xref: /linux/net/core/dev.c (revision ec2212088c42ff7d1362629ec26dda4f3e8bdad3)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/net_tstamp.h>
137 #include <linux/static_key.h>
138 #include <net/flow_keys.h>
139 
140 #include "net-sysfs.h"
141 
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
144 
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147 
148 /*
149  *	The list of packet types we will receive (as opposed to discard)
150  *	and the routines to invoke.
151  *
152  *	Why 16. Because with 16 the only overlap we get on a hash of the
153  *	low nibble of the protocol value is RARP/SNAP/X.25.
154  *
155  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
156  *             sure which should go first, but I bet it won't make much
157  *             difference if we are running VLANs.  The good news is that
158  *             this protocol won't be in the list unless compiled in, so
159  *             the average user (w/out VLANs) will not be adversely affected.
160  *             --BLG
161  *
162  *		0800	IP
163  *		8100    802.1Q VLAN
164  *		0001	802.3
165  *		0002	AX.25
166  *		0004	802.2
167  *		8035	RARP
168  *		0005	SNAP
169  *		0805	X.25
170  *		0806	ARP
171  *		8137	IPX
172  *		0009	Localtalk
173  *		86DD	IPv6
174  */
175 
176 #define PTYPE_HASH_SIZE	(16)
177 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
178 
179 static DEFINE_SPINLOCK(ptype_lock);
180 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
181 static struct list_head ptype_all __read_mostly;	/* Taps */
182 
183 /*
184  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
185  * semaphore.
186  *
187  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
188  *
189  * Writers must hold the rtnl semaphore while they loop through the
190  * dev_base_head list, and hold dev_base_lock for writing when they do the
191  * actual updates.  This allows pure readers to access the list even
192  * while a writer is preparing to update it.
193  *
194  * To put it another way, dev_base_lock is held for writing only to
195  * protect against pure readers; the rtnl semaphore provides the
196  * protection against other writers.
197  *
198  * See, for example usages, register_netdevice() and
199  * unregister_netdevice(), which must be called with the rtnl
200  * semaphore held.
201  */
202 DEFINE_RWLOCK(dev_base_lock);
203 EXPORT_SYMBOL(dev_base_lock);
204 
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207 	while (++net->dev_base_seq == 0);
208 }
209 
210 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
211 {
212 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
213 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215 
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220 
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224 	spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227 
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231 	spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234 
235 /* Device list insertion */
236 static int list_netdevice(struct net_device *dev)
237 {
238 	struct net *net = dev_net(dev);
239 
240 	ASSERT_RTNL();
241 
242 	write_lock_bh(&dev_base_lock);
243 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245 	hlist_add_head_rcu(&dev->index_hlist,
246 			   dev_index_hash(net, dev->ifindex));
247 	write_unlock_bh(&dev_base_lock);
248 
249 	dev_base_seq_inc(net);
250 
251 	return 0;
252 }
253 
254 /* Device list removal
255  * caller must respect a RCU grace period before freeing/reusing dev
256  */
257 static void unlist_netdevice(struct net_device *dev)
258 {
259 	ASSERT_RTNL();
260 
261 	/* Unlink dev from the device chain */
262 	write_lock_bh(&dev_base_lock);
263 	list_del_rcu(&dev->dev_list);
264 	hlist_del_rcu(&dev->name_hlist);
265 	hlist_del_rcu(&dev->index_hlist);
266 	write_unlock_bh(&dev_base_lock);
267 
268 	dev_base_seq_inc(dev_net(dev));
269 }
270 
271 /*
272  *	Our notifier list
273  */
274 
275 static RAW_NOTIFIER_HEAD(netdev_chain);
276 
277 /*
278  *	Device drivers call our routines to queue packets here. We empty the
279  *	queue in the local softnet handler.
280  */
281 
282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
283 EXPORT_PER_CPU_SYMBOL(softnet_data);
284 
285 #ifdef CONFIG_LOCKDEP
286 /*
287  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
288  * according to dev->type
289  */
290 static const unsigned short netdev_lock_type[] =
291 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
292 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
293 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
294 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
295 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
296 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
297 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
298 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
299 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
300 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
301 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
302 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
303 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
304 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
305 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
306 	 ARPHRD_VOID, ARPHRD_NONE};
307 
308 static const char *const netdev_lock_name[] =
309 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
310 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
311 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
312 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
313 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
314 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
315 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
316 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
317 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
318 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
319 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
320 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
321 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
322 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
323 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
324 	 "_xmit_VOID", "_xmit_NONE"};
325 
326 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
327 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
328 
329 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
330 {
331 	int i;
332 
333 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
334 		if (netdev_lock_type[i] == dev_type)
335 			return i;
336 	/* the last key is used by default */
337 	return ARRAY_SIZE(netdev_lock_type) - 1;
338 }
339 
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 						 unsigned short dev_type)
342 {
343 	int i;
344 
345 	i = netdev_lock_pos(dev_type);
346 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
347 				   netdev_lock_name[i]);
348 }
349 
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 	int i;
353 
354 	i = netdev_lock_pos(dev->type);
355 	lockdep_set_class_and_name(&dev->addr_list_lock,
356 				   &netdev_addr_lock_key[i],
357 				   netdev_lock_name[i]);
358 }
359 #else
360 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
361 						 unsigned short dev_type)
362 {
363 }
364 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
365 {
366 }
367 #endif
368 
369 /*******************************************************************************
370 
371 		Protocol management and registration routines
372 
373 *******************************************************************************/
374 
375 /*
376  *	Add a protocol ID to the list. Now that the input handler is
377  *	smarter we can dispense with all the messy stuff that used to be
378  *	here.
379  *
380  *	BEWARE!!! Protocol handlers, mangling input packets,
381  *	MUST BE last in hash buckets and checking protocol handlers
382  *	MUST start from promiscuous ptype_all chain in net_bh.
383  *	It is true now, do not change it.
384  *	Explanation follows: if protocol handler, mangling packet, will
385  *	be the first on list, it is not able to sense, that packet
386  *	is cloned and should be copied-on-write, so that it will
387  *	change it and subsequent readers will get broken packet.
388  *							--ANK (980803)
389  */
390 
391 static inline struct list_head *ptype_head(const struct packet_type *pt)
392 {
393 	if (pt->type == htons(ETH_P_ALL))
394 		return &ptype_all;
395 	else
396 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
397 }
398 
399 /**
400  *	dev_add_pack - add packet handler
401  *	@pt: packet type declaration
402  *
403  *	Add a protocol handler to the networking stack. The passed &packet_type
404  *	is linked into kernel lists and may not be freed until it has been
405  *	removed from the kernel lists.
406  *
407  *	This call does not sleep therefore it can not
408  *	guarantee all CPU's that are in middle of receiving packets
409  *	will see the new packet type (until the next received packet).
410  */
411 
412 void dev_add_pack(struct packet_type *pt)
413 {
414 	struct list_head *head = ptype_head(pt);
415 
416 	spin_lock(&ptype_lock);
417 	list_add_rcu(&pt->list, head);
418 	spin_unlock(&ptype_lock);
419 }
420 EXPORT_SYMBOL(dev_add_pack);
421 
422 /**
423  *	__dev_remove_pack	 - remove packet handler
424  *	@pt: packet type declaration
425  *
426  *	Remove a protocol handler that was previously added to the kernel
427  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
428  *	from the kernel lists and can be freed or reused once this function
429  *	returns.
430  *
431  *      The packet type might still be in use by receivers
432  *	and must not be freed until after all the CPU's have gone
433  *	through a quiescent state.
434  */
435 void __dev_remove_pack(struct packet_type *pt)
436 {
437 	struct list_head *head = ptype_head(pt);
438 	struct packet_type *pt1;
439 
440 	spin_lock(&ptype_lock);
441 
442 	list_for_each_entry(pt1, head, list) {
443 		if (pt == pt1) {
444 			list_del_rcu(&pt->list);
445 			goto out;
446 		}
447 	}
448 
449 	pr_warn("dev_remove_pack: %p not found\n", pt);
450 out:
451 	spin_unlock(&ptype_lock);
452 }
453 EXPORT_SYMBOL(__dev_remove_pack);
454 
455 /**
456  *	dev_remove_pack	 - remove packet handler
457  *	@pt: packet type declaration
458  *
459  *	Remove a protocol handler that was previously added to the kernel
460  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
461  *	from the kernel lists and can be freed or reused once this function
462  *	returns.
463  *
464  *	This call sleeps to guarantee that no CPU is looking at the packet
465  *	type after return.
466  */
467 void dev_remove_pack(struct packet_type *pt)
468 {
469 	__dev_remove_pack(pt);
470 
471 	synchronize_net();
472 }
473 EXPORT_SYMBOL(dev_remove_pack);
474 
475 /******************************************************************************
476 
477 		      Device Boot-time Settings Routines
478 
479 *******************************************************************************/
480 
481 /* Boot time configuration table */
482 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
483 
484 /**
485  *	netdev_boot_setup_add	- add new setup entry
486  *	@name: name of the device
487  *	@map: configured settings for the device
488  *
489  *	Adds new setup entry to the dev_boot_setup list.  The function
490  *	returns 0 on error and 1 on success.  This is a generic routine to
491  *	all netdevices.
492  */
493 static int netdev_boot_setup_add(char *name, struct ifmap *map)
494 {
495 	struct netdev_boot_setup *s;
496 	int i;
497 
498 	s = dev_boot_setup;
499 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
500 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
501 			memset(s[i].name, 0, sizeof(s[i].name));
502 			strlcpy(s[i].name, name, IFNAMSIZ);
503 			memcpy(&s[i].map, map, sizeof(s[i].map));
504 			break;
505 		}
506 	}
507 
508 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
509 }
510 
511 /**
512  *	netdev_boot_setup_check	- check boot time settings
513  *	@dev: the netdevice
514  *
515  * 	Check boot time settings for the device.
516  *	The found settings are set for the device to be used
517  *	later in the device probing.
518  *	Returns 0 if no settings found, 1 if they are.
519  */
520 int netdev_boot_setup_check(struct net_device *dev)
521 {
522 	struct netdev_boot_setup *s = dev_boot_setup;
523 	int i;
524 
525 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
526 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
527 		    !strcmp(dev->name, s[i].name)) {
528 			dev->irq 	= s[i].map.irq;
529 			dev->base_addr 	= s[i].map.base_addr;
530 			dev->mem_start 	= s[i].map.mem_start;
531 			dev->mem_end 	= s[i].map.mem_end;
532 			return 1;
533 		}
534 	}
535 	return 0;
536 }
537 EXPORT_SYMBOL(netdev_boot_setup_check);
538 
539 
540 /**
541  *	netdev_boot_base	- get address from boot time settings
542  *	@prefix: prefix for network device
543  *	@unit: id for network device
544  *
545  * 	Check boot time settings for the base address of device.
546  *	The found settings are set for the device to be used
547  *	later in the device probing.
548  *	Returns 0 if no settings found.
549  */
550 unsigned long netdev_boot_base(const char *prefix, int unit)
551 {
552 	const struct netdev_boot_setup *s = dev_boot_setup;
553 	char name[IFNAMSIZ];
554 	int i;
555 
556 	sprintf(name, "%s%d", prefix, unit);
557 
558 	/*
559 	 * If device already registered then return base of 1
560 	 * to indicate not to probe for this interface
561 	 */
562 	if (__dev_get_by_name(&init_net, name))
563 		return 1;
564 
565 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
566 		if (!strcmp(name, s[i].name))
567 			return s[i].map.base_addr;
568 	return 0;
569 }
570 
571 /*
572  * Saves at boot time configured settings for any netdevice.
573  */
574 int __init netdev_boot_setup(char *str)
575 {
576 	int ints[5];
577 	struct ifmap map;
578 
579 	str = get_options(str, ARRAY_SIZE(ints), ints);
580 	if (!str || !*str)
581 		return 0;
582 
583 	/* Save settings */
584 	memset(&map, 0, sizeof(map));
585 	if (ints[0] > 0)
586 		map.irq = ints[1];
587 	if (ints[0] > 1)
588 		map.base_addr = ints[2];
589 	if (ints[0] > 2)
590 		map.mem_start = ints[3];
591 	if (ints[0] > 3)
592 		map.mem_end = ints[4];
593 
594 	/* Add new entry to the list */
595 	return netdev_boot_setup_add(str, &map);
596 }
597 
598 __setup("netdev=", netdev_boot_setup);
599 
600 /*******************************************************************************
601 
602 			    Device Interface Subroutines
603 
604 *******************************************************************************/
605 
606 /**
607  *	__dev_get_by_name	- find a device by its name
608  *	@net: the applicable net namespace
609  *	@name: name to find
610  *
611  *	Find an interface by name. Must be called under RTNL semaphore
612  *	or @dev_base_lock. If the name is found a pointer to the device
613  *	is returned. If the name is not found then %NULL is returned. The
614  *	reference counters are not incremented so the caller must be
615  *	careful with locks.
616  */
617 
618 struct net_device *__dev_get_by_name(struct net *net, const char *name)
619 {
620 	struct hlist_node *p;
621 	struct net_device *dev;
622 	struct hlist_head *head = dev_name_hash(net, name);
623 
624 	hlist_for_each_entry(dev, p, head, name_hlist)
625 		if (!strncmp(dev->name, name, IFNAMSIZ))
626 			return dev;
627 
628 	return NULL;
629 }
630 EXPORT_SYMBOL(__dev_get_by_name);
631 
632 /**
633  *	dev_get_by_name_rcu	- find a device by its name
634  *	@net: the applicable net namespace
635  *	@name: name to find
636  *
637  *	Find an interface by name.
638  *	If the name is found a pointer to the device is returned.
639  * 	If the name is not found then %NULL is returned.
640  *	The reference counters are not incremented so the caller must be
641  *	careful with locks. The caller must hold RCU lock.
642  */
643 
644 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
645 {
646 	struct hlist_node *p;
647 	struct net_device *dev;
648 	struct hlist_head *head = dev_name_hash(net, name);
649 
650 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
651 		if (!strncmp(dev->name, name, IFNAMSIZ))
652 			return dev;
653 
654 	return NULL;
655 }
656 EXPORT_SYMBOL(dev_get_by_name_rcu);
657 
658 /**
659  *	dev_get_by_name		- find a device by its name
660  *	@net: the applicable net namespace
661  *	@name: name to find
662  *
663  *	Find an interface by name. This can be called from any
664  *	context and does its own locking. The returned handle has
665  *	the usage count incremented and the caller must use dev_put() to
666  *	release it when it is no longer needed. %NULL is returned if no
667  *	matching device is found.
668  */
669 
670 struct net_device *dev_get_by_name(struct net *net, const char *name)
671 {
672 	struct net_device *dev;
673 
674 	rcu_read_lock();
675 	dev = dev_get_by_name_rcu(net, name);
676 	if (dev)
677 		dev_hold(dev);
678 	rcu_read_unlock();
679 	return dev;
680 }
681 EXPORT_SYMBOL(dev_get_by_name);
682 
683 /**
684  *	__dev_get_by_index - find a device by its ifindex
685  *	@net: the applicable net namespace
686  *	@ifindex: index of device
687  *
688  *	Search for an interface by index. Returns %NULL if the device
689  *	is not found or a pointer to the device. The device has not
690  *	had its reference counter increased so the caller must be careful
691  *	about locking. The caller must hold either the RTNL semaphore
692  *	or @dev_base_lock.
693  */
694 
695 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
696 {
697 	struct hlist_node *p;
698 	struct net_device *dev;
699 	struct hlist_head *head = dev_index_hash(net, ifindex);
700 
701 	hlist_for_each_entry(dev, p, head, index_hlist)
702 		if (dev->ifindex == ifindex)
703 			return dev;
704 
705 	return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_index);
708 
709 /**
710  *	dev_get_by_index_rcu - find a device by its ifindex
711  *	@net: the applicable net namespace
712  *	@ifindex: index of device
713  *
714  *	Search for an interface by index. Returns %NULL if the device
715  *	is not found or a pointer to the device. The device has not
716  *	had its reference counter increased so the caller must be careful
717  *	about locking. The caller must hold RCU lock.
718  */
719 
720 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
721 {
722 	struct hlist_node *p;
723 	struct net_device *dev;
724 	struct hlist_head *head = dev_index_hash(net, ifindex);
725 
726 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
727 		if (dev->ifindex == ifindex)
728 			return dev;
729 
730 	return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_index_rcu);
733 
734 
735 /**
736  *	dev_get_by_index - find a device by its ifindex
737  *	@net: the applicable net namespace
738  *	@ifindex: index of device
739  *
740  *	Search for an interface by index. Returns NULL if the device
741  *	is not found or a pointer to the device. The device returned has
742  *	had a reference added and the pointer is safe until the user calls
743  *	dev_put to indicate they have finished with it.
744  */
745 
746 struct net_device *dev_get_by_index(struct net *net, int ifindex)
747 {
748 	struct net_device *dev;
749 
750 	rcu_read_lock();
751 	dev = dev_get_by_index_rcu(net, ifindex);
752 	if (dev)
753 		dev_hold(dev);
754 	rcu_read_unlock();
755 	return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_index);
758 
759 /**
760  *	dev_getbyhwaddr_rcu - find a device by its hardware address
761  *	@net: the applicable net namespace
762  *	@type: media type of device
763  *	@ha: hardware address
764  *
765  *	Search for an interface by MAC address. Returns NULL if the device
766  *	is not found or a pointer to the device.
767  *	The caller must hold RCU or RTNL.
768  *	The returned device has not had its ref count increased
769  *	and the caller must therefore be careful about locking
770  *
771  */
772 
773 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
774 				       const char *ha)
775 {
776 	struct net_device *dev;
777 
778 	for_each_netdev_rcu(net, dev)
779 		if (dev->type == type &&
780 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
781 			return dev;
782 
783 	return NULL;
784 }
785 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
786 
787 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 {
789 	struct net_device *dev;
790 
791 	ASSERT_RTNL();
792 	for_each_netdev(net, dev)
793 		if (dev->type == type)
794 			return dev;
795 
796 	return NULL;
797 }
798 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
799 
800 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
801 {
802 	struct net_device *dev, *ret = NULL;
803 
804 	rcu_read_lock();
805 	for_each_netdev_rcu(net, dev)
806 		if (dev->type == type) {
807 			dev_hold(dev);
808 			ret = dev;
809 			break;
810 		}
811 	rcu_read_unlock();
812 	return ret;
813 }
814 EXPORT_SYMBOL(dev_getfirstbyhwtype);
815 
816 /**
817  *	dev_get_by_flags_rcu - find any device with given flags
818  *	@net: the applicable net namespace
819  *	@if_flags: IFF_* values
820  *	@mask: bitmask of bits in if_flags to check
821  *
822  *	Search for any interface with the given flags. Returns NULL if a device
823  *	is not found or a pointer to the device. Must be called inside
824  *	rcu_read_lock(), and result refcount is unchanged.
825  */
826 
827 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
828 				    unsigned short mask)
829 {
830 	struct net_device *dev, *ret;
831 
832 	ret = NULL;
833 	for_each_netdev_rcu(net, dev) {
834 		if (((dev->flags ^ if_flags) & mask) == 0) {
835 			ret = dev;
836 			break;
837 		}
838 	}
839 	return ret;
840 }
841 EXPORT_SYMBOL(dev_get_by_flags_rcu);
842 
843 /**
844  *	dev_valid_name - check if name is okay for network device
845  *	@name: name string
846  *
847  *	Network device names need to be valid file names to
848  *	to allow sysfs to work.  We also disallow any kind of
849  *	whitespace.
850  */
851 bool dev_valid_name(const char *name)
852 {
853 	if (*name == '\0')
854 		return false;
855 	if (strlen(name) >= IFNAMSIZ)
856 		return false;
857 	if (!strcmp(name, ".") || !strcmp(name, ".."))
858 		return false;
859 
860 	while (*name) {
861 		if (*name == '/' || isspace(*name))
862 			return false;
863 		name++;
864 	}
865 	return true;
866 }
867 EXPORT_SYMBOL(dev_valid_name);
868 
869 /**
870  *	__dev_alloc_name - allocate a name for a device
871  *	@net: network namespace to allocate the device name in
872  *	@name: name format string
873  *	@buf:  scratch buffer and result name string
874  *
875  *	Passed a format string - eg "lt%d" it will try and find a suitable
876  *	id. It scans list of devices to build up a free map, then chooses
877  *	the first empty slot. The caller must hold the dev_base or rtnl lock
878  *	while allocating the name and adding the device in order to avoid
879  *	duplicates.
880  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
881  *	Returns the number of the unit assigned or a negative errno code.
882  */
883 
884 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
885 {
886 	int i = 0;
887 	const char *p;
888 	const int max_netdevices = 8*PAGE_SIZE;
889 	unsigned long *inuse;
890 	struct net_device *d;
891 
892 	p = strnchr(name, IFNAMSIZ-1, '%');
893 	if (p) {
894 		/*
895 		 * Verify the string as this thing may have come from
896 		 * the user.  There must be either one "%d" and no other "%"
897 		 * characters.
898 		 */
899 		if (p[1] != 'd' || strchr(p + 2, '%'))
900 			return -EINVAL;
901 
902 		/* Use one page as a bit array of possible slots */
903 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
904 		if (!inuse)
905 			return -ENOMEM;
906 
907 		for_each_netdev(net, d) {
908 			if (!sscanf(d->name, name, &i))
909 				continue;
910 			if (i < 0 || i >= max_netdevices)
911 				continue;
912 
913 			/*  avoid cases where sscanf is not exact inverse of printf */
914 			snprintf(buf, IFNAMSIZ, name, i);
915 			if (!strncmp(buf, d->name, IFNAMSIZ))
916 				set_bit(i, inuse);
917 		}
918 
919 		i = find_first_zero_bit(inuse, max_netdevices);
920 		free_page((unsigned long) inuse);
921 	}
922 
923 	if (buf != name)
924 		snprintf(buf, IFNAMSIZ, name, i);
925 	if (!__dev_get_by_name(net, buf))
926 		return i;
927 
928 	/* It is possible to run out of possible slots
929 	 * when the name is long and there isn't enough space left
930 	 * for the digits, or if all bits are used.
931 	 */
932 	return -ENFILE;
933 }
934 
935 /**
936  *	dev_alloc_name - allocate a name for a device
937  *	@dev: device
938  *	@name: name format string
939  *
940  *	Passed a format string - eg "lt%d" it will try and find a suitable
941  *	id. It scans list of devices to build up a free map, then chooses
942  *	the first empty slot. The caller must hold the dev_base or rtnl lock
943  *	while allocating the name and adding the device in order to avoid
944  *	duplicates.
945  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
946  *	Returns the number of the unit assigned or a negative errno code.
947  */
948 
949 int dev_alloc_name(struct net_device *dev, const char *name)
950 {
951 	char buf[IFNAMSIZ];
952 	struct net *net;
953 	int ret;
954 
955 	BUG_ON(!dev_net(dev));
956 	net = dev_net(dev);
957 	ret = __dev_alloc_name(net, name, buf);
958 	if (ret >= 0)
959 		strlcpy(dev->name, buf, IFNAMSIZ);
960 	return ret;
961 }
962 EXPORT_SYMBOL(dev_alloc_name);
963 
964 static int dev_get_valid_name(struct net_device *dev, const char *name)
965 {
966 	struct net *net;
967 
968 	BUG_ON(!dev_net(dev));
969 	net = dev_net(dev);
970 
971 	if (!dev_valid_name(name))
972 		return -EINVAL;
973 
974 	if (strchr(name, '%'))
975 		return dev_alloc_name(dev, name);
976 	else if (__dev_get_by_name(net, name))
977 		return -EEXIST;
978 	else if (dev->name != name)
979 		strlcpy(dev->name, name, IFNAMSIZ);
980 
981 	return 0;
982 }
983 
984 /**
985  *	dev_change_name - change name of a device
986  *	@dev: device
987  *	@newname: name (or format string) must be at least IFNAMSIZ
988  *
989  *	Change name of a device, can pass format strings "eth%d".
990  *	for wildcarding.
