1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/ethtool.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/stat.h> 102 #include <linux/if_bridge.h> 103 #include <linux/if_macvlan.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 131 #include "net-sysfs.h" 132 133 /* Instead of increasing this, you should create a hash table. */ 134 #define MAX_GRO_SKBS 8 135 136 /* This should be increased if a protocol with a bigger head is added. */ 137 #define GRO_MAX_HEAD (MAX_HEADER + 128) 138 139 /* 140 * The list of packet types we will receive (as opposed to discard) 141 * and the routines to invoke. 142 * 143 * Why 16. Because with 16 the only overlap we get on a hash of the 144 * low nibble of the protocol value is RARP/SNAP/X.25. 145 * 146 * NOTE: That is no longer true with the addition of VLAN tags. Not 147 * sure which should go first, but I bet it won't make much 148 * difference if we are running VLANs. The good news is that 149 * this protocol won't be in the list unless compiled in, so 150 * the average user (w/out VLANs) will not be adversely affected. 151 * --BLG 152 * 153 * 0800 IP 154 * 8100 802.1Q VLAN 155 * 0001 802.3 156 * 0002 AX.25 157 * 0004 802.2 158 * 8035 RARP 159 * 0005 SNAP 160 * 0805 X.25 161 * 0806 ARP 162 * 8137 IPX 163 * 0009 Localtalk 164 * 86DD IPv6 165 */ 166 167 #define PTYPE_HASH_SIZE (16) 168 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 169 170 static DEFINE_SPINLOCK(ptype_lock); 171 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 172 static struct list_head ptype_all __read_mostly; /* Taps */ 173 174 /* 175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 176 * semaphore. 177 * 178 * Pure readers hold dev_base_lock for reading. 179 * 180 * Writers must hold the rtnl semaphore while they loop through the 181 * dev_base_head list, and hold dev_base_lock for writing when they do the 182 * actual updates. This allows pure readers to access the list even 183 * while a writer is preparing to update it. 184 * 185 * To put it another way, dev_base_lock is held for writing only to 186 * protect against pure readers; the rtnl semaphore provides the 187 * protection against other writers. 188 * 189 * See, for example usages, register_netdevice() and 190 * unregister_netdevice(), which must be called with the rtnl 191 * semaphore held. 192 */ 193 DEFINE_RWLOCK(dev_base_lock); 194 EXPORT_SYMBOL(dev_base_lock); 195 196 #define NETDEV_HASHBITS 8 197 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 198 199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 200 { 201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 203 } 204 205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206 { 207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 208 } 209 210 /* Device list insertion */ 211 static int list_netdevice(struct net_device *dev) 212 { 213 struct net *net = dev_net(dev); 214 215 ASSERT_RTNL(); 216 217 write_lock_bh(&dev_base_lock); 218 list_add_tail(&dev->dev_list, &net->dev_base_head); 219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 221 write_unlock_bh(&dev_base_lock); 222 return 0; 223 } 224 225 /* Device list removal */ 226 static void unlist_netdevice(struct net_device *dev) 227 { 228 ASSERT_RTNL(); 229 230 /* Unlink dev from the device chain */ 231 write_lock_bh(&dev_base_lock); 232 list_del(&dev->dev_list); 233 hlist_del(&dev->name_hlist); 234 hlist_del(&dev->index_hlist); 235 write_unlock_bh(&dev_base_lock); 236 } 237 238 /* 239 * Our notifier list 240 */ 241 242 static RAW_NOTIFIER_HEAD(netdev_chain); 243 244 /* 245 * Device drivers call our routines to queue packets here. We empty the 246 * queue in the local softnet handler. 247 */ 248 249 DEFINE_PER_CPU(struct softnet_data, softnet_data); 250 EXPORT_PER_CPU_SYMBOL(softnet_data); 251 252 #ifdef CONFIG_LOCKDEP 253 /* 254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 255 * according to dev->type 256 */ 257 static const unsigned short netdev_lock_type[] = 258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 272 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 273 ARPHRD_VOID, ARPHRD_NONE}; 274 275 static const char *const netdev_lock_name[] = 276 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 277 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 278 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 279 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 280 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 281 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 282 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 283 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 284 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 285 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 286 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 287 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 288 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 289 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 290 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 291 "_xmit_VOID", "_xmit_NONE"}; 292 293 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 294 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 295 296 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 297 { 298 int i; 299 300 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 301 if (netdev_lock_type[i] == dev_type) 302 return i; 303 /* the last key is used by default */ 304 return ARRAY_SIZE(netdev_lock_type) - 1; 305 } 306 307 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 308 unsigned short dev_type) 309 { 310 int i; 311 312 i = netdev_lock_pos(dev_type); 313 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 314 netdev_lock_name[i]); 315 } 316 317 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 318 { 319 int i; 320 321 i = netdev_lock_pos(dev->type); 322 lockdep_set_class_and_name(&dev->addr_list_lock, 323 &netdev_addr_lock_key[i], 324 netdev_lock_name[i]); 325 } 326 #else 327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 328 unsigned short dev_type) 329 { 330 } 331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 332 { 333 } 334 #endif 335 336 /******************************************************************************* 337 338 Protocol management and registration routines 339 340 *******************************************************************************/ 341 342 /* 343 * Add a protocol ID to the list. Now that the input handler is 344 * smarter we can dispense with all the messy stuff that used to be 345 * here. 346 * 347 * BEWARE!!! Protocol handlers, mangling input packets, 348 * MUST BE last in hash buckets and checking protocol handlers 349 * MUST start from promiscuous ptype_all chain in net_bh. 350 * It is true now, do not change it. 351 * Explanation follows: if protocol handler, mangling packet, will 352 * be the first on list, it is not able to sense, that packet 353 * is cloned and should be copied-on-write, so that it will 354 * change it and subsequent readers will get broken packet. 355 * --ANK (980803) 356 */ 357 358 /** 359 * dev_add_pack - add packet handler 360 * @pt: packet type declaration 361 * 362 * Add a protocol handler to the networking stack. The passed &packet_type 363 * is linked into kernel lists and may not be freed until it has been 364 * removed from the kernel lists. 365 * 366 * This call does not sleep therefore it can not 367 * guarantee all CPU's that are in middle of receiving packets 368 * will see the new packet type (until the next received packet). 369 */ 370 371 void dev_add_pack(struct packet_type *pt) 372 { 373 int hash; 374 375 spin_lock_bh(&ptype_lock); 376 if (pt->type == htons(ETH_P_ALL)) 377 list_add_rcu(&pt->list, &ptype_all); 378 else { 379 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 380 list_add_rcu(&pt->list, &ptype_base[hash]); 381 } 382 spin_unlock_bh(&ptype_lock); 383 } 384 EXPORT_SYMBOL(dev_add_pack); 385 386 /** 387 * __dev_remove_pack - remove packet handler 388 * @pt: packet type declaration 389 * 390 * Remove a protocol handler that was previously added to the kernel 391 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 392 * from the kernel lists and can be freed or reused once this function 393 * returns. 394 * 395 * The packet type might still be in use by receivers 396 * and must not be freed until after all the CPU's have gone 397 * through a quiescent state. 398 */ 399 void __dev_remove_pack(struct packet_type *pt) 400 { 401 struct list_head *head; 402 struct packet_type *pt1; 403 404 spin_lock_bh(&ptype_lock); 405 406 if (pt->type == htons(ETH_P_ALL)) 407 head = &ptype_all; 408 else 409 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 410 411 list_for_each_entry(pt1, head, list) { 412 if (pt == pt1) { 413 list_del_rcu(&pt->list); 414 goto out; 415 } 416 } 417 418 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 419 out: 420 spin_unlock_bh(&ptype_lock); 421 } 422 EXPORT_SYMBOL(__dev_remove_pack); 423 424 /** 425 * dev_remove_pack - remove packet handler 426 * @pt: packet type declaration 427 * 428 * Remove a protocol handler that was previously added to the kernel 429 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 430 * from the kernel lists and can be freed or reused once this function 431 * returns. 432 * 433 * This call sleeps to guarantee that no CPU is looking at the packet 434 * type after return. 435 */ 436 void dev_remove_pack(struct packet_type *pt) 437 { 438 __dev_remove_pack(pt); 439 440 synchronize_net(); 441 } 442 EXPORT_SYMBOL(dev_remove_pack); 443 444 /****************************************************************************** 445 446 Device Boot-time Settings Routines 447 448 *******************************************************************************/ 449 450 /* Boot time configuration table */ 451 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 452 453 /** 454 * netdev_boot_setup_add - add new setup entry 455 * @name: name of the device 456 * @map: configured settings for the device 457 * 458 * Adds new setup entry to the dev_boot_setup list. The function 459 * returns 0 on error and 1 on success. This is a generic routine to 460 * all netdevices. 461 */ 462 static int netdev_boot_setup_add(char *name, struct ifmap *map) 463 { 464 struct netdev_boot_setup *s; 465 int i; 466 467 s = dev_boot_setup; 468 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 469 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 470 memset(s[i].name, 0, sizeof(s[i].name)); 471 strlcpy(s[i].name, name, IFNAMSIZ); 472 memcpy(&s[i].map, map, sizeof(s[i].map)); 473 break; 474 } 475 } 476 477 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 478 } 479 480 /** 481 * netdev_boot_setup_check - check boot time settings 482 * @dev: the netdevice 483 * 484 * Check boot time settings for the device. 485 * The found settings are set for the device to be used 486 * later in the device probing. 487 * Returns 0 if no settings found, 1 if they are. 488 */ 489 int netdev_boot_setup_check(struct net_device *dev) 490 { 491 struct netdev_boot_setup *s = dev_boot_setup; 492 int i; 493 494 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 495 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 496 !strcmp(dev->name, s[i].name)) { 497 dev->irq = s[i].map.irq; 498 dev->base_addr = s[i].map.base_addr; 499 dev->mem_start = s[i].map.mem_start; 500 dev->mem_end = s[i].map.mem_end; 501 return 1; 502 } 503 } 504 return 0; 505 } 506 EXPORT_SYMBOL(netdev_boot_setup_check); 507 508 509 /** 510 * netdev_boot_base - get address from boot time settings 511 * @prefix: prefix for network device 512 * @unit: id for network device 513 * 514 * Check boot time settings for the base address of device. 515 * The found settings are set for the device to be used 516 * later in the device probing. 517 * Returns 0 if no settings found. 518 */ 519 unsigned long netdev_boot_base(const char *prefix, int unit) 520 { 521 const struct netdev_boot_setup *s = dev_boot_setup; 522 char name[IFNAMSIZ]; 523 int i; 524 525 sprintf(name, "%s%d", prefix, unit); 526 527 /* 528 * If device already registered then return base of 1 529 * to indicate not to probe for this interface 530 */ 531 if (__dev_get_by_name(&init_net, name)) 532 return 1; 533 534 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 535 if (!strcmp(name, s[i].name)) 536 return s[i].map.base_addr; 537 return 0; 538 } 539 540 /* 541 * Saves at boot time configured settings for any netdevice. 542 */ 543 int __init netdev_boot_setup(char *str) 544 { 545 int ints[5]; 546 struct ifmap map; 547 548 str = get_options(str, ARRAY_SIZE(ints), ints); 549 if (!str || !*str) 550 return 0; 551 552 /* Save settings */ 553 memset(&map, 0, sizeof(map)); 554 if (ints[0] > 0) 555 map.irq = ints[1]; 556 if (ints[0] > 1) 557 map.base_addr = ints[2]; 558 if (ints[0] > 2) 559 map.mem_start = ints[3]; 560 if (ints[0] > 3) 561 map.mem_end = ints[4]; 562 563 /* Add new entry to the list */ 564 return netdev_boot_setup_add(str, &map); 565 } 566 567 __setup("netdev=", netdev_boot_setup); 568 569 /******************************************************************************* 570 571 Device Interface Subroutines 572 573 *******************************************************************************/ 574 575 /** 576 * __dev_get_by_name - find a device by its name 577 * @net: the applicable net namespace 578 * @name: name to find 579 * 580 * Find an interface by name. Must be called under RTNL semaphore 581 * or @dev_base_lock. If the name is found a pointer to the device 582 * is returned. If the name is not found then %NULL is returned. The 583 * reference counters are not incremented so the caller must be 584 * careful with locks. 585 */ 586 587 struct net_device *__dev_get_by_name(struct net *net, const char *name) 588 { 589 struct hlist_node *p; 590 591 hlist_for_each(p, dev_name_hash(net, name)) { 592 struct net_device *dev 593 = hlist_entry(p, struct net_device, name_hlist); 594 if (!strncmp(dev->name, name, IFNAMSIZ)) 595 return dev; 596 } 597 return NULL; 598 } 599 EXPORT_SYMBOL(__dev_get_by_name); 600 601 /** 602 * dev_get_by_name - find a device by its name 603 * @net: the applicable net namespace 604 * @name: name to find 605 * 606 * Find an interface by name. This can be called from any 607 * context and does its own locking. The returned handle has 608 * the usage count incremented and the caller must use dev_put() to 609 * release it when it is no longer needed. %NULL is returned if no 610 * matching device is found. 611 */ 612 613 struct net_device *dev_get_by_name(struct net *net, const char *name) 614 { 615 struct net_device *dev; 616 617 read_lock(&dev_base_lock); 618 dev = __dev_get_by_name(net, name); 619 if (dev) 620 dev_hold(dev); 621 read_unlock(&dev_base_lock); 622 return dev; 623 } 624 EXPORT_SYMBOL(dev_get_by_name); 625 626 /** 627 * __dev_get_by_index - find a device by its ifindex 628 * @net: the applicable net namespace 629 * @ifindex: index of device 630 * 631 * Search for an interface by index. Returns %NULL if the device 632 * is not found or a pointer to the device. The device has not 633 * had its reference counter increased so the caller must be careful 634 * about locking. The caller must hold either the RTNL semaphore 635 * or @dev_base_lock. 636 */ 637 638 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 639 { 640 struct hlist_node *p; 641 642 hlist_for_each(p, dev_index_hash(net, ifindex)) { 643 struct net_device *dev 644 = hlist_entry(p, struct net_device, index_hlist); 645 if (dev->ifindex == ifindex) 646 return dev; 647 } 648 return NULL; 649 } 650 EXPORT_SYMBOL(__dev_get_by_index); 651 652 653 /** 654 * dev_get_by_index - find a device by its ifindex 655 * @net: the applicable net namespace 656 * @ifindex: index of device 657 * 658 * Search for an interface by index. Returns NULL if the device 659 * is not found or a pointer to the device. The device returned has 660 * had a reference added and the pointer is safe until the user calls 661 * dev_put to indicate they have finished with it. 662 */ 663 664 struct net_device *dev_get_by_index(struct net *net, int ifindex) 665 { 666 struct net_device *dev; 667 668 read_lock(&dev_base_lock); 669 dev = __dev_get_by_index(net, ifindex); 670 if (dev) 671 dev_hold(dev); 672 read_unlock(&dev_base_lock); 673 return dev; 674 } 675 EXPORT_SYMBOL(dev_get_by_index); 676 677 /** 678 * dev_getbyhwaddr - find a device by its hardware address 679 * @net: the applicable net namespace 680 * @type: media type of device 681 * @ha: hardware address 682 * 683 * Search for an interface by MAC address. Returns NULL if the device 684 * is not found or a pointer to the device. The caller must hold the 685 * rtnl semaphore. The returned device has not had its ref count increased 686 * and the caller must therefore be careful about locking 687 * 688 * BUGS: 689 * If the API was consistent this would be __dev_get_by_hwaddr 690 */ 691 692 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 693 { 694 struct net_device *dev; 695 696 ASSERT_RTNL(); 697 698 for_each_netdev(net, dev) 699 if (dev->type == type && 700 !memcmp(dev->dev_addr, ha, dev->addr_len)) 701 return dev; 702 703 return NULL; 704 } 705 EXPORT_SYMBOL(dev_getbyhwaddr); 706 707 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 708 { 709 struct net_device *dev; 710 711 ASSERT_RTNL(); 712 for_each_netdev(net, dev) 713 if (dev->type == type) 714 return dev; 715 716 return NULL; 717 } 718 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 719 720 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 721 { 722 struct net_device *dev; 723 724 rtnl_lock(); 725 dev = __dev_getfirstbyhwtype(net, type); 726 if (dev) 727 dev_hold(dev); 728 rtnl_unlock(); 729 return dev; 730 } 731 EXPORT_SYMBOL(dev_getfirstbyhwtype); 732 733 /** 734 * dev_get_by_flags - find any device with given flags 735 * @net: the applicable net namespace 736 * @if_flags: IFF_* values 737 * @mask: bitmask of bits in if_flags to check 738 * 739 * Search for any interface with the given flags. Returns NULL if a device 740 * is not found or a pointer to the device. The device returned has 741 * had a reference added and the pointer is safe until the user calls 742 * dev_put to indicate they have finished with it. 743 */ 744 745 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags, 746 unsigned short mask) 747 { 748 struct net_device *dev, *ret; 749 750 ret = NULL; 751 read_lock(&dev_base_lock); 752 for_each_netdev(net, dev) { 753 if (((dev->flags ^ if_flags) & mask) == 0) { 754 dev_hold(dev); 755 ret = dev; 756 break; 757 } 758 } 759 read_unlock(&dev_base_lock); 760 return ret; 761 } 762 EXPORT_SYMBOL(dev_get_by_flags); 763 764 /** 765 * dev_valid_name - check if name is okay for network device 766 * @name: name string 767 * 768 * Network device names need to be valid file names to 769 * to allow sysfs to work. We also disallow any kind of 770 * whitespace. 