xref: /linux/net/core/dev.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 
149 #include "net-sysfs.h"
150 
151 #define MAX_GRO_SKBS 8
152 
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155 
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 static struct list_head offload_base __read_mostly;
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct netdev_notifier_info *info);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234 	struct net *net = dev_net(dev);
235 
236 	ASSERT_RTNL();
237 
238 	write_lock_bh(&dev_base_lock);
239 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 	hlist_add_head_rcu(&dev->index_hlist,
242 			   dev_index_hash(net, dev->ifindex));
243 	write_unlock_bh(&dev_base_lock);
244 
245 	dev_base_seq_inc(net);
246 }
247 
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253 	ASSERT_RTNL();
254 
255 	/* Unlink dev from the device chain */
256 	write_lock_bh(&dev_base_lock);
257 	list_del_rcu(&dev->dev_list);
258 	hlist_del_rcu(&dev->name_hlist);
259 	hlist_del_rcu(&dev->index_hlist);
260 	write_unlock_bh(&dev_base_lock);
261 
262 	dev_base_seq_inc(dev_net(dev));
263 }
264 
265 /*
266  *	Our notifier list
267  */
268 
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270 
271 /*
272  *	Device drivers call our routines to queue packets here. We empty the
273  *	queue in the local softnet handler.
274  */
275 
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278 
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300 
301 static const char *const netdev_lock_name[] = {
302 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317 
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323 	int i;
324 
325 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 		if (netdev_lock_type[i] == dev_type)
327 			return i;
328 	/* the last key is used by default */
329 	return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331 
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 						 unsigned short dev_type)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev_type);
338 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 				   netdev_lock_name[i]);
340 }
341 
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 	int i;
345 
346 	i = netdev_lock_pos(dev->type);
347 	lockdep_set_class_and_name(&dev->addr_list_lock,
348 				   &netdev_addr_lock_key[i],
349 				   netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 						 unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360 
361 /*******************************************************************************
362  *
363  *		Protocol management and registration routines
364  *
365  *******************************************************************************/
366 
367 
368 /*
369  *	Add a protocol ID to the list. Now that the input handler is
370  *	smarter we can dispense with all the messy stuff that used to be
371  *	here.
372  *
373  *	BEWARE!!! Protocol handlers, mangling input packets,
374  *	MUST BE last in hash buckets and checking protocol handlers
375  *	MUST start from promiscuous ptype_all chain in net_bh.
376  *	It is true now, do not change it.
377  *	Explanation follows: if protocol handler, mangling packet, will
378  *	be the first on list, it is not able to sense, that packet
379  *	is cloned and should be copied-on-write, so that it will
380  *	change it and subsequent readers will get broken packet.
381  *							--ANK (980803)
382  */
383 
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386 	if (pt->type == htons(ETH_P_ALL))
387 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 	else
389 		return pt->dev ? &pt->dev->ptype_specific :
390 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392 
393 /**
394  *	dev_add_pack - add packet handler
395  *	@pt: packet type declaration
396  *
397  *	Add a protocol handler to the networking stack. The passed &packet_type
398  *	is linked into kernel lists and may not be freed until it has been
399  *	removed from the kernel lists.
400  *
401  *	This call does not sleep therefore it can not
402  *	guarantee all CPU's that are in middle of receiving packets
403  *	will see the new packet type (until the next received packet).
404  */
405 
406 void dev_add_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 
410 	spin_lock(&ptype_lock);
411 	list_add_rcu(&pt->list, head);
412 	spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415 
416 /**
417  *	__dev_remove_pack	 - remove packet handler
418  *	@pt: packet type declaration
419  *
420  *	Remove a protocol handler that was previously added to the kernel
421  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *	from the kernel lists and can be freed or reused once this function
423  *	returns.
424  *
425  *      The packet type might still be in use by receivers
426  *	and must not be freed until after all the CPU's have gone
427  *	through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431 	struct list_head *head = ptype_head(pt);
432 	struct packet_type *pt1;
433 
434 	spin_lock(&ptype_lock);
435 
436 	list_for_each_entry(pt1, head, list) {
437 		if (pt == pt1) {
438 			list_del_rcu(&pt->list);
439 			goto out;
440 		}
441 	}
442 
443 	pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445 	spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448 
449 /**
450  *	dev_remove_pack	 - remove packet handler
451  *	@pt: packet type declaration
452  *
453  *	Remove a protocol handler that was previously added to the kernel
454  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *	from the kernel lists and can be freed or reused once this function
456  *	returns.
457  *
458  *	This call sleeps to guarantee that no CPU is looking at the packet
459  *	type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463 	__dev_remove_pack(pt);
464 
465 	synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468 
469 
470 /**
471  *	dev_add_offload - register offload handlers
472  *	@po: protocol offload declaration
473  *
474  *	Add protocol offload handlers to the networking stack. The passed
475  *	&proto_offload is linked into kernel lists and may not be freed until
476  *	it has been removed from the kernel lists.
477  *
478  *	This call does not sleep therefore it can not
479  *	guarantee all CPU's that are in middle of receiving packets
480  *	will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484 	struct packet_offload *elem;
485 
486 	spin_lock(&offload_lock);
487 	list_for_each_entry(elem, &offload_base, list) {
488 		if (po->priority < elem->priority)
489 			break;
490 	}
491 	list_add_rcu(&po->list, elem->list.prev);
492 	spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495 
496 /**
497  *	__dev_remove_offload	 - remove offload handler
498  *	@po: packet offload declaration
499  *
500  *	Remove a protocol offload handler that was previously added to the
501  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *	is removed from the kernel lists and can be freed or reused once this
503  *	function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *	and must not be freed until after all the CPU's have gone
507  *	through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511 	struct list_head *head = &offload_base;
512 	struct packet_offload *po1;
513 
514 	spin_lock(&offload_lock);
515 
516 	list_for_each_entry(po1, head, list) {
517 		if (po == po1) {
518 			list_del_rcu(&po->list);
519 			goto out;
520 		}
521 	}
522 
523 	pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525 	spin_unlock(&offload_lock);
526 }
527 
528 /**
529  *	dev_remove_offload	 - remove packet offload handler
530  *	@po: packet offload declaration
531  *
532  *	Remove a packet offload handler that was previously added to the kernel
533  *	offload handlers by dev_add_offload(). The passed &offload_type is
534  *	removed from the kernel lists and can be freed or reused once this
535  *	function returns.
536  *
537  *	This call sleeps to guarantee that no CPU is looking at the packet
538  *	type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542 	__dev_remove_offload(po);
543 
544 	synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547 
548 /******************************************************************************
549  *
550  *		      Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553 
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556 
557 /**
558  *	netdev_boot_setup_add	- add new setup entry
559  *	@name: name of the device
560  *	@map: configured settings for the device
561  *
562  *	Adds new setup entry to the dev_boot_setup list.  The function
563  *	returns 0 on error and 1 on success.  This is a generic routine to
564  *	all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568 	struct netdev_boot_setup *s;
569 	int i;
570 
571 	s = dev_boot_setup;
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 			memset(s[i].name, 0, sizeof(s[i].name));
575 			strlcpy(s[i].name, name, IFNAMSIZ);
576 			memcpy(&s[i].map, map, sizeof(s[i].map));
577 			break;
578 		}
579 	}
580 
581 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583 
584 /**
585  * netdev_boot_setup_check	- check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595 	struct netdev_boot_setup *s = dev_boot_setup;
596 	int i;
597 
598 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 		    !strcmp(dev->name, s[i].name)) {
601 			dev->irq = s[i].map.irq;
602 			dev->base_addr = s[i].map.base_addr;
603 			dev->mem_start = s[i].map.mem_start;
604 			dev->mem_end = s[i].map.mem_end;
605 			return 1;
606 		}
607 	}
608 	return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611 
612 
613 /**
614  * netdev_boot_base	- get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625 	const struct netdev_boot_setup *s = dev_boot_setup;
626 	char name[IFNAMSIZ];
627 	int i;
628 
629 	sprintf(name, "%s%d", prefix, unit);
630 
631 	/*
632 	 * If device already registered then return base of 1
633 	 * to indicate not to probe for this interface
634 	 */
635 	if (__dev_get_by_name(&init_net, name))
636 		return 1;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 		if (!strcmp(name, s[i].name))
640 			return s[i].map.base_addr;
641 	return 0;
642 }
643 
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649 	int ints[5];
650 	struct ifmap map;
651 
652 	str = get_options(str, ARRAY_SIZE(ints), ints);
653 	if (!str || !*str)
654 		return 0;
655 
656 	/* Save settings */
657 	memset(&map, 0, sizeof(map));
658 	if (ints[0] > 0)
659 		map.irq = ints[1];
660 	if (ints[0] > 1)
661 		map.base_addr = ints[2];
662 	if (ints[0] > 2)
663 		map.mem_start = ints[3];
664 	if (ints[0] > 3)
665 		map.mem_end = ints[4];
666 
667 	/* Add new entry to the list */
668 	return netdev_boot_setup_add(str, &map);
669 }
670 
671 __setup("netdev=", netdev_boot_setup);
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
722 /**
723  *	__dev_get_by_name	- find a device by its name
724  *	@net: the applicable net namespace
725  *	@name: name to find
726  *
727  *	Find an interface by name. Must be called under RTNL semaphore
728  *	or @dev_base_lock. If the name is found a pointer to the device
729  *	is returned. If the name is not found then %NULL is returned. The
730  *	reference counters are not incremented so the caller must be
731  *	careful with locks.
732  */
733 
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736 	struct net_device *dev;
737 	struct hlist_head *head = dev_name_hash(net, name);
738 
739 	hlist_for_each_entry(dev, head, name_hlist)
740 		if (!strncmp(dev->name, name, IFNAMSIZ))
741 			return dev;
742 
743 	return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746 
747 /**
748  * dev_get_by_name_rcu	- find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758 
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761 	struct net_device *dev;
762 	struct hlist_head *head = dev_name_hash(net, name);
763 
764 	hlist_for_each_entry_rcu(dev, head, name_hlist)
765 		if (!strncmp(dev->name, name, IFNAMSIZ))
766 			return dev;
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771 
772 /**
773  *	dev_get_by_name		- find a device by its name
774  *	@net: the applicable net namespace
775  *	@name: name to find
776  *
777  *	Find an interface by name. This can be called from any
778  *	context and does its own locking. The returned handle has
779  *	the usage count incremented and the caller must use dev_put() to
780  *	release it when it is no longer needed. %NULL is returned if no
781  *	matching device is found.
782  */
783 
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786 	struct net_device *dev;
787 
788 	rcu_read_lock();
789 	dev = dev_get_by_name_rcu(net, name);
790 	if (dev)
791 		dev_hold(dev);
792 	rcu_read_unlock();
793 	return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796 
797 /**
798  *	__dev_get_by_index - find a device by its ifindex
799  *	@net: the applicable net namespace
800  *	@ifindex: index of device
801  *
802  *	Search for an interface by index. Returns %NULL if the device
803  *	is not found or a pointer to the device. The device has not
804  *	had its reference counter increased so the caller must be careful
805  *	about locking. The caller must hold either the RTNL semaphore
806  *	or @dev_base_lock.
807  */
808 
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811 	struct net_device *dev;
812 	struct hlist_head *head = dev_index_hash(net, ifindex);
813 
814 	hlist_for_each_entry(dev, head, index_hlist)
815 		if (dev->ifindex == ifindex)
816 			return dev;
817 
818 	return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821 
822 /**
823  *	dev_get_by_index_rcu - find a device by its ifindex
824  *	@net: the applicable net namespace
825  *	@ifindex: index of device
826  *
827  *	Search for an interface by index. Returns %NULL if the device
828  *	is not found or a pointer to the device. The device has not
829  *	had its reference counter increased so the caller must be careful
830  *	about locking. The caller must hold RCU lock.
831  */
832 
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835 	struct net_device *dev;
836 	struct hlist_head *head = dev_index_hash(net, ifindex);
837 
838 	hlist_for_each_entry_rcu(dev, head, index_hlist)
839 		if (dev->ifindex == ifindex)
840 			return dev;
841 
842 	return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845 
846 
847 /**
848  *	dev_get_by_index - find a device by its ifindex
849  *	@net: the applicable net namespace
850  *	@ifindex: index of device
851  *
852  *	Search for an interface by index. Returns NULL if the device
853  *	is not found or a pointer to the device. The device returned has
854  *	had a reference added and the pointer is safe until the user calls
855  *	dev_put to indicate they have finished with it.
856  */
857 
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 
862 	rcu_read_lock();
863 	dev = dev_get_by_index_rcu(net, ifindex);
864 	if (dev)
865 		dev_hold(dev);
866 	rcu_read_unlock();
867 	return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870 
871 /**
872  *	dev_get_by_napi_id - find a device by napi_id
873  *	@napi_id: ID of the NAPI struct
874  *
875  *	Search for an interface by NAPI ID. Returns %NULL if the device
876  *	is not found or a pointer to the device. The device has not had
877  *	its reference counter increased so the caller must be careful
878  *	about locking. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883 	struct napi_struct *napi;
884 
885 	WARN_ON_ONCE(!rcu_read_lock_held());
886 
887 	if (napi_id < MIN_NAPI_ID)
888 		return NULL;
889 
890 	napi = napi_by_id(napi_id);
891 
892 	return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895 
896 /**
897  *	netdev_get_name - get a netdevice name, knowing its ifindex.
898  *	@net: network namespace
899  *	@name: a pointer to the buffer where the name will be stored.
900  *	@ifindex: the ifindex of the interface to get the name from.
901  *
902  *	The use of raw_seqcount_begin() and cond_resched() before
903  *	retrying is required as we want to give the writers a chance
904  *	to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908 	struct net_device *dev;
909 	unsigned int seq;
910 
911 retry:
912 	seq = raw_seqcount_begin(&devnet_rename_seq);
913 	rcu_read_lock();
914 	dev = dev_get_by_index_rcu(net, ifindex);
915 	if (!dev) {
916 		rcu_read_unlock();
917 		return -ENODEV;
918 	}
919 
920 	strcpy(name, dev->name);
921 	rcu_read_unlock();
922 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 		cond_resched();
924 		goto retry;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  *	dev_getbyhwaddr_rcu - find a device by its hardware address
932  *	@net: the applicable net namespace
933  *	@type: media type of device
934  *	@ha: hardware address
935  *
936  *	Search for an interface by MAC address. Returns NULL if the device
937  *	is not found or a pointer to the device.
938  *	The caller must hold RCU or RTNL.
939  *	The returned device has not had its ref count increased
940  *	and the caller must therefore be careful about locking
941  *
942  */
943 
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 				       const char *ha)
946 {
947 	struct net_device *dev;
948 
949 	for_each_netdev_rcu(net, dev)
950 		if (dev->type == type &&
951 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
952 			return dev;
953 
954 	return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957 
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960 	struct net_device *dev;
961 
962 	ASSERT_RTNL();
963 	for_each_netdev(net, dev)
964 		if (dev->type == type)
965 			return dev;
966 
967 	return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970 
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973 	struct net_device *dev, *ret = NULL;
974 
975 	rcu_read_lock();
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type) {
978 			dev_hold(dev);
979 			ret = dev;
980 			break;
981 		}
982 	rcu_read_unlock();
983 	return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986 
987 /**
988  *	__dev_get_by_flags - find any device with given flags
989  *	@net: the applicable net namespace
990  *	@if_flags: IFF_* values
991  *	@mask: bitmask of bits in if_flags to check
992  *
993  *	Search for any interface with the given flags. Returns NULL if a device
994  *	is not found or a pointer to the device. Must be called inside
995  *	rtnl_lock(), and result refcount is unchanged.
996  */
997 
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 				      unsigned short mask)
1000 {
1001 	struct net_device *dev, *ret;
1002 
1003 	ASSERT_RTNL();
1004 
1005 	ret = NULL;
1006 	for_each_netdev(net, dev) {
1007 		if (((dev->flags ^ if_flags) & mask) == 0) {
1008 			ret = dev;
1009 			break;
1010 		}
1011 	}
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015 
1016 /**
1017  *	dev_valid_name - check if name is okay for network device
1018  *	@name: name string
1019  *
1020  *	Network device names need to be valid file names to
1021  *	to allow sysfs to work.  We also disallow any kind of
1022  *	whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026 	if (*name == '\0')
1027 		return false;
1028 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 		return false;
1030 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 		return false;
1032 
1033 	while (*name) {
1034 		if (*name == '/' || *name == ':' || isspace(*name))
1035 			return false;
1036 		name++;
1037 	}
1038 	return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041 
1042 /**
1043  *	__dev_alloc_name - allocate a name for a device
1044  *	@net: network namespace to allocate the device name in
1045  *	@name: name format string
1046  *	@buf:  scratch buffer and result name string
1047  *
1048  *	Passed a format string - eg "lt%d" it will try and find a suitable
1049  *	id. It scans list of devices to build up a free map, then chooses
1050  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *	while allocating the name and adding the device in order to avoid
1052  *	duplicates.
1053  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *	Returns the number of the unit assigned or a negative errno code.
1055  */
1056 
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059 	int i = 0;
1060 	const char *p;
1061 	const int max_netdevices = 8*PAGE_SIZE;
1062 	unsigned long *inuse;
1063 	struct net_device *d;
1064 
1065 	if (!dev_valid_name(name))
1066 		return -EINVAL;
1067 
1068 	p = strchr(name, '%');
1069 	if (p) {
1070 		/*
1071 		 * Verify the string as this thing may have come from
1072 		 * the user.  There must be either one "%d" and no other "%"
1073 		 * characters.
1074 		 */
1075 		if (p[1] != 'd' || strchr(p + 2, '%'))
1076 			return -EINVAL;
1077 
1078 		/* Use one page as a bit array of possible slots */
1079 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 		if (!inuse)
1081 			return -ENOMEM;
1082 
1083 		for_each_netdev(net, d) {
1084 			if (!sscanf(d->name, name, &i))
1085 				continue;
1086 			if (i < 0 || i >= max_netdevices)
1087 				continue;
1088 
1089 			/*  avoid cases where sscanf is not exact inverse of printf */
1090 			snprintf(buf, IFNAMSIZ, name, i);
1091 			if (!strncmp(buf, d->name, IFNAMSIZ))
1092 				set_bit(i, inuse);
1093 		}
1094 
1095 		i = find_first_zero_bit(inuse, max_netdevices);
1096 		free_page((unsigned long) inuse);
1097 	}
1098 
1099 	snprintf(buf, IFNAMSIZ, name, i);
1100 	if (!__dev_get_by_name(net, buf))
1101 		return i;
1102 
1103 	/* It is possible to run out of possible slots
1104 	 * when the name is long and there isn't enough space left
1105 	 * for the digits, or if all bits are used.
1106 	 */
1107 	return -ENFILE;
1108 }
1109 
1110 static int dev_alloc_name_ns(struct net *net,
1111 			     struct net_device *dev,
1112 			     const char *name)
1113 {
1114 	char buf[IFNAMSIZ];
1115 	int ret;
1116 
1117 	BUG_ON(!net);
1118 	ret = __dev_alloc_name(net, name, buf);
1119 	if (ret >= 0)
1120 		strlcpy(dev->name, buf, IFNAMSIZ);
1121 	return ret;
1122 }
1123 
1124 /**
1125  *	dev_alloc_name - allocate a name for a device
1126  *	@dev: device
1127  *	@name: name format string
1128  *
1129  *	Passed a format string - eg "lt%d" it will try and find a suitable
1130  *	id. It scans list of devices to build up a free map, then chooses
1131  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *	while allocating the name and adding the device in order to avoid
1133  *	duplicates.
1134  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *	Returns the number of the unit assigned or a negative errno code.
1136  */
1137 
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143 
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 		       const char *name)
1146 {
1147 	BUG_ON(!net);
1148 
1149 	if (!dev_valid_name(name))
1150 		return -EINVAL;
1151 
1152 	if (strchr(name, '%'))
1153 		return dev_alloc_name_ns(net, dev, name);
1154 	else if (__dev_get_by_name(net, name))
1155 		return -EEXIST;
1156 	else if (dev->name != name)
1157 		strlcpy(dev->name, name, IFNAMSIZ);
1158 
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162 
1163 /**
1164  *	dev_change_name - change name of a device
1165  *	@dev: device
1166  *	@newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *	Change name of a device, can pass format strings "eth%d".
1169  *	for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173 	unsigned char old_assign_type;
1174 	char oldname[IFNAMSIZ];
1175 	int err = 0;
1176 	int ret;
1177 	struct net *net;
1178 
1179 	ASSERT_RTNL();
1180 	BUG_ON(!dev_net(dev));
1181 
1182 	net = dev_net(dev);
1183 	if (dev->flags & IFF_UP)
1184 		return -EBUSY;
1185 
1186 	write_seqcount_begin(&devnet_rename_seq);
1187 
1188 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189 		write_seqcount_end(&devnet_rename_seq);
1190 		return 0;
1191 	}
1192 
1193 	memcpy(oldname, dev->name, IFNAMSIZ);
1194 
1195 	err = dev_get_valid_name(net, dev, newname);
1196 	if (err < 0) {
1197 		write_seqcount_end(&devnet_rename_seq);
1198 		return err;
1199 	}
1200 
1201 	if (oldname[0] && !strchr(oldname, '%'))
1202 		netdev_info(dev, "renamed from %s\n", oldname);
1203 
1204 	old_assign_type = dev->name_assign_type;
1205 	dev->name_assign_type = NET_NAME_RENAMED;
1206 
1207 rollback:
1208 	ret = device_rename(&dev->dev, dev->name);
1209 	if (ret) {
1210 		memcpy(dev->name, oldname, IFNAMSIZ);
1211 		dev->name_assign_type = old_assign_type;
1212 		write_seqcount_end(&devnet_rename_seq);
1213 		return ret;
1214 	}
1215 
1216 	write_seqcount_end(&devnet_rename_seq);
1217 
1218 	netdev_adjacent_rename_links(dev, oldname);
1219 
1220 	write_lock_bh(&dev_base_lock);
1221 	hlist_del_rcu(&dev->name_hlist);
1222 	write_unlock_bh(&dev_base_lock);
1223 
1224 	synchronize_rcu();
1225 
1226 	write_lock_bh(&dev_base_lock);
1227 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228 	write_unlock_bh(&dev_base_lock);
1229 
1230 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231 	ret = notifier_to_errno(ret);
1232 
1233 	if (ret) {
1234 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1235 		if (err >= 0) {
1236 			err = ret;
1237 			write_seqcount_begin(&devnet_rename_seq);
1238 			memcpy(dev->name, oldname, IFNAMSIZ);
1239 			memcpy(oldname, newname, IFNAMSIZ);
1240 			dev->name_assign_type = old_assign_type;
1241 			old_assign_type = NET_NAME_RENAMED;
1242 			goto rollback;
1243 		} else {
1244 			pr_err("%s: name change rollback failed: %d\n",
1245 			       dev->name, ret);
1246 		}
1247 	}
1248 
1249 	return err;
1250 }
1251 
1252 /**
1253  *	dev_set_alias - change ifalias of a device
1254  *	@dev: device
1255  *	@alias: name up to IFALIASZ
1256  *	@len: limit of bytes to copy from info
1257  *
1258  *	Set ifalias for a device,
1259  */
1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261 {
1262 	struct dev_ifalias *new_alias = NULL;
1263 
1264 	if (len >= IFALIASZ)
1265 		return -EINVAL;
1266 
1267 	if (len) {
1268 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269 		if (!new_alias)
1270 			return -ENOMEM;
1271 
1272 		memcpy(new_alias->ifalias, alias, len);
1273 		new_alias->ifalias[len] = 0;
1274 	}
1275 
1276 	mutex_lock(&ifalias_mutex);
1277 	rcu_swap_protected(dev->ifalias, new_alias,
1278 			   mutex_is_locked(&ifalias_mutex));
1279 	mutex_unlock(&ifalias_mutex);
1280 
1281 	if (new_alias)
1282 		kfree_rcu(new_alias, rcuhead);
1283 
1284 	return len;
1285 }
1286 EXPORT_SYMBOL(dev_set_alias);
1287 
1288 /**
1289  *	dev_get_alias - get ifalias of a device
1290  *	@dev: device
1291  *	@name: buffer to store name of ifalias
1292  *	@len: size of buffer
1293  *
1294  *	get ifalias for a device.  Caller must make sure dev cannot go
1295  *	away,  e.g. rcu read lock or own a reference count to device.
1296  */
1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298 {
1299 	const struct dev_ifalias *alias;
1300 	int ret = 0;
1301 
1302 	rcu_read_lock();
1303 	alias = rcu_dereference(dev->ifalias);
1304 	if (alias)
1305 		ret = snprintf(name, len, "%s", alias->ifalias);
1306 	rcu_read_unlock();
1307 
1308 	return ret;
1309 }
1310 
1311 /**
1312  *	netdev_features_change - device changes features
1313  *	@dev: device to cause notification
1314  *
1315  *	Called to indicate a device has changed features.
1316  */
1317 void netdev_features_change(struct net_device *dev)
1318 {
1319 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320 }
1321 EXPORT_SYMBOL(netdev_features_change);
1322 
1323 /**
1324  *	netdev_state_change - device changes state
1325  *	@dev: device to cause notification
1326  *
1327  *	Called to indicate a device has changed state. This function calls
1328  *	the notifier chains for netdev_chain and sends a NEWLINK message
1329  *	to the routing socket.
1330  */
1331 void netdev_state_change(struct net_device *dev)
1332 {
1333 	if (dev->flags & IFF_UP) {
1334 		struct netdev_notifier_change_info change_info = {
1335 			.info.dev = dev,
1336 		};
1337 
1338 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1339 					      &change_info.info);
1340 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341 	}
1342 }
1343 EXPORT_SYMBOL(netdev_state_change);
1344 
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357 	rtnl_lock();
1358 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360 	rtnl_unlock();
1361 }
1362 EXPORT_SYMBOL(netdev_notify_peers);
1363 
1364 static int __dev_open(struct net_device *dev)
1365 {
1366 	const struct net_device_ops *ops = dev->netdev_ops;
1367 	int ret;
1368 
1369 	ASSERT_RTNL();
1370 
1371 	if (!netif_device_present(dev))
1372 		return -ENODEV;
1373 
1374 	/* Block netpoll from trying to do any rx path servicing.
1375 	 * If we don't do this there is a chance ndo_poll_controller
1376 	 * or ndo_poll may be running while we open the device
1377 	 */
1378 	netpoll_poll_disable(dev);
1379 
1380 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381 	ret = notifier_to_errno(ret);
1382 	if (ret)
1383 		return ret;
1384 
1385 	set_bit(__LINK_STATE_START, &dev->state);
1386 
1387 	if (ops->ndo_validate_addr)
1388 		ret = ops->ndo_validate_addr(dev);
1389 
1390 	if (!ret && ops->ndo_open)
1391 		ret = ops->ndo_open(dev);
1392 
1393 	netpoll_poll_enable(dev);
1394 
1395 	if (ret)
1396 		clear_bit(__LINK_STATE_START, &dev->state);
1397 	else {
1398 		dev->flags |= IFF_UP;
1399 		dev_set_rx_mode(dev);
1400 		dev_activate(dev);
1401 		add_device_randomness(dev->dev_addr, dev->addr_len);
1402 	}
1403 
1404 	return ret;
1405 }
1406 
1407 /**
1408  *	dev_open	- prepare an interface for use.
1409  *	@dev:	device to open
1410  *
1411  *	Takes a device from down to up state. The device's private open
1412  *	function is invoked and then the multicast lists are loaded. Finally
1413  *	the device is moved into the up state and a %NETDEV_UP message is
1414  *	sent to the netdev notifier chain.
1415  *
1416  *	Calling this function on an active interface is a nop. On a failure
1417  *	a negative errno code is returned.
1418  */
1419 int dev_open(struct net_device *dev)
1420 {
1421 	int ret;
1422 
1423 	if (dev->flags & IFF_UP)
1424 		return 0;
1425 
1426 	ret = __dev_open(dev);
1427 	if (ret < 0)
1428 		return ret;
1429 
1430 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431 	call_netdevice_notifiers(NETDEV_UP, dev);
1432 
1433 	return ret;
1434 }
1435 EXPORT_SYMBOL(dev_open);
1436 
1437 static void __dev_close_many(struct list_head *head)
1438 {
1439 	struct net_device *dev;
1440 
1441 	ASSERT_RTNL();
1442 	might_sleep();
1443 
1444 	list_for_each_entry(dev, head, close_list) {
1445 		/* Temporarily disable netpoll until the interface is down */
1446 		netpoll_poll_disable(dev);
1447 
1448 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1449 
1450 		clear_bit(__LINK_STATE_START, &dev->state);
1451 
1452 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1453 		 * can be even on different cpu. So just clear netif_running().
1454 		 *
1455 		 * dev->stop() will invoke napi_disable() on all of it's
1456 		 * napi_struct instances on this device.
1457 		 */
1458 		smp_mb__after_atomic(); /* Commit netif_running(). */
1459 	}
1460 
1461 	dev_deactivate_many(head);
1462 
1463 	list_for_each_entry(dev, head, close_list) {
1464 		const struct net_device_ops *ops = dev->netdev_ops;
1465 
1466 		/*
1467 		 *	Call the device specific close. This cannot fail.
1468 		 *	Only if device is UP
1469 		 *
1470 		 *	We allow it to be called even after a DETACH hot-plug
1471 		 *	event.
1472 		 */
1473 		if (ops->ndo_stop)
1474 			ops->ndo_stop(dev);
1475 
1476 		dev->flags &= ~IFF_UP;
1477 		netpoll_poll_enable(dev);
1478 	}
1479 }
1480 
1481 static void __dev_close(struct net_device *dev)
1482 {
1483 	LIST_HEAD(single);
1484 
1485 	list_add(&dev->close_list, &single);
1486 	__dev_close_many(&single);
1487 	list_del(&single);
1488 }
1489 
1490 void dev_close_many(struct list_head *head, bool unlink)
1491 {
1492 	struct net_device *dev, *tmp;
1493 
1494 	/* Remove the devices that don't need to be closed */
1495 	list_for_each_entry_safe(dev, tmp, head, close_list)
1496 		if (!(dev->flags & IFF_UP))
1497 			list_del_init(&dev->close_list);
1498 
1499 	__dev_close_many(head);
1500 
1501 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1502 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1504 		if (unlink)
1505 			list_del_init(&dev->close_list);
1506 	}
1507 }
1508 EXPORT_SYMBOL(dev_close_many);
1509 
1510 /**
1511  *	dev_close - shutdown an interface.
1512  *	@dev: device to shutdown
1513  *
1514  *	This function moves an active device into down state. A
1515  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1517  *	chain.
1518  */
1519 void dev_close(struct net_device *dev)
1520 {
1521 	if (dev->flags & IFF_UP) {
1522 		LIST_HEAD(single);
1523 
1524 		list_add(&dev->close_list, &single);
1525 		dev_close_many(&single, true);
1526 		list_del(&single);
1527 	}
1528 }
1529 EXPORT_SYMBOL(dev_close);
1530 
1531 
1532 /**
1533  *	dev_disable_lro - disable Large Receive Offload on a device
1534  *	@dev: device
1535  *
1536  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1537  *	called under RTNL.  This is needed if received packets may be
1538  *	forwarded to another interface.
1539  */
1540 void dev_disable_lro(struct net_device *dev)
1541 {
1542 	struct net_device *lower_dev;
1543 	struct list_head *iter;
1544 
1545 	dev->wanted_features &= ~NETIF_F_LRO;
1546 	netdev_update_features(dev);
1547 
1548 	if (unlikely(dev->features & NETIF_F_LRO))
1549 		netdev_WARN(dev, "failed to disable LRO!\n");
1550 
1551 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1552 		dev_disable_lro(lower_dev);
1553 }
1554 EXPORT_SYMBOL(dev_disable_lro);
1555 
1556 /**
1557  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1558  *	@dev: device
1559  *
1560  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1561  *	called under RTNL.  This is needed if Generic XDP is installed on
1562  *	the device.
1563  */
1564 static void dev_disable_gro_hw(struct net_device *dev)
1565 {
1566 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1567 	netdev_update_features(dev);
1568 
1569 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1570 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1571 }
1572 
1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1574 {
1575 #define N(val) 						\
1576 	case NETDEV_##val:				\
1577 		return "NETDEV_" __stringify(val);
1578 	switch (cmd) {
1579 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1588 	}
1589 #undef N
1590 	return "UNKNOWN_NETDEV_EVENT";
1591 }
1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593 
1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595 				   struct net_device *dev)
1596 {
1597 	struct netdev_notifier_info info = {
1598 		.dev = dev,
1599 	};
1600 
1601 	return nb->notifier_call(nb, val, &info);
1602 }
1603 
1604 static int dev_boot_phase = 1;
1605 
1606 /**
1607  * register_netdevice_notifier - register a network notifier block
1608  * @nb: notifier
1609  *
1610  * Register a notifier to be called when network device events occur.
1611  * The notifier passed is linked into the kernel structures and must
1612  * not be reused until it has been unregistered. A negative errno code
1613  * is returned on a failure.
1614  *
1615  * When registered all registration and up events are replayed
1616  * to the new notifier to allow device to have a race free
1617  * view of the network device list.
1618  */
1619 
1620 int register_netdevice_notifier(struct notifier_block *nb)
1621 {
1622 	struct net_device *dev;
1623 	struct net_device *last;
1624 	struct net *net;
1625 	int err;
1626 
1627 	/* Close race with setup_net() and cleanup_net() */
1628 	down_write(&pernet_ops_rwsem);
1629 	rtnl_lock();
1630 	err = raw_notifier_chain_register(&netdev_chain, nb);
1631 	if (err)
1632 		goto unlock;
1633 	if (dev_boot_phase)
1634 		goto unlock;
1635 	for_each_net(net) {
1636 		for_each_netdev(net, dev) {
1637 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638 			err = notifier_to_errno(err);
1639 			if (err)
1640 				goto rollback;
1641 
1642 			if (!(dev->flags & IFF_UP))
1643 				continue;
1644 
1645 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1646 		}
1647 	}
1648 
1649 unlock:
1650 	rtnl_unlock();
1651 	up_write(&pernet_ops_rwsem);
1652 	return err;
1653 
1654 rollback:
1655 	last = dev;
1656 	for_each_net(net) {
1657 		for_each_netdev(net, dev) {
1658 			if (dev == last)
1659 				goto outroll;
1660 
1661 			if (dev->flags & IFF_UP) {
1662 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663 							dev);
1664 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665 			}
1666 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667 		}
1668 	}
1669 
1670 outroll:
1671 	raw_notifier_chain_unregister(&netdev_chain, nb);
1672 	goto unlock;
1673 }
1674 EXPORT_SYMBOL(register_netdevice_notifier);
1675 
1676 /**
1677  * unregister_netdevice_notifier - unregister a network notifier block
1678  * @nb: notifier
1679  *
1680  * Unregister a notifier previously registered by
1681  * register_netdevice_notifier(). The notifier is unlinked into the
1682  * kernel structures and may then be reused. A negative errno code
1683  * is returned on a failure.
