;
2960 	return v == SEQ_START_TOKEN ?
2961 		first_net_device(net) : next_net_device((struct net_device *)v);
2962 }
2963 
2964 void dev_seq_stop(struct seq_file *seq, void *v)
2965 	__releases(dev_base_lock)
2966 {
2967 	read_unlock(&dev_base_lock);
2968 }
2969 
2970 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2971 {
2972 	const struct net_device_stats *stats = dev_get_stats(dev);
2973 
2974 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2975 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2976 		   dev->name, stats->rx_bytes, stats->rx_packets,
2977 		   stats->rx_errors,
2978 		   stats->rx_dropped + stats->rx_missed_errors,
2979 		   stats->rx_fifo_errors,
2980 		   stats->rx_length_errors + stats->rx_over_errors +
2981 		    stats->rx_crc_errors + stats->rx_frame_errors,
2982 		   stats->rx_compressed, stats->multicast,
2983 		   stats->tx_bytes, stats->tx_packets,
2984 		   stats->tx_errors, stats->tx_dropped,
2985 		   stats->tx_fifo_errors, stats->collisions,
2986 		   stats->tx_carrier_errors +
2987 		    stats->tx_aborted_errors +
2988 		    stats->tx_window_errors +
2989 		    stats->tx_heartbeat_errors,
2990 		   stats->tx_compressed);
2991 }
2992 
2993 /*
2994  *	Called from the PROCfs module. This now uses the new arbitrary sized
2995  *	/proc/net interface to create /proc/net/dev
2996  */
2997 static int dev_seq_show(struct seq_file *seq, void *v)
2998 {
2999 	if (v == SEQ_START_TOKEN)
3000 		seq_puts(seq, "Inter-|   Receive                            "
3001 			      "                    |  Transmit\n"
3002 			      " face |bytes    packets errs drop fifo frame "
3003 			      "compressed multicast|bytes    packets errs "
3004 			      "drop fifo colls carrier compressed\n");
3005 	else
3006 		dev_seq_printf_stats(seq, v);
3007 	return 0;
3008 }
3009 
3010 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3011 {
3012 	struct netif_rx_stats *rc = NULL;
3013 
3014 	while (*pos < nr_cpu_ids)
3015 		if (cpu_online(*pos)) {
3016 			rc = &per_cpu(netdev_rx_stat, *pos);
3017 			break;
3018 		} else
3019 			++*pos;
3020 	return rc;
3021 }
3022 
3023 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3024 {
3025 	return softnet_get_online(pos);
3026 }
3027 
3028 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3029 {
3030 	++*pos;
3031 	return softnet_get_online(pos);
3032 }
3033 
3034 static void softnet_seq_stop(struct seq_file *seq, void *v)
3035 {
3036 }
3037 
3038 static int softnet_seq_show(struct seq_file *seq, void *v)
3039 {
3040 	struct netif_rx_stats *s = v;
3041 
3042 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3043 		   s->total, s->dropped, s->time_squeeze, 0,
3044 		   0, 0, 0, 0, /* was fastroute */
3045 		   s->cpu_collision );
3046 	return 0;
3047 }
3048 
3049 static const struct seq_operations dev_seq_ops = {
3050 	.start = dev_seq_start,
3051 	.next  = dev_seq_next,
3052 	.stop  = dev_seq_stop,
3053 	.show  = dev_seq_show,
3054 };
3055 
3056 static int dev_seq_open(struct inode *inode, struct file *file)
3057 {
3058 	return seq_open_net(inode, file, &dev_seq_ops,
3059 			    sizeof(struct seq_net_private));
3060 }
3061 
3062 static const struct file_operations dev_seq_fops = {
3063 	.owner	 = THIS_MODULE,
3064 	.open    = dev_seq_open,
3065 	.read    = seq_read,
3066 	.llseek  = seq_lseek,
3067 	.release = seq_release_net,
3068 };
3069 
3070 static const struct seq_operations softnet_seq_ops = {
3071 	.start = softnet_seq_start,
3072 	.next  = softnet_seq_next,
3073 	.stop  = softnet_seq_stop,
3074 	.show  = softnet_seq_show,
3075 };
3076 
3077 static int softnet_seq_open(struct inode *inode, struct file *file)
3078 {
3079 	return seq_open(file, &softnet_seq_ops);
3080 }
3081 
3082 static const struct file_operations softnet_seq_fops = {
3083 	.owner	 = THIS_MODULE,
3084 	.open    = softnet_seq_open,
3085 	.read    = seq_read,
3086 	.llseek  = seq_lseek,
3087 	.release = seq_release,
3088 };
3089 
3090 static void *ptype_get_idx(loff_t pos)
3091 {
3092 	struct packet_type *pt = NULL;
3093 	loff_t i = 0;
3094 	int t;
3095 
3096 	list_for_each_entry_rcu(pt, &ptype_all, list) {
3097 		if (i == pos)
3098 			return pt;
3099 		++i;
3100 	}
3101 
3102 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3103 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3104 			if (i == pos)
3105 				return pt;
3106 			++i;
3107 		}
3108 	}
3109 	return NULL;
3110 }
3111 
3112 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3113 	__acquires(RCU)
3114 {
3115 	rcu_read_lock();
3116 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3117 }
3118 
3119 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3120 {
3121 	struct packet_type *pt;
3122 	struct list_head *nxt;
3123 	int hash;
3124 
3125 	++*pos;
3126 	if (v == SEQ_START_TOKEN)
3127 		return ptype_get_idx(0);
3128 
3129 	pt = v;
3130 	nxt = pt->list.next;
3131 	if (pt->type == htons(ETH_P_ALL)) {
3132 		if (nxt != &ptype_all)
3133 			goto found;
3134 		hash = 0;
3135 		nxt = ptype_base[0].next;
3136 	} else
3137 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3138 
3139 	while (nxt == &ptype_base[hash]) {
3140 		if (++hash >= PTYPE_HASH_SIZE)
3141 			return NULL;
3142 		nxt = ptype_base[hash].next;
3143 	}
3144 found:
3145 	return list_entry(nxt, struct packet_type, list);
3146 }
3147 
3148 static void ptype_seq_stop(struct seq_file *seq, void *v)
3149 	__releases(RCU)
3150 {
3151 	rcu_read_unlock();
3152 }
3153 
3154 static int ptype_seq_show(struct seq_file *seq, void *v)
3155 {
3156 	struct packet_type *pt = v;
3157 
3158 	if (v == SEQ_START_TOKEN)
3159 		seq_puts(seq, "Type Device      Function\n");
3160 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3161 		if (pt->type == htons(ETH_P_ALL))
3162 			seq_puts(seq, "ALL ");
3163 		else
3164 			seq_printf(seq, "%04x", ntohs(pt->type));
3165 
3166 		seq_printf(seq, " %-8s %pF\n",
3167 			   pt->dev ? pt->dev->name : "", pt->func);
3168 	}
3169 
3170 	return 0;
3171 }
3172 
3173 static const struct seq_operations ptype_seq_ops = {
3174 	.start = ptype_seq_start,
3175 	.next  = ptype_seq_next,
3176 	.stop  = ptype_seq_stop,
3177 	.show  = ptype_seq_show,
3178 };
3179 
3180 static int ptype_seq_open(struct inode *inode, struct file *file)
3181 {
3182 	return seq_open_net(inode, file, &ptype_seq_ops,
3183 			sizeof(struct seq_net_private));
3184 }
3185 
3186 static const struct file_operations ptype_seq_fops = {
3187 	.owner	 = THIS_MODULE,
3188 	.open    = ptype_seq_open,
3189 	.read    = seq_read,
3190 	.llseek  = seq_lseek,
3191 	.release = seq_release_net,
3192 };
3193 
3194 
3195 static int __net_init dev_proc_net_init(struct net *net)
3196 {
3197 	int rc = -ENOMEM;
3198 
3199 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3200 		goto out;
3201 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3202 		goto out_dev;
3203 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3204 		goto out_softnet;
3205 
3206 	if (wext_proc_init(net))
3207 		goto out_ptype;
3208 	rc = 0;
3209 out:
3210 	return rc;
3211 out_ptype:
3212 	proc_net_remove(net, "ptype");
3213 out_softnet:
3214 	proc_net_remove(net, "softnet_stat");
3215 out_dev:
3216 	proc_net_remove(net, "dev");
3217 	goto out;
3218 }
3219 
3220 static void __net_exit dev_proc_net_exit(struct net *net)
3221 {
3222 	wext_proc_exit(net);
3223 
3224 	proc_net_remove(net, "ptype");
3225 	proc_net_remove(net, "softnet_stat");
3226 	proc_net_remove(net, "dev");
3227 }
3228 
3229 static struct pernet_operations __net_initdata dev_proc_ops = {
3230 	.init = dev_proc_net_init,
3231 	.exit = dev_proc_net_exit,
3232 };
3233 
3234 static int __init dev_proc_init(void)
3235 {
3236 	return register_pernet_subsys(&dev_proc_ops);
3237 }
3238 #else
3239 #define dev_proc_init() 0
3240 #endif	/* CONFIG_PROC_FS */
3241 
3242 
3243 /**
3244  *	netdev_set_master	-	set up master/slave pair
3245  *	@slave: slave device
3246  *	@master: new master device
3247  *
3248  *	Changes the master device of the slave. Pass %NULL to break the
3249  *	bonding. The caller must hold the RTNL semaphore. On a failure
3250  *	a negative errno code is returned. On success the reference counts
3251  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3252  *	function returns zero.