771 */ 772 int dev_valid_name(const char *name) 773 { 774 if (*name == '\0') 775 return 0; 776 if (strlen(name) >= IFNAMSIZ) 777 return 0; 778 if (!strcmp(name, ".") || !strcmp(name, "..")) 779 return 0; 780 781 while (*name) { 782 if (*name == '/' || isspace(*name)) 783 return 0; 784 name++; 785 } 786 return 1; 787 } 788 EXPORT_SYMBOL(dev_valid_name); 789 790 /** 791 * __dev_alloc_name - allocate a name for a device 792 * @net: network namespace to allocate the device name in 793 * @name: name format string 794 * @buf: scratch buffer and result name string 795 * 796 * Passed a format string - eg "lt%d" it will try and find a suitable 797 * id. It scans list of devices to build up a free map, then chooses 798 * the first empty slot. The caller must hold the dev_base or rtnl lock 799 * while allocating the name and adding the device in order to avoid 800 * duplicates. 801 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 802 * Returns the number of the unit assigned or a negative errno code. 803 */ 804 805 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 806 { 807 int i = 0; 808 const char *p; 809 const int max_netdevices = 8*PAGE_SIZE; 810 unsigned long *inuse; 811 struct net_device *d; 812 813 p = strnchr(name, IFNAMSIZ-1, '%'); 814 if (p) { 815 /* 816 * Verify the string as this thing may have come from 817 * the user. There must be either one "%d" and no other "%" 818 * characters. 819 */ 820 if (p[1] != 'd' || strchr(p + 2, '%')) 821 return -EINVAL; 822 823 /* Use one page as a bit array of possible slots */ 824 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 825 if (!inuse) 826 return -ENOMEM; 827 828 for_each_netdev(net, d) { 829 if (!sscanf(d->name, name, &i)) 830 continue; 831 if (i < 0 || i >= max_netdevices) 832 continue; 833 834 /* avoid cases where sscanf is not exact inverse of printf */ 835 snprintf(buf, IFNAMSIZ, name, i); 836 if (!strncmp(buf, d->name, IFNAMSIZ)) 837 set_bit(i, inuse); 838 } 839 840 i = find_first_zero_bit(inuse, max_netdevices); 841 free_page((unsigned long) inuse); 842 } 843 844 snprintf(buf, IFNAMSIZ, name, i); 845 if (!__dev_get_by_name(net, buf)) 846 return i; 847 848 /* It is possible to run out of possible slots 849 * when the name is long and there isn't enough space left 850 * for the digits, or if all bits are used. 851 */ 852 return -ENFILE; 853 } 854 855 /** 856 * dev_alloc_name - allocate a name for a device 857 * @dev: device 858 * @name: name format string 859 * 860 * Passed a format string - eg "lt%d" it will try and find a suitable 861 * id. It scans list of devices to build up a free map, then chooses 862 * the first empty slot. The caller must hold the dev_base or rtnl lock 863 * while allocating the name and adding the device in order to avoid 864 * duplicates. 865 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 866 * Returns the number of the unit assigned or a negative errno code. 867 */ 868 869 int dev_alloc_name(struct net_device *dev, const char *name) 870 { 871 char buf[IFNAMSIZ]; 872 struct net *net; 873 int ret; 874 875 BUG_ON(!dev_net(dev)); 876 net = dev_net(dev); 877 ret = __dev_alloc_name(net, name, buf); 878 if (ret >= 0) 879 strlcpy(dev->name, buf, IFNAMSIZ); 880 return ret; 881 } 882 EXPORT_SYMBOL(dev_alloc_name); 883 884 885 /** 886 * dev_change_name - change name of a device 887 * @dev: device 888 * @newname: name (or format string) must be at least IFNAMSIZ 889 * 890 * Change name of a device, can pass format strings "eth%d". 891 * for wildcarding. 892 */ 893 int dev_change_name(struct net_device *dev, const char *newname) 894 { 895 char oldname[IFNAMSIZ]; 896 int err = 0; 897 int ret; 898 struct net *net; 899 900 ASSERT_RTNL(); 901 BUG_ON(!dev_net(dev)); 902 903 net = dev_net(dev); 904 if (dev->flags & IFF_UP) 905 return -EBUSY; 906 907 if (!dev_valid_name(newname)) 908 return -EINVAL; 909 910 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 911 return 0; 912 913 memcpy(oldname, dev->name, IFNAMSIZ); 914 915 if (strchr(newname, '%')) { 916 err = dev_alloc_name(dev, newname); 917 if (err < 0) 918 return err; 919 } else if (__dev_get_by_name(net, newname)) 920 return -EEXIST; 921 else 922 strlcpy(dev->name, newname, IFNAMSIZ); 923 924 rollback: 925 /* For now only devices in the initial network namespace 926 * are in sysfs. 927 */ 928 if (net == &init_net) { 929 ret = device_rename(&dev->dev, dev->name); 930 if (ret) { 931 memcpy(dev->name, oldname, IFNAMSIZ); 932 return ret; 933 } 934 } 935 936 write_lock_bh(&dev_base_lock); 937 hlist_del(&dev->name_hlist); 938 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 939 write_unlock_bh(&dev_base_lock); 940 941 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 942 ret = notifier_to_errno(ret); 943 944 if (ret) { 945 /* err >= 0 after dev_alloc_name() or stores the first errno */ 946 if (err >= 0) { 947 err = ret; 948 memcpy(dev->name, oldname, IFNAMSIZ); 949 goto rollback; 950 } else { 951 printk(KERN_ERR 952 "%s: name change rollback failed: %d.\n", 953 dev->name, ret); 954 } 955 } 956 957 return err; 958 } 959 960 /** 961 * dev_set_alias - change ifalias of a device 962 * @dev: device 963 * @alias: name up to IFALIASZ 964 * @len: limit of bytes to copy from info 965 * 966 * Set ifalias for a device, 967 */ 968 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 969 { 970 ASSERT_RTNL(); 971 972 if (len >= IFALIASZ) 973 return -EINVAL; 974 975 if (!len) { 976 if (dev->ifalias) { 977 kfree(dev->ifalias); 978 dev->ifalias = NULL; 979 } 980 return 0; 981 } 982 983 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 984 if (!dev->ifalias) 985 return -ENOMEM; 986 987 strlcpy(dev->ifalias, alias, len+1); 988 return len; 989 } 990 991 992 /** 993 * netdev_features_change - device changes features 994 * @dev: device to cause notification 995 * 996 * Called to indicate a device has changed features. 997 */ 998 void netdev_features_change(struct net_device *dev) 999 { 1000 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1001 } 1002 EXPORT_SYMBOL(netdev_features_change); 1003 1004 /** 1005 * netdev_state_change - device changes state 1006 * @dev: device to cause notification 1007 * 1008 * Called to indicate a device has changed state. This function calls 1009 * the notifier chains for netdev_chain and sends a NEWLINK message 1010 * to the routing socket. 1011 */ 1012 void netdev_state_change(struct net_device *dev) 1013 { 1014 if (dev->flags & IFF_UP) { 1015 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1016 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1017 } 1018 } 1019 EXPORT_SYMBOL(netdev_state_change); 1020 1021 void netdev_bonding_change(struct net_device *dev, unsigned long event) 1022 { 1023 call_netdevice_notifiers(event, dev); 1024 } 1025 EXPORT_SYMBOL(netdev_bonding_change); 1026 1027 /** 1028 * dev_load - load a network module 1029 * @net: the applicable net namespace 1030 * @name: name of interface 1031 * 1032 * If a network interface is not present and the process has suitable 1033 * privileges this function loads the module. If module loading is not 1034 * available in this kernel then it becomes a nop. 1035 */ 1036 1037 void dev_load(struct net *net, const char *name) 1038 { 1039 struct net_device *dev; 1040 1041 read_lock(&dev_base_lock); 1042 dev = __dev_get_by_name(net, name); 1043 read_unlock(&dev_base_lock); 1044 1045 if (!dev && capable(CAP_NET_ADMIN)) 1046 request_module("%s", name); 1047 } 1048 EXPORT_SYMBOL(dev_load); 1049 1050 /** 1051 * dev_open - prepare an interface for use. 1052 * @dev: device to open 1053 * 1054 * Takes a device from down to up state. The device's private open 1055 * function is invoked and then the multicast lists are loaded. Finally 1056 * the device is moved into the up state and a %NETDEV_UP message is 1057 * sent to the netdev notifier chain. 1058 * 1059 * Calling this function on an active interface is a nop. On a failure 1060 * a negative errno code is returned. 1061 */ 1062 int dev_open(struct net_device *dev) 1063 { 1064 const struct net_device_ops *ops = dev->netdev_ops; 1065 int ret; 1066 1067 ASSERT_RTNL(); 1068 1069 /* 1070 * Is it already up? 1071 */ 1072 1073 if (dev->flags & IFF_UP) 1074 return 0; 1075 1076 /* 1077 * Is it even present? 1078 */ 1079 if (!netif_device_present(dev)) 1080 return -ENODEV; 1081 1082 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1083 ret = notifier_to_errno(ret); 1084 if (ret) 1085 return ret; 1086 1087 /* 1088 * Call device private open method 1089 */ 1090 set_bit(__LINK_STATE_START, &dev->state); 1091 1092 if (ops->ndo_validate_addr) 1093 ret = ops->ndo_validate_addr(dev); 1094 1095 if (!ret && ops->ndo_open) 1096 ret = ops->ndo_open(dev); 1097 1098 /* 1099 * If it went open OK then: 1100 */ 1101 1102 if (ret) 1103 clear_bit(__LINK_STATE_START, &dev->state); 1104 else { 1105 /* 1106 * Set the flags. 1107 */ 1108 dev->flags |= IFF_UP; 1109 1110 /* 1111 * Enable NET_DMA 1112 */ 1113 net_dmaengine_get(); 1114 1115 /* 1116 * Initialize multicasting status 1117 */ 1118 dev_set_rx_mode(dev); 1119 1120 /* 1121 * Wakeup transmit queue engine 1122 */ 1123 dev_activate(dev); 1124 1125 /* 1126 * ... and announce new interface. 1127 */ 1128 call_netdevice_notifiers(NETDEV_UP, dev); 1129 } 1130 1131 return ret; 1132 } 1133 EXPORT_SYMBOL(dev_open); 1134 1135 /** 1136 * dev_close - shutdown an interface. 1137 * @dev: device to shutdown 1138 * 1139 * This function moves an active device into down state. A 1140 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1141 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1142 * chain. 1143 */ 1144 int dev_close(struct net_device *dev) 1145 { 1146 const struct net_device_ops *ops = dev->netdev_ops; 1147 ASSERT_RTNL(); 1148 1149 might_sleep(); 1150 1151 if (!(dev->flags & IFF_UP)) 1152 return 0; 1153 1154 /* 1155 * Tell people we are going down, so that they can 1156 * prepare to death, when device is still operating. 1157 */ 1158 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1159 1160 clear_bit(__LINK_STATE_START, &dev->state); 1161 1162 /* Synchronize to scheduled poll. We cannot touch poll list, 1163 * it can be even on different cpu. So just clear netif_running(). 1164 * 1165 * dev->stop() will invoke napi_disable() on all of it's 1166 * napi_struct instances on this device. 1167 */ 1168 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1169 1170 dev_deactivate(dev); 1171 1172 /* 1173 * Call the device specific close. This cannot fail. 1174 * Only if device is UP 1175 * 1176 * We allow it to be called even after a DETACH hot-plug 1177 * event. 1178 */ 1179 if (ops->ndo_stop) 1180 ops->ndo_stop(dev); 1181 1182 /* 1183 * Device is now down. 1184 */ 1185 1186 dev->flags &= ~IFF_UP; 1187 1188 /* 1189 * Tell people we are down 1190 */ 1191 call_netdevice_notifiers(NETDEV_DOWN, dev); 1192 1193 /* 1194 * Shutdown NET_DMA 1195 */ 1196 net_dmaengine_put(); 1197 1198 return 0; 1199 } 1200 EXPORT_SYMBOL(dev_close); 1201 1202 1203 /** 1204 * dev_disable_lro - disable Large Receive Offload on a device 1205 * @dev: device 1206 * 1207 * Disable Large Receive Offload (LRO) on a net device. Must be 1208 * called under RTNL. This is needed if received packets may be 1209 * forwarded to another interface. 1210 */ 1211 void dev_disable_lro(struct net_device *dev) 1212 { 1213 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1214 dev->ethtool_ops->set_flags) { 1215 u32 flags = dev->ethtool_ops->get_flags(dev); 1216 if (flags & ETH_FLAG_LRO) { 1217 flags &= ~ETH_FLAG_LRO; 1218 dev->ethtool_ops->set_flags(dev, flags); 1219 } 1220 } 1221 WARN_ON(dev->features & NETIF_F_LRO); 1222 } 1223 EXPORT_SYMBOL(dev_disable_lro); 1224 1225 1226 static int dev_boot_phase = 1; 1227 1228 /* 1229 * Device change register/unregister. These are not inline or static 1230 * as we export them to the world. 1231 */ 1232 1233 /** 1234 * register_netdevice_notifier - register a network notifier block 1235 * @nb: notifier 1236 * 1237 * Register a notifier to be called when network device events occur. 1238 * The notifier passed is linked into the kernel structures and must 1239 * not be reused until it has been unregistered. A negative errno code 1240 * is returned on a failure. 1241 * 1242 * When registered all registration and up events are replayed 1243 * to the new notifier to allow device to have a race free 1244 * view of the network device list. 1245 */ 1246 1247 int register_netdevice_notifier(struct notifier_block *nb) 1248 { 1249 struct net_device *dev; 1250 struct net_device *last; 1251 struct net *net; 1252 int err; 1253 1254 rtnl_lock(); 1255 err = raw_notifier_chain_register(&netdev_chain, nb); 1256 if (err) 1257 goto unlock; 1258 if (dev_boot_phase) 1259 goto unlock; 1260 for_each_net(net) { 1261 for_each_netdev(net, dev) { 1262 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1263 err = notifier_to_errno(err); 1264 if (err) 1265 goto rollback; 1266 1267 if (!(dev->flags & IFF_UP)) 1268 continue; 1269 1270 nb->notifier_call(nb, NETDEV_UP, dev); 1271 } 1272 } 1273 1274 unlock: 1275 rtnl_unlock(); 1276 return err; 1277 1278 rollback: 1279 last = dev; 1280 for_each_net(net) { 1281 for_each_netdev(net, dev) { 1282 if (dev == last) 1283 break; 1284 1285 if (dev->flags & IFF_UP) { 1286 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1287 nb->notifier_call(nb, NETDEV_DOWN, dev); 1288 } 1289 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1290 } 1291 } 1292 1293 raw_notifier_chain_unregister(&netdev_chain, nb); 1294 goto unlock; 1295 } 1296 EXPORT_SYMBOL(register_netdevice_notifier); 1297 1298 /** 1299 * unregister_netdevice_notifier - unregister a network notifier block 1300 * @nb: notifier 1301 * 1302 * Unregister a notifier previously registered by 1303 * register_netdevice_notifier(). The notifier is unlinked into the 1304 * kernel structures and may then be reused. A negative errno code 1305 * is returned on a failure. 1306 */ 1307 1308 int unregister_netdevice_notifier(struct notifier_block *nb) 1309 { 1310 int err; 1311 1312 rtnl_lock(); 1313 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1314 rtnl_unlock(); 1315 return err; 1316 } 1317 EXPORT_SYMBOL(unregister_netdevice_notifier); 1318 1319 /** 1320 * call_netdevice_notifiers - call all network notifier blocks 1321 * @val: value passed unmodified to notifier function 1322 * @dev: net_device pointer passed unmodified to notifier function 1323 * 1324 * Call all network notifier blocks. Parameters and return value 1325 * are as for raw_notifier_call_chain(). 1326 */ 1327 1328 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1329 { 1330 return raw_notifier_call_chain(&netdev_chain, val, dev); 1331 } 1332 1333 /* When > 0 there are consumers of rx skb time stamps */ 1334 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1335 1336 void net_enable_timestamp(void) 1337 { 1338 atomic_inc(&netstamp_needed); 1339 } 1340 EXPORT_SYMBOL(net_enable_timestamp); 1341 1342 void net_disable_timestamp(void) 1343 { 1344 atomic_dec(&netstamp_needed); 1345 } 1346 EXPORT_SYMBOL(net_disable_timestamp); 1347 1348 static inline void net_timestamp(struct sk_buff *skb) 1349 { 1350 if (atomic_read(&netstamp_needed)) 1351 __net_timestamp(skb); 1352 else 1353 skb->tstamp.tv64 = 0; 1354 } 1355 1356 /* 1357 * Support routine. Sends outgoing frames to any network 1358 * taps currently in use. 1359 */ 1360 1361 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1362 { 1363 struct packet_type *ptype; 1364 1365 #ifdef CONFIG_NET_CLS_ACT 1366 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1367 net_timestamp(skb); 1368 #else 1369 net_timestamp(skb); 1370 #endif 1371 1372 rcu_read_lock(); 1373 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1374 /* Never send packets back to the socket 1375 * they originated from - MvS (miquels@drinkel.ow.org) 1376 */ 1377 if ((ptype->dev == dev || !ptype->dev) && 1378 (ptype->af_packet_priv == NULL || 1379 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1380 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1381 if (!skb2) 1382 break; 1383 1384 /* skb->nh should be correctly 1385 set by sender, so that the second statement is 1386 just protection against buggy protocols. 1387 */ 1388 skb_reset_mac_header(skb2); 1389 1390 if (skb_network_header(skb2) < skb2->data || 1391 skb2->network_header > skb2->tail) { 1392 if (net_ratelimit()) 1393 printk(KERN_CRIT "protocol %04x is " 1394 "buggy, dev %s\n", 1395 skb2->protocol, dev->name); 1396 skb_reset_network_header(skb2); 1397 } 1398 1399 skb2->transport_header = skb2->network_header; 1400 skb2->pkt_type = PACKET_OUTGOING; 1401 ptype->func(skb2, skb->dev, ptype, skb->dev); 1402 } 1403 } 1404 rcu_read_unlock(); 1405 } 1406 1407 1408 static inline void __netif_reschedule(struct Qdisc *q) 1409 { 1410 struct softnet_data *sd; 1411 unsigned long flags; 1412 1413 local_irq_save(flags); 1414 sd = &__get_cpu_var(softnet_data); 1415 q->next_sched = sd->output_queue; 1416 sd->output_queue = q; 1417 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1418 local_irq_restore(flags); 1419 } 1420 1421 void __netif_schedule(struct Qdisc *q) 1422 { 1423 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1424 __netif_reschedule(q); 1425 } 1426 EXPORT_SYMBOL(__netif_schedule); 1427 1428 void dev_kfree_skb_irq(struct sk_buff *skb) 1429 { 1430 if (atomic_dec_and_test(&skb->users)) { 1431 struct softnet_data *sd; 1432 unsigned long flags; 1433 1434 local_irq_save(flags); 1435 sd = &__get_cpu_var(softnet_data); 1436 skb->next = sd->completion_queue; 1437 sd->completion_queue = skb; 1438 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1439 local_irq_restore(flags); 1440 } 1441 } 1442 EXPORT_SYMBOL(dev_kfree_skb_irq); 1443 1444 void dev_kfree_skb_any(struct sk_buff *skb) 1445 { 1446 if (in_irq() || irqs_disabled()) 1447 dev_kfree_skb_irq(skb); 1448 else 1449 dev_kfree_skb(skb); 1450 } 1451 EXPORT_SYMBOL(dev_kfree_skb_any); 1452 1453 1454 /** 1455 * netif_device_detach - mark device as removed 1456 * @dev: network device 1457 * 1458 * Mark device as removed from system and therefore no longer available. 1459 */ 1460 void netif_device_detach(struct net_device *dev) 1461 { 1462 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1463 netif_running(dev)) { 1464 netif_tx_stop_all_queues(dev); 1465 } 1466 } 1467 EXPORT_SYMBOL(netif_device_detach); 1468 1469 /** 1470 * netif_device_attach - mark device as attached 1471 * @dev: network device 1472 * 1473 * Mark device as attached from system and restart if needed. 