1684  *
1685  * After unregistering unregister and down device events are synthesized
1686  * for all devices on the device list to the removed notifier to remove
1687  * the need for special case cleanup code.
1688  */
1689 
1690 int unregister_netdevice_notifier(struct notifier_block *nb)
1691 {
1692 	struct net_device *dev;
1693 	struct net *net;
1694 	int err;
1695 
1696 	/* Close race with setup_net() and cleanup_net() */
1697 	down_write(&pernet_ops_rwsem);
1698 	rtnl_lock();
1699 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1700 	if (err)
1701 		goto unlock;
1702 
1703 	for_each_net(net) {
1704 		for_each_netdev(net, dev) {
1705 			if (dev->flags & IFF_UP) {
1706 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1707 							dev);
1708 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1709 			}
1710 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1711 		}
1712 	}
1713 unlock:
1714 	rtnl_unlock();
1715 	up_write(&pernet_ops_rwsem);
1716 	return err;
1717 }
1718 EXPORT_SYMBOL(unregister_netdevice_notifier);
1719 
1720 /**
1721  *	call_netdevice_notifiers_info - call all network notifier blocks
1722  *	@val: value passed unmodified to notifier function
1723  *	@info: notifier information data
1724  *
1725  *	Call all network notifier blocks.  Parameters and return value
1726  *	are as for raw_notifier_call_chain().
1727  */
1728 
1729 static int call_netdevice_notifiers_info(unsigned long val,
1730 					 struct netdev_notifier_info *info)
1731 {
1732 	ASSERT_RTNL();
1733 	return raw_notifier_call_chain(&netdev_chain, val, info);
1734 }
1735 
1736 /**
1737  *	call_netdevice_notifiers - call all network notifier blocks
1738  *      @val: value passed unmodified to notifier function
1739  *      @dev: net_device pointer passed unmodified to notifier function
1740  *
1741  *	Call all network notifier blocks.  Parameters and return value
1742  *	are as for raw_notifier_call_chain().
1743  */
1744 
1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1746 {
1747 	struct netdev_notifier_info info = {
1748 		.dev = dev,
1749 	};
1750 
1751 	return call_netdevice_notifiers_info(val, &info);
1752 }
1753 EXPORT_SYMBOL(call_netdevice_notifiers);
1754 
1755 #ifdef CONFIG_NET_INGRESS
1756 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1757 
1758 void net_inc_ingress_queue(void)
1759 {
1760 	static_branch_inc(&ingress_needed_key);
1761 }
1762 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1763 
1764 void net_dec_ingress_queue(void)
1765 {
1766 	static_branch_dec(&ingress_needed_key);
1767 }
1768 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1769 #endif
1770 
1771 #ifdef CONFIG_NET_EGRESS
1772 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1773 
1774 void net_inc_egress_queue(void)
1775 {
1776 	static_branch_inc(&egress_needed_key);
1777 }
1778 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1779 
1780 void net_dec_egress_queue(void)
1781 {
1782 	static_branch_dec(&egress_needed_key);
1783 }
1784 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1785 #endif
1786 
1787 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1788 #ifdef HAVE_JUMP_LABEL
1789 static atomic_t netstamp_needed_deferred;
1790 static atomic_t netstamp_wanted;
1791 static void netstamp_clear(struct work_struct *work)
1792 {
1793 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1794 	int wanted;
1795 
1796 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1797 	if (wanted > 0)
1798 		static_branch_enable(&netstamp_needed_key);
1799 	else
1800 		static_branch_disable(&netstamp_needed_key);
1801 }
1802 static DECLARE_WORK(netstamp_work, netstamp_clear);
1803 #endif
1804 
1805 void net_enable_timestamp(void)
1806 {
1807 #ifdef HAVE_JUMP_LABEL
1808 	int wanted;
1809 
1810 	while (1) {
1811 		wanted = atomic_read(&netstamp_wanted);
1812 		if (wanted <= 0)
1813 			break;
1814 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1815 			return;
1816 	}
1817 	atomic_inc(&netstamp_needed_deferred);
1818 	schedule_work(&netstamp_work);
1819 #else
1820 	static_branch_inc(&netstamp_needed_key);
1821 #endif
1822 }
1823 EXPORT_SYMBOL(net_enable_timestamp);
1824 
1825 void net_disable_timestamp(void)
1826 {
1827 #ifdef HAVE_JUMP_LABEL
1828 	int wanted;
1829 
1830 	while (1) {
1831 		wanted = atomic_read(&netstamp_wanted);
1832 		if (wanted <= 1)
1833 			break;
1834 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1835 			return;
1836 	}
1837 	atomic_dec(&netstamp_needed_deferred);
1838 	schedule_work(&netstamp_work);
1839 #else
1840 	static_branch_dec(&netstamp_needed_key);
1841 #endif
1842 }
1843 EXPORT_SYMBOL(net_disable_timestamp);
1844 
1845 static inline void net_timestamp_set(struct sk_buff *skb)
1846 {
1847 	skb->tstamp = 0;
1848 	if (static_branch_unlikely(&netstamp_needed_key))
1849 		__net_timestamp(skb);
1850 }
1851 
1852 #define net_timestamp_check(COND, SKB)				\
1853 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1854 		if ((COND) && !(SKB)->tstamp)			\
1855 			__net_timestamp(SKB);			\
1856 	}							\
1857 
1858 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1859 {
1860 	unsigned int len;
1861 
1862 	if (!(dev->flags & IFF_UP))
1863 		return false;
1864 
1865 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1866 	if (skb->len <= len)
1867 		return true;
1868 
1869 	/* if TSO is enabled, we don't care about the length as the packet
1870 	 * could be forwarded without being segmented before
1871 	 */
1872 	if (skb_is_gso(skb))
1873 		return true;
1874 
1875 	return false;
1876 }
1877 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1878 
1879 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1880 {
1881 	int ret = ____dev_forward_skb(dev, skb);
1882 
1883 	if (likely(!ret)) {
1884 		skb->protocol = eth_type_trans(skb, dev);
1885 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1886 	}
1887 
1888 	return ret;
1889 }
1890 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1891 
1892 /**
1893  * dev_forward_skb - loopback an skb to another netif
1894  *
1895  * @dev: destination network device
1896  * @skb: buffer to forward
1897  *
1898  * return values:
1899  *	NET_RX_SUCCESS	(no congestion)
1900  *	NET_RX_DROP     (packet was dropped, but freed)
1901  *
1902  * dev_forward_skb can be used for injecting an skb from the
1903  * start_xmit function of one device into the receive queue
1904  * of another device.
1905  *
1906  * The receiving device may be in another namespace, so
1907  * we have to clear all information in the skb that could
1908  * impact namespace isolation.
1909  */
1910 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1911 {
1912 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1913 }
1914 EXPORT_SYMBOL_GPL(dev_forward_skb);
1915 
1916 static inline int deliver_skb(struct sk_buff *skb,
1917 			      struct packet_type *pt_prev,
1918 			      struct net_device *orig_dev)
1919 {
1920 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1921 		return -ENOMEM;
1922 	refcount_inc(&skb->users);
1923 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1924 }
1925 
1926 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1927 					  struct packet_type **pt,
1928 					  struct net_device *orig_dev,
1929 					  __be16 type,
1930 					  struct list_head *ptype_list)
1931 {
1932 	struct packet_type *ptype, *pt_prev = *pt;
1933 
1934 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1935 		if (ptype->type != type)
1936 			continue;
1937 		if (pt_prev)
1938 			deliver_skb(skb, pt_prev, orig_dev);
1939 		pt_prev = ptype;
1940 	}
1941 	*pt = pt_prev;
1942 }
1943 
1944 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1945 {
1946 	if (!ptype->af_packet_priv || !skb->sk)
1947 		return false;
1948 
1949 	if (ptype->id_match)
1950 		return ptype->id_match(ptype, skb->sk);
1951 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1952 		return true;
1953 
1954 	return false;
1955 }
1956 
1957 /*
1958  *	Support routine. Sends outgoing frames to any network
1959  *	taps currently in use.
1960  */
1961 
1962 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1963 {
1964 	struct packet_type *ptype;
1965 	struct sk_buff *skb2 = NULL;
1966 	struct packet_type *pt_prev = NULL;
1967 	struct list_head *ptype_list = &ptype_all;
1968 
1969 	rcu_read_lock();
1970 again:
1971 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1972 		/* Never send packets back to the socket
1973 		 * they originated from - MvS (miquels@drinkel.ow.org)
1974 		 */
1975 		if (skb_loop_sk(ptype, skb))
1976 			continue;
1977 
1978 		if (pt_prev) {
1979 			deliver_skb(skb2, pt_prev, skb->dev);
1980 			pt_prev = ptype;
1981 			continue;
1982 		}
1983 
1984 		/* need to clone skb, done only once */
1985 		skb2 = skb_clone(skb, GFP_ATOMIC);
1986 		if (!skb2)
1987 			goto out_unlock;
1988 
1989 		net_timestamp_set(skb2);
1990 
1991 		/* skb->nh should be correctly
1992 		 * set by sender, so that the second statement is
1993 		 * just protection against buggy protocols.
1994 		 */
1995 		skb_reset_mac_header(skb2);
1996 
1997 		if (skb_network_header(skb2) < skb2->data ||
1998 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1999 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2000 					     ntohs(skb2->protocol),
2001 					     dev->name);
2002 			skb_reset_network_header(skb2);
2003 		}
2004 
2005 		skb2->transport_header = skb2->network_header;
2006 		skb2->pkt_type = PACKET_OUTGOING;
2007 		pt_prev = ptype;
2008 	}
2009 
2010 	if (ptype_list == &ptype_all) {
2011 		ptype_list = &dev->ptype_all;
2012 		goto again;
2013 	}
2014 out_unlock:
2015 	if (pt_prev) {
2016 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2017 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2018 		else
2019 			kfree_skb(skb2);
2020 	}
2021 	rcu_read_unlock();
2022 }
2023 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2024 
2025 /**
2026  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2027  * @dev: Network device
2028  * @txq: number of queues available
2029  *
2030  * If real_num_tx_queues is changed the tc mappings may no longer be
2031  * valid. To resolve this verify the tc mapping remains valid and if
2032  * not NULL the mapping. With no priorities mapping to this
2033  * offset/count pair it will no longer be used. In the worst case TC0
2034  * is invalid nothing can be done so disable priority mappings. If is
2035  * expected that drivers will fix this mapping if they can before
2036  * calling netif_set_real_num_tx_queues.
2037  */
2038 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2039 {
2040 	int i;
2041 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2042 
2043 	/* If TC0 is invalidated disable TC mapping */
2044 	if (tc->offset + tc->count > txq) {
2045 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2046 		dev->num_tc = 0;
2047 		return;
2048 	}
2049 
2050 	/* Invalidated prio to tc mappings set to TC0 */
2051 	for (i = 1; i < TC_BITMASK + 1; i++) {
2052 		int q = netdev_get_prio_tc_map(dev, i);
2053 
2054 		tc = &dev->tc_to_txq[q];
2055 		if (tc->offset + tc->count > txq) {
2056 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2057 				i, q);
2058 			netdev_set_prio_tc_map(dev, i, 0);
2059 		}
2060 	}
2061 }
2062 
2063 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2064 {
2065 	if (dev->num_tc) {
2066 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2067 		int i;
2068 
2069 		/* walk through the TCs and see if it falls into any of them */
2070 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2071 			if ((txq - tc->offset) < tc->count)
2072 				return i;
2073 		}
2074 
2075 		/* didn't find it, just return -1 to indicate no match */
2076 		return -1;
2077 	}
2078 
2079 	return 0;
2080 }
2081 EXPORT_SYMBOL(netdev_txq_to_tc);
2082 
2083 #ifdef CONFIG_XPS
2084 struct static_key xps_needed __read_mostly;
2085 EXPORT_SYMBOL(xps_needed);
2086 struct static_key xps_rxqs_needed __read_mostly;
2087 EXPORT_SYMBOL(xps_rxqs_needed);
2088 static DEFINE_MUTEX(xps_map_mutex);
2089 #define xmap_dereference(P)		\
2090 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2091 
2092 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2093 			     int tci, u16 index)
2094 {
2095 	struct xps_map *map = NULL;
2096 	int pos;
2097 
2098 	if (dev_maps)
2099 		map = xmap_dereference(dev_maps->attr_map[tci]);
2100 	if (!map)
2101 		return false;
2102 
2103 	for (pos = map->len; pos--;) {
2104 		if (map->queues[pos] != index)
2105 			continue;
2106 
2107 		if (map->len > 1) {
2108 			map->queues[pos] = map->queues[--map->len];
2109 			break;
2110 		}
2111 
2112 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2113 		kfree_rcu(map, rcu);
2114 		return false;
2115 	}
2116 
2117 	return true;
2118 }
2119 
2120 static bool remove_xps_queue_cpu(struct net_device *dev,
2121 				 struct xps_dev_maps *dev_maps,
2122 				 int cpu, u16 offset, u16 count)
2123 {
2124 	int num_tc = dev->num_tc ? : 1;
2125 	bool active = false;
2126 	int tci;
2127 
2128 	for (tci = cpu * num_tc; num_tc--; tci++) {
2129 		int i, j;
2130 
2131 		for (i = count, j = offset; i--; j++) {
2132 			if (!remove_xps_queue(dev_maps, tci, j))
2133 				break;
2134 		}
2135 
2136 		active |= i < 0;
2137 	}
2138 
2139 	return active;
2140 }
2141 
2142 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2143 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2144 			   u16 offset, u16 count, bool is_rxqs_map)
2145 {
2146 	bool active = false;
2147 	int i, j;
2148 
2149 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2150 	     j < nr_ids;)
2151 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2152 					       count);
2153 	if (!active) {
2154 		if (is_rxqs_map) {
2155 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2156 		} else {
2157 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2158 
2159 			for (i = offset + (count - 1); count--; i--)
2160 				netdev_queue_numa_node_write(
2161 					netdev_get_tx_queue(dev, i),
2162 							NUMA_NO_NODE);
2163 		}
2164 		kfree_rcu(dev_maps, rcu);
2165 	}
2166 }
2167 
2168 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2169 				   u16 count)
2170 {
2171 	const unsigned long *possible_mask = NULL;
2172 	struct xps_dev_maps *dev_maps;
2173 	unsigned int nr_ids;
2174 
2175 	if (!static_key_false(&xps_needed))
2176 		return;
2177 
2178 	cpus_read_lock();
2179 	mutex_lock(&xps_map_mutex);
2180 
2181 	if (static_key_false(&xps_rxqs_needed)) {
2182 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2183 		if (dev_maps) {
2184 			nr_ids = dev->num_rx_queues;
2185 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2186 				       offset, count, true);
2187 		}
2188 	}
2189 
2190 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2191 	if (!dev_maps)
2192 		goto out_no_maps;
2193 
2194 	if (num_possible_cpus() > 1)
2195 		possible_mask = cpumask_bits(cpu_possible_mask);
2196 	nr_ids = nr_cpu_ids;
2197 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2198 		       false);
2199 
2200 out_no_maps:
2201 	if (static_key_enabled(&xps_rxqs_needed))
2202 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2203 
2204 	static_key_slow_dec_cpuslocked(&xps_needed);
2205 	mutex_unlock(&xps_map_mutex);
2206 	cpus_read_unlock();
2207 }
2208 
2209 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2210 {
2211 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2212 }
2213 
2214 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2215 				      u16 index, bool is_rxqs_map)
2216 {
2217 	struct xps_map *new_map;
2218 	int alloc_len = XPS_MIN_MAP_ALLOC;
2219 	int i, pos;
2220 
2221 	for (pos = 0; map && pos < map->len; pos++) {
2222 		if (map->queues[pos] != index)
2223 			continue;
2224 		return map;
2225 	}
2226 
2227 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2228 	if (map) {
2229 		if (pos < map->alloc_len)
2230 			return map;
2231 
2232 		alloc_len = map->alloc_len * 2;
2233 	}
2234 
2235 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2236 	 *  map
2237 	 */
2238 	if (is_rxqs_map)
2239 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2240 	else
2241 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2242 				       cpu_to_node(attr_index));
2243 	if (!new_map)
2244 		return NULL;
2245 
2246 	for (i = 0; i < pos; i++)
2247 		new_map->queues[i] = map->queues[i];
2248 	new_map->alloc_len = alloc_len;
2249 	new_map->len = pos;
2250 
2251 	return new_map;
2252 }
2253 
2254 /* Must be called under cpus_read_lock */
2255 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2256 			  u16 index, bool is_rxqs_map)
2257 {
2258 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2259 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2260 	int i, j, tci, numa_node_id = -2;
2261 	int maps_sz, num_tc = 1, tc = 0;
2262 	struct xps_map *map, *new_map;
2263 	bool active = false;
2264 	unsigned int nr_ids;
2265 
2266 	if (dev->num_tc) {
2267 		/* Do not allow XPS on subordinate device directly */
2268 		num_tc = dev->num_tc;
2269 		if (num_tc < 0)
2270 			return -EINVAL;
2271 
2272 		/* If queue belongs to subordinate dev use its map */
2273 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2274 
2275 		tc = netdev_txq_to_tc(dev, index);
2276 		if (tc < 0)
2277 			return -EINVAL;
2278 	}
2279 
2280 	mutex_lock(&xps_map_mutex);
2281 	if (is_rxqs_map) {
2282 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2283 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2284 		nr_ids = dev->num_rx_queues;
2285 	} else {
2286 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2287 		if (num_possible_cpus() > 1) {
2288 			online_mask = cpumask_bits(cpu_online_mask);
2289 			possible_mask = cpumask_bits(cpu_possible_mask);
2290 		}
2291 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2292 		nr_ids = nr_cpu_ids;
2293 	}
2294 
2295 	if (maps_sz < L1_CACHE_BYTES)
2296 		maps_sz = L1_CACHE_BYTES;
2297 
2298 	/* allocate memory for queue storage */
2299 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2300 	     j < nr_ids;) {
2301 		if (!new_dev_maps)
2302 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2303 		if (!new_dev_maps) {
2304 			mutex_unlock(&xps_map_mutex);
2305 			return -ENOMEM;
2306 		}
2307 
2308 		tci = j * num_tc + tc;
2309 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2310 				 NULL;
2311 
2312 		map = expand_xps_map(map, j, index, is_rxqs_map);
2313 		if (!map)
2314 			goto error;
2315 
2316 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2317 	}
2318 
2319 	if (!new_dev_maps)
2320 		goto out_no_new_maps;
2321 
2322 	static_key_slow_inc_cpuslocked(&xps_needed);
2323 	if (is_rxqs_map)
2324 		static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2325 
2326 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2327 	     j < nr_ids;) {
2328 		/* copy maps belonging to foreign traffic classes */
2329 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2330 			/* fill in the new device map from the old device map */
2331 			map = xmap_dereference(dev_maps->attr_map[tci]);
2332 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2333 		}
2334 
2335 		/* We need to explicitly update tci as prevous loop
2336 		 * could break out early if dev_maps is NULL.
2337 		 */
2338 		tci = j * num_tc + tc;
2339 
2340 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2341 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2342 			/* add tx-queue to CPU/rx-queue maps */
2343 			int pos = 0;
2344 
2345 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2346 			while ((pos < map->len) && (map->queues[pos] != index))
2347 				pos++;
2348 
2349 			if (pos == map->len)
2350 				map->queues[map->len++] = index;
2351 #ifdef CONFIG_NUMA
2352 			if (!is_rxqs_map) {
2353 				if (numa_node_id == -2)
2354 					numa_node_id = cpu_to_node(j);
2355 				else if (numa_node_id != cpu_to_node(j))
2356 					numa_node_id = -1;
2357 			}
2358 #endif
2359 		} else if (dev_maps) {
2360 			/* fill in the new device map from the old device map */
2361 			map = xmap_dereference(dev_maps->attr_map[tci]);
2362 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2363 		}
2364 
2365 		/* copy maps belonging to foreign traffic classes */
2366 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2367 			/* fill in the new device map from the old device map */
2368 			map = xmap_dereference(dev_maps->attr_map[tci]);
2369 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2370 		}
2371 	}
2372 
2373 	if (is_rxqs_map)
2374 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2375 	else
2376 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2377 
2378 	/* Cleanup old maps */
2379 	if (!dev_maps)
2380 		goto out_no_old_maps;
2381 
2382 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2383 	     j < nr_ids;) {
2384 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2385 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2386 			map = xmap_dereference(dev_maps->attr_map[tci]);
2387 			if (map && map != new_map)
2388 				kfree_rcu(map, rcu);
2389 		}
2390 	}
2391 
2392 	kfree_rcu(dev_maps, rcu);
2393 
2394 out_no_old_maps:
2395 	dev_maps = new_dev_maps;
2396 	active = true;
2397 
2398 out_no_new_maps:
2399 	if (!is_rxqs_map) {
2400 		/* update Tx queue numa node */
2401 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2402 					     (numa_node_id >= 0) ?
2403 					     numa_node_id : NUMA_NO_NODE);
2404 	}
2405 
2406 	if (!dev_maps)
2407 		goto out_no_maps;
2408 
2409 	/* removes tx-queue from unused CPUs/rx-queues */
2410 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2411 	     j < nr_ids;) {
2412 		for (i = tc, tci = j * num_tc; i--; tci++)
2413 			active |= remove_xps_queue(dev_maps, tci, index);
2414 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2415 		    !netif_attr_test_online(j, online_mask, nr_ids))
2416 			active |= remove_xps_queue(dev_maps, tci, index);
2417 		for (i = num_tc - tc, tci++; --i; tci++)
2418 			active |= remove_xps_queue(dev_maps, tci, index);
2419 	}
2420 
2421 	/* free map if not active */
2422 	if (!active) {
2423 		if (is_rxqs_map)
2424 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2425 		else
2426 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2427 		kfree_rcu(dev_maps, rcu);
2428 	}
2429 
2430 out_no_maps:
2431 	mutex_unlock(&xps_map_mutex);
2432 
2433 	return 0;
2434 error:
2435 	/* remove any maps that we added */
2436 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2437 	     j < nr_ids;) {
2438 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2439 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2440 			map = dev_maps ?
2441 			      xmap_dereference(dev_maps->attr_map[tci]) :
2442 			      NULL;
2443 			if (new_map && new_map != map)
2444 				kfree(new_map);
2445 		}
2446 	}
2447 
2448 	mutex_unlock(&xps_map_mutex);
2449 
2450 	kfree(new_dev_maps);
2451 	return -ENOMEM;
2452 }
2453 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2454 
2455 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2456 			u16 index)
2457 {
2458 	int ret;
2459 
2460 	cpus_read_lock();
2461 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2462 	cpus_read_unlock();
2463 
2464 	return ret;
2465 }
2466 EXPORT_SYMBOL(netif_set_xps_queue);
2467 
2468 #endif
2469 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2470 {
2471 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2472 
2473 	/* Unbind any subordinate channels */
2474 	while (txq-- != &dev->_tx[0]) {
2475 		if (txq->sb_dev)
2476 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2477 	}
2478 }
2479 
2480 void netdev_reset_tc(struct net_device *dev)
2481 {
2482 #ifdef CONFIG_XPS
2483 	netif_reset_xps_queues_gt(dev, 0);
2484 #endif
2485 	netdev_unbind_all_sb_channels(dev);
2486 
2487 	/* Reset TC configuration of device */
2488 	dev->num_tc = 0;
2489 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2490 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2491 }
2492 EXPORT_SYMBOL(netdev_reset_tc);
2493 
2494 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2495 {
2496 	if (tc >= dev->num_tc)
2497 		return -EINVAL;
2498 
2499 #ifdef CONFIG_XPS
2500 	netif_reset_xps_queues(dev, offset, count);
2501 #endif
2502 	dev->tc_to_txq[tc].count = count;
2503 	dev->tc_to_txq[tc].offset = offset;
2504 	return 0;
2505 }
2506 EXPORT_SYMBOL(netdev_set_tc_queue);
2507 
2508 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2509 {
2510 	if (num_tc > TC_MAX_QUEUE)
2511 		return -EINVAL;
2512 
2513 #ifdef CONFIG_XPS
2514 	netif_reset_xps_queues_gt(dev, 0);
2515 #endif
2516 	netdev_unbind_all_sb_channels(dev);
2517 
2518 	dev->num_tc = num_tc;
2519 	return 0;
2520 }
2521 EXPORT_SYMBOL(netdev_set_num_tc);
2522 
2523 void netdev_unbind_sb_channel(struct net_device *dev,
2524 			      struct net_device *sb_dev)
2525 {
2526 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2527 
2528 #ifdef CONFIG_XPS
2529 	netif_reset_xps_queues_gt(sb_dev, 0);
2530 #endif
2531 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2532 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2533 
2534 	while (txq-- != &dev->_tx[0]) {
2535 		if (txq->sb_dev == sb_dev)
2536 			txq->sb_dev = NULL;
2537 	}
2538 }
2539 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2540 
2541 int netdev_bind_sb_channel_queue(struct net_device *dev,
2542 				 struct net_device *sb_dev,
2543 				 u8 tc, u16 count, u16 offset)
2544 {
2545 	/* Make certain the sb_dev and dev are already configured */
2546 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2547 		return -EINVAL;
2548 
2549 	/* We cannot hand out queues we don't have */
2550 	if ((offset + count) > dev->real_num_tx_queues)
2551 		return -EINVAL;
2552 
2553 	/* Record the mapping */
2554 	sb_dev->tc_to_txq[tc].count = count;
2555 	sb_dev->tc_to_txq[tc].offset = offset;
2556 
2557 	/* Provide a way for Tx queue to find the tc_to_txq map or
2558 	 * XPS map for itself.
2559 	 */
2560 	while (count--)
2561 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2562 
2563 	return 0;
2564 }
2565 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2566 
2567 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2568 {
2569 	/* Do not use a multiqueue device to represent a subordinate channel */
2570 	if (netif_is_multiqueue(dev))
2571 		return -ENODEV;
2572 
2573 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2574 	 * Channel 0 is meant to be "native" mode and used only to represent
2575 	 * the main root device. We allow writing 0 to reset the device back
2576 	 * to normal mode after being used as a subordinate channel.
2577 	 */
2578 	if (channel > S16_MAX)
2579 		return -EINVAL;
2580 
2581 	dev->num_tc = -channel;
2582 
2583 	return 0;
2584 }
2585 EXPORT_SYMBOL(netdev_set_sb_channel);
2586 
2587 /*
2588  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2589  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2590  */
2591 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2592 {
2593 	bool disabling;
2594 	int rc;
2595 
2596 	disabling = txq < dev->real_num_tx_queues;
2597 
2598 	if (txq < 1 || txq > dev->num_tx_queues)
2599 		return -EINVAL;
2600 
2601 	if (dev->reg_state == NETREG_REGISTERED ||
2602 	    dev->reg_state == NETREG_UNREGISTERING) {
2603 		ASSERT_RTNL();
2604 
2605 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2606 						  txq);
2607 		if (rc)
2608 			return rc;
2609 
2610 		if (dev->num_tc)
2611 			netif_setup_tc(dev, txq);
2612 
2613 		dev->real_num_tx_queues = txq;
2614 
2615 		if (disabling) {
2616 			synchronize_net();
2617 			qdisc_reset_all_tx_gt(dev, txq);
2618 #ifdef CONFIG_XPS
2619 			netif_reset_xps_queues_gt(dev, txq);
2620 #endif
2621 		}
2622 	} else {
2623 		dev->real_num_tx_queues = txq;
2624 	}
2625 
2626 	return 0;
2627 }
2628 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2629 
2630 #ifdef CONFIG_SYSFS
2631 /**
2632  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2633  *	@dev: Network device
2634  *	@rxq: Actual number of RX queues
2635  *
2636  *	This must be called either with the rtnl_lock held or before
2637  *	registration of the net device.  Returns 0 on success, or a
2638  *	negative error code.  If called before registration, it always
2639  *	succeeds.
2640  */
2641 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2642 {
2643 	int rc;
2644 
2645 	if (rxq < 1 || rxq > dev->num_rx_queues)
2646 		return -EINVAL;
2647 
2648 	if (dev->reg_state == NETREG_REGISTERED) {
2649 		ASSERT_RTNL();
2650 
2651 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2652 						  rxq);
2653 		if (rc)
2654 			return rc;
2655 	}
2656 
2657 	dev->real_num_rx_queues = rxq;
2658 	return 0;
2659 }
2660 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2661 #endif
2662 
2663 /**
2664  * netif_get_num_default_rss_queues - default number of RSS queues
2665  *
2666  * This routine should set an upper limit on the number of RSS queues
2667  * used by default by multiqueue devices.
2668  */
2669 int netif_get_num_default_rss_queues(void)
2670 {
2671 	return is_kdump_kernel() ?
2672 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2673 }
2674 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2675 
2676 static void __netif_reschedule(struct Qdisc *q)
2677 {
2678 	struct softnet_data *sd;
2679 	unsigned long flags;
2680 
2681 	local_irq_save(flags);
2682 	sd = this_cpu_ptr(&softnet_data);
2683 	q->next_sched = NULL;
2684 	*sd->output_queue_tailp = q;
2685 	sd->output_queue_tailp = &q->next_sched;
2686 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2687 	local_irq_restore(flags);
2688 }
2689 
2690 void __netif_schedule(struct Qdisc *q)
2691 {
2692 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2693 		__netif_reschedule(q);
2694 }
2695 EXPORT_SYMBOL(__netif_schedule);
2696 
2697 struct dev_kfree_skb_cb {
2698 	enum skb_free_reason reason;
2699 };
2700 
2701 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2702 {
2703 	return (struct dev_kfree_skb_cb *)skb->cb;
2704 }
2705 
2706 void netif_schedule_queue(struct netdev_queue *txq)
2707 {
2708 	rcu_read_lock();
2709 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2710 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2711 
2712 		__netif_schedule(q);
2713 	}
2714 	rcu_read_unlock();
2715 }
2716 EXPORT_SYMBOL(netif_schedule_queue);
2717 
2718 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2719 {
2720 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2721 		struct Qdisc *q;
2722 
2723 		rcu_read_lock();
2724 		q = rcu_dereference(dev_queue->qdisc);
2725 		__netif_schedule(q);
2726 		rcu_read_unlock();
2727 	}
2728 }
2729 EXPORT_SYMBOL(netif_tx_wake_queue);
2730 
2731 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2732 {
2733 	unsigned long flags;
2734 
2735 	if (unlikely(!skb))
2736 		return;
2737 
2738 	if (likely(refcount_read(&skb->users) == 1)) {
2739 		smp_rmb();
2740 		refcount_set(&skb->users, 0);
2741 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2742 		return;
2743 	}
2744 	get_kfree_skb_cb(skb)->reason = reason;
2745 	local_irq_save(flags);
2746 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2747 	__this_cpu_write(softnet_data.completion_queue, skb);
2748 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2749 	local_irq_restore(flags);
2750 }
2751 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2752 
2753 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2754 {
2755 	if (in_irq() || irqs_disabled())
2756 		__dev_kfree_skb_irq(skb, reason);
2757 	else
2758 		dev_kfree_skb(skb);
2759 }
2760 EXPORT_SYMBOL(__dev_kfree_skb_any);
2761 
2762 
2763 /**
2764  * netif_device_detach - mark device as removed
2765  * @dev: network device
2766  *
2767  * Mark device as removed from system and therefore no longer available.
2768  */
2769 void netif_device_detach(struct net_device *dev)
2770 {
2771 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2772 	    netif_running(dev)) {
2773 		netif_tx_stop_all_queues(dev);
2774 	}
2775 }
2776 EXPORT_SYMBOL(netif_device_detach);
2777 
2778 /**
2779  * netif_device_attach - mark device as attached
2780  * @dev: network device
2781  *
2782  * Mark device as attached from system and restart if needed.
2783  */
2784 void netif_device_attach(struct net_device *dev)
2785 {
2786 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2787 	    netif_running(dev)) {
2788 		netif_tx_wake_all_queues(dev);
2789 		__netdev_watchdog_up(dev);
2790 	}
2791 }
2792 EXPORT_SYMBOL(netif_device_attach);
2793 
2794 /*
2795  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2796  * to be used as a distribution range.
2797  */
2798 static u16 skb_tx_hash(const struct net_device *dev,
2799 		       const struct net_device *sb_dev,
2800 		       struct sk_buff *skb)
2801 {
2802 	u32 hash;
2803 	u16 qoffset = 0;
2804 	u16 qcount = dev->real_num_tx_queues;
2805 
2806 	if (dev->num_tc) {
2807 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2808 
2809 		qoffset = sb_dev->tc_to_txq[tc].offset;
2810 		qcount = sb_dev->tc_to_txq[tc].count;
2811 	}
2812 
2813 	if (skb_rx_queue_recorded(skb)) {
2814 		hash = skb_get_rx_queue(skb);
2815 		while (unlikely(hash >= qcount))
2816 			hash -= qcount;
2817 		return hash + qoffset;
2818 	}
2819 
2820 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2821 }
2822 
2823 static void skb_warn_bad_offload(const struct sk_buff *skb)
2824 {
2825 	static const netdev_features_t null_features;
2826 	struct net_device *dev = skb->dev;
2827 	const char *name = "";
2828 
2829 	if (!net_ratelimit())
2830 		return;
2831 
2832 	if (dev) {
2833 		if (dev->dev.parent)
2834 			name = dev_driver_string(dev->dev.parent);
2835 		else
2836 			name = netdev_name(dev);
2837 	}
2838 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2839 	     "gso_type=%d ip_summed=%d\n",
2840 	     name, dev ? &dev->features : &null_features,
2841 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2842 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2843 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2844 }
2845 
2846 /*
2847  * Invalidate hardware checksum when packet is to be mangled, and
2848  * complete checksum manually on outgoing path.
