xref: /linux/net/core/dev.c (revision e3617433c3da3d0859a4bc67f3f975e87f650ebf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "net-sysfs.h"
155 
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163 					 struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165 					   struct net_device *dev,
166 					   struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static DECLARE_RWSEM(devnet_rename_sem);
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
234 						       const char *name)
235 {
236 	struct netdev_name_node *name_node;
237 
238 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
239 	if (!name_node)
240 		return NULL;
241 	INIT_HLIST_NODE(&name_node->hlist);
242 	name_node->dev = dev;
243 	name_node->name = name;
244 	return name_node;
245 }
246 
247 static struct netdev_name_node *
248 netdev_name_node_head_alloc(struct net_device *dev)
249 {
250 	struct netdev_name_node *name_node;
251 
252 	name_node = netdev_name_node_alloc(dev, dev->name);
253 	if (!name_node)
254 		return NULL;
255 	INIT_LIST_HEAD(&name_node->list);
256 	return name_node;
257 }
258 
259 static void netdev_name_node_free(struct netdev_name_node *name_node)
260 {
261 	kfree(name_node);
262 }
263 
264 static void netdev_name_node_add(struct net *net,
265 				 struct netdev_name_node *name_node)
266 {
267 	hlist_add_head_rcu(&name_node->hlist,
268 			   dev_name_hash(net, name_node->name));
269 }
270 
271 static void netdev_name_node_del(struct netdev_name_node *name_node)
272 {
273 	hlist_del_rcu(&name_node->hlist);
274 }
275 
276 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
277 							const char *name)
278 {
279 	struct hlist_head *head = dev_name_hash(net, name);
280 	struct netdev_name_node *name_node;
281 
282 	hlist_for_each_entry(name_node, head, hlist)
283 		if (!strcmp(name_node->name, name))
284 			return name_node;
285 	return NULL;
286 }
287 
288 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
289 							    const char *name)
290 {
291 	struct hlist_head *head = dev_name_hash(net, name);
292 	struct netdev_name_node *name_node;
293 
294 	hlist_for_each_entry_rcu(name_node, head, hlist)
295 		if (!strcmp(name_node->name, name))
296 			return name_node;
297 	return NULL;
298 }
299 
300 bool netdev_name_in_use(struct net *net, const char *name)
301 {
302 	return netdev_name_node_lookup(net, name);
303 }
304 EXPORT_SYMBOL(netdev_name_in_use);
305 
306 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307 {
308 	struct netdev_name_node *name_node;
309 	struct net *net = dev_net(dev);
310 
311 	name_node = netdev_name_node_lookup(net, name);
312 	if (name_node)
313 		return -EEXIST;
314 	name_node = netdev_name_node_alloc(dev, name);
315 	if (!name_node)
316 		return -ENOMEM;
317 	netdev_name_node_add(net, name_node);
318 	/* The node that holds dev->name acts as a head of per-device list. */
319 	list_add_tail(&name_node->list, &dev->name_node->list);
320 
321 	return 0;
322 }
323 EXPORT_SYMBOL(netdev_name_node_alt_create);
324 
325 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326 {
327 	list_del(&name_node->list);
328 	netdev_name_node_del(name_node);
329 	kfree(name_node->name);
330 	netdev_name_node_free(name_node);
331 }
332 
333 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334 {
335 	struct netdev_name_node *name_node;
336 	struct net *net = dev_net(dev);
337 
338 	name_node = netdev_name_node_lookup(net, name);
339 	if (!name_node)
340 		return -ENOENT;
341 	/* lookup might have found our primary name or a name belonging
342 	 * to another device.
343 	 */
344 	if (name_node == dev->name_node || name_node->dev != dev)
345 		return -EINVAL;
346 
347 	__netdev_name_node_alt_destroy(name_node);
348 
349 	return 0;
350 }
351 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352 
353 static void netdev_name_node_alt_flush(struct net_device *dev)
354 {
355 	struct netdev_name_node *name_node, *tmp;
356 
357 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358 		__netdev_name_node_alt_destroy(name_node);
359 }
360 
361 /* Device list insertion */
362 static void list_netdevice(struct net_device *dev)
363 {
364 	struct net *net = dev_net(dev);
365 
366 	ASSERT_RTNL();
367 
368 	write_lock_bh(&dev_base_lock);
369 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370 	netdev_name_node_add(net, dev->name_node);
371 	hlist_add_head_rcu(&dev->index_hlist,
372 			   dev_index_hash(net, dev->ifindex));
373 	write_unlock_bh(&dev_base_lock);
374 
375 	dev_base_seq_inc(net);
376 }
377 
378 /* Device list removal
379  * caller must respect a RCU grace period before freeing/reusing dev
380  */
381 static void unlist_netdevice(struct net_device *dev)
382 {
383 	ASSERT_RTNL();
384 
385 	/* Unlink dev from the device chain */
386 	write_lock_bh(&dev_base_lock);
387 	list_del_rcu(&dev->dev_list);
388 	netdev_name_node_del(dev->name_node);
389 	hlist_del_rcu(&dev->index_hlist);
390 	write_unlock_bh(&dev_base_lock);
391 
392 	dev_base_seq_inc(dev_net(dev));
393 }
394 
395 /*
396  *	Our notifier list
397  */
398 
399 static RAW_NOTIFIER_HEAD(netdev_chain);
400 
401 /*
402  *	Device drivers call our routines to queue packets here. We empty the
403  *	queue in the local softnet handler.
404  */
405 
406 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
407 EXPORT_PER_CPU_SYMBOL(softnet_data);
408 
409 #ifdef CONFIG_LOCKDEP
410 /*
411  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
412  * according to dev->type
413  */
414 static const unsigned short netdev_lock_type[] = {
415 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
416 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
417 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
418 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
419 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
420 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
421 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
422 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
423 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
424 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
425 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
426 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
427 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
428 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
429 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
430 
431 static const char *const netdev_lock_name[] = {
432 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
433 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
434 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
435 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
436 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
437 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
438 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
439 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
440 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
441 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
442 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
443 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
444 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
445 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
446 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
447 
448 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
450 
451 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
452 {
453 	int i;
454 
455 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
456 		if (netdev_lock_type[i] == dev_type)
457 			return i;
458 	/* the last key is used by default */
459 	return ARRAY_SIZE(netdev_lock_type) - 1;
460 }
461 
462 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
463 						 unsigned short dev_type)
464 {
465 	int i;
466 
467 	i = netdev_lock_pos(dev_type);
468 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
469 				   netdev_lock_name[i]);
470 }
471 
472 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
473 {
474 	int i;
475 
476 	i = netdev_lock_pos(dev->type);
477 	lockdep_set_class_and_name(&dev->addr_list_lock,
478 				   &netdev_addr_lock_key[i],
479 				   netdev_lock_name[i]);
480 }
481 #else
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483 						 unsigned short dev_type)
484 {
485 }
486 
487 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
488 {
489 }
490 #endif
491 
492 /*******************************************************************************
493  *
494  *		Protocol management and registration routines
495  *
496  *******************************************************************************/
497 
498 
499 /*
500  *	Add a protocol ID to the list. Now that the input handler is
501  *	smarter we can dispense with all the messy stuff that used to be
502  *	here.
503  *
504  *	BEWARE!!! Protocol handlers, mangling input packets,
505  *	MUST BE last in hash buckets and checking protocol handlers
506  *	MUST start from promiscuous ptype_all chain in net_bh.
507  *	It is true now, do not change it.
508  *	Explanation follows: if protocol handler, mangling packet, will
509  *	be the first on list, it is not able to sense, that packet
510  *	is cloned and should be copied-on-write, so that it will
511  *	change it and subsequent readers will get broken packet.
512  *							--ANK (980803)
513  */
514 
515 static inline struct list_head *ptype_head(const struct packet_type *pt)
516 {
517 	if (pt->type == htons(ETH_P_ALL))
518 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
519 	else
520 		return pt->dev ? &pt->dev->ptype_specific :
521 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
522 }
523 
524 /**
525  *	dev_add_pack - add packet handler
526  *	@pt: packet type declaration
527  *
528  *	Add a protocol handler to the networking stack. The passed &packet_type
529  *	is linked into kernel lists and may not be freed until it has been
530  *	removed from the kernel lists.
531  *
532  *	This call does not sleep therefore it can not
533  *	guarantee all CPU's that are in middle of receiving packets
534  *	will see the new packet type (until the next received packet).
535  */
536 
537 void dev_add_pack(struct packet_type *pt)
538 {
539 	struct list_head *head = ptype_head(pt);
540 
541 	spin_lock(&ptype_lock);
542 	list_add_rcu(&pt->list, head);
543 	spin_unlock(&ptype_lock);
544 }
545 EXPORT_SYMBOL(dev_add_pack);
546 
547 /**
548  *	__dev_remove_pack	 - remove packet handler
549  *	@pt: packet type declaration
550  *
551  *	Remove a protocol handler that was previously added to the kernel
552  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
553  *	from the kernel lists and can be freed or reused once this function
554  *	returns.
555  *
556  *      The packet type might still be in use by receivers
557  *	and must not be freed until after all the CPU's have gone
558  *	through a quiescent state.
559  */
560 void __dev_remove_pack(struct packet_type *pt)
561 {
562 	struct list_head *head = ptype_head(pt);
563 	struct packet_type *pt1;
564 
565 	spin_lock(&ptype_lock);
566 
567 	list_for_each_entry(pt1, head, list) {
568 		if (pt == pt1) {
569 			list_del_rcu(&pt->list);
570 			goto out;
571 		}
572 	}
573 
574 	pr_warn("dev_remove_pack: %p not found\n", pt);
575 out:
576 	spin_unlock(&ptype_lock);
577 }
578 EXPORT_SYMBOL(__dev_remove_pack);
579 
580 /**
581  *	dev_remove_pack	 - remove packet handler
582  *	@pt: packet type declaration
583  *
584  *	Remove a protocol handler that was previously added to the kernel
585  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
586  *	from the kernel lists and can be freed or reused once this function
587  *	returns.
588  *
589  *	This call sleeps to guarantee that no CPU is looking at the packet
590  *	type after return.
591  */
592 void dev_remove_pack(struct packet_type *pt)
593 {
594 	__dev_remove_pack(pt);
595 
596 	synchronize_net();
597 }
598 EXPORT_SYMBOL(dev_remove_pack);
599 
600 
601 /*******************************************************************************
602  *
603  *			    Device Interface Subroutines
604  *
605  *******************************************************************************/
606 
607 /**
608  *	dev_get_iflink	- get 'iflink' value of a interface
609  *	@dev: targeted interface
610  *
611  *	Indicates the ifindex the interface is linked to.
612  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
613  */
614 
615 int dev_get_iflink(const struct net_device *dev)
616 {
617 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
618 		return dev->netdev_ops->ndo_get_iflink(dev);
619 
620 	return dev->ifindex;
621 }
622 EXPORT_SYMBOL(dev_get_iflink);
623 
624 /**
625  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
626  *	@dev: targeted interface
627  *	@skb: The packet.
628  *
629  *	For better visibility of tunnel traffic OVS needs to retrieve
630  *	egress tunnel information for a packet. Following API allows
631  *	user to get this info.
632  */
633 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
634 {
635 	struct ip_tunnel_info *info;
636 
637 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
638 		return -EINVAL;
639 
640 	info = skb_tunnel_info_unclone(skb);
641 	if (!info)
642 		return -ENOMEM;
643 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
644 		return -EINVAL;
645 
646 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
647 }
648 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
649 
650 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
651 {
652 	int k = stack->num_paths++;
653 
654 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
655 		return NULL;
656 
657 	return &stack->path[k];
658 }
659 
660 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
661 			  struct net_device_path_stack *stack)
662 {
663 	const struct net_device *last_dev;
664 	struct net_device_path_ctx ctx = {
665 		.dev	= dev,
666 		.daddr	= daddr,
667 	};
668 	struct net_device_path *path;
669 	int ret = 0;
670 
671 	stack->num_paths = 0;
672 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
673 		last_dev = ctx.dev;
674 		path = dev_fwd_path(stack);
675 		if (!path)
676 			return -1;
677 
678 		memset(path, 0, sizeof(struct net_device_path));
679 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
680 		if (ret < 0)
681 			return -1;
682 
683 		if (WARN_ON_ONCE(last_dev == ctx.dev))
684 			return -1;
685 	}
686 	path = dev_fwd_path(stack);
687 	if (!path)
688 		return -1;
689 	path->type = DEV_PATH_ETHERNET;
690 	path->dev = ctx.dev;
691 
692 	return ret;
693 }
694 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
695 
696 /**
697  *	__dev_get_by_name	- find a device by its name
698  *	@net: the applicable net namespace
699  *	@name: name to find
700  *
701  *	Find an interface by name. Must be called under RTNL semaphore
702  *	or @dev_base_lock. If the name is found a pointer to the device
703  *	is returned. If the name is not found then %NULL is returned. The
704  *	reference counters are not incremented so the caller must be
705  *	careful with locks.
706  */
707 
708 struct net_device *__dev_get_by_name(struct net *net, const char *name)
709 {
710 	struct netdev_name_node *node_name;
711 
712 	node_name = netdev_name_node_lookup(net, name);
713 	return node_name ? node_name->dev : NULL;
714 }
715 EXPORT_SYMBOL(__dev_get_by_name);
716 
717 /**
718  * dev_get_by_name_rcu	- find a device by its name
719  * @net: the applicable net namespace
720  * @name: name to find
721  *
722  * Find an interface by name.
723  * If the name is found a pointer to the device is returned.
724  * If the name is not found then %NULL is returned.
725  * The reference counters are not incremented so the caller must be
726  * careful with locks. The caller must hold RCU lock.
727  */
728 
729 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
730 {
731 	struct netdev_name_node *node_name;
732 
733 	node_name = netdev_name_node_lookup_rcu(net, name);
734 	return node_name ? node_name->dev : NULL;
735 }
736 EXPORT_SYMBOL(dev_get_by_name_rcu);
737 
738 /**
739  *	dev_get_by_name		- find a device by its name
740  *	@net: the applicable net namespace
741  *	@name: name to find
742  *
743  *	Find an interface by name. This can be called from any
744  *	context and does its own locking. The returned handle has
745  *	the usage count incremented and the caller must use dev_put() to
746  *	release it when it is no longer needed. %NULL is returned if no
747  *	matching device is found.
748  */
749 
750 struct net_device *dev_get_by_name(struct net *net, const char *name)
751 {
752 	struct net_device *dev;
753 
754 	rcu_read_lock();
755 	dev = dev_get_by_name_rcu(net, name);
756 	dev_hold(dev);
757 	rcu_read_unlock();
758 	return dev;
759 }
760 EXPORT_SYMBOL(dev_get_by_name);
761 
762 /**
763  *	__dev_get_by_index - find a device by its ifindex
764  *	@net: the applicable net namespace
765  *	@ifindex: index of device
766  *
767  *	Search for an interface by index. Returns %NULL if the device
768  *	is not found or a pointer to the device. The device has not
769  *	had its reference counter increased so the caller must be careful
770  *	about locking. The caller must hold either the RTNL semaphore
771  *	or @dev_base_lock.
772  */
773 
774 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
775 {
776 	struct net_device *dev;
777 	struct hlist_head *head = dev_index_hash(net, ifindex);
778 
779 	hlist_for_each_entry(dev, head, index_hlist)
780 		if (dev->ifindex == ifindex)
781 			return dev;
782 
783 	return NULL;
784 }
785 EXPORT_SYMBOL(__dev_get_by_index);
786 
787 /**
788  *	dev_get_by_index_rcu - find a device by its ifindex
789  *	@net: the applicable net namespace
790  *	@ifindex: index of device
791  *
792  *	Search for an interface by index. Returns %NULL if the device
793  *	is not found or a pointer to the device. The device has not
794  *	had its reference counter increased so the caller must be careful
795  *	about locking. The caller must hold RCU lock.
796  */
797 
798 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
799 {
800 	struct net_device *dev;
801 	struct hlist_head *head = dev_index_hash(net, ifindex);
802 
803 	hlist_for_each_entry_rcu(dev, head, index_hlist)
804 		if (dev->ifindex == ifindex)
805 			return dev;
806 
807 	return NULL;
808 }
809 EXPORT_SYMBOL(dev_get_by_index_rcu);
810 
811 
812 /**
813  *	dev_get_by_index - find a device by its ifindex
814  *	@net: the applicable net namespace
815  *	@ifindex: index of device
816  *
817  *	Search for an interface by index. Returns NULL if the device
818  *	is not found or a pointer to the device. The device returned has
819  *	had a reference added and the pointer is safe until the user calls
820  *	dev_put to indicate they have finished with it.
821  */
822 
823 struct net_device *dev_get_by_index(struct net *net, int ifindex)
824 {
825 	struct net_device *dev;
826 
827 	rcu_read_lock();
828 	dev = dev_get_by_index_rcu(net, ifindex);
829 	dev_hold(dev);
830 	rcu_read_unlock();
831 	return dev;
832 }
833 EXPORT_SYMBOL(dev_get_by_index);
834 
835 /**
836  *	dev_get_by_napi_id - find a device by napi_id
837  *	@napi_id: ID of the NAPI struct
838  *
839  *	Search for an interface by NAPI ID. Returns %NULL if the device
840  *	is not found or a pointer to the device. The device has not had
841  *	its reference counter increased so the caller must be careful
842  *	about locking. The caller must hold RCU lock.
843  */
844 
845 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
846 {
847 	struct napi_struct *napi;
848 
849 	WARN_ON_ONCE(!rcu_read_lock_held());
850 
851 	if (napi_id < MIN_NAPI_ID)
852 		return NULL;
853 
854 	napi = napi_by_id(napi_id);
855 
856 	return napi ? napi->dev : NULL;
857 }
858 EXPORT_SYMBOL(dev_get_by_napi_id);
859 
860 /**
861  *	netdev_get_name - get a netdevice name, knowing its ifindex.
862  *	@net: network namespace
863  *	@name: a pointer to the buffer where the name will be stored.
864  *	@ifindex: the ifindex of the interface to get the name from.
865  */
866 int netdev_get_name(struct net *net, char *name, int ifindex)
867 {
868 	struct net_device *dev;
869 	int ret;
870 
871 	down_read(&devnet_rename_sem);
872 	rcu_read_lock();
873 
874 	dev = dev_get_by_index_rcu(net, ifindex);
875 	if (!dev) {
876 		ret = -ENODEV;
877 		goto out;
878 	}
879 
880 	strcpy(name, dev->name);
881 
882 	ret = 0;
883 out:
884 	rcu_read_unlock();
885 	up_read(&devnet_rename_sem);
886 	return ret;
887 }
888 
889 /**
890  *	dev_getbyhwaddr_rcu - find a device by its hardware address
891  *	@net: the applicable net namespace
892  *	@type: media type of device
893  *	@ha: hardware address
894  *
895  *	Search for an interface by MAC address. Returns NULL if the device
896  *	is not found or a pointer to the device.
897  *	The caller must hold RCU or RTNL.
898  *	The returned device has not had its ref count increased
899  *	and the caller must therefore be careful about locking
900  *
901  */
902 
903 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
904 				       const char *ha)
905 {
906 	struct net_device *dev;
907 
908 	for_each_netdev_rcu(net, dev)
909 		if (dev->type == type &&
910 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
911 			return dev;
912 
913 	return NULL;
914 }
915 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
916 
917 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
918 {
919 	struct net_device *dev, *ret = NULL;
920 
921 	rcu_read_lock();
922 	for_each_netdev_rcu(net, dev)
923 		if (dev->type == type) {
924 			dev_hold(dev);
925 			ret = dev;
926 			break;
927 		}
928 	rcu_read_unlock();
929 	return ret;
930 }
931 EXPORT_SYMBOL(dev_getfirstbyhwtype);
932 
933 /**
934  *	__dev_get_by_flags - find any device with given flags
935  *	@net: the applicable net namespace
936  *	@if_flags: IFF_* values
937  *	@mask: bitmask of bits in if_flags to check
938  *
939  *	Search for any interface with the given flags. Returns NULL if a device
940  *	is not found or a pointer to the device. Must be called inside
941  *	rtnl_lock(), and result refcount is unchanged.
942  */
943 
944 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
945 				      unsigned short mask)
946 {
947 	struct net_device *dev, *ret;
948 
949 	ASSERT_RTNL();
950 
951 	ret = NULL;
952 	for_each_netdev(net, dev) {
953 		if (((dev->flags ^ if_flags) & mask) == 0) {
954 			ret = dev;
955 			break;
956 		}
957 	}
958 	return ret;
959 }
960 EXPORT_SYMBOL(__dev_get_by_flags);
961 
962 /**
963  *	dev_valid_name - check if name is okay for network device
964  *	@name: name string
965  *
966  *	Network device names need to be valid file names to
967  *	allow sysfs to work.  We also disallow any kind of
968  *	whitespace.
969  */
970 bool dev_valid_name(const char *name)
971 {
972 	if (*name == '\0')
973 		return false;
974 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
975 		return false;
976 	if (!strcmp(name, ".") || !strcmp(name, ".."))
977 		return false;
978 
979 	while (*name) {
980 		if (*name == '/' || *name == ':' || isspace(*name))
981 			return false;
982 		name++;
983 	}
984 	return true;
985 }
986 EXPORT_SYMBOL(dev_valid_name);
987 
988 /**
989  *	__dev_alloc_name - allocate a name for a device
990  *	@net: network namespace to allocate the device name in
991  *	@name: name format string
992  *	@buf:  scratch buffer and result name string
993  *
994  *	Passed a format string - eg "lt%d" it will try and find a suitable
995  *	id. It scans list of devices to build up a free map, then chooses
996  *	the first empty slot. The caller must hold the dev_base or rtnl lock
997  *	while allocating the name and adding the device in order to avoid
998  *	duplicates.
999  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1000  *	Returns the number of the unit assigned or a negative errno code.
1001  */
1002 
1003 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1004 {
1005 	int i = 0;
1006 	const char *p;
1007 	const int max_netdevices = 8*PAGE_SIZE;
1008 	unsigned long *inuse;
1009 	struct net_device *d;
1010 
1011 	if (!dev_valid_name(name))
1012 		return -EINVAL;
1013 
1014 	p = strchr(name, '%');
1015 	if (p) {
1016 		/*
1017 		 * Verify the string as this thing may have come from
1018 		 * the user.  There must be either one "%d" and no other "%"
1019 		 * characters.
1020 		 */
1021 		if (p[1] != 'd' || strchr(p + 2, '%'))
1022 			return -EINVAL;
1023 
1024 		/* Use one page as a bit array of possible slots */
1025 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1026 		if (!inuse)
1027 			return -ENOMEM;
1028 
1029 		for_each_netdev(net, d) {
1030 			struct netdev_name_node *name_node;
1031 			list_for_each_entry(name_node, &d->name_node->list, list) {
1032 				if (!sscanf(name_node->name, name, &i))
1033 					continue;
1034 				if (i < 0 || i >= max_netdevices)
1035 					continue;
1036 
1037 				/*  avoid cases where sscanf is not exact inverse of printf */
1038 				snprintf(buf, IFNAMSIZ, name, i);
1039 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1040 					set_bit(i, inuse);
1041 			}
1042 			if (!sscanf(d->name, name, &i))
1043 				continue;
1044 			if (i < 0 || i >= max_netdevices)
1045 				continue;
1046 
1047 			/*  avoid cases where sscanf is not exact inverse of printf */
1048 			snprintf(buf, IFNAMSIZ, name, i);
1049 			if (!strncmp(buf, d->name, IFNAMSIZ))
1050 				set_bit(i, inuse);
1051 		}
1052 
1053 		i = find_first_zero_bit(inuse, max_netdevices);
1054 		free_page((unsigned long) inuse);
1055 	}
1056 
1057 	snprintf(buf, IFNAMSIZ, name, i);
1058 	if (!netdev_name_in_use(net, buf))
1059 		return i;
1060 
1061 	/* It is possible to run out of possible slots
1062 	 * when the name is long and there isn't enough space left
1063 	 * for the digits, or if all bits are used.
1064 	 */
1065 	return -ENFILE;
1066 }
1067 
1068 static int dev_alloc_name_ns(struct net *net,
1069 			     struct net_device *dev,
1070 			     const char *name)
1071 {
1072 	char buf[IFNAMSIZ];
1073 	int ret;
1074 
1075 	BUG_ON(!net);
1076 	ret = __dev_alloc_name(net, name, buf);
1077 	if (ret >= 0)
1078 		strlcpy(dev->name, buf, IFNAMSIZ);
1079 	return ret;
1080 }
1081 
1082 /**
1083  *	dev_alloc_name - allocate a name for a device
1084  *	@dev: device
1085  *	@name: name format string
1086  *
1087  *	Passed a format string - eg "lt%d" it will try and find a suitable
1088  *	id. It scans list of devices to build up a free map, then chooses
1089  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1090  *	while allocating the name and adding the device in order to avoid
1091  *	duplicates.
1092  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1093  *	Returns the number of the unit assigned or a negative errno code.
1094  */
1095 
1096 int dev_alloc_name(struct net_device *dev, const char *name)
1097 {
1098 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1099 }
1100 EXPORT_SYMBOL(dev_alloc_name);
1101 
1102 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1103 			      const char *name)
1104 {
1105 	BUG_ON(!net);
1106 
1107 	if (!dev_valid_name(name))
1108 		return -EINVAL;
1109 
1110 	if (strchr(name, '%'))
1111 		return dev_alloc_name_ns(net, dev, name);
1112 	else if (netdev_name_in_use(net, name))
1113 		return -EEXIST;
1114 	else if (dev->name != name)
1115 		strlcpy(dev->name, name, IFNAMSIZ);
1116 
1117 	return 0;
1118 }
1119 
1120 /**
1121  *	dev_change_name - change name of a device
1122  *	@dev: device
1123  *	@newname: name (or format string) must be at least IFNAMSIZ
1124  *
1125  *	Change name of a device, can pass format strings "eth%d".
1126  *	for wildcarding.
1127  */
1128 int dev_change_name(struct net_device *dev, const char *newname)
1129 {
1130 	unsigned char old_assign_type;
1131 	char oldname[IFNAMSIZ];
1132 	int err = 0;
1133 	int ret;
1134 	struct net *net;
1135 
1136 	ASSERT_RTNL();
1137 	BUG_ON(!dev_net(dev));
1138 
1139 	net = dev_net(dev);
1140 
1141 	/* Some auto-enslaved devices e.g. failover slaves are
1142 	 * special, as userspace might rename the device after
1143 	 * the interface had been brought up and running since
1144 	 * the point kernel initiated auto-enslavement. Allow
1145 	 * live name change even when these slave devices are
1146 	 * up and running.
1147 	 *
1148 	 * Typically, users of these auto-enslaving devices
1149 	 * don't actually care about slave name change, as
1150 	 * they are supposed to operate on master interface
1151 	 * directly.
1152 	 */
1153 	if (dev->flags & IFF_UP &&
1154 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1155 		return -EBUSY;
1156 
1157 	down_write(&devnet_rename_sem);
1158 
1159 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1160 		up_write(&devnet_rename_sem);
1161 		return 0;
1162 	}
1163 
1164 	memcpy(oldname, dev->name, IFNAMSIZ);
1165 
1166 	err = dev_get_valid_name(net, dev, newname);
1167 	if (err < 0) {
1168 		up_write(&devnet_rename_sem);
1169 		return err;
1170 	}
1171 
1172 	if (oldname[0] && !strchr(oldname, '%'))
1173 		netdev_info(dev, "renamed from %s\n", oldname);
1174 
1175 	old_assign_type = dev->name_assign_type;
1176 	dev->name_assign_type = NET_NAME_RENAMED;
1177 
1178 rollback:
1179 	ret = device_rename(&dev->dev, dev->name);
1180 	if (ret) {
1181 		memcpy(dev->name, oldname, IFNAMSIZ);
1182 		dev->name_assign_type = old_assign_type;
1183 		up_write(&devnet_rename_sem);
1184 		return ret;
1185 	}
1186 
1187 	up_write(&devnet_rename_sem);
1188 
1189 	netdev_adjacent_rename_links(dev, oldname);
1190 
1191 	write_lock_bh(&dev_base_lock);
1192 	netdev_name_node_del(dev->name_node);
1193 	write_unlock_bh(&dev_base_lock);
1194 
1195 	synchronize_rcu();
1196 
1197 	write_lock_bh(&dev_base_lock);
1198 	netdev_name_node_add(net, dev->name_node);
1199 	write_unlock_bh(&dev_base_lock);
1200 
1201 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1202 	ret = notifier_to_errno(ret);
1203 
1204 	if (ret) {
1205 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1206 		if (err >= 0) {
1207 			err = ret;
1208 			down_write(&devnet_rename_sem);
1209 			memcpy(dev->name, oldname, IFNAMSIZ);
1210 			memcpy(oldname, newname, IFNAMSIZ);
1211 			dev->name_assign_type = old_assign_type;
1212 			old_assign_type = NET_NAME_RENAMED;
1213 			goto rollback;
1214 		} else {
1215 			netdev_err(dev, "name change rollback failed: %d\n",
1216 				   ret);
1217 		}
1218 	}
1219 
1220 	return err;
1221 }
1222 
1223 /**
1224  *	dev_set_alias - change ifalias of a device
1225  *	@dev: device
1226  *	@alias: name up to IFALIASZ
1227  *	@len: limit of bytes to copy from info
1228  *
1229  *	Set ifalias for a device,
1230  */
1231 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1232 {
1233 	struct dev_ifalias *new_alias = NULL;
1234 
1235 	if (len >= IFALIASZ)
1236 		return -EINVAL;
1237 
1238 	if (len) {
1239 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1240 		if (!new_alias)
1241 			return -ENOMEM;
1242 
1243 		memcpy(new_alias->ifalias, alias, len);
1244 		new_alias->ifalias[len] = 0;
1245 	}
1246 
1247 	mutex_lock(&ifalias_mutex);
1248 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1249 					mutex_is_locked(&ifalias_mutex));
1250 	mutex_unlock(&ifalias_mutex);
1251 
1252 	if (new_alias)
1253 		kfree_rcu(new_alias, rcuhead);
1254 
1255 	return len;
1256 }
1257 EXPORT_SYMBOL(dev_set_alias);
1258 
1259 /**
1260  *	dev_get_alias - get ifalias of a device
1261  *	@dev: device
1262  *	@name: buffer to store name of ifalias
1263  *	@len: size of buffer
1264  *
1265  *	get ifalias for a device.  Caller must make sure dev cannot go
1266  *	away,  e.g. rcu read lock or own a reference count to device.
1267  */
1268 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1269 {
1270 	const struct dev_ifalias *alias;
1271 	int ret = 0;
1272 
1273 	rcu_read_lock();
1274 	alias = rcu_dereference(dev->ifalias);
1275 	if (alias)
1276 		ret = snprintf(name, len, "%s", alias->ifalias);
1277 	rcu_read_unlock();
1278 
1279 	return ret;
1280 }
1281 
1282 /**
1283  *	netdev_features_change - device changes features
1284  *	@dev: device to cause notification
1285  *
1286  *	Called to indicate a device has changed features.
1287  */
1288 void netdev_features_change(struct net_device *dev)
1289 {
1290 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1291 }
1292 EXPORT_SYMBOL(netdev_features_change);
1293 
1294 /**
1295  *	netdev_state_change - device changes state
1296  *	@dev: device to cause notification
1297  *
1298  *	Called to indicate a device has changed state. This function calls
1299  *	the notifier chains for netdev_chain and sends a NEWLINK message
1300  *	to the routing socket.
1301  */
1302 void netdev_state_change(struct net_device *dev)
1303 {
1304 	if (dev->flags & IFF_UP) {
1305 		struct netdev_notifier_change_info change_info = {
1306 			.info.dev = dev,
1307 		};
1308 
1309 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1310 					      &change_info.info);
1311 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1312 	}
1313 }
1314 EXPORT_SYMBOL(netdev_state_change);
1315 
1316 /**
1317  * __netdev_notify_peers - notify network peers about existence of @dev,
1318  * to be called when rtnl lock is already held.
1319  * @dev: network device
1320  *
1321  * Generate traffic such that interested network peers are aware of
1322  * @dev, such as by generating a gratuitous ARP. This may be used when
1323  * a device wants to inform the rest of the network about some sort of
1324  * reconfiguration such as a failover event or virtual machine
1325  * migration.
1326  */
1327 void __netdev_notify_peers(struct net_device *dev)
1328 {
1329 	ASSERT_RTNL();
1330 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1331 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1332 }
1333 EXPORT_SYMBOL(__netdev_notify_peers);
1334 
1335 /**
1336  * netdev_notify_peers - notify network peers about existence of @dev
1337  * @dev: network device
1338  *
1339  * Generate traffic such that interested network peers are aware of
1340  * @dev, such as by generating a gratuitous ARP. This may be used when
1341  * a device wants to inform the rest of the network about some sort of
1342  * reconfiguration such as a failover event or virtual machine
1343  * migration.
1344  */
1345 void netdev_notify_peers(struct net_device *dev)
1346 {
1347 	rtnl_lock();
1348 	__netdev_notify_peers(dev);
1349 	rtnl_unlock();
1350 }
1351 EXPORT_SYMBOL(netdev_notify_peers);
1352 
1353 static int napi_threaded_poll(void *data);
1354 
1355 static int napi_kthread_create(struct napi_struct *n)
1356 {
1357 	int err = 0;
1358 
1359 	/* Create and wake up the kthread once to put it in
1360 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1361 	 * warning and work with loadavg.
1362 	 */
1363 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1364 				n->dev->name, n->napi_id);
1365 	if (IS_ERR(n->thread)) {
1366 		err = PTR_ERR(n->thread);
1367 		pr_err("kthread_run failed with err %d\n", err);
1368 		n->thread = NULL;
1369 	}
1370 
1371 	return err;
1372 }
1373 
1374 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1375 {
1376 	const struct net_device_ops *ops = dev->netdev_ops;
1377 	int ret;
1378 
1379 	ASSERT_RTNL();
1380 
1381 	if (!netif_device_present(dev)) {
1382 		/* may be detached because parent is runtime-suspended */
1383 		if (dev->dev.parent)
1384 			pm_runtime_resume(dev->dev.parent);
1385 		if (!netif_device_present(dev))
1386 			return -ENODEV;
1387 	}
1388 
1389 	/* Block netpoll from trying to do any rx path servicing.
1390 	 * If we don't do this there is a chance ndo_poll_controller
1391 	 * or ndo_poll may be running while we open the device
1392 	 */
1393 	netpoll_poll_disable(dev);
1394 
1395 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1396 	ret = notifier_to_errno(ret);
1397 	if (ret)
1398 		return ret;
1399 
1400 	set_bit(__LINK_STATE_START, &dev->state);
1401 
1402 	if (ops->ndo_validate_addr)
1403 		ret = ops->ndo_validate_addr(dev);
1404 
1405 	if (!ret && ops->ndo_open)
1406 		ret = ops->ndo_open(dev);
1407 
1408 	netpoll_poll_enable(dev);
1409 
1410 	if (ret)
1411 		clear_bit(__LINK_STATE_START, &dev->state);
1412 	else {
1413 		dev->flags |= IFF_UP;
1414 		dev_set_rx_mode(dev);
1415 		dev_activate(dev);
1416 		add_device_randomness(dev->dev_addr, dev->addr_len);
1417 	}
1418 
1419 	return ret;
1420 }
1421 
1422 /**
1423  *	dev_open	- prepare an interface for use.
1424  *	@dev: device to open
1425  *	@extack: netlink extended ack
1426  *
1427  *	Takes a device from down to up state. The device's private open
1428  *	function is invoked and then the multicast lists are loaded. Finally
1429  *	the device is moved into the up state and a %NETDEV_UP message is
1430  *	sent to the netdev notifier chain.
1431  *
1432  *	Calling this function on an active interface is a nop. On a failure
1433  *	a negative errno code is returned.
1434  */
1435 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1436 {
1437 	int ret;
1438 
1439 	if (dev->flags & IFF_UP)
1440 		return 0;
1441 
1442 	ret = __dev_open(dev, extack);
1443 	if (ret < 0)
1444 		return ret;
1445 
1446 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1447 	call_netdevice_notifiers(NETDEV_UP, dev);
1448 
1449 	return ret;
1450 }
1451 EXPORT_SYMBOL(dev_open);
1452 
1453 static void __dev_close_many(struct list_head *head)
1454 {
1455 	struct net_device *dev;
1456 
1457 	ASSERT_RTNL();
1458 	might_sleep();
1459 
1460 	list_for_each_entry(dev, head, close_list) {
1461 		/* Temporarily disable netpoll until the interface is down */
1462 		netpoll_poll_disable(dev);
1463 
1464 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1465 
1466 		clear_bit(__LINK_STATE_START, &dev->state);
1467 
1468 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1469 		 * can be even on different cpu. So just clear netif_running().
1470 		 *
1471 		 * dev->stop() will invoke napi_disable() on all of it's
1472 		 * napi_struct instances on this device.
1473 		 */
1474 		smp_mb__after_atomic(); /* Commit netif_running(). */
1475 	}
1476 
1477 	dev_deactivate_many(head);
1478 
1479 	list_for_each_entry(dev, head, close_list) {
1480 		const struct net_device_ops *ops = dev->netdev_ops;
1481 
1482 		/*
1483 		 *	Call the device specific close. This cannot fail.
1484 		 *	Only if device is UP
1485 		 *
1486 		 *	We allow it to be called even after a DETACH hot-plug
1487 		 *	event.
1488 		 */
1489 		if (ops->ndo_stop)
1490 			ops->ndo_stop(dev);
1491 
1492 		dev->flags &= ~IFF_UP;
1493 		netpoll_poll_enable(dev);
1494 	}
1495 }
1496 
1497 static void __dev_close(struct net_device *dev)
1498 {
1499 	LIST_HEAD(single);
1500 
1501 	list_add(&dev->close_list, &single);
1502 	__dev_close_many(&single);
1503 	list_del(&single);
1504 }
1505 
1506 void dev_close_many(struct list_head *head, bool unlink)
1507 {
1508 	struct net_device *dev, *tmp;
1509 
1510 	/* Remove the devices that don't need to be closed */
1511 	list_for_each_entry_safe(dev, tmp, head, close_list)
1512 		if (!(dev->flags & IFF_UP))
1513 			list_del_init(&dev->close_list);
1514 
1515 	__dev_close_many(head);
1516 
1517 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1518 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1519 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1520 		if (unlink)
1521 			list_del_init(&dev->close_list);
1522 	}
1523 }
1524 EXPORT_SYMBOL(dev_close_many);
1525 
1526 /**
1527  *	dev_close - shutdown an interface.
1528  *	@dev: device to shutdown
1529  *
1530  *	This function moves an active device into down state. A
1531  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1532  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1533  *	chain.
1534  */
1535 void dev_close(struct net_device *dev)
1536 {
1537 	if (dev->flags & IFF_UP) {
1538 		LIST_HEAD(single);
1539 
1540 		list_add(&dev->close_list, &single);
1541 		dev_close_many(&single, true);
1542 		list_del(&single);
1543 	}
1544 }
1545 EXPORT_SYMBOL(dev_close);
1546 
1547 
1548 /**
1549  *	dev_disable_lro - disable Large Receive Offload on a device
1550  *	@dev: device
1551  *
1552  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1553  *	called under RTNL.  This is needed if received packets may be
1554  *	forwarded to another interface.
1555  */
1556 void dev_disable_lro(struct net_device *dev)
1557 {
1558 	struct net_device *lower_dev;
1559 	struct list_head *iter;
1560 
1561 	dev->wanted_features &= ~NETIF_F_LRO;
1562 	netdev_update_features(dev);
1563 
1564 	if (unlikely(dev->features & NETIF_F_LRO))
1565 		netdev_WARN(dev, "failed to disable LRO!\n");
1566 
1567 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1568 		dev_disable_lro(lower_dev);
1569 }
1570 EXPORT_SYMBOL(dev_disable_lro);
1571 
1572 /**
1573  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1574  *	@dev: device
1575  *
1576  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1577  *	called under RTNL.  This is needed if Generic XDP is installed on
1578  *	the device.