1474 */ 1475 void netif_device_attach(struct net_device *dev) 1476 { 1477 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1478 netif_running(dev)) { 1479 netif_tx_wake_all_queues(dev); 1480 __netdev_watchdog_up(dev); 1481 } 1482 } 1483 EXPORT_SYMBOL(netif_device_attach); 1484 1485 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1486 { 1487 return ((features & NETIF_F_GEN_CSUM) || 1488 ((features & NETIF_F_IP_CSUM) && 1489 protocol == htons(ETH_P_IP)) || 1490 ((features & NETIF_F_IPV6_CSUM) && 1491 protocol == htons(ETH_P_IPV6)) || 1492 ((features & NETIF_F_FCOE_CRC) && 1493 protocol == htons(ETH_P_FCOE))); 1494 } 1495 1496 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1497 { 1498 if (can_checksum_protocol(dev->features, skb->protocol)) 1499 return true; 1500 1501 if (skb->protocol == htons(ETH_P_8021Q)) { 1502 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1503 if (can_checksum_protocol(dev->features & dev->vlan_features, 1504 veh->h_vlan_encapsulated_proto)) 1505 return true; 1506 } 1507 1508 return false; 1509 } 1510 1511 /* 1512 * Invalidate hardware checksum when packet is to be mangled, and 1513 * complete checksum manually on outgoing path. 1514 */ 1515 int skb_checksum_help(struct sk_buff *skb) 1516 { 1517 __wsum csum; 1518 int ret = 0, offset; 1519 1520 if (skb->ip_summed == CHECKSUM_COMPLETE) 1521 goto out_set_summed; 1522 1523 if (unlikely(skb_shinfo(skb)->gso_size)) { 1524 /* Let GSO fix up the checksum. */ 1525 goto out_set_summed; 1526 } 1527 1528 offset = skb->csum_start - skb_headroom(skb); 1529 BUG_ON(offset >= skb_headlen(skb)); 1530 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1531 1532 offset += skb->csum_offset; 1533 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1534 1535 if (skb_cloned(skb) && 1536 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1537 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1538 if (ret) 1539 goto out; 1540 } 1541 1542 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1543 out_set_summed: 1544 skb->ip_summed = CHECKSUM_NONE; 1545 out: 1546 return ret; 1547 } 1548 EXPORT_SYMBOL(skb_checksum_help); 1549 1550 /** 1551 * skb_gso_segment - Perform segmentation on skb. 1552 * @skb: buffer to segment 1553 * @features: features for the output path (see dev->features) 1554 * 1555 * This function segments the given skb and returns a list of segments. 1556 * 1557 * It may return NULL if the skb requires no segmentation. This is 1558 * only possible when GSO is used for verifying header integrity. 1559 */ 1560 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1561 { 1562 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1563 struct packet_type *ptype; 1564 __be16 type = skb->protocol; 1565 int err; 1566 1567 skb_reset_mac_header(skb); 1568 skb->mac_len = skb->network_header - skb->mac_header; 1569 __skb_pull(skb, skb->mac_len); 1570 1571 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1572 struct net_device *dev = skb->dev; 1573 struct ethtool_drvinfo info = {}; 1574 1575 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1576 dev->ethtool_ops->get_drvinfo(dev, &info); 1577 1578 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1579 "ip_summed=%d", 1580 info.driver, dev ? dev->features : 0L, 1581 skb->sk ? skb->sk->sk_route_caps : 0L, 1582 skb->len, skb->data_len, skb->ip_summed); 1583 1584 if (skb_header_cloned(skb) && 1585 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1586 return ERR_PTR(err); 1587 } 1588 1589 rcu_read_lock(); 1590 list_for_each_entry_rcu(ptype, 1591 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1592 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1593 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1594 err = ptype->gso_send_check(skb); 1595 segs = ERR_PTR(err); 1596 if (err || skb_gso_ok(skb, features)) 1597 break; 1598 __skb_push(skb, (skb->data - 1599 skb_network_header(skb))); 1600 } 1601 segs = ptype->gso_segment(skb, features); 1602 break; 1603 } 1604 } 1605 rcu_read_unlock(); 1606 1607 __skb_push(skb, skb->data - skb_mac_header(skb)); 1608 1609 return segs; 1610 } 1611 EXPORT_SYMBOL(skb_gso_segment); 1612 1613 /* Take action when hardware reception checksum errors are detected. */ 1614 #ifdef CONFIG_BUG 1615 void netdev_rx_csum_fault(struct net_device *dev) 1616 { 1617 if (net_ratelimit()) { 1618 printk(KERN_ERR "%s: hw csum failure.\n", 1619 dev ? dev->name : "<unknown>"); 1620 dump_stack(); 1621 } 1622 } 1623 EXPORT_SYMBOL(netdev_rx_csum_fault); 1624 #endif 1625 1626 /* Actually, we should eliminate this check as soon as we know, that: 1627 * 1. IOMMU is present and allows to map all the memory. 1628 * 2. No high memory really exists on this machine. 1629 */ 1630 1631 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1632 { 1633 #ifdef CONFIG_HIGHMEM 1634 int i; 1635 1636 if (dev->features & NETIF_F_HIGHDMA) 1637 return 0; 1638 1639 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1640 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1641 return 1; 1642 1643 #endif 1644 return 0; 1645 } 1646 1647 struct dev_gso_cb { 1648 void (*destructor)(struct sk_buff *skb); 1649 }; 1650 1651 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1652 1653 static void dev_gso_skb_destructor(struct sk_buff *skb) 1654 { 1655 struct dev_gso_cb *cb; 1656 1657 do { 1658 struct sk_buff *nskb = skb->next; 1659 1660 skb->next = nskb->next; 1661 nskb->next = NULL; 1662 kfree_skb(nskb); 1663 } while (skb->next); 1664 1665 cb = DEV_GSO_CB(skb); 1666 if (cb->destructor) 1667 cb->destructor(skb); 1668 } 1669 1670 /** 1671 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1672 * @skb: buffer to segment 1673 * 1674 * This function segments the given skb and stores the list of segments 1675 * in skb->next. 1676 */ 1677 static int dev_gso_segment(struct sk_buff *skb) 1678 { 1679 struct net_device *dev = skb->dev; 1680 struct sk_buff *segs; 1681 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1682 NETIF_F_SG : 0); 1683 1684 segs = skb_gso_segment(skb, features); 1685 1686 /* Verifying header integrity only. */ 1687 if (!segs) 1688 return 0; 1689 1690 if (IS_ERR(segs)) 1691 return PTR_ERR(segs); 1692 1693 skb->next = segs; 1694 DEV_GSO_CB(skb)->destructor = skb->destructor; 1695 skb->destructor = dev_gso_skb_destructor; 1696 1697 return 0; 1698 } 1699 1700 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1701 struct netdev_queue *txq) 1702 { 1703 const struct net_device_ops *ops = dev->netdev_ops; 1704 int rc; 1705 1706 if (likely(!skb->next)) { 1707 if (!list_empty(&ptype_all)) 1708 dev_queue_xmit_nit(skb, dev); 1709 1710 if (netif_needs_gso(dev, skb)) { 1711 if (unlikely(dev_gso_segment(skb))) 1712 goto out_kfree_skb; 1713 if (skb->next) 1714 goto gso; 1715 } 1716 1717 /* 1718 * If device doesnt need skb->dst, release it right now while 1719 * its hot in this cpu cache 1720 */ 1721 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1722 skb_dst_drop(skb); 1723 1724 rc = ops->ndo_start_xmit(skb, dev); 1725 if (rc == NETDEV_TX_OK) 1726 txq_trans_update(txq); 1727 /* 1728 * TODO: if skb_orphan() was called by 1729 * dev->hard_start_xmit() (for example, the unmodified 1730 * igb driver does that; bnx2 doesn't), then 1731 * skb_tx_software_timestamp() will be unable to send 1732 * back the time stamp. 1733 * 1734 * How can this be prevented? Always create another 1735 * reference to the socket before calling 1736 * dev->hard_start_xmit()? Prevent that skb_orphan() 1737 * does anything in dev->hard_start_xmit() by clearing 1738 * the skb destructor before the call and restoring it 1739 * afterwards, then doing the skb_orphan() ourselves? 1740 */ 1741 return rc; 1742 } 1743 1744 gso: 1745 do { 1746 struct sk_buff *nskb = skb->next; 1747 1748 skb->next = nskb->next; 1749 nskb->next = NULL; 1750 rc = ops->ndo_start_xmit(nskb, dev); 1751 if (unlikely(rc != NETDEV_TX_OK)) { 1752 nskb->next = skb->next; 1753 skb->next = nskb; 1754 return rc; 1755 } 1756 txq_trans_update(txq); 1757 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1758 return NETDEV_TX_BUSY; 1759 } while (skb->next); 1760 1761 skb->destructor = DEV_GSO_CB(skb)->destructor; 1762 1763 out_kfree_skb: 1764 kfree_skb(skb); 1765 return NETDEV_TX_OK; 1766 } 1767 1768 static u32 skb_tx_hashrnd; 1769 1770 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 1771 { 1772 u32 hash; 1773 1774 if (skb_rx_queue_recorded(skb)) { 1775 hash = skb_get_rx_queue(skb); 1776 while (unlikely(hash >= dev->real_num_tx_queues)) 1777 hash -= dev->real_num_tx_queues; 1778 return hash; 1779 } 1780 1781 if (skb->sk && skb->sk->sk_hash) 1782 hash = skb->sk->sk_hash; 1783 else 1784 hash = skb->protocol; 1785 1786 hash = jhash_1word(hash, skb_tx_hashrnd); 1787 1788 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1789 } 1790 EXPORT_SYMBOL(skb_tx_hash); 1791 1792 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1793 struct sk_buff *skb) 1794 { 1795 const struct net_device_ops *ops = dev->netdev_ops; 1796 u16 queue_index = 0; 1797 1798 if (ops->ndo_select_queue) 1799 queue_index = ops->ndo_select_queue(dev, skb); 1800 else if (dev->real_num_tx_queues > 1) 1801 queue_index = skb_tx_hash(dev, skb); 1802 1803 skb_set_queue_mapping(skb, queue_index); 1804 return netdev_get_tx_queue(dev, queue_index); 1805 } 1806 1807 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 1808 struct net_device *dev, 1809 struct netdev_queue *txq) 1810 { 1811 spinlock_t *root_lock = qdisc_lock(q); 1812 int rc; 1813 1814 spin_lock(root_lock); 1815 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1816 kfree_skb(skb); 1817 rc = NET_XMIT_DROP; 1818 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 1819 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) { 1820 /* 1821 * This is a work-conserving queue; there are no old skbs 1822 * waiting to be sent out; and the qdisc is not running - 1823 * xmit the skb directly. 1824 */ 1825 __qdisc_update_bstats(q, skb->len); 1826 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) 1827 __qdisc_run(q); 1828 else 1829 clear_bit(__QDISC_STATE_RUNNING, &q->state); 1830 1831 rc = NET_XMIT_SUCCESS; 1832 } else { 1833 rc = qdisc_enqueue_root(skb, q); 1834 qdisc_run(q); 1835 } 1836 spin_unlock(root_lock); 1837 1838 return rc; 1839 } 1840 1841 /** 1842 * dev_queue_xmit - transmit a buffer 1843 * @skb: buffer to transmit 1844 * 1845 * Queue a buffer for transmission to a network device. The caller must 1846 * have set the device and priority and built the buffer before calling 1847 * this function. The function can be called from an interrupt. 1848 * 1849 * A negative errno code is returned on a failure. A success does not 1850 * guarantee the frame will be transmitted as it may be dropped due 1851 * to congestion or traffic shaping. 1852 * 1853 * ----------------------------------------------------------------------------------- 1854 * I notice this method can also return errors from the queue disciplines, 1855 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1856 * be positive. 1857 * 1858 * Regardless of the return value, the skb is consumed, so it is currently 1859 * difficult to retry a send to this method. (You can bump the ref count 1860 * before sending to hold a reference for retry if you are careful.) 1861 * 1862 * When calling this method, interrupts MUST be enabled. This is because 1863 * the BH enable code must have IRQs enabled so that it will not deadlock. 1864 * --BLG 1865 */ 1866 int dev_queue_xmit(struct sk_buff *skb) 1867 { 1868 struct net_device *dev = skb->dev; 1869 struct netdev_queue *txq; 1870 struct Qdisc *q; 1871 int rc = -ENOMEM; 1872 1873 /* GSO will handle the following emulations directly. */ 1874 if (netif_needs_gso(dev, skb)) 1875 goto gso; 1876 1877 if (skb_has_frags(skb) && 1878 !(dev->features & NETIF_F_FRAGLIST) && 1879 __skb_linearize(skb)) 1880 goto out_kfree_skb; 1881 1882 /* Fragmented skb is linearized if device does not support SG, 1883 * or if at least one of fragments is in highmem and device 1884 * does not support DMA from it. 1885 */ 1886 if (skb_shinfo(skb)->nr_frags && 1887 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1888 __skb_linearize(skb)) 1889 goto out_kfree_skb; 1890 1891 /* If packet is not checksummed and device does not support 1892 * checksumming for this protocol, complete checksumming here. 1893 */ 1894 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1895 skb_set_transport_header(skb, skb->csum_start - 1896 skb_headroom(skb)); 1897 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1898 goto out_kfree_skb; 1899 } 1900 1901 gso: 1902 /* Disable soft irqs for various locks below. Also 1903 * stops preemption for RCU. 1904 */ 1905 rcu_read_lock_bh(); 1906 1907 txq = dev_pick_tx(dev, skb); 1908 q = rcu_dereference(txq->qdisc); 1909 1910 #ifdef CONFIG_NET_CLS_ACT 1911 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 1912 #endif 1913 if (q->enqueue) { 1914 rc = __dev_xmit_skb(skb, q, dev, txq); 1915 goto out; 1916 } 1917 1918 /* The device has no queue. Common case for software devices: 1919 loopback, all the sorts of tunnels... 1920 1921 Really, it is unlikely that netif_tx_lock protection is necessary 1922 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1923 counters.) 1924 However, it is possible, that they rely on protection 1925 made by us here. 1926 1927 Check this and shot the lock. It is not prone from deadlocks. 1928 Either shot noqueue qdisc, it is even simpler 8) 1929 */ 1930 if (dev->flags & IFF_UP) { 1931 int cpu = smp_processor_id(); /* ok because BHs are off */ 1932 1933 if (txq->xmit_lock_owner != cpu) { 1934 1935 HARD_TX_LOCK(dev, txq, cpu); 1936 1937 if (!netif_tx_queue_stopped(txq)) { 1938 rc = NET_XMIT_SUCCESS; 1939 if (!dev_hard_start_xmit(skb, dev, txq)) { 1940 HARD_TX_UNLOCK(dev, txq); 1941 goto out; 1942 } 1943 } 1944 HARD_TX_UNLOCK(dev, txq); 1945 if (net_ratelimit()) 1946 printk(KERN_CRIT "Virtual device %s asks to " 1947 "queue packet!\n", dev->name); 1948 } else { 1949 /* Recursion is detected! It is possible, 1950 * unfortunately */ 1951 if (net_ratelimit()) 1952 printk(KERN_CRIT "Dead loop on virtual device " 1953 "%s, fix it urgently!\n", dev->name); 1954 } 1955 } 1956 1957 rc = -ENETDOWN; 1958 rcu_read_unlock_bh(); 1959 1960 out_kfree_skb: 1961 kfree_skb(skb); 1962 return rc; 1963 out: 1964 rcu_read_unlock_bh(); 1965 return rc; 1966 } 1967 EXPORT_SYMBOL(dev_queue_xmit); 1968 1969 1970 /*======================================================================= 1971 Receiver routines 1972 =======================================================================*/ 1973 1974 int netdev_max_backlog __read_mostly = 1000; 1975 int netdev_budget __read_mostly = 300; 1976 int weight_p __read_mostly = 64; /* old backlog weight */ 1977 1978 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1979 1980 1981 /** 1982 * netif_rx - post buffer to the network code 1983 * @skb: buffer to post 1984 * 1985 * This function receives a packet from a device driver and queues it for 1986 * the upper (protocol) levels to process. It always succeeds. The buffer 1987 * may be dropped during processing for congestion control or by the 1988 * protocol layers. 1989 * 1990 * return values: 1991 * NET_RX_SUCCESS (no congestion) 1992 * NET_RX_DROP (packet was dropped) 1993 * 1994 */ 1995 1996 int netif_rx(struct sk_buff *skb) 1997 { 1998 struct softnet_data *queue; 1999 unsigned long flags; 2000 2001 /* if netpoll wants it, pretend we never saw it */ 2002 if (netpoll_rx(skb)) 2003 return NET_RX_DROP; 2004 2005 if (!skb->tstamp.tv64) 2006 net_timestamp(skb); 2007 2008 /* 2009 * The code is rearranged so that the path is the most 2010 * short when CPU is congested, but is still operating. 2011 */ 2012 local_irq_save(flags); 2013 queue = &__get_cpu_var(softnet_data); 2014 2015 __get_cpu_var(netdev_rx_stat).total++; 2016 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 2017 if (queue->input_pkt_queue.qlen) { 2018 enqueue: 2019 __skb_queue_tail(&queue->input_pkt_queue, skb); 2020 local_irq_restore(flags); 2021 return NET_RX_SUCCESS; 2022 } 2023 2024 napi_schedule(&queue->backlog); 2025 goto enqueue; 2026 } 2027 2028 __get_cpu_var(netdev_rx_stat).dropped++; 2029 local_irq_restore(flags); 2030 2031 kfree_skb(skb); 2032 return NET_RX_DROP; 2033 } 2034 EXPORT_SYMBOL(netif_rx); 2035 2036 int netif_rx_ni(struct sk_buff *skb) 2037 { 2038 int err; 2039 2040 preempt_disable(); 2041 err = netif_rx(skb); 2042 if (local_softirq_pending()) 2043 do_softirq(); 2044 preempt_enable(); 2045 2046 return err; 2047 } 2048 EXPORT_SYMBOL(netif_rx_ni); 2049 2050 static void net_tx_action(struct softirq_action *h) 2051 { 2052 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2053 2054 if (sd->completion_queue) { 2055 struct sk_buff *clist; 2056 2057 local_irq_disable(); 2058 clist = sd->completion_queue; 2059 sd->completion_queue = NULL; 2060 local_irq_enable(); 2061 2062 while (clist) { 2063 struct sk_buff *skb = clist; 2064 clist = clist->next; 2065 2066 WARN_ON(atomic_read(&skb->users)); 2067 __kfree_skb(skb); 2068 } 2069 } 2070 2071 if (sd->output_queue) { 2072 struct Qdisc *head; 2073 2074 local_irq_disable(); 2075 head = sd->output_queue; 2076 sd->output_queue = NULL; 2077 local_irq_enable(); 2078 2079 while (head) { 2080 struct Qdisc *q = head; 2081 spinlock_t *root_lock; 2082 2083 head = head->next_sched; 2084 2085 root_lock = qdisc_lock(q); 2086 if (spin_trylock(root_lock)) { 2087 smp_mb__before_clear_bit(); 2088 clear_bit(__QDISC_STATE_SCHED, 2089 &q->state); 2090 qdisc_run(q); 2091 spin_unlock(root_lock); 2092 } else { 2093 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2094 &q->state)) { 2095 __netif_reschedule(q); 2096 } else { 2097 smp_mb__before_clear_bit(); 2098 clear_bit(__QDISC_STATE_SCHED, 2099 &q->state); 2100 } 2101 } 2102 } 2103 } 2104 } 2105 2106 static inline int deliver_skb(struct sk_buff *skb, 2107 struct packet_type *pt_prev, 2108 struct net_device *orig_dev) 2109 { 2110 atomic_inc(&skb->users); 2111 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2112 } 2113 2114 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2115 2116 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE) 2117 /* This hook is defined here for ATM LANE */ 2118 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2119 unsigned char *addr) __read_mostly; 2120 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2121 #endif 2122 2123 /* 2124 * If bridge module is loaded call bridging hook. 2125 * returns NULL if packet was consumed. 2126 */ 2127 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2128 struct sk_buff *skb) __read_mostly; 2129 EXPORT_SYMBOL_GPL(br_handle_frame_hook); 2130 2131 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2132 struct packet_type **pt_prev, int *ret, 2133 struct net_device *orig_dev) 2134 { 2135 struct net_bridge_port *port; 2136 2137 if (skb->pkt_type == PACKET_LOOPBACK || 2138 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2139 return skb; 2140 2141 if (*pt_prev) { 2142 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2143 *pt_prev = NULL; 2144 } 2145 2146 return br_handle_frame_hook(port, skb); 2147 } 2148 #else 2149 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2150 #endif 2151 2152 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2153 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2154 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2155 2156 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2157 struct packet_type **pt_prev, 2158 int *ret, 2159 struct net_device *orig_dev) 2160 { 2161 if (skb->dev->macvlan_port == NULL) 2162 return skb; 2163 2164 if (*pt_prev) { 2165 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2166 *pt_prev = NULL; 2167 } 2168 return macvlan_handle_frame_hook(skb); 2169 } 2170 #else 2171 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2172 #endif 2173 2174 #ifdef CONFIG_NET_CLS_ACT 2175 /* TODO: Maybe we should just force sch_ingress to be compiled in 2176 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2177 * a compare and 2 stores extra right now if we dont have it on 2178 * but have CONFIG_NET_CLS_ACT 2179 * NOTE: This doesnt stop any functionality; if you dont have 2180 * the ingress scheduler, you just cant add policies on ingress. 