1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 148 #include "net-sysfs.h" 149 150 /* Instead of increasing this, you should create a hash table. */ 151 #define MAX_GRO_SKBS 8 152 153 /* This should be increased if a protocol with a bigger head is added. */ 154 #define GRO_MAX_HEAD (MAX_HEADER + 128) 155 156 static DEFINE_SPINLOCK(ptype_lock); 157 static DEFINE_SPINLOCK(offload_lock); 158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 159 struct list_head ptype_all __read_mostly; /* Taps */ 160 static struct list_head offload_base __read_mostly; 161 162 static int netif_rx_internal(struct sk_buff *skb); 163 static int call_netdevice_notifiers_info(unsigned long val, 164 struct net_device *dev, 165 struct netdev_notifier_info *info); 166 static struct napi_struct *napi_by_id(unsigned int napi_id); 167 168 /* 169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 170 * semaphore. 171 * 172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 173 * 174 * Writers must hold the rtnl semaphore while they loop through the 175 * dev_base_head list, and hold dev_base_lock for writing when they do the 176 * actual updates. This allows pure readers to access the list even 177 * while a writer is preparing to update it. 178 * 179 * To put it another way, dev_base_lock is held for writing only to 180 * protect against pure readers; the rtnl semaphore provides the 181 * protection against other writers. 182 * 183 * See, for example usages, register_netdevice() and 184 * unregister_netdevice(), which must be called with the rtnl 185 * semaphore held. 186 */ 187 DEFINE_RWLOCK(dev_base_lock); 188 EXPORT_SYMBOL(dev_base_lock); 189 190 /* protects napi_hash addition/deletion and napi_gen_id */ 191 static DEFINE_SPINLOCK(napi_hash_lock); 192 193 static unsigned int napi_gen_id = NR_CPUS; 194 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 195 196 static seqcount_t devnet_rename_seq; 197 198 static inline void dev_base_seq_inc(struct net *net) 199 { 200 while (++net->dev_base_seq == 0) 201 ; 202 } 203 204 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 205 { 206 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 207 208 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 209 } 210 211 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 212 { 213 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 214 } 215 216 static inline void rps_lock(struct softnet_data *sd) 217 { 218 #ifdef CONFIG_RPS 219 spin_lock(&sd->input_pkt_queue.lock); 220 #endif 221 } 222 223 static inline void rps_unlock(struct softnet_data *sd) 224 { 225 #ifdef CONFIG_RPS 226 spin_unlock(&sd->input_pkt_queue.lock); 227 #endif 228 } 229 230 /* Device list insertion */ 231 static void list_netdevice(struct net_device *dev) 232 { 233 struct net *net = dev_net(dev); 234 235 ASSERT_RTNL(); 236 237 write_lock_bh(&dev_base_lock); 238 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 239 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 240 hlist_add_head_rcu(&dev->index_hlist, 241 dev_index_hash(net, dev->ifindex)); 242 write_unlock_bh(&dev_base_lock); 243 244 dev_base_seq_inc(net); 245 } 246 247 /* Device list removal 248 * caller must respect a RCU grace period before freeing/reusing dev 249 */ 250 static void unlist_netdevice(struct net_device *dev) 251 { 252 ASSERT_RTNL(); 253 254 /* Unlink dev from the device chain */ 255 write_lock_bh(&dev_base_lock); 256 list_del_rcu(&dev->dev_list); 257 hlist_del_rcu(&dev->name_hlist); 258 hlist_del_rcu(&dev->index_hlist); 259 write_unlock_bh(&dev_base_lock); 260 261 dev_base_seq_inc(dev_net(dev)); 262 } 263 264 /* 265 * Our notifier list 266 */ 267 268 static RAW_NOTIFIER_HEAD(netdev_chain); 269 270 /* 271 * Device drivers call our routines to queue packets here. We empty the 272 * queue in the local softnet handler. 273 */ 274 275 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 276 EXPORT_PER_CPU_SYMBOL(softnet_data); 277 278 #ifdef CONFIG_LOCKDEP 279 /* 280 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 281 * according to dev->type 282 */ 283 static const unsigned short netdev_lock_type[] = { 284 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 285 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 286 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 287 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 288 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 289 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 290 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 291 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 292 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 293 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 294 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 295 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 296 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 297 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 298 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 299 300 static const char *const netdev_lock_name[] = { 301 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 302 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 303 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 304 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 305 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 306 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 307 