xref: /linux/net/core/dev.c (revision eb7f8e28420372787933eec079735c35034bda7d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "dev.h"
155 #include "net-sysfs.h"
156 
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	netdev_name_node_del(name_node);
349 	kfree(name_node->name);
350 	netdev_name_node_free(name_node);
351 }
352 
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355 	struct netdev_name_node *name_node;
356 	struct net *net = dev_net(dev);
357 
358 	name_node = netdev_name_node_lookup(net, name);
359 	if (!name_node)
360 		return -ENOENT;
361 	/* lookup might have found our primary name or a name belonging
362 	 * to another device.
363 	 */
364 	if (name_node == dev->name_node || name_node->dev != dev)
365 		return -EINVAL;
366 
367 	__netdev_name_node_alt_destroy(name_node);
368 
369 	return 0;
370 }
371 
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374 	struct netdev_name_node *name_node, *tmp;
375 
376 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 		__netdev_name_node_alt_destroy(name_node);
378 }
379 
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383 	struct net *net = dev_net(dev);
384 
385 	ASSERT_RTNL();
386 
387 	write_lock(&dev_base_lock);
388 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 	netdev_name_node_add(net, dev->name_node);
390 	hlist_add_head_rcu(&dev->index_hlist,
391 			   dev_index_hash(net, dev->ifindex));
392 	write_unlock(&dev_base_lock);
393 
394 	dev_base_seq_inc(net);
395 }
396 
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402 	ASSERT_RTNL();
403 
404 	/* Unlink dev from the device chain */
405 	if (lock)
406 		write_lock(&dev_base_lock);
407 	list_del_rcu(&dev->dev_list);
408 	netdev_name_node_del(dev->name_node);
409 	hlist_del_rcu(&dev->index_hlist);
410 	if (lock)
411 		write_unlock(&dev_base_lock);
412 
413 	dev_base_seq_inc(dev_net(dev));
414 }
415 
416 /*
417  *	Our notifier list
418  */
419 
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421 
422 /*
423  *	Device drivers call our routines to queue packets here. We empty the
424  *	queue in the local softnet handler.
425  */
426 
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429 
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451 
452 static const char *const netdev_lock_name[] = {
453 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468 
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471 
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474 	int i;
475 
476 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477 		if (netdev_lock_type[i] == dev_type)
478 			return i;
479 	/* the last key is used by default */
480 	return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482 
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484 						 unsigned short dev_type)
485 {
486 	int i;
487 
488 	i = netdev_lock_pos(dev_type);
489 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490 				   netdev_lock_name[i]);
491 }
492 
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495 	int i;
496 
497 	i = netdev_lock_pos(dev->type);
498 	lockdep_set_class_and_name(&dev->addr_list_lock,
499 				   &netdev_addr_lock_key[i],
500 				   netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504 						 unsigned short dev_type)
505 {
506 }
507 
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512 
513 /*******************************************************************************
514  *
515  *		Protocol management and registration routines
516  *
517  *******************************************************************************/
518 
519 
520 /*
521  *	Add a protocol ID to the list. Now that the input handler is
522  *	smarter we can dispense with all the messy stuff that used to be
523  *	here.
524  *
525  *	BEWARE!!! Protocol handlers, mangling input packets,
526  *	MUST BE last in hash buckets and checking protocol handlers
527  *	MUST start from promiscuous ptype_all chain in net_bh.
528  *	It is true now, do not change it.
529  *	Explanation follows: if protocol handler, mangling packet, will
530  *	be the first on list, it is not able to sense, that packet
531  *	is cloned and should be copied-on-write, so that it will
532  *	change it and subsequent readers will get broken packet.
533  *							--ANK (980803)
534  */
535 
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538 	if (pt->type == htons(ETH_P_ALL))
539 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540 	else
541 		return pt->dev ? &pt->dev->ptype_specific :
542 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544 
545 /**
546  *	dev_add_pack - add packet handler
547  *	@pt: packet type declaration
548  *
549  *	Add a protocol handler to the networking stack. The passed &packet_type
550  *	is linked into kernel lists and may not be freed until it has been
551  *	removed from the kernel lists.
552  *
553  *	This call does not sleep therefore it can not
554  *	guarantee all CPU's that are in middle of receiving packets
555  *	will see the new packet type (until the next received packet).
556  */
557 
558 void dev_add_pack(struct packet_type *pt)
559 {
560 	struct list_head *head = ptype_head(pt);
561 
562 	spin_lock(&ptype_lock);
563 	list_add_rcu(&pt->list, head);
564 	spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567 
568 /**
569  *	__dev_remove_pack	 - remove packet handler
570  *	@pt: packet type declaration
571  *
572  *	Remove a protocol handler that was previously added to the kernel
573  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *	from the kernel lists and can be freed or reused once this function
575  *	returns.
576  *
577  *      The packet type might still be in use by receivers
578  *	and must not be freed until after all the CPU's have gone
579  *	through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583 	struct list_head *head = ptype_head(pt);
584 	struct packet_type *pt1;
585 
586 	spin_lock(&ptype_lock);
587 
588 	list_for_each_entry(pt1, head, list) {
589 		if (pt == pt1) {
590 			list_del_rcu(&pt->list);
591 			goto out;
592 		}
593 	}
594 
595 	pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597 	spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600 
601 /**
602  *	dev_remove_pack	 - remove packet handler
603  *	@pt: packet type declaration
604  *
605  *	Remove a protocol handler that was previously added to the kernel
606  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *	from the kernel lists and can be freed or reused once this function
608  *	returns.
609  *
610  *	This call sleeps to guarantee that no CPU is looking at the packet
611  *	type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615 	__dev_remove_pack(pt);
616 
617 	synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620 
621 
622 /*******************************************************************************
623  *
624  *			    Device Interface Subroutines
625  *
626  *******************************************************************************/
627 
628 /**
629  *	dev_get_iflink	- get 'iflink' value of a interface
630  *	@dev: targeted interface
631  *
632  *	Indicates the ifindex the interface is linked to.
633  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635 
636 int dev_get_iflink(const struct net_device *dev)
637 {
638 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639 		return dev->netdev_ops->ndo_get_iflink(dev);
640 
641 	return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644 
645 /**
646  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *	@dev: targeted interface
648  *	@skb: The packet.
649  *
650  *	For better visibility of tunnel traffic OVS needs to retrieve
651  *	egress tunnel information for a packet. Following API allows
652  *	user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656 	struct ip_tunnel_info *info;
657 
658 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659 		return -EINVAL;
660 
661 	info = skb_tunnel_info_unclone(skb);
662 	if (!info)
663 		return -ENOMEM;
664 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665 		return -EINVAL;
666 
667 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670 
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673 	int k = stack->num_paths++;
674 
675 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676 		return NULL;
677 
678 	return &stack->path[k];
679 }
680 
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682 			  struct net_device_path_stack *stack)
683 {
684 	const struct net_device *last_dev;
685 	struct net_device_path_ctx ctx = {
686 		.dev	= dev,
687 	};
688 	struct net_device_path *path;
689 	int ret = 0;
690 
691 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692 	stack->num_paths = 0;
693 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694 		last_dev = ctx.dev;
695 		path = dev_fwd_path(stack);
696 		if (!path)
697 			return -1;
698 
699 		memset(path, 0, sizeof(struct net_device_path));
700 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701 		if (ret < 0)
702 			return -1;
703 
704 		if (WARN_ON_ONCE(last_dev == ctx.dev))
705 			return -1;
706 	}
707 
708 	if (!ctx.dev)
709 		return ret;
710 
711 	path = dev_fwd_path(stack);
712 	if (!path)
713 		return -1;
714 	path->type = DEV_PATH_ETHERNET;
715 	path->dev = ctx.dev;
716 
717 	return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720 
721 /**
722  *	__dev_get_by_name	- find a device by its name
723  *	@net: the applicable net namespace
724  *	@name: name to find
725  *
726  *	Find an interface by name. Must be called under RTNL semaphore
727  *	or @dev_base_lock. If the name is found a pointer to the device
728  *	is returned. If the name is not found then %NULL is returned. The
729  *	reference counters are not incremented so the caller must be
730  *	careful with locks.
731  */
732 
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735 	struct netdev_name_node *node_name;
736 
737 	node_name = netdev_name_node_lookup(net, name);
738 	return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741 
742 /**
743  * dev_get_by_name_rcu	- find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753 
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756 	struct netdev_name_node *node_name;
757 
758 	node_name = netdev_name_node_lookup_rcu(net, name);
759 	return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762 
763 /**
764  *	dev_get_by_name		- find a device by its name
765  *	@net: the applicable net namespace
766  *	@name: name to find
767  *
768  *	Find an interface by name. This can be called from any
769  *	context and does its own locking. The returned handle has
770  *	the usage count incremented and the caller must use dev_put() to
771  *	release it when it is no longer needed. %NULL is returned if no
772  *	matching device is found.
773  */
774 
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 	struct net_device *dev;
778 
779 	rcu_read_lock();
780 	dev = dev_get_by_name_rcu(net, name);
781 	dev_hold(dev);
782 	rcu_read_unlock();
783 	return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786 
787 /**
788  *	__dev_get_by_index - find a device by its ifindex
789  *	@net: the applicable net namespace
790  *	@ifindex: index of device
791  *
792  *	Search for an interface by index. Returns %NULL if the device
793  *	is not found or a pointer to the device. The device has not
794  *	had its reference counter increased so the caller must be careful
795  *	about locking. The caller must hold either the RTNL semaphore
796  *	or @dev_base_lock.
797  */
798 
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801 	struct net_device *dev;
802 	struct hlist_head *head = dev_index_hash(net, ifindex);
803 
804 	hlist_for_each_entry(dev, head, index_hlist)
805 		if (dev->ifindex == ifindex)
806 			return dev;
807 
808 	return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811 
812 /**
813  *	dev_get_by_index_rcu - find a device by its ifindex
814  *	@net: the applicable net namespace
815  *	@ifindex: index of device
816  *
817  *	Search for an interface by index. Returns %NULL if the device
818  *	is not found or a pointer to the device. The device has not
819  *	had its reference counter increased so the caller must be careful
820  *	about locking. The caller must hold RCU lock.
821  */
822 
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825 	struct net_device *dev;
826 	struct hlist_head *head = dev_index_hash(net, ifindex);
827 
828 	hlist_for_each_entry_rcu(dev, head, index_hlist)
829 		if (dev->ifindex == ifindex)
830 			return dev;
831 
832 	return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835 
836 
837 /**
838  *	dev_get_by_index - find a device by its ifindex
839  *	@net: the applicable net namespace
840  *	@ifindex: index of device
841  *
842  *	Search for an interface by index. Returns NULL if the device
843  *	is not found or a pointer to the device. The device returned has
844  *	had a reference added and the pointer is safe until the user calls
845  *	dev_put to indicate they have finished with it.
846  */
847 
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850 	struct net_device *dev;
851 
852 	rcu_read_lock();
853 	dev = dev_get_by_index_rcu(net, ifindex);
854 	dev_hold(dev);
855 	rcu_read_unlock();
856 	return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859 
860 /**
861  *	dev_get_by_napi_id - find a device by napi_id
862  *	@napi_id: ID of the NAPI struct
863  *
864  *	Search for an interface by NAPI ID. Returns %NULL if the device
865  *	is not found or a pointer to the device. The device has not had
866  *	its reference counter increased so the caller must be careful
867  *	about locking. The caller must hold RCU lock.
868  */
869 
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872 	struct napi_struct *napi;
873 
874 	WARN_ON_ONCE(!rcu_read_lock_held());
875 
876 	if (napi_id < MIN_NAPI_ID)
877 		return NULL;
878 
879 	napi = napi_by_id(napi_id);
880 
881 	return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884 
885 /**
886  *	netdev_get_name - get a netdevice name, knowing its ifindex.
887  *	@net: network namespace
888  *	@name: a pointer to the buffer where the name will be stored.
889  *	@ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893 	struct net_device *dev;
894 	int ret;
895 
896 	down_read(&devnet_rename_sem);
897 	rcu_read_lock();
898 
899 	dev = dev_get_by_index_rcu(net, ifindex);
900 	if (!dev) {
901 		ret = -ENODEV;
902 		goto out;
903 	}
904 
905 	strcpy(name, dev->name);
906 
907 	ret = 0;
908 out:
909 	rcu_read_unlock();
910 	up_read(&devnet_rename_sem);
911 	return ret;
912 }
913 
914 /**
915  *	dev_getbyhwaddr_rcu - find a device by its hardware address
916  *	@net: the applicable net namespace
917  *	@type: media type of device
918  *	@ha: hardware address
919  *
920  *	Search for an interface by MAC address. Returns NULL if the device
921  *	is not found or a pointer to the device.
922  *	The caller must hold RCU or RTNL.
923  *	The returned device has not had its ref count increased
924  *	and the caller must therefore be careful about locking
925  *
926  */
927 
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929 				       const char *ha)
930 {
931 	struct net_device *dev;
932 
933 	for_each_netdev_rcu(net, dev)
934 		if (dev->type == type &&
935 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
936 			return dev;
937 
938 	return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941 
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944 	struct net_device *dev, *ret = NULL;
945 
946 	rcu_read_lock();
947 	for_each_netdev_rcu(net, dev)
948 		if (dev->type == type) {
949 			dev_hold(dev);
950 			ret = dev;
951 			break;
952 		}
953 	rcu_read_unlock();
954 	return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957 
958 /**
959  *	__dev_get_by_flags - find any device with given flags
960  *	@net: the applicable net namespace
961  *	@if_flags: IFF_* values
962  *	@mask: bitmask of bits in if_flags to check
963  *
964  *	Search for any interface with the given flags. Returns NULL if a device
965  *	is not found or a pointer to the device. Must be called inside
966  *	rtnl_lock(), and result refcount is unchanged.
967  */
968 
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 				      unsigned short mask)
971 {
972 	struct net_device *dev, *ret;
973 
974 	ASSERT_RTNL();
975 
976 	ret = NULL;
977 	for_each_netdev(net, dev) {
978 		if (((dev->flags ^ if_flags) & mask) == 0) {
979 			ret = dev;
980 			break;
981 		}
982 	}
983 	return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986 
987 /**
988  *	dev_valid_name - check if name is okay for network device
989  *	@name: name string
990  *
991  *	Network device names need to be valid file names to
992  *	allow sysfs to work.  We also disallow any kind of
993  *	whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997 	if (*name == '\0')
998 		return false;
999 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000 		return false;
1001 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 		return false;
1003 
1004 	while (*name) {
1005 		if (*name == '/' || *name == ':' || isspace(*name))
1006 			return false;
1007 		name++;
1008 	}
1009 	return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012 
1013 /**
1014  *	__dev_alloc_name - allocate a name for a device
1015  *	@net: network namespace to allocate the device name in
1016  *	@name: name format string
1017  *	@buf:  scratch buffer and result name string
1018  *
1019  *	Passed a format string - eg "lt%d" it will try and find a suitable
1020  *	id. It scans list of devices to build up a free map, then chooses
1021  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *	while allocating the name and adding the device in order to avoid
1023  *	duplicates.
1024  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *	Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030 	int i = 0;
1031 	const char *p;
1032 	const int max_netdevices = 8*PAGE_SIZE;
1033 	unsigned long *inuse;
1034 	struct net_device *d;
1035 
1036 	if (!dev_valid_name(name))
1037 		return -EINVAL;
1038 
1039 	p = strchr(name, '%');
1040 	if (p) {
1041 		/*
1042 		 * Verify the string as this thing may have come from
1043 		 * the user.  There must be either one "%d" and no other "%"
1044 		 * characters.
1045 		 */
1046 		if (p[1] != 'd' || strchr(p + 2, '%'))
1047 			return -EINVAL;
1048 
1049 		/* Use one page as a bit array of possible slots */
1050 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051 		if (!inuse)
1052 			return -ENOMEM;
1053 
1054 		for_each_netdev(net, d) {
1055 			struct netdev_name_node *name_node;
1056 			list_for_each_entry(name_node, &d->name_node->list, list) {
1057 				if (!sscanf(name_node->name, name, &i))
1058 					continue;
1059 				if (i < 0 || i >= max_netdevices)
1060 					continue;
1061 
1062 				/*  avoid cases where sscanf is not exact inverse of printf */
1063 				snprintf(buf, IFNAMSIZ, name, i);
1064 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065 					__set_bit(i, inuse);
1066 			}
1067 			if (!sscanf(d->name, name, &i))
1068 				continue;
1069 			if (i < 0 || i >= max_netdevices)
1070 				continue;
1071 
1072 			/*  avoid cases where sscanf is not exact inverse of printf */
1073 			snprintf(buf, IFNAMSIZ, name, i);
1074 			if (!strncmp(buf, d->name, IFNAMSIZ))
1075 				__set_bit(i, inuse);
1076 		}
1077 
1078 		i = find_first_zero_bit(inuse, max_netdevices);
1079 		free_page((unsigned long) inuse);
1080 	}
1081 
1082 	snprintf(buf, IFNAMSIZ, name, i);
1083 	if (!netdev_name_in_use(net, buf))
1084 		return i;
1085 
1086 	/* It is possible to run out of possible slots
1087 	 * when the name is long and there isn't enough space left
1088 	 * for the digits, or if all bits are used.
1089 	 */
1090 	return -ENFILE;
1091 }
1092 
1093 static int dev_alloc_name_ns(struct net *net,
1094 			     struct net_device *dev,
1095 			     const char *name)
1096 {
1097 	char buf[IFNAMSIZ];
1098 	int ret;
1099 
1100 	BUG_ON(!net);
1101 	ret = __dev_alloc_name(net, name, buf);
1102 	if (ret >= 0)
1103 		strlcpy(dev->name, buf, IFNAMSIZ);
1104 	return ret;
1105 }
1106 
1107 /**
1108  *	dev_alloc_name - allocate a name for a device
1109  *	@dev: device
1110  *	@name: name format string
1111  *
1112  *	Passed a format string - eg "lt%d" it will try and find a suitable
1113  *	id. It scans list of devices to build up a free map, then chooses
1114  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *	while allocating the name and adding the device in order to avoid
1116  *	duplicates.
1117  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *	Returns the number of the unit assigned or a negative errno code.
1119  */
1120 
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126 
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128 			      const char *name)
1129 {
1130 	BUG_ON(!net);
1131 
1132 	if (!dev_valid_name(name))
1133 		return -EINVAL;
1134 
1135 	if (strchr(name, '%'))
1136 		return dev_alloc_name_ns(net, dev, name);
1137 	else if (netdev_name_in_use(net, name))
1138 		return -EEXIST;
1139 	else if (dev->name != name)
1140 		strlcpy(dev->name, name, IFNAMSIZ);
1141 
1142 	return 0;
1143 }
1144 
1145 /**
1146  *	dev_change_name - change name of a device
1147  *	@dev: device
1148  *	@newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *	Change name of a device, can pass format strings "eth%d".
1151  *	for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155 	unsigned char old_assign_type;
1156 	char oldname[IFNAMSIZ];
1157 	int err = 0;
1158 	int ret;
1159 	struct net *net;
1160 
1161 	ASSERT_RTNL();
1162 	BUG_ON(!dev_net(dev));
1163 
1164 	net = dev_net(dev);
1165 
1166 	/* Some auto-enslaved devices e.g. failover slaves are
1167 	 * special, as userspace might rename the device after
1168 	 * the interface had been brought up and running since
1169 	 * the point kernel initiated auto-enslavement. Allow
1170 	 * live name change even when these slave devices are
1171 	 * up and running.
1172 	 *
1173 	 * Typically, users of these auto-enslaving devices
1174 	 * don't actually care about slave name change, as
1175 	 * they are supposed to operate on master interface
1176 	 * directly.
1177 	 */
1178 	if (dev->flags & IFF_UP &&
1179 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1180 		return -EBUSY;
1181 
1182 	down_write(&devnet_rename_sem);
1183 
1184 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1185 		up_write(&devnet_rename_sem);
1186 		return 0;
1187 	}
1188 
1189 	memcpy(oldname, dev->name, IFNAMSIZ);
1190 
1191 	err = dev_get_valid_name(net, dev, newname);
1192 	if (err < 0) {
1193 		up_write(&devnet_rename_sem);
1194 		return err;
1195 	}
1196 
1197 	if (oldname[0] && !strchr(oldname, '%'))
1198 		netdev_info(dev, "renamed from %s\n", oldname);
1199 
1200 	old_assign_type = dev->name_assign_type;
1201 	dev->name_assign_type = NET_NAME_RENAMED;
1202 
1203 rollback:
1204 	ret = device_rename(&dev->dev, dev->name);
1205 	if (ret) {
1206 		memcpy(dev->name, oldname, IFNAMSIZ);
1207 		dev->name_assign_type = old_assign_type;
1208 		up_write(&devnet_rename_sem);
1209 		return ret;
1210 	}
1211 
1212 	up_write(&devnet_rename_sem);
1213 
1214 	netdev_adjacent_rename_links(dev, oldname);
1215 
1216 	write_lock(&dev_base_lock);
1217 	netdev_name_node_del(dev->name_node);
1218 	write_unlock(&dev_base_lock);
1219 
1220 	synchronize_rcu();
1221 
1222 	write_lock(&dev_base_lock);
1223 	netdev_name_node_add(net, dev->name_node);
1224 	write_unlock(&dev_base_lock);
1225 
1226 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1227 	ret = notifier_to_errno(ret);
1228 
1229 	if (ret) {
1230 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1231 		if (err >= 0) {
1232 			err = ret;
1233 			down_write(&devnet_rename_sem);
1234 			memcpy(dev->name, oldname, IFNAMSIZ);
1235 			memcpy(oldname, newname, IFNAMSIZ);
1236 			dev->name_assign_type = old_assign_type;
1237 			old_assign_type = NET_NAME_RENAMED;
1238 			goto rollback;
1239 		} else {
1240 			netdev_err(dev, "name change rollback failed: %d\n",
1241 				   ret);
1242 		}
1243 	}
1244 
1245 	return err;
1246 }
1247 
1248 /**
1249  *	dev_set_alias - change ifalias of a device
1250  *	@dev: device
1251  *	@alias: name up to IFALIASZ
1252  *	@len: limit of bytes to copy from info
1253  *
1254  *	Set ifalias for a device,
1255  */
1256 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1257 {
1258 	struct dev_ifalias *new_alias = NULL;
1259 
1260 	if (len >= IFALIASZ)
1261 		return -EINVAL;
1262 
1263 	if (len) {
1264 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1265 		if (!new_alias)
1266 			return -ENOMEM;
1267 
1268 		memcpy(new_alias->ifalias, alias, len);
1269 		new_alias->ifalias[len] = 0;
1270 	}
1271 
1272 	mutex_lock(&ifalias_mutex);
1273 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1274 					mutex_is_locked(&ifalias_mutex));
1275 	mutex_unlock(&ifalias_mutex);
1276 
1277 	if (new_alias)
1278 		kfree_rcu(new_alias, rcuhead);
1279 
1280 	return len;
1281 }
1282 EXPORT_SYMBOL(dev_set_alias);
1283 
1284 /**
1285  *	dev_get_alias - get ifalias of a device
1286  *	@dev: device
1287  *	@name: buffer to store name of ifalias
1288  *	@len: size of buffer
1289  *
1290  *	get ifalias for a device.  Caller must make sure dev cannot go
1291  *	away,  e.g. rcu read lock or own a reference count to device.
1292  */
1293 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1294 {
1295 	const struct dev_ifalias *alias;
1296 	int ret = 0;
1297 
1298 	rcu_read_lock();
1299 	alias = rcu_dereference(dev->ifalias);
1300 	if (alias)
1301 		ret = snprintf(name, len, "%s", alias->ifalias);
1302 	rcu_read_unlock();
1303 
1304 	return ret;
1305 }
1306 
1307 /**
1308  *	netdev_features_change - device changes features
1309  *	@dev: device to cause notification
1310  *
1311  *	Called to indicate a device has changed features.
1312  */
1313 void netdev_features_change(struct net_device *dev)
1314 {
1315 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1316 }
1317 EXPORT_SYMBOL(netdev_features_change);
1318 
1319 /**
1320  *	netdev_state_change - device changes state
1321  *	@dev: device to cause notification
1322  *
1323  *	Called to indicate a device has changed state. This function calls
1324  *	the notifier chains for netdev_chain and sends a NEWLINK message
1325  *	to the routing socket.
1326  */
1327 void netdev_state_change(struct net_device *dev)
1328 {
1329 	if (dev->flags & IFF_UP) {
1330 		struct netdev_notifier_change_info change_info = {
1331 			.info.dev = dev,
1332 		};
1333 
1334 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1335 					      &change_info.info);
1336 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1337 	}
1338 }
1339 EXPORT_SYMBOL(netdev_state_change);
1340 
1341 /**
1342  * __netdev_notify_peers - notify network peers about existence of @dev,
1343  * to be called when rtnl lock is already held.
1344  * @dev: network device
1345  *
1346  * Generate traffic such that interested network peers are aware of
1347  * @dev, such as by generating a gratuitous ARP. This may be used when
1348  * a device wants to inform the rest of the network about some sort of
1349  * reconfiguration such as a failover event or virtual machine
1350  * migration.
1351  */
1352 void __netdev_notify_peers(struct net_device *dev)
1353 {
1354 	ASSERT_RTNL();
1355 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1356 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1357 }
1358 EXPORT_SYMBOL(__netdev_notify_peers);
1359 
1360 /**
1361  * netdev_notify_peers - notify network peers about existence of @dev
1362  * @dev: network device
1363  *
1364  * Generate traffic such that interested network peers are aware of
1365  * @dev, such as by generating a gratuitous ARP. This may be used when
1366  * a device wants to inform the rest of the network about some sort of
1367  * reconfiguration such as a failover event or virtual machine
1368  * migration.
1369  */
1370 void netdev_notify_peers(struct net_device *dev)
1371 {
1372 	rtnl_lock();
1373 	__netdev_notify_peers(dev);
1374 	rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377 
1378 static int napi_threaded_poll(void *data);
1379 
1380 static int napi_kthread_create(struct napi_struct *n)
1381 {
1382 	int err = 0;
1383 
1384 	/* Create and wake up the kthread once to put it in
1385 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1386 	 * warning and work with loadavg.
1387 	 */
1388 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1389 				n->dev->name, n->napi_id);
1390 	if (IS_ERR(n->thread)) {
1391 		err = PTR_ERR(n->thread);
1392 		pr_err("kthread_run failed with err %d\n", err);
1393 		n->thread = NULL;
1394 	}
1395 
1396 	return err;
1397 }
1398 
1399 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1400 {
1401 	const struct net_device_ops *ops = dev->netdev_ops;
1402 	int ret;
1403 
1404 	ASSERT_RTNL();
1405 	dev_addr_check(dev);
1406 
1407 	if (!netif_device_present(dev)) {
1408 		/* may be detached because parent is runtime-suspended */
1409 		if (dev->dev.parent)
1410 			pm_runtime_resume(dev->dev.parent);
1411 		if (!netif_device_present(dev))
1412 			return -ENODEV;
1413 	}
1414 
1415 	/* Block netpoll from trying to do any rx path servicing.
1416 	 * If we don't do this there is a chance ndo_poll_controller
1417 	 * or ndo_poll may be running while we open the device
1418 	 */
1419 	netpoll_poll_disable(dev);
1420 
1421 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1422 	ret = notifier_to_errno(ret);
1423 	if (ret)
1424 		return ret;
1425 
1426 	set_bit(__LINK_STATE_START, &dev->state);
1427 
1428 	if (ops->ndo_validate_addr)
1429 		ret = ops->ndo_validate_addr(dev);
1430 
1431 	if (!ret && ops->ndo_open)
1432 		ret = ops->ndo_open(dev);
1433 
1434 	netpoll_poll_enable(dev);
1435 
1436 	if (ret)
1437 		clear_bit(__LINK_STATE_START, &dev->state);
1438 	else {
1439 		dev->flags |= IFF_UP;
1440 		dev_set_rx_mode(dev);
1441 		dev_activate(dev);
1442 		add_device_randomness(dev->dev_addr, dev->addr_len);
1443 	}
1444 
1445 	return ret;
1446 }
1447 
1448 /**
1449  *	dev_open	- prepare an interface for use.
1450  *	@dev: device to open
1451  *	@extack: netlink extended ack
1452  *
1453  *	Takes a device from down to up state. The device's private open
1454  *	function is invoked and then the multicast lists are loaded. Finally
1455  *	the device is moved into the up state and a %NETDEV_UP message is
1456  *	sent to the netdev notifier chain.
1457  *
1458  *	Calling this function on an active interface is a nop. On a failure
1459  *	a negative errno code is returned.
1460  */
1461 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1462 {
1463 	int ret;
1464 
1465 	if (dev->flags & IFF_UP)
1466 		return 0;
1467 
1468 	ret = __dev_open(dev, extack);
1469 	if (ret < 0)
1470 		return ret;
1471 
1472 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1473 	call_netdevice_notifiers(NETDEV_UP, dev);
1474 
1475 	return ret;
1476 }
1477 EXPORT_SYMBOL(dev_open);
1478 
1479 static void __dev_close_many(struct list_head *head)
1480 {
1481 	struct net_device *dev;
1482 
1483 	ASSERT_RTNL();
1484 	might_sleep();
1485 
1486 	list_for_each_entry(dev, head, close_list) {
1487 		/* Temporarily disable netpoll until the interface is down */
1488 		netpoll_poll_disable(dev);
1489 
1490 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1491 
1492 		clear_bit(__LINK_STATE_START, &dev->state);
1493 
1494 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1495 		 * can be even on different cpu. So just clear netif_running().
1496 		 *
1497 		 * dev->stop() will invoke napi_disable() on all of it's
1498 		 * napi_struct instances on this device.
1499 		 */
1500 		smp_mb__after_atomic(); /* Commit netif_running(). */
1501 	}
1502 
1503 	dev_deactivate_many(head);
1504 
1505 	list_for_each_entry(dev, head, close_list) {
1506 		const struct net_device_ops *ops = dev->netdev_ops;
1507 
1508 		/*
1509 		 *	Call the device specific close. This cannot fail.
1510 		 *	Only if device is UP
1511 		 *
1512 		 *	We allow it to be called even after a DETACH hot-plug
1513 		 *	event.
1514 		 */
1515 		if (ops->ndo_stop)
1516 			ops->ndo_stop(dev);
1517 
1518 		dev->flags &= ~IFF_UP;
1519 		netpoll_poll_enable(dev);
1520 	}
1521 }
1522 
1523 static void __dev_close(struct net_device *dev)
1524 {
1525 	LIST_HEAD(single);
1526 
1527 	list_add(&dev->close_list, &single);
1528 	__dev_close_many(&single);
1529 	list_del(&single);
1530 }
1531 
1532 void dev_close_many(struct list_head *head, bool unlink)
1533 {
1534 	struct net_device *dev, *tmp;
1535 
1536 	/* Remove the devices that don't need to be closed */
1537 	list_for_each_entry_safe(dev, tmp, head, close_list)
1538 		if (!(dev->flags & IFF_UP))
1539 			list_del_init(&dev->close_list);
1540 
1541 	__dev_close_many(head);
1542 
1543 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1544 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1545 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1546 		if (unlink)
1547 			list_del_init(&dev->close_list);
1548 	}
1549 }
1550 EXPORT_SYMBOL(dev_close_many);
1551 
1552 /**
1553  *	dev_close - shutdown an interface.
1554  *	@dev: device to shutdown
1555  *
1556  *	This function moves an active device into down state. A
1557  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1558  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1559  *	chain.
1560  */
1561 void dev_close(struct net_device *dev)
1562 {
1563 	if (dev->flags & IFF_UP) {
1564 		LIST_HEAD(single);
1565 
1566 		list_add(&dev->close_list, &single);
1567 		dev_close_many(&single, true);
1568 		list_del(&single);
1569 	}
1570 }
1571 EXPORT_SYMBOL(dev_close);
1572 
1573 
1574 /**
1575  *	dev_disable_lro - disable Large Receive Offload on a device
1576  *	@dev: device
1577  *
1578  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1579  *	called under RTNL.  This is needed if received packets may be
1580  *	forwarded to another interface.
1581  */
1582 void dev_disable_lro(struct net_device *dev)
1583 {
1584 	struct net_device *lower_dev;
1585 	struct list_head *iter;
1586 
1587 	dev->wanted_features &= ~NETIF_F_LRO;
1588 	netdev_update_features(dev);
1589 
1590 	if (unlikely(dev->features & NETIF_F_LRO))
1591 		netdev_WARN(dev, "failed to disable LRO!\n");
1592 
1593 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1594 		dev_disable_lro(lower_dev);
1595 }
1596 EXPORT_SYMBOL(dev_disable_lro);
1597 
1598 /**
1599  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1600  *	@dev: device
1601  *
1602  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1603  *	called under RTNL.  This is needed if Generic XDP is installed on
1604  *	the device.
1605  */
1606 static void dev_disable_gro_hw(struct net_device *dev)
1607 {
1608 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1609 	netdev_update_features(dev);
1610 
1611 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1612 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1613 }
1614 
1615 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1616 {
1617 #define N(val) 						\
1618 	case NETDEV_##val:				\
1619 		return "NETDEV_" __stringify(val);
1620 	switch (cmd) {
1621 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1622 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1623 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1624 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1625 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1626 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1627 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1628 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1629 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1630 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1631 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1632 	}
1633 #undef N
1634 	return "UNKNOWN_NETDEV_EVENT";
1635 }
1636 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1637 
1638 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1639 				   struct net_device *dev)
1640 {
1641 	struct netdev_notifier_info info = {
1642 		.dev = dev,
1643 	};
1644 
1645 	return nb->notifier_call(nb, val, &info);
1646 }
1647 
1648 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1649 					     struct net_device *dev)
1650 {
1651 	int err;
1652 
1653 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654 	err = notifier_to_errno(err);
1655 	if (err)
1656 		return err;
1657 
1658 	if (!(dev->flags & IFF_UP))
1659 		return 0;
1660 
1661 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1662 	return 0;
1663 }
1664 
1665 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1666 						struct net_device *dev)
1667 {
1668 	if (dev->flags & IFF_UP) {
1669 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1670 					dev);
1671 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1672 	}
1673 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1674 }
1675 
1676 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1677 						 struct net *net)
1678 {
1679 	struct net_device *dev;
1680 	int err;
1681 
1682 	for_each_netdev(net, dev) {
1683 		err = call_netdevice_register_notifiers(nb, dev);
1684 		if (err)
1685 			goto rollback;
1686 	}
1687 	return 0;
1688 
1689 rollback:
1690 	for_each_netdev_continue_reverse(net, dev)
1691 		call_netdevice_unregister_notifiers(nb, dev);
1692 	return err;
1693 }
1694 
1695 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1696 						    struct net *net)
1697 {
1698 	struct net_device *dev;
1699 
1700 	for_each_netdev(net, dev)
1701 		call_netdevice_unregister_notifiers(nb, dev);
1702 }
1703 
1704 static int dev_boot_phase = 1;
1705 
1706 /**
1707  * register_netdevice_notifier - register a network notifier block
1708  * @nb: notifier
1709  *
1710  * Register a notifier to be called when network device events occur.
1711  * The notifier passed is linked into the kernel structures and must
1712  * not be reused until it has been unregistered. A negative errno code
1713  * is returned on a failure.
1714  *
1715  * When registered all registration and up events are replayed
1716  * to the new notifier to allow device to have a race free
1717  * view of the network device list.
1718  */
1719 
1720 int register_netdevice_notifier(struct notifier_block *nb)
1721 {
1722 	struct net *net;
1723 	int err;
1724 
1725 	/* Close race with setup_net() and cleanup_net() */
1726 	down_write(&pernet_ops_rwsem);
1727 	rtnl_lock();
1728 	err = raw_notifier_chain_register(&netdev_chain, nb);
1729 	if (err)
1730 		goto unlock;
1731 	if (dev_boot_phase)
1732 		goto unlock;
1733 	for_each_net(net) {
1734 		err = call_netdevice_register_net_notifiers(nb, net);
1735 		if (err)
1736 			goto rollback;
1737 	}
1738 
1739 unlock:
1740 	rtnl_unlock();
1741 	up_write(&pernet_ops_rwsem);
1742 	return err;
1743 
1744 rollback:
1745 	for_each_net_continue_reverse(net)
1746 		call_netdevice_unregister_net_notifiers(nb, net);
1747 
1748 	raw_notifier_chain_unregister(&netdev_chain, nb);
1749 	goto unlock;
1750 }
1751 EXPORT_SYMBOL(register_netdevice_notifier);
1752 
1753 /**
1754  * unregister_netdevice_notifier - unregister a network notifier block
1755  * @nb: notifier
1756  *
1757  * Unregister a notifier previously registered by
1758  * register_netdevice_notifier(). The notifier is unlinked into the
1759  * kernel structures and may then be reused. A negative errno code
1760  * is returned on a failure.
1761  *
1762  * After unregistering unregister and down device events are synthesized
1763  * for all devices on the device list to the removed notifier to remove
1764  * the need for special case cleanup code.
1765  */
1766 
1767 int unregister_netdevice_notifier(struct notifier_block *nb)
1768 {
1769 	struct net *net;
1770 	int err;
1771 
1772 	/* Close race with setup_net() and cleanup_net() */
1773 	down_write(&pernet_ops_rwsem);
1774 	rtnl_lock();
1775 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1776 	if (err)
1777 		goto unlock;
1778 
1779 	for_each_net(net)
1780 		call_netdevice_unregister_net_notifiers(nb, net);
1781 
1782 unlock:
1783 	rtnl_unlock();
1784 	up_write(&pernet_ops_rwsem);
1785 	return err;
1786 }
1787 EXPORT_SYMBOL(unregister_netdevice_notifier);
1788 
1789 static int __register_netdevice_notifier_net(struct net *net,
1790 					     struct notifier_block *nb,
1791 					     bool ignore_call_fail)
1792 {
1793 	int err;
1794 
1795 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1796 	if (err)
1797 		return err;
1798 	if (dev_boot_phase)
1799 		return 0;
1800 
1801 	err = call_netdevice_register_net_notifiers(nb, net);
1802 	if (err && !ignore_call_fail)
1803 		goto chain_unregister;
1804 
1805 	return 0;
1806 
1807 chain_unregister:
1808 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1809 	return err;
1810 }
1811 
1812 static int __unregister_netdevice_notifier_net(struct net *net,
1813 					       struct notifier_block *nb)
1814 {
1815 	int err;
1816 
1817 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1818 	if (err)
1819 		return err;
1820 
1821 	call_netdevice_unregister_net_notifiers(nb, net);
1822 	return 0;
1823 }
1824 
1825 /**
1826  * register_netdevice_notifier_net - register a per-netns network notifier block
1827  * @net: network namespace
1828  * @nb: notifier
1829  *
1830  * Register a notifier to be called when network device events occur.
1831  * The notifier passed is linked into the kernel structures and must
1832  * not be reused until it has been unregistered. A negative errno code
1833  * is returned on a failure.
1834  *
1835  * When registered all registration and up events are replayed
1836  * to the new notifier to allow device to have a race free
1837  * view of the network device list.
1838  */
1839 
1840 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1841 {
1842 	int err;
1843 
1844 	rtnl_lock();
1845 	err = __register_netdevice_notifier_net(net, nb, false);
1846 	rtnl_unlock();
1847 	return err;
1848 }
1849 EXPORT_SYMBOL(register_netdevice_notifier_net);
1850 
1851 /**
1852  * unregister_netdevice_notifier_net - unregister a per-netns
1853  *                                     network notifier block
1854  * @net: network namespace
1855  * @nb: notifier
1856  *
1857  * Unregister a notifier previously registered by
1858  * register_netdevice_notifier(). The notifier is unlinked into the
1859  * kernel structures and may then be reused. A negative errno code
1860  * is returned on a failure.
1861  *
1862  * After unregistering unregister and down device events are synthesized
1863  * for all devices on the device list to the removed notifier to remove
1864  * the need for special case cleanup code.