991  */
992 int dev_change_name(struct net_device *dev, const char *newname)
993 {
994 	char oldname[IFNAMSIZ];
995 	int err = 0;
996 	int ret;
997 	struct net *net;
998 
999 	ASSERT_RTNL();
1000 	BUG_ON(!dev_net(dev));
1001 
1002 	net = dev_net(dev);
1003 	if (dev->flags & IFF_UP)
1004 		return -EBUSY;
1005 
1006 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1007 		return 0;
1008 
1009 	memcpy(oldname, dev->name, IFNAMSIZ);
1010 
1011 	err = dev_get_valid_name(dev, newname);
1012 	if (err < 0)
1013 		return err;
1014 
1015 rollback:
1016 	ret = device_rename(&dev->dev, dev->name);
1017 	if (ret) {
1018 		memcpy(dev->name, oldname, IFNAMSIZ);
1019 		return ret;
1020 	}
1021 
1022 	write_lock_bh(&dev_base_lock);
1023 	hlist_del_rcu(&dev->name_hlist);
1024 	write_unlock_bh(&dev_base_lock);
1025 
1026 	synchronize_rcu();
1027 
1028 	write_lock_bh(&dev_base_lock);
1029 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1030 	write_unlock_bh(&dev_base_lock);
1031 
1032 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1033 	ret = notifier_to_errno(ret);
1034 
1035 	if (ret) {
1036 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1037 		if (err >= 0) {
1038 			err = ret;
1039 			memcpy(dev->name, oldname, IFNAMSIZ);
1040 			goto rollback;
1041 		} else {
1042 			pr_err("%s: name change rollback failed: %d\n",
1043 			       dev->name, ret);
1044 		}
1045 	}
1046 
1047 	return err;
1048 }
1049 
1050 /**
1051  *	dev_set_alias - change ifalias of a device
1052  *	@dev: device
1053  *	@alias: name up to IFALIASZ
1054  *	@len: limit of bytes to copy from info
1055  *
1056  *	Set ifalias for a device,
1057  */
1058 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1059 {
1060 	ASSERT_RTNL();
1061 
1062 	if (len >= IFALIASZ)
1063 		return -EINVAL;
1064 
1065 	if (!len) {
1066 		if (dev->ifalias) {
1067 			kfree(dev->ifalias);
1068 			dev->ifalias = NULL;
1069 		}
1070 		return 0;
1071 	}
1072 
1073 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1074 	if (!dev->ifalias)
1075 		return -ENOMEM;
1076 
1077 	strlcpy(dev->ifalias, alias, len+1);
1078 	return len;
1079 }
1080 
1081 
1082 /**
1083  *	netdev_features_change - device changes features
1084  *	@dev: device to cause notification
1085  *
1086  *	Called to indicate a device has changed features.
1087  */
1088 void netdev_features_change(struct net_device *dev)
1089 {
1090 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1091 }
1092 EXPORT_SYMBOL(netdev_features_change);
1093 
1094 /**
1095  *	netdev_state_change - device changes state
1096  *	@dev: device to cause notification
1097  *
1098  *	Called to indicate a device has changed state. This function calls
1099  *	the notifier chains for netdev_chain and sends a NEWLINK message
1100  *	to the routing socket.
1101  */
1102 void netdev_state_change(struct net_device *dev)
1103 {
1104 	if (dev->flags & IFF_UP) {
1105 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1106 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1107 	}
1108 }
1109 EXPORT_SYMBOL(netdev_state_change);
1110 
1111 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1112 {
1113 	return call_netdevice_notifiers(event, dev);
1114 }
1115 EXPORT_SYMBOL(netdev_bonding_change);
1116 
1117 /**
1118  *	dev_load 	- load a network module
1119  *	@net: the applicable net namespace
1120  *	@name: name of interface
1121  *
1122  *	If a network interface is not present and the process has suitable
1123  *	privileges this function loads the module. If module loading is not
1124  *	available in this kernel then it becomes a nop.
1125  */
1126 
1127 void dev_load(struct net *net, const char *name)
1128 {
1129 	struct net_device *dev;
1130 	int no_module;
1131 
1132 	rcu_read_lock();
1133 	dev = dev_get_by_name_rcu(net, name);
1134 	rcu_read_unlock();
1135 
1136 	no_module = !dev;
1137 	if (no_module && capable(CAP_NET_ADMIN))
1138 		no_module = request_module("netdev-%s", name);
1139 	if (no_module && capable(CAP_SYS_MODULE)) {
1140 		if (!request_module("%s", name))
1141 			pr_err("Loading kernel module for a network device with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s instead.\n",
1142 			       name);
1143 	}
1144 }
1145 EXPORT_SYMBOL(dev_load);
1146 
1147 static int __dev_open(struct net_device *dev)
1148 {
1149 	const struct net_device_ops *ops = dev->netdev_ops;
1150 	int ret;
1151 
1152 	ASSERT_RTNL();
1153 
1154 	if (!netif_device_present(dev))
1155 		return -ENODEV;
1156 
1157 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1158 	ret = notifier_to_errno(ret);
1159 	if (ret)
1160 		return ret;
1161 
1162 	set_bit(__LINK_STATE_START, &dev->state);
1163 
1164 	if (ops->ndo_validate_addr)
1165 		ret = ops->ndo_validate_addr(dev);
1166 
1167 	if (!ret && ops->ndo_open)
1168 		ret = ops->ndo_open(dev);
1169 
1170 	if (ret)
1171 		clear_bit(__LINK_STATE_START, &dev->state);
1172 	else {
1173 		dev->flags |= IFF_UP;
1174 		net_dmaengine_get();
1175 		dev_set_rx_mode(dev);
1176 		dev_activate(dev);
1177 	}
1178 
1179 	return ret;
1180 }
1181 
1182 /**
1183  *	dev_open	- prepare an interface for use.
1184  *	@dev:	device to open
1185  *
1186  *	Takes a device from down to up state. The device's private open
1187  *	function is invoked and then the multicast lists are loaded. Finally
1188  *	the device is moved into the up state and a %NETDEV_UP message is
1189  *	sent to the netdev notifier chain.
1190  *
1191  *	Calling this function on an active interface is a nop. On a failure
1192  *	a negative errno code is returned.
1193  */
1194 int dev_open(struct net_device *dev)
1195 {
1196 	int ret;
1197 
1198 	if (dev->flags & IFF_UP)
1199 		return 0;
1200 
1201 	ret = __dev_open(dev);
1202 	if (ret < 0)
1203 		return ret;
1204 
1205 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1206 	call_netdevice_notifiers(NETDEV_UP, dev);
1207 
1208 	return ret;
1209 }
1210 EXPORT_SYMBOL(dev_open);
1211 
1212 static int __dev_close_many(struct list_head *head)
1213 {
1214 	struct net_device *dev;
1215 
1216 	ASSERT_RTNL();
1217 	might_sleep();
1218 
1219 	list_for_each_entry(dev, head, unreg_list) {
1220 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1221 
1222 		clear_bit(__LINK_STATE_START, &dev->state);
1223 
1224 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1225 		 * can be even on different cpu. So just clear netif_running().
1226 		 *
1227 		 * dev->stop() will invoke napi_disable() on all of it's
1228 		 * napi_struct instances on this device.
1229 		 */
1230 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1231 	}
1232 
1233 	dev_deactivate_many(head);
1234 
1235 	list_for_each_entry(dev, head, unreg_list) {
1236 		const struct net_device_ops *ops = dev->netdev_ops;
1237 
1238 		/*
1239 		 *	Call the device specific close. This cannot fail.
1240 		 *	Only if device is UP
1241 		 *
1242 		 *	We allow it to be called even after a DETACH hot-plug
1243 		 *	event.
1244 		 */
1245 		if (ops->ndo_stop)
1246 			ops->ndo_stop(dev);
1247 
1248 		dev->flags &= ~IFF_UP;
1249 		net_dmaengine_put();
1250 	}
1251 
1252 	return 0;
1253 }
1254 
1255 static int __dev_close(struct net_device *dev)
1256 {
1257 	int retval;
1258 	LIST_HEAD(single);
1259 
1260 	list_add(&dev->unreg_list, &single);
1261 	retval = __dev_close_many(&single);
1262 	list_del(&single);
1263 	return retval;
1264 }
1265 
1266 static int dev_close_many(struct list_head *head)
1267 {
1268 	struct net_device *dev, *tmp;
1269 	LIST_HEAD(tmp_list);
1270 
1271 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1272 		if (!(dev->flags & IFF_UP))
1273 			list_move(&dev->unreg_list, &tmp_list);
1274 
1275 	__dev_close_many(head);
1276 
1277 	list_for_each_entry(dev, head, unreg_list) {
1278 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1279 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1280 	}
1281 
1282 	/* rollback_registered_many needs the complete original list */
1283 	list_splice(&tmp_list, head);
1284 	return 0;
1285 }
1286 
1287 /**
1288  *	dev_close - shutdown an interface.
1289  *	@dev: device to shutdown
1290  *
1291  *	This function moves an active device into down state. A
1292  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1293  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1294  *	chain.
1295  */
1296 int dev_close(struct net_device *dev)
1297 {
1298 	if (dev->flags & IFF_UP) {
1299 		LIST_HEAD(single);
1300 
1301 		list_add(&dev->unreg_list, &single);
1302 		dev_close_many(&single);
1303 		list_del(&single);
1304 	}
1305 	return 0;
1306 }
1307 EXPORT_SYMBOL(dev_close);
1308 
1309 
1310 /**
1311  *	dev_disable_lro - disable Large Receive Offload on a device
1312  *	@dev: device
1313  *
1314  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1315  *	called under RTNL.  This is needed if received packets may be
1316  *	forwarded to another interface.
1317  */
1318 void dev_disable_lro(struct net_device *dev)
1319 {
1320 	/*
1321 	 * If we're trying to disable lro on a vlan device
1322 	 * use the underlying physical device instead
1323 	 */
1324 	if (is_vlan_dev(dev))
1325 		dev = vlan_dev_real_dev(dev);
1326 
1327 	dev->wanted_features &= ~NETIF_F_LRO;
1328 	netdev_update_features(dev);
1329 
1330 	if (unlikely(dev->features & NETIF_F_LRO))
1331 		netdev_WARN(dev, "failed to disable LRO!\n");
1332 }
1333 EXPORT_SYMBOL(dev_disable_lro);
1334 
1335 
1336 static int dev_boot_phase = 1;
1337 
1338 /**
1339  *	register_netdevice_notifier - register a network notifier block
1340  *	@nb: notifier
1341  *
1342  *	Register a notifier to be called when network device events occur.
1343  *	The notifier passed is linked into the kernel structures and must
1344  *	not be reused until it has been unregistered. A negative errno code
1345  *	is returned on a failure.
1346  *
1347  * 	When registered all registration and up events are replayed
1348  *	to the new notifier to allow device to have a race free
1349  *	view of the network device list.
1350  */
1351 
1352 int register_netdevice_notifier(struct notifier_block *nb)
1353 {
1354 	struct net_device *dev;
1355 	struct net_device *last;
1356 	struct net *net;
1357 	int err;
1358 
1359 	rtnl_lock();
1360 	err = raw_notifier_chain_register(&netdev_chain, nb);
1361 	if (err)
1362 		goto unlock;
1363 	if (dev_boot_phase)
1364 		goto unlock;
1365 	for_each_net(net) {
1366 		for_each_netdev(net, dev) {
1367 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1368 			err = notifier_to_errno(err);
1369 			if (err)
1370 				goto rollback;
1371 
1372 			if (!(dev->flags & IFF_UP))
1373 				continue;
1374 
1375 			nb->notifier_call(nb, NETDEV_UP, dev);
1376 		}
1377 	}
1378 
1379 unlock:
1380 	rtnl_unlock();
1381 	return err;
1382 
1383 rollback:
1384 	last = dev;
1385 	for_each_net(net) {
1386 		for_each_netdev(net, dev) {
1387 			if (dev == last)
1388 				goto outroll;
1389 
1390 			if (dev->flags & IFF_UP) {
1391 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1392 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1393 			}
1394 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1395 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1396 		}
1397 	}
1398 
1399 outroll:
1400 	raw_notifier_chain_unregister(&netdev_chain, nb);
1401 	goto unlock;
1402 }
1403 EXPORT_SYMBOL(register_netdevice_notifier);
1404 
1405 /**
1406  *	unregister_netdevice_notifier - unregister a network notifier block
1407  *	@nb: notifier
1408  *
1409  *	Unregister a notifier previously registered by
1410  *	register_netdevice_notifier(). The notifier is unlinked into the
1411  *	kernel structures and may then be reused. A negative errno code
1412  *	is returned on a failure.
1413  */
1414 
1415 int unregister_netdevice_notifier(struct notifier_block *nb)
1416 {
1417 	int err;
1418 
1419 	rtnl_lock();
1420 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1421 	rtnl_unlock();
1422 	return err;
1423 }
1424 EXPORT_SYMBOL(unregister_netdevice_notifier);
1425 
1426 /**
1427  *	call_netdevice_notifiers - call all network notifier blocks
1428  *      @val: value passed unmodified to notifier function
1429  *      @dev: net_device pointer passed unmodified to notifier function
1430  *
1431  *	Call all network notifier blocks.  Parameters and return value
1432  *	are as for raw_notifier_call_chain().
1433  */
1434 
1435 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1436 {
1437 	ASSERT_RTNL();
1438 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1439 }
1440 EXPORT_SYMBOL(call_netdevice_notifiers);
1441 
1442 static struct static_key netstamp_needed __read_mostly;
1443 #ifdef HAVE_JUMP_LABEL
1444 /* We are not allowed to call static_key_slow_dec() from irq context
1445  * If net_disable_timestamp() is called from irq context, defer the
1446  * static_key_slow_dec() calls.
1447  */
1448 static atomic_t netstamp_needed_deferred;
1449 #endif
1450 
1451 void net_enable_timestamp(void)
1452 {
1453 #ifdef HAVE_JUMP_LABEL
1454 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1455 
1456 	if (deferred) {
1457 		while (--deferred)
1458 			static_key_slow_dec(&netstamp_needed);
1459 		return;
1460 	}
1461 #endif
1462 	WARN_ON(in_interrupt());
1463 	static_key_slow_inc(&netstamp_needed);
1464 }
1465 EXPORT_SYMBOL(net_enable_timestamp);
1466 
1467 void net_disable_timestamp(void)
1468 {
1469 #ifdef HAVE_JUMP_LABEL
1470 	if (in_interrupt()) {
1471 		atomic_inc(&netstamp_needed_deferred);
1472 		return;
1473 	}
1474 #endif
1475 	static_key_slow_dec(&netstamp_needed);
1476 }
1477 EXPORT_SYMBOL(net_disable_timestamp);
1478 
1479 static inline void net_timestamp_set(struct sk_buff *skb)
1480 {
1481 	skb->tstamp.tv64 = 0;
1482 	if (static_key_false(&netstamp_needed))
1483 		__net_timestamp(skb);
1484 }
1485 
1486 #define net_timestamp_check(COND, SKB)			\
1487 	if (static_key_false(&netstamp_needed)) {		\
1488 		if ((COND) && !(SKB)->tstamp.tv64)	\
1489 			__net_timestamp(SKB);		\
1490 	}						\
1491 
1492 static int net_hwtstamp_validate(struct ifreq *ifr)
1493 {
1494 	struct hwtstamp_config cfg;
1495 	enum hwtstamp_tx_types tx_type;
1496 	enum hwtstamp_rx_filters rx_filter;
1497 	int tx_type_valid = 0;
1498 	int rx_filter_valid = 0;
1499 
1500 	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
1501 		return -EFAULT;
1502 
1503 	if (cfg.flags) /* reserved for future extensions */
1504 		return -EINVAL;
1505 
1506 	tx_type = cfg.tx_type;
1507 	rx_filter = cfg.rx_filter;
1508 
1509 	switch (tx_type) {
1510 	case HWTSTAMP_TX_OFF:
1511 	case HWTSTAMP_TX_ON:
1512 	case HWTSTAMP_TX_ONESTEP_SYNC:
1513 		tx_type_valid = 1;
1514 		break;
1515 	}
1516 
1517 	switch (rx_filter) {
1518 	case HWTSTAMP_FILTER_NONE:
1519 	case HWTSTAMP_FILTER_ALL:
1520 	case HWTSTAMP_FILTER_SOME:
1521 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1522 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1523 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1524 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1525 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1526 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1527 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1528 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1529 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1530 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1531 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1532 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1533 		rx_filter_valid = 1;
1534 		break;
1535 	}
1536 
1537 	if (!tx_type_valid || !rx_filter_valid)
1538 		return -ERANGE;
1539 
1540 	return 0;
1541 }
1542 
1543 static inline bool is_skb_forwardable(struct net_device *dev,
1544 				      struct sk_buff *skb)
1545 {
1546 	unsigned int len;
1547 
1548 	if (!(dev->flags & IFF_UP))
1549 		return false;
1550 
1551 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1552 	if (skb->len <= len)
1553 		return true;
1554 
1555 	/* if TSO is enabled, we don't care about the length as the packet
1556 	 * could be forwarded without being segmented before
1557 	 */
1558 	if (skb_is_gso(skb))
1559 		return true;
1560 
1561 	return false;
1562 }
1563 
1564 /**
1565  * dev_forward_skb - loopback an skb to another netif
1566  *
1567  * @dev: destination network device
1568  * @skb: buffer to forward
1569  *
1570  * return values:
1571  *	NET_RX_SUCCESS	(no congestion)
1572  *	NET_RX_DROP     (packet was dropped, but freed)
1573  *
1574  * dev_forward_skb can be used for injecting an skb from the
1575  * start_xmit function of one device into the receive queue
1576  * of another device.
1577  *
1578  * The receiving device may be in another namespace, so
1579  * we have to clear all information in the skb that could
1580  * impact namespace isolation.
1581  */
1582 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1583 {
1584 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1585 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1586 			atomic_long_inc(&dev->rx_dropped);
1587 			kfree_skb(skb);
1588 			return NET_RX_DROP;
1589 		}
1590 	}
1591 
1592 	skb_orphan(skb);
1593 	nf_reset(skb);
1594 
1595 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1596 		atomic_long_inc(&dev->rx_dropped);
1597 		kfree_skb(skb);
1598 		return NET_RX_DROP;
1599 	}
1600 	skb_set_dev(skb, dev);
1601 	skb->tstamp.tv64 = 0;
1602 	skb->pkt_type = PACKET_HOST;
1603 	skb->protocol = eth_type_trans(skb, dev);
1604 	return netif_rx(skb);
1605 }
1606 EXPORT_SYMBOL_GPL(dev_forward_skb);
1607 
1608 static inline int deliver_skb(struct sk_buff *skb,
1609 			      struct packet_type *pt_prev,
1610 			      struct net_device *orig_dev)
1611 {
1612 	atomic_inc(&skb->users);
1613 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1614 }
1615 
1616 /*
1617  *	Support routine. Sends outgoing frames to any network
1618  *	taps currently in use.
1619  */
1620 
1621 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1622 {
1623 	struct packet_type *ptype;
1624 	struct sk_buff *skb2 = NULL;
1625 	struct packet_type *pt_prev = NULL;
1626 
1627 	rcu_read_lock();
1628 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1629 		/* Never send packets back to the socket
1630 		 * they originated from - MvS (miquels@drinkel.ow.org)
1631 		 */
1632 		if ((ptype->dev == dev || !ptype->dev) &&
1633 		    (ptype->af_packet_priv == NULL ||
1634 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1635 			if (pt_prev) {
1636 				deliver_skb(skb2, pt_prev, skb->dev);
1637 				pt_prev = ptype;
1638 				continue;
1639 			}
1640 
1641 			skb2 = skb_clone(skb, GFP_ATOMIC);
1642 			if (!skb2)
1643 				break;
1644 
1645 			net_timestamp_set(skb2);
1646 
1647 			/* skb->nh should be correctly
1648 			   set by sender, so that the second statement is
1649 			   just protection against buggy protocols.
1650 			 */
1651 			skb_reset_mac_header(skb2);
1652 
1653 			if (skb_network_header(skb2) < skb2->data ||
1654 			    skb2->network_header > skb2->tail) {
1655 				if (net_ratelimit())
1656 					pr_crit("protocol %04x is buggy, dev %s\n",
1657 						ntohs(skb2->protocol),
1658 						dev->name);
1659 				skb_reset_network_header(skb2);
1660 			}
1661 
1662 			skb2->transport_header = skb2->network_header;
1663 			skb2->pkt_type = PACKET_OUTGOING;
1664 			pt_prev = ptype;
1665 		}
1666 	}
1667 	if (pt_prev)
1668 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1669 	rcu_read_unlock();
1670 }
1671 
1672 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1673  * @dev: Network device
1674  * @txq: number of queues available
1675  *
1676  * If real_num_tx_queues is changed the tc mappings may no longer be
1677  * valid. To resolve this verify the tc mapping remains valid and if
1678  * not NULL the mapping. With no priorities mapping to this
1679  * offset/count pair it will no longer be used. In the worst case TC0
1680  * is invalid nothing can be done so disable priority mappings. If is
1681  * expected that drivers will fix this mapping if they can before
1682  * calling netif_set_real_num_tx_queues.
1683  */
1684 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1685 {
1686 	int i;
1687 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1688 
1689 	/* If TC0 is invalidated disable TC mapping */
1690 	if (tc->offset + tc->count > txq) {
1691 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1692 		dev->num_tc = 0;
1693 		return;
1694 	}
1695 
1696 	/* Invalidated prio to tc mappings set to TC0 */
1697 	for (i = 1; i < TC_BITMASK + 1; i++) {
1698 		int q = netdev_get_prio_tc_map(dev, i);
1699 
1700 		tc = &dev->tc_to_txq[q];
1701 		if (tc->offset + tc->count > txq) {
1702 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1703 				i, q);
1704 			netdev_set_prio_tc_map(dev, i, 0);
1705 		}
1706 	}
1707 }
1708 
1709 /*
1710  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1711  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1712  */
1713 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1714 {
1715 	int rc;
1716 
1717 	if (txq < 1 || txq > dev->num_tx_queues)
1718 		return -EINVAL;
1719 
1720 	if (dev->reg_state == NETREG_REGISTERED ||
1721 	    dev->reg_state == NETREG_UNREGISTERING) {
1722 		ASSERT_RTNL();
1723 
1724 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1725 						  txq);
1726 		if (rc)
1727 			return rc;
1728 
1729 		if (dev->num_tc)
1730 			netif_setup_tc(dev, txq);
1731 
1732 		if (txq < dev->real_num_tx_queues)
1733 			qdisc_reset_all_tx_gt(dev, txq);
1734 	}
1735 
1736 	dev->real_num_tx_queues = txq;
1737 	return 0;
1738 }
1739 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1740 
1741 #ifdef CONFIG_RPS
1742 /**
1743  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1744  *	@dev: Network device
1745  *	@rxq: Actual number of RX queues
1746  *
1747  *	This must be called either with the rtnl_lock held or before
1748  *	registration of the net device.  Returns 0 on success, or a
1749  *	negative error code.  If called before registration, it always
1750  *	succeeds.
1751  */
1752 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1753 {
1754 	int rc;
1755 
1756 	if (rxq < 1 || rxq > dev->num_rx_queues)
1757 		return -EINVAL;
1758 
1759 	if (dev->reg_state == NETREG_REGISTERED) {
1760 		ASSERT_RTNL();
1761 
1762 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1763 						  rxq);
1764 		if (rc)
1765 			return rc;
1766 	}
1767 
1768 	dev->real_num_rx_queues = rxq;
1769 	return 0;
1770 }
1771 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1772 #endif
1773 
1774 static inline void __netif_reschedule(struct Qdisc *q)
1775 {
1776 	struct softnet_data *sd;
1777 	unsigned long flags;
1778 
1779 	local_irq_save(flags);
1780 	sd = &__get_cpu_var(softnet_data);
1781 	q->next_sched = NULL;
1782 	*sd->output_queue_tailp = q;
1783 	sd->output_queue_tailp = &q->next_sched;
1784 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1785 	local_irq_restore(flags);
1786 }
1787 
1788 void __netif_schedule(struct Qdisc *q)
1789 {
1790 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1791 		__netif_reschedule(q);
1792 }
1793 EXPORT_SYMBOL(__netif_schedule);
1794 
1795 void dev_kfree_skb_irq(struct sk_buff *skb)
1796 {
1797 	if (atomic_dec_and_test(&skb->users)) {
1798 		struct softnet_data *sd;
1799 		unsigned long flags;
1800 
1801 		local_irq_save(flags);
1802 		sd = &__get_cpu_var(softnet_data);
1803 		skb->next = sd->completion_queue;
1804 		sd->completion_queue = skb;
1805 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1806 		local_irq_restore(flags);
1807 	}
1808 }
1809 EXPORT_SYMBOL(dev_kfree_skb_irq);
1810 
1811 void dev_kfree_skb_any(struct sk_buff *skb)
1812 {
1813 	if (in_irq() || irqs_disabled())
1814 		dev_kfree_skb_irq(skb);
1815 	else
1816 		dev_kfree_skb(skb);
1817 }
1818 EXPORT_SYMBOL(dev_kfree_skb_any);
1819 
1820 
1821 /**
1822  * netif_device_detach - mark device as removed
1823  * @dev: network device
1824  *
1825  * Mark device as removed from system and therefore no longer available.
1826  */
1827 void netif_device_detach(struct net_device *dev)
1828 {
1829 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1830 	    netif_running(dev)) {
1831 		netif_tx_stop_all_queues(dev);
1832 	}
1833 }
1834 EXPORT_SYMBOL(netif_device_detach);
1835 
1836 /**
1837  * netif_device_attach - mark device as attached
1838  * @dev: network device
1839  *
1840  * Mark device as attached from system and restart if needed.
