xref: /linux/net/core/dev.c (revision ef347a340b1a8507c22ee3cf981cd5cd64188431)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static seqcount_t devnet_rename_seq;
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  *
904  *	The use of raw_seqcount_begin() and cond_resched() before
905  *	retrying is required as we want to give the writers a chance
906  *	to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 	struct net_device *dev;
911 	unsigned int seq;
912 
913 retry:
914 	seq = raw_seqcount_begin(&devnet_rename_seq);
915 	rcu_read_lock();
916 	dev = dev_get_by_index_rcu(net, ifindex);
917 	if (!dev) {
918 		rcu_read_unlock();
919 		return -ENODEV;
920 	}
921 
922 	strcpy(name, dev->name);
923 	rcu_read_unlock();
924 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 		cond_resched();
926 		goto retry;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  *	dev_getbyhwaddr_rcu - find a device by its hardware address
934  *	@net: the applicable net namespace
935  *	@type: media type of device
936  *	@ha: hardware address
937  *
938  *	Search for an interface by MAC address. Returns NULL if the device
939  *	is not found or a pointer to the device.
940  *	The caller must hold RCU or RTNL.
941  *	The returned device has not had its ref count increased
942  *	and the caller must therefore be careful about locking
943  *
944  */
945 
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 				       const char *ha)
948 {
949 	struct net_device *dev;
950 
951 	for_each_netdev_rcu(net, dev)
952 		if (dev->type == type &&
953 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 	struct net_device *dev;
963 
964 	ASSERT_RTNL();
965 	for_each_netdev(net, dev)
966 		if (dev->type == type)
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	to allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	if (!dev_valid_name(name))
1068 		return -EINVAL;
1069 
1070 	p = strchr(name, '%');
1071 	if (p) {
1072 		/*
1073 		 * Verify the string as this thing may have come from
1074 		 * the user.  There must be either one "%d" and no other "%"
1075 		 * characters.
1076 		 */
1077 		if (p[1] != 'd' || strchr(p + 2, '%'))
1078 			return -EINVAL;
1079 
1080 		/* Use one page as a bit array of possible slots */
1081 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 		if (!inuse)
1083 			return -ENOMEM;
1084 
1085 		for_each_netdev(net, d) {
1086 			if (!sscanf(d->name, name, &i))
1087 				continue;
1088 			if (i < 0 || i >= max_netdevices)
1089 				continue;
1090 
1091 			/*  avoid cases where sscanf is not exact inverse of printf */
1092 			snprintf(buf, IFNAMSIZ, name, i);
1093 			if (!strncmp(buf, d->name, IFNAMSIZ))
1094 				set_bit(i, inuse);
1095 		}
1096 
1097 		i = find_first_zero_bit(inuse, max_netdevices);
1098 		free_page((unsigned long) inuse);
1099 	}
1100 
1101 	snprintf(buf, IFNAMSIZ, name, i);
1102 	if (!__dev_get_by_name(net, buf))
1103 		return i;
1104 
1105 	/* It is possible to run out of possible slots
1106 	 * when the name is long and there isn't enough space left
1107 	 * for the digits, or if all bits are used.
1108 	 */
1109 	return -ENFILE;
1110 }
1111 
1112 static int dev_alloc_name_ns(struct net *net,
1113 			     struct net_device *dev,
1114 			     const char *name)
1115 {
1116 	char buf[IFNAMSIZ];
1117 	int ret;
1118 
1119 	BUG_ON(!net);
1120 	ret = __dev_alloc_name(net, name, buf);
1121 	if (ret >= 0)
1122 		strlcpy(dev->name, buf, IFNAMSIZ);
1123 	return ret;
1124 }
1125 
1126 /**
1127  *	dev_alloc_name - allocate a name for a device
1128  *	@dev: device
1129  *	@name: name format string
1130  *
1131  *	Passed a format string - eg "lt%d" it will try and find a suitable
1132  *	id. It scans list of devices to build up a free map, then chooses
1133  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *	while allocating the name and adding the device in order to avoid
1135  *	duplicates.
1136  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *	Returns the number of the unit assigned or a negative errno code.
1138  */
1139 
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145 
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 		       const char *name)
1148 {
1149 	BUG_ON(!net);
1150 
1151 	if (!dev_valid_name(name))
1152 		return -EINVAL;
1153 
1154 	if (strchr(name, '%'))
1155 		return dev_alloc_name_ns(net, dev, name);
1156 	else if (__dev_get_by_name(net, name))
1157 		return -EEXIST;
1158 	else if (dev->name != name)
1159 		strlcpy(dev->name, name, IFNAMSIZ);
1160 
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164 
1165 /**
1166  *	dev_change_name - change name of a device
1167  *	@dev: device
1168  *	@newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *	Change name of a device, can pass format strings "eth%d".
1171  *	for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175 	unsigned char old_assign_type;
1176 	char oldname[IFNAMSIZ];
1177 	int err = 0;
1178 	int ret;
1179 	struct net *net;
1180 
1181 	ASSERT_RTNL();
1182 	BUG_ON(!dev_net(dev));
1183 
1184 	net = dev_net(dev);
1185 	if (dev->flags & IFF_UP)
1186 		return -EBUSY;
1187 
1188 	write_seqcount_begin(&devnet_rename_seq);
1189 
1190 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 		write_seqcount_end(&devnet_rename_seq);
1192 		return 0;
1193 	}
1194 
1195 	memcpy(oldname, dev->name, IFNAMSIZ);
1196 
1197 	err = dev_get_valid_name(net, dev, newname);
1198 	if (err < 0) {
1199 		write_seqcount_end(&devnet_rename_seq);
1200 		return err;
1201 	}
1202 
1203 	if (oldname[0] && !strchr(oldname, '%'))
1204 		netdev_info(dev, "renamed from %s\n", oldname);
1205 
1206 	old_assign_type = dev->name_assign_type;
1207 	dev->name_assign_type = NET_NAME_RENAMED;
1208 
1209 rollback:
1210 	ret = device_rename(&dev->dev, dev->name);
1211 	if (ret) {
1212 		memcpy(dev->name, oldname, IFNAMSIZ);
1213 		dev->name_assign_type = old_assign_type;
1214 		write_seqcount_end(&devnet_rename_seq);
1215 		return ret;
1216 	}
1217 
1218 	write_seqcount_end(&devnet_rename_seq);
1219 
1220 	netdev_adjacent_rename_links(dev, oldname);
1221 
1222 	write_lock_bh(&dev_base_lock);
1223 	hlist_del_rcu(&dev->name_hlist);
1224 	write_unlock_bh(&dev_base_lock);
1225 
1226 	synchronize_rcu();
1227 
1228 	write_lock_bh(&dev_base_lock);
1229 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 	write_unlock_bh(&dev_base_lock);
1231 
1232 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 	ret = notifier_to_errno(ret);
1234 
1235 	if (ret) {
1236 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1237 		if (err >= 0) {
1238 			err = ret;
1239 			write_seqcount_begin(&devnet_rename_seq);
1240 			memcpy(dev->name, oldname, IFNAMSIZ);
1241 			memcpy(oldname, newname, IFNAMSIZ);
1242 			dev->name_assign_type = old_assign_type;
1243 			old_assign_type = NET_NAME_RENAMED;
1244 			goto rollback;
1245 		} else {
1246 			pr_err("%s: name change rollback failed: %d\n",
1247 			       dev->name, ret);
1248 		}
1249 	}
1250 
1251 	return err;
1252 }
1253 
1254 /**
1255  *	dev_set_alias - change ifalias of a device
1256  *	@dev: device
1257  *	@alias: name up to IFALIASZ
1258  *	@len: limit of bytes to copy from info
1259  *
1260  *	Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264 	struct dev_ifalias *new_alias = NULL;
1265 
1266 	if (len >= IFALIASZ)
1267 		return -EINVAL;
1268 
1269 	if (len) {
1270 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 		if (!new_alias)
1272 			return -ENOMEM;
1273 
1274 		memcpy(new_alias->ifalias, alias, len);
1275 		new_alias->ifalias[len] = 0;
1276 	}
1277 
1278 	mutex_lock(&ifalias_mutex);
1279 	rcu_swap_protected(dev->ifalias, new_alias,
1280 			   mutex_is_locked(&ifalias_mutex));
1281 	mutex_unlock(&ifalias_mutex);
1282 
1283 	if (new_alias)
1284 		kfree_rcu(new_alias, rcuhead);
1285 
1286 	return len;
1287 }
1288 EXPORT_SYMBOL(dev_set_alias);
1289 
1290 /**
1291  *	dev_get_alias - get ifalias of a device
1292  *	@dev: device
1293  *	@name: buffer to store name of ifalias
1294  *	@len: size of buffer
1295  *
1296  *	get ifalias for a device.  Caller must make sure dev cannot go
1297  *	away,  e.g. rcu read lock or own a reference count to device.
1298  */
1299 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1300 {
1301 	const struct dev_ifalias *alias;
1302 	int ret = 0;
1303 
1304 	rcu_read_lock();
1305 	alias = rcu_dereference(dev->ifalias);
1306 	if (alias)
1307 		ret = snprintf(name, len, "%s", alias->ifalias);
1308 	rcu_read_unlock();
1309 
1310 	return ret;
1311 }
1312 
1313 /**
1314  *	netdev_features_change - device changes features
1315  *	@dev: device to cause notification
1316  *
1317  *	Called to indicate a device has changed features.
1318  */
1319 void netdev_features_change(struct net_device *dev)
1320 {
1321 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1322 }
1323 EXPORT_SYMBOL(netdev_features_change);
1324 
1325 /**
1326  *	netdev_state_change - device changes state
1327  *	@dev: device to cause notification
1328  *
1329  *	Called to indicate a device has changed state. This function calls
1330  *	the notifier chains for netdev_chain and sends a NEWLINK message
1331  *	to the routing socket.
1332  */
1333 void netdev_state_change(struct net_device *dev)
1334 {
1335 	if (dev->flags & IFF_UP) {
1336 		struct netdev_notifier_change_info change_info = {
1337 			.info.dev = dev,
1338 		};
1339 
1340 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1341 					      &change_info.info);
1342 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1343 	}
1344 }
1345 EXPORT_SYMBOL(netdev_state_change);
1346 
1347 /**
1348  * netdev_notify_peers - notify network peers about existence of @dev
1349  * @dev: network device
1350  *
1351  * Generate traffic such that interested network peers are aware of
1352  * @dev, such as by generating a gratuitous ARP. This may be used when
1353  * a device wants to inform the rest of the network about some sort of
1354  * reconfiguration such as a failover event or virtual machine
1355  * migration.
1356  */
1357 void netdev_notify_peers(struct net_device *dev)
1358 {
1359 	rtnl_lock();
1360 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1361 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1362 	rtnl_unlock();
1363 }
1364 EXPORT_SYMBOL(netdev_notify_peers);
1365 
1366 static int __dev_open(struct net_device *dev)
1367 {
1368 	const struct net_device_ops *ops = dev->netdev_ops;
1369 	int ret;
1370 
1371 	ASSERT_RTNL();
1372 
1373 	if (!netif_device_present(dev))
1374 		return -ENODEV;
1375 
1376 	/* Block netpoll from trying to do any rx path servicing.
1377 	 * If we don't do this there is a chance ndo_poll_controller
1378 	 * or ndo_poll may be running while we open the device
1379 	 */
1380 	netpoll_poll_disable(dev);
1381 
1382 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1383 	ret = notifier_to_errno(ret);
1384 	if (ret)
1385 		return ret;
1386 
1387 	set_bit(__LINK_STATE_START, &dev->state);
1388 
1389 	if (ops->ndo_validate_addr)
1390 		ret = ops->ndo_validate_addr(dev);
1391 
1392 	if (!ret && ops->ndo_open)
1393 		ret = ops->ndo_open(dev);
1394 
1395 	netpoll_poll_enable(dev);
1396 
1397 	if (ret)
1398 		clear_bit(__LINK_STATE_START, &dev->state);
1399 	else {
1400 		dev->flags |= IFF_UP;
1401 		dev_set_rx_mode(dev);
1402 		dev_activate(dev);
1403 		add_device_randomness(dev->dev_addr, dev->addr_len);
1404 	}
1405 
1406 	return ret;
1407 }
1408 
1409 /**
1410  *	dev_open	- prepare an interface for use.
1411  *	@dev:	device to open
1412  *
1413  *	Takes a device from down to up state. The device's private open
1414  *	function is invoked and then the multicast lists are loaded. Finally
1415  *	the device is moved into the up state and a %NETDEV_UP message is
1416  *	sent to the netdev notifier chain.
1417  *
1418  *	Calling this function on an active interface is a nop. On a failure
1419  *	a negative errno code is returned.
1420  */
1421 int dev_open(struct net_device *dev)
1422 {
1423 	int ret;
1424 
1425 	if (dev->flags & IFF_UP)
1426 		return 0;
1427 
1428 	ret = __dev_open(dev);
1429 	if (ret < 0)
1430 		return ret;
1431 
1432 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1433 	call_netdevice_notifiers(NETDEV_UP, dev);
1434 
1435 	return ret;
1436 }
1437 EXPORT_SYMBOL(dev_open);
1438 
1439 static void __dev_close_many(struct list_head *head)
1440 {
1441 	struct net_device *dev;
1442 
1443 	ASSERT_RTNL();
1444 	might_sleep();
1445 
1446 	list_for_each_entry(dev, head, close_list) {
1447 		/* Temporarily disable netpoll until the interface is down */
1448 		netpoll_poll_disable(dev);
1449 
1450 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1451 
1452 		clear_bit(__LINK_STATE_START, &dev->state);
1453 
1454 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1455 		 * can be even on different cpu. So just clear netif_running().
1456 		 *
1457 		 * dev->stop() will invoke napi_disable() on all of it's
1458 		 * napi_struct instances on this device.
1459 		 */
1460 		smp_mb__after_atomic(); /* Commit netif_running(). */
1461 	}
1462 
1463 	dev_deactivate_many(head);
1464 
1465 	list_for_each_entry(dev, head, close_list) {
1466 		const struct net_device_ops *ops = dev->netdev_ops;
1467 
1468 		/*
1469 		 *	Call the device specific close. This cannot fail.
1470 		 *	Only if device is UP
1471 		 *
1472 		 *	We allow it to be called even after a DETACH hot-plug
1473 		 *	event.
1474 		 */
1475 		if (ops->ndo_stop)
1476 			ops->ndo_stop(dev);
1477 
1478 		dev->flags &= ~IFF_UP;
1479 		netpoll_poll_enable(dev);
1480 	}
1481 }
1482 
1483 static void __dev_close(struct net_device *dev)
1484 {
1485 	LIST_HEAD(single);
1486 
1487 	list_add(&dev->close_list, &single);
1488 	__dev_close_many(&single);
1489 	list_del(&single);
1490 }
1491 
1492 void dev_close_many(struct list_head *head, bool unlink)
1493 {
1494 	struct net_device *dev, *tmp;
1495 
1496 	/* Remove the devices that don't need to be closed */
1497 	list_for_each_entry_safe(dev, tmp, head, close_list)
1498 		if (!(dev->flags & IFF_UP))
1499 			list_del_init(&dev->close_list);
1500 
1501 	__dev_close_many(head);
1502 
1503 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1504 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1505 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1506 		if (unlink)
1507 			list_del_init(&dev->close_list);
1508 	}
1509 }
1510 EXPORT_SYMBOL(dev_close_many);
1511 
1512 /**
1513  *	dev_close - shutdown an interface.
1514  *	@dev: device to shutdown
1515  *
1516  *	This function moves an active device into down state. A
1517  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1518  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1519  *	chain.
1520  */
1521 void dev_close(struct net_device *dev)
1522 {
1523 	if (dev->flags & IFF_UP) {
1524 		LIST_HEAD(single);
1525 
1526 		list_add(&dev->close_list, &single);
1527 		dev_close_many(&single, true);
1528 		list_del(&single);
1529 	}
1530 }
1531 EXPORT_SYMBOL(dev_close);
1532 
1533 
1534 /**
1535  *	dev_disable_lro - disable Large Receive Offload on a device
1536  *	@dev: device
1537  *
1538  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1539  *	called under RTNL.  This is needed if received packets may be
1540  *	forwarded to another interface.
1541  */
1542 void dev_disable_lro(struct net_device *dev)
1543 {
1544 	struct net_device *lower_dev;
1545 	struct list_head *iter;
1546 
1547 	dev->wanted_features &= ~NETIF_F_LRO;
1548 	netdev_update_features(dev);
1549 
1550 	if (unlikely(dev->features & NETIF_F_LRO))
1551 		netdev_WARN(dev, "failed to disable LRO!\n");
1552 
1553 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1554 		dev_disable_lro(lower_dev);
1555 }
1556 EXPORT_SYMBOL(dev_disable_lro);
1557 
1558 /**
1559  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1560  *	@dev: device
1561  *
1562  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1563  *	called under RTNL.  This is needed if Generic XDP is installed on
1564  *	the device.
1565  */
1566 static void dev_disable_gro_hw(struct net_device *dev)
1567 {
1568 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1569 	netdev_update_features(dev);
1570 
1571 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1572 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1573 }
1574 
1575 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1576 {
1577 #define N(val) 						\
1578 	case NETDEV_##val:				\
1579 		return "NETDEV_" __stringify(val);
1580 	switch (cmd) {
1581 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1582 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1583 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1584 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1585 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1586 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1587 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1588 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1589 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1590 	}
1591 #undef N
1592 	return "UNKNOWN_NETDEV_EVENT";
1593 }
1594 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1595 
1596 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1597 				   struct net_device *dev)
1598 {
1599 	struct netdev_notifier_info info = {
1600 		.dev = dev,
1601 	};
1602 
1603 	return nb->notifier_call(nb, val, &info);
1604 }
1605 
1606 static int dev_boot_phase = 1;
1607 
1608 /**
1609  * register_netdevice_notifier - register a network notifier block
1610  * @nb: notifier
1611  *
1612  * Register a notifier to be called when network device events occur.
1613  * The notifier passed is linked into the kernel structures and must
1614  * not be reused until it has been unregistered. A negative errno code
1615  * is returned on a failure.
1616  *
1617  * When registered all registration and up events are replayed
1618  * to the new notifier to allow device to have a race free
1619  * view of the network device list.
1620  */
1621 
1622 int register_netdevice_notifier(struct notifier_block *nb)
1623 {
1624 	struct net_device *dev;
1625 	struct net_device *last;
1626 	struct net *net;
1627 	int err;
1628 
1629 	/* Close race with setup_net() and cleanup_net() */
1630 	down_write(&pernet_ops_rwsem);
1631 	rtnl_lock();
1632 	err = raw_notifier_chain_register(&netdev_chain, nb);
1633 	if (err)
1634 		goto unlock;
1635 	if (dev_boot_phase)
1636 		goto unlock;
1637 	for_each_net(net) {
1638 		for_each_netdev(net, dev) {
1639 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1640 			err = notifier_to_errno(err);
1641 			if (err)
1642 				goto rollback;
1643 
1644 			if (!(dev->flags & IFF_UP))
1645 				continue;
1646 
1647 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1648 		}
1649 	}
1650 
1651 unlock:
1652 	rtnl_unlock();
1653 	up_write(&pernet_ops_rwsem);
1654 	return err;
1655 
1656 rollback:
1657 	last = dev;
1658 	for_each_net(net) {
1659 		for_each_netdev(net, dev) {
1660 			if (dev == last)
1661 				goto outroll;
1662 
1663 			if (dev->flags & IFF_UP) {
1664 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665 							dev);
1666 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1667 			}
1668 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1669 		}
1670 	}
1671 
1672 outroll:
1673 	raw_notifier_chain_unregister(&netdev_chain, nb);
1674 	goto unlock;
1675 }
1676 EXPORT_SYMBOL(register_netdevice_notifier);
1677 
1678 /**
1679  * unregister_netdevice_notifier - unregister a network notifier block
1680  * @nb: notifier
1681  *
1682  * Unregister a notifier previously registered by
1683  * register_netdevice_notifier(). The notifier is unlinked into the
1684  * kernel structures and may then be reused. A negative errno code
1685  * is returned on a failure.
1686  *
1687  * After unregistering unregister and down device events are synthesized
1688  * for all devices on the device list to the removed notifier to remove
1689  * the need for special case cleanup code.
1690  */
1691 
1692 int unregister_netdevice_notifier(struct notifier_block *nb)
1693 {
1694 	struct net_device *dev;
1695 	struct net *net;
1696 	int err;
1697 
1698 	/* Close race with setup_net() and cleanup_net() */
1699 	down_write(&pernet_ops_rwsem);
1700 	rtnl_lock();
1701 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1702 	if (err)
1703 		goto unlock;
1704 
1705 	for_each_net(net) {
1706 		for_each_netdev(net, dev) {
1707 			if (dev->flags & IFF_UP) {
1708 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1709 							dev);
1710 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1711 			}
1712 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1713 		}
1714 	}
1715 unlock:
1716 	rtnl_unlock();
1717 	up_write(&pernet_ops_rwsem);
1718 	return err;
1719 }
1720 EXPORT_SYMBOL(unregister_netdevice_notifier);
1721 
1722 /**
1723  *	call_netdevice_notifiers_info - call all network notifier blocks
1724  *	@val: value passed unmodified to notifier function
1725  *	@info: notifier information data
1726  *
1727  *	Call all network notifier blocks.  Parameters and return value
1728  *	are as for raw_notifier_call_chain().
1729  */
1730 
1731 static int call_netdevice_notifiers_info(unsigned long val,
1732 					 struct netdev_notifier_info *info)
1733 {
1734 	ASSERT_RTNL();
1735 	return raw_notifier_call_chain(&netdev_chain, val, info);
1736 }
1737 
1738 /**
1739  *	call_netdevice_notifiers - call all network notifier blocks
1740  *      @val: value passed unmodified to notifier function
1741  *      @dev: net_device pointer passed unmodified to notifier function
1742  *
1743  *	Call all network notifier blocks.  Parameters and return value
1744  *	are as for raw_notifier_call_chain().
1745  */
1746 
1747 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1748 {
1749 	struct netdev_notifier_info info = {
1750 		.dev = dev,
1751 	};
1752 
1753 	return call_netdevice_notifiers_info(val, &info);
1754 }
1755 EXPORT_SYMBOL(call_netdevice_notifiers);
1756 
1757 #ifdef CONFIG_NET_INGRESS
1758 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1759 
1760 void net_inc_ingress_queue(void)
1761 {
1762 	static_branch_inc(&ingress_needed_key);
1763 }
1764 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1765 
1766 void net_dec_ingress_queue(void)
1767 {
1768 	static_branch_dec(&ingress_needed_key);
1769 }
1770 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1771 #endif
1772 
1773 #ifdef CONFIG_NET_EGRESS
1774 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1775 
1776 void net_inc_egress_queue(void)
1777 {
1778 	static_branch_inc(&egress_needed_key);
1779 }
1780 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1781 
1782 void net_dec_egress_queue(void)
1783 {
1784 	static_branch_dec(&egress_needed_key);
1785 }
1786 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1787 #endif
1788 
1789 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1790 #ifdef HAVE_JUMP_LABEL
1791 static atomic_t netstamp_needed_deferred;
1792 static atomic_t netstamp_wanted;
1793 static void netstamp_clear(struct work_struct *work)
1794 {
1795 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1796 	int wanted;
1797 
1798 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1799 	if (wanted > 0)
1800 		static_branch_enable(&netstamp_needed_key);
1801 	else
1802 		static_branch_disable(&netstamp_needed_key);
1803 }
1804 static DECLARE_WORK(netstamp_work, netstamp_clear);
1805 #endif
1806 
1807 void net_enable_timestamp(void)
1808 {
1809 #ifdef HAVE_JUMP_LABEL
1810 	int wanted;
1811 
1812 	while (1) {
1813 		wanted = atomic_read(&netstamp_wanted);
1814 		if (wanted <= 0)
1815 			break;
1816 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1817 			return;
1818 	}
1819 	atomic_inc(&netstamp_needed_deferred);
1820 	schedule_work(&netstamp_work);
1821 #else
1822 	static_branch_inc(&netstamp_needed_key);
1823 #endif
1824 }
1825 EXPORT_SYMBOL(net_enable_timestamp);
1826 
1827 void net_disable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830 	int wanted;
1831 
1832 	while (1) {
1833 		wanted = atomic_read(&netstamp_wanted);
1834 		if (wanted <= 1)
1835 			break;
1836 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1837 			return;
1838 	}
1839 	atomic_dec(&netstamp_needed_deferred);
1840 	schedule_work(&netstamp_work);
1841 #else
1842 	static_branch_dec(&netstamp_needed_key);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_disable_timestamp);
1846 
1847 static inline void net_timestamp_set(struct sk_buff *skb)
1848 {
1849 	skb->tstamp = 0;
1850 	if (static_branch_unlikely(&netstamp_needed_key))
1851 		__net_timestamp(skb);
1852 }
1853 
1854 #define net_timestamp_check(COND, SKB)				\
1855 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1856 		if ((COND) && !(SKB)->tstamp)			\
1857 			__net_timestamp(SKB);			\
1858 	}							\
1859 
1860 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1861 {
1862 	unsigned int len;
1863 
1864 	if (!(dev->flags & IFF_UP))
1865 		return false;
1866 
1867 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1868 	if (skb->len <= len)
1869 		return true;
1870 
1871 	/* if TSO is enabled, we don't care about the length as the packet
1872 	 * could be forwarded without being segmented before
1873 	 */
1874 	if (skb_is_gso(skb))
1875 		return true;
1876 
1877 	return false;
1878 }
1879 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1880 
1881 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1882 {
1883 	int ret = ____dev_forward_skb(dev, skb);
1884 
1885 	if (likely(!ret)) {
1886 		skb->protocol = eth_type_trans(skb, dev);
1887 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1888 	}
1889 
1890 	return ret;
1891 }
1892 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1893 
1894 /**
1895  * dev_forward_skb - loopback an skb to another netif
1896  *
1897  * @dev: destination network device
1898  * @skb: buffer to forward
1899  *
1900  * return values:
1901  *	NET_RX_SUCCESS	(no congestion)
1902  *	NET_RX_DROP     (packet was dropped, but freed)
1903  *
1904  * dev_forward_skb can be used for injecting an skb from the
1905  * start_xmit function of one device into the receive queue
1906  * of another device.
1907  *
1908  * The receiving device may be in another namespace, so
1909  * we have to clear all information in the skb that could
1910  * impact namespace isolation.
1911  */
1912 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1913 {
1914 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1915 }
1916 EXPORT_SYMBOL_GPL(dev_forward_skb);
1917 
1918 static inline int deliver_skb(struct sk_buff *skb,
1919 			      struct packet_type *pt_prev,
1920 			      struct net_device *orig_dev)
1921 {
1922 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1923 		return -ENOMEM;
1924 	refcount_inc(&skb->users);
1925 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1926 }
1927 
1928 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1929 					  struct packet_type **pt,
1930 					  struct net_device *orig_dev,
1931 					  __be16 type,
1932 					  struct list_head *ptype_list)
1933 {
1934 	struct packet_type *ptype, *pt_prev = *pt;
1935 
1936 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1937 		if (ptype->type != type)
1938 			continue;
1939 		if (pt_prev)
1940 			deliver_skb(skb, pt_prev, orig_dev);
1941 		pt_prev = ptype;
1942 	}
1943 	*pt = pt_prev;
1944 }
1945 
1946 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1947 {
1948 	if (!ptype->af_packet_priv || !skb->sk)
1949 		return false;
1950 
1951 	if (ptype->id_match)
1952 		return ptype->id_match(ptype, skb->sk);
1953 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1954 		return true;
1955 
1956 	return false;
1957 }
1958 
1959 /*
1960  *	Support routine. Sends outgoing frames to any network
1961  *	taps currently in use.
1962  */
1963 
1964 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1965 {
1966 	struct packet_type *ptype;
1967 	struct sk_buff *skb2 = NULL;
1968 	struct packet_type *pt_prev = NULL;
1969 	struct list_head *ptype_list = &ptype_all;
1970 
1971 	rcu_read_lock();
1972 again:
1973 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1974 		/* Never send packets back to the socket
1975 		 * they originated from - MvS (miquels@drinkel.ow.org)
1976 		 */
1977 		if (skb_loop_sk(ptype, skb))
1978 			continue;
1979 
1980 		if (pt_prev) {
1981 			deliver_skb(skb2, pt_prev, skb->dev);
1982 			pt_prev = ptype;
1983 			continue;
1984 		}
1985 
1986 		/* need to clone skb, done only once */
1987 		skb2 = skb_clone(skb, GFP_ATOMIC);
1988 		if (!skb2)
1989 			goto out_unlock;
1990 
1991 		net_timestamp_set(skb2);
1992 
1993 		/* skb->nh should be correctly
1994 		 * set by sender, so that the second statement is
1995 		 * just protection against buggy protocols.
1996 		 */
1997 		skb_reset_mac_header(skb2);
1998 
1999 		if (skb_network_header(skb2) < skb2->data ||
2000 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2001 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2002 					     ntohs(skb2->protocol),
2003 					     dev->name);
2004 			skb_reset_network_header(skb2);
2005 		}
2006 
2007 		skb2->transport_header = skb2->network_header;
2008 		skb2->pkt_type = PACKET_OUTGOING;
2009 		pt_prev = ptype;
2010 	}
2011 
2012 	if (ptype_list == &ptype_all) {
2013 		ptype_list = &dev->ptype_all;
2014 		goto again;
2015 	}
2016 out_unlock:
2017 	if (pt_prev) {
2018 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2019 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2020 		else
2021 			kfree_skb(skb2);
2022 	}
2023 	rcu_read_unlock();
2024 }
2025 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2026 
2027 /**
2028  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2029  * @dev: Network device
2030  * @txq: number of queues available
2031  *
2032  * If real_num_tx_queues is changed the tc mappings may no longer be
2033  * valid. To resolve this verify the tc mapping remains valid and if
2034  * not NULL the mapping. With no priorities mapping to this
2035  * offset/count pair it will no longer be used. In the worst case TC0
2036  * is invalid nothing can be done so disable priority mappings. If is
2037  * expected that drivers will fix this mapping if they can before
2038  * calling netif_set_real_num_tx_queues.