2849  */
2850 int skb_checksum_help(struct sk_buff *skb)
2851 {
2852 	__wsum csum;
2853 	int ret = 0, offset;
2854 
2855 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2856 		goto out_set_summed;
2857 
2858 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2859 		skb_warn_bad_offload(skb);
2860 		return -EINVAL;
2861 	}
2862 
2863 	/* Before computing a checksum, we should make sure no frag could
2864 	 * be modified by an external entity : checksum could be wrong.
2865 	 */
2866 	if (skb_has_shared_frag(skb)) {
2867 		ret = __skb_linearize(skb);
2868 		if (ret)
2869 			goto out;
2870 	}
2871 
2872 	offset = skb_checksum_start_offset(skb);
2873 	BUG_ON(offset >= skb_headlen(skb));
2874 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2875 
2876 	offset += skb->csum_offset;
2877 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2878 
2879 	if (skb_cloned(skb) &&
2880 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2881 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2882 		if (ret)
2883 			goto out;
2884 	}
2885 
2886 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2887 out_set_summed:
2888 	skb->ip_summed = CHECKSUM_NONE;
2889 out:
2890 	return ret;
2891 }
2892 EXPORT_SYMBOL(skb_checksum_help);
2893 
2894 int skb_crc32c_csum_help(struct sk_buff *skb)
2895 {
2896 	__le32 crc32c_csum;
2897 	int ret = 0, offset, start;
2898 
2899 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2900 		goto out;
2901 
2902 	if (unlikely(skb_is_gso(skb)))
2903 		goto out;
2904 
2905 	/* Before computing a checksum, we should make sure no frag could
2906 	 * be modified by an external entity : checksum could be wrong.
2907 	 */
2908 	if (unlikely(skb_has_shared_frag(skb))) {
2909 		ret = __skb_linearize(skb);
2910 		if (ret)
2911 			goto out;
2912 	}
2913 	start = skb_checksum_start_offset(skb);
2914 	offset = start + offsetof(struct sctphdr, checksum);
2915 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2916 		ret = -EINVAL;
2917 		goto out;
2918 	}
2919 	if (skb_cloned(skb) &&
2920 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2921 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2922 		if (ret)
2923 			goto out;
2924 	}
2925 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2926 						  skb->len - start, ~(__u32)0,
2927 						  crc32c_csum_stub));
2928 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2929 	skb->ip_summed = CHECKSUM_NONE;
2930 	skb->csum_not_inet = 0;
2931 out:
2932 	return ret;
2933 }
2934 
2935 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2936 {
2937 	__be16 type = skb->protocol;
2938 
2939 	/* Tunnel gso handlers can set protocol to ethernet. */
2940 	if (type == htons(ETH_P_TEB)) {
2941 		struct ethhdr *eth;
2942 
2943 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2944 			return 0;
2945 
2946 		eth = (struct ethhdr *)skb->data;
2947 		type = eth->h_proto;
2948 	}
2949 
2950 	return __vlan_get_protocol(skb, type, depth);
2951 }
2952 
2953 /**
2954  *	skb_mac_gso_segment - mac layer segmentation handler.
2955  *	@skb: buffer to segment
2956  *	@features: features for the output path (see dev->features)
2957  */
2958 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2959 				    netdev_features_t features)
2960 {
2961 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2962 	struct packet_offload *ptype;
2963 	int vlan_depth = skb->mac_len;
2964 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2965 
2966 	if (unlikely(!type))
2967 		return ERR_PTR(-EINVAL);
2968 
2969 	__skb_pull(skb, vlan_depth);
2970 
2971 	rcu_read_lock();
2972 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2973 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2974 			segs = ptype->callbacks.gso_segment(skb, features);
2975 			break;
2976 		}
2977 	}
2978 	rcu_read_unlock();
2979 
2980 	__skb_push(skb, skb->data - skb_mac_header(skb));
2981 
2982 	return segs;
2983 }
2984 EXPORT_SYMBOL(skb_mac_gso_segment);
2985 
2986 
2987 /* openvswitch calls this on rx path, so we need a different check.
2988  */
2989 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2990 {
2991 	if (tx_path)
2992 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2993 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2994 
2995 	return skb->ip_summed == CHECKSUM_NONE;
2996 }
2997 
2998 /**
2999  *	__skb_gso_segment - Perform segmentation on skb.
3000  *	@skb: buffer to segment
3001  *	@features: features for the output path (see dev->features)
3002  *	@tx_path: whether it is called in TX path
3003  *
3004  *	This function segments the given skb and returns a list of segments.
3005  *
3006  *	It may return NULL if the skb requires no segmentation.  This is
3007  *	only possible when GSO is used for verifying header integrity.
3008  *
3009  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3010  */
3011 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3012 				  netdev_features_t features, bool tx_path)
3013 {
3014 	struct sk_buff *segs;
3015 
3016 	if (unlikely(skb_needs_check(skb, tx_path))) {
3017 		int err;
3018 
3019 		/* We're going to init ->check field in TCP or UDP header */
3020 		err = skb_cow_head(skb, 0);
3021 		if (err < 0)
3022 			return ERR_PTR(err);
3023 	}
3024 
3025 	/* Only report GSO partial support if it will enable us to
3026 	 * support segmentation on this frame without needing additional
3027 	 * work.
3028 	 */
3029 	if (features & NETIF_F_GSO_PARTIAL) {
3030 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3031 		struct net_device *dev = skb->dev;
3032 
3033 		partial_features |= dev->features & dev->gso_partial_features;
3034 		if (!skb_gso_ok(skb, features | partial_features))
3035 			features &= ~NETIF_F_GSO_PARTIAL;
3036 	}
3037 
3038 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3039 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3040 
3041 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3042 	SKB_GSO_CB(skb)->encap_level = 0;
3043 
3044 	skb_reset_mac_header(skb);
3045 	skb_reset_mac_len(skb);
3046 
3047 	segs = skb_mac_gso_segment(skb, features);
3048 
3049 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3050 		skb_warn_bad_offload(skb);
3051 
3052 	return segs;
3053 }
3054 EXPORT_SYMBOL(__skb_gso_segment);
3055 
3056 /* Take action when hardware reception checksum errors are detected. */
3057 #ifdef CONFIG_BUG
3058 void netdev_rx_csum_fault(struct net_device *dev)
3059 {
3060 	if (net_ratelimit()) {
3061 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3062 		dump_stack();
3063 	}
3064 }
3065 EXPORT_SYMBOL(netdev_rx_csum_fault);
3066 #endif
3067 
3068 /* XXX: check that highmem exists at all on the given machine. */
3069 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3070 {
3071 #ifdef CONFIG_HIGHMEM
3072 	int i;
3073 
3074 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3075 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3076 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3077 
3078 			if (PageHighMem(skb_frag_page(frag)))
3079 				return 1;
3080 		}
3081 	}
3082 #endif
3083 	return 0;
3084 }
3085 
3086 /* If MPLS offload request, verify we are testing hardware MPLS features
3087  * instead of standard features for the netdev.
3088  */
3089 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3090 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3091 					   netdev_features_t features,
3092 					   __be16 type)
3093 {
3094 	if (eth_p_mpls(type))
3095 		features &= skb->dev->mpls_features;
3096 
3097 	return features;
3098 }
3099 #else
3100 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3101 					   netdev_features_t features,
3102 					   __be16 type)
3103 {
3104 	return features;
3105 }
3106 #endif
3107 
3108 static netdev_features_t harmonize_features(struct sk_buff *skb,
3109 	netdev_features_t features)
3110 {
3111 	int tmp;
3112 	__be16 type;
3113 
3114 	type = skb_network_protocol(skb, &tmp);
3115 	features = net_mpls_features(skb, features, type);
3116 
3117 	if (skb->ip_summed != CHECKSUM_NONE &&
3118 	    !can_checksum_protocol(features, type)) {
3119 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3120 	}
3121 	if (illegal_highdma(skb->dev, skb))
3122 		features &= ~NETIF_F_SG;
3123 
3124 	return features;
3125 }
3126 
3127 netdev_features_t passthru_features_check(struct sk_buff *skb,
3128 					  struct net_device *dev,
3129 					  netdev_features_t features)
3130 {
3131 	return features;
3132 }
3133 EXPORT_SYMBOL(passthru_features_check);
3134 
3135 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3136 					     struct net_device *dev,
3137 					     netdev_features_t features)
3138 {
3139 	return vlan_features_check(skb, features);
3140 }
3141 
3142 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3143 					    struct net_device *dev,
3144 					    netdev_features_t features)
3145 {
3146 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3147 
3148 	if (gso_segs > dev->gso_max_segs)
3149 		return features & ~NETIF_F_GSO_MASK;
3150 
3151 	/* Support for GSO partial features requires software
3152 	 * intervention before we can actually process the packets
3153 	 * so we need to strip support for any partial features now
3154 	 * and we can pull them back in after we have partially
3155 	 * segmented the frame.
3156 	 */
3157 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3158 		features &= ~dev->gso_partial_features;
3159 
3160 	/* Make sure to clear the IPv4 ID mangling feature if the
3161 	 * IPv4 header has the potential to be fragmented.
3162 	 */
3163 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3164 		struct iphdr *iph = skb->encapsulation ?
3165 				    inner_ip_hdr(skb) : ip_hdr(skb);
3166 
3167 		if (!(iph->frag_off & htons(IP_DF)))
3168 			features &= ~NETIF_F_TSO_MANGLEID;
3169 	}
3170 
3171 	return features;
3172 }
3173 
3174 netdev_features_t netif_skb_features(struct sk_buff *skb)
3175 {
3176 	struct net_device *dev = skb->dev;
3177 	netdev_features_t features = dev->features;
3178 
3179 	if (skb_is_gso(skb))
3180 		features = gso_features_check(skb, dev, features);
3181 
3182 	/* If encapsulation offload request, verify we are testing
3183 	 * hardware encapsulation features instead of standard
3184 	 * features for the netdev
3185 	 */
3186 	if (skb->encapsulation)
3187 		features &= dev->hw_enc_features;
3188 
3189 	if (skb_vlan_tagged(skb))
3190 		features = netdev_intersect_features(features,
3191 						     dev->vlan_features |
3192 						     NETIF_F_HW_VLAN_CTAG_TX |
3193 						     NETIF_F_HW_VLAN_STAG_TX);
3194 
3195 	if (dev->netdev_ops->ndo_features_check)
3196 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3197 								features);
3198 	else
3199 		features &= dflt_features_check(skb, dev, features);
3200 
3201 	return harmonize_features(skb, features);
3202 }
3203 EXPORT_SYMBOL(netif_skb_features);
3204 
3205 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3206 		    struct netdev_queue *txq, bool more)
3207 {
3208 	unsigned int len;
3209 	int rc;
3210 
3211 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3212 		dev_queue_xmit_nit(skb, dev);
3213 
3214 	len = skb->len;
3215 	trace_net_dev_start_xmit(skb, dev);
3216 	rc = netdev_start_xmit(skb, dev, txq, more);
3217 	trace_net_dev_xmit(skb, rc, dev, len);
3218 
3219 	return rc;
3220 }
3221 
3222 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3223 				    struct netdev_queue *txq, int *ret)
3224 {
3225 	struct sk_buff *skb = first;
3226 	int rc = NETDEV_TX_OK;
3227 
3228 	while (skb) {
3229 		struct sk_buff *next = skb->next;
3230 
3231 		skb->next = NULL;
3232 		rc = xmit_one(skb, dev, txq, next != NULL);
3233 		if (unlikely(!dev_xmit_complete(rc))) {
3234 			skb->next = next;
3235 			goto out;
3236 		}
3237 
3238 		skb = next;
3239 		if (netif_xmit_stopped(txq) && skb) {
3240 			rc = NETDEV_TX_BUSY;
3241 			break;
3242 		}
3243 	}
3244 
3245 out:
3246 	*ret = rc;
3247 	return skb;
3248 }
3249 
3250 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3251 					  netdev_features_t features)
3252 {
3253 	if (skb_vlan_tag_present(skb) &&
3254 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3255 		skb = __vlan_hwaccel_push_inside(skb);
3256 	return skb;
3257 }
3258 
3259 int skb_csum_hwoffload_help(struct sk_buff *skb,
3260 			    const netdev_features_t features)
3261 {
3262 	if (unlikely(skb->csum_not_inet))
3263 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3264 			skb_crc32c_csum_help(skb);
3265 
3266 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3267 }
3268 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3269 
3270 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3271 {
3272 	netdev_features_t features;
3273 
3274 	features = netif_skb_features(skb);
3275 	skb = validate_xmit_vlan(skb, features);
3276 	if (unlikely(!skb))
3277 		goto out_null;
3278 
3279 	skb = sk_validate_xmit_skb(skb, dev);
3280 	if (unlikely(!skb))
3281 		goto out_null;
3282 
3283 	if (netif_needs_gso(skb, features)) {
3284 		struct sk_buff *segs;
3285 
3286 		segs = skb_gso_segment(skb, features);
3287 		if (IS_ERR(segs)) {
3288 			goto out_kfree_skb;
3289 		} else if (segs) {
3290 			consume_skb(skb);
3291 			skb = segs;
3292 		}
3293 	} else {
3294 		if (skb_needs_linearize(skb, features) &&
3295 		    __skb_linearize(skb))
3296 			goto out_kfree_skb;
3297 
3298 		/* If packet is not checksummed and device does not
3299 		 * support checksumming for this protocol, complete
3300 		 * checksumming here.
3301 		 */
3302 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3303 			if (skb->encapsulation)
3304 				skb_set_inner_transport_header(skb,
3305 							       skb_checksum_start_offset(skb));
3306 			else
3307 				skb_set_transport_header(skb,
3308 							 skb_checksum_start_offset(skb));
3309 			if (skb_csum_hwoffload_help(skb, features))
3310 				goto out_kfree_skb;
3311 		}
3312 	}
3313 
3314 	skb = validate_xmit_xfrm(skb, features, again);
3315 
3316 	return skb;
3317 
3318 out_kfree_skb:
3319 	kfree_skb(skb);
3320 out_null:
3321 	atomic_long_inc(&dev->tx_dropped);
3322 	return NULL;
3323 }
3324 
3325 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3326 {
3327 	struct sk_buff *next, *head = NULL, *tail;
3328 
3329 	for (; skb != NULL; skb = next) {
3330 		next = skb->next;
3331 		skb->next = NULL;
3332 
3333 		/* in case skb wont be segmented, point to itself */
3334 		skb->prev = skb;
3335 
3336 		skb = validate_xmit_skb(skb, dev, again);
3337 		if (!skb)
3338 			continue;
3339 
3340 		if (!head)
3341 			head = skb;
3342 		else
3343 			tail->next = skb;
3344 		/* If skb was segmented, skb->prev points to
3345 		 * the last segment. If not, it still contains skb.
3346 		 */
3347 		tail = skb->prev;
3348 	}
3349 	return head;
3350 }
3351 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3352 
3353 static void qdisc_pkt_len_init(struct sk_buff *skb)
3354 {
3355 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3356 
3357 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3358 
3359 	/* To get more precise estimation of bytes sent on wire,
3360 	 * we add to pkt_len the headers size of all segments
3361 	 */
3362 	if (shinfo->gso_size)  {
3363 		unsigned int hdr_len;
3364 		u16 gso_segs = shinfo->gso_segs;
3365 
3366 		/* mac layer + network layer */
3367 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3368 
3369 		/* + transport layer */
3370 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3371 			const struct tcphdr *th;
3372 			struct tcphdr _tcphdr;
3373 
3374 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3375 						sizeof(_tcphdr), &_tcphdr);
3376 			if (likely(th))
3377 				hdr_len += __tcp_hdrlen(th);
3378 		} else {
3379 			struct udphdr _udphdr;
3380 
3381 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3382 					       sizeof(_udphdr), &_udphdr))
3383 				hdr_len += sizeof(struct udphdr);
3384 		}
3385 
3386 		if (shinfo->gso_type & SKB_GSO_DODGY)
3387 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3388 						shinfo->gso_size);
3389 
3390 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3391 	}
3392 }
3393 
3394 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3395 				 struct net_device *dev,
3396 				 struct netdev_queue *txq)
3397 {
3398 	spinlock_t *root_lock = qdisc_lock(q);
3399 	struct sk_buff *to_free = NULL;
3400 	bool contended;
3401 	int rc;
3402 
3403 	qdisc_calculate_pkt_len(skb, q);
3404 
3405 	if (q->flags & TCQ_F_NOLOCK) {
3406 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3407 			__qdisc_drop(skb, &to_free);
3408 			rc = NET_XMIT_DROP;
3409 		} else {
3410 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3411 			qdisc_run(q);
3412 		}
3413 
3414 		if (unlikely(to_free))
3415 			kfree_skb_list(to_free);
3416 		return rc;
3417 	}
3418 
3419 	/*
3420 	 * Heuristic to force contended enqueues to serialize on a
3421 	 * separate lock before trying to get qdisc main lock.
3422 	 * This permits qdisc->running owner to get the lock more
3423 	 * often and dequeue packets faster.
3424 	 */
3425 	contended = qdisc_is_running(q);
3426 	if (unlikely(contended))
3427 		spin_lock(&q->busylock);
3428 
3429 	spin_lock(root_lock);
3430 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3431 		__qdisc_drop(skb, &to_free);
3432 		rc = NET_XMIT_DROP;
3433 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3434 		   qdisc_run_begin(q)) {
3435 		/*
3436 		 * This is a work-conserving queue; there are no old skbs
3437 		 * waiting to be sent out; and the qdisc is not running -
3438 		 * xmit the skb directly.
3439 		 */
3440 
3441 		qdisc_bstats_update(q, skb);
3442 
3443 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3444 			if (unlikely(contended)) {
3445 				spin_unlock(&q->busylock);
3446 				contended = false;
3447 			}
3448 			__qdisc_run(q);
3449 		}
3450 
3451 		qdisc_run_end(q);
3452 		rc = NET_XMIT_SUCCESS;
3453 	} else {
3454 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3455 		if (qdisc_run_begin(q)) {
3456 			if (unlikely(contended)) {
3457 				spin_unlock(&q->busylock);
3458 				contended = false;
3459 			}
3460 			__qdisc_run(q);
3461 			qdisc_run_end(q);
3462 		}
3463 	}
3464 	spin_unlock(root_lock);
3465 	if (unlikely(to_free))
3466 		kfree_skb_list(to_free);
3467 	if (unlikely(contended))
3468 		spin_unlock(&q->busylock);
3469 	return rc;
3470 }
3471 
3472 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3473 static void skb_update_prio(struct sk_buff *skb)
3474 {
3475 	const struct netprio_map *map;
3476 	const struct sock *sk;
3477 	unsigned int prioidx;
3478 
3479 	if (skb->priority)
3480 		return;
3481 	map = rcu_dereference_bh(skb->dev->priomap);
3482 	if (!map)
3483 		return;
3484 	sk = skb_to_full_sk(skb);
3485 	if (!sk)
3486 		return;
3487 
3488 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3489 
3490 	if (prioidx < map->priomap_len)
3491 		skb->priority = map->priomap[prioidx];
3492 }
3493 #else
3494 #define skb_update_prio(skb)
3495 #endif
3496 
3497 DEFINE_PER_CPU(int, xmit_recursion);
3498 EXPORT_SYMBOL(xmit_recursion);
3499 
3500 /**
3501  *	dev_loopback_xmit - loop back @skb
3502  *	@net: network namespace this loopback is happening in
3503  *	@sk:  sk needed to be a netfilter okfn
3504  *	@skb: buffer to transmit
3505  */
3506 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3507 {
3508 	skb_reset_mac_header(skb);
3509 	__skb_pull(skb, skb_network_offset(skb));
3510 	skb->pkt_type = PACKET_LOOPBACK;
3511 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3512 	WARN_ON(!skb_dst(skb));
3513 	skb_dst_force(skb);
3514 	netif_rx_ni(skb);
3515 	return 0;
3516 }
3517 EXPORT_SYMBOL(dev_loopback_xmit);
3518 
3519 #ifdef CONFIG_NET_EGRESS
3520 static struct sk_buff *
3521 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3522 {
3523 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3524 	struct tcf_result cl_res;
3525 
3526 	if (!miniq)
3527 		return skb;
3528 
3529 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3530 	mini_qdisc_bstats_cpu_update(miniq, skb);
3531 
3532 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3533 	case TC_ACT_OK:
3534 	case TC_ACT_RECLASSIFY:
3535 		skb->tc_index = TC_H_MIN(cl_res.classid);
3536 		break;
3537 	case TC_ACT_SHOT:
3538 		mini_qdisc_qstats_cpu_drop(miniq);
3539 		*ret = NET_XMIT_DROP;
3540 		kfree_skb(skb);
3541 		return NULL;
3542 	case TC_ACT_STOLEN:
3543 	case TC_ACT_QUEUED:
3544 	case TC_ACT_TRAP:
3545 		*ret = NET_XMIT_SUCCESS;
3546 		consume_skb(skb);
3547 		return NULL;
3548 	case TC_ACT_REDIRECT:
3549 		/* No need to push/pop skb's mac_header here on egress! */
3550 		skb_do_redirect(skb);
3551 		*ret = NET_XMIT_SUCCESS;
3552 		return NULL;
3553 	default:
3554 		break;
3555 	}
3556 
3557 	return skb;
3558 }
3559 #endif /* CONFIG_NET_EGRESS */
3560 
3561 #ifdef CONFIG_XPS
3562 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3563 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3564 {
3565 	struct xps_map *map;
3566 	int queue_index = -1;
3567 
3568 	if (dev->num_tc) {
3569 		tci *= dev->num_tc;
3570 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3571 	}
3572 
3573 	map = rcu_dereference(dev_maps->attr_map[tci]);
3574 	if (map) {
3575 		if (map->len == 1)
3576 			queue_index = map->queues[0];
3577 		else
3578 			queue_index = map->queues[reciprocal_scale(
3579 						skb_get_hash(skb), map->len)];
3580 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3581 			queue_index = -1;
3582 	}
3583 	return queue_index;
3584 }
3585 #endif
3586 
3587 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3588 			 struct sk_buff *skb)
3589 {
3590 #ifdef CONFIG_XPS
3591 	struct xps_dev_maps *dev_maps;
3592 	struct sock *sk = skb->sk;
3593 	int queue_index = -1;
3594 
3595 	if (!static_key_false(&xps_needed))
3596 		return -1;
3597 
3598 	rcu_read_lock();
3599 	if (!static_key_false(&xps_rxqs_needed))
3600 		goto get_cpus_map;
3601 
3602 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3603 	if (dev_maps) {
3604 		int tci = sk_rx_queue_get(sk);
3605 
3606 		if (tci >= 0 && tci < dev->num_rx_queues)
3607 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3608 							  tci);
3609 	}
3610 
3611 get_cpus_map:
3612 	if (queue_index < 0) {
3613 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3614 		if (dev_maps) {
3615 			unsigned int tci = skb->sender_cpu - 1;
3616 
3617 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3618 							  tci);
3619 		}
3620 	}
3621 	rcu_read_unlock();
3622 
3623 	return queue_index;
3624 #else
3625 	return -1;
3626 #endif
3627 }
3628 
3629 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3630 		     struct net_device *sb_dev,
3631 		     select_queue_fallback_t fallback)
3632 {
3633 	return 0;
3634 }
3635 EXPORT_SYMBOL(dev_pick_tx_zero);
3636 
3637 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3638 		       struct net_device *sb_dev,
3639 		       select_queue_fallback_t fallback)
3640 {
3641 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3642 }
3643 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3644 
3645 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3646 			    struct net_device *sb_dev)
3647 {
3648 	struct sock *sk = skb->sk;
3649 	int queue_index = sk_tx_queue_get(sk);
3650 
3651 	sb_dev = sb_dev ? : dev;
3652 
3653 	if (queue_index < 0 || skb->ooo_okay ||
3654 	    queue_index >= dev->real_num_tx_queues) {
3655 		int new_index = get_xps_queue(dev, sb_dev, skb);
3656 
3657 		if (new_index < 0)
3658 			new_index = skb_tx_hash(dev, sb_dev, skb);
3659 
3660 		if (queue_index != new_index && sk &&
3661 		    sk_fullsock(sk) &&
3662 		    rcu_access_pointer(sk->sk_dst_cache))
3663 			sk_tx_queue_set(sk, new_index);
3664 
3665 		queue_index = new_index;
3666 	}
3667 
3668 	return queue_index;
3669 }
3670 
3671 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3672 				    struct sk_buff *skb,
3673 				    struct net_device *sb_dev)
3674 {
3675 	int queue_index = 0;
3676 
3677 #ifdef CONFIG_XPS
3678 	u32 sender_cpu = skb->sender_cpu - 1;
3679 
3680 	if (sender_cpu >= (u32)NR_CPUS)
3681 		skb->sender_cpu = raw_smp_processor_id() + 1;
3682 #endif
3683 
3684 	if (dev->real_num_tx_queues != 1) {
3685 		const struct net_device_ops *ops = dev->netdev_ops;
3686 
3687 		if (ops->ndo_select_queue)
3688 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3689 							    __netdev_pick_tx);
3690 		else
3691 			queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3692 
3693 		queue_index = netdev_cap_txqueue(dev, queue_index);
3694 	}
3695 
3696 	skb_set_queue_mapping(skb, queue_index);
3697 	return netdev_get_tx_queue(dev, queue_index);
3698 }
3699 
3700 /**
3701  *	__dev_queue_xmit - transmit a buffer
3702  *	@skb: buffer to transmit
3703  *	@sb_dev: suboordinate device used for L2 forwarding offload
3704  *
3705  *	Queue a buffer for transmission to a network device. The caller must
3706  *	have set the device and priority and built the buffer before calling
3707  *	this function. The function can be called from an interrupt.
3708  *
3709  *	A negative errno code is returned on a failure. A success does not
3710  *	guarantee the frame will be transmitted as it may be dropped due
3711  *	to congestion or traffic shaping.
3712  *
3713  * -----------------------------------------------------------------------------------
3714  *      I notice this method can also return errors from the queue disciplines,
3715  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3716  *      be positive.
3717  *
3718  *      Regardless of the return value, the skb is consumed, so it is currently
3719  *      difficult to retry a send to this method.  (You can bump the ref count
3720  *      before sending to hold a reference for retry if you are careful.)
3721  *
3722  *      When calling this method, interrupts MUST be enabled.  This is because
3723  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3724  *          --BLG
3725  */
3726 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3727 {
3728 	struct net_device *dev = skb->dev;
3729 	struct netdev_queue *txq;
3730 	struct Qdisc *q;
3731 	int rc = -ENOMEM;
3732 	bool again = false;
3733 
3734 	skb_reset_mac_header(skb);
3735 
3736 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3737 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3738 
3739 	/* Disable soft irqs for various locks below. Also
3740 	 * stops preemption for RCU.
3741 	 */
3742 	rcu_read_lock_bh();
3743 
3744 	skb_update_prio(skb);
3745 
3746 	qdisc_pkt_len_init(skb);
3747 #ifdef CONFIG_NET_CLS_ACT
3748 	skb->tc_at_ingress = 0;
3749 # ifdef CONFIG_NET_EGRESS
3750 	if (static_branch_unlikely(&egress_needed_key)) {
3751 		skb = sch_handle_egress(skb, &rc, dev);
3752 		if (!skb)
3753 			goto out;
3754 	}
3755 # endif
3756 #endif
3757 	/* If device/qdisc don't need skb->dst, release it right now while
3758 	 * its hot in this cpu cache.
3759 	 */
3760 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3761 		skb_dst_drop(skb);
3762 	else
3763 		skb_dst_force(skb);
3764 
3765 	txq = netdev_pick_tx(dev, skb, sb_dev);
3766 	q = rcu_dereference_bh(txq->qdisc);
3767 
3768 	trace_net_dev_queue(skb);
3769 	if (q->enqueue) {
3770 		rc = __dev_xmit_skb(skb, q, dev, txq);
3771 		goto out;
3772 	}
3773 
3774 	/* The device has no queue. Common case for software devices:
3775 	 * loopback, all the sorts of tunnels...
3776 
3777 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3778 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3779 	 * counters.)
3780 	 * However, it is possible, that they rely on protection
3781 	 * made by us here.
3782 
3783 	 * Check this and shot the lock. It is not prone from deadlocks.
3784 	 *Either shot noqueue qdisc, it is even simpler 8)
3785 	 */
3786 	if (dev->flags & IFF_UP) {
3787 		int cpu = smp_processor_id(); /* ok because BHs are off */
3788 
3789 		if (txq->xmit_lock_owner != cpu) {
3790 			if (unlikely(__this_cpu_read(xmit_recursion) >
3791 				     XMIT_RECURSION_LIMIT))
3792 				goto recursion_alert;
3793 
3794 			skb = validate_xmit_skb(skb, dev, &again);
3795 			if (!skb)
3796 				goto out;
3797 
3798 			HARD_TX_LOCK(dev, txq, cpu);
3799 
3800 			if (!netif_xmit_stopped(txq)) {
3801 				__this_cpu_inc(xmit_recursion);
3802 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3803 				__this_cpu_dec(xmit_recursion);
3804 				if (dev_xmit_complete(rc)) {
3805 					HARD_TX_UNLOCK(dev, txq);
3806 					goto out;
3807 				}
3808 			}
3809 			HARD_TX_UNLOCK(dev, txq);
3810 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3811 					     dev->name);
3812 		} else {
3813 			/* Recursion is detected! It is possible,
3814 			 * unfortunately
3815 			 */
3816 recursion_alert:
3817 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3818 					     dev->name);
3819 		}
3820 	}
3821 
3822 	rc = -ENETDOWN;
3823 	rcu_read_unlock_bh();
3824 
3825 	atomic_long_inc(&dev->tx_dropped);
3826 	kfree_skb_list(skb);
3827 	return rc;
3828 out:
3829 	rcu_read_unlock_bh();
3830 	return rc;
3831 }
3832 
3833 int dev_queue_xmit(struct sk_buff *skb)
3834 {
3835 	return __dev_queue_xmit(skb, NULL);
3836 }
3837 EXPORT_SYMBOL(dev_queue_xmit);
3838 
3839 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3840 {
3841 	return __dev_queue_xmit(skb, sb_dev);
3842 }
3843 EXPORT_SYMBOL(dev_queue_xmit_accel);
3844 
3845 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3846 {
3847 	struct net_device *dev = skb->dev;
3848 	struct sk_buff *orig_skb = skb;
3849 	struct netdev_queue *txq;
3850 	int ret = NETDEV_TX_BUSY;
3851 	bool again = false;
3852 
3853 	if (unlikely(!netif_running(dev) ||
3854 		     !netif_carrier_ok(dev)))
3855 		goto drop;
3856 
3857 	skb = validate_xmit_skb_list(skb, dev, &again);
3858 	if (skb != orig_skb)
3859 		goto drop;
3860 
3861 	skb_set_queue_mapping(skb, queue_id);
3862 	txq = skb_get_tx_queue(dev, skb);
3863 
3864 	local_bh_disable();
3865 
3866 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3867 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3868 		ret = netdev_start_xmit(skb, dev, txq, false);
3869 	HARD_TX_UNLOCK(dev, txq);
3870 
3871 	local_bh_enable();
3872 
3873 	if (!dev_xmit_complete(ret))
3874 		kfree_skb(skb);
3875 
3876 	return ret;
3877 drop:
3878 	atomic_long_inc(&dev->tx_dropped);
3879 	kfree_skb_list(skb);
3880 	return NET_XMIT_DROP;
3881 }
3882 EXPORT_SYMBOL(dev_direct_xmit);
3883 
3884 /*************************************************************************
3885  *			Receiver routines
3886  *************************************************************************/
3887 
3888 int netdev_max_backlog __read_mostly = 1000;
3889 EXPORT_SYMBOL(netdev_max_backlog);
3890 
3891 int netdev_tstamp_prequeue __read_mostly = 1;
3892 int netdev_budget __read_mostly = 300;
3893 unsigned int __read_mostly netdev_budget_usecs = 2000;
3894 int weight_p __read_mostly = 64;           /* old backlog weight */
3895 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3896 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3897 int dev_rx_weight __read_mostly = 64;
3898 int dev_tx_weight __read_mostly = 64;
3899 
3900 /* Called with irq disabled */
3901 static inline void ____napi_schedule(struct softnet_data *sd,
3902 				     struct napi_struct *napi)
3903 {
3904 	list_add_tail(&napi->poll_list, &sd->poll_list);
3905 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3906 }
3907 
3908 #ifdef CONFIG_RPS
3909 
3910 /* One global table that all flow-based protocols share. */
3911 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3912 EXPORT_SYMBOL(rps_sock_flow_table);
3913 u32 rps_cpu_mask __read_mostly;
3914 EXPORT_SYMBOL(rps_cpu_mask);
3915 
3916 struct static_key rps_needed __read_mostly;
3917 EXPORT_SYMBOL(rps_needed);
3918 struct static_key rfs_needed __read_mostly;
3919 EXPORT_SYMBOL(rfs_needed);
3920 
3921 static struct rps_dev_flow *
3922 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3923 	    struct rps_dev_flow *rflow, u16 next_cpu)
3924 {
3925 	if (next_cpu < nr_cpu_ids) {
3926 #ifdef CONFIG_RFS_ACCEL
3927 		struct netdev_rx_queue *rxqueue;
3928 		struct rps_dev_flow_table *flow_table;
3929 		struct rps_dev_flow *old_rflow;
3930 		u32 flow_id;
3931 		u16 rxq_index;
3932 		int rc;
3933 
3934 		/* Should we steer this flow to a different hardware queue? */
3935 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3936 		    !(dev->features & NETIF_F_NTUPLE))
3937 			goto out;
3938 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3939 		if (rxq_index == skb_get_rx_queue(skb))
3940 			goto out;
3941 
3942 		rxqueue = dev->_rx + rxq_index;
3943 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3944 		if (!flow_table)
3945 			goto out;
3946 		flow_id = skb_get_hash(skb) & flow_table->mask;
3947 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3948 							rxq_index, flow_id);
3949 		if (rc < 0)
3950 			goto out;
3951 		old_rflow = rflow;
3952 		rflow = &flow_table->flows[flow_id];
3953 		rflow->filter = rc;
3954 		if (old_rflow->filter == rflow->filter)
3955 			old_rflow->filter = RPS_NO_FILTER;
3956 	out:
3957 #endif
3958 		rflow->last_qtail =
3959 			per_cpu(softnet_data, next_cpu).input_queue_head;
3960 	}
3961 
3962 	rflow->cpu = next_cpu;
3963 	return rflow;
3964 }
3965 
3966 /*
3967  * get_rps_cpu is called from netif_receive_skb and returns the target
3968  * CPU from the RPS map of the receiving queue for a given skb.
