1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/config.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/notifier.h> 93 #include <linux/skbuff.h> 94 #include <net/sock.h> 95 #include <linux/rtnetlink.h> 96 #include <linux/proc_fs.h> 97 #include <linux/seq_file.h> 98 #include <linux/stat.h> 99 #include <linux/if_bridge.h> 100 #include <linux/divert.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <linux/highmem.h> 105 #include <linux/init.h> 106 #include <linux/kmod.h> 107 #include <linux/module.h> 108 #include <linux/kallsyms.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #ifdef CONFIG_NET_RADIO 113 #include <linux/wireless.h> /* Note : will define WIRELESS_EXT */ 114 #include <net/iw_handler.h> 115 #endif /* CONFIG_NET_RADIO */ 116 #include <asm/current.h> 117 118 /* 119 * The list of packet types we will receive (as opposed to discard) 120 * and the routines to invoke. 121 * 122 * Why 16. Because with 16 the only overlap we get on a hash of the 123 * low nibble of the protocol value is RARP/SNAP/X.25. 124 * 125 * NOTE: That is no longer true with the addition of VLAN tags. Not 126 * sure which should go first, but I bet it won't make much 127 * difference if we are running VLANs. The good news is that 128 * this protocol won't be in the list unless compiled in, so 129 * the average user (w/out VLANs) will not be adversly affected. 130 * --BLG 131 * 132 * 0800 IP 133 * 8100 802.1Q VLAN 134 * 0001 802.3 135 * 0002 AX.25 136 * 0004 802.2 137 * 8035 RARP 138 * 0005 SNAP 139 * 0805 X.25 140 * 0806 ARP 141 * 8137 IPX 142 * 0009 Localtalk 143 * 86DD IPv6 144 */ 145 146 static DEFINE_SPINLOCK(ptype_lock); 147 static struct list_head ptype_base[16]; /* 16 way hashed list */ 148 static struct list_head ptype_all; /* Taps */ 149 150 /* 151 * The @dev_base list is protected by @dev_base_lock and the rtln 152 * semaphore. 153 * 154 * Pure readers hold dev_base_lock for reading. 155 * 156 * Writers must hold the rtnl semaphore while they loop through the 157 * dev_base list, and hold dev_base_lock for writing when they do the 158 * actual updates. This allows pure readers to access the list even 159 * while a writer is preparing to update it. 160 * 161 * To put it another way, dev_base_lock is held for writing only to 162 * protect against pure readers; the rtnl semaphore provides the 163 * protection against other writers. 164 * 165 * See, for example usages, register_netdevice() and 166 * unregister_netdevice(), which must be called with the rtnl 167 * semaphore held. 168 */ 169 struct net_device *dev_base; 170 static struct net_device **dev_tail = &dev_base; 171 DEFINE_RWLOCK(dev_base_lock); 172 173 EXPORT_SYMBOL(dev_base); 174 EXPORT_SYMBOL(dev_base_lock); 175 176 #define NETDEV_HASHBITS 8 177 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS]; 178 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS]; 179 180 static inline struct hlist_head *dev_name_hash(const char *name) 181 { 182 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 183 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)]; 184 } 185 186 static inline struct hlist_head *dev_index_hash(int ifindex) 187 { 188 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)]; 189 } 190 191 /* 192 * Our notifier list 193 */ 194 195 static struct notifier_block *netdev_chain; 196 197 /* 198 * Device drivers call our routines to queue packets here. We empty the 199 * queue in the local softnet handler. 200 */ 201 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL }; 202 203 #ifdef CONFIG_SYSFS 204 extern int netdev_sysfs_init(void); 205 extern int netdev_register_sysfs(struct net_device *); 206 extern void netdev_unregister_sysfs(struct net_device *); 207 #else 208 #define netdev_sysfs_init() (0) 209 #define netdev_register_sysfs(dev) (0) 210 #define netdev_unregister_sysfs(dev) do { } while(0) 211 #endif 212 213 214 /******************************************************************************* 215 216 Protocol management and registration routines 217 218 *******************************************************************************/ 219 220 /* 221 * For efficiency 222 */ 223 224 int netdev_nit; 225 226 /* 227 * Add a protocol ID to the list. Now that the input handler is 228 * smarter we can dispense with all the messy stuff that used to be 229 * here. 230 * 231 * BEWARE!!! Protocol handlers, mangling input packets, 232 * MUST BE last in hash buckets and checking protocol handlers 233 * MUST start from promiscuous ptype_all chain in net_bh. 234 * It is true now, do not change it. 235 * Explanation follows: if protocol handler, mangling packet, will 236 * be the first on list, it is not able to sense, that packet 237 * is cloned and should be copied-on-write, so that it will 238 * change it and subsequent readers will get broken packet. 239 * --ANK (980803) 240 */ 241 242 /** 243 * dev_add_pack - add packet handler 244 * @pt: packet type declaration 245 * 246 * Add a protocol handler to the networking stack. The passed &packet_type 247 * is linked into kernel lists and may not be freed until it has been 248 * removed from the kernel lists. 249 * 250 * This call does not sleep therefore it can not 251 * guarantee all CPU's that are in middle of receiving packets 252 * will see the new packet type (until the next received packet). 253 */ 254 255 void dev_add_pack(struct packet_type *pt) 256 { 257 int hash; 258 259 spin_lock_bh(&ptype_lock); 260 if (pt->type == htons(ETH_P_ALL)) { 261 netdev_nit++; 262 list_add_rcu(&pt->list, &ptype_all); 263 } else { 264 hash = ntohs(pt->type) & 15; 265 list_add_rcu(&pt->list, &ptype_base[hash]); 266 } 267 spin_unlock_bh(&ptype_lock); 268 } 269 270 extern void linkwatch_run_queue(void); 271 272 273 274 /** 275 * __dev_remove_pack - remove packet handler 276 * @pt: packet type declaration 277 * 278 * Remove a protocol handler that was previously added to the kernel 279 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 280 * from the kernel lists and can be freed or reused once this function 281 * returns. 282 * 283 * The packet type might still be in use by receivers 284 * and must not be freed until after all the CPU's have gone 285 * through a quiescent state. 286 */ 287 void __dev_remove_pack(struct packet_type *pt) 288 { 289 struct list_head *head; 290 struct packet_type *pt1; 291 292 spin_lock_bh(&ptype_lock); 293 294 if (pt->type == htons(ETH_P_ALL)) { 295 netdev_nit--; 296 head = &ptype_all; 297 } else 298 head = &ptype_base[ntohs(pt->type) & 15]; 299 300 list_for_each_entry(pt1, head, list) { 301 if (pt == pt1) { 302 list_del_rcu(&pt->list); 303 goto out; 304 } 305 } 306 307 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 308 out: 309 spin_unlock_bh(&ptype_lock); 310 } 311 /** 312 * dev_remove_pack - remove packet handler 313 * @pt: packet type declaration 314 * 315 * Remove a protocol handler that was previously added to the kernel 316 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 317 * from the kernel lists and can be freed or reused once this function 318 * returns. 319 * 320 * This call sleeps to guarantee that no CPU is looking at the packet 321 * type after return. 322 */ 323 void dev_remove_pack(struct packet_type *pt) 324 { 325 __dev_remove_pack(pt); 326 327 synchronize_net(); 328 } 329 330 /****************************************************************************** 331 332 Device Boot-time Settings Routines 333 334 *******************************************************************************/ 335 336 /* Boot time configuration table */ 337 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 338 339 /** 340 * netdev_boot_setup_add - add new setup entry 341 * @name: name of the device 342 * @map: configured settings for the device 343 * 344 * Adds new setup entry to the dev_boot_setup list. The function 345 * returns 0 on error and 1 on success. This is a generic routine to 346 * all netdevices. 347 */ 348 static int netdev_boot_setup_add(char *name, struct ifmap *map) 349 { 350 struct netdev_boot_setup *s; 351 int i; 352 353 s = dev_boot_setup; 354 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 355 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 356 memset(s[i].name, 0, sizeof(s[i].name)); 357 strcpy(s[i].name, name); 358 memcpy(&s[i].map, map, sizeof(s[i].map)); 359 break; 360 } 361 } 362 363 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 364 } 365 366 /** 367 * netdev_boot_setup_check - check boot time settings 368 * @dev: the netdevice 369 * 370 * Check boot time settings for the device. 371 * The found settings are set for the device to be used 372 * later in the device probing. 373 * Returns 0 if no settings found, 1 if they are. 374 */ 375 int netdev_boot_setup_check(struct net_device *dev) 376 { 377 struct netdev_boot_setup *s = dev_boot_setup; 378 int i; 379 380 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 381 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 382 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 383 dev->irq = s[i].map.irq; 384 dev->base_addr = s[i].map.base_addr; 385 dev->mem_start = s[i].map.mem_start; 386 dev->mem_end = s[i].map.mem_end; 387 return 1; 388 } 389 } 390 return 0; 391 } 392 393 394 /** 395 * netdev_boot_base - get address from boot time settings 396 * @prefix: prefix for network device 397 * @unit: id for network device 398 * 399 * Check boot time settings for the base address of device. 400 * The found settings are set for the device to be used 401 * later in the device probing. 402 * Returns 0 if no settings found. 403 */ 404 unsigned long netdev_boot_base(const char *prefix, int unit) 405 { 406 const struct netdev_boot_setup *s = dev_boot_setup; 407 char name[IFNAMSIZ]; 408 int i; 409 410 sprintf(name, "%s%d", prefix, unit); 411 412 /* 413 * If device already registered then return base of 1 414 * to indicate not to probe for this interface 415 */ 416 if (__dev_get_by_name(name)) 417 return 1; 418 419 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 420 if (!strcmp(name, s[i].name)) 421 return s[i].map.base_addr; 422 return 0; 423 } 424 425 /* 426 * Saves at boot time configured settings for any netdevice. 427 */ 428 int __init netdev_boot_setup(char *str) 429 { 430 int ints[5]; 431 struct ifmap map; 432 433 str = get_options(str, ARRAY_SIZE(ints), ints); 434 if (!str || !*str) 435 return 0; 436 437 /* Save settings */ 438 memset(&map, 0, sizeof(map)); 439 if (ints[0] > 0) 440 map.irq = ints[1]; 441 if (ints[0] > 1) 442 map.base_addr = ints[2]; 443 if (ints[0] > 2) 444 map.mem_start = ints[3]; 445 if (ints[0] > 3) 446 map.mem_end = ints[4]; 447 448 /* Add new entry to the list */ 449 return netdev_boot_setup_add(str, &map); 450 } 451 452 __setup("netdev=", netdev_boot_setup); 453 454 /******************************************************************************* 455 456 Device Interface Subroutines 457 458 *******************************************************************************/ 459 460 /** 461 * __dev_get_by_name - find a device by its name 462 * @name: name to find 463 * 464 * Find an interface by name. Must be called under RTNL semaphore 465 * or @dev_base_lock. If the name is found a pointer to the device 466 * is returned. If the name is not found then %NULL is returned. The 467 * reference counters are not incremented so the caller must be 468 * careful with locks. 