1865  */
1866 
1867 int unregister_netdevice_notifier_net(struct net *net,
1868 				      struct notifier_block *nb)
1869 {
1870 	int err;
1871 
1872 	rtnl_lock();
1873 	err = __unregister_netdevice_notifier_net(net, nb);
1874 	rtnl_unlock();
1875 	return err;
1876 }
1877 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1878 
1879 int register_netdevice_notifier_dev_net(struct net_device *dev,
1880 					struct notifier_block *nb,
1881 					struct netdev_net_notifier *nn)
1882 {
1883 	int err;
1884 
1885 	rtnl_lock();
1886 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1887 	if (!err) {
1888 		nn->nb = nb;
1889 		list_add(&nn->list, &dev->net_notifier_list);
1890 	}
1891 	rtnl_unlock();
1892 	return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1895 
1896 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1897 					  struct notifier_block *nb,
1898 					  struct netdev_net_notifier *nn)
1899 {
1900 	int err;
1901 
1902 	rtnl_lock();
1903 	list_del(&nn->list);
1904 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1905 	rtnl_unlock();
1906 	return err;
1907 }
1908 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1909 
1910 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1911 					     struct net *net)
1912 {
1913 	struct netdev_net_notifier *nn;
1914 
1915 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1916 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1917 		__register_netdevice_notifier_net(net, nn->nb, true);
1918 	}
1919 }
1920 
1921 /**
1922  *	call_netdevice_notifiers_info - call all network notifier blocks
1923  *	@val: value passed unmodified to notifier function
1924  *	@info: notifier information data
1925  *
1926  *	Call all network notifier blocks.  Parameters and return value
1927  *	are as for raw_notifier_call_chain().
1928  */
1929 
1930 static int call_netdevice_notifiers_info(unsigned long val,
1931 					 struct netdev_notifier_info *info)
1932 {
1933 	struct net *net = dev_net(info->dev);
1934 	int ret;
1935 
1936 	ASSERT_RTNL();
1937 
1938 	/* Run per-netns notifier block chain first, then run the global one.
1939 	 * Hopefully, one day, the global one is going to be removed after
1940 	 * all notifier block registrators get converted to be per-netns.
1941 	 */
1942 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1943 	if (ret & NOTIFY_STOP_MASK)
1944 		return ret;
1945 	return raw_notifier_call_chain(&netdev_chain, val, info);
1946 }
1947 
1948 /**
1949  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1950  *	                                       for and rollback on error
1951  *	@val_up: value passed unmodified to notifier function
1952  *	@val_down: value passed unmodified to the notifier function when
1953  *	           recovering from an error on @val_up
1954  *	@info: notifier information data
1955  *
1956  *	Call all per-netns network notifier blocks, but not notifier blocks on
1957  *	the global notifier chain. Parameters and return value are as for
1958  *	raw_notifier_call_chain_robust().
1959  */
1960 
1961 static int
1962 call_netdevice_notifiers_info_robust(unsigned long val_up,
1963 				     unsigned long val_down,
1964 				     struct netdev_notifier_info *info)
1965 {
1966 	struct net *net = dev_net(info->dev);
1967 
1968 	ASSERT_RTNL();
1969 
1970 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1971 					      val_up, val_down, info);
1972 }
1973 
1974 static int call_netdevice_notifiers_extack(unsigned long val,
1975 					   struct net_device *dev,
1976 					   struct netlink_ext_ack *extack)
1977 {
1978 	struct netdev_notifier_info info = {
1979 		.dev = dev,
1980 		.extack = extack,
1981 	};
1982 
1983 	return call_netdevice_notifiers_info(val, &info);
1984 }
1985 
1986 /**
1987  *	call_netdevice_notifiers - call all network notifier blocks
1988  *      @val: value passed unmodified to notifier function
1989  *      @dev: net_device pointer passed unmodified to notifier function
1990  *
1991  *	Call all network notifier blocks.  Parameters and return value
1992  *	are as for raw_notifier_call_chain().
1993  */
1994 
1995 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1996 {
1997 	return call_netdevice_notifiers_extack(val, dev, NULL);
1998 }
1999 EXPORT_SYMBOL(call_netdevice_notifiers);
2000 
2001 /**
2002  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2003  *	@val: value passed unmodified to notifier function
2004  *	@dev: net_device pointer passed unmodified to notifier function
2005  *	@arg: additional u32 argument passed to the notifier function
2006  *
2007  *	Call all network notifier blocks.  Parameters and return value
2008  *	are as for raw_notifier_call_chain().
2009  */
2010 static int call_netdevice_notifiers_mtu(unsigned long val,
2011 					struct net_device *dev, u32 arg)
2012 {
2013 	struct netdev_notifier_info_ext info = {
2014 		.info.dev = dev,
2015 		.ext.mtu = arg,
2016 	};
2017 
2018 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2019 
2020 	return call_netdevice_notifiers_info(val, &info.info);
2021 }
2022 
2023 #ifdef CONFIG_NET_INGRESS
2024 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2025 
2026 void net_inc_ingress_queue(void)
2027 {
2028 	static_branch_inc(&ingress_needed_key);
2029 }
2030 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2031 
2032 void net_dec_ingress_queue(void)
2033 {
2034 	static_branch_dec(&ingress_needed_key);
2035 }
2036 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2037 #endif
2038 
2039 #ifdef CONFIG_NET_EGRESS
2040 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2041 
2042 void net_inc_egress_queue(void)
2043 {
2044 	static_branch_inc(&egress_needed_key);
2045 }
2046 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2047 
2048 void net_dec_egress_queue(void)
2049 {
2050 	static_branch_dec(&egress_needed_key);
2051 }
2052 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2053 #endif
2054 
2055 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2056 EXPORT_SYMBOL(netstamp_needed_key);
2057 #ifdef CONFIG_JUMP_LABEL
2058 static atomic_t netstamp_needed_deferred;
2059 static atomic_t netstamp_wanted;
2060 static void netstamp_clear(struct work_struct *work)
2061 {
2062 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2063 	int wanted;
2064 
2065 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2066 	if (wanted > 0)
2067 		static_branch_enable(&netstamp_needed_key);
2068 	else
2069 		static_branch_disable(&netstamp_needed_key);
2070 }
2071 static DECLARE_WORK(netstamp_work, netstamp_clear);
2072 #endif
2073 
2074 void net_enable_timestamp(void)
2075 {
2076 #ifdef CONFIG_JUMP_LABEL
2077 	int wanted;
2078 
2079 	while (1) {
2080 		wanted = atomic_read(&netstamp_wanted);
2081 		if (wanted <= 0)
2082 			break;
2083 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2084 			return;
2085 	}
2086 	atomic_inc(&netstamp_needed_deferred);
2087 	schedule_work(&netstamp_work);
2088 #else
2089 	static_branch_inc(&netstamp_needed_key);
2090 #endif
2091 }
2092 EXPORT_SYMBOL(net_enable_timestamp);
2093 
2094 void net_disable_timestamp(void)
2095 {
2096 #ifdef CONFIG_JUMP_LABEL
2097 	int wanted;
2098 
2099 	while (1) {
2100 		wanted = atomic_read(&netstamp_wanted);
2101 		if (wanted <= 1)
2102 			break;
2103 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2104 			return;
2105 	}
2106 	atomic_dec(&netstamp_needed_deferred);
2107 	schedule_work(&netstamp_work);
2108 #else
2109 	static_branch_dec(&netstamp_needed_key);
2110 #endif
2111 }
2112 EXPORT_SYMBOL(net_disable_timestamp);
2113 
2114 static inline void net_timestamp_set(struct sk_buff *skb)
2115 {
2116 	skb->tstamp = 0;
2117 	skb->mono_delivery_time = 0;
2118 	if (static_branch_unlikely(&netstamp_needed_key))
2119 		skb->tstamp = ktime_get_real();
2120 }
2121 
2122 #define net_timestamp_check(COND, SKB)				\
2123 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2124 		if ((COND) && !(SKB)->tstamp)			\
2125 			(SKB)->tstamp = ktime_get_real();	\
2126 	}							\
2127 
2128 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2129 {
2130 	return __is_skb_forwardable(dev, skb, true);
2131 }
2132 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2133 
2134 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2135 			      bool check_mtu)
2136 {
2137 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2138 
2139 	if (likely(!ret)) {
2140 		skb->protocol = eth_type_trans(skb, dev);
2141 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2142 	}
2143 
2144 	return ret;
2145 }
2146 
2147 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2148 {
2149 	return __dev_forward_skb2(dev, skb, true);
2150 }
2151 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2152 
2153 /**
2154  * dev_forward_skb - loopback an skb to another netif
2155  *
2156  * @dev: destination network device
2157  * @skb: buffer to forward
2158  *
2159  * return values:
2160  *	NET_RX_SUCCESS	(no congestion)
2161  *	NET_RX_DROP     (packet was dropped, but freed)
2162  *
2163  * dev_forward_skb can be used for injecting an skb from the
2164  * start_xmit function of one device into the receive queue
2165  * of another device.
2166  *
2167  * The receiving device may be in another namespace, so
2168  * we have to clear all information in the skb that could
2169  * impact namespace isolation.
2170  */
2171 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2172 {
2173 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2174 }
2175 EXPORT_SYMBOL_GPL(dev_forward_skb);
2176 
2177 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2178 {
2179 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2180 }
2181 
2182 static inline int deliver_skb(struct sk_buff *skb,
2183 			      struct packet_type *pt_prev,
2184 			      struct net_device *orig_dev)
2185 {
2186 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2187 		return -ENOMEM;
2188 	refcount_inc(&skb->users);
2189 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2190 }
2191 
2192 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2193 					  struct packet_type **pt,
2194 					  struct net_device *orig_dev,
2195 					  __be16 type,
2196 					  struct list_head *ptype_list)
2197 {
2198 	struct packet_type *ptype, *pt_prev = *pt;
2199 
2200 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2201 		if (ptype->type != type)
2202 			continue;
2203 		if (pt_prev)
2204 			deliver_skb(skb, pt_prev, orig_dev);
2205 		pt_prev = ptype;
2206 	}
2207 	*pt = pt_prev;
2208 }
2209 
2210 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2211 {
2212 	if (!ptype->af_packet_priv || !skb->sk)
2213 		return false;
2214 
2215 	if (ptype->id_match)
2216 		return ptype->id_match(ptype, skb->sk);
2217 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2218 		return true;
2219 
2220 	return false;
2221 }
2222 
2223 /**
2224  * dev_nit_active - return true if any network interface taps are in use
2225  *
2226  * @dev: network device to check for the presence of taps
2227  */
2228 bool dev_nit_active(struct net_device *dev)
2229 {
2230 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2231 }
2232 EXPORT_SYMBOL_GPL(dev_nit_active);
2233 
2234 /*
2235  *	Support routine. Sends outgoing frames to any network
2236  *	taps currently in use.
2237  */
2238 
2239 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240 {
2241 	struct packet_type *ptype;
2242 	struct sk_buff *skb2 = NULL;
2243 	struct packet_type *pt_prev = NULL;
2244 	struct list_head *ptype_list = &ptype_all;
2245 
2246 	rcu_read_lock();
2247 again:
2248 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2249 		if (ptype->ignore_outgoing)
2250 			continue;
2251 
2252 		/* Never send packets back to the socket
2253 		 * they originated from - MvS (miquels@drinkel.ow.org)
2254 		 */
2255 		if (skb_loop_sk(ptype, skb))
2256 			continue;
2257 
2258 		if (pt_prev) {
2259 			deliver_skb(skb2, pt_prev, skb->dev);
2260 			pt_prev = ptype;
2261 			continue;
2262 		}
2263 
2264 		/* need to clone skb, done only once */
2265 		skb2 = skb_clone(skb, GFP_ATOMIC);
2266 		if (!skb2)
2267 			goto out_unlock;
2268 
2269 		net_timestamp_set(skb2);
2270 
2271 		/* skb->nh should be correctly
2272 		 * set by sender, so that the second statement is
2273 		 * just protection against buggy protocols.
2274 		 */
2275 		skb_reset_mac_header(skb2);
2276 
2277 		if (skb_network_header(skb2) < skb2->data ||
2278 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2279 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2280 					     ntohs(skb2->protocol),
2281 					     dev->name);
2282 			skb_reset_network_header(skb2);
2283 		}
2284 
2285 		skb2->transport_header = skb2->network_header;
2286 		skb2->pkt_type = PACKET_OUTGOING;
2287 		pt_prev = ptype;
2288 	}
2289 
2290 	if (ptype_list == &ptype_all) {
2291 		ptype_list = &dev->ptype_all;
2292 		goto again;
2293 	}
2294 out_unlock:
2295 	if (pt_prev) {
2296 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2297 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2298 		else
2299 			kfree_skb(skb2);
2300 	}
2301 	rcu_read_unlock();
2302 }
2303 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2304 
2305 /**
2306  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2307  * @dev: Network device
2308  * @txq: number of queues available
2309  *
2310  * If real_num_tx_queues is changed the tc mappings may no longer be
2311  * valid. To resolve this verify the tc mapping remains valid and if
2312  * not NULL the mapping. With no priorities mapping to this
2313  * offset/count pair it will no longer be used. In the worst case TC0
2314  * is invalid nothing can be done so disable priority mappings. If is
2315  * expected that drivers will fix this mapping if they can before
2316  * calling netif_set_real_num_tx_queues.
2317  */
2318 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2319 {
2320 	int i;
2321 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2322 
2323 	/* If TC0 is invalidated disable TC mapping */
2324 	if (tc->offset + tc->count > txq) {
2325 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2326 		dev->num_tc = 0;
2327 		return;
2328 	}
2329 
2330 	/* Invalidated prio to tc mappings set to TC0 */
2331 	for (i = 1; i < TC_BITMASK + 1; i++) {
2332 		int q = netdev_get_prio_tc_map(dev, i);
2333 
2334 		tc = &dev->tc_to_txq[q];
2335 		if (tc->offset + tc->count > txq) {
2336 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2337 				    i, q);
2338 			netdev_set_prio_tc_map(dev, i, 0);
2339 		}
2340 	}
2341 }
2342 
2343 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2344 {
2345 	if (dev->num_tc) {
2346 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2347 		int i;
2348 
2349 		/* walk through the TCs and see if it falls into any of them */
2350 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2351 			if ((txq - tc->offset) < tc->count)
2352 				return i;
2353 		}
2354 
2355 		/* didn't find it, just return -1 to indicate no match */
2356 		return -1;
2357 	}
2358 
2359 	return 0;
2360 }
2361 EXPORT_SYMBOL(netdev_txq_to_tc);
2362 
2363 #ifdef CONFIG_XPS
2364 static struct static_key xps_needed __read_mostly;
2365 static struct static_key xps_rxqs_needed __read_mostly;
2366 static DEFINE_MUTEX(xps_map_mutex);
2367 #define xmap_dereference(P)		\
2368 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2369 
2370 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2371 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2372 {
2373 	struct xps_map *map = NULL;
2374 	int pos;
2375 
2376 	if (dev_maps)
2377 		map = xmap_dereference(dev_maps->attr_map[tci]);
2378 	if (!map)
2379 		return false;
2380 
2381 	for (pos = map->len; pos--;) {
2382 		if (map->queues[pos] != index)
2383 			continue;
2384 
2385 		if (map->len > 1) {
2386 			map->queues[pos] = map->queues[--map->len];
2387 			break;
2388 		}
2389 
2390 		if (old_maps)
2391 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2392 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2393 		kfree_rcu(map, rcu);
2394 		return false;
2395 	}
2396 
2397 	return true;
2398 }
2399 
2400 static bool remove_xps_queue_cpu(struct net_device *dev,
2401 				 struct xps_dev_maps *dev_maps,
2402 				 int cpu, u16 offset, u16 count)
2403 {
2404 	int num_tc = dev_maps->num_tc;
2405 	bool active = false;
2406 	int tci;
2407 
2408 	for (tci = cpu * num_tc; num_tc--; tci++) {
2409 		int i, j;
2410 
2411 		for (i = count, j = offset; i--; j++) {
2412 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2413 				break;
2414 		}
2415 
2416 		active |= i < 0;
2417 	}
2418 
2419 	return active;
2420 }
2421 
2422 static void reset_xps_maps(struct net_device *dev,
2423 			   struct xps_dev_maps *dev_maps,
2424 			   enum xps_map_type type)
2425 {
2426 	static_key_slow_dec_cpuslocked(&xps_needed);
2427 	if (type == XPS_RXQS)
2428 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2429 
2430 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2431 
2432 	kfree_rcu(dev_maps, rcu);
2433 }
2434 
2435 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2436 			   u16 offset, u16 count)
2437 {
2438 	struct xps_dev_maps *dev_maps;
2439 	bool active = false;
2440 	int i, j;
2441 
2442 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2443 	if (!dev_maps)
2444 		return;
2445 
2446 	for (j = 0; j < dev_maps->nr_ids; j++)
2447 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2448 	if (!active)
2449 		reset_xps_maps(dev, dev_maps, type);
2450 
2451 	if (type == XPS_CPUS) {
2452 		for (i = offset + (count - 1); count--; i--)
2453 			netdev_queue_numa_node_write(
2454 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2455 	}
2456 }
2457 
2458 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2459 				   u16 count)
2460 {
2461 	if (!static_key_false(&xps_needed))
2462 		return;
2463 
2464 	cpus_read_lock();
2465 	mutex_lock(&xps_map_mutex);
2466 
2467 	if (static_key_false(&xps_rxqs_needed))
2468 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2469 
2470 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2471 
2472 	mutex_unlock(&xps_map_mutex);
2473 	cpus_read_unlock();
2474 }
2475 
2476 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2477 {
2478 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2479 }
2480 
2481 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2482 				      u16 index, bool is_rxqs_map)
2483 {
2484 	struct xps_map *new_map;
2485 	int alloc_len = XPS_MIN_MAP_ALLOC;
2486 	int i, pos;
2487 
2488 	for (pos = 0; map && pos < map->len; pos++) {
2489 		if (map->queues[pos] != index)
2490 			continue;
2491 		return map;
2492 	}
2493 
2494 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2495 	if (map) {
2496 		if (pos < map->alloc_len)
2497 			return map;
2498 
2499 		alloc_len = map->alloc_len * 2;
2500 	}
2501 
2502 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2503 	 *  map
2504 	 */
2505 	if (is_rxqs_map)
2506 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2507 	else
2508 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2509 				       cpu_to_node(attr_index));
2510 	if (!new_map)
2511 		return NULL;
2512 
2513 	for (i = 0; i < pos; i++)
2514 		new_map->queues[i] = map->queues[i];
2515 	new_map->alloc_len = alloc_len;
2516 	new_map->len = pos;
2517 
2518 	return new_map;
2519 }
2520 
2521 /* Copy xps maps at a given index */
2522 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2523 			      struct xps_dev_maps *new_dev_maps, int index,
2524 			      int tc, bool skip_tc)
2525 {
2526 	int i, tci = index * dev_maps->num_tc;
2527 	struct xps_map *map;
2528 
2529 	/* copy maps belonging to foreign traffic classes */
2530 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2531 		if (i == tc && skip_tc)
2532 			continue;
2533 
2534 		/* fill in the new device map from the old device map */
2535 		map = xmap_dereference(dev_maps->attr_map[tci]);
2536 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2537 	}
2538 }
2539 
2540 /* Must be called under cpus_read_lock */
2541 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2542 			  u16 index, enum xps_map_type type)
2543 {
2544 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2545 	const unsigned long *online_mask = NULL;
2546 	bool active = false, copy = false;
2547 	int i, j, tci, numa_node_id = -2;
2548 	int maps_sz, num_tc = 1, tc = 0;
2549 	struct xps_map *map, *new_map;
2550 	unsigned int nr_ids;
2551 
2552 	if (dev->num_tc) {
2553 		/* Do not allow XPS on subordinate device directly */
2554 		num_tc = dev->num_tc;
2555 		if (num_tc < 0)
2556 			return -EINVAL;
2557 
2558 		/* If queue belongs to subordinate dev use its map */
2559 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560 
2561 		tc = netdev_txq_to_tc(dev, index);
2562 		if (tc < 0)
2563 			return -EINVAL;
2564 	}
2565 
2566 	mutex_lock(&xps_map_mutex);
2567 
2568 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2569 	if (type == XPS_RXQS) {
2570 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571 		nr_ids = dev->num_rx_queues;
2572 	} else {
2573 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574 		if (num_possible_cpus() > 1)
2575 			online_mask = cpumask_bits(cpu_online_mask);
2576 		nr_ids = nr_cpu_ids;
2577 	}
2578 
2579 	if (maps_sz < L1_CACHE_BYTES)
2580 		maps_sz = L1_CACHE_BYTES;
2581 
2582 	/* The old dev_maps could be larger or smaller than the one we're
2583 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2584 	 * between. We could try to be smart, but let's be safe instead and only
2585 	 * copy foreign traffic classes if the two map sizes match.
2586 	 */
2587 	if (dev_maps &&
2588 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589 		copy = true;
2590 
2591 	/* allocate memory for queue storage */
2592 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593 	     j < nr_ids;) {
2594 		if (!new_dev_maps) {
2595 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596 			if (!new_dev_maps) {
2597 				mutex_unlock(&xps_map_mutex);
2598 				return -ENOMEM;
2599 			}
2600 
2601 			new_dev_maps->nr_ids = nr_ids;
2602 			new_dev_maps->num_tc = num_tc;
2603 		}
2604 
2605 		tci = j * num_tc + tc;
2606 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607 
2608 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2609 		if (!map)
2610 			goto error;
2611 
2612 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613 	}
2614 
2615 	if (!new_dev_maps)
2616 		goto out_no_new_maps;
2617 
2618 	if (!dev_maps) {
2619 		/* Increment static keys at most once per type */
2620 		static_key_slow_inc_cpuslocked(&xps_needed);
2621 		if (type == XPS_RXQS)
2622 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623 	}
2624 
2625 	for (j = 0; j < nr_ids; j++) {
2626 		bool skip_tc = false;
2627 
2628 		tci = j * num_tc + tc;
2629 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2630 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2631 			/* add tx-queue to CPU/rx-queue maps */
2632 			int pos = 0;
2633 
2634 			skip_tc = true;
2635 
2636 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637 			while ((pos < map->len) && (map->queues[pos] != index))
2638 				pos++;
2639 
2640 			if (pos == map->len)
2641 				map->queues[map->len++] = index;
2642 #ifdef CONFIG_NUMA
2643 			if (type == XPS_CPUS) {
2644 				if (numa_node_id == -2)
2645 					numa_node_id = cpu_to_node(j);
2646 				else if (numa_node_id != cpu_to_node(j))
2647 					numa_node_id = -1;
2648 			}
2649 #endif
2650 		}
2651 
2652 		if (copy)
2653 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2654 					  skip_tc);
2655 	}
2656 
2657 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658 
2659 	/* Cleanup old maps */
2660 	if (!dev_maps)
2661 		goto out_no_old_maps;
2662 
2663 	for (j = 0; j < dev_maps->nr_ids; j++) {
2664 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665 			map = xmap_dereference(dev_maps->attr_map[tci]);
2666 			if (!map)
2667 				continue;
2668 
2669 			if (copy) {
2670 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671 				if (map == new_map)
2672 					continue;
2673 			}
2674 
2675 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676 			kfree_rcu(map, rcu);
2677 		}
2678 	}
2679 
2680 	old_dev_maps = dev_maps;
2681 
2682 out_no_old_maps:
2683 	dev_maps = new_dev_maps;
2684 	active = true;
2685 
2686 out_no_new_maps:
2687 	if (type == XPS_CPUS)
2688 		/* update Tx queue numa node */
2689 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2690 					     (numa_node_id >= 0) ?
2691 					     numa_node_id : NUMA_NO_NODE);
2692 
2693 	if (!dev_maps)
2694 		goto out_no_maps;
2695 
2696 	/* removes tx-queue from unused CPUs/rx-queues */
2697 	for (j = 0; j < dev_maps->nr_ids; j++) {
2698 		tci = j * dev_maps->num_tc;
2699 
2700 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701 			if (i == tc &&
2702 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2703 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704 				continue;
2705 
2706 			active |= remove_xps_queue(dev_maps,
2707 						   copy ? old_dev_maps : NULL,
2708 						   tci, index);
2709 		}
2710 	}
2711 
2712 	if (old_dev_maps)
2713 		kfree_rcu(old_dev_maps, rcu);
2714 
2715 	/* free map if not active */
2716 	if (!active)
2717 		reset_xps_maps(dev, dev_maps, type);
2718 
2719 out_no_maps:
2720 	mutex_unlock(&xps_map_mutex);
2721 
2722 	return 0;
2723 error:
2724 	/* remove any maps that we added */
2725 	for (j = 0; j < nr_ids; j++) {
2726 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728 			map = copy ?
2729 			      xmap_dereference(dev_maps->attr_map[tci]) :
2730 			      NULL;
2731 			if (new_map && new_map != map)
2732 				kfree(new_map);
2733 		}
2734 	}
2735 
2736 	mutex_unlock(&xps_map_mutex);
2737 
2738 	kfree(new_dev_maps);
2739 	return -ENOMEM;
2740 }
2741 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742 
2743 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744 			u16 index)
2745 {
2746 	int ret;
2747 
2748 	cpus_read_lock();
2749 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750 	cpus_read_unlock();
2751 
2752 	return ret;
2753 }
2754 EXPORT_SYMBOL(netif_set_xps_queue);
2755 
2756 #endif
2757 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758 {
2759 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760 
2761 	/* Unbind any subordinate channels */
2762 	while (txq-- != &dev->_tx[0]) {
2763 		if (txq->sb_dev)
2764 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2765 	}
2766 }
2767 
2768 void netdev_reset_tc(struct net_device *dev)
2769 {
2770 #ifdef CONFIG_XPS
2771 	netif_reset_xps_queues_gt(dev, 0);
2772 #endif
2773 	netdev_unbind_all_sb_channels(dev);
2774 
2775 	/* Reset TC configuration of device */
2776 	dev->num_tc = 0;
2777 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779 }
2780 EXPORT_SYMBOL(netdev_reset_tc);
2781 
2782 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783 {
2784 	if (tc >= dev->num_tc)
2785 		return -EINVAL;
2786 
2787 #ifdef CONFIG_XPS
2788 	netif_reset_xps_queues(dev, offset, count);
2789 #endif
2790 	dev->tc_to_txq[tc].count = count;
2791 	dev->tc_to_txq[tc].offset = offset;
2792 	return 0;
2793 }
2794 EXPORT_SYMBOL(netdev_set_tc_queue);
2795 
2796 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797 {
2798 	if (num_tc > TC_MAX_QUEUE)
2799 		return -EINVAL;
2800 
2801 #ifdef CONFIG_XPS
2802 	netif_reset_xps_queues_gt(dev, 0);
2803 #endif
2804 	netdev_unbind_all_sb_channels(dev);
2805 
2806 	dev->num_tc = num_tc;
2807 	return 0;
2808 }
2809 EXPORT_SYMBOL(netdev_set_num_tc);
2810 
2811 void netdev_unbind_sb_channel(struct net_device *dev,
2812 			      struct net_device *sb_dev)
2813 {
2814 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815 
2816 #ifdef CONFIG_XPS
2817 	netif_reset_xps_queues_gt(sb_dev, 0);
2818 #endif
2819 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821 
2822 	while (txq-- != &dev->_tx[0]) {
2823 		if (txq->sb_dev == sb_dev)
2824 			txq->sb_dev = NULL;
2825 	}
2826 }
2827 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828 
2829 int netdev_bind_sb_channel_queue(struct net_device *dev,
2830 				 struct net_device *sb_dev,
2831 				 u8 tc, u16 count, u16 offset)
2832 {
2833 	/* Make certain the sb_dev and dev are already configured */
2834 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835 		return -EINVAL;
2836 
2837 	/* We cannot hand out queues we don't have */
2838 	if ((offset + count) > dev->real_num_tx_queues)
2839 		return -EINVAL;
2840 
2841 	/* Record the mapping */
2842 	sb_dev->tc_to_txq[tc].count = count;
2843 	sb_dev->tc_to_txq[tc].offset = offset;
2844 
2845 	/* Provide a way for Tx queue to find the tc_to_txq map or
2846 	 * XPS map for itself.
2847 	 */
2848 	while (count--)
2849 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2850 
2851 	return 0;
2852 }
2853 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854 
2855 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856 {
2857 	/* Do not use a multiqueue device to represent a subordinate channel */
2858 	if (netif_is_multiqueue(dev))
2859 		return -ENODEV;
2860 
2861 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2862 	 * Channel 0 is meant to be "native" mode and used only to represent
2863 	 * the main root device. We allow writing 0 to reset the device back
2864 	 * to normal mode after being used as a subordinate channel.
2865 	 */
2866 	if (channel > S16_MAX)
2867 		return -EINVAL;
2868 
2869 	dev->num_tc = -channel;
2870 
2871 	return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_set_sb_channel);
2874 
2875 /*
2876  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878  */
2879 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880 {
2881 	bool disabling;
2882 	int rc;
2883 
2884 	disabling = txq < dev->real_num_tx_queues;
2885 
2886 	if (txq < 1 || txq > dev->num_tx_queues)
2887 		return -EINVAL;
2888 
2889 	if (dev->reg_state == NETREG_REGISTERED ||
2890 	    dev->reg_state == NETREG_UNREGISTERING) {
2891 		ASSERT_RTNL();
2892 
2893 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2894 						  txq);
2895 		if (rc)
2896 			return rc;
2897 
2898 		if (dev->num_tc)
2899 			netif_setup_tc(dev, txq);
2900 
2901 		dev_qdisc_change_real_num_tx(dev, txq);
2902 
2903 		dev->real_num_tx_queues = txq;
2904 
2905 		if (disabling) {
2906 			synchronize_net();
2907 			qdisc_reset_all_tx_gt(dev, txq);
2908 #ifdef CONFIG_XPS
2909 			netif_reset_xps_queues_gt(dev, txq);
2910 #endif
2911 		}
2912 	} else {
2913 		dev->real_num_tx_queues = txq;
2914 	}
2915 
2916 	return 0;
2917 }
2918 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919 
2920 #ifdef CONFIG_SYSFS
2921 /**
2922  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2923  *	@dev: Network device
2924  *	@rxq: Actual number of RX queues
2925  *
2926  *	This must be called either with the rtnl_lock held or before
2927  *	registration of the net device.  Returns 0 on success, or a
2928  *	negative error code.  If called before registration, it always
2929  *	succeeds.
2930  */
2931 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932 {
2933 	int rc;
2934 
2935 	if (rxq < 1 || rxq > dev->num_rx_queues)
2936 		return -EINVAL;
2937 
2938 	if (dev->reg_state == NETREG_REGISTERED) {
2939 		ASSERT_RTNL();
2940 
2941 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2942 						  rxq);
2943 		if (rc)
2944 			return rc;
2945 	}
2946 
2947 	dev->real_num_rx_queues = rxq;
2948 	return 0;
2949 }
2950 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951 #endif
2952 
2953 /**
2954  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2955  *	@dev: Network device
2956  *	@txq: Actual number of TX queues
2957  *	@rxq: Actual number of RX queues
2958  *
2959  *	Set the real number of both TX and RX queues.
2960  *	Does nothing if the number of queues is already correct.
2961  */
2962 int netif_set_real_num_queues(struct net_device *dev,
2963 			      unsigned int txq, unsigned int rxq)
2964 {
2965 	unsigned int old_rxq = dev->real_num_rx_queues;
2966 	int err;
2967 
2968 	if (txq < 1 || txq > dev->num_tx_queues ||
2969 	    rxq < 1 || rxq > dev->num_rx_queues)
2970 		return -EINVAL;
2971 
2972 	/* Start from increases, so the error path only does decreases -
2973 	 * decreases can't fail.
2974 	 */
2975 	if (rxq > dev->real_num_rx_queues) {
2976 		err = netif_set_real_num_rx_queues(dev, rxq);
2977 		if (err)
2978 			return err;
2979 	}
2980 	if (txq > dev->real_num_tx_queues) {
2981 		err = netif_set_real_num_tx_queues(dev, txq);
2982 		if (err)
2983 			goto undo_rx;
2984 	}
2985 	if (rxq < dev->real_num_rx_queues)
2986 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987 	if (txq < dev->real_num_tx_queues)
2988 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989 
2990 	return 0;
2991 undo_rx:
2992 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993 	return err;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_queues);
2996 
2997 /**
2998  * netif_set_tso_max_size() - set the max size of TSO frames supported
2999  * @dev:	netdev to update
3000  * @size:	max skb->len of a TSO frame
3001  *
3002  * Set the limit on the size of TSO super-frames the device can handle.
3003  * Unless explicitly set the stack will assume the value of
3004  * %GSO_LEGACY_MAX_SIZE.
3005  */
3006 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007 {
3008 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009 	if (size < READ_ONCE(dev->gso_max_size))
3010 		netif_set_gso_max_size(dev, size);
3011 }
3012 EXPORT_SYMBOL(netif_set_tso_max_size);
3013 
3014 /**
3015  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3016  * @dev:	netdev to update
3017  * @segs:	max number of TCP segments
3018  *
3019  * Set the limit on the number of TCP segments the device can generate from
3020  * a single TSO super-frame.
3021  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3022  */
3023 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3024 {
3025 	dev->tso_max_segs = segs;
3026 	if (segs < READ_ONCE(dev->gso_max_segs))
3027 		netif_set_gso_max_segs(dev, segs);
3028 }
3029 EXPORT_SYMBOL(netif_set_tso_max_segs);
3030 
3031 /**
3032  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3033  * @to:		netdev to update
3034  * @from:	netdev from which to copy the limits
3035  */
3036 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3037 {
3038 	netif_set_tso_max_size(to, from->tso_max_size);
3039 	netif_set_tso_max_segs(to, from->tso_max_segs);
3040 }
3041 EXPORT_SYMBOL(netif_inherit_tso_max);
3042 
3043 /**
3044  * netif_get_num_default_rss_queues - default number of RSS queues
3045  *
3046  * Default value is the number of physical cores if there are only 1 or 2, or
3047  * divided by 2 if there are more.
3048  */
3049 int netif_get_num_default_rss_queues(void)
3050 {
3051 	cpumask_var_t cpus;
3052 	int cpu, count = 0;
3053 
3054 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3055 		return 1;
3056 
3057 	cpumask_copy(cpus, cpu_online_mask);
3058 	for_each_cpu(cpu, cpus) {
3059 		++count;
3060 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3061 	}
3062 	free_cpumask_var(cpus);
3063 
3064 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3065 }
3066 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3067 
3068 static void __netif_reschedule(struct Qdisc *q)
3069 {
3070 	struct softnet_data *sd;
3071 	unsigned long flags;
3072 
3073 	local_irq_save(flags);
3074 	sd = this_cpu_ptr(&softnet_data);
3075 	q->next_sched = NULL;
3076 	*sd->output_queue_tailp = q;
3077 	sd->output_queue_tailp = &q->next_sched;
3078 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3079 	local_irq_restore(flags);
3080 }
3081 
3082 void __netif_schedule(struct Qdisc *q)
3083 {
3084 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3085 		__netif_reschedule(q);
3086 }
3087 EXPORT_SYMBOL(__netif_schedule);
3088 
3089 struct dev_kfree_skb_cb {
3090 	enum skb_free_reason reason;
3091 };
3092 
3093 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3094 {
3095 	return (struct dev_kfree_skb_cb *)skb->cb;
3096 }
3097 
3098 void netif_schedule_queue(struct netdev_queue *txq)
3099 {
3100 	rcu_read_lock();
3101 	if (!netif_xmit_stopped(txq)) {
3102 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3103 
3104 		__netif_schedule(q);
3105 	}
3106 	rcu_read_unlock();
3107 }
3108 EXPORT_SYMBOL(netif_schedule_queue);
3109 
3110 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3111 {
3112 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3113 		struct Qdisc *q;
3114 
3115 		rcu_read_lock();
3116 		q = rcu_dereference(dev_queue->qdisc);
3117 		__netif_schedule(q);
3118 		rcu_read_unlock();
3119 	}
3120 }
3121 EXPORT_SYMBOL(netif_tx_wake_queue);
3122 
3123 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3124 {
3125 	unsigned long flags;
3126 
3127 	if (unlikely(!skb))
3128 		return;
3129 
3130 	if (likely(refcount_read(&skb->users) == 1)) {
3131 		smp_rmb();
3132 		refcount_set(&skb->users, 0);
3133 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3134 		return;
3135 	}
3136 	get_kfree_skb_cb(skb)->reason = reason;
3137 	local_irq_save(flags);
3138 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3139 	__this_cpu_write(softnet_data.completion_queue, skb);
3140 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3141 	local_irq_restore(flags);
3142 }
3143 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3144 
3145 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3146 {
3147 	if (in_hardirq() || irqs_disabled())
3148 		__dev_kfree_skb_irq(skb, reason);
3149 	else
3150 		dev_kfree_skb(skb);
3151 }
3152 EXPORT_SYMBOL(__dev_kfree_skb_any);
3153 
3154 
3155 /**
3156  * netif_device_detach - mark device as removed
3157  * @dev: network device
3158  *
3159  * Mark device as removed from system and therefore no longer available.
3160  */
3161 void netif_device_detach(struct net_device *dev)
3162 {
3163 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3164 	    netif_running(dev)) {
3165 		netif_tx_stop_all_queues(dev);
3166 	}
3167 }
3168 EXPORT_SYMBOL(netif_device_detach);
3169 
3170 /**
3171  * netif_device_attach - mark device as attached
3172  * @dev: network device
3173  *
3174  * Mark device as attached from system and restart if needed.
3175  */
3176 void netif_device_attach(struct net_device *dev)
3177 {
3178 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3179 	    netif_running(dev)) {
3180 		netif_tx_wake_all_queues(dev);
3181 		__netdev_watchdog_up(dev);
3182 	}
3183 }
3184 EXPORT_SYMBOL(netif_device_attach);
3185 
3186 /*
3187  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3188  * to be used as a distribution range.
3189  */
3190 static u16 skb_tx_hash(const struct net_device *dev,
3191 		       const struct net_device *sb_dev,
3192 		       struct sk_buff *skb)
3193 {
3194 	u32 hash;
3195 	u16 qoffset = 0;
3196 	u16 qcount = dev->real_num_tx_queues;
3197 
3198 	if (dev->num_tc) {
3199 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3200 
3201 		qoffset = sb_dev->tc_to_txq[tc].offset;
3202 		qcount = sb_dev->tc_to_txq[tc].count;
3203 		if (unlikely(!qcount)) {
3204 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3205 					     sb_dev->name, qoffset, tc);
3206 			qoffset = 0;
3207 			qcount = dev->real_num_tx_queues;
3208 		}
3209 	}
3210 
3211 	if (skb_rx_queue_recorded(skb)) {
3212 		hash = skb_get_rx_queue(skb);
3213 		if (hash >= qoffset)
3214 			hash -= qoffset;
3215 		while (unlikely(hash >= qcount))
3216 			hash -= qcount;
3217 		return hash + qoffset;
3218 	}
3219 
3220 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3221 }
3222 
3223 static void skb_warn_bad_offload(const struct sk_buff *skb)
3224 {
3225 	static const netdev_features_t null_features;
3226 	struct net_device *dev = skb->dev;
3227 	const char *name = "";
3228 
3229 	if (!net_ratelimit())
3230 		return;
3231 
3232 	if (dev) {
3233 		if (dev->dev.parent)
3234 			name = dev_driver_string(dev->dev.parent);
3235 		else
3236 			name = netdev_name(dev);
3237 	}
3238 	skb_dump(KERN_WARNING, skb, false);
3239 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3240 	     name, dev ? &dev->features : &null_features,
3241 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3242 }
3243 
3244 /*
3245  * Invalidate hardware checksum when packet is to be mangled, and
3246  * complete checksum manually on outgoing path.
3247  */
3248 int skb_checksum_help(struct sk_buff *skb)
3249 {
3250 	__wsum csum;
3251 	int ret = 0, offset;
3252 
3253 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3254 		goto out_set_summed;
3255 
3256 	if (unlikely(skb_is_gso(skb))) {
3257 		skb_warn_bad_offload(skb);
3258 		return -EINVAL;
3259 	}
3260 
3261 	/* Before computing a checksum, we should make sure no frag could
3262 	 * be modified by an external entity : checksum could be wrong.
3263 	 */
3264 	if (skb_has_shared_frag(skb)) {
3265 		ret = __skb_linearize(skb);
3266 		if (ret)
3267 			goto out;
3268 	}
3269 
3270 	offset = skb_checksum_start_offset(skb);
3271 	ret = -EINVAL;
3272 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3273 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3274 		goto out;
3275 	}
3276 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3277 
3278 	offset += skb->csum_offset;
3279 	if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3280 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3281 		goto out;
3282 	}
3283 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3284 	if (ret)
3285 		goto out;
3286 
3287 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3288 out_set_summed:
3289 	skb->ip_summed = CHECKSUM_NONE;
3290 out:
3291 	return ret;
3292 }
3293 EXPORT_SYMBOL(skb_checksum_help);
3294 
3295 int skb_crc32c_csum_help(struct sk_buff *skb)
3296 {
3297 	__le32 crc32c_csum;
3298 	int ret = 0, offset, start;
3299 
3300 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3301 		goto out;
3302 
3303 	if (unlikely(skb_is_gso(skb)))
3304 		goto out;
3305 
3306 	/* Before computing a checksum, we should make sure no frag could
3307 	 * be modified by an external entity : checksum could be wrong.
