1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/ethtool_netlink.h> 96 #include <linux/skbuff.h> 97 #include <linux/kthread.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dsa.h> 106 #include <net/dst.h> 107 #include <net/dst_metadata.h> 108 #include <net/gro.h> 109 #include <net/netdev_queues.h> 110 #include <net/pkt_sched.h> 111 #include <net/pkt_cls.h> 112 #include <net/checksum.h> 113 #include <net/xfrm.h> 114 #include <net/tcx.h> 115 #include <linux/highmem.h> 116 #include <linux/init.h> 117 #include <linux/module.h> 118 #include <linux/netpoll.h> 119 #include <linux/rcupdate.h> 120 #include <linux/delay.h> 121 #include <net/iw_handler.h> 122 #include <asm/current.h> 123 #include <linux/audit.h> 124 #include <linux/dmaengine.h> 125 #include <linux/err.h> 126 #include <linux/ctype.h> 127 #include <linux/if_arp.h> 128 #include <linux/if_vlan.h> 129 #include <linux/ip.h> 130 #include <net/ip.h> 131 #include <net/mpls.h> 132 #include <linux/ipv6.h> 133 #include <linux/in.h> 134 #include <linux/jhash.h> 135 #include <linux/random.h> 136 #include <trace/events/napi.h> 137 #include <trace/events/net.h> 138 #include <trace/events/skb.h> 139 #include <trace/events/qdisc.h> 140 #include <trace/events/xdp.h> 141 #include <linux/inetdevice.h> 142 #include <linux/cpu_rmap.h> 143 #include <linux/static_key.h> 144 #include <linux/hashtable.h> 145 #include <linux/vmalloc.h> 146 #include <linux/if_macvlan.h> 147 #include <linux/errqueue.h> 148 #include <linux/hrtimer.h> 149 #include <linux/netfilter_netdev.h> 150 #include <linux/crash_dump.h> 151 #include <linux/sctp.h> 152 #include <net/udp_tunnel.h> 153 #include <linux/net_namespace.h> 154 #include <linux/indirect_call_wrapper.h> 155 #include <net/devlink.h> 156 #include <linux/pm_runtime.h> 157 #include <linux/prandom.h> 158 #include <linux/once_lite.h> 159 #include <net/netdev_lock.h> 160 #include <net/netdev_rx_queue.h> 161 #include <net/page_pool/types.h> 162 #include <net/page_pool/helpers.h> 163 #include <net/page_pool/memory_provider.h> 164 #include <net/rps.h> 165 #include <linux/phy_link_topology.h> 166 167 #include "dev.h" 168 #include "devmem.h" 169 #include "net-sysfs.h" 170 171 static DEFINE_SPINLOCK(ptype_lock); 172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 173 174 static int netif_rx_internal(struct sk_buff *skb); 175 static int call_netdevice_notifiers_extack(unsigned long val, 176 struct net_device *dev, 177 struct netlink_ext_ack *extack); 178 179 static DEFINE_MUTEX(ifalias_mutex); 180 181 /* protects napi_hash addition/deletion and napi_gen_id */ 182 static DEFINE_SPINLOCK(napi_hash_lock); 183 184 static unsigned int napi_gen_id = NR_CPUS; 185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 186 187 static inline void dev_base_seq_inc(struct net *net) 188 { 189 unsigned int val = net->dev_base_seq + 1; 190 191 WRITE_ONCE(net->dev_base_seq, val ?: 1); 192 } 193 194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195 { 196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199 } 200 201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202 { 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204 } 205 206 #ifndef CONFIG_PREEMPT_RT 207 208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 209 210 static int __init setup_backlog_napi_threads(char *arg) 211 { 212 static_branch_enable(&use_backlog_threads_key); 213 return 0; 214 } 215 early_param("thread_backlog_napi", setup_backlog_napi_threads); 216 217 static bool use_backlog_threads(void) 218 { 219 return static_branch_unlikely(&use_backlog_threads_key); 220 } 221 222 #else 223 224 static bool use_backlog_threads(void) 225 { 226 return true; 227 } 228 229 #endif 230 231 static inline void backlog_lock_irq_save(struct softnet_data *sd, 232 unsigned long *flags) 233 { 234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 236 else 237 local_irq_save(*flags); 238 } 239 240 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 241 { 242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 243 spin_lock_irq(&sd->input_pkt_queue.lock); 244 else 245 local_irq_disable(); 246 } 247 248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 249 unsigned long *flags) 250 { 251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 253 else 254 local_irq_restore(*flags); 255 } 256 257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 258 { 259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 260 spin_unlock_irq(&sd->input_pkt_queue.lock); 261 else 262 local_irq_enable(); 263 } 264 265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 266 const char *name) 267 { 268 struct netdev_name_node *name_node; 269 270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 271 if (!name_node) 272 return NULL; 273 INIT_HLIST_NODE(&name_node->hlist); 274 name_node->dev = dev; 275 name_node->name = name; 276 return name_node; 277 } 278 279 static struct netdev_name_node * 280 netdev_name_node_head_alloc(struct net_device *dev) 281 { 282 struct netdev_name_node *name_node; 283 284 name_node = netdev_name_node_alloc(dev, dev->name); 285 if (!name_node) 286 return NULL; 287 INIT_LIST_HEAD(&name_node->list); 288 return name_node; 289 } 290 291 static void netdev_name_node_free(struct netdev_name_node *name_node) 292 { 293 kfree(name_node); 294 } 295 296 static void netdev_name_node_add(struct net *net, 297 struct netdev_name_node *name_node) 298 { 299 hlist_add_head_rcu(&name_node->hlist, 300 dev_name_hash(net, name_node->name)); 301 } 302 303 static void netdev_name_node_del(struct netdev_name_node *name_node) 304 { 305 hlist_del_rcu(&name_node->hlist); 306 } 307 308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 309 const char *name) 310 { 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318 } 319 320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 321 const char *name) 322 { 323 struct hlist_head *head = dev_name_hash(net, name); 324 struct netdev_name_node *name_node; 325 326 hlist_for_each_entry_rcu(name_node, head, hlist) 327 if (!strcmp(name_node->name, name)) 328 return name_node; 329 return NULL; 330 } 331 332 bool netdev_name_in_use(struct net *net, const char *name) 333 { 334 return netdev_name_node_lookup(net, name); 335 } 336 EXPORT_SYMBOL(netdev_name_in_use); 337 338 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 339 { 340 struct netdev_name_node *name_node; 341 struct net *net = dev_net(dev); 342 343 name_node = netdev_name_node_lookup(net, name); 344 if (name_node) 345 return -EEXIST; 346 name_node = netdev_name_node_alloc(dev, name); 347 if (!name_node) 348 return -ENOMEM; 349 netdev_name_node_add(net, name_node); 350 /* The node that holds dev->name acts as a head of per-device list. */ 351 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 352 353 return 0; 354 } 355 356 static void netdev_name_node_alt_free(struct rcu_head *head) 357 { 358 struct netdev_name_node *name_node = 359 container_of(head, struct netdev_name_node, rcu); 360 361 kfree(name_node->name); 362 netdev_name_node_free(name_node); 363 } 364 365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 366 { 367 netdev_name_node_del(name_node); 368 list_del(&name_node->list); 369 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 370 } 371 372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 373 { 374 struct netdev_name_node *name_node; 375 struct net *net = dev_net(dev); 376 377 name_node = netdev_name_node_lookup(net, name); 378 if (!name_node) 379 return -ENOENT; 380 /* lookup might have found our primary name or a name belonging 381 * to another device. 382 */ 383 if (name_node == dev->name_node || name_node->dev != dev) 384 return -EINVAL; 385 386 __netdev_name_node_alt_destroy(name_node); 387 return 0; 388 } 389 390 static void netdev_name_node_alt_flush(struct net_device *dev) 391 { 392 struct netdev_name_node *name_node, *tmp; 393 394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 395 list_del(&name_node->list); 396 netdev_name_node_alt_free(&name_node->rcu); 397 } 398 } 399 400 /* Device list insertion */ 401 static void list_netdevice(struct net_device *dev) 402 { 403 struct netdev_name_node *name_node; 404 struct net *net = dev_net(dev); 405 406 ASSERT_RTNL(); 407 408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 409 netdev_name_node_add(net, dev->name_node); 410 hlist_add_head_rcu(&dev->index_hlist, 411 dev_index_hash(net, dev->ifindex)); 412 413 netdev_for_each_altname(dev, name_node) 414 netdev_name_node_add(net, name_node); 415 416 /* We reserved the ifindex, this can't fail */ 417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 418 419 dev_base_seq_inc(net); 420 } 421 422 /* Device list removal 423 * caller must respect a RCU grace period before freeing/reusing dev 424 */ 425 static void unlist_netdevice(struct net_device *dev) 426 { 427 struct netdev_name_node *name_node; 428 struct net *net = dev_net(dev); 429 430 ASSERT_RTNL(); 431 432 xa_erase(&net->dev_by_index, dev->ifindex); 433 434 netdev_for_each_altname(dev, name_node) 435 netdev_name_node_del(name_node); 436 437 /* Unlink dev from the device chain */ 438 list_del_rcu(&dev->dev_list); 439 netdev_name_node_del(dev->name_node); 440 hlist_del_rcu(&dev->index_hlist); 441 442 dev_base_seq_inc(dev_net(dev)); 443 } 444 445 /* 446 * Our notifier list 447 */ 448 449 static RAW_NOTIFIER_HEAD(netdev_chain); 450 451 /* 452 * Device drivers call our routines to queue packets here. We empty the 453 * queue in the local softnet handler. 454 */ 455 456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 458 }; 459 EXPORT_PER_CPU_SYMBOL(softnet_data); 460 461 /* Page_pool has a lockless array/stack to alloc/recycle pages. 462 * PP consumers must pay attention to run APIs in the appropriate context 463 * (e.g. NAPI context). 464 */ 465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = { 466 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 467 }; 468 469 #ifdef CONFIG_LOCKDEP 470 /* 471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 472 * according to dev->type 473 */ 474 static const unsigned short netdev_lock_type[] = { 475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 490 491 static const char *const netdev_lock_name[] = { 492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 507 508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 510 511 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 512 { 513 int i; 514 515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 516 if (netdev_lock_type[i] == dev_type) 517 return i; 518 /* the last key is used by default */ 519 return ARRAY_SIZE(netdev_lock_type) - 1; 520 } 521 522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 523 unsigned short dev_type) 524 { 525 int i; 526 527 i = netdev_lock_pos(dev_type); 528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 529 netdev_lock_name[i]); 530 } 531 532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 533 { 534 int i; 535 536 i = netdev_lock_pos(dev->type); 537 lockdep_set_class_and_name(&dev->addr_list_lock, 538 &netdev_addr_lock_key[i], 539 netdev_lock_name[i]); 540 } 541 #else 542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 543 unsigned short dev_type) 544 { 545 } 546 547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 548 { 549 } 550 #endif 551 552 /******************************************************************************* 553 * 554 * Protocol management and registration routines 555 * 556 *******************************************************************************/ 557 558 559 /* 560 * Add a protocol ID to the list. Now that the input handler is 561 * smarter we can dispense with all the messy stuff that used to be 562 * here. 563 * 564 * BEWARE!!! Protocol handlers, mangling input packets, 565 * MUST BE last in hash buckets and checking protocol handlers 566 * MUST start from promiscuous ptype_all chain in net_bh. 567 * It is true now, do not change it. 568 * Explanation follows: if protocol handler, mangling packet, will 569 * be the first on list, it is not able to sense, that packet 570 * is cloned and should be copied-on-write, so that it will 571 * change it and subsequent readers will get broken packet. 572 * --ANK (980803) 573 */ 574 575 static inline struct list_head *ptype_head(const struct packet_type *pt) 576 { 577 if (pt->type == htons(ETH_P_ALL)) { 578 if (!pt->af_packet_net && !pt->dev) 579 return NULL; 580 581 return pt->dev ? &pt->dev->ptype_all : 582 &pt->af_packet_net->ptype_all; 583 } 584 585 if (pt->dev) 586 return &pt->dev->ptype_specific; 587 588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : 589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 590 } 591 592 /** 593 * dev_add_pack - add packet handler 594 * @pt: packet type declaration 595 * 596 * Add a protocol handler to the networking stack. The passed &packet_type 597 * is linked into kernel lists and may not be freed until it has been 598 * removed from the kernel lists. 599 * 600 * This call does not sleep therefore it can not 601 * guarantee all CPU's that are in middle of receiving packets 602 * will see the new packet type (until the next received packet). 603 */ 604 605 void dev_add_pack(struct packet_type *pt) 606 { 607 struct list_head *head = ptype_head(pt); 608 609 if (WARN_ON_ONCE(!head)) 610 return; 611 612 spin_lock(&ptype_lock); 613 list_add_rcu(&pt->list, head); 614 spin_unlock(&ptype_lock); 615 } 616 EXPORT_SYMBOL(dev_add_pack); 617 618 /** 619 * __dev_remove_pack - remove packet handler 620 * @pt: packet type declaration 621 * 622 * Remove a protocol handler that was previously added to the kernel 623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 624 * from the kernel lists and can be freed or reused once this function 625 * returns. 626 * 627 * The packet type might still be in use by receivers 628 * and must not be freed until after all the CPU's have gone 629 * through a quiescent state. 630 */ 631 void __dev_remove_pack(struct packet_type *pt) 632 { 633 struct list_head *head = ptype_head(pt); 634 struct packet_type *pt1; 635 636 if (!head) 637 return; 638 639 spin_lock(&ptype_lock); 640 641 list_for_each_entry(pt1, head, list) { 642 if (pt == pt1) { 643 list_del_rcu(&pt->list); 644 goto out; 645 } 646 } 647 648 pr_warn("dev_remove_pack: %p not found\n", pt); 649 out: 650 spin_unlock(&ptype_lock); 651 } 652 EXPORT_SYMBOL(__dev_remove_pack); 653 654 /** 655 * dev_remove_pack - remove packet handler 656 * @pt: packet type declaration 657 * 658 * Remove a protocol handler that was previously added to the kernel 659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 660 * from the kernel lists and can be freed or reused once this function 661 * returns. 662 * 663 * This call sleeps to guarantee that no CPU is looking at the packet 664 * type after return. 665 */ 666 void dev_remove_pack(struct packet_type *pt) 667 { 668 __dev_remove_pack(pt); 669 670 synchronize_net(); 671 } 672 EXPORT_SYMBOL(dev_remove_pack); 673 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return READ_ONCE(dev->ifindex); 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 725 { 726 int k = stack->num_paths++; 727 728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 729 return NULL; 730 731 return &stack->path[k]; 732 } 733 734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 735 struct net_device_path_stack *stack) 736 { 737 const struct net_device *last_dev; 738 struct net_device_path_ctx ctx = { 739 .dev = dev, 740 }; 741 struct net_device_path *path; 742 int ret = 0; 743 744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 745 stack->num_paths = 0; 746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 747 last_dev = ctx.dev; 748 path = dev_fwd_path(stack); 749 if (!path) 750 return -1; 751 752 memset(path, 0, sizeof(struct net_device_path)); 753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 754 if (ret < 0) 755 return -1; 756 757 if (WARN_ON_ONCE(last_dev == ctx.dev)) 758 return -1; 759 } 760 761 if (!ctx.dev) 762 return ret; 763 764 path = dev_fwd_path(stack); 765 if (!path) 766 return -1; 767 path->type = DEV_PATH_ETHERNET; 768 path->dev = ctx.dev; 769 770 return ret; 771 } 772 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 773 774 /* must be called under rcu_read_lock(), as we dont take a reference */ 775 static struct napi_struct *napi_by_id(unsigned int napi_id) 776 { 777 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 778 struct napi_struct *napi; 779 780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 781 if (napi->napi_id == napi_id) 782 return napi; 783 784 return NULL; 785 } 786 787 /* must be called under rcu_read_lock(), as we dont take a reference */ 788 static struct napi_struct * 789 netdev_napi_by_id(struct net *net, unsigned int napi_id) 790 { 791 struct napi_struct *napi; 792 793 napi = napi_by_id(napi_id); 794 if (!napi) 795 return NULL; 796 797 if (WARN_ON_ONCE(!napi->dev)) 798 return NULL; 799 if (!net_eq(net, dev_net(napi->dev))) 800 return NULL; 801 802 return napi; 803 } 804 805 /** 806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it 807 * @net: the applicable net namespace 808 * @napi_id: ID of a NAPI of a target device 809 * 810 * Find a NAPI instance with @napi_id. Lock its device. 811 * The device must be in %NETREG_REGISTERED state for lookup to succeed. 812 * netdev_unlock() must be called to release it. 813 * 814 * Return: pointer to NAPI, its device with lock held, NULL if not found. 815 */ 816 struct napi_struct * 817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) 818 { 819 struct napi_struct *napi; 820 struct net_device *dev; 821 822 rcu_read_lock(); 823 napi = netdev_napi_by_id(net, napi_id); 824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { 825 rcu_read_unlock(); 826 return NULL; 827 } 828 829 dev = napi->dev; 830 dev_hold(dev); 831 rcu_read_unlock(); 832 833 dev = __netdev_put_lock(dev, net); 834 if (!dev) 835 return NULL; 836 837 rcu_read_lock(); 838 napi = netdev_napi_by_id(net, napi_id); 839 if (napi && napi->dev != dev) 840 napi = NULL; 841 rcu_read_unlock(); 842 843 if (!napi) 844 netdev_unlock(dev); 845 return napi; 846 } 847 848 /** 849 * __dev_get_by_name - find a device by its name 850 * @net: the applicable net namespace 851 * @name: name to find 852 * 853 * Find an interface by name. Must be called under RTNL semaphore. 854 * If the name is found a pointer to the device is returned. 855 * If the name is not found then %NULL is returned. The 856 * reference counters are not incremented so the caller must be 857 * careful with locks. 858 */ 859 860 struct net_device *__dev_get_by_name(struct net *net, const char *name) 861 { 862 struct netdev_name_node *node_name; 863 864 node_name = netdev_name_node_lookup(net, name); 865 return node_name ? node_name->dev : NULL; 866 } 867 EXPORT_SYMBOL(__dev_get_by_name); 868 869 /** 870 * dev_get_by_name_rcu - find a device by its name 871 * @net: the applicable net namespace 872 * @name: name to find 873 * 874 * Find an interface by name. 875 * If the name is found a pointer to the device is returned. 876 * If the name is not found then %NULL is returned. 877 * The reference counters are not incremented so the caller must be 878 * careful with locks. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 882 { 883 struct netdev_name_node *node_name; 884 885 node_name = netdev_name_node_lookup_rcu(net, name); 886 return node_name ? node_name->dev : NULL; 887 } 888 EXPORT_SYMBOL(dev_get_by_name_rcu); 889 890 /* Deprecated for new users, call netdev_get_by_name() instead */ 891 struct net_device *dev_get_by_name(struct net *net, const char *name) 892 { 893 struct net_device *dev; 894 895 rcu_read_lock(); 896 dev = dev_get_by_name_rcu(net, name); 897 dev_hold(dev); 898 rcu_read_unlock(); 899 return dev; 900 } 901 EXPORT_SYMBOL(dev_get_by_name); 902 903 /** 904 * netdev_get_by_name() - find a device by its name 905 * @net: the applicable net namespace 906 * @name: name to find 907 * @tracker: tracking object for the acquired reference 908 * @gfp: allocation flags for the tracker 909 * 910 * Find an interface by name. This can be called from any 911 * context and does its own locking. The returned handle has 912 * the usage count incremented and the caller must use netdev_put() to 913 * release it when it is no longer needed. %NULL is returned if no 914 * matching device is found. 915 */ 916 struct net_device *netdev_get_by_name(struct net *net, const char *name, 917 netdevice_tracker *tracker, gfp_t gfp) 918 { 919 struct net_device *dev; 920 921 dev = dev_get_by_name(net, name); 922 if (dev) 923 netdev_tracker_alloc(dev, tracker, gfp); 924 return dev; 925 } 926 EXPORT_SYMBOL(netdev_get_by_name); 927 928 /** 929 * __dev_get_by_index - find a device by its ifindex 930 * @net: the applicable net namespace 931 * @ifindex: index of device 932 * 933 * Search for an interface by index. Returns %NULL if the device 934 * is not found or a pointer to the device. The device has not 935 * had its reference counter increased so the caller must be careful 936 * about locking. The caller must hold the RTNL semaphore. 937 */ 938 939 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 940 { 941 struct net_device *dev; 942 struct hlist_head *head = dev_index_hash(net, ifindex); 943 944 hlist_for_each_entry(dev, head, index_hlist) 945 if (dev->ifindex == ifindex) 946 return dev; 947 948 return NULL; 949 } 950 EXPORT_SYMBOL(__dev_get_by_index); 951 952 /** 953 * dev_get_by_index_rcu - find a device by its ifindex 954 * @net: the applicable net namespace 955 * @ifindex: index of device 956 * 957 * Search for an interface by index. Returns %NULL if the device 958 * is not found or a pointer to the device. The device has not 959 * had its reference counter increased so the caller must be careful 960 * about locking. The caller must hold RCU lock. 961 */ 962 963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 964 { 965 struct net_device *dev; 966 struct hlist_head *head = dev_index_hash(net, ifindex); 967 968 hlist_for_each_entry_rcu(dev, head, index_hlist) 969 if (dev->ifindex == ifindex) 970 return dev; 971 972 return NULL; 973 } 974 EXPORT_SYMBOL(dev_get_by_index_rcu); 975 976 /* Deprecated for new users, call netdev_get_by_index() instead */ 977 struct net_device *dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 dev_hold(dev); 984 rcu_read_unlock(); 985 return dev; 986 } 987 EXPORT_SYMBOL(dev_get_by_index); 988 989 /** 990 * netdev_get_by_index() - find a device by its ifindex 991 * @net: the applicable net namespace 992 * @ifindex: index of device 993 * @tracker: tracking object for the acquired reference 994 * @gfp: allocation flags for the tracker 995 * 996 * Search for an interface by index. Returns NULL if the device 997 * is not found or a pointer to the device. The device returned has 998 * had a reference added and the pointer is safe until the user calls 999 * netdev_put() to indicate they have finished with it. 1000 */ 1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 1002 netdevice_tracker *tracker, gfp_t gfp) 1003 { 1004 struct net_device *dev; 1005 1006 dev = dev_get_by_index(net, ifindex); 1007 if (dev) 1008 netdev_tracker_alloc(dev, tracker, gfp); 1009 return dev; 1010 } 1011 EXPORT_SYMBOL(netdev_get_by_index); 1012 1013 /** 1014 * dev_get_by_napi_id - find a device by napi_id 1015 * @napi_id: ID of the NAPI struct 1016 * 1017 * Search for an interface by NAPI ID. Returns %NULL if the device 1018 * is not found or a pointer to the device. The device has not had 1019 * its reference counter increased so the caller must be careful 1020 * about locking. The caller must hold RCU lock. 1021 */ 1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1023 { 1024 struct napi_struct *napi; 1025 1026 WARN_ON_ONCE(!rcu_read_lock_held()); 1027 1028 if (!napi_id_valid(napi_id)) 1029 return NULL; 1030 1031 napi = napi_by_id(napi_id); 1032 1033 return napi ? napi->dev : NULL; 1034 } 1035 1036 /* Release the held reference on the net_device, and if the net_device 1037 * is still registered try to lock the instance lock. If device is being 1038 * unregistered NULL will be returned (but the reference has been released, 1039 * either way!) 1040 * 1041 * This helper is intended for locking net_device after it has been looked up 1042 * using a lockless lookup helper. Lock prevents the instance from going away. 1043 */ 1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) 1045 { 1046 netdev_lock(dev); 1047 if (dev->reg_state > NETREG_REGISTERED || 1048 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1049 netdev_unlock(dev); 1050 dev_put(dev); 1051 return NULL; 1052 } 1053 dev_put(dev); 1054 return dev; 1055 } 1056 1057 static struct net_device * 1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) 1059 { 1060 netdev_lock_ops_compat(dev); 1061 if (dev->reg_state > NETREG_REGISTERED || 1062 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1063 netdev_unlock_ops_compat(dev); 1064 dev_put(dev); 1065 return NULL; 1066 } 1067 dev_put(dev); 1068 return dev; 1069 } 1070 1071 /** 1072 * netdev_get_by_index_lock() - find a device by its ifindex 1073 * @net: the applicable net namespace 1074 * @ifindex: index of device 1075 * 1076 * Search for an interface by index. If a valid device 1077 * with @ifindex is found it will be returned with netdev->lock held. 1078 * netdev_unlock() must be called to release it. 1079 * 1080 * Return: pointer to a device with lock held, NULL if not found. 1081 */ 1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) 1083 { 1084 struct net_device *dev; 1085 1086 dev = dev_get_by_index(net, ifindex); 1087 if (!dev) 1088 return NULL; 1089 1090 return __netdev_put_lock(dev, net); 1091 } 1092 1093 struct net_device * 1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) 1095 { 1096 struct net_device *dev; 1097 1098 dev = dev_get_by_index(net, ifindex); 1099 if (!dev) 1100 return NULL; 1101 1102 return __netdev_put_lock_ops_compat(dev, net); 1103 } 1104 1105 struct net_device * 1106 netdev_xa_find_lock(struct net *net, struct net_device *dev, 1107 unsigned long *index) 1108 { 1109 if (dev) 1110 netdev_unlock(dev); 1111 1112 do { 1113 rcu_read_lock(); 1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1115 if (!dev) { 1116 rcu_read_unlock(); 1117 return NULL; 1118 } 1119 dev_hold(dev); 1120 rcu_read_unlock(); 1121 1122 dev = __netdev_put_lock(dev, net); 1123 if (dev) 1124 return dev; 1125 1126 (*index)++; 1127 } while (true); 1128 } 1129 1130 struct net_device * 1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, 1132 unsigned long *index) 1133 { 1134 if (dev) 1135 netdev_unlock_ops_compat(dev); 1136 1137 do { 1138 rcu_read_lock(); 1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1140 if (!dev) { 1141 rcu_read_unlock(); 1142 return NULL; 1143 } 1144 dev_hold(dev); 1145 rcu_read_unlock(); 1146 1147 dev = __netdev_put_lock_ops_compat(dev, net); 1148 if (dev) 1149 return dev; 1150 1151 (*index)++; 1152 } while (true); 1153 } 1154 1155 static DEFINE_SEQLOCK(netdev_rename_lock); 1156 1157 void netdev_copy_name(struct net_device *dev, char *name) 1158 { 1159 unsigned int seq; 1160 1161 do { 1162 seq = read_seqbegin(&netdev_rename_lock); 1163 strscpy(name, dev->name, IFNAMSIZ); 1164 } while (read_seqretry(&netdev_rename_lock, seq)); 1165 } 1166 1167 /** 1168 * netdev_get_name - get a netdevice name, knowing its ifindex. 1169 * @net: network namespace 1170 * @name: a pointer to the buffer where the name will be stored. 1171 * @ifindex: the ifindex of the interface to get the name from. 1172 */ 1173 int netdev_get_name(struct net *net, char *name, int ifindex) 1174 { 1175 struct net_device *dev; 1176 int ret; 1177 1178 rcu_read_lock(); 1179 1180 dev = dev_get_by_index_rcu(net, ifindex); 1181 if (!dev) { 1182 ret = -ENODEV; 1183 goto out; 1184 } 1185 1186 netdev_copy_name(dev, name); 1187 1188 ret = 0; 1189 out: 1190 rcu_read_unlock(); 1191 return ret; 1192 } 1193 1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 1195 const char *ha) 1196 { 1197 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 1198 } 1199 1200 /** 1201 * dev_getbyhwaddr_rcu - find a device by its hardware address 1202 * @net: the applicable net namespace 1203 * @type: media type of device 1204 * @ha: hardware address 1205 * 1206 * Search for an interface by MAC address. Returns NULL if the device 1207 * is not found or a pointer to the device. 1208 * The caller must hold RCU. 1209 * The returned device has not had its ref count increased 1210 * and the caller must therefore be careful about locking 1211 * 1212 */ 1213 1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1215 const char *ha) 1216 { 1217 struct net_device *dev; 1218 1219 for_each_netdev_rcu(net, dev) 1220 if (dev_addr_cmp(dev, type, ha)) 1221 return dev; 1222 1223 return NULL; 1224 } 1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1226 1227 /** 1228 * dev_getbyhwaddr() - find a device by its hardware address 1229 * @net: the applicable net namespace 1230 * @type: media type of device 1231 * @ha: hardware address 1232 * 1233 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 1234 * rtnl_lock. 1235 * 1236 * Context: rtnl_lock() must be held. 1237 * Return: pointer to the net_device, or NULL if not found 1238 */ 1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1240 const char *ha) 1241 { 1242 struct net_device *dev; 1243 1244 ASSERT_RTNL(); 1245 for_each_netdev(net, dev) 1246 if (dev_addr_cmp(dev, type, ha)) 1247 return dev; 1248 1249 return NULL; 1250 } 1251 EXPORT_SYMBOL(dev_getbyhwaddr); 1252 1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1254 { 1255 struct net_device *dev, *ret = NULL; 1256 1257 rcu_read_lock(); 1258 for_each_netdev_rcu(net, dev) 1259 if (dev->type == type) { 1260 dev_hold(dev); 1261 ret = dev; 1262 break; 1263 } 1264 rcu_read_unlock(); 1265 return ret; 1266 } 1267 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1268 1269 /** 1270 * netdev_get_by_flags_rcu - find any device with given flags 1271 * @net: the applicable net namespace 1272 * @tracker: tracking object for the acquired reference 1273 * @if_flags: IFF_* values 1274 * @mask: bitmask of bits in if_flags to check 1275 * 1276 * Search for any interface with the given flags. 1277 * 1278 * Context: rcu_read_lock() must be held. 1279 * Returns: NULL if a device is not found or a pointer to the device. 1280 */ 1281 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker, 1282 unsigned short if_flags, unsigned short mask) 1283 { 1284 struct net_device *dev; 1285 1286 for_each_netdev_rcu(net, dev) { 1287 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) { 1288 netdev_hold(dev, tracker, GFP_ATOMIC); 1289 return dev; 1290 } 1291 } 1292 1293 return NULL; 1294 } 1295 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu); 1296 1297 /** 1298 * dev_valid_name - check if name is okay for network device 1299 * @name: name string 1300 * 1301 * Network device names need to be valid file names to 1302 * allow sysfs to work. We also disallow any kind of 1303 * whitespace. 1304 */ 1305 bool dev_valid_name(const char *name) 1306 { 1307 if (*name == '\0') 1308 return false; 1309 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1310 return false; 1311 if (!strcmp(name, ".") || !strcmp(name, "..")) 1312 return false; 1313 1314 while (*name) { 1315 if (*name == '/' || *name == ':' || isspace(*name)) 1316 return false; 1317 name++; 1318 } 1319 return true; 1320 } 1321 EXPORT_SYMBOL(dev_valid_name); 1322 1323 /** 1324 * __dev_alloc_name - allocate a name for a device 1325 * @net: network namespace to allocate the device name in 1326 * @name: name format string 1327 * @res: result name string 1328 * 1329 * Passed a format string - eg "lt%d" it will try and find a suitable 1330 * id. It scans list of devices to build up a free map, then chooses 1331 * the first empty slot. The caller must hold the dev_base or rtnl lock 1332 * while allocating the name and adding the device in order to avoid 1333 * duplicates. 1334 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1335 * Returns the number of the unit assigned or a negative errno code. 1336 */ 1337 1338 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1339 { 1340 int i = 0; 1341 const char *p; 1342 const int max_netdevices = 8*PAGE_SIZE; 1343 unsigned long *inuse; 1344 struct net_device *d; 1345 char buf[IFNAMSIZ]; 1346 1347 /* Verify the string as this thing may have come from the user. 1348 * There must be one "%d" and no other "%" characters. 1349 */ 1350 p = strchr(name, '%'); 1351 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1352 return -EINVAL; 1353 1354 /* Use one page as a bit array of possible slots */ 1355 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1356 if (!inuse) 1357 return -ENOMEM; 1358 1359 for_each_netdev(net, d) { 1360 struct netdev_name_node *name_node; 1361 1362 netdev_for_each_altname(d, name_node) { 1363 if (!sscanf(name_node->name, name, &i)) 1364 continue; 1365 if (i < 0 || i >= max_netdevices) 1366 continue; 1367 1368 /* avoid cases where sscanf is not exact inverse of printf */ 1369 snprintf(buf, IFNAMSIZ, name, i); 1370 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1371 __set_bit(i, inuse); 1372 } 1373 if (!sscanf(d->name, name, &i)) 1374 continue; 1375 if (i < 0 || i >= max_netdevices) 1376 continue; 1377 1378 /* avoid cases where sscanf is not exact inverse of printf */ 1379 snprintf(buf, IFNAMSIZ, name, i); 1380 if (!strncmp(buf, d->name, IFNAMSIZ)) 1381 __set_bit(i, inuse); 1382 } 1383 1384 i = find_first_zero_bit(inuse, max_netdevices); 1385 bitmap_free(inuse); 1386 if (i == max_netdevices) 1387 return -ENFILE; 1388 1389 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1390 strscpy(buf, name, IFNAMSIZ); 1391 snprintf(res, IFNAMSIZ, buf, i); 1392 return i; 1393 } 1394 1395 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1396 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1397 const char *want_name, char *out_name, 1398 int dup_errno) 1399 { 1400 if (!dev_valid_name(want_name)) 1401 return -EINVAL; 1402 1403 if (strchr(want_name, '%')) 1404 return __dev_alloc_name(net, want_name, out_name); 1405 1406 if (netdev_name_in_use(net, want_name)) 1407 return -dup_errno; 1408 if (out_name != want_name) 1409 strscpy(out_name, want_name, IFNAMSIZ); 1410 return 0; 1411 } 1412 1413 /** 1414 * dev_alloc_name - allocate a name for a device 1415 * @dev: device 1416 * @name: name format string 1417 * 1418 * Passed a format string - eg "lt%d" it will try and find a suitable 1419 * id. It scans list of devices to build up a free map, then chooses 1420 * the first empty slot. The caller must hold the dev_base or rtnl lock 1421 * while allocating the name and adding the device in order to avoid 1422 * duplicates. 1423 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1424 * Returns the number of the unit assigned or a negative errno code. 1425 */ 1426 1427 int dev_alloc_name(struct net_device *dev, const char *name) 1428 { 1429 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1430 } 1431 EXPORT_SYMBOL(dev_alloc_name); 1432 1433 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1434 const char *name) 1435 { 1436 int ret; 1437 1438 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1439 return ret < 0 ? ret : 0; 1440 } 1441 1442 int netif_change_name(struct net_device *dev, const char *newname) 1443 { 1444 struct net *net = dev_net(dev); 1445 unsigned char old_assign_type; 1446 char oldname[IFNAMSIZ]; 1447 int err = 0; 1448 int ret; 1449 1450 ASSERT_RTNL_NET(net); 1451 1452 if (!strncmp(newname, dev->name, IFNAMSIZ)) 1453 return 0; 1454 1455 memcpy(oldname, dev->name, IFNAMSIZ); 1456 1457 write_seqlock_bh(&netdev_rename_lock); 1458 err = dev_get_valid_name(net, dev, newname); 1459 write_sequnlock_bh(&netdev_rename_lock); 1460 1461 if (err < 0) 1462 return err; 1463 1464 if (oldname[0] && !strchr(oldname, '%')) 1465 netdev_info(dev, "renamed from %s%s\n", oldname, 1466 dev->flags & IFF_UP ? " (while UP)" : ""); 1467 1468 old_assign_type = dev->name_assign_type; 1469 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1470 1471 rollback: 1472 ret = device_rename(&dev->dev, dev->name); 1473 if (ret) { 1474 write_seqlock_bh(&netdev_rename_lock); 1475 memcpy(dev->name, oldname, IFNAMSIZ); 1476 write_sequnlock_bh(&netdev_rename_lock); 1477 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1478 return ret; 1479 } 1480 1481 netdev_adjacent_rename_links(dev, oldname); 1482 1483 netdev_name_node_del(dev->name_node); 1484 1485 synchronize_net(); 1486 1487 netdev_name_node_add(net, dev->name_node); 1488 1489 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1490 ret = notifier_to_errno(ret); 1491 1492 if (ret) { 1493 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1494 if (err >= 0) { 1495 err = ret; 1496 write_seqlock_bh(&netdev_rename_lock); 1497 memcpy(dev->name, oldname, IFNAMSIZ); 1498 write_sequnlock_bh(&netdev_rename_lock); 1499 memcpy(oldname, newname, IFNAMSIZ); 1500 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1501 old_assign_type = NET_NAME_RENAMED; 1502 goto rollback; 1503 } else { 1504 netdev_err(dev, "name change rollback failed: %d\n", 1505 ret); 1506 } 1507 } 1508 1509 return err; 1510 } 1511 1512 int netif_set_alias(struct net_device *dev, const char *alias, size_t len) 1513 { 1514 struct dev_ifalias *new_alias = NULL; 1515 1516 if (len >= IFALIASZ) 1517 return -EINVAL; 1518 1519 if (len) { 1520 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1521 if (!new_alias) 1522 return -ENOMEM; 1523 1524 memcpy(new_alias->ifalias, alias, len); 1525 new_alias->ifalias[len] = 0; 1526 } 1527 1528 mutex_lock(&ifalias_mutex); 1529 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1530 mutex_is_locked(&ifalias_mutex)); 1531 mutex_unlock(&ifalias_mutex); 1532 1533 if (new_alias) 1534 kfree_rcu(new_alias, rcuhead); 1535 1536 return len; 1537 } 1538 1539 /** 1540 * dev_get_alias - get ifalias of a device 1541 * @dev: device 1542 * @name: buffer to store name of ifalias 1543 * @len: size of buffer 1544 * 1545 * get ifalias for a device. Caller must make sure dev cannot go 1546 * away, e.g. rcu read lock or own a reference count to device. 1547 */ 1548 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1549 { 1550 const struct dev_ifalias *alias; 1551 int ret = 0; 1552 1553 rcu_read_lock(); 1554 alias = rcu_dereference(dev->ifalias); 1555 if (alias) 1556 ret = snprintf(name, len, "%s", alias->ifalias); 1557 rcu_read_unlock(); 1558 1559 return ret; 1560 } 1561 1562 /** 1563 * netdev_features_change - device changes features 1564 * @dev: device to cause notification 1565 * 1566 * Called to indicate a device has changed features. 1567 */ 1568 void netdev_features_change(struct net_device *dev) 1569 { 1570 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1571 } 1572 EXPORT_SYMBOL(netdev_features_change); 1573 1574 void netif_state_change(struct net_device *dev) 1575 { 1576 netdev_ops_assert_locked_or_invisible(dev); 1577 1578 if (dev->flags & IFF_UP) { 1579 struct netdev_notifier_change_info change_info = { 1580 .info.dev = dev, 1581 }; 1582 1583 call_netdevice_notifiers_info(NETDEV_CHANGE, 1584 &change_info.info); 1585 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1586 } 1587 } 1588 1589 /** 1590 * __netdev_notify_peers - notify network peers about existence of @dev, 1591 * to be called when rtnl lock is already held. 1592 * @dev: network device 1593 * 1594 * Generate traffic such that interested network peers are aware of 1595 * @dev, such as by generating a gratuitous ARP. This may be used when 1596 * a device wants to inform the rest of the network about some sort of 1597 * reconfiguration such as a failover event or virtual machine 1598 * migration. 1599 */ 1600 void __netdev_notify_peers(struct net_device *dev) 1601 { 1602 ASSERT_RTNL(); 1603 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1604 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1605 } 1606 EXPORT_SYMBOL(__netdev_notify_peers); 1607 1608 /** 1609 * netdev_notify_peers - notify network peers about existence of @dev 1610 * @dev: network device 1611 * 1612 * Generate traffic such that interested network peers are aware of 1613 * @dev, such as by generating a gratuitous ARP. This may be used when 1614 * a device wants to inform the rest of the network about some sort of 1615 * reconfiguration such as a failover event or virtual machine 1616 * migration. 1617 */ 1618 void netdev_notify_peers(struct net_device *dev) 1619 { 1620 rtnl_lock(); 1621 __netdev_notify_peers(dev); 1622 rtnl_unlock(); 1623 } 1624 EXPORT_SYMBOL(netdev_notify_peers); 1625 1626 static int napi_threaded_poll(void *data); 1627 1628 static int napi_kthread_create(struct napi_struct *n) 1629 { 1630 int err = 0; 1631 1632 /* Create and wake up the kthread once to put it in 1633 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1634 * warning and work with loadavg. 1635 */ 1636 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1637 n->dev->name, n->napi_id); 1638 if (IS_ERR(n->thread)) { 1639 err = PTR_ERR(n->thread); 1640 pr_err("kthread_run failed with err %d\n", err); 1641 n->thread = NULL; 1642 } 1643 1644 return err; 1645 } 1646 1647 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1648 { 1649 const struct net_device_ops *ops = dev->netdev_ops; 1650 int ret; 1651 1652 ASSERT_RTNL(); 1653 dev_addr_check(dev); 1654 1655 if (!netif_device_present(dev)) { 1656 /* may be detached because parent is runtime-suspended */ 1657 if (dev->dev.parent) 1658 pm_runtime_resume(dev->dev.parent); 1659 if (!netif_device_present(dev)) 1660 return -ENODEV; 1661 } 1662 1663 /* Block netpoll from trying to do any rx path servicing. 1664 * If we don't do this there is a chance ndo_poll_controller 1665 * or ndo_poll may be running while we open the device 1666 */ 1667 netpoll_poll_disable(dev); 1668 1669 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1670 ret = notifier_to_errno(ret); 1671 if (ret) 1672 return ret; 1673 1674 set_bit(__LINK_STATE_START, &dev->state); 1675 1676 netdev_ops_assert_locked(dev); 1677 1678 if (ops->ndo_validate_addr) 1679 ret = ops->ndo_validate_addr(dev); 1680 1681 if (!ret && ops->ndo_open) 1682 ret = ops->ndo_open(dev); 1683 1684 netpoll_poll_enable(dev); 1685 1686 if (ret) 1687 clear_bit(__LINK_STATE_START, &dev->state); 1688 else { 1689 netif_set_up(dev, true); 1690 dev_set_rx_mode(dev); 1691 dev_activate(dev); 1692 add_device_randomness(dev->dev_addr, dev->addr_len); 1693 } 1694 1695 return ret; 1696 } 1697 1698 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) 1699 { 1700 int ret; 1701 1702 if (dev->flags & IFF_UP) 1703 return 0; 1704 1705 ret = __dev_open(dev, extack); 1706 if (ret < 0) 1707 return ret; 1708 1709 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1710 call_netdevice_notifiers(NETDEV_UP, dev); 1711 1712 return ret; 1713 } 1714 1715 static void __dev_close_many(struct list_head *head) 1716 { 1717 struct net_device *dev; 1718 1719 ASSERT_RTNL(); 1720 might_sleep(); 1721 1722 list_for_each_entry(dev, head, close_list) { 1723 /* Temporarily disable netpoll until the interface is down */ 1724 netpoll_poll_disable(dev); 1725 1726 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1727 1728 clear_bit(__LINK_STATE_START, &dev->state); 1729 1730 /* Synchronize to scheduled poll. We cannot touch poll list, it 1731 * can be even on different cpu. So just clear netif_running(). 1732 * 1733 * dev->stop() will invoke napi_disable() on all of it's 1734 * napi_struct instances on this device. 1735 */ 1736 smp_mb__after_atomic(); /* Commit netif_running(). */ 1737 } 1738 1739 dev_deactivate_many(head); 1740 1741 list_for_each_entry(dev, head, close_list) { 1742 const struct net_device_ops *ops = dev->netdev_ops; 1743 1744 /* 1745 * Call the device specific close. This cannot fail. 1746 * Only if device is UP 1747 * 1748 * We allow it to be called even after a DETACH hot-plug 1749 * event. 1750 */ 1751 1752 netdev_ops_assert_locked(dev); 1753 1754 if (ops->ndo_stop) 1755 ops->ndo_stop(dev); 1756 1757 netif_set_up(dev, false); 1758 netpoll_poll_enable(dev); 1759 } 1760 } 1761 1762 static void __dev_close(struct net_device *dev) 1763 { 1764 LIST_HEAD(single); 1765 1766 list_add(&dev->close_list, &single); 1767 __dev_close_many(&single); 1768 list_del(&single); 1769 } 1770 1771 void netif_close_many(struct list_head *head, bool unlink) 1772 { 1773 struct net_device *dev, *tmp; 1774 1775 /* Remove the devices that don't need to be closed */ 1776 list_for_each_entry_safe(dev, tmp, head, close_list) 1777 if (!(dev->flags & IFF_UP)) 1778 list_del_init(&dev->close_list); 1779 1780 __dev_close_many(head); 1781 1782 list_for_each_entry_safe(dev, tmp, head, close_list) { 1783 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1784 call_netdevice_notifiers(NETDEV_DOWN, dev); 1785 if (unlink) 1786 list_del_init(&dev->close_list); 1787 } 1788 } 1789 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL"); 1790 1791 void netif_close(struct net_device *dev) 1792 { 1793 if (dev->flags & IFF_UP) { 1794 LIST_HEAD(single); 1795 1796 list_add(&dev->close_list, &single); 1797 netif_close_many(&single, true); 1798 list_del(&single); 1799 } 1800 } 1801 EXPORT_SYMBOL(netif_close); 1802 1803 void netif_disable_lro(struct net_device *dev) 1804 { 1805 struct net_device *lower_dev; 1806 struct list_head *iter; 1807 1808 dev->wanted_features &= ~NETIF_F_LRO; 1809 netdev_update_features(dev); 1810 1811 if (unlikely(dev->features & NETIF_F_LRO)) 1812 netdev_WARN(dev, "failed to disable LRO!\n"); 1813 1814 netdev_for_each_lower_dev(dev, lower_dev, iter) { 1815 netdev_lock_ops(lower_dev); 1816 netif_disable_lro(lower_dev); 1817 netdev_unlock_ops(lower_dev); 1818 } 1819 } 1820 EXPORT_IPV6_MOD(netif_disable_lro); 1821 1822 /** 1823 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1824 * @dev: device 1825 * 1826 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1827 * called under RTNL. This is needed if Generic XDP is installed on 1828 * the device. 