1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/bpf.h> 95 #include <linux/bpf_trace.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <net/busy_poll.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dsa.h> 102 #include <net/dst.h> 103 #include <net/dst_metadata.h> 104 #include <net/pkt_sched.h> 105 #include <net/pkt_cls.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 #include <linux/ctype.h> 120 #include <linux/if_arp.h> 121 #include <linux/if_vlan.h> 122 #include <linux/ip.h> 123 #include <net/ip.h> 124 #include <net/mpls.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/inetdevice.h> 133 #include <linux/cpu_rmap.h> 134 #include <linux/static_key.h> 135 #include <linux/hashtable.h> 136 #include <linux/vmalloc.h> 137 #include <linux/if_macvlan.h> 138 #include <linux/errqueue.h> 139 #include <linux/hrtimer.h> 140 #include <linux/netfilter_ingress.h> 141 #include <linux/crash_dump.h> 142 #include <linux/sctp.h> 143 #include <net/udp_tunnel.h> 144 #include <linux/net_namespace.h> 145 #include <linux/indirect_call_wrapper.h> 146 #include <net/devlink.h> 147 #include <linux/pm_runtime.h> 148 149 #include "net-sysfs.h" 150 151 #define MAX_GRO_SKBS 8 152 153 /* This should be increased if a protocol with a bigger head is added. */ 154 #define GRO_MAX_HEAD (MAX_HEADER + 128) 155 156 static DEFINE_SPINLOCK(ptype_lock); 157 static DEFINE_SPINLOCK(offload_lock); 158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 159 struct list_head ptype_all __read_mostly; /* Taps */ 160 static struct list_head offload_base __read_mostly; 161 162 static int netif_rx_internal(struct sk_buff *skb); 163 static int call_netdevice_notifiers_info(unsigned long val, 164 struct netdev_notifier_info *info); 165 static int call_netdevice_notifiers_extack(unsigned long val, 166 struct net_device *dev, 167 struct netlink_ext_ack *extack); 168 static struct napi_struct *napi_by_id(unsigned int napi_id); 169 170 /* 171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 172 * semaphore. 173 * 174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 175 * 176 * Writers must hold the rtnl semaphore while they loop through the 177 * dev_base_head list, and hold dev_base_lock for writing when they do the 178 * actual updates. This allows pure readers to access the list even 179 * while a writer is preparing to update it. 180 * 181 * To put it another way, dev_base_lock is held for writing only to 182 * protect against pure readers; the rtnl semaphore provides the 183 * protection against other writers. 184 * 185 * See, for example usages, register_netdevice() and 186 * unregister_netdevice(), which must be called with the rtnl 187 * semaphore held. 188 */ 189 DEFINE_RWLOCK(dev_base_lock); 190 EXPORT_SYMBOL(dev_base_lock); 191 192 static DEFINE_MUTEX(ifalias_mutex); 193 194 /* protects napi_hash addition/deletion and napi_gen_id */ 195 static DEFINE_SPINLOCK(napi_hash_lock); 196 197 static unsigned int napi_gen_id = NR_CPUS; 198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 199 200 static DECLARE_RWSEM(devnet_rename_sem); 201 202 static inline void dev_base_seq_inc(struct net *net) 203 { 204 while (++net->dev_base_seq == 0) 205 ; 206 } 207 208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 209 { 210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 211 212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 213 } 214 215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 216 { 217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 218 } 219 220 static inline void rps_lock(struct softnet_data *sd) 221 { 222 #ifdef CONFIG_RPS 223 spin_lock(&sd->input_pkt_queue.lock); 224 #endif 225 } 226 227 static inline void rps_unlock(struct softnet_data *sd) 228 { 229 #ifdef CONFIG_RPS 230 spin_unlock(&sd->input_pkt_queue.lock); 231 #endif 232 } 233 234 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 235 const char *name) 236 { 237 struct netdev_name_node *name_node; 238 239 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 240 if (!name_node) 241 return NULL; 242 INIT_HLIST_NODE(&name_node->hlist); 243 name_node->dev = dev; 244 name_node->name = name; 245 return name_node; 246 } 247 248 static struct netdev_name_node * 249 netdev_name_node_head_alloc(struct net_device *dev) 250 { 251 struct netdev_name_node *name_node; 252 253 name_node = netdev_name_node_alloc(dev, dev->name); 254 if (!name_node) 255 return NULL; 256 INIT_LIST_HEAD(&name_node->list); 257 return name_node; 258 } 259 260 static void netdev_name_node_free(struct netdev_name_node *name_node) 261 { 262 kfree(name_node); 263 } 264 265 static void netdev_name_node_add(struct net *net, 266 struct netdev_name_node *name_node) 267 { 268 hlist_add_head_rcu(&name_node->hlist, 269 dev_name_hash(net, name_node->name)); 270 } 271 272 static void netdev_name_node_del(struct netdev_name_node *name_node) 273 { 274 hlist_del_rcu(&name_node->hlist); 275 } 276 277 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 278 const char *name) 279 { 280 struct hlist_head *head = dev_name_hash(net, name); 281 struct netdev_name_node *name_node; 282 283 hlist_for_each_entry(name_node, head, hlist) 284 if (!strcmp(name_node->name, name)) 285 return name_node; 286 return NULL; 287 } 288 289 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 290 const char *name) 291 { 292 struct hlist_head *head = dev_name_hash(net, name); 293 struct netdev_name_node *name_node; 294 295 hlist_for_each_entry_rcu(name_node, head, hlist) 296 if (!strcmp(name_node->name, name)) 297 return name_node; 298 return NULL; 299 } 300 301 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 302 { 303 struct netdev_name_node *name_node; 304 struct net *net = dev_net(dev); 305 306 name_node = netdev_name_node_lookup(net, name); 307 if (name_node) 308 return -EEXIST; 309 name_node = netdev_name_node_alloc(dev, name); 310 if (!name_node) 311 return -ENOMEM; 312 netdev_name_node_add(net, name_node); 313 /* The node that holds dev->name acts as a head of per-device list. */ 314 list_add_tail(&name_node->list, &dev->name_node->list); 315 316 return 0; 317 } 318 EXPORT_SYMBOL(netdev_name_node_alt_create); 319 320 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 321 { 322 list_del(&name_node->list); 323 netdev_name_node_del(name_node); 324 kfree(name_node->name); 325 netdev_name_node_free(name_node); 326 } 327 328 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 329 { 330 struct netdev_name_node *name_node; 331 struct net *net = dev_net(dev); 332 333 name_node = netdev_name_node_lookup(net, name); 334 if (!name_node) 335 return -ENOENT; 336 /* lookup might have found our primary name or a name belonging 337 * to another device. 338 */ 339 if (name_node == dev->name_node || name_node->dev != dev) 340 return -EINVAL; 341 342 __netdev_name_node_alt_destroy(name_node); 343 344 return 0; 345 } 346 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 347 348 static void netdev_name_node_alt_flush(struct net_device *dev) 349 { 350 struct netdev_name_node *name_node, *tmp; 351 352 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 353 __netdev_name_node_alt_destroy(name_node); 354 } 355 356 /* Device list insertion */ 357 static void list_netdevice(struct net_device *dev) 358 { 359 struct net *net = dev_net(dev); 360 361 ASSERT_RTNL(); 362 363 write_lock_bh(&dev_base_lock); 364 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 365 netdev_name_node_add(net, dev->name_node); 366 hlist_add_head_rcu(&dev->index_hlist, 367 dev_index_hash(net, dev->ifindex)); 368 write_unlock_bh(&dev_base_lock); 369 370 dev_base_seq_inc(net); 371 } 372 373 /* Device list removal 374 * caller must respect a RCU grace period before freeing/reusing dev 375 */ 376 static void unlist_netdevice(struct net_device *dev) 377 { 378 ASSERT_RTNL(); 379 380 /* Unlink dev from the device chain */ 381 write_lock_bh(&dev_base_lock); 382 list_del_rcu(&dev->dev_list); 383 netdev_name_node_del(dev->name_node); 384 hlist_del_rcu(&dev->index_hlist); 385 write_unlock_bh(&dev_base_lock); 386 387 dev_base_seq_inc(dev_net(dev)); 388 } 389 390 /* 391 * Our notifier list 392 */ 393 394 static RAW_NOTIFIER_HEAD(netdev_chain); 395 396 /* 397 * Device drivers call our routines to queue packets here. We empty the 398 * queue in the local softnet handler. 399 */ 400 401 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 402 EXPORT_PER_CPU_SYMBOL(softnet_data); 403 404 #ifdef CONFIG_LOCKDEP 405 /* 406 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 407 * according to dev->type 408 */ 409 static const unsigned short netdev_lock_type[] = { 410 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 411 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 412 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 413 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 414 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 415 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 416 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 417 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 418 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 419 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 420 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 421 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 422 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 423 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 424 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 425 426 static const char *const netdev_lock_name[] = { 427 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 428 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 429 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 430 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 431 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 432 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 433 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 434 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 435 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 436 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 437 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 438 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 439 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 440 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 441 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 442 443 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 444 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 445 446 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 447 { 448 int i; 449 450 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 451 if (netdev_lock_type[i] == dev_type) 452 return i; 453 /* the last key is used by default */ 454 return ARRAY_SIZE(netdev_lock_type) - 1; 455 } 456 457 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 458 unsigned short dev_type) 459 { 460 int i; 461 462 i = netdev_lock_pos(dev_type); 463 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 464 netdev_lock_name[i]); 465 } 466 467 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 468 { 469 int i; 470 471 i = netdev_lock_pos(dev->type); 472 lockdep_set_class_and_name(&dev->addr_list_lock, 473 &netdev_addr_lock_key[i], 474 netdev_lock_name[i]); 475 } 476 #else 477 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 478 unsigned short dev_type) 479 { 480 } 481 482 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 483 { 484 } 485 #endif 486 487 /******************************************************************************* 488 * 489 * Protocol management and registration routines 490 * 491 *******************************************************************************/ 492 493 494 /* 495 * Add a protocol ID to the list. Now that the input handler is 496 * smarter we can dispense with all the messy stuff that used to be 497 * here. 498 * 499 * BEWARE!!! Protocol handlers, mangling input packets, 500 * MUST BE last in hash buckets and checking protocol handlers 501 * MUST start from promiscuous ptype_all chain in net_bh. 502 * It is true now, do not change it. 503 * Explanation follows: if protocol handler, mangling packet, will 504 * be the first on list, it is not able to sense, that packet 505 * is cloned and should be copied-on-write, so that it will 506 * change it and subsequent readers will get broken packet. 507 * --ANK (980803) 508 */ 509 510 static inline struct list_head *ptype_head(const struct packet_type *pt) 511 { 512 if (pt->type == htons(ETH_P_ALL)) 513 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 514 else 515 return pt->dev ? &pt->dev->ptype_specific : 516 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 517 } 518 519 /** 520 * dev_add_pack - add packet handler 521 * @pt: packet type declaration 522 * 523 * Add a protocol handler to the networking stack. The passed &packet_type 524 * is linked into kernel lists and may not be freed until it has been 525 * removed from the kernel lists. 526 * 527 * This call does not sleep therefore it can not 528 * guarantee all CPU's that are in middle of receiving packets 529 * will see the new packet type (until the next received packet). 530 */ 531 532 void dev_add_pack(struct packet_type *pt) 533 { 534 struct list_head *head = ptype_head(pt); 535 536 spin_lock(&ptype_lock); 537 list_add_rcu(&pt->list, head); 538 spin_unlock(&ptype_lock); 539 } 540 EXPORT_SYMBOL(dev_add_pack); 541 542 /** 543 * __dev_remove_pack - remove packet handler 544 * @pt: packet type declaration 545 * 546 * Remove a protocol handler that was previously added to the kernel 547 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 548 * from the kernel lists and can be freed or reused once this function 549 * returns. 550 * 551 * The packet type might still be in use by receivers 552 * and must not be freed until after all the CPU's have gone 553 * through a quiescent state. 554 */ 555 void __dev_remove_pack(struct packet_type *pt) 556 { 557 struct list_head *head = ptype_head(pt); 558 struct packet_type *pt1; 559 560 spin_lock(&ptype_lock); 561 562 list_for_each_entry(pt1, head, list) { 563 if (pt == pt1) { 564 list_del_rcu(&pt->list); 565 goto out; 566 } 567 } 568 569 pr_warn("dev_remove_pack: %p not found\n", pt); 570 out: 571 spin_unlock(&ptype_lock); 572 } 573 EXPORT_SYMBOL(__dev_remove_pack); 574 575 /** 576 * dev_remove_pack - remove packet handler 577 * @pt: packet type declaration 578 * 579 * Remove a protocol handler that was previously added to the kernel 580 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 581 * from the kernel lists and can be freed or reused once this function 582 * returns. 583 * 584 * This call sleeps to guarantee that no CPU is looking at the packet 585 * type after return. 586 */ 587 void dev_remove_pack(struct packet_type *pt) 588 { 589 __dev_remove_pack(pt); 590 591 synchronize_net(); 592 } 593 EXPORT_SYMBOL(dev_remove_pack); 594 595 596 /** 597 * dev_add_offload - register offload handlers 598 * @po: protocol offload declaration 599 * 600 * Add protocol offload handlers to the networking stack. The passed 601 * &proto_offload is linked into kernel lists and may not be freed until 602 * it has been removed from the kernel lists. 603 * 604 * This call does not sleep therefore it can not 605 * guarantee all CPU's that are in middle of receiving packets 606 * will see the new offload handlers (until the next received packet). 607 */ 608 void dev_add_offload(struct packet_offload *po) 609 { 610 struct packet_offload *elem; 611 612 spin_lock(&offload_lock); 613 list_for_each_entry(elem, &offload_base, list) { 614 if (po->priority < elem->priority) 615 break; 616 } 617 list_add_rcu(&po->list, elem->list.prev); 618 spin_unlock(&offload_lock); 619 } 620 EXPORT_SYMBOL(dev_add_offload); 621 622 /** 623 * __dev_remove_offload - remove offload handler 624 * @po: packet offload declaration 625 * 626 * Remove a protocol offload handler that was previously added to the 627 * kernel offload handlers by dev_add_offload(). The passed &offload_type 628 * is removed from the kernel lists and can be freed or reused once this 629 * function returns. 630 * 631 * The packet type might still be in use by receivers 632 * and must not be freed until after all the CPU's have gone 633 * through a quiescent state. 634 */ 635 static void __dev_remove_offload(struct packet_offload *po) 636 { 637 struct list_head *head = &offload_base; 638 struct packet_offload *po1; 639 640 spin_lock(&offload_lock); 641 642 list_for_each_entry(po1, head, list) { 643 if (po == po1) { 644 list_del_rcu(&po->list); 645 goto out; 646 } 647 } 648 649 pr_warn("dev_remove_offload: %p not found\n", po); 650 out: 651 spin_unlock(&offload_lock); 652 } 653 654 /** 655 * dev_remove_offload - remove packet offload handler 656 * @po: packet offload declaration 657 * 658 * Remove a packet offload handler that was previously added to the kernel 659 * offload handlers by dev_add_offload(). The passed &offload_type is 660 * removed from the kernel lists and can be freed or reused once this 661 * function returns. 662 * 663 * This call sleeps to guarantee that no CPU is looking at the packet 664 * type after return. 665 */ 666 void dev_remove_offload(struct packet_offload *po) 667 { 668 __dev_remove_offload(po); 669 670 synchronize_net(); 671 } 672 EXPORT_SYMBOL(dev_remove_offload); 673 674 /****************************************************************************** 675 * 676 * Device Boot-time Settings Routines 677 * 678 ******************************************************************************/ 679 680 /* Boot time configuration table */ 681 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 682 683 /** 684 * netdev_boot_setup_add - add new setup entry 685 * @name: name of the device 686 * @map: configured settings for the device 687 * 688 * Adds new setup entry to the dev_boot_setup list. The function 689 * returns 0 on error and 1 on success. This is a generic routine to 690 * all netdevices. 691 */ 692 static int netdev_boot_setup_add(char *name, struct ifmap *map) 693 { 694 struct netdev_boot_setup *s; 695 int i; 696 697 s = dev_boot_setup; 698 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 699 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 700 memset(s[i].name, 0, sizeof(s[i].name)); 701 strlcpy(s[i].name, name, IFNAMSIZ); 702 memcpy(&s[i].map, map, sizeof(s[i].map)); 703 break; 704 } 705 } 706 707 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 708 } 709 710 /** 711 * netdev_boot_setup_check - check boot time settings 712 * @dev: the netdevice 713 * 714 * Check boot time settings for the device. 715 * The found settings are set for the device to be used 716 * later in the device probing. 717 * Returns 0 if no settings found, 1 if they are. 718 */ 719 int netdev_boot_setup_check(struct net_device *dev) 720 { 721 struct netdev_boot_setup *s = dev_boot_setup; 722 int i; 723 724 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 725 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 726 !strcmp(dev->name, s[i].name)) { 727 dev->irq = s[i].map.irq; 728 dev->base_addr = s[i].map.base_addr; 729 dev->mem_start = s[i].map.mem_start; 730 dev->mem_end = s[i].map.mem_end; 731 return 1; 732 } 733 } 734 return 0; 735 } 736 EXPORT_SYMBOL(netdev_boot_setup_check); 737 738 739 /** 740 * netdev_boot_base - get address from boot time settings 741 * @prefix: prefix for network device 742 * @unit: id for network device 743 * 744 * Check boot time settings for the base address of device. 745 * The found settings are set for the device to be used 746 * later in the device probing. 747 * Returns 0 if no settings found. 748 */ 749 unsigned long netdev_boot_base(const char *prefix, int unit) 750 { 751 const struct netdev_boot_setup *s = dev_boot_setup; 752 char name[IFNAMSIZ]; 753 int i; 754 755 sprintf(name, "%s%d", prefix, unit); 756 757 /* 758 * If device already registered then return base of 1 759 * to indicate not to probe for this interface 760 */ 761 if (__dev_get_by_name(&init_net, name)) 762 return 1; 763 764 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 765 if (!strcmp(name, s[i].name)) 766 return s[i].map.base_addr; 767 return 0; 768 } 769 770 /* 771 * Saves at boot time configured settings for any netdevice. 772 */ 773 int __init netdev_boot_setup(char *str) 774 { 775 int ints[5]; 776 struct ifmap map; 777 778 str = get_options(str, ARRAY_SIZE(ints), ints); 779 if (!str || !*str) 780 return 0; 781 782 /* Save settings */ 783 memset(&map, 0, sizeof(map)); 784 if (ints[0] > 0) 785 map.irq = ints[1]; 786 if (ints[0] > 1) 787 map.base_addr = ints[2]; 788 if (ints[0] > 2) 789 map.mem_start = ints[3]; 790 if (ints[0] > 3) 791 map.mem_end = ints[4]; 792 793 /* Add new entry to the list */ 794 return netdev_boot_setup_add(str, &map); 795 } 796 797 __setup("netdev=", netdev_boot_setup); 798 799 /******************************************************************************* 800 * 801 * Device Interface Subroutines 802 * 803 *******************************************************************************/ 804 805 /** 806 * dev_get_iflink - get 'iflink' value of a interface 807 * @dev: targeted interface 808 * 809 * Indicates the ifindex the interface is linked to. 810 * Physical interfaces have the same 'ifindex' and 'iflink' values. 811 */ 812 813 int dev_get_iflink(const struct net_device *dev) 814 { 815 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 816 return dev->netdev_ops->ndo_get_iflink(dev); 817 818 return dev->ifindex; 819 } 820 EXPORT_SYMBOL(dev_get_iflink); 821 822 /** 823 * dev_fill_metadata_dst - Retrieve tunnel egress information. 824 * @dev: targeted interface 825 * @skb: The packet. 826 * 827 * For better visibility of tunnel traffic OVS needs to retrieve 828 * egress tunnel information for a packet. Following API allows 829 * user to get this info. 830 */ 831 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 832 { 833 struct ip_tunnel_info *info; 834 835 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 836 return -EINVAL; 837 838 info = skb_tunnel_info_unclone(skb); 839 if (!info) 840 return -ENOMEM; 841 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 842 return -EINVAL; 843 844 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 845 } 846 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 847 848 /** 849 * __dev_get_by_name - find a device by its name 850 * @net: the applicable net namespace 851 * @name: name to find 852 * 853 * Find an interface by name. Must be called under RTNL semaphore 854 * or @dev_base_lock. If the name is found a pointer to the device 855 * is returned. If the name is not found then %NULL is returned. The 856 * reference counters are not incremented so the caller must be 857 * careful with locks. 858 */ 859 860 struct net_device *__dev_get_by_name(struct net *net, const char *name) 861 { 862 struct netdev_name_node *node_name; 863 864 node_name = netdev_name_node_lookup(net, name); 865 return node_name ? node_name->dev : NULL; 866 } 867 EXPORT_SYMBOL(__dev_get_by_name); 868 869 /** 870 * dev_get_by_name_rcu - find a device by its name 871 * @net: the applicable net namespace 872 * @name: name to find 873 * 874 * Find an interface by name. 875 * If the name is found a pointer to the device is returned. 876 * If the name is not found then %NULL is returned. 877 * The reference counters are not incremented so the caller must be 878 * careful with locks. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 882 { 883 struct netdev_name_node *node_name; 884 885 node_name = netdev_name_node_lookup_rcu(net, name); 886 return node_name ? node_name->dev : NULL; 887 } 888 EXPORT_SYMBOL(dev_get_by_name_rcu); 889 890 /** 891 * dev_get_by_name - find a device by its name 892 * @net: the applicable net namespace 893 * @name: name to find 894 * 895 * Find an interface by name. This can be called from any 896 * context and does its own locking. The returned handle has 897 * the usage count incremented and the caller must use dev_put() to 898 * release it when it is no longer needed. %NULL is returned if no 899 * matching device is found. 900 */ 901 902 struct net_device *dev_get_by_name(struct net *net, const char *name) 903 { 904 struct net_device *dev; 905 906 rcu_read_lock(); 907 dev = dev_get_by_name_rcu(net, name); 908 if (dev) 909 dev_hold(dev); 910 rcu_read_unlock(); 911 return dev; 912 } 913 EXPORT_SYMBOL(dev_get_by_name); 914 915 /** 916 * __dev_get_by_index - find a device by its ifindex 917 * @net: the applicable net namespace 918 * @ifindex: index of device 919 * 920 * Search for an interface by index. Returns %NULL if the device 921 * is not found or a pointer to the device. The device has not 922 * had its reference counter increased so the caller must be careful 923 * about locking. The caller must hold either the RTNL semaphore 924 * or @dev_base_lock. 925 */ 926 927 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 928 { 929 struct net_device *dev; 930 struct hlist_head *head = dev_index_hash(net, ifindex); 931 932 hlist_for_each_entry(dev, head, index_hlist) 933 if (dev->ifindex == ifindex) 934 return dev; 935 936 return NULL; 937 } 938 EXPORT_SYMBOL(__dev_get_by_index); 939 940 /** 941 * dev_get_by_index_rcu - find a device by its ifindex 942 * @net: the applicable net namespace 943 * @ifindex: index of device 944 * 945 * Search for an interface by index. Returns %NULL if the device 946 * is not found or a pointer to the device. The device has not 947 * had its reference counter increased so the caller must be careful 948 * about locking. The caller must hold RCU lock. 949 */ 950 951 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 952 { 953 struct net_device *dev; 954 struct hlist_head *head = dev_index_hash(net, ifindex); 955 956 hlist_for_each_entry_rcu(dev, head, index_hlist) 957 if (dev->ifindex == ifindex) 958 return dev; 959 960 return NULL; 961 } 962 EXPORT_SYMBOL(dev_get_by_index_rcu); 963 964 965 /** 966 * dev_get_by_index - find a device by its ifindex 967 * @net: the applicable net namespace 968 * @ifindex: index of device 969 * 970 * Search for an interface by index. Returns NULL if the device 971 * is not found or a pointer to the device. The device returned has 972 * had a reference added and the pointer is safe until the user calls 973 * dev_put to indicate they have finished with it. 974 */ 975 976 struct net_device *dev_get_by_index(struct net *net, int ifindex) 977 { 978 struct net_device *dev; 979 980 rcu_read_lock(); 981 dev = dev_get_by_index_rcu(net, ifindex); 982 if (dev) 983 dev_hold(dev); 984 rcu_read_unlock(); 985 return dev; 986 } 987 EXPORT_SYMBOL(dev_get_by_index); 988 989 /** 990 * dev_get_by_napi_id - find a device by napi_id 991 * @napi_id: ID of the NAPI struct 992 * 993 * Search for an interface by NAPI ID. Returns %NULL if the device 994 * is not found or a pointer to the device. The device has not had 995 * its reference counter increased so the caller must be careful 996 * about locking. The caller must hold RCU lock. 997 */ 998 999 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1000 { 1001 struct napi_struct *napi; 1002 1003 WARN_ON_ONCE(!rcu_read_lock_held()); 1004 1005 if (napi_id < MIN_NAPI_ID) 1006 return NULL; 1007 1008 napi = napi_by_id(napi_id); 1009 1010 return napi ? napi->dev : NULL; 1011 } 1012 EXPORT_SYMBOL(dev_get_by_napi_id); 1013 1014 /** 1015 * netdev_get_name - get a netdevice name, knowing its ifindex. 1016 * @net: network namespace 1017 * @name: a pointer to the buffer where the name will be stored. 1018 * @ifindex: the ifindex of the interface to get the name from. 1019 */ 1020 int netdev_get_name(struct net *net, char *name, int ifindex) 1021 { 1022 struct net_device *dev; 1023 int ret; 1024 1025 down_read(&devnet_rename_sem); 1026 rcu_read_lock(); 1027 1028 dev = dev_get_by_index_rcu(net, ifindex); 1029 if (!dev) { 1030 ret = -ENODEV; 1031 goto out; 1032 } 1033 1034 strcpy(name, dev->name); 1035 1036 ret = 0; 1037 out: 1038 rcu_read_unlock(); 1039 up_read(&devnet_rename_sem); 1040 return ret; 1041 } 1042 1043 /** 1044 * dev_getbyhwaddr_rcu - find a device by its hardware address 1045 * @net: the applicable net namespace 1046 * @type: media type of device 1047 * @ha: hardware address 1048 * 1049 * Search for an interface by MAC address. Returns NULL if the device 1050 * is not found or a pointer to the device. 1051 * The caller must hold RCU or RTNL. 1052 * The returned device has not had its ref count increased 1053 * and the caller must therefore be careful about locking 1054 * 1055 */ 1056 1057 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1058 const char *ha) 1059 { 1060 struct net_device *dev; 1061 1062 for_each_netdev_rcu(net, dev) 1063 if (dev->type == type && 1064 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1065 return dev; 1066 1067 return NULL; 1068 } 1069 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1070 1071 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 1072 { 1073 struct net_device *dev; 1074 1075 ASSERT_RTNL(); 1076 for_each_netdev(net, dev) 1077 if (dev->type == type) 1078 return dev; 1079 1080 return NULL; 1081 } 1082 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 1083 1084 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1085 { 1086 struct net_device *dev, *ret = NULL; 1087 1088 rcu_read_lock(); 1089 for_each_netdev_rcu(net, dev) 1090 if (dev->type == type) { 1091 dev_hold(dev); 1092 ret = dev; 1093 break; 1094 } 1095 rcu_read_unlock(); 1096 return ret; 1097 } 1098 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1099 1100 /** 1101 * __dev_get_by_flags - find any device with given flags 1102 * @net: the applicable net namespace 1103 * @if_flags: IFF_* values 1104 * @mask: bitmask of bits in if_flags to check 1105 * 1106 * Search for any interface with the given flags. Returns NULL if a device 1107 * is not found or a pointer to the device. Must be called inside 1108 * rtnl_lock(), and result refcount is unchanged. 1109 */ 1110 1111 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1112 unsigned short mask) 1113 { 1114 struct net_device *dev, *ret; 1115 1116 ASSERT_RTNL(); 1117 1118 ret = NULL; 1119 for_each_netdev(net, dev) { 1120 if (((dev->flags ^ if_flags) & mask) == 0) { 1121 ret = dev; 1122 break; 1123 } 1124 } 1125 return ret; 1126 } 1127 EXPORT_SYMBOL(__dev_get_by_flags); 1128 1129 /** 1130 * dev_valid_name - check if name is okay for network device 1131 * @name: name string 1132 * 1133 * Network device names need to be valid file names to 1134 * allow sysfs to work. We also disallow any kind of 1135 * whitespace. 1136 */ 1137 bool dev_valid_name(const char *name) 1138 { 1139 if (*name == '\0') 1140 return false; 1141 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1142 return false; 1143 if (!strcmp(name, ".") || !strcmp(name, "..")) 1144 return false; 1145 1146 while (*name) { 1147 if (*name == '/' || *name == ':' || isspace(*name)) 1148 return false; 1149 name++; 1150 } 1151 return true; 1152 } 1153 EXPORT_SYMBOL(dev_valid_name); 1154 1155 /** 1156 * __dev_alloc_name - allocate a name for a device 1157 * @net: network namespace to allocate the device name in 1158 * @name: name format string 1159 * @buf: scratch buffer and result name string 1160 * 1161 * Passed a format string - eg "lt%d" it will try and find a suitable 1162 * id. It scans list of devices to build up a free map, then chooses 1163 * the first empty slot. The caller must hold the dev_base or rtnl lock 1164 * while allocating the name and adding the device in order to avoid 1165 * duplicates. 1166 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1167 * Returns the number of the unit assigned or a negative errno code. 1168 */ 1169 1170 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1171 { 1172 int i = 0; 1173 const char *p; 1174 const int max_netdevices = 8*PAGE_SIZE; 1175 unsigned long *inuse; 1176 struct net_device *d; 1177 1178 if (!dev_valid_name(name)) 1179 return -EINVAL; 1180 1181 p = strchr(name, '%'); 1182 if (p) { 1183 /* 1184 * Verify the string as this thing may have come from 1185 * the user. There must be either one "%d" and no other "%" 1186 * characters. 1187 */ 1188 if (p[1] != 'd' || strchr(p + 2, '%')) 1189 return -EINVAL; 1190 1191 /* Use one page as a bit array of possible slots */ 1192 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1193 if (!inuse) 1194 return -ENOMEM; 1195 1196 for_each_netdev(net, d) { 1197 if (!sscanf(d->name, name, &i)) 1198 continue; 1199 if (i < 0 || i >= max_netdevices) 1200 continue; 1201 1202 /* avoid cases where sscanf is not exact inverse of printf */ 1203 snprintf(buf, IFNAMSIZ, name, i); 1204 if (!strncmp(buf, d->name, IFNAMSIZ)) 1205 set_bit(i, inuse); 1206 } 1207 1208 i = find_first_zero_bit(inuse, max_netdevices); 1209 free_page((unsigned long) inuse); 1210 } 1211 1212 snprintf(buf, IFNAMSIZ, name, i); 1213 if (!__dev_get_by_name(net, buf)) 1214 return i; 1215 1216 /* It is possible to run out of possible slots 1217 * when the name is long and there isn't enough space left 1218 * for the digits, or if all bits are used. 1219 */ 1220 return -ENFILE; 1221 } 1222 1223 static int dev_alloc_name_ns(struct net *net, 1224 struct net_device *dev, 1225 const char *name) 1226 { 1227 char buf[IFNAMSIZ]; 1228 int ret; 1229 1230 BUG_ON(!net); 1231 ret = __dev_alloc_name(net, name, buf); 1232 if (ret >= 0) 1233 strlcpy(dev->name, buf, IFNAMSIZ); 1234 return ret; 1235 } 1236 1237 /** 1238 * dev_alloc_name - allocate a name for a device 1239 * @dev: device 1240 * @name: name format string 1241 * 1242 * Passed a format string - eg "lt%d" it will try and find a suitable 1243 * id. It scans list of devices to build up a free map, then chooses 1244 * the first empty slot. The caller must hold the dev_base or rtnl lock 1245 * while allocating the name and adding the device in order to avoid 1246 * duplicates. 1247 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1248 * Returns the number of the unit assigned or a negative errno code. 1249 */ 1250 1251 int dev_alloc_name(struct net_device *dev, const char *name) 1252 { 1253 return dev_alloc_name_ns(dev_net(dev), dev, name); 1254 } 1255 EXPORT_SYMBOL(dev_alloc_name); 1256 1257 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1258 const char *name) 1259 { 1260 BUG_ON(!net); 1261 1262 if (!dev_valid_name(name)) 1263 return -EINVAL; 1264 1265 if (strchr(name, '%')) 1266 return dev_alloc_name_ns(net, dev, name); 1267 else if (__dev_get_by_name(net, name)) 1268 return -EEXIST; 1269 else if (dev->name != name) 1270 strlcpy(dev->name, name, IFNAMSIZ); 1271 1272 return 0; 1273 } 1274 1275 /** 1276 * dev_change_name - change name of a device 1277 * @dev: device 1278 * @newname: name (or format string) must be at least IFNAMSIZ 1279 * 1280 * Change name of a device, can pass format strings "eth%d". 1281 * for wildcarding. 1282 */ 1283 int dev_change_name(struct net_device *dev, const char *newname) 1284 { 1285 unsigned char old_assign_type; 1286 char oldname[IFNAMSIZ]; 1287 int err = 0; 1288 int ret; 1289 struct net *net; 1290 1291 ASSERT_RTNL(); 1292 BUG_ON(!dev_net(dev)); 1293 1294 net = dev_net(dev); 1295 1296 /* Some auto-enslaved devices e.g. failover slaves are 1297 * special, as userspace might rename the device after 1298 * the interface had been brought up and running since 1299 * the point kernel initiated auto-enslavement. Allow 1300 * live name change even when these slave devices are 1301 * up and running. 1302 * 1303 * Typically, users of these auto-enslaving devices 1304 * don't actually care about slave name change, as 1305 * they are supposed to operate on master interface 1306 * directly. 1307 */ 1308 if (dev->flags & IFF_UP && 1309 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1310 return -EBUSY; 1311 1312 down_write(&devnet_rename_sem); 1313 1314 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1315 up_write(&devnet_rename_sem); 1316 return 0; 1317 } 1318 1319 memcpy(oldname, dev->name, IFNAMSIZ); 1320 1321 err = dev_get_valid_name(net, dev, newname); 1322 if (err < 0) { 1323 up_write(&devnet_rename_sem); 1324 return err; 1325 } 1326 1327 if (oldname[0] && !strchr(oldname, '%')) 1328 netdev_info(dev, "renamed from %s\n", oldname); 1329 1330 old_assign_type = dev->name_assign_type; 1331 dev->name_assign_type = NET_NAME_RENAMED; 1332 1333 rollback: 1334 ret = device_rename(&dev->dev, dev->name); 1335 if (ret) { 1336 memcpy(dev->name, oldname, IFNAMSIZ); 1337 dev->name_assign_type = old_assign_type; 1338 up_write(&devnet_rename_sem); 1339 return ret; 1340 } 1341 1342 up_write(&devnet_rename_sem); 1343 1344 netdev_adjacent_rename_links(dev, oldname); 1345 1346 write_lock_bh(&dev_base_lock); 1347 netdev_name_node_del(dev->name_node); 1348 write_unlock_bh(&dev_base_lock); 1349 1350 synchronize_rcu(); 1351 1352 write_lock_bh(&dev_base_lock); 1353 netdev_name_node_add(net, dev->name_node); 1354 write_unlock_bh(&dev_base_lock); 1355 1356 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1357 ret = notifier_to_errno(ret); 1358 1359 if (ret) { 1360 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1361 if (err >= 0) { 1362 err = ret; 1363 down_write(&devnet_rename_sem); 1364 memcpy(dev->name, oldname, IFNAMSIZ); 1365 memcpy(oldname, newname, IFNAMSIZ); 1366 dev->name_assign_type = old_assign_type; 1367 old_assign_type = NET_NAME_RENAMED; 1368 goto rollback; 1369 } else { 1370 pr_err("%s: name change rollback failed: %d\n", 1371 dev->name, ret); 1372 } 1373 } 1374 1375 return err; 1376 } 1377 1378 /** 1379 * dev_set_alias - change ifalias of a device 1380 * @dev: device 1381 * @alias: name up to IFALIASZ 1382 * @len: limit of bytes to copy from info 1383 * 1384 * Set ifalias for a device, 1385 */ 1386 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1387 { 1388 struct dev_ifalias *new_alias = NULL; 1389 1390 if (len >= IFALIASZ) 1391 return -EINVAL; 1392 1393 if (len) { 1394 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1395 if (!new_alias) 1396 return -ENOMEM; 1397 1398 memcpy(new_alias->ifalias, alias, len); 1399 new_alias->ifalias[len] = 0; 1400 } 1401 1402 mutex_lock(&ifalias_mutex); 1403 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1404 mutex_is_locked(&ifalias_mutex)); 1405 mutex_unlock(&ifalias_mutex); 1406 1407 if (new_alias) 1408 kfree_rcu(new_alias, rcuhead); 1409 1410 return len; 1411 } 1412 EXPORT_SYMBOL(dev_set_alias); 1413 1414 /** 1415 * dev_get_alias - get ifalias of a device 1416 * @dev: device 1417 * @name: buffer to store name of ifalias 1418 * @len: size of buffer 1419 * 1420 * get ifalias for a device. Caller must make sure dev cannot go 1421 * away, e.g. rcu read lock or own a reference count to device. 1422 */ 1423 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1424 { 1425 const struct dev_ifalias *alias; 1426 int ret = 0; 1427 1428 rcu_read_lock(); 1429 alias = rcu_dereference(dev->ifalias); 1430 if (alias) 1431 ret = snprintf(name, len, "%s", alias->ifalias); 1432 rcu_read_unlock(); 1433 1434 return ret; 1435 } 1436 1437 /** 1438 * netdev_features_change - device changes features 1439 * @dev: device to cause notification 1440 * 1441 * Called to indicate a device has changed features. 