1579  */
1580 static void dev_disable_gro_hw(struct net_device *dev)
1581 {
1582 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1583 	netdev_update_features(dev);
1584 
1585 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1586 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1587 }
1588 
1589 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1590 {
1591 #define N(val) 						\
1592 	case NETDEV_##val:				\
1593 		return "NETDEV_" __stringify(val);
1594 	switch (cmd) {
1595 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1596 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1597 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1598 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1599 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1600 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1601 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1602 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1603 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1604 	N(PRE_CHANGEADDR)
1605 	}
1606 #undef N
1607 	return "UNKNOWN_NETDEV_EVENT";
1608 }
1609 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1610 
1611 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1612 				   struct net_device *dev)
1613 {
1614 	struct netdev_notifier_info info = {
1615 		.dev = dev,
1616 	};
1617 
1618 	return nb->notifier_call(nb, val, &info);
1619 }
1620 
1621 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1622 					     struct net_device *dev)
1623 {
1624 	int err;
1625 
1626 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1627 	err = notifier_to_errno(err);
1628 	if (err)
1629 		return err;
1630 
1631 	if (!(dev->flags & IFF_UP))
1632 		return 0;
1633 
1634 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1635 	return 0;
1636 }
1637 
1638 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1639 						struct net_device *dev)
1640 {
1641 	if (dev->flags & IFF_UP) {
1642 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1643 					dev);
1644 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1645 	}
1646 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1647 }
1648 
1649 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1650 						 struct net *net)
1651 {
1652 	struct net_device *dev;
1653 	int err;
1654 
1655 	for_each_netdev(net, dev) {
1656 		err = call_netdevice_register_notifiers(nb, dev);
1657 		if (err)
1658 			goto rollback;
1659 	}
1660 	return 0;
1661 
1662 rollback:
1663 	for_each_netdev_continue_reverse(net, dev)
1664 		call_netdevice_unregister_notifiers(nb, dev);
1665 	return err;
1666 }
1667 
1668 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1669 						    struct net *net)
1670 {
1671 	struct net_device *dev;
1672 
1673 	for_each_netdev(net, dev)
1674 		call_netdevice_unregister_notifiers(nb, dev);
1675 }
1676 
1677 static int dev_boot_phase = 1;
1678 
1679 /**
1680  * register_netdevice_notifier - register a network notifier block
1681  * @nb: notifier
1682  *
1683  * Register a notifier to be called when network device events occur.
1684  * The notifier passed is linked into the kernel structures and must
1685  * not be reused until it has been unregistered. A negative errno code
1686  * is returned on a failure.
1687  *
1688  * When registered all registration and up events are replayed
1689  * to the new notifier to allow device to have a race free
1690  * view of the network device list.
1691  */
1692 
1693 int register_netdevice_notifier(struct notifier_block *nb)
1694 {
1695 	struct net *net;
1696 	int err;
1697 
1698 	/* Close race with setup_net() and cleanup_net() */
1699 	down_write(&pernet_ops_rwsem);
1700 	rtnl_lock();
1701 	err = raw_notifier_chain_register(&netdev_chain, nb);
1702 	if (err)
1703 		goto unlock;
1704 	if (dev_boot_phase)
1705 		goto unlock;
1706 	for_each_net(net) {
1707 		err = call_netdevice_register_net_notifiers(nb, net);
1708 		if (err)
1709 			goto rollback;
1710 	}
1711 
1712 unlock:
1713 	rtnl_unlock();
1714 	up_write(&pernet_ops_rwsem);
1715 	return err;
1716 
1717 rollback:
1718 	for_each_net_continue_reverse(net)
1719 		call_netdevice_unregister_net_notifiers(nb, net);
1720 
1721 	raw_notifier_chain_unregister(&netdev_chain, nb);
1722 	goto unlock;
1723 }
1724 EXPORT_SYMBOL(register_netdevice_notifier);
1725 
1726 /**
1727  * unregister_netdevice_notifier - unregister a network notifier block
1728  * @nb: notifier
1729  *
1730  * Unregister a notifier previously registered by
1731  * register_netdevice_notifier(). The notifier is unlinked into the
1732  * kernel structures and may then be reused. A negative errno code
1733  * is returned on a failure.
1734  *
1735  * After unregistering unregister and down device events are synthesized
1736  * for all devices on the device list to the removed notifier to remove
1737  * the need for special case cleanup code.
1738  */
1739 
1740 int unregister_netdevice_notifier(struct notifier_block *nb)
1741 {
1742 	struct net *net;
1743 	int err;
1744 
1745 	/* Close race with setup_net() and cleanup_net() */
1746 	down_write(&pernet_ops_rwsem);
1747 	rtnl_lock();
1748 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1749 	if (err)
1750 		goto unlock;
1751 
1752 	for_each_net(net)
1753 		call_netdevice_unregister_net_notifiers(nb, net);
1754 
1755 unlock:
1756 	rtnl_unlock();
1757 	up_write(&pernet_ops_rwsem);
1758 	return err;
1759 }
1760 EXPORT_SYMBOL(unregister_netdevice_notifier);
1761 
1762 static int __register_netdevice_notifier_net(struct net *net,
1763 					     struct notifier_block *nb,
1764 					     bool ignore_call_fail)
1765 {
1766 	int err;
1767 
1768 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1769 	if (err)
1770 		return err;
1771 	if (dev_boot_phase)
1772 		return 0;
1773 
1774 	err = call_netdevice_register_net_notifiers(nb, net);
1775 	if (err && !ignore_call_fail)
1776 		goto chain_unregister;
1777 
1778 	return 0;
1779 
1780 chain_unregister:
1781 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1782 	return err;
1783 }
1784 
1785 static int __unregister_netdevice_notifier_net(struct net *net,
1786 					       struct notifier_block *nb)
1787 {
1788 	int err;
1789 
1790 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1791 	if (err)
1792 		return err;
1793 
1794 	call_netdevice_unregister_net_notifiers(nb, net);
1795 	return 0;
1796 }
1797 
1798 /**
1799  * register_netdevice_notifier_net - register a per-netns network notifier block
1800  * @net: network namespace
1801  * @nb: notifier
1802  *
1803  * Register a notifier to be called when network device events occur.
1804  * The notifier passed is linked into the kernel structures and must
1805  * not be reused until it has been unregistered. A negative errno code
1806  * is returned on a failure.
1807  *
1808  * When registered all registration and up events are replayed
1809  * to the new notifier to allow device to have a race free
1810  * view of the network device list.
1811  */
1812 
1813 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1814 {
1815 	int err;
1816 
1817 	rtnl_lock();
1818 	err = __register_netdevice_notifier_net(net, nb, false);
1819 	rtnl_unlock();
1820 	return err;
1821 }
1822 EXPORT_SYMBOL(register_netdevice_notifier_net);
1823 
1824 /**
1825  * unregister_netdevice_notifier_net - unregister a per-netns
1826  *                                     network notifier block
1827  * @net: network namespace
1828  * @nb: notifier
1829  *
1830  * Unregister a notifier previously registered by
1831  * register_netdevice_notifier(). The notifier is unlinked into the
1832  * kernel structures and may then be reused. A negative errno code
1833  * is returned on a failure.
1834  *
1835  * After unregistering unregister and down device events are synthesized
1836  * for all devices on the device list to the removed notifier to remove
1837  * the need for special case cleanup code.
1838  */
1839 
1840 int unregister_netdevice_notifier_net(struct net *net,
1841 				      struct notifier_block *nb)
1842 {
1843 	int err;
1844 
1845 	rtnl_lock();
1846 	err = __unregister_netdevice_notifier_net(net, nb);
1847 	rtnl_unlock();
1848 	return err;
1849 }
1850 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1851 
1852 int register_netdevice_notifier_dev_net(struct net_device *dev,
1853 					struct notifier_block *nb,
1854 					struct netdev_net_notifier *nn)
1855 {
1856 	int err;
1857 
1858 	rtnl_lock();
1859 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1860 	if (!err) {
1861 		nn->nb = nb;
1862 		list_add(&nn->list, &dev->net_notifier_list);
1863 	}
1864 	rtnl_unlock();
1865 	return err;
1866 }
1867 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1868 
1869 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1870 					  struct notifier_block *nb,
1871 					  struct netdev_net_notifier *nn)
1872 {
1873 	int err;
1874 
1875 	rtnl_lock();
1876 	list_del(&nn->list);
1877 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1878 	rtnl_unlock();
1879 	return err;
1880 }
1881 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1882 
1883 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1884 					     struct net *net)
1885 {
1886 	struct netdev_net_notifier *nn;
1887 
1888 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1889 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1890 		__register_netdevice_notifier_net(net, nn->nb, true);
1891 	}
1892 }
1893 
1894 /**
1895  *	call_netdevice_notifiers_info - call all network notifier blocks
1896  *	@val: value passed unmodified to notifier function
1897  *	@info: notifier information data
1898  *
1899  *	Call all network notifier blocks.  Parameters and return value
1900  *	are as for raw_notifier_call_chain().
1901  */
1902 
1903 static int call_netdevice_notifiers_info(unsigned long val,
1904 					 struct netdev_notifier_info *info)
1905 {
1906 	struct net *net = dev_net(info->dev);
1907 	int ret;
1908 
1909 	ASSERT_RTNL();
1910 
1911 	/* Run per-netns notifier block chain first, then run the global one.
1912 	 * Hopefully, one day, the global one is going to be removed after
1913 	 * all notifier block registrators get converted to be per-netns.
1914 	 */
1915 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1916 	if (ret & NOTIFY_STOP_MASK)
1917 		return ret;
1918 	return raw_notifier_call_chain(&netdev_chain, val, info);
1919 }
1920 
1921 static int call_netdevice_notifiers_extack(unsigned long val,
1922 					   struct net_device *dev,
1923 					   struct netlink_ext_ack *extack)
1924 {
1925 	struct netdev_notifier_info info = {
1926 		.dev = dev,
1927 		.extack = extack,
1928 	};
1929 
1930 	return call_netdevice_notifiers_info(val, &info);
1931 }
1932 
1933 /**
1934  *	call_netdevice_notifiers - call all network notifier blocks
1935  *      @val: value passed unmodified to notifier function
1936  *      @dev: net_device pointer passed unmodified to notifier function
1937  *
1938  *	Call all network notifier blocks.  Parameters and return value
1939  *	are as for raw_notifier_call_chain().
1940  */
1941 
1942 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1943 {
1944 	return call_netdevice_notifiers_extack(val, dev, NULL);
1945 }
1946 EXPORT_SYMBOL(call_netdevice_notifiers);
1947 
1948 /**
1949  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1950  *	@val: value passed unmodified to notifier function
1951  *	@dev: net_device pointer passed unmodified to notifier function
1952  *	@arg: additional u32 argument passed to the notifier function
1953  *
1954  *	Call all network notifier blocks.  Parameters and return value
1955  *	are as for raw_notifier_call_chain().
1956  */
1957 static int call_netdevice_notifiers_mtu(unsigned long val,
1958 					struct net_device *dev, u32 arg)
1959 {
1960 	struct netdev_notifier_info_ext info = {
1961 		.info.dev = dev,
1962 		.ext.mtu = arg,
1963 	};
1964 
1965 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1966 
1967 	return call_netdevice_notifiers_info(val, &info.info);
1968 }
1969 
1970 #ifdef CONFIG_NET_INGRESS
1971 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1972 
1973 void net_inc_ingress_queue(void)
1974 {
1975 	static_branch_inc(&ingress_needed_key);
1976 }
1977 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1978 
1979 void net_dec_ingress_queue(void)
1980 {
1981 	static_branch_dec(&ingress_needed_key);
1982 }
1983 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1984 #endif
1985 
1986 #ifdef CONFIG_NET_EGRESS
1987 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1988 
1989 void net_inc_egress_queue(void)
1990 {
1991 	static_branch_inc(&egress_needed_key);
1992 }
1993 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1994 
1995 void net_dec_egress_queue(void)
1996 {
1997 	static_branch_dec(&egress_needed_key);
1998 }
1999 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2000 #endif
2001 
2002 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2003 #ifdef CONFIG_JUMP_LABEL
2004 static atomic_t netstamp_needed_deferred;
2005 static atomic_t netstamp_wanted;
2006 static void netstamp_clear(struct work_struct *work)
2007 {
2008 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2009 	int wanted;
2010 
2011 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2012 	if (wanted > 0)
2013 		static_branch_enable(&netstamp_needed_key);
2014 	else
2015 		static_branch_disable(&netstamp_needed_key);
2016 }
2017 static DECLARE_WORK(netstamp_work, netstamp_clear);
2018 #endif
2019 
2020 void net_enable_timestamp(void)
2021 {
2022 #ifdef CONFIG_JUMP_LABEL
2023 	int wanted;
2024 
2025 	while (1) {
2026 		wanted = atomic_read(&netstamp_wanted);
2027 		if (wanted <= 0)
2028 			break;
2029 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2030 			return;
2031 	}
2032 	atomic_inc(&netstamp_needed_deferred);
2033 	schedule_work(&netstamp_work);
2034 #else
2035 	static_branch_inc(&netstamp_needed_key);
2036 #endif
2037 }
2038 EXPORT_SYMBOL(net_enable_timestamp);
2039 
2040 void net_disable_timestamp(void)
2041 {
2042 #ifdef CONFIG_JUMP_LABEL
2043 	int wanted;
2044 
2045 	while (1) {
2046 		wanted = atomic_read(&netstamp_wanted);
2047 		if (wanted <= 1)
2048 			break;
2049 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2050 			return;
2051 	}
2052 	atomic_dec(&netstamp_needed_deferred);
2053 	schedule_work(&netstamp_work);
2054 #else
2055 	static_branch_dec(&netstamp_needed_key);
2056 #endif
2057 }
2058 EXPORT_SYMBOL(net_disable_timestamp);
2059 
2060 static inline void net_timestamp_set(struct sk_buff *skb)
2061 {
2062 	skb->tstamp = 0;
2063 	if (static_branch_unlikely(&netstamp_needed_key))
2064 		__net_timestamp(skb);
2065 }
2066 
2067 #define net_timestamp_check(COND, SKB)				\
2068 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2069 		if ((COND) && !(SKB)->tstamp)			\
2070 			__net_timestamp(SKB);			\
2071 	}							\
2072 
2073 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2074 {
2075 	return __is_skb_forwardable(dev, skb, true);
2076 }
2077 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2078 
2079 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2080 			      bool check_mtu)
2081 {
2082 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2083 
2084 	if (likely(!ret)) {
2085 		skb->protocol = eth_type_trans(skb, dev);
2086 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2087 	}
2088 
2089 	return ret;
2090 }
2091 
2092 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2093 {
2094 	return __dev_forward_skb2(dev, skb, true);
2095 }
2096 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2097 
2098 /**
2099  * dev_forward_skb - loopback an skb to another netif
2100  *
2101  * @dev: destination network device
2102  * @skb: buffer to forward
2103  *
2104  * return values:
2105  *	NET_RX_SUCCESS	(no congestion)
2106  *	NET_RX_DROP     (packet was dropped, but freed)
2107  *
2108  * dev_forward_skb can be used for injecting an skb from the
2109  * start_xmit function of one device into the receive queue
2110  * of another device.
2111  *
2112  * The receiving device may be in another namespace, so
2113  * we have to clear all information in the skb that could
2114  * impact namespace isolation.
2115  */
2116 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2117 {
2118 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2119 }
2120 EXPORT_SYMBOL_GPL(dev_forward_skb);
2121 
2122 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2123 {
2124 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2125 }
2126 
2127 static inline int deliver_skb(struct sk_buff *skb,
2128 			      struct packet_type *pt_prev,
2129 			      struct net_device *orig_dev)
2130 {
2131 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2132 		return -ENOMEM;
2133 	refcount_inc(&skb->users);
2134 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2135 }
2136 
2137 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2138 					  struct packet_type **pt,
2139 					  struct net_device *orig_dev,
2140 					  __be16 type,
2141 					  struct list_head *ptype_list)
2142 {
2143 	struct packet_type *ptype, *pt_prev = *pt;
2144 
2145 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2146 		if (ptype->type != type)
2147 			continue;
2148 		if (pt_prev)
2149 			deliver_skb(skb, pt_prev, orig_dev);
2150 		pt_prev = ptype;
2151 	}
2152 	*pt = pt_prev;
2153 }
2154 
2155 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2156 {
2157 	if (!ptype->af_packet_priv || !skb->sk)
2158 		return false;
2159 
2160 	if (ptype->id_match)
2161 		return ptype->id_match(ptype, skb->sk);
2162 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2163 		return true;
2164 
2165 	return false;
2166 }
2167 
2168 /**
2169  * dev_nit_active - return true if any network interface taps are in use
2170  *
2171  * @dev: network device to check for the presence of taps
2172  */
2173 bool dev_nit_active(struct net_device *dev)
2174 {
2175 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2176 }
2177 EXPORT_SYMBOL_GPL(dev_nit_active);
2178 
2179 /*
2180  *	Support routine. Sends outgoing frames to any network
2181  *	taps currently in use.
2182  */
2183 
2184 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2185 {
2186 	struct packet_type *ptype;
2187 	struct sk_buff *skb2 = NULL;
2188 	struct packet_type *pt_prev = NULL;
2189 	struct list_head *ptype_list = &ptype_all;
2190 
2191 	rcu_read_lock();
2192 again:
2193 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2194 		if (ptype->ignore_outgoing)
2195 			continue;
2196 
2197 		/* Never send packets back to the socket
2198 		 * they originated from - MvS (miquels@drinkel.ow.org)
2199 		 */
2200 		if (skb_loop_sk(ptype, skb))
2201 			continue;
2202 
2203 		if (pt_prev) {
2204 			deliver_skb(skb2, pt_prev, skb->dev);
2205 			pt_prev = ptype;
2206 			continue;
2207 		}
2208 
2209 		/* need to clone skb, done only once */
2210 		skb2 = skb_clone(skb, GFP_ATOMIC);
2211 		if (!skb2)
2212 			goto out_unlock;
2213 
2214 		net_timestamp_set(skb2);
2215 
2216 		/* skb->nh should be correctly
2217 		 * set by sender, so that the second statement is
2218 		 * just protection against buggy protocols.
2219 		 */
2220 		skb_reset_mac_header(skb2);
2221 
2222 		if (skb_network_header(skb2) < skb2->data ||
2223 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2224 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2225 					     ntohs(skb2->protocol),
2226 					     dev->name);
2227 			skb_reset_network_header(skb2);
2228 		}
2229 
2230 		skb2->transport_header = skb2->network_header;
2231 		skb2->pkt_type = PACKET_OUTGOING;
2232 		pt_prev = ptype;
2233 	}
2234 
2235 	if (ptype_list == &ptype_all) {
2236 		ptype_list = &dev->ptype_all;
2237 		goto again;
2238 	}
2239 out_unlock:
2240 	if (pt_prev) {
2241 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2242 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2243 		else
2244 			kfree_skb(skb2);
2245 	}
2246 	rcu_read_unlock();
2247 }
2248 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2249 
2250 /**
2251  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2252  * @dev: Network device
2253  * @txq: number of queues available
2254  *
2255  * If real_num_tx_queues is changed the tc mappings may no longer be
2256  * valid. To resolve this verify the tc mapping remains valid and if
2257  * not NULL the mapping. With no priorities mapping to this
2258  * offset/count pair it will no longer be used. In the worst case TC0
2259  * is invalid nothing can be done so disable priority mappings. If is
2260  * expected that drivers will fix this mapping if they can before
2261  * calling netif_set_real_num_tx_queues.
2262  */
2263 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2264 {
2265 	int i;
2266 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2267 
2268 	/* If TC0 is invalidated disable TC mapping */
2269 	if (tc->offset + tc->count > txq) {
2270 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2271 		dev->num_tc = 0;
2272 		return;
2273 	}
2274 
2275 	/* Invalidated prio to tc mappings set to TC0 */
2276 	for (i = 1; i < TC_BITMASK + 1; i++) {
2277 		int q = netdev_get_prio_tc_map(dev, i);
2278 
2279 		tc = &dev->tc_to_txq[q];
2280 		if (tc->offset + tc->count > txq) {
2281 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2282 				    i, q);
2283 			netdev_set_prio_tc_map(dev, i, 0);
2284 		}
2285 	}
2286 }
2287 
2288 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2289 {
2290 	if (dev->num_tc) {
2291 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2292 		int i;
2293 
2294 		/* walk through the TCs and see if it falls into any of them */
2295 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2296 			if ((txq - tc->offset) < tc->count)
2297 				return i;
2298 		}
2299 
2300 		/* didn't find it, just return -1 to indicate no match */
2301 		return -1;
2302 	}
2303 
2304 	return 0;
2305 }
2306 EXPORT_SYMBOL(netdev_txq_to_tc);
2307 
2308 #ifdef CONFIG_XPS
2309 static struct static_key xps_needed __read_mostly;
2310 static struct static_key xps_rxqs_needed __read_mostly;
2311 static DEFINE_MUTEX(xps_map_mutex);
2312 #define xmap_dereference(P)		\
2313 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2314 
2315 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2316 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2317 {
2318 	struct xps_map *map = NULL;
2319 	int pos;
2320 
2321 	if (dev_maps)
2322 		map = xmap_dereference(dev_maps->attr_map[tci]);
2323 	if (!map)
2324 		return false;
2325 
2326 	for (pos = map->len; pos--;) {
2327 		if (map->queues[pos] != index)
2328 			continue;
2329 
2330 		if (map->len > 1) {
2331 			map->queues[pos] = map->queues[--map->len];
2332 			break;
2333 		}
2334 
2335 		if (old_maps)
2336 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2337 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2338 		kfree_rcu(map, rcu);
2339 		return false;
2340 	}
2341 
2342 	return true;
2343 }
2344 
2345 static bool remove_xps_queue_cpu(struct net_device *dev,
2346 				 struct xps_dev_maps *dev_maps,
2347 				 int cpu, u16 offset, u16 count)
2348 {
2349 	int num_tc = dev_maps->num_tc;
2350 	bool active = false;
2351 	int tci;
2352 
2353 	for (tci = cpu * num_tc; num_tc--; tci++) {
2354 		int i, j;
2355 
2356 		for (i = count, j = offset; i--; j++) {
2357 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2358 				break;
2359 		}
2360 
2361 		active |= i < 0;
2362 	}
2363 
2364 	return active;
2365 }
2366 
2367 static void reset_xps_maps(struct net_device *dev,
2368 			   struct xps_dev_maps *dev_maps,
2369 			   enum xps_map_type type)
2370 {
2371 	static_key_slow_dec_cpuslocked(&xps_needed);
2372 	if (type == XPS_RXQS)
2373 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2374 
2375 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2376 
2377 	kfree_rcu(dev_maps, rcu);
2378 }
2379 
2380 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2381 			   u16 offset, u16 count)
2382 {
2383 	struct xps_dev_maps *dev_maps;
2384 	bool active = false;
2385 	int i, j;
2386 
2387 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2388 	if (!dev_maps)
2389 		return;
2390 
2391 	for (j = 0; j < dev_maps->nr_ids; j++)
2392 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2393 	if (!active)
2394 		reset_xps_maps(dev, dev_maps, type);
2395 
2396 	if (type == XPS_CPUS) {
2397 		for (i = offset + (count - 1); count--; i--)
2398 			netdev_queue_numa_node_write(
2399 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2400 	}
2401 }
2402 
2403 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2404 				   u16 count)
2405 {
2406 	if (!static_key_false(&xps_needed))
2407 		return;
2408 
2409 	cpus_read_lock();
2410 	mutex_lock(&xps_map_mutex);
2411 
2412 	if (static_key_false(&xps_rxqs_needed))
2413 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2414 
2415 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2416 
2417 	mutex_unlock(&xps_map_mutex);
2418 	cpus_read_unlock();
2419 }
2420 
2421 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2422 {
2423 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2424 }
2425 
2426 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2427 				      u16 index, bool is_rxqs_map)
2428 {
2429 	struct xps_map *new_map;
2430 	int alloc_len = XPS_MIN_MAP_ALLOC;
2431 	int i, pos;
2432 
2433 	for (pos = 0; map && pos < map->len; pos++) {
2434 		if (map->queues[pos] != index)
2435 			continue;
2436 		return map;
2437 	}
2438 
2439 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2440 	if (map) {
2441 		if (pos < map->alloc_len)
2442 			return map;
2443 
2444 		alloc_len = map->alloc_len * 2;
2445 	}
2446 
2447 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2448 	 *  map
2449 	 */
2450 	if (is_rxqs_map)
2451 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2452 	else
2453 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2454 				       cpu_to_node(attr_index));
2455 	if (!new_map)
2456 		return NULL;
2457 
2458 	for (i = 0; i < pos; i++)
2459 		new_map->queues[i] = map->queues[i];
2460 	new_map->alloc_len = alloc_len;
2461 	new_map->len = pos;
2462 
2463 	return new_map;
2464 }
2465 
2466 /* Copy xps maps at a given index */
2467 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2468 			      struct xps_dev_maps *new_dev_maps, int index,
2469 			      int tc, bool skip_tc)
2470 {
2471 	int i, tci = index * dev_maps->num_tc;
2472 	struct xps_map *map;
2473 
2474 	/* copy maps belonging to foreign traffic classes */
2475 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2476 		if (i == tc && skip_tc)
2477 			continue;
2478 
2479 		/* fill in the new device map from the old device map */
2480 		map = xmap_dereference(dev_maps->attr_map[tci]);
2481 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2482 	}
2483 }
2484 
2485 /* Must be called under cpus_read_lock */
2486 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2487 			  u16 index, enum xps_map_type type)
2488 {
2489 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2490 	const unsigned long *online_mask = NULL;
2491 	bool active = false, copy = false;
2492 	int i, j, tci, numa_node_id = -2;
2493 	int maps_sz, num_tc = 1, tc = 0;
2494 	struct xps_map *map, *new_map;
2495 	unsigned int nr_ids;
2496 
2497 	if (dev->num_tc) {
2498 		/* Do not allow XPS on subordinate device directly */
2499 		num_tc = dev->num_tc;
2500 		if (num_tc < 0)
2501 			return -EINVAL;
2502 
2503 		/* If queue belongs to subordinate dev use its map */
2504 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2505 
2506 		tc = netdev_txq_to_tc(dev, index);
2507 		if (tc < 0)
2508 			return -EINVAL;
2509 	}
2510 
2511 	mutex_lock(&xps_map_mutex);
2512 
2513 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2514 	if (type == XPS_RXQS) {
2515 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2516 		nr_ids = dev->num_rx_queues;
2517 	} else {
2518 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2519 		if (num_possible_cpus() > 1)
2520 			online_mask = cpumask_bits(cpu_online_mask);
2521 		nr_ids = nr_cpu_ids;
2522 	}
2523 
2524 	if (maps_sz < L1_CACHE_BYTES)
2525 		maps_sz = L1_CACHE_BYTES;
2526 
2527 	/* The old dev_maps could be larger or smaller than the one we're
2528 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2529 	 * between. We could try to be smart, but let's be safe instead and only
2530 	 * copy foreign traffic classes if the two map sizes match.
2531 	 */
2532 	if (dev_maps &&
2533 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2534 		copy = true;
2535 
2536 	/* allocate memory for queue storage */
2537 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2538 	     j < nr_ids;) {
2539 		if (!new_dev_maps) {
2540 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2541 			if (!new_dev_maps) {
2542 				mutex_unlock(&xps_map_mutex);
2543 				return -ENOMEM;
2544 			}
2545 
2546 			new_dev_maps->nr_ids = nr_ids;
2547 			new_dev_maps->num_tc = num_tc;
2548 		}
2549 
2550 		tci = j * num_tc + tc;
2551 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2552 
2553 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2554 		if (!map)
2555 			goto error;
2556 
2557 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2558 	}
2559 
2560 	if (!new_dev_maps)
2561 		goto out_no_new_maps;
2562 
2563 	if (!dev_maps) {
2564 		/* Increment static keys at most once per type */
2565 		static_key_slow_inc_cpuslocked(&xps_needed);
2566 		if (type == XPS_RXQS)
2567 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2568 	}
2569 
2570 	for (j = 0; j < nr_ids; j++) {
2571 		bool skip_tc = false;
2572 
2573 		tci = j * num_tc + tc;
2574 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2575 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2576 			/* add tx-queue to CPU/rx-queue maps */
2577 			int pos = 0;
2578 
2579 			skip_tc = true;
2580 
2581 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2582 			while ((pos < map->len) && (map->queues[pos] != index))
2583 				pos++;
2584 
2585 			if (pos == map->len)
2586 				map->queues[map->len++] = index;
2587 #ifdef CONFIG_NUMA
2588 			if (type == XPS_CPUS) {
2589 				if (numa_node_id == -2)
2590 					numa_node_id = cpu_to_node(j);
2591 				else if (numa_node_id != cpu_to_node(j))
2592 					numa_node_id = -1;
2593 			}
2594 #endif
2595 		}
2596 
2597 		if (copy)
2598 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2599 					  skip_tc);
2600 	}
2601 
2602 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2603 
2604 	/* Cleanup old maps */
2605 	if (!dev_maps)
2606 		goto out_no_old_maps;
2607 
2608 	for (j = 0; j < dev_maps->nr_ids; j++) {
2609 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2610 			map = xmap_dereference(dev_maps->attr_map[tci]);
2611 			if (!map)
2612 				continue;
2613 
2614 			if (copy) {
2615 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2616 				if (map == new_map)
2617 					continue;
2618 			}
2619 
2620 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2621 			kfree_rcu(map, rcu);
2622 		}
2623 	}
2624 
2625 	old_dev_maps = dev_maps;
2626 
2627 out_no_old_maps:
2628 	dev_maps = new_dev_maps;
2629 	active = true;
2630 
2631 out_no_new_maps:
2632 	if (type == XPS_CPUS)
2633 		/* update Tx queue numa node */
2634 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2635 					     (numa_node_id >= 0) ?
2636 					     numa_node_id : NUMA_NO_NODE);
2637 
2638 	if (!dev_maps)
2639 		goto out_no_maps;
2640 
2641 	/* removes tx-queue from unused CPUs/rx-queues */
2642 	for (j = 0; j < dev_maps->nr_ids; j++) {
2643 		tci = j * dev_maps->num_tc;
2644 
2645 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2646 			if (i == tc &&
2647 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2648 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2649 				continue;
2650 
2651 			active |= remove_xps_queue(dev_maps,
2652 						   copy ? old_dev_maps : NULL,
2653 						   tci, index);
2654 		}
2655 	}
2656 
2657 	if (old_dev_maps)
2658 		kfree_rcu(old_dev_maps, rcu);
2659 
2660 	/* free map if not active */
2661 	if (!active)
2662 		reset_xps_maps(dev, dev_maps, type);
2663 
2664 out_no_maps:
2665 	mutex_unlock(&xps_map_mutex);
2666 
2667 	return 0;
2668 error:
2669 	/* remove any maps that we added */
2670 	for (j = 0; j < nr_ids; j++) {
2671 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2672 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2673 			map = copy ?
2674 			      xmap_dereference(dev_maps->attr_map[tci]) :
2675 			      NULL;
2676 			if (new_map && new_map != map)
2677 				kfree(new_map);
2678 		}
2679 	}
2680 
2681 	mutex_unlock(&xps_map_mutex);
2682 
2683 	kfree(new_dev_maps);
2684 	return -ENOMEM;
2685 }
2686 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2687 
2688 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2689 			u16 index)
2690 {
2691 	int ret;
2692 
2693 	cpus_read_lock();
2694 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2695 	cpus_read_unlock();
2696 
2697 	return ret;
2698 }
2699 EXPORT_SYMBOL(netif_set_xps_queue);
2700 
2701 #endif
2702 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2703 {
2704 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2705 
2706 	/* Unbind any subordinate channels */
2707 	while (txq-- != &dev->_tx[0]) {
2708 		if (txq->sb_dev)
2709 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2710 	}
2711 }
2712 
2713 void netdev_reset_tc(struct net_device *dev)
2714 {
2715 #ifdef CONFIG_XPS
2716 	netif_reset_xps_queues_gt(dev, 0);
2717 #endif
2718 	netdev_unbind_all_sb_channels(dev);
2719 
2720 	/* Reset TC configuration of device */
2721 	dev->num_tc = 0;
2722 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2723 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2724 }
2725 EXPORT_SYMBOL(netdev_reset_tc);
2726 
2727 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2728 {
2729 	if (tc >= dev->num_tc)
2730 		return -EINVAL;
2731 
2732 #ifdef CONFIG_XPS
2733 	netif_reset_xps_queues(dev, offset, count);
2734 #endif
2735 	dev->tc_to_txq[tc].count = count;
2736 	dev->tc_to_txq[tc].offset = offset;
2737 	return 0;
2738 }
2739 EXPORT_SYMBOL(netdev_set_tc_queue);
2740 
2741 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2742 {
2743 	if (num_tc > TC_MAX_QUEUE)
2744 		return -EINVAL;
2745 
2746 #ifdef CONFIG_XPS
2747 	netif_reset_xps_queues_gt(dev, 0);
2748 #endif
2749 	netdev_unbind_all_sb_channels(dev);
2750 
2751 	dev->num_tc = num_tc;
2752 	return 0;
2753 }
2754 EXPORT_SYMBOL(netdev_set_num_tc);
2755 
2756 void netdev_unbind_sb_channel(struct net_device *dev,
2757 			      struct net_device *sb_dev)
2758 {
2759 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760 
2761 #ifdef CONFIG_XPS
2762 	netif_reset_xps_queues_gt(sb_dev, 0);
2763 #endif
2764 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2765 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2766 
2767 	while (txq-- != &dev->_tx[0]) {
2768 		if (txq->sb_dev == sb_dev)
2769 			txq->sb_dev = NULL;
2770 	}
2771 }
2772 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2773 
2774 int netdev_bind_sb_channel_queue(struct net_device *dev,
2775 				 struct net_device *sb_dev,
2776 				 u8 tc, u16 count, u16 offset)
2777 {
2778 	/* Make certain the sb_dev and dev are already configured */
2779 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2780 		return -EINVAL;
2781 
2782 	/* We cannot hand out queues we don't have */
2783 	if ((offset + count) > dev->real_num_tx_queues)
2784 		return -EINVAL;
2785 
2786 	/* Record the mapping */
2787 	sb_dev->tc_to_txq[tc].count = count;
2788 	sb_dev->tc_to_txq[tc].offset = offset;
2789 
2790 	/* Provide a way for Tx queue to find the tc_to_txq map or
2791 	 * XPS map for itself.
2792 	 */
2793 	while (count--)
2794 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2795 
2796 	return 0;
2797 }
2798 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2799 
2800 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2801 {
2802 	/* Do not use a multiqueue device to represent a subordinate channel */
2803 	if (netif_is_multiqueue(dev))
2804 		return -ENODEV;
2805 
2806 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2807 	 * Channel 0 is meant to be "native" mode and used only to represent
2808 	 * the main root device. We allow writing 0 to reset the device back
2809 	 * to normal mode after being used as a subordinate channel.
2810 	 */
2811 	if (channel > S16_MAX)
2812 		return -EINVAL;
2813 
2814 	dev->num_tc = -channel;
2815 
2816 	return 0;
2817 }
2818 EXPORT_SYMBOL(netdev_set_sb_channel);
2819 
2820 /*
2821  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2822  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2823  */
2824 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2825 {
2826 	bool disabling;
2827 	int rc;
2828 
2829 	disabling = txq < dev->real_num_tx_queues;
2830 
2831 	if (txq < 1 || txq > dev->num_tx_queues)
2832 		return -EINVAL;
2833 
2834 	if (dev->reg_state == NETREG_REGISTERED ||
2835 	    dev->reg_state == NETREG_UNREGISTERING) {
2836 		ASSERT_RTNL();
2837 
2838 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2839 						  txq);
2840 		if (rc)
2841 			return rc;
2842 
2843 		if (dev->num_tc)
2844 			netif_setup_tc(dev, txq);
2845 
2846 		dev_qdisc_change_real_num_tx(dev, txq);
2847 
2848 		dev->real_num_tx_queues = txq;
2849 
2850 		if (disabling) {
2851 			synchronize_net();
2852 			qdisc_reset_all_tx_gt(dev, txq);
2853 #ifdef CONFIG_XPS
2854 			netif_reset_xps_queues_gt(dev, txq);
2855 #endif
2856 		}
2857 	} else {
2858 		dev->real_num_tx_queues = txq;
2859 	}
2860 
2861 	return 0;
2862 }
2863 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2864 
2865 #ifdef CONFIG_SYSFS
2866 /**
2867  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2868  *	@dev: Network device
2869  *	@rxq: Actual number of RX queues
2870  *
2871  *	This must be called either with the rtnl_lock held or before
2872  *	registration of the net device.  Returns 0 on success, or a
2873  *	negative error code.  If called before registration, it always
2874  *	succeeds.
2875  */
2876 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2877 {
2878 	int rc;
2879 
2880 	if (rxq < 1 || rxq > dev->num_rx_queues)
2881 		return -EINVAL;
2882 
2883 	if (dev->reg_state == NETREG_REGISTERED) {
2884 		ASSERT_RTNL();
2885 
2886 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2887 						  rxq);
2888 		if (rc)
2889 			return rc;
2890 	}
2891 
2892 	dev->real_num_rx_queues = rxq;
2893 	return 0;
2894 }
2895 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2896 #endif
2897 
2898 /**
2899  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2900  *	@dev: Network device
2901  *	@txq: Actual number of TX queues
2902  *	@rxq: Actual number of RX queues
2903  *
2904  *	Set the real number of both TX and RX queues.
2905  *	Does nothing if the number of queues is already correct.
2906  */
2907 int netif_set_real_num_queues(struct net_device *dev,
2908 			      unsigned int txq, unsigned int rxq)
2909 {
2910 	unsigned int old_rxq = dev->real_num_rx_queues;
2911 	int err;
2912 
2913 	if (txq < 1 || txq > dev->num_tx_queues ||
2914 	    rxq < 1 || rxq > dev->num_rx_queues)
2915 		return -EINVAL;
2916 
2917 	/* Start from increases, so the error path only does decreases -
2918 	 * decreases can't fail.
2919 	 */
2920 	if (rxq > dev->real_num_rx_queues) {
2921 		err = netif_set_real_num_rx_queues(dev, rxq);
2922 		if (err)
2923 			return err;
2924 	}
2925 	if (txq > dev->real_num_tx_queues) {
2926 		err = netif_set_real_num_tx_queues(dev, txq);
2927 		if (err)
2928 			goto undo_rx;
2929 	}
2930 	if (rxq < dev->real_num_rx_queues)
2931 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2932 	if (txq < dev->real_num_tx_queues)
2933 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2934 
2935 	return 0;
2936 undo_rx:
2937 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2938 	return err;
2939 }
2940 EXPORT_SYMBOL(netif_set_real_num_queues);
2941 
2942 /**
2943  * netif_get_num_default_rss_queues - default number of RSS queues
2944  *
2945  * This routine should set an upper limit on the number of RSS queues
2946  * used by default by multiqueue devices.
2947  */
2948 int netif_get_num_default_rss_queues(void)
2949 {
2950 	return is_kdump_kernel() ?
2951 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2952 }
2953 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2954 
2955 static void __netif_reschedule(struct Qdisc *q)
2956 {
2957 	struct softnet_data *sd;
2958 	unsigned long flags;
2959 
2960 	local_irq_save(flags);
2961 	sd = this_cpu_ptr(&softnet_data);
2962 	q->next_sched = NULL;
2963 	*sd->output_queue_tailp = q;
2964 	sd->output_queue_tailp = &q->next_sched;
2965 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2966 	local_irq_restore(flags);
2967 }
2968 
2969 void __netif_schedule(struct Qdisc *q)
2970 {
2971 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2972 		__netif_reschedule(q);
2973 }
2974 EXPORT_SYMBOL(__netif_schedule);
2975 
2976 struct dev_kfree_skb_cb {
2977 	enum skb_free_reason reason;
2978 };
2979 
2980 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2981 {
2982 	return (struct dev_kfree_skb_cb *)skb->cb;
2983 }
2984 
2985 void netif_schedule_queue(struct netdev_queue *txq)
2986 {
2987 	rcu_read_lock();
2988 	if (!netif_xmit_stopped(txq)) {
2989 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2990 
2991 		__netif_schedule(q);
2992 	}
2993 	rcu_read_unlock();
2994 }
2995 EXPORT_SYMBOL(netif_schedule_queue);
2996 
2997 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2998 {
2999 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3000 		struct Qdisc *q;
3001 
3002 		rcu_read_lock();
3003 		q = rcu_dereference(dev_queue->qdisc);
3004 		__netif_schedule(q);
3005 		rcu_read_unlock();
3006 	}
3007 }
3008 EXPORT_SYMBOL(netif_tx_wake_queue);
3009 
3010 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3011 {
3012 	unsigned long flags;
3013 
3014 	if (unlikely(!skb))
3015 		return;
3016 
3017 	if (likely(refcount_read(&skb->users) == 1)) {
3018 		smp_rmb();
3019 		refcount_set(&skb->users, 0);
3020 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3021 		return;
3022 	}
3023 	get_kfree_skb_cb(skb)->reason = reason;
3024 	local_irq_save(flags);
3025 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3026 	__this_cpu_write(softnet_data.completion_queue, skb);
3027 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3028 	local_irq_restore(flags);
3029 }
3030 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3031 
3032 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3033 {
3034 	if (in_hardirq() || irqs_disabled())
3035 		__dev_kfree_skb_irq(skb, reason);
3036 	else
3037 		dev_kfree_skb(skb);
3038 }
3039 EXPORT_SYMBOL(__dev_kfree_skb_any);
3040 
3041 
3042 /**
3043  * netif_device_detach - mark device as removed
3044  * @dev: network device
3045  *
3046  * Mark device as removed from system and therefore no longer available.