1841  */
1842 void netif_device_attach(struct net_device *dev)
1843 {
1844 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1845 	    netif_running(dev)) {
1846 		netif_tx_wake_all_queues(dev);
1847 		__netdev_watchdog_up(dev);
1848 	}
1849 }
1850 EXPORT_SYMBOL(netif_device_attach);
1851 
1852 /**
1853  * skb_dev_set -- assign a new device to a buffer
1854  * @skb: buffer for the new device
1855  * @dev: network device
1856  *
1857  * If an skb is owned by a device already, we have to reset
1858  * all data private to the namespace a device belongs to
1859  * before assigning it a new device.
1860  */
1861 #ifdef CONFIG_NET_NS
1862 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1863 {
1864 	skb_dst_drop(skb);
1865 	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1866 		secpath_reset(skb);
1867 		nf_reset(skb);
1868 		skb_init_secmark(skb);
1869 		skb->mark = 0;
1870 		skb->priority = 0;
1871 		skb->nf_trace = 0;
1872 		skb->ipvs_property = 0;
1873 #ifdef CONFIG_NET_SCHED
1874 		skb->tc_index = 0;
1875 #endif
1876 	}
1877 	skb->dev = dev;
1878 }
1879 EXPORT_SYMBOL(skb_set_dev);
1880 #endif /* CONFIG_NET_NS */
1881 
1882 static void skb_warn_bad_offload(const struct sk_buff *skb)
1883 {
1884 	static const netdev_features_t null_features = 0;
1885 	struct net_device *dev = skb->dev;
1886 	const char *driver = "";
1887 
1888 	if (dev && dev->dev.parent)
1889 		driver = dev_driver_string(dev->dev.parent);
1890 
1891 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
1892 	     "gso_type=%d ip_summed=%d\n",
1893 	     driver, dev ? &dev->features : &null_features,
1894 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
1895 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
1896 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
1897 }
1898 
1899 /*
1900  * Invalidate hardware checksum when packet is to be mangled, and
1901  * complete checksum manually on outgoing path.
1902  */
1903 int skb_checksum_help(struct sk_buff *skb)
1904 {
1905 	__wsum csum;
1906 	int ret = 0, offset;
1907 
1908 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1909 		goto out_set_summed;
1910 
1911 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1912 		skb_warn_bad_offload(skb);
1913 		return -EINVAL;
1914 	}
1915 
1916 	offset = skb_checksum_start_offset(skb);
1917 	BUG_ON(offset >= skb_headlen(skb));
1918 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1919 
1920 	offset += skb->csum_offset;
1921 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1922 
1923 	if (skb_cloned(skb) &&
1924 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1925 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1926 		if (ret)
1927 			goto out;
1928 	}
1929 
1930 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1931 out_set_summed:
1932 	skb->ip_summed = CHECKSUM_NONE;
1933 out:
1934 	return ret;
1935 }
1936 EXPORT_SYMBOL(skb_checksum_help);
1937 
1938 /**
1939  *	skb_gso_segment - Perform segmentation on skb.
1940  *	@skb: buffer to segment
1941  *	@features: features for the output path (see dev->features)
1942  *
1943  *	This function segments the given skb and returns a list of segments.
1944  *
1945  *	It may return NULL if the skb requires no segmentation.  This is
1946  *	only possible when GSO is used for verifying header integrity.
1947  */
1948 struct sk_buff *skb_gso_segment(struct sk_buff *skb,
1949 	netdev_features_t features)
1950 {
1951 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1952 	struct packet_type *ptype;
1953 	__be16 type = skb->protocol;
1954 	int vlan_depth = ETH_HLEN;
1955 	int err;
1956 
1957 	while (type == htons(ETH_P_8021Q)) {
1958 		struct vlan_hdr *vh;
1959 
1960 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1961 			return ERR_PTR(-EINVAL);
1962 
1963 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1964 		type = vh->h_vlan_encapsulated_proto;
1965 		vlan_depth += VLAN_HLEN;
1966 	}
1967 
1968 	skb_reset_mac_header(skb);
1969 	skb->mac_len = skb->network_header - skb->mac_header;
1970 	__skb_pull(skb, skb->mac_len);
1971 
1972 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1973 		skb_warn_bad_offload(skb);
1974 
1975 		if (skb_header_cloned(skb) &&
1976 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1977 			return ERR_PTR(err);
1978 	}
1979 
1980 	rcu_read_lock();
1981 	list_for_each_entry_rcu(ptype,
1982 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1983 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1984 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1985 				err = ptype->gso_send_check(skb);
1986 				segs = ERR_PTR(err);
1987 				if (err || skb_gso_ok(skb, features))
1988 					break;
1989 				__skb_push(skb, (skb->data -
1990 						 skb_network_header(skb)));
1991 			}
1992 			segs = ptype->gso_segment(skb, features);
1993 			break;
1994 		}
1995 	}
1996 	rcu_read_unlock();
1997 
1998 	__skb_push(skb, skb->data - skb_mac_header(skb));
1999 
2000 	return segs;
2001 }
2002 EXPORT_SYMBOL(skb_gso_segment);
2003 
2004 /* Take action when hardware reception checksum errors are detected. */
2005 #ifdef CONFIG_BUG
2006 void netdev_rx_csum_fault(struct net_device *dev)
2007 {
2008 	if (net_ratelimit()) {
2009 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2010 		dump_stack();
2011 	}
2012 }
2013 EXPORT_SYMBOL(netdev_rx_csum_fault);
2014 #endif
2015 
2016 /* Actually, we should eliminate this check as soon as we know, that:
2017  * 1. IOMMU is present and allows to map all the memory.
2018  * 2. No high memory really exists on this machine.
2019  */
2020 
2021 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2022 {
2023 #ifdef CONFIG_HIGHMEM
2024 	int i;
2025 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2026 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2027 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2028 			if (PageHighMem(skb_frag_page(frag)))
2029 				return 1;
2030 		}
2031 	}
2032 
2033 	if (PCI_DMA_BUS_IS_PHYS) {
2034 		struct device *pdev = dev->dev.parent;
2035 
2036 		if (!pdev)
2037 			return 0;
2038 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2039 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2040 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2041 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2042 				return 1;
2043 		}
2044 	}
2045 #endif
2046 	return 0;
2047 }
2048 
2049 struct dev_gso_cb {
2050 	void (*destructor)(struct sk_buff *skb);
2051 };
2052 
2053 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2054 
2055 static void dev_gso_skb_destructor(struct sk_buff *skb)
2056 {
2057 	struct dev_gso_cb *cb;
2058 
2059 	do {
2060 		struct sk_buff *nskb = skb->next;
2061 
2062 		skb->next = nskb->next;
2063 		nskb->next = NULL;
2064 		kfree_skb(nskb);
2065 	} while (skb->next);
2066 
2067 	cb = DEV_GSO_CB(skb);
2068 	if (cb->destructor)
2069 		cb->destructor(skb);
2070 }
2071 
2072 /**
2073  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2074  *	@skb: buffer to segment
2075  *	@features: device features as applicable to this skb
2076  *
2077  *	This function segments the given skb and stores the list of segments
2078  *	in skb->next.
2079  */
2080 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2081 {
2082 	struct sk_buff *segs;
2083 
2084 	segs = skb_gso_segment(skb, features);
2085 
2086 	/* Verifying header integrity only. */
2087 	if (!segs)
2088 		return 0;
2089 
2090 	if (IS_ERR(segs))
2091 		return PTR_ERR(segs);
2092 
2093 	skb->next = segs;
2094 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2095 	skb->destructor = dev_gso_skb_destructor;
2096 
2097 	return 0;
2098 }
2099 
2100 /*
2101  * Try to orphan skb early, right before transmission by the device.
2102  * We cannot orphan skb if tx timestamp is requested or the sk-reference
2103  * is needed on driver level for other reasons, e.g. see net/can/raw.c
2104  */
2105 static inline void skb_orphan_try(struct sk_buff *skb)
2106 {
2107 	struct sock *sk = skb->sk;
2108 
2109 	if (sk && !skb_shinfo(skb)->tx_flags) {
2110 		/* skb_tx_hash() wont be able to get sk.
2111 		 * We copy sk_hash into skb->rxhash
2112 		 */
2113 		if (!skb->rxhash)
2114 			skb->rxhash = sk->sk_hash;
2115 		skb_orphan(skb);
2116 	}
2117 }
2118 
2119 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2120 {
2121 	return ((features & NETIF_F_GEN_CSUM) ||
2122 		((features & NETIF_F_V4_CSUM) &&
2123 		 protocol == htons(ETH_P_IP)) ||
2124 		((features & NETIF_F_V6_CSUM) &&
2125 		 protocol == htons(ETH_P_IPV6)) ||
2126 		((features & NETIF_F_FCOE_CRC) &&
2127 		 protocol == htons(ETH_P_FCOE)));
2128 }
2129 
2130 static netdev_features_t harmonize_features(struct sk_buff *skb,
2131 	__be16 protocol, netdev_features_t features)
2132 {
2133 	if (!can_checksum_protocol(features, protocol)) {
2134 		features &= ~NETIF_F_ALL_CSUM;
2135 		features &= ~NETIF_F_SG;
2136 	} else if (illegal_highdma(skb->dev, skb)) {
2137 		features &= ~NETIF_F_SG;
2138 	}
2139 
2140 	return features;
2141 }
2142 
2143 netdev_features_t netif_skb_features(struct sk_buff *skb)
2144 {
2145 	__be16 protocol = skb->protocol;
2146 	netdev_features_t features = skb->dev->features;
2147 
2148 	if (protocol == htons(ETH_P_8021Q)) {
2149 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2150 		protocol = veh->h_vlan_encapsulated_proto;
2151 	} else if (!vlan_tx_tag_present(skb)) {
2152 		return harmonize_features(skb, protocol, features);
2153 	}
2154 
2155 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2156 
2157 	if (protocol != htons(ETH_P_8021Q)) {
2158 		return harmonize_features(skb, protocol, features);
2159 	} else {
2160 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2161 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2162 		return harmonize_features(skb, protocol, features);
2163 	}
2164 }
2165 EXPORT_SYMBOL(netif_skb_features);
2166 
2167 /*
2168  * Returns true if either:
2169  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2170  *	2. skb is fragmented and the device does not support SG, or if
2171  *	   at least one of fragments is in highmem and device does not
2172  *	   support DMA from it.
2173  */
2174 static inline int skb_needs_linearize(struct sk_buff *skb,
2175 				      int features)
2176 {
2177 	return skb_is_nonlinear(skb) &&
2178 			((skb_has_frag_list(skb) &&
2179 				!(features & NETIF_F_FRAGLIST)) ||
2180 			(skb_shinfo(skb)->nr_frags &&
2181 				!(features & NETIF_F_SG)));
2182 }
2183 
2184 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2185 			struct netdev_queue *txq)
2186 {
2187 	const struct net_device_ops *ops = dev->netdev_ops;
2188 	int rc = NETDEV_TX_OK;
2189 	unsigned int skb_len;
2190 
2191 	if (likely(!skb->next)) {
2192 		netdev_features_t features;
2193 
2194 		/*
2195 		 * If device doesn't need skb->dst, release it right now while
2196 		 * its hot in this cpu cache
2197 		 */
2198 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2199 			skb_dst_drop(skb);
2200 
2201 		if (!list_empty(&ptype_all))
2202 			dev_queue_xmit_nit(skb, dev);
2203 
2204 		skb_orphan_try(skb);
2205 
2206 		features = netif_skb_features(skb);
2207 
2208 		if (vlan_tx_tag_present(skb) &&
2209 		    !(features & NETIF_F_HW_VLAN_TX)) {
2210 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2211 			if (unlikely(!skb))
2212 				goto out;
2213 
2214 			skb->vlan_tci = 0;
2215 		}
2216 
2217 		if (netif_needs_gso(skb, features)) {
2218 			if (unlikely(dev_gso_segment(skb, features)))
2219 				goto out_kfree_skb;
2220 			if (skb->next)
2221 				goto gso;
2222 		} else {
2223 			if (skb_needs_linearize(skb, features) &&
2224 			    __skb_linearize(skb))
2225 				goto out_kfree_skb;
2226 
2227 			/* If packet is not checksummed and device does not
2228 			 * support checksumming for this protocol, complete
2229 			 * checksumming here.
2230 			 */
2231 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2232 				skb_set_transport_header(skb,
2233 					skb_checksum_start_offset(skb));
2234 				if (!(features & NETIF_F_ALL_CSUM) &&
2235 				     skb_checksum_help(skb))
2236 					goto out_kfree_skb;
2237 			}
2238 		}
2239 
2240 		skb_len = skb->len;
2241 		rc = ops->ndo_start_xmit(skb, dev);
2242 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2243 		if (rc == NETDEV_TX_OK)
2244 			txq_trans_update(txq);
2245 		return rc;
2246 	}
2247 
2248 gso:
2249 	do {
2250 		struct sk_buff *nskb = skb->next;
2251 
2252 		skb->next = nskb->next;
2253 		nskb->next = NULL;
2254 
2255 		/*
2256 		 * If device doesn't need nskb->dst, release it right now while
2257 		 * its hot in this cpu cache
2258 		 */
2259 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2260 			skb_dst_drop(nskb);
2261 
2262 		skb_len = nskb->len;
2263 		rc = ops->ndo_start_xmit(nskb, dev);
2264 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2265 		if (unlikely(rc != NETDEV_TX_OK)) {
2266 			if (rc & ~NETDEV_TX_MASK)
2267 				goto out_kfree_gso_skb;
2268 			nskb->next = skb->next;
2269 			skb->next = nskb;
2270 			return rc;
2271 		}
2272 		txq_trans_update(txq);
2273 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2274 			return NETDEV_TX_BUSY;
2275 	} while (skb->next);
2276 
2277 out_kfree_gso_skb:
2278 	if (likely(skb->next == NULL))
2279 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2280 out_kfree_skb:
2281 	kfree_skb(skb);
2282 out:
2283 	return rc;
2284 }
2285 
2286 static u32 hashrnd __read_mostly;
2287 
2288 /*
2289  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2290  * to be used as a distribution range.
2291  */
2292 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2293 		  unsigned int num_tx_queues)
2294 {
2295 	u32 hash;
2296 	u16 qoffset = 0;
2297 	u16 qcount = num_tx_queues;
2298 
2299 	if (skb_rx_queue_recorded(skb)) {
2300 		hash = skb_get_rx_queue(skb);
2301 		while (unlikely(hash >= num_tx_queues))
2302 			hash -= num_tx_queues;
2303 		return hash;
2304 	}
2305 
2306 	if (dev->num_tc) {
2307 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2308 		qoffset = dev->tc_to_txq[tc].offset;
2309 		qcount = dev->tc_to_txq[tc].count;
2310 	}
2311 
2312 	if (skb->sk && skb->sk->sk_hash)
2313 		hash = skb->sk->sk_hash;
2314 	else
2315 		hash = (__force u16) skb->protocol ^ skb->rxhash;
2316 	hash = jhash_1word(hash, hashrnd);
2317 
2318 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2319 }
2320 EXPORT_SYMBOL(__skb_tx_hash);
2321 
2322 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2323 {
2324 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2325 		if (net_ratelimit()) {
2326 			pr_warn("%s selects TX queue %d, but real number of TX queues is %d\n",
2327 				dev->name, queue_index,
2328 				dev->real_num_tx_queues);
2329 		}
2330 		return 0;
2331 	}
2332 	return queue_index;
2333 }
2334 
2335 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2336 {
2337 #ifdef CONFIG_XPS
2338 	struct xps_dev_maps *dev_maps;
2339 	struct xps_map *map;
2340 	int queue_index = -1;
2341 
2342 	rcu_read_lock();
2343 	dev_maps = rcu_dereference(dev->xps_maps);
2344 	if (dev_maps) {
2345 		map = rcu_dereference(
2346 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2347 		if (map) {
2348 			if (map->len == 1)
2349 				queue_index = map->queues[0];
2350 			else {
2351 				u32 hash;
2352 				if (skb->sk && skb->sk->sk_hash)
2353 					hash = skb->sk->sk_hash;
2354 				else
2355 					hash = (__force u16) skb->protocol ^
2356 					    skb->rxhash;
2357 				hash = jhash_1word(hash, hashrnd);
2358 				queue_index = map->queues[
2359 				    ((u64)hash * map->len) >> 32];
2360 			}
2361 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2362 				queue_index = -1;
2363 		}
2364 	}
2365 	rcu_read_unlock();
2366 
2367 	return queue_index;
2368 #else
2369 	return -1;
2370 #endif
2371 }
2372 
2373 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2374 					struct sk_buff *skb)
2375 {
2376 	int queue_index;
2377 	const struct net_device_ops *ops = dev->netdev_ops;
2378 
2379 	if (dev->real_num_tx_queues == 1)
2380 		queue_index = 0;
2381 	else if (ops->ndo_select_queue) {
2382 		queue_index = ops->ndo_select_queue(dev, skb);
2383 		queue_index = dev_cap_txqueue(dev, queue_index);
2384 	} else {
2385 		struct sock *sk = skb->sk;
2386 		queue_index = sk_tx_queue_get(sk);
2387 
2388 		if (queue_index < 0 || skb->ooo_okay ||
2389 		    queue_index >= dev->real_num_tx_queues) {
2390 			int old_index = queue_index;
2391 
2392 			queue_index = get_xps_queue(dev, skb);
2393 			if (queue_index < 0)
2394 				queue_index = skb_tx_hash(dev, skb);
2395 
2396 			if (queue_index != old_index && sk) {
2397 				struct dst_entry *dst =
2398 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2399 
2400 				if (dst && skb_dst(skb) == dst)
2401 					sk_tx_queue_set(sk, queue_index);
2402 			}
2403 		}
2404 	}
2405 
2406 	skb_set_queue_mapping(skb, queue_index);
2407 	return netdev_get_tx_queue(dev, queue_index);
2408 }
2409 
2410 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2411 				 struct net_device *dev,
2412 				 struct netdev_queue *txq)
2413 {
2414 	spinlock_t *root_lock = qdisc_lock(q);
2415 	bool contended;
2416 	int rc;
2417 
2418 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2419 	qdisc_calculate_pkt_len(skb, q);
2420 	/*
2421 	 * Heuristic to force contended enqueues to serialize on a
2422 	 * separate lock before trying to get qdisc main lock.
2423 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2424 	 * and dequeue packets faster.
2425 	 */
2426 	contended = qdisc_is_running(q);
2427 	if (unlikely(contended))
2428 		spin_lock(&q->busylock);
2429 
2430 	spin_lock(root_lock);
2431 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2432 		kfree_skb(skb);
2433 		rc = NET_XMIT_DROP;
2434 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2435 		   qdisc_run_begin(q)) {
2436 		/*
2437 		 * This is a work-conserving queue; there are no old skbs
2438 		 * waiting to be sent out; and the qdisc is not running -
2439 		 * xmit the skb directly.
2440 		 */
2441 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2442 			skb_dst_force(skb);
2443 
2444 		qdisc_bstats_update(q, skb);
2445 
2446 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2447 			if (unlikely(contended)) {
2448 				spin_unlock(&q->busylock);
2449 				contended = false;
2450 			}
2451 			__qdisc_run(q);
2452 		} else
2453 			qdisc_run_end(q);
2454 
2455 		rc = NET_XMIT_SUCCESS;
2456 	} else {
2457 		skb_dst_force(skb);
2458 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2459 		if (qdisc_run_begin(q)) {
2460 			if (unlikely(contended)) {
2461 				spin_unlock(&q->busylock);
2462 				contended = false;
2463 			}
2464 			__qdisc_run(q);
2465 		}
2466 	}
2467 	spin_unlock(root_lock);
2468 	if (unlikely(contended))
2469 		spin_unlock(&q->busylock);
2470 	return rc;
2471 }
2472 
2473 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2474 static void skb_update_prio(struct sk_buff *skb)
2475 {
2476 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2477 
2478 	if ((!skb->priority) && (skb->sk) && map)
2479 		skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx];
2480 }
2481 #else
2482 #define skb_update_prio(skb)
2483 #endif
2484 
2485 static DEFINE_PER_CPU(int, xmit_recursion);
2486 #define RECURSION_LIMIT 10
2487 
2488 /**
2489  *	dev_queue_xmit - transmit a buffer
2490  *	@skb: buffer to transmit
2491  *
2492  *	Queue a buffer for transmission to a network device. The caller must
2493  *	have set the device and priority and built the buffer before calling
2494  *	this function. The function can be called from an interrupt.
2495  *
2496  *	A negative errno code is returned on a failure. A success does not
2497  *	guarantee the frame will be transmitted as it may be dropped due
2498  *	to congestion or traffic shaping.
2499  *
2500  * -----------------------------------------------------------------------------------
2501  *      I notice this method can also return errors from the queue disciplines,
2502  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2503  *      be positive.
2504  *
2505  *      Regardless of the return value, the skb is consumed, so it is currently
2506  *      difficult to retry a send to this method.  (You can bump the ref count
2507  *      before sending to hold a reference for retry if you are careful.)
2508  *
2509  *      When calling this method, interrupts MUST be enabled.  This is because
2510  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2511  *          --BLG
2512  */
2513 int dev_queue_xmit(struct sk_buff *skb)
2514 {
2515 	struct net_device *dev = skb->dev;
2516 	struct netdev_queue *txq;
2517 	struct Qdisc *q;
2518 	int rc = -ENOMEM;
2519 
2520 	/* Disable soft irqs for various locks below. Also
2521 	 * stops preemption for RCU.
2522 	 */
2523 	rcu_read_lock_bh();
2524 
2525 	skb_update_prio(skb);
2526 
2527 	txq = dev_pick_tx(dev, skb);
2528 	q = rcu_dereference_bh(txq->qdisc);
2529 
2530 #ifdef CONFIG_NET_CLS_ACT
2531 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2532 #endif
2533 	trace_net_dev_queue(skb);
2534 	if (q->enqueue) {
2535 		rc = __dev_xmit_skb(skb, q, dev, txq);
2536 		goto out;
2537 	}
2538 
2539 	/* The device has no queue. Common case for software devices:
2540 	   loopback, all the sorts of tunnels...
2541 
2542 	   Really, it is unlikely that netif_tx_lock protection is necessary
2543 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2544 	   counters.)
2545 	   However, it is possible, that they rely on protection
2546 	   made by us here.
2547 
2548 	   Check this and shot the lock. It is not prone from deadlocks.
2549 	   Either shot noqueue qdisc, it is even simpler 8)
2550 	 */
2551 	if (dev->flags & IFF_UP) {
2552 		int cpu = smp_processor_id(); /* ok because BHs are off */
2553 
2554 		if (txq->xmit_lock_owner != cpu) {
2555 
2556 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2557 				goto recursion_alert;
2558 
2559 			HARD_TX_LOCK(dev, txq, cpu);
2560 
2561 			if (!netif_xmit_stopped(txq)) {
2562 				__this_cpu_inc(xmit_recursion);
2563 				rc = dev_hard_start_xmit(skb, dev, txq);
2564 				__this_cpu_dec(xmit_recursion);
2565 				if (dev_xmit_complete(rc)) {
2566 					HARD_TX_UNLOCK(dev, txq);
2567 					goto out;
2568 				}
2569 			}
2570 			HARD_TX_UNLOCK(dev, txq);
2571 			if (net_ratelimit())
2572 				pr_crit("Virtual device %s asks to queue packet!\n",
2573 					dev->name);
2574 		} else {
2575 			/* Recursion is detected! It is possible,
2576 			 * unfortunately
2577 			 */
2578 recursion_alert:
2579 			if (net_ratelimit())
2580 				pr_crit("Dead loop on virtual device %s, fix it urgently!\n",
2581 					dev->name);
2582 		}
2583 	}
2584 
2585 	rc = -ENETDOWN;
2586 	rcu_read_unlock_bh();
2587 
2588 	kfree_skb(skb);
2589 	return rc;
2590 out:
2591 	rcu_read_unlock_bh();
2592 	return rc;
2593 }
2594 EXPORT_SYMBOL(dev_queue_xmit);
2595 
2596 
2597 /*=======================================================================
2598 			Receiver routines
2599   =======================================================================*/
2600 
2601 int netdev_max_backlog __read_mostly = 1000;
2602 int netdev_tstamp_prequeue __read_mostly = 1;
2603 int netdev_budget __read_mostly = 300;
2604 int weight_p __read_mostly = 64;            /* old backlog weight */
2605 
2606 /* Called with irq disabled */
2607 static inline void ____napi_schedule(struct softnet_data *sd,
2608 				     struct napi_struct *napi)
2609 {
2610 	list_add_tail(&napi->poll_list, &sd->poll_list);
2611 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2612 }
2613 
2614 /*
2615  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2616  * and src/dst port numbers.  Sets rxhash in skb to non-zero hash value
2617  * on success, zero indicates no valid hash.  Also, sets l4_rxhash in skb
2618  * if hash is a canonical 4-tuple hash over transport ports.