1442 */ 1443 void netdev_features_change(struct net_device *dev) 1444 { 1445 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1446 } 1447 EXPORT_SYMBOL(netdev_features_change); 1448 1449 /** 1450 * netdev_state_change - device changes state 1451 * @dev: device to cause notification 1452 * 1453 * Called to indicate a device has changed state. This function calls 1454 * the notifier chains for netdev_chain and sends a NEWLINK message 1455 * to the routing socket. 1456 */ 1457 void netdev_state_change(struct net_device *dev) 1458 { 1459 if (dev->flags & IFF_UP) { 1460 struct netdev_notifier_change_info change_info = { 1461 .info.dev = dev, 1462 }; 1463 1464 call_netdevice_notifiers_info(NETDEV_CHANGE, 1465 &change_info.info); 1466 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1467 } 1468 } 1469 EXPORT_SYMBOL(netdev_state_change); 1470 1471 /** 1472 * netdev_notify_peers - notify network peers about existence of @dev 1473 * @dev: network device 1474 * 1475 * Generate traffic such that interested network peers are aware of 1476 * @dev, such as by generating a gratuitous ARP. This may be used when 1477 * a device wants to inform the rest of the network about some sort of 1478 * reconfiguration such as a failover event or virtual machine 1479 * migration. 1480 */ 1481 void netdev_notify_peers(struct net_device *dev) 1482 { 1483 rtnl_lock(); 1484 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1485 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1486 rtnl_unlock(); 1487 } 1488 EXPORT_SYMBOL(netdev_notify_peers); 1489 1490 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1491 { 1492 const struct net_device_ops *ops = dev->netdev_ops; 1493 int ret; 1494 1495 ASSERT_RTNL(); 1496 1497 if (!netif_device_present(dev)) { 1498 /* may be detached because parent is runtime-suspended */ 1499 if (dev->dev.parent) 1500 pm_runtime_resume(dev->dev.parent); 1501 if (!netif_device_present(dev)) 1502 return -ENODEV; 1503 } 1504 1505 /* Block netpoll from trying to do any rx path servicing. 1506 * If we don't do this there is a chance ndo_poll_controller 1507 * or ndo_poll may be running while we open the device 1508 */ 1509 netpoll_poll_disable(dev); 1510 1511 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1512 ret = notifier_to_errno(ret); 1513 if (ret) 1514 return ret; 1515 1516 set_bit(__LINK_STATE_START, &dev->state); 1517 1518 if (ops->ndo_validate_addr) 1519 ret = ops->ndo_validate_addr(dev); 1520 1521 if (!ret && ops->ndo_open) 1522 ret = ops->ndo_open(dev); 1523 1524 netpoll_poll_enable(dev); 1525 1526 if (ret) 1527 clear_bit(__LINK_STATE_START, &dev->state); 1528 else { 1529 dev->flags |= IFF_UP; 1530 dev_set_rx_mode(dev); 1531 dev_activate(dev); 1532 add_device_randomness(dev->dev_addr, dev->addr_len); 1533 } 1534 1535 return ret; 1536 } 1537 1538 /** 1539 * dev_open - prepare an interface for use. 1540 * @dev: device to open 1541 * @extack: netlink extended ack 1542 * 1543 * Takes a device from down to up state. The device's private open 1544 * function is invoked and then the multicast lists are loaded. Finally 1545 * the device is moved into the up state and a %NETDEV_UP message is 1546 * sent to the netdev notifier chain. 1547 * 1548 * Calling this function on an active interface is a nop. On a failure 1549 * a negative errno code is returned. 1550 */ 1551 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1552 { 1553 int ret; 1554 1555 if (dev->flags & IFF_UP) 1556 return 0; 1557 1558 ret = __dev_open(dev, extack); 1559 if (ret < 0) 1560 return ret; 1561 1562 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1563 call_netdevice_notifiers(NETDEV_UP, dev); 1564 1565 return ret; 1566 } 1567 EXPORT_SYMBOL(dev_open); 1568 1569 static void __dev_close_many(struct list_head *head) 1570 { 1571 struct net_device *dev; 1572 1573 ASSERT_RTNL(); 1574 might_sleep(); 1575 1576 list_for_each_entry(dev, head, close_list) { 1577 /* Temporarily disable netpoll until the interface is down */ 1578 netpoll_poll_disable(dev); 1579 1580 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1581 1582 clear_bit(__LINK_STATE_START, &dev->state); 1583 1584 /* Synchronize to scheduled poll. We cannot touch poll list, it 1585 * can be even on different cpu. So just clear netif_running(). 1586 * 1587 * dev->stop() will invoke napi_disable() on all of it's 1588 * napi_struct instances on this device. 1589 */ 1590 smp_mb__after_atomic(); /* Commit netif_running(). */ 1591 } 1592 1593 dev_deactivate_many(head); 1594 1595 list_for_each_entry(dev, head, close_list) { 1596 const struct net_device_ops *ops = dev->netdev_ops; 1597 1598 /* 1599 * Call the device specific close. This cannot fail. 1600 * Only if device is UP 1601 * 1602 * We allow it to be called even after a DETACH hot-plug 1603 * event. 1604 */ 1605 if (ops->ndo_stop) 1606 ops->ndo_stop(dev); 1607 1608 dev->flags &= ~IFF_UP; 1609 netpoll_poll_enable(dev); 1610 } 1611 } 1612 1613 static void __dev_close(struct net_device *dev) 1614 { 1615 LIST_HEAD(single); 1616 1617 list_add(&dev->close_list, &single); 1618 __dev_close_many(&single); 1619 list_del(&single); 1620 } 1621 1622 void dev_close_many(struct list_head *head, bool unlink) 1623 { 1624 struct net_device *dev, *tmp; 1625 1626 /* Remove the devices that don't need to be closed */ 1627 list_for_each_entry_safe(dev, tmp, head, close_list) 1628 if (!(dev->flags & IFF_UP)) 1629 list_del_init(&dev->close_list); 1630 1631 __dev_close_many(head); 1632 1633 list_for_each_entry_safe(dev, tmp, head, close_list) { 1634 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1635 call_netdevice_notifiers(NETDEV_DOWN, dev); 1636 if (unlink) 1637 list_del_init(&dev->close_list); 1638 } 1639 } 1640 EXPORT_SYMBOL(dev_close_many); 1641 1642 /** 1643 * dev_close - shutdown an interface. 1644 * @dev: device to shutdown 1645 * 1646 * This function moves an active device into down state. A 1647 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1648 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1649 * chain. 1650 */ 1651 void dev_close(struct net_device *dev) 1652 { 1653 if (dev->flags & IFF_UP) { 1654 LIST_HEAD(single); 1655 1656 list_add(&dev->close_list, &single); 1657 dev_close_many(&single, true); 1658 list_del(&single); 1659 } 1660 } 1661 EXPORT_SYMBOL(dev_close); 1662 1663 1664 /** 1665 * dev_disable_lro - disable Large Receive Offload on a device 1666 * @dev: device 1667 * 1668 * Disable Large Receive Offload (LRO) on a net device. Must be 1669 * called under RTNL. This is needed if received packets may be 1670 * forwarded to another interface. 1671 */ 1672 void dev_disable_lro(struct net_device *dev) 1673 { 1674 struct net_device *lower_dev; 1675 struct list_head *iter; 1676 1677 dev->wanted_features &= ~NETIF_F_LRO; 1678 netdev_update_features(dev); 1679 1680 if (unlikely(dev->features & NETIF_F_LRO)) 1681 netdev_WARN(dev, "failed to disable LRO!\n"); 1682 1683 netdev_for_each_lower_dev(dev, lower_dev, iter) 1684 dev_disable_lro(lower_dev); 1685 } 1686 EXPORT_SYMBOL(dev_disable_lro); 1687 1688 /** 1689 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1690 * @dev: device 1691 * 1692 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1693 * called under RTNL. This is needed if Generic XDP is installed on 1694 * the device. 1695 */ 1696 static void dev_disable_gro_hw(struct net_device *dev) 1697 { 1698 dev->wanted_features &= ~NETIF_F_GRO_HW; 1699 netdev_update_features(dev); 1700 1701 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1702 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1703 } 1704 1705 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1706 { 1707 #define N(val) \ 1708 case NETDEV_##val: \ 1709 return "NETDEV_" __stringify(val); 1710 switch (cmd) { 1711 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1712 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1713 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1714 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1715 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1716 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1717 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1718 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1719 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1720 N(PRE_CHANGEADDR) 1721 } 1722 #undef N 1723 return "UNKNOWN_NETDEV_EVENT"; 1724 } 1725 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1726 1727 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1728 struct net_device *dev) 1729 { 1730 struct netdev_notifier_info info = { 1731 .dev = dev, 1732 }; 1733 1734 return nb->notifier_call(nb, val, &info); 1735 } 1736 1737 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1738 struct net_device *dev) 1739 { 1740 int err; 1741 1742 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1743 err = notifier_to_errno(err); 1744 if (err) 1745 return err; 1746 1747 if (!(dev->flags & IFF_UP)) 1748 return 0; 1749 1750 call_netdevice_notifier(nb, NETDEV_UP, dev); 1751 return 0; 1752 } 1753 1754 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1755 struct net_device *dev) 1756 { 1757 if (dev->flags & IFF_UP) { 1758 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1759 dev); 1760 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1761 } 1762 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1763 } 1764 1765 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1766 struct net *net) 1767 { 1768 struct net_device *dev; 1769 int err; 1770 1771 for_each_netdev(net, dev) { 1772 err = call_netdevice_register_notifiers(nb, dev); 1773 if (err) 1774 goto rollback; 1775 } 1776 return 0; 1777 1778 rollback: 1779 for_each_netdev_continue_reverse(net, dev) 1780 call_netdevice_unregister_notifiers(nb, dev); 1781 return err; 1782 } 1783 1784 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1785 struct net *net) 1786 { 1787 struct net_device *dev; 1788 1789 for_each_netdev(net, dev) 1790 call_netdevice_unregister_notifiers(nb, dev); 1791 } 1792 1793 static int dev_boot_phase = 1; 1794 1795 /** 1796 * register_netdevice_notifier - register a network notifier block 1797 * @nb: notifier 1798 * 1799 * Register a notifier to be called when network device events occur. 1800 * The notifier passed is linked into the kernel structures and must 1801 * not be reused until it has been unregistered. A negative errno code 1802 * is returned on a failure. 1803 * 1804 * When registered all registration and up events are replayed 1805 * to the new notifier to allow device to have a race free 1806 * view of the network device list. 1807 */ 1808 1809 int register_netdevice_notifier(struct notifier_block *nb) 1810 { 1811 struct net *net; 1812 int err; 1813 1814 /* Close race with setup_net() and cleanup_net() */ 1815 down_write(&pernet_ops_rwsem); 1816 rtnl_lock(); 1817 err = raw_notifier_chain_register(&netdev_chain, nb); 1818 if (err) 1819 goto unlock; 1820 if (dev_boot_phase) 1821 goto unlock; 1822 for_each_net(net) { 1823 err = call_netdevice_register_net_notifiers(nb, net); 1824 if (err) 1825 goto rollback; 1826 } 1827 1828 unlock: 1829 rtnl_unlock(); 1830 up_write(&pernet_ops_rwsem); 1831 return err; 1832 1833 rollback: 1834 for_each_net_continue_reverse(net) 1835 call_netdevice_unregister_net_notifiers(nb, net); 1836 1837 raw_notifier_chain_unregister(&netdev_chain, nb); 1838 goto unlock; 1839 } 1840 EXPORT_SYMBOL(register_netdevice_notifier); 1841 1842 /** 1843 * unregister_netdevice_notifier - unregister a network notifier block 1844 * @nb: notifier 1845 * 1846 * Unregister a notifier previously registered by 1847 * register_netdevice_notifier(). The notifier is unlinked into the 1848 * kernel structures and may then be reused. A negative errno code 1849 * is returned on a failure. 1850 * 1851 * After unregistering unregister and down device events are synthesized 1852 * for all devices on the device list to the removed notifier to remove 1853 * the need for special case cleanup code. 1854 */ 1855 1856 int unregister_netdevice_notifier(struct notifier_block *nb) 1857 { 1858 struct net *net; 1859 int err; 1860 1861 /* Close race with setup_net() and cleanup_net() */ 1862 down_write(&pernet_ops_rwsem); 1863 rtnl_lock(); 1864 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1865 if (err) 1866 goto unlock; 1867 1868 for_each_net(net) 1869 call_netdevice_unregister_net_notifiers(nb, net); 1870 1871 unlock: 1872 rtnl_unlock(); 1873 up_write(&pernet_ops_rwsem); 1874 return err; 1875 } 1876 EXPORT_SYMBOL(unregister_netdevice_notifier); 1877 1878 static int __register_netdevice_notifier_net(struct net *net, 1879 struct notifier_block *nb, 1880 bool ignore_call_fail) 1881 { 1882 int err; 1883 1884 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1885 if (err) 1886 return err; 1887 if (dev_boot_phase) 1888 return 0; 1889 1890 err = call_netdevice_register_net_notifiers(nb, net); 1891 if (err && !ignore_call_fail) 1892 goto chain_unregister; 1893 1894 return 0; 1895 1896 chain_unregister: 1897 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1898 return err; 1899 } 1900 1901 static int __unregister_netdevice_notifier_net(struct net *net, 1902 struct notifier_block *nb) 1903 { 1904 int err; 1905 1906 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1907 if (err) 1908 return err; 1909 1910 call_netdevice_unregister_net_notifiers(nb, net); 1911 return 0; 1912 } 1913 1914 /** 1915 * register_netdevice_notifier_net - register a per-netns network notifier block 1916 * @net: network namespace 1917 * @nb: notifier 1918 * 1919 * Register a notifier to be called when network device events occur. 1920 * The notifier passed is linked into the kernel structures and must 1921 * not be reused until it has been unregistered. A negative errno code 1922 * is returned on a failure. 1923 * 1924 * When registered all registration and up events are replayed 1925 * to the new notifier to allow device to have a race free 1926 * view of the network device list. 1927 */ 1928 1929 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1930 { 1931 int err; 1932 1933 rtnl_lock(); 1934 err = __register_netdevice_notifier_net(net, nb, false); 1935 rtnl_unlock(); 1936 return err; 1937 } 1938 EXPORT_SYMBOL(register_netdevice_notifier_net); 1939 1940 /** 1941 * unregister_netdevice_notifier_net - unregister a per-netns 1942 * network notifier block 1943 * @net: network namespace 1944 * @nb: notifier 1945 * 1946 * Unregister a notifier previously registered by 1947 * register_netdevice_notifier(). The notifier is unlinked into the 1948 * kernel structures and may then be reused. A negative errno code 1949 * is returned on a failure. 1950 * 1951 * After unregistering unregister and down device events are synthesized 1952 * for all devices on the device list to the removed notifier to remove 1953 * the need for special case cleanup code. 1954 */ 1955 1956 int unregister_netdevice_notifier_net(struct net *net, 1957 struct notifier_block *nb) 1958 { 1959 int err; 1960 1961 rtnl_lock(); 1962 err = __unregister_netdevice_notifier_net(net, nb); 1963 rtnl_unlock(); 1964 return err; 1965 } 1966 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1967 1968 int register_netdevice_notifier_dev_net(struct net_device *dev, 1969 struct notifier_block *nb, 1970 struct netdev_net_notifier *nn) 1971 { 1972 int err; 1973 1974 rtnl_lock(); 1975 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1976 if (!err) { 1977 nn->nb = nb; 1978 list_add(&nn->list, &dev->net_notifier_list); 1979 } 1980 rtnl_unlock(); 1981 return err; 1982 } 1983 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1984 1985 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1986 struct notifier_block *nb, 1987 struct netdev_net_notifier *nn) 1988 { 1989 int err; 1990 1991 rtnl_lock(); 1992 list_del(&nn->list); 1993 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1994 rtnl_unlock(); 1995 return err; 1996 } 1997 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1998 1999 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2000 struct net *net) 2001 { 2002 struct netdev_net_notifier *nn; 2003 2004 list_for_each_entry(nn, &dev->net_notifier_list, list) { 2005 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 2006 __register_netdevice_notifier_net(net, nn->nb, true); 2007 } 2008 } 2009 2010 /** 2011 * call_netdevice_notifiers_info - call all network notifier blocks 2012 * @val: value passed unmodified to notifier function 2013 * @info: notifier information data 2014 * 2015 * Call all network notifier blocks. Parameters and return value 2016 * are as for raw_notifier_call_chain(). 2017 */ 2018 2019 static int call_netdevice_notifiers_info(unsigned long val, 2020 struct netdev_notifier_info *info) 2021 { 2022 struct net *net = dev_net(info->dev); 2023 int ret; 2024 2025 ASSERT_RTNL(); 2026 2027 /* Run per-netns notifier block chain first, then run the global one. 2028 * Hopefully, one day, the global one is going to be removed after 2029 * all notifier block registrators get converted to be per-netns. 2030 */ 2031 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2032 if (ret & NOTIFY_STOP_MASK) 2033 return ret; 2034 return raw_notifier_call_chain(&netdev_chain, val, info); 2035 } 2036 2037 static int call_netdevice_notifiers_extack(unsigned long val, 2038 struct net_device *dev, 2039 struct netlink_ext_ack *extack) 2040 { 2041 struct netdev_notifier_info info = { 2042 .dev = dev, 2043 .extack = extack, 2044 }; 2045 2046 return call_netdevice_notifiers_info(val, &info); 2047 } 2048 2049 /** 2050 * call_netdevice_notifiers - call all network notifier blocks 2051 * @val: value passed unmodified to notifier function 2052 * @dev: net_device pointer passed unmodified to notifier function 2053 * 2054 * Call all network notifier blocks. Parameters and return value 2055 * are as for raw_notifier_call_chain(). 2056 */ 2057 2058 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2059 { 2060 return call_netdevice_notifiers_extack(val, dev, NULL); 2061 } 2062 EXPORT_SYMBOL(call_netdevice_notifiers); 2063 2064 /** 2065 * call_netdevice_notifiers_mtu - call all network notifier blocks 2066 * @val: value passed unmodified to notifier function 2067 * @dev: net_device pointer passed unmodified to notifier function 2068 * @arg: additional u32 argument passed to the notifier function 2069 * 2070 * Call all network notifier blocks. Parameters and return value 2071 * are as for raw_notifier_call_chain(). 2072 */ 2073 static int call_netdevice_notifiers_mtu(unsigned long val, 2074 struct net_device *dev, u32 arg) 2075 { 2076 struct netdev_notifier_info_ext info = { 2077 .info.dev = dev, 2078 .ext.mtu = arg, 2079 }; 2080 2081 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2082 2083 return call_netdevice_notifiers_info(val, &info.info); 2084 } 2085 2086 #ifdef CONFIG_NET_INGRESS 2087 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2088 2089 void net_inc_ingress_queue(void) 2090 { 2091 static_branch_inc(&ingress_needed_key); 2092 } 2093 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2094 2095 void net_dec_ingress_queue(void) 2096 { 2097 static_branch_dec(&ingress_needed_key); 2098 } 2099 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2100 #endif 2101 2102 #ifdef CONFIG_NET_EGRESS 2103 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2104 2105 void net_inc_egress_queue(void) 2106 { 2107 static_branch_inc(&egress_needed_key); 2108 } 2109 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2110 2111 void net_dec_egress_queue(void) 2112 { 2113 static_branch_dec(&egress_needed_key); 2114 } 2115 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2116 #endif 2117 2118 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2119 #ifdef CONFIG_JUMP_LABEL 2120 static atomic_t netstamp_needed_deferred; 2121 static atomic_t netstamp_wanted; 2122 static void netstamp_clear(struct work_struct *work) 2123 { 2124 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2125 int wanted; 2126 2127 wanted = atomic_add_return(deferred, &netstamp_wanted); 2128 if (wanted > 0) 2129 static_branch_enable(&netstamp_needed_key); 2130 else 2131 static_branch_disable(&netstamp_needed_key); 2132 } 2133 static DECLARE_WORK(netstamp_work, netstamp_clear); 2134 #endif 2135 2136 void net_enable_timestamp(void) 2137 { 2138 #ifdef CONFIG_JUMP_LABEL 2139 int wanted; 2140 2141 while (1) { 2142 wanted = atomic_read(&netstamp_wanted); 2143 if (wanted <= 0) 2144 break; 2145 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2146 return; 2147 } 2148 atomic_inc(&netstamp_needed_deferred); 2149 schedule_work(&netstamp_work); 2150 #else 2151 static_branch_inc(&netstamp_needed_key); 2152 #endif 2153 } 2154 EXPORT_SYMBOL(net_enable_timestamp); 2155 2156 void net_disable_timestamp(void) 2157 { 2158 #ifdef CONFIG_JUMP_LABEL 2159 int wanted; 2160 2161 while (1) { 2162 wanted = atomic_read(&netstamp_wanted); 2163 if (wanted <= 1) 2164 break; 2165 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2166 return; 2167 } 2168 atomic_dec(&netstamp_needed_deferred); 2169 schedule_work(&netstamp_work); 2170 #else 2171 static_branch_dec(&netstamp_needed_key); 2172 #endif 2173 } 2174 EXPORT_SYMBOL(net_disable_timestamp); 2175 2176 static inline void net_timestamp_set(struct sk_buff *skb) 2177 { 2178 skb->tstamp = 0; 2179 if (static_branch_unlikely(&netstamp_needed_key)) 2180 __net_timestamp(skb); 2181 } 2182 2183 #define net_timestamp_check(COND, SKB) \ 2184 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2185 if ((COND) && !(SKB)->tstamp) \ 2186 __net_timestamp(SKB); \ 2187 } \ 2188 2189 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2190 { 2191 unsigned int len; 2192 2193 if (!(dev->flags & IFF_UP)) 2194 return false; 2195 2196 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 2197 if (skb->len <= len) 2198 return true; 2199 2200 /* if TSO is enabled, we don't care about the length as the packet 2201 * could be forwarded without being segmented before 2202 */ 2203 if (skb_is_gso(skb)) 2204 return true; 2205 2206 return false; 2207 } 2208 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2209 2210 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2211 { 2212 int ret = ____dev_forward_skb(dev, skb); 2213 2214 if (likely(!ret)) { 2215 skb->protocol = eth_type_trans(skb, dev); 2216 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2217 } 2218 2219 return ret; 2220 } 2221 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2222 2223 /** 2224 * dev_forward_skb - loopback an skb to another netif 2225 * 2226 * @dev: destination network device 2227 * @skb: buffer to forward 2228 * 2229 * return values: 2230 * NET_RX_SUCCESS (no congestion) 2231 * NET_RX_DROP (packet was dropped, but freed) 2232 * 2233 * dev_forward_skb can be used for injecting an skb from the 2234 * start_xmit function of one device into the receive queue 2235 * of another device. 2236 * 2237 * The receiving device may be in another namespace, so 2238 * we have to clear all information in the skb that could 2239 * impact namespace isolation. 2240 */ 2241 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2242 { 2243 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2244 } 2245 EXPORT_SYMBOL_GPL(dev_forward_skb); 2246 2247 static inline int deliver_skb(struct sk_buff *skb, 2248 struct packet_type *pt_prev, 2249 struct net_device *orig_dev) 2250 { 2251 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2252 return -ENOMEM; 2253 refcount_inc(&skb->users); 2254 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2255 } 2256 2257 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2258 struct packet_type **pt, 2259 struct net_device *orig_dev, 2260 __be16 type, 2261 struct list_head *ptype_list) 2262 { 2263 struct packet_type *ptype, *pt_prev = *pt; 2264 2265 list_for_each_entry_rcu(ptype, ptype_list, list) { 2266 if (ptype->type != type) 2267 continue; 2268 if (pt_prev) 2269 deliver_skb(skb, pt_prev, orig_dev); 2270 pt_prev = ptype; 2271 } 2272 *pt = pt_prev; 2273 } 2274 2275 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2276 { 2277 if (!ptype->af_packet_priv || !skb->sk) 2278 return false; 2279 2280 if (ptype->id_match) 2281 return ptype->id_match(ptype, skb->sk); 2282 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2283 return true; 2284 2285 return false; 2286 } 2287 2288 /** 2289 * dev_nit_active - return true if any network interface taps are in use 2290 * 2291 * @dev: network device to check for the presence of taps 2292 */ 2293 bool dev_nit_active(struct net_device *dev) 2294 { 2295 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2296 } 2297 EXPORT_SYMBOL_GPL(dev_nit_active); 2298 2299 /* 2300 * Support routine. Sends outgoing frames to any network 2301 * taps currently in use. 2302 */ 2303 2304 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2305 { 2306 struct packet_type *ptype; 2307 struct sk_buff *skb2 = NULL; 2308 struct packet_type *pt_prev = NULL; 2309 struct list_head *ptype_list = &ptype_all; 2310 2311 rcu_read_lock(); 2312 again: 2313 list_for_each_entry_rcu(ptype, ptype_list, list) { 2314 if (ptype->ignore_outgoing) 2315 continue; 2316 2317 /* Never send packets back to the socket 2318 * they originated from - MvS (miquels@drinkel.ow.org) 2319 */ 2320 if (skb_loop_sk(ptype, skb)) 2321 continue; 2322 2323 if (pt_prev) { 2324 deliver_skb(skb2, pt_prev, skb->dev); 2325 pt_prev = ptype; 2326 continue; 2327 } 2328 2329 /* need to clone skb, done only once */ 2330 skb2 = skb_clone(skb, GFP_ATOMIC); 2331 if (!skb2) 2332 goto out_unlock; 2333 2334 net_timestamp_set(skb2); 2335 2336 /* skb->nh should be correctly 2337 * set by sender, so that the second statement is 2338 * just protection against buggy protocols. 2339 */ 2340 skb_reset_mac_header(skb2); 2341 2342 if (skb_network_header(skb2) < skb2->data || 2343 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2344 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2345 ntohs(skb2->protocol), 2346 dev->name); 2347 skb_reset_network_header(skb2); 2348 } 2349 2350 skb2->transport_header = skb2->network_header; 2351 skb2->pkt_type = PACKET_OUTGOING; 2352 pt_prev = ptype; 2353 } 2354 2355 if (ptype_list == &ptype_all) { 2356 ptype_list = &dev->ptype_all; 2357 goto again; 2358 } 2359 out_unlock: 2360 if (pt_prev) { 2361 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2362 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2363 else 2364 kfree_skb(skb2); 2365 } 2366 rcu_read_unlock(); 2367 } 2368 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2369 2370 /** 2371 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2372 * @dev: Network device 2373 * @txq: number of queues available 2374 * 2375 * If real_num_tx_queues is changed the tc mappings may no longer be 2376 * valid. To resolve this verify the tc mapping remains valid and if 2377 * not NULL the mapping. With no priorities mapping to this 2378 * offset/count pair it will no longer be used. In the worst case TC0 2379 * is invalid nothing can be done so disable priority mappings. If is 2380 * expected that drivers will fix this mapping if they can before 2381 * calling netif_set_real_num_tx_queues. 2382 */ 2383 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2384 { 2385 int i; 2386 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2387 2388 /* If TC0 is invalidated disable TC mapping */ 2389 if (tc->offset + tc->count > txq) { 2390 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2391 dev->num_tc = 0; 2392 return; 2393 } 2394 2395 /* Invalidated prio to tc mappings set to TC0 */ 2396 for (i = 1; i < TC_BITMASK + 1; i++) { 2397 int q = netdev_get_prio_tc_map(dev, i); 2398 2399 tc = &dev->tc_to_txq[q]; 2400 if (tc->offset + tc->count > txq) { 2401 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2402 i, q); 2403 netdev_set_prio_tc_map(dev, i, 0); 2404 } 2405 } 2406 } 2407 2408 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2409 { 2410 if (dev->num_tc) { 2411 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2412 int i; 2413 2414 /* walk through the TCs and see if it falls into any of them */ 2415 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2416 if ((txq - tc->offset) < tc->count) 2417 return i; 2418 } 2419 2420 /* didn't find it, just return -1 to indicate no match */ 2421 return -1; 2422 } 2423 2424 return 0; 2425 } 2426 EXPORT_SYMBOL(netdev_txq_to_tc); 2427 2428 #ifdef CONFIG_XPS 2429 struct static_key xps_needed __read_mostly; 2430 EXPORT_SYMBOL(xps_needed); 2431 struct static_key xps_rxqs_needed __read_mostly; 2432 EXPORT_SYMBOL(xps_rxqs_needed); 2433 static DEFINE_MUTEX(xps_map_mutex); 2434 #define xmap_dereference(P) \ 2435 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2436 2437 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2438 int tci, u16 index) 2439 { 2440 struct xps_map *map = NULL; 2441 int pos; 2442 2443 if (dev_maps) 2444 map = xmap_dereference(dev_maps->attr_map[tci]); 2445 if (!map) 2446 return false; 2447 2448 for (pos = map->len; pos--;) { 2449 if (map->queues[pos] != index) 2450 continue; 2451 2452 if (map->len > 1) { 2453 map->queues[pos] = map->queues[--map->len]; 2454 break; 2455 } 2456 2457 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2458 kfree_rcu(map, rcu); 2459 return false; 2460 } 2461 2462 return true; 2463 } 2464 2465 static bool remove_xps_queue_cpu(struct net_device *dev, 2466 struct xps_dev_maps *dev_maps, 2467 int cpu, u16 offset, u16 count) 2468 { 2469 int num_tc = dev->num_tc ? : 1; 2470 bool active = false; 2471 int tci; 2472 2473 for (tci = cpu * num_tc; num_tc--; tci++) { 2474 int i, j; 2475 2476 for (i = count, j = offset; i--; j++) { 2477 if (!remove_xps_queue(dev_maps, tci, j)) 2478 break; 2479 } 2480 2481 active |= i < 0; 2482 } 2483 2484 return active; 2485 } 2486 2487 static void reset_xps_maps(struct net_device *dev, 2488 struct xps_dev_maps *dev_maps, 2489 bool is_rxqs_map) 2490 { 2491 if (is_rxqs_map) { 2492 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2493 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2494 } else { 2495 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2496 } 2497 static_key_slow_dec_cpuslocked(&xps_needed); 2498 kfree_rcu(dev_maps, rcu); 2499 } 2500 2501 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2502 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2503 u16 offset, u16 count, bool is_rxqs_map) 2504 { 2505 bool active = false; 2506 int i, j; 2507 2508 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2509 j < nr_ids;) 2510 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2511 count); 2512 if (!active) 2513 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2514 2515 if (!is_rxqs_map) { 2516 for (i = offset + (count - 1); count--; i--) { 2517 netdev_queue_numa_node_write( 2518 netdev_get_tx_queue(dev, i), 2519 NUMA_NO_NODE); 2520 } 2521 } 2522 } 2523 2524 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2525 u16 count) 2526 { 2527 const unsigned long *possible_mask = NULL; 2528 struct xps_dev_maps *dev_maps; 2529 unsigned int nr_ids; 2530 2531 if (!static_key_false(&xps_needed)) 2532 return; 2533 2534 cpus_read_lock(); 2535 mutex_lock(&xps_map_mutex); 2536 2537 if (static_key_false(&xps_rxqs_needed)) { 2538 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2539 if (dev_maps) { 2540 nr_ids = dev->num_rx_queues; 2541 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2542 offset, count, true); 2543 } 2544 } 2545 2546 dev_maps = xmap_dereference(dev->xps_cpus_map); 2547 if (!dev_maps) 2548 goto out_no_maps; 2549 2550 if (num_possible_cpus() > 1) 2551 possible_mask = cpumask_bits(cpu_possible_mask); 2552 nr_ids = nr_cpu_ids; 2553 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2554 false); 2555 2556 out_no_maps: 2557 mutex_unlock(&xps_map_mutex); 2558 cpus_read_unlock(); 2559 } 2560 2561 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2562 { 2563 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2564 } 2565 2566 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2567 u16 index, bool is_rxqs_map) 2568 { 2569 struct xps_map *new_map; 2570 int alloc_len = XPS_MIN_MAP_ALLOC; 2571 int i, pos; 2572 2573 for (pos = 0; map && pos < map->len; pos++) { 2574 if (map->queues[pos] != index) 2575 continue; 2576 return map; 2577 } 2578 2579 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2580 if (map) { 2581 if (pos < map->alloc_len) 2582 return map; 2583 2584 alloc_len = map->alloc_len * 2; 2585 } 2586 2587 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2588 * map 2589 */ 2590 if (is_rxqs_map) 2591 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2592 else 2593 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2594 cpu_to_node(attr_index)); 2595 if (!new_map) 2596 return NULL; 2597 2598 for (i = 0; i < pos; i++) 2599 new_map->queues[i] = map->queues[i]; 2600 new_map->alloc_len = alloc_len; 2601 new_map->len = pos; 2602 2603 return new_map; 2604 } 2605 2606 /* Must be called under cpus_read_lock */ 2607 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2608 u16 index, bool is_rxqs_map) 2609 { 2610 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2611 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2612 int i, j, tci, numa_node_id = -2; 2613 int maps_sz, num_tc = 1, tc = 0; 2614 struct xps_map *map, *new_map; 2615 bool active = false; 2616 unsigned int nr_ids; 2617 2618 if (dev->num_tc) { 2619 /* Do not allow XPS on subordinate device directly */ 2620 num_tc = dev->num_tc; 2621 if (num_tc < 0) 2622 return -EINVAL; 2623 2624 /* If queue belongs to subordinate dev use its map */ 2625 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2626 2627 tc = netdev_txq_to_tc(dev, index); 2628 if (tc < 0) 2629 return -EINVAL; 2630 } 2631 2632 mutex_lock(&xps_map_mutex); 2633 if (is_rxqs_map) { 2634 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2635 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2636 nr_ids = dev->num_rx_queues; 2637 } else { 2638 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2639 if (num_possible_cpus() > 1) { 2640 online_mask = cpumask_bits(cpu_online_mask); 2641 possible_mask = cpumask_bits(cpu_possible_mask); 2642 } 2643 dev_maps = xmap_dereference(dev->xps_cpus_map); 2644 nr_ids = nr_cpu_ids; 2645 } 2646 2647 if (maps_sz < L1_CACHE_BYTES) 2648 maps_sz = L1_CACHE_BYTES; 2649 2650 /* allocate memory for queue storage */ 2651 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2652 j < nr_ids;) { 2653 if (!new_dev_maps) 2654 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2655 if (!new_dev_maps) { 2656 mutex_unlock(&xps_map_mutex); 2657 return -ENOMEM; 2658 } 2659 2660 tci = j * num_tc + tc; 2661 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2662 NULL; 2663 2664 map = expand_xps_map(map, j, index, is_rxqs_map); 2665 if (!map) 2666 goto error; 2667 2668 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2669 } 2670 2671 if (!new_dev_maps) 2672 goto out_no_new_maps; 2673 2674 if (!dev_maps) { 2675 /* Increment static keys at most once per type */ 2676 static_key_slow_inc_cpuslocked(&xps_needed); 2677 if (is_rxqs_map) 2678 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2679 } 2680 2681 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2682 j < nr_ids;) { 2683 /* copy maps belonging to foreign traffic classes */ 2684 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2685 /* fill in the new device map from the old device map */ 2686 map = xmap_dereference(dev_maps->attr_map[tci]); 2687 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2688 } 2689 2690 /* We need to explicitly update tci as prevous loop 2691 * could break out early if dev_maps is NULL. 2692 */ 2693 tci = j * num_tc + tc; 2694 2695 if (netif_attr_test_mask(j, mask, nr_ids) && 2696 netif_attr_test_online(j, online_mask, nr_ids)) { 2697 /* add tx-queue to CPU/rx-queue maps */ 2698 int pos = 0; 2699 2700 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2701 while ((pos < map->len) && (map->queues[pos] != index)) 2702 pos++; 2703 2704 if (pos == map->len) 2705 map->queues[map->len++] = index; 2706 #ifdef CONFIG_NUMA 2707 if (!is_rxqs_map) { 2708 if (numa_node_id == -2) 2709 numa_node_id = cpu_to_node(j); 2710 else if (numa_node_id != cpu_to_node(j)) 2711 numa_node_id = -1; 2712 } 2713 #endif 2714 } else if (dev_maps) { 2715 /* fill in the new device map from the old device map */ 2716 map = xmap_dereference(dev_maps->attr_map[tci]); 2717 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2718 } 2719 2720 /* copy maps belonging to foreign traffic classes */ 2721 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2722 /* fill in the new device map from the old device map */ 2723 map = xmap_dereference(dev_maps->attr_map[tci]); 2724 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2725 } 2726 } 2727 2728 if (is_rxqs_map) 2729 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2730 else 2731 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2732 2733 /* Cleanup old maps */ 2734 if (!dev_maps) 2735 goto out_no_old_maps; 2736 2737 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2738 j < nr_ids;) { 2739 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2740 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2741 map = xmap_dereference(dev_maps->attr_map[tci]); 2742 if (map && map != new_map) 2743 kfree_rcu(map, rcu); 2744 } 2745 } 2746 2747 kfree_rcu(dev_maps, rcu); 2748 2749 out_no_old_maps: 2750 dev_maps = new_dev_maps; 2751 active = true; 2752 2753 out_no_new_maps: 2754 if (!is_rxqs_map) { 2755 /* update Tx queue numa node */ 2756 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2757 (numa_node_id >= 0) ? 2758 numa_node_id : NUMA_NO_NODE); 2759 } 2760 2761 if (!dev_maps) 2762 goto out_no_maps; 2763 2764 /* removes tx-queue from unused CPUs/rx-queues */ 2765 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2766 j < nr_ids;) { 2767 for (i = tc, tci = j * num_tc; i--; tci++) 2768 active |= remove_xps_queue(dev_maps, tci, index); 2769 if (!netif_attr_test_mask(j, mask, nr_ids) || 2770 !netif_attr_test_online(j, online_mask, nr_ids)) 2771 active |= remove_xps_queue(dev_maps, tci, index); 2772 for (i = num_tc - tc, tci++; --i; tci++) 2773 active |= remove_xps_queue(dev_maps, tci, index); 2774 } 2775 2776 /* free map if not active */ 2777 if (!active) 2778 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2779 2780 out_no_maps: 2781 mutex_unlock(&xps_map_mutex); 2782 2783 return 0; 2784 error: 2785 /* remove any maps that we added */ 2786 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2787 j < nr_ids;) { 2788 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2789 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2790 map = dev_maps ? 