3969  * rcu_read_lock must be held on entry.
3970  */
3971 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3972 		       struct rps_dev_flow **rflowp)
3973 {
3974 	const struct rps_sock_flow_table *sock_flow_table;
3975 	struct netdev_rx_queue *rxqueue = dev->_rx;
3976 	struct rps_dev_flow_table *flow_table;
3977 	struct rps_map *map;
3978 	int cpu = -1;
3979 	u32 tcpu;
3980 	u32 hash;
3981 
3982 	if (skb_rx_queue_recorded(skb)) {
3983 		u16 index = skb_get_rx_queue(skb);
3984 
3985 		if (unlikely(index >= dev->real_num_rx_queues)) {
3986 			WARN_ONCE(dev->real_num_rx_queues > 1,
3987 				  "%s received packet on queue %u, but number "
3988 				  "of RX queues is %u\n",
3989 				  dev->name, index, dev->real_num_rx_queues);
3990 			goto done;
3991 		}
3992 		rxqueue += index;
3993 	}
3994 
3995 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3996 
3997 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3998 	map = rcu_dereference(rxqueue->rps_map);
3999 	if (!flow_table && !map)
4000 		goto done;
4001 
4002 	skb_reset_network_header(skb);
4003 	hash = skb_get_hash(skb);
4004 	if (!hash)
4005 		goto done;
4006 
4007 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4008 	if (flow_table && sock_flow_table) {
4009 		struct rps_dev_flow *rflow;
4010 		u32 next_cpu;
4011 		u32 ident;
4012 
4013 		/* First check into global flow table if there is a match */
4014 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4015 		if ((ident ^ hash) & ~rps_cpu_mask)
4016 			goto try_rps;
4017 
4018 		next_cpu = ident & rps_cpu_mask;
4019 
4020 		/* OK, now we know there is a match,
4021 		 * we can look at the local (per receive queue) flow table
4022 		 */
4023 		rflow = &flow_table->flows[hash & flow_table->mask];
4024 		tcpu = rflow->cpu;
4025 
4026 		/*
4027 		 * If the desired CPU (where last recvmsg was done) is
4028 		 * different from current CPU (one in the rx-queue flow
4029 		 * table entry), switch if one of the following holds:
4030 		 *   - Current CPU is unset (>= nr_cpu_ids).
4031 		 *   - Current CPU is offline.
4032 		 *   - The current CPU's queue tail has advanced beyond the
4033 		 *     last packet that was enqueued using this table entry.
4034 		 *     This guarantees that all previous packets for the flow
4035 		 *     have been dequeued, thus preserving in order delivery.
4036 		 */
4037 		if (unlikely(tcpu != next_cpu) &&
4038 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4039 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4040 		      rflow->last_qtail)) >= 0)) {
4041 			tcpu = next_cpu;
4042 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4043 		}
4044 
4045 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4046 			*rflowp = rflow;
4047 			cpu = tcpu;
4048 			goto done;
4049 		}
4050 	}
4051 
4052 try_rps:
4053 
4054 	if (map) {
4055 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4056 		if (cpu_online(tcpu)) {
4057 			cpu = tcpu;
4058 			goto done;
4059 		}
4060 	}
4061 
4062 done:
4063 	return cpu;
4064 }
4065 
4066 #ifdef CONFIG_RFS_ACCEL
4067 
4068 /**
4069  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4070  * @dev: Device on which the filter was set
4071  * @rxq_index: RX queue index
4072  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4073  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4074  *
4075  * Drivers that implement ndo_rx_flow_steer() should periodically call
4076  * this function for each installed filter and remove the filters for
4077  * which it returns %true.
4078  */
4079 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4080 			 u32 flow_id, u16 filter_id)
4081 {
4082 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4083 	struct rps_dev_flow_table *flow_table;
4084 	struct rps_dev_flow *rflow;
4085 	bool expire = true;
4086 	unsigned int cpu;
4087 
4088 	rcu_read_lock();
4089 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4090 	if (flow_table && flow_id <= flow_table->mask) {
4091 		rflow = &flow_table->flows[flow_id];
4092 		cpu = READ_ONCE(rflow->cpu);
4093 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4094 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4095 			   rflow->last_qtail) <
4096 		     (int)(10 * flow_table->mask)))
4097 			expire = false;
4098 	}
4099 	rcu_read_unlock();
4100 	return expire;
4101 }
4102 EXPORT_SYMBOL(rps_may_expire_flow);
4103 
4104 #endif /* CONFIG_RFS_ACCEL */
4105 
4106 /* Called from hardirq (IPI) context */
4107 static void rps_trigger_softirq(void *data)
4108 {
4109 	struct softnet_data *sd = data;
4110 
4111 	____napi_schedule(sd, &sd->backlog);
4112 	sd->received_rps++;
4113 }
4114 
4115 #endif /* CONFIG_RPS */
4116 
4117 /*
4118  * Check if this softnet_data structure is another cpu one
4119  * If yes, queue it to our IPI list and return 1
4120  * If no, return 0
4121  */
4122 static int rps_ipi_queued(struct softnet_data *sd)
4123 {
4124 #ifdef CONFIG_RPS
4125 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4126 
4127 	if (sd != mysd) {
4128 		sd->rps_ipi_next = mysd->rps_ipi_list;
4129 		mysd->rps_ipi_list = sd;
4130 
4131 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4132 		return 1;
4133 	}
4134 #endif /* CONFIG_RPS */
4135 	return 0;
4136 }
4137 
4138 #ifdef CONFIG_NET_FLOW_LIMIT
4139 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4140 #endif
4141 
4142 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4143 {
4144 #ifdef CONFIG_NET_FLOW_LIMIT
4145 	struct sd_flow_limit *fl;
4146 	struct softnet_data *sd;
4147 	unsigned int old_flow, new_flow;
4148 
4149 	if (qlen < (netdev_max_backlog >> 1))
4150 		return false;
4151 
4152 	sd = this_cpu_ptr(&softnet_data);
4153 
4154 	rcu_read_lock();
4155 	fl = rcu_dereference(sd->flow_limit);
4156 	if (fl) {
4157 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4158 		old_flow = fl->history[fl->history_head];
4159 		fl->history[fl->history_head] = new_flow;
4160 
4161 		fl->history_head++;
4162 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4163 
4164 		if (likely(fl->buckets[old_flow]))
4165 			fl->buckets[old_flow]--;
4166 
4167 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4168 			fl->count++;
4169 			rcu_read_unlock();
4170 			return true;
4171 		}
4172 	}
4173 	rcu_read_unlock();
4174 #endif
4175 	return false;
4176 }
4177 
4178 /*
4179  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4180  * queue (may be a remote CPU queue).
4181  */
4182 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4183 			      unsigned int *qtail)
4184 {
4185 	struct softnet_data *sd;
4186 	unsigned long flags;
4187 	unsigned int qlen;
4188 
4189 	sd = &per_cpu(softnet_data, cpu);
4190 
4191 	local_irq_save(flags);
4192 
4193 	rps_lock(sd);
4194 	if (!netif_running(skb->dev))
4195 		goto drop;
4196 	qlen = skb_queue_len(&sd->input_pkt_queue);
4197 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4198 		if (qlen) {
4199 enqueue:
4200 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4201 			input_queue_tail_incr_save(sd, qtail);
4202 			rps_unlock(sd);
4203 			local_irq_restore(flags);
4204 			return NET_RX_SUCCESS;
4205 		}
4206 
4207 		/* Schedule NAPI for backlog device
4208 		 * We can use non atomic operation since we own the queue lock
4209 		 */
4210 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4211 			if (!rps_ipi_queued(sd))
4212 				____napi_schedule(sd, &sd->backlog);
4213 		}
4214 		goto enqueue;
4215 	}
4216 
4217 drop:
4218 	sd->dropped++;
4219 	rps_unlock(sd);
4220 
4221 	local_irq_restore(flags);
4222 
4223 	atomic_long_inc(&skb->dev->rx_dropped);
4224 	kfree_skb(skb);
4225 	return NET_RX_DROP;
4226 }
4227 
4228 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4229 {
4230 	struct net_device *dev = skb->dev;
4231 	struct netdev_rx_queue *rxqueue;
4232 
4233 	rxqueue = dev->_rx;
4234 
4235 	if (skb_rx_queue_recorded(skb)) {
4236 		u16 index = skb_get_rx_queue(skb);
4237 
4238 		if (unlikely(index >= dev->real_num_rx_queues)) {
4239 			WARN_ONCE(dev->real_num_rx_queues > 1,
4240 				  "%s received packet on queue %u, but number "
4241 				  "of RX queues is %u\n",
4242 				  dev->name, index, dev->real_num_rx_queues);
4243 
4244 			return rxqueue; /* Return first rxqueue */
4245 		}
4246 		rxqueue += index;
4247 	}
4248 	return rxqueue;
4249 }
4250 
4251 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4252 				     struct xdp_buff *xdp,
4253 				     struct bpf_prog *xdp_prog)
4254 {
4255 	struct netdev_rx_queue *rxqueue;
4256 	void *orig_data, *orig_data_end;
4257 	u32 metalen, act = XDP_DROP;
4258 	int hlen, off;
4259 	u32 mac_len;
4260 
4261 	/* Reinjected packets coming from act_mirred or similar should
4262 	 * not get XDP generic processing.
4263 	 */
4264 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4265 		return XDP_PASS;
4266 
4267 	/* XDP packets must be linear and must have sufficient headroom
4268 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4269 	 * native XDP provides, thus we need to do it here as well.
4270 	 */
4271 	if (skb_is_nonlinear(skb) ||
4272 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4273 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4274 		int troom = skb->tail + skb->data_len - skb->end;
4275 
4276 		/* In case we have to go down the path and also linearize,
4277 		 * then lets do the pskb_expand_head() work just once here.
4278 		 */
4279 		if (pskb_expand_head(skb,
4280 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4281 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4282 			goto do_drop;
4283 		if (skb_linearize(skb))
4284 			goto do_drop;
4285 	}
4286 
4287 	/* The XDP program wants to see the packet starting at the MAC
4288 	 * header.
4289 	 */
4290 	mac_len = skb->data - skb_mac_header(skb);
4291 	hlen = skb_headlen(skb) + mac_len;
4292 	xdp->data = skb->data - mac_len;
4293 	xdp->data_meta = xdp->data;
4294 	xdp->data_end = xdp->data + hlen;
4295 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4296 	orig_data_end = xdp->data_end;
4297 	orig_data = xdp->data;
4298 
4299 	rxqueue = netif_get_rxqueue(skb);
4300 	xdp->rxq = &rxqueue->xdp_rxq;
4301 
4302 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4303 
4304 	off = xdp->data - orig_data;
4305 	if (off > 0)
4306 		__skb_pull(skb, off);
4307 	else if (off < 0)
4308 		__skb_push(skb, -off);
4309 	skb->mac_header += off;
4310 
4311 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4312 	 * pckt.
4313 	 */
4314 	off = orig_data_end - xdp->data_end;
4315 	if (off != 0) {
4316 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4317 		skb->len -= off;
4318 
4319 	}
4320 
4321 	switch (act) {
4322 	case XDP_REDIRECT:
4323 	case XDP_TX:
4324 		__skb_push(skb, mac_len);
4325 		break;
4326 	case XDP_PASS:
4327 		metalen = xdp->data - xdp->data_meta;
4328 		if (metalen)
4329 			skb_metadata_set(skb, metalen);
4330 		break;
4331 	default:
4332 		bpf_warn_invalid_xdp_action(act);
4333 		/* fall through */
4334 	case XDP_ABORTED:
4335 		trace_xdp_exception(skb->dev, xdp_prog, act);
4336 		/* fall through */
4337 	case XDP_DROP:
4338 	do_drop:
4339 		kfree_skb(skb);
4340 		break;
4341 	}
4342 
4343 	return act;
4344 }
4345 
4346 /* When doing generic XDP we have to bypass the qdisc layer and the
4347  * network taps in order to match in-driver-XDP behavior.
4348  */
4349 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4350 {
4351 	struct net_device *dev = skb->dev;
4352 	struct netdev_queue *txq;
4353 	bool free_skb = true;
4354 	int cpu, rc;
4355 
4356 	txq = netdev_pick_tx(dev, skb, NULL);
4357 	cpu = smp_processor_id();
4358 	HARD_TX_LOCK(dev, txq, cpu);
4359 	if (!netif_xmit_stopped(txq)) {
4360 		rc = netdev_start_xmit(skb, dev, txq, 0);
4361 		if (dev_xmit_complete(rc))
4362 			free_skb = false;
4363 	}
4364 	HARD_TX_UNLOCK(dev, txq);
4365 	if (free_skb) {
4366 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4367 		kfree_skb(skb);
4368 	}
4369 }
4370 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4371 
4372 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4373 
4374 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4375 {
4376 	if (xdp_prog) {
4377 		struct xdp_buff xdp;
4378 		u32 act;
4379 		int err;
4380 
4381 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4382 		if (act != XDP_PASS) {
4383 			switch (act) {
4384 			case XDP_REDIRECT:
4385 				err = xdp_do_generic_redirect(skb->dev, skb,
4386 							      &xdp, xdp_prog);
4387 				if (err)
4388 					goto out_redir;
4389 				break;
4390 			case XDP_TX:
4391 				generic_xdp_tx(skb, xdp_prog);
4392 				break;
4393 			}
4394 			return XDP_DROP;
4395 		}
4396 	}
4397 	return XDP_PASS;
4398 out_redir:
4399 	kfree_skb(skb);
4400 	return XDP_DROP;
4401 }
4402 EXPORT_SYMBOL_GPL(do_xdp_generic);
4403 
4404 static int netif_rx_internal(struct sk_buff *skb)
4405 {
4406 	int ret;
4407 
4408 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4409 
4410 	trace_netif_rx(skb);
4411 
4412 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4413 		int ret;
4414 
4415 		preempt_disable();
4416 		rcu_read_lock();
4417 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4418 		rcu_read_unlock();
4419 		preempt_enable();
4420 
4421 		/* Consider XDP consuming the packet a success from
4422 		 * the netdev point of view we do not want to count
4423 		 * this as an error.
4424 		 */
4425 		if (ret != XDP_PASS)
4426 			return NET_RX_SUCCESS;
4427 	}
4428 
4429 #ifdef CONFIG_RPS
4430 	if (static_key_false(&rps_needed)) {
4431 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4432 		int cpu;
4433 
4434 		preempt_disable();
4435 		rcu_read_lock();
4436 
4437 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4438 		if (cpu < 0)
4439 			cpu = smp_processor_id();
4440 
4441 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4442 
4443 		rcu_read_unlock();
4444 		preempt_enable();
4445 	} else
4446 #endif
4447 	{
4448 		unsigned int qtail;
4449 
4450 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4451 		put_cpu();
4452 	}
4453 	return ret;
4454 }
4455 
4456 /**
4457  *	netif_rx	-	post buffer to the network code
4458  *	@skb: buffer to post
4459  *
4460  *	This function receives a packet from a device driver and queues it for
4461  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4462  *	may be dropped during processing for congestion control or by the
4463  *	protocol layers.
4464  *
4465  *	return values:
4466  *	NET_RX_SUCCESS	(no congestion)
4467  *	NET_RX_DROP     (packet was dropped)
4468  *
4469  */
4470 
4471 int netif_rx(struct sk_buff *skb)
4472 {
4473 	trace_netif_rx_entry(skb);
4474 
4475 	return netif_rx_internal(skb);
4476 }
4477 EXPORT_SYMBOL(netif_rx);
4478 
4479 int netif_rx_ni(struct sk_buff *skb)
4480 {
4481 	int err;
4482 
4483 	trace_netif_rx_ni_entry(skb);
4484 
4485 	preempt_disable();
4486 	err = netif_rx_internal(skb);
4487 	if (local_softirq_pending())
4488 		do_softirq();
4489 	preempt_enable();
4490 
4491 	return err;
4492 }
4493 EXPORT_SYMBOL(netif_rx_ni);
4494 
4495 static __latent_entropy void net_tx_action(struct softirq_action *h)
4496 {
4497 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4498 
4499 	if (sd->completion_queue) {
4500 		struct sk_buff *clist;
4501 
4502 		local_irq_disable();
4503 		clist = sd->completion_queue;
4504 		sd->completion_queue = NULL;
4505 		local_irq_enable();
4506 
4507 		while (clist) {
4508 			struct sk_buff *skb = clist;
4509 
4510 			clist = clist->next;
4511 
4512 			WARN_ON(refcount_read(&skb->users));
4513 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4514 				trace_consume_skb(skb);
4515 			else
4516 				trace_kfree_skb(skb, net_tx_action);
4517 
4518 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4519 				__kfree_skb(skb);
4520 			else
4521 				__kfree_skb_defer(skb);
4522 		}
4523 
4524 		__kfree_skb_flush();
4525 	}
4526 
4527 	if (sd->output_queue) {
4528 		struct Qdisc *head;
4529 
4530 		local_irq_disable();
4531 		head = sd->output_queue;
4532 		sd->output_queue = NULL;
4533 		sd->output_queue_tailp = &sd->output_queue;
4534 		local_irq_enable();
4535 
4536 		while (head) {
4537 			struct Qdisc *q = head;
4538 			spinlock_t *root_lock = NULL;
4539 
4540 			head = head->next_sched;
4541 
4542 			if (!(q->flags & TCQ_F_NOLOCK)) {
4543 				root_lock = qdisc_lock(q);
4544 				spin_lock(root_lock);
4545 			}
4546 			/* We need to make sure head->next_sched is read
4547 			 * before clearing __QDISC_STATE_SCHED
4548 			 */
4549 			smp_mb__before_atomic();
4550 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4551 			qdisc_run(q);
4552 			if (root_lock)
4553 				spin_unlock(root_lock);
4554 		}
4555 	}
4556 
4557 	xfrm_dev_backlog(sd);
4558 }
4559 
4560 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4561 /* This hook is defined here for ATM LANE */
4562 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4563 			     unsigned char *addr) __read_mostly;
4564 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4565 #endif
4566 
4567 static inline struct sk_buff *
4568 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4569 		   struct net_device *orig_dev)
4570 {
4571 #ifdef CONFIG_NET_CLS_ACT
4572 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4573 	struct tcf_result cl_res;
4574 
4575 	/* If there's at least one ingress present somewhere (so
4576 	 * we get here via enabled static key), remaining devices
4577 	 * that are not configured with an ingress qdisc will bail
4578 	 * out here.
4579 	 */
4580 	if (!miniq)
4581 		return skb;
4582 
4583 	if (*pt_prev) {
4584 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4585 		*pt_prev = NULL;
4586 	}
4587 
4588 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4589 	skb->tc_at_ingress = 1;
4590 	mini_qdisc_bstats_cpu_update(miniq, skb);
4591 
4592 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4593 	case TC_ACT_OK:
4594 	case TC_ACT_RECLASSIFY:
4595 		skb->tc_index = TC_H_MIN(cl_res.classid);
4596 		break;
4597 	case TC_ACT_SHOT:
4598 		mini_qdisc_qstats_cpu_drop(miniq);
4599 		kfree_skb(skb);
4600 		return NULL;
4601 	case TC_ACT_STOLEN:
4602 	case TC_ACT_QUEUED:
4603 	case TC_ACT_TRAP:
4604 		consume_skb(skb);
4605 		return NULL;
4606 	case TC_ACT_REDIRECT:
4607 		/* skb_mac_header check was done by cls/act_bpf, so
4608 		 * we can safely push the L2 header back before
4609 		 * redirecting to another netdev
4610 		 */
4611 		__skb_push(skb, skb->mac_len);
4612 		skb_do_redirect(skb);
4613 		return NULL;
4614 	case TC_ACT_REINSERT:
4615 		/* this does not scrub the packet, and updates stats on error */
4616 		skb_tc_reinsert(skb, &cl_res);
4617 		return NULL;
4618 	default:
4619 		break;
4620 	}
4621 #endif /* CONFIG_NET_CLS_ACT */
4622 	return skb;
4623 }
4624 
4625 /**
4626  *	netdev_is_rx_handler_busy - check if receive handler is registered
4627  *	@dev: device to check
4628  *
4629  *	Check if a receive handler is already registered for a given device.
4630  *	Return true if there one.
4631  *
4632  *	The caller must hold the rtnl_mutex.
4633  */
4634 bool netdev_is_rx_handler_busy(struct net_device *dev)
4635 {
4636 	ASSERT_RTNL();
4637 	return dev && rtnl_dereference(dev->rx_handler);
4638 }
4639 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4640 
4641 /**
4642  *	netdev_rx_handler_register - register receive handler
4643  *	@dev: device to register a handler for
4644  *	@rx_handler: receive handler to register
4645  *	@rx_handler_data: data pointer that is used by rx handler
4646  *
4647  *	Register a receive handler for a device. This handler will then be
4648  *	called from __netif_receive_skb. A negative errno code is returned
4649  *	on a failure.
4650  *
4651  *	The caller must hold the rtnl_mutex.
4652  *
4653  *	For a general description of rx_handler, see enum rx_handler_result.
4654  */
4655 int netdev_rx_handler_register(struct net_device *dev,
4656 			       rx_handler_func_t *rx_handler,
4657 			       void *rx_handler_data)
4658 {
4659 	if (netdev_is_rx_handler_busy(dev))
4660 		return -EBUSY;
4661 
4662 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4663 		return -EINVAL;
4664 
4665 	/* Note: rx_handler_data must be set before rx_handler */
4666 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4667 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4668 
4669 	return 0;
4670 }
4671 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4672 
4673 /**
4674  *	netdev_rx_handler_unregister - unregister receive handler
4675  *	@dev: device to unregister a handler from
4676  *
4677  *	Unregister a receive handler from a device.
4678  *
4679  *	The caller must hold the rtnl_mutex.
4680  */
4681 void netdev_rx_handler_unregister(struct net_device *dev)
4682 {
4683 
4684 	ASSERT_RTNL();
4685 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4686 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4687 	 * section has a guarantee to see a non NULL rx_handler_data
4688 	 * as well.
4689 	 */
4690 	synchronize_net();
4691 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4692 }
4693 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4694 
4695 /*
4696  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4697  * the special handling of PFMEMALLOC skbs.
4698  */
4699 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4700 {
4701 	switch (skb->protocol) {
4702 	case htons(ETH_P_ARP):
4703 	case htons(ETH_P_IP):
4704 	case htons(ETH_P_IPV6):
4705 	case htons(ETH_P_8021Q):
4706 	case htons(ETH_P_8021AD):
4707 		return true;
4708 	default:
4709 		return false;
4710 	}
4711 }
4712 
4713 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4714 			     int *ret, struct net_device *orig_dev)
4715 {
4716 #ifdef CONFIG_NETFILTER_INGRESS
4717 	if (nf_hook_ingress_active(skb)) {
4718 		int ingress_retval;
4719 
4720 		if (*pt_prev) {
4721 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4722 			*pt_prev = NULL;
4723 		}
4724 
4725 		rcu_read_lock();
4726 		ingress_retval = nf_hook_ingress(skb);
4727 		rcu_read_unlock();
4728 		return ingress_retval;
4729 	}
4730 #endif /* CONFIG_NETFILTER_INGRESS */
4731 	return 0;
4732 }
4733 
4734 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4735 				    struct packet_type **ppt_prev)
4736 {
4737 	struct packet_type *ptype, *pt_prev;
4738 	rx_handler_func_t *rx_handler;
4739 	struct net_device *orig_dev;
4740 	bool deliver_exact = false;
4741 	int ret = NET_RX_DROP;
4742 	__be16 type;
4743 
4744 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4745 
4746 	trace_netif_receive_skb(skb);
4747 
4748 	orig_dev = skb->dev;
4749 
4750 	skb_reset_network_header(skb);
4751 	if (!skb_transport_header_was_set(skb))
4752 		skb_reset_transport_header(skb);
4753 	skb_reset_mac_len(skb);
4754 
4755 	pt_prev = NULL;
4756 
4757 another_round:
4758 	skb->skb_iif = skb->dev->ifindex;
4759 
4760 	__this_cpu_inc(softnet_data.processed);
4761 
4762 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4763 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4764 		skb = skb_vlan_untag(skb);
4765 		if (unlikely(!skb))
4766 			goto out;
4767 	}
4768 
4769 	if (skb_skip_tc_classify(skb))
4770 		goto skip_classify;
4771 
4772 	if (pfmemalloc)
4773 		goto skip_taps;
4774 
4775 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4776 		if (pt_prev)
4777 			ret = deliver_skb(skb, pt_prev, orig_dev);
4778 		pt_prev = ptype;
4779 	}
4780 
4781 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4782 		if (pt_prev)
4783 			ret = deliver_skb(skb, pt_prev, orig_dev);
4784 		pt_prev = ptype;
4785 	}
4786 
4787 skip_taps:
4788 #ifdef CONFIG_NET_INGRESS
4789 	if (static_branch_unlikely(&ingress_needed_key)) {
4790 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4791 		if (!skb)
4792 			goto out;
4793 
4794 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4795 			goto out;
4796 	}
4797 #endif
4798 	skb_reset_tc(skb);
4799 skip_classify:
4800 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4801 		goto drop;
4802 
4803 	if (skb_vlan_tag_present(skb)) {
4804 		if (pt_prev) {
4805 			ret = deliver_skb(skb, pt_prev, orig_dev);
4806 			pt_prev = NULL;
4807 		}
4808 		if (vlan_do_receive(&skb))
4809 			goto another_round;
4810 		else if (unlikely(!skb))
4811 			goto out;
4812 	}
4813 
4814 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4815 	if (rx_handler) {
4816 		if (pt_prev) {
4817 			ret = deliver_skb(skb, pt_prev, orig_dev);
4818 			pt_prev = NULL;
4819 		}
4820 		switch (rx_handler(&skb)) {
4821 		case RX_HANDLER_CONSUMED:
4822 			ret = NET_RX_SUCCESS;
4823 			goto out;
4824 		case RX_HANDLER_ANOTHER:
4825 			goto another_round;
4826 		case RX_HANDLER_EXACT:
4827 			deliver_exact = true;
4828 		case RX_HANDLER_PASS:
4829 			break;
4830 		default:
4831 			BUG();
4832 		}
4833 	}
4834 
4835 	if (unlikely(skb_vlan_tag_present(skb))) {
4836 		if (skb_vlan_tag_get_id(skb))
4837 			skb->pkt_type = PACKET_OTHERHOST;
4838 		/* Note: we might in the future use prio bits
4839 		 * and set skb->priority like in vlan_do_receive()
4840 		 * For the time being, just ignore Priority Code Point
4841 		 */
4842 		skb->vlan_tci = 0;
4843 	}
4844 
4845 	type = skb->protocol;
4846 
4847 	/* deliver only exact match when indicated */
4848 	if (likely(!deliver_exact)) {
4849 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4850 				       &ptype_base[ntohs(type) &
4851 						   PTYPE_HASH_MASK]);
4852 	}
4853 
4854 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4855 			       &orig_dev->ptype_specific);
4856 
4857 	if (unlikely(skb->dev != orig_dev)) {
4858 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4859 				       &skb->dev->ptype_specific);
4860 	}
4861 
4862 	if (pt_prev) {
4863 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4864 			goto drop;
4865 		*ppt_prev = pt_prev;
4866 	} else {
4867 drop:
4868 		if (!deliver_exact)
4869 			atomic_long_inc(&skb->dev->rx_dropped);
4870 		else
4871 			atomic_long_inc(&skb->dev->rx_nohandler);
4872 		kfree_skb(skb);
4873 		/* Jamal, now you will not able to escape explaining
4874 		 * me how you were going to use this. :-)
4875 		 */
4876 		ret = NET_RX_DROP;
4877 	}
4878 
4879 out:
4880 	return ret;
4881 }
4882 
4883 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4884 {
4885 	struct net_device *orig_dev = skb->dev;
4886 	struct packet_type *pt_prev = NULL;
4887 	int ret;
4888 
4889 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4890 	if (pt_prev)
4891 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4892 	return ret;
4893 }
4894 
4895 /**
4896  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4897  *	@skb: buffer to process
4898  *
4899  *	More direct receive version of netif_receive_skb().  It should
4900  *	only be used by callers that have a need to skip RPS and Generic XDP.
4901  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4902  *
4903  *	This function may only be called from softirq context and interrupts
4904  *	should be enabled.
4905  *
4906  *	Return values (usually ignored):
4907  *	NET_RX_SUCCESS: no congestion
4908  *	NET_RX_DROP: packet was dropped
4909  */
4910 int netif_receive_skb_core(struct sk_buff *skb)
4911 {
4912 	int ret;
4913 
4914 	rcu_read_lock();
4915 	ret = __netif_receive_skb_one_core(skb, false);
4916 	rcu_read_unlock();
4917 
4918 	return ret;
4919 }
4920 EXPORT_SYMBOL(netif_receive_skb_core);
4921 
4922 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4923 						  struct packet_type *pt_prev,
4924 						  struct net_device *orig_dev)
4925 {
4926 	struct sk_buff *skb, *next;
4927 
4928 	if (!pt_prev)
4929 		return;
4930 	if (list_empty(head))
4931 		return;
4932 	if (pt_prev->list_func != NULL)
4933 		pt_prev->list_func(head, pt_prev, orig_dev);
4934 	else
4935 		list_for_each_entry_safe(skb, next, head, list)
4936 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4937 }
4938 
4939 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4940 {
4941 	/* Fast-path assumptions:
4942 	 * - There is no RX handler.
4943 	 * - Only one packet_type matches.
4944 	 * If either of these fails, we will end up doing some per-packet
4945 	 * processing in-line, then handling the 'last ptype' for the whole
4946 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
4947 	 * because the 'last ptype' must be constant across the sublist, and all
4948 	 * other ptypes are handled per-packet.
4949 	 */
4950 	/* Current (common) ptype of sublist */
4951 	struct packet_type *pt_curr = NULL;
4952 	/* Current (common) orig_dev of sublist */
4953 	struct net_device *od_curr = NULL;
4954 	struct list_head sublist;
4955 	struct sk_buff *skb, *next;
4956 
4957 	INIT_LIST_HEAD(&sublist);
4958 	list_for_each_entry_safe(skb, next, head, list) {
4959 		struct net_device *orig_dev = skb->dev;
4960 		struct packet_type *pt_prev = NULL;
4961 
4962 		list_del(&skb->list);
4963 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4964 		if (!pt_prev)
4965 			continue;
4966 		if (pt_curr != pt_prev || od_curr != orig_dev) {
4967 			/* dispatch old sublist */
4968 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4969 			/* start new sublist */
4970 			INIT_LIST_HEAD(&sublist);
4971 			pt_curr = pt_prev;
4972 			od_curr = orig_dev;
4973 		}
4974 		list_add_tail(&skb->list, &sublist);
4975 	}
4976 
4977 	/* dispatch final sublist */
4978 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4979 }
4980 
4981 static int __netif_receive_skb(struct sk_buff *skb)
4982 {
4983 	int ret;
4984 
4985 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4986 		unsigned int noreclaim_flag;
4987 
4988 		/*
4989 		 * PFMEMALLOC skbs are special, they should
4990 		 * - be delivered to SOCK_MEMALLOC sockets only
4991 		 * - stay away from userspace
4992 		 * - have bounded memory usage
4993 		 *
4994 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4995 		 * context down to all allocation sites.
4996 		 */
4997 		noreclaim_flag = memalloc_noreclaim_save();
4998 		ret = __netif_receive_skb_one_core(skb, true);
4999 		memalloc_noreclaim_restore(noreclaim_flag);
5000 	} else
5001 		ret = __netif_receive_skb_one_core(skb, false);
5002 
5003 	return ret;
5004 }
5005 
5006 static void __netif_receive_skb_list(struct list_head *head)
5007 {
5008 	unsigned long noreclaim_flag = 0;
5009 	struct sk_buff *skb, *next;
5010 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5011 
5012 	list_for_each_entry_safe(skb, next, head, list) {
5013 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5014 			struct list_head sublist;
5015 
5016 			/* Handle the previous sublist */
5017 			list_cut_before(&sublist, head, &skb->list);
5018 			if (!list_empty(&sublist))
5019 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5020 			pfmemalloc = !pfmemalloc;
5021 			/* See comments in __netif_receive_skb */
5022 			if (pfmemalloc)
5023 				noreclaim_flag = memalloc_noreclaim_save();
5024 			else
5025 				memalloc_noreclaim_restore(noreclaim_flag);
5026 		}
5027 	}
5028 	/* Handle the remaining sublist */
5029 	if (!list_empty(head))
5030 		__netif_receive_skb_list_core(head, pfmemalloc);
5031 	/* Restore pflags */
5032 	if (pfmemalloc)
5033 		memalloc_noreclaim_restore(noreclaim_flag);
5034 }
5035 
5036 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5037 {
5038 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5039 	struct bpf_prog *new = xdp->prog;
5040 	int ret = 0;
5041 
5042 	switch (xdp->command) {
5043 	case XDP_SETUP_PROG:
5044 		rcu_assign_pointer(dev->xdp_prog, new);
5045 		if (old)
5046 			bpf_prog_put(old);
5047 
5048 		if (old && !new) {
5049 			static_branch_dec(&generic_xdp_needed_key);
5050 		} else if (new && !old) {
5051 			static_branch_inc(&generic_xdp_needed_key);
5052 			dev_disable_lro(dev);
5053 			dev_disable_gro_hw(dev);
5054 		}
5055 		break;
5056 
5057 	case XDP_QUERY_PROG:
5058 		xdp->prog_id = old ? old->aux->id : 0;
5059 		break;
5060 
5061 	default:
5062 		ret = -EINVAL;
5063 		break;
5064 	}
5065 
5066 	return ret;
5067 }
5068 
5069 static int netif_receive_skb_internal(struct sk_buff *skb)
5070 {
5071 	int ret;
5072 
5073 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5074 
5075 	if (skb_defer_rx_timestamp(skb))
5076 		return NET_RX_SUCCESS;
5077 
5078 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5079 		int ret;
5080 
5081 		preempt_disable();
5082 		rcu_read_lock();
5083 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5084 		rcu_read_unlock();
5085 		preempt_enable();
5086 
5087 		if (ret != XDP_PASS)
5088 			return NET_RX_DROP;
5089 	}
5090 
5091 	rcu_read_lock();
5092 #ifdef CONFIG_RPS
5093 	if (static_key_false(&rps_needed)) {
5094 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5095 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5096 
5097 		if (cpu >= 0) {
5098 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5099 			rcu_read_unlock();
5100 			return ret;
5101 		}
5102 	}
5103 #endif
5104 	ret = __netif_receive_skb(skb);
5105 	rcu_read_unlock();
5106 	return ret;
5107 }
5108 
5109 static void netif_receive_skb_list_internal(struct list_head *head)
5110 {
5111 	struct bpf_prog *xdp_prog = NULL;
5112 	struct sk_buff *skb, *next;
5113 	struct list_head sublist;
5114 
5115 	INIT_LIST_HEAD(&sublist);
5116 	list_for_each_entry_safe(skb, next, head, list) {
5117 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5118 		list_del(&skb->list);
5119 		if (!skb_defer_rx_timestamp(skb))
5120 			list_add_tail(&skb->list, &sublist);
5121 	}
5122 	list_splice_init(&sublist, head);
5123 
5124 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5125 		preempt_disable();
5126 		rcu_read_lock();
5127 		list_for_each_entry_safe(skb, next, head, list) {
5128 			xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5129 			list_del(&skb->list);
5130 			if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5131 				list_add_tail(&skb->list, &sublist);
5132 		}
5133 		rcu_read_unlock();
5134 		preempt_enable();
5135 		/* Put passed packets back on main list */
5136 		list_splice_init(&sublist, head);
5137 	}
5138 
5139 	rcu_read_lock();
5140 #ifdef CONFIG_RPS
5141 	if (static_key_false(&rps_needed)) {
5142 		list_for_each_entry_safe(skb, next, head, list) {
5143 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5144 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5145 
5146 			if (cpu >= 0) {
5147 				/* Will be handled, remove from list */
5148 				list_del(&skb->list);
5149 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5150 			}
5151 		}
5152 	}
5153 #endif
5154 	__netif_receive_skb_list(head);
5155 	rcu_read_unlock();
5156 }
5157 
5158 /**
5159  *	netif_receive_skb - process receive buffer from network
5160  *	@skb: buffer to process
5161  *
5162  *	netif_receive_skb() is the main receive data processing function.