1829 */ 1830 static void dev_disable_gro_hw(struct net_device *dev) 1831 { 1832 dev->wanted_features &= ~NETIF_F_GRO_HW; 1833 netdev_update_features(dev); 1834 1835 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1836 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1837 } 1838 1839 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1840 { 1841 #define N(val) \ 1842 case NETDEV_##val: \ 1843 return "NETDEV_" __stringify(val); 1844 switch (cmd) { 1845 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1846 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1847 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1848 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1849 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1850 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1851 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1852 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1853 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1854 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1855 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1856 N(XDP_FEAT_CHANGE) 1857 } 1858 #undef N 1859 return "UNKNOWN_NETDEV_EVENT"; 1860 } 1861 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1862 1863 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1864 struct net_device *dev) 1865 { 1866 struct netdev_notifier_info info = { 1867 .dev = dev, 1868 }; 1869 1870 return nb->notifier_call(nb, val, &info); 1871 } 1872 1873 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1874 struct net_device *dev) 1875 { 1876 int err; 1877 1878 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1879 err = notifier_to_errno(err); 1880 if (err) 1881 return err; 1882 1883 if (!(dev->flags & IFF_UP)) 1884 return 0; 1885 1886 call_netdevice_notifier(nb, NETDEV_UP, dev); 1887 return 0; 1888 } 1889 1890 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1891 struct net_device *dev) 1892 { 1893 if (dev->flags & IFF_UP) { 1894 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1895 dev); 1896 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1897 } 1898 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1899 } 1900 1901 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1902 struct net *net) 1903 { 1904 struct net_device *dev; 1905 int err; 1906 1907 for_each_netdev(net, dev) { 1908 netdev_lock_ops(dev); 1909 err = call_netdevice_register_notifiers(nb, dev); 1910 netdev_unlock_ops(dev); 1911 if (err) 1912 goto rollback; 1913 } 1914 return 0; 1915 1916 rollback: 1917 for_each_netdev_continue_reverse(net, dev) 1918 call_netdevice_unregister_notifiers(nb, dev); 1919 return err; 1920 } 1921 1922 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1923 struct net *net) 1924 { 1925 struct net_device *dev; 1926 1927 for_each_netdev(net, dev) 1928 call_netdevice_unregister_notifiers(nb, dev); 1929 } 1930 1931 static int dev_boot_phase = 1; 1932 1933 /** 1934 * register_netdevice_notifier - register a network notifier block 1935 * @nb: notifier 1936 * 1937 * Register a notifier to be called when network device events occur. 1938 * The notifier passed is linked into the kernel structures and must 1939 * not be reused until it has been unregistered. A negative errno code 1940 * is returned on a failure. 1941 * 1942 * When registered all registration and up events are replayed 1943 * to the new notifier to allow device to have a race free 1944 * view of the network device list. 1945 */ 1946 1947 int register_netdevice_notifier(struct notifier_block *nb) 1948 { 1949 struct net *net; 1950 int err; 1951 1952 /* Close race with setup_net() and cleanup_net() */ 1953 down_write(&pernet_ops_rwsem); 1954 1955 /* When RTNL is removed, we need protection for netdev_chain. */ 1956 rtnl_lock(); 1957 1958 err = raw_notifier_chain_register(&netdev_chain, nb); 1959 if (err) 1960 goto unlock; 1961 if (dev_boot_phase) 1962 goto unlock; 1963 for_each_net(net) { 1964 __rtnl_net_lock(net); 1965 err = call_netdevice_register_net_notifiers(nb, net); 1966 __rtnl_net_unlock(net); 1967 if (err) 1968 goto rollback; 1969 } 1970 1971 unlock: 1972 rtnl_unlock(); 1973 up_write(&pernet_ops_rwsem); 1974 return err; 1975 1976 rollback: 1977 for_each_net_continue_reverse(net) { 1978 __rtnl_net_lock(net); 1979 call_netdevice_unregister_net_notifiers(nb, net); 1980 __rtnl_net_unlock(net); 1981 } 1982 1983 raw_notifier_chain_unregister(&netdev_chain, nb); 1984 goto unlock; 1985 } 1986 EXPORT_SYMBOL(register_netdevice_notifier); 1987 1988 /** 1989 * unregister_netdevice_notifier - unregister a network notifier block 1990 * @nb: notifier 1991 * 1992 * Unregister a notifier previously registered by 1993 * register_netdevice_notifier(). The notifier is unlinked into the 1994 * kernel structures and may then be reused. A negative errno code 1995 * is returned on a failure. 1996 * 1997 * After unregistering unregister and down device events are synthesized 1998 * for all devices on the device list to the removed notifier to remove 1999 * the need for special case cleanup code. 2000 */ 2001 2002 int unregister_netdevice_notifier(struct notifier_block *nb) 2003 { 2004 struct net *net; 2005 int err; 2006 2007 /* Close race with setup_net() and cleanup_net() */ 2008 down_write(&pernet_ops_rwsem); 2009 rtnl_lock(); 2010 err = raw_notifier_chain_unregister(&netdev_chain, nb); 2011 if (err) 2012 goto unlock; 2013 2014 for_each_net(net) { 2015 __rtnl_net_lock(net); 2016 call_netdevice_unregister_net_notifiers(nb, net); 2017 __rtnl_net_unlock(net); 2018 } 2019 2020 unlock: 2021 rtnl_unlock(); 2022 up_write(&pernet_ops_rwsem); 2023 return err; 2024 } 2025 EXPORT_SYMBOL(unregister_netdevice_notifier); 2026 2027 static int __register_netdevice_notifier_net(struct net *net, 2028 struct notifier_block *nb, 2029 bool ignore_call_fail) 2030 { 2031 int err; 2032 2033 err = raw_notifier_chain_register(&net->netdev_chain, nb); 2034 if (err) 2035 return err; 2036 if (dev_boot_phase) 2037 return 0; 2038 2039 err = call_netdevice_register_net_notifiers(nb, net); 2040 if (err && !ignore_call_fail) 2041 goto chain_unregister; 2042 2043 return 0; 2044 2045 chain_unregister: 2046 raw_notifier_chain_unregister(&net->netdev_chain, nb); 2047 return err; 2048 } 2049 2050 static int __unregister_netdevice_notifier_net(struct net *net, 2051 struct notifier_block *nb) 2052 { 2053 int err; 2054 2055 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 2056 if (err) 2057 return err; 2058 2059 call_netdevice_unregister_net_notifiers(nb, net); 2060 return 0; 2061 } 2062 2063 /** 2064 * register_netdevice_notifier_net - register a per-netns network notifier block 2065 * @net: network namespace 2066 * @nb: notifier 2067 * 2068 * Register a notifier to be called when network device events occur. 2069 * The notifier passed is linked into the kernel structures and must 2070 * not be reused until it has been unregistered. A negative errno code 2071 * is returned on a failure. 2072 * 2073 * When registered all registration and up events are replayed 2074 * to the new notifier to allow device to have a race free 2075 * view of the network device list. 2076 */ 2077 2078 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2079 { 2080 int err; 2081 2082 rtnl_net_lock(net); 2083 err = __register_netdevice_notifier_net(net, nb, false); 2084 rtnl_net_unlock(net); 2085 2086 return err; 2087 } 2088 EXPORT_SYMBOL(register_netdevice_notifier_net); 2089 2090 /** 2091 * unregister_netdevice_notifier_net - unregister a per-netns 2092 * network notifier block 2093 * @net: network namespace 2094 * @nb: notifier 2095 * 2096 * Unregister a notifier previously registered by 2097 * register_netdevice_notifier_net(). The notifier is unlinked from the 2098 * kernel structures and may then be reused. A negative errno code 2099 * is returned on a failure. 2100 * 2101 * After unregistering unregister and down device events are synthesized 2102 * for all devices on the device list to the removed notifier to remove 2103 * the need for special case cleanup code. 2104 */ 2105 2106 int unregister_netdevice_notifier_net(struct net *net, 2107 struct notifier_block *nb) 2108 { 2109 int err; 2110 2111 rtnl_net_lock(net); 2112 err = __unregister_netdevice_notifier_net(net, nb); 2113 rtnl_net_unlock(net); 2114 2115 return err; 2116 } 2117 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2118 2119 static void __move_netdevice_notifier_net(struct net *src_net, 2120 struct net *dst_net, 2121 struct notifier_block *nb) 2122 { 2123 __unregister_netdevice_notifier_net(src_net, nb); 2124 __register_netdevice_notifier_net(dst_net, nb, true); 2125 } 2126 2127 static void rtnl_net_dev_lock(struct net_device *dev) 2128 { 2129 bool again; 2130 2131 do { 2132 struct net *net; 2133 2134 again = false; 2135 2136 /* netns might be being dismantled. */ 2137 rcu_read_lock(); 2138 net = dev_net_rcu(dev); 2139 net_passive_inc(net); 2140 rcu_read_unlock(); 2141 2142 rtnl_net_lock(net); 2143 2144 #ifdef CONFIG_NET_NS 2145 /* dev might have been moved to another netns. */ 2146 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) { 2147 rtnl_net_unlock(net); 2148 net_passive_dec(net); 2149 again = true; 2150 } 2151 #endif 2152 } while (again); 2153 } 2154 2155 static void rtnl_net_dev_unlock(struct net_device *dev) 2156 { 2157 struct net *net = dev_net(dev); 2158 2159 rtnl_net_unlock(net); 2160 net_passive_dec(net); 2161 } 2162 2163 int register_netdevice_notifier_dev_net(struct net_device *dev, 2164 struct notifier_block *nb, 2165 struct netdev_net_notifier *nn) 2166 { 2167 int err; 2168 2169 rtnl_net_dev_lock(dev); 2170 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2171 if (!err) { 2172 nn->nb = nb; 2173 list_add(&nn->list, &dev->net_notifier_list); 2174 } 2175 rtnl_net_dev_unlock(dev); 2176 2177 return err; 2178 } 2179 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2180 2181 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2182 struct notifier_block *nb, 2183 struct netdev_net_notifier *nn) 2184 { 2185 int err; 2186 2187 rtnl_net_dev_lock(dev); 2188 list_del(&nn->list); 2189 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2190 rtnl_net_dev_unlock(dev); 2191 2192 return err; 2193 } 2194 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2195 2196 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2197 struct net *net) 2198 { 2199 struct netdev_net_notifier *nn; 2200 2201 list_for_each_entry(nn, &dev->net_notifier_list, list) 2202 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2203 } 2204 2205 /** 2206 * call_netdevice_notifiers_info - call all network notifier blocks 2207 * @val: value passed unmodified to notifier function 2208 * @info: notifier information data 2209 * 2210 * Call all network notifier blocks. Parameters and return value 2211 * are as for raw_notifier_call_chain(). 2212 */ 2213 2214 int call_netdevice_notifiers_info(unsigned long val, 2215 struct netdev_notifier_info *info) 2216 { 2217 struct net *net = dev_net(info->dev); 2218 int ret; 2219 2220 ASSERT_RTNL(); 2221 2222 /* Run per-netns notifier block chain first, then run the global one. 2223 * Hopefully, one day, the global one is going to be removed after 2224 * all notifier block registrators get converted to be per-netns. 2225 */ 2226 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2227 if (ret & NOTIFY_STOP_MASK) 2228 return ret; 2229 return raw_notifier_call_chain(&netdev_chain, val, info); 2230 } 2231 2232 /** 2233 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2234 * for and rollback on error 2235 * @val_up: value passed unmodified to notifier function 2236 * @val_down: value passed unmodified to the notifier function when 2237 * recovering from an error on @val_up 2238 * @info: notifier information data 2239 * 2240 * Call all per-netns network notifier blocks, but not notifier blocks on 2241 * the global notifier chain. Parameters and return value are as for 2242 * raw_notifier_call_chain_robust(). 2243 */ 2244 2245 static int 2246 call_netdevice_notifiers_info_robust(unsigned long val_up, 2247 unsigned long val_down, 2248 struct netdev_notifier_info *info) 2249 { 2250 struct net *net = dev_net(info->dev); 2251 2252 ASSERT_RTNL(); 2253 2254 return raw_notifier_call_chain_robust(&net->netdev_chain, 2255 val_up, val_down, info); 2256 } 2257 2258 static int call_netdevice_notifiers_extack(unsigned long val, 2259 struct net_device *dev, 2260 struct netlink_ext_ack *extack) 2261 { 2262 struct netdev_notifier_info info = { 2263 .dev = dev, 2264 .extack = extack, 2265 }; 2266 2267 return call_netdevice_notifiers_info(val, &info); 2268 } 2269 2270 /** 2271 * call_netdevice_notifiers - call all network notifier blocks 2272 * @val: value passed unmodified to notifier function 2273 * @dev: net_device pointer passed unmodified to notifier function 2274 * 2275 * Call all network notifier blocks. Parameters and return value 2276 * are as for raw_notifier_call_chain(). 2277 */ 2278 2279 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2280 { 2281 return call_netdevice_notifiers_extack(val, dev, NULL); 2282 } 2283 EXPORT_SYMBOL(call_netdevice_notifiers); 2284 2285 /** 2286 * call_netdevice_notifiers_mtu - call all network notifier blocks 2287 * @val: value passed unmodified to notifier function 2288 * @dev: net_device pointer passed unmodified to notifier function 2289 * @arg: additional u32 argument passed to the notifier function 2290 * 2291 * Call all network notifier blocks. Parameters and return value 2292 * are as for raw_notifier_call_chain(). 2293 */ 2294 static int call_netdevice_notifiers_mtu(unsigned long val, 2295 struct net_device *dev, u32 arg) 2296 { 2297 struct netdev_notifier_info_ext info = { 2298 .info.dev = dev, 2299 .ext.mtu = arg, 2300 }; 2301 2302 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2303 2304 return call_netdevice_notifiers_info(val, &info.info); 2305 } 2306 2307 #ifdef CONFIG_NET_INGRESS 2308 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2309 2310 void net_inc_ingress_queue(void) 2311 { 2312 static_branch_inc(&ingress_needed_key); 2313 } 2314 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2315 2316 void net_dec_ingress_queue(void) 2317 { 2318 static_branch_dec(&ingress_needed_key); 2319 } 2320 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2321 #endif 2322 2323 #ifdef CONFIG_NET_EGRESS 2324 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2325 2326 void net_inc_egress_queue(void) 2327 { 2328 static_branch_inc(&egress_needed_key); 2329 } 2330 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2331 2332 void net_dec_egress_queue(void) 2333 { 2334 static_branch_dec(&egress_needed_key); 2335 } 2336 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2337 #endif 2338 2339 #ifdef CONFIG_NET_CLS_ACT 2340 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); 2341 EXPORT_SYMBOL(tcf_sw_enabled_key); 2342 #endif 2343 2344 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2345 EXPORT_SYMBOL(netstamp_needed_key); 2346 #ifdef CONFIG_JUMP_LABEL 2347 static atomic_t netstamp_needed_deferred; 2348 static atomic_t netstamp_wanted; 2349 static void netstamp_clear(struct work_struct *work) 2350 { 2351 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2352 int wanted; 2353 2354 wanted = atomic_add_return(deferred, &netstamp_wanted); 2355 if (wanted > 0) 2356 static_branch_enable(&netstamp_needed_key); 2357 else 2358 static_branch_disable(&netstamp_needed_key); 2359 } 2360 static DECLARE_WORK(netstamp_work, netstamp_clear); 2361 #endif 2362 2363 void net_enable_timestamp(void) 2364 { 2365 #ifdef CONFIG_JUMP_LABEL 2366 int wanted = atomic_read(&netstamp_wanted); 2367 2368 while (wanted > 0) { 2369 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2370 return; 2371 } 2372 atomic_inc(&netstamp_needed_deferred); 2373 schedule_work(&netstamp_work); 2374 #else 2375 static_branch_inc(&netstamp_needed_key); 2376 #endif 2377 } 2378 EXPORT_SYMBOL(net_enable_timestamp); 2379 2380 void net_disable_timestamp(void) 2381 { 2382 #ifdef CONFIG_JUMP_LABEL 2383 int wanted = atomic_read(&netstamp_wanted); 2384 2385 while (wanted > 1) { 2386 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2387 return; 2388 } 2389 atomic_dec(&netstamp_needed_deferred); 2390 schedule_work(&netstamp_work); 2391 #else 2392 static_branch_dec(&netstamp_needed_key); 2393 #endif 2394 } 2395 EXPORT_SYMBOL(net_disable_timestamp); 2396 2397 static inline void net_timestamp_set(struct sk_buff *skb) 2398 { 2399 skb->tstamp = 0; 2400 skb->tstamp_type = SKB_CLOCK_REALTIME; 2401 if (static_branch_unlikely(&netstamp_needed_key)) 2402 skb->tstamp = ktime_get_real(); 2403 } 2404 2405 #define net_timestamp_check(COND, SKB) \ 2406 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2407 if ((COND) && !(SKB)->tstamp) \ 2408 (SKB)->tstamp = ktime_get_real(); \ 2409 } \ 2410 2411 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2412 { 2413 return __is_skb_forwardable(dev, skb, true); 2414 } 2415 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2416 2417 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2418 bool check_mtu) 2419 { 2420 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2421 2422 if (likely(!ret)) { 2423 skb->protocol = eth_type_trans(skb, dev); 2424 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2425 } 2426 2427 return ret; 2428 } 2429 2430 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2431 { 2432 return __dev_forward_skb2(dev, skb, true); 2433 } 2434 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2435 2436 /** 2437 * dev_forward_skb - loopback an skb to another netif 2438 * 2439 * @dev: destination network device 2440 * @skb: buffer to forward 2441 * 2442 * return values: 2443 * NET_RX_SUCCESS (no congestion) 2444 * NET_RX_DROP (packet was dropped, but freed) 2445 * 2446 * dev_forward_skb can be used for injecting an skb from the 2447 * start_xmit function of one device into the receive queue 2448 * of another device. 2449 * 2450 * The receiving device may be in another namespace, so 2451 * we have to clear all information in the skb that could 2452 * impact namespace isolation. 2453 */ 2454 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2455 { 2456 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2457 } 2458 EXPORT_SYMBOL_GPL(dev_forward_skb); 2459 2460 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2461 { 2462 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2463 } 2464 2465 static inline int deliver_skb(struct sk_buff *skb, 2466 struct packet_type *pt_prev, 2467 struct net_device *orig_dev) 2468 { 2469 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2470 return -ENOMEM; 2471 refcount_inc(&skb->users); 2472 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2473 } 2474 2475 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2476 struct packet_type **pt, 2477 struct net_device *orig_dev, 2478 __be16 type, 2479 struct list_head *ptype_list) 2480 { 2481 struct packet_type *ptype, *pt_prev = *pt; 2482 2483 list_for_each_entry_rcu(ptype, ptype_list, list) { 2484 if (ptype->type != type) 2485 continue; 2486 if (pt_prev) 2487 deliver_skb(skb, pt_prev, orig_dev); 2488 pt_prev = ptype; 2489 } 2490 *pt = pt_prev; 2491 } 2492 2493 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2494 { 2495 if (!ptype->af_packet_priv || !skb->sk) 2496 return false; 2497 2498 if (ptype->id_match) 2499 return ptype->id_match(ptype, skb->sk); 2500 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2501 return true; 2502 2503 return false; 2504 } 2505 2506 /** 2507 * dev_nit_active_rcu - return true if any network interface taps are in use 2508 * 2509 * The caller must hold the RCU lock 2510 * 2511 * @dev: network device to check for the presence of taps 2512 */ 2513 bool dev_nit_active_rcu(const struct net_device *dev) 2514 { 2515 /* Callers may hold either RCU or RCU BH lock */ 2516 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 2517 2518 return !list_empty(&dev_net(dev)->ptype_all) || 2519 !list_empty(&dev->ptype_all); 2520 } 2521 EXPORT_SYMBOL_GPL(dev_nit_active_rcu); 2522 2523 /* 2524 * Support routine. Sends outgoing frames to any network 2525 * taps currently in use. 2526 */ 2527 2528 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2529 { 2530 struct packet_type *ptype, *pt_prev = NULL; 2531 struct list_head *ptype_list; 2532 struct sk_buff *skb2 = NULL; 2533 2534 rcu_read_lock(); 2535 ptype_list = &dev_net_rcu(dev)->ptype_all; 2536 again: 2537 list_for_each_entry_rcu(ptype, ptype_list, list) { 2538 if (READ_ONCE(ptype->ignore_outgoing)) 2539 continue; 2540 2541 /* Never send packets back to the socket 2542 * they originated from - MvS (miquels@drinkel.ow.org) 2543 */ 2544 if (skb_loop_sk(ptype, skb)) 2545 continue; 2546 2547 if (pt_prev) { 2548 deliver_skb(skb2, pt_prev, skb->dev); 2549 pt_prev = ptype; 2550 continue; 2551 } 2552 2553 /* need to clone skb, done only once */ 2554 skb2 = skb_clone(skb, GFP_ATOMIC); 2555 if (!skb2) 2556 goto out_unlock; 2557 2558 net_timestamp_set(skb2); 2559 2560 /* skb->nh should be correctly 2561 * set by sender, so that the second statement is 2562 * just protection against buggy protocols. 2563 */ 2564 skb_reset_mac_header(skb2); 2565 2566 if (skb_network_header(skb2) < skb2->data || 2567 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2568 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2569 ntohs(skb2->protocol), 2570 dev->name); 2571 skb_reset_network_header(skb2); 2572 } 2573 2574 skb2->transport_header = skb2->network_header; 2575 skb2->pkt_type = PACKET_OUTGOING; 2576 pt_prev = ptype; 2577 } 2578 2579 if (ptype_list != &dev->ptype_all) { 2580 ptype_list = &dev->ptype_all; 2581 goto again; 2582 } 2583 out_unlock: 2584 if (pt_prev) { 2585 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2586 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2587 else 2588 kfree_skb(skb2); 2589 } 2590 rcu_read_unlock(); 2591 } 2592 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2593 2594 /** 2595 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2596 * @dev: Network device 2597 * @txq: number of queues available 2598 * 2599 * If real_num_tx_queues is changed the tc mappings may no longer be 2600 * valid. To resolve this verify the tc mapping remains valid and if 2601 * not NULL the mapping. With no priorities mapping to this 2602 * offset/count pair it will no longer be used. In the worst case TC0 2603 * is invalid nothing can be done so disable priority mappings. If is 2604 * expected that drivers will fix this mapping if they can before 2605 * calling netif_set_real_num_tx_queues. 2606 */ 2607 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2608 { 2609 int i; 2610 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2611 2612 /* If TC0 is invalidated disable TC mapping */ 2613 if (tc->offset + tc->count > txq) { 2614 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2615 dev->num_tc = 0; 2616 return; 2617 } 2618 2619 /* Invalidated prio to tc mappings set to TC0 */ 2620 for (i = 1; i < TC_BITMASK + 1; i++) { 2621 int q = netdev_get_prio_tc_map(dev, i); 2622 2623 tc = &dev->tc_to_txq[q]; 2624 if (tc->offset + tc->count > txq) { 2625 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2626 i, q); 2627 netdev_set_prio_tc_map(dev, i, 0); 2628 } 2629 } 2630 } 2631 2632 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2633 { 2634 if (dev->num_tc) { 2635 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2636 int i; 2637 2638 /* walk through the TCs and see if it falls into any of them */ 2639 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2640 if ((txq - tc->offset) < tc->count) 2641 return i; 2642 } 2643 2644 /* didn't find it, just return -1 to indicate no match */ 2645 return -1; 2646 } 2647 2648 return 0; 2649 } 2650 EXPORT_SYMBOL(netdev_txq_to_tc); 2651 2652 #ifdef CONFIG_XPS 2653 static struct static_key xps_needed __read_mostly; 2654 static struct static_key xps_rxqs_needed __read_mostly; 2655 static DEFINE_MUTEX(xps_map_mutex); 2656 #define xmap_dereference(P) \ 2657 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2658 2659 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2660 struct xps_dev_maps *old_maps, int tci, u16 index) 2661 { 2662 struct xps_map *map = NULL; 2663 int pos; 2664 2665 map = xmap_dereference(dev_maps->attr_map[tci]); 2666 if (!map) 2667 return false; 2668 2669 for (pos = map->len; pos--;) { 2670 if (map->queues[pos] != index) 2671 continue; 2672 2673 if (map->len > 1) { 2674 map->queues[pos] = map->queues[--map->len]; 2675 break; 2676 } 2677 2678 if (old_maps) 2679 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2680 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2681 kfree_rcu(map, rcu); 2682 return false; 2683 } 2684 2685 return true; 2686 } 2687 2688 static bool remove_xps_queue_cpu(struct net_device *dev, 2689 struct xps_dev_maps *dev_maps, 2690 int cpu, u16 offset, u16 count) 2691 { 2692 int num_tc = dev_maps->num_tc; 2693 bool active = false; 2694 int tci; 2695 2696 for (tci = cpu * num_tc; num_tc--; tci++) { 2697 int i, j; 2698 2699 for (i = count, j = offset; i--; j++) { 2700 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2701 break; 2702 } 2703 2704 active |= i < 0; 2705 } 2706 2707 return active; 2708 } 2709 2710 static void reset_xps_maps(struct net_device *dev, 2711 struct xps_dev_maps *dev_maps, 2712 enum xps_map_type type) 2713 { 2714 static_key_slow_dec_cpuslocked(&xps_needed); 2715 if (type == XPS_RXQS) 2716 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2717 2718 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2719 2720 kfree_rcu(dev_maps, rcu); 2721 } 2722 2723 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2724 u16 offset, u16 count) 2725 { 2726 struct xps_dev_maps *dev_maps; 2727 bool active = false; 2728 int i, j; 2729 2730 dev_maps = xmap_dereference(dev->xps_maps[type]); 2731 if (!dev_maps) 2732 return; 2733 2734 for (j = 0; j < dev_maps->nr_ids; j++) 2735 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2736 if (!active) 2737 reset_xps_maps(dev, dev_maps, type); 2738 2739 if (type == XPS_CPUS) { 2740 for (i = offset + (count - 1); count--; i--) 2741 netdev_queue_numa_node_write( 2742 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2743 } 2744 } 2745 2746 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2747 u16 count) 2748 { 2749 if (!static_key_false(&xps_needed)) 2750 return; 2751 2752 cpus_read_lock(); 2753 mutex_lock(&xps_map_mutex); 2754 2755 if (static_key_false(&xps_rxqs_needed)) 2756 clean_xps_maps(dev, XPS_RXQS, offset, count); 2757 2758 clean_xps_maps(dev, XPS_CPUS, offset, count); 2759 2760 mutex_unlock(&xps_map_mutex); 2761 cpus_read_unlock(); 2762 } 2763 2764 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2765 { 2766 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2767 } 2768 2769 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2770 u16 index, bool is_rxqs_map) 2771 { 2772 struct xps_map *new_map; 2773 int alloc_len = XPS_MIN_MAP_ALLOC; 2774 int i, pos; 2775 2776 for (pos = 0; map && pos < map->len; pos++) { 2777 if (map->queues[pos] != index) 2778 continue; 2779 return map; 2780 } 2781 2782 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2783 if (map) { 2784 if (pos < map->alloc_len) 2785 return map; 2786 2787 alloc_len = map->alloc_len * 2; 2788 } 2789 2790 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2791 * map 2792 */ 2793 if (is_rxqs_map) 2794 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2795 else 2796 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2797 cpu_to_node(attr_index)); 2798 if (!new_map) 2799 return NULL; 2800 2801 for (i = 0; i < pos; i++) 2802 new_map->queues[i] = map->queues[i]; 2803 new_map->alloc_len = alloc_len; 2804 new_map->len = pos; 2805 2806 return new_map; 2807 } 2808 2809 /* Copy xps maps at a given index */ 2810 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2811 struct xps_dev_maps *new_dev_maps, int index, 2812 int tc, bool skip_tc) 2813 { 2814 int i, tci = index * dev_maps->num_tc; 2815 struct xps_map *map; 2816 2817 /* copy maps belonging to foreign traffic classes */ 2818 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2819 if (i == tc && skip_tc) 2820 continue; 2821 2822 /* fill in the new device map from the old device map */ 2823 map = xmap_dereference(dev_maps->attr_map[tci]); 2824 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2825 } 2826 } 2827 2828 /* Must be called under cpus_read_lock */ 2829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2830 u16 index, enum xps_map_type type) 2831 { 2832 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2833 const unsigned long *online_mask = NULL; 2834 bool active = false, copy = false; 2835 int i, j, tci, numa_node_id = -2; 2836 int maps_sz, num_tc = 1, tc = 0; 2837 struct xps_map *map, *new_map; 2838 unsigned int nr_ids; 2839 2840 WARN_ON_ONCE(index >= dev->num_tx_queues); 2841 2842 if (dev->num_tc) { 2843 /* Do not allow XPS on subordinate device directly */ 2844 num_tc = dev->num_tc; 2845 if (num_tc < 0) 2846 return -EINVAL; 2847 2848 /* If queue belongs to subordinate dev use its map */ 2849 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2850 2851 tc = netdev_txq_to_tc(dev, index); 2852 if (tc < 0) 2853 return -EINVAL; 2854 } 2855 2856 mutex_lock(&xps_map_mutex); 2857 2858 dev_maps = xmap_dereference(dev->xps_maps[type]); 2859 if (type == XPS_RXQS) { 2860 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2861 nr_ids = dev->num_rx_queues; 2862 } else { 2863 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2864 if (num_possible_cpus() > 1) 2865 online_mask = cpumask_bits(cpu_online_mask); 2866 nr_ids = nr_cpu_ids; 2867 } 2868 2869 if (maps_sz < L1_CACHE_BYTES) 2870 maps_sz = L1_CACHE_BYTES; 2871 2872 /* The old dev_maps could be larger or smaller than the one we're 2873 * setting up now, as dev->num_tc or nr_ids could have been updated in 2874 * between. We could try to be smart, but let's be safe instead and only 2875 * copy foreign traffic classes if the two map sizes match. 2876 */ 2877 if (dev_maps && 2878 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2879 copy = true; 2880 2881 /* allocate memory for queue storage */ 2882 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2883 j < nr_ids;) { 2884 if (!new_dev_maps) { 2885 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2886 if (!new_dev_maps) { 2887 mutex_unlock(&xps_map_mutex); 2888 return -ENOMEM; 2889 } 2890 2891 new_dev_maps->nr_ids = nr_ids; 2892 new_dev_maps->num_tc = num_tc; 2893 } 2894 2895 tci = j * num_tc + tc; 2896 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2897 2898 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2899 if (!map) 2900 goto error; 2901 2902 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2903 } 2904 2905 if (!new_dev_maps) 2906 goto out_no_new_maps; 2907 2908 if (!dev_maps) { 2909 /* Increment static keys at most once per type */ 2910 static_key_slow_inc_cpuslocked(&xps_needed); 2911 if (type == XPS_RXQS) 2912 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2913 } 2914 2915 for (j = 0; j < nr_ids; j++) { 2916 bool skip_tc = false; 2917 2918 tci = j * num_tc + tc; 2919 if (netif_attr_test_mask(j, mask, nr_ids) && 2920 netif_attr_test_online(j, online_mask, nr_ids)) { 2921 /* add tx-queue to CPU/rx-queue maps */ 2922 int pos = 0; 2923 2924 skip_tc = true; 2925 2926 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2927 while ((pos < map->len) && (map->queues[pos] != index)) 2928 pos++; 2929 2930 if (pos == map->len) 2931 map->queues[map->len++] = index; 2932 #ifdef CONFIG_NUMA 2933 if (type == XPS_CPUS) { 2934 if (numa_node_id == -2) 2935 numa_node_id = cpu_to_node(j); 2936 else if (numa_node_id != cpu_to_node(j)) 2937 numa_node_id = -1; 2938 } 2939 #endif 2940 } 2941 2942 if (copy) 2943 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2944 skip_tc); 2945 } 2946 2947 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2948 2949 /* Cleanup old maps */ 2950 if (!dev_maps) 2951 goto out_no_old_maps; 2952 2953 for (j = 0; j < dev_maps->nr_ids; j++) { 2954 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2955 map = xmap_dereference(dev_maps->attr_map[tci]); 2956 if (!map) 2957 continue; 2958 2959 if (copy) { 2960 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2961 if (map == new_map) 2962 continue; 2963 } 2964 2965 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2966 kfree_rcu(map, rcu); 2967 } 2968 } 2969 2970 old_dev_maps = dev_maps; 2971 2972 out_no_old_maps: 2973 dev_maps = new_dev_maps; 2974 active = true; 2975 2976 out_no_new_maps: 2977 if (type == XPS_CPUS) 2978 /* update Tx queue numa node */ 2979 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2980 (numa_node_id >= 0) ? 2981 numa_node_id : NUMA_NO_NODE); 2982 2983 if (!dev_maps) 2984 goto out_no_maps; 2985 2986 /* removes tx-queue from unused CPUs/rx-queues */ 2987 for (j = 0; j < dev_maps->nr_ids; j++) { 2988 tci = j * dev_maps->num_tc; 2989 2990 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2991 if (i == tc && 2992 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2993 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2994 continue; 2995 2996 active |= remove_xps_queue(dev_maps, 2997 copy ? old_dev_maps : NULL, 2998 tci, index); 2999 } 3000 } 3001 3002 if (old_dev_maps) 3003 kfree_rcu(old_dev_maps, rcu); 3004 3005 /* free map if not active */ 3006 if (!active) 3007 reset_xps_maps(dev, dev_maps, type); 3008 3009 out_no_maps: 3010 mutex_unlock(&xps_map_mutex); 3011 3012 return 0; 3013 error: 3014 /* remove any maps that we added */ 3015 for (j = 0; j < nr_ids; j++) { 3016 for (i = num_tc, tci = j * num_tc; i--; tci++) { 3017 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 3018 map = copy ? 3019 xmap_dereference(dev_maps->attr_map[tci]) : 3020 NULL; 3021 if (new_map && new_map != map) 3022 kfree(new_map); 3023 } 3024 } 3025 3026 mutex_unlock(&xps_map_mutex); 3027 3028 kfree(new_dev_maps); 3029 return -ENOMEM; 3030 } 3031 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 3032 3033 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3034 u16 index) 3035 { 3036 int ret; 3037 3038 cpus_read_lock(); 3039 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 3040 cpus_read_unlock(); 3041 3042 return ret; 3043 } 3044 EXPORT_SYMBOL(netif_set_xps_queue); 3045 3046 #endif 3047 static void netdev_unbind_all_sb_channels(struct net_device *dev) 3048 { 3049 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3050 3051 /* Unbind any subordinate channels */ 3052 while (txq-- != &dev->_tx[0]) { 3053 if (txq->sb_dev) 3054 netdev_unbind_sb_channel(dev, txq->sb_dev); 3055 } 3056 } 3057 3058 void netdev_reset_tc(struct net_device *dev) 3059 { 3060 #ifdef CONFIG_XPS 3061 netif_reset_xps_queues_gt(dev, 0); 3062 #endif 3063 netdev_unbind_all_sb_channels(dev); 3064 3065 /* Reset TC configuration of device */ 3066 dev->num_tc = 0; 3067 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 3068 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 3069 } 3070 EXPORT_SYMBOL(netdev_reset_tc); 3071 3072 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 3073 { 3074 if (tc >= dev->num_tc) 3075 return -EINVAL; 3076 3077 #ifdef CONFIG_XPS 3078 netif_reset_xps_queues(dev, offset, count); 3079 #endif 3080 dev->tc_to_txq[tc].count = count; 3081 dev->tc_to_txq[tc].offset = offset; 3082 return 0; 3083 } 3084 EXPORT_SYMBOL(netdev_set_tc_queue); 3085 3086 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 3087 { 3088 if (num_tc > TC_MAX_QUEUE) 3089 return -EINVAL; 3090 3091 #ifdef CONFIG_XPS 3092 netif_reset_xps_queues_gt(dev, 0); 3093 #endif 3094 netdev_unbind_all_sb_channels(dev); 3095 3096 dev->num_tc = num_tc; 3097 return 0; 3098 } 3099 EXPORT_SYMBOL(netdev_set_num_tc); 3100 3101 void netdev_unbind_sb_channel(struct net_device *dev, 3102 struct net_device *sb_dev) 3103 { 3104 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3105 3106 #ifdef CONFIG_XPS 3107 netif_reset_xps_queues_gt(sb_dev, 0); 3108 #endif 3109 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 3110 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 3111 3112 while (txq-- != &dev->_tx[0]) { 3113 if (txq->sb_dev == sb_dev) 3114 txq->sb_dev = NULL; 3115 } 3116 } 3117 EXPORT_SYMBOL(netdev_unbind_sb_channel); 3118 3119 int netdev_bind_sb_channel_queue(struct net_device *dev, 3120 struct net_device *sb_dev, 3121 u8 tc, u16 count, u16 offset) 3122 { 3123 /* Make certain the sb_dev and dev are already configured */ 3124 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 3125 return -EINVAL; 3126 3127 /* We cannot hand out queues we don't have */ 3128 if ((offset + count) > dev->real_num_tx_queues) 3129 return -EINVAL; 3130 3131 /* Record the mapping */ 3132 sb_dev->tc_to_txq[tc].count = count; 3133 sb_dev->tc_to_txq[tc].offset = offset; 3134 3135 /* Provide a way for Tx queue to find the tc_to_txq map or 3136 * XPS map for itself. 3137 */ 3138 while (count--) 3139 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 3140 3141 return 0; 3142 } 3143 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3144 3145 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3146 { 3147 /* Do not use a multiqueue device to represent a subordinate channel */ 3148 if (netif_is_multiqueue(dev)) 3149 return -ENODEV; 3150 3151 /* We allow channels 1 - 32767 to be used for subordinate channels. 3152 * Channel 0 is meant to be "native" mode and used only to represent 3153 * the main root device. We allow writing 0 to reset the device back 3154 * to normal mode after being used as a subordinate channel. 3155 */ 3156 if (channel > S16_MAX) 3157 return -EINVAL; 3158 3159 dev->num_tc = -channel; 3160 3161 return 0; 3162 } 3163 EXPORT_SYMBOL(netdev_set_sb_channel); 3164 3165 /* 3166 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3167 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3168 */ 3169 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3170 { 3171 bool disabling; 3172 int rc; 3173 3174 disabling = txq < dev->real_num_tx_queues; 3175 3176 if (txq < 1 || txq > dev->num_tx_queues) 3177 return -EINVAL; 3178 3179 if (dev->reg_state == NETREG_REGISTERED || 3180 dev->reg_state == NETREG_UNREGISTERING) { 3181 netdev_ops_assert_locked(dev); 3182 3183 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3184 txq); 3185 if (rc) 3186 return rc; 3187 3188 if (dev->num_tc) 3189 netif_setup_tc(dev, txq); 3190 3191 net_shaper_set_real_num_tx_queues(dev, txq); 3192 3193 dev_qdisc_change_real_num_tx(dev, txq); 3194 3195 dev->real_num_tx_queues = txq; 3196 3197 if (disabling) { 3198 synchronize_net(); 3199 qdisc_reset_all_tx_gt(dev, txq); 3200 #ifdef CONFIG_XPS 3201 netif_reset_xps_queues_gt(dev, txq); 3202 #endif 3203 } 3204 } else { 3205 dev->real_num_tx_queues = txq; 3206 } 3207 3208 return 0; 3209 } 3210 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3211 3212 /** 3213 * netif_set_real_num_rx_queues - set actual number of RX queues used 3214 * @dev: Network device 3215 * @rxq: Actual number of RX queues 3216 * 3217 * This must be called either with the rtnl_lock held or before 3218 * registration of the net device. Returns 0 on success, or a 3219 * negative error code. If called before registration, it always 3220 * succeeds. 3221 */ 3222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3223 { 3224 int rc; 3225 3226 if (rxq < 1 || rxq > dev->num_rx_queues) 3227 return -EINVAL; 3228 3229 if (dev->reg_state == NETREG_REGISTERED) { 3230 netdev_ops_assert_locked(dev); 3231 3232 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3233 rxq); 3234 if (rc) 3235 return rc; 3236 } 3237 3238 dev->real_num_rx_queues = rxq; 3239 return 0; 3240 } 3241 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3242 3243 /** 3244 * netif_set_real_num_queues - set actual number of RX and TX queues used 3245 * @dev: Network device 3246 * @txq: Actual number of TX queues 3247 * @rxq: Actual number of RX queues 3248 * 3249 * Set the real number of both TX and RX queues. 3250 * Does nothing if the number of queues is already correct. 3251 */ 3252 int netif_set_real_num_queues(struct net_device *dev, 3253 unsigned int txq, unsigned int rxq) 3254 { 3255 unsigned int old_rxq = dev->real_num_rx_queues; 3256 int err; 3257 3258 if (txq < 1 || txq > dev->num_tx_queues || 3259 rxq < 1 || rxq > dev->num_rx_queues) 3260 return -EINVAL; 3261 3262 /* Start from increases, so the error path only does decreases - 3263 * decreases can't fail. 3264 */ 3265 if (rxq > dev->real_num_rx_queues) { 3266 err = netif_set_real_num_rx_queues(dev, rxq); 3267 if (err) 3268 return err; 3269 } 3270 if (txq > dev->real_num_tx_queues) { 3271 err = netif_set_real_num_tx_queues(dev, txq); 3272 if (err) 3273 goto undo_rx; 3274 } 3275 if (rxq < dev->real_num_rx_queues) 3276 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3277 if (txq < dev->real_num_tx_queues) 3278 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3279 3280 return 0; 3281 undo_rx: 3282 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3283 return err; 3284 } 3285 EXPORT_SYMBOL(netif_set_real_num_queues); 3286 3287 /** 3288 * netif_set_tso_max_size() - set the max size of TSO frames supported 3289 * @dev: netdev to update 3290 * @size: max skb->len of a TSO frame 3291 * 3292 * Set the limit on the size of TSO super-frames the device can handle. 3293 * Unless explicitly set the stack will assume the value of 3294 * %GSO_LEGACY_MAX_SIZE. 3295 */ 3296 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3297 { 3298 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3299 if (size < READ_ONCE(dev->gso_max_size)) 3300 netif_set_gso_max_size(dev, size); 3301 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3302 netif_set_gso_ipv4_max_size(dev, size); 3303 } 3304 EXPORT_SYMBOL(netif_set_tso_max_size); 3305 3306 /** 3307 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3308 * @dev: netdev to update 3309 * @segs: max number of TCP segments 3310 * 3311 * Set the limit on the number of TCP segments the device can generate from 3312 * a single TSO super-frame. 3313 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3314 */ 3315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3316 { 3317 dev->tso_max_segs = segs; 3318 if (segs < READ_ONCE(dev->gso_max_segs)) 3319 netif_set_gso_max_segs(dev, segs); 3320 } 3321 EXPORT_SYMBOL(netif_set_tso_max_segs); 3322 3323 /** 3324 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3325 * @to: netdev to update 3326 * @from: netdev from which to copy the limits 3327 */ 3328 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3329 { 3330 netif_set_tso_max_size(to, from->tso_max_size); 3331 netif_set_tso_max_segs(to, from->tso_max_segs); 3332 } 3333 EXPORT_SYMBOL(netif_inherit_tso_max); 3334 3335 /** 3336 * netif_get_num_default_rss_queues - default number of RSS queues 3337 * 3338 * Default value is the number of physical cores if there are only 1 or 2, or 3339 * divided by 2 if there are more. 3340 */ 3341 int netif_get_num_default_rss_queues(void) 3342 { 3343 cpumask_var_t cpus; 3344 int cpu, count = 0; 3345 3346 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3347 return 1; 3348 3349 cpumask_copy(cpus, cpu_online_mask); 3350 for_each_cpu(cpu, cpus) { 3351 ++count; 3352 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3353 } 3354 free_cpumask_var(cpus); 3355 3356 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3357 } 3358 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3359 3360 static void __netif_reschedule(struct Qdisc *q) 3361 { 3362 struct softnet_data *sd; 3363 unsigned long flags; 3364 3365 local_irq_save(flags); 3366 sd = this_cpu_ptr(&softnet_data); 3367 q->next_sched = NULL; 3368 *sd->output_queue_tailp = q; 3369 sd->output_queue_tailp = &q->next_sched; 3370 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3371 local_irq_restore(flags); 3372 } 3373 3374 void __netif_schedule(struct Qdisc *q) 3375 { 3376 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3377 __netif_reschedule(q); 3378 } 3379 EXPORT_SYMBOL(__netif_schedule); 3380 3381 struct dev_kfree_skb_cb { 3382 enum skb_drop_reason reason; 3383 }; 3384 3385 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3386 { 3387 return (struct dev_kfree_skb_cb *)skb->cb; 3388 } 3389 3390 void netif_schedule_queue(struct netdev_queue *txq) 3391 { 3392 rcu_read_lock(); 3393 if (!netif_xmit_stopped(txq)) { 3394 struct Qdisc *q = rcu_dereference(txq->qdisc); 3395 3396 __netif_schedule(q); 3397 } 3398 rcu_read_unlock(); 3399 } 3400 EXPORT_SYMBOL(netif_schedule_queue); 3401 3402 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3403 { 3404 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3405 struct Qdisc *q; 3406 3407 rcu_read_lock(); 3408 q = rcu_dereference(dev_queue->qdisc); 3409 __netif_schedule(q); 3410 rcu_read_unlock(); 3411 } 3412 } 3413 EXPORT_SYMBOL(netif_tx_wake_queue); 3414 3415 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3416 { 3417 unsigned long flags; 3418 3419 if (unlikely(!skb)) 3420 return; 3421 3422 if (likely(refcount_read(&skb->users) == 1)) { 3423 smp_rmb(); 3424 refcount_set(&skb->users, 0); 3425 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3426 return; 3427 } 3428 get_kfree_skb_cb(skb)->reason = reason; 3429 local_irq_save(flags); 3430 skb->next = __this_cpu_read(softnet_data.completion_queue); 3431 __this_cpu_write(softnet_data.completion_queue, skb); 3432 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3433 local_irq_restore(flags); 3434 } 3435 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3436 3437 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3438 { 3439 if (in_hardirq() || irqs_disabled()) 3440 dev_kfree_skb_irq_reason(skb, reason); 3441 else 3442 kfree_skb_reason(skb, reason); 3443 } 3444 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3445 3446 3447 /** 3448 * netif_device_detach - mark device as removed 3449 * @dev: network device 3450 * 3451 * Mark device as removed from system and therefore no longer available. 3452 */ 3453 void netif_device_detach(struct net_device *dev) 3454 { 3455 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3456 netif_running(dev)) { 3457 netif_tx_stop_all_queues(dev); 3458 } 3459 } 3460 EXPORT_SYMBOL(netif_device_detach); 3461 3462 /** 3463 * netif_device_attach - mark device as attached 3464 * @dev: network device 3465 * 3466 * Mark device as attached from system and restart if needed. 3467 */ 3468 void netif_device_attach(struct net_device *dev) 3469 { 3470 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3471 netif_running(dev)) { 3472 netif_tx_wake_all_queues(dev); 3473 netdev_watchdog_up(dev); 3474 } 3475 } 3476 EXPORT_SYMBOL(netif_device_attach); 3477 3478 /* 3479 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3480 * to be used as a distribution range. 