469 */ 470 471 struct net_device *__dev_get_by_name(const char *name) 472 { 473 struct hlist_node *p; 474 475 hlist_for_each(p, dev_name_hash(name)) { 476 struct net_device *dev 477 = hlist_entry(p, struct net_device, name_hlist); 478 if (!strncmp(dev->name, name, IFNAMSIZ)) 479 return dev; 480 } 481 return NULL; 482 } 483 484 /** 485 * dev_get_by_name - find a device by its name 486 * @name: name to find 487 * 488 * Find an interface by name. This can be called from any 489 * context and does its own locking. The returned handle has 490 * the usage count incremented and the caller must use dev_put() to 491 * release it when it is no longer needed. %NULL is returned if no 492 * matching device is found. 493 */ 494 495 struct net_device *dev_get_by_name(const char *name) 496 { 497 struct net_device *dev; 498 499 read_lock(&dev_base_lock); 500 dev = __dev_get_by_name(name); 501 if (dev) 502 dev_hold(dev); 503 read_unlock(&dev_base_lock); 504 return dev; 505 } 506 507 /** 508 * __dev_get_by_index - find a device by its ifindex 509 * @ifindex: index of device 510 * 511 * Search for an interface by index. Returns %NULL if the device 512 * is not found or a pointer to the device. The device has not 513 * had its reference counter increased so the caller must be careful 514 * about locking. The caller must hold either the RTNL semaphore 515 * or @dev_base_lock. 516 */ 517 518 struct net_device *__dev_get_by_index(int ifindex) 519 { 520 struct hlist_node *p; 521 522 hlist_for_each(p, dev_index_hash(ifindex)) { 523 struct net_device *dev 524 = hlist_entry(p, struct net_device, index_hlist); 525 if (dev->ifindex == ifindex) 526 return dev; 527 } 528 return NULL; 529 } 530 531 532 /** 533 * dev_get_by_index - find a device by its ifindex 534 * @ifindex: index of device 535 * 536 * Search for an interface by index. Returns NULL if the device 537 * is not found or a pointer to the device. The device returned has 538 * had a reference added and the pointer is safe until the user calls 539 * dev_put to indicate they have finished with it. 540 */ 541 542 struct net_device *dev_get_by_index(int ifindex) 543 { 544 struct net_device *dev; 545 546 read_lock(&dev_base_lock); 547 dev = __dev_get_by_index(ifindex); 548 if (dev) 549 dev_hold(dev); 550 read_unlock(&dev_base_lock); 551 return dev; 552 } 553 554 /** 555 * dev_getbyhwaddr - find a device by its hardware address 556 * @type: media type of device 557 * @ha: hardware address 558 * 559 * Search for an interface by MAC address. Returns NULL if the device 560 * is not found or a pointer to the device. The caller must hold the 561 * rtnl semaphore. The returned device has not had its ref count increased 562 * and the caller must therefore be careful about locking 563 * 564 * BUGS: 565 * If the API was consistent this would be __dev_get_by_hwaddr 566 */ 567 568 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha) 569 { 570 struct net_device *dev; 571 572 ASSERT_RTNL(); 573 574 for (dev = dev_base; dev; dev = dev->next) 575 if (dev->type == type && 576 !memcmp(dev->dev_addr, ha, dev->addr_len)) 577 break; 578 return dev; 579 } 580 581 struct net_device *dev_getfirstbyhwtype(unsigned short type) 582 { 583 struct net_device *dev; 584 585 rtnl_lock(); 586 for (dev = dev_base; dev; dev = dev->next) { 587 if (dev->type == type) { 588 dev_hold(dev); 589 break; 590 } 591 } 592 rtnl_unlock(); 593 return dev; 594 } 595 596 EXPORT_SYMBOL(dev_getfirstbyhwtype); 597 598 /** 599 * dev_get_by_flags - find any device with given flags 600 * @if_flags: IFF_* values 601 * @mask: bitmask of bits in if_flags to check 602 * 603 * Search for any interface with the given flags. Returns NULL if a device 604 * is not found or a pointer to the device. The device returned has 605 * had a reference added and the pointer is safe until the user calls 606 * dev_put to indicate they have finished with it. 607 */ 608 609 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask) 610 { 611 struct net_device *dev; 612 613 read_lock(&dev_base_lock); 614 for (dev = dev_base; dev != NULL; dev = dev->next) { 615 if (((dev->flags ^ if_flags) & mask) == 0) { 616 dev_hold(dev); 617 break; 618 } 619 } 620 read_unlock(&dev_base_lock); 621 return dev; 622 } 623 624 /** 625 * dev_valid_name - check if name is okay for network device 626 * @name: name string 627 * 628 * Network device names need to be valid file names to 629 * to allow sysfs to work 630 */ 631 static int dev_valid_name(const char *name) 632 { 633 return !(*name == '\0' 634 || !strcmp(name, ".") 635 || !strcmp(name, "..") 636 || strchr(name, '/')); 637 } 638 639 /** 640 * dev_alloc_name - allocate a name for a device 641 * @dev: device 642 * @name: name format string 643 * 644 * Passed a format string - eg "lt%d" it will try and find a suitable 645 * id. Not efficient for many devices, not called a lot. The caller 646 * must hold the dev_base or rtnl lock while allocating the name and 647 * adding the device in order to avoid duplicates. Returns the number 648 * of the unit assigned or a negative errno code. 649 */ 650 651 int dev_alloc_name(struct net_device *dev, const char *name) 652 { 653 int i = 0; 654 char buf[IFNAMSIZ]; 655 const char *p; 656 const int max_netdevices = 8*PAGE_SIZE; 657 long *inuse; 658 struct net_device *d; 659 660 p = strnchr(name, IFNAMSIZ-1, '%'); 661 if (p) { 662 /* 663 * Verify the string as this thing may have come from 664 * the user. There must be either one "%d" and no other "%" 665 * characters. 666 */ 667 if (p[1] != 'd' || strchr(p + 2, '%')) 668 return -EINVAL; 669 670 /* Use one page as a bit array of possible slots */ 671 inuse = (long *) get_zeroed_page(GFP_ATOMIC); 672 if (!inuse) 673 return -ENOMEM; 674 675 for (d = dev_base; d; d = d->next) { 676 if (!sscanf(d->name, name, &i)) 677 continue; 678 if (i < 0 || i >= max_netdevices) 679 continue; 680 681 /* avoid cases where sscanf is not exact inverse of printf */ 682 snprintf(buf, sizeof(buf), name, i); 683 if (!strncmp(buf, d->name, IFNAMSIZ)) 684 set_bit(i, inuse); 685 } 686 687 i = find_first_zero_bit(inuse, max_netdevices); 688 free_page((unsigned long) inuse); 689 } 690 691 snprintf(buf, sizeof(buf), name, i); 692 if (!__dev_get_by_name(buf)) { 693 strlcpy(dev->name, buf, IFNAMSIZ); 694 return i; 695 } 696 697 /* It is possible to run out of possible slots 698 * when the name is long and there isn't enough space left 699 * for the digits, or if all bits are used. 700 */ 701 return -ENFILE; 702 } 703 704 705 /** 706 * dev_change_name - change name of a device 707 * @dev: device 708 * @newname: name (or format string) must be at least IFNAMSIZ 709 * 710 * Change name of a device, can pass format strings "eth%d". 711 * for wildcarding. 712 */ 713 int dev_change_name(struct net_device *dev, char *newname) 714 { 715 int err = 0; 716 717 ASSERT_RTNL(); 718 719 if (dev->flags & IFF_UP) 720 return -EBUSY; 721 722 if (!dev_valid_name(newname)) 723 return -EINVAL; 724 725 if (strchr(newname, '%')) { 726 err = dev_alloc_name(dev, newname); 727 if (err < 0) 728 return err; 729 strcpy(newname, dev->name); 730 } 731 else if (__dev_get_by_name(newname)) 732 return -EEXIST; 733 else 734 strlcpy(dev->name, newname, IFNAMSIZ); 735 736 err = class_device_rename(&dev->class_dev, dev->name); 737 if (!err) { 738 hlist_del(&dev->name_hlist); 739 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name)); 740 notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev); 741 } 742 743 return err; 744 } 745 746 /** 747 * netdev_features_change - device changes fatures 748 * @dev: device to cause notification 749 * 750 * Called to indicate a device has changed features. 751 */ 752 void netdev_features_change(struct net_device *dev) 753 { 754 notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev); 755 } 756 EXPORT_SYMBOL(netdev_features_change); 757 758 /** 759 * netdev_state_change - device changes state 760 * @dev: device to cause notification 761 * 762 * Called to indicate a device has changed state. This function calls 763 * the notifier chains for netdev_chain and sends a NEWLINK message 764 * to the routing socket. 765 */ 766 void netdev_state_change(struct net_device *dev) 767 { 768 if (dev->flags & IFF_UP) { 769 notifier_call_chain(&netdev_chain, NETDEV_CHANGE, dev); 770 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 771 } 772 } 773 774 /** 775 * dev_load - load a network module 776 * @name: name of interface 777 * 778 * If a network interface is not present and the process has suitable 779 * privileges this function loads the module. If module loading is not 780 * available in this kernel then it becomes a nop. 781 */ 782 783 void dev_load(const char *name) 784 { 785 struct net_device *dev; 786 787 read_lock(&dev_base_lock); 788 dev = __dev_get_by_name(name); 789 read_unlock(&dev_base_lock); 790 791 if (!dev && capable(CAP_SYS_MODULE)) 792 request_module("%s", name); 793 } 794 795 static int default_rebuild_header(struct sk_buff *skb) 796 { 797 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n", 798 skb->dev ? skb->dev->name : "NULL!!!"); 799 kfree_skb(skb); 800 return 1; 801 } 802 803 804 /** 805 * dev_open - prepare an interface for use. 806 * @dev: device to open 807 * 808 * Takes a device from down to up state. The device's private open 809 * function is invoked and then the multicast lists are loaded. Finally 810 * the device is moved into the up state and a %NETDEV_UP message is 811 * sent to the netdev notifier chain. 812 * 813 * Calling this function on an active interface is a nop. On a failure 814 * a negative errno code is returned. 815 */ 816 int dev_open(struct net_device *dev) 817 { 818 int ret = 0; 819 820 /* 821 * Is it already up? 822 */ 823 824 if (dev->flags & IFF_UP) 825 return 0; 826 827 /* 828 * Is it even present? 829 */ 830 if (!netif_device_present(dev)) 831 return -ENODEV; 832 833 /* 834 * Call device private open method 835 */ 836 set_bit(__LINK_STATE_START, &dev->state); 837 if (dev->open) { 838 ret = dev->open(dev); 839 if (ret) 840 clear_bit(__LINK_STATE_START, &dev->state); 841 } 842 843 /* 844 * If it went open OK then: 845 */ 846 847 if (!ret) { 848 /* 849 * Set the flags. 850 */ 851 dev->flags |= IFF_UP; 852 853 /* 854 * Initialize multicasting status 855 */ 856 dev_mc_upload(dev); 857 858 /* 859 * Wakeup transmit queue engine 860 */ 861 dev_activate(dev); 862 863 /* 864 * ... and announce new interface. 