2039  */
2040 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2041 {
2042 	int i;
2043 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2044 
2045 	/* If TC0 is invalidated disable TC mapping */
2046 	if (tc->offset + tc->count > txq) {
2047 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2048 		dev->num_tc = 0;
2049 		return;
2050 	}
2051 
2052 	/* Invalidated prio to tc mappings set to TC0 */
2053 	for (i = 1; i < TC_BITMASK + 1; i++) {
2054 		int q = netdev_get_prio_tc_map(dev, i);
2055 
2056 		tc = &dev->tc_to_txq[q];
2057 		if (tc->offset + tc->count > txq) {
2058 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2059 				i, q);
2060 			netdev_set_prio_tc_map(dev, i, 0);
2061 		}
2062 	}
2063 }
2064 
2065 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2066 {
2067 	if (dev->num_tc) {
2068 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2069 		int i;
2070 
2071 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072 			if ((txq - tc->offset) < tc->count)
2073 				return i;
2074 		}
2075 
2076 		return -1;
2077 	}
2078 
2079 	return 0;
2080 }
2081 EXPORT_SYMBOL(netdev_txq_to_tc);
2082 
2083 #ifdef CONFIG_XPS
2084 static DEFINE_MUTEX(xps_map_mutex);
2085 #define xmap_dereference(P)		\
2086 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2087 
2088 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2089 			     int tci, u16 index)
2090 {
2091 	struct xps_map *map = NULL;
2092 	int pos;
2093 
2094 	if (dev_maps)
2095 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2096 	if (!map)
2097 		return false;
2098 
2099 	for (pos = map->len; pos--;) {
2100 		if (map->queues[pos] != index)
2101 			continue;
2102 
2103 		if (map->len > 1) {
2104 			map->queues[pos] = map->queues[--map->len];
2105 			break;
2106 		}
2107 
2108 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2109 		kfree_rcu(map, rcu);
2110 		return false;
2111 	}
2112 
2113 	return true;
2114 }
2115 
2116 static bool remove_xps_queue_cpu(struct net_device *dev,
2117 				 struct xps_dev_maps *dev_maps,
2118 				 int cpu, u16 offset, u16 count)
2119 {
2120 	int num_tc = dev->num_tc ? : 1;
2121 	bool active = false;
2122 	int tci;
2123 
2124 	for (tci = cpu * num_tc; num_tc--; tci++) {
2125 		int i, j;
2126 
2127 		for (i = count, j = offset; i--; j++) {
2128 			if (!remove_xps_queue(dev_maps, tci, j))
2129 				break;
2130 		}
2131 
2132 		active |= i < 0;
2133 	}
2134 
2135 	return active;
2136 }
2137 
2138 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2139 				   u16 count)
2140 {
2141 	struct xps_dev_maps *dev_maps;
2142 	int cpu, i;
2143 	bool active = false;
2144 
2145 	mutex_lock(&xps_map_mutex);
2146 	dev_maps = xmap_dereference(dev->xps_maps);
2147 
2148 	if (!dev_maps)
2149 		goto out_no_maps;
2150 
2151 	for_each_possible_cpu(cpu)
2152 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2153 					       offset, count);
2154 
2155 	if (!active) {
2156 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2157 		kfree_rcu(dev_maps, rcu);
2158 	}
2159 
2160 	for (i = offset + (count - 1); count--; i--)
2161 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2162 					     NUMA_NO_NODE);
2163 
2164 out_no_maps:
2165 	mutex_unlock(&xps_map_mutex);
2166 }
2167 
2168 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2169 {
2170 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2171 }
2172 
2173 static struct xps_map *expand_xps_map(struct xps_map *map,
2174 				      int cpu, u16 index)
2175 {
2176 	struct xps_map *new_map;
2177 	int alloc_len = XPS_MIN_MAP_ALLOC;
2178 	int i, pos;
2179 
2180 	for (pos = 0; map && pos < map->len; pos++) {
2181 		if (map->queues[pos] != index)
2182 			continue;
2183 		return map;
2184 	}
2185 
2186 	/* Need to add queue to this CPU's existing map */
2187 	if (map) {
2188 		if (pos < map->alloc_len)
2189 			return map;
2190 
2191 		alloc_len = map->alloc_len * 2;
2192 	}
2193 
2194 	/* Need to allocate new map to store queue on this CPU's map */
2195 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2196 			       cpu_to_node(cpu));
2197 	if (!new_map)
2198 		return NULL;
2199 
2200 	for (i = 0; i < pos; i++)
2201 		new_map->queues[i] = map->queues[i];
2202 	new_map->alloc_len = alloc_len;
2203 	new_map->len = pos;
2204 
2205 	return new_map;
2206 }
2207 
2208 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2209 			u16 index)
2210 {
2211 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2212 	int i, cpu, tci, numa_node_id = -2;
2213 	int maps_sz, num_tc = 1, tc = 0;
2214 	struct xps_map *map, *new_map;
2215 	bool active = false;
2216 
2217 	if (dev->num_tc) {
2218 		num_tc = dev->num_tc;
2219 		tc = netdev_txq_to_tc(dev, index);
2220 		if (tc < 0)
2221 			return -EINVAL;
2222 	}
2223 
2224 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2225 	if (maps_sz < L1_CACHE_BYTES)
2226 		maps_sz = L1_CACHE_BYTES;
2227 
2228 	mutex_lock(&xps_map_mutex);
2229 
2230 	dev_maps = xmap_dereference(dev->xps_maps);
2231 
2232 	/* allocate memory for queue storage */
2233 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2234 		if (!new_dev_maps)
2235 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2236 		if (!new_dev_maps) {
2237 			mutex_unlock(&xps_map_mutex);
2238 			return -ENOMEM;
2239 		}
2240 
2241 		tci = cpu * num_tc + tc;
2242 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2243 				 NULL;
2244 
2245 		map = expand_xps_map(map, cpu, index);
2246 		if (!map)
2247 			goto error;
2248 
2249 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2250 	}
2251 
2252 	if (!new_dev_maps)
2253 		goto out_no_new_maps;
2254 
2255 	for_each_possible_cpu(cpu) {
2256 		/* copy maps belonging to foreign traffic classes */
2257 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2258 			/* fill in the new device map from the old device map */
2259 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2260 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2261 		}
2262 
2263 		/* We need to explicitly update tci as prevous loop
2264 		 * could break out early if dev_maps is NULL.
2265 		 */
2266 		tci = cpu * num_tc + tc;
2267 
2268 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2269 			/* add queue to CPU maps */
2270 			int pos = 0;
2271 
2272 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2273 			while ((pos < map->len) && (map->queues[pos] != index))
2274 				pos++;
2275 
2276 			if (pos == map->len)
2277 				map->queues[map->len++] = index;
2278 #ifdef CONFIG_NUMA
2279 			if (numa_node_id == -2)
2280 				numa_node_id = cpu_to_node(cpu);
2281 			else if (numa_node_id != cpu_to_node(cpu))
2282 				numa_node_id = -1;
2283 #endif
2284 		} else if (dev_maps) {
2285 			/* fill in the new device map from the old device map */
2286 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2287 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2288 		}
2289 
2290 		/* copy maps belonging to foreign traffic classes */
2291 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2292 			/* fill in the new device map from the old device map */
2293 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2294 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2295 		}
2296 	}
2297 
2298 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2299 
2300 	/* Cleanup old maps */
2301 	if (!dev_maps)
2302 		goto out_no_old_maps;
2303 
2304 	for_each_possible_cpu(cpu) {
2305 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2306 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2307 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2308 			if (map && map != new_map)
2309 				kfree_rcu(map, rcu);
2310 		}
2311 	}
2312 
2313 	kfree_rcu(dev_maps, rcu);
2314 
2315 out_no_old_maps:
2316 	dev_maps = new_dev_maps;
2317 	active = true;
2318 
2319 out_no_new_maps:
2320 	/* update Tx queue numa node */
2321 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2322 				     (numa_node_id >= 0) ? numa_node_id :
2323 				     NUMA_NO_NODE);
2324 
2325 	if (!dev_maps)
2326 		goto out_no_maps;
2327 
2328 	/* removes queue from unused CPUs */
2329 	for_each_possible_cpu(cpu) {
2330 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2331 			active |= remove_xps_queue(dev_maps, tci, index);
2332 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2333 			active |= remove_xps_queue(dev_maps, tci, index);
2334 		for (i = num_tc - tc, tci++; --i; tci++)
2335 			active |= remove_xps_queue(dev_maps, tci, index);
2336 	}
2337 
2338 	/* free map if not active */
2339 	if (!active) {
2340 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2341 		kfree_rcu(dev_maps, rcu);
2342 	}
2343 
2344 out_no_maps:
2345 	mutex_unlock(&xps_map_mutex);
2346 
2347 	return 0;
2348 error:
2349 	/* remove any maps that we added */
2350 	for_each_possible_cpu(cpu) {
2351 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2352 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2353 			map = dev_maps ?
2354 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2355 			      NULL;
2356 			if (new_map && new_map != map)
2357 				kfree(new_map);
2358 		}
2359 	}
2360 
2361 	mutex_unlock(&xps_map_mutex);
2362 
2363 	kfree(new_dev_maps);
2364 	return -ENOMEM;
2365 }
2366 EXPORT_SYMBOL(netif_set_xps_queue);
2367 
2368 #endif
2369 void netdev_reset_tc(struct net_device *dev)
2370 {
2371 #ifdef CONFIG_XPS
2372 	netif_reset_xps_queues_gt(dev, 0);
2373 #endif
2374 	dev->num_tc = 0;
2375 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2376 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2377 }
2378 EXPORT_SYMBOL(netdev_reset_tc);
2379 
2380 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2381 {
2382 	if (tc >= dev->num_tc)
2383 		return -EINVAL;
2384 
2385 #ifdef CONFIG_XPS
2386 	netif_reset_xps_queues(dev, offset, count);
2387 #endif
2388 	dev->tc_to_txq[tc].count = count;
2389 	dev->tc_to_txq[tc].offset = offset;
2390 	return 0;
2391 }
2392 EXPORT_SYMBOL(netdev_set_tc_queue);
2393 
2394 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2395 {
2396 	if (num_tc > TC_MAX_QUEUE)
2397 		return -EINVAL;
2398 
2399 #ifdef CONFIG_XPS
2400 	netif_reset_xps_queues_gt(dev, 0);
2401 #endif
2402 	dev->num_tc = num_tc;
2403 	return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_set_num_tc);
2406 
2407 /*
2408  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2409  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2410  */
2411 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2412 {
2413 	bool disabling;
2414 	int rc;
2415 
2416 	disabling = txq < dev->real_num_tx_queues;
2417 
2418 	if (txq < 1 || txq > dev->num_tx_queues)
2419 		return -EINVAL;
2420 
2421 	if (dev->reg_state == NETREG_REGISTERED ||
2422 	    dev->reg_state == NETREG_UNREGISTERING) {
2423 		ASSERT_RTNL();
2424 
2425 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2426 						  txq);
2427 		if (rc)
2428 			return rc;
2429 
2430 		if (dev->num_tc)
2431 			netif_setup_tc(dev, txq);
2432 
2433 		dev->real_num_tx_queues = txq;
2434 
2435 		if (disabling) {
2436 			synchronize_net();
2437 			qdisc_reset_all_tx_gt(dev, txq);
2438 #ifdef CONFIG_XPS
2439 			netif_reset_xps_queues_gt(dev, txq);
2440 #endif
2441 		}
2442 	} else {
2443 		dev->real_num_tx_queues = txq;
2444 	}
2445 
2446 	return 0;
2447 }
2448 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2449 
2450 #ifdef CONFIG_SYSFS
2451 /**
2452  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2453  *	@dev: Network device
2454  *	@rxq: Actual number of RX queues
2455  *
2456  *	This must be called either with the rtnl_lock held or before
2457  *	registration of the net device.  Returns 0 on success, or a
2458  *	negative error code.  If called before registration, it always
2459  *	succeeds.
2460  */
2461 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2462 {
2463 	int rc;
2464 
2465 	if (rxq < 1 || rxq > dev->num_rx_queues)
2466 		return -EINVAL;
2467 
2468 	if (dev->reg_state == NETREG_REGISTERED) {
2469 		ASSERT_RTNL();
2470 
2471 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2472 						  rxq);
2473 		if (rc)
2474 			return rc;
2475 	}
2476 
2477 	dev->real_num_rx_queues = rxq;
2478 	return 0;
2479 }
2480 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2481 #endif
2482 
2483 /**
2484  * netif_get_num_default_rss_queues - default number of RSS queues
2485  *
2486  * This routine should set an upper limit on the number of RSS queues
2487  * used by default by multiqueue devices.
2488  */
2489 int netif_get_num_default_rss_queues(void)
2490 {
2491 	return is_kdump_kernel() ?
2492 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2493 }
2494 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2495 
2496 static void __netif_reschedule(struct Qdisc *q)
2497 {
2498 	struct softnet_data *sd;
2499 	unsigned long flags;
2500 
2501 	local_irq_save(flags);
2502 	sd = this_cpu_ptr(&softnet_data);
2503 	q->next_sched = NULL;
2504 	*sd->output_queue_tailp = q;
2505 	sd->output_queue_tailp = &q->next_sched;
2506 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2507 	local_irq_restore(flags);
2508 }
2509 
2510 void __netif_schedule(struct Qdisc *q)
2511 {
2512 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2513 		__netif_reschedule(q);
2514 }
2515 EXPORT_SYMBOL(__netif_schedule);
2516 
2517 struct dev_kfree_skb_cb {
2518 	enum skb_free_reason reason;
2519 };
2520 
2521 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2522 {
2523 	return (struct dev_kfree_skb_cb *)skb->cb;
2524 }
2525 
2526 void netif_schedule_queue(struct netdev_queue *txq)
2527 {
2528 	rcu_read_lock();
2529 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2530 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2531 
2532 		__netif_schedule(q);
2533 	}
2534 	rcu_read_unlock();
2535 }
2536 EXPORT_SYMBOL(netif_schedule_queue);
2537 
2538 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2539 {
2540 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2541 		struct Qdisc *q;
2542 
2543 		rcu_read_lock();
2544 		q = rcu_dereference(dev_queue->qdisc);
2545 		__netif_schedule(q);
2546 		rcu_read_unlock();
2547 	}
2548 }
2549 EXPORT_SYMBOL(netif_tx_wake_queue);
2550 
2551 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2552 {
2553 	unsigned long flags;
2554 
2555 	if (unlikely(!skb))
2556 		return;
2557 
2558 	if (likely(refcount_read(&skb->users) == 1)) {
2559 		smp_rmb();
2560 		refcount_set(&skb->users, 0);
2561 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2562 		return;
2563 	}
2564 	get_kfree_skb_cb(skb)->reason = reason;
2565 	local_irq_save(flags);
2566 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2567 	__this_cpu_write(softnet_data.completion_queue, skb);
2568 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2569 	local_irq_restore(flags);
2570 }
2571 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2572 
2573 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2574 {
2575 	if (in_irq() || irqs_disabled())
2576 		__dev_kfree_skb_irq(skb, reason);
2577 	else
2578 		dev_kfree_skb(skb);
2579 }
2580 EXPORT_SYMBOL(__dev_kfree_skb_any);
2581 
2582 
2583 /**
2584  * netif_device_detach - mark device as removed
2585  * @dev: network device
2586  *
2587  * Mark device as removed from system and therefore no longer available.
2588  */
2589 void netif_device_detach(struct net_device *dev)
2590 {
2591 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2592 	    netif_running(dev)) {
2593 		netif_tx_stop_all_queues(dev);
2594 	}
2595 }
2596 EXPORT_SYMBOL(netif_device_detach);
2597 
2598 /**
2599  * netif_device_attach - mark device as attached
2600  * @dev: network device
2601  *
2602  * Mark device as attached from system and restart if needed.
2603  */
2604 void netif_device_attach(struct net_device *dev)
2605 {
2606 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2607 	    netif_running(dev)) {
2608 		netif_tx_wake_all_queues(dev);
2609 		__netdev_watchdog_up(dev);
2610 	}
2611 }
2612 EXPORT_SYMBOL(netif_device_attach);
2613 
2614 /*
2615  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2616  * to be used as a distribution range.
2617  */
2618 static u16 skb_tx_hash(const struct net_device *dev, struct sk_buff *skb)
2619 {
2620 	u32 hash;
2621 	u16 qoffset = 0;
2622 	u16 qcount = dev->real_num_tx_queues;
2623 
2624 	if (skb_rx_queue_recorded(skb)) {
2625 		hash = skb_get_rx_queue(skb);
2626 		while (unlikely(hash >= qcount))
2627 			hash -= qcount;
2628 		return hash;
2629 	}
2630 
2631 	if (dev->num_tc) {
2632 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2633 
2634 		qoffset = dev->tc_to_txq[tc].offset;
2635 		qcount = dev->tc_to_txq[tc].count;
2636 	}
2637 
2638 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2639 }
2640 
2641 static void skb_warn_bad_offload(const struct sk_buff *skb)
2642 {
2643 	static const netdev_features_t null_features;
2644 	struct net_device *dev = skb->dev;
2645 	const char *name = "";
2646 
2647 	if (!net_ratelimit())
2648 		return;
2649 
2650 	if (dev) {
2651 		if (dev->dev.parent)
2652 			name = dev_driver_string(dev->dev.parent);
2653 		else
2654 			name = netdev_name(dev);
2655 	}
2656 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2657 	     "gso_type=%d ip_summed=%d\n",
2658 	     name, dev ? &dev->features : &null_features,
2659 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2660 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2661 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2662 }
2663 
2664 /*
2665  * Invalidate hardware checksum when packet is to be mangled, and
2666  * complete checksum manually on outgoing path.
2667  */
2668 int skb_checksum_help(struct sk_buff *skb)
2669 {
2670 	__wsum csum;
2671 	int ret = 0, offset;
2672 
2673 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2674 		goto out_set_summed;
2675 
2676 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2677 		skb_warn_bad_offload(skb);
2678 		return -EINVAL;
2679 	}
2680 
2681 	/* Before computing a checksum, we should make sure no frag could
2682 	 * be modified by an external entity : checksum could be wrong.
2683 	 */
2684 	if (skb_has_shared_frag(skb)) {
2685 		ret = __skb_linearize(skb);
2686 		if (ret)
2687 			goto out;
2688 	}
2689 
2690 	offset = skb_checksum_start_offset(skb);
2691 	BUG_ON(offset >= skb_headlen(skb));
2692 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2693 
2694 	offset += skb->csum_offset;
2695 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2696 
2697 	if (skb_cloned(skb) &&
2698 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2699 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2700 		if (ret)
2701 			goto out;
2702 	}
2703 
2704 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2705 out_set_summed:
2706 	skb->ip_summed = CHECKSUM_NONE;
2707 out:
2708 	return ret;
2709 }
2710 EXPORT_SYMBOL(skb_checksum_help);
2711 
2712 int skb_crc32c_csum_help(struct sk_buff *skb)
2713 {
2714 	__le32 crc32c_csum;
2715 	int ret = 0, offset, start;
2716 
2717 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2718 		goto out;
2719 
2720 	if (unlikely(skb_is_gso(skb)))
2721 		goto out;
2722 
2723 	/* Before computing a checksum, we should make sure no frag could
2724 	 * be modified by an external entity : checksum could be wrong.
2725 	 */
2726 	if (unlikely(skb_has_shared_frag(skb))) {
2727 		ret = __skb_linearize(skb);
2728 		if (ret)
2729 			goto out;
2730 	}
2731 	start = skb_checksum_start_offset(skb);
2732 	offset = start + offsetof(struct sctphdr, checksum);
2733 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2734 		ret = -EINVAL;
2735 		goto out;
2736 	}
2737 	if (skb_cloned(skb) &&
2738 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2739 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2740 		if (ret)
2741 			goto out;
2742 	}
2743 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2744 						  skb->len - start, ~(__u32)0,
2745 						  crc32c_csum_stub));
2746 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2747 	skb->ip_summed = CHECKSUM_NONE;
2748 	skb->csum_not_inet = 0;
2749 out:
2750 	return ret;
2751 }
2752 
2753 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2754 {
2755 	__be16 type = skb->protocol;
2756 
2757 	/* Tunnel gso handlers can set protocol to ethernet. */
2758 	if (type == htons(ETH_P_TEB)) {
2759 		struct ethhdr *eth;
2760 
2761 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2762 			return 0;
2763 
2764 		eth = (struct ethhdr *)skb->data;
2765 		type = eth->h_proto;
2766 	}
2767 
2768 	return __vlan_get_protocol(skb, type, depth);
2769 }
2770 
2771 /**
2772  *	skb_mac_gso_segment - mac layer segmentation handler.
2773  *	@skb: buffer to segment
2774  *	@features: features for the output path (see dev->features)
2775  */
2776 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2777 				    netdev_features_t features)
2778 {
2779 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2780 	struct packet_offload *ptype;
2781 	int vlan_depth = skb->mac_len;
2782 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2783 
2784 	if (unlikely(!type))
2785 		return ERR_PTR(-EINVAL);
2786 
2787 	__skb_pull(skb, vlan_depth);
2788 
2789 	rcu_read_lock();
2790 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2791 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2792 			segs = ptype->callbacks.gso_segment(skb, features);
2793 			break;
2794 		}
2795 	}
2796 	rcu_read_unlock();
2797 
2798 	__skb_push(skb, skb->data - skb_mac_header(skb));
2799 
2800 	return segs;
2801 }
2802 EXPORT_SYMBOL(skb_mac_gso_segment);
2803 
2804 
2805 /* openvswitch calls this on rx path, so we need a different check.
2806  */
2807 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2808 {
2809 	if (tx_path)
2810 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2811 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2812 
2813 	return skb->ip_summed == CHECKSUM_NONE;
2814 }
2815 
2816 /**
2817  *	__skb_gso_segment - Perform segmentation on skb.
2818  *	@skb: buffer to segment
2819  *	@features: features for the output path (see dev->features)
2820  *	@tx_path: whether it is called in TX path
2821  *
2822  *	This function segments the given skb and returns a list of segments.
2823  *
2824  *	It may return NULL if the skb requires no segmentation.  This is
2825  *	only possible when GSO is used for verifying header integrity.
2826  *
2827  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2828  */
2829 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2830 				  netdev_features_t features, bool tx_path)
2831 {
2832 	struct sk_buff *segs;
2833 
2834 	if (unlikely(skb_needs_check(skb, tx_path))) {
2835 		int err;
2836 
2837 		/* We're going to init ->check field in TCP or UDP header */
2838 		err = skb_cow_head(skb, 0);
2839 		if (err < 0)
2840 			return ERR_PTR(err);
2841 	}
2842 
2843 	/* Only report GSO partial support if it will enable us to
2844 	 * support segmentation on this frame without needing additional
2845 	 * work.
2846 	 */
2847 	if (features & NETIF_F_GSO_PARTIAL) {
2848 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2849 		struct net_device *dev = skb->dev;
2850 
2851 		partial_features |= dev->features & dev->gso_partial_features;
2852 		if (!skb_gso_ok(skb, features | partial_features))
2853 			features &= ~NETIF_F_GSO_PARTIAL;
2854 	}
2855 
2856 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2857 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2858 
2859 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2860 	SKB_GSO_CB(skb)->encap_level = 0;
2861 
2862 	skb_reset_mac_header(skb);
2863 	skb_reset_mac_len(skb);
2864 
2865 	segs = skb_mac_gso_segment(skb, features);
2866 
2867 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2868 		skb_warn_bad_offload(skb);
2869 
2870 	return segs;
2871 }
2872 EXPORT_SYMBOL(__skb_gso_segment);
2873 
2874 /* Take action when hardware reception checksum errors are detected. */
2875 #ifdef CONFIG_BUG
2876 void netdev_rx_csum_fault(struct net_device *dev)
2877 {
2878 	if (net_ratelimit()) {
2879 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2880 		dump_stack();
2881 	}
2882 }
2883 EXPORT_SYMBOL(netdev_rx_csum_fault);
2884 #endif
2885 
2886 /* XXX: check that highmem exists at all on the given machine. */
2887 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2888 {
2889 #ifdef CONFIG_HIGHMEM
2890 	int i;
2891 
2892 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2893 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2894 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2895 
2896 			if (PageHighMem(skb_frag_page(frag)))
2897 				return 1;
2898 		}
2899 	}
2900 #endif
2901 	return 0;
2902 }
2903 
2904 /* If MPLS offload request, verify we are testing hardware MPLS features
2905  * instead of standard features for the netdev.
2906  */
2907 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2908 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2909 					   netdev_features_t features,
2910 					   __be16 type)
2911 {
2912 	if (eth_p_mpls(type))
2913 		features &= skb->dev->mpls_features;
2914 
2915 	return features;
2916 }
2917 #else
2918 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2919 					   netdev_features_t features,
2920 					   __be16 type)
2921 {
2922 	return features;
2923 }
2924 #endif
2925 
2926 static netdev_features_t harmonize_features(struct sk_buff *skb,
2927 	netdev_features_t features)
2928 {
2929 	int tmp;
2930 	__be16 type;
2931 
2932 	type = skb_network_protocol(skb, &tmp);
2933 	features = net_mpls_features(skb, features, type);
2934 
2935 	if (skb->ip_summed != CHECKSUM_NONE &&
2936 	    !can_checksum_protocol(features, type)) {
2937 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2938 	}
2939 	if (illegal_highdma(skb->dev, skb))
2940 		features &= ~NETIF_F_SG;
2941 
2942 	return features;
2943 }
2944 
2945 netdev_features_t passthru_features_check(struct sk_buff *skb,
2946 					  struct net_device *dev,
2947 					  netdev_features_t features)
2948 {
2949 	return features;
2950 }
2951 EXPORT_SYMBOL(passthru_features_check);
2952 
2953 static netdev_features_t dflt_features_check(struct sk_buff *skb,
2954 					     struct net_device *dev,
2955 					     netdev_features_t features)
2956 {
2957 	return vlan_features_check(skb, features);
2958 }
2959 
2960 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2961 					    struct net_device *dev,
2962 					    netdev_features_t features)
2963 {
2964 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2965 
2966 	if (gso_segs > dev->gso_max_segs)
2967 		return features & ~NETIF_F_GSO_MASK;
2968 
2969 	/* Support for GSO partial features requires software
2970 	 * intervention before we can actually process the packets
2971 	 * so we need to strip support for any partial features now
2972 	 * and we can pull them back in after we have partially
2973 	 * segmented the frame.
2974 	 */
2975 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2976 		features &= ~dev->gso_partial_features;
2977 
2978 	/* Make sure to clear the IPv4 ID mangling feature if the
2979 	 * IPv4 header has the potential to be fragmented.
2980 	 */
2981 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2982 		struct iphdr *iph = skb->encapsulation ?
2983 				    inner_ip_hdr(skb) : ip_hdr(skb);
2984 
2985 		if (!(iph->frag_off & htons(IP_DF)))
2986 			features &= ~NETIF_F_TSO_MANGLEID;
2987 	}
2988 
2989 	return features;
2990 }
2991 
2992 netdev_features_t netif_skb_features(struct sk_buff *skb)
2993 {
2994 	struct net_device *dev = skb->dev;
2995 	netdev_features_t features = dev->features;
2996 
2997 	if (skb_is_gso(skb))
2998 		features = gso_features_check(skb, dev, features);
2999 
3000 	/* If encapsulation offload request, verify we are testing
3001 	 * hardware encapsulation features instead of standard
3002 	 * features for the netdev
3003 	 */
3004 	if (skb->encapsulation)
3005 		features &= dev->hw_enc_features;
3006 
3007 	if (skb_vlan_tagged(skb))
3008 		features = netdev_intersect_features(features,
3009 						     dev->vlan_features |
3010 						     NETIF_F_HW_VLAN_CTAG_TX |
3011 						     NETIF_F_HW_VLAN_STAG_TX);
3012 
3013 	if (dev->netdev_ops->ndo_features_check)
3014 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3015 								features);
3016 	else
3017 		features &= dflt_features_check(skb, dev, features);
3018 
3019 	return harmonize_features(skb, features);
3020 }
3021 EXPORT_SYMBOL(netif_skb_features);
3022 
3023 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3024 		    struct netdev_queue *txq, bool more)
3025 {
3026 	unsigned int len;
3027 	int rc;
3028 
3029 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3030 		dev_queue_xmit_nit(skb, dev);
3031 
3032 	len = skb->len;
3033 	trace_net_dev_start_xmit(skb, dev);
3034 	rc = netdev_start_xmit(skb, dev, txq, more);
3035 	trace_net_dev_xmit(skb, rc, dev, len);
3036 
3037 	return rc;
3038 }
3039 
3040 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3041 				    struct netdev_queue *txq, int *ret)
3042 {
3043 	struct sk_buff *skb = first;
3044 	int rc = NETDEV_TX_OK;
3045 
3046 	while (skb) {
3047 		struct sk_buff *next = skb->next;
3048 
3049 		skb->next = NULL;
3050 		rc = xmit_one(skb, dev, txq, next != NULL);
3051 		if (unlikely(!dev_xmit_complete(rc))) {
3052 			skb->next = next;
3053 			goto out;
3054 		}
3055 
3056 		skb = next;
3057 		if (netif_xmit_stopped(txq) && skb) {
3058 			rc = NETDEV_TX_BUSY;
3059 			break;
3060 		}
3061 	}
3062 
3063 out:
3064 	*ret = rc;
3065 	return skb;
3066 }
3067 
3068 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3069 					  netdev_features_t features)
3070 {
3071 	if (skb_vlan_tag_present(skb) &&
3072 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3073 		skb = __vlan_hwaccel_push_inside(skb);
3074 	return skb;
3075 }
3076 
3077 int skb_csum_hwoffload_help(struct sk_buff *skb,
3078 			    const netdev_features_t features)
3079 {
3080 	if (unlikely(skb->csum_not_inet))
3081 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3082 			skb_crc32c_csum_help(skb);
3083 
3084 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3085 }
3086 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3087 
3088 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3089 {
3090 	netdev_features_t features;
3091 
3092 	features = netif_skb_features(skb);
3093 	skb = validate_xmit_vlan(skb, features);
3094 	if (unlikely(!skb))
3095 		goto out_null;
3096 
3097 	skb = sk_validate_xmit_skb(skb, dev);
3098 	if (unlikely(!skb))
3099 		goto out_null;
3100 
3101 	if (netif_needs_gso(skb, features)) {
3102 		struct sk_buff *segs;
3103 
3104 		segs = skb_gso_segment(skb, features);
3105 		if (IS_ERR(segs)) {
3106 			goto out_kfree_skb;
3107 		} else if (segs) {
3108 			consume_skb(skb);
3109 			skb = segs;
3110 		}
3111 	} else {
3112 		if (skb_needs_linearize(skb, features) &&
3113 		    __skb_linearize(skb))
3114 			goto out_kfree_skb;
3115 
3116 		/* If packet is not checksummed and device does not
3117 		 * support checksumming for this protocol, complete
3118 		 * checksumming here.