2791 xmap_dereference(dev_maps->attr_map[tci]) : 2792 NULL; 2793 if (new_map && new_map != map) 2794 kfree(new_map); 2795 } 2796 } 2797 2798 mutex_unlock(&xps_map_mutex); 2799 2800 kfree(new_dev_maps); 2801 return -ENOMEM; 2802 } 2803 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2804 2805 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2806 u16 index) 2807 { 2808 int ret; 2809 2810 cpus_read_lock(); 2811 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2812 cpus_read_unlock(); 2813 2814 return ret; 2815 } 2816 EXPORT_SYMBOL(netif_set_xps_queue); 2817 2818 #endif 2819 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2820 { 2821 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2822 2823 /* Unbind any subordinate channels */ 2824 while (txq-- != &dev->_tx[0]) { 2825 if (txq->sb_dev) 2826 netdev_unbind_sb_channel(dev, txq->sb_dev); 2827 } 2828 } 2829 2830 void netdev_reset_tc(struct net_device *dev) 2831 { 2832 #ifdef CONFIG_XPS 2833 netif_reset_xps_queues_gt(dev, 0); 2834 #endif 2835 netdev_unbind_all_sb_channels(dev); 2836 2837 /* Reset TC configuration of device */ 2838 dev->num_tc = 0; 2839 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2840 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2841 } 2842 EXPORT_SYMBOL(netdev_reset_tc); 2843 2844 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2845 { 2846 if (tc >= dev->num_tc) 2847 return -EINVAL; 2848 2849 #ifdef CONFIG_XPS 2850 netif_reset_xps_queues(dev, offset, count); 2851 #endif 2852 dev->tc_to_txq[tc].count = count; 2853 dev->tc_to_txq[tc].offset = offset; 2854 return 0; 2855 } 2856 EXPORT_SYMBOL(netdev_set_tc_queue); 2857 2858 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2859 { 2860 if (num_tc > TC_MAX_QUEUE) 2861 return -EINVAL; 2862 2863 #ifdef CONFIG_XPS 2864 netif_reset_xps_queues_gt(dev, 0); 2865 #endif 2866 netdev_unbind_all_sb_channels(dev); 2867 2868 dev->num_tc = num_tc; 2869 return 0; 2870 } 2871 EXPORT_SYMBOL(netdev_set_num_tc); 2872 2873 void netdev_unbind_sb_channel(struct net_device *dev, 2874 struct net_device *sb_dev) 2875 { 2876 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2877 2878 #ifdef CONFIG_XPS 2879 netif_reset_xps_queues_gt(sb_dev, 0); 2880 #endif 2881 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2882 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2883 2884 while (txq-- != &dev->_tx[0]) { 2885 if (txq->sb_dev == sb_dev) 2886 txq->sb_dev = NULL; 2887 } 2888 } 2889 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2890 2891 int netdev_bind_sb_channel_queue(struct net_device *dev, 2892 struct net_device *sb_dev, 2893 u8 tc, u16 count, u16 offset) 2894 { 2895 /* Make certain the sb_dev and dev are already configured */ 2896 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2897 return -EINVAL; 2898 2899 /* We cannot hand out queues we don't have */ 2900 if ((offset + count) > dev->real_num_tx_queues) 2901 return -EINVAL; 2902 2903 /* Record the mapping */ 2904 sb_dev->tc_to_txq[tc].count = count; 2905 sb_dev->tc_to_txq[tc].offset = offset; 2906 2907 /* Provide a way for Tx queue to find the tc_to_txq map or 2908 * XPS map for itself. 2909 */ 2910 while (count--) 2911 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2912 2913 return 0; 2914 } 2915 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2916 2917 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2918 { 2919 /* Do not use a multiqueue device to represent a subordinate channel */ 2920 if (netif_is_multiqueue(dev)) 2921 return -ENODEV; 2922 2923 /* We allow channels 1 - 32767 to be used for subordinate channels. 2924 * Channel 0 is meant to be "native" mode and used only to represent 2925 * the main root device. We allow writing 0 to reset the device back 2926 * to normal mode after being used as a subordinate channel. 2927 */ 2928 if (channel > S16_MAX) 2929 return -EINVAL; 2930 2931 dev->num_tc = -channel; 2932 2933 return 0; 2934 } 2935 EXPORT_SYMBOL(netdev_set_sb_channel); 2936 2937 /* 2938 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2939 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2940 */ 2941 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2942 { 2943 bool disabling; 2944 int rc; 2945 2946 disabling = txq < dev->real_num_tx_queues; 2947 2948 if (txq < 1 || txq > dev->num_tx_queues) 2949 return -EINVAL; 2950 2951 if (dev->reg_state == NETREG_REGISTERED || 2952 dev->reg_state == NETREG_UNREGISTERING) { 2953 ASSERT_RTNL(); 2954 2955 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2956 txq); 2957 if (rc) 2958 return rc; 2959 2960 if (dev->num_tc) 2961 netif_setup_tc(dev, txq); 2962 2963 dev->real_num_tx_queues = txq; 2964 2965 if (disabling) { 2966 synchronize_net(); 2967 qdisc_reset_all_tx_gt(dev, txq); 2968 #ifdef CONFIG_XPS 2969 netif_reset_xps_queues_gt(dev, txq); 2970 #endif 2971 } 2972 } else { 2973 dev->real_num_tx_queues = txq; 2974 } 2975 2976 return 0; 2977 } 2978 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2979 2980 #ifdef CONFIG_SYSFS 2981 /** 2982 * netif_set_real_num_rx_queues - set actual number of RX queues used 2983 * @dev: Network device 2984 * @rxq: Actual number of RX queues 2985 * 2986 * This must be called either with the rtnl_lock held or before 2987 * registration of the net device. Returns 0 on success, or a 2988 * negative error code. If called before registration, it always 2989 * succeeds. 2990 */ 2991 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2992 { 2993 int rc; 2994 2995 if (rxq < 1 || rxq > dev->num_rx_queues) 2996 return -EINVAL; 2997 2998 if (dev->reg_state == NETREG_REGISTERED) { 2999 ASSERT_RTNL(); 3000 3001 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3002 rxq); 3003 if (rc) 3004 return rc; 3005 } 3006 3007 dev->real_num_rx_queues = rxq; 3008 return 0; 3009 } 3010 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3011 #endif 3012 3013 /** 3014 * netif_get_num_default_rss_queues - default number of RSS queues 3015 * 3016 * This routine should set an upper limit on the number of RSS queues 3017 * used by default by multiqueue devices. 3018 */ 3019 int netif_get_num_default_rss_queues(void) 3020 { 3021 return is_kdump_kernel() ? 3022 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 3023 } 3024 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3025 3026 static void __netif_reschedule(struct Qdisc *q) 3027 { 3028 struct softnet_data *sd; 3029 unsigned long flags; 3030 3031 local_irq_save(flags); 3032 sd = this_cpu_ptr(&softnet_data); 3033 q->next_sched = NULL; 3034 *sd->output_queue_tailp = q; 3035 sd->output_queue_tailp = &q->next_sched; 3036 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3037 local_irq_restore(flags); 3038 } 3039 3040 void __netif_schedule(struct Qdisc *q) 3041 { 3042 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3043 __netif_reschedule(q); 3044 } 3045 EXPORT_SYMBOL(__netif_schedule); 3046 3047 struct dev_kfree_skb_cb { 3048 enum skb_free_reason reason; 3049 }; 3050 3051 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3052 { 3053 return (struct dev_kfree_skb_cb *)skb->cb; 3054 } 3055 3056 void netif_schedule_queue(struct netdev_queue *txq) 3057 { 3058 rcu_read_lock(); 3059 if (!netif_xmit_stopped(txq)) { 3060 struct Qdisc *q = rcu_dereference(txq->qdisc); 3061 3062 __netif_schedule(q); 3063 } 3064 rcu_read_unlock(); 3065 } 3066 EXPORT_SYMBOL(netif_schedule_queue); 3067 3068 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3069 { 3070 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3071 struct Qdisc *q; 3072 3073 rcu_read_lock(); 3074 q = rcu_dereference(dev_queue->qdisc); 3075 __netif_schedule(q); 3076 rcu_read_unlock(); 3077 } 3078 } 3079 EXPORT_SYMBOL(netif_tx_wake_queue); 3080 3081 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3082 { 3083 unsigned long flags; 3084 3085 if (unlikely(!skb)) 3086 return; 3087 3088 if (likely(refcount_read(&skb->users) == 1)) { 3089 smp_rmb(); 3090 refcount_set(&skb->users, 0); 3091 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3092 return; 3093 } 3094 get_kfree_skb_cb(skb)->reason = reason; 3095 local_irq_save(flags); 3096 skb->next = __this_cpu_read(softnet_data.completion_queue); 3097 __this_cpu_write(softnet_data.completion_queue, skb); 3098 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3099 local_irq_restore(flags); 3100 } 3101 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3102 3103 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3104 { 3105 if (in_irq() || irqs_disabled()) 3106 __dev_kfree_skb_irq(skb, reason); 3107 else 3108 dev_kfree_skb(skb); 3109 } 3110 EXPORT_SYMBOL(__dev_kfree_skb_any); 3111 3112 3113 /** 3114 * netif_device_detach - mark device as removed 3115 * @dev: network device 3116 * 3117 * Mark device as removed from system and therefore no longer available. 3118 */ 3119 void netif_device_detach(struct net_device *dev) 3120 { 3121 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3122 netif_running(dev)) { 3123 netif_tx_stop_all_queues(dev); 3124 } 3125 } 3126 EXPORT_SYMBOL(netif_device_detach); 3127 3128 /** 3129 * netif_device_attach - mark device as attached 3130 * @dev: network device 3131 * 3132 * Mark device as attached from system and restart if needed. 3133 */ 3134 void netif_device_attach(struct net_device *dev) 3135 { 3136 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3137 netif_running(dev)) { 3138 netif_tx_wake_all_queues(dev); 3139 __netdev_watchdog_up(dev); 3140 } 3141 } 3142 EXPORT_SYMBOL(netif_device_attach); 3143 3144 /* 3145 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3146 * to be used as a distribution range. 3147 */ 3148 static u16 skb_tx_hash(const struct net_device *dev, 3149 const struct net_device *sb_dev, 3150 struct sk_buff *skb) 3151 { 3152 u32 hash; 3153 u16 qoffset = 0; 3154 u16 qcount = dev->real_num_tx_queues; 3155 3156 if (dev->num_tc) { 3157 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3158 3159 qoffset = sb_dev->tc_to_txq[tc].offset; 3160 qcount = sb_dev->tc_to_txq[tc].count; 3161 } 3162 3163 if (skb_rx_queue_recorded(skb)) { 3164 hash = skb_get_rx_queue(skb); 3165 if (hash >= qoffset) 3166 hash -= qoffset; 3167 while (unlikely(hash >= qcount)) 3168 hash -= qcount; 3169 return hash + qoffset; 3170 } 3171 3172 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3173 } 3174 3175 static void skb_warn_bad_offload(const struct sk_buff *skb) 3176 { 3177 static const netdev_features_t null_features; 3178 struct net_device *dev = skb->dev; 3179 const char *name = ""; 3180 3181 if (!net_ratelimit()) 3182 return; 3183 3184 if (dev) { 3185 if (dev->dev.parent) 3186 name = dev_driver_string(dev->dev.parent); 3187 else 3188 name = netdev_name(dev); 3189 } 3190 skb_dump(KERN_WARNING, skb, false); 3191 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3192 name, dev ? &dev->features : &null_features, 3193 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3194 } 3195 3196 /* 3197 * Invalidate hardware checksum when packet is to be mangled, and 3198 * complete checksum manually on outgoing path. 3199 */ 3200 int skb_checksum_help(struct sk_buff *skb) 3201 { 3202 __wsum csum; 3203 int ret = 0, offset; 3204 3205 if (skb->ip_summed == CHECKSUM_COMPLETE) 3206 goto out_set_summed; 3207 3208 if (unlikely(skb_shinfo(skb)->gso_size)) { 3209 skb_warn_bad_offload(skb); 3210 return -EINVAL; 3211 } 3212 3213 /* Before computing a checksum, we should make sure no frag could 3214 * be modified by an external entity : checksum could be wrong. 3215 */ 3216 if (skb_has_shared_frag(skb)) { 3217 ret = __skb_linearize(skb); 3218 if (ret) 3219 goto out; 3220 } 3221 3222 offset = skb_checksum_start_offset(skb); 3223 BUG_ON(offset >= skb_headlen(skb)); 3224 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3225 3226 offset += skb->csum_offset; 3227 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3228 3229 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3230 if (ret) 3231 goto out; 3232 3233 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3234 out_set_summed: 3235 skb->ip_summed = CHECKSUM_NONE; 3236 out: 3237 return ret; 3238 } 3239 EXPORT_SYMBOL(skb_checksum_help); 3240 3241 int skb_crc32c_csum_help(struct sk_buff *skb) 3242 { 3243 __le32 crc32c_csum; 3244 int ret = 0, offset, start; 3245 3246 if (skb->ip_summed != CHECKSUM_PARTIAL) 3247 goto out; 3248 3249 if (unlikely(skb_is_gso(skb))) 3250 goto out; 3251 3252 /* Before computing a checksum, we should make sure no frag could 3253 * be modified by an external entity : checksum could be wrong. 3254 */ 3255 if (unlikely(skb_has_shared_frag(skb))) { 3256 ret = __skb_linearize(skb); 3257 if (ret) 3258 goto out; 3259 } 3260 start = skb_checksum_start_offset(skb); 3261 offset = start + offsetof(struct sctphdr, checksum); 3262 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3263 ret = -EINVAL; 3264 goto out; 3265 } 3266 3267 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3268 if (ret) 3269 goto out; 3270 3271 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3272 skb->len - start, ~(__u32)0, 3273 crc32c_csum_stub)); 3274 *(__le32 *)(skb->data + offset) = crc32c_csum; 3275 skb->ip_summed = CHECKSUM_NONE; 3276 skb->csum_not_inet = 0; 3277 out: 3278 return ret; 3279 } 3280 3281 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3282 { 3283 __be16 type = skb->protocol; 3284 3285 /* Tunnel gso handlers can set protocol to ethernet. */ 3286 if (type == htons(ETH_P_TEB)) { 3287 struct ethhdr *eth; 3288 3289 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3290 return 0; 3291 3292 eth = (struct ethhdr *)skb->data; 3293 type = eth->h_proto; 3294 } 3295 3296 return __vlan_get_protocol(skb, type, depth); 3297 } 3298 3299 /** 3300 * skb_mac_gso_segment - mac layer segmentation handler. 3301 * @skb: buffer to segment 3302 * @features: features for the output path (see dev->features) 3303 */ 3304 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3305 netdev_features_t features) 3306 { 3307 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3308 struct packet_offload *ptype; 3309 int vlan_depth = skb->mac_len; 3310 __be16 type = skb_network_protocol(skb, &vlan_depth); 3311 3312 if (unlikely(!type)) 3313 return ERR_PTR(-EINVAL); 3314 3315 __skb_pull(skb, vlan_depth); 3316 3317 rcu_read_lock(); 3318 list_for_each_entry_rcu(ptype, &offload_base, list) { 3319 if (ptype->type == type && ptype->callbacks.gso_segment) { 3320 segs = ptype->callbacks.gso_segment(skb, features); 3321 break; 3322 } 3323 } 3324 rcu_read_unlock(); 3325 3326 __skb_push(skb, skb->data - skb_mac_header(skb)); 3327 3328 return segs; 3329 } 3330 EXPORT_SYMBOL(skb_mac_gso_segment); 3331 3332 3333 /* openvswitch calls this on rx path, so we need a different check. 3334 */ 3335 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3336 { 3337 if (tx_path) 3338 return skb->ip_summed != CHECKSUM_PARTIAL && 3339 skb->ip_summed != CHECKSUM_UNNECESSARY; 3340 3341 return skb->ip_summed == CHECKSUM_NONE; 3342 } 3343 3344 /** 3345 * __skb_gso_segment - Perform segmentation on skb. 3346 * @skb: buffer to segment 3347 * @features: features for the output path (see dev->features) 3348 * @tx_path: whether it is called in TX path 3349 * 3350 * This function segments the given skb and returns a list of segments. 3351 * 3352 * It may return NULL if the skb requires no segmentation. This is 3353 * only possible when GSO is used for verifying header integrity. 3354 * 3355 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3356 */ 3357 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3358 netdev_features_t features, bool tx_path) 3359 { 3360 struct sk_buff *segs; 3361 3362 if (unlikely(skb_needs_check(skb, tx_path))) { 3363 int err; 3364 3365 /* We're going to init ->check field in TCP or UDP header */ 3366 err = skb_cow_head(skb, 0); 3367 if (err < 0) 3368 return ERR_PTR(err); 3369 } 3370 3371 /* Only report GSO partial support if it will enable us to 3372 * support segmentation on this frame without needing additional 3373 * work. 3374 */ 3375 if (features & NETIF_F_GSO_PARTIAL) { 3376 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3377 struct net_device *dev = skb->dev; 3378 3379 partial_features |= dev->features & dev->gso_partial_features; 3380 if (!skb_gso_ok(skb, features | partial_features)) 3381 features &= ~NETIF_F_GSO_PARTIAL; 3382 } 3383 3384 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3385 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3386 3387 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3388 SKB_GSO_CB(skb)->encap_level = 0; 3389 3390 skb_reset_mac_header(skb); 3391 skb_reset_mac_len(skb); 3392 3393 segs = skb_mac_gso_segment(skb, features); 3394 3395 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3396 skb_warn_bad_offload(skb); 3397 3398 return segs; 3399 } 3400 EXPORT_SYMBOL(__skb_gso_segment); 3401 3402 /* Take action when hardware reception checksum errors are detected. */ 3403 #ifdef CONFIG_BUG 3404 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3405 { 3406 if (net_ratelimit()) { 3407 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3408 skb_dump(KERN_ERR, skb, true); 3409 dump_stack(); 3410 } 3411 } 3412 EXPORT_SYMBOL(netdev_rx_csum_fault); 3413 #endif 3414 3415 /* XXX: check that highmem exists at all on the given machine. */ 3416 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3417 { 3418 #ifdef CONFIG_HIGHMEM 3419 int i; 3420 3421 if (!(dev->features & NETIF_F_HIGHDMA)) { 3422 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3423 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3424 3425 if (PageHighMem(skb_frag_page(frag))) 3426 return 1; 3427 } 3428 } 3429 #endif 3430 return 0; 3431 } 3432 3433 /* If MPLS offload request, verify we are testing hardware MPLS features 3434 * instead of standard features for the netdev. 3435 */ 3436 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3437 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3438 netdev_features_t features, 3439 __be16 type) 3440 { 3441 if (eth_p_mpls(type)) 3442 features &= skb->dev->mpls_features; 3443 3444 return features; 3445 } 3446 #else 3447 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3448 netdev_features_t features, 3449 __be16 type) 3450 { 3451 return features; 3452 } 3453 #endif 3454 3455 static netdev_features_t harmonize_features(struct sk_buff *skb, 3456 netdev_features_t features) 3457 { 3458 __be16 type; 3459 3460 type = skb_network_protocol(skb, NULL); 3461 features = net_mpls_features(skb, features, type); 3462 3463 if (skb->ip_summed != CHECKSUM_NONE && 3464 !can_checksum_protocol(features, type)) { 3465 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3466 } 3467 if (illegal_highdma(skb->dev, skb)) 3468 features &= ~NETIF_F_SG; 3469 3470 return features; 3471 } 3472 3473 netdev_features_t passthru_features_check(struct sk_buff *skb, 3474 struct net_device *dev, 3475 netdev_features_t features) 3476 { 3477 return features; 3478 } 3479 EXPORT_SYMBOL(passthru_features_check); 3480 3481 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3482 struct net_device *dev, 3483 netdev_features_t features) 3484 { 3485 return vlan_features_check(skb, features); 3486 } 3487 3488 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3489 struct net_device *dev, 3490 netdev_features_t features) 3491 { 3492 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3493 3494 if (gso_segs > dev->gso_max_segs) 3495 return features & ~NETIF_F_GSO_MASK; 3496 3497 /* Support for GSO partial features requires software 3498 * intervention before we can actually process the packets 3499 * so we need to strip support for any partial features now 3500 * and we can pull them back in after we have partially 3501 * segmented the frame. 3502 */ 3503 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3504 features &= ~dev->gso_partial_features; 3505 3506 /* Make sure to clear the IPv4 ID mangling feature if the 3507 * IPv4 header has the potential to be fragmented. 3508 */ 3509 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3510 struct iphdr *iph = skb->encapsulation ? 3511 inner_ip_hdr(skb) : ip_hdr(skb); 3512 3513 if (!(iph->frag_off & htons(IP_DF))) 3514 features &= ~NETIF_F_TSO_MANGLEID; 3515 } 3516 3517 return features; 3518 } 3519 3520 netdev_features_t netif_skb_features(struct sk_buff *skb) 3521 { 3522 struct net_device *dev = skb->dev; 3523 netdev_features_t features = dev->features; 3524 3525 if (skb_is_gso(skb)) 3526 features = gso_features_check(skb, dev, features); 3527 3528 /* If encapsulation offload request, verify we are testing 3529 * hardware encapsulation features instead of standard 3530 * features for the netdev 3531 */ 3532 if (skb->encapsulation) 3533 features &= dev->hw_enc_features; 3534 3535 if (skb_vlan_tagged(skb)) 3536 features = netdev_intersect_features(features, 3537 dev->vlan_features | 3538 NETIF_F_HW_VLAN_CTAG_TX | 3539 NETIF_F_HW_VLAN_STAG_TX); 3540 3541 if (dev->netdev_ops->ndo_features_check) 3542 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3543 features); 3544 else 3545 features &= dflt_features_check(skb, dev, features); 3546 3547 return harmonize_features(skb, features); 3548 } 3549 EXPORT_SYMBOL(netif_skb_features); 3550 3551 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3552 struct netdev_queue *txq, bool more) 3553 { 3554 unsigned int len; 3555 int rc; 3556 3557 if (dev_nit_active(dev)) 3558 dev_queue_xmit_nit(skb, dev); 3559 3560 len = skb->len; 3561 trace_net_dev_start_xmit(skb, dev); 3562 rc = netdev_start_xmit(skb, dev, txq, more); 3563 trace_net_dev_xmit(skb, rc, dev, len); 3564 3565 return rc; 3566 } 3567 3568 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3569 struct netdev_queue *txq, int *ret) 3570 { 3571 struct sk_buff *skb = first; 3572 int rc = NETDEV_TX_OK; 3573 3574 while (skb) { 3575 struct sk_buff *next = skb->next; 3576 3577 skb_mark_not_on_list(skb); 3578 rc = xmit_one(skb, dev, txq, next != NULL); 3579 if (unlikely(!dev_xmit_complete(rc))) { 3580 skb->next = next; 3581 goto out; 3582 } 3583 3584 skb = next; 3585 if (netif_tx_queue_stopped(txq) && skb) { 3586 rc = NETDEV_TX_BUSY; 3587 break; 3588 } 3589 } 3590 3591 out: 3592 *ret = rc; 3593 return skb; 3594 } 3595 3596 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3597 netdev_features_t features) 3598 { 3599 if (skb_vlan_tag_present(skb) && 3600 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3601 skb = __vlan_hwaccel_push_inside(skb); 3602 return skb; 3603 } 3604 3605 int skb_csum_hwoffload_help(struct sk_buff *skb, 3606 const netdev_features_t features) 3607 { 3608 if (unlikely(skb->csum_not_inet)) 3609 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3610 skb_crc32c_csum_help(skb); 3611 3612 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3613 } 3614 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3615 3616 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3617 { 3618 netdev_features_t features; 3619 3620 features = netif_skb_features(skb); 3621 skb = validate_xmit_vlan(skb, features); 3622 if (unlikely(!skb)) 3623 goto out_null; 3624 3625 skb = sk_validate_xmit_skb(skb, dev); 3626 if (unlikely(!skb)) 3627 goto out_null; 3628 3629 if (netif_needs_gso(skb, features)) { 3630 struct sk_buff *segs; 3631 3632 segs = skb_gso_segment(skb, features); 3633 if (IS_ERR(segs)) { 3634 goto out_kfree_skb; 3635 } else if (segs) { 3636 consume_skb(skb); 3637 skb = segs; 3638 } 3639 } else { 3640 if (skb_needs_linearize(skb, features) && 3641 __skb_linearize(skb)) 3642 goto out_kfree_skb; 3643 3644 /* If packet is not checksummed and device does not 3645 * support checksumming for this protocol, complete 3646 * checksumming here. 3647 */ 3648 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3649 if (skb->encapsulation) 3650 skb_set_inner_transport_header(skb, 3651 skb_checksum_start_offset(skb)); 3652 else 3653 skb_set_transport_header(skb, 3654 skb_checksum_start_offset(skb)); 3655 if (skb_csum_hwoffload_help(skb, features)) 3656 goto out_kfree_skb; 3657 } 3658 } 3659 3660 skb = validate_xmit_xfrm(skb, features, again); 3661 3662 return skb; 3663 3664 out_kfree_skb: 3665 kfree_skb(skb); 3666 out_null: 3667 atomic_long_inc(&dev->tx_dropped); 3668 return NULL; 3669 } 3670 3671 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3672 { 3673 struct sk_buff *next, *head = NULL, *tail; 3674 3675 for (; skb != NULL; skb = next) { 3676 next = skb->next; 3677 skb_mark_not_on_list(skb); 3678 3679 /* in case skb wont be segmented, point to itself */ 3680 skb->prev = skb; 3681 3682 skb = validate_xmit_skb(skb, dev, again); 3683 if (!skb) 3684 continue; 3685 3686 if (!head) 3687 head = skb; 3688 else 3689 tail->next = skb; 3690 /* If skb was segmented, skb->prev points to 3691 * the last segment. If not, it still contains skb. 3692 */ 3693 tail = skb->prev; 3694 } 3695 return head; 3696 } 3697 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3698 3699 static void qdisc_pkt_len_init(struct sk_buff *skb) 3700 { 3701 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3702 3703 qdisc_skb_cb(skb)->pkt_len = skb->len; 3704 3705 /* To get more precise estimation of bytes sent on wire, 3706 * we add to pkt_len the headers size of all segments 3707 */ 3708 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3709 unsigned int hdr_len; 3710 u16 gso_segs = shinfo->gso_segs; 3711 3712 /* mac layer + network layer */ 3713 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3714 3715 /* + transport layer */ 3716 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3717 const struct tcphdr *th; 3718 struct tcphdr _tcphdr; 3719 3720 th = skb_header_pointer(skb, skb_transport_offset(skb), 3721 sizeof(_tcphdr), &_tcphdr); 3722 if (likely(th)) 3723 hdr_len += __tcp_hdrlen(th); 3724 } else { 3725 struct udphdr _udphdr; 3726 3727 if (skb_header_pointer(skb, skb_transport_offset(skb), 3728 sizeof(_udphdr), &_udphdr)) 3729 hdr_len += sizeof(struct udphdr); 3730 } 3731 3732 if (shinfo->gso_type & SKB_GSO_DODGY) 3733 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3734 shinfo->gso_size); 3735 3736 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3737 } 3738 } 3739 3740 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3741 struct net_device *dev, 3742 struct netdev_queue *txq) 3743 { 3744 spinlock_t *root_lock = qdisc_lock(q); 3745 struct sk_buff *to_free = NULL; 3746 bool contended; 3747 int rc; 3748 3749 qdisc_calculate_pkt_len(skb, q); 3750 3751 if (q->flags & TCQ_F_NOLOCK) { 3752 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3753 qdisc_run(q); 3754 3755 if (unlikely(to_free)) 3756 kfree_skb_list(to_free); 3757 return rc; 3758 } 3759 3760 /* 3761 * Heuristic to force contended enqueues to serialize on a 3762 * separate lock before trying to get qdisc main lock. 3763 * This permits qdisc->running owner to get the lock more 3764 * often and dequeue packets faster. 3765 */ 3766 contended = qdisc_is_running(q); 3767 if (unlikely(contended)) 3768 spin_lock(&q->busylock); 3769 3770 spin_lock(root_lock); 3771 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3772 __qdisc_drop(skb, &to_free); 3773 rc = NET_XMIT_DROP; 3774 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3775 qdisc_run_begin(q)) { 3776 /* 3777 * This is a work-conserving queue; there are no old skbs 3778 * waiting to be sent out; and the qdisc is not running - 3779 * xmit the skb directly. 3780 */ 3781 3782 qdisc_bstats_update(q, skb); 3783 3784 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3785 if (unlikely(contended)) { 3786 spin_unlock(&q->busylock); 3787 contended = false; 3788 } 3789 __qdisc_run(q); 3790 } 3791 3792 qdisc_run_end(q); 3793 rc = NET_XMIT_SUCCESS; 3794 } else { 3795 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3796 if (qdisc_run_begin(q)) { 3797 if (unlikely(contended)) { 3798 spin_unlock(&q->busylock); 3799 contended = false; 3800 } 3801 __qdisc_run(q); 3802 qdisc_run_end(q); 3803 } 3804 } 3805 spin_unlock(root_lock); 3806 if (unlikely(to_free)) 3807 kfree_skb_list(to_free); 3808 if (unlikely(contended)) 3809 spin_unlock(&q->busylock); 3810 return rc; 3811 } 3812 3813 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3814 static void skb_update_prio(struct sk_buff *skb) 3815 { 3816 const struct netprio_map *map; 3817 const struct sock *sk; 3818 unsigned int prioidx; 3819 3820 if (skb->priority) 3821 return; 3822 map = rcu_dereference_bh(skb->dev->priomap); 3823 if (!map) 3824 return; 3825 sk = skb_to_full_sk(skb); 3826 if (!sk) 3827 return; 3828 3829 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3830 3831 if (prioidx < map->priomap_len) 3832 skb->priority = map->priomap[prioidx]; 3833 } 3834 #else 3835 #define skb_update_prio(skb) 3836 #endif 3837 3838 /** 3839 * dev_loopback_xmit - loop back @skb 3840 * @net: network namespace this loopback is happening in 3841 * @sk: sk needed to be a netfilter okfn 3842 * @skb: buffer to transmit 3843 */ 3844 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3845 { 3846 skb_reset_mac_header(skb); 3847 __skb_pull(skb, skb_network_offset(skb)); 3848 skb->pkt_type = PACKET_LOOPBACK; 3849 skb->ip_summed = CHECKSUM_UNNECESSARY; 3850 WARN_ON(!skb_dst(skb)); 3851 skb_dst_force(skb); 3852 netif_rx_ni(skb); 3853 return 0; 3854 } 3855 EXPORT_SYMBOL(dev_loopback_xmit); 3856 3857 #ifdef CONFIG_NET_EGRESS 3858 static struct sk_buff * 3859 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3860 { 3861 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3862 struct tcf_result cl_res; 3863 3864 if (!miniq) 3865 return skb; 3866 3867 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3868 mini_qdisc_bstats_cpu_update(miniq, skb); 3869 3870 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3871 case TC_ACT_OK: 3872 case TC_ACT_RECLASSIFY: 3873 skb->tc_index = TC_H_MIN(cl_res.classid); 3874 break; 3875 case TC_ACT_SHOT: 3876 mini_qdisc_qstats_cpu_drop(miniq); 3877 *ret = NET_XMIT_DROP; 3878 kfree_skb(skb); 3879 return NULL; 3880 case TC_ACT_STOLEN: 3881 case TC_ACT_QUEUED: 3882 case TC_ACT_TRAP: 3883 *ret = NET_XMIT_SUCCESS; 3884 consume_skb(skb); 3885 return NULL; 3886 case TC_ACT_REDIRECT: 3887 /* No need to push/pop skb's mac_header here on egress! */ 3888 skb_do_redirect(skb); 3889 *ret = NET_XMIT_SUCCESS; 3890 return NULL; 3891 default: 3892 break; 3893 } 3894 3895 return skb; 3896 } 3897 #endif /* CONFIG_NET_EGRESS */ 3898 3899 #ifdef CONFIG_XPS 3900 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3901 struct xps_dev_maps *dev_maps, unsigned int tci) 3902 { 3903 struct xps_map *map; 3904 int queue_index = -1; 3905 3906 if (dev->num_tc) { 3907 tci *= dev->num_tc; 3908 tci += netdev_get_prio_tc_map(dev, skb->priority); 3909 } 3910 3911 map = rcu_dereference(dev_maps->attr_map[tci]); 3912 if (map) { 3913 if (map->len == 1) 3914 queue_index = map->queues[0]; 3915 else 3916 queue_index = map->queues[reciprocal_scale( 3917 skb_get_hash(skb), map->len)]; 3918 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3919 queue_index = -1; 3920 } 3921 return queue_index; 3922 } 3923 #endif 3924 3925 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3926 struct sk_buff *skb) 3927 { 3928 #ifdef CONFIG_XPS 3929 struct xps_dev_maps *dev_maps; 3930 struct sock *sk = skb->sk; 3931 int queue_index = -1; 3932 3933 if (!static_key_false(&xps_needed)) 3934 return -1; 3935 3936 rcu_read_lock(); 3937 if (!static_key_false(&xps_rxqs_needed)) 3938 goto get_cpus_map; 3939 3940 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3941 if (dev_maps) { 3942 int tci = sk_rx_queue_get(sk); 3943 3944 if (tci >= 0 && tci < dev->num_rx_queues) 3945 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3946 tci); 3947 } 3948 3949 get_cpus_map: 3950 if (queue_index < 0) { 3951 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3952 if (dev_maps) { 3953 unsigned int tci = skb->sender_cpu - 1; 3954 3955 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3956 tci); 3957 } 3958 } 3959 rcu_read_unlock(); 3960 3961 return queue_index; 3962 #else 3963 return -1; 3964 #endif 3965 } 3966 3967 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3968 struct net_device *sb_dev) 3969 { 3970 return 0; 3971 } 3972 EXPORT_SYMBOL(dev_pick_tx_zero); 3973 3974 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3975 struct net_device *sb_dev) 3976 { 3977 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3978 } 3979 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3980 3981 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3982 struct net_device *sb_dev) 3983 { 3984 struct sock *sk = skb->sk; 3985 int queue_index = sk_tx_queue_get(sk); 3986 3987 sb_dev = sb_dev ? : dev; 3988 3989 if (queue_index < 0 || skb->ooo_okay || 3990 queue_index >= dev->real_num_tx_queues) { 3991 int new_index = get_xps_queue(dev, sb_dev, skb); 3992 3993 if (new_index < 0) 3994 new_index = skb_tx_hash(dev, sb_dev, skb); 3995 3996 if (queue_index != new_index && sk && 3997 sk_fullsock(sk) && 3998 rcu_access_pointer(sk->sk_dst_cache)) 3999 sk_tx_queue_set(sk, new_index); 4000 4001 queue_index = new_index; 4002 } 4003 4004 return queue_index; 4005 } 4006 EXPORT_SYMBOL(netdev_pick_tx); 4007 4008 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4009 struct sk_buff *skb, 4010 struct net_device *sb_dev) 4011 { 4012 int queue_index = 0; 4013 4014 #ifdef CONFIG_XPS 4015 u32 sender_cpu = skb->sender_cpu - 1; 4016 4017 if (sender_cpu >= (u32)NR_CPUS) 4018 skb->sender_cpu = raw_smp_processor_id() + 1; 4019 #endif 4020 4021 if (dev->real_num_tx_queues != 1) { 4022 const struct net_device_ops *ops = dev->netdev_ops; 4023 4024 if (ops->ndo_select_queue) 4025 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4026 else 4027 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4028 4029 queue_index = netdev_cap_txqueue(dev, queue_index); 4030 } 4031 4032 skb_set_queue_mapping(skb, queue_index); 4033 return netdev_get_tx_queue(dev, queue_index); 4034 } 4035 4036 /** 4037 * __dev_queue_xmit - transmit a buffer 4038 * @skb: buffer to transmit 4039 * @sb_dev: suboordinate device used for L2 forwarding offload 4040 * 4041 * Queue a buffer for transmission to a network device. The caller must 4042 * have set the device and priority and built the buffer before calling 4043 * this function. The function can be called from an interrupt. 4044 * 4045 * A negative errno code is returned on a failure. A success does not 4046 * guarantee the frame will be transmitted as it may be dropped due 4047 * to congestion or traffic shaping. 4048 * 4049 * ----------------------------------------------------------------------------------- 4050 * I notice this method can also return errors from the queue disciplines, 4051 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4052 * be positive. 4053 * 4054 * Regardless of the return value, the skb is consumed, so it is currently 4055 * difficult to retry a send to this method. (You can bump the ref count 4056 * before sending to hold a reference for retry if you are careful.) 4057 * 4058 * When calling this method, interrupts MUST be enabled. This is because 4059 * the BH enable code must have IRQs enabled so that it will not deadlock. 4060 * --BLG 4061 */ 4062 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4063 { 4064 struct net_device *dev = skb->dev; 4065 struct netdev_queue *txq; 4066 struct Qdisc *q; 4067 int rc = -ENOMEM; 4068 bool again = false; 4069 4070 skb_reset_mac_header(skb); 4071 4072 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4073 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 4074 4075 /* Disable soft irqs for various locks below. Also 4076 * stops preemption for RCU. 4077 */ 4078 rcu_read_lock_bh(); 4079 4080 skb_update_prio(skb); 4081 4082 qdisc_pkt_len_init(skb); 4083 #ifdef CONFIG_NET_CLS_ACT 4084 skb->tc_at_ingress = 0; 4085 # ifdef CONFIG_NET_EGRESS 4086 if (static_branch_unlikely(&egress_needed_key)) { 4087 skb = sch_handle_egress(skb, &rc, dev); 4088 if (!skb) 4089 goto out; 4090 } 4091 # endif 4092 #endif 4093 /* If device/qdisc don't need skb->dst, release it right now while 4094 * its hot in this cpu cache. 4095 */ 4096 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4097 skb_dst_drop(skb); 4098 else 4099 skb_dst_force(skb); 4100 4101 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4102 q = rcu_dereference_bh(txq->qdisc); 4103 4104 trace_net_dev_queue(skb); 4105 if (q->enqueue) { 4106 rc = __dev_xmit_skb(skb, q, dev, txq); 4107 goto out; 4108 } 4109 4110 /* The device has no queue. Common case for software devices: 4111 * loopback, all the sorts of tunnels... 4112 4113 * Really, it is unlikely that netif_tx_lock protection is necessary 4114 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4115 * counters.) 4116 * However, it is possible, that they rely on protection 4117 * made by us here. 4118 4119 * Check this and shot the lock. It is not prone from deadlocks. 4120 *Either shot noqueue qdisc, it is even simpler 8) 4121 */ 4122 if (dev->flags & IFF_UP) { 4123 int cpu = smp_processor_id(); /* ok because BHs are off */ 4124 4125 if (txq->xmit_lock_owner != cpu) { 4126 if (dev_xmit_recursion()) 4127 goto recursion_alert; 4128 4129 skb = validate_xmit_skb(skb, dev, &again); 4130 if (!skb) 4131 goto out; 4132 4133 HARD_TX_LOCK(dev, txq, cpu); 4134 4135 if (!netif_xmit_stopped(txq)) { 4136 dev_xmit_recursion_inc(); 4137 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4138 dev_xmit_recursion_dec(); 4139 if (dev_xmit_complete(rc)) { 4140 HARD_TX_UNLOCK(dev, txq); 4141 goto out; 4142 } 4143 } 4144 HARD_TX_UNLOCK(dev, txq); 4145 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4146 dev->name); 4147 } else { 4148 /* Recursion is detected! It is possible, 4149 * unfortunately 4150 */ 4151 recursion_alert: 4152 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4153 dev->name); 4154 } 4155 } 4156 4157 rc = -ENETDOWN; 4158 rcu_read_unlock_bh(); 4159 4160 atomic_long_inc(&dev->tx_dropped); 4161 kfree_skb_list(skb); 4162 return rc; 4163 out: 4164 rcu_read_unlock_bh(); 4165 return rc; 4166 } 4167 4168 int dev_queue_xmit(struct sk_buff *skb) 4169 { 4170 return __dev_queue_xmit(skb, NULL); 4171 } 4172 EXPORT_SYMBOL(dev_queue_xmit); 4173 4174 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4175 { 4176 return __dev_queue_xmit(skb, sb_dev); 4177 } 4178 EXPORT_SYMBOL(dev_queue_xmit_accel); 4179 4180 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4181 { 4182 struct net_device *dev = skb->dev; 4183 struct sk_buff *orig_skb = skb; 4184 struct netdev_queue *txq; 4185 int ret = NETDEV_TX_BUSY; 4186 bool again = false; 4187 4188 if (unlikely(!netif_running(dev) || 4189 !netif_carrier_ok(dev))) 4190 goto drop; 4191 4192 skb = validate_xmit_skb_list(skb, dev, &again); 4193 if (skb != orig_skb) 4194 goto drop; 4195 4196 skb_set_queue_mapping(skb, queue_id); 4197 txq = skb_get_tx_queue(dev, skb); 4198 4199 local_bh_disable(); 4200 4201 dev_xmit_recursion_inc(); 4202 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4203 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4204 ret = netdev_start_xmit(skb, dev, txq, false); 4205 HARD_TX_UNLOCK(dev, txq); 4206 dev_xmit_recursion_dec(); 4207 4208 local_bh_enable(); 4209 4210 if (!dev_xmit_complete(ret)) 4211 kfree_skb(skb); 4212 4213 return ret; 4214 drop: 4215 atomic_long_inc(&dev->tx_dropped); 4216 kfree_skb_list(skb); 4217 return NET_XMIT_DROP; 4218 } 4219 EXPORT_SYMBOL(dev_direct_xmit); 4220 4221 /************************************************************************* 4222 * Receiver routines 4223 *************************************************************************/ 4224 4225 int netdev_max_backlog __read_mostly = 1000; 4226 EXPORT_SYMBOL(netdev_max_backlog); 4227 4228 int netdev_tstamp_prequeue __read_mostly = 1; 4229 int netdev_budget __read_mostly = 300; 4230 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4231 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4232 int weight_p __read_mostly = 64; /* old backlog weight */ 4233 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4234 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4235 int dev_rx_weight __read_mostly = 64; 4236 int dev_tx_weight __read_mostly = 64; 4237 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4238 int gro_normal_batch __read_mostly = 8; 4239 4240 /* Called with irq disabled */ 4241 static inline void ____napi_schedule(struct softnet_data *sd, 4242 struct napi_struct *napi) 4243 { 4244 list_add_tail(&napi->poll_list, &sd->poll_list); 4245 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4246 } 4247 4248 #ifdef CONFIG_RPS 4249 4250 /* One global table that all flow-based protocols share. */ 4251 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4252 EXPORT_SYMBOL(rps_sock_flow_table); 4253 u32 rps_cpu_mask __read_mostly; 4254 EXPORT_SYMBOL(rps_cpu_mask); 4255 4256 struct static_key_false rps_needed __read_mostly; 4257 EXPORT_SYMBOL(rps_needed); 4258 struct static_key_false rfs_needed __read_mostly; 4259 EXPORT_SYMBOL(rfs_needed); 4260 4261 static struct rps_dev_flow * 4262 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4263 struct rps_dev_flow *rflow, u16 next_cpu) 4264 { 4265 if (next_cpu < nr_cpu_ids) { 4266 #ifdef CONFIG_RFS_ACCEL 4267 struct netdev_rx_queue *rxqueue; 4268 struct rps_dev_flow_table *flow_table; 4269 struct rps_dev_flow *old_rflow; 4270 u32 flow_id; 4271 u16 rxq_index; 4272 int rc; 4273 4274 /* Should we steer this flow to a different hardware queue? */ 4275 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4276 !