865 */ 866 notifier_call_chain(&netdev_chain, NETDEV_UP, dev); 867 } 868 return ret; 869 } 870 871 /** 872 * dev_close - shutdown an interface. 873 * @dev: device to shutdown 874 * 875 * This function moves an active device into down state. A 876 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 877 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 878 * chain. 879 */ 880 int dev_close(struct net_device *dev) 881 { 882 if (!(dev->flags & IFF_UP)) 883 return 0; 884 885 /* 886 * Tell people we are going down, so that they can 887 * prepare to death, when device is still operating. 888 */ 889 notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev); 890 891 dev_deactivate(dev); 892 893 clear_bit(__LINK_STATE_START, &dev->state); 894 895 /* Synchronize to scheduled poll. We cannot touch poll list, 896 * it can be even on different cpu. So just clear netif_running(), 897 * and wait when poll really will happen. Actually, the best place 898 * for this is inside dev->stop() after device stopped its irq 899 * engine, but this requires more changes in devices. */ 900 901 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 902 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) { 903 /* No hurry. */ 904 current->state = TASK_INTERRUPTIBLE; 905 schedule_timeout(1); 906 } 907 908 /* 909 * Call the device specific close. This cannot fail. 910 * Only if device is UP 911 * 912 * We allow it to be called even after a DETACH hot-plug 913 * event. 914 */ 915 if (dev->stop) 916 dev->stop(dev); 917 918 /* 919 * Device is now down. 920 */ 921 922 dev->flags &= ~IFF_UP; 923 924 /* 925 * Tell people we are down 926 */ 927 notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev); 928 929 return 0; 930 } 931 932 933 /* 934 * Device change register/unregister. These are not inline or static 935 * as we export them to the world. 936 */ 937 938 /** 939 * register_netdevice_notifier - register a network notifier block 940 * @nb: notifier 941 * 942 * Register a notifier to be called when network device events occur. 943 * The notifier passed is linked into the kernel structures and must 944 * not be reused until it has been unregistered. A negative errno code 945 * is returned on a failure. 946 * 947 * When registered all registration and up events are replayed 948 * to the new notifier to allow device to have a race free 949 * view of the network device list. 950 */ 951 952 int register_netdevice_notifier(struct notifier_block *nb) 953 { 954 struct net_device *dev; 955 int err; 956 957 rtnl_lock(); 958 err = notifier_chain_register(&netdev_chain, nb); 959 if (!err) { 960 for (dev = dev_base; dev; dev = dev->next) { 961 nb->notifier_call(nb, NETDEV_REGISTER, dev); 962 963 if (dev->flags & IFF_UP) 964 nb->notifier_call(nb, NETDEV_UP, dev); 965 } 966 } 967 rtnl_unlock(); 968 return err; 969 } 970 971 /** 972 * unregister_netdevice_notifier - unregister a network notifier block 973 * @nb: notifier 974 * 975 * Unregister a notifier previously registered by 976 * register_netdevice_notifier(). The notifier is unlinked into the 977 * kernel structures and may then be reused. A negative errno code 978 * is returned on a failure. 979 */ 980 981 int unregister_netdevice_notifier(struct notifier_block *nb) 982 { 983 return notifier_chain_unregister(&netdev_chain, nb); 984 } 985 986 /** 987 * call_netdevice_notifiers - call all network notifier blocks 988 * @val: value passed unmodified to notifier function 989 * @v: pointer passed unmodified to notifier function 990 * 991 * Call all network notifier blocks. Parameters and return value 992 * are as for notifier_call_chain(). 993 */ 994 995 int call_netdevice_notifiers(unsigned long val, void *v) 996 { 997 return notifier_call_chain(&netdev_chain, val, v); 998 } 999 1000 /* When > 0 there are consumers of rx skb time stamps */ 1001 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1002 1003 void net_enable_timestamp(void) 1004 { 1005 atomic_inc(&netstamp_needed); 1006 } 1007 1008 void net_disable_timestamp(void) 1009 { 1010 atomic_dec(&netstamp_needed); 1011 } 1012 1013 static inline void net_timestamp(struct timeval *stamp) 1014 { 1015 if (atomic_read(&netstamp_needed)) 1016 do_gettimeofday(stamp); 1017 else { 1018 stamp->tv_sec = 0; 1019 stamp->tv_usec = 0; 1020 } 1021 } 1022 1023 /* 1024 * Support routine. Sends outgoing frames to any network 1025 * taps currently in use. 1026 */ 1027 1028 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1029 { 1030 struct packet_type *ptype; 1031 net_timestamp(&skb->stamp); 1032 1033 rcu_read_lock(); 1034 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1035 /* Never send packets back to the socket 1036 * they originated from - MvS (miquels@drinkel.ow.org) 1037 */ 1038 if ((ptype->dev == dev || !ptype->dev) && 1039 (ptype->af_packet_priv == NULL || 1040 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1041 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1042 if (!skb2) 1043 break; 1044 1045 /* skb->nh should be correctly 1046 set by sender, so that the second statement is 1047 just protection against buggy protocols. 1048 */ 1049 skb2->mac.raw = skb2->data; 1050 1051 if (skb2->nh.raw < skb2->data || 1052 skb2->nh.raw > skb2->tail) { 1053 if (net_ratelimit()) 1054 printk(KERN_CRIT "protocol %04x is " 1055 "buggy, dev %s\n", 1056 skb2->protocol, dev->name); 1057 skb2->nh.raw = skb2->data; 1058 } 1059 1060 skb2->h.raw = skb2->nh.raw; 1061 skb2->pkt_type = PACKET_OUTGOING; 1062 ptype->func(skb2, skb->dev, ptype); 1063 } 1064 } 1065 rcu_read_unlock(); 1066 } 1067 1068 /* 1069 * Invalidate hardware checksum when packet is to be mangled, and 1070 * complete checksum manually on outgoing path. 1071 */ 1072 int skb_checksum_help(struct sk_buff *skb, int inward) 1073 { 1074 unsigned int csum; 1075 int ret = 0, offset = skb->h.raw - skb->data; 1076 1077 if (inward) { 1078 skb->ip_summed = CHECKSUM_NONE; 1079 goto out; 1080 } 1081 1082 if (skb_cloned(skb)) { 1083 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1084 if (ret) 1085 goto out; 1086 } 1087 1088 if (offset > (int)skb->len) 1089 BUG(); 1090 csum = skb_checksum(skb, offset, skb->len-offset, 0); 1091 1092 offset = skb->tail - skb->h.raw; 1093 if (offset <= 0) 1094 BUG(); 1095 if (skb->csum + 2 > offset) 1096 BUG(); 1097 1098 *(u16*)(skb->h.raw + skb->csum) = csum_fold(csum); 1099 skb->ip_summed = CHECKSUM_NONE; 1100 out: 1101 return ret; 1102 } 1103 1104 #ifdef CONFIG_HIGHMEM 1105 /* Actually, we should eliminate this check as soon as we know, that: 1106 * 1. IOMMU is present and allows to map all the memory. 1107 * 2. No high memory really exists on this machine. 1108 */ 1109 1110 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1111 { 1112 int i; 1113 1114 if (dev->features & NETIF_F_HIGHDMA) 1115 return 0; 1116 1117 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1118 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1119 return 1; 1120 1121 return 0; 1122 } 1123 #else 1124 #define illegal_highdma(dev, skb) (0) 1125 #endif 1126 1127 extern void skb_release_data(struct sk_buff *); 1128 1129 /* Keep head the same: replace data */ 1130 int __skb_linearize(struct sk_buff *skb, int gfp_mask) 1131 { 1132 unsigned int size; 1133 u8 *data; 1134 long offset; 1135 struct skb_shared_info *ninfo; 1136 int headerlen = skb->data - skb->head; 1137 int expand = (skb->tail + skb->data_len) - skb->end; 1138 1139 if (skb_shared(skb)) 1140 BUG(); 1141 1142 if (expand <= 0) 1143 expand = 0; 1144 1145 size = skb->end - skb->head + expand; 1146 size = SKB_DATA_ALIGN(size); 1147 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 1148 if (!data) 1149 return -ENOMEM; 1150 1151 /* Copy entire thing */ 1152 if (skb_copy_bits(skb, -headerlen, data, headerlen + skb->len)) 1153 BUG(); 1154 1155 /* Set up shinfo */ 1156 ninfo = (struct skb_shared_info*)(data + size); 1157 atomic_set(&ninfo->dataref, 1); 1158 ninfo->tso_size = skb_shinfo(skb)->tso_size; 1159 ninfo->tso_segs = skb_shinfo(skb)->tso_segs; 1160 ninfo->nr_frags = 0; 1161 ninfo->frag_list = NULL; 1162 1163 /* Offset between the two in bytes */ 1164 offset = data - skb->head; 1165 1166 /* Free old data. */ 1167 skb_release_data(skb); 1168 1169 skb->head = data; 1170 skb->end = data + size; 1171 1172 /* Set up new pointers */ 1173 skb->h.raw += offset; 1174 skb->nh.raw += offset; 1175 skb->mac.raw += offset; 1176 skb->tail += offset; 1177 skb->data += offset; 1178 1179 /* We are no longer a clone, even if we were. */ 1180 skb->cloned = 0; 1181 1182 skb->tail += skb->data_len; 1183 skb->data_len = 0; 1184 return 0; 1185 } 1186 1187 #define HARD_TX_LOCK(dev, cpu) { \ 1188 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1189 spin_lock(&dev->xmit_lock); \ 1190 dev->xmit_lock_owner = cpu; \ 1191 } \ 1192 } 1193 1194 #define HARD_TX_UNLOCK(dev) { \ 1195 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1196 dev->xmit_lock_owner = -1; \ 1197 spin_unlock(&dev->xmit_lock); \ 1198 } \ 1199 } 1200 1201 /** 1202 * dev_queue_xmit - transmit a buffer 1203 * @skb: buffer to transmit 1204 * 1205 * Queue a buffer for transmission to a network device. The caller must 1206 * have set the device and priority and built the buffer before calling 1207 * this function. The function can be called from an interrupt. 1208 * 1209 * A negative errno code is returned on a failure. A success does not 1210 * guarantee the frame will be transmitted as it may be dropped due 1211 * to congestion or traffic shaping. 1212 * 1213 * ----------------------------------------------------------------------------------- 1214 * I notice this method can also return errors from the queue disciplines, 1215 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1216 * be positive. 1217 * 1218 * Regardless of the return value, the skb is consumed, so it is currently 1219 * difficult to retry a send to this method. (You can bump the ref count 1220 * before sending to hold a reference for retry if you are careful.) 1221 * 1222 * When calling this method, interrupts MUST be enabled. This is because 1223 * the BH enable code must have IRQs enabled so that it will not deadlock. 1224 * --BLG 1225 */ 1226 1227 int dev_queue_xmit(struct sk_buff *skb) 1228 { 1229 struct net_device *dev = skb->dev; 1230 struct Qdisc *q; 1231 int rc = -ENOMEM; 1232 1233 if (skb_shinfo(skb)->frag_list && 1234 !(dev->features & NETIF_F_FRAGLIST) && 1235 __skb_linearize(skb, GFP_ATOMIC)) 1236 goto out_kfree_skb; 1237 1238 /* Fragmented skb is linearized if device does not support SG, 1239 * or if at least one of fragments is in highmem and device 1240 * does not support DMA from it. 1241 */ 1242 if (skb_shinfo(skb)->nr_frags && 1243 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1244 __skb_linearize(skb, GFP_ATOMIC)) 1245 goto out_kfree_skb; 1246 1247 /* If packet is not checksummed and device does not support 1248 * checksumming for this protocol, complete checksumming here. 1249 */ 1250 if (skb->ip_summed == CHECKSUM_HW && 1251 (!