2181 * 2182 */ 2183 static int ing_filter(struct sk_buff *skb) 2184 { 2185 struct net_device *dev = skb->dev; 2186 u32 ttl = G_TC_RTTL(skb->tc_verd); 2187 struct netdev_queue *rxq; 2188 int result = TC_ACT_OK; 2189 struct Qdisc *q; 2190 2191 if (MAX_RED_LOOP < ttl++) { 2192 printk(KERN_WARNING 2193 "Redir loop detected Dropping packet (%d->%d)\n", 2194 skb->iif, dev->ifindex); 2195 return TC_ACT_SHOT; 2196 } 2197 2198 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2199 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2200 2201 rxq = &dev->rx_queue; 2202 2203 q = rxq->qdisc; 2204 if (q != &noop_qdisc) { 2205 spin_lock(qdisc_lock(q)); 2206 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2207 result = qdisc_enqueue_root(skb, q); 2208 spin_unlock(qdisc_lock(q)); 2209 } 2210 2211 return result; 2212 } 2213 2214 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2215 struct packet_type **pt_prev, 2216 int *ret, struct net_device *orig_dev) 2217 { 2218 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2219 goto out; 2220 2221 if (*pt_prev) { 2222 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2223 *pt_prev = NULL; 2224 } else { 2225 /* Huh? Why does turning on AF_PACKET affect this? */ 2226 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2227 } 2228 2229 switch (ing_filter(skb)) { 2230 case TC_ACT_SHOT: 2231 case TC_ACT_STOLEN: 2232 kfree_skb(skb); 2233 return NULL; 2234 } 2235 2236 out: 2237 skb->tc_verd = 0; 2238 return skb; 2239 } 2240 #endif 2241 2242 /* 2243 * netif_nit_deliver - deliver received packets to network taps 2244 * @skb: buffer 2245 * 2246 * This function is used to deliver incoming packets to network 2247 * taps. It should be used when the normal netif_receive_skb path 2248 * is bypassed, for example because of VLAN acceleration. 2249 */ 2250 void netif_nit_deliver(struct sk_buff *skb) 2251 { 2252 struct packet_type *ptype; 2253 2254 if (list_empty(&ptype_all)) 2255 return; 2256 2257 skb_reset_network_header(skb); 2258 skb_reset_transport_header(skb); 2259 skb->mac_len = skb->network_header - skb->mac_header; 2260 2261 rcu_read_lock(); 2262 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2263 if (!ptype->dev || ptype->dev == skb->dev) 2264 deliver_skb(skb, ptype, skb->dev); 2265 } 2266 rcu_read_unlock(); 2267 } 2268 2269 /** 2270 * netif_receive_skb - process receive buffer from network 2271 * @skb: buffer to process 2272 * 2273 * netif_receive_skb() is the main receive data processing function. 2274 * It always succeeds. The buffer may be dropped during processing 2275 * for congestion control or by the protocol layers. 2276 * 2277 * This function may only be called from softirq context and interrupts 2278 * should be enabled. 2279 * 2280 * Return values (usually ignored): 2281 * NET_RX_SUCCESS: no congestion 2282 * NET_RX_DROP: packet was dropped 2283 */ 2284 int netif_receive_skb(struct sk_buff *skb) 2285 { 2286 struct packet_type *ptype, *pt_prev; 2287 struct net_device *orig_dev; 2288 struct net_device *null_or_orig; 2289 int ret = NET_RX_DROP; 2290 __be16 type; 2291 2292 if (!skb->tstamp.tv64) 2293 net_timestamp(skb); 2294 2295 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb)) 2296 return NET_RX_SUCCESS; 2297 2298 /* if we've gotten here through NAPI, check netpoll */ 2299 if (netpoll_receive_skb(skb)) 2300 return NET_RX_DROP; 2301 2302 if (!skb->iif) 2303 skb->iif = skb->dev->ifindex; 2304 2305 null_or_orig = NULL; 2306 orig_dev = skb->dev; 2307 if (orig_dev->master) { 2308 if (skb_bond_should_drop(skb)) 2309 null_or_orig = orig_dev; /* deliver only exact match */ 2310 else 2311 skb->dev = orig_dev->master; 2312 } 2313 2314 __get_cpu_var(netdev_rx_stat).total++; 2315 2316 skb_reset_network_header(skb); 2317 skb_reset_transport_header(skb); 2318 skb->mac_len = skb->network_header - skb->mac_header; 2319 2320 pt_prev = NULL; 2321 2322 rcu_read_lock(); 2323 2324 #ifdef CONFIG_NET_CLS_ACT 2325 if (skb->tc_verd & TC_NCLS) { 2326 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2327 goto ncls; 2328 } 2329 #endif 2330 2331 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2332 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2333 ptype->dev == orig_dev) { 2334 if (pt_prev) 2335 ret = deliver_skb(skb, pt_prev, orig_dev); 2336 pt_prev = ptype; 2337 } 2338 } 2339 2340 #ifdef CONFIG_NET_CLS_ACT 2341 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2342 if (!skb) 2343 goto out; 2344 ncls: 2345 #endif 2346 2347 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2348 if (!skb) 2349 goto out; 2350 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2351 if (!skb) 2352 goto out; 2353 2354 type = skb->protocol; 2355 list_for_each_entry_rcu(ptype, 2356 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2357 if (ptype->type == type && 2358 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2359 ptype->dev == orig_dev)) { 2360 if (pt_prev) 2361 ret = deliver_skb(skb, pt_prev, orig_dev); 2362 pt_prev = ptype; 2363 } 2364 } 2365 2366 if (pt_prev) { 2367 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2368 } else { 2369 kfree_skb(skb); 2370 /* Jamal, now you will not able to escape explaining 2371 * me how you were going to use this. :-) 2372 */ 2373 ret = NET_RX_DROP; 2374 } 2375 2376 out: 2377 rcu_read_unlock(); 2378 return ret; 2379 } 2380 EXPORT_SYMBOL(netif_receive_skb); 2381 2382 /* Network device is going away, flush any packets still pending */ 2383 static void flush_backlog(void *arg) 2384 { 2385 struct net_device *dev = arg; 2386 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2387 struct sk_buff *skb, *tmp; 2388 2389 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2390 if (skb->dev == dev) { 2391 __skb_unlink(skb, &queue->input_pkt_queue); 2392 kfree_skb(skb); 2393 } 2394 } 2395 2396 static int napi_gro_complete(struct sk_buff *skb) 2397 { 2398 struct packet_type *ptype; 2399 __be16 type = skb->protocol; 2400 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2401 int err = -ENOENT; 2402 2403 if (NAPI_GRO_CB(skb)->count == 1) { 2404 skb_shinfo(skb)->gso_size = 0; 2405 goto out; 2406 } 2407 2408 rcu_read_lock(); 2409 list_for_each_entry_rcu(ptype, head, list) { 2410 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2411 continue; 2412 2413 err = ptype->gro_complete(skb); 2414 break; 2415 } 2416 rcu_read_unlock(); 2417 2418 if (err) { 2419 WARN_ON(&ptype->list == head); 2420 kfree_skb(skb); 2421 return NET_RX_SUCCESS; 2422 } 2423 2424 out: 2425 return netif_receive_skb(skb); 2426 } 2427 2428 void napi_gro_flush(struct napi_struct *napi) 2429 { 2430 struct sk_buff *skb, *next; 2431 2432 for (skb = napi->gro_list; skb; skb = next) { 2433 next = skb->next; 2434 skb->next = NULL; 2435 napi_gro_complete(skb); 2436 } 2437 2438 napi->gro_count = 0; 2439 napi->gro_list = NULL; 2440 } 2441 EXPORT_SYMBOL(napi_gro_flush); 2442 2443 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2444 { 2445 struct sk_buff **pp = NULL; 2446 struct packet_type *ptype; 2447 __be16 type = skb->protocol; 2448 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2449 int same_flow; 2450 int mac_len; 2451 int ret; 2452 2453 if (!(skb->dev->features & NETIF_F_GRO)) 2454 goto normal; 2455 2456 if (skb_is_gso(skb) || skb_has_frags(skb)) 2457 goto normal; 2458 2459 rcu_read_lock(); 2460 list_for_each_entry_rcu(ptype, head, list) { 2461 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 2462 continue; 2463 2464 skb_set_network_header(skb, skb_gro_offset(skb)); 2465 mac_len = skb->network_header - skb->mac_header; 2466 skb->mac_len = mac_len; 2467 NAPI_GRO_CB(skb)->same_flow = 0; 2468 NAPI_GRO_CB(skb)->flush = 0; 2469 NAPI_GRO_CB(skb)->free = 0; 2470 2471 pp = ptype->gro_receive(&napi->gro_list, skb); 2472 break; 2473 } 2474 rcu_read_unlock(); 2475 2476 if (&ptype->list == head) 2477 goto normal; 2478 2479 same_flow = NAPI_GRO_CB(skb)->same_flow; 2480 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 2481 2482 if (pp) { 2483 struct sk_buff *nskb = *pp; 2484 2485 *pp = nskb->next; 2486 nskb->next = NULL; 2487 napi_gro_complete(nskb); 2488 napi->gro_count--; 2489 } 2490 2491 if (same_flow) 2492 goto ok; 2493 2494 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 2495 goto normal; 2496 2497 napi->gro_count++; 2498 NAPI_GRO_CB(skb)->count = 1; 2499 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 2500 skb->next = napi->gro_list; 2501 napi->gro_list = skb; 2502 ret = GRO_HELD; 2503 2504 pull: 2505 if (skb_headlen(skb) < skb_gro_offset(skb)) { 2506 int grow = skb_gro_offset(skb) - skb_headlen(skb); 2507 2508 BUG_ON(skb->end - skb->tail < grow); 2509 2510 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 2511 2512 skb->tail += grow; 2513 skb->data_len -= grow; 2514 2515 skb_shinfo(skb)->frags[0].page_offset += grow; 2516 skb_shinfo(skb)->frags[0].size -= grow; 2517 2518 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 2519 put_page(skb_shinfo(skb)->frags[0].page); 2520 memmove(skb_shinfo(skb)->frags, 2521 skb_shinfo(skb)->frags + 1, 2522 --skb_shinfo(skb)->nr_frags); 2523 } 2524 } 2525 2526 ok: 2527 return ret; 2528 2529 normal: 2530 ret = GRO_NORMAL; 2531 goto pull; 2532 } 2533 EXPORT_SYMBOL(dev_gro_receive); 2534 2535 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2536 { 2537 struct sk_buff *p; 2538 2539 if (netpoll_rx_on(skb)) 2540 return GRO_NORMAL; 2541 2542 for (p = napi->gro_list; p; p = p->next) { 2543 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev) 2544 && !compare_ether_header(skb_mac_header(p), 2545 skb_gro_mac_header(skb)); 2546 NAPI_GRO_CB(p)->flush = 0; 2547 } 2548 2549 return dev_gro_receive(napi, skb); 2550 } 2551 2552 int napi_skb_finish(int ret, struct sk_buff *skb) 2553 { 2554 int err = NET_RX_SUCCESS; 2555 2556 switch (ret) { 2557 case GRO_NORMAL: 2558 return netif_receive_skb(skb); 2559 2560 case GRO_DROP: 2561 err = NET_RX_DROP; 2562 /* fall through */ 2563 2564 case GRO_MERGED_FREE: 2565 kfree_skb(skb); 2566 break; 2567 } 2568 2569 return err; 2570 } 2571 EXPORT_SYMBOL(napi_skb_finish); 2572 2573 void skb_gro_reset_offset(struct sk_buff *skb) 2574 { 2575 NAPI_GRO_CB(skb)->data_offset = 0; 2576 NAPI_GRO_CB(skb)->frag0 = NULL; 2577 NAPI_GRO_CB(skb)->frag0_len = 0; 2578 2579 if (skb->mac_header == skb->tail && 2580 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 2581 NAPI_GRO_CB(skb)->frag0 = 2582 page_address(skb_shinfo(skb)->frags[0].page) + 2583 skb_shinfo(skb)->frags[0].page_offset; 2584 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 2585 } 2586 } 2587 EXPORT_SYMBOL(skb_gro_reset_offset); 2588 2589 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2590 { 2591 skb_gro_reset_offset(skb); 2592 2593 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 2594 } 2595 EXPORT_SYMBOL(napi_gro_receive); 2596 2597 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 2598 { 2599 __skb_pull(skb, skb_headlen(skb)); 2600 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 2601 2602 napi->skb = skb; 2603 } 2604 EXPORT_SYMBOL(napi_reuse_skb); 2605 2606 struct sk_buff *napi_get_frags(struct napi_struct *napi) 2607 { 2608 struct net_device *dev = napi->dev; 2609 struct sk_buff *skb = napi->skb; 2610 2611 if (!skb) { 2612 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN); 2613 if (!skb) 2614 goto out; 2615 2616 skb_reserve(skb, NET_IP_ALIGN); 2617 2618 napi->skb = skb; 2619 } 2620 2621 out: 2622 return skb; 2623 } 2624 EXPORT_SYMBOL(napi_get_frags); 2625 2626 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret) 2627 { 2628 int err = NET_RX_SUCCESS; 2629 2630 switch (ret) { 2631 case GRO_NORMAL: 2632 case GRO_HELD: 2633 skb->protocol = eth_type_trans(skb, napi->dev); 2634 2635 if (ret == GRO_NORMAL) 2636 return netif_receive_skb(skb); 2637 2638 skb_gro_pull(skb, -ETH_HLEN); 2639 break; 2640 2641 case GRO_DROP: 2642 err = NET_RX_DROP; 2643 /* fall through */ 2644 2645 case GRO_MERGED_FREE: 2646 napi_reuse_skb(napi, skb); 2647 break; 2648 } 2649 2650 return err; 2651 } 2652 EXPORT_SYMBOL(napi_frags_finish); 2653 2654 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 2655 { 2656 struct sk_buff *skb = napi->skb; 2657 struct ethhdr *eth; 2658 unsigned int hlen; 2659 unsigned int off; 2660 2661 napi->skb = NULL; 2662 2663 skb_reset_mac_header(skb); 2664 skb_gro_reset_offset(skb); 2665 2666 off = skb_gro_offset(skb); 2667 hlen = off + sizeof(*eth); 2668 eth = skb_gro_header_fast(skb, off); 2669 if (skb_gro_header_hard(skb, hlen)) { 2670 eth = skb_gro_header_slow(skb, hlen, off); 2671 if (unlikely(!eth)) { 2672 napi_reuse_skb(napi, skb); 2673 skb = NULL; 2674 goto out; 2675 } 2676 } 2677 2678 skb_gro_pull(skb, sizeof(*eth)); 2679 2680 /* 2681 * This works because the only protocols we care about don't require 2682 * special handling. We'll fix it up properly at the end. 2683 */ 2684 skb->protocol = eth->h_proto; 2685 2686 out: 2687 return skb; 2688 } 2689 EXPORT_SYMBOL(napi_frags_skb); 2690 2691 int napi_gro_frags(struct napi_struct *napi) 2692 { 2693 struct sk_buff *skb = napi_frags_skb(napi); 2694 2695 if (!skb) 2696 return NET_RX_DROP; 2697 2698 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 2699 } 2700 EXPORT_SYMBOL(napi_gro_frags); 2701 2702 static int process_backlog(struct napi_struct *napi, int quota) 2703 { 2704 int work = 0; 2705 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2706 unsigned long start_time = jiffies; 2707 2708 napi->weight = weight_p; 2709 do { 2710 struct sk_buff *skb; 2711 2712 local_irq_disable(); 2713 skb = __skb_dequeue(&queue->input_pkt_queue); 2714 if (!skb) { 2715 __napi_complete(napi); 2716 local_irq_enable(); 2717 break; 2718 } 2719 local_irq_enable(); 2720 2721 netif_receive_skb(skb); 2722 } while (++work < quota && jiffies == start_time); 2723 2724 return work; 2725 } 2726 2727 /** 2728 * __napi_schedule - schedule for receive 2729 * @n: entry to schedule 2730 * 2731 * The entry's receive function will be scheduled to run 2732 */ 2733 void __napi_schedule(struct napi_struct *n) 2734 { 2735 unsigned long flags; 2736 2737 local_irq_save(flags); 2738 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2739 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2740 local_irq_restore(flags); 2741 } 2742 EXPORT_SYMBOL(__napi_schedule); 2743 2744 void __napi_complete(struct napi_struct *n) 2745 { 2746 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 2747 BUG_ON(n->gro_list); 2748 2749 list_del(&n->poll_list); 2750 smp_mb__before_clear_bit(); 2751 clear_bit(NAPI_STATE_SCHED, &n->state); 2752 } 2753 EXPORT_SYMBOL(__napi_complete); 2754 2755 void napi_complete(struct napi_struct *n) 2756 { 2757 unsigned long flags; 2758 2759 /* 2760 * don't let napi dequeue from the cpu poll list 2761 * just in case its running on a different cpu 2762 */ 2763 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 2764 return; 2765 2766 napi_gro_flush(n); 2767 local_irq_save(flags); 2768 __napi_complete(n); 2769 local_irq_restore(flags); 2770 } 2771 EXPORT_SYMBOL(napi_complete); 2772 2773 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2774 int (*poll)(struct napi_struct *, int), int weight) 2775 { 2776 INIT_LIST_HEAD(&napi->poll_list); 2777 napi->gro_count = 0; 2778 napi->gro_list = NULL; 2779 napi->skb = NULL; 2780 napi->poll = poll; 2781 napi->weight = weight; 2782 list_add(&napi->dev_list, &dev->napi_list); 2783 napi->dev = dev; 2784 #ifdef CONFIG_NETPOLL 2785 spin_lock_init(&napi->poll_lock); 2786 napi->poll_owner = -1; 2787 #endif 2788 set_bit(NAPI_STATE_SCHED, &napi->state); 2789 } 2790 EXPORT_SYMBOL(netif_napi_add); 2791 2792 void netif_napi_del(struct napi_struct *napi) 2793 { 2794 struct sk_buff *skb, *next; 2795 2796 list_del_init(&napi->dev_list); 2797 napi_free_frags(napi); 2798 2799 for (skb = napi->gro_list; skb; skb = next) { 2800 next = skb->next; 2801 skb->next = NULL; 2802 kfree_skb(skb); 2803 } 2804 2805 napi->gro_list = NULL; 2806 napi->gro_count = 0; 2807 } 2808 EXPORT_SYMBOL(netif_napi_del); 2809 2810 2811 static void net_rx_action(struct softirq_action *h) 2812 { 2813 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2814 unsigned long time_limit = jiffies + 2; 2815 int budget = netdev_budget; 2816 void *have; 2817 2818 local_irq_disable(); 2819 2820 while (!list_empty(list)) { 2821 struct napi_struct *n; 2822 int work, weight; 2823 2824 /* If softirq window is exhuasted then punt. 2825 * Allow this to run for 2 jiffies since which will allow 2826 * an average latency of 1.5/HZ. 2827 */ 2828 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 2829 goto softnet_break; 2830 2831 local_irq_enable(); 2832 2833 /* Even though interrupts have been re-enabled, this 2834 * access is safe because interrupts can only add new 2835 * entries to the tail of this list, and only ->poll() 2836 * calls can remove this head entry from the list. 2837 */ 2838 n = list_entry(list->next, struct napi_struct, poll_list); 2839 2840 have = netpoll_poll_lock(n); 2841 2842 weight = n->weight; 2843 2844 /* This NAPI_STATE_SCHED test is for avoiding a race 2845 * with netpoll's poll_napi(). Only the entity which 2846 * obtains the lock and sees NAPI_STATE_SCHED set will 2847 * actually make the ->poll() call. Therefore we avoid 2848 * accidently calling ->poll() when NAPI is not scheduled. 2849 */ 2850 work = 0; 2851 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 2852 work = n->poll(n, weight); 2853 trace_napi_poll(n); 2854 } 2855 2856 WARN_ON_ONCE(work > weight); 2857 2858 budget -= work; 2859 2860 local_irq_disable(); 2861 2862 /* Drivers must not modify the NAPI state if they 2863 * consume the entire weight. In such cases this code 2864 * still "owns" the NAPI instance and therefore can 2865 * move the instance around on the list at-will. 2866 */ 2867 if (unlikely(work == weight)) { 2868 if (unlikely(napi_disable_pending(n))) { 2869 local_irq_enable(); 2870 napi_complete(n); 2871 local_irq_disable(); 2872 } else 2873 list_move_tail(&n->poll_list, list); 2874 } 2875 2876 netpoll_poll_unlock(have); 2877 } 2878 out: 2879 local_irq_enable(); 2880 2881 #ifdef CONFIG_NET_DMA 2882 /* 2883 * There may not be any more sk_buffs coming right now, so push 2884 * any pending DMA copies to hardware 2885 */ 2886 dma_issue_pending_all(); 2887 #endif 2888 2889 return; 2890 2891 softnet_break: 2892 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2893 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2894 goto out; 2895 } 2896 2897 static gifconf_func_t *gifconf_list[NPROTO]; 2898 2899 /** 2900 * register_gifconf - register a SIOCGIF handler 2901 * @family: Address family 2902 * @gifconf: Function handler 2903 * 2904 * Register protocol dependent address dumping routines. The handler 2905 * that is passed must not be freed or reused until it has been replaced 2906 * by another handler. 