(dev->features & NETIF_F_NTUPLE)) 4277 goto out; 4278 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4279 if (rxq_index == skb_get_rx_queue(skb)) 4280 goto out; 4281 4282 rxqueue = dev->_rx + rxq_index; 4283 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4284 if (!flow_table) 4285 goto out; 4286 flow_id = skb_get_hash(skb) & flow_table->mask; 4287 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4288 rxq_index, flow_id); 4289 if (rc < 0) 4290 goto out; 4291 old_rflow = rflow; 4292 rflow = &flow_table->flows[flow_id]; 4293 rflow->filter = rc; 4294 if (old_rflow->filter == rflow->filter) 4295 old_rflow->filter = RPS_NO_FILTER; 4296 out: 4297 #endif 4298 rflow->last_qtail = 4299 per_cpu(softnet_data, next_cpu).input_queue_head; 4300 } 4301 4302 rflow->cpu = next_cpu; 4303 return rflow; 4304 } 4305 4306 /* 4307 * get_rps_cpu is called from netif_receive_skb and returns the target 4308 * CPU from the RPS map of the receiving queue for a given skb. 4309 * rcu_read_lock must be held on entry. 4310 */ 4311 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4312 struct rps_dev_flow **rflowp) 4313 { 4314 const struct rps_sock_flow_table *sock_flow_table; 4315 struct netdev_rx_queue *rxqueue = dev->_rx; 4316 struct rps_dev_flow_table *flow_table; 4317 struct rps_map *map; 4318 int cpu = -1; 4319 u32 tcpu; 4320 u32 hash; 4321 4322 if (skb_rx_queue_recorded(skb)) { 4323 u16 index = skb_get_rx_queue(skb); 4324 4325 if (unlikely(index >= dev->real_num_rx_queues)) { 4326 WARN_ONCE(dev->real_num_rx_queues > 1, 4327 "%s received packet on queue %u, but number " 4328 "of RX queues is %u\n", 4329 dev->name, index, dev->real_num_rx_queues); 4330 goto done; 4331 } 4332 rxqueue += index; 4333 } 4334 4335 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4336 4337 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4338 map = rcu_dereference(rxqueue->rps_map); 4339 if (!flow_table && !map) 4340 goto done; 4341 4342 skb_reset_network_header(skb); 4343 hash = skb_get_hash(skb); 4344 if (!hash) 4345 goto done; 4346 4347 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4348 if (flow_table && sock_flow_table) { 4349 struct rps_dev_flow *rflow; 4350 u32 next_cpu; 4351 u32 ident; 4352 4353 /* First check into global flow table if there is a match */ 4354 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4355 if ((ident ^ hash) & ~rps_cpu_mask) 4356 goto try_rps; 4357 4358 next_cpu = ident & rps_cpu_mask; 4359 4360 /* OK, now we know there is a match, 4361 * we can look at the local (per receive queue) flow table 4362 */ 4363 rflow = &flow_table->flows[hash & flow_table->mask]; 4364 tcpu = rflow->cpu; 4365 4366 /* 4367 * If the desired CPU (where last recvmsg was done) is 4368 * different from current CPU (one in the rx-queue flow 4369 * table entry), switch if one of the following holds: 4370 * - Current CPU is unset (>= nr_cpu_ids). 4371 * - Current CPU is offline. 4372 * - The current CPU's queue tail has advanced beyond the 4373 * last packet that was enqueued using this table entry. 4374 * This guarantees that all previous packets for the flow 4375 * have been dequeued, thus preserving in order delivery. 4376 */ 4377 if (unlikely(tcpu != next_cpu) && 4378 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4379 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4380 rflow->last_qtail)) >= 0)) { 4381 tcpu = next_cpu; 4382 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4383 } 4384 4385 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4386 *rflowp = rflow; 4387 cpu = tcpu; 4388 goto done; 4389 } 4390 } 4391 4392 try_rps: 4393 4394 if (map) { 4395 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4396 if (cpu_online(tcpu)) { 4397 cpu = tcpu; 4398 goto done; 4399 } 4400 } 4401 4402 done: 4403 return cpu; 4404 } 4405 4406 #ifdef CONFIG_RFS_ACCEL 4407 4408 /** 4409 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4410 * @dev: Device on which the filter was set 4411 * @rxq_index: RX queue index 4412 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4413 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4414 * 4415 * Drivers that implement ndo_rx_flow_steer() should periodically call 4416 * this function for each installed filter and remove the filters for 4417 * which it returns %true. 4418 */ 4419 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4420 u32 flow_id, u16 filter_id) 4421 { 4422 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4423 struct rps_dev_flow_table *flow_table; 4424 struct rps_dev_flow *rflow; 4425 bool expire = true; 4426 unsigned int cpu; 4427 4428 rcu_read_lock(); 4429 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4430 if (flow_table && flow_id <= flow_table->mask) { 4431 rflow = &flow_table->flows[flow_id]; 4432 cpu = READ_ONCE(rflow->cpu); 4433 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4434 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4435 rflow->last_qtail) < 4436 (int)(10 * flow_table->mask))) 4437 expire = false; 4438 } 4439 rcu_read_unlock(); 4440 return expire; 4441 } 4442 EXPORT_SYMBOL(rps_may_expire_flow); 4443 4444 #endif /* CONFIG_RFS_ACCEL */ 4445 4446 /* Called from hardirq (IPI) context */ 4447 static void rps_trigger_softirq(void *data) 4448 { 4449 struct softnet_data *sd = data; 4450 4451 ____napi_schedule(sd, &sd->backlog); 4452 sd->received_rps++; 4453 } 4454 4455 #endif /* CONFIG_RPS */ 4456 4457 /* 4458 * Check if this softnet_data structure is another cpu one 4459 * If yes, queue it to our IPI list and return 1 4460 * If no, return 0 4461 */ 4462 static int rps_ipi_queued(struct softnet_data *sd) 4463 { 4464 #ifdef CONFIG_RPS 4465 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4466 4467 if (sd != mysd) { 4468 sd->rps_ipi_next = mysd->rps_ipi_list; 4469 mysd->rps_ipi_list = sd; 4470 4471 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4472 return 1; 4473 } 4474 #endif /* CONFIG_RPS */ 4475 return 0; 4476 } 4477 4478 #ifdef CONFIG_NET_FLOW_LIMIT 4479 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4480 #endif 4481 4482 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4483 { 4484 #ifdef CONFIG_NET_FLOW_LIMIT 4485 struct sd_flow_limit *fl; 4486 struct softnet_data *sd; 4487 unsigned int old_flow, new_flow; 4488 4489 if (qlen < (netdev_max_backlog >> 1)) 4490 return false; 4491 4492 sd = this_cpu_ptr(&softnet_data); 4493 4494 rcu_read_lock(); 4495 fl = rcu_dereference(sd->flow_limit); 4496 if (fl) { 4497 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4498 old_flow = fl->history[fl->history_head]; 4499 fl->history[fl->history_head] = new_flow; 4500 4501 fl->history_head++; 4502 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4503 4504 if (likely(fl->buckets[old_flow])) 4505 fl->buckets[old_flow]--; 4506 4507 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4508 fl->count++; 4509 rcu_read_unlock(); 4510 return true; 4511 } 4512 } 4513 rcu_read_unlock(); 4514 #endif 4515 return false; 4516 } 4517 4518 /* 4519 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4520 * queue (may be a remote CPU queue). 4521 */ 4522 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4523 unsigned int *qtail) 4524 { 4525 struct softnet_data *sd; 4526 unsigned long flags; 4527 unsigned int qlen; 4528 4529 sd = &per_cpu(softnet_data, cpu); 4530 4531 local_irq_save(flags); 4532 4533 rps_lock(sd); 4534 if (!netif_running(skb->dev)) 4535 goto drop; 4536 qlen = skb_queue_len(&sd->input_pkt_queue); 4537 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4538 if (qlen) { 4539 enqueue: 4540 __skb_queue_tail(&sd->input_pkt_queue, skb); 4541 input_queue_tail_incr_save(sd, qtail); 4542 rps_unlock(sd); 4543 local_irq_restore(flags); 4544 return NET_RX_SUCCESS; 4545 } 4546 4547 /* Schedule NAPI for backlog device 4548 * We can use non atomic operation since we own the queue lock 4549 */ 4550 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4551 if (!rps_ipi_queued(sd)) 4552 ____napi_schedule(sd, &sd->backlog); 4553 } 4554 goto enqueue; 4555 } 4556 4557 drop: 4558 sd->dropped++; 4559 rps_unlock(sd); 4560 4561 local_irq_restore(flags); 4562 4563 atomic_long_inc(&skb->dev->rx_dropped); 4564 kfree_skb(skb); 4565 return NET_RX_DROP; 4566 } 4567 4568 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4569 { 4570 struct net_device *dev = skb->dev; 4571 struct netdev_rx_queue *rxqueue; 4572 4573 rxqueue = dev->_rx; 4574 4575 if (skb_rx_queue_recorded(skb)) { 4576 u16 index = skb_get_rx_queue(skb); 4577 4578 if (unlikely(index >= dev->real_num_rx_queues)) { 4579 WARN_ONCE(dev->real_num_rx_queues > 1, 4580 "%s received packet on queue %u, but number " 4581 "of RX queues is %u\n", 4582 dev->name, index, dev->real_num_rx_queues); 4583 4584 return rxqueue; /* Return first rxqueue */ 4585 } 4586 rxqueue += index; 4587 } 4588 return rxqueue; 4589 } 4590 4591 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4592 struct xdp_buff *xdp, 4593 struct bpf_prog *xdp_prog) 4594 { 4595 struct netdev_rx_queue *rxqueue; 4596 void *orig_data, *orig_data_end; 4597 u32 metalen, act = XDP_DROP; 4598 __be16 orig_eth_type; 4599 struct ethhdr *eth; 4600 bool orig_bcast; 4601 int hlen, off; 4602 u32 mac_len; 4603 4604 /* Reinjected packets coming from act_mirred or similar should 4605 * not get XDP generic processing. 4606 */ 4607 if (skb_is_redirected(skb)) 4608 return XDP_PASS; 4609 4610 /* XDP packets must be linear and must have sufficient headroom 4611 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4612 * native XDP provides, thus we need to do it here as well. 4613 */ 4614 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4615 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4616 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4617 int troom = skb->tail + skb->data_len - skb->end; 4618 4619 /* In case we have to go down the path and also linearize, 4620 * then lets do the pskb_expand_head() work just once here. 4621 */ 4622 if (pskb_expand_head(skb, 4623 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4624 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4625 goto do_drop; 4626 if (skb_linearize(skb)) 4627 goto do_drop; 4628 } 4629 4630 /* The XDP program wants to see the packet starting at the MAC 4631 * header. 4632 */ 4633 mac_len = skb->data - skb_mac_header(skb); 4634 hlen = skb_headlen(skb) + mac_len; 4635 xdp->data = skb->data - mac_len; 4636 xdp->data_meta = xdp->data; 4637 xdp->data_end = xdp->data + hlen; 4638 xdp->data_hard_start = skb->data - skb_headroom(skb); 4639 4640 /* SKB "head" area always have tailroom for skb_shared_info */ 4641 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start; 4642 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4643 4644 orig_data_end = xdp->data_end; 4645 orig_data = xdp->data; 4646 eth = (struct ethhdr *)xdp->data; 4647 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4648 orig_eth_type = eth->h_proto; 4649 4650 rxqueue = netif_get_rxqueue(skb); 4651 xdp->rxq = &rxqueue->xdp_rxq; 4652 4653 act = bpf_prog_run_xdp(xdp_prog, xdp); 4654 4655 /* check if bpf_xdp_adjust_head was used */ 4656 off = xdp->data - orig_data; 4657 if (off) { 4658 if (off > 0) 4659 __skb_pull(skb, off); 4660 else if (off < 0) 4661 __skb_push(skb, -off); 4662 4663 skb->mac_header += off; 4664 skb_reset_network_header(skb); 4665 } 4666 4667 /* check if bpf_xdp_adjust_tail was used */ 4668 off = xdp->data_end - orig_data_end; 4669 if (off != 0) { 4670 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4671 skb->len += off; /* positive on grow, negative on shrink */ 4672 } 4673 4674 /* check if XDP changed eth hdr such SKB needs update */ 4675 eth = (struct ethhdr *)xdp->data; 4676 if ((orig_eth_type != eth->h_proto) || 4677 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4678 __skb_push(skb, ETH_HLEN); 4679 skb->protocol = eth_type_trans(skb, skb->dev); 4680 } 4681 4682 switch (act) { 4683 case XDP_REDIRECT: 4684 case XDP_TX: 4685 __skb_push(skb, mac_len); 4686 break; 4687 case XDP_PASS: 4688 metalen = xdp->data - xdp->data_meta; 4689 if (metalen) 4690 skb_metadata_set(skb, metalen); 4691 break; 4692 default: 4693 bpf_warn_invalid_xdp_action(act); 4694 fallthrough; 4695 case XDP_ABORTED: 4696 trace_xdp_exception(skb->dev, xdp_prog, act); 4697 fallthrough; 4698 case XDP_DROP: 4699 do_drop: 4700 kfree_skb(skb); 4701 break; 4702 } 4703 4704 return act; 4705 } 4706 4707 /* When doing generic XDP we have to bypass the qdisc layer and the 4708 * network taps in order to match in-driver-XDP behavior. 4709 */ 4710 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4711 { 4712 struct net_device *dev = skb->dev; 4713 struct netdev_queue *txq; 4714 bool free_skb = true; 4715 int cpu, rc; 4716 4717 txq = netdev_core_pick_tx(dev, skb, NULL); 4718 cpu = smp_processor_id(); 4719 HARD_TX_LOCK(dev, txq, cpu); 4720 if (!netif_xmit_stopped(txq)) { 4721 rc = netdev_start_xmit(skb, dev, txq, 0); 4722 if (dev_xmit_complete(rc)) 4723 free_skb = false; 4724 } 4725 HARD_TX_UNLOCK(dev, txq); 4726 if (free_skb) { 4727 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4728 kfree_skb(skb); 4729 } 4730 } 4731 4732 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4733 4734 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4735 { 4736 if (xdp_prog) { 4737 struct xdp_buff xdp; 4738 u32 act; 4739 int err; 4740 4741 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4742 if (act != XDP_PASS) { 4743 switch (act) { 4744 case XDP_REDIRECT: 4745 err = xdp_do_generic_redirect(skb->dev, skb, 4746 &xdp, xdp_prog); 4747 if (err) 4748 goto out_redir; 4749 break; 4750 case XDP_TX: 4751 generic_xdp_tx(skb, xdp_prog); 4752 break; 4753 } 4754 return XDP_DROP; 4755 } 4756 } 4757 return XDP_PASS; 4758 out_redir: 4759 kfree_skb(skb); 4760 return XDP_DROP; 4761 } 4762 EXPORT_SYMBOL_GPL(do_xdp_generic); 4763 4764 static int netif_rx_internal(struct sk_buff *skb) 4765 { 4766 int ret; 4767 4768 net_timestamp_check(netdev_tstamp_prequeue, skb); 4769 4770 trace_netif_rx(skb); 4771 4772 #ifdef CONFIG_RPS 4773 if (static_branch_unlikely(&rps_needed)) { 4774 struct rps_dev_flow voidflow, *rflow = &voidflow; 4775 int cpu; 4776 4777 preempt_disable(); 4778 rcu_read_lock(); 4779 4780 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4781 if (cpu < 0) 4782 cpu = smp_processor_id(); 4783 4784 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4785 4786 rcu_read_unlock(); 4787 preempt_enable(); 4788 } else 4789 #endif 4790 { 4791 unsigned int qtail; 4792 4793 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4794 put_cpu(); 4795 } 4796 return ret; 4797 } 4798 4799 /** 4800 * netif_rx - post buffer to the network code 4801 * @skb: buffer to post 4802 * 4803 * This function receives a packet from a device driver and queues it for 4804 * the upper (protocol) levels to process. It always succeeds. The buffer 4805 * may be dropped during processing for congestion control or by the 4806 * protocol layers. 4807 * 4808 * return values: 4809 * NET_RX_SUCCESS (no congestion) 4810 * NET_RX_DROP (packet was dropped) 4811 * 4812 */ 4813 4814 int netif_rx(struct sk_buff *skb) 4815 { 4816 int ret; 4817 4818 trace_netif_rx_entry(skb); 4819 4820 ret = netif_rx_internal(skb); 4821 trace_netif_rx_exit(ret); 4822 4823 return ret; 4824 } 4825 EXPORT_SYMBOL(netif_rx); 4826 4827 int netif_rx_ni(struct sk_buff *skb) 4828 { 4829 int err; 4830 4831 trace_netif_rx_ni_entry(skb); 4832 4833 preempt_disable(); 4834 err = netif_rx_internal(skb); 4835 if (local_softirq_pending()) 4836 do_softirq(); 4837 preempt_enable(); 4838 trace_netif_rx_ni_exit(err); 4839 4840 return err; 4841 } 4842 EXPORT_SYMBOL(netif_rx_ni); 4843 4844 int netif_rx_any_context(struct sk_buff *skb) 4845 { 4846 /* 4847 * If invoked from contexts which do not invoke bottom half 4848 * processing either at return from interrupt or when softrqs are 4849 * reenabled, use netif_rx_ni() which invokes bottomhalf processing 4850 * directly. 4851 */ 4852 if (in_interrupt()) 4853 return netif_rx(skb); 4854 else 4855 return netif_rx_ni(skb); 4856 } 4857 EXPORT_SYMBOL(netif_rx_any_context); 4858 4859 static __latent_entropy void net_tx_action(struct softirq_action *h) 4860 { 4861 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4862 4863 if (sd->completion_queue) { 4864 struct sk_buff *clist; 4865 4866 local_irq_disable(); 4867 clist = sd->completion_queue; 4868 sd->completion_queue = NULL; 4869 local_irq_enable(); 4870 4871 while (clist) { 4872 struct sk_buff *skb = clist; 4873 4874 clist = clist->next; 4875 4876 WARN_ON(refcount_read(&skb->users)); 4877 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4878 trace_consume_skb(skb); 4879 else 4880 trace_kfree_skb(skb, net_tx_action); 4881 4882 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4883 __kfree_skb(skb); 4884 else 4885 __kfree_skb_defer(skb); 4886 } 4887 4888 __kfree_skb_flush(); 4889 } 4890 4891 if (sd->output_queue) { 4892 struct Qdisc *head; 4893 4894 local_irq_disable(); 4895 head = sd->output_queue; 4896 sd->output_queue = NULL; 4897 sd->output_queue_tailp = &sd->output_queue; 4898 local_irq_enable(); 4899 4900 while (head) { 4901 struct Qdisc *q = head; 4902 spinlock_t *root_lock = NULL; 4903 4904 head = head->next_sched; 4905 4906 if (!(q->flags & TCQ_F_NOLOCK)) { 4907 root_lock = qdisc_lock(q); 4908 spin_lock(root_lock); 4909 } 4910 /* We need to make sure head->next_sched is read 4911 * before clearing __QDISC_STATE_SCHED 4912 */ 4913 smp_mb__before_atomic(); 4914 clear_bit(__QDISC_STATE_SCHED, &q->state); 4915 qdisc_run(q); 4916 if (root_lock) 4917 spin_unlock(root_lock); 4918 } 4919 } 4920 4921 xfrm_dev_backlog(sd); 4922 } 4923 4924 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4925 /* This hook is defined here for ATM LANE */ 4926 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4927 unsigned char *addr) __read_mostly; 4928 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4929 #endif 4930 4931 static inline struct sk_buff * 4932 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4933 struct net_device *orig_dev) 4934 { 4935 #ifdef CONFIG_NET_CLS_ACT 4936 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4937 struct tcf_result cl_res; 4938 4939 /* If there's at least one ingress present somewhere (so 4940 * we get here via enabled static key), remaining devices 4941 * that are not configured with an ingress qdisc will bail 4942 * out here. 4943 */ 4944 if (!miniq) 4945 return skb; 4946 4947 if (*pt_prev) { 4948 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4949 *pt_prev = NULL; 4950 } 4951 4952 qdisc_skb_cb(skb)->pkt_len = skb->len; 4953 skb->tc_at_ingress = 1; 4954 mini_qdisc_bstats_cpu_update(miniq, skb); 4955 4956 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 4957 &cl_res, false)) { 4958 case TC_ACT_OK: 4959 case TC_ACT_RECLASSIFY: 4960 skb->tc_index = TC_H_MIN(cl_res.classid); 4961 break; 4962 case TC_ACT_SHOT: 4963 mini_qdisc_qstats_cpu_drop(miniq); 4964 kfree_skb(skb); 4965 return NULL; 4966 case TC_ACT_STOLEN: 4967 case TC_ACT_QUEUED: 4968 case TC_ACT_TRAP: 4969 consume_skb(skb); 4970 return NULL; 4971 case TC_ACT_REDIRECT: 4972 /* skb_mac_header check was done by cls/act_bpf, so 4973 * we can safely push the L2 header back before 4974 * redirecting to another netdev 4975 */ 4976 __skb_push(skb, skb->mac_len); 4977 skb_do_redirect(skb); 4978 return NULL; 4979 case TC_ACT_CONSUMED: 4980 return NULL; 4981 default: 4982 break; 4983 } 4984 #endif /* CONFIG_NET_CLS_ACT */ 4985 return skb; 4986 } 4987 4988 /** 4989 * netdev_is_rx_handler_busy - check if receive handler is registered 4990 * @dev: device to check 4991 * 4992 * Check if a receive handler is already registered for a given device. 4993 * Return true if there one. 4994 * 4995 * The caller must hold the rtnl_mutex. 4996 */ 4997 bool netdev_is_rx_handler_busy(struct net_device *dev) 4998 { 4999 ASSERT_RTNL(); 5000 return dev && rtnl_dereference(dev->rx_handler); 5001 } 5002 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5003 5004 /** 5005 * netdev_rx_handler_register - register receive handler 5006 * @dev: device to register a handler for 5007 * @rx_handler: receive handler to register 5008 * @rx_handler_data: data pointer that is used by rx handler 5009 * 5010 * Register a receive handler for a device. This handler will then be 5011 * called from __netif_receive_skb. A negative errno code is returned 5012 * on a failure. 5013 * 5014 * The caller must hold the rtnl_mutex. 5015 * 5016 * For a general description of rx_handler, see enum rx_handler_result. 5017 */ 5018 int netdev_rx_handler_register(struct net_device *dev, 5019 rx_handler_func_t *rx_handler, 5020 void *rx_handler_data) 5021 { 5022 if (netdev_is_rx_handler_busy(dev)) 5023 return -EBUSY; 5024 5025 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5026 return -EINVAL; 5027 5028 /* Note: rx_handler_data must be set before rx_handler */ 5029 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5030 rcu_assign_pointer(dev->rx_handler, rx_handler); 5031 5032 return 0; 5033 } 5034 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5035 5036 /** 5037 * netdev_rx_handler_unregister - unregister receive handler 5038 * @dev: device to unregister a handler from 5039 * 5040 * Unregister a receive handler from a device. 5041 * 5042 * The caller must hold the rtnl_mutex. 5043 */ 5044 void netdev_rx_handler_unregister(struct net_device *dev) 5045 { 5046 5047 ASSERT_RTNL(); 5048 RCU_INIT_POINTER(dev->rx_handler, NULL); 5049 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5050 * section has a guarantee to see a non NULL rx_handler_data 5051 * as well. 5052 */ 5053 synchronize_net(); 5054 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5055 } 5056 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5057 5058 /* 5059 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5060 * the special handling of PFMEMALLOC skbs. 5061 */ 5062 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5063 { 5064 switch (skb->protocol) { 5065 case htons(ETH_P_ARP): 5066 case htons(ETH_P_IP): 5067 case htons(ETH_P_IPV6): 5068 case htons(ETH_P_8021Q): 5069 case htons(ETH_P_8021AD): 5070 return true; 5071 default: 5072 return false; 5073 } 5074 } 5075 5076 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5077 int *ret, struct net_device *orig_dev) 5078 { 5079 if (nf_hook_ingress_active(skb)) { 5080 int ingress_retval; 5081 5082 if (*pt_prev) { 5083 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5084 *pt_prev = NULL; 5085 } 5086 5087 rcu_read_lock(); 5088 ingress_retval = nf_hook_ingress(skb); 5089 rcu_read_unlock(); 5090 return ingress_retval; 5091 } 5092 return 0; 5093 } 5094 5095 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5096 struct packet_type **ppt_prev) 5097 { 5098 struct packet_type *ptype, *pt_prev; 5099 rx_handler_func_t *rx_handler; 5100 struct sk_buff *skb = *pskb; 5101 struct net_device *orig_dev; 5102 bool deliver_exact = false; 5103 int ret = NET_RX_DROP; 5104 __be16 type; 5105 5106 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5107 5108 trace_netif_receive_skb(skb); 5109 5110 orig_dev = skb->dev; 5111 5112 skb_reset_network_header(skb); 5113 if (!skb_transport_header_was_set(skb)) 5114 skb_reset_transport_header(skb); 5115 skb_reset_mac_len(skb); 5116 5117 pt_prev = NULL; 5118 5119 another_round: 5120 skb->skb_iif = skb->dev->ifindex; 5121 5122 __this_cpu_inc(softnet_data.processed); 5123 5124 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5125 int ret2; 5126 5127 preempt_disable(); 5128 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5129 preempt_enable(); 5130 5131 if (ret2 != XDP_PASS) { 5132 ret = NET_RX_DROP; 5133 goto out; 5134 } 5135 skb_reset_mac_len(skb); 5136 } 5137 5138 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5139 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5140 skb = skb_vlan_untag(skb); 5141 if (unlikely(!skb)) 5142 goto out; 5143 } 5144 5145 if (skb_skip_tc_classify(skb)) 5146 goto skip_classify; 5147 5148 if (pfmemalloc) 5149 goto skip_taps; 5150 5151 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5152 if (pt_prev) 5153 ret = deliver_skb(skb, pt_prev, orig_dev); 5154 pt_prev = ptype; 5155 } 5156 5157 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5158 if (pt_prev) 5159 ret = deliver_skb(skb, pt_prev, orig_dev); 5160 pt_prev = ptype; 5161 } 5162 5163 skip_taps: 5164 #ifdef CONFIG_NET_INGRESS 5165 if (static_branch_unlikely(&ingress_needed_key)) { 5166 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 5167 if (!skb) 5168 goto out; 5169 5170 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5171 goto out; 5172 } 5173 #endif 5174 skb_reset_redirect(skb); 5175 skip_classify: 5176 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5177 goto drop; 5178 5179 if (skb_vlan_tag_present(skb)) { 5180 if (pt_prev) { 5181 ret = deliver_skb(skb, pt_prev, orig_dev); 5182 pt_prev = NULL; 5183 } 5184 if (vlan_do_receive(&skb)) 5185 goto another_round; 5186 else if (unlikely(!skb)) 5187 goto out; 5188 } 5189 5190 rx_handler = rcu_dereference(skb->dev->rx_handler); 5191 if (rx_handler) { 5192 if (pt_prev) { 5193 ret = deliver_skb(skb, pt_prev, orig_dev); 5194 pt_prev = NULL; 5195 } 5196 switch (rx_handler(&skb)) { 5197 case RX_HANDLER_CONSUMED: 5198 ret = NET_RX_SUCCESS; 5199 goto out; 5200 case RX_HANDLER_ANOTHER: 5201 goto another_round; 5202 case RX_HANDLER_EXACT: 5203 deliver_exact = true; 5204 case RX_HANDLER_PASS: 5205 break; 5206 default: 5207 BUG(); 5208 } 5209 } 5210 5211 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5212 check_vlan_id: 5213 if (skb_vlan_tag_get_id(skb)) { 5214 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5215 * find vlan device. 5216 */ 5217 skb->pkt_type = PACKET_OTHERHOST; 5218 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5219 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5220 /* Outer header is 802.1P with vlan 0, inner header is 5221 * 802.1Q or 802.1AD and vlan_do_receive() above could 5222 * not find vlan dev for vlan id 0. 5223 */ 5224 __vlan_hwaccel_clear_tag(skb); 5225 skb = skb_vlan_untag(skb); 5226 if (unlikely(!skb)) 5227 goto out; 5228 if (vlan_do_receive(&skb)) 5229 /* After stripping off 802.1P header with vlan 0 5230 * vlan dev is found for inner header. 5231 */ 5232 goto another_round; 5233 else if (unlikely(!skb)) 5234 goto out; 5235 else 5236 /* We have stripped outer 802.1P vlan 0 header. 5237 * But could not find vlan dev. 5238 * check again for vlan id to set OTHERHOST. 5239 */ 5240 goto check_vlan_id; 5241 } 5242 /* Note: we might in the future use prio bits 5243 * and set skb->priority like in vlan_do_receive() 5244 * For the time being, just ignore Priority Code Point 5245 */ 5246 __vlan_hwaccel_clear_tag(skb); 5247 } 5248 5249 type = skb->protocol; 5250 5251 /* deliver only exact match when indicated */ 5252 if (likely(!deliver_exact)) { 5253 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5254 &ptype_base[ntohs(type) & 5255 PTYPE_HASH_MASK]); 5256 } 5257 5258 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5259 &orig_dev->ptype_specific); 5260 5261 if (unlikely(skb->dev != orig_dev)) { 5262 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5263 &skb->dev->ptype_specific); 5264 } 5265 5266 if (pt_prev) { 5267 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5268 goto drop; 5269 *ppt_prev = pt_prev; 5270 } else { 5271 drop: 5272 if (!deliver_exact) 5273 atomic_long_inc(&skb->dev->rx_dropped); 5274 else 5275 atomic_long_inc(&skb->dev->rx_nohandler); 5276 kfree_skb(skb); 5277 /* Jamal, now you will not able to escape explaining 5278 * me how you were going to use this. :-) 5279 */ 5280 ret = NET_RX_DROP; 5281 } 5282 5283 out: 5284 /* The invariant here is that if *ppt_prev is not NULL 5285 * then skb should also be non-NULL. 5286 * 5287 * Apparently *ppt_prev assignment above holds this invariant due to 5288 * skb dereferencing near it. 5289 */ 5290 *pskb = skb; 5291 return ret; 5292 } 5293 5294 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5295 { 5296 struct net_device *orig_dev = skb->dev; 5297 struct packet_type *pt_prev = NULL; 5298 int ret; 5299 5300 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5301 if (pt_prev) 5302 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5303 skb->dev, pt_prev, orig_dev); 5304 return ret; 5305 } 5306 5307 /** 5308 * netif_receive_skb_core - special purpose version of netif_receive_skb 5309 * @skb: buffer to process 5310 * 5311 * More direct receive version of netif_receive_skb(). It should 5312 * only be used by callers that have a need to skip RPS and Generic XDP. 5313 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5314 * 5315 * This function may only be called from softirq context and interrupts 5316 * should be enabled. 5317 * 5318 * Return values (usually ignored): 5319 * NET_RX_SUCCESS: no congestion 5320 * NET_RX_DROP: packet was dropped 5321 */ 5322 int netif_receive_skb_core(struct sk_buff *skb) 5323 { 5324 int ret; 5325 5326 rcu_read_lock(); 5327 ret = __netif_receive_skb_one_core(skb, false); 5328 rcu_read_unlock(); 5329 5330 return ret; 5331 } 5332 EXPORT_SYMBOL(netif_receive_skb_core); 5333 5334 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5335 struct packet_type *pt_prev, 5336 struct net_device *orig_dev) 5337 { 5338 struct sk_buff *skb, *next; 5339 5340 if (!pt_prev) 5341 return; 5342 if (list_empty(head)) 5343 return; 5344 if (pt_prev->list_func != NULL) 5345 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5346 ip_list_rcv, head, pt_prev, orig_dev); 5347 else 5348 list_for_each_entry_safe(skb, next, head, list) { 5349 skb_list_del_init(skb); 5350 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5351 } 5352 } 5353 5354 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5355 { 5356 /* Fast-path assumptions: 5357 * - There is no RX handler. 5358 * - Only one packet_type matches. 5359 * If either of these fails, we will end up doing some per-packet 5360 * processing in-line, then handling the 'last ptype' for the whole 5361 * sublist. This can't cause out-of-order delivery to any single ptype, 5362 * because the 'last ptype' must be constant across the sublist, and all 5363 * other ptypes are handled per-packet. 5364 */ 5365 /* Current (common) ptype of sublist */ 5366 struct packet_type *pt_curr = NULL; 5367 /* Current (common) orig_dev of sublist */ 5368 struct net_device *od_curr = NULL; 5369 struct list_head sublist; 5370 struct sk_buff *skb, *next; 5371 5372 INIT_LIST_HEAD(&sublist); 5373 list_for_each_entry_safe(skb, next, head, list) { 5374 struct net_device *orig_dev = skb->dev; 5375 struct packet_type *pt_prev = NULL; 5376 5377 skb_list_del_init(skb); 5378 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5379 if (!pt_prev) 5380 continue; 5381 if (pt_curr != pt_prev || od_curr != orig_dev) { 5382 /* dispatch old sublist */ 5383 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5384 /* start new sublist */ 5385 INIT_LIST_HEAD(&sublist); 5386 pt_curr = pt_prev; 5387 od_curr = orig_dev; 5388 } 5389 list_add_tail(&skb->list, &sublist); 5390 } 5391 5392 /* dispatch final sublist */ 5393 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5394 } 5395 5396 static int __netif_receive_skb(struct sk_buff *skb) 5397 { 5398 int ret; 5399 5400 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5401 unsigned int noreclaim_flag; 5402 5403 /* 5404 * PFMEMALLOC skbs are special, they should 5405 * - be delivered to SOCK_MEMALLOC sockets only 5406 * - stay away from userspace 5407 * - have bounded memory usage 5408 * 5409 * Use PF_MEMALLOC as this saves us from propagating the allocation 5410 * context down to all allocation sites. 5411 */ 5412 noreclaim_flag = memalloc_noreclaim_save(); 5413 ret = __netif_receive_skb_one_core(skb, true); 5414 memalloc_noreclaim_restore(noreclaim_flag); 5415 } else 5416 ret = __netif_receive_skb_one_core(skb, false); 5417 5418 return ret; 5419 } 5420 5421 static void __netif_receive_skb_list(struct list_head *head) 5422 { 5423 unsigned long noreclaim_flag = 0; 5424 struct sk_buff *skb, *next; 5425 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5426 5427 list_for_each_entry_safe(skb, next, head, list) { 5428 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5429 struct list_head sublist; 5430 5431 /* Handle the previous sublist */ 5432 list_cut_before(&sublist, head, &skb->list); 5433 if (!list_empty(&sublist)) 5434 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5435 pfmemalloc = !pfmemalloc; 5436 /* See comments in __netif_receive_skb */ 5437 if (pfmemalloc) 5438 noreclaim_flag = memalloc_noreclaim_save(); 5439 else 5440 memalloc_noreclaim_restore(noreclaim_flag); 5441 } 5442 } 5443 /* Handle the remaining sublist */ 5444 if (!list_empty(head)) 5445 __netif_receive_skb_list_core(head, pfmemalloc); 5446 /* Restore pflags */ 5447 if (pfmemalloc) 5448 memalloc_noreclaim_restore(noreclaim_flag); 5449 } 5450 5451 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5452 { 5453 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5454 struct bpf_prog *new = xdp->prog; 5455 int ret = 0; 5456 5457 if (new) { 5458 u32 i; 5459 5460 mutex_lock(&new->aux->used_maps_mutex); 5461 5462 /* generic XDP does not work with DEVMAPs that can 5463 * have a bpf_prog installed on an entry 5464 */ 5465 for (i = 0; i < new->aux->used_map_cnt; i++) { 5466 if (dev_map_can_have_prog(new->aux->used_maps[i]) || 5467 cpu_map_prog_allowed(new->aux->used_maps[i])) { 5468 mutex_unlock(&new->aux->used_maps_mutex); 5469 return -EINVAL; 5470 } 5471 } 5472 5473 mutex_unlock(&new->aux->used_maps_mutex); 5474 } 5475 5476 switch (xdp->command) { 5477 case XDP_SETUP_PROG: 5478 rcu_assign_pointer(dev->xdp_prog, new); 5479 if (old) 5480 bpf_prog_put(old); 5481 5482 if (old && !new) { 5483 static_branch_dec(&generic_xdp_needed_key); 5484 } else if (new && !old) { 5485 static_branch_inc(&generic_xdp_needed_key); 5486 dev_disable_lro(dev); 5487 dev_disable_gro_hw(dev); 5488 } 5489 break; 5490 5491 default: 5492 ret = -EINVAL; 5493 break; 5494 } 5495 5496 return ret; 5497 } 5498 5499 static int netif_receive_skb_internal(struct sk_buff *skb) 5500 { 5501 int ret; 5502 5503 net_timestamp_check(netdev_tstamp_prequeue, skb); 5504 5505 if (skb_defer_rx_timestamp(skb)) 5506 return NET_RX_SUCCESS; 5507 5508 rcu_read_lock(); 5509 #ifdef CONFIG_RPS 5510 if (static_branch_unlikely(&rps_needed)) { 5511 struct rps_dev_flow voidflow, *rflow = &voidflow; 5512 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5513 5514 if (cpu >= 0) { 5515 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5516 rcu_read_unlock(); 5517 return ret; 5518 } 5519 } 5520 #endif 5521 ret = __netif_receive_skb(skb); 5522 rcu_read_unlock(); 5523 return ret; 5524 } 5525 5526 static void netif_receive_skb_list_internal(struct list_head *head) 5527 { 5528 struct sk_buff *skb, *next; 5529 struct list_head sublist; 5530 5531 INIT_LIST_HEAD(&sublist); 5532 list_for_each_entry_safe(skb, next, head, list) { 5533 net_timestamp_check(netdev_tstamp_prequeue, skb); 5534 skb_list_del_init(skb); 5535 if (!skb_defer_rx_timestamp(skb)) 5536 list_add_tail(&skb->list, &sublist); 5537 } 5538 list_splice_init(&sublist, head); 5539 5540 rcu_read_lock(); 5541 #ifdef CONFIG_RPS 5542 if (static_branch_unlikely(&rps_needed)) { 5543 list_for_each_entry_safe(skb, next, head, list) { 5544 struct rps_dev_flow voidflow, *rflow = &voidflow; 5545 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5546 5547 if (cpu >= 0) { 5548 /* Will be handled, remove from list */ 5549 skb_list_del_init(skb); 5550 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5551 } 5552 } 5553 } 5554 #endif 5555 __netif_receive_skb_list(head); 5556 rcu_read_unlock(); 5557 } 5558 5559 /** 5560 * netif_receive_skb - process receive buffer from network 5561 * @skb: buffer to process 5562 * 5563 * netif_receive_skb() is the main receive data processing function. 5564 * It always succeeds. The buffer may be dropped during processing 5565 * for congestion control or by the protocol layers. 5566 * 5567 * This function may only be called from softirq context and interrupts 5568 * should be enabled. 5569 * 5570 * Return values (usually ignored): 5571 * NET_RX_SUCCESS: no congestion 5572 * NET_RX_DROP: packet was dropped 5573 */ 5574 int netif_receive_skb(struct sk_buff *skb) 5575 { 5576 int ret; 5577 5578 trace_netif_receive_skb_entry(skb); 5579 5580 ret = netif_receive_skb_internal(skb); 5581 trace_netif_receive_skb_exit(ret); 5582 5583 return ret; 5584 } 5585 EXPORT_SYMBOL(netif_receive_skb); 5586 5587 /** 5588 * netif_receive_skb_list - process many receive buffers from network 5589 * @head: list of skbs to process. 5590 * 5591 * Since return value of netif_receive_skb() is normally ignored, and 5592 * wouldn't be meaningful for a list, this function returns void. 5593 * 5594 * This function may only be called from softirq context and interrupts 5595 * should be enabled. 