1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/string.h> 83 #include <linux/mm.h> 84 #include <linux/socket.h> 85 #include <linux/sockios.h> 86 #include <linux/errno.h> 87 #include <linux/interrupt.h> 88 #include <linux/if_ether.h> 89 #include <linux/netdevice.h> 90 #include <linux/etherdevice.h> 91 #include <linux/ethtool.h> 92 #include <linux/skbuff.h> 93 #include <linux/bpf.h> 94 #include <linux/bpf_trace.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <net/busy_poll.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/stat.h> 100 #include <net/dst.h> 101 #include <net/dst_metadata.h> 102 #include <net/pkt_sched.h> 103 #include <net/pkt_cls.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/module.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/iw_handler.h> 113 #include <asm/current.h> 114 #include <linux/audit.h> 115 #include <linux/dmaengine.h> 116 #include <linux/err.h> 117 #include <linux/ctype.h> 118 #include <linux/if_arp.h> 119 #include <linux/if_vlan.h> 120 #include <linux/ip.h> 121 #include <net/ip.h> 122 #include <net/mpls.h> 123 #include <linux/ipv6.h> 124 #include <linux/in.h> 125 #include <linux/jhash.h> 126 #include <linux/random.h> 127 #include <trace/events/napi.h> 128 #include <trace/events/net.h> 129 #include <trace/events/skb.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 #include <linux/netfilter_ingress.h> 139 #include <linux/crash_dump.h> 140 #include <linux/sctp.h> 141 #include <net/udp_tunnel.h> 142 #include <linux/net_namespace.h> 143 #include <linux/indirect_call_wrapper.h> 144 #include <net/devlink.h> 145 146 #include "net-sysfs.h" 147 148 #define MAX_GRO_SKBS 8 149 150 /* This should be increased if a protocol with a bigger head is added. */ 151 #define GRO_MAX_HEAD (MAX_HEADER + 128) 152 153 static DEFINE_SPINLOCK(ptype_lock); 154 static DEFINE_SPINLOCK(offload_lock); 155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 156 struct list_head ptype_all __read_mostly; /* Taps */ 157 static struct list_head offload_base __read_mostly; 158 159 static int netif_rx_internal(struct sk_buff *skb); 160 static int call_netdevice_notifiers_info(unsigned long val, 161 struct netdev_notifier_info *info); 162 static int call_netdevice_notifiers_extack(unsigned long val, 163 struct net_device *dev, 164 struct netlink_ext_ack *extack); 165 static struct napi_struct *napi_by_id(unsigned int napi_id); 166 167 /* 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 169 * semaphore. 170 * 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 172 * 173 * Writers must hold the rtnl semaphore while they loop through the 174 * dev_base_head list, and hold dev_base_lock for writing when they do the 175 * actual updates. This allows pure readers to access the list even 176 * while a writer is preparing to update it. 177 * 178 * To put it another way, dev_base_lock is held for writing only to 179 * protect against pure readers; the rtnl semaphore provides the 180 * protection against other writers. 181 * 182 * See, for example usages, register_netdevice() and 183 * unregister_netdevice(), which must be called with the rtnl 184 * semaphore held. 185 */ 186 DEFINE_RWLOCK(dev_base_lock); 187 EXPORT_SYMBOL(dev_base_lock); 188 189 static DEFINE_MUTEX(ifalias_mutex); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 /* Device list insertion */ 232 static void list_netdevice(struct net_device *dev) 233 { 234 struct net *net = dev_net(dev); 235 236 ASSERT_RTNL(); 237 238 write_lock_bh(&dev_base_lock); 239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 241 hlist_add_head_rcu(&dev->index_hlist, 242 dev_index_hash(net, dev->ifindex)); 243 write_unlock_bh(&dev_base_lock); 244 245 dev_base_seq_inc(net); 246 } 247 248 /* Device list removal 249 * caller must respect a RCU grace period before freeing/reusing dev 250 */ 251 static void unlist_netdevice(struct net_device *dev) 252 { 253 ASSERT_RTNL(); 254 255 /* Unlink dev from the device chain */ 256 write_lock_bh(&dev_base_lock); 257 list_del_rcu(&dev->dev_list); 258 hlist_del_rcu(&dev->name_hlist); 259 hlist_del_rcu(&dev->index_hlist); 260 write_unlock_bh(&dev_base_lock); 261 262 dev_base_seq_inc(dev_net(dev)); 263 } 264 265 /* 266 * Our notifier list 267 */ 268 269 static RAW_NOTIFIER_HEAD(netdev_chain); 270 271 /* 272 * Device drivers call our routines to queue packets here. We empty the 273 * queue in the local softnet handler. 274 */ 275 276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 277 EXPORT_PER_CPU_SYMBOL(softnet_data); 278 279 #ifdef CONFIG_LOCKDEP 280 /* 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 282 * according to dev->type 283 */ 284 static const unsigned short netdev_lock_type[] = { 285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 300 301 static const char *const netdev_lock_name[] = { 302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 317 318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 320 321 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 322 { 323 int i; 324 325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 326 if (netdev_lock_type[i] == dev_type) 327 return i; 328 /* the last key is used by default */ 329 return ARRAY_SIZE(netdev_lock_type) - 1; 330 } 331 332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 333 unsigned short dev_type) 334 { 335 int i; 336 337 i = netdev_lock_pos(dev_type); 338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 339 netdev_lock_name[i]); 340 } 341 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 int i; 345 346 i = netdev_lock_pos(dev->type); 347 lockdep_set_class_and_name(&dev->addr_list_lock, 348 &netdev_addr_lock_key[i], 349 netdev_lock_name[i]); 350 } 351 #else 352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 353 unsigned short dev_type) 354 { 355 } 356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 357 { 358 } 359 #endif 360 361 /******************************************************************************* 362 * 363 * Protocol management and registration routines 364 * 365 *******************************************************************************/ 366 367 368 /* 369 * Add a protocol ID to the list. Now that the input handler is 370 * smarter we can dispense with all the messy stuff that used to be 371 * here. 372 * 373 * BEWARE!!! Protocol handlers, mangling input packets, 374 * MUST BE last in hash buckets and checking protocol handlers 375 * MUST start from promiscuous ptype_all chain in net_bh. 376 * It is true now, do not change it. 377 * Explanation follows: if protocol handler, mangling packet, will 378 * be the first on list, it is not able to sense, that packet 379 * is cloned and should be copied-on-write, so that it will 380 * change it and subsequent readers will get broken packet. 381 * --ANK (980803) 382 */ 383 384 static inline struct list_head *ptype_head(const struct packet_type *pt) 385 { 386 if (pt->type == htons(ETH_P_ALL)) 387 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 388 else 389 return pt->dev ? &pt->dev->ptype_specific : 390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 391 } 392 393 /** 394 * dev_add_pack - add packet handler 395 * @pt: packet type declaration 396 * 397 * Add a protocol handler to the networking stack. The passed &packet_type 398 * is linked into kernel lists and may not be freed until it has been 399 * removed from the kernel lists. 400 * 401 * This call does not sleep therefore it can not 402 * guarantee all CPU's that are in middle of receiving packets 403 * will see the new packet type (until the next received packet). 404 */ 405 406 void dev_add_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 410 spin_lock(&ptype_lock); 411 list_add_rcu(&pt->list, head); 412 spin_unlock(&ptype_lock); 413 } 414 EXPORT_SYMBOL(dev_add_pack); 415 416 /** 417 * __dev_remove_pack - remove packet handler 418 * @pt: packet type declaration 419 * 420 * Remove a protocol handler that was previously added to the kernel 421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 422 * from the kernel lists and can be freed or reused once this function 423 * returns. 424 * 425 * The packet type might still be in use by receivers 426 * and must not be freed until after all the CPU's have gone 427 * through a quiescent state. 428 */ 429 void __dev_remove_pack(struct packet_type *pt) 430 { 431 struct list_head *head = ptype_head(pt); 432 struct packet_type *pt1; 433 434 spin_lock(&ptype_lock); 435 436 list_for_each_entry(pt1, head, list) { 437 if (pt == pt1) { 438 list_del_rcu(&pt->list); 439 goto out; 440 } 441 } 442 443 pr_warn("dev_remove_pack: %p not found\n", pt); 444 out: 445 spin_unlock(&ptype_lock); 446 } 447 EXPORT_SYMBOL(__dev_remove_pack); 448 449 /** 450 * dev_remove_pack - remove packet handler 451 * @pt: packet type declaration 452 * 453 * Remove a protocol handler that was previously added to the kernel 454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 455 * from the kernel lists and can be freed or reused once this function 456 * returns. 457 * 458 * This call sleeps to guarantee that no CPU is looking at the packet 459 * type after return. 460 */ 461 void dev_remove_pack(struct packet_type *pt) 462 { 463 __dev_remove_pack(pt); 464 465 synchronize_net(); 466 } 467 EXPORT_SYMBOL(dev_remove_pack); 468 469 470 /** 471 * dev_add_offload - register offload handlers 472 * @po: protocol offload declaration 473 * 474 * Add protocol offload handlers to the networking stack. The passed 475 * &proto_offload is linked into kernel lists and may not be freed until 476 * it has been removed from the kernel lists. 477 * 478 * This call does not sleep therefore it can not 479 * guarantee all CPU's that are in middle of receiving packets 480 * will see the new offload handlers (until the next received packet). 481 */ 482 void dev_add_offload(struct packet_offload *po) 483 { 484 struct packet_offload *elem; 485 486 spin_lock(&offload_lock); 487 list_for_each_entry(elem, &offload_base, list) { 488 if (po->priority < elem->priority) 489 break; 490 } 491 list_add_rcu(&po->list, elem->list.prev); 492 spin_unlock(&offload_lock); 493 } 494 EXPORT_SYMBOL(dev_add_offload); 495 496 /** 497 * __dev_remove_offload - remove offload handler 498 * @po: packet offload declaration 499 * 500 * Remove a protocol offload handler that was previously added to the 501 * kernel offload handlers by dev_add_offload(). The passed &offload_type 502 * is removed from the kernel lists and can be freed or reused once this 503 * function returns. 504 * 505 * The packet type might still be in use by receivers 506 * and must not be freed until after all the CPU's have gone 507 * through a quiescent state. 508 */ 509 static void __dev_remove_offload(struct packet_offload *po) 510 { 511 struct list_head *head = &offload_base; 512 struct packet_offload *po1; 513 514 spin_lock(&offload_lock); 515 516 list_for_each_entry(po1, head, list) { 517 if (po == po1) { 518 list_del_rcu(&po->list); 519 goto out; 520 } 521 } 522 523 pr_warn("dev_remove_offload: %p not found\n", po); 524 out: 525 spin_unlock(&offload_lock); 526 } 527 528 /** 529 * dev_remove_offload - remove packet offload handler 530 * @po: packet offload declaration 531 * 532 * Remove a packet offload handler that was previously added to the kernel 533 * offload handlers by dev_add_offload(). The passed &offload_type is 534 * removed from the kernel lists and can be freed or reused once this 535 * function returns. 536 * 537 * This call sleeps to guarantee that no CPU is looking at the packet 538 * type after return. 539 */ 540 void dev_remove_offload(struct packet_offload *po) 541 { 542 __dev_remove_offload(po); 543 544 synchronize_net(); 545 } 546 EXPORT_SYMBOL(dev_remove_offload); 547 548 /****************************************************************************** 549 * 550 * Device Boot-time Settings Routines 551 * 552 ******************************************************************************/ 553 554 /* Boot time configuration table */ 555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 556 557 /** 558 * netdev_boot_setup_add - add new setup entry 559 * @name: name of the device 560 * @map: configured settings for the device 561 * 562 * Adds new setup entry to the dev_boot_setup list. The function 563 * returns 0 on error and 1 on success. This is a generic routine to 564 * all netdevices. 565 */ 566 static int netdev_boot_setup_add(char *name, struct ifmap *map) 567 { 568 struct netdev_boot_setup *s; 569 int i; 570 571 s = dev_boot_setup; 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 574 memset(s[i].name, 0, sizeof(s[i].name)); 575 strlcpy(s[i].name, name, IFNAMSIZ); 576 memcpy(&s[i].map, map, sizeof(s[i].map)); 577 break; 578 } 579 } 580 581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 582 } 583 584 /** 585 * netdev_boot_setup_check - check boot time settings 586 * @dev: the netdevice 587 * 588 * Check boot time settings for the device. 589 * The found settings are set for the device to be used 590 * later in the device probing. 591 * Returns 0 if no settings found, 1 if they are. 592 */ 593 int netdev_boot_setup_check(struct net_device *dev) 594 { 595 struct netdev_boot_setup *s = dev_boot_setup; 596 int i; 597 598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 600 !strcmp(dev->name, s[i].name)) { 601 dev->irq = s[i].map.irq; 602 dev->base_addr = s[i].map.base_addr; 603 dev->mem_start = s[i].map.mem_start; 604 dev->mem_end = s[i].map.mem_end; 605 return 1; 606 } 607 } 608 return 0; 609 } 610 EXPORT_SYMBOL(netdev_boot_setup_check); 611 612 613 /** 614 * netdev_boot_base - get address from boot time settings 615 * @prefix: prefix for network device 616 * @unit: id for network device 617 * 618 * Check boot time settings for the base address of device. 619 * The found settings are set for the device to be used 620 * later in the device probing. 621 * Returns 0 if no settings found. 622 */ 623 unsigned long netdev_boot_base(const char *prefix, int unit) 624 { 625 const struct netdev_boot_setup *s = dev_boot_setup; 626 char name[IFNAMSIZ]; 627 int i; 628 629 sprintf(name, "%s%d", prefix, unit); 630 631 /* 632 * If device already registered then return base of 1 633 * to indicate not to probe for this interface 634 */ 635 if (__dev_get_by_name(&init_net, name)) 636 return 1; 637 638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 639 if (!strcmp(name, s[i].name)) 640 return s[i].map.base_addr; 641 return 0; 642 } 643 644 /* 645 * Saves at boot time configured settings for any netdevice. 646 */ 647 int __init netdev_boot_setup(char *str) 648 { 649 int ints[5]; 650 struct ifmap map; 651 652 str = get_options(str, ARRAY_SIZE(ints), ints); 653 if (!str || !*str) 654 return 0; 655 656 /* Save settings */ 657 memset(&map, 0, sizeof(map)); 658 if (ints[0] > 0) 659 map.irq = ints[1]; 660 if (ints[0] > 1) 661 map.base_addr = ints[2]; 662 if (ints[0] > 2) 663 map.mem_start = ints[3]; 664 if (ints[0] > 3) 665 map.mem_end = ints[4]; 666 667 /* Add new entry to the list */ 668 return netdev_boot_setup_add(str, &map); 669 } 670 671 __setup("netdev=", netdev_boot_setup); 672 673 /******************************************************************************* 674 * 675 * Device Interface Subroutines 676 * 677 *******************************************************************************/ 678 679 /** 680 * dev_get_iflink - get 'iflink' value of a interface 681 * @dev: targeted interface 682 * 683 * Indicates the ifindex the interface is linked to. 684 * Physical interfaces have the same 'ifindex' and 'iflink' values. 685 */ 686 687 int dev_get_iflink(const struct net_device *dev) 688 { 689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 690 return dev->netdev_ops->ndo_get_iflink(dev); 691 692 return dev->ifindex; 693 } 694 EXPORT_SYMBOL(dev_get_iflink); 695 696 /** 697 * dev_fill_metadata_dst - Retrieve tunnel egress information. 698 * @dev: targeted interface 699 * @skb: The packet. 700 * 701 * For better visibility of tunnel traffic OVS needs to retrieve 702 * egress tunnel information for a packet. Following API allows 703 * user to get this info. 704 */ 705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 706 { 707 struct ip_tunnel_info *info; 708 709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 710 return -EINVAL; 711 712 info = skb_tunnel_info_unclone(skb); 713 if (!info) 714 return -ENOMEM; 715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 716 return -EINVAL; 717 718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 719 } 720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 721 722 /** 723 * __dev_get_by_name - find a device by its name 724 * @net: the applicable net namespace 725 * @name: name to find 726 * 727 * Find an interface by name. Must be called under RTNL semaphore 728 * or @dev_base_lock. If the name is found a pointer to the device 729 * is returned. If the name is not found then %NULL is returned. The 730 * reference counters are not incremented so the caller must be 731 * careful with locks. 732 */ 733 734 struct net_device *__dev_get_by_name(struct net *net, const char *name) 735 { 736 struct net_device *dev; 737 struct hlist_head *head = dev_name_hash(net, name); 738 739 hlist_for_each_entry(dev, head, name_hlist) 740 if (!strncmp(dev->name, name, IFNAMSIZ)) 741 return dev; 742 743 return NULL; 744 } 745 EXPORT_SYMBOL(__dev_get_by_name); 746 747 /** 748 * dev_get_by_name_rcu - find a device by its name 749 * @net: the applicable net namespace 750 * @name: name to find 751 * 752 * Find an interface by name. 753 * If the name is found a pointer to the device is returned. 754 * If the name is not found then %NULL is returned. 755 * The reference counters are not incremented so the caller must be 756 * careful with locks. The caller must hold RCU lock. 757 */ 758 759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 760 { 761 struct net_device *dev; 762 struct hlist_head *head = dev_name_hash(net, name); 763 764 hlist_for_each_entry_rcu(dev, head, name_hlist) 765 if (!strncmp(dev->name, name, IFNAMSIZ)) 766 return dev; 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(dev_get_by_name_rcu); 771 772 /** 773 * dev_get_by_name - find a device by its name 774 * @net: the applicable net namespace 775 * @name: name to find 776 * 777 * Find an interface by name. This can be called from any 778 * context and does its own locking. The returned handle has 779 * the usage count incremented and the caller must use dev_put() to 780 * release it when it is no longer needed. %NULL is returned if no 781 * matching device is found. 782 */ 783 784 struct net_device *dev_get_by_name(struct net *net, const char *name) 785 { 786 struct net_device *dev; 787 788 rcu_read_lock(); 789 dev = dev_get_by_name_rcu(net, name); 790 if (dev) 791 dev_hold(dev); 792 rcu_read_unlock(); 793 return dev; 794 } 795 EXPORT_SYMBOL(dev_get_by_name); 796 797 /** 798 * __dev_get_by_index - find a device by its ifindex 799 * @net: the applicable net namespace 800 * @ifindex: index of device 801 * 802 * Search for an interface by index. Returns %NULL if the device 803 * is not found or a pointer to the device. The device has not 804 * had its reference counter increased so the caller must be careful 805 * about locking. The caller must hold either the RTNL semaphore 806 * or @dev_base_lock. 807 */ 808 809 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 810 { 811 struct net_device *dev; 812 struct hlist_head *head = dev_index_hash(net, ifindex); 813 814 hlist_for_each_entry(dev, head, index_hlist) 815 if (dev->ifindex == ifindex) 816 return dev; 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(__dev_get_by_index); 821 822 /** 823 * dev_get_by_index_rcu - find a device by its ifindex 824 * @net: the applicable net namespace 825 * @ifindex: index of device 826 * 827 * Search for an interface by index. Returns %NULL if the device 828 * is not found or a pointer to the device. The device has not 829 * had its reference counter increased so the caller must be careful 830 * about locking. The caller must hold RCU lock. 831 */ 832 833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 834 { 835 struct net_device *dev; 836 struct hlist_head *head = dev_index_hash(net, ifindex); 837 838 hlist_for_each_entry_rcu(dev, head, index_hlist) 839 if (dev->ifindex == ifindex) 840 return dev; 841 842 return NULL; 843 } 844 EXPORT_SYMBOL(dev_get_by_index_rcu); 845 846 847 /** 848 * dev_get_by_index - find a device by its ifindex 849 * @net: the applicable net namespace 850 * @ifindex: index of device 851 * 852 * Search for an interface by index. Returns NULL if the device 853 * is not found or a pointer to the device. The device returned has 854 * had a reference added and the pointer is safe until the user calls 855 * dev_put to indicate they have finished with it. 856 */ 857 858 struct net_device *dev_get_by_index(struct net *net, int ifindex) 859 { 860 struct net_device *dev; 861 862 rcu_read_lock(); 863 dev = dev_get_by_index_rcu(net, ifindex); 864 if (dev) 865 dev_hold(dev); 866 rcu_read_unlock(); 867 return dev; 868 } 869 EXPORT_SYMBOL(dev_get_by_index); 870 871 /** 872 * dev_get_by_napi_id - find a device by napi_id 873 * @napi_id: ID of the NAPI struct 874 * 875 * Search for an interface by NAPI ID. Returns %NULL if the device 876 * is not found or a pointer to the device. The device has not had 877 * its reference counter increased so the caller must be careful 878 * about locking. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 882 { 883 struct napi_struct *napi; 884 885 WARN_ON_ONCE(!rcu_read_lock_held()); 886 887 if (napi_id < MIN_NAPI_ID) 888 return NULL; 889 890 napi = napi_by_id(napi_id); 891 892 return napi ? napi->dev : NULL; 893 } 894 EXPORT_SYMBOL(dev_get_by_napi_id); 895 896 /** 897 * netdev_get_name - get a netdevice name, knowing its ifindex. 898 * @net: network namespace 899 * @name: a pointer to the buffer where the name will be stored. 900 * @ifindex: the ifindex of the interface to get the name from. 901 * 902 * The use of raw_seqcount_begin() and cond_resched() before 903 * retrying is required as we want to give the writers a chance 904 * to complete when CONFIG_PREEMPT is not set. 905 */ 906 int netdev_get_name(struct net *net, char *name, int ifindex) 907 { 908 struct net_device *dev; 909 unsigned int seq; 910 911 retry: 912 seq = raw_seqcount_begin(&devnet_rename_seq); 913 rcu_read_lock(); 914 dev = dev_get_by_index_rcu(net, ifindex); 915 if (!dev) { 916 rcu_read_unlock(); 917 return -ENODEV; 918 } 919 920 strcpy(name, dev->name); 921 rcu_read_unlock(); 922 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 923 cond_resched(); 924 goto retry; 925 } 926 927 return 0; 928 } 929 930 /** 931 * dev_getbyhwaddr_rcu - find a device by its hardware address 932 * @net: the applicable net namespace 933 * @type: media type of device 934 * @ha: hardware address 935 * 936 * Search for an interface by MAC address. Returns NULL if the device 937 * is not found or a pointer to the device. 938 * The caller must hold RCU or RTNL. 939 * The returned device has not had its ref count increased 940 * and the caller must therefore be careful about locking 941 * 942 */ 943 944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 945 const char *ha) 946 { 947 struct net_device *dev; 948 949 for_each_netdev_rcu(net, dev) 950 if (dev->type == type && 951 !memcmp(dev->dev_addr, ha, dev->addr_len)) 952 return dev; 953 954 return NULL; 955 } 956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 957 958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 959 { 960 struct net_device *dev; 961 962 ASSERT_RTNL(); 963 for_each_netdev(net, dev) 964 if (dev->type == type) 965 return dev; 966 967 return NULL; 968 } 969 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 970 971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 972 { 973 struct net_device *dev, *ret = NULL; 974 975 rcu_read_lock(); 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type) { 978 dev_hold(dev); 979 ret = dev; 980 break; 981 } 982 rcu_read_unlock(); 983 return ret; 984 } 985 EXPORT_SYMBOL(dev_getfirstbyhwtype); 986 987 /** 988 * __dev_get_by_flags - find any device with given flags 989 * @net: the applicable net namespace 990 * @if_flags: IFF_* values 991 * @mask: bitmask of bits in if_flags to check 992 * 993 * Search for any interface with the given flags. Returns NULL if a device 994 * is not found or a pointer to the device. Must be called inside 995 * rtnl_lock(), and result refcount is unchanged. 996 */ 997 998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 999 unsigned short mask) 1000 { 1001 struct net_device *dev, *ret; 1002 1003 ASSERT_RTNL(); 1004 1005 ret = NULL; 1006 for_each_netdev(net, dev) { 1007 if (((dev->flags ^ if_flags) & mask) == 0) { 1008 ret = dev; 1009 break; 1010 } 1011 } 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(__dev_get_by_flags); 1015 1016 /** 1017 * dev_valid_name - check if name is okay for network device 1018 * @name: name string 1019 * 1020 * Network device names need to be valid file names to 1021 * to allow sysfs to work. We also disallow any kind of 1022 * whitespace. 1023 */ 1024 bool dev_valid_name(const char *name) 1025 { 1026 if (*name == '\0') 1027 return false; 1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1029 return false; 1030 if (!strcmp(name, ".") || !strcmp(name, "..")) 1031 return false; 1032 1033 while (*name) { 1034 if (*name == '/' || *name == ':' || isspace(*name)) 1035 return false; 1036 name++; 1037 } 1038 return true; 1039 } 1040 EXPORT_SYMBOL(dev_valid_name); 1041 1042 /** 1043 * __dev_alloc_name - allocate a name for a device 1044 * @net: network namespace to allocate the device name in 1045 * @name: name format string 1046 * @buf: scratch buffer and result name string 1047 * 1048 * Passed a format string - eg "lt%d" it will try and find a suitable 1049 * id. It scans list of devices to build up a free map, then chooses 1050 * the first empty slot. The caller must hold the dev_base or rtnl lock 1051 * while allocating the name and adding the device in order to avoid 1052 * duplicates. 1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1054 * Returns the number of the unit assigned or a negative errno code. 1055 */ 1056 1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1058 { 1059 int i = 0; 1060 const char *p; 1061 const int max_netdevices = 8*PAGE_SIZE; 1062 unsigned long *inuse; 1063 struct net_device *d; 1064 1065 if (!dev_valid_name(name)) 1066 return -EINVAL; 1067 1068 p = strchr(name, '%'); 1069 if (p) { 1070 /* 1071 * Verify the string as this thing may have come from 1072 * the user. There must be either one "%d" and no other "%" 1073 * characters. 1074 */ 1075 if (p[1] != 'd' || strchr(p + 2, '%')) 1076 return -EINVAL; 1077 1078 /* Use one page as a bit array of possible slots */ 1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1080 if (!inuse) 1081 return -ENOMEM; 1082 1083 for_each_netdev(net, d) { 1084 if (!sscanf(d->name, name, &i)) 1085 continue; 1086 if (i < 0 || i >= max_netdevices) 1087 continue; 1088 1089 /* avoid cases where sscanf is not exact inverse of printf */ 1090 snprintf(buf, IFNAMSIZ, name, i); 1091 if (!strncmp(buf, d->name, IFNAMSIZ)) 1092 set_bit(i, inuse); 1093 } 1094 1095 i = find_first_zero_bit(inuse, max_netdevices); 1096 free_page((unsigned long) inuse); 1097 } 1098 1099 snprintf(buf, IFNAMSIZ, name, i); 1100 if (!__dev_get_by_name(net, buf)) 1101 return i; 1102 1103 /* It is possible to run out of possible slots 1104 * when the name is long and there isn't enough space left 1105 * for the digits, or if all bits are used. 1106 */ 1107 return -ENFILE; 1108 } 1109 1110 static int dev_alloc_name_ns(struct net *net, 1111 struct net_device *dev, 1112 const char *name) 1113 { 1114 char buf[IFNAMSIZ]; 1115 int ret; 1116 1117 BUG_ON(!net); 1118 ret = __dev_alloc_name(net, name, buf); 1119 if (ret >= 0) 1120 strlcpy(dev->name, buf, IFNAMSIZ); 1121 return ret; 1122 } 1123 1124 /** 1125 * dev_alloc_name - allocate a name for a device 1126 * @dev: device 1127 * @name: name format string 1128 * 1129 * Passed a format string - eg "lt%d" it will try and find a suitable 1130 * id. It scans list of devices to build up a free map, then chooses 1131 * the first empty slot. The caller must hold the dev_base or rtnl lock 1132 * while allocating the name and adding the device in order to avoid 1133 * duplicates. 1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1135 * Returns the number of the unit assigned or a negative errno code. 1136 */ 1137 1138 int dev_alloc_name(struct net_device *dev, const char *name) 1139 { 1140 return dev_alloc_name_ns(dev_net(dev), dev, name); 1141 } 1142 EXPORT_SYMBOL(dev_alloc_name); 1143 1144 int dev_get_valid_name(struct net *net, struct net_device *dev, 1145 const char *name) 1146 { 1147 BUG_ON(!net); 1148 1149 if (!dev_valid_name(name)) 1150 return -EINVAL; 1151 1152 if (strchr(name, '%')) 1153 return dev_alloc_name_ns(net, dev, name); 1154 else if (__dev_get_by_name(net, name)) 1155 return -EEXIST; 1156 else if (dev->name != name) 1157 strlcpy(dev->name, name, IFNAMSIZ); 1158 1159 return 0; 1160 } 1161 EXPORT_SYMBOL(dev_get_valid_name); 1162 1163 /** 1164 * dev_change_name - change name of a device 1165 * @dev: device 1166 * @newname: name (or format string) must be at least IFNAMSIZ 1167 * 1168 * Change name of a device, can pass format strings "eth%d". 1169 * for wildcarding. 1170 */ 1171 int dev_change_name(struct net_device *dev, const char *newname) 1172 { 1173 unsigned char old_assign_type; 1174 char oldname[IFNAMSIZ]; 1175 int err = 0; 1176 int ret; 1177 struct net *net; 1178 1179 ASSERT_RTNL(); 1180 BUG_ON(!dev_net(dev)); 1181 1182 net = dev_net(dev); 1183 1184 /* Some auto-enslaved devices e.g. failover slaves are 1185 * special, as userspace might rename the device after 1186 * the interface had been brought up and running since 1187 * the point kernel initiated auto-enslavement. Allow 1188 * live name change even when these slave devices are 1189 * up and running. 1190 * 1191 * Typically, users of these auto-enslaving devices 1192 * don't actually care about slave name change, as 1193 * they are supposed to operate on master interface 1194 * directly. 1195 */ 1196 if (dev->flags & IFF_UP && 1197 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1198 return -EBUSY; 1199 1200 write_seqcount_begin(&devnet_rename_seq); 1201 1202 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1203 write_seqcount_end(&devnet_rename_seq); 1204 return 0; 1205 } 1206 1207 memcpy(oldname, dev->name, IFNAMSIZ); 1208 1209 err = dev_get_valid_name(net, dev, newname); 1210 if (err < 0) { 1211 write_seqcount_end(&devnet_rename_seq); 1212 return err; 1213 } 1214 1215 if (oldname[0] && !strchr(oldname, '%')) 1216 netdev_info(dev, "renamed from %s\n", oldname); 1217 1218 old_assign_type = dev->name_assign_type; 1219 dev->name_assign_type = NET_NAME_RENAMED; 1220 1221 rollback: 1222 ret = device_rename(&dev->dev, dev->name); 1223 if (ret) { 1224 memcpy(dev->name, oldname, IFNAMSIZ); 1225 dev->name_assign_type = old_assign_type; 1226 write_seqcount_end(&devnet_rename_seq); 1227 return ret; 1228 } 1229 1230 write_seqcount_end(&devnet_rename_seq); 1231 1232 netdev_adjacent_rename_links(dev, oldname); 1233 1234 write_lock_bh(&dev_base_lock); 1235 hlist_del_rcu(&dev->name_hlist); 1236 write_unlock_bh(&dev_base_lock); 1237 1238 synchronize_rcu(); 1239 1240 write_lock_bh(&dev_base_lock); 1241 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1242 write_unlock_bh(&dev_base_lock); 1243 1244 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1245 ret = notifier_to_errno(ret); 1246 1247 if (ret) { 1248 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1249 if (err >= 0) { 1250 err = ret; 1251 write_seqcount_begin(&devnet_rename_seq); 1252 memcpy(dev->name, oldname, IFNAMSIZ); 1253 memcpy(oldname, newname, IFNAMSIZ); 1254 dev->name_assign_type = old_assign_type; 1255 old_assign_type = NET_NAME_RENAMED; 1256 goto rollback; 1257 } else { 1258 pr_err("%s: name change rollback failed: %d\n", 1259 dev->name, ret); 1260 } 1261 } 1262 1263 return err; 1264 } 1265 1266 /** 1267 * dev_set_alias - change ifalias of a device 1268 * @dev: device 1269 * @alias: name up to IFALIASZ 1270 * @len: limit of bytes to copy from info 1271 * 1272 * Set ifalias for a device, 1273 */ 1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1275 { 1276 struct dev_ifalias *new_alias = NULL; 1277 1278 if (len >= IFALIASZ) 1279 return -EINVAL; 1280 1281 if (len) { 1282 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1283 if (!new_alias) 1284 return -ENOMEM; 1285 1286 memcpy(new_alias->ifalias, alias, len); 1287 new_alias->ifalias[len] = 0; 1288 } 1289 1290 mutex_lock(&ifalias_mutex); 1291 rcu_swap_protected(dev->ifalias, new_alias, 1292 mutex_is_locked(&ifalias_mutex)); 1293 mutex_unlock(&ifalias_mutex); 1294 1295 if (new_alias) 1296 kfree_rcu(new_alias, rcuhead); 1297 1298 return len; 1299 } 1300 EXPORT_SYMBOL(dev_set_alias); 1301 1302 /** 1303 * dev_get_alias - get ifalias of a device 1304 * @dev: device 1305 * @name: buffer to store name of ifalias 1306 * @len: size of buffer 1307 * 1308 * get ifalias for a device. Caller must make sure dev cannot go 1309 * away, e.g. rcu read lock or own a reference count to device. 1310 */ 1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1312 { 1313 const struct dev_ifalias *alias; 1314 int ret = 0; 1315 1316 rcu_read_lock(); 1317 alias = rcu_dereference(dev->ifalias); 1318 if (alias) 1319 ret = snprintf(name, len, "%s", alias->ifalias); 1320 rcu_read_unlock(); 1321 1322 return ret; 1323 } 1324 1325 /** 1326 * netdev_features_change - device changes features 1327 * @dev: device to cause notification 1328 * 1329 * Called to indicate a device has changed features. 1330 */ 1331 void netdev_features_change(struct net_device *dev) 1332 { 1333 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1334 } 1335 EXPORT_SYMBOL(netdev_features_change); 1336 1337 /** 1338 * netdev_state_change - device changes state 1339 * @dev: device to cause notification 1340 * 1341 * Called to indicate a device has changed state. This function calls 1342 * the notifier chains for netdev_chain and sends a NEWLINK message 1343 * to the routing socket. 