3481 */ 3482 static u16 skb_tx_hash(const struct net_device *dev, 3483 const struct net_device *sb_dev, 3484 struct sk_buff *skb) 3485 { 3486 u32 hash; 3487 u16 qoffset = 0; 3488 u16 qcount = dev->real_num_tx_queues; 3489 3490 if (dev->num_tc) { 3491 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3492 3493 qoffset = sb_dev->tc_to_txq[tc].offset; 3494 qcount = sb_dev->tc_to_txq[tc].count; 3495 if (unlikely(!qcount)) { 3496 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3497 sb_dev->name, qoffset, tc); 3498 qoffset = 0; 3499 qcount = dev->real_num_tx_queues; 3500 } 3501 } 3502 3503 if (skb_rx_queue_recorded(skb)) { 3504 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3505 hash = skb_get_rx_queue(skb); 3506 if (hash >= qoffset) 3507 hash -= qoffset; 3508 while (unlikely(hash >= qcount)) 3509 hash -= qcount; 3510 return hash + qoffset; 3511 } 3512 3513 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3514 } 3515 3516 void skb_warn_bad_offload(const struct sk_buff *skb) 3517 { 3518 static const netdev_features_t null_features; 3519 struct net_device *dev = skb->dev; 3520 const char *name = ""; 3521 3522 if (!net_ratelimit()) 3523 return; 3524 3525 if (dev) { 3526 if (dev->dev.parent) 3527 name = dev_driver_string(dev->dev.parent); 3528 else 3529 name = netdev_name(dev); 3530 } 3531 skb_dump(KERN_WARNING, skb, false); 3532 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3533 name, dev ? &dev->features : &null_features, 3534 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3535 } 3536 3537 /* 3538 * Invalidate hardware checksum when packet is to be mangled, and 3539 * complete checksum manually on outgoing path. 3540 */ 3541 int skb_checksum_help(struct sk_buff *skb) 3542 { 3543 __wsum csum; 3544 int ret = 0, offset; 3545 3546 if (skb->ip_summed == CHECKSUM_COMPLETE) 3547 goto out_set_summed; 3548 3549 if (unlikely(skb_is_gso(skb))) { 3550 skb_warn_bad_offload(skb); 3551 return -EINVAL; 3552 } 3553 3554 if (!skb_frags_readable(skb)) { 3555 return -EFAULT; 3556 } 3557 3558 /* Before computing a checksum, we should make sure no frag could 3559 * be modified by an external entity : checksum could be wrong. 3560 */ 3561 if (skb_has_shared_frag(skb)) { 3562 ret = __skb_linearize(skb); 3563 if (ret) 3564 goto out; 3565 } 3566 3567 offset = skb_checksum_start_offset(skb); 3568 ret = -EINVAL; 3569 if (unlikely(offset >= skb_headlen(skb))) { 3570 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3571 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3572 offset, skb_headlen(skb)); 3573 goto out; 3574 } 3575 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3576 3577 offset += skb->csum_offset; 3578 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3579 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3580 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3581 offset + sizeof(__sum16), skb_headlen(skb)); 3582 goto out; 3583 } 3584 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3585 if (ret) 3586 goto out; 3587 3588 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3589 out_set_summed: 3590 skb->ip_summed = CHECKSUM_NONE; 3591 out: 3592 return ret; 3593 } 3594 EXPORT_SYMBOL(skb_checksum_help); 3595 3596 #ifdef CONFIG_NET_CRC32C 3597 int skb_crc32c_csum_help(struct sk_buff *skb) 3598 { 3599 u32 crc; 3600 int ret = 0, offset, start; 3601 3602 if (skb->ip_summed != CHECKSUM_PARTIAL) 3603 goto out; 3604 3605 if (unlikely(skb_is_gso(skb))) 3606 goto out; 3607 3608 /* Before computing a checksum, we should make sure no frag could 3609 * be modified by an external entity : checksum could be wrong. 3610 */ 3611 if (unlikely(skb_has_shared_frag(skb))) { 3612 ret = __skb_linearize(skb); 3613 if (ret) 3614 goto out; 3615 } 3616 start = skb_checksum_start_offset(skb); 3617 offset = start + offsetof(struct sctphdr, checksum); 3618 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3619 ret = -EINVAL; 3620 goto out; 3621 } 3622 3623 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3624 if (ret) 3625 goto out; 3626 3627 crc = ~skb_crc32c(skb, start, skb->len - start, ~0); 3628 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc); 3629 skb_reset_csum_not_inet(skb); 3630 out: 3631 return ret; 3632 } 3633 EXPORT_SYMBOL(skb_crc32c_csum_help); 3634 #endif /* CONFIG_NET_CRC32C */ 3635 3636 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3637 { 3638 __be16 type = skb->protocol; 3639 3640 /* Tunnel gso handlers can set protocol to ethernet. */ 3641 if (type == htons(ETH_P_TEB)) { 3642 struct ethhdr *eth; 3643 3644 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3645 return 0; 3646 3647 eth = (struct ethhdr *)skb->data; 3648 type = eth->h_proto; 3649 } 3650 3651 return vlan_get_protocol_and_depth(skb, type, depth); 3652 } 3653 3654 3655 /* Take action when hardware reception checksum errors are detected. */ 3656 #ifdef CONFIG_BUG 3657 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3658 { 3659 netdev_err(dev, "hw csum failure\n"); 3660 skb_dump(KERN_ERR, skb, true); 3661 dump_stack(); 3662 } 3663 3664 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3665 { 3666 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3667 } 3668 EXPORT_SYMBOL(netdev_rx_csum_fault); 3669 #endif 3670 3671 /* XXX: check that highmem exists at all on the given machine. */ 3672 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3673 { 3674 #ifdef CONFIG_HIGHMEM 3675 int i; 3676 3677 if (!(dev->features & NETIF_F_HIGHDMA)) { 3678 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3679 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3680 struct page *page = skb_frag_page(frag); 3681 3682 if (page && PageHighMem(page)) 3683 return 1; 3684 } 3685 } 3686 #endif 3687 return 0; 3688 } 3689 3690 /* If MPLS offload request, verify we are testing hardware MPLS features 3691 * instead of standard features for the netdev. 3692 */ 3693 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3694 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3695 netdev_features_t features, 3696 __be16 type) 3697 { 3698 if (eth_p_mpls(type)) 3699 features &= skb->dev->mpls_features; 3700 3701 return features; 3702 } 3703 #else 3704 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3705 netdev_features_t features, 3706 __be16 type) 3707 { 3708 return features; 3709 } 3710 #endif 3711 3712 static netdev_features_t harmonize_features(struct sk_buff *skb, 3713 netdev_features_t features) 3714 { 3715 __be16 type; 3716 3717 type = skb_network_protocol(skb, NULL); 3718 features = net_mpls_features(skb, features, type); 3719 3720 if (skb->ip_summed != CHECKSUM_NONE && 3721 !can_checksum_protocol(features, type)) { 3722 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3723 } 3724 if (illegal_highdma(skb->dev, skb)) 3725 features &= ~NETIF_F_SG; 3726 3727 return features; 3728 } 3729 3730 netdev_features_t passthru_features_check(struct sk_buff *skb, 3731 struct net_device *dev, 3732 netdev_features_t features) 3733 { 3734 return features; 3735 } 3736 EXPORT_SYMBOL(passthru_features_check); 3737 3738 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3739 struct net_device *dev, 3740 netdev_features_t features) 3741 { 3742 return vlan_features_check(skb, features); 3743 } 3744 3745 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3746 struct net_device *dev, 3747 netdev_features_t features) 3748 { 3749 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3750 3751 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3752 return features & ~NETIF_F_GSO_MASK; 3753 3754 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3755 return features & ~NETIF_F_GSO_MASK; 3756 3757 if (!skb_shinfo(skb)->gso_type) { 3758 skb_warn_bad_offload(skb); 3759 return features & ~NETIF_F_GSO_MASK; 3760 } 3761 3762 /* Support for GSO partial features requires software 3763 * intervention before we can actually process the packets 3764 * so we need to strip support for any partial features now 3765 * and we can pull them back in after we have partially 3766 * segmented the frame. 3767 */ 3768 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3769 features &= ~dev->gso_partial_features; 3770 3771 /* Make sure to clear the IPv4 ID mangling feature if the IPv4 header 3772 * has the potential to be fragmented so that TSO does not generate 3773 * segments with the same ID. For encapsulated packets, the ID mangling 3774 * feature is guaranteed not to use the same ID for the outer IPv4 3775 * headers of the generated segments if the headers have the potential 3776 * to be fragmented, so there is no need to clear the IPv4 ID mangling 3777 * feature (see the section about NETIF_F_TSO_MANGLEID in 3778 * segmentation-offloads.rst). 3779 */ 3780 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3781 struct iphdr *iph = skb->encapsulation ? 3782 inner_ip_hdr(skb) : ip_hdr(skb); 3783 3784 if (!(iph->frag_off & htons(IP_DF))) 3785 features &= ~NETIF_F_TSO_MANGLEID; 3786 } 3787 3788 /* NETIF_F_IPV6_CSUM does not support IPv6 extension headers, 3789 * so neither does TSO that depends on it. 3790 */ 3791 if (features & NETIF_F_IPV6_CSUM && 3792 (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 || 3793 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 && 3794 vlan_get_protocol(skb) == htons(ETH_P_IPV6))) && 3795 skb_transport_header_was_set(skb) && 3796 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3797 !ipv6_has_hopopt_jumbo(skb)) 3798 features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4); 3799 3800 return features; 3801 } 3802 3803 netdev_features_t netif_skb_features(struct sk_buff *skb) 3804 { 3805 struct net_device *dev = skb->dev; 3806 netdev_features_t features = dev->features; 3807 3808 if (skb_is_gso(skb)) 3809 features = gso_features_check(skb, dev, features); 3810 3811 /* If encapsulation offload request, verify we are testing 3812 * hardware encapsulation features instead of standard 3813 * features for the netdev 3814 */ 3815 if (skb->encapsulation) 3816 features &= dev->hw_enc_features; 3817 3818 if (skb_vlan_tagged(skb)) 3819 features = netdev_intersect_features(features, 3820 dev->vlan_features | 3821 NETIF_F_HW_VLAN_CTAG_TX | 3822 NETIF_F_HW_VLAN_STAG_TX); 3823 3824 if (dev->netdev_ops->ndo_features_check) 3825 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3826 features); 3827 else 3828 features &= dflt_features_check(skb, dev, features); 3829 3830 return harmonize_features(skb, features); 3831 } 3832 EXPORT_SYMBOL(netif_skb_features); 3833 3834 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3835 struct netdev_queue *txq, bool more) 3836 { 3837 unsigned int len; 3838 int rc; 3839 3840 if (dev_nit_active_rcu(dev)) 3841 dev_queue_xmit_nit(skb, dev); 3842 3843 len = skb->len; 3844 trace_net_dev_start_xmit(skb, dev); 3845 rc = netdev_start_xmit(skb, dev, txq, more); 3846 trace_net_dev_xmit(skb, rc, dev, len); 3847 3848 return rc; 3849 } 3850 3851 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3852 struct netdev_queue *txq, int *ret) 3853 { 3854 struct sk_buff *skb = first; 3855 int rc = NETDEV_TX_OK; 3856 3857 while (skb) { 3858 struct sk_buff *next = skb->next; 3859 3860 skb_mark_not_on_list(skb); 3861 rc = xmit_one(skb, dev, txq, next != NULL); 3862 if (unlikely(!dev_xmit_complete(rc))) { 3863 skb->next = next; 3864 goto out; 3865 } 3866 3867 skb = next; 3868 if (netif_tx_queue_stopped(txq) && skb) { 3869 rc = NETDEV_TX_BUSY; 3870 break; 3871 } 3872 } 3873 3874 out: 3875 *ret = rc; 3876 return skb; 3877 } 3878 3879 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3880 netdev_features_t features) 3881 { 3882 if (skb_vlan_tag_present(skb) && 3883 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3884 skb = __vlan_hwaccel_push_inside(skb); 3885 return skb; 3886 } 3887 3888 int skb_csum_hwoffload_help(struct sk_buff *skb, 3889 const netdev_features_t features) 3890 { 3891 if (unlikely(skb_csum_is_sctp(skb))) 3892 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3893 skb_crc32c_csum_help(skb); 3894 3895 if (features & NETIF_F_HW_CSUM) 3896 return 0; 3897 3898 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3899 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3900 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3901 !ipv6_has_hopopt_jumbo(skb)) 3902 goto sw_checksum; 3903 3904 switch (skb->csum_offset) { 3905 case offsetof(struct tcphdr, check): 3906 case offsetof(struct udphdr, check): 3907 return 0; 3908 } 3909 } 3910 3911 sw_checksum: 3912 return skb_checksum_help(skb); 3913 } 3914 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3915 3916 /* Checks if this SKB belongs to an HW offloaded socket 3917 * and whether any SW fallbacks are required based on dev. 3918 * Check decrypted mark in case skb_orphan() cleared socket. 3919 */ 3920 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 3921 struct net_device *dev) 3922 { 3923 #ifdef CONFIG_SOCK_VALIDATE_XMIT 3924 struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev, 3925 struct sk_buff *skb); 3926 struct sock *sk = skb->sk; 3927 3928 sk_validate = NULL; 3929 if (sk) { 3930 if (sk_fullsock(sk)) 3931 sk_validate = sk->sk_validate_xmit_skb; 3932 else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT) 3933 sk_validate = inet_twsk(sk)->tw_validate_xmit_skb; 3934 } 3935 3936 if (sk_validate) { 3937 skb = sk_validate(sk, dev, skb); 3938 } else if (unlikely(skb_is_decrypted(skb))) { 3939 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 3940 kfree_skb(skb); 3941 skb = NULL; 3942 } 3943 #endif 3944 3945 return skb; 3946 } 3947 3948 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb, 3949 struct net_device *dev) 3950 { 3951 struct skb_shared_info *shinfo; 3952 struct net_iov *niov; 3953 3954 if (likely(skb_frags_readable(skb))) 3955 goto out; 3956 3957 if (!dev->netmem_tx) 3958 goto out_free; 3959 3960 shinfo = skb_shinfo(skb); 3961 3962 if (shinfo->nr_frags > 0) { 3963 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0])); 3964 if (net_is_devmem_iov(niov) && 3965 net_devmem_iov_binding(niov)->dev != dev) 3966 goto out_free; 3967 } 3968 3969 out: 3970 return skb; 3971 3972 out_free: 3973 kfree_skb(skb); 3974 return NULL; 3975 } 3976 3977 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3978 { 3979 netdev_features_t features; 3980 3981 skb = validate_xmit_unreadable_skb(skb, dev); 3982 if (unlikely(!skb)) 3983 goto out_null; 3984 3985 features = netif_skb_features(skb); 3986 skb = validate_xmit_vlan(skb, features); 3987 if (unlikely(!skb)) 3988 goto out_null; 3989 3990 skb = sk_validate_xmit_skb(skb, dev); 3991 if (unlikely(!skb)) 3992 goto out_null; 3993 3994 if (netif_needs_gso(skb, features)) { 3995 struct sk_buff *segs; 3996 3997 segs = skb_gso_segment(skb, features); 3998 if (IS_ERR(segs)) { 3999 goto out_kfree_skb; 4000 } else if (segs) { 4001 consume_skb(skb); 4002 skb = segs; 4003 } 4004 } else { 4005 if (skb_needs_linearize(skb, features) && 4006 __skb_linearize(skb)) 4007 goto out_kfree_skb; 4008 4009 /* If packet is not checksummed and device does not 4010 * support checksumming for this protocol, complete 4011 * checksumming here. 4012 */ 4013 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4014 if (skb->encapsulation) 4015 skb_set_inner_transport_header(skb, 4016 skb_checksum_start_offset(skb)); 4017 else 4018 skb_set_transport_header(skb, 4019 skb_checksum_start_offset(skb)); 4020 if (skb_csum_hwoffload_help(skb, features)) 4021 goto out_kfree_skb; 4022 } 4023 } 4024 4025 skb = validate_xmit_xfrm(skb, features, again); 4026 4027 return skb; 4028 4029 out_kfree_skb: 4030 kfree_skb(skb); 4031 out_null: 4032 dev_core_stats_tx_dropped_inc(dev); 4033 return NULL; 4034 } 4035 4036 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 4037 { 4038 struct sk_buff *next, *head = NULL, *tail; 4039 4040 for (; skb != NULL; skb = next) { 4041 next = skb->next; 4042 skb_mark_not_on_list(skb); 4043 4044 /* in case skb won't be segmented, point to itself */ 4045 skb->prev = skb; 4046 4047 skb = validate_xmit_skb(skb, dev, again); 4048 if (!skb) 4049 continue; 4050 4051 if (!head) 4052 head = skb; 4053 else 4054 tail->next = skb; 4055 /* If skb was segmented, skb->prev points to 4056 * the last segment. If not, it still contains skb. 4057 */ 4058 tail = skb->prev; 4059 } 4060 return head; 4061 } 4062 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 4063 4064 static void qdisc_pkt_len_init(struct sk_buff *skb) 4065 { 4066 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4067 4068 qdisc_skb_cb(skb)->pkt_len = skb->len; 4069 4070 /* To get more precise estimation of bytes sent on wire, 4071 * we add to pkt_len the headers size of all segments 4072 */ 4073 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 4074 u16 gso_segs = shinfo->gso_segs; 4075 unsigned int hdr_len; 4076 4077 /* mac layer + network layer */ 4078 if (!skb->encapsulation) 4079 hdr_len = skb_transport_offset(skb); 4080 else 4081 hdr_len = skb_inner_transport_offset(skb); 4082 4083 /* + transport layer */ 4084 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4085 const struct tcphdr *th; 4086 struct tcphdr _tcphdr; 4087 4088 th = skb_header_pointer(skb, hdr_len, 4089 sizeof(_tcphdr), &_tcphdr); 4090 if (likely(th)) 4091 hdr_len += __tcp_hdrlen(th); 4092 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4093 struct udphdr _udphdr; 4094 4095 if (skb_header_pointer(skb, hdr_len, 4096 sizeof(_udphdr), &_udphdr)) 4097 hdr_len += sizeof(struct udphdr); 4098 } 4099 4100 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 4101 int payload = skb->len - hdr_len; 4102 4103 /* Malicious packet. */ 4104 if (payload <= 0) 4105 return; 4106 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 4107 } 4108 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 4109 } 4110 } 4111 4112 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 4113 struct sk_buff **to_free, 4114 struct netdev_queue *txq) 4115 { 4116 int rc; 4117 4118 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 4119 if (rc == NET_XMIT_SUCCESS) 4120 trace_qdisc_enqueue(q, txq, skb); 4121 return rc; 4122 } 4123 4124 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 4125 struct net_device *dev, 4126 struct netdev_queue *txq) 4127 { 4128 spinlock_t *root_lock = qdisc_lock(q); 4129 struct sk_buff *to_free = NULL; 4130 bool contended; 4131 int rc; 4132 4133 qdisc_calculate_pkt_len(skb, q); 4134 4135 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4136 4137 if (q->flags & TCQ_F_NOLOCK) { 4138 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 4139 qdisc_run_begin(q)) { 4140 /* Retest nolock_qdisc_is_empty() within the protection 4141 * of q->seqlock to protect from racing with requeuing. 4142 */ 4143 if (unlikely(!nolock_qdisc_is_empty(q))) { 4144 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4145 __qdisc_run(q); 4146 qdisc_run_end(q); 4147 4148 goto no_lock_out; 4149 } 4150 4151 qdisc_bstats_cpu_update(q, skb); 4152 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 4153 !nolock_qdisc_is_empty(q)) 4154 __qdisc_run(q); 4155 4156 qdisc_run_end(q); 4157 return NET_XMIT_SUCCESS; 4158 } 4159 4160 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4161 qdisc_run(q); 4162 4163 no_lock_out: 4164 if (unlikely(to_free)) 4165 kfree_skb_list_reason(to_free, 4166 tcf_get_drop_reason(to_free)); 4167 return rc; 4168 } 4169 4170 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 4171 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 4172 return NET_XMIT_DROP; 4173 } 4174 /* 4175 * Heuristic to force contended enqueues to serialize on a 4176 * separate lock before trying to get qdisc main lock. 4177 * This permits qdisc->running owner to get the lock more 4178 * often and dequeue packets faster. 4179 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 4180 * and then other tasks will only enqueue packets. The packets will be 4181 * sent after the qdisc owner is scheduled again. To prevent this 4182 * scenario the task always serialize on the lock. 4183 */ 4184 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 4185 if (unlikely(contended)) 4186 spin_lock(&q->busylock); 4187 4188 spin_lock(root_lock); 4189 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 4190 __qdisc_drop(skb, &to_free); 4191 rc = NET_XMIT_DROP; 4192 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 4193 qdisc_run_begin(q)) { 4194 /* 4195 * This is a work-conserving queue; there are no old skbs 4196 * waiting to be sent out; and the qdisc is not running - 4197 * xmit the skb directly. 4198 */ 4199 4200 qdisc_bstats_update(q, skb); 4201 4202 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 4203 if (unlikely(contended)) { 4204 spin_unlock(&q->busylock); 4205 contended = false; 4206 } 4207 __qdisc_run(q); 4208 } 4209 4210 qdisc_run_end(q); 4211 rc = NET_XMIT_SUCCESS; 4212 } else { 4213 WRITE_ONCE(q->owner, smp_processor_id()); 4214 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4215 WRITE_ONCE(q->owner, -1); 4216 if (qdisc_run_begin(q)) { 4217 if (unlikely(contended)) { 4218 spin_unlock(&q->busylock); 4219 contended = false; 4220 } 4221 __qdisc_run(q); 4222 qdisc_run_end(q); 4223 } 4224 } 4225 spin_unlock(root_lock); 4226 if (unlikely(to_free)) 4227 kfree_skb_list_reason(to_free, 4228 tcf_get_drop_reason(to_free)); 4229 if (unlikely(contended)) 4230 spin_unlock(&q->busylock); 4231 return rc; 4232 } 4233 4234 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 4235 static void skb_update_prio(struct sk_buff *skb) 4236 { 4237 const struct netprio_map *map; 4238 const struct sock *sk; 4239 unsigned int prioidx; 4240 4241 if (skb->priority) 4242 return; 4243 map = rcu_dereference_bh(skb->dev->priomap); 4244 if (!map) 4245 return; 4246 sk = skb_to_full_sk(skb); 4247 if (!sk) 4248 return; 4249 4250 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 4251 4252 if (prioidx < map->priomap_len) 4253 skb->priority = map->priomap[prioidx]; 4254 } 4255 #else 4256 #define skb_update_prio(skb) 4257 #endif 4258 4259 /** 4260 * dev_loopback_xmit - loop back @skb 4261 * @net: network namespace this loopback is happening in 4262 * @sk: sk needed to be a netfilter okfn 4263 * @skb: buffer to transmit 4264 */ 4265 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 4266 { 4267 skb_reset_mac_header(skb); 4268 __skb_pull(skb, skb_network_offset(skb)); 4269 skb->pkt_type = PACKET_LOOPBACK; 4270 if (skb->ip_summed == CHECKSUM_NONE) 4271 skb->ip_summed = CHECKSUM_UNNECESSARY; 4272 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 4273 skb_dst_force(skb); 4274 netif_rx(skb); 4275 return 0; 4276 } 4277 EXPORT_SYMBOL(dev_loopback_xmit); 4278 4279 #ifdef CONFIG_NET_EGRESS 4280 static struct netdev_queue * 4281 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 4282 { 4283 int qm = skb_get_queue_mapping(skb); 4284 4285 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 4286 } 4287 4288 #ifndef CONFIG_PREEMPT_RT 4289 static bool netdev_xmit_txqueue_skipped(void) 4290 { 4291 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 4292 } 4293 4294 void netdev_xmit_skip_txqueue(bool skip) 4295 { 4296 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4297 } 4298 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4299 4300 #else 4301 static bool netdev_xmit_txqueue_skipped(void) 4302 { 4303 return current->net_xmit.skip_txqueue; 4304 } 4305 4306 void netdev_xmit_skip_txqueue(bool skip) 4307 { 4308 current->net_xmit.skip_txqueue = skip; 4309 } 4310 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4311 #endif 4312 #endif /* CONFIG_NET_EGRESS */ 4313 4314 #ifdef CONFIG_NET_XGRESS 4315 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4316 enum skb_drop_reason *drop_reason) 4317 { 4318 int ret = TC_ACT_UNSPEC; 4319 #ifdef CONFIG_NET_CLS_ACT 4320 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4321 struct tcf_result res; 4322 4323 if (!miniq) 4324 return ret; 4325 4326 /* Global bypass */ 4327 if (!static_branch_likely(&tcf_sw_enabled_key)) 4328 return ret; 4329 4330 /* Block-wise bypass */ 4331 if (tcf_block_bypass_sw(miniq->block)) 4332 return ret; 4333 4334 tc_skb_cb(skb)->mru = 0; 4335 tc_skb_cb(skb)->post_ct = false; 4336 tcf_set_drop_reason(skb, *drop_reason); 4337 4338 mini_qdisc_bstats_cpu_update(miniq, skb); 4339 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4340 /* Only tcf related quirks below. */ 4341 switch (ret) { 4342 case TC_ACT_SHOT: 4343 *drop_reason = tcf_get_drop_reason(skb); 4344 mini_qdisc_qstats_cpu_drop(miniq); 4345 break; 4346 case TC_ACT_OK: 4347 case TC_ACT_RECLASSIFY: 4348 skb->tc_index = TC_H_MIN(res.classid); 4349 break; 4350 } 4351 #endif /* CONFIG_NET_CLS_ACT */ 4352 return ret; 4353 } 4354 4355 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4356 4357 void tcx_inc(void) 4358 { 4359 static_branch_inc(&tcx_needed_key); 4360 } 4361 4362 void tcx_dec(void) 4363 { 4364 static_branch_dec(&tcx_needed_key); 4365 } 4366 4367 static __always_inline enum tcx_action_base 4368 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4369 const bool needs_mac) 4370 { 4371 const struct bpf_mprog_fp *fp; 4372 const struct bpf_prog *prog; 4373 int ret = TCX_NEXT; 4374 4375 if (needs_mac) 4376 __skb_push(skb, skb->mac_len); 4377 bpf_mprog_foreach_prog(entry, fp, prog) { 4378 bpf_compute_data_pointers(skb); 4379 ret = bpf_prog_run(prog, skb); 4380 if (ret != TCX_NEXT) 4381 break; 4382 } 4383 if (needs_mac) 4384 __skb_pull(skb, skb->mac_len); 4385 return tcx_action_code(skb, ret); 4386 } 4387 4388 static __always_inline struct sk_buff * 4389 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4390 struct net_device *orig_dev, bool *another) 4391 { 4392 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4393 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4394 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4395 int sch_ret; 4396 4397 if (!entry) 4398 return skb; 4399 4400 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4401 if (*pt_prev) { 4402 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4403 *pt_prev = NULL; 4404 } 4405 4406 qdisc_skb_cb(skb)->pkt_len = skb->len; 4407 tcx_set_ingress(skb, true); 4408 4409 if (static_branch_unlikely(&tcx_needed_key)) { 4410 sch_ret = tcx_run(entry, skb, true); 4411 if (sch_ret != TC_ACT_UNSPEC) 4412 goto ingress_verdict; 4413 } 4414 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4415 ingress_verdict: 4416 switch (sch_ret) { 4417 case TC_ACT_REDIRECT: 4418 /* skb_mac_header check was done by BPF, so we can safely 4419 * push the L2 header back before redirecting to another 4420 * netdev. 4421 */ 4422 __skb_push(skb, skb->mac_len); 4423 if (skb_do_redirect(skb) == -EAGAIN) { 4424 __skb_pull(skb, skb->mac_len); 4425 *another = true; 4426 break; 4427 } 4428 *ret = NET_RX_SUCCESS; 4429 bpf_net_ctx_clear(bpf_net_ctx); 4430 return NULL; 4431 case TC_ACT_SHOT: 4432 kfree_skb_reason(skb, drop_reason); 4433 *ret = NET_RX_DROP; 4434 bpf_net_ctx_clear(bpf_net_ctx); 4435 return NULL; 4436 /* used by tc_run */ 4437 case TC_ACT_STOLEN: 4438 case TC_ACT_QUEUED: 4439 case TC_ACT_TRAP: 4440 consume_skb(skb); 4441 fallthrough; 4442 case TC_ACT_CONSUMED: 4443 *ret = NET_RX_SUCCESS; 4444 bpf_net_ctx_clear(bpf_net_ctx); 4445 return NULL; 4446 } 4447 bpf_net_ctx_clear(bpf_net_ctx); 4448 4449 return skb; 4450 } 4451 4452 static __always_inline struct sk_buff * 4453 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4454 { 4455 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4456 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4457 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4458 int sch_ret; 4459 4460 if (!entry) 4461 return skb; 4462 4463 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4464 4465 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4466 * already set by the caller. 4467 */ 4468 if (static_branch_unlikely(&tcx_needed_key)) { 4469 sch_ret = tcx_run(entry, skb, false); 4470 if (sch_ret != TC_ACT_UNSPEC) 4471 goto egress_verdict; 4472 } 4473 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4474 egress_verdict: 4475 switch (sch_ret) { 4476 case TC_ACT_REDIRECT: 4477 /* No need to push/pop skb's mac_header here on egress! */ 4478 skb_do_redirect(skb); 4479 *ret = NET_XMIT_SUCCESS; 4480 bpf_net_ctx_clear(bpf_net_ctx); 4481 return NULL; 4482 case TC_ACT_SHOT: 4483 kfree_skb_reason(skb, drop_reason); 4484 *ret = NET_XMIT_DROP; 4485 bpf_net_ctx_clear(bpf_net_ctx); 4486 return NULL; 4487 /* used by tc_run */ 4488 case TC_ACT_STOLEN: 4489 case TC_ACT_QUEUED: 4490 case TC_ACT_TRAP: 4491 consume_skb(skb); 4492 fallthrough; 4493 case TC_ACT_CONSUMED: 4494 *ret = NET_XMIT_SUCCESS; 4495 bpf_net_ctx_clear(bpf_net_ctx); 4496 return NULL; 4497 } 4498 bpf_net_ctx_clear(bpf_net_ctx); 4499 4500 return skb; 4501 } 4502 #else 4503 static __always_inline struct sk_buff * 4504 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4505 struct net_device *orig_dev, bool *another) 4506 { 4507 return skb; 4508 } 4509 4510 static __always_inline struct sk_buff * 4511 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4512 { 4513 return skb; 4514 } 4515 #endif /* CONFIG_NET_XGRESS */ 4516 4517 #ifdef CONFIG_XPS 4518 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4519 struct xps_dev_maps *dev_maps, unsigned int tci) 4520 { 4521 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4522 struct xps_map *map; 4523 int queue_index = -1; 4524 4525 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4526 return queue_index; 4527 4528 tci *= dev_maps->num_tc; 4529 tci += tc; 4530 4531 map = rcu_dereference(dev_maps->attr_map[tci]); 4532 if (map) { 4533 if (map->len == 1) 4534 queue_index = map->queues[0]; 4535 else 4536 queue_index = map->queues[reciprocal_scale( 4537 skb_get_hash(skb), map->len)]; 4538 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4539 queue_index = -1; 4540 } 4541 return queue_index; 4542 } 4543 #endif 4544 4545 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4546 struct sk_buff *skb) 4547 { 4548 #ifdef CONFIG_XPS 4549 struct xps_dev_maps *dev_maps; 4550 struct sock *sk = skb->sk; 4551 int queue_index = -1; 4552 4553 if (!static_key_false(&xps_needed)) 4554 return -1; 4555 4556 rcu_read_lock(); 4557 if (!static_key_false(&xps_rxqs_needed)) 4558 goto get_cpus_map; 4559 4560 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4561 if (dev_maps) { 4562 int tci = sk_rx_queue_get(sk); 4563 4564 if (tci >= 0) 4565 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4566 tci); 4567 } 4568 4569 get_cpus_map: 4570 if (queue_index < 0) { 4571 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4572 if (dev_maps) { 4573 unsigned int tci = skb->sender_cpu - 1; 4574 4575 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4576 tci); 4577 } 4578 } 4579 rcu_read_unlock(); 4580 4581 return queue_index; 4582 #else 4583 return -1; 4584 #endif 4585 } 4586 4587 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4588 struct net_device *sb_dev) 4589 { 4590 return 0; 4591 } 4592 EXPORT_SYMBOL(dev_pick_tx_zero); 4593 4594 int sk_tx_queue_get(const struct sock *sk) 4595 { 4596 int resel, val; 4597 4598 if (!sk) 4599 return -1; 4600 /* Paired with WRITE_ONCE() in sk_tx_queue_clear() 4601 * and sk_tx_queue_set(). 4602 */ 4603 val = READ_ONCE(sk->sk_tx_queue_mapping); 4604 4605 if (val == NO_QUEUE_MAPPING) 4606 return -1; 4607 4608 if (!sk_fullsock(sk)) 4609 return val; 4610 4611 resel = READ_ONCE(sock_net(sk)->core.sysctl_txq_reselection); 4612 if (resel && time_is_before_jiffies( 4613 READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + resel)) 4614 return -1; 4615 4616 return val; 4617 } 4618 EXPORT_SYMBOL(sk_tx_queue_get); 4619 4620 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4621 struct net_device *sb_dev) 4622 { 4623 struct sock *sk = skb->sk; 4624 int queue_index = sk_tx_queue_get(sk); 4625 4626 sb_dev = sb_dev ? : dev; 4627 4628 if (queue_index < 0 || skb->ooo_okay || 4629 queue_index >= dev->real_num_tx_queues) { 4630 int new_index = get_xps_queue(dev, sb_dev, skb); 4631 4632 if (new_index < 0) 4633 new_index = skb_tx_hash(dev, sb_dev, skb); 4634 4635 if (sk && sk_fullsock(sk) && 4636 rcu_access_pointer(sk->sk_dst_cache)) 4637 sk_tx_queue_set(sk, new_index); 4638 4639 queue_index = new_index; 4640 } 4641 4642 return queue_index; 4643 } 4644 EXPORT_SYMBOL(netdev_pick_tx); 4645 4646 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4647 struct sk_buff *skb, 4648 struct net_device *sb_dev) 4649 { 4650 int queue_index = 0; 4651 4652 #ifdef CONFIG_XPS 4653 u32 sender_cpu = skb->sender_cpu - 1; 4654 4655 if (sender_cpu >= (u32)NR_CPUS) 4656 skb->sender_cpu = raw_smp_processor_id() + 1; 4657 #endif 4658 4659 if (dev->real_num_tx_queues != 1) { 4660 const struct net_device_ops *ops = dev->netdev_ops; 4661 4662 if (ops->ndo_select_queue) 4663 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4664 else 4665 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4666 4667 queue_index = netdev_cap_txqueue(dev, queue_index); 4668 } 4669 4670 skb_set_queue_mapping(skb, queue_index); 4671 return netdev_get_tx_queue(dev, queue_index); 4672 } 4673 4674 /** 4675 * __dev_queue_xmit() - transmit a buffer 4676 * @skb: buffer to transmit 4677 * @sb_dev: suboordinate device used for L2 forwarding offload 4678 * 4679 * Queue a buffer for transmission to a network device. The caller must 4680 * have set the device and priority and built the buffer before calling 4681 * this function. The function can be called from an interrupt. 4682 * 4683 * When calling this method, interrupts MUST be enabled. This is because 4684 * the BH enable code must have IRQs enabled so that it will not deadlock. 4685 * 4686 * Regardless of the return value, the skb is consumed, so it is currently 4687 * difficult to retry a send to this method. (You can bump the ref count 4688 * before sending to hold a reference for retry if you are careful.) 4689 * 4690 * Return: 4691 * * 0 - buffer successfully transmitted 4692 * * positive qdisc return code - NET_XMIT_DROP etc. 4693 * * negative errno - other errors 4694 */ 4695 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4696 { 4697 struct net_device *dev = skb->dev; 4698 struct netdev_queue *txq = NULL; 4699 struct Qdisc *q; 4700 int rc = -ENOMEM; 4701 bool again = false; 4702 4703 skb_reset_mac_header(skb); 4704 skb_assert_len(skb); 4705 4706 if (unlikely(skb_shinfo(skb)->tx_flags & 4707 (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) 4708 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4709 4710 /* Disable soft irqs for various locks below. Also 4711 * stops preemption for RCU. 4712 */ 4713 rcu_read_lock_bh(); 4714 4715 skb_update_prio(skb); 4716 4717 qdisc_pkt_len_init(skb); 4718 tcx_set_ingress(skb, false); 4719 #ifdef CONFIG_NET_EGRESS 4720 if (static_branch_unlikely(&egress_needed_key)) { 4721 if (nf_hook_egress_active()) { 4722 skb = nf_hook_egress(skb, &rc, dev); 4723 if (!skb) 4724 goto out; 4725 } 4726 4727 netdev_xmit_skip_txqueue(false); 4728 4729 nf_skip_egress(skb, true); 4730 skb = sch_handle_egress(skb, &rc, dev); 4731 if (!skb) 4732 goto out; 4733 nf_skip_egress(skb, false); 4734 4735 if (netdev_xmit_txqueue_skipped()) 4736 txq = netdev_tx_queue_mapping(dev, skb); 4737 } 4738 #endif 4739 /* If device/qdisc don't need skb->dst, release it right now while 4740 * its hot in this cpu cache. 4741 */ 4742 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4743 skb_dst_drop(skb); 4744 else 4745 skb_dst_force(skb); 4746 4747 if (!txq) 4748 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4749 4750 q = rcu_dereference_bh(txq->qdisc); 4751 4752 trace_net_dev_queue(skb); 4753 if (q->enqueue) { 4754 rc = __dev_xmit_skb(skb, q, dev, txq); 4755 goto out; 4756 } 4757 4758 /* The device has no queue. Common case for software devices: 4759 * loopback, all the sorts of tunnels... 4760 4761 * Really, it is unlikely that netif_tx_lock protection is necessary 4762 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4763 * counters.) 4764 * However, it is possible, that they rely on protection 4765 * made by us here. 4766 4767 * Check this and shot the lock. It is not prone from deadlocks. 4768 *Either shot noqueue qdisc, it is even simpler 8) 4769 */ 4770 if (dev->flags & IFF_UP) { 4771 int cpu = smp_processor_id(); /* ok because BHs are off */ 4772 4773 /* Other cpus might concurrently change txq->xmit_lock_owner 4774 * to -1 or to their cpu id, but not to our id. 4775 */ 4776 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4777 if (dev_xmit_recursion()) 4778 goto recursion_alert; 4779 4780 skb = validate_xmit_skb(skb, dev, &again); 4781 if (!skb) 4782 goto out; 4783 4784 HARD_TX_LOCK(dev, txq, cpu); 4785 4786 if (!netif_xmit_stopped(txq)) { 4787 dev_xmit_recursion_inc(); 4788 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4789 dev_xmit_recursion_dec(); 4790 if (dev_xmit_complete(rc)) { 4791 HARD_TX_UNLOCK(dev, txq); 4792 goto out; 4793 } 4794 } 4795 HARD_TX_UNLOCK(dev, txq); 4796 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4797 dev->name); 4798 } else { 4799 /* Recursion is detected! It is possible, 4800 * unfortunately 4801 */ 4802 recursion_alert: 4803 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4804 dev->name); 4805 } 4806 } 4807 4808 rc = -ENETDOWN; 4809 rcu_read_unlock_bh(); 4810 4811 dev_core_stats_tx_dropped_inc(dev); 4812 kfree_skb_list(skb); 4813 return rc; 4814 out: 4815 rcu_read_unlock_bh(); 4816 return rc; 4817 } 4818 EXPORT_SYMBOL(__dev_queue_xmit); 4819 4820 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4821 { 4822 struct net_device *dev = skb->dev; 4823 struct sk_buff *orig_skb = skb; 4824 struct netdev_queue *txq; 4825 int ret = NETDEV_TX_BUSY; 4826 bool again = false; 4827 4828 if (unlikely(!netif_running(dev) || 4829 !netif_carrier_ok(dev))) 4830 goto drop; 4831 4832 skb = validate_xmit_skb_list(skb, dev, &again); 4833 if (skb != orig_skb) 4834 goto drop; 4835 4836 skb_set_queue_mapping(skb, queue_id); 4837 txq = skb_get_tx_queue(dev, skb); 4838 4839 local_bh_disable(); 4840 4841 dev_xmit_recursion_inc(); 4842 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4843 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4844 ret = netdev_start_xmit(skb, dev, txq, false); 4845 HARD_TX_UNLOCK(dev, txq); 4846 dev_xmit_recursion_dec(); 4847 4848 local_bh_enable(); 4849 return ret; 4850 drop: 4851 dev_core_stats_tx_dropped_inc(dev); 4852 kfree_skb_list(skb); 4853 return NET_XMIT_DROP; 4854 } 4855 EXPORT_SYMBOL(__dev_direct_xmit); 4856 4857 /************************************************************************* 4858 * Receiver routines 4859 *************************************************************************/ 4860 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4861 4862 int weight_p __read_mostly = 64; /* old backlog weight */ 4863 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4864 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4865 4866 /* Called with irq disabled */ 4867 static inline void ____napi_schedule(struct softnet_data *sd, 4868 struct napi_struct *napi) 4869 { 4870 struct task_struct *thread; 4871 4872 lockdep_assert_irqs_disabled(); 4873 4874 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4875 /* Paired with smp_mb__before_atomic() in 4876 * napi_enable()/netif_set_threaded(). 4877 * Use READ_ONCE() to guarantee a complete 4878 * read on napi->thread. Only call 4879 * wake_up_process() when it's not NULL. 4880 */ 4881 thread = READ_ONCE(napi->thread); 4882 if (thread) { 4883 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4884 goto use_local_napi; 4885 4886 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4887 wake_up_process(thread); 4888 return; 4889 } 4890 } 4891 4892 use_local_napi: 4893 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list)); 4894 list_add_tail(&napi->poll_list, &sd->poll_list); 4895 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4896 /* If not called from net_rx_action() 4897 * we have to raise NET_RX_SOFTIRQ. 4898 */ 4899 if (!sd->in_net_rx_action) 4900 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4901 } 4902 4903 #ifdef CONFIG_RPS 4904 4905 struct static_key_false rps_needed __read_mostly; 4906 EXPORT_SYMBOL(rps_needed); 4907 struct static_key_false rfs_needed __read_mostly; 4908 EXPORT_SYMBOL(rfs_needed); 4909 4910 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) 4911 { 4912 return hash_32(hash, flow_table->log); 4913 } 4914 4915 #ifdef CONFIG_RFS_ACCEL 4916 /** 4917 * rps_flow_is_active - check whether the flow is recently active. 4918 * @rflow: Specific flow to check activity. 4919 * @flow_table: per-queue flowtable that @rflow belongs to. 4920 * @cpu: CPU saved in @rflow. 4921 * 4922 * If the CPU has processed many packets since the flow's last activity 4923 * (beyond 10 times the table size), the flow is considered stale. 4924 * 4925 * Return: true if flow was recently active. 4926 */ 4927 static bool rps_flow_is_active(struct rps_dev_flow *rflow, 4928 struct rps_dev_flow_table *flow_table, 4929 unsigned int cpu) 4930 { 4931 unsigned int flow_last_active; 4932 unsigned int sd_input_head; 4933 4934 if (cpu >= nr_cpu_ids) 4935 return false; 4936 4937 sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head); 4938 flow_last_active = READ_ONCE(rflow->last_qtail); 4939 4940 return (int)(sd_input_head - flow_last_active) < 4941 (int)(10 << flow_table->log); 4942 } 4943 #endif 4944 4945 static struct rps_dev_flow * 4946 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4947 struct rps_dev_flow *rflow, u16 next_cpu, u32 hash, 4948 u32 flow_id) 4949 { 4950 if (next_cpu < nr_cpu_ids) { 4951 u32 head; 4952 #ifdef CONFIG_RFS_ACCEL 4953 struct netdev_rx_queue *rxqueue; 4954 struct rps_dev_flow_table *flow_table; 4955 struct rps_dev_flow *old_rflow; 4956 struct rps_dev_flow *tmp_rflow; 4957 unsigned int tmp_cpu; 4958 u16 rxq_index; 4959 int rc; 4960 4961 /* Should we steer this flow to a different hardware queue? */ 4962 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4963 !(dev->features & NETIF_F_NTUPLE)) 4964 goto out; 4965 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4966 if (rxq_index == skb_get_rx_queue(skb)) 4967 goto out; 4968 4969 rxqueue = dev->_rx + rxq_index; 4970 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4971 if (!flow_table) 4972 goto out; 4973 4974 tmp_rflow = &flow_table->flows[flow_id]; 4975 tmp_cpu = READ_ONCE(tmp_rflow->cpu); 4976 4977 if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) { 4978 if (rps_flow_is_active(tmp_rflow, flow_table, 4979 tmp_cpu)) { 4980 if (hash != READ_ONCE(tmp_rflow->hash) || 4981 next_cpu == tmp_cpu) 4982 goto out; 4983 } 4984 } 4985 4986 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4987 rxq_index, flow_id); 4988 if (rc < 0) 4989 goto out; 4990 4991 old_rflow = rflow; 4992 rflow = tmp_rflow; 4993 WRITE_ONCE(rflow->filter, rc); 4994 WRITE_ONCE(rflow->hash, hash); 4995 4996 if (old_rflow->filter == rc) 4997 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4998 out: 4999 #endif 5000 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 5001 rps_input_queue_tail_save(&rflow->last_qtail, head); 5002 } 5003 5004 WRITE_ONCE(rflow->cpu, next_cpu); 5005 return rflow; 5006 } 5007 5008 /* 5009 * get_rps_cpu is called from netif_receive_skb and returns the target 5010 * CPU from the RPS map of the receiving queue for a given skb. 5011 * rcu_read_lock must be held on entry. 5012 */ 5013 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 5014 struct rps_dev_flow **rflowp) 5015 { 5016 const struct rps_sock_flow_table *sock_flow_table; 5017 struct netdev_rx_queue *rxqueue = dev->_rx; 5018 struct rps_dev_flow_table *flow_table; 5019 struct rps_map *map; 5020 int cpu = -1; 5021 u32 flow_id; 5022 u32 tcpu; 5023 u32 hash; 5024 5025 if (skb_rx_queue_recorded(skb)) { 5026 u16 index = skb_get_rx_queue(skb); 5027 5028 if (unlikely(index >= dev->real_num_rx_queues)) { 5029 WARN_ONCE(dev->real_num_rx_queues > 1, 5030 "%s received packet on queue %u, but number " 5031 "of RX queues is %u\n", 5032 dev->name, index, dev->real_num_rx_queues); 5033 goto done; 5034 } 5035 rxqueue += index; 5036 } 5037 5038 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 5039 5040 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5041 map = rcu_dereference(rxqueue->rps_map); 5042 if (!flow_table && !map) 5043 goto done; 5044 5045 skb_reset_network_header(skb); 5046 hash = skb_get_hash(skb); 5047 if (!hash) 5048 goto done; 5049 5050 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 5051 if (flow_table && sock_flow_table) { 5052 struct rps_dev_flow *rflow; 5053 u32 next_cpu; 5054 u32 ident; 5055 5056 /* First check into global flow table if there is a match. 5057 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 5058 */ 5059 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 5060 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 5061 goto try_rps; 5062 5063 next_cpu = ident & net_hotdata.rps_cpu_mask; 5064 5065 /* OK, now we know there is a match, 5066 * we can look at the local (per receive queue) flow table 5067 */ 5068 flow_id = rfs_slot(hash, flow_table); 5069 rflow = &flow_table->flows[flow_id]; 5070 tcpu = rflow->cpu; 5071 5072 /* 5073 * If the desired CPU (where last recvmsg was done) is 5074 * different from current CPU (one in the rx-queue flow 5075 * table entry), switch if one of the following holds: 5076 * - Current CPU is unset (>= nr_cpu_ids). 5077 * - Current CPU is offline. 5078 * - The current CPU's queue tail has advanced beyond the 5079 * last packet that was enqueued using this table entry. 5080 * This guarantees that all previous packets for the flow 5081 * have been dequeued, thus preserving in order delivery. 