5596 */ 5597 void netif_receive_skb_list(struct list_head *head) 5598 { 5599 struct sk_buff *skb; 5600 5601 if (list_empty(head)) 5602 return; 5603 if (trace_netif_receive_skb_list_entry_enabled()) { 5604 list_for_each_entry(skb, head, list) 5605 trace_netif_receive_skb_list_entry(skb); 5606 } 5607 netif_receive_skb_list_internal(head); 5608 trace_netif_receive_skb_list_exit(0); 5609 } 5610 EXPORT_SYMBOL(netif_receive_skb_list); 5611 5612 static DEFINE_PER_CPU(struct work_struct, flush_works); 5613 5614 /* Network device is going away, flush any packets still pending */ 5615 static void flush_backlog(struct work_struct *work) 5616 { 5617 struct sk_buff *skb, *tmp; 5618 struct softnet_data *sd; 5619 5620 local_bh_disable(); 5621 sd = this_cpu_ptr(&softnet_data); 5622 5623 local_irq_disable(); 5624 rps_lock(sd); 5625 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5626 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5627 __skb_unlink(skb, &sd->input_pkt_queue); 5628 dev_kfree_skb_irq(skb); 5629 input_queue_head_incr(sd); 5630 } 5631 } 5632 rps_unlock(sd); 5633 local_irq_enable(); 5634 5635 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5636 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5637 __skb_unlink(skb, &sd->process_queue); 5638 kfree_skb(skb); 5639 input_queue_head_incr(sd); 5640 } 5641 } 5642 local_bh_enable(); 5643 } 5644 5645 static bool flush_required(int cpu) 5646 { 5647 #if IS_ENABLED(CONFIG_RPS) 5648 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5649 bool do_flush; 5650 5651 local_irq_disable(); 5652 rps_lock(sd); 5653 5654 /* as insertion into process_queue happens with the rps lock held, 5655 * process_queue access may race only with dequeue 5656 */ 5657 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5658 !skb_queue_empty_lockless(&sd->process_queue); 5659 rps_unlock(sd); 5660 local_irq_enable(); 5661 5662 return do_flush; 5663 #endif 5664 /* without RPS we can't safely check input_pkt_queue: during a 5665 * concurrent remote skb_queue_splice() we can detect as empty both 5666 * input_pkt_queue and process_queue even if the latter could end-up 5667 * containing a lot of packets. 5668 */ 5669 return true; 5670 } 5671 5672 static void flush_all_backlogs(void) 5673 { 5674 static cpumask_t flush_cpus; 5675 unsigned int cpu; 5676 5677 /* since we are under rtnl lock protection we can use static data 5678 * for the cpumask and avoid allocating on stack the possibly 5679 * large mask 5680 */ 5681 ASSERT_RTNL(); 5682 5683 get_online_cpus(); 5684 5685 cpumask_clear(&flush_cpus); 5686 for_each_online_cpu(cpu) { 5687 if (flush_required(cpu)) { 5688 queue_work_on(cpu, system_highpri_wq, 5689 per_cpu_ptr(&flush_works, cpu)); 5690 cpumask_set_cpu(cpu, &flush_cpus); 5691 } 5692 } 5693 5694 /* we can have in flight packet[s] on the cpus we are not flushing, 5695 * synchronize_net() in rollback_registered_many() will take care of 5696 * them 5697 */ 5698 for_each_cpu(cpu, &flush_cpus) 5699 flush_work(per_cpu_ptr(&flush_works, cpu)); 5700 5701 put_online_cpus(); 5702 } 5703 5704 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5705 static void gro_normal_list(struct napi_struct *napi) 5706 { 5707 if (!napi->rx_count) 5708 return; 5709 netif_receive_skb_list_internal(&napi->rx_list); 5710 INIT_LIST_HEAD(&napi->rx_list); 5711 napi->rx_count = 0; 5712 } 5713 5714 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5715 * pass the whole batch up to the stack. 5716 */ 5717 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5718 { 5719 list_add_tail(&skb->list, &napi->rx_list); 5720 if (++napi->rx_count >= gro_normal_batch) 5721 gro_normal_list(napi); 5722 } 5723 5724 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5725 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5726 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5727 { 5728 struct packet_offload *ptype; 5729 __be16 type = skb->protocol; 5730 struct list_head *head = &offload_base; 5731 int err = -ENOENT; 5732 5733 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5734 5735 if (NAPI_GRO_CB(skb)->count == 1) { 5736 skb_shinfo(skb)->gso_size = 0; 5737 goto out; 5738 } 5739 5740 rcu_read_lock(); 5741 list_for_each_entry_rcu(ptype, head, list) { 5742 if (ptype->type != type || !ptype->callbacks.gro_complete) 5743 continue; 5744 5745 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5746 ipv6_gro_complete, inet_gro_complete, 5747 skb, 0); 5748 break; 5749 } 5750 rcu_read_unlock(); 5751 5752 if (err) { 5753 WARN_ON(&ptype->list == head); 5754 kfree_skb(skb); 5755 return NET_RX_SUCCESS; 5756 } 5757 5758 out: 5759 gro_normal_one(napi, skb); 5760 return NET_RX_SUCCESS; 5761 } 5762 5763 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5764 bool flush_old) 5765 { 5766 struct list_head *head = &napi->gro_hash[index].list; 5767 struct sk_buff *skb, *p; 5768 5769 list_for_each_entry_safe_reverse(skb, p, head, list) { 5770 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5771 return; 5772 skb_list_del_init(skb); 5773 napi_gro_complete(napi, skb); 5774 napi->gro_hash[index].count--; 5775 } 5776 5777 if (!napi->gro_hash[index].count) 5778 __clear_bit(index, &napi->gro_bitmask); 5779 } 5780 5781 /* napi->gro_hash[].list contains packets ordered by age. 5782 * youngest packets at the head of it. 5783 * Complete skbs in reverse order to reduce latencies. 5784 */ 5785 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5786 { 5787 unsigned long bitmask = napi->gro_bitmask; 5788 unsigned int i, base = ~0U; 5789 5790 while ((i = ffs(bitmask)) != 0) { 5791 bitmask >>= i; 5792 base += i; 5793 __napi_gro_flush_chain(napi, base, flush_old); 5794 } 5795 } 5796 EXPORT_SYMBOL(napi_gro_flush); 5797 5798 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5799 struct sk_buff *skb) 5800 { 5801 unsigned int maclen = skb->dev->hard_header_len; 5802 u32 hash = skb_get_hash_raw(skb); 5803 struct list_head *head; 5804 struct sk_buff *p; 5805 5806 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5807 list_for_each_entry(p, head, list) { 5808 unsigned long diffs; 5809 5810 NAPI_GRO_CB(p)->flush = 0; 5811 5812 if (hash != skb_get_hash_raw(p)) { 5813 NAPI_GRO_CB(p)->same_flow = 0; 5814 continue; 5815 } 5816 5817 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5818 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5819 if (skb_vlan_tag_present(p)) 5820 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5821 diffs |= skb_metadata_dst_cmp(p, skb); 5822 diffs |= skb_metadata_differs(p, skb); 5823 if (maclen == ETH_HLEN) 5824 diffs |= compare_ether_header(skb_mac_header(p), 5825 skb_mac_header(skb)); 5826 else if (!diffs) 5827 diffs = memcmp(skb_mac_header(p), 5828 skb_mac_header(skb), 5829 maclen); 5830 NAPI_GRO_CB(p)->same_flow = !diffs; 5831 } 5832 5833 return head; 5834 } 5835 5836 static void skb_gro_reset_offset(struct sk_buff *skb) 5837 { 5838 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5839 const skb_frag_t *frag0 = &pinfo->frags[0]; 5840 5841 NAPI_GRO_CB(skb)->data_offset = 0; 5842 NAPI_GRO_CB(skb)->frag0 = NULL; 5843 NAPI_GRO_CB(skb)->frag0_len = 0; 5844 5845 if (!skb_headlen(skb) && pinfo->nr_frags && 5846 !PageHighMem(skb_frag_page(frag0))) { 5847 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5848 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5849 skb_frag_size(frag0), 5850 skb->end - skb->tail); 5851 } 5852 } 5853 5854 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5855 { 5856 struct skb_shared_info *pinfo = skb_shinfo(skb); 5857 5858 BUG_ON(skb->end - skb->tail < grow); 5859 5860 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5861 5862 skb->data_len -= grow; 5863 skb->tail += grow; 5864 5865 skb_frag_off_add(&pinfo->frags[0], grow); 5866 skb_frag_size_sub(&pinfo->frags[0], grow); 5867 5868 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5869 skb_frag_unref(skb, 0); 5870 memmove(pinfo->frags, pinfo->frags + 1, 5871 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5872 } 5873 } 5874 5875 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 5876 { 5877 struct sk_buff *oldest; 5878 5879 oldest = list_last_entry(head, struct sk_buff, list); 5880 5881 /* We are called with head length >= MAX_GRO_SKBS, so this is 5882 * impossible. 5883 */ 5884 if (WARN_ON_ONCE(!oldest)) 5885 return; 5886 5887 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5888 * SKB to the chain. 5889 */ 5890 skb_list_del_init(oldest); 5891 napi_gro_complete(napi, oldest); 5892 } 5893 5894 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5895 struct sk_buff *)); 5896 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5897 struct sk_buff *)); 5898 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5899 { 5900 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5901 struct list_head *head = &offload_base; 5902 struct packet_offload *ptype; 5903 __be16 type = skb->protocol; 5904 struct list_head *gro_head; 5905 struct sk_buff *pp = NULL; 5906 enum gro_result ret; 5907 int same_flow; 5908 int grow; 5909 5910 if (netif_elide_gro(skb->dev)) 5911 goto normal; 5912 5913 gro_head = gro_list_prepare(napi, skb); 5914 5915 rcu_read_lock(); 5916 list_for_each_entry_rcu(ptype, head, list) { 5917 if (ptype->type != type || !ptype->callbacks.gro_receive) 5918 continue; 5919 5920 skb_set_network_header(skb, skb_gro_offset(skb)); 5921 skb_reset_mac_len(skb); 5922 NAPI_GRO_CB(skb)->same_flow = 0; 5923 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5924 NAPI_GRO_CB(skb)->free = 0; 5925 NAPI_GRO_CB(skb)->encap_mark = 0; 5926 NAPI_GRO_CB(skb)->recursion_counter = 0; 5927 NAPI_GRO_CB(skb)->is_fou = 0; 5928 NAPI_GRO_CB(skb)->is_atomic = 1; 5929 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5930 5931 /* Setup for GRO checksum validation */ 5932 switch (skb->ip_summed) { 5933 case CHECKSUM_COMPLETE: 5934 NAPI_GRO_CB(skb)->csum = skb->csum; 5935 NAPI_GRO_CB(skb)->csum_valid = 1; 5936 NAPI_GRO_CB(skb)->csum_cnt = 0; 5937 break; 5938 case CHECKSUM_UNNECESSARY: 5939 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5940 NAPI_GRO_CB(skb)->csum_valid = 0; 5941 break; 5942 default: 5943 NAPI_GRO_CB(skb)->csum_cnt = 0; 5944 NAPI_GRO_CB(skb)->csum_valid = 0; 5945 } 5946 5947 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5948 ipv6_gro_receive, inet_gro_receive, 5949 gro_head, skb); 5950 break; 5951 } 5952 rcu_read_unlock(); 5953 5954 if (&ptype->list == head) 5955 goto normal; 5956 5957 if (PTR_ERR(pp) == -EINPROGRESS) { 5958 ret = GRO_CONSUMED; 5959 goto ok; 5960 } 5961 5962 same_flow = NAPI_GRO_CB(skb)->same_flow; 5963 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5964 5965 if (pp) { 5966 skb_list_del_init(pp); 5967 napi_gro_complete(napi, pp); 5968 napi->gro_hash[hash].count--; 5969 } 5970 5971 if (same_flow) 5972 goto ok; 5973 5974 if (NAPI_GRO_CB(skb)->flush) 5975 goto normal; 5976 5977 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5978 gro_flush_oldest(napi, gro_head); 5979 } else { 5980 napi->gro_hash[hash].count++; 5981 } 5982 NAPI_GRO_CB(skb)->count = 1; 5983 NAPI_GRO_CB(skb)->age = jiffies; 5984 NAPI_GRO_CB(skb)->last = skb; 5985 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5986 list_add(&skb->list, gro_head); 5987 ret = GRO_HELD; 5988 5989 pull: 5990 grow = skb_gro_offset(skb) - skb_headlen(skb); 5991 if (grow > 0) 5992 gro_pull_from_frag0(skb, grow); 5993 ok: 5994 if (napi->gro_hash[hash].count) { 5995 if (!test_bit(hash, &napi->gro_bitmask)) 5996 __set_bit(hash, &napi->gro_bitmask); 5997 } else if (test_bit(hash, &napi->gro_bitmask)) { 5998 __clear_bit(hash, &napi->gro_bitmask); 5999 } 6000 6001 return ret; 6002 6003 normal: 6004 ret = GRO_NORMAL; 6005 goto pull; 6006 } 6007 6008 struct packet_offload *gro_find_receive_by_type(__be16 type) 6009 { 6010 struct list_head *offload_head = &offload_base; 6011 struct packet_offload *ptype; 6012 6013 list_for_each_entry_rcu(ptype, offload_head, list) { 6014 if (ptype->type != type || !ptype->callbacks.gro_receive) 6015 continue; 6016 return ptype; 6017 } 6018 return NULL; 6019 } 6020 EXPORT_SYMBOL(gro_find_receive_by_type); 6021 6022 struct packet_offload *gro_find_complete_by_type(__be16 type) 6023 { 6024 struct list_head *offload_head = &offload_base; 6025 struct packet_offload *ptype; 6026 6027 list_for_each_entry_rcu(ptype, offload_head, list) { 6028 if (ptype->type != type || !ptype->callbacks.gro_complete) 6029 continue; 6030 return ptype; 6031 } 6032 return NULL; 6033 } 6034 EXPORT_SYMBOL(gro_find_complete_by_type); 6035 6036 static void napi_skb_free_stolen_head(struct sk_buff *skb) 6037 { 6038 skb_dst_drop(skb); 6039 skb_ext_put(skb); 6040 kmem_cache_free(skbuff_head_cache, skb); 6041 } 6042 6043 static gro_result_t napi_skb_finish(struct napi_struct *napi, 6044 struct sk_buff *skb, 6045 gro_result_t ret) 6046 { 6047 switch (ret) { 6048 case GRO_NORMAL: 6049 gro_normal_one(napi, skb); 6050 break; 6051 6052 case GRO_DROP: 6053 kfree_skb(skb); 6054 break; 6055 6056 case GRO_MERGED_FREE: 6057 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6058 napi_skb_free_stolen_head(skb); 6059 else 6060 __kfree_skb(skb); 6061 break; 6062 6063 case GRO_HELD: 6064 case GRO_MERGED: 6065 case GRO_CONSUMED: 6066 break; 6067 } 6068 6069 return ret; 6070 } 6071 6072 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 6073 { 6074 gro_result_t ret; 6075 6076 skb_mark_napi_id(skb, napi); 6077 trace_napi_gro_receive_entry(skb); 6078 6079 skb_gro_reset_offset(skb); 6080 6081 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 6082 trace_napi_gro_receive_exit(ret); 6083 6084 return ret; 6085 } 6086 EXPORT_SYMBOL(napi_gro_receive); 6087 6088 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 6089 { 6090 if (unlikely(skb->pfmemalloc)) { 6091 consume_skb(skb); 6092 return; 6093 } 6094 __skb_pull(skb, skb_headlen(skb)); 6095 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 6096 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 6097 __vlan_hwaccel_clear_tag(skb); 6098 skb->dev = napi->dev; 6099 skb->skb_iif = 0; 6100 6101 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 6102 skb->pkt_type = PACKET_HOST; 6103 6104 skb->encapsulation = 0; 6105 skb_shinfo(skb)->gso_type = 0; 6106 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6107 skb_ext_reset(skb); 6108 6109 napi->skb = skb; 6110 } 6111 6112 struct sk_buff *napi_get_frags(struct napi_struct *napi) 6113 { 6114 struct sk_buff *skb = napi->skb; 6115 6116 if (!skb) { 6117 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 6118 if (skb) { 6119 napi->skb = skb; 6120 skb_mark_napi_id(skb, napi); 6121 } 6122 } 6123 return skb; 6124 } 6125 EXPORT_SYMBOL(napi_get_frags); 6126 6127 static gro_result_t napi_frags_finish(struct napi_struct *napi, 6128 struct sk_buff *skb, 6129 gro_result_t ret) 6130 { 6131 switch (ret) { 6132 case GRO_NORMAL: 6133 case GRO_HELD: 6134 __skb_push(skb, ETH_HLEN); 6135 skb->protocol = eth_type_trans(skb, skb->dev); 6136 if (ret == GRO_NORMAL) 6137 gro_normal_one(napi, skb); 6138 break; 6139 6140 case GRO_DROP: 6141 napi_reuse_skb(napi, skb); 6142 break; 6143 6144 case GRO_MERGED_FREE: 6145 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6146 napi_skb_free_stolen_head(skb); 6147 else 6148 napi_reuse_skb(napi, skb); 6149 break; 6150 6151 case GRO_MERGED: 6152 case GRO_CONSUMED: 6153 break; 6154 } 6155 6156 return ret; 6157 } 6158 6159 /* Upper GRO stack assumes network header starts at gro_offset=0 6160 * Drivers could call both napi_gro_frags() and napi_gro_receive() 6161 * We copy ethernet header into skb->data to have a common layout. 6162 */ 6163 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 6164 { 6165 struct sk_buff *skb = napi->skb; 6166 const struct ethhdr *eth; 6167 unsigned int hlen = sizeof(*eth); 6168 6169 napi->skb = NULL; 6170 6171 skb_reset_mac_header(skb); 6172 skb_gro_reset_offset(skb); 6173 6174 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6175 eth = skb_gro_header_slow(skb, hlen, 0); 6176 if (unlikely(!eth)) { 6177 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6178 __func__, napi->dev->name); 6179 napi_reuse_skb(napi, skb); 6180 return NULL; 6181 } 6182 } else { 6183 eth = (const struct ethhdr *)skb->data; 6184 gro_pull_from_frag0(skb, hlen); 6185 NAPI_GRO_CB(skb)->frag0 += hlen; 6186 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6187 } 6188 __skb_pull(skb, hlen); 6189 6190 /* 6191 * This works because the only protocols we care about don't require 6192 * special handling. 6193 * We'll fix it up properly in napi_frags_finish() 6194 */ 6195 skb->protocol = eth->h_proto; 6196 6197 return skb; 6198 } 6199 6200 gro_result_t napi_gro_frags(struct napi_struct *napi) 6201 { 6202 gro_result_t ret; 6203 struct sk_buff *skb = napi_frags_skb(napi); 6204 6205 if (!skb) 6206 return GRO_DROP; 6207 6208 trace_napi_gro_frags_entry(skb); 6209 6210 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6211 trace_napi_gro_frags_exit(ret); 6212 6213 return ret; 6214 } 6215 EXPORT_SYMBOL(napi_gro_frags); 6216 6217 /* Compute the checksum from gro_offset and return the folded value 6218 * after adding in any pseudo checksum. 6219 */ 6220 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6221 { 6222 __wsum wsum; 6223 __sum16 sum; 6224 6225 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6226 6227 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6228 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6229 /* See comments in __skb_checksum_complete(). */ 6230 if (likely(!sum)) { 6231 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6232 !skb->csum_complete_sw) 6233 netdev_rx_csum_fault(skb->dev, skb); 6234 } 6235 6236 NAPI_GRO_CB(skb)->csum = wsum; 6237 NAPI_GRO_CB(skb)->csum_valid = 1; 6238 6239 return sum; 6240 } 6241 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6242 6243 static void net_rps_send_ipi(struct softnet_data *remsd) 6244 { 6245 #ifdef CONFIG_RPS 6246 while (remsd) { 6247 struct softnet_data *next = remsd->rps_ipi_next; 6248 6249 if (cpu_online(remsd->cpu)) 6250 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6251 remsd = next; 6252 } 6253 #endif 6254 } 6255 6256 /* 6257 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6258 * Note: called with local irq disabled, but exits with local irq enabled. 6259 */ 6260 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6261 { 6262 #ifdef CONFIG_RPS 6263 struct softnet_data *remsd = sd->rps_ipi_list; 6264 6265 if (remsd) { 6266 sd->rps_ipi_list = NULL; 6267 6268 local_irq_enable(); 6269 6270 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6271 net_rps_send_ipi(remsd); 6272 } else 6273 #endif 6274 local_irq_enable(); 6275 } 6276 6277 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6278 { 6279 #ifdef CONFIG_RPS 6280 return sd->rps_ipi_list != NULL; 6281 #else 6282 return false; 6283 #endif 6284 } 6285 6286 static int process_backlog(struct napi_struct *napi, int quota) 6287 { 6288 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6289 bool again = true; 6290 int work = 0; 6291 6292 /* Check if we have pending ipi, its better to send them now, 6293 * not waiting net_rx_action() end. 6294 */ 6295 if (sd_has_rps_ipi_waiting(sd)) { 6296 local_irq_disable(); 6297 net_rps_action_and_irq_enable(sd); 6298 } 6299 6300 napi->weight = dev_rx_weight; 6301 while (again) { 6302 struct sk_buff *skb; 6303 6304 while ((skb = __skb_dequeue(&sd->process_queue))) { 6305 rcu_read_lock(); 6306 __netif_receive_skb(skb); 6307 rcu_read_unlock(); 6308 input_queue_head_incr(sd); 6309 if (++work >= quota) 6310 return work; 6311 6312 } 6313 6314 local_irq_disable(); 6315 rps_lock(sd); 6316 if (skb_queue_empty(&sd->input_pkt_queue)) { 6317 /* 6318 * Inline a custom version of __napi_complete(). 6319 * only current cpu owns and manipulates this napi, 6320 * and NAPI_STATE_SCHED is the only possible flag set 6321 * on backlog. 6322 * We can use a plain write instead of clear_bit(), 6323 * and we dont need an smp_mb() memory barrier. 6324 */ 6325 napi->state = 0; 6326 again = false; 6327 } else { 6328 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6329 &sd->process_queue); 6330 } 6331 rps_unlock(sd); 6332 local_irq_enable(); 6333 } 6334 6335 return work; 6336 } 6337 6338 /** 6339 * __napi_schedule - schedule for receive 6340 * @n: entry to schedule 6341 * 6342 * The entry's receive function will be scheduled to run. 6343 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6344 */ 6345 void __napi_schedule(struct napi_struct *n) 6346 { 6347 unsigned long flags; 6348 6349 local_irq_save(flags); 6350 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6351 local_irq_restore(flags); 6352 } 6353 EXPORT_SYMBOL(__napi_schedule); 6354 6355 /** 6356 * napi_schedule_prep - check if napi can be scheduled 6357 * @n: napi context 6358 * 6359 * Test if NAPI routine is already running, and if not mark 6360 * it as running. This is used as a condition variable to 6361 * insure only one NAPI poll instance runs. We also make 6362 * sure there is no pending NAPI disable. 6363 */ 6364 bool napi_schedule_prep(struct napi_struct *n) 6365 { 6366 unsigned long val, new; 6367 6368 do { 6369 val = READ_ONCE(n->state); 6370 if (unlikely(val & NAPIF_STATE_DISABLE)) 6371 return false; 6372 new = val | NAPIF_STATE_SCHED; 6373 6374 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6375 * This was suggested by Alexander Duyck, as compiler 6376 * emits better code than : 6377 * if (val & NAPIF_STATE_SCHED) 6378 * new |= NAPIF_STATE_MISSED; 6379 */ 6380 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6381 NAPIF_STATE_MISSED; 6382 } while (cmpxchg(&n->state, val, new) != val); 6383 6384 return !(val & NAPIF_STATE_SCHED); 6385 } 6386 EXPORT_SYMBOL(napi_schedule_prep); 6387 6388 /** 6389 * __napi_schedule_irqoff - schedule for receive 6390 * @n: entry to schedule 6391 * 6392 * Variant of __napi_schedule() assuming hard irqs are masked 6393 */ 6394 void __napi_schedule_irqoff(struct napi_struct *n) 6395 { 6396 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6397 } 6398 EXPORT_SYMBOL(__napi_schedule_irqoff); 6399 6400 bool napi_complete_done(struct napi_struct *n, int work_done) 6401 { 6402 unsigned long flags, val, new, timeout = 0; 6403 bool ret = true; 6404 6405 /* 6406 * 1) Don't let napi dequeue from the cpu poll list 6407 * just in case its running on a different cpu. 6408 * 2) If we are busy polling, do nothing here, we have 6409 * the guarantee we will be called later. 6410 */ 6411 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6412 NAPIF_STATE_IN_BUSY_POLL))) 6413 return false; 6414 6415 if (work_done) { 6416 if (n->gro_bitmask) 6417 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6418 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6419 } 6420 if (n->defer_hard_irqs_count > 0) { 6421 n->defer_hard_irqs_count--; 6422 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6423 if (timeout) 6424 ret = false; 6425 } 6426 if (n->gro_bitmask) { 6427 /* When the NAPI instance uses a timeout and keeps postponing 6428 * it, we need to bound somehow the time packets are kept in 6429 * the GRO layer 6430 */ 6431 napi_gro_flush(n, !!timeout); 6432 } 6433 6434 gro_normal_list(n); 6435 6436 if (unlikely(!list_empty(&n->poll_list))) { 6437 /* If n->poll_list is not empty, we need to mask irqs */ 6438 local_irq_save(flags); 6439 list_del_init(&n->poll_list); 6440 local_irq_restore(flags); 6441 } 6442 6443 do { 6444 val = READ_ONCE(n->state); 6445 6446 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6447 6448 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6449 6450 /* If STATE_MISSED was set, leave STATE_SCHED set, 6451 * because we will call napi->poll() one more time. 6452 * This C code was suggested by Alexander Duyck to help gcc. 6453 */ 6454 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6455 NAPIF_STATE_SCHED; 6456 } while (cmpxchg(&n->state, val, new) != val); 6457 6458 if (unlikely(val & NAPIF_STATE_MISSED)) { 6459 __napi_schedule(n); 6460 return false; 6461 } 6462 6463 if (timeout) 6464 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6465 HRTIMER_MODE_REL_PINNED); 6466 return ret; 6467 } 6468 EXPORT_SYMBOL(napi_complete_done); 6469 6470 /* must be called under rcu_read_lock(), as we dont take a reference */ 6471 static struct napi_struct *napi_by_id(unsigned int napi_id) 6472 { 6473 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6474 struct napi_struct *napi; 6475 6476 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6477 if (napi->napi_id == napi_id) 6478 return napi; 6479 6480 return NULL; 6481 } 6482 6483 #if defined(CONFIG_NET_RX_BUSY_POLL) 6484 6485 #define BUSY_POLL_BUDGET 8 6486 6487 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6488 { 6489 int rc; 6490 6491 /* Busy polling means there is a high chance device driver hard irq 6492 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6493 * set in napi_schedule_prep(). 6494 * Since we are about to call napi->poll() once more, we can safely 6495 * clear NAPI_STATE_MISSED. 6496 * 6497 * Note: x86 could use a single "lock and ..." instruction 6498 * to perform these two clear_bit() 6499 */ 6500 clear_bit(NAPI_STATE_MISSED, &napi->state); 6501 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6502 6503 local_bh_disable(); 6504 6505 /* All we really want here is to re-enable device interrupts. 6506 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6507 */ 6508 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6509 /* We can't gro_normal_list() here, because napi->poll() might have 6510 * rearmed the napi (napi_complete_done()) in which case it could 6511 * already be running on another CPU. 6512 */ 6513 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6514 netpoll_poll_unlock(have_poll_lock); 6515 if (rc == BUSY_POLL_BUDGET) { 6516 /* As the whole budget was spent, we still own the napi so can 6517 * safely handle the rx_list. 6518 */ 6519 gro_normal_list(napi); 6520 __napi_schedule(napi); 6521 } 6522 local_bh_enable(); 6523 } 6524 6525 void napi_busy_loop(unsigned int napi_id, 6526 bool (*loop_end)(void *, unsigned long), 6527 void *loop_end_arg) 6528 { 6529 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6530 int (*napi_poll)(struct napi_struct *napi, int budget); 6531 void *have_poll_lock = NULL; 6532 struct napi_struct *napi; 6533 6534 restart: 6535 napi_poll = NULL; 6536 6537 rcu_read_lock(); 6538 6539 napi = napi_by_id(napi_id); 6540 if (!napi) 6541 goto out; 6542 6543 preempt_disable(); 6544 for (;;) { 6545 int work = 0; 6546 6547 local_bh_disable(); 6548 if (!napi_poll) { 6549 unsigned long val = READ_ONCE(napi->state); 6550 6551 /* If multiple threads are competing for this napi, 6552 * we avoid dirtying napi->state as much as we can. 6553 */ 6554 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6555 NAPIF_STATE_IN_BUSY_POLL)) 6556 goto count; 6557 if (cmpxchg(&napi->state, val, 6558 val | NAPIF_STATE_IN_BUSY_POLL | 6559 NAPIF_STATE_SCHED) != val) 6560 goto count; 6561 have_poll_lock = netpoll_poll_lock(napi); 6562 napi_poll = napi->poll; 6563 } 6564 work = napi_poll(napi, BUSY_POLL_BUDGET); 6565 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6566 gro_normal_list(napi); 6567 count: 6568 if (work > 0) 6569 __NET_ADD_STATS(dev_net(napi->dev), 6570 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6571 local_bh_enable(); 6572 6573 if (!loop_end || loop_end(loop_end_arg, start_time)) 6574 break; 6575 6576 if (unlikely(need_resched())) { 6577 if (napi_poll) 6578 busy_poll_stop(napi, have_poll_lock); 6579 preempt_enable(); 6580 rcu_read_unlock(); 6581 cond_resched(); 6582 if (loop_end(loop_end_arg, start_time)) 6583 return; 6584 goto restart; 6585 } 6586 cpu_relax(); 6587 } 6588 if (napi_poll) 6589 busy_poll_stop(napi, have_poll_lock); 6590 preempt_enable(); 6591 out: 6592 rcu_read_unlock(); 6593 } 6594 EXPORT_SYMBOL(napi_busy_loop); 6595 6596 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6597 6598 static void napi_hash_add(struct napi_struct *napi) 6599 { 6600 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6601 return; 6602 6603 spin_lock(&napi_hash_lock); 6604 6605 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6606 do { 6607 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6608 napi_gen_id = MIN_NAPI_ID; 6609 } while (napi_by_id(napi_gen_id)); 6610 napi->napi_id = napi_gen_id; 6611 6612 hlist_add_head_rcu(&napi->napi_hash_node, 6613 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6614 6615 spin_unlock(&napi_hash_lock); 6616 } 6617 6618 /* Warning : caller is responsible to make sure rcu grace period 6619 * is respected before freeing memory containing @napi 6620 */ 6621 static void napi_hash_del(struct napi_struct *napi) 6622 { 6623 spin_lock(&napi_hash_lock); 6624 6625 hlist_del_init_rcu(&napi->napi_hash_node); 6626 6627 spin_unlock(&napi_hash_lock); 6628 } 6629 6630 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6631 { 6632 struct napi_struct *napi; 6633 6634 napi = container_of(timer, struct napi_struct, timer); 6635 6636 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6637 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6638 */ 6639 if (!napi_disable_pending(napi) && 6640 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6641 __napi_schedule_irqoff(napi); 6642 6643 return HRTIMER_NORESTART; 6644 } 6645 6646 static void init_gro_hash(struct napi_struct *napi) 6647 { 6648 int i; 6649 6650 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6651 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6652 napi->gro_hash[i].count = 0; 6653 } 6654 napi->gro_bitmask = 0; 6655 } 6656 6657 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6658 int (*poll)(struct napi_struct *, int), int weight) 6659 { 6660 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6661 return; 6662 6663 INIT_LIST_HEAD(&napi->poll_list); 6664 INIT_HLIST_NODE(&napi->napi_hash_node); 6665 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6666 napi->timer.function = napi_watchdog; 6667 init_gro_hash(napi); 6668 napi->skb = NULL; 6669 INIT_LIST_HEAD(&napi->rx_list); 6670 napi->rx_count = 0; 6671 napi->poll = poll; 6672 if (weight > NAPI_POLL_WEIGHT) 6673 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6674 weight); 6675 napi->weight = weight; 6676 napi->dev = dev; 6677 #ifdef CONFIG_NETPOLL 6678 napi->poll_owner = -1; 6679 #endif 6680 set_bit(NAPI_STATE_SCHED, &napi->state); 6681 set_bit(NAPI_STATE_NPSVC, &napi->state); 6682 list_add_rcu(&napi->dev_list, &dev->napi_list); 6683 napi_hash_add(napi); 6684 } 6685 EXPORT_SYMBOL(netif_napi_add); 6686 6687 void napi_disable(struct napi_struct *n) 6688 { 6689 might_sleep(); 6690 set_bit(NAPI_STATE_DISABLE, &n->state); 6691 6692 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6693 msleep(1); 6694 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6695 msleep(1); 6696 6697 hrtimer_cancel(&n->timer); 6698 6699 clear_bit(NAPI_STATE_DISABLE, &n->state); 6700 } 6701 EXPORT_SYMBOL(napi_disable); 6702 6703 static void flush_gro_hash(struct napi_struct *napi) 6704 { 6705 int i; 6706 6707 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6708 struct sk_buff *skb, *n; 6709 6710 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6711 kfree_skb(skb); 6712 napi->gro_hash[i].count = 0; 6713 } 6714 } 6715 6716 /* Must be called in process context */ 6717 void __netif_napi_del(struct napi_struct *napi) 6718 { 6719 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6720 return; 6721 6722 napi_hash_del(napi); 6723 list_del_rcu(&napi->dev_list); 6724 napi_free_frags(napi); 6725 6726 flush_gro_hash(napi); 6727 napi->gro_bitmask = 0; 6728 } 6729 EXPORT_SYMBOL(__netif_napi_del); 6730 6731 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6732 { 6733 void *have; 6734 int work, weight; 6735 6736 list_del_init(&n->poll_list); 6737 6738 have = netpoll_poll_lock(n); 6739 6740 weight = n->weight; 6741 6742 /* This NAPI_STATE_SCHED test is for avoiding a race 6743 * with netpoll's poll_napi(). Only the entity which 6744 * obtains the lock and sees NAPI_STATE_SCHED set will 6745 * actually make the ->poll() call. Therefore we avoid 6746 * accidentally calling ->poll() when NAPI is not scheduled. 6747 */ 6748 work = 0; 6749 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6750 work = n->poll(n, weight); 6751 trace_napi_poll(n, work, weight); 6752 } 6753 6754 if (unlikely(work > weight)) 6755 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6756 n->poll, work, weight); 6757 6758 if (likely(work < weight)) 6759 goto out_unlock; 6760 6761 /* Drivers must not modify the NAPI state if they 6762 * consume the entire weight. In such cases this code 6763 * still "owns" the NAPI instance and therefore can 6764 * move the instance around on the list at-will. 6765 */ 6766 if (unlikely(napi_disable_pending(n))) { 6767 napi_complete(n); 6768 goto out_unlock; 6769 } 6770 6771 if (n->gro_bitmask) { 6772 /* flush too old packets 6773 * If HZ < 1000, flush all packets. 6774 */ 6775 napi_gro_flush(n, HZ >= 1000); 6776 } 6777 6778 gro_normal_list(n); 6779 6780 /* Some drivers may have called napi_schedule 6781 * prior to exhausting their budget. 6782 */ 6783 if (unlikely(!list_empty(&n->poll_list))) { 6784 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6785 n->dev ? n->dev->name : "backlog"); 6786 goto out_unlock; 6787 } 6788 6789 list_add_tail(&n->poll_list, repoll); 6790 6791 out_unlock: 6792 netpoll_poll_unlock(have); 6793 6794 return work; 6795 } 6796 6797 static __latent_entropy void net_rx_action(struct softirq_action *h) 6798 { 6799 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6800 unsigned long time_limit = jiffies + 6801 usecs_to_jiffies(netdev_budget_usecs); 6802 int budget = netdev_budget; 6803 LIST_HEAD(list); 6804 LIST_HEAD(repoll); 6805 6806 local_irq_disable(); 6807 list_splice_init(&sd->poll_list, &list); 6808 local_irq_enable(); 6809 6810 for (;;) { 6811 struct napi_struct *n; 6812 6813 if (list_empty(&list)) { 6814 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6815 goto out; 6816 break; 6817 } 6818 6819 n = list_first_entry(&list, struct napi_struct, poll_list); 6820 budget -= napi_poll(n, &repoll); 6821 6822 /* If softirq window is exhausted then punt. 6823 * Allow this to run for 2 jiffies since which will allow 6824 * an average latency of 1.5/HZ. 6825 */ 6826 if (unlikely(budget <= 0 || 6827 time_after_eq(jiffies, time_limit))) { 6828 sd->time_squeeze++; 6829 break; 6830 } 6831 } 6832 6833 local_irq_disable(); 6834 6835 list_splice_tail_init(&sd->poll_list, &list); 6836 list_splice_tail(&repoll, &list); 6837 list_splice(&list, &sd->poll_list); 6838 if (!list_empty(&sd->poll_list)) 6839 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6840 6841 net_rps_action_and_irq_enable(sd); 6842 out: 6843 __kfree_skb_flush(); 6844 } 6845 6846 struct netdev_adjacent { 6847 struct net_device *dev; 6848 6849 /* upper master flag, there can only be one master device per list */ 6850 bool master; 6851 6852 /* lookup ignore flag */ 6853 bool ignore; 6854 6855 /* counter for the number of times this device was added to us */ 6856 u16 ref_nr; 6857 6858 /* private field for the users */ 6859 void *private; 6860 6861 struct list_head list; 6862 struct rcu_head rcu; 6863 }; 6864 6865 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6866 struct list_head *adj_list) 6867 { 6868 struct netdev_adjacent *adj; 6869 6870 list_for_each_entry(adj, adj_list, list) { 6871 if (adj->dev == adj_dev) 6872 return adj; 6873 } 6874 return NULL; 6875 } 6876 6877 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6878 struct netdev_nested_priv *priv) 6879 { 6880 struct net_device *dev = (struct net_device *)priv->data; 6881 6882 return upper_dev == dev; 6883 } 6884 6885 /** 6886 * netdev_has_upper_dev - Check if device is linked to an upper device 6887 * @dev: device 6888 * @upper_dev: upper device to check 6889 * 6890 * Find out if a device is linked to specified upper device and return true 6891 * in case it is. Note that this checks only immediate upper device, 6892 * not through a complete stack of devices. The caller must hold the RTNL lock. 6893 */ 6894 bool netdev_has_upper_dev(struct net_device *dev, 6895 struct net_device *upper_dev) 6896 { 6897 struct netdev_nested_priv priv = { 6898 .data = (void *)upper_dev, 6899 }; 6900 6901 ASSERT_RTNL(); 6902 6903 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6904 &priv); 6905 } 6906 EXPORT_SYMBOL(netdev_has_upper_dev); 6907 6908 /** 6909 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6910 * @dev: device 6911 * @upper_dev: upper device to check 6912 * 6913 * Find out if a device is linked to specified upper device and return true 6914 * in case it is. Note that this checks the entire upper device chain. 