1344 */ 1345 void netdev_state_change(struct net_device *dev) 1346 { 1347 if (dev->flags & IFF_UP) { 1348 struct netdev_notifier_change_info change_info = { 1349 .info.dev = dev, 1350 }; 1351 1352 call_netdevice_notifiers_info(NETDEV_CHANGE, 1353 &change_info.info); 1354 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1355 } 1356 } 1357 EXPORT_SYMBOL(netdev_state_change); 1358 1359 /** 1360 * netdev_notify_peers - notify network peers about existence of @dev 1361 * @dev: network device 1362 * 1363 * Generate traffic such that interested network peers are aware of 1364 * @dev, such as by generating a gratuitous ARP. This may be used when 1365 * a device wants to inform the rest of the network about some sort of 1366 * reconfiguration such as a failover event or virtual machine 1367 * migration. 1368 */ 1369 void netdev_notify_peers(struct net_device *dev) 1370 { 1371 rtnl_lock(); 1372 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1373 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1374 rtnl_unlock(); 1375 } 1376 EXPORT_SYMBOL(netdev_notify_peers); 1377 1378 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1379 { 1380 const struct net_device_ops *ops = dev->netdev_ops; 1381 int ret; 1382 1383 ASSERT_RTNL(); 1384 1385 if (!netif_device_present(dev)) 1386 return -ENODEV; 1387 1388 /* Block netpoll from trying to do any rx path servicing. 1389 * If we don't do this there is a chance ndo_poll_controller 1390 * or ndo_poll may be running while we open the device 1391 */ 1392 netpoll_poll_disable(dev); 1393 1394 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1395 ret = notifier_to_errno(ret); 1396 if (ret) 1397 return ret; 1398 1399 set_bit(__LINK_STATE_START, &dev->state); 1400 1401 if (ops->ndo_validate_addr) 1402 ret = ops->ndo_validate_addr(dev); 1403 1404 if (!ret && ops->ndo_open) 1405 ret = ops->ndo_open(dev); 1406 1407 netpoll_poll_enable(dev); 1408 1409 if (ret) 1410 clear_bit(__LINK_STATE_START, &dev->state); 1411 else { 1412 dev->flags |= IFF_UP; 1413 dev_set_rx_mode(dev); 1414 dev_activate(dev); 1415 add_device_randomness(dev->dev_addr, dev->addr_len); 1416 } 1417 1418 return ret; 1419 } 1420 1421 /** 1422 * dev_open - prepare an interface for use. 1423 * @dev: device to open 1424 * @extack: netlink extended ack 1425 * 1426 * Takes a device from down to up state. The device's private open 1427 * function is invoked and then the multicast lists are loaded. Finally 1428 * the device is moved into the up state and a %NETDEV_UP message is 1429 * sent to the netdev notifier chain. 1430 * 1431 * Calling this function on an active interface is a nop. On a failure 1432 * a negative errno code is returned. 1433 */ 1434 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1435 { 1436 int ret; 1437 1438 if (dev->flags & IFF_UP) 1439 return 0; 1440 1441 ret = __dev_open(dev, extack); 1442 if (ret < 0) 1443 return ret; 1444 1445 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1446 call_netdevice_notifiers(NETDEV_UP, dev); 1447 1448 return ret; 1449 } 1450 EXPORT_SYMBOL(dev_open); 1451 1452 static void __dev_close_many(struct list_head *head) 1453 { 1454 struct net_device *dev; 1455 1456 ASSERT_RTNL(); 1457 might_sleep(); 1458 1459 list_for_each_entry(dev, head, close_list) { 1460 /* Temporarily disable netpoll until the interface is down */ 1461 netpoll_poll_disable(dev); 1462 1463 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1464 1465 clear_bit(__LINK_STATE_START, &dev->state); 1466 1467 /* Synchronize to scheduled poll. We cannot touch poll list, it 1468 * can be even on different cpu. So just clear netif_running(). 1469 * 1470 * dev->stop() will invoke napi_disable() on all of it's 1471 * napi_struct instances on this device. 1472 */ 1473 smp_mb__after_atomic(); /* Commit netif_running(). */ 1474 } 1475 1476 dev_deactivate_many(head); 1477 1478 list_for_each_entry(dev, head, close_list) { 1479 const struct net_device_ops *ops = dev->netdev_ops; 1480 1481 /* 1482 * Call the device specific close. This cannot fail. 1483 * Only if device is UP 1484 * 1485 * We allow it to be called even after a DETACH hot-plug 1486 * event. 1487 */ 1488 if (ops->ndo_stop) 1489 ops->ndo_stop(dev); 1490 1491 dev->flags &= ~IFF_UP; 1492 netpoll_poll_enable(dev); 1493 } 1494 } 1495 1496 static void __dev_close(struct net_device *dev) 1497 { 1498 LIST_HEAD(single); 1499 1500 list_add(&dev->close_list, &single); 1501 __dev_close_many(&single); 1502 list_del(&single); 1503 } 1504 1505 void dev_close_many(struct list_head *head, bool unlink) 1506 { 1507 struct net_device *dev, *tmp; 1508 1509 /* Remove the devices that don't need to be closed */ 1510 list_for_each_entry_safe(dev, tmp, head, close_list) 1511 if (!(dev->flags & IFF_UP)) 1512 list_del_init(&dev->close_list); 1513 1514 __dev_close_many(head); 1515 1516 list_for_each_entry_safe(dev, tmp, head, close_list) { 1517 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1518 call_netdevice_notifiers(NETDEV_DOWN, dev); 1519 if (unlink) 1520 list_del_init(&dev->close_list); 1521 } 1522 } 1523 EXPORT_SYMBOL(dev_close_many); 1524 1525 /** 1526 * dev_close - shutdown an interface. 1527 * @dev: device to shutdown 1528 * 1529 * This function moves an active device into down state. A 1530 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1531 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1532 * chain. 1533 */ 1534 void dev_close(struct net_device *dev) 1535 { 1536 if (dev->flags & IFF_UP) { 1537 LIST_HEAD(single); 1538 1539 list_add(&dev->close_list, &single); 1540 dev_close_many(&single, true); 1541 list_del(&single); 1542 } 1543 } 1544 EXPORT_SYMBOL(dev_close); 1545 1546 1547 /** 1548 * dev_disable_lro - disable Large Receive Offload on a device 1549 * @dev: device 1550 * 1551 * Disable Large Receive Offload (LRO) on a net device. Must be 1552 * called under RTNL. This is needed if received packets may be 1553 * forwarded to another interface. 1554 */ 1555 void dev_disable_lro(struct net_device *dev) 1556 { 1557 struct net_device *lower_dev; 1558 struct list_head *iter; 1559 1560 dev->wanted_features &= ~NETIF_F_LRO; 1561 netdev_update_features(dev); 1562 1563 if (unlikely(dev->features & NETIF_F_LRO)) 1564 netdev_WARN(dev, "failed to disable LRO!\n"); 1565 1566 netdev_for_each_lower_dev(dev, lower_dev, iter) 1567 dev_disable_lro(lower_dev); 1568 } 1569 EXPORT_SYMBOL(dev_disable_lro); 1570 1571 /** 1572 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1573 * @dev: device 1574 * 1575 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1576 * called under RTNL. This is needed if Generic XDP is installed on 1577 * the device. 1578 */ 1579 static void dev_disable_gro_hw(struct net_device *dev) 1580 { 1581 dev->wanted_features &= ~NETIF_F_GRO_HW; 1582 netdev_update_features(dev); 1583 1584 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1585 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1586 } 1587 1588 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1589 { 1590 #define N(val) \ 1591 case NETDEV_##val: \ 1592 return "NETDEV_" __stringify(val); 1593 switch (cmd) { 1594 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1595 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1596 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1597 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1598 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1599 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1600 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1601 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1602 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1603 N(PRE_CHANGEADDR) 1604 } 1605 #undef N 1606 return "UNKNOWN_NETDEV_EVENT"; 1607 } 1608 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1609 1610 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1611 struct net_device *dev) 1612 { 1613 struct netdev_notifier_info info = { 1614 .dev = dev, 1615 }; 1616 1617 return nb->notifier_call(nb, val, &info); 1618 } 1619 1620 static int dev_boot_phase = 1; 1621 1622 /** 1623 * register_netdevice_notifier - register a network notifier block 1624 * @nb: notifier 1625 * 1626 * Register a notifier to be called when network device events occur. 1627 * The notifier passed is linked into the kernel structures and must 1628 * not be reused until it has been unregistered. A negative errno code 1629 * is returned on a failure. 1630 * 1631 * When registered all registration and up events are replayed 1632 * to the new notifier to allow device to have a race free 1633 * view of the network device list. 1634 */ 1635 1636 int register_netdevice_notifier(struct notifier_block *nb) 1637 { 1638 struct net_device *dev; 1639 struct net_device *last; 1640 struct net *net; 1641 int err; 1642 1643 /* Close race with setup_net() and cleanup_net() */ 1644 down_write(&pernet_ops_rwsem); 1645 rtnl_lock(); 1646 err = raw_notifier_chain_register(&netdev_chain, nb); 1647 if (err) 1648 goto unlock; 1649 if (dev_boot_phase) 1650 goto unlock; 1651 for_each_net(net) { 1652 for_each_netdev(net, dev) { 1653 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1654 err = notifier_to_errno(err); 1655 if (err) 1656 goto rollback; 1657 1658 if (!(dev->flags & IFF_UP)) 1659 continue; 1660 1661 call_netdevice_notifier(nb, NETDEV_UP, dev); 1662 } 1663 } 1664 1665 unlock: 1666 rtnl_unlock(); 1667 up_write(&pernet_ops_rwsem); 1668 return err; 1669 1670 rollback: 1671 last = dev; 1672 for_each_net(net) { 1673 for_each_netdev(net, dev) { 1674 if (dev == last) 1675 goto outroll; 1676 1677 if (dev->flags & IFF_UP) { 1678 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1679 dev); 1680 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1681 } 1682 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1683 } 1684 } 1685 1686 outroll: 1687 raw_notifier_chain_unregister(&netdev_chain, nb); 1688 goto unlock; 1689 } 1690 EXPORT_SYMBOL(register_netdevice_notifier); 1691 1692 /** 1693 * unregister_netdevice_notifier - unregister a network notifier block 1694 * @nb: notifier 1695 * 1696 * Unregister a notifier previously registered by 1697 * register_netdevice_notifier(). The notifier is unlinked into the 1698 * kernel structures and may then be reused. A negative errno code 1699 * is returned on a failure. 1700 * 1701 * After unregistering unregister and down device events are synthesized 1702 * for all devices on the device list to the removed notifier to remove 1703 * the need for special case cleanup code. 1704 */ 1705 1706 int unregister_netdevice_notifier(struct notifier_block *nb) 1707 { 1708 struct net_device *dev; 1709 struct net *net; 1710 int err; 1711 1712 /* Close race with setup_net() and cleanup_net() */ 1713 down_write(&pernet_ops_rwsem); 1714 rtnl_lock(); 1715 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1716 if (err) 1717 goto unlock; 1718 1719 for_each_net(net) { 1720 for_each_netdev(net, dev) { 1721 if (dev->flags & IFF_UP) { 1722 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1723 dev); 1724 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1725 } 1726 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1727 } 1728 } 1729 unlock: 1730 rtnl_unlock(); 1731 up_write(&pernet_ops_rwsem); 1732 return err; 1733 } 1734 EXPORT_SYMBOL(unregister_netdevice_notifier); 1735 1736 /** 1737 * call_netdevice_notifiers_info - call all network notifier blocks 1738 * @val: value passed unmodified to notifier function 1739 * @info: notifier information data 1740 * 1741 * Call all network notifier blocks. Parameters and return value 1742 * are as for raw_notifier_call_chain(). 1743 */ 1744 1745 static int call_netdevice_notifiers_info(unsigned long val, 1746 struct netdev_notifier_info *info) 1747 { 1748 ASSERT_RTNL(); 1749 return raw_notifier_call_chain(&netdev_chain, val, info); 1750 } 1751 1752 static int call_netdevice_notifiers_extack(unsigned long val, 1753 struct net_device *dev, 1754 struct netlink_ext_ack *extack) 1755 { 1756 struct netdev_notifier_info info = { 1757 .dev = dev, 1758 .extack = extack, 1759 }; 1760 1761 return call_netdevice_notifiers_info(val, &info); 1762 } 1763 1764 /** 1765 * call_netdevice_notifiers - call all network notifier blocks 1766 * @val: value passed unmodified to notifier function 1767 * @dev: net_device pointer passed unmodified to notifier function 1768 * 1769 * Call all network notifier blocks. Parameters and return value 1770 * are as for raw_notifier_call_chain(). 1771 */ 1772 1773 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1774 { 1775 return call_netdevice_notifiers_extack(val, dev, NULL); 1776 } 1777 EXPORT_SYMBOL(call_netdevice_notifiers); 1778 1779 /** 1780 * call_netdevice_notifiers_mtu - call all network notifier blocks 1781 * @val: value passed unmodified to notifier function 1782 * @dev: net_device pointer passed unmodified to notifier function 1783 * @arg: additional u32 argument passed to the notifier function 1784 * 1785 * Call all network notifier blocks. Parameters and return value 1786 * are as for raw_notifier_call_chain(). 1787 */ 1788 static int call_netdevice_notifiers_mtu(unsigned long val, 1789 struct net_device *dev, u32 arg) 1790 { 1791 struct netdev_notifier_info_ext info = { 1792 .info.dev = dev, 1793 .ext.mtu = arg, 1794 }; 1795 1796 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1797 1798 return call_netdevice_notifiers_info(val, &info.info); 1799 } 1800 1801 #ifdef CONFIG_NET_INGRESS 1802 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1803 1804 void net_inc_ingress_queue(void) 1805 { 1806 static_branch_inc(&ingress_needed_key); 1807 } 1808 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1809 1810 void net_dec_ingress_queue(void) 1811 { 1812 static_branch_dec(&ingress_needed_key); 1813 } 1814 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1815 #endif 1816 1817 #ifdef CONFIG_NET_EGRESS 1818 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1819 1820 void net_inc_egress_queue(void) 1821 { 1822 static_branch_inc(&egress_needed_key); 1823 } 1824 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1825 1826 void net_dec_egress_queue(void) 1827 { 1828 static_branch_dec(&egress_needed_key); 1829 } 1830 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1831 #endif 1832 1833 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1834 #ifdef CONFIG_JUMP_LABEL 1835 static atomic_t netstamp_needed_deferred; 1836 static atomic_t netstamp_wanted; 1837 static void netstamp_clear(struct work_struct *work) 1838 { 1839 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1840 int wanted; 1841 1842 wanted = atomic_add_return(deferred, &netstamp_wanted); 1843 if (wanted > 0) 1844 static_branch_enable(&netstamp_needed_key); 1845 else 1846 static_branch_disable(&netstamp_needed_key); 1847 } 1848 static DECLARE_WORK(netstamp_work, netstamp_clear); 1849 #endif 1850 1851 void net_enable_timestamp(void) 1852 { 1853 #ifdef CONFIG_JUMP_LABEL 1854 int wanted; 1855 1856 while (1) { 1857 wanted = atomic_read(&netstamp_wanted); 1858 if (wanted <= 0) 1859 break; 1860 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1861 return; 1862 } 1863 atomic_inc(&netstamp_needed_deferred); 1864 schedule_work(&netstamp_work); 1865 #else 1866 static_branch_inc(&netstamp_needed_key); 1867 #endif 1868 } 1869 EXPORT_SYMBOL(net_enable_timestamp); 1870 1871 void net_disable_timestamp(void) 1872 { 1873 #ifdef CONFIG_JUMP_LABEL 1874 int wanted; 1875 1876 while (1) { 1877 wanted = atomic_read(&netstamp_wanted); 1878 if (wanted <= 1) 1879 break; 1880 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1881 return; 1882 } 1883 atomic_dec(&netstamp_needed_deferred); 1884 schedule_work(&netstamp_work); 1885 #else 1886 static_branch_dec(&netstamp_needed_key); 1887 #endif 1888 } 1889 EXPORT_SYMBOL(net_disable_timestamp); 1890 1891 static inline void net_timestamp_set(struct sk_buff *skb) 1892 { 1893 skb->tstamp = 0; 1894 if (static_branch_unlikely(&netstamp_needed_key)) 1895 __net_timestamp(skb); 1896 } 1897 1898 #define net_timestamp_check(COND, SKB) \ 1899 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1900 if ((COND) && !(SKB)->tstamp) \ 1901 __net_timestamp(SKB); \ 1902 } \ 1903 1904 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1905 { 1906 unsigned int len; 1907 1908 if (!(dev->flags & IFF_UP)) 1909 return false; 1910 1911 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1912 if (skb->len <= len) 1913 return true; 1914 1915 /* if TSO is enabled, we don't care about the length as the packet 1916 * could be forwarded without being segmented before 1917 */ 1918 if (skb_is_gso(skb)) 1919 return true; 1920 1921 return false; 1922 } 1923 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1924 1925 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1926 { 1927 int ret = ____dev_forward_skb(dev, skb); 1928 1929 if (likely(!ret)) { 1930 skb->protocol = eth_type_trans(skb, dev); 1931 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1932 } 1933 1934 return ret; 1935 } 1936 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1937 1938 /** 1939 * dev_forward_skb - loopback an skb to another netif 1940 * 1941 * @dev: destination network device 1942 * @skb: buffer to forward 1943 * 1944 * return values: 1945 * NET_RX_SUCCESS (no congestion) 1946 * NET_RX_DROP (packet was dropped, but freed) 1947 * 1948 * dev_forward_skb can be used for injecting an skb from the 1949 * start_xmit function of one device into the receive queue 1950 * of another device. 1951 * 1952 * The receiving device may be in another namespace, so 1953 * we have to clear all information in the skb that could 1954 * impact namespace isolation. 1955 */ 1956 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1957 { 1958 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1959 } 1960 EXPORT_SYMBOL_GPL(dev_forward_skb); 1961 1962 static inline int deliver_skb(struct sk_buff *skb, 1963 struct packet_type *pt_prev, 1964 struct net_device *orig_dev) 1965 { 1966 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1967 return -ENOMEM; 1968 refcount_inc(&skb->users); 1969 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1970 } 1971 1972 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1973 struct packet_type **pt, 1974 struct net_device *orig_dev, 1975 __be16 type, 1976 struct list_head *ptype_list) 1977 { 1978 struct packet_type *ptype, *pt_prev = *pt; 1979 1980 list_for_each_entry_rcu(ptype, ptype_list, list) { 1981 if (ptype->type != type) 1982 continue; 1983 if (pt_prev) 1984 deliver_skb(skb, pt_prev, orig_dev); 1985 pt_prev = ptype; 1986 } 1987 *pt = pt_prev; 1988 } 1989 1990 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1991 { 1992 if (!ptype->af_packet_priv || !skb->sk) 1993 return false; 1994 1995 if (ptype->id_match) 1996 return ptype->id_match(ptype, skb->sk); 1997 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1998 return true; 1999 2000 return false; 2001 } 2002 2003 /** 2004 * dev_nit_active - return true if any network interface taps are in use 2005 * 2006 * @dev: network device to check for the presence of taps 2007 */ 2008 bool dev_nit_active(struct net_device *dev) 2009 { 2010 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2011 } 2012 EXPORT_SYMBOL_GPL(dev_nit_active); 2013 2014 /* 2015 * Support routine. Sends outgoing frames to any network 2016 * taps currently in use. 2017 */ 2018 2019 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2020 { 2021 struct packet_type *ptype; 2022 struct sk_buff *skb2 = NULL; 2023 struct packet_type *pt_prev = NULL; 2024 struct list_head *ptype_list = &ptype_all; 2025 2026 rcu_read_lock(); 2027 again: 2028 list_for_each_entry_rcu(ptype, ptype_list, list) { 2029 if (ptype->ignore_outgoing) 2030 continue; 2031 2032 /* Never send packets back to the socket 2033 * they originated from - MvS (miquels@drinkel.ow.org) 2034 */ 2035 if (skb_loop_sk(ptype, skb)) 2036 continue; 2037 2038 if (pt_prev) { 2039 deliver_skb(skb2, pt_prev, skb->dev); 2040 pt_prev = ptype; 2041 continue; 2042 } 2043 2044 /* need to clone skb, done only once */ 2045 skb2 = skb_clone(skb, GFP_ATOMIC); 2046 if (!skb2) 2047 goto out_unlock; 2048 2049 net_timestamp_set(skb2); 2050 2051 /* skb->nh should be correctly 2052 * set by sender, so that the second statement is 2053 * just protection against buggy protocols. 2054 */ 2055 skb_reset_mac_header(skb2); 2056 2057 if (skb_network_header(skb2) < skb2->data || 2058 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2059 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2060 ntohs(skb2->protocol), 2061 dev->name); 2062 skb_reset_network_header(skb2); 2063 } 2064 2065 skb2->transport_header = skb2->network_header; 2066 skb2->pkt_type = PACKET_OUTGOING; 2067 pt_prev = ptype; 2068 } 2069 2070 if (ptype_list == &ptype_all) { 2071 ptype_list = &dev->ptype_all; 2072 goto again; 2073 } 2074 out_unlock: 2075 if (pt_prev) { 2076 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2077 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2078 else 2079 kfree_skb(skb2); 2080 } 2081 rcu_read_unlock(); 2082 } 2083 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2084 2085 /** 2086 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2087 * @dev: Network device 2088 * @txq: number of queues available 2089 * 2090 * If real_num_tx_queues is changed the tc mappings may no longer be 2091 * valid. To resolve this verify the tc mapping remains valid and if 2092 * not NULL the mapping. With no priorities mapping to this 2093 * offset/count pair it will no longer be used. In the worst case TC0 2094 * is invalid nothing can be done so disable priority mappings. If is 2095 * expected that drivers will fix this mapping if they can before 2096 * calling netif_set_real_num_tx_queues. 2097 */ 2098 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2099 { 2100 int i; 2101 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2102 2103 /* If TC0 is invalidated disable TC mapping */ 2104 if (tc->offset + tc->count > txq) { 2105 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2106 dev->num_tc = 0; 2107 return; 2108 } 2109 2110 /* Invalidated prio to tc mappings set to TC0 */ 2111 for (i = 1; i < TC_BITMASK + 1; i++) { 2112 int q = netdev_get_prio_tc_map(dev, i); 2113 2114 tc = &dev->tc_to_txq[q]; 2115 if (tc->offset + tc->count > txq) { 2116 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2117 i, q); 2118 netdev_set_prio_tc_map(dev, i, 0); 2119 } 2120 } 2121 } 2122 2123 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2124 { 2125 if (dev->num_tc) { 2126 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2127 int i; 2128 2129 /* walk through the TCs and see if it falls into any of them */ 2130 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2131 if ((txq - tc->offset) < tc->count) 2132 return i; 2133 } 2134 2135 /* didn't find it, just return -1 to indicate no match */ 2136 return -1; 2137 } 2138 2139 return 0; 2140 } 2141 EXPORT_SYMBOL(netdev_txq_to_tc); 2142 2143 #ifdef CONFIG_XPS 2144 struct static_key xps_needed __read_mostly; 2145 EXPORT_SYMBOL(xps_needed); 2146 struct static_key xps_rxqs_needed __read_mostly; 2147 EXPORT_SYMBOL(xps_rxqs_needed); 2148 static DEFINE_MUTEX(xps_map_mutex); 2149 #define xmap_dereference(P) \ 2150 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2151 2152 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2153 int tci, u16 index) 2154 { 2155 struct xps_map *map = NULL; 2156 int pos; 2157 2158 if (dev_maps) 2159 map = xmap_dereference(dev_maps->attr_map[tci]); 2160 if (!map) 2161 return false; 2162 2163 for (pos = map->len; pos--;) { 2164 if (map->queues[pos] != index) 2165 continue; 2166 2167 if (map->len > 1) { 2168 map->queues[pos] = map->queues[--map->len]; 2169 break; 2170 } 2171 2172 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2173 kfree_rcu(map, rcu); 2174 return false; 2175 } 2176 2177 return true; 2178 } 2179 2180 static bool remove_xps_queue_cpu(struct net_device *dev, 2181 struct xps_dev_maps *dev_maps, 2182 int cpu, u16 offset, u16 count) 2183 { 2184 int num_tc = dev->num_tc ? : 1; 2185 bool active = false; 2186 int tci; 2187 2188 for (tci = cpu * num_tc; num_tc--; tci++) { 2189 int i, j; 2190 2191 for (i = count, j = offset; i--; j++) { 2192 if (!remove_xps_queue(dev_maps, tci, j)) 2193 break; 2194 } 2195 2196 active |= i < 0; 2197 } 2198 2199 return active; 2200 } 2201 2202 static void reset_xps_maps(struct net_device *dev, 2203 struct xps_dev_maps *dev_maps, 2204 bool is_rxqs_map) 2205 { 2206 if (is_rxqs_map) { 2207 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2208 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2209 } else { 2210 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2211 } 2212 static_key_slow_dec_cpuslocked(&xps_needed); 2213 kfree_rcu(dev_maps, rcu); 2214 } 2215 2216 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2217 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2218 u16 offset, u16 count, bool is_rxqs_map) 2219 { 2220 bool active = false; 2221 int i, j; 2222 2223 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2224 j < nr_ids;) 2225 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2226 count); 2227 if (!active) 2228 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2229 2230 if (!is_rxqs_map) { 2231 for (i = offset + (count - 1); count--; i--) { 2232 netdev_queue_numa_node_write( 2233 netdev_get_tx_queue(dev, i), 2234 NUMA_NO_NODE); 2235 } 2236 } 2237 } 2238 2239 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2240 u16 count) 2241 { 2242 const unsigned long *possible_mask = NULL; 2243 struct xps_dev_maps *dev_maps; 2244 unsigned int nr_ids; 2245 2246 if (!static_key_false(&xps_needed)) 2247 return; 2248 2249 cpus_read_lock(); 2250 mutex_lock(&xps_map_mutex); 2251 2252 if (static_key_false(&xps_rxqs_needed)) { 2253 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2254 if (dev_maps) { 2255 nr_ids = dev->num_rx_queues; 2256 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2257 offset, count, true); 2258 } 2259 } 2260 2261 dev_maps = xmap_dereference(dev->xps_cpus_map); 2262 if (!dev_maps) 2263 goto out_no_maps; 2264 2265 if (num_possible_cpus() > 1) 2266 possible_mask = cpumask_bits(cpu_possible_mask); 2267 nr_ids = nr_cpu_ids; 2268 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2269 false); 2270 2271 out_no_maps: 2272 mutex_unlock(&xps_map_mutex); 2273 cpus_read_unlock(); 2274 } 2275 2276 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2277 { 2278 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2279 } 2280 2281 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2282 u16 index, bool is_rxqs_map) 2283 { 2284 struct xps_map *new_map; 2285 int alloc_len = XPS_MIN_MAP_ALLOC; 2286 int i, pos; 2287 2288 for (pos = 0; map && pos < map->len; pos++) { 2289 if (map->queues[pos] != index) 2290 continue; 2291 return map; 2292 } 2293 2294 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2295 if (map) { 2296 if (pos < map->alloc_len) 2297 return map; 2298 2299 alloc_len = map->alloc_len * 2; 2300 } 2301 2302 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2303 * map 2304 */ 2305 if (is_rxqs_map) 2306 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2307 else 2308 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2309 cpu_to_node(attr_index)); 2310 if (!new_map) 2311 return NULL; 2312 2313 for (i = 0; i < pos; i++) 2314 new_map->queues[i] = map->queues[i]; 2315 new_map->alloc_len = alloc_len; 2316 new_map->len = pos; 2317 2318 return new_map; 2319 } 2320 2321 /* Must be called under cpus_read_lock */ 2322 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2323 u16 index, bool is_rxqs_map) 2324 { 2325 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2326 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2327 int i, j, tci, numa_node_id = -2; 2328 int maps_sz, num_tc = 1, tc = 0; 2329 struct xps_map *map, *new_map; 2330 bool active = false; 2331 unsigned int nr_ids; 2332 2333 if (dev->num_tc) { 2334 /* Do not allow XPS on subordinate device directly */ 2335 num_tc = dev->num_tc; 2336 if (num_tc < 0) 2337 return -EINVAL; 2338 2339 /* If queue belongs to subordinate dev use its map */ 2340 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2341 2342 tc = netdev_txq_to_tc(dev, index); 2343 if (tc < 0) 2344 return -EINVAL; 2345 } 2346 2347 mutex_lock(&xps_map_mutex); 2348 if (is_rxqs_map) { 2349 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2350 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2351 nr_ids = dev->num_rx_queues; 2352 } else { 2353 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2354 if (num_possible_cpus() > 1) { 2355 online_mask = cpumask_bits(cpu_online_mask); 2356 possible_mask = cpumask_bits(cpu_possible_mask); 2357 } 2358 dev_maps = xmap_dereference(dev->xps_cpus_map); 2359 nr_ids = nr_cpu_ids; 2360 } 2361 2362 if (maps_sz < L1_CACHE_BYTES) 2363 maps_sz = L1_CACHE_BYTES; 2364 2365 /* allocate memory for queue storage */ 2366 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2367 j < nr_ids;) { 2368 if (!new_dev_maps) 2369 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2370 if (!new_dev_maps) { 2371 mutex_unlock(&xps_map_mutex); 2372 return -ENOMEM; 2373 } 2374 2375 tci = j * num_tc + tc; 2376 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2377 NULL; 2378 2379 map = expand_xps_map(map, j, index, is_rxqs_map); 2380 if (!map) 2381 goto error; 2382 2383 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2384 } 2385 2386 if (!new_dev_maps) 2387 goto out_no_new_maps; 2388 2389 if (!dev_maps) { 2390 /* Increment static keys at most once per type */ 2391 static_key_slow_inc_cpuslocked(&xps_needed); 2392 if (is_rxqs_map) 2393 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2394 } 2395 2396 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2397 j < nr_ids;) { 2398 /* copy maps belonging to foreign traffic classes */ 2399 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2400 /* fill in the new device map from the old device map */ 2401 map = xmap_dereference(dev_maps->attr_map[tci]); 2402 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2403 } 2404 2405 /* We need to explicitly update tci as prevous loop 2406 * could break out early if dev_maps is NULL. 2407 */ 2408 tci = j * num_tc + tc; 2409 2410 if (netif_attr_test_mask(j, mask, nr_ids) && 2411 netif_attr_test_online(j, online_mask, nr_ids)) { 2412 /* add tx-queue to CPU/rx-queue maps */ 2413 int pos = 0; 2414 2415 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2416 while ((pos < map->len) && (map->queues[pos] != index)) 2417 pos++; 2418 2419 if (pos == map->len) 2420 map->queues[map->len++] = index; 2421 #ifdef CONFIG_NUMA 2422 if (!is_rxqs_map) { 2423 if (numa_node_id == -2) 2424 numa_node_id = cpu_to_node(j); 2425 else if (numa_node_id != cpu_to_node(j)) 2426 numa_node_id = -1; 2427 } 2428 #endif 2429 } else if (dev_maps) { 2430 /* fill in the new device map from the old device map */ 2431 map = xmap_dereference(dev_maps->attr_map[tci]); 2432 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2433 } 2434 2435 /* copy maps belonging to foreign traffic classes */ 2436 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2437 /* fill in the new device map from the old device map */ 2438 map = xmap_dereference(dev_maps->attr_map[tci]); 2439 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2440 } 2441 } 2442 2443 if (is_rxqs_map) 2444 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2445 else 2446 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2447 2448 /* Cleanup old maps */ 2449 if (!dev_maps) 2450 goto out_no_old_maps; 2451 2452 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2453 j < nr_ids;) { 2454 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2455 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2456 map = xmap_dereference(dev_maps->attr_map[tci]); 2457 if (map && map != new_map) 2458 kfree_rcu(map, rcu); 2459 } 2460 } 2461 2462 kfree_rcu(dev_maps, rcu); 2463 2464 out_no_old_maps: 2465 dev_maps = new_dev_maps; 2466 active = true; 2467 2468 out_no_new_maps: 2469 if (!is_rxqs_map) { 2470 /* update Tx queue numa node */ 2471 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2472 (numa_node_id >= 0) ? 2473 numa_node_id : NUMA_NO_NODE); 2474 } 2475 2476 if (!dev_maps) 2477 goto out_no_maps; 2478 2479 /* removes tx-queue from unused CPUs/rx-queues */ 2480 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2481 j < nr_ids;) { 2482 for (i = tc, tci = j * num_tc; i--; tci++) 2483 active |= remove_xps_queue(dev_maps, tci, index); 2484 if (!netif_attr_test_mask(j, mask, nr_ids) || 2485 !netif_attr_test_online(j, online_mask, nr_ids)) 2486 active |= remove_xps_queue(dev_maps, tci, index); 2487 for (i = num_tc - tc, tci++; --i; tci++) 2488 active |= remove_xps_queue(dev_maps, tci, index); 2489 } 2490 2491 /* free map if not active */ 2492 if (!active) 2493 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2494 2495 out_no_maps: 2496 mutex_unlock(&xps_map_mutex); 2497 2498 return 0; 2499 error: 2500 /* remove any maps that we added */ 2501 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2502 j < nr_ids;) { 2503 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2504 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2505 map = dev_maps ? 