5082 */ 5083 if (unlikely(tcpu != next_cpu) && 5084 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 5085 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 5086 rflow->last_qtail)) >= 0)) { 5087 tcpu = next_cpu; 5088 rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash, 5089 flow_id); 5090 } 5091 5092 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 5093 *rflowp = rflow; 5094 cpu = tcpu; 5095 goto done; 5096 } 5097 } 5098 5099 try_rps: 5100 5101 if (map) { 5102 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 5103 if (cpu_online(tcpu)) { 5104 cpu = tcpu; 5105 goto done; 5106 } 5107 } 5108 5109 done: 5110 return cpu; 5111 } 5112 5113 #ifdef CONFIG_RFS_ACCEL 5114 5115 /** 5116 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 5117 * @dev: Device on which the filter was set 5118 * @rxq_index: RX queue index 5119 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 5120 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 5121 * 5122 * Drivers that implement ndo_rx_flow_steer() should periodically call 5123 * this function for each installed filter and remove the filters for 5124 * which it returns %true. 5125 */ 5126 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 5127 u32 flow_id, u16 filter_id) 5128 { 5129 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 5130 struct rps_dev_flow_table *flow_table; 5131 struct rps_dev_flow *rflow; 5132 bool expire = true; 5133 5134 rcu_read_lock(); 5135 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5136 if (flow_table && flow_id < (1UL << flow_table->log)) { 5137 unsigned int cpu; 5138 5139 rflow = &flow_table->flows[flow_id]; 5140 cpu = READ_ONCE(rflow->cpu); 5141 if (READ_ONCE(rflow->filter) == filter_id && 5142 rps_flow_is_active(rflow, flow_table, cpu)) 5143 expire = false; 5144 } 5145 rcu_read_unlock(); 5146 return expire; 5147 } 5148 EXPORT_SYMBOL(rps_may_expire_flow); 5149 5150 #endif /* CONFIG_RFS_ACCEL */ 5151 5152 /* Called from hardirq (IPI) context */ 5153 static void rps_trigger_softirq(void *data) 5154 { 5155 struct softnet_data *sd = data; 5156 5157 ____napi_schedule(sd, &sd->backlog); 5158 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5159 WRITE_ONCE(sd->received_rps, sd->received_rps + 1); 5160 } 5161 5162 #endif /* CONFIG_RPS */ 5163 5164 /* Called from hardirq (IPI) context */ 5165 static void trigger_rx_softirq(void *data) 5166 { 5167 struct softnet_data *sd = data; 5168 5169 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5170 smp_store_release(&sd->defer_ipi_scheduled, 0); 5171 } 5172 5173 /* 5174 * After we queued a packet into sd->input_pkt_queue, 5175 * we need to make sure this queue is serviced soon. 5176 * 5177 * - If this is another cpu queue, link it to our rps_ipi_list, 5178 * and make sure we will process rps_ipi_list from net_rx_action(). 5179 * 5180 * - If this is our own queue, NAPI schedule our backlog. 5181 * Note that this also raises NET_RX_SOFTIRQ. 5182 */ 5183 static void napi_schedule_rps(struct softnet_data *sd) 5184 { 5185 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 5186 5187 #ifdef CONFIG_RPS 5188 if (sd != mysd) { 5189 if (use_backlog_threads()) { 5190 __napi_schedule_irqoff(&sd->backlog); 5191 return; 5192 } 5193 5194 sd->rps_ipi_next = mysd->rps_ipi_list; 5195 mysd->rps_ipi_list = sd; 5196 5197 /* If not called from net_rx_action() or napi_threaded_poll() 5198 * we have to raise NET_RX_SOFTIRQ. 5199 */ 5200 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 5201 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5202 return; 5203 } 5204 #endif /* CONFIG_RPS */ 5205 __napi_schedule_irqoff(&mysd->backlog); 5206 } 5207 5208 void kick_defer_list_purge(unsigned int cpu) 5209 { 5210 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5211 unsigned long flags; 5212 5213 if (use_backlog_threads()) { 5214 backlog_lock_irq_save(sd, &flags); 5215 5216 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 5217 __napi_schedule_irqoff(&sd->backlog); 5218 5219 backlog_unlock_irq_restore(sd, &flags); 5220 5221 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 5222 smp_call_function_single_async(cpu, &sd->defer_csd); 5223 } 5224 } 5225 5226 #ifdef CONFIG_NET_FLOW_LIMIT 5227 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 5228 #endif 5229 5230 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 5231 { 5232 #ifdef CONFIG_NET_FLOW_LIMIT 5233 struct sd_flow_limit *fl; 5234 struct softnet_data *sd; 5235 unsigned int old_flow, new_flow; 5236 5237 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 5238 return false; 5239 5240 sd = this_cpu_ptr(&softnet_data); 5241 5242 rcu_read_lock(); 5243 fl = rcu_dereference(sd->flow_limit); 5244 if (fl) { 5245 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets); 5246 old_flow = fl->history[fl->history_head]; 5247 fl->history[fl->history_head] = new_flow; 5248 5249 fl->history_head++; 5250 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 5251 5252 if (likely(fl->buckets[old_flow])) 5253 fl->buckets[old_flow]--; 5254 5255 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 5256 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5257 WRITE_ONCE(fl->count, fl->count + 1); 5258 rcu_read_unlock(); 5259 return true; 5260 } 5261 } 5262 rcu_read_unlock(); 5263 #endif 5264 return false; 5265 } 5266 5267 /* 5268 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 5269 * queue (may be a remote CPU queue). 5270 */ 5271 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 5272 unsigned int *qtail) 5273 { 5274 enum skb_drop_reason reason; 5275 struct softnet_data *sd; 5276 unsigned long flags; 5277 unsigned int qlen; 5278 int max_backlog; 5279 u32 tail; 5280 5281 reason = SKB_DROP_REASON_DEV_READY; 5282 if (!netif_running(skb->dev)) 5283 goto bad_dev; 5284 5285 reason = SKB_DROP_REASON_CPU_BACKLOG; 5286 sd = &per_cpu(softnet_data, cpu); 5287 5288 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 5289 max_backlog = READ_ONCE(net_hotdata.max_backlog); 5290 if (unlikely(qlen > max_backlog)) 5291 goto cpu_backlog_drop; 5292 backlog_lock_irq_save(sd, &flags); 5293 qlen = skb_queue_len(&sd->input_pkt_queue); 5294 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 5295 if (!qlen) { 5296 /* Schedule NAPI for backlog device. We can use 5297 * non atomic operation as we own the queue lock. 5298 */ 5299 if (!__test_and_set_bit(NAPI_STATE_SCHED, 5300 &sd->backlog.state)) 5301 napi_schedule_rps(sd); 5302 } 5303 __skb_queue_tail(&sd->input_pkt_queue, skb); 5304 tail = rps_input_queue_tail_incr(sd); 5305 backlog_unlock_irq_restore(sd, &flags); 5306 5307 /* save the tail outside of the critical section */ 5308 rps_input_queue_tail_save(qtail, tail); 5309 return NET_RX_SUCCESS; 5310 } 5311 5312 backlog_unlock_irq_restore(sd, &flags); 5313 5314 cpu_backlog_drop: 5315 numa_drop_add(&sd->drop_counters, 1); 5316 bad_dev: 5317 dev_core_stats_rx_dropped_inc(skb->dev); 5318 kfree_skb_reason(skb, reason); 5319 return NET_RX_DROP; 5320 } 5321 5322 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 5323 { 5324 struct net_device *dev = skb->dev; 5325 struct netdev_rx_queue *rxqueue; 5326 5327 rxqueue = dev->_rx; 5328 5329 if (skb_rx_queue_recorded(skb)) { 5330 u16 index = skb_get_rx_queue(skb); 5331 5332 if (unlikely(index >= dev->real_num_rx_queues)) { 5333 WARN_ONCE(dev->real_num_rx_queues > 1, 5334 "%s received packet on queue %u, but number " 5335 "of RX queues is %u\n", 5336 dev->name, index, dev->real_num_rx_queues); 5337 5338 return rxqueue; /* Return first rxqueue */ 5339 } 5340 rxqueue += index; 5341 } 5342 return rxqueue; 5343 } 5344 5345 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 5346 const struct bpf_prog *xdp_prog) 5347 { 5348 void *orig_data, *orig_data_end, *hard_start; 5349 struct netdev_rx_queue *rxqueue; 5350 bool orig_bcast, orig_host; 5351 u32 mac_len, frame_sz; 5352 __be16 orig_eth_type; 5353 struct ethhdr *eth; 5354 u32 metalen, act; 5355 int off; 5356 5357 /* The XDP program wants to see the packet starting at the MAC 5358 * header. 5359 */ 5360 mac_len = skb->data - skb_mac_header(skb); 5361 hard_start = skb->data - skb_headroom(skb); 5362 5363 /* SKB "head" area always have tailroom for skb_shared_info */ 5364 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 5365 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5366 5367 rxqueue = netif_get_rxqueue(skb); 5368 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 5369 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 5370 skb_headlen(skb) + mac_len, true); 5371 if (skb_is_nonlinear(skb)) { 5372 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 5373 xdp_buff_set_frags_flag(xdp); 5374 } else { 5375 xdp_buff_clear_frags_flag(xdp); 5376 } 5377 5378 orig_data_end = xdp->data_end; 5379 orig_data = xdp->data; 5380 eth = (struct ethhdr *)xdp->data; 5381 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5382 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5383 orig_eth_type = eth->h_proto; 5384 5385 act = bpf_prog_run_xdp(xdp_prog, xdp); 5386 5387 /* check if bpf_xdp_adjust_head was used */ 5388 off = xdp->data - orig_data; 5389 if (off) { 5390 if (off > 0) 5391 __skb_pull(skb, off); 5392 else if (off < 0) 5393 __skb_push(skb, -off); 5394 5395 skb->mac_header += off; 5396 skb_reset_network_header(skb); 5397 } 5398 5399 /* check if bpf_xdp_adjust_tail was used */ 5400 off = xdp->data_end - orig_data_end; 5401 if (off != 0) { 5402 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5403 skb->len += off; /* positive on grow, negative on shrink */ 5404 } 5405 5406 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5407 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5408 */ 5409 if (xdp_buff_has_frags(xdp)) 5410 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5411 else 5412 skb->data_len = 0; 5413 5414 /* check if XDP changed eth hdr such SKB needs update */ 5415 eth = (struct ethhdr *)xdp->data; 5416 if ((orig_eth_type != eth->h_proto) || 5417 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5418 skb->dev->dev_addr)) || 5419 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5420 __skb_push(skb, ETH_HLEN); 5421 skb->pkt_type = PACKET_HOST; 5422 skb->protocol = eth_type_trans(skb, skb->dev); 5423 } 5424 5425 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5426 * before calling us again on redirect path. We do not call do_redirect 5427 * as we leave that up to the caller. 5428 * 5429 * Caller is responsible for managing lifetime of skb (i.e. calling 5430 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5431 */ 5432 switch (act) { 5433 case XDP_REDIRECT: 5434 case XDP_TX: 5435 __skb_push(skb, mac_len); 5436 break; 5437 case XDP_PASS: 5438 metalen = xdp->data - xdp->data_meta; 5439 if (metalen) 5440 skb_metadata_set(skb, metalen); 5441 break; 5442 } 5443 5444 return act; 5445 } 5446 5447 static int 5448 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) 5449 { 5450 struct sk_buff *skb = *pskb; 5451 int err, hroom, troom; 5452 5453 local_lock_nested_bh(&system_page_pool.bh_lock); 5454 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog); 5455 local_unlock_nested_bh(&system_page_pool.bh_lock); 5456 if (!err) 5457 return 0; 5458 5459 /* In case we have to go down the path and also linearize, 5460 * then lets do the pskb_expand_head() work just once here. 5461 */ 5462 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5463 troom = skb->tail + skb->data_len - skb->end; 5464 err = pskb_expand_head(skb, 5465 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5466 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5467 if (err) 5468 return err; 5469 5470 return skb_linearize(skb); 5471 } 5472 5473 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5474 struct xdp_buff *xdp, 5475 const struct bpf_prog *xdp_prog) 5476 { 5477 struct sk_buff *skb = *pskb; 5478 u32 mac_len, act = XDP_DROP; 5479 5480 /* Reinjected packets coming from act_mirred or similar should 5481 * not get XDP generic processing. 5482 */ 5483 if (skb_is_redirected(skb)) 5484 return XDP_PASS; 5485 5486 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5487 * bytes. This is the guarantee that also native XDP provides, 5488 * thus we need to do it here as well. 5489 */ 5490 mac_len = skb->data - skb_mac_header(skb); 5491 __skb_push(skb, mac_len); 5492 5493 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5494 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5495 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5496 goto do_drop; 5497 } 5498 5499 __skb_pull(*pskb, mac_len); 5500 5501 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5502 switch (act) { 5503 case XDP_REDIRECT: 5504 case XDP_TX: 5505 case XDP_PASS: 5506 break; 5507 default: 5508 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5509 fallthrough; 5510 case XDP_ABORTED: 5511 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5512 fallthrough; 5513 case XDP_DROP: 5514 do_drop: 5515 kfree_skb(*pskb); 5516 break; 5517 } 5518 5519 return act; 5520 } 5521 5522 /* When doing generic XDP we have to bypass the qdisc layer and the 5523 * network taps in order to match in-driver-XDP behavior. This also means 5524 * that XDP packets are able to starve other packets going through a qdisc, 5525 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5526 * queues, so they do not have this starvation issue. 5527 */ 5528 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) 5529 { 5530 struct net_device *dev = skb->dev; 5531 struct netdev_queue *txq; 5532 bool free_skb = true; 5533 int cpu, rc; 5534 5535 txq = netdev_core_pick_tx(dev, skb, NULL); 5536 cpu = smp_processor_id(); 5537 HARD_TX_LOCK(dev, txq, cpu); 5538 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5539 rc = netdev_start_xmit(skb, dev, txq, 0); 5540 if (dev_xmit_complete(rc)) 5541 free_skb = false; 5542 } 5543 HARD_TX_UNLOCK(dev, txq); 5544 if (free_skb) { 5545 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5546 dev_core_stats_tx_dropped_inc(dev); 5547 kfree_skb(skb); 5548 } 5549 } 5550 5551 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5552 5553 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5554 { 5555 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5556 5557 if (xdp_prog) { 5558 struct xdp_buff xdp; 5559 u32 act; 5560 int err; 5561 5562 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5563 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5564 if (act != XDP_PASS) { 5565 switch (act) { 5566 case XDP_REDIRECT: 5567 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5568 &xdp, xdp_prog); 5569 if (err) 5570 goto out_redir; 5571 break; 5572 case XDP_TX: 5573 generic_xdp_tx(*pskb, xdp_prog); 5574 break; 5575 } 5576 bpf_net_ctx_clear(bpf_net_ctx); 5577 return XDP_DROP; 5578 } 5579 bpf_net_ctx_clear(bpf_net_ctx); 5580 } 5581 return XDP_PASS; 5582 out_redir: 5583 bpf_net_ctx_clear(bpf_net_ctx); 5584 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5585 return XDP_DROP; 5586 } 5587 EXPORT_SYMBOL_GPL(do_xdp_generic); 5588 5589 static int netif_rx_internal(struct sk_buff *skb) 5590 { 5591 int ret; 5592 5593 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5594 5595 trace_netif_rx(skb); 5596 5597 #ifdef CONFIG_RPS 5598 if (static_branch_unlikely(&rps_needed)) { 5599 struct rps_dev_flow voidflow, *rflow = &voidflow; 5600 int cpu; 5601 5602 rcu_read_lock(); 5603 5604 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5605 if (cpu < 0) 5606 cpu = smp_processor_id(); 5607 5608 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5609 5610 rcu_read_unlock(); 5611 } else 5612 #endif 5613 { 5614 unsigned int qtail; 5615 5616 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5617 } 5618 return ret; 5619 } 5620 5621 /** 5622 * __netif_rx - Slightly optimized version of netif_rx 5623 * @skb: buffer to post 5624 * 5625 * This behaves as netif_rx except that it does not disable bottom halves. 5626 * As a result this function may only be invoked from the interrupt context 5627 * (either hard or soft interrupt). 5628 */ 5629 int __netif_rx(struct sk_buff *skb) 5630 { 5631 int ret; 5632 5633 lockdep_assert_once(hardirq_count() | softirq_count()); 5634 5635 trace_netif_rx_entry(skb); 5636 ret = netif_rx_internal(skb); 5637 trace_netif_rx_exit(ret); 5638 return ret; 5639 } 5640 EXPORT_SYMBOL(__netif_rx); 5641 5642 /** 5643 * netif_rx - post buffer to the network code 5644 * @skb: buffer to post 5645 * 5646 * This function receives a packet from a device driver and queues it for 5647 * the upper (protocol) levels to process via the backlog NAPI device. It 5648 * always succeeds. The buffer may be dropped during processing for 5649 * congestion control or by the protocol layers. 5650 * The network buffer is passed via the backlog NAPI device. Modern NIC 5651 * driver should use NAPI and GRO. 5652 * This function can used from interrupt and from process context. The 5653 * caller from process context must not disable interrupts before invoking 5654 * this function. 5655 * 5656 * return values: 5657 * NET_RX_SUCCESS (no congestion) 5658 * NET_RX_DROP (packet was dropped) 5659 * 5660 */ 5661 int netif_rx(struct sk_buff *skb) 5662 { 5663 bool need_bh_off = !(hardirq_count() | softirq_count()); 5664 int ret; 5665 5666 if (need_bh_off) 5667 local_bh_disable(); 5668 trace_netif_rx_entry(skb); 5669 ret = netif_rx_internal(skb); 5670 trace_netif_rx_exit(ret); 5671 if (need_bh_off) 5672 local_bh_enable(); 5673 return ret; 5674 } 5675 EXPORT_SYMBOL(netif_rx); 5676 5677 static __latent_entropy void net_tx_action(void) 5678 { 5679 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5680 5681 if (sd->completion_queue) { 5682 struct sk_buff *clist; 5683 5684 local_irq_disable(); 5685 clist = sd->completion_queue; 5686 sd->completion_queue = NULL; 5687 local_irq_enable(); 5688 5689 while (clist) { 5690 struct sk_buff *skb = clist; 5691 5692 clist = clist->next; 5693 5694 WARN_ON(refcount_read(&skb->users)); 5695 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5696 trace_consume_skb(skb, net_tx_action); 5697 else 5698 trace_kfree_skb(skb, net_tx_action, 5699 get_kfree_skb_cb(skb)->reason, NULL); 5700 5701 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5702 __kfree_skb(skb); 5703 else 5704 __napi_kfree_skb(skb, 5705 get_kfree_skb_cb(skb)->reason); 5706 } 5707 } 5708 5709 if (sd->output_queue) { 5710 struct Qdisc *head; 5711 5712 local_irq_disable(); 5713 head = sd->output_queue; 5714 sd->output_queue = NULL; 5715 sd->output_queue_tailp = &sd->output_queue; 5716 local_irq_enable(); 5717 5718 rcu_read_lock(); 5719 5720 while (head) { 5721 struct Qdisc *q = head; 5722 spinlock_t *root_lock = NULL; 5723 5724 head = head->next_sched; 5725 5726 /* We need to make sure head->next_sched is read 5727 * before clearing __QDISC_STATE_SCHED 5728 */ 5729 smp_mb__before_atomic(); 5730 5731 if (!(q->flags & TCQ_F_NOLOCK)) { 5732 root_lock = qdisc_lock(q); 5733 spin_lock(root_lock); 5734 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5735 &q->state))) { 5736 /* There is a synchronize_net() between 5737 * STATE_DEACTIVATED flag being set and 5738 * qdisc_reset()/some_qdisc_is_busy() in 5739 * dev_deactivate(), so we can safely bail out 5740 * early here to avoid data race between 5741 * qdisc_deactivate() and some_qdisc_is_busy() 5742 * for lockless qdisc. 5743 */ 5744 clear_bit(__QDISC_STATE_SCHED, &q->state); 5745 continue; 5746 } 5747 5748 clear_bit(__QDISC_STATE_SCHED, &q->state); 5749 qdisc_run(q); 5750 if (root_lock) 5751 spin_unlock(root_lock); 5752 } 5753 5754 rcu_read_unlock(); 5755 } 5756 5757 xfrm_dev_backlog(sd); 5758 } 5759 5760 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5761 /* This hook is defined here for ATM LANE */ 5762 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5763 unsigned char *addr) __read_mostly; 5764 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5765 #endif 5766 5767 /** 5768 * netdev_is_rx_handler_busy - check if receive handler is registered 5769 * @dev: device to check 5770 * 5771 * Check if a receive handler is already registered for a given device. 5772 * Return true if there one. 5773 * 5774 * The caller must hold the rtnl_mutex. 5775 */ 5776 bool netdev_is_rx_handler_busy(struct net_device *dev) 5777 { 5778 ASSERT_RTNL(); 5779 return dev && rtnl_dereference(dev->rx_handler); 5780 } 5781 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5782 5783 /** 5784 * netdev_rx_handler_register - register receive handler 5785 * @dev: device to register a handler for 5786 * @rx_handler: receive handler to register 5787 * @rx_handler_data: data pointer that is used by rx handler 5788 * 5789 * Register a receive handler for a device. This handler will then be 5790 * called from __netif_receive_skb. A negative errno code is returned 5791 * on a failure. 5792 * 5793 * The caller must hold the rtnl_mutex. 5794 * 5795 * For a general description of rx_handler, see enum rx_handler_result. 5796 */ 5797 int netdev_rx_handler_register(struct net_device *dev, 5798 rx_handler_func_t *rx_handler, 5799 void *rx_handler_data) 5800 { 5801 if (netdev_is_rx_handler_busy(dev)) 5802 return -EBUSY; 5803 5804 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5805 return -EINVAL; 5806 5807 /* Note: rx_handler_data must be set before rx_handler */ 5808 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5809 rcu_assign_pointer(dev->rx_handler, rx_handler); 5810 5811 return 0; 5812 } 5813 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5814 5815 /** 5816 * netdev_rx_handler_unregister - unregister receive handler 5817 * @dev: device to unregister a handler from 5818 * 5819 * Unregister a receive handler from a device. 5820 * 5821 * The caller must hold the rtnl_mutex. 5822 */ 5823 void netdev_rx_handler_unregister(struct net_device *dev) 5824 { 5825 5826 ASSERT_RTNL(); 5827 RCU_INIT_POINTER(dev->rx_handler, NULL); 5828 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5829 * section has a guarantee to see a non NULL rx_handler_data 5830 * as well. 5831 */ 5832 synchronize_net(); 5833 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5834 } 5835 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5836 5837 /* 5838 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5839 * the special handling of PFMEMALLOC skbs. 5840 */ 5841 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5842 { 5843 switch (skb->protocol) { 5844 case htons(ETH_P_ARP): 5845 case htons(ETH_P_IP): 5846 case htons(ETH_P_IPV6): 5847 case htons(ETH_P_8021Q): 5848 case htons(ETH_P_8021AD): 5849 return true; 5850 default: 5851 return false; 5852 } 5853 } 5854 5855 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5856 int *ret, struct net_device *orig_dev) 5857 { 5858 if (nf_hook_ingress_active(skb)) { 5859 int ingress_retval; 5860 5861 if (*pt_prev) { 5862 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5863 *pt_prev = NULL; 5864 } 5865 5866 rcu_read_lock(); 5867 ingress_retval = nf_hook_ingress(skb); 5868 rcu_read_unlock(); 5869 return ingress_retval; 5870 } 5871 return 0; 5872 } 5873 5874 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5875 struct packet_type **ppt_prev) 5876 { 5877 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO; 5878 struct packet_type *ptype, *pt_prev; 5879 rx_handler_func_t *rx_handler; 5880 struct sk_buff *skb = *pskb; 5881 struct net_device *orig_dev; 5882 bool deliver_exact = false; 5883 int ret = NET_RX_DROP; 5884 __be16 type; 5885 5886 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5887 5888 trace_netif_receive_skb(skb); 5889 5890 orig_dev = skb->dev; 5891 5892 skb_reset_network_header(skb); 5893 #if !defined(CONFIG_DEBUG_NET) 5894 /* We plan to no longer reset the transport header here. 5895 * Give some time to fuzzers and dev build to catch bugs 5896 * in network stacks. 5897 */ 5898 if (!skb_transport_header_was_set(skb)) 5899 skb_reset_transport_header(skb); 5900 #endif 5901 skb_reset_mac_len(skb); 5902 5903 pt_prev = NULL; 5904 5905 another_round: 5906 skb->skb_iif = skb->dev->ifindex; 5907 5908 __this_cpu_inc(softnet_data.processed); 5909 5910 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5911 int ret2; 5912 5913 migrate_disable(); 5914 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5915 &skb); 5916 migrate_enable(); 5917 5918 if (ret2 != XDP_PASS) { 5919 ret = NET_RX_DROP; 5920 goto out; 5921 } 5922 } 5923 5924 if (eth_type_vlan(skb->protocol)) { 5925 skb = skb_vlan_untag(skb); 5926 if (unlikely(!skb)) 5927 goto out; 5928 } 5929 5930 if (skb_skip_tc_classify(skb)) 5931 goto skip_classify; 5932 5933 if (pfmemalloc) 5934 goto skip_taps; 5935 5936 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, 5937 list) { 5938 if (pt_prev) 5939 ret = deliver_skb(skb, pt_prev, orig_dev); 5940 pt_prev = ptype; 5941 } 5942 5943 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5944 if (pt_prev) 5945 ret = deliver_skb(skb, pt_prev, orig_dev); 5946 pt_prev = ptype; 5947 } 5948 5949 skip_taps: 5950 #ifdef CONFIG_NET_INGRESS 5951 if (static_branch_unlikely(&ingress_needed_key)) { 5952 bool another = false; 5953 5954 nf_skip_egress(skb, true); 5955 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5956 &another); 5957 if (another) 5958 goto another_round; 5959 if (!skb) 5960 goto out; 5961 5962 nf_skip_egress(skb, false); 5963 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5964 goto out; 5965 } 5966 #endif 5967 skb_reset_redirect(skb); 5968 skip_classify: 5969 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) { 5970 drop_reason = SKB_DROP_REASON_PFMEMALLOC; 5971 goto drop; 5972 } 5973 5974 if (skb_vlan_tag_present(skb)) { 5975 if (pt_prev) { 5976 ret = deliver_skb(skb, pt_prev, orig_dev); 5977 pt_prev = NULL; 5978 } 5979 if (vlan_do_receive(&skb)) 5980 goto another_round; 5981 else if (unlikely(!skb)) 5982 goto out; 5983 } 5984 5985 rx_handler = rcu_dereference(skb->dev->rx_handler); 5986 if (rx_handler) { 5987 if (pt_prev) { 5988 ret = deliver_skb(skb, pt_prev, orig_dev); 5989 pt_prev = NULL; 5990 } 5991 switch (rx_handler(&skb)) { 5992 case RX_HANDLER_CONSUMED: 5993 ret = NET_RX_SUCCESS; 5994 goto out; 5995 case RX_HANDLER_ANOTHER: 5996 goto another_round; 5997 case RX_HANDLER_EXACT: 5998 deliver_exact = true; 5999 break; 6000 case RX_HANDLER_PASS: 6001 break; 6002 default: 6003 BUG(); 6004 } 6005 } 6006 6007 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 6008 check_vlan_id: 6009 if (skb_vlan_tag_get_id(skb)) { 6010 /* Vlan id is non 0 and vlan_do_receive() above couldn't 6011 * find vlan device. 6012 */ 6013 skb->pkt_type = PACKET_OTHERHOST; 6014 } else if (eth_type_vlan(skb->protocol)) { 6015 /* Outer header is 802.1P with vlan 0, inner header is 6016 * 802.1Q or 802.1AD and vlan_do_receive() above could 6017 * not find vlan dev for vlan id 0. 6018 */ 6019 __vlan_hwaccel_clear_tag(skb); 6020 skb = skb_vlan_untag(skb); 6021 if (unlikely(!skb)) 6022 goto out; 6023 if (vlan_do_receive(&skb)) 6024 /* After stripping off 802.1P header with vlan 0 6025 * vlan dev is found for inner header. 6026 */ 6027 goto another_round; 6028 else if (unlikely(!skb)) 6029 goto out; 6030 else 6031 /* We have stripped outer 802.1P vlan 0 header. 6032 * But could not find vlan dev. 6033 * check again for vlan id to set OTHERHOST. 6034 */ 6035 goto check_vlan_id; 6036 } 6037 /* Note: we might in the future use prio bits 6038 * and set skb->priority like in vlan_do_receive() 6039 * For the time being, just ignore Priority Code Point 6040 */ 6041 __vlan_hwaccel_clear_tag(skb); 6042 } 6043 6044 type = skb->protocol; 6045 6046 /* deliver only exact match when indicated */ 6047 if (likely(!deliver_exact)) { 6048 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6049 &ptype_base[ntohs(type) & 6050 PTYPE_HASH_MASK]); 6051 6052 /* orig_dev and skb->dev could belong to different netns; 6053 * Even in such case we need to traverse only the list 6054 * coming from skb->dev, as the ptype owner (packet socket) 6055 * will use dev_net(skb->dev) to do namespace filtering. 6056 */ 6057 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6058 &dev_net_rcu(skb->dev)->ptype_specific); 6059 } 6060 6061 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6062 &orig_dev->ptype_specific); 6063 6064 if (unlikely(skb->dev != orig_dev)) { 6065 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6066 &skb->dev->ptype_specific); 6067 } 6068 6069 if (pt_prev) { 6070 *ppt_prev = pt_prev; 6071 } else { 6072 drop: 6073 if (!deliver_exact) 6074 dev_core_stats_rx_dropped_inc(skb->dev); 6075 else 6076 dev_core_stats_rx_nohandler_inc(skb->dev); 6077 6078 kfree_skb_reason(skb, drop_reason); 6079 /* Jamal, now you will not able to escape explaining 6080 * me how you were going to use this. :-) 6081 */ 6082 ret = NET_RX_DROP; 6083 } 6084 6085 out: 6086 /* The invariant here is that if *ppt_prev is not NULL 6087 * then skb should also be non-NULL. 6088 * 6089 * Apparently *ppt_prev assignment above holds this invariant due to 6090 * skb dereferencing near it. 6091 */ 6092 *pskb = skb; 6093 return ret; 6094 } 6095 6096 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 6097 { 6098 struct net_device *orig_dev = skb->dev; 6099 struct packet_type *pt_prev = NULL; 6100 int ret; 6101 6102 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6103 if (pt_prev) 6104 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 6105 skb->dev, pt_prev, orig_dev); 6106 return ret; 6107 } 6108 6109 /** 6110 * netif_receive_skb_core - special purpose version of netif_receive_skb 6111 * @skb: buffer to process 6112 * 6113 * More direct receive version of netif_receive_skb(). It should 6114 * only be used by callers that have a need to skip RPS and Generic XDP. 6115 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 6116 * 6117 * This function may only be called from softirq context and interrupts 6118 * should be enabled. 6119 * 6120 * Return values (usually ignored): 6121 * NET_RX_SUCCESS: no congestion 6122 * NET_RX_DROP: packet was dropped 6123 */ 6124 int netif_receive_skb_core(struct sk_buff *skb) 6125 { 6126 int ret; 6127 6128 rcu_read_lock(); 6129 ret = __netif_receive_skb_one_core(skb, false); 6130 rcu_read_unlock(); 6131 6132 return ret; 6133 } 6134 EXPORT_SYMBOL(netif_receive_skb_core); 6135 6136 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 6137 struct packet_type *pt_prev, 6138 struct net_device *orig_dev) 6139 { 6140 struct sk_buff *skb, *next; 6141 6142 if (!pt_prev) 6143 return; 6144 if (list_empty(head)) 6145 return; 6146 if (pt_prev->list_func != NULL) 6147 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 6148 ip_list_rcv, head, pt_prev, orig_dev); 6149 else 6150 list_for_each_entry_safe(skb, next, head, list) { 6151 skb_list_del_init(skb); 6152 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 6153 } 6154 } 6155 6156 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 6157 { 6158 /* Fast-path assumptions: 6159 * - There is no RX handler. 6160 * - Only one packet_type matches. 6161 * If either of these fails, we will end up doing some per-packet 6162 * processing in-line, then handling the 'last ptype' for the whole 6163 * sublist. This can't cause out-of-order delivery to any single ptype, 6164 * because the 'last ptype' must be constant across the sublist, and all 6165 * other ptypes are handled per-packet. 6166 */ 6167 /* Current (common) ptype of sublist */ 6168 struct packet_type *pt_curr = NULL; 6169 /* Current (common) orig_dev of sublist */ 6170 struct net_device *od_curr = NULL; 6171 struct sk_buff *skb, *next; 6172 LIST_HEAD(sublist); 6173 6174 list_for_each_entry_safe(skb, next, head, list) { 6175 struct net_device *orig_dev = skb->dev; 6176 struct packet_type *pt_prev = NULL; 6177 6178 skb_list_del_init(skb); 6179 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6180 if (!pt_prev) 6181 continue; 6182 if (pt_curr != pt_prev || od_curr != orig_dev) { 6183 /* dispatch old sublist */ 6184 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6185 /* start new sublist */ 6186 INIT_LIST_HEAD(&sublist); 6187 pt_curr = pt_prev; 6188 od_curr = orig_dev; 6189 } 6190 list_add_tail(&skb->list, &sublist); 6191 } 6192 6193 /* dispatch final sublist */ 6194 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6195 } 6196 6197 static int __netif_receive_skb(struct sk_buff *skb) 6198 { 6199 int ret; 6200 6201 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 6202 unsigned int noreclaim_flag; 6203 6204 /* 6205 * PFMEMALLOC skbs are special, they should 6206 * - be delivered to SOCK_MEMALLOC sockets only 6207 * - stay away from userspace 6208 * - have bounded memory usage 6209 * 6210 * Use PF_MEMALLOC as this saves us from propagating the allocation 6211 * context down to all allocation sites. 6212 */ 6213 noreclaim_flag = memalloc_noreclaim_save(); 6214 ret = __netif_receive_skb_one_core(skb, true); 6215 memalloc_noreclaim_restore(noreclaim_flag); 6216 } else 6217 ret = __netif_receive_skb_one_core(skb, false); 6218 6219 return ret; 6220 } 6221 6222 static void __netif_receive_skb_list(struct list_head *head) 6223 { 6224 unsigned long noreclaim_flag = 0; 6225 struct sk_buff *skb, *next; 6226 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 6227 6228 list_for_each_entry_safe(skb, next, head, list) { 6229 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 6230 struct list_head sublist; 6231 6232 /* Handle the previous sublist */ 6233 list_cut_before(&sublist, head, &skb->list); 6234 if (!list_empty(&sublist)) 6235 __netif_receive_skb_list_core(&sublist, pfmemalloc); 6236 pfmemalloc = !pfmemalloc; 6237 /* See comments in __netif_receive_skb */ 6238 if (pfmemalloc) 6239 noreclaim_flag = memalloc_noreclaim_save(); 6240 else 6241 memalloc_noreclaim_restore(noreclaim_flag); 6242 } 6243 } 6244 /* Handle the remaining sublist */ 6245 if (!list_empty(head)) 6246 __netif_receive_skb_list_core(head, pfmemalloc); 6247 /* Restore pflags */ 6248 if (pfmemalloc) 6249 memalloc_noreclaim_restore(noreclaim_flag); 6250 } 6251 6252 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 6253 { 6254 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 6255 struct bpf_prog *new = xdp->prog; 6256 int ret = 0; 6257 6258 switch (xdp->command) { 6259 case XDP_SETUP_PROG: 6260 rcu_assign_pointer(dev->xdp_prog, new); 6261 if (old) 6262 bpf_prog_put(old); 6263 6264 if (old && !new) { 6265 static_branch_dec(&generic_xdp_needed_key); 6266 } else if (new && !old) { 6267 static_branch_inc(&generic_xdp_needed_key); 6268 netif_disable_lro(dev); 6269 dev_disable_gro_hw(dev); 6270 } 6271 break; 6272 6273 default: 6274 ret = -EINVAL; 6275 break; 6276 } 6277 6278 return ret; 6279 } 6280 6281 static int netif_receive_skb_internal(struct sk_buff *skb) 6282 { 6283 int ret; 6284 6285 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 6286 6287 if (skb_defer_rx_timestamp(skb)) 6288 return NET_RX_SUCCESS; 6289 6290 rcu_read_lock(); 6291 #ifdef CONFIG_RPS 6292 if (static_branch_unlikely(&rps_needed)) { 6293 struct rps_dev_flow voidflow, *rflow = &voidflow; 6294 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6295 6296 if (cpu >= 0) { 6297 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6298 rcu_read_unlock(); 6299 return ret; 6300 } 6301 } 6302 #endif 6303 ret = __netif_receive_skb(skb); 6304 rcu_read_unlock(); 6305 return ret; 6306 } 6307 6308 void netif_receive_skb_list_internal(struct list_head *head) 6309 { 6310 struct sk_buff *skb, *next; 6311 LIST_HEAD(sublist); 6312 6313 list_for_each_entry_safe(skb, next, head, list) { 6314 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 6315 skb); 6316 skb_list_del_init(skb); 6317 if (!skb_defer_rx_timestamp(skb)) 6318 list_add_tail(&skb->list, &sublist); 6319 } 6320 list_splice_init(&sublist, head); 6321 6322 rcu_read_lock(); 6323 #ifdef CONFIG_RPS 6324 if (static_branch_unlikely(&rps_needed)) { 6325 list_for_each_entry_safe(skb, next, head, list) { 6326 struct rps_dev_flow voidflow, *rflow = &voidflow; 6327 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6328 6329 if (cpu >= 0) { 6330 /* Will be handled, remove from list */ 6331 skb_list_del_init(skb); 6332 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6333 } 6334 } 6335 } 6336 #endif 6337 __netif_receive_skb_list(head); 6338 rcu_read_unlock(); 6339 } 6340 6341 /** 6342 * netif_receive_skb - process receive buffer from network 6343 * @skb: buffer to process 6344 * 6345 * netif_receive_skb() is the main receive data processing function. 6346 * It always succeeds. The buffer may be dropped during processing 6347 * for congestion control or by the protocol layers. 6348 * 6349 * This function may only be called from softirq context and interrupts 6350 * should be enabled. 6351 * 6352 * Return values (usually ignored): 6353 * NET_RX_SUCCESS: no congestion 6354 * NET_RX_DROP: packet was dropped 6355 */ 6356 int netif_receive_skb(struct sk_buff *skb) 6357 { 6358 int ret; 6359 6360 trace_netif_receive_skb_entry(skb); 6361 6362 ret = netif_receive_skb_internal(skb); 6363 trace_netif_receive_skb_exit(ret); 6364 6365 return ret; 6366 } 6367 EXPORT_SYMBOL(netif_receive_skb); 6368 6369 /** 6370 * netif_receive_skb_list - process many receive buffers from network 6371 * @head: list of skbs to process. 6372 * 6373 * Since return value of netif_receive_skb() is normally ignored, and 6374 * wouldn't be meaningful for a list, this function returns void. 6375 * 6376 * This function may only be called from softirq context and interrupts 6377 * should be enabled. 6378 */ 6379 void netif_receive_skb_list(struct list_head *head) 6380 { 6381 struct sk_buff *skb; 6382 6383 if (list_empty(head)) 6384 return; 6385 if (trace_netif_receive_skb_list_entry_enabled()) { 6386 list_for_each_entry(skb, head, list) 6387 trace_netif_receive_skb_list_entry(skb); 6388 } 6389 netif_receive_skb_list_internal(head); 6390 trace_netif_receive_skb_list_exit(0); 6391 } 6392 EXPORT_SYMBOL(netif_receive_skb_list); 6393 6394 /* Network device is going away, flush any packets still pending */ 6395 static void flush_backlog(struct work_struct *work) 6396 { 6397 struct sk_buff *skb, *tmp; 6398 struct sk_buff_head list; 6399 struct softnet_data *sd; 6400 6401 __skb_queue_head_init(&list); 6402 local_bh_disable(); 6403 sd = this_cpu_ptr(&softnet_data); 6404 6405 backlog_lock_irq_disable(sd); 6406 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6407 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6408 __skb_unlink(skb, &sd->input_pkt_queue); 6409 __skb_queue_tail(&list, skb); 6410 rps_input_queue_head_incr(sd); 6411 } 6412 } 6413 backlog_unlock_irq_enable(sd); 6414 6415 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6416 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6417 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6418 __skb_unlink(skb, &sd->process_queue); 6419 __skb_queue_tail(&list, skb); 6420 rps_input_queue_head_incr(sd); 6421 } 6422 } 6423 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6424 local_bh_enable(); 6425 6426 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY); 6427 } 6428 6429 static bool flush_required(int cpu) 6430 { 6431 #if IS_ENABLED(CONFIG_RPS) 6432 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6433 bool do_flush; 6434 6435 backlog_lock_irq_disable(sd); 6436 6437 /* as insertion into process_queue happens with the rps lock held, 6438 * process_queue access may race only with dequeue 6439 */ 6440 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6441 !skb_queue_empty_lockless(&sd->process_queue); 6442 backlog_unlock_irq_enable(sd); 6443 6444 return do_flush; 6445 #endif 6446 /* without RPS we can't safely check input_pkt_queue: during a 6447 * concurrent remote skb_queue_splice() we can detect as empty both 6448 * input_pkt_queue and process_queue even if the latter could end-up 6449 * containing a lot of packets. 6450 */ 6451 return true; 6452 } 6453 6454 struct flush_backlogs { 6455 cpumask_t flush_cpus; 6456 struct work_struct w[]; 6457 }; 6458 6459 static struct flush_backlogs *flush_backlogs_alloc(void) 6460 { 6461 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), 6462 GFP_KERNEL); 6463 } 6464 6465 static struct flush_backlogs *flush_backlogs_fallback; 6466 static DEFINE_MUTEX(flush_backlogs_mutex); 6467 6468 static void flush_all_backlogs(void) 6469 { 6470 struct flush_backlogs *ptr = flush_backlogs_alloc(); 6471 unsigned int cpu; 6472 6473 if (!ptr) { 6474 mutex_lock(&flush_backlogs_mutex); 6475 ptr = flush_backlogs_fallback; 6476 } 6477 cpumask_clear(&ptr->flush_cpus); 6478 6479 cpus_read_lock(); 6480 6481 for_each_online_cpu(cpu) { 6482 if (flush_required(cpu)) { 6483 INIT_WORK(&ptr->w[cpu], flush_backlog); 6484 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]); 6485 __cpumask_set_cpu(cpu, &ptr->flush_cpus); 6486 } 6487 } 6488 6489 /* we can have in flight packet[s] on the cpus we are not flushing, 6490 * synchronize_net() in unregister_netdevice_many() will take care of 6491 * them. 6492 */ 6493 for_each_cpu(cpu, &ptr->flush_cpus) 6494 flush_work(&ptr->w[cpu]); 6495 6496 cpus_read_unlock(); 6497 6498 if (ptr != flush_backlogs_fallback) 6499 kfree(ptr); 6500 else 6501 mutex_unlock(&flush_backlogs_mutex); 6502 } 6503 6504 static void net_rps_send_ipi(struct softnet_data *remsd) 6505 { 6506 #ifdef CONFIG_RPS 6507 while (remsd) { 6508 struct softnet_data *next = remsd->rps_ipi_next; 6509 6510 if (cpu_online(remsd->cpu)) 6511 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6512 remsd = next; 6513 } 6514 #endif 6515 } 6516 6517 /* 6518 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6519 * Note: called with local irq disabled, but exits with local irq enabled. 6520 */ 6521 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6522 { 6523 #ifdef CONFIG_RPS 6524 struct softnet_data *remsd = sd->rps_ipi_list; 6525 6526 if (!use_backlog_threads() && remsd) { 6527 sd->rps_ipi_list = NULL; 6528 6529 local_irq_enable(); 6530 6531 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6532 net_rps_send_ipi(remsd); 6533 } else 6534 #endif 6535 local_irq_enable(); 6536 } 6537 6538 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6539 { 6540 #ifdef CONFIG_RPS 6541 return !use_backlog_threads() && sd->rps_ipi_list; 6542 #else 6543 return false; 6544 #endif 6545 } 6546 6547 static int process_backlog(struct napi_struct *napi, int quota) 6548 { 6549 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6550 bool again = true; 6551 int work = 0; 6552 6553 /* Check if we have pending ipi, its better to send them now, 6554 * not waiting net_rx_action() end. 6555 */ 6556 if (sd_has_rps_ipi_waiting(sd)) { 6557 local_irq_disable(); 6558 net_rps_action_and_irq_enable(sd); 6559 } 6560 6561 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6562 while (again) { 6563 struct sk_buff *skb; 6564 6565 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6566 while ((skb = __skb_dequeue(&sd->process_queue))) { 6567 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6568 rcu_read_lock(); 6569 __netif_receive_skb(skb); 6570 rcu_read_unlock(); 6571 if (++work >= quota) { 6572 rps_input_queue_head_add(sd, work); 6573 return work; 6574 } 6575 6576 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6577 } 6578 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6579 6580 backlog_lock_irq_disable(sd); 6581 if (skb_queue_empty(&sd->input_pkt_queue)) { 6582 /* 6583 * Inline a custom version of __napi_complete(). 6584 * only current cpu owns and manipulates this napi, 6585 * and NAPI_STATE_SCHED is the only possible flag set 6586 * on backlog. 6587 * We can use a plain write instead of clear_bit(), 6588 * and we dont need an smp_mb() memory barrier. 6589 */ 6590 napi->state &= NAPIF_STATE_THREADED; 6591 again = false; 6592 } else { 6593 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6594 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6595 &sd->process_queue); 6596 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6597 } 6598 backlog_unlock_irq_enable(sd); 6599 } 6600 6601 if (work) 6602 rps_input_queue_head_add(sd, work); 6603 return work; 6604 } 6605 6606 /** 6607 * __napi_schedule - schedule for receive 6608 * @n: entry to schedule 6609 * 6610 * The entry's receive function will be scheduled to run. 6611 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6612 */ 6613 void __napi_schedule(struct napi_struct *n) 6614 { 6615 unsigned long flags; 6616 6617 local_irq_save(flags); 6618 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6619 local_irq_restore(flags); 6620 } 6621 EXPORT_SYMBOL(__napi_schedule); 6622 6623 /** 6624 * napi_schedule_prep - check if napi can be scheduled 6625 * @n: napi context 6626 * 6627 * Test if NAPI routine is already running, and if not mark 6628 * it as running. This is used as a condition variable to 6629 * insure only one NAPI poll instance runs. We also make 6630 * sure there is no pending NAPI disable. 6631 */ 6632 bool napi_schedule_prep(struct napi_struct *n) 6633 { 6634 unsigned long new, val = READ_ONCE(n->state); 6635 6636 do { 6637 if (unlikely(val & NAPIF_STATE_DISABLE)) 6638 return false; 6639 new = val | NAPIF_STATE_SCHED; 6640 6641 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6642 * This was suggested by Alexander Duyck, as compiler 6643 * emits better code than : 6644 * if (val & NAPIF_STATE_SCHED) 6645 * new |= NAPIF_STATE_MISSED; 6646 */ 6647 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6648 NAPIF_STATE_MISSED; 6649 } while (!try_cmpxchg(&n->state, &val, new)); 6650 6651 return !(val & NAPIF_STATE_SCHED); 6652 } 6653 EXPORT_SYMBOL(napi_schedule_prep); 6654 6655 /** 6656 * __napi_schedule_irqoff - schedule for receive 6657 * @n: entry to schedule 6658 * 6659 * Variant of __napi_schedule() assuming hard irqs are masked. 6660 * 6661 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6662 * because the interrupt disabled assumption might not be true 6663 * due to force-threaded interrupts and spinlock substitution. 6664 */ 6665 void __napi_schedule_irqoff(struct napi_struct *n) 6666 { 6667 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6668 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6669 else 6670 __napi_schedule(n); 6671 } 6672 EXPORT_SYMBOL(__napi_schedule_irqoff); 6673 6674 bool napi_complete_done(struct napi_struct *n, int work_done) 6675 { 6676 unsigned long flags, val, new, timeout = 0; 6677 bool ret = true; 6678 6679 /* 6680 * 1) Don't let napi dequeue from the cpu poll list 6681 * just in case its running on a different cpu. 6682 * 2) If we are busy polling, do nothing here, we have 6683 * the guarantee we will be called later. 6684 */ 6685 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6686 NAPIF_STATE_IN_BUSY_POLL))) 6687 return false; 6688 6689 if (work_done) { 6690 if (n->gro.bitmask) 6691 timeout = napi_get_gro_flush_timeout(n); 6692 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6693 } 6694 if (n->defer_hard_irqs_count > 0) { 6695 n->defer_hard_irqs_count--; 6696 timeout = napi_get_gro_flush_timeout(n); 6697 if (timeout) 6698 ret = false; 6699 } 6700 6701 /* 6702 * When the NAPI instance uses a timeout and keeps postponing 6703 * it, we need to bound somehow the time packets are kept in 6704 * the GRO layer. 