(dev->features & (NETIF_F_HW_CSUM | NETIF_F_NO_CSUM)) && 1252 (!(dev->features & NETIF_F_IP_CSUM) || 1253 skb->protocol != htons(ETH_P_IP)))) 1254 if (skb_checksum_help(skb, 0)) 1255 goto out_kfree_skb; 1256 1257 /* Disable soft irqs for various locks below. Also 1258 * stops preemption for RCU. 1259 */ 1260 local_bh_disable(); 1261 1262 /* Updates of qdisc are serialized by queue_lock. 1263 * The struct Qdisc which is pointed to by qdisc is now a 1264 * rcu structure - it may be accessed without acquiring 1265 * a lock (but the structure may be stale.) The freeing of the 1266 * qdisc will be deferred until it's known that there are no 1267 * more references to it. 1268 * 1269 * If the qdisc has an enqueue function, we still need to 1270 * hold the queue_lock before calling it, since queue_lock 1271 * also serializes access to the device queue. 1272 */ 1273 1274 q = rcu_dereference(dev->qdisc); 1275 #ifdef CONFIG_NET_CLS_ACT 1276 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1277 #endif 1278 if (q->enqueue) { 1279 /* Grab device queue */ 1280 spin_lock(&dev->queue_lock); 1281 1282 rc = q->enqueue(skb, q); 1283 1284 qdisc_run(dev); 1285 1286 spin_unlock(&dev->queue_lock); 1287 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1288 goto out; 1289 } 1290 1291 /* The device has no queue. Common case for software devices: 1292 loopback, all the sorts of tunnels... 1293 1294 Really, it is unlikely that xmit_lock protection is necessary here. 1295 (f.e. loopback and IP tunnels are clean ignoring statistics 1296 counters.) 1297 However, it is possible, that they rely on protection 1298 made by us here. 1299 1300 Check this and shot the lock. It is not prone from deadlocks. 1301 Either shot noqueue qdisc, it is even simpler 8) 1302 */ 1303 if (dev->flags & IFF_UP) { 1304 int cpu = smp_processor_id(); /* ok because BHs are off */ 1305 1306 if (dev->xmit_lock_owner != cpu) { 1307 1308 HARD_TX_LOCK(dev, cpu); 1309 1310 if (!netif_queue_stopped(dev)) { 1311 if (netdev_nit) 1312 dev_queue_xmit_nit(skb, dev); 1313 1314 rc = 0; 1315 if (!dev->hard_start_xmit(skb, dev)) { 1316 HARD_TX_UNLOCK(dev); 1317 goto out; 1318 } 1319 } 1320 HARD_TX_UNLOCK(dev); 1321 if (net_ratelimit()) 1322 printk(KERN_CRIT "Virtual device %s asks to " 1323 "queue packet!\n", dev->name); 1324 } else { 1325 /* Recursion is detected! It is possible, 1326 * unfortunately */ 1327 if (net_ratelimit()) 1328 printk(KERN_CRIT "Dead loop on virtual device " 1329 "%s, fix it urgently!\n", dev->name); 1330 } 1331 } 1332 1333 rc = -ENETDOWN; 1334 local_bh_enable(); 1335 1336 out_kfree_skb: 1337 kfree_skb(skb); 1338 return rc; 1339 out: 1340 local_bh_enable(); 1341 return rc; 1342 } 1343 1344 1345 /*======================================================================= 1346 Receiver routines 1347 =======================================================================*/ 1348 1349 int netdev_max_backlog = 1000; 1350 int netdev_budget = 300; 1351 int weight_p = 64; /* old backlog weight */ 1352 1353 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1354 1355 1356 /** 1357 * netif_rx - post buffer to the network code 1358 * @skb: buffer to post 1359 * 1360 * This function receives a packet from a device driver and queues it for 1361 * the upper (protocol) levels to process. It always succeeds. The buffer 1362 * may be dropped during processing for congestion control or by the 1363 * protocol layers. 1364 * 1365 * return values: 1366 * NET_RX_SUCCESS (no congestion) 1367 * NET_RX_CN_LOW (low congestion) 1368 * NET_RX_CN_MOD (moderate congestion) 1369 * NET_RX_CN_HIGH (high congestion) 1370 * NET_RX_DROP (packet was dropped) 1371 * 1372 */ 1373 1374 int netif_rx(struct sk_buff *skb) 1375 { 1376 struct softnet_data *queue; 1377 unsigned long flags; 1378 1379 /* if netpoll wants it, pretend we never saw it */ 1380 if (netpoll_rx(skb)) 1381 return NET_RX_DROP; 1382 1383 if (!skb->stamp.tv_sec) 1384 net_timestamp(&skb->stamp); 1385 1386 /* 1387 * The code is rearranged so that the path is the most 1388 * short when CPU is congested, but is still operating. 1389 */ 1390 local_irq_save(flags); 1391 queue = &__get_cpu_var(softnet_data); 1392 1393 __get_cpu_var(netdev_rx_stat).total++; 1394 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1395 if (queue->input_pkt_queue.qlen) { 1396 enqueue: 1397 dev_hold(skb->dev); 1398 __skb_queue_tail(&queue->input_pkt_queue, skb); 1399 local_irq_restore(flags); 1400 return NET_RX_SUCCESS; 1401 } 1402 1403 netif_rx_schedule(&queue->backlog_dev); 1404 goto enqueue; 1405 } 1406 1407 __get_cpu_var(netdev_rx_stat).dropped++; 1408 local_irq_restore(flags); 1409 1410 kfree_skb(skb); 1411 return NET_RX_DROP; 1412 } 1413 1414 int netif_rx_ni(struct sk_buff *skb) 1415 { 1416 int err; 1417 1418 preempt_disable(); 1419 err = netif_rx(skb); 1420 if (local_softirq_pending()) 1421 do_softirq(); 1422 preempt_enable(); 1423 1424 return err; 1425 } 1426 1427 EXPORT_SYMBOL(netif_rx_ni); 1428 1429 static __inline__ void skb_bond(struct sk_buff *skb) 1430 { 1431 struct net_device *dev = skb->dev; 1432 1433 if (dev->master) { 1434 skb->real_dev = skb->dev; 1435 skb->dev = dev->master; 1436 } 1437 } 1438 1439 static void net_tx_action(struct softirq_action *h) 1440 { 1441 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1442 1443 if (sd->completion_queue) { 1444 struct sk_buff *clist; 1445 1446 local_irq_disable(); 1447 clist = sd->completion_queue; 1448 sd->completion_queue = NULL; 1449 local_irq_enable(); 1450 1451 while (clist) { 1452 struct sk_buff *skb = clist; 1453 clist = clist->next; 1454 1455 BUG_TRAP(!atomic_read(&skb->users)); 1456 __kfree_skb(skb); 1457 } 1458 } 1459 1460 if (sd->output_queue) { 1461 struct net_device *head; 1462 1463 local_irq_disable(); 1464 head = sd->output_queue; 1465 sd->output_queue = NULL; 1466 local_irq_enable(); 1467 1468 while (head) { 1469 struct net_device *dev = head; 1470 head = head->next_sched; 1471 1472 smp_mb__before_clear_bit(); 1473 clear_bit(__LINK_STATE_SCHED, &dev->state); 1474 1475 if (spin_trylock(&dev->queue_lock)) { 1476 qdisc_run(dev); 1477 spin_unlock(&dev->queue_lock); 1478 } else { 1479 netif_schedule(dev); 1480 } 1481 } 1482 } 1483 } 1484 1485 static __inline__ int deliver_skb(struct sk_buff *skb, 1486 struct packet_type *pt_prev) 1487 { 1488 atomic_inc(&skb->users); 1489 return pt_prev->func(skb, skb->dev, pt_prev); 1490 } 1491 1492 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1493 int (*br_handle_frame_hook)(struct net_bridge_port *p, struct sk_buff **pskb); 1494 struct net_bridge; 1495 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1496 unsigned char *addr); 1497 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent); 1498 1499 static __inline__ int handle_bridge(struct sk_buff **pskb, 1500 struct packet_type **pt_prev, int *ret) 1501 { 1502 struct net_bridge_port *port; 1503 1504 if ((*pskb)->pkt_type == PACKET_LOOPBACK || 1505 (port = rcu_dereference((*pskb)->dev->br_port)) == NULL) 1506 return 0; 1507 1508 if (*pt_prev) { 1509 *ret = deliver_skb(*pskb, *pt_prev); 1510 *pt_prev = NULL; 1511 } 1512 1513 return br_handle_frame_hook(port, pskb); 1514 } 1515 #else 1516 #define handle_bridge(skb, pt_prev, ret) (0) 1517 #endif 1518 1519 #ifdef CONFIG_NET_CLS_ACT 1520 /* TODO: Maybe we should just force sch_ingress to be compiled in 1521 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1522 * a compare and 2 stores extra right now if we dont have it on 1523 * but have CONFIG_NET_CLS_ACT 1524 * NOTE: This doesnt stop any functionality; if you dont have 1525 * the ingress scheduler, you just cant add policies on ingress. 1526 * 1527 */ 1528 static int ing_filter(struct sk_buff *skb) 1529 { 1530 struct Qdisc *q; 1531 struct net_device *dev = skb->dev; 1532 int result = TC_ACT_OK; 1533 1534 if (dev->qdisc_ingress) { 1535 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd); 1536 if (MAX_RED_LOOP < ttl++) { 1537 printk("Redir loop detected Dropping packet (%s->%s)\n", 1538 skb->input_dev?skb->input_dev->name:"??",skb->dev->name); 1539 return TC_ACT_SHOT; 1540 } 1541 1542 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl); 1543 1544 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS); 1545 if (NULL == skb->input_dev) { 1546 skb->input_dev = skb->dev; 1547 printk("ing_filter: fixed %s out %s\n",skb->input_dev->name,skb->dev->name); 1548 } 1549 spin_lock(&dev->ingress_lock); 1550 if ((q = dev->qdisc_ingress) != NULL) 1551 result = q->enqueue(skb, q); 1552 spin_unlock(&dev->ingress_lock); 1553 1554 } 1555 1556 return result; 1557 } 1558 #endif 1559 1560 int netif_receive_skb(struct sk_buff *skb) 1561 { 1562 struct packet_type *ptype, *pt_prev; 1563 int ret = NET_RX_DROP; 1564 unsigned short type; 1565 1566 /* if we've gotten here through NAPI, check netpoll */ 1567 if (skb->dev->poll && netpoll_rx(skb)) 1568 return NET_RX_DROP; 1569 1570 if (!skb->stamp.tv_sec) 1571 net_timestamp(&skb->stamp); 1572 1573 skb_bond(skb); 1574 1575 __get_cpu_var(netdev_rx_stat).total++; 1576 1577 skb->h.raw = skb->nh.raw = skb->data; 1578 skb->mac_len = skb->nh.raw - skb->mac.raw; 1579 1580 pt_prev = NULL; 1581 1582 rcu_read_lock(); 1583 1584 #ifdef CONFIG_NET_CLS_ACT 1585 if (skb->tc_verd & TC_NCLS) { 1586 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 1587 goto ncls; 1588 } 1589 #endif 1590 1591 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1592 if (!ptype->dev || ptype->dev == skb->dev) { 1593 if (pt_prev) 1594 ret = deliver_skb(skb, pt_prev); 1595 pt_prev = ptype; 1596 } 1597 } 1598 1599 #ifdef CONFIG_NET_CLS_ACT 1600 if (pt_prev) { 1601 ret = deliver_skb(skb, pt_prev); 1602 pt_prev = NULL; /* noone else should process this after*/ 1603 } else { 1604 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1605 } 1606 1607 ret = ing_filter(skb); 1608 1609 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) { 1610 kfree_skb(skb); 1611 goto out; 1612 } 1613 1614 skb->tc_verd = 0; 1615 ncls: 1616 #endif 1617 1618 handle_diverter(skb); 1619 1620 if (handle_bridge(&skb, &pt_prev, &ret)) 1621 goto out; 1622 1623 type = skb->protocol; 1624 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 1625 if (ptype->type == type && 1626 (!ptype->dev || ptype->dev == skb->dev)) { 1627 if (pt_prev) 1628 ret = deliver_skb(skb, pt_prev); 1629 pt_prev = ptype; 1630 } 1631 } 1632 1633 if (pt_prev) { 1634 ret = pt_prev->func(skb, skb->dev, pt_prev); 1635 } else { 1636 kfree_skb(skb); 1637 /* Jamal, now you will not able to escape explaining 1638 * me how you were going to use this. :-) 1639 */ 1640 ret = NET_RX_DROP; 1641 } 1642 1643 out: 1644 rcu_read_unlock(); 1645 return ret; 1646 } 1647 1648 static int process_backlog(struct net_device *backlog_dev, int *budget) 1649 { 1650 int work = 0; 1651 int quota = min(backlog_dev->quota, *budget); 1652 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1653 unsigned long start_time = jiffies; 1654 1655 