3119 		 */
3120 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3121 			if (skb->encapsulation)
3122 				skb_set_inner_transport_header(skb,
3123 							       skb_checksum_start_offset(skb));
3124 			else
3125 				skb_set_transport_header(skb,
3126 							 skb_checksum_start_offset(skb));
3127 			if (skb_csum_hwoffload_help(skb, features))
3128 				goto out_kfree_skb;
3129 		}
3130 	}
3131 
3132 	skb = validate_xmit_xfrm(skb, features, again);
3133 
3134 	return skb;
3135 
3136 out_kfree_skb:
3137 	kfree_skb(skb);
3138 out_null:
3139 	atomic_long_inc(&dev->tx_dropped);
3140 	return NULL;
3141 }
3142 
3143 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3144 {
3145 	struct sk_buff *next, *head = NULL, *tail;
3146 
3147 	for (; skb != NULL; skb = next) {
3148 		next = skb->next;
3149 		skb->next = NULL;
3150 
3151 		/* in case skb wont be segmented, point to itself */
3152 		skb->prev = skb;
3153 
3154 		skb = validate_xmit_skb(skb, dev, again);
3155 		if (!skb)
3156 			continue;
3157 
3158 		if (!head)
3159 			head = skb;
3160 		else
3161 			tail->next = skb;
3162 		/* If skb was segmented, skb->prev points to
3163 		 * the last segment. If not, it still contains skb.
3164 		 */
3165 		tail = skb->prev;
3166 	}
3167 	return head;
3168 }
3169 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3170 
3171 static void qdisc_pkt_len_init(struct sk_buff *skb)
3172 {
3173 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3174 
3175 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3176 
3177 	/* To get more precise estimation of bytes sent on wire,
3178 	 * we add to pkt_len the headers size of all segments
3179 	 */
3180 	if (shinfo->gso_size)  {
3181 		unsigned int hdr_len;
3182 		u16 gso_segs = shinfo->gso_segs;
3183 
3184 		/* mac layer + network layer */
3185 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3186 
3187 		/* + transport layer */
3188 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3189 			const struct tcphdr *th;
3190 			struct tcphdr _tcphdr;
3191 
3192 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3193 						sizeof(_tcphdr), &_tcphdr);
3194 			if (likely(th))
3195 				hdr_len += __tcp_hdrlen(th);
3196 		} else {
3197 			struct udphdr _udphdr;
3198 
3199 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3200 					       sizeof(_udphdr), &_udphdr))
3201 				hdr_len += sizeof(struct udphdr);
3202 		}
3203 
3204 		if (shinfo->gso_type & SKB_GSO_DODGY)
3205 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3206 						shinfo->gso_size);
3207 
3208 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3209 	}
3210 }
3211 
3212 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3213 				 struct net_device *dev,
3214 				 struct netdev_queue *txq)
3215 {
3216 	spinlock_t *root_lock = qdisc_lock(q);
3217 	struct sk_buff *to_free = NULL;
3218 	bool contended;
3219 	int rc;
3220 
3221 	qdisc_calculate_pkt_len(skb, q);
3222 
3223 	if (q->flags & TCQ_F_NOLOCK) {
3224 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3225 			__qdisc_drop(skb, &to_free);
3226 			rc = NET_XMIT_DROP;
3227 		} else {
3228 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3229 			qdisc_run(q);
3230 		}
3231 
3232 		if (unlikely(to_free))
3233 			kfree_skb_list(to_free);
3234 		return rc;
3235 	}
3236 
3237 	/*
3238 	 * Heuristic to force contended enqueues to serialize on a
3239 	 * separate lock before trying to get qdisc main lock.
3240 	 * This permits qdisc->running owner to get the lock more
3241 	 * often and dequeue packets faster.
3242 	 */
3243 	contended = qdisc_is_running(q);
3244 	if (unlikely(contended))
3245 		spin_lock(&q->busylock);
3246 
3247 	spin_lock(root_lock);
3248 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3249 		__qdisc_drop(skb, &to_free);
3250 		rc = NET_XMIT_DROP;
3251 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3252 		   qdisc_run_begin(q)) {
3253 		/*
3254 		 * This is a work-conserving queue; there are no old skbs
3255 		 * waiting to be sent out; and the qdisc is not running -
3256 		 * xmit the skb directly.
3257 		 */
3258 
3259 		qdisc_bstats_update(q, skb);
3260 
3261 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3262 			if (unlikely(contended)) {
3263 				spin_unlock(&q->busylock);
3264 				contended = false;
3265 			}
3266 			__qdisc_run(q);
3267 		}
3268 
3269 		qdisc_run_end(q);
3270 		rc = NET_XMIT_SUCCESS;
3271 	} else {
3272 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3273 		if (qdisc_run_begin(q)) {
3274 			if (unlikely(contended)) {
3275 				spin_unlock(&q->busylock);
3276 				contended = false;
3277 			}
3278 			__qdisc_run(q);
3279 			qdisc_run_end(q);
3280 		}
3281 	}
3282 	spin_unlock(root_lock);
3283 	if (unlikely(to_free))
3284 		kfree_skb_list(to_free);
3285 	if (unlikely(contended))
3286 		spin_unlock(&q->busylock);
3287 	return rc;
3288 }
3289 
3290 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3291 static void skb_update_prio(struct sk_buff *skb)
3292 {
3293 	const struct netprio_map *map;
3294 	const struct sock *sk;
3295 	unsigned int prioidx;
3296 
3297 	if (skb->priority)
3298 		return;
3299 	map = rcu_dereference_bh(skb->dev->priomap);
3300 	if (!map)
3301 		return;
3302 	sk = skb_to_full_sk(skb);
3303 	if (!sk)
3304 		return;
3305 
3306 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3307 
3308 	if (prioidx < map->priomap_len)
3309 		skb->priority = map->priomap[prioidx];
3310 }
3311 #else
3312 #define skb_update_prio(skb)
3313 #endif
3314 
3315 DEFINE_PER_CPU(int, xmit_recursion);
3316 EXPORT_SYMBOL(xmit_recursion);
3317 
3318 /**
3319  *	dev_loopback_xmit - loop back @skb
3320  *	@net: network namespace this loopback is happening in
3321  *	@sk:  sk needed to be a netfilter okfn
3322  *	@skb: buffer to transmit
3323  */
3324 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3325 {
3326 	skb_reset_mac_header(skb);
3327 	__skb_pull(skb, skb_network_offset(skb));
3328 	skb->pkt_type = PACKET_LOOPBACK;
3329 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3330 	WARN_ON(!skb_dst(skb));
3331 	skb_dst_force(skb);
3332 	netif_rx_ni(skb);
3333 	return 0;
3334 }
3335 EXPORT_SYMBOL(dev_loopback_xmit);
3336 
3337 #ifdef CONFIG_NET_EGRESS
3338 static struct sk_buff *
3339 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3340 {
3341 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3342 	struct tcf_result cl_res;
3343 
3344 	if (!miniq)
3345 		return skb;
3346 
3347 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3348 	mini_qdisc_bstats_cpu_update(miniq, skb);
3349 
3350 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3351 	case TC_ACT_OK:
3352 	case TC_ACT_RECLASSIFY:
3353 		skb->tc_index = TC_H_MIN(cl_res.classid);
3354 		break;
3355 	case TC_ACT_SHOT:
3356 		mini_qdisc_qstats_cpu_drop(miniq);
3357 		*ret = NET_XMIT_DROP;
3358 		kfree_skb(skb);
3359 		return NULL;
3360 	case TC_ACT_STOLEN:
3361 	case TC_ACT_QUEUED:
3362 	case TC_ACT_TRAP:
3363 		*ret = NET_XMIT_SUCCESS;
3364 		consume_skb(skb);
3365 		return NULL;
3366 	case TC_ACT_REDIRECT:
3367 		/* No need to push/pop skb's mac_header here on egress! */
3368 		skb_do_redirect(skb);
3369 		*ret = NET_XMIT_SUCCESS;
3370 		return NULL;
3371 	default:
3372 		break;
3373 	}
3374 
3375 	return skb;
3376 }
3377 #endif /* CONFIG_NET_EGRESS */
3378 
3379 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3380 {
3381 #ifdef CONFIG_XPS
3382 	struct xps_dev_maps *dev_maps;
3383 	struct xps_map *map;
3384 	int queue_index = -1;
3385 
3386 	rcu_read_lock();
3387 	dev_maps = rcu_dereference(dev->xps_maps);
3388 	if (dev_maps) {
3389 		unsigned int tci = skb->sender_cpu - 1;
3390 
3391 		if (dev->num_tc) {
3392 			tci *= dev->num_tc;
3393 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3394 		}
3395 
3396 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3397 		if (map) {
3398 			if (map->len == 1)
3399 				queue_index = map->queues[0];
3400 			else
3401 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3402 									   map->len)];
3403 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3404 				queue_index = -1;
3405 		}
3406 	}
3407 	rcu_read_unlock();
3408 
3409 	return queue_index;
3410 #else
3411 	return -1;
3412 #endif
3413 }
3414 
3415 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3416 {
3417 	struct sock *sk = skb->sk;
3418 	int queue_index = sk_tx_queue_get(sk);
3419 
3420 	if (queue_index < 0 || skb->ooo_okay ||
3421 	    queue_index >= dev->real_num_tx_queues) {
3422 		int new_index = get_xps_queue(dev, skb);
3423 
3424 		if (new_index < 0)
3425 			new_index = skb_tx_hash(dev, skb);
3426 
3427 		if (queue_index != new_index && sk &&
3428 		    sk_fullsock(sk) &&
3429 		    rcu_access_pointer(sk->sk_dst_cache))
3430 			sk_tx_queue_set(sk, new_index);
3431 
3432 		queue_index = new_index;
3433 	}
3434 
3435 	return queue_index;
3436 }
3437 
3438 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3439 				    struct sk_buff *skb,
3440 				    void *accel_priv)
3441 {
3442 	int queue_index = 0;
3443 
3444 #ifdef CONFIG_XPS
3445 	u32 sender_cpu = skb->sender_cpu - 1;
3446 
3447 	if (sender_cpu >= (u32)NR_CPUS)
3448 		skb->sender_cpu = raw_smp_processor_id() + 1;
3449 #endif
3450 
3451 	if (dev->real_num_tx_queues != 1) {
3452 		const struct net_device_ops *ops = dev->netdev_ops;
3453 
3454 		if (ops->ndo_select_queue)
3455 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3456 							    __netdev_pick_tx);
3457 		else
3458 			queue_index = __netdev_pick_tx(dev, skb);
3459 
3460 		queue_index = netdev_cap_txqueue(dev, queue_index);
3461 	}
3462 
3463 	skb_set_queue_mapping(skb, queue_index);
3464 	return netdev_get_tx_queue(dev, queue_index);
3465 }
3466 
3467 /**
3468  *	__dev_queue_xmit - transmit a buffer
3469  *	@skb: buffer to transmit
3470  *	@accel_priv: private data used for L2 forwarding offload
3471  *
3472  *	Queue a buffer for transmission to a network device. The caller must
3473  *	have set the device and priority and built the buffer before calling
3474  *	this function. The function can be called from an interrupt.
3475  *
3476  *	A negative errno code is returned on a failure. A success does not
3477  *	guarantee the frame will be transmitted as it may be dropped due
3478  *	to congestion or traffic shaping.
3479  *
3480  * -----------------------------------------------------------------------------------
3481  *      I notice this method can also return errors from the queue disciplines,
3482  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3483  *      be positive.
3484  *
3485  *      Regardless of the return value, the skb is consumed, so it is currently
3486  *      difficult to retry a send to this method.  (You can bump the ref count
3487  *      before sending to hold a reference for retry if you are careful.)
3488  *
3489  *      When calling this method, interrupts MUST be enabled.  This is because
3490  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3491  *          --BLG
3492  */
3493 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3494 {
3495 	struct net_device *dev = skb->dev;
3496 	struct netdev_queue *txq;
3497 	struct Qdisc *q;
3498 	int rc = -ENOMEM;
3499 	bool again = false;
3500 
3501 	skb_reset_mac_header(skb);
3502 
3503 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3504 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3505 
3506 	/* Disable soft irqs for various locks below. Also
3507 	 * stops preemption for RCU.
3508 	 */
3509 	rcu_read_lock_bh();
3510 
3511 	skb_update_prio(skb);
3512 
3513 	qdisc_pkt_len_init(skb);
3514 #ifdef CONFIG_NET_CLS_ACT
3515 	skb->tc_at_ingress = 0;
3516 # ifdef CONFIG_NET_EGRESS
3517 	if (static_branch_unlikely(&egress_needed_key)) {
3518 		skb = sch_handle_egress(skb, &rc, dev);
3519 		if (!skb)
3520 			goto out;
3521 	}
3522 # endif
3523 #endif
3524 	/* If device/qdisc don't need skb->dst, release it right now while
3525 	 * its hot in this cpu cache.
3526 	 */
3527 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3528 		skb_dst_drop(skb);
3529 	else
3530 		skb_dst_force(skb);
3531 
3532 	txq = netdev_pick_tx(dev, skb, accel_priv);
3533 	q = rcu_dereference_bh(txq->qdisc);
3534 
3535 	trace_net_dev_queue(skb);
3536 	if (q->enqueue) {
3537 		rc = __dev_xmit_skb(skb, q, dev, txq);
3538 		goto out;
3539 	}
3540 
3541 	/* The device has no queue. Common case for software devices:
3542 	 * loopback, all the sorts of tunnels...
3543 
3544 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3545 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3546 	 * counters.)
3547 	 * However, it is possible, that they rely on protection
3548 	 * made by us here.
3549 
3550 	 * Check this and shot the lock. It is not prone from deadlocks.
3551 	 *Either shot noqueue qdisc, it is even simpler 8)
3552 	 */
3553 	if (dev->flags & IFF_UP) {
3554 		int cpu = smp_processor_id(); /* ok because BHs are off */
3555 
3556 		if (txq->xmit_lock_owner != cpu) {
3557 			if (unlikely(__this_cpu_read(xmit_recursion) >
3558 				     XMIT_RECURSION_LIMIT))
3559 				goto recursion_alert;
3560 
3561 			skb = validate_xmit_skb(skb, dev, &again);
3562 			if (!skb)
3563 				goto out;
3564 
3565 			HARD_TX_LOCK(dev, txq, cpu);
3566 
3567 			if (!netif_xmit_stopped(txq)) {
3568 				__this_cpu_inc(xmit_recursion);
3569 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3570 				__this_cpu_dec(xmit_recursion);
3571 				if (dev_xmit_complete(rc)) {
3572 					HARD_TX_UNLOCK(dev, txq);
3573 					goto out;
3574 				}
3575 			}
3576 			HARD_TX_UNLOCK(dev, txq);
3577 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3578 					     dev->name);
3579 		} else {
3580 			/* Recursion is detected! It is possible,
3581 			 * unfortunately
3582 			 */
3583 recursion_alert:
3584 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3585 					     dev->name);
3586 		}
3587 	}
3588 
3589 	rc = -ENETDOWN;
3590 	rcu_read_unlock_bh();
3591 
3592 	atomic_long_inc(&dev->tx_dropped);
3593 	kfree_skb_list(skb);
3594 	return rc;
3595 out:
3596 	rcu_read_unlock_bh();
3597 	return rc;
3598 }
3599 
3600 int dev_queue_xmit(struct sk_buff *skb)
3601 {
3602 	return __dev_queue_xmit(skb, NULL);
3603 }
3604 EXPORT_SYMBOL(dev_queue_xmit);
3605 
3606 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3607 {
3608 	return __dev_queue_xmit(skb, accel_priv);
3609 }
3610 EXPORT_SYMBOL(dev_queue_xmit_accel);
3611 
3612 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3613 {
3614 	struct net_device *dev = skb->dev;
3615 	struct sk_buff *orig_skb = skb;
3616 	struct netdev_queue *txq;
3617 	int ret = NETDEV_TX_BUSY;
3618 	bool again = false;
3619 
3620 	if (unlikely(!netif_running(dev) ||
3621 		     !netif_carrier_ok(dev)))
3622 		goto drop;
3623 
3624 	skb = validate_xmit_skb_list(skb, dev, &again);
3625 	if (skb != orig_skb)
3626 		goto drop;
3627 
3628 	skb_set_queue_mapping(skb, queue_id);
3629 	txq = skb_get_tx_queue(dev, skb);
3630 
3631 	local_bh_disable();
3632 
3633 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3634 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3635 		ret = netdev_start_xmit(skb, dev, txq, false);
3636 	HARD_TX_UNLOCK(dev, txq);
3637 
3638 	local_bh_enable();
3639 
3640 	if (!dev_xmit_complete(ret))
3641 		kfree_skb(skb);
3642 
3643 	return ret;
3644 drop:
3645 	atomic_long_inc(&dev->tx_dropped);
3646 	kfree_skb_list(skb);
3647 	return NET_XMIT_DROP;
3648 }
3649 EXPORT_SYMBOL(dev_direct_xmit);
3650 
3651 /*************************************************************************
3652  *			Receiver routines
3653  *************************************************************************/
3654 
3655 int netdev_max_backlog __read_mostly = 1000;
3656 EXPORT_SYMBOL(netdev_max_backlog);
3657 
3658 int netdev_tstamp_prequeue __read_mostly = 1;
3659 int netdev_budget __read_mostly = 300;
3660 unsigned int __read_mostly netdev_budget_usecs = 2000;
3661 int weight_p __read_mostly = 64;           /* old backlog weight */
3662 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3663 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3664 int dev_rx_weight __read_mostly = 64;
3665 int dev_tx_weight __read_mostly = 64;
3666 
3667 /* Called with irq disabled */
3668 static inline void ____napi_schedule(struct softnet_data *sd,
3669 				     struct napi_struct *napi)
3670 {
3671 	list_add_tail(&napi->poll_list, &sd->poll_list);
3672 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3673 }
3674 
3675 #ifdef CONFIG_RPS
3676 
3677 /* One global table that all flow-based protocols share. */
3678 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3679 EXPORT_SYMBOL(rps_sock_flow_table);
3680 u32 rps_cpu_mask __read_mostly;
3681 EXPORT_SYMBOL(rps_cpu_mask);
3682 
3683 struct static_key rps_needed __read_mostly;
3684 EXPORT_SYMBOL(rps_needed);
3685 struct static_key rfs_needed __read_mostly;
3686 EXPORT_SYMBOL(rfs_needed);
3687 
3688 static struct rps_dev_flow *
3689 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3690 	    struct rps_dev_flow *rflow, u16 next_cpu)
3691 {
3692 	if (next_cpu < nr_cpu_ids) {
3693 #ifdef CONFIG_RFS_ACCEL
3694 		struct netdev_rx_queue *rxqueue;
3695 		struct rps_dev_flow_table *flow_table;
3696 		struct rps_dev_flow *old_rflow;
3697 		u32 flow_id;
3698 		u16 rxq_index;
3699 		int rc;
3700 
3701 		/* Should we steer this flow to a different hardware queue? */
3702 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3703 		    !(dev->features & NETIF_F_NTUPLE))
3704 			goto out;
3705 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3706 		if (rxq_index == skb_get_rx_queue(skb))
3707 			goto out;
3708 
3709 		rxqueue = dev->_rx + rxq_index;
3710 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3711 		if (!flow_table)
3712 			goto out;
3713 		flow_id = skb_get_hash(skb) & flow_table->mask;
3714 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3715 							rxq_index, flow_id);
3716 		if (rc < 0)
3717 			goto out;
3718 		old_rflow = rflow;
3719 		rflow = &flow_table->flows[flow_id];
3720 		rflow->filter = rc;
3721 		if (old_rflow->filter == rflow->filter)
3722 			old_rflow->filter = RPS_NO_FILTER;
3723 	out:
3724 #endif
3725 		rflow->last_qtail =
3726 			per_cpu(softnet_data, next_cpu).input_queue_head;
3727 	}
3728 
3729 	rflow->cpu = next_cpu;
3730 	return rflow;
3731 }
3732 
3733 /*
3734  * get_rps_cpu is called from netif_receive_skb and returns the target
3735  * CPU from the RPS map of the receiving queue for a given skb.
3736  * rcu_read_lock must be held on entry.
3737  */
3738 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3739 		       struct rps_dev_flow **rflowp)
3740 {
3741 	const struct rps_sock_flow_table *sock_flow_table;
3742 	struct netdev_rx_queue *rxqueue = dev->_rx;
3743 	struct rps_dev_flow_table *flow_table;
3744 	struct rps_map *map;
3745 	int cpu = -1;
3746 	u32 tcpu;
3747 	u32 hash;
3748 
3749 	if (skb_rx_queue_recorded(skb)) {
3750 		u16 index = skb_get_rx_queue(skb);
3751 
3752 		if (unlikely(index >= dev->real_num_rx_queues)) {
3753 			WARN_ONCE(dev->real_num_rx_queues > 1,
3754 				  "%s received packet on queue %u, but number "
3755 				  "of RX queues is %u\n",
3756 				  dev->name, index, dev->real_num_rx_queues);
3757 			goto done;
3758 		}
3759 		rxqueue += index;
3760 	}
3761 
3762 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3763 
3764 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3765 	map = rcu_dereference(rxqueue->rps_map);
3766 	if (!flow_table && !map)
3767 		goto done;
3768 
3769 	skb_reset_network_header(skb);
3770 	hash = skb_get_hash(skb);
3771 	if (!hash)
3772 		goto done;
3773 
3774 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3775 	if (flow_table && sock_flow_table) {
3776 		struct rps_dev_flow *rflow;
3777 		u32 next_cpu;
3778 		u32 ident;
3779 
3780 		/* First check into global flow table if there is a match */
3781 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3782 		if ((ident ^ hash) & ~rps_cpu_mask)
3783 			goto try_rps;
3784 
3785 		next_cpu = ident & rps_cpu_mask;
3786 
3787 		/* OK, now we know there is a match,
3788 		 * we can look at the local (per receive queue) flow table
3789 		 */
3790 		rflow = &flow_table->flows[hash & flow_table->mask];
3791 		tcpu = rflow->cpu;
3792 
3793 		/*
3794 		 * If the desired CPU (where last recvmsg was done) is
3795 		 * different from current CPU (one in the rx-queue flow
3796 		 * table entry), switch if one of the following holds:
3797 		 *   - Current CPU is unset (>= nr_cpu_ids).
3798 		 *   - Current CPU is offline.
3799 		 *   - The current CPU's queue tail has advanced beyond the
3800 		 *     last packet that was enqueued using this table entry.
3801 		 *     This guarantees that all previous packets for the flow
3802 		 *     have been dequeued, thus preserving in order delivery.
3803 		 */
3804 		if (unlikely(tcpu != next_cpu) &&
3805 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3806 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3807 		      rflow->last_qtail)) >= 0)) {
3808 			tcpu = next_cpu;
3809 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3810 		}
3811 
3812 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3813 			*rflowp = rflow;
3814 			cpu = tcpu;
3815 			goto done;
3816 		}
3817 	}
3818 
3819 try_rps:
3820 
3821 	if (map) {
3822 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3823 		if (cpu_online(tcpu)) {
3824 			cpu = tcpu;
3825 			goto done;
3826 		}
3827 	}
3828 
3829 done:
3830 	return cpu;
3831 }
3832 
3833 #ifdef CONFIG_RFS_ACCEL
3834 
3835 /**
3836  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3837  * @dev: Device on which the filter was set
3838  * @rxq_index: RX queue index
3839  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3840  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3841  *
3842  * Drivers that implement ndo_rx_flow_steer() should periodically call
3843  * this function for each installed filter and remove the filters for
3844  * which it returns %true.
3845  */
3846 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3847 			 u32 flow_id, u16 filter_id)
3848 {
3849 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3850 	struct rps_dev_flow_table *flow_table;
3851 	struct rps_dev_flow *rflow;
3852 	bool expire = true;
3853 	unsigned int cpu;
3854 
3855 	rcu_read_lock();
3856 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3857 	if (flow_table && flow_id <= flow_table->mask) {
3858 		rflow = &flow_table->flows[flow_id];
3859 		cpu = READ_ONCE(rflow->cpu);
3860 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3861 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3862 			   rflow->last_qtail) <
3863 		     (int)(10 * flow_table->mask)))
3864 			expire = false;
3865 	}
3866 	rcu_read_unlock();
3867 	return expire;
3868 }
3869 EXPORT_SYMBOL(rps_may_expire_flow);
3870 
3871 #endif /* CONFIG_RFS_ACCEL */
3872 
3873 /* Called from hardirq (IPI) context */
3874 static void rps_trigger_softirq(void *data)
3875 {
3876 	struct softnet_data *sd = data;
3877 
3878 	____napi_schedule(sd, &sd->backlog);
3879 	sd->received_rps++;
3880 }
3881 
3882 #endif /* CONFIG_RPS */
3883 
3884 /*
3885  * Check if this softnet_data structure is another cpu one
3886  * If yes, queue it to our IPI list and return 1
3887  * If no, return 0
3888  */
3889 static int rps_ipi_queued(struct softnet_data *sd)
3890 {
3891 #ifdef CONFIG_RPS
3892 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3893 
3894 	if (sd != mysd) {
3895 		sd->rps_ipi_next = mysd->rps_ipi_list;
3896 		mysd->rps_ipi_list = sd;
3897 
3898 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3899 		return 1;
3900 	}
3901 #endif /* CONFIG_RPS */
3902 	return 0;
3903 }
3904 
3905 #ifdef CONFIG_NET_FLOW_LIMIT
3906 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3907 #endif
3908 
3909 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3910 {
3911 #ifdef CONFIG_NET_FLOW_LIMIT
3912 	struct sd_flow_limit *fl;
3913 	struct softnet_data *sd;
3914 	unsigned int old_flow, new_flow;
3915 
3916 	if (qlen < (netdev_max_backlog >> 1))
3917 		return false;
3918 
3919 	sd = this_cpu_ptr(&softnet_data);
3920 
3921 	rcu_read_lock();
3922 	fl = rcu_dereference(sd->flow_limit);
3923 	if (fl) {
3924 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3925 		old_flow = fl->history[fl->history_head];
3926 		fl->history[fl->history_head] = new_flow;
3927 
3928 		fl->history_head++;
3929 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3930 
3931 		if (likely(fl->buckets[old_flow]))
3932 			fl->buckets[old_flow]--;
3933 
3934 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3935 			fl->count++;
3936 			rcu_read_unlock();
3937 			return true;
3938 		}
3939 	}
3940 	rcu_read_unlock();
3941 #endif
3942 	return false;
3943 }
3944 
3945 /*
3946  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3947  * queue (may be a remote CPU queue).
3948  */
3949 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3950 			      unsigned int *qtail)
3951 {
3952 	struct softnet_data *sd;
3953 	unsigned long flags;
3954 	unsigned int qlen;
3955 
3956 	sd = &per_cpu(softnet_data, cpu);
3957 
3958 	local_irq_save(flags);
3959 
3960 	rps_lock(sd);
3961 	if (!netif_running(skb->dev))
3962 		goto drop;
3963 	qlen = skb_queue_len(&sd->input_pkt_queue);
3964 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3965 		if (qlen) {
3966 enqueue:
3967 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3968 			input_queue_tail_incr_save(sd, qtail);
3969 			rps_unlock(sd);
3970 			local_irq_restore(flags);
3971 			return NET_RX_SUCCESS;
3972 		}
3973 
3974 		/* Schedule NAPI for backlog device
3975 		 * We can use non atomic operation since we own the queue lock
3976 		 */
3977 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3978 			if (!rps_ipi_queued(sd))
3979 				____napi_schedule(sd, &sd->backlog);
3980 		}
3981 		goto enqueue;
3982 	}
3983 
3984 drop:
3985 	sd->dropped++;
3986 	rps_unlock(sd);
3987 
3988 	local_irq_restore(flags);
3989 
3990 	atomic_long_inc(&skb->dev->rx_dropped);
3991 	kfree_skb(skb);
3992 	return NET_RX_DROP;
3993 }
3994 
3995 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3996 {
3997 	struct net_device *dev = skb->dev;
3998 	struct netdev_rx_queue *rxqueue;
3999 
4000 	rxqueue = dev->_rx;
4001 
4002 	if (skb_rx_queue_recorded(skb)) {
4003 		u16 index = skb_get_rx_queue(skb);
4004 
4005 		if (unlikely(index >= dev->real_num_rx_queues)) {
4006 			WARN_ONCE(dev->real_num_rx_queues > 1,
4007 				  "%s received packet on queue %u, but number "
4008 				  "of RX queues is %u\n",
4009 				  dev->name, index, dev->real_num_rx_queues);
4010 
4011 			return rxqueue; /* Return first rxqueue */
4012 		}
4013 		rxqueue += index;
4014 	}
4015 	return rxqueue;
4016 }
4017 
4018 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4019 				     struct xdp_buff *xdp,
4020 				     struct bpf_prog *xdp_prog)
4021 {
4022 	struct netdev_rx_queue *rxqueue;
4023 	void *orig_data, *orig_data_end;
4024 	u32 metalen, act = XDP_DROP;
4025 	int hlen, off;
4026 	u32 mac_len;
4027 
4028 	/* Reinjected packets coming from act_mirred or similar should
4029 	 * not get XDP generic processing.
4030 	 */
4031 	if (skb_cloned(skb))
4032 		return XDP_PASS;
4033 
4034 	/* XDP packets must be linear and must have sufficient headroom
4035 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4036 	 * native XDP provides, thus we need to do it here as well.
4037 	 */
4038 	if (skb_is_nonlinear(skb) ||
4039 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4040 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4041 		int troom = skb->tail + skb->data_len - skb->end;
4042 
4043 		/* In case we have to go down the path and also linearize,
4044 		 * then lets do the pskb_expand_head() work just once here.
4045 		 */
4046 		if (pskb_expand_head(skb,
4047 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4048 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4049 			goto do_drop;
4050 		if (skb_linearize(skb))
4051 			goto do_drop;
4052 	}
4053 
4054 	/* The XDP program wants to see the packet starting at the MAC
4055 	 * header.
4056 	 */
4057 	mac_len = skb->data - skb_mac_header(skb);
4058 	hlen = skb_headlen(skb) + mac_len;
4059 	xdp->data = skb->data - mac_len;
4060 	xdp->data_meta = xdp->data;
4061 	xdp->data_end = xdp->data + hlen;
4062 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4063 	orig_data_end = xdp->data_end;
4064 	orig_data = xdp->data;
4065 
4066 	rxqueue = netif_get_rxqueue(skb);
4067 	xdp->rxq = &rxqueue->xdp_rxq;
4068 
4069 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4070 
4071 	off = xdp->data - orig_data;
4072 	if (off > 0)
4073 		__skb_pull(skb, off);
4074 	else if (off < 0)
4075 		__skb_push(skb, -off);
4076 	skb->mac_header += off;
4077 
4078 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4079 	 * pckt.