2619  */
2620 void __skb_get_rxhash(struct sk_buff *skb)
2621 {
2622 	struct flow_keys keys;
2623 	u32 hash;
2624 
2625 	if (!skb_flow_dissect(skb, &keys))
2626 		return;
2627 
2628 	if (keys.ports) {
2629 		if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0])
2630 			swap(keys.port16[0], keys.port16[1]);
2631 		skb->l4_rxhash = 1;
2632 	}
2633 
2634 	/* get a consistent hash (same value on both flow directions) */
2635 	if ((__force u32)keys.dst < (__force u32)keys.src)
2636 		swap(keys.dst, keys.src);
2637 
2638 	hash = jhash_3words((__force u32)keys.dst,
2639 			    (__force u32)keys.src,
2640 			    (__force u32)keys.ports, hashrnd);
2641 	if (!hash)
2642 		hash = 1;
2643 
2644 	skb->rxhash = hash;
2645 }
2646 EXPORT_SYMBOL(__skb_get_rxhash);
2647 
2648 #ifdef CONFIG_RPS
2649 
2650 /* One global table that all flow-based protocols share. */
2651 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2652 EXPORT_SYMBOL(rps_sock_flow_table);
2653 
2654 struct static_key rps_needed __read_mostly;
2655 
2656 static struct rps_dev_flow *
2657 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2658 	    struct rps_dev_flow *rflow, u16 next_cpu)
2659 {
2660 	if (next_cpu != RPS_NO_CPU) {
2661 #ifdef CONFIG_RFS_ACCEL
2662 		struct netdev_rx_queue *rxqueue;
2663 		struct rps_dev_flow_table *flow_table;
2664 		struct rps_dev_flow *old_rflow;
2665 		u32 flow_id;
2666 		u16 rxq_index;
2667 		int rc;
2668 
2669 		/* Should we steer this flow to a different hardware queue? */
2670 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2671 		    !(dev->features & NETIF_F_NTUPLE))
2672 			goto out;
2673 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2674 		if (rxq_index == skb_get_rx_queue(skb))
2675 			goto out;
2676 
2677 		rxqueue = dev->_rx + rxq_index;
2678 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2679 		if (!flow_table)
2680 			goto out;
2681 		flow_id = skb->rxhash & flow_table->mask;
2682 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2683 							rxq_index, flow_id);
2684 		if (rc < 0)
2685 			goto out;
2686 		old_rflow = rflow;
2687 		rflow = &flow_table->flows[flow_id];
2688 		rflow->filter = rc;
2689 		if (old_rflow->filter == rflow->filter)
2690 			old_rflow->filter = RPS_NO_FILTER;
2691 	out:
2692 #endif
2693 		rflow->last_qtail =
2694 			per_cpu(softnet_data, next_cpu).input_queue_head;
2695 	}
2696 
2697 	rflow->cpu = next_cpu;
2698 	return rflow;
2699 }
2700 
2701 /*
2702  * get_rps_cpu is called from netif_receive_skb and returns the target
2703  * CPU from the RPS map of the receiving queue for a given skb.
2704  * rcu_read_lock must be held on entry.
2705  */
2706 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2707 		       struct rps_dev_flow **rflowp)
2708 {
2709 	struct netdev_rx_queue *rxqueue;
2710 	struct rps_map *map;
2711 	struct rps_dev_flow_table *flow_table;
2712 	struct rps_sock_flow_table *sock_flow_table;
2713 	int cpu = -1;
2714 	u16 tcpu;
2715 
2716 	if (skb_rx_queue_recorded(skb)) {
2717 		u16 index = skb_get_rx_queue(skb);
2718 		if (unlikely(index >= dev->real_num_rx_queues)) {
2719 			WARN_ONCE(dev->real_num_rx_queues > 1,
2720 				  "%s received packet on queue %u, but number "
2721 				  "of RX queues is %u\n",
2722 				  dev->name, index, dev->real_num_rx_queues);
2723 			goto done;
2724 		}
2725 		rxqueue = dev->_rx + index;
2726 	} else
2727 		rxqueue = dev->_rx;
2728 
2729 	map = rcu_dereference(rxqueue->rps_map);
2730 	if (map) {
2731 		if (map->len == 1 &&
2732 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
2733 			tcpu = map->cpus[0];
2734 			if (cpu_online(tcpu))
2735 				cpu = tcpu;
2736 			goto done;
2737 		}
2738 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2739 		goto done;
2740 	}
2741 
2742 	skb_reset_network_header(skb);
2743 	if (!skb_get_rxhash(skb))
2744 		goto done;
2745 
2746 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2747 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2748 	if (flow_table && sock_flow_table) {
2749 		u16 next_cpu;
2750 		struct rps_dev_flow *rflow;
2751 
2752 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2753 		tcpu = rflow->cpu;
2754 
2755 		next_cpu = sock_flow_table->ents[skb->rxhash &
2756 		    sock_flow_table->mask];
2757 
2758 		/*
2759 		 * If the desired CPU (where last recvmsg was done) is
2760 		 * different from current CPU (one in the rx-queue flow
2761 		 * table entry), switch if one of the following holds:
2762 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2763 		 *   - Current CPU is offline.
2764 		 *   - The current CPU's queue tail has advanced beyond the
2765 		 *     last packet that was enqueued using this table entry.
2766 		 *     This guarantees that all previous packets for the flow
2767 		 *     have been dequeued, thus preserving in order delivery.
2768 		 */
2769 		if (unlikely(tcpu != next_cpu) &&
2770 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2771 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2772 		      rflow->last_qtail)) >= 0))
2773 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2774 
2775 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2776 			*rflowp = rflow;
2777 			cpu = tcpu;
2778 			goto done;
2779 		}
2780 	}
2781 
2782 	if (map) {
2783 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2784 
2785 		if (cpu_online(tcpu)) {
2786 			cpu = tcpu;
2787 			goto done;
2788 		}
2789 	}
2790 
2791 done:
2792 	return cpu;
2793 }
2794 
2795 #ifdef CONFIG_RFS_ACCEL
2796 
2797 /**
2798  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2799  * @dev: Device on which the filter was set
2800  * @rxq_index: RX queue index
2801  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2802  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2803  *
2804  * Drivers that implement ndo_rx_flow_steer() should periodically call
2805  * this function for each installed filter and remove the filters for
2806  * which it returns %true.
2807  */
2808 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2809 			 u32 flow_id, u16 filter_id)
2810 {
2811 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2812 	struct rps_dev_flow_table *flow_table;
2813 	struct rps_dev_flow *rflow;
2814 	bool expire = true;
2815 	int cpu;
2816 
2817 	rcu_read_lock();
2818 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2819 	if (flow_table && flow_id <= flow_table->mask) {
2820 		rflow = &flow_table->flows[flow_id];
2821 		cpu = ACCESS_ONCE(rflow->cpu);
2822 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2823 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2824 			   rflow->last_qtail) <
2825 		     (int)(10 * flow_table->mask)))
2826 			expire = false;
2827 	}
2828 	rcu_read_unlock();
2829 	return expire;
2830 }
2831 EXPORT_SYMBOL(rps_may_expire_flow);
2832 
2833 #endif /* CONFIG_RFS_ACCEL */
2834 
2835 /* Called from hardirq (IPI) context */
2836 static void rps_trigger_softirq(void *data)
2837 {
2838 	struct softnet_data *sd = data;
2839 
2840 	____napi_schedule(sd, &sd->backlog);
2841 	sd->received_rps++;
2842 }
2843 
2844 #endif /* CONFIG_RPS */
2845 
2846 /*
2847  * Check if this softnet_data structure is another cpu one
2848  * If yes, queue it to our IPI list and return 1
2849  * If no, return 0
2850  */
2851 static int rps_ipi_queued(struct softnet_data *sd)
2852 {
2853 #ifdef CONFIG_RPS
2854 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2855 
2856 	if (sd != mysd) {
2857 		sd->rps_ipi_next = mysd->rps_ipi_list;
2858 		mysd->rps_ipi_list = sd;
2859 
2860 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2861 		return 1;
2862 	}
2863 #endif /* CONFIG_RPS */
2864 	return 0;
2865 }
2866 
2867 /*
2868  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2869  * queue (may be a remote CPU queue).
2870  */
2871 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2872 			      unsigned int *qtail)
2873 {
2874 	struct softnet_data *sd;
2875 	unsigned long flags;
2876 
2877 	sd = &per_cpu(softnet_data, cpu);
2878 
2879 	local_irq_save(flags);
2880 
2881 	rps_lock(sd);
2882 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2883 		if (skb_queue_len(&sd->input_pkt_queue)) {
2884 enqueue:
2885 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2886 			input_queue_tail_incr_save(sd, qtail);
2887 			rps_unlock(sd);
2888 			local_irq_restore(flags);
2889 			return NET_RX_SUCCESS;
2890 		}
2891 
2892 		/* Schedule NAPI for backlog device
2893 		 * We can use non atomic operation since we own the queue lock
2894 		 */
2895 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2896 			if (!rps_ipi_queued(sd))
2897 				____napi_schedule(sd, &sd->backlog);
2898 		}
2899 		goto enqueue;
2900 	}
2901 
2902 	sd->dropped++;
2903 	rps_unlock(sd);
2904 
2905 	local_irq_restore(flags);
2906 
2907 	atomic_long_inc(&skb->dev->rx_dropped);
2908 	kfree_skb(skb);
2909 	return NET_RX_DROP;
2910 }
2911 
2912 /**
2913  *	netif_rx	-	post buffer to the network code
2914  *	@skb: buffer to post
2915  *
2916  *	This function receives a packet from a device driver and queues it for
2917  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2918  *	may be dropped during processing for congestion control or by the
2919  *	protocol layers.
2920  *
2921  *	return values:
2922  *	NET_RX_SUCCESS	(no congestion)
2923  *	NET_RX_DROP     (packet was dropped)
2924  *
2925  */
2926 
2927 int netif_rx(struct sk_buff *skb)
2928 {
2929 	int ret;
2930 
2931 	/* if netpoll wants it, pretend we never saw it */
2932 	if (netpoll_rx(skb))
2933 		return NET_RX_DROP;
2934 
2935 	net_timestamp_check(netdev_tstamp_prequeue, skb);
2936 
2937 	trace_netif_rx(skb);
2938 #ifdef CONFIG_RPS
2939 	if (static_key_false(&rps_needed)) {
2940 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2941 		int cpu;
2942 
2943 		preempt_disable();
2944 		rcu_read_lock();
2945 
2946 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2947 		if (cpu < 0)
2948 			cpu = smp_processor_id();
2949 
2950 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2951 
2952 		rcu_read_unlock();
2953 		preempt_enable();
2954 	} else
2955 #endif
2956 	{
2957 		unsigned int qtail;
2958 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2959 		put_cpu();
2960 	}
2961 	return ret;
2962 }
2963 EXPORT_SYMBOL(netif_rx);
2964 
2965 int netif_rx_ni(struct sk_buff *skb)
2966 {
2967 	int err;
2968 
2969 	preempt_disable();
2970 	err = netif_rx(skb);
2971 	if (local_softirq_pending())
2972 		do_softirq();
2973 	preempt_enable();
2974 
2975 	return err;
2976 }
2977 EXPORT_SYMBOL(netif_rx_ni);
2978 
2979 static void net_tx_action(struct softirq_action *h)
2980 {
2981 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2982 
2983 	if (sd->completion_queue) {
2984 		struct sk_buff *clist;
2985 
2986 		local_irq_disable();
2987 		clist = sd->completion_queue;
2988 		sd->completion_queue = NULL;
2989 		local_irq_enable();
2990 
2991 		while (clist) {
2992 			struct sk_buff *skb = clist;
2993 			clist = clist->next;
2994 
2995 			WARN_ON(atomic_read(&skb->users));
2996 			trace_kfree_skb(skb, net_tx_action);
2997 			__kfree_skb(skb);
2998 		}
2999 	}
3000 
3001 	if (sd->output_queue) {
3002 		struct Qdisc *head;
3003 
3004 		local_irq_disable();
3005 		head = sd->output_queue;
3006 		sd->output_queue = NULL;
3007 		sd->output_queue_tailp = &sd->output_queue;
3008 		local_irq_enable();
3009 
3010 		while (head) {
3011 			struct Qdisc *q = head;
3012 			spinlock_t *root_lock;
3013 
3014 			head = head->next_sched;
3015 
3016 			root_lock = qdisc_lock(q);
3017 			if (spin_trylock(root_lock)) {
3018 				smp_mb__before_clear_bit();
3019 				clear_bit(__QDISC_STATE_SCHED,
3020 					  &q->state);
3021 				qdisc_run(q);
3022 				spin_unlock(root_lock);
3023 			} else {
3024 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3025 					      &q->state)) {
3026 					__netif_reschedule(q);
3027 				} else {
3028 					smp_mb__before_clear_bit();
3029 					clear_bit(__QDISC_STATE_SCHED,
3030 						  &q->state);
3031 				}
3032 			}
3033 		}
3034 	}
3035 }
3036 
3037 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3038     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3039 /* This hook is defined here for ATM LANE */
3040 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3041 			     unsigned char *addr) __read_mostly;
3042 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3043 #endif
3044 
3045 #ifdef CONFIG_NET_CLS_ACT
3046 /* TODO: Maybe we should just force sch_ingress to be compiled in
3047  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3048  * a compare and 2 stores extra right now if we dont have it on
3049  * but have CONFIG_NET_CLS_ACT
3050  * NOTE: This doesn't stop any functionality; if you dont have
3051  * the ingress scheduler, you just can't add policies on ingress.
3052  *
3053  */
3054 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3055 {
3056 	struct net_device *dev = skb->dev;
3057 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3058 	int result = TC_ACT_OK;
3059 	struct Qdisc *q;
3060 
3061 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3062 		if (net_ratelimit())
3063 			pr_warn("Redir loop detected Dropping packet (%d->%d)\n",
3064 				skb->skb_iif, dev->ifindex);
3065 		return TC_ACT_SHOT;
3066 	}
3067 
3068 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3069 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3070 
3071 	q = rxq->qdisc;
3072 	if (q != &noop_qdisc) {
3073 		spin_lock(qdisc_lock(q));
3074 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3075 			result = qdisc_enqueue_root(skb, q);
3076 		spin_unlock(qdisc_lock(q));
3077 	}
3078 
3079 	return result;
3080 }
3081 
3082 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3083 					 struct packet_type **pt_prev,
3084 					 int *ret, struct net_device *orig_dev)
3085 {
3086 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3087 
3088 	if (!rxq || rxq->qdisc == &noop_qdisc)
3089 		goto out;
3090 
3091 	if (*pt_prev) {
3092 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3093 		*pt_prev = NULL;
3094 	}
3095 
3096 	switch (ing_filter(skb, rxq)) {
3097 	case TC_ACT_SHOT:
3098 	case TC_ACT_STOLEN:
3099 		kfree_skb(skb);
3100 		return NULL;
3101 	}
3102 
3103 out:
3104 	skb->tc_verd = 0;
3105 	return skb;
3106 }
3107 #endif
3108 
3109 /**
3110  *	netdev_rx_handler_register - register receive handler
3111  *	@dev: device to register a handler for
3112  *	@rx_handler: receive handler to register
3113  *	@rx_handler_data: data pointer that is used by rx handler
3114  *
3115  *	Register a receive hander for a device. This handler will then be
3116  *	called from __netif_receive_skb. A negative errno code is returned
3117  *	on a failure.
3118  *
3119  *	The caller must hold the rtnl_mutex.
3120  *
3121  *	For a general description of rx_handler, see enum rx_handler_result.
3122  */
3123 int netdev_rx_handler_register(struct net_device *dev,
3124 			       rx_handler_func_t *rx_handler,
3125 			       void *rx_handler_data)
3126 {
3127 	ASSERT_RTNL();
3128 
3129 	if (dev->rx_handler)
3130 		return -EBUSY;
3131 
3132 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3133 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3134 
3135 	return 0;
3136 }
3137 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3138 
3139 /**
3140  *	netdev_rx_handler_unregister - unregister receive handler
3141  *	@dev: device to unregister a handler from
3142  *
3143  *	Unregister a receive hander from a device.
3144  *
3145  *	The caller must hold the rtnl_mutex.
3146  */
3147 void netdev_rx_handler_unregister(struct net_device *dev)
3148 {
3149 
3150 	ASSERT_RTNL();
3151 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3152 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3153 }
3154 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3155 
3156 static int __netif_receive_skb(struct sk_buff *skb)
3157 {
3158 	struct packet_type *ptype, *pt_prev;
3159 	rx_handler_func_t *rx_handler;
3160 	struct net_device *orig_dev;
3161 	struct net_device *null_or_dev;
3162 	bool deliver_exact = false;
3163 	int ret = NET_RX_DROP;
3164 	__be16 type;
3165 
3166 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3167 
3168 	trace_netif_receive_skb(skb);
3169 
3170 	/* if we've gotten here through NAPI, check netpoll */
3171 	if (netpoll_receive_skb(skb))
3172 		return NET_RX_DROP;
3173 
3174 	if (!skb->skb_iif)
3175 		skb->skb_iif = skb->dev->ifindex;
3176 	orig_dev = skb->dev;
3177 
3178 	skb_reset_network_header(skb);
3179 	skb_reset_transport_header(skb);
3180 	skb_reset_mac_len(skb);
3181 
3182 	pt_prev = NULL;
3183 
3184 	rcu_read_lock();
3185 
3186 another_round:
3187 
3188 	__this_cpu_inc(softnet_data.processed);
3189 
3190 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3191 		skb = vlan_untag(skb);
3192 		if (unlikely(!skb))
3193 			goto out;
3194 	}
3195 
3196 #ifdef CONFIG_NET_CLS_ACT
3197 	if (skb->tc_verd & TC_NCLS) {
3198 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3199 		goto ncls;
3200 	}
3201 #endif
3202 
3203 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3204 		if (!ptype->dev || ptype->dev == skb->dev) {
3205 			if (pt_prev)
3206 				ret = deliver_skb(skb, pt_prev, orig_dev);
3207 			pt_prev = ptype;
3208 		}
3209 	}
3210 
3211 #ifdef CONFIG_NET_CLS_ACT
3212 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3213 	if (!skb)
3214 		goto out;
3215 ncls:
3216 #endif
3217 
3218 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3219 	if (vlan_tx_tag_present(skb)) {
3220 		if (pt_prev) {
3221 			ret = deliver_skb(skb, pt_prev, orig_dev);
3222 			pt_prev = NULL;
3223 		}
3224 		if (vlan_do_receive(&skb, !rx_handler))
3225 			goto another_round;
3226 		else if (unlikely(!skb))
3227 			goto out;
3228 	}
3229 
3230 	if (rx_handler) {
3231 		if (pt_prev) {
3232 			ret = deliver_skb(skb, pt_prev, orig_dev);
3233 			pt_prev = NULL;
3234 		}
3235 		switch (rx_handler(&skb)) {
3236 		case RX_HANDLER_CONSUMED:
3237 			goto out;
3238 		case RX_HANDLER_ANOTHER:
3239 			goto another_round;
3240 		case RX_HANDLER_EXACT:
3241 			deliver_exact = true;
3242 		case RX_HANDLER_PASS:
3243 			break;
3244 		default:
3245 			BUG();
3246 		}
3247 	}
3248 
3249 	/* deliver only exact match when indicated */
3250 	null_or_dev = deliver_exact ? skb->dev : NULL;
3251 
3252 	type = skb->protocol;
3253 	list_for_each_entry_rcu(ptype,
3254 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3255 		if (ptype->type == type &&
3256 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3257 		     ptype->dev == orig_dev)) {
3258 			if (pt_prev)
3259 				ret = deliver_skb(skb, pt_prev, orig_dev);
3260 			pt_prev = ptype;
3261 		}
3262 	}
3263 
3264 	if (pt_prev) {
3265 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3266 	} else {
3267 		atomic_long_inc(&skb->dev->rx_dropped);
3268 		kfree_skb(skb);
3269 		/* Jamal, now you will not able to escape explaining
3270 		 * me how you were going to use this. :-)
3271 		 */
3272 		ret = NET_RX_DROP;
3273 	}
3274 
3275 out:
3276 	rcu_read_unlock();
3277 	return ret;
3278 }
3279 
3280 /**
3281  *	netif_receive_skb - process receive buffer from network
3282  *	@skb: buffer to process
3283  *
3284  *	netif_receive_skb() is the main receive data processing function.
3285  *	It always succeeds. The buffer may be dropped during processing
3286  *	for congestion control or by the protocol layers.
3287  *
3288  *	This function may only be called from softirq context and interrupts
3289  *	should be enabled.
3290  *
3291  *	Return values (usually ignored):
3292  *	NET_RX_SUCCESS: no congestion
3293  *	NET_RX_DROP: packet was dropped
3294  */
3295 int netif_receive_skb(struct sk_buff *skb)
3296 {
3297 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3298 
3299 	if (skb_defer_rx_timestamp(skb))
3300 		return NET_RX_SUCCESS;
3301 
3302 #ifdef CONFIG_RPS
3303 	if (static_key_false(&rps_needed)) {
3304 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3305 		int cpu, ret;
3306 
3307 		rcu_read_lock();
3308 
3309 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3310 
3311 		if (cpu >= 0) {
3312 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3313 			rcu_read_unlock();
3314 			return ret;
3315 		}
3316 		rcu_read_unlock();
3317 	}
3318 #endif
3319 	return __netif_receive_skb(skb);
3320 }
3321 EXPORT_SYMBOL(netif_receive_skb);
3322 
3323 /* Network device is going away, flush any packets still pending
3324  * Called with irqs disabled.