6915 * The caller must hold rcu lock. 6916 */ 6917 6918 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6919 struct net_device *upper_dev) 6920 { 6921 struct netdev_nested_priv priv = { 6922 .data = (void *)upper_dev, 6923 }; 6924 6925 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6926 &priv); 6927 } 6928 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6929 6930 /** 6931 * netdev_has_any_upper_dev - Check if device is linked to some device 6932 * @dev: device 6933 * 6934 * Find out if a device is linked to an upper device and return true in case 6935 * it is. The caller must hold the RTNL lock. 6936 */ 6937 bool netdev_has_any_upper_dev(struct net_device *dev) 6938 { 6939 ASSERT_RTNL(); 6940 6941 return !list_empty(&dev->adj_list.upper); 6942 } 6943 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6944 6945 /** 6946 * netdev_master_upper_dev_get - Get master upper device 6947 * @dev: device 6948 * 6949 * Find a master upper device and return pointer to it or NULL in case 6950 * it's not there. The caller must hold the RTNL lock. 6951 */ 6952 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6953 { 6954 struct netdev_adjacent *upper; 6955 6956 ASSERT_RTNL(); 6957 6958 if (list_empty(&dev->adj_list.upper)) 6959 return NULL; 6960 6961 upper = list_first_entry(&dev->adj_list.upper, 6962 struct netdev_adjacent, list); 6963 if (likely(upper->master)) 6964 return upper->dev; 6965 return NULL; 6966 } 6967 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6968 6969 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6970 { 6971 struct netdev_adjacent *upper; 6972 6973 ASSERT_RTNL(); 6974 6975 if (list_empty(&dev->adj_list.upper)) 6976 return NULL; 6977 6978 upper = list_first_entry(&dev->adj_list.upper, 6979 struct netdev_adjacent, list); 6980 if (likely(upper->master) && !upper->ignore) 6981 return upper->dev; 6982 return NULL; 6983 } 6984 6985 /** 6986 * netdev_has_any_lower_dev - Check if device is linked to some device 6987 * @dev: device 6988 * 6989 * Find out if a device is linked to a lower device and return true in case 6990 * it is. The caller must hold the RTNL lock. 6991 */ 6992 static bool netdev_has_any_lower_dev(struct net_device *dev) 6993 { 6994 ASSERT_RTNL(); 6995 6996 return !list_empty(&dev->adj_list.lower); 6997 } 6998 6999 void *netdev_adjacent_get_private(struct list_head *adj_list) 7000 { 7001 struct netdev_adjacent *adj; 7002 7003 adj = list_entry(adj_list, struct netdev_adjacent, list); 7004 7005 return adj->private; 7006 } 7007 EXPORT_SYMBOL(netdev_adjacent_get_private); 7008 7009 /** 7010 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7011 * @dev: device 7012 * @iter: list_head ** of the current position 7013 * 7014 * Gets the next device from the dev's upper list, starting from iter 7015 * position. The caller must hold RCU read lock. 7016 */ 7017 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7018 struct list_head **iter) 7019 { 7020 struct netdev_adjacent *upper; 7021 7022 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7023 7024 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7025 7026 if (&upper->list == &dev->adj_list.upper) 7027 return NULL; 7028 7029 *iter = &upper->list; 7030 7031 return upper->dev; 7032 } 7033 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7034 7035 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7036 struct list_head **iter, 7037 bool *ignore) 7038 { 7039 struct netdev_adjacent *upper; 7040 7041 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7042 7043 if (&upper->list == &dev->adj_list.upper) 7044 return NULL; 7045 7046 *iter = &upper->list; 7047 *ignore = upper->ignore; 7048 7049 return upper->dev; 7050 } 7051 7052 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7053 struct list_head **iter) 7054 { 7055 struct netdev_adjacent *upper; 7056 7057 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7058 7059 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7060 7061 if (&upper->list == &dev->adj_list.upper) 7062 return NULL; 7063 7064 *iter = &upper->list; 7065 7066 return upper->dev; 7067 } 7068 7069 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7070 int (*fn)(struct net_device *dev, 7071 struct netdev_nested_priv *priv), 7072 struct netdev_nested_priv *priv) 7073 { 7074 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7075 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7076 int ret, cur = 0; 7077 bool ignore; 7078 7079 now = dev; 7080 iter = &dev->adj_list.upper; 7081 7082 while (1) { 7083 if (now != dev) { 7084 ret = fn(now, priv); 7085 if (ret) 7086 return ret; 7087 } 7088 7089 next = NULL; 7090 while (1) { 7091 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7092 if (!udev) 7093 break; 7094 if (ignore) 7095 continue; 7096 7097 next = udev; 7098 niter = &udev->adj_list.upper; 7099 dev_stack[cur] = now; 7100 iter_stack[cur++] = iter; 7101 break; 7102 } 7103 7104 if (!next) { 7105 if (!cur) 7106 return 0; 7107 next = dev_stack[--cur]; 7108 niter = iter_stack[cur]; 7109 } 7110 7111 now = next; 7112 iter = niter; 7113 } 7114 7115 return 0; 7116 } 7117 7118 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7119 int (*fn)(struct net_device *dev, 7120 struct netdev_nested_priv *priv), 7121 struct netdev_nested_priv *priv) 7122 { 7123 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7124 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7125 int ret, cur = 0; 7126 7127 now = dev; 7128 iter = &dev->adj_list.upper; 7129 7130 while (1) { 7131 if (now != dev) { 7132 ret = fn(now, priv); 7133 if (ret) 7134 return ret; 7135 } 7136 7137 next = NULL; 7138 while (1) { 7139 udev = netdev_next_upper_dev_rcu(now, &iter); 7140 if (!udev) 7141 break; 7142 7143 next = udev; 7144 niter = &udev->adj_list.upper; 7145 dev_stack[cur] = now; 7146 iter_stack[cur++] = iter; 7147 break; 7148 } 7149 7150 if (!next) { 7151 if (!cur) 7152 return 0; 7153 next = dev_stack[--cur]; 7154 niter = iter_stack[cur]; 7155 } 7156 7157 now = next; 7158 iter = niter; 7159 } 7160 7161 return 0; 7162 } 7163 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7164 7165 static bool __netdev_has_upper_dev(struct net_device *dev, 7166 struct net_device *upper_dev) 7167 { 7168 struct netdev_nested_priv priv = { 7169 .flags = 0, 7170 .data = (void *)upper_dev, 7171 }; 7172 7173 ASSERT_RTNL(); 7174 7175 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7176 &priv); 7177 } 7178 7179 /** 7180 * netdev_lower_get_next_private - Get the next ->private from the 7181 * lower neighbour list 7182 * @dev: device 7183 * @iter: list_head ** of the current position 7184 * 7185 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7186 * list, starting from iter position. The caller must hold either hold the 7187 * RTNL lock or its own locking that guarantees that the neighbour lower 7188 * list will remain unchanged. 7189 */ 7190 void *netdev_lower_get_next_private(struct net_device *dev, 7191 struct list_head **iter) 7192 { 7193 struct netdev_adjacent *lower; 7194 7195 lower = list_entry(*iter, struct netdev_adjacent, list); 7196 7197 if (&lower->list == &dev->adj_list.lower) 7198 return NULL; 7199 7200 *iter = lower->list.next; 7201 7202 return lower->private; 7203 } 7204 EXPORT_SYMBOL(netdev_lower_get_next_private); 7205 7206 /** 7207 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7208 * lower neighbour list, RCU 7209 * variant 7210 * @dev: device 7211 * @iter: list_head ** of the current position 7212 * 7213 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7214 * list, starting from iter position. The caller must hold RCU read lock. 7215 */ 7216 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7217 struct list_head **iter) 7218 { 7219 struct netdev_adjacent *lower; 7220 7221 WARN_ON_ONCE(!rcu_read_lock_held()); 7222 7223 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7224 7225 if (&lower->list == &dev->adj_list.lower) 7226 return NULL; 7227 7228 *iter = &lower->list; 7229 7230 return lower->private; 7231 } 7232 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7233 7234 /** 7235 * netdev_lower_get_next - Get the next device from the lower neighbour 7236 * list 7237 * @dev: device 7238 * @iter: list_head ** of the current position 7239 * 7240 * Gets the next netdev_adjacent from the dev's lower neighbour 7241 * list, starting from iter position. The caller must hold RTNL lock or 7242 * its own locking that guarantees that the neighbour lower 7243 * list will remain unchanged. 7244 */ 7245 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7246 { 7247 struct netdev_adjacent *lower; 7248 7249 lower = list_entry(*iter, struct netdev_adjacent, list); 7250 7251 if (&lower->list == &dev->adj_list.lower) 7252 return NULL; 7253 7254 *iter = lower->list.next; 7255 7256 return lower->dev; 7257 } 7258 EXPORT_SYMBOL(netdev_lower_get_next); 7259 7260 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7261 struct list_head **iter) 7262 { 7263 struct netdev_adjacent *lower; 7264 7265 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7266 7267 if (&lower->list == &dev->adj_list.lower) 7268 return NULL; 7269 7270 *iter = &lower->list; 7271 7272 return lower->dev; 7273 } 7274 7275 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7276 struct list_head **iter, 7277 bool *ignore) 7278 { 7279 struct netdev_adjacent *lower; 7280 7281 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7282 7283 if (&lower->list == &dev->adj_list.lower) 7284 return NULL; 7285 7286 *iter = &lower->list; 7287 *ignore = lower->ignore; 7288 7289 return lower->dev; 7290 } 7291 7292 int netdev_walk_all_lower_dev(struct net_device *dev, 7293 int (*fn)(struct net_device *dev, 7294 struct netdev_nested_priv *priv), 7295 struct netdev_nested_priv *priv) 7296 { 7297 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7298 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7299 int ret, cur = 0; 7300 7301 now = dev; 7302 iter = &dev->adj_list.lower; 7303 7304 while (1) { 7305 if (now != dev) { 7306 ret = fn(now, priv); 7307 if (ret) 7308 return ret; 7309 } 7310 7311 next = NULL; 7312 while (1) { 7313 ldev = netdev_next_lower_dev(now, &iter); 7314 if (!ldev) 7315 break; 7316 7317 next = ldev; 7318 niter = &ldev->adj_list.lower; 7319 dev_stack[cur] = now; 7320 iter_stack[cur++] = iter; 7321 break; 7322 } 7323 7324 if (!next) { 7325 if (!cur) 7326 return 0; 7327 next = dev_stack[--cur]; 7328 niter = iter_stack[cur]; 7329 } 7330 7331 now = next; 7332 iter = niter; 7333 } 7334 7335 return 0; 7336 } 7337 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7338 7339 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7340 int (*fn)(struct net_device *dev, 7341 struct netdev_nested_priv *priv), 7342 struct netdev_nested_priv *priv) 7343 { 7344 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7345 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7346 int ret, cur = 0; 7347 bool ignore; 7348 7349 now = dev; 7350 iter = &dev->adj_list.lower; 7351 7352 while (1) { 7353 if (now != dev) { 7354 ret = fn(now, priv); 7355 if (ret) 7356 return ret; 7357 } 7358 7359 next = NULL; 7360 while (1) { 7361 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7362 if (!ldev) 7363 break; 7364 if (ignore) 7365 continue; 7366 7367 next = ldev; 7368 niter = &ldev->adj_list.lower; 7369 dev_stack[cur] = now; 7370 iter_stack[cur++] = iter; 7371 break; 7372 } 7373 7374 if (!next) { 7375 if (!cur) 7376 return 0; 7377 next = dev_stack[--cur]; 7378 niter = iter_stack[cur]; 7379 } 7380 7381 now = next; 7382 iter = niter; 7383 } 7384 7385 return 0; 7386 } 7387 7388 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7389 struct list_head **iter) 7390 { 7391 struct netdev_adjacent *lower; 7392 7393 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7394 if (&lower->list == &dev->adj_list.lower) 7395 return NULL; 7396 7397 *iter = &lower->list; 7398 7399 return lower->dev; 7400 } 7401 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7402 7403 static u8 __netdev_upper_depth(struct net_device *dev) 7404 { 7405 struct net_device *udev; 7406 struct list_head *iter; 7407 u8 max_depth = 0; 7408 bool ignore; 7409 7410 for (iter = &dev->adj_list.upper, 7411 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7412 udev; 7413 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7414 if (ignore) 7415 continue; 7416 if (max_depth < udev->upper_level) 7417 max_depth = udev->upper_level; 7418 } 7419 7420 return max_depth; 7421 } 7422 7423 static u8 __netdev_lower_depth(struct net_device *dev) 7424 { 7425 struct net_device *ldev; 7426 struct list_head *iter; 7427 u8 max_depth = 0; 7428 bool ignore; 7429 7430 for (iter = &dev->adj_list.lower, 7431 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7432 ldev; 7433 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7434 if (ignore) 7435 continue; 7436 if (max_depth < ldev->lower_level) 7437 max_depth = ldev->lower_level; 7438 } 7439 7440 return max_depth; 7441 } 7442 7443 static int __netdev_update_upper_level(struct net_device *dev, 7444 struct netdev_nested_priv *__unused) 7445 { 7446 dev->upper_level = __netdev_upper_depth(dev) + 1; 7447 return 0; 7448 } 7449 7450 static int __netdev_update_lower_level(struct net_device *dev, 7451 struct netdev_nested_priv *priv) 7452 { 7453 dev->lower_level = __netdev_lower_depth(dev) + 1; 7454 7455 #ifdef CONFIG_LOCKDEP 7456 if (!priv) 7457 return 0; 7458 7459 if (priv->flags & NESTED_SYNC_IMM) 7460 dev->nested_level = dev->lower_level - 1; 7461 if (priv->flags & NESTED_SYNC_TODO) 7462 net_unlink_todo(dev); 7463 #endif 7464 return 0; 7465 } 7466 7467 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7468 int (*fn)(struct net_device *dev, 7469 struct netdev_nested_priv *priv), 7470 struct netdev_nested_priv *priv) 7471 { 7472 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7473 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7474 int ret, cur = 0; 7475 7476 now = dev; 7477 iter = &dev->adj_list.lower; 7478 7479 while (1) { 7480 if (now != dev) { 7481 ret = fn(now, priv); 7482 if (ret) 7483 return ret; 7484 } 7485 7486 next = NULL; 7487 while (1) { 7488 ldev = netdev_next_lower_dev_rcu(now, &iter); 7489 if (!ldev) 7490 break; 7491 7492 next = ldev; 7493 niter = &ldev->adj_list.lower; 7494 dev_stack[cur] = now; 7495 iter_stack[cur++] = iter; 7496 break; 7497 } 7498 7499 if (!next) { 7500 if (!cur) 7501 return 0; 7502 next = dev_stack[--cur]; 7503 niter = iter_stack[cur]; 7504 } 7505 7506 now = next; 7507 iter = niter; 7508 } 7509 7510 return 0; 7511 } 7512 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7513 7514 /** 7515 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7516 * lower neighbour list, RCU 7517 * variant 7518 * @dev: device 7519 * 7520 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7521 * list. The caller must hold RCU read lock. 7522 */ 7523 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7524 { 7525 struct netdev_adjacent *lower; 7526 7527 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7528 struct netdev_adjacent, list); 7529 if (lower) 7530 return lower->private; 7531 return NULL; 7532 } 7533 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7534 7535 /** 7536 * netdev_master_upper_dev_get_rcu - Get master upper device 7537 * @dev: device 7538 * 7539 * Find a master upper device and return pointer to it or NULL in case 7540 * it's not there. The caller must hold the RCU read lock. 7541 */ 7542 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7543 { 7544 struct netdev_adjacent *upper; 7545 7546 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7547 struct netdev_adjacent, list); 7548 if (upper && likely(upper->master)) 7549 return upper->dev; 7550 return NULL; 7551 } 7552 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7553 7554 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7555 struct net_device *adj_dev, 7556 struct list_head *dev_list) 7557 { 7558 char linkname[IFNAMSIZ+7]; 7559 7560 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7561 "upper_%s" : "lower_%s", adj_dev->name); 7562 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7563 linkname); 7564 } 7565 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7566 char *name, 7567 struct list_head *dev_list) 7568 { 7569 char linkname[IFNAMSIZ+7]; 7570 7571 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7572 "upper_%s" : "lower_%s", name); 7573 sysfs_remove_link(&(dev->dev.kobj), linkname); 7574 } 7575 7576 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7577 struct net_device *adj_dev, 7578 struct list_head *dev_list) 7579 { 7580 return (dev_list == &dev->adj_list.upper || 7581 dev_list == &dev->adj_list.lower) && 7582 net_eq(dev_net(dev), dev_net(adj_dev)); 7583 } 7584 7585 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7586 struct net_device *adj_dev, 7587 struct list_head *dev_list, 7588 void *private, bool master) 7589 { 7590 struct netdev_adjacent *adj; 7591 int ret; 7592 7593 adj = __netdev_find_adj(adj_dev, dev_list); 7594 7595 if (adj) { 7596 adj->ref_nr += 1; 7597 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7598 dev->name, adj_dev->name, adj->ref_nr); 7599 7600 return 0; 7601 } 7602 7603 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7604 if (!adj) 7605 return -ENOMEM; 7606 7607 adj->dev = adj_dev; 7608 adj->master = master; 7609 adj->ref_nr = 1; 7610 adj->private = private; 7611 adj->ignore = false; 7612 dev_hold(adj_dev); 7613 7614 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7615 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7616 7617 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7618 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7619 if (ret) 7620 goto free_adj; 7621 } 7622 7623 /* Ensure that master link is always the first item in list. */ 7624 if (master) { 7625 ret = sysfs_create_link(&(dev->dev.kobj), 7626 &(adj_dev->dev.kobj), "master"); 7627 if (ret) 7628 goto remove_symlinks; 7629 7630 list_add_rcu(&adj->list, dev_list); 7631 } else { 7632 list_add_tail_rcu(&adj->list, dev_list); 7633 } 7634 7635 return 0; 7636 7637 remove_symlinks: 7638 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7639 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7640 free_adj: 7641 kfree(adj); 7642 dev_put(adj_dev); 7643 7644 return ret; 7645 } 7646 7647 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7648 struct net_device *adj_dev, 7649 u16 ref_nr, 7650 struct list_head *dev_list) 7651 { 7652 struct netdev_adjacent *adj; 7653 7654 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7655 dev->name, adj_dev->name, ref_nr); 7656 7657 adj = __netdev_find_adj(adj_dev, dev_list); 7658 7659 if (!adj) { 7660 pr_err("Adjacency does not exist for device %s from %s\n", 7661 dev->name, adj_dev->name); 7662 WARN_ON(1); 7663 return; 7664 } 7665 7666 if (adj->ref_nr > ref_nr) { 7667 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7668 dev->name, adj_dev->name, ref_nr, 7669 adj->ref_nr - ref_nr); 7670 adj->ref_nr -= ref_nr; 7671 return; 7672 } 7673 7674 if (adj->master) 7675 sysfs_remove_link(&(dev->dev.kobj), "master"); 7676 7677 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7678 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7679 7680 list_del_rcu(&adj->list); 7681 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7682 adj_dev->name, dev->name, adj_dev->name); 7683 dev_put(adj_dev); 7684 kfree_rcu(adj, rcu); 7685 } 7686 7687 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7688 struct net_device *upper_dev, 7689 struct list_head *up_list, 7690 struct list_head *down_list, 7691 void *private, bool master) 7692 { 7693 int ret; 7694 7695 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7696 private, master); 7697 if (ret) 7698 return ret; 7699 7700 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7701 private, false); 7702 if (ret) { 7703 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7704 return ret; 7705 } 7706 7707 return 0; 7708 } 7709 7710 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7711 struct net_device *upper_dev, 7712 u16 ref_nr, 7713 struct list_head *up_list, 7714 struct list_head *down_list) 7715 { 7716 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7717 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7718 } 7719 7720 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7721 struct net_device *upper_dev, 7722 void *private, bool master) 7723 { 7724 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7725 &dev->adj_list.upper, 7726 &upper_dev->adj_list.lower, 7727 private, master); 7728 } 7729 7730 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7731 struct net_device *upper_dev) 7732 { 7733 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7734 &dev->adj_list.upper, 7735 &upper_dev->adj_list.lower); 7736 } 7737 7738 static int __netdev_upper_dev_link(struct net_device *dev, 7739 struct net_device *upper_dev, bool master, 7740 void *upper_priv, void *upper_info, 7741 struct netdev_nested_priv *priv, 7742 struct netlink_ext_ack *extack) 7743 { 7744 struct netdev_notifier_changeupper_info changeupper_info = { 7745 .info = { 7746 .dev = dev, 7747 .extack = extack, 7748 }, 7749 .upper_dev = upper_dev, 7750 .master = master, 7751 .linking = true, 7752 .upper_info = upper_info, 7753 }; 7754 struct net_device *master_dev; 7755 int ret = 0; 7756 7757 ASSERT_RTNL(); 7758 7759 if (dev == upper_dev) 7760 return -EBUSY; 7761 7762 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7763 if (__netdev_has_upper_dev(upper_dev, dev)) 7764 return -EBUSY; 7765 7766 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7767 return -EMLINK; 7768 7769 if (!master) { 7770 if (__netdev_has_upper_dev(dev, upper_dev)) 7771 return -EEXIST; 7772 } else { 7773 master_dev = __netdev_master_upper_dev_get(dev); 7774 if (master_dev) 7775 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7776 } 7777 7778 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7779 &changeupper_info.info); 7780 ret = notifier_to_errno(ret); 7781 if (ret) 7782 return ret; 7783 7784 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7785 master); 7786 if (ret) 7787 return ret; 7788 7789 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7790 &changeupper_info.info); 7791 ret = notifier_to_errno(ret); 7792 if (ret) 7793 goto rollback; 7794 7795 __netdev_update_upper_level(dev, NULL); 7796 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7797 7798 __netdev_update_lower_level(upper_dev, priv); 7799 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7800 priv); 7801 7802 return 0; 7803 7804 rollback: 7805 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7806 7807 return ret; 7808 } 7809 7810 /** 7811 * netdev_upper_dev_link - Add a link to the upper device 7812 * @dev: device 7813 * @upper_dev: new upper device 7814 * @extack: netlink extended ack 7815 * 7816 * Adds a link to device which is upper to this one. The caller must hold 7817 * the RTNL lock. On a failure a negative errno code is returned. 7818 * On success the reference counts are adjusted and the function 7819 * returns zero. 7820 */ 7821 int netdev_upper_dev_link(struct net_device *dev, 7822 struct net_device *upper_dev, 7823 struct netlink_ext_ack *extack) 7824 { 7825 struct netdev_nested_priv priv = { 7826 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7827 .data = NULL, 7828 }; 7829 7830 return __netdev_upper_dev_link(dev, upper_dev, false, 7831 NULL, NULL, &priv, extack); 7832 } 7833 EXPORT_SYMBOL(netdev_upper_dev_link); 7834 7835 /** 7836 * netdev_master_upper_dev_link - Add a master link to the upper device 7837 * @dev: device 7838 * @upper_dev: new upper device 7839 * @upper_priv: upper device private 7840 * @upper_info: upper info to be passed down via notifier 7841 * @extack: netlink extended ack 7842 * 7843 * Adds a link to device which is upper to this one. In this case, only 7844 * one master upper device can be linked, although other non-master devices 7845 * might be linked as well. The caller must hold the RTNL lock. 7846 * On a failure a negative errno code is returned. On success the reference 7847 * counts are adjusted and the function returns zero. 7848 */ 7849 int netdev_master_upper_dev_link(struct net_device *dev, 7850 struct net_device *upper_dev, 7851 void *upper_priv, void *upper_info, 7852 struct netlink_ext_ack *extack) 7853 { 7854 struct netdev_nested_priv priv = { 7855 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7856 .data = NULL, 7857 }; 7858 7859 return __netdev_upper_dev_link(dev, upper_dev, true, 7860 upper_priv, upper_info, &priv, extack); 7861 } 7862 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7863 7864 static void __netdev_upper_dev_unlink(struct net_device *dev, 7865 struct net_device *upper_dev, 7866 struct netdev_nested_priv *priv) 7867 { 7868 struct netdev_notifier_changeupper_info changeupper_info = { 7869 .info = { 7870 .dev = dev, 7871 }, 7872 .upper_dev = upper_dev, 7873 .linking = false, 7874 }; 7875 7876 ASSERT_RTNL(); 7877 7878 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7879 7880 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7881 &changeupper_info.info); 7882 7883 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7884 7885 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7886 &changeupper_info.info); 7887 7888 __netdev_update_upper_level(dev, NULL); 7889 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7890 7891 __netdev_update_lower_level(upper_dev, priv); 7892 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7893 priv); 7894 } 7895 7896 /** 7897 * netdev_upper_dev_unlink - Removes a link to upper device 7898 * @dev: device 7899 * @upper_dev: new upper device 7900 * 7901 * Removes a link to device which is upper to this one. The caller must hold 7902 * the RTNL lock. 7903 */ 7904 void netdev_upper_dev_unlink(struct net_device *dev, 7905 struct net_device *upper_dev) 7906 { 7907 struct netdev_nested_priv priv = { 7908 .flags = NESTED_SYNC_TODO, 7909 .data = NULL, 7910 }; 7911 7912 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 7913 } 7914 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7915 7916 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7917 struct net_device *lower_dev, 7918 bool val) 7919 { 7920 struct netdev_adjacent *adj; 7921 7922 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7923 if (adj) 7924 adj->ignore = val; 7925 7926 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7927 if (adj) 7928 adj->ignore = val; 7929 } 7930 7931 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7932 struct net_device *lower_dev) 7933 { 7934 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7935 } 7936 7937 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7938 struct net_device *lower_dev) 7939 { 7940 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7941 } 7942 7943 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7944 struct net_device *new_dev, 7945 struct net_device *dev, 7946 struct netlink_ext_ack *extack) 7947 { 7948 struct netdev_nested_priv priv = { 7949 .flags = 0, 7950 .data = NULL, 7951 }; 7952 int err; 7953 7954 if (!new_dev) 7955 return 0; 7956 7957 if (old_dev && new_dev != old_dev) 7958 netdev_adjacent_dev_disable(dev, old_dev); 7959 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 7960 extack); 7961 if (err) { 7962 if (old_dev && new_dev != old_dev) 7963 netdev_adjacent_dev_enable(dev, old_dev); 7964 return err; 7965 } 7966 7967 return 0; 7968 } 7969 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7970 7971 void netdev_adjacent_change_commit(struct net_device *old_dev, 7972 struct net_device *new_dev, 7973 struct net_device *dev) 7974 { 7975 struct netdev_nested_priv priv = { 7976 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7977 .data = NULL, 7978 }; 7979 7980 if (!new_dev || !old_dev) 7981 return; 7982 7983 if (new_dev == old_dev) 7984 return; 7985 7986 netdev_adjacent_dev_enable(dev, old_dev); 7987 __netdev_upper_dev_unlink(old_dev, dev, &priv); 7988 } 7989 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7990 7991 void netdev_adjacent_change_abort(struct net_device *old_dev, 7992 struct net_device *new_dev, 7993 struct net_device *dev) 7994 { 7995 struct netdev_nested_priv priv = { 7996 .flags = 0, 7997 .data = NULL, 7998 }; 7999 8000 if (!new_dev) 8001 return; 8002 8003 if (old_dev && new_dev != old_dev) 8004 netdev_adjacent_dev_enable(dev, old_dev); 8005 8006 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8007 } 8008 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8009 8010 /** 8011 * netdev_bonding_info_change - Dispatch event about slave change 8012 * @dev: device 8013 * @bonding_info: info to dispatch 8014 * 8015 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8016 * The caller must hold the RTNL lock. 8017 */ 8018 void netdev_bonding_info_change(struct net_device *dev, 8019 struct netdev_bonding_info *bonding_info) 8020 { 8021 struct netdev_notifier_bonding_info info = { 8022 .info.dev = dev, 8023 }; 8024 8025 memcpy(&info.bonding_info, bonding_info, 8026 sizeof(struct netdev_bonding_info)); 8027 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8028 &info.info); 8029 } 8030 EXPORT_SYMBOL(netdev_bonding_info_change); 8031 8032 /** 8033 * netdev_get_xmit_slave - Get the xmit slave of master device 8034 * @dev: device 8035 * @skb: The packet 8036 * @all_slaves: assume all the slaves are active 8037 * 8038 * The reference counters are not incremented so the caller must be 8039 * careful with locks. The caller must hold RCU lock. 8040 * %NULL is returned if no slave is found. 8041 */ 8042 8043 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8044 struct sk_buff *skb, 8045 bool all_slaves) 8046 { 8047 const struct net_device_ops *ops = dev->netdev_ops; 8048 8049 if (!ops->ndo_get_xmit_slave) 8050 return NULL; 8051 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8052 } 8053 EXPORT_SYMBOL(netdev_get_xmit_slave); 8054 8055 static void netdev_adjacent_add_links(struct net_device *dev) 8056 { 8057 struct netdev_adjacent *iter; 8058 8059 struct net *net = dev_net(dev); 8060 8061 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8062 if (!net_eq(net, dev_net(iter->dev))) 8063 continue; 8064 netdev_adjacent_sysfs_add(iter->dev, dev, 8065 &iter->dev->adj_list.lower); 8066 netdev_adjacent_sysfs_add(dev, iter->dev, 8067 &dev->adj_list.upper); 8068 } 8069 8070 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8071 if (!net_eq(net, dev_net(iter->dev))) 8072 continue; 8073 netdev_adjacent_sysfs_add(iter->dev, dev, 8074 &iter->dev->adj_list.upper); 8075 netdev_adjacent_sysfs_add(dev, iter->dev, 8076 &dev->adj_list.lower); 8077 } 8078 } 8079 8080 static void netdev_adjacent_del_links(struct net_device *dev) 8081 { 8082 struct netdev_adjacent *iter; 8083 8084 struct net *net = dev_net(dev); 8085 8086 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8087 if (!net_eq(net, dev_net(iter->dev))) 8088 continue; 8089 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8090 &iter->dev->adj_list.lower); 8091 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8092 &dev->adj_list.upper); 8093 } 8094 8095 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8096 if (!net_eq(net, dev_net(iter->dev))) 8097 continue; 8098 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8099 &iter->dev->adj_list.upper); 8100 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8101 &dev->adj_list.lower); 8102 } 8103 } 8104 8105 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8106 { 8107 struct netdev_adjacent *iter; 8108 8109 struct net *net = dev_net(dev); 8110 8111 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8112 if (!net_eq(net, dev_net(iter->dev))) 8113 continue; 8114 netdev_adjacent_sysfs_del(iter->dev, oldname, 8115 &iter->dev->adj_list.lower); 8116 netdev_adjacent_sysfs_add(iter->dev, dev, 8117 &iter->dev->adj_list.lower); 8118 } 8119 8120 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8121 if (!net_eq(net, dev_net(iter->dev))) 8122 continue; 8123 netdev_adjacent_sysfs_del(iter->dev, oldname, 8124 &iter->dev->adj_list.upper); 8125 netdev_adjacent_sysfs_add(iter->dev, dev, 8126 &iter->dev->adj_list.upper); 8127 } 8128 } 8129 8130 void *netdev_lower_dev_get_private(struct net_device *dev, 8131 struct net_device *lower_dev) 8132 { 8133 struct netdev_adjacent *lower; 8134 8135 if (!lower_dev) 8136 return NULL; 8137 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8138 if (!lower) 8139 return NULL; 8140 8141 return lower->private; 8142 } 8143 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8144 8145 8146 /** 8147 * netdev_lower_change - Dispatch event about lower device state change 8148 * @lower_dev: device 8149 * @lower_state_info: state to dispatch 8150 * 8151 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8152 * The caller must hold the RTNL lock. 8153 */ 8154 void netdev_lower_state_changed(struct net_device *lower_dev, 8155 void *lower_state_info) 8156 { 8157 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8158 .info.dev = lower_dev, 8159 }; 8160 8161 ASSERT_RTNL(); 8162 changelowerstate_info.lower_state_info = lower_state_info; 8163 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8164 &changelowerstate_info.info); 8165 } 8166 EXPORT_SYMBOL(netdev_lower_state_changed); 8167 8168 static void dev_change_rx_flags(struct net_device *dev, int flags) 8169 { 8170 const struct net_device_ops *ops = dev->netdev_ops; 8171 8172 if (ops->ndo_change_rx_flags) 8173 ops->ndo_change_rx_flags(dev, flags); 8174 } 8175 8176 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8177 { 8178 unsigned int old_flags = dev->flags; 8179 kuid_t uid; 8180 kgid_t gid; 8181 8182 ASSERT_RTNL(); 8183 8184 dev->flags |= IFF_PROMISC; 8185 dev->promiscuity += inc; 8186 if (dev->promiscuity == 0) { 8187 /* 8188 * Avoid overflow. 8189 * If inc causes overflow, untouch promisc and return error. 8190 */ 8191 if (inc < 0) 8192 dev->flags &= ~IFF_PROMISC; 8193 else { 8194 dev->promiscuity -= inc; 8195 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 8196 dev->name); 8197 return -EOVERFLOW; 8198 } 8199 } 8200 if (dev->flags != old_flags) { 8201 pr_info("device %s %s promiscuous mode\n", 8202 dev->name, 8203 dev->flags & IFF_PROMISC ? "entered" : "left"); 8204 if (audit_enabled) { 8205 current_uid_gid(&uid, &gid); 8206 audit_log(audit_context(), GFP_ATOMIC, 8207 AUDIT_ANOM_PROMISCUOUS, 8208 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8209 dev->name, (dev->flags & IFF_PROMISC), 8210 (old_flags & IFF_PROMISC), 8211 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8212 from_kuid(&init_user_ns, uid), 8213 from_kgid(&init_user_ns, gid), 8214 audit_get_sessionid(current)); 8215 } 8216 8217 dev_change_rx_flags(dev, IFF_PROMISC); 8218 } 8219 if (notify) 8220 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8221 return 0; 8222 } 8223 8224 /** 8225 * dev_set_promiscuity - update promiscuity count on a device 8226 * @dev: device 8227 * @inc: modifier 8228 * 8229 * Add or remove promiscuity from a device. While the count in the device 8230 * remains above zero the interface remains promiscuous. Once it hits zero 8231 * the device reverts back to normal filtering operation. A negative inc 8232 * value is used to drop promiscuity on the device. 8233 * Return 0 if successful or a negative errno code on error. 8234 */ 8235 int dev_set_promiscuity(struct net_device *dev, int inc) 8236 { 8237 unsigned int old_flags = dev->flags; 8238 int err; 8239 8240 err = __dev_set_promiscuity(dev, inc, true); 8241 if (err < 0) 8242 return err; 8243 if (dev->flags != old_flags) 8244 dev_set_rx_mode(dev); 8245 return err; 8246 } 8247 EXPORT_SYMBOL(dev_set_promiscuity); 8248 8249 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8250 { 8251 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8252 8253 ASSERT_RTNL(); 8254 8255 dev->flags |= IFF_ALLMULTI; 8256 dev->allmulti += inc; 8257 if (dev->allmulti == 0) { 8258 /* 8259 * Avoid overflow. 8260 * If inc causes overflow, untouch allmulti and return error. 8261 */ 8262 if (inc < 0) 8263 dev->flags &= ~IFF_ALLMULTI; 8264 else { 8265 dev->allmulti -= inc; 8266 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8267 dev->name); 8268 return -EOVERFLOW; 8269 } 8270 } 8271 if (dev->flags ^ old_flags) { 8272 dev_change_rx_flags(dev, IFF_ALLMULTI); 8273 dev_set_rx_mode(dev); 8274 if (notify) 8275 __dev_notify_flags(dev, old_flags, 8276 dev->gflags ^ old_gflags); 8277 } 8278 return 0; 8279 } 8280 8281 /** 8282 * dev_set_allmulti - update allmulti count on a device 8283 * @dev: device 8284 * @inc: modifier 8285 * 8286 * Add or remove reception of all multicast frames to a device. While the 8287 * count in the device remains above zero the interface remains listening 8288 * to all interfaces. Once it hits zero the device reverts back to normal 8289 * filtering operation. A negative @inc value is used to drop the counter 8290 * when releasing a resource needing all multicasts. 8291 * Return 0 if successful or a negative errno code on error. 8292 */ 8293 8294 int dev_set_allmulti(struct net_device *dev, int inc) 8295 { 8296 return __dev_set_allmulti(dev, inc, true); 8297 } 8298 EXPORT_SYMBOL(dev_set_allmulti); 8299 8300 /* 8301 * Upload unicast and multicast address lists to device and 8302 * configure RX filtering. When the device doesn't support unicast 8303 * filtering it is put in promiscuous mode while unicast addresses 8304 * are present. 8305 */ 8306 void __dev_set_rx_mode(struct net_device *dev) 8307 { 8308 const struct net_device_ops *ops = dev->netdev_ops; 8309 8310 /* dev_open will call this function so the list will stay sane. */ 8311 if (!(dev->flags&IFF_UP)) 8312 return; 8313 8314 if (!netif_device_present(dev)) 8315 return; 8316 8317 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8318 /* Unicast addresses changes may only happen under the rtnl, 8319 * therefore calling __dev_set_promiscuity here is safe. 8320 */ 8321 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8322 __dev_set_promiscuity(dev, 1, false); 8323 dev->uc_promisc = true; 8324 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8325 __dev_set_promiscuity(dev, -1, false); 8326 dev->uc_promisc = false; 8327 } 8328 } 8329 8330 if (ops->ndo_set_rx_mode) 8331 ops->ndo_set_rx_mode(dev); 8332 } 8333 8334 void dev_set_rx_mode(struct net_device *dev) 8335 { 8336 netif_addr_lock_bh(dev); 8337 __dev_set_rx_mode(dev); 8338 netif_addr_unlock_bh(dev); 8339 } 8340 8341 /** 8342 * dev_get_flags - get flags reported to userspace 8343 * @dev: device 8344 * 8345 * Get the combination of flag bits exported through APIs to userspace. 8346 */ 8347 unsigned int dev_get_flags(const struct net_device *dev) 8348 { 8349 unsigned int flags; 8350 8351 flags = (dev->flags & ~(IFF_PROMISC | 8352 IFF_ALLMULTI | 8353 IFF_RUNNING | 8354 IFF_LOWER_UP | 8355 IFF_DORMANT)) | 8356 (dev->gflags & (IFF_PROMISC | 8357 IFF_ALLMULTI)); 8358 8359 if (netif_running(dev)) { 8360 if (netif_oper_up(dev)) 8361 flags |= IFF_RUNNING; 8362 if (netif_carrier_ok(dev)) 8363 flags |= IFF_LOWER_UP; 8364 if (netif_dormant(dev)) 8365 flags |= IFF_DORMANT; 8366 } 8367 8368 return flags; 8369 } 8370 EXPORT_SYMBOL(dev_get_flags); 8371 8372 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8373 struct netlink_ext_ack *extack) 8374 { 8375 unsigned int old_flags = dev->flags; 8376 int ret; 8377 8378 ASSERT_RTNL(); 8379 8380 /* 8381 * Set the flags on our device. 8382 */ 8383 8384 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8385 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8386 IFF_AUTOMEDIA)) | 8387 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8388 IFF_ALLMULTI)); 8389 8390 /* 8391 * Load in the correct multicast list now the flags have changed. 8392 */ 8393 8394 if ((old_flags ^ flags) & IFF_MULTICAST) 8395 dev_change_rx_flags(dev, IFF_MULTICAST); 8396 8397 dev_set_rx_mode(dev); 8398 8399 /* 8400 * Have we downed the interface. We handle IFF_UP ourselves 8401 * according to user attempts to set it, rather than blindly 8402 * setting it. 8403 */ 8404 8405 ret = 0; 8406 if ((old_flags ^ flags) & IFF_UP) { 8407 if (old_flags & IFF_UP) 8408 __dev_close(dev); 8409 else 8410 ret = __dev_open(dev, extack); 8411 } 8412 8413 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8414 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8415 unsigned int old_flags = dev->flags; 8416 8417 dev->gflags ^= IFF_PROMISC; 8418 8419 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8420 if (dev->flags != old_flags) 8421 dev_set_rx_mode(dev); 8422 } 8423 8424 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8425 * is important. Some (broken) drivers set IFF_PROMISC, when 8426 * IFF_ALLMULTI is requested not asking us and not reporting. 8427 */ 8428 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8429 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8430 8431 dev->gflags ^= IFF_ALLMULTI; 8432 __dev_set_allmulti(dev, inc, false); 8433 } 8434 8435 return ret; 8436 } 8437 8438 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8439 unsigned int gchanges) 8440 { 8441 unsigned int changes = dev->flags ^ old_flags; 8442 8443 if (gchanges) 8444 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8445 8446 if (changes & IFF_UP) { 8447 if (dev->flags & IFF_UP) 8448 call_netdevice_notifiers(NETDEV_UP, dev); 8449 else 8450 call_netdevice_notifiers(NETDEV_DOWN, dev); 8451 } 8452 8453 if (dev->flags & IFF_UP && 8454 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8455 struct netdev_notifier_change_info change_info = { 8456 .info = { 8457 .dev = dev, 8458 }, 8459 .flags_changed = changes, 8460 }; 8461 8462 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8463 } 8464 } 8465 8466 /** 8467 * dev_change_flags - change device settings 8468 * @dev: device 8469 * @flags: device state flags 8470 * @extack: netlink extended ack 8471 * 8472 * Change settings on device based state flags. The flags are 8473 * in the userspace exported format. 