2907 */ 2908 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 2909 { 2910 if (family >= NPROTO) 2911 return -EINVAL; 2912 gifconf_list[family] = gifconf; 2913 return 0; 2914 } 2915 EXPORT_SYMBOL(register_gifconf); 2916 2917 2918 /* 2919 * Map an interface index to its name (SIOCGIFNAME) 2920 */ 2921 2922 /* 2923 * We need this ioctl for efficient implementation of the 2924 * if_indextoname() function required by the IPv6 API. Without 2925 * it, we would have to search all the interfaces to find a 2926 * match. --pb 2927 */ 2928 2929 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2930 { 2931 struct net_device *dev; 2932 struct ifreq ifr; 2933 2934 /* 2935 * Fetch the caller's info block. 2936 */ 2937 2938 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2939 return -EFAULT; 2940 2941 read_lock(&dev_base_lock); 2942 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2943 if (!dev) { 2944 read_unlock(&dev_base_lock); 2945 return -ENODEV; 2946 } 2947 2948 strcpy(ifr.ifr_name, dev->name); 2949 read_unlock(&dev_base_lock); 2950 2951 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2952 return -EFAULT; 2953 return 0; 2954 } 2955 2956 /* 2957 * Perform a SIOCGIFCONF call. This structure will change 2958 * size eventually, and there is nothing I can do about it. 2959 * Thus we will need a 'compatibility mode'. 2960 */ 2961 2962 static int dev_ifconf(struct net *net, char __user *arg) 2963 { 2964 struct ifconf ifc; 2965 struct net_device *dev; 2966 char __user *pos; 2967 int len; 2968 int total; 2969 int i; 2970 2971 /* 2972 * Fetch the caller's info block. 2973 */ 2974 2975 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2976 return -EFAULT; 2977 2978 pos = ifc.ifc_buf; 2979 len = ifc.ifc_len; 2980 2981 /* 2982 * Loop over the interfaces, and write an info block for each. 2983 */ 2984 2985 total = 0; 2986 for_each_netdev(net, dev) { 2987 for (i = 0; i < NPROTO; i++) { 2988 if (gifconf_list[i]) { 2989 int done; 2990 if (!pos) 2991 done = gifconf_list[i](dev, NULL, 0); 2992 else 2993 done = gifconf_list[i](dev, pos + total, 2994 len - total); 2995 if (done < 0) 2996 return -EFAULT; 2997 total += done; 2998 } 2999 } 3000 } 3001 3002 /* 3003 * All done. Write the updated control block back to the caller. 3004 */ 3005 ifc.ifc_len = total; 3006 3007 /* 3008 * Both BSD and Solaris return 0 here, so we do too. 3009 */ 3010 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3011 } 3012 3013 #ifdef CONFIG_PROC_FS 3014 /* 3015 * This is invoked by the /proc filesystem handler to display a device 3016 * in detail. 3017 */ 3018 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3019 __acquires(dev_base_lock) 3020 { 3021 struct net *net = seq_file_net(seq); 3022 loff_t off; 3023 struct net_device *dev; 3024 3025 read_lock(&dev_base_lock); 3026 if (!*pos) 3027 return SEQ_START_TOKEN; 3028 3029 off = 1; 3030 for_each_netdev(net, dev) 3031 if (off++ == *pos) 3032 return dev; 3033 3034 return NULL; 3035 } 3036 3037 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3038 { 3039 struct net *net = seq_file_net(seq); 3040 ++*pos; 3041 return v == SEQ_START_TOKEN ? 3042 first_net_device(net) : next_net_device((struct net_device *)v); 3043 } 3044 3045 void dev_seq_stop(struct seq_file *seq, void *v) 3046 __releases(dev_base_lock) 3047 { 3048 read_unlock(&dev_base_lock); 3049 } 3050 3051 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3052 { 3053 const struct net_device_stats *stats = dev_get_stats(dev); 3054 3055 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 3056 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 3057 dev->name, stats->rx_bytes, stats->rx_packets, 3058 stats->rx_errors, 3059 stats->rx_dropped + stats->rx_missed_errors, 3060 stats->rx_fifo_errors, 3061 stats->rx_length_errors + stats->rx_over_errors + 3062 stats->rx_crc_errors + stats->rx_frame_errors, 3063 stats->rx_compressed, stats->multicast, 3064 stats->tx_bytes, stats->tx_packets, 3065 stats->tx_errors, stats->tx_dropped, 3066 stats->tx_fifo_errors, stats->collisions, 3067 stats->tx_carrier_errors + 3068 stats->tx_aborted_errors + 3069 stats->tx_window_errors + 3070 stats->tx_heartbeat_errors, 3071 stats->tx_compressed); 3072 } 3073 3074 /* 3075 * Called from the PROCfs module. This now uses the new arbitrary sized 3076 * /proc/net interface to create /proc/net/dev 3077 */ 3078 static int dev_seq_show(struct seq_file *seq, void *v) 3079 { 3080 if (v == SEQ_START_TOKEN) 3081 seq_puts(seq, "Inter-| Receive " 3082 " | Transmit\n" 3083 " face |bytes packets errs drop fifo frame " 3084 "compressed multicast|bytes packets errs " 3085 "drop fifo colls carrier compressed\n"); 3086 else 3087 dev_seq_printf_stats(seq, v); 3088 return 0; 3089 } 3090 3091 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 3092 { 3093 struct netif_rx_stats *rc = NULL; 3094 3095 while (*pos < nr_cpu_ids) 3096 if (cpu_online(*pos)) { 3097 rc = &per_cpu(netdev_rx_stat, *pos); 3098 break; 3099 } else 3100 ++*pos; 3101 return rc; 3102 } 3103 3104 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3105 { 3106 return softnet_get_online(pos); 3107 } 3108 3109 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3110 { 3111 ++*pos; 3112 return softnet_get_online(pos); 3113 } 3114 3115 static void softnet_seq_stop(struct seq_file *seq, void *v) 3116 { 3117 } 3118 3119 static int softnet_seq_show(struct seq_file *seq, void *v) 3120 { 3121 struct netif_rx_stats *s = v; 3122 3123 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3124 s->total, s->dropped, s->time_squeeze, 0, 3125 0, 0, 0, 0, /* was fastroute */ 3126 s->cpu_collision); 3127 return 0; 3128 } 3129 3130 static const struct seq_operations dev_seq_ops = { 3131 .start = dev_seq_start, 3132 .next = dev_seq_next, 3133 .stop = dev_seq_stop, 3134 .show = dev_seq_show, 3135 }; 3136 3137 static int dev_seq_open(struct inode *inode, struct file *file) 3138 { 3139 return seq_open_net(inode, file, &dev_seq_ops, 3140 sizeof(struct seq_net_private)); 3141 } 3142 3143 static const struct file_operations dev_seq_fops = { 3144 .owner = THIS_MODULE, 3145 .open = dev_seq_open, 3146 .read = seq_read, 3147 .llseek = seq_lseek, 3148 .release = seq_release_net, 3149 }; 3150 3151 static const struct seq_operations softnet_seq_ops = { 3152 .start = softnet_seq_start, 3153 .next = softnet_seq_next, 3154 .stop = softnet_seq_stop, 3155 .show = softnet_seq_show, 3156 }; 3157 3158 static int softnet_seq_open(struct inode *inode, struct file *file) 3159 { 3160 return seq_open(file, &softnet_seq_ops); 3161 } 3162 3163 static const struct file_operations softnet_seq_fops = { 3164 .owner = THIS_MODULE, 3165 .open = softnet_seq_open, 3166 .read = seq_read, 3167 .llseek = seq_lseek, 3168 .release = seq_release, 3169 }; 3170 3171 static void *ptype_get_idx(loff_t pos) 3172 { 3173 struct packet_type *pt = NULL; 3174 loff_t i = 0; 3175 int t; 3176 3177 list_for_each_entry_rcu(pt, &ptype_all, list) { 3178 if (i == pos) 3179 return pt; 3180 ++i; 3181 } 3182 3183 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3184 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3185 if (i == pos) 3186 return pt; 3187 ++i; 3188 } 3189 } 3190 return NULL; 3191 } 3192 3193 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3194 __acquires(RCU) 3195 { 3196 rcu_read_lock(); 3197 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3198 } 3199 3200 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3201 { 3202 struct packet_type *pt; 3203 struct list_head *nxt; 3204 int hash; 3205 3206 ++*pos; 3207 if (v == SEQ_START_TOKEN) 3208 return ptype_get_idx(0); 3209 3210 pt = v; 3211 nxt = pt->list.next; 3212 if (pt->type == htons(ETH_P_ALL)) { 3213 if (nxt != &ptype_all) 3214 goto found; 3215 hash = 0; 3216 nxt = ptype_base[0].next; 3217 } else 3218 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3219 3220 while (nxt == &ptype_base[hash]) { 3221 if (++hash >= PTYPE_HASH_SIZE) 3222 return NULL; 3223 nxt = ptype_base[hash].next; 3224 } 3225 found: 3226 return list_entry(nxt, struct packet_type, list); 3227 } 3228 3229 static void ptype_seq_stop(struct seq_file *seq, void *v) 3230 __releases(RCU) 3231 { 3232 rcu_read_unlock(); 3233 } 3234 3235 static int ptype_seq_show(struct seq_file *seq, void *v) 3236 { 3237 struct packet_type *pt = v; 3238 3239 if (v == SEQ_START_TOKEN) 3240 seq_puts(seq, "Type Device Function\n"); 3241 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3242 if (pt->type == htons(ETH_P_ALL)) 3243 seq_puts(seq, "ALL "); 3244 else 3245 seq_printf(seq, "%04x", ntohs(pt->type)); 3246 3247 seq_printf(seq, " %-8s %pF\n", 3248 pt->dev ? pt->dev->name : "", pt->func); 3249 } 3250 3251 return 0; 3252 } 3253 3254 static const struct seq_operations ptype_seq_ops = { 3255 .start = ptype_seq_start, 3256 .next = ptype_seq_next, 3257 .stop = ptype_seq_stop, 3258 .show = ptype_seq_show, 3259 }; 3260 3261 static int ptype_seq_open(struct inode *inode, struct file *file) 3262 { 3263 return seq_open_net(inode, file, &ptype_seq_ops, 3264 sizeof(struct seq_net_private)); 3265 } 3266 3267 static const struct file_operations ptype_seq_fops = { 3268 .owner = THIS_MODULE, 3269 .open = ptype_seq_open, 3270 .read = seq_read, 3271 .llseek = seq_lseek, 3272 .release = seq_release_net, 3273 }; 3274 3275 3276 static int __net_init dev_proc_net_init(struct net *net) 3277 { 3278 int rc = -ENOMEM; 3279 3280 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3281 goto out; 3282 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3283 goto out_dev; 3284 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3285 goto out_softnet; 3286 3287 if (wext_proc_init(net)) 3288 goto out_ptype; 3289 rc = 0; 3290 out: 3291 return rc; 3292 out_ptype: 3293 proc_net_remove(net, "ptype"); 3294 out_softnet: 3295 proc_net_remove(net, "softnet_stat"); 3296 out_dev: 3297 proc_net_remove(net, "dev"); 3298 goto out; 3299 } 3300 3301 static void __net_exit dev_proc_net_exit(struct net *net) 3302 { 3303 wext_proc_exit(net); 3304 3305 proc_net_remove(net, "ptype"); 3306 proc_net_remove(net, "softnet_stat"); 3307 proc_net_remove(net, "dev"); 3308 } 3309 3310 static struct pernet_operations __net_initdata dev_proc_ops = { 3311 .init = dev_proc_net_init, 3312 .exit = dev_proc_net_exit, 3313 }; 3314 3315 static int __init dev_proc_init(void) 3316 { 3317 return register_pernet_subsys(&dev_proc_ops); 3318 } 3319 #else 3320 #define dev_proc_init() 0 3321 #endif /* CONFIG_PROC_FS */ 3322 3323 3324 /** 3325 * netdev_set_master - set up master/slave pair 3326 * @slave: slave device 3327 * @master: new master device 3328 * 3329 * Changes the master device of the slave. Pass %NULL to break the 3330 * bonding. The caller must hold the RTNL semaphore. On a failure 3331 * a negative errno code is returned. On success the reference counts 3332 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3333 * function returns zero. 3334 */ 3335 int netdev_set_master(struct net_device *slave, struct net_device *master) 3336 { 3337 struct net_device *old = slave->master; 3338 3339 ASSERT_RTNL(); 3340 3341 if (master) { 3342 if (old) 3343 return -EBUSY; 3344 dev_hold(master); 3345 } 3346 3347 slave->master = master; 3348 3349 synchronize_net(); 3350 3351 if (old) 3352 dev_put(old); 3353 3354 if (master) 3355 slave->flags |= IFF_SLAVE; 3356 else 3357 slave->flags &= ~IFF_SLAVE; 3358 3359 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3360 return 0; 3361 } 3362 EXPORT_SYMBOL(netdev_set_master); 3363 3364 static void dev_change_rx_flags(struct net_device *dev, int flags) 3365 { 3366 const struct net_device_ops *ops = dev->netdev_ops; 3367 3368 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 3369 ops->ndo_change_rx_flags(dev, flags); 3370 } 3371 3372 static int __dev_set_promiscuity(struct net_device *dev, int inc) 3373 { 3374 unsigned short old_flags = dev->flags; 3375 uid_t uid; 3376 gid_t gid; 3377 3378 ASSERT_RTNL(); 3379 3380 dev->flags |= IFF_PROMISC; 3381 dev->promiscuity += inc; 3382 if (dev->promiscuity == 0) { 3383 /* 3384 * Avoid overflow. 3385 * If inc causes overflow, untouch promisc and return error. 3386 */ 3387 if (inc < 0) 3388 dev->flags &= ~IFF_PROMISC; 3389 else { 3390 dev->promiscuity -= inc; 3391 printk(KERN_WARNING "%s: promiscuity touches roof, " 3392 "set promiscuity failed, promiscuity feature " 3393 "of device might be broken.\n", dev->name); 3394 return -EOVERFLOW; 3395 } 3396 } 3397 if (dev->flags != old_flags) { 3398 printk(KERN_INFO "device %s %s promiscuous mode\n", 3399 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 3400 "left"); 3401 if (audit_enabled) { 3402 current_uid_gid(&uid, &gid); 3403 audit_log(current->audit_context, GFP_ATOMIC, 3404 AUDIT_ANOM_PROMISCUOUS, 3405 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 3406 dev->name, (dev->flags & IFF_PROMISC), 3407 (old_flags & IFF_PROMISC), 3408 audit_get_loginuid(current), 3409 uid, gid, 3410 audit_get_sessionid(current)); 3411 } 3412 3413 dev_change_rx_flags(dev, IFF_PROMISC); 3414 } 3415 return 0; 3416 } 3417 3418 /** 3419 * dev_set_promiscuity - update promiscuity count on a device 3420 * @dev: device 3421 * @inc: modifier 3422 * 3423 * Add or remove promiscuity from a device. While the count in the device 3424 * remains above zero the interface remains promiscuous. Once it hits zero 3425 * the device reverts back to normal filtering operation. A negative inc 3426 * value is used to drop promiscuity on the device. 3427 * Return 0 if successful or a negative errno code on error. 3428 */ 3429 int dev_set_promiscuity(struct net_device *dev, int inc) 3430 { 3431 unsigned short old_flags = dev->flags; 3432 int err; 3433 3434 err = __dev_set_promiscuity(dev, inc); 3435 if (err < 0) 3436 return err; 3437 if (dev->flags != old_flags) 3438 dev_set_rx_mode(dev); 3439 return err; 3440 } 3441 EXPORT_SYMBOL(dev_set_promiscuity); 3442 3443 /** 3444 * dev_set_allmulti - update allmulti count on a device 3445 * @dev: device 3446 * @inc: modifier 3447 * 3448 * Add or remove reception of all multicast frames to a device. While the 3449 * count in the device remains above zero the interface remains listening 3450 * to all interfaces. Once it hits zero the device reverts back to normal 3451 * filtering operation. A negative @inc value is used to drop the counter 3452 * when releasing a resource needing all multicasts. 3453 * Return 0 if successful or a negative errno code on error. 3454 */ 3455 3456 int dev_set_allmulti(struct net_device *dev, int inc) 3457 { 3458 unsigned short old_flags = dev->flags; 3459 3460 ASSERT_RTNL(); 3461 3462 dev->flags |= IFF_ALLMULTI; 3463 dev->allmulti += inc; 3464 if (dev->allmulti == 0) { 3465 /* 3466 * Avoid overflow. 3467 * If inc causes overflow, untouch allmulti and return error. 3468 */ 3469 if (inc < 0) 3470 dev->flags &= ~IFF_ALLMULTI; 3471 else { 3472 dev->allmulti -= inc; 3473 printk(KERN_WARNING "%s: allmulti touches roof, " 3474 "set allmulti failed, allmulti feature of " 3475 "device might be broken.\n", dev->name); 3476 return -EOVERFLOW; 3477 } 3478 } 3479 if (dev->flags ^ old_flags) { 3480 dev_change_rx_flags(dev, IFF_ALLMULTI); 3481 dev_set_rx_mode(dev); 3482 } 3483 return 0; 3484 } 3485 EXPORT_SYMBOL(dev_set_allmulti); 3486 3487 /* 3488 * Upload unicast and multicast address lists to device and 3489 * configure RX filtering. When the device doesn't support unicast 3490 * filtering it is put in promiscuous mode while unicast addresses 3491 * are present. 3492 */ 3493 void __dev_set_rx_mode(struct net_device *dev) 3494 { 3495 const struct net_device_ops *ops = dev->netdev_ops; 3496 3497 /* dev_open will call this function so the list will stay sane. */ 3498 if (!(dev->flags&IFF_UP)) 3499 return; 3500 3501 if (!netif_device_present(dev)) 3502 return; 3503 3504 if (ops->ndo_set_rx_mode) 3505 ops->ndo_set_rx_mode(dev); 3506 else { 3507 /* Unicast addresses changes may only happen under the rtnl, 3508 * therefore calling __dev_set_promiscuity here is safe. 3509 */ 3510 if (dev->uc.count > 0 && !dev->uc_promisc) { 3511 __dev_set_promiscuity(dev, 1); 3512 dev->uc_promisc = 1; 3513 } else if (dev->uc.count == 0 && dev->uc_promisc) { 3514 __dev_set_promiscuity(dev, -1); 3515 dev->uc_promisc = 0; 3516 } 3517 3518 if (ops->ndo_set_multicast_list) 3519 ops->ndo_set_multicast_list(dev); 3520 } 3521 } 3522 3523 void dev_set_rx_mode(struct net_device *dev) 3524 { 3525 netif_addr_lock_bh(dev); 3526 __dev_set_rx_mode(dev); 3527 netif_addr_unlock_bh(dev); 3528 } 3529 3530 /* hw addresses list handling functions */ 3531 3532 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr, 3533 int addr_len, unsigned char addr_type) 3534 { 3535 struct netdev_hw_addr *ha; 3536 int alloc_size; 3537 3538 if (addr_len > MAX_ADDR_LEN) 3539 return -EINVAL; 3540 3541 list_for_each_entry(ha, &list->list, list) { 3542 if (!memcmp(ha->addr, addr, addr_len) && 3543 ha->type == addr_type) { 3544 ha->refcount++; 3545 return 0; 3546 } 3547 } 3548 3549 3550 alloc_size = sizeof(*ha); 3551 if (alloc_size < L1_CACHE_BYTES) 3552 alloc_size = L1_CACHE_BYTES; 3553 ha = kmalloc(alloc_size, GFP_ATOMIC); 3554 if (!ha) 3555 return -ENOMEM; 3556 memcpy(ha->addr, addr, addr_len); 3557 ha->type = addr_type; 3558 ha->refcount = 1; 3559 ha->synced = false; 3560 list_add_tail_rcu(&ha->list, &list->list); 3561 list->count++; 3562 return 0; 3563 } 3564 3565 static void ha_rcu_free(struct rcu_head *head) 3566 { 3567 struct netdev_hw_addr *ha; 3568 3569 ha = container_of(head, struct netdev_hw_addr, rcu_head); 3570 kfree(ha); 3571 } 3572 3573 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr, 3574 int addr_len, unsigned char addr_type) 3575 { 3576 struct netdev_hw_addr *ha; 3577 3578 list_for_each_entry(ha, &list->list, list) { 3579 if (!memcmp(ha->addr, addr, addr_len) && 3580 (ha->type == addr_type || !addr_type)) { 3581 if (--ha->refcount) 3582 return 0; 3583 list_del_rcu(&ha->list); 3584 call_rcu(&ha->rcu_head, ha_rcu_free); 3585 list->count--; 3586 return 0; 3587 } 3588 } 3589 return -ENOENT; 3590 } 3591 3592 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 3593 struct netdev_hw_addr_list *from_list, 3594 int addr_len, 3595 unsigned char addr_type) 3596 { 3597 int err; 3598 struct netdev_hw_addr *ha, *ha2; 3599 unsigned char type; 3600 3601 list_for_each_entry(ha, &from_list->list, list) { 3602 type = addr_type ? addr_type : ha->type; 3603 err = __hw_addr_add(to_list, ha->addr, addr_len, type); 3604 if (err) 3605 goto unroll; 3606 } 3607 return 0; 3608 3609 unroll: 3610 list_for_each_entry(ha2, &from_list->list, list) { 3611 if (ha2 == ha) 3612 break; 3613 type = addr_type ? addr_type : ha2->type; 3614 __hw_addr_del(to_list, ha2->addr, addr_len, type); 3615 } 3616 return err; 3617 } 3618 3619 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 3620 struct netdev_hw_addr_list *from_list, 3621 int addr_len, 3622 unsigned char addr_type) 3623 { 3624 struct netdev_hw_addr *ha; 3625 unsigned char type; 3626 3627 list_for_each_entry(ha, &from_list->list, list) { 3628 type = addr_type ? addr_type : ha->type; 3629 __hw_addr_del(to_list, ha->addr, addr_len, addr_type); 3630 } 3631 } 3632 3633 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3634 struct netdev_hw_addr_list *from_list, 3635 int addr_len) 3636 { 3637 int err = 0; 3638 struct netdev_hw_addr *ha, *tmp; 3639 3640 list_for_each_entry_safe(ha, tmp, &from_list->list, list) { 3641 if (!ha->synced) { 3642 err = __hw_addr_add(to_list, ha->addr, 3643 addr_len, ha->type); 3644 if (err) 3645 break; 3646 ha->synced = true; 3647 ha->refcount++; 3648 } else if (ha->refcount == 1) { 3649 __hw_addr_del(to_list, ha->addr, addr_len, ha->type); 3650 __hw_addr_del(from_list, ha->addr, addr_len, ha->type); 3651 } 3652 } 3653 return err; 3654 } 3655 3656 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3657 struct netdev_hw_addr_list *from_list, 3658 int addr_len) 3659 { 3660 struct netdev_hw_addr *ha, *tmp; 3661 3662 list_for_each_entry_safe(ha, tmp, &from_list->list, list) { 3663 if (ha->synced) { 3664 __hw_addr_del(to_list, ha->addr, 3665 addr_len, ha->type); 3666 ha->synced = false; 3667 __hw_addr_del(from_list, ha->addr, 3668 addr_len, ha->type); 3669 } 3670 } 3671 } 3672 3673 static void __hw_addr_flush(struct netdev_hw_addr_list *list) 3674 { 3675 struct netdev_hw_addr *ha, *tmp; 3676 3677 list_for_each_entry_safe(ha, tmp, &list->list, list) { 3678 list_del_rcu(&ha->list); 3679 call_rcu(&ha->rcu_head, ha_rcu_free); 3680 } 3681 list->count = 0; 3682 } 3683 3684 static void __hw_addr_init(struct netdev_hw_addr_list *list) 3685 { 3686 INIT_LIST_HEAD(&list->list); 3687 list->count = 0; 3688 } 3689 3690 /* Device addresses handling functions */ 3691 3692 static void dev_addr_flush(struct net_device *dev) 3693 { 3694 /* rtnl_mutex must be held here */ 3695 3696 __hw_addr_flush(&dev->dev_addrs); 3697 dev->dev_addr = NULL; 3698 } 3699 3700 static int dev_addr_init(struct net_device *dev) 3701 { 3702 unsigned char addr[MAX_ADDR_LEN]; 3703 struct netdev_hw_addr *ha; 3704 int err; 3705 3706 /* rtnl_mutex must be held here */ 3707 3708 __hw_addr_init(&dev->dev_addrs); 3709 memset(addr, 0, sizeof(addr)); 3710 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr), 3711 NETDEV_HW_ADDR_T_LAN); 3712 if (!err) { 3713 /* 3714 * Get the first (previously created) address from the list 3715 * and set dev_addr pointer to this location. 