4080 	 */
4081 	off = orig_data_end - xdp->data_end;
4082 	if (off != 0) {
4083 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4084 		skb->len -= off;
4085 
4086 	}
4087 
4088 	switch (act) {
4089 	case XDP_REDIRECT:
4090 	case XDP_TX:
4091 		__skb_push(skb, mac_len);
4092 		break;
4093 	case XDP_PASS:
4094 		metalen = xdp->data - xdp->data_meta;
4095 		if (metalen)
4096 			skb_metadata_set(skb, metalen);
4097 		break;
4098 	default:
4099 		bpf_warn_invalid_xdp_action(act);
4100 		/* fall through */
4101 	case XDP_ABORTED:
4102 		trace_xdp_exception(skb->dev, xdp_prog, act);
4103 		/* fall through */
4104 	case XDP_DROP:
4105 	do_drop:
4106 		kfree_skb(skb);
4107 		break;
4108 	}
4109 
4110 	return act;
4111 }
4112 
4113 /* When doing generic XDP we have to bypass the qdisc layer and the
4114  * network taps in order to match in-driver-XDP behavior.
4115  */
4116 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4117 {
4118 	struct net_device *dev = skb->dev;
4119 	struct netdev_queue *txq;
4120 	bool free_skb = true;
4121 	int cpu, rc;
4122 
4123 	txq = netdev_pick_tx(dev, skb, NULL);
4124 	cpu = smp_processor_id();
4125 	HARD_TX_LOCK(dev, txq, cpu);
4126 	if (!netif_xmit_stopped(txq)) {
4127 		rc = netdev_start_xmit(skb, dev, txq, 0);
4128 		if (dev_xmit_complete(rc))
4129 			free_skb = false;
4130 	}
4131 	HARD_TX_UNLOCK(dev, txq);
4132 	if (free_skb) {
4133 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4134 		kfree_skb(skb);
4135 	}
4136 }
4137 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4138 
4139 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4140 
4141 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4142 {
4143 	if (xdp_prog) {
4144 		struct xdp_buff xdp;
4145 		u32 act;
4146 		int err;
4147 
4148 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4149 		if (act != XDP_PASS) {
4150 			switch (act) {
4151 			case XDP_REDIRECT:
4152 				err = xdp_do_generic_redirect(skb->dev, skb,
4153 							      &xdp, xdp_prog);
4154 				if (err)
4155 					goto out_redir;
4156 				break;
4157 			case XDP_TX:
4158 				generic_xdp_tx(skb, xdp_prog);
4159 				break;
4160 			}
4161 			return XDP_DROP;
4162 		}
4163 	}
4164 	return XDP_PASS;
4165 out_redir:
4166 	kfree_skb(skb);
4167 	return XDP_DROP;
4168 }
4169 EXPORT_SYMBOL_GPL(do_xdp_generic);
4170 
4171 static int netif_rx_internal(struct sk_buff *skb)
4172 {
4173 	int ret;
4174 
4175 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4176 
4177 	trace_netif_rx(skb);
4178 
4179 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4180 		int ret;
4181 
4182 		preempt_disable();
4183 		rcu_read_lock();
4184 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4185 		rcu_read_unlock();
4186 		preempt_enable();
4187 
4188 		/* Consider XDP consuming the packet a success from
4189 		 * the netdev point of view we do not want to count
4190 		 * this as an error.
4191 		 */
4192 		if (ret != XDP_PASS)
4193 			return NET_RX_SUCCESS;
4194 	}
4195 
4196 #ifdef CONFIG_RPS
4197 	if (static_key_false(&rps_needed)) {
4198 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4199 		int cpu;
4200 
4201 		preempt_disable();
4202 		rcu_read_lock();
4203 
4204 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4205 		if (cpu < 0)
4206 			cpu = smp_processor_id();
4207 
4208 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4209 
4210 		rcu_read_unlock();
4211 		preempt_enable();
4212 	} else
4213 #endif
4214 	{
4215 		unsigned int qtail;
4216 
4217 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4218 		put_cpu();
4219 	}
4220 	return ret;
4221 }
4222 
4223 /**
4224  *	netif_rx	-	post buffer to the network code
4225  *	@skb: buffer to post
4226  *
4227  *	This function receives a packet from a device driver and queues it for
4228  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4229  *	may be dropped during processing for congestion control or by the
4230  *	protocol layers.
4231  *
4232  *	return values:
4233  *	NET_RX_SUCCESS	(no congestion)
4234  *	NET_RX_DROP     (packet was dropped)
4235  *
4236  */
4237 
4238 int netif_rx(struct sk_buff *skb)
4239 {
4240 	trace_netif_rx_entry(skb);
4241 
4242 	return netif_rx_internal(skb);
4243 }
4244 EXPORT_SYMBOL(netif_rx);
4245 
4246 int netif_rx_ni(struct sk_buff *skb)
4247 {
4248 	int err;
4249 
4250 	trace_netif_rx_ni_entry(skb);
4251 
4252 	preempt_disable();
4253 	err = netif_rx_internal(skb);
4254 	if (local_softirq_pending())
4255 		do_softirq();
4256 	preempt_enable();
4257 
4258 	return err;
4259 }
4260 EXPORT_SYMBOL(netif_rx_ni);
4261 
4262 static __latent_entropy void net_tx_action(struct softirq_action *h)
4263 {
4264 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4265 
4266 	if (sd->completion_queue) {
4267 		struct sk_buff *clist;
4268 
4269 		local_irq_disable();
4270 		clist = sd->completion_queue;
4271 		sd->completion_queue = NULL;
4272 		local_irq_enable();
4273 
4274 		while (clist) {
4275 			struct sk_buff *skb = clist;
4276 
4277 			clist = clist->next;
4278 
4279 			WARN_ON(refcount_read(&skb->users));
4280 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4281 				trace_consume_skb(skb);
4282 			else
4283 				trace_kfree_skb(skb, net_tx_action);
4284 
4285 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4286 				__kfree_skb(skb);
4287 			else
4288 				__kfree_skb_defer(skb);
4289 		}
4290 
4291 		__kfree_skb_flush();
4292 	}
4293 
4294 	if (sd->output_queue) {
4295 		struct Qdisc *head;
4296 
4297 		local_irq_disable();
4298 		head = sd->output_queue;
4299 		sd->output_queue = NULL;
4300 		sd->output_queue_tailp = &sd->output_queue;
4301 		local_irq_enable();
4302 
4303 		while (head) {
4304 			struct Qdisc *q = head;
4305 			spinlock_t *root_lock = NULL;
4306 
4307 			head = head->next_sched;
4308 
4309 			if (!(q->flags & TCQ_F_NOLOCK)) {
4310 				root_lock = qdisc_lock(q);
4311 				spin_lock(root_lock);
4312 			}
4313 			/* We need to make sure head->next_sched is read
4314 			 * before clearing __QDISC_STATE_SCHED
4315 			 */
4316 			smp_mb__before_atomic();
4317 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4318 			qdisc_run(q);
4319 			if (root_lock)
4320 				spin_unlock(root_lock);
4321 		}
4322 	}
4323 
4324 	xfrm_dev_backlog(sd);
4325 }
4326 
4327 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4328 /* This hook is defined here for ATM LANE */
4329 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4330 			     unsigned char *addr) __read_mostly;
4331 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4332 #endif
4333 
4334 static inline struct sk_buff *
4335 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4336 		   struct net_device *orig_dev)
4337 {
4338 #ifdef CONFIG_NET_CLS_ACT
4339 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4340 	struct tcf_result cl_res;
4341 
4342 	/* If there's at least one ingress present somewhere (so
4343 	 * we get here via enabled static key), remaining devices
4344 	 * that are not configured with an ingress qdisc will bail
4345 	 * out here.
4346 	 */
4347 	if (!miniq)
4348 		return skb;
4349 
4350 	if (*pt_prev) {
4351 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4352 		*pt_prev = NULL;
4353 	}
4354 
4355 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4356 	skb->tc_at_ingress = 1;
4357 	mini_qdisc_bstats_cpu_update(miniq, skb);
4358 
4359 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4360 	case TC_ACT_OK:
4361 	case TC_ACT_RECLASSIFY:
4362 		skb->tc_index = TC_H_MIN(cl_res.classid);
4363 		break;
4364 	case TC_ACT_SHOT:
4365 		mini_qdisc_qstats_cpu_drop(miniq);
4366 		kfree_skb(skb);
4367 		return NULL;
4368 	case TC_ACT_STOLEN:
4369 	case TC_ACT_QUEUED:
4370 	case TC_ACT_TRAP:
4371 		consume_skb(skb);
4372 		return NULL;
4373 	case TC_ACT_REDIRECT:
4374 		/* skb_mac_header check was done by cls/act_bpf, so
4375 		 * we can safely push the L2 header back before
4376 		 * redirecting to another netdev
4377 		 */
4378 		__skb_push(skb, skb->mac_len);
4379 		skb_do_redirect(skb);
4380 		return NULL;
4381 	default:
4382 		break;
4383 	}
4384 #endif /* CONFIG_NET_CLS_ACT */
4385 	return skb;
4386 }
4387 
4388 /**
4389  *	netdev_is_rx_handler_busy - check if receive handler is registered
4390  *	@dev: device to check
4391  *
4392  *	Check if a receive handler is already registered for a given device.
4393  *	Return true if there one.
4394  *
4395  *	The caller must hold the rtnl_mutex.
4396  */
4397 bool netdev_is_rx_handler_busy(struct net_device *dev)
4398 {
4399 	ASSERT_RTNL();
4400 	return dev && rtnl_dereference(dev->rx_handler);
4401 }
4402 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4403 
4404 /**
4405  *	netdev_rx_handler_register - register receive handler
4406  *	@dev: device to register a handler for
4407  *	@rx_handler: receive handler to register
4408  *	@rx_handler_data: data pointer that is used by rx handler
4409  *
4410  *	Register a receive handler for a device. This handler will then be
4411  *	called from __netif_receive_skb. A negative errno code is returned
4412  *	on a failure.
4413  *
4414  *	The caller must hold the rtnl_mutex.
4415  *
4416  *	For a general description of rx_handler, see enum rx_handler_result.
4417  */
4418 int netdev_rx_handler_register(struct net_device *dev,
4419 			       rx_handler_func_t *rx_handler,
4420 			       void *rx_handler_data)
4421 {
4422 	if (netdev_is_rx_handler_busy(dev))
4423 		return -EBUSY;
4424 
4425 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4426 		return -EINVAL;
4427 
4428 	/* Note: rx_handler_data must be set before rx_handler */
4429 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4430 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4431 
4432 	return 0;
4433 }
4434 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4435 
4436 /**
4437  *	netdev_rx_handler_unregister - unregister receive handler
4438  *	@dev: device to unregister a handler from
4439  *
4440  *	Unregister a receive handler from a device.
4441  *
4442  *	The caller must hold the rtnl_mutex.
4443  */
4444 void netdev_rx_handler_unregister(struct net_device *dev)
4445 {
4446 
4447 	ASSERT_RTNL();
4448 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4449 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4450 	 * section has a guarantee to see a non NULL rx_handler_data
4451 	 * as well.
4452 	 */
4453 	synchronize_net();
4454 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4455 }
4456 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4457 
4458 /*
4459  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4460  * the special handling of PFMEMALLOC skbs.
4461  */
4462 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4463 {
4464 	switch (skb->protocol) {
4465 	case htons(ETH_P_ARP):
4466 	case htons(ETH_P_IP):
4467 	case htons(ETH_P_IPV6):
4468 	case htons(ETH_P_8021Q):
4469 	case htons(ETH_P_8021AD):
4470 		return true;
4471 	default:
4472 		return false;
4473 	}
4474 }
4475 
4476 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4477 			     int *ret, struct net_device *orig_dev)
4478 {
4479 #ifdef CONFIG_NETFILTER_INGRESS
4480 	if (nf_hook_ingress_active(skb)) {
4481 		int ingress_retval;
4482 
4483 		if (*pt_prev) {
4484 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4485 			*pt_prev = NULL;
4486 		}
4487 
4488 		rcu_read_lock();
4489 		ingress_retval = nf_hook_ingress(skb);
4490 		rcu_read_unlock();
4491 		return ingress_retval;
4492 	}
4493 #endif /* CONFIG_NETFILTER_INGRESS */
4494 	return 0;
4495 }
4496 
4497 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4498 {
4499 	struct packet_type *ptype, *pt_prev;
4500 	rx_handler_func_t *rx_handler;
4501 	struct net_device *orig_dev;
4502 	bool deliver_exact = false;
4503 	int ret = NET_RX_DROP;
4504 	__be16 type;
4505 
4506 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4507 
4508 	trace_netif_receive_skb(skb);
4509 
4510 	orig_dev = skb->dev;
4511 
4512 	skb_reset_network_header(skb);
4513 	if (!skb_transport_header_was_set(skb))
4514 		skb_reset_transport_header(skb);
4515 	skb_reset_mac_len(skb);
4516 
4517 	pt_prev = NULL;
4518 
4519 another_round:
4520 	skb->skb_iif = skb->dev->ifindex;
4521 
4522 	__this_cpu_inc(softnet_data.processed);
4523 
4524 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4525 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4526 		skb = skb_vlan_untag(skb);
4527 		if (unlikely(!skb))
4528 			goto out;
4529 	}
4530 
4531 	if (skb_skip_tc_classify(skb))
4532 		goto skip_classify;
4533 
4534 	if (pfmemalloc)
4535 		goto skip_taps;
4536 
4537 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4538 		if (pt_prev)
4539 			ret = deliver_skb(skb, pt_prev, orig_dev);
4540 		pt_prev = ptype;
4541 	}
4542 
4543 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4544 		if (pt_prev)
4545 			ret = deliver_skb(skb, pt_prev, orig_dev);
4546 		pt_prev = ptype;
4547 	}
4548 
4549 skip_taps:
4550 #ifdef CONFIG_NET_INGRESS
4551 	if (static_branch_unlikely(&ingress_needed_key)) {
4552 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4553 		if (!skb)
4554 			goto out;
4555 
4556 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4557 			goto out;
4558 	}
4559 #endif
4560 	skb_reset_tc(skb);
4561 skip_classify:
4562 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4563 		goto drop;
4564 
4565 	if (skb_vlan_tag_present(skb)) {
4566 		if (pt_prev) {
4567 			ret = deliver_skb(skb, pt_prev, orig_dev);
4568 			pt_prev = NULL;
4569 		}
4570 		if (vlan_do_receive(&skb))
4571 			goto another_round;
4572 		else if (unlikely(!skb))
4573 			goto out;
4574 	}
4575 
4576 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4577 	if (rx_handler) {
4578 		if (pt_prev) {
4579 			ret = deliver_skb(skb, pt_prev, orig_dev);
4580 			pt_prev = NULL;
4581 		}
4582 		switch (rx_handler(&skb)) {
4583 		case RX_HANDLER_CONSUMED:
4584 			ret = NET_RX_SUCCESS;
4585 			goto out;
4586 		case RX_HANDLER_ANOTHER:
4587 			goto another_round;
4588 		case RX_HANDLER_EXACT:
4589 			deliver_exact = true;
4590 		case RX_HANDLER_PASS:
4591 			break;
4592 		default:
4593 			BUG();
4594 		}
4595 	}
4596 
4597 	if (unlikely(skb_vlan_tag_present(skb))) {
4598 		if (skb_vlan_tag_get_id(skb))
4599 			skb->pkt_type = PACKET_OTHERHOST;
4600 		/* Note: we might in the future use prio bits
4601 		 * and set skb->priority like in vlan_do_receive()
4602 		 * For the time being, just ignore Priority Code Point
4603 		 */
4604 		skb->vlan_tci = 0;
4605 	}
4606 
4607 	type = skb->protocol;
4608 
4609 	/* deliver only exact match when indicated */
4610 	if (likely(!deliver_exact)) {
4611 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4612 				       &ptype_base[ntohs(type) &
4613 						   PTYPE_HASH_MASK]);
4614 	}
4615 
4616 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4617 			       &orig_dev->ptype_specific);
4618 
4619 	if (unlikely(skb->dev != orig_dev)) {
4620 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4621 				       &skb->dev->ptype_specific);
4622 	}
4623 
4624 	if (pt_prev) {
4625 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4626 			goto drop;
4627 		else
4628 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4629 	} else {
4630 drop:
4631 		if (!deliver_exact)
4632 			atomic_long_inc(&skb->dev->rx_dropped);
4633 		else
4634 			atomic_long_inc(&skb->dev->rx_nohandler);
4635 		kfree_skb(skb);
4636 		/* Jamal, now you will not able to escape explaining
4637 		 * me how you were going to use this. :-)
4638 		 */
4639 		ret = NET_RX_DROP;
4640 	}
4641 
4642 out:
4643 	return ret;
4644 }
4645 
4646 /**
4647  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4648  *	@skb: buffer to process
4649  *
4650  *	More direct receive version of netif_receive_skb().  It should
4651  *	only be used by callers that have a need to skip RPS and Generic XDP.
4652  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4653  *
4654  *	This function may only be called from softirq context and interrupts
4655  *	should be enabled.
4656  *
4657  *	Return values (usually ignored):
4658  *	NET_RX_SUCCESS: no congestion
4659  *	NET_RX_DROP: packet was dropped
4660  */
4661 int netif_receive_skb_core(struct sk_buff *skb)
4662 {
4663 	int ret;
4664 
4665 	rcu_read_lock();
4666 	ret = __netif_receive_skb_core(skb, false);
4667 	rcu_read_unlock();
4668 
4669 	return ret;
4670 }
4671 EXPORT_SYMBOL(netif_receive_skb_core);
4672 
4673 static int __netif_receive_skb(struct sk_buff *skb)
4674 {
4675 	int ret;
4676 
4677 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4678 		unsigned int noreclaim_flag;
4679 
4680 		/*
4681 		 * PFMEMALLOC skbs are special, they should
4682 		 * - be delivered to SOCK_MEMALLOC sockets only
4683 		 * - stay away from userspace
4684 		 * - have bounded memory usage
4685 		 *
4686 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4687 		 * context down to all allocation sites.
4688 		 */
4689 		noreclaim_flag = memalloc_noreclaim_save();
4690 		ret = __netif_receive_skb_core(skb, true);
4691 		memalloc_noreclaim_restore(noreclaim_flag);
4692 	} else
4693 		ret = __netif_receive_skb_core(skb, false);
4694 
4695 	return ret;
4696 }
4697 
4698 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4699 {
4700 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4701 	struct bpf_prog *new = xdp->prog;
4702 	int ret = 0;
4703 
4704 	switch (xdp->command) {
4705 	case XDP_SETUP_PROG:
4706 		rcu_assign_pointer(dev->xdp_prog, new);
4707 		if (old)
4708 			bpf_prog_put(old);
4709 
4710 		if (old && !new) {
4711 			static_branch_dec(&generic_xdp_needed_key);
4712 		} else if (new && !old) {
4713 			static_branch_inc(&generic_xdp_needed_key);
4714 			dev_disable_lro(dev);
4715 			dev_disable_gro_hw(dev);
4716 		}
4717 		break;
4718 
4719 	case XDP_QUERY_PROG:
4720 		xdp->prog_attached = !!old;
4721 		xdp->prog_id = old ? old->aux->id : 0;
4722 		break;
4723 
4724 	default:
4725 		ret = -EINVAL;
4726 		break;
4727 	}
4728 
4729 	return ret;
4730 }
4731 
4732 static int netif_receive_skb_internal(struct sk_buff *skb)
4733 {
4734 	int ret;
4735 
4736 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4737 
4738 	if (skb_defer_rx_timestamp(skb))
4739 		return NET_RX_SUCCESS;
4740 
4741 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4742 		int ret;
4743 
4744 		preempt_disable();
4745 		rcu_read_lock();
4746 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4747 		rcu_read_unlock();
4748 		preempt_enable();
4749 
4750 		if (ret != XDP_PASS)
4751 			return NET_RX_DROP;
4752 	}
4753 
4754 	rcu_read_lock();
4755 #ifdef CONFIG_RPS
4756 	if (static_key_false(&rps_needed)) {
4757 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4758 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4759 
4760 		if (cpu >= 0) {
4761 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4762 			rcu_read_unlock();
4763 			return ret;
4764 		}
4765 	}
4766 #endif
4767 	ret = __netif_receive_skb(skb);
4768 	rcu_read_unlock();
4769 	return ret;
4770 }
4771 
4772 /**
4773  *	netif_receive_skb - process receive buffer from network
4774  *	@skb: buffer to process
4775  *
4776  *	netif_receive_skb() is the main receive data processing function.
4777  *	It always succeeds. The buffer may be dropped during processing
4778  *	for congestion control or by the protocol layers.
4779  *
4780  *	This function may only be called from softirq context and interrupts
4781  *	should be enabled.
4782  *
4783  *	Return values (usually ignored):
4784  *	NET_RX_SUCCESS: no congestion
4785  *	NET_RX_DROP: packet was dropped
4786  */
4787 int netif_receive_skb(struct sk_buff *skb)
4788 {
4789 	trace_netif_receive_skb_entry(skb);
4790 
4791 	return netif_receive_skb_internal(skb);
4792 }
4793 EXPORT_SYMBOL(netif_receive_skb);
4794 
4795 DEFINE_PER_CPU(struct work_struct, flush_works);
4796 
4797 /* Network device is going away, flush any packets still pending */
4798 static void flush_backlog(struct work_struct *work)
4799 {
4800 	struct sk_buff *skb, *tmp;
4801 	struct softnet_data *sd;
4802 
4803 	local_bh_disable();
4804 	sd = this_cpu_ptr(&softnet_data);
4805 
4806 	local_irq_disable();
4807 	rps_lock(sd);
4808 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4809 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4810 			__skb_unlink(skb, &sd->input_pkt_queue);
4811 			kfree_skb(skb);
4812 			input_queue_head_incr(sd);
4813 		}
4814 	}
4815 	rps_unlock(sd);
4816 	local_irq_enable();
4817 
4818 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4819 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4820 			__skb_unlink(skb, &sd->process_queue);
4821 			kfree_skb(skb);
4822 			input_queue_head_incr(sd);
4823 		}
4824 	}
4825 	local_bh_enable();
4826 }
4827 
4828 static void flush_all_backlogs(void)
4829 {
4830 	unsigned int cpu;
4831 
4832 	get_online_cpus();
4833 
4834 	for_each_online_cpu(cpu)
4835 		queue_work_on(cpu, system_highpri_wq,
4836 			      per_cpu_ptr(&flush_works, cpu));
4837 
4838 	for_each_online_cpu(cpu)
4839 		flush_work(per_cpu_ptr(&flush_works, cpu));
4840 
4841 	put_online_cpus();
4842 }
4843 
4844 static int napi_gro_complete(struct sk_buff *skb)
4845 {
4846 	struct packet_offload *ptype;
4847 	__be16 type = skb->protocol;
4848 	struct list_head *head = &offload_base;
4849 	int err = -ENOENT;
4850 
4851 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4852 
4853 	if (NAPI_GRO_CB(skb)->count == 1) {
4854 		skb_shinfo(skb)->gso_size = 0;
4855 		goto out;
4856 	}
4857 
4858 	rcu_read_lock();
4859 	list_for_each_entry_rcu(ptype, head, list) {
4860 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4861 			continue;
4862 
4863 		err = ptype->callbacks.gro_complete(skb, 0);
4864 		break;
4865 	}
4866 	rcu_read_unlock();
4867 
4868 	if (err) {
4869 		WARN_ON(&ptype->list == head);
4870 		kfree_skb(skb);
4871 		return NET_RX_SUCCESS;
4872 	}
4873 
4874 out:
4875 	return netif_receive_skb_internal(skb);
4876 }
4877 
4878 static void __napi_gro_flush_chain(struct napi_struct *napi, struct list_head *head,
4879 				   bool flush_old)
4880 {
4881 	struct sk_buff *skb, *p;
4882 
4883 	list_for_each_entry_safe_reverse(skb, p, head, list) {
4884 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4885 			return;
4886 		list_del_init(&skb->list);
4887 		napi_gro_complete(skb);
4888 		napi->gro_count--;
4889 	}
4890 }
4891 
4892 /* napi->gro_hash contains packets ordered by age.
4893  * youngest packets at the head of it.
4894  * Complete skbs in reverse order to reduce latencies.
4895  */
4896 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4897 {
4898 	int i;
4899 
4900 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
4901 		struct list_head *head = &napi->gro_hash[i];
4902 
4903 		__napi_gro_flush_chain(napi, head, flush_old);
4904 	}
4905 }
4906 EXPORT_SYMBOL(napi_gro_flush);
4907 
4908 static struct list_head *gro_list_prepare(struct napi_struct *napi,
4909 					  struct sk_buff *skb)
4910 {
4911 	unsigned int maclen = skb->dev->hard_header_len;
4912 	u32 hash = skb_get_hash_raw(skb);
4913 	struct list_head *head;
4914 	struct sk_buff *p;
4915 
4916 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)];
4917 	list_for_each_entry(p, head, list) {
4918 		unsigned long diffs;
4919 
4920 		NAPI_GRO_CB(p)->flush = 0;
4921 
4922 		if (hash != skb_get_hash_raw(p)) {
4923 			NAPI_GRO_CB(p)->same_flow = 0;
4924 			continue;
4925 		}
4926 
4927 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4928 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4929 		diffs |= skb_metadata_dst_cmp(p, skb);
4930 		diffs |= skb_metadata_differs(p, skb);
4931 		if (maclen == ETH_HLEN)
4932 			diffs |= compare_ether_header(skb_mac_header(p),
4933 						      skb_mac_header(skb));
4934 		else if (!diffs)
4935 			diffs = memcmp(skb_mac_header(p),
4936 				       skb_mac_header(skb),
4937 				       maclen);
4938 		NAPI_GRO_CB(p)->same_flow = !diffs;
4939 	}
4940 
4941 	return head;
4942 }
4943 
4944 static void skb_gro_reset_offset(struct sk_buff *skb)
4945 {
4946 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4947 	const skb_frag_t *frag0 = &pinfo->frags[0];
4948 
4949 	NAPI_GRO_CB(skb)->data_offset = 0;
4950 	NAPI_GRO_CB(skb)->frag0 = NULL;
4951 	NAPI_GRO_CB(skb)->frag0_len = 0;
4952 
4953 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4954 	    pinfo->nr_frags &&
4955 	    !PageHighMem(skb_frag_page(frag0))) {
4956 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4957 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4958 						    skb_frag_size(frag0),
4959 						    skb->end - skb->tail);
4960 	}
4961 }
4962 
4963 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4964 {
4965 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4966 
4967 	BUG_ON(skb->end - skb->tail < grow);
4968 
4969 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4970 
4971 	skb->data_len -= grow;
4972 	skb->tail += grow;
4973 
4974 	pinfo->frags[0].page_offset += grow;
4975 	skb_frag_size_sub(&pinfo->frags[0], grow);
4976 
4977 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4978 		skb_frag_unref(skb, 0);
4979 		memmove(pinfo->frags, pinfo->frags + 1,
4980 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4981 	}
4982 }
4983 
4984 static void gro_flush_oldest(struct napi_struct *napi)
4985 {
4986 	struct sk_buff *oldest = NULL;
4987 	unsigned long age = jiffies;
4988 	int i;
4989 
4990 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
4991 		struct list_head *head = &napi->gro_hash[i];
4992 		struct sk_buff *skb;
4993 
4994 		if (list_empty(head))
4995 			continue;
4996 
4997 		skb = list_last_entry(head, struct sk_buff, list);
4998 		if (!oldest || time_before(NAPI_GRO_CB(skb)->age, age)) {
4999 			oldest = skb;
5000 			age = NAPI_GRO_CB(skb)->age;
5001 		}
5002 	}
5003 
5004 	/* We are called with napi->gro_count >= MAX_GRO_SKBS, so this is
5005 	 * impossible.
5006 	 */
5007 	if (WARN_ON_ONCE(!oldest))
5008 		return;
5009 
5010 	/* Do not adjust napi->gro_count, caller is adding a new SKB to
5011 	 * the chain.