backlog_dev->weight = weight_p; 1656 for (;;) { 1657 struct sk_buff *skb; 1658 struct net_device *dev; 1659 1660 local_irq_disable(); 1661 skb = __skb_dequeue(&queue->input_pkt_queue); 1662 if (!skb) 1663 goto job_done; 1664 local_irq_enable(); 1665 1666 dev = skb->dev; 1667 1668 netif_receive_skb(skb); 1669 1670 dev_put(dev); 1671 1672 work++; 1673 1674 if (work >= quota || jiffies - start_time > 1) 1675 break; 1676 1677 } 1678 1679 backlog_dev->quota -= work; 1680 *budget -= work; 1681 return -1; 1682 1683 job_done: 1684 backlog_dev->quota -= work; 1685 *budget -= work; 1686 1687 list_del(&backlog_dev->poll_list); 1688 smp_mb__before_clear_bit(); 1689 netif_poll_enable(backlog_dev); 1690 1691 local_irq_enable(); 1692 return 0; 1693 } 1694 1695 static void net_rx_action(struct softirq_action *h) 1696 { 1697 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1698 unsigned long start_time = jiffies; 1699 int budget = netdev_budget; 1700 1701 local_irq_disable(); 1702 1703 while (!list_empty(&queue->poll_list)) { 1704 struct net_device *dev; 1705 1706 if (budget <= 0 || jiffies - start_time > 1) 1707 goto softnet_break; 1708 1709 local_irq_enable(); 1710 1711 dev = list_entry(queue->poll_list.next, 1712 struct net_device, poll_list); 1713 netpoll_poll_lock(dev); 1714 1715 if (dev->quota <= 0 || dev->poll(dev, &budget)) { 1716 netpoll_poll_unlock(dev); 1717 local_irq_disable(); 1718 list_del(&dev->poll_list); 1719 list_add_tail(&dev->poll_list, &queue->poll_list); 1720 if (dev->quota < 0) 1721 dev->quota += dev->weight; 1722 else 1723 dev->quota = dev->weight; 1724 } else { 1725 netpoll_poll_unlock(dev); 1726 dev_put(dev); 1727 local_irq_disable(); 1728 } 1729 } 1730 out: 1731 local_irq_enable(); 1732 return; 1733 1734 softnet_break: 1735 __get_cpu_var(netdev_rx_stat).time_squeeze++; 1736 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1737 goto out; 1738 } 1739 1740 static gifconf_func_t * gifconf_list [NPROTO]; 1741 1742 /** 1743 * register_gifconf - register a SIOCGIF handler 1744 * @family: Address family 1745 * @gifconf: Function handler 1746 * 1747 * Register protocol dependent address dumping routines. The handler 1748 * that is passed must not be freed or reused until it has been replaced 1749 * by another handler. 1750 */ 1751 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 1752 { 1753 if (family >= NPROTO) 1754 return -EINVAL; 1755 gifconf_list[family] = gifconf; 1756 return 0; 1757 } 1758 1759 1760 /* 1761 * Map an interface index to its name (SIOCGIFNAME) 1762 */ 1763 1764 /* 1765 * We need this ioctl for efficient implementation of the 1766 * if_indextoname() function required by the IPv6 API. Without 1767 * it, we would have to search all the interfaces to find a 1768 * match. --pb 1769 */ 1770 1771 static int dev_ifname(struct ifreq __user *arg) 1772 { 1773 struct net_device *dev; 1774 struct ifreq ifr; 1775 1776 /* 1777 * Fetch the caller's info block. 1778 */ 1779 1780 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 1781 return -EFAULT; 1782 1783 read_lock(&dev_base_lock); 1784 dev = __dev_get_by_index(ifr.ifr_ifindex); 1785 if (!dev) { 1786 read_unlock(&dev_base_lock); 1787 return -ENODEV; 1788 } 1789 1790 strcpy(ifr.ifr_name, dev->name); 1791 read_unlock(&dev_base_lock); 1792 1793 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 1794 return -EFAULT; 1795 return 0; 1796 } 1797 1798 /* 1799 * Perform a SIOCGIFCONF call. This structure will change 1800 * size eventually, and there is nothing I can do about it. 1801 * Thus we will need a 'compatibility mode'. 1802 */ 1803 1804 static int dev_ifconf(char __user *arg) 1805 { 1806 struct ifconf ifc; 1807 struct net_device *dev; 1808 char __user *pos; 1809 int len; 1810 int total; 1811 int i; 1812 1813 /* 1814 * Fetch the caller's info block. 1815 */ 1816 1817 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 1818 return -EFAULT; 1819 1820 pos = ifc.ifc_buf; 1821 len = ifc.ifc_len; 1822 1823 /* 1824 * Loop over the interfaces, and write an info block for each. 1825 */ 1826 1827 total = 0; 1828 for (dev = dev_base; dev; dev = dev->next) { 1829 for (i = 0; i < NPROTO; i++) { 1830 if (gifconf_list[i]) { 1831 int done; 1832 if (!pos) 1833 done = gifconf_list[i](dev, NULL, 0); 1834 else 1835 done = gifconf_list[i](dev, pos + total, 1836 len - total); 1837 if (done < 0) 1838 return -EFAULT; 1839 total += done; 1840 } 1841 } 1842 } 1843 1844 /* 1845 * All done. Write the updated control block back to the caller. 1846 */ 1847 ifc.ifc_len = total; 1848 1849 /* 1850 * Both BSD and Solaris return 0 here, so we do too. 1851 */ 1852 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 1853 } 1854 1855 #ifdef CONFIG_PROC_FS 1856 /* 1857 * This is invoked by the /proc filesystem handler to display a device 1858 * in detail. 1859 */ 1860 static __inline__ struct net_device *dev_get_idx(loff_t pos) 1861 { 1862 struct net_device *dev; 1863 loff_t i; 1864 1865 for (i = 0, dev = dev_base; dev && i < pos; ++i, dev = dev->next); 1866 1867 return i == pos ? dev : NULL; 1868 } 1869 1870 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 1871 { 1872 read_lock(&dev_base_lock); 1873 return *pos ? dev_get_idx(*pos - 1) : SEQ_START_TOKEN; 1874 } 1875 1876 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1877 { 1878 ++*pos; 1879 return v == SEQ_START_TOKEN ? dev_base : ((struct net_device *)v)->next; 1880 } 1881 1882 void dev_seq_stop(struct seq_file *seq, void *v) 1883 { 1884 read_unlock(&dev_base_lock); 1885 } 1886 1887 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 1888 { 1889 if (dev->get_stats) { 1890 struct net_device_stats *stats = dev->get_stats(dev); 1891 1892 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 1893 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 1894 dev->name, stats->rx_bytes, stats->rx_packets, 1895 stats->rx_errors, 1896 stats->rx_dropped + stats->rx_missed_errors, 1897 stats->rx_fifo_errors, 1898 stats->rx_length_errors + stats->rx_over_errors + 1899 stats->rx_crc_errors + stats->rx_frame_errors, 1900 stats->rx_compressed, stats->multicast, 1901 stats->tx_bytes, stats->tx_packets, 1902 stats->tx_errors, stats->tx_dropped, 1903 stats->tx_fifo_errors, stats->collisions, 1904 stats->tx_carrier_errors + 1905 stats->tx_aborted_errors + 1906 stats->tx_window_errors + 1907 stats->tx_heartbeat_errors, 1908 stats->tx_compressed); 1909 } else 1910 seq_printf(seq, "%6s: No statistics available.\n", dev->name); 1911 } 1912 1913 /* 1914 * Called from the PROCfs module. This now uses the new arbitrary sized 1915 * /proc/net interface to create /proc/net/dev 1916 */ 1917 static int dev_seq_show(struct seq_file *seq, void *v) 1918 { 1919 if (v == SEQ_START_TOKEN) 1920 seq_puts(seq, "Inter-| Receive " 1921 " | Transmit\n" 1922 " face |bytes packets errs drop fifo frame " 1923 "compressed multicast|bytes packets errs " 1924 "drop fifo colls carrier compressed\n"); 1925 else 1926 dev_seq_printf_stats(seq, v); 1927 return 0; 1928 } 1929 1930 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 1931 { 1932 struct netif_rx_stats *rc = NULL; 1933 1934 while (*pos < NR_CPUS) 1935 if (cpu_online(*pos)) { 1936 rc = &per_cpu(netdev_rx_stat, *pos); 1937 break; 1938 } else 1939 ++*pos; 1940 return rc; 1941 } 1942 1943 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 1944 { 1945 return softnet_get_online(pos); 1946 } 1947 1948 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1949 { 1950 ++*pos; 1951 return softnet_get_online(pos); 1952 } 1953 1954 static void softnet_seq_stop(struct seq_file *seq, void *v) 1955 { 1956 } 1957 1958 static int softnet_seq_show(struct seq_file *seq, void *v) 1959 { 1960 struct netif_rx_stats *s = v; 1961 1962 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 1963 s->total, s->dropped, s->time_squeeze, 0, 1964 0, 0, 0, 0, /* was fastroute */ 1965 s->cpu_collision ); 1966 return 0; 1967 } 1968 1969 static struct seq_operations dev_seq_ops = { 1970 .start = dev_seq_start, 1971 .next = dev_seq_next, 1972 .stop = dev_seq_stop, 1973 .show = dev_seq_show, 1974 }; 1975 1976 static int dev_seq_open(struct inode *inode, struct file *file) 1977 { 1978 return seq_open(file, &dev_seq_ops); 1979 } 1980 1981 static struct file_operations dev_seq_fops = { 1982 .owner = THIS_MODULE, 1983 .open = dev_seq_open, 1984 .read = seq_read, 1985 .llseek = seq_lseek, 1986 .release = seq_release, 1987 }; 1988 1989 static struct seq_operations softnet_seq_ops = { 1990 .start = softnet_seq_start, 1991 .next = softnet_seq_next, 1992 .stop = softnet_seq_stop, 1993 .show = softnet_seq_show, 1994 }; 1995 1996 static int softnet_seq_open(struct inode *inode, struct file *file) 1997 { 1998 return seq_open(file, &softnet_seq_ops); 1999 } 2000 2001 static struct file_operations softnet_seq_fops = { 2002 .owner = THIS_MODULE, 2003 .open = softnet_seq_open, 2004 .read = seq_read, 2005 .llseek = seq_lseek, 2006 .release = seq_release, 2007 }; 2008 2009 #ifdef WIRELESS_EXT 2010 extern int wireless_proc_init(void); 2011 #else 2012 #define wireless_proc_init() 0 2013 #endif 2014 2015 static int __init dev_proc_init(void) 2016 { 2017 int rc = -ENOMEM; 2018 2019 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops)) 2020 goto out; 2021 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops)) 2022 goto out_dev; 2023 if (wireless_proc_init()) 2024 goto out_softnet; 2025 rc = 0; 2026 out: 2027 return rc; 2028 out_softnet: 2029 proc_net_remove("softnet_stat"); 2030 out_dev: 2031 proc_net_remove("dev"); 2032 goto out; 2033 } 2034 #else 2035 #define dev_proc_init() 0 2036 #endif /* CONFIG_PROC_FS */ 2037 2038 2039 /** 2040 * netdev_set_master - set up master/slave pair 2041 * @slave: slave device 2042 * @master: new master device 2043 * 2044 * Changes the master device of the slave. Pass %NULL to break the 2045 * bonding. The caller must hold the RTNL semaphore. On a failure 2046 * a negative errno code is returned. On success the reference counts 2047 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2048 * function returns zero. 2049 */ 2050 int netdev_set_master(struct net_device *slave, struct net_device *master) 2051 { 2052 struct net_device *old = slave->master; 2053 2054 ASSERT_RTNL(); 2055 2056 if (master) { 2057 if (old) 2058 return -EBUSY; 2059 dev_hold(master); 2060 } 2061 2062 slave->master = master; 2063 2064 synchronize_net(); 2065 2066 if (old) 2067 dev_put(old); 2068 2069 if (master) 2070 slave->flags |= IFF_SLAVE; 2071 else 2072 slave->flags &= ~IFF_SLAVE; 2073 2074 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2075 return 0; 2076 } 2077 2078 /** 2079 * dev_set_promiscuity - update promiscuity count on a device 2080 * @dev: device 2081 * @inc: modifier 2082 * 2083 * Add or remove promsicuity from a device. While the count in the device 2084 * remains above zero the interface remains promiscuous. Once it hits zero 2085 * the device reverts back to normal filtering operation. A negative inc 2086 * value is used to drop promiscuity on the device. 