3047  */
3048 void netif_device_detach(struct net_device *dev)
3049 {
3050 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3051 	    netif_running(dev)) {
3052 		netif_tx_stop_all_queues(dev);
3053 	}
3054 }
3055 EXPORT_SYMBOL(netif_device_detach);
3056 
3057 /**
3058  * netif_device_attach - mark device as attached
3059  * @dev: network device
3060  *
3061  * Mark device as attached from system and restart if needed.
3062  */
3063 void netif_device_attach(struct net_device *dev)
3064 {
3065 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3066 	    netif_running(dev)) {
3067 		netif_tx_wake_all_queues(dev);
3068 		__netdev_watchdog_up(dev);
3069 	}
3070 }
3071 EXPORT_SYMBOL(netif_device_attach);
3072 
3073 /*
3074  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3075  * to be used as a distribution range.
3076  */
3077 static u16 skb_tx_hash(const struct net_device *dev,
3078 		       const struct net_device *sb_dev,
3079 		       struct sk_buff *skb)
3080 {
3081 	u32 hash;
3082 	u16 qoffset = 0;
3083 	u16 qcount = dev->real_num_tx_queues;
3084 
3085 	if (dev->num_tc) {
3086 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3087 
3088 		qoffset = sb_dev->tc_to_txq[tc].offset;
3089 		qcount = sb_dev->tc_to_txq[tc].count;
3090 		if (unlikely(!qcount)) {
3091 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3092 					     sb_dev->name, qoffset, tc);
3093 			qoffset = 0;
3094 			qcount = dev->real_num_tx_queues;
3095 		}
3096 	}
3097 
3098 	if (skb_rx_queue_recorded(skb)) {
3099 		hash = skb_get_rx_queue(skb);
3100 		if (hash >= qoffset)
3101 			hash -= qoffset;
3102 		while (unlikely(hash >= qcount))
3103 			hash -= qcount;
3104 		return hash + qoffset;
3105 	}
3106 
3107 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3108 }
3109 
3110 static void skb_warn_bad_offload(const struct sk_buff *skb)
3111 {
3112 	static const netdev_features_t null_features;
3113 	struct net_device *dev = skb->dev;
3114 	const char *name = "";
3115 
3116 	if (!net_ratelimit())
3117 		return;
3118 
3119 	if (dev) {
3120 		if (dev->dev.parent)
3121 			name = dev_driver_string(dev->dev.parent);
3122 		else
3123 			name = netdev_name(dev);
3124 	}
3125 	skb_dump(KERN_WARNING, skb, false);
3126 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3127 	     name, dev ? &dev->features : &null_features,
3128 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3129 }
3130 
3131 /*
3132  * Invalidate hardware checksum when packet is to be mangled, and
3133  * complete checksum manually on outgoing path.
3134  */
3135 int skb_checksum_help(struct sk_buff *skb)
3136 {
3137 	__wsum csum;
3138 	int ret = 0, offset;
3139 
3140 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3141 		goto out_set_summed;
3142 
3143 	if (unlikely(skb_is_gso(skb))) {
3144 		skb_warn_bad_offload(skb);
3145 		return -EINVAL;
3146 	}
3147 
3148 	/* Before computing a checksum, we should make sure no frag could
3149 	 * be modified by an external entity : checksum could be wrong.
3150 	 */
3151 	if (skb_has_shared_frag(skb)) {
3152 		ret = __skb_linearize(skb);
3153 		if (ret)
3154 			goto out;
3155 	}
3156 
3157 	offset = skb_checksum_start_offset(skb);
3158 	BUG_ON(offset >= skb_headlen(skb));
3159 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3160 
3161 	offset += skb->csum_offset;
3162 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3163 
3164 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3165 	if (ret)
3166 		goto out;
3167 
3168 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3169 out_set_summed:
3170 	skb->ip_summed = CHECKSUM_NONE;
3171 out:
3172 	return ret;
3173 }
3174 EXPORT_SYMBOL(skb_checksum_help);
3175 
3176 int skb_crc32c_csum_help(struct sk_buff *skb)
3177 {
3178 	__le32 crc32c_csum;
3179 	int ret = 0, offset, start;
3180 
3181 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3182 		goto out;
3183 
3184 	if (unlikely(skb_is_gso(skb)))
3185 		goto out;
3186 
3187 	/* Before computing a checksum, we should make sure no frag could
3188 	 * be modified by an external entity : checksum could be wrong.
3189 	 */
3190 	if (unlikely(skb_has_shared_frag(skb))) {
3191 		ret = __skb_linearize(skb);
3192 		if (ret)
3193 			goto out;
3194 	}
3195 	start = skb_checksum_start_offset(skb);
3196 	offset = start + offsetof(struct sctphdr, checksum);
3197 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3198 		ret = -EINVAL;
3199 		goto out;
3200 	}
3201 
3202 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3203 	if (ret)
3204 		goto out;
3205 
3206 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3207 						  skb->len - start, ~(__u32)0,
3208 						  crc32c_csum_stub));
3209 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3210 	skb->ip_summed = CHECKSUM_NONE;
3211 	skb->csum_not_inet = 0;
3212 out:
3213 	return ret;
3214 }
3215 
3216 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3217 {
3218 	__be16 type = skb->protocol;
3219 
3220 	/* Tunnel gso handlers can set protocol to ethernet. */
3221 	if (type == htons(ETH_P_TEB)) {
3222 		struct ethhdr *eth;
3223 
3224 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3225 			return 0;
3226 
3227 		eth = (struct ethhdr *)skb->data;
3228 		type = eth->h_proto;
3229 	}
3230 
3231 	return __vlan_get_protocol(skb, type, depth);
3232 }
3233 
3234 /* openvswitch calls this on rx path, so we need a different check.
3235  */
3236 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3237 {
3238 	if (tx_path)
3239 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3240 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3241 
3242 	return skb->ip_summed == CHECKSUM_NONE;
3243 }
3244 
3245 /**
3246  *	__skb_gso_segment - Perform segmentation on skb.
3247  *	@skb: buffer to segment
3248  *	@features: features for the output path (see dev->features)
3249  *	@tx_path: whether it is called in TX path
3250  *
3251  *	This function segments the given skb and returns a list of segments.
3252  *
3253  *	It may return NULL if the skb requires no segmentation.  This is
3254  *	only possible when GSO is used for verifying header integrity.
3255  *
3256  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3257  */
3258 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3259 				  netdev_features_t features, bool tx_path)
3260 {
3261 	struct sk_buff *segs;
3262 
3263 	if (unlikely(skb_needs_check(skb, tx_path))) {
3264 		int err;
3265 
3266 		/* We're going to init ->check field in TCP or UDP header */
3267 		err = skb_cow_head(skb, 0);
3268 		if (err < 0)
3269 			return ERR_PTR(err);
3270 	}
3271 
3272 	/* Only report GSO partial support if it will enable us to
3273 	 * support segmentation on this frame without needing additional
3274 	 * work.
3275 	 */
3276 	if (features & NETIF_F_GSO_PARTIAL) {
3277 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3278 		struct net_device *dev = skb->dev;
3279 
3280 		partial_features |= dev->features & dev->gso_partial_features;
3281 		if (!skb_gso_ok(skb, features | partial_features))
3282 			features &= ~NETIF_F_GSO_PARTIAL;
3283 	}
3284 
3285 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3286 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3287 
3288 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3289 	SKB_GSO_CB(skb)->encap_level = 0;
3290 
3291 	skb_reset_mac_header(skb);
3292 	skb_reset_mac_len(skb);
3293 
3294 	segs = skb_mac_gso_segment(skb, features);
3295 
3296 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3297 		skb_warn_bad_offload(skb);
3298 
3299 	return segs;
3300 }
3301 EXPORT_SYMBOL(__skb_gso_segment);
3302 
3303 /* Take action when hardware reception checksum errors are detected. */
3304 #ifdef CONFIG_BUG
3305 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3306 {
3307 	netdev_err(dev, "hw csum failure\n");
3308 	skb_dump(KERN_ERR, skb, true);
3309 	dump_stack();
3310 }
3311 
3312 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3313 {
3314 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3315 }
3316 EXPORT_SYMBOL(netdev_rx_csum_fault);
3317 #endif
3318 
3319 /* XXX: check that highmem exists at all on the given machine. */
3320 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3321 {
3322 #ifdef CONFIG_HIGHMEM
3323 	int i;
3324 
3325 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3326 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3327 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3328 
3329 			if (PageHighMem(skb_frag_page(frag)))
3330 				return 1;
3331 		}
3332 	}
3333 #endif
3334 	return 0;
3335 }
3336 
3337 /* If MPLS offload request, verify we are testing hardware MPLS features
3338  * instead of standard features for the netdev.
3339  */
3340 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3341 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3342 					   netdev_features_t features,
3343 					   __be16 type)
3344 {
3345 	if (eth_p_mpls(type))
3346 		features &= skb->dev->mpls_features;
3347 
3348 	return features;
3349 }
3350 #else
3351 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3352 					   netdev_features_t features,
3353 					   __be16 type)
3354 {
3355 	return features;
3356 }
3357 #endif
3358 
3359 static netdev_features_t harmonize_features(struct sk_buff *skb,
3360 	netdev_features_t features)
3361 {
3362 	__be16 type;
3363 
3364 	type = skb_network_protocol(skb, NULL);
3365 	features = net_mpls_features(skb, features, type);
3366 
3367 	if (skb->ip_summed != CHECKSUM_NONE &&
3368 	    !can_checksum_protocol(features, type)) {
3369 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3370 	}
3371 	if (illegal_highdma(skb->dev, skb))
3372 		features &= ~NETIF_F_SG;
3373 
3374 	return features;
3375 }
3376 
3377 netdev_features_t passthru_features_check(struct sk_buff *skb,
3378 					  struct net_device *dev,
3379 					  netdev_features_t features)
3380 {
3381 	return features;
3382 }
3383 EXPORT_SYMBOL(passthru_features_check);
3384 
3385 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3386 					     struct net_device *dev,
3387 					     netdev_features_t features)
3388 {
3389 	return vlan_features_check(skb, features);
3390 }
3391 
3392 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3393 					    struct net_device *dev,
3394 					    netdev_features_t features)
3395 {
3396 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3397 
3398 	if (gso_segs > dev->gso_max_segs)
3399 		return features & ~NETIF_F_GSO_MASK;
3400 
3401 	if (!skb_shinfo(skb)->gso_type) {
3402 		skb_warn_bad_offload(skb);
3403 		return features & ~NETIF_F_GSO_MASK;
3404 	}
3405 
3406 	/* Support for GSO partial features requires software
3407 	 * intervention before we can actually process the packets
3408 	 * so we need to strip support for any partial features now
3409 	 * and we can pull them back in after we have partially
3410 	 * segmented the frame.
3411 	 */
3412 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3413 		features &= ~dev->gso_partial_features;
3414 
3415 	/* Make sure to clear the IPv4 ID mangling feature if the
3416 	 * IPv4 header has the potential to be fragmented.
3417 	 */
3418 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3419 		struct iphdr *iph = skb->encapsulation ?
3420 				    inner_ip_hdr(skb) : ip_hdr(skb);
3421 
3422 		if (!(iph->frag_off & htons(IP_DF)))
3423 			features &= ~NETIF_F_TSO_MANGLEID;
3424 	}
3425 
3426 	return features;
3427 }
3428 
3429 netdev_features_t netif_skb_features(struct sk_buff *skb)
3430 {
3431 	struct net_device *dev = skb->dev;
3432 	netdev_features_t features = dev->features;
3433 
3434 	if (skb_is_gso(skb))
3435 		features = gso_features_check(skb, dev, features);
3436 
3437 	/* If encapsulation offload request, verify we are testing
3438 	 * hardware encapsulation features instead of standard
3439 	 * features for the netdev
3440 	 */
3441 	if (skb->encapsulation)
3442 		features &= dev->hw_enc_features;
3443 
3444 	if (skb_vlan_tagged(skb))
3445 		features = netdev_intersect_features(features,
3446 						     dev->vlan_features |
3447 						     NETIF_F_HW_VLAN_CTAG_TX |
3448 						     NETIF_F_HW_VLAN_STAG_TX);
3449 
3450 	if (dev->netdev_ops->ndo_features_check)
3451 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3452 								features);
3453 	else
3454 		features &= dflt_features_check(skb, dev, features);
3455 
3456 	return harmonize_features(skb, features);
3457 }
3458 EXPORT_SYMBOL(netif_skb_features);
3459 
3460 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3461 		    struct netdev_queue *txq, bool more)
3462 {
3463 	unsigned int len;
3464 	int rc;
3465 
3466 	if (dev_nit_active(dev))
3467 		dev_queue_xmit_nit(skb, dev);
3468 
3469 	len = skb->len;
3470 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3471 	trace_net_dev_start_xmit(skb, dev);
3472 	rc = netdev_start_xmit(skb, dev, txq, more);
3473 	trace_net_dev_xmit(skb, rc, dev, len);
3474 
3475 	return rc;
3476 }
3477 
3478 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3479 				    struct netdev_queue *txq, int *ret)
3480 {
3481 	struct sk_buff *skb = first;
3482 	int rc = NETDEV_TX_OK;
3483 
3484 	while (skb) {
3485 		struct sk_buff *next = skb->next;
3486 
3487 		skb_mark_not_on_list(skb);
3488 		rc = xmit_one(skb, dev, txq, next != NULL);
3489 		if (unlikely(!dev_xmit_complete(rc))) {
3490 			skb->next = next;
3491 			goto out;
3492 		}
3493 
3494 		skb = next;
3495 		if (netif_tx_queue_stopped(txq) && skb) {
3496 			rc = NETDEV_TX_BUSY;
3497 			break;
3498 		}
3499 	}
3500 
3501 out:
3502 	*ret = rc;
3503 	return skb;
3504 }
3505 
3506 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3507 					  netdev_features_t features)
3508 {
3509 	if (skb_vlan_tag_present(skb) &&
3510 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3511 		skb = __vlan_hwaccel_push_inside(skb);
3512 	return skb;
3513 }
3514 
3515 int skb_csum_hwoffload_help(struct sk_buff *skb,
3516 			    const netdev_features_t features)
3517 {
3518 	if (unlikely(skb_csum_is_sctp(skb)))
3519 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3520 			skb_crc32c_csum_help(skb);
3521 
3522 	if (features & NETIF_F_HW_CSUM)
3523 		return 0;
3524 
3525 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3526 		switch (skb->csum_offset) {
3527 		case offsetof(struct tcphdr, check):
3528 		case offsetof(struct udphdr, check):
3529 			return 0;
3530 		}
3531 	}
3532 
3533 	return skb_checksum_help(skb);
3534 }
3535 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3536 
3537 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3538 {
3539 	netdev_features_t features;
3540 
3541 	features = netif_skb_features(skb);
3542 	skb = validate_xmit_vlan(skb, features);
3543 	if (unlikely(!skb))
3544 		goto out_null;
3545 
3546 	skb = sk_validate_xmit_skb(skb, dev);
3547 	if (unlikely(!skb))
3548 		goto out_null;
3549 
3550 	if (netif_needs_gso(skb, features)) {
3551 		struct sk_buff *segs;
3552 
3553 		segs = skb_gso_segment(skb, features);
3554 		if (IS_ERR(segs)) {
3555 			goto out_kfree_skb;
3556 		} else if (segs) {
3557 			consume_skb(skb);
3558 			skb = segs;
3559 		}
3560 	} else {
3561 		if (skb_needs_linearize(skb, features) &&
3562 		    __skb_linearize(skb))
3563 			goto out_kfree_skb;
3564 
3565 		/* If packet is not checksummed and device does not
3566 		 * support checksumming for this protocol, complete
3567 		 * checksumming here.
3568 		 */
3569 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3570 			if (skb->encapsulation)
3571 				skb_set_inner_transport_header(skb,
3572 							       skb_checksum_start_offset(skb));
3573 			else
3574 				skb_set_transport_header(skb,
3575 							 skb_checksum_start_offset(skb));
3576 			if (skb_csum_hwoffload_help(skb, features))
3577 				goto out_kfree_skb;
3578 		}
3579 	}
3580 
3581 	skb = validate_xmit_xfrm(skb, features, again);
3582 
3583 	return skb;
3584 
3585 out_kfree_skb:
3586 	kfree_skb(skb);
3587 out_null:
3588 	atomic_long_inc(&dev->tx_dropped);
3589 	return NULL;
3590 }
3591 
3592 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3593 {
3594 	struct sk_buff *next, *head = NULL, *tail;
3595 
3596 	for (; skb != NULL; skb = next) {
3597 		next = skb->next;
3598 		skb_mark_not_on_list(skb);
3599 
3600 		/* in case skb wont be segmented, point to itself */
3601 		skb->prev = skb;
3602 
3603 		skb = validate_xmit_skb(skb, dev, again);
3604 		if (!skb)
3605 			continue;
3606 
3607 		if (!head)
3608 			head = skb;
3609 		else
3610 			tail->next = skb;
3611 		/* If skb was segmented, skb->prev points to
3612 		 * the last segment. If not, it still contains skb.
3613 		 */
3614 		tail = skb->prev;
3615 	}
3616 	return head;
3617 }
3618 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3619 
3620 static void qdisc_pkt_len_init(struct sk_buff *skb)
3621 {
3622 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3623 
3624 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3625 
3626 	/* To get more precise estimation of bytes sent on wire,
3627 	 * we add to pkt_len the headers size of all segments
3628 	 */
3629 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3630 		unsigned int hdr_len;
3631 		u16 gso_segs = shinfo->gso_segs;
3632 
3633 		/* mac layer + network layer */
3634 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3635 
3636 		/* + transport layer */
3637 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3638 			const struct tcphdr *th;
3639 			struct tcphdr _tcphdr;
3640 
3641 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3642 						sizeof(_tcphdr), &_tcphdr);
3643 			if (likely(th))
3644 				hdr_len += __tcp_hdrlen(th);
3645 		} else {
3646 			struct udphdr _udphdr;
3647 
3648 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3649 					       sizeof(_udphdr), &_udphdr))
3650 				hdr_len += sizeof(struct udphdr);
3651 		}
3652 
3653 		if (shinfo->gso_type & SKB_GSO_DODGY)
3654 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3655 						shinfo->gso_size);
3656 
3657 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3658 	}
3659 }
3660 
3661 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3662 			     struct sk_buff **to_free,
3663 			     struct netdev_queue *txq)
3664 {
3665 	int rc;
3666 
3667 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3668 	if (rc == NET_XMIT_SUCCESS)
3669 		trace_qdisc_enqueue(q, txq, skb);
3670 	return rc;
3671 }
3672 
3673 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3674 				 struct net_device *dev,
3675 				 struct netdev_queue *txq)
3676 {
3677 	spinlock_t *root_lock = qdisc_lock(q);
3678 	struct sk_buff *to_free = NULL;
3679 	bool contended;
3680 	int rc;
3681 
3682 	qdisc_calculate_pkt_len(skb, q);
3683 
3684 	if (q->flags & TCQ_F_NOLOCK) {
3685 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3686 		    qdisc_run_begin(q)) {
3687 			/* Retest nolock_qdisc_is_empty() within the protection
3688 			 * of q->seqlock to protect from racing with requeuing.
3689 			 */
3690 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3691 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3692 				__qdisc_run(q);
3693 				qdisc_run_end(q);
3694 
3695 				goto no_lock_out;
3696 			}
3697 
3698 			qdisc_bstats_cpu_update(q, skb);
3699 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3700 			    !nolock_qdisc_is_empty(q))
3701 				__qdisc_run(q);
3702 
3703 			qdisc_run_end(q);
3704 			return NET_XMIT_SUCCESS;
3705 		}
3706 
3707 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3708 		qdisc_run(q);
3709 
3710 no_lock_out:
3711 		if (unlikely(to_free))
3712 			kfree_skb_list(to_free);
3713 		return rc;
3714 	}
3715 
3716 	/*
3717 	 * Heuristic to force contended enqueues to serialize on a
3718 	 * separate lock before trying to get qdisc main lock.
3719 	 * This permits qdisc->running owner to get the lock more
3720 	 * often and dequeue packets faster.
3721 	 */
3722 	contended = qdisc_is_running(q);
3723 	if (unlikely(contended))
3724 		spin_lock(&q->busylock);
3725 
3726 	spin_lock(root_lock);
3727 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3728 		__qdisc_drop(skb, &to_free);
3729 		rc = NET_XMIT_DROP;
3730 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3731 		   qdisc_run_begin(q)) {
3732 		/*
3733 		 * This is a work-conserving queue; there are no old skbs
3734 		 * waiting to be sent out; and the qdisc is not running -
3735 		 * xmit the skb directly.
3736 		 */
3737 
3738 		qdisc_bstats_update(q, skb);
3739 
3740 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3741 			if (unlikely(contended)) {
3742 				spin_unlock(&q->busylock);
3743 				contended = false;
3744 			}
3745 			__qdisc_run(q);
3746 		}
3747 
3748 		qdisc_run_end(q);
3749 		rc = NET_XMIT_SUCCESS;
3750 	} else {
3751 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3752 		if (qdisc_run_begin(q)) {
3753 			if (unlikely(contended)) {
3754 				spin_unlock(&q->busylock);
3755 				contended = false;
3756 			}
3757 			__qdisc_run(q);
3758 			qdisc_run_end(q);
3759 		}
3760 	}
3761 	spin_unlock(root_lock);
3762 	if (unlikely(to_free))
3763 		kfree_skb_list(to_free);
3764 	if (unlikely(contended))
3765 		spin_unlock(&q->busylock);
3766 	return rc;
3767 }
3768 
3769 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3770 static void skb_update_prio(struct sk_buff *skb)
3771 {
3772 	const struct netprio_map *map;
3773 	const struct sock *sk;
3774 	unsigned int prioidx;
3775 
3776 	if (skb->priority)
3777 		return;
3778 	map = rcu_dereference_bh(skb->dev->priomap);
3779 	if (!map)
3780 		return;
3781 	sk = skb_to_full_sk(skb);
3782 	if (!sk)
3783 		return;
3784 
3785 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3786 
3787 	if (prioidx < map->priomap_len)
3788 		skb->priority = map->priomap[prioidx];
3789 }
3790 #else
3791 #define skb_update_prio(skb)
3792 #endif
3793 
3794 /**
3795  *	dev_loopback_xmit - loop back @skb
3796  *	@net: network namespace this loopback is happening in
3797  *	@sk:  sk needed to be a netfilter okfn
3798  *	@skb: buffer to transmit
3799  */
3800 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3801 {
3802 	skb_reset_mac_header(skb);
3803 	__skb_pull(skb, skb_network_offset(skb));
3804 	skb->pkt_type = PACKET_LOOPBACK;
3805 	if (skb->ip_summed == CHECKSUM_NONE)
3806 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3807 	WARN_ON(!skb_dst(skb));
3808 	skb_dst_force(skb);
3809 	netif_rx_ni(skb);
3810 	return 0;
3811 }
3812 EXPORT_SYMBOL(dev_loopback_xmit);
3813 
3814 #ifdef CONFIG_NET_EGRESS
3815 static struct sk_buff *
3816 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3817 {
3818 #ifdef CONFIG_NET_CLS_ACT
3819 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3820 	struct tcf_result cl_res;
3821 
3822 	if (!miniq)
3823 		return skb;
3824 
3825 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3826 	qdisc_skb_cb(skb)->mru = 0;
3827 	qdisc_skb_cb(skb)->post_ct = false;
3828 	mini_qdisc_bstats_cpu_update(miniq, skb);
3829 
3830 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3831 	case TC_ACT_OK:
3832 	case TC_ACT_RECLASSIFY:
3833 		skb->tc_index = TC_H_MIN(cl_res.classid);
3834 		break;
3835 	case TC_ACT_SHOT:
3836 		mini_qdisc_qstats_cpu_drop(miniq);
3837 		*ret = NET_XMIT_DROP;
3838 		kfree_skb(skb);
3839 		return NULL;
3840 	case TC_ACT_STOLEN:
3841 	case TC_ACT_QUEUED:
3842 	case TC_ACT_TRAP:
3843 		*ret = NET_XMIT_SUCCESS;
3844 		consume_skb(skb);
3845 		return NULL;
3846 	case TC_ACT_REDIRECT:
3847 		/* No need to push/pop skb's mac_header here on egress! */
3848 		skb_do_redirect(skb);
3849 		*ret = NET_XMIT_SUCCESS;
3850 		return NULL;
3851 	default:
3852 		break;
3853 	}
3854 #endif /* CONFIG_NET_CLS_ACT */
3855 
3856 	return skb;
3857 }
3858 #endif /* CONFIG_NET_EGRESS */
3859 
3860 #ifdef CONFIG_XPS
3861 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3862 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3863 {
3864 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3865 	struct xps_map *map;
3866 	int queue_index = -1;
3867 
3868 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3869 		return queue_index;
3870 
3871 	tci *= dev_maps->num_tc;
3872 	tci += tc;
3873 
3874 	map = rcu_dereference(dev_maps->attr_map[tci]);
3875 	if (map) {
3876 		if (map->len == 1)
3877 			queue_index = map->queues[0];
3878 		else
3879 			queue_index = map->queues[reciprocal_scale(
3880 						skb_get_hash(skb), map->len)];
3881 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3882 			queue_index = -1;
3883 	}
3884 	return queue_index;
3885 }
3886 #endif
3887 
3888 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3889 			 struct sk_buff *skb)
3890 {
3891 #ifdef CONFIG_XPS
3892 	struct xps_dev_maps *dev_maps;
3893 	struct sock *sk = skb->sk;
3894 	int queue_index = -1;
3895 
3896 	if (!static_key_false(&xps_needed))
3897 		return -1;
3898 
3899 	rcu_read_lock();
3900 	if (!static_key_false(&xps_rxqs_needed))
3901 		goto get_cpus_map;
3902 
3903 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
3904 	if (dev_maps) {
3905 		int tci = sk_rx_queue_get(sk);
3906 
3907 		if (tci >= 0)
3908 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3909 							  tci);
3910 	}
3911 
3912 get_cpus_map:
3913 	if (queue_index < 0) {
3914 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
3915 		if (dev_maps) {
3916 			unsigned int tci = skb->sender_cpu - 1;
3917 
3918 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3919 							  tci);
3920 		}
3921 	}
3922 	rcu_read_unlock();
3923 
3924 	return queue_index;
3925 #else
3926 	return -1;
3927 #endif
3928 }
3929 
3930 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3931 		     struct net_device *sb_dev)
3932 {
3933 	return 0;
3934 }
3935 EXPORT_SYMBOL(dev_pick_tx_zero);
3936 
3937 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3938 		       struct net_device *sb_dev)
3939 {
3940 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3941 }
3942 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3943 
3944 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3945 		     struct net_device *sb_dev)
3946 {
3947 	struct sock *sk = skb->sk;
3948 	int queue_index = sk_tx_queue_get(sk);
3949 
3950 	sb_dev = sb_dev ? : dev;
3951 
3952 	if (queue_index < 0 || skb->ooo_okay ||
3953 	    queue_index >= dev->real_num_tx_queues) {
3954 		int new_index = get_xps_queue(dev, sb_dev, skb);
3955 
3956 		if (new_index < 0)
3957 			new_index = skb_tx_hash(dev, sb_dev, skb);
3958 
3959 		if (queue_index != new_index && sk &&
3960 		    sk_fullsock(sk) &&
3961 		    rcu_access_pointer(sk->sk_dst_cache))
3962 			sk_tx_queue_set(sk, new_index);
3963 
3964 		queue_index = new_index;
3965 	}
3966 
3967 	return queue_index;
3968 }
3969 EXPORT_SYMBOL(netdev_pick_tx);
3970 
3971 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3972 					 struct sk_buff *skb,
3973 					 struct net_device *sb_dev)
3974 {
3975 	int queue_index = 0;
3976 
3977 #ifdef CONFIG_XPS
3978 	u32 sender_cpu = skb->sender_cpu - 1;
3979 
3980 	if (sender_cpu >= (u32)NR_CPUS)
3981 		skb->sender_cpu = raw_smp_processor_id() + 1;
3982 #endif
3983 
3984 	if (dev->real_num_tx_queues != 1) {
3985 		const struct net_device_ops *ops = dev->netdev_ops;
3986 
3987 		if (ops->ndo_select_queue)
3988 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3989 		else
3990 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
3991 
3992 		queue_index = netdev_cap_txqueue(dev, queue_index);
3993 	}
3994 
3995 	skb_set_queue_mapping(skb, queue_index);
3996 	return netdev_get_tx_queue(dev, queue_index);
3997 }
3998 
3999 /**
4000  *	__dev_queue_xmit - transmit a buffer
4001  *	@skb: buffer to transmit
4002  *	@sb_dev: suboordinate device used for L2 forwarding offload
4003  *
4004  *	Queue a buffer for transmission to a network device. The caller must
4005  *	have set the device and priority and built the buffer before calling
4006  *	this function. The function can be called from an interrupt.
4007  *
4008  *	A negative errno code is returned on a failure. A success does not
4009  *	guarantee the frame will be transmitted as it may be dropped due
4010  *	to congestion or traffic shaping.
4011  *
4012  * -----------------------------------------------------------------------------------
4013  *      I notice this method can also return errors from the queue disciplines,
4014  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4015  *      be positive.
4016  *
4017  *      Regardless of the return value, the skb is consumed, so it is currently
4018  *      difficult to retry a send to this method.  (You can bump the ref count
4019  *      before sending to hold a reference for retry if you are careful.)
4020  *
4021  *      When calling this method, interrupts MUST be enabled.  This is because
4022  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4023  *          --BLG
4024  */
4025 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4026 {
4027 	struct net_device *dev = skb->dev;
4028 	struct netdev_queue *txq;
4029 	struct Qdisc *q;
4030 	int rc = -ENOMEM;
4031 	bool again = false;
4032 
4033 	skb_reset_mac_header(skb);
4034 
4035 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4036 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4037 
4038 	/* Disable soft irqs for various locks below. Also
4039 	 * stops preemption for RCU.
4040 	 */
4041 	rcu_read_lock_bh();
4042 
4043 	skb_update_prio(skb);
4044 
4045 	qdisc_pkt_len_init(skb);
4046 #ifdef CONFIG_NET_CLS_ACT
4047 	skb->tc_at_ingress = 0;
4048 #endif
4049 #ifdef CONFIG_NET_EGRESS
4050 	if (static_branch_unlikely(&egress_needed_key)) {
4051 		if (nf_hook_egress_active()) {
4052 			skb = nf_hook_egress(skb, &rc, dev);
4053 			if (!skb)
4054 				goto out;
4055 		}
4056 		nf_skip_egress(skb, true);
4057 		skb = sch_handle_egress(skb, &rc, dev);
4058 		if (!skb)
4059 			goto out;
4060 		nf_skip_egress(skb, false);
4061 	}
4062 #endif
4063 	/* If device/qdisc don't need skb->dst, release it right now while
4064 	 * its hot in this cpu cache.
4065 	 */
4066 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4067 		skb_dst_drop(skb);
4068 	else
4069 		skb_dst_force(skb);
4070 
4071 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4072 	q = rcu_dereference_bh(txq->qdisc);
4073 
4074 	trace_net_dev_queue(skb);
4075 	if (q->enqueue) {
4076 		rc = __dev_xmit_skb(skb, q, dev, txq);
4077 		goto out;
4078 	}
4079 
4080 	/* The device has no queue. Common case for software devices:
4081 	 * loopback, all the sorts of tunnels...
4082 
4083 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4084 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4085 	 * counters.)
4086 	 * However, it is possible, that they rely on protection
4087 	 * made by us here.
4088 
4089 	 * Check this and shot the lock. It is not prone from deadlocks.
4090 	 *Either shot noqueue qdisc, it is even simpler 8)
4091 	 */
4092 	if (dev->flags & IFF_UP) {
4093 		int cpu = smp_processor_id(); /* ok because BHs are off */
4094 
4095 		if (txq->xmit_lock_owner != cpu) {
4096 			if (dev_xmit_recursion())
4097 				goto recursion_alert;
4098 
4099 			skb = validate_xmit_skb(skb, dev, &again);
4100 			if (!skb)
4101 				goto out;
4102 
4103 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4104 			HARD_TX_LOCK(dev, txq, cpu);
4105 
4106 			if (!netif_xmit_stopped(txq)) {
4107 				dev_xmit_recursion_inc();
4108 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4109 				dev_xmit_recursion_dec();
4110 				if (dev_xmit_complete(rc)) {
4111 					HARD_TX_UNLOCK(dev, txq);
4112 					goto out;
4113 				}
4114 			}
4115 			HARD_TX_UNLOCK(dev, txq);
4116 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4117 					     dev->name);
4118 		} else {
4119 			/* Recursion is detected! It is possible,
4120 			 * unfortunately
4121 			 */
4122 recursion_alert:
4123 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4124 					     dev->name);
4125 		}
4126 	}
4127 
4128 	rc = -ENETDOWN;
4129 	rcu_read_unlock_bh();
4130 
4131 	atomic_long_inc(&dev->tx_dropped);
4132 	kfree_skb_list(skb);
4133 	return rc;
4134 out:
4135 	rcu_read_unlock_bh();
4136 	return rc;
4137 }
4138 
4139 int dev_queue_xmit(struct sk_buff *skb)
4140 {
4141 	return __dev_queue_xmit(skb, NULL);
4142 }
4143 EXPORT_SYMBOL(dev_queue_xmit);
4144 
4145 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4146 {
4147 	return __dev_queue_xmit(skb, sb_dev);
4148 }
4149 EXPORT_SYMBOL(dev_queue_xmit_accel);
4150 
4151 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4152 {
4153 	struct net_device *dev = skb->dev;
4154 	struct sk_buff *orig_skb = skb;
4155 	struct netdev_queue *txq;
4156 	int ret = NETDEV_TX_BUSY;
4157 	bool again = false;
4158 
4159 	if (unlikely(!netif_running(dev) ||
4160 		     !netif_carrier_ok(dev)))
4161 		goto drop;
4162 
4163 	skb = validate_xmit_skb_list(skb, dev, &again);
4164 	if (skb != orig_skb)
4165 		goto drop;
4166 
4167 	skb_set_queue_mapping(skb, queue_id);
4168 	txq = skb_get_tx_queue(dev, skb);
4169 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4170 
4171 	local_bh_disable();
4172 
4173 	dev_xmit_recursion_inc();
4174 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4175 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4176 		ret = netdev_start_xmit(skb, dev, txq, false);
4177 	HARD_TX_UNLOCK(dev, txq);
4178 	dev_xmit_recursion_dec();
4179 
4180 	local_bh_enable();
4181 	return ret;
4182 drop:
4183 	atomic_long_inc(&dev->tx_dropped);
4184 	kfree_skb_list(skb);
4185 	return NET_XMIT_DROP;
4186 }
4187 EXPORT_SYMBOL(__dev_direct_xmit);
4188 
4189 /*************************************************************************
4190  *			Receiver routines
4191  *************************************************************************/
4192 
4193 int netdev_max_backlog __read_mostly = 1000;
4194 EXPORT_SYMBOL(netdev_max_backlog);
4195 
4196 int netdev_tstamp_prequeue __read_mostly = 1;
4197 int netdev_budget __read_mostly = 300;
4198 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4199 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4200 int weight_p __read_mostly = 64;           /* old backlog weight */
4201 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4202 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4203 int dev_rx_weight __read_mostly = 64;
4204 int dev_tx_weight __read_mostly = 64;
4205 
4206 /* Called with irq disabled */
4207 static inline void ____napi_schedule(struct softnet_data *sd,
4208 				     struct napi_struct *napi)
4209 {
4210 	struct task_struct *thread;
4211 
4212 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4213 		/* Paired with smp_mb__before_atomic() in
4214 		 * napi_enable()/dev_set_threaded().
4215 		 * Use READ_ONCE() to guarantee a complete
4216 		 * read on napi->thread. Only call
4217 		 * wake_up_process() when it's not NULL.
4218 		 */
4219 		thread = READ_ONCE(napi->thread);
4220 		if (thread) {
4221 			/* Avoid doing set_bit() if the thread is in
4222 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4223 			 * makes sure to proceed with napi polling
4224 			 * if the thread is explicitly woken from here.
4225 			 */
4226 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4227 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4228 			wake_up_process(thread);
4229 			return;
4230 		}
4231 	}
4232 
4233 	list_add_tail(&napi->poll_list, &sd->poll_list);
4234 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4235 }
4236 
4237 #ifdef CONFIG_RPS
4238 
4239 /* One global table that all flow-based protocols share. */
4240 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4241 EXPORT_SYMBOL(rps_sock_flow_table);
4242 u32 rps_cpu_mask __read_mostly;
4243 EXPORT_SYMBOL(rps_cpu_mask);
4244 
4245 struct static_key_false rps_needed __read_mostly;
4246 EXPORT_SYMBOL(rps_needed);
4247 struct static_key_false rfs_needed __read_mostly;
4248 EXPORT_SYMBOL(rfs_needed);
4249 
4250 static struct rps_dev_flow *
4251 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4252 	    struct rps_dev_flow *rflow, u16 next_cpu)
4253 {
4254 	if (next_cpu < nr_cpu_ids) {
4255 #ifdef CONFIG_RFS_ACCEL
4256 		struct netdev_rx_queue *rxqueue;
4257 		struct rps_dev_flow_table *flow_table;
4258 		struct rps_dev_flow *old_rflow;
4259 		u32 flow_id;
4260 		u16 rxq_index;
4261 		int rc;
4262 
4263 		/* Should we steer this flow to a different hardware queue? */
4264 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4265 		    !(dev->features & NETIF_F_NTUPLE))
4266 			goto out;
4267 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4268 		if (rxq_index == skb_get_rx_queue(skb))
4269 			goto out;
4270 
4271 		rxqueue = dev->_rx + rxq_index;
4272 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4273 		if (!flow_table)
4274 			goto out;
4275 		flow_id = skb_get_hash(skb) & flow_table->mask;
4276 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4277 							rxq_index, flow_id);
4278 		if (rc < 0)
4279 			goto out;
4280 		old_rflow = rflow;
4281 		rflow = &flow_table->flows[flow_id];
4282 		rflow->filter = rc;
4283 		if (old_rflow->filter == rflow->filter)
4284 			old_rflow->filter = RPS_NO_FILTER;
4285 	out:
4286 #endif
4287 		rflow->last_qtail =
4288 			per_cpu(softnet_data, next_cpu).input_queue_head;
4289 	}
4290 
4291 	rflow->cpu = next_cpu;
4292 	return rflow;
4293 }
4294 
4295 /*
4296  * get_rps_cpu is called from netif_receive_skb and returns the target
4297  * CPU from the RPS map of the receiving queue for a given skb.
4298  * rcu_read_lock must be held on entry.