3325  */
3326 static void flush_backlog(void *arg)
3327 {
3328 	struct net_device *dev = arg;
3329 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3330 	struct sk_buff *skb, *tmp;
3331 
3332 	rps_lock(sd);
3333 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3334 		if (skb->dev == dev) {
3335 			__skb_unlink(skb, &sd->input_pkt_queue);
3336 			kfree_skb(skb);
3337 			input_queue_head_incr(sd);
3338 		}
3339 	}
3340 	rps_unlock(sd);
3341 
3342 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3343 		if (skb->dev == dev) {
3344 			__skb_unlink(skb, &sd->process_queue);
3345 			kfree_skb(skb);
3346 			input_queue_head_incr(sd);
3347 		}
3348 	}
3349 }
3350 
3351 static int napi_gro_complete(struct sk_buff *skb)
3352 {
3353 	struct packet_type *ptype;
3354 	__be16 type = skb->protocol;
3355 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3356 	int err = -ENOENT;
3357 
3358 	if (NAPI_GRO_CB(skb)->count == 1) {
3359 		skb_shinfo(skb)->gso_size = 0;
3360 		goto out;
3361 	}
3362 
3363 	rcu_read_lock();
3364 	list_for_each_entry_rcu(ptype, head, list) {
3365 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3366 			continue;
3367 
3368 		err = ptype->gro_complete(skb);
3369 		break;
3370 	}
3371 	rcu_read_unlock();
3372 
3373 	if (err) {
3374 		WARN_ON(&ptype->list == head);
3375 		kfree_skb(skb);
3376 		return NET_RX_SUCCESS;
3377 	}
3378 
3379 out:
3380 	return netif_receive_skb(skb);
3381 }
3382 
3383 inline void napi_gro_flush(struct napi_struct *napi)
3384 {
3385 	struct sk_buff *skb, *next;
3386 
3387 	for (skb = napi->gro_list; skb; skb = next) {
3388 		next = skb->next;
3389 		skb->next = NULL;
3390 		napi_gro_complete(skb);
3391 	}
3392 
3393 	napi->gro_count = 0;
3394 	napi->gro_list = NULL;
3395 }
3396 EXPORT_SYMBOL(napi_gro_flush);
3397 
3398 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3399 {
3400 	struct sk_buff **pp = NULL;
3401 	struct packet_type *ptype;
3402 	__be16 type = skb->protocol;
3403 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3404 	int same_flow;
3405 	int mac_len;
3406 	enum gro_result ret;
3407 
3408 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3409 		goto normal;
3410 
3411 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3412 		goto normal;
3413 
3414 	rcu_read_lock();
3415 	list_for_each_entry_rcu(ptype, head, list) {
3416 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3417 			continue;
3418 
3419 		skb_set_network_header(skb, skb_gro_offset(skb));
3420 		mac_len = skb->network_header - skb->mac_header;
3421 		skb->mac_len = mac_len;
3422 		NAPI_GRO_CB(skb)->same_flow = 0;
3423 		NAPI_GRO_CB(skb)->flush = 0;
3424 		NAPI_GRO_CB(skb)->free = 0;
3425 
3426 		pp = ptype->gro_receive(&napi->gro_list, skb);
3427 		break;
3428 	}
3429 	rcu_read_unlock();
3430 
3431 	if (&ptype->list == head)
3432 		goto normal;
3433 
3434 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3435 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3436 
3437 	if (pp) {
3438 		struct sk_buff *nskb = *pp;
3439 
3440 		*pp = nskb->next;
3441 		nskb->next = NULL;
3442 		napi_gro_complete(nskb);
3443 		napi->gro_count--;
3444 	}
3445 
3446 	if (same_flow)
3447 		goto ok;
3448 
3449 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3450 		goto normal;
3451 
3452 	napi->gro_count++;
3453 	NAPI_GRO_CB(skb)->count = 1;
3454 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3455 	skb->next = napi->gro_list;
3456 	napi->gro_list = skb;
3457 	ret = GRO_HELD;
3458 
3459 pull:
3460 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3461 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3462 
3463 		BUG_ON(skb->end - skb->tail < grow);
3464 
3465 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3466 
3467 		skb->tail += grow;
3468 		skb->data_len -= grow;
3469 
3470 		skb_shinfo(skb)->frags[0].page_offset += grow;
3471 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3472 
3473 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3474 			skb_frag_unref(skb, 0);
3475 			memmove(skb_shinfo(skb)->frags,
3476 				skb_shinfo(skb)->frags + 1,
3477 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3478 		}
3479 	}
3480 
3481 ok:
3482 	return ret;
3483 
3484 normal:
3485 	ret = GRO_NORMAL;
3486 	goto pull;
3487 }
3488 EXPORT_SYMBOL(dev_gro_receive);
3489 
3490 static inline gro_result_t
3491 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3492 {
3493 	struct sk_buff *p;
3494 	unsigned int maclen = skb->dev->hard_header_len;
3495 
3496 	for (p = napi->gro_list; p; p = p->next) {
3497 		unsigned long diffs;
3498 
3499 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3500 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3501 		if (maclen == ETH_HLEN)
3502 			diffs |= compare_ether_header(skb_mac_header(p),
3503 						      skb_gro_mac_header(skb));
3504 		else if (!diffs)
3505 			diffs = memcmp(skb_mac_header(p),
3506 				       skb_gro_mac_header(skb),
3507 				       maclen);
3508 		NAPI_GRO_CB(p)->same_flow = !diffs;
3509 		NAPI_GRO_CB(p)->flush = 0;
3510 	}
3511 
3512 	return dev_gro_receive(napi, skb);
3513 }
3514 
3515 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3516 {
3517 	switch (ret) {
3518 	case GRO_NORMAL:
3519 		if (netif_receive_skb(skb))
3520 			ret = GRO_DROP;
3521 		break;
3522 
3523 	case GRO_DROP:
3524 	case GRO_MERGED_FREE:
3525 		kfree_skb(skb);
3526 		break;
3527 
3528 	case GRO_HELD:
3529 	case GRO_MERGED:
3530 		break;
3531 	}
3532 
3533 	return ret;
3534 }
3535 EXPORT_SYMBOL(napi_skb_finish);
3536 
3537 void skb_gro_reset_offset(struct sk_buff *skb)
3538 {
3539 	NAPI_GRO_CB(skb)->data_offset = 0;
3540 	NAPI_GRO_CB(skb)->frag0 = NULL;
3541 	NAPI_GRO_CB(skb)->frag0_len = 0;
3542 
3543 	if (skb->mac_header == skb->tail &&
3544 	    !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) {
3545 		NAPI_GRO_CB(skb)->frag0 =
3546 			skb_frag_address(&skb_shinfo(skb)->frags[0]);
3547 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]);
3548 	}
3549 }
3550 EXPORT_SYMBOL(skb_gro_reset_offset);
3551 
3552 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3553 {
3554 	skb_gro_reset_offset(skb);
3555 
3556 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3557 }
3558 EXPORT_SYMBOL(napi_gro_receive);
3559 
3560 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3561 {
3562 	__skb_pull(skb, skb_headlen(skb));
3563 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3564 	skb->vlan_tci = 0;
3565 	skb->dev = napi->dev;
3566 	skb->skb_iif = 0;
3567 
3568 	napi->skb = skb;
3569 }
3570 
3571 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3572 {
3573 	struct sk_buff *skb = napi->skb;
3574 
3575 	if (!skb) {
3576 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3577 		if (skb)
3578 			napi->skb = skb;
3579 	}
3580 	return skb;
3581 }
3582 EXPORT_SYMBOL(napi_get_frags);
3583 
3584 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3585 			       gro_result_t ret)
3586 {
3587 	switch (ret) {
3588 	case GRO_NORMAL:
3589 	case GRO_HELD:
3590 		skb->protocol = eth_type_trans(skb, skb->dev);
3591 
3592 		if (ret == GRO_HELD)
3593 			skb_gro_pull(skb, -ETH_HLEN);
3594 		else if (netif_receive_skb(skb))
3595 			ret = GRO_DROP;
3596 		break;
3597 
3598 	case GRO_DROP:
3599 	case GRO_MERGED_FREE:
3600 		napi_reuse_skb(napi, skb);
3601 		break;
3602 
3603 	case GRO_MERGED:
3604 		break;
3605 	}
3606 
3607 	return ret;
3608 }
3609 EXPORT_SYMBOL(napi_frags_finish);
3610 
3611 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3612 {
3613 	struct sk_buff *skb = napi->skb;
3614 	struct ethhdr *eth;
3615 	unsigned int hlen;
3616 	unsigned int off;
3617 
3618 	napi->skb = NULL;
3619 
3620 	skb_reset_mac_header(skb);
3621 	skb_gro_reset_offset(skb);
3622 
3623 	off = skb_gro_offset(skb);
3624 	hlen = off + sizeof(*eth);
3625 	eth = skb_gro_header_fast(skb, off);
3626 	if (skb_gro_header_hard(skb, hlen)) {
3627 		eth = skb_gro_header_slow(skb, hlen, off);
3628 		if (unlikely(!eth)) {
3629 			napi_reuse_skb(napi, skb);
3630 			skb = NULL;
3631 			goto out;
3632 		}
3633 	}
3634 
3635 	skb_gro_pull(skb, sizeof(*eth));
3636 
3637 	/*
3638 	 * This works because the only protocols we care about don't require
3639 	 * special handling.  We'll fix it up properly at the end.
3640 	 */
3641 	skb->protocol = eth->h_proto;
3642 
3643 out:
3644 	return skb;
3645 }
3646 EXPORT_SYMBOL(napi_frags_skb);
3647 
3648 gro_result_t napi_gro_frags(struct napi_struct *napi)
3649 {
3650 	struct sk_buff *skb = napi_frags_skb(napi);
3651 
3652 	if (!skb)
3653 		return GRO_DROP;
3654 
3655 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3656 }
3657 EXPORT_SYMBOL(napi_gro_frags);
3658 
3659 /*
3660  * net_rps_action sends any pending IPI's for rps.
3661  * Note: called with local irq disabled, but exits with local irq enabled.
3662  */
3663 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3664 {
3665 #ifdef CONFIG_RPS
3666 	struct softnet_data *remsd = sd->rps_ipi_list;
3667 
3668 	if (remsd) {
3669 		sd->rps_ipi_list = NULL;
3670 
3671 		local_irq_enable();
3672 
3673 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3674 		while (remsd) {
3675 			struct softnet_data *next = remsd->rps_ipi_next;
3676 
3677 			if (cpu_online(remsd->cpu))
3678 				__smp_call_function_single(remsd->cpu,
3679 							   &remsd->csd, 0);
3680 			remsd = next;
3681 		}
3682 	} else
3683 #endif
3684 		local_irq_enable();
3685 }
3686 
3687 static int process_backlog(struct napi_struct *napi, int quota)
3688 {
3689 	int work = 0;
3690 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3691 
3692 #ifdef CONFIG_RPS
3693 	/* Check if we have pending ipi, its better to send them now,
3694 	 * not waiting net_rx_action() end.
3695 	 */
3696 	if (sd->rps_ipi_list) {
3697 		local_irq_disable();
3698 		net_rps_action_and_irq_enable(sd);
3699 	}
3700 #endif
3701 	napi->weight = weight_p;
3702 	local_irq_disable();
3703 	while (work < quota) {
3704 		struct sk_buff *skb;
3705 		unsigned int qlen;
3706 
3707 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3708 			local_irq_enable();
3709 			__netif_receive_skb(skb);
3710 			local_irq_disable();
3711 			input_queue_head_incr(sd);
3712 			if (++work >= quota) {
3713 				local_irq_enable();
3714 				return work;
3715 			}
3716 		}
3717 
3718 		rps_lock(sd);
3719 		qlen = skb_queue_len(&sd->input_pkt_queue);
3720 		if (qlen)
3721 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3722 						   &sd->process_queue);
3723 
3724 		if (qlen < quota - work) {
3725 			/*
3726 			 * Inline a custom version of __napi_complete().
3727 			 * only current cpu owns and manipulates this napi,
3728 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3729 			 * we can use a plain write instead of clear_bit(),
3730 			 * and we dont need an smp_mb() memory barrier.
3731 			 */
3732 			list_del(&napi->poll_list);
3733 			napi->state = 0;
3734 
3735 			quota = work + qlen;
3736 		}
3737 		rps_unlock(sd);
3738 	}
3739 	local_irq_enable();
3740 
3741 	return work;
3742 }
3743 
3744 /**
3745  * __napi_schedule - schedule for receive
3746  * @n: entry to schedule
3747  *
3748  * The entry's receive function will be scheduled to run
3749  */
3750 void __napi_schedule(struct napi_struct *n)
3751 {
3752 	unsigned long flags;
3753 
3754 	local_irq_save(flags);
3755 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3756 	local_irq_restore(flags);
3757 }
3758 EXPORT_SYMBOL(__napi_schedule);
3759 
3760 void __napi_complete(struct napi_struct *n)
3761 {
3762 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3763 	BUG_ON(n->gro_list);
3764 
3765 	list_del(&n->poll_list);
3766 	smp_mb__before_clear_bit();
3767 	clear_bit(NAPI_STATE_SCHED, &n->state);
3768 }
3769 EXPORT_SYMBOL(__napi_complete);
3770 
3771 void napi_complete(struct napi_struct *n)
3772 {
3773 	unsigned long flags;
3774 
3775 	/*
3776 	 * don't let napi dequeue from the cpu poll list
3777 	 * just in case its running on a different cpu
3778 	 */
3779 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3780 		return;
3781 
3782 	napi_gro_flush(n);
3783 	local_irq_save(flags);
3784 	__napi_complete(n);
3785 	local_irq_restore(flags);
3786 }
3787 EXPORT_SYMBOL(napi_complete);
3788 
3789 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3790 		    int (*poll)(struct napi_struct *, int), int weight)
3791 {
3792 	INIT_LIST_HEAD(&napi->poll_list);
3793 	napi->gro_count = 0;
3794 	napi->gro_list = NULL;
3795 	napi->skb = NULL;
3796 	napi->poll = poll;
3797 	napi->weight = weight;
3798 	list_add(&napi->dev_list, &dev->napi_list);
3799 	napi->dev = dev;
3800 #ifdef CONFIG_NETPOLL
3801 	spin_lock_init(&napi->poll_lock);
3802 	napi->poll_owner = -1;
3803 #endif
3804 	set_bit(NAPI_STATE_SCHED, &napi->state);
3805 }
3806 EXPORT_SYMBOL(netif_napi_add);
3807 
3808 void netif_napi_del(struct napi_struct *napi)
3809 {
3810 	struct sk_buff *skb, *next;
3811 
3812 	list_del_init(&napi->dev_list);
3813 	napi_free_frags(napi);
3814 
3815 	for (skb = napi->gro_list; skb; skb = next) {
3816 		next = skb->next;
3817 		skb->next = NULL;
3818 		kfree_skb(skb);
3819 	}
3820 
3821 	napi->gro_list = NULL;
3822 	napi->gro_count = 0;
3823 }
3824 EXPORT_SYMBOL(netif_napi_del);
3825 
3826 static void net_rx_action(struct softirq_action *h)
3827 {
3828 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3829 	unsigned long time_limit = jiffies + 2;
3830 	int budget = netdev_budget;
3831 	void *have;
3832 
3833 	local_irq_disable();
3834 
3835 	while (!list_empty(&sd->poll_list)) {
3836 		struct napi_struct *n;
3837 		int work, weight;
3838 
3839 		/* If softirq window is exhuasted then punt.
3840 		 * Allow this to run for 2 jiffies since which will allow
3841 		 * an average latency of 1.5/HZ.
3842 		 */
3843 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3844 			goto softnet_break;
3845 
3846 		local_irq_enable();
3847 
3848 		/* Even though interrupts have been re-enabled, this
3849 		 * access is safe because interrupts can only add new
3850 		 * entries to the tail of this list, and only ->poll()
3851 		 * calls can remove this head entry from the list.
3852 		 */
3853 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3854 
3855 		have = netpoll_poll_lock(n);
3856 
3857 		weight = n->weight;
3858 
3859 		/* This NAPI_STATE_SCHED test is for avoiding a race
3860 		 * with netpoll's poll_napi().  Only the entity which
3861 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3862 		 * actually make the ->poll() call.  Therefore we avoid
3863 		 * accidentally calling ->poll() when NAPI is not scheduled.
3864 		 */
3865 		work = 0;
3866 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3867 			work = n->poll(n, weight);
3868 			trace_napi_poll(n);
3869 		}
3870 
3871 		WARN_ON_ONCE(work > weight);
3872 
3873 		budget -= work;
3874 
3875 		local_irq_disable();
3876 
3877 		/* Drivers must not modify the NAPI state if they
3878 		 * consume the entire weight.  In such cases this code
3879 		 * still "owns" the NAPI instance and therefore can
3880 		 * move the instance around on the list at-will.
3881 		 */
3882 		if (unlikely(work == weight)) {
3883 			if (unlikely(napi_disable_pending(n))) {
3884 				local_irq_enable();
3885 				napi_complete(n);
3886 				local_irq_disable();
3887 			} else
3888 				list_move_tail(&n->poll_list, &sd->poll_list);
3889 		}
3890 
3891 		netpoll_poll_unlock(have);
3892 	}
3893 out:
3894 	net_rps_action_and_irq_enable(sd);
3895 
3896 #ifdef CONFIG_NET_DMA
3897 	/*
3898 	 * There may not be any more sk_buffs coming right now, so push
3899 	 * any pending DMA copies to hardware
3900 	 */
3901 	dma_issue_pending_all();
3902 #endif
3903 
3904 	return;
3905 
3906 softnet_break:
3907 	sd->time_squeeze++;
3908 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3909 	goto out;
3910 }
3911 
3912 static gifconf_func_t *gifconf_list[NPROTO];
3913 
3914 /**
3915  *	register_gifconf	-	register a SIOCGIF handler
3916  *	@family: Address family
3917  *	@gifconf: Function handler
3918  *
3919  *	Register protocol dependent address dumping routines. The handler
3920  *	that is passed must not be freed or reused until it has been replaced
3921  *	by another handler.
3922  */
3923 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3924 {
3925 	if (family >= NPROTO)
3926 		return -EINVAL;
3927 	gifconf_list[family] = gifconf;
3928 	return 0;
3929 }
3930 EXPORT_SYMBOL(register_gifconf);
3931 
3932 
3933 /*
3934  *	Map an interface index to its name (SIOCGIFNAME)
3935  */
3936 
3937 /*
3938  *	We need this ioctl for efficient implementation of the
3939  *	if_indextoname() function required by the IPv6 API.  Without
3940  *	it, we would have to search all the interfaces to find a
3941  *	match.  --pb
3942  */
3943 
3944 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3945 {
3946 	struct net_device *dev;
3947 	struct ifreq ifr;
3948 
3949 	/*
3950 	 *	Fetch the caller's info block.
3951 	 */
3952 
3953 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3954 		return -EFAULT;
3955 
3956 	rcu_read_lock();
3957 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3958 	if (!dev) {
3959 		rcu_read_unlock();
3960 		return -ENODEV;
3961 	}
3962 
3963 	strcpy(ifr.ifr_name, dev->name);
3964 	rcu_read_unlock();
3965 
3966 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3967 		return -EFAULT;
3968 	return 0;
3969 }
3970 
3971 /*
3972  *	Perform a SIOCGIFCONF call. This structure will change
3973  *	size eventually, and there is nothing I can do about it.
3974  *	Thus we will need a 'compatibility mode'.
3975  */
3976 
3977 static int dev_ifconf(struct net *net, char __user *arg)
3978 {
3979 	struct ifconf ifc;
3980 	struct net_device *dev;
3981 	char __user *pos;
3982 	int len;
3983 	int total;
3984 	int i;
3985 
3986 	/*
3987 	 *	Fetch the caller's info block.
3988 	 */
3989 
3990 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3991 		return -EFAULT;
3992 
3993 	pos = ifc.ifc_buf;
3994 	len = ifc.ifc_len;
3995 
3996 	/*
3997 	 *	Loop over the interfaces, and write an info block for each.
3998 	 */
3999 
4000 	total = 0;
4001 	for_each_netdev(net, dev) {
4002 		for (i = 0; i < NPROTO; i++) {
4003 			if (gifconf_list[i]) {
4004 				int done;
4005 				if (!pos)
4006 					done = gifconf_list[i](dev, NULL, 0);
4007 				else
4008 					done = gifconf_list[i](dev, pos + total,
4009 							       len - total);
4010 				if (done < 0)
4011 					return -EFAULT;
4012 				total += done;
4013 			}
4014 		}
4015 	}
4016 
4017 	/*
4018 	 *	All done.  Write the updated control block back to the caller.
4019 	 */
4020 	ifc.ifc_len = total;
4021 
4022 	/*
4023 	 * 	Both BSD and Solaris return 0 here, so we do too.
4024 	 */
4025 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
4026 }
4027 
4028 #ifdef CONFIG_PROC_FS
4029 
4030 #define BUCKET_SPACE (32 - NETDEV_HASHBITS)
4031 
4032 struct dev_iter_state {
4033 	struct seq_net_private p;
4034 	unsigned int pos; /* bucket << BUCKET_SPACE + offset */
4035 };
4036 
4037 #define get_bucket(x) ((x) >> BUCKET_SPACE)
4038 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1))
4039 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
4040 
4041 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq)
4042 {
4043 	struct dev_iter_state *state = seq->private;
4044 	struct net *net = seq_file_net(seq);
4045 	struct net_device *dev;
4046 	struct hlist_node *p;
4047 	struct hlist_head *h;
4048 	unsigned int count, bucket, offset;
4049 
4050 	bucket = get_bucket(state->pos);
4051 	offset = get_offset(state->pos);
4052 	h = &net->dev_name_head[bucket];
4053 	count = 0;
4054 	hlist_for_each_entry_rcu(dev, p, h, name_hlist) {
4055 		if (count++ == offset) {
4056 			state->pos = set_bucket_offset(bucket, count);
4057 			return dev;
4058 		}
4059 	}
4060 
4061 	return NULL;
4062 }
4063 
4064 static inline struct net_device *dev_from_new_bucket(struct seq_file *seq)
4065 {
4066 	struct dev_iter_state *state = seq->private;
4067 	struct net_device *dev;
4068 	unsigned int bucket;
4069 
4070 	bucket = get_bucket(state->pos);
4071 	do {
4072 		dev = dev_from_same_bucket(seq);
4073 		if (dev)
4074 			return dev;
4075 
4076 		bucket++;
4077 		state->pos = set_bucket_offset(bucket, 0);
4078 	} while (bucket < NETDEV_HASHENTRIES);
4079 
4080 	return NULL;
4081 }
4082 
4083 /*
4084  *	This is invoked by the /proc filesystem handler to display a device
4085  *	in detail.
4086  */
4087 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
4088 	__acquires(RCU)
4089 {
4090 	struct dev_iter_state *state = seq->private;
4091 
4092 	rcu_read_lock();
4093 	if (!*pos)
4094 		return SEQ_START_TOKEN;
4095 
4096 	/* check for end of the hash */
4097 	if (state->pos == 0 && *pos > 1)
4098 		return NULL;
4099 
4100 	return dev_from_new_bucket(seq);
4101 }
4102 
4103 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4104 {
4105 	struct net_device *dev;
4106 
4107 	++*pos;
4108 
4109 	if (v == SEQ_START_TOKEN)
4110 		return dev_from_new_bucket(seq);
4111 
4112 	dev = dev_from_same_bucket(seq);
4113 	if (dev)
4114 		return dev;
4115 
4116 	return dev_from_new_bucket(seq);
4117 }
4118 
4119 void dev_seq_stop(struct seq_file *seq, void *v)
4120 	__releases(RCU)
4121 {
4122 	rcu_read_unlock();
4123 }
4124 
4125 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
4126 {
4127 	struct rtnl_link_stats64 temp;
4128 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
4129 
4130 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4131 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4132 		   dev->name, stats->rx_bytes, stats->rx_packets,
4133 		   stats->rx_errors,
4134 		   stats->rx_dropped + stats->rx_missed_errors,
4135 		   stats->rx_fifo_errors,
4136 		   stats->rx_length_errors + stats->rx_over_errors +
4137 		    stats->rx_crc_errors + stats->rx_frame_errors,
4138 		   stats->rx_compressed, stats->multicast,
4139 		   stats->tx_bytes, stats->tx_packets,
4140 		   stats->tx_errors, stats->tx_dropped,
4141 		   stats->tx_fifo_errors, stats->collisions,
4142 		   stats->tx_carrier_errors +
4143 		    stats->tx_aborted_errors +
4144 		    stats->tx_window_errors +
4145 		    stats->tx_heartbeat_errors,
4146 		   stats->tx_compressed);
4147 }
4148 
4149 /*
4150  *	Called from the PROCfs module. This now uses the new arbitrary sized
4151  *	/proc/net interface to create /proc/net/dev
4152  */
4153 static int dev_seq_show(struct seq_file *seq, void *v)
4154 {
4155 	if (v == SEQ_START_TOKEN)
4156 		seq_puts(seq, "Inter-|   Receive                            "
4157 			      "                    |  Transmit\n"
4158 			      " face |bytes    packets errs drop fifo frame "
4159 			      "compressed multicast|bytes    packets errs "
4160 			      "drop fifo colls carrier compressed\n");
4161 	else
4162 		dev_seq_printf_stats(seq, v);
4163 	return 0;
4164 }
4165 
4166 static struct softnet_data *softnet_get_online(loff_t *pos)
4167 {
4168 	struct softnet_data *sd = NULL;
4169 
4170 	while (*pos < nr_cpu_ids)
4171 		if (cpu_online(*pos)) {
4172 			sd = &per_cpu(softnet_data, *pos);
4173 			break;
4174 		} else
4175 			++*pos;
4176 	return sd;
4177 }
4178 
4179 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4180 {
4181 	return softnet_get_online(pos);
4182 }
4183 
4184 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4185 {
4186 	++*pos;
4187 	return softnet_get_online(pos);
4188 }
4189 
4190 static void softnet_seq_stop(struct seq_file *seq, void *v)
4191 {
4192 }
4193 
4194 static int softnet_seq_show(struct seq_file *seq, void *v)
4195 {
4196 	struct softnet_data *sd = v;
4197 
4198 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4199 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4200 		   0, 0, 0, 0, /* was fastroute */
4201 		   sd->cpu_collision, sd->received_rps);
4202 	return 0;
4203 }
4204 
4205 static const struct seq_operations dev_seq_ops = {
4206 	.start = dev_seq_start,
4207 	.next  = dev_seq_next,
4208 	.stop  = dev_seq_stop,
4209 	.show  = dev_seq_show,
4210 };
4211 
4212 static int dev_seq_open(struct inode *inode, struct file *file)
4213 {
4214 	return seq_open_net(inode, file, &dev_seq_ops,
4215 			    sizeof(struct dev_iter_state));
4216 }
4217 
4218 int dev_seq_open_ops(struct inode *inode, struct file *file,
4219 		     const struct seq_operations *ops)
4220 {
4221 	return seq_open_net(inode, file, ops, sizeof(struct dev_iter_state));
4222 }
4223 
4224 static const struct file_operations dev_seq_fops = {
4225 	.owner	 = THIS_MODULE,
4226 	.open    = dev_seq_open,
4227 	.read    = seq_read,
4228 	.llseek  = seq_lseek,
4229 	.release = seq_release_net,
4230 };
4231 
4232 static const struct seq_operations softnet_seq_ops = {
4233 	.start = softnet_seq_start,
4234 	.next  = softnet_seq_next,
4235 	.stop  = softnet_seq_stop,
4236 	.show  = softnet_seq_show,
4237 };
4238 
4239 static int softnet_seq_open(struct inode *inode, struct file *file)
4240 {
4241 	return seq_open(file, &softnet_seq_ops);
4242 }
4243 
4244 static const struct file_operations softnet_seq_fops = {
4245 	.owner	 = THIS_MODULE,
4246 	.open    = softnet_seq_open,
4247 	.read    = seq_read,
4248 	.llseek  = seq_lseek,
4249 	.release = seq_release,
4250 };
4251 
4252 static void *ptype_get_idx(loff_t pos)
4253 {
4254 	struct packet_type *pt = NULL;
4255 	loff_t i = 0;
4256 	int t;
4257 
4258 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4259 		if (i == pos)
4260 			return pt;
4261 		++i;
4262 	}
4263 
4264 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4265 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4266 			if (i == pos)
4267 				return pt;
4268 			++i;
4269 		}
4270 	}
4271 	return NULL;
4272 }
4273 
4274 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4275 	__acquires(RCU)
4276 {
4277 	rcu_read_lock();
4278 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4279 }
4280 
4281 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4282 {
4283 	struct packet_type *pt;
4284 	struct list_head *nxt;
4285 	int hash;
4286 
4287 	++*pos;
4288 	if (v == SEQ_START_TOKEN)
4289 		return ptype_get_idx(0);
4290 
4291 	pt = v;
4292 	nxt = pt->list.next;
4293 	if (pt->type == htons(ETH_P_ALL)) {
4294 		if (nxt != &ptype_all)
4295 			goto found;
4296 		hash = 0;
4297 		nxt = ptype_base[0].next;
4298 	} else
4299 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4300 
4301 	while (nxt == &ptype_base[hash]) {
4302 		if (++hash >= PTYPE_HASH_SIZE)
4303 			return NULL;
4304 		nxt = ptype_base[hash].next;
4305 	}
4306 found:
4307 	return list_entry(nxt, struct packet_type, list);
4308 }
4309 
4310 static void ptype_seq_stop(struct seq_file *seq, void *v)
4311 	__releases(RCU)
4312 {
4313 	rcu_read_unlock();
4314 }
4315 
4316 static int ptype_seq_show(struct seq_file *seq, void *v)
4317 {
4318 	struct packet_type *pt = v;
4319 
4320 	if (v == SEQ_START_TOKEN)
4321 		seq_puts(seq, "Type Device      Function\n");
4322 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4323 		if (pt->type == htons(ETH_P_ALL))
4324 			seq_puts(seq, "ALL ");
4325 		else
4326 			seq_printf(seq, "%04x", ntohs(pt->type));
4327 
4328 		seq_printf(seq, " %-8s %pF\n",
4329 			   pt->dev ? pt->dev->name : "", pt->func);
4330 	}
4331 
4332 	return 0;
4333 }
4334 
4335 static const struct seq_operations ptype_seq_ops = {
4336 	.start = ptype_seq_start,
4337 	.next  = ptype_seq_next,
4338 	.stop  = ptype_seq_stop,
4339 	.show  = ptype_seq_show,
4340 };
4341 
4342 static int ptype_seq_open(struct inode *inode, struct file *file)
4343 {
4344 	return seq_open_net(inode, file, &ptype_seq_ops,
4345 			sizeof(struct seq_net_private));
4346 }
4347 
4348 static const struct file_operations ptype_seq_fops = {
4349 	.owner	 = THIS_MODULE,
4350 	.open    = ptype_seq_open,
4351 	.read    = seq_read,
4352 	.llseek  = seq_lseek,
4353 	.release = seq_release_net,
4354 };
4355 
4356 
4357 static int __net_init dev_proc_net_init(struct net *net)
4358 {
4359 	int rc = -ENOMEM;
4360 
4361 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4362 		goto out;
4363 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4364 		goto out_dev;
4365 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4366 		goto out_softnet;
4367 
4368 	if (wext_proc_init(net))
4369 		goto out_ptype;
4370 	rc = 0;
4371 out:
4372 	return rc;
4373 out_ptype:
4374 	proc_net_remove(net, "ptype");
4375 out_softnet:
4376 	proc_net_remove(net, "softnet_stat");
4377 out_dev:
4378 	proc_net_remove(net, "dev");
4379 	goto out;
4380 }
4381 
4382 static void __net_exit dev_proc_net_exit(struct net *net)
4383 {
4384 	wext_proc_exit(net);
4385 
4386 	proc_net_remove(net, "ptype");
4387 	proc_net_remove(net, "softnet_stat");
4388 	proc_net_remove(net, "dev");
4389 }
4390 
4391 static struct pernet_operations __net_initdata dev_proc_ops = {
4392 	.init = dev_proc_net_init,
4393 	.exit = dev_proc_net_exit,
4394 };
4395 
4396 static int __init dev_proc_init(void)
4397 {
4398 	return register_pernet_subsys(&dev_proc_ops);
4399 }
4400 #else
4401 #define dev_proc_init() 0
4402 #endif	/* CONFIG_PROC_FS */
4403 
4404 
4405 /**
4406  *	netdev_set_master	-	set up master pointer
4407  *	@slave: slave device
4408  *	@master: new master device
4409  *
4410  *	Changes the master device of the slave. Pass %NULL to break the
4411  *	bonding. The caller must hold the RTNL semaphore. On a failure
4412  *	a negative errno code is returned. On success the reference counts
4413  *	are adjusted and the function returns zero.