2087 */ 2088 void dev_set_promiscuity(struct net_device *dev, int inc) 2089 { 2090 unsigned short old_flags = dev->flags; 2091 2092 dev->flags |= IFF_PROMISC; 2093 if ((dev->promiscuity += inc) == 0) 2094 dev->flags &= ~IFF_PROMISC; 2095 if (dev->flags ^ old_flags) { 2096 dev_mc_upload(dev); 2097 printk(KERN_INFO "device %s %s promiscuous mode\n", 2098 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2099 "left"); 2100 } 2101 } 2102 2103 /** 2104 * dev_set_allmulti - update allmulti count on a device 2105 * @dev: device 2106 * @inc: modifier 2107 * 2108 * Add or remove reception of all multicast frames to a device. While the 2109 * count in the device remains above zero the interface remains listening 2110 * to all interfaces. Once it hits zero the device reverts back to normal 2111 * filtering operation. A negative @inc value is used to drop the counter 2112 * when releasing a resource needing all multicasts. 2113 */ 2114 2115 void dev_set_allmulti(struct net_device *dev, int inc) 2116 { 2117 unsigned short old_flags = dev->flags; 2118 2119 dev->flags |= IFF_ALLMULTI; 2120 if ((dev->allmulti += inc) == 0) 2121 dev->flags &= ~IFF_ALLMULTI; 2122 if (dev->flags ^ old_flags) 2123 dev_mc_upload(dev); 2124 } 2125 2126 unsigned dev_get_flags(const struct net_device *dev) 2127 { 2128 unsigned flags; 2129 2130 flags = (dev->flags & ~(IFF_PROMISC | 2131 IFF_ALLMULTI | 2132 IFF_RUNNING)) | 2133 (dev->gflags & (IFF_PROMISC | 2134 IFF_ALLMULTI)); 2135 2136 if (netif_running(dev) && netif_carrier_ok(dev)) 2137 flags |= IFF_RUNNING; 2138 2139 return flags; 2140 } 2141 2142 int dev_change_flags(struct net_device *dev, unsigned flags) 2143 { 2144 int ret; 2145 int old_flags = dev->flags; 2146 2147 /* 2148 * Set the flags on our device. 2149 */ 2150 2151 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 2152 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 2153 IFF_AUTOMEDIA)) | 2154 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 2155 IFF_ALLMULTI)); 2156 2157 /* 2158 * Load in the correct multicast list now the flags have changed. 2159 */ 2160 2161 dev_mc_upload(dev); 2162 2163 /* 2164 * Have we downed the interface. We handle IFF_UP ourselves 2165 * according to user attempts to set it, rather than blindly 2166 * setting it. 2167 */ 2168 2169 ret = 0; 2170 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 2171 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 2172 2173 if (!ret) 2174 dev_mc_upload(dev); 2175 } 2176 2177 if (dev->flags & IFF_UP && 2178 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 2179 IFF_VOLATILE))) 2180 notifier_call_chain(&netdev_chain, NETDEV_CHANGE, dev); 2181 2182 if ((flags ^ dev->gflags) & IFF_PROMISC) { 2183 int inc = (flags & IFF_PROMISC) ? +1 : -1; 2184 dev->gflags ^= IFF_PROMISC; 2185 dev_set_promiscuity(dev, inc); 2186 } 2187 2188 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 2189 is important. Some (broken) drivers set IFF_PROMISC, when 2190 IFF_ALLMULTI is requested not asking us and not reporting. 2191 */ 2192 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 2193 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 2194 dev->gflags ^= IFF_ALLMULTI; 2195 dev_set_allmulti(dev, inc); 2196 } 2197 2198 if (old_flags ^ dev->flags) 2199 rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags); 2200 2201 return ret; 2202 } 2203 2204 int dev_set_mtu(struct net_device *dev, int new_mtu) 2205 { 2206 int err; 2207 2208 if (new_mtu == dev->mtu) 2209 return 0; 2210 2211 /* MTU must be positive. */ 2212 if (new_mtu < 0) 2213 return -EINVAL; 2214 2215 if (!netif_device_present(dev)) 2216 return -ENODEV; 2217 2218 err = 0; 2219 if (dev->change_mtu) 2220 err = dev->change_mtu(dev, new_mtu); 2221 else 2222 dev->mtu = new_mtu; 2223 if (!err && dev->flags & IFF_UP) 2224 notifier_call_chain(&netdev_chain, 2225 NETDEV_CHANGEMTU, dev); 2226 return err; 2227 } 2228 2229 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 2230 { 2231 int err; 2232 2233 if (!dev->set_mac_address) 2234 return -EOPNOTSUPP; 2235 if (sa->sa_family != dev->type) 2236 return -EINVAL; 2237 if (!netif_device_present(dev)) 2238 return -ENODEV; 2239 err = dev->set_mac_address(dev, sa); 2240 if (!err) 2241 notifier_call_chain(&netdev_chain, NETDEV_CHANGEADDR, dev); 2242 return err; 2243 } 2244 2245 /* 2246 * Perform the SIOCxIFxxx calls. 2247 */ 2248 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd) 2249 { 2250 int err; 2251 struct net_device *dev = __dev_get_by_name(ifr->ifr_name); 2252 2253 if (!dev) 2254 return -ENODEV; 2255 2256 switch (cmd) { 2257 case SIOCGIFFLAGS: /* Get interface flags */ 2258 ifr->ifr_flags = dev_get_flags(dev); 2259 return 0; 2260 2261 case SIOCSIFFLAGS: /* Set interface flags */ 2262 return dev_change_flags(dev, ifr->ifr_flags); 2263 2264 case SIOCGIFMETRIC: /* Get the metric on the interface 2265 (currently unused) */ 2266 ifr->ifr_metric = 0; 2267 return 0; 2268 2269 case SIOCSIFMETRIC: /* Set the metric on the interface 2270 (currently unused) */ 2271 return -EOPNOTSUPP; 2272 2273 case SIOCGIFMTU: /* Get the MTU of a device */ 2274 ifr->ifr_mtu = dev->mtu; 2275 return 0; 2276 2277 case SIOCSIFMTU: /* Set the MTU of a device */ 2278 return dev_set_mtu(dev, ifr->ifr_mtu); 2279 2280 case SIOCGIFHWADDR: 2281 if (!dev->addr_len) 2282 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 2283 else 2284 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 2285 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2286 ifr->ifr_hwaddr.sa_family = dev->type; 2287 return 0; 2288 2289 case SIOCSIFHWADDR: 2290 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 2291 2292 case SIOCSIFHWBROADCAST: 2293 if (ifr->ifr_hwaddr.sa_family != dev->type) 2294 return -EINVAL; 2295 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 2296 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2297 notifier_call_chain(&netdev_chain, 2298 NETDEV_CHANGEADDR, dev); 2299 return 0; 2300 2301 case SIOCGIFMAP: 2302 ifr->ifr_map.mem_start = dev->mem_start; 2303 ifr->ifr_map.mem_end = dev->mem_end; 2304 ifr->ifr_map.base_addr = dev->base_addr; 2305 ifr->ifr_map.irq = dev->irq; 2306 ifr->ifr_map.dma = dev->dma; 2307 ifr->ifr_map.port = dev->if_port; 2308 return 0; 2309 2310 case SIOCSIFMAP: 2311 if (dev->set_config) { 2312 if (!netif_device_present(dev)) 2313 return -ENODEV; 2314 return dev->set_config(dev, &ifr->ifr_map); 2315 } 2316 return -EOPNOTSUPP; 2317 2318 case SIOCADDMULTI: 2319 if (!dev->set_multicast_list || 2320 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2321 return -EINVAL; 2322 if (!netif_device_present(dev)) 2323 return -ENODEV; 2324 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 2325 dev->addr_len, 1); 2326 2327 case SIOCDELMULTI: 2328 if (!dev->set_multicast_list || 2329 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2330 return -EINVAL; 2331 if (!netif_device_present(dev)) 2332 return -ENODEV; 2333 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 2334 dev->addr_len, 1); 2335 2336 case SIOCGIFINDEX: 2337 ifr->ifr_ifindex = dev->ifindex; 2338 return 0; 2339 2340 case SIOCGIFTXQLEN: 2341 ifr->ifr_qlen = dev->tx_queue_len; 2342 return 0; 2343 2344 case SIOCSIFTXQLEN: 2345 if (ifr->ifr_qlen < 0) 2346 return -EINVAL; 2347 dev->tx_queue_len = ifr->ifr_qlen; 2348 return 0; 2349 2350 case SIOCSIFNAME: 2351 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 2352 return dev_change_name(dev, ifr->ifr_newname); 2353 2354 /* 2355 * Unknown or private ioctl 2356 */ 2357 2358 default: 2359 if ((cmd >= SIOCDEVPRIVATE && 2360 cmd <= SIOCDEVPRIVATE + 15) || 2361 cmd == SIOCBONDENSLAVE || 2362 cmd == SIOCBONDRELEASE || 2363 cmd == SIOCBONDSETHWADDR || 2364 cmd == SIOCBONDSLAVEINFOQUERY || 2365 cmd == SIOCBONDINFOQUERY || 2366 cmd == SIOCBONDCHANGEACTIVE || 2367 cmd == SIOCGMIIPHY || 2368 cmd == SIOCGMIIREG || 2369 cmd == SIOCSMIIREG || 2370 cmd == SIOCBRADDIF || 2371 cmd == SIOCBRDELIF || 2372 cmd == SIOCWANDEV) { 2373 err = -EOPNOTSUPP; 2374 if (dev->do_ioctl) { 2375 if (netif_device_present(dev)) 2376 err = dev->do_ioctl(dev, ifr, 2377 cmd); 2378 else 2379 err = -ENODEV; 2380 } 2381 } else 2382 err = -EINVAL; 2383 2384 } 2385 return err; 2386 } 2387 2388 /* 2389 * This function handles all "interface"-type I/O control requests. The actual 2390 * 'doing' part of this is dev_ifsioc above. 2391 */ 2392 2393 /** 2394 * dev_ioctl - network device ioctl 2395 * @cmd: command to issue 2396 * @arg: pointer to a struct ifreq in user space 2397 * 2398 * Issue ioctl functions to devices. This is normally called by the 2399 * user space syscall interfaces but can sometimes be useful for 2400 * other purposes. The return value is the return from the syscall if 2401 * positive or a negative errno code on error. 2402 */ 2403 2404 int dev_ioctl(unsigned int cmd, void __user *arg) 2405 { 2406 struct ifreq ifr; 2407 int ret; 2408 char *colon; 2409 2410 /* One special case: SIOCGIFCONF takes ifconf argument 2411 and requires shared lock, because it sleeps writing 2412 to user space. 2413 */ 2414 2415 if (cmd == SIOCGIFCONF) { 2416 rtnl_shlock(); 2417 ret = dev_ifconf((char __user *) arg); 2418 rtnl_shunlock(); 2419 return ret; 2420 } 2421 if (cmd == SIOCGIFNAME) 2422 return dev_ifname((struct ifreq __user *)arg); 2423 2424 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2425 return -EFAULT; 2426 2427 ifr.ifr_name[IFNAMSIZ-1] = 0; 2428 2429 colon = strchr(ifr.ifr_name, ':'); 2430 if (colon) 2431 *colon = 0; 2432 2433 /* 2434 * See which interface the caller is talking about. 2435 */ 2436 2437 switch (cmd) { 2438 /* 2439 * These ioctl calls: 2440 * - can be done by all. 2441 * - atomic and do not require locking. 2442 * - return a value 2443 */ 2444 case SIOCGIFFLAGS: 2445 case SIOCGIFMETRIC: 2446 case SIOCGIFMTU: 2447 case SIOCGIFHWADDR: 2448 case SIOCGIFSLAVE: 2449 case SIOCGIFMAP: 2450 case SIOCGIFINDEX: 2451 case SIOCGIFTXQLEN: 2452 dev_load(ifr.ifr_name); 2453 read_lock(&dev_base_lock); 2454 ret = dev_ifsioc(&ifr, cmd); 2455 read_unlock(&dev_base_lock); 2456 if (!ret) { 2457 if (colon) 2458 *colon = ':'; 2459 if (copy_to_user(arg, &ifr, 2460 sizeof(struct ifreq))) 2461 ret = -EFAULT; 2462 } 2463 return ret; 2464 2465 case SIOCETHTOOL: 2466 dev_load(ifr.ifr_name); 2467 rtnl_lock(); 2468 ret = dev_ethtool(&ifr); 2469 rtnl_unlock(); 2470 if (!ret) { 2471 if (colon) 2472 *colon = ':'; 2473 if (copy_to_user(arg, &ifr, 2474 sizeof(struct ifreq))) 2475 ret = -EFAULT; 2476 } 2477 return ret; 2478 2479 /* 2480 * These ioctl calls: 2481 * - require superuser power. 2482 * - require strict serialization. 2483 * - return a value 2484 */ 2485 case SIOCGMIIPHY: 2486 case SIOCGMIIREG: 2487 case SIOCSIFNAME: 2488 if (!capable(CAP_NET_ADMIN)) 2489 return -EPERM; 2490 dev_load(ifr.ifr_name); 2491 rtnl_lock(); 2492 ret = dev_ifsioc(&ifr, cmd); 2493 rtnl_unlock(); 2494 if (!ret) { 2495 if (colon) 2496 *colon = ':'; 2497 if (copy_to_user(arg, &ifr, 2498 sizeof(struct ifreq))) 2499 ret = -EFAULT; 2500 } 2501 return ret; 2502 2503 /* 2504 * These ioctl calls: 2505 * - require superuser power. 