2506 xmap_dereference(dev_maps->attr_map[tci]) : 2507 NULL; 2508 if (new_map && new_map != map) 2509 kfree(new_map); 2510 } 2511 } 2512 2513 mutex_unlock(&xps_map_mutex); 2514 2515 kfree(new_dev_maps); 2516 return -ENOMEM; 2517 } 2518 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2519 2520 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2521 u16 index) 2522 { 2523 int ret; 2524 2525 cpus_read_lock(); 2526 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2527 cpus_read_unlock(); 2528 2529 return ret; 2530 } 2531 EXPORT_SYMBOL(netif_set_xps_queue); 2532 2533 #endif 2534 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2535 { 2536 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2537 2538 /* Unbind any subordinate channels */ 2539 while (txq-- != &dev->_tx[0]) { 2540 if (txq->sb_dev) 2541 netdev_unbind_sb_channel(dev, txq->sb_dev); 2542 } 2543 } 2544 2545 void netdev_reset_tc(struct net_device *dev) 2546 { 2547 #ifdef CONFIG_XPS 2548 netif_reset_xps_queues_gt(dev, 0); 2549 #endif 2550 netdev_unbind_all_sb_channels(dev); 2551 2552 /* Reset TC configuration of device */ 2553 dev->num_tc = 0; 2554 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2555 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2556 } 2557 EXPORT_SYMBOL(netdev_reset_tc); 2558 2559 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2560 { 2561 if (tc >= dev->num_tc) 2562 return -EINVAL; 2563 2564 #ifdef CONFIG_XPS 2565 netif_reset_xps_queues(dev, offset, count); 2566 #endif 2567 dev->tc_to_txq[tc].count = count; 2568 dev->tc_to_txq[tc].offset = offset; 2569 return 0; 2570 } 2571 EXPORT_SYMBOL(netdev_set_tc_queue); 2572 2573 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2574 { 2575 if (num_tc > TC_MAX_QUEUE) 2576 return -EINVAL; 2577 2578 #ifdef CONFIG_XPS 2579 netif_reset_xps_queues_gt(dev, 0); 2580 #endif 2581 netdev_unbind_all_sb_channels(dev); 2582 2583 dev->num_tc = num_tc; 2584 return 0; 2585 } 2586 EXPORT_SYMBOL(netdev_set_num_tc); 2587 2588 void netdev_unbind_sb_channel(struct net_device *dev, 2589 struct net_device *sb_dev) 2590 { 2591 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2592 2593 #ifdef CONFIG_XPS 2594 netif_reset_xps_queues_gt(sb_dev, 0); 2595 #endif 2596 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2597 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2598 2599 while (txq-- != &dev->_tx[0]) { 2600 if (txq->sb_dev == sb_dev) 2601 txq->sb_dev = NULL; 2602 } 2603 } 2604 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2605 2606 int netdev_bind_sb_channel_queue(struct net_device *dev, 2607 struct net_device *sb_dev, 2608 u8 tc, u16 count, u16 offset) 2609 { 2610 /* Make certain the sb_dev and dev are already configured */ 2611 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2612 return -EINVAL; 2613 2614 /* We cannot hand out queues we don't have */ 2615 if ((offset + count) > dev->real_num_tx_queues) 2616 return -EINVAL; 2617 2618 /* Record the mapping */ 2619 sb_dev->tc_to_txq[tc].count = count; 2620 sb_dev->tc_to_txq[tc].offset = offset; 2621 2622 /* Provide a way for Tx queue to find the tc_to_txq map or 2623 * XPS map for itself. 2624 */ 2625 while (count--) 2626 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2627 2628 return 0; 2629 } 2630 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2631 2632 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2633 { 2634 /* Do not use a multiqueue device to represent a subordinate channel */ 2635 if (netif_is_multiqueue(dev)) 2636 return -ENODEV; 2637 2638 /* We allow channels 1 - 32767 to be used for subordinate channels. 2639 * Channel 0 is meant to be "native" mode and used only to represent 2640 * the main root device. We allow writing 0 to reset the device back 2641 * to normal mode after being used as a subordinate channel. 2642 */ 2643 if (channel > S16_MAX) 2644 return -EINVAL; 2645 2646 dev->num_tc = -channel; 2647 2648 return 0; 2649 } 2650 EXPORT_SYMBOL(netdev_set_sb_channel); 2651 2652 /* 2653 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2654 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2655 */ 2656 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2657 { 2658 bool disabling; 2659 int rc; 2660 2661 disabling = txq < dev->real_num_tx_queues; 2662 2663 if (txq < 1 || txq > dev->num_tx_queues) 2664 return -EINVAL; 2665 2666 if (dev->reg_state == NETREG_REGISTERED || 2667 dev->reg_state == NETREG_UNREGISTERING) { 2668 ASSERT_RTNL(); 2669 2670 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2671 txq); 2672 if (rc) 2673 return rc; 2674 2675 if (dev->num_tc) 2676 netif_setup_tc(dev, txq); 2677 2678 dev->real_num_tx_queues = txq; 2679 2680 if (disabling) { 2681 synchronize_net(); 2682 qdisc_reset_all_tx_gt(dev, txq); 2683 #ifdef CONFIG_XPS 2684 netif_reset_xps_queues_gt(dev, txq); 2685 #endif 2686 } 2687 } else { 2688 dev->real_num_tx_queues = txq; 2689 } 2690 2691 return 0; 2692 } 2693 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2694 2695 #ifdef CONFIG_SYSFS 2696 /** 2697 * netif_set_real_num_rx_queues - set actual number of RX queues used 2698 * @dev: Network device 2699 * @rxq: Actual number of RX queues 2700 * 2701 * This must be called either with the rtnl_lock held or before 2702 * registration of the net device. Returns 0 on success, or a 2703 * negative error code. If called before registration, it always 2704 * succeeds. 2705 */ 2706 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2707 { 2708 int rc; 2709 2710 if (rxq < 1 || rxq > dev->num_rx_queues) 2711 return -EINVAL; 2712 2713 if (dev->reg_state == NETREG_REGISTERED) { 2714 ASSERT_RTNL(); 2715 2716 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2717 rxq); 2718 if (rc) 2719 return rc; 2720 } 2721 2722 dev->real_num_rx_queues = rxq; 2723 return 0; 2724 } 2725 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2726 #endif 2727 2728 /** 2729 * netif_get_num_default_rss_queues - default number of RSS queues 2730 * 2731 * This routine should set an upper limit on the number of RSS queues 2732 * used by default by multiqueue devices. 2733 */ 2734 int netif_get_num_default_rss_queues(void) 2735 { 2736 return is_kdump_kernel() ? 2737 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2738 } 2739 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2740 2741 static void __netif_reschedule(struct Qdisc *q) 2742 { 2743 struct softnet_data *sd; 2744 unsigned long flags; 2745 2746 local_irq_save(flags); 2747 sd = this_cpu_ptr(&softnet_data); 2748 q->next_sched = NULL; 2749 *sd->output_queue_tailp = q; 2750 sd->output_queue_tailp = &q->next_sched; 2751 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2752 local_irq_restore(flags); 2753 } 2754 2755 void __netif_schedule(struct Qdisc *q) 2756 { 2757 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2758 __netif_reschedule(q); 2759 } 2760 EXPORT_SYMBOL(__netif_schedule); 2761 2762 struct dev_kfree_skb_cb { 2763 enum skb_free_reason reason; 2764 }; 2765 2766 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2767 { 2768 return (struct dev_kfree_skb_cb *)skb->cb; 2769 } 2770 2771 void netif_schedule_queue(struct netdev_queue *txq) 2772 { 2773 rcu_read_lock(); 2774 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2775 struct Qdisc *q = rcu_dereference(txq->qdisc); 2776 2777 __netif_schedule(q); 2778 } 2779 rcu_read_unlock(); 2780 } 2781 EXPORT_SYMBOL(netif_schedule_queue); 2782 2783 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2784 { 2785 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2786 struct Qdisc *q; 2787 2788 rcu_read_lock(); 2789 q = rcu_dereference(dev_queue->qdisc); 2790 __netif_schedule(q); 2791 rcu_read_unlock(); 2792 } 2793 } 2794 EXPORT_SYMBOL(netif_tx_wake_queue); 2795 2796 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2797 { 2798 unsigned long flags; 2799 2800 if (unlikely(!skb)) 2801 return; 2802 2803 if (likely(refcount_read(&skb->users) == 1)) { 2804 smp_rmb(); 2805 refcount_set(&skb->users, 0); 2806 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2807 return; 2808 } 2809 get_kfree_skb_cb(skb)->reason = reason; 2810 local_irq_save(flags); 2811 skb->next = __this_cpu_read(softnet_data.completion_queue); 2812 __this_cpu_write(softnet_data.completion_queue, skb); 2813 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2814 local_irq_restore(flags); 2815 } 2816 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2817 2818 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2819 { 2820 if (in_irq() || irqs_disabled()) 2821 __dev_kfree_skb_irq(skb, reason); 2822 else 2823 dev_kfree_skb(skb); 2824 } 2825 EXPORT_SYMBOL(__dev_kfree_skb_any); 2826 2827 2828 /** 2829 * netif_device_detach - mark device as removed 2830 * @dev: network device 2831 * 2832 * Mark device as removed from system and therefore no longer available. 2833 */ 2834 void netif_device_detach(struct net_device *dev) 2835 { 2836 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2837 netif_running(dev)) { 2838 netif_tx_stop_all_queues(dev); 2839 } 2840 } 2841 EXPORT_SYMBOL(netif_device_detach); 2842 2843 /** 2844 * netif_device_attach - mark device as attached 2845 * @dev: network device 2846 * 2847 * Mark device as attached from system and restart if needed. 2848 */ 2849 void netif_device_attach(struct net_device *dev) 2850 { 2851 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2852 netif_running(dev)) { 2853 netif_tx_wake_all_queues(dev); 2854 __netdev_watchdog_up(dev); 2855 } 2856 } 2857 EXPORT_SYMBOL(netif_device_attach); 2858 2859 /* 2860 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2861 * to be used as a distribution range. 2862 */ 2863 static u16 skb_tx_hash(const struct net_device *dev, 2864 const struct net_device *sb_dev, 2865 struct sk_buff *skb) 2866 { 2867 u32 hash; 2868 u16 qoffset = 0; 2869 u16 qcount = dev->real_num_tx_queues; 2870 2871 if (dev->num_tc) { 2872 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2873 2874 qoffset = sb_dev->tc_to_txq[tc].offset; 2875 qcount = sb_dev->tc_to_txq[tc].count; 2876 } 2877 2878 if (skb_rx_queue_recorded(skb)) { 2879 hash = skb_get_rx_queue(skb); 2880 while (unlikely(hash >= qcount)) 2881 hash -= qcount; 2882 return hash + qoffset; 2883 } 2884 2885 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2886 } 2887 2888 static void skb_warn_bad_offload(const struct sk_buff *skb) 2889 { 2890 static const netdev_features_t null_features; 2891 struct net_device *dev = skb->dev; 2892 const char *name = ""; 2893 2894 if (!net_ratelimit()) 2895 return; 2896 2897 if (dev) { 2898 if (dev->dev.parent) 2899 name = dev_driver_string(dev->dev.parent); 2900 else 2901 name = netdev_name(dev); 2902 } 2903 skb_dump(KERN_WARNING, skb, false); 2904 WARN(1, "%s: caps=(%pNF, %pNF)\n", 2905 name, dev ? &dev->features : &null_features, 2906 skb->sk ? &skb->sk->sk_route_caps : &null_features); 2907 } 2908 2909 /* 2910 * Invalidate hardware checksum when packet is to be mangled, and 2911 * complete checksum manually on outgoing path. 2912 */ 2913 int skb_checksum_help(struct sk_buff *skb) 2914 { 2915 __wsum csum; 2916 int ret = 0, offset; 2917 2918 if (skb->ip_summed == CHECKSUM_COMPLETE) 2919 goto out_set_summed; 2920 2921 if (unlikely(skb_shinfo(skb)->gso_size)) { 2922 skb_warn_bad_offload(skb); 2923 return -EINVAL; 2924 } 2925 2926 /* Before computing a checksum, we should make sure no frag could 2927 * be modified by an external entity : checksum could be wrong. 2928 */ 2929 if (skb_has_shared_frag(skb)) { 2930 ret = __skb_linearize(skb); 2931 if (ret) 2932 goto out; 2933 } 2934 2935 offset = skb_checksum_start_offset(skb); 2936 BUG_ON(offset >= skb_headlen(skb)); 2937 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2938 2939 offset += skb->csum_offset; 2940 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2941 2942 if (skb_cloned(skb) && 2943 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2944 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2945 if (ret) 2946 goto out; 2947 } 2948 2949 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2950 out_set_summed: 2951 skb->ip_summed = CHECKSUM_NONE; 2952 out: 2953 return ret; 2954 } 2955 EXPORT_SYMBOL(skb_checksum_help); 2956 2957 int skb_crc32c_csum_help(struct sk_buff *skb) 2958 { 2959 __le32 crc32c_csum; 2960 int ret = 0, offset, start; 2961 2962 if (skb->ip_summed != CHECKSUM_PARTIAL) 2963 goto out; 2964 2965 if (unlikely(skb_is_gso(skb))) 2966 goto out; 2967 2968 /* Before computing a checksum, we should make sure no frag could 2969 * be modified by an external entity : checksum could be wrong. 2970 */ 2971 if (unlikely(skb_has_shared_frag(skb))) { 2972 ret = __skb_linearize(skb); 2973 if (ret) 2974 goto out; 2975 } 2976 start = skb_checksum_start_offset(skb); 2977 offset = start + offsetof(struct sctphdr, checksum); 2978 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2979 ret = -EINVAL; 2980 goto out; 2981 } 2982 if (skb_cloned(skb) && 2983 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2984 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2985 if (ret) 2986 goto out; 2987 } 2988 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2989 skb->len - start, ~(__u32)0, 2990 crc32c_csum_stub)); 2991 *(__le32 *)(skb->data + offset) = crc32c_csum; 2992 skb->ip_summed = CHECKSUM_NONE; 2993 skb->csum_not_inet = 0; 2994 out: 2995 return ret; 2996 } 2997 2998 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2999 { 3000 __be16 type = skb->protocol; 3001 3002 /* Tunnel gso handlers can set protocol to ethernet. */ 3003 if (type == htons(ETH_P_TEB)) { 3004 struct ethhdr *eth; 3005 3006 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3007 return 0; 3008 3009 eth = (struct ethhdr *)skb->data; 3010 type = eth->h_proto; 3011 } 3012 3013 return __vlan_get_protocol(skb, type, depth); 3014 } 3015 3016 /** 3017 * skb_mac_gso_segment - mac layer segmentation handler. 3018 * @skb: buffer to segment 3019 * @features: features for the output path (see dev->features) 3020 */ 3021 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3022 netdev_features_t features) 3023 { 3024 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3025 struct packet_offload *ptype; 3026 int vlan_depth = skb->mac_len; 3027 __be16 type = skb_network_protocol(skb, &vlan_depth); 3028 3029 if (unlikely(!type)) 3030 return ERR_PTR(-EINVAL); 3031 3032 __skb_pull(skb, vlan_depth); 3033 3034 rcu_read_lock(); 3035 list_for_each_entry_rcu(ptype, &offload_base, list) { 3036 if (ptype->type == type && ptype->callbacks.gso_segment) { 3037 segs = ptype->callbacks.gso_segment(skb, features); 3038 break; 3039 } 3040 } 3041 rcu_read_unlock(); 3042 3043 __skb_push(skb, skb->data - skb_mac_header(skb)); 3044 3045 return segs; 3046 } 3047 EXPORT_SYMBOL(skb_mac_gso_segment); 3048 3049 3050 /* openvswitch calls this on rx path, so we need a different check. 3051 */ 3052 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3053 { 3054 if (tx_path) 3055 return skb->ip_summed != CHECKSUM_PARTIAL && 3056 skb->ip_summed != CHECKSUM_UNNECESSARY; 3057 3058 return skb->ip_summed == CHECKSUM_NONE; 3059 } 3060 3061 /** 3062 * __skb_gso_segment - Perform segmentation on skb. 3063 * @skb: buffer to segment 3064 * @features: features for the output path (see dev->features) 3065 * @tx_path: whether it is called in TX path 3066 * 3067 * This function segments the given skb and returns a list of segments. 3068 * 3069 * It may return NULL if the skb requires no segmentation. This is 3070 * only possible when GSO is used for verifying header integrity. 3071 * 3072 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3073 */ 3074 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3075 netdev_features_t features, bool tx_path) 3076 { 3077 struct sk_buff *segs; 3078 3079 if (unlikely(skb_needs_check(skb, tx_path))) { 3080 int err; 3081 3082 /* We're going to init ->check field in TCP or UDP header */ 3083 err = skb_cow_head(skb, 0); 3084 if (err < 0) 3085 return ERR_PTR(err); 3086 } 3087 3088 /* Only report GSO partial support if it will enable us to 3089 * support segmentation on this frame without needing additional 3090 * work. 3091 */ 3092 if (features & NETIF_F_GSO_PARTIAL) { 3093 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3094 struct net_device *dev = skb->dev; 3095 3096 partial_features |= dev->features & dev->gso_partial_features; 3097 if (!skb_gso_ok(skb, features | partial_features)) 3098 features &= ~NETIF_F_GSO_PARTIAL; 3099 } 3100 3101 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3102 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3103 3104 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3105 SKB_GSO_CB(skb)->encap_level = 0; 3106 3107 skb_reset_mac_header(skb); 3108 skb_reset_mac_len(skb); 3109 3110 segs = skb_mac_gso_segment(skb, features); 3111 3112 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3113 skb_warn_bad_offload(skb); 3114 3115 return segs; 3116 } 3117 EXPORT_SYMBOL(__skb_gso_segment); 3118 3119 /* Take action when hardware reception checksum errors are detected. */ 3120 #ifdef CONFIG_BUG 3121 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3122 { 3123 if (net_ratelimit()) { 3124 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3125 skb_dump(KERN_ERR, skb, true); 3126 dump_stack(); 3127 } 3128 } 3129 EXPORT_SYMBOL(netdev_rx_csum_fault); 3130 #endif 3131 3132 /* XXX: check that highmem exists at all on the given machine. */ 3133 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3134 { 3135 #ifdef CONFIG_HIGHMEM 3136 int i; 3137 3138 if (!(dev->features & NETIF_F_HIGHDMA)) { 3139 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3140 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3141 3142 if (PageHighMem(skb_frag_page(frag))) 3143 return 1; 3144 } 3145 } 3146 #endif 3147 return 0; 3148 } 3149 3150 /* If MPLS offload request, verify we are testing hardware MPLS features 3151 * instead of standard features for the netdev. 3152 */ 3153 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3154 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3155 netdev_features_t features, 3156 __be16 type) 3157 { 3158 if (eth_p_mpls(type)) 3159 features &= skb->dev->mpls_features; 3160 3161 return features; 3162 } 3163 #else 3164 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3165 netdev_features_t features, 3166 __be16 type) 3167 { 3168 return features; 3169 } 3170 #endif 3171 3172 static netdev_features_t harmonize_features(struct sk_buff *skb, 3173 netdev_features_t features) 3174 { 3175 int tmp; 3176 __be16 type; 3177 3178 type = skb_network_protocol(skb, &tmp); 3179 features = net_mpls_features(skb, features, type); 3180 3181 if (skb->ip_summed != CHECKSUM_NONE && 3182 !can_checksum_protocol(features, type)) { 3183 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3184 } 3185 if (illegal_highdma(skb->dev, skb)) 3186 features &= ~NETIF_F_SG; 3187 3188 return features; 3189 } 3190 3191 netdev_features_t passthru_features_check(struct sk_buff *skb, 3192 struct net_device *dev, 3193 netdev_features_t features) 3194 { 3195 return features; 3196 } 3197 EXPORT_SYMBOL(passthru_features_check); 3198 3199 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3200 struct net_device *dev, 3201 netdev_features_t features) 3202 { 3203 return vlan_features_check(skb, features); 3204 } 3205 3206 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3207 struct net_device *dev, 3208 netdev_features_t features) 3209 { 3210 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3211 3212 if (gso_segs > dev->gso_max_segs) 3213 return features & ~NETIF_F_GSO_MASK; 3214 3215 /* Support for GSO partial features requires software 3216 * intervention before we can actually process the packets 3217 * so we need to strip support for any partial features now 3218 * and we can pull them back in after we have partially 3219 * segmented the frame. 3220 */ 3221 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3222 features &= ~dev->gso_partial_features; 3223 3224 /* Make sure to clear the IPv4 ID mangling feature if the 3225 * IPv4 header has the potential to be fragmented. 3226 */ 3227 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3228 struct iphdr *iph = skb->encapsulation ? 3229 inner_ip_hdr(skb) : ip_hdr(skb); 3230 3231 if (!(iph->frag_off & htons(IP_DF))) 3232 features &= ~NETIF_F_TSO_MANGLEID; 3233 } 3234 3235 return features; 3236 } 3237 3238 netdev_features_t netif_skb_features(struct sk_buff *skb) 3239 { 3240 struct net_device *dev = skb->dev; 3241 netdev_features_t features = dev->features; 3242 3243 if (skb_is_gso(skb)) 3244 features = gso_features_check(skb, dev, features); 3245 3246 /* If encapsulation offload request, verify we are testing 3247 * hardware encapsulation features instead of standard 3248 * features for the netdev 3249 */ 3250 if (skb->encapsulation) 3251 features &= dev->hw_enc_features; 3252 3253 if (skb_vlan_tagged(skb)) 3254 features = netdev_intersect_features(features, 3255 dev->vlan_features | 3256 NETIF_F_HW_VLAN_CTAG_TX | 3257 NETIF_F_HW_VLAN_STAG_TX); 3258 3259 if (dev->netdev_ops->ndo_features_check) 3260 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3261 features); 3262 else 3263 features &= dflt_features_check(skb, dev, features); 3264 3265 return harmonize_features(skb, features); 3266 } 3267 EXPORT_SYMBOL(netif_skb_features); 3268 3269 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3270 struct netdev_queue *txq, bool more) 3271 { 3272 unsigned int len; 3273 int rc; 3274 3275 if (dev_nit_active(dev)) 3276 dev_queue_xmit_nit(skb, dev); 3277 3278 len = skb->len; 3279 trace_net_dev_start_xmit(skb, dev); 3280 rc = netdev_start_xmit(skb, dev, txq, more); 3281 trace_net_dev_xmit(skb, rc, dev, len); 3282 3283 return rc; 3284 } 3285 3286 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3287 struct netdev_queue *txq, int *ret) 3288 { 3289 struct sk_buff *skb = first; 3290 int rc = NETDEV_TX_OK; 3291 3292 while (skb) { 3293 struct sk_buff *next = skb->next; 3294 3295 skb_mark_not_on_list(skb); 3296 rc = xmit_one(skb, dev, txq, next != NULL); 3297 if (unlikely(!dev_xmit_complete(rc))) { 3298 skb->next = next; 3299 goto out; 3300 } 3301 3302 skb = next; 3303 if (netif_tx_queue_stopped(txq) && skb) { 3304 rc = NETDEV_TX_BUSY; 3305 break; 3306 } 3307 } 3308 3309 out: 3310 *ret = rc; 3311 return skb; 3312 } 3313 3314 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3315 netdev_features_t features) 3316 { 3317 if (skb_vlan_tag_present(skb) && 3318 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3319 skb = __vlan_hwaccel_push_inside(skb); 3320 return skb; 3321 } 3322 3323 int skb_csum_hwoffload_help(struct sk_buff *skb, 3324 const netdev_features_t features) 3325 { 3326 if (unlikely(skb->csum_not_inet)) 3327 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3328 skb_crc32c_csum_help(skb); 3329 3330 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3331 } 3332 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3333 3334 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3335 { 3336 netdev_features_t features; 3337 3338 features = netif_skb_features(skb); 3339 skb = validate_xmit_vlan(skb, features); 3340 if (unlikely(!skb)) 3341 goto out_null; 3342 3343 skb = sk_validate_xmit_skb(skb, dev); 3344 if (unlikely(!skb)) 3345 goto out_null; 3346 3347 if (netif_needs_gso(skb, features)) { 3348 struct sk_buff *segs; 3349 3350 segs = skb_gso_segment(skb, features); 3351 if (IS_ERR(segs)) { 3352 goto out_kfree_skb; 3353 } else if (segs) { 3354 consume_skb(skb); 3355 skb = segs; 3356 } 3357 } else { 3358 if (skb_needs_linearize(skb, features) && 3359 __skb_linearize(skb)) 3360 goto out_kfree_skb; 3361 3362 /* If packet is not checksummed and device does not 3363 * support checksumming for this protocol, complete 3364 * checksumming here. 3365 */ 3366 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3367 if (skb->encapsulation) 3368 skb_set_inner_transport_header(skb, 3369 skb_checksum_start_offset(skb)); 3370 else 3371 skb_set_transport_header(skb, 3372 skb_checksum_start_offset(skb)); 3373 if (skb_csum_hwoffload_help(skb, features)) 3374 goto out_kfree_skb; 3375 } 3376 } 3377 3378 skb = validate_xmit_xfrm(skb, features, again); 3379 3380 return skb; 3381 3382 out_kfree_skb: 3383 kfree_skb(skb); 3384 out_null: 3385 atomic_long_inc(&dev->tx_dropped); 3386 return NULL; 3387 } 3388 3389 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3390 { 3391 struct sk_buff *next, *head = NULL, *tail; 3392 3393 for (; skb != NULL; skb = next) { 3394 next = skb->next; 3395 skb_mark_not_on_list(skb); 3396 3397 /* in case skb wont be segmented, point to itself */ 3398 skb->prev = skb; 3399 3400 skb = validate_xmit_skb(skb, dev, again); 3401 if (!skb) 3402 continue; 3403 3404 if (!head) 3405 head = skb; 3406 else 3407 tail->next = skb; 3408 /* If skb was segmented, skb->prev points to 3409 * the last segment. If not, it still contains skb. 3410 */ 3411 tail = skb->prev; 3412 } 3413 return head; 3414 } 3415 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3416 3417 static void qdisc_pkt_len_init(struct sk_buff *skb) 3418 { 3419 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3420 3421 qdisc_skb_cb(skb)->pkt_len = skb->len; 3422 3423 /* To get more precise estimation of bytes sent on wire, 3424 * we add to pkt_len the headers size of all segments 3425 */ 3426 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3427 unsigned int hdr_len; 3428 u16 gso_segs = shinfo->gso_segs; 3429 3430 /* mac layer + network layer */ 3431 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3432 3433 /* + transport layer */ 3434 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3435 const struct tcphdr *th; 3436 struct tcphdr _tcphdr; 3437 3438 th = skb_header_pointer(skb, skb_transport_offset(skb), 3439 sizeof(_tcphdr), &_tcphdr); 3440 if (likely(th)) 3441 hdr_len += __tcp_hdrlen(th); 3442 } else { 3443 struct udphdr _udphdr; 3444 3445 if (skb_header_pointer(skb, skb_transport_offset(skb), 3446 sizeof(_udphdr), &_udphdr)) 3447 hdr_len += sizeof(struct udphdr); 3448 } 3449 3450 if (shinfo->gso_type & SKB_GSO_DODGY) 3451 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3452 shinfo->gso_size); 3453 3454 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3455 } 3456 } 3457 3458 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3459 struct net_device *dev, 3460 struct netdev_queue *txq) 3461 { 3462 spinlock_t *root_lock = qdisc_lock(q); 3463 struct sk_buff *to_free = NULL; 3464 bool contended; 3465 int rc; 3466 3467 qdisc_calculate_pkt_len(skb, q); 3468 3469 if (q->flags & TCQ_F_NOLOCK) { 3470 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3471 __qdisc_drop(skb, &to_free); 3472 rc = NET_XMIT_DROP; 3473 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty && 3474 qdisc_run_begin(q)) { 3475 qdisc_bstats_cpu_update(q, skb); 3476 3477 if (sch_direct_xmit(skb, q, dev, txq, NULL, true)) 3478 __qdisc_run(q); 3479 3480 qdisc_run_end(q); 3481 rc = NET_XMIT_SUCCESS; 3482 } else { 3483 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3484 qdisc_run(q); 3485 } 3486 3487 if (unlikely(to_free)) 3488 kfree_skb_list(to_free); 3489 return rc; 3490 } 3491 3492 /* 3493 * Heuristic to force contended enqueues to serialize on a 3494 * separate lock before trying to get qdisc main lock. 3495 * This permits qdisc->running owner to get the lock more 3496 * often and dequeue packets faster. 3497 */ 3498 contended = qdisc_is_running(q); 3499 if (unlikely(contended)) 3500 spin_lock(&q->busylock); 3501 3502 spin_lock(root_lock); 3503 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3504 __qdisc_drop(skb, &to_free); 3505 rc = NET_XMIT_DROP; 3506 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3507 qdisc_run_begin(q)) { 3508 /* 3509 * This is a work-conserving queue; there are no old skbs 3510 * waiting to be sent out; and the qdisc is not running - 3511 * xmit the skb directly. 3512 */ 3513 3514 qdisc_bstats_update(q, skb); 3515 3516 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3517 if (unlikely(contended)) { 3518 spin_unlock(&q->busylock); 3519 contended = false; 3520 } 3521 __qdisc_run(q); 3522 } 3523 3524 qdisc_run_end(q); 3525 rc = NET_XMIT_SUCCESS; 3526 } else { 3527 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3528 if (qdisc_run_begin(q)) { 3529 if (unlikely(contended)) { 3530 spin_unlock(&q->busylock); 3531 contended = false; 3532 } 3533 __qdisc_run(q); 3534 qdisc_run_end(q); 3535 } 3536 } 3537 spin_unlock(root_lock); 3538 if (unlikely(to_free)) 3539 kfree_skb_list(to_free); 3540 if (unlikely(contended)) 3541 spin_unlock(&q->busylock); 3542 return rc; 3543 } 3544 3545 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3546 static void skb_update_prio(struct sk_buff *skb) 3547 { 3548 const struct netprio_map *map; 3549 const struct sock *sk; 3550 unsigned int prioidx; 3551 3552 if (skb->priority) 3553 return; 3554 map = rcu_dereference_bh(skb->dev->priomap); 3555 if (!map) 3556 return; 3557 sk = skb_to_full_sk(skb); 3558 if (!sk) 3559 return; 3560 3561 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3562 3563 if (prioidx < map->priomap_len) 3564 skb->priority = map->priomap[prioidx]; 3565 } 3566 #else 3567 #define skb_update_prio(skb) 3568 #endif 3569 3570 /** 3571 * dev_loopback_xmit - loop back @skb 3572 * @net: network namespace this loopback is happening in 3573 * @sk: sk needed to be a netfilter okfn 3574 * @skb: buffer to transmit 3575 */ 3576 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3577 { 3578 skb_reset_mac_header(skb); 3579 __skb_pull(skb, skb_network_offset(skb)); 3580 skb->pkt_type = PACKET_LOOPBACK; 3581 skb->ip_summed = CHECKSUM_UNNECESSARY; 3582 WARN_ON(!skb_dst(skb)); 3583 skb_dst_force(skb); 3584 netif_rx_ni(skb); 3585 return 0; 3586 } 3587 EXPORT_SYMBOL(dev_loopback_xmit); 3588 3589 #ifdef CONFIG_NET_EGRESS 3590 static struct sk_buff * 3591 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3592 { 3593 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3594 struct tcf_result cl_res; 3595 3596 if (!miniq) 3597 return skb; 3598 3599 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3600 mini_qdisc_bstats_cpu_update(miniq, skb); 3601 3602 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3603 case TC_ACT_OK: 3604 case TC_ACT_RECLASSIFY: 3605 skb->tc_index = TC_H_MIN(cl_res.classid); 3606 break; 3607 case TC_ACT_SHOT: 3608 mini_qdisc_qstats_cpu_drop(miniq); 3609 *ret = NET_XMIT_DROP; 3610 kfree_skb(skb); 3611 return NULL; 3612 case TC_ACT_STOLEN: 3613 case TC_ACT_QUEUED: 3614 case TC_ACT_TRAP: 3615 *ret = NET_XMIT_SUCCESS; 3616 consume_skb(skb); 3617 return NULL; 3618 case TC_ACT_REDIRECT: 3619 /* No need to push/pop skb's mac_header here on egress! */ 3620 skb_do_redirect(skb); 3621 *ret = NET_XMIT_SUCCESS; 3622 return NULL; 3623 default: 3624 break; 3625 } 3626 3627 return skb; 3628 } 3629 #endif /* CONFIG_NET_EGRESS */ 3630 3631 #ifdef CONFIG_XPS 3632 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3633 struct xps_dev_maps *dev_maps, unsigned int tci) 3634 { 3635 struct xps_map *map; 3636 int queue_index = -1; 3637 3638 if (dev->num_tc) { 3639 tci *= dev->num_tc; 3640 tci += netdev_get_prio_tc_map(dev, skb->priority); 3641 } 3642 3643 map = rcu_dereference(dev_maps->attr_map[tci]); 3644 if (map) { 3645 if (map->len == 1) 3646 queue_index = map->queues[0]; 3647 else 3648 queue_index = map->queues[reciprocal_scale( 3649 skb_get_hash(skb), map->len)]; 3650 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3651 queue_index = -1; 3652 } 3653 return queue_index; 3654 } 3655 #endif 3656 3657 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3658 struct sk_buff *skb) 3659 { 3660 #ifdef CONFIG_XPS 3661 struct xps_dev_maps *dev_maps; 3662 struct sock *sk = skb->sk; 3663 int queue_index = -1; 3664 3665 if (!static_key_false(&xps_needed)) 3666 return -1; 3667 3668 rcu_read_lock(); 3669 if (!static_key_false(&xps_rxqs_needed)) 3670 goto get_cpus_map; 3671 3672 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3673 if (dev_maps) { 3674 int tci = sk_rx_queue_get(sk); 3675 3676 if (tci >= 0 && tci < dev->num_rx_queues) 3677 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3678 tci); 3679 } 3680 3681 get_cpus_map: 3682 if (queue_index < 0) { 3683 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3684 if (dev_maps) { 3685 unsigned int tci = skb->sender_cpu - 1; 3686 3687 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3688 tci); 3689 } 3690 } 3691 rcu_read_unlock(); 3692 3693 return queue_index; 3694 #else 3695 return -1; 3696 #endif 3697 } 3698 3699 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3700 struct net_device *sb_dev) 3701 { 3702 return 0; 3703 } 3704 EXPORT_SYMBOL(dev_pick_tx_zero); 3705 3706 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3707 struct net_device *sb_dev) 3708 { 3709 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3710 } 3711 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3712 3713 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3714 struct net_device *sb_dev) 3715 { 3716 struct sock *sk = skb->sk; 3717 int queue_index = sk_tx_queue_get(sk); 3718 3719 sb_dev = sb_dev ? : dev; 3720 3721 if (queue_index < 0 || skb->ooo_okay || 3722 queue_index >= dev->real_num_tx_queues) { 3723 int new_index = get_xps_queue(dev, sb_dev, skb); 3724 3725 if (new_index < 0) 3726 new_index = skb_tx_hash(dev, sb_dev, skb); 3727 3728 if (queue_index != new_index && sk && 3729 sk_fullsock(sk) && 3730 rcu_access_pointer(sk->sk_dst_cache)) 3731 sk_tx_queue_set(sk, new_index); 3732 3733 queue_index = new_index; 3734 } 3735 3736 return queue_index; 3737 } 3738 EXPORT_SYMBOL(netdev_pick_tx); 3739 3740 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 3741 struct sk_buff *skb, 3742 struct net_device *sb_dev) 3743 { 3744 int queue_index = 0; 3745 3746 #ifdef CONFIG_XPS 3747 u32 sender_cpu = skb->sender_cpu - 1; 3748 3749 if (sender_cpu >= (u32)NR_CPUS) 3750 skb->sender_cpu = raw_smp_processor_id() + 1; 3751 #endif 3752 3753 if (dev->real_num_tx_queues != 1) { 3754 const struct net_device_ops *ops = dev->netdev_ops; 3755 3756 if (ops->ndo_select_queue) 3757 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 3758 else 3759 queue_index = netdev_pick_tx(dev, skb, sb_dev); 3760 3761 queue_index = netdev_cap_txqueue(dev, queue_index); 3762 } 3763 3764 skb_set_queue_mapping(skb, queue_index); 3765 return netdev_get_tx_queue(dev, queue_index); 3766 } 3767 3768 /** 3769 * __dev_queue_xmit - transmit a buffer 3770 * @skb: buffer to transmit 3771 * @sb_dev: suboordinate device used for L2 forwarding offload 3772 * 3773 * Queue a buffer for transmission to a network device. The caller must 3774 * have set the device and priority and built the buffer before calling 3775 * this function. The function can be called from an interrupt. 3776 * 3777 * A negative errno code is returned on a failure. A success does not 3778 * guarantee the frame will be transmitted as it may be dropped due 3779 * to congestion or traffic shaping. 3780 * 3781 * ----------------------------------------------------------------------------------- 3782 * I notice this method can also return errors from the queue disciplines, 3783 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3784 * be positive. 3785 * 3786 * Regardless of the return value, the skb is consumed, so it is currently 3787 * difficult to retry a send to this method. (You can bump the ref count 3788 * before sending to hold a reference for retry if you are careful.) 3789 * 3790 * When calling this method, interrupts MUST be enabled. This is because 3791 * the BH enable code must have IRQs enabled so that it will not deadlock. 