4414  */
4415 int netdev_set_master(struct net_device *slave, struct net_device *master)
4416 {
4417 	struct net_device *old = slave->master;
4418 
4419 	ASSERT_RTNL();
4420 
4421 	if (master) {
4422 		if (old)
4423 			return -EBUSY;
4424 		dev_hold(master);
4425 	}
4426 
4427 	slave->master = master;
4428 
4429 	if (old)
4430 		dev_put(old);
4431 	return 0;
4432 }
4433 EXPORT_SYMBOL(netdev_set_master);
4434 
4435 /**
4436  *	netdev_set_bond_master	-	set up bonding master/slave pair
4437  *	@slave: slave device
4438  *	@master: new master device
4439  *
4440  *	Changes the master device of the slave. Pass %NULL to break the
4441  *	bonding. The caller must hold the RTNL semaphore. On a failure
4442  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4443  *	to the routing socket and the function returns zero.
4444  */
4445 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4446 {
4447 	int err;
4448 
4449 	ASSERT_RTNL();
4450 
4451 	err = netdev_set_master(slave, master);
4452 	if (err)
4453 		return err;
4454 	if (master)
4455 		slave->flags |= IFF_SLAVE;
4456 	else
4457 		slave->flags &= ~IFF_SLAVE;
4458 
4459 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4460 	return 0;
4461 }
4462 EXPORT_SYMBOL(netdev_set_bond_master);
4463 
4464 static void dev_change_rx_flags(struct net_device *dev, int flags)
4465 {
4466 	const struct net_device_ops *ops = dev->netdev_ops;
4467 
4468 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4469 		ops->ndo_change_rx_flags(dev, flags);
4470 }
4471 
4472 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4473 {
4474 	unsigned int old_flags = dev->flags;
4475 	uid_t uid;
4476 	gid_t gid;
4477 
4478 	ASSERT_RTNL();
4479 
4480 	dev->flags |= IFF_PROMISC;
4481 	dev->promiscuity += inc;
4482 	if (dev->promiscuity == 0) {
4483 		/*
4484 		 * Avoid overflow.
4485 		 * If inc causes overflow, untouch promisc and return error.
4486 		 */
4487 		if (inc < 0)
4488 			dev->flags &= ~IFF_PROMISC;
4489 		else {
4490 			dev->promiscuity -= inc;
4491 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4492 				dev->name);
4493 			return -EOVERFLOW;
4494 		}
4495 	}
4496 	if (dev->flags != old_flags) {
4497 		pr_info("device %s %s promiscuous mode\n",
4498 			dev->name,
4499 			dev->flags & IFF_PROMISC ? "entered" : "left");
4500 		if (audit_enabled) {
4501 			current_uid_gid(&uid, &gid);
4502 			audit_log(current->audit_context, GFP_ATOMIC,
4503 				AUDIT_ANOM_PROMISCUOUS,
4504 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4505 				dev->name, (dev->flags & IFF_PROMISC),
4506 				(old_flags & IFF_PROMISC),
4507 				audit_get_loginuid(current),
4508 				uid, gid,
4509 				audit_get_sessionid(current));
4510 		}
4511 
4512 		dev_change_rx_flags(dev, IFF_PROMISC);
4513 	}
4514 	return 0;
4515 }
4516 
4517 /**
4518  *	dev_set_promiscuity	- update promiscuity count on a device
4519  *	@dev: device
4520  *	@inc: modifier
4521  *
4522  *	Add or remove promiscuity from a device. While the count in the device
4523  *	remains above zero the interface remains promiscuous. Once it hits zero
4524  *	the device reverts back to normal filtering operation. A negative inc
4525  *	value is used to drop promiscuity on the device.
4526  *	Return 0 if successful or a negative errno code on error.
4527  */
4528 int dev_set_promiscuity(struct net_device *dev, int inc)
4529 {
4530 	unsigned int old_flags = dev->flags;
4531 	int err;
4532 
4533 	err = __dev_set_promiscuity(dev, inc);
4534 	if (err < 0)
4535 		return err;
4536 	if (dev->flags != old_flags)
4537 		dev_set_rx_mode(dev);
4538 	return err;
4539 }
4540 EXPORT_SYMBOL(dev_set_promiscuity);
4541 
4542 /**
4543  *	dev_set_allmulti	- update allmulti count on a device
4544  *	@dev: device
4545  *	@inc: modifier
4546  *
4547  *	Add or remove reception of all multicast frames to a device. While the
4548  *	count in the device remains above zero the interface remains listening
4549  *	to all interfaces. Once it hits zero the device reverts back to normal
4550  *	filtering operation. A negative @inc value is used to drop the counter
4551  *	when releasing a resource needing all multicasts.
4552  *	Return 0 if successful or a negative errno code on error.
4553  */
4554 
4555 int dev_set_allmulti(struct net_device *dev, int inc)
4556 {
4557 	unsigned int old_flags = dev->flags;
4558 
4559 	ASSERT_RTNL();
4560 
4561 	dev->flags |= IFF_ALLMULTI;
4562 	dev->allmulti += inc;
4563 	if (dev->allmulti == 0) {
4564 		/*
4565 		 * Avoid overflow.
4566 		 * If inc causes overflow, untouch allmulti and return error.
4567 		 */
4568 		if (inc < 0)
4569 			dev->flags &= ~IFF_ALLMULTI;
4570 		else {
4571 			dev->allmulti -= inc;
4572 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4573 				dev->name);
4574 			return -EOVERFLOW;
4575 		}
4576 	}
4577 	if (dev->flags ^ old_flags) {
4578 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4579 		dev_set_rx_mode(dev);
4580 	}
4581 	return 0;
4582 }
4583 EXPORT_SYMBOL(dev_set_allmulti);
4584 
4585 /*
4586  *	Upload unicast and multicast address lists to device and
4587  *	configure RX filtering. When the device doesn't support unicast
4588  *	filtering it is put in promiscuous mode while unicast addresses
4589  *	are present.
4590  */
4591 void __dev_set_rx_mode(struct net_device *dev)
4592 {
4593 	const struct net_device_ops *ops = dev->netdev_ops;
4594 
4595 	/* dev_open will call this function so the list will stay sane. */
4596 	if (!(dev->flags&IFF_UP))
4597 		return;
4598 
4599 	if (!netif_device_present(dev))
4600 		return;
4601 
4602 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4603 		/* Unicast addresses changes may only happen under the rtnl,
4604 		 * therefore calling __dev_set_promiscuity here is safe.
4605 		 */
4606 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4607 			__dev_set_promiscuity(dev, 1);
4608 			dev->uc_promisc = true;
4609 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4610 			__dev_set_promiscuity(dev, -1);
4611 			dev->uc_promisc = false;
4612 		}
4613 	}
4614 
4615 	if (ops->ndo_set_rx_mode)
4616 		ops->ndo_set_rx_mode(dev);
4617 }
4618 
4619 void dev_set_rx_mode(struct net_device *dev)
4620 {
4621 	netif_addr_lock_bh(dev);
4622 	__dev_set_rx_mode(dev);
4623 	netif_addr_unlock_bh(dev);
4624 }
4625 
4626 /**
4627  *	dev_get_flags - get flags reported to userspace
4628  *	@dev: device
4629  *
4630  *	Get the combination of flag bits exported through APIs to userspace.
4631  */
4632 unsigned dev_get_flags(const struct net_device *dev)
4633 {
4634 	unsigned flags;
4635 
4636 	flags = (dev->flags & ~(IFF_PROMISC |
4637 				IFF_ALLMULTI |
4638 				IFF_RUNNING |
4639 				IFF_LOWER_UP |
4640 				IFF_DORMANT)) |
4641 		(dev->gflags & (IFF_PROMISC |
4642 				IFF_ALLMULTI));
4643 
4644 	if (netif_running(dev)) {
4645 		if (netif_oper_up(dev))
4646 			flags |= IFF_RUNNING;
4647 		if (netif_carrier_ok(dev))
4648 			flags |= IFF_LOWER_UP;
4649 		if (netif_dormant(dev))
4650 			flags |= IFF_DORMANT;
4651 	}
4652 
4653 	return flags;
4654 }
4655 EXPORT_SYMBOL(dev_get_flags);
4656 
4657 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4658 {
4659 	unsigned int old_flags = dev->flags;
4660 	int ret;
4661 
4662 	ASSERT_RTNL();
4663 
4664 	/*
4665 	 *	Set the flags on our device.
4666 	 */
4667 
4668 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4669 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4670 			       IFF_AUTOMEDIA)) |
4671 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4672 				    IFF_ALLMULTI));
4673 
4674 	/*
4675 	 *	Load in the correct multicast list now the flags have changed.
4676 	 */
4677 
4678 	if ((old_flags ^ flags) & IFF_MULTICAST)
4679 		dev_change_rx_flags(dev, IFF_MULTICAST);
4680 
4681 	dev_set_rx_mode(dev);
4682 
4683 	/*
4684 	 *	Have we downed the interface. We handle IFF_UP ourselves
4685 	 *	according to user attempts to set it, rather than blindly
4686 	 *	setting it.
4687 	 */
4688 
4689 	ret = 0;
4690 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4691 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4692 
4693 		if (!ret)
4694 			dev_set_rx_mode(dev);
4695 	}
4696 
4697 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4698 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4699 
4700 		dev->gflags ^= IFF_PROMISC;
4701 		dev_set_promiscuity(dev, inc);
4702 	}
4703 
4704 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4705 	   is important. Some (broken) drivers set IFF_PROMISC, when
4706 	   IFF_ALLMULTI is requested not asking us and not reporting.
4707 	 */
4708 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4709 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4710 
4711 		dev->gflags ^= IFF_ALLMULTI;
4712 		dev_set_allmulti(dev, inc);
4713 	}
4714 
4715 	return ret;
4716 }
4717 
4718 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4719 {
4720 	unsigned int changes = dev->flags ^ old_flags;
4721 
4722 	if (changes & IFF_UP) {
4723 		if (dev->flags & IFF_UP)
4724 			call_netdevice_notifiers(NETDEV_UP, dev);
4725 		else
4726 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4727 	}
4728 
4729 	if (dev->flags & IFF_UP &&
4730 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4731 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4732 }
4733 
4734 /**
4735  *	dev_change_flags - change device settings
4736  *	@dev: device
4737  *	@flags: device state flags
4738  *
4739  *	Change settings on device based state flags. The flags are
4740  *	in the userspace exported format.
4741  */
4742 int dev_change_flags(struct net_device *dev, unsigned int flags)
4743 {
4744 	int ret;
4745 	unsigned int changes, old_flags = dev->flags;
4746 
4747 	ret = __dev_change_flags(dev, flags);
4748 	if (ret < 0)
4749 		return ret;
4750 
4751 	changes = old_flags ^ dev->flags;
4752 	if (changes)
4753 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4754 
4755 	__dev_notify_flags(dev, old_flags);
4756 	return ret;
4757 }
4758 EXPORT_SYMBOL(dev_change_flags);
4759 
4760 /**
4761  *	dev_set_mtu - Change maximum transfer unit
4762  *	@dev: device
4763  *	@new_mtu: new transfer unit
4764  *
4765  *	Change the maximum transfer size of the network device.
4766  */
4767 int dev_set_mtu(struct net_device *dev, int new_mtu)
4768 {
4769 	const struct net_device_ops *ops = dev->netdev_ops;
4770 	int err;
4771 
4772 	if (new_mtu == dev->mtu)
4773 		return 0;
4774 
4775 	/*	MTU must be positive.	 */
4776 	if (new_mtu < 0)
4777 		return -EINVAL;
4778 
4779 	if (!netif_device_present(dev))
4780 		return -ENODEV;
4781 
4782 	err = 0;
4783 	if (ops->ndo_change_mtu)
4784 		err = ops->ndo_change_mtu(dev, new_mtu);
4785 	else
4786 		dev->mtu = new_mtu;
4787 
4788 	if (!err && dev->flags & IFF_UP)
4789 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4790 	return err;
4791 }
4792 EXPORT_SYMBOL(dev_set_mtu);
4793 
4794 /**
4795  *	dev_set_group - Change group this device belongs to
4796  *	@dev: device
4797  *	@new_group: group this device should belong to
4798  */
4799 void dev_set_group(struct net_device *dev, int new_group)
4800 {
4801 	dev->group = new_group;
4802 }
4803 EXPORT_SYMBOL(dev_set_group);
4804 
4805 /**
4806  *	dev_set_mac_address - Change Media Access Control Address
4807  *	@dev: device
4808  *	@sa: new address
4809  *
4810  *	Change the hardware (MAC) address of the device
4811  */
4812 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4813 {
4814 	const struct net_device_ops *ops = dev->netdev_ops;
4815 	int err;
4816 
4817 	if (!ops->ndo_set_mac_address)
4818 		return -EOPNOTSUPP;
4819 	if (sa->sa_family != dev->type)
4820 		return -EINVAL;
4821 	if (!netif_device_present(dev))
4822 		return -ENODEV;
4823 	err = ops->ndo_set_mac_address(dev, sa);
4824 	if (!err)
4825 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4826 	return err;
4827 }
4828 EXPORT_SYMBOL(dev_set_mac_address);
4829 
4830 /*
4831  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4832  */
4833 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4834 {
4835 	int err;
4836 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4837 
4838 	if (!dev)
4839 		return -ENODEV;
4840 
4841 	switch (cmd) {
4842 	case SIOCGIFFLAGS:	/* Get interface flags */
4843 		ifr->ifr_flags = (short) dev_get_flags(dev);
4844 		return 0;
4845 
4846 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4847 				   (currently unused) */
4848 		ifr->ifr_metric = 0;
4849 		return 0;
4850 
4851 	case SIOCGIFMTU:	/* Get the MTU of a device */
4852 		ifr->ifr_mtu = dev->mtu;
4853 		return 0;
4854 
4855 	case SIOCGIFHWADDR:
4856 		if (!dev->addr_len)
4857 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4858 		else
4859 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4860 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4861 		ifr->ifr_hwaddr.sa_family = dev->type;
4862 		return 0;
4863 
4864 	case SIOCGIFSLAVE:
4865 		err = -EINVAL;
4866 		break;
4867 
4868 	case SIOCGIFMAP:
4869 		ifr->ifr_map.mem_start = dev->mem_start;
4870 		ifr->ifr_map.mem_end   = dev->mem_end;
4871 		ifr->ifr_map.base_addr = dev->base_addr;
4872 		ifr->ifr_map.irq       = dev->irq;
4873 		ifr->ifr_map.dma       = dev->dma;
4874 		ifr->ifr_map.port      = dev->if_port;
4875 		return 0;
4876 
4877 	case SIOCGIFINDEX:
4878 		ifr->ifr_ifindex = dev->ifindex;
4879 		return 0;
4880 
4881 	case SIOCGIFTXQLEN:
4882 		ifr->ifr_qlen = dev->tx_queue_len;
4883 		return 0;
4884 
4885 	default:
4886 		/* dev_ioctl() should ensure this case
4887 		 * is never reached
4888 		 */
4889 		WARN_ON(1);
4890 		err = -ENOTTY;
4891 		break;
4892 
4893 	}
4894 	return err;
4895 }
4896 
4897 /*
4898  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4899  */
4900 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4901 {
4902 	int err;
4903 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4904 	const struct net_device_ops *ops;
4905 
4906 	if (!dev)
4907 		return -ENODEV;
4908 
4909 	ops = dev->netdev_ops;
4910 
4911 	switch (cmd) {
4912 	case SIOCSIFFLAGS:	/* Set interface flags */
4913 		return dev_change_flags(dev, ifr->ifr_flags);
4914 
4915 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4916 				   (currently unused) */
4917 		return -EOPNOTSUPP;
4918 
4919 	case SIOCSIFMTU:	/* Set the MTU of a device */
4920 		return dev_set_mtu(dev, ifr->ifr_mtu);
4921 
4922 	case SIOCSIFHWADDR:
4923 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4924 
4925 	case SIOCSIFHWBROADCAST:
4926 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4927 			return -EINVAL;
4928 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4929 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4930 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4931 		return 0;
4932 
4933 	case SIOCSIFMAP:
4934 		if (ops->ndo_set_config) {
4935 			if (!netif_device_present(dev))
4936 				return -ENODEV;
4937 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4938 		}
4939 		return -EOPNOTSUPP;
4940 
4941 	case SIOCADDMULTI:
4942 		if (!ops->ndo_set_rx_mode ||
4943 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4944 			return -EINVAL;
4945 		if (!netif_device_present(dev))
4946 			return -ENODEV;
4947 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4948 
4949 	case SIOCDELMULTI:
4950 		if (!ops->ndo_set_rx_mode ||
4951 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4952 			return -EINVAL;
4953 		if (!netif_device_present(dev))
4954 			return -ENODEV;
4955 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4956 
4957 	case SIOCSIFTXQLEN:
4958 		if (ifr->ifr_qlen < 0)
4959 			return -EINVAL;
4960 		dev->tx_queue_len = ifr->ifr_qlen;
4961 		return 0;
4962 
4963 	case SIOCSIFNAME:
4964 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4965 		return dev_change_name(dev, ifr->ifr_newname);
4966 
4967 	case SIOCSHWTSTAMP:
4968 		err = net_hwtstamp_validate(ifr);
4969 		if (err)
4970 			return err;
4971 		/* fall through */
4972 
4973 	/*
4974 	 *	Unknown or private ioctl
4975 	 */
4976 	default:
4977 		if ((cmd >= SIOCDEVPRIVATE &&
4978 		    cmd <= SIOCDEVPRIVATE + 15) ||
4979 		    cmd == SIOCBONDENSLAVE ||
4980 		    cmd == SIOCBONDRELEASE ||
4981 		    cmd == SIOCBONDSETHWADDR ||
4982 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4983 		    cmd == SIOCBONDINFOQUERY ||
4984 		    cmd == SIOCBONDCHANGEACTIVE ||
4985 		    cmd == SIOCGMIIPHY ||
4986 		    cmd == SIOCGMIIREG ||
4987 		    cmd == SIOCSMIIREG ||
4988 		    cmd == SIOCBRADDIF ||
4989 		    cmd == SIOCBRDELIF ||
4990 		    cmd == SIOCSHWTSTAMP ||
4991 		    cmd == SIOCWANDEV) {
4992 			err = -EOPNOTSUPP;
4993 			if (ops->ndo_do_ioctl) {
4994 				if (netif_device_present(dev))
4995 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4996 				else
4997 					err = -ENODEV;
4998 			}
4999 		} else
5000 			err = -EINVAL;
5001 
5002 	}
5003 	return err;
5004 }
5005 
5006 /*
5007  *	This function handles all "interface"-type I/O control requests. The actual
5008  *	'doing' part of this is dev_ifsioc above.
5009  */
5010 
5011 /**
5012  *	dev_ioctl	-	network device ioctl
5013  *	@net: the applicable net namespace
5014  *	@cmd: command to issue
5015  *	@arg: pointer to a struct ifreq in user space
5016  *
5017  *	Issue ioctl functions to devices. This is normally called by the
5018  *	user space syscall interfaces but can sometimes be useful for
5019  *	other purposes. The return value is the return from the syscall if
5020  *	positive or a negative errno code on error.
5021  */
5022 
5023 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
5024 {
5025 	struct ifreq ifr;
5026 	int ret;
5027 	char *colon;
5028 
5029 	/* One special case: SIOCGIFCONF takes ifconf argument
5030 	   and requires shared lock, because it sleeps writing
5031 	   to user space.
5032 	 */
5033 
5034 	if (cmd == SIOCGIFCONF) {
5035 		rtnl_lock();
5036 		ret = dev_ifconf(net, (char __user *) arg);
5037 		rtnl_unlock();
5038 		return ret;
5039 	}
5040 	if (cmd == SIOCGIFNAME)
5041 		return dev_ifname(net, (struct ifreq __user *)arg);
5042 
5043 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
5044 		return -EFAULT;
5045 
5046 	ifr.ifr_name[IFNAMSIZ-1] = 0;
5047 
5048 	colon = strchr(ifr.ifr_name, ':');
5049 	if (colon)
5050 		*colon = 0;
5051 
5052 	/*
5053 	 *	See which interface the caller is talking about.