3308 	 */
3309 	if (unlikely(skb_has_shared_frag(skb))) {
3310 		ret = __skb_linearize(skb);
3311 		if (ret)
3312 			goto out;
3313 	}
3314 	start = skb_checksum_start_offset(skb);
3315 	offset = start + offsetof(struct sctphdr, checksum);
3316 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3317 		ret = -EINVAL;
3318 		goto out;
3319 	}
3320 
3321 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3322 	if (ret)
3323 		goto out;
3324 
3325 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3326 						  skb->len - start, ~(__u32)0,
3327 						  crc32c_csum_stub));
3328 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3329 	skb->ip_summed = CHECKSUM_NONE;
3330 	skb->csum_not_inet = 0;
3331 out:
3332 	return ret;
3333 }
3334 
3335 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3336 {
3337 	__be16 type = skb->protocol;
3338 
3339 	/* Tunnel gso handlers can set protocol to ethernet. */
3340 	if (type == htons(ETH_P_TEB)) {
3341 		struct ethhdr *eth;
3342 
3343 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3344 			return 0;
3345 
3346 		eth = (struct ethhdr *)skb->data;
3347 		type = eth->h_proto;
3348 	}
3349 
3350 	return __vlan_get_protocol(skb, type, depth);
3351 }
3352 
3353 /* openvswitch calls this on rx path, so we need a different check.
3354  */
3355 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3356 {
3357 	if (tx_path)
3358 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3359 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3360 
3361 	return skb->ip_summed == CHECKSUM_NONE;
3362 }
3363 
3364 /**
3365  *	__skb_gso_segment - Perform segmentation on skb.
3366  *	@skb: buffer to segment
3367  *	@features: features for the output path (see dev->features)
3368  *	@tx_path: whether it is called in TX path
3369  *
3370  *	This function segments the given skb and returns a list of segments.
3371  *
3372  *	It may return NULL if the skb requires no segmentation.  This is
3373  *	only possible when GSO is used for verifying header integrity.
3374  *
3375  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3376  */
3377 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3378 				  netdev_features_t features, bool tx_path)
3379 {
3380 	struct sk_buff *segs;
3381 
3382 	if (unlikely(skb_needs_check(skb, tx_path))) {
3383 		int err;
3384 
3385 		/* We're going to init ->check field in TCP or UDP header */
3386 		err = skb_cow_head(skb, 0);
3387 		if (err < 0)
3388 			return ERR_PTR(err);
3389 	}
3390 
3391 	/* Only report GSO partial support if it will enable us to
3392 	 * support segmentation on this frame without needing additional
3393 	 * work.
3394 	 */
3395 	if (features & NETIF_F_GSO_PARTIAL) {
3396 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3397 		struct net_device *dev = skb->dev;
3398 
3399 		partial_features |= dev->features & dev->gso_partial_features;
3400 		if (!skb_gso_ok(skb, features | partial_features))
3401 			features &= ~NETIF_F_GSO_PARTIAL;
3402 	}
3403 
3404 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3405 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3406 
3407 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3408 	SKB_GSO_CB(skb)->encap_level = 0;
3409 
3410 	skb_reset_mac_header(skb);
3411 	skb_reset_mac_len(skb);
3412 
3413 	segs = skb_mac_gso_segment(skb, features);
3414 
3415 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3416 		skb_warn_bad_offload(skb);
3417 
3418 	return segs;
3419 }
3420 EXPORT_SYMBOL(__skb_gso_segment);
3421 
3422 /* Take action when hardware reception checksum errors are detected. */
3423 #ifdef CONFIG_BUG
3424 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3425 {
3426 	netdev_err(dev, "hw csum failure\n");
3427 	skb_dump(KERN_ERR, skb, true);
3428 	dump_stack();
3429 }
3430 
3431 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3432 {
3433 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3434 }
3435 EXPORT_SYMBOL(netdev_rx_csum_fault);
3436 #endif
3437 
3438 /* XXX: check that highmem exists at all on the given machine. */
3439 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3440 {
3441 #ifdef CONFIG_HIGHMEM
3442 	int i;
3443 
3444 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3445 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3446 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3447 
3448 			if (PageHighMem(skb_frag_page(frag)))
3449 				return 1;
3450 		}
3451 	}
3452 #endif
3453 	return 0;
3454 }
3455 
3456 /* If MPLS offload request, verify we are testing hardware MPLS features
3457  * instead of standard features for the netdev.
3458  */
3459 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3460 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3461 					   netdev_features_t features,
3462 					   __be16 type)
3463 {
3464 	if (eth_p_mpls(type))
3465 		features &= skb->dev->mpls_features;
3466 
3467 	return features;
3468 }
3469 #else
3470 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3471 					   netdev_features_t features,
3472 					   __be16 type)
3473 {
3474 	return features;
3475 }
3476 #endif
3477 
3478 static netdev_features_t harmonize_features(struct sk_buff *skb,
3479 	netdev_features_t features)
3480 {
3481 	__be16 type;
3482 
3483 	type = skb_network_protocol(skb, NULL);
3484 	features = net_mpls_features(skb, features, type);
3485 
3486 	if (skb->ip_summed != CHECKSUM_NONE &&
3487 	    !can_checksum_protocol(features, type)) {
3488 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3489 	}
3490 	if (illegal_highdma(skb->dev, skb))
3491 		features &= ~NETIF_F_SG;
3492 
3493 	return features;
3494 }
3495 
3496 netdev_features_t passthru_features_check(struct sk_buff *skb,
3497 					  struct net_device *dev,
3498 					  netdev_features_t features)
3499 {
3500 	return features;
3501 }
3502 EXPORT_SYMBOL(passthru_features_check);
3503 
3504 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3505 					     struct net_device *dev,
3506 					     netdev_features_t features)
3507 {
3508 	return vlan_features_check(skb, features);
3509 }
3510 
3511 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3512 					    struct net_device *dev,
3513 					    netdev_features_t features)
3514 {
3515 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3516 
3517 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3518 		return features & ~NETIF_F_GSO_MASK;
3519 
3520 	if (!skb_shinfo(skb)->gso_type) {
3521 		skb_warn_bad_offload(skb);
3522 		return features & ~NETIF_F_GSO_MASK;
3523 	}
3524 
3525 	/* Support for GSO partial features requires software
3526 	 * intervention before we can actually process the packets
3527 	 * so we need to strip support for any partial features now
3528 	 * and we can pull them back in after we have partially
3529 	 * segmented the frame.
3530 	 */
3531 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3532 		features &= ~dev->gso_partial_features;
3533 
3534 	/* Make sure to clear the IPv4 ID mangling feature if the
3535 	 * IPv4 header has the potential to be fragmented.
3536 	 */
3537 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3538 		struct iphdr *iph = skb->encapsulation ?
3539 				    inner_ip_hdr(skb) : ip_hdr(skb);
3540 
3541 		if (!(iph->frag_off & htons(IP_DF)))
3542 			features &= ~NETIF_F_TSO_MANGLEID;
3543 	}
3544 
3545 	return features;
3546 }
3547 
3548 netdev_features_t netif_skb_features(struct sk_buff *skb)
3549 {
3550 	struct net_device *dev = skb->dev;
3551 	netdev_features_t features = dev->features;
3552 
3553 	if (skb_is_gso(skb))
3554 		features = gso_features_check(skb, dev, features);
3555 
3556 	/* If encapsulation offload request, verify we are testing
3557 	 * hardware encapsulation features instead of standard
3558 	 * features for the netdev
3559 	 */
3560 	if (skb->encapsulation)
3561 		features &= dev->hw_enc_features;
3562 
3563 	if (skb_vlan_tagged(skb))
3564 		features = netdev_intersect_features(features,
3565 						     dev->vlan_features |
3566 						     NETIF_F_HW_VLAN_CTAG_TX |
3567 						     NETIF_F_HW_VLAN_STAG_TX);
3568 
3569 	if (dev->netdev_ops->ndo_features_check)
3570 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3571 								features);
3572 	else
3573 		features &= dflt_features_check(skb, dev, features);
3574 
3575 	return harmonize_features(skb, features);
3576 }
3577 EXPORT_SYMBOL(netif_skb_features);
3578 
3579 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3580 		    struct netdev_queue *txq, bool more)
3581 {
3582 	unsigned int len;
3583 	int rc;
3584 
3585 	if (dev_nit_active(dev))
3586 		dev_queue_xmit_nit(skb, dev);
3587 
3588 	len = skb->len;
3589 	trace_net_dev_start_xmit(skb, dev);
3590 	rc = netdev_start_xmit(skb, dev, txq, more);
3591 	trace_net_dev_xmit(skb, rc, dev, len);
3592 
3593 	return rc;
3594 }
3595 
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597 				    struct netdev_queue *txq, int *ret)
3598 {
3599 	struct sk_buff *skb = first;
3600 	int rc = NETDEV_TX_OK;
3601 
3602 	while (skb) {
3603 		struct sk_buff *next = skb->next;
3604 
3605 		skb_mark_not_on_list(skb);
3606 		rc = xmit_one(skb, dev, txq, next != NULL);
3607 		if (unlikely(!dev_xmit_complete(rc))) {
3608 			skb->next = next;
3609 			goto out;
3610 		}
3611 
3612 		skb = next;
3613 		if (netif_tx_queue_stopped(txq) && skb) {
3614 			rc = NETDEV_TX_BUSY;
3615 			break;
3616 		}
3617 	}
3618 
3619 out:
3620 	*ret = rc;
3621 	return skb;
3622 }
3623 
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625 					  netdev_features_t features)
3626 {
3627 	if (skb_vlan_tag_present(skb) &&
3628 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3629 		skb = __vlan_hwaccel_push_inside(skb);
3630 	return skb;
3631 }
3632 
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634 			    const netdev_features_t features)
3635 {
3636 	if (unlikely(skb_csum_is_sctp(skb)))
3637 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638 			skb_crc32c_csum_help(skb);
3639 
3640 	if (features & NETIF_F_HW_CSUM)
3641 		return 0;
3642 
3643 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644 		switch (skb->csum_offset) {
3645 		case offsetof(struct tcphdr, check):
3646 		case offsetof(struct udphdr, check):
3647 			return 0;
3648 		}
3649 	}
3650 
3651 	return skb_checksum_help(skb);
3652 }
3653 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654 
3655 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656 {
3657 	netdev_features_t features;
3658 
3659 	features = netif_skb_features(skb);
3660 	skb = validate_xmit_vlan(skb, features);
3661 	if (unlikely(!skb))
3662 		goto out_null;
3663 
3664 	skb = sk_validate_xmit_skb(skb, dev);
3665 	if (unlikely(!skb))
3666 		goto out_null;
3667 
3668 	if (netif_needs_gso(skb, features)) {
3669 		struct sk_buff *segs;
3670 
3671 		segs = skb_gso_segment(skb, features);
3672 		if (IS_ERR(segs)) {
3673 			goto out_kfree_skb;
3674 		} else if (segs) {
3675 			consume_skb(skb);
3676 			skb = segs;
3677 		}
3678 	} else {
3679 		if (skb_needs_linearize(skb, features) &&
3680 		    __skb_linearize(skb))
3681 			goto out_kfree_skb;
3682 
3683 		/* If packet is not checksummed and device does not
3684 		 * support checksumming for this protocol, complete
3685 		 * checksumming here.
3686 		 */
3687 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688 			if (skb->encapsulation)
3689 				skb_set_inner_transport_header(skb,
3690 							       skb_checksum_start_offset(skb));
3691 			else
3692 				skb_set_transport_header(skb,
3693 							 skb_checksum_start_offset(skb));
3694 			if (skb_csum_hwoffload_help(skb, features))
3695 				goto out_kfree_skb;
3696 		}
3697 	}
3698 
3699 	skb = validate_xmit_xfrm(skb, features, again);
3700 
3701 	return skb;
3702 
3703 out_kfree_skb:
3704 	kfree_skb(skb);
3705 out_null:
3706 	dev_core_stats_tx_dropped_inc(dev);
3707 	return NULL;
3708 }
3709 
3710 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711 {
3712 	struct sk_buff *next, *head = NULL, *tail;
3713 
3714 	for (; skb != NULL; skb = next) {
3715 		next = skb->next;
3716 		skb_mark_not_on_list(skb);
3717 
3718 		/* in case skb wont be segmented, point to itself */
3719 		skb->prev = skb;
3720 
3721 		skb = validate_xmit_skb(skb, dev, again);
3722 		if (!skb)
3723 			continue;
3724 
3725 		if (!head)
3726 			head = skb;
3727 		else
3728 			tail->next = skb;
3729 		/* If skb was segmented, skb->prev points to
3730 		 * the last segment. If not, it still contains skb.
3731 		 */
3732 		tail = skb->prev;
3733 	}
3734 	return head;
3735 }
3736 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737 
3738 static void qdisc_pkt_len_init(struct sk_buff *skb)
3739 {
3740 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741 
3742 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3743 
3744 	/* To get more precise estimation of bytes sent on wire,
3745 	 * we add to pkt_len the headers size of all segments
3746 	 */
3747 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748 		unsigned int hdr_len;
3749 		u16 gso_segs = shinfo->gso_segs;
3750 
3751 		/* mac layer + network layer */
3752 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3753 
3754 		/* + transport layer */
3755 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756 			const struct tcphdr *th;
3757 			struct tcphdr _tcphdr;
3758 
3759 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3760 						sizeof(_tcphdr), &_tcphdr);
3761 			if (likely(th))
3762 				hdr_len += __tcp_hdrlen(th);
3763 		} else {
3764 			struct udphdr _udphdr;
3765 
3766 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3767 					       sizeof(_udphdr), &_udphdr))
3768 				hdr_len += sizeof(struct udphdr);
3769 		}
3770 
3771 		if (shinfo->gso_type & SKB_GSO_DODGY)
3772 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3773 						shinfo->gso_size);
3774 
3775 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3776 	}
3777 }
3778 
3779 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3780 			     struct sk_buff **to_free,
3781 			     struct netdev_queue *txq)
3782 {
3783 	int rc;
3784 
3785 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3786 	if (rc == NET_XMIT_SUCCESS)
3787 		trace_qdisc_enqueue(q, txq, skb);
3788 	return rc;
3789 }
3790 
3791 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3792 				 struct net_device *dev,
3793 				 struct netdev_queue *txq)
3794 {
3795 	spinlock_t *root_lock = qdisc_lock(q);
3796 	struct sk_buff *to_free = NULL;
3797 	bool contended;
3798 	int rc;
3799 
3800 	qdisc_calculate_pkt_len(skb, q);
3801 
3802 	if (q->flags & TCQ_F_NOLOCK) {
3803 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3804 		    qdisc_run_begin(q)) {
3805 			/* Retest nolock_qdisc_is_empty() within the protection
3806 			 * of q->seqlock to protect from racing with requeuing.
3807 			 */
3808 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3809 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3810 				__qdisc_run(q);
3811 				qdisc_run_end(q);
3812 
3813 				goto no_lock_out;
3814 			}
3815 
3816 			qdisc_bstats_cpu_update(q, skb);
3817 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3818 			    !nolock_qdisc_is_empty(q))
3819 				__qdisc_run(q);
3820 
3821 			qdisc_run_end(q);
3822 			return NET_XMIT_SUCCESS;
3823 		}
3824 
3825 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3826 		qdisc_run(q);
3827 
3828 no_lock_out:
3829 		if (unlikely(to_free))
3830 			kfree_skb_list_reason(to_free,
3831 					      SKB_DROP_REASON_QDISC_DROP);
3832 		return rc;
3833 	}
3834 
3835 	/*
3836 	 * Heuristic to force contended enqueues to serialize on a
3837 	 * separate lock before trying to get qdisc main lock.
3838 	 * This permits qdisc->running owner to get the lock more
3839 	 * often and dequeue packets faster.
3840 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3841 	 * and then other tasks will only enqueue packets. The packets will be
3842 	 * sent after the qdisc owner is scheduled again. To prevent this
3843 	 * scenario the task always serialize on the lock.
3844 	 */
3845 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3846 	if (unlikely(contended))
3847 		spin_lock(&q->busylock);
3848 
3849 	spin_lock(root_lock);
3850 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3851 		__qdisc_drop(skb, &to_free);
3852 		rc = NET_XMIT_DROP;
3853 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3854 		   qdisc_run_begin(q)) {
3855 		/*
3856 		 * This is a work-conserving queue; there are no old skbs
3857 		 * waiting to be sent out; and the qdisc is not running -
3858 		 * xmit the skb directly.
3859 		 */
3860 
3861 		qdisc_bstats_update(q, skb);
3862 
3863 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3864 			if (unlikely(contended)) {
3865 				spin_unlock(&q->busylock);
3866 				contended = false;
3867 			}
3868 			__qdisc_run(q);
3869 		}
3870 
3871 		qdisc_run_end(q);
3872 		rc = NET_XMIT_SUCCESS;
3873 	} else {
3874 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3875 		if (qdisc_run_begin(q)) {
3876 			if (unlikely(contended)) {
3877 				spin_unlock(&q->busylock);
3878 				contended = false;
3879 			}
3880 			__qdisc_run(q);
3881 			qdisc_run_end(q);
3882 		}
3883 	}
3884 	spin_unlock(root_lock);
3885 	if (unlikely(to_free))
3886 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3887 	if (unlikely(contended))
3888 		spin_unlock(&q->busylock);
3889 	return rc;
3890 }
3891 
3892 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3893 static void skb_update_prio(struct sk_buff *skb)
3894 {
3895 	const struct netprio_map *map;
3896 	const struct sock *sk;
3897 	unsigned int prioidx;
3898 
3899 	if (skb->priority)
3900 		return;
3901 	map = rcu_dereference_bh(skb->dev->priomap);
3902 	if (!map)
3903 		return;
3904 	sk = skb_to_full_sk(skb);
3905 	if (!sk)
3906 		return;
3907 
3908 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3909 
3910 	if (prioidx < map->priomap_len)
3911 		skb->priority = map->priomap[prioidx];
3912 }
3913 #else
3914 #define skb_update_prio(skb)
3915 #endif
3916 
3917 /**
3918  *	dev_loopback_xmit - loop back @skb
3919  *	@net: network namespace this loopback is happening in
3920  *	@sk:  sk needed to be a netfilter okfn
3921  *	@skb: buffer to transmit
3922  */
3923 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3924 {
3925 	skb_reset_mac_header(skb);
3926 	__skb_pull(skb, skb_network_offset(skb));
3927 	skb->pkt_type = PACKET_LOOPBACK;
3928 	if (skb->ip_summed == CHECKSUM_NONE)
3929 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3930 	WARN_ON(!skb_dst(skb));
3931 	skb_dst_force(skb);
3932 	netif_rx(skb);
3933 	return 0;
3934 }
3935 EXPORT_SYMBOL(dev_loopback_xmit);
3936 
3937 #ifdef CONFIG_NET_EGRESS
3938 static struct sk_buff *
3939 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3940 {
3941 #ifdef CONFIG_NET_CLS_ACT
3942 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3943 	struct tcf_result cl_res;
3944 
3945 	if (!miniq)
3946 		return skb;
3947 
3948 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3949 	tc_skb_cb(skb)->mru = 0;
3950 	tc_skb_cb(skb)->post_ct = false;
3951 	mini_qdisc_bstats_cpu_update(miniq, skb);
3952 
3953 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3954 	case TC_ACT_OK:
3955 	case TC_ACT_RECLASSIFY:
3956 		skb->tc_index = TC_H_MIN(cl_res.classid);
3957 		break;
3958 	case TC_ACT_SHOT:
3959 		mini_qdisc_qstats_cpu_drop(miniq);
3960 		*ret = NET_XMIT_DROP;
3961 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3962 		return NULL;
3963 	case TC_ACT_STOLEN:
3964 	case TC_ACT_QUEUED:
3965 	case TC_ACT_TRAP:
3966 		*ret = NET_XMIT_SUCCESS;
3967 		consume_skb(skb);
3968 		return NULL;
3969 	case TC_ACT_REDIRECT:
3970 		/* No need to push/pop skb's mac_header here on egress! */
3971 		skb_do_redirect(skb);
3972 		*ret = NET_XMIT_SUCCESS;
3973 		return NULL;
3974 	default:
3975 		break;
3976 	}
3977 #endif /* CONFIG_NET_CLS_ACT */
3978 
3979 	return skb;
3980 }
3981 
3982 static struct netdev_queue *
3983 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3984 {
3985 	int qm = skb_get_queue_mapping(skb);
3986 
3987 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3988 }
3989 
3990 static bool netdev_xmit_txqueue_skipped(void)
3991 {
3992 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3993 }
3994 
3995 void netdev_xmit_skip_txqueue(bool skip)
3996 {
3997 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3998 }
3999 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4000 #endif /* CONFIG_NET_EGRESS */
4001 
4002 #ifdef CONFIG_XPS
4003 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4004 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4005 {
4006 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4007 	struct xps_map *map;
4008 	int queue_index = -1;
4009 
4010 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4011 		return queue_index;
4012 
4013 	tci *= dev_maps->num_tc;
4014 	tci += tc;
4015 
4016 	map = rcu_dereference(dev_maps->attr_map[tci]);
4017 	if (map) {
4018 		if (map->len == 1)
4019 			queue_index = map->queues[0];
4020 		else
4021 			queue_index = map->queues[reciprocal_scale(
4022 						skb_get_hash(skb), map->len)];
4023 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4024 			queue_index = -1;
4025 	}
4026 	return queue_index;
4027 }
4028 #endif
4029 
4030 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4031 			 struct sk_buff *skb)
4032 {
4033 #ifdef CONFIG_XPS
4034 	struct xps_dev_maps *dev_maps;
4035 	struct sock *sk = skb->sk;
4036 	int queue_index = -1;
4037 
4038 	if (!static_key_false(&xps_needed))
4039 		return -1;
4040 
4041 	rcu_read_lock();
4042 	if (!static_key_false(&xps_rxqs_needed))
4043 		goto get_cpus_map;
4044 
4045 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4046 	if (dev_maps) {
4047 		int tci = sk_rx_queue_get(sk);
4048 
4049 		if (tci >= 0)
4050 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4051 							  tci);
4052 	}
4053 
4054 get_cpus_map:
4055 	if (queue_index < 0) {
4056 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4057 		if (dev_maps) {
4058 			unsigned int tci = skb->sender_cpu - 1;
4059 
4060 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4061 							  tci);
4062 		}
4063 	}
4064 	rcu_read_unlock();
4065 
4066 	return queue_index;
4067 #else
4068 	return -1;
4069 #endif
4070 }
4071 
4072 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4073 		     struct net_device *sb_dev)
4074 {
4075 	return 0;
4076 }
4077 EXPORT_SYMBOL(dev_pick_tx_zero);
4078 
4079 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4080 		       struct net_device *sb_dev)
4081 {
4082 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4083 }
4084 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4085 
4086 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4087 		     struct net_device *sb_dev)
4088 {
4089 	struct sock *sk = skb->sk;
4090 	int queue_index = sk_tx_queue_get(sk);
4091 
4092 	sb_dev = sb_dev ? : dev;
4093 
4094 	if (queue_index < 0 || skb->ooo_okay ||
4095 	    queue_index >= dev->real_num_tx_queues) {
4096 		int new_index = get_xps_queue(dev, sb_dev, skb);
4097 
4098 		if (new_index < 0)
4099 			new_index = skb_tx_hash(dev, sb_dev, skb);
4100 
4101 		if (queue_index != new_index && sk &&
4102 		    sk_fullsock(sk) &&
4103 		    rcu_access_pointer(sk->sk_dst_cache))
4104 			sk_tx_queue_set(sk, new_index);
4105 
4106 		queue_index = new_index;
4107 	}
4108 
4109 	return queue_index;
4110 }
4111 EXPORT_SYMBOL(netdev_pick_tx);
4112 
4113 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4114 					 struct sk_buff *skb,
4115 					 struct net_device *sb_dev)
4116 {
4117 	int queue_index = 0;
4118 
4119 #ifdef CONFIG_XPS
4120 	u32 sender_cpu = skb->sender_cpu - 1;
4121 
4122 	if (sender_cpu >= (u32)NR_CPUS)
4123 		skb->sender_cpu = raw_smp_processor_id() + 1;
4124 #endif
4125 
4126 	if (dev->real_num_tx_queues != 1) {
4127 		const struct net_device_ops *ops = dev->netdev_ops;
4128 
4129 		if (ops->ndo_select_queue)
4130 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4131 		else
4132 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4133 
4134 		queue_index = netdev_cap_txqueue(dev, queue_index);
4135 	}
4136 
4137 	skb_set_queue_mapping(skb, queue_index);
4138 	return netdev_get_tx_queue(dev, queue_index);
4139 }
4140 
4141 /**
4142  * __dev_queue_xmit() - transmit a buffer
4143  * @skb:	buffer to transmit
4144  * @sb_dev:	suboordinate device used for L2 forwarding offload
4145  *
4146  * Queue a buffer for transmission to a network device. The caller must
4147  * have set the device and priority and built the buffer before calling
4148  * this function. The function can be called from an interrupt.
4149  *
4150  * When calling this method, interrupts MUST be enabled. This is because
4151  * the BH enable code must have IRQs enabled so that it will not deadlock.
4152  *
4153  * Regardless of the return value, the skb is consumed, so it is currently
4154  * difficult to retry a send to this method. (You can bump the ref count
4155  * before sending to hold a reference for retry if you are careful.)
4156  *
4157  * Return:
4158  * * 0				- buffer successfully transmitted
4159  * * positive qdisc return code	- NET_XMIT_DROP etc.
4160  * * negative errno		- other errors
4161  */
4162 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4163 {
4164 	struct net_device *dev = skb->dev;
4165 	struct netdev_queue *txq = NULL;
4166 	struct Qdisc *q;
4167 	int rc = -ENOMEM;
4168 	bool again = false;
4169 
4170 	skb_reset_mac_header(skb);
4171 
4172 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4173 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4174 
4175 	/* Disable soft irqs for various locks below. Also
4176 	 * stops preemption for RCU.
4177 	 */
4178 	rcu_read_lock_bh();
4179 
4180 	skb_update_prio(skb);
4181 
4182 	qdisc_pkt_len_init(skb);
4183 #ifdef CONFIG_NET_CLS_ACT
4184 	skb->tc_at_ingress = 0;
4185 #endif
4186 #ifdef CONFIG_NET_EGRESS
4187 	if (static_branch_unlikely(&egress_needed_key)) {
4188 		if (nf_hook_egress_active()) {
4189 			skb = nf_hook_egress(skb, &rc, dev);
4190 			if (!skb)
4191 				goto out;
4192 		}
4193 
4194 		netdev_xmit_skip_txqueue(false);
4195 
4196 		nf_skip_egress(skb, true);
4197 		skb = sch_handle_egress(skb, &rc, dev);
4198 		if (!skb)
4199 			goto out;
4200 		nf_skip_egress(skb, false);
4201 
4202 		if (netdev_xmit_txqueue_skipped())
4203 			txq = netdev_tx_queue_mapping(dev, skb);
4204 	}
4205 #endif
4206 	/* If device/qdisc don't need skb->dst, release it right now while
4207 	 * its hot in this cpu cache.
4208 	 */
4209 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4210 		skb_dst_drop(skb);
4211 	else
4212 		skb_dst_force(skb);
4213 
4214 	if (!txq)
4215 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4216 
4217 	q = rcu_dereference_bh(txq->qdisc);
4218 
4219 	trace_net_dev_queue(skb);
4220 	if (q->enqueue) {
4221 		rc = __dev_xmit_skb(skb, q, dev, txq);
4222 		goto out;
4223 	}
4224 
4225 	/* The device has no queue. Common case for software devices:
4226 	 * loopback, all the sorts of tunnels...
4227 
4228 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4229 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4230 	 * counters.)
4231 	 * However, it is possible, that they rely on protection
4232 	 * made by us here.
4233 
4234 	 * Check this and shot the lock. It is not prone from deadlocks.
4235 	 *Either shot noqueue qdisc, it is even simpler 8)
4236 	 */
4237 	if (dev->flags & IFF_UP) {
4238 		int cpu = smp_processor_id(); /* ok because BHs are off */
4239 
4240 		/* Other cpus might concurrently change txq->xmit_lock_owner
4241 		 * to -1 or to their cpu id, but not to our id.
4242 		 */
4243 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4244 			if (dev_xmit_recursion())
4245 				goto recursion_alert;
4246 
4247 			skb = validate_xmit_skb(skb, dev, &again);
4248 			if (!skb)
4249 				goto out;
4250 
4251 			HARD_TX_LOCK(dev, txq, cpu);
4252 
4253 			if (!netif_xmit_stopped(txq)) {
4254 				dev_xmit_recursion_inc();
4255 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4256 				dev_xmit_recursion_dec();
4257 				if (dev_xmit_complete(rc)) {
4258 					HARD_TX_UNLOCK(dev, txq);
4259 					goto out;
4260 				}
4261 			}
4262 			HARD_TX_UNLOCK(dev, txq);
4263 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4264 					     dev->name);
4265 		} else {
4266 			/* Recursion is detected! It is possible,
4267 			 * unfortunately
4268 			 */
4269 recursion_alert:
4270 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4271 					     dev->name);
4272 		}
4273 	}
4274 
4275 	rc = -ENETDOWN;
4276 	rcu_read_unlock_bh();
4277 
4278 	dev_core_stats_tx_dropped_inc(dev);
4279 	kfree_skb_list(skb);
4280 	return rc;
4281 out:
4282 	rcu_read_unlock_bh();
4283 	return rc;
4284 }
4285 EXPORT_SYMBOL(__dev_queue_xmit);
4286 
4287 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4288 {
4289 	struct net_device *dev = skb->dev;
4290 	struct sk_buff *orig_skb = skb;
4291 	struct netdev_queue *txq;
4292 	int ret = NETDEV_TX_BUSY;
4293 	bool again = false;
4294 
4295 	if (unlikely(!netif_running(dev) ||
4296 		     !netif_carrier_ok(dev)))
4297 		goto drop;
4298 
4299 	skb = validate_xmit_skb_list(skb, dev, &again);
4300 	if (skb != orig_skb)
4301 		goto drop;
4302 
4303 	skb_set_queue_mapping(skb, queue_id);
4304 	txq = skb_get_tx_queue(dev, skb);
4305 
4306 	local_bh_disable();
4307 
4308 	dev_xmit_recursion_inc();
4309 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4310 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4311 		ret = netdev_start_xmit(skb, dev, txq, false);
4312 	HARD_TX_UNLOCK(dev, txq);
4313 	dev_xmit_recursion_dec();
4314 
4315 	local_bh_enable();
4316 	return ret;
4317 drop:
4318 	dev_core_stats_tx_dropped_inc(dev);
4319 	kfree_skb_list(skb);
4320 	return NET_XMIT_DROP;
4321 }
4322 EXPORT_SYMBOL(__dev_direct_xmit);
4323 
4324 /*************************************************************************
4325  *			Receiver routines
4326  *************************************************************************/
4327 
4328 int netdev_max_backlog __read_mostly = 1000;
4329 EXPORT_SYMBOL(netdev_max_backlog);
4330 
4331 int netdev_tstamp_prequeue __read_mostly = 1;
4332 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4333 int netdev_budget __read_mostly = 300;
4334 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4335 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4336 int weight_p __read_mostly = 64;           /* old backlog weight */
4337 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4338 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4339 int dev_rx_weight __read_mostly = 64;
4340 int dev_tx_weight __read_mostly = 64;
4341 
4342 /* Called with irq disabled */
4343 static inline void ____napi_schedule(struct softnet_data *sd,
4344 				     struct napi_struct *napi)
4345 {
4346 	struct task_struct *thread;
4347 
4348 	lockdep_assert_irqs_disabled();
4349 
4350 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4351 		/* Paired with smp_mb__before_atomic() in
4352 		 * napi_enable()/dev_set_threaded().
4353 		 * Use READ_ONCE() to guarantee a complete
4354 		 * read on napi->thread. Only call
4355 		 * wake_up_process() when it's not NULL.
4356 		 */
4357 		thread = READ_ONCE(napi->thread);
4358 		if (thread) {
4359 			/* Avoid doing set_bit() if the thread is in
4360 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4361 			 * makes sure to proceed with napi polling
4362 			 * if the thread is explicitly woken from here.
4363 			 */
4364 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4365 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4366 			wake_up_process(thread);
4367 			return;
4368 		}
4369 	}
4370 
4371 	list_add_tail(&napi->poll_list, &sd->poll_list);
4372 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4373 }
4374 
4375 #ifdef CONFIG_RPS
4376 
4377 /* One global table that all flow-based protocols share. */
4378 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4379 EXPORT_SYMBOL(rps_sock_flow_table);
4380 u32 rps_cpu_mask __read_mostly;
4381 EXPORT_SYMBOL(rps_cpu_mask);
4382 
4383 struct static_key_false rps_needed __read_mostly;
4384 EXPORT_SYMBOL(rps_needed);
4385 struct static_key_false rfs_needed __read_mostly;
4386 EXPORT_SYMBOL(rfs_needed);
4387 
4388 static struct rps_dev_flow *
4389 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4390 	    struct rps_dev_flow *rflow, u16 next_cpu)
4391 {
4392 	if (next_cpu < nr_cpu_ids) {
4393 #ifdef CONFIG_RFS_ACCEL
4394 		struct netdev_rx_queue *rxqueue;
4395 		struct rps_dev_flow_table *flow_table;
4396 		struct rps_dev_flow *old_rflow;
4397 		u32 flow_id;
4398 		u16 rxq_index;
4399 		int rc;
4400 
4401 		/* Should we steer this flow to a different hardware queue? */
4402 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4403 		    !(dev->features & NETIF_F_NTUPLE))
4404 			goto out;
4405 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4406 		if (rxq_index == skb_get_rx_queue(skb))
4407 			goto out;
4408 
4409 		rxqueue = dev->_rx + rxq_index;
4410 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4411 		if (!flow_table)
4412 			goto out;
4413 		flow_id = skb_get_hash(skb) & flow_table->mask;
4414 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4415 							rxq_index, flow_id);
4416 		if (rc < 0)
4417 			goto out;
4418 		old_rflow = rflow;
4419 		rflow = &flow_table->flows[flow_id];
4420 		rflow->filter = rc;
4421 		if (old_rflow->filter == rflow->filter)
4422 			old_rflow->filter = RPS_NO_FILTER;
4423 	out:
4424 #endif
4425 		rflow->last_qtail =
4426 			per_cpu(softnet_data, next_cpu).input_queue_head;
4427 	}
4428 
4429 	rflow->cpu = next_cpu;
4430 	return rflow;
4431 }
4432 
4433 /*
4434  * get_rps_cpu is called from netif_receive_skb and returns the target
4435  * CPU from the RPS map of the receiving queue for a given skb.
4436  * rcu_read_lock must be held on entry.
4437  */
4438 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4439 		       struct rps_dev_flow **rflowp)
4440 {
4441 	const struct rps_sock_flow_table *sock_flow_table;
4442 	struct netdev_rx_queue *rxqueue = dev->_rx;
4443 	struct rps_dev_flow_table *flow_table;
4444 	struct rps_map *map;
4445 	int cpu = -1;
4446 	u32 tcpu;
4447 	u32 hash;
4448 
4449 	if (skb_rx_queue_recorded(skb)) {
4450 		u16 index = skb_get_rx_queue(skb);
4451 
4452 		if (unlikely(index >= dev->real_num_rx_queues)) {
4453 			WARN_ONCE(dev->real_num_rx_queues > 1,
4454 				  "%s received packet on queue %u, but number "
4455 				  "of RX queues is %u\n",
4456 				  dev->name, index, dev->real_num_rx_queues);
4457 			goto done;
4458 		}
4459 		rxqueue += index;
4460 	}
4461 
4462 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4463 
4464 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4465 	map = rcu_dereference(rxqueue->rps_map);
4466 	if (!flow_table && !map)
4467 		goto done;
4468 
4469 	skb_reset_network_header(skb);
4470 	hash = skb_get_hash(skb);
4471 	if (!hash)
4472 		goto done;
4473 
4474 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4475 	if (flow_table && sock_flow_table) {
4476 		struct rps_dev_flow *rflow;
4477 		u32 next_cpu;
4478 		u32 ident;
4479 
4480 		/* First check into global flow table if there is a match */
4481 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4482 		if ((ident ^ hash) & ~rps_cpu_mask)
4483 			goto try_rps;
4484 
4485 		next_cpu = ident & rps_cpu_mask;
4486 
4487 		/* OK, now we know there is a match,
4488 		 * we can look at the local (per receive queue) flow table
4489 		 */
4490 		rflow = &flow_table->flows[hash & flow_table->mask];
4491 		tcpu = rflow->cpu;
4492 
4493 		/*
4494 		 * If the desired CPU (where last recvmsg was done) is
4495 		 * different from current CPU (one in the rx-queue flow
4496 		 * table entry), switch if one of the following holds:
4497 		 *   - Current CPU is unset (>= nr_cpu_ids).
4498 		 *   - Current CPU is offline.
4499 		 *   - The current CPU's queue tail has advanced beyond the
4500 		 *     last packet that was enqueued using this table entry.
4501 		 *     This guarantees that all previous packets for the flow
4502 		 *     have been dequeued, thus preserving in order delivery.
4503 		 */
4504 		if (unlikely(tcpu != next_cpu) &&
4505 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4506 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4507 		      rflow->last_qtail)) >= 0)) {
4508 			tcpu = next_cpu;
4509 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4510 		}
4511 
4512 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4513 			*rflowp = rflow;
4514 			cpu = tcpu;
4515 			goto done;
4516 		}
4517 	}
4518 
4519 try_rps:
4520 
4521 	if (map) {
4522 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4523 		if (cpu_online(tcpu)) {
4524 			cpu = tcpu;
4525 			goto done;
4526 		}
4527 	}
4528 
4529 done:
4530 	return cpu;
4531 }
4532 
4533 #ifdef CONFIG_RFS_ACCEL
4534 
4535 /**
4536  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4537  * @dev: Device on which the filter was set
4538  * @rxq_index: RX queue index
4539  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4540  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4541  *
4542  * Drivers that implement ndo_rx_flow_steer() should periodically call
4543  * this function for each installed filter and remove the filters for
4544  * which it returns %true.
4545  */
4546 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4547 			 u32 flow_id, u16 filter_id)
4548 {
4549 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4550 	struct rps_dev_flow_table *flow_table;
4551 	struct rps_dev_flow *rflow;
4552 	bool expire = true;
4553 	unsigned int cpu;
4554 
4555 	rcu_read_lock();
4556 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4557 	if (flow_table && flow_id <= flow_table->mask) {
4558 		rflow = &flow_table->flows[flow_id];
4559 		cpu = READ_ONCE(rflow->cpu);
4560 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4561 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4562 			   rflow->last_qtail) <
4563 		     (int)(10 * flow_table->mask)))
4564 			expire = false;
4565 	}
4566 	rcu_read_unlock();
4567 	return expire;
4568 }
4569 EXPORT_SYMBOL(rps_may_expire_flow);
4570 
4571 #endif /* CONFIG_RFS_ACCEL */
4572 
4573 /* Called from hardirq (IPI) context */
4574 static void rps_trigger_softirq(void *data)
4575 {
4576 	struct softnet_data *sd = data;
4577 
4578 	____napi_schedule(sd, &sd->backlog);
4579 	sd->received_rps++;
4580 }
4581 
4582 #endif /* CONFIG_RPS */
4583 
4584 /* Called from hardirq (IPI) context */
4585 static void trigger_rx_softirq(void *data)
4586 {
4587 	struct softnet_data *sd = data;
4588 
4589 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4590 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4591 }
4592 
4593 /*
4594  * Check if this softnet_data structure is another cpu one
4595  * If yes, queue it to our IPI list and return 1
4596  * If no, return 0
4597  */
4598 static int napi_schedule_rps(struct softnet_data *sd)
4599 {
4600 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4601 
4602 #ifdef CONFIG_RPS
4603 	if (sd != mysd) {
4604 		sd->rps_ipi_next = mysd->rps_ipi_list;
4605 		mysd->rps_ipi_list = sd;
4606 
4607 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4608 		return 1;
4609 	}
4610 #endif /* CONFIG_RPS */
4611 	__napi_schedule_irqoff(&mysd->backlog);
4612 	return 0;
4613 }
4614 
4615 #ifdef CONFIG_NET_FLOW_LIMIT
4616 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4617 #endif
4618 
4619 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4620 {
4621 #ifdef CONFIG_NET_FLOW_LIMIT
4622 	struct sd_flow_limit *fl;
4623 	struct softnet_data *sd;
4624 	unsigned int old_flow, new_flow;
4625 
4626 	if (qlen < (netdev_max_backlog >> 1))
4627 		return false;
4628 
4629 	sd = this_cpu_ptr(&softnet_data);
4630 
4631 	rcu_read_lock();
4632 	fl = rcu_dereference(sd->flow_limit);
4633 	if (fl) {
4634 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4635 		old_flow = fl->history[fl->history_head];
4636 		fl->history[fl->history_head] = new_flow;
4637 
4638 		fl->history_head++;
4639 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4640 
4641 		if (likely(fl->buckets[old_flow]))
4642 			fl->buckets[old_flow]--;
4643 
4644 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4645 			fl->count++;
4646 			rcu_read_unlock();
4647 			return true;
4648 		}
4649 	}
4650 	rcu_read_unlock();
4651 #endif
4652 	return false;
4653 }
4654 
4655 /*
4656  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4657  * queue (may be a remote CPU queue).