3792 * --BLG 3793 */ 3794 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3795 { 3796 struct net_device *dev = skb->dev; 3797 struct netdev_queue *txq; 3798 struct Qdisc *q; 3799 int rc = -ENOMEM; 3800 bool again = false; 3801 3802 skb_reset_mac_header(skb); 3803 3804 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3805 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3806 3807 /* Disable soft irqs for various locks below. Also 3808 * stops preemption for RCU. 3809 */ 3810 rcu_read_lock_bh(); 3811 3812 skb_update_prio(skb); 3813 3814 qdisc_pkt_len_init(skb); 3815 #ifdef CONFIG_NET_CLS_ACT 3816 skb->tc_at_ingress = 0; 3817 # ifdef CONFIG_NET_EGRESS 3818 if (static_branch_unlikely(&egress_needed_key)) { 3819 skb = sch_handle_egress(skb, &rc, dev); 3820 if (!skb) 3821 goto out; 3822 } 3823 # endif 3824 #endif 3825 /* If device/qdisc don't need skb->dst, release it right now while 3826 * its hot in this cpu cache. 3827 */ 3828 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3829 skb_dst_drop(skb); 3830 else 3831 skb_dst_force(skb); 3832 3833 txq = netdev_core_pick_tx(dev, skb, sb_dev); 3834 q = rcu_dereference_bh(txq->qdisc); 3835 3836 trace_net_dev_queue(skb); 3837 if (q->enqueue) { 3838 rc = __dev_xmit_skb(skb, q, dev, txq); 3839 goto out; 3840 } 3841 3842 /* The device has no queue. Common case for software devices: 3843 * loopback, all the sorts of tunnels... 3844 3845 * Really, it is unlikely that netif_tx_lock protection is necessary 3846 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3847 * counters.) 3848 * However, it is possible, that they rely on protection 3849 * made by us here. 3850 3851 * Check this and shot the lock. It is not prone from deadlocks. 3852 *Either shot noqueue qdisc, it is even simpler 8) 3853 */ 3854 if (dev->flags & IFF_UP) { 3855 int cpu = smp_processor_id(); /* ok because BHs are off */ 3856 3857 if (txq->xmit_lock_owner != cpu) { 3858 if (dev_xmit_recursion()) 3859 goto recursion_alert; 3860 3861 skb = validate_xmit_skb(skb, dev, &again); 3862 if (!skb) 3863 goto out; 3864 3865 HARD_TX_LOCK(dev, txq, cpu); 3866 3867 if (!netif_xmit_stopped(txq)) { 3868 dev_xmit_recursion_inc(); 3869 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3870 dev_xmit_recursion_dec(); 3871 if (dev_xmit_complete(rc)) { 3872 HARD_TX_UNLOCK(dev, txq); 3873 goto out; 3874 } 3875 } 3876 HARD_TX_UNLOCK(dev, txq); 3877 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3878 dev->name); 3879 } else { 3880 /* Recursion is detected! It is possible, 3881 * unfortunately 3882 */ 3883 recursion_alert: 3884 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3885 dev->name); 3886 } 3887 } 3888 3889 rc = -ENETDOWN; 3890 rcu_read_unlock_bh(); 3891 3892 atomic_long_inc(&dev->tx_dropped); 3893 kfree_skb_list(skb); 3894 return rc; 3895 out: 3896 rcu_read_unlock_bh(); 3897 return rc; 3898 } 3899 3900 int dev_queue_xmit(struct sk_buff *skb) 3901 { 3902 return __dev_queue_xmit(skb, NULL); 3903 } 3904 EXPORT_SYMBOL(dev_queue_xmit); 3905 3906 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 3907 { 3908 return __dev_queue_xmit(skb, sb_dev); 3909 } 3910 EXPORT_SYMBOL(dev_queue_xmit_accel); 3911 3912 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3913 { 3914 struct net_device *dev = skb->dev; 3915 struct sk_buff *orig_skb = skb; 3916 struct netdev_queue *txq; 3917 int ret = NETDEV_TX_BUSY; 3918 bool again = false; 3919 3920 if (unlikely(!netif_running(dev) || 3921 !netif_carrier_ok(dev))) 3922 goto drop; 3923 3924 skb = validate_xmit_skb_list(skb, dev, &again); 3925 if (skb != orig_skb) 3926 goto drop; 3927 3928 skb_set_queue_mapping(skb, queue_id); 3929 txq = skb_get_tx_queue(dev, skb); 3930 3931 local_bh_disable(); 3932 3933 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3934 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3935 ret = netdev_start_xmit(skb, dev, txq, false); 3936 HARD_TX_UNLOCK(dev, txq); 3937 3938 local_bh_enable(); 3939 3940 if (!dev_xmit_complete(ret)) 3941 kfree_skb(skb); 3942 3943 return ret; 3944 drop: 3945 atomic_long_inc(&dev->tx_dropped); 3946 kfree_skb_list(skb); 3947 return NET_XMIT_DROP; 3948 } 3949 EXPORT_SYMBOL(dev_direct_xmit); 3950 3951 /************************************************************************* 3952 * Receiver routines 3953 *************************************************************************/ 3954 3955 int netdev_max_backlog __read_mostly = 1000; 3956 EXPORT_SYMBOL(netdev_max_backlog); 3957 3958 int netdev_tstamp_prequeue __read_mostly = 1; 3959 int netdev_budget __read_mostly = 300; 3960 unsigned int __read_mostly netdev_budget_usecs = 2000; 3961 int weight_p __read_mostly = 64; /* old backlog weight */ 3962 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3963 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3964 int dev_rx_weight __read_mostly = 64; 3965 int dev_tx_weight __read_mostly = 64; 3966 3967 /* Called with irq disabled */ 3968 static inline void ____napi_schedule(struct softnet_data *sd, 3969 struct napi_struct *napi) 3970 { 3971 list_add_tail(&napi->poll_list, &sd->poll_list); 3972 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3973 } 3974 3975 #ifdef CONFIG_RPS 3976 3977 /* One global table that all flow-based protocols share. */ 3978 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3979 EXPORT_SYMBOL(rps_sock_flow_table); 3980 u32 rps_cpu_mask __read_mostly; 3981 EXPORT_SYMBOL(rps_cpu_mask); 3982 3983 struct static_key_false rps_needed __read_mostly; 3984 EXPORT_SYMBOL(rps_needed); 3985 struct static_key_false rfs_needed __read_mostly; 3986 EXPORT_SYMBOL(rfs_needed); 3987 3988 static struct rps_dev_flow * 3989 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3990 struct rps_dev_flow *rflow, u16 next_cpu) 3991 { 3992 if (next_cpu < nr_cpu_ids) { 3993 #ifdef CONFIG_RFS_ACCEL 3994 struct netdev_rx_queue *rxqueue; 3995 struct rps_dev_flow_table *flow_table; 3996 struct rps_dev_flow *old_rflow; 3997 u32 flow_id; 3998 u16 rxq_index; 3999 int rc; 4000 4001 /* Should we steer this flow to a different hardware queue? */ 4002 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4003 !(dev->features & NETIF_F_NTUPLE)) 4004 goto out; 4005 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4006 if (rxq_index == skb_get_rx_queue(skb)) 4007 goto out; 4008 4009 rxqueue = dev->_rx + rxq_index; 4010 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4011 if (!flow_table) 4012 goto out; 4013 flow_id = skb_get_hash(skb) & flow_table->mask; 4014 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4015 rxq_index, flow_id); 4016 if (rc < 0) 4017 goto out; 4018 old_rflow = rflow; 4019 rflow = &flow_table->flows[flow_id]; 4020 rflow->filter = rc; 4021 if (old_rflow->filter == rflow->filter) 4022 old_rflow->filter = RPS_NO_FILTER; 4023 out: 4024 #endif 4025 rflow->last_qtail = 4026 per_cpu(softnet_data, next_cpu).input_queue_head; 4027 } 4028 4029 rflow->cpu = next_cpu; 4030 return rflow; 4031 } 4032 4033 /* 4034 * get_rps_cpu is called from netif_receive_skb and returns the target 4035 * CPU from the RPS map of the receiving queue for a given skb. 4036 * rcu_read_lock must be held on entry. 4037 */ 4038 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4039 struct rps_dev_flow **rflowp) 4040 { 4041 const struct rps_sock_flow_table *sock_flow_table; 4042 struct netdev_rx_queue *rxqueue = dev->_rx; 4043 struct rps_dev_flow_table *flow_table; 4044 struct rps_map *map; 4045 int cpu = -1; 4046 u32 tcpu; 4047 u32 hash; 4048 4049 if (skb_rx_queue_recorded(skb)) { 4050 u16 index = skb_get_rx_queue(skb); 4051 4052 if (unlikely(index >= dev->real_num_rx_queues)) { 4053 WARN_ONCE(dev->real_num_rx_queues > 1, 4054 "%s received packet on queue %u, but number " 4055 "of RX queues is %u\n", 4056 dev->name, index, dev->real_num_rx_queues); 4057 goto done; 4058 } 4059 rxqueue += index; 4060 } 4061 4062 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4063 4064 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4065 map = rcu_dereference(rxqueue->rps_map); 4066 if (!flow_table && !map) 4067 goto done; 4068 4069 skb_reset_network_header(skb); 4070 hash = skb_get_hash(skb); 4071 if (!hash) 4072 goto done; 4073 4074 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4075 if (flow_table && sock_flow_table) { 4076 struct rps_dev_flow *rflow; 4077 u32 next_cpu; 4078 u32 ident; 4079 4080 /* First check into global flow table if there is a match */ 4081 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4082 if ((ident ^ hash) & ~rps_cpu_mask) 4083 goto try_rps; 4084 4085 next_cpu = ident & rps_cpu_mask; 4086 4087 /* OK, now we know there is a match, 4088 * we can look at the local (per receive queue) flow table 4089 */ 4090 rflow = &flow_table->flows[hash & flow_table->mask]; 4091 tcpu = rflow->cpu; 4092 4093 /* 4094 * If the desired CPU (where last recvmsg was done) is 4095 * different from current CPU (one in the rx-queue flow 4096 * table entry), switch if one of the following holds: 4097 * - Current CPU is unset (>= nr_cpu_ids). 4098 * - Current CPU is offline. 4099 * - The current CPU's queue tail has advanced beyond the 4100 * last packet that was enqueued using this table entry. 4101 * This guarantees that all previous packets for the flow 4102 * have been dequeued, thus preserving in order delivery. 4103 */ 4104 if (unlikely(tcpu != next_cpu) && 4105 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4106 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4107 rflow->last_qtail)) >= 0)) { 4108 tcpu = next_cpu; 4109 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4110 } 4111 4112 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4113 *rflowp = rflow; 4114 cpu = tcpu; 4115 goto done; 4116 } 4117 } 4118 4119 try_rps: 4120 4121 if (map) { 4122 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4123 if (cpu_online(tcpu)) { 4124 cpu = tcpu; 4125 goto done; 4126 } 4127 } 4128 4129 done: 4130 return cpu; 4131 } 4132 4133 #ifdef CONFIG_RFS_ACCEL 4134 4135 /** 4136 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4137 * @dev: Device on which the filter was set 4138 * @rxq_index: RX queue index 4139 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4140 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4141 * 4142 * Drivers that implement ndo_rx_flow_steer() should periodically call 4143 * this function for each installed filter and remove the filters for 4144 * which it returns %true. 4145 */ 4146 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4147 u32 flow_id, u16 filter_id) 4148 { 4149 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4150 struct rps_dev_flow_table *flow_table; 4151 struct rps_dev_flow *rflow; 4152 bool expire = true; 4153 unsigned int cpu; 4154 4155 rcu_read_lock(); 4156 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4157 if (flow_table && flow_id <= flow_table->mask) { 4158 rflow = &flow_table->flows[flow_id]; 4159 cpu = READ_ONCE(rflow->cpu); 4160 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4161 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4162 rflow->last_qtail) < 4163 (int)(10 * flow_table->mask))) 4164 expire = false; 4165 } 4166 rcu_read_unlock(); 4167 return expire; 4168 } 4169 EXPORT_SYMBOL(rps_may_expire_flow); 4170 4171 #endif /* CONFIG_RFS_ACCEL */ 4172 4173 /* Called from hardirq (IPI) context */ 4174 static void rps_trigger_softirq(void *data) 4175 { 4176 struct softnet_data *sd = data; 4177 4178 ____napi_schedule(sd, &sd->backlog); 4179 sd->received_rps++; 4180 } 4181 4182 #endif /* CONFIG_RPS */ 4183 4184 /* 4185 * Check if this softnet_data structure is another cpu one 4186 * If yes, queue it to our IPI list and return 1 4187 * If no, return 0 4188 */ 4189 static int rps_ipi_queued(struct softnet_data *sd) 4190 { 4191 #ifdef CONFIG_RPS 4192 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4193 4194 if (sd != mysd) { 4195 sd->rps_ipi_next = mysd->rps_ipi_list; 4196 mysd->rps_ipi_list = sd; 4197 4198 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4199 return 1; 4200 } 4201 #endif /* CONFIG_RPS */ 4202 return 0; 4203 } 4204 4205 #ifdef CONFIG_NET_FLOW_LIMIT 4206 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4207 #endif 4208 4209 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4210 { 4211 #ifdef CONFIG_NET_FLOW_LIMIT 4212 struct sd_flow_limit *fl; 4213 struct softnet_data *sd; 4214 unsigned int old_flow, new_flow; 4215 4216 if (qlen < (netdev_max_backlog >> 1)) 4217 return false; 4218 4219 sd = this_cpu_ptr(&softnet_data); 4220 4221 rcu_read_lock(); 4222 fl = rcu_dereference(sd->flow_limit); 4223 if (fl) { 4224 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4225 old_flow = fl->history[fl->history_head]; 4226 fl->history[fl->history_head] = new_flow; 4227 4228 fl->history_head++; 4229 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4230 4231 if (likely(fl->buckets[old_flow])) 4232 fl->buckets[old_flow]--; 4233 4234 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4235 fl->count++; 4236 rcu_read_unlock(); 4237 return true; 4238 } 4239 } 4240 rcu_read_unlock(); 4241 #endif 4242 return false; 4243 } 4244 4245 /* 4246 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4247 * queue (may be a remote CPU queue). 4248 */ 4249 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4250 unsigned int *qtail) 4251 { 4252 struct softnet_data *sd; 4253 unsigned long flags; 4254 unsigned int qlen; 4255 4256 sd = &per_cpu(softnet_data, cpu); 4257 4258 local_irq_save(flags); 4259 4260 rps_lock(sd); 4261 if (!netif_running(skb->dev)) 4262 goto drop; 4263 qlen = skb_queue_len(&sd->input_pkt_queue); 4264 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4265 if (qlen) { 4266 enqueue: 4267 __skb_queue_tail(&sd->input_pkt_queue, skb); 4268 input_queue_tail_incr_save(sd, qtail); 4269 rps_unlock(sd); 4270 local_irq_restore(flags); 4271 return NET_RX_SUCCESS; 4272 } 4273 4274 /* Schedule NAPI for backlog device 4275 * We can use non atomic operation since we own the queue lock 4276 */ 4277 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4278 if (!rps_ipi_queued(sd)) 4279 ____napi_schedule(sd, &sd->backlog); 4280 } 4281 goto enqueue; 4282 } 4283 4284 drop: 4285 sd->dropped++; 4286 rps_unlock(sd); 4287 4288 local_irq_restore(flags); 4289 4290 atomic_long_inc(&skb->dev->rx_dropped); 4291 kfree_skb(skb); 4292 return NET_RX_DROP; 4293 } 4294 4295 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4296 { 4297 struct net_device *dev = skb->dev; 4298 struct netdev_rx_queue *rxqueue; 4299 4300 rxqueue = dev->_rx; 4301 4302 if (skb_rx_queue_recorded(skb)) { 4303 u16 index = skb_get_rx_queue(skb); 4304 4305 if (unlikely(index >= dev->real_num_rx_queues)) { 4306 WARN_ONCE(dev->real_num_rx_queues > 1, 4307 "%s received packet on queue %u, but number " 4308 "of RX queues is %u\n", 4309 dev->name, index, dev->real_num_rx_queues); 4310 4311 return rxqueue; /* Return first rxqueue */ 4312 } 4313 rxqueue += index; 4314 } 4315 return rxqueue; 4316 } 4317 4318 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4319 struct xdp_buff *xdp, 4320 struct bpf_prog *xdp_prog) 4321 { 4322 struct netdev_rx_queue *rxqueue; 4323 void *orig_data, *orig_data_end; 4324 u32 metalen, act = XDP_DROP; 4325 __be16 orig_eth_type; 4326 struct ethhdr *eth; 4327 bool orig_bcast; 4328 int hlen, off; 4329 u32 mac_len; 4330 4331 /* Reinjected packets coming from act_mirred or similar should 4332 * not get XDP generic processing. 4333 */ 4334 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4335 return XDP_PASS; 4336 4337 /* XDP packets must be linear and must have sufficient headroom 4338 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4339 * native XDP provides, thus we need to do it here as well. 4340 */ 4341 if (skb_is_nonlinear(skb) || 4342 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4343 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4344 int troom = skb->tail + skb->data_len - skb->end; 4345 4346 /* In case we have to go down the path and also linearize, 4347 * then lets do the pskb_expand_head() work just once here. 4348 */ 4349 if (pskb_expand_head(skb, 4350 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4351 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4352 goto do_drop; 4353 if (skb_linearize(skb)) 4354 goto do_drop; 4355 } 4356 4357 /* The XDP program wants to see the packet starting at the MAC 4358 * header. 4359 */ 4360 mac_len = skb->data - skb_mac_header(skb); 4361 hlen = skb_headlen(skb) + mac_len; 4362 xdp->data = skb->data - mac_len; 4363 xdp->data_meta = xdp->data; 4364 xdp->data_end = xdp->data + hlen; 4365 xdp->data_hard_start = skb->data - skb_headroom(skb); 4366 orig_data_end = xdp->data_end; 4367 orig_data = xdp->data; 4368 eth = (struct ethhdr *)xdp->data; 4369 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4370 orig_eth_type = eth->h_proto; 4371 4372 rxqueue = netif_get_rxqueue(skb); 4373 xdp->rxq = &rxqueue->xdp_rxq; 4374 4375 act = bpf_prog_run_xdp(xdp_prog, xdp); 4376 4377 /* check if bpf_xdp_adjust_head was used */ 4378 off = xdp->data - orig_data; 4379 if (off) { 4380 if (off > 0) 4381 __skb_pull(skb, off); 4382 else if (off < 0) 4383 __skb_push(skb, -off); 4384 4385 skb->mac_header += off; 4386 skb_reset_network_header(skb); 4387 } 4388 4389 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4390 * pckt. 4391 */ 4392 off = orig_data_end - xdp->data_end; 4393 if (off != 0) { 4394 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4395 skb->len -= off; 4396 4397 } 4398 4399 /* check if XDP changed eth hdr such SKB needs update */ 4400 eth = (struct ethhdr *)xdp->data; 4401 if ((orig_eth_type != eth->h_proto) || 4402 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4403 __skb_push(skb, ETH_HLEN); 4404 skb->protocol = eth_type_trans(skb, skb->dev); 4405 } 4406 4407 switch (act) { 4408 case XDP_REDIRECT: 4409 case XDP_TX: 4410 __skb_push(skb, mac_len); 4411 break; 4412 case XDP_PASS: 4413 metalen = xdp->data - xdp->data_meta; 4414 if (metalen) 4415 skb_metadata_set(skb, metalen); 4416 break; 4417 default: 4418 bpf_warn_invalid_xdp_action(act); 4419 /* fall through */ 4420 case XDP_ABORTED: 4421 trace_xdp_exception(skb->dev, xdp_prog, act); 4422 /* fall through */ 4423 case XDP_DROP: 4424 do_drop: 4425 kfree_skb(skb); 4426 break; 4427 } 4428 4429 return act; 4430 } 4431 4432 /* When doing generic XDP we have to bypass the qdisc layer and the 4433 * network taps in order to match in-driver-XDP behavior. 4434 */ 4435 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4436 { 4437 struct net_device *dev = skb->dev; 4438 struct netdev_queue *txq; 4439 bool free_skb = true; 4440 int cpu, rc; 4441 4442 txq = netdev_core_pick_tx(dev, skb, NULL); 4443 cpu = smp_processor_id(); 4444 HARD_TX_LOCK(dev, txq, cpu); 4445 if (!netif_xmit_stopped(txq)) { 4446 rc = netdev_start_xmit(skb, dev, txq, 0); 4447 if (dev_xmit_complete(rc)) 4448 free_skb = false; 4449 } 4450 HARD_TX_UNLOCK(dev, txq); 4451 if (free_skb) { 4452 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4453 kfree_skb(skb); 4454 } 4455 } 4456 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4457 4458 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4459 4460 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4461 { 4462 if (xdp_prog) { 4463 struct xdp_buff xdp; 4464 u32 act; 4465 int err; 4466 4467 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4468 if (act != XDP_PASS) { 4469 switch (act) { 4470 case XDP_REDIRECT: 4471 err = xdp_do_generic_redirect(skb->dev, skb, 4472 &xdp, xdp_prog); 4473 if (err) 4474 goto out_redir; 4475 break; 4476 case XDP_TX: 4477 generic_xdp_tx(skb, xdp_prog); 4478 break; 4479 } 4480 return XDP_DROP; 4481 } 4482 } 4483 return XDP_PASS; 4484 out_redir: 4485 kfree_skb(skb); 4486 return XDP_DROP; 4487 } 4488 EXPORT_SYMBOL_GPL(do_xdp_generic); 4489 4490 static int netif_rx_internal(struct sk_buff *skb) 4491 { 4492 int ret; 4493 4494 net_timestamp_check(netdev_tstamp_prequeue, skb); 4495 4496 trace_netif_rx(skb); 4497 4498 #ifdef CONFIG_RPS 4499 if (static_branch_unlikely(&rps_needed)) { 4500 struct rps_dev_flow voidflow, *rflow = &voidflow; 4501 int cpu; 4502 4503 preempt_disable(); 4504 rcu_read_lock(); 4505 4506 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4507 if (cpu < 0) 4508 cpu = smp_processor_id(); 4509 4510 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4511 4512 rcu_read_unlock(); 4513 preempt_enable(); 4514 } else 4515 #endif 4516 { 4517 unsigned int qtail; 4518 4519 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4520 put_cpu(); 4521 } 4522 return ret; 4523 } 4524 4525 /** 4526 * netif_rx - post buffer to the network code 4527 * @skb: buffer to post 4528 * 4529 * This function receives a packet from a device driver and queues it for 4530 * the upper (protocol) levels to process. It always succeeds. The buffer 4531 * may be dropped during processing for congestion control or by the 4532 * protocol layers. 4533 * 4534 * return values: 4535 * NET_RX_SUCCESS (no congestion) 4536 * NET_RX_DROP (packet was dropped) 4537 * 4538 */ 4539 4540 int netif_rx(struct sk_buff *skb) 4541 { 4542 int ret; 4543 4544 trace_netif_rx_entry(skb); 4545 4546 ret = netif_rx_internal(skb); 4547 trace_netif_rx_exit(ret); 4548 4549 return ret; 4550 } 4551 EXPORT_SYMBOL(netif_rx); 4552 4553 int netif_rx_ni(struct sk_buff *skb) 4554 { 4555 int err; 4556 4557 trace_netif_rx_ni_entry(skb); 4558 4559 preempt_disable(); 4560 err = netif_rx_internal(skb); 4561 if (local_softirq_pending()) 4562 do_softirq(); 4563 preempt_enable(); 4564 trace_netif_rx_ni_exit(err); 4565 4566 return err; 4567 } 4568 EXPORT_SYMBOL(netif_rx_ni); 4569 4570 static __latent_entropy void net_tx_action(struct softirq_action *h) 4571 { 4572 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4573 4574 if (sd->completion_queue) { 4575 struct sk_buff *clist; 4576 4577 local_irq_disable(); 4578 clist = sd->completion_queue; 4579 sd->completion_queue = NULL; 4580 local_irq_enable(); 4581 4582 while (clist) { 4583 struct sk_buff *skb = clist; 4584 4585 clist = clist->next; 4586 4587 WARN_ON(refcount_read(&skb->users)); 4588 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4589 trace_consume_skb(skb); 4590 else 4591 trace_kfree_skb(skb, net_tx_action); 4592 4593 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4594 __kfree_skb(skb); 4595 else 4596 __kfree_skb_defer(skb); 4597 } 4598 4599 __kfree_skb_flush(); 4600 } 4601 4602 if (sd->output_queue) { 4603 struct Qdisc *head; 4604 4605 local_irq_disable(); 4606 head = sd->output_queue; 4607 sd->output_queue = NULL; 4608 sd->output_queue_tailp = &sd->output_queue; 4609 local_irq_enable(); 4610 4611 while (head) { 4612 struct Qdisc *q = head; 4613 spinlock_t *root_lock = NULL; 4614 4615 head = head->next_sched; 4616 4617 if (!(q->flags & TCQ_F_NOLOCK)) { 4618 root_lock = qdisc_lock(q); 4619 spin_lock(root_lock); 4620 } 4621 /* We need to make sure head->next_sched is read 4622 * before clearing __QDISC_STATE_SCHED 4623 */ 4624 smp_mb__before_atomic(); 4625 clear_bit(__QDISC_STATE_SCHED, &q->state); 4626 qdisc_run(q); 4627 if (root_lock) 4628 spin_unlock(root_lock); 4629 } 4630 } 4631 4632 xfrm_dev_backlog(sd); 4633 } 4634 4635 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4636 /* This hook is defined here for ATM LANE */ 4637 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4638 unsigned char *addr) __read_mostly; 4639 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4640 #endif 4641 4642 static inline struct sk_buff * 4643 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4644 struct net_device *orig_dev) 4645 { 4646 #ifdef CONFIG_NET_CLS_ACT 4647 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4648 struct tcf_result cl_res; 4649 4650 /* If there's at least one ingress present somewhere (so 4651 * we get here via enabled static key), remaining devices 4652 * that are not configured with an ingress qdisc will bail 4653 * out here. 4654 */ 4655 if (!miniq) 4656 return skb; 4657 4658 if (*pt_prev) { 4659 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4660 *pt_prev = NULL; 4661 } 4662 4663 qdisc_skb_cb(skb)->pkt_len = skb->len; 4664 skb->tc_at_ingress = 1; 4665 mini_qdisc_bstats_cpu_update(miniq, skb); 4666 4667 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4668 case TC_ACT_OK: 4669 case TC_ACT_RECLASSIFY: 4670 skb->tc_index = TC_H_MIN(cl_res.classid); 4671 break; 4672 case TC_ACT_SHOT: 4673 mini_qdisc_qstats_cpu_drop(miniq); 4674 kfree_skb(skb); 4675 return NULL; 4676 case TC_ACT_STOLEN: 4677 case TC_ACT_QUEUED: 4678 case TC_ACT_TRAP: 4679 consume_skb(skb); 4680 return NULL; 4681 case TC_ACT_REDIRECT: 4682 /* skb_mac_header check was done by cls/act_bpf, so 4683 * we can safely push the L2 header back before 4684 * redirecting to another netdev 4685 */ 4686 __skb_push(skb, skb->mac_len); 4687 skb_do_redirect(skb); 4688 return NULL; 4689 case TC_ACT_CONSUMED: 4690 return NULL; 4691 default: 4692 break; 4693 } 4694 #endif /* CONFIG_NET_CLS_ACT */ 4695 return skb; 4696 } 4697 4698 /** 4699 * netdev_is_rx_handler_busy - check if receive handler is registered 4700 * @dev: device to check 4701 * 4702 * Check if a receive handler is already registered for a given device. 4703 * Return true if there one. 4704 * 4705 * The caller must hold the rtnl_mutex. 4706 */ 4707 bool netdev_is_rx_handler_busy(struct net_device *dev) 4708 { 4709 ASSERT_RTNL(); 4710 return dev && rtnl_dereference(dev->rx_handler); 4711 } 4712 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4713 4714 /** 4715 * netdev_rx_handler_register - register receive handler 4716 * @dev: device to register a handler for 4717 * @rx_handler: receive handler to register 4718 * @rx_handler_data: data pointer that is used by rx handler 4719 * 4720 * Register a receive handler for a device. This handler will then be 4721 * called from __netif_receive_skb. A negative errno code is returned 4722 * on a failure. 4723 * 4724 * The caller must hold the rtnl_mutex. 4725 * 4726 * For a general description of rx_handler, see enum rx_handler_result. 4727 */ 4728 int netdev_rx_handler_register(struct net_device *dev, 4729 rx_handler_func_t *rx_handler, 4730 void *rx_handler_data) 4731 { 4732 if (netdev_is_rx_handler_busy(dev)) 4733 return -EBUSY; 4734 4735 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4736 return -EINVAL; 4737 4738 /* Note: rx_handler_data must be set before rx_handler */ 4739 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4740 rcu_assign_pointer(dev->rx_handler, rx_handler); 4741 4742 return 0; 4743 } 4744 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4745 4746 /** 4747 * netdev_rx_handler_unregister - unregister receive handler 4748 * @dev: device to unregister a handler from 4749 * 4750 * Unregister a receive handler from a device. 4751 * 4752 * The caller must hold the rtnl_mutex. 4753 */ 4754 void netdev_rx_handler_unregister(struct net_device *dev) 4755 { 4756 4757 ASSERT_RTNL(); 4758 RCU_INIT_POINTER(dev->rx_handler, NULL); 4759 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4760 * section has a guarantee to see a non NULL rx_handler_data 4761 * as well. 4762 */ 4763 synchronize_net(); 4764 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4765 } 4766 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4767 4768 /* 4769 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4770 * the special handling of PFMEMALLOC skbs. 4771 */ 4772 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4773 { 4774 switch (skb->protocol) { 4775 case htons(ETH_P_ARP): 4776 case htons(ETH_P_IP): 4777 case htons(ETH_P_IPV6): 4778 case htons(ETH_P_8021Q): 4779 case htons(ETH_P_8021AD): 4780 return true; 4781 default: 4782 return false; 4783 } 4784 } 4785 4786 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4787 int *ret, struct net_device *orig_dev) 4788 { 4789 #ifdef CONFIG_NETFILTER_INGRESS 4790 if (nf_hook_ingress_active(skb)) { 4791 int ingress_retval; 4792 4793 if (*pt_prev) { 4794 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4795 *pt_prev = NULL; 4796 } 4797 4798 rcu_read_lock(); 4799 ingress_retval = nf_hook_ingress(skb); 4800 rcu_read_unlock(); 4801 return ingress_retval; 4802 } 4803 #endif /* CONFIG_NETFILTER_INGRESS */ 4804 return 0; 4805 } 4806 4807 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4808 struct packet_type **ppt_prev) 4809 { 4810 struct packet_type *ptype, *pt_prev; 4811 rx_handler_func_t *rx_handler; 4812 struct net_device *orig_dev; 4813 bool deliver_exact = false; 4814 int ret = NET_RX_DROP; 4815 __be16 type; 4816 4817 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4818 4819 trace_netif_receive_skb(skb); 4820 4821 orig_dev = skb->dev; 4822 4823 skb_reset_network_header(skb); 4824 if (!skb_transport_header_was_set(skb)) 4825 skb_reset_transport_header(skb); 4826 skb_reset_mac_len(skb); 4827 4828 pt_prev = NULL; 4829 4830 another_round: 4831 skb->skb_iif = skb->dev->ifindex; 4832 4833 __this_cpu_inc(softnet_data.processed); 4834 4835 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4836 int ret2; 4837 4838 preempt_disable(); 4839 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4840 preempt_enable(); 4841 4842 if (ret2 != XDP_PASS) 4843 return NET_RX_DROP; 4844 skb_reset_mac_len(skb); 4845 } 4846 4847 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4848 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4849 skb = skb_vlan_untag(skb); 4850 if (unlikely(!skb)) 4851 goto out; 4852 } 4853 4854 if (skb_skip_tc_classify(skb)) 4855 goto skip_classify; 4856 4857 if (pfmemalloc) 4858 goto skip_taps; 4859 4860 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4861 if (pt_prev) 4862 ret = deliver_skb(skb, pt_prev, orig_dev); 4863 pt_prev = ptype; 4864 } 4865 4866 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4867 if (pt_prev) 4868 ret = deliver_skb(skb, pt_prev, orig_dev); 4869 pt_prev = ptype; 4870 } 4871 4872 skip_taps: 4873 #ifdef CONFIG_NET_INGRESS 4874 if (static_branch_unlikely(&ingress_needed_key)) { 4875 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4876 if (!skb) 4877 goto out; 4878 4879 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4880 goto out; 4881 } 4882 #endif 4883 skb_reset_tc(skb); 4884 skip_classify: 4885 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4886 goto drop; 4887 4888 if (skb_vlan_tag_present(skb)) { 4889 if (pt_prev) { 4890 ret = deliver_skb(skb, pt_prev, orig_dev); 4891 pt_prev = NULL; 4892 } 4893 if (vlan_do_receive(&skb)) 4894 goto another_round; 4895 else if (unlikely(!skb)) 4896 goto out; 4897 } 4898 4899 rx_handler = rcu_dereference(skb->dev->rx_handler); 4900 if (rx_handler) { 4901 if (pt_prev) { 4902 ret = deliver_skb(skb, pt_prev, orig_dev); 4903 pt_prev = NULL; 4904 } 4905 switch (rx_handler(&skb)) { 4906 case RX_HANDLER_CONSUMED: 4907 ret = NET_RX_SUCCESS; 4908 goto out; 4909 case RX_HANDLER_ANOTHER: 4910 goto another_round; 4911 case RX_HANDLER_EXACT: 4912 deliver_exact = true; 4913 case RX_HANDLER_PASS: 4914 break; 4915 default: 4916 BUG(); 4917 } 4918 } 4919 4920 if (unlikely(skb_vlan_tag_present(skb))) { 4921 check_vlan_id: 4922 if (skb_vlan_tag_get_id(skb)) { 4923 /* Vlan id is non 0 and vlan_do_receive() above couldn't 4924 * find vlan device. 4925 */ 4926 skb->pkt_type = PACKET_OTHERHOST; 4927 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4928 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4929 /* Outer header is 802.1P with vlan 0, inner header is 4930 * 802.1Q or 802.1AD and vlan_do_receive() above could 4931 * not find vlan dev for vlan id 0. 4932 */ 4933 __vlan_hwaccel_clear_tag(skb); 4934 skb = skb_vlan_untag(skb); 4935 if (unlikely(!skb)) 4936 goto out; 4937 if (vlan_do_receive(&skb)) 4938 /* After stripping off 802.1P header with vlan 0 4939 * vlan dev is found for inner header. 4940 */ 4941 goto another_round; 4942 else if (unlikely(!skb)) 4943 goto out; 4944 else 4945 /* We have stripped outer 802.1P vlan 0 header. 4946 * But could not find vlan dev. 4947 * check again for vlan id to set OTHERHOST. 4948 */ 4949 goto check_vlan_id; 4950 } 4951 /* Note: we might in the future use prio bits 4952 * and set skb->priority like in vlan_do_receive() 4953 * For the time being, just ignore Priority Code Point 4954 */ 4955 __vlan_hwaccel_clear_tag(skb); 4956 } 4957 4958 type = skb->protocol; 4959 4960 /* deliver only exact match when indicated */ 4961 if (likely(!deliver_exact)) { 4962 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4963 &ptype_base[ntohs(type) & 4964 PTYPE_HASH_MASK]); 4965 } 4966 4967 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4968 &orig_dev->ptype_specific); 4969 4970 if (unlikely(skb->dev != orig_dev)) { 4971 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4972 &skb->dev->ptype_specific); 4973 } 4974 4975 if (pt_prev) { 4976 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4977 goto drop; 4978 *ppt_prev = pt_prev; 4979 } else { 4980 drop: 4981 if (!deliver_exact) 4982 atomic_long_inc(&skb->dev->rx_dropped); 4983 else 4984 atomic_long_inc(&skb->dev->rx_nohandler); 4985 kfree_skb(skb); 4986 /* Jamal, now you will not able to escape explaining 4987 * me how you were going to use this. :-) 4988 */ 4989 ret = NET_RX_DROP; 4990 } 4991 4992 out: 4993 return ret; 4994 } 4995 4996 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 4997 { 4998 struct net_device *orig_dev = skb->dev; 4999 struct packet_type *pt_prev = NULL; 5000 int ret; 5001 5002 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5003 if (pt_prev) 5004 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5005 skb->dev, pt_prev, orig_dev); 5006 return ret; 5007 } 5008 5009 /** 5010 * netif_receive_skb_core - special purpose version of netif_receive_skb 5011 * @skb: buffer to process 5012 * 5013 * More direct receive version of netif_receive_skb(). It should 5014 * only be used by callers that have a need to skip RPS and Generic XDP. 5015 * Caller must also take care of handling if (page_is_)pfmemalloc. 5016 * 5017 * This function may only be called from softirq context and interrupts 5018 * should be enabled. 5019 * 5020 * Return values (usually ignored): 5021 * NET_RX_SUCCESS: no congestion 5022 * NET_RX_DROP: packet was dropped 5023 */ 5024 int netif_receive_skb_core(struct sk_buff *skb) 5025 { 5026 int ret; 5027 5028 rcu_read_lock(); 5029 ret = __netif_receive_skb_one_core(skb, false); 5030 rcu_read_unlock(); 5031 5032 return ret; 5033 } 5034 EXPORT_SYMBOL(netif_receive_skb_core); 5035 5036 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5037 struct packet_type *pt_prev, 5038 struct net_device *orig_dev) 5039 { 5040 struct sk_buff *skb, *next; 5041 5042 if (!pt_prev) 5043 return; 5044 if (list_empty(head)) 5045 return; 5046 if (pt_prev->list_func != NULL) 5047 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5048 ip_list_rcv, head, pt_prev, orig_dev); 5049 else 5050 list_for_each_entry_safe(skb, next, head, list) { 5051 skb_list_del_init(skb); 5052 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5053 } 5054 } 5055 5056 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5057 { 5058 /* Fast-path assumptions: 5059 * - There is no RX handler. 