5054 	 */
5055 
5056 	switch (cmd) {
5057 	/*
5058 	 *	These ioctl calls:
5059 	 *	- can be done by all.
5060 	 *	- atomic and do not require locking.
5061 	 *	- return a value
5062 	 */
5063 	case SIOCGIFFLAGS:
5064 	case SIOCGIFMETRIC:
5065 	case SIOCGIFMTU:
5066 	case SIOCGIFHWADDR:
5067 	case SIOCGIFSLAVE:
5068 	case SIOCGIFMAP:
5069 	case SIOCGIFINDEX:
5070 	case SIOCGIFTXQLEN:
5071 		dev_load(net, ifr.ifr_name);
5072 		rcu_read_lock();
5073 		ret = dev_ifsioc_locked(net, &ifr, cmd);
5074 		rcu_read_unlock();
5075 		if (!ret) {
5076 			if (colon)
5077 				*colon = ':';
5078 			if (copy_to_user(arg, &ifr,
5079 					 sizeof(struct ifreq)))
5080 				ret = -EFAULT;
5081 		}
5082 		return ret;
5083 
5084 	case SIOCETHTOOL:
5085 		dev_load(net, ifr.ifr_name);
5086 		rtnl_lock();
5087 		ret = dev_ethtool(net, &ifr);
5088 		rtnl_unlock();
5089 		if (!ret) {
5090 			if (colon)
5091 				*colon = ':';
5092 			if (copy_to_user(arg, &ifr,
5093 					 sizeof(struct ifreq)))
5094 				ret = -EFAULT;
5095 		}
5096 		return ret;
5097 
5098 	/*
5099 	 *	These ioctl calls:
5100 	 *	- require superuser power.
5101 	 *	- require strict serialization.
5102 	 *	- return a value
5103 	 */
5104 	case SIOCGMIIPHY:
5105 	case SIOCGMIIREG:
5106 	case SIOCSIFNAME:
5107 		if (!capable(CAP_NET_ADMIN))
5108 			return -EPERM;
5109 		dev_load(net, ifr.ifr_name);
5110 		rtnl_lock();
5111 		ret = dev_ifsioc(net, &ifr, cmd);
5112 		rtnl_unlock();
5113 		if (!ret) {
5114 			if (colon)
5115 				*colon = ':';
5116 			if (copy_to_user(arg, &ifr,
5117 					 sizeof(struct ifreq)))
5118 				ret = -EFAULT;
5119 		}
5120 		return ret;
5121 
5122 	/*
5123 	 *	These ioctl calls:
5124 	 *	- require superuser power.
5125 	 *	- require strict serialization.
5126 	 *	- do not return a value
5127 	 */
5128 	case SIOCSIFFLAGS:
5129 	case SIOCSIFMETRIC:
5130 	case SIOCSIFMTU:
5131 	case SIOCSIFMAP:
5132 	case SIOCSIFHWADDR:
5133 	case SIOCSIFSLAVE:
5134 	case SIOCADDMULTI:
5135 	case SIOCDELMULTI:
5136 	case SIOCSIFHWBROADCAST:
5137 	case SIOCSIFTXQLEN:
5138 	case SIOCSMIIREG:
5139 	case SIOCBONDENSLAVE:
5140 	case SIOCBONDRELEASE:
5141 	case SIOCBONDSETHWADDR:
5142 	case SIOCBONDCHANGEACTIVE:
5143 	case SIOCBRADDIF:
5144 	case SIOCBRDELIF:
5145 	case SIOCSHWTSTAMP:
5146 		if (!capable(CAP_NET_ADMIN))
5147 			return -EPERM;
5148 		/* fall through */
5149 	case SIOCBONDSLAVEINFOQUERY:
5150 	case SIOCBONDINFOQUERY:
5151 		dev_load(net, ifr.ifr_name);
5152 		rtnl_lock();
5153 		ret = dev_ifsioc(net, &ifr, cmd);
5154 		rtnl_unlock();
5155 		return ret;
5156 
5157 	case SIOCGIFMEM:
5158 		/* Get the per device memory space. We can add this but
5159 		 * currently do not support it */
5160 	case SIOCSIFMEM:
5161 		/* Set the per device memory buffer space.
5162 		 * Not applicable in our case */
5163 	case SIOCSIFLINK:
5164 		return -ENOTTY;
5165 
5166 	/*
5167 	 *	Unknown or private ioctl.
5168 	 */
5169 	default:
5170 		if (cmd == SIOCWANDEV ||
5171 		    (cmd >= SIOCDEVPRIVATE &&
5172 		     cmd <= SIOCDEVPRIVATE + 15)) {
5173 			dev_load(net, ifr.ifr_name);
5174 			rtnl_lock();
5175 			ret = dev_ifsioc(net, &ifr, cmd);
5176 			rtnl_unlock();
5177 			if (!ret && copy_to_user(arg, &ifr,
5178 						 sizeof(struct ifreq)))
5179 				ret = -EFAULT;
5180 			return ret;
5181 		}
5182 		/* Take care of Wireless Extensions */
5183 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5184 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5185 		return -ENOTTY;
5186 	}
5187 }
5188 
5189 
5190 /**
5191  *	dev_new_index	-	allocate an ifindex
5192  *	@net: the applicable net namespace
5193  *
5194  *	Returns a suitable unique value for a new device interface
5195  *	number.  The caller must hold the rtnl semaphore or the
5196  *	dev_base_lock to be sure it remains unique.
5197  */
5198 static int dev_new_index(struct net *net)
5199 {
5200 	static int ifindex;
5201 	for (;;) {
5202 		if (++ifindex <= 0)
5203 			ifindex = 1;
5204 		if (!__dev_get_by_index(net, ifindex))
5205 			return ifindex;
5206 	}
5207 }
5208 
5209 /* Delayed registration/unregisteration */
5210 static LIST_HEAD(net_todo_list);
5211 
5212 static void net_set_todo(struct net_device *dev)
5213 {
5214 	list_add_tail(&dev->todo_list, &net_todo_list);
5215 }
5216 
5217 static void rollback_registered_many(struct list_head *head)
5218 {
5219 	struct net_device *dev, *tmp;
5220 
5221 	BUG_ON(dev_boot_phase);
5222 	ASSERT_RTNL();
5223 
5224 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5225 		/* Some devices call without registering
5226 		 * for initialization unwind. Remove those
5227 		 * devices and proceed with the remaining.
5228 		 */
5229 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5230 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5231 				 dev->name, dev);
5232 
5233 			WARN_ON(1);
5234 			list_del(&dev->unreg_list);
5235 			continue;
5236 		}
5237 		dev->dismantle = true;
5238 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5239 	}
5240 
5241 	/* If device is running, close it first. */
5242 	dev_close_many(head);
5243 
5244 	list_for_each_entry(dev, head, unreg_list) {
5245 		/* And unlink it from device chain. */
5246 		unlist_netdevice(dev);
5247 
5248 		dev->reg_state = NETREG_UNREGISTERING;
5249 	}
5250 
5251 	synchronize_net();
5252 
5253 	list_for_each_entry(dev, head, unreg_list) {
5254 		/* Shutdown queueing discipline. */
5255 		dev_shutdown(dev);
5256 
5257 
5258 		/* Notify protocols, that we are about to destroy
5259 		   this device. They should clean all the things.
5260 		*/
5261 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5262 
5263 		if (!dev->rtnl_link_ops ||
5264 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5265 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5266 
5267 		/*
5268 		 *	Flush the unicast and multicast chains
5269 		 */
5270 		dev_uc_flush(dev);
5271 		dev_mc_flush(dev);
5272 
5273 		if (dev->netdev_ops->ndo_uninit)
5274 			dev->netdev_ops->ndo_uninit(dev);
5275 
5276 		/* Notifier chain MUST detach us from master device. */
5277 		WARN_ON(dev->master);
5278 
5279 		/* Remove entries from kobject tree */
5280 		netdev_unregister_kobject(dev);
5281 	}
5282 
5283 	/* Process any work delayed until the end of the batch */
5284 	dev = list_first_entry(head, struct net_device, unreg_list);
5285 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5286 
5287 	synchronize_net();
5288 
5289 	list_for_each_entry(dev, head, unreg_list)
5290 		dev_put(dev);
5291 }
5292 
5293 static void rollback_registered(struct net_device *dev)
5294 {
5295 	LIST_HEAD(single);
5296 
5297 	list_add(&dev->unreg_list, &single);
5298 	rollback_registered_many(&single);
5299 	list_del(&single);
5300 }
5301 
5302 static netdev_features_t netdev_fix_features(struct net_device *dev,
5303 	netdev_features_t features)
5304 {
5305 	/* Fix illegal checksum combinations */
5306 	if ((features & NETIF_F_HW_CSUM) &&
5307 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5308 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5309 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5310 	}
5311 
5312 	/* Fix illegal SG+CSUM combinations. */
5313 	if ((features & NETIF_F_SG) &&
5314 	    !(features & NETIF_F_ALL_CSUM)) {
5315 		netdev_dbg(dev,
5316 			"Dropping NETIF_F_SG since no checksum feature.\n");
5317 		features &= ~NETIF_F_SG;
5318 	}
5319 
5320 	/* TSO requires that SG is present as well. */
5321 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5322 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5323 		features &= ~NETIF_F_ALL_TSO;
5324 	}
5325 
5326 	/* TSO ECN requires that TSO is present as well. */
5327 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5328 		features &= ~NETIF_F_TSO_ECN;
5329 
5330 	/* Software GSO depends on SG. */
5331 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5332 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5333 		features &= ~NETIF_F_GSO;
5334 	}
5335 
5336 	/* UFO needs SG and checksumming */
5337 	if (features & NETIF_F_UFO) {
5338 		/* maybe split UFO into V4 and V6? */
5339 		if (!((features & NETIF_F_GEN_CSUM) ||
5340 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5341 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5342 			netdev_dbg(dev,
5343 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5344 			features &= ~NETIF_F_UFO;
5345 		}
5346 
5347 		if (!(features & NETIF_F_SG)) {
5348 			netdev_dbg(dev,
5349 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5350 			features &= ~NETIF_F_UFO;
5351 		}
5352 	}
5353 
5354 	return features;
5355 }
5356 
5357 int __netdev_update_features(struct net_device *dev)
5358 {
5359 	netdev_features_t features;
5360 	int err = 0;
5361 
5362 	ASSERT_RTNL();
5363 
5364 	features = netdev_get_wanted_features(dev);
5365 
5366 	if (dev->netdev_ops->ndo_fix_features)
5367 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5368 
5369 	/* driver might be less strict about feature dependencies */
5370 	features = netdev_fix_features(dev, features);
5371 
5372 	if (dev->features == features)
5373 		return 0;
5374 
5375 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5376 		&dev->features, &features);
5377 
5378 	if (dev->netdev_ops->ndo_set_features)
5379 		err = dev->netdev_ops->ndo_set_features(dev, features);
5380 
5381 	if (unlikely(err < 0)) {
5382 		netdev_err(dev,
5383 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5384 			err, &features, &dev->features);
5385 		return -1;
5386 	}
5387 
5388 	if (!err)
5389 		dev->features = features;
5390 
5391 	return 1;
5392 }
5393 
5394 /**
5395  *	netdev_update_features - recalculate device features
5396  *	@dev: the device to check
5397  *
5398  *	Recalculate dev->features set and send notifications if it
5399  *	has changed. Should be called after driver or hardware dependent
5400  *	conditions might have changed that influence the features.
5401  */
5402 void netdev_update_features(struct net_device *dev)
5403 {
5404 	if (__netdev_update_features(dev))
5405 		netdev_features_change(dev);
5406 }
5407 EXPORT_SYMBOL(netdev_update_features);
5408 
5409 /**
5410  *	netdev_change_features - recalculate device features
5411  *	@dev: the device to check
5412  *
5413  *	Recalculate dev->features set and send notifications even
5414  *	if they have not changed. Should be called instead of
5415  *	netdev_update_features() if also dev->vlan_features might
5416  *	have changed to allow the changes to be propagated to stacked
5417  *	VLAN devices.
5418  */
5419 void netdev_change_features(struct net_device *dev)
5420 {
5421 	__netdev_update_features(dev);
5422 	netdev_features_change(dev);
5423 }
5424 EXPORT_SYMBOL(netdev_change_features);
5425 
5426 /**
5427  *	netif_stacked_transfer_operstate -	transfer operstate
5428  *	@rootdev: the root or lower level device to transfer state from
5429  *	@dev: the device to transfer operstate to
5430  *
5431  *	Transfer operational state from root to device. This is normally
5432  *	called when a stacking relationship exists between the root
5433  *	device and the device(a leaf device).
5434  */
5435 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5436 					struct net_device *dev)
5437 {
5438 	if (rootdev->operstate == IF_OPER_DORMANT)
5439 		netif_dormant_on(dev);
5440 	else
5441 		netif_dormant_off(dev);
5442 
5443 	if (netif_carrier_ok(rootdev)) {
5444 		if (!netif_carrier_ok(dev))
5445 			netif_carrier_on(dev);
5446 	} else {
5447 		if (netif_carrier_ok(dev))
5448 			netif_carrier_off(dev);
5449 	}
5450 }
5451 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5452 
5453 #ifdef CONFIG_RPS
5454 static int netif_alloc_rx_queues(struct net_device *dev)
5455 {
5456 	unsigned int i, count = dev->num_rx_queues;
5457 	struct netdev_rx_queue *rx;
5458 
5459 	BUG_ON(count < 1);
5460 
5461 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5462 	if (!rx) {
5463 		pr_err("netdev: Unable to allocate %u rx queues\n", count);
5464 		return -ENOMEM;
5465 	}
5466 	dev->_rx = rx;
5467 
5468 	for (i = 0; i < count; i++)
5469 		rx[i].dev = dev;
5470 	return 0;
5471 }
5472 #endif
5473 
5474 static void netdev_init_one_queue(struct net_device *dev,
5475 				  struct netdev_queue *queue, void *_unused)
5476 {
5477 	/* Initialize queue lock */
5478 	spin_lock_init(&queue->_xmit_lock);
5479 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5480 	queue->xmit_lock_owner = -1;
5481 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5482 	queue->dev = dev;
5483 #ifdef CONFIG_BQL
5484 	dql_init(&queue->dql, HZ);
5485 #endif
5486 }
5487 
5488 static int netif_alloc_netdev_queues(struct net_device *dev)
5489 {
5490 	unsigned int count = dev->num_tx_queues;
5491 	struct netdev_queue *tx;
5492 
5493 	BUG_ON(count < 1);
5494 
5495 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5496 	if (!tx) {
5497 		pr_err("netdev: Unable to allocate %u tx queues\n", count);
5498 		return -ENOMEM;
5499 	}
5500 	dev->_tx = tx;
5501 
5502 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5503 	spin_lock_init(&dev->tx_global_lock);
5504 
5505 	return 0;
5506 }
5507 
5508 /**
5509  *	register_netdevice	- register a network device
5510  *	@dev: device to register
5511  *
5512  *	Take a completed network device structure and add it to the kernel
5513  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5514  *	chain. 0 is returned on success. A negative errno code is returned
5515  *	on a failure to set up the device, or if the name is a duplicate.
5516  *
5517  *	Callers must hold the rtnl semaphore. You may want
5518  *	register_netdev() instead of this.
5519  *
5520  *	BUGS:
5521  *	The locking appears insufficient to guarantee two parallel registers
5522  *	will not get the same name.
5523  */
5524 
5525 int register_netdevice(struct net_device *dev)
5526 {
5527 	int ret;
5528 	struct net *net = dev_net(dev);
5529 
5530 	BUG_ON(dev_boot_phase);
5531 	ASSERT_RTNL();
5532 
5533 	might_sleep();
5534 
5535 	/* When net_device's are persistent, this will be fatal. */
5536 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5537 	BUG_ON(!net);
5538 
5539 	spin_lock_init(&dev->addr_list_lock);
5540 	netdev_set_addr_lockdep_class(dev);
5541 
5542 	dev->iflink = -1;
5543 
5544 	ret = dev_get_valid_name(dev, dev->name);
5545 	if (ret < 0)
5546 		goto out;
5547 
5548 	/* Init, if this function is available */
5549 	if (dev->netdev_ops->ndo_init) {
5550 		ret = dev->netdev_ops->ndo_init(dev);
5551 		if (ret) {
5552 			if (ret > 0)
5553 				ret = -EIO;
5554 			goto out;
5555 		}
5556 	}
5557 
5558 	dev->ifindex = dev_new_index(net);
5559 	if (dev->iflink == -1)
5560 		dev->iflink = dev->ifindex;
5561 
5562 	/* Transfer changeable features to wanted_features and enable
5563 	 * software offloads (GSO and GRO).
5564 	 */
5565 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5566 	dev->features |= NETIF_F_SOFT_FEATURES;
5567 	dev->wanted_features = dev->features & dev->hw_features;
5568 
5569 	/* Turn on no cache copy if HW is doing checksum */
5570 	if (!(dev->flags & IFF_LOOPBACK)) {
5571 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5572 		if (dev->features & NETIF_F_ALL_CSUM) {
5573 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5574 			dev->features |= NETIF_F_NOCACHE_COPY;
5575 		}
5576 	}
5577 
5578 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5579 	 */
5580 	dev->vlan_features |= NETIF_F_HIGHDMA;
5581 
5582 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5583 	ret = notifier_to_errno(ret);
5584 	if (ret)
5585 		goto err_uninit;
5586 
5587 	ret = netdev_register_kobject(dev);
5588 	if (ret)
5589 		goto err_uninit;
5590 	dev->reg_state = NETREG_REGISTERED;
5591 
5592 	__netdev_update_features(dev);
5593 
5594 	/*
5595 	 *	Default initial state at registry is that the
5596 	 *	device is present.
5597 	 */
5598 
5599 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5600 
5601 	dev_init_scheduler(dev);
5602 	dev_hold(dev);
5603 	list_netdevice(dev);
5604 
5605 	/* Notify protocols, that a new device appeared. */
5606 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5607 	ret = notifier_to_errno(ret);
5608 	if (ret) {
5609 		rollback_registered(dev);
5610 		dev->reg_state = NETREG_UNREGISTERED;
5611 	}
5612 	/*
5613 	 *	Prevent userspace races by waiting until the network
5614 	 *	device is fully setup before sending notifications.
5615 	 */
5616 	if (!dev->rtnl_link_ops ||
5617 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5618 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5619 
5620 out:
5621 	return ret;
5622 
5623 err_uninit:
5624 	if (dev->netdev_ops->ndo_uninit)
5625 		dev->netdev_ops->ndo_uninit(dev);
5626 	goto out;
5627 }
5628 EXPORT_SYMBOL(register_netdevice);
5629 
5630 /**
5631  *	init_dummy_netdev	- init a dummy network device for NAPI
5632  *	@dev: device to init
5633  *
5634  *	This takes a network device structure and initialize the minimum
5635  *	amount of fields so it can be used to schedule NAPI polls without
5636  *	registering a full blown interface. This is to be used by drivers
5637  *	that need to tie several hardware interfaces to a single NAPI
5638  *	poll scheduler due to HW limitations.
5639  */
5640 int init_dummy_netdev(struct net_device *dev)
5641 {
5642 	/* Clear everything. Note we don't initialize spinlocks
5643 	 * are they aren't supposed to be taken by any of the
5644 	 * NAPI code and this dummy netdev is supposed to be
5645 	 * only ever used for NAPI polls
5646 	 */
5647 	memset(dev, 0, sizeof(struct net_device));
5648 
5649 	/* make sure we BUG if trying to hit standard
5650 	 * register/unregister code path
5651 	 */
5652 	dev->reg_state = NETREG_DUMMY;
5653 
5654 	/* NAPI wants this */
5655 	INIT_LIST_HEAD(&dev->napi_list);
5656 
5657 	/* a dummy interface is started by default */
5658 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5659 	set_bit(__LINK_STATE_START, &dev->state);
5660 
5661 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5662 	 * because users of this 'device' dont need to change
5663 	 * its refcount.
5664 	 */
5665 
5666 	return 0;
5667 }
5668 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5669 
5670 
5671 /**
5672  *	register_netdev	- register a network device
5673  *	@dev: device to register
5674  *
5675  *	Take a completed network device structure and add it to the kernel
5676  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5677  *	chain. 0 is returned on success. A negative errno code is returned
5678  *	on a failure to set up the device, or if the name is a duplicate.
5679  *
5680  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5681  *	and expands the device name if you passed a format string to
5682  *	alloc_netdev.
5683  */
5684 int register_netdev(struct net_device *dev)
5685 {
5686 	int err;
5687 
5688 	rtnl_lock();
5689 	err = register_netdevice(dev);
5690 	rtnl_unlock();
5691 	return err;
5692 }
5693 EXPORT_SYMBOL(register_netdev);
5694 
5695 int netdev_refcnt_read(const struct net_device *dev)
5696 {
5697 	int i, refcnt = 0;
5698 
5699 	for_each_possible_cpu(i)
5700 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5701 	return refcnt;
5702 }
5703 EXPORT_SYMBOL(netdev_refcnt_read);
5704 
5705 /*
5706  * netdev_wait_allrefs - wait until all references are gone.
5707  *
5708  * This is called when unregistering network devices.
5709  *
5710  * Any protocol or device that holds a reference should register
5711  * for netdevice notification, and cleanup and put back the
5712  * reference if they receive an UNREGISTER event.
5713  * We can get stuck here if buggy protocols don't correctly
5714  * call dev_put.
5715  */
5716 static void netdev_wait_allrefs(struct net_device *dev)
5717 {
5718 	unsigned long rebroadcast_time, warning_time;
5719 	int refcnt;
5720 
5721 	linkwatch_forget_dev(dev);
5722 
5723 	rebroadcast_time = warning_time = jiffies;
5724 	refcnt = netdev_refcnt_read(dev);
5725 
5726 	while (refcnt != 0) {
5727 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5728 			rtnl_lock();
5729 
5730 			/* Rebroadcast unregister notification */
5731 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5732 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5733 			 * should have already handle it the first time */
5734 
5735 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5736 				     &dev->state)) {
5737 				/* We must not have linkwatch events
5738 				 * pending on unregister. If this
5739 				 * happens, we simply run the queue
5740 				 * unscheduled, resulting in a noop
5741 				 * for this device.
5742 				 */
5743 				linkwatch_run_queue();
5744 			}
5745 
5746 			__rtnl_unlock();
5747 
5748 			rebroadcast_time = jiffies;
5749 		}
5750 
5751 		msleep(250);
5752 
5753 		refcnt = netdev_refcnt_read(dev);
5754 
5755 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5756 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5757 				 dev->name, refcnt);
5758 			warning_time = jiffies;
5759 		}
5760 	}
5761 }
5762 
5763 /* The sequence is:
5764  *
5765  *	rtnl_lock();
5766  *	...
5767  *	register_netdevice(x1);
5768  *	register_netdevice(x2);
5769  *	...
5770  *	unregister_netdevice(y1);
5771  *	unregister_netdevice(y2);
5772  *      ...
5773  *	rtnl_unlock();
5774  *	free_netdev(y1);
5775  *	free_netdev(y2);
5776  *
5777  * We are invoked by rtnl_unlock().
5778  * This allows us to deal with problems:
5779  * 1) We can delete sysfs objects which invoke hotplug
5780  *    without deadlocking with linkwatch via keventd.
5781  * 2) Since we run with the RTNL semaphore not held, we can sleep
5782  *    safely in order to wait for the netdev refcnt to drop to zero.
5783  *
5784  * We must not return until all unregister events added during
5785  * the interval the lock was held have been completed.
5786  */
5787 void netdev_run_todo(void)
5788 {
5789 	struct list_head list;
5790 
5791 	/* Snapshot list, allow later requests */
5792 	list_replace_init(&net_todo_list, &list);
5793 
5794 	__rtnl_unlock();
5795 
5796 	/* Wait for rcu callbacks to finish before attempting to drain
5797 	 * the device list.  This usually avoids a 250ms wait.
5798 	 */
5799 	if (!list_empty(&list))
5800 		rcu_barrier();
5801 
5802 	while (!list_empty(&list)) {
5803 		struct net_device *dev
5804 			= list_first_entry(&list, struct net_device, todo_list);
5805 		list_del(&dev->todo_list);
5806 
5807 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5808 			pr_err("network todo '%s' but state %d\n",
5809 			       dev->name, dev->reg_state);
5810 			dump_stack();
5811 			continue;
5812 		}
5813 
5814 		dev->reg_state = NETREG_UNREGISTERED;
5815 
5816 		on_each_cpu(flush_backlog, dev, 1);
5817 
5818 		netdev_wait_allrefs(dev);
5819 
5820 		/* paranoia */
5821 		BUG_ON(netdev_refcnt_read(dev));
5822 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
5823 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5824 		WARN_ON(dev->dn_ptr);
5825 
5826 		if (dev->destructor)
5827 			dev->destructor(dev);
5828 
5829 		/* Free network device */
5830 		kobject_put(&dev->dev.kobj);
5831 	}
5832 }
5833 
5834 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5835  * fields in the same order, with only the type differing.