3253  */
3254 int netdev_set_master(struct net_device *slave, struct net_device *master)
3255 {
3256 	struct net_device *old = slave->master;
3257 
3258 	ASSERT_RTNL();
3259 
3260 	if (master) {
3261 		if (old)
3262 			return -EBUSY;
3263 		dev_hold(master);
3264 	}
3265 
3266 	slave->master = master;
3267 
3268 	synchronize_net();
3269 
3270 	if (old)
3271 		dev_put(old);
3272 
3273 	if (master)
3274 		slave->flags |= IFF_SLAVE;
3275 	else
3276 		slave->flags &= ~IFF_SLAVE;
3277 
3278 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3279 	return 0;
3280 }
3281 
3282 static void dev_change_rx_flags(struct net_device *dev, int flags)
3283 {
3284 	const struct net_device_ops *ops = dev->netdev_ops;
3285 
3286 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3287 		ops->ndo_change_rx_flags(dev, flags);
3288 }
3289 
3290 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3291 {
3292 	unsigned short old_flags = dev->flags;
3293 	uid_t uid;
3294 	gid_t gid;
3295 
3296 	ASSERT_RTNL();
3297 
3298 	dev->flags |= IFF_PROMISC;
3299 	dev->promiscuity += inc;
3300 	if (dev->promiscuity == 0) {
3301 		/*
3302 		 * Avoid overflow.
3303 		 * If inc causes overflow, untouch promisc and return error.
3304 		 */
3305 		if (inc < 0)
3306 			dev->flags &= ~IFF_PROMISC;
3307 		else {
3308 			dev->promiscuity -= inc;
3309 			printk(KERN_WARNING "%s: promiscuity touches roof, "
3310 				"set promiscuity failed, promiscuity feature "
3311 				"of device might be broken.\n", dev->name);
3312 			return -EOVERFLOW;
3313 		}
3314 	}
3315 	if (dev->flags != old_flags) {
3316 		printk(KERN_INFO "device %s %s promiscuous mode\n",
3317 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3318 							       "left");
3319 		if (audit_enabled) {
3320 			current_uid_gid(&uid, &gid);
3321 			audit_log(current->audit_context, GFP_ATOMIC,
3322 				AUDIT_ANOM_PROMISCUOUS,
3323 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3324 				dev->name, (dev->flags & IFF_PROMISC),
3325 				(old_flags & IFF_PROMISC),
3326 				audit_get_loginuid(current),
3327 				uid, gid,
3328 				audit_get_sessionid(current));
3329 		}
3330 
3331 		dev_change_rx_flags(dev, IFF_PROMISC);
3332 	}
3333 	return 0;
3334 }
3335 
3336 /**
3337  *	dev_set_promiscuity	- update promiscuity count on a device
3338  *	@dev: device
3339  *	@inc: modifier
3340  *
3341  *	Add or remove promiscuity from a device. While the count in the device
3342  *	remains above zero the interface remains promiscuous. Once it hits zero
3343  *	the device reverts back to normal filtering operation. A negative inc
3344  *	value is used to drop promiscuity on the device.
3345  *	Return 0 if successful or a negative errno code on error.
3346  */
3347 int dev_set_promiscuity(struct net_device *dev, int inc)
3348 {
3349 	unsigned short old_flags = dev->flags;
3350 	int err;
3351 
3352 	err = __dev_set_promiscuity(dev, inc);
3353 	if (err < 0)
3354 		return err;
3355 	if (dev->flags != old_flags)
3356 		dev_set_rx_mode(dev);
3357 	return err;
3358 }
3359 
3360 /**
3361  *	dev_set_allmulti	- update allmulti count on a device
3362  *	@dev: device
3363  *	@inc: modifier
3364  *
3365  *	Add or remove reception of all multicast frames to a device. While the
3366  *	count in the device remains above zero the interface remains listening
3367  *	to all interfaces. Once it hits zero the device reverts back to normal
3368  *	filtering operation. A negative @inc value is used to drop the counter
3369  *	when releasing a resource needing all multicasts.
3370  *	Return 0 if successful or a negative errno code on error.
3371  */
3372 
3373 int dev_set_allmulti(struct net_device *dev, int inc)
3374 {
3375 	unsigned short old_flags = dev->flags;
3376 
3377 	ASSERT_RTNL();
3378 
3379 	dev->flags |= IFF_ALLMULTI;
3380 	dev->allmulti += inc;
3381 	if (dev->allmulti == 0) {
3382 		/*
3383 		 * Avoid overflow.
3384 		 * If inc causes overflow, untouch allmulti and return error.
3385 		 */
3386 		if (inc < 0)
3387 			dev->flags &= ~IFF_ALLMULTI;
3388 		else {
3389 			dev->allmulti -= inc;
3390 			printk(KERN_WARNING "%s: allmulti touches roof, "
3391 				"set allmulti failed, allmulti feature of "
3392 				"device might be broken.\n", dev->name);
3393 			return -EOVERFLOW;
3394 		}
3395 	}
3396 	if (dev->flags ^ old_flags) {
3397 		dev_change_rx_flags(dev, IFF_ALLMULTI);
3398 		dev_set_rx_mode(dev);
3399 	}
3400 	return 0;
3401 }
3402 
3403 /*
3404  *	Upload unicast and multicast address lists to device and
3405  *	configure RX filtering. When the device doesn't support unicast
3406  *	filtering it is put in promiscuous mode while unicast addresses
3407  *	are present.
3408  */
3409 void __dev_set_rx_mode(struct net_device *dev)
3410 {
3411 	const struct net_device_ops *ops = dev->netdev_ops;
3412 
3413 	/* dev_open will call this function so the list will stay sane. */
3414 	if (!(dev->flags&IFF_UP))
3415 		return;
3416 
3417 	if (!netif_device_present(dev))
3418 		return;
3419 
3420 	if (ops->ndo_set_rx_mode)
3421 		ops->ndo_set_rx_mode(dev);
3422 	else {
3423 		/* Unicast addresses changes may only happen under the rtnl,
3424 		 * therefore calling __dev_set_promiscuity here is safe.
3425 		 */
3426 		if (dev->uc_count > 0 && !dev->uc_promisc) {
3427 			__dev_set_promiscuity(dev, 1);
3428 			dev->uc_promisc = 1;
3429 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
3430 			__dev_set_promiscuity(dev, -1);
3431 			dev->uc_promisc = 0;
3432 		}
3433 
3434 		if (ops->ndo_set_multicast_list)
3435 			ops->ndo_set_multicast_list(dev);
3436 	}
3437 }
3438 
3439 void dev_set_rx_mode(struct net_device *dev)
3440 {
3441 	netif_addr_lock_bh(dev);
3442 	__dev_set_rx_mode(dev);
3443 	netif_addr_unlock_bh(dev);
3444 }
3445 
3446 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3447 		      void *addr, int alen, int glbl)
3448 {
3449 	struct dev_addr_list *da;
3450 
3451 	for (; (da = *list) != NULL; list = &da->next) {
3452 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3453 		    alen == da->da_addrlen) {
3454 			if (glbl) {
3455 				int old_glbl = da->da_gusers;
3456 				da->da_gusers = 0;
3457 				if (old_glbl == 0)
3458 					break;
3459 			}
3460 			if (--da->da_users)
3461 				return 0;
3462 
3463 			*list = da->next;
3464 			kfree(da);
3465 			(*count)--;
3466 			return 0;
3467 		}
3468 	}
3469 	return -ENOENT;
3470 }
3471 
3472 int __dev_addr_add(struct dev_addr_list **list, int *count,
3473 		   void *addr, int alen, int glbl)
3474 {
3475 	struct dev_addr_list *da;
3476 
3477 	for (da = *list; da != NULL; da = da->next) {
3478 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3479 		    da->da_addrlen == alen) {
3480 			if (glbl) {
3481 				int old_glbl = da->da_gusers;
3482 				da->da_gusers = 1;
3483 				if (old_glbl)
3484 					return 0;
3485 			}
3486 			da->da_users++;
3487 			return 0;
3488 		}
3489 	}
3490 
3491 	da = kzalloc(sizeof(*da), GFP_ATOMIC);
3492 	if (da == NULL)
3493 		return -ENOMEM;
3494 	memcpy(da->da_addr, addr, alen);
3495 	da->da_addrlen = alen;
3496 	da->da_users = 1;
3497 	da->da_gusers = glbl ? 1 : 0;
3498 	da->next = *list;
3499 	*list = da;
3500 	(*count)++;
3501 	return 0;
3502 }
3503 
3504 /**
3505  *	dev_unicast_delete	- Release secondary unicast address.
3506  *	@dev: device
3507  *	@addr: address to delete
3508  *	@alen: length of @addr
3509  *
3510  *	Release reference to a secondary unicast address and remove it
3511  *	from the device if the reference count drops to zero.
3512  *
3513  * 	The caller must hold the rtnl_mutex.
3514  */
3515 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3516 {
3517 	int err;
3518 
3519 	ASSERT_RTNL();
3520 
3521 	netif_addr_lock_bh(dev);
3522 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3523 	if (!err)
3524 		__dev_set_rx_mode(dev);
3525 	netif_addr_unlock_bh(dev);
3526 	return err;
3527 }
3528 EXPORT_SYMBOL(dev_unicast_delete);
3529 
3530 /**
3531  *	dev_unicast_add		- add a secondary unicast address
3532  *	@dev: device
3533  *	@addr: address to add
3534  *	@alen: length of @addr
3535  *
3536  *	Add a secondary unicast address to the device or increase
3537  *	the reference count if it already exists.
3538  *
3539  *	The caller must hold the rtnl_mutex.