3716 */ 3717 ha = list_first_entry(&dev->dev_addrs.list, 3718 struct netdev_hw_addr, list); 3719 dev->dev_addr = ha->addr; 3720 } 3721 return err; 3722 } 3723 3724 /** 3725 * dev_addr_add - Add a device address 3726 * @dev: device 3727 * @addr: address to add 3728 * @addr_type: address type 3729 * 3730 * Add a device address to the device or increase the reference count if 3731 * it already exists. 3732 * 3733 * The caller must hold the rtnl_mutex. 3734 */ 3735 int dev_addr_add(struct net_device *dev, unsigned char *addr, 3736 unsigned char addr_type) 3737 { 3738 int err; 3739 3740 ASSERT_RTNL(); 3741 3742 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type); 3743 if (!err) 3744 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3745 return err; 3746 } 3747 EXPORT_SYMBOL(dev_addr_add); 3748 3749 /** 3750 * dev_addr_del - Release a device address. 3751 * @dev: device 3752 * @addr: address to delete 3753 * @addr_type: address type 3754 * 3755 * Release reference to a device address and remove it from the device 3756 * if the reference count drops to zero. 3757 * 3758 * The caller must hold the rtnl_mutex. 3759 */ 3760 int dev_addr_del(struct net_device *dev, unsigned char *addr, 3761 unsigned char addr_type) 3762 { 3763 int err; 3764 struct netdev_hw_addr *ha; 3765 3766 ASSERT_RTNL(); 3767 3768 /* 3769 * We can not remove the first address from the list because 3770 * dev->dev_addr points to that. 3771 */ 3772 ha = list_first_entry(&dev->dev_addrs.list, 3773 struct netdev_hw_addr, list); 3774 if (ha->addr == dev->dev_addr && ha->refcount == 1) 3775 return -ENOENT; 3776 3777 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len, 3778 addr_type); 3779 if (!err) 3780 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3781 return err; 3782 } 3783 EXPORT_SYMBOL(dev_addr_del); 3784 3785 /** 3786 * dev_addr_add_multiple - Add device addresses from another device 3787 * @to_dev: device to which addresses will be added 3788 * @from_dev: device from which addresses will be added 3789 * @addr_type: address type - 0 means type will be used from from_dev 3790 * 3791 * Add device addresses of the one device to another. 3792 ** 3793 * The caller must hold the rtnl_mutex. 3794 */ 3795 int dev_addr_add_multiple(struct net_device *to_dev, 3796 struct net_device *from_dev, 3797 unsigned char addr_type) 3798 { 3799 int err; 3800 3801 ASSERT_RTNL(); 3802 3803 if (from_dev->addr_len != to_dev->addr_len) 3804 return -EINVAL; 3805 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs, 3806 to_dev->addr_len, addr_type); 3807 if (!err) 3808 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev); 3809 return err; 3810 } 3811 EXPORT_SYMBOL(dev_addr_add_multiple); 3812 3813 /** 3814 * dev_addr_del_multiple - Delete device addresses by another device 3815 * @to_dev: device where the addresses will be deleted 3816 * @from_dev: device by which addresses the addresses will be deleted 3817 * @addr_type: address type - 0 means type will used from from_dev 3818 * 3819 * Deletes addresses in to device by the list of addresses in from device. 3820 * 3821 * The caller must hold the rtnl_mutex. 3822 */ 3823 int dev_addr_del_multiple(struct net_device *to_dev, 3824 struct net_device *from_dev, 3825 unsigned char addr_type) 3826 { 3827 ASSERT_RTNL(); 3828 3829 if (from_dev->addr_len != to_dev->addr_len) 3830 return -EINVAL; 3831 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs, 3832 to_dev->addr_len, addr_type); 3833 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev); 3834 return 0; 3835 } 3836 EXPORT_SYMBOL(dev_addr_del_multiple); 3837 3838 /* multicast addresses handling functions */ 3839 3840 int __dev_addr_delete(struct dev_addr_list **list, int *count, 3841 void *addr, int alen, int glbl) 3842 { 3843 struct dev_addr_list *da; 3844 3845 for (; (da = *list) != NULL; list = &da->next) { 3846 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3847 alen == da->da_addrlen) { 3848 if (glbl) { 3849 int old_glbl = da->da_gusers; 3850 da->da_gusers = 0; 3851 if (old_glbl == 0) 3852 break; 3853 } 3854 if (--da->da_users) 3855 return 0; 3856 3857 *list = da->next; 3858 kfree(da); 3859 (*count)--; 3860 return 0; 3861 } 3862 } 3863 return -ENOENT; 3864 } 3865 3866 int __dev_addr_add(struct dev_addr_list **list, int *count, 3867 void *addr, int alen, int glbl) 3868 { 3869 struct dev_addr_list *da; 3870 3871 for (da = *list; da != NULL; da = da->next) { 3872 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3873 da->da_addrlen == alen) { 3874 if (glbl) { 3875 int old_glbl = da->da_gusers; 3876 da->da_gusers = 1; 3877 if (old_glbl) 3878 return 0; 3879 } 3880 da->da_users++; 3881 return 0; 3882 } 3883 } 3884 3885 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3886 if (da == NULL) 3887 return -ENOMEM; 3888 memcpy(da->da_addr, addr, alen); 3889 da->da_addrlen = alen; 3890 da->da_users = 1; 3891 da->da_gusers = glbl ? 1 : 0; 3892 da->next = *list; 3893 *list = da; 3894 (*count)++; 3895 return 0; 3896 } 3897 3898 /** 3899 * dev_unicast_delete - Release secondary unicast address. 3900 * @dev: device 3901 * @addr: address to delete 3902 * 3903 * Release reference to a secondary unicast address and remove it 3904 * from the device if the reference count drops to zero. 3905 * 3906 * The caller must hold the rtnl_mutex. 3907 */ 3908 int dev_unicast_delete(struct net_device *dev, void *addr) 3909 { 3910 int err; 3911 3912 ASSERT_RTNL(); 3913 3914 netif_addr_lock_bh(dev); 3915 err = __hw_addr_del(&dev->uc, addr, dev->addr_len, 3916 NETDEV_HW_ADDR_T_UNICAST); 3917 if (!err) 3918 __dev_set_rx_mode(dev); 3919 netif_addr_unlock_bh(dev); 3920 return err; 3921 } 3922 EXPORT_SYMBOL(dev_unicast_delete); 3923 3924 /** 3925 * dev_unicast_add - add a secondary unicast address 3926 * @dev: device 3927 * @addr: address to add 3928 * 3929 * Add a secondary unicast address to the device or increase 3930 * the reference count if it already exists. 3931 * 3932 * The caller must hold the rtnl_mutex. 3933 */ 3934 int dev_unicast_add(struct net_device *dev, void *addr) 3935 { 3936 int err; 3937 3938 ASSERT_RTNL(); 3939 3940 netif_addr_lock_bh(dev); 3941 err = __hw_addr_add(&dev->uc, addr, dev->addr_len, 3942 NETDEV_HW_ADDR_T_UNICAST); 3943 if (!err) 3944 __dev_set_rx_mode(dev); 3945 netif_addr_unlock_bh(dev); 3946 return err; 3947 } 3948 EXPORT_SYMBOL(dev_unicast_add); 3949 3950 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3951 struct dev_addr_list **from, int *from_count) 3952 { 3953 struct dev_addr_list *da, *next; 3954 int err = 0; 3955 3956 da = *from; 3957 while (da != NULL) { 3958 next = da->next; 3959 if (!da->da_synced) { 3960 err = __dev_addr_add(to, to_count, 3961 da->da_addr, da->da_addrlen, 0); 3962 if (err < 0) 3963 break; 3964 da->da_synced = 1; 3965 da->da_users++; 3966 } else if (da->da_users == 1) { 3967 __dev_addr_delete(to, to_count, 3968 da->da_addr, da->da_addrlen, 0); 3969 __dev_addr_delete(from, from_count, 3970 da->da_addr, da->da_addrlen, 0); 3971 } 3972 da = next; 3973 } 3974 return err; 3975 } 3976 EXPORT_SYMBOL_GPL(__dev_addr_sync); 3977 3978 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3979 struct dev_addr_list **from, int *from_count) 3980 { 3981 struct dev_addr_list *da, *next; 3982 3983 da = *from; 3984 while (da != NULL) { 3985 next = da->next; 3986 if (da->da_synced) { 3987 __dev_addr_delete(to, to_count, 3988 da->da_addr, da->da_addrlen, 0); 3989 da->da_synced = 0; 3990 __dev_addr_delete(from, from_count, 3991 da->da_addr, da->da_addrlen, 0); 3992 } 3993 da = next; 3994 } 3995 } 3996 EXPORT_SYMBOL_GPL(__dev_addr_unsync); 3997 3998 /** 3999 * dev_unicast_sync - Synchronize device's unicast list to another device 4000 * @to: destination device 4001 * @from: source device 4002 * 4003 * Add newly added addresses to the destination device and release 4004 * addresses that have no users left. The source device must be 4005 * locked by netif_tx_lock_bh. 4006 * 4007 * This function is intended to be called from the dev->set_rx_mode 4008 * function of layered software devices. 4009 */ 4010 int dev_unicast_sync(struct net_device *to, struct net_device *from) 4011 { 4012 int err = 0; 4013 4014 if (to->addr_len != from->addr_len) 4015 return -EINVAL; 4016 4017 netif_addr_lock_bh(to); 4018 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len); 4019 if (!err) 4020 __dev_set_rx_mode(to); 4021 netif_addr_unlock_bh(to); 4022 return err; 4023 } 4024 EXPORT_SYMBOL(dev_unicast_sync); 4025 4026 /** 4027 * dev_unicast_unsync - Remove synchronized addresses from the destination device 4028 * @to: destination device 4029 * @from: source device 4030 * 4031 * Remove all addresses that were added to the destination device by 4032 * dev_unicast_sync(). This function is intended to be called from the 4033 * dev->stop function of layered software devices. 4034 */ 4035 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 4036 { 4037 if (to->addr_len != from->addr_len) 4038 return; 4039 4040 netif_addr_lock_bh(from); 4041 netif_addr_lock(to); 4042 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len); 4043 __dev_set_rx_mode(to); 4044 netif_addr_unlock(to); 4045 netif_addr_unlock_bh(from); 4046 } 4047 EXPORT_SYMBOL(dev_unicast_unsync); 4048 4049 static void dev_unicast_flush(struct net_device *dev) 4050 { 4051 netif_addr_lock_bh(dev); 4052 __hw_addr_flush(&dev->uc); 4053 netif_addr_unlock_bh(dev); 4054 } 4055 4056 static void dev_unicast_init(struct net_device *dev) 4057 { 4058 __hw_addr_init(&dev->uc); 4059 } 4060 4061 4062 static void __dev_addr_discard(struct dev_addr_list **list) 4063 { 4064 struct dev_addr_list *tmp; 4065 4066 while (*list != NULL) { 4067 tmp = *list; 4068 *list = tmp->next; 4069 if (tmp->da_users > tmp->da_gusers) 4070 printk("__dev_addr_discard: address leakage! " 4071 "da_users=%d\n", tmp->da_users); 4072 kfree(tmp); 4073 } 4074 } 4075 4076 static void dev_addr_discard(struct net_device *dev) 4077 { 4078 netif_addr_lock_bh(dev); 4079 4080 __dev_addr_discard(&dev->mc_list); 4081 dev->mc_count = 0; 4082 4083 netif_addr_unlock_bh(dev); 4084 } 4085 4086 /** 4087 * dev_get_flags - get flags reported to userspace 4088 * @dev: device 4089 * 4090 * Get the combination of flag bits exported through APIs to userspace. 4091 */ 4092 unsigned dev_get_flags(const struct net_device *dev) 4093 { 4094 unsigned flags; 4095 4096 flags = (dev->flags & ~(IFF_PROMISC | 4097 IFF_ALLMULTI | 4098 IFF_RUNNING | 4099 IFF_LOWER_UP | 4100 IFF_DORMANT)) | 4101 (dev->gflags & (IFF_PROMISC | 4102 IFF_ALLMULTI)); 4103 4104 if (netif_running(dev)) { 4105 if (netif_oper_up(dev)) 4106 flags |= IFF_RUNNING; 4107 if (netif_carrier_ok(dev)) 4108 flags |= IFF_LOWER_UP; 4109 if (netif_dormant(dev)) 4110 flags |= IFF_DORMANT; 4111 } 4112 4113 return flags; 4114 } 4115 EXPORT_SYMBOL(dev_get_flags); 4116 4117 /** 4118 * dev_change_flags - change device settings 4119 * @dev: device 4120 * @flags: device state flags 4121 * 4122 * Change settings on device based state flags. The flags are 4123 * in the userspace exported format. 4124 */ 4125 int dev_change_flags(struct net_device *dev, unsigned flags) 4126 { 4127 int ret, changes; 4128 int old_flags = dev->flags; 4129 4130 ASSERT_RTNL(); 4131 4132 /* 4133 * Set the flags on our device. 4134 */ 4135 4136 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4137 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4138 IFF_AUTOMEDIA)) | 4139 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4140 IFF_ALLMULTI)); 4141 4142 /* 4143 * Load in the correct multicast list now the flags have changed. 4144 */ 4145 4146 if ((old_flags ^ flags) & IFF_MULTICAST) 4147 dev_change_rx_flags(dev, IFF_MULTICAST); 4148 4149 dev_set_rx_mode(dev); 4150 4151 /* 4152 * Have we downed the interface. We handle IFF_UP ourselves 4153 * according to user attempts to set it, rather than blindly 4154 * setting it. 4155 */ 4156 4157 ret = 0; 4158 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4159 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 4160 4161 if (!ret) 4162 dev_set_rx_mode(dev); 4163 } 4164 4165 if (dev->flags & IFF_UP && 4166 ((old_flags ^ dev->flags) & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 4167 IFF_VOLATILE))) 4168 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4169 4170 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4171 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4172 4173 dev->gflags ^= IFF_PROMISC; 4174 dev_set_promiscuity(dev, inc); 4175 } 4176 4177 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4178 is important. Some (broken) drivers set IFF_PROMISC, when 4179 IFF_ALLMULTI is requested not asking us and not reporting. 4180 */ 4181 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4182 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4183 4184 dev->gflags ^= IFF_ALLMULTI; 4185 dev_set_allmulti(dev, inc); 4186 } 4187 4188 /* Exclude state transition flags, already notified */ 4189 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 4190 if (changes) 4191 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4192 4193 return ret; 4194 } 4195 EXPORT_SYMBOL(dev_change_flags); 4196 4197 /** 4198 * dev_set_mtu - Change maximum transfer unit 4199 * @dev: device 4200 * @new_mtu: new transfer unit 4201 * 4202 * Change the maximum transfer size of the network device. 4203 */ 4204 int dev_set_mtu(struct net_device *dev, int new_mtu) 4205 { 4206 const struct net_device_ops *ops = dev->netdev_ops; 4207 int err; 4208 4209 if (new_mtu == dev->mtu) 4210 return 0; 4211 4212 /* MTU must be positive. */ 4213 if (new_mtu < 0) 4214 return -EINVAL; 4215 4216 if (!netif_device_present(dev)) 4217 return -ENODEV; 4218 4219 err = 0; 4220 if (ops->ndo_change_mtu) 4221 err = ops->ndo_change_mtu(dev, new_mtu); 4222 else 4223 dev->mtu = new_mtu; 4224 4225 if (!err && dev->flags & IFF_UP) 4226 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4227 return err; 4228 } 4229 EXPORT_SYMBOL(dev_set_mtu); 4230 4231 /** 4232 * dev_set_mac_address - Change Media Access Control Address 4233 * @dev: device 4234 * @sa: new address 4235 * 4236 * Change the hardware (MAC) address of the device 4237 */ 4238 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4239 { 4240 const struct net_device_ops *ops = dev->netdev_ops; 4241 int err; 4242 4243 if (!ops->ndo_set_mac_address) 4244 return -EOPNOTSUPP; 4245 if (sa->sa_family != dev->type) 4246 return -EINVAL; 4247 if (!netif_device_present(dev)) 4248 return -ENODEV; 4249 err = ops->ndo_set_mac_address(dev, sa); 4250 if (!err) 4251 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4252 return err; 4253 } 4254 EXPORT_SYMBOL(dev_set_mac_address); 4255 4256 /* 4257 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 4258 */ 4259 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4260 { 4261 int err; 4262 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4263 4264 if (!dev) 4265 return -ENODEV; 4266 4267 switch (cmd) { 4268 case SIOCGIFFLAGS: /* Get interface flags */ 4269 ifr->ifr_flags = (short) dev_get_flags(dev); 4270 return 0; 4271 4272 case SIOCGIFMETRIC: /* Get the metric on the interface 4273 (currently unused) */ 4274 ifr->ifr_metric = 0; 4275 return 0; 4276 4277 case SIOCGIFMTU: /* Get the MTU of a device */ 4278 ifr->ifr_mtu = dev->mtu; 4279 return 0; 4280 4281 case SIOCGIFHWADDR: 4282 if (!dev->addr_len) 4283 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4284 else 4285 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4286 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4287 ifr->ifr_hwaddr.sa_family = dev->type; 4288 return 0; 4289 4290 case SIOCGIFSLAVE: 4291 err = -EINVAL; 4292 break; 4293 4294 case SIOCGIFMAP: 4295 ifr->ifr_map.mem_start = dev->mem_start; 4296 ifr->ifr_map.mem_end = dev->mem_end; 4297 ifr->ifr_map.base_addr = dev->base_addr; 4298 ifr->ifr_map.irq = dev->irq; 4299 ifr->ifr_map.dma = dev->dma; 4300 ifr->ifr_map.port = dev->if_port; 4301 return 0; 4302 4303 case SIOCGIFINDEX: 4304 ifr->ifr_ifindex = dev->ifindex; 4305 return 0; 4306 4307 case SIOCGIFTXQLEN: 4308 ifr->ifr_qlen = dev->tx_queue_len; 4309 return 0; 4310 4311 default: 4312 /* dev_ioctl() should ensure this case 4313 * is never reached 4314 */ 4315 WARN_ON(1); 4316 err = -EINVAL; 4317 break; 4318 4319 } 