5836  */
5837 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5838 			     const struct net_device_stats *netdev_stats)
5839 {
5840 #if BITS_PER_LONG == 64
5841 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5842 	memcpy(stats64, netdev_stats, sizeof(*stats64));
5843 #else
5844 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5845 	const unsigned long *src = (const unsigned long *)netdev_stats;
5846 	u64 *dst = (u64 *)stats64;
5847 
5848 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5849 		     sizeof(*stats64) / sizeof(u64));
5850 	for (i = 0; i < n; i++)
5851 		dst[i] = src[i];
5852 #endif
5853 }
5854 EXPORT_SYMBOL(netdev_stats_to_stats64);
5855 
5856 /**
5857  *	dev_get_stats	- get network device statistics
5858  *	@dev: device to get statistics from
5859  *	@storage: place to store stats
5860  *
5861  *	Get network statistics from device. Return @storage.
5862  *	The device driver may provide its own method by setting
5863  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5864  *	otherwise the internal statistics structure is used.
5865  */
5866 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5867 					struct rtnl_link_stats64 *storage)
5868 {
5869 	const struct net_device_ops *ops = dev->netdev_ops;
5870 
5871 	if (ops->ndo_get_stats64) {
5872 		memset(storage, 0, sizeof(*storage));
5873 		ops->ndo_get_stats64(dev, storage);
5874 	} else if (ops->ndo_get_stats) {
5875 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5876 	} else {
5877 		netdev_stats_to_stats64(storage, &dev->stats);
5878 	}
5879 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5880 	return storage;
5881 }
5882 EXPORT_SYMBOL(dev_get_stats);
5883 
5884 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5885 {
5886 	struct netdev_queue *queue = dev_ingress_queue(dev);
5887 
5888 #ifdef CONFIG_NET_CLS_ACT
5889 	if (queue)
5890 		return queue;
5891 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5892 	if (!queue)
5893 		return NULL;
5894 	netdev_init_one_queue(dev, queue, NULL);
5895 	queue->qdisc = &noop_qdisc;
5896 	queue->qdisc_sleeping = &noop_qdisc;
5897 	rcu_assign_pointer(dev->ingress_queue, queue);
5898 #endif
5899 	return queue;
5900 }
5901 
5902 /**
5903  *	alloc_netdev_mqs - allocate network device
5904  *	@sizeof_priv:	size of private data to allocate space for
5905  *	@name:		device name format string
5906  *	@setup:		callback to initialize device
5907  *	@txqs:		the number of TX subqueues to allocate
5908  *	@rxqs:		the number of RX subqueues to allocate
5909  *
5910  *	Allocates a struct net_device with private data area for driver use
5911  *	and performs basic initialization.  Also allocates subquue structs
5912  *	for each queue on the device.
5913  */
5914 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5915 		void (*setup)(struct net_device *),
5916 		unsigned int txqs, unsigned int rxqs)
5917 {
5918 	struct net_device *dev;
5919 	size_t alloc_size;
5920 	struct net_device *p;
5921 
5922 	BUG_ON(strlen(name) >= sizeof(dev->name));
5923 
5924 	if (txqs < 1) {
5925 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5926 		return NULL;
5927 	}
5928 
5929 #ifdef CONFIG_RPS
5930 	if (rxqs < 1) {
5931 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5932 		return NULL;
5933 	}
5934 #endif
5935 
5936 	alloc_size = sizeof(struct net_device);
5937 	if (sizeof_priv) {
5938 		/* ensure 32-byte alignment of private area */
5939 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5940 		alloc_size += sizeof_priv;
5941 	}
5942 	/* ensure 32-byte alignment of whole construct */
5943 	alloc_size += NETDEV_ALIGN - 1;
5944 
5945 	p = kzalloc(alloc_size, GFP_KERNEL);
5946 	if (!p) {
5947 		pr_err("alloc_netdev: Unable to allocate device\n");
5948 		return NULL;
5949 	}
5950 
5951 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5952 	dev->padded = (char *)dev - (char *)p;
5953 
5954 	dev->pcpu_refcnt = alloc_percpu(int);
5955 	if (!dev->pcpu_refcnt)
5956 		goto free_p;
5957 
5958 	if (dev_addr_init(dev))
5959 		goto free_pcpu;
5960 
5961 	dev_mc_init(dev);
5962 	dev_uc_init(dev);
5963 
5964 	dev_net_set(dev, &init_net);
5965 
5966 	dev->gso_max_size = GSO_MAX_SIZE;
5967 
5968 	INIT_LIST_HEAD(&dev->napi_list);
5969 	INIT_LIST_HEAD(&dev->unreg_list);
5970 	INIT_LIST_HEAD(&dev->link_watch_list);
5971 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5972 	setup(dev);
5973 
5974 	dev->num_tx_queues = txqs;
5975 	dev->real_num_tx_queues = txqs;
5976 	if (netif_alloc_netdev_queues(dev))
5977 		goto free_all;
5978 
5979 #ifdef CONFIG_RPS
5980 	dev->num_rx_queues = rxqs;
5981 	dev->real_num_rx_queues = rxqs;
5982 	if (netif_alloc_rx_queues(dev))
5983 		goto free_all;
5984 #endif
5985 
5986 	strcpy(dev->name, name);
5987 	dev->group = INIT_NETDEV_GROUP;
5988 	return dev;
5989 
5990 free_all:
5991 	free_netdev(dev);
5992 	return NULL;
5993 
5994 free_pcpu:
5995 	free_percpu(dev->pcpu_refcnt);
5996 	kfree(dev->_tx);
5997 #ifdef CONFIG_RPS
5998 	kfree(dev->_rx);
5999 #endif
6000 
6001 free_p:
6002 	kfree(p);
6003 	return NULL;
6004 }
6005 EXPORT_SYMBOL(alloc_netdev_mqs);
6006 
6007 /**
6008  *	free_netdev - free network device
6009  *	@dev: device
6010  *
6011  *	This function does the last stage of destroying an allocated device
6012  * 	interface. The reference to the device object is released.
6013  *	If this is the last reference then it will be freed.
6014  */
6015 void free_netdev(struct net_device *dev)
6016 {
6017 	struct napi_struct *p, *n;
6018 
6019 	release_net(dev_net(dev));
6020 
6021 	kfree(dev->_tx);
6022 #ifdef CONFIG_RPS
6023 	kfree(dev->_rx);
6024 #endif
6025 
6026 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6027 
6028 	/* Flush device addresses */
6029 	dev_addr_flush(dev);
6030 
6031 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6032 		netif_napi_del(p);
6033 
6034 	free_percpu(dev->pcpu_refcnt);
6035 	dev->pcpu_refcnt = NULL;
6036 
6037 	/*  Compatibility with error handling in drivers */
6038 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6039 		kfree((char *)dev - dev->padded);
6040 		return;
6041 	}
6042 
6043 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6044 	dev->reg_state = NETREG_RELEASED;
6045 
6046 	/* will free via device release */
6047 	put_device(&dev->dev);
6048 }
6049 EXPORT_SYMBOL(free_netdev);
6050 
6051 /**
6052  *	synchronize_net -  Synchronize with packet receive processing
6053  *
6054  *	Wait for packets currently being received to be done.
6055  *	Does not block later packets from starting.
6056  */
6057 void synchronize_net(void)
6058 {
6059 	might_sleep();
6060 	if (rtnl_is_locked())
6061 		synchronize_rcu_expedited();
6062 	else
6063 		synchronize_rcu();
6064 }
6065 EXPORT_SYMBOL(synchronize_net);
6066 
6067 /**
6068  *	unregister_netdevice_queue - remove device from the kernel
6069  *	@dev: device
6070  *	@head: list
6071  *
6072  *	This function shuts down a device interface and removes it
6073  *	from the kernel tables.
6074  *	If head not NULL, device is queued to be unregistered later.
6075  *
6076  *	Callers must hold the rtnl semaphore.  You may want
6077  *	unregister_netdev() instead of this.
6078  */
6079 
6080 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6081 {
6082 	ASSERT_RTNL();
6083 
6084 	if (head) {
6085 		list_move_tail(&dev->unreg_list, head);
6086 	} else {
6087 		rollback_registered(dev);
6088 		/* Finish processing unregister after unlock */
6089 		net_set_todo(dev);
6090 	}
6091 }
6092 EXPORT_SYMBOL(unregister_netdevice_queue);
6093 
6094 /**
6095  *	unregister_netdevice_many - unregister many devices
6096  *	@head: list of devices
6097  */
6098 void unregister_netdevice_many(struct list_head *head)
6099 {
6100 	struct net_device *dev;
6101 
6102 	if (!list_empty(head)) {
6103 		rollback_registered_many(head);
6104 		list_for_each_entry(dev, head, unreg_list)
6105 			net_set_todo(dev);
6106 	}
6107 }
6108 EXPORT_SYMBOL(unregister_netdevice_many);
6109 
6110 /**
6111  *	unregister_netdev - remove device from the kernel
6112  *	@dev: device
6113  *
6114  *	This function shuts down a device interface and removes it
6115  *	from the kernel tables.
6116  *
6117  *	This is just a wrapper for unregister_netdevice that takes
6118  *	the rtnl semaphore.  In general you want to use this and not
6119  *	unregister_netdevice.
6120  */
6121 void unregister_netdev(struct net_device *dev)
6122 {
6123 	rtnl_lock();
6124 	unregister_netdevice(dev);
6125 	rtnl_unlock();
6126 }
6127 EXPORT_SYMBOL(unregister_netdev);
6128 
6129 /**
6130  *	dev_change_net_namespace - move device to different nethost namespace
6131  *	@dev: device
6132  *	@net: network namespace
6133  *	@pat: If not NULL name pattern to try if the current device name
6134  *	      is already taken in the destination network namespace.
6135  *
6136  *	This function shuts down a device interface and moves it
6137  *	to a new network namespace. On success 0 is returned, on
6138  *	a failure a netagive errno code is returned.
6139  *
6140  *	Callers must hold the rtnl semaphore.
6141  */
6142 
6143 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6144 {
6145 	int err;
6146 
6147 	ASSERT_RTNL();
6148 
6149 	/* Don't allow namespace local devices to be moved. */
6150 	err = -EINVAL;
6151 	if (dev->features & NETIF_F_NETNS_LOCAL)
6152 		goto out;
6153 
6154 	/* Ensure the device has been registrered */
6155 	err = -EINVAL;
6156 	if (dev->reg_state != NETREG_REGISTERED)
6157 		goto out;
6158 
6159 	/* Get out if there is nothing todo */
6160 	err = 0;
6161 	if (net_eq(dev_net(dev), net))
6162 		goto out;
6163 
6164 	/* Pick the destination device name, and ensure
6165 	 * we can use it in the destination network namespace.
6166 	 */
6167 	err = -EEXIST;
6168 	if (__dev_get_by_name(net, dev->name)) {
6169 		/* We get here if we can't use the current device name */
6170 		if (!pat)
6171 			goto out;
6172 		if (dev_get_valid_name(dev, pat) < 0)
6173 			goto out;
6174 	}
6175 
6176 	/*
6177 	 * And now a mini version of register_netdevice unregister_netdevice.
6178 	 */
6179 
6180 	/* If device is running close it first. */
6181 	dev_close(dev);
6182 
6183 	/* And unlink it from device chain */
6184 	err = -ENODEV;
6185 	unlist_netdevice(dev);
6186 
6187 	synchronize_net();
6188 
6189 	/* Shutdown queueing discipline. */
6190 	dev_shutdown(dev);
6191 
6192 	/* Notify protocols, that we are about to destroy
6193 	   this device. They should clean all the things.
6194 
6195 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6196 	   This is wanted because this way 8021q and macvlan know
6197 	   the device is just moving and can keep their slaves up.
6198 	*/
6199 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6200 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6201 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
6202 
6203 	/*
6204 	 *	Flush the unicast and multicast chains
6205 	 */
6206 	dev_uc_flush(dev);
6207 	dev_mc_flush(dev);
6208 
6209 	/* Actually switch the network namespace */
6210 	dev_net_set(dev, net);
6211 
6212 	/* If there is an ifindex conflict assign a new one */
6213 	if (__dev_get_by_index(net, dev->ifindex)) {
6214 		int iflink = (dev->iflink == dev->ifindex);
6215 		dev->ifindex = dev_new_index(net);
6216 		if (iflink)
6217 			dev->iflink = dev->ifindex;
6218 	}
6219 
6220 	/* Fixup kobjects */
6221 	err = device_rename(&dev->dev, dev->name);
6222 	WARN_ON(err);
6223 
6224 	/* Add the device back in the hashes */
6225 	list_netdevice(dev);
6226 
6227 	/* Notify protocols, that a new device appeared. */
6228 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6229 
6230 	/*
6231 	 *	Prevent userspace races by waiting until the network
6232 	 *	device is fully setup before sending notifications.
6233 	 */
6234 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6235 
6236 	synchronize_net();
6237 	err = 0;
6238 out:
6239 	return err;
6240 }
6241 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6242 
6243 static int dev_cpu_callback(struct notifier_block *nfb,
6244 			    unsigned long action,
6245 			    void *ocpu)
6246 {
6247 	struct sk_buff **list_skb;
6248 	struct sk_buff *skb;
6249 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6250 	struct softnet_data *sd, *oldsd;
6251 
6252 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6253 		return NOTIFY_OK;
6254 
6255 	local_irq_disable();
6256 	cpu = smp_processor_id();
6257 	sd = &per_cpu(softnet_data, cpu);
6258 	oldsd = &per_cpu(softnet_data, oldcpu);
6259 
6260 	/* Find end of our completion_queue. */
6261 	list_skb = &sd->completion_queue;
6262 	while (*list_skb)
6263 		list_skb = &(*list_skb)->next;
6264 	/* Append completion queue from offline CPU. */
6265 	*list_skb = oldsd->completion_queue;
6266 	oldsd->completion_queue = NULL;
6267 
6268 	/* Append output queue from offline CPU. */
6269 	if (oldsd->output_queue) {
6270 		*sd->output_queue_tailp = oldsd->output_queue;
6271 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6272 		oldsd->output_queue = NULL;
6273 		oldsd->output_queue_tailp = &oldsd->output_queue;
6274 	}
6275 	/* Append NAPI poll list from offline CPU. */
6276 	if (!list_empty(&oldsd->poll_list)) {
6277 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6278 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6279 	}
6280 
6281 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6282 	local_irq_enable();
6283 
6284 	/* Process offline CPU's input_pkt_queue */
6285 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6286 		netif_rx(skb);
6287 		input_queue_head_incr(oldsd);
6288 	}
6289 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6290 		netif_rx(skb);
6291 		input_queue_head_incr(oldsd);
6292 	}
6293 
6294 	return NOTIFY_OK;
6295 }
6296 
6297 
6298 /**
6299  *	netdev_increment_features - increment feature set by one
6300  *	@all: current feature set
6301  *	@one: new feature set
6302  *	@mask: mask feature set
6303  *
6304  *	Computes a new feature set after adding a device with feature set
6305  *	@one to the master device with current feature set @all.  Will not
6306  *	enable anything that is off in @mask. Returns the new feature set.
6307  */
6308 netdev_features_t netdev_increment_features(netdev_features_t all,
6309 	netdev_features_t one, netdev_features_t mask)
6310 {
6311 	if (mask & NETIF_F_GEN_CSUM)
6312 		mask |= NETIF_F_ALL_CSUM;
6313 	mask |= NETIF_F_VLAN_CHALLENGED;
6314 
6315 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6316 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6317 
6318 	/* If one device supports hw checksumming, set for all. */
6319 	if (all & NETIF_F_GEN_CSUM)
6320 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6321 
6322 	return all;
6323 }
6324 EXPORT_SYMBOL(netdev_increment_features);
6325 
6326 static struct hlist_head *netdev_create_hash(void)
6327 {
6328 	int i;
6329 	struct hlist_head *hash;
6330 
6331 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6332 	if (hash != NULL)
6333 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6334 			INIT_HLIST_HEAD(&hash[i]);
6335 
6336 	return hash;
6337 }
6338 
6339 /* Initialize per network namespace state */
6340 static int __net_init netdev_init(struct net *net)
6341 {
6342 	INIT_LIST_HEAD(&net->dev_base_head);
6343 
6344 	net->dev_name_head = netdev_create_hash();
6345 	if (net->dev_name_head == NULL)
6346 		goto err_name;
6347 
6348 	net->dev_index_head = netdev_create_hash();
6349 	if (net->dev_index_head == NULL)
6350 		goto err_idx;
6351 
6352 	return 0;
6353 
6354 err_idx:
6355 	kfree(net->dev_name_head);
6356 err_name:
6357 	return -ENOMEM;
6358 }
6359 
6360 /**
6361  *	netdev_drivername - network driver for the device
6362  *	@dev: network device
6363  *
6364  *	Determine network driver for device.
6365  */
6366 const char *netdev_drivername(const struct net_device *dev)
6367 {
6368 	const struct device_driver *driver;
6369 	const struct device *parent;
6370 	const char *empty = "";
6371 
6372 	parent = dev->dev.parent;
6373 	if (!parent)
6374 		return empty;
6375 
6376 	driver = parent->driver;
6377 	if (driver && driver->name)
6378 		return driver->name;
6379 	return empty;
6380 }
6381 
6382 int __netdev_printk(const char *level, const struct net_device *dev,
6383 			   struct va_format *vaf)
6384 {
6385 	int r;
6386 
6387 	if (dev && dev->dev.parent)
6388 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6389 			       netdev_name(dev), vaf);
6390 	else if (dev)
6391 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6392 	else
6393 		r = printk("%s(NULL net_device): %pV", level, vaf);
6394 
6395 	return r;
6396 }
6397 EXPORT_SYMBOL(__netdev_printk);
6398 
6399 int netdev_printk(const char *level, const struct net_device *dev,
6400 		  const char *format, ...)
6401 {
6402 	struct va_format vaf;
6403 	va_list args;
6404 	int r;
6405 
6406 	va_start(args, format);
6407 
6408 	vaf.fmt = format;
6409 	vaf.va = &args;
6410 
6411 	r = __netdev_printk(level, dev, &vaf);
6412 	va_end(args);
6413 
6414 	return r;
6415 }
6416 EXPORT_SYMBOL(netdev_printk);
6417 
6418 #define define_netdev_printk_level(func, level)			\
6419 int func(const struct net_device *dev, const char *fmt, ...)	\
6420 {								\
6421 	int r;							\
6422 	struct va_format vaf;					\
6423 	va_list args;						\
6424 								\
6425 	va_start(args, fmt);					\
6426 								\
6427 	vaf.fmt = fmt;						\
6428 	vaf.va = &args;						\
6429 								\
6430 	r = __netdev_printk(level, dev, &vaf);			\
6431 	va_end(args);						\
6432 								\
6433 	return r;						\
6434 }								\
6435 EXPORT_SYMBOL(func);
6436 
6437 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6438 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6439 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6440 define_netdev_printk_level(netdev_err, KERN_ERR);
6441 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6442 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6443 define_netdev_printk_level(netdev_info, KERN_INFO);
6444 
6445 static void __net_exit netdev_exit(struct net *net)
6446 {
6447 	kfree(net->dev_name_head);
6448 	kfree(net->dev_index_head);
6449 }
6450 
6451 static struct pernet_operations __net_initdata netdev_net_ops = {
6452 	.init = netdev_init,
6453 	.exit = netdev_exit,
6454 };
6455 
6456 static void __net_exit default_device_exit(struct net *net)
6457 {
6458 	struct net_device *dev, *aux;
6459 	/*
6460 	 * Push all migratable network devices back to the
6461 	 * initial network namespace
6462 	 */
6463 	rtnl_lock();
6464 	for_each_netdev_safe(net, dev, aux) {
6465 		int err;
6466 		char fb_name[IFNAMSIZ];
6467 
6468 		/* Ignore unmoveable devices (i.e. loopback) */
6469 		if (dev->features & NETIF_F_NETNS_LOCAL)
6470 			continue;
6471 
6472 		/* Leave virtual devices for the generic cleanup */
6473 		if (dev->rtnl_link_ops)
6474 			continue;
6475 
6476 		/* Push remaining network devices to init_net */
6477 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6478 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6479 		if (err) {
6480 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6481 				 __func__, dev->name, err);
6482 			BUG();
6483 		}
6484 	}
6485 	rtnl_unlock();
6486 }
6487 
6488 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6489 {
6490 	/* At exit all network devices most be removed from a network
6491 	 * namespace.  Do this in the reverse order of registration.
6492 	 * Do this across as many network namespaces as possible to
6493 	 * improve batching efficiency.
6494 	 */
6495 	struct net_device *dev;
6496 	struct net *net;
6497 	LIST_HEAD(dev_kill_list);
6498 
6499 	rtnl_lock();
6500 	list_for_each_entry(net, net_list, exit_list) {
6501 		for_each_netdev_reverse(net, dev) {
6502 			if (dev->rtnl_link_ops)
6503 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6504 			else
6505 				unregister_netdevice_queue(dev, &dev_kill_list);
6506 		}
6507 	}
6508 	unregister_netdevice_many(&dev_kill_list);
6509 	list_del(&dev_kill_list);
6510 	rtnl_unlock();
6511 }
6512 
6513 static struct pernet_operations __net_initdata default_device_ops = {
6514 	.exit = default_device_exit,
6515 	.exit_batch = default_device_exit_batch,
6516 };
6517 
6518 /*
6519  *	Initialize the DEV module. At boot time this walks the device list and
6520  *	unhooks any devices that fail to initialise (normally hardware not
6521  *	present) and leaves us with a valid list of present and active devices.
6522  *
6523  */
6524 
6525 /*
6526  *       This is called single threaded during boot, so no need
6527  *       to take the rtnl semaphore.
6528  */
6529 static int __init net_dev_init(void)
6530 {
6531 	int i, rc = -ENOMEM;
6532 
6533 	BUG_ON(!dev_boot_phase);
6534 
6535 	if (dev_proc_init())
6536 		goto out;
6537 
6538 	if (netdev_kobject_init())
6539 		goto out;
6540 
6541 	INIT_LIST_HEAD(&ptype_all);
6542 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6543 		INIT_LIST_HEAD(&ptype_base[i]);
6544 
6545 	if (register_pernet_subsys(&netdev_net_ops))
6546 		goto out;
6547 
6548 	/*
6549 	 *	Initialise the packet receive queues.
6550 	 */
6551 
6552 	for_each_possible_cpu(i) {
6553 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6554 
6555 		memset(sd, 0, sizeof(*sd));
6556 		skb_queue_head_init(&sd->input_pkt_queue);
6557 		skb_queue_head_init(&sd->process_queue);
6558 		sd->completion_queue = NULL;
6559 		INIT_LIST_HEAD(&sd->poll_list);
6560 		sd->output_queue = NULL;
6561 		sd->output_queue_tailp = &sd->output_queue;
6562 #ifdef CONFIG_RPS
6563 		sd->csd.func = rps_trigger_softirq;
6564 		sd->csd.info = sd;
6565 		sd->csd.flags = 0;
6566 		sd->cpu = i;
6567 #endif
6568 
6569 		sd->backlog.poll = process_backlog;
6570 		sd->backlog.weight = weight_p;
6571 		sd->backlog.gro_list = NULL;
6572 		sd->backlog.gro_count = 0;
6573 	}
6574 
6575 	dev_boot_phase = 0;
6576 
6577 	/* The loopback device is special if any other network devices
6578 	 * is present in a network namespace the loopback device must
6579 	 * be present. Since we now dynamically allocate and free the
6580 	 * loopback device ensure this invariant is maintained by
6581 	 * keeping the loopback device as the first device on the
6582 	 * list of network devices.  Ensuring the loopback devices
6583 	 * is the first device that appears and the last network device
6584 	 * that disappears.
6585 	 */
6586 	if (register_pernet_device(&loopback_net_ops))
6587 		goto out;
6588 
6589 	if (register_pernet_device(&default_device_ops))
6590 		goto out;
6591 
6592 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6593 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6594 
6595 	hotcpu_notifier(dev_cpu_callback, 0);
6596 	dst_init();
6597 	dev_mcast_init();
6598 	rc = 0;
6599 out:
6600 	return rc;
6601 }
6602 
6603 subsys_initcall(net_dev_init);
6604 
6605 static int __init initialize_hashrnd(void)
6606 {
6607 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6608 	return 0;
6609 }
6610 
6611 late_initcall_sync(initialize_hashrnd);
6612 
6613