8474 */ 8475 int dev_change_flags(struct net_device *dev, unsigned int flags, 8476 struct netlink_ext_ack *extack) 8477 { 8478 int ret; 8479 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8480 8481 ret = __dev_change_flags(dev, flags, extack); 8482 if (ret < 0) 8483 return ret; 8484 8485 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8486 __dev_notify_flags(dev, old_flags, changes); 8487 return ret; 8488 } 8489 EXPORT_SYMBOL(dev_change_flags); 8490 8491 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8492 { 8493 const struct net_device_ops *ops = dev->netdev_ops; 8494 8495 if (ops->ndo_change_mtu) 8496 return ops->ndo_change_mtu(dev, new_mtu); 8497 8498 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8499 WRITE_ONCE(dev->mtu, new_mtu); 8500 return 0; 8501 } 8502 EXPORT_SYMBOL(__dev_set_mtu); 8503 8504 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8505 struct netlink_ext_ack *extack) 8506 { 8507 /* MTU must be positive, and in range */ 8508 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8509 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8510 return -EINVAL; 8511 } 8512 8513 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8514 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8515 return -EINVAL; 8516 } 8517 return 0; 8518 } 8519 8520 /** 8521 * dev_set_mtu_ext - Change maximum transfer unit 8522 * @dev: device 8523 * @new_mtu: new transfer unit 8524 * @extack: netlink extended ack 8525 * 8526 * Change the maximum transfer size of the network device. 8527 */ 8528 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8529 struct netlink_ext_ack *extack) 8530 { 8531 int err, orig_mtu; 8532 8533 if (new_mtu == dev->mtu) 8534 return 0; 8535 8536 err = dev_validate_mtu(dev, new_mtu, extack); 8537 if (err) 8538 return err; 8539 8540 if (!netif_device_present(dev)) 8541 return -ENODEV; 8542 8543 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8544 err = notifier_to_errno(err); 8545 if (err) 8546 return err; 8547 8548 orig_mtu = dev->mtu; 8549 err = __dev_set_mtu(dev, new_mtu); 8550 8551 if (!err) { 8552 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8553 orig_mtu); 8554 err = notifier_to_errno(err); 8555 if (err) { 8556 /* setting mtu back and notifying everyone again, 8557 * so that they have a chance to revert changes. 8558 */ 8559 __dev_set_mtu(dev, orig_mtu); 8560 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8561 new_mtu); 8562 } 8563 } 8564 return err; 8565 } 8566 8567 int dev_set_mtu(struct net_device *dev, int new_mtu) 8568 { 8569 struct netlink_ext_ack extack; 8570 int err; 8571 8572 memset(&extack, 0, sizeof(extack)); 8573 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8574 if (err && extack._msg) 8575 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8576 return err; 8577 } 8578 EXPORT_SYMBOL(dev_set_mtu); 8579 8580 /** 8581 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8582 * @dev: device 8583 * @new_len: new tx queue length 8584 */ 8585 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8586 { 8587 unsigned int orig_len = dev->tx_queue_len; 8588 int res; 8589 8590 if (new_len != (unsigned int)new_len) 8591 return -ERANGE; 8592 8593 if (new_len != orig_len) { 8594 dev->tx_queue_len = new_len; 8595 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8596 res = notifier_to_errno(res); 8597 if (res) 8598 goto err_rollback; 8599 res = dev_qdisc_change_tx_queue_len(dev); 8600 if (res) 8601 goto err_rollback; 8602 } 8603 8604 return 0; 8605 8606 err_rollback: 8607 netdev_err(dev, "refused to change device tx_queue_len\n"); 8608 dev->tx_queue_len = orig_len; 8609 return res; 8610 } 8611 8612 /** 8613 * dev_set_group - Change group this device belongs to 8614 * @dev: device 8615 * @new_group: group this device should belong to 8616 */ 8617 void dev_set_group(struct net_device *dev, int new_group) 8618 { 8619 dev->group = new_group; 8620 } 8621 EXPORT_SYMBOL(dev_set_group); 8622 8623 /** 8624 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8625 * @dev: device 8626 * @addr: new address 8627 * @extack: netlink extended ack 8628 */ 8629 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8630 struct netlink_ext_ack *extack) 8631 { 8632 struct netdev_notifier_pre_changeaddr_info info = { 8633 .info.dev = dev, 8634 .info.extack = extack, 8635 .dev_addr = addr, 8636 }; 8637 int rc; 8638 8639 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8640 return notifier_to_errno(rc); 8641 } 8642 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8643 8644 /** 8645 * dev_set_mac_address - Change Media Access Control Address 8646 * @dev: device 8647 * @sa: new address 8648 * @extack: netlink extended ack 8649 * 8650 * Change the hardware (MAC) address of the device 8651 */ 8652 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8653 struct netlink_ext_ack *extack) 8654 { 8655 const struct net_device_ops *ops = dev->netdev_ops; 8656 int err; 8657 8658 if (!ops->ndo_set_mac_address) 8659 return -EOPNOTSUPP; 8660 if (sa->sa_family != dev->type) 8661 return -EINVAL; 8662 if (!netif_device_present(dev)) 8663 return -ENODEV; 8664 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8665 if (err) 8666 return err; 8667 err = ops->ndo_set_mac_address(dev, sa); 8668 if (err) 8669 return err; 8670 dev->addr_assign_type = NET_ADDR_SET; 8671 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8672 add_device_randomness(dev->dev_addr, dev->addr_len); 8673 return 0; 8674 } 8675 EXPORT_SYMBOL(dev_set_mac_address); 8676 8677 /** 8678 * dev_change_carrier - Change device carrier 8679 * @dev: device 8680 * @new_carrier: new value 8681 * 8682 * Change device carrier 8683 */ 8684 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8685 { 8686 const struct net_device_ops *ops = dev->netdev_ops; 8687 8688 if (!ops->ndo_change_carrier) 8689 return -EOPNOTSUPP; 8690 if (!netif_device_present(dev)) 8691 return -ENODEV; 8692 return ops->ndo_change_carrier(dev, new_carrier); 8693 } 8694 EXPORT_SYMBOL(dev_change_carrier); 8695 8696 /** 8697 * dev_get_phys_port_id - Get device physical port ID 8698 * @dev: device 8699 * @ppid: port ID 8700 * 8701 * Get device physical port ID 8702 */ 8703 int dev_get_phys_port_id(struct net_device *dev, 8704 struct netdev_phys_item_id *ppid) 8705 { 8706 const struct net_device_ops *ops = dev->netdev_ops; 8707 8708 if (!ops->ndo_get_phys_port_id) 8709 return -EOPNOTSUPP; 8710 return ops->ndo_get_phys_port_id(dev, ppid); 8711 } 8712 EXPORT_SYMBOL(dev_get_phys_port_id); 8713 8714 /** 8715 * dev_get_phys_port_name - Get device physical port name 8716 * @dev: device 8717 * @name: port name 8718 * @len: limit of bytes to copy to name 8719 * 8720 * Get device physical port name 8721 */ 8722 int dev_get_phys_port_name(struct net_device *dev, 8723 char *name, size_t len) 8724 { 8725 const struct net_device_ops *ops = dev->netdev_ops; 8726 int err; 8727 8728 if (ops->ndo_get_phys_port_name) { 8729 err = ops->ndo_get_phys_port_name(dev, name, len); 8730 if (err != -EOPNOTSUPP) 8731 return err; 8732 } 8733 return devlink_compat_phys_port_name_get(dev, name, len); 8734 } 8735 EXPORT_SYMBOL(dev_get_phys_port_name); 8736 8737 /** 8738 * dev_get_port_parent_id - Get the device's port parent identifier 8739 * @dev: network device 8740 * @ppid: pointer to a storage for the port's parent identifier 8741 * @recurse: allow/disallow recursion to lower devices 8742 * 8743 * Get the devices's port parent identifier 8744 */ 8745 int dev_get_port_parent_id(struct net_device *dev, 8746 struct netdev_phys_item_id *ppid, 8747 bool recurse) 8748 { 8749 const struct net_device_ops *ops = dev->netdev_ops; 8750 struct netdev_phys_item_id first = { }; 8751 struct net_device *lower_dev; 8752 struct list_head *iter; 8753 int err; 8754 8755 if (ops->ndo_get_port_parent_id) { 8756 err = ops->ndo_get_port_parent_id(dev, ppid); 8757 if (err != -EOPNOTSUPP) 8758 return err; 8759 } 8760 8761 err = devlink_compat_switch_id_get(dev, ppid); 8762 if (!err || err != -EOPNOTSUPP) 8763 return err; 8764 8765 if (!recurse) 8766 return -EOPNOTSUPP; 8767 8768 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8769 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8770 if (err) 8771 break; 8772 if (!first.id_len) 8773 first = *ppid; 8774 else if (memcmp(&first, ppid, sizeof(*ppid))) 8775 return -EOPNOTSUPP; 8776 } 8777 8778 return err; 8779 } 8780 EXPORT_SYMBOL(dev_get_port_parent_id); 8781 8782 /** 8783 * netdev_port_same_parent_id - Indicate if two network devices have 8784 * the same port parent identifier 8785 * @a: first network device 8786 * @b: second network device 8787 */ 8788 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8789 { 8790 struct netdev_phys_item_id a_id = { }; 8791 struct netdev_phys_item_id b_id = { }; 8792 8793 if (dev_get_port_parent_id(a, &a_id, true) || 8794 dev_get_port_parent_id(b, &b_id, true)) 8795 return false; 8796 8797 return netdev_phys_item_id_same(&a_id, &b_id); 8798 } 8799 EXPORT_SYMBOL(netdev_port_same_parent_id); 8800 8801 /** 8802 * dev_change_proto_down - update protocol port state information 8803 * @dev: device 8804 * @proto_down: new value 8805 * 8806 * This info can be used by switch drivers to set the phys state of the 8807 * port. 8808 */ 8809 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8810 { 8811 const struct net_device_ops *ops = dev->netdev_ops; 8812 8813 if (!ops->ndo_change_proto_down) 8814 return -EOPNOTSUPP; 8815 if (!netif_device_present(dev)) 8816 return -ENODEV; 8817 return ops->ndo_change_proto_down(dev, proto_down); 8818 } 8819 EXPORT_SYMBOL(dev_change_proto_down); 8820 8821 /** 8822 * dev_change_proto_down_generic - generic implementation for 8823 * ndo_change_proto_down that sets carrier according to 8824 * proto_down. 8825 * 8826 * @dev: device 8827 * @proto_down: new value 8828 */ 8829 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8830 { 8831 if (proto_down) 8832 netif_carrier_off(dev); 8833 else 8834 netif_carrier_on(dev); 8835 dev->proto_down = proto_down; 8836 return 0; 8837 } 8838 EXPORT_SYMBOL(dev_change_proto_down_generic); 8839 8840 /** 8841 * dev_change_proto_down_reason - proto down reason 8842 * 8843 * @dev: device 8844 * @mask: proto down mask 8845 * @value: proto down value 8846 */ 8847 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 8848 u32 value) 8849 { 8850 int b; 8851 8852 if (!mask) { 8853 dev->proto_down_reason = value; 8854 } else { 8855 for_each_set_bit(b, &mask, 32) { 8856 if (value & (1 << b)) 8857 dev->proto_down_reason |= BIT(b); 8858 else 8859 dev->proto_down_reason &= ~BIT(b); 8860 } 8861 } 8862 } 8863 EXPORT_SYMBOL(dev_change_proto_down_reason); 8864 8865 struct bpf_xdp_link { 8866 struct bpf_link link; 8867 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 8868 int flags; 8869 }; 8870 8871 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 8872 { 8873 if (flags & XDP_FLAGS_HW_MODE) 8874 return XDP_MODE_HW; 8875 if (flags & XDP_FLAGS_DRV_MODE) 8876 return XDP_MODE_DRV; 8877 if (flags & XDP_FLAGS_SKB_MODE) 8878 return XDP_MODE_SKB; 8879 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 8880 } 8881 8882 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 8883 { 8884 switch (mode) { 8885 case XDP_MODE_SKB: 8886 return generic_xdp_install; 8887 case XDP_MODE_DRV: 8888 case XDP_MODE_HW: 8889 return dev->netdev_ops->ndo_bpf; 8890 default: 8891 return NULL; 8892 }; 8893 } 8894 8895 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 8896 enum bpf_xdp_mode mode) 8897 { 8898 return dev->xdp_state[mode].link; 8899 } 8900 8901 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 8902 enum bpf_xdp_mode mode) 8903 { 8904 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 8905 8906 if (link) 8907 return link->link.prog; 8908 return dev->xdp_state[mode].prog; 8909 } 8910 8911 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 8912 { 8913 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 8914 8915 return prog ? prog->aux->id : 0; 8916 } 8917 8918 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 8919 struct bpf_xdp_link *link) 8920 { 8921 dev->xdp_state[mode].link = link; 8922 dev->xdp_state[mode].prog = NULL; 8923 } 8924 8925 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 8926 struct bpf_prog *prog) 8927 { 8928 dev->xdp_state[mode].link = NULL; 8929 dev->xdp_state[mode].prog = prog; 8930 } 8931 8932 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 8933 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 8934 u32 flags, struct bpf_prog *prog) 8935 { 8936 struct netdev_bpf xdp; 8937 int err; 8938 8939 memset(&xdp, 0, sizeof(xdp)); 8940 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 8941 xdp.extack = extack; 8942 xdp.flags = flags; 8943 xdp.prog = prog; 8944 8945 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 8946 * "moved" into driver), so they don't increment it on their own, but 8947 * they do decrement refcnt when program is detached or replaced. 8948 * Given net_device also owns link/prog, we need to bump refcnt here 8949 * to prevent drivers from underflowing it. 8950 */ 8951 if (prog) 8952 bpf_prog_inc(prog); 8953 err = bpf_op(dev, &xdp); 8954 if (err) { 8955 if (prog) 8956 bpf_prog_put(prog); 8957 return err; 8958 } 8959 8960 if (mode != XDP_MODE_HW) 8961 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 8962 8963 return 0; 8964 } 8965 8966 static void dev_xdp_uninstall(struct net_device *dev) 8967 { 8968 struct bpf_xdp_link *link; 8969 struct bpf_prog *prog; 8970 enum bpf_xdp_mode mode; 8971 bpf_op_t bpf_op; 8972 8973 ASSERT_RTNL(); 8974 8975 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 8976 prog = dev_xdp_prog(dev, mode); 8977 if (!prog) 8978 continue; 8979 8980 bpf_op = dev_xdp_bpf_op(dev, mode); 8981 if (!bpf_op) 8982 continue; 8983 8984 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 8985 8986 /* auto-detach link from net device */ 8987 link = dev_xdp_link(dev, mode); 8988 if (link) 8989 link->dev = NULL; 8990 else 8991 bpf_prog_put(prog); 8992 8993 dev_xdp_set_link(dev, mode, NULL); 8994 } 8995 } 8996 8997 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 8998 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 8999 struct bpf_prog *old_prog, u32 flags) 9000 { 9001 struct bpf_prog *cur_prog; 9002 enum bpf_xdp_mode mode; 9003 bpf_op_t bpf_op; 9004 int err; 9005 9006 ASSERT_RTNL(); 9007 9008 /* either link or prog attachment, never both */ 9009 if (link && (new_prog || old_prog)) 9010 return -EINVAL; 9011 /* link supports only XDP mode flags */ 9012 if (link && (flags & ~XDP_FLAGS_MODES)) { 9013 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9014 return -EINVAL; 9015 } 9016 /* just one XDP mode bit should be set, zero defaults to SKB mode */ 9017 if (hweight32(flags & XDP_FLAGS_MODES) > 1) { 9018 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9019 return -EINVAL; 9020 } 9021 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9022 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9023 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9024 return -EINVAL; 9025 } 9026 9027 mode = dev_xdp_mode(dev, flags); 9028 /* can't replace attached link */ 9029 if (dev_xdp_link(dev, mode)) { 9030 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9031 return -EBUSY; 9032 } 9033 9034 cur_prog = dev_xdp_prog(dev, mode); 9035 /* can't replace attached prog with link */ 9036 if (link && cur_prog) { 9037 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9038 return -EBUSY; 9039 } 9040 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9041 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9042 return -EEXIST; 9043 } 9044 9045 /* put effective new program into new_prog */ 9046 if (link) 9047 new_prog = link->link.prog; 9048 9049 if (new_prog) { 9050 bool offload = mode == XDP_MODE_HW; 9051 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9052 ? XDP_MODE_DRV : XDP_MODE_SKB; 9053 9054 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9055 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9056 return -EBUSY; 9057 } 9058 if (!offload && dev_xdp_prog(dev, other_mode)) { 9059 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9060 return -EEXIST; 9061 } 9062 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) { 9063 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported"); 9064 return -EINVAL; 9065 } 9066 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9067 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9068 return -EINVAL; 9069 } 9070 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9071 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9072 return -EINVAL; 9073 } 9074 } 9075 9076 /* don't call drivers if the effective program didn't change */ 9077 if (new_prog != cur_prog) { 9078 bpf_op = dev_xdp_bpf_op(dev, mode); 9079 if (!bpf_op) { 9080 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9081 return -EOPNOTSUPP; 9082 } 9083 9084 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9085 if (err) 9086 return err; 9087 } 9088 9089 if (link) 9090 dev_xdp_set_link(dev, mode, link); 9091 else 9092 dev_xdp_set_prog(dev, mode, new_prog); 9093 if (cur_prog) 9094 bpf_prog_put(cur_prog); 9095 9096 return 0; 9097 } 9098 9099 static int dev_xdp_attach_link(struct net_device *dev, 9100 struct netlink_ext_ack *extack, 9101 struct bpf_xdp_link *link) 9102 { 9103 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9104 } 9105 9106 static int dev_xdp_detach_link(struct net_device *dev, 9107 struct netlink_ext_ack *extack, 9108 struct bpf_xdp_link *link) 9109 { 9110 enum bpf_xdp_mode mode; 9111 bpf_op_t bpf_op; 9112 9113 ASSERT_RTNL(); 9114 9115 mode = dev_xdp_mode(dev, link->flags); 9116 if (dev_xdp_link(dev, mode) != link) 9117 return -EINVAL; 9118 9119 bpf_op = dev_xdp_bpf_op(dev, mode); 9120 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9121 dev_xdp_set_link(dev, mode, NULL); 9122 return 0; 9123 } 9124 9125 static void bpf_xdp_link_release(struct bpf_link *link) 9126 { 9127 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9128 9129 rtnl_lock(); 9130 9131 /* if racing with net_device's tear down, xdp_link->dev might be 9132 * already NULL, in which case link was already auto-detached 9133 */ 9134 if (xdp_link->dev) { 9135 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9136 xdp_link->dev = NULL; 9137 } 9138 9139 rtnl_unlock(); 9140 } 9141 9142 static int bpf_xdp_link_detach(struct bpf_link *link) 9143 { 9144 bpf_xdp_link_release(link); 9145 return 0; 9146 } 9147 9148 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9149 { 9150 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9151 9152 kfree(xdp_link); 9153 } 9154 9155 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9156 struct seq_file *seq) 9157 { 9158 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9159 u32 ifindex = 0; 9160 9161 rtnl_lock(); 9162 if (xdp_link->dev) 9163 ifindex = xdp_link->dev->ifindex; 9164 rtnl_unlock(); 9165 9166 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9167 } 9168 9169 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9170 struct bpf_link_info *info) 9171 { 9172 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9173 u32 ifindex = 0; 9174 9175 rtnl_lock(); 9176 if (xdp_link->dev) 9177 ifindex = xdp_link->dev->ifindex; 9178 rtnl_unlock(); 9179 9180 info->xdp.ifindex = ifindex; 9181 return 0; 9182 } 9183 9184 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9185 struct bpf_prog *old_prog) 9186 { 9187 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9188 enum bpf_xdp_mode mode; 9189 bpf_op_t bpf_op; 9190 int err = 0; 9191 9192 rtnl_lock(); 9193 9194 /* link might have been auto-released already, so fail */ 9195 if (!xdp_link->dev) { 9196 err = -ENOLINK; 9197 goto out_unlock; 9198 } 9199 9200 if (old_prog && link->prog != old_prog) { 9201 err = -EPERM; 9202 goto out_unlock; 9203 } 9204 old_prog = link->prog; 9205 if (old_prog == new_prog) { 9206 /* no-op, don't disturb drivers */ 9207 bpf_prog_put(new_prog); 9208 goto out_unlock; 9209 } 9210 9211 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9212 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9213 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9214 xdp_link->flags, new_prog); 9215 if (err) 9216 goto out_unlock; 9217 9218 old_prog = xchg(&link->prog, new_prog); 9219 bpf_prog_put(old_prog); 9220 9221 out_unlock: 9222 rtnl_unlock(); 9223 return err; 9224 } 9225 9226 static const struct bpf_link_ops bpf_xdp_link_lops = { 9227 .release = bpf_xdp_link_release, 9228 .dealloc = bpf_xdp_link_dealloc, 9229 .detach = bpf_xdp_link_detach, 9230 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9231 .fill_link_info = bpf_xdp_link_fill_link_info, 9232 .update_prog = bpf_xdp_link_update, 9233 }; 9234 9235 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9236 { 9237 struct net *net = current->nsproxy->net_ns; 9238 struct bpf_link_primer link_primer; 9239 struct bpf_xdp_link *link; 9240 struct net_device *dev; 9241 int err, fd; 9242 9243 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9244 if (!dev) 9245 return -EINVAL; 9246 9247 link = kzalloc(sizeof(*link), GFP_USER); 9248 if (!link) { 9249 err = -ENOMEM; 9250 goto out_put_dev; 9251 } 9252 9253 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9254 link->dev = dev; 9255 link->flags = attr->link_create.flags; 9256 9257 err = bpf_link_prime(&link->link, &link_primer); 9258 if (err) { 9259 kfree(link); 9260 goto out_put_dev; 9261 } 9262 9263 rtnl_lock(); 9264 err = dev_xdp_attach_link(dev, NULL, link); 9265 rtnl_unlock(); 9266 9267 if (err) { 9268 bpf_link_cleanup(&link_primer); 9269 goto out_put_dev; 9270 } 9271 9272 fd = bpf_link_settle(&link_primer); 9273 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9274 dev_put(dev); 9275 return fd; 9276 9277 out_put_dev: 9278 dev_put(dev); 9279 return err; 9280 } 9281 9282 /** 9283 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9284 * @dev: device 9285 * @extack: netlink extended ack 9286 * @fd: new program fd or negative value to clear 9287 * @expected_fd: old program fd that userspace expects to replace or clear 9288 * @flags: xdp-related flags 9289 * 9290 * Set or clear a bpf program for a device 9291 */ 9292 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9293 int fd, int expected_fd, u32 flags) 9294 { 9295 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9296 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9297 int err; 9298 9299 ASSERT_RTNL(); 9300 9301 if (fd >= 0) { 9302 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9303 mode != XDP_MODE_SKB); 9304 if (IS_ERR(new_prog)) 9305 return PTR_ERR(new_prog); 9306 } 9307 9308 if (expected_fd >= 0) { 9309 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9310 mode != XDP_MODE_SKB); 9311 if (IS_ERR(old_prog)) { 9312 err = PTR_ERR(old_prog); 9313 old_prog = NULL; 9314 goto err_out; 9315 } 9316 } 9317 9318 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9319 9320 err_out: 9321 if (err && new_prog) 9322 bpf_prog_put(new_prog); 9323 if (old_prog) 9324 bpf_prog_put(old_prog); 9325 return err; 9326 } 9327 9328 /** 9329 * dev_new_index - allocate an ifindex 9330 * @net: the applicable net namespace 9331 * 9332 * Returns a suitable unique value for a new device interface 9333 * number. The caller must hold the rtnl semaphore or the 9334 * dev_base_lock to be sure it remains unique. 9335 */ 9336 static int dev_new_index(struct net *net) 9337 { 9338 int ifindex = net->ifindex; 9339 9340 for (;;) { 9341 if (++ifindex <= 0) 9342 ifindex = 1; 9343 if (!__dev_get_by_index(net, ifindex)) 9344 return net->ifindex = ifindex; 9345 } 9346 } 9347 9348 /* Delayed registration/unregisteration */ 9349 static LIST_HEAD(net_todo_list); 9350 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9351 9352 static void net_set_todo(struct net_device *dev) 9353 { 9354 list_add_tail(&dev->todo_list, &net_todo_list); 9355 dev_net(dev)->dev_unreg_count++; 9356 } 9357 9358 static void rollback_registered_many(struct list_head *head) 9359 { 9360 struct net_device *dev, *tmp; 9361 LIST_HEAD(close_head); 9362 9363 BUG_ON(dev_boot_phase); 9364 ASSERT_RTNL(); 9365 9366 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 9367 /* Some devices call without registering 9368 * for initialization unwind. Remove those 9369 * devices and proceed with the remaining. 9370 */ 9371 if (dev->reg_state == NETREG_UNINITIALIZED) { 9372 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 9373 dev->name, dev); 9374 9375 WARN_ON(1); 9376 list_del(&dev->unreg_list); 9377 continue; 9378 } 9379 dev->dismantle = true; 9380 BUG_ON(dev->reg_state != NETREG_REGISTERED); 9381 } 9382 9383 /* If device is running, close it first. */ 9384 list_for_each_entry(dev, head, unreg_list) 9385 list_add_tail(&dev->close_list, &close_head); 9386 dev_close_many(&close_head, true); 9387 9388 list_for_each_entry(dev, head, unreg_list) { 9389 /* And unlink it from device chain. */ 9390 unlist_netdevice(dev); 9391 9392 dev->reg_state = NETREG_UNREGISTERING; 9393 } 9394 flush_all_backlogs(); 9395 9396 synchronize_net(); 9397 9398 list_for_each_entry(dev, head, unreg_list) { 9399 struct sk_buff *skb = NULL; 9400 9401 /* Shutdown queueing discipline. */ 9402 dev_shutdown(dev); 9403 9404 dev_xdp_uninstall(dev); 9405 9406 /* Notify protocols, that we are about to destroy 9407 * this device. They should clean all the things. 9408 */ 9409 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9410 9411 if (!dev->rtnl_link_ops || 9412 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 9413 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 9414 GFP_KERNEL, NULL, 0); 9415 9416 /* 9417 * Flush the unicast and multicast chains 9418 */ 9419 dev_uc_flush(dev); 9420 dev_mc_flush(dev); 9421 9422 netdev_name_node_alt_flush(dev); 9423 netdev_name_node_free(dev->name_node); 9424 9425 if (dev->netdev_ops->ndo_uninit) 9426 dev->netdev_ops->ndo_uninit(dev); 9427 9428 if (skb) 9429 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 9430 9431 /* Notifier chain MUST detach us all upper devices. */ 9432 WARN_ON(netdev_has_any_upper_dev(dev)); 9433 WARN_ON(netdev_has_any_lower_dev(dev)); 9434 9435 /* Remove entries from kobject tree */ 9436 netdev_unregister_kobject(dev); 9437 #ifdef CONFIG_XPS 9438 /* Remove XPS queueing entries */ 9439 netif_reset_xps_queues_gt(dev, 0); 9440 #endif 9441 } 9442 9443 synchronize_net(); 9444 9445 list_for_each_entry(dev, head, unreg_list) 9446 dev_put(dev); 9447 } 9448 9449 static void rollback_registered(struct net_device *dev) 9450 { 9451 LIST_HEAD(single); 9452 9453 list_add(&dev->unreg_list, &single); 9454 rollback_registered_many(&single); 9455 list_del(&single); 9456 } 9457 9458 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9459 struct net_device *upper, netdev_features_t features) 9460 { 9461 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9462 netdev_features_t feature; 9463 int feature_bit; 9464 9465 for_each_netdev_feature(upper_disables, feature_bit) { 9466 feature = __NETIF_F_BIT(feature_bit); 9467 if (!(upper->wanted_features & feature) 9468 && (features & feature)) { 9469 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9470 &feature, upper->name); 9471 features &= ~feature; 9472 } 9473 } 9474 9475 return features; 9476 } 9477 9478 static void netdev_sync_lower_features(struct net_device *upper, 9479 struct net_device *lower, netdev_features_t features) 9480 { 9481 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9482 netdev_features_t feature; 9483 int feature_bit; 9484 9485 for_each_netdev_feature(upper_disables, feature_bit) { 9486 feature = __NETIF_F_BIT(feature_bit); 9487 if (!(features & feature) && (lower->features & feature)) { 9488 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9489 &feature, lower->name); 9490 lower->wanted_features &= ~feature; 9491 __netdev_update_features(lower); 9492 9493 if (unlikely(lower->features & feature)) 9494 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9495 &feature, lower->name); 9496 else 9497 netdev_features_change(lower); 9498 } 9499 } 9500 } 9501 9502 static netdev_features_t netdev_fix_features(struct net_device *dev, 9503 netdev_features_t features) 9504 { 9505 /* Fix illegal checksum combinations */ 9506 if ((features & NETIF_F_HW_CSUM) && 9507 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9508 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9509 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9510 } 9511 9512 /* TSO requires that SG is present as well. */ 9513 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9514 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9515 features &= ~NETIF_F_ALL_TSO; 9516 } 9517 9518 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9519 !(features & NETIF_F_IP_CSUM)) { 9520 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9521 features &= ~NETIF_F_TSO; 9522 features &= ~NETIF_F_TSO_ECN; 9523 } 9524 9525 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9526 !(features & NETIF_F_IPV6_CSUM)) { 9527 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9528 features &= ~NETIF_F_TSO6; 9529 } 9530 9531 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9532 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9533 features &= ~NETIF_F_TSO_MANGLEID; 9534 9535 /* TSO ECN requires that TSO is present as well. */ 9536 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9537 features &= ~NETIF_F_TSO_ECN; 9538 9539 /* Software GSO depends on SG. */ 9540 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9541 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9542 features &= ~NETIF_F_GSO; 9543 } 9544 9545 /* GSO partial features require GSO partial be set */ 9546 if ((features & dev->gso_partial_features) && 9547 !(features & NETIF_F_GSO_PARTIAL)) { 9548 netdev_dbg(dev, 9549 "Dropping partially supported GSO features since no GSO partial.\n"); 9550 features &= ~dev->gso_partial_features; 9551 } 9552 9553 if (!(features & NETIF_F_RXCSUM)) { 9554 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9555 * successfully merged by hardware must also have the 9556 * checksum verified by hardware. If the user does not 9557 * want to enable RXCSUM, logically, we should disable GRO_HW. 9558 */ 9559 if (features & NETIF_F_GRO_HW) { 9560 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9561 features &= ~NETIF_F_GRO_HW; 9562 } 9563 } 9564 9565 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9566 if (features & NETIF_F_RXFCS) { 9567 if (features & NETIF_F_LRO) { 9568 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9569 features &= ~NETIF_F_LRO; 9570 } 9571 9572 if (features & NETIF_F_GRO_HW) { 9573 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9574 features &= ~NETIF_F_GRO_HW; 9575 } 9576 } 9577 9578 return features; 9579 } 9580 9581 int __netdev_update_features(struct net_device *dev) 9582 { 9583 struct net_device *upper, *lower; 9584 netdev_features_t features; 9585 struct list_head *iter; 9586 int err = -1; 9587 9588 ASSERT_RTNL(); 9589 9590 features = netdev_get_wanted_features(dev); 9591 9592 if (dev->netdev_ops->ndo_fix_features) 9593 features = dev->netdev_ops->ndo_fix_features(dev, features); 9594 9595 /* driver might be less strict about feature dependencies */ 9596 features = netdev_fix_features(dev, features); 9597 9598 /* some features can't be enabled if they're off on an upper device */ 9599 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9600 features = netdev_sync_upper_features(dev, upper, features); 9601 9602 if (dev->features == features) 9603 goto sync_lower; 9604 9605 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9606 &dev->features, &features); 9607 9608 if (dev->netdev_ops->ndo_set_features) 9609 err = dev->netdev_ops->ndo_set_features(dev, features); 9610 else 9611 err = 0; 9612 9613 if (unlikely(err < 0)) { 9614 netdev_err(dev, 9615 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9616 err, &features, &dev->features); 9617 /* return non-0 since some features might have changed and 9618 * it's better to fire a spurious notification than miss it 9619 */ 9620 return -1; 9621 } 9622 9623 sync_lower: 9624 /* some features must be disabled on lower devices when disabled 9625 * on an upper device (think: bonding master or bridge) 9626 */ 9627 netdev_for_each_lower_dev(dev, lower, iter) 9628 netdev_sync_lower_features(dev, lower, features); 9629 9630 if (!err) { 9631 netdev_features_t diff = features ^ dev->features; 9632 9633 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9634 /* udp_tunnel_{get,drop}_rx_info both need 9635 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9636 * device, or they won't do anything. 9637 * Thus we need to update dev->features 9638 * *before* calling udp_tunnel_get_rx_info, 9639 * but *after* calling udp_tunnel_drop_rx_info. 9640 */ 9641 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9642 dev->features = features; 9643 udp_tunnel_get_rx_info(dev); 9644 } else { 9645 udp_tunnel_drop_rx_info(dev); 9646 } 9647 } 9648 9649 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9650 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9651 dev->features = features; 9652 err |= vlan_get_rx_ctag_filter_info(dev); 9653 } else { 9654 vlan_drop_rx_ctag_filter_info(dev); 9655 } 9656 } 9657 9658 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9659 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9660 dev->features = features; 9661 err |= vlan_get_rx_stag_filter_info(dev); 9662 } else { 9663 vlan_drop_rx_stag_filter_info(dev); 9664 } 9665 } 9666 9667 dev->features = features; 9668 } 9669 9670 return err < 0 ? 0 : 1; 9671 } 9672 9673 /** 9674 * netdev_update_features - recalculate device features 9675 * @dev: the device to check 9676 * 9677 * Recalculate dev->features set and send notifications if it 9678 * has changed. Should be called after driver or hardware dependent 9679 * conditions might have changed that influence the features. 9680 */ 9681 void netdev_update_features(struct net_device *dev) 9682 { 9683 if (__netdev_update_features(dev)) 9684 netdev_features_change(dev); 9685 } 9686 EXPORT_SYMBOL(netdev_update_features); 9687 9688 /** 9689 * netdev_change_features - recalculate device features 9690 * @dev: the device to check 9691 * 9692 * Recalculate dev->features set and send notifications even 9693 * if they have not changed. Should be called instead of 9694 * netdev_update_features() if also dev->vlan_features might 9695 * have changed to allow the changes to be propagated to stacked 9696 * VLAN devices. 9697 */ 9698 void netdev_change_features(struct net_device *dev) 9699 { 9700 __netdev_update_features(dev); 9701 netdev_features_change(dev); 9702 } 9703 EXPORT_SYMBOL(netdev_change_features); 9704 9705 /** 9706 * netif_stacked_transfer_operstate - transfer operstate 9707 * @rootdev: the root or lower level device to transfer state from 9708 * @dev: the device to transfer operstate to 9709 * 9710 * Transfer operational state from root to device. This is normally 9711 * called when a stacking relationship exists between the root 9712 * device and the device(a leaf device). 9713 */ 9714 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9715 struct net_device *dev) 9716 { 9717 if (rootdev->operstate == IF_OPER_DORMANT) 9718 netif_dormant_on(dev); 9719 else 9720 netif_dormant_off(dev); 9721 9722 if (rootdev->operstate == IF_OPER_TESTING) 9723 netif_testing_on(dev); 9724 else 9725 netif_testing_off(dev); 9726 9727 if (netif_carrier_ok(rootdev)) 9728 netif_carrier_on(dev); 9729 else 9730 netif_carrier_off(dev); 9731 } 9732 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9733 9734 static int netif_alloc_rx_queues(struct net_device *dev) 9735 { 9736 unsigned int i, count = dev->num_rx_queues; 9737 struct netdev_rx_queue *rx; 9738 size_t sz = count * sizeof(*rx); 9739 int err = 0; 9740 9741 BUG_ON(count < 1); 9742 9743 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9744 if (!rx) 9745 return -ENOMEM; 9746 9747 dev->_rx = rx; 9748 9749 for (i = 0; i < count; i++) { 9750 rx[i].dev = dev; 9751 9752 /* XDP RX-queue setup */ 9753 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 9754 if (err < 0) 9755 goto err_rxq_info; 9756 } 9757 return 0; 9758 9759 err_rxq_info: 9760 /* Rollback successful reg's and free other resources */ 9761 while (i--) 9762 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9763 kvfree(dev->_rx); 9764 dev->_rx = NULL; 9765 return err; 9766 } 9767 9768 static void netif_free_rx_queues(struct net_device *dev) 9769 { 9770 unsigned int i, count = dev->num_rx_queues; 9771 9772 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9773 if (!dev->_rx) 9774 return; 9775 9776 for (i = 0; i < count; i++) 9777 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9778 9779 kvfree(dev->_rx); 9780 } 9781 9782 static void netdev_init_one_queue(struct net_device *dev, 9783 struct netdev_queue *queue, void *_unused) 9784 { 9785 /* Initialize queue lock */ 9786 spin_lock_init(&queue->_xmit_lock); 9787 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9788 queue->xmit_lock_owner = -1; 9789 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9790 queue->dev = dev; 9791 #ifdef CONFIG_BQL 9792 dql_init(&queue->dql, HZ); 9793 #endif 9794 } 9795 9796 static void netif_free_tx_queues(struct net_device *dev) 9797 { 9798 kvfree(dev->_tx); 9799 } 9800 9801 static int netif_alloc_netdev_queues(struct net_device *dev) 9802 { 9803 unsigned int count = dev->num_tx_queues; 9804 struct netdev_queue *tx; 9805 size_t sz = count * sizeof(*tx); 9806 9807 if (count < 1 || count > 0xffff) 9808 return -EINVAL; 9809 9810 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9811 if (!tx) 9812 return -ENOMEM; 9813 9814 dev->_tx = tx; 9815 9816 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9817 spin_lock_init(&dev->tx_global_lock); 9818 9819 return 0; 9820 } 9821 9822 void netif_tx_stop_all_queues(struct net_device *dev) 9823 { 9824 unsigned int i; 9825 9826 for (i = 0; i < dev->num_tx_queues; i++) { 9827 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9828 9829 netif_tx_stop_queue(txq); 9830 } 9831 } 9832 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9833 9834 /** 9835 * register_netdevice - register a network device 9836 * @dev: device to register 9837 * 9838 * Take a completed network device structure and add it to the kernel 9839 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9840 * chain. 0 is returned on success. A negative errno code is returned 9841 * on a failure to set up the device, or if the name is a duplicate. 9842 * 9843 * Callers must hold the rtnl semaphore. You may want 9844 * register_netdev() instead of this. 9845 * 9846 * BUGS: 9847 * The locking appears insufficient to guarantee two parallel registers 9848 * will not get the same name. 9849 */ 9850 9851 int register_netdevice(struct net_device *dev) 9852 { 9853 int ret; 9854 struct net *net = dev_net(dev); 9855 9856 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9857 NETDEV_FEATURE_COUNT); 9858 BUG_ON(dev_boot_phase); 9859 ASSERT_RTNL(); 9860 9861 might_sleep(); 9862 9863 /* When net_device's are persistent, this will be fatal. */ 9864 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9865 BUG_ON(!net); 9866 9867 ret = ethtool_check_ops(dev->ethtool_ops); 9868 if (ret) 9869 return ret; 9870 9871 spin_lock_init(&dev->addr_list_lock); 9872 netdev_set_addr_lockdep_class(dev); 9873 9874 ret = dev_get_valid_name(net, dev, dev->name); 9875 if (ret < 0) 9876 goto out; 9877 9878 ret = -ENOMEM; 9879 dev->name_node = netdev_name_node_head_alloc(dev); 9880 if (!dev->name_node) 9881 goto out; 9882 9883 /* Init, if this function is available */ 9884 if (dev->netdev_ops->ndo_init) { 9885 ret = dev->netdev_ops->ndo_init(dev); 9886 if (ret) { 9887 if (ret > 0) 9888 ret = -EIO; 9889 goto err_free_name; 9890 } 9891 } 9892 9893 if (((dev->hw_features | dev->features) & 9894 NETIF_F_HW_VLAN_CTAG_FILTER) && 9895 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9896 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9897 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9898 ret = -EINVAL; 9899 goto err_uninit; 9900 } 9901 9902 ret = -EBUSY; 9903 if (!dev->ifindex) 9904 dev->ifindex = dev_new_index(net); 9905 else if (__dev_get_by_index(net, dev->ifindex)) 9906 goto err_uninit; 9907 9908 /* Transfer changeable features to wanted_features and enable 9909 * software offloads (GSO and GRO). 