5060 * - Only one packet_type matches. 5061 * If either of these fails, we will end up doing some per-packet 5062 * processing in-line, then handling the 'last ptype' for the whole 5063 * sublist. This can't cause out-of-order delivery to any single ptype, 5064 * because the 'last ptype' must be constant across the sublist, and all 5065 * other ptypes are handled per-packet. 5066 */ 5067 /* Current (common) ptype of sublist */ 5068 struct packet_type *pt_curr = NULL; 5069 /* Current (common) orig_dev of sublist */ 5070 struct net_device *od_curr = NULL; 5071 struct list_head sublist; 5072 struct sk_buff *skb, *next; 5073 5074 INIT_LIST_HEAD(&sublist); 5075 list_for_each_entry_safe(skb, next, head, list) { 5076 struct net_device *orig_dev = skb->dev; 5077 struct packet_type *pt_prev = NULL; 5078 5079 skb_list_del_init(skb); 5080 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5081 if (!pt_prev) 5082 continue; 5083 if (pt_curr != pt_prev || od_curr != orig_dev) { 5084 /* dispatch old sublist */ 5085 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5086 /* start new sublist */ 5087 INIT_LIST_HEAD(&sublist); 5088 pt_curr = pt_prev; 5089 od_curr = orig_dev; 5090 } 5091 list_add_tail(&skb->list, &sublist); 5092 } 5093 5094 /* dispatch final sublist */ 5095 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5096 } 5097 5098 static int __netif_receive_skb(struct sk_buff *skb) 5099 { 5100 int ret; 5101 5102 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5103 unsigned int noreclaim_flag; 5104 5105 /* 5106 * PFMEMALLOC skbs are special, they should 5107 * - be delivered to SOCK_MEMALLOC sockets only 5108 * - stay away from userspace 5109 * - have bounded memory usage 5110 * 5111 * Use PF_MEMALLOC as this saves us from propagating the allocation 5112 * context down to all allocation sites. 5113 */ 5114 noreclaim_flag = memalloc_noreclaim_save(); 5115 ret = __netif_receive_skb_one_core(skb, true); 5116 memalloc_noreclaim_restore(noreclaim_flag); 5117 } else 5118 ret = __netif_receive_skb_one_core(skb, false); 5119 5120 return ret; 5121 } 5122 5123 static void __netif_receive_skb_list(struct list_head *head) 5124 { 5125 unsigned long noreclaim_flag = 0; 5126 struct sk_buff *skb, *next; 5127 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5128 5129 list_for_each_entry_safe(skb, next, head, list) { 5130 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5131 struct list_head sublist; 5132 5133 /* Handle the previous sublist */ 5134 list_cut_before(&sublist, head, &skb->list); 5135 if (!list_empty(&sublist)) 5136 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5137 pfmemalloc = !pfmemalloc; 5138 /* See comments in __netif_receive_skb */ 5139 if (pfmemalloc) 5140 noreclaim_flag = memalloc_noreclaim_save(); 5141 else 5142 memalloc_noreclaim_restore(noreclaim_flag); 5143 } 5144 } 5145 /* Handle the remaining sublist */ 5146 if (!list_empty(head)) 5147 __netif_receive_skb_list_core(head, pfmemalloc); 5148 /* Restore pflags */ 5149 if (pfmemalloc) 5150 memalloc_noreclaim_restore(noreclaim_flag); 5151 } 5152 5153 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5154 { 5155 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5156 struct bpf_prog *new = xdp->prog; 5157 int ret = 0; 5158 5159 switch (xdp->command) { 5160 case XDP_SETUP_PROG: 5161 rcu_assign_pointer(dev->xdp_prog, new); 5162 if (old) 5163 bpf_prog_put(old); 5164 5165 if (old && !new) { 5166 static_branch_dec(&generic_xdp_needed_key); 5167 } else if (new && !old) { 5168 static_branch_inc(&generic_xdp_needed_key); 5169 dev_disable_lro(dev); 5170 dev_disable_gro_hw(dev); 5171 } 5172 break; 5173 5174 case XDP_QUERY_PROG: 5175 xdp->prog_id = old ? old->aux->id : 0; 5176 break; 5177 5178 default: 5179 ret = -EINVAL; 5180 break; 5181 } 5182 5183 return ret; 5184 } 5185 5186 static int netif_receive_skb_internal(struct sk_buff *skb) 5187 { 5188 int ret; 5189 5190 net_timestamp_check(netdev_tstamp_prequeue, skb); 5191 5192 if (skb_defer_rx_timestamp(skb)) 5193 return NET_RX_SUCCESS; 5194 5195 rcu_read_lock(); 5196 #ifdef CONFIG_RPS 5197 if (static_branch_unlikely(&rps_needed)) { 5198 struct rps_dev_flow voidflow, *rflow = &voidflow; 5199 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5200 5201 if (cpu >= 0) { 5202 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5203 rcu_read_unlock(); 5204 return ret; 5205 } 5206 } 5207 #endif 5208 ret = __netif_receive_skb(skb); 5209 rcu_read_unlock(); 5210 return ret; 5211 } 5212 5213 static void netif_receive_skb_list_internal(struct list_head *head) 5214 { 5215 struct sk_buff *skb, *next; 5216 struct list_head sublist; 5217 5218 INIT_LIST_HEAD(&sublist); 5219 list_for_each_entry_safe(skb, next, head, list) { 5220 net_timestamp_check(netdev_tstamp_prequeue, skb); 5221 skb_list_del_init(skb); 5222 if (!skb_defer_rx_timestamp(skb)) 5223 list_add_tail(&skb->list, &sublist); 5224 } 5225 list_splice_init(&sublist, head); 5226 5227 rcu_read_lock(); 5228 #ifdef CONFIG_RPS 5229 if (static_branch_unlikely(&rps_needed)) { 5230 list_for_each_entry_safe(skb, next, head, list) { 5231 struct rps_dev_flow voidflow, *rflow = &voidflow; 5232 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5233 5234 if (cpu >= 0) { 5235 /* Will be handled, remove from list */ 5236 skb_list_del_init(skb); 5237 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5238 } 5239 } 5240 } 5241 #endif 5242 __netif_receive_skb_list(head); 5243 rcu_read_unlock(); 5244 } 5245 5246 /** 5247 * netif_receive_skb - process receive buffer from network 5248 * @skb: buffer to process 5249 * 5250 * netif_receive_skb() is the main receive data processing function. 5251 * It always succeeds. The buffer may be dropped during processing 5252 * for congestion control or by the protocol layers. 5253 * 5254 * This function may only be called from softirq context and interrupts 5255 * should be enabled. 5256 * 5257 * Return values (usually ignored): 5258 * NET_RX_SUCCESS: no congestion 5259 * NET_RX_DROP: packet was dropped 5260 */ 5261 int netif_receive_skb(struct sk_buff *skb) 5262 { 5263 int ret; 5264 5265 trace_netif_receive_skb_entry(skb); 5266 5267 ret = netif_receive_skb_internal(skb); 5268 trace_netif_receive_skb_exit(ret); 5269 5270 return ret; 5271 } 5272 EXPORT_SYMBOL(netif_receive_skb); 5273 5274 /** 5275 * netif_receive_skb_list - process many receive buffers from network 5276 * @head: list of skbs to process. 5277 * 5278 * Since return value of netif_receive_skb() is normally ignored, and 5279 * wouldn't be meaningful for a list, this function returns void. 5280 * 5281 * This function may only be called from softirq context and interrupts 5282 * should be enabled. 5283 */ 5284 void netif_receive_skb_list(struct list_head *head) 5285 { 5286 struct sk_buff *skb; 5287 5288 if (list_empty(head)) 5289 return; 5290 if (trace_netif_receive_skb_list_entry_enabled()) { 5291 list_for_each_entry(skb, head, list) 5292 trace_netif_receive_skb_list_entry(skb); 5293 } 5294 netif_receive_skb_list_internal(head); 5295 trace_netif_receive_skb_list_exit(0); 5296 } 5297 EXPORT_SYMBOL(netif_receive_skb_list); 5298 5299 DEFINE_PER_CPU(struct work_struct, flush_works); 5300 5301 /* Network device is going away, flush any packets still pending */ 5302 static void flush_backlog(struct work_struct *work) 5303 { 5304 struct sk_buff *skb, *tmp; 5305 struct softnet_data *sd; 5306 5307 local_bh_disable(); 5308 sd = this_cpu_ptr(&softnet_data); 5309 5310 local_irq_disable(); 5311 rps_lock(sd); 5312 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5313 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5314 __skb_unlink(skb, &sd->input_pkt_queue); 5315 kfree_skb(skb); 5316 input_queue_head_incr(sd); 5317 } 5318 } 5319 rps_unlock(sd); 5320 local_irq_enable(); 5321 5322 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5323 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5324 __skb_unlink(skb, &sd->process_queue); 5325 kfree_skb(skb); 5326 input_queue_head_incr(sd); 5327 } 5328 } 5329 local_bh_enable(); 5330 } 5331 5332 static void flush_all_backlogs(void) 5333 { 5334 unsigned int cpu; 5335 5336 get_online_cpus(); 5337 5338 for_each_online_cpu(cpu) 5339 queue_work_on(cpu, system_highpri_wq, 5340 per_cpu_ptr(&flush_works, cpu)); 5341 5342 for_each_online_cpu(cpu) 5343 flush_work(per_cpu_ptr(&flush_works, cpu)); 5344 5345 put_online_cpus(); 5346 } 5347 5348 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5349 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5350 static int napi_gro_complete(struct sk_buff *skb) 5351 { 5352 struct packet_offload *ptype; 5353 __be16 type = skb->protocol; 5354 struct list_head *head = &offload_base; 5355 int err = -ENOENT; 5356 5357 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5358 5359 if (NAPI_GRO_CB(skb)->count == 1) { 5360 skb_shinfo(skb)->gso_size = 0; 5361 goto out; 5362 } 5363 5364 rcu_read_lock(); 5365 list_for_each_entry_rcu(ptype, head, list) { 5366 if (ptype->type != type || !ptype->callbacks.gro_complete) 5367 continue; 5368 5369 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5370 ipv6_gro_complete, inet_gro_complete, 5371 skb, 0); 5372 break; 5373 } 5374 rcu_read_unlock(); 5375 5376 if (err) { 5377 WARN_ON(&ptype->list == head); 5378 kfree_skb(skb); 5379 return NET_RX_SUCCESS; 5380 } 5381 5382 out: 5383 return netif_receive_skb_internal(skb); 5384 } 5385 5386 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5387 bool flush_old) 5388 { 5389 struct list_head *head = &napi->gro_hash[index].list; 5390 struct sk_buff *skb, *p; 5391 5392 list_for_each_entry_safe_reverse(skb, p, head, list) { 5393 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5394 return; 5395 skb_list_del_init(skb); 5396 napi_gro_complete(skb); 5397 napi->gro_hash[index].count--; 5398 } 5399 5400 if (!napi->gro_hash[index].count) 5401 __clear_bit(index, &napi->gro_bitmask); 5402 } 5403 5404 /* napi->gro_hash[].list contains packets ordered by age. 5405 * youngest packets at the head of it. 5406 * Complete skbs in reverse order to reduce latencies. 5407 */ 5408 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5409 { 5410 unsigned long bitmask = napi->gro_bitmask; 5411 unsigned int i, base = ~0U; 5412 5413 while ((i = ffs(bitmask)) != 0) { 5414 bitmask >>= i; 5415 base += i; 5416 __napi_gro_flush_chain(napi, base, flush_old); 5417 } 5418 } 5419 EXPORT_SYMBOL(napi_gro_flush); 5420 5421 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5422 struct sk_buff *skb) 5423 { 5424 unsigned int maclen = skb->dev->hard_header_len; 5425 u32 hash = skb_get_hash_raw(skb); 5426 struct list_head *head; 5427 struct sk_buff *p; 5428 5429 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5430 list_for_each_entry(p, head, list) { 5431 unsigned long diffs; 5432 5433 NAPI_GRO_CB(p)->flush = 0; 5434 5435 if (hash != skb_get_hash_raw(p)) { 5436 NAPI_GRO_CB(p)->same_flow = 0; 5437 continue; 5438 } 5439 5440 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5441 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5442 if (skb_vlan_tag_present(p)) 5443 diffs |= p->vlan_tci ^ skb->vlan_tci; 5444 diffs |= skb_metadata_dst_cmp(p, skb); 5445 diffs |= skb_metadata_differs(p, skb); 5446 if (maclen == ETH_HLEN) 5447 diffs |= compare_ether_header(skb_mac_header(p), 5448 skb_mac_header(skb)); 5449 else if (!diffs) 5450 diffs = memcmp(skb_mac_header(p), 5451 skb_mac_header(skb), 5452 maclen); 5453 NAPI_GRO_CB(p)->same_flow = !diffs; 5454 } 5455 5456 return head; 5457 } 5458 5459 static void skb_gro_reset_offset(struct sk_buff *skb) 5460 { 5461 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5462 const skb_frag_t *frag0 = &pinfo->frags[0]; 5463 5464 NAPI_GRO_CB(skb)->data_offset = 0; 5465 NAPI_GRO_CB(skb)->frag0 = NULL; 5466 NAPI_GRO_CB(skb)->frag0_len = 0; 5467 5468 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 5469 pinfo->nr_frags && 5470 !PageHighMem(skb_frag_page(frag0))) { 5471 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5472 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5473 skb_frag_size(frag0), 5474 skb->end - skb->tail); 5475 } 5476 } 5477 5478 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5479 { 5480 struct skb_shared_info *pinfo = skb_shinfo(skb); 5481 5482 BUG_ON(skb->end - skb->tail < grow); 5483 5484 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5485 5486 skb->data_len -= grow; 5487 skb->tail += grow; 5488 5489 pinfo->frags[0].page_offset += grow; 5490 skb_frag_size_sub(&pinfo->frags[0], grow); 5491 5492 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5493 skb_frag_unref(skb, 0); 5494 memmove(pinfo->frags, pinfo->frags + 1, 5495 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5496 } 5497 } 5498 5499 static void gro_flush_oldest(struct list_head *head) 5500 { 5501 struct sk_buff *oldest; 5502 5503 oldest = list_last_entry(head, struct sk_buff, list); 5504 5505 /* We are called with head length >= MAX_GRO_SKBS, so this is 5506 * impossible. 5507 */ 5508 if (WARN_ON_ONCE(!oldest)) 5509 return; 5510 5511 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5512 * SKB to the chain. 5513 */ 5514 skb_list_del_init(oldest); 5515 napi_gro_complete(oldest); 5516 } 5517 5518 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5519 struct sk_buff *)); 5520 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5521 struct sk_buff *)); 5522 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5523 { 5524 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5525 struct list_head *head = &offload_base; 5526 struct packet_offload *ptype; 5527 __be16 type = skb->protocol; 5528 struct list_head *gro_head; 5529 struct sk_buff *pp = NULL; 5530 enum gro_result ret; 5531 int same_flow; 5532 int grow; 5533 5534 if (netif_elide_gro(skb->dev)) 5535 goto normal; 5536 5537 gro_head = gro_list_prepare(napi, skb); 5538 5539 rcu_read_lock(); 5540 list_for_each_entry_rcu(ptype, head, list) { 5541 if (ptype->type != type || !ptype->callbacks.gro_receive) 5542 continue; 5543 5544 skb_set_network_header(skb, skb_gro_offset(skb)); 5545 skb_reset_mac_len(skb); 5546 NAPI_GRO_CB(skb)->same_flow = 0; 5547 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5548 NAPI_GRO_CB(skb)->free = 0; 5549 NAPI_GRO_CB(skb)->encap_mark = 0; 5550 NAPI_GRO_CB(skb)->recursion_counter = 0; 5551 NAPI_GRO_CB(skb)->is_fou = 0; 5552 NAPI_GRO_CB(skb)->is_atomic = 1; 5553 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5554 5555 /* Setup for GRO checksum validation */ 5556 switch (skb->ip_summed) { 5557 case CHECKSUM_COMPLETE: 5558 NAPI_GRO_CB(skb)->csum = skb->csum; 5559 NAPI_GRO_CB(skb)->csum_valid = 1; 5560 NAPI_GRO_CB(skb)->csum_cnt = 0; 5561 break; 5562 case CHECKSUM_UNNECESSARY: 5563 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5564 NAPI_GRO_CB(skb)->csum_valid = 0; 5565 break; 5566 default: 5567 NAPI_GRO_CB(skb)->csum_cnt = 0; 5568 NAPI_GRO_CB(skb)->csum_valid = 0; 5569 } 5570 5571 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5572 ipv6_gro_receive, inet_gro_receive, 5573 gro_head, skb); 5574 break; 5575 } 5576 rcu_read_unlock(); 5577 5578 if (&ptype->list == head) 5579 goto normal; 5580 5581 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5582 ret = GRO_CONSUMED; 5583 goto ok; 5584 } 5585 5586 same_flow = NAPI_GRO_CB(skb)->same_flow; 5587 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5588 5589 if (pp) { 5590 skb_list_del_init(pp); 5591 napi_gro_complete(pp); 5592 napi->gro_hash[hash].count--; 5593 } 5594 5595 if (same_flow) 5596 goto ok; 5597 5598 if (NAPI_GRO_CB(skb)->flush) 5599 goto normal; 5600 5601 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5602 gro_flush_oldest(gro_head); 5603 } else { 5604 napi->gro_hash[hash].count++; 5605 } 5606 NAPI_GRO_CB(skb)->count = 1; 5607 NAPI_GRO_CB(skb)->age = jiffies; 5608 NAPI_GRO_CB(skb)->last = skb; 5609 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5610 list_add(&skb->list, gro_head); 5611 ret = GRO_HELD; 5612 5613 pull: 5614 grow = skb_gro_offset(skb) - skb_headlen(skb); 5615 if (grow > 0) 5616 gro_pull_from_frag0(skb, grow); 5617 ok: 5618 if (napi->gro_hash[hash].count) { 5619 if (!test_bit(hash, &napi->gro_bitmask)) 5620 __set_bit(hash, &napi->gro_bitmask); 5621 } else if (test_bit(hash, &napi->gro_bitmask)) { 5622 __clear_bit(hash, &napi->gro_bitmask); 5623 } 5624 5625 return ret; 5626 5627 normal: 5628 ret = GRO_NORMAL; 5629 goto pull; 5630 } 5631 5632 struct packet_offload *gro_find_receive_by_type(__be16 type) 5633 { 5634 struct list_head *offload_head = &offload_base; 5635 struct packet_offload *ptype; 5636 5637 list_for_each_entry_rcu(ptype, offload_head, list) { 5638 if (ptype->type != type || !ptype->callbacks.gro_receive) 5639 continue; 5640 return ptype; 5641 } 5642 return NULL; 5643 } 5644 EXPORT_SYMBOL(gro_find_receive_by_type); 5645 5646 struct packet_offload *gro_find_complete_by_type(__be16 type) 5647 { 5648 struct list_head *offload_head = &offload_base; 5649 struct packet_offload *ptype; 5650 5651 list_for_each_entry_rcu(ptype, offload_head, list) { 5652 if (ptype->type != type || !ptype->callbacks.gro_complete) 5653 continue; 5654 return ptype; 5655 } 5656 return NULL; 5657 } 5658 EXPORT_SYMBOL(gro_find_complete_by_type); 5659 5660 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5661 { 5662 skb_dst_drop(skb); 5663 secpath_reset(skb); 5664 kmem_cache_free(skbuff_head_cache, skb); 5665 } 5666 5667 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5668 { 5669 switch (ret) { 5670 case GRO_NORMAL: 5671 if (netif_receive_skb_internal(skb)) 5672 ret = GRO_DROP; 5673 break; 5674 5675 case GRO_DROP: 5676 kfree_skb(skb); 5677 break; 5678 5679 case GRO_MERGED_FREE: 5680 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5681 napi_skb_free_stolen_head(skb); 5682 else 5683 __kfree_skb(skb); 5684 break; 5685 5686 case GRO_HELD: 5687 case GRO_MERGED: 5688 case GRO_CONSUMED: 5689 break; 5690 } 5691 5692 return ret; 5693 } 5694 5695 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5696 { 5697 gro_result_t ret; 5698 5699 skb_mark_napi_id(skb, napi); 5700 trace_napi_gro_receive_entry(skb); 5701 5702 skb_gro_reset_offset(skb); 5703 5704 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb); 5705 trace_napi_gro_receive_exit(ret); 5706 5707 return ret; 5708 } 5709 EXPORT_SYMBOL(napi_gro_receive); 5710 5711 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5712 { 5713 if (unlikely(skb->pfmemalloc)) { 5714 consume_skb(skb); 5715 return; 5716 } 5717 __skb_pull(skb, skb_headlen(skb)); 5718 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5719 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5720 __vlan_hwaccel_clear_tag(skb); 5721 skb->dev = napi->dev; 5722 skb->skb_iif = 0; 5723 5724 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5725 skb->pkt_type = PACKET_HOST; 5726 5727 skb->encapsulation = 0; 5728 skb_shinfo(skb)->gso_type = 0; 5729 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5730 secpath_reset(skb); 5731 5732 napi->skb = skb; 5733 } 5734 5735 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5736 { 5737 struct sk_buff *skb = napi->skb; 5738 5739 if (!skb) { 5740 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5741 if (skb) { 5742 napi->skb = skb; 5743 skb_mark_napi_id(skb, napi); 5744 } 5745 } 5746 return skb; 5747 } 5748 EXPORT_SYMBOL(napi_get_frags); 5749 5750 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5751 struct sk_buff *skb, 5752 gro_result_t ret) 5753 { 5754 switch (ret) { 5755 case GRO_NORMAL: 5756 case GRO_HELD: 5757 __skb_push(skb, ETH_HLEN); 5758 skb->protocol = eth_type_trans(skb, skb->dev); 5759 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5760 ret = GRO_DROP; 5761 break; 5762 5763 case GRO_DROP: 5764 napi_reuse_skb(napi, skb); 5765 break; 5766 5767 case GRO_MERGED_FREE: 5768 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5769 napi_skb_free_stolen_head(skb); 5770 else 5771 napi_reuse_skb(napi, skb); 5772 break; 5773 5774 case GRO_MERGED: 5775 case GRO_CONSUMED: 5776 break; 5777 } 5778 5779 return ret; 5780 } 5781 5782 /* Upper GRO stack assumes network header starts at gro_offset=0 5783 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5784 * We copy ethernet header into skb->data to have a common layout. 5785 */ 5786 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5787 { 5788 struct sk_buff *skb = napi->skb; 5789 const struct ethhdr *eth; 5790 unsigned int hlen = sizeof(*eth); 5791 5792 napi->skb = NULL; 5793 5794 skb_reset_mac_header(skb); 5795 skb_gro_reset_offset(skb); 5796 5797 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5798 eth = skb_gro_header_slow(skb, hlen, 0); 5799 if (unlikely(!eth)) { 5800 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5801 __func__, napi->dev->name); 5802 napi_reuse_skb(napi, skb); 5803 return NULL; 5804 } 5805 } else { 5806 eth = (const struct ethhdr *)skb->data; 5807 gro_pull_from_frag0(skb, hlen); 5808 NAPI_GRO_CB(skb)->frag0 += hlen; 5809 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5810 } 5811 __skb_pull(skb, hlen); 5812 5813 /* 5814 * This works because the only protocols we care about don't require 5815 * special handling. 5816 * We'll fix it up properly in napi_frags_finish() 5817 */ 5818 skb->protocol = eth->h_proto; 5819 5820 return skb; 5821 } 5822 5823 gro_result_t napi_gro_frags(struct napi_struct *napi) 5824 { 5825 gro_result_t ret; 5826 struct sk_buff *skb = napi_frags_skb(napi); 5827 5828 if (!skb) 5829 return GRO_DROP; 5830 5831 trace_napi_gro_frags_entry(skb); 5832 5833 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5834 trace_napi_gro_frags_exit(ret); 5835 5836 return ret; 5837 } 5838 EXPORT_SYMBOL(napi_gro_frags); 5839 5840 /* Compute the checksum from gro_offset and return the folded value 5841 * after adding in any pseudo checksum. 5842 */ 5843 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5844 { 5845 __wsum wsum; 5846 __sum16 sum; 5847 5848 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5849 5850 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5851 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5852 /* See comments in __skb_checksum_complete(). */ 5853 if (likely(!sum)) { 5854 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5855 !skb->csum_complete_sw) 5856 netdev_rx_csum_fault(skb->dev, skb); 5857 } 5858 5859 NAPI_GRO_CB(skb)->csum = wsum; 5860 NAPI_GRO_CB(skb)->csum_valid = 1; 5861 5862 return sum; 5863 } 5864 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5865 5866 static void net_rps_send_ipi(struct softnet_data *remsd) 5867 { 5868 #ifdef CONFIG_RPS 5869 while (remsd) { 5870 struct softnet_data *next = remsd->rps_ipi_next; 5871 5872 if (cpu_online(remsd->cpu)) 5873 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5874 remsd = next; 5875 } 5876 #endif 5877 } 5878 5879 /* 5880 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5881 * Note: called with local irq disabled, but exits with local irq enabled. 5882 */ 5883 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5884 { 5885 #ifdef CONFIG_RPS 5886 struct softnet_data *remsd = sd->rps_ipi_list; 5887 5888 if (remsd) { 5889 sd->rps_ipi_list = NULL; 5890 5891 local_irq_enable(); 5892 5893 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5894 net_rps_send_ipi(remsd); 5895 } else 5896 #endif 5897 local_irq_enable(); 5898 } 5899 5900 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5901 { 5902 #ifdef CONFIG_RPS 5903 return sd->rps_ipi_list != NULL; 5904 #else 5905 return false; 5906 #endif 5907 } 5908 5909 static int process_backlog(struct napi_struct *napi, int quota) 5910 { 5911 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5912 bool again = true; 5913 int work = 0; 5914 5915 /* Check if we have pending ipi, its better to send them now, 5916 * not waiting net_rx_action() end. 5917 */ 5918 if (sd_has_rps_ipi_waiting(sd)) { 5919 local_irq_disable(); 5920 net_rps_action_and_irq_enable(sd); 5921 } 5922 5923 napi->weight = dev_rx_weight; 5924 while (again) { 5925 struct sk_buff *skb; 5926 5927 while ((skb = __skb_dequeue(&sd->process_queue))) { 5928 rcu_read_lock(); 5929 __netif_receive_skb(skb); 5930 rcu_read_unlock(); 5931 input_queue_head_incr(sd); 5932 if (++work >= quota) 5933 return work; 5934 5935 } 5936 5937 local_irq_disable(); 5938 rps_lock(sd); 5939 if (skb_queue_empty(&sd->input_pkt_queue)) { 5940 /* 5941 * Inline a custom version of __napi_complete(). 5942 * only current cpu owns and manipulates this napi, 5943 * and NAPI_STATE_SCHED is the only possible flag set 5944 * on backlog. 5945 * We can use a plain write instead of clear_bit(), 5946 * and we dont need an smp_mb() memory barrier. 5947 */ 5948 napi->state = 0; 5949 again = false; 5950 } else { 5951 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5952 &sd->process_queue); 5953 } 5954 rps_unlock(sd); 5955 local_irq_enable(); 5956 } 5957 5958 return work; 5959 } 5960 5961 /** 5962 * __napi_schedule - schedule for receive 5963 * @n: entry to schedule 5964 * 5965 * The entry's receive function will be scheduled to run. 5966 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5967 */ 5968 void __napi_schedule(struct napi_struct *n) 5969 { 5970 unsigned long flags; 5971 5972 local_irq_save(flags); 5973 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5974 local_irq_restore(flags); 5975 } 5976 EXPORT_SYMBOL(__napi_schedule); 5977 5978 /** 5979 * napi_schedule_prep - check if napi can be scheduled 5980 * @n: napi context 5981 * 5982 * Test if NAPI routine is already running, and if not mark 5983 * it as running. This is used as a condition variable 5984 * insure only one NAPI poll instance runs. We also make 5985 * sure there is no pending NAPI disable. 5986 */ 5987 bool napi_schedule_prep(struct napi_struct *n) 5988 { 5989 unsigned long val, new; 5990 5991 do { 5992 val = READ_ONCE(n->state); 5993 if (unlikely(val & NAPIF_STATE_DISABLE)) 5994 return false; 5995 new = val | NAPIF_STATE_SCHED; 5996 5997 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5998 * This was suggested by Alexander Duyck, as compiler 5999 * emits better code than : 6000 * if (val & NAPIF_STATE_SCHED) 6001 * new |= NAPIF_STATE_MISSED; 6002 */ 6003 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6004 NAPIF_STATE_MISSED; 6005 } while (cmpxchg(&n->state, val, new) != val); 6006 6007 return !(val & NAPIF_STATE_SCHED); 6008 } 6009 EXPORT_SYMBOL(napi_schedule_prep); 6010 6011 /** 6012 * __napi_schedule_irqoff - schedule for receive 6013 * @n: entry to schedule 6014 * 6015 * Variant of __napi_schedule() assuming hard irqs are masked 6016 */ 6017 void __napi_schedule_irqoff(struct napi_struct *n) 6018 { 6019 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6020 } 6021 EXPORT_SYMBOL(__napi_schedule_irqoff); 6022 6023 bool napi_complete_done(struct napi_struct *n, int work_done) 6024 { 6025 unsigned long flags, val, new; 6026 6027 /* 6028 * 1) Don't let napi dequeue from the cpu poll list 6029 * just in case its running on a different cpu. 6030 * 2) If we are busy polling, do nothing here, we have 6031 * the guarantee we will be called later. 6032 */ 6033 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6034 NAPIF_STATE_IN_BUSY_POLL))) 6035 return false; 6036 6037 if (n->gro_bitmask) { 6038 unsigned long timeout = 0; 6039 6040 if (work_done) 6041 timeout = n->dev->gro_flush_timeout; 6042 6043 /* When the NAPI instance uses a timeout and keeps postponing 6044 * it, we need to bound somehow the time packets are kept in 6045 * the GRO layer 6046 */ 6047 napi_gro_flush(n, !!timeout); 6048 if (timeout) 6049 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6050 HRTIMER_MODE_REL_PINNED); 6051 } 6052 if (unlikely(!list_empty(&n->poll_list))) { 6053 /* If n->poll_list is not empty, we need to mask irqs */ 6054 local_irq_save(flags); 6055 list_del_init(&n->poll_list); 6056 local_irq_restore(flags); 6057 } 6058 6059 do { 6060 val = READ_ONCE(n->state); 6061 6062 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6063 6064 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6065 6066 /* If STATE_MISSED was set, leave STATE_SCHED set, 6067 * because we will call napi->poll() one more time. 6068 * This C code was suggested by Alexander Duyck to help gcc. 6069 */ 6070 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6071 NAPIF_STATE_SCHED; 6072 } while (cmpxchg(&n->state, val, new) != val); 6073 6074 if (unlikely(val & NAPIF_STATE_MISSED)) { 6075 __napi_schedule(n); 6076 return false; 6077 } 6078 6079 return true; 6080 } 6081 EXPORT_SYMBOL(napi_complete_done); 6082 6083 /* must be called under rcu_read_lock(), as we dont take a reference */ 6084 static struct napi_struct *napi_by_id(unsigned int napi_id) 6085 { 6086 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6087 struct napi_struct *napi; 6088 6089 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6090 if (napi->napi_id == napi_id) 6091 return napi; 6092 6093 return NULL; 6094 } 6095 6096 #if defined(CONFIG_NET_RX_BUSY_POLL) 6097 6098 #define BUSY_POLL_BUDGET 8 6099 6100 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6101 { 6102 int rc; 6103 6104 /* Busy polling means there is a high chance device driver hard irq 6105 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6106 * set in napi_schedule_prep(). 6107 * Since we are about to call napi->poll() once more, we can safely 6108 * clear NAPI_STATE_MISSED. 6109 * 6110 * Note: x86 could use a single "lock and ..." instruction 6111 * to perform these two clear_bit() 6112 */ 6113 clear_bit(NAPI_STATE_MISSED, &napi->state); 6114 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6115 6116 local_bh_disable(); 6117 6118 /* All we really want here is to re-enable device interrupts. 6119 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6120 */ 6121 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6122 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6123 netpoll_poll_unlock(have_poll_lock); 6124 if (rc == BUSY_POLL_BUDGET) 6125 __napi_schedule(napi); 6126 local_bh_enable(); 6127 } 6128 6129 void napi_busy_loop(unsigned int napi_id, 6130 bool (*loop_end)(void *, unsigned long), 6131 void *loop_end_arg) 6132 { 6133 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6134 int (*napi_poll)(struct napi_struct *napi, int budget); 6135 void *have_poll_lock = NULL; 6136 struct napi_struct *napi; 6137 6138 restart: 6139 napi_poll = NULL; 6140 6141 rcu_read_lock(); 6142 6143 napi = napi_by_id(napi_id); 6144 if (!napi) 6145 goto out; 6146 6147 preempt_disable(); 6148 for (;;) { 6149 int work = 0; 6150 6151 local_bh_disable(); 6152 if (!napi_poll) { 6153 unsigned long val = READ_ONCE(napi->state); 6154 6155 /* If multiple threads are competing for this napi, 6156 * we avoid dirtying napi->state as much as we can. 6157 */ 6158 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6159 NAPIF_STATE_IN_BUSY_POLL)) 6160 goto count; 6161 if (cmpxchg(&napi->state, val, 6162 val | NAPIF_STATE_IN_BUSY_POLL | 6163 NAPIF_STATE_SCHED) != val) 6164 goto count; 6165 have_poll_lock = netpoll_poll_lock(napi); 6166 napi_poll = napi->poll; 6167 } 6168 work = napi_poll(napi, BUSY_POLL_BUDGET); 6169 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6170 count: 6171 if (work > 0) 6172 __NET_ADD_STATS(dev_net(napi->dev), 6173 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6174 local_bh_enable(); 6175 6176 if (!loop_end || loop_end(loop_end_arg, start_time)) 6177 break; 6178 6179 if (unlikely(need_resched())) { 6180 if (napi_poll) 6181 busy_poll_stop(napi, have_poll_lock); 6182 preempt_enable(); 6183 rcu_read_unlock(); 6184 cond_resched(); 6185 if (loop_end(loop_end_arg, start_time)) 6186 return; 6187 goto restart; 6188 } 6189 cpu_relax(); 6190 } 6191 if (napi_poll) 6192 busy_poll_stop(napi, have_poll_lock); 6193 preempt_enable(); 6194 out: 6195 rcu_read_unlock(); 6196 } 6197 EXPORT_SYMBOL(napi_busy_loop); 6198 6199 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6200 6201 static void napi_hash_add(struct napi_struct *napi) 6202 { 6203 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6204 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6205 return; 6206 6207 spin_lock(&napi_hash_lock); 6208 6209 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6210 do { 6211 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6212 napi_gen_id = MIN_NAPI_ID; 6213 } while (napi_by_id(napi_gen_id)); 6214 napi->napi_id = napi_gen_id; 6215 6216 hlist_add_head_rcu(&napi->napi_hash_node, 6217 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6218 6219 spin_unlock(&napi_hash_lock); 6220 } 6221 6222 /* Warning : caller is responsible to make sure rcu grace period 6223 * is respected before freeing memory containing @napi 6224 */ 6225 bool napi_hash_del(struct napi_struct *napi) 6226 { 6227 bool rcu_sync_needed = false; 6228 6229 spin_lock(&napi_hash_lock); 6230 6231 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6232 rcu_sync_needed = true; 6233 hlist_del_rcu(&napi->napi_hash_node); 6234 } 6235 spin_unlock(&napi_hash_lock); 6236 return rcu_sync_needed; 6237 } 6238 EXPORT_SYMBOL_GPL(napi_hash_del); 6239 6240 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6241 { 6242 struct napi_struct *napi; 6243 6244 napi = container_of(timer, struct napi_struct, timer); 6245 6246 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6247 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6248 */ 6249 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6250 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6251 __napi_schedule_irqoff(napi); 6252 6253 return HRTIMER_NORESTART; 6254 } 6255 6256 static void init_gro_hash(struct napi_struct *napi) 6257 { 6258 int i; 6259 6260 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6261 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6262 napi->gro_hash[i].count = 0; 6263 } 6264 napi->gro_bitmask = 0; 6265 } 6266 6267 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6268 int (*poll)(struct napi_struct *, int), int weight) 6269 { 6270 INIT_LIST_HEAD(&napi->poll_list); 6271 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6272 napi->timer.function = napi_watchdog; 6273 init_gro_hash(napi); 6274 napi->skb = NULL; 6275 napi->poll = poll; 6276 if (weight > NAPI_POLL_WEIGHT) 6277 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6278 weight); 6279 napi->weight = weight; 6280 list_add(&napi->dev_list, &dev->napi_list); 6281 napi->dev = dev; 6282 #ifdef CONFIG_NETPOLL 6283 napi->poll_owner = -1; 6284 #endif 6285 set_bit(NAPI_STATE_SCHED, &napi->state); 6286 napi_hash_add(napi); 6287 } 6288 EXPORT_SYMBOL(netif_napi_add); 6289 6290 void napi_disable(struct napi_struct *n) 6291 { 6292 might_sleep(); 6293 set_bit(NAPI_STATE_DISABLE, &n->state); 6294 6295 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6296 msleep(1); 6297 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6298 msleep(1); 6299 6300 hrtimer_cancel(&n->timer); 6301 6302 clear_bit(NAPI_STATE_DISABLE, &n->state); 6303 } 6304 EXPORT_SYMBOL(napi_disable); 6305 6306 static void flush_gro_hash(struct napi_struct *napi) 6307 { 6308 int i; 6309 6310 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6311 struct sk_buff *skb, *n; 6312 6313 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6314 kfree_skb(skb); 6315 napi->gro_hash[i].count = 0; 6316 } 6317 } 6318 6319 /* Must be called in process context */ 6320 void netif_napi_del(struct napi_struct *napi) 6321 { 6322 might_sleep(); 6323 if (napi_hash_del(napi)) 6324 synchronize_net(); 6325 list_del_init(&napi->dev_list); 6326 napi_free_frags(napi); 6327 6328 flush_gro_hash(napi); 6329 napi->gro_bitmask = 0; 6330 } 6331 EXPORT_SYMBOL(netif_napi_del); 6332 6333 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6334 { 6335 void *have; 6336 int work, weight; 6337 6338 list_del_init(&n->poll_list); 6339 6340 have = netpoll_poll_lock(n); 6341 6342 weight = n->weight; 6343 6344 /* This NAPI_STATE_SCHED test is for avoiding a race 6345 * with netpoll's poll_napi(). Only the entity which 6346 * obtains the lock and sees NAPI_STATE_SCHED set will 6347 * actually make the ->poll() call. Therefore we avoid 6348 * accidentally calling ->poll() when NAPI is not scheduled. 