3540  */
3541 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3542 {
3543 	int err;
3544 
3545 	ASSERT_RTNL();
3546 
3547 	netif_addr_lock_bh(dev);
3548 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3549 	if (!err)
3550 		__dev_set_rx_mode(dev);
3551 	netif_addr_unlock_bh(dev);
3552 	return err;
3553 }
3554 EXPORT_SYMBOL(dev_unicast_add);
3555 
3556 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3557 		    struct dev_addr_list **from, int *from_count)
3558 {
3559 	struct dev_addr_list *da, *next;
3560 	int err = 0;
3561 
3562 	da = *from;
3563 	while (da != NULL) {
3564 		next = da->next;
3565 		if (!da->da_synced) {
3566 			err = __dev_addr_add(to, to_count,
3567 					     da->da_addr, da->da_addrlen, 0);
3568 			if (err < 0)
3569 				break;
3570 			da->da_synced = 1;
3571 			da->da_users++;
3572 		} else if (da->da_users == 1) {
3573 			__dev_addr_delete(to, to_count,
3574 					  da->da_addr, da->da_addrlen, 0);
3575 			__dev_addr_delete(from, from_count,
3576 					  da->da_addr, da->da_addrlen, 0);
3577 		}
3578 		da = next;
3579 	}
3580 	return err;
3581 }
3582 
3583 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3584 		       struct dev_addr_list **from, int *from_count)
3585 {
3586 	struct dev_addr_list *da, *next;
3587 
3588 	da = *from;
3589 	while (da != NULL) {
3590 		next = da->next;
3591 		if (da->da_synced) {
3592 			__dev_addr_delete(to, to_count,
3593 					  da->da_addr, da->da_addrlen, 0);
3594 			da->da_synced = 0;
3595 			__dev_addr_delete(from, from_count,
3596 					  da->da_addr, da->da_addrlen, 0);
3597 		}
3598 		da = next;
3599 	}
3600 }
3601 
3602 /**
3603  *	dev_unicast_sync - Synchronize device's unicast list to another device
3604  *	@to: destination device
3605  *	@from: source device
3606  *
3607  *	Add newly added addresses to the destination device and release
3608  *	addresses that have no users left. The source device must be
3609  *	locked by netif_tx_lock_bh.
3610  *
3611  *	This function is intended to be called from the dev->set_rx_mode
3612  *	function of layered software devices.
3613  */
3614 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3615 {
3616 	int err = 0;
3617 
3618 	netif_addr_lock_bh(to);
3619 	err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3620 			      &from->uc_list, &from->uc_count);
3621 	if (!err)
3622 		__dev_set_rx_mode(to);
3623 	netif_addr_unlock_bh(to);
3624 	return err;
3625 }
3626 EXPORT_SYMBOL(dev_unicast_sync);
3627 
3628 /**
3629  *	dev_unicast_unsync - Remove synchronized addresses from the destination device
3630  *	@to: destination device
3631  *	@from: source device
3632  *
3633  *	Remove all addresses that were added to the destination device by
3634  *	dev_unicast_sync(). This function is intended to be called from the
3635  *	dev->stop function of layered software devices.
3636  */
3637 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3638 {
3639 	netif_addr_lock_bh(from);
3640 	netif_addr_lock(to);
3641 
3642 	__dev_addr_unsync(&to->uc_list, &to->uc_count,
3643 			  &from->uc_list, &from->uc_count);
3644 	__dev_set_rx_mode(to);
3645 
3646 	netif_addr_unlock(to);
3647 	netif_addr_unlock_bh(from);
3648 }
3649 EXPORT_SYMBOL(dev_unicast_unsync);
3650 
3651 static void __dev_addr_discard(struct dev_addr_list **list)
3652 {
3653 	struct dev_addr_list *tmp;
3654 
3655 	while (*list != NULL) {
3656 		tmp = *list;
3657 		*list = tmp->next;
3658 		if (tmp->da_users > tmp->da_gusers)
3659 			printk("__dev_addr_discard: address leakage! "
3660 			       "da_users=%d\n", tmp->da_users);
3661 		kfree(tmp);
3662 	}
3663 }
3664 
3665 static void dev_addr_discard(struct net_device *dev)
3666 {
3667 	netif_addr_lock_bh(dev);
3668 
3669 	__dev_addr_discard(&dev->uc_list);
3670 	dev->uc_count = 0;
3671 
3672 	__dev_addr_discard(&dev->mc_list);
3673 	dev->mc_count = 0;
3674 
3675 	netif_addr_unlock_bh(dev);
3676 }
3677 
3678 /**
3679  *	dev_get_flags - get flags reported to userspace
3680  *	@dev: device
3681  *
3682  *	Get the combination of flag bits exported through APIs to userspace.
3683  */
3684 unsigned dev_get_flags(const struct net_device *dev)
3685 {
3686 	unsigned flags;
3687 
3688 	flags = (dev->flags & ~(IFF_PROMISC |
3689 				IFF_ALLMULTI |
3690 				IFF_RUNNING |
3691 				IFF_LOWER_UP |
3692 				IFF_DORMANT)) |
3693 		(dev->gflags & (IFF_PROMISC |
3694 				IFF_ALLMULTI));
3695 
3696 	if (netif_running(dev)) {
3697 		if (netif_oper_up(dev))
3698 			flags |= IFF_RUNNING;
3699 		if (netif_carrier_ok(dev))
3700 			flags |= IFF_LOWER_UP;
3701 		if (netif_dormant(dev))
3702 			flags |= IFF_DORMANT;
3703 	}
3704 
3705 	return flags;
3706 }
3707 
3708 /**
3709  *	dev_change_flags - change device settings
3710  *	@dev: device
3711  *	@flags: device state flags
3712  *
3713  *	Change settings on device based state flags. The flags are
3714  *	in the userspace exported format.
3715  */
3716 int dev_change_flags(struct net_device *dev, unsigned flags)
3717 {
3718 	int ret, changes;
3719 	int old_flags = dev->flags;
3720 
3721 	ASSERT_RTNL();
3722 
3723 	/*
3724 	 *	Set the flags on our device.
3725 	 */
3726 
3727 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3728 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3729 			       IFF_AUTOMEDIA)) |
3730 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3731 				    IFF_ALLMULTI));
3732 
3733 	/*
3734 	 *	Load in the correct multicast list now the flags have changed.
3735 	 */
3736 
3737 	if ((old_flags ^ flags) & IFF_MULTICAST)
3738 		dev_change_rx_flags(dev, IFF_MULTICAST);
3739 
3740 	dev_set_rx_mode(dev);
3741 
3742 	/*
3743 	 *	Have we downed the interface. We handle IFF_UP ourselves
3744 	 *	according to user attempts to set it, rather than blindly
3745 	 *	setting it.
3746 	 */
3747 
3748 	ret = 0;
3749 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3750 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3751 
3752 		if (!ret)
3753 			dev_set_rx_mode(dev);
3754 	}
3755 
3756 	if (dev->flags & IFF_UP &&
3757 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3758 					  IFF_VOLATILE)))
3759 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3760 
3761 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3762 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3763 		dev->gflags ^= IFF_PROMISC;
3764 		dev_set_promiscuity(dev, inc);
3765 	}
3766 
3767 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3768 	   is important. Some (broken) drivers set IFF_PROMISC, when
3769 	   IFF_ALLMULTI is requested not asking us and not reporting.
3770 	 */
3771 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3772 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3773 		dev->gflags ^= IFF_ALLMULTI;
3774 		dev_set_allmulti(dev, inc);
3775 	}
3776 
3777 	/* Exclude state transition flags, already notified */
3778 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3779 	if (changes)
3780 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3781 
3782 	return ret;
3783 }
3784 
3785 /**
3786  *	dev_set_mtu - Change maximum transfer unit
3787  *	@dev: device
3788  *	@new_mtu: new transfer unit
3789  *
3790  *	Change the maximum transfer size of the network device.