5012 	 */
5013 	list_del(&oldest->list);
5014 	napi_gro_complete(oldest);
5015 }
5016 
5017 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5018 {
5019 	struct list_head *head = &offload_base;
5020 	struct packet_offload *ptype;
5021 	__be16 type = skb->protocol;
5022 	struct list_head *gro_head;
5023 	struct sk_buff *pp = NULL;
5024 	enum gro_result ret;
5025 	int same_flow;
5026 	int grow;
5027 
5028 	if (netif_elide_gro(skb->dev))
5029 		goto normal;
5030 
5031 	gro_head = gro_list_prepare(napi, skb);
5032 
5033 	rcu_read_lock();
5034 	list_for_each_entry_rcu(ptype, head, list) {
5035 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5036 			continue;
5037 
5038 		skb_set_network_header(skb, skb_gro_offset(skb));
5039 		skb_reset_mac_len(skb);
5040 		NAPI_GRO_CB(skb)->same_flow = 0;
5041 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5042 		NAPI_GRO_CB(skb)->free = 0;
5043 		NAPI_GRO_CB(skb)->encap_mark = 0;
5044 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5045 		NAPI_GRO_CB(skb)->is_fou = 0;
5046 		NAPI_GRO_CB(skb)->is_atomic = 1;
5047 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5048 
5049 		/* Setup for GRO checksum validation */
5050 		switch (skb->ip_summed) {
5051 		case CHECKSUM_COMPLETE:
5052 			NAPI_GRO_CB(skb)->csum = skb->csum;
5053 			NAPI_GRO_CB(skb)->csum_valid = 1;
5054 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5055 			break;
5056 		case CHECKSUM_UNNECESSARY:
5057 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5058 			NAPI_GRO_CB(skb)->csum_valid = 0;
5059 			break;
5060 		default:
5061 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5062 			NAPI_GRO_CB(skb)->csum_valid = 0;
5063 		}
5064 
5065 		pp = ptype->callbacks.gro_receive(gro_head, skb);
5066 		break;
5067 	}
5068 	rcu_read_unlock();
5069 
5070 	if (&ptype->list == head)
5071 		goto normal;
5072 
5073 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5074 		ret = GRO_CONSUMED;
5075 		goto ok;
5076 	}
5077 
5078 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5079 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5080 
5081 	if (pp) {
5082 		list_del_init(&pp->list);
5083 		napi_gro_complete(pp);
5084 		napi->gro_count--;
5085 	}
5086 
5087 	if (same_flow)
5088 		goto ok;
5089 
5090 	if (NAPI_GRO_CB(skb)->flush)
5091 		goto normal;
5092 
5093 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5094 		gro_flush_oldest(napi);
5095 	} else {
5096 		napi->gro_count++;
5097 	}
5098 	NAPI_GRO_CB(skb)->count = 1;
5099 	NAPI_GRO_CB(skb)->age = jiffies;
5100 	NAPI_GRO_CB(skb)->last = skb;
5101 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5102 	list_add(&skb->list, gro_head);
5103 	ret = GRO_HELD;
5104 
5105 pull:
5106 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5107 	if (grow > 0)
5108 		gro_pull_from_frag0(skb, grow);
5109 ok:
5110 	return ret;
5111 
5112 normal:
5113 	ret = GRO_NORMAL;
5114 	goto pull;
5115 }
5116 
5117 struct packet_offload *gro_find_receive_by_type(__be16 type)
5118 {
5119 	struct list_head *offload_head = &offload_base;
5120 	struct packet_offload *ptype;
5121 
5122 	list_for_each_entry_rcu(ptype, offload_head, list) {
5123 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5124 			continue;
5125 		return ptype;
5126 	}
5127 	return NULL;
5128 }
5129 EXPORT_SYMBOL(gro_find_receive_by_type);
5130 
5131 struct packet_offload *gro_find_complete_by_type(__be16 type)
5132 {
5133 	struct list_head *offload_head = &offload_base;
5134 	struct packet_offload *ptype;
5135 
5136 	list_for_each_entry_rcu(ptype, offload_head, list) {
5137 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5138 			continue;
5139 		return ptype;
5140 	}
5141 	return NULL;
5142 }
5143 EXPORT_SYMBOL(gro_find_complete_by_type);
5144 
5145 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5146 {
5147 	skb_dst_drop(skb);
5148 	secpath_reset(skb);
5149 	kmem_cache_free(skbuff_head_cache, skb);
5150 }
5151 
5152 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5153 {
5154 	switch (ret) {
5155 	case GRO_NORMAL:
5156 		if (netif_receive_skb_internal(skb))
5157 			ret = GRO_DROP;
5158 		break;
5159 
5160 	case GRO_DROP:
5161 		kfree_skb(skb);
5162 		break;
5163 
5164 	case GRO_MERGED_FREE:
5165 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5166 			napi_skb_free_stolen_head(skb);
5167 		else
5168 			__kfree_skb(skb);
5169 		break;
5170 
5171 	case GRO_HELD:
5172 	case GRO_MERGED:
5173 	case GRO_CONSUMED:
5174 		break;
5175 	}
5176 
5177 	return ret;
5178 }
5179 
5180 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5181 {
5182 	skb_mark_napi_id(skb, napi);
5183 	trace_napi_gro_receive_entry(skb);
5184 
5185 	skb_gro_reset_offset(skb);
5186 
5187 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5188 }
5189 EXPORT_SYMBOL(napi_gro_receive);
5190 
5191 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5192 {
5193 	if (unlikely(skb->pfmemalloc)) {
5194 		consume_skb(skb);
5195 		return;
5196 	}
5197 	__skb_pull(skb, skb_headlen(skb));
5198 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5199 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5200 	skb->vlan_tci = 0;
5201 	skb->dev = napi->dev;
5202 	skb->skb_iif = 0;
5203 	skb->encapsulation = 0;
5204 	skb_shinfo(skb)->gso_type = 0;
5205 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5206 	secpath_reset(skb);
5207 
5208 	napi->skb = skb;
5209 }
5210 
5211 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5212 {
5213 	struct sk_buff *skb = napi->skb;
5214 
5215 	if (!skb) {
5216 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5217 		if (skb) {
5218 			napi->skb = skb;
5219 			skb_mark_napi_id(skb, napi);
5220 		}
5221 	}
5222 	return skb;
5223 }
5224 EXPORT_SYMBOL(napi_get_frags);
5225 
5226 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5227 				      struct sk_buff *skb,
5228 				      gro_result_t ret)
5229 {
5230 	switch (ret) {
5231 	case GRO_NORMAL:
5232 	case GRO_HELD:
5233 		__skb_push(skb, ETH_HLEN);
5234 		skb->protocol = eth_type_trans(skb, skb->dev);
5235 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5236 			ret = GRO_DROP;
5237 		break;
5238 
5239 	case GRO_DROP:
5240 		napi_reuse_skb(napi, skb);
5241 		break;
5242 
5243 	case GRO_MERGED_FREE:
5244 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5245 			napi_skb_free_stolen_head(skb);
5246 		else
5247 			napi_reuse_skb(napi, skb);
5248 		break;
5249 
5250 	case GRO_MERGED:
5251 	case GRO_CONSUMED:
5252 		break;
5253 	}
5254 
5255 	return ret;
5256 }
5257 
5258 /* Upper GRO stack assumes network header starts at gro_offset=0
5259  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5260  * We copy ethernet header into skb->data to have a common layout.
5261  */
5262 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5263 {
5264 	struct sk_buff *skb = napi->skb;
5265 	const struct ethhdr *eth;
5266 	unsigned int hlen = sizeof(*eth);
5267 
5268 	napi->skb = NULL;
5269 
5270 	skb_reset_mac_header(skb);
5271 	skb_gro_reset_offset(skb);
5272 
5273 	eth = skb_gro_header_fast(skb, 0);
5274 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5275 		eth = skb_gro_header_slow(skb, hlen, 0);
5276 		if (unlikely(!eth)) {
5277 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5278 					     __func__, napi->dev->name);
5279 			napi_reuse_skb(napi, skb);
5280 			return NULL;
5281 		}
5282 	} else {
5283 		gro_pull_from_frag0(skb, hlen);
5284 		NAPI_GRO_CB(skb)->frag0 += hlen;
5285 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5286 	}
5287 	__skb_pull(skb, hlen);
5288 
5289 	/*
5290 	 * This works because the only protocols we care about don't require
5291 	 * special handling.
5292 	 * We'll fix it up properly in napi_frags_finish()
5293 	 */
5294 	skb->protocol = eth->h_proto;
5295 
5296 	return skb;
5297 }
5298 
5299 gro_result_t napi_gro_frags(struct napi_struct *napi)
5300 {
5301 	struct sk_buff *skb = napi_frags_skb(napi);
5302 
5303 	if (!skb)
5304 		return GRO_DROP;
5305 
5306 	trace_napi_gro_frags_entry(skb);
5307 
5308 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5309 }
5310 EXPORT_SYMBOL(napi_gro_frags);
5311 
5312 /* Compute the checksum from gro_offset and return the folded value
5313  * after adding in any pseudo checksum.
5314  */
5315 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5316 {
5317 	__wsum wsum;
5318 	__sum16 sum;
5319 
5320 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5321 
5322 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5323 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5324 	if (likely(!sum)) {
5325 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5326 		    !skb->csum_complete_sw)
5327 			netdev_rx_csum_fault(skb->dev);
5328 	}
5329 
5330 	NAPI_GRO_CB(skb)->csum = wsum;
5331 	NAPI_GRO_CB(skb)->csum_valid = 1;
5332 
5333 	return sum;
5334 }
5335 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5336 
5337 static void net_rps_send_ipi(struct softnet_data *remsd)
5338 {
5339 #ifdef CONFIG_RPS
5340 	while (remsd) {
5341 		struct softnet_data *next = remsd->rps_ipi_next;
5342 
5343 		if (cpu_online(remsd->cpu))
5344 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5345 		remsd = next;
5346 	}
5347 #endif
5348 }
5349 
5350 /*
5351  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5352  * Note: called with local irq disabled, but exits with local irq enabled.
5353  */
5354 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5355 {
5356 #ifdef CONFIG_RPS
5357 	struct softnet_data *remsd = sd->rps_ipi_list;
5358 
5359 	if (remsd) {
5360 		sd->rps_ipi_list = NULL;
5361 
5362 		local_irq_enable();
5363 
5364 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5365 		net_rps_send_ipi(remsd);
5366 	} else
5367 #endif
5368 		local_irq_enable();
5369 }
5370 
5371 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5372 {
5373 #ifdef CONFIG_RPS
5374 	return sd->rps_ipi_list != NULL;
5375 #else
5376 	return false;
5377 #endif
5378 }
5379 
5380 static int process_backlog(struct napi_struct *napi, int quota)
5381 {
5382 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5383 	bool again = true;
5384 	int work = 0;
5385 
5386 	/* Check if we have pending ipi, its better to send them now,
5387 	 * not waiting net_rx_action() end.
5388 	 */
5389 	if (sd_has_rps_ipi_waiting(sd)) {
5390 		local_irq_disable();
5391 		net_rps_action_and_irq_enable(sd);
5392 	}
5393 
5394 	napi->weight = dev_rx_weight;
5395 	while (again) {
5396 		struct sk_buff *skb;
5397 
5398 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5399 			rcu_read_lock();
5400 			__netif_receive_skb(skb);
5401 			rcu_read_unlock();
5402 			input_queue_head_incr(sd);
5403 			if (++work >= quota)
5404 				return work;
5405 
5406 		}
5407 
5408 		local_irq_disable();
5409 		rps_lock(sd);
5410 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5411 			/*
5412 			 * Inline a custom version of __napi_complete().
5413 			 * only current cpu owns and manipulates this napi,
5414 			 * and NAPI_STATE_SCHED is the only possible flag set
5415 			 * on backlog.
5416 			 * We can use a plain write instead of clear_bit(),
5417 			 * and we dont need an smp_mb() memory barrier.
5418 			 */
5419 			napi->state = 0;
5420 			again = false;
5421 		} else {
5422 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5423 						   &sd->process_queue);
5424 		}
5425 		rps_unlock(sd);
5426 		local_irq_enable();
5427 	}
5428 
5429 	return work;
5430 }
5431 
5432 /**
5433  * __napi_schedule - schedule for receive
5434  * @n: entry to schedule
5435  *
5436  * The entry's receive function will be scheduled to run.
5437  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5438  */
5439 void __napi_schedule(struct napi_struct *n)
5440 {
5441 	unsigned long flags;
5442 
5443 	local_irq_save(flags);
5444 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5445 	local_irq_restore(flags);
5446 }
5447 EXPORT_SYMBOL(__napi_schedule);
5448 
5449 /**
5450  *	napi_schedule_prep - check if napi can be scheduled
5451  *	@n: napi context
5452  *
5453  * Test if NAPI routine is already running, and if not mark
5454  * it as running.  This is used as a condition variable
5455  * insure only one NAPI poll instance runs.  We also make
5456  * sure there is no pending NAPI disable.
5457  */
5458 bool napi_schedule_prep(struct napi_struct *n)
5459 {
5460 	unsigned long val, new;
5461 
5462 	do {
5463 		val = READ_ONCE(n->state);
5464 		if (unlikely(val & NAPIF_STATE_DISABLE))
5465 			return false;
5466 		new = val | NAPIF_STATE_SCHED;
5467 
5468 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5469 		 * This was suggested by Alexander Duyck, as compiler
5470 		 * emits better code than :
5471 		 * if (val & NAPIF_STATE_SCHED)
5472 		 *     new |= NAPIF_STATE_MISSED;
5473 		 */
5474 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5475 						   NAPIF_STATE_MISSED;
5476 	} while (cmpxchg(&n->state, val, new) != val);
5477 
5478 	return !(val & NAPIF_STATE_SCHED);
5479 }
5480 EXPORT_SYMBOL(napi_schedule_prep);
5481 
5482 /**
5483  * __napi_schedule_irqoff - schedule for receive
5484  * @n: entry to schedule
5485  *
5486  * Variant of __napi_schedule() assuming hard irqs are masked
5487  */
5488 void __napi_schedule_irqoff(struct napi_struct *n)
5489 {
5490 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5491 }
5492 EXPORT_SYMBOL(__napi_schedule_irqoff);
5493 
5494 bool napi_complete_done(struct napi_struct *n, int work_done)
5495 {
5496 	unsigned long flags, val, new;
5497 
5498 	/*
5499 	 * 1) Don't let napi dequeue from the cpu poll list
5500 	 *    just in case its running on a different cpu.
5501 	 * 2) If we are busy polling, do nothing here, we have
5502 	 *    the guarantee we will be called later.
5503 	 */
5504 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5505 				 NAPIF_STATE_IN_BUSY_POLL)))
5506 		return false;
5507 
5508 	if (n->gro_count) {
5509 		unsigned long timeout = 0;
5510 
5511 		if (work_done)
5512 			timeout = n->dev->gro_flush_timeout;
5513 
5514 		if (timeout)
5515 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5516 				      HRTIMER_MODE_REL_PINNED);
5517 		else
5518 			napi_gro_flush(n, false);
5519 	}
5520 	if (unlikely(!list_empty(&n->poll_list))) {
5521 		/* If n->poll_list is not empty, we need to mask irqs */
5522 		local_irq_save(flags);
5523 		list_del_init(&n->poll_list);
5524 		local_irq_restore(flags);
5525 	}
5526 
5527 	do {
5528 		val = READ_ONCE(n->state);
5529 
5530 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5531 
5532 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5533 
5534 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5535 		 * because we will call napi->poll() one more time.
5536 		 * This C code was suggested by Alexander Duyck to help gcc.
5537 		 */
5538 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5539 						    NAPIF_STATE_SCHED;
5540 	} while (cmpxchg(&n->state, val, new) != val);
5541 
5542 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5543 		__napi_schedule(n);
5544 		return false;
5545 	}
5546 
5547 	return true;
5548 }
5549 EXPORT_SYMBOL(napi_complete_done);
5550 
5551 /* must be called under rcu_read_lock(), as we dont take a reference */
5552 static struct napi_struct *napi_by_id(unsigned int napi_id)
5553 {
5554 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5555 	struct napi_struct *napi;
5556 
5557 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5558 		if (napi->napi_id == napi_id)
5559 			return napi;
5560 
5561 	return NULL;
5562 }
5563 
5564 #if defined(CONFIG_NET_RX_BUSY_POLL)
5565 
5566 #define BUSY_POLL_BUDGET 8
5567 
5568 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5569 {
5570 	int rc;
5571 
5572 	/* Busy polling means there is a high chance device driver hard irq
5573 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5574 	 * set in napi_schedule_prep().
5575 	 * Since we are about to call napi->poll() once more, we can safely
5576 	 * clear NAPI_STATE_MISSED.
5577 	 *
5578 	 * Note: x86 could use a single "lock and ..." instruction
5579 	 * to perform these two clear_bit()
5580 	 */
5581 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5582 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5583 
5584 	local_bh_disable();
5585 
5586 	/* All we really want here is to re-enable device interrupts.
5587 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5588 	 */
5589 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5590 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5591 	netpoll_poll_unlock(have_poll_lock);
5592 	if (rc == BUSY_POLL_BUDGET)
5593 		__napi_schedule(napi);
5594 	local_bh_enable();
5595 }
5596 
5597 void napi_busy_loop(unsigned int napi_id,
5598 		    bool (*loop_end)(void *, unsigned long),
5599 		    void *loop_end_arg)
5600 {
5601 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5602 	int (*napi_poll)(struct napi_struct *napi, int budget);
5603 	void *have_poll_lock = NULL;
5604 	struct napi_struct *napi;
5605 
5606 restart:
5607 	napi_poll = NULL;
5608 
5609 	rcu_read_lock();
5610 
5611 	napi = napi_by_id(napi_id);
5612 	if (!napi)
5613 		goto out;
5614 
5615 	preempt_disable();
5616 	for (;;) {
5617 		int work = 0;
5618 
5619 		local_bh_disable();
5620 		if (!napi_poll) {
5621 			unsigned long val = READ_ONCE(napi->state);
5622 
5623 			/* If multiple threads are competing for this napi,
5624 			 * we avoid dirtying napi->state as much as we can.
5625 			 */
5626 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5627 				   NAPIF_STATE_IN_BUSY_POLL))
5628 				goto count;
5629 			if (cmpxchg(&napi->state, val,
5630 				    val | NAPIF_STATE_IN_BUSY_POLL |
5631 					  NAPIF_STATE_SCHED) != val)
5632 				goto count;
5633 			have_poll_lock = netpoll_poll_lock(napi);
5634 			napi_poll = napi->poll;
5635 		}
5636 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5637 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5638 count:
5639 		if (work > 0)
5640 			__NET_ADD_STATS(dev_net(napi->dev),
5641 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5642 		local_bh_enable();
5643 
5644 		if (!loop_end || loop_end(loop_end_arg, start_time))
5645 			break;
5646 
5647 		if (unlikely(need_resched())) {
5648 			if (napi_poll)
5649 				busy_poll_stop(napi, have_poll_lock);
5650 			preempt_enable();
5651 			rcu_read_unlock();
5652 			cond_resched();
5653 			if (loop_end(loop_end_arg, start_time))
5654 				return;
5655 			goto restart;
5656 		}
5657 		cpu_relax();
5658 	}
5659 	if (napi_poll)
5660 		busy_poll_stop(napi, have_poll_lock);
5661 	preempt_enable();
5662 out:
5663 	rcu_read_unlock();
5664 }
5665 EXPORT_SYMBOL(napi_busy_loop);
5666 
5667 #endif /* CONFIG_NET_RX_BUSY_POLL */
5668 
5669 static void napi_hash_add(struct napi_struct *napi)
5670 {
5671 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5672 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5673 		return;
5674 
5675 	spin_lock(&napi_hash_lock);
5676 
5677 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5678 	do {
5679 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5680 			napi_gen_id = MIN_NAPI_ID;
5681 	} while (napi_by_id(napi_gen_id));
5682 	napi->napi_id = napi_gen_id;
5683 
5684 	hlist_add_head_rcu(&napi->napi_hash_node,
5685 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5686 
5687 	spin_unlock(&napi_hash_lock);
5688 }
5689 
5690 /* Warning : caller is responsible to make sure rcu grace period
5691  * is respected before freeing memory containing @napi
5692  */
5693 bool napi_hash_del(struct napi_struct *napi)
5694 {
5695 	bool rcu_sync_needed = false;
5696 
5697 	spin_lock(&napi_hash_lock);
5698 
5699 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5700 		rcu_sync_needed = true;
5701 		hlist_del_rcu(&napi->napi_hash_node);
5702 	}
5703 	spin_unlock(&napi_hash_lock);
5704 	return rcu_sync_needed;
5705 }
5706 EXPORT_SYMBOL_GPL(napi_hash_del);
5707 
5708 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5709 {
5710 	struct napi_struct *napi;
5711 
5712 	napi = container_of(timer, struct napi_struct, timer);
5713 
5714 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5715 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5716 	 */
5717 	if (napi->gro_count && !napi_disable_pending(napi) &&
5718 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5719 		__napi_schedule_irqoff(napi);
5720 
5721 	return HRTIMER_NORESTART;
5722 }
5723 
5724 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5725 		    int (*poll)(struct napi_struct *, int), int weight)
5726 {
5727 	int i;
5728 
5729 	INIT_LIST_HEAD(&napi->poll_list);
5730 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5731 	napi->timer.function = napi_watchdog;
5732 	napi->gro_count = 0;
5733 	for (i = 0; i < GRO_HASH_BUCKETS; i++)
5734 		INIT_LIST_HEAD(&napi->gro_hash[i]);
5735 	napi->skb = NULL;
5736 	napi->poll = poll;
5737 	if (weight > NAPI_POLL_WEIGHT)
5738 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5739 			    weight, dev->name);
5740 	napi->weight = weight;
5741 	list_add(&napi->dev_list, &dev->napi_list);
5742 	napi->dev = dev;
5743 #ifdef CONFIG_NETPOLL
5744 	napi->poll_owner = -1;
5745 #endif
5746 	set_bit(NAPI_STATE_SCHED, &napi->state);
5747 	napi_hash_add(napi);
5748 }
5749 EXPORT_SYMBOL(netif_napi_add);
5750 
5751 void napi_disable(struct napi_struct *n)
5752 {
5753 	might_sleep();
5754 	set_bit(NAPI_STATE_DISABLE, &n->state);
5755 
5756 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5757 		msleep(1);
5758 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5759 		msleep(1);
5760 
5761 	hrtimer_cancel(&n->timer);
5762 
5763 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5764 }
5765 EXPORT_SYMBOL(napi_disable);
5766 
5767 static void flush_gro_hash(struct napi_struct *napi)
5768 {
5769 	int i;
5770 
5771 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5772 		struct sk_buff *skb, *n;
5773 
5774 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i], list)
5775 			kfree_skb(skb);
5776 	}
5777 }
5778 
5779 /* Must be called in process context */
5780 void netif_napi_del(struct napi_struct *napi)
5781 {
5782 	might_sleep();
5783 	if (napi_hash_del(napi))
5784 		synchronize_net();
5785 	list_del_init(&napi->dev_list);
5786 	napi_free_frags(napi);
5787 
5788 	flush_gro_hash(napi);
5789 	napi->gro_count = 0;
5790 }
5791 EXPORT_SYMBOL(netif_napi_del);
5792 
5793 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5794 {
5795 	void *have;
5796 	int work, weight;
5797 
5798 	list_del_init(&n->poll_list);
5799 
5800 	have = netpoll_poll_lock(n);
5801 
5802 	weight = n->weight;
5803 
5804 	/* This NAPI_STATE_SCHED test is for avoiding a race
5805 	 * with netpoll's poll_napi().  Only the entity which
5806 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5807 	 * actually make the ->poll() call.  Therefore we avoid
5808 	 * accidentally calling ->poll() when NAPI is not scheduled.
5809 	 */
5810 	work = 0;
5811 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5812 		work = n->poll(n, weight);
5813 		trace_napi_poll(n, work, weight);
5814 	}
5815 
5816 	WARN_ON_ONCE(work > weight);
5817 
5818 	if (likely(work < weight))
5819 		goto out_unlock;
5820 
5821 	/* Drivers must not modify the NAPI state if they
5822 	 * consume the entire weight.  In such cases this code
5823 	 * still "owns" the NAPI instance and therefore can
5824 	 * move the instance around on the list at-will.
5825 	 */
5826 	if (unlikely(napi_disable_pending(n))) {
5827 		napi_complete(n);
5828 		goto out_unlock;
5829 	}
5830 
5831 	if (n->gro_count) {
5832 		/* flush too old packets
5833 		 * If HZ < 1000, flush all packets.
5834 		 */
5835 		napi_gro_flush(n, HZ >= 1000);
5836 	}
5837 
5838 	/* Some drivers may have called napi_schedule
5839 	 * prior to exhausting their budget.
5840 	 */
5841 	if (unlikely(!list_empty(&n->poll_list))) {
5842 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5843 			     n->dev ? n->dev->name : "backlog");
5844 		goto out_unlock;
5845 	}
5846 
5847 	list_add_tail(&n->poll_list, repoll);
5848 
5849 out_unlock:
5850 	netpoll_poll_unlock(have);
5851 
5852 	return work;
5853 }
5854 
5855 static __latent_entropy void net_rx_action(struct softirq_action *h)
5856 {
5857 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5858 	unsigned long time_limit = jiffies +
5859 		usecs_to_jiffies(netdev_budget_usecs);
5860 	int budget = netdev_budget;
5861 	LIST_HEAD(list);
5862 	LIST_HEAD(repoll);
5863 
5864 	local_irq_disable();
5865 	list_splice_init(&sd->poll_list, &list);
5866 	local_irq_enable();
5867 
5868 	for (;;) {
5869 		struct napi_struct *n;
5870 
5871 		if (list_empty(&list)) {
5872 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5873 				goto out;
5874 			break;
5875 		}
5876 
5877 		n = list_first_entry(&list, struct napi_struct, poll_list);
5878 		budget -= napi_poll(n, &repoll);
5879 
5880 		/* If softirq window is exhausted then punt.
5881 		 * Allow this to run for 2 jiffies since which will allow
5882 		 * an average latency of 1.5/HZ.
5883 		 */
5884 		if (unlikely(budget <= 0 ||
5885 			     time_after_eq(jiffies, time_limit))) {
5886 			sd->time_squeeze++;
5887 			break;
5888 		}
5889 	}
5890 
5891 	local_irq_disable();
5892 
5893 	list_splice_tail_init(&sd->poll_list, &list);
5894 	list_splice_tail(&repoll, &list);
5895 	list_splice(&list, &sd->poll_list);
5896 	if (!list_empty(&sd->poll_list))
5897 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5898 
5899 	net_rps_action_and_irq_enable(sd);
5900 out:
5901 	__kfree_skb_flush();
5902 }
5903 
5904 struct netdev_adjacent {
5905 	struct net_device *dev;
5906 
5907 	/* upper master flag, there can only be one master device per list */
5908 	bool master;
5909 
5910 	/* counter for the number of times this device was added to us */
5911 	u16 ref_nr;
5912 
5913 	/* private field for the users */
5914 	void *private;
5915 
5916 	struct list_head list;
5917 	struct rcu_head rcu;
5918 };
5919 
5920 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5921 						 struct list_head *adj_list)
5922 {
5923 	struct netdev_adjacent *adj;
5924 
5925 	list_for_each_entry(adj, adj_list, list) {
5926 		if (adj->dev == adj_dev)
5927 			return adj;
5928 	}
5929 	return NULL;
5930 }
5931 
5932 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5933 {
5934 	struct net_device *dev = data;
5935 
5936 	return upper_dev == dev;
5937 }
5938 
5939 /**
5940  * netdev_has_upper_dev - Check if device is linked to an upper device
5941  * @dev: device
5942  * @upper_dev: upper device to check
5943  *
5944  * Find out if a device is linked to specified upper device and return true
5945  * in case it is. Note that this checks only immediate upper device,
5946  * not through a complete stack of devices. The caller must hold the RTNL lock.
5947  */
5948 bool netdev_has_upper_dev(struct net_device *dev,
5949 			  struct net_device *upper_dev)
5950 {
5951 	ASSERT_RTNL();
5952 
5953 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5954 					     upper_dev);
5955 }
5956 EXPORT_SYMBOL(netdev_has_upper_dev);
5957 
5958 /**
5959  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5960  * @dev: device
5961  * @upper_dev: upper device to check
5962  *
5963  * Find out if a device is linked to specified upper device and return true
5964  * in case it is. Note that this checks the entire upper device chain.
5965  * The caller must hold rcu lock.
5966  */
5967 
5968 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5969 				  struct net_device *upper_dev)
5970 {
5971 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5972 					       upper_dev);
5973 }
5974 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5975 
5976 /**
5977  * netdev_has_any_upper_dev - Check if device is linked to some device
5978  * @dev: device
5979  *
5980  * Find out if a device is linked to an upper device and return true in case
5981  * it is. The caller must hold the RTNL lock.
5982  */
5983 bool netdev_has_any_upper_dev(struct net_device *dev)
5984 {
5985 	ASSERT_RTNL();
5986 
5987 	return !list_empty(&dev->adj_list.upper);
5988 }
5989 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5990 
5991 /**
5992  * netdev_master_upper_dev_get - Get master upper device
5993  * @dev: device
5994  *
5995  * Find a master upper device and return pointer to it or NULL in case
5996  * it's not there. The caller must hold the RTNL lock.
5997  */
5998 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5999 {
6000 	struct netdev_adjacent *upper;
6001 
6002 	ASSERT_RTNL();
6003 
6004 	if (list_empty(&dev->adj_list.upper))
6005 		return NULL;
6006 
6007 	upper = list_first_entry(&dev->adj_list.upper,
6008 				 struct netdev_adjacent, list);
6009 	if (likely(upper->master))
6010 		return upper->dev;
6011 	return NULL;
6012 }
6013 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6014 
6015 /**
6016  * netdev_has_any_lower_dev - Check if device is linked to some device
6017  * @dev: device
6018  *
6019  * Find out if a device is linked to a lower device and return true in case
6020  * it is. The caller must hold the RTNL lock.
6021  */
6022 static bool netdev_has_any_lower_dev(struct net_device *dev)
6023 {
6024 	ASSERT_RTNL();
6025 
6026 	return !list_empty(&dev->adj_list.lower);
6027 }
6028 
6029 void *netdev_adjacent_get_private(struct list_head *adj_list)
6030 {
6031 	struct netdev_adjacent *adj;
6032 
6033 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6034 
6035 	return adj->private;
6036 }
6037 EXPORT_SYMBOL(netdev_adjacent_get_private);
6038 
6039 /**
6040  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6041  * @dev: device
6042  * @iter: list_head ** of the current position
6043  *
6044  * Gets the next device from the dev's upper list, starting from iter
6045  * position. The caller must hold RCU read lock.
6046  */
6047 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6048 						 struct list_head **iter)
6049 {
6050 	struct netdev_adjacent *upper;
6051 
6052 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6053 
6054 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6055 
6056 	if (&upper->list == &dev->adj_list.upper)
6057 		return NULL;
6058 
6059 	*iter = &upper->list;
6060 
6061 	return upper->dev;
6062 }
6063 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6064 
6065 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6066 						    struct list_head **iter)
6067 {
6068 	struct netdev_adjacent *upper;
6069 
6070 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6071 
6072 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6073 
6074 	if (&upper->list == &dev->adj_list.upper)
6075 		return NULL;
6076 
6077 	*iter = &upper->list;
6078 
6079 	return upper->dev;
6080 }
6081 
6082 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6083 				  int (*fn)(struct net_device *dev,
6084 					    void *data),
6085 				  void *data)
6086 {
6087 	struct net_device *udev;
6088 	struct list_head *iter;
6089 	int ret;
6090 
6091 	for (iter = &dev->adj_list.upper,
6092 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6093 	     udev;
6094 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6095 		/* first is the upper device itself */
6096 		ret = fn(udev, data);
6097 		if (ret)
6098 			return ret;
6099 
6100 		/* then look at all of its upper devices */
6101 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6102 		if (ret)
6103 			return ret;
6104 	}
6105 
6106 	return 0;
6107 }
6108 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6109 
6110 /**
6111  * netdev_lower_get_next_private - Get the next ->private from the
6112  *				   lower neighbour list
6113  * @dev: device
6114  * @iter: list_head ** of the current position
6115  *
6116  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6117  * list, starting from iter position. The caller must hold either hold the
6118  * RTNL lock or its own locking that guarantees that the neighbour lower
6119  * list will remain unchanged.
6120  */
6121 void *netdev_lower_get_next_private(struct net_device *dev,
6122 				    struct list_head **iter)
6123 {
6124 	struct netdev_adjacent *lower;
6125 
6126 	lower = list_entry(*iter, struct netdev_adjacent, list);
6127 
6128 	if (&lower->list == &dev->adj_list.lower)
6129 		return NULL;
6130 
6131 	*iter = lower->list.next;
6132 
6133 	return lower->private;
6134 }
6135 EXPORT_SYMBOL(netdev_lower_get_next_private);
6136 
6137 /**
6138  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6139  *				       lower neighbour list, RCU
6140  *				       variant
6141  * @dev: device
6142  * @iter: list_head ** of the current position
6143  *
6144  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6145  * list, starting from iter position. The caller must hold RCU read lock.
6146  */
6147 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6148 					struct list_head **iter)
6149 {
6150 	struct netdev_adjacent *lower;
6151 
6152 	WARN_ON_ONCE(!rcu_read_lock_held());
6153 
6154 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6155 
6156 	if (&lower->list == &dev->adj_list.lower)
6157 		return NULL;
6158 
6159 	*iter = &lower->list;
6160 
6161 	return lower->private;
6162 }
6163 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6164 
6165 /**
6166  * netdev_lower_get_next - Get the next device from the lower neighbour
6167  *                         list
6168  * @dev: device
6169  * @iter: list_head ** of the current position
6170  *
6171  * Gets the next netdev_adjacent from the dev's lower neighbour
6172  * list, starting from iter position. The caller must hold RTNL lock or
6173  * its own locking that guarantees that the neighbour lower
6174  * list will remain unchanged.