6705 */ 6706 gro_flush_normal(&n->gro, !!timeout); 6707 6708 if (unlikely(!list_empty(&n->poll_list))) { 6709 /* If n->poll_list is not empty, we need to mask irqs */ 6710 local_irq_save(flags); 6711 list_del_init(&n->poll_list); 6712 local_irq_restore(flags); 6713 } 6714 WRITE_ONCE(n->list_owner, -1); 6715 6716 val = READ_ONCE(n->state); 6717 do { 6718 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6719 6720 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6721 NAPIF_STATE_SCHED_THREADED | 6722 NAPIF_STATE_PREFER_BUSY_POLL); 6723 6724 /* If STATE_MISSED was set, leave STATE_SCHED set, 6725 * because we will call napi->poll() one more time. 6726 * This C code was suggested by Alexander Duyck to help gcc. 6727 */ 6728 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6729 NAPIF_STATE_SCHED; 6730 } while (!try_cmpxchg(&n->state, &val, new)); 6731 6732 if (unlikely(val & NAPIF_STATE_MISSED)) { 6733 __napi_schedule(n); 6734 return false; 6735 } 6736 6737 if (timeout) 6738 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6739 HRTIMER_MODE_REL_PINNED); 6740 return ret; 6741 } 6742 EXPORT_SYMBOL(napi_complete_done); 6743 6744 static void skb_defer_free_flush(void) 6745 { 6746 struct llist_node *free_list; 6747 struct sk_buff *skb, *next; 6748 struct skb_defer_node *sdn; 6749 int node; 6750 6751 for_each_node(node) { 6752 sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node; 6753 6754 if (llist_empty(&sdn->defer_list)) 6755 continue; 6756 atomic_long_set(&sdn->defer_count, 0); 6757 free_list = llist_del_all(&sdn->defer_list); 6758 6759 llist_for_each_entry_safe(skb, next, free_list, ll_node) { 6760 napi_consume_skb(skb, 1); 6761 } 6762 } 6763 } 6764 6765 #if defined(CONFIG_NET_RX_BUSY_POLL) 6766 6767 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6768 { 6769 if (!skip_schedule) { 6770 gro_normal_list(&napi->gro); 6771 __napi_schedule(napi); 6772 return; 6773 } 6774 6775 /* Flush too old packets. If HZ < 1000, flush all packets */ 6776 gro_flush_normal(&napi->gro, HZ >= 1000); 6777 6778 clear_bit(NAPI_STATE_SCHED, &napi->state); 6779 } 6780 6781 enum { 6782 NAPI_F_PREFER_BUSY_POLL = 1, 6783 NAPI_F_END_ON_RESCHED = 2, 6784 }; 6785 6786 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6787 unsigned flags, u16 budget) 6788 { 6789 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6790 bool skip_schedule = false; 6791 unsigned long timeout; 6792 int rc; 6793 6794 /* Busy polling means there is a high chance device driver hard irq 6795 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6796 * set in napi_schedule_prep(). 6797 * Since we are about to call napi->poll() once more, we can safely 6798 * clear NAPI_STATE_MISSED. 6799 * 6800 * Note: x86 could use a single "lock and ..." instruction 6801 * to perform these two clear_bit() 6802 */ 6803 clear_bit(NAPI_STATE_MISSED, &napi->state); 6804 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6805 6806 local_bh_disable(); 6807 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6808 6809 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6810 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6811 timeout = napi_get_gro_flush_timeout(napi); 6812 if (napi->defer_hard_irqs_count && timeout) { 6813 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6814 skip_schedule = true; 6815 } 6816 } 6817 6818 /* All we really want here is to re-enable device interrupts. 6819 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6820 */ 6821 rc = napi->poll(napi, budget); 6822 /* We can't gro_normal_list() here, because napi->poll() might have 6823 * rearmed the napi (napi_complete_done()) in which case it could 6824 * already be running on another CPU. 6825 */ 6826 trace_napi_poll(napi, rc, budget); 6827 netpoll_poll_unlock(have_poll_lock); 6828 if (rc == budget) 6829 __busy_poll_stop(napi, skip_schedule); 6830 bpf_net_ctx_clear(bpf_net_ctx); 6831 local_bh_enable(); 6832 } 6833 6834 static void __napi_busy_loop(unsigned int napi_id, 6835 bool (*loop_end)(void *, unsigned long), 6836 void *loop_end_arg, unsigned flags, u16 budget) 6837 { 6838 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6839 int (*napi_poll)(struct napi_struct *napi, int budget); 6840 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6841 void *have_poll_lock = NULL; 6842 struct napi_struct *napi; 6843 6844 WARN_ON_ONCE(!rcu_read_lock_held()); 6845 6846 restart: 6847 napi_poll = NULL; 6848 6849 napi = napi_by_id(napi_id); 6850 if (!napi) 6851 return; 6852 6853 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6854 preempt_disable(); 6855 for (;;) { 6856 int work = 0; 6857 6858 local_bh_disable(); 6859 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6860 if (!napi_poll) { 6861 unsigned long val = READ_ONCE(napi->state); 6862 6863 /* If multiple threads are competing for this napi, 6864 * we avoid dirtying napi->state as much as we can. 6865 */ 6866 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6867 NAPIF_STATE_IN_BUSY_POLL)) { 6868 if (flags & NAPI_F_PREFER_BUSY_POLL) 6869 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6870 goto count; 6871 } 6872 if (cmpxchg(&napi->state, val, 6873 val | NAPIF_STATE_IN_BUSY_POLL | 6874 NAPIF_STATE_SCHED) != val) { 6875 if (flags & NAPI_F_PREFER_BUSY_POLL) 6876 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6877 goto count; 6878 } 6879 have_poll_lock = netpoll_poll_lock(napi); 6880 napi_poll = napi->poll; 6881 } 6882 work = napi_poll(napi, budget); 6883 trace_napi_poll(napi, work, budget); 6884 gro_normal_list(&napi->gro); 6885 count: 6886 if (work > 0) 6887 __NET_ADD_STATS(dev_net(napi->dev), 6888 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6889 skb_defer_free_flush(); 6890 bpf_net_ctx_clear(bpf_net_ctx); 6891 local_bh_enable(); 6892 6893 if (!loop_end || loop_end(loop_end_arg, start_time)) 6894 break; 6895 6896 if (unlikely(need_resched())) { 6897 if (flags & NAPI_F_END_ON_RESCHED) 6898 break; 6899 if (napi_poll) 6900 busy_poll_stop(napi, have_poll_lock, flags, budget); 6901 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6902 preempt_enable(); 6903 rcu_read_unlock(); 6904 cond_resched(); 6905 rcu_read_lock(); 6906 if (loop_end(loop_end_arg, start_time)) 6907 return; 6908 goto restart; 6909 } 6910 cpu_relax(); 6911 } 6912 if (napi_poll) 6913 busy_poll_stop(napi, have_poll_lock, flags, budget); 6914 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6915 preempt_enable(); 6916 } 6917 6918 void napi_busy_loop_rcu(unsigned int napi_id, 6919 bool (*loop_end)(void *, unsigned long), 6920 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6921 { 6922 unsigned flags = NAPI_F_END_ON_RESCHED; 6923 6924 if (prefer_busy_poll) 6925 flags |= NAPI_F_PREFER_BUSY_POLL; 6926 6927 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6928 } 6929 6930 void napi_busy_loop(unsigned int napi_id, 6931 bool (*loop_end)(void *, unsigned long), 6932 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6933 { 6934 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6935 6936 rcu_read_lock(); 6937 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6938 rcu_read_unlock(); 6939 } 6940 EXPORT_SYMBOL(napi_busy_loop); 6941 6942 void napi_suspend_irqs(unsigned int napi_id) 6943 { 6944 struct napi_struct *napi; 6945 6946 rcu_read_lock(); 6947 napi = napi_by_id(napi_id); 6948 if (napi) { 6949 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6950 6951 if (timeout) 6952 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6953 HRTIMER_MODE_REL_PINNED); 6954 } 6955 rcu_read_unlock(); 6956 } 6957 6958 void napi_resume_irqs(unsigned int napi_id) 6959 { 6960 struct napi_struct *napi; 6961 6962 rcu_read_lock(); 6963 napi = napi_by_id(napi_id); 6964 if (napi) { 6965 /* If irq_suspend_timeout is set to 0 between the call to 6966 * napi_suspend_irqs and now, the original value still 6967 * determines the safety timeout as intended and napi_watchdog 6968 * will resume irq processing. 6969 */ 6970 if (napi_get_irq_suspend_timeout(napi)) { 6971 local_bh_disable(); 6972 napi_schedule(napi); 6973 local_bh_enable(); 6974 } 6975 } 6976 rcu_read_unlock(); 6977 } 6978 6979 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6980 6981 static void __napi_hash_add_with_id(struct napi_struct *napi, 6982 unsigned int napi_id) 6983 { 6984 napi->gro.cached_napi_id = napi_id; 6985 6986 WRITE_ONCE(napi->napi_id, napi_id); 6987 hlist_add_head_rcu(&napi->napi_hash_node, 6988 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6989 } 6990 6991 static void napi_hash_add_with_id(struct napi_struct *napi, 6992 unsigned int napi_id) 6993 { 6994 unsigned long flags; 6995 6996 spin_lock_irqsave(&napi_hash_lock, flags); 6997 WARN_ON_ONCE(napi_by_id(napi_id)); 6998 __napi_hash_add_with_id(napi, napi_id); 6999 spin_unlock_irqrestore(&napi_hash_lock, flags); 7000 } 7001 7002 static void napi_hash_add(struct napi_struct *napi) 7003 { 7004 unsigned long flags; 7005 7006 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 7007 return; 7008 7009 spin_lock_irqsave(&napi_hash_lock, flags); 7010 7011 /* 0..NR_CPUS range is reserved for sender_cpu use */ 7012 do { 7013 if (unlikely(!napi_id_valid(++napi_gen_id))) 7014 napi_gen_id = MIN_NAPI_ID; 7015 } while (napi_by_id(napi_gen_id)); 7016 7017 __napi_hash_add_with_id(napi, napi_gen_id); 7018 7019 spin_unlock_irqrestore(&napi_hash_lock, flags); 7020 } 7021 7022 /* Warning : caller is responsible to make sure rcu grace period 7023 * is respected before freeing memory containing @napi 7024 */ 7025 static void napi_hash_del(struct napi_struct *napi) 7026 { 7027 unsigned long flags; 7028 7029 spin_lock_irqsave(&napi_hash_lock, flags); 7030 7031 hlist_del_init_rcu(&napi->napi_hash_node); 7032 7033 spin_unlock_irqrestore(&napi_hash_lock, flags); 7034 } 7035 7036 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 7037 { 7038 struct napi_struct *napi; 7039 7040 napi = container_of(timer, struct napi_struct, timer); 7041 7042 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 7043 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 7044 */ 7045 if (!napi_disable_pending(napi) && 7046 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 7047 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 7048 __napi_schedule_irqoff(napi); 7049 } 7050 7051 return HRTIMER_NORESTART; 7052 } 7053 7054 static void napi_stop_kthread(struct napi_struct *napi) 7055 { 7056 unsigned long val, new; 7057 7058 /* Wait until the napi STATE_THREADED is unset. */ 7059 while (true) { 7060 val = READ_ONCE(napi->state); 7061 7062 /* If napi kthread own this napi or the napi is idle, 7063 * STATE_THREADED can be unset here. 7064 */ 7065 if ((val & NAPIF_STATE_SCHED_THREADED) || 7066 !(val & NAPIF_STATE_SCHED)) { 7067 new = val & (~NAPIF_STATE_THREADED); 7068 } else { 7069 msleep(20); 7070 continue; 7071 } 7072 7073 if (try_cmpxchg(&napi->state, &val, new)) 7074 break; 7075 } 7076 7077 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by 7078 * the kthread. 7079 */ 7080 while (true) { 7081 if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) 7082 break; 7083 7084 msleep(20); 7085 } 7086 7087 kthread_stop(napi->thread); 7088 napi->thread = NULL; 7089 } 7090 7091 int napi_set_threaded(struct napi_struct *napi, 7092 enum netdev_napi_threaded threaded) 7093 { 7094 if (threaded) { 7095 if (!napi->thread) { 7096 int err = napi_kthread_create(napi); 7097 7098 if (err) 7099 return err; 7100 } 7101 } 7102 7103 if (napi->config) 7104 napi->config->threaded = threaded; 7105 7106 /* Setting/unsetting threaded mode on a napi might not immediately 7107 * take effect, if the current napi instance is actively being 7108 * polled. In this case, the switch between threaded mode and 7109 * softirq mode will happen in the next round of napi_schedule(). 7110 * This should not cause hiccups/stalls to the live traffic. 7111 */ 7112 if (!threaded && napi->thread) { 7113 napi_stop_kthread(napi); 7114 } else { 7115 /* Make sure kthread is created before THREADED bit is set. */ 7116 smp_mb__before_atomic(); 7117 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 7118 } 7119 7120 return 0; 7121 } 7122 7123 int netif_set_threaded(struct net_device *dev, 7124 enum netdev_napi_threaded threaded) 7125 { 7126 struct napi_struct *napi; 7127 int i, err = 0; 7128 7129 netdev_assert_locked_or_invisible(dev); 7130 7131 if (threaded) { 7132 list_for_each_entry(napi, &dev->napi_list, dev_list) { 7133 if (!napi->thread) { 7134 err = napi_kthread_create(napi); 7135 if (err) { 7136 threaded = NETDEV_NAPI_THREADED_DISABLED; 7137 break; 7138 } 7139 } 7140 } 7141 } 7142 7143 WRITE_ONCE(dev->threaded, threaded); 7144 7145 /* The error should not occur as the kthreads are already created. */ 7146 list_for_each_entry(napi, &dev->napi_list, dev_list) 7147 WARN_ON_ONCE(napi_set_threaded(napi, threaded)); 7148 7149 /* Override the config for all NAPIs even if currently not listed */ 7150 for (i = 0; i < dev->num_napi_configs; i++) 7151 dev->napi_config[i].threaded = threaded; 7152 7153 return err; 7154 } 7155 7156 /** 7157 * netif_threaded_enable() - enable threaded NAPIs 7158 * @dev: net_device instance 7159 * 7160 * Enable threaded mode for the NAPI instances of the device. This may be useful 7161 * for devices where multiple NAPI instances get scheduled by a single 7162 * interrupt. Threaded NAPI allows moving the NAPI processing to cores other 7163 * than the core where IRQ is mapped. 7164 * 7165 * This function should be called before @dev is registered. 7166 */ 7167 void netif_threaded_enable(struct net_device *dev) 7168 { 7169 WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED)); 7170 } 7171 EXPORT_SYMBOL(netif_threaded_enable); 7172 7173 /** 7174 * netif_queue_set_napi - Associate queue with the napi 7175 * @dev: device to which NAPI and queue belong 7176 * @queue_index: Index of queue 7177 * @type: queue type as RX or TX 7178 * @napi: NAPI context, pass NULL to clear previously set NAPI 7179 * 7180 * Set queue with its corresponding napi context. This should be done after 7181 * registering the NAPI handler for the queue-vector and the queues have been 7182 * mapped to the corresponding interrupt vector. 7183 */ 7184 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 7185 enum netdev_queue_type type, struct napi_struct *napi) 7186 { 7187 struct netdev_rx_queue *rxq; 7188 struct netdev_queue *txq; 7189 7190 if (WARN_ON_ONCE(napi && !napi->dev)) 7191 return; 7192 netdev_ops_assert_locked_or_invisible(dev); 7193 7194 switch (type) { 7195 case NETDEV_QUEUE_TYPE_RX: 7196 rxq = __netif_get_rx_queue(dev, queue_index); 7197 rxq->napi = napi; 7198 return; 7199 case NETDEV_QUEUE_TYPE_TX: 7200 txq = netdev_get_tx_queue(dev, queue_index); 7201 txq->napi = napi; 7202 return; 7203 default: 7204 return; 7205 } 7206 } 7207 EXPORT_SYMBOL(netif_queue_set_napi); 7208 7209 static void 7210 netif_napi_irq_notify(struct irq_affinity_notify *notify, 7211 const cpumask_t *mask) 7212 { 7213 struct napi_struct *napi = 7214 container_of(notify, struct napi_struct, notify); 7215 #ifdef CONFIG_RFS_ACCEL 7216 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7217 int err; 7218 #endif 7219 7220 if (napi->config && napi->dev->irq_affinity_auto) 7221 cpumask_copy(&napi->config->affinity_mask, mask); 7222 7223 #ifdef CONFIG_RFS_ACCEL 7224 if (napi->dev->rx_cpu_rmap_auto) { 7225 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask); 7226 if (err) 7227 netdev_warn(napi->dev, "RMAP update failed (%d)\n", 7228 err); 7229 } 7230 #endif 7231 } 7232 7233 #ifdef CONFIG_RFS_ACCEL 7234 static void netif_napi_affinity_release(struct kref *ref) 7235 { 7236 struct napi_struct *napi = 7237 container_of(ref, struct napi_struct, notify.kref); 7238 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7239 7240 netdev_assert_locked(napi->dev); 7241 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, 7242 &napi->state)); 7243 7244 if (!napi->dev->rx_cpu_rmap_auto) 7245 return; 7246 rmap->obj[napi->napi_rmap_idx] = NULL; 7247 napi->napi_rmap_idx = -1; 7248 cpu_rmap_put(rmap); 7249 } 7250 7251 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7252 { 7253 if (dev->rx_cpu_rmap_auto) 7254 return 0; 7255 7256 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs); 7257 if (!dev->rx_cpu_rmap) 7258 return -ENOMEM; 7259 7260 dev->rx_cpu_rmap_auto = true; 7261 return 0; 7262 } 7263 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7264 7265 static void netif_del_cpu_rmap(struct net_device *dev) 7266 { 7267 struct cpu_rmap *rmap = dev->rx_cpu_rmap; 7268 7269 if (!dev->rx_cpu_rmap_auto) 7270 return; 7271 7272 /* Free the rmap */ 7273 cpu_rmap_put(rmap); 7274 dev->rx_cpu_rmap = NULL; 7275 dev->rx_cpu_rmap_auto = false; 7276 } 7277 7278 #else 7279 static void netif_napi_affinity_release(struct kref *ref) 7280 { 7281 } 7282 7283 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7284 { 7285 return 0; 7286 } 7287 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7288 7289 static void netif_del_cpu_rmap(struct net_device *dev) 7290 { 7291 } 7292 #endif 7293 7294 void netif_set_affinity_auto(struct net_device *dev) 7295 { 7296 unsigned int i, maxqs, numa; 7297 7298 maxqs = max(dev->num_tx_queues, dev->num_rx_queues); 7299 numa = dev_to_node(&dev->dev); 7300 7301 for (i = 0; i < maxqs; i++) 7302 cpumask_set_cpu(cpumask_local_spread(i, numa), 7303 &dev->napi_config[i].affinity_mask); 7304 7305 dev->irq_affinity_auto = true; 7306 } 7307 EXPORT_SYMBOL(netif_set_affinity_auto); 7308 7309 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) 7310 { 7311 int rc; 7312 7313 netdev_assert_locked_or_invisible(napi->dev); 7314 7315 if (napi->irq == irq) 7316 return; 7317 7318 /* Remove existing resources */ 7319 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7320 irq_set_affinity_notifier(napi->irq, NULL); 7321 7322 napi->irq = irq; 7323 if (irq < 0 || 7324 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) 7325 return; 7326 7327 /* Abort for buggy drivers */ 7328 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) 7329 return; 7330 7331 #ifdef CONFIG_RFS_ACCEL 7332 if (napi->dev->rx_cpu_rmap_auto) { 7333 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi); 7334 if (rc < 0) 7335 return; 7336 7337 cpu_rmap_get(napi->dev->rx_cpu_rmap); 7338 napi->napi_rmap_idx = rc; 7339 } 7340 #endif 7341 7342 /* Use core IRQ notifier */ 7343 napi->notify.notify = netif_napi_irq_notify; 7344 napi->notify.release = netif_napi_affinity_release; 7345 rc = irq_set_affinity_notifier(irq, &napi->notify); 7346 if (rc) { 7347 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n", 7348 rc); 7349 goto put_rmap; 7350 } 7351 7352 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state); 7353 return; 7354 7355 put_rmap: 7356 #ifdef CONFIG_RFS_ACCEL 7357 if (napi->dev->rx_cpu_rmap_auto) { 7358 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; 7359 cpu_rmap_put(napi->dev->rx_cpu_rmap); 7360 napi->napi_rmap_idx = -1; 7361 } 7362 #endif 7363 napi->notify.notify = NULL; 7364 napi->notify.release = NULL; 7365 } 7366 EXPORT_SYMBOL(netif_napi_set_irq_locked); 7367 7368 static void napi_restore_config(struct napi_struct *n) 7369 { 7370 n->defer_hard_irqs = n->config->defer_hard_irqs; 7371 n->gro_flush_timeout = n->config->gro_flush_timeout; 7372 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 7373 7374 if (n->dev->irq_affinity_auto && 7375 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) 7376 irq_set_affinity(n->irq, &n->config->affinity_mask); 7377 7378 /* a NAPI ID might be stored in the config, if so use it. if not, use 7379 * napi_hash_add to generate one for us. 7380 */ 7381 if (n->config->napi_id) { 7382 napi_hash_add_with_id(n, n->config->napi_id); 7383 } else { 7384 napi_hash_add(n); 7385 n->config->napi_id = n->napi_id; 7386 } 7387 7388 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded)); 7389 } 7390 7391 static void napi_save_config(struct napi_struct *n) 7392 { 7393 n->config->defer_hard_irqs = n->defer_hard_irqs; 7394 n->config->gro_flush_timeout = n->gro_flush_timeout; 7395 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 7396 napi_hash_del(n); 7397 } 7398 7399 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will 7400 * inherit an existing ID try to insert it at the right position. 7401 */ 7402 static void 7403 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) 7404 { 7405 unsigned int new_id, pos_id; 7406 struct list_head *higher; 7407 struct napi_struct *pos; 7408 7409 new_id = UINT_MAX; 7410 if (napi->config && napi->config->napi_id) 7411 new_id = napi->config->napi_id; 7412 7413 higher = &dev->napi_list; 7414 list_for_each_entry(pos, &dev->napi_list, dev_list) { 7415 if (napi_id_valid(pos->napi_id)) 7416 pos_id = pos->napi_id; 7417 else if (pos->config) 7418 pos_id = pos->config->napi_id; 7419 else 7420 pos_id = UINT_MAX; 7421 7422 if (pos_id <= new_id) 7423 break; 7424 higher = &pos->dev_list; 7425 } 7426 list_add_rcu(&napi->dev_list, higher); /* adds after higher */ 7427 } 7428 7429 /* Double check that napi_get_frags() allocates skbs with 7430 * skb->head being backed by slab, not a page fragment. 7431 * This is to make sure bug fixed in 3226b158e67c 7432 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 7433 * does not accidentally come back. 7434 */ 7435 static void napi_get_frags_check(struct napi_struct *napi) 7436 { 7437 struct sk_buff *skb; 7438 7439 local_bh_disable(); 7440 skb = napi_get_frags(napi); 7441 WARN_ON_ONCE(skb && skb->head_frag); 7442 napi_free_frags(napi); 7443 local_bh_enable(); 7444 } 7445 7446 void netif_napi_add_weight_locked(struct net_device *dev, 7447 struct napi_struct *napi, 7448 int (*poll)(struct napi_struct *, int), 7449 int weight) 7450 { 7451 netdev_assert_locked(dev); 7452 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 7453 return; 7454 7455 INIT_LIST_HEAD(&napi->poll_list); 7456 INIT_HLIST_NODE(&napi->napi_hash_node); 7457 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 7458 gro_init(&napi->gro); 7459 napi->skb = NULL; 7460 napi->poll = poll; 7461 if (weight > NAPI_POLL_WEIGHT) 7462 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 7463 weight); 7464 napi->weight = weight; 7465 napi->dev = dev; 7466 #ifdef CONFIG_NETPOLL 7467 napi->poll_owner = -1; 7468 #endif 7469 napi->list_owner = -1; 7470 set_bit(NAPI_STATE_SCHED, &napi->state); 7471 set_bit(NAPI_STATE_NPSVC, &napi->state); 7472 netif_napi_dev_list_add(dev, napi); 7473 7474 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 7475 * configuration will be loaded in napi_enable 7476 */ 7477 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 7478 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 7479 7480 napi_get_frags_check(napi); 7481 /* Create kthread for this napi if dev->threaded is set. 7482 * Clear dev->threaded if kthread creation failed so that 7483 * threaded mode will not be enabled in napi_enable(). 7484 */ 7485 if (napi_get_threaded_config(dev, napi)) 7486 if (napi_kthread_create(napi)) 7487 dev->threaded = NETDEV_NAPI_THREADED_DISABLED; 7488 netif_napi_set_irq_locked(napi, -1); 7489 } 7490 EXPORT_SYMBOL(netif_napi_add_weight_locked); 7491 7492 void napi_disable_locked(struct napi_struct *n) 7493 { 7494 unsigned long val, new; 7495 7496 might_sleep(); 7497 netdev_assert_locked(n->dev); 7498 7499 set_bit(NAPI_STATE_DISABLE, &n->state); 7500 7501 val = READ_ONCE(n->state); 7502 do { 7503 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 7504 usleep_range(20, 200); 7505 val = READ_ONCE(n->state); 7506 } 7507 7508 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 7509 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 7510 } while (!try_cmpxchg(&n->state, &val, new)); 7511 7512 hrtimer_cancel(&n->timer); 7513 7514 if (n->config) 7515 napi_save_config(n); 7516 else 7517 napi_hash_del(n); 7518 7519 clear_bit(NAPI_STATE_DISABLE, &n->state); 7520 } 7521 EXPORT_SYMBOL(napi_disable_locked); 7522 7523 /** 7524 * napi_disable() - prevent NAPI from scheduling 7525 * @n: NAPI context 7526 * 7527 * Stop NAPI from being scheduled on this context. 7528 * Waits till any outstanding processing completes. 7529 * Takes netdev_lock() for associated net_device. 7530 */ 7531 void napi_disable(struct napi_struct *n) 7532 { 7533 netdev_lock(n->dev); 7534 napi_disable_locked(n); 7535 netdev_unlock(n->dev); 7536 } 7537 EXPORT_SYMBOL(napi_disable); 7538 7539 void napi_enable_locked(struct napi_struct *n) 7540 { 7541 unsigned long new, val = READ_ONCE(n->state); 7542 7543 if (n->config) 7544 napi_restore_config(n); 7545 else 7546 napi_hash_add(n); 7547 7548 do { 7549 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 7550 7551 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 7552 if (n->dev->threaded && n->thread) 7553 new |= NAPIF_STATE_THREADED; 7554 } while (!try_cmpxchg(&n->state, &val, new)); 7555 } 7556 EXPORT_SYMBOL(napi_enable_locked); 7557 7558 /** 7559 * napi_enable() - enable NAPI scheduling 7560 * @n: NAPI context 7561 * 7562 * Enable scheduling of a NAPI instance. 7563 * Must be paired with napi_disable(). 7564 * Takes netdev_lock() for associated net_device. 7565 */ 7566 void napi_enable(struct napi_struct *n) 7567 { 7568 netdev_lock(n->dev); 7569 napi_enable_locked(n); 7570 netdev_unlock(n->dev); 7571 } 7572 EXPORT_SYMBOL(napi_enable); 7573 7574 /* Must be called in process context */ 7575 void __netif_napi_del_locked(struct napi_struct *napi) 7576 { 7577 netdev_assert_locked(napi->dev); 7578 7579 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7580 return; 7581 7582 /* Make sure NAPI is disabled (or was never enabled). */ 7583 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); 7584 7585 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7586 irq_set_affinity_notifier(napi->irq, NULL); 7587 7588 if (napi->config) { 7589 napi->index = -1; 7590 napi->config = NULL; 7591 } 7592 7593 list_del_rcu(&napi->dev_list); 7594 napi_free_frags(napi); 7595 7596 gro_cleanup(&napi->gro); 7597 7598 if (napi->thread) { 7599 kthread_stop(napi->thread); 7600 napi->thread = NULL; 7601 } 7602 } 7603 EXPORT_SYMBOL(__netif_napi_del_locked); 7604 7605 static int __napi_poll(struct napi_struct *n, bool *repoll) 7606 { 7607 int work, weight; 7608 7609 weight = n->weight; 7610 7611 /* This NAPI_STATE_SCHED test is for avoiding a race 7612 * with netpoll's poll_napi(). Only the entity which 7613 * obtains the lock and sees NAPI_STATE_SCHED set will 7614 * actually make the ->poll() call. Therefore we avoid 7615 * accidentally calling ->poll() when NAPI is not scheduled. 7616 */ 7617 work = 0; 7618 if (napi_is_scheduled(n)) { 7619 work = n->poll(n, weight); 7620 trace_napi_poll(n, work, weight); 7621 7622 xdp_do_check_flushed(n); 7623 } 7624 7625 if (unlikely(work > weight)) 7626 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7627 n->poll, work, weight); 7628 7629 if (likely(work < weight)) 7630 return work; 7631 7632 /* Drivers must not modify the NAPI state if they 7633 * consume the entire weight. In such cases this code 7634 * still "owns" the NAPI instance and therefore can 7635 * move the instance around on the list at-will. 7636 */ 7637 if (unlikely(napi_disable_pending(n))) { 7638 napi_complete(n); 7639 return work; 7640 } 7641 7642 /* The NAPI context has more processing work, but busy-polling 7643 * is preferred. Exit early. 7644 */ 7645 if (napi_prefer_busy_poll(n)) { 7646 if (napi_complete_done(n, work)) { 7647 /* If timeout is not set, we need to make sure 7648 * that the NAPI is re-scheduled. 7649 */ 7650 napi_schedule(n); 7651 } 7652 return work; 7653 } 7654 7655 /* Flush too old packets. If HZ < 1000, flush all packets */ 7656 gro_flush_normal(&n->gro, HZ >= 1000); 7657 7658 /* Some drivers may have called napi_schedule 7659 * prior to exhausting their budget. 7660 */ 7661 if (unlikely(!list_empty(&n->poll_list))) { 7662 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7663 n->dev ? n->dev->name : "backlog"); 7664 return work; 7665 } 7666 7667 *repoll = true; 7668 7669 return work; 7670 } 7671 7672 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7673 { 7674 bool do_repoll = false; 7675 void *have; 7676 int work; 7677 7678 list_del_init(&n->poll_list); 7679 7680 have = netpoll_poll_lock(n); 7681 7682 work = __napi_poll(n, &do_repoll); 7683 7684 if (do_repoll) { 7685 #if defined(CONFIG_DEBUG_NET) 7686 if (unlikely(!napi_is_scheduled(n))) 7687 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n", 7688 n->dev->name, n->poll); 7689 #endif 7690 list_add_tail(&n->poll_list, repoll); 7691 } 7692 netpoll_poll_unlock(have); 7693 7694 return work; 7695 } 7696 7697 static int napi_thread_wait(struct napi_struct *napi) 7698 { 7699 set_current_state(TASK_INTERRUPTIBLE); 7700 7701 while (!kthread_should_stop()) { 7702 /* Testing SCHED_THREADED bit here to make sure the current 7703 * kthread owns this napi and could poll on this napi. 7704 * Testing SCHED bit is not enough because SCHED bit might be 7705 * set by some other busy poll thread or by napi_disable(). 7706 */ 7707 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 7708 WARN_ON(!list_empty(&napi->poll_list)); 7709 __set_current_state(TASK_RUNNING); 7710 return 0; 7711 } 7712 7713 schedule(); 7714 set_current_state(TASK_INTERRUPTIBLE); 7715 } 7716 __set_current_state(TASK_RUNNING); 7717 7718 return -1; 7719 } 7720 7721 static void napi_threaded_poll_loop(struct napi_struct *napi) 7722 { 7723 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7724 struct softnet_data *sd; 7725 unsigned long last_qs = jiffies; 7726 7727 for (;;) { 7728 bool repoll = false; 7729 void *have; 7730 7731 local_bh_disable(); 7732 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7733 7734 sd = this_cpu_ptr(&softnet_data); 7735 sd->in_napi_threaded_poll = true; 7736 7737 have = netpoll_poll_lock(napi); 7738 __napi_poll(napi, &repoll); 7739 netpoll_poll_unlock(have); 7740 7741 sd->in_napi_threaded_poll = false; 7742 barrier(); 7743 7744 if (sd_has_rps_ipi_waiting(sd)) { 7745 local_irq_disable(); 7746 net_rps_action_and_irq_enable(sd); 7747 } 7748 skb_defer_free_flush(); 7749 bpf_net_ctx_clear(bpf_net_ctx); 7750 local_bh_enable(); 7751 7752 if (!repoll) 7753 break; 7754 7755 rcu_softirq_qs_periodic(last_qs); 7756 cond_resched(); 7757 } 7758 } 7759 7760 static int napi_threaded_poll(void *data) 7761 { 7762 struct napi_struct *napi = data; 7763 7764 while (!napi_thread_wait(napi)) 7765 napi_threaded_poll_loop(napi); 7766 7767 return 0; 7768 } 7769 7770 static __latent_entropy void net_rx_action(void) 7771 { 7772 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7773 unsigned long time_limit = jiffies + 7774 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7775 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7776 int budget = READ_ONCE(net_hotdata.netdev_budget); 7777 LIST_HEAD(list); 7778 LIST_HEAD(repoll); 7779 7780 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7781 start: 7782 sd->in_net_rx_action = true; 7783 local_irq_disable(); 7784 list_splice_init(&sd->poll_list, &list); 7785 local_irq_enable(); 7786 7787 for (;;) { 7788 struct napi_struct *n; 7789 7790 skb_defer_free_flush(); 7791 7792 if (list_empty(&list)) { 7793 if (list_empty(&repoll)) { 7794 sd->in_net_rx_action = false; 7795 barrier(); 7796 /* We need to check if ____napi_schedule() 7797 * had refilled poll_list while 7798 * sd->in_net_rx_action was true. 7799 */ 7800 if (!list_empty(&sd->poll_list)) 7801 goto start; 7802 if (!sd_has_rps_ipi_waiting(sd)) 7803 goto end; 7804 } 7805 break; 7806 } 7807 7808 n = list_first_entry(&list, struct napi_struct, poll_list); 7809 budget -= napi_poll(n, &repoll); 7810 7811 /* If softirq window is exhausted then punt. 7812 * Allow this to run for 2 jiffies since which will allow 7813 * an average latency of 1.5/HZ. 7814 */ 7815 if (unlikely(budget <= 0 || 7816 time_after_eq(jiffies, time_limit))) { 7817 /* Pairs with READ_ONCE() in softnet_seq_show() */ 7818 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); 7819 break; 7820 } 7821 } 7822 7823 local_irq_disable(); 7824 7825 list_splice_tail_init(&sd->poll_list, &list); 7826 list_splice_tail(&repoll, &list); 7827 list_splice(&list, &sd->poll_list); 7828 if (!list_empty(&sd->poll_list)) 7829 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7830 else 7831 sd->in_net_rx_action = false; 7832 7833 net_rps_action_and_irq_enable(sd); 7834 end: 7835 bpf_net_ctx_clear(bpf_net_ctx); 7836 } 7837 7838 struct netdev_adjacent { 7839 struct net_device *dev; 7840 netdevice_tracker dev_tracker; 7841 7842 /* upper master flag, there can only be one master device per list */ 7843 bool master; 7844 7845 /* lookup ignore flag */ 7846 bool ignore; 7847 7848 /* counter for the number of times this device was added to us */ 7849 u16 ref_nr; 7850 7851 /* private field for the users */ 7852 void *private; 7853 7854 struct list_head list; 7855 struct rcu_head rcu; 7856 }; 7857 7858 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7859 struct list_head *adj_list) 7860 { 7861 struct netdev_adjacent *adj; 7862 7863 list_for_each_entry(adj, adj_list, list) { 7864 if (adj->dev == adj_dev) 7865 return adj; 7866 } 7867 return NULL; 7868 } 7869 7870 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7871 struct netdev_nested_priv *priv) 7872 { 7873 struct net_device *dev = (struct net_device *)priv->data; 7874 7875 return upper_dev == dev; 7876 } 7877 7878 /** 7879 * netdev_has_upper_dev - Check if device is linked to an upper device 7880 * @dev: device 7881 * @upper_dev: upper device to check 7882 * 7883 * Find out if a device is linked to specified upper device and return true 7884 * in case it is. Note that this checks only immediate upper device, 7885 * not through a complete stack of devices. The caller must hold the RTNL lock. 7886 */ 7887 bool netdev_has_upper_dev(struct net_device *dev, 7888 struct net_device *upper_dev) 7889 { 7890 struct netdev_nested_priv priv = { 7891 .data = (void *)upper_dev, 7892 }; 7893 7894 ASSERT_RTNL(); 7895 7896 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7897 &priv); 7898 } 7899 EXPORT_SYMBOL(netdev_has_upper_dev); 7900 7901 /** 7902 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7903 * @dev: device 7904 * @upper_dev: upper device to check 7905 * 7906 * Find out if a device is linked to specified upper device and return true 7907 * in case it is. Note that this checks the entire upper device chain. 7908 * The caller must hold rcu lock. 7909 */ 7910 7911 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7912 struct net_device *upper_dev) 7913 { 7914 struct netdev_nested_priv priv = { 7915 .data = (void *)upper_dev, 7916 }; 7917 7918 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7919 &priv); 7920 } 7921 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7922 7923 /** 7924 * netdev_has_any_upper_dev - Check if device is linked to some device 7925 * @dev: device 7926 * 7927 * Find out if a device is linked to an upper device and return true in case 7928 * it is. The caller must hold the RTNL lock. 7929 */ 7930 bool netdev_has_any_upper_dev(struct net_device *dev) 7931 { 7932 ASSERT_RTNL(); 7933 7934 return !list_empty(&dev->adj_list.upper); 7935 } 7936 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7937 7938 /** 7939 * netdev_master_upper_dev_get - Get master upper device 7940 * @dev: device 7941 * 7942 * Find a master upper device and return pointer to it or NULL in case 7943 * it's not there. The caller must hold the RTNL lock. 7944 */ 7945 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7946 { 7947 struct netdev_adjacent *upper; 7948 7949 ASSERT_RTNL(); 7950 7951 if (list_empty(&dev->adj_list.upper)) 7952 return NULL; 7953 7954 upper = list_first_entry(&dev->adj_list.upper, 7955 struct netdev_adjacent, list); 7956 if (likely(upper->master)) 7957 return upper->dev; 7958 return NULL; 7959 } 7960 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7961 7962 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7963 { 7964 struct netdev_adjacent *upper; 7965 7966 ASSERT_RTNL(); 7967 7968 if (list_empty(&dev->adj_list.upper)) 7969 return NULL; 7970 7971 upper = list_first_entry(&dev->adj_list.upper, 7972 struct netdev_adjacent, list); 7973 if (likely(upper->master) && !upper->ignore) 7974 return upper->dev; 7975 return NULL; 7976 } 7977 7978 /** 7979 * netdev_has_any_lower_dev - Check if device is linked to some device 7980 * @dev: device 7981 * 7982 * Find out if a device is linked to a lower device and return true in case 7983 * it is. The caller must hold the RTNL lock. 7984 */ 7985 static bool netdev_has_any_lower_dev(struct net_device *dev) 7986 { 7987 ASSERT_RTNL(); 7988 7989 return !list_empty(&dev->adj_list.lower); 7990 } 7991 7992 void *netdev_adjacent_get_private(struct list_head *adj_list) 7993 { 7994 struct netdev_adjacent *adj; 7995 7996 adj = list_entry(adj_list, struct netdev_adjacent, list); 7997 7998 return adj->private; 7999 } 8000 EXPORT_SYMBOL(netdev_adjacent_get_private); 8001 8002 /** 8003 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 8004 * @dev: device 8005 * @iter: list_head ** of the current position 8006 * 8007 * Gets the next device from the dev's upper list, starting from iter 8008 * position. The caller must hold RCU read lock. 8009 */ 8010 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 8011 struct list_head **iter) 8012 { 8013 struct netdev_adjacent *upper; 8014 8015 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 8016 8017 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8018 8019 if (&upper->list == &dev->adj_list.upper) 8020 return NULL; 8021 8022 *iter = &upper->list; 8023 8024 return upper->dev; 8025 } 8026 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 8027 8028 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 8029 struct list_head **iter, 8030 bool *ignore) 8031 { 8032 struct netdev_adjacent *upper; 8033 8034 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 8035 8036 if (&upper->list == &dev->adj_list.upper) 8037 return NULL; 8038 8039 *iter = &upper->list; 8040 *ignore = upper->ignore; 8041 8042 return upper->dev; 8043 } 8044 8045 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 8046 struct list_head **iter) 8047 { 8048 struct netdev_adjacent *upper; 8049 8050 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 8051 8052 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8053 8054 if (&upper->list == &dev->adj_list.upper) 8055 return NULL; 8056 8057 *iter = &upper->list; 8058 8059 return upper->dev; 8060 } 8061 8062 static int __netdev_walk_all_upper_dev(struct net_device *dev, 8063 int (*fn)(struct net_device *dev, 8064 struct netdev_nested_priv *priv), 8065 struct netdev_nested_priv *priv) 8066 { 8067 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8068 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8069 int ret, cur = 0; 8070 bool ignore; 8071 8072 now = dev; 8073 iter = &dev->adj_list.upper; 8074 8075 while (1) { 8076 if (now != dev) { 8077 ret = fn(now, priv); 8078 if (ret) 8079 return ret; 8080 } 8081 8082 next = NULL; 8083 while (1) { 8084 udev = __netdev_next_upper_dev(now, &iter, &ignore); 8085 if (!udev) 8086 break; 8087 if (ignore) 8088 continue; 8089 8090 next = udev; 8091 niter = &udev->adj_list.upper; 8092 dev_stack[cur] = now; 8093 iter_stack[cur++] = iter; 8094 break; 8095 } 8096 8097 if (!next) { 8098 if (!cur) 8099 return 0; 8100 next = dev_stack[--cur]; 8101 niter = iter_stack[cur]; 8102 } 8103 8104 now = next; 8105 iter = niter; 8106 } 8107 8108 return 0; 8109 } 8110 8111 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 8112 int (*fn)(struct net_device *dev, 8113 struct netdev_nested_priv *priv), 8114 struct netdev_nested_priv *priv) 8115 { 8116 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8117 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8118 int ret, cur = 0; 8119 8120 now = dev; 8121 iter = &dev->adj_list.upper; 8122 8123 while (1) { 8124 if (now != dev) { 8125 ret = fn(now, priv); 8126 if (ret) 8127 return ret; 8128 } 8129 8130 next = NULL; 8131 while (1) { 8132 udev = netdev_next_upper_dev_rcu(now, &iter); 8133 if (!udev) 8134 break; 8135 8136 next = udev; 8137 niter = &udev->adj_list.upper; 8138 dev_stack[cur] = now; 8139 iter_stack[cur++] = iter; 8140 break; 8141 } 8142 8143 if (!next) { 8144 if (!cur) 8145 return 0; 8146 next = dev_stack[--cur]; 8147 niter = iter_stack[cur]; 8148 } 8149 8150 now = next; 8151 iter = niter; 8152 } 8153 8154 return 0; 8155 } 8156 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 8157 8158 static bool __netdev_has_upper_dev(struct net_device *dev, 8159 struct net_device *upper_dev) 8160 { 8161 struct netdev_nested_priv priv = { 8162 .flags = 0, 8163 .data = (void *)upper_dev, 8164 }; 8165 8166 ASSERT_RTNL(); 8167 8168 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 8169 &priv); 8170 } 8171 8172 /** 8173 * netdev_lower_get_next_private - Get the next ->private from the 8174 * lower neighbour list 8175 * @dev: device 8176 * @iter: list_head ** of the current position 8177 * 8178 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8179 * list, starting from iter position. The caller must hold either hold the 8180 * RTNL lock or its own locking that guarantees that the neighbour lower 8181 * list will remain unchanged. 8182 */ 8183 void *netdev_lower_get_next_private(struct net_device *dev, 8184 struct list_head **iter) 8185 { 8186 struct netdev_adjacent *lower; 8187 8188 lower = list_entry(*iter, struct netdev_adjacent, list); 8189 8190 if (&lower->list == &dev->adj_list.lower) 8191 return NULL; 8192 8193 *iter = lower->list.next; 8194 8195 return lower->private; 8196 } 8197 EXPORT_SYMBOL(netdev_lower_get_next_private); 8198 8199 /** 8200 * netdev_lower_get_next_private_rcu - Get the next ->private from the 8201 * lower neighbour list, RCU 8202 * variant 8203 * @dev: device 8204 * @iter: list_head ** of the current position 8205 * 8206 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8207 * list, starting from iter position. The caller must hold RCU read lock. 8208 */ 8209 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 8210 struct list_head **iter) 8211 { 8212 struct netdev_adjacent *lower; 8213 8214 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 8215 8216 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8217 8218 if (&lower->list == &dev->adj_list.lower) 8219 return NULL; 8220 8221 *iter = &lower->list; 8222 8223 return lower->private; 8224 } 8225 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 8226 8227 /** 8228 * netdev_lower_get_next - Get the next device from the lower neighbour 8229 * list 8230 * @dev: device 8231 * @iter: list_head ** of the current position 8232 * 8233 * Gets the next netdev_adjacent from the dev's lower neighbour 8234 * list, starting from iter position. The caller must hold RTNL lock or 8235 * its own locking that guarantees that the neighbour lower 8236 * list will remain unchanged. 