3791  */
3792 int dev_set_mtu(struct net_device *dev, int new_mtu)
3793 {
3794 	const struct net_device_ops *ops = dev->netdev_ops;
3795 	int err;
3796 
3797 	if (new_mtu == dev->mtu)
3798 		return 0;
3799 
3800 	/*	MTU must be positive.	 */
3801 	if (new_mtu < 0)
3802 		return -EINVAL;
3803 
3804 	if (!netif_device_present(dev))
3805 		return -ENODEV;
3806 
3807 	err = 0;
3808 	if (ops->ndo_change_mtu)
3809 		err = ops->ndo_change_mtu(dev, new_mtu);
3810 	else
3811 		dev->mtu = new_mtu;
3812 
3813 	if (!err && dev->flags & IFF_UP)
3814 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3815 	return err;
3816 }
3817 
3818 /**
3819  *	dev_set_mac_address - Change Media Access Control Address
3820  *	@dev: device
3821  *	@sa: new address
3822  *
3823  *	Change the hardware (MAC) address of the device
3824  */
3825 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3826 {
3827 	const struct net_device_ops *ops = dev->netdev_ops;
3828 	int err;
3829 
3830 	if (!ops->ndo_set_mac_address)
3831 		return -EOPNOTSUPP;
3832 	if (sa->sa_family != dev->type)
3833 		return -EINVAL;
3834 	if (!netif_device_present(dev))
3835 		return -ENODEV;
3836 	err = ops->ndo_set_mac_address(dev, sa);
3837 	if (!err)
3838 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3839 	return err;
3840 }
3841 
3842 /*
3843  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3844  */
3845 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3846 {
3847 	int err;
3848 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3849 
3850 	if (!dev)
3851 		return -ENODEV;
3852 
3853 	switch (cmd) {
3854 		case SIOCGIFFLAGS:	/* Get interface flags */
3855 			ifr->ifr_flags = dev_get_flags(dev);
3856 			return 0;
3857 
3858 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3859 					   (currently unused) */
3860 			ifr->ifr_metric = 0;
3861 			return 0;
3862 
3863 		case SIOCGIFMTU:	/* Get the MTU of a device */
3864 			ifr->ifr_mtu = dev->mtu;
3865 			return 0;
3866 
3867 		case SIOCGIFHWADDR:
3868 			if (!dev->addr_len)
3869 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3870 			else
3871 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3872 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3873 			ifr->ifr_hwaddr.sa_family = dev->type;
3874 			return 0;
3875 
3876 		case SIOCGIFSLAVE:
3877 			err = -EINVAL;
3878 			break;
3879 
3880 		case SIOCGIFMAP:
3881 			ifr->ifr_map.mem_start = dev->mem_start;
3882 			ifr->ifr_map.mem_end   = dev->mem_end;
3883 			ifr->ifr_map.base_addr = dev->base_addr;
3884 			ifr->ifr_map.irq       = dev->irq;
3885 			ifr->ifr_map.dma       = dev->dma;
3886 			ifr->ifr_map.port      = dev->if_port;
3887 			return 0;
3888 
3889 		case SIOCGIFINDEX:
3890 			ifr->ifr_ifindex = dev->ifindex;
3891 			return 0;
3892 
3893 		case SIOCGIFTXQLEN:
3894 			ifr->ifr_qlen = dev->tx_queue_len;
3895 			return 0;
3896 
3897 		default:
3898 			/* dev_ioctl() should ensure this case
3899 			 * is never reached
3900 			 */
3901 			WARN_ON(1);
3902 			err = -EINVAL;
3903 			break;
3904 
3905 	}
3906 	return err;
3907 }
3908 
3909 /*
3910  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3911  */
3912 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3913 {
3914 	int err;
3915 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3916 	const struct net_device_ops *ops;
3917 
3918 	if (!dev)
3919 		return -ENODEV;
3920 
3921 	ops = dev->netdev_ops;
3922 
3923 	switch (cmd) {
3924 		case SIOCSIFFLAGS:	/* Set interface flags */
3925 			return dev_change_flags(dev, ifr->ifr_flags);
3926 
3927 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3928 					   (currently unused) */
3929 			return -EOPNOTSUPP;
3930 
3931 		case SIOCSIFMTU:	/* Set the MTU of a device */
3932 			return dev_set_mtu(dev, ifr->ifr_mtu);
3933 
3934 		case SIOCSIFHWADDR:
3935 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3936 
3937 		case SIOCSIFHWBROADCAST:
3938 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3939 				return -EINVAL;
3940 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3941 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3942 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3943 			return 0;
3944 
3945 		case SIOCSIFMAP:
3946 			if (ops->ndo_set_config) {
3947 				if (!netif_device_present(dev))
3948 					return -ENODEV;
3949 				return ops->ndo_set_config(dev, &ifr->ifr_map);
3950 			}
3951 			return -EOPNOTSUPP;
3952 
3953 		case SIOCADDMULTI:
3954 			if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3955 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3956 				return -EINVAL;
3957 			if (!netif_device_present(dev))
3958 				return -ENODEV;
3959 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3960 					  dev->addr_len, 1);
3961 
3962 		case SIOCDELMULTI:
3963 			if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3964 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3965 				return -EINVAL;
3966 			if (!netif_device_present(dev))
3967 				return -ENODEV;
3968 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3969 					     dev->addr_len, 1);
3970 
3971 		case SIOCSIFTXQLEN:
3972 			if (ifr->ifr_qlen < 0)
3973 				return -EINVAL;
3974 			dev->tx_queue_len = ifr->ifr_qlen;
3975 			return 0;
3976 
3977 		case SIOCSIFNAME:
3978 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3979 			return dev_change_name(dev, ifr->ifr_newname);
3980 
3981 		/*
3982 		 *	Unknown or private ioctl
3983 		 */
3984 
3985 		default:
3986 			if ((cmd >= SIOCDEVPRIVATE &&
3987 			    cmd <= SIOCDEVPRIVATE + 15) ||
3988 			    cmd == SIOCBONDENSLAVE ||
3989 			    cmd == SIOCBONDRELEASE ||
3990 			    cmd == SIOCBONDSETHWADDR ||
3991 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3992 			    cmd == SIOCBONDINFOQUERY ||
3993 			    cmd == SIOCBONDCHANGEACTIVE ||
3994 			    cmd == SIOCGMIIPHY ||
3995 			    cmd == SIOCGMIIREG ||
3996 			    cmd == SIOCSMIIREG ||
3997 			    cmd == SIOCBRADDIF ||
3998 			    cmd == SIOCBRDELIF ||
3999 			    cmd == SIOCSHWTSTAMP ||
4000 			    cmd == SIOCWANDEV) {
4001 				err = -EOPNOTSUPP;
4002 				if (ops->ndo_do_ioctl) {
4003 					if (netif_device_present(dev))
4004 						err = ops->ndo_do_ioctl(dev, ifr, cmd);
4005 					else
4006 						err = -ENODEV;
4007 				}
4008 			} else
4009 				err = -EINVAL;
4010 
4011 	}
4012 	return err;
4013 }
4014 
4015 /*
4016  *	This function handles all "interface"-type I/O control requests. The actual
4017  *	'doing' part of this is dev_ifsioc above.
4018  */
4019 
4020 /**
4021  *	dev_ioctl	-	network device ioctl
4022  *	@net: the applicable net namespace
4023  *	@cmd: command to issue
4024  *	@arg: pointer to a struct ifreq in user space
4025  *
4026  *	Issue ioctl functions to devices. This is normally called by the
4027  *	user space syscall interfaces but can sometimes be useful for
4028  *	other purposes. The return value is the return from the syscall if
4029  *	positive or a negative errno code on error.
4030  */
4031 
4032 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4033 {
4034 	struct ifreq ifr;
4035 	int ret;
4036 	char *colon;
4037 
4038 	/* One special case: SIOCGIFCONF takes ifconf argument
4039 	   and requires shared lock, because it sleeps writing
4040 	   to user space.
4041 	 */
4042 
4043 	if (cmd == SIOCGIFCONF) {
4044 		rtnl_lock();
4045 		ret = dev_ifconf(net, (char __user *) arg);
4046 		rtnl_unlock();
4047 		return ret;
4048 	}
4049 	if (cmd == SIOCGIFNAME)
4050 		return dev_ifname(net, (struct ifreq __user *)arg);
4051 
4052 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4053 		return -EFAULT;
4054 
4055 	ifr.ifr_name[IFNAMSIZ-1] = 0;
4056 
4057 	colon = strchr(ifr.ifr_name, ':');
4058 	if (colon)
4059 		*colon = 0;
4060 
4061 	/*
4062 	 *	See which interface the caller is talking about.
4063 	 */
4064 
4065 	switch (cmd) {
4066 		/*
4067 		 *	These ioctl calls:
4068 		 *	- can be done by all.
4069 		 *	- atomic and do not require locking.
4070 		 *	- return a value
4071 		 */
4072 		case SIOCGIFFLAGS:
4073 		case SIOCGIFMETRIC:
4074 		case SIOCGIFMTU:
4075 		case SIOCGIFHWADDR:
4076 		case SIOCGIFSLAVE:
4077 		case SIOCGIFMAP:
4078 		case SIOCGIFINDEX:
4079 		case SIOCGIFTXQLEN:
4080 			dev_load(net, ifr.ifr_name);
4081 			read_lock(&dev_base_lock);
4082 			ret = dev_ifsioc_locked(net, &ifr, cmd);
4083 			read_unlock(&dev_base_lock);
4084 			if (!ret) {
4085 				if (colon)
4086 					*colon = ':';
4087 				if (copy_to_user(arg, &ifr,
4088 						 sizeof(struct ifreq)))
4089 					ret = -EFAULT;
4090 			}
4091 			return ret;
4092 
4093 		case SIOCETHTOOL:
4094 			dev_load(net, ifr.ifr_name);
4095 			rtnl_lock();
4096 			ret = dev_ethtool(net, &ifr);
4097 			rtnl_unlock();
4098 			if (!ret) {
4099 				if (colon)
4100 					*colon = ':';
4101 				if (copy_to_user(arg, &ifr,
4102 						 sizeof(struct ifreq)))
4103 					ret = -EFAULT;
4104 			}
4105 			return ret;
4106 
4107 		/*
4108 		 *	These ioctl calls:
4109 		 *	- require superuser power.
4110 		 *	- require strict serialization.
4111 		 *	- return a value
4112 		 */
4113 		case SIOCGMIIPHY:
4114 		case SIOCGMIIREG:
4115 		case SIOCSIFNAME:
4116 			if (!capable(CAP_NET_ADMIN))
4117 				return -EPERM;
4118 			dev_load(net, ifr.ifr_name);
4119 			rtnl_lock();
4120 			ret = dev_ifsioc(net, &ifr, cmd);
4121 			rtnl_unlock();
4122 			if (!ret) {
4123 				if (colon)
4124 					*colon = ':';
4125 				if (copy_to_user(arg, &ifr,
4126 						 sizeof(struct ifreq)))
4127 					ret = -EFAULT;
4128 			}
4129 			return ret;
4130 
4131 		/*
4132 		 *	These ioctl calls:
4133 		 *	- require superuser power.
4134 		 *	- require strict serialization.
4135 		 *	- do not return a value
4136 		 */
4137 		case SIOCSIFFLAGS:
4138 		case SIOCSIFMETRIC:
4139 		case SIOCSIFMTU:
4140 		case SIOCSIFMAP:
4141 		case SIOCSIFHWADDR:
4142 		case SIOCSIFSLAVE:
4143 		case SIOCADDMULTI:
4144 		case SIOCDELMULTI:
4145 		case SIOCSIFHWBROADCAST:
4146 		case SIOCSIFTXQLEN:
4147 		case SIOCSMIIREG:
4148 		case SIOCBONDENSLAVE:
4149 		case SIOCBONDRELEASE:
4150 		case SIOCBONDSETHWADDR:
4151 		case SIOCBONDCHANGEACTIVE:
4152 		case SIOCBRADDIF:
4153 		case SIOCBRDELIF:
4154 		case SIOCSHWTSTAMP:
4155 			if (!capable(CAP_NET_ADMIN))
4156 				return -EPERM;
4157 			/* fall through */
4158 		case SIOCBONDSLAVEINFOQUERY:
4159 		case SIOCBONDINFOQUERY:
4160 			dev_load(net, ifr.ifr_name);
4161 			rtnl_lock();
4162 			ret = dev_ifsioc(net, &ifr, cmd);
4163 			rtnl_unlock();
4164 			return ret;
4165 
4166 		case SIOCGIFMEM:
4167 			/* Get the per device memory space. We can add this but
4168 			 * currently do not support it */
4169 		case SIOCSIFMEM:
4170 			/* Set the per device memory buffer space.