4320 return err; 4321 } 4322 4323 /* 4324 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4325 */ 4326 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4327 { 4328 int err; 4329 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4330 const struct net_device_ops *ops; 4331 4332 if (!dev) 4333 return -ENODEV; 4334 4335 ops = dev->netdev_ops; 4336 4337 switch (cmd) { 4338 case SIOCSIFFLAGS: /* Set interface flags */ 4339 return dev_change_flags(dev, ifr->ifr_flags); 4340 4341 case SIOCSIFMETRIC: /* Set the metric on the interface 4342 (currently unused) */ 4343 return -EOPNOTSUPP; 4344 4345 case SIOCSIFMTU: /* Set the MTU of a device */ 4346 return dev_set_mtu(dev, ifr->ifr_mtu); 4347 4348 case SIOCSIFHWADDR: 4349 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4350 4351 case SIOCSIFHWBROADCAST: 4352 if (ifr->ifr_hwaddr.sa_family != dev->type) 4353 return -EINVAL; 4354 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4355 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4356 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4357 return 0; 4358 4359 case SIOCSIFMAP: 4360 if (ops->ndo_set_config) { 4361 if (!netif_device_present(dev)) 4362 return -ENODEV; 4363 return ops->ndo_set_config(dev, &ifr->ifr_map); 4364 } 4365 return -EOPNOTSUPP; 4366 4367 case SIOCADDMULTI: 4368 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4369 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4370 return -EINVAL; 4371 if (!netif_device_present(dev)) 4372 return -ENODEV; 4373 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 4374 dev->addr_len, 1); 4375 4376 case SIOCDELMULTI: 4377 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4378 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4379 return -EINVAL; 4380 if (!netif_device_present(dev)) 4381 return -ENODEV; 4382 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 4383 dev->addr_len, 1); 4384 4385 case SIOCSIFTXQLEN: 4386 if (ifr->ifr_qlen < 0) 4387 return -EINVAL; 4388 dev->tx_queue_len = ifr->ifr_qlen; 4389 return 0; 4390 4391 case SIOCSIFNAME: 4392 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4393 return dev_change_name(dev, ifr->ifr_newname); 4394 4395 /* 4396 * Unknown or private ioctl 4397 */ 4398 default: 4399 if ((cmd >= SIOCDEVPRIVATE && 4400 cmd <= SIOCDEVPRIVATE + 15) || 4401 cmd == SIOCBONDENSLAVE || 4402 cmd == SIOCBONDRELEASE || 4403 cmd == SIOCBONDSETHWADDR || 4404 cmd == SIOCBONDSLAVEINFOQUERY || 4405 cmd == SIOCBONDINFOQUERY || 4406 cmd == SIOCBONDCHANGEACTIVE || 4407 cmd == SIOCGMIIPHY || 4408 cmd == SIOCGMIIREG || 4409 cmd == SIOCSMIIREG || 4410 cmd == SIOCBRADDIF || 4411 cmd == SIOCBRDELIF || 4412 cmd == SIOCSHWTSTAMP || 4413 cmd == SIOCWANDEV) { 4414 err = -EOPNOTSUPP; 4415 if (ops->ndo_do_ioctl) { 4416 if (netif_device_present(dev)) 4417 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4418 else 4419 err = -ENODEV; 4420 } 4421 } else 4422 err = -EINVAL; 4423 4424 } 4425 return err; 4426 } 4427 4428 /* 4429 * This function handles all "interface"-type I/O control requests. The actual 4430 * 'doing' part of this is dev_ifsioc above. 4431 */ 4432 4433 /** 4434 * dev_ioctl - network device ioctl 4435 * @net: the applicable net namespace 4436 * @cmd: command to issue 4437 * @arg: pointer to a struct ifreq in user space 4438 * 4439 * Issue ioctl functions to devices. This is normally called by the 4440 * user space syscall interfaces but can sometimes be useful for 4441 * other purposes. The return value is the return from the syscall if 4442 * positive or a negative errno code on error. 4443 */ 4444 4445 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4446 { 4447 struct ifreq ifr; 4448 int ret; 4449 char *colon; 4450 4451 /* One special case: SIOCGIFCONF takes ifconf argument 4452 and requires shared lock, because it sleeps writing 4453 to user space. 4454 */ 4455 4456 if (cmd == SIOCGIFCONF) { 4457 rtnl_lock(); 4458 ret = dev_ifconf(net, (char __user *) arg); 4459 rtnl_unlock(); 4460 return ret; 4461 } 4462 if (cmd == SIOCGIFNAME) 4463 return dev_ifname(net, (struct ifreq __user *)arg); 4464 4465 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4466 return -EFAULT; 4467 4468 ifr.ifr_name[IFNAMSIZ-1] = 0; 4469 4470 colon = strchr(ifr.ifr_name, ':'); 4471 if (colon) 4472 *colon = 0; 4473 4474 /* 4475 * See which interface the caller is talking about. 4476 */ 4477 4478 switch (cmd) { 4479 /* 4480 * These ioctl calls: 4481 * - can be done by all. 4482 * - atomic and do not require locking. 4483 * - return a value 4484 */ 4485 case SIOCGIFFLAGS: 4486 case SIOCGIFMETRIC: 4487 case SIOCGIFMTU: 4488 case SIOCGIFHWADDR: 4489 case SIOCGIFSLAVE: 4490 case SIOCGIFMAP: 4491 case SIOCGIFINDEX: 4492 case SIOCGIFTXQLEN: 4493 dev_load(net, ifr.ifr_name); 4494 read_lock(&dev_base_lock); 4495 ret = dev_ifsioc_locked(net, &ifr, cmd); 4496 read_unlock(&dev_base_lock); 4497 if (!ret) { 4498 if (colon) 4499 *colon = ':'; 4500 if (copy_to_user(arg, &ifr, 4501 sizeof(struct ifreq))) 4502 ret = -EFAULT; 4503 } 4504 return ret; 4505 4506 case SIOCETHTOOL: 4507 dev_load(net, ifr.ifr_name); 4508 rtnl_lock(); 4509 ret = dev_ethtool(net, &ifr); 4510 rtnl_unlock(); 4511 if (!ret) { 4512 if (colon) 4513 *colon = ':'; 4514 if (copy_to_user(arg, &ifr, 4515 sizeof(struct ifreq))) 4516 ret = -EFAULT; 4517 } 4518 return ret; 4519 4520 /* 4521 * These ioctl calls: 4522 * - require superuser power. 4523 * - require strict serialization. 4524 * - return a value 4525 */ 4526 case SIOCGMIIPHY: 4527 case SIOCGMIIREG: 4528 case SIOCSIFNAME: 4529 if (!capable(CAP_NET_ADMIN)) 4530 return -EPERM; 4531 dev_load(net, ifr.ifr_name); 4532 rtnl_lock(); 4533 ret = dev_ifsioc(net, &ifr, cmd); 4534 rtnl_unlock(); 4535 if (!ret) { 4536 if (colon) 4537 *colon = ':'; 4538 if (copy_to_user(arg, &ifr, 4539 sizeof(struct ifreq))) 4540 ret = -EFAULT; 4541 } 4542 return ret; 4543 4544 /* 4545 * These ioctl calls: 4546 * - require superuser power. 4547 * - require strict serialization. 4548 * - do not return a value 4549 */ 4550 case SIOCSIFFLAGS: 4551 case SIOCSIFMETRIC: 4552 case SIOCSIFMTU: 4553 case SIOCSIFMAP: 4554 case SIOCSIFHWADDR: 4555 case SIOCSIFSLAVE: 4556 case SIOCADDMULTI: 4557 case SIOCDELMULTI: 4558 case SIOCSIFHWBROADCAST: 4559 case SIOCSIFTXQLEN: 4560 case SIOCSMIIREG: 4561 case SIOCBONDENSLAVE: 4562 case SIOCBONDRELEASE: 4563 case SIOCBONDSETHWADDR: 4564 case SIOCBONDCHANGEACTIVE: 4565 case SIOCBRADDIF: 4566 case SIOCBRDELIF: 4567 case SIOCSHWTSTAMP: 4568 if (!capable(CAP_NET_ADMIN)) 4569 return -EPERM; 4570 /* fall through */ 4571 case SIOCBONDSLAVEINFOQUERY: 4572 case SIOCBONDINFOQUERY: 4573 dev_load(net, ifr.ifr_name); 4574 rtnl_lock(); 4575 ret = dev_ifsioc(net, &ifr, cmd); 4576 rtnl_unlock(); 4577 return ret; 4578 4579 case SIOCGIFMEM: 4580 /* Get the per device memory space. We can add this but 4581 * currently do not support it */ 4582 case SIOCSIFMEM: 4583 /* Set the per device memory buffer space. 4584 * Not applicable in our case */ 4585 case SIOCSIFLINK: 4586 return -EINVAL; 4587 4588 /* 4589 * Unknown or private ioctl. 4590 */ 4591 default: 4592 if (cmd == SIOCWANDEV || 4593 (cmd >= SIOCDEVPRIVATE && 4594 cmd <= SIOCDEVPRIVATE + 15)) { 4595 dev_load(net, ifr.ifr_name); 4596 rtnl_lock(); 4597 ret = dev_ifsioc(net, &ifr, cmd); 4598 rtnl_unlock(); 4599 if (!ret && copy_to_user(arg, &ifr, 4600 sizeof(struct ifreq))) 4601 ret = -EFAULT; 4602 return ret; 4603 } 4604 /* Take care of Wireless Extensions */ 4605 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4606 return wext_handle_ioctl(net, &ifr, cmd, arg); 4607 return -EINVAL; 4608 } 4609 } 4610 4611 4612 /** 4613 * dev_new_index - allocate an ifindex 4614 * @net: the applicable net namespace 4615 * 4616 * Returns a suitable unique value for a new device interface 4617 * number. The caller must hold the rtnl semaphore or the 4618 * dev_base_lock to be sure it remains unique. 4619 */ 4620 static int dev_new_index(struct net *net) 4621 { 4622 static int ifindex; 4623 for (;;) { 4624 if (++ifindex <= 0) 4625 ifindex = 1; 4626 if (!__dev_get_by_index(net, ifindex)) 4627 return ifindex; 4628 } 4629 } 4630 4631 /* Delayed registration/unregisteration */ 4632 static LIST_HEAD(net_todo_list); 4633 4634 static void net_set_todo(struct net_device *dev) 4635 { 4636 list_add_tail(&dev->todo_list, &net_todo_list); 4637 } 4638 4639 static void rollback_registered(struct net_device *dev) 4640 { 4641 BUG_ON(dev_boot_phase); 4642 ASSERT_RTNL(); 4643 4644 /* Some devices call without registering for initialization unwind. */ 4645 if (dev->reg_state == NETREG_UNINITIALIZED) { 4646 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 4647 "was registered\n", dev->name, dev); 4648 4649 WARN_ON(1); 4650 return; 4651 } 4652 4653 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4654 4655 /* If device is running, close it first. */ 4656 dev_close(dev); 4657 4658 /* And unlink it from device chain. */ 4659 unlist_netdevice(dev); 4660 4661 dev->reg_state = NETREG_UNREGISTERING; 4662 4663 synchronize_net(); 4664 4665 /* Shutdown queueing discipline. */ 4666 dev_shutdown(dev); 4667 4668 4669 /* Notify protocols, that we are about to destroy 4670 this device. They should clean all the things. 4671 */ 4672 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4673 4674 /* 4675 * Flush the unicast and multicast chains 4676 */ 4677 dev_unicast_flush(dev); 4678 dev_addr_discard(dev); 4679 4680 if (dev->netdev_ops->ndo_uninit) 4681 dev->netdev_ops->ndo_uninit(dev); 4682 4683 /* Notifier chain MUST detach us from master device. */ 4684 WARN_ON(dev->master); 4685 4686 /* Remove entries from kobject tree */ 4687 netdev_unregister_kobject(dev); 4688 4689 synchronize_net(); 4690 4691 dev_put(dev); 4692 } 4693 4694 static void __netdev_init_queue_locks_one(struct net_device *dev, 4695 struct netdev_queue *dev_queue, 4696 void *_unused) 4697 { 4698 spin_lock_init(&dev_queue->_xmit_lock); 4699 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4700 dev_queue->xmit_lock_owner = -1; 4701 } 4702 4703 static void netdev_init_queue_locks(struct net_device *dev) 4704 { 4705 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4706 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4707 } 4708 4709 unsigned long netdev_fix_features(unsigned long features, const char *name) 4710 { 4711 /* Fix illegal SG+CSUM combinations. */ 4712 if ((features & NETIF_F_SG) && 4713 !(features & NETIF_F_ALL_CSUM)) { 4714 if (name) 4715 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4716 "checksum feature.\n", name); 4717 features &= ~NETIF_F_SG; 4718 } 4719 4720 /* TSO requires that SG is present as well. */ 4721 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4722 if (name) 4723 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4724 "SG feature.\n", name); 4725 features &= ~NETIF_F_TSO; 4726 } 4727 4728 if (features & NETIF_F_UFO) { 4729 if (!(features & NETIF_F_GEN_CSUM)) { 4730 if (name) 4731 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4732 "since no NETIF_F_HW_CSUM feature.\n", 4733 name); 4734 features &= ~NETIF_F_UFO; 4735 } 4736 4737 if (!(features & NETIF_F_SG)) { 4738 if (name) 4739 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4740 "since no NETIF_F_SG feature.\n", name); 4741 features &= ~NETIF_F_UFO; 4742 } 4743 } 4744 4745 return features; 4746 } 4747 EXPORT_SYMBOL(netdev_fix_features); 4748 4749 /** 4750 * register_netdevice - register a network device 4751 * @dev: device to register 4752 * 4753 * Take a completed network device structure and add it to the kernel 4754 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4755 * chain. 0 is returned on success. A negative errno code is returned 4756 * on a failure to set up the device, or if the name is a duplicate. 4757 * 4758 * Callers must hold the rtnl semaphore. You may want 4759 * register_netdev() instead of this. 4760 * 4761 * BUGS: 4762 * The locking appears insufficient to guarantee two parallel registers 4763 * will not get the same name. 4764 */ 4765 4766 int register_netdevice(struct net_device *dev) 4767 { 4768 struct hlist_head *head; 4769 struct hlist_node *p; 4770 int ret; 4771 struct net *net = dev_net(dev); 4772 4773 BUG_ON(dev_boot_phase); 4774 ASSERT_RTNL(); 4775 4776 might_sleep(); 4777 4778 /* When net_device's are persistent, this will be fatal. */ 4779 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4780 BUG_ON(!net); 4781 4782 spin_lock_init(&dev->addr_list_lock); 4783 netdev_set_addr_lockdep_class(dev); 4784 netdev_init_queue_locks(dev); 4785 4786 dev->iflink = -1; 4787 4788 /* Init, if this function is available */ 4789 if (dev->netdev_ops->ndo_init) { 4790 ret = dev->netdev_ops->ndo_init(dev); 4791 if (ret) { 4792 if (ret > 0) 4793 ret = -EIO; 4794 goto out; 4795 } 4796 } 4797 4798 if (!dev_valid_name(dev->name)) { 4799 ret = -EINVAL; 4800 goto err_uninit; 4801 } 4802 4803 dev->ifindex = dev_new_index(net); 4804 if (dev->iflink == -1) 4805 dev->iflink = dev->ifindex; 4806 4807 /* Check for existence of name */ 4808 head = dev_name_hash(net, dev->name); 4809 hlist_for_each(p, head) { 4810 struct net_device *d 4811 = hlist_entry(p, struct net_device, name_hlist); 4812 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 4813 ret = -EEXIST; 4814 goto err_uninit; 4815 } 4816 } 4817 4818 /* Fix illegal checksum combinations */ 4819 if ((dev->features & NETIF_F_HW_CSUM) && 4820 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4821 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 4822 dev->name); 4823 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4824 } 4825 4826 if ((dev->features & NETIF_F_NO_CSUM) && 4827 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4828 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 4829 dev->name); 4830 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 4831 } 4832 4833 dev->features = netdev_fix_features(dev->features, dev->name); 4834 4835 /* Enable software GSO if SG is supported. */ 4836 if (dev->features & NETIF_F_SG) 4837 dev->features |= NETIF_F_GSO; 4838 4839 netdev_initialize_kobject(dev); 4840 ret = netdev_register_kobject(dev); 4841 if (ret) 4842 goto err_uninit; 4843 dev->reg_state = NETREG_REGISTERED; 4844 4845 /* 4846 * Default initial state at registry is that the 4847 * device is present. 4848 */ 4849 4850 set_bit(__LINK_STATE_PRESENT, &dev->state); 4851 4852 dev_init_scheduler(dev); 4853 dev_hold(dev); 4854 list_netdevice(dev); 4855 4856 /* Notify protocols, that a new device appeared. */ 4857 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4858 ret = notifier_to_errno(ret); 4859 if (ret) { 4860 rollback_registered(dev); 4861 dev->reg_state = NETREG_UNREGISTERED; 4862 } 4863 4864 out: 4865 return ret; 4866 4867 err_uninit: 4868 if (dev->netdev_ops->ndo_uninit) 4869 dev->netdev_ops->ndo_uninit(dev); 4870 goto out; 4871 } 4872 EXPORT_SYMBOL(register_netdevice); 4873 4874 /** 4875 * init_dummy_netdev - init a dummy network device for NAPI 4876 * @dev: device to init 4877 * 4878 * This takes a network device structure and initialize the minimum 4879 * amount of fields so it can be used to schedule NAPI polls without 4880 * registering a full blown interface. This is to be used by drivers 4881 * that need to tie several hardware interfaces to a single NAPI 4882 * poll scheduler due to HW limitations. 4883 */ 4884 int init_dummy_netdev(struct net_device *dev) 4885 { 4886 /* Clear everything. Note we don't initialize spinlocks 4887 * are they aren't supposed to be taken by any of the 4888 * NAPI code and this dummy netdev is supposed to be 4889 * only ever used for NAPI polls 4890 */ 4891 memset(dev, 0, sizeof(struct net_device)); 4892 4893 /* make sure we BUG if trying to hit standard 4894 * register/unregister code path 4895 */ 4896 dev->reg_state = NETREG_DUMMY; 4897 4898 /* initialize the ref count */ 4899 atomic_set(&dev->refcnt, 1); 4900 4901 /* NAPI wants this */ 4902 INIT_LIST_HEAD(&dev->napi_list); 4903 4904 /* a dummy interface is started by default */ 4905 set_bit(__LINK_STATE_PRESENT, &dev->state); 4906 set_bit(__LINK_STATE_START, &dev->state); 4907 4908 return 0; 4909 } 4910 EXPORT_SYMBOL_GPL(init_dummy_netdev); 4911 4912 4913 /** 4914 * register_netdev - register a network device 4915 * @dev: device to register 4916 * 4917 * Take a completed network device structure and add it to the kernel 4918 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4919 * chain. 0 is returned on success. A negative errno code is returned 4920 * on a failure to set up the device, or if the name is a duplicate. 4921 * 4922 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4923 * and expands the device name if you passed a format string to 4924 * alloc_netdev. 4925 */ 4926 int register_netdev(struct net_device *dev) 4927 { 4928 int err; 4929 4930 rtnl_lock(); 4931 4932 /* 4933 * If the name is a format string the caller wants us to do a 4934 * name allocation. 4935 */ 4936 if (strchr(dev->name, '%')) { 4937 err = dev_alloc_name(dev, dev->name); 4938 if (err < 0) 4939 goto out; 4940 } 4941 4942 err = register_netdevice(dev); 4943 out: 4944 rtnl_unlock(); 4945 return err; 4946 } 4947 EXPORT_SYMBOL(register_netdev); 4948 4949 /* 4950 * netdev_wait_allrefs - wait until all references are gone. 4951 * 4952 * This is called when unregistering network devices. 4953 * 4954 * Any protocol or device that holds a reference should register 4955 * for netdevice notification, and cleanup and put back the 4956 * reference if they receive an UNREGISTER event. 4957 * We can get stuck here if buggy protocols don't correctly 4958 * call dev_put. 4959 */ 4960 static void netdev_wait_allrefs(struct net_device *dev) 4961 { 4962 unsigned long rebroadcast_time, warning_time; 4963 4964 rebroadcast_time = warning_time = jiffies; 4965 while (atomic_read(&dev->refcnt) != 0) { 4966 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4967 rtnl_lock(); 4968 4969 /* Rebroadcast unregister notification */ 4970 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4971 4972 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4973 &dev->state)) { 4974 /* We must not have linkwatch events 4975 * pending on unregister. If this 4976 * happens, we simply run the queue 4977 * unscheduled, resulting in a noop 4978 * for this device. 4979 */ 4980 linkwatch_run_queue(); 4981 } 4982 4983 __rtnl_unlock(); 4984 4985 rebroadcast_time = jiffies; 4986 } 4987 4988 msleep(250); 4989 4990 if (time_after(jiffies, warning_time + 10 * HZ)) { 4991 printk(KERN_EMERG "unregister_netdevice: " 4992 "waiting for %s to become free. Usage " 4993 "count = %d\n", 4994 dev->name, atomic_read(&dev->refcnt)); 4995 warning_time = jiffies; 4996 } 4997 } 4998 } 4999 5000 /* The sequence is: 5001 * 5002 * rtnl_lock(); 5003 * ... 5004 * register_netdevice(x1); 5005 * register_netdevice(x2); 5006 * ... 5007 * unregister_netdevice(y1); 5008 * unregister_netdevice(y2); 5009 * ... 5010 * rtnl_unlock(); 5011 * free_netdev(y1); 5012 * free_netdev(y2); 5013 * 5014 * We are invoked by rtnl_unlock(). 