5163  *	It always succeeds. The buffer may be dropped during processing
5164  *	for congestion control or by the protocol layers.
5165  *
5166  *	This function may only be called from softirq context and interrupts
5167  *	should be enabled.
5168  *
5169  *	Return values (usually ignored):
5170  *	NET_RX_SUCCESS: no congestion
5171  *	NET_RX_DROP: packet was dropped
5172  */
5173 int netif_receive_skb(struct sk_buff *skb)
5174 {
5175 	trace_netif_receive_skb_entry(skb);
5176 
5177 	return netif_receive_skb_internal(skb);
5178 }
5179 EXPORT_SYMBOL(netif_receive_skb);
5180 
5181 /**
5182  *	netif_receive_skb_list - process many receive buffers from network
5183  *	@head: list of skbs to process.
5184  *
5185  *	Since return value of netif_receive_skb() is normally ignored, and
5186  *	wouldn't be meaningful for a list, this function returns void.
5187  *
5188  *	This function may only be called from softirq context and interrupts
5189  *	should be enabled.
5190  */
5191 void netif_receive_skb_list(struct list_head *head)
5192 {
5193 	struct sk_buff *skb;
5194 
5195 	if (list_empty(head))
5196 		return;
5197 	list_for_each_entry(skb, head, list)
5198 		trace_netif_receive_skb_list_entry(skb);
5199 	netif_receive_skb_list_internal(head);
5200 }
5201 EXPORT_SYMBOL(netif_receive_skb_list);
5202 
5203 DEFINE_PER_CPU(struct work_struct, flush_works);
5204 
5205 /* Network device is going away, flush any packets still pending */
5206 static void flush_backlog(struct work_struct *work)
5207 {
5208 	struct sk_buff *skb, *tmp;
5209 	struct softnet_data *sd;
5210 
5211 	local_bh_disable();
5212 	sd = this_cpu_ptr(&softnet_data);
5213 
5214 	local_irq_disable();
5215 	rps_lock(sd);
5216 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5217 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5218 			__skb_unlink(skb, &sd->input_pkt_queue);
5219 			kfree_skb(skb);
5220 			input_queue_head_incr(sd);
5221 		}
5222 	}
5223 	rps_unlock(sd);
5224 	local_irq_enable();
5225 
5226 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5227 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5228 			__skb_unlink(skb, &sd->process_queue);
5229 			kfree_skb(skb);
5230 			input_queue_head_incr(sd);
5231 		}
5232 	}
5233 	local_bh_enable();
5234 }
5235 
5236 static void flush_all_backlogs(void)
5237 {
5238 	unsigned int cpu;
5239 
5240 	get_online_cpus();
5241 
5242 	for_each_online_cpu(cpu)
5243 		queue_work_on(cpu, system_highpri_wq,
5244 			      per_cpu_ptr(&flush_works, cpu));
5245 
5246 	for_each_online_cpu(cpu)
5247 		flush_work(per_cpu_ptr(&flush_works, cpu));
5248 
5249 	put_online_cpus();
5250 }
5251 
5252 static int napi_gro_complete(struct sk_buff *skb)
5253 {
5254 	struct packet_offload *ptype;
5255 	__be16 type = skb->protocol;
5256 	struct list_head *head = &offload_base;
5257 	int err = -ENOENT;
5258 
5259 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5260 
5261 	if (NAPI_GRO_CB(skb)->count == 1) {
5262 		skb_shinfo(skb)->gso_size = 0;
5263 		goto out;
5264 	}
5265 
5266 	rcu_read_lock();
5267 	list_for_each_entry_rcu(ptype, head, list) {
5268 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5269 			continue;
5270 
5271 		err = ptype->callbacks.gro_complete(skb, 0);
5272 		break;
5273 	}
5274 	rcu_read_unlock();
5275 
5276 	if (err) {
5277 		WARN_ON(&ptype->list == head);
5278 		kfree_skb(skb);
5279 		return NET_RX_SUCCESS;
5280 	}
5281 
5282 out:
5283 	return netif_receive_skb_internal(skb);
5284 }
5285 
5286 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5287 				   bool flush_old)
5288 {
5289 	struct list_head *head = &napi->gro_hash[index].list;
5290 	struct sk_buff *skb, *p;
5291 
5292 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5293 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5294 			return;
5295 		list_del(&skb->list);
5296 		skb->next = NULL;
5297 		napi_gro_complete(skb);
5298 		napi->gro_hash[index].count--;
5299 	}
5300 
5301 	if (!napi->gro_hash[index].count)
5302 		__clear_bit(index, &napi->gro_bitmask);
5303 }
5304 
5305 /* napi->gro_hash[].list contains packets ordered by age.
5306  * youngest packets at the head of it.
5307  * Complete skbs in reverse order to reduce latencies.
5308  */
5309 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5310 {
5311 	u32 i;
5312 
5313 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5314 		if (test_bit(i, &napi->gro_bitmask))
5315 			__napi_gro_flush_chain(napi, i, flush_old);
5316 	}
5317 }
5318 EXPORT_SYMBOL(napi_gro_flush);
5319 
5320 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5321 					  struct sk_buff *skb)
5322 {
5323 	unsigned int maclen = skb->dev->hard_header_len;
5324 	u32 hash = skb_get_hash_raw(skb);
5325 	struct list_head *head;
5326 	struct sk_buff *p;
5327 
5328 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5329 	list_for_each_entry(p, head, list) {
5330 		unsigned long diffs;
5331 
5332 		NAPI_GRO_CB(p)->flush = 0;
5333 
5334 		if (hash != skb_get_hash_raw(p)) {
5335 			NAPI_GRO_CB(p)->same_flow = 0;
5336 			continue;
5337 		}
5338 
5339 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5340 		diffs |= p->vlan_tci ^ skb->vlan_tci;
5341 		diffs |= skb_metadata_dst_cmp(p, skb);
5342 		diffs |= skb_metadata_differs(p, skb);
5343 		if (maclen == ETH_HLEN)
5344 			diffs |= compare_ether_header(skb_mac_header(p),
5345 						      skb_mac_header(skb));
5346 		else if (!diffs)
5347 			diffs = memcmp(skb_mac_header(p),
5348 				       skb_mac_header(skb),
5349 				       maclen);
5350 		NAPI_GRO_CB(p)->same_flow = !diffs;
5351 	}
5352 
5353 	return head;
5354 }
5355 
5356 static void skb_gro_reset_offset(struct sk_buff *skb)
5357 {
5358 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5359 	const skb_frag_t *frag0 = &pinfo->frags[0];
5360 
5361 	NAPI_GRO_CB(skb)->data_offset = 0;
5362 	NAPI_GRO_CB(skb)->frag0 = NULL;
5363 	NAPI_GRO_CB(skb)->frag0_len = 0;
5364 
5365 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5366 	    pinfo->nr_frags &&
5367 	    !PageHighMem(skb_frag_page(frag0))) {
5368 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5369 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5370 						    skb_frag_size(frag0),
5371 						    skb->end - skb->tail);
5372 	}
5373 }
5374 
5375 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5376 {
5377 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5378 
5379 	BUG_ON(skb->end - skb->tail < grow);
5380 
5381 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5382 
5383 	skb->data_len -= grow;
5384 	skb->tail += grow;
5385 
5386 	pinfo->frags[0].page_offset += grow;
5387 	skb_frag_size_sub(&pinfo->frags[0], grow);
5388 
5389 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5390 		skb_frag_unref(skb, 0);
5391 		memmove(pinfo->frags, pinfo->frags + 1,
5392 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5393 	}
5394 }
5395 
5396 static void gro_flush_oldest(struct list_head *head)
5397 {
5398 	struct sk_buff *oldest;
5399 
5400 	oldest = list_last_entry(head, struct sk_buff, list);
5401 
5402 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5403 	 * impossible.
5404 	 */
5405 	if (WARN_ON_ONCE(!oldest))
5406 		return;
5407 
5408 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5409 	 * SKB to the chain.
5410 	 */
5411 	list_del(&oldest->list);
5412 	napi_gro_complete(oldest);
5413 }
5414 
5415 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5416 {
5417 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5418 	struct list_head *head = &offload_base;
5419 	struct packet_offload *ptype;
5420 	__be16 type = skb->protocol;
5421 	struct list_head *gro_head;
5422 	struct sk_buff *pp = NULL;
5423 	enum gro_result ret;
5424 	int same_flow;
5425 	int grow;
5426 
5427 	if (netif_elide_gro(skb->dev))
5428 		goto normal;
5429 
5430 	gro_head = gro_list_prepare(napi, skb);
5431 
5432 	rcu_read_lock();
5433 	list_for_each_entry_rcu(ptype, head, list) {
5434 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5435 			continue;
5436 
5437 		skb_set_network_header(skb, skb_gro_offset(skb));
5438 		skb_reset_mac_len(skb);
5439 		NAPI_GRO_CB(skb)->same_flow = 0;
5440 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5441 		NAPI_GRO_CB(skb)->free = 0;
5442 		NAPI_GRO_CB(skb)->encap_mark = 0;
5443 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5444 		NAPI_GRO_CB(skb)->is_fou = 0;
5445 		NAPI_GRO_CB(skb)->is_atomic = 1;
5446 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5447 
5448 		/* Setup for GRO checksum validation */
5449 		switch (skb->ip_summed) {
5450 		case CHECKSUM_COMPLETE:
5451 			NAPI_GRO_CB(skb)->csum = skb->csum;
5452 			NAPI_GRO_CB(skb)->csum_valid = 1;
5453 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5454 			break;
5455 		case CHECKSUM_UNNECESSARY:
5456 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5457 			NAPI_GRO_CB(skb)->csum_valid = 0;
5458 			break;
5459 		default:
5460 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5461 			NAPI_GRO_CB(skb)->csum_valid = 0;
5462 		}
5463 
5464 		pp = ptype->callbacks.gro_receive(gro_head, skb);
5465 		break;
5466 	}
5467 	rcu_read_unlock();
5468 
5469 	if (&ptype->list == head)
5470 		goto normal;
5471 
5472 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5473 		ret = GRO_CONSUMED;
5474 		goto ok;
5475 	}
5476 
5477 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5478 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5479 
5480 	if (pp) {
5481 		list_del(&pp->list);
5482 		pp->next = NULL;
5483 		napi_gro_complete(pp);
5484 		napi->gro_hash[hash].count--;
5485 	}
5486 
5487 	if (same_flow)
5488 		goto ok;
5489 
5490 	if (NAPI_GRO_CB(skb)->flush)
5491 		goto normal;
5492 
5493 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5494 		gro_flush_oldest(gro_head);
5495 	} else {
5496 		napi->gro_hash[hash].count++;
5497 	}
5498 	NAPI_GRO_CB(skb)->count = 1;
5499 	NAPI_GRO_CB(skb)->age = jiffies;
5500 	NAPI_GRO_CB(skb)->last = skb;
5501 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5502 	list_add(&skb->list, gro_head);
5503 	ret = GRO_HELD;
5504 
5505 pull:
5506 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5507 	if (grow > 0)
5508 		gro_pull_from_frag0(skb, grow);
5509 ok:
5510 	if (napi->gro_hash[hash].count) {
5511 		if (!test_bit(hash, &napi->gro_bitmask))
5512 			__set_bit(hash, &napi->gro_bitmask);
5513 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5514 		__clear_bit(hash, &napi->gro_bitmask);
5515 	}
5516 
5517 	return ret;
5518 
5519 normal:
5520 	ret = GRO_NORMAL;
5521 	goto pull;
5522 }
5523 
5524 struct packet_offload *gro_find_receive_by_type(__be16 type)
5525 {
5526 	struct list_head *offload_head = &offload_base;
5527 	struct packet_offload *ptype;
5528 
5529 	list_for_each_entry_rcu(ptype, offload_head, list) {
5530 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5531 			continue;
5532 		return ptype;
5533 	}
5534 	return NULL;
5535 }
5536 EXPORT_SYMBOL(gro_find_receive_by_type);
5537 
5538 struct packet_offload *gro_find_complete_by_type(__be16 type)
5539 {
5540 	struct list_head *offload_head = &offload_base;
5541 	struct packet_offload *ptype;
5542 
5543 	list_for_each_entry_rcu(ptype, offload_head, list) {
5544 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5545 			continue;
5546 		return ptype;
5547 	}
5548 	return NULL;
5549 }
5550 EXPORT_SYMBOL(gro_find_complete_by_type);
5551 
5552 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5553 {
5554 	skb_dst_drop(skb);
5555 	secpath_reset(skb);
5556 	kmem_cache_free(skbuff_head_cache, skb);
5557 }
5558 
5559 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5560 {
5561 	switch (ret) {
5562 	case GRO_NORMAL:
5563 		if (netif_receive_skb_internal(skb))
5564 			ret = GRO_DROP;
5565 		break;
5566 
5567 	case GRO_DROP:
5568 		kfree_skb(skb);
5569 		break;
5570 
5571 	case GRO_MERGED_FREE:
5572 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5573 			napi_skb_free_stolen_head(skb);
5574 		else
5575 			__kfree_skb(skb);
5576 		break;
5577 
5578 	case GRO_HELD:
5579 	case GRO_MERGED:
5580 	case GRO_CONSUMED:
5581 		break;
5582 	}
5583 
5584 	return ret;
5585 }
5586 
5587 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5588 {
5589 	skb_mark_napi_id(skb, napi);
5590 	trace_napi_gro_receive_entry(skb);
5591 
5592 	skb_gro_reset_offset(skb);
5593 
5594 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5595 }
5596 EXPORT_SYMBOL(napi_gro_receive);
5597 
5598 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5599 {
5600 	if (unlikely(skb->pfmemalloc)) {
5601 		consume_skb(skb);
5602 		return;
5603 	}
5604 	__skb_pull(skb, skb_headlen(skb));
5605 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5606 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5607 	skb->vlan_tci = 0;
5608 	skb->dev = napi->dev;
5609 	skb->skb_iif = 0;
5610 	skb->encapsulation = 0;
5611 	skb_shinfo(skb)->gso_type = 0;
5612 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5613 	secpath_reset(skb);
5614 
5615 	napi->skb = skb;
5616 }
5617 
5618 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5619 {
5620 	struct sk_buff *skb = napi->skb;
5621 
5622 	if (!skb) {
5623 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5624 		if (skb) {
5625 			napi->skb = skb;
5626 			skb_mark_napi_id(skb, napi);
5627 		}
5628 	}
5629 	return skb;
5630 }
5631 EXPORT_SYMBOL(napi_get_frags);
5632 
5633 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5634 				      struct sk_buff *skb,
5635 				      gro_result_t ret)
5636 {
5637 	switch (ret) {
5638 	case GRO_NORMAL:
5639 	case GRO_HELD:
5640 		__skb_push(skb, ETH_HLEN);
5641 		skb->protocol = eth_type_trans(skb, skb->dev);
5642 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5643 			ret = GRO_DROP;
5644 		break;
5645 
5646 	case GRO_DROP:
5647 		napi_reuse_skb(napi, skb);
5648 		break;
5649 
5650 	case GRO_MERGED_FREE:
5651 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5652 			napi_skb_free_stolen_head(skb);
5653 		else
5654 			napi_reuse_skb(napi, skb);
5655 		break;
5656 
5657 	case GRO_MERGED:
5658 	case GRO_CONSUMED:
5659 		break;
5660 	}
5661 
5662 	return ret;
5663 }
5664 
5665 /* Upper GRO stack assumes network header starts at gro_offset=0
5666  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5667  * We copy ethernet header into skb->data to have a common layout.
5668  */
5669 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5670 {
5671 	struct sk_buff *skb = napi->skb;
5672 	const struct ethhdr *eth;
5673 	unsigned int hlen = sizeof(*eth);
5674 
5675 	napi->skb = NULL;
5676 
5677 	skb_reset_mac_header(skb);
5678 	skb_gro_reset_offset(skb);
5679 
5680 	eth = skb_gro_header_fast(skb, 0);
5681 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5682 		eth = skb_gro_header_slow(skb, hlen, 0);
5683 		if (unlikely(!eth)) {
5684 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5685 					     __func__, napi->dev->name);
5686 			napi_reuse_skb(napi, skb);
5687 			return NULL;
5688 		}
5689 	} else {
5690 		gro_pull_from_frag0(skb, hlen);
5691 		NAPI_GRO_CB(skb)->frag0 += hlen;
5692 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5693 	}
5694 	__skb_pull(skb, hlen);
5695 
5696 	/*
5697 	 * This works because the only protocols we care about don't require
5698 	 * special handling.
5699 	 * We'll fix it up properly in napi_frags_finish()
5700 	 */
5701 	skb->protocol = eth->h_proto;
5702 
5703 	return skb;
5704 }
5705 
5706 gro_result_t napi_gro_frags(struct napi_struct *napi)
5707 {
5708 	struct sk_buff *skb = napi_frags_skb(napi);
5709 
5710 	if (!skb)
5711 		return GRO_DROP;
5712 
5713 	trace_napi_gro_frags_entry(skb);
5714 
5715 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5716 }
5717 EXPORT_SYMBOL(napi_gro_frags);
5718 
5719 /* Compute the checksum from gro_offset and return the folded value
5720  * after adding in any pseudo checksum.
5721  */
5722 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5723 {
5724 	__wsum wsum;
5725 	__sum16 sum;
5726 
5727 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5728 
5729 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5730 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5731 	if (likely(!sum)) {
5732 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5733 		    !skb->csum_complete_sw)
5734 			netdev_rx_csum_fault(skb->dev);
5735 	}
5736 
5737 	NAPI_GRO_CB(skb)->csum = wsum;
5738 	NAPI_GRO_CB(skb)->csum_valid = 1;
5739 
5740 	return sum;
5741 }
5742 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5743 
5744 static void net_rps_send_ipi(struct softnet_data *remsd)
5745 {
5746 #ifdef CONFIG_RPS
5747 	while (remsd) {
5748 		struct softnet_data *next = remsd->rps_ipi_next;
5749 
5750 		if (cpu_online(remsd->cpu))
5751 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5752 		remsd = next;
5753 	}
5754 #endif
5755 }
5756 
5757 /*
5758  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5759  * Note: called with local irq disabled, but exits with local irq enabled.
5760  */
5761 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5762 {
5763 #ifdef CONFIG_RPS
5764 	struct softnet_data *remsd = sd->rps_ipi_list;
5765 
5766 	if (remsd) {
5767 		sd->rps_ipi_list = NULL;
5768 
5769 		local_irq_enable();
5770 
5771 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5772 		net_rps_send_ipi(remsd);
5773 	} else
5774 #endif
5775 		local_irq_enable();
5776 }
5777 
5778 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5779 {
5780 #ifdef CONFIG_RPS
5781 	return sd->rps_ipi_list != NULL;
5782 #else
5783 	return false;
5784 #endif
5785 }
5786 
5787 static int process_backlog(struct napi_struct *napi, int quota)
5788 {
5789 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5790 	bool again = true;
5791 	int work = 0;
5792 
5793 	/* Check if we have pending ipi, its better to send them now,
5794 	 * not waiting net_rx_action() end.
5795 	 */
5796 	if (sd_has_rps_ipi_waiting(sd)) {
5797 		local_irq_disable();
5798 		net_rps_action_and_irq_enable(sd);
5799 	}
5800 
5801 	napi->weight = dev_rx_weight;
5802 	while (again) {
5803 		struct sk_buff *skb;
5804 
5805 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5806 			rcu_read_lock();
5807 			__netif_receive_skb(skb);
5808 			rcu_read_unlock();
5809 			input_queue_head_incr(sd);
5810 			if (++work >= quota)
5811 				return work;
5812 
5813 		}
5814 
5815 		local_irq_disable();
5816 		rps_lock(sd);
5817 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5818 			/*
5819 			 * Inline a custom version of __napi_complete().
5820 			 * only current cpu owns and manipulates this napi,
5821 			 * and NAPI_STATE_SCHED is the only possible flag set
5822 			 * on backlog.
5823 			 * We can use a plain write instead of clear_bit(),
5824 			 * and we dont need an smp_mb() memory barrier.
5825 			 */
5826 			napi->state = 0;
5827 			again = false;
5828 		} else {
5829 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5830 						   &sd->process_queue);
5831 		}
5832 		rps_unlock(sd);
5833 		local_irq_enable();
5834 	}
5835 
5836 	return work;
5837 }
5838 
5839 /**
5840  * __napi_schedule - schedule for receive
5841  * @n: entry to schedule
5842  *
5843  * The entry's receive function will be scheduled to run.
5844  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5845  */
5846 void __napi_schedule(struct napi_struct *n)
5847 {
5848 	unsigned long flags;
5849 
5850 	local_irq_save(flags);
5851 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5852 	local_irq_restore(flags);
5853 }
5854 EXPORT_SYMBOL(__napi_schedule);
5855 
5856 /**
5857  *	napi_schedule_prep - check if napi can be scheduled
5858  *	@n: napi context
5859  *
5860  * Test if NAPI routine is already running, and if not mark
5861  * it as running.  This is used as a condition variable
5862  * insure only one NAPI poll instance runs.  We also make
5863  * sure there is no pending NAPI disable.
5864  */
5865 bool napi_schedule_prep(struct napi_struct *n)
5866 {
5867 	unsigned long val, new;
5868 
5869 	do {
5870 		val = READ_ONCE(n->state);
5871 		if (unlikely(val & NAPIF_STATE_DISABLE))
5872 			return false;
5873 		new = val | NAPIF_STATE_SCHED;
5874 
5875 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5876 		 * This was suggested by Alexander Duyck, as compiler
5877 		 * emits better code than :
5878 		 * if (val & NAPIF_STATE_SCHED)
5879 		 *     new |= NAPIF_STATE_MISSED;
5880 		 */
5881 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5882 						   NAPIF_STATE_MISSED;
5883 	} while (cmpxchg(&n->state, val, new) != val);
5884 
5885 	return !(val & NAPIF_STATE_SCHED);
5886 }
5887 EXPORT_SYMBOL(napi_schedule_prep);
5888 
5889 /**
5890  * __napi_schedule_irqoff - schedule for receive
5891  * @n: entry to schedule
5892  *
5893  * Variant of __napi_schedule() assuming hard irqs are masked
5894  */
5895 void __napi_schedule_irqoff(struct napi_struct *n)
5896 {
5897 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5898 }
5899 EXPORT_SYMBOL(__napi_schedule_irqoff);
5900 
5901 bool napi_complete_done(struct napi_struct *n, int work_done)
5902 {
5903 	unsigned long flags, val, new;
5904 
5905 	/*
5906 	 * 1) Don't let napi dequeue from the cpu poll list
5907 	 *    just in case its running on a different cpu.
5908 	 * 2) If we are busy polling, do nothing here, we have
5909 	 *    the guarantee we will be called later.
5910 	 */
5911 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5912 				 NAPIF_STATE_IN_BUSY_POLL)))
5913 		return false;
5914 
5915 	if (n->gro_bitmask) {
5916 		unsigned long timeout = 0;
5917 
5918 		if (work_done)
5919 			timeout = n->dev->gro_flush_timeout;
5920 
5921 		if (timeout)
5922 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5923 				      HRTIMER_MODE_REL_PINNED);
5924 		else
5925 			napi_gro_flush(n, false);
5926 	}
5927 	if (unlikely(!list_empty(&n->poll_list))) {
5928 		/* If n->poll_list is not empty, we need to mask irqs */
5929 		local_irq_save(flags);
5930 		list_del_init(&n->poll_list);
5931 		local_irq_restore(flags);
5932 	}
5933 
5934 	do {
5935 		val = READ_ONCE(n->state);
5936 
5937 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5938 
5939 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5940 
5941 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5942 		 * because we will call napi->poll() one more time.
5943 		 * This C code was suggested by Alexander Duyck to help gcc.
5944 		 */
5945 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5946 						    NAPIF_STATE_SCHED;
5947 	} while (cmpxchg(&n->state, val, new) != val);
5948 
5949 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5950 		__napi_schedule(n);
5951 		return false;
5952 	}
5953 
5954 	return true;
5955 }
5956 EXPORT_SYMBOL(napi_complete_done);
5957 
5958 /* must be called under rcu_read_lock(), as we dont take a reference */
5959 static struct napi_struct *napi_by_id(unsigned int napi_id)
5960 {
5961 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5962 	struct napi_struct *napi;
5963 
5964 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5965 		if (napi->napi_id == napi_id)
5966 			return napi;
5967 
5968 	return NULL;
5969 }
5970 
5971 #if defined(CONFIG_NET_RX_BUSY_POLL)
5972 
5973 #define BUSY_POLL_BUDGET 8
5974 
5975 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5976 {
5977 	int rc;
5978 
5979 	/* Busy polling means there is a high chance device driver hard irq
5980 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5981 	 * set in napi_schedule_prep().
5982 	 * Since we are about to call napi->poll() once more, we can safely
5983 	 * clear NAPI_STATE_MISSED.
5984 	 *
5985 	 * Note: x86 could use a single "lock and ..." instruction
5986 	 * to perform these two clear_bit()
5987 	 */
5988 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5989 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5990 
5991 	local_bh_disable();
5992 
5993 	/* All we really want here is to re-enable device interrupts.
5994 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5995 	 */
5996 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5997 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5998 	netpoll_poll_unlock(have_poll_lock);
5999 	if (rc == BUSY_POLL_BUDGET)
6000 		__napi_schedule(napi);
6001 	local_bh_enable();
6002 }
6003 
6004 void napi_busy_loop(unsigned int napi_id,
6005 		    bool (*loop_end)(void *, unsigned long),
6006 		    void *loop_end_arg)
6007 {
6008 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6009 	int (*napi_poll)(struct napi_struct *napi, int budget);
6010 	void *have_poll_lock = NULL;
6011 	struct napi_struct *napi;
6012 
6013 restart:
6014 	napi_poll = NULL;
6015 
6016 	rcu_read_lock();
6017 
6018 	napi = napi_by_id(napi_id);
6019 	if (!napi)
6020 		goto out;
6021 
6022 	preempt_disable();
6023 	for (;;) {
6024 		int work = 0;
6025 
6026 		local_bh_disable();
6027 		if (!napi_poll) {
6028 			unsigned long val = READ_ONCE(napi->state);
6029 
6030 			/* If multiple threads are competing for this napi,
6031 			 * we avoid dirtying napi->state as much as we can.
6032 			 */
6033 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6034 				   NAPIF_STATE_IN_BUSY_POLL))
6035 				goto count;
6036 			if (cmpxchg(&napi->state, val,
6037 				    val | NAPIF_STATE_IN_BUSY_POLL |
6038 					  NAPIF_STATE_SCHED) != val)
6039 				goto count;
6040 			have_poll_lock = netpoll_poll_lock(napi);
6041 			napi_poll = napi->poll;
6042 		}
6043 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6044 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6045 count:
6046 		if (work > 0)
6047 			__NET_ADD_STATS(dev_net(napi->dev),
6048 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6049 		local_bh_enable();
6050 
6051 		if (!loop_end || loop_end(loop_end_arg, start_time))
6052 			break;
6053 
6054 		if (unlikely(need_resched())) {
6055 			if (napi_poll)
6056 				busy_poll_stop(napi, have_poll_lock);
6057 			preempt_enable();
6058 			rcu_read_unlock();
6059 			cond_resched();
6060 			if (loop_end(loop_end_arg, start_time))
6061 				return;
6062 			goto restart;
6063 		}
6064 		cpu_relax();
6065 	}
6066 	if (napi_poll)
6067 		busy_poll_stop(napi, have_poll_lock);
6068 	preempt_enable();
6069 out:
6070 	rcu_read_unlock();
6071 }
6072 EXPORT_SYMBOL(napi_busy_loop);
6073 
6074 #endif /* CONFIG_NET_RX_BUSY_POLL */
6075 
6076 static void napi_hash_add(struct napi_struct *napi)
6077 {
6078 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6079 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6080 		return;
6081 
6082 	spin_lock(&napi_hash_lock);
6083 
6084 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6085 	do {
6086 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6087 			napi_gen_id = MIN_NAPI_ID;
6088 	} while (napi_by_id(napi_gen_id));
6089 	napi->napi_id = napi_gen_id;
6090 
6091 	hlist_add_head_rcu(&napi->napi_hash_node,
6092 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6093 
6094 	spin_unlock(&napi_hash_lock);
6095 }
6096 
6097 /* Warning : caller is responsible to make sure rcu grace period
6098  * is respected before freeing memory containing @napi
6099  */
6100 bool napi_hash_del(struct napi_struct *napi)
6101 {
6102 	bool rcu_sync_needed = false;
6103 
6104 	spin_lock(&napi_hash_lock);
6105 
6106 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6107 		rcu_sync_needed = true;
6108 		hlist_del_rcu(&napi->napi_hash_node);
6109 	}
6110 	spin_unlock(&napi_hash_lock);
6111 	return rcu_sync_needed;
6112 }
6113 EXPORT_SYMBOL_GPL(napi_hash_del);
6114 
6115 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6116 {
6117 	struct napi_struct *napi;
6118 
6119 	napi = container_of(timer, struct napi_struct, timer);
6120 
6121 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6122 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6123 	 */
6124 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6125 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6126 		__napi_schedule_irqoff(napi);
6127 
6128 	return HRTIMER_NORESTART;
6129 }
6130 
6131 static void init_gro_hash(struct napi_struct *napi)
6132 {
6133 	int i;
6134 
6135 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6136 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6137 		napi->gro_hash[i].count = 0;
6138 	}
6139 	napi->gro_bitmask = 0;
6140 }
6141 
6142 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6143 		    int (*poll)(struct napi_struct *, int), int weight)
6144 {
6145 	INIT_LIST_HEAD(&napi->poll_list);
6146 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6147 	napi->timer.function = napi_watchdog;
6148 	init_gro_hash(napi);
6149 	napi->skb = NULL;
6150 	napi->poll = poll;
6151 	if (weight > NAPI_POLL_WEIGHT)
6152 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6153 			    weight, dev->name);
6154 	napi->weight = weight;
6155 	list_add(&napi->dev_list, &dev->napi_list);
6156 	napi->dev = dev;
6157 #ifdef CONFIG_NETPOLL
6158 	napi->poll_owner = -1;
6159 #endif
6160 	set_bit(NAPI_STATE_SCHED, &napi->state);
6161 	napi_hash_add(napi);
6162 }
6163 EXPORT_SYMBOL(netif_napi_add);
6164 
6165 void napi_disable(struct napi_struct *n)
6166 {
6167 	might_sleep();
6168 	set_bit(NAPI_STATE_DISABLE, &n->state);
6169 
6170 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6171 		msleep(1);
6172 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6173 		msleep(1);
6174 
6175 	hrtimer_cancel(&n->timer);
6176 
6177 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6178 }
6179 EXPORT_SYMBOL(napi_disable);
6180 
6181 static void flush_gro_hash(struct napi_struct *napi)
6182 {
6183 	int i;
6184 
6185 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6186 		struct sk_buff *skb, *n;
6187 
6188 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6189 			kfree_skb(skb);
6190 		napi->gro_hash[i].count = 0;
6191 	}
6192 }
6193 
6194 /* Must be called in process context */
6195 void netif_napi_del(struct napi_struct *napi)
6196 {
6197 	might_sleep();
6198 	if (napi_hash_del(napi))
6199 		synchronize_net();
6200 	list_del_init(&napi->dev_list);
6201 	napi_free_frags(napi);
6202 
6203 	flush_gro_hash(napi);
6204 	napi->gro_bitmask = 0;
6205 }
6206 EXPORT_SYMBOL(netif_napi_del);
6207 
6208 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6209 {
6210 	void *have;
6211 	int work, weight;
6212 
6213 	list_del_init(&n->poll_list);
6214 
6215 	have = netpoll_poll_lock(n);
6216 
6217 	weight = n->weight;
6218 
6219 	/* This NAPI_STATE_SCHED test is for avoiding a race
6220 	 * with netpoll's poll_napi().  Only the entity which
6221 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6222 	 * actually make the ->poll() call.  Therefore we avoid
6223 	 * accidentally calling ->poll() when NAPI is not scheduled.