4171 			 * Not applicable in our case */
4172 		case SIOCSIFLINK:
4173 			return -EINVAL;
4174 
4175 		/*
4176 		 *	Unknown or private ioctl.
4177 		 */
4178 		default:
4179 			if (cmd == SIOCWANDEV ||
4180 			    (cmd >= SIOCDEVPRIVATE &&
4181 			     cmd <= SIOCDEVPRIVATE + 15)) {
4182 				dev_load(net, ifr.ifr_name);
4183 				rtnl_lock();
4184 				ret = dev_ifsioc(net, &ifr, cmd);
4185 				rtnl_unlock();
4186 				if (!ret && copy_to_user(arg, &ifr,
4187 							 sizeof(struct ifreq)))
4188 					ret = -EFAULT;
4189 				return ret;
4190 			}
4191 			/* Take care of Wireless Extensions */
4192 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4193 				return wext_handle_ioctl(net, &ifr, cmd, arg);
4194 			return -EINVAL;
4195 	}
4196 }
4197 
4198 
4199 /**
4200  *	dev_new_index	-	allocate an ifindex
4201  *	@net: the applicable net namespace
4202  *
4203  *	Returns a suitable unique value for a new device interface
4204  *	number.  The caller must hold the rtnl semaphore or the
4205  *	dev_base_lock to be sure it remains unique.
4206  */
4207 static int dev_new_index(struct net *net)
4208 {
4209 	static int ifindex;
4210 	for (;;) {
4211 		if (++ifindex <= 0)
4212 			ifindex = 1;
4213 		if (!__dev_get_by_index(net, ifindex))
4214 			return ifindex;
4215 	}
4216 }
4217 
4218 /* Delayed registration/unregisteration */
4219 static LIST_HEAD(net_todo_list);
4220 
4221 static void net_set_todo(struct net_device *dev)
4222 {
4223 	list_add_tail(&dev->todo_list, &net_todo_list);
4224 }
4225 
4226 static void rollback_registered(struct net_device *dev)
4227 {
4228 	BUG_ON(dev_boot_phase);
4229 	ASSERT_RTNL();
4230 
4231 	/* Some devices call without registering for initialization unwind. */
4232 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4233 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4234 				  "was registered\n", dev->name, dev);
4235 
4236 		WARN_ON(1);
4237 		return;
4238 	}
4239 
4240 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
4241 
4242 	/* If device is running, close it first. */
4243 	dev_close(dev);
4244 
4245 	/* And unlink it from device chain. */
4246 	unlist_netdevice(dev);
4247 
4248 	dev->reg_state = NETREG_UNREGISTERING;
4249 
4250 	synchronize_net();
4251 
4252 	/* Shutdown queueing discipline. */
4253 	dev_shutdown(dev);
4254 
4255 
4256 	/* Notify protocols, that we are about to destroy
4257 	   this device. They should clean all the things.
4258 	*/
4259 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4260 
4261 	/*
4262 	 *	Flush the unicast and multicast chains
4263 	 */
4264 	dev_addr_discard(dev);
4265 
4266 	if (dev->netdev_ops->ndo_uninit)
4267 		dev->netdev_ops->ndo_uninit(dev);
4268 
4269 	/* Notifier chain MUST detach us from master device. */
4270 	WARN_ON(dev->master);
4271 
4272 	/* Remove entries from kobject tree */
4273 	netdev_unregister_kobject(dev);
4274 
4275 	synchronize_net();
4276 
4277 	dev_put(dev);
4278 }
4279 
4280 static void __netdev_init_queue_locks_one(struct net_device *dev,
4281 					  struct netdev_queue *dev_queue,
4282 					  void *_unused)
4283 {
4284 	spin_lock_init(&dev_queue->_xmit_lock);
4285 	netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4286 	dev_queue->xmit_lock_owner = -1;
4287 }
4288 
4289 static void netdev_init_queue_locks(struct net_device *dev)
4290 {
4291 	netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4292 	__netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4293 }
4294 
4295 unsigned long netdev_fix_features(unsigned long features, const char *name)
4296 {
4297 	/* Fix illegal SG+CSUM combinations. */
4298 	if ((features & NETIF_F_SG) &&
4299 	    !(features & NETIF_F_ALL_CSUM)) {
4300 		if (name)
4301 			printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4302 			       "checksum feature.\n", name);
4303 		features &= ~NETIF_F_SG;
4304 	}
4305 
4306 	/* TSO requires that SG is present as well. */
4307 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4308 		if (name)
4309 			printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4310 			       "SG feature.\n", name);
4311 		features &= ~NETIF_F_TSO;
4312 	}
4313 
4314 	if (features & NETIF_F_UFO) {
4315 		if (!(features & NETIF_F_GEN_CSUM)) {
4316 			if (name)
4317 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4318 				       "since no NETIF_F_HW_CSUM feature.\n",
4319 				       name);
4320 			features &= ~NETIF_F_UFO;
4321 		}
4322 
4323 		if (!(features & NETIF_F_SG)) {
4324 			if (name)
4325 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4326 				       "since no NETIF_F_SG feature.\n", name);
4327 			features &= ~NETIF_F_UFO;
4328 		}
4329 	}
4330 
4331 	return features;
4332 }
4333 EXPORT_SYMBOL(netdev_fix_features);
4334 
4335 /* Some devices need to (re-)set their netdev_ops inside
4336  * ->init() or similar.  If that happens, we have to setup
4337  * the compat pointers again.
4338  */
4339 void netdev_resync_ops(struct net_device *dev)
4340 {
4341 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4342 	const struct net_device_ops *ops = dev->netdev_ops;
4343 
4344 	dev->init = ops->ndo_init;
4345 	dev->uninit = ops->ndo_uninit;
4346 	dev->open = ops->ndo_open;
4347 	dev->change_rx_flags = ops->ndo_change_rx_flags;
4348 	dev->set_rx_mode = ops->ndo_set_rx_mode;
4349 	dev->set_multicast_list = ops->ndo_set_multicast_list;
4350 	dev->set_mac_address = ops->ndo_set_mac_address;
4351 	dev->validate_addr = ops->ndo_validate_addr;
4352 	dev->do_ioctl = ops->ndo_do_ioctl;
4353 	dev->set_config = ops->ndo_set_config;
4354 	dev->change_mtu = ops->ndo_change_mtu;
4355 	dev->neigh_setup = ops->ndo_neigh_setup;
4356 	dev->tx_timeout = ops->ndo_tx_timeout;
4357 	dev->get_stats = ops->ndo_get_stats;
4358 	dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4359 	dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4360 	dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4361 #ifdef CONFIG_NET_POLL_CONTROLLER
4362 	dev->poll_controller = ops->ndo_poll_controller;
4363 #endif
4364 #endif
4365 }
4366 EXPORT_SYMBOL(netdev_resync_ops);
4367 
4368 /**
4369  *	register_netdevice	- register a network device
4370  *	@dev: device to register
4371  *
4372  *	Take a completed network device structure and add it to the kernel
4373  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4374  *	chain. 0 is returned on success. A negative errno code is returned
4375  *	on a failure to set up the device, or if the name is a duplicate.
4376  *
4377  *	Callers must hold the rtnl semaphore. You may want
4378  *	register_netdev() instead of this.
4379  *
4380  *	BUGS:
4381  *	The locking appears insufficient to guarantee two parallel registers
4382  *	will not get the same name.
4383  */
4384 
4385 int register_netdevice(struct net_device *dev)
4386 {
4387 	struct hlist_head *head;
4388 	struct hlist_node *p;
4389 	int ret;
4390 	struct net *net = dev_net(dev);
4391 
4392 	BUG_ON(dev_boot_phase);
4393 	ASSERT_RTNL();
4394 
4395 	might_sleep();
4396 
4397 	/* When net_device's are persistent, this will be fatal. */
4398 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4399 	BUG_ON(!net);
4400 
4401 	spin_lock_init(&dev->addr_list_lock);
4402 	netdev_set_addr_lockdep_class(dev);
4403 	netdev_init_queue_locks(dev);
4404 
4405 	dev->iflink = -1;
4406 
4407 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4408 	/* Netdevice_ops API compatibility support.
4409 	 * This is temporary until all network devices are converted.
4410 	 */
4411 	if (dev->netdev_ops) {
4412 		netdev_resync_ops(dev);
4413 	} else {
4414 		char drivername[64];
4415 		pr_info("%s (%s): not using net_device_ops yet\n",
4416 			dev->name, netdev_drivername(dev, drivername, 64));
4417 
4418 		/* This works only because net_device_ops and the
4419 		   compatibility structure are the same. */
4420 		dev->netdev_ops = (void *) &(dev->init);
4421 	}
4422 #endif
4423 
4424 	/* Init, if this function is available */
4425 	if (dev->netdev_ops->ndo_init) {
4426 		ret = dev->netdev_ops->ndo_init(dev);
4427 		if (ret) {
4428 			if (ret > 0)
4429 				ret = -EIO;
4430 			goto out;
4431 		}
4432 	}
4433 
4434 	if (!dev_valid_name(dev->name)) {
4435 		ret = -EINVAL;
4436 		goto err_uninit;
4437 	}
4438 
4439 	dev->ifindex = dev_new_index(net);
4440 	if (dev->iflink == -1)
4441 		dev->iflink = dev->ifindex;
4442 
4443 	/* Check for existence of name */
4444 	head = dev_name_hash(net, dev->name);
4445 	hlist_for_each(p, head) {
4446 		struct net_device *d
4447 			= hlist_entry(p, struct net_device, name_hlist);
4448 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4449 			ret = -EEXIST;
4450 			goto err_uninit;
4451 		}
4452 	}
4453 
4454 	/* Fix illegal checksum combinations */
4455 	if ((dev->features & NETIF_F_HW_CSUM) &&
4456 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4457 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4458 		       dev->name);
4459 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4460 	}
4461 
4462 	if ((dev->features & NETIF_F_NO_CSUM) &&
4463 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4464 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4465 		       dev->name);
4466 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4467 	}
4468 
4469 	dev->features = netdev_fix_features(dev->features, dev->name);
4470 
4471 	/* Enable software GSO if SG is supported. */
4472 	if (dev->features & NETIF_F_SG)
4473 		dev->features |= NETIF_F_GSO;
4474 
4475 	netdev_initialize_kobject(dev);
4476 	ret = netdev_register_kobject(dev);
4477 	if (ret)
4478 		goto err_uninit;
4479 	dev->reg_state = NETREG_REGISTERED;
4480 
4481 	/*
4482 	 *	Default initial state at registry is that the
4483 	 *	device is present.