6175  */
6176 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6177 {
6178 	struct netdev_adjacent *lower;
6179 
6180 	lower = list_entry(*iter, struct netdev_adjacent, list);
6181 
6182 	if (&lower->list == &dev->adj_list.lower)
6183 		return NULL;
6184 
6185 	*iter = lower->list.next;
6186 
6187 	return lower->dev;
6188 }
6189 EXPORT_SYMBOL(netdev_lower_get_next);
6190 
6191 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6192 						struct list_head **iter)
6193 {
6194 	struct netdev_adjacent *lower;
6195 
6196 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6197 
6198 	if (&lower->list == &dev->adj_list.lower)
6199 		return NULL;
6200 
6201 	*iter = &lower->list;
6202 
6203 	return lower->dev;
6204 }
6205 
6206 int netdev_walk_all_lower_dev(struct net_device *dev,
6207 			      int (*fn)(struct net_device *dev,
6208 					void *data),
6209 			      void *data)
6210 {
6211 	struct net_device *ldev;
6212 	struct list_head *iter;
6213 	int ret;
6214 
6215 	for (iter = &dev->adj_list.lower,
6216 	     ldev = netdev_next_lower_dev(dev, &iter);
6217 	     ldev;
6218 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6219 		/* first is the lower device itself */
6220 		ret = fn(ldev, data);
6221 		if (ret)
6222 			return ret;
6223 
6224 		/* then look at all of its lower devices */
6225 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6226 		if (ret)
6227 			return ret;
6228 	}
6229 
6230 	return 0;
6231 }
6232 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6233 
6234 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6235 						    struct list_head **iter)
6236 {
6237 	struct netdev_adjacent *lower;
6238 
6239 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6240 	if (&lower->list == &dev->adj_list.lower)
6241 		return NULL;
6242 
6243 	*iter = &lower->list;
6244 
6245 	return lower->dev;
6246 }
6247 
6248 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6249 				  int (*fn)(struct net_device *dev,
6250 					    void *data),
6251 				  void *data)
6252 {
6253 	struct net_device *ldev;
6254 	struct list_head *iter;
6255 	int ret;
6256 
6257 	for (iter = &dev->adj_list.lower,
6258 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6259 	     ldev;
6260 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6261 		/* first is the lower device itself */
6262 		ret = fn(ldev, data);
6263 		if (ret)
6264 			return ret;
6265 
6266 		/* then look at all of its lower devices */
6267 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6268 		if (ret)
6269 			return ret;
6270 	}
6271 
6272 	return 0;
6273 }
6274 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6275 
6276 /**
6277  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6278  *				       lower neighbour list, RCU
6279  *				       variant
6280  * @dev: device
6281  *
6282  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6283  * list. The caller must hold RCU read lock.
6284  */
6285 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6286 {
6287 	struct netdev_adjacent *lower;
6288 
6289 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6290 			struct netdev_adjacent, list);
6291 	if (lower)
6292 		return lower->private;
6293 	return NULL;
6294 }
6295 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6296 
6297 /**
6298  * netdev_master_upper_dev_get_rcu - Get master upper device
6299  * @dev: device
6300  *
6301  * Find a master upper device and return pointer to it or NULL in case
6302  * it's not there. The caller must hold the RCU read lock.
6303  */
6304 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6305 {
6306 	struct netdev_adjacent *upper;
6307 
6308 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6309 				       struct netdev_adjacent, list);
6310 	if (upper && likely(upper->master))
6311 		return upper->dev;
6312 	return NULL;
6313 }
6314 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6315 
6316 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6317 			      struct net_device *adj_dev,
6318 			      struct list_head *dev_list)
6319 {
6320 	char linkname[IFNAMSIZ+7];
6321 
6322 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6323 		"upper_%s" : "lower_%s", adj_dev->name);
6324 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6325 				 linkname);
6326 }
6327 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6328 			       char *name,
6329 			       struct list_head *dev_list)
6330 {
6331 	char linkname[IFNAMSIZ+7];
6332 
6333 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6334 		"upper_%s" : "lower_%s", name);
6335 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6336 }
6337 
6338 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6339 						 struct net_device *adj_dev,
6340 						 struct list_head *dev_list)
6341 {
6342 	return (dev_list == &dev->adj_list.upper ||
6343 		dev_list == &dev->adj_list.lower) &&
6344 		net_eq(dev_net(dev), dev_net(adj_dev));
6345 }
6346 
6347 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6348 					struct net_device *adj_dev,
6349 					struct list_head *dev_list,
6350 					void *private, bool master)
6351 {
6352 	struct netdev_adjacent *adj;
6353 	int ret;
6354 
6355 	adj = __netdev_find_adj(adj_dev, dev_list);
6356 
6357 	if (adj) {
6358 		adj->ref_nr += 1;
6359 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6360 			 dev->name, adj_dev->name, adj->ref_nr);
6361 
6362 		return 0;
6363 	}
6364 
6365 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6366 	if (!adj)
6367 		return -ENOMEM;
6368 
6369 	adj->dev = adj_dev;
6370 	adj->master = master;
6371 	adj->ref_nr = 1;
6372 	adj->private = private;
6373 	dev_hold(adj_dev);
6374 
6375 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6376 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6377 
6378 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6379 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6380 		if (ret)
6381 			goto free_adj;
6382 	}
6383 
6384 	/* Ensure that master link is always the first item in list. */
6385 	if (master) {
6386 		ret = sysfs_create_link(&(dev->dev.kobj),
6387 					&(adj_dev->dev.kobj), "master");
6388 		if (ret)
6389 			goto remove_symlinks;
6390 
6391 		list_add_rcu(&adj->list, dev_list);
6392 	} else {
6393 		list_add_tail_rcu(&adj->list, dev_list);
6394 	}
6395 
6396 	return 0;
6397 
6398 remove_symlinks:
6399 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6400 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6401 free_adj:
6402 	kfree(adj);
6403 	dev_put(adj_dev);
6404 
6405 	return ret;
6406 }
6407 
6408 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6409 					 struct net_device *adj_dev,
6410 					 u16 ref_nr,
6411 					 struct list_head *dev_list)
6412 {
6413 	struct netdev_adjacent *adj;
6414 
6415 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6416 		 dev->name, adj_dev->name, ref_nr);
6417 
6418 	adj = __netdev_find_adj(adj_dev, dev_list);
6419 
6420 	if (!adj) {
6421 		pr_err("Adjacency does not exist for device %s from %s\n",
6422 		       dev->name, adj_dev->name);
6423 		WARN_ON(1);
6424 		return;
6425 	}
6426 
6427 	if (adj->ref_nr > ref_nr) {
6428 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6429 			 dev->name, adj_dev->name, ref_nr,
6430 			 adj->ref_nr - ref_nr);
6431 		adj->ref_nr -= ref_nr;
6432 		return;
6433 	}
6434 
6435 	if (adj->master)
6436 		sysfs_remove_link(&(dev->dev.kobj), "master");
6437 
6438 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6439 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6440 
6441 	list_del_rcu(&adj->list);
6442 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6443 		 adj_dev->name, dev->name, adj_dev->name);
6444 	dev_put(adj_dev);
6445 	kfree_rcu(adj, rcu);
6446 }
6447 
6448 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6449 					    struct net_device *upper_dev,
6450 					    struct list_head *up_list,
6451 					    struct list_head *down_list,
6452 					    void *private, bool master)
6453 {
6454 	int ret;
6455 
6456 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6457 					   private, master);
6458 	if (ret)
6459 		return ret;
6460 
6461 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6462 					   private, false);
6463 	if (ret) {
6464 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6465 		return ret;
6466 	}
6467 
6468 	return 0;
6469 }
6470 
6471 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6472 					       struct net_device *upper_dev,
6473 					       u16 ref_nr,
6474 					       struct list_head *up_list,
6475 					       struct list_head *down_list)
6476 {
6477 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6478 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6479 }
6480 
6481 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6482 						struct net_device *upper_dev,
6483 						void *private, bool master)
6484 {
6485 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6486 						&dev->adj_list.upper,
6487 						&upper_dev->adj_list.lower,
6488 						private, master);
6489 }
6490 
6491 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6492 						   struct net_device *upper_dev)
6493 {
6494 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6495 					   &dev->adj_list.upper,
6496 					   &upper_dev->adj_list.lower);
6497 }
6498 
6499 static int __netdev_upper_dev_link(struct net_device *dev,
6500 				   struct net_device *upper_dev, bool master,
6501 				   void *upper_priv, void *upper_info,
6502 				   struct netlink_ext_ack *extack)
6503 {
6504 	struct netdev_notifier_changeupper_info changeupper_info = {
6505 		.info = {
6506 			.dev = dev,
6507 			.extack = extack,
6508 		},
6509 		.upper_dev = upper_dev,
6510 		.master = master,
6511 		.linking = true,
6512 		.upper_info = upper_info,
6513 	};
6514 	struct net_device *master_dev;
6515 	int ret = 0;
6516 
6517 	ASSERT_RTNL();
6518 
6519 	if (dev == upper_dev)
6520 		return -EBUSY;
6521 
6522 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6523 	if (netdev_has_upper_dev(upper_dev, dev))
6524 		return -EBUSY;
6525 
6526 	if (!master) {
6527 		if (netdev_has_upper_dev(dev, upper_dev))
6528 			return -EEXIST;
6529 	} else {
6530 		master_dev = netdev_master_upper_dev_get(dev);
6531 		if (master_dev)
6532 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
6533 	}
6534 
6535 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6536 					    &changeupper_info.info);
6537 	ret = notifier_to_errno(ret);
6538 	if (ret)
6539 		return ret;
6540 
6541 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6542 						   master);
6543 	if (ret)
6544 		return ret;
6545 
6546 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6547 					    &changeupper_info.info);
6548 	ret = notifier_to_errno(ret);
6549 	if (ret)
6550 		goto rollback;
6551 
6552 	return 0;
6553 
6554 rollback:
6555 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6556 
6557 	return ret;
6558 }
6559 
6560 /**
6561  * netdev_upper_dev_link - Add a link to the upper device
6562  * @dev: device
6563  * @upper_dev: new upper device
6564  * @extack: netlink extended ack
6565  *
6566  * Adds a link to device which is upper to this one. The caller must hold
6567  * the RTNL lock. On a failure a negative errno code is returned.
6568  * On success the reference counts are adjusted and the function
6569  * returns zero.
6570  */
6571 int netdev_upper_dev_link(struct net_device *dev,
6572 			  struct net_device *upper_dev,
6573 			  struct netlink_ext_ack *extack)
6574 {
6575 	return __netdev_upper_dev_link(dev, upper_dev, false,
6576 				       NULL, NULL, extack);
6577 }
6578 EXPORT_SYMBOL(netdev_upper_dev_link);
6579 
6580 /**
6581  * netdev_master_upper_dev_link - Add a master link to the upper device
6582  * @dev: device
6583  * @upper_dev: new upper device
6584  * @upper_priv: upper device private
6585  * @upper_info: upper info to be passed down via notifier
6586  * @extack: netlink extended ack
6587  *
6588  * Adds a link to device which is upper to this one. In this case, only
6589  * one master upper device can be linked, although other non-master devices
6590  * might be linked as well. The caller must hold the RTNL lock.
6591  * On a failure a negative errno code is returned. On success the reference
6592  * counts are adjusted and the function returns zero.
6593  */
6594 int netdev_master_upper_dev_link(struct net_device *dev,
6595 				 struct net_device *upper_dev,
6596 				 void *upper_priv, void *upper_info,
6597 				 struct netlink_ext_ack *extack)
6598 {
6599 	return __netdev_upper_dev_link(dev, upper_dev, true,
6600 				       upper_priv, upper_info, extack);
6601 }
6602 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6603 
6604 /**
6605  * netdev_upper_dev_unlink - Removes a link to upper device
6606  * @dev: device
6607  * @upper_dev: new upper device
6608  *
6609  * Removes a link to device which is upper to this one. The caller must hold
6610  * the RTNL lock.
6611  */
6612 void netdev_upper_dev_unlink(struct net_device *dev,
6613 			     struct net_device *upper_dev)
6614 {
6615 	struct netdev_notifier_changeupper_info changeupper_info = {
6616 		.info = {
6617 			.dev = dev,
6618 		},
6619 		.upper_dev = upper_dev,
6620 		.linking = false,
6621 	};
6622 
6623 	ASSERT_RTNL();
6624 
6625 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6626 
6627 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6628 				      &changeupper_info.info);
6629 
6630 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6631 
6632 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6633 				      &changeupper_info.info);
6634 }
6635 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6636 
6637 /**
6638  * netdev_bonding_info_change - Dispatch event about slave change
6639  * @dev: device
6640  * @bonding_info: info to dispatch
6641  *
6642  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6643  * The caller must hold the RTNL lock.
6644  */
6645 void netdev_bonding_info_change(struct net_device *dev,
6646 				struct netdev_bonding_info *bonding_info)
6647 {
6648 	struct netdev_notifier_bonding_info info = {
6649 		.info.dev = dev,
6650 	};
6651 
6652 	memcpy(&info.bonding_info, bonding_info,
6653 	       sizeof(struct netdev_bonding_info));
6654 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6655 				      &info.info);
6656 }
6657 EXPORT_SYMBOL(netdev_bonding_info_change);
6658 
6659 static void netdev_adjacent_add_links(struct net_device *dev)
6660 {
6661 	struct netdev_adjacent *iter;
6662 
6663 	struct net *net = dev_net(dev);
6664 
6665 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6666 		if (!net_eq(net, dev_net(iter->dev)))
6667 			continue;
6668 		netdev_adjacent_sysfs_add(iter->dev, dev,
6669 					  &iter->dev->adj_list.lower);
6670 		netdev_adjacent_sysfs_add(dev, iter->dev,
6671 					  &dev->adj_list.upper);
6672 	}
6673 
6674 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6675 		if (!net_eq(net, dev_net(iter->dev)))
6676 			continue;
6677 		netdev_adjacent_sysfs_add(iter->dev, dev,
6678 					  &iter->dev->adj_list.upper);
6679 		netdev_adjacent_sysfs_add(dev, iter->dev,
6680 					  &dev->adj_list.lower);
6681 	}
6682 }
6683 
6684 static void netdev_adjacent_del_links(struct net_device *dev)
6685 {
6686 	struct netdev_adjacent *iter;
6687 
6688 	struct net *net = dev_net(dev);
6689 
6690 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6691 		if (!net_eq(net, dev_net(iter->dev)))
6692 			continue;
6693 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6694 					  &iter->dev->adj_list.lower);
6695 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6696 					  &dev->adj_list.upper);
6697 	}
6698 
6699 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6700 		if (!net_eq(net, dev_net(iter->dev)))
6701 			continue;
6702 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6703 					  &iter->dev->adj_list.upper);
6704 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6705 					  &dev->adj_list.lower);
6706 	}
6707 }
6708 
6709 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6710 {
6711 	struct netdev_adjacent *iter;
6712 
6713 	struct net *net = dev_net(dev);
6714 
6715 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6716 		if (!net_eq(net, dev_net(iter->dev)))
6717 			continue;
6718 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6719 					  &iter->dev->adj_list.lower);
6720 		netdev_adjacent_sysfs_add(iter->dev, dev,
6721 					  &iter->dev->adj_list.lower);
6722 	}
6723 
6724 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6725 		if (!net_eq(net, dev_net(iter->dev)))
6726 			continue;
6727 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6728 					  &iter->dev->adj_list.upper);
6729 		netdev_adjacent_sysfs_add(iter->dev, dev,
6730 					  &iter->dev->adj_list.upper);
6731 	}
6732 }
6733 
6734 void *netdev_lower_dev_get_private(struct net_device *dev,
6735 				   struct net_device *lower_dev)
6736 {
6737 	struct netdev_adjacent *lower;
6738 
6739 	if (!lower_dev)
6740 		return NULL;
6741 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6742 	if (!lower)
6743 		return NULL;
6744 
6745 	return lower->private;
6746 }
6747 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6748 
6749 
6750 int dev_get_nest_level(struct net_device *dev)
6751 {
6752 	struct net_device *lower = NULL;
6753 	struct list_head *iter;
6754 	int max_nest = -1;
6755 	int nest;
6756 
6757 	ASSERT_RTNL();
6758 
6759 	netdev_for_each_lower_dev(dev, lower, iter) {
6760 		nest = dev_get_nest_level(lower);
6761 		if (max_nest < nest)
6762 			max_nest = nest;
6763 	}
6764 
6765 	return max_nest + 1;
6766 }
6767 EXPORT_SYMBOL(dev_get_nest_level);
6768 
6769 /**
6770  * netdev_lower_change - Dispatch event about lower device state change
6771  * @lower_dev: device
6772  * @lower_state_info: state to dispatch
6773  *
6774  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6775  * The caller must hold the RTNL lock.
6776  */
6777 void netdev_lower_state_changed(struct net_device *lower_dev,
6778 				void *lower_state_info)
6779 {
6780 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6781 		.info.dev = lower_dev,
6782 	};
6783 
6784 	ASSERT_RTNL();
6785 	changelowerstate_info.lower_state_info = lower_state_info;
6786 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6787 				      &changelowerstate_info.info);
6788 }
6789 EXPORT_SYMBOL(netdev_lower_state_changed);
6790 
6791 static void dev_change_rx_flags(struct net_device *dev, int flags)
6792 {
6793 	const struct net_device_ops *ops = dev->netdev_ops;
6794 
6795 	if (ops->ndo_change_rx_flags)
6796 		ops->ndo_change_rx_flags(dev, flags);
6797 }
6798 
6799 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6800 {
6801 	unsigned int old_flags = dev->flags;
6802 	kuid_t uid;
6803 	kgid_t gid;
6804 
6805 	ASSERT_RTNL();
6806 
6807 	dev->flags |= IFF_PROMISC;
6808 	dev->promiscuity += inc;
6809 	if (dev->promiscuity == 0) {
6810 		/*
6811 		 * Avoid overflow.
6812 		 * If inc causes overflow, untouch promisc and return error.
6813 		 */
6814 		if (inc < 0)
6815 			dev->flags &= ~IFF_PROMISC;
6816 		else {
6817 			dev->promiscuity -= inc;
6818 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6819 				dev->name);
6820 			return -EOVERFLOW;
6821 		}
6822 	}
6823 	if (dev->flags != old_flags) {
6824 		pr_info("device %s %s promiscuous mode\n",
6825 			dev->name,
6826 			dev->flags & IFF_PROMISC ? "entered" : "left");
6827 		if (audit_enabled) {
6828 			current_uid_gid(&uid, &gid);
6829 			audit_log(audit_context(), GFP_ATOMIC,
6830 				  AUDIT_ANOM_PROMISCUOUS,
6831 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6832 				  dev->name, (dev->flags & IFF_PROMISC),
6833 				  (old_flags & IFF_PROMISC),
6834 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
6835 				  from_kuid(&init_user_ns, uid),
6836 				  from_kgid(&init_user_ns, gid),
6837 				  audit_get_sessionid(current));
6838 		}
6839 
6840 		dev_change_rx_flags(dev, IFF_PROMISC);
6841 	}
6842 	if (notify)
6843 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6844 	return 0;
6845 }
6846 
6847 /**
6848  *	dev_set_promiscuity	- update promiscuity count on a device
6849  *	@dev: device
6850  *	@inc: modifier
6851  *
6852  *	Add or remove promiscuity from a device. While the count in the device
6853  *	remains above zero the interface remains promiscuous. Once it hits zero
6854  *	the device reverts back to normal filtering operation. A negative inc
6855  *	value is used to drop promiscuity on the device.
6856  *	Return 0 if successful or a negative errno code on error.
6857  */
6858 int dev_set_promiscuity(struct net_device *dev, int inc)
6859 {
6860 	unsigned int old_flags = dev->flags;
6861 	int err;
6862 
6863 	err = __dev_set_promiscuity(dev, inc, true);
6864 	if (err < 0)
6865 		return err;
6866 	if (dev->flags != old_flags)
6867 		dev_set_rx_mode(dev);
6868 	return err;
6869 }
6870 EXPORT_SYMBOL(dev_set_promiscuity);
6871 
6872 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6873 {
6874 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6875 
6876 	ASSERT_RTNL();
6877 
6878 	dev->flags |= IFF_ALLMULTI;
6879 	dev->allmulti += inc;
6880 	if (dev->allmulti == 0) {
6881 		/*
6882 		 * Avoid overflow.
6883 		 * If inc causes overflow, untouch allmulti and return error.
6884 		 */
6885 		if (inc < 0)
6886 			dev->flags &= ~IFF_ALLMULTI;
6887 		else {
6888 			dev->allmulti -= inc;
6889 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6890 				dev->name);
6891 			return -EOVERFLOW;
6892 		}
6893 	}
6894 	if (dev->flags ^ old_flags) {
6895 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6896 		dev_set_rx_mode(dev);
6897 		if (notify)
6898 			__dev_notify_flags(dev, old_flags,
6899 					   dev->gflags ^ old_gflags);
6900 	}
6901 	return 0;
6902 }
6903 
6904 /**
6905  *	dev_set_allmulti	- update allmulti count on a device
6906  *	@dev: device
6907  *	@inc: modifier
6908  *
6909  *	Add or remove reception of all multicast frames to a device. While the
6910  *	count in the device remains above zero the interface remains listening
6911  *	to all interfaces. Once it hits zero the device reverts back to normal
6912  *	filtering operation. A negative @inc value is used to drop the counter
6913  *	when releasing a resource needing all multicasts.
6914  *	Return 0 if successful or a negative errno code on error.
6915  */
6916 
6917 int dev_set_allmulti(struct net_device *dev, int inc)
6918 {
6919 	return __dev_set_allmulti(dev, inc, true);
6920 }
6921 EXPORT_SYMBOL(dev_set_allmulti);
6922 
6923 /*
6924  *	Upload unicast and multicast address lists to device and
6925  *	configure RX filtering. When the device doesn't support unicast
6926  *	filtering it is put in promiscuous mode while unicast addresses
6927  *	are present.
6928  */
6929 void __dev_set_rx_mode(struct net_device *dev)
6930 {
6931 	const struct net_device_ops *ops = dev->netdev_ops;
6932 
6933 	/* dev_open will call this function so the list will stay sane. */
6934 	if (!(dev->flags&IFF_UP))
6935 		return;
6936 
6937 	if (!netif_device_present(dev))
6938 		return;
6939 
6940 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6941 		/* Unicast addresses changes may only happen under the rtnl,
6942 		 * therefore calling __dev_set_promiscuity here is safe.
6943 		 */
6944 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6945 			__dev_set_promiscuity(dev, 1, false);
6946 			dev->uc_promisc = true;
6947 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6948 			__dev_set_promiscuity(dev, -1, false);
6949 			dev->uc_promisc = false;
6950 		}
6951 	}
6952 
6953 	if (ops->ndo_set_rx_mode)
6954 		ops->ndo_set_rx_mode(dev);
6955 }
6956 
6957 void dev_set_rx_mode(struct net_device *dev)
6958 {
6959 	netif_addr_lock_bh(dev);
6960 	__dev_set_rx_mode(dev);
6961 	netif_addr_unlock_bh(dev);
6962 }
6963 
6964 /**
6965  *	dev_get_flags - get flags reported to userspace
6966  *	@dev: device
6967  *
6968  *	Get the combination of flag bits exported through APIs to userspace.
6969  */
6970 unsigned int dev_get_flags(const struct net_device *dev)
6971 {
6972 	unsigned int flags;
6973 
6974 	flags = (dev->flags & ~(IFF_PROMISC |
6975 				IFF_ALLMULTI |
6976 				IFF_RUNNING |
6977 				IFF_LOWER_UP |
6978 				IFF_DORMANT)) |
6979 		(dev->gflags & (IFF_PROMISC |
6980 				IFF_ALLMULTI));
6981 
6982 	if (netif_running(dev)) {
6983 		if (netif_oper_up(dev))
6984 			flags |= IFF_RUNNING;
6985 		if (netif_carrier_ok(dev))
6986 			flags |= IFF_LOWER_UP;
6987 		if (netif_dormant(dev))
6988 			flags |= IFF_DORMANT;
6989 	}
6990 
6991 	return flags;
6992 }
6993 EXPORT_SYMBOL(dev_get_flags);
6994 
6995 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6996 {
6997 	unsigned int old_flags = dev->flags;
6998 	int ret;
6999 
7000 	ASSERT_RTNL();
7001 
7002 	/*
7003 	 *	Set the flags on our device.
7004 	 */
7005 
7006 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7007 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7008 			       IFF_AUTOMEDIA)) |
7009 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7010 				    IFF_ALLMULTI));
7011 
7012 	/*
7013 	 *	Load in the correct multicast list now the flags have changed.
7014 	 */
7015 
7016 	if ((old_flags ^ flags) & IFF_MULTICAST)
7017 		dev_change_rx_flags(dev, IFF_MULTICAST);
7018 
7019 	dev_set_rx_mode(dev);
7020 
7021 	/*
7022 	 *	Have we downed the interface. We handle IFF_UP ourselves
7023 	 *	according to user attempts to set it, rather than blindly
7024 	 *	setting it.
7025 	 */
7026 
7027 	ret = 0;
7028 	if ((old_flags ^ flags) & IFF_UP) {
7029 		if (old_flags & IFF_UP)
7030 			__dev_close(dev);
7031 		else
7032 			ret = __dev_open(dev);
7033 	}
7034 
7035 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7036 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7037 		unsigned int old_flags = dev->flags;
7038 
7039 		dev->gflags ^= IFF_PROMISC;
7040 
7041 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7042 			if (dev->flags != old_flags)
7043 				dev_set_rx_mode(dev);
7044 	}
7045 
7046 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7047 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7048 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7049 	 */
7050 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7051 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7052 
7053 		dev->gflags ^= IFF_ALLMULTI;
7054 		__dev_set_allmulti(dev, inc, false);
7055 	}
7056 
7057 	return ret;
7058 }
7059 
7060 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7061 			unsigned int gchanges)
7062 {
7063 	unsigned int changes = dev->flags ^ old_flags;
7064 
7065 	if (gchanges)
7066 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7067 
7068 	if (changes & IFF_UP) {
7069 		if (dev->flags & IFF_UP)
7070 			call_netdevice_notifiers(NETDEV_UP, dev);
7071 		else
7072 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7073 	}
7074 
7075 	if (dev->flags & IFF_UP &&
7076 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7077 		struct netdev_notifier_change_info change_info = {
7078 			.info = {
7079 				.dev = dev,
7080 			},
7081 			.flags_changed = changes,
7082 		};
7083 
7084 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7085 	}
7086 }
7087 
7088 /**
7089  *	dev_change_flags - change device settings
7090  *	@dev: device
7091  *	@flags: device state flags
7092  *
7093  *	Change settings on device based state flags. The flags are
7094  *	in the userspace exported format.
7095  */
7096 int dev_change_flags(struct net_device *dev, unsigned int flags)
7097 {
7098 	int ret;
7099 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7100 
7101 	ret = __dev_change_flags(dev, flags);
7102 	if (ret < 0)
7103 		return ret;
7104 
7105 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7106 	__dev_notify_flags(dev, old_flags, changes);
7107 	return ret;
7108 }
7109 EXPORT_SYMBOL(dev_change_flags);
7110 
7111 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7112 {
7113 	const struct net_device_ops *ops = dev->netdev_ops;
7114 
7115 	if (ops->ndo_change_mtu)
7116 		return ops->ndo_change_mtu(dev, new_mtu);
7117 
7118 	dev->mtu = new_mtu;
7119 	return 0;
7120 }
7121 EXPORT_SYMBOL(__dev_set_mtu);
7122 
7123 /**
7124  *	dev_set_mtu - Change maximum transfer unit
7125  *	@dev: device
7126  *	@new_mtu: new transfer unit
7127  *
7128  *	Change the maximum transfer size of the network device.
7129  */
7130 int dev_set_mtu(struct net_device *dev, int new_mtu)
7131 {
7132 	int err, orig_mtu;
7133 
7134 	if (new_mtu == dev->mtu)
7135 		return 0;
7136 
7137 	/* MTU must be positive, and in range */
7138 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7139 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7140 				    dev->name, new_mtu, dev->min_mtu);
7141 		return -EINVAL;
7142 	}
7143 
7144 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7145 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7146 				    dev->name, new_mtu, dev->max_mtu);
7147 		return -EINVAL;
7148 	}
7149 
7150 	if (!netif_device_present(dev))
7151 		return -ENODEV;
7152 
7153 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7154 	err = notifier_to_errno(err);
7155 	if (err)
7156 		return err;
7157 
7158 	orig_mtu = dev->mtu;
7159 	err = __dev_set_mtu(dev, new_mtu);
7160 
7161 	if (!err) {
7162 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7163 		err = notifier_to_errno(err);
7164 		if (err) {
7165 			/* setting mtu back and notifying everyone again,
7166 			 * so that they have a chance to revert changes.