2506 * - require strict serialization. 2507 * - do not return a value 2508 */ 2509 case SIOCSIFFLAGS: 2510 case SIOCSIFMETRIC: 2511 case SIOCSIFMTU: 2512 case SIOCSIFMAP: 2513 case SIOCSIFHWADDR: 2514 case SIOCSIFSLAVE: 2515 case SIOCADDMULTI: 2516 case SIOCDELMULTI: 2517 case SIOCSIFHWBROADCAST: 2518 case SIOCSIFTXQLEN: 2519 case SIOCSMIIREG: 2520 case SIOCBONDENSLAVE: 2521 case SIOCBONDRELEASE: 2522 case SIOCBONDSETHWADDR: 2523 case SIOCBONDSLAVEINFOQUERY: 2524 case SIOCBONDINFOQUERY: 2525 case SIOCBONDCHANGEACTIVE: 2526 case SIOCBRADDIF: 2527 case SIOCBRDELIF: 2528 if (!capable(CAP_NET_ADMIN)) 2529 return -EPERM; 2530 dev_load(ifr.ifr_name); 2531 rtnl_lock(); 2532 ret = dev_ifsioc(&ifr, cmd); 2533 rtnl_unlock(); 2534 return ret; 2535 2536 case SIOCGIFMEM: 2537 /* Get the per device memory space. We can add this but 2538 * currently do not support it */ 2539 case SIOCSIFMEM: 2540 /* Set the per device memory buffer space. 2541 * Not applicable in our case */ 2542 case SIOCSIFLINK: 2543 return -EINVAL; 2544 2545 /* 2546 * Unknown or private ioctl. 2547 */ 2548 default: 2549 if (cmd == SIOCWANDEV || 2550 (cmd >= SIOCDEVPRIVATE && 2551 cmd <= SIOCDEVPRIVATE + 15)) { 2552 dev_load(ifr.ifr_name); 2553 rtnl_lock(); 2554 ret = dev_ifsioc(&ifr, cmd); 2555 rtnl_unlock(); 2556 if (!ret && copy_to_user(arg, &ifr, 2557 sizeof(struct ifreq))) 2558 ret = -EFAULT; 2559 return ret; 2560 } 2561 #ifdef WIRELESS_EXT 2562 /* Take care of Wireless Extensions */ 2563 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 2564 /* If command is `set a parameter', or 2565 * `get the encoding parameters', check if 2566 * the user has the right to do it */ 2567 if (IW_IS_SET(cmd) || cmd == SIOCGIWENCODE) { 2568 if (!capable(CAP_NET_ADMIN)) 2569 return -EPERM; 2570 } 2571 dev_load(ifr.ifr_name); 2572 rtnl_lock(); 2573 /* Follow me in net/core/wireless.c */ 2574 ret = wireless_process_ioctl(&ifr, cmd); 2575 rtnl_unlock(); 2576 if (IW_IS_GET(cmd) && 2577 copy_to_user(arg, &ifr, 2578 sizeof(struct ifreq))) 2579 ret = -EFAULT; 2580 return ret; 2581 } 2582 #endif /* WIRELESS_EXT */ 2583 return -EINVAL; 2584 } 2585 } 2586 2587 2588 /** 2589 * dev_new_index - allocate an ifindex 2590 * 2591 * Returns a suitable unique value for a new device interface 2592 * number. The caller must hold the rtnl semaphore or the 2593 * dev_base_lock to be sure it remains unique. 2594 */ 2595 static int dev_new_index(void) 2596 { 2597 static int ifindex; 2598 for (;;) { 2599 if (++ifindex <= 0) 2600 ifindex = 1; 2601 if (!__dev_get_by_index(ifindex)) 2602 return ifindex; 2603 } 2604 } 2605 2606 static int dev_boot_phase = 1; 2607 2608 /* Delayed registration/unregisteration */ 2609 static DEFINE_SPINLOCK(net_todo_list_lock); 2610 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 2611 2612 static inline void net_set_todo(struct net_device *dev) 2613 { 2614 spin_lock(&net_todo_list_lock); 2615 list_add_tail(&dev->todo_list, &net_todo_list); 2616 spin_unlock(&net_todo_list_lock); 2617 } 2618 2619 /** 2620 * register_netdevice - register a network device 2621 * @dev: device to register 2622 * 2623 * Take a completed network device structure and add it to the kernel 2624 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 2625 * chain. 0 is returned on success. A negative errno code is returned 2626 * on a failure to set up the device, or if the name is a duplicate. 2627 * 2628 * Callers must hold the rtnl semaphore. You may want 2629 * register_netdev() instead of this. 2630 * 2631 * BUGS: 2632 * The locking appears insufficient to guarantee two parallel registers 2633 * will not get the same name. 2634 */ 2635 2636 int register_netdevice(struct net_device *dev) 2637 { 2638 struct hlist_head *head; 2639 struct hlist_node *p; 2640 int ret; 2641 2642 BUG_ON(dev_boot_phase); 2643 ASSERT_RTNL(); 2644 2645 /* When net_device's are persistent, this will be fatal. */ 2646 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 2647 2648 spin_lock_init(&dev->queue_lock); 2649 spin_lock_init(&dev->xmit_lock); 2650 dev->xmit_lock_owner = -1; 2651 #ifdef CONFIG_NET_CLS_ACT 2652 spin_lock_init(&dev->ingress_lock); 2653 #endif 2654 2655 ret = alloc_divert_blk(dev); 2656 if (ret) 2657 goto out; 2658 2659 dev->iflink = -1; 2660 2661 /* Init, if this function is available */ 2662 if (dev->init) { 2663 ret = dev->init(dev); 2664 if (ret) { 2665 if (ret > 0) 2666 ret = -EIO; 2667 goto out_err; 2668 } 2669 } 2670 2671 if (!dev_valid_name(dev->name)) { 2672 ret = -EINVAL; 2673 goto out_err; 2674 } 2675 2676 dev->ifindex = dev_new_index(); 2677 if (dev->iflink == -1) 2678 dev->iflink = dev->ifindex; 2679 2680 /* Check for existence of name */ 2681 head = dev_name_hash(dev->name); 2682 hlist_for_each(p, head) { 2683 struct net_device *d 2684 = hlist_entry(p, struct net_device, name_hlist); 2685 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 2686 ret = -EEXIST; 2687 goto out_err; 2688 } 2689 } 2690 2691 /* Fix illegal SG+CSUM combinations. */ 2692 if ((dev->features & NETIF_F_SG) && 2693 !(dev->features & (NETIF_F_IP_CSUM | 2694 NETIF_F_NO_CSUM | 2695 NETIF_F_HW_CSUM))) { 2696 printk("%s: Dropping NETIF_F_SG since no checksum feature.\n", 2697 dev->name); 2698 dev->features &= ~NETIF_F_SG; 2699 } 2700 2701 /* TSO requires that SG is present as well. */ 2702 if ((dev->features & NETIF_F_TSO) && 2703 !(dev->features & NETIF_F_SG)) { 2704 printk("%s: Dropping NETIF_F_TSO since no SG feature.\n", 2705 dev->name); 2706 dev->features &= ~NETIF_F_TSO; 2707 } 2708 2709 /* 2710 * nil rebuild_header routine, 2711 * that should be never called and used as just bug trap. 2712 */ 2713 2714 if (!dev->rebuild_header) 2715 dev->rebuild_header = default_rebuild_header; 2716 2717 /* 2718 * Default initial state at registry is that the 2719 * device is present. 2720 */ 2721 2722 set_bit(__LINK_STATE_PRESENT, &dev->state); 2723 2724 dev->next = NULL; 2725 dev_init_scheduler(dev); 2726 write_lock_bh(&dev_base_lock); 2727 *dev_tail = dev; 2728 dev_tail = &dev->next; 2729 hlist_add_head(&dev->name_hlist, head); 2730 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex)); 2731 dev_hold(dev); 2732 dev->reg_state = NETREG_REGISTERING; 2733 write_unlock_bh(&dev_base_lock); 2734 2735 /* Notify protocols, that a new device appeared. */ 2736 notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev); 2737 2738 /* Finish registration after unlock */ 2739 net_set_todo(dev); 2740 ret = 0; 2741 2742 out: 2743 return ret; 2744 out_err: 2745 free_divert_blk(dev); 2746 goto out; 2747 } 2748 2749 /** 2750 * register_netdev - register a network device 2751 * @dev: device to register 2752 * 2753 * Take a completed network device structure and add it to the kernel 2754 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 2755 * chain. 0 is returned on success. A negative errno code is returned 2756 * on a failure to set up the device, or if the name is a duplicate. 2757 * 2758 * This is a wrapper around register_netdev that takes the rtnl semaphore 2759 * and expands the device name if you passed a format string to 2760 * alloc_netdev. 2761 */ 2762 int register_netdev(struct net_device *dev) 2763 { 2764 int err; 2765 2766 rtnl_lock(); 2767 2768 /* 2769 * If the name is a format string the caller wants us to do a 2770 * name allocation. 2771 */ 2772 if (strchr(dev->name, '%')) { 2773 err = dev_alloc_name(dev, dev->name); 2774 if (err < 0) 2775 goto out; 2776 } 2777 2778 /* 2779 * Back compatibility hook. Kill this one in 2.5 2780 */ 2781 if (dev->name[0] == 0 || dev->name[0] == ' ') { 2782 err = dev_alloc_name(dev, "eth%d"); 2783 if (err < 0) 2784 goto out; 2785 } 2786 2787 err = register_netdevice(dev); 2788 out: 2789 rtnl_unlock(); 2790 return err; 2791 } 2792 EXPORT_SYMBOL(register_netdev); 2793 2794 /* 2795 * netdev_wait_allrefs - wait until all references are gone. 2796 * 2797 * This is called when unregistering network devices. 2798 * 2799 * Any protocol or device that holds a reference should register 2800 * for netdevice notification, and cleanup and put back the 2801 * reference if they receive an UNREGISTER event. 2802 * We can get stuck here if buggy protocols don't correctly 2803 * call dev_put. 2804 */ 2805 static void netdev_wait_allrefs(struct net_device *dev) 2806 { 2807 unsigned long rebroadcast_time, warning_time; 2808 2809 rebroadcast_time = warning_time = jiffies; 2810 while (atomic_read(&dev->refcnt) != 0) { 2811 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 2812 rtnl_shlock(); 2813 2814 /* Rebroadcast unregister notification */ 2815 notifier_call_chain(&netdev_chain, 2816 NETDEV_UNREGISTER, dev); 2817 2818 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 2819 &dev->state)) { 2820 /* We must not have linkwatch events 2821 * pending on unregister. If this 2822 * happens, we simply run the queue 2823 * unscheduled, resulting in a noop 2824 * for this device. 2825 */ 2826 linkwatch_run_queue(); 2827 } 2828 2829 rtnl_shunlock(); 2830 2831 rebroadcast_time = jiffies; 2832 } 2833 2834 msleep(250); 2835 2836 if (time_after(jiffies, warning_time + 10 * HZ)) { 2837 printk(KERN_EMERG "unregister_netdevice: " 2838 "waiting for %s to become free. Usage " 2839 "count = %d\n", 2840 dev->name, atomic_read(&dev->refcnt)); 2841 warning_time = jiffies; 2842 } 2843 } 2844 } 2845 2846 /* The sequence is: 2847 * 2848 * rtnl_lock(); 2849 * ... 2850 * register_netdevice(x1); 2851 * register_netdevice(x2); 2852 * ... 2853 * unregister_netdevice(y1); 2854 * unregister_netdevice(y2); 2855 * ... 2856 * rtnl_unlock(); 2857 * free_netdev(y1); 2858 * free_netdev(y2); 2859 * 2860 * We are invoked by rtnl_unlock() after it drops the semaphore. 2861 * This allows us to deal with problems: 2862 * 1) We can create/delete sysfs objects which invoke hotplug 2863 * without deadlocking with linkwatch via keventd. 2864 * 2) Since we run with the RTNL semaphore not held, we can sleep 2865 * safely in order to wait for the netdev refcnt to drop to zero. 2866 */ 2867 static DECLARE_MUTEX(net_todo_run_mutex); 2868 void netdev_run_todo(void) 2869 { 2870 struct list_head list = LIST_HEAD_INIT(list); 2871 int err; 2872 2873 2874 /* Need to guard against multiple cpu's getting out of order. */ 2875 down(&net_todo_run_mutex); 2876 2877 /* Not safe to do outside the semaphore. We must not return 2878 * until all unregister events invoked by the local processor 2879 * have been completed (either by this todo run, or one on 2880 * another cpu). 