4299  */
4300 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4301 		       struct rps_dev_flow **rflowp)
4302 {
4303 	const struct rps_sock_flow_table *sock_flow_table;
4304 	struct netdev_rx_queue *rxqueue = dev->_rx;
4305 	struct rps_dev_flow_table *flow_table;
4306 	struct rps_map *map;
4307 	int cpu = -1;
4308 	u32 tcpu;
4309 	u32 hash;
4310 
4311 	if (skb_rx_queue_recorded(skb)) {
4312 		u16 index = skb_get_rx_queue(skb);
4313 
4314 		if (unlikely(index >= dev->real_num_rx_queues)) {
4315 			WARN_ONCE(dev->real_num_rx_queues > 1,
4316 				  "%s received packet on queue %u, but number "
4317 				  "of RX queues is %u\n",
4318 				  dev->name, index, dev->real_num_rx_queues);
4319 			goto done;
4320 		}
4321 		rxqueue += index;
4322 	}
4323 
4324 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4325 
4326 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4327 	map = rcu_dereference(rxqueue->rps_map);
4328 	if (!flow_table && !map)
4329 		goto done;
4330 
4331 	skb_reset_network_header(skb);
4332 	hash = skb_get_hash(skb);
4333 	if (!hash)
4334 		goto done;
4335 
4336 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4337 	if (flow_table && sock_flow_table) {
4338 		struct rps_dev_flow *rflow;
4339 		u32 next_cpu;
4340 		u32 ident;
4341 
4342 		/* First check into global flow table if there is a match */
4343 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4344 		if ((ident ^ hash) & ~rps_cpu_mask)
4345 			goto try_rps;
4346 
4347 		next_cpu = ident & rps_cpu_mask;
4348 
4349 		/* OK, now we know there is a match,
4350 		 * we can look at the local (per receive queue) flow table
4351 		 */
4352 		rflow = &flow_table->flows[hash & flow_table->mask];
4353 		tcpu = rflow->cpu;
4354 
4355 		/*
4356 		 * If the desired CPU (where last recvmsg was done) is
4357 		 * different from current CPU (one in the rx-queue flow
4358 		 * table entry), switch if one of the following holds:
4359 		 *   - Current CPU is unset (>= nr_cpu_ids).
4360 		 *   - Current CPU is offline.
4361 		 *   - The current CPU's queue tail has advanced beyond the
4362 		 *     last packet that was enqueued using this table entry.
4363 		 *     This guarantees that all previous packets for the flow
4364 		 *     have been dequeued, thus preserving in order delivery.
4365 		 */
4366 		if (unlikely(tcpu != next_cpu) &&
4367 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4368 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4369 		      rflow->last_qtail)) >= 0)) {
4370 			tcpu = next_cpu;
4371 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4372 		}
4373 
4374 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4375 			*rflowp = rflow;
4376 			cpu = tcpu;
4377 			goto done;
4378 		}
4379 	}
4380 
4381 try_rps:
4382 
4383 	if (map) {
4384 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4385 		if (cpu_online(tcpu)) {
4386 			cpu = tcpu;
4387 			goto done;
4388 		}
4389 	}
4390 
4391 done:
4392 	return cpu;
4393 }
4394 
4395 #ifdef CONFIG_RFS_ACCEL
4396 
4397 /**
4398  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4399  * @dev: Device on which the filter was set
4400  * @rxq_index: RX queue index
4401  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4402  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4403  *
4404  * Drivers that implement ndo_rx_flow_steer() should periodically call
4405  * this function for each installed filter and remove the filters for
4406  * which it returns %true.
4407  */
4408 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4409 			 u32 flow_id, u16 filter_id)
4410 {
4411 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4412 	struct rps_dev_flow_table *flow_table;
4413 	struct rps_dev_flow *rflow;
4414 	bool expire = true;
4415 	unsigned int cpu;
4416 
4417 	rcu_read_lock();
4418 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4419 	if (flow_table && flow_id <= flow_table->mask) {
4420 		rflow = &flow_table->flows[flow_id];
4421 		cpu = READ_ONCE(rflow->cpu);
4422 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4423 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4424 			   rflow->last_qtail) <
4425 		     (int)(10 * flow_table->mask)))
4426 			expire = false;
4427 	}
4428 	rcu_read_unlock();
4429 	return expire;
4430 }
4431 EXPORT_SYMBOL(rps_may_expire_flow);
4432 
4433 #endif /* CONFIG_RFS_ACCEL */
4434 
4435 /* Called from hardirq (IPI) context */
4436 static void rps_trigger_softirq(void *data)
4437 {
4438 	struct softnet_data *sd = data;
4439 
4440 	____napi_schedule(sd, &sd->backlog);
4441 	sd->received_rps++;
4442 }
4443 
4444 #endif /* CONFIG_RPS */
4445 
4446 /*
4447  * Check if this softnet_data structure is another cpu one
4448  * If yes, queue it to our IPI list and return 1
4449  * If no, return 0
4450  */
4451 static int rps_ipi_queued(struct softnet_data *sd)
4452 {
4453 #ifdef CONFIG_RPS
4454 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4455 
4456 	if (sd != mysd) {
4457 		sd->rps_ipi_next = mysd->rps_ipi_list;
4458 		mysd->rps_ipi_list = sd;
4459 
4460 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4461 		return 1;
4462 	}
4463 #endif /* CONFIG_RPS */
4464 	return 0;
4465 }
4466 
4467 #ifdef CONFIG_NET_FLOW_LIMIT
4468 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4469 #endif
4470 
4471 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4472 {
4473 #ifdef CONFIG_NET_FLOW_LIMIT
4474 	struct sd_flow_limit *fl;
4475 	struct softnet_data *sd;
4476 	unsigned int old_flow, new_flow;
4477 
4478 	if (qlen < (netdev_max_backlog >> 1))
4479 		return false;
4480 
4481 	sd = this_cpu_ptr(&softnet_data);
4482 
4483 	rcu_read_lock();
4484 	fl = rcu_dereference(sd->flow_limit);
4485 	if (fl) {
4486 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4487 		old_flow = fl->history[fl->history_head];
4488 		fl->history[fl->history_head] = new_flow;
4489 
4490 		fl->history_head++;
4491 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4492 
4493 		if (likely(fl->buckets[old_flow]))
4494 			fl->buckets[old_flow]--;
4495 
4496 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4497 			fl->count++;
4498 			rcu_read_unlock();
4499 			return true;
4500 		}
4501 	}
4502 	rcu_read_unlock();
4503 #endif
4504 	return false;
4505 }
4506 
4507 /*
4508  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4509  * queue (may be a remote CPU queue).
4510  */
4511 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4512 			      unsigned int *qtail)
4513 {
4514 	struct softnet_data *sd;
4515 	unsigned long flags;
4516 	unsigned int qlen;
4517 
4518 	sd = &per_cpu(softnet_data, cpu);
4519 
4520 	local_irq_save(flags);
4521 
4522 	rps_lock(sd);
4523 	if (!netif_running(skb->dev))
4524 		goto drop;
4525 	qlen = skb_queue_len(&sd->input_pkt_queue);
4526 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4527 		if (qlen) {
4528 enqueue:
4529 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4530 			input_queue_tail_incr_save(sd, qtail);
4531 			rps_unlock(sd);
4532 			local_irq_restore(flags);
4533 			return NET_RX_SUCCESS;
4534 		}
4535 
4536 		/* Schedule NAPI for backlog device
4537 		 * We can use non atomic operation since we own the queue lock
4538 		 */
4539 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4540 			if (!rps_ipi_queued(sd))
4541 				____napi_schedule(sd, &sd->backlog);
4542 		}
4543 		goto enqueue;
4544 	}
4545 
4546 drop:
4547 	sd->dropped++;
4548 	rps_unlock(sd);
4549 
4550 	local_irq_restore(flags);
4551 
4552 	atomic_long_inc(&skb->dev->rx_dropped);
4553 	kfree_skb(skb);
4554 	return NET_RX_DROP;
4555 }
4556 
4557 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4558 {
4559 	struct net_device *dev = skb->dev;
4560 	struct netdev_rx_queue *rxqueue;
4561 
4562 	rxqueue = dev->_rx;
4563 
4564 	if (skb_rx_queue_recorded(skb)) {
4565 		u16 index = skb_get_rx_queue(skb);
4566 
4567 		if (unlikely(index >= dev->real_num_rx_queues)) {
4568 			WARN_ONCE(dev->real_num_rx_queues > 1,
4569 				  "%s received packet on queue %u, but number "
4570 				  "of RX queues is %u\n",
4571 				  dev->name, index, dev->real_num_rx_queues);
4572 
4573 			return rxqueue; /* Return first rxqueue */
4574 		}
4575 		rxqueue += index;
4576 	}
4577 	return rxqueue;
4578 }
4579 
4580 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4581 			     struct bpf_prog *xdp_prog)
4582 {
4583 	void *orig_data, *orig_data_end, *hard_start;
4584 	struct netdev_rx_queue *rxqueue;
4585 	bool orig_bcast, orig_host;
4586 	u32 mac_len, frame_sz;
4587 	__be16 orig_eth_type;
4588 	struct ethhdr *eth;
4589 	u32 metalen, act;
4590 	int off;
4591 
4592 	/* The XDP program wants to see the packet starting at the MAC
4593 	 * header.
4594 	 */
4595 	mac_len = skb->data - skb_mac_header(skb);
4596 	hard_start = skb->data - skb_headroom(skb);
4597 
4598 	/* SKB "head" area always have tailroom for skb_shared_info */
4599 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4600 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4601 
4602 	rxqueue = netif_get_rxqueue(skb);
4603 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4604 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4605 			 skb_headlen(skb) + mac_len, true);
4606 
4607 	orig_data_end = xdp->data_end;
4608 	orig_data = xdp->data;
4609 	eth = (struct ethhdr *)xdp->data;
4610 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4611 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4612 	orig_eth_type = eth->h_proto;
4613 
4614 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4615 
4616 	/* check if bpf_xdp_adjust_head was used */
4617 	off = xdp->data - orig_data;
4618 	if (off) {
4619 		if (off > 0)
4620 			__skb_pull(skb, off);
4621 		else if (off < 0)
4622 			__skb_push(skb, -off);
4623 
4624 		skb->mac_header += off;
4625 		skb_reset_network_header(skb);
4626 	}
4627 
4628 	/* check if bpf_xdp_adjust_tail was used */
4629 	off = xdp->data_end - orig_data_end;
4630 	if (off != 0) {
4631 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4632 		skb->len += off; /* positive on grow, negative on shrink */
4633 	}
4634 
4635 	/* check if XDP changed eth hdr such SKB needs update */
4636 	eth = (struct ethhdr *)xdp->data;
4637 	if ((orig_eth_type != eth->h_proto) ||
4638 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4639 						  skb->dev->dev_addr)) ||
4640 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4641 		__skb_push(skb, ETH_HLEN);
4642 		skb->pkt_type = PACKET_HOST;
4643 		skb->protocol = eth_type_trans(skb, skb->dev);
4644 	}
4645 
4646 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4647 	 * before calling us again on redirect path. We do not call do_redirect
4648 	 * as we leave that up to the caller.
4649 	 *
4650 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4651 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4652 	 */
4653 	switch (act) {
4654 	case XDP_REDIRECT:
4655 	case XDP_TX:
4656 		__skb_push(skb, mac_len);
4657 		break;
4658 	case XDP_PASS:
4659 		metalen = xdp->data - xdp->data_meta;
4660 		if (metalen)
4661 			skb_metadata_set(skb, metalen);
4662 		break;
4663 	}
4664 
4665 	return act;
4666 }
4667 
4668 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4669 				     struct xdp_buff *xdp,
4670 				     struct bpf_prog *xdp_prog)
4671 {
4672 	u32 act = XDP_DROP;
4673 
4674 	/* Reinjected packets coming from act_mirred or similar should
4675 	 * not get XDP generic processing.
4676 	 */
4677 	if (skb_is_redirected(skb))
4678 		return XDP_PASS;
4679 
4680 	/* XDP packets must be linear and must have sufficient headroom
4681 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4682 	 * native XDP provides, thus we need to do it here as well.
4683 	 */
4684 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4685 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4686 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4687 		int troom = skb->tail + skb->data_len - skb->end;
4688 
4689 		/* In case we have to go down the path and also linearize,
4690 		 * then lets do the pskb_expand_head() work just once here.
4691 		 */
4692 		if (pskb_expand_head(skb,
4693 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4694 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4695 			goto do_drop;
4696 		if (skb_linearize(skb))
4697 			goto do_drop;
4698 	}
4699 
4700 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4701 	switch (act) {
4702 	case XDP_REDIRECT:
4703 	case XDP_TX:
4704 	case XDP_PASS:
4705 		break;
4706 	default:
4707 		bpf_warn_invalid_xdp_action(act);
4708 		fallthrough;
4709 	case XDP_ABORTED:
4710 		trace_xdp_exception(skb->dev, xdp_prog, act);
4711 		fallthrough;
4712 	case XDP_DROP:
4713 	do_drop:
4714 		kfree_skb(skb);
4715 		break;
4716 	}
4717 
4718 	return act;
4719 }
4720 
4721 /* When doing generic XDP we have to bypass the qdisc layer and the
4722  * network taps in order to match in-driver-XDP behavior.
4723  */
4724 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4725 {
4726 	struct net_device *dev = skb->dev;
4727 	struct netdev_queue *txq;
4728 	bool free_skb = true;
4729 	int cpu, rc;
4730 
4731 	txq = netdev_core_pick_tx(dev, skb, NULL);
4732 	cpu = smp_processor_id();
4733 	HARD_TX_LOCK(dev, txq, cpu);
4734 	if (!netif_xmit_stopped(txq)) {
4735 		rc = netdev_start_xmit(skb, dev, txq, 0);
4736 		if (dev_xmit_complete(rc))
4737 			free_skb = false;
4738 	}
4739 	HARD_TX_UNLOCK(dev, txq);
4740 	if (free_skb) {
4741 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4742 		kfree_skb(skb);
4743 	}
4744 }
4745 
4746 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4747 
4748 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4749 {
4750 	if (xdp_prog) {
4751 		struct xdp_buff xdp;
4752 		u32 act;
4753 		int err;
4754 
4755 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4756 		if (act != XDP_PASS) {
4757 			switch (act) {
4758 			case XDP_REDIRECT:
4759 				err = xdp_do_generic_redirect(skb->dev, skb,
4760 							      &xdp, xdp_prog);
4761 				if (err)
4762 					goto out_redir;
4763 				break;
4764 			case XDP_TX:
4765 				generic_xdp_tx(skb, xdp_prog);
4766 				break;
4767 			}
4768 			return XDP_DROP;
4769 		}
4770 	}
4771 	return XDP_PASS;
4772 out_redir:
4773 	kfree_skb(skb);
4774 	return XDP_DROP;
4775 }
4776 EXPORT_SYMBOL_GPL(do_xdp_generic);
4777 
4778 static int netif_rx_internal(struct sk_buff *skb)
4779 {
4780 	int ret;
4781 
4782 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4783 
4784 	trace_netif_rx(skb);
4785 
4786 #ifdef CONFIG_RPS
4787 	if (static_branch_unlikely(&rps_needed)) {
4788 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4789 		int cpu;
4790 
4791 		preempt_disable();
4792 		rcu_read_lock();
4793 
4794 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4795 		if (cpu < 0)
4796 			cpu = smp_processor_id();
4797 
4798 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4799 
4800 		rcu_read_unlock();
4801 		preempt_enable();
4802 	} else
4803 #endif
4804 	{
4805 		unsigned int qtail;
4806 
4807 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4808 		put_cpu();
4809 	}
4810 	return ret;
4811 }
4812 
4813 /**
4814  *	netif_rx	-	post buffer to the network code
4815  *	@skb: buffer to post
4816  *
4817  *	This function receives a packet from a device driver and queues it for
4818  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4819  *	may be dropped during processing for congestion control or by the
4820  *	protocol layers.
4821  *
4822  *	return values:
4823  *	NET_RX_SUCCESS	(no congestion)
4824  *	NET_RX_DROP     (packet was dropped)
4825  *
4826  */
4827 
4828 int netif_rx(struct sk_buff *skb)
4829 {
4830 	int ret;
4831 
4832 	trace_netif_rx_entry(skb);
4833 
4834 	ret = netif_rx_internal(skb);
4835 	trace_netif_rx_exit(ret);
4836 
4837 	return ret;
4838 }
4839 EXPORT_SYMBOL(netif_rx);
4840 
4841 int netif_rx_ni(struct sk_buff *skb)
4842 {
4843 	int err;
4844 
4845 	trace_netif_rx_ni_entry(skb);
4846 
4847 	preempt_disable();
4848 	err = netif_rx_internal(skb);
4849 	if (local_softirq_pending())
4850 		do_softirq();
4851 	preempt_enable();
4852 	trace_netif_rx_ni_exit(err);
4853 
4854 	return err;
4855 }
4856 EXPORT_SYMBOL(netif_rx_ni);
4857 
4858 int netif_rx_any_context(struct sk_buff *skb)
4859 {
4860 	/*
4861 	 * If invoked from contexts which do not invoke bottom half
4862 	 * processing either at return from interrupt or when softrqs are
4863 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4864 	 * directly.
4865 	 */
4866 	if (in_interrupt())
4867 		return netif_rx(skb);
4868 	else
4869 		return netif_rx_ni(skb);
4870 }
4871 EXPORT_SYMBOL(netif_rx_any_context);
4872 
4873 static __latent_entropy void net_tx_action(struct softirq_action *h)
4874 {
4875 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4876 
4877 	if (sd->completion_queue) {
4878 		struct sk_buff *clist;
4879 
4880 		local_irq_disable();
4881 		clist = sd->completion_queue;
4882 		sd->completion_queue = NULL;
4883 		local_irq_enable();
4884 
4885 		while (clist) {
4886 			struct sk_buff *skb = clist;
4887 
4888 			clist = clist->next;
4889 
4890 			WARN_ON(refcount_read(&skb->users));
4891 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4892 				trace_consume_skb(skb);
4893 			else
4894 				trace_kfree_skb(skb, net_tx_action);
4895 
4896 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4897 				__kfree_skb(skb);
4898 			else
4899 				__kfree_skb_defer(skb);
4900 		}
4901 	}
4902 
4903 	if (sd->output_queue) {
4904 		struct Qdisc *head;
4905 
4906 		local_irq_disable();
4907 		head = sd->output_queue;
4908 		sd->output_queue = NULL;
4909 		sd->output_queue_tailp = &sd->output_queue;
4910 		local_irq_enable();
4911 
4912 		rcu_read_lock();
4913 
4914 		while (head) {
4915 			struct Qdisc *q = head;
4916 			spinlock_t *root_lock = NULL;
4917 
4918 			head = head->next_sched;
4919 
4920 			/* We need to make sure head->next_sched is read
4921 			 * before clearing __QDISC_STATE_SCHED
4922 			 */
4923 			smp_mb__before_atomic();
4924 
4925 			if (!(q->flags & TCQ_F_NOLOCK)) {
4926 				root_lock = qdisc_lock(q);
4927 				spin_lock(root_lock);
4928 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4929 						     &q->state))) {
4930 				/* There is a synchronize_net() between
4931 				 * STATE_DEACTIVATED flag being set and
4932 				 * qdisc_reset()/some_qdisc_is_busy() in
4933 				 * dev_deactivate(), so we can safely bail out
4934 				 * early here to avoid data race between
4935 				 * qdisc_deactivate() and some_qdisc_is_busy()
4936 				 * for lockless qdisc.
4937 				 */
4938 				clear_bit(__QDISC_STATE_SCHED, &q->state);
4939 				continue;
4940 			}
4941 
4942 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4943 			qdisc_run(q);
4944 			if (root_lock)
4945 				spin_unlock(root_lock);
4946 		}
4947 
4948 		rcu_read_unlock();
4949 	}
4950 
4951 	xfrm_dev_backlog(sd);
4952 }
4953 
4954 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4955 /* This hook is defined here for ATM LANE */
4956 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4957 			     unsigned char *addr) __read_mostly;
4958 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4959 #endif
4960 
4961 static inline struct sk_buff *
4962 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4963 		   struct net_device *orig_dev, bool *another)
4964 {
4965 #ifdef CONFIG_NET_CLS_ACT
4966 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4967 	struct tcf_result cl_res;
4968 
4969 	/* If there's at least one ingress present somewhere (so
4970 	 * we get here via enabled static key), remaining devices
4971 	 * that are not configured with an ingress qdisc will bail
4972 	 * out here.
4973 	 */
4974 	if (!miniq)
4975 		return skb;
4976 
4977 	if (*pt_prev) {
4978 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4979 		*pt_prev = NULL;
4980 	}
4981 
4982 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4983 	qdisc_skb_cb(skb)->mru = 0;
4984 	qdisc_skb_cb(skb)->post_ct = false;
4985 	skb->tc_at_ingress = 1;
4986 	mini_qdisc_bstats_cpu_update(miniq, skb);
4987 
4988 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
4989 	case TC_ACT_OK:
4990 	case TC_ACT_RECLASSIFY:
4991 		skb->tc_index = TC_H_MIN(cl_res.classid);
4992 		break;
4993 	case TC_ACT_SHOT:
4994 		mini_qdisc_qstats_cpu_drop(miniq);
4995 		kfree_skb(skb);
4996 		return NULL;
4997 	case TC_ACT_STOLEN:
4998 	case TC_ACT_QUEUED:
4999 	case TC_ACT_TRAP:
5000 		consume_skb(skb);
5001 		return NULL;
5002 	case TC_ACT_REDIRECT:
5003 		/* skb_mac_header check was done by cls/act_bpf, so
5004 		 * we can safely push the L2 header back before
5005 		 * redirecting to another netdev
5006 		 */
5007 		__skb_push(skb, skb->mac_len);
5008 		if (skb_do_redirect(skb) == -EAGAIN) {
5009 			__skb_pull(skb, skb->mac_len);
5010 			*another = true;
5011 			break;
5012 		}
5013 		return NULL;
5014 	case TC_ACT_CONSUMED:
5015 		return NULL;
5016 	default:
5017 		break;
5018 	}
5019 #endif /* CONFIG_NET_CLS_ACT */
5020 	return skb;
5021 }
5022 
5023 /**
5024  *	netdev_is_rx_handler_busy - check if receive handler is registered
5025  *	@dev: device to check
5026  *
5027  *	Check if a receive handler is already registered for a given device.
5028  *	Return true if there one.
5029  *
5030  *	The caller must hold the rtnl_mutex.
5031  */
5032 bool netdev_is_rx_handler_busy(struct net_device *dev)
5033 {
5034 	ASSERT_RTNL();
5035 	return dev && rtnl_dereference(dev->rx_handler);
5036 }
5037 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5038 
5039 /**
5040  *	netdev_rx_handler_register - register receive handler
5041  *	@dev: device to register a handler for
5042  *	@rx_handler: receive handler to register
5043  *	@rx_handler_data: data pointer that is used by rx handler
5044  *
5045  *	Register a receive handler for a device. This handler will then be
5046  *	called from __netif_receive_skb. A negative errno code is returned
5047  *	on a failure.
5048  *
5049  *	The caller must hold the rtnl_mutex.
5050  *
5051  *	For a general description of rx_handler, see enum rx_handler_result.
5052  */
5053 int netdev_rx_handler_register(struct net_device *dev,
5054 			       rx_handler_func_t *rx_handler,
5055 			       void *rx_handler_data)
5056 {
5057 	if (netdev_is_rx_handler_busy(dev))
5058 		return -EBUSY;
5059 
5060 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5061 		return -EINVAL;
5062 
5063 	/* Note: rx_handler_data must be set before rx_handler */
5064 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5065 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5066 
5067 	return 0;
5068 }
5069 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5070 
5071 /**
5072  *	netdev_rx_handler_unregister - unregister receive handler
5073  *	@dev: device to unregister a handler from
5074  *
5075  *	Unregister a receive handler from a device.
5076  *
5077  *	The caller must hold the rtnl_mutex.
5078  */
5079 void netdev_rx_handler_unregister(struct net_device *dev)
5080 {
5081 
5082 	ASSERT_RTNL();
5083 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5084 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5085 	 * section has a guarantee to see a non NULL rx_handler_data
5086 	 * as well.
5087 	 */
5088 	synchronize_net();
5089 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5090 }
5091 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5092 
5093 /*
5094  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5095  * the special handling of PFMEMALLOC skbs.
5096  */
5097 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5098 {
5099 	switch (skb->protocol) {
5100 	case htons(ETH_P_ARP):
5101 	case htons(ETH_P_IP):
5102 	case htons(ETH_P_IPV6):
5103 	case htons(ETH_P_8021Q):
5104 	case htons(ETH_P_8021AD):
5105 		return true;
5106 	default:
5107 		return false;
5108 	}
5109 }
5110 
5111 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5112 			     int *ret, struct net_device *orig_dev)
5113 {
5114 	if (nf_hook_ingress_active(skb)) {
5115 		int ingress_retval;
5116 
5117 		if (*pt_prev) {
5118 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5119 			*pt_prev = NULL;
5120 		}
5121 
5122 		rcu_read_lock();
5123 		ingress_retval = nf_hook_ingress(skb);
5124 		rcu_read_unlock();
5125 		return ingress_retval;
5126 	}
5127 	return 0;
5128 }
5129 
5130 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5131 				    struct packet_type **ppt_prev)
5132 {
5133 	struct packet_type *ptype, *pt_prev;
5134 	rx_handler_func_t *rx_handler;
5135 	struct sk_buff *skb = *pskb;
5136 	struct net_device *orig_dev;
5137 	bool deliver_exact = false;
5138 	int ret = NET_RX_DROP;
5139 	__be16 type;
5140 
5141 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5142 
5143 	trace_netif_receive_skb(skb);
5144 
5145 	orig_dev = skb->dev;
5146 
5147 	skb_reset_network_header(skb);
5148 	if (!skb_transport_header_was_set(skb))
5149 		skb_reset_transport_header(skb);
5150 	skb_reset_mac_len(skb);
5151 
5152 	pt_prev = NULL;
5153 
5154 another_round:
5155 	skb->skb_iif = skb->dev->ifindex;
5156 
5157 	__this_cpu_inc(softnet_data.processed);
5158 
5159 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5160 		int ret2;
5161 
5162 		migrate_disable();
5163 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5164 		migrate_enable();
5165 
5166 		if (ret2 != XDP_PASS) {
5167 			ret = NET_RX_DROP;
5168 			goto out;
5169 		}
5170 	}
5171 
5172 	if (eth_type_vlan(skb->protocol)) {
5173 		skb = skb_vlan_untag(skb);
5174 		if (unlikely(!skb))
5175 			goto out;
5176 	}
5177 
5178 	if (skb_skip_tc_classify(skb))
5179 		goto skip_classify;
5180 
5181 	if (pfmemalloc)
5182 		goto skip_taps;
5183 
5184 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5185 		if (pt_prev)
5186 			ret = deliver_skb(skb, pt_prev, orig_dev);
5187 		pt_prev = ptype;
5188 	}
5189 
5190 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5191 		if (pt_prev)
5192 			ret = deliver_skb(skb, pt_prev, orig_dev);
5193 		pt_prev = ptype;
5194 	}
5195 
5196 skip_taps:
5197 #ifdef CONFIG_NET_INGRESS
5198 	if (static_branch_unlikely(&ingress_needed_key)) {
5199 		bool another = false;
5200 
5201 		nf_skip_egress(skb, true);
5202 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5203 					 &another);
5204 		if (another)
5205 			goto another_round;
5206 		if (!skb)
5207 			goto out;
5208 
5209 		nf_skip_egress(skb, false);
5210 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5211 			goto out;
5212 	}
5213 #endif
5214 	skb_reset_redirect(skb);
5215 skip_classify:
5216 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5217 		goto drop;
5218 
5219 	if (skb_vlan_tag_present(skb)) {
5220 		if (pt_prev) {
5221 			ret = deliver_skb(skb, pt_prev, orig_dev);
5222 			pt_prev = NULL;
5223 		}
5224 		if (vlan_do_receive(&skb))
5225 			goto another_round;
5226 		else if (unlikely(!skb))
5227 			goto out;
5228 	}
5229 
5230 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5231 	if (rx_handler) {
5232 		if (pt_prev) {
5233 			ret = deliver_skb(skb, pt_prev, orig_dev);
5234 			pt_prev = NULL;
5235 		}
5236 		switch (rx_handler(&skb)) {
5237 		case RX_HANDLER_CONSUMED:
5238 			ret = NET_RX_SUCCESS;
5239 			goto out;
5240 		case RX_HANDLER_ANOTHER:
5241 			goto another_round;
5242 		case RX_HANDLER_EXACT:
5243 			deliver_exact = true;
5244 			break;
5245 		case RX_HANDLER_PASS:
5246 			break;
5247 		default:
5248 			BUG();
5249 		}
5250 	}
5251 
5252 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5253 check_vlan_id:
5254 		if (skb_vlan_tag_get_id(skb)) {
5255 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5256 			 * find vlan device.
5257 			 */
5258 			skb->pkt_type = PACKET_OTHERHOST;
5259 		} else if (eth_type_vlan(skb->protocol)) {
5260 			/* Outer header is 802.1P with vlan 0, inner header is
5261 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5262 			 * not find vlan dev for vlan id 0.
5263 			 */
5264 			__vlan_hwaccel_clear_tag(skb);
5265 			skb = skb_vlan_untag(skb);
5266 			if (unlikely(!skb))
5267 				goto out;
5268 			if (vlan_do_receive(&skb))
5269 				/* After stripping off 802.1P header with vlan 0
5270 				 * vlan dev is found for inner header.
5271 				 */
5272 				goto another_round;
5273 			else if (unlikely(!skb))
5274 				goto out;
5275 			else
5276 				/* We have stripped outer 802.1P vlan 0 header.
5277 				 * But could not find vlan dev.
5278 				 * check again for vlan id to set OTHERHOST.
5279 				 */
5280 				goto check_vlan_id;
5281 		}
5282 		/* Note: we might in the future use prio bits
5283 		 * and set skb->priority like in vlan_do_receive()
5284 		 * For the time being, just ignore Priority Code Point
5285 		 */
5286 		__vlan_hwaccel_clear_tag(skb);
5287 	}
5288 
5289 	type = skb->protocol;
5290 
5291 	/* deliver only exact match when indicated */
5292 	if (likely(!deliver_exact)) {
5293 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5294 				       &ptype_base[ntohs(type) &
5295 						   PTYPE_HASH_MASK]);
5296 	}
5297 
5298 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5299 			       &orig_dev->ptype_specific);
5300 
5301 	if (unlikely(skb->dev != orig_dev)) {
5302 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5303 				       &skb->dev->ptype_specific);
5304 	}
5305 
5306 	if (pt_prev) {
5307 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5308 			goto drop;
5309 		*ppt_prev = pt_prev;
5310 	} else {
5311 drop:
5312 		if (!deliver_exact)
5313 			atomic_long_inc(&skb->dev->rx_dropped);
5314 		else
5315 			atomic_long_inc(&skb->dev->rx_nohandler);
5316 		kfree_skb(skb);
5317 		/* Jamal, now you will not able to escape explaining
5318 		 * me how you were going to use this. :-)
5319 		 */
5320 		ret = NET_RX_DROP;
5321 	}
5322 
5323 out:
5324 	/* The invariant here is that if *ppt_prev is not NULL
5325 	 * then skb should also be non-NULL.
5326 	 *
5327 	 * Apparently *ppt_prev assignment above holds this invariant due to
5328 	 * skb dereferencing near it.
5329 	 */
5330 	*pskb = skb;
5331 	return ret;
5332 }
5333 
5334 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5335 {
5336 	struct net_device *orig_dev = skb->dev;
5337 	struct packet_type *pt_prev = NULL;
5338 	int ret;
5339 
5340 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5341 	if (pt_prev)
5342 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5343 					 skb->dev, pt_prev, orig_dev);
5344 	return ret;
5345 }
5346 
5347 /**
5348  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5349  *	@skb: buffer to process
5350  *
5351  *	More direct receive version of netif_receive_skb().  It should
5352  *	only be used by callers that have a need to skip RPS and Generic XDP.
5353  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5354  *
5355  *	This function may only be called from softirq context and interrupts
5356  *	should be enabled.
5357  *
5358  *	Return values (usually ignored):
5359  *	NET_RX_SUCCESS: no congestion
5360  *	NET_RX_DROP: packet was dropped
5361  */
5362 int netif_receive_skb_core(struct sk_buff *skb)
5363 {
5364 	int ret;
5365 
5366 	rcu_read_lock();
5367 	ret = __netif_receive_skb_one_core(skb, false);
5368 	rcu_read_unlock();
5369 
5370 	return ret;
5371 }
5372 EXPORT_SYMBOL(netif_receive_skb_core);
5373 
5374 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5375 						  struct packet_type *pt_prev,
5376 						  struct net_device *orig_dev)
5377 {
5378 	struct sk_buff *skb, *next;
5379 
5380 	if (!pt_prev)
5381 		return;
5382 	if (list_empty(head))
5383 		return;
5384 	if (pt_prev->list_func != NULL)
5385 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5386 				   ip_list_rcv, head, pt_prev, orig_dev);
5387 	else
5388 		list_for_each_entry_safe(skb, next, head, list) {
5389 			skb_list_del_init(skb);
5390 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5391 		}
5392 }
5393 
5394 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5395 {
5396 	/* Fast-path assumptions:
5397 	 * - There is no RX handler.
5398 	 * - Only one packet_type matches.
5399 	 * If either of these fails, we will end up doing some per-packet
5400 	 * processing in-line, then handling the 'last ptype' for the whole
5401 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5402 	 * because the 'last ptype' must be constant across the sublist, and all
5403 	 * other ptypes are handled per-packet.
5404 	 */
5405 	/* Current (common) ptype of sublist */
5406 	struct packet_type *pt_curr = NULL;
5407 	/* Current (common) orig_dev of sublist */
5408 	struct net_device *od_curr = NULL;
5409 	struct list_head sublist;
5410 	struct sk_buff *skb, *next;
5411 
5412 	INIT_LIST_HEAD(&sublist);
5413 	list_for_each_entry_safe(skb, next, head, list) {
5414 		struct net_device *orig_dev = skb->dev;
5415 		struct packet_type *pt_prev = NULL;
5416 
5417 		skb_list_del_init(skb);
5418 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5419 		if (!pt_prev)
5420 			continue;
5421 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5422 			/* dispatch old sublist */
5423 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5424 			/* start new sublist */
5425 			INIT_LIST_HEAD(&sublist);
5426 			pt_curr = pt_prev;
5427 			od_curr = orig_dev;
5428 		}
5429 		list_add_tail(&skb->list, &sublist);
5430 	}
5431 
5432 	/* dispatch final sublist */
5433 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5434 }
5435 
5436 static int __netif_receive_skb(struct sk_buff *skb)
5437 {
5438 	int ret;
5439 
5440 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5441 		unsigned int noreclaim_flag;
5442 
5443 		/*
5444 		 * PFMEMALLOC skbs are special, they should
5445 		 * - be delivered to SOCK_MEMALLOC sockets only
5446 		 * - stay away from userspace
5447 		 * - have bounded memory usage
5448 		 *
5449 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5450 		 * context down to all allocation sites.
5451 		 */
5452 		noreclaim_flag = memalloc_noreclaim_save();
5453 		ret = __netif_receive_skb_one_core(skb, true);
5454 		memalloc_noreclaim_restore(noreclaim_flag);
5455 	} else
5456 		ret = __netif_receive_skb_one_core(skb, false);
5457 
5458 	return ret;
5459 }
5460 
5461 static void __netif_receive_skb_list(struct list_head *head)
5462 {
5463 	unsigned long noreclaim_flag = 0;
5464 	struct sk_buff *skb, *next;
5465 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5466 
5467 	list_for_each_entry_safe(skb, next, head, list) {
5468 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5469 			struct list_head sublist;
5470 
5471 			/* Handle the previous sublist */
5472 			list_cut_before(&sublist, head, &skb->list);
5473 			if (!list_empty(&sublist))
5474 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5475 			pfmemalloc = !pfmemalloc;
5476 			/* See comments in __netif_receive_skb */
5477 			if (pfmemalloc)
5478 				noreclaim_flag = memalloc_noreclaim_save();
5479 			else
5480 				memalloc_noreclaim_restore(noreclaim_flag);
5481 		}
5482 	}
5483 	/* Handle the remaining sublist */
5484 	if (!list_empty(head))
5485 		__netif_receive_skb_list_core(head, pfmemalloc);
5486 	/* Restore pflags */
5487 	if (pfmemalloc)
5488 		memalloc_noreclaim_restore(noreclaim_flag);
5489 }
5490 
5491 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5492 {
5493 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5494 	struct bpf_prog *new = xdp->prog;
5495 	int ret = 0;
5496 
5497 	switch (xdp->command) {
5498 	case XDP_SETUP_PROG:
5499 		rcu_assign_pointer(dev->xdp_prog, new);
5500 		if (old)
5501 			bpf_prog_put(old);
5502 
5503 		if (old && !new) {
5504 			static_branch_dec(&generic_xdp_needed_key);
5505 		} else if (new && !old) {
5506 			static_branch_inc(&generic_xdp_needed_key);
5507 			dev_disable_lro(dev);
5508 			dev_disable_gro_hw(dev);
5509 		}
5510 		break;
5511 
5512 	default:
5513 		ret = -EINVAL;
5514 		break;
5515 	}
5516 
5517 	return ret;
5518 }
5519 
5520 static int netif_receive_skb_internal(struct sk_buff *skb)
5521 {
5522 	int ret;
5523 
5524 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5525 
5526 	if (skb_defer_rx_timestamp(skb))
5527 		return NET_RX_SUCCESS;
5528 
5529 	rcu_read_lock();
5530 #ifdef CONFIG_RPS
5531 	if (static_branch_unlikely(&rps_needed)) {
5532 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5533 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5534 
5535 		if (cpu >= 0) {
5536 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5537 			rcu_read_unlock();
5538 			return ret;
5539 		}
5540 	}
5541 #endif
5542 	ret = __netif_receive_skb(skb);
5543 	rcu_read_unlock();
5544 	return ret;
5545 }
5546 
5547 void netif_receive_skb_list_internal(struct list_head *head)
5548 {
5549 	struct sk_buff *skb, *next;
5550 	struct list_head sublist;
5551 
5552 	INIT_LIST_HEAD(&sublist);
5553 	list_for_each_entry_safe(skb, next, head, list) {
5554 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5555 		skb_list_del_init(skb);
5556 		if (!skb_defer_rx_timestamp(skb))
5557 			list_add_tail(&skb->list, &sublist);
5558 	}
5559 	list_splice_init(&sublist, head);
5560 
5561 	rcu_read_lock();
5562 #ifdef CONFIG_RPS
5563 	if (static_branch_unlikely(&rps_needed)) {
5564 		list_for_each_entry_safe(skb, next, head, list) {
5565 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5566 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5567 
5568 			if (cpu >= 0) {
5569 				/* Will be handled, remove from list */
5570 				skb_list_del_init(skb);
5571 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5572 			}
5573 		}
5574 	}
5575 #endif
5576 	__netif_receive_skb_list(head);
5577 	rcu_read_unlock();
5578 }
5579 
5580 /**
5581  *	netif_receive_skb - process receive buffer from network
5582  *	@skb: buffer to process
5583  *
5584  *	netif_receive_skb() is the main receive data processing function.
5585  *	It always succeeds. The buffer may be dropped during processing
5586  *	for congestion control or by the protocol layers.
5587  *
5588  *	This function may only be called from softirq context and interrupts
5589  *	should be enabled.
5590  *
5591  *	Return values (usually ignored):
5592  *	NET_RX_SUCCESS: no congestion
5593  *	NET_RX_DROP: packet was dropped
5594  */
5595 int netif_receive_skb(struct sk_buff *skb)
5596 {
5597 	int ret;
5598 
5599 	trace_netif_receive_skb_entry(skb);
5600 
5601 	ret = netif_receive_skb_internal(skb);
5602 	trace_netif_receive_skb_exit(ret);
5603 
5604 	return ret;
5605 }
5606 EXPORT_SYMBOL(netif_receive_skb);
5607 
5608 /**
5609  *	netif_receive_skb_list - process many receive buffers from network
5610  *	@head: list of skbs to process.
5611  *
5612  *	Since return value of netif_receive_skb() is normally ignored, and
5613  *	wouldn't be meaningful for a list, this function returns void.
5614  *
5615  *	This function may only be called from softirq context and interrupts
5616  *	should be enabled.