6224 	 */
6225 	work = 0;
6226 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6227 		work = n->poll(n, weight);
6228 		trace_napi_poll(n, work, weight);
6229 	}
6230 
6231 	WARN_ON_ONCE(work > weight);
6232 
6233 	if (likely(work < weight))
6234 		goto out_unlock;
6235 
6236 	/* Drivers must not modify the NAPI state if they
6237 	 * consume the entire weight.  In such cases this code
6238 	 * still "owns" the NAPI instance and therefore can
6239 	 * move the instance around on the list at-will.
6240 	 */
6241 	if (unlikely(napi_disable_pending(n))) {
6242 		napi_complete(n);
6243 		goto out_unlock;
6244 	}
6245 
6246 	if (n->gro_bitmask) {
6247 		/* flush too old packets
6248 		 * If HZ < 1000, flush all packets.
6249 		 */
6250 		napi_gro_flush(n, HZ >= 1000);
6251 	}
6252 
6253 	/* Some drivers may have called napi_schedule
6254 	 * prior to exhausting their budget.
6255 	 */
6256 	if (unlikely(!list_empty(&n->poll_list))) {
6257 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6258 			     n->dev ? n->dev->name : "backlog");
6259 		goto out_unlock;
6260 	}
6261 
6262 	list_add_tail(&n->poll_list, repoll);
6263 
6264 out_unlock:
6265 	netpoll_poll_unlock(have);
6266 
6267 	return work;
6268 }
6269 
6270 static __latent_entropy void net_rx_action(struct softirq_action *h)
6271 {
6272 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6273 	unsigned long time_limit = jiffies +
6274 		usecs_to_jiffies(netdev_budget_usecs);
6275 	int budget = netdev_budget;
6276 	LIST_HEAD(list);
6277 	LIST_HEAD(repoll);
6278 
6279 	local_irq_disable();
6280 	list_splice_init(&sd->poll_list, &list);
6281 	local_irq_enable();
6282 
6283 	for (;;) {
6284 		struct napi_struct *n;
6285 
6286 		if (list_empty(&list)) {
6287 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6288 				goto out;
6289 			break;
6290 		}
6291 
6292 		n = list_first_entry(&list, struct napi_struct, poll_list);
6293 		budget -= napi_poll(n, &repoll);
6294 
6295 		/* If softirq window is exhausted then punt.
6296 		 * Allow this to run for 2 jiffies since which will allow
6297 		 * an average latency of 1.5/HZ.
6298 		 */
6299 		if (unlikely(budget <= 0 ||
6300 			     time_after_eq(jiffies, time_limit))) {
6301 			sd->time_squeeze++;
6302 			break;
6303 		}
6304 	}
6305 
6306 	local_irq_disable();
6307 
6308 	list_splice_tail_init(&sd->poll_list, &list);
6309 	list_splice_tail(&repoll, &list);
6310 	list_splice(&list, &sd->poll_list);
6311 	if (!list_empty(&sd->poll_list))
6312 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6313 
6314 	net_rps_action_and_irq_enable(sd);
6315 out:
6316 	__kfree_skb_flush();
6317 }
6318 
6319 struct netdev_adjacent {
6320 	struct net_device *dev;
6321 
6322 	/* upper master flag, there can only be one master device per list */
6323 	bool master;
6324 
6325 	/* counter for the number of times this device was added to us */
6326 	u16 ref_nr;
6327 
6328 	/* private field for the users */
6329 	void *private;
6330 
6331 	struct list_head list;
6332 	struct rcu_head rcu;
6333 };
6334 
6335 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6336 						 struct list_head *adj_list)
6337 {
6338 	struct netdev_adjacent *adj;
6339 
6340 	list_for_each_entry(adj, adj_list, list) {
6341 		if (adj->dev == adj_dev)
6342 			return adj;
6343 	}
6344 	return NULL;
6345 }
6346 
6347 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6348 {
6349 	struct net_device *dev = data;
6350 
6351 	return upper_dev == dev;
6352 }
6353 
6354 /**
6355  * netdev_has_upper_dev - Check if device is linked to an upper device
6356  * @dev: device
6357  * @upper_dev: upper device to check
6358  *
6359  * Find out if a device is linked to specified upper device and return true
6360  * in case it is. Note that this checks only immediate upper device,
6361  * not through a complete stack of devices. The caller must hold the RTNL lock.
6362  */
6363 bool netdev_has_upper_dev(struct net_device *dev,
6364 			  struct net_device *upper_dev)
6365 {
6366 	ASSERT_RTNL();
6367 
6368 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6369 					     upper_dev);
6370 }
6371 EXPORT_SYMBOL(netdev_has_upper_dev);
6372 
6373 /**
6374  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6375  * @dev: device
6376  * @upper_dev: upper device to check
6377  *
6378  * Find out if a device is linked to specified upper device and return true
6379  * in case it is. Note that this checks the entire upper device chain.
6380  * The caller must hold rcu lock.
6381  */
6382 
6383 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6384 				  struct net_device *upper_dev)
6385 {
6386 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6387 					       upper_dev);
6388 }
6389 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6390 
6391 /**
6392  * netdev_has_any_upper_dev - Check if device is linked to some device
6393  * @dev: device
6394  *
6395  * Find out if a device is linked to an upper device and return true in case
6396  * it is. The caller must hold the RTNL lock.
6397  */
6398 bool netdev_has_any_upper_dev(struct net_device *dev)
6399 {
6400 	ASSERT_RTNL();
6401 
6402 	return !list_empty(&dev->adj_list.upper);
6403 }
6404 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6405 
6406 /**
6407  * netdev_master_upper_dev_get - Get master upper device
6408  * @dev: device
6409  *
6410  * Find a master upper device and return pointer to it or NULL in case
6411  * it's not there. The caller must hold the RTNL lock.
6412  */
6413 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6414 {
6415 	struct netdev_adjacent *upper;
6416 
6417 	ASSERT_RTNL();
6418 
6419 	if (list_empty(&dev->adj_list.upper))
6420 		return NULL;
6421 
6422 	upper = list_first_entry(&dev->adj_list.upper,
6423 				 struct netdev_adjacent, list);
6424 	if (likely(upper->master))
6425 		return upper->dev;
6426 	return NULL;
6427 }
6428 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6429 
6430 /**
6431  * netdev_has_any_lower_dev - Check if device is linked to some device
6432  * @dev: device
6433  *
6434  * Find out if a device is linked to a lower device and return true in case
6435  * it is. The caller must hold the RTNL lock.
6436  */
6437 static bool netdev_has_any_lower_dev(struct net_device *dev)
6438 {
6439 	ASSERT_RTNL();
6440 
6441 	return !list_empty(&dev->adj_list.lower);
6442 }
6443 
6444 void *netdev_adjacent_get_private(struct list_head *adj_list)
6445 {
6446 	struct netdev_adjacent *adj;
6447 
6448 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6449 
6450 	return adj->private;
6451 }
6452 EXPORT_SYMBOL(netdev_adjacent_get_private);
6453 
6454 /**
6455  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6456  * @dev: device
6457  * @iter: list_head ** of the current position
6458  *
6459  * Gets the next device from the dev's upper list, starting from iter
6460  * position. The caller must hold RCU read lock.
6461  */
6462 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6463 						 struct list_head **iter)
6464 {
6465 	struct netdev_adjacent *upper;
6466 
6467 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6468 
6469 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6470 
6471 	if (&upper->list == &dev->adj_list.upper)
6472 		return NULL;
6473 
6474 	*iter = &upper->list;
6475 
6476 	return upper->dev;
6477 }
6478 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6479 
6480 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6481 						    struct list_head **iter)
6482 {
6483 	struct netdev_adjacent *upper;
6484 
6485 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6486 
6487 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6488 
6489 	if (&upper->list == &dev->adj_list.upper)
6490 		return NULL;
6491 
6492 	*iter = &upper->list;
6493 
6494 	return upper->dev;
6495 }
6496 
6497 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6498 				  int (*fn)(struct net_device *dev,
6499 					    void *data),
6500 				  void *data)
6501 {
6502 	struct net_device *udev;
6503 	struct list_head *iter;
6504 	int ret;
6505 
6506 	for (iter = &dev->adj_list.upper,
6507 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6508 	     udev;
6509 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6510 		/* first is the upper device itself */
6511 		ret = fn(udev, data);
6512 		if (ret)
6513 			return ret;
6514 
6515 		/* then look at all of its upper devices */
6516 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6517 		if (ret)
6518 			return ret;
6519 	}
6520 
6521 	return 0;
6522 }
6523 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6524 
6525 /**
6526  * netdev_lower_get_next_private - Get the next ->private from the
6527  *				   lower neighbour list
6528  * @dev: device
6529  * @iter: list_head ** of the current position
6530  *
6531  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6532  * list, starting from iter position. The caller must hold either hold the
6533  * RTNL lock or its own locking that guarantees that the neighbour lower
6534  * list will remain unchanged.
6535  */
6536 void *netdev_lower_get_next_private(struct net_device *dev,
6537 				    struct list_head **iter)
6538 {
6539 	struct netdev_adjacent *lower;
6540 
6541 	lower = list_entry(*iter, struct netdev_adjacent, list);
6542 
6543 	if (&lower->list == &dev->adj_list.lower)
6544 		return NULL;
6545 
6546 	*iter = lower->list.next;
6547 
6548 	return lower->private;
6549 }
6550 EXPORT_SYMBOL(netdev_lower_get_next_private);
6551 
6552 /**
6553  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6554  *				       lower neighbour list, RCU
6555  *				       variant
6556  * @dev: device
6557  * @iter: list_head ** of the current position
6558  *
6559  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6560  * list, starting from iter position. The caller must hold RCU read lock.
6561  */
6562 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6563 					struct list_head **iter)
6564 {
6565 	struct netdev_adjacent *lower;
6566 
6567 	WARN_ON_ONCE(!rcu_read_lock_held());
6568 
6569 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6570 
6571 	if (&lower->list == &dev->adj_list.lower)
6572 		return NULL;
6573 
6574 	*iter = &lower->list;
6575 
6576 	return lower->private;
6577 }
6578 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6579 
6580 /**
6581  * netdev_lower_get_next - Get the next device from the lower neighbour
6582  *                         list
6583  * @dev: device
6584  * @iter: list_head ** of the current position
6585  *
6586  * Gets the next netdev_adjacent from the dev's lower neighbour
6587  * list, starting from iter position. The caller must hold RTNL lock or
6588  * its own locking that guarantees that the neighbour lower
6589  * list will remain unchanged.
6590  */
6591 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6592 {
6593 	struct netdev_adjacent *lower;
6594 
6595 	lower = list_entry(*iter, struct netdev_adjacent, list);
6596 
6597 	if (&lower->list == &dev->adj_list.lower)
6598 		return NULL;
6599 
6600 	*iter = lower->list.next;
6601 
6602 	return lower->dev;
6603 }
6604 EXPORT_SYMBOL(netdev_lower_get_next);
6605 
6606 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6607 						struct list_head **iter)
6608 {
6609 	struct netdev_adjacent *lower;
6610 
6611 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6612 
6613 	if (&lower->list == &dev->adj_list.lower)
6614 		return NULL;
6615 
6616 	*iter = &lower->list;
6617 
6618 	return lower->dev;
6619 }
6620 
6621 int netdev_walk_all_lower_dev(struct net_device *dev,
6622 			      int (*fn)(struct net_device *dev,
6623 					void *data),
6624 			      void *data)
6625 {
6626 	struct net_device *ldev;
6627 	struct list_head *iter;
6628 	int ret;
6629 
6630 	for (iter = &dev->adj_list.lower,
6631 	     ldev = netdev_next_lower_dev(dev, &iter);
6632 	     ldev;
6633 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6634 		/* first is the lower device itself */
6635 		ret = fn(ldev, data);
6636 		if (ret)
6637 			return ret;
6638 
6639 		/* then look at all of its lower devices */
6640 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6641 		if (ret)
6642 			return ret;
6643 	}
6644 
6645 	return 0;
6646 }
6647 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6648 
6649 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6650 						    struct list_head **iter)
6651 {
6652 	struct netdev_adjacent *lower;
6653 
6654 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6655 	if (&lower->list == &dev->adj_list.lower)
6656 		return NULL;
6657 
6658 	*iter = &lower->list;
6659 
6660 	return lower->dev;
6661 }
6662 
6663 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6664 				  int (*fn)(struct net_device *dev,
6665 					    void *data),
6666 				  void *data)
6667 {
6668 	struct net_device *ldev;
6669 	struct list_head *iter;
6670 	int ret;
6671 
6672 	for (iter = &dev->adj_list.lower,
6673 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6674 	     ldev;
6675 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6676 		/* first is the lower device itself */
6677 		ret = fn(ldev, data);
6678 		if (ret)
6679 			return ret;
6680 
6681 		/* then look at all of its lower devices */
6682 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6683 		if (ret)
6684 			return ret;
6685 	}
6686 
6687 	return 0;
6688 }
6689 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6690 
6691 /**
6692  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6693  *				       lower neighbour list, RCU
6694  *				       variant
6695  * @dev: device
6696  *
6697  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6698  * list. The caller must hold RCU read lock.
6699  */
6700 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6701 {
6702 	struct netdev_adjacent *lower;
6703 
6704 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6705 			struct netdev_adjacent, list);
6706 	if (lower)
6707 		return lower->private;
6708 	return NULL;
6709 }
6710 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6711 
6712 /**
6713  * netdev_master_upper_dev_get_rcu - Get master upper device
6714  * @dev: device
6715  *
6716  * Find a master upper device and return pointer to it or NULL in case
6717  * it's not there. The caller must hold the RCU read lock.
6718  */
6719 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6720 {
6721 	struct netdev_adjacent *upper;
6722 
6723 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6724 				       struct netdev_adjacent, list);
6725 	if (upper && likely(upper->master))
6726 		return upper->dev;
6727 	return NULL;
6728 }
6729 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6730 
6731 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6732 			      struct net_device *adj_dev,
6733 			      struct list_head *dev_list)
6734 {
6735 	char linkname[IFNAMSIZ+7];
6736 
6737 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6738 		"upper_%s" : "lower_%s", adj_dev->name);
6739 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6740 				 linkname);
6741 }
6742 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6743 			       char *name,
6744 			       struct list_head *dev_list)
6745 {
6746 	char linkname[IFNAMSIZ+7];
6747 
6748 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6749 		"upper_%s" : "lower_%s", name);
6750 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6751 }
6752 
6753 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6754 						 struct net_device *adj_dev,
6755 						 struct list_head *dev_list)
6756 {
6757 	return (dev_list == &dev->adj_list.upper ||
6758 		dev_list == &dev->adj_list.lower) &&
6759 		net_eq(dev_net(dev), dev_net(adj_dev));
6760 }
6761 
6762 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6763 					struct net_device *adj_dev,
6764 					struct list_head *dev_list,
6765 					void *private, bool master)
6766 {
6767 	struct netdev_adjacent *adj;
6768 	int ret;
6769 
6770 	adj = __netdev_find_adj(adj_dev, dev_list);
6771 
6772 	if (adj) {
6773 		adj->ref_nr += 1;
6774 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6775 			 dev->name, adj_dev->name, adj->ref_nr);
6776 
6777 		return 0;
6778 	}
6779 
6780 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6781 	if (!adj)
6782 		return -ENOMEM;
6783 
6784 	adj->dev = adj_dev;
6785 	adj->master = master;
6786 	adj->ref_nr = 1;
6787 	adj->private = private;
6788 	dev_hold(adj_dev);
6789 
6790 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6791 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6792 
6793 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6794 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6795 		if (ret)
6796 			goto free_adj;
6797 	}
6798 
6799 	/* Ensure that master link is always the first item in list. */
6800 	if (master) {
6801 		ret = sysfs_create_link(&(dev->dev.kobj),
6802 					&(adj_dev->dev.kobj), "master");
6803 		if (ret)
6804 			goto remove_symlinks;
6805 
6806 		list_add_rcu(&adj->list, dev_list);
6807 	} else {
6808 		list_add_tail_rcu(&adj->list, dev_list);
6809 	}
6810 
6811 	return 0;
6812 
6813 remove_symlinks:
6814 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6815 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6816 free_adj:
6817 	kfree(adj);
6818 	dev_put(adj_dev);
6819 
6820 	return ret;
6821 }
6822 
6823 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6824 					 struct net_device *adj_dev,
6825 					 u16 ref_nr,
6826 					 struct list_head *dev_list)
6827 {
6828 	struct netdev_adjacent *adj;
6829 
6830 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6831 		 dev->name, adj_dev->name, ref_nr);
6832 
6833 	adj = __netdev_find_adj(adj_dev, dev_list);
6834 
6835 	if (!adj) {
6836 		pr_err("Adjacency does not exist for device %s from %s\n",
6837 		       dev->name, adj_dev->name);
6838 		WARN_ON(1);
6839 		return;
6840 	}
6841 
6842 	if (adj->ref_nr > ref_nr) {
6843 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6844 			 dev->name, adj_dev->name, ref_nr,
6845 			 adj->ref_nr - ref_nr);
6846 		adj->ref_nr -= ref_nr;
6847 		return;
6848 	}
6849 
6850 	if (adj->master)
6851 		sysfs_remove_link(&(dev->dev.kobj), "master");
6852 
6853 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6854 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6855 
6856 	list_del_rcu(&adj->list);
6857 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6858 		 adj_dev->name, dev->name, adj_dev->name);
6859 	dev_put(adj_dev);
6860 	kfree_rcu(adj, rcu);
6861 }
6862 
6863 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6864 					    struct net_device *upper_dev,
6865 					    struct list_head *up_list,
6866 					    struct list_head *down_list,
6867 					    void *private, bool master)
6868 {
6869 	int ret;
6870 
6871 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6872 					   private, master);
6873 	if (ret)
6874 		return ret;
6875 
6876 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6877 					   private, false);
6878 	if (ret) {
6879 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6880 		return ret;
6881 	}
6882 
6883 	return 0;
6884 }
6885 
6886 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6887 					       struct net_device *upper_dev,
6888 					       u16 ref_nr,
6889 					       struct list_head *up_list,
6890 					       struct list_head *down_list)
6891 {
6892 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6893 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6894 }
6895 
6896 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6897 						struct net_device *upper_dev,
6898 						void *private, bool master)
6899 {
6900 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6901 						&dev->adj_list.upper,
6902 						&upper_dev->adj_list.lower,
6903 						private, master);
6904 }
6905 
6906 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6907 						   struct net_device *upper_dev)
6908 {
6909 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6910 					   &dev->adj_list.upper,
6911 					   &upper_dev->adj_list.lower);
6912 }
6913 
6914 static int __netdev_upper_dev_link(struct net_device *dev,
6915 				   struct net_device *upper_dev, bool master,
6916 				   void *upper_priv, void *upper_info,
6917 				   struct netlink_ext_ack *extack)
6918 {
6919 	struct netdev_notifier_changeupper_info changeupper_info = {
6920 		.info = {
6921 			.dev = dev,
6922 			.extack = extack,
6923 		},
6924 		.upper_dev = upper_dev,
6925 		.master = master,
6926 		.linking = true,
6927 		.upper_info = upper_info,
6928 	};
6929 	struct net_device *master_dev;
6930 	int ret = 0;
6931 
6932 	ASSERT_RTNL();
6933 
6934 	if (dev == upper_dev)
6935 		return -EBUSY;
6936 
6937 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6938 	if (netdev_has_upper_dev(upper_dev, dev))
6939 		return -EBUSY;
6940 
6941 	if (!master) {
6942 		if (netdev_has_upper_dev(dev, upper_dev))
6943 			return -EEXIST;
6944 	} else {
6945 		master_dev = netdev_master_upper_dev_get(dev);
6946 		if (master_dev)
6947 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
6948 	}
6949 
6950 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6951 					    &changeupper_info.info);
6952 	ret = notifier_to_errno(ret);
6953 	if (ret)
6954 		return ret;
6955 
6956 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6957 						   master);
6958 	if (ret)
6959 		return ret;
6960 
6961 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6962 					    &changeupper_info.info);
6963 	ret = notifier_to_errno(ret);
6964 	if (ret)
6965 		goto rollback;
6966 
6967 	return 0;
6968 
6969 rollback:
6970 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6971 
6972 	return ret;
6973 }
6974 
6975 /**
6976  * netdev_upper_dev_link - Add a link to the upper device
6977  * @dev: device
6978  * @upper_dev: new upper device
6979  * @extack: netlink extended ack
6980  *
6981  * Adds a link to device which is upper to this one. The caller must hold
6982  * the RTNL lock. On a failure a negative errno code is returned.
6983  * On success the reference counts are adjusted and the function
6984  * returns zero.
6985  */
6986 int netdev_upper_dev_link(struct net_device *dev,
6987 			  struct net_device *upper_dev,
6988 			  struct netlink_ext_ack *extack)
6989 {
6990 	return __netdev_upper_dev_link(dev, upper_dev, false,
6991 				       NULL, NULL, extack);
6992 }
6993 EXPORT_SYMBOL(netdev_upper_dev_link);
6994 
6995 /**
6996  * netdev_master_upper_dev_link - Add a master link to the upper device
6997  * @dev: device
6998  * @upper_dev: new upper device
6999  * @upper_priv: upper device private
7000  * @upper_info: upper info to be passed down via notifier
7001  * @extack: netlink extended ack
7002  *
7003  * Adds a link to device which is upper to this one. In this case, only
7004  * one master upper device can be linked, although other non-master devices
7005  * might be linked as well. The caller must hold the RTNL lock.
7006  * On a failure a negative errno code is returned. On success the reference
7007  * counts are adjusted and the function returns zero.
7008  */
7009 int netdev_master_upper_dev_link(struct net_device *dev,
7010 				 struct net_device *upper_dev,
7011 				 void *upper_priv, void *upper_info,
7012 				 struct netlink_ext_ack *extack)
7013 {
7014 	return __netdev_upper_dev_link(dev, upper_dev, true,
7015 				       upper_priv, upper_info, extack);
7016 }
7017 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7018 
7019 /**
7020  * netdev_upper_dev_unlink - Removes a link to upper device
7021  * @dev: device
7022  * @upper_dev: new upper device
7023  *
7024  * Removes a link to device which is upper to this one. The caller must hold
7025  * the RTNL lock.
7026  */
7027 void netdev_upper_dev_unlink(struct net_device *dev,
7028 			     struct net_device *upper_dev)
7029 {
7030 	struct netdev_notifier_changeupper_info changeupper_info = {
7031 		.info = {
7032 			.dev = dev,
7033 		},
7034 		.upper_dev = upper_dev,
7035 		.linking = false,
7036 	};
7037 
7038 	ASSERT_RTNL();
7039 
7040 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7041 
7042 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7043 				      &changeupper_info.info);
7044 
7045 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7046 
7047 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7048 				      &changeupper_info.info);
7049 }
7050 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7051 
7052 /**
7053  * netdev_bonding_info_change - Dispatch event about slave change
7054  * @dev: device
7055  * @bonding_info: info to dispatch
7056  *
7057  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7058  * The caller must hold the RTNL lock.
7059  */
7060 void netdev_bonding_info_change(struct net_device *dev,
7061 				struct netdev_bonding_info *bonding_info)
7062 {
7063 	struct netdev_notifier_bonding_info info = {
7064 		.info.dev = dev,
7065 	};
7066 
7067 	memcpy(&info.bonding_info, bonding_info,
7068 	       sizeof(struct netdev_bonding_info));
7069 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7070 				      &info.info);
7071 }
7072 EXPORT_SYMBOL(netdev_bonding_info_change);
7073 
7074 static void netdev_adjacent_add_links(struct net_device *dev)
7075 {
7076 	struct netdev_adjacent *iter;
7077 
7078 	struct net *net = dev_net(dev);
7079 
7080 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7081 		if (!net_eq(net, dev_net(iter->dev)))
7082 			continue;
7083 		netdev_adjacent_sysfs_add(iter->dev, dev,
7084 					  &iter->dev->adj_list.lower);
7085 		netdev_adjacent_sysfs_add(dev, iter->dev,
7086 					  &dev->adj_list.upper);
7087 	}
7088 
7089 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7090 		if (!net_eq(net, dev_net(iter->dev)))
7091 			continue;
7092 		netdev_adjacent_sysfs_add(iter->dev, dev,
7093 					  &iter->dev->adj_list.upper);
7094 		netdev_adjacent_sysfs_add(dev, iter->dev,
7095 					  &dev->adj_list.lower);
7096 	}
7097 }
7098 
7099 static void netdev_adjacent_del_links(struct net_device *dev)
7100 {
7101 	struct netdev_adjacent *iter;
7102 
7103 	struct net *net = dev_net(dev);
7104 
7105 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7106 		if (!net_eq(net, dev_net(iter->dev)))
7107 			continue;
7108 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7109 					  &iter->dev->adj_list.lower);
7110 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7111 					  &dev->adj_list.upper);
7112 	}
7113 
7114 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7115 		if (!net_eq(net, dev_net(iter->dev)))
7116 			continue;
7117 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7118 					  &iter->dev->adj_list.upper);
7119 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7120 					  &dev->adj_list.lower);
7121 	}
7122 }
7123 
7124 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7125 {
7126 	struct netdev_adjacent *iter;
7127 
7128 	struct net *net = dev_net(dev);
7129 
7130 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7131 		if (!net_eq(net, dev_net(iter->dev)))
7132 			continue;
7133 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7134 					  &iter->dev->adj_list.lower);
7135 		netdev_adjacent_sysfs_add(iter->dev, dev,
7136 					  &iter->dev->adj_list.lower);
7137 	}
7138 
7139 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7140 		if (!net_eq(net, dev_net(iter->dev)))
7141 			continue;
7142 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7143 					  &iter->dev->adj_list.upper);
7144 		netdev_adjacent_sysfs_add(iter->dev, dev,
7145 					  &iter->dev->adj_list.upper);
7146 	}
7147 }
7148 
7149 void *netdev_lower_dev_get_private(struct net_device *dev,
7150 				   struct net_device *lower_dev)
7151 {
7152 	struct netdev_adjacent *lower;
7153 
7154 	if (!lower_dev)
7155 		return NULL;
7156 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7157 	if (!lower)
7158 		return NULL;
7159 
7160 	return lower->private;
7161 }
7162 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7163 
7164 
7165 int dev_get_nest_level(struct net_device *dev)
7166 {
7167 	struct net_device *lower = NULL;
7168 	struct list_head *iter;
7169 	int max_nest = -1;
7170 	int nest;
7171 
7172 	ASSERT_RTNL();
7173 
7174 	netdev_for_each_lower_dev(dev, lower, iter) {
7175 		nest = dev_get_nest_level(lower);
7176 		if (max_nest < nest)
7177 			max_nest = nest;
7178 	}
7179 
7180 	return max_nest + 1;
7181 }
7182 EXPORT_SYMBOL(dev_get_nest_level);
7183 
7184 /**
7185  * netdev_lower_change - Dispatch event about lower device state change
7186  * @lower_dev: device
7187  * @lower_state_info: state to dispatch
7188  *
7189  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7190  * The caller must hold the RTNL lock.
7191  */
7192 void netdev_lower_state_changed(struct net_device *lower_dev,
7193 				void *lower_state_info)
7194 {
7195 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7196 		.info.dev = lower_dev,
7197 	};
7198 
7199 	ASSERT_RTNL();
7200 	changelowerstate_info.lower_state_info = lower_state_info;
7201 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7202 				      &changelowerstate_info.info);
7203 }
7204 EXPORT_SYMBOL(netdev_lower_state_changed);
7205 
7206 static void dev_change_rx_flags(struct net_device *dev, int flags)
7207 {
7208 	const struct net_device_ops *ops = dev->netdev_ops;
7209 
7210 	if (ops->ndo_change_rx_flags)
7211 		ops->ndo_change_rx_flags(dev, flags);
7212 }
7213 
7214 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7215 {
7216 	unsigned int old_flags = dev->flags;
7217 	kuid_t uid;
7218 	kgid_t gid;
7219 
7220 	ASSERT_RTNL();
7221 
7222 	dev->flags |= IFF_PROMISC;
7223 	dev->promiscuity += inc;
7224 	if (dev->promiscuity == 0) {
7225 		/*
7226 		 * Avoid overflow.
7227 		 * If inc causes overflow, untouch promisc and return error.
7228 		 */
7229 		if (inc < 0)
7230 			dev->flags &= ~IFF_PROMISC;
7231 		else {
7232 			dev->promiscuity -= inc;
7233 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7234 				dev->name);
7235 			return -EOVERFLOW;
7236 		}
7237 	}
7238 	if (dev->flags != old_flags) {
7239 		pr_info("device %s %s promiscuous mode\n",
7240 			dev->name,
7241 			dev->flags & IFF_PROMISC ? "entered" : "left");
7242 		if (audit_enabled) {
7243 			current_uid_gid(&uid, &gid);
7244 			audit_log(audit_context(), GFP_ATOMIC,
7245 				  AUDIT_ANOM_PROMISCUOUS,
7246 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7247 				  dev->name, (dev->flags & IFF_PROMISC),
7248 				  (old_flags & IFF_PROMISC),
7249 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7250 				  from_kuid(&init_user_ns, uid),
7251 				  from_kgid(&init_user_ns, gid),
7252 				  audit_get_sessionid(current));
7253 		}
7254 
7255 		dev_change_rx_flags(dev, IFF_PROMISC);
7256 	}
7257 	if (notify)
7258 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7259 	return 0;
7260 }
7261 
7262 /**
7263  *	dev_set_promiscuity	- update promiscuity count on a device
7264  *	@dev: device
7265  *	@inc: modifier
7266  *
7267  *	Add or remove promiscuity from a device. While the count in the device
7268  *	remains above zero the interface remains promiscuous. Once it hits zero
7269  *	the device reverts back to normal filtering operation. A negative inc
7270  *	value is used to drop promiscuity on the device.
7271  *	Return 0 if successful or a negative errno code on error.
7272  */
7273 int dev_set_promiscuity(struct net_device *dev, int inc)
7274 {
7275 	unsigned int old_flags = dev->flags;
7276 	int err;
7277 
7278 	err = __dev_set_promiscuity(dev, inc, true);
7279 	if (err < 0)
7280 		return err;
7281 	if (dev->flags != old_flags)
7282 		dev_set_rx_mode(dev);
7283 	return err;
7284 }
7285 EXPORT_SYMBOL(dev_set_promiscuity);
7286 
7287 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7288 {
7289 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7290 
7291 	ASSERT_RTNL();
7292 
7293 	dev->flags |= IFF_ALLMULTI;
7294 	dev->allmulti += inc;
7295 	if (dev->allmulti == 0) {
7296 		/*
7297 		 * Avoid overflow.
7298 		 * If inc causes overflow, untouch allmulti and return error.
7299 		 */
7300 		if (inc < 0)
7301 			dev->flags &= ~IFF_ALLMULTI;
7302 		else {
7303 			dev->allmulti -= inc;
7304 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7305 				dev->name);
7306 			return -EOVERFLOW;
7307 		}
7308 	}
7309 	if (dev->flags ^ old_flags) {
7310 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7311 		dev_set_rx_mode(dev);
7312 		if (notify)
7313 			__dev_notify_flags(dev, old_flags,
7314 					   dev->gflags ^ old_gflags);
7315 	}
7316 	return 0;
7317 }
7318 
7319 /**
7320  *	dev_set_allmulti	- update allmulti count on a device
7321  *	@dev: device
7322  *	@inc: modifier
7323  *
7324  *	Add or remove reception of all multicast frames to a device. While the
7325  *	count in the device remains above zero the interface remains listening
7326  *	to all interfaces. Once it hits zero the device reverts back to normal
7327  *	filtering operation. A negative @inc value is used to drop the counter
7328  *	when releasing a resource needing all multicasts.
7329  *	Return 0 if successful or a negative errno code on error.
7330  */
7331 
7332 int dev_set_allmulti(struct net_device *dev, int inc)
7333 {
7334 	return __dev_set_allmulti(dev, inc, true);
7335 }
7336 EXPORT_SYMBOL(dev_set_allmulti);
7337 
7338 /*
7339  *	Upload unicast and multicast address lists to device and
7340  *	configure RX filtering. When the device doesn't support unicast
7341  *	filtering it is put in promiscuous mode while unicast addresses
7342  *	are present.
7343  */
7344 void __dev_set_rx_mode(struct net_device *dev)
7345 {
7346 	const struct net_device_ops *ops = dev->netdev_ops;
7347 
7348 	/* dev_open will call this function so the list will stay sane. */
7349 	if (!(dev->flags&IFF_UP))
7350 		return;
7351 
7352 	if (!netif_device_present(dev))
7353 		return;
7354 
7355 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7356 		/* Unicast addresses changes may only happen under the rtnl,
7357 		 * therefore calling __dev_set_promiscuity here is safe.
7358 		 */
7359 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7360 			__dev_set_promiscuity(dev, 1, false);
7361 			dev->uc_promisc = true;
7362 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7363 			__dev_set_promiscuity(dev, -1, false);
7364 			dev->uc_promisc = false;
7365 		}
7366 	}
7367 
7368 	if (ops->ndo_set_rx_mode)
7369 		ops->ndo_set_rx_mode(dev);
7370 }
7371 
7372 void dev_set_rx_mode(struct net_device *dev)
7373 {
7374 	netif_addr_lock_bh(dev);
7375 	__dev_set_rx_mode(dev);
7376 	netif_addr_unlock_bh(dev);
7377 }
7378 
7379 /**
7380  *	dev_get_flags - get flags reported to userspace
7381  *	@dev: device
7382  *
7383  *	Get the combination of flag bits exported through APIs to userspace.
7384  */
7385 unsigned int dev_get_flags(const struct net_device *dev)
7386 {
7387 	unsigned int flags;
7388 
7389 	flags = (dev->flags & ~(IFF_PROMISC |
7390 				IFF_ALLMULTI |
7391 				IFF_RUNNING |
7392 				IFF_LOWER_UP |
7393 				IFF_DORMANT)) |
7394 		(dev->gflags & (IFF_PROMISC |
7395 				IFF_ALLMULTI));
7396 
7397 	if (netif_running(dev)) {
7398 		if (netif_oper_up(dev))
7399 			flags |= IFF_RUNNING;
7400 		if (netif_carrier_ok(dev))
7401 			flags |= IFF_LOWER_UP;
7402 		if (netif_dormant(dev))
7403 			flags |= IFF_DORMANT;
7404 	}
7405 
7406 	return flags;
7407 }
7408 EXPORT_SYMBOL(dev_get_flags);
7409 
7410 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7411 {
7412 	unsigned int old_flags = dev->flags;
7413 	int ret;
7414 
7415 	ASSERT_RTNL();
7416 
7417 	/*
7418 	 *	Set the flags on our device.