2881 */ 2882 if (list_empty(&net_todo_list)) 2883 goto out; 2884 2885 /* Snapshot list, allow later requests */ 2886 spin_lock(&net_todo_list_lock); 2887 list_splice_init(&net_todo_list, &list); 2888 spin_unlock(&net_todo_list_lock); 2889 2890 while (!list_empty(&list)) { 2891 struct net_device *dev 2892 = list_entry(list.next, struct net_device, todo_list); 2893 list_del(&dev->todo_list); 2894 2895 switch(dev->reg_state) { 2896 case NETREG_REGISTERING: 2897 err = netdev_register_sysfs(dev); 2898 if (err) 2899 printk(KERN_ERR "%s: failed sysfs registration (%d)\n", 2900 dev->name, err); 2901 dev->reg_state = NETREG_REGISTERED; 2902 break; 2903 2904 case NETREG_UNREGISTERING: 2905 netdev_unregister_sysfs(dev); 2906 dev->reg_state = NETREG_UNREGISTERED; 2907 2908 netdev_wait_allrefs(dev); 2909 2910 /* paranoia */ 2911 BUG_ON(atomic_read(&dev->refcnt)); 2912 BUG_TRAP(!dev->ip_ptr); 2913 BUG_TRAP(!dev->ip6_ptr); 2914 BUG_TRAP(!dev->dn_ptr); 2915 2916 2917 /* It must be the very last action, 2918 * after this 'dev' may point to freed up memory. 2919 */ 2920 if (dev->destructor) 2921 dev->destructor(dev); 2922 break; 2923 2924 default: 2925 printk(KERN_ERR "network todo '%s' but state %d\n", 2926 dev->name, dev->reg_state); 2927 break; 2928 } 2929 } 2930 2931 out: 2932 up(&net_todo_run_mutex); 2933 } 2934 2935 /** 2936 * alloc_netdev - allocate network device 2937 * @sizeof_priv: size of private data to allocate space for 2938 * @name: device name format string 2939 * @setup: callback to initialize device 2940 * 2941 * Allocates a struct net_device with private data area for driver use 2942 * and performs basic initialization. 2943 */ 2944 struct net_device *alloc_netdev(int sizeof_priv, const char *name, 2945 void (*setup)(struct net_device *)) 2946 { 2947 void *p; 2948 struct net_device *dev; 2949 int alloc_size; 2950 2951 /* ensure 32-byte alignment of both the device and private area */ 2952 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 2953 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 2954 2955 p = kmalloc(alloc_size, GFP_KERNEL); 2956 if (!p) { 2957 printk(KERN_ERR "alloc_dev: Unable to allocate device.\n"); 2958 return NULL; 2959 } 2960 memset(p, 0, alloc_size); 2961 2962 dev = (struct net_device *) 2963 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 2964 dev->padded = (char *)dev - (char *)p; 2965 2966 if (sizeof_priv) 2967 dev->priv = netdev_priv(dev); 2968 2969 setup(dev); 2970 strcpy(dev->name, name); 2971 return dev; 2972 } 2973 EXPORT_SYMBOL(alloc_netdev); 2974 2975 /** 2976 * free_netdev - free network device 2977 * @dev: device 2978 * 2979 * This function does the last stage of destroying an allocated device 2980 * interface. The reference to the device object is released. 2981 * If this is the last reference then it will be freed. 2982 */ 2983 void free_netdev(struct net_device *dev) 2984 { 2985 #ifdef CONFIG_SYSFS 2986 /* Compatiablity with error handling in drivers */ 2987 if (dev->reg_state == NETREG_UNINITIALIZED) { 2988 kfree((char *)dev - dev->padded); 2989 return; 2990 } 2991 2992 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 2993 dev->reg_state = NETREG_RELEASED; 2994 2995 /* will free via class release */ 2996 class_device_put(&dev->class_dev); 2997 #else 2998 kfree((char *)dev - dev->padded); 2999 #endif 3000 } 3001 3002 /* Synchronize with packet receive processing. */ 3003 void synchronize_net(void) 3004 { 3005 might_sleep(); 3006 synchronize_rcu(); 3007 } 3008 3009 /** 3010 * unregister_netdevice - remove device from the kernel 3011 * @dev: device 3012 * 3013 * This function shuts down a device interface and removes it 3014 * from the kernel tables. On success 0 is returned, on a failure 3015 * a negative errno code is returned. 3016 * 3017 * Callers must hold the rtnl semaphore. You may want 3018 * unregister_netdev() instead of this. 3019 */ 3020 3021 int unregister_netdevice(struct net_device *dev) 3022 { 3023 struct net_device *d, **dp; 3024 3025 BUG_ON(dev_boot_phase); 3026 ASSERT_RTNL(); 3027 3028 /* Some devices call without registering for initialization unwind. */ 3029 if (dev->reg_state == NETREG_UNINITIALIZED) { 3030 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3031 "was registered\n", dev->name, dev); 3032 return -ENODEV; 3033 } 3034 3035 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3036 3037 /* If device is running, close it first. */ 3038 if (dev->flags & IFF_UP) 3039 dev_close(dev); 3040 3041 /* And unlink it from device chain. */ 3042 for (dp = &dev_base; (d = *dp) != NULL; dp = &d->next) { 3043 if (d == dev) { 3044 write_lock_bh(&dev_base_lock); 3045 hlist_del(&dev->name_hlist); 3046 hlist_del(&dev->index_hlist); 3047 if (dev_tail == &dev->next) 3048 dev_tail = dp; 3049 *dp = d->next; 3050 write_unlock_bh(&dev_base_lock); 3051 break; 3052 } 3053 } 3054 if (!d) { 3055 printk(KERN_ERR "unregister net_device: '%s' not found\n", 3056 dev->name); 3057 return -ENODEV; 3058 } 3059 3060 dev->reg_state = NETREG_UNREGISTERING; 3061 3062 synchronize_net(); 3063 3064 /* Shutdown queueing discipline. */ 3065 dev_shutdown(dev); 3066 3067 3068 /* Notify protocols, that we are about to destroy 3069 this device. They should clean all the things. 3070 */ 3071 notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev); 3072 3073 /* 3074 * Flush the multicast chain 3075 */ 3076 dev_mc_discard(dev); 3077 3078 if (dev->uninit) 3079 dev->uninit(dev); 3080 3081 /* Notifier chain MUST detach us from master device. */ 3082 BUG_TRAP(!dev->master); 3083 3084 free_divert_blk(dev); 3085 3086 /* Finish processing unregister after unlock */ 3087 net_set_todo(dev); 3088 3089 synchronize_net(); 3090 3091 dev_put(dev); 3092 return 0; 3093 } 3094 3095 /** 3096 * unregister_netdev - remove device from the kernel 3097 * @dev: device 3098 * 3099 * This function shuts down a device interface and removes it 3100 * from the kernel tables. On success 0 is returned, on a failure 3101 * a negative errno code is returned. 3102 * 3103 * This is just a wrapper for unregister_netdevice that takes 3104 * the rtnl semaphore. In general you want to use this and not 3105 * unregister_netdevice. 3106 */ 3107 void unregister_netdev(struct net_device *dev) 3108 { 3109 rtnl_lock(); 3110 unregister_netdevice(dev); 3111 rtnl_unlock(); 3112 } 3113 3114 EXPORT_SYMBOL(unregister_netdev); 3115 3116 #ifdef CONFIG_HOTPLUG_CPU 3117 static int dev_cpu_callback(struct notifier_block *nfb, 3118 unsigned long action, 3119 void *ocpu) 3120 { 3121 struct sk_buff **list_skb; 3122 struct net_device **list_net; 3123 struct sk_buff *skb; 3124 unsigned int cpu, oldcpu = (unsigned long)ocpu; 3125 struct softnet_data *sd, *oldsd; 3126 3127 if (action != CPU_DEAD) 3128 return NOTIFY_OK; 3129 3130 local_irq_disable(); 3131 cpu = smp_processor_id(); 3132 sd = &per_cpu(softnet_data, cpu); 3133 oldsd = &per_cpu(softnet_data, oldcpu); 3134 3135 /* Find end of our completion_queue. */ 3136 list_skb = &sd->completion_queue; 3137 while (*list_skb) 3138 list_skb = &(*list_skb)->next; 3139 /* Append completion queue from offline CPU. */ 3140 *list_skb = oldsd->completion_queue; 3141 oldsd->completion_queue = NULL; 3142 3143 /* Find end of our output_queue. */ 3144 list_net = &sd->output_queue; 3145 while (*list_net) 3146 list_net = &(*list_net)->next_sched; 3147 /* Append output queue from offline CPU. */ 3148 *list_net = oldsd->output_queue; 3149 oldsd->output_queue = NULL; 3150 3151 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3152 local_irq_enable(); 3153 3154 /* Process offline CPU's input_pkt_queue */ 3155 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 3156 netif_rx(skb); 3157 3158 return NOTIFY_OK; 3159 } 3160 #endif /* CONFIG_HOTPLUG_CPU */ 3161 3162 3163 /* 3164 * Initialize the DEV module. At boot time this walks the device list and 3165 * unhooks any devices that fail to initialise (normally hardware not 3166 * present) and leaves us with a valid list of present and active devices. 3167 * 3168 */ 3169 3170 /* 3171 * This is called single threaded during boot, so no need 3172 * to take the rtnl semaphore. 3173 */ 3174 static int __init net_dev_init(void) 3175 { 3176 int i, rc = -ENOMEM; 3177 3178 BUG_ON(!dev_boot_phase); 3179 3180 net_random_init(); 3181 3182 if (dev_proc_init()) 3183 goto out; 3184 3185 if (netdev_sysfs_init()) 3186 goto out; 3187 3188 INIT_LIST_HEAD(&ptype_all); 3189 for (i = 0; i < 16; i++) 3190 INIT_LIST_HEAD(&ptype_base[i]); 3191 3192 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++) 3193 INIT_HLIST_HEAD(&dev_name_head[i]); 3194 3195 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++) 3196 INIT_HLIST_HEAD(&dev_index_head[i]); 3197 3198 /* 3199 * Initialise the packet receive queues. 3200 */ 3201 3202 for (i = 0; i < NR_CPUS; i++) { 3203 struct softnet_data *queue; 3204 3205 queue = &per_cpu(softnet_data, i); 3206 skb_queue_head_init(&queue->input_pkt_queue); 3207 queue->completion_queue = NULL; 3208 INIT_LIST_HEAD(&queue->poll_list); 3209 set_bit(__LINK_STATE_START, &queue->backlog_dev.state); 3210 queue->backlog_dev.weight = weight_p; 3211 queue->backlog_dev.poll = process_backlog; 3212 atomic_set(&queue->backlog_dev.refcnt, 1); 3213 } 3214 3215 dev_boot_phase = 0; 3216 3217 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 3218 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 3219 3220 hotcpu_notifier(dev_cpu_callback, 0); 3221 dst_init(); 3222 dev_mcast_init(); 3223 rc = 0; 3224 out: 3225 return rc; 3226 } 3227 3228 subsys_initcall(net_dev_init); 3229 3230 EXPORT_SYMBOL(__dev_get_by_index); 3231 EXPORT_SYMBOL(__dev_get_by_name); 3232 EXPORT_SYMBOL(__dev_remove_pack); 3233 EXPORT_SYMBOL(__skb_linearize); 3234 EXPORT_SYMBOL(dev_add_pack); 3235 EXPORT_SYMBOL(dev_alloc_name); 3236 EXPORT_SYMBOL(dev_close); 3237 EXPORT_SYMBOL(dev_get_by_flags); 3238 EXPORT_SYMBOL(dev_get_by_index); 3239 EXPORT_SYMBOL(dev_get_by_name); 3240 EXPORT_SYMBOL(dev_ioctl); 3241 EXPORT_SYMBOL(dev_open); 3242 EXPORT_SYMBOL(dev_queue_xmit); 3243 EXPORT_SYMBOL(dev_remove_pack); 3244 EXPORT_SYMBOL(dev_set_allmulti); 3245 EXPORT_SYMBOL(dev_set_promiscuity); 3246 EXPORT_SYMBOL(dev_change_flags); 3247 EXPORT_SYMBOL(dev_set_mtu); 3248 EXPORT_SYMBOL(dev_set_mac_address); 3249 EXPORT_SYMBOL(free_netdev); 3250 EXPORT_SYMBOL(netdev_boot_setup_check); 3251 EXPORT_SYMBOL(netdev_set_master); 3252 EXPORT_SYMBOL(netdev_state_change); 3253 EXPORT_SYMBOL(netif_receive_skb); 3254 EXPORT_SYMBOL(netif_rx); 3255 EXPORT_SYMBOL(register_gifconf); 3256 EXPORT_SYMBOL(register_netdevice); 3257 EXPORT_SYMBOL(register_netdevice_notifier); 3258 EXPORT_SYMBOL(skb_checksum_help); 3259 EXPORT_SYMBOL(synchronize_net); 3260 EXPORT_SYMBOL(unregister_netdevice); 3261 EXPORT_SYMBOL(unregister_netdevice_notifier); 3262 EXPORT_SYMBOL(net_enable_timestamp); 3263 EXPORT_SYMBOL(net_disable_timestamp); 3264 EXPORT_SYMBOL(dev_get_flags); 3265 3266 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 3267 EXPORT_SYMBOL(br_handle_frame_hook); 3268 EXPORT_SYMBOL(br_fdb_get_hook); 3269 EXPORT_SYMBOL(br_fdb_put_hook); 3270 #endif 3271 3272 #ifdef CONFIG_KMOD 3273 EXPORT_SYMBOL(dev_load); 3274 #endif 3275 3276 EXPORT_PER_CPU_SYMBOL(softnet_data); 3277