4658  */
4659 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4660 			      unsigned int *qtail)
4661 {
4662 	enum skb_drop_reason reason;
4663 	struct softnet_data *sd;
4664 	unsigned long flags;
4665 	unsigned int qlen;
4666 
4667 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4668 	sd = &per_cpu(softnet_data, cpu);
4669 
4670 	rps_lock_irqsave(sd, &flags);
4671 	if (!netif_running(skb->dev))
4672 		goto drop;
4673 	qlen = skb_queue_len(&sd->input_pkt_queue);
4674 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4675 		if (qlen) {
4676 enqueue:
4677 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4678 			input_queue_tail_incr_save(sd, qtail);
4679 			rps_unlock_irq_restore(sd, &flags);
4680 			return NET_RX_SUCCESS;
4681 		}
4682 
4683 		/* Schedule NAPI for backlog device
4684 		 * We can use non atomic operation since we own the queue lock
4685 		 */
4686 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4687 			napi_schedule_rps(sd);
4688 		goto enqueue;
4689 	}
4690 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4691 
4692 drop:
4693 	sd->dropped++;
4694 	rps_unlock_irq_restore(sd, &flags);
4695 
4696 	dev_core_stats_rx_dropped_inc(skb->dev);
4697 	kfree_skb_reason(skb, reason);
4698 	return NET_RX_DROP;
4699 }
4700 
4701 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4702 {
4703 	struct net_device *dev = skb->dev;
4704 	struct netdev_rx_queue *rxqueue;
4705 
4706 	rxqueue = dev->_rx;
4707 
4708 	if (skb_rx_queue_recorded(skb)) {
4709 		u16 index = skb_get_rx_queue(skb);
4710 
4711 		if (unlikely(index >= dev->real_num_rx_queues)) {
4712 			WARN_ONCE(dev->real_num_rx_queues > 1,
4713 				  "%s received packet on queue %u, but number "
4714 				  "of RX queues is %u\n",
4715 				  dev->name, index, dev->real_num_rx_queues);
4716 
4717 			return rxqueue; /* Return first rxqueue */
4718 		}
4719 		rxqueue += index;
4720 	}
4721 	return rxqueue;
4722 }
4723 
4724 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4725 			     struct bpf_prog *xdp_prog)
4726 {
4727 	void *orig_data, *orig_data_end, *hard_start;
4728 	struct netdev_rx_queue *rxqueue;
4729 	bool orig_bcast, orig_host;
4730 	u32 mac_len, frame_sz;
4731 	__be16 orig_eth_type;
4732 	struct ethhdr *eth;
4733 	u32 metalen, act;
4734 	int off;
4735 
4736 	/* The XDP program wants to see the packet starting at the MAC
4737 	 * header.
4738 	 */
4739 	mac_len = skb->data - skb_mac_header(skb);
4740 	hard_start = skb->data - skb_headroom(skb);
4741 
4742 	/* SKB "head" area always have tailroom for skb_shared_info */
4743 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4744 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4745 
4746 	rxqueue = netif_get_rxqueue(skb);
4747 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4748 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4749 			 skb_headlen(skb) + mac_len, true);
4750 
4751 	orig_data_end = xdp->data_end;
4752 	orig_data = xdp->data;
4753 	eth = (struct ethhdr *)xdp->data;
4754 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4755 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4756 	orig_eth_type = eth->h_proto;
4757 
4758 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4759 
4760 	/* check if bpf_xdp_adjust_head was used */
4761 	off = xdp->data - orig_data;
4762 	if (off) {
4763 		if (off > 0)
4764 			__skb_pull(skb, off);
4765 		else if (off < 0)
4766 			__skb_push(skb, -off);
4767 
4768 		skb->mac_header += off;
4769 		skb_reset_network_header(skb);
4770 	}
4771 
4772 	/* check if bpf_xdp_adjust_tail was used */
4773 	off = xdp->data_end - orig_data_end;
4774 	if (off != 0) {
4775 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4776 		skb->len += off; /* positive on grow, negative on shrink */
4777 	}
4778 
4779 	/* check if XDP changed eth hdr such SKB needs update */
4780 	eth = (struct ethhdr *)xdp->data;
4781 	if ((orig_eth_type != eth->h_proto) ||
4782 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4783 						  skb->dev->dev_addr)) ||
4784 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4785 		__skb_push(skb, ETH_HLEN);
4786 		skb->pkt_type = PACKET_HOST;
4787 		skb->protocol = eth_type_trans(skb, skb->dev);
4788 	}
4789 
4790 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4791 	 * before calling us again on redirect path. We do not call do_redirect
4792 	 * as we leave that up to the caller.
4793 	 *
4794 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4795 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4796 	 */
4797 	switch (act) {
4798 	case XDP_REDIRECT:
4799 	case XDP_TX:
4800 		__skb_push(skb, mac_len);
4801 		break;
4802 	case XDP_PASS:
4803 		metalen = xdp->data - xdp->data_meta;
4804 		if (metalen)
4805 			skb_metadata_set(skb, metalen);
4806 		break;
4807 	}
4808 
4809 	return act;
4810 }
4811 
4812 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4813 				     struct xdp_buff *xdp,
4814 				     struct bpf_prog *xdp_prog)
4815 {
4816 	u32 act = XDP_DROP;
4817 
4818 	/* Reinjected packets coming from act_mirred or similar should
4819 	 * not get XDP generic processing.
4820 	 */
4821 	if (skb_is_redirected(skb))
4822 		return XDP_PASS;
4823 
4824 	/* XDP packets must be linear and must have sufficient headroom
4825 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4826 	 * native XDP provides, thus we need to do it here as well.
4827 	 */
4828 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4829 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4830 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4831 		int troom = skb->tail + skb->data_len - skb->end;
4832 
4833 		/* In case we have to go down the path and also linearize,
4834 		 * then lets do the pskb_expand_head() work just once here.
4835 		 */
4836 		if (pskb_expand_head(skb,
4837 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4838 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4839 			goto do_drop;
4840 		if (skb_linearize(skb))
4841 			goto do_drop;
4842 	}
4843 
4844 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4845 	switch (act) {
4846 	case XDP_REDIRECT:
4847 	case XDP_TX:
4848 	case XDP_PASS:
4849 		break;
4850 	default:
4851 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4852 		fallthrough;
4853 	case XDP_ABORTED:
4854 		trace_xdp_exception(skb->dev, xdp_prog, act);
4855 		fallthrough;
4856 	case XDP_DROP:
4857 	do_drop:
4858 		kfree_skb(skb);
4859 		break;
4860 	}
4861 
4862 	return act;
4863 }
4864 
4865 /* When doing generic XDP we have to bypass the qdisc layer and the
4866  * network taps in order to match in-driver-XDP behavior.
4867  */
4868 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4869 {
4870 	struct net_device *dev = skb->dev;
4871 	struct netdev_queue *txq;
4872 	bool free_skb = true;
4873 	int cpu, rc;
4874 
4875 	txq = netdev_core_pick_tx(dev, skb, NULL);
4876 	cpu = smp_processor_id();
4877 	HARD_TX_LOCK(dev, txq, cpu);
4878 	if (!netif_xmit_stopped(txq)) {
4879 		rc = netdev_start_xmit(skb, dev, txq, 0);
4880 		if (dev_xmit_complete(rc))
4881 			free_skb = false;
4882 	}
4883 	HARD_TX_UNLOCK(dev, txq);
4884 	if (free_skb) {
4885 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4886 		kfree_skb(skb);
4887 	}
4888 }
4889 
4890 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4891 
4892 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4893 {
4894 	if (xdp_prog) {
4895 		struct xdp_buff xdp;
4896 		u32 act;
4897 		int err;
4898 
4899 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4900 		if (act != XDP_PASS) {
4901 			switch (act) {
4902 			case XDP_REDIRECT:
4903 				err = xdp_do_generic_redirect(skb->dev, skb,
4904 							      &xdp, xdp_prog);
4905 				if (err)
4906 					goto out_redir;
4907 				break;
4908 			case XDP_TX:
4909 				generic_xdp_tx(skb, xdp_prog);
4910 				break;
4911 			}
4912 			return XDP_DROP;
4913 		}
4914 	}
4915 	return XDP_PASS;
4916 out_redir:
4917 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4918 	return XDP_DROP;
4919 }
4920 EXPORT_SYMBOL_GPL(do_xdp_generic);
4921 
4922 static int netif_rx_internal(struct sk_buff *skb)
4923 {
4924 	int ret;
4925 
4926 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4927 
4928 	trace_netif_rx(skb);
4929 
4930 #ifdef CONFIG_RPS
4931 	if (static_branch_unlikely(&rps_needed)) {
4932 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4933 		int cpu;
4934 
4935 		rcu_read_lock();
4936 
4937 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4938 		if (cpu < 0)
4939 			cpu = smp_processor_id();
4940 
4941 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4942 
4943 		rcu_read_unlock();
4944 	} else
4945 #endif
4946 	{
4947 		unsigned int qtail;
4948 
4949 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4950 	}
4951 	return ret;
4952 }
4953 
4954 /**
4955  *	__netif_rx	-	Slightly optimized version of netif_rx
4956  *	@skb: buffer to post
4957  *
4958  *	This behaves as netif_rx except that it does not disable bottom halves.
4959  *	As a result this function may only be invoked from the interrupt context
4960  *	(either hard or soft interrupt).
4961  */
4962 int __netif_rx(struct sk_buff *skb)
4963 {
4964 	int ret;
4965 
4966 	lockdep_assert_once(hardirq_count() | softirq_count());
4967 
4968 	trace_netif_rx_entry(skb);
4969 	ret = netif_rx_internal(skb);
4970 	trace_netif_rx_exit(ret);
4971 	return ret;
4972 }
4973 EXPORT_SYMBOL(__netif_rx);
4974 
4975 /**
4976  *	netif_rx	-	post buffer to the network code
4977  *	@skb: buffer to post
4978  *
4979  *	This function receives a packet from a device driver and queues it for
4980  *	the upper (protocol) levels to process via the backlog NAPI device. It
4981  *	always succeeds. The buffer may be dropped during processing for
4982  *	congestion control or by the protocol layers.
4983  *	The network buffer is passed via the backlog NAPI device. Modern NIC
4984  *	driver should use NAPI and GRO.
4985  *	This function can used from interrupt and from process context. The
4986  *	caller from process context must not disable interrupts before invoking
4987  *	this function.
4988  *
4989  *	return values:
4990  *	NET_RX_SUCCESS	(no congestion)
4991  *	NET_RX_DROP     (packet was dropped)
4992  *
4993  */
4994 int netif_rx(struct sk_buff *skb)
4995 {
4996 	bool need_bh_off = !(hardirq_count() | softirq_count());
4997 	int ret;
4998 
4999 	if (need_bh_off)
5000 		local_bh_disable();
5001 	trace_netif_rx_entry(skb);
5002 	ret = netif_rx_internal(skb);
5003 	trace_netif_rx_exit(ret);
5004 	if (need_bh_off)
5005 		local_bh_enable();
5006 	return ret;
5007 }
5008 EXPORT_SYMBOL(netif_rx);
5009 
5010 static __latent_entropy void net_tx_action(struct softirq_action *h)
5011 {
5012 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5013 
5014 	if (sd->completion_queue) {
5015 		struct sk_buff *clist;
5016 
5017 		local_irq_disable();
5018 		clist = sd->completion_queue;
5019 		sd->completion_queue = NULL;
5020 		local_irq_enable();
5021 
5022 		while (clist) {
5023 			struct sk_buff *skb = clist;
5024 
5025 			clist = clist->next;
5026 
5027 			WARN_ON(refcount_read(&skb->users));
5028 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5029 				trace_consume_skb(skb);
5030 			else
5031 				trace_kfree_skb(skb, net_tx_action,
5032 						SKB_DROP_REASON_NOT_SPECIFIED);
5033 
5034 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5035 				__kfree_skb(skb);
5036 			else
5037 				__kfree_skb_defer(skb);
5038 		}
5039 	}
5040 
5041 	if (sd->output_queue) {
5042 		struct Qdisc *head;
5043 
5044 		local_irq_disable();
5045 		head = sd->output_queue;
5046 		sd->output_queue = NULL;
5047 		sd->output_queue_tailp = &sd->output_queue;
5048 		local_irq_enable();
5049 
5050 		rcu_read_lock();
5051 
5052 		while (head) {
5053 			struct Qdisc *q = head;
5054 			spinlock_t *root_lock = NULL;
5055 
5056 			head = head->next_sched;
5057 
5058 			/* We need to make sure head->next_sched is read
5059 			 * before clearing __QDISC_STATE_SCHED
5060 			 */
5061 			smp_mb__before_atomic();
5062 
5063 			if (!(q->flags & TCQ_F_NOLOCK)) {
5064 				root_lock = qdisc_lock(q);
5065 				spin_lock(root_lock);
5066 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5067 						     &q->state))) {
5068 				/* There is a synchronize_net() between
5069 				 * STATE_DEACTIVATED flag being set and
5070 				 * qdisc_reset()/some_qdisc_is_busy() in
5071 				 * dev_deactivate(), so we can safely bail out
5072 				 * early here to avoid data race between
5073 				 * qdisc_deactivate() and some_qdisc_is_busy()
5074 				 * for lockless qdisc.
5075 				 */
5076 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5077 				continue;
5078 			}
5079 
5080 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5081 			qdisc_run(q);
5082 			if (root_lock)
5083 				spin_unlock(root_lock);
5084 		}
5085 
5086 		rcu_read_unlock();
5087 	}
5088 
5089 	xfrm_dev_backlog(sd);
5090 }
5091 
5092 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5093 /* This hook is defined here for ATM LANE */
5094 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5095 			     unsigned char *addr) __read_mostly;
5096 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5097 #endif
5098 
5099 static inline struct sk_buff *
5100 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5101 		   struct net_device *orig_dev, bool *another)
5102 {
5103 #ifdef CONFIG_NET_CLS_ACT
5104 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5105 	struct tcf_result cl_res;
5106 
5107 	/* If there's at least one ingress present somewhere (so
5108 	 * we get here via enabled static key), remaining devices
5109 	 * that are not configured with an ingress qdisc will bail
5110 	 * out here.
5111 	 */
5112 	if (!miniq)
5113 		return skb;
5114 
5115 	if (*pt_prev) {
5116 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5117 		*pt_prev = NULL;
5118 	}
5119 
5120 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5121 	tc_skb_cb(skb)->mru = 0;
5122 	tc_skb_cb(skb)->post_ct = false;
5123 	skb->tc_at_ingress = 1;
5124 	mini_qdisc_bstats_cpu_update(miniq, skb);
5125 
5126 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5127 	case TC_ACT_OK:
5128 	case TC_ACT_RECLASSIFY:
5129 		skb->tc_index = TC_H_MIN(cl_res.classid);
5130 		break;
5131 	case TC_ACT_SHOT:
5132 		mini_qdisc_qstats_cpu_drop(miniq);
5133 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5134 		return NULL;
5135 	case TC_ACT_STOLEN:
5136 	case TC_ACT_QUEUED:
5137 	case TC_ACT_TRAP:
5138 		consume_skb(skb);
5139 		return NULL;
5140 	case TC_ACT_REDIRECT:
5141 		/* skb_mac_header check was done by cls/act_bpf, so
5142 		 * we can safely push the L2 header back before
5143 		 * redirecting to another netdev
5144 		 */
5145 		__skb_push(skb, skb->mac_len);
5146 		if (skb_do_redirect(skb) == -EAGAIN) {
5147 			__skb_pull(skb, skb->mac_len);
5148 			*another = true;
5149 			break;
5150 		}
5151 		return NULL;
5152 	case TC_ACT_CONSUMED:
5153 		return NULL;
5154 	default:
5155 		break;
5156 	}
5157 #endif /* CONFIG_NET_CLS_ACT */
5158 	return skb;
5159 }
5160 
5161 /**
5162  *	netdev_is_rx_handler_busy - check if receive handler is registered
5163  *	@dev: device to check
5164  *
5165  *	Check if a receive handler is already registered for a given device.
5166  *	Return true if there one.
5167  *
5168  *	The caller must hold the rtnl_mutex.
5169  */
5170 bool netdev_is_rx_handler_busy(struct net_device *dev)
5171 {
5172 	ASSERT_RTNL();
5173 	return dev && rtnl_dereference(dev->rx_handler);
5174 }
5175 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5176 
5177 /**
5178  *	netdev_rx_handler_register - register receive handler
5179  *	@dev: device to register a handler for
5180  *	@rx_handler: receive handler to register
5181  *	@rx_handler_data: data pointer that is used by rx handler
5182  *
5183  *	Register a receive handler for a device. This handler will then be
5184  *	called from __netif_receive_skb. A negative errno code is returned
5185  *	on a failure.
5186  *
5187  *	The caller must hold the rtnl_mutex.
5188  *
5189  *	For a general description of rx_handler, see enum rx_handler_result.
5190  */
5191 int netdev_rx_handler_register(struct net_device *dev,
5192 			       rx_handler_func_t *rx_handler,
5193 			       void *rx_handler_data)
5194 {
5195 	if (netdev_is_rx_handler_busy(dev))
5196 		return -EBUSY;
5197 
5198 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5199 		return -EINVAL;
5200 
5201 	/* Note: rx_handler_data must be set before rx_handler */
5202 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5203 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5204 
5205 	return 0;
5206 }
5207 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5208 
5209 /**
5210  *	netdev_rx_handler_unregister - unregister receive handler
5211  *	@dev: device to unregister a handler from
5212  *
5213  *	Unregister a receive handler from a device.
5214  *
5215  *	The caller must hold the rtnl_mutex.
5216  */
5217 void netdev_rx_handler_unregister(struct net_device *dev)
5218 {
5219 
5220 	ASSERT_RTNL();
5221 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5222 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5223 	 * section has a guarantee to see a non NULL rx_handler_data
5224 	 * as well.
5225 	 */
5226 	synchronize_net();
5227 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5228 }
5229 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5230 
5231 /*
5232  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5233  * the special handling of PFMEMALLOC skbs.
5234  */
5235 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5236 {
5237 	switch (skb->protocol) {
5238 	case htons(ETH_P_ARP):
5239 	case htons(ETH_P_IP):
5240 	case htons(ETH_P_IPV6):
5241 	case htons(ETH_P_8021Q):
5242 	case htons(ETH_P_8021AD):
5243 		return true;
5244 	default:
5245 		return false;
5246 	}
5247 }
5248 
5249 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5250 			     int *ret, struct net_device *orig_dev)
5251 {
5252 	if (nf_hook_ingress_active(skb)) {
5253 		int ingress_retval;
5254 
5255 		if (*pt_prev) {
5256 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5257 			*pt_prev = NULL;
5258 		}
5259 
5260 		rcu_read_lock();
5261 		ingress_retval = nf_hook_ingress(skb);
5262 		rcu_read_unlock();
5263 		return ingress_retval;
5264 	}
5265 	return 0;
5266 }
5267 
5268 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5269 				    struct packet_type **ppt_prev)
5270 {
5271 	struct packet_type *ptype, *pt_prev;
5272 	rx_handler_func_t *rx_handler;
5273 	struct sk_buff *skb = *pskb;
5274 	struct net_device *orig_dev;
5275 	bool deliver_exact = false;
5276 	int ret = NET_RX_DROP;
5277 	__be16 type;
5278 
5279 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5280 
5281 	trace_netif_receive_skb(skb);
5282 
5283 	orig_dev = skb->dev;
5284 
5285 	skb_reset_network_header(skb);
5286 	if (!skb_transport_header_was_set(skb))
5287 		skb_reset_transport_header(skb);
5288 	skb_reset_mac_len(skb);
5289 
5290 	pt_prev = NULL;
5291 
5292 another_round:
5293 	skb->skb_iif = skb->dev->ifindex;
5294 
5295 	__this_cpu_inc(softnet_data.processed);
5296 
5297 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5298 		int ret2;
5299 
5300 		migrate_disable();
5301 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5302 		migrate_enable();
5303 
5304 		if (ret2 != XDP_PASS) {
5305 			ret = NET_RX_DROP;
5306 			goto out;
5307 		}
5308 	}
5309 
5310 	if (eth_type_vlan(skb->protocol)) {
5311 		skb = skb_vlan_untag(skb);
5312 		if (unlikely(!skb))
5313 			goto out;
5314 	}
5315 
5316 	if (skb_skip_tc_classify(skb))
5317 		goto skip_classify;
5318 
5319 	if (pfmemalloc)
5320 		goto skip_taps;
5321 
5322 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5323 		if (pt_prev)
5324 			ret = deliver_skb(skb, pt_prev, orig_dev);
5325 		pt_prev = ptype;
5326 	}
5327 
5328 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5329 		if (pt_prev)
5330 			ret = deliver_skb(skb, pt_prev, orig_dev);
5331 		pt_prev = ptype;
5332 	}
5333 
5334 skip_taps:
5335 #ifdef CONFIG_NET_INGRESS
5336 	if (static_branch_unlikely(&ingress_needed_key)) {
5337 		bool another = false;
5338 
5339 		nf_skip_egress(skb, true);
5340 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5341 					 &another);
5342 		if (another)
5343 			goto another_round;
5344 		if (!skb)
5345 			goto out;
5346 
5347 		nf_skip_egress(skb, false);
5348 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5349 			goto out;
5350 	}
5351 #endif
5352 	skb_reset_redirect(skb);
5353 skip_classify:
5354 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5355 		goto drop;
5356 
5357 	if (skb_vlan_tag_present(skb)) {
5358 		if (pt_prev) {
5359 			ret = deliver_skb(skb, pt_prev, orig_dev);
5360 			pt_prev = NULL;
5361 		}
5362 		if (vlan_do_receive(&skb))
5363 			goto another_round;
5364 		else if (unlikely(!skb))
5365 			goto out;
5366 	}
5367 
5368 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5369 	if (rx_handler) {
5370 		if (pt_prev) {
5371 			ret = deliver_skb(skb, pt_prev, orig_dev);
5372 			pt_prev = NULL;
5373 		}
5374 		switch (rx_handler(&skb)) {
5375 		case RX_HANDLER_CONSUMED:
5376 			ret = NET_RX_SUCCESS;
5377 			goto out;
5378 		case RX_HANDLER_ANOTHER:
5379 			goto another_round;
5380 		case RX_HANDLER_EXACT:
5381 			deliver_exact = true;
5382 			break;
5383 		case RX_HANDLER_PASS:
5384 			break;
5385 		default:
5386 			BUG();
5387 		}
5388 	}
5389 
5390 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5391 check_vlan_id:
5392 		if (skb_vlan_tag_get_id(skb)) {
5393 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5394 			 * find vlan device.
5395 			 */
5396 			skb->pkt_type = PACKET_OTHERHOST;
5397 		} else if (eth_type_vlan(skb->protocol)) {
5398 			/* Outer header is 802.1P with vlan 0, inner header is
5399 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5400 			 * not find vlan dev for vlan id 0.
5401 			 */
5402 			__vlan_hwaccel_clear_tag(skb);
5403 			skb = skb_vlan_untag(skb);
5404 			if (unlikely(!skb))
5405 				goto out;
5406 			if (vlan_do_receive(&skb))
5407 				/* After stripping off 802.1P header with vlan 0
5408 				 * vlan dev is found for inner header.
5409 				 */
5410 				goto another_round;
5411 			else if (unlikely(!skb))
5412 				goto out;
5413 			else
5414 				/* We have stripped outer 802.1P vlan 0 header.
5415 				 * But could not find vlan dev.
5416 				 * check again for vlan id to set OTHERHOST.
5417 				 */
5418 				goto check_vlan_id;
5419 		}
5420 		/* Note: we might in the future use prio bits
5421 		 * and set skb->priority like in vlan_do_receive()
5422 		 * For the time being, just ignore Priority Code Point
5423 		 */
5424 		__vlan_hwaccel_clear_tag(skb);
5425 	}
5426 
5427 	type = skb->protocol;
5428 
5429 	/* deliver only exact match when indicated */
5430 	if (likely(!deliver_exact)) {
5431 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5432 				       &ptype_base[ntohs(type) &
5433 						   PTYPE_HASH_MASK]);
5434 	}
5435 
5436 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5437 			       &orig_dev->ptype_specific);
5438 
5439 	if (unlikely(skb->dev != orig_dev)) {
5440 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5441 				       &skb->dev->ptype_specific);
5442 	}
5443 
5444 	if (pt_prev) {
5445 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5446 			goto drop;
5447 		*ppt_prev = pt_prev;
5448 	} else {
5449 drop:
5450 		if (!deliver_exact)
5451 			dev_core_stats_rx_dropped_inc(skb->dev);
5452 		else
5453 			dev_core_stats_rx_nohandler_inc(skb->dev);
5454 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5455 		/* Jamal, now you will not able to escape explaining
5456 		 * me how you were going to use this. :-)
5457 		 */
5458 		ret = NET_RX_DROP;
5459 	}
5460 
5461 out:
5462 	/* The invariant here is that if *ppt_prev is not NULL
5463 	 * then skb should also be non-NULL.
5464 	 *
5465 	 * Apparently *ppt_prev assignment above holds this invariant due to
5466 	 * skb dereferencing near it.
5467 	 */
5468 	*pskb = skb;
5469 	return ret;
5470 }
5471 
5472 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5473 {
5474 	struct net_device *orig_dev = skb->dev;
5475 	struct packet_type *pt_prev = NULL;
5476 	int ret;
5477 
5478 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5479 	if (pt_prev)
5480 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5481 					 skb->dev, pt_prev, orig_dev);
5482 	return ret;
5483 }
5484 
5485 /**
5486  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5487  *	@skb: buffer to process
5488  *
5489  *	More direct receive version of netif_receive_skb().  It should
5490  *	only be used by callers that have a need to skip RPS and Generic XDP.
5491  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5492  *
5493  *	This function may only be called from softirq context and interrupts
5494  *	should be enabled.
5495  *
5496  *	Return values (usually ignored):
5497  *	NET_RX_SUCCESS: no congestion
5498  *	NET_RX_DROP: packet was dropped
5499  */
5500 int netif_receive_skb_core(struct sk_buff *skb)
5501 {
5502 	int ret;
5503 
5504 	rcu_read_lock();
5505 	ret = __netif_receive_skb_one_core(skb, false);
5506 	rcu_read_unlock();
5507 
5508 	return ret;
5509 }
5510 EXPORT_SYMBOL(netif_receive_skb_core);
5511 
5512 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5513 						  struct packet_type *pt_prev,
5514 						  struct net_device *orig_dev)
5515 {
5516 	struct sk_buff *skb, *next;
5517 
5518 	if (!pt_prev)
5519 		return;
5520 	if (list_empty(head))
5521 		return;
5522 	if (pt_prev->list_func != NULL)
5523 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5524 				   ip_list_rcv, head, pt_prev, orig_dev);
5525 	else
5526 		list_for_each_entry_safe(skb, next, head, list) {
5527 			skb_list_del_init(skb);
5528 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5529 		}
5530 }
5531 
5532 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5533 {
5534 	/* Fast-path assumptions:
5535 	 * - There is no RX handler.
5536 	 * - Only one packet_type matches.
5537 	 * If either of these fails, we will end up doing some per-packet
5538 	 * processing in-line, then handling the 'last ptype' for the whole
5539 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5540 	 * because the 'last ptype' must be constant across the sublist, and all
5541 	 * other ptypes are handled per-packet.
5542 	 */
5543 	/* Current (common) ptype of sublist */
5544 	struct packet_type *pt_curr = NULL;
5545 	/* Current (common) orig_dev of sublist */
5546 	struct net_device *od_curr = NULL;
5547 	struct list_head sublist;
5548 	struct sk_buff *skb, *next;
5549 
5550 	INIT_LIST_HEAD(&sublist);
5551 	list_for_each_entry_safe(skb, next, head, list) {
5552 		struct net_device *orig_dev = skb->dev;
5553 		struct packet_type *pt_prev = NULL;
5554 
5555 		skb_list_del_init(skb);
5556 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5557 		if (!pt_prev)
5558 			continue;
5559 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5560 			/* dispatch old sublist */
5561 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5562 			/* start new sublist */
5563 			INIT_LIST_HEAD(&sublist);
5564 			pt_curr = pt_prev;
5565 			od_curr = orig_dev;
5566 		}
5567 		list_add_tail(&skb->list, &sublist);
5568 	}
5569 
5570 	/* dispatch final sublist */
5571 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5572 }
5573 
5574 static int __netif_receive_skb(struct sk_buff *skb)
5575 {
5576 	int ret;
5577 
5578 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5579 		unsigned int noreclaim_flag;
5580 
5581 		/*
5582 		 * PFMEMALLOC skbs are special, they should
5583 		 * - be delivered to SOCK_MEMALLOC sockets only
5584 		 * - stay away from userspace
5585 		 * - have bounded memory usage
5586 		 *
5587 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5588 		 * context down to all allocation sites.
5589 		 */
5590 		noreclaim_flag = memalloc_noreclaim_save();
5591 		ret = __netif_receive_skb_one_core(skb, true);
5592 		memalloc_noreclaim_restore(noreclaim_flag);
5593 	} else
5594 		ret = __netif_receive_skb_one_core(skb, false);
5595 
5596 	return ret;
5597 }
5598 
5599 static void __netif_receive_skb_list(struct list_head *head)
5600 {
5601 	unsigned long noreclaim_flag = 0;
5602 	struct sk_buff *skb, *next;
5603 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5604 
5605 	list_for_each_entry_safe(skb, next, head, list) {
5606 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5607 			struct list_head sublist;
5608 
5609 			/* Handle the previous sublist */
5610 			list_cut_before(&sublist, head, &skb->list);
5611 			if (!list_empty(&sublist))
5612 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5613 			pfmemalloc = !pfmemalloc;
5614 			/* See comments in __netif_receive_skb */
5615 			if (pfmemalloc)
5616 				noreclaim_flag = memalloc_noreclaim_save();
5617 			else
5618 				memalloc_noreclaim_restore(noreclaim_flag);
5619 		}
5620 	}
5621 	/* Handle the remaining sublist */
5622 	if (!list_empty(head))
5623 		__netif_receive_skb_list_core(head, pfmemalloc);
5624 	/* Restore pflags */
5625 	if (pfmemalloc)
5626 		memalloc_noreclaim_restore(noreclaim_flag);
5627 }
5628 
5629 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5630 {
5631 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5632 	struct bpf_prog *new = xdp->prog;
5633 	int ret = 0;
5634 
5635 	switch (xdp->command) {
5636 	case XDP_SETUP_PROG:
5637 		rcu_assign_pointer(dev->xdp_prog, new);
5638 		if (old)
5639 			bpf_prog_put(old);
5640 
5641 		if (old && !new) {
5642 			static_branch_dec(&generic_xdp_needed_key);
5643 		} else if (new && !old) {
5644 			static_branch_inc(&generic_xdp_needed_key);
5645 			dev_disable_lro(dev);
5646 			dev_disable_gro_hw(dev);
5647 		}
5648 		break;
5649 
5650 	default:
5651 		ret = -EINVAL;
5652 		break;
5653 	}
5654 
5655 	return ret;
5656 }
5657 
5658 static int netif_receive_skb_internal(struct sk_buff *skb)
5659 {
5660 	int ret;
5661 
5662 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5663 
5664 	if (skb_defer_rx_timestamp(skb))
5665 		return NET_RX_SUCCESS;
5666 
5667 	rcu_read_lock();
5668 #ifdef CONFIG_RPS
5669 	if (static_branch_unlikely(&rps_needed)) {
5670 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5671 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5672 
5673 		if (cpu >= 0) {
5674 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5675 			rcu_read_unlock();
5676 			return ret;
5677 		}
5678 	}
5679 #endif
5680 	ret = __netif_receive_skb(skb);
5681 	rcu_read_unlock();
5682 	return ret;
5683 }
5684 
5685 void netif_receive_skb_list_internal(struct list_head *head)
5686 {
5687 	struct sk_buff *skb, *next;
5688 	struct list_head sublist;
5689 
5690 	INIT_LIST_HEAD(&sublist);
5691 	list_for_each_entry_safe(skb, next, head, list) {
5692 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5693 		skb_list_del_init(skb);
5694 		if (!skb_defer_rx_timestamp(skb))
5695 			list_add_tail(&skb->list, &sublist);
5696 	}
5697 	list_splice_init(&sublist, head);
5698 
5699 	rcu_read_lock();
5700 #ifdef CONFIG_RPS
5701 	if (static_branch_unlikely(&rps_needed)) {
5702 		list_for_each_entry_safe(skb, next, head, list) {
5703 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5704 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5705 
5706 			if (cpu >= 0) {
5707 				/* Will be handled, remove from list */
5708 				skb_list_del_init(skb);
5709 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5710 			}
5711 		}
5712 	}
5713 #endif
5714 	__netif_receive_skb_list(head);
5715 	rcu_read_unlock();
5716 }
5717 
5718 /**
5719  *	netif_receive_skb - process receive buffer from network
5720  *	@skb: buffer to process
5721  *
5722  *	netif_receive_skb() is the main receive data processing function.
5723  *	It always succeeds. The buffer may be dropped during processing
5724  *	for congestion control or by the protocol layers.
5725  *
5726  *	This function may only be called from softirq context and interrupts
5727  *	should be enabled.
5728  *
5729  *	Return values (usually ignored):
5730  *	NET_RX_SUCCESS: no congestion
5731  *	NET_RX_DROP: packet was dropped
5732  */
5733 int netif_receive_skb(struct sk_buff *skb)
5734 {
5735 	int ret;
5736 
5737 	trace_netif_receive_skb_entry(skb);
5738 
5739 	ret = netif_receive_skb_internal(skb);
5740 	trace_netif_receive_skb_exit(ret);
5741 
5742 	return ret;
5743 }
5744 EXPORT_SYMBOL(netif_receive_skb);
5745 
5746 /**
5747  *	netif_receive_skb_list - process many receive buffers from network
5748  *	@head: list of skbs to process.
5749  *
5750  *	Since return value of netif_receive_skb() is normally ignored, and
5751  *	wouldn't be meaningful for a list, this function returns void.
5752  *
5753  *	This function may only be called from softirq context and interrupts
5754  *	should be enabled.
5755  */
5756 void netif_receive_skb_list(struct list_head *head)
5757 {
5758 	struct sk_buff *skb;
5759 
5760 	if (list_empty(head))
5761 		return;
5762 	if (trace_netif_receive_skb_list_entry_enabled()) {
5763 		list_for_each_entry(skb, head, list)
5764 			trace_netif_receive_skb_list_entry(skb);
5765 	}
5766 	netif_receive_skb_list_internal(head);
5767 	trace_netif_receive_skb_list_exit(0);
5768 }
5769 EXPORT_SYMBOL(netif_receive_skb_list);
5770 
5771 static DEFINE_PER_CPU(struct work_struct, flush_works);
5772 
5773 /* Network device is going away, flush any packets still pending */
5774 static void flush_backlog(struct work_struct *work)
5775 {
5776 	struct sk_buff *skb, *tmp;
5777 	struct softnet_data *sd;
5778 
5779 	local_bh_disable();
5780 	sd = this_cpu_ptr(&softnet_data);
5781 
5782 	rps_lock_irq_disable(sd);
5783 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5784 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5785 			__skb_unlink(skb, &sd->input_pkt_queue);
5786 			dev_kfree_skb_irq(skb);
5787 			input_queue_head_incr(sd);
5788 		}
5789 	}
5790 	rps_unlock_irq_enable(sd);
5791 
5792 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5793 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5794 			__skb_unlink(skb, &sd->process_queue);
5795 			kfree_skb(skb);
5796 			input_queue_head_incr(sd);
5797 		}
5798 	}
5799 	local_bh_enable();
5800 }
5801 
5802 static bool flush_required(int cpu)
5803 {
5804 #if IS_ENABLED(CONFIG_RPS)
5805 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5806 	bool do_flush;
5807 
5808 	rps_lock_irq_disable(sd);
5809 
5810 	/* as insertion into process_queue happens with the rps lock held,
5811 	 * process_queue access may race only with dequeue
5812 	 */
5813 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5814 		   !skb_queue_empty_lockless(&sd->process_queue);
5815 	rps_unlock_irq_enable(sd);
5816 
5817 	return do_flush;
5818 #endif
5819 	/* without RPS we can't safely check input_pkt_queue: during a
5820 	 * concurrent remote skb_queue_splice() we can detect as empty both
5821 	 * input_pkt_queue and process_queue even if the latter could end-up
5822 	 * containing a lot of packets.
5823 	 */
5824 	return true;
5825 }
5826 
5827 static void flush_all_backlogs(void)
5828 {
5829 	static cpumask_t flush_cpus;
5830 	unsigned int cpu;
5831 
5832 	/* since we are under rtnl lock protection we can use static data
5833 	 * for the cpumask and avoid allocating on stack the possibly
5834 	 * large mask
5835 	 */
5836 	ASSERT_RTNL();
5837 
5838 	cpus_read_lock();
5839 
5840 	cpumask_clear(&flush_cpus);
5841 	for_each_online_cpu(cpu) {
5842 		if (flush_required(cpu)) {
5843 			queue_work_on(cpu, system_highpri_wq,
5844 				      per_cpu_ptr(&flush_works, cpu));
5845 			cpumask_set_cpu(cpu, &flush_cpus);
5846 		}
5847 	}
5848 
5849 	/* we can have in flight packet[s] on the cpus we are not flushing,
5850 	 * synchronize_net() in unregister_netdevice_many() will take care of
5851 	 * them
5852 	 */
5853 	for_each_cpu(cpu, &flush_cpus)
5854 		flush_work(per_cpu_ptr(&flush_works, cpu));
5855 
5856 	cpus_read_unlock();
5857 }
5858 
5859 static void net_rps_send_ipi(struct softnet_data *remsd)
5860 {
5861 #ifdef CONFIG_RPS
5862 	while (remsd) {
5863 		struct softnet_data *next = remsd->rps_ipi_next;
5864 
5865 		if (cpu_online(remsd->cpu))
5866 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5867 		remsd = next;
5868 	}
5869 #endif
5870 }
5871 
5872 /*
5873  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5874  * Note: called with local irq disabled, but exits with local irq enabled.
5875  */
5876 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5877 {
5878 #ifdef CONFIG_RPS
5879 	struct softnet_data *remsd = sd->rps_ipi_list;
5880 
5881 	if (remsd) {
5882 		sd->rps_ipi_list = NULL;
5883 
5884 		local_irq_enable();
5885 
5886 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5887 		net_rps_send_ipi(remsd);
5888 	} else
5889 #endif
5890 		local_irq_enable();
5891 }
5892 
5893 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5894 {
5895 #ifdef CONFIG_RPS
5896 	return sd->rps_ipi_list != NULL;
5897 #else
5898 	return false;
5899 #endif
5900 }
5901 
5902 static int process_backlog(struct napi_struct *napi, int quota)
5903 {
5904 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5905 	bool again = true;
5906 	int work = 0;
5907 
5908 	/* Check if we have pending ipi, its better to send them now,
5909 	 * not waiting net_rx_action() end.
5910 	 */
5911 	if (sd_has_rps_ipi_waiting(sd)) {
5912 		local_irq_disable();
5913 		net_rps_action_and_irq_enable(sd);
5914 	}
5915 
5916 	napi->weight = dev_rx_weight;
5917 	while (again) {
5918 		struct sk_buff *skb;
5919 
5920 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5921 			rcu_read_lock();
5922 			__netif_receive_skb(skb);
5923 			rcu_read_unlock();
5924 			input_queue_head_incr(sd);
5925 			if (++work >= quota)
5926 				return work;
5927 
5928 		}
5929 
5930 		rps_lock_irq_disable(sd);
5931 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5932 			/*
5933 			 * Inline a custom version of __napi_complete().
5934 			 * only current cpu owns and manipulates this napi,
5935 			 * and NAPI_STATE_SCHED is the only possible flag set
5936 			 * on backlog.