7167 			 */
7168 			__dev_set_mtu(dev, orig_mtu);
7169 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7170 		}
7171 	}
7172 	return err;
7173 }
7174 EXPORT_SYMBOL(dev_set_mtu);
7175 
7176 /**
7177  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7178  *	@dev: device
7179  *	@new_len: new tx queue length
7180  */
7181 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7182 {
7183 	unsigned int orig_len = dev->tx_queue_len;
7184 	int res;
7185 
7186 	if (new_len != (unsigned int)new_len)
7187 		return -ERANGE;
7188 
7189 	if (new_len != orig_len) {
7190 		dev->tx_queue_len = new_len;
7191 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7192 		res = notifier_to_errno(res);
7193 		if (res) {
7194 			netdev_err(dev,
7195 				   "refused to change device tx_queue_len\n");
7196 			dev->tx_queue_len = orig_len;
7197 			return res;
7198 		}
7199 		return dev_qdisc_change_tx_queue_len(dev);
7200 	}
7201 
7202 	return 0;
7203 }
7204 
7205 /**
7206  *	dev_set_group - Change group this device belongs to
7207  *	@dev: device
7208  *	@new_group: group this device should belong to
7209  */
7210 void dev_set_group(struct net_device *dev, int new_group)
7211 {
7212 	dev->group = new_group;
7213 }
7214 EXPORT_SYMBOL(dev_set_group);
7215 
7216 /**
7217  *	dev_set_mac_address - Change Media Access Control Address
7218  *	@dev: device
7219  *	@sa: new address
7220  *
7221  *	Change the hardware (MAC) address of the device
7222  */
7223 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7224 {
7225 	const struct net_device_ops *ops = dev->netdev_ops;
7226 	int err;
7227 
7228 	if (!ops->ndo_set_mac_address)
7229 		return -EOPNOTSUPP;
7230 	if (sa->sa_family != dev->type)
7231 		return -EINVAL;
7232 	if (!netif_device_present(dev))
7233 		return -ENODEV;
7234 	err = ops->ndo_set_mac_address(dev, sa);
7235 	if (err)
7236 		return err;
7237 	dev->addr_assign_type = NET_ADDR_SET;
7238 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7239 	add_device_randomness(dev->dev_addr, dev->addr_len);
7240 	return 0;
7241 }
7242 EXPORT_SYMBOL(dev_set_mac_address);
7243 
7244 /**
7245  *	dev_change_carrier - Change device carrier
7246  *	@dev: device
7247  *	@new_carrier: new value
7248  *
7249  *	Change device carrier
7250  */
7251 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7252 {
7253 	const struct net_device_ops *ops = dev->netdev_ops;
7254 
7255 	if (!ops->ndo_change_carrier)
7256 		return -EOPNOTSUPP;
7257 	if (!netif_device_present(dev))
7258 		return -ENODEV;
7259 	return ops->ndo_change_carrier(dev, new_carrier);
7260 }
7261 EXPORT_SYMBOL(dev_change_carrier);
7262 
7263 /**
7264  *	dev_get_phys_port_id - Get device physical port ID
7265  *	@dev: device
7266  *	@ppid: port ID
7267  *
7268  *	Get device physical port ID
7269  */
7270 int dev_get_phys_port_id(struct net_device *dev,
7271 			 struct netdev_phys_item_id *ppid)
7272 {
7273 	const struct net_device_ops *ops = dev->netdev_ops;
7274 
7275 	if (!ops->ndo_get_phys_port_id)
7276 		return -EOPNOTSUPP;
7277 	return ops->ndo_get_phys_port_id(dev, ppid);
7278 }
7279 EXPORT_SYMBOL(dev_get_phys_port_id);
7280 
7281 /**
7282  *	dev_get_phys_port_name - Get device physical port name
7283  *	@dev: device
7284  *	@name: port name
7285  *	@len: limit of bytes to copy to name
7286  *
7287  *	Get device physical port name
7288  */
7289 int dev_get_phys_port_name(struct net_device *dev,
7290 			   char *name, size_t len)
7291 {
7292 	const struct net_device_ops *ops = dev->netdev_ops;
7293 
7294 	if (!ops->ndo_get_phys_port_name)
7295 		return -EOPNOTSUPP;
7296 	return ops->ndo_get_phys_port_name(dev, name, len);
7297 }
7298 EXPORT_SYMBOL(dev_get_phys_port_name);
7299 
7300 /**
7301  *	dev_change_proto_down - update protocol port state information
7302  *	@dev: device
7303  *	@proto_down: new value
7304  *
7305  *	This info can be used by switch drivers to set the phys state of the
7306  *	port.
7307  */
7308 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7309 {
7310 	const struct net_device_ops *ops = dev->netdev_ops;
7311 
7312 	if (!ops->ndo_change_proto_down)
7313 		return -EOPNOTSUPP;
7314 	if (!netif_device_present(dev))
7315 		return -ENODEV;
7316 	return ops->ndo_change_proto_down(dev, proto_down);
7317 }
7318 EXPORT_SYMBOL(dev_change_proto_down);
7319 
7320 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7321 		     struct netdev_bpf *xdp)
7322 {
7323 	memset(xdp, 0, sizeof(*xdp));
7324 	xdp->command = XDP_QUERY_PROG;
7325 
7326 	/* Query must always succeed. */
7327 	WARN_ON(bpf_op(dev, xdp) < 0);
7328 }
7329 
7330 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7331 {
7332 	struct netdev_bpf xdp;
7333 
7334 	__dev_xdp_query(dev, bpf_op, &xdp);
7335 
7336 	return xdp.prog_attached;
7337 }
7338 
7339 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7340 			   struct netlink_ext_ack *extack, u32 flags,
7341 			   struct bpf_prog *prog)
7342 {
7343 	struct netdev_bpf xdp;
7344 
7345 	memset(&xdp, 0, sizeof(xdp));
7346 	if (flags & XDP_FLAGS_HW_MODE)
7347 		xdp.command = XDP_SETUP_PROG_HW;
7348 	else
7349 		xdp.command = XDP_SETUP_PROG;
7350 	xdp.extack = extack;
7351 	xdp.flags = flags;
7352 	xdp.prog = prog;
7353 
7354 	return bpf_op(dev, &xdp);
7355 }
7356 
7357 static void dev_xdp_uninstall(struct net_device *dev)
7358 {
7359 	struct netdev_bpf xdp;
7360 	bpf_op_t ndo_bpf;
7361 
7362 	/* Remove generic XDP */
7363 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7364 
7365 	/* Remove from the driver */
7366 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7367 	if (!ndo_bpf)
7368 		return;
7369 
7370 	__dev_xdp_query(dev, ndo_bpf, &xdp);
7371 	if (xdp.prog_attached == XDP_ATTACHED_NONE)
7372 		return;
7373 
7374 	/* Program removal should always succeed */
7375 	WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7376 }
7377 
7378 /**
7379  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7380  *	@dev: device
7381  *	@extack: netlink extended ack
7382  *	@fd: new program fd or negative value to clear
7383  *	@flags: xdp-related flags
7384  *
7385  *	Set or clear a bpf program for a device
7386  */
7387 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7388 		      int fd, u32 flags)
7389 {
7390 	const struct net_device_ops *ops = dev->netdev_ops;
7391 	struct bpf_prog *prog = NULL;
7392 	bpf_op_t bpf_op, bpf_chk;
7393 	int err;
7394 
7395 	ASSERT_RTNL();
7396 
7397 	bpf_op = bpf_chk = ops->ndo_bpf;
7398 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7399 		return -EOPNOTSUPP;
7400 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7401 		bpf_op = generic_xdp_install;
7402 	if (bpf_op == bpf_chk)
7403 		bpf_chk = generic_xdp_install;
7404 
7405 	if (fd >= 0) {
7406 		if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7407 			return -EEXIST;
7408 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7409 		    __dev_xdp_attached(dev, bpf_op))
7410 			return -EBUSY;
7411 
7412 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7413 					     bpf_op == ops->ndo_bpf);
7414 		if (IS_ERR(prog))
7415 			return PTR_ERR(prog);
7416 
7417 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7418 		    bpf_prog_is_dev_bound(prog->aux)) {
7419 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7420 			bpf_prog_put(prog);
7421 			return -EINVAL;
7422 		}
7423 	}
7424 
7425 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7426 	if (err < 0 && prog)
7427 		bpf_prog_put(prog);
7428 
7429 	return err;
7430 }
7431 
7432 /**
7433  *	dev_new_index	-	allocate an ifindex
7434  *	@net: the applicable net namespace
7435  *
7436  *	Returns a suitable unique value for a new device interface
7437  *	number.  The caller must hold the rtnl semaphore or the
7438  *	dev_base_lock to be sure it remains unique.
7439  */
7440 static int dev_new_index(struct net *net)
7441 {
7442 	int ifindex = net->ifindex;
7443 
7444 	for (;;) {
7445 		if (++ifindex <= 0)
7446 			ifindex = 1;
7447 		if (!__dev_get_by_index(net, ifindex))
7448 			return net->ifindex = ifindex;
7449 	}
7450 }
7451 
7452 /* Delayed registration/unregisteration */
7453 static LIST_HEAD(net_todo_list);
7454 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7455 
7456 static void net_set_todo(struct net_device *dev)
7457 {
7458 	list_add_tail(&dev->todo_list, &net_todo_list);
7459 	dev_net(dev)->dev_unreg_count++;
7460 }
7461 
7462 static void rollback_registered_many(struct list_head *head)
7463 {
7464 	struct net_device *dev, *tmp;
7465 	LIST_HEAD(close_head);
7466 
7467 	BUG_ON(dev_boot_phase);
7468 	ASSERT_RTNL();
7469 
7470 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7471 		/* Some devices call without registering
7472 		 * for initialization unwind. Remove those
7473 		 * devices and proceed with the remaining.
7474 		 */
7475 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7476 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7477 				 dev->name, dev);
7478 
7479 			WARN_ON(1);
7480 			list_del(&dev->unreg_list);
7481 			continue;
7482 		}
7483 		dev->dismantle = true;
7484 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7485 	}
7486 
7487 	/* If device is running, close it first. */
7488 	list_for_each_entry(dev, head, unreg_list)
7489 		list_add_tail(&dev->close_list, &close_head);
7490 	dev_close_many(&close_head, true);
7491 
7492 	list_for_each_entry(dev, head, unreg_list) {
7493 		/* And unlink it from device chain. */
7494 		unlist_netdevice(dev);
7495 
7496 		dev->reg_state = NETREG_UNREGISTERING;
7497 	}
7498 	flush_all_backlogs();
7499 
7500 	synchronize_net();
7501 
7502 	list_for_each_entry(dev, head, unreg_list) {
7503 		struct sk_buff *skb = NULL;
7504 
7505 		/* Shutdown queueing discipline. */
7506 		dev_shutdown(dev);
7507 
7508 		dev_xdp_uninstall(dev);
7509 
7510 		/* Notify protocols, that we are about to destroy
7511 		 * this device. They should clean all the things.
7512 		 */
7513 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7514 
7515 		if (!dev->rtnl_link_ops ||
7516 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7517 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7518 						     GFP_KERNEL, NULL, 0);
7519 
7520 		/*
7521 		 *	Flush the unicast and multicast chains
7522 		 */
7523 		dev_uc_flush(dev);
7524 		dev_mc_flush(dev);
7525 
7526 		if (dev->netdev_ops->ndo_uninit)
7527 			dev->netdev_ops->ndo_uninit(dev);
7528 
7529 		if (skb)
7530 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7531 
7532 		/* Notifier chain MUST detach us all upper devices. */
7533 		WARN_ON(netdev_has_any_upper_dev(dev));
7534 		WARN_ON(netdev_has_any_lower_dev(dev));
7535 
7536 		/* Remove entries from kobject tree */
7537 		netdev_unregister_kobject(dev);
7538 #ifdef CONFIG_XPS
7539 		/* Remove XPS queueing entries */
7540 		netif_reset_xps_queues_gt(dev, 0);
7541 #endif
7542 	}
7543 
7544 	synchronize_net();
7545 
7546 	list_for_each_entry(dev, head, unreg_list)
7547 		dev_put(dev);
7548 }
7549 
7550 static void rollback_registered(struct net_device *dev)
7551 {
7552 	LIST_HEAD(single);
7553 
7554 	list_add(&dev->unreg_list, &single);
7555 	rollback_registered_many(&single);
7556 	list_del(&single);
7557 }
7558 
7559 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7560 	struct net_device *upper, netdev_features_t features)
7561 {
7562 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7563 	netdev_features_t feature;
7564 	int feature_bit;
7565 
7566 	for_each_netdev_feature(&upper_disables, feature_bit) {
7567 		feature = __NETIF_F_BIT(feature_bit);
7568 		if (!(upper->wanted_features & feature)
7569 		    && (features & feature)) {
7570 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7571 				   &feature, upper->name);
7572 			features &= ~feature;
7573 		}
7574 	}
7575 
7576 	return features;
7577 }
7578 
7579 static void netdev_sync_lower_features(struct net_device *upper,
7580 	struct net_device *lower, netdev_features_t features)
7581 {
7582 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7583 	netdev_features_t feature;
7584 	int feature_bit;
7585 
7586 	for_each_netdev_feature(&upper_disables, feature_bit) {
7587 		feature = __NETIF_F_BIT(feature_bit);
7588 		if (!(features & feature) && (lower->features & feature)) {
7589 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7590 				   &feature, lower->name);
7591 			lower->wanted_features &= ~feature;
7592 			netdev_update_features(lower);
7593 
7594 			if (unlikely(lower->features & feature))
7595 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7596 					    &feature, lower->name);
7597 		}
7598 	}
7599 }
7600 
7601 static netdev_features_t netdev_fix_features(struct net_device *dev,
7602 	netdev_features_t features)
7603 {
7604 	/* Fix illegal checksum combinations */
7605 	if ((features & NETIF_F_HW_CSUM) &&
7606 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7607 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7608 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7609 	}
7610 
7611 	/* TSO requires that SG is present as well. */
7612 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7613 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7614 		features &= ~NETIF_F_ALL_TSO;
7615 	}
7616 
7617 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7618 					!(features & NETIF_F_IP_CSUM)) {
7619 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7620 		features &= ~NETIF_F_TSO;
7621 		features &= ~NETIF_F_TSO_ECN;
7622 	}
7623 
7624 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7625 					 !(features & NETIF_F_IPV6_CSUM)) {
7626 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7627 		features &= ~NETIF_F_TSO6;
7628 	}
7629 
7630 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7631 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7632 		features &= ~NETIF_F_TSO_MANGLEID;
7633 
7634 	/* TSO ECN requires that TSO is present as well. */
7635 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7636 		features &= ~NETIF_F_TSO_ECN;
7637 
7638 	/* Software GSO depends on SG. */
7639 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7640 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7641 		features &= ~NETIF_F_GSO;
7642 	}
7643 
7644 	/* GSO partial features require GSO partial be set */
7645 	if ((features & dev->gso_partial_features) &&
7646 	    !(features & NETIF_F_GSO_PARTIAL)) {
7647 		netdev_dbg(dev,
7648 			   "Dropping partially supported GSO features since no GSO partial.\n");
7649 		features &= ~dev->gso_partial_features;
7650 	}
7651 
7652 	if (!(features & NETIF_F_RXCSUM)) {
7653 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7654 		 * successfully merged by hardware must also have the
7655 		 * checksum verified by hardware.  If the user does not
7656 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
7657 		 */
7658 		if (features & NETIF_F_GRO_HW) {
7659 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7660 			features &= ~NETIF_F_GRO_HW;
7661 		}
7662 	}
7663 
7664 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
7665 	if (features & NETIF_F_RXFCS) {
7666 		if (features & NETIF_F_LRO) {
7667 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7668 			features &= ~NETIF_F_LRO;
7669 		}
7670 
7671 		if (features & NETIF_F_GRO_HW) {
7672 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7673 			features &= ~NETIF_F_GRO_HW;
7674 		}
7675 	}
7676 
7677 	return features;
7678 }
7679 
7680 int __netdev_update_features(struct net_device *dev)
7681 {
7682 	struct net_device *upper, *lower;
7683 	netdev_features_t features;
7684 	struct list_head *iter;
7685 	int err = -1;
7686 
7687 	ASSERT_RTNL();
7688 
7689 	features = netdev_get_wanted_features(dev);
7690 
7691 	if (dev->netdev_ops->ndo_fix_features)
7692 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7693 
7694 	/* driver might be less strict about feature dependencies */
7695 	features = netdev_fix_features(dev, features);
7696 
7697 	/* some features can't be enabled if they're off an an upper device */
7698 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7699 		features = netdev_sync_upper_features(dev, upper, features);
7700 
7701 	if (dev->features == features)
7702 		goto sync_lower;
7703 
7704 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7705 		&dev->features, &features);
7706 
7707 	if (dev->netdev_ops->ndo_set_features)
7708 		err = dev->netdev_ops->ndo_set_features(dev, features);
7709 	else
7710 		err = 0;
7711 
7712 	if (unlikely(err < 0)) {
7713 		netdev_err(dev,
7714 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7715 			err, &features, &dev->features);
7716 		/* return non-0 since some features might have changed and
7717 		 * it's better to fire a spurious notification than miss it
7718 		 */
7719 		return -1;
7720 	}
7721 
7722 sync_lower:
7723 	/* some features must be disabled on lower devices when disabled
7724 	 * on an upper device (think: bonding master or bridge)
7725 	 */
7726 	netdev_for_each_lower_dev(dev, lower, iter)
7727 		netdev_sync_lower_features(dev, lower, features);
7728 
7729 	if (!err) {
7730 		netdev_features_t diff = features ^ dev->features;
7731 
7732 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7733 			/* udp_tunnel_{get,drop}_rx_info both need
7734 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7735 			 * device, or they won't do anything.
7736 			 * Thus we need to update dev->features
7737 			 * *before* calling udp_tunnel_get_rx_info,
7738 			 * but *after* calling udp_tunnel_drop_rx_info.
7739 			 */
7740 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7741 				dev->features = features;
7742 				udp_tunnel_get_rx_info(dev);
7743 			} else {
7744 				udp_tunnel_drop_rx_info(dev);
7745 			}
7746 		}
7747 
7748 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
7749 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
7750 				dev->features = features;
7751 				err |= vlan_get_rx_ctag_filter_info(dev);
7752 			} else {
7753 				vlan_drop_rx_ctag_filter_info(dev);
7754 			}
7755 		}
7756 
7757 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
7758 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
7759 				dev->features = features;
7760 				err |= vlan_get_rx_stag_filter_info(dev);
7761 			} else {
7762 				vlan_drop_rx_stag_filter_info(dev);
7763 			}
7764 		}
7765 
7766 		dev->features = features;
7767 	}
7768 
7769 	return err < 0 ? 0 : 1;
7770 }
7771 
7772 /**
7773  *	netdev_update_features - recalculate device features
7774  *	@dev: the device to check
7775  *
7776  *	Recalculate dev->features set and send notifications if it
7777  *	has changed. Should be called after driver or hardware dependent
7778  *	conditions might have changed that influence the features.
7779  */
7780 void netdev_update_features(struct net_device *dev)
7781 {
7782 	if (__netdev_update_features(dev))
7783 		netdev_features_change(dev);
7784 }
7785 EXPORT_SYMBOL(netdev_update_features);
7786 
7787 /**
7788  *	netdev_change_features - recalculate device features
7789  *	@dev: the device to check
7790  *
7791  *	Recalculate dev->features set and send notifications even
7792  *	if they have not changed. Should be called instead of
7793  *	netdev_update_features() if also dev->vlan_features might
7794  *	have changed to allow the changes to be propagated to stacked
7795  *	VLAN devices.
7796  */
7797 void netdev_change_features(struct net_device *dev)
7798 {
7799 	__netdev_update_features(dev);
7800 	netdev_features_change(dev);
7801 }
7802 EXPORT_SYMBOL(netdev_change_features);
7803 
7804 /**
7805  *	netif_stacked_transfer_operstate -	transfer operstate
7806  *	@rootdev: the root or lower level device to transfer state from
7807  *	@dev: the device to transfer operstate to
7808  *
7809  *	Transfer operational state from root to device. This is normally
7810  *	called when a stacking relationship exists between the root
7811  *	device and the device(a leaf device).
7812  */
7813 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7814 					struct net_device *dev)
7815 {
7816 	if (rootdev->operstate == IF_OPER_DORMANT)
7817 		netif_dormant_on(dev);
7818 	else
7819 		netif_dormant_off(dev);
7820 
7821 	if (netif_carrier_ok(rootdev))
7822 		netif_carrier_on(dev);
7823 	else
7824 		netif_carrier_off(dev);
7825 }
7826 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7827 
7828 static int netif_alloc_rx_queues(struct net_device *dev)
7829 {
7830 	unsigned int i, count = dev->num_rx_queues;
7831 	struct netdev_rx_queue *rx;
7832 	size_t sz = count * sizeof(*rx);
7833 	int err = 0;
7834 
7835 	BUG_ON(count < 1);
7836 
7837 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7838 	if (!rx)
7839 		return -ENOMEM;
7840 
7841 	dev->_rx = rx;
7842 
7843 	for (i = 0; i < count; i++) {
7844 		rx[i].dev = dev;
7845 
7846 		/* XDP RX-queue setup */
7847 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7848 		if (err < 0)
7849 			goto err_rxq_info;
7850 	}
7851 	return 0;
7852 
7853 err_rxq_info:
7854 	/* Rollback successful reg's and free other resources */
7855 	while (i--)
7856 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7857 	kvfree(dev->_rx);
7858 	dev->_rx = NULL;
7859 	return err;
7860 }
7861 
7862 static void netif_free_rx_queues(struct net_device *dev)
7863 {
7864 	unsigned int i, count = dev->num_rx_queues;
7865 
7866 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7867 	if (!dev->_rx)
7868 		return;
7869 
7870 	for (i = 0; i < count; i++)
7871 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7872 
7873 	kvfree(dev->_rx);
7874 }
7875 
7876 static void netdev_init_one_queue(struct net_device *dev,
7877 				  struct netdev_queue *queue, void *_unused)
7878 {
7879 	/* Initialize queue lock */
7880 	spin_lock_init(&queue->_xmit_lock);
7881 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7882 	queue->xmit_lock_owner = -1;
7883 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7884 	queue->dev = dev;
7885 #ifdef CONFIG_BQL
7886 	dql_init(&queue->dql, HZ);
7887 #endif
7888 }
7889 
7890 static void netif_free_tx_queues(struct net_device *dev)
7891 {
7892 	kvfree(dev->_tx);
7893 }
7894 
7895 static int netif_alloc_netdev_queues(struct net_device *dev)
7896 {
7897 	unsigned int count = dev->num_tx_queues;
7898 	struct netdev_queue *tx;
7899 	size_t sz = count * sizeof(*tx);
7900 
7901 	if (count < 1 || count > 0xffff)
7902 		return -EINVAL;
7903 
7904 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7905 	if (!tx)
7906 		return -ENOMEM;
7907 
7908 	dev->_tx = tx;
7909 
7910 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7911 	spin_lock_init(&dev->tx_global_lock);
7912 
7913 	return 0;
7914 }
7915 
7916 void netif_tx_stop_all_queues(struct net_device *dev)
7917 {
7918 	unsigned int i;
7919 
7920 	for (i = 0; i < dev->num_tx_queues; i++) {
7921 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7922 
7923 		netif_tx_stop_queue(txq);
7924 	}
7925 }
7926 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7927 
7928 /**
7929  *	register_netdevice	- register a network device
7930  *	@dev: device to register
7931  *
7932  *	Take a completed network device structure and add it to the kernel
7933  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7934  *	chain. 0 is returned on success. A negative errno code is returned
7935  *	on a failure to set up the device, or if the name is a duplicate.
7936  *
7937  *	Callers must hold the rtnl semaphore. You may want
7938  *	register_netdev() instead of this.
7939  *
7940  *	BUGS:
7941  *	The locking appears insufficient to guarantee two parallel registers
7942  *	will not get the same name.
7943  */
7944 
7945 int register_netdevice(struct net_device *dev)
7946 {
7947 	int ret;
7948 	struct net *net = dev_net(dev);
7949 
7950 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
7951 		     NETDEV_FEATURE_COUNT);
7952 	BUG_ON(dev_boot_phase);
7953 	ASSERT_RTNL();
7954 
7955 	might_sleep();
7956 
7957 	/* When net_device's are persistent, this will be fatal. */
7958 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7959 	BUG_ON(!net);
7960 
7961 	spin_lock_init(&dev->addr_list_lock);
7962 	netdev_set_addr_lockdep_class(dev);
7963 
7964 	ret = dev_get_valid_name(net, dev, dev->name);
7965 	if (ret < 0)
7966 		goto out;
7967 
7968 	/* Init, if this function is available */
7969 	if (dev->netdev_ops->ndo_init) {
7970 		ret = dev->netdev_ops->ndo_init(dev);
7971 		if (ret) {
7972 			if (ret > 0)
7973 				ret = -EIO;
7974 			goto out;
7975 		}
7976 	}
7977 
7978 	if (((dev->hw_features | dev->features) &
7979 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7980 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7981 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7982 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7983 		ret = -EINVAL;
7984 		goto err_uninit;
7985 	}
7986 
7987 	ret = -EBUSY;
7988 	if (!dev->ifindex)
7989 		dev->ifindex = dev_new_index(net);
7990 	else if (__dev_get_by_index(net, dev->ifindex))
7991 		goto err_uninit;
7992 
7993 	/* Transfer changeable features to wanted_features and enable
7994 	 * software offloads (GSO and GRO).
7995 	 */
7996 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7997 	dev->features |= NETIF_F_SOFT_FEATURES;
7998 
7999 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8000 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8001 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8002 	}
8003 
8004 	dev->wanted_features = dev->features & dev->hw_features;
8005 
8006 	if (!(dev->flags & IFF_LOOPBACK))
8007 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8008 
8009 	/* If IPv4 TCP segmentation offload is supported we should also
8010 	 * allow the device to enable segmenting the frame with the option
8011 	 * of ignoring a static IP ID value.  This doesn't enable the
8012 	 * feature itself but allows the user to enable it later.
8013 	 */
8014 	if (dev->hw_features & NETIF_F_TSO)
8015 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8016 	if (dev->vlan_features & NETIF_F_TSO)
8017 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8018 	if (dev->mpls_features & NETIF_F_TSO)
8019 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8020 	if (dev->hw_enc_features & NETIF_F_TSO)
8021 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8022 
8023 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8024 	 */
8025 	dev->vlan_features |= NETIF_F_HIGHDMA;
8026 
8027 	/* Make NETIF_F_SG inheritable to tunnel devices.
8028 	 */
8029 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8030 
8031 	/* Make NETIF_F_SG inheritable to MPLS.
8032 	 */
8033 	dev->mpls_features |= NETIF_F_SG;
8034 
8035 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8036 	ret = notifier_to_errno(ret);
8037 	if (ret)
8038 		goto err_uninit;
8039 
8040 	ret = netdev_register_kobject(dev);
8041 	if (ret)
8042 		goto err_uninit;
8043 	dev->reg_state = NETREG_REGISTERED;
8044 
8045 	__netdev_update_features(dev);
8046 
8047 	/*
8048 	 *	Default initial state at registry is that the
8049 	 *	device is present.
8050 	 */
8051 
8052 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8053 
8054 	linkwatch_init_dev(dev);
8055 
8056 	dev_init_scheduler(dev);
8057 	dev_hold(dev);
8058 	list_netdevice(dev);
8059 	add_device_randomness(dev->dev_addr, dev->addr_len);
8060 
8061 	/* If the device has permanent device address, driver should
8062 	 * set dev_addr and also addr_assign_type should be set to
8063 	 * NET_ADDR_PERM (default value).
8064 	 */
8065 	if (dev->addr_assign_type == NET_ADDR_PERM)
8066 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8067 
8068 	/* Notify protocols, that a new device appeared. */
8069 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8070 	ret = notifier_to_errno(ret);
8071 	if (ret) {
8072 		rollback_registered(dev);
8073 		dev->reg_state = NETREG_UNREGISTERED;
8074 	}
8075 	/*
8076 	 *	Prevent userspace races by waiting until the network
8077 	 *	device is fully setup before sending notifications.
8078 	 */
8079 	if (!dev->rtnl_link_ops ||
8080 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8081 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8082 
8083 out:
8084 	return ret;
8085 
8086 err_uninit:
8087 	if (dev->netdev_ops->ndo_uninit)
8088 		dev->netdev_ops->ndo_uninit(dev);
8089 	if (dev->priv_destructor)
8090 		dev->priv_destructor(dev);
8091 	goto out;
8092 }
8093 EXPORT_SYMBOL(register_netdevice);
8094 
8095 /**
8096  *	init_dummy_netdev	- init a dummy network device for NAPI
8097  *	@dev: device to init
8098  *
8099  *	This takes a network device structure and initialize the minimum
8100  *	amount of fields so it can be used to schedule NAPI polls without
8101  *	registering a full blown interface. This is to be used by drivers
8102  *	that need to tie several hardware interfaces to a single NAPI
8103  *	poll scheduler due to HW limitations.
8104  */
8105 int init_dummy_netdev(struct net_device *dev)
8106 {
8107 	/* Clear everything. Note we don't initialize spinlocks
8108 	 * are they aren't supposed to be taken by any of the
8109 	 * NAPI code and this dummy netdev is supposed to be
8110 	 * only ever used for NAPI polls
8111 	 */
8112 	memset(dev, 0, sizeof(struct net_device));
8113 
8114 	/* make sure we BUG if trying to hit standard
8115 	 * register/unregister code path
8116 	 */
8117 	dev->reg_state = NETREG_DUMMY;
8118 
8119 	/* NAPI wants this */
8120 	INIT_LIST_HEAD(&dev->napi_list);
8121 
8122 	/* a dummy interface is started by default */
8123 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8124 	set_bit(__LINK_STATE_START, &dev->state);
8125 
8126 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8127 	 * because users of this 'device' dont need to change
8128 	 * its refcount.
8129 	 */
8130 
8131 	return 0;
8132 }
8133 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8134 
8135 
8136 /**
8137  *	register_netdev	- register a network device
8138  *	@dev: device to register
8139  *
8140  *	Take a completed network device structure and add it to the kernel
8141  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8142  *	chain. 0 is returned on success. A negative errno code is returned
8143  *	on a failure to set up the device, or if the name is a duplicate.
8144  *
8145  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8146  *	and expands the device name if you passed a format string to
8147  *	alloc_netdev.
8148  */
8149 int register_netdev(struct net_device *dev)
8150 {
8151 	int err;
8152 
8153 	if (rtnl_lock_killable())
8154 		return -EINTR;
8155 	err = register_netdevice(dev);
8156 	rtnl_unlock();
8157 	return err;
8158 }
8159 EXPORT_SYMBOL(register_netdev);
8160 
8161 int netdev_refcnt_read(const struct net_device *dev)
8162 {
8163 	int i, refcnt = 0;
8164 
8165 	for_each_possible_cpu(i)
8166 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8167 	return refcnt;
8168 }
8169 EXPORT_SYMBOL(netdev_refcnt_read);
8170 
8171 /**
8172  * netdev_wait_allrefs - wait until all references are gone.
8173  * @dev: target net_device
8174  *
8175  * This is called when unregistering network devices.
8176  *
8177  * Any protocol or device that holds a reference should register
8178  * for netdevice notification, and cleanup and put back the
8179  * reference if they receive an UNREGISTER event.
8180  * We can get stuck here if buggy protocols don't correctly
8181  * call dev_put.
8182  */
8183 static void netdev_wait_allrefs(struct net_device *dev)
8184 {
8185 	unsigned long rebroadcast_time, warning_time;
8186 	int refcnt;
8187 
8188 	linkwatch_forget_dev(dev);
8189 
8190 	rebroadcast_time = warning_time = jiffies;
8191 	refcnt = netdev_refcnt_read(dev);
8192 
8193 	while (refcnt != 0) {
8194 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8195 			rtnl_lock();
8196 
8197 			/* Rebroadcast unregister notification */
8198 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8199 
8200 			__rtnl_unlock();
8201 			rcu_barrier();
8202 			rtnl_lock();
8203 
8204 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8205 				     &dev->state)) {
8206 				/* We must not have linkwatch events
8207 				 * pending on unregister. If this
8208 				 * happens, we simply run the queue
8209 				 * unscheduled, resulting in a noop
8210 				 * for this device.
8211 				 */
8212 				linkwatch_run_queue();
8213 			}
8214 
8215 			__rtnl_unlock();
8216 
8217 			rebroadcast_time = jiffies;
8218 		}
8219 
8220 		msleep(250);
8221 
8222 		refcnt = netdev_refcnt_read(dev);
8223 
8224 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8225 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8226 				 dev->name, refcnt);
8227 			warning_time = jiffies;
8228 		}
8229 	}
8230 }
8231 
8232 /* The sequence is:
8233  *
8234  *	rtnl_lock();
8235  *	...