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 308 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 309 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 310 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 311 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 312 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 313 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 314 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 315 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 316 317 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 318 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 319 320 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 321 { 322 int i; 323 324 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 325 if (netdev_lock_type[i] == dev_type) 326 return i; 327 /* the last key is used by default */ 328 return ARRAY_SIZE(netdev_lock_type) - 1; 329 } 330 331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 332 unsigned short dev_type) 333 { 334 int i; 335 336 i = netdev_lock_pos(dev_type); 337 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 338 netdev_lock_name[i]); 339 } 340 341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 342 { 343 int i; 344 345 i = netdev_lock_pos(dev->type); 346 lockdep_set_class_and_name(&dev->addr_list_lock, 347 &netdev_addr_lock_key[i], 348 netdev_lock_name[i]); 349 } 350 #else 351 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 352 unsigned short dev_type) 353 { 354 } 355 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 356 { 357 } 358 #endif 359 360 /******************************************************************************* 361 * 362 * Protocol management and registration routines 363 * 364 *******************************************************************************/ 365 366 367 /* 368 * Add a protocol ID to the list. Now that the input handler is 369 * smarter we can dispense with all the messy stuff that used to be 370 * here. 371 * 372 * BEWARE!!! Protocol handlers, mangling input packets, 373 * MUST BE last in hash buckets and checking protocol handlers 374 * MUST start from promiscuous ptype_all chain in net_bh. 375 * It is true now, do not change it. 376 * Explanation follows: if protocol handler, mangling packet, will 377 * be the first on list, it is not able to sense, that packet 378 * is cloned and should be copied-on-write, so that it will 379 * change it and subsequent readers will get broken packet. 380 * --ANK (980803) 381 */ 382 383 static inline struct list_head *ptype_head(const struct packet_type *pt) 384 { 385 if (pt->type == htons(ETH_P_ALL)) 386 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 387 else 388 return pt->dev ? &pt->dev->ptype_specific : 389 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 390 } 391 392 /** 393 * dev_add_pack - add packet handler 394 * @pt: packet type declaration 395 * 396 * Add a protocol handler to the networking stack. The passed &packet_type 397 * is linked into kernel lists and may not be freed until it has been 398 * removed from the kernel lists. 399 * 400 * This call does not sleep therefore it can not 401 * guarantee all CPU's that are in middle of receiving packets 402 * will see the new packet type (until the next received packet). 403 */ 404 405 void dev_add_pack(struct packet_type *pt) 406 { 407 struct list_head *head = ptype_head(pt); 408 409 spin_lock(&ptype_lock); 410 list_add_rcu(&pt->list, head); 411 spin_unlock(&ptype_lock); 412 } 413 EXPORT_SYMBOL(dev_add_pack); 414 415 /** 416 * __dev_remove_pack - remove packet handler 417 * @pt: packet type declaration 418 * 419 * Remove a protocol handler that was previously added to the kernel 420 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 421 * from the kernel lists and can be freed or reused once this function 422 * returns. 423 * 424 * The packet type might still be in use by receivers 425 * and must not be freed until after all the CPU's have gone 426 * through a quiescent state. 427 */ 428 void __dev_remove_pack(struct packet_type *pt) 429 { 430 struct list_head *head = ptype_head(pt); 431 struct packet_type *pt1; 432 433 spin_lock(&ptype_lock); 434 435 list_for_each_entry(pt1, head, list) { 436 if (pt == pt1) { 437 list_del_rcu(&pt->list); 438 goto out; 439 } 440 } 441 442 pr_warn("dev_remove_pack: %p not found\n", pt); 443 out: 444 spin_unlock(&ptype_lock); 445 } 446 EXPORT_SYMBOL(__dev_remove_pack); 447 448 /** 449 * dev_remove_pack - remove packet handler 450 * @pt: packet type declaration 451 * 452 * Remove a protocol handler that was previously added to the kernel 453 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 454 * from the kernel lists and can be freed or reused once this function 455 * returns. 456 * 457 * This call sleeps to guarantee that no CPU is looking at the packet 458 * type after return. 459 */ 460 void dev_remove_pack(struct packet_type *pt) 461 { 462 __dev_remove_pack(pt); 463 464 synchronize_net(); 465 } 466 EXPORT_SYMBOL(dev_remove_pack); 467 468 469 /** 470 * dev_add_offload - register offload handlers 471 * @po: protocol offload declaration 472 * 473 * Add protocol offload handlers to the networking stack. The passed 474 * &proto_offload is linked into kernel lists and may not be freed until 475 * it has been removed from the kernel lists. 