5937 			 * We can use a plain write instead of clear_bit(),
5938 			 * and we dont need an smp_mb() memory barrier.
5939 			 */
5940 			napi->state = 0;
5941 			again = false;
5942 		} else {
5943 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5944 						   &sd->process_queue);
5945 		}
5946 		rps_unlock_irq_enable(sd);
5947 	}
5948 
5949 	return work;
5950 }
5951 
5952 /**
5953  * __napi_schedule - schedule for receive
5954  * @n: entry to schedule
5955  *
5956  * The entry's receive function will be scheduled to run.
5957  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5958  */
5959 void __napi_schedule(struct napi_struct *n)
5960 {
5961 	unsigned long flags;
5962 
5963 	local_irq_save(flags);
5964 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5965 	local_irq_restore(flags);
5966 }
5967 EXPORT_SYMBOL(__napi_schedule);
5968 
5969 /**
5970  *	napi_schedule_prep - check if napi can be scheduled
5971  *	@n: napi context
5972  *
5973  * Test if NAPI routine is already running, and if not mark
5974  * it as running.  This is used as a condition variable to
5975  * insure only one NAPI poll instance runs.  We also make
5976  * sure there is no pending NAPI disable.
5977  */
5978 bool napi_schedule_prep(struct napi_struct *n)
5979 {
5980 	unsigned long val, new;
5981 
5982 	do {
5983 		val = READ_ONCE(n->state);
5984 		if (unlikely(val & NAPIF_STATE_DISABLE))
5985 			return false;
5986 		new = val | NAPIF_STATE_SCHED;
5987 
5988 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5989 		 * This was suggested by Alexander Duyck, as compiler
5990 		 * emits better code than :
5991 		 * if (val & NAPIF_STATE_SCHED)
5992 		 *     new |= NAPIF_STATE_MISSED;
5993 		 */
5994 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5995 						   NAPIF_STATE_MISSED;
5996 	} while (cmpxchg(&n->state, val, new) != val);
5997 
5998 	return !(val & NAPIF_STATE_SCHED);
5999 }
6000 EXPORT_SYMBOL(napi_schedule_prep);
6001 
6002 /**
6003  * __napi_schedule_irqoff - schedule for receive
6004  * @n: entry to schedule
6005  *
6006  * Variant of __napi_schedule() assuming hard irqs are masked.
6007  *
6008  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6009  * because the interrupt disabled assumption might not be true
6010  * due to force-threaded interrupts and spinlock substitution.
6011  */
6012 void __napi_schedule_irqoff(struct napi_struct *n)
6013 {
6014 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6015 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6016 	else
6017 		__napi_schedule(n);
6018 }
6019 EXPORT_SYMBOL(__napi_schedule_irqoff);
6020 
6021 bool napi_complete_done(struct napi_struct *n, int work_done)
6022 {
6023 	unsigned long flags, val, new, timeout = 0;
6024 	bool ret = true;
6025 
6026 	/*
6027 	 * 1) Don't let napi dequeue from the cpu poll list
6028 	 *    just in case its running on a different cpu.
6029 	 * 2) If we are busy polling, do nothing here, we have
6030 	 *    the guarantee we will be called later.
6031 	 */
6032 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6033 				 NAPIF_STATE_IN_BUSY_POLL)))
6034 		return false;
6035 
6036 	if (work_done) {
6037 		if (n->gro_bitmask)
6038 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6039 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6040 	}
6041 	if (n->defer_hard_irqs_count > 0) {
6042 		n->defer_hard_irqs_count--;
6043 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6044 		if (timeout)
6045 			ret = false;
6046 	}
6047 	if (n->gro_bitmask) {
6048 		/* When the NAPI instance uses a timeout and keeps postponing
6049 		 * it, we need to bound somehow the time packets are kept in
6050 		 * the GRO layer
6051 		 */
6052 		napi_gro_flush(n, !!timeout);
6053 	}
6054 
6055 	gro_normal_list(n);
6056 
6057 	if (unlikely(!list_empty(&n->poll_list))) {
6058 		/* If n->poll_list is not empty, we need to mask irqs */
6059 		local_irq_save(flags);
6060 		list_del_init(&n->poll_list);
6061 		local_irq_restore(flags);
6062 	}
6063 
6064 	do {
6065 		val = READ_ONCE(n->state);
6066 
6067 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6068 
6069 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6070 			      NAPIF_STATE_SCHED_THREADED |
6071 			      NAPIF_STATE_PREFER_BUSY_POLL);
6072 
6073 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6074 		 * because we will call napi->poll() one more time.
6075 		 * This C code was suggested by Alexander Duyck to help gcc.
6076 		 */
6077 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6078 						    NAPIF_STATE_SCHED;
6079 	} while (cmpxchg(&n->state, val, new) != val);
6080 
6081 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6082 		__napi_schedule(n);
6083 		return false;
6084 	}
6085 
6086 	if (timeout)
6087 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6088 			      HRTIMER_MODE_REL_PINNED);
6089 	return ret;
6090 }
6091 EXPORT_SYMBOL(napi_complete_done);
6092 
6093 /* must be called under rcu_read_lock(), as we dont take a reference */
6094 static struct napi_struct *napi_by_id(unsigned int napi_id)
6095 {
6096 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6097 	struct napi_struct *napi;
6098 
6099 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6100 		if (napi->napi_id == napi_id)
6101 			return napi;
6102 
6103 	return NULL;
6104 }
6105 
6106 #if defined(CONFIG_NET_RX_BUSY_POLL)
6107 
6108 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6109 {
6110 	if (!skip_schedule) {
6111 		gro_normal_list(napi);
6112 		__napi_schedule(napi);
6113 		return;
6114 	}
6115 
6116 	if (napi->gro_bitmask) {
6117 		/* flush too old packets
6118 		 * If HZ < 1000, flush all packets.
6119 		 */
6120 		napi_gro_flush(napi, HZ >= 1000);
6121 	}
6122 
6123 	gro_normal_list(napi);
6124 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6125 }
6126 
6127 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6128 			   u16 budget)
6129 {
6130 	bool skip_schedule = false;
6131 	unsigned long timeout;
6132 	int rc;
6133 
6134 	/* Busy polling means there is a high chance device driver hard irq
6135 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6136 	 * set in napi_schedule_prep().
6137 	 * Since we are about to call napi->poll() once more, we can safely
6138 	 * clear NAPI_STATE_MISSED.
6139 	 *
6140 	 * Note: x86 could use a single "lock and ..." instruction
6141 	 * to perform these two clear_bit()
6142 	 */
6143 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6144 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6145 
6146 	local_bh_disable();
6147 
6148 	if (prefer_busy_poll) {
6149 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6150 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6151 		if (napi->defer_hard_irqs_count && timeout) {
6152 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6153 			skip_schedule = true;
6154 		}
6155 	}
6156 
6157 	/* All we really want here is to re-enable device interrupts.
6158 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6159 	 */
6160 	rc = napi->poll(napi, budget);
6161 	/* We can't gro_normal_list() here, because napi->poll() might have
6162 	 * rearmed the napi (napi_complete_done()) in which case it could
6163 	 * already be running on another CPU.
6164 	 */
6165 	trace_napi_poll(napi, rc, budget);
6166 	netpoll_poll_unlock(have_poll_lock);
6167 	if (rc == budget)
6168 		__busy_poll_stop(napi, skip_schedule);
6169 	local_bh_enable();
6170 }
6171 
6172 void napi_busy_loop(unsigned int napi_id,
6173 		    bool (*loop_end)(void *, unsigned long),
6174 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6175 {
6176 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6177 	int (*napi_poll)(struct napi_struct *napi, int budget);
6178 	void *have_poll_lock = NULL;
6179 	struct napi_struct *napi;
6180 
6181 restart:
6182 	napi_poll = NULL;
6183 
6184 	rcu_read_lock();
6185 
6186 	napi = napi_by_id(napi_id);
6187 	if (!napi)
6188 		goto out;
6189 
6190 	preempt_disable();
6191 	for (;;) {
6192 		int work = 0;
6193 
6194 		local_bh_disable();
6195 		if (!napi_poll) {
6196 			unsigned long val = READ_ONCE(napi->state);
6197 
6198 			/* If multiple threads are competing for this napi,
6199 			 * we avoid dirtying napi->state as much as we can.
6200 			 */
6201 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6202 				   NAPIF_STATE_IN_BUSY_POLL)) {
6203 				if (prefer_busy_poll)
6204 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6205 				goto count;
6206 			}
6207 			if (cmpxchg(&napi->state, val,
6208 				    val | NAPIF_STATE_IN_BUSY_POLL |
6209 					  NAPIF_STATE_SCHED) != val) {
6210 				if (prefer_busy_poll)
6211 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6212 				goto count;
6213 			}
6214 			have_poll_lock = netpoll_poll_lock(napi);
6215 			napi_poll = napi->poll;
6216 		}
6217 		work = napi_poll(napi, budget);
6218 		trace_napi_poll(napi, work, budget);
6219 		gro_normal_list(napi);
6220 count:
6221 		if (work > 0)
6222 			__NET_ADD_STATS(dev_net(napi->dev),
6223 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6224 		local_bh_enable();
6225 
6226 		if (!loop_end || loop_end(loop_end_arg, start_time))
6227 			break;
6228 
6229 		if (unlikely(need_resched())) {
6230 			if (napi_poll)
6231 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6232 			preempt_enable();
6233 			rcu_read_unlock();
6234 			cond_resched();
6235 			if (loop_end(loop_end_arg, start_time))
6236 				return;
6237 			goto restart;
6238 		}
6239 		cpu_relax();
6240 	}
6241 	if (napi_poll)
6242 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6243 	preempt_enable();
6244 out:
6245 	rcu_read_unlock();
6246 }
6247 EXPORT_SYMBOL(napi_busy_loop);
6248 
6249 #endif /* CONFIG_NET_RX_BUSY_POLL */
6250 
6251 static void napi_hash_add(struct napi_struct *napi)
6252 {
6253 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6254 		return;
6255 
6256 	spin_lock(&napi_hash_lock);
6257 
6258 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6259 	do {
6260 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6261 			napi_gen_id = MIN_NAPI_ID;
6262 	} while (napi_by_id(napi_gen_id));
6263 	napi->napi_id = napi_gen_id;
6264 
6265 	hlist_add_head_rcu(&napi->napi_hash_node,
6266 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6267 
6268 	spin_unlock(&napi_hash_lock);
6269 }
6270 
6271 /* Warning : caller is responsible to make sure rcu grace period
6272  * is respected before freeing memory containing @napi
6273  */
6274 static void napi_hash_del(struct napi_struct *napi)
6275 {
6276 	spin_lock(&napi_hash_lock);
6277 
6278 	hlist_del_init_rcu(&napi->napi_hash_node);
6279 
6280 	spin_unlock(&napi_hash_lock);
6281 }
6282 
6283 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6284 {
6285 	struct napi_struct *napi;
6286 
6287 	napi = container_of(timer, struct napi_struct, timer);
6288 
6289 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6290 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6291 	 */
6292 	if (!napi_disable_pending(napi) &&
6293 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6294 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6295 		__napi_schedule_irqoff(napi);
6296 	}
6297 
6298 	return HRTIMER_NORESTART;
6299 }
6300 
6301 static void init_gro_hash(struct napi_struct *napi)
6302 {
6303 	int i;
6304 
6305 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6306 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6307 		napi->gro_hash[i].count = 0;
6308 	}
6309 	napi->gro_bitmask = 0;
6310 }
6311 
6312 int dev_set_threaded(struct net_device *dev, bool threaded)
6313 {
6314 	struct napi_struct *napi;
6315 	int err = 0;
6316 
6317 	if (dev->threaded == threaded)
6318 		return 0;
6319 
6320 	if (threaded) {
6321 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6322 			if (!napi->thread) {
6323 				err = napi_kthread_create(napi);
6324 				if (err) {
6325 					threaded = false;
6326 					break;
6327 				}
6328 			}
6329 		}
6330 	}
6331 
6332 	dev->threaded = threaded;
6333 
6334 	/* Make sure kthread is created before THREADED bit
6335 	 * is set.
6336 	 */
6337 	smp_mb__before_atomic();
6338 
6339 	/* Setting/unsetting threaded mode on a napi might not immediately
6340 	 * take effect, if the current napi instance is actively being
6341 	 * polled. In this case, the switch between threaded mode and
6342 	 * softirq mode will happen in the next round of napi_schedule().
6343 	 * This should not cause hiccups/stalls to the live traffic.
6344 	 */
6345 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6346 		if (threaded)
6347 			set_bit(NAPI_STATE_THREADED, &napi->state);
6348 		else
6349 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6350 	}
6351 
6352 	return err;
6353 }
6354 EXPORT_SYMBOL(dev_set_threaded);
6355 
6356 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6357 			   int (*poll)(struct napi_struct *, int), int weight)
6358 {
6359 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6360 		return;
6361 
6362 	INIT_LIST_HEAD(&napi->poll_list);
6363 	INIT_HLIST_NODE(&napi->napi_hash_node);
6364 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6365 	napi->timer.function = napi_watchdog;
6366 	init_gro_hash(napi);
6367 	napi->skb = NULL;
6368 	INIT_LIST_HEAD(&napi->rx_list);
6369 	napi->rx_count = 0;
6370 	napi->poll = poll;
6371 	if (weight > NAPI_POLL_WEIGHT)
6372 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6373 				weight);
6374 	napi->weight = weight;
6375 	napi->dev = dev;
6376 #ifdef CONFIG_NETPOLL
6377 	napi->poll_owner = -1;
6378 #endif
6379 	set_bit(NAPI_STATE_SCHED, &napi->state);
6380 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6381 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6382 	napi_hash_add(napi);
6383 	/* Create kthread for this napi if dev->threaded is set.
6384 	 * Clear dev->threaded if kthread creation failed so that
6385 	 * threaded mode will not be enabled in napi_enable().
6386 	 */
6387 	if (dev->threaded && napi_kthread_create(napi))
6388 		dev->threaded = 0;
6389 }
6390 EXPORT_SYMBOL(netif_napi_add_weight);
6391 
6392 void napi_disable(struct napi_struct *n)
6393 {
6394 	unsigned long val, new;
6395 
6396 	might_sleep();
6397 	set_bit(NAPI_STATE_DISABLE, &n->state);
6398 
6399 	for ( ; ; ) {
6400 		val = READ_ONCE(n->state);
6401 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6402 			usleep_range(20, 200);
6403 			continue;
6404 		}
6405 
6406 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6407 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6408 
6409 		if (cmpxchg(&n->state, val, new) == val)
6410 			break;
6411 	}
6412 
6413 	hrtimer_cancel(&n->timer);
6414 
6415 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6416 }
6417 EXPORT_SYMBOL(napi_disable);
6418 
6419 /**
6420  *	napi_enable - enable NAPI scheduling
6421  *	@n: NAPI context
6422  *
6423  * Resume NAPI from being scheduled on this context.
6424  * Must be paired with napi_disable.
6425  */
6426 void napi_enable(struct napi_struct *n)
6427 {
6428 	unsigned long val, new;
6429 
6430 	do {
6431 		val = READ_ONCE(n->state);
6432 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6433 
6434 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6435 		if (n->dev->threaded && n->thread)
6436 			new |= NAPIF_STATE_THREADED;
6437 	} while (cmpxchg(&n->state, val, new) != val);
6438 }
6439 EXPORT_SYMBOL(napi_enable);
6440 
6441 static void flush_gro_hash(struct napi_struct *napi)
6442 {
6443 	int i;
6444 
6445 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6446 		struct sk_buff *skb, *n;
6447 
6448 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6449 			kfree_skb(skb);
6450 		napi->gro_hash[i].count = 0;
6451 	}
6452 }
6453 
6454 /* Must be called in process context */
6455 void __netif_napi_del(struct napi_struct *napi)
6456 {
6457 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6458 		return;
6459 
6460 	napi_hash_del(napi);
6461 	list_del_rcu(&napi->dev_list);
6462 	napi_free_frags(napi);
6463 
6464 	flush_gro_hash(napi);
6465 	napi->gro_bitmask = 0;
6466 
6467 	if (napi->thread) {
6468 		kthread_stop(napi->thread);
6469 		napi->thread = NULL;
6470 	}
6471 }
6472 EXPORT_SYMBOL(__netif_napi_del);
6473 
6474 static int __napi_poll(struct napi_struct *n, bool *repoll)
6475 {
6476 	int work, weight;
6477 
6478 	weight = n->weight;
6479 
6480 	/* This NAPI_STATE_SCHED test is for avoiding a race
6481 	 * with netpoll's poll_napi().  Only the entity which
6482 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6483 	 * actually make the ->poll() call.  Therefore we avoid
6484 	 * accidentally calling ->poll() when NAPI is not scheduled.
6485 	 */
6486 	work = 0;
6487 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6488 		work = n->poll(n, weight);
6489 		trace_napi_poll(n, work, weight);
6490 	}
6491 
6492 	if (unlikely(work > weight))
6493 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6494 				n->poll, work, weight);
6495 
6496 	if (likely(work < weight))
6497 		return work;
6498 
6499 	/* Drivers must not modify the NAPI state if they
6500 	 * consume the entire weight.  In such cases this code
6501 	 * still "owns" the NAPI instance and therefore can
6502 	 * move the instance around on the list at-will.
6503 	 */
6504 	if (unlikely(napi_disable_pending(n))) {
6505 		napi_complete(n);
6506 		return work;
6507 	}
6508 
6509 	/* The NAPI context has more processing work, but busy-polling
6510 	 * is preferred. Exit early.
6511 	 */
6512 	if (napi_prefer_busy_poll(n)) {
6513 		if (napi_complete_done(n, work)) {
6514 			/* If timeout is not set, we need to make sure
6515 			 * that the NAPI is re-scheduled.
6516 			 */
6517 			napi_schedule(n);
6518 		}
6519 		return work;
6520 	}
6521 
6522 	if (n->gro_bitmask) {
6523 		/* flush too old packets
6524 		 * If HZ < 1000, flush all packets.
6525 		 */
6526 		napi_gro_flush(n, HZ >= 1000);
6527 	}
6528 
6529 	gro_normal_list(n);
6530 
6531 	/* Some drivers may have called napi_schedule
6532 	 * prior to exhausting their budget.
6533 	 */
6534 	if (unlikely(!list_empty(&n->poll_list))) {
6535 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6536 			     n->dev ? n->dev->name : "backlog");
6537 		return work;
6538 	}
6539 
6540 	*repoll = true;
6541 
6542 	return work;
6543 }
6544 
6545 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6546 {
6547 	bool do_repoll = false;
6548 	void *have;
6549 	int work;
6550 
6551 	list_del_init(&n->poll_list);
6552 
6553 	have = netpoll_poll_lock(n);
6554 
6555 	work = __napi_poll(n, &do_repoll);
6556 
6557 	if (do_repoll)
6558 		list_add_tail(&n->poll_list, repoll);
6559 
6560 	netpoll_poll_unlock(have);
6561 
6562 	return work;
6563 }
6564 
6565 static int napi_thread_wait(struct napi_struct *napi)
6566 {
6567 	bool woken = false;
6568 
6569 	set_current_state(TASK_INTERRUPTIBLE);
6570 
6571 	while (!kthread_should_stop()) {
6572 		/* Testing SCHED_THREADED bit here to make sure the current
6573 		 * kthread owns this napi and could poll on this napi.
6574 		 * Testing SCHED bit is not enough because SCHED bit might be
6575 		 * set by some other busy poll thread or by napi_disable().
6576 		 */
6577 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6578 			WARN_ON(!list_empty(&napi->poll_list));
6579 			__set_current_state(TASK_RUNNING);
6580 			return 0;
6581 		}
6582 
6583 		schedule();
6584 		/* woken being true indicates this thread owns this napi. */
6585 		woken = true;
6586 		set_current_state(TASK_INTERRUPTIBLE);
6587 	}
6588 	__set_current_state(TASK_RUNNING);
6589 
6590 	return -1;
6591 }
6592 
6593 static int napi_threaded_poll(void *data)
6594 {
6595 	struct napi_struct *napi = data;
6596 	void *have;
6597 
6598 	while (!napi_thread_wait(napi)) {
6599 		for (;;) {
6600 			bool repoll = false;
6601 
6602 			local_bh_disable();
6603 
6604 			have = netpoll_poll_lock(napi);
6605 			__napi_poll(napi, &repoll);
6606 			netpoll_poll_unlock(have);
6607 
6608 			local_bh_enable();
6609 
6610 			if (!repoll)
6611 				break;
6612 
6613 			cond_resched();
6614 		}
6615 	}
6616 	return 0;
6617 }
6618 
6619 static void skb_defer_free_flush(struct softnet_data *sd)
6620 {
6621 	struct sk_buff *skb, *next;
6622 	unsigned long flags;
6623 
6624 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6625 	if (!READ_ONCE(sd->defer_list))
6626 		return;
6627 
6628 	spin_lock_irqsave(&sd->defer_lock, flags);
6629 	skb = sd->defer_list;
6630 	sd->defer_list = NULL;
6631 	sd->defer_count = 0;
6632 	spin_unlock_irqrestore(&sd->defer_lock, flags);
6633 
6634 	while (skb != NULL) {
6635 		next = skb->next;
6636 		napi_consume_skb(skb, 1);
6637 		skb = next;
6638 	}
6639 }
6640 
6641 static __latent_entropy void net_rx_action(struct softirq_action *h)
6642 {
6643 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6644 	unsigned long time_limit = jiffies +
6645 		usecs_to_jiffies(netdev_budget_usecs);
6646 	int budget = netdev_budget;
6647 	LIST_HEAD(list);
6648 	LIST_HEAD(repoll);
6649 
6650 	local_irq_disable();
6651 	list_splice_init(&sd->poll_list, &list);
6652 	local_irq_enable();
6653 
6654 	for (;;) {
6655 		struct napi_struct *n;
6656 
6657 		skb_defer_free_flush(sd);
6658 
6659 		if (list_empty(&list)) {
6660 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6661 				goto end;
6662 			break;
6663 		}
6664 
6665 		n = list_first_entry(&list, struct napi_struct, poll_list);
6666 		budget -= napi_poll(n, &repoll);
6667 
6668 		/* If softirq window is exhausted then punt.
6669 		 * Allow this to run for 2 jiffies since which will allow
6670 		 * an average latency of 1.5/HZ.
6671 		 */
6672 		if (unlikely(budget <= 0 ||
6673 			     time_after_eq(jiffies, time_limit))) {
6674 			sd->time_squeeze++;
6675 			break;
6676 		}
6677 	}
6678 
6679 	local_irq_disable();
6680 
6681 	list_splice_tail_init(&sd->poll_list, &list);
6682 	list_splice_tail(&repoll, &list);
6683 	list_splice(&list, &sd->poll_list);
6684 	if (!list_empty(&sd->poll_list))
6685 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6686 
6687 	net_rps_action_and_irq_enable(sd);
6688 end:;
6689 }
6690 
6691 struct netdev_adjacent {
6692 	struct net_device *dev;
6693 	netdevice_tracker dev_tracker;
6694 
6695 	/* upper master flag, there can only be one master device per list */
6696 	bool master;
6697 
6698 	/* lookup ignore flag */
6699 	bool ignore;
6700 
6701 	/* counter for the number of times this device was added to us */
6702 	u16 ref_nr;
6703 
6704 	/* private field for the users */
6705 	void *private;
6706 
6707 	struct list_head list;
6708 	struct rcu_head rcu;
6709 };
6710 
6711 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6712 						 struct list_head *adj_list)
6713 {
6714 	struct netdev_adjacent *adj;
6715 
6716 	list_for_each_entry(adj, adj_list, list) {
6717 		if (adj->dev == adj_dev)
6718 			return adj;
6719 	}
6720 	return NULL;
6721 }
6722 
6723 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6724 				    struct netdev_nested_priv *priv)
6725 {
6726 	struct net_device *dev = (struct net_device *)priv->data;
6727 
6728 	return upper_dev == dev;
6729 }
6730 
6731 /**
6732  * netdev_has_upper_dev - Check if device is linked to an upper device
6733  * @dev: device
6734  * @upper_dev: upper device to check
6735  *
6736  * Find out if a device is linked to specified upper device and return true
6737  * in case it is. Note that this checks only immediate upper device,
6738  * not through a complete stack of devices. The caller must hold the RTNL lock.
6739  */
6740 bool netdev_has_upper_dev(struct net_device *dev,
6741 			  struct net_device *upper_dev)
6742 {
6743 	struct netdev_nested_priv priv = {
6744 		.data = (void *)upper_dev,
6745 	};
6746 
6747 	ASSERT_RTNL();
6748 
6749 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6750 					     &priv);
6751 }
6752 EXPORT_SYMBOL(netdev_has_upper_dev);
6753 
6754 /**
6755  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6756  * @dev: device
6757  * @upper_dev: upper device to check
6758  *
6759  * Find out if a device is linked to specified upper device and return true
6760  * in case it is. Note that this checks the entire upper device chain.
6761  * The caller must hold rcu lock.
6762  */
6763 
6764 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6765 				  struct net_device *upper_dev)
6766 {
6767 	struct netdev_nested_priv priv = {
6768 		.data = (void *)upper_dev,
6769 	};
6770 
6771 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6772 					       &priv);
6773 }
6774 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6775 
6776 /**
6777  * netdev_has_any_upper_dev - Check if device is linked to some device
6778  * @dev: device
6779  *
6780  * Find out if a device is linked to an upper device and return true in case
6781  * it is. The caller must hold the RTNL lock.
6782  */
6783 bool netdev_has_any_upper_dev(struct net_device *dev)
6784 {
6785 	ASSERT_RTNL();
6786 
6787 	return !list_empty(&dev->adj_list.upper);
6788 }
6789 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6790 
6791 /**
6792  * netdev_master_upper_dev_get - Get master upper device
6793  * @dev: device
6794  *
6795  * Find a master upper device and return pointer to it or NULL in case
6796  * it's not there. The caller must hold the RTNL lock.
6797  */
6798 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6799 {
6800 	struct netdev_adjacent *upper;
6801 
6802 	ASSERT_RTNL();
6803 
6804 	if (list_empty(&dev->adj_list.upper))
6805 		return NULL;
6806 
6807 	upper = list_first_entry(&dev->adj_list.upper,
6808 				 struct netdev_adjacent, list);
6809 	if (likely(upper->master))
6810 		return upper->dev;
6811 	return NULL;
6812 }
6813 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6814 
6815 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6816 {
6817 	struct netdev_adjacent *upper;
6818 
6819 	ASSERT_RTNL();
6820 
6821 	if (list_empty(&dev->adj_list.upper))
6822 		return NULL;
6823 
6824 	upper = list_first_entry(&dev->adj_list.upper,
6825 				 struct netdev_adjacent, list);
6826 	if (likely(upper->master) && !upper->ignore)
6827 		return upper->dev;
6828 	return NULL;
6829 }
6830 
6831 /**
6832  * netdev_has_any_lower_dev - Check if device is linked to some device
6833  * @dev: device
6834  *
6835  * Find out if a device is linked to a lower device and return true in case
6836  * it is. The caller must hold the RTNL lock.
6837  */
6838 static bool netdev_has_any_lower_dev(struct net_device *dev)
6839 {
6840 	ASSERT_RTNL();
6841 
6842 	return !list_empty(&dev->adj_list.lower);
6843 }
6844 
6845 void *netdev_adjacent_get_private(struct list_head *adj_list)
6846 {
6847 	struct netdev_adjacent *adj;
6848 
6849 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6850 
6851 	return adj->private;
6852 }
6853 EXPORT_SYMBOL(netdev_adjacent_get_private);
6854 
6855 /**
6856  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6857  * @dev: device
6858  * @iter: list_head ** of the current position
6859  *
6860  * Gets the next device from the dev's upper list, starting from iter
6861  * position. The caller must hold RCU read lock.
6862  */
6863 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6864 						 struct list_head **iter)
6865 {
6866 	struct netdev_adjacent *upper;
6867 
6868 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6869 
6870 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6871 
6872 	if (&upper->list == &dev->adj_list.upper)
6873 		return NULL;
6874 
6875 	*iter = &upper->list;
6876 
6877 	return upper->dev;
6878 }
6879 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6880 
6881 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6882 						  struct list_head **iter,
6883 						  bool *ignore)
6884 {
6885 	struct netdev_adjacent *upper;
6886 
6887 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6888 
6889 	if (&upper->list == &dev->adj_list.upper)
6890 		return NULL;
6891 
6892 	*iter = &upper->list;
6893 	*ignore = upper->ignore;
6894 
6895 	return upper->dev;
6896 }
6897 
6898 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6899 						    struct list_head **iter)
6900 {
6901 	struct netdev_adjacent *upper;
6902 
6903 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6904 
6905 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6906 
6907 	if (&upper->list == &dev->adj_list.upper)
6908 		return NULL;
6909 
6910 	*iter = &upper->list;
6911 
6912 	return upper->dev;
6913 }
6914 
6915 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6916 				       int (*fn)(struct net_device *dev,
6917 					 struct netdev_nested_priv *priv),
6918 				       struct netdev_nested_priv *priv)
6919 {
6920 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6921 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6922 	int ret, cur = 0;
6923 	bool ignore;
6924 
6925 	now = dev;
6926 	iter = &dev->adj_list.upper;
6927 
6928 	while (1) {
6929 		if (now != dev) {
6930 			ret = fn(now, priv);
6931 			if (ret)
6932 				return ret;
6933 		}
6934 
6935 		next = NULL;
6936 		while (1) {
6937 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6938 			if (!udev)
6939 				break;
6940 			if (ignore)
6941 				continue;
6942 
6943 			next = udev;
6944 			niter = &udev->adj_list.upper;
6945 			dev_stack[cur] = now;
6946 			iter_stack[cur++] = iter;
6947 			break;
6948 		}
6949 
6950 		if (!next) {
6951 			if (!cur)
6952 				return 0;
6953 			next = dev_stack[--cur];
6954 			niter = iter_stack[cur];
6955 		}
6956 
6957 		now = next;
6958 		iter = niter;
6959 	}
6960 
6961 	return 0;
6962 }
6963 
6964 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6965 				  int (*fn)(struct net_device *dev,
6966 					    struct netdev_nested_priv *priv),
6967 				  struct netdev_nested_priv *priv)
6968 {
6969 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6970 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6971 	int ret, cur = 0;
6972 
6973 	now = dev;
6974 	iter = &dev->adj_list.upper;
6975 
6976 	while (1) {
6977 		if (now != dev) {
6978 			ret = fn(now, priv);
6979 			if (ret)
6980 				return ret;
6981 		}
6982 
6983 		next = NULL;
6984 		while (1) {
6985 			udev = netdev_next_upper_dev_rcu(now, &iter);
6986 			if (!udev)
6987 				break;
6988 
6989 			next = udev;
6990 			niter = &udev->adj_list.upper;
6991 			dev_stack[cur] = now;
6992 			iter_stack[cur++] = iter;
6993 			break;
6994 		}
6995 
6996 		if (!next) {
6997 			if (!cur)
6998 				return 0;
6999 			next = dev_stack[--cur];
7000 			niter = iter_stack[cur];
7001 		}
7002 
7003 		now = next;
7004 		iter = niter;
7005 	}
7006 
7007 	return 0;
7008 }
7009 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7010 
7011 static bool __netdev_has_upper_dev(struct net_device *dev,
7012 				   struct net_device *upper_dev)
7013 {
7014 	struct netdev_nested_priv priv = {
7015 		.flags = 0,
7016 		.data = (void *)upper_dev,
7017 	};
7018 
7019 	ASSERT_RTNL();
7020 
7021 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7022 					   &priv);
7023 }
7024 
7025 /**
7026  * netdev_lower_get_next_private - Get the next ->private from the
7027  *				   lower neighbour list
7028  * @dev: device
7029  * @iter: list_head ** of the current position
7030  *
7031  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7032  * list, starting from iter position. The caller must hold either hold the
7033  * RTNL lock or its own locking that guarantees that the neighbour lower
7034  * list will remain unchanged.
7035  */
7036 void *netdev_lower_get_next_private(struct net_device *dev,
7037 				    struct list_head **iter)
7038 {
7039 	struct netdev_adjacent *lower;
7040 
7041 	lower = list_entry(*iter, struct netdev_adjacent, list);
7042 
7043 	if (&lower->list == &dev->adj_list.lower)
7044 		return NULL;
7045 
7046 	*iter = lower->list.next;
7047 
7048 	return lower->private;
7049 }
7050 EXPORT_SYMBOL(netdev_lower_get_next_private);
7051 
7052 /**
7053  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7054  *				       lower neighbour list, RCU
7055  *				       variant
7056  * @dev: device
7057  * @iter: list_head ** of the current position
7058  *
7059  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7060  * list, starting from iter position. The caller must hold RCU read lock.
7061  */
7062 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7063 					struct list_head **iter)
7064 {
7065 	struct netdev_adjacent *lower;
7066 
7067 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7068 
7069 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7070 
7071 	if (&lower->list == &dev->adj_list.lower)
7072 		return NULL;
7073 
7074 	*iter = &lower->list;
7075 
7076 	return lower->private;
7077 }
7078 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7079 
7080 /**
7081  * netdev_lower_get_next - Get the next device from the lower neighbour
7082  *                         list
7083  * @dev: device
7084  * @iter: list_head ** of the current position
7085  *
7086  * Gets the next netdev_adjacent from the dev's lower neighbour
7087  * list, starting from iter position. The caller must hold RTNL lock or
7088  * its own locking that guarantees that the neighbour lower
7089  * list will remain unchanged.
7090  */
7091 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7092 {
7093 	struct netdev_adjacent *lower;
7094 
7095 	lower = list_entry(*iter, struct netdev_adjacent, list);
7096 
7097 	if (&lower->list == &dev->adj_list.lower)
7098 		return NULL;
7099 
7100 	*iter = lower->list.next;
7101 
7102 	return lower->dev;
7103 }
7104 EXPORT_SYMBOL(netdev_lower_get_next);
7105 
7106 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7107 						struct list_head **iter)
7108 {
7109 	struct netdev_adjacent *lower;
7110 
7111 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7112 
7113 	if (&lower->list == &dev->adj_list.lower)
7114 		return NULL;
7115 
7116 	*iter = &lower->list;
7117 
7118 	return lower->dev;
7119 }
7120 
7121 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7122 						  struct list_head **iter,
7123 						  bool *ignore)
7124 {
7125 	struct netdev_adjacent *lower;
7126 
7127 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7128 
7129 	if (&lower->list == &dev->adj_list.lower)
7130 		return NULL;
7131 
7132 	*iter = &lower->list;
7133 	*ignore = lower->ignore;
7134 
7135 	return lower->dev;
7136 }
7137 
7138 int netdev_walk_all_lower_dev(struct net_device *dev,
7139 			      int (*fn)(struct net_device *dev,
7140 					struct netdev_nested_priv *priv),
7141 			      struct netdev_nested_priv *priv)
7142 {
7143 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7144 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7145 	int ret, cur = 0;
7146 
7147 	now = dev;
7148 	iter = &dev->adj_list.lower;
7149 
7150 	while (1) {
7151 		if (now != dev) {
7152 			ret = fn(now, priv);
7153 			if (ret)
7154 				return ret;
7155 		}
7156 
7157 		next = NULL;
7158 		while (1) {
7159 			ldev = netdev_next_lower_dev(now, &iter);
7160 			if (!ldev)
7161 				break;
7162 
7163 			next = ldev;
7164 			niter = &ldev->adj_list.lower;
7165 			dev_stack[cur] = now;
7166 			iter_stack[cur++] = iter;
7167 			break;
7168 		}
7169 
7170 		if (!next) {
7171 			if (!cur)
7172 				return 0;
7173 			next = dev_stack[--cur];
7174 			niter = iter_stack[cur];
7175 		}
7176 
7177 		now = next;
7178 		iter = niter;
7179 	}
7180 
7181 	return 0;
7182 }
7183 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7184 
7185 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7186 				       int (*fn)(struct net_device *dev,
7187 					 struct netdev_nested_priv *priv),
7188 				       struct netdev_nested_priv *priv)
7189 {
7190 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7191 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7192 	int ret, cur = 0;
7193 	bool ignore;
7194 
7195 	now = dev;
7196 	iter = &dev->adj_list.lower;
7197 
7198 	while (1) {
7199 		if (now != dev) {
7200 			ret = fn(now, priv);
7201 			if (ret)
7202 				return ret;
7203 		}
7204 
7205 		next = NULL;
7206 		while (1) {
7207 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7208 			if (!ldev)
7209 				break;
7210 			if (ignore)
7211 				continue;
7212 
7213 			next = ldev;
7214 			niter = &ldev->adj_list.lower;
7215 			dev_stack[cur] = now;
7216 			iter_stack[cur++] = iter;
7217 			break;
7218 		}
7219 
7220 		if (!next) {
7221 			if (!cur)
7222 				return 0;
7223 			next = dev_stack[--cur];
7224 			niter = iter_stack[cur];
7225 		}
7226 
7227 		now = next;
7228 		iter = niter;
7229 	}
7230 
7231 	return 0;
7232 }
7233 
7234 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7235 					     struct list_head **iter)
7236 {
7237 	struct netdev_adjacent *lower;
7238 
7239 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7240 	if (&lower->list == &dev->adj_list.lower)
7241 		return NULL;
7242 
7243 	*iter = &lower->list;
7244 
7245 	return lower->dev;
7246 }
7247 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7248 
7249 static u8 __netdev_upper_depth(struct net_device *dev)
7250 {
7251 	struct net_device *udev;
7252 	struct list_head *iter;
7253 	u8 max_depth = 0;
7254 	bool ignore;
7255 
7256 	for (iter = &dev->adj_list.upper,
7257 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7258 	     udev;
7259 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7260 		if (ignore)
7261 			continue;
7262 		if (max_depth < udev->upper_level)
7263 			max_depth = udev->upper_level;
7264 	}
7265 
7266 	return max_depth;
7267 }
7268 
7269 static u8 __netdev_lower_depth(struct net_device *dev)
7270 {
7271 	struct net_device *ldev;
7272 	struct list_head *iter;
7273 	u8 max_depth = 0;
7274 	bool ignore;
7275 
7276 	for (iter = &dev->adj_list.lower,
7277 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7278 	     ldev;
7279 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7280 		if (ignore)
7281 			continue;
7282 		if (max_depth < ldev->lower_level)
7283 			max_depth = ldev->lower_level;
7284 	}
7285 
7286 	return max_depth;
7287 }
7288 
7289 static int __netdev_update_upper_level(struct net_device *dev,
7290 				       struct netdev_nested_priv *__unused)
7291 {
7292 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7293 	return 0;
7294 }
7295 
7296 #ifdef CONFIG_LOCKDEP
7297 static LIST_HEAD(net_unlink_list);
7298 
7299 static void net_unlink_todo(struct net_device *dev)
7300 {
7301 	if (list_empty(&dev->unlink_list))
7302 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7303 }
7304 #endif
7305 
7306 static int __netdev_update_lower_level(struct net_device *dev,
7307 				       struct netdev_nested_priv *priv)
7308 {
7309 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7310 
7311 #ifdef CONFIG_LOCKDEP
7312 	if (!priv)
7313 		return 0;
7314 
7315 	if (priv->flags & NESTED_SYNC_IMM)
7316 		dev->nested_level = dev->lower_level - 1;
7317 	if (priv->flags & NESTED_SYNC_TODO)
7318 		net_unlink_todo(dev);
7319 #endif
7320 	return 0;
7321 }
7322 
7323 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7324 				  int (*fn)(struct net_device *dev,
7325 					    struct netdev_nested_priv *priv),
7326 				  struct netdev_nested_priv *priv)
7327 {
7328 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7329 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7330 	int ret, cur = 0;
7331 
7332 	now = dev;
7333 	iter = &dev->adj_list.lower;
7334 
7335 	while (1) {
7336 		if (now != dev) {
7337 			ret = fn(now, priv);
7338 			if (ret)
7339 				return ret;
7340 		}
7341 
7342 		next = NULL;
7343 		while (1) {
7344 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7345 			if (!ldev)
7346 				break;
7347 
7348 			next = ldev;
7349 			niter = &ldev->adj_list.lower;
7350 			dev_stack[cur] = now;
7351 			iter_stack[cur++] = iter;
7352 			break;
7353 		}
7354 
7355 		if (!next) {
7356 			if (!cur)
7357 				return 0;
7358 			next = dev_stack[--cur];
7359 			niter = iter_stack[cur];
7360 		}
7361 
7362 		now = next;
7363 		iter = niter;
7364 	}
7365 
7366 	return 0;
7367 }
7368 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7369 
7370 /**
7371  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7372  *				       lower neighbour list, RCU
7373  *				       variant
7374  * @dev: device
7375  *
7376  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7377  * list. The caller must hold RCU read lock.