8237 */ 8238 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 8239 { 8240 struct netdev_adjacent *lower; 8241 8242 lower = list_entry(*iter, struct netdev_adjacent, list); 8243 8244 if (&lower->list == &dev->adj_list.lower) 8245 return NULL; 8246 8247 *iter = lower->list.next; 8248 8249 return lower->dev; 8250 } 8251 EXPORT_SYMBOL(netdev_lower_get_next); 8252 8253 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 8254 struct list_head **iter) 8255 { 8256 struct netdev_adjacent *lower; 8257 8258 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8259 8260 if (&lower->list == &dev->adj_list.lower) 8261 return NULL; 8262 8263 *iter = &lower->list; 8264 8265 return lower->dev; 8266 } 8267 8268 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 8269 struct list_head **iter, 8270 bool *ignore) 8271 { 8272 struct netdev_adjacent *lower; 8273 8274 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8275 8276 if (&lower->list == &dev->adj_list.lower) 8277 return NULL; 8278 8279 *iter = &lower->list; 8280 *ignore = lower->ignore; 8281 8282 return lower->dev; 8283 } 8284 8285 int netdev_walk_all_lower_dev(struct net_device *dev, 8286 int (*fn)(struct net_device *dev, 8287 struct netdev_nested_priv *priv), 8288 struct netdev_nested_priv *priv) 8289 { 8290 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8291 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8292 int ret, cur = 0; 8293 8294 now = dev; 8295 iter = &dev->adj_list.lower; 8296 8297 while (1) { 8298 if (now != dev) { 8299 ret = fn(now, priv); 8300 if (ret) 8301 return ret; 8302 } 8303 8304 next = NULL; 8305 while (1) { 8306 ldev = netdev_next_lower_dev(now, &iter); 8307 if (!ldev) 8308 break; 8309 8310 next = ldev; 8311 niter = &ldev->adj_list.lower; 8312 dev_stack[cur] = now; 8313 iter_stack[cur++] = iter; 8314 break; 8315 } 8316 8317 if (!next) { 8318 if (!cur) 8319 return 0; 8320 next = dev_stack[--cur]; 8321 niter = iter_stack[cur]; 8322 } 8323 8324 now = next; 8325 iter = niter; 8326 } 8327 8328 return 0; 8329 } 8330 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 8331 8332 static int __netdev_walk_all_lower_dev(struct net_device *dev, 8333 int (*fn)(struct net_device *dev, 8334 struct netdev_nested_priv *priv), 8335 struct netdev_nested_priv *priv) 8336 { 8337 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8338 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8339 int ret, cur = 0; 8340 bool ignore; 8341 8342 now = dev; 8343 iter = &dev->adj_list.lower; 8344 8345 while (1) { 8346 if (now != dev) { 8347 ret = fn(now, priv); 8348 if (ret) 8349 return ret; 8350 } 8351 8352 next = NULL; 8353 while (1) { 8354 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 8355 if (!ldev) 8356 break; 8357 if (ignore) 8358 continue; 8359 8360 next = ldev; 8361 niter = &ldev->adj_list.lower; 8362 dev_stack[cur] = now; 8363 iter_stack[cur++] = iter; 8364 break; 8365 } 8366 8367 if (!next) { 8368 if (!cur) 8369 return 0; 8370 next = dev_stack[--cur]; 8371 niter = iter_stack[cur]; 8372 } 8373 8374 now = next; 8375 iter = niter; 8376 } 8377 8378 return 0; 8379 } 8380 8381 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 8382 struct list_head **iter) 8383 { 8384 struct netdev_adjacent *lower; 8385 8386 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8387 if (&lower->list == &dev->adj_list.lower) 8388 return NULL; 8389 8390 *iter = &lower->list; 8391 8392 return lower->dev; 8393 } 8394 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 8395 8396 static u8 __netdev_upper_depth(struct net_device *dev) 8397 { 8398 struct net_device *udev; 8399 struct list_head *iter; 8400 u8 max_depth = 0; 8401 bool ignore; 8402 8403 for (iter = &dev->adj_list.upper, 8404 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 8405 udev; 8406 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 8407 if (ignore) 8408 continue; 8409 if (max_depth < udev->upper_level) 8410 max_depth = udev->upper_level; 8411 } 8412 8413 return max_depth; 8414 } 8415 8416 static u8 __netdev_lower_depth(struct net_device *dev) 8417 { 8418 struct net_device *ldev; 8419 struct list_head *iter; 8420 u8 max_depth = 0; 8421 bool ignore; 8422 8423 for (iter = &dev->adj_list.lower, 8424 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 8425 ldev; 8426 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 8427 if (ignore) 8428 continue; 8429 if (max_depth < ldev->lower_level) 8430 max_depth = ldev->lower_level; 8431 } 8432 8433 return max_depth; 8434 } 8435 8436 static int __netdev_update_upper_level(struct net_device *dev, 8437 struct netdev_nested_priv *__unused) 8438 { 8439 dev->upper_level = __netdev_upper_depth(dev) + 1; 8440 return 0; 8441 } 8442 8443 #ifdef CONFIG_LOCKDEP 8444 static LIST_HEAD(net_unlink_list); 8445 8446 static void net_unlink_todo(struct net_device *dev) 8447 { 8448 if (list_empty(&dev->unlink_list)) 8449 list_add_tail(&dev->unlink_list, &net_unlink_list); 8450 } 8451 #endif 8452 8453 static int __netdev_update_lower_level(struct net_device *dev, 8454 struct netdev_nested_priv *priv) 8455 { 8456 dev->lower_level = __netdev_lower_depth(dev) + 1; 8457 8458 #ifdef CONFIG_LOCKDEP 8459 if (!priv) 8460 return 0; 8461 8462 if (priv->flags & NESTED_SYNC_IMM) 8463 dev->nested_level = dev->lower_level - 1; 8464 if (priv->flags & NESTED_SYNC_TODO) 8465 net_unlink_todo(dev); 8466 #endif 8467 return 0; 8468 } 8469 8470 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 8471 int (*fn)(struct net_device *dev, 8472 struct netdev_nested_priv *priv), 8473 struct netdev_nested_priv *priv) 8474 { 8475 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8476 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8477 int ret, cur = 0; 8478 8479 now = dev; 8480 iter = &dev->adj_list.lower; 8481 8482 while (1) { 8483 if (now != dev) { 8484 ret = fn(now, priv); 8485 if (ret) 8486 return ret; 8487 } 8488 8489 next = NULL; 8490 while (1) { 8491 ldev = netdev_next_lower_dev_rcu(now, &iter); 8492 if (!ldev) 8493 break; 8494 8495 next = ldev; 8496 niter = &ldev->adj_list.lower; 8497 dev_stack[cur] = now; 8498 iter_stack[cur++] = iter; 8499 break; 8500 } 8501 8502 if (!next) { 8503 if (!cur) 8504 return 0; 8505 next = dev_stack[--cur]; 8506 niter = iter_stack[cur]; 8507 } 8508 8509 now = next; 8510 iter = niter; 8511 } 8512 8513 return 0; 8514 } 8515 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 8516 8517 /** 8518 * netdev_lower_get_first_private_rcu - Get the first ->private from the 8519 * lower neighbour list, RCU 8520 * variant 8521 * @dev: device 8522 * 8523 * Gets the first netdev_adjacent->private from the dev's lower neighbour 8524 * list. The caller must hold RCU read lock. 8525 */ 8526 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 8527 { 8528 struct netdev_adjacent *lower; 8529 8530 lower = list_first_or_null_rcu(&dev->adj_list.lower, 8531 struct netdev_adjacent, list); 8532 if (lower) 8533 return lower->private; 8534 return NULL; 8535 } 8536 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 8537 8538 /** 8539 * netdev_master_upper_dev_get_rcu - Get master upper device 8540 * @dev: device 8541 * 8542 * Find a master upper device and return pointer to it or NULL in case 8543 * it's not there. The caller must hold the RCU read lock. 8544 */ 8545 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 8546 { 8547 struct netdev_adjacent *upper; 8548 8549 upper = list_first_or_null_rcu(&dev->adj_list.upper, 8550 struct netdev_adjacent, list); 8551 if (upper && likely(upper->master)) 8552 return upper->dev; 8553 return NULL; 8554 } 8555 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 8556 8557 static int netdev_adjacent_sysfs_add(struct net_device *dev, 8558 struct net_device *adj_dev, 8559 struct list_head *dev_list) 8560 { 8561 char linkname[IFNAMSIZ+7]; 8562 8563 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8564 "upper_%s" : "lower_%s", adj_dev->name); 8565 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 8566 linkname); 8567 } 8568 static void netdev_adjacent_sysfs_del(struct net_device *dev, 8569 char *name, 8570 struct list_head *dev_list) 8571 { 8572 char linkname[IFNAMSIZ+7]; 8573 8574 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8575 "upper_%s" : "lower_%s", name); 8576 sysfs_remove_link(&(dev->dev.kobj), linkname); 8577 } 8578 8579 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 8580 struct net_device *adj_dev, 8581 struct list_head *dev_list) 8582 { 8583 return (dev_list == &dev->adj_list.upper || 8584 dev_list == &dev->adj_list.lower) && 8585 net_eq(dev_net(dev), dev_net(adj_dev)); 8586 } 8587 8588 static int __netdev_adjacent_dev_insert(struct net_device *dev, 8589 struct net_device *adj_dev, 8590 struct list_head *dev_list, 8591 void *private, bool master) 8592 { 8593 struct netdev_adjacent *adj; 8594 int ret; 8595 8596 adj = __netdev_find_adj(adj_dev, dev_list); 8597 8598 if (adj) { 8599 adj->ref_nr += 1; 8600 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 8601 dev->name, adj_dev->name, adj->ref_nr); 8602 8603 return 0; 8604 } 8605 8606 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 8607 if (!adj) 8608 return -ENOMEM; 8609 8610 adj->dev = adj_dev; 8611 adj->master = master; 8612 adj->ref_nr = 1; 8613 adj->private = private; 8614 adj->ignore = false; 8615 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 8616 8617 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 8618 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 8619 8620 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 8621 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 8622 if (ret) 8623 goto free_adj; 8624 } 8625 8626 /* Ensure that master link is always the first item in list. */ 8627 if (master) { 8628 ret = sysfs_create_link(&(dev->dev.kobj), 8629 &(adj_dev->dev.kobj), "master"); 8630 if (ret) 8631 goto remove_symlinks; 8632 8633 list_add_rcu(&adj->list, dev_list); 8634 } else { 8635 list_add_tail_rcu(&adj->list, dev_list); 8636 } 8637 8638 return 0; 8639 8640 remove_symlinks: 8641 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8642 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8643 free_adj: 8644 netdev_put(adj_dev, &adj->dev_tracker); 8645 kfree(adj); 8646 8647 return ret; 8648 } 8649 8650 static void __netdev_adjacent_dev_remove(struct net_device *dev, 8651 struct net_device *adj_dev, 8652 u16 ref_nr, 8653 struct list_head *dev_list) 8654 { 8655 struct netdev_adjacent *adj; 8656 8657 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8658 dev->name, adj_dev->name, ref_nr); 8659 8660 adj = __netdev_find_adj(adj_dev, dev_list); 8661 8662 if (!adj) { 8663 pr_err("Adjacency does not exist for device %s from %s\n", 8664 dev->name, adj_dev->name); 8665 WARN_ON(1); 8666 return; 8667 } 8668 8669 if (adj->ref_nr > ref_nr) { 8670 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8671 dev->name, adj_dev->name, ref_nr, 8672 adj->ref_nr - ref_nr); 8673 adj->ref_nr -= ref_nr; 8674 return; 8675 } 8676 8677 if (adj->master) 8678 sysfs_remove_link(&(dev->dev.kobj), "master"); 8679 8680 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8681 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8682 8683 list_del_rcu(&adj->list); 8684 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8685 adj_dev->name, dev->name, adj_dev->name); 8686 netdev_put(adj_dev, &adj->dev_tracker); 8687 kfree_rcu(adj, rcu); 8688 } 8689 8690 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8691 struct net_device *upper_dev, 8692 struct list_head *up_list, 8693 struct list_head *down_list, 8694 void *private, bool master) 8695 { 8696 int ret; 8697 8698 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8699 private, master); 8700 if (ret) 8701 return ret; 8702 8703 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8704 private, false); 8705 if (ret) { 8706 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8707 return ret; 8708 } 8709 8710 return 0; 8711 } 8712 8713 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8714 struct net_device *upper_dev, 8715 u16 ref_nr, 8716 struct list_head *up_list, 8717 struct list_head *down_list) 8718 { 8719 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8720 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8721 } 8722 8723 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8724 struct net_device *upper_dev, 8725 void *private, bool master) 8726 { 8727 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8728 &dev->adj_list.upper, 8729 &upper_dev->adj_list.lower, 8730 private, master); 8731 } 8732 8733 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8734 struct net_device *upper_dev) 8735 { 8736 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8737 &dev->adj_list.upper, 8738 &upper_dev->adj_list.lower); 8739 } 8740 8741 static int __netdev_upper_dev_link(struct net_device *dev, 8742 struct net_device *upper_dev, bool master, 8743 void *upper_priv, void *upper_info, 8744 struct netdev_nested_priv *priv, 8745 struct netlink_ext_ack *extack) 8746 { 8747 struct netdev_notifier_changeupper_info changeupper_info = { 8748 .info = { 8749 .dev = dev, 8750 .extack = extack, 8751 }, 8752 .upper_dev = upper_dev, 8753 .master = master, 8754 .linking = true, 8755 .upper_info = upper_info, 8756 }; 8757 struct net_device *master_dev; 8758 int ret = 0; 8759 8760 ASSERT_RTNL(); 8761 8762 if (dev == upper_dev) 8763 return -EBUSY; 8764 8765 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8766 if (__netdev_has_upper_dev(upper_dev, dev)) 8767 return -EBUSY; 8768 8769 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8770 return -EMLINK; 8771 8772 if (!master) { 8773 if (__netdev_has_upper_dev(dev, upper_dev)) 8774 return -EEXIST; 8775 } else { 8776 master_dev = __netdev_master_upper_dev_get(dev); 8777 if (master_dev) 8778 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8779 } 8780 8781 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8782 &changeupper_info.info); 8783 ret = notifier_to_errno(ret); 8784 if (ret) 8785 return ret; 8786 8787 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8788 master); 8789 if (ret) 8790 return ret; 8791 8792 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8793 &changeupper_info.info); 8794 ret = notifier_to_errno(ret); 8795 if (ret) 8796 goto rollback; 8797 8798 __netdev_update_upper_level(dev, NULL); 8799 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8800 8801 __netdev_update_lower_level(upper_dev, priv); 8802 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8803 priv); 8804 8805 return 0; 8806 8807 rollback: 8808 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8809 8810 return ret; 8811 } 8812 8813 /** 8814 * netdev_upper_dev_link - Add a link to the upper device 8815 * @dev: device 8816 * @upper_dev: new upper device 8817 * @extack: netlink extended ack 8818 * 8819 * Adds a link to device which is upper to this one. The caller must hold 8820 * the RTNL lock. On a failure a negative errno code is returned. 8821 * On success the reference counts are adjusted and the function 8822 * returns zero. 8823 */ 8824 int netdev_upper_dev_link(struct net_device *dev, 8825 struct net_device *upper_dev, 8826 struct netlink_ext_ack *extack) 8827 { 8828 struct netdev_nested_priv priv = { 8829 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8830 .data = NULL, 8831 }; 8832 8833 return __netdev_upper_dev_link(dev, upper_dev, false, 8834 NULL, NULL, &priv, extack); 8835 } 8836 EXPORT_SYMBOL(netdev_upper_dev_link); 8837 8838 /** 8839 * netdev_master_upper_dev_link - Add a master link to the upper device 8840 * @dev: device 8841 * @upper_dev: new upper device 8842 * @upper_priv: upper device private 8843 * @upper_info: upper info to be passed down via notifier 8844 * @extack: netlink extended ack 8845 * 8846 * Adds a link to device which is upper to this one. In this case, only 8847 * one master upper device can be linked, although other non-master devices 8848 * might be linked as well. The caller must hold the RTNL lock. 8849 * On a failure a negative errno code is returned. On success the reference 8850 * counts are adjusted and the function returns zero. 8851 */ 8852 int netdev_master_upper_dev_link(struct net_device *dev, 8853 struct net_device *upper_dev, 8854 void *upper_priv, void *upper_info, 8855 struct netlink_ext_ack *extack) 8856 { 8857 struct netdev_nested_priv priv = { 8858 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8859 .data = NULL, 8860 }; 8861 8862 return __netdev_upper_dev_link(dev, upper_dev, true, 8863 upper_priv, upper_info, &priv, extack); 8864 } 8865 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8866 8867 static void __netdev_upper_dev_unlink(struct net_device *dev, 8868 struct net_device *upper_dev, 8869 struct netdev_nested_priv *priv) 8870 { 8871 struct netdev_notifier_changeupper_info changeupper_info = { 8872 .info = { 8873 .dev = dev, 8874 }, 8875 .upper_dev = upper_dev, 8876 .linking = false, 8877 }; 8878 8879 ASSERT_RTNL(); 8880 8881 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8882 8883 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8884 &changeupper_info.info); 8885 8886 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8887 8888 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8889 &changeupper_info.info); 8890 8891 __netdev_update_upper_level(dev, NULL); 8892 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8893 8894 __netdev_update_lower_level(upper_dev, priv); 8895 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8896 priv); 8897 } 8898 8899 /** 8900 * netdev_upper_dev_unlink - Removes a link to upper device 8901 * @dev: device 8902 * @upper_dev: new upper device 8903 * 8904 * Removes a link to device which is upper to this one. The caller must hold 8905 * the RTNL lock. 8906 */ 8907 void netdev_upper_dev_unlink(struct net_device *dev, 8908 struct net_device *upper_dev) 8909 { 8910 struct netdev_nested_priv priv = { 8911 .flags = NESTED_SYNC_TODO, 8912 .data = NULL, 8913 }; 8914 8915 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8916 } 8917 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8918 8919 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8920 struct net_device *lower_dev, 8921 bool val) 8922 { 8923 struct netdev_adjacent *adj; 8924 8925 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8926 if (adj) 8927 adj->ignore = val; 8928 8929 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8930 if (adj) 8931 adj->ignore = val; 8932 } 8933 8934 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8935 struct net_device *lower_dev) 8936 { 8937 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8938 } 8939 8940 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8941 struct net_device *lower_dev) 8942 { 8943 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8944 } 8945 8946 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8947 struct net_device *new_dev, 8948 struct net_device *dev, 8949 struct netlink_ext_ack *extack) 8950 { 8951 struct netdev_nested_priv priv = { 8952 .flags = 0, 8953 .data = NULL, 8954 }; 8955 int err; 8956 8957 if (!new_dev) 8958 return 0; 8959 8960 if (old_dev && new_dev != old_dev) 8961 netdev_adjacent_dev_disable(dev, old_dev); 8962 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8963 extack); 8964 if (err) { 8965 if (old_dev && new_dev != old_dev) 8966 netdev_adjacent_dev_enable(dev, old_dev); 8967 return err; 8968 } 8969 8970 return 0; 8971 } 8972 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8973 8974 void netdev_adjacent_change_commit(struct net_device *old_dev, 8975 struct net_device *new_dev, 8976 struct net_device *dev) 8977 { 8978 struct netdev_nested_priv priv = { 8979 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8980 .data = NULL, 8981 }; 8982 8983 if (!new_dev || !old_dev) 8984 return; 8985 8986 if (new_dev == old_dev) 8987 return; 8988 8989 netdev_adjacent_dev_enable(dev, old_dev); 8990 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8991 } 8992 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8993 8994 void netdev_adjacent_change_abort(struct net_device *old_dev, 8995 struct net_device *new_dev, 8996 struct net_device *dev) 8997 { 8998 struct netdev_nested_priv priv = { 8999 .flags = 0, 9000 .data = NULL, 9001 }; 9002 9003 if (!new_dev) 9004 return; 9005 9006 if (old_dev && new_dev != old_dev) 9007 netdev_adjacent_dev_enable(dev, old_dev); 9008 9009 __netdev_upper_dev_unlink(new_dev, dev, &priv); 9010 } 9011 EXPORT_SYMBOL(netdev_adjacent_change_abort); 9012 9013 /** 9014 * netdev_bonding_info_change - Dispatch event about slave change 9015 * @dev: device 9016 * @bonding_info: info to dispatch 9017 * 9018 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 9019 * The caller must hold the RTNL lock. 9020 */ 9021 void netdev_bonding_info_change(struct net_device *dev, 9022 struct netdev_bonding_info *bonding_info) 9023 { 9024 struct netdev_notifier_bonding_info info = { 9025 .info.dev = dev, 9026 }; 9027 9028 memcpy(&info.bonding_info, bonding_info, 9029 sizeof(struct netdev_bonding_info)); 9030 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 9031 &info.info); 9032 } 9033 EXPORT_SYMBOL(netdev_bonding_info_change); 9034 9035 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 9036 struct netlink_ext_ack *extack) 9037 { 9038 struct netdev_notifier_offload_xstats_info info = { 9039 .info.dev = dev, 9040 .info.extack = extack, 9041 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 9042 }; 9043 int err; 9044 int rc; 9045 9046 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 9047 GFP_KERNEL); 9048 if (!dev->offload_xstats_l3) 9049 return -ENOMEM; 9050 9051 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 9052 NETDEV_OFFLOAD_XSTATS_DISABLE, 9053 &info.info); 9054 err = notifier_to_errno(rc); 9055 if (err) 9056 goto free_stats; 9057 9058 return 0; 9059 9060 free_stats: 9061 kfree(dev->offload_xstats_l3); 9062 dev->offload_xstats_l3 = NULL; 9063 return err; 9064 } 9065 9066 int netdev_offload_xstats_enable(struct net_device *dev, 9067 enum netdev_offload_xstats_type type, 9068 struct netlink_ext_ack *extack) 9069 { 9070 ASSERT_RTNL(); 9071 9072 if (netdev_offload_xstats_enabled(dev, type)) 9073 return -EALREADY; 9074 9075 switch (type) { 9076 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9077 return netdev_offload_xstats_enable_l3(dev, extack); 9078 } 9079 9080 WARN_ON(1); 9081 return -EINVAL; 9082 } 9083 EXPORT_SYMBOL(netdev_offload_xstats_enable); 9084 9085 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 9086 { 9087 struct netdev_notifier_offload_xstats_info info = { 9088 .info.dev = dev, 9089 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 9090 }; 9091 9092 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 9093 &info.info); 9094 kfree(dev->offload_xstats_l3); 9095 dev->offload_xstats_l3 = NULL; 9096 } 9097 9098 int netdev_offload_xstats_disable(struct net_device *dev, 9099 enum netdev_offload_xstats_type type) 9100 { 9101 ASSERT_RTNL(); 9102 9103 if (!netdev_offload_xstats_enabled(dev, type)) 9104 return -EALREADY; 9105 9106 switch (type) { 9107 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9108 netdev_offload_xstats_disable_l3(dev); 9109 return 0; 9110 } 9111 9112 WARN_ON(1); 9113 return -EINVAL; 9114 } 9115 EXPORT_SYMBOL(netdev_offload_xstats_disable); 9116 9117 static void netdev_offload_xstats_disable_all(struct net_device *dev) 9118 { 9119 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 9120 } 9121 9122 static struct rtnl_hw_stats64 * 9123 netdev_offload_xstats_get_ptr(const struct net_device *dev, 9124 enum netdev_offload_xstats_type type) 9125 { 9126 switch (type) { 9127 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9128 return dev->offload_xstats_l3; 9129 } 9130 9131 WARN_ON(1); 9132 return NULL; 9133 } 9134 9135 bool netdev_offload_xstats_enabled(const struct net_device *dev, 9136 enum netdev_offload_xstats_type type) 9137 { 9138 ASSERT_RTNL(); 9139 9140 return netdev_offload_xstats_get_ptr(dev, type); 9141 } 9142 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 9143 9144 struct netdev_notifier_offload_xstats_ru { 9145 bool used; 9146 }; 9147 9148 struct netdev_notifier_offload_xstats_rd { 9149 struct rtnl_hw_stats64 stats; 9150 bool used; 9151 }; 9152 9153 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 9154 const struct rtnl_hw_stats64 *src) 9155 { 9156 dest->rx_packets += src->rx_packets; 9157 dest->tx_packets += src->tx_packets; 9158 dest->rx_bytes += src->rx_bytes; 9159 dest->tx_bytes += src->tx_bytes; 9160 dest->rx_errors += src->rx_errors; 9161 dest->tx_errors += src->tx_errors; 9162 dest->rx_dropped += src->rx_dropped; 9163 dest->tx_dropped += src->tx_dropped; 9164 dest->multicast += src->multicast; 9165 } 9166 9167 static int netdev_offload_xstats_get_used(struct net_device *dev, 9168 enum netdev_offload_xstats_type type, 9169 bool *p_used, 9170 struct netlink_ext_ack *extack) 9171 { 9172 struct netdev_notifier_offload_xstats_ru report_used = {}; 9173 struct netdev_notifier_offload_xstats_info info = { 9174 .info.dev = dev, 9175 .info.extack = extack, 9176 .type = type, 9177 .report_used = &report_used, 9178 }; 9179 int rc; 9180 9181 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 9182 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 9183 &info.info); 9184 *p_used = report_used.used; 9185 return notifier_to_errno(rc); 9186 } 9187 9188 static int netdev_offload_xstats_get_stats(struct net_device *dev, 9189 enum netdev_offload_xstats_type type, 9190 struct rtnl_hw_stats64 *p_stats, 9191 bool *p_used, 9192 struct netlink_ext_ack *extack) 9193 { 9194 struct netdev_notifier_offload_xstats_rd report_delta = {}; 9195 struct netdev_notifier_offload_xstats_info info = { 9196 .info.dev = dev, 9197 .info.extack = extack, 9198 .type = type, 9199 .report_delta = &report_delta, 9200 }; 9201 struct rtnl_hw_stats64 *stats; 9202 int rc; 9203 9204 stats = netdev_offload_xstats_get_ptr(dev, type); 9205 if (WARN_ON(!stats)) 9206 return -EINVAL; 9207 9208 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 9209 &info.info); 9210 9211 /* Cache whatever we got, even if there was an error, otherwise the 9212 * successful stats retrievals would get lost. 9213 */ 9214 netdev_hw_stats64_add(stats, &report_delta.stats); 9215 9216 if (p_stats) 9217 *p_stats = *stats; 9218 *p_used = report_delta.used; 9219 9220 return notifier_to_errno(rc); 9221 } 9222 9223 int netdev_offload_xstats_get(struct net_device *dev, 9224 enum netdev_offload_xstats_type type, 9225 struct rtnl_hw_stats64 *p_stats, bool *p_used, 9226 struct netlink_ext_ack *extack) 9227 { 9228 ASSERT_RTNL(); 9229 9230 if (p_stats) 9231 return netdev_offload_xstats_get_stats(dev, type, p_stats, 9232 p_used, extack); 9233 else 9234 return netdev_offload_xstats_get_used(dev, type, p_used, 9235 extack); 9236 } 9237 EXPORT_SYMBOL(netdev_offload_xstats_get); 9238 9239 void 9240 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 9241 const struct rtnl_hw_stats64 *stats) 9242 { 9243 report_delta->used = true; 9244 netdev_hw_stats64_add(&report_delta->stats, stats); 9245 } 9246 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 9247 9248 void 9249 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 9250 { 9251 report_used->used = true; 9252 } 9253 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 9254 9255 void netdev_offload_xstats_push_delta(struct net_device *dev, 9256 enum netdev_offload_xstats_type type, 9257 const struct rtnl_hw_stats64 *p_stats) 9258 { 9259 struct rtnl_hw_stats64 *stats; 9260 9261 ASSERT_RTNL(); 9262 9263 stats = netdev_offload_xstats_get_ptr(dev, type); 9264 if (WARN_ON(!stats)) 9265 return; 9266 9267 netdev_hw_stats64_add(stats, p_stats); 9268 } 9269 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 9270 9271 /** 9272 * netdev_get_xmit_slave - Get the xmit slave of master device 9273 * @dev: device 9274 * @skb: The packet 9275 * @all_slaves: assume all the slaves are active 9276 * 9277 * The reference counters are not incremented so the caller must be 9278 * careful with locks. The caller must hold RCU lock. 9279 * %NULL is returned if no slave is found. 9280 */ 9281 9282 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 9283 struct sk_buff *skb, 9284 bool all_slaves) 9285 { 9286 const struct net_device_ops *ops = dev->netdev_ops; 9287 9288 if (!ops->ndo_get_xmit_slave) 9289 return NULL; 9290 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 9291 } 9292 EXPORT_SYMBOL(netdev_get_xmit_slave); 9293 9294 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 9295 struct sock *sk) 9296 { 9297 const struct net_device_ops *ops = dev->netdev_ops; 9298 9299 if (!ops->ndo_sk_get_lower_dev) 9300 return NULL; 9301 return ops->ndo_sk_get_lower_dev(dev, sk); 9302 } 9303 9304 /** 9305 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 9306 * @dev: device 9307 * @sk: the socket 9308 * 9309 * %NULL is returned if no lower device is found. 9310 */ 9311 9312 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 9313 struct sock *sk) 9314 { 9315 struct net_device *lower; 9316 9317 lower = netdev_sk_get_lower_dev(dev, sk); 9318 while (lower) { 9319 dev = lower; 9320 lower = netdev_sk_get_lower_dev(dev, sk); 9321 } 9322 9323 return dev; 9324 } 9325 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 9326 9327 static void netdev_adjacent_add_links(struct net_device *dev) 9328 { 9329 struct netdev_adjacent *iter; 9330 9331 struct net *net = dev_net(dev); 9332 9333 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9334 if (!net_eq(net, dev_net(iter->dev))) 9335 continue; 9336 netdev_adjacent_sysfs_add(iter->dev, dev, 9337 &iter->dev->adj_list.lower); 9338 netdev_adjacent_sysfs_add(dev, iter->dev, 9339 &dev->adj_list.upper); 9340 } 9341 9342 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9343 if (!net_eq(net, dev_net(iter->dev))) 9344 continue; 9345 netdev_adjacent_sysfs_add(iter->dev, dev, 9346 &iter->dev->adj_list.upper); 9347 netdev_adjacent_sysfs_add(dev, iter->dev, 9348 &dev->adj_list.lower); 9349 } 9350 } 9351 9352 static void netdev_adjacent_del_links(struct net_device *dev) 9353 { 9354 struct netdev_adjacent *iter; 9355 9356 struct net *net = dev_net(dev); 9357 9358 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9359 if (!net_eq(net, dev_net(iter->dev))) 9360 continue; 9361 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9362 &iter->dev->adj_list.lower); 9363 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9364 &dev->adj_list.upper); 9365 } 9366 9367 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9368 if (!net_eq(net, dev_net(iter->dev))) 9369 continue; 9370 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9371 &iter->dev->adj_list.upper); 9372 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9373 &dev->adj_list.lower); 9374 } 9375 } 9376 9377 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 9378 { 9379 struct netdev_adjacent *iter; 9380 9381 struct net *net = dev_net(dev); 9382 9383 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9384 if (!net_eq(net, dev_net(iter->dev))) 9385 continue; 9386 netdev_adjacent_sysfs_del(iter->dev, oldname, 9387 &iter->dev->adj_list.lower); 9388 netdev_adjacent_sysfs_add(iter->dev, dev, 9389 &iter->dev->adj_list.lower); 9390 } 9391 9392 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9393 if (!net_eq(net, dev_net(iter->dev))) 9394 continue; 9395 netdev_adjacent_sysfs_del(iter->dev, oldname, 9396 &iter->dev->adj_list.upper); 9397 netdev_adjacent_sysfs_add(iter->dev, dev, 9398 &iter->dev->adj_list.upper); 9399 } 9400 } 9401 9402 void *netdev_lower_dev_get_private(struct net_device *dev, 9403 struct net_device *lower_dev) 9404 { 9405 struct netdev_adjacent *lower; 9406 9407 if (!lower_dev) 9408 return NULL; 9409 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 9410 if (!lower) 9411 return NULL; 9412 9413 return lower->private; 9414 } 9415 EXPORT_SYMBOL(netdev_lower_dev_get_private); 9416 9417 9418 /** 9419 * netdev_lower_state_changed - Dispatch event about lower device state change 9420 * @lower_dev: device 9421 * @lower_state_info: state to dispatch 9422 * 9423 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 9424 * The caller must hold the RTNL lock. 9425 */ 9426 void netdev_lower_state_changed(struct net_device *lower_dev, 9427 void *lower_state_info) 9428 { 9429 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 9430 .info.dev = lower_dev, 9431 }; 9432 9433 ASSERT_RTNL(); 9434 changelowerstate_info.lower_state_info = lower_state_info; 9435 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 9436 &changelowerstate_info.info); 9437 } 9438 EXPORT_SYMBOL(netdev_lower_state_changed); 9439 9440 static void dev_change_rx_flags(struct net_device *dev, int flags) 9441 { 9442 const struct net_device_ops *ops = dev->netdev_ops; 9443 9444 if (ops->ndo_change_rx_flags) 9445 ops->ndo_change_rx_flags(dev, flags); 9446 } 9447 9448 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 9449 { 9450 unsigned int old_flags = dev->flags; 9451 unsigned int promiscuity, flags; 9452 kuid_t uid; 9453 kgid_t gid; 9454 9455 ASSERT_RTNL(); 9456 9457 promiscuity = dev->promiscuity + inc; 9458 if (promiscuity == 0) { 9459 /* 9460 * Avoid overflow. 9461 * If inc causes overflow, untouch promisc and return error. 9462 */ 9463 if (unlikely(inc > 0)) { 9464 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 9465 return -EOVERFLOW; 9466 } 9467 flags = old_flags & ~IFF_PROMISC; 9468 } else { 9469 flags = old_flags | IFF_PROMISC; 9470 } 9471 WRITE_ONCE(dev->promiscuity, promiscuity); 9472 if (flags != old_flags) { 9473 WRITE_ONCE(dev->flags, flags); 9474 netdev_info(dev, "%s promiscuous mode\n", 9475 dev->flags & IFF_PROMISC ? "entered" : "left"); 9476 if (audit_enabled) { 9477 current_uid_gid(&uid, &gid); 9478 audit_log(audit_context(), GFP_ATOMIC, 9479 AUDIT_ANOM_PROMISCUOUS, 9480 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 9481 dev->name, (dev->flags & IFF_PROMISC), 9482 (old_flags & IFF_PROMISC), 9483 from_kuid(&init_user_ns, audit_get_loginuid(current)), 9484 from_kuid(&init_user_ns, uid), 9485 from_kgid(&init_user_ns, gid), 9486 audit_get_sessionid(current)); 9487 } 9488 9489 dev_change_rx_flags(dev, IFF_PROMISC); 9490 } 9491 if (notify) { 9492 /* The ops lock is only required to ensure consistent locking 9493 * for `NETDEV_CHANGE` notifiers. This function is sometimes 9494 * called without the lock, even for devices that are ops 9495 * locked, such as in `dev_uc_sync_multiple` when using 9496 * bonding or teaming. 9497 */ 9498 netdev_ops_assert_locked(dev); 9499 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 9500 } 9501 return 0; 9502 } 9503 9504 int netif_set_promiscuity(struct net_device *dev, int inc) 9505 { 9506 unsigned int old_flags = dev->flags; 9507 int err; 9508 9509 err = __dev_set_promiscuity(dev, inc, true); 9510 if (err < 0) 9511 return err; 9512 if (dev->flags != old_flags) 9513 dev_set_rx_mode(dev); 9514 return err; 9515 } 9516 9517 int netif_set_allmulti(struct net_device *dev, int inc, bool notify) 9518 { 9519 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 9520 unsigned int allmulti, flags; 9521 9522 ASSERT_RTNL(); 9523 9524 allmulti = dev->allmulti + inc; 9525 if (allmulti == 0) { 9526 /* 9527 * Avoid overflow. 9528 * If inc causes overflow, untouch allmulti and return error. 9529 */ 9530 if (unlikely(inc > 0)) { 9531 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 9532 return -EOVERFLOW; 9533 } 9534 flags = old_flags & ~IFF_ALLMULTI; 9535 } else { 9536 flags = old_flags | IFF_ALLMULTI; 9537 } 9538 WRITE_ONCE(dev->allmulti, allmulti); 9539 if (flags != old_flags) { 9540 WRITE_ONCE(dev->flags, flags); 9541 netdev_info(dev, "%s allmulticast mode\n", 9542 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 9543 dev_change_rx_flags(dev, IFF_ALLMULTI); 9544 dev_set_rx_mode(dev); 9545 if (notify) 9546 __dev_notify_flags(dev, old_flags, 9547 dev->gflags ^ old_gflags, 0, NULL); 9548 } 9549 return 0; 9550 } 9551 9552 /* 9553 * Upload unicast and multicast address lists to device and 9554 * configure RX filtering. When the device doesn't support unicast 9555 * filtering it is put in promiscuous mode while unicast addresses 9556 * are present. 9557 */ 9558 void __dev_set_rx_mode(struct net_device *dev) 9559 { 9560 const struct net_device_ops *ops = dev->netdev_ops; 9561 9562 /* dev_open will call this function so the list will stay sane. */ 9563 if (!(dev->flags&IFF_UP)) 9564 return; 9565 9566 if (!netif_device_present(dev)) 9567 return; 9568 9569 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 9570 /* Unicast addresses changes may only happen under the rtnl, 9571 * therefore calling __dev_set_promiscuity here is safe. 9572 */ 9573 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 9574 __dev_set_promiscuity(dev, 1, false); 9575 dev->uc_promisc = true; 9576 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 9577 __dev_set_promiscuity(dev, -1, false); 9578 dev->uc_promisc = false; 9579 } 9580 } 9581 9582 if (ops->ndo_set_rx_mode) 9583 ops->ndo_set_rx_mode(dev); 9584 } 9585 9586 void dev_set_rx_mode(struct net_device *dev) 9587 { 9588 netif_addr_lock_bh(dev); 9589 __dev_set_rx_mode(dev); 9590 netif_addr_unlock_bh(dev); 9591 } 9592 9593 /** 9594 * netif_get_flags() - get flags reported to userspace 9595 * @dev: device 9596 * 9597 * Get the combination of flag bits exported through APIs to userspace. 9598 */ 9599 unsigned int netif_get_flags(const struct net_device *dev) 9600 { 9601 unsigned int flags; 9602 9603 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 9604 IFF_ALLMULTI | 9605 IFF_RUNNING | 9606 IFF_LOWER_UP | 9607 IFF_DORMANT)) | 9608 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 9609 IFF_ALLMULTI)); 9610 9611 if (netif_running(dev)) { 9612 if (netif_oper_up(dev)) 9613 flags |= IFF_RUNNING; 9614 if (netif_carrier_ok(dev)) 9615 flags |= IFF_LOWER_UP; 9616 if (netif_dormant(dev)) 9617 flags |= IFF_DORMANT; 9618 } 9619 9620 return flags; 9621 } 9622 EXPORT_SYMBOL(netif_get_flags); 9623 9624 int __dev_change_flags(struct net_device *dev, unsigned int flags, 9625 struct netlink_ext_ack *extack) 9626 { 9627 unsigned int old_flags = dev->flags; 9628 int ret; 9629 9630 ASSERT_RTNL(); 9631 9632 /* 9633 * Set the flags on our device. 9634 */ 9635 9636 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 9637 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 9638 IFF_AUTOMEDIA)) | 9639 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 9640 IFF_ALLMULTI)); 9641 9642 /* 9643 * Load in the correct multicast list now the flags have changed. 9644 */ 9645 9646 if ((old_flags ^ flags) & IFF_MULTICAST) 9647 dev_change_rx_flags(dev, IFF_MULTICAST); 9648 9649 dev_set_rx_mode(dev); 9650 9651 /* 9652 * Have we downed the interface. We handle IFF_UP ourselves 9653 * according to user attempts to set it, rather than blindly 9654 * setting it. 9655 */ 9656 9657 ret = 0; 9658 if ((old_flags ^ flags) & IFF_UP) { 9659 if (old_flags & IFF_UP) 9660 __dev_close(dev); 9661 else 9662 ret = __dev_open(dev, extack); 9663 } 9664 9665 if ((flags ^ dev->gflags) & IFF_PROMISC) { 9666 int inc = (flags & IFF_PROMISC) ? 1 : -1; 9667 old_flags = dev->flags; 9668 9669 dev->gflags ^= IFF_PROMISC; 9670 9671 if (__dev_set_promiscuity(dev, inc, false) >= 0) 9672 if (dev->flags != old_flags) 9673 dev_set_rx_mode(dev); 9674 } 9675 9676 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 9677 * is important. Some (broken) drivers set IFF_PROMISC, when 9678 * IFF_ALLMULTI is requested not asking us and not reporting. 9679 */ 9680 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 9681 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 9682 9683 dev->gflags ^= IFF_ALLMULTI; 9684 netif_set_allmulti(dev, inc, false); 9685 } 9686 9687 return ret; 9688 } 9689 9690 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 9691 unsigned int gchanges, u32 portid, 9692 const struct nlmsghdr *nlh) 9693 { 9694 unsigned int changes = dev->flags ^ old_flags; 9695 9696 if (gchanges) 9697 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9698 9699 if (changes & IFF_UP) { 9700 if (dev->flags & IFF_UP) 9701 call_netdevice_notifiers(NETDEV_UP, dev); 9702 else 9703 call_netdevice_notifiers(NETDEV_DOWN, dev); 9704 } 9705 9706 if (dev->flags & IFF_UP && 9707 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9708 struct netdev_notifier_change_info change_info = { 9709 .info = { 9710 .dev = dev, 9711 }, 9712 .flags_changed = changes, 9713 }; 9714 9715 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9716 } 9717 } 9718 9719 int netif_change_flags(struct net_device *dev, unsigned int flags, 9720 struct netlink_ext_ack *extack) 9721 { 9722 int ret; 9723 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9724 9725 ret = __dev_change_flags(dev, flags, extack); 9726 if (ret < 0) 9727 return ret; 9728 9729 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9730 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9731 return ret; 9732 } 9733 9734 int __netif_set_mtu(struct net_device *dev, int new_mtu) 9735 { 9736 const struct net_device_ops *ops = dev->netdev_ops; 9737 9738 if (ops->ndo_change_mtu) 9739 return ops->ndo_change_mtu(dev, new_mtu); 9740 9741 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9742 WRITE_ONCE(dev->mtu, new_mtu); 9743 return 0; 9744 } 9745 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL"); 9746 9747 int dev_validate_mtu(struct net_device *dev, int new_mtu, 9748 struct netlink_ext_ack *extack) 9749 { 9750 /* MTU must be positive, and in range */ 9751 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9752 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9753 return -EINVAL; 9754 } 9755 9756 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9757 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9758 return -EINVAL; 9759 } 9760 return 0; 9761 } 9762 9763 /** 9764 * netif_set_mtu_ext() - Change maximum transfer unit 9765 * @dev: device 9766 * @new_mtu: new transfer unit 9767 * @extack: netlink extended ack 9768 * 9769 * Change the maximum transfer size of the network device. 9770 * 9771 * Return: 0 on success, -errno on failure. 9772 */ 9773 int netif_set_mtu_ext(struct net_device *dev, int new_mtu, 9774 struct netlink_ext_ack *extack) 9775 { 9776 int err, orig_mtu; 9777 9778 netdev_ops_assert_locked(dev); 9779 9780 if (new_mtu == dev->mtu) 9781 return 0; 9782 9783 err = dev_validate_mtu(dev, new_mtu, extack); 9784 if (err) 9785 return err; 9786 9787 if (!netif_device_present(dev)) 9788 return -ENODEV; 9789 9790 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9791 err = notifier_to_errno(err); 9792 if (err) 9793 return err; 9794 9795 orig_mtu = dev->mtu; 9796 err = __netif_set_mtu(dev, new_mtu); 9797 9798 if (!err) { 9799 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9800 orig_mtu); 9801 err = notifier_to_errno(err); 9802 if (err) { 9803 /* setting mtu back and notifying everyone again, 9804 * so that they have a chance to revert changes. 9805 */ 9806 __netif_set_mtu(dev, orig_mtu); 9807 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9808 new_mtu); 9809 } 9810 } 9811 return err; 9812 } 9813 9814 int netif_set_mtu(struct net_device *dev, int new_mtu) 9815 { 9816 struct netlink_ext_ack extack; 9817 int err; 9818 9819 memset(&extack, 0, sizeof(extack)); 9820 err = netif_set_mtu_ext(dev, new_mtu, &extack); 9821 if (err && extack._msg) 9822 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9823 return err; 9824 } 9825 EXPORT_SYMBOL(netif_set_mtu); 9826 9827 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9828 { 9829 unsigned int orig_len = dev->tx_queue_len; 9830 int res; 9831 9832 if (new_len != (unsigned int)new_len) 9833 return -ERANGE; 9834 9835 if (new_len != orig_len) { 9836 WRITE_ONCE(dev->tx_queue_len, new_len); 9837 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9838 res = notifier_to_errno(res); 9839 if (res) 9840 goto err_rollback; 9841 res = dev_qdisc_change_tx_queue_len(dev); 9842 if (res) 9843 goto err_rollback; 9844 } 9845 9846 return 0; 9847 9848 err_rollback: 9849 netdev_err(dev, "refused to change device tx_queue_len\n"); 9850 WRITE_ONCE(dev->tx_queue_len, orig_len); 9851 return res; 9852 } 9853 9854 void netif_set_group(struct net_device *dev, int new_group) 9855 { 9856 dev->group = new_group; 9857 } 9858 9859 /** 9860 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR. 9861 * @dev: device 9862 * @addr: new address 9863 * @extack: netlink extended ack 9864 * 9865 * Return: 0 on success, -errno on failure. 9866 */ 9867 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9868 struct netlink_ext_ack *extack) 9869 { 9870 struct netdev_notifier_pre_changeaddr_info info = { 9871 .info.dev = dev, 9872 .info.extack = extack, 9873 .dev_addr = addr, 9874 }; 9875 int rc; 9876 9877 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9878 return notifier_to_errno(rc); 9879 } 9880 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL"); 9881 9882 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 9883 struct netlink_ext_ack *extack) 9884 { 9885 const struct net_device_ops *ops = dev->netdev_ops; 9886 int err; 9887 9888 if (!ops->ndo_set_mac_address) 9889 return -EOPNOTSUPP; 9890 if (ss->ss_family != dev->type) 9891 return -EINVAL; 9892 if (!netif_device_present(dev)) 9893 return -ENODEV; 9894 err = netif_pre_changeaddr_notify(dev, ss->__data, extack); 9895 if (err) 9896 return err; 9897 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) { 9898 err = ops->ndo_set_mac_address(dev, ss); 9899 if (err) 9900 return err; 9901 } 9902 dev->addr_assign_type = NET_ADDR_SET; 9903 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9904 add_device_randomness(dev->dev_addr, dev->addr_len); 9905 return 0; 9906 } 9907 9908 DECLARE_RWSEM(dev_addr_sem); 9909 9910 /* "sa" is a true struct sockaddr with limited "sa_data" member. */ 9911 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9912 { 9913 size_t size = sizeof(sa->sa_data_min); 9914 struct net_device *dev; 9915 int ret = 0; 9916 9917 down_read(&dev_addr_sem); 9918 rcu_read_lock(); 9919 9920 dev = dev_get_by_name_rcu(net, dev_name); 9921 if (!dev) { 9922 ret = -ENODEV; 9923 goto unlock; 9924 } 9925 if (!dev->addr_len) 9926 memset(sa->sa_data, 0, size); 9927 else 9928 memcpy(sa->sa_data, dev->dev_addr, 9929 min_t(size_t, size, dev->addr_len)); 9930 sa->sa_family = dev->type; 9931 9932 unlock: 9933 rcu_read_unlock(); 9934 up_read(&dev_addr_sem); 9935 return ret; 9936 } 9937 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL"); 9938 9939 int netif_change_carrier(struct net_device *dev, bool new_carrier) 9940 { 9941 const struct net_device_ops *ops = dev->netdev_ops; 9942 9943 if (!ops->ndo_change_carrier) 9944 return -EOPNOTSUPP; 9945 if (!netif_device_present(dev)) 9946 return -ENODEV; 9947 return ops->ndo_change_carrier(dev, new_carrier); 9948 } 9949 9950 /** 9951 * dev_get_phys_port_id - Get device physical port ID 9952 * @dev: device 9953 * @ppid: port ID 9954 * 9955 * Get device physical port ID 9956 */ 9957 int dev_get_phys_port_id(struct net_device *dev, 9958 struct netdev_phys_item_id *ppid) 9959 { 9960 const struct net_device_ops *ops = dev->netdev_ops; 9961 9962 if (!ops->ndo_get_phys_port_id) 9963 return -EOPNOTSUPP; 9964 return ops->ndo_get_phys_port_id(dev, ppid); 9965 } 9966 9967 /** 9968 * dev_get_phys_port_name - Get device physical port name 9969 * @dev: device 9970 * @name: port name 9971 * @len: limit of bytes to copy to name 9972 * 9973 * Get device physical port name 9974 */ 9975 int dev_get_phys_port_name(struct net_device *dev, 9976 char *name, size_t len) 9977 { 9978 const struct net_device_ops *ops = dev->netdev_ops; 9979 int err; 9980 9981 if (ops->ndo_get_phys_port_name) { 9982 err = ops->ndo_get_phys_port_name(dev, name, len); 9983 if (err != -EOPNOTSUPP) 9984 return err; 9985 } 9986 return devlink_compat_phys_port_name_get(dev, name, len); 9987 } 9988 9989 /** 9990 * netif_get_port_parent_id() - Get the device's port parent identifier 9991 * @dev: network device 9992 * @ppid: pointer to a storage for the port's parent identifier 9993 * @recurse: allow/disallow recursion to lower devices 9994 * 9995 * Get the devices's port parent identifier. 9996 * 9997 * Return: 0 on success, -errno on failure. 