7419 	 */
7420 
7421 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7422 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7423 			       IFF_AUTOMEDIA)) |
7424 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7425 				    IFF_ALLMULTI));
7426 
7427 	/*
7428 	 *	Load in the correct multicast list now the flags have changed.
7429 	 */
7430 
7431 	if ((old_flags ^ flags) & IFF_MULTICAST)
7432 		dev_change_rx_flags(dev, IFF_MULTICAST);
7433 
7434 	dev_set_rx_mode(dev);
7435 
7436 	/*
7437 	 *	Have we downed the interface. We handle IFF_UP ourselves
7438 	 *	according to user attempts to set it, rather than blindly
7439 	 *	setting it.
7440 	 */
7441 
7442 	ret = 0;
7443 	if ((old_flags ^ flags) & IFF_UP) {
7444 		if (old_flags & IFF_UP)
7445 			__dev_close(dev);
7446 		else
7447 			ret = __dev_open(dev);
7448 	}
7449 
7450 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7451 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7452 		unsigned int old_flags = dev->flags;
7453 
7454 		dev->gflags ^= IFF_PROMISC;
7455 
7456 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7457 			if (dev->flags != old_flags)
7458 				dev_set_rx_mode(dev);
7459 	}
7460 
7461 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7462 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7463 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7464 	 */
7465 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7466 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7467 
7468 		dev->gflags ^= IFF_ALLMULTI;
7469 		__dev_set_allmulti(dev, inc, false);
7470 	}
7471 
7472 	return ret;
7473 }
7474 
7475 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7476 			unsigned int gchanges)
7477 {
7478 	unsigned int changes = dev->flags ^ old_flags;
7479 
7480 	if (gchanges)
7481 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7482 
7483 	if (changes & IFF_UP) {
7484 		if (dev->flags & IFF_UP)
7485 			call_netdevice_notifiers(NETDEV_UP, dev);
7486 		else
7487 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7488 	}
7489 
7490 	if (dev->flags & IFF_UP &&
7491 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7492 		struct netdev_notifier_change_info change_info = {
7493 			.info = {
7494 				.dev = dev,
7495 			},
7496 			.flags_changed = changes,
7497 		};
7498 
7499 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7500 	}
7501 }
7502 
7503 /**
7504  *	dev_change_flags - change device settings
7505  *	@dev: device
7506  *	@flags: device state flags
7507  *
7508  *	Change settings on device based state flags. The flags are
7509  *	in the userspace exported format.
7510  */
7511 int dev_change_flags(struct net_device *dev, unsigned int flags)
7512 {
7513 	int ret;
7514 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7515 
7516 	ret = __dev_change_flags(dev, flags);
7517 	if (ret < 0)
7518 		return ret;
7519 
7520 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7521 	__dev_notify_flags(dev, old_flags, changes);
7522 	return ret;
7523 }
7524 EXPORT_SYMBOL(dev_change_flags);
7525 
7526 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7527 {
7528 	const struct net_device_ops *ops = dev->netdev_ops;
7529 
7530 	if (ops->ndo_change_mtu)
7531 		return ops->ndo_change_mtu(dev, new_mtu);
7532 
7533 	dev->mtu = new_mtu;
7534 	return 0;
7535 }
7536 EXPORT_SYMBOL(__dev_set_mtu);
7537 
7538 /**
7539  *	dev_set_mtu_ext - Change maximum transfer unit
7540  *	@dev: device
7541  *	@new_mtu: new transfer unit
7542  *	@extack: netlink extended ack
7543  *
7544  *	Change the maximum transfer size of the network device.
7545  */
7546 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7547 		    struct netlink_ext_ack *extack)
7548 {
7549 	int err, orig_mtu;
7550 
7551 	if (new_mtu == dev->mtu)
7552 		return 0;
7553 
7554 	/* MTU must be positive, and in range */
7555 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7556 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7557 		return -EINVAL;
7558 	}
7559 
7560 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7561 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7562 		return -EINVAL;
7563 	}
7564 
7565 	if (!netif_device_present(dev))
7566 		return -ENODEV;
7567 
7568 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7569 	err = notifier_to_errno(err);
7570 	if (err)
7571 		return err;
7572 
7573 	orig_mtu = dev->mtu;
7574 	err = __dev_set_mtu(dev, new_mtu);
7575 
7576 	if (!err) {
7577 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7578 		err = notifier_to_errno(err);
7579 		if (err) {
7580 			/* setting mtu back and notifying everyone again,
7581 			 * so that they have a chance to revert changes.
7582 			 */
7583 			__dev_set_mtu(dev, orig_mtu);
7584 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7585 		}
7586 	}
7587 	return err;
7588 }
7589 
7590 int dev_set_mtu(struct net_device *dev, int new_mtu)
7591 {
7592 	struct netlink_ext_ack extack;
7593 	int err;
7594 
7595 	memset(&extack, 0, sizeof(extack));
7596 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7597 	if (err && extack._msg)
7598 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7599 	return err;
7600 }
7601 EXPORT_SYMBOL(dev_set_mtu);
7602 
7603 /**
7604  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7605  *	@dev: device
7606  *	@new_len: new tx queue length
7607  */
7608 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7609 {
7610 	unsigned int orig_len = dev->tx_queue_len;
7611 	int res;
7612 
7613 	if (new_len != (unsigned int)new_len)
7614 		return -ERANGE;
7615 
7616 	if (new_len != orig_len) {
7617 		dev->tx_queue_len = new_len;
7618 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7619 		res = notifier_to_errno(res);
7620 		if (res)
7621 			goto err_rollback;
7622 		res = dev_qdisc_change_tx_queue_len(dev);
7623 		if (res)
7624 			goto err_rollback;
7625 	}
7626 
7627 	return 0;
7628 
7629 err_rollback:
7630 	netdev_err(dev, "refused to change device tx_queue_len\n");
7631 	dev->tx_queue_len = orig_len;
7632 	return res;
7633 }
7634 
7635 /**
7636  *	dev_set_group - Change group this device belongs to
7637  *	@dev: device
7638  *	@new_group: group this device should belong to
7639  */
7640 void dev_set_group(struct net_device *dev, int new_group)
7641 {
7642 	dev->group = new_group;
7643 }
7644 EXPORT_SYMBOL(dev_set_group);
7645 
7646 /**
7647  *	dev_set_mac_address - Change Media Access Control Address
7648  *	@dev: device
7649  *	@sa: new address
7650  *
7651  *	Change the hardware (MAC) address of the device
7652  */
7653 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7654 {
7655 	const struct net_device_ops *ops = dev->netdev_ops;
7656 	int err;
7657 
7658 	if (!ops->ndo_set_mac_address)
7659 		return -EOPNOTSUPP;
7660 	if (sa->sa_family != dev->type)
7661 		return -EINVAL;
7662 	if (!netif_device_present(dev))
7663 		return -ENODEV;
7664 	err = ops->ndo_set_mac_address(dev, sa);
7665 	if (err)
7666 		return err;
7667 	dev->addr_assign_type = NET_ADDR_SET;
7668 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7669 	add_device_randomness(dev->dev_addr, dev->addr_len);
7670 	return 0;
7671 }
7672 EXPORT_SYMBOL(dev_set_mac_address);
7673 
7674 /**
7675  *	dev_change_carrier - Change device carrier
7676  *	@dev: device
7677  *	@new_carrier: new value
7678  *
7679  *	Change device carrier
7680  */
7681 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7682 {
7683 	const struct net_device_ops *ops = dev->netdev_ops;
7684 
7685 	if (!ops->ndo_change_carrier)
7686 		return -EOPNOTSUPP;
7687 	if (!netif_device_present(dev))
7688 		return -ENODEV;
7689 	return ops->ndo_change_carrier(dev, new_carrier);
7690 }
7691 EXPORT_SYMBOL(dev_change_carrier);
7692 
7693 /**
7694  *	dev_get_phys_port_id - Get device physical port ID
7695  *	@dev: device
7696  *	@ppid: port ID
7697  *
7698  *	Get device physical port ID
7699  */
7700 int dev_get_phys_port_id(struct net_device *dev,
7701 			 struct netdev_phys_item_id *ppid)
7702 {
7703 	const struct net_device_ops *ops = dev->netdev_ops;
7704 
7705 	if (!ops->ndo_get_phys_port_id)
7706 		return -EOPNOTSUPP;
7707 	return ops->ndo_get_phys_port_id(dev, ppid);
7708 }
7709 EXPORT_SYMBOL(dev_get_phys_port_id);
7710 
7711 /**
7712  *	dev_get_phys_port_name - Get device physical port name
7713  *	@dev: device
7714  *	@name: port name
7715  *	@len: limit of bytes to copy to name
7716  *
7717  *	Get device physical port name
7718  */
7719 int dev_get_phys_port_name(struct net_device *dev,
7720 			   char *name, size_t len)
7721 {
7722 	const struct net_device_ops *ops = dev->netdev_ops;
7723 
7724 	if (!ops->ndo_get_phys_port_name)
7725 		return -EOPNOTSUPP;
7726 	return ops->ndo_get_phys_port_name(dev, name, len);
7727 }
7728 EXPORT_SYMBOL(dev_get_phys_port_name);
7729 
7730 /**
7731  *	dev_change_proto_down - update protocol port state information
7732  *	@dev: device
7733  *	@proto_down: new value
7734  *
7735  *	This info can be used by switch drivers to set the phys state of the
7736  *	port.
7737  */
7738 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7739 {
7740 	const struct net_device_ops *ops = dev->netdev_ops;
7741 
7742 	if (!ops->ndo_change_proto_down)
7743 		return -EOPNOTSUPP;
7744 	if (!netif_device_present(dev))
7745 		return -ENODEV;
7746 	return ops->ndo_change_proto_down(dev, proto_down);
7747 }
7748 EXPORT_SYMBOL(dev_change_proto_down);
7749 
7750 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7751 		    enum bpf_netdev_command cmd)
7752 {
7753 	struct netdev_bpf xdp;
7754 
7755 	if (!bpf_op)
7756 		return 0;
7757 
7758 	memset(&xdp, 0, sizeof(xdp));
7759 	xdp.command = cmd;
7760 
7761 	/* Query must always succeed. */
7762 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7763 
7764 	return xdp.prog_id;
7765 }
7766 
7767 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7768 			   struct netlink_ext_ack *extack, u32 flags,
7769 			   struct bpf_prog *prog)
7770 {
7771 	struct netdev_bpf xdp;
7772 
7773 	memset(&xdp, 0, sizeof(xdp));
7774 	if (flags & XDP_FLAGS_HW_MODE)
7775 		xdp.command = XDP_SETUP_PROG_HW;
7776 	else
7777 		xdp.command = XDP_SETUP_PROG;
7778 	xdp.extack = extack;
7779 	xdp.flags = flags;
7780 	xdp.prog = prog;
7781 
7782 	return bpf_op(dev, &xdp);
7783 }
7784 
7785 static void dev_xdp_uninstall(struct net_device *dev)
7786 {
7787 	struct netdev_bpf xdp;
7788 	bpf_op_t ndo_bpf;
7789 
7790 	/* Remove generic XDP */
7791 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7792 
7793 	/* Remove from the driver */
7794 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7795 	if (!ndo_bpf)
7796 		return;
7797 
7798 	memset(&xdp, 0, sizeof(xdp));
7799 	xdp.command = XDP_QUERY_PROG;
7800 	WARN_ON(ndo_bpf(dev, &xdp));
7801 	if (xdp.prog_id)
7802 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7803 					NULL));
7804 
7805 	/* Remove HW offload */
7806 	memset(&xdp, 0, sizeof(xdp));
7807 	xdp.command = XDP_QUERY_PROG_HW;
7808 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7809 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7810 					NULL));
7811 }
7812 
7813 /**
7814  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7815  *	@dev: device
7816  *	@extack: netlink extended ack
7817  *	@fd: new program fd or negative value to clear
7818  *	@flags: xdp-related flags
7819  *
7820  *	Set or clear a bpf program for a device
7821  */
7822 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7823 		      int fd, u32 flags)
7824 {
7825 	const struct net_device_ops *ops = dev->netdev_ops;
7826 	enum bpf_netdev_command query;
7827 	struct bpf_prog *prog = NULL;
7828 	bpf_op_t bpf_op, bpf_chk;
7829 	int err;
7830 
7831 	ASSERT_RTNL();
7832 
7833 	query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7834 
7835 	bpf_op = bpf_chk = ops->ndo_bpf;
7836 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7837 		return -EOPNOTSUPP;
7838 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7839 		bpf_op = generic_xdp_install;
7840 	if (bpf_op == bpf_chk)
7841 		bpf_chk = generic_xdp_install;
7842 
7843 	if (fd >= 0) {
7844 		if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7845 		    __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7846 			return -EEXIST;
7847 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7848 		    __dev_xdp_query(dev, bpf_op, query))
7849 			return -EBUSY;
7850 
7851 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7852 					     bpf_op == ops->ndo_bpf);
7853 		if (IS_ERR(prog))
7854 			return PTR_ERR(prog);
7855 
7856 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7857 		    bpf_prog_is_dev_bound(prog->aux)) {
7858 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7859 			bpf_prog_put(prog);
7860 			return -EINVAL;
7861 		}
7862 	}
7863 
7864 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7865 	if (err < 0 && prog)
7866 		bpf_prog_put(prog);
7867 
7868 	return err;
7869 }
7870 
7871 /**
7872  *	dev_new_index	-	allocate an ifindex
7873  *	@net: the applicable net namespace
7874  *
7875  *	Returns a suitable unique value for a new device interface
7876  *	number.  The caller must hold the rtnl semaphore or the
7877  *	dev_base_lock to be sure it remains unique.
7878  */
7879 static int dev_new_index(struct net *net)
7880 {
7881 	int ifindex = net->ifindex;
7882 
7883 	for (;;) {
7884 		if (++ifindex <= 0)
7885 			ifindex = 1;
7886 		if (!__dev_get_by_index(net, ifindex))
7887 			return net->ifindex = ifindex;
7888 	}
7889 }
7890 
7891 /* Delayed registration/unregisteration */
7892 static LIST_HEAD(net_todo_list);
7893 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7894 
7895 static void net_set_todo(struct net_device *dev)
7896 {
7897 	list_add_tail(&dev->todo_list, &net_todo_list);
7898 	dev_net(dev)->dev_unreg_count++;
7899 }
7900 
7901 static void rollback_registered_many(struct list_head *head)
7902 {
7903 	struct net_device *dev, *tmp;
7904 	LIST_HEAD(close_head);
7905 
7906 	BUG_ON(dev_boot_phase);
7907 	ASSERT_RTNL();
7908 
7909 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7910 		/* Some devices call without registering
7911 		 * for initialization unwind. Remove those
7912 		 * devices and proceed with the remaining.
7913 		 */
7914 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7915 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7916 				 dev->name, dev);
7917 
7918 			WARN_ON(1);
7919 			list_del(&dev->unreg_list);
7920 			continue;
7921 		}
7922 		dev->dismantle = true;
7923 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7924 	}
7925 
7926 	/* If device is running, close it first. */
7927 	list_for_each_entry(dev, head, unreg_list)
7928 		list_add_tail(&dev->close_list, &close_head);
7929 	dev_close_many(&close_head, true);
7930 
7931 	list_for_each_entry(dev, head, unreg_list) {
7932 		/* And unlink it from device chain. */
7933 		unlist_netdevice(dev);
7934 
7935 		dev->reg_state = NETREG_UNREGISTERING;
7936 	}
7937 	flush_all_backlogs();
7938 
7939 	synchronize_net();
7940 
7941 	list_for_each_entry(dev, head, unreg_list) {
7942 		struct sk_buff *skb = NULL;
7943 
7944 		/* Shutdown queueing discipline. */
7945 		dev_shutdown(dev);
7946 
7947 		dev_xdp_uninstall(dev);
7948 
7949 		/* Notify protocols, that we are about to destroy
7950 		 * this device. They should clean all the things.
7951 		 */
7952 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7953 
7954 		if (!dev->rtnl_link_ops ||
7955 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7956 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7957 						     GFP_KERNEL, NULL, 0);
7958 
7959 		/*
7960 		 *	Flush the unicast and multicast chains
7961 		 */
7962 		dev_uc_flush(dev);
7963 		dev_mc_flush(dev);
7964 
7965 		if (dev->netdev_ops->ndo_uninit)
7966 			dev->netdev_ops->ndo_uninit(dev);
7967 
7968 		if (skb)
7969 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7970 
7971 		/* Notifier chain MUST detach us all upper devices. */
7972 		WARN_ON(netdev_has_any_upper_dev(dev));
7973 		WARN_ON(netdev_has_any_lower_dev(dev));
7974 
7975 		/* Remove entries from kobject tree */
7976 		netdev_unregister_kobject(dev);
7977 #ifdef CONFIG_XPS
7978 		/* Remove XPS queueing entries */
7979 		netif_reset_xps_queues_gt(dev, 0);
7980 #endif
7981 	}
7982 
7983 	synchronize_net();
7984 
7985 	list_for_each_entry(dev, head, unreg_list)
7986 		dev_put(dev);
7987 }
7988 
7989 static void rollback_registered(struct net_device *dev)
7990 {
7991 	LIST_HEAD(single);
7992 
7993 	list_add(&dev->unreg_list, &single);
7994 	rollback_registered_many(&single);
7995 	list_del(&single);
7996 }
7997 
7998 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7999 	struct net_device *upper, netdev_features_t features)
8000 {
8001 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8002 	netdev_features_t feature;
8003 	int feature_bit;
8004 
8005 	for_each_netdev_feature(&upper_disables, feature_bit) {
8006 		feature = __NETIF_F_BIT(feature_bit);
8007 		if (!(upper->wanted_features & feature)
8008 		    && (features & feature)) {
8009 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8010 				   &feature, upper->name);
8011 			features &= ~feature;
8012 		}
8013 	}
8014 
8015 	return features;
8016 }
8017 
8018 static void netdev_sync_lower_features(struct net_device *upper,
8019 	struct net_device *lower, netdev_features_t features)
8020 {
8021 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8022 	netdev_features_t feature;
8023 	int feature_bit;
8024 
8025 	for_each_netdev_feature(&upper_disables, feature_bit) {
8026 		feature = __NETIF_F_BIT(feature_bit);
8027 		if (!(features & feature) && (lower->features & feature)) {
8028 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8029 				   &feature, lower->name);
8030 			lower->wanted_features &= ~feature;
8031 			netdev_update_features(lower);
8032 
8033 			if (unlikely(lower->features & feature))
8034 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8035 					    &feature, lower->name);
8036 		}
8037 	}
8038 }
8039 
8040 static netdev_features_t netdev_fix_features(struct net_device *dev,
8041 	netdev_features_t features)
8042 {
8043 	/* Fix illegal checksum combinations */
8044 	if ((features & NETIF_F_HW_CSUM) &&
8045 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8046 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8047 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8048 	}
8049 
8050 	/* TSO requires that SG is present as well. */
8051 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8052 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8053 		features &= ~NETIF_F_ALL_TSO;
8054 	}
8055 
8056 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8057 					!(features & NETIF_F_IP_CSUM)) {
8058 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8059 		features &= ~NETIF_F_TSO;
8060 		features &= ~NETIF_F_TSO_ECN;
8061 	}
8062 
8063 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8064 					 !(features & NETIF_F_IPV6_CSUM)) {
8065 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8066 		features &= ~NETIF_F_TSO6;
8067 	}
8068 
8069 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8070 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8071 		features &= ~NETIF_F_TSO_MANGLEID;
8072 
8073 	/* TSO ECN requires that TSO is present as well. */
8074 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8075 		features &= ~NETIF_F_TSO_ECN;
8076 
8077 	/* Software GSO depends on SG. */
8078 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8079 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8080 		features &= ~NETIF_F_GSO;
8081 	}
8082 
8083 	/* GSO partial features require GSO partial be set */
8084 	if ((features & dev->gso_partial_features) &&
8085 	    !(features & NETIF_F_GSO_PARTIAL)) {
8086 		netdev_dbg(dev,
8087 			   "Dropping partially supported GSO features since no GSO partial.\n");
8088 		features &= ~dev->gso_partial_features;
8089 	}
8090 
8091 	if (!(features & NETIF_F_RXCSUM)) {
8092 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8093 		 * successfully merged by hardware must also have the
8094 		 * checksum verified by hardware.  If the user does not
8095 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8096 		 */
8097 		if (features & NETIF_F_GRO_HW) {
8098 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8099 			features &= ~NETIF_F_GRO_HW;
8100 		}
8101 	}
8102 
8103 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8104 	if (features & NETIF_F_RXFCS) {
8105 		if (features & NETIF_F_LRO) {
8106 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8107 			features &= ~NETIF_F_LRO;
8108 		}
8109 
8110 		if (features & NETIF_F_GRO_HW) {
8111 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8112 			features &= ~NETIF_F_GRO_HW;
8113 		}
8114 	}
8115 
8116 	return features;
8117 }
8118 
8119 int __netdev_update_features(struct net_device *dev)
8120 {
8121 	struct net_device *upper, *lower;
8122 	netdev_features_t features;
8123 	struct list_head *iter;
8124 	int err = -1;
8125 
8126 	ASSERT_RTNL();
8127 
8128 	features = netdev_get_wanted_features(dev);
8129 
8130 	if (dev->netdev_ops->ndo_fix_features)
8131 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8132 
8133 	/* driver might be less strict about feature dependencies */
8134 	features = netdev_fix_features(dev, features);
8135 
8136 	/* some features can't be enabled if they're off an an upper device */
8137 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8138 		features = netdev_sync_upper_features(dev, upper, features);
8139 
8140 	if (dev->features == features)
8141 		goto sync_lower;
8142 
8143 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8144 		&dev->features, &features);
8145 
8146 	if (dev->netdev_ops->ndo_set_features)
8147 		err = dev->netdev_ops->ndo_set_features(dev, features);
8148 	else
8149 		err = 0;
8150 
8151 	if (unlikely(err < 0)) {
8152 		netdev_err(dev,
8153 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8154 			err, &features, &dev->features);
8155 		/* return non-0 since some features might have changed and
8156 		 * it's better to fire a spurious notification than miss it
8157 		 */
8158 		return -1;
8159 	}
8160 
8161 sync_lower:
8162 	/* some features must be disabled on lower devices when disabled
8163 	 * on an upper device (think: bonding master or bridge)
8164 	 */
8165 	netdev_for_each_lower_dev(dev, lower, iter)
8166 		netdev_sync_lower_features(dev, lower, features);
8167 
8168 	if (!err) {
8169 		netdev_features_t diff = features ^ dev->features;
8170 
8171 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8172 			/* udp_tunnel_{get,drop}_rx_info both need
8173 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8174 			 * device, or they won't do anything.
8175 			 * Thus we need to update dev->features
8176 			 * *before* calling udp_tunnel_get_rx_info,
8177 			 * but *after* calling udp_tunnel_drop_rx_info.
8178 			 */
8179 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8180 				dev->features = features;
8181 				udp_tunnel_get_rx_info(dev);
8182 			} else {
8183 				udp_tunnel_drop_rx_info(dev);
8184 			}
8185 		}
8186 
8187 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8188 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8189 				dev->features = features;
8190 				err |= vlan_get_rx_ctag_filter_info(dev);
8191 			} else {
8192 				vlan_drop_rx_ctag_filter_info(dev);
8193 			}
8194 		}
8195 
8196 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8197 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8198 				dev->features = features;
8199 				err |= vlan_get_rx_stag_filter_info(dev);
8200 			} else {
8201 				vlan_drop_rx_stag_filter_info(dev);
8202 			}
8203 		}
8204 
8205 		dev->features = features;
8206 	}
8207 
8208 	return err < 0 ? 0 : 1;
8209 }
8210 
8211 /**
8212  *	netdev_update_features - recalculate device features
8213  *	@dev: the device to check
8214  *
8215  *	Recalculate dev->features set and send notifications if it
8216  *	has changed. Should be called after driver or hardware dependent
8217  *	conditions might have changed that influence the features.
8218  */
8219 void netdev_update_features(struct net_device *dev)
8220 {
8221 	if (__netdev_update_features(dev))
8222 		netdev_features_change(dev);
8223 }
8224 EXPORT_SYMBOL(netdev_update_features);
8225 
8226 /**
8227  *	netdev_change_features - recalculate device features
8228  *	@dev: the device to check
8229  *
8230  *	Recalculate dev->features set and send notifications even
8231  *	if they have not changed. Should be called instead of
8232  *	netdev_update_features() if also dev->vlan_features might
8233  *	have changed to allow the changes to be propagated to stacked
8234  *	VLAN devices.
8235  */
8236 void netdev_change_features(struct net_device *dev)
8237 {
8238 	__netdev_update_features(dev);
8239 	netdev_features_change(dev);
8240 }
8241 EXPORT_SYMBOL(netdev_change_features);
8242 
8243 /**
8244  *	netif_stacked_transfer_operstate -	transfer operstate
8245  *	@rootdev: the root or lower level device to transfer state from
8246  *	@dev: the device to transfer operstate to
8247  *
8248  *	Transfer operational state from root to device. This is normally
8249  *	called when a stacking relationship exists between the root
8250  *	device and the device(a leaf device).
8251  */
8252 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8253 					struct net_device *dev)
8254 {
8255 	if (rootdev->operstate == IF_OPER_DORMANT)
8256 		netif_dormant_on(dev);
8257 	else
8258 		netif_dormant_off(dev);
8259 
8260 	if (netif_carrier_ok(rootdev))
8261 		netif_carrier_on(dev);
8262 	else
8263 		netif_carrier_off(dev);
8264 }
8265 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8266 
8267 static int netif_alloc_rx_queues(struct net_device *dev)
8268 {
8269 	unsigned int i, count = dev->num_rx_queues;
8270 	struct netdev_rx_queue *rx;
8271 	size_t sz = count * sizeof(*rx);
8272 	int err = 0;
8273 
8274 	BUG_ON(count < 1);
8275 
8276 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8277 	if (!rx)
8278 		return -ENOMEM;
8279 
8280 	dev->_rx = rx;
8281 
8282 	for (i = 0; i < count; i++) {
8283 		rx[i].dev = dev;
8284 
8285 		/* XDP RX-queue setup */
8286 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8287 		if (err < 0)
8288 			goto err_rxq_info;
8289 	}
8290 	return 0;
8291 
8292 err_rxq_info:
8293 	/* Rollback successful reg's and free other resources */
8294 	while (i--)
8295 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8296 	kvfree(dev->_rx);
8297 	dev->_rx = NULL;
8298 	return err;
8299 }
8300 
8301 static void netif_free_rx_queues(struct net_device *dev)
8302 {
8303 	unsigned int i, count = dev->num_rx_queues;
8304 
8305 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8306 	if (!dev->_rx)
8307 		return;
8308 
8309 	for (i = 0; i < count; i++)
8310 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8311 
8312 	kvfree(dev->_rx);
8313 }
8314 
8315 static void netdev_init_one_queue(struct net_device *dev,
8316 				  struct netdev_queue *queue, void *_unused)
8317 {
8318 	/* Initialize queue lock */
8319 	spin_lock_init(&queue->_xmit_lock);
8320 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8321 	queue->xmit_lock_owner = -1;
8322 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8323 	queue->dev = dev;
8324 #ifdef CONFIG_BQL
8325 	dql_init(&queue->dql, HZ);
8326 #endif
8327 }
8328 
8329 static void netif_free_tx_queues(struct net_device *dev)
8330 {
8331 	kvfree(dev->_tx);
8332 }
8333 
8334 static int netif_alloc_netdev_queues(struct net_device *dev)
8335 {
8336 	unsigned int count = dev->num_tx_queues;
8337 	struct netdev_queue *tx;
8338 	size_t sz = count * sizeof(*tx);
8339 
8340 	if (count < 1 || count > 0xffff)
8341 		return -EINVAL;
8342 
8343 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8344 	if (!tx)
8345 		return -ENOMEM;
8346 
8347 	dev->_tx = tx;
8348 
8349 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8350 	spin_lock_init(&dev->tx_global_lock);
8351 
8352 	return 0;
8353 }
8354 
8355 void netif_tx_stop_all_queues(struct net_device *dev)
8356 {
8357 	unsigned int i;
8358 
8359 	for (i = 0; i < dev->num_tx_queues; i++) {
8360 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8361 
8362 		netif_tx_stop_queue(txq);
8363 	}
8364 }
8365 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8366 
8367 /**
8368  *	register_netdevice	- register a network device
8369  *	@dev: device to register
8370  *
8371  *	Take a completed network device structure and add it to the kernel
8372  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8373  *	chain. 0 is returned on success. A negative errno code is returned
8374  *	on a failure to set up the device, or if the name is a duplicate.
8375  *
8376  *	Callers must hold the rtnl semaphore. You may want
8377  *	register_netdev() instead of this.
8378  *
8379  *	BUGS:
8380  *	The locking appears insufficient to guarantee two parallel registers
8381  *	will not get the same name.
8382  */
8383 
8384 int register_netdevice(struct net_device *dev)
8385 {
8386 	int ret;
8387 	struct net *net = dev_net(dev);
8388 
8389 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8390 		     NETDEV_FEATURE_COUNT);
8391 	BUG_ON(dev_boot_phase);
8392 	ASSERT_RTNL();
8393 
8394 	might_sleep();
8395 
8396 	/* When net_device's are persistent, this will be fatal. */
8397 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8398 	BUG_ON(!net);
8399 
8400 	spin_lock_init(&dev->addr_list_lock);
8401 	netdev_set_addr_lockdep_class(dev);
8402 
8403 	ret = dev_get_valid_name(net, dev, dev->name);
8404 	if (ret < 0)
8405 		goto out;
8406 
8407 	/* Init, if this function is available */
8408 	if (dev->netdev_ops->ndo_init) {
8409 		ret = dev->netdev_ops->ndo_init(dev);
8410 		if (ret) {
8411 			if (ret > 0)
8412 				ret = -EIO;
8413 			goto out;
8414 		}
8415 	}
8416 
8417 	if (((dev->hw_features | dev->features) &
8418 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8419 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8420 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8421 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8422 		ret = -EINVAL;
8423 		goto err_uninit;
8424 	}
8425 
8426 	ret = -EBUSY;
8427 	if (!dev->ifindex)
8428 		dev->ifindex = dev_new_index(net);
8429 	else if (__dev_get_by_index(net, dev->ifindex))
8430 		goto err_uninit;
8431 
8432 	/* Transfer changeable features to wanted_features and enable
8433 	 * software offloads (GSO and GRO).
8434 	 */
8435 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8436 	dev->features |= NETIF_F_SOFT_FEATURES;
8437 
8438 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8439 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8440 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8441 	}
8442 
8443 	dev->wanted_features = dev->features & dev->hw_features;
8444 
8445 	if (!(dev->flags & IFF_LOOPBACK))
8446 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8447 
8448 	/* If IPv4 TCP segmentation offload is supported we should also
8449 	 * allow the device to enable segmenting the frame with the option
8450 	 * of ignoring a static IP ID value.  This doesn't enable the
8451 	 * feature itself but allows the user to enable it later.
8452 	 */
8453 	if (dev->hw_features & NETIF_F_TSO)
8454 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8455 	if (dev->vlan_features & NETIF_F_TSO)
8456 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8457 	if (dev->mpls_features & NETIF_F_TSO)
8458 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8459 	if (dev->hw_enc_features & NETIF_F_TSO)
8460 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8461 
8462 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8463 	 */
8464 	dev->vlan_features |= NETIF_F_HIGHDMA;
8465 
8466 	/* Make NETIF_F_SG inheritable to tunnel devices.
8467 	 */
8468 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8469 
8470 	/* Make NETIF_F_SG inheritable to MPLS.
8471 	 */
8472 	dev->mpls_features |= NETIF_F_SG;
8473 
8474 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8475 	ret = notifier_to_errno(ret);
8476 	if (ret)
8477 		goto err_uninit;
8478 
8479 	ret = netdev_register_kobject(dev);
8480 	if (ret)
8481 		goto err_uninit;
8482 	dev->reg_state = NETREG_REGISTERED;
8483 
8484 	__netdev_update_features(dev);
8485 
8486 	/*
8487 	 *	Default initial state at registry is that the
8488 	 *	device is present.
8489 	 */
8490 
8491 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8492 
8493 	linkwatch_init_dev(dev);
8494 
8495 	dev_init_scheduler(dev);
8496 	dev_hold(dev);
8497 	list_netdevice(dev);
8498 	add_device_randomness(dev->dev_addr, dev->addr_len);
8499 
8500 	/* If the device has permanent device address, driver should
8501 	 * set dev_addr and also addr_assign_type should be set to
8502 	 * NET_ADDR_PERM (default value).
8503 	 */
8504 	if (dev->addr_assign_type == NET_ADDR_PERM)
8505 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8506 
8507 	/* Notify protocols, that a new device appeared. */
8508 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8509 	ret = notifier_to_errno(ret);
8510 	if (ret) {
8511 		rollback_registered(dev);
8512 		dev->reg_state = NETREG_UNREGISTERED;
8513 	}
8514 	/*
8515 	 *	Prevent userspace races by waiting until the network
8516 	 *	device is fully setup before sending notifications.
8517 	 */
8518 	if (!dev->rtnl_link_ops ||
8519 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8520 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8521 
8522 out:
8523 	return ret;
8524 
8525 err_uninit:
8526 	if (dev->netdev_ops->ndo_uninit)
8527 		dev->netdev_ops->ndo_uninit(dev);
8528 	if (dev->priv_destructor)
8529 		dev->priv_destructor(dev);
8530 	goto out;
8531 }
8532 EXPORT_SYMBOL(register_netdevice);
8533 
8534 /**
8535  *	init_dummy_netdev	- init a dummy network device for NAPI
8536  *	@dev: device to init
8537  *
8538  *	This takes a network device structure and initialize the minimum
8539  *	amount of fields so it can be used to schedule NAPI polls without
8540  *	registering a full blown interface. This is to be used by drivers
8541  *	that need to tie several hardware interfaces to a single NAPI
8542  *	poll scheduler due to HW limitations.