7378  */
7379 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7380 {
7381 	struct netdev_adjacent *lower;
7382 
7383 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7384 			struct netdev_adjacent, list);
7385 	if (lower)
7386 		return lower->private;
7387 	return NULL;
7388 }
7389 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7390 
7391 /**
7392  * netdev_master_upper_dev_get_rcu - Get master upper device
7393  * @dev: device
7394  *
7395  * Find a master upper device and return pointer to it or NULL in case
7396  * it's not there. The caller must hold the RCU read lock.
7397  */
7398 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7399 {
7400 	struct netdev_adjacent *upper;
7401 
7402 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7403 				       struct netdev_adjacent, list);
7404 	if (upper && likely(upper->master))
7405 		return upper->dev;
7406 	return NULL;
7407 }
7408 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7409 
7410 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7411 			      struct net_device *adj_dev,
7412 			      struct list_head *dev_list)
7413 {
7414 	char linkname[IFNAMSIZ+7];
7415 
7416 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7417 		"upper_%s" : "lower_%s", adj_dev->name);
7418 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7419 				 linkname);
7420 }
7421 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7422 			       char *name,
7423 			       struct list_head *dev_list)
7424 {
7425 	char linkname[IFNAMSIZ+7];
7426 
7427 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7428 		"upper_%s" : "lower_%s", name);
7429 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7430 }
7431 
7432 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7433 						 struct net_device *adj_dev,
7434 						 struct list_head *dev_list)
7435 {
7436 	return (dev_list == &dev->adj_list.upper ||
7437 		dev_list == &dev->adj_list.lower) &&
7438 		net_eq(dev_net(dev), dev_net(adj_dev));
7439 }
7440 
7441 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7442 					struct net_device *adj_dev,
7443 					struct list_head *dev_list,
7444 					void *private, bool master)
7445 {
7446 	struct netdev_adjacent *adj;
7447 	int ret;
7448 
7449 	adj = __netdev_find_adj(adj_dev, dev_list);
7450 
7451 	if (adj) {
7452 		adj->ref_nr += 1;
7453 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7454 			 dev->name, adj_dev->name, adj->ref_nr);
7455 
7456 		return 0;
7457 	}
7458 
7459 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7460 	if (!adj)
7461 		return -ENOMEM;
7462 
7463 	adj->dev = adj_dev;
7464 	adj->master = master;
7465 	adj->ref_nr = 1;
7466 	adj->private = private;
7467 	adj->ignore = false;
7468 	dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7469 
7470 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7471 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7472 
7473 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7474 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7475 		if (ret)
7476 			goto free_adj;
7477 	}
7478 
7479 	/* Ensure that master link is always the first item in list. */
7480 	if (master) {
7481 		ret = sysfs_create_link(&(dev->dev.kobj),
7482 					&(adj_dev->dev.kobj), "master");
7483 		if (ret)
7484 			goto remove_symlinks;
7485 
7486 		list_add_rcu(&adj->list, dev_list);
7487 	} else {
7488 		list_add_tail_rcu(&adj->list, dev_list);
7489 	}
7490 
7491 	return 0;
7492 
7493 remove_symlinks:
7494 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7495 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7496 free_adj:
7497 	dev_put_track(adj_dev, &adj->dev_tracker);
7498 	kfree(adj);
7499 
7500 	return ret;
7501 }
7502 
7503 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7504 					 struct net_device *adj_dev,
7505 					 u16 ref_nr,
7506 					 struct list_head *dev_list)
7507 {
7508 	struct netdev_adjacent *adj;
7509 
7510 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7511 		 dev->name, adj_dev->name, ref_nr);
7512 
7513 	adj = __netdev_find_adj(adj_dev, dev_list);
7514 
7515 	if (!adj) {
7516 		pr_err("Adjacency does not exist for device %s from %s\n",
7517 		       dev->name, adj_dev->name);
7518 		WARN_ON(1);
7519 		return;
7520 	}
7521 
7522 	if (adj->ref_nr > ref_nr) {
7523 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7524 			 dev->name, adj_dev->name, ref_nr,
7525 			 adj->ref_nr - ref_nr);
7526 		adj->ref_nr -= ref_nr;
7527 		return;
7528 	}
7529 
7530 	if (adj->master)
7531 		sysfs_remove_link(&(dev->dev.kobj), "master");
7532 
7533 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7534 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7535 
7536 	list_del_rcu(&adj->list);
7537 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7538 		 adj_dev->name, dev->name, adj_dev->name);
7539 	dev_put_track(adj_dev, &adj->dev_tracker);
7540 	kfree_rcu(adj, rcu);
7541 }
7542 
7543 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7544 					    struct net_device *upper_dev,
7545 					    struct list_head *up_list,
7546 					    struct list_head *down_list,
7547 					    void *private, bool master)
7548 {
7549 	int ret;
7550 
7551 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7552 					   private, master);
7553 	if (ret)
7554 		return ret;
7555 
7556 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7557 					   private, false);
7558 	if (ret) {
7559 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7560 		return ret;
7561 	}
7562 
7563 	return 0;
7564 }
7565 
7566 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7567 					       struct net_device *upper_dev,
7568 					       u16 ref_nr,
7569 					       struct list_head *up_list,
7570 					       struct list_head *down_list)
7571 {
7572 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7573 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7574 }
7575 
7576 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7577 						struct net_device *upper_dev,
7578 						void *private, bool master)
7579 {
7580 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7581 						&dev->adj_list.upper,
7582 						&upper_dev->adj_list.lower,
7583 						private, master);
7584 }
7585 
7586 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7587 						   struct net_device *upper_dev)
7588 {
7589 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7590 					   &dev->adj_list.upper,
7591 					   &upper_dev->adj_list.lower);
7592 }
7593 
7594 static int __netdev_upper_dev_link(struct net_device *dev,
7595 				   struct net_device *upper_dev, bool master,
7596 				   void *upper_priv, void *upper_info,
7597 				   struct netdev_nested_priv *priv,
7598 				   struct netlink_ext_ack *extack)
7599 {
7600 	struct netdev_notifier_changeupper_info changeupper_info = {
7601 		.info = {
7602 			.dev = dev,
7603 			.extack = extack,
7604 		},
7605 		.upper_dev = upper_dev,
7606 		.master = master,
7607 		.linking = true,
7608 		.upper_info = upper_info,
7609 	};
7610 	struct net_device *master_dev;
7611 	int ret = 0;
7612 
7613 	ASSERT_RTNL();
7614 
7615 	if (dev == upper_dev)
7616 		return -EBUSY;
7617 
7618 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7619 	if (__netdev_has_upper_dev(upper_dev, dev))
7620 		return -EBUSY;
7621 
7622 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7623 		return -EMLINK;
7624 
7625 	if (!master) {
7626 		if (__netdev_has_upper_dev(dev, upper_dev))
7627 			return -EEXIST;
7628 	} else {
7629 		master_dev = __netdev_master_upper_dev_get(dev);
7630 		if (master_dev)
7631 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7632 	}
7633 
7634 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7635 					    &changeupper_info.info);
7636 	ret = notifier_to_errno(ret);
7637 	if (ret)
7638 		return ret;
7639 
7640 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7641 						   master);
7642 	if (ret)
7643 		return ret;
7644 
7645 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7646 					    &changeupper_info.info);
7647 	ret = notifier_to_errno(ret);
7648 	if (ret)
7649 		goto rollback;
7650 
7651 	__netdev_update_upper_level(dev, NULL);
7652 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7653 
7654 	__netdev_update_lower_level(upper_dev, priv);
7655 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7656 				    priv);
7657 
7658 	return 0;
7659 
7660 rollback:
7661 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7662 
7663 	return ret;
7664 }
7665 
7666 /**
7667  * netdev_upper_dev_link - Add a link to the upper device
7668  * @dev: device
7669  * @upper_dev: new upper device
7670  * @extack: netlink extended ack
7671  *
7672  * Adds a link to device which is upper to this one. The caller must hold
7673  * the RTNL lock. On a failure a negative errno code is returned.
7674  * On success the reference counts are adjusted and the function
7675  * returns zero.
7676  */
7677 int netdev_upper_dev_link(struct net_device *dev,
7678 			  struct net_device *upper_dev,
7679 			  struct netlink_ext_ack *extack)
7680 {
7681 	struct netdev_nested_priv priv = {
7682 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7683 		.data = NULL,
7684 	};
7685 
7686 	return __netdev_upper_dev_link(dev, upper_dev, false,
7687 				       NULL, NULL, &priv, extack);
7688 }
7689 EXPORT_SYMBOL(netdev_upper_dev_link);
7690 
7691 /**
7692  * netdev_master_upper_dev_link - Add a master link to the upper device
7693  * @dev: device
7694  * @upper_dev: new upper device
7695  * @upper_priv: upper device private
7696  * @upper_info: upper info to be passed down via notifier
7697  * @extack: netlink extended ack
7698  *
7699  * Adds a link to device which is upper to this one. In this case, only
7700  * one master upper device can be linked, although other non-master devices
7701  * might be linked as well. The caller must hold the RTNL lock.
7702  * On a failure a negative errno code is returned. On success the reference
7703  * counts are adjusted and the function returns zero.
7704  */
7705 int netdev_master_upper_dev_link(struct net_device *dev,
7706 				 struct net_device *upper_dev,
7707 				 void *upper_priv, void *upper_info,
7708 				 struct netlink_ext_ack *extack)
7709 {
7710 	struct netdev_nested_priv priv = {
7711 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7712 		.data = NULL,
7713 	};
7714 
7715 	return __netdev_upper_dev_link(dev, upper_dev, true,
7716 				       upper_priv, upper_info, &priv, extack);
7717 }
7718 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7719 
7720 static void __netdev_upper_dev_unlink(struct net_device *dev,
7721 				      struct net_device *upper_dev,
7722 				      struct netdev_nested_priv *priv)
7723 {
7724 	struct netdev_notifier_changeupper_info changeupper_info = {
7725 		.info = {
7726 			.dev = dev,
7727 		},
7728 		.upper_dev = upper_dev,
7729 		.linking = false,
7730 	};
7731 
7732 	ASSERT_RTNL();
7733 
7734 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7735 
7736 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7737 				      &changeupper_info.info);
7738 
7739 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7740 
7741 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7742 				      &changeupper_info.info);
7743 
7744 	__netdev_update_upper_level(dev, NULL);
7745 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7746 
7747 	__netdev_update_lower_level(upper_dev, priv);
7748 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7749 				    priv);
7750 }
7751 
7752 /**
7753  * netdev_upper_dev_unlink - Removes a link to upper device
7754  * @dev: device
7755  * @upper_dev: new upper device
7756  *
7757  * Removes a link to device which is upper to this one. The caller must hold
7758  * the RTNL lock.
7759  */
7760 void netdev_upper_dev_unlink(struct net_device *dev,
7761 			     struct net_device *upper_dev)
7762 {
7763 	struct netdev_nested_priv priv = {
7764 		.flags = NESTED_SYNC_TODO,
7765 		.data = NULL,
7766 	};
7767 
7768 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7769 }
7770 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7771 
7772 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7773 				      struct net_device *lower_dev,
7774 				      bool val)
7775 {
7776 	struct netdev_adjacent *adj;
7777 
7778 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7779 	if (adj)
7780 		adj->ignore = val;
7781 
7782 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7783 	if (adj)
7784 		adj->ignore = val;
7785 }
7786 
7787 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7788 					struct net_device *lower_dev)
7789 {
7790 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7791 }
7792 
7793 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7794 				       struct net_device *lower_dev)
7795 {
7796 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7797 }
7798 
7799 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7800 				   struct net_device *new_dev,
7801 				   struct net_device *dev,
7802 				   struct netlink_ext_ack *extack)
7803 {
7804 	struct netdev_nested_priv priv = {
7805 		.flags = 0,
7806 		.data = NULL,
7807 	};
7808 	int err;
7809 
7810 	if (!new_dev)
7811 		return 0;
7812 
7813 	if (old_dev && new_dev != old_dev)
7814 		netdev_adjacent_dev_disable(dev, old_dev);
7815 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7816 				      extack);
7817 	if (err) {
7818 		if (old_dev && new_dev != old_dev)
7819 			netdev_adjacent_dev_enable(dev, old_dev);
7820 		return err;
7821 	}
7822 
7823 	return 0;
7824 }
7825 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7826 
7827 void netdev_adjacent_change_commit(struct net_device *old_dev,
7828 				   struct net_device *new_dev,
7829 				   struct net_device *dev)
7830 {
7831 	struct netdev_nested_priv priv = {
7832 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7833 		.data = NULL,
7834 	};
7835 
7836 	if (!new_dev || !old_dev)
7837 		return;
7838 
7839 	if (new_dev == old_dev)
7840 		return;
7841 
7842 	netdev_adjacent_dev_enable(dev, old_dev);
7843 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7844 }
7845 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7846 
7847 void netdev_adjacent_change_abort(struct net_device *old_dev,
7848 				  struct net_device *new_dev,
7849 				  struct net_device *dev)
7850 {
7851 	struct netdev_nested_priv priv = {
7852 		.flags = 0,
7853 		.data = NULL,
7854 	};
7855 
7856 	if (!new_dev)
7857 		return;
7858 
7859 	if (old_dev && new_dev != old_dev)
7860 		netdev_adjacent_dev_enable(dev, old_dev);
7861 
7862 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7863 }
7864 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7865 
7866 /**
7867  * netdev_bonding_info_change - Dispatch event about slave change
7868  * @dev: device
7869  * @bonding_info: info to dispatch
7870  *
7871  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7872  * The caller must hold the RTNL lock.
7873  */
7874 void netdev_bonding_info_change(struct net_device *dev,
7875 				struct netdev_bonding_info *bonding_info)
7876 {
7877 	struct netdev_notifier_bonding_info info = {
7878 		.info.dev = dev,
7879 	};
7880 
7881 	memcpy(&info.bonding_info, bonding_info,
7882 	       sizeof(struct netdev_bonding_info));
7883 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7884 				      &info.info);
7885 }
7886 EXPORT_SYMBOL(netdev_bonding_info_change);
7887 
7888 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7889 					   struct netlink_ext_ack *extack)
7890 {
7891 	struct netdev_notifier_offload_xstats_info info = {
7892 		.info.dev = dev,
7893 		.info.extack = extack,
7894 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7895 	};
7896 	int err;
7897 	int rc;
7898 
7899 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7900 					 GFP_KERNEL);
7901 	if (!dev->offload_xstats_l3)
7902 		return -ENOMEM;
7903 
7904 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7905 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7906 						  &info.info);
7907 	err = notifier_to_errno(rc);
7908 	if (err)
7909 		goto free_stats;
7910 
7911 	return 0;
7912 
7913 free_stats:
7914 	kfree(dev->offload_xstats_l3);
7915 	dev->offload_xstats_l3 = NULL;
7916 	return err;
7917 }
7918 
7919 int netdev_offload_xstats_enable(struct net_device *dev,
7920 				 enum netdev_offload_xstats_type type,
7921 				 struct netlink_ext_ack *extack)
7922 {
7923 	ASSERT_RTNL();
7924 
7925 	if (netdev_offload_xstats_enabled(dev, type))
7926 		return -EALREADY;
7927 
7928 	switch (type) {
7929 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7930 		return netdev_offload_xstats_enable_l3(dev, extack);
7931 	}
7932 
7933 	WARN_ON(1);
7934 	return -EINVAL;
7935 }
7936 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7937 
7938 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7939 {
7940 	struct netdev_notifier_offload_xstats_info info = {
7941 		.info.dev = dev,
7942 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7943 	};
7944 
7945 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7946 				      &info.info);
7947 	kfree(dev->offload_xstats_l3);
7948 	dev->offload_xstats_l3 = NULL;
7949 }
7950 
7951 int netdev_offload_xstats_disable(struct net_device *dev,
7952 				  enum netdev_offload_xstats_type type)
7953 {
7954 	ASSERT_RTNL();
7955 
7956 	if (!netdev_offload_xstats_enabled(dev, type))
7957 		return -EALREADY;
7958 
7959 	switch (type) {
7960 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7961 		netdev_offload_xstats_disable_l3(dev);
7962 		return 0;
7963 	}
7964 
7965 	WARN_ON(1);
7966 	return -EINVAL;
7967 }
7968 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7969 
7970 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7971 {
7972 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7973 }
7974 
7975 static struct rtnl_hw_stats64 *
7976 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7977 			      enum netdev_offload_xstats_type type)
7978 {
7979 	switch (type) {
7980 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7981 		return dev->offload_xstats_l3;
7982 	}
7983 
7984 	WARN_ON(1);
7985 	return NULL;
7986 }
7987 
7988 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7989 				   enum netdev_offload_xstats_type type)
7990 {
7991 	ASSERT_RTNL();
7992 
7993 	return netdev_offload_xstats_get_ptr(dev, type);
7994 }
7995 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7996 
7997 struct netdev_notifier_offload_xstats_ru {
7998 	bool used;
7999 };
8000 
8001 struct netdev_notifier_offload_xstats_rd {
8002 	struct rtnl_hw_stats64 stats;
8003 	bool used;
8004 };
8005 
8006 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8007 				  const struct rtnl_hw_stats64 *src)
8008 {
8009 	dest->rx_packets	  += src->rx_packets;
8010 	dest->tx_packets	  += src->tx_packets;
8011 	dest->rx_bytes		  += src->rx_bytes;
8012 	dest->tx_bytes		  += src->tx_bytes;
8013 	dest->rx_errors		  += src->rx_errors;
8014 	dest->tx_errors		  += src->tx_errors;
8015 	dest->rx_dropped	  += src->rx_dropped;
8016 	dest->tx_dropped	  += src->tx_dropped;
8017 	dest->multicast		  += src->multicast;
8018 }
8019 
8020 static int netdev_offload_xstats_get_used(struct net_device *dev,
8021 					  enum netdev_offload_xstats_type type,
8022 					  bool *p_used,
8023 					  struct netlink_ext_ack *extack)
8024 {
8025 	struct netdev_notifier_offload_xstats_ru report_used = {};
8026 	struct netdev_notifier_offload_xstats_info info = {
8027 		.info.dev = dev,
8028 		.info.extack = extack,
8029 		.type = type,
8030 		.report_used = &report_used,
8031 	};
8032 	int rc;
8033 
8034 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8035 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8036 					   &info.info);
8037 	*p_used = report_used.used;
8038 	return notifier_to_errno(rc);
8039 }
8040 
8041 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8042 					   enum netdev_offload_xstats_type type,
8043 					   struct rtnl_hw_stats64 *p_stats,
8044 					   bool *p_used,
8045 					   struct netlink_ext_ack *extack)
8046 {
8047 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8048 	struct netdev_notifier_offload_xstats_info info = {
8049 		.info.dev = dev,
8050 		.info.extack = extack,
8051 		.type = type,
8052 		.report_delta = &report_delta,
8053 	};
8054 	struct rtnl_hw_stats64 *stats;
8055 	int rc;
8056 
8057 	stats = netdev_offload_xstats_get_ptr(dev, type);
8058 	if (WARN_ON(!stats))
8059 		return -EINVAL;
8060 
8061 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8062 					   &info.info);
8063 
8064 	/* Cache whatever we got, even if there was an error, otherwise the
8065 	 * successful stats retrievals would get lost.
8066 	 */
8067 	netdev_hw_stats64_add(stats, &report_delta.stats);
8068 
8069 	if (p_stats)
8070 		*p_stats = *stats;
8071 	*p_used = report_delta.used;
8072 
8073 	return notifier_to_errno(rc);
8074 }
8075 
8076 int netdev_offload_xstats_get(struct net_device *dev,
8077 			      enum netdev_offload_xstats_type type,
8078 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8079 			      struct netlink_ext_ack *extack)
8080 {
8081 	ASSERT_RTNL();
8082 
8083 	if (p_stats)
8084 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8085 						       p_used, extack);
8086 	else
8087 		return netdev_offload_xstats_get_used(dev, type, p_used,
8088 						      extack);
8089 }
8090 EXPORT_SYMBOL(netdev_offload_xstats_get);
8091 
8092 void
8093 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8094 				   const struct rtnl_hw_stats64 *stats)
8095 {
8096 	report_delta->used = true;
8097 	netdev_hw_stats64_add(&report_delta->stats, stats);
8098 }
8099 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8100 
8101 void
8102 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8103 {
8104 	report_used->used = true;
8105 }
8106 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8107 
8108 void netdev_offload_xstats_push_delta(struct net_device *dev,
8109 				      enum netdev_offload_xstats_type type,
8110 				      const struct rtnl_hw_stats64 *p_stats)
8111 {
8112 	struct rtnl_hw_stats64 *stats;
8113 
8114 	ASSERT_RTNL();
8115 
8116 	stats = netdev_offload_xstats_get_ptr(dev, type);
8117 	if (WARN_ON(!stats))
8118 		return;
8119 
8120 	netdev_hw_stats64_add(stats, p_stats);
8121 }
8122 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8123 
8124 /**
8125  * netdev_get_xmit_slave - Get the xmit slave of master device
8126  * @dev: device
8127  * @skb: The packet
8128  * @all_slaves: assume all the slaves are active
8129  *
8130  * The reference counters are not incremented so the caller must be
8131  * careful with locks. The caller must hold RCU lock.
8132  * %NULL is returned if no slave is found.
8133  */
8134 
8135 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8136 					 struct sk_buff *skb,
8137 					 bool all_slaves)
8138 {
8139 	const struct net_device_ops *ops = dev->netdev_ops;
8140 
8141 	if (!ops->ndo_get_xmit_slave)
8142 		return NULL;
8143 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8144 }
8145 EXPORT_SYMBOL(netdev_get_xmit_slave);
8146 
8147 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8148 						  struct sock *sk)
8149 {
8150 	const struct net_device_ops *ops = dev->netdev_ops;
8151 
8152 	if (!ops->ndo_sk_get_lower_dev)
8153 		return NULL;
8154 	return ops->ndo_sk_get_lower_dev(dev, sk);
8155 }
8156 
8157 /**
8158  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8159  * @dev: device
8160  * @sk: the socket
8161  *
8162  * %NULL is returned if no lower device is found.
8163  */
8164 
8165 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8166 					    struct sock *sk)
8167 {
8168 	struct net_device *lower;
8169 
8170 	lower = netdev_sk_get_lower_dev(dev, sk);
8171 	while (lower) {
8172 		dev = lower;
8173 		lower = netdev_sk_get_lower_dev(dev, sk);
8174 	}
8175 
8176 	return dev;
8177 }
8178 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8179 
8180 static void netdev_adjacent_add_links(struct net_device *dev)
8181 {
8182 	struct netdev_adjacent *iter;
8183 
8184 	struct net *net = dev_net(dev);
8185 
8186 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8187 		if (!net_eq(net, dev_net(iter->dev)))
8188 			continue;
8189 		netdev_adjacent_sysfs_add(iter->dev, dev,
8190 					  &iter->dev->adj_list.lower);
8191 		netdev_adjacent_sysfs_add(dev, iter->dev,
8192 					  &dev->adj_list.upper);
8193 	}
8194 
8195 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8196 		if (!net_eq(net, dev_net(iter->dev)))
8197 			continue;
8198 		netdev_adjacent_sysfs_add(iter->dev, dev,
8199 					  &iter->dev->adj_list.upper);
8200 		netdev_adjacent_sysfs_add(dev, iter->dev,
8201 					  &dev->adj_list.lower);
8202 	}
8203 }
8204 
8205 static void netdev_adjacent_del_links(struct net_device *dev)
8206 {
8207 	struct netdev_adjacent *iter;
8208 
8209 	struct net *net = dev_net(dev);
8210 
8211 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8212 		if (!net_eq(net, dev_net(iter->dev)))
8213 			continue;
8214 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8215 					  &iter->dev->adj_list.lower);
8216 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8217 					  &dev->adj_list.upper);
8218 	}
8219 
8220 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8221 		if (!net_eq(net, dev_net(iter->dev)))
8222 			continue;
8223 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8224 					  &iter->dev->adj_list.upper);
8225 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8226 					  &dev->adj_list.lower);
8227 	}
8228 }
8229 
8230 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8231 {
8232 	struct netdev_adjacent *iter;
8233 
8234 	struct net *net = dev_net(dev);
8235 
8236 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8237 		if (!net_eq(net, dev_net(iter->dev)))
8238 			continue;
8239 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8240 					  &iter->dev->adj_list.lower);
8241 		netdev_adjacent_sysfs_add(iter->dev, dev,
8242 					  &iter->dev->adj_list.lower);
8243 	}
8244 
8245 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8246 		if (!net_eq(net, dev_net(iter->dev)))
8247 			continue;
8248 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8249 					  &iter->dev->adj_list.upper);
8250 		netdev_adjacent_sysfs_add(iter->dev, dev,
8251 					  &iter->dev->adj_list.upper);
8252 	}
8253 }
8254 
8255 void *netdev_lower_dev_get_private(struct net_device *dev,
8256 				   struct net_device *lower_dev)
8257 {
8258 	struct netdev_adjacent *lower;
8259 
8260 	if (!lower_dev)
8261 		return NULL;
8262 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8263 	if (!lower)
8264 		return NULL;
8265 
8266 	return lower->private;
8267 }
8268 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8269 
8270 
8271 /**
8272  * netdev_lower_state_changed - Dispatch event about lower device state change
8273  * @lower_dev: device
8274  * @lower_state_info: state to dispatch
8275  *
8276  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8277  * The caller must hold the RTNL lock.
8278  */
8279 void netdev_lower_state_changed(struct net_device *lower_dev,
8280 				void *lower_state_info)
8281 {
8282 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8283 		.info.dev = lower_dev,
8284 	};
8285 
8286 	ASSERT_RTNL();
8287 	changelowerstate_info.lower_state_info = lower_state_info;
8288 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8289 				      &changelowerstate_info.info);
8290 }
8291 EXPORT_SYMBOL(netdev_lower_state_changed);
8292 
8293 static void dev_change_rx_flags(struct net_device *dev, int flags)
8294 {
8295 	const struct net_device_ops *ops = dev->netdev_ops;
8296 
8297 	if (ops->ndo_change_rx_flags)
8298 		ops->ndo_change_rx_flags(dev, flags);
8299 }
8300 
8301 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8302 {
8303 	unsigned int old_flags = dev->flags;
8304 	kuid_t uid;
8305 	kgid_t gid;
8306 
8307 	ASSERT_RTNL();
8308 
8309 	dev->flags |= IFF_PROMISC;
8310 	dev->promiscuity += inc;
8311 	if (dev->promiscuity == 0) {
8312 		/*
8313 		 * Avoid overflow.
8314 		 * If inc causes overflow, untouch promisc and return error.
8315 		 */
8316 		if (inc < 0)
8317 			dev->flags &= ~IFF_PROMISC;
8318 		else {
8319 			dev->promiscuity -= inc;
8320 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8321 			return -EOVERFLOW;
8322 		}
8323 	}
8324 	if (dev->flags != old_flags) {
8325 		pr_info("device %s %s promiscuous mode\n",
8326 			dev->name,
8327 			dev->flags & IFF_PROMISC ? "entered" : "left");
8328 		if (audit_enabled) {
8329 			current_uid_gid(&uid, &gid);
8330 			audit_log(audit_context(), GFP_ATOMIC,
8331 				  AUDIT_ANOM_PROMISCUOUS,
8332 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8333 				  dev->name, (dev->flags & IFF_PROMISC),
8334 				  (old_flags & IFF_PROMISC),
8335 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8336 				  from_kuid(&init_user_ns, uid),
8337 				  from_kgid(&init_user_ns, gid),
8338 				  audit_get_sessionid(current));
8339 		}
8340 
8341 		dev_change_rx_flags(dev, IFF_PROMISC);
8342 	}
8343 	if (notify)
8344 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8345 	return 0;
8346 }
8347 
8348 /**
8349  *	dev_set_promiscuity	- update promiscuity count on a device
8350  *	@dev: device
8351  *	@inc: modifier
8352  *
8353  *	Add or remove promiscuity from a device. While the count in the device
8354  *	remains above zero the interface remains promiscuous. Once it hits zero
8355  *	the device reverts back to normal filtering operation. A negative inc
8356  *	value is used to drop promiscuity on the device.
8357  *	Return 0 if successful or a negative errno code on error.
8358  */
8359 int dev_set_promiscuity(struct net_device *dev, int inc)
8360 {
8361 	unsigned int old_flags = dev->flags;
8362 	int err;
8363 
8364 	err = __dev_set_promiscuity(dev, inc, true);
8365 	if (err < 0)
8366 		return err;
8367 	if (dev->flags != old_flags)
8368 		dev_set_rx_mode(dev);
8369 	return err;
8370 }
8371 EXPORT_SYMBOL(dev_set_promiscuity);
8372 
8373 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8374 {
8375 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8376 
8377 	ASSERT_RTNL();
8378 
8379 	dev->flags |= IFF_ALLMULTI;
8380 	dev->allmulti += inc;
8381 	if (dev->allmulti == 0) {
8382 		/*
8383 		 * Avoid overflow.
8384 		 * If inc causes overflow, untouch allmulti and return error.
8385 		 */
8386 		if (inc < 0)
8387 			dev->flags &= ~IFF_ALLMULTI;
8388 		else {
8389 			dev->allmulti -= inc;
8390 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8391 			return -EOVERFLOW;
8392 		}
8393 	}
8394 	if (dev->flags ^ old_flags) {
8395 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8396 		dev_set_rx_mode(dev);
8397 		if (notify)
8398 			__dev_notify_flags(dev, old_flags,
8399 					   dev->gflags ^ old_gflags);
8400 	}
8401 	return 0;
8402 }
8403 
8404 /**
8405  *	dev_set_allmulti	- update allmulti count on a device
8406  *	@dev: device
8407  *	@inc: modifier
8408  *
8409  *	Add or remove reception of all multicast frames to a device. While the
8410  *	count in the device remains above zero the interface remains listening
8411  *	to all interfaces. Once it hits zero the device reverts back to normal
8412  *	filtering operation. A negative @inc value is used to drop the counter
8413  *	when releasing a resource needing all multicasts.
8414  *	Return 0 if successful or a negative errno code on error.
8415  */
8416 
8417 int dev_set_allmulti(struct net_device *dev, int inc)
8418 {
8419 	return __dev_set_allmulti(dev, inc, true);
8420 }
8421 EXPORT_SYMBOL(dev_set_allmulti);
8422 
8423 /*
8424  *	Upload unicast and multicast address lists to device and
8425  *	configure RX filtering. When the device doesn't support unicast
8426  *	filtering it is put in promiscuous mode while unicast addresses
8427  *	are present.
8428  */
8429 void __dev_set_rx_mode(struct net_device *dev)
8430 {
8431 	const struct net_device_ops *ops = dev->netdev_ops;
8432 
8433 	/* dev_open will call this function so the list will stay sane. */
8434 	if (!(dev->flags&IFF_UP))
8435 		return;
8436 
8437 	if (!netif_device_present(dev))
8438 		return;
8439 
8440 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8441 		/* Unicast addresses changes may only happen under the rtnl,
8442 		 * therefore calling __dev_set_promiscuity here is safe.
8443 		 */
8444 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8445 			__dev_set_promiscuity(dev, 1, false);
8446 			dev->uc_promisc = true;
8447 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8448 			__dev_set_promiscuity(dev, -1, false);
8449 			dev->uc_promisc = false;
8450 		}
8451 	}
8452 
8453 	if (ops->ndo_set_rx_mode)
8454 		ops->ndo_set_rx_mode(dev);
8455 }
8456 
8457 void dev_set_rx_mode(struct net_device *dev)
8458 {
8459 	netif_addr_lock_bh(dev);
8460 	__dev_set_rx_mode(dev);
8461 	netif_addr_unlock_bh(dev);
8462 }
8463 
8464 /**
8465  *	dev_get_flags - get flags reported to userspace
8466  *	@dev: device
8467  *
8468  *	Get the combination of flag bits exported through APIs to userspace.
8469  */
8470 unsigned int dev_get_flags(const struct net_device *dev)
8471 {
8472 	unsigned int flags;
8473 
8474 	flags = (dev->flags & ~(IFF_PROMISC |
8475 				IFF_ALLMULTI |
8476 				IFF_RUNNING |
8477 				IFF_LOWER_UP |
8478 				IFF_DORMANT)) |
8479 		(dev->gflags & (IFF_PROMISC |
8480 				IFF_ALLMULTI));
8481 
8482 	if (netif_running(dev)) {
8483 		if (netif_oper_up(dev))
8484 			flags |= IFF_RUNNING;
8485 		if (netif_carrier_ok(dev))
8486 			flags |= IFF_LOWER_UP;
8487 		if (netif_dormant(dev))
8488 			flags |= IFF_DORMANT;
8489 	}
8490 
8491 	return flags;
8492 }
8493 EXPORT_SYMBOL(dev_get_flags);
8494 
8495 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8496 		       struct netlink_ext_ack *extack)
8497 {
8498 	unsigned int old_flags = dev->flags;
8499 	int ret;
8500 
8501 	ASSERT_RTNL();
8502 
8503 	/*
8504 	 *	Set the flags on our device.
8505 	 */
8506 
8507 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8508 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8509 			       IFF_AUTOMEDIA)) |
8510 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8511 				    IFF_ALLMULTI));
8512 
8513 	/*
8514 	 *	Load in the correct multicast list now the flags have changed.
8515 	 */
8516 
8517 	if ((old_flags ^ flags) & IFF_MULTICAST)
8518 		dev_change_rx_flags(dev, IFF_MULTICAST);
8519 
8520 	dev_set_rx_mode(dev);
8521 
8522 	/*
8523 	 *	Have we downed the interface. We handle IFF_UP ourselves
8524 	 *	according to user attempts to set it, rather than blindly
8525 	 *	setting it.
8526 	 */
8527 
8528 	ret = 0;
8529 	if ((old_flags ^ flags) & IFF_UP) {
8530 		if (old_flags & IFF_UP)
8531 			__dev_close(dev);
8532 		else
8533 			ret = __dev_open(dev, extack);
8534 	}
8535 
8536 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8537 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8538 		unsigned int old_flags = dev->flags;
8539 
8540 		dev->gflags ^= IFF_PROMISC;
8541 
8542 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8543 			if (dev->flags != old_flags)
8544 				dev_set_rx_mode(dev);
8545 	}
8546 
8547 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8548 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8549 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8550 	 */
8551 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8552 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8553 
8554 		dev->gflags ^= IFF_ALLMULTI;
8555 		__dev_set_allmulti(dev, inc, false);
8556 	}
8557 
8558 	return ret;
8559 }
8560 
8561 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8562 			unsigned int gchanges)
8563 {
8564 	unsigned int changes = dev->flags ^ old_flags;
8565 
8566 	if (gchanges)
8567 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8568 
8569 	if (changes & IFF_UP) {
8570 		if (dev->flags & IFF_UP)
8571 			call_netdevice_notifiers(NETDEV_UP, dev);
8572 		else
8573 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8574 	}
8575 
8576 	if (dev->flags & IFF_UP &&
8577 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8578 		struct netdev_notifier_change_info change_info = {
8579 			.info = {
8580 				.dev = dev,
8581 			},
8582 			.flags_changed = changes,
8583 		};
8584 
8585 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8586 	}
8587 }
8588 
8589 /**
8590  *	dev_change_flags - change device settings
8591  *	@dev: device
8592  *	@flags: device state flags
8593  *	@extack: netlink extended ack
8594  *
8595  *	Change settings on device based state flags. The flags are
8596  *	in the userspace exported format.
8597  */
8598 int dev_change_flags(struct net_device *dev, unsigned int flags,
8599 		     struct netlink_ext_ack *extack)
8600 {
8601 	int ret;
8602 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8603 
8604 	ret = __dev_change_flags(dev, flags, extack);
8605 	if (ret < 0)
8606 		return ret;
8607 
8608 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8609 	__dev_notify_flags(dev, old_flags, changes);
8610 	return ret;
8611 }
8612 EXPORT_SYMBOL(dev_change_flags);
8613 
8614 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8615 {
8616 	const struct net_device_ops *ops = dev->netdev_ops;
8617 
8618 	if (ops->ndo_change_mtu)
8619 		return ops->ndo_change_mtu(dev, new_mtu);
8620 
8621 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8622 	WRITE_ONCE(dev->mtu, new_mtu);
8623 	return 0;
8624 }
8625 EXPORT_SYMBOL(__dev_set_mtu);
8626 
8627 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8628 		     struct netlink_ext_ack *extack)
8629 {
8630 	/* MTU must be positive, and in range */
8631 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8632 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8633 		return -EINVAL;
8634 	}
8635 
8636 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8637 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8638 		return -EINVAL;
8639 	}
8640 	return 0;
8641 }
8642 
8643 /**
8644  *	dev_set_mtu_ext - Change maximum transfer unit
8645  *	@dev: device
8646  *	@new_mtu: new transfer unit
8647  *	@extack: netlink extended ack
8648  *
8649  *	Change the maximum transfer size of the network device.
8650  */
8651 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8652 		    struct netlink_ext_ack *extack)
8653 {
8654 	int err, orig_mtu;
8655 
8656 	if (new_mtu == dev->mtu)
8657 		return 0;
8658 
8659 	err = dev_validate_mtu(dev, new_mtu, extack);
8660 	if (err)
8661 		return err;
8662 
8663 	if (!netif_device_present(dev))
8664 		return -ENODEV;
8665 
8666 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8667 	err = notifier_to_errno(err);
8668 	if (err)
8669 		return err;
8670 
8671 	orig_mtu = dev->mtu;
8672 	err = __dev_set_mtu(dev, new_mtu);
8673 
8674 	if (!err) {
8675 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8676 						   orig_mtu);
8677 		err = notifier_to_errno(err);
8678 		if (err) {
8679 			/* setting mtu back and notifying everyone again,
8680 			 * so that they have a chance to revert changes.