5617  */
5618 void netif_receive_skb_list(struct list_head *head)
5619 {
5620 	struct sk_buff *skb;
5621 
5622 	if (list_empty(head))
5623 		return;
5624 	if (trace_netif_receive_skb_list_entry_enabled()) {
5625 		list_for_each_entry(skb, head, list)
5626 			trace_netif_receive_skb_list_entry(skb);
5627 	}
5628 	netif_receive_skb_list_internal(head);
5629 	trace_netif_receive_skb_list_exit(0);
5630 }
5631 EXPORT_SYMBOL(netif_receive_skb_list);
5632 
5633 static DEFINE_PER_CPU(struct work_struct, flush_works);
5634 
5635 /* Network device is going away, flush any packets still pending */
5636 static void flush_backlog(struct work_struct *work)
5637 {
5638 	struct sk_buff *skb, *tmp;
5639 	struct softnet_data *sd;
5640 
5641 	local_bh_disable();
5642 	sd = this_cpu_ptr(&softnet_data);
5643 
5644 	local_irq_disable();
5645 	rps_lock(sd);
5646 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5647 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5648 			__skb_unlink(skb, &sd->input_pkt_queue);
5649 			dev_kfree_skb_irq(skb);
5650 			input_queue_head_incr(sd);
5651 		}
5652 	}
5653 	rps_unlock(sd);
5654 	local_irq_enable();
5655 
5656 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5657 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5658 			__skb_unlink(skb, &sd->process_queue);
5659 			kfree_skb(skb);
5660 			input_queue_head_incr(sd);
5661 		}
5662 	}
5663 	local_bh_enable();
5664 }
5665 
5666 static bool flush_required(int cpu)
5667 {
5668 #if IS_ENABLED(CONFIG_RPS)
5669 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5670 	bool do_flush;
5671 
5672 	local_irq_disable();
5673 	rps_lock(sd);
5674 
5675 	/* as insertion into process_queue happens with the rps lock held,
5676 	 * process_queue access may race only with dequeue
5677 	 */
5678 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5679 		   !skb_queue_empty_lockless(&sd->process_queue);
5680 	rps_unlock(sd);
5681 	local_irq_enable();
5682 
5683 	return do_flush;
5684 #endif
5685 	/* without RPS we can't safely check input_pkt_queue: during a
5686 	 * concurrent remote skb_queue_splice() we can detect as empty both
5687 	 * input_pkt_queue and process_queue even if the latter could end-up
5688 	 * containing a lot of packets.
5689 	 */
5690 	return true;
5691 }
5692 
5693 static void flush_all_backlogs(void)
5694 {
5695 	static cpumask_t flush_cpus;
5696 	unsigned int cpu;
5697 
5698 	/* since we are under rtnl lock protection we can use static data
5699 	 * for the cpumask and avoid allocating on stack the possibly
5700 	 * large mask
5701 	 */
5702 	ASSERT_RTNL();
5703 
5704 	cpus_read_lock();
5705 
5706 	cpumask_clear(&flush_cpus);
5707 	for_each_online_cpu(cpu) {
5708 		if (flush_required(cpu)) {
5709 			queue_work_on(cpu, system_highpri_wq,
5710 				      per_cpu_ptr(&flush_works, cpu));
5711 			cpumask_set_cpu(cpu, &flush_cpus);
5712 		}
5713 	}
5714 
5715 	/* we can have in flight packet[s] on the cpus we are not flushing,
5716 	 * synchronize_net() in unregister_netdevice_many() will take care of
5717 	 * them
5718 	 */
5719 	for_each_cpu(cpu, &flush_cpus)
5720 		flush_work(per_cpu_ptr(&flush_works, cpu));
5721 
5722 	cpus_read_unlock();
5723 }
5724 
5725 static void net_rps_send_ipi(struct softnet_data *remsd)
5726 {
5727 #ifdef CONFIG_RPS
5728 	while (remsd) {
5729 		struct softnet_data *next = remsd->rps_ipi_next;
5730 
5731 		if (cpu_online(remsd->cpu))
5732 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5733 		remsd = next;
5734 	}
5735 #endif
5736 }
5737 
5738 /*
5739  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5740  * Note: called with local irq disabled, but exits with local irq enabled.
5741  */
5742 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5743 {
5744 #ifdef CONFIG_RPS
5745 	struct softnet_data *remsd = sd->rps_ipi_list;
5746 
5747 	if (remsd) {
5748 		sd->rps_ipi_list = NULL;
5749 
5750 		local_irq_enable();
5751 
5752 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5753 		net_rps_send_ipi(remsd);
5754 	} else
5755 #endif
5756 		local_irq_enable();
5757 }
5758 
5759 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5760 {
5761 #ifdef CONFIG_RPS
5762 	return sd->rps_ipi_list != NULL;
5763 #else
5764 	return false;
5765 #endif
5766 }
5767 
5768 static int process_backlog(struct napi_struct *napi, int quota)
5769 {
5770 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5771 	bool again = true;
5772 	int work = 0;
5773 
5774 	/* Check if we have pending ipi, its better to send them now,
5775 	 * not waiting net_rx_action() end.
5776 	 */
5777 	if (sd_has_rps_ipi_waiting(sd)) {
5778 		local_irq_disable();
5779 		net_rps_action_and_irq_enable(sd);
5780 	}
5781 
5782 	napi->weight = dev_rx_weight;
5783 	while (again) {
5784 		struct sk_buff *skb;
5785 
5786 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5787 			rcu_read_lock();
5788 			__netif_receive_skb(skb);
5789 			rcu_read_unlock();
5790 			input_queue_head_incr(sd);
5791 			if (++work >= quota)
5792 				return work;
5793 
5794 		}
5795 
5796 		local_irq_disable();
5797 		rps_lock(sd);
5798 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5799 			/*
5800 			 * Inline a custom version of __napi_complete().
5801 			 * only current cpu owns and manipulates this napi,
5802 			 * and NAPI_STATE_SCHED is the only possible flag set
5803 			 * on backlog.
5804 			 * We can use a plain write instead of clear_bit(),
5805 			 * and we dont need an smp_mb() memory barrier.
5806 			 */
5807 			napi->state = 0;
5808 			again = false;
5809 		} else {
5810 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5811 						   &sd->process_queue);
5812 		}
5813 		rps_unlock(sd);
5814 		local_irq_enable();
5815 	}
5816 
5817 	return work;
5818 }
5819 
5820 /**
5821  * __napi_schedule - schedule for receive
5822  * @n: entry to schedule
5823  *
5824  * The entry's receive function will be scheduled to run.
5825  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5826  */
5827 void __napi_schedule(struct napi_struct *n)
5828 {
5829 	unsigned long flags;
5830 
5831 	local_irq_save(flags);
5832 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5833 	local_irq_restore(flags);
5834 }
5835 EXPORT_SYMBOL(__napi_schedule);
5836 
5837 /**
5838  *	napi_schedule_prep - check if napi can be scheduled
5839  *	@n: napi context
5840  *
5841  * Test if NAPI routine is already running, and if not mark
5842  * it as running.  This is used as a condition variable to
5843  * insure only one NAPI poll instance runs.  We also make
5844  * sure there is no pending NAPI disable.
5845  */
5846 bool napi_schedule_prep(struct napi_struct *n)
5847 {
5848 	unsigned long val, new;
5849 
5850 	do {
5851 		val = READ_ONCE(n->state);
5852 		if (unlikely(val & NAPIF_STATE_DISABLE))
5853 			return false;
5854 		new = val | NAPIF_STATE_SCHED;
5855 
5856 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5857 		 * This was suggested by Alexander Duyck, as compiler
5858 		 * emits better code than :
5859 		 * if (val & NAPIF_STATE_SCHED)
5860 		 *     new |= NAPIF_STATE_MISSED;
5861 		 */
5862 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5863 						   NAPIF_STATE_MISSED;
5864 	} while (cmpxchg(&n->state, val, new) != val);
5865 
5866 	return !(val & NAPIF_STATE_SCHED);
5867 }
5868 EXPORT_SYMBOL(napi_schedule_prep);
5869 
5870 /**
5871  * __napi_schedule_irqoff - schedule for receive
5872  * @n: entry to schedule
5873  *
5874  * Variant of __napi_schedule() assuming hard irqs are masked.
5875  *
5876  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5877  * because the interrupt disabled assumption might not be true
5878  * due to force-threaded interrupts and spinlock substitution.
5879  */
5880 void __napi_schedule_irqoff(struct napi_struct *n)
5881 {
5882 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5883 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
5884 	else
5885 		__napi_schedule(n);
5886 }
5887 EXPORT_SYMBOL(__napi_schedule_irqoff);
5888 
5889 bool napi_complete_done(struct napi_struct *n, int work_done)
5890 {
5891 	unsigned long flags, val, new, timeout = 0;
5892 	bool ret = true;
5893 
5894 	/*
5895 	 * 1) Don't let napi dequeue from the cpu poll list
5896 	 *    just in case its running on a different cpu.
5897 	 * 2) If we are busy polling, do nothing here, we have
5898 	 *    the guarantee we will be called later.
5899 	 */
5900 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5901 				 NAPIF_STATE_IN_BUSY_POLL)))
5902 		return false;
5903 
5904 	if (work_done) {
5905 		if (n->gro_bitmask)
5906 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
5907 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
5908 	}
5909 	if (n->defer_hard_irqs_count > 0) {
5910 		n->defer_hard_irqs_count--;
5911 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
5912 		if (timeout)
5913 			ret = false;
5914 	}
5915 	if (n->gro_bitmask) {
5916 		/* When the NAPI instance uses a timeout and keeps postponing
5917 		 * it, we need to bound somehow the time packets are kept in
5918 		 * the GRO layer
5919 		 */
5920 		napi_gro_flush(n, !!timeout);
5921 	}
5922 
5923 	gro_normal_list(n);
5924 
5925 	if (unlikely(!list_empty(&n->poll_list))) {
5926 		/* If n->poll_list is not empty, we need to mask irqs */
5927 		local_irq_save(flags);
5928 		list_del_init(&n->poll_list);
5929 		local_irq_restore(flags);
5930 	}
5931 
5932 	do {
5933 		val = READ_ONCE(n->state);
5934 
5935 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5936 
5937 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
5938 			      NAPIF_STATE_SCHED_THREADED |
5939 			      NAPIF_STATE_PREFER_BUSY_POLL);
5940 
5941 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5942 		 * because we will call napi->poll() one more time.
5943 		 * This C code was suggested by Alexander Duyck to help gcc.
5944 		 */
5945 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5946 						    NAPIF_STATE_SCHED;
5947 	} while (cmpxchg(&n->state, val, new) != val);
5948 
5949 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5950 		__napi_schedule(n);
5951 		return false;
5952 	}
5953 
5954 	if (timeout)
5955 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
5956 			      HRTIMER_MODE_REL_PINNED);
5957 	return ret;
5958 }
5959 EXPORT_SYMBOL(napi_complete_done);
5960 
5961 /* must be called under rcu_read_lock(), as we dont take a reference */
5962 static struct napi_struct *napi_by_id(unsigned int napi_id)
5963 {
5964 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5965 	struct napi_struct *napi;
5966 
5967 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5968 		if (napi->napi_id == napi_id)
5969 			return napi;
5970 
5971 	return NULL;
5972 }
5973 
5974 #if defined(CONFIG_NET_RX_BUSY_POLL)
5975 
5976 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
5977 {
5978 	if (!skip_schedule) {
5979 		gro_normal_list(napi);
5980 		__napi_schedule(napi);
5981 		return;
5982 	}
5983 
5984 	if (napi->gro_bitmask) {
5985 		/* flush too old packets
5986 		 * If HZ < 1000, flush all packets.
5987 		 */
5988 		napi_gro_flush(napi, HZ >= 1000);
5989 	}
5990 
5991 	gro_normal_list(napi);
5992 	clear_bit(NAPI_STATE_SCHED, &napi->state);
5993 }
5994 
5995 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
5996 			   u16 budget)
5997 {
5998 	bool skip_schedule = false;
5999 	unsigned long timeout;
6000 	int rc;
6001 
6002 	/* Busy polling means there is a high chance device driver hard irq
6003 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6004 	 * set in napi_schedule_prep().
6005 	 * Since we are about to call napi->poll() once more, we can safely
6006 	 * clear NAPI_STATE_MISSED.
6007 	 *
6008 	 * Note: x86 could use a single "lock and ..." instruction
6009 	 * to perform these two clear_bit()
6010 	 */
6011 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6012 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6013 
6014 	local_bh_disable();
6015 
6016 	if (prefer_busy_poll) {
6017 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6018 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6019 		if (napi->defer_hard_irqs_count && timeout) {
6020 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6021 			skip_schedule = true;
6022 		}
6023 	}
6024 
6025 	/* All we really want here is to re-enable device interrupts.
6026 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6027 	 */
6028 	rc = napi->poll(napi, budget);
6029 	/* We can't gro_normal_list() here, because napi->poll() might have
6030 	 * rearmed the napi (napi_complete_done()) in which case it could
6031 	 * already be running on another CPU.
6032 	 */
6033 	trace_napi_poll(napi, rc, budget);
6034 	netpoll_poll_unlock(have_poll_lock);
6035 	if (rc == budget)
6036 		__busy_poll_stop(napi, skip_schedule);
6037 	local_bh_enable();
6038 }
6039 
6040 void napi_busy_loop(unsigned int napi_id,
6041 		    bool (*loop_end)(void *, unsigned long),
6042 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6043 {
6044 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6045 	int (*napi_poll)(struct napi_struct *napi, int budget);
6046 	void *have_poll_lock = NULL;
6047 	struct napi_struct *napi;
6048 
6049 restart:
6050 	napi_poll = NULL;
6051 
6052 	rcu_read_lock();
6053 
6054 	napi = napi_by_id(napi_id);
6055 	if (!napi)
6056 		goto out;
6057 
6058 	preempt_disable();
6059 	for (;;) {
6060 		int work = 0;
6061 
6062 		local_bh_disable();
6063 		if (!napi_poll) {
6064 			unsigned long val = READ_ONCE(napi->state);
6065 
6066 			/* If multiple threads are competing for this napi,
6067 			 * we avoid dirtying napi->state as much as we can.
6068 			 */
6069 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6070 				   NAPIF_STATE_IN_BUSY_POLL)) {
6071 				if (prefer_busy_poll)
6072 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6073 				goto count;
6074 			}
6075 			if (cmpxchg(&napi->state, val,
6076 				    val | NAPIF_STATE_IN_BUSY_POLL |
6077 					  NAPIF_STATE_SCHED) != val) {
6078 				if (prefer_busy_poll)
6079 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6080 				goto count;
6081 			}
6082 			have_poll_lock = netpoll_poll_lock(napi);
6083 			napi_poll = napi->poll;
6084 		}
6085 		work = napi_poll(napi, budget);
6086 		trace_napi_poll(napi, work, budget);
6087 		gro_normal_list(napi);
6088 count:
6089 		if (work > 0)
6090 			__NET_ADD_STATS(dev_net(napi->dev),
6091 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6092 		local_bh_enable();
6093 
6094 		if (!loop_end || loop_end(loop_end_arg, start_time))
6095 			break;
6096 
6097 		if (unlikely(need_resched())) {
6098 			if (napi_poll)
6099 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6100 			preempt_enable();
6101 			rcu_read_unlock();
6102 			cond_resched();
6103 			if (loop_end(loop_end_arg, start_time))
6104 				return;
6105 			goto restart;
6106 		}
6107 		cpu_relax();
6108 	}
6109 	if (napi_poll)
6110 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6111 	preempt_enable();
6112 out:
6113 	rcu_read_unlock();
6114 }
6115 EXPORT_SYMBOL(napi_busy_loop);
6116 
6117 #endif /* CONFIG_NET_RX_BUSY_POLL */
6118 
6119 static void napi_hash_add(struct napi_struct *napi)
6120 {
6121 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6122 		return;
6123 
6124 	spin_lock(&napi_hash_lock);
6125 
6126 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6127 	do {
6128 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6129 			napi_gen_id = MIN_NAPI_ID;
6130 	} while (napi_by_id(napi_gen_id));
6131 	napi->napi_id = napi_gen_id;
6132 
6133 	hlist_add_head_rcu(&napi->napi_hash_node,
6134 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6135 
6136 	spin_unlock(&napi_hash_lock);
6137 }
6138 
6139 /* Warning : caller is responsible to make sure rcu grace period
6140  * is respected before freeing memory containing @napi
6141  */
6142 static void napi_hash_del(struct napi_struct *napi)
6143 {
6144 	spin_lock(&napi_hash_lock);
6145 
6146 	hlist_del_init_rcu(&napi->napi_hash_node);
6147 
6148 	spin_unlock(&napi_hash_lock);
6149 }
6150 
6151 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6152 {
6153 	struct napi_struct *napi;
6154 
6155 	napi = container_of(timer, struct napi_struct, timer);
6156 
6157 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6158 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6159 	 */
6160 	if (!napi_disable_pending(napi) &&
6161 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6162 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6163 		__napi_schedule_irqoff(napi);
6164 	}
6165 
6166 	return HRTIMER_NORESTART;
6167 }
6168 
6169 static void init_gro_hash(struct napi_struct *napi)
6170 {
6171 	int i;
6172 
6173 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6174 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6175 		napi->gro_hash[i].count = 0;
6176 	}
6177 	napi->gro_bitmask = 0;
6178 }
6179 
6180 int dev_set_threaded(struct net_device *dev, bool threaded)
6181 {
6182 	struct napi_struct *napi;
6183 	int err = 0;
6184 
6185 	if (dev->threaded == threaded)
6186 		return 0;
6187 
6188 	if (threaded) {
6189 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6190 			if (!napi->thread) {
6191 				err = napi_kthread_create(napi);
6192 				if (err) {
6193 					threaded = false;
6194 					break;
6195 				}
6196 			}
6197 		}
6198 	}
6199 
6200 	dev->threaded = threaded;
6201 
6202 	/* Make sure kthread is created before THREADED bit
6203 	 * is set.
6204 	 */
6205 	smp_mb__before_atomic();
6206 
6207 	/* Setting/unsetting threaded mode on a napi might not immediately
6208 	 * take effect, if the current napi instance is actively being
6209 	 * polled. In this case, the switch between threaded mode and
6210 	 * softirq mode will happen in the next round of napi_schedule().
6211 	 * This should not cause hiccups/stalls to the live traffic.
6212 	 */
6213 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6214 		if (threaded)
6215 			set_bit(NAPI_STATE_THREADED, &napi->state);
6216 		else
6217 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6218 	}
6219 
6220 	return err;
6221 }
6222 EXPORT_SYMBOL(dev_set_threaded);
6223 
6224 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6225 		    int (*poll)(struct napi_struct *, int), int weight)
6226 {
6227 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6228 		return;
6229 
6230 	INIT_LIST_HEAD(&napi->poll_list);
6231 	INIT_HLIST_NODE(&napi->napi_hash_node);
6232 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6233 	napi->timer.function = napi_watchdog;
6234 	init_gro_hash(napi);
6235 	napi->skb = NULL;
6236 	INIT_LIST_HEAD(&napi->rx_list);
6237 	napi->rx_count = 0;
6238 	napi->poll = poll;
6239 	if (weight > NAPI_POLL_WEIGHT)
6240 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6241 				weight);
6242 	napi->weight = weight;
6243 	napi->dev = dev;
6244 #ifdef CONFIG_NETPOLL
6245 	napi->poll_owner = -1;
6246 #endif
6247 	set_bit(NAPI_STATE_SCHED, &napi->state);
6248 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6249 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6250 	napi_hash_add(napi);
6251 	/* Create kthread for this napi if dev->threaded is set.
6252 	 * Clear dev->threaded if kthread creation failed so that
6253 	 * threaded mode will not be enabled in napi_enable().
6254 	 */
6255 	if (dev->threaded && napi_kthread_create(napi))
6256 		dev->threaded = 0;
6257 }
6258 EXPORT_SYMBOL(netif_napi_add);
6259 
6260 void napi_disable(struct napi_struct *n)
6261 {
6262 	unsigned long val, new;
6263 
6264 	might_sleep();
6265 	set_bit(NAPI_STATE_DISABLE, &n->state);
6266 
6267 	for ( ; ; ) {
6268 		val = READ_ONCE(n->state);
6269 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6270 			usleep_range(20, 200);
6271 			continue;
6272 		}
6273 
6274 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6275 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6276 
6277 		if (cmpxchg(&n->state, val, new) == val)
6278 			break;
6279 	}
6280 
6281 	hrtimer_cancel(&n->timer);
6282 
6283 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6284 }
6285 EXPORT_SYMBOL(napi_disable);
6286 
6287 /**
6288  *	napi_enable - enable NAPI scheduling
6289  *	@n: NAPI context
6290  *
6291  * Resume NAPI from being scheduled on this context.
6292  * Must be paired with napi_disable.
6293  */
6294 void napi_enable(struct napi_struct *n)
6295 {
6296 	unsigned long val, new;
6297 
6298 	do {
6299 		val = READ_ONCE(n->state);
6300 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6301 
6302 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6303 		if (n->dev->threaded && n->thread)
6304 			new |= NAPIF_STATE_THREADED;
6305 	} while (cmpxchg(&n->state, val, new) != val);
6306 }
6307 EXPORT_SYMBOL(napi_enable);
6308 
6309 static void flush_gro_hash(struct napi_struct *napi)
6310 {
6311 	int i;
6312 
6313 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6314 		struct sk_buff *skb, *n;
6315 
6316 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6317 			kfree_skb(skb);
6318 		napi->gro_hash[i].count = 0;
6319 	}
6320 }
6321 
6322 /* Must be called in process context */
6323 void __netif_napi_del(struct napi_struct *napi)
6324 {
6325 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6326 		return;
6327 
6328 	napi_hash_del(napi);
6329 	list_del_rcu(&napi->dev_list);
6330 	napi_free_frags(napi);
6331 
6332 	flush_gro_hash(napi);
6333 	napi->gro_bitmask = 0;
6334 
6335 	if (napi->thread) {
6336 		kthread_stop(napi->thread);
6337 		napi->thread = NULL;
6338 	}
6339 }
6340 EXPORT_SYMBOL(__netif_napi_del);
6341 
6342 static int __napi_poll(struct napi_struct *n, bool *repoll)
6343 {
6344 	int work, weight;
6345 
6346 	weight = n->weight;
6347 
6348 	/* This NAPI_STATE_SCHED test is for avoiding a race
6349 	 * with netpoll's poll_napi().  Only the entity which
6350 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6351 	 * actually make the ->poll() call.  Therefore we avoid
6352 	 * accidentally calling ->poll() when NAPI is not scheduled.
6353 	 */
6354 	work = 0;
6355 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6356 		work = n->poll(n, weight);
6357 		trace_napi_poll(n, work, weight);
6358 	}
6359 
6360 	if (unlikely(work > weight))
6361 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6362 				n->poll, work, weight);
6363 
6364 	if (likely(work < weight))
6365 		return work;
6366 
6367 	/* Drivers must not modify the NAPI state if they
6368 	 * consume the entire weight.  In such cases this code
6369 	 * still "owns" the NAPI instance and therefore can
6370 	 * move the instance around on the list at-will.
6371 	 */
6372 	if (unlikely(napi_disable_pending(n))) {
6373 		napi_complete(n);
6374 		return work;
6375 	}
6376 
6377 	/* The NAPI context has more processing work, but busy-polling
6378 	 * is preferred. Exit early.
6379 	 */
6380 	if (napi_prefer_busy_poll(n)) {
6381 		if (napi_complete_done(n, work)) {
6382 			/* If timeout is not set, we need to make sure
6383 			 * that the NAPI is re-scheduled.
6384 			 */
6385 			napi_schedule(n);
6386 		}
6387 		return work;
6388 	}
6389 
6390 	if (n->gro_bitmask) {
6391 		/* flush too old packets
6392 		 * If HZ < 1000, flush all packets.
6393 		 */
6394 		napi_gro_flush(n, HZ >= 1000);
6395 	}
6396 
6397 	gro_normal_list(n);
6398 
6399 	/* Some drivers may have called napi_schedule
6400 	 * prior to exhausting their budget.
6401 	 */
6402 	if (unlikely(!list_empty(&n->poll_list))) {
6403 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6404 			     n->dev ? n->dev->name : "backlog");
6405 		return work;
6406 	}
6407 
6408 	*repoll = true;
6409 
6410 	return work;
6411 }
6412 
6413 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6414 {
6415 	bool do_repoll = false;
6416 	void *have;
6417 	int work;
6418 
6419 	list_del_init(&n->poll_list);
6420 
6421 	have = netpoll_poll_lock(n);
6422 
6423 	work = __napi_poll(n, &do_repoll);
6424 
6425 	if (do_repoll)
6426 		list_add_tail(&n->poll_list, repoll);
6427 
6428 	netpoll_poll_unlock(have);
6429 
6430 	return work;
6431 }
6432 
6433 static int napi_thread_wait(struct napi_struct *napi)
6434 {
6435 	bool woken = false;
6436 
6437 	set_current_state(TASK_INTERRUPTIBLE);
6438 
6439 	while (!kthread_should_stop()) {
6440 		/* Testing SCHED_THREADED bit here to make sure the current
6441 		 * kthread owns this napi and could poll on this napi.
6442 		 * Testing SCHED bit is not enough because SCHED bit might be
6443 		 * set by some other busy poll thread or by napi_disable().
6444 		 */
6445 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6446 			WARN_ON(!list_empty(&napi->poll_list));
6447 			__set_current_state(TASK_RUNNING);
6448 			return 0;
6449 		}
6450 
6451 		schedule();
6452 		/* woken being true indicates this thread owns this napi. */
6453 		woken = true;
6454 		set_current_state(TASK_INTERRUPTIBLE);
6455 	}
6456 	__set_current_state(TASK_RUNNING);
6457 
6458 	return -1;
6459 }
6460 
6461 static int napi_threaded_poll(void *data)
6462 {
6463 	struct napi_struct *napi = data;
6464 	void *have;
6465 
6466 	while (!napi_thread_wait(napi)) {
6467 		for (;;) {
6468 			bool repoll = false;
6469 
6470 			local_bh_disable();
6471 
6472 			have = netpoll_poll_lock(napi);
6473 			__napi_poll(napi, &repoll);
6474 			netpoll_poll_unlock(have);
6475 
6476 			local_bh_enable();
6477 
6478 			if (!repoll)
6479 				break;
6480 
6481 			cond_resched();
6482 		}
6483 	}
6484 	return 0;
6485 }
6486 
6487 static __latent_entropy void net_rx_action(struct softirq_action *h)
6488 {
6489 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6490 	unsigned long time_limit = jiffies +
6491 		usecs_to_jiffies(netdev_budget_usecs);
6492 	int budget = netdev_budget;
6493 	LIST_HEAD(list);
6494 	LIST_HEAD(repoll);
6495 
6496 	local_irq_disable();
6497 	list_splice_init(&sd->poll_list, &list);
6498 	local_irq_enable();
6499 
6500 	for (;;) {
6501 		struct napi_struct *n;
6502 
6503 		if (list_empty(&list)) {
6504 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6505 				return;
6506 			break;
6507 		}
6508 
6509 		n = list_first_entry(&list, struct napi_struct, poll_list);
6510 		budget -= napi_poll(n, &repoll);
6511 
6512 		/* If softirq window is exhausted then punt.
6513 		 * Allow this to run for 2 jiffies since which will allow
6514 		 * an average latency of 1.5/HZ.
6515 		 */
6516 		if (unlikely(budget <= 0 ||
6517 			     time_after_eq(jiffies, time_limit))) {
6518 			sd->time_squeeze++;
6519 			break;
6520 		}
6521 	}
6522 
6523 	local_irq_disable();
6524 
6525 	list_splice_tail_init(&sd->poll_list, &list);
6526 	list_splice_tail(&repoll, &list);
6527 	list_splice(&list, &sd->poll_list);
6528 	if (!list_empty(&sd->poll_list))
6529 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6530 
6531 	net_rps_action_and_irq_enable(sd);
6532 }
6533 
6534 struct netdev_adjacent {
6535 	struct net_device *dev;
6536 
6537 	/* upper master flag, there can only be one master device per list */
6538 	bool master;
6539 
6540 	/* lookup ignore flag */
6541 	bool ignore;
6542 
6543 	/* counter for the number of times this device was added to us */
6544 	u16 ref_nr;
6545 
6546 	/* private field for the users */
6547 	void *private;
6548 
6549 	struct list_head list;
6550 	struct rcu_head rcu;
6551 };
6552 
6553 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6554 						 struct list_head *adj_list)
6555 {
6556 	struct netdev_adjacent *adj;
6557 
6558 	list_for_each_entry(adj, adj_list, list) {
6559 		if (adj->dev == adj_dev)
6560 			return adj;
6561 	}
6562 	return NULL;
6563 }
6564 
6565 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6566 				    struct netdev_nested_priv *priv)
6567 {
6568 	struct net_device *dev = (struct net_device *)priv->data;
6569 
6570 	return upper_dev == dev;
6571 }
6572 
6573 /**
6574  * netdev_has_upper_dev - Check if device is linked to an upper device
6575  * @dev: device
6576  * @upper_dev: upper device to check
6577  *
6578  * Find out if a device is linked to specified upper device and return true
6579  * in case it is. Note that this checks only immediate upper device,
6580  * not through a complete stack of devices. The caller must hold the RTNL lock.
6581  */
6582 bool netdev_has_upper_dev(struct net_device *dev,
6583 			  struct net_device *upper_dev)
6584 {
6585 	struct netdev_nested_priv priv = {
6586 		.data = (void *)upper_dev,
6587 	};
6588 
6589 	ASSERT_RTNL();
6590 
6591 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6592 					     &priv);
6593 }
6594 EXPORT_SYMBOL(netdev_has_upper_dev);
6595 
6596 /**
6597  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6598  * @dev: device
6599  * @upper_dev: upper device to check
6600  *
6601  * Find out if a device is linked to specified upper device and return true
6602  * in case it is. Note that this checks the entire upper device chain.
6603  * The caller must hold rcu lock.
6604  */
6605 
6606 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6607 				  struct net_device *upper_dev)
6608 {
6609 	struct netdev_nested_priv priv = {
6610 		.data = (void *)upper_dev,
6611 	};
6612 
6613 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6614 					       &priv);
6615 }
6616 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6617 
6618 /**
6619  * netdev_has_any_upper_dev - Check if device is linked to some device
6620  * @dev: device
6621  *
6622  * Find out if a device is linked to an upper device and return true in case
6623  * it is. The caller must hold the RTNL lock.
6624  */
6625 bool netdev_has_any_upper_dev(struct net_device *dev)
6626 {
6627 	ASSERT_RTNL();
6628 
6629 	return !list_empty(&dev->adj_list.upper);
6630 }
6631 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6632 
6633 /**
6634  * netdev_master_upper_dev_get - Get master upper device
6635  * @dev: device
6636  *
6637  * Find a master upper device and return pointer to it or NULL in case
6638  * it's not there. The caller must hold the RTNL lock.
6639  */
6640 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6641 {
6642 	struct netdev_adjacent *upper;
6643 
6644 	ASSERT_RTNL();
6645 
6646 	if (list_empty(&dev->adj_list.upper))
6647 		return NULL;
6648 
6649 	upper = list_first_entry(&dev->adj_list.upper,
6650 				 struct netdev_adjacent, list);
6651 	if (likely(upper->master))
6652 		return upper->dev;
6653 	return NULL;
6654 }
6655 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6656 
6657 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6658 {
6659 	struct netdev_adjacent *upper;
6660 
6661 	ASSERT_RTNL();
6662 
6663 	if (list_empty(&dev->adj_list.upper))
6664 		return NULL;
6665 
6666 	upper = list_first_entry(&dev->adj_list.upper,
6667 				 struct netdev_adjacent, list);
6668 	if (likely(upper->master) && !upper->ignore)
6669 		return upper->dev;
6670 	return NULL;
6671 }
6672 
6673 /**
6674  * netdev_has_any_lower_dev - Check if device is linked to some device
6675  * @dev: device
6676  *
6677  * Find out if a device is linked to a lower device and return true in case
6678  * it is. The caller must hold the RTNL lock.
6679  */
6680 static bool netdev_has_any_lower_dev(struct net_device *dev)
6681 {
6682 	ASSERT_RTNL();
6683 
6684 	return !list_empty(&dev->adj_list.lower);
6685 }
6686 
6687 void *netdev_adjacent_get_private(struct list_head *adj_list)
6688 {
6689 	struct netdev_adjacent *adj;
6690 
6691 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6692 
6693 	return adj->private;
6694 }
6695 EXPORT_SYMBOL(netdev_adjacent_get_private);
6696 
6697 /**
6698  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6699  * @dev: device
6700  * @iter: list_head ** of the current position
6701  *
6702  * Gets the next device from the dev's upper list, starting from iter
6703  * position. The caller must hold RCU read lock.
6704  */
6705 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6706 						 struct list_head **iter)
6707 {
6708 	struct netdev_adjacent *upper;
6709 
6710 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6711 
6712 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6713 
6714 	if (&upper->list == &dev->adj_list.upper)
6715 		return NULL;
6716 
6717 	*iter = &upper->list;
6718 
6719 	return upper->dev;
6720 }
6721 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6722 
6723 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6724 						  struct list_head **iter,
6725 						  bool *ignore)
6726 {
6727 	struct netdev_adjacent *upper;
6728 
6729 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6730 
6731 	if (&upper->list == &dev->adj_list.upper)
6732 		return NULL;
6733 
6734 	*iter = &upper->list;
6735 	*ignore = upper->ignore;
6736 
6737 	return upper->dev;
6738 }
6739 
6740 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6741 						    struct list_head **iter)
6742 {
6743 	struct netdev_adjacent *upper;
6744 
6745 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6746 
6747 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6748 
6749 	if (&upper->list == &dev->adj_list.upper)
6750 		return NULL;
6751 
6752 	*iter = &upper->list;
6753 
6754 	return upper->dev;
6755 }
6756 
6757 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6758 				       int (*fn)(struct net_device *dev,
6759 					 struct netdev_nested_priv *priv),
6760 				       struct netdev_nested_priv *priv)
6761 {
6762 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6763 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6764 	int ret, cur = 0;
6765 	bool ignore;
6766 
6767 	now = dev;
6768 	iter = &dev->adj_list.upper;
6769 
6770 	while (1) {
6771 		if (now != dev) {
6772 			ret = fn(now, priv);
6773 			if (ret)
6774 				return ret;
6775 		}
6776 
6777 		next = NULL;
6778 		while (1) {
6779 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6780 			if (!udev)
6781 				break;
6782 			if (ignore)
6783 				continue;
6784 
6785 			next = udev;
6786 			niter = &udev->adj_list.upper;
6787 			dev_stack[cur] = now;
6788 			iter_stack[cur++] = iter;
6789 			break;
6790 		}
6791 
6792 		if (!next) {
6793 			if (!cur)
6794 				return 0;
6795 			next = dev_stack[--cur];
6796 			niter = iter_stack[cur];
6797 		}
6798 
6799 		now = next;
6800 		iter = niter;
6801 	}
6802 
6803 	return 0;
6804 }
6805 
6806 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6807 				  int (*fn)(struct net_device *dev,
6808 					    struct netdev_nested_priv *priv),
6809 				  struct netdev_nested_priv *priv)
6810 {
6811 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6812 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6813 	int ret, cur = 0;
6814 
6815 	now = dev;
6816 	iter = &dev->adj_list.upper;
6817 
6818 	while (1) {
6819 		if (now != dev) {
6820 			ret = fn(now, priv);
6821 			if (ret)
6822 				return ret;
6823 		}
6824 
6825 		next = NULL;
6826 		while (1) {
6827 			udev = netdev_next_upper_dev_rcu(now, &iter);
6828 			if (!udev)
6829 				break;
6830 
6831 			next = udev;
6832 			niter = &udev->adj_list.upper;
6833 			dev_stack[cur] = now;
6834 			iter_stack[cur++] = iter;
6835 			break;
6836 		}
6837 
6838 		if (!next) {
6839 			if (!cur)
6840 				return 0;
6841 			next = dev_stack[--cur];
6842 			niter = iter_stack[cur];
6843 		}
6844 
6845 		now = next;
6846 		iter = niter;
6847 	}
6848 
6849 	return 0;
6850 }
6851 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6852 
6853 static bool __netdev_has_upper_dev(struct net_device *dev,
6854 				   struct net_device *upper_dev)
6855 {
6856 	struct netdev_nested_priv priv = {
6857 		.flags = 0,
6858 		.data = (void *)upper_dev,
6859 	};
6860 
6861 	ASSERT_RTNL();
6862 
6863 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6864 					   &priv);
6865 }
6866 
6867 /**
6868  * netdev_lower_get_next_private - Get the next ->private from the
6869  *				   lower neighbour list
6870  * @dev: device
6871  * @iter: list_head ** of the current position
6872  *
6873  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6874  * list, starting from iter position. The caller must hold either hold the
6875  * RTNL lock or its own locking that guarantees that the neighbour lower
6876  * list will remain unchanged.
6877  */
6878 void *netdev_lower_get_next_private(struct net_device *dev,
6879 				    struct list_head **iter)
6880 {
6881 	struct netdev_adjacent *lower;
6882 
6883 	lower = list_entry(*iter, struct netdev_adjacent, list);
6884 
6885 	if (&lower->list == &dev->adj_list.lower)
6886 		return NULL;
6887 
6888 	*iter = lower->list.next;
6889 
6890 	return lower->private;
6891 }
6892 EXPORT_SYMBOL(netdev_lower_get_next_private);
6893 
6894 /**
6895  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6896  *				       lower neighbour list, RCU
6897  *				       variant
6898  * @dev: device
6899  * @iter: list_head ** of the current position
6900  *
6901  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6902  * list, starting from iter position. The caller must hold RCU read lock.
6903  */
6904 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6905 					struct list_head **iter)
6906 {
6907 	struct netdev_adjacent *lower;
6908 
6909 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
6910 
6911 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6912 
6913 	if (&lower->list == &dev->adj_list.lower)
6914 		return NULL;
6915 
6916 	*iter = &lower->list;
6917 
6918 	return lower->private;
6919 }
6920 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6921 
6922 /**
6923  * netdev_lower_get_next - Get the next device from the lower neighbour
6924  *                         list
6925  * @dev: device
6926  * @iter: list_head ** of the current position
6927  *
6928  * Gets the next netdev_adjacent from the dev's lower neighbour
6929  * list, starting from iter position. The caller must hold RTNL lock or
6930  * its own locking that guarantees that the neighbour lower
6931  * list will remain unchanged.