8236  *	register_netdevice(x1);
8237  *	register_netdevice(x2);
8238  *	...
8239  *	unregister_netdevice(y1);
8240  *	unregister_netdevice(y2);
8241  *      ...
8242  *	rtnl_unlock();
8243  *	free_netdev(y1);
8244  *	free_netdev(y2);
8245  *
8246  * We are invoked by rtnl_unlock().
8247  * This allows us to deal with problems:
8248  * 1) We can delete sysfs objects which invoke hotplug
8249  *    without deadlocking with linkwatch via keventd.
8250  * 2) Since we run with the RTNL semaphore not held, we can sleep
8251  *    safely in order to wait for the netdev refcnt to drop to zero.
8252  *
8253  * We must not return until all unregister events added during
8254  * the interval the lock was held have been completed.
8255  */
8256 void netdev_run_todo(void)
8257 {
8258 	struct list_head list;
8259 
8260 	/* Snapshot list, allow later requests */
8261 	list_replace_init(&net_todo_list, &list);
8262 
8263 	__rtnl_unlock();
8264 
8265 
8266 	/* Wait for rcu callbacks to finish before next phase */
8267 	if (!list_empty(&list))
8268 		rcu_barrier();
8269 
8270 	while (!list_empty(&list)) {
8271 		struct net_device *dev
8272 			= list_first_entry(&list, struct net_device, todo_list);
8273 		list_del(&dev->todo_list);
8274 
8275 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8276 			pr_err("network todo '%s' but state %d\n",
8277 			       dev->name, dev->reg_state);
8278 			dump_stack();
8279 			continue;
8280 		}
8281 
8282 		dev->reg_state = NETREG_UNREGISTERED;
8283 
8284 		netdev_wait_allrefs(dev);
8285 
8286 		/* paranoia */
8287 		BUG_ON(netdev_refcnt_read(dev));
8288 		BUG_ON(!list_empty(&dev->ptype_all));
8289 		BUG_ON(!list_empty(&dev->ptype_specific));
8290 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8291 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8292 #if IS_ENABLED(CONFIG_DECNET)
8293 		WARN_ON(dev->dn_ptr);
8294 #endif
8295 		if (dev->priv_destructor)
8296 			dev->priv_destructor(dev);
8297 		if (dev->needs_free_netdev)
8298 			free_netdev(dev);
8299 
8300 		/* Report a network device has been unregistered */
8301 		rtnl_lock();
8302 		dev_net(dev)->dev_unreg_count--;
8303 		__rtnl_unlock();
8304 		wake_up(&netdev_unregistering_wq);
8305 
8306 		/* Free network device */
8307 		kobject_put(&dev->dev.kobj);
8308 	}
8309 }
8310 
8311 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8312  * all the same fields in the same order as net_device_stats, with only
8313  * the type differing, but rtnl_link_stats64 may have additional fields
8314  * at the end for newer counters.
8315  */
8316 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8317 			     const struct net_device_stats *netdev_stats)
8318 {
8319 #if BITS_PER_LONG == 64
8320 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8321 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8322 	/* zero out counters that only exist in rtnl_link_stats64 */
8323 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8324 	       sizeof(*stats64) - sizeof(*netdev_stats));
8325 #else
8326 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8327 	const unsigned long *src = (const unsigned long *)netdev_stats;
8328 	u64 *dst = (u64 *)stats64;
8329 
8330 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8331 	for (i = 0; i < n; i++)
8332 		dst[i] = src[i];
8333 	/* zero out counters that only exist in rtnl_link_stats64 */
8334 	memset((char *)stats64 + n * sizeof(u64), 0,
8335 	       sizeof(*stats64) - n * sizeof(u64));
8336 #endif
8337 }
8338 EXPORT_SYMBOL(netdev_stats_to_stats64);
8339 
8340 /**
8341  *	dev_get_stats	- get network device statistics
8342  *	@dev: device to get statistics from
8343  *	@storage: place to store stats
8344  *
8345  *	Get network statistics from device. Return @storage.
8346  *	The device driver may provide its own method by setting
8347  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8348  *	otherwise the internal statistics structure is used.
8349  */
8350 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8351 					struct rtnl_link_stats64 *storage)
8352 {
8353 	const struct net_device_ops *ops = dev->netdev_ops;
8354 
8355 	if (ops->ndo_get_stats64) {
8356 		memset(storage, 0, sizeof(*storage));
8357 		ops->ndo_get_stats64(dev, storage);
8358 	} else if (ops->ndo_get_stats) {
8359 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8360 	} else {
8361 		netdev_stats_to_stats64(storage, &dev->stats);
8362 	}
8363 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8364 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8365 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8366 	return storage;
8367 }
8368 EXPORT_SYMBOL(dev_get_stats);
8369 
8370 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8371 {
8372 	struct netdev_queue *queue = dev_ingress_queue(dev);
8373 
8374 #ifdef CONFIG_NET_CLS_ACT
8375 	if (queue)
8376 		return queue;
8377 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8378 	if (!queue)
8379 		return NULL;
8380 	netdev_init_one_queue(dev, queue, NULL);
8381 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8382 	queue->qdisc_sleeping = &noop_qdisc;
8383 	rcu_assign_pointer(dev->ingress_queue, queue);
8384 #endif
8385 	return queue;
8386 }
8387 
8388 static const struct ethtool_ops default_ethtool_ops;
8389 
8390 void netdev_set_default_ethtool_ops(struct net_device *dev,
8391 				    const struct ethtool_ops *ops)
8392 {
8393 	if (dev->ethtool_ops == &default_ethtool_ops)
8394 		dev->ethtool_ops = ops;
8395 }
8396 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8397 
8398 void netdev_freemem(struct net_device *dev)
8399 {
8400 	char *addr = (char *)dev - dev->padded;
8401 
8402 	kvfree(addr);
8403 }
8404 
8405 /**
8406  * alloc_netdev_mqs - allocate network device
8407  * @sizeof_priv: size of private data to allocate space for
8408  * @name: device name format string
8409  * @name_assign_type: origin of device name
8410  * @setup: callback to initialize device
8411  * @txqs: the number of TX subqueues to allocate
8412  * @rxqs: the number of RX subqueues to allocate
8413  *
8414  * Allocates a struct net_device with private data area for driver use
8415  * and performs basic initialization.  Also allocates subqueue structs
8416  * for each queue on the device.
8417  */
8418 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8419 		unsigned char name_assign_type,
8420 		void (*setup)(struct net_device *),
8421 		unsigned int txqs, unsigned int rxqs)
8422 {
8423 	struct net_device *dev;
8424 	unsigned int alloc_size;
8425 	struct net_device *p;
8426 
8427 	BUG_ON(strlen(name) >= sizeof(dev->name));
8428 
8429 	if (txqs < 1) {
8430 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8431 		return NULL;
8432 	}
8433 
8434 	if (rxqs < 1) {
8435 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8436 		return NULL;
8437 	}
8438 
8439 	alloc_size = sizeof(struct net_device);
8440 	if (sizeof_priv) {
8441 		/* ensure 32-byte alignment of private area */
8442 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8443 		alloc_size += sizeof_priv;
8444 	}
8445 	/* ensure 32-byte alignment of whole construct */
8446 	alloc_size += NETDEV_ALIGN - 1;
8447 
8448 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8449 	if (!p)
8450 		return NULL;
8451 
8452 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8453 	dev->padded = (char *)dev - (char *)p;
8454 
8455 	dev->pcpu_refcnt = alloc_percpu(int);
8456 	if (!dev->pcpu_refcnt)
8457 		goto free_dev;
8458 
8459 	if (dev_addr_init(dev))
8460 		goto free_pcpu;
8461 
8462 	dev_mc_init(dev);
8463 	dev_uc_init(dev);
8464 
8465 	dev_net_set(dev, &init_net);
8466 
8467 	dev->gso_max_size = GSO_MAX_SIZE;
8468 	dev->gso_max_segs = GSO_MAX_SEGS;
8469 
8470 	INIT_LIST_HEAD(&dev->napi_list);
8471 	INIT_LIST_HEAD(&dev->unreg_list);
8472 	INIT_LIST_HEAD(&dev->close_list);
8473 	INIT_LIST_HEAD(&dev->link_watch_list);
8474 	INIT_LIST_HEAD(&dev->adj_list.upper);
8475 	INIT_LIST_HEAD(&dev->adj_list.lower);
8476 	INIT_LIST_HEAD(&dev->ptype_all);
8477 	INIT_LIST_HEAD(&dev->ptype_specific);
8478 #ifdef CONFIG_NET_SCHED
8479 	hash_init(dev->qdisc_hash);
8480 #endif
8481 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8482 	setup(dev);
8483 
8484 	if (!dev->tx_queue_len) {
8485 		dev->priv_flags |= IFF_NO_QUEUE;
8486 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8487 	}
8488 
8489 	dev->num_tx_queues = txqs;
8490 	dev->real_num_tx_queues = txqs;
8491 	if (netif_alloc_netdev_queues(dev))
8492 		goto free_all;
8493 
8494 	dev->num_rx_queues = rxqs;
8495 	dev->real_num_rx_queues = rxqs;
8496 	if (netif_alloc_rx_queues(dev))
8497 		goto free_all;
8498 
8499 	strcpy(dev->name, name);
8500 	dev->name_assign_type = name_assign_type;
8501 	dev->group = INIT_NETDEV_GROUP;
8502 	if (!dev->ethtool_ops)
8503 		dev->ethtool_ops = &default_ethtool_ops;
8504 
8505 	nf_hook_ingress_init(dev);
8506 
8507 	return dev;
8508 
8509 free_all:
8510 	free_netdev(dev);
8511 	return NULL;
8512 
8513 free_pcpu:
8514 	free_percpu(dev->pcpu_refcnt);
8515 free_dev:
8516 	netdev_freemem(dev);
8517 	return NULL;
8518 }
8519 EXPORT_SYMBOL(alloc_netdev_mqs);
8520 
8521 /**
8522  * free_netdev - free network device
8523  * @dev: device
8524  *
8525  * This function does the last stage of destroying an allocated device
8526  * interface. The reference to the device object is released. If this
8527  * is the last reference then it will be freed.Must be called in process
8528  * context.
8529  */
8530 void free_netdev(struct net_device *dev)
8531 {
8532 	struct napi_struct *p, *n;
8533 
8534 	might_sleep();
8535 	netif_free_tx_queues(dev);
8536 	netif_free_rx_queues(dev);
8537 
8538 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8539 
8540 	/* Flush device addresses */
8541 	dev_addr_flush(dev);
8542 
8543 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8544 		netif_napi_del(p);
8545 
8546 	free_percpu(dev->pcpu_refcnt);
8547 	dev->pcpu_refcnt = NULL;
8548 
8549 	/*  Compatibility with error handling in drivers */
8550 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8551 		netdev_freemem(dev);
8552 		return;
8553 	}
8554 
8555 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8556 	dev->reg_state = NETREG_RELEASED;
8557 
8558 	/* will free via device release */
8559 	put_device(&dev->dev);
8560 }
8561 EXPORT_SYMBOL(free_netdev);
8562 
8563 /**
8564  *	synchronize_net -  Synchronize with packet receive processing
8565  *
8566  *	Wait for packets currently being received to be done.
8567  *	Does not block later packets from starting.
8568  */
8569 void synchronize_net(void)
8570 {
8571 	might_sleep();
8572 	if (rtnl_is_locked())
8573 		synchronize_rcu_expedited();
8574 	else
8575 		synchronize_rcu();
8576 }
8577 EXPORT_SYMBOL(synchronize_net);
8578 
8579 /**
8580  *	unregister_netdevice_queue - remove device from the kernel
8581  *	@dev: device
8582  *	@head: list
8583  *
8584  *	This function shuts down a device interface and removes it
8585  *	from the kernel tables.
8586  *	If head not NULL, device is queued to be unregistered later.
8587  *
8588  *	Callers must hold the rtnl semaphore.  You may want
8589  *	unregister_netdev() instead of this.
8590  */
8591 
8592 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8593 {
8594 	ASSERT_RTNL();
8595 
8596 	if (head) {
8597 		list_move_tail(&dev->unreg_list, head);
8598 	} else {
8599 		rollback_registered(dev);
8600 		/* Finish processing unregister after unlock */
8601 		net_set_todo(dev);
8602 	}
8603 }
8604 EXPORT_SYMBOL(unregister_netdevice_queue);
8605 
8606 /**
8607  *	unregister_netdevice_many - unregister many devices
8608  *	@head: list of devices
8609  *
8610  *  Note: As most callers use a stack allocated list_head,
8611  *  we force a list_del() to make sure stack wont be corrupted later.
8612  */
8613 void unregister_netdevice_many(struct list_head *head)
8614 {
8615 	struct net_device *dev;
8616 
8617 	if (!list_empty(head)) {
8618 		rollback_registered_many(head);
8619 		list_for_each_entry(dev, head, unreg_list)
8620 			net_set_todo(dev);
8621 		list_del(head);
8622 	}
8623 }
8624 EXPORT_SYMBOL(unregister_netdevice_many);
8625 
8626 /**
8627  *	unregister_netdev - remove device from the kernel
8628  *	@dev: device
8629  *
8630  *	This function shuts down a device interface and removes it
8631  *	from the kernel tables.
8632  *
8633  *	This is just a wrapper for unregister_netdevice that takes
8634  *	the rtnl semaphore.  In general you want to use this and not
8635  *	unregister_netdevice.
8636  */
8637 void unregister_netdev(struct net_device *dev)
8638 {
8639 	rtnl_lock();
8640 	unregister_netdevice(dev);
8641 	rtnl_unlock();
8642 }
8643 EXPORT_SYMBOL(unregister_netdev);
8644 
8645 /**
8646  *	dev_change_net_namespace - move device to different nethost namespace
8647  *	@dev: device
8648  *	@net: network namespace
8649  *	@pat: If not NULL name pattern to try if the current device name
8650  *	      is already taken in the destination network namespace.
8651  *
8652  *	This function shuts down a device interface and moves it
8653  *	to a new network namespace. On success 0 is returned, on
8654  *	a failure a netagive errno code is returned.
8655  *
8656  *	Callers must hold the rtnl semaphore.
8657  */
8658 
8659 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8660 {
8661 	int err, new_nsid, new_ifindex;
8662 
8663 	ASSERT_RTNL();
8664 
8665 	/* Don't allow namespace local devices to be moved. */
8666 	err = -EINVAL;
8667 	if (dev->features & NETIF_F_NETNS_LOCAL)
8668 		goto out;
8669 
8670 	/* Ensure the device has been registrered */
8671 	if (dev->reg_state != NETREG_REGISTERED)
8672 		goto out;
8673 
8674 	/* Get out if there is nothing todo */
8675 	err = 0;
8676 	if (net_eq(dev_net(dev), net))
8677 		goto out;
8678 
8679 	/* Pick the destination device name, and ensure
8680 	 * we can use it in the destination network namespace.
8681 	 */
8682 	err = -EEXIST;
8683 	if (__dev_get_by_name(net, dev->name)) {
8684 		/* We get here if we can't use the current device name */
8685 		if (!pat)
8686 			goto out;
8687 		err = dev_get_valid_name(net, dev, pat);
8688 		if (err < 0)
8689 			goto out;
8690 	}
8691 
8692 	/*
8693 	 * And now a mini version of register_netdevice unregister_netdevice.
8694 	 */
8695 
8696 	/* If device is running close it first. */
8697 	dev_close(dev);
8698 
8699 	/* And unlink it from device chain */
8700 	unlist_netdevice(dev);
8701 
8702 	synchronize_net();
8703 
8704 	/* Shutdown queueing discipline. */
8705 	dev_shutdown(dev);
8706 
8707 	/* Notify protocols, that we are about to destroy
8708 	 * this device. They should clean all the things.
8709 	 *
8710 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8711 	 * This is wanted because this way 8021q and macvlan know
8712 	 * the device is just moving and can keep their slaves up.
8713 	 */
8714 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8715 	rcu_barrier();
8716 
8717 	new_nsid = peernet2id_alloc(dev_net(dev), net);
8718 	/* If there is an ifindex conflict assign a new one */
8719 	if (__dev_get_by_index(net, dev->ifindex))
8720 		new_ifindex = dev_new_index(net);
8721 	else
8722 		new_ifindex = dev->ifindex;
8723 
8724 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8725 			    new_ifindex);
8726 
8727 	/*
8728 	 *	Flush the unicast and multicast chains
8729 	 */
8730 	dev_uc_flush(dev);
8731 	dev_mc_flush(dev);
8732 
8733 	/* Send a netdev-removed uevent to the old namespace */
8734 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8735 	netdev_adjacent_del_links(dev);
8736 
8737 	/* Actually switch the network namespace */
8738 	dev_net_set(dev, net);
8739 	dev->ifindex = new_ifindex;
8740 
8741 	/* Send a netdev-add uevent to the new namespace */
8742 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8743 	netdev_adjacent_add_links(dev);
8744 
8745 	/* Fixup kobjects */
8746 	err = device_rename(&dev->dev, dev->name);
8747 	WARN_ON(err);
8748 
8749 	/* Add the device back in the hashes */
8750 	list_netdevice(dev);
8751 
8752 	/* Notify protocols, that a new device appeared. */
8753 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8754 
8755 	/*
8756 	 *	Prevent userspace races by waiting until the network
8757 	 *	device is fully setup before sending notifications.
8758 	 */
8759 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8760 
8761 	synchronize_net();
8762 	err = 0;
8763 out:
8764 	return err;
8765 }
8766 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8767 
8768 static int dev_cpu_dead(unsigned int oldcpu)
8769 {
8770 	struct sk_buff **list_skb;
8771 	struct sk_buff *skb;
8772 	unsigned int cpu;
8773 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8774 
8775 	local_irq_disable();
8776 	cpu = smp_processor_id();
8777 	sd = &per_cpu(softnet_data, cpu);
8778 	oldsd = &per_cpu(softnet_data, oldcpu);
8779 
8780 	/* Find end of our completion_queue. */
8781 	list_skb = &sd->completion_queue;
8782 	while (*list_skb)
8783 		list_skb = &(*list_skb)->next;
8784 	/* Append completion queue from offline CPU. */
8785 	*list_skb = oldsd->completion_queue;
8786 	oldsd->completion_queue = NULL;
8787 
8788 	/* Append output queue from offline CPU. */
8789 	if (oldsd->output_queue) {
8790 		*sd->output_queue_tailp = oldsd->output_queue;
8791 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8792 		oldsd->output_queue = NULL;
8793 		oldsd->output_queue_tailp = &oldsd->output_queue;
8794 	}
8795 	/* Append NAPI poll list from offline CPU, with one exception :
8796 	 * process_backlog() must be called by cpu owning percpu backlog.
8797 	 * We properly handle process_queue & input_pkt_queue later.
8798 	 */
8799 	while (!list_empty(&oldsd->poll_list)) {
8800 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8801 							    struct napi_struct,
8802 							    poll_list);
8803 
8804 		list_del_init(&napi->poll_list);
8805 		if (napi->poll == process_backlog)
8806 			napi->state = 0;
8807 		else
8808 			____napi_schedule(sd, napi);
8809 	}
8810 
8811 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8812 	local_irq_enable();
8813 
8814 #ifdef CONFIG_RPS
8815 	remsd = oldsd->rps_ipi_list;
8816 	oldsd->rps_ipi_list = NULL;
8817 #endif
8818 	/* send out pending IPI's on offline CPU */
8819 	net_rps_send_ipi(remsd);
8820 
8821 	/* Process offline CPU's input_pkt_queue */
8822 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8823 		netif_rx_ni(skb);
8824 		input_queue_head_incr(oldsd);
8825 	}
8826 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8827 		netif_rx_ni(skb);
8828 		input_queue_head_incr(oldsd);
8829 	}
8830 
8831 	return 0;
8832 }
8833 
8834 /**
8835  *	netdev_increment_features - increment feature set by one
8836  *	@all: current feature set
8837  *	@one: new feature set
8838  *	@mask: mask feature set
8839  *
8840  *	Computes a new feature set after adding a device with feature set
8841  *	@one to the master device with current feature set @all.  Will not
8842  *	enable anything that is off in @mask. Returns the new feature set.
8843  */
8844 netdev_features_t netdev_increment_features(netdev_features_t all,
8845 	netdev_features_t one, netdev_features_t mask)
8846 {
8847 	if (mask & NETIF_F_HW_CSUM)
8848 		mask |= NETIF_F_CSUM_MASK;
8849 	mask |= NETIF_F_VLAN_CHALLENGED;
8850 
8851 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8852 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8853 
8854 	/* If one device supports hw checksumming, set for all. */
8855 	if (all & NETIF_F_HW_CSUM)
8856 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8857 
8858 	return all;
8859 }
8860 EXPORT_SYMBOL(netdev_increment_features);
8861 
8862 static struct hlist_head * __net_init netdev_create_hash(void)
8863 {
8864 	int i;
8865 	struct hlist_head *hash;
8866 
8867 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
8868 	if (hash != NULL)
8869 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8870 			INIT_HLIST_HEAD(&hash[i]);
8871 
8872 	return hash;
8873 }
8874 
8875 /* Initialize per network namespace state */
8876 static int __net_init netdev_init(struct net *net)
8877 {
8878 	if (net != &init_net)
8879 		INIT_LIST_HEAD(&net->dev_base_head);
8880 
8881 	net->dev_name_head = netdev_create_hash();
8882 	if (net->dev_name_head == NULL)
8883 		goto err_name;
8884 
8885 	net->dev_index_head = netdev_create_hash();
8886 	if (net->dev_index_head == NULL)
8887 		goto err_idx;
8888 
8889 	return 0;
8890 
8891 err_idx:
8892 	kfree(net->dev_name_head);
8893 err_name:
8894 	return -ENOMEM;
8895 }
8896 
8897 /**
8898  *	netdev_drivername - network driver for the device
8899  *	@dev: network device
8900  *
8901  *	Determine network driver for device.
8902  */
8903 const char *netdev_drivername(const struct net_device *dev)
8904 {
8905 	const struct device_driver *driver;
8906 	const struct device *parent;
8907 	const char *empty = "";
8908 
8909 	parent = dev->dev.parent;
8910 	if (!parent)
8911 		return empty;
8912 
8913 	driver = parent->driver;
8914 	if (driver && driver->name)
8915 		return driver->name;
8916 	return empty;
8917 }
8918 
8919 static void __netdev_printk(const char *level, const struct net_device *dev,
8920 			    struct va_format *vaf)
8921 {
8922 	if (dev && dev->dev.parent) {
8923 		dev_printk_emit(level[1] - '0',
8924 				dev->dev.parent,
8925 				"%s %s %s%s: %pV",
8926 				dev_driver_string(dev->dev.parent),
8927 				dev_name(dev->dev.parent),
8928 				netdev_name(dev), netdev_reg_state(dev),
8929 				vaf);
8930 	} else if (dev) {
8931 		printk("%s%s%s: %pV",
8932 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8933 	} else {
8934 		printk("%s(NULL net_device): %pV", level, vaf);
8935 	}
8936 }
8937 
8938 void netdev_printk(const char *level, const struct net_device *dev,
8939 		   const char *format, ...)
8940 {
8941 	struct va_format vaf;
8942 	va_list args;
8943 
8944 	va_start(args, format);
8945 
8946 	vaf.fmt = format;
8947 	vaf.va = &args;
8948 
8949 	__netdev_printk(level, dev, &vaf);
8950 
8951 	va_end(args);
8952 }
8953 EXPORT_SYMBOL(netdev_printk);
8954 
8955 #define define_netdev_printk_level(func, level)			\
8956 void func(const struct net_device *dev, const char *fmt, ...)	\
8957 {								\
8958 	struct va_format vaf;					\
8959 	va_list args;						\
8960 								\
8961 	va_start(args, fmt);					\
8962 								\
8963 	vaf.fmt = fmt;						\
8964 	vaf.va = &args;						\
8965 								\
8966 	__netdev_printk(level, dev, &vaf);			\
8967 								\
8968 	va_end(args);						\
8969 }								\
8970 EXPORT_SYMBOL(func);
8971 
8972 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8973 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8974 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8975 define_netdev_printk_level(netdev_err, KERN_ERR);
8976 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8977 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8978 define_netdev_printk_level(netdev_info, KERN_INFO);
8979 
8980 static void __net_exit netdev_exit(struct net *net)
8981 {
8982 	kfree(net->dev_name_head);
8983 	kfree(net->dev_index_head);
8984 	if (net != &init_net)
8985 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8986 }
8987 
8988 static struct pernet_operations __net_initdata netdev_net_ops = {
8989 	.init = netdev_init,
8990 	.exit = netdev_exit,
8991 };
8992 
8993 static void __net_exit default_device_exit(struct net *net)
8994 {
8995 	struct net_device *dev, *aux;
8996 	/*
8997 	 * Push all migratable network devices back to the
8998 	 * initial network namespace
8999 	 */
9000 	rtnl_lock();
9001 	for_each_netdev_safe(net, dev, aux) {
9002 		int err;
9003 		char fb_name[IFNAMSIZ];
9004 
9005 		/* Ignore unmoveable devices (i.e. loopback) */
9006 		if (dev->features & NETIF_F_NETNS_LOCAL)
9007 			continue;
9008 
9009 		/* Leave virtual devices for the generic cleanup */
9010 		if (dev->rtnl_link_ops)
9011 			continue;
9012 
9013 		/* Push remaining network devices to init_net */
9014 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9015 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9016 		if (err) {
9017 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9018 				 __func__, dev->name, err);
9019 			BUG();
9020 		}
9021 	}
9022 	rtnl_unlock();
9023 }
9024 
9025 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9026 {
9027 	/* Return with the rtnl_lock held when there are no network
9028 	 * devices unregistering in any network namespace in net_list.
9029 	 */
9030 	struct net *net;
9031 	bool unregistering;
9032 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9033 
9034 	add_wait_queue(&netdev_unregistering_wq, &wait);
9035 	for (;;) {
9036 		unregistering = false;
9037 		rtnl_lock();
9038 		list_for_each_entry(net, net_list, exit_list) {
9039 			if (net->dev_unreg_count > 0) {
9040 				unregistering = true;
9041 				break;
9042 			}
9043 		}
9044 		if (!unregistering)
9045 			break;
9046 		__rtnl_unlock();
9047 
9048 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9049 	}
9050 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9051 }
9052 
9053 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9054 {
9055 	/* At exit all network devices most be removed from a network
9056 	 * namespace.  Do this in the reverse order of registration.
9057 	 * Do this across as many network namespaces as possible to
9058 	 * improve batching efficiency.
9059 	 */
9060 	struct net_device *dev;
9061 	struct net *net;
9062 	LIST_HEAD(dev_kill_list);
9063 
9064 	/* To prevent network device cleanup code from dereferencing
9065 	 * loopback devices or network devices that have been freed
9066 	 * wait here for all pending unregistrations to complete,
9067 	 * before unregistring the loopback device and allowing the
9068 	 * network namespace be freed.
9069 	 *
9070 	 * The netdev todo list containing all network devices
9071 	 * unregistrations that happen in default_device_exit_batch
9072 	 * will run in the rtnl_unlock() at the end of
9073 	 * default_device_exit_batch.
9074 	 */
9075 	rtnl_lock_unregistering(net_list);
9076 	list_for_each_entry(net, net_list, exit_list) {
9077 		for_each_netdev_reverse(net, dev) {
9078 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9079 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9080 			else
9081 				unregister_netdevice_queue(dev, &dev_kill_list);
9082 		}
9083 	}
9084 	unregister_netdevice_many(&dev_kill_list);
9085 	rtnl_unlock();
9086 }
9087 
9088 static struct pernet_operations __net_initdata default_device_ops = {
9089 	.exit = default_device_exit,
9090 	.exit_batch = default_device_exit_batch,
9091 };
9092 
9093 /*
9094  *	Initialize the DEV module. At boot time this walks the device list and
9095  *	unhooks any devices that fail to initialise (normally hardware not
9096  *	present) and leaves us with a valid list of present and active devices.
9097  *
9098  */
9099 
9100 /*
9101  *       This is called single threaded during boot, so no need
9102  *       to take the rtnl semaphore.
9103  */
9104 static int __init net_dev_init(void)
9105 {
9106 	int i, rc = -ENOMEM;
9107 
9108 	BUG_ON(!dev_boot_phase);
9109 
9110 	if (dev_proc_init())
9111 		goto out;
9112 
9113 	if (netdev_kobject_init())
9114 		goto out;
9115 
9116 	INIT_LIST_HEAD(&ptype_all);
9117 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9118 		INIT_LIST_HEAD(&ptype_base[i]);
9119 
9120 	INIT_LIST_HEAD(&offload_base);
9121 
9122 	if (register_pernet_subsys(&netdev_net_ops))
9123 		goto out;
9124 
9125 	/*
9126 	 *	Initialise the packet receive queues.
9127 	 */
9128 
9129 	for_each_possible_cpu(i) {
9130 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9131 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9132 
9133 		INIT_WORK(flush, flush_backlog);
9134 
9135 		skb_queue_head_init(&sd->input_pkt_queue);
9136 		skb_queue_head_init(&sd->process_queue);
9137 #ifdef CONFIG_XFRM_OFFLOAD
9138 		skb_queue_head_init(&sd->xfrm_backlog);
9139 #endif
9140 		INIT_LIST_HEAD(&sd->poll_list);
9141 		sd->output_queue_tailp = &sd->output_queue;
9142 #ifdef CONFIG_RPS
9143 		sd->csd.func = rps_trigger_softirq;
9144 		sd->csd.info = sd;
9145 		sd->cpu = i;
9146 #endif
9147 
9148 		sd->backlog.poll = process_backlog;
9149 		sd->backlog.weight = weight_p;
9150 	}
9151 
9152 	dev_boot_phase = 0;
9153 
9154 	/* The loopback device is special if any other network devices
9155 	 * is present in a network namespace the loopback device must
9156 	 * be present. Since we now dynamically allocate and free the
9157 	 * loopback device ensure this invariant is maintained by
9158 	 * keeping the loopback device as the first device on the
9159 	 * list of network devices.  Ensuring the loopback devices
9160 	 * is the first device that appears and the last network device
9161 	 * that disappears.
9162 	 */
9163 	if (register_pernet_device(&loopback_net_ops))
9164 		goto out;
9165 
9166 	if (register_pernet_device(&default_device_ops))
9167 		goto out;
9168 
9169 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9170 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9171 
9172 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9173 				       NULL, dev_cpu_dead);
9174 	WARN_ON(rc < 0);
9175 	rc = 0;
9176 out:
9177 	return rc;
9178 }
9179 
9180 subsys_initcall(net_dev_init);
9181