8681 			 */
8682 			__dev_set_mtu(dev, orig_mtu);
8683 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8684 						     new_mtu);
8685 		}
8686 	}
8687 	return err;
8688 }
8689 
8690 int dev_set_mtu(struct net_device *dev, int new_mtu)
8691 {
8692 	struct netlink_ext_ack extack;
8693 	int err;
8694 
8695 	memset(&extack, 0, sizeof(extack));
8696 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8697 	if (err && extack._msg)
8698 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8699 	return err;
8700 }
8701 EXPORT_SYMBOL(dev_set_mtu);
8702 
8703 /**
8704  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8705  *	@dev: device
8706  *	@new_len: new tx queue length
8707  */
8708 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8709 {
8710 	unsigned int orig_len = dev->tx_queue_len;
8711 	int res;
8712 
8713 	if (new_len != (unsigned int)new_len)
8714 		return -ERANGE;
8715 
8716 	if (new_len != orig_len) {
8717 		dev->tx_queue_len = new_len;
8718 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8719 		res = notifier_to_errno(res);
8720 		if (res)
8721 			goto err_rollback;
8722 		res = dev_qdisc_change_tx_queue_len(dev);
8723 		if (res)
8724 			goto err_rollback;
8725 	}
8726 
8727 	return 0;
8728 
8729 err_rollback:
8730 	netdev_err(dev, "refused to change device tx_queue_len\n");
8731 	dev->tx_queue_len = orig_len;
8732 	return res;
8733 }
8734 
8735 /**
8736  *	dev_set_group - Change group this device belongs to
8737  *	@dev: device
8738  *	@new_group: group this device should belong to
8739  */
8740 void dev_set_group(struct net_device *dev, int new_group)
8741 {
8742 	dev->group = new_group;
8743 }
8744 
8745 /**
8746  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8747  *	@dev: device
8748  *	@addr: new address
8749  *	@extack: netlink extended ack
8750  */
8751 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8752 			      struct netlink_ext_ack *extack)
8753 {
8754 	struct netdev_notifier_pre_changeaddr_info info = {
8755 		.info.dev = dev,
8756 		.info.extack = extack,
8757 		.dev_addr = addr,
8758 	};
8759 	int rc;
8760 
8761 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8762 	return notifier_to_errno(rc);
8763 }
8764 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8765 
8766 /**
8767  *	dev_set_mac_address - Change Media Access Control Address
8768  *	@dev: device
8769  *	@sa: new address
8770  *	@extack: netlink extended ack
8771  *
8772  *	Change the hardware (MAC) address of the device
8773  */
8774 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8775 			struct netlink_ext_ack *extack)
8776 {
8777 	const struct net_device_ops *ops = dev->netdev_ops;
8778 	int err;
8779 
8780 	if (!ops->ndo_set_mac_address)
8781 		return -EOPNOTSUPP;
8782 	if (sa->sa_family != dev->type)
8783 		return -EINVAL;
8784 	if (!netif_device_present(dev))
8785 		return -ENODEV;
8786 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8787 	if (err)
8788 		return err;
8789 	err = ops->ndo_set_mac_address(dev, sa);
8790 	if (err)
8791 		return err;
8792 	dev->addr_assign_type = NET_ADDR_SET;
8793 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8794 	add_device_randomness(dev->dev_addr, dev->addr_len);
8795 	return 0;
8796 }
8797 EXPORT_SYMBOL(dev_set_mac_address);
8798 
8799 static DECLARE_RWSEM(dev_addr_sem);
8800 
8801 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8802 			     struct netlink_ext_ack *extack)
8803 {
8804 	int ret;
8805 
8806 	down_write(&dev_addr_sem);
8807 	ret = dev_set_mac_address(dev, sa, extack);
8808 	up_write(&dev_addr_sem);
8809 	return ret;
8810 }
8811 EXPORT_SYMBOL(dev_set_mac_address_user);
8812 
8813 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8814 {
8815 	size_t size = sizeof(sa->sa_data);
8816 	struct net_device *dev;
8817 	int ret = 0;
8818 
8819 	down_read(&dev_addr_sem);
8820 	rcu_read_lock();
8821 
8822 	dev = dev_get_by_name_rcu(net, dev_name);
8823 	if (!dev) {
8824 		ret = -ENODEV;
8825 		goto unlock;
8826 	}
8827 	if (!dev->addr_len)
8828 		memset(sa->sa_data, 0, size);
8829 	else
8830 		memcpy(sa->sa_data, dev->dev_addr,
8831 		       min_t(size_t, size, dev->addr_len));
8832 	sa->sa_family = dev->type;
8833 
8834 unlock:
8835 	rcu_read_unlock();
8836 	up_read(&dev_addr_sem);
8837 	return ret;
8838 }
8839 EXPORT_SYMBOL(dev_get_mac_address);
8840 
8841 /**
8842  *	dev_change_carrier - Change device carrier
8843  *	@dev: device
8844  *	@new_carrier: new value
8845  *
8846  *	Change device carrier
8847  */
8848 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8849 {
8850 	const struct net_device_ops *ops = dev->netdev_ops;
8851 
8852 	if (!ops->ndo_change_carrier)
8853 		return -EOPNOTSUPP;
8854 	if (!netif_device_present(dev))
8855 		return -ENODEV;
8856 	return ops->ndo_change_carrier(dev, new_carrier);
8857 }
8858 
8859 /**
8860  *	dev_get_phys_port_id - Get device physical port ID
8861  *	@dev: device
8862  *	@ppid: port ID
8863  *
8864  *	Get device physical port ID
8865  */
8866 int dev_get_phys_port_id(struct net_device *dev,
8867 			 struct netdev_phys_item_id *ppid)
8868 {
8869 	const struct net_device_ops *ops = dev->netdev_ops;
8870 
8871 	if (!ops->ndo_get_phys_port_id)
8872 		return -EOPNOTSUPP;
8873 	return ops->ndo_get_phys_port_id(dev, ppid);
8874 }
8875 
8876 /**
8877  *	dev_get_phys_port_name - Get device physical port name
8878  *	@dev: device
8879  *	@name: port name
8880  *	@len: limit of bytes to copy to name
8881  *
8882  *	Get device physical port name
8883  */
8884 int dev_get_phys_port_name(struct net_device *dev,
8885 			   char *name, size_t len)
8886 {
8887 	const struct net_device_ops *ops = dev->netdev_ops;
8888 	int err;
8889 
8890 	if (ops->ndo_get_phys_port_name) {
8891 		err = ops->ndo_get_phys_port_name(dev, name, len);
8892 		if (err != -EOPNOTSUPP)
8893 			return err;
8894 	}
8895 	return devlink_compat_phys_port_name_get(dev, name, len);
8896 }
8897 
8898 /**
8899  *	dev_get_port_parent_id - Get the device's port parent identifier
8900  *	@dev: network device
8901  *	@ppid: pointer to a storage for the port's parent identifier
8902  *	@recurse: allow/disallow recursion to lower devices
8903  *
8904  *	Get the devices's port parent identifier
8905  */
8906 int dev_get_port_parent_id(struct net_device *dev,
8907 			   struct netdev_phys_item_id *ppid,
8908 			   bool recurse)
8909 {
8910 	const struct net_device_ops *ops = dev->netdev_ops;
8911 	struct netdev_phys_item_id first = { };
8912 	struct net_device *lower_dev;
8913 	struct list_head *iter;
8914 	int err;
8915 
8916 	if (ops->ndo_get_port_parent_id) {
8917 		err = ops->ndo_get_port_parent_id(dev, ppid);
8918 		if (err != -EOPNOTSUPP)
8919 			return err;
8920 	}
8921 
8922 	err = devlink_compat_switch_id_get(dev, ppid);
8923 	if (!recurse || err != -EOPNOTSUPP)
8924 		return err;
8925 
8926 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8927 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8928 		if (err)
8929 			break;
8930 		if (!first.id_len)
8931 			first = *ppid;
8932 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8933 			return -EOPNOTSUPP;
8934 	}
8935 
8936 	return err;
8937 }
8938 EXPORT_SYMBOL(dev_get_port_parent_id);
8939 
8940 /**
8941  *	netdev_port_same_parent_id - Indicate if two network devices have
8942  *	the same port parent identifier
8943  *	@a: first network device
8944  *	@b: second network device
8945  */
8946 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8947 {
8948 	struct netdev_phys_item_id a_id = { };
8949 	struct netdev_phys_item_id b_id = { };
8950 
8951 	if (dev_get_port_parent_id(a, &a_id, true) ||
8952 	    dev_get_port_parent_id(b, &b_id, true))
8953 		return false;
8954 
8955 	return netdev_phys_item_id_same(&a_id, &b_id);
8956 }
8957 EXPORT_SYMBOL(netdev_port_same_parent_id);
8958 
8959 /**
8960  *	dev_change_proto_down - set carrier according to proto_down.
8961  *
8962  *	@dev: device
8963  *	@proto_down: new value
8964  */
8965 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8966 {
8967 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8968 		return -EOPNOTSUPP;
8969 	if (!netif_device_present(dev))
8970 		return -ENODEV;
8971 	if (proto_down)
8972 		netif_carrier_off(dev);
8973 	else
8974 		netif_carrier_on(dev);
8975 	dev->proto_down = proto_down;
8976 	return 0;
8977 }
8978 
8979 /**
8980  *	dev_change_proto_down_reason - proto down reason
8981  *
8982  *	@dev: device
8983  *	@mask: proto down mask
8984  *	@value: proto down value
8985  */
8986 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8987 				  u32 value)
8988 {
8989 	int b;
8990 
8991 	if (!mask) {
8992 		dev->proto_down_reason = value;
8993 	} else {
8994 		for_each_set_bit(b, &mask, 32) {
8995 			if (value & (1 << b))
8996 				dev->proto_down_reason |= BIT(b);
8997 			else
8998 				dev->proto_down_reason &= ~BIT(b);
8999 		}
9000 	}
9001 }
9002 
9003 struct bpf_xdp_link {
9004 	struct bpf_link link;
9005 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9006 	int flags;
9007 };
9008 
9009 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9010 {
9011 	if (flags & XDP_FLAGS_HW_MODE)
9012 		return XDP_MODE_HW;
9013 	if (flags & XDP_FLAGS_DRV_MODE)
9014 		return XDP_MODE_DRV;
9015 	if (flags & XDP_FLAGS_SKB_MODE)
9016 		return XDP_MODE_SKB;
9017 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9018 }
9019 
9020 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9021 {
9022 	switch (mode) {
9023 	case XDP_MODE_SKB:
9024 		return generic_xdp_install;
9025 	case XDP_MODE_DRV:
9026 	case XDP_MODE_HW:
9027 		return dev->netdev_ops->ndo_bpf;
9028 	default:
9029 		return NULL;
9030 	}
9031 }
9032 
9033 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9034 					 enum bpf_xdp_mode mode)
9035 {
9036 	return dev->xdp_state[mode].link;
9037 }
9038 
9039 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9040 				     enum bpf_xdp_mode mode)
9041 {
9042 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9043 
9044 	if (link)
9045 		return link->link.prog;
9046 	return dev->xdp_state[mode].prog;
9047 }
9048 
9049 u8 dev_xdp_prog_count(struct net_device *dev)
9050 {
9051 	u8 count = 0;
9052 	int i;
9053 
9054 	for (i = 0; i < __MAX_XDP_MODE; i++)
9055 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9056 			count++;
9057 	return count;
9058 }
9059 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9060 
9061 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9062 {
9063 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9064 
9065 	return prog ? prog->aux->id : 0;
9066 }
9067 
9068 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9069 			     struct bpf_xdp_link *link)
9070 {
9071 	dev->xdp_state[mode].link = link;
9072 	dev->xdp_state[mode].prog = NULL;
9073 }
9074 
9075 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9076 			     struct bpf_prog *prog)
9077 {
9078 	dev->xdp_state[mode].link = NULL;
9079 	dev->xdp_state[mode].prog = prog;
9080 }
9081 
9082 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9083 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9084 			   u32 flags, struct bpf_prog *prog)
9085 {
9086 	struct netdev_bpf xdp;
9087 	int err;
9088 
9089 	memset(&xdp, 0, sizeof(xdp));
9090 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9091 	xdp.extack = extack;
9092 	xdp.flags = flags;
9093 	xdp.prog = prog;
9094 
9095 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9096 	 * "moved" into driver), so they don't increment it on their own, but
9097 	 * they do decrement refcnt when program is detached or replaced.
9098 	 * Given net_device also owns link/prog, we need to bump refcnt here
9099 	 * to prevent drivers from underflowing it.
9100 	 */
9101 	if (prog)
9102 		bpf_prog_inc(prog);
9103 	err = bpf_op(dev, &xdp);
9104 	if (err) {
9105 		if (prog)
9106 			bpf_prog_put(prog);
9107 		return err;
9108 	}
9109 
9110 	if (mode != XDP_MODE_HW)
9111 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9112 
9113 	return 0;
9114 }
9115 
9116 static void dev_xdp_uninstall(struct net_device *dev)
9117 {
9118 	struct bpf_xdp_link *link;
9119 	struct bpf_prog *prog;
9120 	enum bpf_xdp_mode mode;
9121 	bpf_op_t bpf_op;
9122 
9123 	ASSERT_RTNL();
9124 
9125 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9126 		prog = dev_xdp_prog(dev, mode);
9127 		if (!prog)
9128 			continue;
9129 
9130 		bpf_op = dev_xdp_bpf_op(dev, mode);
9131 		if (!bpf_op)
9132 			continue;
9133 
9134 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9135 
9136 		/* auto-detach link from net device */
9137 		link = dev_xdp_link(dev, mode);
9138 		if (link)
9139 			link->dev = NULL;
9140 		else
9141 			bpf_prog_put(prog);
9142 
9143 		dev_xdp_set_link(dev, mode, NULL);
9144 	}
9145 }
9146 
9147 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9148 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9149 			  struct bpf_prog *old_prog, u32 flags)
9150 {
9151 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9152 	struct bpf_prog *cur_prog;
9153 	struct net_device *upper;
9154 	struct list_head *iter;
9155 	enum bpf_xdp_mode mode;
9156 	bpf_op_t bpf_op;
9157 	int err;
9158 
9159 	ASSERT_RTNL();
9160 
9161 	/* either link or prog attachment, never both */
9162 	if (link && (new_prog || old_prog))
9163 		return -EINVAL;
9164 	/* link supports only XDP mode flags */
9165 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9166 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9167 		return -EINVAL;
9168 	}
9169 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9170 	if (num_modes > 1) {
9171 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9172 		return -EINVAL;
9173 	}
9174 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9175 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9176 		NL_SET_ERR_MSG(extack,
9177 			       "More than one program loaded, unset mode is ambiguous");
9178 		return -EINVAL;
9179 	}
9180 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9181 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9182 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9183 		return -EINVAL;
9184 	}
9185 
9186 	mode = dev_xdp_mode(dev, flags);
9187 	/* can't replace attached link */
9188 	if (dev_xdp_link(dev, mode)) {
9189 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9190 		return -EBUSY;
9191 	}
9192 
9193 	/* don't allow if an upper device already has a program */
9194 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9195 		if (dev_xdp_prog_count(upper) > 0) {
9196 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9197 			return -EEXIST;
9198 		}
9199 	}
9200 
9201 	cur_prog = dev_xdp_prog(dev, mode);
9202 	/* can't replace attached prog with link */
9203 	if (link && cur_prog) {
9204 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9205 		return -EBUSY;
9206 	}
9207 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9208 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9209 		return -EEXIST;
9210 	}
9211 
9212 	/* put effective new program into new_prog */
9213 	if (link)
9214 		new_prog = link->link.prog;
9215 
9216 	if (new_prog) {
9217 		bool offload = mode == XDP_MODE_HW;
9218 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9219 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9220 
9221 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9222 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9223 			return -EBUSY;
9224 		}
9225 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9226 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9227 			return -EEXIST;
9228 		}
9229 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9230 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9231 			return -EINVAL;
9232 		}
9233 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9234 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9235 			return -EINVAL;
9236 		}
9237 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9238 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9239 			return -EINVAL;
9240 		}
9241 	}
9242 
9243 	/* don't call drivers if the effective program didn't change */
9244 	if (new_prog != cur_prog) {
9245 		bpf_op = dev_xdp_bpf_op(dev, mode);
9246 		if (!bpf_op) {
9247 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9248 			return -EOPNOTSUPP;
9249 		}
9250 
9251 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9252 		if (err)
9253 			return err;
9254 	}
9255 
9256 	if (link)
9257 		dev_xdp_set_link(dev, mode, link);
9258 	else
9259 		dev_xdp_set_prog(dev, mode, new_prog);
9260 	if (cur_prog)
9261 		bpf_prog_put(cur_prog);
9262 
9263 	return 0;
9264 }
9265 
9266 static int dev_xdp_attach_link(struct net_device *dev,
9267 			       struct netlink_ext_ack *extack,
9268 			       struct bpf_xdp_link *link)
9269 {
9270 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9271 }
9272 
9273 static int dev_xdp_detach_link(struct net_device *dev,
9274 			       struct netlink_ext_ack *extack,
9275 			       struct bpf_xdp_link *link)
9276 {
9277 	enum bpf_xdp_mode mode;
9278 	bpf_op_t bpf_op;
9279 
9280 	ASSERT_RTNL();
9281 
9282 	mode = dev_xdp_mode(dev, link->flags);
9283 	if (dev_xdp_link(dev, mode) != link)
9284 		return -EINVAL;
9285 
9286 	bpf_op = dev_xdp_bpf_op(dev, mode);
9287 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9288 	dev_xdp_set_link(dev, mode, NULL);
9289 	return 0;
9290 }
9291 
9292 static void bpf_xdp_link_release(struct bpf_link *link)
9293 {
9294 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9295 
9296 	rtnl_lock();
9297 
9298 	/* if racing with net_device's tear down, xdp_link->dev might be
9299 	 * already NULL, in which case link was already auto-detached
9300 	 */
9301 	if (xdp_link->dev) {
9302 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9303 		xdp_link->dev = NULL;
9304 	}
9305 
9306 	rtnl_unlock();
9307 }
9308 
9309 static int bpf_xdp_link_detach(struct bpf_link *link)
9310 {
9311 	bpf_xdp_link_release(link);
9312 	return 0;
9313 }
9314 
9315 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9316 {
9317 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9318 
9319 	kfree(xdp_link);
9320 }
9321 
9322 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9323 				     struct seq_file *seq)
9324 {
9325 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9326 	u32 ifindex = 0;
9327 
9328 	rtnl_lock();
9329 	if (xdp_link->dev)
9330 		ifindex = xdp_link->dev->ifindex;
9331 	rtnl_unlock();
9332 
9333 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9334 }
9335 
9336 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9337 				       struct bpf_link_info *info)
9338 {
9339 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9340 	u32 ifindex = 0;
9341 
9342 	rtnl_lock();
9343 	if (xdp_link->dev)
9344 		ifindex = xdp_link->dev->ifindex;
9345 	rtnl_unlock();
9346 
9347 	info->xdp.ifindex = ifindex;
9348 	return 0;
9349 }
9350 
9351 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9352 			       struct bpf_prog *old_prog)
9353 {
9354 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9355 	enum bpf_xdp_mode mode;
9356 	bpf_op_t bpf_op;
9357 	int err = 0;
9358 
9359 	rtnl_lock();
9360 
9361 	/* link might have been auto-released already, so fail */
9362 	if (!xdp_link->dev) {
9363 		err = -ENOLINK;
9364 		goto out_unlock;
9365 	}
9366 
9367 	if (old_prog && link->prog != old_prog) {
9368 		err = -EPERM;
9369 		goto out_unlock;
9370 	}
9371 	old_prog = link->prog;
9372 	if (old_prog->type != new_prog->type ||
9373 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9374 		err = -EINVAL;
9375 		goto out_unlock;
9376 	}
9377 
9378 	if (old_prog == new_prog) {
9379 		/* no-op, don't disturb drivers */
9380 		bpf_prog_put(new_prog);
9381 		goto out_unlock;
9382 	}
9383 
9384 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9385 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9386 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9387 			      xdp_link->flags, new_prog);
9388 	if (err)
9389 		goto out_unlock;
9390 
9391 	old_prog = xchg(&link->prog, new_prog);
9392 	bpf_prog_put(old_prog);
9393 
9394 out_unlock:
9395 	rtnl_unlock();
9396 	return err;
9397 }
9398 
9399 static const struct bpf_link_ops bpf_xdp_link_lops = {
9400 	.release = bpf_xdp_link_release,
9401 	.dealloc = bpf_xdp_link_dealloc,
9402 	.detach = bpf_xdp_link_detach,
9403 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9404 	.fill_link_info = bpf_xdp_link_fill_link_info,
9405 	.update_prog = bpf_xdp_link_update,
9406 };
9407 
9408 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9409 {
9410 	struct net *net = current->nsproxy->net_ns;
9411 	struct bpf_link_primer link_primer;
9412 	struct bpf_xdp_link *link;
9413 	struct net_device *dev;
9414 	int err, fd;
9415 
9416 	rtnl_lock();
9417 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9418 	if (!dev) {
9419 		rtnl_unlock();
9420 		return -EINVAL;
9421 	}
9422 
9423 	link = kzalloc(sizeof(*link), GFP_USER);
9424 	if (!link) {
9425 		err = -ENOMEM;
9426 		goto unlock;
9427 	}
9428 
9429 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9430 	link->dev = dev;
9431 	link->flags = attr->link_create.flags;
9432 
9433 	err = bpf_link_prime(&link->link, &link_primer);
9434 	if (err) {
9435 		kfree(link);
9436 		goto unlock;
9437 	}
9438 
9439 	err = dev_xdp_attach_link(dev, NULL, link);
9440 	rtnl_unlock();
9441 
9442 	if (err) {
9443 		link->dev = NULL;
9444 		bpf_link_cleanup(&link_primer);
9445 		goto out_put_dev;
9446 	}
9447 
9448 	fd = bpf_link_settle(&link_primer);
9449 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9450 	dev_put(dev);
9451 	return fd;
9452 
9453 unlock:
9454 	rtnl_unlock();
9455 
9456 out_put_dev:
9457 	dev_put(dev);
9458 	return err;
9459 }
9460 
9461 /**
9462  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9463  *	@dev: device
9464  *	@extack: netlink extended ack
9465  *	@fd: new program fd or negative value to clear
9466  *	@expected_fd: old program fd that userspace expects to replace or clear
9467  *	@flags: xdp-related flags
9468  *
9469  *	Set or clear a bpf program for a device
9470  */
9471 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9472 		      int fd, int expected_fd, u32 flags)
9473 {
9474 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9475 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9476 	int err;
9477 
9478 	ASSERT_RTNL();
9479 
9480 	if (fd >= 0) {
9481 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9482 						 mode != XDP_MODE_SKB);
9483 		if (IS_ERR(new_prog))
9484 			return PTR_ERR(new_prog);
9485 	}
9486 
9487 	if (expected_fd >= 0) {
9488 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9489 						 mode != XDP_MODE_SKB);
9490 		if (IS_ERR(old_prog)) {
9491 			err = PTR_ERR(old_prog);
9492 			old_prog = NULL;
9493 			goto err_out;
9494 		}
9495 	}
9496 
9497 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9498 
9499 err_out:
9500 	if (err && new_prog)
9501 		bpf_prog_put(new_prog);
9502 	if (old_prog)
9503 		bpf_prog_put(old_prog);
9504 	return err;
9505 }
9506 
9507 /**
9508  *	dev_new_index	-	allocate an ifindex
9509  *	@net: the applicable net namespace
9510  *
9511  *	Returns a suitable unique value for a new device interface
9512  *	number.  The caller must hold the rtnl semaphore or the
9513  *	dev_base_lock to be sure it remains unique.
9514  */
9515 static int dev_new_index(struct net *net)
9516 {
9517 	int ifindex = net->ifindex;
9518 
9519 	for (;;) {
9520 		if (++ifindex <= 0)
9521 			ifindex = 1;
9522 		if (!__dev_get_by_index(net, ifindex))
9523 			return net->ifindex = ifindex;
9524 	}
9525 }
9526 
9527 /* Delayed registration/unregisteration */
9528 LIST_HEAD(net_todo_list);
9529 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9530 
9531 static void net_set_todo(struct net_device *dev)
9532 {
9533 	list_add_tail(&dev->todo_list, &net_todo_list);
9534 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9535 }
9536 
9537 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9538 	struct net_device *upper, netdev_features_t features)
9539 {
9540 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9541 	netdev_features_t feature;
9542 	int feature_bit;
9543 
9544 	for_each_netdev_feature(upper_disables, feature_bit) {
9545 		feature = __NETIF_F_BIT(feature_bit);
9546 		if (!(upper->wanted_features & feature)
9547 		    && (features & feature)) {
9548 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9549 				   &feature, upper->name);
9550 			features &= ~feature;
9551 		}
9552 	}
9553 
9554 	return features;
9555 }
9556 
9557 static void netdev_sync_lower_features(struct net_device *upper,
9558 	struct net_device *lower, netdev_features_t features)
9559 {
9560 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9561 	netdev_features_t feature;
9562 	int feature_bit;
9563 
9564 	for_each_netdev_feature(upper_disables, feature_bit) {
9565 		feature = __NETIF_F_BIT(feature_bit);
9566 		if (!(features & feature) && (lower->features & feature)) {
9567 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9568 				   &feature, lower->name);
9569 			lower->wanted_features &= ~feature;
9570 			__netdev_update_features(lower);
9571 
9572 			if (unlikely(lower->features & feature))
9573 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9574 					    &feature, lower->name);
9575 			else
9576 				netdev_features_change(lower);
9577 		}
9578 	}
9579 }
9580 
9581 static netdev_features_t netdev_fix_features(struct net_device *dev,
9582 	netdev_features_t features)
9583 {
9584 	/* Fix illegal checksum combinations */
9585 	if ((features & NETIF_F_HW_CSUM) &&
9586 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9587 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9588 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9589 	}
9590 
9591 	/* TSO requires that SG is present as well. */
9592 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9593 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9594 		features &= ~NETIF_F_ALL_TSO;
9595 	}
9596 
9597 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9598 					!(features & NETIF_F_IP_CSUM)) {
9599 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9600 		features &= ~NETIF_F_TSO;
9601 		features &= ~NETIF_F_TSO_ECN;
9602 	}
9603 
9604 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9605 					 !(features & NETIF_F_IPV6_CSUM)) {
9606 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9607 		features &= ~NETIF_F_TSO6;
9608 	}
9609 
9610 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9611 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9612 		features &= ~NETIF_F_TSO_MANGLEID;
9613 
9614 	/* TSO ECN requires that TSO is present as well. */
9615 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9616 		features &= ~NETIF_F_TSO_ECN;
9617 
9618 	/* Software GSO depends on SG. */
9619 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9620 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9621 		features &= ~NETIF_F_GSO;
9622 	}
9623 
9624 	/* GSO partial features require GSO partial be set */
9625 	if ((features & dev->gso_partial_features) &&
9626 	    !(features & NETIF_F_GSO_PARTIAL)) {
9627 		netdev_dbg(dev,
9628 			   "Dropping partially supported GSO features since no GSO partial.\n");
9629 		features &= ~dev->gso_partial_features;
9630 	}
9631 
9632 	if (!(features & NETIF_F_RXCSUM)) {
9633 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9634 		 * successfully merged by hardware must also have the
9635 		 * checksum verified by hardware.  If the user does not
9636 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9637 		 */
9638 		if (features & NETIF_F_GRO_HW) {
9639 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9640 			features &= ~NETIF_F_GRO_HW;
9641 		}
9642 	}
9643 
9644 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9645 	if (features & NETIF_F_RXFCS) {
9646 		if (features & NETIF_F_LRO) {
9647 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9648 			features &= ~NETIF_F_LRO;
9649 		}
9650 
9651 		if (features & NETIF_F_GRO_HW) {
9652 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9653 			features &= ~NETIF_F_GRO_HW;
9654 		}
9655 	}
9656 
9657 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9658 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9659 		features &= ~NETIF_F_LRO;
9660 	}
9661 
9662 	if (features & NETIF_F_HW_TLS_TX) {
9663 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9664 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9665 		bool hw_csum = features & NETIF_F_HW_CSUM;
9666 
9667 		if (!ip_csum && !hw_csum) {
9668 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9669 			features &= ~NETIF_F_HW_TLS_TX;
9670 		}
9671 	}
9672 
9673 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9674 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9675 		features &= ~NETIF_F_HW_TLS_RX;
9676 	}
9677 
9678 	return features;
9679 }
9680 
9681 int __netdev_update_features(struct net_device *dev)
9682 {
9683 	struct net_device *upper, *lower;
9684 	netdev_features_t features;
9685 	struct list_head *iter;
9686 	int err = -1;
9687 
9688 	ASSERT_RTNL();
9689 
9690 	features = netdev_get_wanted_features(dev);
9691 
9692 	if (dev->netdev_ops->ndo_fix_features)
9693 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9694 
9695 	/* driver might be less strict about feature dependencies */
9696 	features = netdev_fix_features(dev, features);
9697 
9698 	/* some features can't be enabled if they're off on an upper device */
9699 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9700 		features = netdev_sync_upper_features(dev, upper, features);
9701 
9702 	if (dev->features == features)
9703 		goto sync_lower;
9704 
9705 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9706 		&dev->features, &features);
9707 
9708 	if (dev->netdev_ops->ndo_set_features)
9709 		err = dev->netdev_ops->ndo_set_features(dev, features);
9710 	else
9711 		err = 0;
9712 
9713 	if (unlikely(err < 0)) {
9714 		netdev_err(dev,
9715 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9716 			err, &features, &dev->features);
9717 		/* return non-0 since some features might have changed and
9718 		 * it's better to fire a spurious notification than miss it
9719 		 */
9720 		return -1;
9721 	}
9722 
9723 sync_lower:
9724 	/* some features must be disabled on lower devices when disabled
9725 	 * on an upper device (think: bonding master or bridge)
9726 	 */
9727 	netdev_for_each_lower_dev(dev, lower, iter)
9728 		netdev_sync_lower_features(dev, lower, features);
9729 
9730 	if (!err) {
9731 		netdev_features_t diff = features ^ dev->features;
9732 
9733 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9734 			/* udp_tunnel_{get,drop}_rx_info both need
9735 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9736 			 * device, or they won't do anything.
9737 			 * Thus we need to update dev->features
9738 			 * *before* calling udp_tunnel_get_rx_info,
9739 			 * but *after* calling udp_tunnel_drop_rx_info.
9740 			 */
9741 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9742 				dev->features = features;
9743 				udp_tunnel_get_rx_info(dev);
9744 			} else {
9745 				udp_tunnel_drop_rx_info(dev);
9746 			}
9747 		}
9748 
9749 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9750 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9751 				dev->features = features;
9752 				err |= vlan_get_rx_ctag_filter_info(dev);
9753 			} else {
9754 				vlan_drop_rx_ctag_filter_info(dev);
9755 			}
9756 		}
9757 
9758 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9759 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9760 				dev->features = features;
9761 				err |= vlan_get_rx_stag_filter_info(dev);
9762 			} else {
9763 				vlan_drop_rx_stag_filter_info(dev);
9764 			}
9765 		}
9766 
9767 		dev->features = features;
9768 	}
9769 
9770 	return err < 0 ? 0 : 1;
9771 }
9772 
9773 /**
9774  *	netdev_update_features - recalculate device features
9775  *	@dev: the device to check
9776  *
9777  *	Recalculate dev->features set and send notifications if it
9778  *	has changed. Should be called after driver or hardware dependent
9779  *	conditions might have changed that influence the features.
9780  */
9781 void netdev_update_features(struct net_device *dev)
9782 {
9783 	if (__netdev_update_features(dev))
9784 		netdev_features_change(dev);
9785 }
9786 EXPORT_SYMBOL(netdev_update_features);
9787 
9788 /**
9789  *	netdev_change_features - recalculate device features
9790  *	@dev: the device to check
9791  *
9792  *	Recalculate dev->features set and send notifications even
9793  *	if they have not changed. Should be called instead of
9794  *	netdev_update_features() if also dev->vlan_features might
9795  *	have changed to allow the changes to be propagated to stacked
9796  *	VLAN devices.
9797  */
9798 void netdev_change_features(struct net_device *dev)
9799 {
9800 	__netdev_update_features(dev);
9801 	netdev_features_change(dev);
9802 }
9803 EXPORT_SYMBOL(netdev_change_features);
9804 
9805 /**
9806  *	netif_stacked_transfer_operstate -	transfer operstate
9807  *	@rootdev: the root or lower level device to transfer state from
9808  *	@dev: the device to transfer operstate to
9809  *
9810  *	Transfer operational state from root to device. This is normally
9811  *	called when a stacking relationship exists between the root
9812  *	device and the device(a leaf device).
9813  */
9814 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9815 					struct net_device *dev)
9816 {
9817 	if (rootdev->operstate == IF_OPER_DORMANT)
9818 		netif_dormant_on(dev);
9819 	else
9820 		netif_dormant_off(dev);
9821 
9822 	if (rootdev->operstate == IF_OPER_TESTING)
9823 		netif_testing_on(dev);
9824 	else
9825 		netif_testing_off(dev);
9826 
9827 	if (netif_carrier_ok(rootdev))
9828 		netif_carrier_on(dev);
9829 	else
9830 		netif_carrier_off(dev);
9831 }
9832 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9833 
9834 static int netif_alloc_rx_queues(struct net_device *dev)
9835 {
9836 	unsigned int i, count = dev->num_rx_queues;
9837 	struct netdev_rx_queue *rx;
9838 	size_t sz = count * sizeof(*rx);
9839 	int err = 0;
9840 
9841 	BUG_ON(count < 1);
9842 
9843 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9844 	if (!rx)
9845 		return -ENOMEM;
9846 
9847 	dev->_rx = rx;
9848 
9849 	for (i = 0; i < count; i++) {
9850 		rx[i].dev = dev;
9851 
9852 		/* XDP RX-queue setup */
9853 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9854 		if (err < 0)
9855 			goto err_rxq_info;
9856 	}
9857 	return 0;
9858 
9859 err_rxq_info:
9860 	/* Rollback successful reg's and free other resources */
9861 	while (i--)
9862 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9863 	kvfree(dev->_rx);
9864 	dev->_rx = NULL;
9865 	return err;
9866 }
9867 
9868 static void netif_free_rx_queues(struct net_device *dev)
9869 {
9870 	unsigned int i, count = dev->num_rx_queues;
9871 
9872 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9873 	if (!dev->_rx)
9874 		return;
9875 
9876 	for (i = 0; i < count; i++)
9877 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9878 
9879 	kvfree(dev->_rx);
9880 }
9881 
9882 static void netdev_init_one_queue(struct net_device *dev,
9883 				  struct netdev_queue *queue, void *_unused)
9884 {
9885 	/* Initialize queue lock */
9886 	spin_lock_init(&queue->_xmit_lock);
9887 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9888 	queue->xmit_lock_owner = -1;
9889 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9890 	queue->dev = dev;
9891 #ifdef CONFIG_BQL
9892 	dql_init(&queue->dql, HZ);
9893 #endif
9894 }
9895 
9896 static void netif_free_tx_queues(struct net_device *dev)
9897 {
9898 	kvfree(dev->_tx);
9899 }
9900 
9901 static int netif_alloc_netdev_queues(struct net_device *dev)
9902 {
9903 	unsigned int count = dev->num_tx_queues;
9904 	struct netdev_queue *tx;
9905 	size_t sz = count * sizeof(*tx);
9906 
9907 	if (count < 1 || count > 0xffff)
9908 		return -EINVAL;
9909 
9910 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9911 	if (!tx)
9912 		return -ENOMEM;
9913 
9914 	dev->_tx = tx;
9915 
9916 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9917 	spin_lock_init(&dev->tx_global_lock);
9918 
9919 	return 0;
9920 }
9921 
9922 void netif_tx_stop_all_queues(struct net_device *dev)
9923 {
9924 	unsigned int i;
9925 
9926 	for (i = 0; i < dev->num_tx_queues; i++) {
9927 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9928 
9929 		netif_tx_stop_queue(txq);
9930 	}
9931 }
9932 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9933 
9934 /**
9935  * register_netdevice() - register a network device
9936  * @dev: device to register
9937  *
9938  * Take a prepared network device structure and make it externally accessible.
9939  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9940  * Callers must hold the rtnl lock - you may want register_netdev()
9941  * instead of this.
9942  */
9943 int register_netdevice(struct net_device *dev)
9944 {
9945 	int ret;
9946 	struct net *net = dev_net(dev);
9947 
9948 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9949 		     NETDEV_FEATURE_COUNT);
9950 	BUG_ON(dev_boot_phase);
9951 	ASSERT_RTNL();
9952 
9953 	might_sleep();
9954 
9955 	/* When net_device's are persistent, this will be fatal. */
9956 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9957 	BUG_ON(!net);
9958 
9959 	ret = ethtool_check_ops(dev->ethtool_ops);
9960 	if (ret)
9961 		return ret;
9962 
9963 	spin_lock_init(&dev->addr_list_lock);
9964 	netdev_set_addr_lockdep_class(dev);
9965 
9966 	ret = dev_get_valid_name(net, dev, dev->name);
9967 	if (ret < 0)
9968 		goto out;
9969 
9970 	ret = -ENOMEM;
9971 	dev->name_node = netdev_name_node_head_alloc(dev);
9972 	if (!dev->name_node)
9973 		goto out;
9974 
9975 	/* Init, if this function is available */
9976 	if (dev->netdev_ops->ndo_init) {
9977 		ret = dev->netdev_ops->ndo_init(dev);
9978 		if (ret) {
9979 			if (ret > 0)
9980 				ret = -EIO;
9981 			goto err_free_name;
9982 		}
9983 	}
9984 
9985 	if (((dev->hw_features | dev->features) &
9986 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9987 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9988 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9989 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9990 		ret = -EINVAL;
9991 		goto err_uninit;
9992 	}
9993 
9994 	ret = -EBUSY;
9995 	if (!dev->ifindex)
9996 		dev->ifindex = dev_new_index(net);
9997 	else if (__dev_get_by_index(net, dev->ifindex))
9998 		goto err_uninit;
9999 
10000 	/* Transfer changeable features to wanted_features and enable
10001 	 * software offloads (GSO and GRO).
10002 	 */
10003 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10004 	dev->features |= NETIF_F_SOFT_FEATURES;
10005 
10006 	if (dev->udp_tunnel_nic_info) {
10007 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10008 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10009 	}
10010 
10011 	dev->wanted_features = dev->features & dev->hw_features;
10012 
10013 	if (!(dev->flags & IFF_LOOPBACK))
10014 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10015 
10016 	/* If IPv4 TCP segmentation offload is supported we should also
10017 	 * allow the device to enable segmenting the frame with the option
10018 	 * of ignoring a static IP ID value.  This doesn't enable the
10019 	 * feature itself but allows the user to enable it later.
10020 	 */
10021 	if (dev->hw_features & NETIF_F_TSO)
10022 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10023 	if (dev->vlan_features & NETIF_F_TSO)
10024 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10025 	if (dev->mpls_features & NETIF_F_TSO)
10026 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10027 	if (dev->hw_enc_features & NETIF_F_TSO)
10028 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10029 
10030 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10031 	 */
10032 	dev->vlan_features |= NETIF_F_HIGHDMA;
10033 
10034 	/* Make NETIF_F_SG inheritable to tunnel devices.
10035 	 */
10036 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10037 
10038 	/* Make NETIF_F_SG inheritable to MPLS.
10039 	 */
10040 	dev->mpls_features |= NETIF_F_SG;
10041 
10042 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10043 	ret = notifier_to_errno(ret);
10044 	if (ret)
10045 		goto err_uninit;
10046 
10047 	ret = netdev_register_kobject(dev);
10048 	write_lock(&dev_base_lock);
10049 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10050 	write_unlock(&dev_base_lock);
10051 	if (ret)
10052 		goto err_uninit;
10053 
10054 	__netdev_update_features(dev);
10055 
10056 	/*
10057 	 *	Default initial state at registry is that the
10058 	 *	device is present.
10059 	 */
10060 
10061 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10062 
10063 	linkwatch_init_dev(dev);
10064 
10065 	dev_init_scheduler(dev);
10066 
10067 	dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10068 	list_netdevice(dev);
10069 
10070 	add_device_randomness(dev->dev_addr, dev->addr_len);
10071 
10072 	/* If the device has permanent device address, driver should
10073 	 * set dev_addr and also addr_assign_type should be set to
10074 	 * NET_ADDR_PERM (default value).
10075 	 */
10076 	if (dev->addr_assign_type == NET_ADDR_PERM)
10077 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10078 
10079 	/* Notify protocols, that a new device appeared. */
10080 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10081 	ret = notifier_to_errno(ret);
10082 	if (ret) {
10083 		/* Expect explicit free_netdev() on failure */
10084 		dev->needs_free_netdev = false;
10085 		unregister_netdevice_queue(dev, NULL);
10086 		goto out;
10087 	}
10088 	/*
10089 	 *	Prevent userspace races by waiting until the network
10090 	 *	device is fully setup before sending notifications.
10091 	 */
10092 	if (!dev->rtnl_link_ops ||
10093 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10094 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10095 
10096 out:
10097 	return ret;
10098 
10099 err_uninit:
10100 	if (dev->netdev_ops->ndo_uninit)
10101 		dev->netdev_ops->ndo_uninit(dev);
10102 	if (dev->priv_destructor)
10103 		dev->priv_destructor(dev);
10104 err_free_name:
10105 	netdev_name_node_free(dev->name_node);
10106 	goto out;
10107 }
10108 EXPORT_SYMBOL(register_netdevice);
10109 
10110 /**
10111  *	init_dummy_netdev	- init a dummy network device for NAPI
10112  *	@dev: device to init
10113  *
10114  *	This takes a network device structure and initialize the minimum
10115  *	amount of fields so it can be used to schedule NAPI polls without
10116  *	registering a full blown interface. This is to be used by drivers
10117  *	that need to tie several hardware interfaces to a single NAPI
10118  *	poll scheduler due to HW limitations.
10119  */
10120 int init_dummy_netdev(struct net_device *dev)
10121 {
10122 	/* Clear everything. Note we don't initialize spinlocks
10123 	 * are they aren't supposed to be taken by any of the
10124 	 * NAPI code and this dummy netdev is supposed to be
10125 	 * only ever used for NAPI polls
10126 	 */
10127 	memset(dev, 0, sizeof(struct net_device));
10128 
10129 	/* make sure we BUG if trying to hit standard
10130 	 * register/unregister code path
10131 	 */
10132 	dev->reg_state = NETREG_DUMMY;
10133 
10134 	/* NAPI wants this */
10135 	INIT_LIST_HEAD(&dev->napi_list);
10136 
10137 	/* a dummy interface is started by default */
10138 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10139 	set_bit(__LINK_STATE_START, &dev->state);
10140 
10141 	/* napi_busy_loop stats accounting wants this */
10142 	dev_net_set(dev, &init_net);
10143 
10144 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10145 	 * because users of this 'device' dont need to change
10146 	 * its refcount.
10147 	 */
10148 
10149 	return 0;
10150 }
10151 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10152 
10153 
10154 /**
10155  *	register_netdev	- register a network device
10156  *	@dev: device to register
10157  *
10158  *	Take a completed network device structure and add it to the kernel
10159  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10160  *	chain. 0 is returned on success. A negative errno code is returned
10161  *	on a failure to set up the device, or if the name is a duplicate.
10162  *
10163  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10164  *	and expands the device name if you passed a format string to
10165  *	alloc_netdev.