6932  */
6933 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6934 {
6935 	struct netdev_adjacent *lower;
6936 
6937 	lower = list_entry(*iter, struct netdev_adjacent, list);
6938 
6939 	if (&lower->list == &dev->adj_list.lower)
6940 		return NULL;
6941 
6942 	*iter = lower->list.next;
6943 
6944 	return lower->dev;
6945 }
6946 EXPORT_SYMBOL(netdev_lower_get_next);
6947 
6948 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6949 						struct list_head **iter)
6950 {
6951 	struct netdev_adjacent *lower;
6952 
6953 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6954 
6955 	if (&lower->list == &dev->adj_list.lower)
6956 		return NULL;
6957 
6958 	*iter = &lower->list;
6959 
6960 	return lower->dev;
6961 }
6962 
6963 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
6964 						  struct list_head **iter,
6965 						  bool *ignore)
6966 {
6967 	struct netdev_adjacent *lower;
6968 
6969 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6970 
6971 	if (&lower->list == &dev->adj_list.lower)
6972 		return NULL;
6973 
6974 	*iter = &lower->list;
6975 	*ignore = lower->ignore;
6976 
6977 	return lower->dev;
6978 }
6979 
6980 int netdev_walk_all_lower_dev(struct net_device *dev,
6981 			      int (*fn)(struct net_device *dev,
6982 					struct netdev_nested_priv *priv),
6983 			      struct netdev_nested_priv *priv)
6984 {
6985 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6986 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6987 	int ret, cur = 0;
6988 
6989 	now = dev;
6990 	iter = &dev->adj_list.lower;
6991 
6992 	while (1) {
6993 		if (now != dev) {
6994 			ret = fn(now, priv);
6995 			if (ret)
6996 				return ret;
6997 		}
6998 
6999 		next = NULL;
7000 		while (1) {
7001 			ldev = netdev_next_lower_dev(now, &iter);
7002 			if (!ldev)
7003 				break;
7004 
7005 			next = ldev;
7006 			niter = &ldev->adj_list.lower;
7007 			dev_stack[cur] = now;
7008 			iter_stack[cur++] = iter;
7009 			break;
7010 		}
7011 
7012 		if (!next) {
7013 			if (!cur)
7014 				return 0;
7015 			next = dev_stack[--cur];
7016 			niter = iter_stack[cur];
7017 		}
7018 
7019 		now = next;
7020 		iter = niter;
7021 	}
7022 
7023 	return 0;
7024 }
7025 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7026 
7027 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7028 				       int (*fn)(struct net_device *dev,
7029 					 struct netdev_nested_priv *priv),
7030 				       struct netdev_nested_priv *priv)
7031 {
7032 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7033 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7034 	int ret, cur = 0;
7035 	bool ignore;
7036 
7037 	now = dev;
7038 	iter = &dev->adj_list.lower;
7039 
7040 	while (1) {
7041 		if (now != dev) {
7042 			ret = fn(now, priv);
7043 			if (ret)
7044 				return ret;
7045 		}
7046 
7047 		next = NULL;
7048 		while (1) {
7049 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7050 			if (!ldev)
7051 				break;
7052 			if (ignore)
7053 				continue;
7054 
7055 			next = ldev;
7056 			niter = &ldev->adj_list.lower;
7057 			dev_stack[cur] = now;
7058 			iter_stack[cur++] = iter;
7059 			break;
7060 		}
7061 
7062 		if (!next) {
7063 			if (!cur)
7064 				return 0;
7065 			next = dev_stack[--cur];
7066 			niter = iter_stack[cur];
7067 		}
7068 
7069 		now = next;
7070 		iter = niter;
7071 	}
7072 
7073 	return 0;
7074 }
7075 
7076 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7077 					     struct list_head **iter)
7078 {
7079 	struct netdev_adjacent *lower;
7080 
7081 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7082 	if (&lower->list == &dev->adj_list.lower)
7083 		return NULL;
7084 
7085 	*iter = &lower->list;
7086 
7087 	return lower->dev;
7088 }
7089 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7090 
7091 static u8 __netdev_upper_depth(struct net_device *dev)
7092 {
7093 	struct net_device *udev;
7094 	struct list_head *iter;
7095 	u8 max_depth = 0;
7096 	bool ignore;
7097 
7098 	for (iter = &dev->adj_list.upper,
7099 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7100 	     udev;
7101 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7102 		if (ignore)
7103 			continue;
7104 		if (max_depth < udev->upper_level)
7105 			max_depth = udev->upper_level;
7106 	}
7107 
7108 	return max_depth;
7109 }
7110 
7111 static u8 __netdev_lower_depth(struct net_device *dev)
7112 {
7113 	struct net_device *ldev;
7114 	struct list_head *iter;
7115 	u8 max_depth = 0;
7116 	bool ignore;
7117 
7118 	for (iter = &dev->adj_list.lower,
7119 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7120 	     ldev;
7121 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7122 		if (ignore)
7123 			continue;
7124 		if (max_depth < ldev->lower_level)
7125 			max_depth = ldev->lower_level;
7126 	}
7127 
7128 	return max_depth;
7129 }
7130 
7131 static int __netdev_update_upper_level(struct net_device *dev,
7132 				       struct netdev_nested_priv *__unused)
7133 {
7134 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7135 	return 0;
7136 }
7137 
7138 static int __netdev_update_lower_level(struct net_device *dev,
7139 				       struct netdev_nested_priv *priv)
7140 {
7141 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7142 
7143 #ifdef CONFIG_LOCKDEP
7144 	if (!priv)
7145 		return 0;
7146 
7147 	if (priv->flags & NESTED_SYNC_IMM)
7148 		dev->nested_level = dev->lower_level - 1;
7149 	if (priv->flags & NESTED_SYNC_TODO)
7150 		net_unlink_todo(dev);
7151 #endif
7152 	return 0;
7153 }
7154 
7155 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7156 				  int (*fn)(struct net_device *dev,
7157 					    struct netdev_nested_priv *priv),
7158 				  struct netdev_nested_priv *priv)
7159 {
7160 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7161 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7162 	int ret, cur = 0;
7163 
7164 	now = dev;
7165 	iter = &dev->adj_list.lower;
7166 
7167 	while (1) {
7168 		if (now != dev) {
7169 			ret = fn(now, priv);
7170 			if (ret)
7171 				return ret;
7172 		}
7173 
7174 		next = NULL;
7175 		while (1) {
7176 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7177 			if (!ldev)
7178 				break;
7179 
7180 			next = ldev;
7181 			niter = &ldev->adj_list.lower;
7182 			dev_stack[cur] = now;
7183 			iter_stack[cur++] = iter;
7184 			break;
7185 		}
7186 
7187 		if (!next) {
7188 			if (!cur)
7189 				return 0;
7190 			next = dev_stack[--cur];
7191 			niter = iter_stack[cur];
7192 		}
7193 
7194 		now = next;
7195 		iter = niter;
7196 	}
7197 
7198 	return 0;
7199 }
7200 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7201 
7202 /**
7203  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7204  *				       lower neighbour list, RCU
7205  *				       variant
7206  * @dev: device
7207  *
7208  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7209  * list. The caller must hold RCU read lock.
7210  */
7211 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7212 {
7213 	struct netdev_adjacent *lower;
7214 
7215 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7216 			struct netdev_adjacent, list);
7217 	if (lower)
7218 		return lower->private;
7219 	return NULL;
7220 }
7221 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7222 
7223 /**
7224  * netdev_master_upper_dev_get_rcu - Get master upper device
7225  * @dev: device
7226  *
7227  * Find a master upper device and return pointer to it or NULL in case
7228  * it's not there. The caller must hold the RCU read lock.
7229  */
7230 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7231 {
7232 	struct netdev_adjacent *upper;
7233 
7234 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7235 				       struct netdev_adjacent, list);
7236 	if (upper && likely(upper->master))
7237 		return upper->dev;
7238 	return NULL;
7239 }
7240 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7241 
7242 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7243 			      struct net_device *adj_dev,
7244 			      struct list_head *dev_list)
7245 {
7246 	char linkname[IFNAMSIZ+7];
7247 
7248 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7249 		"upper_%s" : "lower_%s", adj_dev->name);
7250 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7251 				 linkname);
7252 }
7253 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7254 			       char *name,
7255 			       struct list_head *dev_list)
7256 {
7257 	char linkname[IFNAMSIZ+7];
7258 
7259 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7260 		"upper_%s" : "lower_%s", name);
7261 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7262 }
7263 
7264 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7265 						 struct net_device *adj_dev,
7266 						 struct list_head *dev_list)
7267 {
7268 	return (dev_list == &dev->adj_list.upper ||
7269 		dev_list == &dev->adj_list.lower) &&
7270 		net_eq(dev_net(dev), dev_net(adj_dev));
7271 }
7272 
7273 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7274 					struct net_device *adj_dev,
7275 					struct list_head *dev_list,
7276 					void *private, bool master)
7277 {
7278 	struct netdev_adjacent *adj;
7279 	int ret;
7280 
7281 	adj = __netdev_find_adj(adj_dev, dev_list);
7282 
7283 	if (adj) {
7284 		adj->ref_nr += 1;
7285 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7286 			 dev->name, adj_dev->name, adj->ref_nr);
7287 
7288 		return 0;
7289 	}
7290 
7291 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7292 	if (!adj)
7293 		return -ENOMEM;
7294 
7295 	adj->dev = adj_dev;
7296 	adj->master = master;
7297 	adj->ref_nr = 1;
7298 	adj->private = private;
7299 	adj->ignore = false;
7300 	dev_hold(adj_dev);
7301 
7302 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7303 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7304 
7305 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7306 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7307 		if (ret)
7308 			goto free_adj;
7309 	}
7310 
7311 	/* Ensure that master link is always the first item in list. */
7312 	if (master) {
7313 		ret = sysfs_create_link(&(dev->dev.kobj),
7314 					&(adj_dev->dev.kobj), "master");
7315 		if (ret)
7316 			goto remove_symlinks;
7317 
7318 		list_add_rcu(&adj->list, dev_list);
7319 	} else {
7320 		list_add_tail_rcu(&adj->list, dev_list);
7321 	}
7322 
7323 	return 0;
7324 
7325 remove_symlinks:
7326 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7327 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7328 free_adj:
7329 	kfree(adj);
7330 	dev_put(adj_dev);
7331 
7332 	return ret;
7333 }
7334 
7335 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7336 					 struct net_device *adj_dev,
7337 					 u16 ref_nr,
7338 					 struct list_head *dev_list)
7339 {
7340 	struct netdev_adjacent *adj;
7341 
7342 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7343 		 dev->name, adj_dev->name, ref_nr);
7344 
7345 	adj = __netdev_find_adj(adj_dev, dev_list);
7346 
7347 	if (!adj) {
7348 		pr_err("Adjacency does not exist for device %s from %s\n",
7349 		       dev->name, adj_dev->name);
7350 		WARN_ON(1);
7351 		return;
7352 	}
7353 
7354 	if (adj->ref_nr > ref_nr) {
7355 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7356 			 dev->name, adj_dev->name, ref_nr,
7357 			 adj->ref_nr - ref_nr);
7358 		adj->ref_nr -= ref_nr;
7359 		return;
7360 	}
7361 
7362 	if (adj->master)
7363 		sysfs_remove_link(&(dev->dev.kobj), "master");
7364 
7365 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7366 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7367 
7368 	list_del_rcu(&adj->list);
7369 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7370 		 adj_dev->name, dev->name, adj_dev->name);
7371 	dev_put(adj_dev);
7372 	kfree_rcu(adj, rcu);
7373 }
7374 
7375 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7376 					    struct net_device *upper_dev,
7377 					    struct list_head *up_list,
7378 					    struct list_head *down_list,
7379 					    void *private, bool master)
7380 {
7381 	int ret;
7382 
7383 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7384 					   private, master);
7385 	if (ret)
7386 		return ret;
7387 
7388 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7389 					   private, false);
7390 	if (ret) {
7391 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7392 		return ret;
7393 	}
7394 
7395 	return 0;
7396 }
7397 
7398 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7399 					       struct net_device *upper_dev,
7400 					       u16 ref_nr,
7401 					       struct list_head *up_list,
7402 					       struct list_head *down_list)
7403 {
7404 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7405 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7406 }
7407 
7408 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7409 						struct net_device *upper_dev,
7410 						void *private, bool master)
7411 {
7412 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7413 						&dev->adj_list.upper,
7414 						&upper_dev->adj_list.lower,
7415 						private, master);
7416 }
7417 
7418 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7419 						   struct net_device *upper_dev)
7420 {
7421 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7422 					   &dev->adj_list.upper,
7423 					   &upper_dev->adj_list.lower);
7424 }
7425 
7426 static int __netdev_upper_dev_link(struct net_device *dev,
7427 				   struct net_device *upper_dev, bool master,
7428 				   void *upper_priv, void *upper_info,
7429 				   struct netdev_nested_priv *priv,
7430 				   struct netlink_ext_ack *extack)
7431 {
7432 	struct netdev_notifier_changeupper_info changeupper_info = {
7433 		.info = {
7434 			.dev = dev,
7435 			.extack = extack,
7436 		},
7437 		.upper_dev = upper_dev,
7438 		.master = master,
7439 		.linking = true,
7440 		.upper_info = upper_info,
7441 	};
7442 	struct net_device *master_dev;
7443 	int ret = 0;
7444 
7445 	ASSERT_RTNL();
7446 
7447 	if (dev == upper_dev)
7448 		return -EBUSY;
7449 
7450 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7451 	if (__netdev_has_upper_dev(upper_dev, dev))
7452 		return -EBUSY;
7453 
7454 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7455 		return -EMLINK;
7456 
7457 	if (!master) {
7458 		if (__netdev_has_upper_dev(dev, upper_dev))
7459 			return -EEXIST;
7460 	} else {
7461 		master_dev = __netdev_master_upper_dev_get(dev);
7462 		if (master_dev)
7463 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7464 	}
7465 
7466 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7467 					    &changeupper_info.info);
7468 	ret = notifier_to_errno(ret);
7469 	if (ret)
7470 		return ret;
7471 
7472 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7473 						   master);
7474 	if (ret)
7475 		return ret;
7476 
7477 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7478 					    &changeupper_info.info);
7479 	ret = notifier_to_errno(ret);
7480 	if (ret)
7481 		goto rollback;
7482 
7483 	__netdev_update_upper_level(dev, NULL);
7484 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7485 
7486 	__netdev_update_lower_level(upper_dev, priv);
7487 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7488 				    priv);
7489 
7490 	return 0;
7491 
7492 rollback:
7493 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7494 
7495 	return ret;
7496 }
7497 
7498 /**
7499  * netdev_upper_dev_link - Add a link to the upper device
7500  * @dev: device
7501  * @upper_dev: new upper device
7502  * @extack: netlink extended ack
7503  *
7504  * Adds a link to device which is upper to this one. The caller must hold
7505  * the RTNL lock. On a failure a negative errno code is returned.
7506  * On success the reference counts are adjusted and the function
7507  * returns zero.
7508  */
7509 int netdev_upper_dev_link(struct net_device *dev,
7510 			  struct net_device *upper_dev,
7511 			  struct netlink_ext_ack *extack)
7512 {
7513 	struct netdev_nested_priv priv = {
7514 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7515 		.data = NULL,
7516 	};
7517 
7518 	return __netdev_upper_dev_link(dev, upper_dev, false,
7519 				       NULL, NULL, &priv, extack);
7520 }
7521 EXPORT_SYMBOL(netdev_upper_dev_link);
7522 
7523 /**
7524  * netdev_master_upper_dev_link - Add a master link to the upper device
7525  * @dev: device
7526  * @upper_dev: new upper device
7527  * @upper_priv: upper device private
7528  * @upper_info: upper info to be passed down via notifier
7529  * @extack: netlink extended ack
7530  *
7531  * Adds a link to device which is upper to this one. In this case, only
7532  * one master upper device can be linked, although other non-master devices
7533  * might be linked as well. The caller must hold the RTNL lock.
7534  * On a failure a negative errno code is returned. On success the reference
7535  * counts are adjusted and the function returns zero.
7536  */
7537 int netdev_master_upper_dev_link(struct net_device *dev,
7538 				 struct net_device *upper_dev,
7539 				 void *upper_priv, void *upper_info,
7540 				 struct netlink_ext_ack *extack)
7541 {
7542 	struct netdev_nested_priv priv = {
7543 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7544 		.data = NULL,
7545 	};
7546 
7547 	return __netdev_upper_dev_link(dev, upper_dev, true,
7548 				       upper_priv, upper_info, &priv, extack);
7549 }
7550 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7551 
7552 static void __netdev_upper_dev_unlink(struct net_device *dev,
7553 				      struct net_device *upper_dev,
7554 				      struct netdev_nested_priv *priv)
7555 {
7556 	struct netdev_notifier_changeupper_info changeupper_info = {
7557 		.info = {
7558 			.dev = dev,
7559 		},
7560 		.upper_dev = upper_dev,
7561 		.linking = false,
7562 	};
7563 
7564 	ASSERT_RTNL();
7565 
7566 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7567 
7568 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7569 				      &changeupper_info.info);
7570 
7571 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7572 
7573 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7574 				      &changeupper_info.info);
7575 
7576 	__netdev_update_upper_level(dev, NULL);
7577 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7578 
7579 	__netdev_update_lower_level(upper_dev, priv);
7580 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7581 				    priv);
7582 }
7583 
7584 /**
7585  * netdev_upper_dev_unlink - Removes a link to upper device
7586  * @dev: device
7587  * @upper_dev: new upper device
7588  *
7589  * Removes a link to device which is upper to this one. The caller must hold
7590  * the RTNL lock.
7591  */
7592 void netdev_upper_dev_unlink(struct net_device *dev,
7593 			     struct net_device *upper_dev)
7594 {
7595 	struct netdev_nested_priv priv = {
7596 		.flags = NESTED_SYNC_TODO,
7597 		.data = NULL,
7598 	};
7599 
7600 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7601 }
7602 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7603 
7604 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7605 				      struct net_device *lower_dev,
7606 				      bool val)
7607 {
7608 	struct netdev_adjacent *adj;
7609 
7610 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7611 	if (adj)
7612 		adj->ignore = val;
7613 
7614 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7615 	if (adj)
7616 		adj->ignore = val;
7617 }
7618 
7619 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7620 					struct net_device *lower_dev)
7621 {
7622 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7623 }
7624 
7625 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7626 				       struct net_device *lower_dev)
7627 {
7628 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7629 }
7630 
7631 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7632 				   struct net_device *new_dev,
7633 				   struct net_device *dev,
7634 				   struct netlink_ext_ack *extack)
7635 {
7636 	struct netdev_nested_priv priv = {
7637 		.flags = 0,
7638 		.data = NULL,
7639 	};
7640 	int err;
7641 
7642 	if (!new_dev)
7643 		return 0;
7644 
7645 	if (old_dev && new_dev != old_dev)
7646 		netdev_adjacent_dev_disable(dev, old_dev);
7647 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7648 				      extack);
7649 	if (err) {
7650 		if (old_dev && new_dev != old_dev)
7651 			netdev_adjacent_dev_enable(dev, old_dev);
7652 		return err;
7653 	}
7654 
7655 	return 0;
7656 }
7657 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7658 
7659 void netdev_adjacent_change_commit(struct net_device *old_dev,
7660 				   struct net_device *new_dev,
7661 				   struct net_device *dev)
7662 {
7663 	struct netdev_nested_priv priv = {
7664 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7665 		.data = NULL,
7666 	};
7667 
7668 	if (!new_dev || !old_dev)
7669 		return;
7670 
7671 	if (new_dev == old_dev)
7672 		return;
7673 
7674 	netdev_adjacent_dev_enable(dev, old_dev);
7675 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7676 }
7677 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7678 
7679 void netdev_adjacent_change_abort(struct net_device *old_dev,
7680 				  struct net_device *new_dev,
7681 				  struct net_device *dev)
7682 {
7683 	struct netdev_nested_priv priv = {
7684 		.flags = 0,
7685 		.data = NULL,
7686 	};
7687 
7688 	if (!new_dev)
7689 		return;
7690 
7691 	if (old_dev && new_dev != old_dev)
7692 		netdev_adjacent_dev_enable(dev, old_dev);
7693 
7694 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7695 }
7696 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7697 
7698 /**
7699  * netdev_bonding_info_change - Dispatch event about slave change
7700  * @dev: device
7701  * @bonding_info: info to dispatch
7702  *
7703  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7704  * The caller must hold the RTNL lock.
7705  */
7706 void netdev_bonding_info_change(struct net_device *dev,
7707 				struct netdev_bonding_info *bonding_info)
7708 {
7709 	struct netdev_notifier_bonding_info info = {
7710 		.info.dev = dev,
7711 	};
7712 
7713 	memcpy(&info.bonding_info, bonding_info,
7714 	       sizeof(struct netdev_bonding_info));
7715 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7716 				      &info.info);
7717 }
7718 EXPORT_SYMBOL(netdev_bonding_info_change);
7719 
7720 /**
7721  * netdev_get_xmit_slave - Get the xmit slave of master device
7722  * @dev: device
7723  * @skb: The packet
7724  * @all_slaves: assume all the slaves are active
7725  *
7726  * The reference counters are not incremented so the caller must be
7727  * careful with locks. The caller must hold RCU lock.
7728  * %NULL is returned if no slave is found.
7729  */
7730 
7731 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7732 					 struct sk_buff *skb,
7733 					 bool all_slaves)
7734 {
7735 	const struct net_device_ops *ops = dev->netdev_ops;
7736 
7737 	if (!ops->ndo_get_xmit_slave)
7738 		return NULL;
7739 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7740 }
7741 EXPORT_SYMBOL(netdev_get_xmit_slave);
7742 
7743 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
7744 						  struct sock *sk)
7745 {
7746 	const struct net_device_ops *ops = dev->netdev_ops;
7747 
7748 	if (!ops->ndo_sk_get_lower_dev)
7749 		return NULL;
7750 	return ops->ndo_sk_get_lower_dev(dev, sk);
7751 }
7752 
7753 /**
7754  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
7755  * @dev: device
7756  * @sk: the socket
7757  *
7758  * %NULL is returned if no lower device is found.
7759  */
7760 
7761 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
7762 					    struct sock *sk)
7763 {
7764 	struct net_device *lower;
7765 
7766 	lower = netdev_sk_get_lower_dev(dev, sk);
7767 	while (lower) {
7768 		dev = lower;
7769 		lower = netdev_sk_get_lower_dev(dev, sk);
7770 	}
7771 
7772 	return dev;
7773 }
7774 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
7775 
7776 static void netdev_adjacent_add_links(struct net_device *dev)
7777 {
7778 	struct netdev_adjacent *iter;
7779 
7780 	struct net *net = dev_net(dev);
7781 
7782 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7783 		if (!net_eq(net, dev_net(iter->dev)))
7784 			continue;
7785 		netdev_adjacent_sysfs_add(iter->dev, dev,
7786 					  &iter->dev->adj_list.lower);
7787 		netdev_adjacent_sysfs_add(dev, iter->dev,
7788 					  &dev->adj_list.upper);
7789 	}
7790 
7791 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7792 		if (!net_eq(net, dev_net(iter->dev)))
7793 			continue;
7794 		netdev_adjacent_sysfs_add(iter->dev, dev,
7795 					  &iter->dev->adj_list.upper);
7796 		netdev_adjacent_sysfs_add(dev, iter->dev,
7797 					  &dev->adj_list.lower);
7798 	}
7799 }
7800 
7801 static void netdev_adjacent_del_links(struct net_device *dev)
7802 {
7803 	struct netdev_adjacent *iter;
7804 
7805 	struct net *net = dev_net(dev);
7806 
7807 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7808 		if (!net_eq(net, dev_net(iter->dev)))
7809 			continue;
7810 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7811 					  &iter->dev->adj_list.lower);
7812 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7813 					  &dev->adj_list.upper);
7814 	}
7815 
7816 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7817 		if (!net_eq(net, dev_net(iter->dev)))
7818 			continue;
7819 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7820 					  &iter->dev->adj_list.upper);
7821 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7822 					  &dev->adj_list.lower);
7823 	}
7824 }
7825 
7826 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7827 {
7828 	struct netdev_adjacent *iter;
7829 
7830 	struct net *net = dev_net(dev);
7831 
7832 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7833 		if (!net_eq(net, dev_net(iter->dev)))
7834 			continue;
7835 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7836 					  &iter->dev->adj_list.lower);
7837 		netdev_adjacent_sysfs_add(iter->dev, dev,
7838 					  &iter->dev->adj_list.lower);
7839 	}
7840 
7841 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7842 		if (!net_eq(net, dev_net(iter->dev)))
7843 			continue;
7844 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7845 					  &iter->dev->adj_list.upper);
7846 		netdev_adjacent_sysfs_add(iter->dev, dev,
7847 					  &iter->dev->adj_list.upper);
7848 	}
7849 }
7850 
7851 void *netdev_lower_dev_get_private(struct net_device *dev,
7852 				   struct net_device *lower_dev)
7853 {
7854 	struct netdev_adjacent *lower;
7855 
7856 	if (!lower_dev)
7857 		return NULL;
7858 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7859 	if (!lower)
7860 		return NULL;
7861 
7862 	return lower->private;
7863 }
7864 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7865 
7866 
7867 /**
7868  * netdev_lower_state_changed - Dispatch event about lower device state change
7869  * @lower_dev: device
7870  * @lower_state_info: state to dispatch
7871  *
7872  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7873  * The caller must hold the RTNL lock.
7874  */
7875 void netdev_lower_state_changed(struct net_device *lower_dev,
7876 				void *lower_state_info)
7877 {
7878 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7879 		.info.dev = lower_dev,
7880 	};
7881 
7882 	ASSERT_RTNL();
7883 	changelowerstate_info.lower_state_info = lower_state_info;
7884 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7885 				      &changelowerstate_info.info);
7886 }
7887 EXPORT_SYMBOL(netdev_lower_state_changed);
7888 
7889 static void dev_change_rx_flags(struct net_device *dev, int flags)
7890 {
7891 	const struct net_device_ops *ops = dev->netdev_ops;
7892 
7893 	if (ops->ndo_change_rx_flags)
7894 		ops->ndo_change_rx_flags(dev, flags);
7895 }
7896 
7897 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7898 {
7899 	unsigned int old_flags = dev->flags;
7900 	kuid_t uid;
7901 	kgid_t gid;
7902 
7903 	ASSERT_RTNL();
7904 
7905 	dev->flags |= IFF_PROMISC;
7906 	dev->promiscuity += inc;
7907 	if (dev->promiscuity == 0) {
7908 		/*
7909 		 * Avoid overflow.
7910 		 * If inc causes overflow, untouch promisc and return error.
7911 		 */
7912 		if (inc < 0)
7913 			dev->flags &= ~IFF_PROMISC;
7914 		else {
7915 			dev->promiscuity -= inc;
7916 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
7917 			return -EOVERFLOW;
7918 		}
7919 	}
7920 	if (dev->flags != old_flags) {
7921 		pr_info("device %s %s promiscuous mode\n",
7922 			dev->name,
7923 			dev->flags & IFF_PROMISC ? "entered" : "left");
7924 		if (audit_enabled) {
7925 			current_uid_gid(&uid, &gid);
7926 			audit_log(audit_context(), GFP_ATOMIC,
7927 				  AUDIT_ANOM_PROMISCUOUS,
7928 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7929 				  dev->name, (dev->flags & IFF_PROMISC),
7930 				  (old_flags & IFF_PROMISC),
7931 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7932 				  from_kuid(&init_user_ns, uid),
7933 				  from_kgid(&init_user_ns, gid),
7934 				  audit_get_sessionid(current));
7935 		}
7936 
7937 		dev_change_rx_flags(dev, IFF_PROMISC);
7938 	}
7939 	if (notify)
7940 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7941 	return 0;
7942 }
7943 
7944 /**
7945  *	dev_set_promiscuity	- update promiscuity count on a device
7946  *	@dev: device
7947  *	@inc: modifier
7948  *
7949  *	Add or remove promiscuity from a device. While the count in the device
7950  *	remains above zero the interface remains promiscuous. Once it hits zero
7951  *	the device reverts back to normal filtering operation. A negative inc
7952  *	value is used to drop promiscuity on the device.
7953  *	Return 0 if successful or a negative errno code on error.
7954  */
7955 int dev_set_promiscuity(struct net_device *dev, int inc)
7956 {
7957 	unsigned int old_flags = dev->flags;
7958 	int err;
7959 
7960 	err = __dev_set_promiscuity(dev, inc, true);
7961 	if (err < 0)
7962 		return err;
7963 	if (dev->flags != old_flags)
7964 		dev_set_rx_mode(dev);
7965 	return err;
7966 }
7967 EXPORT_SYMBOL(dev_set_promiscuity);
7968 
7969 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7970 {
7971 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7972 
7973 	ASSERT_RTNL();
7974 
7975 	dev->flags |= IFF_ALLMULTI;
7976 	dev->allmulti += inc;
7977 	if (dev->allmulti == 0) {
7978 		/*
7979 		 * Avoid overflow.
7980 		 * If inc causes overflow, untouch allmulti and return error.
7981 		 */
7982 		if (inc < 0)
7983 			dev->flags &= ~IFF_ALLMULTI;
7984 		else {
7985 			dev->allmulti -= inc;
7986 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
7987 			return -EOVERFLOW;
7988 		}
7989 	}
7990 	if (dev->flags ^ old_flags) {
7991 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7992 		dev_set_rx_mode(dev);
7993 		if (notify)
7994 			__dev_notify_flags(dev, old_flags,
7995 					   dev->gflags ^ old_gflags);
7996 	}
7997 	return 0;
7998 }
7999 
8000 /**
8001  *	dev_set_allmulti	- update allmulti count on a device
8002  *	@dev: device
8003  *	@inc: modifier
8004  *
8005  *	Add or remove reception of all multicast frames to a device. While the
8006  *	count in the device remains above zero the interface remains listening
8007  *	to all interfaces. Once it hits zero the device reverts back to normal
8008  *	filtering operation. A negative @inc value is used to drop the counter
8009  *	when releasing a resource needing all multicasts.
8010  *	Return 0 if successful or a negative errno code on error.
8011  */
8012 
8013 int dev_set_allmulti(struct net_device *dev, int inc)
8014 {
8015 	return __dev_set_allmulti(dev, inc, true);
8016 }
8017 EXPORT_SYMBOL(dev_set_allmulti);
8018 
8019 /*
8020  *	Upload unicast and multicast address lists to device and
8021  *	configure RX filtering. When the device doesn't support unicast
8022  *	filtering it is put in promiscuous mode while unicast addresses
8023  *	are present.
8024  */
8025 void __dev_set_rx_mode(struct net_device *dev)
8026 {
8027 	const struct net_device_ops *ops = dev->netdev_ops;
8028 
8029 	/* dev_open will call this function so the list will stay sane. */
8030 	if (!(dev->flags&IFF_UP))
8031 		return;
8032 
8033 	if (!netif_device_present(dev))
8034 		return;
8035 
8036 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8037 		/* Unicast addresses changes may only happen under the rtnl,
8038 		 * therefore calling __dev_set_promiscuity here is safe.
8039 		 */
8040 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8041 			__dev_set_promiscuity(dev, 1, false);
8042 			dev->uc_promisc = true;
8043 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8044 			__dev_set_promiscuity(dev, -1, false);
8045 			dev->uc_promisc = false;
8046 		}
8047 	}
8048 
8049 	if (ops->ndo_set_rx_mode)
8050 		ops->ndo_set_rx_mode(dev);
8051 }
8052 
8053 void dev_set_rx_mode(struct net_device *dev)
8054 {
8055 	netif_addr_lock_bh(dev);
8056 	__dev_set_rx_mode(dev);
8057 	netif_addr_unlock_bh(dev);
8058 }
8059 
8060 /**
8061  *	dev_get_flags - get flags reported to userspace
8062  *	@dev: device
8063  *
8064  *	Get the combination of flag bits exported through APIs to userspace.
8065  */
8066 unsigned int dev_get_flags(const struct net_device *dev)
8067 {
8068 	unsigned int flags;
8069 
8070 	flags = (dev->flags & ~(IFF_PROMISC |
8071 				IFF_ALLMULTI |
8072 				IFF_RUNNING |
8073 				IFF_LOWER_UP |
8074 				IFF_DORMANT)) |
8075 		(dev->gflags & (IFF_PROMISC |
8076 				IFF_ALLMULTI));
8077 
8078 	if (netif_running(dev)) {
8079 		if (netif_oper_up(dev))
8080 			flags |= IFF_RUNNING;
8081 		if (netif_carrier_ok(dev))
8082 			flags |= IFF_LOWER_UP;
8083 		if (netif_dormant(dev))
8084 			flags |= IFF_DORMANT;
8085 	}
8086 
8087 	return flags;
8088 }
8089 EXPORT_SYMBOL(dev_get_flags);
8090 
8091 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8092 		       struct netlink_ext_ack *extack)
8093 {
8094 	unsigned int old_flags = dev->flags;
8095 	int ret;
8096 
8097 	ASSERT_RTNL();
8098 
8099 	/*
8100 	 *	Set the flags on our device.
8101 	 */
8102 
8103 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8104 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8105 			       IFF_AUTOMEDIA)) |
8106 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8107 				    IFF_ALLMULTI));
8108 
8109 	/*
8110 	 *	Load in the correct multicast list now the flags have changed.
8111 	 */
8112 
8113 	if ((old_flags ^ flags) & IFF_MULTICAST)
8114 		dev_change_rx_flags(dev, IFF_MULTICAST);
8115 
8116 	dev_set_rx_mode(dev);
8117 
8118 	/*
8119 	 *	Have we downed the interface. We handle IFF_UP ourselves
8120 	 *	according to user attempts to set it, rather than blindly
8121 	 *	setting it.
8122 	 */
8123 
8124 	ret = 0;
8125 	if ((old_flags ^ flags) & IFF_UP) {
8126 		if (old_flags & IFF_UP)
8127 			__dev_close(dev);
8128 		else
8129 			ret = __dev_open(dev, extack);
8130 	}
8131 
8132 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8133 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8134 		unsigned int old_flags = dev->flags;
8135 
8136 		dev->gflags ^= IFF_PROMISC;
8137 
8138 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8139 			if (dev->flags != old_flags)
8140 				dev_set_rx_mode(dev);
8141 	}
8142 
8143 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8144 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8145 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8146 	 */
8147 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8148 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8149 
8150 		dev->gflags ^= IFF_ALLMULTI;
8151 		__dev_set_allmulti(dev, inc, false);
8152 	}
8153 
8154 	return ret;
8155 }
8156 
8157 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8158 			unsigned int gchanges)
8159 {
8160 	unsigned int changes = dev->flags ^ old_flags;
8161 
8162 	if (gchanges)
8163 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8164 
8165 	if (changes & IFF_UP) {
8166 		if (dev->flags & IFF_UP)
8167 			call_netdevice_notifiers(NETDEV_UP, dev);
8168 		else
8169 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8170 	}
8171 
8172 	if (dev->flags & IFF_UP &&
8173 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8174 		struct netdev_notifier_change_info change_info = {
8175 			.info = {
8176 				.dev = dev,
8177 			},
8178 			.flags_changed = changes,
8179 		};
8180 
8181 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8182 	}
8183 }
8184 
8185 /**
8186  *	dev_change_flags - change device settings
8187  *	@dev: device
8188  *	@flags: device state flags
8189  *	@extack: netlink extended ack
8190  *
8191  *	Change settings on device based state flags. The flags are
8192  *	in the userspace exported format.
8193  */
8194 int dev_change_flags(struct net_device *dev, unsigned int flags,
8195 		     struct netlink_ext_ack *extack)
8196 {
8197 	int ret;
8198 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8199 
8200 	ret = __dev_change_flags(dev, flags, extack);
8201 	if (ret < 0)
8202 		return ret;
8203 
8204 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8205 	__dev_notify_flags(dev, old_flags, changes);
8206 	return ret;
8207 }
8208 EXPORT_SYMBOL(dev_change_flags);
8209 
8210 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8211 {
8212 	const struct net_device_ops *ops = dev->netdev_ops;
8213 
8214 	if (ops->ndo_change_mtu)
8215 		return ops->ndo_change_mtu(dev, new_mtu);
8216 
8217 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8218 	WRITE_ONCE(dev->mtu, new_mtu);
8219 	return 0;
8220 }
8221 EXPORT_SYMBOL(__dev_set_mtu);
8222 
8223 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8224 		     struct netlink_ext_ack *extack)
8225 {
8226 	/* MTU must be positive, and in range */
8227 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8228 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8229 		return -EINVAL;
8230 	}
8231 
8232 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8233 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8234 		return -EINVAL;
8235 	}
8236 	return 0;
8237 }
8238 
8239 /**
8240  *	dev_set_mtu_ext - Change maximum transfer unit
8241  *	@dev: device
8242  *	@new_mtu: new transfer unit
8243  *	@extack: netlink extended ack
8244  *
8245  *	Change the maximum transfer size of the network device.
8246  */
8247 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8248 		    struct netlink_ext_ack *extack)
8249 {
8250 	int err, orig_mtu;
8251 
8252 	if (new_mtu == dev->mtu)
8253 		return 0;
8254 
8255 	err = dev_validate_mtu(dev, new_mtu, extack);
8256 	if (err)
8257 		return err;
8258 
8259 	if (!netif_device_present(dev))
8260 		return -ENODEV;
8261 
8262 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8263 	err = notifier_to_errno(err);
8264 	if (err)
8265 		return err;
8266 
8267 	orig_mtu = dev->mtu;
8268 	err = __dev_set_mtu(dev, new_mtu);
8269 
8270 	if (!err) {
8271 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8272 						   orig_mtu);
8273 		err = notifier_to_errno(err);
8274 		if (err) {
8275 			/* setting mtu back and notifying everyone again,
8276 			 * so that they have a chance to revert changes.
8277 			 */
8278 			__dev_set_mtu(dev, orig_mtu);
8279 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8280 						     new_mtu);
8281 		}
8282 	}
8283 	return err;
8284 }
8285 
8286 int dev_set_mtu(struct net_device *dev, int new_mtu)
8287 {
8288 	struct netlink_ext_ack extack;
8289 	int err;
8290 
8291 	memset(&extack, 0, sizeof(extack));
8292 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8293 	if (err && extack._msg)
8294 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8295 	return err;
8296 }
8297 EXPORT_SYMBOL(dev_set_mtu);
8298 
8299 /**
8300  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8301  *	@dev: device
8302  *	@new_len: new tx queue length
8303  */
8304 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8305 {
8306 	unsigned int orig_len = dev->tx_queue_len;
8307 	int res;
8308 
8309 	if (new_len != (unsigned int)new_len)
8310 		return -ERANGE;
8311 
8312 	if (new_len != orig_len) {
8313 		dev->tx_queue_len = new_len;
8314 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8315 		res = notifier_to_errno(res);
8316 		if (res)
8317 			goto err_rollback;
8318 		res = dev_qdisc_change_tx_queue_len(dev);
8319 		if (res)
8320 			goto err_rollback;
8321 	}
8322 
8323 	return 0;
8324 
8325 err_rollback:
8326 	netdev_err(dev, "refused to change device tx_queue_len\n");
8327 	dev->tx_queue_len = orig_len;
8328 	return res;
8329 }
8330 
8331 /**
8332  *	dev_set_group - Change group this device belongs to
8333  *	@dev: device
8334  *	@new_group: group this device should belong to
8335  */
8336 void dev_set_group(struct net_device *dev, int new_group)
8337 {
8338 	dev->group = new_group;
8339 }
8340 EXPORT_SYMBOL(dev_set_group);
8341 
8342 /**
8343  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8344  *	@dev: device
8345  *	@addr: new address
8346  *	@extack: netlink extended ack
8347  */
8348 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8349 			      struct netlink_ext_ack *extack)
8350 {
8351 	struct netdev_notifier_pre_changeaddr_info info = {
8352 		.info.dev = dev,
8353 		.info.extack = extack,
8354 		.dev_addr = addr,
8355 	};
8356 	int rc;
8357 
8358 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8359 	return notifier_to_errno(rc);
8360 }
8361 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8362 
8363 /**
8364  *	dev_set_mac_address - Change Media Access Control Address
8365  *	@dev: device
8366  *	@sa: new address
8367  *	@extack: netlink extended ack
8368  *
8369  *	Change the hardware (MAC) address of the device
8370  */
8371 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8372 			struct netlink_ext_ack *extack)
8373 {
8374 	const struct net_device_ops *ops = dev->netdev_ops;
8375 	int err;
8376 
8377 	if (!ops->ndo_set_mac_address)
8378 		return -EOPNOTSUPP;
8379 	if (sa->sa_family != dev->type)
8380 		return -EINVAL;
8381 	if (!netif_device_present(dev))
8382 		return -ENODEV;
8383 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8384 	if (err)
8385 		return err;
8386 	err = ops->ndo_set_mac_address(dev, sa);
8387 	if (err)
8388 		return err;
8389 	dev->addr_assign_type = NET_ADDR_SET;
8390 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8391 	add_device_randomness(dev->dev_addr, dev->addr_len);
8392 	return 0;
8393 }
8394 EXPORT_SYMBOL(dev_set_mac_address);
8395 
8396 static DECLARE_RWSEM(dev_addr_sem);
8397 
8398 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8399 			     struct netlink_ext_ack *extack)
8400 {
8401 	int ret;
8402 
8403 	down_write(&dev_addr_sem);
8404 	ret = dev_set_mac_address(dev, sa, extack);
8405 	up_write(&dev_addr_sem);
8406 	return ret;
8407 }
8408 EXPORT_SYMBOL(dev_set_mac_address_user);
8409 
8410 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8411 {
8412 	size_t size = sizeof(sa->sa_data);
8413 	struct net_device *dev;
8414 	int ret = 0;
8415 
8416 	down_read(&dev_addr_sem);
8417 	rcu_read_lock();
8418 
8419 	dev = dev_get_by_name_rcu(net, dev_name);
8420 	if (!dev) {
8421 		ret = -ENODEV;
8422 		goto unlock;
8423 	}
8424 	if (!dev->addr_len)
8425 		memset(sa->sa_data, 0, size);
8426 	else
8427 		memcpy(sa->sa_data, dev->dev_addr,
8428 		       min_t(size_t, size, dev->addr_len));
8429 	sa->sa_family = dev->type;
8430 
8431 unlock:
8432 	rcu_read_unlock();
8433 	up_read(&dev_addr_sem);
8434 	return ret;
8435 }
8436 EXPORT_SYMBOL(dev_get_mac_address);
8437 
8438 /**
8439  *	dev_change_carrier - Change device carrier
8440  *	@dev: device
8441  *	@new_carrier: new value
8442  *
8443  *	Change device carrier
8444  */
8445 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8446 {
8447 	const struct net_device_ops *ops = dev->netdev_ops;
8448 
8449 	if (!ops->ndo_change_carrier)
8450 		return -EOPNOTSUPP;
8451 	if (!netif_device_present(dev))
8452 		return -ENODEV;
8453 	return ops->ndo_change_carrier(dev, new_carrier);
8454 }
8455 EXPORT_SYMBOL(dev_change_carrier);
8456 
8457 /**
8458  *	dev_get_phys_port_id - Get device physical port ID
8459  *	@dev: device
8460  *	@ppid: port ID
8461  *
8462  *	Get device physical port ID
8463  */
8464 int dev_get_phys_port_id(struct net_device *dev,
8465 			 struct netdev_phys_item_id *ppid)
8466 {
8467 	const struct net_device_ops *ops = dev->netdev_ops;
8468 
8469 	if (!ops->ndo_get_phys_port_id)
8470 		return -EOPNOTSUPP;
8471 	return ops->ndo_get_phys_port_id(dev, ppid);
8472 }
8473 EXPORT_SYMBOL(dev_get_phys_port_id);
8474 
8475 /**
8476  *	dev_get_phys_port_name - Get device physical port name
8477  *	@dev: device
8478  *	@name: port name
8479  *	@len: limit of bytes to copy to name
8480  *
8481  *	Get device physical port name
8482  */
8483 int dev_get_phys_port_name(struct net_device *dev,
8484 			   char *name, size_t len)
8485 {
8486 	const struct net_device_ops *ops = dev->netdev_ops;
8487 	int err;
8488 
8489 	if (ops->ndo_get_phys_port_name) {
8490 		err = ops->ndo_get_phys_port_name(dev, name, len);
8491 		if (err != -EOPNOTSUPP)
8492 			return err;
8493 	}
8494 	return devlink_compat_phys_port_name_get(dev, name, len);
8495 }
8496 EXPORT_SYMBOL(dev_get_phys_port_name);
8497 
8498 /**
8499  *	dev_get_port_parent_id - Get the device's port parent identifier
8500  *	@dev: network device
8501  *	@ppid: pointer to a storage for the port's parent identifier
8502  *	@recurse: allow/disallow recursion to lower devices
8503  *
8504  *	Get the devices's port parent identifier
8505  */
8506 int dev_get_port_parent_id(struct net_device *dev,
8507 			   struct netdev_phys_item_id *ppid,
8508 			   bool recurse)
8509 {
8510 	const struct net_device_ops *ops = dev->netdev_ops;
8511 	struct netdev_phys_item_id first = { };
8512 	struct net_device *lower_dev;
8513 	struct list_head *iter;
8514 	int err;
8515 
8516 	if (ops->ndo_get_port_parent_id) {
8517 		err = ops->ndo_get_port_parent_id(dev, ppid);
8518 		if (err != -EOPNOTSUPP)
8519 			return err;
8520 	}
8521 
8522 	err = devlink_compat_switch_id_get(dev, ppid);
8523 	if (!recurse || err != -EOPNOTSUPP)
8524 		return err;
8525 
8526 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8527 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8528 		if (err)
8529 			break;
8530 		if (!first.id_len)
8531 			first = *ppid;
8532 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8533 			return -EOPNOTSUPP;
8534 	}
8535 
8536 	return err;
8537 }
8538 EXPORT_SYMBOL(dev_get_port_parent_id);
8539 
8540 /**
8541  *	netdev_port_same_parent_id - Indicate if two network devices have
8542  *	the same port parent identifier
8543  *	@a: first network device
8544  *	@b: second network device
8545  */
8546 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8547 {
8548 	struct netdev_phys_item_id a_id = { };
8549 	struct netdev_phys_item_id b_id = { };
8550 
8551 	if (dev_get_port_parent_id(a, &a_id, true) ||
8552 	    dev_get_port_parent_id(b, &b_id, true))
8553 		return false;
8554 
8555 	return netdev_phys_item_id_same(&a_id, &b_id);
8556 }
8557 EXPORT_SYMBOL(netdev_port_same_parent_id);
8558 
8559 /**
8560  *	dev_change_proto_down - update protocol port state information
8561  *	@dev: device
8562  *	@proto_down: new value
8563  *
8564  *	This info can be used by switch drivers to set the phys state of the
8565  *	port.