6349 */ 6350 work = 0; 6351 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6352 work = n->poll(n, weight); 6353 trace_napi_poll(n, work, weight); 6354 } 6355 6356 WARN_ON_ONCE(work > weight); 6357 6358 if (likely(work < weight)) 6359 goto out_unlock; 6360 6361 /* Drivers must not modify the NAPI state if they 6362 * consume the entire weight. In such cases this code 6363 * still "owns" the NAPI instance and therefore can 6364 * move the instance around on the list at-will. 6365 */ 6366 if (unlikely(napi_disable_pending(n))) { 6367 napi_complete(n); 6368 goto out_unlock; 6369 } 6370 6371 if (n->gro_bitmask) { 6372 /* flush too old packets 6373 * If HZ < 1000, flush all packets. 6374 */ 6375 napi_gro_flush(n, HZ >= 1000); 6376 } 6377 6378 /* Some drivers may have called napi_schedule 6379 * prior to exhausting their budget. 6380 */ 6381 if (unlikely(!list_empty(&n->poll_list))) { 6382 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6383 n->dev ? n->dev->name : "backlog"); 6384 goto out_unlock; 6385 } 6386 6387 list_add_tail(&n->poll_list, repoll); 6388 6389 out_unlock: 6390 netpoll_poll_unlock(have); 6391 6392 return work; 6393 } 6394 6395 static __latent_entropy void net_rx_action(struct softirq_action *h) 6396 { 6397 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6398 unsigned long time_limit = jiffies + 6399 usecs_to_jiffies(netdev_budget_usecs); 6400 int budget = netdev_budget; 6401 LIST_HEAD(list); 6402 LIST_HEAD(repoll); 6403 6404 local_irq_disable(); 6405 list_splice_init(&sd->poll_list, &list); 6406 local_irq_enable(); 6407 6408 for (;;) { 6409 struct napi_struct *n; 6410 6411 if (list_empty(&list)) { 6412 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6413 goto out; 6414 break; 6415 } 6416 6417 n = list_first_entry(&list, struct napi_struct, poll_list); 6418 budget -= napi_poll(n, &repoll); 6419 6420 /* If softirq window is exhausted then punt. 6421 * Allow this to run for 2 jiffies since which will allow 6422 * an average latency of 1.5/HZ. 6423 */ 6424 if (unlikely(budget <= 0 || 6425 time_after_eq(jiffies, time_limit))) { 6426 sd->time_squeeze++; 6427 break; 6428 } 6429 } 6430 6431 local_irq_disable(); 6432 6433 list_splice_tail_init(&sd->poll_list, &list); 6434 list_splice_tail(&repoll, &list); 6435 list_splice(&list, &sd->poll_list); 6436 if (!list_empty(&sd->poll_list)) 6437 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6438 6439 net_rps_action_and_irq_enable(sd); 6440 out: 6441 __kfree_skb_flush(); 6442 } 6443 6444 struct netdev_adjacent { 6445 struct net_device *dev; 6446 6447 /* upper master flag, there can only be one master device per list */ 6448 bool master; 6449 6450 /* counter for the number of times this device was added to us */ 6451 u16 ref_nr; 6452 6453 /* private field for the users */ 6454 void *private; 6455 6456 struct list_head list; 6457 struct rcu_head rcu; 6458 }; 6459 6460 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6461 struct list_head *adj_list) 6462 { 6463 struct netdev_adjacent *adj; 6464 6465 list_for_each_entry(adj, adj_list, list) { 6466 if (adj->dev == adj_dev) 6467 return adj; 6468 } 6469 return NULL; 6470 } 6471 6472 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6473 { 6474 struct net_device *dev = data; 6475 6476 return upper_dev == dev; 6477 } 6478 6479 /** 6480 * netdev_has_upper_dev - Check if device is linked to an upper device 6481 * @dev: device 6482 * @upper_dev: upper device to check 6483 * 6484 * Find out if a device is linked to specified upper device and return true 6485 * in case it is. Note that this checks only immediate upper device, 6486 * not through a complete stack of devices. The caller must hold the RTNL lock. 6487 */ 6488 bool netdev_has_upper_dev(struct net_device *dev, 6489 struct net_device *upper_dev) 6490 { 6491 ASSERT_RTNL(); 6492 6493 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6494 upper_dev); 6495 } 6496 EXPORT_SYMBOL(netdev_has_upper_dev); 6497 6498 /** 6499 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6500 * @dev: device 6501 * @upper_dev: upper device to check 6502 * 6503 * Find out if a device is linked to specified upper device and return true 6504 * in case it is. Note that this checks the entire upper device chain. 6505 * The caller must hold rcu lock. 6506 */ 6507 6508 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6509 struct net_device *upper_dev) 6510 { 6511 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6512 upper_dev); 6513 } 6514 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6515 6516 /** 6517 * netdev_has_any_upper_dev - Check if device is linked to some device 6518 * @dev: device 6519 * 6520 * Find out if a device is linked to an upper device and return true in case 6521 * it is. The caller must hold the RTNL lock. 6522 */ 6523 bool netdev_has_any_upper_dev(struct net_device *dev) 6524 { 6525 ASSERT_RTNL(); 6526 6527 return !list_empty(&dev->adj_list.upper); 6528 } 6529 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6530 6531 /** 6532 * netdev_master_upper_dev_get - Get master upper device 6533 * @dev: device 6534 * 6535 * Find a master upper device and return pointer to it or NULL in case 6536 * it's not there. The caller must hold the RTNL lock. 6537 */ 6538 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6539 { 6540 struct netdev_adjacent *upper; 6541 6542 ASSERT_RTNL(); 6543 6544 if (list_empty(&dev->adj_list.upper)) 6545 return NULL; 6546 6547 upper = list_first_entry(&dev->adj_list.upper, 6548 struct netdev_adjacent, list); 6549 if (likely(upper->master)) 6550 return upper->dev; 6551 return NULL; 6552 } 6553 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6554 6555 /** 6556 * netdev_has_any_lower_dev - Check if device is linked to some device 6557 * @dev: device 6558 * 6559 * Find out if a device is linked to a lower device and return true in case 6560 * it is. The caller must hold the RTNL lock. 6561 */ 6562 static bool netdev_has_any_lower_dev(struct net_device *dev) 6563 { 6564 ASSERT_RTNL(); 6565 6566 return !list_empty(&dev->adj_list.lower); 6567 } 6568 6569 void *netdev_adjacent_get_private(struct list_head *adj_list) 6570 { 6571 struct netdev_adjacent *adj; 6572 6573 adj = list_entry(adj_list, struct netdev_adjacent, list); 6574 6575 return adj->private; 6576 } 6577 EXPORT_SYMBOL(netdev_adjacent_get_private); 6578 6579 /** 6580 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6581 * @dev: device 6582 * @iter: list_head ** of the current position 6583 * 6584 * Gets the next device from the dev's upper list, starting from iter 6585 * position. The caller must hold RCU read lock. 6586 */ 6587 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6588 struct list_head **iter) 6589 { 6590 struct netdev_adjacent *upper; 6591 6592 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6593 6594 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6595 6596 if (&upper->list == &dev->adj_list.upper) 6597 return NULL; 6598 6599 *iter = &upper->list; 6600 6601 return upper->dev; 6602 } 6603 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6604 6605 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6606 struct list_head **iter) 6607 { 6608 struct netdev_adjacent *upper; 6609 6610 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6611 6612 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6613 6614 if (&upper->list == &dev->adj_list.upper) 6615 return NULL; 6616 6617 *iter = &upper->list; 6618 6619 return upper->dev; 6620 } 6621 6622 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6623 int (*fn)(struct net_device *dev, 6624 void *data), 6625 void *data) 6626 { 6627 struct net_device *udev; 6628 struct list_head *iter; 6629 int ret; 6630 6631 for (iter = &dev->adj_list.upper, 6632 udev = netdev_next_upper_dev_rcu(dev, &iter); 6633 udev; 6634 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6635 /* first is the upper device itself */ 6636 ret = fn(udev, data); 6637 if (ret) 6638 return ret; 6639 6640 /* then look at all of its upper devices */ 6641 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6642 if (ret) 6643 return ret; 6644 } 6645 6646 return 0; 6647 } 6648 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6649 6650 /** 6651 * netdev_lower_get_next_private - Get the next ->private from the 6652 * lower neighbour list 6653 * @dev: device 6654 * @iter: list_head ** of the current position 6655 * 6656 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6657 * list, starting from iter position. The caller must hold either hold the 6658 * RTNL lock or its own locking that guarantees that the neighbour lower 6659 * list will remain unchanged. 6660 */ 6661 void *netdev_lower_get_next_private(struct net_device *dev, 6662 struct list_head **iter) 6663 { 6664 struct netdev_adjacent *lower; 6665 6666 lower = list_entry(*iter, struct netdev_adjacent, list); 6667 6668 if (&lower->list == &dev->adj_list.lower) 6669 return NULL; 6670 6671 *iter = lower->list.next; 6672 6673 return lower->private; 6674 } 6675 EXPORT_SYMBOL(netdev_lower_get_next_private); 6676 6677 /** 6678 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6679 * lower neighbour list, RCU 6680 * variant 6681 * @dev: device 6682 * @iter: list_head ** of the current position 6683 * 6684 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6685 * list, starting from iter position. The caller must hold RCU read lock. 6686 */ 6687 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6688 struct list_head **iter) 6689 { 6690 struct netdev_adjacent *lower; 6691 6692 WARN_ON_ONCE(!rcu_read_lock_held()); 6693 6694 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6695 6696 if (&lower->list == &dev->adj_list.lower) 6697 return NULL; 6698 6699 *iter = &lower->list; 6700 6701 return lower->private; 6702 } 6703 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6704 6705 /** 6706 * netdev_lower_get_next - Get the next device from the lower neighbour 6707 * list 6708 * @dev: device 6709 * @iter: list_head ** of the current position 6710 * 6711 * Gets the next netdev_adjacent from the dev's lower neighbour 6712 * list, starting from iter position. The caller must hold RTNL lock or 6713 * its own locking that guarantees that the neighbour lower 6714 * list will remain unchanged. 6715 */ 6716 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6717 { 6718 struct netdev_adjacent *lower; 6719 6720 lower = list_entry(*iter, struct netdev_adjacent, list); 6721 6722 if (&lower->list == &dev->adj_list.lower) 6723 return NULL; 6724 6725 *iter = lower->list.next; 6726 6727 return lower->dev; 6728 } 6729 EXPORT_SYMBOL(netdev_lower_get_next); 6730 6731 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6732 struct list_head **iter) 6733 { 6734 struct netdev_adjacent *lower; 6735 6736 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6737 6738 if (&lower->list == &dev->adj_list.lower) 6739 return NULL; 6740 6741 *iter = &lower->list; 6742 6743 return lower->dev; 6744 } 6745 6746 int netdev_walk_all_lower_dev(struct net_device *dev, 6747 int (*fn)(struct net_device *dev, 6748 void *data), 6749 void *data) 6750 { 6751 struct net_device *ldev; 6752 struct list_head *iter; 6753 int ret; 6754 6755 for (iter = &dev->adj_list.lower, 6756 ldev = netdev_next_lower_dev(dev, &iter); 6757 ldev; 6758 ldev = netdev_next_lower_dev(dev, &iter)) { 6759 /* first is the lower device itself */ 6760 ret = fn(ldev, data); 6761 if (ret) 6762 return ret; 6763 6764 /* then look at all of its lower devices */ 6765 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6766 if (ret) 6767 return ret; 6768 } 6769 6770 return 0; 6771 } 6772 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6773 6774 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6775 struct list_head **iter) 6776 { 6777 struct netdev_adjacent *lower; 6778 6779 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6780 if (&lower->list == &dev->adj_list.lower) 6781 return NULL; 6782 6783 *iter = &lower->list; 6784 6785 return lower->dev; 6786 } 6787 6788 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6789 int (*fn)(struct net_device *dev, 6790 void *data), 6791 void *data) 6792 { 6793 struct net_device *ldev; 6794 struct list_head *iter; 6795 int ret; 6796 6797 for (iter = &dev->adj_list.lower, 6798 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6799 ldev; 6800 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6801 /* first is the lower device itself */ 6802 ret = fn(ldev, data); 6803 if (ret) 6804 return ret; 6805 6806 /* then look at all of its lower devices */ 6807 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6808 if (ret) 6809 return ret; 6810 } 6811 6812 return 0; 6813 } 6814 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6815 6816 /** 6817 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6818 * lower neighbour list, RCU 6819 * variant 6820 * @dev: device 6821 * 6822 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6823 * list. The caller must hold RCU read lock. 6824 */ 6825 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6826 { 6827 struct netdev_adjacent *lower; 6828 6829 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6830 struct netdev_adjacent, list); 6831 if (lower) 6832 return lower->private; 6833 return NULL; 6834 } 6835 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6836 6837 /** 6838 * netdev_master_upper_dev_get_rcu - Get master upper device 6839 * @dev: device 6840 * 6841 * Find a master upper device and return pointer to it or NULL in case 6842 * it's not there. The caller must hold the RCU read lock. 6843 */ 6844 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6845 { 6846 struct netdev_adjacent *upper; 6847 6848 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6849 struct netdev_adjacent, list); 6850 if (upper && likely(upper->master)) 6851 return upper->dev; 6852 return NULL; 6853 } 6854 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6855 6856 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6857 struct net_device *adj_dev, 6858 struct list_head *dev_list) 6859 { 6860 char linkname[IFNAMSIZ+7]; 6861 6862 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6863 "upper_%s" : "lower_%s", adj_dev->name); 6864 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6865 linkname); 6866 } 6867 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6868 char *name, 6869 struct list_head *dev_list) 6870 { 6871 char linkname[IFNAMSIZ+7]; 6872 6873 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6874 "upper_%s" : "lower_%s", name); 6875 sysfs_remove_link(&(dev->dev.kobj), linkname); 6876 } 6877 6878 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6879 struct net_device *adj_dev, 6880 struct list_head *dev_list) 6881 { 6882 return (dev_list == &dev->adj_list.upper || 6883 dev_list == &dev->adj_list.lower) && 6884 net_eq(dev_net(dev), dev_net(adj_dev)); 6885 } 6886 6887 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6888 struct net_device *adj_dev, 6889 struct list_head *dev_list, 6890 void *private, bool master) 6891 { 6892 struct netdev_adjacent *adj; 6893 int ret; 6894 6895 adj = __netdev_find_adj(adj_dev, dev_list); 6896 6897 if (adj) { 6898 adj->ref_nr += 1; 6899 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6900 dev->name, adj_dev->name, adj->ref_nr); 6901 6902 return 0; 6903 } 6904 6905 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6906 if (!adj) 6907 return -ENOMEM; 6908 6909 adj->dev = adj_dev; 6910 adj->master = master; 6911 adj->ref_nr = 1; 6912 adj->private = private; 6913 dev_hold(adj_dev); 6914 6915 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6916 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6917 6918 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6919 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6920 if (ret) 6921 goto free_adj; 6922 } 6923 6924 /* Ensure that master link is always the first item in list. */ 6925 if (master) { 6926 ret = sysfs_create_link(&(dev->dev.kobj), 6927 &(adj_dev->dev.kobj), "master"); 6928 if (ret) 6929 goto remove_symlinks; 6930 6931 list_add_rcu(&adj->list, dev_list); 6932 } else { 6933 list_add_tail_rcu(&adj->list, dev_list); 6934 } 6935 6936 return 0; 6937 6938 remove_symlinks: 6939 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6940 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6941 free_adj: 6942 kfree(adj); 6943 dev_put(adj_dev); 6944 6945 return ret; 6946 } 6947 6948 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6949 struct net_device *adj_dev, 6950 u16 ref_nr, 6951 struct list_head *dev_list) 6952 { 6953 struct netdev_adjacent *adj; 6954 6955 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6956 dev->name, adj_dev->name, ref_nr); 6957 6958 adj = __netdev_find_adj(adj_dev, dev_list); 6959 6960 if (!adj) { 6961 pr_err("Adjacency does not exist for device %s from %s\n", 6962 dev->name, adj_dev->name); 6963 WARN_ON(1); 6964 return; 6965 } 6966 6967 if (adj->ref_nr > ref_nr) { 6968 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6969 dev->name, adj_dev->name, ref_nr, 6970 adj->ref_nr - ref_nr); 6971 adj->ref_nr -= ref_nr; 6972 return; 6973 } 6974 6975 if (adj->master) 6976 sysfs_remove_link(&(dev->dev.kobj), "master"); 6977 6978 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6979 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6980 6981 list_del_rcu(&adj->list); 6982 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6983 adj_dev->name, dev->name, adj_dev->name); 6984 dev_put(adj_dev); 6985 kfree_rcu(adj, rcu); 6986 } 6987 6988 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6989 struct net_device *upper_dev, 6990 struct list_head *up_list, 6991 struct list_head *down_list, 6992 void *private, bool master) 6993 { 6994 int ret; 6995 6996 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6997 private, master); 6998 if (ret) 6999 return ret; 7000 7001 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7002 private, false); 7003 if (ret) { 7004 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7005 return ret; 7006 } 7007 7008 return 0; 7009 } 7010 7011 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7012 struct net_device *upper_dev, 7013 u16 ref_nr, 7014 struct list_head *up_list, 7015 struct list_head *down_list) 7016 { 7017 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7018 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7019 } 7020 7021 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7022 struct net_device *upper_dev, 7023 void *private, bool master) 7024 { 7025 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7026 &dev->adj_list.upper, 7027 &upper_dev->adj_list.lower, 7028 private, master); 7029 } 7030 7031 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7032 struct net_device *upper_dev) 7033 { 7034 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7035 &dev->adj_list.upper, 7036 &upper_dev->adj_list.lower); 7037 } 7038 7039 static int __netdev_upper_dev_link(struct net_device *dev, 7040 struct net_device *upper_dev, bool master, 7041 void *upper_priv, void *upper_info, 7042 struct netlink_ext_ack *extack) 7043 { 7044 struct netdev_notifier_changeupper_info changeupper_info = { 7045 .info = { 7046 .dev = dev, 7047 .extack = extack, 7048 }, 7049 .upper_dev = upper_dev, 7050 .master = master, 7051 .linking = true, 7052 .upper_info = upper_info, 7053 }; 7054 struct net_device *master_dev; 7055 int ret = 0; 7056 7057 ASSERT_RTNL(); 7058 7059 if (dev == upper_dev) 7060 return -EBUSY; 7061 7062 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7063 if (netdev_has_upper_dev(upper_dev, dev)) 7064 return -EBUSY; 7065 7066 if (!master) { 7067 if (netdev_has_upper_dev(dev, upper_dev)) 7068 return -EEXIST; 7069 } else { 7070 master_dev = netdev_master_upper_dev_get(dev); 7071 if (master_dev) 7072 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7073 } 7074 7075 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7076 &changeupper_info.info); 7077 ret = notifier_to_errno(ret); 7078 if (ret) 7079 return ret; 7080 7081 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7082 master); 7083 if (ret) 7084 return ret; 7085 7086 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7087 &changeupper_info.info); 7088 ret = notifier_to_errno(ret); 7089 if (ret) 7090 goto rollback; 7091 7092 return 0; 7093 7094 rollback: 7095 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7096 7097 return ret; 7098 } 7099 7100 /** 7101 * netdev_upper_dev_link - Add a link to the upper device 7102 * @dev: device 7103 * @upper_dev: new upper device 7104 * @extack: netlink extended ack 7105 * 7106 * Adds a link to device which is upper to this one. The caller must hold 7107 * the RTNL lock. On a failure a negative errno code is returned. 7108 * On success the reference counts are adjusted and the function 7109 * returns zero. 7110 */ 7111 int netdev_upper_dev_link(struct net_device *dev, 7112 struct net_device *upper_dev, 7113 struct netlink_ext_ack *extack) 7114 { 7115 return __netdev_upper_dev_link(dev, upper_dev, false, 7116 NULL, NULL, extack); 7117 } 7118 EXPORT_SYMBOL(netdev_upper_dev_link); 7119 7120 /** 7121 * netdev_master_upper_dev_link - Add a master link to the upper device 7122 * @dev: device 7123 * @upper_dev: new upper device 7124 * @upper_priv: upper device private 7125 * @upper_info: upper info to be passed down via notifier 7126 * @extack: netlink extended ack 7127 * 7128 * Adds a link to device which is upper to this one. In this case, only 7129 * one master upper device can be linked, although other non-master devices 7130 * might be linked as well. The caller must hold the RTNL lock. 7131 * On a failure a negative errno code is returned. On success the reference 7132 * counts are adjusted and the function returns zero. 7133 */ 7134 int netdev_master_upper_dev_link(struct net_device *dev, 7135 struct net_device *upper_dev, 7136 void *upper_priv, void *upper_info, 7137 struct netlink_ext_ack *extack) 7138 { 7139 return __netdev_upper_dev_link(dev, upper_dev, true, 7140 upper_priv, upper_info, extack); 7141 } 7142 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7143 7144 /** 7145 * netdev_upper_dev_unlink - Removes a link to upper device 7146 * @dev: device 7147 * @upper_dev: new upper device 7148 * 7149 * Removes a link to device which is upper to this one. The caller must hold 7150 * the RTNL lock. 7151 */ 7152 void netdev_upper_dev_unlink(struct net_device *dev, 7153 struct net_device *upper_dev) 7154 { 7155 struct netdev_notifier_changeupper_info changeupper_info = { 7156 .info = { 7157 .dev = dev, 7158 }, 7159 .upper_dev = upper_dev, 7160 .linking = false, 7161 }; 7162 7163 ASSERT_RTNL(); 7164 7165 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7166 7167 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7168 &changeupper_info.info); 7169 7170 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7171 7172 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7173 &changeupper_info.info); 7174 } 7175 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7176 7177 /** 7178 * netdev_bonding_info_change - Dispatch event about slave change 7179 * @dev: device 7180 * @bonding_info: info to dispatch 7181 * 7182 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7183 * The caller must hold the RTNL lock. 7184 */ 7185 void netdev_bonding_info_change(struct net_device *dev, 7186 struct netdev_bonding_info *bonding_info) 7187 { 7188 struct netdev_notifier_bonding_info info = { 7189 .info.dev = dev, 7190 }; 7191 7192 memcpy(&info.bonding_info, bonding_info, 7193 sizeof(struct netdev_bonding_info)); 7194 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7195 &info.info); 7196 } 7197 EXPORT_SYMBOL(netdev_bonding_info_change); 7198 7199 static void netdev_adjacent_add_links(struct net_device *dev) 7200 { 7201 struct netdev_adjacent *iter; 7202 7203 struct net *net = dev_net(dev); 7204 7205 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7206 if (!net_eq(net, dev_net(iter->dev))) 7207 continue; 7208 netdev_adjacent_sysfs_add(iter->dev, dev, 7209 &iter->dev->adj_list.lower); 7210 netdev_adjacent_sysfs_add(dev, iter->dev, 7211 &dev->adj_list.upper); 7212 } 7213 7214 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7215 if (!net_eq(net, dev_net(iter->dev))) 7216 continue; 7217 netdev_adjacent_sysfs_add(iter->dev, dev, 7218 &iter->dev->adj_list.upper); 7219 netdev_adjacent_sysfs_add(dev, iter->dev, 7220 &dev->adj_list.lower); 7221 } 7222 } 7223 7224 static void netdev_adjacent_del_links(struct net_device *dev) 7225 { 7226 struct netdev_adjacent *iter; 7227 7228 struct net *net = dev_net(dev); 7229 7230 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7231 if (!net_eq(net, dev_net(iter->dev))) 7232 continue; 7233 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7234 &iter->dev->adj_list.lower); 7235 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7236 &dev->adj_list.upper); 7237 } 7238 7239 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7240 if (!net_eq(net, dev_net(iter->dev))) 7241 continue; 7242 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7243 &iter->dev->adj_list.upper); 7244 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7245 &dev->adj_list.lower); 7246 } 7247 } 7248 7249 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7250 { 7251 struct netdev_adjacent *iter; 7252 7253 struct net *net = dev_net(dev); 7254 7255 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7256 if (!net_eq(net, dev_net(iter->dev))) 7257 continue; 7258 netdev_adjacent_sysfs_del(iter->dev, oldname, 7259 &iter->dev->adj_list.lower); 7260 netdev_adjacent_sysfs_add(iter->dev, dev, 7261 &iter->dev->adj_list.lower); 7262 } 7263 7264 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7265 if (!net_eq(net, dev_net(iter->dev))) 7266 continue; 7267 netdev_adjacent_sysfs_del(iter->dev, oldname, 7268 &iter->dev->adj_list.upper); 7269 netdev_adjacent_sysfs_add(iter->dev, dev, 7270 &iter->dev->adj_list.upper); 7271 } 7272 } 7273 7274 void *netdev_lower_dev_get_private(struct net_device *dev, 7275 struct net_device *lower_dev) 7276 { 7277 struct netdev_adjacent *lower; 7278 7279 if (!lower_dev) 7280 return NULL; 7281 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7282 if (!lower) 7283 return NULL; 7284 7285 return lower->private; 7286 } 7287 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7288 7289 7290 int dev_get_nest_level(struct net_device *dev) 7291 { 7292 struct net_device *lower = NULL; 7293 struct list_head *iter; 7294 int max_nest = -1; 7295 int nest; 7296 7297 ASSERT_RTNL(); 7298 7299 netdev_for_each_lower_dev(dev, lower, iter) { 7300 nest = dev_get_nest_level(lower); 7301 if (max_nest < nest) 7302 max_nest = nest; 7303 } 7304 7305 return max_nest + 1; 7306 } 7307 EXPORT_SYMBOL(dev_get_nest_level); 7308 7309 /** 7310 * netdev_lower_change - Dispatch event about lower device state change 7311 * @lower_dev: device 7312 * @lower_state_info: state to dispatch 7313 * 7314 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7315 * The caller must hold the RTNL lock. 7316 */ 7317 void netdev_lower_state_changed(struct net_device *lower_dev, 7318 void *lower_state_info) 7319 { 7320 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7321 .info.dev = lower_dev, 7322 }; 7323 7324 ASSERT_RTNL(); 7325 changelowerstate_info.lower_state_info = lower_state_info; 7326 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7327 &changelowerstate_info.info); 7328 } 7329 EXPORT_SYMBOL(netdev_lower_state_changed); 7330 7331 static void dev_change_rx_flags(struct net_device *dev, int flags) 7332 { 7333 const struct net_device_ops *ops = dev->netdev_ops; 7334 7335 if (ops->ndo_change_rx_flags) 7336 ops->ndo_change_rx_flags(dev, flags); 7337 } 7338 7339 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7340 { 7341 unsigned int old_flags = dev->flags; 7342 kuid_t uid; 7343 kgid_t gid; 7344 7345 ASSERT_RTNL(); 7346 7347 dev->flags |= IFF_PROMISC; 7348 dev->promiscuity += inc; 7349 if (dev->promiscuity == 0) { 7350 /* 7351 * Avoid overflow. 7352 * If inc causes overflow, untouch promisc and return error. 7353 */ 7354 if (inc < 0) 7355 dev->flags &= ~IFF_PROMISC; 7356 else { 7357 dev->promiscuity -= inc; 7358 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7359 dev->name); 7360 return -EOVERFLOW; 7361 } 7362 } 7363 if (dev->flags != old_flags) { 7364 pr_info("device %s %s promiscuous mode\n", 7365 dev->name, 7366 dev->flags & IFF_PROMISC ? "entered" : "left"); 7367 if (audit_enabled) { 7368 current_uid_gid(&uid, &gid); 7369 audit_log(audit_context(), GFP_ATOMIC, 7370 AUDIT_ANOM_PROMISCUOUS, 7371 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7372 dev->name, (dev->flags & IFF_PROMISC), 7373 (old_flags & IFF_PROMISC), 7374 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7375 from_kuid(&init_user_ns, uid), 7376 from_kgid(&init_user_ns, gid), 7377 audit_get_sessionid(current)); 7378 } 7379 7380 dev_change_rx_flags(dev, IFF_PROMISC); 7381 } 7382 if (notify) 7383 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7384 return 0; 7385 } 7386 7387 /** 7388 * dev_set_promiscuity - update promiscuity count on a device 7389 * @dev: device 7390 * @inc: modifier 7391 * 7392 * Add or remove promiscuity from a device. While the count in the device 7393 * remains above zero the interface remains promiscuous. Once it hits zero 7394 * the device reverts back to normal filtering operation. A negative inc 7395 * value is used to drop promiscuity on the device. 7396 * Return 0 if successful or a negative errno code on error. 7397 */ 7398 int dev_set_promiscuity(struct net_device *dev, int inc) 7399 { 7400 unsigned int old_flags = dev->flags; 7401 int err; 7402 7403 err = __dev_set_promiscuity(dev, inc, true); 7404 if (err < 0) 7405 return err; 7406 if (dev->flags != old_flags) 7407 dev_set_rx_mode(dev); 7408 return err; 7409 } 7410 EXPORT_SYMBOL(dev_set_promiscuity); 7411 7412 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7413 { 7414 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7415 7416 ASSERT_RTNL(); 7417 7418 dev->flags |= IFF_ALLMULTI; 7419 dev->allmulti += inc; 7420 if (dev->allmulti == 0) { 7421 /* 7422 * Avoid overflow. 7423 * If inc causes overflow, untouch allmulti and return error. 7424 */ 7425 if (inc < 0) 7426 dev->flags &= ~IFF_ALLMULTI; 7427 else { 7428 dev->allmulti -= inc; 7429 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7430 dev->name); 7431 return -EOVERFLOW; 7432 } 7433 } 7434 if (dev->flags ^ old_flags) { 7435 dev_change_rx_flags(dev, IFF_ALLMULTI); 7436 dev_set_rx_mode(dev); 7437 if (notify) 7438 __dev_notify_flags(dev, old_flags, 7439 dev->gflags ^ old_gflags); 7440 } 7441 return 0; 7442 } 7443 7444 /** 7445 * dev_set_allmulti - update allmulti count on a device 7446 * @dev: device 7447 * @inc: modifier 7448 * 7449 * Add or remove reception of all multicast frames to a device. While the 7450 * count in the device remains above zero the interface remains listening 7451 * to all interfaces. Once it hits zero the device reverts back to normal 7452 * filtering operation. A negative @inc value is used to drop the counter 7453 * when releasing a resource needing all multicasts. 7454 * Return 0 if successful or a negative errno code on error. 7455 */ 7456 7457 int dev_set_allmulti(struct net_device *dev, int inc) 7458 { 7459 return __dev_set_allmulti(dev, inc, true); 7460 } 7461 EXPORT_SYMBOL(dev_set_allmulti); 7462 7463 /* 7464 * Upload unicast and multicast address lists to device and 7465 * configure RX filtering. When the device doesn't support unicast 7466 * filtering it is put in promiscuous mode while unicast addresses 7467 * are present. 7468 */ 7469 void __dev_set_rx_mode(struct net_device *dev) 7470 { 7471 const struct net_device_ops *ops = dev->netdev_ops; 7472 7473 /* dev_open will call this function so the list will stay sane. */ 7474 if (!(dev->flags&IFF_UP)) 7475 return; 7476 7477 if (!netif_device_present(dev)) 7478 return; 7479 7480 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 7481 /* Unicast addresses changes may only happen under the rtnl, 7482 * therefore calling __dev_set_promiscuity here is safe. 7483 */ 7484 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 7485 __dev_set_promiscuity(dev, 1, false); 7486 dev->uc_promisc = true; 7487 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 7488 __dev_set_promiscuity(dev, -1, false); 7489 dev->uc_promisc = false; 7490 } 7491 } 7492 7493 if (ops->ndo_set_rx_mode) 7494 ops->ndo_set_rx_mode(dev); 7495 } 7496 7497 void dev_set_rx_mode(struct net_device *dev) 7498 { 7499 netif_addr_lock_bh(dev); 7500 __dev_set_rx_mode(dev); 7501 netif_addr_unlock_bh(dev); 7502 } 7503 7504 /** 7505 * dev_get_flags - get flags reported to userspace 7506 * @dev: device 7507 * 7508 * Get the combination of flag bits exported through APIs to userspace. 