10166  */
10167 int register_netdev(struct net_device *dev)
10168 {
10169 	int err;
10170 
10171 	if (rtnl_lock_killable())
10172 		return -EINTR;
10173 	err = register_netdevice(dev);
10174 	rtnl_unlock();
10175 	return err;
10176 }
10177 EXPORT_SYMBOL(register_netdev);
10178 
10179 int netdev_refcnt_read(const struct net_device *dev)
10180 {
10181 #ifdef CONFIG_PCPU_DEV_REFCNT
10182 	int i, refcnt = 0;
10183 
10184 	for_each_possible_cpu(i)
10185 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10186 	return refcnt;
10187 #else
10188 	return refcount_read(&dev->dev_refcnt);
10189 #endif
10190 }
10191 EXPORT_SYMBOL(netdev_refcnt_read);
10192 
10193 int netdev_unregister_timeout_secs __read_mostly = 10;
10194 
10195 #define WAIT_REFS_MIN_MSECS 1
10196 #define WAIT_REFS_MAX_MSECS 250
10197 /**
10198  * netdev_wait_allrefs_any - wait until all references are gone.
10199  * @list: list of net_devices to wait on
10200  *
10201  * This is called when unregistering network devices.
10202  *
10203  * Any protocol or device that holds a reference should register
10204  * for netdevice notification, and cleanup and put back the
10205  * reference if they receive an UNREGISTER event.
10206  * We can get stuck here if buggy protocols don't correctly
10207  * call dev_put.
10208  */
10209 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10210 {
10211 	unsigned long rebroadcast_time, warning_time;
10212 	struct net_device *dev;
10213 	int wait = 0;
10214 
10215 	rebroadcast_time = warning_time = jiffies;
10216 
10217 	list_for_each_entry(dev, list, todo_list)
10218 		if (netdev_refcnt_read(dev) == 1)
10219 			return dev;
10220 
10221 	while (true) {
10222 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10223 			rtnl_lock();
10224 
10225 			/* Rebroadcast unregister notification */
10226 			list_for_each_entry(dev, list, todo_list)
10227 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10228 
10229 			__rtnl_unlock();
10230 			rcu_barrier();
10231 			rtnl_lock();
10232 
10233 			list_for_each_entry(dev, list, todo_list)
10234 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10235 					     &dev->state)) {
10236 					/* We must not have linkwatch events
10237 					 * pending on unregister. If this
10238 					 * happens, we simply run the queue
10239 					 * unscheduled, resulting in a noop
10240 					 * for this device.
10241 					 */
10242 					linkwatch_run_queue();
10243 					break;
10244 				}
10245 
10246 			__rtnl_unlock();
10247 
10248 			rebroadcast_time = jiffies;
10249 		}
10250 
10251 		if (!wait) {
10252 			rcu_barrier();
10253 			wait = WAIT_REFS_MIN_MSECS;
10254 		} else {
10255 			msleep(wait);
10256 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10257 		}
10258 
10259 		list_for_each_entry(dev, list, todo_list)
10260 			if (netdev_refcnt_read(dev) == 1)
10261 				return dev;
10262 
10263 		if (time_after(jiffies, warning_time +
10264 			       netdev_unregister_timeout_secs * HZ)) {
10265 			list_for_each_entry(dev, list, todo_list) {
10266 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10267 					 dev->name, netdev_refcnt_read(dev));
10268 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10269 			}
10270 
10271 			warning_time = jiffies;
10272 		}
10273 	}
10274 }
10275 
10276 /* The sequence is:
10277  *
10278  *	rtnl_lock();
10279  *	...
10280  *	register_netdevice(x1);
10281  *	register_netdevice(x2);
10282  *	...
10283  *	unregister_netdevice(y1);
10284  *	unregister_netdevice(y2);
10285  *      ...
10286  *	rtnl_unlock();
10287  *	free_netdev(y1);
10288  *	free_netdev(y2);
10289  *
10290  * We are invoked by rtnl_unlock().
10291  * This allows us to deal with problems:
10292  * 1) We can delete sysfs objects which invoke hotplug
10293  *    without deadlocking with linkwatch via keventd.
10294  * 2) Since we run with the RTNL semaphore not held, we can sleep
10295  *    safely in order to wait for the netdev refcnt to drop to zero.
10296  *
10297  * We must not return until all unregister events added during
10298  * the interval the lock was held have been completed.
10299  */
10300 void netdev_run_todo(void)
10301 {
10302 	struct net_device *dev, *tmp;
10303 	struct list_head list;
10304 #ifdef CONFIG_LOCKDEP
10305 	struct list_head unlink_list;
10306 
10307 	list_replace_init(&net_unlink_list, &unlink_list);
10308 
10309 	while (!list_empty(&unlink_list)) {
10310 		struct net_device *dev = list_first_entry(&unlink_list,
10311 							  struct net_device,
10312 							  unlink_list);
10313 		list_del_init(&dev->unlink_list);
10314 		dev->nested_level = dev->lower_level - 1;
10315 	}
10316 #endif
10317 
10318 	/* Snapshot list, allow later requests */
10319 	list_replace_init(&net_todo_list, &list);
10320 
10321 	__rtnl_unlock();
10322 
10323 	/* Wait for rcu callbacks to finish before next phase */
10324 	if (!list_empty(&list))
10325 		rcu_barrier();
10326 
10327 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10328 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10329 			netdev_WARN(dev, "run_todo but not unregistering\n");
10330 			list_del(&dev->todo_list);
10331 			continue;
10332 		}
10333 
10334 		write_lock(&dev_base_lock);
10335 		dev->reg_state = NETREG_UNREGISTERED;
10336 		write_unlock(&dev_base_lock);
10337 		linkwatch_forget_dev(dev);
10338 	}
10339 
10340 	while (!list_empty(&list)) {
10341 		dev = netdev_wait_allrefs_any(&list);
10342 		list_del(&dev->todo_list);
10343 
10344 		/* paranoia */
10345 		BUG_ON(netdev_refcnt_read(dev) != 1);
10346 		BUG_ON(!list_empty(&dev->ptype_all));
10347 		BUG_ON(!list_empty(&dev->ptype_specific));
10348 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10349 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10350 #if IS_ENABLED(CONFIG_DECNET)
10351 		WARN_ON(dev->dn_ptr);
10352 #endif
10353 		if (dev->priv_destructor)
10354 			dev->priv_destructor(dev);
10355 		if (dev->needs_free_netdev)
10356 			free_netdev(dev);
10357 
10358 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10359 			wake_up(&netdev_unregistering_wq);
10360 
10361 		/* Free network device */
10362 		kobject_put(&dev->dev.kobj);
10363 	}
10364 }
10365 
10366 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10367  * all the same fields in the same order as net_device_stats, with only
10368  * the type differing, but rtnl_link_stats64 may have additional fields
10369  * at the end for newer counters.
10370  */
10371 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10372 			     const struct net_device_stats *netdev_stats)
10373 {
10374 #if BITS_PER_LONG == 64
10375 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10376 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10377 	/* zero out counters that only exist in rtnl_link_stats64 */
10378 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10379 	       sizeof(*stats64) - sizeof(*netdev_stats));
10380 #else
10381 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10382 	const unsigned long *src = (const unsigned long *)netdev_stats;
10383 	u64 *dst = (u64 *)stats64;
10384 
10385 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10386 	for (i = 0; i < n; i++)
10387 		dst[i] = src[i];
10388 	/* zero out counters that only exist in rtnl_link_stats64 */
10389 	memset((char *)stats64 + n * sizeof(u64), 0,
10390 	       sizeof(*stats64) - n * sizeof(u64));
10391 #endif
10392 }
10393 EXPORT_SYMBOL(netdev_stats_to_stats64);
10394 
10395 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10396 {
10397 	struct net_device_core_stats __percpu *p;
10398 
10399 	p = alloc_percpu_gfp(struct net_device_core_stats,
10400 			     GFP_ATOMIC | __GFP_NOWARN);
10401 
10402 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10403 		free_percpu(p);
10404 
10405 	/* This READ_ONCE() pairs with the cmpxchg() above */
10406 	return READ_ONCE(dev->core_stats);
10407 }
10408 EXPORT_SYMBOL(netdev_core_stats_alloc);
10409 
10410 /**
10411  *	dev_get_stats	- get network device statistics
10412  *	@dev: device to get statistics from
10413  *	@storage: place to store stats
10414  *
10415  *	Get network statistics from device. Return @storage.
10416  *	The device driver may provide its own method by setting
10417  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10418  *	otherwise the internal statistics structure is used.
10419  */
10420 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10421 					struct rtnl_link_stats64 *storage)
10422 {
10423 	const struct net_device_ops *ops = dev->netdev_ops;
10424 	const struct net_device_core_stats __percpu *p;
10425 
10426 	if (ops->ndo_get_stats64) {
10427 		memset(storage, 0, sizeof(*storage));
10428 		ops->ndo_get_stats64(dev, storage);
10429 	} else if (ops->ndo_get_stats) {
10430 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10431 	} else {
10432 		netdev_stats_to_stats64(storage, &dev->stats);
10433 	}
10434 
10435 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10436 	p = READ_ONCE(dev->core_stats);
10437 	if (p) {
10438 		const struct net_device_core_stats *core_stats;
10439 		int i;
10440 
10441 		for_each_possible_cpu(i) {
10442 			core_stats = per_cpu_ptr(p, i);
10443 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10444 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10445 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10446 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10447 		}
10448 	}
10449 	return storage;
10450 }
10451 EXPORT_SYMBOL(dev_get_stats);
10452 
10453 /**
10454  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10455  *	@s: place to store stats
10456  *	@netstats: per-cpu network stats to read from
10457  *
10458  *	Read per-cpu network statistics and populate the related fields in @s.
10459  */
10460 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10461 			   const struct pcpu_sw_netstats __percpu *netstats)
10462 {
10463 	int cpu;
10464 
10465 	for_each_possible_cpu(cpu) {
10466 		const struct pcpu_sw_netstats *stats;
10467 		struct pcpu_sw_netstats tmp;
10468 		unsigned int start;
10469 
10470 		stats = per_cpu_ptr(netstats, cpu);
10471 		do {
10472 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10473 			tmp.rx_packets = stats->rx_packets;
10474 			tmp.rx_bytes   = stats->rx_bytes;
10475 			tmp.tx_packets = stats->tx_packets;
10476 			tmp.tx_bytes   = stats->tx_bytes;
10477 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10478 
10479 		s->rx_packets += tmp.rx_packets;
10480 		s->rx_bytes   += tmp.rx_bytes;
10481 		s->tx_packets += tmp.tx_packets;
10482 		s->tx_bytes   += tmp.tx_bytes;
10483 	}
10484 }
10485 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10486 
10487 /**
10488  *	dev_get_tstats64 - ndo_get_stats64 implementation
10489  *	@dev: device to get statistics from
10490  *	@s: place to store stats
10491  *
10492  *	Populate @s from dev->stats and dev->tstats. Can be used as
10493  *	ndo_get_stats64() callback.
10494  */
10495 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10496 {
10497 	netdev_stats_to_stats64(s, &dev->stats);
10498 	dev_fetch_sw_netstats(s, dev->tstats);
10499 }
10500 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10501 
10502 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10503 {
10504 	struct netdev_queue *queue = dev_ingress_queue(dev);
10505 
10506 #ifdef CONFIG_NET_CLS_ACT
10507 	if (queue)
10508 		return queue;
10509 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10510 	if (!queue)
10511 		return NULL;
10512 	netdev_init_one_queue(dev, queue, NULL);
10513 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10514 	queue->qdisc_sleeping = &noop_qdisc;
10515 	rcu_assign_pointer(dev->ingress_queue, queue);
10516 #endif
10517 	return queue;
10518 }
10519 
10520 static const struct ethtool_ops default_ethtool_ops;
10521 
10522 void netdev_set_default_ethtool_ops(struct net_device *dev,
10523 				    const struct ethtool_ops *ops)
10524 {
10525 	if (dev->ethtool_ops == &default_ethtool_ops)
10526 		dev->ethtool_ops = ops;
10527 }
10528 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10529 
10530 void netdev_freemem(struct net_device *dev)
10531 {
10532 	char *addr = (char *)dev - dev->padded;
10533 
10534 	kvfree(addr);
10535 }
10536 
10537 /**
10538  * alloc_netdev_mqs - allocate network device
10539  * @sizeof_priv: size of private data to allocate space for
10540  * @name: device name format string
10541  * @name_assign_type: origin of device name
10542  * @setup: callback to initialize device
10543  * @txqs: the number of TX subqueues to allocate
10544  * @rxqs: the number of RX subqueues to allocate
10545  *
10546  * Allocates a struct net_device with private data area for driver use
10547  * and performs basic initialization.  Also allocates subqueue structs
10548  * for each queue on the device.
10549  */
10550 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10551 		unsigned char name_assign_type,
10552 		void (*setup)(struct net_device *),
10553 		unsigned int txqs, unsigned int rxqs)
10554 {
10555 	struct net_device *dev;
10556 	unsigned int alloc_size;
10557 	struct net_device *p;
10558 
10559 	BUG_ON(strlen(name) >= sizeof(dev->name));
10560 
10561 	if (txqs < 1) {
10562 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10563 		return NULL;
10564 	}
10565 
10566 	if (rxqs < 1) {
10567 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10568 		return NULL;
10569 	}
10570 
10571 	alloc_size = sizeof(struct net_device);
10572 	if (sizeof_priv) {
10573 		/* ensure 32-byte alignment of private area */
10574 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10575 		alloc_size += sizeof_priv;
10576 	}
10577 	/* ensure 32-byte alignment of whole construct */
10578 	alloc_size += NETDEV_ALIGN - 1;
10579 
10580 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10581 	if (!p)
10582 		return NULL;
10583 
10584 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10585 	dev->padded = (char *)dev - (char *)p;
10586 
10587 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10588 #ifdef CONFIG_PCPU_DEV_REFCNT
10589 	dev->pcpu_refcnt = alloc_percpu(int);
10590 	if (!dev->pcpu_refcnt)
10591 		goto free_dev;
10592 	__dev_hold(dev);
10593 #else
10594 	refcount_set(&dev->dev_refcnt, 1);
10595 #endif
10596 
10597 	if (dev_addr_init(dev))
10598 		goto free_pcpu;
10599 
10600 	dev_mc_init(dev);
10601 	dev_uc_init(dev);
10602 
10603 	dev_net_set(dev, &init_net);
10604 
10605 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10606 	dev->gso_max_segs = GSO_MAX_SEGS;
10607 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10608 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10609 	dev->tso_max_segs = TSO_MAX_SEGS;
10610 	dev->upper_level = 1;
10611 	dev->lower_level = 1;
10612 #ifdef CONFIG_LOCKDEP
10613 	dev->nested_level = 0;
10614 	INIT_LIST_HEAD(&dev->unlink_list);
10615 #endif
10616 
10617 	INIT_LIST_HEAD(&dev->napi_list);
10618 	INIT_LIST_HEAD(&dev->unreg_list);
10619 	INIT_LIST_HEAD(&dev->close_list);
10620 	INIT_LIST_HEAD(&dev->link_watch_list);
10621 	INIT_LIST_HEAD(&dev->adj_list.upper);
10622 	INIT_LIST_HEAD(&dev->adj_list.lower);
10623 	INIT_LIST_HEAD(&dev->ptype_all);
10624 	INIT_LIST_HEAD(&dev->ptype_specific);
10625 	INIT_LIST_HEAD(&dev->net_notifier_list);
10626 #ifdef CONFIG_NET_SCHED
10627 	hash_init(dev->qdisc_hash);
10628 #endif
10629 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10630 	setup(dev);
10631 
10632 	if (!dev->tx_queue_len) {
10633 		dev->priv_flags |= IFF_NO_QUEUE;
10634 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10635 	}
10636 
10637 	dev->num_tx_queues = txqs;
10638 	dev->real_num_tx_queues = txqs;
10639 	if (netif_alloc_netdev_queues(dev))
10640 		goto free_all;
10641 
10642 	dev->num_rx_queues = rxqs;
10643 	dev->real_num_rx_queues = rxqs;
10644 	if (netif_alloc_rx_queues(dev))
10645 		goto free_all;
10646 
10647 	strcpy(dev->name, name);
10648 	dev->name_assign_type = name_assign_type;
10649 	dev->group = INIT_NETDEV_GROUP;
10650 	if (!dev->ethtool_ops)
10651 		dev->ethtool_ops = &default_ethtool_ops;
10652 
10653 	nf_hook_netdev_init(dev);
10654 
10655 	return dev;
10656 
10657 free_all:
10658 	free_netdev(dev);
10659 	return NULL;
10660 
10661 free_pcpu:
10662 #ifdef CONFIG_PCPU_DEV_REFCNT
10663 	free_percpu(dev->pcpu_refcnt);
10664 free_dev:
10665 #endif
10666 	netdev_freemem(dev);
10667 	return NULL;
10668 }
10669 EXPORT_SYMBOL(alloc_netdev_mqs);
10670 
10671 /**
10672  * free_netdev - free network device
10673  * @dev: device
10674  *
10675  * This function does the last stage of destroying an allocated device
10676  * interface. The reference to the device object is released. If this
10677  * is the last reference then it will be freed.Must be called in process
10678  * context.
10679  */
10680 void free_netdev(struct net_device *dev)
10681 {
10682 	struct napi_struct *p, *n;
10683 
10684 	might_sleep();
10685 
10686 	/* When called immediately after register_netdevice() failed the unwind
10687 	 * handling may still be dismantling the device. Handle that case by
10688 	 * deferring the free.
10689 	 */
10690 	if (dev->reg_state == NETREG_UNREGISTERING) {
10691 		ASSERT_RTNL();
10692 		dev->needs_free_netdev = true;
10693 		return;
10694 	}
10695 
10696 	netif_free_tx_queues(dev);
10697 	netif_free_rx_queues(dev);
10698 
10699 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10700 
10701 	/* Flush device addresses */
10702 	dev_addr_flush(dev);
10703 
10704 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10705 		netif_napi_del(p);
10706 
10707 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10708 #ifdef CONFIG_PCPU_DEV_REFCNT
10709 	free_percpu(dev->pcpu_refcnt);
10710 	dev->pcpu_refcnt = NULL;
10711 #endif
10712 	free_percpu(dev->core_stats);
10713 	dev->core_stats = NULL;
10714 	free_percpu(dev->xdp_bulkq);
10715 	dev->xdp_bulkq = NULL;
10716 
10717 	/*  Compatibility with error handling in drivers */
10718 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10719 		netdev_freemem(dev);
10720 		return;
10721 	}
10722 
10723 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10724 	dev->reg_state = NETREG_RELEASED;
10725 
10726 	/* will free via device release */
10727 	put_device(&dev->dev);
10728 }
10729 EXPORT_SYMBOL(free_netdev);
10730 
10731 /**
10732  *	synchronize_net -  Synchronize with packet receive processing
10733  *
10734  *	Wait for packets currently being received to be done.
10735  *	Does not block later packets from starting.
10736  */
10737 void synchronize_net(void)
10738 {
10739 	might_sleep();
10740 	if (rtnl_is_locked())
10741 		synchronize_rcu_expedited();
10742 	else
10743 		synchronize_rcu();
10744 }
10745 EXPORT_SYMBOL(synchronize_net);
10746 
10747 /**
10748  *	unregister_netdevice_queue - remove device from the kernel
10749  *	@dev: device
10750  *	@head: list
10751  *
10752  *	This function shuts down a device interface and removes it
10753  *	from the kernel tables.
10754  *	If head not NULL, device is queued to be unregistered later.
10755  *
10756  *	Callers must hold the rtnl semaphore.  You may want
10757  *	unregister_netdev() instead of this.
10758  */
10759 
10760 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10761 {
10762 	ASSERT_RTNL();
10763 
10764 	if (head) {
10765 		list_move_tail(&dev->unreg_list, head);
10766 	} else {
10767 		LIST_HEAD(single);
10768 
10769 		list_add(&dev->unreg_list, &single);
10770 		unregister_netdevice_many(&single);
10771 	}
10772 }
10773 EXPORT_SYMBOL(unregister_netdevice_queue);
10774 
10775 /**
10776  *	unregister_netdevice_many - unregister many devices
10777  *	@head: list of devices
10778  *
10779  *  Note: As most callers use a stack allocated list_head,
10780  *  we force a list_del() to make sure stack wont be corrupted later.
10781  */
10782 void unregister_netdevice_many(struct list_head *head)
10783 {
10784 	struct net_device *dev, *tmp;
10785 	LIST_HEAD(close_head);
10786 
10787 	BUG_ON(dev_boot_phase);
10788 	ASSERT_RTNL();
10789 
10790 	if (list_empty(head))
10791 		return;
10792 
10793 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10794 		/* Some devices call without registering
10795 		 * for initialization unwind. Remove those
10796 		 * devices and proceed with the remaining.
10797 		 */
10798 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10799 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10800 				 dev->name, dev);
10801 
10802 			WARN_ON(1);
10803 			list_del(&dev->unreg_list);
10804 			continue;
10805 		}
10806 		dev->dismantle = true;
10807 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10808 	}
10809 
10810 	/* If device is running, close it first. */
10811 	list_for_each_entry(dev, head, unreg_list)
10812 		list_add_tail(&dev->close_list, &close_head);
10813 	dev_close_many(&close_head, true);
10814 
10815 	list_for_each_entry(dev, head, unreg_list) {
10816 		/* And unlink it from device chain. */
10817 		write_lock(&dev_base_lock);
10818 		unlist_netdevice(dev, false);
10819 		dev->reg_state = NETREG_UNREGISTERING;
10820 		write_unlock(&dev_base_lock);
10821 	}
10822 	flush_all_backlogs();
10823 
10824 	synchronize_net();
10825 
10826 	list_for_each_entry(dev, head, unreg_list) {
10827 		struct sk_buff *skb = NULL;
10828 
10829 		/* Shutdown queueing discipline. */
10830 		dev_shutdown(dev);
10831 
10832 		dev_xdp_uninstall(dev);
10833 
10834 		netdev_offload_xstats_disable_all(dev);
10835 
10836 		/* Notify protocols, that we are about to destroy
10837 		 * this device. They should clean all the things.
10838 		 */
10839 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10840 
10841 		if (!dev->rtnl_link_ops ||
10842 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10843 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10844 						     GFP_KERNEL, NULL, 0);
10845 
10846 		/*
10847 		 *	Flush the unicast and multicast chains
10848 		 */
10849 		dev_uc_flush(dev);
10850 		dev_mc_flush(dev);
10851 
10852 		netdev_name_node_alt_flush(dev);
10853 		netdev_name_node_free(dev->name_node);
10854 
10855 		if (dev->netdev_ops->ndo_uninit)
10856 			dev->netdev_ops->ndo_uninit(dev);
10857 
10858 		if (skb)
10859 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10860 
10861 		/* Notifier chain MUST detach us all upper devices. */
10862 		WARN_ON(netdev_has_any_upper_dev(dev));
10863 		WARN_ON(netdev_has_any_lower_dev(dev));
10864 
10865 		/* Remove entries from kobject tree */
10866 		netdev_unregister_kobject(dev);
10867 #ifdef CONFIG_XPS
10868 		/* Remove XPS queueing entries */
10869 		netif_reset_xps_queues_gt(dev, 0);
10870 #endif
10871 	}
10872 
10873 	synchronize_net();
10874 
10875 	list_for_each_entry(dev, head, unreg_list) {
10876 		dev_put_track(dev, &dev->dev_registered_tracker);
10877 		net_set_todo(dev);
10878 	}
10879 
10880 	list_del(head);
10881 }
10882 EXPORT_SYMBOL(unregister_netdevice_many);
10883 
10884 /**
10885  *	unregister_netdev - remove device from the kernel
10886  *	@dev: device
10887  *
10888  *	This function shuts down a device interface and removes it
10889  *	from the kernel tables.
10890  *
10891  *	This is just a wrapper for unregister_netdevice that takes
10892  *	the rtnl semaphore.  In general you want to use this and not
10893  *	unregister_netdevice.
10894  */
10895 void unregister_netdev(struct net_device *dev)
10896 {
10897 	rtnl_lock();
10898 	unregister_netdevice(dev);
10899 	rtnl_unlock();
10900 }
10901 EXPORT_SYMBOL(unregister_netdev);
10902 
10903 /**
10904  *	__dev_change_net_namespace - move device to different nethost namespace
10905  *	@dev: device
10906  *	@net: network namespace
10907  *	@pat: If not NULL name pattern to try if the current device name
10908  *	      is already taken in the destination network namespace.
10909  *	@new_ifindex: If not zero, specifies device index in the target
10910  *	              namespace.
10911  *
10912  *	This function shuts down a device interface and moves it
10913  *	to a new network namespace. On success 0 is returned, on
10914  *	a failure a netagive errno code is returned.
10915  *
10916  *	Callers must hold the rtnl semaphore.
10917  */
10918 
10919 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10920 			       const char *pat, int new_ifindex)
10921 {
10922 	struct net *net_old = dev_net(dev);
10923 	int err, new_nsid;
10924 
10925 	ASSERT_RTNL();
10926 
10927 	/* Don't allow namespace local devices to be moved. */
10928 	err = -EINVAL;
10929 	if (dev->features & NETIF_F_NETNS_LOCAL)
10930 		goto out;
10931 
10932 	/* Ensure the device has been registrered */
10933 	if (dev->reg_state != NETREG_REGISTERED)
10934 		goto out;
10935 
10936 	/* Get out if there is nothing todo */
10937 	err = 0;
10938 	if (net_eq(net_old, net))
10939 		goto out;
10940 
10941 	/* Pick the destination device name, and ensure
10942 	 * we can use it in the destination network namespace.
10943 	 */
10944 	err = -EEXIST;
10945 	if (netdev_name_in_use(net, dev->name)) {
10946 		/* We get here if we can't use the current device name */
10947 		if (!pat)
10948 			goto out;
10949 		err = dev_get_valid_name(net, dev, pat);
10950 		if (err < 0)
10951 			goto out;
10952 	}
10953 
10954 	/* Check that new_ifindex isn't used yet. */
10955 	err = -EBUSY;
10956 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10957 		goto out;
10958 
10959 	/*
10960 	 * And now a mini version of register_netdevice unregister_netdevice.
10961 	 */
10962 
10963 	/* If device is running close it first. */
10964 	dev_close(dev);
10965 
10966 	/* And unlink it from device chain */
10967 	unlist_netdevice(dev, true);
10968 
10969 	synchronize_net();
10970 
10971 	/* Shutdown queueing discipline. */
10972 	dev_shutdown(dev);
10973 
10974 	/* Notify protocols, that we are about to destroy
10975 	 * this device. They should clean all the things.
10976 	 *
10977 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10978 	 * This is wanted because this way 8021q and macvlan know
10979 	 * the device is just moving and can keep their slaves up.
10980 	 */
10981 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10982 	rcu_barrier();
10983 
10984 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10985 	/* If there is an ifindex conflict assign a new one */
10986 	if (!new_ifindex) {
10987 		if (__dev_get_by_index(net, dev->ifindex))
10988 			new_ifindex = dev_new_index(net);
10989 		else
10990 			new_ifindex = dev->ifindex;
10991 	}
10992 
10993 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10994 			    new_ifindex);
10995 
10996 	/*
10997 	 *	Flush the unicast and multicast chains
10998 	 */
10999 	dev_uc_flush(dev);
11000 	dev_mc_flush(dev);
11001 
11002 	/* Send a netdev-removed uevent to the old namespace */
11003 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11004 	netdev_adjacent_del_links(dev);
11005 
11006 	/* Move per-net netdevice notifiers that are following the netdevice */
11007 	move_netdevice_notifiers_dev_net(dev, net);
11008 
11009 	/* Actually switch the network namespace */
11010 	dev_net_set(dev, net);
11011 	dev->ifindex = new_ifindex;
11012 
11013 	/* Send a netdev-add uevent to the new namespace */
11014 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11015 	netdev_adjacent_add_links(dev);
11016 
11017 	/* Fixup kobjects */
11018 	err = device_rename(&dev->dev, dev->name);
11019 	WARN_ON(err);
11020 
11021 	/* Adapt owner in case owning user namespace of target network
11022 	 * namespace is different from the original one.
11023 	 */
11024 	err = netdev_change_owner(dev, net_old, net);
11025 	WARN_ON(err);
11026 
11027 	/* Add the device back in the hashes */
11028 	list_netdevice(dev);
11029 
11030 	/* Notify protocols, that a new device appeared. */
11031 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11032 
11033 	/*
11034 	 *	Prevent userspace races by waiting until the network
11035 	 *	device is fully setup before sending notifications.
11036 	 */
11037 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11038 
11039 	synchronize_net();
11040 	err = 0;
11041 out:
11042 	return err;
11043 }
11044 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11045 
11046 static int dev_cpu_dead(unsigned int oldcpu)
11047 {
11048 	struct sk_buff **list_skb;
11049 	struct sk_buff *skb;
11050 	unsigned int cpu;
11051 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11052 
11053 	local_irq_disable();
11054 	cpu = smp_processor_id();
11055 	sd = &per_cpu(softnet_data, cpu);
11056 	oldsd = &per_cpu(softnet_data, oldcpu);
11057 
11058 	/* Find end of our completion_queue. */
11059 	list_skb = &sd->completion_queue;
11060 	while (*list_skb)
11061 		list_skb = &(*list_skb)->next;
11062 	/* Append completion queue from offline CPU. */
11063 	*list_skb = oldsd->completion_queue;
11064 	oldsd->completion_queue = NULL;
11065 
11066 	/* Append output queue from offline CPU. */
11067 	if (oldsd->output_queue) {
11068 		*sd->output_queue_tailp = oldsd->output_queue;
11069 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11070 		oldsd->output_queue = NULL;
11071 		oldsd->output_queue_tailp = &oldsd->output_queue;
11072 	}
11073 	/* Append NAPI poll list from offline CPU, with one exception :
11074 	 * process_backlog() must be called by cpu owning percpu backlog.
11075 	 * We properly handle process_queue & input_pkt_queue later.
11076 	 */
11077 	while (!list_empty(&oldsd->poll_list)) {
11078 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11079 							    struct napi_struct,
11080 							    poll_list);
11081 
11082 		list_del_init(&napi->poll_list);
11083 		if (napi->poll == process_backlog)
11084 			napi->state = 0;
11085 		else
11086 			____napi_schedule(sd, napi);
11087 	}
11088 
11089 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11090 	local_irq_enable();
11091 
11092 #ifdef CONFIG_RPS
11093 	remsd = oldsd->rps_ipi_list;
11094 	oldsd->rps_ipi_list = NULL;
11095 #endif
11096 	/* send out pending IPI's on offline CPU */
11097 	net_rps_send_ipi(remsd);
11098 
11099 	/* Process offline CPU's input_pkt_queue */
11100 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11101 		netif_rx(skb);
11102 		input_queue_head_incr(oldsd);
11103 	}
11104 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11105 		netif_rx(skb);
11106 		input_queue_head_incr(oldsd);
11107 	}
11108 
11109 	return 0;
11110 }
11111 
11112 /**
11113  *	netdev_increment_features - increment feature set by one
11114  *	@all: current feature set
11115  *	@one: new feature set
11116  *	@mask: mask feature set
11117  *
11118  *	Computes a new feature set after adding a device with feature set
11119  *	@one to the master device with current feature set @all.  Will not
11120  *	enable anything that is off in @mask. Returns the new feature set.
11121  */
11122 netdev_features_t netdev_increment_features(netdev_features_t all,
11123 	netdev_features_t one, netdev_features_t mask)
11124 {
11125 	if (mask & NETIF_F_HW_CSUM)
11126 		mask |= NETIF_F_CSUM_MASK;
11127 	mask |= NETIF_F_VLAN_CHALLENGED;
11128 
11129 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11130 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11131 
11132 	/* If one device supports hw checksumming, set for all. */
11133 	if (all & NETIF_F_HW_CSUM)
11134 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11135 
11136 	return all;
11137 }
11138 EXPORT_SYMBOL(netdev_increment_features);
11139 
11140 static struct hlist_head * __net_init netdev_create_hash(void)
11141 {
11142 	int i;
11143 	struct hlist_head *hash;
11144 
11145 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11146 	if (hash != NULL)
11147 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11148 			INIT_HLIST_HEAD(&hash[i]);
11149 
11150 	return hash;
11151 }
11152 
11153 /* Initialize per network namespace state */
11154 static int __net_init netdev_init(struct net *net)
11155 {
11156 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11157 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11158 
11159 	INIT_LIST_HEAD(&net->dev_base_head);
11160 
11161 	net->dev_name_head = netdev_create_hash();
11162 	if (net->dev_name_head == NULL)
11163 		goto err_name;
11164 
11165 	net->dev_index_head = netdev_create_hash();
11166 	if (net->dev_index_head == NULL)
11167 		goto err_idx;
11168 
11169 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11170 
11171 	return 0;
11172 
11173 err_idx:
11174 	kfree(net->dev_name_head);
11175 err_name:
11176 	return -ENOMEM;
11177 }
11178 
11179 /**
11180  *	netdev_drivername - network driver for the device
11181  *	@dev: network device
11182  *
11183  *	Determine network driver for device.
11184  */
11185 const char *netdev_drivername(const struct net_device *dev)
11186 {
11187 	const struct device_driver *driver;
11188 	const struct device *parent;
11189 	const char *empty = "";
11190 
11191 	parent = dev->dev.parent;
11192 	if (!parent)
11193 		return empty;
11194 
11195 	driver = parent->driver;
11196 	if (driver && driver->name)
11197 		return driver->name;
11198 	return empty;
11199 }
11200 
11201 static void __netdev_printk(const char *level, const struct net_device *dev,
11202 			    struct va_format *vaf)
11203 {
11204 	if (dev && dev->dev.parent) {
11205 		dev_printk_emit(level[1] - '0',
11206 				dev->dev.parent,
11207 				"%s %s %s%s: %pV",
11208 				dev_driver_string(dev->dev.parent),
11209 				dev_name(dev->dev.parent),
11210 				netdev_name(dev), netdev_reg_state(dev),
11211 				vaf);
11212 	} else if (dev) {
11213 		printk("%s%s%s: %pV",
11214 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11215 	} else {
11216 		printk("%s(NULL net_device): %pV", level, vaf);
11217 	}
11218 }
11219 
11220 void netdev_printk(const char *level, const struct net_device *dev,
11221 		   const char *format, ...)
11222 {
11223 	struct va_format vaf;
11224 	va_list args;
11225 
11226 	va_start(args, format);
11227 
11228 	vaf.fmt = format;
11229 	vaf.va = &args;
11230 
11231 	__netdev_printk(level, dev, &vaf);
11232 
11233 	va_end(args);
11234 }
11235 EXPORT_SYMBOL(netdev_printk);
11236 
11237 #define define_netdev_printk_level(func, level)			\
11238 void func(const struct net_device *dev, const char *fmt, ...)	\
11239 {								\
11240 	struct va_format vaf;					\
11241 	va_list args;						\
11242 								\
11243 	va_start(args, fmt);					\
11244 								\
11245 	vaf.fmt = fmt;						\
11246 	vaf.va = &args;						\
11247 								\
11248 	__netdev_printk(level, dev, &vaf);			\
11249 								\
11250 	va_end(args);						\
11251 }								\
11252 EXPORT_SYMBOL(func);
11253 
11254 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11255 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11256 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11257 define_netdev_printk_level(netdev_err, KERN_ERR);
11258 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11259 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11260 define_netdev_printk_level(netdev_info, KERN_INFO);
11261 
11262 static void __net_exit netdev_exit(struct net *net)
11263 {
11264 	kfree(net->dev_name_head);
11265 	kfree(net->dev_index_head);
11266 	if (net != &init_net)
11267 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11268 }
11269 
11270 static struct pernet_operations __net_initdata netdev_net_ops = {
11271 	.init = netdev_init,
11272 	.exit = netdev_exit,
11273 };
11274 
11275 static void __net_exit default_device_exit_net(struct net *net)
11276 {
11277 	struct net_device *dev, *aux;
11278 	/*
11279 	 * Push all migratable network devices back to the
11280 	 * initial network namespace
11281 	 */
11282 	ASSERT_RTNL();
11283 	for_each_netdev_safe(net, dev, aux) {
11284 		int err;
11285 		char fb_name[IFNAMSIZ];
11286 
11287 		/* Ignore unmoveable devices (i.e. loopback) */
11288 		if (dev->features & NETIF_F_NETNS_LOCAL)
11289 			continue;
11290 
11291 		/* Leave virtual devices for the generic cleanup */
11292 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11293 			continue;
11294 
11295 		/* Push remaining network devices to init_net */
11296 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11297 		if (netdev_name_in_use(&init_net, fb_name))
11298 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11299 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11300 		if (err) {
11301 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11302 				 __func__, dev->name, err);
11303 			BUG();
11304 		}
11305 	}
11306 }
11307 
11308 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11309 {
11310 	/* At exit all network devices most be removed from a network
11311 	 * namespace.  Do this in the reverse order of registration.
11312 	 * Do this across as many network namespaces as possible to
11313 	 * improve batching efficiency.
11314 	 */
11315 	struct net_device *dev;
11316 	struct net *net;
11317 	LIST_HEAD(dev_kill_list);
11318 
11319 	rtnl_lock();
11320 	list_for_each_entry(net, net_list, exit_list) {
11321 		default_device_exit_net(net);
11322 		cond_resched();
11323 	}
11324 
11325 	list_for_each_entry(net, net_list, exit_list) {
11326 		for_each_netdev_reverse(net, dev) {
11327 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11328 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11329 			else
11330 				unregister_netdevice_queue(dev, &dev_kill_list);
11331 		}
11332 	}
11333 	unregister_netdevice_many(&dev_kill_list);
11334 	rtnl_unlock();
11335 }
11336 
11337 static struct pernet_operations __net_initdata default_device_ops = {
11338 	.exit_batch = default_device_exit_batch,
11339 };
11340 
11341 /*
11342  *	Initialize the DEV module. At boot time this walks the device list and
11343  *	unhooks any devices that fail to initialise (normally hardware not
11344  *	present) and leaves us with a valid list of present and active devices.
11345  *
11346  */
11347 
11348 /*
11349  *       This is called single threaded during boot, so no need
11350  *       to take the rtnl semaphore.
11351  */
11352 static int __init net_dev_init(void)
11353 {
11354 	int i, rc = -ENOMEM;
11355 
11356 	BUG_ON(!dev_boot_phase);
11357 
11358 	if (dev_proc_init())
11359 		goto out;
11360 
11361 	if (netdev_kobject_init())
11362 		goto out;
11363 
11364 	INIT_LIST_HEAD(&ptype_all);
11365 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11366 		INIT_LIST_HEAD(&ptype_base[i]);
11367 
11368 	if (register_pernet_subsys(&netdev_net_ops))
11369 		goto out;
11370 
11371 	/*
11372 	 *	Initialise the packet receive queues.
11373 	 */
11374 
11375 	for_each_possible_cpu(i) {
11376 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11377 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11378 
11379 		INIT_WORK(flush, flush_backlog);
11380 
11381 		skb_queue_head_init(&sd->input_pkt_queue);
11382 		skb_queue_head_init(&sd->process_queue);
11383 #ifdef CONFIG_XFRM_OFFLOAD
11384 		skb_queue_head_init(&sd->xfrm_backlog);
11385 #endif
11386 		INIT_LIST_HEAD(&sd->poll_list);
11387 		sd->output_queue_tailp = &sd->output_queue;
11388 #ifdef CONFIG_RPS
11389 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11390 		sd->cpu = i;
11391 #endif
11392 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11393 		spin_lock_init(&sd->defer_lock);
11394 
11395 		init_gro_hash(&sd->backlog);
11396 		sd->backlog.poll = process_backlog;
11397 		sd->backlog.weight = weight_p;
11398 	}
11399 
11400 	dev_boot_phase = 0;
11401 
11402 	/* The loopback device is special if any other network devices
11403 	 * is present in a network namespace the loopback device must
11404 	 * be present. Since we now dynamically allocate and free the
11405 	 * loopback device ensure this invariant is maintained by
11406 	 * keeping the loopback device as the first device on the
11407 	 * list of network devices.  Ensuring the loopback devices
11408 	 * is the first device that appears and the last network device
11409 	 * that disappears.
11410 	 */
11411 	if (register_pernet_device(&loopback_net_ops))
11412 		goto out;
11413 
11414 	if (register_pernet_device(&default_device_ops))
11415 		goto out;
11416 
11417 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11418 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11419 
11420 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11421 				       NULL, dev_cpu_dead);
11422 	WARN_ON(rc < 0);
11423 	rc = 0;
11424 out:
11425 	return rc;
11426 }
11427 
11428 subsys_initcall(net_dev_init);
11429