8566  */
8567 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8568 {
8569 	const struct net_device_ops *ops = dev->netdev_ops;
8570 
8571 	if (!ops->ndo_change_proto_down)
8572 		return -EOPNOTSUPP;
8573 	if (!netif_device_present(dev))
8574 		return -ENODEV;
8575 	return ops->ndo_change_proto_down(dev, proto_down);
8576 }
8577 EXPORT_SYMBOL(dev_change_proto_down);
8578 
8579 /**
8580  *	dev_change_proto_down_generic - generic implementation for
8581  * 	ndo_change_proto_down that sets carrier according to
8582  * 	proto_down.
8583  *
8584  *	@dev: device
8585  *	@proto_down: new value
8586  */
8587 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8588 {
8589 	if (proto_down)
8590 		netif_carrier_off(dev);
8591 	else
8592 		netif_carrier_on(dev);
8593 	dev->proto_down = proto_down;
8594 	return 0;
8595 }
8596 EXPORT_SYMBOL(dev_change_proto_down_generic);
8597 
8598 /**
8599  *	dev_change_proto_down_reason - proto down reason
8600  *
8601  *	@dev: device
8602  *	@mask: proto down mask
8603  *	@value: proto down value
8604  */
8605 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8606 				  u32 value)
8607 {
8608 	int b;
8609 
8610 	if (!mask) {
8611 		dev->proto_down_reason = value;
8612 	} else {
8613 		for_each_set_bit(b, &mask, 32) {
8614 			if (value & (1 << b))
8615 				dev->proto_down_reason |= BIT(b);
8616 			else
8617 				dev->proto_down_reason &= ~BIT(b);
8618 		}
8619 	}
8620 }
8621 EXPORT_SYMBOL(dev_change_proto_down_reason);
8622 
8623 struct bpf_xdp_link {
8624 	struct bpf_link link;
8625 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8626 	int flags;
8627 };
8628 
8629 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8630 {
8631 	if (flags & XDP_FLAGS_HW_MODE)
8632 		return XDP_MODE_HW;
8633 	if (flags & XDP_FLAGS_DRV_MODE)
8634 		return XDP_MODE_DRV;
8635 	if (flags & XDP_FLAGS_SKB_MODE)
8636 		return XDP_MODE_SKB;
8637 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8638 }
8639 
8640 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8641 {
8642 	switch (mode) {
8643 	case XDP_MODE_SKB:
8644 		return generic_xdp_install;
8645 	case XDP_MODE_DRV:
8646 	case XDP_MODE_HW:
8647 		return dev->netdev_ops->ndo_bpf;
8648 	default:
8649 		return NULL;
8650 	}
8651 }
8652 
8653 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8654 					 enum bpf_xdp_mode mode)
8655 {
8656 	return dev->xdp_state[mode].link;
8657 }
8658 
8659 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8660 				     enum bpf_xdp_mode mode)
8661 {
8662 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8663 
8664 	if (link)
8665 		return link->link.prog;
8666 	return dev->xdp_state[mode].prog;
8667 }
8668 
8669 u8 dev_xdp_prog_count(struct net_device *dev)
8670 {
8671 	u8 count = 0;
8672 	int i;
8673 
8674 	for (i = 0; i < __MAX_XDP_MODE; i++)
8675 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8676 			count++;
8677 	return count;
8678 }
8679 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
8680 
8681 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8682 {
8683 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8684 
8685 	return prog ? prog->aux->id : 0;
8686 }
8687 
8688 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8689 			     struct bpf_xdp_link *link)
8690 {
8691 	dev->xdp_state[mode].link = link;
8692 	dev->xdp_state[mode].prog = NULL;
8693 }
8694 
8695 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8696 			     struct bpf_prog *prog)
8697 {
8698 	dev->xdp_state[mode].link = NULL;
8699 	dev->xdp_state[mode].prog = prog;
8700 }
8701 
8702 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8703 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8704 			   u32 flags, struct bpf_prog *prog)
8705 {
8706 	struct netdev_bpf xdp;
8707 	int err;
8708 
8709 	memset(&xdp, 0, sizeof(xdp));
8710 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8711 	xdp.extack = extack;
8712 	xdp.flags = flags;
8713 	xdp.prog = prog;
8714 
8715 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
8716 	 * "moved" into driver), so they don't increment it on their own, but
8717 	 * they do decrement refcnt when program is detached or replaced.
8718 	 * Given net_device also owns link/prog, we need to bump refcnt here
8719 	 * to prevent drivers from underflowing it.
8720 	 */
8721 	if (prog)
8722 		bpf_prog_inc(prog);
8723 	err = bpf_op(dev, &xdp);
8724 	if (err) {
8725 		if (prog)
8726 			bpf_prog_put(prog);
8727 		return err;
8728 	}
8729 
8730 	if (mode != XDP_MODE_HW)
8731 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8732 
8733 	return 0;
8734 }
8735 
8736 static void dev_xdp_uninstall(struct net_device *dev)
8737 {
8738 	struct bpf_xdp_link *link;
8739 	struct bpf_prog *prog;
8740 	enum bpf_xdp_mode mode;
8741 	bpf_op_t bpf_op;
8742 
8743 	ASSERT_RTNL();
8744 
8745 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
8746 		prog = dev_xdp_prog(dev, mode);
8747 		if (!prog)
8748 			continue;
8749 
8750 		bpf_op = dev_xdp_bpf_op(dev, mode);
8751 		if (!bpf_op)
8752 			continue;
8753 
8754 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8755 
8756 		/* auto-detach link from net device */
8757 		link = dev_xdp_link(dev, mode);
8758 		if (link)
8759 			link->dev = NULL;
8760 		else
8761 			bpf_prog_put(prog);
8762 
8763 		dev_xdp_set_link(dev, mode, NULL);
8764 	}
8765 }
8766 
8767 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
8768 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
8769 			  struct bpf_prog *old_prog, u32 flags)
8770 {
8771 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
8772 	struct bpf_prog *cur_prog;
8773 	struct net_device *upper;
8774 	struct list_head *iter;
8775 	enum bpf_xdp_mode mode;
8776 	bpf_op_t bpf_op;
8777 	int err;
8778 
8779 	ASSERT_RTNL();
8780 
8781 	/* either link or prog attachment, never both */
8782 	if (link && (new_prog || old_prog))
8783 		return -EINVAL;
8784 	/* link supports only XDP mode flags */
8785 	if (link && (flags & ~XDP_FLAGS_MODES)) {
8786 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
8787 		return -EINVAL;
8788 	}
8789 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
8790 	if (num_modes > 1) {
8791 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
8792 		return -EINVAL;
8793 	}
8794 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
8795 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
8796 		NL_SET_ERR_MSG(extack,
8797 			       "More than one program loaded, unset mode is ambiguous");
8798 		return -EINVAL;
8799 	}
8800 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
8801 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
8802 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
8803 		return -EINVAL;
8804 	}
8805 
8806 	mode = dev_xdp_mode(dev, flags);
8807 	/* can't replace attached link */
8808 	if (dev_xdp_link(dev, mode)) {
8809 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
8810 		return -EBUSY;
8811 	}
8812 
8813 	/* don't allow if an upper device already has a program */
8814 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
8815 		if (dev_xdp_prog_count(upper) > 0) {
8816 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
8817 			return -EEXIST;
8818 		}
8819 	}
8820 
8821 	cur_prog = dev_xdp_prog(dev, mode);
8822 	/* can't replace attached prog with link */
8823 	if (link && cur_prog) {
8824 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
8825 		return -EBUSY;
8826 	}
8827 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
8828 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
8829 		return -EEXIST;
8830 	}
8831 
8832 	/* put effective new program into new_prog */
8833 	if (link)
8834 		new_prog = link->link.prog;
8835 
8836 	if (new_prog) {
8837 		bool offload = mode == XDP_MODE_HW;
8838 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
8839 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
8840 
8841 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
8842 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8843 			return -EBUSY;
8844 		}
8845 		if (!offload && dev_xdp_prog(dev, other_mode)) {
8846 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
8847 			return -EEXIST;
8848 		}
8849 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
8850 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
8851 			return -EINVAL;
8852 		}
8853 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
8854 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8855 			return -EINVAL;
8856 		}
8857 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
8858 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
8859 			return -EINVAL;
8860 		}
8861 	}
8862 
8863 	/* don't call drivers if the effective program didn't change */
8864 	if (new_prog != cur_prog) {
8865 		bpf_op = dev_xdp_bpf_op(dev, mode);
8866 		if (!bpf_op) {
8867 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
8868 			return -EOPNOTSUPP;
8869 		}
8870 
8871 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
8872 		if (err)
8873 			return err;
8874 	}
8875 
8876 	if (link)
8877 		dev_xdp_set_link(dev, mode, link);
8878 	else
8879 		dev_xdp_set_prog(dev, mode, new_prog);
8880 	if (cur_prog)
8881 		bpf_prog_put(cur_prog);
8882 
8883 	return 0;
8884 }
8885 
8886 static int dev_xdp_attach_link(struct net_device *dev,
8887 			       struct netlink_ext_ack *extack,
8888 			       struct bpf_xdp_link *link)
8889 {
8890 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
8891 }
8892 
8893 static int dev_xdp_detach_link(struct net_device *dev,
8894 			       struct netlink_ext_ack *extack,
8895 			       struct bpf_xdp_link *link)
8896 {
8897 	enum bpf_xdp_mode mode;
8898 	bpf_op_t bpf_op;
8899 
8900 	ASSERT_RTNL();
8901 
8902 	mode = dev_xdp_mode(dev, link->flags);
8903 	if (dev_xdp_link(dev, mode) != link)
8904 		return -EINVAL;
8905 
8906 	bpf_op = dev_xdp_bpf_op(dev, mode);
8907 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
8908 	dev_xdp_set_link(dev, mode, NULL);
8909 	return 0;
8910 }
8911 
8912 static void bpf_xdp_link_release(struct bpf_link *link)
8913 {
8914 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8915 
8916 	rtnl_lock();
8917 
8918 	/* if racing with net_device's tear down, xdp_link->dev might be
8919 	 * already NULL, in which case link was already auto-detached
8920 	 */
8921 	if (xdp_link->dev) {
8922 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
8923 		xdp_link->dev = NULL;
8924 	}
8925 
8926 	rtnl_unlock();
8927 }
8928 
8929 static int bpf_xdp_link_detach(struct bpf_link *link)
8930 {
8931 	bpf_xdp_link_release(link);
8932 	return 0;
8933 }
8934 
8935 static void bpf_xdp_link_dealloc(struct bpf_link *link)
8936 {
8937 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8938 
8939 	kfree(xdp_link);
8940 }
8941 
8942 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
8943 				     struct seq_file *seq)
8944 {
8945 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8946 	u32 ifindex = 0;
8947 
8948 	rtnl_lock();
8949 	if (xdp_link->dev)
8950 		ifindex = xdp_link->dev->ifindex;
8951 	rtnl_unlock();
8952 
8953 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
8954 }
8955 
8956 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
8957 				       struct bpf_link_info *info)
8958 {
8959 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8960 	u32 ifindex = 0;
8961 
8962 	rtnl_lock();
8963 	if (xdp_link->dev)
8964 		ifindex = xdp_link->dev->ifindex;
8965 	rtnl_unlock();
8966 
8967 	info->xdp.ifindex = ifindex;
8968 	return 0;
8969 }
8970 
8971 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
8972 			       struct bpf_prog *old_prog)
8973 {
8974 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
8975 	enum bpf_xdp_mode mode;
8976 	bpf_op_t bpf_op;
8977 	int err = 0;
8978 
8979 	rtnl_lock();
8980 
8981 	/* link might have been auto-released already, so fail */
8982 	if (!xdp_link->dev) {
8983 		err = -ENOLINK;
8984 		goto out_unlock;
8985 	}
8986 
8987 	if (old_prog && link->prog != old_prog) {
8988 		err = -EPERM;
8989 		goto out_unlock;
8990 	}
8991 	old_prog = link->prog;
8992 	if (old_prog == new_prog) {
8993 		/* no-op, don't disturb drivers */
8994 		bpf_prog_put(new_prog);
8995 		goto out_unlock;
8996 	}
8997 
8998 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
8999 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9000 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9001 			      xdp_link->flags, new_prog);
9002 	if (err)
9003 		goto out_unlock;
9004 
9005 	old_prog = xchg(&link->prog, new_prog);
9006 	bpf_prog_put(old_prog);
9007 
9008 out_unlock:
9009 	rtnl_unlock();
9010 	return err;
9011 }
9012 
9013 static const struct bpf_link_ops bpf_xdp_link_lops = {
9014 	.release = bpf_xdp_link_release,
9015 	.dealloc = bpf_xdp_link_dealloc,
9016 	.detach = bpf_xdp_link_detach,
9017 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9018 	.fill_link_info = bpf_xdp_link_fill_link_info,
9019 	.update_prog = bpf_xdp_link_update,
9020 };
9021 
9022 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9023 {
9024 	struct net *net = current->nsproxy->net_ns;
9025 	struct bpf_link_primer link_primer;
9026 	struct bpf_xdp_link *link;
9027 	struct net_device *dev;
9028 	int err, fd;
9029 
9030 	rtnl_lock();
9031 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9032 	if (!dev) {
9033 		rtnl_unlock();
9034 		return -EINVAL;
9035 	}
9036 
9037 	link = kzalloc(sizeof(*link), GFP_USER);
9038 	if (!link) {
9039 		err = -ENOMEM;
9040 		goto unlock;
9041 	}
9042 
9043 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9044 	link->dev = dev;
9045 	link->flags = attr->link_create.flags;
9046 
9047 	err = bpf_link_prime(&link->link, &link_primer);
9048 	if (err) {
9049 		kfree(link);
9050 		goto unlock;
9051 	}
9052 
9053 	err = dev_xdp_attach_link(dev, NULL, link);
9054 	rtnl_unlock();
9055 
9056 	if (err) {
9057 		link->dev = NULL;
9058 		bpf_link_cleanup(&link_primer);
9059 		goto out_put_dev;
9060 	}
9061 
9062 	fd = bpf_link_settle(&link_primer);
9063 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9064 	dev_put(dev);
9065 	return fd;
9066 
9067 unlock:
9068 	rtnl_unlock();
9069 
9070 out_put_dev:
9071 	dev_put(dev);
9072 	return err;
9073 }
9074 
9075 /**
9076  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9077  *	@dev: device
9078  *	@extack: netlink extended ack
9079  *	@fd: new program fd or negative value to clear
9080  *	@expected_fd: old program fd that userspace expects to replace or clear
9081  *	@flags: xdp-related flags
9082  *
9083  *	Set or clear a bpf program for a device
9084  */
9085 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9086 		      int fd, int expected_fd, u32 flags)
9087 {
9088 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9089 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9090 	int err;
9091 
9092 	ASSERT_RTNL();
9093 
9094 	if (fd >= 0) {
9095 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9096 						 mode != XDP_MODE_SKB);
9097 		if (IS_ERR(new_prog))
9098 			return PTR_ERR(new_prog);
9099 	}
9100 
9101 	if (expected_fd >= 0) {
9102 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9103 						 mode != XDP_MODE_SKB);
9104 		if (IS_ERR(old_prog)) {
9105 			err = PTR_ERR(old_prog);
9106 			old_prog = NULL;
9107 			goto err_out;
9108 		}
9109 	}
9110 
9111 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9112 
9113 err_out:
9114 	if (err && new_prog)
9115 		bpf_prog_put(new_prog);
9116 	if (old_prog)
9117 		bpf_prog_put(old_prog);
9118 	return err;
9119 }
9120 
9121 /**
9122  *	dev_new_index	-	allocate an ifindex
9123  *	@net: the applicable net namespace
9124  *
9125  *	Returns a suitable unique value for a new device interface
9126  *	number.  The caller must hold the rtnl semaphore or the
9127  *	dev_base_lock to be sure it remains unique.
9128  */
9129 static int dev_new_index(struct net *net)
9130 {
9131 	int ifindex = net->ifindex;
9132 
9133 	for (;;) {
9134 		if (++ifindex <= 0)
9135 			ifindex = 1;
9136 		if (!__dev_get_by_index(net, ifindex))
9137 			return net->ifindex = ifindex;
9138 	}
9139 }
9140 
9141 /* Delayed registration/unregisteration */
9142 static LIST_HEAD(net_todo_list);
9143 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9144 
9145 static void net_set_todo(struct net_device *dev)
9146 {
9147 	list_add_tail(&dev->todo_list, &net_todo_list);
9148 	dev_net(dev)->dev_unreg_count++;
9149 }
9150 
9151 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9152 	struct net_device *upper, netdev_features_t features)
9153 {
9154 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9155 	netdev_features_t feature;
9156 	int feature_bit;
9157 
9158 	for_each_netdev_feature(upper_disables, feature_bit) {
9159 		feature = __NETIF_F_BIT(feature_bit);
9160 		if (!(upper->wanted_features & feature)
9161 		    && (features & feature)) {
9162 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9163 				   &feature, upper->name);
9164 			features &= ~feature;
9165 		}
9166 	}
9167 
9168 	return features;
9169 }
9170 
9171 static void netdev_sync_lower_features(struct net_device *upper,
9172 	struct net_device *lower, netdev_features_t features)
9173 {
9174 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9175 	netdev_features_t feature;
9176 	int feature_bit;
9177 
9178 	for_each_netdev_feature(upper_disables, feature_bit) {
9179 		feature = __NETIF_F_BIT(feature_bit);
9180 		if (!(features & feature) && (lower->features & feature)) {
9181 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9182 				   &feature, lower->name);
9183 			lower->wanted_features &= ~feature;
9184 			__netdev_update_features(lower);
9185 
9186 			if (unlikely(lower->features & feature))
9187 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9188 					    &feature, lower->name);
9189 			else
9190 				netdev_features_change(lower);
9191 		}
9192 	}
9193 }
9194 
9195 static netdev_features_t netdev_fix_features(struct net_device *dev,
9196 	netdev_features_t features)
9197 {
9198 	/* Fix illegal checksum combinations */
9199 	if ((features & NETIF_F_HW_CSUM) &&
9200 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9201 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9202 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9203 	}
9204 
9205 	/* TSO requires that SG is present as well. */
9206 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9207 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9208 		features &= ~NETIF_F_ALL_TSO;
9209 	}
9210 
9211 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9212 					!(features & NETIF_F_IP_CSUM)) {
9213 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9214 		features &= ~NETIF_F_TSO;
9215 		features &= ~NETIF_F_TSO_ECN;
9216 	}
9217 
9218 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9219 					 !(features & NETIF_F_IPV6_CSUM)) {
9220 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9221 		features &= ~NETIF_F_TSO6;
9222 	}
9223 
9224 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9225 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9226 		features &= ~NETIF_F_TSO_MANGLEID;
9227 
9228 	/* TSO ECN requires that TSO is present as well. */
9229 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9230 		features &= ~NETIF_F_TSO_ECN;
9231 
9232 	/* Software GSO depends on SG. */
9233 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9234 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9235 		features &= ~NETIF_F_GSO;
9236 	}
9237 
9238 	/* GSO partial features require GSO partial be set */
9239 	if ((features & dev->gso_partial_features) &&
9240 	    !(features & NETIF_F_GSO_PARTIAL)) {
9241 		netdev_dbg(dev,
9242 			   "Dropping partially supported GSO features since no GSO partial.\n");
9243 		features &= ~dev->gso_partial_features;
9244 	}
9245 
9246 	if (!(features & NETIF_F_RXCSUM)) {
9247 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9248 		 * successfully merged by hardware must also have the
9249 		 * checksum verified by hardware.  If the user does not
9250 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9251 		 */
9252 		if (features & NETIF_F_GRO_HW) {
9253 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9254 			features &= ~NETIF_F_GRO_HW;
9255 		}
9256 	}
9257 
9258 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9259 	if (features & NETIF_F_RXFCS) {
9260 		if (features & NETIF_F_LRO) {
9261 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9262 			features &= ~NETIF_F_LRO;
9263 		}
9264 
9265 		if (features & NETIF_F_GRO_HW) {
9266 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9267 			features &= ~NETIF_F_GRO_HW;
9268 		}
9269 	}
9270 
9271 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9272 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9273 		features &= ~NETIF_F_LRO;
9274 	}
9275 
9276 	if (features & NETIF_F_HW_TLS_TX) {
9277 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9278 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9279 		bool hw_csum = features & NETIF_F_HW_CSUM;
9280 
9281 		if (!ip_csum && !hw_csum) {
9282 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9283 			features &= ~NETIF_F_HW_TLS_TX;
9284 		}
9285 	}
9286 
9287 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9288 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9289 		features &= ~NETIF_F_HW_TLS_RX;
9290 	}
9291 
9292 	return features;
9293 }
9294 
9295 int __netdev_update_features(struct net_device *dev)
9296 {
9297 	struct net_device *upper, *lower;
9298 	netdev_features_t features;
9299 	struct list_head *iter;
9300 	int err = -1;
9301 
9302 	ASSERT_RTNL();
9303 
9304 	features = netdev_get_wanted_features(dev);
9305 
9306 	if (dev->netdev_ops->ndo_fix_features)
9307 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9308 
9309 	/* driver might be less strict about feature dependencies */
9310 	features = netdev_fix_features(dev, features);
9311 
9312 	/* some features can't be enabled if they're off on an upper device */
9313 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9314 		features = netdev_sync_upper_features(dev, upper, features);
9315 
9316 	if (dev->features == features)
9317 		goto sync_lower;
9318 
9319 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9320 		&dev->features, &features);
9321 
9322 	if (dev->netdev_ops->ndo_set_features)
9323 		err = dev->netdev_ops->ndo_set_features(dev, features);
9324 	else
9325 		err = 0;
9326 
9327 	if (unlikely(err < 0)) {
9328 		netdev_err(dev,
9329 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9330 			err, &features, &dev->features);
9331 		/* return non-0 since some features might have changed and
9332 		 * it's better to fire a spurious notification than miss it
9333 		 */
9334 		return -1;
9335 	}
9336 
9337 sync_lower:
9338 	/* some features must be disabled on lower devices when disabled
9339 	 * on an upper device (think: bonding master or bridge)
9340 	 */
9341 	netdev_for_each_lower_dev(dev, lower, iter)
9342 		netdev_sync_lower_features(dev, lower, features);
9343 
9344 	if (!err) {
9345 		netdev_features_t diff = features ^ dev->features;
9346 
9347 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9348 			/* udp_tunnel_{get,drop}_rx_info both need
9349 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9350 			 * device, or they won't do anything.
9351 			 * Thus we need to update dev->features
9352 			 * *before* calling udp_tunnel_get_rx_info,
9353 			 * but *after* calling udp_tunnel_drop_rx_info.
9354 			 */
9355 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9356 				dev->features = features;
9357 				udp_tunnel_get_rx_info(dev);
9358 			} else {
9359 				udp_tunnel_drop_rx_info(dev);
9360 			}
9361 		}
9362 
9363 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9364 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9365 				dev->features = features;
9366 				err |= vlan_get_rx_ctag_filter_info(dev);
9367 			} else {
9368 				vlan_drop_rx_ctag_filter_info(dev);
9369 			}
9370 		}
9371 
9372 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9373 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9374 				dev->features = features;
9375 				err |= vlan_get_rx_stag_filter_info(dev);
9376 			} else {
9377 				vlan_drop_rx_stag_filter_info(dev);
9378 			}
9379 		}
9380 
9381 		dev->features = features;
9382 	}
9383 
9384 	return err < 0 ? 0 : 1;
9385 }
9386 
9387 /**
9388  *	netdev_update_features - recalculate device features
9389  *	@dev: the device to check
9390  *
9391  *	Recalculate dev->features set and send notifications if it
9392  *	has changed. Should be called after driver or hardware dependent
9393  *	conditions might have changed that influence the features.
9394  */
9395 void netdev_update_features(struct net_device *dev)
9396 {
9397 	if (__netdev_update_features(dev))
9398 		netdev_features_change(dev);
9399 }
9400 EXPORT_SYMBOL(netdev_update_features);
9401 
9402 /**
9403  *	netdev_change_features - recalculate device features
9404  *	@dev: the device to check
9405  *
9406  *	Recalculate dev->features set and send notifications even
9407  *	if they have not changed. Should be called instead of
9408  *	netdev_update_features() if also dev->vlan_features might
9409  *	have changed to allow the changes to be propagated to stacked
9410  *	VLAN devices.
9411  */
9412 void netdev_change_features(struct net_device *dev)
9413 {
9414 	__netdev_update_features(dev);
9415 	netdev_features_change(dev);
9416 }
9417 EXPORT_SYMBOL(netdev_change_features);
9418 
9419 /**
9420  *	netif_stacked_transfer_operstate -	transfer operstate
9421  *	@rootdev: the root or lower level device to transfer state from
9422  *	@dev: the device to transfer operstate to
9423  *
9424  *	Transfer operational state from root to device. This is normally
9425  *	called when a stacking relationship exists between the root
9426  *	device and the device(a leaf device).
9427  */
9428 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9429 					struct net_device *dev)
9430 {
9431 	if (rootdev->operstate == IF_OPER_DORMANT)
9432 		netif_dormant_on(dev);
9433 	else
9434 		netif_dormant_off(dev);
9435 
9436 	if (rootdev->operstate == IF_OPER_TESTING)
9437 		netif_testing_on(dev);
9438 	else
9439 		netif_testing_off(dev);
9440 
9441 	if (netif_carrier_ok(rootdev))
9442 		netif_carrier_on(dev);
9443 	else
9444 		netif_carrier_off(dev);
9445 }
9446 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9447 
9448 static int netif_alloc_rx_queues(struct net_device *dev)
9449 {
9450 	unsigned int i, count = dev->num_rx_queues;
9451 	struct netdev_rx_queue *rx;
9452 	size_t sz = count * sizeof(*rx);
9453 	int err = 0;
9454 
9455 	BUG_ON(count < 1);
9456 
9457 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9458 	if (!rx)
9459 		return -ENOMEM;
9460 
9461 	dev->_rx = rx;
9462 
9463 	for (i = 0; i < count; i++) {
9464 		rx[i].dev = dev;
9465 
9466 		/* XDP RX-queue setup */
9467 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9468 		if (err < 0)
9469 			goto err_rxq_info;
9470 	}
9471 	return 0;
9472 
9473 err_rxq_info:
9474 	/* Rollback successful reg's and free other resources */
9475 	while (i--)
9476 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9477 	kvfree(dev->_rx);
9478 	dev->_rx = NULL;
9479 	return err;
9480 }
9481 
9482 static void netif_free_rx_queues(struct net_device *dev)
9483 {
9484 	unsigned int i, count = dev->num_rx_queues;
9485 
9486 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9487 	if (!dev->_rx)
9488 		return;
9489 
9490 	for (i = 0; i < count; i++)
9491 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9492 
9493 	kvfree(dev->_rx);
9494 }
9495 
9496 static void netdev_init_one_queue(struct net_device *dev,
9497 				  struct netdev_queue *queue, void *_unused)
9498 {
9499 	/* Initialize queue lock */
9500 	spin_lock_init(&queue->_xmit_lock);
9501 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9502 	queue->xmit_lock_owner = -1;
9503 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9504 	queue->dev = dev;
9505 #ifdef CONFIG_BQL
9506 	dql_init(&queue->dql, HZ);
9507 #endif
9508 }
9509 
9510 static void netif_free_tx_queues(struct net_device *dev)
9511 {
9512 	kvfree(dev->_tx);
9513 }
9514 
9515 static int netif_alloc_netdev_queues(struct net_device *dev)
9516 {
9517 	unsigned int count = dev->num_tx_queues;
9518 	struct netdev_queue *tx;
9519 	size_t sz = count * sizeof(*tx);
9520 
9521 	if (count < 1 || count > 0xffff)
9522 		return -EINVAL;
9523 
9524 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9525 	if (!tx)
9526 		return -ENOMEM;
9527 
9528 	dev->_tx = tx;
9529 
9530 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9531 	spin_lock_init(&dev->tx_global_lock);
9532 
9533 	return 0;
9534 }
9535 
9536 void netif_tx_stop_all_queues(struct net_device *dev)
9537 {
9538 	unsigned int i;
9539 
9540 	for (i = 0; i < dev->num_tx_queues; i++) {
9541 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9542 
9543 		netif_tx_stop_queue(txq);
9544 	}
9545 }
9546 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9547 
9548 /**
9549  *	register_netdevice	- register a network device
9550  *	@dev: device to register
9551  *
9552  *	Take a completed network device structure and add it to the kernel
9553  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9554  *	chain. 0 is returned on success. A negative errno code is returned
9555  *	on a failure to set up the device, or if the name is a duplicate.
9556  *
9557  *	Callers must hold the rtnl semaphore. You may want
9558  *	register_netdev() instead of this.
9559  *
9560  *	BUGS:
9561  *	The locking appears insufficient to guarantee two parallel registers
9562  *	will not get the same name.
9563  */
9564 
9565 int register_netdevice(struct net_device *dev)
9566 {
9567 	int ret;
9568 	struct net *net = dev_net(dev);
9569 
9570 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9571 		     NETDEV_FEATURE_COUNT);
9572 	BUG_ON(dev_boot_phase);
9573 	ASSERT_RTNL();
9574 
9575 	might_sleep();
9576 
9577 	/* When net_device's are persistent, this will be fatal. */
9578 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9579 	BUG_ON(!net);
9580 
9581 	ret = ethtool_check_ops(dev->ethtool_ops);
9582 	if (ret)
9583 		return ret;
9584 
9585 	spin_lock_init(&dev->addr_list_lock);
9586 	netdev_set_addr_lockdep_class(dev);
9587 
9588 	ret = dev_get_valid_name(net, dev, dev->name);
9589 	if (ret < 0)
9590 		goto out;
9591 
9592 	ret = -ENOMEM;
9593 	dev->name_node = netdev_name_node_head_alloc(dev);
9594 	if (!dev->name_node)
9595 		goto out;
9596 
9597 	/* Init, if this function is available */
9598 	if (dev->netdev_ops->ndo_init) {
9599 		ret = dev->netdev_ops->ndo_init(dev);
9600 		if (ret) {
9601 			if (ret > 0)
9602 				ret = -EIO;
9603 			goto err_free_name;
9604 		}
9605 	}
9606 
9607 	if (((dev->hw_features | dev->features) &
9608 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9609 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9610 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9611 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9612 		ret = -EINVAL;
9613 		goto err_uninit;
9614 	}
9615 
9616 	ret = -EBUSY;
9617 	if (!dev->ifindex)
9618 		dev->ifindex = dev_new_index(net);
9619 	else if (__dev_get_by_index(net, dev->ifindex))
9620 		goto err_uninit;
9621 
9622 	/* Transfer changeable features to wanted_features and enable
9623 	 * software offloads (GSO and GRO).
9624 	 */
9625 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9626 	dev->features |= NETIF_F_SOFT_FEATURES;
9627 
9628 	if (dev->udp_tunnel_nic_info) {
9629 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9630 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9631 	}
9632 
9633 	dev->wanted_features = dev->features & dev->hw_features;
9634 
9635 	if (!(dev->flags & IFF_LOOPBACK))
9636 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9637 
9638 	/* If IPv4 TCP segmentation offload is supported we should also
9639 	 * allow the device to enable segmenting the frame with the option
9640 	 * of ignoring a static IP ID value.  This doesn't enable the
9641 	 * feature itself but allows the user to enable it later.
9642 	 */
9643 	if (dev->hw_features & NETIF_F_TSO)
9644 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9645 	if (dev->vlan_features & NETIF_F_TSO)
9646 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9647 	if (dev->mpls_features & NETIF_F_TSO)
9648 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9649 	if (dev->hw_enc_features & NETIF_F_TSO)
9650 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9651 
9652 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9653 	 */
9654 	dev->vlan_features |= NETIF_F_HIGHDMA;
9655 
9656 	/* Make NETIF_F_SG inheritable to tunnel devices.
9657 	 */
9658 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9659 
9660 	/* Make NETIF_F_SG inheritable to MPLS.
9661 	 */
9662 	dev->mpls_features |= NETIF_F_SG;
9663 
9664 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9665 	ret = notifier_to_errno(ret);
9666 	if (ret)
9667 		goto err_uninit;
9668 
9669 	ret = netdev_register_kobject(dev);
9670 	if (ret) {
9671 		dev->reg_state = NETREG_UNREGISTERED;
9672 		goto err_uninit;
9673 	}
9674 	dev->reg_state = NETREG_REGISTERED;
9675 
9676 	__netdev_update_features(dev);
9677 
9678 	/*
9679 	 *	Default initial state at registry is that the
9680 	 *	device is present.
9681 	 */
9682 
9683 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9684 
9685 	linkwatch_init_dev(dev);
9686 
9687 	dev_init_scheduler(dev);
9688 	dev_hold(dev);
9689 	list_netdevice(dev);
9690 	add_device_randomness(dev->dev_addr, dev->addr_len);
9691 
9692 	/* If the device has permanent device address, driver should
9693 	 * set dev_addr and also addr_assign_type should be set to
9694 	 * NET_ADDR_PERM (default value).
9695 	 */
9696 	if (dev->addr_assign_type == NET_ADDR_PERM)
9697 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9698 
9699 	/* Notify protocols, that a new device appeared. */
9700 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9701 	ret = notifier_to_errno(ret);
9702 	if (ret) {
9703 		/* Expect explicit free_netdev() on failure */
9704 		dev->needs_free_netdev = false;
9705 		unregister_netdevice_queue(dev, NULL);
9706 		goto out;
9707 	}
9708 	/*
9709 	 *	Prevent userspace races by waiting until the network
9710 	 *	device is fully setup before sending notifications.
9711 	 */
9712 	if (!dev->rtnl_link_ops ||
9713 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9714 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9715 
9716 out:
9717 	return ret;
9718 
9719 err_uninit:
9720 	if (dev->netdev_ops->ndo_uninit)
9721 		dev->netdev_ops->ndo_uninit(dev);
9722 	if (dev->priv_destructor)
9723 		dev->priv_destructor(dev);
9724 err_free_name:
9725 	netdev_name_node_free(dev->name_node);
9726 	goto out;
9727 }
9728 EXPORT_SYMBOL(register_netdevice);
9729 
9730 /**
9731  *	init_dummy_netdev	- init a dummy network device for NAPI
9732  *	@dev: device to init
9733  *
9734  *	This takes a network device structure and initialize the minimum
9735  *	amount of fields so it can be used to schedule NAPI polls without
9736  *	registering a full blown interface. This is to be used by drivers
9737  *	that need to tie several hardware interfaces to a single NAPI
9738  *	poll scheduler due to HW limitations.
9739  */
9740 int init_dummy_netdev(struct net_device *dev)
9741 {
9742 	/* Clear everything. Note we don't initialize spinlocks
9743 	 * are they aren't supposed to be taken by any of the
9744 	 * NAPI code and this dummy netdev is supposed to be
9745 	 * only ever used for NAPI polls
9746 	 */
9747 	memset(dev, 0, sizeof(struct net_device));
9748 
9749 	/* make sure we BUG if trying to hit standard
9750 	 * register/unregister code path
9751 	 */
9752 	dev->reg_state = NETREG_DUMMY;
9753 
9754 	/* NAPI wants this */
9755 	INIT_LIST_HEAD(&dev->napi_list);
9756 
9757 	/* a dummy interface is started by default */
9758 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9759 	set_bit(__LINK_STATE_START, &dev->state);
9760 
9761 	/* napi_busy_loop stats accounting wants this */
9762 	dev_net_set(dev, &init_net);
9763 
9764 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
9765 	 * because users of this 'device' dont need to change
9766 	 * its refcount.
9767 	 */
9768 
9769 	return 0;
9770 }
9771 EXPORT_SYMBOL_GPL(init_dummy_netdev);
9772 
9773 
9774 /**
9775  *	register_netdev	- register a network device
9776  *	@dev: device to register
9777  *
9778  *	Take a completed network device structure and add it to the kernel
9779  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9780  *	chain. 0 is returned on success. A negative errno code is returned
9781  *	on a failure to set up the device, or if the name is a duplicate.
9782  *
9783  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
9784  *	and expands the device name if you passed a format string to
9785  *	alloc_netdev.