4484 	 */
4485 
4486 	set_bit(__LINK_STATE_PRESENT, &dev->state);
4487 
4488 	dev_init_scheduler(dev);
4489 	dev_hold(dev);
4490 	list_netdevice(dev);
4491 
4492 	/* Notify protocols, that a new device appeared. */
4493 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4494 	ret = notifier_to_errno(ret);
4495 	if (ret) {
4496 		rollback_registered(dev);
4497 		dev->reg_state = NETREG_UNREGISTERED;
4498 	}
4499 
4500 out:
4501 	return ret;
4502 
4503 err_uninit:
4504 	if (dev->netdev_ops->ndo_uninit)
4505 		dev->netdev_ops->ndo_uninit(dev);
4506 	goto out;
4507 }
4508 
4509 /**
4510  *	init_dummy_netdev	- init a dummy network device for NAPI
4511  *	@dev: device to init
4512  *
4513  *	This takes a network device structure and initialize the minimum
4514  *	amount of fields so it can be used to schedule NAPI polls without
4515  *	registering a full blown interface. This is to be used by drivers
4516  *	that need to tie several hardware interfaces to a single NAPI
4517  *	poll scheduler due to HW limitations.
4518  */
4519 int init_dummy_netdev(struct net_device *dev)
4520 {
4521 	/* Clear everything. Note we don't initialize spinlocks
4522 	 * are they aren't supposed to be taken by any of the
4523 	 * NAPI code and this dummy netdev is supposed to be
4524 	 * only ever used for NAPI polls
4525 	 */
4526 	memset(dev, 0, sizeof(struct net_device));
4527 
4528 	/* make sure we BUG if trying to hit standard
4529 	 * register/unregister code path
4530 	 */
4531 	dev->reg_state = NETREG_DUMMY;
4532 
4533 	/* initialize the ref count */
4534 	atomic_set(&dev->refcnt, 1);
4535 
4536 	/* NAPI wants this */
4537 	INIT_LIST_HEAD(&dev->napi_list);
4538 
4539 	/* a dummy interface is started by default */
4540 	set_bit(__LINK_STATE_PRESENT, &dev->state);
4541 	set_bit(__LINK_STATE_START, &dev->state);
4542 
4543 	return 0;
4544 }
4545 EXPORT_SYMBOL_GPL(init_dummy_netdev);
4546 
4547 
4548 /**
4549  *	register_netdev	- register a network device
4550  *	@dev: device to register
4551  *
4552  *	Take a completed network device structure and add it to the kernel
4553  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4554  *	chain. 0 is returned on success. A negative errno code is returned
4555  *	on a failure to set up the device, or if the name is a duplicate.
4556  *
4557  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
4558  *	and expands the device name if you passed a format string to
4559  *	alloc_netdev.
4560  */
4561 int register_netdev(struct net_device *dev)
4562 {
4563 	int err;
4564 
4565 	rtnl_lock();
4566 
4567 	/*
4568 	 * If the name is a format string the caller wants us to do a
4569 	 * name allocation.
4570 	 */
4571 	if (strchr(dev->name, '%')) {
4572 		err = dev_alloc_name(dev, dev->name);
4573 		if (err < 0)
4574 			goto out;
4575 	}
4576 
4577 	err = register_netdevice(dev);
4578 out:
4579 	rtnl_unlock();
4580 	return err;
4581 }
4582 EXPORT_SYMBOL(register_netdev);
4583 
4584 /*
4585  * netdev_wait_allrefs - wait until all references are gone.
4586  *
4587  * This is called when unregistering network devices.
4588  *
4589  * Any protocol or device that holds a reference should register
4590  * for netdevice notification, and cleanup and put back the
4591  * reference if they receive an UNREGISTER event.
4592  * We can get stuck here if buggy protocols don't correctly
4593  * call dev_put.
4594  */
4595 static void netdev_wait_allrefs(struct net_device *dev)
4596 {
4597 	unsigned long rebroadcast_time, warning_time;
4598 
4599 	rebroadcast_time = warning_time = jiffies;
4600 	while (atomic_read(&dev->refcnt) != 0) {
4601 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4602 			rtnl_lock();
4603 
4604 			/* Rebroadcast unregister notification */
4605 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4606 
4607 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4608 				     &dev->state)) {
4609 				/* We must not have linkwatch events
4610 				 * pending on unregister. If this
4611 				 * happens, we simply run the queue
4612 				 * unscheduled, resulting in a noop
4613 				 * for this device.
4614 				 */
4615 				linkwatch_run_queue();
4616 			}
4617 
4618 			__rtnl_unlock();
4619 
4620 			rebroadcast_time = jiffies;
4621 		}
4622 
4623 		msleep(250);
4624 
4625 		if (time_after(jiffies, warning_time + 10 * HZ)) {
4626 			printk(KERN_EMERG "unregister_netdevice: "
4627 			       "waiting for %s to become free. Usage "
4628 			       "count = %d\n",
4629 			       dev->name, atomic_read(&dev->refcnt));
4630 			warning_time = jiffies;
4631 		}
4632 	}
4633 }
4634 
4635 /* The sequence is:
4636  *
4637  *	rtnl_lock();
4638  *	...
4639  *	register_netdevice(x1);
4640  *	register_netdevice(x2);
4641  *	...
4642  *	unregister_netdevice(y1);
4643  *	unregister_netdevice(y2);
4644  *      ...
4645  *	rtnl_unlock();
4646  *	free_netdev(y1);
4647  *	free_netdev(y2);
4648  *
4649  * We are invoked by rtnl_unlock().
4650  * This allows us to deal with problems:
4651  * 1) We can delete sysfs objects which invoke hotplug
4652  *    without deadlocking with linkwatch via keventd.
4653  * 2) Since we run with the RTNL semaphore not held, we can sleep
4654  *    safely in order to wait for the netdev refcnt to drop to zero.
4655  *
4656  * We must not return until all unregister events added during
4657  * the interval the lock was held have been completed.
4658  */
4659 void netdev_run_todo(void)
4660 {
4661 	struct list_head list;
4662 
4663 	/* Snapshot list, allow later requests */
4664 	list_replace_init(&net_todo_list, &list);
4665 
4666 	__rtnl_unlock();
4667 
4668 	while (!list_empty(&list)) {
4669 		struct net_device *dev
4670 			= list_entry(list.next, struct net_device, todo_list);
4671 		list_del(&dev->todo_list);
4672 
4673 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4674 			printk(KERN_ERR "network todo '%s' but state %d\n",
4675 			       dev->name, dev->reg_state);
4676 			dump_stack();
4677 			continue;
4678 		}
4679 
4680 		dev->reg_state = NETREG_UNREGISTERED;
4681 
4682 		on_each_cpu(flush_backlog, dev, 1);
4683 
4684 		netdev_wait_allrefs(dev);
4685 
4686 		/* paranoia */
4687 		BUG_ON(atomic_read(&dev->refcnt));
4688 		WARN_ON(dev->ip_ptr);
4689 		WARN_ON(dev->ip6_ptr);
4690 		WARN_ON(dev->dn_ptr);
4691 
4692 		if (dev->destructor)
4693 			dev->destructor(dev);
4694 
4695 		/* Free network device */
4696 		kobject_put(&dev->dev.kobj);
4697 	}
4698 }
4699 
4700 /**
4701  *	dev_get_stats	- get network device statistics
4702  *	@dev: device to get statistics from
4703  *
4704  *	Get network statistics from device. The device driver may provide
4705  *	its own method by setting dev->netdev_ops->get_stats; otherwise
4706  *	the internal statistics structure is used.
4707  */
4708 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4709  {
4710 	const struct net_device_ops *ops = dev->netdev_ops;
4711 
4712 	if (ops->ndo_get_stats)
4713 		return ops->ndo_get_stats(dev);
4714 	else
4715 		return &dev->stats;
4716 }
4717 EXPORT_SYMBOL(dev_get_stats);
4718 
4719 static void netdev_init_one_queue(struct net_device *dev,
4720 				  struct netdev_queue *queue,
4721 				  void *_unused)
4722 {
4723 	queue->dev = dev;
4724 }
4725 
4726 static void netdev_init_queues(struct net_device *dev)
4727 {
4728 	netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4729 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4730 	spin_lock_init(&dev->tx_global_lock);
4731 }
4732 
4733 /**
4734  *	alloc_netdev_mq - allocate network device
4735  *	@sizeof_priv:	size of private data to allocate space for
4736  *	@name:		device name format string
4737  *	@setup:		callback to initialize device
4738  *	@queue_count:	the number of subqueues to allocate
4739  *
4740  *	Allocates a struct net_device with private data area for driver use
4741  *	and performs basic initialization.  Also allocates subquue structs
4742  *	for each queue on the device at the end of the netdevice.