5015 * This allows us to deal with problems: 5016 * 1) We can delete sysfs objects which invoke hotplug 5017 * without deadlocking with linkwatch via keventd. 5018 * 2) Since we run with the RTNL semaphore not held, we can sleep 5019 * safely in order to wait for the netdev refcnt to drop to zero. 5020 * 5021 * We must not return until all unregister events added during 5022 * the interval the lock was held have been completed. 5023 */ 5024 void netdev_run_todo(void) 5025 { 5026 struct list_head list; 5027 5028 /* Snapshot list, allow later requests */ 5029 list_replace_init(&net_todo_list, &list); 5030 5031 __rtnl_unlock(); 5032 5033 while (!list_empty(&list)) { 5034 struct net_device *dev 5035 = list_entry(list.next, struct net_device, todo_list); 5036 list_del(&dev->todo_list); 5037 5038 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5039 printk(KERN_ERR "network todo '%s' but state %d\n", 5040 dev->name, dev->reg_state); 5041 dump_stack(); 5042 continue; 5043 } 5044 5045 dev->reg_state = NETREG_UNREGISTERED; 5046 5047 on_each_cpu(flush_backlog, dev, 1); 5048 5049 netdev_wait_allrefs(dev); 5050 5051 /* paranoia */ 5052 BUG_ON(atomic_read(&dev->refcnt)); 5053 WARN_ON(dev->ip_ptr); 5054 WARN_ON(dev->ip6_ptr); 5055 WARN_ON(dev->dn_ptr); 5056 5057 if (dev->destructor) 5058 dev->destructor(dev); 5059 5060 /* Free network device */ 5061 kobject_put(&dev->dev.kobj); 5062 } 5063 } 5064 5065 /** 5066 * dev_get_stats - get network device statistics 5067 * @dev: device to get statistics from 5068 * 5069 * Get network statistics from device. The device driver may provide 5070 * its own method by setting dev->netdev_ops->get_stats; otherwise 5071 * the internal statistics structure is used. 5072 */ 5073 const struct net_device_stats *dev_get_stats(struct net_device *dev) 5074 { 5075 const struct net_device_ops *ops = dev->netdev_ops; 5076 5077 if (ops->ndo_get_stats) 5078 return ops->ndo_get_stats(dev); 5079 else { 5080 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0; 5081 struct net_device_stats *stats = &dev->stats; 5082 unsigned int i; 5083 struct netdev_queue *txq; 5084 5085 for (i = 0; i < dev->num_tx_queues; i++) { 5086 txq = netdev_get_tx_queue(dev, i); 5087 tx_bytes += txq->tx_bytes; 5088 tx_packets += txq->tx_packets; 5089 tx_dropped += txq->tx_dropped; 5090 } 5091 if (tx_bytes || tx_packets || tx_dropped) { 5092 stats->tx_bytes = tx_bytes; 5093 stats->tx_packets = tx_packets; 5094 stats->tx_dropped = tx_dropped; 5095 } 5096 return stats; 5097 } 5098 } 5099 EXPORT_SYMBOL(dev_get_stats); 5100 5101 static void netdev_init_one_queue(struct net_device *dev, 5102 struct netdev_queue *queue, 5103 void *_unused) 5104 { 5105 queue->dev = dev; 5106 } 5107 5108 static void netdev_init_queues(struct net_device *dev) 5109 { 5110 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 5111 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5112 spin_lock_init(&dev->tx_global_lock); 5113 } 5114 5115 /** 5116 * alloc_netdev_mq - allocate network device 5117 * @sizeof_priv: size of private data to allocate space for 5118 * @name: device name format string 5119 * @setup: callback to initialize device 5120 * @queue_count: the number of subqueues to allocate 5121 * 5122 * Allocates a struct net_device with private data area for driver use 5123 * and performs basic initialization. Also allocates subquue structs 5124 * for each queue on the device at the end of the netdevice. 5125 */ 5126 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 5127 void (*setup)(struct net_device *), unsigned int queue_count) 5128 { 5129 struct netdev_queue *tx; 5130 struct net_device *dev; 5131 size_t alloc_size; 5132 struct net_device *p; 5133 5134 BUG_ON(strlen(name) >= sizeof(dev->name)); 5135 5136 alloc_size = sizeof(struct net_device); 5137 if (sizeof_priv) { 5138 /* ensure 32-byte alignment of private area */ 5139 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5140 alloc_size += sizeof_priv; 5141 } 5142 /* ensure 32-byte alignment of whole construct */ 5143 alloc_size += NETDEV_ALIGN - 1; 5144 5145 p = kzalloc(alloc_size, GFP_KERNEL); 5146 if (!p) { 5147 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5148 return NULL; 5149 } 5150 5151 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 5152 if (!tx) { 5153 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5154 "tx qdiscs.\n"); 5155 goto free_p; 5156 } 5157 5158 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5159 dev->padded = (char *)dev - (char *)p; 5160 5161 if (dev_addr_init(dev)) 5162 goto free_tx; 5163 5164 dev_unicast_init(dev); 5165 5166 dev_net_set(dev, &init_net); 5167 5168 dev->_tx = tx; 5169 dev->num_tx_queues = queue_count; 5170 dev->real_num_tx_queues = queue_count; 5171 5172 dev->gso_max_size = GSO_MAX_SIZE; 5173 5174 netdev_init_queues(dev); 5175 5176 INIT_LIST_HEAD(&dev->napi_list); 5177 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5178 setup(dev); 5179 strcpy(dev->name, name); 5180 return dev; 5181 5182 free_tx: 5183 kfree(tx); 5184 5185 free_p: 5186 kfree(p); 5187 return NULL; 5188 } 5189 EXPORT_SYMBOL(alloc_netdev_mq); 5190 5191 /** 5192 * free_netdev - free network device 5193 * @dev: device 5194 * 5195 * This function does the last stage of destroying an allocated device 5196 * interface. The reference to the device object is released. 5197 * If this is the last reference then it will be freed. 5198 */ 5199 void free_netdev(struct net_device *dev) 5200 { 5201 struct napi_struct *p, *n; 5202 5203 release_net(dev_net(dev)); 5204 5205 kfree(dev->_tx); 5206 5207 /* Flush device addresses */ 5208 dev_addr_flush(dev); 5209 5210 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5211 netif_napi_del(p); 5212 5213 /* Compatibility with error handling in drivers */ 5214 if (dev->reg_state == NETREG_UNINITIALIZED) { 5215 kfree((char *)dev - dev->padded); 5216 return; 5217 } 5218 5219 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5220 dev->reg_state = NETREG_RELEASED; 5221 5222 /* will free via device release */ 5223 put_device(&dev->dev); 5224 } 5225 EXPORT_SYMBOL(free_netdev); 5226 5227 /** 5228 * synchronize_net - Synchronize with packet receive processing 5229 * 5230 * Wait for packets currently being received to be done. 5231 * Does not block later packets from starting. 5232 */ 5233 void synchronize_net(void) 5234 { 5235 might_sleep(); 5236 synchronize_rcu(); 5237 } 5238 EXPORT_SYMBOL(synchronize_net); 5239 5240 /** 5241 * unregister_netdevice - remove device from the kernel 5242 * @dev: device 5243 * 5244 * This function shuts down a device interface and removes it 5245 * from the kernel tables. 5246 * 5247 * Callers must hold the rtnl semaphore. You may want 5248 * unregister_netdev() instead of this. 5249 */ 5250 5251 void unregister_netdevice(struct net_device *dev) 5252 { 5253 ASSERT_RTNL(); 5254 5255 rollback_registered(dev); 5256 /* Finish processing unregister after unlock */ 5257 net_set_todo(dev); 5258 } 5259 EXPORT_SYMBOL(unregister_netdevice); 5260 5261 /** 5262 * unregister_netdev - remove device from the kernel 5263 * @dev: device 5264 * 5265 * This function shuts down a device interface and removes it 5266 * from the kernel tables. 5267 * 5268 * This is just a wrapper for unregister_netdevice that takes 5269 * the rtnl semaphore. In general you want to use this and not 5270 * unregister_netdevice. 5271 */ 5272 void unregister_netdev(struct net_device *dev) 5273 { 5274 rtnl_lock(); 5275 unregister_netdevice(dev); 5276 rtnl_unlock(); 5277 } 5278 EXPORT_SYMBOL(unregister_netdev); 5279 5280 /** 5281 * dev_change_net_namespace - move device to different nethost namespace 5282 * @dev: device 5283 * @net: network namespace 5284 * @pat: If not NULL name pattern to try if the current device name 5285 * is already taken in the destination network namespace. 5286 * 5287 * This function shuts down a device interface and moves it 5288 * to a new network namespace. On success 0 is returned, on 5289 * a failure a netagive errno code is returned. 5290 * 5291 * Callers must hold the rtnl semaphore. 5292 */ 5293 5294 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5295 { 5296 char buf[IFNAMSIZ]; 5297 const char *destname; 5298 int err; 5299 5300 ASSERT_RTNL(); 5301 5302 /* Don't allow namespace local devices to be moved. */ 5303 err = -EINVAL; 5304 if (dev->features & NETIF_F_NETNS_LOCAL) 5305 goto out; 5306 5307 #ifdef CONFIG_SYSFS 5308 /* Don't allow real devices to be moved when sysfs 5309 * is enabled. 5310 */ 5311 err = -EINVAL; 5312 if (dev->dev.parent) 5313 goto out; 5314 #endif 5315 5316 /* Ensure the device has been registrered */ 5317 err = -EINVAL; 5318 if (dev->reg_state != NETREG_REGISTERED) 5319 goto out; 5320 5321 /* Get out if there is nothing todo */ 5322 err = 0; 5323 if (net_eq(dev_net(dev), net)) 5324 goto out; 5325 5326 /* Pick the destination device name, and ensure 5327 * we can use it in the destination network namespace. 5328 */ 5329 err = -EEXIST; 5330 destname = dev->name; 5331 if (__dev_get_by_name(net, destname)) { 5332 /* We get here if we can't use the current device name */ 5333 if (!pat) 5334 goto out; 5335 if (!dev_valid_name(pat)) 5336 goto out; 5337 if (strchr(pat, '%')) { 5338 if (__dev_alloc_name(net, pat, buf) < 0) 5339 goto out; 5340 destname = buf; 5341 } else 5342 destname = pat; 5343 if (__dev_get_by_name(net, destname)) 5344 goto out; 5345 } 5346 5347 /* 5348 * And now a mini version of register_netdevice unregister_netdevice. 5349 */ 5350 5351 /* If device is running close it first. */ 5352 dev_close(dev); 5353 5354 /* And unlink it from device chain */ 5355 err = -ENODEV; 5356 unlist_netdevice(dev); 5357 5358 synchronize_net(); 5359 5360 /* Shutdown queueing discipline. */ 5361 dev_shutdown(dev); 5362 5363 /* Notify protocols, that we are about to destroy 5364 this device. They should clean all the things. 5365 */ 5366 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5367 5368 /* 5369 * Flush the unicast and multicast chains 5370 */ 5371 dev_unicast_flush(dev); 5372 dev_addr_discard(dev); 5373 5374 netdev_unregister_kobject(dev); 5375 5376 /* Actually switch the network namespace */ 5377 dev_net_set(dev, net); 5378 5379 /* Assign the new device name */ 5380 if (destname != dev->name) 5381 strcpy(dev->name, destname); 5382 5383 /* If there is an ifindex conflict assign a new one */ 5384 if (__dev_get_by_index(net, dev->ifindex)) { 5385 int iflink = (dev->iflink == dev->ifindex); 5386 dev->ifindex = dev_new_index(net); 5387 if (iflink) 5388 dev->iflink = dev->ifindex; 5389 } 5390 5391 /* Fixup kobjects */ 5392 err = netdev_register_kobject(dev); 5393 WARN_ON(err); 5394 5395 /* Add the device back in the hashes */ 5396 list_netdevice(dev); 5397 5398 /* Notify protocols, that a new device appeared. */ 5399 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5400 5401 synchronize_net(); 5402 err = 0; 5403 out: 5404 return err; 5405 } 5406 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5407 5408 static int dev_cpu_callback(struct notifier_block *nfb, 5409 unsigned long action, 5410 void *ocpu) 5411 { 5412 struct sk_buff **list_skb; 5413 struct Qdisc **list_net; 5414 struct sk_buff *skb; 5415 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5416 struct softnet_data *sd, *oldsd; 5417 5418 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5419 return NOTIFY_OK; 5420 5421 local_irq_disable(); 5422 cpu = smp_processor_id(); 5423 sd = &per_cpu(softnet_data, cpu); 5424 oldsd = &per_cpu(softnet_data, oldcpu); 5425 5426 /* Find end of our completion_queue. */ 5427 list_skb = &sd->completion_queue; 5428 while (*list_skb) 5429 list_skb = &(*list_skb)->next; 5430 /* Append completion queue from offline CPU. */ 5431 *list_skb = oldsd->completion_queue; 5432 oldsd->completion_queue = NULL; 5433 5434 /* Find end of our output_queue. */ 5435 list_net = &sd->output_queue; 5436 while (*list_net) 5437 list_net = &(*list_net)->next_sched; 5438 /* Append output queue from offline CPU. */ 5439 *list_net = oldsd->output_queue; 5440 oldsd->output_queue = NULL; 5441 5442 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5443 local_irq_enable(); 5444 5445 /* Process offline CPU's input_pkt_queue */ 5446 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 5447 netif_rx(skb); 5448 5449 return NOTIFY_OK; 5450 } 5451 5452 5453 /** 5454 * netdev_increment_features - increment feature set by one 5455 * @all: current feature set 5456 * @one: new feature set 5457 * @mask: mask feature set 5458 * 5459 * Computes a new feature set after adding a device with feature set 5460 * @one to the master device with current feature set @all. Will not 5461 * enable anything that is off in @mask. Returns the new feature set. 5462 */ 5463 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5464 unsigned long mask) 5465 { 5466 /* If device needs checksumming, downgrade to it. */ 5467 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5468 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5469 else if (mask & NETIF_F_ALL_CSUM) { 5470 /* If one device supports v4/v6 checksumming, set for all. */ 5471 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5472 !(all & NETIF_F_GEN_CSUM)) { 5473 all &= ~NETIF_F_ALL_CSUM; 5474 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5475 } 5476 5477 /* If one device supports hw checksumming, set for all. */ 5478 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5479 all &= ~NETIF_F_ALL_CSUM; 5480 all |= NETIF_F_HW_CSUM; 5481 } 5482 } 5483 5484 one |= NETIF_F_ALL_CSUM; 5485 5486 one |= all & NETIF_F_ONE_FOR_ALL; 5487 all &= one | NETIF_F_LLTX | NETIF_F_GSO; 5488 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5489 5490 return all; 5491 } 5492 EXPORT_SYMBOL(netdev_increment_features); 5493 5494 static struct hlist_head *netdev_create_hash(void) 5495 { 5496 int i; 5497 struct hlist_head *hash; 5498 5499 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5500 if (hash != NULL) 5501 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5502 INIT_HLIST_HEAD(&hash[i]); 5503 5504 return hash; 5505 } 5506 5507 /* Initialize per network namespace state */ 5508 static int __net_init netdev_init(struct net *net) 5509 { 5510 INIT_LIST_HEAD(&net->dev_base_head); 5511 5512 net->dev_name_head = netdev_create_hash(); 5513 if (net->dev_name_head == NULL) 5514 goto err_name; 5515 5516 net->dev_index_head = netdev_create_hash(); 5517 if (net->dev_index_head == NULL) 5518 goto err_idx; 5519 5520 return 0; 5521 5522 err_idx: 5523 kfree(net->dev_name_head); 5524 err_name: 5525 return -ENOMEM; 5526 } 5527 5528 /** 5529 * netdev_drivername - network driver for the device 5530 * @dev: network device 5531 * @buffer: buffer for resulting name 5532 * @len: size of buffer 5533 * 5534 * Determine network driver for device. 5535 */ 5536 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5537 { 5538 const struct device_driver *driver; 5539 const struct device *parent; 5540 5541 if (len <= 0 || !buffer) 5542 return buffer; 5543 buffer[0] = 0; 5544 5545 parent = dev->dev.parent; 5546 5547 if (!parent) 5548 return buffer; 5549 5550 driver = parent->driver; 5551 if (driver && driver->name) 5552 strlcpy(buffer, driver->name, len); 5553 return buffer; 5554 } 5555 5556 static void __net_exit netdev_exit(struct net *net) 5557 { 5558 kfree(net->dev_name_head); 5559 kfree(net->dev_index_head); 5560 } 5561 5562 static struct pernet_operations __net_initdata netdev_net_ops = { 5563 .init = netdev_init, 5564 .exit = netdev_exit, 5565 }; 5566 5567 static void __net_exit default_device_exit(struct net *net) 5568 { 5569 struct net_device *dev; 5570 /* 5571 * Push all migratable of the network devices back to the 5572 * initial network namespace 5573 */ 5574 rtnl_lock(); 5575 restart: 5576 for_each_netdev(net, dev) { 5577 int err; 5578 char fb_name[IFNAMSIZ]; 5579 5580 /* Ignore unmoveable devices (i.e. loopback) */ 5581 if (dev->features & NETIF_F_NETNS_LOCAL) 5582 continue; 5583 5584 /* Delete virtual devices */ 5585 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) { 5586 dev->rtnl_link_ops->dellink(dev); 5587 goto restart; 5588 } 5589 5590 /* Push remaing network devices to init_net */ 5591 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5592 err = dev_change_net_namespace(dev, &init_net, fb_name); 5593 if (err) { 5594 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5595 __func__, dev->name, err); 5596 BUG(); 5597 } 5598 goto restart; 5599 } 5600 rtnl_unlock(); 5601 } 5602 5603 static struct pernet_operations __net_initdata default_device_ops = { 5604 .exit = default_device_exit, 5605 }; 5606 5607 /* 5608 * Initialize the DEV module. At boot time this walks the device list and 5609 * unhooks any devices that fail to initialise (normally hardware not 5610 * present) and leaves us with a valid list of present and active devices. 5611 * 5612 */ 5613 5614 /* 5615 * This is called single threaded during boot, so no need 5616 * to take the rtnl semaphore. 5617 */ 5618 static int __init net_dev_init(void) 5619 { 5620 int i, rc = -ENOMEM; 5621 5622 BUG_ON(!dev_boot_phase); 5623 5624 if (dev_proc_init()) 5625 goto out; 5626 5627 if (netdev_kobject_init()) 5628 goto out; 5629 5630 INIT_LIST_HEAD(&ptype_all); 5631 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5632 INIT_LIST_HEAD(&ptype_base[i]); 5633 5634 if (register_pernet_subsys(&netdev_net_ops)) 5635 goto out; 5636 5637 /* 5638 * Initialise the packet receive queues. 5639 */ 5640 5641 for_each_possible_cpu(i) { 5642 struct softnet_data *queue; 5643 5644 queue = &per_cpu(softnet_data, i); 5645 skb_queue_head_init(&queue->input_pkt_queue); 5646 queue->completion_queue = NULL; 5647 INIT_LIST_HEAD(&queue->poll_list); 5648 5649 queue->backlog.poll = process_backlog; 5650 queue->backlog.weight = weight_p; 5651 queue->backlog.gro_list = NULL; 5652 queue->backlog.gro_count = 0; 5653 } 5654 5655 dev_boot_phase = 0; 5656 5657 /* The loopback device is special if any other network devices 5658 * is present in a network namespace the loopback device must 5659 * be present. Since we now dynamically allocate and free the 5660 * loopback device ensure this invariant is maintained by 5661 * keeping the loopback device as the first device on the 5662 * list of network devices. Ensuring the loopback devices 5663 * is the first device that appears and the last network device 5664 * that disappears. 5665 */ 5666 if (register_pernet_device(&loopback_net_ops)) 5667 goto out; 5668 5669 if (register_pernet_device(&default_device_ops)) 5670 goto out; 5671 5672 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5673 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5674 5675 hotcpu_notifier(dev_cpu_callback, 0); 5676 dst_init(); 5677 dev_mcast_init(); 5678 rc = 0; 5679 out: 5680 return rc; 5681 } 5682 5683 subsys_initcall(net_dev_init); 5684 5685 static int __init initialize_hashrnd(void) 5686 { 5687 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd)); 5688 return 0; 5689 } 5690 5691 late_initcall_sync(initialize_hashrnd); 5692 5693