9998 */ 9999 int netif_get_port_parent_id(struct net_device *dev, 10000 struct netdev_phys_item_id *ppid, bool recurse) 10001 { 10002 const struct net_device_ops *ops = dev->netdev_ops; 10003 struct netdev_phys_item_id first = { }; 10004 struct net_device *lower_dev; 10005 struct list_head *iter; 10006 int err; 10007 10008 if (ops->ndo_get_port_parent_id) { 10009 err = ops->ndo_get_port_parent_id(dev, ppid); 10010 if (err != -EOPNOTSUPP) 10011 return err; 10012 } 10013 10014 err = devlink_compat_switch_id_get(dev, ppid); 10015 if (!recurse || err != -EOPNOTSUPP) 10016 return err; 10017 10018 netdev_for_each_lower_dev(dev, lower_dev, iter) { 10019 err = netif_get_port_parent_id(lower_dev, ppid, true); 10020 if (err) 10021 break; 10022 if (!first.id_len) 10023 first = *ppid; 10024 else if (memcmp(&first, ppid, sizeof(*ppid))) 10025 return -EOPNOTSUPP; 10026 } 10027 10028 return err; 10029 } 10030 EXPORT_SYMBOL(netif_get_port_parent_id); 10031 10032 /** 10033 * netdev_port_same_parent_id - Indicate if two network devices have 10034 * the same port parent identifier 10035 * @a: first network device 10036 * @b: second network device 10037 */ 10038 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 10039 { 10040 struct netdev_phys_item_id a_id = { }; 10041 struct netdev_phys_item_id b_id = { }; 10042 10043 if (netif_get_port_parent_id(a, &a_id, true) || 10044 netif_get_port_parent_id(b, &b_id, true)) 10045 return false; 10046 10047 return netdev_phys_item_id_same(&a_id, &b_id); 10048 } 10049 EXPORT_SYMBOL(netdev_port_same_parent_id); 10050 10051 int netif_change_proto_down(struct net_device *dev, bool proto_down) 10052 { 10053 if (!dev->change_proto_down) 10054 return -EOPNOTSUPP; 10055 if (!netif_device_present(dev)) 10056 return -ENODEV; 10057 if (proto_down) 10058 netif_carrier_off(dev); 10059 else 10060 netif_carrier_on(dev); 10061 WRITE_ONCE(dev->proto_down, proto_down); 10062 return 0; 10063 } 10064 10065 /** 10066 * netdev_change_proto_down_reason_locked - proto down reason 10067 * 10068 * @dev: device 10069 * @mask: proto down mask 10070 * @value: proto down value 10071 */ 10072 void netdev_change_proto_down_reason_locked(struct net_device *dev, 10073 unsigned long mask, u32 value) 10074 { 10075 u32 proto_down_reason; 10076 int b; 10077 10078 if (!mask) { 10079 proto_down_reason = value; 10080 } else { 10081 proto_down_reason = dev->proto_down_reason; 10082 for_each_set_bit(b, &mask, 32) { 10083 if (value & (1 << b)) 10084 proto_down_reason |= BIT(b); 10085 else 10086 proto_down_reason &= ~BIT(b); 10087 } 10088 } 10089 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 10090 } 10091 10092 struct bpf_xdp_link { 10093 struct bpf_link link; 10094 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 10095 int flags; 10096 }; 10097 10098 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 10099 { 10100 if (flags & XDP_FLAGS_HW_MODE) 10101 return XDP_MODE_HW; 10102 if (flags & XDP_FLAGS_DRV_MODE) 10103 return XDP_MODE_DRV; 10104 if (flags & XDP_FLAGS_SKB_MODE) 10105 return XDP_MODE_SKB; 10106 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 10107 } 10108 10109 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 10110 { 10111 switch (mode) { 10112 case XDP_MODE_SKB: 10113 return generic_xdp_install; 10114 case XDP_MODE_DRV: 10115 case XDP_MODE_HW: 10116 return dev->netdev_ops->ndo_bpf; 10117 default: 10118 return NULL; 10119 } 10120 } 10121 10122 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 10123 enum bpf_xdp_mode mode) 10124 { 10125 return dev->xdp_state[mode].link; 10126 } 10127 10128 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 10129 enum bpf_xdp_mode mode) 10130 { 10131 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 10132 10133 if (link) 10134 return link->link.prog; 10135 return dev->xdp_state[mode].prog; 10136 } 10137 10138 u8 dev_xdp_prog_count(struct net_device *dev) 10139 { 10140 u8 count = 0; 10141 int i; 10142 10143 for (i = 0; i < __MAX_XDP_MODE; i++) 10144 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 10145 count++; 10146 return count; 10147 } 10148 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 10149 10150 u8 dev_xdp_sb_prog_count(struct net_device *dev) 10151 { 10152 u8 count = 0; 10153 int i; 10154 10155 for (i = 0; i < __MAX_XDP_MODE; i++) 10156 if (dev->xdp_state[i].prog && 10157 !dev->xdp_state[i].prog->aux->xdp_has_frags) 10158 count++; 10159 return count; 10160 } 10161 10162 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 10163 { 10164 if (!dev->netdev_ops->ndo_bpf) 10165 return -EOPNOTSUPP; 10166 10167 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10168 bpf->command == XDP_SETUP_PROG && 10169 bpf->prog && !bpf->prog->aux->xdp_has_frags) { 10170 NL_SET_ERR_MSG(bpf->extack, 10171 "unable to propagate XDP to device using tcp-data-split"); 10172 return -EBUSY; 10173 } 10174 10175 if (dev_get_min_mp_channel_count(dev)) { 10176 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 10177 return -EBUSY; 10178 } 10179 10180 return dev->netdev_ops->ndo_bpf(dev, bpf); 10181 } 10182 EXPORT_SYMBOL_GPL(netif_xdp_propagate); 10183 10184 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 10185 { 10186 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 10187 10188 return prog ? prog->aux->id : 0; 10189 } 10190 10191 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 10192 struct bpf_xdp_link *link) 10193 { 10194 dev->xdp_state[mode].link = link; 10195 dev->xdp_state[mode].prog = NULL; 10196 } 10197 10198 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 10199 struct bpf_prog *prog) 10200 { 10201 dev->xdp_state[mode].link = NULL; 10202 dev->xdp_state[mode].prog = prog; 10203 } 10204 10205 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 10206 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 10207 u32 flags, struct bpf_prog *prog) 10208 { 10209 struct netdev_bpf xdp; 10210 int err; 10211 10212 netdev_ops_assert_locked(dev); 10213 10214 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10215 prog && !prog->aux->xdp_has_frags) { 10216 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); 10217 return -EBUSY; 10218 } 10219 10220 if (dev_get_min_mp_channel_count(dev)) { 10221 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 10222 return -EBUSY; 10223 } 10224 10225 memset(&xdp, 0, sizeof(xdp)); 10226 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 10227 xdp.extack = extack; 10228 xdp.flags = flags; 10229 xdp.prog = prog; 10230 10231 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 10232 * "moved" into driver), so they don't increment it on their own, but 10233 * they do decrement refcnt when program is detached or replaced. 10234 * Given net_device also owns link/prog, we need to bump refcnt here 10235 * to prevent drivers from underflowing it. 10236 */ 10237 if (prog) 10238 bpf_prog_inc(prog); 10239 err = bpf_op(dev, &xdp); 10240 if (err) { 10241 if (prog) 10242 bpf_prog_put(prog); 10243 return err; 10244 } 10245 10246 if (mode != XDP_MODE_HW) 10247 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 10248 10249 return 0; 10250 } 10251 10252 static void dev_xdp_uninstall(struct net_device *dev) 10253 { 10254 struct bpf_xdp_link *link; 10255 struct bpf_prog *prog; 10256 enum bpf_xdp_mode mode; 10257 bpf_op_t bpf_op; 10258 10259 ASSERT_RTNL(); 10260 10261 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 10262 prog = dev_xdp_prog(dev, mode); 10263 if (!prog) 10264 continue; 10265 10266 bpf_op = dev_xdp_bpf_op(dev, mode); 10267 if (!bpf_op) 10268 continue; 10269 10270 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10271 10272 /* auto-detach link from net device */ 10273 link = dev_xdp_link(dev, mode); 10274 if (link) 10275 link->dev = NULL; 10276 else 10277 bpf_prog_put(prog); 10278 10279 dev_xdp_set_link(dev, mode, NULL); 10280 } 10281 } 10282 10283 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 10284 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 10285 struct bpf_prog *old_prog, u32 flags) 10286 { 10287 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 10288 struct bpf_prog *cur_prog; 10289 struct net_device *upper; 10290 struct list_head *iter; 10291 enum bpf_xdp_mode mode; 10292 bpf_op_t bpf_op; 10293 int err; 10294 10295 ASSERT_RTNL(); 10296 10297 /* either link or prog attachment, never both */ 10298 if (link && (new_prog || old_prog)) 10299 return -EINVAL; 10300 /* link supports only XDP mode flags */ 10301 if (link && (flags & ~XDP_FLAGS_MODES)) { 10302 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 10303 return -EINVAL; 10304 } 10305 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 10306 if (num_modes > 1) { 10307 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 10308 return -EINVAL; 10309 } 10310 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 10311 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 10312 NL_SET_ERR_MSG(extack, 10313 "More than one program loaded, unset mode is ambiguous"); 10314 return -EINVAL; 10315 } 10316 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 10317 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 10318 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 10319 return -EINVAL; 10320 } 10321 10322 mode = dev_xdp_mode(dev, flags); 10323 /* can't replace attached link */ 10324 if (dev_xdp_link(dev, mode)) { 10325 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 10326 return -EBUSY; 10327 } 10328 10329 /* don't allow if an upper device already has a program */ 10330 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 10331 if (dev_xdp_prog_count(upper) > 0) { 10332 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 10333 return -EEXIST; 10334 } 10335 } 10336 10337 cur_prog = dev_xdp_prog(dev, mode); 10338 /* can't replace attached prog with link */ 10339 if (link && cur_prog) { 10340 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 10341 return -EBUSY; 10342 } 10343 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 10344 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 10345 return -EEXIST; 10346 } 10347 10348 /* put effective new program into new_prog */ 10349 if (link) 10350 new_prog = link->link.prog; 10351 10352 if (new_prog) { 10353 bool offload = mode == XDP_MODE_HW; 10354 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 10355 ? XDP_MODE_DRV : XDP_MODE_SKB; 10356 10357 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 10358 NL_SET_ERR_MSG(extack, "XDP program already attached"); 10359 return -EBUSY; 10360 } 10361 if (!offload && dev_xdp_prog(dev, other_mode)) { 10362 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 10363 return -EEXIST; 10364 } 10365 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 10366 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 10367 return -EINVAL; 10368 } 10369 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 10370 NL_SET_ERR_MSG(extack, "Program bound to different device"); 10371 return -EINVAL; 10372 } 10373 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 10374 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 10375 return -EINVAL; 10376 } 10377 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 10378 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 10379 return -EINVAL; 10380 } 10381 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 10382 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 10383 return -EINVAL; 10384 } 10385 } 10386 10387 /* don't call drivers if the effective program didn't change */ 10388 if (new_prog != cur_prog) { 10389 bpf_op = dev_xdp_bpf_op(dev, mode); 10390 if (!bpf_op) { 10391 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 10392 return -EOPNOTSUPP; 10393 } 10394 10395 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 10396 if (err) 10397 return err; 10398 } 10399 10400 if (link) 10401 dev_xdp_set_link(dev, mode, link); 10402 else 10403 dev_xdp_set_prog(dev, mode, new_prog); 10404 if (cur_prog) 10405 bpf_prog_put(cur_prog); 10406 10407 return 0; 10408 } 10409 10410 static int dev_xdp_attach_link(struct net_device *dev, 10411 struct netlink_ext_ack *extack, 10412 struct bpf_xdp_link *link) 10413 { 10414 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 10415 } 10416 10417 static int dev_xdp_detach_link(struct net_device *dev, 10418 struct netlink_ext_ack *extack, 10419 struct bpf_xdp_link *link) 10420 { 10421 enum bpf_xdp_mode mode; 10422 bpf_op_t bpf_op; 10423 10424 ASSERT_RTNL(); 10425 10426 mode = dev_xdp_mode(dev, link->flags); 10427 if (dev_xdp_link(dev, mode) != link) 10428 return -EINVAL; 10429 10430 bpf_op = dev_xdp_bpf_op(dev, mode); 10431 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10432 dev_xdp_set_link(dev, mode, NULL); 10433 return 0; 10434 } 10435 10436 static void bpf_xdp_link_release(struct bpf_link *link) 10437 { 10438 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10439 10440 rtnl_lock(); 10441 10442 /* if racing with net_device's tear down, xdp_link->dev might be 10443 * already NULL, in which case link was already auto-detached 10444 */ 10445 if (xdp_link->dev) { 10446 netdev_lock_ops(xdp_link->dev); 10447 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 10448 netdev_unlock_ops(xdp_link->dev); 10449 xdp_link->dev = NULL; 10450 } 10451 10452 rtnl_unlock(); 10453 } 10454 10455 static int bpf_xdp_link_detach(struct bpf_link *link) 10456 { 10457 bpf_xdp_link_release(link); 10458 return 0; 10459 } 10460 10461 static void bpf_xdp_link_dealloc(struct bpf_link *link) 10462 { 10463 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10464 10465 kfree(xdp_link); 10466 } 10467 10468 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 10469 struct seq_file *seq) 10470 { 10471 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10472 u32 ifindex = 0; 10473 10474 rtnl_lock(); 10475 if (xdp_link->dev) 10476 ifindex = xdp_link->dev->ifindex; 10477 rtnl_unlock(); 10478 10479 seq_printf(seq, "ifindex:\t%u\n", ifindex); 10480 } 10481 10482 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 10483 struct bpf_link_info *info) 10484 { 10485 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10486 u32 ifindex = 0; 10487 10488 rtnl_lock(); 10489 if (xdp_link->dev) 10490 ifindex = xdp_link->dev->ifindex; 10491 rtnl_unlock(); 10492 10493 info->xdp.ifindex = ifindex; 10494 return 0; 10495 } 10496 10497 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 10498 struct bpf_prog *old_prog) 10499 { 10500 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10501 enum bpf_xdp_mode mode; 10502 bpf_op_t bpf_op; 10503 int err = 0; 10504 10505 rtnl_lock(); 10506 10507 /* link might have been auto-released already, so fail */ 10508 if (!xdp_link->dev) { 10509 err = -ENOLINK; 10510 goto out_unlock; 10511 } 10512 10513 if (old_prog && link->prog != old_prog) { 10514 err = -EPERM; 10515 goto out_unlock; 10516 } 10517 old_prog = link->prog; 10518 if (old_prog->type != new_prog->type || 10519 old_prog->expected_attach_type != new_prog->expected_attach_type) { 10520 err = -EINVAL; 10521 goto out_unlock; 10522 } 10523 10524 if (old_prog == new_prog) { 10525 /* no-op, don't disturb drivers */ 10526 bpf_prog_put(new_prog); 10527 goto out_unlock; 10528 } 10529 10530 netdev_lock_ops(xdp_link->dev); 10531 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 10532 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 10533 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 10534 xdp_link->flags, new_prog); 10535 netdev_unlock_ops(xdp_link->dev); 10536 if (err) 10537 goto out_unlock; 10538 10539 old_prog = xchg(&link->prog, new_prog); 10540 bpf_prog_put(old_prog); 10541 10542 out_unlock: 10543 rtnl_unlock(); 10544 return err; 10545 } 10546 10547 static const struct bpf_link_ops bpf_xdp_link_lops = { 10548 .release = bpf_xdp_link_release, 10549 .dealloc = bpf_xdp_link_dealloc, 10550 .detach = bpf_xdp_link_detach, 10551 .show_fdinfo = bpf_xdp_link_show_fdinfo, 10552 .fill_link_info = bpf_xdp_link_fill_link_info, 10553 .update_prog = bpf_xdp_link_update, 10554 }; 10555 10556 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 10557 { 10558 struct net *net = current->nsproxy->net_ns; 10559 struct bpf_link_primer link_primer; 10560 struct netlink_ext_ack extack = {}; 10561 struct bpf_xdp_link *link; 10562 struct net_device *dev; 10563 int err, fd; 10564 10565 rtnl_lock(); 10566 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 10567 if (!dev) { 10568 rtnl_unlock(); 10569 return -EINVAL; 10570 } 10571 10572 link = kzalloc(sizeof(*link), GFP_USER); 10573 if (!link) { 10574 err = -ENOMEM; 10575 goto unlock; 10576 } 10577 10578 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog, 10579 attr->link_create.attach_type); 10580 link->dev = dev; 10581 link->flags = attr->link_create.flags; 10582 10583 err = bpf_link_prime(&link->link, &link_primer); 10584 if (err) { 10585 kfree(link); 10586 goto unlock; 10587 } 10588 10589 netdev_lock_ops(dev); 10590 err = dev_xdp_attach_link(dev, &extack, link); 10591 netdev_unlock_ops(dev); 10592 rtnl_unlock(); 10593 10594 if (err) { 10595 link->dev = NULL; 10596 bpf_link_cleanup(&link_primer); 10597 trace_bpf_xdp_link_attach_failed(extack._msg); 10598 goto out_put_dev; 10599 } 10600 10601 fd = bpf_link_settle(&link_primer); 10602 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 10603 dev_put(dev); 10604 return fd; 10605 10606 unlock: 10607 rtnl_unlock(); 10608 10609 out_put_dev: 10610 dev_put(dev); 10611 return err; 10612 } 10613 10614 /** 10615 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 10616 * @dev: device 10617 * @extack: netlink extended ack 10618 * @fd: new program fd or negative value to clear 10619 * @expected_fd: old program fd that userspace expects to replace or clear 10620 * @flags: xdp-related flags 10621 * 10622 * Set or clear a bpf program for a device 10623 */ 10624 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 10625 int fd, int expected_fd, u32 flags) 10626 { 10627 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 10628 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 10629 int err; 10630 10631 ASSERT_RTNL(); 10632 10633 if (fd >= 0) { 10634 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 10635 mode != XDP_MODE_SKB); 10636 if (IS_ERR(new_prog)) 10637 return PTR_ERR(new_prog); 10638 } 10639 10640 if (expected_fd >= 0) { 10641 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 10642 mode != XDP_MODE_SKB); 10643 if (IS_ERR(old_prog)) { 10644 err = PTR_ERR(old_prog); 10645 old_prog = NULL; 10646 goto err_out; 10647 } 10648 } 10649 10650 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 10651 10652 err_out: 10653 if (err && new_prog) 10654 bpf_prog_put(new_prog); 10655 if (old_prog) 10656 bpf_prog_put(old_prog); 10657 return err; 10658 } 10659 10660 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 10661 { 10662 int i; 10663 10664 netdev_ops_assert_locked(dev); 10665 10666 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 10667 if (dev->_rx[i].mp_params.mp_priv) 10668 /* The channel count is the idx plus 1. */ 10669 return i + 1; 10670 10671 return 0; 10672 } 10673 10674 /** 10675 * dev_index_reserve() - allocate an ifindex in a namespace 10676 * @net: the applicable net namespace 10677 * @ifindex: requested ifindex, pass %0 to get one allocated 10678 * 10679 * Allocate a ifindex for a new device. Caller must either use the ifindex 10680 * to store the device (via list_netdevice()) or call dev_index_release() 10681 * to give the index up. 10682 * 10683 * Return: a suitable unique value for a new device interface number or -errno. 10684 */ 10685 static int dev_index_reserve(struct net *net, u32 ifindex) 10686 { 10687 int err; 10688 10689 if (ifindex > INT_MAX) { 10690 DEBUG_NET_WARN_ON_ONCE(1); 10691 return -EINVAL; 10692 } 10693 10694 if (!ifindex) 10695 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10696 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10697 else 10698 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10699 if (err < 0) 10700 return err; 10701 10702 return ifindex; 10703 } 10704 10705 static void dev_index_release(struct net *net, int ifindex) 10706 { 10707 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10708 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10709 } 10710 10711 static bool from_cleanup_net(void) 10712 { 10713 #ifdef CONFIG_NET_NS 10714 return current == READ_ONCE(cleanup_net_task); 10715 #else 10716 return false; 10717 #endif 10718 } 10719 10720 /* Delayed registration/unregisteration */ 10721 LIST_HEAD(net_todo_list); 10722 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10723 atomic_t dev_unreg_count = ATOMIC_INIT(0); 10724 10725 static void net_set_todo(struct net_device *dev) 10726 { 10727 list_add_tail(&dev->todo_list, &net_todo_list); 10728 } 10729 10730 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10731 struct net_device *upper, netdev_features_t features) 10732 { 10733 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10734 netdev_features_t feature; 10735 int feature_bit; 10736 10737 for_each_netdev_feature(upper_disables, feature_bit) { 10738 feature = __NETIF_F_BIT(feature_bit); 10739 if (!(upper->wanted_features & feature) 10740 && (features & feature)) { 10741 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10742 &feature, upper->name); 10743 features &= ~feature; 10744 } 10745 } 10746 10747 return features; 10748 } 10749 10750 static void netdev_sync_lower_features(struct net_device *upper, 10751 struct net_device *lower, netdev_features_t features) 10752 { 10753 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10754 netdev_features_t feature; 10755 int feature_bit; 10756 10757 for_each_netdev_feature(upper_disables, feature_bit) { 10758 feature = __NETIF_F_BIT(feature_bit); 10759 if (!(features & feature) && (lower->features & feature)) { 10760 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10761 &feature, lower->name); 10762 netdev_lock_ops(lower); 10763 lower->wanted_features &= ~feature; 10764 __netdev_update_features(lower); 10765 10766 if (unlikely(lower->features & feature)) 10767 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10768 &feature, lower->name); 10769 else 10770 netdev_features_change(lower); 10771 netdev_unlock_ops(lower); 10772 } 10773 } 10774 } 10775 10776 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10777 { 10778 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10779 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10780 bool hw_csum = features & NETIF_F_HW_CSUM; 10781 10782 return ip_csum || hw_csum; 10783 } 10784 10785 static netdev_features_t netdev_fix_features(struct net_device *dev, 10786 netdev_features_t features) 10787 { 10788 /* Fix illegal checksum combinations */ 10789 if ((features & NETIF_F_HW_CSUM) && 10790 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10791 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10792 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10793 } 10794 10795 /* TSO requires that SG is present as well. */ 10796 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10797 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10798 features &= ~NETIF_F_ALL_TSO; 10799 } 10800 10801 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10802 !(features & NETIF_F_IP_CSUM)) { 10803 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10804 features &= ~NETIF_F_TSO; 10805 features &= ~NETIF_F_TSO_ECN; 10806 } 10807 10808 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10809 !(features & NETIF_F_IPV6_CSUM)) { 10810 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10811 features &= ~NETIF_F_TSO6; 10812 } 10813 10814 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10815 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10816 features &= ~NETIF_F_TSO_MANGLEID; 10817 10818 /* TSO ECN requires that TSO is present as well. */ 10819 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10820 features &= ~NETIF_F_TSO_ECN; 10821 10822 /* Software GSO depends on SG. */ 10823 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10824 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10825 features &= ~NETIF_F_GSO; 10826 } 10827 10828 /* GSO partial features require GSO partial be set */ 10829 if ((features & dev->gso_partial_features) && 10830 !(features & NETIF_F_GSO_PARTIAL)) { 10831 netdev_dbg(dev, 10832 "Dropping partially supported GSO features since no GSO partial.\n"); 10833 features &= ~dev->gso_partial_features; 10834 } 10835 10836 if (!(features & NETIF_F_RXCSUM)) { 10837 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10838 * successfully merged by hardware must also have the 10839 * checksum verified by hardware. If the user does not 10840 * want to enable RXCSUM, logically, we should disable GRO_HW. 10841 */ 10842 if (features & NETIF_F_GRO_HW) { 10843 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10844 features &= ~NETIF_F_GRO_HW; 10845 } 10846 } 10847 10848 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10849 if (features & NETIF_F_RXFCS) { 10850 if (features & NETIF_F_LRO) { 10851 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10852 features &= ~NETIF_F_LRO; 10853 } 10854 10855 if (features & NETIF_F_GRO_HW) { 10856 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10857 features &= ~NETIF_F_GRO_HW; 10858 } 10859 } 10860 10861 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10862 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10863 features &= ~NETIF_F_LRO; 10864 } 10865 10866 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10867 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10868 features &= ~NETIF_F_HW_TLS_TX; 10869 } 10870 10871 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10872 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10873 features &= ~NETIF_F_HW_TLS_RX; 10874 } 10875 10876 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10877 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10878 features &= ~NETIF_F_GSO_UDP_L4; 10879 } 10880 10881 return features; 10882 } 10883 10884 int __netdev_update_features(struct net_device *dev) 10885 { 10886 struct net_device *upper, *lower; 10887 netdev_features_t features; 10888 struct list_head *iter; 10889 int err = -1; 10890 10891 ASSERT_RTNL(); 10892 netdev_ops_assert_locked(dev); 10893 10894 features = netdev_get_wanted_features(dev); 10895 10896 if (dev->netdev_ops->ndo_fix_features) 10897 features = dev->netdev_ops->ndo_fix_features(dev, features); 10898 10899 /* driver might be less strict about feature dependencies */ 10900 features = netdev_fix_features(dev, features); 10901 10902 /* some features can't be enabled if they're off on an upper device */ 10903 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10904 features = netdev_sync_upper_features(dev, upper, features); 10905 10906 if (dev->features == features) 10907 goto sync_lower; 10908 10909 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10910 &dev->features, &features); 10911 10912 if (dev->netdev_ops->ndo_set_features) 10913 err = dev->netdev_ops->ndo_set_features(dev, features); 10914 else 10915 err = 0; 10916 10917 if (unlikely(err < 0)) { 10918 netdev_err(dev, 10919 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10920 err, &features, &dev->features); 10921 /* return non-0 since some features might have changed and 10922 * it's better to fire a spurious notification than miss it 10923 */ 10924 return -1; 10925 } 10926 10927 sync_lower: 10928 /* some features must be disabled on lower devices when disabled 10929 * on an upper device (think: bonding master or bridge) 10930 */ 10931 netdev_for_each_lower_dev(dev, lower, iter) 10932 netdev_sync_lower_features(dev, lower, features); 10933 10934 if (!err) { 10935 netdev_features_t diff = features ^ dev->features; 10936 10937 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10938 /* udp_tunnel_{get,drop}_rx_info both need 10939 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10940 * device, or they won't do anything. 10941 * Thus we need to update dev->features 10942 * *before* calling udp_tunnel_get_rx_info, 10943 * but *after* calling udp_tunnel_drop_rx_info. 10944 */ 10945 udp_tunnel_nic_lock(dev); 10946 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10947 dev->features = features; 10948 udp_tunnel_get_rx_info(dev); 10949 } else { 10950 udp_tunnel_drop_rx_info(dev); 10951 } 10952 udp_tunnel_nic_unlock(dev); 10953 } 10954 10955 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10956 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10957 dev->features = features; 10958 err |= vlan_get_rx_ctag_filter_info(dev); 10959 } else { 10960 vlan_drop_rx_ctag_filter_info(dev); 10961 } 10962 } 10963 10964 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10965 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10966 dev->features = features; 10967 err |= vlan_get_rx_stag_filter_info(dev); 10968 } else { 10969 vlan_drop_rx_stag_filter_info(dev); 10970 } 10971 } 10972 10973 dev->features = features; 10974 } 10975 10976 return err < 0 ? 0 : 1; 10977 } 10978 10979 /** 10980 * netdev_update_features - recalculate device features 10981 * @dev: the device to check 10982 * 10983 * Recalculate dev->features set and send notifications if it 10984 * has changed. Should be called after driver or hardware dependent 10985 * conditions might have changed that influence the features. 10986 */ 10987 void netdev_update_features(struct net_device *dev) 10988 { 10989 if (__netdev_update_features(dev)) 10990 netdev_features_change(dev); 10991 } 10992 EXPORT_SYMBOL(netdev_update_features); 10993 10994 /** 10995 * netdev_change_features - recalculate device features 10996 * @dev: the device to check 10997 * 10998 * Recalculate dev->features set and send notifications even 10999 * if they have not changed. Should be called instead of 11000 * netdev_update_features() if also dev->vlan_features might 11001 * have changed to allow the changes to be propagated to stacked 11002 * VLAN devices. 11003 */ 11004 void netdev_change_features(struct net_device *dev) 11005 { 11006 __netdev_update_features(dev); 11007 netdev_features_change(dev); 11008 } 11009 EXPORT_SYMBOL(netdev_change_features); 11010 11011 /** 11012 * netif_stacked_transfer_operstate - transfer operstate 11013 * @rootdev: the root or lower level device to transfer state from 11014 * @dev: the device to transfer operstate to 11015 * 11016 * Transfer operational state from root to device. This is normally 11017 * called when a stacking relationship exists between the root 11018 * device and the device(a leaf device). 11019 */ 11020 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 11021 struct net_device *dev) 11022 { 11023 if (rootdev->operstate == IF_OPER_DORMANT) 11024 netif_dormant_on(dev); 11025 else 11026 netif_dormant_off(dev); 11027 11028 if (rootdev->operstate == IF_OPER_TESTING) 11029 netif_testing_on(dev); 11030 else 11031 netif_testing_off(dev); 11032 11033 if (netif_carrier_ok(rootdev)) 11034 netif_carrier_on(dev); 11035 else 11036 netif_carrier_off(dev); 11037 } 11038 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 11039 11040 static int netif_alloc_rx_queues(struct net_device *dev) 11041 { 11042 unsigned int i, count = dev->num_rx_queues; 11043 struct netdev_rx_queue *rx; 11044 size_t sz = count * sizeof(*rx); 11045 int err = 0; 11046 11047 BUG_ON(count < 1); 11048 11049 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11050 if (!rx) 11051 return -ENOMEM; 11052 11053 dev->_rx = rx; 11054 11055 for (i = 0; i < count; i++) { 11056 rx[i].dev = dev; 11057 11058 /* XDP RX-queue setup */ 11059 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 11060 if (err < 0) 11061 goto err_rxq_info; 11062 } 11063 return 0; 11064 11065 err_rxq_info: 11066 /* Rollback successful reg's and free other resources */ 11067 while (i--) 11068 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 11069 kvfree(dev->_rx); 11070 dev->_rx = NULL; 11071 return err; 11072 } 11073 11074 static void netif_free_rx_queues(struct net_device *dev) 11075 { 11076 unsigned int i, count = dev->num_rx_queues; 11077 11078 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 11079 if (!dev->_rx) 11080 return; 11081 11082 for (i = 0; i < count; i++) 11083 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 11084 11085 kvfree(dev->_rx); 11086 } 11087 11088 static void netdev_init_one_queue(struct net_device *dev, 11089 struct netdev_queue *queue, void *_unused) 11090 { 11091 /* Initialize queue lock */ 11092 spin_lock_init(&queue->_xmit_lock); 11093 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 11094 queue->xmit_lock_owner = -1; 11095 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 11096 queue->dev = dev; 11097 #ifdef CONFIG_BQL 11098 dql_init(&queue->dql, HZ); 11099 #endif 11100 } 11101 11102 static void netif_free_tx_queues(struct net_device *dev) 11103 { 11104 kvfree(dev->_tx); 11105 } 11106 11107 static int netif_alloc_netdev_queues(struct net_device *dev) 11108 { 11109 unsigned int count = dev->num_tx_queues; 11110 struct netdev_queue *tx; 11111 size_t sz = count * sizeof(*tx); 11112 11113 if (count < 1 || count > 0xffff) 11114 return -EINVAL; 11115 11116 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11117 if (!tx) 11118 return -ENOMEM; 11119 11120 dev->_tx = tx; 11121 11122 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 11123 spin_lock_init(&dev->tx_global_lock); 11124 11125 return 0; 11126 } 11127 11128 void netif_tx_stop_all_queues(struct net_device *dev) 11129 { 11130 unsigned int i; 11131 11132 for (i = 0; i < dev->num_tx_queues; i++) { 11133 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 11134 11135 netif_tx_stop_queue(txq); 11136 } 11137 } 11138 EXPORT_SYMBOL(netif_tx_stop_all_queues); 11139 11140 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 11141 { 11142 void __percpu *v; 11143 11144 /* Drivers implementing ndo_get_peer_dev must support tstat 11145 * accounting, so that skb_do_redirect() can bump the dev's 11146 * RX stats upon network namespace switch. 11147 */ 11148 if (dev->netdev_ops->ndo_get_peer_dev && 11149 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 11150 return -EOPNOTSUPP; 11151 11152 switch (dev->pcpu_stat_type) { 11153 case NETDEV_PCPU_STAT_NONE: 11154 return 0; 11155 case NETDEV_PCPU_STAT_LSTATS: 11156 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 11157 break; 11158 case NETDEV_PCPU_STAT_TSTATS: 11159 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 11160 break; 11161 case NETDEV_PCPU_STAT_DSTATS: 11162 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 11163 break; 11164 default: 11165 return -EINVAL; 11166 } 11167 11168 return v ? 0 : -ENOMEM; 11169 } 11170 11171 static void netdev_do_free_pcpu_stats(struct net_device *dev) 11172 { 11173 switch (dev->pcpu_stat_type) { 11174 case NETDEV_PCPU_STAT_NONE: 11175 return; 11176 case NETDEV_PCPU_STAT_LSTATS: 11177 free_percpu(dev->lstats); 11178 break; 11179 case NETDEV_PCPU_STAT_TSTATS: 11180 free_percpu(dev->tstats); 11181 break; 11182 case NETDEV_PCPU_STAT_DSTATS: 11183 free_percpu(dev->dstats); 11184 break; 11185 } 11186 } 11187 11188 static void netdev_free_phy_link_topology(struct net_device *dev) 11189 { 11190 struct phy_link_topology *topo = dev->link_topo; 11191 11192 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 11193 xa_destroy(&topo->phys); 11194 kfree(topo); 11195 dev->link_topo = NULL; 11196 } 11197 } 11198 11199 /** 11200 * register_netdevice() - register a network device 11201 * @dev: device to register 11202 * 11203 * Take a prepared network device structure and make it externally accessible. 11204 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 11205 * Callers must hold the rtnl lock - you may want register_netdev() 11206 * instead of this. 11207 */ 11208 int register_netdevice(struct net_device *dev) 11209 { 11210 int ret; 11211 struct net *net = dev_net(dev); 11212 11213 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 11214 NETDEV_FEATURE_COUNT); 11215 BUG_ON(dev_boot_phase); 11216 ASSERT_RTNL(); 11217 11218 might_sleep(); 11219 11220 /* When net_device's are persistent, this will be fatal. */ 11221 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 11222 BUG_ON(!net); 11223 11224 ret = ethtool_check_ops(dev->ethtool_ops); 11225 if (ret) 11226 return ret; 11227 11228 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 11229 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 11230 mutex_init(&dev->ethtool->rss_lock); 11231 11232 spin_lock_init(&dev->addr_list_lock); 11233 netdev_set_addr_lockdep_class(dev); 11234 11235 ret = dev_get_valid_name(net, dev, dev->name); 11236 if (ret < 0) 11237 goto out; 11238 11239 ret = -ENOMEM; 11240 dev->name_node = netdev_name_node_head_alloc(dev); 11241 if (!dev->name_node) 11242 goto out; 11243 11244 /* Init, if this function is available */ 11245 if (dev->netdev_ops->ndo_init) { 11246 ret = dev->netdev_ops->ndo_init(dev); 11247 if (ret) { 11248 if (ret > 0) 11249 ret = -EIO; 11250 goto err_free_name; 11251 } 11252 } 11253 11254 if (((dev->hw_features | dev->features) & 11255 NETIF_F_HW_VLAN_CTAG_FILTER) && 11256 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 11257 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 11258 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 11259 ret = -EINVAL; 11260 goto err_uninit; 11261 } 11262 11263 ret = netdev_do_alloc_pcpu_stats(dev); 11264 if (ret) 11265 goto err_uninit; 11266 11267 ret = dev_index_reserve(net, dev->ifindex); 11268 if (ret < 0) 11269 goto err_free_pcpu; 11270 dev->ifindex = ret; 11271 11272 /* Transfer changeable features to wanted_features and enable 11273 * software offloads (GSO and GRO). 11274 */ 11275 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 11276 dev->features |= NETIF_F_SOFT_FEATURES; 11277 11278 if (dev->udp_tunnel_nic_info) { 11279 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11280 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11281 } 11282 11283 dev->wanted_features = dev->features & dev->hw_features; 11284 11285 if (!(dev->flags & IFF_LOOPBACK)) 11286 dev->hw_features |= NETIF_F_NOCACHE_COPY; 11287 11288 /* If IPv4 TCP segmentation offload is supported we should also 11289 * allow the device to enable segmenting the frame with the option 11290 * of ignoring a static IP ID value. This doesn't enable the 11291 * feature itself but allows the user to enable it later. 11292 */ 11293 if (dev->hw_features & NETIF_F_TSO) 11294 dev->hw_features |= NETIF_F_TSO_MANGLEID; 11295 if (dev->vlan_features & NETIF_F_TSO) 11296 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 11297 if (dev->mpls_features & NETIF_F_TSO) 11298 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 11299 if (dev->hw_enc_features & NETIF_F_TSO) 11300 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11301 11302 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 11303 */ 11304 dev->vlan_features |= NETIF_F_HIGHDMA; 11305 11306 /* Make NETIF_F_SG inheritable to tunnel devices. 11307 */ 11308 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 11309 11310 /* Make NETIF_F_SG inheritable to MPLS. 11311 */ 11312 dev->mpls_features |= NETIF_F_SG; 11313 11314 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 11315 ret = notifier_to_errno(ret); 11316 if (ret) 11317 goto err_ifindex_release; 11318 11319 ret = netdev_register_kobject(dev); 11320 11321 netdev_lock(dev); 11322 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 11323 netdev_unlock(dev); 11324 11325 if (ret) 11326 goto err_uninit_notify; 11327 11328 netdev_lock_ops(dev); 11329 __netdev_update_features(dev); 11330 netdev_unlock_ops(dev); 11331 11332 /* 11333 * Default initial state at registry is that the 11334 * device is present. 11335 */ 11336 11337 set_bit(__LINK_STATE_PRESENT, &dev->state); 11338 11339 linkwatch_init_dev(dev); 11340 11341 dev_init_scheduler(dev); 11342 11343 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 11344 list_netdevice(dev); 11345 11346 add_device_randomness(dev->dev_addr, dev->addr_len); 11347 11348 /* If the device has permanent device address, driver should 11349 * set dev_addr and also addr_assign_type should be set to 11350 * NET_ADDR_PERM (default value). 11351 */ 11352 if (dev->addr_assign_type == NET_ADDR_PERM) 11353 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 11354 11355 /* Notify protocols, that a new device appeared. */ 11356 netdev_lock_ops(dev); 11357 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 11358 netdev_unlock_ops(dev); 11359 ret = notifier_to_errno(ret); 11360 if (ret) { 11361 /* Expect explicit free_netdev() on failure */ 11362 dev->needs_free_netdev = false; 11363 unregister_netdevice_queue(dev, NULL); 11364 goto out; 11365 } 11366 /* 11367 * Prevent userspace races by waiting until the network 11368 * device is fully setup before sending notifications. 11369 */ 11370 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 11371 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11372 11373 out: 11374 return ret; 11375 11376 err_uninit_notify: 11377 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11378 err_ifindex_release: 11379 dev_index_release(net, dev->ifindex); 11380 err_free_pcpu: 11381 netdev_do_free_pcpu_stats(dev); 11382 err_uninit: 11383 if (dev->netdev_ops->ndo_uninit) 11384 dev->netdev_ops->ndo_uninit(dev); 11385 if (dev->priv_destructor) 11386 dev->priv_destructor(dev); 11387 err_free_name: 11388 netdev_name_node_free(dev->name_node); 11389 goto out; 11390 } 11391 EXPORT_SYMBOL(register_netdevice); 11392 11393 /* Initialize the core of a dummy net device. 11394 * The setup steps dummy netdevs need which normal netdevs get by going 11395 * through register_netdevice(). 11396 */ 11397 static void init_dummy_netdev(struct net_device *dev) 11398 { 11399 /* make sure we BUG if trying to hit standard 11400 * register/unregister code path 11401 */ 11402 dev->reg_state = NETREG_DUMMY; 11403 11404 /* a dummy interface is started by default */ 11405 set_bit(__LINK_STATE_PRESENT, &dev->state); 11406 set_bit(__LINK_STATE_START, &dev->state); 11407 11408 /* Note : We dont allocate pcpu_refcnt for dummy devices, 11409 * because users of this 'device' dont need to change 11410 * its refcount. 11411 */ 11412 } 11413 11414 /** 11415 * register_netdev - register a network device 11416 * @dev: device to register 11417 * 11418 * Take a completed network device structure and add it to the kernel 11419 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 11420 * chain. 0 is returned on success. A negative errno code is returned 11421 * on a failure to set up the device, or if the name is a duplicate. 11422 * 11423 * This is a wrapper around register_netdevice that takes the rtnl semaphore 11424 * and expands the device name if you passed a format string to 11425 * alloc_netdev. 11426 */ 11427 int register_netdev(struct net_device *dev) 11428 { 11429 struct net *net = dev_net(dev); 11430 int err; 11431 11432 if (rtnl_net_lock_killable(net)) 11433 return -EINTR; 11434 11435 err = register_netdevice(dev); 11436 11437 rtnl_net_unlock(net); 11438 11439 return err; 11440 } 11441 EXPORT_SYMBOL(register_netdev); 11442 11443 int netdev_refcnt_read(const struct net_device *dev) 11444 { 11445 #ifdef CONFIG_PCPU_DEV_REFCNT 11446 int i, refcnt = 0; 11447 11448 for_each_possible_cpu(i) 11449 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 11450 return refcnt; 11451 #else 11452 return refcount_read(&dev->dev_refcnt); 11453 #endif 11454 } 11455 EXPORT_SYMBOL(netdev_refcnt_read); 11456 11457 int netdev_unregister_timeout_secs __read_mostly = 10; 11458 11459 #define WAIT_REFS_MIN_MSECS 1 11460 #define WAIT_REFS_MAX_MSECS 250 11461 /** 11462 * netdev_wait_allrefs_any - wait until all references are gone. 11463 * @list: list of net_devices to wait on 11464 * 11465 * This is called when unregistering network devices. 11466 * 11467 * Any protocol or device that holds a reference should register 11468 * for netdevice notification, and cleanup and put back the 11469 * reference if they receive an UNREGISTER event. 11470 * We can get stuck here if buggy protocols don't correctly 11471 * call dev_put. 11472 */ 11473 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 11474 { 11475 unsigned long rebroadcast_time, warning_time; 11476 struct net_device *dev; 11477 int wait = 0; 11478 11479 rebroadcast_time = warning_time = jiffies; 11480 11481 list_for_each_entry(dev, list, todo_list) 11482 if (netdev_refcnt_read(dev) == 1) 11483 return dev; 11484 11485 while (true) { 11486 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 11487 rtnl_lock(); 11488 11489 /* Rebroadcast unregister notification */ 11490 list_for_each_entry(dev, list, todo_list) 11491 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11492 11493 __rtnl_unlock(); 11494 rcu_barrier(); 11495 rtnl_lock(); 11496 11497 list_for_each_entry(dev, list, todo_list) 11498 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 11499 &dev->state)) { 11500 /* We must not have linkwatch events 11501 * pending on unregister. If this 11502 * happens, we simply run the queue 11503 * unscheduled, resulting in a noop 11504 * for this device. 11505 */ 11506 linkwatch_run_queue(); 11507 break; 11508 } 11509 11510 __rtnl_unlock(); 11511 11512 rebroadcast_time = jiffies; 11513 } 11514 11515 rcu_barrier(); 11516 11517 if (!wait) { 11518 wait = WAIT_REFS_MIN_MSECS; 11519 } else { 11520 msleep(wait); 11521 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 11522 } 11523 11524 list_for_each_entry(dev, list, todo_list) 11525 if (netdev_refcnt_read(dev) == 1) 11526 return dev; 11527 11528 if (time_after(jiffies, warning_time + 11529 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 11530 list_for_each_entry(dev, list, todo_list) { 11531 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 11532 dev->name, netdev_refcnt_read(dev)); 11533 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 11534 } 11535 11536 warning_time = jiffies; 11537 } 11538 } 11539 } 11540 11541 /* The sequence is: 11542 * 11543 * rtnl_lock(); 11544 * ... 11545 * register_netdevice(x1); 11546 * register_netdevice(x2); 11547 * ... 11548 * unregister_netdevice(y1); 11549 * unregister_netdevice(y2); 11550 * ... 11551 * rtnl_unlock(); 11552 * free_netdev(y1); 11553 * free_netdev(y2); 11554 * 11555 * We are invoked by rtnl_unlock(). 11556 * This allows us to deal with problems: 11557 * 1) We can delete sysfs objects which invoke hotplug 11558 * without deadlocking with linkwatch via keventd. 11559 * 2) Since we run with the RTNL semaphore not held, we can sleep 11560 * safely in order to wait for the netdev refcnt to drop to zero. 11561 * 11562 * We must not return until all unregister events added during 11563 * the interval the lock was held have been completed. 