4743  */
4744 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4745 		void (*setup)(struct net_device *), unsigned int queue_count)
4746 {
4747 	struct netdev_queue *tx;
4748 	struct net_device *dev;
4749 	size_t alloc_size;
4750 	void *p;
4751 
4752 	BUG_ON(strlen(name) >= sizeof(dev->name));
4753 
4754 	alloc_size = sizeof(struct net_device);
4755 	if (sizeof_priv) {
4756 		/* ensure 32-byte alignment of private area */
4757 		alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4758 		alloc_size += sizeof_priv;
4759 	}
4760 	/* ensure 32-byte alignment of whole construct */
4761 	alloc_size += NETDEV_ALIGN_CONST;
4762 
4763 	p = kzalloc(alloc_size, GFP_KERNEL);
4764 	if (!p) {
4765 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4766 		return NULL;
4767 	}
4768 
4769 	tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4770 	if (!tx) {
4771 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
4772 		       "tx qdiscs.\n");
4773 		kfree(p);
4774 		return NULL;
4775 	}
4776 
4777 	dev = (struct net_device *)
4778 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4779 	dev->padded = (char *)dev - (char *)p;
4780 	dev_net_set(dev, &init_net);
4781 
4782 	dev->_tx = tx;
4783 	dev->num_tx_queues = queue_count;
4784 	dev->real_num_tx_queues = queue_count;
4785 
4786 	dev->gso_max_size = GSO_MAX_SIZE;
4787 
4788 	netdev_init_queues(dev);
4789 
4790 	INIT_LIST_HEAD(&dev->napi_list);
4791 	setup(dev);
4792 	strcpy(dev->name, name);
4793 	return dev;
4794 }
4795 EXPORT_SYMBOL(alloc_netdev_mq);
4796 
4797 /**
4798  *	free_netdev - free network device
4799  *	@dev: device
4800  *
4801  *	This function does the last stage of destroying an allocated device
4802  * 	interface. The reference to the device object is released.
4803  *	If this is the last reference then it will be freed.
4804  */
4805 void free_netdev(struct net_device *dev)
4806 {
4807 	struct napi_struct *p, *n;
4808 
4809 	release_net(dev_net(dev));
4810 
4811 	kfree(dev->_tx);
4812 
4813 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4814 		netif_napi_del(p);
4815 
4816 	/*  Compatibility with error handling in drivers */
4817 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4818 		kfree((char *)dev - dev->padded);
4819 		return;
4820 	}
4821 
4822 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4823 	dev->reg_state = NETREG_RELEASED;
4824 
4825 	/* will free via device release */
4826 	put_device(&dev->dev);
4827 }
4828 
4829 /**
4830  *	synchronize_net -  Synchronize with packet receive processing
4831  *
4832  *	Wait for packets currently being received to be done.
4833  *	Does not block later packets from starting.
4834  */
4835 void synchronize_net(void)
4836 {
4837 	might_sleep();
4838 	synchronize_rcu();
4839 }
4840 
4841 /**
4842  *	unregister_netdevice - remove device from the kernel
4843  *	@dev: device
4844  *
4845  *	This function shuts down a device interface and removes it
4846  *	from the kernel tables.
4847  *
4848  *	Callers must hold the rtnl semaphore.  You may want
4849  *	unregister_netdev() instead of this.
4850  */
4851 
4852 void unregister_netdevice(struct net_device *dev)
4853 {
4854 	ASSERT_RTNL();
4855 
4856 	rollback_registered(dev);
4857 	/* Finish processing unregister after unlock */
4858 	net_set_todo(dev);
4859 }
4860 
4861 /**
4862  *	unregister_netdev - remove device from the kernel
4863  *	@dev: device
4864  *
4865  *	This function shuts down a device interface and removes it
4866  *	from the kernel tables.
4867  *
4868  *	This is just a wrapper for unregister_netdevice that takes
4869  *	the rtnl semaphore.  In general you want to use this and not
4870  *	unregister_netdevice.
4871  */
4872 void unregister_netdev(struct net_device *dev)
4873 {
4874 	rtnl_lock();
4875 	unregister_netdevice(dev);
4876 	rtnl_unlock();
4877 }
4878 
4879 EXPORT_SYMBOL(unregister_netdev);
4880 
4881 /**
4882  *	dev_change_net_namespace - move device to different nethost namespace
4883  *	@dev: device
4884  *	@net: network namespace
4885  *	@pat: If not NULL name pattern to try if the current device name
4886  *	      is already taken in the destination network namespace.
4887  *
4888  *	This function shuts down a device interface and moves it
4889  *	to a new network namespace. On success 0 is returned, on
4890  *	a failure a netagive errno code is returned.
4891  *
4892  *	Callers must hold the rtnl semaphore.
4893  */
4894 
4895 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4896 {
4897 	char buf[IFNAMSIZ];
4898 	const char *destname;
4899 	int err;
4900 
4901 	ASSERT_RTNL();
4902 
4903 	/* Don't allow namespace local devices to be moved. */
4904 	err = -EINVAL;
4905 	if (dev->features & NETIF_F_NETNS_LOCAL)
4906 		goto out;
4907 
4908 #ifdef CONFIG_SYSFS
4909 	/* Don't allow real devices to be moved when sysfs
4910 	 * is enabled.
4911 	 */
4912 	err = -EINVAL;
4913 	if (dev->dev.parent)
4914 		goto out;
4915 #endif
4916 
4917 	/* Ensure the device has been registrered */
4918 	err = -EINVAL;
4919 	if (dev->reg_state != NETREG_REGISTERED)
4920 		goto out;
4921 
4922 	/* Get out if there is nothing todo */
4923 	err = 0;
4924 	if (net_eq(dev_net(dev), net))
4925 		goto out;
4926 
4927 	/* Pick the destination device name, and ensure
4928 	 * we can use it in the destination network namespace.
4929 	 */
4930 	err = -EEXIST;
4931 	destname = dev->name;
4932 	if (__dev_get_by_name(net, destname)) {
4933 		/* We get here if we can't use the current device name */
4934 		if (!pat)
4935 			goto out;
4936 		if (!dev_valid_name(pat))
4937 			goto out;
4938 		if (strchr(pat, '%')) {
4939 			if (__dev_alloc_name(net, pat, buf) < 0)
4940 				goto out;
4941 			destname = buf;
4942 		} else
4943 			destname = pat;
4944 		if (__dev_get_by_name(net, destname))
4945 			goto out;
4946 	}
4947 
4948 	/*
4949 	 * And now a mini version of register_netdevice unregister_netdevice.
4950 	 */
4951 
4952 	/* If device is running close it first. */
4953 	dev_close(dev);
4954 
4955 	/* And unlink it from device chain */
4956 	err = -ENODEV;
4957 	unlist_netdevice(dev);
4958 
4959 	synchronize_net();
4960 
4961 	/* Shutdown queueing discipline. */
4962 	dev_shutdown(dev);
4963 
4964 	/* Notify protocols, that we are about to destroy
4965 	   this device. They should clean all the things.
4966 	*/
4967 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4968 
4969 	/*
4970 	 *	Flush the unicast and multicast chains
4971 	 */
4972 	dev_addr_discard(dev);
4973 
4974 	netdev_unregister_kobject(dev);
4975 
4976 	/* Actually switch the network namespace */
4977 	dev_net_set(dev, net);
4978 
4979 	/* Assign the new device name */
4980 	if (destname != dev->name)
4981 		strcpy(dev->name, destname);
4982 
4983 	/* If there is an ifindex conflict assign a new one */
4984 	if (__dev_get_by_index(net, dev->ifindex)) {
4985 		int iflink = (dev->iflink == dev->ifindex);
4986 		dev->ifindex = dev_new_index(net);
4987 		if (iflink)
4988 			dev->iflink = dev->ifindex;
4989 	}
4990 
4991 	/* Fixup kobjects */
4992 	err = netdev_register_kobject(dev);
4993 	WARN_ON(err);
4994 
4995 	/* Add the device back in the hashes */
4996 	list_netdevice(dev);
4997 
4998 	/* Notify protocols, that a new device appeared. */
4999 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
5000 
5001 	synchronize_net();
5002 	err = 0;
5003 out:
5004 	return err;
5005 }
5006 
5007 static int dev_cpu_callback(struct notifier_block *nfb,
5008 			    unsigned long action,
5009 			    void *ocpu)
5010 {
5011 	struct sk_buff **list_skb;
5012 	struct Qdisc **list_net;
5013 	struct sk_buff *skb;
5014 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
5015 	struct softnet_data *sd, *oldsd;
5016 
5017 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5018 		return NOTIFY_OK;
5019 
5020 	local_irq_disable();
5021 	cpu = smp_processor_id();
5022 	sd = &per_cpu(softnet_data, cpu);
5023 	oldsd = &per_cpu(softnet_data, oldcpu);
5024 
5025 	/* Find end of our completion_queue. */
5026 	list_skb = &sd->completion_queue;
5027 	while (*list_skb)
5028 		list_skb = &(*list_skb)->next;
5029 	/* Append completion queue from offline CPU. */
5030 	*list_skb = oldsd->completion_queue;
5031 	oldsd->completion_queue = NULL;
5032 
5033 	/* Find end of our output_queue. */
5034 	list_net = &sd->output_queue;
5035 	while (*list_net)
5036 		list_net = &(*list_net)->next_sched;
5037 	/* Append output queue from offline CPU. */
5038 	*list_net = oldsd->output_queue;
5039 	oldsd->output_queue = NULL;
5040 
5041 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
5042 	local_irq_enable();
5043 
5044 	/* Process offline CPU's input_pkt_queue */
5045 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5046 		netif_rx(skb);
5047 
5048 	return NOTIFY_OK;
5049 }
5050 
5051 
5052 /**
5053  *	netdev_increment_features - increment feature set by one
5054  *	@all: current feature set
5055  *	@one: new feature set
5056  *	@mask: mask feature set
5057  *
5058  *	Computes a new feature set after adding a device with feature set
5059  *	@one to the master device with current feature set @all.  Will not
5060  *	enable anything that is off in @mask. Returns the new feature set.