8543  */
8544 int init_dummy_netdev(struct net_device *dev)
8545 {
8546 	/* Clear everything. Note we don't initialize spinlocks
8547 	 * are they aren't supposed to be taken by any of the
8548 	 * NAPI code and this dummy netdev is supposed to be
8549 	 * only ever used for NAPI polls
8550 	 */
8551 	memset(dev, 0, sizeof(struct net_device));
8552 
8553 	/* make sure we BUG if trying to hit standard
8554 	 * register/unregister code path
8555 	 */
8556 	dev->reg_state = NETREG_DUMMY;
8557 
8558 	/* NAPI wants this */
8559 	INIT_LIST_HEAD(&dev->napi_list);
8560 
8561 	/* a dummy interface is started by default */
8562 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8563 	set_bit(__LINK_STATE_START, &dev->state);
8564 
8565 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8566 	 * because users of this 'device' dont need to change
8567 	 * its refcount.
8568 	 */
8569 
8570 	return 0;
8571 }
8572 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8573 
8574 
8575 /**
8576  *	register_netdev	- register a network device
8577  *	@dev: device to register
8578  *
8579  *	Take a completed network device structure and add it to the kernel
8580  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8581  *	chain. 0 is returned on success. A negative errno code is returned
8582  *	on a failure to set up the device, or if the name is a duplicate.
8583  *
8584  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8585  *	and expands the device name if you passed a format string to
8586  *	alloc_netdev.
8587  */
8588 int register_netdev(struct net_device *dev)
8589 {
8590 	int err;
8591 
8592 	if (rtnl_lock_killable())
8593 		return -EINTR;
8594 	err = register_netdevice(dev);
8595 	rtnl_unlock();
8596 	return err;
8597 }
8598 EXPORT_SYMBOL(register_netdev);
8599 
8600 int netdev_refcnt_read(const struct net_device *dev)
8601 {
8602 	int i, refcnt = 0;
8603 
8604 	for_each_possible_cpu(i)
8605 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8606 	return refcnt;
8607 }
8608 EXPORT_SYMBOL(netdev_refcnt_read);
8609 
8610 /**
8611  * netdev_wait_allrefs - wait until all references are gone.
8612  * @dev: target net_device
8613  *
8614  * This is called when unregistering network devices.
8615  *
8616  * Any protocol or device that holds a reference should register
8617  * for netdevice notification, and cleanup and put back the
8618  * reference if they receive an UNREGISTER event.
8619  * We can get stuck here if buggy protocols don't correctly
8620  * call dev_put.
8621  */
8622 static void netdev_wait_allrefs(struct net_device *dev)
8623 {
8624 	unsigned long rebroadcast_time, warning_time;
8625 	int refcnt;
8626 
8627 	linkwatch_forget_dev(dev);
8628 
8629 	rebroadcast_time = warning_time = jiffies;
8630 	refcnt = netdev_refcnt_read(dev);
8631 
8632 	while (refcnt != 0) {
8633 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8634 			rtnl_lock();
8635 
8636 			/* Rebroadcast unregister notification */
8637 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8638 
8639 			__rtnl_unlock();
8640 			rcu_barrier();
8641 			rtnl_lock();
8642 
8643 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8644 				     &dev->state)) {
8645 				/* We must not have linkwatch events
8646 				 * pending on unregister. If this
8647 				 * happens, we simply run the queue
8648 				 * unscheduled, resulting in a noop
8649 				 * for this device.
8650 				 */
8651 				linkwatch_run_queue();
8652 			}
8653 
8654 			__rtnl_unlock();
8655 
8656 			rebroadcast_time = jiffies;
8657 		}
8658 
8659 		msleep(250);
8660 
8661 		refcnt = netdev_refcnt_read(dev);
8662 
8663 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8664 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8665 				 dev->name, refcnt);
8666 			warning_time = jiffies;
8667 		}
8668 	}
8669 }
8670 
8671 /* The sequence is:
8672  *
8673  *	rtnl_lock();
8674  *	...
8675  *	register_netdevice(x1);
8676  *	register_netdevice(x2);
8677  *	...
8678  *	unregister_netdevice(y1);
8679  *	unregister_netdevice(y2);
8680  *      ...
8681  *	rtnl_unlock();
8682  *	free_netdev(y1);
8683  *	free_netdev(y2);
8684  *
8685  * We are invoked by rtnl_unlock().
8686  * This allows us to deal with problems:
8687  * 1) We can delete sysfs objects which invoke hotplug
8688  *    without deadlocking with linkwatch via keventd.
8689  * 2) Since we run with the RTNL semaphore not held, we can sleep
8690  *    safely in order to wait for the netdev refcnt to drop to zero.
8691  *
8692  * We must not return until all unregister events added during
8693  * the interval the lock was held have been completed.
8694  */
8695 void netdev_run_todo(void)
8696 {
8697 	struct list_head list;
8698 
8699 	/* Snapshot list, allow later requests */
8700 	list_replace_init(&net_todo_list, &list);
8701 
8702 	__rtnl_unlock();
8703 
8704 
8705 	/* Wait for rcu callbacks to finish before next phase */
8706 	if (!list_empty(&list))
8707 		rcu_barrier();
8708 
8709 	while (!list_empty(&list)) {
8710 		struct net_device *dev
8711 			= list_first_entry(&list, struct net_device, todo_list);
8712 		list_del(&dev->todo_list);
8713 
8714 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8715 			pr_err("network todo '%s' but state %d\n",
8716 			       dev->name, dev->reg_state);
8717 			dump_stack();
8718 			continue;
8719 		}
8720 
8721 		dev->reg_state = NETREG_UNREGISTERED;
8722 
8723 		netdev_wait_allrefs(dev);
8724 
8725 		/* paranoia */
8726 		BUG_ON(netdev_refcnt_read(dev));
8727 		BUG_ON(!list_empty(&dev->ptype_all));
8728 		BUG_ON(!list_empty(&dev->ptype_specific));
8729 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8730 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8731 #if IS_ENABLED(CONFIG_DECNET)
8732 		WARN_ON(dev->dn_ptr);
8733 #endif
8734 		if (dev->priv_destructor)
8735 			dev->priv_destructor(dev);
8736 		if (dev->needs_free_netdev)
8737 			free_netdev(dev);
8738 
8739 		/* Report a network device has been unregistered */
8740 		rtnl_lock();
8741 		dev_net(dev)->dev_unreg_count--;
8742 		__rtnl_unlock();
8743 		wake_up(&netdev_unregistering_wq);
8744 
8745 		/* Free network device */
8746 		kobject_put(&dev->dev.kobj);
8747 	}
8748 }
8749 
8750 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8751  * all the same fields in the same order as net_device_stats, with only
8752  * the type differing, but rtnl_link_stats64 may have additional fields
8753  * at the end for newer counters.
8754  */
8755 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8756 			     const struct net_device_stats *netdev_stats)
8757 {
8758 #if BITS_PER_LONG == 64
8759 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8760 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8761 	/* zero out counters that only exist in rtnl_link_stats64 */
8762 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8763 	       sizeof(*stats64) - sizeof(*netdev_stats));
8764 #else
8765 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8766 	const unsigned long *src = (const unsigned long *)netdev_stats;
8767 	u64 *dst = (u64 *)stats64;
8768 
8769 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8770 	for (i = 0; i < n; i++)
8771 		dst[i] = src[i];
8772 	/* zero out counters that only exist in rtnl_link_stats64 */
8773 	memset((char *)stats64 + n * sizeof(u64), 0,
8774 	       sizeof(*stats64) - n * sizeof(u64));
8775 #endif
8776 }
8777 EXPORT_SYMBOL(netdev_stats_to_stats64);
8778 
8779 /**
8780  *	dev_get_stats	- get network device statistics
8781  *	@dev: device to get statistics from
8782  *	@storage: place to store stats
8783  *
8784  *	Get network statistics from device. Return @storage.
8785  *	The device driver may provide its own method by setting
8786  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8787  *	otherwise the internal statistics structure is used.
8788  */
8789 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8790 					struct rtnl_link_stats64 *storage)
8791 {
8792 	const struct net_device_ops *ops = dev->netdev_ops;
8793 
8794 	if (ops->ndo_get_stats64) {
8795 		memset(storage, 0, sizeof(*storage));
8796 		ops->ndo_get_stats64(dev, storage);
8797 	} else if (ops->ndo_get_stats) {
8798 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8799 	} else {
8800 		netdev_stats_to_stats64(storage, &dev->stats);
8801 	}
8802 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8803 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8804 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8805 	return storage;
8806 }
8807 EXPORT_SYMBOL(dev_get_stats);
8808 
8809 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8810 {
8811 	struct netdev_queue *queue = dev_ingress_queue(dev);
8812 
8813 #ifdef CONFIG_NET_CLS_ACT
8814 	if (queue)
8815 		return queue;
8816 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8817 	if (!queue)
8818 		return NULL;
8819 	netdev_init_one_queue(dev, queue, NULL);
8820 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8821 	queue->qdisc_sleeping = &noop_qdisc;
8822 	rcu_assign_pointer(dev->ingress_queue, queue);
8823 #endif
8824 	return queue;
8825 }
8826 
8827 static const struct ethtool_ops default_ethtool_ops;
8828 
8829 void netdev_set_default_ethtool_ops(struct net_device *dev,
8830 				    const struct ethtool_ops *ops)
8831 {
8832 	if (dev->ethtool_ops == &default_ethtool_ops)
8833 		dev->ethtool_ops = ops;
8834 }
8835 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8836 
8837 void netdev_freemem(struct net_device *dev)
8838 {
8839 	char *addr = (char *)dev - dev->padded;
8840 
8841 	kvfree(addr);
8842 }
8843 
8844 /**
8845  * alloc_netdev_mqs - allocate network device
8846  * @sizeof_priv: size of private data to allocate space for
8847  * @name: device name format string
8848  * @name_assign_type: origin of device name
8849  * @setup: callback to initialize device
8850  * @txqs: the number of TX subqueues to allocate
8851  * @rxqs: the number of RX subqueues to allocate
8852  *
8853  * Allocates a struct net_device with private data area for driver use
8854  * and performs basic initialization.  Also allocates subqueue structs
8855  * for each queue on the device.
8856  */
8857 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8858 		unsigned char name_assign_type,
8859 		void (*setup)(struct net_device *),
8860 		unsigned int txqs, unsigned int rxqs)
8861 {
8862 	struct net_device *dev;
8863 	unsigned int alloc_size;
8864 	struct net_device *p;
8865 
8866 	BUG_ON(strlen(name) >= sizeof(dev->name));
8867 
8868 	if (txqs < 1) {
8869 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8870 		return NULL;
8871 	}
8872 
8873 	if (rxqs < 1) {
8874 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8875 		return NULL;
8876 	}
8877 
8878 	alloc_size = sizeof(struct net_device);
8879 	if (sizeof_priv) {
8880 		/* ensure 32-byte alignment of private area */
8881 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8882 		alloc_size += sizeof_priv;
8883 	}
8884 	/* ensure 32-byte alignment of whole construct */
8885 	alloc_size += NETDEV_ALIGN - 1;
8886 
8887 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8888 	if (!p)
8889 		return NULL;
8890 
8891 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8892 	dev->padded = (char *)dev - (char *)p;
8893 
8894 	dev->pcpu_refcnt = alloc_percpu(int);
8895 	if (!dev->pcpu_refcnt)
8896 		goto free_dev;
8897 
8898 	if (dev_addr_init(dev))
8899 		goto free_pcpu;
8900 
8901 	dev_mc_init(dev);
8902 	dev_uc_init(dev);
8903 
8904 	dev_net_set(dev, &init_net);
8905 
8906 	dev->gso_max_size = GSO_MAX_SIZE;
8907 	dev->gso_max_segs = GSO_MAX_SEGS;
8908 
8909 	INIT_LIST_HEAD(&dev->napi_list);
8910 	INIT_LIST_HEAD(&dev->unreg_list);
8911 	INIT_LIST_HEAD(&dev->close_list);
8912 	INIT_LIST_HEAD(&dev->link_watch_list);
8913 	INIT_LIST_HEAD(&dev->adj_list.upper);
8914 	INIT_LIST_HEAD(&dev->adj_list.lower);
8915 	INIT_LIST_HEAD(&dev->ptype_all);
8916 	INIT_LIST_HEAD(&dev->ptype_specific);
8917 #ifdef CONFIG_NET_SCHED
8918 	hash_init(dev->qdisc_hash);
8919 #endif
8920 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8921 	setup(dev);
8922 
8923 	if (!dev->tx_queue_len) {
8924 		dev->priv_flags |= IFF_NO_QUEUE;
8925 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8926 	}
8927 
8928 	dev->num_tx_queues = txqs;
8929 	dev->real_num_tx_queues = txqs;
8930 	if (netif_alloc_netdev_queues(dev))
8931 		goto free_all;
8932 
8933 	dev->num_rx_queues = rxqs;
8934 	dev->real_num_rx_queues = rxqs;
8935 	if (netif_alloc_rx_queues(dev))
8936 		goto free_all;
8937 
8938 	strcpy(dev->name, name);
8939 	dev->name_assign_type = name_assign_type;
8940 	dev->group = INIT_NETDEV_GROUP;
8941 	if (!dev->ethtool_ops)
8942 		dev->ethtool_ops = &default_ethtool_ops;
8943 
8944 	nf_hook_ingress_init(dev);
8945 
8946 	return dev;
8947 
8948 free_all:
8949 	free_netdev(dev);
8950 	return NULL;
8951 
8952 free_pcpu:
8953 	free_percpu(dev->pcpu_refcnt);
8954 free_dev:
8955 	netdev_freemem(dev);
8956 	return NULL;
8957 }
8958 EXPORT_SYMBOL(alloc_netdev_mqs);
8959 
8960 /**
8961  * free_netdev - free network device
8962  * @dev: device
8963  *
8964  * This function does the last stage of destroying an allocated device
8965  * interface. The reference to the device object is released. If this
8966  * is the last reference then it will be freed.Must be called in process
8967  * context.
8968  */
8969 void free_netdev(struct net_device *dev)
8970 {
8971 	struct napi_struct *p, *n;
8972 
8973 	might_sleep();
8974 	netif_free_tx_queues(dev);
8975 	netif_free_rx_queues(dev);
8976 
8977 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8978 
8979 	/* Flush device addresses */
8980 	dev_addr_flush(dev);
8981 
8982 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8983 		netif_napi_del(p);
8984 
8985 	free_percpu(dev->pcpu_refcnt);
8986 	dev->pcpu_refcnt = NULL;
8987 
8988 	/*  Compatibility with error handling in drivers */
8989 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8990 		netdev_freemem(dev);
8991 		return;
8992 	}
8993 
8994 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8995 	dev->reg_state = NETREG_RELEASED;
8996 
8997 	/* will free via device release */
8998 	put_device(&dev->dev);
8999 }
9000 EXPORT_SYMBOL(free_netdev);
9001 
9002 /**
9003  *	synchronize_net -  Synchronize with packet receive processing
9004  *
9005  *	Wait for packets currently being received to be done.
9006  *	Does not block later packets from starting.
9007  */
9008 void synchronize_net(void)
9009 {
9010 	might_sleep();
9011 	if (rtnl_is_locked())
9012 		synchronize_rcu_expedited();
9013 	else
9014 		synchronize_rcu();
9015 }
9016 EXPORT_SYMBOL(synchronize_net);
9017 
9018 /**
9019  *	unregister_netdevice_queue - remove device from the kernel
9020  *	@dev: device
9021  *	@head: list
9022  *
9023  *	This function shuts down a device interface and removes it
9024  *	from the kernel tables.
9025  *	If head not NULL, device is queued to be unregistered later.
9026  *
9027  *	Callers must hold the rtnl semaphore.  You may want
9028  *	unregister_netdev() instead of this.
9029  */
9030 
9031 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9032 {
9033 	ASSERT_RTNL();
9034 
9035 	if (head) {
9036 		list_move_tail(&dev->unreg_list, head);
9037 	} else {
9038 		rollback_registered(dev);
9039 		/* Finish processing unregister after unlock */
9040 		net_set_todo(dev);
9041 	}
9042 }
9043 EXPORT_SYMBOL(unregister_netdevice_queue);
9044 
9045 /**
9046  *	unregister_netdevice_many - unregister many devices
9047  *	@head: list of devices
9048  *
9049  *  Note: As most callers use a stack allocated list_head,
9050  *  we force a list_del() to make sure stack wont be corrupted later.
9051  */
9052 void unregister_netdevice_many(struct list_head *head)
9053 {
9054 	struct net_device *dev;
9055 
9056 	if (!list_empty(head)) {
9057 		rollback_registered_many(head);
9058 		list_for_each_entry(dev, head, unreg_list)
9059 			net_set_todo(dev);
9060 		list_del(head);
9061 	}
9062 }
9063 EXPORT_SYMBOL(unregister_netdevice_many);
9064 
9065 /**
9066  *	unregister_netdev - remove device from the kernel
9067  *	@dev: device
9068  *
9069  *	This function shuts down a device interface and removes it
9070  *	from the kernel tables.
9071  *
9072  *	This is just a wrapper for unregister_netdevice that takes
9073  *	the rtnl semaphore.  In general you want to use this and not
9074  *	unregister_netdevice.
9075  */
9076 void unregister_netdev(struct net_device *dev)
9077 {
9078 	rtnl_lock();
9079 	unregister_netdevice(dev);
9080 	rtnl_unlock();
9081 }
9082 EXPORT_SYMBOL(unregister_netdev);
9083 
9084 /**
9085  *	dev_change_net_namespace - move device to different nethost namespace
9086  *	@dev: device
9087  *	@net: network namespace
9088  *	@pat: If not NULL name pattern to try if the current device name
9089  *	      is already taken in the destination network namespace.
9090  *
9091  *	This function shuts down a device interface and moves it
9092  *	to a new network namespace. On success 0 is returned, on
9093  *	a failure a netagive errno code is returned.
9094  *
9095  *	Callers must hold the rtnl semaphore.
9096  */
9097 
9098 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9099 {
9100 	int err, new_nsid, new_ifindex;
9101 
9102 	ASSERT_RTNL();
9103 
9104 	/* Don't allow namespace local devices to be moved. */
9105 	err = -EINVAL;
9106 	if (dev->features & NETIF_F_NETNS_LOCAL)
9107 		goto out;
9108 
9109 	/* Ensure the device has been registrered */
9110 	if (dev->reg_state != NETREG_REGISTERED)
9111 		goto out;
9112 
9113 	/* Get out if there is nothing todo */
9114 	err = 0;
9115 	if (net_eq(dev_net(dev), net))
9116 		goto out;
9117 
9118 	/* Pick the destination device name, and ensure
9119 	 * we can use it in the destination network namespace.
9120 	 */
9121 	err = -EEXIST;
9122 	if (__dev_get_by_name(net, dev->name)) {
9123 		/* We get here if we can't use the current device name */
9124 		if (!pat)
9125 			goto out;
9126 		err = dev_get_valid_name(net, dev, pat);
9127 		if (err < 0)
9128 			goto out;
9129 	}
9130 
9131 	/*
9132 	 * And now a mini version of register_netdevice unregister_netdevice.
9133 	 */
9134 
9135 	/* If device is running close it first. */
9136 	dev_close(dev);
9137 
9138 	/* And unlink it from device chain */
9139 	unlist_netdevice(dev);
9140 
9141 	synchronize_net();
9142 
9143 	/* Shutdown queueing discipline. */
9144 	dev_shutdown(dev);
9145 
9146 	/* Notify protocols, that we are about to destroy
9147 	 * this device. They should clean all the things.
9148 	 *
9149 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9150 	 * This is wanted because this way 8021q and macvlan know
9151 	 * the device is just moving and can keep their slaves up.
9152 	 */
9153 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9154 	rcu_barrier();
9155 
9156 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9157 	/* If there is an ifindex conflict assign a new one */
9158 	if (__dev_get_by_index(net, dev->ifindex))
9159 		new_ifindex = dev_new_index(net);
9160 	else
9161 		new_ifindex = dev->ifindex;
9162 
9163 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9164 			    new_ifindex);
9165 
9166 	/*
9167 	 *	Flush the unicast and multicast chains
9168 	 */
9169 	dev_uc_flush(dev);
9170 	dev_mc_flush(dev);
9171 
9172 	/* Send a netdev-removed uevent to the old namespace */
9173 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9174 	netdev_adjacent_del_links(dev);
9175 
9176 	/* Actually switch the network namespace */
9177 	dev_net_set(dev, net);
9178 	dev->ifindex = new_ifindex;
9179 
9180 	/* Send a netdev-add uevent to the new namespace */
9181 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9182 	netdev_adjacent_add_links(dev);
9183 
9184 	/* Fixup kobjects */
9185 	err = device_rename(&dev->dev, dev->name);
9186 	WARN_ON(err);
9187 
9188 	/* Add the device back in the hashes */
9189 	list_netdevice(dev);
9190 
9191 	/* Notify protocols, that a new device appeared. */
9192 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9193 
9194 	/*
9195 	 *	Prevent userspace races by waiting until the network
9196 	 *	device is fully setup before sending notifications.
9197 	 */
9198 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9199 
9200 	synchronize_net();
9201 	err = 0;
9202 out:
9203 	return err;
9204 }
9205 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9206 
9207 static int dev_cpu_dead(unsigned int oldcpu)
9208 {
9209 	struct sk_buff **list_skb;
9210 	struct sk_buff *skb;
9211 	unsigned int cpu;
9212 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9213 
9214 	local_irq_disable();
9215 	cpu = smp_processor_id();
9216 	sd = &per_cpu(softnet_data, cpu);
9217 	oldsd = &per_cpu(softnet_data, oldcpu);
9218 
9219 	/* Find end of our completion_queue. */
9220 	list_skb = &sd->completion_queue;
9221 	while (*list_skb)
9222 		list_skb = &(*list_skb)->next;
9223 	/* Append completion queue from offline CPU. */
9224 	*list_skb = oldsd->completion_queue;
9225 	oldsd->completion_queue = NULL;
9226 
9227 	/* Append output queue from offline CPU. */
9228 	if (oldsd->output_queue) {
9229 		*sd->output_queue_tailp = oldsd->output_queue;
9230 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9231 		oldsd->output_queue = NULL;
9232 		oldsd->output_queue_tailp = &oldsd->output_queue;
9233 	}
9234 	/* Append NAPI poll list from offline CPU, with one exception :
9235 	 * process_backlog() must be called by cpu owning percpu backlog.
9236 	 * We properly handle process_queue & input_pkt_queue later.
9237 	 */
9238 	while (!list_empty(&oldsd->poll_list)) {
9239 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9240 							    struct napi_struct,
9241 							    poll_list);
9242 
9243 		list_del_init(&napi->poll_list);
9244 		if (napi->poll == process_backlog)
9245 			napi->state = 0;
9246 		else
9247 			____napi_schedule(sd, napi);
9248 	}
9249 
9250 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9251 	local_irq_enable();
9252 
9253 #ifdef CONFIG_RPS
9254 	remsd = oldsd->rps_ipi_list;
9255 	oldsd->rps_ipi_list = NULL;
9256 #endif
9257 	/* send out pending IPI's on offline CPU */
9258 	net_rps_send_ipi(remsd);
9259 
9260 	/* Process offline CPU's input_pkt_queue */
9261 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9262 		netif_rx_ni(skb);
9263 		input_queue_head_incr(oldsd);
9264 	}
9265 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9266 		netif_rx_ni(skb);
9267 		input_queue_head_incr(oldsd);
9268 	}
9269 
9270 	return 0;
9271 }
9272 
9273 /**
9274  *	netdev_increment_features - increment feature set by one
9275  *	@all: current feature set
9276  *	@one: new feature set
9277  *	@mask: mask feature set
9278  *
9279  *	Computes a new feature set after adding a device with feature set
9280  *	@one to the master device with current feature set @all.  Will not
9281  *	enable anything that is off in @mask. Returns the new feature set.
9282  */
9283 netdev_features_t netdev_increment_features(netdev_features_t all,
9284 	netdev_features_t one, netdev_features_t mask)
9285 {
9286 	if (mask & NETIF_F_HW_CSUM)
9287 		mask |= NETIF_F_CSUM_MASK;
9288 	mask |= NETIF_F_VLAN_CHALLENGED;
9289 
9290 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9291 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9292 
9293 	/* If one device supports hw checksumming, set for all. */
9294 	if (all & NETIF_F_HW_CSUM)
9295 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9296 
9297 	return all;
9298 }
9299 EXPORT_SYMBOL(netdev_increment_features);
9300 
9301 static struct hlist_head * __net_init netdev_create_hash(void)
9302 {
9303 	int i;
9304 	struct hlist_head *hash;
9305 
9306 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9307 	if (hash != NULL)
9308 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9309 			INIT_HLIST_HEAD(&hash[i]);
9310 
9311 	return hash;
9312 }
9313 
9314 /* Initialize per network namespace state */
9315 static int __net_init netdev_init(struct net *net)
9316 {
9317 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9318 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9319 
9320 	if (net != &init_net)
9321 		INIT_LIST_HEAD(&net->dev_base_head);
9322 
9323 	net->dev_name_head = netdev_create_hash();
9324 	if (net->dev_name_head == NULL)
9325 		goto err_name;
9326 
9327 	net->dev_index_head = netdev_create_hash();
9328 	if (net->dev_index_head == NULL)
9329 		goto err_idx;
9330 
9331 	return 0;
9332 
9333 err_idx:
9334 	kfree(net->dev_name_head);
9335 err_name:
9336 	return -ENOMEM;
9337 }
9338 
9339 /**
9340  *	netdev_drivername - network driver for the device
9341  *	@dev: network device
9342  *
9343  *	Determine network driver for device.
9344  */
9345 const char *netdev_drivername(const struct net_device *dev)
9346 {
9347 	const struct device_driver *driver;
9348 	const struct device *parent;
9349 	const char *empty = "";
9350 
9351 	parent = dev->dev.parent;
9352 	if (!parent)
9353 		return empty;
9354 
9355 	driver = parent->driver;
9356 	if (driver && driver->name)
9357 		return driver->name;
9358 	return empty;
9359 }
9360 
9361 static void __netdev_printk(const char *level, const struct net_device *dev,
9362 			    struct va_format *vaf)
9363 {
9364 	if (dev && dev->dev.parent) {
9365 		dev_printk_emit(level[1] - '0',
9366 				dev->dev.parent,
9367 				"%s %s %s%s: %pV",
9368 				dev_driver_string(dev->dev.parent),
9369 				dev_name(dev->dev.parent),
9370 				netdev_name(dev), netdev_reg_state(dev),
9371 				vaf);
9372 	} else if (dev) {
9373 		printk("%s%s%s: %pV",
9374 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9375 	} else {
9376 		printk("%s(NULL net_device): %pV", level, vaf);
9377 	}
9378 }
9379 
9380 void netdev_printk(const char *level, const struct net_device *dev,
9381 		   const char *format, ...)
9382 {
9383 	struct va_format vaf;
9384 	va_list args;
9385 
9386 	va_start(args, format);
9387 
9388 	vaf.fmt = format;
9389 	vaf.va = &args;
9390 
9391 	__netdev_printk(level, dev, &vaf);
9392 
9393 	va_end(args);
9394 }
9395 EXPORT_SYMBOL(netdev_printk);
9396 
9397 #define define_netdev_printk_level(func, level)			\
9398 void func(const struct net_device *dev, const char *fmt, ...)	\
9399 {								\
9400 	struct va_format vaf;					\
9401 	va_list args;						\
9402 								\
9403 	va_start(args, fmt);					\
9404 								\
9405 	vaf.fmt = fmt;						\
9406 	vaf.va = &args;						\
9407 								\
9408 	__netdev_printk(level, dev, &vaf);			\
9409 								\
9410 	va_end(args);						\
9411 }								\
9412 EXPORT_SYMBOL(func);
9413 
9414 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9415 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9416 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9417 define_netdev_printk_level(netdev_err, KERN_ERR);
9418 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9419 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9420 define_netdev_printk_level(netdev_info, KERN_INFO);
9421 
9422 static void __net_exit netdev_exit(struct net *net)
9423 {
9424 	kfree(net->dev_name_head);
9425 	kfree(net->dev_index_head);
9426 	if (net != &init_net)
9427 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9428 }
9429 
9430 static struct pernet_operations __net_initdata netdev_net_ops = {
9431 	.init = netdev_init,
9432 	.exit = netdev_exit,
9433 };
9434 
9435 static void __net_exit default_device_exit(struct net *net)
9436 {
9437 	struct net_device *dev, *aux;
9438 	/*
9439 	 * Push all migratable network devices back to the
9440 	 * initial network namespace
9441 	 */
9442 	rtnl_lock();
9443 	for_each_netdev_safe(net, dev, aux) {
9444 		int err;
9445 		char fb_name[IFNAMSIZ];
9446 
9447 		/* Ignore unmoveable devices (i.e. loopback) */
9448 		if (dev->features & NETIF_F_NETNS_LOCAL)
9449 			continue;
9450 
9451 		/* Leave virtual devices for the generic cleanup */
9452 		if (dev->rtnl_link_ops)
9453 			continue;
9454 
9455 		/* Push remaining network devices to init_net */
9456 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9457 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9458 		if (err) {
9459 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9460 				 __func__, dev->name, err);
9461 			BUG();
9462 		}
9463 	}
9464 	rtnl_unlock();
9465 }
9466 
9467 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9468 {
9469 	/* Return with the rtnl_lock held when there are no network
9470 	 * devices unregistering in any network namespace in net_list.
9471 	 */
9472 	struct net *net;
9473 	bool unregistering;
9474 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9475 
9476 	add_wait_queue(&netdev_unregistering_wq, &wait);
9477 	for (;;) {
9478 		unregistering = false;
9479 		rtnl_lock();
9480 		list_for_each_entry(net, net_list, exit_list) {
9481 			if (net->dev_unreg_count > 0) {
9482 				unregistering = true;
9483 				break;
9484 			}
9485 		}
9486 		if (!unregistering)
9487 			break;
9488 		__rtnl_unlock();
9489 
9490 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9491 	}
9492 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9493 }
9494 
9495 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9496 {
9497 	/* At exit all network devices most be removed from a network
9498 	 * namespace.  Do this in the reverse order of registration.
9499 	 * Do this across as many network namespaces as possible to
9500 	 * improve batching efficiency.
9501 	 */
9502 	struct net_device *dev;
9503 	struct net *net;
9504 	LIST_HEAD(dev_kill_list);
9505 
9506 	/* To prevent network device cleanup code from dereferencing
9507 	 * loopback devices or network devices that have been freed
9508 	 * wait here for all pending unregistrations to complete,
9509 	 * before unregistring the loopback device and allowing the
9510 	 * network namespace be freed.
9511 	 *
9512 	 * The netdev todo list containing all network devices
9513 	 * unregistrations that happen in default_device_exit_batch
9514 	 * will run in the rtnl_unlock() at the end of
9515 	 * default_device_exit_batch.
9516 	 */
9517 	rtnl_lock_unregistering(net_list);
9518 	list_for_each_entry(net, net_list, exit_list) {
9519 		for_each_netdev_reverse(net, dev) {
9520 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9521 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9522 			else
9523 				unregister_netdevice_queue(dev, &dev_kill_list);
9524 		}
9525 	}
9526 	unregister_netdevice_many(&dev_kill_list);
9527 	rtnl_unlock();
9528 }
9529 
9530 static struct pernet_operations __net_initdata default_device_ops = {
9531 	.exit = default_device_exit,
9532 	.exit_batch = default_device_exit_batch,
9533 };
9534 
9535 /*
9536  *	Initialize the DEV module. At boot time this walks the device list and
9537  *	unhooks any devices that fail to initialise (normally hardware not
9538  *	present) and leaves us with a valid list of present and active devices.
9539  *
9540  */
9541 
9542 /*
9543  *       This is called single threaded during boot, so no need
9544  *       to take the rtnl semaphore.
9545  */
9546 static int __init net_dev_init(void)
9547 {
9548 	int i, rc = -ENOMEM;
9549 
9550 	BUG_ON(!dev_boot_phase);
9551 
9552 	if (dev_proc_init())
9553 		goto out;
9554 
9555 	if (netdev_kobject_init())
9556 		goto out;
9557 
9558 	INIT_LIST_HEAD(&ptype_all);
9559 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9560 		INIT_LIST_HEAD(&ptype_base[i]);
9561 
9562 	INIT_LIST_HEAD(&offload_base);
9563 
9564 	if (register_pernet_subsys(&netdev_net_ops))
9565 		goto out;
9566 
9567 	/*
9568 	 *	Initialise the packet receive queues.
9569 	 */
9570 
9571 	for_each_possible_cpu(i) {
9572 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9573 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9574 
9575 		INIT_WORK(flush, flush_backlog);
9576 
9577 		skb_queue_head_init(&sd->input_pkt_queue);
9578 		skb_queue_head_init(&sd->process_queue);
9579 #ifdef CONFIG_XFRM_OFFLOAD
9580 		skb_queue_head_init(&sd->xfrm_backlog);
9581 #endif
9582 		INIT_LIST_HEAD(&sd->poll_list);
9583 		sd->output_queue_tailp = &sd->output_queue;
9584 #ifdef CONFIG_RPS
9585 		sd->csd.func = rps_trigger_softirq;
9586 		sd->csd.info = sd;
9587 		sd->cpu = i;
9588 #endif
9589 
9590 		init_gro_hash(&sd->backlog);
9591 		sd->backlog.poll = process_backlog;
9592 		sd->backlog.weight = weight_p;
9593 	}
9594 
9595 	dev_boot_phase = 0;
9596 
9597 	/* The loopback device is special if any other network devices
9598 	 * is present in a network namespace the loopback device must
9599 	 * be present. Since we now dynamically allocate and free the
9600 	 * loopback device ensure this invariant is maintained by
9601 	 * keeping the loopback device as the first device on the
9602 	 * list of network devices.  Ensuring the loopback devices
9603 	 * is the first device that appears and the last network device
9604 	 * that disappears.
9605 	 */
9606 	if (register_pernet_device(&loopback_net_ops))
9607 		goto out;
9608 
9609 	if (register_pernet_device(&default_device_ops))
9610 		goto out;
9611 
9612 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9613 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9614 
9615 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9616 				       NULL, dev_cpu_dead);
9617 	WARN_ON(rc < 0);
9618 	rc = 0;
9619 out:
9620 	return rc;
9621 }
9622 
9623 subsys_initcall(net_dev_init);
9624