11564 */ 11565 void netdev_run_todo(void) 11566 { 11567 struct net_device *dev, *tmp; 11568 struct list_head list; 11569 int cnt; 11570 #ifdef CONFIG_LOCKDEP 11571 struct list_head unlink_list; 11572 11573 list_replace_init(&net_unlink_list, &unlink_list); 11574 11575 while (!list_empty(&unlink_list)) { 11576 dev = list_first_entry(&unlink_list, struct net_device, 11577 unlink_list); 11578 list_del_init(&dev->unlink_list); 11579 dev->nested_level = dev->lower_level - 1; 11580 } 11581 #endif 11582 11583 /* Snapshot list, allow later requests */ 11584 list_replace_init(&net_todo_list, &list); 11585 11586 __rtnl_unlock(); 11587 11588 /* Wait for rcu callbacks to finish before next phase */ 11589 if (!list_empty(&list)) 11590 rcu_barrier(); 11591 11592 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 11593 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 11594 netdev_WARN(dev, "run_todo but not unregistering\n"); 11595 list_del(&dev->todo_list); 11596 continue; 11597 } 11598 11599 netdev_lock(dev); 11600 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 11601 netdev_unlock(dev); 11602 linkwatch_sync_dev(dev); 11603 } 11604 11605 cnt = 0; 11606 while (!list_empty(&list)) { 11607 dev = netdev_wait_allrefs_any(&list); 11608 list_del(&dev->todo_list); 11609 11610 /* paranoia */ 11611 BUG_ON(netdev_refcnt_read(dev) != 1); 11612 BUG_ON(!list_empty(&dev->ptype_all)); 11613 BUG_ON(!list_empty(&dev->ptype_specific)); 11614 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 11615 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 11616 11617 netdev_do_free_pcpu_stats(dev); 11618 if (dev->priv_destructor) 11619 dev->priv_destructor(dev); 11620 if (dev->needs_free_netdev) 11621 free_netdev(dev); 11622 11623 cnt++; 11624 11625 /* Free network device */ 11626 kobject_put(&dev->dev.kobj); 11627 } 11628 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 11629 wake_up(&netdev_unregistering_wq); 11630 } 11631 11632 /* Collate per-cpu network dstats statistics 11633 * 11634 * Read per-cpu network statistics from dev->dstats and populate the related 11635 * fields in @s. 11636 */ 11637 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 11638 const struct pcpu_dstats __percpu *dstats) 11639 { 11640 int cpu; 11641 11642 for_each_possible_cpu(cpu) { 11643 u64 rx_packets, rx_bytes, rx_drops; 11644 u64 tx_packets, tx_bytes, tx_drops; 11645 const struct pcpu_dstats *stats; 11646 unsigned int start; 11647 11648 stats = per_cpu_ptr(dstats, cpu); 11649 do { 11650 start = u64_stats_fetch_begin(&stats->syncp); 11651 rx_packets = u64_stats_read(&stats->rx_packets); 11652 rx_bytes = u64_stats_read(&stats->rx_bytes); 11653 rx_drops = u64_stats_read(&stats->rx_drops); 11654 tx_packets = u64_stats_read(&stats->tx_packets); 11655 tx_bytes = u64_stats_read(&stats->tx_bytes); 11656 tx_drops = u64_stats_read(&stats->tx_drops); 11657 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11658 11659 s->rx_packets += rx_packets; 11660 s->rx_bytes += rx_bytes; 11661 s->rx_dropped += rx_drops; 11662 s->tx_packets += tx_packets; 11663 s->tx_bytes += tx_bytes; 11664 s->tx_dropped += tx_drops; 11665 } 11666 } 11667 11668 /* ndo_get_stats64 implementation for dtstats-based accounting. 11669 * 11670 * Populate @s from dev->stats and dev->dstats. This is used internally by the 11671 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 11672 */ 11673 static void dev_get_dstats64(const struct net_device *dev, 11674 struct rtnl_link_stats64 *s) 11675 { 11676 netdev_stats_to_stats64(s, &dev->stats); 11677 dev_fetch_dstats(s, dev->dstats); 11678 } 11679 11680 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 11681 * all the same fields in the same order as net_device_stats, with only 11682 * the type differing, but rtnl_link_stats64 may have additional fields 11683 * at the end for newer counters. 11684 */ 11685 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11686 const struct net_device_stats *netdev_stats) 11687 { 11688 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11689 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11690 u64 *dst = (u64 *)stats64; 11691 11692 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11693 for (i = 0; i < n; i++) 11694 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11695 /* zero out counters that only exist in rtnl_link_stats64 */ 11696 memset((char *)stats64 + n * sizeof(u64), 0, 11697 sizeof(*stats64) - n * sizeof(u64)); 11698 } 11699 EXPORT_SYMBOL(netdev_stats_to_stats64); 11700 11701 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11702 struct net_device *dev) 11703 { 11704 struct net_device_core_stats __percpu *p; 11705 11706 p = alloc_percpu_gfp(struct net_device_core_stats, 11707 GFP_ATOMIC | __GFP_NOWARN); 11708 11709 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11710 free_percpu(p); 11711 11712 /* This READ_ONCE() pairs with the cmpxchg() above */ 11713 return READ_ONCE(dev->core_stats); 11714 } 11715 11716 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11717 { 11718 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11719 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11720 unsigned long __percpu *field; 11721 11722 if (unlikely(!p)) { 11723 p = netdev_core_stats_alloc(dev); 11724 if (!p) 11725 return; 11726 } 11727 11728 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11729 this_cpu_inc(*field); 11730 } 11731 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11732 11733 /** 11734 * dev_get_stats - get network device statistics 11735 * @dev: device to get statistics from 11736 * @storage: place to store stats 11737 * 11738 * Get network statistics from device. Return @storage. 11739 * The device driver may provide its own method by setting 11740 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11741 * otherwise the internal statistics structure is used. 11742 */ 11743 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11744 struct rtnl_link_stats64 *storage) 11745 { 11746 const struct net_device_ops *ops = dev->netdev_ops; 11747 const struct net_device_core_stats __percpu *p; 11748 11749 /* 11750 * IPv{4,6} and udp tunnels share common stat helpers and use 11751 * different stat type (NETDEV_PCPU_STAT_TSTATS vs 11752 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. 11753 */ 11754 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != 11755 offsetof(struct pcpu_dstats, rx_bytes)); 11756 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != 11757 offsetof(struct pcpu_dstats, rx_packets)); 11758 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != 11759 offsetof(struct pcpu_dstats, tx_bytes)); 11760 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != 11761 offsetof(struct pcpu_dstats, tx_packets)); 11762 11763 if (ops->ndo_get_stats64) { 11764 memset(storage, 0, sizeof(*storage)); 11765 ops->ndo_get_stats64(dev, storage); 11766 } else if (ops->ndo_get_stats) { 11767 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11768 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11769 dev_get_tstats64(dev, storage); 11770 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11771 dev_get_dstats64(dev, storage); 11772 } else { 11773 netdev_stats_to_stats64(storage, &dev->stats); 11774 } 11775 11776 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11777 p = READ_ONCE(dev->core_stats); 11778 if (p) { 11779 const struct net_device_core_stats *core_stats; 11780 int i; 11781 11782 for_each_possible_cpu(i) { 11783 core_stats = per_cpu_ptr(p, i); 11784 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11785 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11786 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11787 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11788 } 11789 } 11790 return storage; 11791 } 11792 EXPORT_SYMBOL(dev_get_stats); 11793 11794 /** 11795 * dev_fetch_sw_netstats - get per-cpu network device statistics 11796 * @s: place to store stats 11797 * @netstats: per-cpu network stats to read from 11798 * 11799 * Read per-cpu network statistics and populate the related fields in @s. 11800 */ 11801 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11802 const struct pcpu_sw_netstats __percpu *netstats) 11803 { 11804 int cpu; 11805 11806 for_each_possible_cpu(cpu) { 11807 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11808 const struct pcpu_sw_netstats *stats; 11809 unsigned int start; 11810 11811 stats = per_cpu_ptr(netstats, cpu); 11812 do { 11813 start = u64_stats_fetch_begin(&stats->syncp); 11814 rx_packets = u64_stats_read(&stats->rx_packets); 11815 rx_bytes = u64_stats_read(&stats->rx_bytes); 11816 tx_packets = u64_stats_read(&stats->tx_packets); 11817 tx_bytes = u64_stats_read(&stats->tx_bytes); 11818 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11819 11820 s->rx_packets += rx_packets; 11821 s->rx_bytes += rx_bytes; 11822 s->tx_packets += tx_packets; 11823 s->tx_bytes += tx_bytes; 11824 } 11825 } 11826 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11827 11828 /** 11829 * dev_get_tstats64 - ndo_get_stats64 implementation 11830 * @dev: device to get statistics from 11831 * @s: place to store stats 11832 * 11833 * Populate @s from dev->stats and dev->tstats. Can be used as 11834 * ndo_get_stats64() callback. 11835 */ 11836 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11837 { 11838 netdev_stats_to_stats64(s, &dev->stats); 11839 dev_fetch_sw_netstats(s, dev->tstats); 11840 } 11841 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11842 11843 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11844 { 11845 struct netdev_queue *queue = dev_ingress_queue(dev); 11846 11847 #ifdef CONFIG_NET_CLS_ACT 11848 if (queue) 11849 return queue; 11850 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11851 if (!queue) 11852 return NULL; 11853 netdev_init_one_queue(dev, queue, NULL); 11854 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11855 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11856 rcu_assign_pointer(dev->ingress_queue, queue); 11857 #endif 11858 return queue; 11859 } 11860 11861 static const struct ethtool_ops default_ethtool_ops; 11862 11863 void netdev_set_default_ethtool_ops(struct net_device *dev, 11864 const struct ethtool_ops *ops) 11865 { 11866 if (dev->ethtool_ops == &default_ethtool_ops) 11867 dev->ethtool_ops = ops; 11868 } 11869 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11870 11871 /** 11872 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11873 * @dev: netdev to enable the IRQ coalescing on 11874 * 11875 * Sets a conservative default for SW IRQ coalescing. Users can use 11876 * sysfs attributes to override the default values. 11877 */ 11878 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11879 { 11880 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11881 11882 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11883 netdev_set_gro_flush_timeout(dev, 20000); 11884 netdev_set_defer_hard_irqs(dev, 1); 11885 } 11886 } 11887 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11888 11889 /** 11890 * alloc_netdev_mqs - allocate network device 11891 * @sizeof_priv: size of private data to allocate space for 11892 * @name: device name format string 11893 * @name_assign_type: origin of device name 11894 * @setup: callback to initialize device 11895 * @txqs: the number of TX subqueues to allocate 11896 * @rxqs: the number of RX subqueues to allocate 11897 * 11898 * Allocates a struct net_device with private data area for driver use 11899 * and performs basic initialization. Also allocates subqueue structs 11900 * for each queue on the device. 11901 */ 11902 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11903 unsigned char name_assign_type, 11904 void (*setup)(struct net_device *), 11905 unsigned int txqs, unsigned int rxqs) 11906 { 11907 struct net_device *dev; 11908 size_t napi_config_sz; 11909 unsigned int maxqs; 11910 11911 BUG_ON(strlen(name) >= sizeof(dev->name)); 11912 11913 if (txqs < 1) { 11914 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11915 return NULL; 11916 } 11917 11918 if (rxqs < 1) { 11919 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11920 return NULL; 11921 } 11922 11923 maxqs = max(txqs, rxqs); 11924 11925 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11926 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11927 if (!dev) 11928 return NULL; 11929 11930 dev->priv_len = sizeof_priv; 11931 11932 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev"); 11933 #ifdef CONFIG_PCPU_DEV_REFCNT 11934 dev->pcpu_refcnt = alloc_percpu(int); 11935 if (!dev->pcpu_refcnt) 11936 goto free_dev; 11937 __dev_hold(dev); 11938 #else 11939 refcount_set(&dev->dev_refcnt, 1); 11940 #endif 11941 11942 if (dev_addr_init(dev)) 11943 goto free_pcpu; 11944 11945 dev_mc_init(dev); 11946 dev_uc_init(dev); 11947 11948 dev_net_set(dev, &init_net); 11949 11950 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11951 dev->xdp_zc_max_segs = 1; 11952 dev->gso_max_segs = GSO_MAX_SEGS; 11953 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11954 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11955 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11956 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11957 dev->tso_max_segs = TSO_MAX_SEGS; 11958 dev->upper_level = 1; 11959 dev->lower_level = 1; 11960 #ifdef CONFIG_LOCKDEP 11961 dev->nested_level = 0; 11962 INIT_LIST_HEAD(&dev->unlink_list); 11963 #endif 11964 11965 INIT_LIST_HEAD(&dev->napi_list); 11966 INIT_LIST_HEAD(&dev->unreg_list); 11967 INIT_LIST_HEAD(&dev->close_list); 11968 INIT_LIST_HEAD(&dev->link_watch_list); 11969 INIT_LIST_HEAD(&dev->adj_list.upper); 11970 INIT_LIST_HEAD(&dev->adj_list.lower); 11971 INIT_LIST_HEAD(&dev->ptype_all); 11972 INIT_LIST_HEAD(&dev->ptype_specific); 11973 INIT_LIST_HEAD(&dev->net_notifier_list); 11974 #ifdef CONFIG_NET_SCHED 11975 hash_init(dev->qdisc_hash); 11976 #endif 11977 11978 mutex_init(&dev->lock); 11979 11980 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11981 setup(dev); 11982 11983 if (!dev->tx_queue_len) { 11984 dev->priv_flags |= IFF_NO_QUEUE; 11985 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11986 } 11987 11988 dev->num_tx_queues = txqs; 11989 dev->real_num_tx_queues = txqs; 11990 if (netif_alloc_netdev_queues(dev)) 11991 goto free_all; 11992 11993 dev->num_rx_queues = rxqs; 11994 dev->real_num_rx_queues = rxqs; 11995 if (netif_alloc_rx_queues(dev)) 11996 goto free_all; 11997 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11998 if (!dev->ethtool) 11999 goto free_all; 12000 12001 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); 12002 if (!dev->cfg) 12003 goto free_all; 12004 dev->cfg_pending = dev->cfg; 12005 12006 dev->num_napi_configs = maxqs; 12007 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 12008 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 12009 if (!dev->napi_config) 12010 goto free_all; 12011 12012 strscpy(dev->name, name); 12013 dev->name_assign_type = name_assign_type; 12014 dev->group = INIT_NETDEV_GROUP; 12015 if (!dev->ethtool_ops) 12016 dev->ethtool_ops = &default_ethtool_ops; 12017 12018 nf_hook_netdev_init(dev); 12019 12020 return dev; 12021 12022 free_all: 12023 free_netdev(dev); 12024 return NULL; 12025 12026 free_pcpu: 12027 #ifdef CONFIG_PCPU_DEV_REFCNT 12028 free_percpu(dev->pcpu_refcnt); 12029 free_dev: 12030 #endif 12031 kvfree(dev); 12032 return NULL; 12033 } 12034 EXPORT_SYMBOL(alloc_netdev_mqs); 12035 12036 static void netdev_napi_exit(struct net_device *dev) 12037 { 12038 if (!list_empty(&dev->napi_list)) { 12039 struct napi_struct *p, *n; 12040 12041 netdev_lock(dev); 12042 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 12043 __netif_napi_del_locked(p); 12044 netdev_unlock(dev); 12045 12046 synchronize_net(); 12047 } 12048 12049 kvfree(dev->napi_config); 12050 } 12051 12052 /** 12053 * free_netdev - free network device 12054 * @dev: device 12055 * 12056 * This function does the last stage of destroying an allocated device 12057 * interface. The reference to the device object is released. If this 12058 * is the last reference then it will be freed.Must be called in process 12059 * context. 12060 */ 12061 void free_netdev(struct net_device *dev) 12062 { 12063 might_sleep(); 12064 12065 /* When called immediately after register_netdevice() failed the unwind 12066 * handling may still be dismantling the device. Handle that case by 12067 * deferring the free. 12068 */ 12069 if (dev->reg_state == NETREG_UNREGISTERING) { 12070 ASSERT_RTNL(); 12071 dev->needs_free_netdev = true; 12072 return; 12073 } 12074 12075 WARN_ON(dev->cfg != dev->cfg_pending); 12076 kfree(dev->cfg); 12077 kfree(dev->ethtool); 12078 netif_free_tx_queues(dev); 12079 netif_free_rx_queues(dev); 12080 12081 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 12082 12083 /* Flush device addresses */ 12084 dev_addr_flush(dev); 12085 12086 netdev_napi_exit(dev); 12087 12088 netif_del_cpu_rmap(dev); 12089 12090 ref_tracker_dir_exit(&dev->refcnt_tracker); 12091 #ifdef CONFIG_PCPU_DEV_REFCNT 12092 free_percpu(dev->pcpu_refcnt); 12093 dev->pcpu_refcnt = NULL; 12094 #endif 12095 free_percpu(dev->core_stats); 12096 dev->core_stats = NULL; 12097 free_percpu(dev->xdp_bulkq); 12098 dev->xdp_bulkq = NULL; 12099 12100 netdev_free_phy_link_topology(dev); 12101 12102 mutex_destroy(&dev->lock); 12103 12104 /* Compatibility with error handling in drivers */ 12105 if (dev->reg_state == NETREG_UNINITIALIZED || 12106 dev->reg_state == NETREG_DUMMY) { 12107 kvfree(dev); 12108 return; 12109 } 12110 12111 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 12112 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 12113 12114 /* will free via device release */ 12115 put_device(&dev->dev); 12116 } 12117 EXPORT_SYMBOL(free_netdev); 12118 12119 /** 12120 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 12121 * @sizeof_priv: size of private data to allocate space for 12122 * 12123 * Return: the allocated net_device on success, NULL otherwise 12124 */ 12125 struct net_device *alloc_netdev_dummy(int sizeof_priv) 12126 { 12127 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 12128 init_dummy_netdev); 12129 } 12130 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 12131 12132 /** 12133 * synchronize_net - Synchronize with packet receive processing 12134 * 12135 * Wait for packets currently being received to be done. 12136 * Does not block later packets from starting. 12137 */ 12138 void synchronize_net(void) 12139 { 12140 might_sleep(); 12141 if (from_cleanup_net() || rtnl_is_locked()) 12142 synchronize_rcu_expedited(); 12143 else 12144 synchronize_rcu(); 12145 } 12146 EXPORT_SYMBOL(synchronize_net); 12147 12148 static void netdev_rss_contexts_free(struct net_device *dev) 12149 { 12150 struct ethtool_rxfh_context *ctx; 12151 unsigned long context; 12152 12153 mutex_lock(&dev->ethtool->rss_lock); 12154 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 12155 xa_erase(&dev->ethtool->rss_ctx, context); 12156 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL); 12157 kfree(ctx); 12158 } 12159 xa_destroy(&dev->ethtool->rss_ctx); 12160 mutex_unlock(&dev->ethtool->rss_lock); 12161 } 12162 12163 /** 12164 * unregister_netdevice_queue - remove device from the kernel 12165 * @dev: device 12166 * @head: list 12167 * 12168 * This function shuts down a device interface and removes it 12169 * from the kernel tables. 12170 * If head not NULL, device is queued to be unregistered later. 12171 * 12172 * Callers must hold the rtnl semaphore. You may want 12173 * unregister_netdev() instead of this. 12174 */ 12175 12176 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 12177 { 12178 ASSERT_RTNL(); 12179 12180 if (head) { 12181 list_move_tail(&dev->unreg_list, head); 12182 } else { 12183 LIST_HEAD(single); 12184 12185 list_add(&dev->unreg_list, &single); 12186 unregister_netdevice_many(&single); 12187 } 12188 } 12189 EXPORT_SYMBOL(unregister_netdevice_queue); 12190 12191 static void dev_memory_provider_uninstall(struct net_device *dev) 12192 { 12193 unsigned int i; 12194 12195 for (i = 0; i < dev->real_num_rx_queues; i++) { 12196 struct netdev_rx_queue *rxq = &dev->_rx[i]; 12197 struct pp_memory_provider_params *p = &rxq->mp_params; 12198 12199 if (p->mp_ops && p->mp_ops->uninstall) 12200 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); 12201 } 12202 } 12203 12204 void unregister_netdevice_many_notify(struct list_head *head, 12205 u32 portid, const struct nlmsghdr *nlh) 12206 { 12207 struct net_device *dev, *tmp; 12208 LIST_HEAD(close_head); 12209 int cnt = 0; 12210 12211 BUG_ON(dev_boot_phase); 12212 ASSERT_RTNL(); 12213 12214 if (list_empty(head)) 12215 return; 12216 12217 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 12218 /* Some devices call without registering 12219 * for initialization unwind. Remove those 12220 * devices and proceed with the remaining. 12221 */ 12222 if (dev->reg_state == NETREG_UNINITIALIZED) { 12223 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 12224 dev->name, dev); 12225 12226 WARN_ON(1); 12227 list_del(&dev->unreg_list); 12228 continue; 12229 } 12230 dev->dismantle = true; 12231 BUG_ON(dev->reg_state != NETREG_REGISTERED); 12232 } 12233 12234 /* If device is running, close it first. Start with ops locked... */ 12235 list_for_each_entry(dev, head, unreg_list) { 12236 if (netdev_need_ops_lock(dev)) { 12237 list_add_tail(&dev->close_list, &close_head); 12238 netdev_lock(dev); 12239 } 12240 } 12241 netif_close_many(&close_head, true); 12242 /* ... now unlock them and go over the rest. */ 12243 list_for_each_entry(dev, head, unreg_list) { 12244 if (netdev_need_ops_lock(dev)) 12245 netdev_unlock(dev); 12246 else 12247 list_add_tail(&dev->close_list, &close_head); 12248 } 12249 netif_close_many(&close_head, true); 12250 12251 list_for_each_entry(dev, head, unreg_list) { 12252 /* And unlink it from device chain. */ 12253 unlist_netdevice(dev); 12254 netdev_lock(dev); 12255 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 12256 netdev_unlock(dev); 12257 } 12258 flush_all_backlogs(); 12259 12260 synchronize_net(); 12261 12262 list_for_each_entry(dev, head, unreg_list) { 12263 struct sk_buff *skb = NULL; 12264 12265 /* Shutdown queueing discipline. */ 12266 netdev_lock_ops(dev); 12267 dev_shutdown(dev); 12268 dev_tcx_uninstall(dev); 12269 dev_xdp_uninstall(dev); 12270 dev_memory_provider_uninstall(dev); 12271 netdev_unlock_ops(dev); 12272 bpf_dev_bound_netdev_unregister(dev); 12273 12274 netdev_offload_xstats_disable_all(dev); 12275 12276 /* Notify protocols, that we are about to destroy 12277 * this device. They should clean all the things. 12278 */ 12279 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12280 12281 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 12282 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 12283 GFP_KERNEL, NULL, 0, 12284 portid, nlh); 12285 12286 /* 12287 * Flush the unicast and multicast chains 12288 */ 12289 dev_uc_flush(dev); 12290 dev_mc_flush(dev); 12291 12292 netdev_name_node_alt_flush(dev); 12293 netdev_name_node_free(dev->name_node); 12294 12295 netdev_rss_contexts_free(dev); 12296 12297 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 12298 12299 if (dev->netdev_ops->ndo_uninit) 12300 dev->netdev_ops->ndo_uninit(dev); 12301 12302 mutex_destroy(&dev->ethtool->rss_lock); 12303 12304 net_shaper_flush_netdev(dev); 12305 12306 if (skb) 12307 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 12308 12309 /* Notifier chain MUST detach us all upper devices. */ 12310 WARN_ON(netdev_has_any_upper_dev(dev)); 12311 WARN_ON(netdev_has_any_lower_dev(dev)); 12312 12313 /* Remove entries from kobject tree */ 12314 netdev_unregister_kobject(dev); 12315 #ifdef CONFIG_XPS 12316 /* Remove XPS queueing entries */ 12317 netif_reset_xps_queues_gt(dev, 0); 12318 #endif 12319 } 12320 12321 synchronize_net(); 12322 12323 list_for_each_entry(dev, head, unreg_list) { 12324 netdev_put(dev, &dev->dev_registered_tracker); 12325 net_set_todo(dev); 12326 cnt++; 12327 } 12328 atomic_add(cnt, &dev_unreg_count); 12329 12330 list_del(head); 12331 } 12332 12333 /** 12334 * unregister_netdevice_many - unregister many devices 12335 * @head: list of devices 12336 * 12337 * Note: As most callers use a stack allocated list_head, 12338 * we force a list_del() to make sure stack won't be corrupted later. 12339 */ 12340 void unregister_netdevice_many(struct list_head *head) 12341 { 12342 unregister_netdevice_many_notify(head, 0, NULL); 12343 } 12344 EXPORT_SYMBOL(unregister_netdevice_many); 12345 12346 /** 12347 * unregister_netdev - remove device from the kernel 12348 * @dev: device 12349 * 12350 * This function shuts down a device interface and removes it 12351 * from the kernel tables. 12352 * 12353 * This is just a wrapper for unregister_netdevice that takes 12354 * the rtnl semaphore. In general you want to use this and not 12355 * unregister_netdevice. 12356 */ 12357 void unregister_netdev(struct net_device *dev) 12358 { 12359 rtnl_net_dev_lock(dev); 12360 unregister_netdevice(dev); 12361 rtnl_net_dev_unlock(dev); 12362 } 12363 EXPORT_SYMBOL(unregister_netdev); 12364 12365 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 12366 const char *pat, int new_ifindex, 12367 struct netlink_ext_ack *extack) 12368 { 12369 struct netdev_name_node *name_node; 12370 struct net *net_old = dev_net(dev); 12371 char new_name[IFNAMSIZ] = {}; 12372 int err, new_nsid; 12373 12374 ASSERT_RTNL(); 12375 12376 /* Don't allow namespace local devices to be moved. */ 12377 err = -EINVAL; 12378 if (dev->netns_immutable) { 12379 NL_SET_ERR_MSG(extack, "The interface netns is immutable"); 12380 goto out; 12381 } 12382 12383 /* Ensure the device has been registered */ 12384 if (dev->reg_state != NETREG_REGISTERED) { 12385 NL_SET_ERR_MSG(extack, "The interface isn't registered"); 12386 goto out; 12387 } 12388 12389 /* Get out if there is nothing todo */ 12390 err = 0; 12391 if (net_eq(net_old, net)) 12392 goto out; 12393 12394 /* Pick the destination device name, and ensure 12395 * we can use it in the destination network namespace. 12396 */ 12397 err = -EEXIST; 12398 if (netdev_name_in_use(net, dev->name)) { 12399 /* We get here if we can't use the current device name */ 12400 if (!pat) { 12401 NL_SET_ERR_MSG(extack, 12402 "An interface with the same name exists in the target netns"); 12403 goto out; 12404 } 12405 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 12406 if (err < 0) { 12407 NL_SET_ERR_MSG_FMT(extack, 12408 "Unable to use '%s' for the new interface name in the target netns", 12409 pat); 12410 goto out; 12411 } 12412 } 12413 /* Check that none of the altnames conflicts. */ 12414 err = -EEXIST; 12415 netdev_for_each_altname(dev, name_node) { 12416 if (netdev_name_in_use(net, name_node->name)) { 12417 NL_SET_ERR_MSG_FMT(extack, 12418 "An interface with the altname %s exists in the target netns", 12419 name_node->name); 12420 goto out; 12421 } 12422 } 12423 12424 /* Check that new_ifindex isn't used yet. */ 12425 if (new_ifindex) { 12426 err = dev_index_reserve(net, new_ifindex); 12427 if (err < 0) { 12428 NL_SET_ERR_MSG_FMT(extack, 12429 "The ifindex %d is not available in the target netns", 12430 new_ifindex); 12431 goto out; 12432 } 12433 } else { 12434 /* If there is an ifindex conflict assign a new one */ 12435 err = dev_index_reserve(net, dev->ifindex); 12436 if (err == -EBUSY) 12437 err = dev_index_reserve(net, 0); 12438 if (err < 0) { 12439 NL_SET_ERR_MSG(extack, 12440 "Unable to allocate a new ifindex in the target netns"); 12441 goto out; 12442 } 12443 new_ifindex = err; 12444 } 12445 12446 /* 12447 * And now a mini version of register_netdevice unregister_netdevice. 12448 */ 12449 12450 netdev_lock_ops(dev); 12451 /* If device is running close it first. */ 12452 netif_close(dev); 12453 /* And unlink it from device chain */ 12454 unlist_netdevice(dev); 12455 12456 if (!netdev_need_ops_lock(dev)) 12457 netdev_lock(dev); 12458 dev->moving_ns = true; 12459 netdev_unlock(dev); 12460 12461 synchronize_net(); 12462 12463 /* Shutdown queueing discipline. */ 12464 netdev_lock_ops(dev); 12465 dev_shutdown(dev); 12466 netdev_unlock_ops(dev); 12467 12468 /* Notify protocols, that we are about to destroy 12469 * this device. They should clean all the things. 12470 * 12471 * Note that dev->reg_state stays at NETREG_REGISTERED. 12472 * This is wanted because this way 8021q and macvlan know 12473 * the device is just moving and can keep their slaves up. 12474 */ 12475 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12476 rcu_barrier(); 12477 12478 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 12479 12480 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 12481 new_ifindex); 12482 12483 /* 12484 * Flush the unicast and multicast chains 12485 */ 12486 dev_uc_flush(dev); 12487 dev_mc_flush(dev); 12488 12489 /* Send a netdev-removed uevent to the old namespace */ 12490 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 12491 netdev_adjacent_del_links(dev); 12492 12493 /* Move per-net netdevice notifiers that are following the netdevice */ 12494 move_netdevice_notifiers_dev_net(dev, net); 12495 12496 /* Actually switch the network namespace */ 12497 netdev_lock(dev); 12498 dev_net_set(dev, net); 12499 netdev_unlock(dev); 12500 dev->ifindex = new_ifindex; 12501 12502 if (new_name[0]) { 12503 /* Rename the netdev to prepared name */ 12504 write_seqlock_bh(&netdev_rename_lock); 12505 strscpy(dev->name, new_name, IFNAMSIZ); 12506 write_sequnlock_bh(&netdev_rename_lock); 12507 } 12508 12509 /* Fixup kobjects */ 12510 dev_set_uevent_suppress(&dev->dev, 1); 12511 err = device_rename(&dev->dev, dev->name); 12512 dev_set_uevent_suppress(&dev->dev, 0); 12513 WARN_ON(err); 12514 12515 /* Send a netdev-add uevent to the new namespace */ 12516 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 12517 netdev_adjacent_add_links(dev); 12518 12519 /* Adapt owner in case owning user namespace of target network 12520 * namespace is different from the original one. 12521 */ 12522 err = netdev_change_owner(dev, net_old, net); 12523 WARN_ON(err); 12524 12525 netdev_lock(dev); 12526 dev->moving_ns = false; 12527 if (!netdev_need_ops_lock(dev)) 12528 netdev_unlock(dev); 12529 12530 /* Add the device back in the hashes */ 12531 list_netdevice(dev); 12532 /* Notify protocols, that a new device appeared. */ 12533 call_netdevice_notifiers(NETDEV_REGISTER, dev); 12534 netdev_unlock_ops(dev); 12535 12536 /* 12537 * Prevent userspace races by waiting until the network 12538 * device is fully setup before sending notifications. 12539 */ 12540 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 12541 12542 synchronize_net(); 12543 err = 0; 12544 out: 12545 return err; 12546 } 12547 12548 static int dev_cpu_dead(unsigned int oldcpu) 12549 { 12550 struct sk_buff **list_skb; 12551 struct sk_buff *skb; 12552 unsigned int cpu; 12553 struct softnet_data *sd, *oldsd, *remsd = NULL; 12554 12555 local_irq_disable(); 12556 cpu = smp_processor_id(); 12557 sd = &per_cpu(softnet_data, cpu); 12558 oldsd = &per_cpu(softnet_data, oldcpu); 12559 12560 /* Find end of our completion_queue. */ 12561 list_skb = &sd->completion_queue; 12562 while (*list_skb) 12563 list_skb = &(*list_skb)->next; 12564 /* Append completion queue from offline CPU. */ 12565 *list_skb = oldsd->completion_queue; 12566 oldsd->completion_queue = NULL; 12567 12568 /* Append output queue from offline CPU. */ 12569 if (oldsd->output_queue) { 12570 *sd->output_queue_tailp = oldsd->output_queue; 12571 sd->output_queue_tailp = oldsd->output_queue_tailp; 12572 oldsd->output_queue = NULL; 12573 oldsd->output_queue_tailp = &oldsd->output_queue; 12574 } 12575 /* Append NAPI poll list from offline CPU, with one exception : 12576 * process_backlog() must be called by cpu owning percpu backlog. 12577 * We properly handle process_queue & input_pkt_queue later. 12578 */ 12579 while (!list_empty(&oldsd->poll_list)) { 12580 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 12581 struct napi_struct, 12582 poll_list); 12583 12584 list_del_init(&napi->poll_list); 12585 if (napi->poll == process_backlog) 12586 napi->state &= NAPIF_STATE_THREADED; 12587 else 12588 ____napi_schedule(sd, napi); 12589 } 12590 12591 raise_softirq_irqoff(NET_TX_SOFTIRQ); 12592 local_irq_enable(); 12593 12594 if (!use_backlog_threads()) { 12595 #ifdef CONFIG_RPS 12596 remsd = oldsd->rps_ipi_list; 12597 oldsd->rps_ipi_list = NULL; 12598 #endif 12599 /* send out pending IPI's on offline CPU */ 12600 net_rps_send_ipi(remsd); 12601 } 12602 12603 /* Process offline CPU's input_pkt_queue */ 12604 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 12605 netif_rx(skb); 12606 rps_input_queue_head_incr(oldsd); 12607 } 12608 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 12609 netif_rx(skb); 12610 rps_input_queue_head_incr(oldsd); 12611 } 12612 12613 return 0; 12614 } 12615 12616 /** 12617 * netdev_increment_features - increment feature set by one 12618 * @all: current feature set 12619 * @one: new feature set 12620 * @mask: mask feature set 12621 * 12622 * Computes a new feature set after adding a device with feature set 12623 * @one to the master device with current feature set @all. Will not 12624 * enable anything that is off in @mask. Returns the new feature set. 12625 */ 12626 netdev_features_t netdev_increment_features(netdev_features_t all, 12627 netdev_features_t one, netdev_features_t mask) 12628 { 12629 if (mask & NETIF_F_HW_CSUM) 12630 mask |= NETIF_F_CSUM_MASK; 12631 mask |= NETIF_F_VLAN_CHALLENGED; 12632 12633 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 12634 all &= one | ~NETIF_F_ALL_FOR_ALL; 12635 12636 /* If one device supports hw checksumming, set for all. */ 12637 if (all & NETIF_F_HW_CSUM) 12638 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 12639 12640 return all; 12641 } 12642 EXPORT_SYMBOL(netdev_increment_features); 12643 12644 static struct hlist_head * __net_init netdev_create_hash(void) 12645 { 12646 int i; 12647 struct hlist_head *hash; 12648 12649 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 12650 if (hash != NULL) 12651 for (i = 0; i < NETDEV_HASHENTRIES; i++) 12652 INIT_HLIST_HEAD(&hash[i]); 12653 12654 return hash; 12655 } 12656 12657 /* Initialize per network namespace state */ 12658 static int __net_init netdev_init(struct net *net) 12659 { 12660 BUILD_BUG_ON(GRO_HASH_BUCKETS > 12661 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); 12662 12663 INIT_LIST_HEAD(&net->dev_base_head); 12664 12665 net->dev_name_head = netdev_create_hash(); 12666 if (net->dev_name_head == NULL) 12667 goto err_name; 12668 12669 net->dev_index_head = netdev_create_hash(); 12670 if (net->dev_index_head == NULL) 12671 goto err_idx; 12672 12673 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 12674 12675 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 12676 12677 return 0; 12678 12679 err_idx: 12680 kfree(net->dev_name_head); 12681 err_name: 12682 return -ENOMEM; 12683 } 12684 12685 /** 12686 * netdev_drivername - network driver for the device 12687 * @dev: network device 12688 * 12689 * Determine network driver for device. 12690 */ 12691 const char *netdev_drivername(const struct net_device *dev) 12692 { 12693 const struct device_driver *driver; 12694 const struct device *parent; 12695 const char *empty = ""; 12696 12697 parent = dev->dev.parent; 12698 if (!parent) 12699 return empty; 12700 12701 driver = parent->driver; 12702 if (driver && driver->name) 12703 return driver->name; 12704 return empty; 12705 } 12706 12707 static void __netdev_printk(const char *level, const struct net_device *dev, 12708 struct va_format *vaf) 12709 { 12710 if (dev && dev->dev.parent) { 12711 dev_printk_emit(level[1] - '0', 12712 dev->dev.parent, 12713 "%s %s %s%s: %pV", 12714 dev_driver_string(dev->dev.parent), 12715 dev_name(dev->dev.parent), 12716 netdev_name(dev), netdev_reg_state(dev), 12717 vaf); 12718 } else if (dev) { 12719 printk("%s%s%s: %pV", 12720 level, netdev_name(dev), netdev_reg_state(dev), vaf); 12721 } else { 12722 printk("%s(NULL net_device): %pV", level, vaf); 12723 } 12724 } 12725 12726 void netdev_printk(const char *level, const struct net_device *dev, 12727 const char *format, ...) 12728 { 12729 struct va_format vaf; 12730 va_list args; 12731 12732 va_start(args, format); 12733 12734 vaf.fmt = format; 12735 vaf.va = &args; 12736 12737 __netdev_printk(level, dev, &vaf); 12738 12739 va_end(args); 12740 } 12741 EXPORT_SYMBOL(netdev_printk); 12742 12743 #define define_netdev_printk_level(func, level) \ 12744 void func(const struct net_device *dev, const char *fmt, ...) \ 12745 { \ 12746 struct va_format vaf; \ 12747 va_list args; \ 12748 \ 12749 va_start(args, fmt); \ 12750 \ 12751 vaf.fmt = fmt; \ 12752 vaf.va = &args; \ 12753 \ 12754 __netdev_printk(level, dev, &vaf); \ 12755 \ 12756 va_end(args); \ 12757 } \ 12758 EXPORT_SYMBOL(func); 12759 12760 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12761 define_netdev_printk_level(netdev_alert, KERN_ALERT); 12762 define_netdev_printk_level(netdev_crit, KERN_CRIT); 12763 define_netdev_printk_level(netdev_err, KERN_ERR); 12764 define_netdev_printk_level(netdev_warn, KERN_WARNING); 12765 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12766 define_netdev_printk_level(netdev_info, KERN_INFO); 12767 12768 static void __net_exit netdev_exit(struct net *net) 12769 { 12770 kfree(net->dev_name_head); 12771 kfree(net->dev_index_head); 12772 xa_destroy(&net->dev_by_index); 12773 if (net != &init_net) 12774 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12775 } 12776 12777 static struct pernet_operations __net_initdata netdev_net_ops = { 12778 .init = netdev_init, 12779 .exit = netdev_exit, 12780 }; 12781 12782 static void __net_exit default_device_exit_net(struct net *net) 12783 { 12784 struct netdev_name_node *name_node, *tmp; 12785 struct net_device *dev, *aux; 12786 /* 12787 * Push all migratable network devices back to the 12788 * initial network namespace 12789 */ 12790 ASSERT_RTNL(); 12791 for_each_netdev_safe(net, dev, aux) { 12792 int err; 12793 char fb_name[IFNAMSIZ]; 12794 12795 /* Ignore unmoveable devices (i.e. loopback) */ 12796 if (dev->netns_immutable) 12797 continue; 12798 12799 /* Leave virtual devices for the generic cleanup */ 12800 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12801 continue; 12802 12803 /* Push remaining network devices to init_net */ 12804 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12805 if (netdev_name_in_use(&init_net, fb_name)) 12806 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12807 12808 netdev_for_each_altname_safe(dev, name_node, tmp) 12809 if (netdev_name_in_use(&init_net, name_node->name)) 12810 __netdev_name_node_alt_destroy(name_node); 12811 12812 err = dev_change_net_namespace(dev, &init_net, fb_name); 12813 if (err) { 12814 pr_emerg("%s: failed to move %s to init_net: %d\n", 12815 __func__, dev->name, err); 12816 BUG(); 12817 } 12818 } 12819 } 12820 12821 static void __net_exit default_device_exit_batch(struct list_head *net_list) 12822 { 12823 /* At exit all network devices most be removed from a network 12824 * namespace. Do this in the reverse order of registration. 12825 * Do this across as many network namespaces as possible to 12826 * improve batching efficiency. 12827 */ 12828 struct net_device *dev; 12829 struct net *net; 12830 LIST_HEAD(dev_kill_list); 12831 12832 rtnl_lock(); 12833 list_for_each_entry(net, net_list, exit_list) { 12834 default_device_exit_net(net); 12835 cond_resched(); 12836 } 12837 12838 list_for_each_entry(net, net_list, exit_list) { 12839 for_each_netdev_reverse(net, dev) { 12840 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 12841 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 12842 else 12843 unregister_netdevice_queue(dev, &dev_kill_list); 12844 } 12845 } 12846 unregister_netdevice_many(&dev_kill_list); 12847 rtnl_unlock(); 12848 } 12849 12850 static struct pernet_operations __net_initdata default_device_ops = { 12851 .exit_batch = default_device_exit_batch, 12852 }; 12853 12854 static void __init net_dev_struct_check(void) 12855 { 12856 /* TX read-mostly hotpath */ 12857 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 12858 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 12859 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 12860 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 12861 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 12862 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 12863 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 12864 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 12865 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 12866 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 12867 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 12868 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 12869 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 12870 #ifdef CONFIG_XPS 12871 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 12872 #endif 12873 #ifdef CONFIG_NETFILTER_EGRESS 12874 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 12875 #endif 12876 #ifdef CONFIG_NET_XGRESS 12877 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 12878 #endif 12879 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 12880 12881 /* TXRX read-mostly hotpath */ 12882 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 12883 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 12884 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 12885 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 12886 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 12887 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 12888 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 12889 12890 /* RX read-mostly hotpath */ 12891 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 12892 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 12893 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 12894 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 12895 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 12896 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 12897 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 12898 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 12899 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 12900 #ifdef CONFIG_NETPOLL 12901 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 12902 #endif 12903 #ifdef CONFIG_NET_XGRESS 12904 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 12905 #endif 12906 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 12907 } 12908 12909 /* 12910 * Initialize the DEV module. At boot time this walks the device list and 12911 * unhooks any devices that fail to initialise (normally hardware not 12912 * present) and leaves us with a valid list of present and active devices. 12913 * 12914 */ 12915 12916 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 12917 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 12918 12919 static int net_page_pool_create(int cpuid) 12920 { 12921 #if IS_ENABLED(CONFIG_PAGE_POOL) 12922 struct page_pool_params page_pool_params = { 12923 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 12924 .flags = PP_FLAG_SYSTEM_POOL, 12925 .nid = cpu_to_mem(cpuid), 12926 }; 12927 struct page_pool *pp_ptr; 12928 int err; 12929 12930 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 12931 if (IS_ERR(pp_ptr)) 12932 return -ENOMEM; 12933 12934 err = xdp_reg_page_pool(pp_ptr); 12935 if (err) { 12936 page_pool_destroy(pp_ptr); 12937 return err; 12938 } 12939 12940 per_cpu(system_page_pool.pool, cpuid) = pp_ptr; 12941 #endif 12942 return 0; 12943 } 12944 12945 static int backlog_napi_should_run(unsigned int cpu) 12946 { 12947 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12948 struct napi_struct *napi = &sd->backlog; 12949 12950 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12951 } 12952 12953 static void run_backlog_napi(unsigned int cpu) 12954 { 12955 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12956 12957 napi_threaded_poll_loop(&sd->backlog); 12958 } 12959 12960 static void backlog_napi_setup(unsigned int cpu) 12961 { 12962 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12963 struct napi_struct *napi = &sd->backlog; 12964 12965 napi->thread = this_cpu_read(backlog_napi); 12966 set_bit(NAPI_STATE_THREADED, &napi->state); 12967 } 12968 12969 static struct smp_hotplug_thread backlog_threads = { 12970 .store = &backlog_napi, 12971 .thread_should_run = backlog_napi_should_run, 12972 .thread_fn = run_backlog_napi, 12973 .thread_comm = "backlog_napi/%u", 12974 .setup = backlog_napi_setup, 12975 }; 12976 12977 /* 12978 * This is called single threaded during boot, so no need 12979 * to take the rtnl semaphore. 12980 */ 12981 static int __init net_dev_init(void) 12982 { 12983 int i, rc = -ENOMEM; 12984 12985 BUG_ON(!dev_boot_phase); 12986 12987 net_dev_struct_check(); 12988 12989 if (dev_proc_init()) 12990 goto out; 12991 12992 if (netdev_kobject_init()) 12993 goto out; 12994 12995 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12996 INIT_LIST_HEAD(&ptype_base[i]); 12997 12998 if (register_pernet_subsys(&netdev_net_ops)) 12999 goto out; 13000 13001 /* 13002 * Initialise the packet receive queues. 13003 */ 13004 13005 flush_backlogs_fallback = flush_backlogs_alloc(); 13006 if (!flush_backlogs_fallback) 13007 goto out; 13008 13009 for_each_possible_cpu(i) { 13010 struct softnet_data *sd = &per_cpu(softnet_data, i); 13011 13012 skb_queue_head_init(&sd->input_pkt_queue); 13013 skb_queue_head_init(&sd->process_queue); 13014 #ifdef CONFIG_XFRM_OFFLOAD 13015 skb_queue_head_init(&sd->xfrm_backlog); 13016 #endif 13017 INIT_LIST_HEAD(&sd->poll_list); 13018 sd->output_queue_tailp = &sd->output_queue; 13019 #ifdef CONFIG_RPS 13020 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 13021 sd->cpu = i; 13022 #endif 13023 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 13024 13025 gro_init(&sd->backlog.gro); 13026 sd->backlog.poll = process_backlog; 13027 sd->backlog.weight = weight_p; 13028 INIT_LIST_HEAD(&sd->backlog.poll_list); 13029 13030 if (net_page_pool_create(i)) 13031 goto out; 13032 } 13033 net_hotdata.skb_defer_nodes = 13034 __alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids, 13035 __alignof__(struct skb_defer_node)); 13036 if (!net_hotdata.skb_defer_nodes) 13037 goto out; 13038 if (use_backlog_threads()) 13039 smpboot_register_percpu_thread(&backlog_threads); 13040 13041 dev_boot_phase = 0; 13042 13043 /* The loopback device is special if any other network devices 13044 * is present in a network namespace the loopback device must 13045 * be present. Since we now dynamically allocate and free the 13046 * loopback device ensure this invariant is maintained by 13047 * keeping the loopback device as the first device on the 13048 * list of network devices. Ensuring the loopback devices 13049 * is the first device that appears and the last network device 13050 * that disappears. 13051 */ 13052 if (register_pernet_device(&loopback_net_ops)) 13053 goto out; 13054 13055 if (register_pernet_device(&default_device_ops)) 13056 goto out; 13057 13058 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 13059 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 13060 13061 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 13062 NULL, dev_cpu_dead); 13063 WARN_ON(rc < 0); 13064 rc = 0; 13065 13066 /* avoid static key IPIs to isolated CPUs */ 13067 if (housekeeping_enabled(HK_TYPE_MISC)) 13068 net_enable_timestamp(); 13069 out: 13070 if (rc < 0) { 13071 for_each_possible_cpu(i) { 13072 struct page_pool *pp_ptr; 13073 13074 pp_ptr = per_cpu(system_page_pool.pool, i); 13075 if (!pp_ptr) 13076 continue; 13077 13078 xdp_unreg_page_pool(pp_ptr); 13079 page_pool_destroy(pp_ptr); 13080 per_cpu(system_page_pool.pool, i) = NULL; 13081 } 13082 } 13083 13084 return rc; 13085 } 13086 13087 subsys_initcall(net_dev_init); 13088