5061  */
5062 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5063 					unsigned long mask)
5064 {
5065 	/* If device needs checksumming, downgrade to it. */
5066         if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5067 		all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5068 	else if (mask & NETIF_F_ALL_CSUM) {
5069 		/* If one device supports v4/v6 checksumming, set for all. */
5070 		if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5071 		    !(all & NETIF_F_GEN_CSUM)) {
5072 			all &= ~NETIF_F_ALL_CSUM;
5073 			all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5074 		}
5075 
5076 		/* If one device supports hw checksumming, set for all. */
5077 		if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5078 			all &= ~NETIF_F_ALL_CSUM;
5079 			all |= NETIF_F_HW_CSUM;
5080 		}
5081 	}
5082 
5083 	one |= NETIF_F_ALL_CSUM;
5084 
5085 	one |= all & NETIF_F_ONE_FOR_ALL;
5086 	all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5087 	all |= one & mask & NETIF_F_ONE_FOR_ALL;
5088 
5089 	return all;
5090 }
5091 EXPORT_SYMBOL(netdev_increment_features);
5092 
5093 static struct hlist_head *netdev_create_hash(void)
5094 {
5095 	int i;
5096 	struct hlist_head *hash;
5097 
5098 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5099 	if (hash != NULL)
5100 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
5101 			INIT_HLIST_HEAD(&hash[i]);
5102 
5103 	return hash;
5104 }
5105 
5106 /* Initialize per network namespace state */
5107 static int __net_init netdev_init(struct net *net)
5108 {
5109 	INIT_LIST_HEAD(&net->dev_base_head);
5110 
5111 	net->dev_name_head = netdev_create_hash();
5112 	if (net->dev_name_head == NULL)
5113 		goto err_name;
5114 
5115 	net->dev_index_head = netdev_create_hash();
5116 	if (net->dev_index_head == NULL)
5117 		goto err_idx;
5118 
5119 	return 0;
5120 
5121 err_idx:
5122 	kfree(net->dev_name_head);
5123 err_name:
5124 	return -ENOMEM;
5125 }
5126 
5127 /**
5128  *	netdev_drivername - network driver for the device
5129  *	@dev: network device
5130  *	@buffer: buffer for resulting name
5131  *	@len: size of buffer
5132  *
5133  *	Determine network driver for device.
5134  */
5135 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5136 {
5137 	const struct device_driver *driver;
5138 	const struct device *parent;
5139 
5140 	if (len <= 0 || !buffer)
5141 		return buffer;
5142 	buffer[0] = 0;
5143 
5144 	parent = dev->dev.parent;
5145 
5146 	if (!parent)
5147 		return buffer;
5148 
5149 	driver = parent->driver;
5150 	if (driver && driver->name)
5151 		strlcpy(buffer, driver->name, len);
5152 	return buffer;
5153 }
5154 
5155 static void __net_exit netdev_exit(struct net *net)
5156 {
5157 	kfree(net->dev_name_head);
5158 	kfree(net->dev_index_head);
5159 }
5160 
5161 static struct pernet_operations __net_initdata netdev_net_ops = {
5162 	.init = netdev_init,
5163 	.exit = netdev_exit,
5164 };
5165 
5166 static void __net_exit default_device_exit(struct net *net)
5167 {
5168 	struct net_device *dev;
5169 	/*
5170 	 * Push all migratable of the network devices back to the
5171 	 * initial network namespace
5172 	 */
5173 	rtnl_lock();
5174 restart:
5175 	for_each_netdev(net, dev) {
5176 		int err;
5177 		char fb_name[IFNAMSIZ];
5178 
5179 		/* Ignore unmoveable devices (i.e. loopback) */
5180 		if (dev->features & NETIF_F_NETNS_LOCAL)
5181 			continue;
5182 
5183 		/* Delete virtual devices */
5184 		if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5185 			dev->rtnl_link_ops->dellink(dev);
5186 			goto restart;
5187 		}
5188 
5189 		/* Push remaing network devices to init_net */
5190 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5191 		err = dev_change_net_namespace(dev, &init_net, fb_name);
5192 		if (err) {
5193 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5194 				__func__, dev->name, err);
5195 			BUG();
5196 		}
5197 		goto restart;
5198 	}
5199 	rtnl_unlock();
5200 }
5201 
5202 static struct pernet_operations __net_initdata default_device_ops = {
5203 	.exit = default_device_exit,
5204 };
5205 
5206 /*
5207  *	Initialize the DEV module. At boot time this walks the device list and
5208  *	unhooks any devices that fail to initialise (normally hardware not
5209  *	present) and leaves us with a valid list of present and active devices.
5210  *
5211  */
5212 
5213 /*
5214  *       This is called single threaded during boot, so no need
5215  *       to take the rtnl semaphore.
5216  */
5217 static int __init net_dev_init(void)
5218 {
5219 	int i, rc = -ENOMEM;
5220 
5221 	BUG_ON(!dev_boot_phase);
5222 
5223 	if (dev_proc_init())
5224 		goto out;
5225 
5226 	if (netdev_kobject_init())
5227 		goto out;
5228 
5229 	INIT_LIST_HEAD(&ptype_all);
5230 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
5231 		INIT_LIST_HEAD(&ptype_base[i]);
5232 
5233 	if (register_pernet_subsys(&netdev_net_ops))
5234 		goto out;
5235 
5236 	/*
5237 	 *	Initialise the packet receive queues.
5238 	 */
5239 
5240 	for_each_possible_cpu(i) {
5241 		struct softnet_data *queue;
5242 
5243 		queue = &per_cpu(softnet_data, i);
5244 		skb_queue_head_init(&queue->input_pkt_queue);
5245 		queue->completion_queue = NULL;
5246 		INIT_LIST_HEAD(&queue->poll_list);
5247 
5248 		queue->backlog.poll = process_backlog;
5249 		queue->backlog.weight = weight_p;
5250 		queue->backlog.gro_list = NULL;
5251 		queue->backlog.gro_count = 0;
5252 	}
5253 
5254 	dev_boot_phase = 0;
5255 
5256 	/* The loopback device is special if any other network devices
5257 	 * is present in a network namespace the loopback device must
5258 	 * be present. Since we now dynamically allocate and free the
5259 	 * loopback device ensure this invariant is maintained by
5260 	 * keeping the loopback device as the first device on the
5261 	 * list of network devices.  Ensuring the loopback devices
5262 	 * is the first device that appears and the last network device
5263 	 * that disappears.
5264 	 */
5265 	if (register_pernet_device(&loopback_net_ops))
5266 		goto out;
5267 
5268 	if (register_pernet_device(&default_device_ops))
5269 		goto out;
5270 
5271 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5272 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5273 
5274 	hotcpu_notifier(dev_cpu_callback, 0);
5275 	dst_init();
5276 	dev_mcast_init();
5277 	rc = 0;
5278 out:
5279 	return rc;
5280 }
5281 
5282 subsys_initcall(net_dev_init);
5283 
5284 static int __init initialize_hashrnd(void)
5285 {
5286 	get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5287 	return 0;
5288 }
5289 
5290 late_initcall_sync(initialize_hashrnd);
5291 
5292 EXPORT_SYMBOL(__dev_get_by_index);
5293 EXPORT_SYMBOL(__dev_get_by_name);
5294 EXPORT_SYMBOL(__dev_remove_pack);
5295 EXPORT_SYMBOL(dev_valid_name);
5296 EXPORT_SYMBOL(dev_add_pack);
5297 EXPORT_SYMBOL(dev_alloc_name);
5298 EXPORT_SYMBOL(dev_close);
5299 EXPORT_SYMBOL(dev_get_by_flags);
5300 EXPORT_SYMBOL(dev_get_by_index);
5301 EXPORT_SYMBOL(dev_get_by_name);
5302 EXPORT_SYMBOL(dev_open);
5303 EXPORT_SYMBOL(dev_queue_xmit);
5304 EXPORT_SYMBOL(dev_remove_pack);
5305 EXPORT_SYMBOL(dev_set_allmulti);
5306 EXPORT_SYMBOL(dev_set_promiscuity);
5307 EXPORT_SYMBOL(dev_change_flags);
5308 EXPORT_SYMBOL(dev_set_mtu);
5309 EXPORT_SYMBOL(dev_set_mac_address);
5310 EXPORT_SYMBOL(free_netdev);
5311 EXPORT_SYMBOL(netdev_boot_setup_check);
5312 EXPORT_SYMBOL(netdev_set_master);
5313 EXPORT_SYMBOL(netdev_state_change);
5314 EXPORT_SYMBOL(netif_receive_skb);
5315 EXPORT_SYMBOL(netif_rx);
5316 EXPORT_SYMBOL(register_gifconf);
5317 EXPORT_SYMBOL(register_netdevice);
5318 EXPORT_SYMBOL(register_netdevice_notifier);
5319 EXPORT_SYMBOL(skb_checksum_help);
5320 EXPORT_SYMBOL(synchronize_net);
5321 EXPORT_SYMBOL(unregister_netdevice);
5322 EXPORT_SYMBOL(unregister_netdevice_notifier);
5323 EXPORT_SYMBOL(net_enable_timestamp);
5324 EXPORT_SYMBOL(net_disable_timestamp);
5325 EXPORT_SYMBOL(dev_get_flags);
5326 
5327 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5328 EXPORT_SYMBOL(br_handle_frame_hook);
5329 EXPORT_SYMBOL(br_fdb_get_hook);
5330 EXPORT_SYMBOL(br_fdb_put_hook);
5331 #endif
5332 
5333 EXPORT_SYMBOL(dev_load);
5334 
5335 EXPORT_PER_CPU_SYMBOL(softnet_data);
5336