7509 */ 7510 unsigned int dev_get_flags(const struct net_device *dev) 7511 { 7512 unsigned int flags; 7513 7514 flags = (dev->flags & ~(IFF_PROMISC | 7515 IFF_ALLMULTI | 7516 IFF_RUNNING | 7517 IFF_LOWER_UP | 7518 IFF_DORMANT)) | 7519 (dev->gflags & (IFF_PROMISC | 7520 IFF_ALLMULTI)); 7521 7522 if (netif_running(dev)) { 7523 if (netif_oper_up(dev)) 7524 flags |= IFF_RUNNING; 7525 if (netif_carrier_ok(dev)) 7526 flags |= IFF_LOWER_UP; 7527 if (netif_dormant(dev)) 7528 flags |= IFF_DORMANT; 7529 } 7530 7531 return flags; 7532 } 7533 EXPORT_SYMBOL(dev_get_flags); 7534 7535 int __dev_change_flags(struct net_device *dev, unsigned int flags, 7536 struct netlink_ext_ack *extack) 7537 { 7538 unsigned int old_flags = dev->flags; 7539 int ret; 7540 7541 ASSERT_RTNL(); 7542 7543 /* 7544 * Set the flags on our device. 7545 */ 7546 7547 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 7548 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 7549 IFF_AUTOMEDIA)) | 7550 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 7551 IFF_ALLMULTI)); 7552 7553 /* 7554 * Load in the correct multicast list now the flags have changed. 7555 */ 7556 7557 if ((old_flags ^ flags) & IFF_MULTICAST) 7558 dev_change_rx_flags(dev, IFF_MULTICAST); 7559 7560 dev_set_rx_mode(dev); 7561 7562 /* 7563 * Have we downed the interface. We handle IFF_UP ourselves 7564 * according to user attempts to set it, rather than blindly 7565 * setting it. 7566 */ 7567 7568 ret = 0; 7569 if ((old_flags ^ flags) & IFF_UP) { 7570 if (old_flags & IFF_UP) 7571 __dev_close(dev); 7572 else 7573 ret = __dev_open(dev, extack); 7574 } 7575 7576 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7577 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7578 unsigned int old_flags = dev->flags; 7579 7580 dev->gflags ^= IFF_PROMISC; 7581 7582 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7583 if (dev->flags != old_flags) 7584 dev_set_rx_mode(dev); 7585 } 7586 7587 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7588 * is important. Some (broken) drivers set IFF_PROMISC, when 7589 * IFF_ALLMULTI is requested not asking us and not reporting. 7590 */ 7591 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7592 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7593 7594 dev->gflags ^= IFF_ALLMULTI; 7595 __dev_set_allmulti(dev, inc, false); 7596 } 7597 7598 return ret; 7599 } 7600 7601 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7602 unsigned int gchanges) 7603 { 7604 unsigned int changes = dev->flags ^ old_flags; 7605 7606 if (gchanges) 7607 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7608 7609 if (changes & IFF_UP) { 7610 if (dev->flags & IFF_UP) 7611 call_netdevice_notifiers(NETDEV_UP, dev); 7612 else 7613 call_netdevice_notifiers(NETDEV_DOWN, dev); 7614 } 7615 7616 if (dev->flags & IFF_UP && 7617 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7618 struct netdev_notifier_change_info change_info = { 7619 .info = { 7620 .dev = dev, 7621 }, 7622 .flags_changed = changes, 7623 }; 7624 7625 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7626 } 7627 } 7628 7629 /** 7630 * dev_change_flags - change device settings 7631 * @dev: device 7632 * @flags: device state flags 7633 * @extack: netlink extended ack 7634 * 7635 * Change settings on device based state flags. The flags are 7636 * in the userspace exported format. 7637 */ 7638 int dev_change_flags(struct net_device *dev, unsigned int flags, 7639 struct netlink_ext_ack *extack) 7640 { 7641 int ret; 7642 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7643 7644 ret = __dev_change_flags(dev, flags, extack); 7645 if (ret < 0) 7646 return ret; 7647 7648 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7649 __dev_notify_flags(dev, old_flags, changes); 7650 return ret; 7651 } 7652 EXPORT_SYMBOL(dev_change_flags); 7653 7654 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7655 { 7656 const struct net_device_ops *ops = dev->netdev_ops; 7657 7658 if (ops->ndo_change_mtu) 7659 return ops->ndo_change_mtu(dev, new_mtu); 7660 7661 dev->mtu = new_mtu; 7662 return 0; 7663 } 7664 EXPORT_SYMBOL(__dev_set_mtu); 7665 7666 /** 7667 * dev_set_mtu_ext - Change maximum transfer unit 7668 * @dev: device 7669 * @new_mtu: new transfer unit 7670 * @extack: netlink extended ack 7671 * 7672 * Change the maximum transfer size of the network device. 7673 */ 7674 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 7675 struct netlink_ext_ack *extack) 7676 { 7677 int err, orig_mtu; 7678 7679 if (new_mtu == dev->mtu) 7680 return 0; 7681 7682 /* MTU must be positive, and in range */ 7683 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7684 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 7685 return -EINVAL; 7686 } 7687 7688 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7689 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 7690 return -EINVAL; 7691 } 7692 7693 if (!netif_device_present(dev)) 7694 return -ENODEV; 7695 7696 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7697 err = notifier_to_errno(err); 7698 if (err) 7699 return err; 7700 7701 orig_mtu = dev->mtu; 7702 err = __dev_set_mtu(dev, new_mtu); 7703 7704 if (!err) { 7705 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7706 orig_mtu); 7707 err = notifier_to_errno(err); 7708 if (err) { 7709 /* setting mtu back and notifying everyone again, 7710 * so that they have a chance to revert changes. 7711 */ 7712 __dev_set_mtu(dev, orig_mtu); 7713 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7714 new_mtu); 7715 } 7716 } 7717 return err; 7718 } 7719 7720 int dev_set_mtu(struct net_device *dev, int new_mtu) 7721 { 7722 struct netlink_ext_ack extack; 7723 int err; 7724 7725 memset(&extack, 0, sizeof(extack)); 7726 err = dev_set_mtu_ext(dev, new_mtu, &extack); 7727 if (err && extack._msg) 7728 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 7729 return err; 7730 } 7731 EXPORT_SYMBOL(dev_set_mtu); 7732 7733 /** 7734 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7735 * @dev: device 7736 * @new_len: new tx queue length 7737 */ 7738 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7739 { 7740 unsigned int orig_len = dev->tx_queue_len; 7741 int res; 7742 7743 if (new_len != (unsigned int)new_len) 7744 return -ERANGE; 7745 7746 if (new_len != orig_len) { 7747 dev->tx_queue_len = new_len; 7748 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7749 res = notifier_to_errno(res); 7750 if (res) 7751 goto err_rollback; 7752 res = dev_qdisc_change_tx_queue_len(dev); 7753 if (res) 7754 goto err_rollback; 7755 } 7756 7757 return 0; 7758 7759 err_rollback: 7760 netdev_err(dev, "refused to change device tx_queue_len\n"); 7761 dev->tx_queue_len = orig_len; 7762 return res; 7763 } 7764 7765 /** 7766 * dev_set_group - Change group this device belongs to 7767 * @dev: device 7768 * @new_group: group this device should belong to 7769 */ 7770 void dev_set_group(struct net_device *dev, int new_group) 7771 { 7772 dev->group = new_group; 7773 } 7774 EXPORT_SYMBOL(dev_set_group); 7775 7776 /** 7777 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 7778 * @dev: device 7779 * @addr: new address 7780 * @extack: netlink extended ack 7781 */ 7782 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 7783 struct netlink_ext_ack *extack) 7784 { 7785 struct netdev_notifier_pre_changeaddr_info info = { 7786 .info.dev = dev, 7787 .info.extack = extack, 7788 .dev_addr = addr, 7789 }; 7790 int rc; 7791 7792 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 7793 return notifier_to_errno(rc); 7794 } 7795 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 7796 7797 /** 7798 * dev_set_mac_address - Change Media Access Control Address 7799 * @dev: device 7800 * @sa: new address 7801 * @extack: netlink extended ack 7802 * 7803 * Change the hardware (MAC) address of the device 7804 */ 7805 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 7806 struct netlink_ext_ack *extack) 7807 { 7808 const struct net_device_ops *ops = dev->netdev_ops; 7809 int err; 7810 7811 if (!ops->ndo_set_mac_address) 7812 return -EOPNOTSUPP; 7813 if (sa->sa_family != dev->type) 7814 return -EINVAL; 7815 if (!netif_device_present(dev)) 7816 return -ENODEV; 7817 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 7818 if (err) 7819 return err; 7820 err = ops->ndo_set_mac_address(dev, sa); 7821 if (err) 7822 return err; 7823 dev->addr_assign_type = NET_ADDR_SET; 7824 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7825 add_device_randomness(dev->dev_addr, dev->addr_len); 7826 return 0; 7827 } 7828 EXPORT_SYMBOL(dev_set_mac_address); 7829 7830 /** 7831 * dev_change_carrier - Change device carrier 7832 * @dev: device 7833 * @new_carrier: new value 7834 * 7835 * Change device carrier 7836 */ 7837 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7838 { 7839 const struct net_device_ops *ops = dev->netdev_ops; 7840 7841 if (!ops->ndo_change_carrier) 7842 return -EOPNOTSUPP; 7843 if (!netif_device_present(dev)) 7844 return -ENODEV; 7845 return ops->ndo_change_carrier(dev, new_carrier); 7846 } 7847 EXPORT_SYMBOL(dev_change_carrier); 7848 7849 /** 7850 * dev_get_phys_port_id - Get device physical port ID 7851 * @dev: device 7852 * @ppid: port ID 7853 * 7854 * Get device physical port ID 7855 */ 7856 int dev_get_phys_port_id(struct net_device *dev, 7857 struct netdev_phys_item_id *ppid) 7858 { 7859 const struct net_device_ops *ops = dev->netdev_ops; 7860 7861 if (!ops->ndo_get_phys_port_id) 7862 return -EOPNOTSUPP; 7863 return ops->ndo_get_phys_port_id(dev, ppid); 7864 } 7865 EXPORT_SYMBOL(dev_get_phys_port_id); 7866 7867 /** 7868 * dev_get_phys_port_name - Get device physical port name 7869 * @dev: device 7870 * @name: port name 7871 * @len: limit of bytes to copy to name 7872 * 7873 * Get device physical port name 7874 */ 7875 int dev_get_phys_port_name(struct net_device *dev, 7876 char *name, size_t len) 7877 { 7878 const struct net_device_ops *ops = dev->netdev_ops; 7879 int err; 7880 7881 if (ops->ndo_get_phys_port_name) { 7882 err = ops->ndo_get_phys_port_name(dev, name, len); 7883 if (err != -EOPNOTSUPP) 7884 return err; 7885 } 7886 return devlink_compat_phys_port_name_get(dev, name, len); 7887 } 7888 EXPORT_SYMBOL(dev_get_phys_port_name); 7889 7890 /** 7891 * dev_get_port_parent_id - Get the device's port parent identifier 7892 * @dev: network device 7893 * @ppid: pointer to a storage for the port's parent identifier 7894 * @recurse: allow/disallow recursion to lower devices 7895 * 7896 * Get the devices's port parent identifier 7897 */ 7898 int dev_get_port_parent_id(struct net_device *dev, 7899 struct netdev_phys_item_id *ppid, 7900 bool recurse) 7901 { 7902 const struct net_device_ops *ops = dev->netdev_ops; 7903 struct netdev_phys_item_id first = { }; 7904 struct net_device *lower_dev; 7905 struct list_head *iter; 7906 int err; 7907 7908 if (ops->ndo_get_port_parent_id) { 7909 err = ops->ndo_get_port_parent_id(dev, ppid); 7910 if (err != -EOPNOTSUPP) 7911 return err; 7912 } 7913 7914 err = devlink_compat_switch_id_get(dev, ppid); 7915 if (!err || err != -EOPNOTSUPP) 7916 return err; 7917 7918 if (!recurse) 7919 return -EOPNOTSUPP; 7920 7921 netdev_for_each_lower_dev(dev, lower_dev, iter) { 7922 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 7923 if (err) 7924 break; 7925 if (!first.id_len) 7926 first = *ppid; 7927 else if (memcmp(&first, ppid, sizeof(*ppid))) 7928 return -ENODATA; 7929 } 7930 7931 return err; 7932 } 7933 EXPORT_SYMBOL(dev_get_port_parent_id); 7934 7935 /** 7936 * netdev_port_same_parent_id - Indicate if two network devices have 7937 * the same port parent identifier 7938 * @a: first network device 7939 * @b: second network device 7940 */ 7941 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 7942 { 7943 struct netdev_phys_item_id a_id = { }; 7944 struct netdev_phys_item_id b_id = { }; 7945 7946 if (dev_get_port_parent_id(a, &a_id, true) || 7947 dev_get_port_parent_id(b, &b_id, true)) 7948 return false; 7949 7950 return netdev_phys_item_id_same(&a_id, &b_id); 7951 } 7952 EXPORT_SYMBOL(netdev_port_same_parent_id); 7953 7954 /** 7955 * dev_change_proto_down - update protocol port state information 7956 * @dev: device 7957 * @proto_down: new value 7958 * 7959 * This info can be used by switch drivers to set the phys state of the 7960 * port. 7961 */ 7962 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7963 { 7964 const struct net_device_ops *ops = dev->netdev_ops; 7965 7966 if (!ops->ndo_change_proto_down) 7967 return -EOPNOTSUPP; 7968 if (!netif_device_present(dev)) 7969 return -ENODEV; 7970 return ops->ndo_change_proto_down(dev, proto_down); 7971 } 7972 EXPORT_SYMBOL(dev_change_proto_down); 7973 7974 /** 7975 * dev_change_proto_down_generic - generic implementation for 7976 * ndo_change_proto_down that sets carrier according to 7977 * proto_down. 7978 * 7979 * @dev: device 7980 * @proto_down: new value 7981 */ 7982 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 7983 { 7984 if (proto_down) 7985 netif_carrier_off(dev); 7986 else 7987 netif_carrier_on(dev); 7988 dev->proto_down = proto_down; 7989 return 0; 7990 } 7991 EXPORT_SYMBOL(dev_change_proto_down_generic); 7992 7993 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7994 enum bpf_netdev_command cmd) 7995 { 7996 struct netdev_bpf xdp; 7997 7998 if (!bpf_op) 7999 return 0; 8000 8001 memset(&xdp, 0, sizeof(xdp)); 8002 xdp.command = cmd; 8003 8004 /* Query must always succeed. */ 8005 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 8006 8007 return xdp.prog_id; 8008 } 8009 8010 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 8011 struct netlink_ext_ack *extack, u32 flags, 8012 struct bpf_prog *prog) 8013 { 8014 struct netdev_bpf xdp; 8015 8016 memset(&xdp, 0, sizeof(xdp)); 8017 if (flags & XDP_FLAGS_HW_MODE) 8018 xdp.command = XDP_SETUP_PROG_HW; 8019 else 8020 xdp.command = XDP_SETUP_PROG; 8021 xdp.extack = extack; 8022 xdp.flags = flags; 8023 xdp.prog = prog; 8024 8025 return bpf_op(dev, &xdp); 8026 } 8027 8028 static void dev_xdp_uninstall(struct net_device *dev) 8029 { 8030 struct netdev_bpf xdp; 8031 bpf_op_t ndo_bpf; 8032 8033 /* Remove generic XDP */ 8034 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8035 8036 /* Remove from the driver */ 8037 ndo_bpf = dev->netdev_ops->ndo_bpf; 8038 if (!ndo_bpf) 8039 return; 8040 8041 memset(&xdp, 0, sizeof(xdp)); 8042 xdp.command = XDP_QUERY_PROG; 8043 WARN_ON(ndo_bpf(dev, &xdp)); 8044 if (xdp.prog_id) 8045 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8046 NULL)); 8047 8048 /* Remove HW offload */ 8049 memset(&xdp, 0, sizeof(xdp)); 8050 xdp.command = XDP_QUERY_PROG_HW; 8051 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8052 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8053 NULL)); 8054 } 8055 8056 /** 8057 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8058 * @dev: device 8059 * @extack: netlink extended ack 8060 * @fd: new program fd or negative value to clear 8061 * @flags: xdp-related flags 8062 * 8063 * Set or clear a bpf program for a device 8064 */ 8065 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8066 int fd, u32 flags) 8067 { 8068 const struct net_device_ops *ops = dev->netdev_ops; 8069 enum bpf_netdev_command query; 8070 struct bpf_prog *prog = NULL; 8071 bpf_op_t bpf_op, bpf_chk; 8072 bool offload; 8073 int err; 8074 8075 ASSERT_RTNL(); 8076 8077 offload = flags & XDP_FLAGS_HW_MODE; 8078 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8079 8080 bpf_op = bpf_chk = ops->ndo_bpf; 8081 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8082 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8083 return -EOPNOTSUPP; 8084 } 8085 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8086 bpf_op = generic_xdp_install; 8087 if (bpf_op == bpf_chk) 8088 bpf_chk = generic_xdp_install; 8089 8090 if (fd >= 0) { 8091 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8092 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8093 return -EEXIST; 8094 } 8095 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 8096 __dev_xdp_query(dev, bpf_op, query)) { 8097 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8098 return -EBUSY; 8099 } 8100 8101 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8102 bpf_op == ops->ndo_bpf); 8103 if (IS_ERR(prog)) 8104 return PTR_ERR(prog); 8105 8106 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8107 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8108 bpf_prog_put(prog); 8109 return -EINVAL; 8110 } 8111 } 8112 8113 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8114 if (err < 0 && prog) 8115 bpf_prog_put(prog); 8116 8117 return err; 8118 } 8119 8120 /** 8121 * dev_new_index - allocate an ifindex 8122 * @net: the applicable net namespace 8123 * 8124 * Returns a suitable unique value for a new device interface 8125 * number. The caller must hold the rtnl semaphore or the 8126 * dev_base_lock to be sure it remains unique. 8127 */ 8128 static int dev_new_index(struct net *net) 8129 { 8130 int ifindex = net->ifindex; 8131 8132 for (;;) { 8133 if (++ifindex <= 0) 8134 ifindex = 1; 8135 if (!__dev_get_by_index(net, ifindex)) 8136 return net->ifindex = ifindex; 8137 } 8138 } 8139 8140 /* Delayed registration/unregisteration */ 8141 static LIST_HEAD(net_todo_list); 8142 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8143 8144 static void net_set_todo(struct net_device *dev) 8145 { 8146 list_add_tail(&dev->todo_list, &net_todo_list); 8147 dev_net(dev)->dev_unreg_count++; 8148 } 8149 8150 static void rollback_registered_many(struct list_head *head) 8151 { 8152 struct net_device *dev, *tmp; 8153 LIST_HEAD(close_head); 8154 8155 BUG_ON(dev_boot_phase); 8156 ASSERT_RTNL(); 8157 8158 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8159 /* Some devices call without registering 8160 * for initialization unwind. Remove those 8161 * devices and proceed with the remaining. 8162 */ 8163 if (dev->reg_state == NETREG_UNINITIALIZED) { 8164 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8165 dev->name, dev); 8166 8167 WARN_ON(1); 8168 list_del(&dev->unreg_list); 8169 continue; 8170 } 8171 dev->dismantle = true; 8172 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8173 } 8174 8175 /* If device is running, close it first. */ 8176 list_for_each_entry(dev, head, unreg_list) 8177 list_add_tail(&dev->close_list, &close_head); 8178 dev_close_many(&close_head, true); 8179 8180 list_for_each_entry(dev, head, unreg_list) { 8181 /* And unlink it from device chain. */ 8182 unlist_netdevice(dev); 8183 8184 dev->reg_state = NETREG_UNREGISTERING; 8185 } 8186 flush_all_backlogs(); 8187 8188 synchronize_net(); 8189 8190 list_for_each_entry(dev, head, unreg_list) { 8191 struct sk_buff *skb = NULL; 8192 8193 /* Shutdown queueing discipline. */ 8194 dev_shutdown(dev); 8195 8196 dev_xdp_uninstall(dev); 8197 8198 /* Notify protocols, that we are about to destroy 8199 * this device. They should clean all the things. 8200 */ 8201 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8202 8203 if (!dev->rtnl_link_ops || 8204 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8205 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8206 GFP_KERNEL, NULL, 0); 8207 8208 /* 8209 * Flush the unicast and multicast chains 8210 */ 8211 dev_uc_flush(dev); 8212 dev_mc_flush(dev); 8213 8214 if (dev->netdev_ops->ndo_uninit) 8215 dev->netdev_ops->ndo_uninit(dev); 8216 8217 if (skb) 8218 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8219 8220 /* Notifier chain MUST detach us all upper devices. */ 8221 WARN_ON(netdev_has_any_upper_dev(dev)); 8222 WARN_ON(netdev_has_any_lower_dev(dev)); 8223 8224 /* Remove entries from kobject tree */ 8225 netdev_unregister_kobject(dev); 8226 #ifdef CONFIG_XPS 8227 /* Remove XPS queueing entries */ 8228 netif_reset_xps_queues_gt(dev, 0); 8229 #endif 8230 } 8231 8232 synchronize_net(); 8233 8234 list_for_each_entry(dev, head, unreg_list) 8235 dev_put(dev); 8236 } 8237 8238 static void rollback_registered(struct net_device *dev) 8239 { 8240 LIST_HEAD(single); 8241 8242 list_add(&dev->unreg_list, &single); 8243 rollback_registered_many(&single); 8244 list_del(&single); 8245 } 8246 8247 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8248 struct net_device *upper, netdev_features_t features) 8249 { 8250 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8251 netdev_features_t feature; 8252 int feature_bit; 8253 8254 for_each_netdev_feature(upper_disables, feature_bit) { 8255 feature = __NETIF_F_BIT(feature_bit); 8256 if (!(upper->wanted_features & feature) 8257 && (features & feature)) { 8258 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8259 &feature, upper->name); 8260 features &= ~feature; 8261 } 8262 } 8263 8264 return features; 8265 } 8266 8267 static void netdev_sync_lower_features(struct net_device *upper, 8268 struct net_device *lower, netdev_features_t features) 8269 { 8270 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8271 netdev_features_t feature; 8272 int feature_bit; 8273 8274 for_each_netdev_feature(upper_disables, feature_bit) { 8275 feature = __NETIF_F_BIT(feature_bit); 8276 if (!(features & feature) && (lower->features & feature)) { 8277 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8278 &feature, lower->name); 8279 lower->wanted_features &= ~feature; 8280 netdev_update_features(lower); 8281 8282 if (unlikely(lower->features & feature)) 8283 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8284 &feature, lower->name); 8285 } 8286 } 8287 } 8288 8289 static netdev_features_t netdev_fix_features(struct net_device *dev, 8290 netdev_features_t features) 8291 { 8292 /* Fix illegal checksum combinations */ 8293 if ((features & NETIF_F_HW_CSUM) && 8294 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8295 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8296 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8297 } 8298 8299 /* TSO requires that SG is present as well. */ 8300 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8301 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8302 features &= ~NETIF_F_ALL_TSO; 8303 } 8304 8305 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8306 !(features & NETIF_F_IP_CSUM)) { 8307 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8308 features &= ~NETIF_F_TSO; 8309 features &= ~NETIF_F_TSO_ECN; 8310 } 8311 8312 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8313 !(features & NETIF_F_IPV6_CSUM)) { 8314 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8315 features &= ~NETIF_F_TSO6; 8316 } 8317 8318 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8319 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8320 features &= ~NETIF_F_TSO_MANGLEID; 8321 8322 /* TSO ECN requires that TSO is present as well. */ 8323 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8324 features &= ~NETIF_F_TSO_ECN; 8325 8326 /* Software GSO depends on SG. */ 8327 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8328 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8329 features &= ~NETIF_F_GSO; 8330 } 8331 8332 /* GSO partial features require GSO partial be set */ 8333 if ((features & dev->gso_partial_features) && 8334 !(features & NETIF_F_GSO_PARTIAL)) { 8335 netdev_dbg(dev, 8336 "Dropping partially supported GSO features since no GSO partial.\n"); 8337 features &= ~dev->gso_partial_features; 8338 } 8339 8340 if (!(features & NETIF_F_RXCSUM)) { 8341 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8342 * successfully merged by hardware must also have the 8343 * checksum verified by hardware. If the user does not 8344 * want to enable RXCSUM, logically, we should disable GRO_HW. 8345 */ 8346 if (features & NETIF_F_GRO_HW) { 8347 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8348 features &= ~NETIF_F_GRO_HW; 8349 } 8350 } 8351 8352 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8353 if (features & NETIF_F_RXFCS) { 8354 if (features & NETIF_F_LRO) { 8355 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8356 features &= ~NETIF_F_LRO; 8357 } 8358 8359 if (features & NETIF_F_GRO_HW) { 8360 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8361 features &= ~NETIF_F_GRO_HW; 8362 } 8363 } 8364 8365 return features; 8366 } 8367 8368 int __netdev_update_features(struct net_device *dev) 8369 { 8370 struct net_device *upper, *lower; 8371 netdev_features_t features; 8372 struct list_head *iter; 8373 int err = -1; 8374 8375 ASSERT_RTNL(); 8376 8377 features = netdev_get_wanted_features(dev); 8378 8379 if (dev->netdev_ops->ndo_fix_features) 8380 features = dev->netdev_ops->ndo_fix_features(dev, features); 8381 8382 /* driver might be less strict about feature dependencies */ 8383 features = netdev_fix_features(dev, features); 8384 8385 /* some features can't be enabled if they're off an an upper device */ 8386 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8387 features = netdev_sync_upper_features(dev, upper, features); 8388 8389 if (dev->features == features) 8390 goto sync_lower; 8391 8392 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8393 &dev->features, &features); 8394 8395 if (dev->netdev_ops->ndo_set_features) 8396 err = dev->netdev_ops->ndo_set_features(dev, features); 8397 else 8398 err = 0; 8399 8400 if (unlikely(err < 0)) { 8401 netdev_err(dev, 8402 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8403 err, &features, &dev->features); 8404 /* return non-0 since some features might have changed and 8405 * it's better to fire a spurious notification than miss it 8406 */ 8407 return -1; 8408 } 8409 8410 sync_lower: 8411 /* some features must be disabled on lower devices when disabled 8412 * on an upper device (think: bonding master or bridge) 8413 */ 8414 netdev_for_each_lower_dev(dev, lower, iter) 8415 netdev_sync_lower_features(dev, lower, features); 8416 8417 if (!err) { 8418 netdev_features_t diff = features ^ dev->features; 8419 8420 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8421 /* udp_tunnel_{get,drop}_rx_info both need 8422 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8423 * device, or they won't do anything. 8424 * Thus we need to update dev->features 8425 * *before* calling udp_tunnel_get_rx_info, 8426 * but *after* calling udp_tunnel_drop_rx_info. 8427 */ 8428 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8429 dev->features = features; 8430 udp_tunnel_get_rx_info(dev); 8431 } else { 8432 udp_tunnel_drop_rx_info(dev); 8433 } 8434 } 8435 8436 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8437 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8438 dev->features = features; 8439 err |= vlan_get_rx_ctag_filter_info(dev); 8440 } else { 8441 vlan_drop_rx_ctag_filter_info(dev); 8442 } 8443 } 8444 8445 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8446 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8447 dev->features = features; 8448 err |= vlan_get_rx_stag_filter_info(dev); 8449 } else { 8450 vlan_drop_rx_stag_filter_info(dev); 8451 } 8452 } 8453 8454 dev->features = features; 8455 } 8456 8457 return err < 0 ? 0 : 1; 8458 } 8459 8460 /** 8461 * netdev_update_features - recalculate device features 8462 * @dev: the device to check 8463 * 8464 * Recalculate dev->features set and send notifications if it 8465 * has changed. Should be called after driver or hardware dependent 8466 * conditions might have changed that influence the features. 8467 */ 8468 void netdev_update_features(struct net_device *dev) 8469 { 8470 if (__netdev_update_features(dev)) 8471 netdev_features_change(dev); 8472 } 8473 EXPORT_SYMBOL(netdev_update_features); 8474 8475 /** 8476 * netdev_change_features - recalculate device features 8477 * @dev: the device to check 8478 * 8479 * Recalculate dev->features set and send notifications even 8480 * if they have not changed. Should be called instead of 8481 * netdev_update_features() if also dev->vlan_features might 8482 * have changed to allow the changes to be propagated to stacked 8483 * VLAN devices. 8484 */ 8485 void netdev_change_features(struct net_device *dev) 8486 { 8487 __netdev_update_features(dev); 8488 netdev_features_change(dev); 8489 } 8490 EXPORT_SYMBOL(netdev_change_features); 8491 8492 /** 8493 * netif_stacked_transfer_operstate - transfer operstate 8494 * @rootdev: the root or lower level device to transfer state from 8495 * @dev: the device to transfer operstate to 8496 * 8497 * Transfer operational state from root to device. This is normally 8498 * called when a stacking relationship exists between the root 8499 * device and the device(a leaf device). 8500 */ 8501 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 8502 struct net_device *dev) 8503 { 8504 if (rootdev->operstate == IF_OPER_DORMANT) 8505 netif_dormant_on(dev); 8506 else 8507 netif_dormant_off(dev); 8508 8509 if (netif_carrier_ok(rootdev)) 8510 netif_carrier_on(dev); 8511 else 8512 netif_carrier_off(dev); 8513 } 8514 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 8515 8516 static int netif_alloc_rx_queues(struct net_device *dev) 8517 { 8518 unsigned int i, count = dev->num_rx_queues; 8519 struct netdev_rx_queue *rx; 8520 size_t sz = count * sizeof(*rx); 8521 int err = 0; 8522 8523 BUG_ON(count < 1); 8524 8525 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8526 if (!rx) 8527 return -ENOMEM; 8528 8529 dev->_rx = rx; 8530 8531 for (i = 0; i < count; i++) { 8532 rx[i].dev = dev; 8533 8534 /* XDP RX-queue setup */ 8535 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 8536 if (err < 0) 8537 goto err_rxq_info; 8538 } 8539 return 0; 8540 8541 err_rxq_info: 8542 /* Rollback successful reg's and free other resources */ 8543 while (i--) 8544 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 8545 kvfree(dev->_rx); 8546 dev->_rx = NULL; 8547 return err; 8548 } 8549 8550 static void netif_free_rx_queues(struct net_device *dev) 8551 { 8552 unsigned int i, count = dev->num_rx_queues; 8553 8554 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 8555 if (!dev->_rx) 8556 return; 8557 8558 for (i = 0; i < count; i++) 8559 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 8560 8561 kvfree(dev->_rx); 8562 } 8563 8564 static void netdev_init_one_queue(struct net_device *dev, 8565 struct netdev_queue *queue, void *_unused) 8566 { 8567 /* Initialize queue lock */ 8568 spin_lock_init(&queue->_xmit_lock); 8569 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 8570 queue->xmit_lock_owner = -1; 8571 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 8572 queue->dev = dev; 8573 #ifdef CONFIG_BQL 8574 dql_init(&queue->dql, HZ); 8575 #endif 8576 } 8577 8578 static void netif_free_tx_queues(struct net_device *dev) 8579 { 8580 kvfree(dev->_tx); 8581 } 8582 8583 static int netif_alloc_netdev_queues(struct net_device *dev) 8584 { 8585 unsigned int count = dev->num_tx_queues; 8586 struct netdev_queue *tx; 8587 size_t sz = count * sizeof(*tx); 8588 8589 if (count < 1 || count > 0xffff) 8590 return -EINVAL; 8591 8592 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8593 if (!tx) 8594 return -ENOMEM; 8595 8596 dev->_tx = tx; 8597 8598 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 8599 spin_lock_init(&dev->tx_global_lock); 8600 8601 return 0; 8602 } 8603 8604 void netif_tx_stop_all_queues(struct net_device *dev) 8605 { 8606 unsigned int i; 8607 8608 for (i = 0; i < dev->num_tx_queues; i++) { 8609 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 8610 8611 netif_tx_stop_queue(txq); 8612 } 8613 } 8614 EXPORT_SYMBOL(netif_tx_stop_all_queues); 8615 8616 /** 8617 * register_netdevice - register a network device 8618 * @dev: device to register 8619 * 8620 * Take a completed network device structure and add it to the kernel 8621 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8622 * chain. 0 is returned on success. A negative errno code is returned 8623 * on a failure to set up the device, or if the name is a duplicate. 8624 * 8625 * Callers must hold the rtnl semaphore. You may want 8626 * register_netdev() instead of this. 8627 * 8628 * BUGS: 8629 * The locking appears insufficient to guarantee two parallel registers 8630 * will not get the same name. 8631 */ 8632 8633 int register_netdevice(struct net_device *dev) 8634 { 8635 int ret; 8636 struct net *net = dev_net(dev); 8637 8638 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 8639 NETDEV_FEATURE_COUNT); 8640 BUG_ON(dev_boot_phase); 8641 ASSERT_RTNL(); 8642 8643 might_sleep(); 8644 8645 /* When net_device's are persistent, this will be fatal. */ 8646 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 8647 BUG_ON(!net); 8648 8649 spin_lock_init(&dev->addr_list_lock); 8650 netdev_set_addr_lockdep_class(dev); 8651 8652 ret = dev_get_valid_name(net, dev, dev->name); 8653 if (ret < 0) 8654 goto out; 8655 8656 /* Init, if this function is available */ 8657 if (dev->netdev_ops->ndo_init) { 8658 ret = dev->netdev_ops->ndo_init(dev); 8659 if (ret) { 8660 if (ret > 0) 8661 ret = -EIO; 8662 goto out; 8663 } 8664 } 8665 8666 if (((dev->hw_features | dev->features) & 8667 NETIF_F_HW_VLAN_CTAG_FILTER) && 8668 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 8669 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 8670 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 8671 ret = -EINVAL; 8672 goto err_uninit; 8673 } 8674 8675 ret = -EBUSY; 8676 if (!dev->ifindex) 8677 dev->ifindex = dev_new_index(net); 8678 else if (__dev_get_by_index(net, dev->ifindex)) 8679 goto err_uninit; 8680 8681 /* Transfer changeable features to wanted_features and enable 8682 * software offloads (GSO and GRO). 8683 */ 8684 dev->hw_features |= NETIF_F_SOFT_FEATURES; 8685 dev->features |= NETIF_F_SOFT_FEATURES; 8686 8687 if (dev->netdev_ops->ndo_udp_tunnel_add) { 8688 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8689 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8690 } 8691 8692 dev->wanted_features = dev->features & dev->hw_features; 8693 8694 if (!(dev->flags & IFF_LOOPBACK)) 8695 dev->hw_features |= NETIF_F_NOCACHE_COPY; 8696 8697 /* If IPv4 TCP segmentation offload is supported we should also 8698 * allow the device to enable segmenting the frame with the option 8699 * of ignoring a static IP ID value. This doesn't enable the 8700 * feature itself but allows the user to enable it later. 8701 */ 8702 if (dev->hw_features & NETIF_F_TSO) 8703 dev->hw_features |= NETIF_F_TSO_MANGLEID; 8704 if (dev->vlan_features & NETIF_F_TSO) 8705 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 8706 if (dev->mpls_features & NETIF_F_TSO) 8707 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 8708 if (dev->hw_enc_features & NETIF_F_TSO) 8709 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 8710 8711 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8712 */ 8713 dev->vlan_features |= NETIF_F_HIGHDMA; 8714 8715 /* Make NETIF_F_SG inheritable to tunnel devices. 