9910 */ 9911 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 9912 dev->features |= NETIF_F_SOFT_FEATURES; 9913 9914 if (dev->netdev_ops->ndo_udp_tunnel_add) { 9915 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9916 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9917 } 9918 9919 dev->wanted_features = dev->features & dev->hw_features; 9920 9921 if (!(dev->flags & IFF_LOOPBACK)) 9922 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9923 9924 /* If IPv4 TCP segmentation offload is supported we should also 9925 * allow the device to enable segmenting the frame with the option 9926 * of ignoring a static IP ID value. This doesn't enable the 9927 * feature itself but allows the user to enable it later. 9928 */ 9929 if (dev->hw_features & NETIF_F_TSO) 9930 dev->hw_features |= NETIF_F_TSO_MANGLEID; 9931 if (dev->vlan_features & NETIF_F_TSO) 9932 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 9933 if (dev->mpls_features & NETIF_F_TSO) 9934 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 9935 if (dev->hw_enc_features & NETIF_F_TSO) 9936 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 9937 9938 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 9939 */ 9940 dev->vlan_features |= NETIF_F_HIGHDMA; 9941 9942 /* Make NETIF_F_SG inheritable to tunnel devices. 9943 */ 9944 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 9945 9946 /* Make NETIF_F_SG inheritable to MPLS. 9947 */ 9948 dev->mpls_features |= NETIF_F_SG; 9949 9950 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 9951 ret = notifier_to_errno(ret); 9952 if (ret) 9953 goto err_uninit; 9954 9955 ret = netdev_register_kobject(dev); 9956 if (ret) { 9957 dev->reg_state = NETREG_UNREGISTERED; 9958 goto err_uninit; 9959 } 9960 dev->reg_state = NETREG_REGISTERED; 9961 9962 __netdev_update_features(dev); 9963 9964 /* 9965 * Default initial state at registry is that the 9966 * device is present. 9967 */ 9968 9969 set_bit(__LINK_STATE_PRESENT, &dev->state); 9970 9971 linkwatch_init_dev(dev); 9972 9973 dev_init_scheduler(dev); 9974 dev_hold(dev); 9975 list_netdevice(dev); 9976 add_device_randomness(dev->dev_addr, dev->addr_len); 9977 9978 /* If the device has permanent device address, driver should 9979 * set dev_addr and also addr_assign_type should be set to 9980 * NET_ADDR_PERM (default value). 9981 */ 9982 if (dev->addr_assign_type == NET_ADDR_PERM) 9983 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 9984 9985 /* Notify protocols, that a new device appeared. */ 9986 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 9987 ret = notifier_to_errno(ret); 9988 if (ret) { 9989 rollback_registered(dev); 9990 rcu_barrier(); 9991 9992 dev->reg_state = NETREG_UNREGISTERED; 9993 /* We should put the kobject that hold in 9994 * netdev_unregister_kobject(), otherwise 9995 * the net device cannot be freed when 9996 * driver calls free_netdev(), because the 9997 * kobject is being hold. 9998 */ 9999 kobject_put(&dev->dev.kobj); 10000 } 10001 /* 10002 * Prevent userspace races by waiting until the network 10003 * device is fully setup before sending notifications. 10004 */ 10005 if (!dev->rtnl_link_ops || 10006 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10007 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10008 10009 out: 10010 return ret; 10011 10012 err_uninit: 10013 if (dev->netdev_ops->ndo_uninit) 10014 dev->netdev_ops->ndo_uninit(dev); 10015 if (dev->priv_destructor) 10016 dev->priv_destructor(dev); 10017 err_free_name: 10018 netdev_name_node_free(dev->name_node); 10019 goto out; 10020 } 10021 EXPORT_SYMBOL(register_netdevice); 10022 10023 /** 10024 * init_dummy_netdev - init a dummy network device for NAPI 10025 * @dev: device to init 10026 * 10027 * This takes a network device structure and initialize the minimum 10028 * amount of fields so it can be used to schedule NAPI polls without 10029 * registering a full blown interface. This is to be used by drivers 10030 * that need to tie several hardware interfaces to a single NAPI 10031 * poll scheduler due to HW limitations. 10032 */ 10033 int init_dummy_netdev(struct net_device *dev) 10034 { 10035 /* Clear everything. Note we don't initialize spinlocks 10036 * are they aren't supposed to be taken by any of the 10037 * NAPI code and this dummy netdev is supposed to be 10038 * only ever used for NAPI polls 10039 */ 10040 memset(dev, 0, sizeof(struct net_device)); 10041 10042 /* make sure we BUG if trying to hit standard 10043 * register/unregister code path 10044 */ 10045 dev->reg_state = NETREG_DUMMY; 10046 10047 /* NAPI wants this */ 10048 INIT_LIST_HEAD(&dev->napi_list); 10049 10050 /* a dummy interface is started by default */ 10051 set_bit(__LINK_STATE_PRESENT, &dev->state); 10052 set_bit(__LINK_STATE_START, &dev->state); 10053 10054 /* napi_busy_loop stats accounting wants this */ 10055 dev_net_set(dev, &init_net); 10056 10057 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10058 * because users of this 'device' dont need to change 10059 * its refcount. 10060 */ 10061 10062 return 0; 10063 } 10064 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10065 10066 10067 /** 10068 * register_netdev - register a network device 10069 * @dev: device to register 10070 * 10071 * Take a completed network device structure and add it to the kernel 10072 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10073 * chain. 0 is returned on success. A negative errno code is returned 10074 * on a failure to set up the device, or if the name is a duplicate. 10075 * 10076 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10077 * and expands the device name if you passed a format string to 10078 * alloc_netdev. 10079 */ 10080 int register_netdev(struct net_device *dev) 10081 { 10082 int err; 10083 10084 if (rtnl_lock_killable()) 10085 return -EINTR; 10086 err = register_netdevice(dev); 10087 rtnl_unlock(); 10088 return err; 10089 } 10090 EXPORT_SYMBOL(register_netdev); 10091 10092 int netdev_refcnt_read(const struct net_device *dev) 10093 { 10094 int i, refcnt = 0; 10095 10096 for_each_possible_cpu(i) 10097 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10098 return refcnt; 10099 } 10100 EXPORT_SYMBOL(netdev_refcnt_read); 10101 10102 #define WAIT_REFS_MIN_MSECS 1 10103 #define WAIT_REFS_MAX_MSECS 250 10104 /** 10105 * netdev_wait_allrefs - wait until all references are gone. 10106 * @dev: target net_device 10107 * 10108 * This is called when unregistering network devices. 10109 * 10110 * Any protocol or device that holds a reference should register 10111 * for netdevice notification, and cleanup and put back the 10112 * reference if they receive an UNREGISTER event. 10113 * We can get stuck here if buggy protocols don't correctly 10114 * call dev_put. 10115 */ 10116 static void netdev_wait_allrefs(struct net_device *dev) 10117 { 10118 unsigned long rebroadcast_time, warning_time; 10119 int wait = 0, refcnt; 10120 10121 linkwatch_forget_dev(dev); 10122 10123 rebroadcast_time = warning_time = jiffies; 10124 refcnt = netdev_refcnt_read(dev); 10125 10126 while (refcnt != 0) { 10127 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10128 rtnl_lock(); 10129 10130 /* Rebroadcast unregister notification */ 10131 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10132 10133 __rtnl_unlock(); 10134 rcu_barrier(); 10135 rtnl_lock(); 10136 10137 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10138 &dev->state)) { 10139 /* We must not have linkwatch events 10140 * pending on unregister. If this 10141 * happens, we simply run the queue 10142 * unscheduled, resulting in a noop 10143 * for this device. 10144 */ 10145 linkwatch_run_queue(); 10146 } 10147 10148 __rtnl_unlock(); 10149 10150 rebroadcast_time = jiffies; 10151 } 10152 10153 if (!wait) { 10154 rcu_barrier(); 10155 wait = WAIT_REFS_MIN_MSECS; 10156 } else { 10157 msleep(wait); 10158 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10159 } 10160 10161 refcnt = netdev_refcnt_read(dev); 10162 10163 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 10164 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10165 dev->name, refcnt); 10166 warning_time = jiffies; 10167 } 10168 } 10169 } 10170 10171 /* The sequence is: 10172 * 10173 * rtnl_lock(); 10174 * ... 10175 * register_netdevice(x1); 10176 * register_netdevice(x2); 10177 * ... 10178 * unregister_netdevice(y1); 10179 * unregister_netdevice(y2); 10180 * ... 10181 * rtnl_unlock(); 10182 * free_netdev(y1); 10183 * free_netdev(y2); 10184 * 10185 * We are invoked by rtnl_unlock(). 10186 * This allows us to deal with problems: 10187 * 1) We can delete sysfs objects which invoke hotplug 10188 * without deadlocking with linkwatch via keventd. 10189 * 2) Since we run with the RTNL semaphore not held, we can sleep 10190 * safely in order to wait for the netdev refcnt to drop to zero. 10191 * 10192 * We must not return until all unregister events added during 10193 * the interval the lock was held have been completed. 10194 */ 10195 void netdev_run_todo(void) 10196 { 10197 struct list_head list; 10198 #ifdef CONFIG_LOCKDEP 10199 struct list_head unlink_list; 10200 10201 list_replace_init(&net_unlink_list, &unlink_list); 10202 10203 while (!list_empty(&unlink_list)) { 10204 struct net_device *dev = list_first_entry(&unlink_list, 10205 struct net_device, 10206 unlink_list); 10207 list_del(&dev->unlink_list); 10208 dev->nested_level = dev->lower_level - 1; 10209 } 10210 #endif 10211 10212 /* Snapshot list, allow later requests */ 10213 list_replace_init(&net_todo_list, &list); 10214 10215 __rtnl_unlock(); 10216 10217 10218 /* Wait for rcu callbacks to finish before next phase */ 10219 if (!list_empty(&list)) 10220 rcu_barrier(); 10221 10222 while (!list_empty(&list)) { 10223 struct net_device *dev 10224 = list_first_entry(&list, struct net_device, todo_list); 10225 list_del(&dev->todo_list); 10226 10227 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10228 pr_err("network todo '%s' but state %d\n", 10229 dev->name, dev->reg_state); 10230 dump_stack(); 10231 continue; 10232 } 10233 10234 dev->reg_state = NETREG_UNREGISTERED; 10235 10236 netdev_wait_allrefs(dev); 10237 10238 /* paranoia */ 10239 BUG_ON(netdev_refcnt_read(dev)); 10240 BUG_ON(!list_empty(&dev->ptype_all)); 10241 BUG_ON(!list_empty(&dev->ptype_specific)); 10242 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10243 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10244 #if IS_ENABLED(CONFIG_DECNET) 10245 WARN_ON(dev->dn_ptr); 10246 #endif 10247 if (dev->priv_destructor) 10248 dev->priv_destructor(dev); 10249 if (dev->needs_free_netdev) 10250 free_netdev(dev); 10251 10252 /* Report a network device has been unregistered */ 10253 rtnl_lock(); 10254 dev_net(dev)->dev_unreg_count--; 10255 __rtnl_unlock(); 10256 wake_up(&netdev_unregistering_wq); 10257 10258 /* Free network device */ 10259 kobject_put(&dev->dev.kobj); 10260 } 10261 } 10262 10263 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10264 * all the same fields in the same order as net_device_stats, with only 10265 * the type differing, but rtnl_link_stats64 may have additional fields 10266 * at the end for newer counters. 10267 */ 10268 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10269 const struct net_device_stats *netdev_stats) 10270 { 10271 #if BITS_PER_LONG == 64 10272 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 10273 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 10274 /* zero out counters that only exist in rtnl_link_stats64 */ 10275 memset((char *)stats64 + sizeof(*netdev_stats), 0, 10276 sizeof(*stats64) - sizeof(*netdev_stats)); 10277 #else 10278 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 10279 const unsigned long *src = (const unsigned long *)netdev_stats; 10280 u64 *dst = (u64 *)stats64; 10281 10282 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10283 for (i = 0; i < n; i++) 10284 dst[i] = src[i]; 10285 /* zero out counters that only exist in rtnl_link_stats64 */ 10286 memset((char *)stats64 + n * sizeof(u64), 0, 10287 sizeof(*stats64) - n * sizeof(u64)); 10288 #endif 10289 } 10290 EXPORT_SYMBOL(netdev_stats_to_stats64); 10291 10292 /** 10293 * dev_get_stats - get network device statistics 10294 * @dev: device to get statistics from 10295 * @storage: place to store stats 10296 * 10297 * Get network statistics from device. Return @storage. 10298 * The device driver may provide its own method by setting 10299 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10300 * otherwise the internal statistics structure is used. 10301 */ 10302 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10303 struct rtnl_link_stats64 *storage) 10304 { 10305 const struct net_device_ops *ops = dev->netdev_ops; 10306 10307 if (ops->ndo_get_stats64) { 10308 memset(storage, 0, sizeof(*storage)); 10309 ops->ndo_get_stats64(dev, storage); 10310 } else if (ops->ndo_get_stats) { 10311 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10312 } else { 10313 netdev_stats_to_stats64(storage, &dev->stats); 10314 } 10315 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 10316 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 10317 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 10318 return storage; 10319 } 10320 EXPORT_SYMBOL(dev_get_stats); 10321 10322 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10323 { 10324 struct netdev_queue *queue = dev_ingress_queue(dev); 10325 10326 #ifdef CONFIG_NET_CLS_ACT 10327 if (queue) 10328 return queue; 10329 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10330 if (!queue) 10331 return NULL; 10332 netdev_init_one_queue(dev, queue, NULL); 10333 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10334 queue->qdisc_sleeping = &noop_qdisc; 10335 rcu_assign_pointer(dev->ingress_queue, queue); 10336 #endif 10337 return queue; 10338 } 10339 10340 static const struct ethtool_ops default_ethtool_ops; 10341 10342 void netdev_set_default_ethtool_ops(struct net_device *dev, 10343 const struct ethtool_ops *ops) 10344 { 10345 if (dev->ethtool_ops == &default_ethtool_ops) 10346 dev->ethtool_ops = ops; 10347 } 10348 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10349 10350 void netdev_freemem(struct net_device *dev) 10351 { 10352 char *addr = (char *)dev - dev->padded; 10353 10354 kvfree(addr); 10355 } 10356 10357 /** 10358 * alloc_netdev_mqs - allocate network device 10359 * @sizeof_priv: size of private data to allocate space for 10360 * @name: device name format string 10361 * @name_assign_type: origin of device name 10362 * @setup: callback to initialize device 10363 * @txqs: the number of TX subqueues to allocate 10364 * @rxqs: the number of RX subqueues to allocate 10365 * 10366 * Allocates a struct net_device with private data area for driver use 10367 * and performs basic initialization. Also allocates subqueue structs 10368 * for each queue on the device. 10369 */ 10370 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10371 unsigned char name_assign_type, 10372 void (*setup)(struct net_device *), 10373 unsigned int txqs, unsigned int rxqs) 10374 { 10375 struct net_device *dev; 10376 unsigned int alloc_size; 10377 struct net_device *p; 10378 10379 BUG_ON(strlen(name) >= sizeof(dev->name)); 10380 10381 if (txqs < 1) { 10382 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10383 return NULL; 10384 } 10385 10386 if (rxqs < 1) { 10387 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10388 return NULL; 10389 } 10390 10391 alloc_size = sizeof(struct net_device); 10392 if (sizeof_priv) { 10393 /* ensure 32-byte alignment of private area */ 10394 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10395 alloc_size += sizeof_priv; 10396 } 10397 /* ensure 32-byte alignment of whole construct */ 10398 alloc_size += NETDEV_ALIGN - 1; 10399 10400 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 10401 if (!p) 10402 return NULL; 10403 10404 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10405 dev->padded = (char *)dev - (char *)p; 10406 10407 dev->pcpu_refcnt = alloc_percpu(int); 10408 if (!dev->pcpu_refcnt) 10409 goto free_dev; 10410 10411 if (dev_addr_init(dev)) 10412 goto free_pcpu; 10413 10414 dev_mc_init(dev); 10415 dev_uc_init(dev); 10416 10417 dev_net_set(dev, &init_net); 10418 10419 dev->gso_max_size = GSO_MAX_SIZE; 10420 dev->gso_max_segs = GSO_MAX_SEGS; 10421 dev->upper_level = 1; 10422 dev->lower_level = 1; 10423 #ifdef CONFIG_LOCKDEP 10424 dev->nested_level = 0; 10425 INIT_LIST_HEAD(&dev->unlink_list); 10426 #endif 10427 10428 INIT_LIST_HEAD(&dev->napi_list); 10429 INIT_LIST_HEAD(&dev->unreg_list); 10430 INIT_LIST_HEAD(&dev->close_list); 10431 INIT_LIST_HEAD(&dev->link_watch_list); 10432 INIT_LIST_HEAD(&dev->adj_list.upper); 10433 INIT_LIST_HEAD(&dev->adj_list.lower); 10434 INIT_LIST_HEAD(&dev->ptype_all); 10435 INIT_LIST_HEAD(&dev->ptype_specific); 10436 INIT_LIST_HEAD(&dev->net_notifier_list); 10437 #ifdef CONFIG_NET_SCHED 10438 hash_init(dev->qdisc_hash); 10439 #endif 10440 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10441 setup(dev); 10442 10443 if (!dev->tx_queue_len) { 10444 dev->priv_flags |= IFF_NO_QUEUE; 10445 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10446 } 10447 10448 dev->num_tx_queues = txqs; 10449 dev->real_num_tx_queues = txqs; 10450 if (netif_alloc_netdev_queues(dev)) 10451 goto free_all; 10452 10453 dev->num_rx_queues = rxqs; 10454 dev->real_num_rx_queues = rxqs; 10455 if (netif_alloc_rx_queues(dev)) 10456 goto free_all; 10457 10458 strcpy(dev->name, name); 10459 dev->name_assign_type = name_assign_type; 10460 dev->group = INIT_NETDEV_GROUP; 10461 if (!dev->ethtool_ops) 10462 dev->ethtool_ops = &default_ethtool_ops; 10463 10464 nf_hook_ingress_init(dev); 10465 10466 return dev; 10467 10468 free_all: 10469 free_netdev(dev); 10470 return NULL; 10471 10472 free_pcpu: 10473 free_percpu(dev->pcpu_refcnt); 10474 free_dev: 10475 netdev_freemem(dev); 10476 return NULL; 10477 } 10478 EXPORT_SYMBOL(alloc_netdev_mqs); 10479 10480 /** 10481 * free_netdev - free network device 10482 * @dev: device 10483 * 10484 * This function does the last stage of destroying an allocated device 10485 * interface. The reference to the device object is released. If this 10486 * is the last reference then it will be freed.Must be called in process 10487 * context. 10488 */ 10489 void free_netdev(struct net_device *dev) 10490 { 10491 struct napi_struct *p, *n; 10492 10493 might_sleep(); 10494 netif_free_tx_queues(dev); 10495 netif_free_rx_queues(dev); 10496 10497 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10498 10499 /* Flush device addresses */ 10500 dev_addr_flush(dev); 10501 10502 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10503 netif_napi_del(p); 10504 10505 free_percpu(dev->pcpu_refcnt); 10506 dev->pcpu_refcnt = NULL; 10507 free_percpu(dev->xdp_bulkq); 10508 dev->xdp_bulkq = NULL; 10509 10510 /* Compatibility with error handling in drivers */ 10511 if (dev->reg_state == NETREG_UNINITIALIZED) { 10512 netdev_freemem(dev); 10513 return; 10514 } 10515 10516 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10517 dev->reg_state = NETREG_RELEASED; 10518 10519 /* will free via device release */ 10520 put_device(&dev->dev); 10521 } 10522 EXPORT_SYMBOL(free_netdev); 10523 10524 /** 10525 * synchronize_net - Synchronize with packet receive processing 10526 * 10527 * Wait for packets currently being received to be done. 10528 * Does not block later packets from starting. 10529 */ 10530 void synchronize_net(void) 10531 { 10532 might_sleep(); 10533 if (rtnl_is_locked()) 10534 synchronize_rcu_expedited(); 10535 else 10536 synchronize_rcu(); 10537 } 10538 EXPORT_SYMBOL(synchronize_net); 10539 10540 /** 10541 * unregister_netdevice_queue - remove device from the kernel 10542 * @dev: device 10543 * @head: list 10544 * 10545 * This function shuts down a device interface and removes it 10546 * from the kernel tables. 10547 * If head not NULL, device is queued to be unregistered later. 10548 * 10549 * Callers must hold the rtnl semaphore. You may want 10550 * unregister_netdev() instead of this. 10551 */ 10552 10553 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10554 { 10555 ASSERT_RTNL(); 10556 10557 if (head) { 10558 list_move_tail(&dev->unreg_list, head); 10559 } else { 10560 rollback_registered(dev); 10561 /* Finish processing unregister after unlock */ 10562 net_set_todo(dev); 10563 } 10564 } 10565 EXPORT_SYMBOL(unregister_netdevice_queue); 10566 10567 /** 10568 * unregister_netdevice_many - unregister many devices 10569 * @head: list of devices 10570 * 10571 * Note: As most callers use a stack allocated list_head, 10572 * we force a list_del() to make sure stack wont be corrupted later. 10573 */ 10574 void unregister_netdevice_many(struct list_head *head) 10575 { 10576 struct net_device *dev; 10577 10578 if (!list_empty(head)) { 10579 rollback_registered_many(head); 10580 list_for_each_entry(dev, head, unreg_list) 10581 net_set_todo(dev); 10582 list_del(head); 10583 } 10584 } 10585 EXPORT_SYMBOL(unregister_netdevice_many); 10586 10587 /** 10588 * unregister_netdev - remove device from the kernel 10589 * @dev: device 10590 * 10591 * This function shuts down a device interface and removes it 10592 * from the kernel tables. 10593 * 10594 * This is just a wrapper for unregister_netdevice that takes 10595 * the rtnl semaphore. In general you want to use this and not 10596 * unregister_netdevice. 10597 */ 10598 void unregister_netdev(struct net_device *dev) 10599 { 10600 rtnl_lock(); 10601 unregister_netdevice(dev); 10602 rtnl_unlock(); 10603 } 10604 EXPORT_SYMBOL(unregister_netdev); 10605 10606 /** 10607 * dev_change_net_namespace - move device to different nethost namespace 10608 * @dev: device 10609 * @net: network namespace 10610 * @pat: If not NULL name pattern to try if the current device name 10611 * is already taken in the destination network namespace. 10612 * 10613 * This function shuts down a device interface and moves it 10614 * to a new network namespace. On success 0 is returned, on 10615 * a failure a netagive errno code is returned. 10616 * 10617 * Callers must hold the rtnl semaphore. 10618 */ 10619 10620 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 10621 { 10622 struct net *net_old = dev_net(dev); 10623 int err, new_nsid, new_ifindex; 10624 10625 ASSERT_RTNL(); 10626 10627 /* Don't allow namespace local devices to be moved. */ 10628 err = -EINVAL; 10629 if (dev->features & NETIF_F_NETNS_LOCAL) 10630 goto out; 10631 10632 /* Ensure the device has been registrered */ 10633 if (dev->reg_state != NETREG_REGISTERED) 10634 goto out; 10635 10636 /* Get out if there is nothing todo */ 10637 err = 0; 10638 if (net_eq(net_old, net)) 10639 goto out; 10640 10641 /* Pick the destination device name, and ensure 10642 * we can use it in the destination network namespace. 10643 */ 10644 err = -EEXIST; 10645 if (__dev_get_by_name(net, dev->name)) { 10646 /* We get here if we can't use the current device name */ 10647 if (!pat) 10648 goto out; 10649 err = dev_get_valid_name(net, dev, pat); 10650 if (err < 0) 10651 goto out; 10652 } 10653 10654 /* 10655 * And now a mini version of register_netdevice unregister_netdevice. 10656 */ 10657 10658 /* If device is running close it first. */ 10659 dev_close(dev); 10660 10661 /* And unlink it from device chain */ 10662 unlist_netdevice(dev); 10663 10664 synchronize_net(); 10665 10666 /* Shutdown queueing discipline. */ 10667 dev_shutdown(dev); 10668 10669 /* Notify protocols, that we are about to destroy 10670 * this device. They should clean all the things. 10671 * 10672 * Note that dev->reg_state stays at NETREG_REGISTERED. 10673 * This is wanted because this way 8021q and macvlan know 10674 * the device is just moving and can keep their slaves up. 10675 */ 10676 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10677 rcu_barrier(); 10678 10679 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10680 /* If there is an ifindex conflict assign a new one */ 10681 if (__dev_get_by_index(net, dev->ifindex)) 10682 new_ifindex = dev_new_index(net); 10683 else 10684 new_ifindex = dev->ifindex; 10685 10686 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10687 new_ifindex); 10688 10689 /* 10690 * Flush the unicast and multicast chains 10691 */ 10692 dev_uc_flush(dev); 10693 dev_mc_flush(dev); 10694 10695 /* Send a netdev-removed uevent to the old namespace */ 10696 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10697 netdev_adjacent_del_links(dev); 10698 10699 /* Move per-net netdevice notifiers that are following the netdevice */ 10700 move_netdevice_notifiers_dev_net(dev, net); 10701 10702 /* Actually switch the network namespace */ 10703 dev_net_set(dev, net); 10704 dev->ifindex = new_ifindex; 10705 10706 /* Send a netdev-add uevent to the new namespace */ 10707 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10708 netdev_adjacent_add_links(dev); 10709 10710 /* Fixup kobjects */ 10711 err = device_rename(&dev->dev, dev->name); 10712 WARN_ON(err); 10713 10714 /* Adapt owner in case owning user namespace of target network 10715 * namespace is different from the original one. 10716 */ 10717 err = netdev_change_owner(dev, net_old, net); 10718 WARN_ON(err); 10719 10720 /* Add the device back in the hashes */ 10721 list_netdevice(dev); 10722 10723 /* Notify protocols, that a new device appeared. */ 10724 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10725 10726 /* 10727 * Prevent userspace races by waiting until the network 10728 * device is fully setup before sending notifications. 10729 */ 10730 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10731 10732 synchronize_net(); 10733 err = 0; 10734 out: 10735 return err; 10736 } 10737 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 10738 10739 static int dev_cpu_dead(unsigned int oldcpu) 10740 { 10741 struct sk_buff **list_skb; 10742 struct sk_buff *skb; 10743 unsigned int cpu; 10744 struct softnet_data *sd, *oldsd, *remsd = NULL; 10745 10746 local_irq_disable(); 10747 cpu = smp_processor_id(); 10748 sd = &per_cpu(softnet_data, cpu); 10749 oldsd = &per_cpu(softnet_data, oldcpu); 10750 10751 /* Find end of our completion_queue. */ 10752 list_skb = &sd->completion_queue; 10753 while (*list_skb) 10754 list_skb = &(*list_skb)->next; 10755 /* Append completion queue from offline CPU. */ 10756 *list_skb = oldsd->completion_queue; 10757 oldsd->completion_queue = NULL; 10758 10759 /* Append output queue from offline CPU. */ 10760 if (oldsd->output_queue) { 10761 *sd->output_queue_tailp = oldsd->output_queue; 10762 sd->output_queue_tailp = oldsd->output_queue_tailp; 10763 oldsd->output_queue = NULL; 10764 oldsd->output_queue_tailp = &oldsd->output_queue; 10765 } 10766 /* Append NAPI poll list from offline CPU, with one exception : 10767 * process_backlog() must be called by cpu owning percpu backlog. 10768 * We properly handle process_queue & input_pkt_queue later. 10769 */ 10770 while (!list_empty(&oldsd->poll_list)) { 10771 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10772 struct napi_struct, 10773 poll_list); 10774 10775 list_del_init(&napi->poll_list); 10776 if (napi->poll == process_backlog) 10777 napi->state = 0; 10778 else 10779 ____napi_schedule(sd, napi); 10780 } 10781 10782 raise_softirq_irqoff(NET_TX_SOFTIRQ); 10783 local_irq_enable(); 10784 10785 #ifdef CONFIG_RPS 10786 remsd = oldsd->rps_ipi_list; 10787 oldsd->rps_ipi_list = NULL; 10788 #endif 10789 /* send out pending IPI's on offline CPU */ 10790 net_rps_send_ipi(remsd); 10791 10792 /* Process offline CPU's input_pkt_queue */ 10793 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 10794 netif_rx_ni(skb); 10795 input_queue_head_incr(oldsd); 10796 } 10797 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 10798 netif_rx_ni(skb); 10799 input_queue_head_incr(oldsd); 10800 } 10801 10802 return 0; 10803 } 10804 10805 /** 10806 * netdev_increment_features - increment feature set by one 10807 * @all: current feature set 10808 * @one: new feature set 10809 * @mask: mask feature set 10810 * 10811 * Computes a new feature set after adding a device with feature set 10812 * @one to the master device with current feature set @all. Will not 10813 * enable anything that is off in @mask. Returns the new feature set. 10814 */ 10815 netdev_features_t netdev_increment_features(netdev_features_t all, 10816 netdev_features_t one, netdev_features_t mask) 10817 { 10818 if (mask & NETIF_F_HW_CSUM) 10819 mask |= NETIF_F_CSUM_MASK; 10820 mask |= NETIF_F_VLAN_CHALLENGED; 10821 10822 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 10823 all &= one | ~NETIF_F_ALL_FOR_ALL; 10824 10825 /* If one device supports hw checksumming, set for all. */ 10826 if (all & NETIF_F_HW_CSUM) 10827 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 10828 10829 return all; 10830 } 10831 EXPORT_SYMBOL(netdev_increment_features); 10832 10833 static struct hlist_head * __net_init netdev_create_hash(void) 10834 { 10835 int i; 10836 struct hlist_head *hash; 10837 10838 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 10839 if (hash != NULL) 10840 for (i = 0; i < NETDEV_HASHENTRIES; i++) 10841 INIT_HLIST_HEAD(&hash[i]); 10842 10843 return hash; 10844 } 10845 10846 /* Initialize per network namespace state */ 10847 static int __net_init netdev_init(struct net *net) 10848 { 10849 BUILD_BUG_ON(GRO_HASH_BUCKETS > 10850 8 * sizeof_field(struct napi_struct, gro_bitmask)); 10851 10852 if (net != &init_net) 10853 INIT_LIST_HEAD(&net->dev_base_head); 10854 10855 net->dev_name_head = netdev_create_hash(); 10856 if (net->dev_name_head == NULL) 10857 goto err_name; 10858 10859 net->dev_index_head = netdev_create_hash(); 10860 if (net->dev_index_head == NULL) 10861 goto err_idx; 10862 10863 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 10864 10865 return 0; 10866 10867 err_idx: 10868 kfree(net->dev_name_head); 10869 err_name: 10870 return -ENOMEM; 10871 } 10872 10873 /** 10874 * netdev_drivername - network driver for the device 10875 * @dev: network device 10876 * 10877 * Determine network driver for device. 10878 */ 10879 const char *netdev_drivername(const struct net_device *dev) 10880 { 10881 const struct device_driver *driver; 10882 const struct device *parent; 10883 const char *empty = ""; 10884 10885 parent = dev->dev.parent; 10886 if (!parent) 10887 return empty; 10888 10889 driver = parent->driver; 10890 if (driver && driver->name) 10891 return driver->name; 10892 return empty; 10893 } 10894 10895 static void __netdev_printk(const char *level, const struct net_device *dev, 10896 struct va_format *vaf) 10897 { 10898 if (dev && dev->dev.parent) { 10899 dev_printk_emit(level[1] - '0', 10900 dev->dev.parent, 10901 "%s %s %s%s: %pV", 10902 dev_driver_string(dev->dev.parent), 10903 dev_name(dev->dev.parent), 10904 netdev_name(dev), netdev_reg_state(dev), 10905 vaf); 10906 } else if (dev) { 10907 printk("%s%s%s: %pV", 10908 level, netdev_name(dev), netdev_reg_state(dev), vaf); 10909 } else { 10910 printk("%s(NULL net_device): %pV", level, vaf); 10911 } 10912 } 10913 10914 void netdev_printk(const char *level, const struct net_device *dev, 10915 const char *format, ...) 10916 { 10917 struct va_format vaf; 10918 va_list args; 10919 10920 va_start(args, format); 10921 10922 vaf.fmt = format; 10923 vaf.va = &args; 10924 10925 __netdev_printk(level, dev, &vaf); 10926 10927 va_end(args); 10928 } 10929 EXPORT_SYMBOL(netdev_printk); 10930 10931 #define define_netdev_printk_level(func, level) \ 10932 void func(const struct net_device *dev, const char *fmt, ...) \ 10933 { \ 10934 struct va_format vaf; \ 10935 va_list args; \ 10936 \ 10937 va_start(args, fmt); \ 10938 \ 10939 vaf.fmt = fmt; \ 10940 vaf.va = &args; \ 10941 \ 10942 __netdev_printk(level, dev, &vaf); \ 10943 \ 10944 va_end(args); \ 10945 } \ 10946 EXPORT_SYMBOL(func); 10947 10948 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 10949 define_netdev_printk_level(netdev_alert, KERN_ALERT); 10950 define_netdev_printk_level(netdev_crit, KERN_CRIT); 10951 define_netdev_printk_level(netdev_err, KERN_ERR); 10952 define_netdev_printk_level(netdev_warn, KERN_WARNING); 10953 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 10954 define_netdev_printk_level(netdev_info, KERN_INFO); 10955 10956 static void __net_exit netdev_exit(struct net *net) 10957 { 10958 kfree(net->dev_name_head); 10959 kfree(net->dev_index_head); 10960 if (net != &init_net) 10961 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 10962 } 10963 10964 static struct pernet_operations __net_initdata netdev_net_ops = { 10965 .init = netdev_init, 10966 .exit = netdev_exit, 10967 }; 10968 10969 static void __net_exit default_device_exit(struct net *net) 10970 { 10971 struct net_device *dev, *aux; 10972 /* 10973 * Push all migratable network devices back to the 10974 * initial network namespace 10975 */ 10976 rtnl_lock(); 10977 for_each_netdev_safe(net, dev, aux) { 10978 int err; 10979 char fb_name[IFNAMSIZ]; 10980 10981 /* Ignore unmoveable devices (i.e. loopback) */ 10982 if (dev->features & NETIF_F_NETNS_LOCAL) 10983 continue; 10984 10985 /* Leave virtual devices for the generic cleanup */ 10986 if (dev->rtnl_link_ops) 10987 continue; 10988 10989 /* Push remaining network devices to init_net */ 10990 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 10991 if (__dev_get_by_name(&init_net, fb_name)) 10992 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 10993 err = dev_change_net_namespace(dev, &init_net, fb_name); 10994 if (err) { 10995 pr_emerg("%s: failed to move %s to init_net: %d\n", 10996 __func__, dev->name, err); 10997 BUG(); 10998 } 10999 } 11000 rtnl_unlock(); 11001 } 11002 11003 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 11004 { 11005 /* Return with the rtnl_lock held when there are no network 11006 * devices unregistering in any network namespace in net_list. 11007 */ 11008 struct net *net; 11009 bool unregistering; 11010 DEFINE_WAIT_FUNC(wait, woken_wake_function); 11011 11012 add_wait_queue(&netdev_unregistering_wq, &wait); 11013 for (;;) { 11014 unregistering = false; 11015 rtnl_lock(); 11016 list_for_each_entry(net, net_list, exit_list) { 11017 if (net->dev_unreg_count > 0) { 11018 unregistering = true; 11019 break; 11020 } 11021 } 11022 if (!unregistering) 11023 break; 11024 __rtnl_unlock(); 11025 11026 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 11027 } 11028 remove_wait_queue(&netdev_unregistering_wq, &wait); 11029 } 11030 11031 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11032 { 11033 /* At exit all network devices most be removed from a network 11034 * namespace. Do this in the reverse order of registration. 11035 * Do this across as many network namespaces as possible to 11036 * improve batching efficiency. 11037 */ 11038 struct net_device *dev; 11039 struct net *net; 11040 LIST_HEAD(dev_kill_list); 11041 11042 /* To prevent network device cleanup code from dereferencing 11043 * loopback devices or network devices that have been freed 11044 * wait here for all pending unregistrations to complete, 11045 * before unregistring the loopback device and allowing the 11046 * network namespace be freed. 11047 * 11048 * The netdev todo list containing all network devices 11049 * unregistrations that happen in default_device_exit_batch 11050 * will run in the rtnl_unlock() at the end of 11051 * default_device_exit_batch. 11052 */ 11053 rtnl_lock_unregistering(net_list); 11054 list_for_each_entry(net, net_list, exit_list) { 11055 for_each_netdev_reverse(net, dev) { 11056 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11057 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11058 else 11059 unregister_netdevice_queue(dev, &dev_kill_list); 11060 } 11061 } 11062 unregister_netdevice_many(&dev_kill_list); 11063 rtnl_unlock(); 11064 } 11065 11066 static struct pernet_operations __net_initdata default_device_ops = { 11067 .exit = default_device_exit, 11068 .exit_batch = default_device_exit_batch, 11069 }; 11070 11071 /* 11072 * Initialize the DEV module. At boot time this walks the device list and 11073 * unhooks any devices that fail to initialise (normally hardware not 11074 * present) and leaves us with a valid list of present and active devices. 11075 * 11076 */ 11077 11078 /* 11079 * This is called single threaded during boot, so no need 11080 * to take the rtnl semaphore. 11081 */ 11082 static int __init net_dev_init(void) 11083 { 11084 int i, rc = -ENOMEM; 11085 11086 BUG_ON(!dev_boot_phase); 11087 11088 if (dev_proc_init()) 11089 goto out; 11090 11091 if (netdev_kobject_init()) 11092 goto out; 11093 11094 INIT_LIST_HEAD(&ptype_all); 11095 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11096 INIT_LIST_HEAD(&ptype_base[i]); 11097 11098 INIT_LIST_HEAD(&offload_base); 11099 11100 if (register_pernet_subsys(&netdev_net_ops)) 11101 goto out; 11102 11103 /* 11104 * Initialise the packet receive queues. 11105 */ 11106 11107 for_each_possible_cpu(i) { 11108 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11109 struct softnet_data *sd = &per_cpu(softnet_data, i); 11110 11111 INIT_WORK(flush, flush_backlog); 11112 11113 skb_queue_head_init(&sd->input_pkt_queue); 11114 skb_queue_head_init(&sd->process_queue); 11115 #ifdef CONFIG_XFRM_OFFLOAD 11116 skb_queue_head_init(&sd->xfrm_backlog); 11117 #endif 11118 INIT_LIST_HEAD(&sd->poll_list); 11119 sd->output_queue_tailp = &sd->output_queue; 11120 #ifdef CONFIG_RPS 11121 sd->csd.func = rps_trigger_softirq; 11122 sd->csd.info = sd; 11123 sd->cpu = i; 11124 #endif 11125 11126 init_gro_hash(&sd->backlog); 11127 sd->backlog.poll = process_backlog; 11128 sd->backlog.weight = weight_p; 11129 } 11130 11131 dev_boot_phase = 0; 11132 11133 /* The loopback device is special if any other network devices 11134 * is present in a network namespace the loopback device must 11135 * be present. Since we now dynamically allocate and free the 11136 * loopback device ensure this invariant is maintained by 11137 * keeping the loopback device as the first device on the 11138 * list of network devices. Ensuring the loopback devices 11139 * is the first device that appears and the last network device 11140 * that disappears. 11141 */ 11142 if (register_pernet_device(&loopback_net_ops)) 11143 goto out; 11144 11145 if (register_pernet_device(&default_device_ops)) 11146 goto out; 11147 11148 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11149 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11150 11151 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11152 NULL, dev_cpu_dead); 11153 WARN_ON(rc < 0); 11154 rc = 0; 11155 out: 11156 return rc; 11157 } 11158 11159 subsys_initcall(net_dev_init); 11160