9786  */
9787 int register_netdev(struct net_device *dev)
9788 {
9789 	int err;
9790 
9791 	if (rtnl_lock_killable())
9792 		return -EINTR;
9793 	err = register_netdevice(dev);
9794 	rtnl_unlock();
9795 	return err;
9796 }
9797 EXPORT_SYMBOL(register_netdev);
9798 
9799 int netdev_refcnt_read(const struct net_device *dev)
9800 {
9801 #ifdef CONFIG_PCPU_DEV_REFCNT
9802 	int i, refcnt = 0;
9803 
9804 	for_each_possible_cpu(i)
9805 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9806 	return refcnt;
9807 #else
9808 	return refcount_read(&dev->dev_refcnt);
9809 #endif
9810 }
9811 EXPORT_SYMBOL(netdev_refcnt_read);
9812 
9813 int netdev_unregister_timeout_secs __read_mostly = 10;
9814 
9815 #define WAIT_REFS_MIN_MSECS 1
9816 #define WAIT_REFS_MAX_MSECS 250
9817 /**
9818  * netdev_wait_allrefs - wait until all references are gone.
9819  * @dev: target net_device
9820  *
9821  * This is called when unregistering network devices.
9822  *
9823  * Any protocol or device that holds a reference should register
9824  * for netdevice notification, and cleanup and put back the
9825  * reference if they receive an UNREGISTER event.
9826  * We can get stuck here if buggy protocols don't correctly
9827  * call dev_put.
9828  */
9829 static void netdev_wait_allrefs(struct net_device *dev)
9830 {
9831 	unsigned long rebroadcast_time, warning_time;
9832 	int wait = 0, refcnt;
9833 
9834 	linkwatch_forget_dev(dev);
9835 
9836 	rebroadcast_time = warning_time = jiffies;
9837 	refcnt = netdev_refcnt_read(dev);
9838 
9839 	while (refcnt != 1) {
9840 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9841 			rtnl_lock();
9842 
9843 			/* Rebroadcast unregister notification */
9844 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9845 
9846 			__rtnl_unlock();
9847 			rcu_barrier();
9848 			rtnl_lock();
9849 
9850 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9851 				     &dev->state)) {
9852 				/* We must not have linkwatch events
9853 				 * pending on unregister. If this
9854 				 * happens, we simply run the queue
9855 				 * unscheduled, resulting in a noop
9856 				 * for this device.
9857 				 */
9858 				linkwatch_run_queue();
9859 			}
9860 
9861 			__rtnl_unlock();
9862 
9863 			rebroadcast_time = jiffies;
9864 		}
9865 
9866 		if (!wait) {
9867 			rcu_barrier();
9868 			wait = WAIT_REFS_MIN_MSECS;
9869 		} else {
9870 			msleep(wait);
9871 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
9872 		}
9873 
9874 		refcnt = netdev_refcnt_read(dev);
9875 
9876 		if (refcnt != 1 &&
9877 		    time_after(jiffies, warning_time +
9878 			       netdev_unregister_timeout_secs * HZ)) {
9879 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9880 				 dev->name, refcnt);
9881 			warning_time = jiffies;
9882 		}
9883 	}
9884 }
9885 
9886 /* The sequence is:
9887  *
9888  *	rtnl_lock();
9889  *	...
9890  *	register_netdevice(x1);
9891  *	register_netdevice(x2);
9892  *	...
9893  *	unregister_netdevice(y1);
9894  *	unregister_netdevice(y2);
9895  *      ...
9896  *	rtnl_unlock();
9897  *	free_netdev(y1);
9898  *	free_netdev(y2);
9899  *
9900  * We are invoked by rtnl_unlock().
9901  * This allows us to deal with problems:
9902  * 1) We can delete sysfs objects which invoke hotplug
9903  *    without deadlocking with linkwatch via keventd.
9904  * 2) Since we run with the RTNL semaphore not held, we can sleep
9905  *    safely in order to wait for the netdev refcnt to drop to zero.
9906  *
9907  * We must not return until all unregister events added during
9908  * the interval the lock was held have been completed.
9909  */
9910 void netdev_run_todo(void)
9911 {
9912 	struct list_head list;
9913 #ifdef CONFIG_LOCKDEP
9914 	struct list_head unlink_list;
9915 
9916 	list_replace_init(&net_unlink_list, &unlink_list);
9917 
9918 	while (!list_empty(&unlink_list)) {
9919 		struct net_device *dev = list_first_entry(&unlink_list,
9920 							  struct net_device,
9921 							  unlink_list);
9922 		list_del_init(&dev->unlink_list);
9923 		dev->nested_level = dev->lower_level - 1;
9924 	}
9925 #endif
9926 
9927 	/* Snapshot list, allow later requests */
9928 	list_replace_init(&net_todo_list, &list);
9929 
9930 	__rtnl_unlock();
9931 
9932 
9933 	/* Wait for rcu callbacks to finish before next phase */
9934 	if (!list_empty(&list))
9935 		rcu_barrier();
9936 
9937 	while (!list_empty(&list)) {
9938 		struct net_device *dev
9939 			= list_first_entry(&list, struct net_device, todo_list);
9940 		list_del(&dev->todo_list);
9941 
9942 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9943 			pr_err("network todo '%s' but state %d\n",
9944 			       dev->name, dev->reg_state);
9945 			dump_stack();
9946 			continue;
9947 		}
9948 
9949 		dev->reg_state = NETREG_UNREGISTERED;
9950 
9951 		netdev_wait_allrefs(dev);
9952 
9953 		/* paranoia */
9954 		BUG_ON(netdev_refcnt_read(dev) != 1);
9955 		BUG_ON(!list_empty(&dev->ptype_all));
9956 		BUG_ON(!list_empty(&dev->ptype_specific));
9957 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
9958 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9959 #if IS_ENABLED(CONFIG_DECNET)
9960 		WARN_ON(dev->dn_ptr);
9961 #endif
9962 		if (dev->priv_destructor)
9963 			dev->priv_destructor(dev);
9964 		if (dev->needs_free_netdev)
9965 			free_netdev(dev);
9966 
9967 		/* Report a network device has been unregistered */
9968 		rtnl_lock();
9969 		dev_net(dev)->dev_unreg_count--;
9970 		__rtnl_unlock();
9971 		wake_up(&netdev_unregistering_wq);
9972 
9973 		/* Free network device */
9974 		kobject_put(&dev->dev.kobj);
9975 	}
9976 }
9977 
9978 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9979  * all the same fields in the same order as net_device_stats, with only
9980  * the type differing, but rtnl_link_stats64 may have additional fields
9981  * at the end for newer counters.
9982  */
9983 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9984 			     const struct net_device_stats *netdev_stats)
9985 {
9986 #if BITS_PER_LONG == 64
9987 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9988 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9989 	/* zero out counters that only exist in rtnl_link_stats64 */
9990 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9991 	       sizeof(*stats64) - sizeof(*netdev_stats));
9992 #else
9993 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9994 	const unsigned long *src = (const unsigned long *)netdev_stats;
9995 	u64 *dst = (u64 *)stats64;
9996 
9997 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9998 	for (i = 0; i < n; i++)
9999 		dst[i] = src[i];
10000 	/* zero out counters that only exist in rtnl_link_stats64 */
10001 	memset((char *)stats64 + n * sizeof(u64), 0,
10002 	       sizeof(*stats64) - n * sizeof(u64));
10003 #endif
10004 }
10005 EXPORT_SYMBOL(netdev_stats_to_stats64);
10006 
10007 /**
10008  *	dev_get_stats	- get network device statistics
10009  *	@dev: device to get statistics from
10010  *	@storage: place to store stats
10011  *
10012  *	Get network statistics from device. Return @storage.
10013  *	The device driver may provide its own method by setting
10014  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10015  *	otherwise the internal statistics structure is used.
10016  */
10017 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10018 					struct rtnl_link_stats64 *storage)
10019 {
10020 	const struct net_device_ops *ops = dev->netdev_ops;
10021 
10022 	if (ops->ndo_get_stats64) {
10023 		memset(storage, 0, sizeof(*storage));
10024 		ops->ndo_get_stats64(dev, storage);
10025 	} else if (ops->ndo_get_stats) {
10026 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10027 	} else {
10028 		netdev_stats_to_stats64(storage, &dev->stats);
10029 	}
10030 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10031 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10032 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10033 	return storage;
10034 }
10035 EXPORT_SYMBOL(dev_get_stats);
10036 
10037 /**
10038  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10039  *	@s: place to store stats
10040  *	@netstats: per-cpu network stats to read from
10041  *
10042  *	Read per-cpu network statistics and populate the related fields in @s.
10043  */
10044 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10045 			   const struct pcpu_sw_netstats __percpu *netstats)
10046 {
10047 	int cpu;
10048 
10049 	for_each_possible_cpu(cpu) {
10050 		const struct pcpu_sw_netstats *stats;
10051 		struct pcpu_sw_netstats tmp;
10052 		unsigned int start;
10053 
10054 		stats = per_cpu_ptr(netstats, cpu);
10055 		do {
10056 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10057 			tmp.rx_packets = stats->rx_packets;
10058 			tmp.rx_bytes   = stats->rx_bytes;
10059 			tmp.tx_packets = stats->tx_packets;
10060 			tmp.tx_bytes   = stats->tx_bytes;
10061 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10062 
10063 		s->rx_packets += tmp.rx_packets;
10064 		s->rx_bytes   += tmp.rx_bytes;
10065 		s->tx_packets += tmp.tx_packets;
10066 		s->tx_bytes   += tmp.tx_bytes;
10067 	}
10068 }
10069 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10070 
10071 /**
10072  *	dev_get_tstats64 - ndo_get_stats64 implementation
10073  *	@dev: device to get statistics from
10074  *	@s: place to store stats
10075  *
10076  *	Populate @s from dev->stats and dev->tstats. Can be used as
10077  *	ndo_get_stats64() callback.
10078  */
10079 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10080 {
10081 	netdev_stats_to_stats64(s, &dev->stats);
10082 	dev_fetch_sw_netstats(s, dev->tstats);
10083 }
10084 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10085 
10086 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10087 {
10088 	struct netdev_queue *queue = dev_ingress_queue(dev);
10089 
10090 #ifdef CONFIG_NET_CLS_ACT
10091 	if (queue)
10092 		return queue;
10093 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10094 	if (!queue)
10095 		return NULL;
10096 	netdev_init_one_queue(dev, queue, NULL);
10097 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10098 	queue->qdisc_sleeping = &noop_qdisc;
10099 	rcu_assign_pointer(dev->ingress_queue, queue);
10100 #endif
10101 	return queue;
10102 }
10103 
10104 static const struct ethtool_ops default_ethtool_ops;
10105 
10106 void netdev_set_default_ethtool_ops(struct net_device *dev,
10107 				    const struct ethtool_ops *ops)
10108 {
10109 	if (dev->ethtool_ops == &default_ethtool_ops)
10110 		dev->ethtool_ops = ops;
10111 }
10112 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10113 
10114 void netdev_freemem(struct net_device *dev)
10115 {
10116 	char *addr = (char *)dev - dev->padded;
10117 
10118 	kvfree(addr);
10119 }
10120 
10121 /**
10122  * alloc_netdev_mqs - allocate network device
10123  * @sizeof_priv: size of private data to allocate space for
10124  * @name: device name format string
10125  * @name_assign_type: origin of device name
10126  * @setup: callback to initialize device
10127  * @txqs: the number of TX subqueues to allocate
10128  * @rxqs: the number of RX subqueues to allocate
10129  *
10130  * Allocates a struct net_device with private data area for driver use
10131  * and performs basic initialization.  Also allocates subqueue structs
10132  * for each queue on the device.
10133  */
10134 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10135 		unsigned char name_assign_type,
10136 		void (*setup)(struct net_device *),
10137 		unsigned int txqs, unsigned int rxqs)
10138 {
10139 	struct net_device *dev;
10140 	unsigned int alloc_size;
10141 	struct net_device *p;
10142 
10143 	BUG_ON(strlen(name) >= sizeof(dev->name));
10144 
10145 	if (txqs < 1) {
10146 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10147 		return NULL;
10148 	}
10149 
10150 	if (rxqs < 1) {
10151 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10152 		return NULL;
10153 	}
10154 
10155 	alloc_size = sizeof(struct net_device);
10156 	if (sizeof_priv) {
10157 		/* ensure 32-byte alignment of private area */
10158 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10159 		alloc_size += sizeof_priv;
10160 	}
10161 	/* ensure 32-byte alignment of whole construct */
10162 	alloc_size += NETDEV_ALIGN - 1;
10163 
10164 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10165 	if (!p)
10166 		return NULL;
10167 
10168 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10169 	dev->padded = (char *)dev - (char *)p;
10170 
10171 #ifdef CONFIG_PCPU_DEV_REFCNT
10172 	dev->pcpu_refcnt = alloc_percpu(int);
10173 	if (!dev->pcpu_refcnt)
10174 		goto free_dev;
10175 	dev_hold(dev);
10176 #else
10177 	refcount_set(&dev->dev_refcnt, 1);
10178 #endif
10179 
10180 	if (dev_addr_init(dev))
10181 		goto free_pcpu;
10182 
10183 	dev_mc_init(dev);
10184 	dev_uc_init(dev);
10185 
10186 	dev_net_set(dev, &init_net);
10187 
10188 	dev->gso_max_size = GSO_MAX_SIZE;
10189 	dev->gso_max_segs = GSO_MAX_SEGS;
10190 	dev->upper_level = 1;
10191 	dev->lower_level = 1;
10192 #ifdef CONFIG_LOCKDEP
10193 	dev->nested_level = 0;
10194 	INIT_LIST_HEAD(&dev->unlink_list);
10195 #endif
10196 
10197 	INIT_LIST_HEAD(&dev->napi_list);
10198 	INIT_LIST_HEAD(&dev->unreg_list);
10199 	INIT_LIST_HEAD(&dev->close_list);
10200 	INIT_LIST_HEAD(&dev->link_watch_list);
10201 	INIT_LIST_HEAD(&dev->adj_list.upper);
10202 	INIT_LIST_HEAD(&dev->adj_list.lower);
10203 	INIT_LIST_HEAD(&dev->ptype_all);
10204 	INIT_LIST_HEAD(&dev->ptype_specific);
10205 	INIT_LIST_HEAD(&dev->net_notifier_list);
10206 #ifdef CONFIG_NET_SCHED
10207 	hash_init(dev->qdisc_hash);
10208 #endif
10209 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10210 	setup(dev);
10211 
10212 	if (!dev->tx_queue_len) {
10213 		dev->priv_flags |= IFF_NO_QUEUE;
10214 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10215 	}
10216 
10217 	dev->num_tx_queues = txqs;
10218 	dev->real_num_tx_queues = txqs;
10219 	if (netif_alloc_netdev_queues(dev))
10220 		goto free_all;
10221 
10222 	dev->num_rx_queues = rxqs;
10223 	dev->real_num_rx_queues = rxqs;
10224 	if (netif_alloc_rx_queues(dev))
10225 		goto free_all;
10226 
10227 	strcpy(dev->name, name);
10228 	dev->name_assign_type = name_assign_type;
10229 	dev->group = INIT_NETDEV_GROUP;
10230 	if (!dev->ethtool_ops)
10231 		dev->ethtool_ops = &default_ethtool_ops;
10232 
10233 	nf_hook_netdev_init(dev);
10234 
10235 	return dev;
10236 
10237 free_all:
10238 	free_netdev(dev);
10239 	return NULL;
10240 
10241 free_pcpu:
10242 #ifdef CONFIG_PCPU_DEV_REFCNT
10243 	free_percpu(dev->pcpu_refcnt);
10244 free_dev:
10245 #endif
10246 	netdev_freemem(dev);
10247 	return NULL;
10248 }
10249 EXPORT_SYMBOL(alloc_netdev_mqs);
10250 
10251 /**
10252  * free_netdev - free network device
10253  * @dev: device
10254  *
10255  * This function does the last stage of destroying an allocated device
10256  * interface. The reference to the device object is released. If this
10257  * is the last reference then it will be freed.Must be called in process
10258  * context.
10259  */
10260 void free_netdev(struct net_device *dev)
10261 {
10262 	struct napi_struct *p, *n;
10263 
10264 	might_sleep();
10265 
10266 	/* When called immediately after register_netdevice() failed the unwind
10267 	 * handling may still be dismantling the device. Handle that case by
10268 	 * deferring the free.
10269 	 */
10270 	if (dev->reg_state == NETREG_UNREGISTERING) {
10271 		ASSERT_RTNL();
10272 		dev->needs_free_netdev = true;
10273 		return;
10274 	}
10275 
10276 	netif_free_tx_queues(dev);
10277 	netif_free_rx_queues(dev);
10278 
10279 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10280 
10281 	/* Flush device addresses */
10282 	dev_addr_flush(dev);
10283 
10284 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10285 		netif_napi_del(p);
10286 
10287 #ifdef CONFIG_PCPU_DEV_REFCNT
10288 	free_percpu(dev->pcpu_refcnt);
10289 	dev->pcpu_refcnt = NULL;
10290 #endif
10291 	free_percpu(dev->xdp_bulkq);
10292 	dev->xdp_bulkq = NULL;
10293 
10294 	/*  Compatibility with error handling in drivers */
10295 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10296 		netdev_freemem(dev);
10297 		return;
10298 	}
10299 
10300 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10301 	dev->reg_state = NETREG_RELEASED;
10302 
10303 	/* will free via device release */
10304 	put_device(&dev->dev);
10305 }
10306 EXPORT_SYMBOL(free_netdev);
10307 
10308 /**
10309  *	synchronize_net -  Synchronize with packet receive processing
10310  *
10311  *	Wait for packets currently being received to be done.
10312  *	Does not block later packets from starting.
10313  */
10314 void synchronize_net(void)
10315 {
10316 	might_sleep();
10317 	if (rtnl_is_locked())
10318 		synchronize_rcu_expedited();
10319 	else
10320 		synchronize_rcu();
10321 }
10322 EXPORT_SYMBOL(synchronize_net);
10323 
10324 /**
10325  *	unregister_netdevice_queue - remove device from the kernel
10326  *	@dev: device
10327  *	@head: list
10328  *
10329  *	This function shuts down a device interface and removes it
10330  *	from the kernel tables.
10331  *	If head not NULL, device is queued to be unregistered later.
10332  *
10333  *	Callers must hold the rtnl semaphore.  You may want
10334  *	unregister_netdev() instead of this.
10335  */
10336 
10337 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10338 {
10339 	ASSERT_RTNL();
10340 
10341 	if (head) {
10342 		list_move_tail(&dev->unreg_list, head);
10343 	} else {
10344 		LIST_HEAD(single);
10345 
10346 		list_add(&dev->unreg_list, &single);
10347 		unregister_netdevice_many(&single);
10348 	}
10349 }
10350 EXPORT_SYMBOL(unregister_netdevice_queue);
10351 
10352 /**
10353  *	unregister_netdevice_many - unregister many devices
10354  *	@head: list of devices
10355  *
10356  *  Note: As most callers use a stack allocated list_head,
10357  *  we force a list_del() to make sure stack wont be corrupted later.
10358  */
10359 void unregister_netdevice_many(struct list_head *head)
10360 {
10361 	struct net_device *dev, *tmp;
10362 	LIST_HEAD(close_head);
10363 
10364 	BUG_ON(dev_boot_phase);
10365 	ASSERT_RTNL();
10366 
10367 	if (list_empty(head))
10368 		return;
10369 
10370 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10371 		/* Some devices call without registering
10372 		 * for initialization unwind. Remove those
10373 		 * devices and proceed with the remaining.
10374 		 */
10375 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10376 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10377 				 dev->name, dev);
10378 
10379 			WARN_ON(1);
10380 			list_del(&dev->unreg_list);
10381 			continue;
10382 		}
10383 		dev->dismantle = true;
10384 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10385 	}
10386 
10387 	/* If device is running, close it first. */
10388 	list_for_each_entry(dev, head, unreg_list)
10389 		list_add_tail(&dev->close_list, &close_head);
10390 	dev_close_many(&close_head, true);
10391 
10392 	list_for_each_entry(dev, head, unreg_list) {
10393 		/* And unlink it from device chain. */
10394 		unlist_netdevice(dev);
10395 
10396 		dev->reg_state = NETREG_UNREGISTERING;
10397 	}
10398 	flush_all_backlogs();
10399 
10400 	synchronize_net();
10401 
10402 	list_for_each_entry(dev, head, unreg_list) {
10403 		struct sk_buff *skb = NULL;
10404 
10405 		/* Shutdown queueing discipline. */
10406 		dev_shutdown(dev);
10407 
10408 		dev_xdp_uninstall(dev);
10409 
10410 		/* Notify protocols, that we are about to destroy
10411 		 * this device. They should clean all the things.
10412 		 */
10413 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10414 
10415 		if (!dev->rtnl_link_ops ||
10416 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10417 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10418 						     GFP_KERNEL, NULL, 0);
10419 
10420 		/*
10421 		 *	Flush the unicast and multicast chains
10422 		 */
10423 		dev_uc_flush(dev);
10424 		dev_mc_flush(dev);
10425 
10426 		netdev_name_node_alt_flush(dev);
10427 		netdev_name_node_free(dev->name_node);
10428 
10429 		if (dev->netdev_ops->ndo_uninit)
10430 			dev->netdev_ops->ndo_uninit(dev);
10431 
10432 		if (skb)
10433 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10434 
10435 		/* Notifier chain MUST detach us all upper devices. */
10436 		WARN_ON(netdev_has_any_upper_dev(dev));
10437 		WARN_ON(netdev_has_any_lower_dev(dev));
10438 
10439 		/* Remove entries from kobject tree */
10440 		netdev_unregister_kobject(dev);
10441 #ifdef CONFIG_XPS
10442 		/* Remove XPS queueing entries */
10443 		netif_reset_xps_queues_gt(dev, 0);
10444 #endif
10445 	}
10446 
10447 	synchronize_net();
10448 
10449 	list_for_each_entry(dev, head, unreg_list) {
10450 		dev_put(dev);
10451 		net_set_todo(dev);
10452 	}
10453 
10454 	list_del(head);
10455 }
10456 EXPORT_SYMBOL(unregister_netdevice_many);
10457 
10458 /**
10459  *	unregister_netdev - remove device from the kernel
10460  *	@dev: device
10461  *
10462  *	This function shuts down a device interface and removes it
10463  *	from the kernel tables.
10464  *
10465  *	This is just a wrapper for unregister_netdevice that takes
10466  *	the rtnl semaphore.  In general you want to use this and not
10467  *	unregister_netdevice.
10468  */
10469 void unregister_netdev(struct net_device *dev)
10470 {
10471 	rtnl_lock();
10472 	unregister_netdevice(dev);
10473 	rtnl_unlock();
10474 }
10475 EXPORT_SYMBOL(unregister_netdev);
10476 
10477 /**
10478  *	__dev_change_net_namespace - move device to different nethost namespace
10479  *	@dev: device
10480  *	@net: network namespace
10481  *	@pat: If not NULL name pattern to try if the current device name
10482  *	      is already taken in the destination network namespace.
10483  *	@new_ifindex: If not zero, specifies device index in the target
10484  *	              namespace.
10485  *
10486  *	This function shuts down a device interface and moves it
10487  *	to a new network namespace. On success 0 is returned, on
10488  *	a failure a netagive errno code is returned.
10489  *
10490  *	Callers must hold the rtnl semaphore.
10491  */
10492 
10493 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10494 			       const char *pat, int new_ifindex)
10495 {
10496 	struct net *net_old = dev_net(dev);
10497 	int err, new_nsid;
10498 
10499 	ASSERT_RTNL();
10500 
10501 	/* Don't allow namespace local devices to be moved. */
10502 	err = -EINVAL;
10503 	if (dev->features & NETIF_F_NETNS_LOCAL)
10504 		goto out;
10505 
10506 	/* Ensure the device has been registrered */
10507 	if (dev->reg_state != NETREG_REGISTERED)
10508 		goto out;
10509 
10510 	/* Get out if there is nothing todo */
10511 	err = 0;
10512 	if (net_eq(net_old, net))
10513 		goto out;
10514 
10515 	/* Pick the destination device name, and ensure
10516 	 * we can use it in the destination network namespace.
10517 	 */
10518 	err = -EEXIST;
10519 	if (netdev_name_in_use(net, dev->name)) {
10520 		/* We get here if we can't use the current device name */
10521 		if (!pat)
10522 			goto out;
10523 		err = dev_get_valid_name(net, dev, pat);
10524 		if (err < 0)
10525 			goto out;
10526 	}
10527 
10528 	/* Check that new_ifindex isn't used yet. */
10529 	err = -EBUSY;
10530 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10531 		goto out;
10532 
10533 	/*
10534 	 * And now a mini version of register_netdevice unregister_netdevice.
10535 	 */
10536 
10537 	/* If device is running close it first. */
10538 	dev_close(dev);
10539 
10540 	/* And unlink it from device chain */
10541 	unlist_netdevice(dev);
10542 
10543 	synchronize_net();
10544 
10545 	/* Shutdown queueing discipline. */
10546 	dev_shutdown(dev);
10547 
10548 	/* Notify protocols, that we are about to destroy
10549 	 * this device. They should clean all the things.
10550 	 *
10551 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10552 	 * This is wanted because this way 8021q and macvlan know
10553 	 * the device is just moving and can keep their slaves up.
10554 	 */
10555 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10556 	rcu_barrier();
10557 
10558 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10559 	/* If there is an ifindex conflict assign a new one */
10560 	if (!new_ifindex) {
10561 		if (__dev_get_by_index(net, dev->ifindex))
10562 			new_ifindex = dev_new_index(net);
10563 		else
10564 			new_ifindex = dev->ifindex;
10565 	}
10566 
10567 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10568 			    new_ifindex);
10569 
10570 	/*
10571 	 *	Flush the unicast and multicast chains
10572 	 */
10573 	dev_uc_flush(dev);
10574 	dev_mc_flush(dev);
10575 
10576 	/* Send a netdev-removed uevent to the old namespace */
10577 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10578 	netdev_adjacent_del_links(dev);
10579 
10580 	/* Move per-net netdevice notifiers that are following the netdevice */
10581 	move_netdevice_notifiers_dev_net(dev, net);
10582 
10583 	/* Actually switch the network namespace */
10584 	dev_net_set(dev, net);
10585 	dev->ifindex = new_ifindex;
10586 
10587 	/* Send a netdev-add uevent to the new namespace */
10588 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10589 	netdev_adjacent_add_links(dev);
10590 
10591 	/* Fixup kobjects */
10592 	err = device_rename(&dev->dev, dev->name);
10593 	WARN_ON(err);
10594 
10595 	/* Adapt owner in case owning user namespace of target network
10596 	 * namespace is different from the original one.
10597 	 */
10598 	err = netdev_change_owner(dev, net_old, net);
10599 	WARN_ON(err);
10600 
10601 	/* Add the device back in the hashes */
10602 	list_netdevice(dev);
10603 
10604 	/* Notify protocols, that a new device appeared. */
10605 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10606 
10607 	/*
10608 	 *	Prevent userspace races by waiting until the network
10609 	 *	device is fully setup before sending notifications.
10610 	 */
10611 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10612 
10613 	synchronize_net();
10614 	err = 0;
10615 out:
10616 	return err;
10617 }
10618 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
10619 
10620 static int dev_cpu_dead(unsigned int oldcpu)
10621 {
10622 	struct sk_buff **list_skb;
10623 	struct sk_buff *skb;
10624 	unsigned int cpu;
10625 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10626 
10627 	local_irq_disable();
10628 	cpu = smp_processor_id();
10629 	sd = &per_cpu(softnet_data, cpu);
10630 	oldsd = &per_cpu(softnet_data, oldcpu);
10631 
10632 	/* Find end of our completion_queue. */
10633 	list_skb = &sd->completion_queue;
10634 	while (*list_skb)
10635 		list_skb = &(*list_skb)->next;
10636 	/* Append completion queue from offline CPU. */
10637 	*list_skb = oldsd->completion_queue;
10638 	oldsd->completion_queue = NULL;
10639 
10640 	/* Append output queue from offline CPU. */
10641 	if (oldsd->output_queue) {
10642 		*sd->output_queue_tailp = oldsd->output_queue;
10643 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10644 		oldsd->output_queue = NULL;
10645 		oldsd->output_queue_tailp = &oldsd->output_queue;
10646 	}
10647 	/* Append NAPI poll list from offline CPU, with one exception :
10648 	 * process_backlog() must be called by cpu owning percpu backlog.
10649 	 * We properly handle process_queue & input_pkt_queue later.
10650 	 */
10651 	while (!list_empty(&oldsd->poll_list)) {
10652 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10653 							    struct napi_struct,
10654 							    poll_list);
10655 
10656 		list_del_init(&napi->poll_list);
10657 		if (napi->poll == process_backlog)
10658 			napi->state = 0;
10659 		else
10660 			____napi_schedule(sd, napi);
10661 	}
10662 
10663 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10664 	local_irq_enable();
10665 
10666 #ifdef CONFIG_RPS
10667 	remsd = oldsd->rps_ipi_list;
10668 	oldsd->rps_ipi_list = NULL;
10669 #endif
10670 	/* send out pending IPI's on offline CPU */
10671 	net_rps_send_ipi(remsd);
10672 
10673 	/* Process offline CPU's input_pkt_queue */
10674 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10675 		netif_rx_ni(skb);
10676 		input_queue_head_incr(oldsd);
10677 	}
10678 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10679 		netif_rx_ni(skb);
10680 		input_queue_head_incr(oldsd);
10681 	}
10682 
10683 	return 0;
10684 }
10685 
10686 /**
10687  *	netdev_increment_features - increment feature set by one
10688  *	@all: current feature set
10689  *	@one: new feature set
10690  *	@mask: mask feature set
10691  *
10692  *	Computes a new feature set after adding a device with feature set
10693  *	@one to the master device with current feature set @all.  Will not
10694  *	enable anything that is off in @mask. Returns the new feature set.
10695  */
10696 netdev_features_t netdev_increment_features(netdev_features_t all,
10697 	netdev_features_t one, netdev_features_t mask)
10698 {
10699 	if (mask & NETIF_F_HW_CSUM)
10700 		mask |= NETIF_F_CSUM_MASK;
10701 	mask |= NETIF_F_VLAN_CHALLENGED;
10702 
10703 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10704 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10705 
10706 	/* If one device supports hw checksumming, set for all. */
10707 	if (all & NETIF_F_HW_CSUM)
10708 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10709 
10710 	return all;
10711 }
10712 EXPORT_SYMBOL(netdev_increment_features);
10713 
10714 static struct hlist_head * __net_init netdev_create_hash(void)
10715 {
10716 	int i;
10717 	struct hlist_head *hash;
10718 
10719 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10720 	if (hash != NULL)
10721 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
10722 			INIT_HLIST_HEAD(&hash[i]);
10723 
10724 	return hash;
10725 }
10726 
10727 /* Initialize per network namespace state */
10728 static int __net_init netdev_init(struct net *net)
10729 {
10730 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
10731 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
10732 
10733 	if (net != &init_net)
10734 		INIT_LIST_HEAD(&net->dev_base_head);
10735 
10736 	net->dev_name_head = netdev_create_hash();
10737 	if (net->dev_name_head == NULL)
10738 		goto err_name;
10739 
10740 	net->dev_index_head = netdev_create_hash();
10741 	if (net->dev_index_head == NULL)
10742 		goto err_idx;
10743 
10744 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10745 
10746 	return 0;
10747 
10748 err_idx:
10749 	kfree(net->dev_name_head);
10750 err_name:
10751 	return -ENOMEM;
10752 }
10753 
10754 /**
10755  *	netdev_drivername - network driver for the device
10756  *	@dev: network device
10757  *
10758  *	Determine network driver for device.
10759  */
10760 const char *netdev_drivername(const struct net_device *dev)
10761 {
10762 	const struct device_driver *driver;
10763 	const struct device *parent;
10764 	const char *empty = "";
10765 
10766 	parent = dev->dev.parent;
10767 	if (!parent)
10768 		return empty;
10769 
10770 	driver = parent->driver;
10771 	if (driver && driver->name)
10772 		return driver->name;
10773 	return empty;
10774 }
10775 
10776 static void __netdev_printk(const char *level, const struct net_device *dev,
10777 			    struct va_format *vaf)
10778 {
10779 	if (dev && dev->dev.parent) {
10780 		dev_printk_emit(level[1] - '0',
10781 				dev->dev.parent,
10782 				"%s %s %s%s: %pV",
10783 				dev_driver_string(dev->dev.parent),
10784 				dev_name(dev->dev.parent),
10785 				netdev_name(dev), netdev_reg_state(dev),
10786 				vaf);
10787 	} else if (dev) {
10788 		printk("%s%s%s: %pV",
10789 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
10790 	} else {
10791 		printk("%s(NULL net_device): %pV", level, vaf);
10792 	}
10793 }
10794 
10795 void netdev_printk(const char *level, const struct net_device *dev,
10796 		   const char *format, ...)
10797 {
10798 	struct va_format vaf;
10799 	va_list args;
10800 
10801 	va_start(args, format);
10802 
10803 	vaf.fmt = format;
10804 	vaf.va = &args;
10805 
10806 	__netdev_printk(level, dev, &vaf);
10807 
10808 	va_end(args);
10809 }
10810 EXPORT_SYMBOL(netdev_printk);
10811 
10812 #define define_netdev_printk_level(func, level)			\
10813 void func(const struct net_device *dev, const char *fmt, ...)	\
10814 {								\
10815 	struct va_format vaf;					\
10816 	va_list args;						\
10817 								\
10818 	va_start(args, fmt);					\
10819 								\
10820 	vaf.fmt = fmt;						\
10821 	vaf.va = &args;						\
10822 								\
10823 	__netdev_printk(level, dev, &vaf);			\
10824 								\
10825 	va_end(args);						\
10826 }								\
10827 EXPORT_SYMBOL(func);
10828 
10829 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10830 define_netdev_printk_level(netdev_alert, KERN_ALERT);
10831 define_netdev_printk_level(netdev_crit, KERN_CRIT);
10832 define_netdev_printk_level(netdev_err, KERN_ERR);
10833 define_netdev_printk_level(netdev_warn, KERN_WARNING);
10834 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10835 define_netdev_printk_level(netdev_info, KERN_INFO);
10836 
10837 static void __net_exit netdev_exit(struct net *net)
10838 {
10839 	kfree(net->dev_name_head);
10840 	kfree(net->dev_index_head);
10841 	if (net != &init_net)
10842 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10843 }
10844 
10845 static struct pernet_operations __net_initdata netdev_net_ops = {
10846 	.init = netdev_init,
10847 	.exit = netdev_exit,
10848 };
10849 
10850 static void __net_exit default_device_exit(struct net *net)
10851 {
10852 	struct net_device *dev, *aux;
10853 	/*
10854 	 * Push all migratable network devices back to the
10855 	 * initial network namespace
10856 	 */
10857 	rtnl_lock();
10858 	for_each_netdev_safe(net, dev, aux) {
10859 		int err;
10860 		char fb_name[IFNAMSIZ];
10861 
10862 		/* Ignore unmoveable devices (i.e. loopback) */
10863 		if (dev->features & NETIF_F_NETNS_LOCAL)
10864 			continue;
10865 
10866 		/* Leave virtual devices for the generic cleanup */
10867 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
10868 			continue;
10869 
10870 		/* Push remaining network devices to init_net */
10871 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10872 		if (netdev_name_in_use(&init_net, fb_name))
10873 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
10874 		err = dev_change_net_namespace(dev, &init_net, fb_name);
10875 		if (err) {
10876 			pr_emerg("%s: failed to move %s to init_net: %d\n",
10877 				 __func__, dev->name, err);
10878 			BUG();
10879 		}
10880 	}
10881 	rtnl_unlock();
10882 }
10883 
10884 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10885 {
10886 	/* Return with the rtnl_lock held when there are no network
10887 	 * devices unregistering in any network namespace in net_list.
10888 	 */
10889 	struct net *net;
10890 	bool unregistering;
10891 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
10892 
10893 	add_wait_queue(&netdev_unregistering_wq, &wait);
10894 	for (;;) {
10895 		unregistering = false;
10896 		rtnl_lock();
10897 		list_for_each_entry(net, net_list, exit_list) {
10898 			if (net->dev_unreg_count > 0) {
10899 				unregistering = true;
10900 				break;
10901 			}
10902 		}
10903 		if (!unregistering)
10904 			break;
10905 		__rtnl_unlock();
10906 
10907 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10908 	}
10909 	remove_wait_queue(&netdev_unregistering_wq, &wait);
10910 }
10911 
10912 static void __net_exit default_device_exit_batch(struct list_head *net_list)
10913 {
10914 	/* At exit all network devices most be removed from a network
10915 	 * namespace.  Do this in the reverse order of registration.
10916 	 * Do this across as many network namespaces as possible to
10917 	 * improve batching efficiency.
10918 	 */
10919 	struct net_device *dev;
10920 	struct net *net;
10921 	LIST_HEAD(dev_kill_list);
10922 
10923 	/* To prevent network device cleanup code from dereferencing
10924 	 * loopback devices or network devices that have been freed
10925 	 * wait here for all pending unregistrations to complete,
10926 	 * before unregistring the loopback device and allowing the
10927 	 * network namespace be freed.
10928 	 *
10929 	 * The netdev todo list containing all network devices
10930 	 * unregistrations that happen in default_device_exit_batch
10931 	 * will run in the rtnl_unlock() at the end of
10932 	 * default_device_exit_batch.
10933 	 */
10934 	rtnl_lock_unregistering(net_list);
10935 	list_for_each_entry(net, net_list, exit_list) {
10936 		for_each_netdev_reverse(net, dev) {
10937 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10938 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10939 			else
10940 				unregister_netdevice_queue(dev, &dev_kill_list);
10941 		}
10942 	}
10943 	unregister_netdevice_many(&dev_kill_list);
10944 	rtnl_unlock();
10945 }
10946 
10947 static struct pernet_operations __net_initdata default_device_ops = {
10948 	.exit = default_device_exit,
10949 	.exit_batch = default_device_exit_batch,
10950 };
10951 
10952 /*
10953  *	Initialize the DEV module. At boot time this walks the device list and
10954  *	unhooks any devices that fail to initialise (normally hardware not
10955  *	present) and leaves us with a valid list of present and active devices.
10956  *
10957  */
10958 
10959 /*
10960  *       This is called single threaded during boot, so no need
10961  *       to take the rtnl semaphore.
10962  */
10963 static int __init net_dev_init(void)
10964 {
10965 	int i, rc = -ENOMEM;
10966 
10967 	BUG_ON(!dev_boot_phase);
10968 
10969 	if (dev_proc_init())
10970 		goto out;
10971 
10972 	if (netdev_kobject_init())
10973 		goto out;
10974 
10975 	INIT_LIST_HEAD(&ptype_all);
10976 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
10977 		INIT_LIST_HEAD(&ptype_base[i]);
10978 
10979 	if (register_pernet_subsys(&netdev_net_ops))
10980 		goto out;
10981 
10982 	/*
10983 	 *	Initialise the packet receive queues.
10984 	 */
10985 
10986 	for_each_possible_cpu(i) {
10987 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10988 		struct softnet_data *sd = &per_cpu(softnet_data, i);
10989 
10990 		INIT_WORK(flush, flush_backlog);
10991 
10992 		skb_queue_head_init(&sd->input_pkt_queue);
10993 		skb_queue_head_init(&sd->process_queue);
10994 #ifdef CONFIG_XFRM_OFFLOAD
10995 		skb_queue_head_init(&sd->xfrm_backlog);
10996 #endif
10997 		INIT_LIST_HEAD(&sd->poll_list);
10998 		sd->output_queue_tailp = &sd->output_queue;
10999 #ifdef CONFIG_RPS
11000 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11001 		sd->cpu = i;
11002 #endif
11003 
11004 		init_gro_hash(&sd->backlog);
11005 		sd->backlog.poll = process_backlog;
11006 		sd->backlog.weight = weight_p;
11007 	}
11008 
11009 	dev_boot_phase = 0;
11010 
11011 	/* The loopback device is special if any other network devices
11012 	 * is present in a network namespace the loopback device must
11013 	 * be present. Since we now dynamically allocate and free the
11014 	 * loopback device ensure this invariant is maintained by
11015 	 * keeping the loopback device as the first device on the
11016 	 * list of network devices.  Ensuring the loopback devices
11017 	 * is the first device that appears and the last network device
11018 	 * that disappears.
11019 	 */
11020 	if (register_pernet_device(&loopback_net_ops))
11021 		goto out;
11022 
11023 	if (register_pernet_device(&default_device_ops))
11024 		goto out;
11025 
11026 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11027 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11028 
11029 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11030 				       NULL, dev_cpu_dead);
11031 	WARN_ON(rc < 0);
11032 	rc = 0;
11033 out:
11034 	return rc;
11035 }
11036 
11037 subsys_initcall(net_dev_init);
11038