8716 */ 8717 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8718 8719 /* Make NETIF_F_SG inheritable to MPLS. 8720 */ 8721 dev->mpls_features |= NETIF_F_SG; 8722 8723 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8724 ret = notifier_to_errno(ret); 8725 if (ret) 8726 goto err_uninit; 8727 8728 ret = netdev_register_kobject(dev); 8729 if (ret) 8730 goto err_uninit; 8731 dev->reg_state = NETREG_REGISTERED; 8732 8733 __netdev_update_features(dev); 8734 8735 /* 8736 * Default initial state at registry is that the 8737 * device is present. 8738 */ 8739 8740 set_bit(__LINK_STATE_PRESENT, &dev->state); 8741 8742 linkwatch_init_dev(dev); 8743 8744 dev_init_scheduler(dev); 8745 dev_hold(dev); 8746 list_netdevice(dev); 8747 add_device_randomness(dev->dev_addr, dev->addr_len); 8748 8749 /* If the device has permanent device address, driver should 8750 * set dev_addr and also addr_assign_type should be set to 8751 * NET_ADDR_PERM (default value). 8752 */ 8753 if (dev->addr_assign_type == NET_ADDR_PERM) 8754 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8755 8756 /* Notify protocols, that a new device appeared. */ 8757 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8758 ret = notifier_to_errno(ret); 8759 if (ret) { 8760 rollback_registered(dev); 8761 rcu_barrier(); 8762 8763 dev->reg_state = NETREG_UNREGISTERED; 8764 } 8765 /* 8766 * Prevent userspace races by waiting until the network 8767 * device is fully setup before sending notifications. 8768 */ 8769 if (!dev->rtnl_link_ops || 8770 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8771 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8772 8773 out: 8774 return ret; 8775 8776 err_uninit: 8777 if (dev->netdev_ops->ndo_uninit) 8778 dev->netdev_ops->ndo_uninit(dev); 8779 if (dev->priv_destructor) 8780 dev->priv_destructor(dev); 8781 goto out; 8782 } 8783 EXPORT_SYMBOL(register_netdevice); 8784 8785 /** 8786 * init_dummy_netdev - init a dummy network device for NAPI 8787 * @dev: device to init 8788 * 8789 * This takes a network device structure and initialize the minimum 8790 * amount of fields so it can be used to schedule NAPI polls without 8791 * registering a full blown interface. This is to be used by drivers 8792 * that need to tie several hardware interfaces to a single NAPI 8793 * poll scheduler due to HW limitations. 8794 */ 8795 int init_dummy_netdev(struct net_device *dev) 8796 { 8797 /* Clear everything. Note we don't initialize spinlocks 8798 * are they aren't supposed to be taken by any of the 8799 * NAPI code and this dummy netdev is supposed to be 8800 * only ever used for NAPI polls 8801 */ 8802 memset(dev, 0, sizeof(struct net_device)); 8803 8804 /* make sure we BUG if trying to hit standard 8805 * register/unregister code path 8806 */ 8807 dev->reg_state = NETREG_DUMMY; 8808 8809 /* NAPI wants this */ 8810 INIT_LIST_HEAD(&dev->napi_list); 8811 8812 /* a dummy interface is started by default */ 8813 set_bit(__LINK_STATE_PRESENT, &dev->state); 8814 set_bit(__LINK_STATE_START, &dev->state); 8815 8816 /* napi_busy_loop stats accounting wants this */ 8817 dev_net_set(dev, &init_net); 8818 8819 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8820 * because users of this 'device' dont need to change 8821 * its refcount. 8822 */ 8823 8824 return 0; 8825 } 8826 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8827 8828 8829 /** 8830 * register_netdev - register a network device 8831 * @dev: device to register 8832 * 8833 * Take a completed network device structure and add it to the kernel 8834 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8835 * chain. 0 is returned on success. A negative errno code is returned 8836 * on a failure to set up the device, or if the name is a duplicate. 8837 * 8838 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8839 * and expands the device name if you passed a format string to 8840 * alloc_netdev. 8841 */ 8842 int register_netdev(struct net_device *dev) 8843 { 8844 int err; 8845 8846 if (rtnl_lock_killable()) 8847 return -EINTR; 8848 err = register_netdevice(dev); 8849 rtnl_unlock(); 8850 return err; 8851 } 8852 EXPORT_SYMBOL(register_netdev); 8853 8854 int netdev_refcnt_read(const struct net_device *dev) 8855 { 8856 int i, refcnt = 0; 8857 8858 for_each_possible_cpu(i) 8859 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8860 return refcnt; 8861 } 8862 EXPORT_SYMBOL(netdev_refcnt_read); 8863 8864 /** 8865 * netdev_wait_allrefs - wait until all references are gone. 8866 * @dev: target net_device 8867 * 8868 * This is called when unregistering network devices. 8869 * 8870 * Any protocol or device that holds a reference should register 8871 * for netdevice notification, and cleanup and put back the 8872 * reference if they receive an UNREGISTER event. 8873 * We can get stuck here if buggy protocols don't correctly 8874 * call dev_put. 8875 */ 8876 static void netdev_wait_allrefs(struct net_device *dev) 8877 { 8878 unsigned long rebroadcast_time, warning_time; 8879 int refcnt; 8880 8881 linkwatch_forget_dev(dev); 8882 8883 rebroadcast_time = warning_time = jiffies; 8884 refcnt = netdev_refcnt_read(dev); 8885 8886 while (refcnt != 0) { 8887 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8888 rtnl_lock(); 8889 8890 /* Rebroadcast unregister notification */ 8891 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8892 8893 __rtnl_unlock(); 8894 rcu_barrier(); 8895 rtnl_lock(); 8896 8897 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8898 &dev->state)) { 8899 /* We must not have linkwatch events 8900 * pending on unregister. If this 8901 * happens, we simply run the queue 8902 * unscheduled, resulting in a noop 8903 * for this device. 8904 */ 8905 linkwatch_run_queue(); 8906 } 8907 8908 __rtnl_unlock(); 8909 8910 rebroadcast_time = jiffies; 8911 } 8912 8913 msleep(250); 8914 8915 refcnt = netdev_refcnt_read(dev); 8916 8917 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 8918 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8919 dev->name, refcnt); 8920 warning_time = jiffies; 8921 } 8922 } 8923 } 8924 8925 /* The sequence is: 8926 * 8927 * rtnl_lock(); 8928 * ... 8929 * register_netdevice(x1); 8930 * register_netdevice(x2); 8931 * ... 8932 * unregister_netdevice(y1); 8933 * unregister_netdevice(y2); 8934 * ... 8935 * rtnl_unlock(); 8936 * free_netdev(y1); 8937 * free_netdev(y2); 8938 * 8939 * We are invoked by rtnl_unlock(). 8940 * This allows us to deal with problems: 8941 * 1) We can delete sysfs objects which invoke hotplug 8942 * without deadlocking with linkwatch via keventd. 8943 * 2) Since we run with the RTNL semaphore not held, we can sleep 8944 * safely in order to wait for the netdev refcnt to drop to zero. 8945 * 8946 * We must not return until all unregister events added during 8947 * the interval the lock was held have been completed. 8948 */ 8949 void netdev_run_todo(void) 8950 { 8951 struct list_head list; 8952 8953 /* Snapshot list, allow later requests */ 8954 list_replace_init(&net_todo_list, &list); 8955 8956 __rtnl_unlock(); 8957 8958 8959 /* Wait for rcu callbacks to finish before next phase */ 8960 if (!list_empty(&list)) 8961 rcu_barrier(); 8962 8963 while (!list_empty(&list)) { 8964 struct net_device *dev 8965 = list_first_entry(&list, struct net_device, todo_list); 8966 list_del(&dev->todo_list); 8967 8968 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8969 pr_err("network todo '%s' but state %d\n", 8970 dev->name, dev->reg_state); 8971 dump_stack(); 8972 continue; 8973 } 8974 8975 dev->reg_state = NETREG_UNREGISTERED; 8976 8977 netdev_wait_allrefs(dev); 8978 8979 /* paranoia */ 8980 BUG_ON(netdev_refcnt_read(dev)); 8981 BUG_ON(!list_empty(&dev->ptype_all)); 8982 BUG_ON(!list_empty(&dev->ptype_specific)); 8983 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8984 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8985 #if IS_ENABLED(CONFIG_DECNET) 8986 WARN_ON(dev->dn_ptr); 8987 #endif 8988 if (dev->priv_destructor) 8989 dev->priv_destructor(dev); 8990 if (dev->needs_free_netdev) 8991 free_netdev(dev); 8992 8993 /* Report a network device has been unregistered */ 8994 rtnl_lock(); 8995 dev_net(dev)->dev_unreg_count--; 8996 __rtnl_unlock(); 8997 wake_up(&netdev_unregistering_wq); 8998 8999 /* Free network device */ 9000 kobject_put(&dev->dev.kobj); 9001 } 9002 } 9003 9004 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 9005 * all the same fields in the same order as net_device_stats, with only 9006 * the type differing, but rtnl_link_stats64 may have additional fields 9007 * at the end for newer counters. 9008 */ 9009 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 9010 const struct net_device_stats *netdev_stats) 9011 { 9012 #if BITS_PER_LONG == 64 9013 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 9014 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 9015 /* zero out counters that only exist in rtnl_link_stats64 */ 9016 memset((char *)stats64 + sizeof(*netdev_stats), 0, 9017 sizeof(*stats64) - sizeof(*netdev_stats)); 9018 #else 9019 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 9020 const unsigned long *src = (const unsigned long *)netdev_stats; 9021 u64 *dst = (u64 *)stats64; 9022 9023 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9024 for (i = 0; i < n; i++) 9025 dst[i] = src[i]; 9026 /* zero out counters that only exist in rtnl_link_stats64 */ 9027 memset((char *)stats64 + n * sizeof(u64), 0, 9028 sizeof(*stats64) - n * sizeof(u64)); 9029 #endif 9030 } 9031 EXPORT_SYMBOL(netdev_stats_to_stats64); 9032 9033 /** 9034 * dev_get_stats - get network device statistics 9035 * @dev: device to get statistics from 9036 * @storage: place to store stats 9037 * 9038 * Get network statistics from device. Return @storage. 9039 * The device driver may provide its own method by setting 9040 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9041 * otherwise the internal statistics structure is used. 9042 */ 9043 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9044 struct rtnl_link_stats64 *storage) 9045 { 9046 const struct net_device_ops *ops = dev->netdev_ops; 9047 9048 if (ops->ndo_get_stats64) { 9049 memset(storage, 0, sizeof(*storage)); 9050 ops->ndo_get_stats64(dev, storage); 9051 } else if (ops->ndo_get_stats) { 9052 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9053 } else { 9054 netdev_stats_to_stats64(storage, &dev->stats); 9055 } 9056 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9057 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9058 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9059 return storage; 9060 } 9061 EXPORT_SYMBOL(dev_get_stats); 9062 9063 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9064 { 9065 struct netdev_queue *queue = dev_ingress_queue(dev); 9066 9067 #ifdef CONFIG_NET_CLS_ACT 9068 if (queue) 9069 return queue; 9070 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9071 if (!queue) 9072 return NULL; 9073 netdev_init_one_queue(dev, queue, NULL); 9074 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9075 queue->qdisc_sleeping = &noop_qdisc; 9076 rcu_assign_pointer(dev->ingress_queue, queue); 9077 #endif 9078 return queue; 9079 } 9080 9081 static const struct ethtool_ops default_ethtool_ops; 9082 9083 void netdev_set_default_ethtool_ops(struct net_device *dev, 9084 const struct ethtool_ops *ops) 9085 { 9086 if (dev->ethtool_ops == &default_ethtool_ops) 9087 dev->ethtool_ops = ops; 9088 } 9089 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9090 9091 void netdev_freemem(struct net_device *dev) 9092 { 9093 char *addr = (char *)dev - dev->padded; 9094 9095 kvfree(addr); 9096 } 9097 9098 /** 9099 * alloc_netdev_mqs - allocate network device 9100 * @sizeof_priv: size of private data to allocate space for 9101 * @name: device name format string 9102 * @name_assign_type: origin of device name 9103 * @setup: callback to initialize device 9104 * @txqs: the number of TX subqueues to allocate 9105 * @rxqs: the number of RX subqueues to allocate 9106 * 9107 * Allocates a struct net_device with private data area for driver use 9108 * and performs basic initialization. Also allocates subqueue structs 9109 * for each queue on the device. 9110 */ 9111 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9112 unsigned char name_assign_type, 9113 void (*setup)(struct net_device *), 9114 unsigned int txqs, unsigned int rxqs) 9115 { 9116 struct net_device *dev; 9117 unsigned int alloc_size; 9118 struct net_device *p; 9119 9120 BUG_ON(strlen(name) >= sizeof(dev->name)); 9121 9122 if (txqs < 1) { 9123 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9124 return NULL; 9125 } 9126 9127 if (rxqs < 1) { 9128 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9129 return NULL; 9130 } 9131 9132 alloc_size = sizeof(struct net_device); 9133 if (sizeof_priv) { 9134 /* ensure 32-byte alignment of private area */ 9135 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9136 alloc_size += sizeof_priv; 9137 } 9138 /* ensure 32-byte alignment of whole construct */ 9139 alloc_size += NETDEV_ALIGN - 1; 9140 9141 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9142 if (!p) 9143 return NULL; 9144 9145 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9146 dev->padded = (char *)dev - (char *)p; 9147 9148 dev->pcpu_refcnt = alloc_percpu(int); 9149 if (!dev->pcpu_refcnt) 9150 goto free_dev; 9151 9152 if (dev_addr_init(dev)) 9153 goto free_pcpu; 9154 9155 dev_mc_init(dev); 9156 dev_uc_init(dev); 9157 9158 dev_net_set(dev, &init_net); 9159 9160 dev->gso_max_size = GSO_MAX_SIZE; 9161 dev->gso_max_segs = GSO_MAX_SEGS; 9162 9163 INIT_LIST_HEAD(&dev->napi_list); 9164 INIT_LIST_HEAD(&dev->unreg_list); 9165 INIT_LIST_HEAD(&dev->close_list); 9166 INIT_LIST_HEAD(&dev->link_watch_list); 9167 INIT_LIST_HEAD(&dev->adj_list.upper); 9168 INIT_LIST_HEAD(&dev->adj_list.lower); 9169 INIT_LIST_HEAD(&dev->ptype_all); 9170 INIT_LIST_HEAD(&dev->ptype_specific); 9171 #ifdef CONFIG_NET_SCHED 9172 hash_init(dev->qdisc_hash); 9173 #endif 9174 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9175 setup(dev); 9176 9177 if (!dev->tx_queue_len) { 9178 dev->priv_flags |= IFF_NO_QUEUE; 9179 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9180 } 9181 9182 dev->num_tx_queues = txqs; 9183 dev->real_num_tx_queues = txqs; 9184 if (netif_alloc_netdev_queues(dev)) 9185 goto free_all; 9186 9187 dev->num_rx_queues = rxqs; 9188 dev->real_num_rx_queues = rxqs; 9189 if (netif_alloc_rx_queues(dev)) 9190 goto free_all; 9191 9192 strcpy(dev->name, name); 9193 dev->name_assign_type = name_assign_type; 9194 dev->group = INIT_NETDEV_GROUP; 9195 if (!dev->ethtool_ops) 9196 dev->ethtool_ops = &default_ethtool_ops; 9197 9198 nf_hook_ingress_init(dev); 9199 9200 return dev; 9201 9202 free_all: 9203 free_netdev(dev); 9204 return NULL; 9205 9206 free_pcpu: 9207 free_percpu(dev->pcpu_refcnt); 9208 free_dev: 9209 netdev_freemem(dev); 9210 return NULL; 9211 } 9212 EXPORT_SYMBOL(alloc_netdev_mqs); 9213 9214 /** 9215 * free_netdev - free network device 9216 * @dev: device 9217 * 9218 * This function does the last stage of destroying an allocated device 9219 * interface. The reference to the device object is released. If this 9220 * is the last reference then it will be freed.Must be called in process 9221 * context. 9222 */ 9223 void free_netdev(struct net_device *dev) 9224 { 9225 struct napi_struct *p, *n; 9226 9227 might_sleep(); 9228 netif_free_tx_queues(dev); 9229 netif_free_rx_queues(dev); 9230 9231 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9232 9233 /* Flush device addresses */ 9234 dev_addr_flush(dev); 9235 9236 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9237 netif_napi_del(p); 9238 9239 free_percpu(dev->pcpu_refcnt); 9240 dev->pcpu_refcnt = NULL; 9241 9242 /* Compatibility with error handling in drivers */ 9243 if (dev->reg_state == NETREG_UNINITIALIZED) { 9244 netdev_freemem(dev); 9245 return; 9246 } 9247 9248 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9249 dev->reg_state = NETREG_RELEASED; 9250 9251 /* will free via device release */ 9252 put_device(&dev->dev); 9253 } 9254 EXPORT_SYMBOL(free_netdev); 9255 9256 /** 9257 * synchronize_net - Synchronize with packet receive processing 9258 * 9259 * Wait for packets currently being received to be done. 9260 * Does not block later packets from starting. 9261 */ 9262 void synchronize_net(void) 9263 { 9264 might_sleep(); 9265 if (rtnl_is_locked()) 9266 synchronize_rcu_expedited(); 9267 else 9268 synchronize_rcu(); 9269 } 9270 EXPORT_SYMBOL(synchronize_net); 9271 9272 /** 9273 * unregister_netdevice_queue - remove device from the kernel 9274 * @dev: device 9275 * @head: list 9276 * 9277 * This function shuts down a device interface and removes it 9278 * from the kernel tables. 9279 * If head not NULL, device is queued to be unregistered later. 9280 * 9281 * Callers must hold the rtnl semaphore. You may want 9282 * unregister_netdev() instead of this. 9283 */ 9284 9285 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9286 { 9287 ASSERT_RTNL(); 9288 9289 if (head) { 9290 list_move_tail(&dev->unreg_list, head); 9291 } else { 9292 rollback_registered(dev); 9293 /* Finish processing unregister after unlock */ 9294 net_set_todo(dev); 9295 } 9296 } 9297 EXPORT_SYMBOL(unregister_netdevice_queue); 9298 9299 /** 9300 * unregister_netdevice_many - unregister many devices 9301 * @head: list of devices 9302 * 9303 * Note: As most callers use a stack allocated list_head, 9304 * we force a list_del() to make sure stack wont be corrupted later. 9305 */ 9306 void unregister_netdevice_many(struct list_head *head) 9307 { 9308 struct net_device *dev; 9309 9310 if (!list_empty(head)) { 9311 rollback_registered_many(head); 9312 list_for_each_entry(dev, head, unreg_list) 9313 net_set_todo(dev); 9314 list_del(head); 9315 } 9316 } 9317 EXPORT_SYMBOL(unregister_netdevice_many); 9318 9319 /** 9320 * unregister_netdev - remove device from the kernel 9321 * @dev: device 9322 * 9323 * This function shuts down a device interface and removes it 9324 * from the kernel tables. 9325 * 9326 * This is just a wrapper for unregister_netdevice that takes 9327 * the rtnl semaphore. In general you want to use this and not 9328 * unregister_netdevice. 9329 */ 9330 void unregister_netdev(struct net_device *dev) 9331 { 9332 rtnl_lock(); 9333 unregister_netdevice(dev); 9334 rtnl_unlock(); 9335 } 9336 EXPORT_SYMBOL(unregister_netdev); 9337 9338 /** 9339 * dev_change_net_namespace - move device to different nethost namespace 9340 * @dev: device 9341 * @net: network namespace 9342 * @pat: If not NULL name pattern to try if the current device name 9343 * is already taken in the destination network namespace. 9344 * 9345 * This function shuts down a device interface and moves it 9346 * to a new network namespace. On success 0 is returned, on 9347 * a failure a netagive errno code is returned. 9348 * 9349 * Callers must hold the rtnl semaphore. 9350 */ 9351 9352 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9353 { 9354 int err, new_nsid, new_ifindex; 9355 9356 ASSERT_RTNL(); 9357 9358 /* Don't allow namespace local devices to be moved. */ 9359 err = -EINVAL; 9360 if (dev->features & NETIF_F_NETNS_LOCAL) 9361 goto out; 9362 9363 /* Ensure the device has been registrered */ 9364 if (dev->reg_state != NETREG_REGISTERED) 9365 goto out; 9366 9367 /* Get out if there is nothing todo */ 9368 err = 0; 9369 if (net_eq(dev_net(dev), net)) 9370 goto out; 9371 9372 /* Pick the destination device name, and ensure 9373 * we can use it in the destination network namespace. 9374 */ 9375 err = -EEXIST; 9376 if (__dev_get_by_name(net, dev->name)) { 9377 /* We get here if we can't use the current device name */ 9378 if (!pat) 9379 goto out; 9380 err = dev_get_valid_name(net, dev, pat); 9381 if (err < 0) 9382 goto out; 9383 } 9384 9385 /* 9386 * And now a mini version of register_netdevice unregister_netdevice. 9387 */ 9388 9389 /* If device is running close it first. */ 9390 dev_close(dev); 9391 9392 /* And unlink it from device chain */ 9393 unlist_netdevice(dev); 9394 9395 synchronize_net(); 9396 9397 /* Shutdown queueing discipline. */ 9398 dev_shutdown(dev); 9399 9400 /* Notify protocols, that we are about to destroy 9401 * this device. They should clean all the things. 9402 * 9403 * Note that dev->reg_state stays at NETREG_REGISTERED. 9404 * This is wanted because this way 8021q and macvlan know 9405 * the device is just moving and can keep their slaves up. 9406 */ 9407 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9408 rcu_barrier(); 9409 9410 new_nsid = peernet2id_alloc(dev_net(dev), net); 9411 /* If there is an ifindex conflict assign a new one */ 9412 if (__dev_get_by_index(net, dev->ifindex)) 9413 new_ifindex = dev_new_index(net); 9414 else 9415 new_ifindex = dev->ifindex; 9416 9417 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 9418 new_ifindex); 9419 9420 /* 9421 * Flush the unicast and multicast chains 9422 */ 9423 dev_uc_flush(dev); 9424 dev_mc_flush(dev); 9425 9426 /* Send a netdev-removed uevent to the old namespace */ 9427 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 9428 netdev_adjacent_del_links(dev); 9429 9430 /* Actually switch the network namespace */ 9431 dev_net_set(dev, net); 9432 dev->ifindex = new_ifindex; 9433 9434 /* Send a netdev-add uevent to the new namespace */ 9435 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 9436 netdev_adjacent_add_links(dev); 9437 9438 /* Fixup kobjects */ 9439 err = device_rename(&dev->dev, dev->name); 9440 WARN_ON(err); 9441 9442 /* Add the device back in the hashes */ 9443 list_netdevice(dev); 9444 9445 /* Notify protocols, that a new device appeared. */ 9446 call_netdevice_notifiers(NETDEV_REGISTER, dev); 9447 9448 /* 9449 * Prevent userspace races by waiting until the network 9450 * device is fully setup before sending notifications. 9451 */ 9452 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9453 9454 synchronize_net(); 9455 err = 0; 9456 out: 9457 return err; 9458 } 9459 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 9460 9461 static int dev_cpu_dead(unsigned int oldcpu) 9462 { 9463 struct sk_buff **list_skb; 9464 struct sk_buff *skb; 9465 unsigned int cpu; 9466 struct softnet_data *sd, *oldsd, *remsd = NULL; 9467 9468 local_irq_disable(); 9469 cpu = smp_processor_id(); 9470 sd = &per_cpu(softnet_data, cpu); 9471 oldsd = &per_cpu(softnet_data, oldcpu); 9472 9473 /* Find end of our completion_queue. */ 9474 list_skb = &sd->completion_queue; 9475 while (*list_skb) 9476 list_skb = &(*list_skb)->next; 9477 /* Append completion queue from offline CPU. */ 9478 *list_skb = oldsd->completion_queue; 9479 oldsd->completion_queue = NULL; 9480 9481 /* Append output queue from offline CPU. */ 9482 if (oldsd->output_queue) { 9483 *sd->output_queue_tailp = oldsd->output_queue; 9484 sd->output_queue_tailp = oldsd->output_queue_tailp; 9485 oldsd->output_queue = NULL; 9486 oldsd->output_queue_tailp = &oldsd->output_queue; 9487 } 9488 /* Append NAPI poll list from offline CPU, with one exception : 9489 * process_backlog() must be called by cpu owning percpu backlog. 9490 * We properly handle process_queue & input_pkt_queue later. 9491 */ 9492 while (!list_empty(&oldsd->poll_list)) { 9493 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 9494 struct napi_struct, 9495 poll_list); 9496 9497 list_del_init(&napi->poll_list); 9498 if (napi->poll == process_backlog) 9499 napi->state = 0; 9500 else 9501 ____napi_schedule(sd, napi); 9502 } 9503 9504 raise_softirq_irqoff(NET_TX_SOFTIRQ); 9505 local_irq_enable(); 9506 9507 #ifdef CONFIG_RPS 9508 remsd = oldsd->rps_ipi_list; 9509 oldsd->rps_ipi_list = NULL; 9510 #endif 9511 /* send out pending IPI's on offline CPU */ 9512 net_rps_send_ipi(remsd); 9513 9514 /* Process offline CPU's input_pkt_queue */ 9515 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 9516 netif_rx_ni(skb); 9517 input_queue_head_incr(oldsd); 9518 } 9519 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 9520 netif_rx_ni(skb); 9521 input_queue_head_incr(oldsd); 9522 } 9523 9524 return 0; 9525 } 9526 9527 /** 9528 * netdev_increment_features - increment feature set by one 9529 * @all: current feature set 9530 * @one: new feature set 9531 * @mask: mask feature set 9532 * 9533 * Computes a new feature set after adding a device with feature set 9534 * @one to the master device with current feature set @all. Will not 9535 * enable anything that is off in @mask. Returns the new feature set. 9536 */ 9537 netdev_features_t netdev_increment_features(netdev_features_t all, 9538 netdev_features_t one, netdev_features_t mask) 9539 { 9540 if (mask & NETIF_F_HW_CSUM) 9541 mask |= NETIF_F_CSUM_MASK; 9542 mask |= NETIF_F_VLAN_CHALLENGED; 9543 9544 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 9545 all &= one | ~NETIF_F_ALL_FOR_ALL; 9546 9547 /* If one device supports hw checksumming, set for all. */ 9548 if (all & NETIF_F_HW_CSUM) 9549 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 9550 9551 return all; 9552 } 9553 EXPORT_SYMBOL(netdev_increment_features); 9554 9555 static struct hlist_head * __net_init netdev_create_hash(void) 9556 { 9557 int i; 9558 struct hlist_head *hash; 9559 9560 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 9561 if (hash != NULL) 9562 for (i = 0; i < NETDEV_HASHENTRIES; i++) 9563 INIT_HLIST_HEAD(&hash[i]); 9564 9565 return hash; 9566 } 9567 9568 /* Initialize per network namespace state */ 9569 static int __net_init netdev_init(struct net *net) 9570 { 9571 BUILD_BUG_ON(GRO_HASH_BUCKETS > 9572 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask)); 9573 9574 if (net != &init_net) 9575 INIT_LIST_HEAD(&net->dev_base_head); 9576 9577 net->dev_name_head = netdev_create_hash(); 9578 if (net->dev_name_head == NULL) 9579 goto err_name; 9580 9581 net->dev_index_head = netdev_create_hash(); 9582 if (net->dev_index_head == NULL) 9583 goto err_idx; 9584 9585 return 0; 9586 9587 err_idx: 9588 kfree(net->dev_name_head); 9589 err_name: 9590 return -ENOMEM; 9591 } 9592 9593 /** 9594 * netdev_drivername - network driver for the device 9595 * @dev: network device 9596 * 9597 * Determine network driver for device. 9598 */ 9599 const char *netdev_drivername(const struct net_device *dev) 9600 { 9601 const struct device_driver *driver; 9602 const struct device *parent; 9603 const char *empty = ""; 9604 9605 parent = dev->dev.parent; 9606 if (!parent) 9607 return empty; 9608 9609 driver = parent->driver; 9610 if (driver && driver->name) 9611 return driver->name; 9612 return empty; 9613 } 9614 9615 static void __netdev_printk(const char *level, const struct net_device *dev, 9616 struct va_format *vaf) 9617 { 9618 if (dev && dev->dev.parent) { 9619 dev_printk_emit(level[1] - '0', 9620 dev->dev.parent, 9621 "%s %s %s%s: %pV", 9622 dev_driver_string(dev->dev.parent), 9623 dev_name(dev->dev.parent), 9624 netdev_name(dev), netdev_reg_state(dev), 9625 vaf); 9626 } else if (dev) { 9627 printk("%s%s%s: %pV", 9628 level, netdev_name(dev), netdev_reg_state(dev), vaf); 9629 } else { 9630 printk("%s(NULL net_device): %pV", level, vaf); 9631 } 9632 } 9633 9634 void netdev_printk(const char *level, const struct net_device *dev, 9635 const char *format, ...) 9636 { 9637 struct va_format vaf; 9638 va_list args; 9639 9640 va_start(args, format); 9641 9642 vaf.fmt = format; 9643 vaf.va = &args; 9644 9645 __netdev_printk(level, dev, &vaf); 9646 9647 va_end(args); 9648 } 9649 EXPORT_SYMBOL(netdev_printk); 9650 9651 #define define_netdev_printk_level(func, level) \ 9652 void func(const struct net_device *dev, const char *fmt, ...) \ 9653 { \ 9654 struct va_format vaf; \ 9655 va_list args; \ 9656 \ 9657 va_start(args, fmt); \ 9658 \ 9659 vaf.fmt = fmt; \ 9660 vaf.va = &args; \ 9661 \ 9662 __netdev_printk(level, dev, &vaf); \ 9663 \ 9664 va_end(args); \ 9665 } \ 9666 EXPORT_SYMBOL(func); 9667 9668 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 9669 define_netdev_printk_level(netdev_alert, KERN_ALERT); 9670 define_netdev_printk_level(netdev_crit, KERN_CRIT); 9671 define_netdev_printk_level(netdev_err, KERN_ERR); 9672 define_netdev_printk_level(netdev_warn, KERN_WARNING); 9673 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 9674 define_netdev_printk_level(netdev_info, KERN_INFO); 9675 9676 static void __net_exit netdev_exit(struct net *net) 9677 { 9678 kfree(net->dev_name_head); 9679 kfree(net->dev_index_head); 9680 if (net != &init_net) 9681 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 9682 } 9683 9684 static struct pernet_operations __net_initdata netdev_net_ops = { 9685 .init = netdev_init, 9686 .exit = netdev_exit, 9687 }; 9688 9689 static void __net_exit default_device_exit(struct net *net) 9690 { 9691 struct net_device *dev, *aux; 9692 /* 9693 * Push all migratable network devices back to the 9694 * initial network namespace 9695 */ 9696 rtnl_lock(); 9697 for_each_netdev_safe(net, dev, aux) { 9698 int err; 9699 char fb_name[IFNAMSIZ]; 9700 9701 /* Ignore unmoveable devices (i.e. loopback) */ 9702 if (dev->features & NETIF_F_NETNS_LOCAL) 9703 continue; 9704 9705 /* Leave virtual devices for the generic cleanup */ 9706 if (dev->rtnl_link_ops) 9707 continue; 9708 9709 /* Push remaining network devices to init_net */ 9710 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 9711 if (__dev_get_by_name(&init_net, fb_name)) 9712 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 9713 err = dev_change_net_namespace(dev, &init_net, fb_name); 9714 if (err) { 9715 pr_emerg("%s: failed to move %s to init_net: %d\n", 9716 __func__, dev->name, err); 9717 BUG(); 9718 } 9719 } 9720 rtnl_unlock(); 9721 } 9722 9723 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9724 { 9725 /* Return with the rtnl_lock held when there are no network 9726 * devices unregistering in any network namespace in net_list. 9727 */ 9728 struct net *net; 9729 bool unregistering; 9730 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9731 9732 add_wait_queue(&netdev_unregistering_wq, &wait); 9733 for (;;) { 9734 unregistering = false; 9735 rtnl_lock(); 9736 list_for_each_entry(net, net_list, exit_list) { 9737 if (net->dev_unreg_count > 0) { 9738 unregistering = true; 9739 break; 9740 } 9741 } 9742 if (!unregistering) 9743 break; 9744 __rtnl_unlock(); 9745 9746 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9747 } 9748 remove_wait_queue(&netdev_unregistering_wq, &wait); 9749 } 9750 9751 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9752 { 9753 /* At exit all network devices most be removed from a network 9754 * namespace. Do this in the reverse order of registration. 9755 * Do this across as many network namespaces as possible to 9756 * improve batching efficiency. 9757 */ 9758 struct net_device *dev; 9759 struct net *net; 9760 LIST_HEAD(dev_kill_list); 9761 9762 /* To prevent network device cleanup code from dereferencing 9763 * loopback devices or network devices that have been freed 9764 * wait here for all pending unregistrations to complete, 9765 * before unregistring the loopback device and allowing the 9766 * network namespace be freed. 9767 * 9768 * The netdev todo list containing all network devices 9769 * unregistrations that happen in default_device_exit_batch 9770 * will run in the rtnl_unlock() at the end of 9771 * default_device_exit_batch. 9772 */ 9773 rtnl_lock_unregistering(net_list); 9774 list_for_each_entry(net, net_list, exit_list) { 9775 for_each_netdev_reverse(net, dev) { 9776 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9777 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9778 else 9779 unregister_netdevice_queue(dev, &dev_kill_list); 9780 } 9781 } 9782 unregister_netdevice_many(&dev_kill_list); 9783 rtnl_unlock(); 9784 } 9785 9786 static struct pernet_operations __net_initdata default_device_ops = { 9787 .exit = default_device_exit, 9788 .exit_batch = default_device_exit_batch, 9789 }; 9790 9791 /* 9792 * Initialize the DEV module. At boot time this walks the device list and 9793 * unhooks any devices that fail to initialise (normally hardware not 9794 * present) and leaves us with a valid list of present and active devices. 9795 * 9796 */ 9797 9798 /* 9799 * This is called single threaded during boot, so no need 9800 * to take the rtnl semaphore. 9801 */ 9802 static int __init net_dev_init(void) 9803 { 9804 int i, rc = -ENOMEM; 9805 9806 BUG_ON(!dev_boot_phase); 9807 9808 if (dev_proc_init()) 9809 goto out; 9810 9811 if (netdev_kobject_init()) 9812 goto out; 9813 9814 INIT_LIST_HEAD(&ptype_all); 9815 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9816 INIT_LIST_HEAD(&ptype_base[i]); 9817 9818 INIT_LIST_HEAD(&offload_base); 9819 9820 if (register_pernet_subsys(&netdev_net_ops)) 9821 goto out; 9822 9823 /* 9824 * Initialise the packet receive queues. 9825 */ 9826 9827 for_each_possible_cpu(i) { 9828 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9829 struct softnet_data *sd = &per_cpu(softnet_data, i); 9830 9831 INIT_WORK(flush, flush_backlog); 9832 9833 skb_queue_head_init(&sd->input_pkt_queue); 9834 skb_queue_head_init(&sd->process_queue); 9835 #ifdef CONFIG_XFRM_OFFLOAD 9836 skb_queue_head_init(&sd->xfrm_backlog); 9837 #endif 9838 INIT_LIST_HEAD(&sd->poll_list); 9839 sd->output_queue_tailp = &sd->output_queue; 9840 #ifdef CONFIG_RPS 9841 sd->csd.func = rps_trigger_softirq; 9842 sd->csd.info = sd; 9843 sd->cpu = i; 9844 #endif 9845 9846 init_gro_hash(&sd->backlog); 9847 sd->backlog.poll = process_backlog; 9848 sd->backlog.weight = weight_p; 9849 } 9850 9851 dev_boot_phase = 0; 9852 9853 /* The loopback device is special if any other network devices 9854 * is present in a network namespace the loopback device must 9855 * be present. Since we now dynamically allocate and free the 9856 * loopback device ensure this invariant is maintained by 9857 * keeping the loopback device as the first device on the 9858 * list of network devices. Ensuring the loopback devices 9859 * is the first device that appears and the last network device 9860 * that disappears. 9861 */ 9862 if (register_pernet_device(&loopback_net_ops)) 9863 goto out; 9864 9865 if (register_pernet_device(&default_device_ops)) 9866 goto out; 9867 9868 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9869 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9870 9871 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9872 NULL, dev_cpu_dead); 9873 WARN_ON(rc < 0); 9874 rc = 0; 9875 out: 9876 return rc; 9877 } 9878 9879 subsys_initcall(net_dev_init); 9880