476 * 477 * This call does not sleep therefore it can not 478 * guarantee all CPU's that are in middle of receiving packets 479 * will see the new offload handlers (until the next received packet). 480 */ 481 void dev_add_offload(struct packet_offload *po) 482 { 483 struct packet_offload *elem; 484 485 spin_lock(&offload_lock); 486 list_for_each_entry(elem, &offload_base, list) { 487 if (po->priority < elem->priority) 488 break; 489 } 490 list_add_rcu(&po->list, elem->list.prev); 491 spin_unlock(&offload_lock); 492 } 493 EXPORT_SYMBOL(dev_add_offload); 494 495 /** 496 * __dev_remove_offload - remove offload handler 497 * @po: packet offload declaration 498 * 499 * Remove a protocol offload handler that was previously added to the 500 * kernel offload handlers by dev_add_offload(). The passed &offload_type 501 * is removed from the kernel lists and can be freed or reused once this 502 * function returns. 503 * 504 * The packet type might still be in use by receivers 505 * and must not be freed until after all the CPU's have gone 506 * through a quiescent state. 507 */ 508 static void __dev_remove_offload(struct packet_offload *po) 509 { 510 struct list_head *head = &offload_base; 511 struct packet_offload *po1; 512 513 spin_lock(&offload_lock); 514 515 list_for_each_entry(po1, head, list) { 516 if (po == po1) { 517 list_del_rcu(&po->list); 518 goto out; 519 } 520 } 521 522 pr_warn("dev_remove_offload: %p not found\n", po); 523 out: 524 spin_unlock(&offload_lock); 525 } 526 527 /** 528 * dev_remove_offload - remove packet offload handler 529 * @po: packet offload declaration 530 * 531 * Remove a packet offload handler that was previously added to the kernel 532 * offload handlers by dev_add_offload(). The passed &offload_type is 533 * removed from the kernel lists and can be freed or reused once this 534 * function returns. 535 * 536 * This call sleeps to guarantee that no CPU is looking at the packet 537 * type after return. 538 */ 539 void dev_remove_offload(struct packet_offload *po) 540 { 541 __dev_remove_offload(po); 542 543 synchronize_net(); 544 } 545 EXPORT_SYMBOL(dev_remove_offload); 546 547 /****************************************************************************** 548 * 549 * Device Boot-time Settings Routines 550 * 551 ******************************************************************************/ 552 553 /* Boot time configuration table */ 554 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 555 556 /** 557 * netdev_boot_setup_add - add new setup entry 558 * @name: name of the device 559 * @map: configured settings for the device 560 * 561 * Adds new setup entry to the dev_boot_setup list. The function 562 * returns 0 on error and 1 on success. This is a generic routine to 563 * all netdevices. 564 */ 565 static int netdev_boot_setup_add(char *name, struct ifmap *map) 566 { 567 struct netdev_boot_setup *s; 568 int i; 569 570 s = dev_boot_setup; 571 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 572 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 573 memset(s[i].name, 0, sizeof(s[i].name)); 574 strlcpy(s[i].name, name, IFNAMSIZ); 575 memcpy(&s[i].map, map, sizeof(s[i].map)); 576 break; 577 } 578 } 579 580 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 581 } 582 583 /** 584 * netdev_boot_setup_check - check boot time settings 585 * @dev: the netdevice 586 * 587 * Check boot time settings for the device. 588 * The found settings are set for the device to be used 589 * later in the device probing. 590 * Returns 0 if no settings found, 1 if they are. 591 */ 592 int netdev_boot_setup_check(struct net_device *dev) 593 { 594 struct netdev_boot_setup *s = dev_boot_setup; 595 int i; 596 597 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 598 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 599 !strcmp(dev->name, s[i].name)) { 600 dev->irq = s[i].map.irq; 601 dev->base_addr = s[i].map.base_addr; 602 dev->mem_start = s[i].map.mem_start; 603 dev->mem_end = s[i].map.mem_end; 604 return 1; 605 } 606 } 607 return 0; 608 } 609 EXPORT_SYMBOL(netdev_boot_setup_check); 610 611 612 /** 613 * netdev_boot_base - get address from boot time settings 614 * @prefix: prefix for network device 615 * @unit: id for network device 616 * 617 * Check boot time settings for the base address of device. 618 * The found settings are set for the device to be used 619 * later in the device probing. 620 * Returns 0 if no settings found. 621 */ 622 unsigned long netdev_boot_base(const char *prefix, int unit) 623 { 624 const struct netdev_boot_setup *s = dev_boot_setup; 625 char name[IFNAMSIZ]; 626 int i; 627 628 sprintf(name, "%s%d", prefix, unit); 629 630 /* 631 * If device already registered then return base of 1 632 * to indicate not to probe for this interface 633 */ 634 if (__dev_get_by_name(&init_net, name)) 635 return 1; 636 637 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 638 if (!strcmp(name, s[i].name)) 639 return s[i].map.base_addr; 640 return 0; 641 } 642 643 /* 644 * Saves at boot time configured settings for any netdevice. 645 */ 646 int __init netdev_boot_setup(char *str) 647 { 648 int ints[5]; 649 struct ifmap map; 650 651 str = get_options(str, ARRAY_SIZE(ints), ints); 652 if (!str || !*str) 653 return 0; 654 655 /* Save settings */ 656 memset(&map, 0, sizeof(map)); 657 if (ints[0] > 0) 658 map.irq = ints[1]; 659 if (ints[0] > 1) 660 map.base_addr = ints[2]; 661 if (ints[0] > 2) 662 map.mem_start = ints[3]; 663 if (ints[0] > 3) 664 map.mem_end = ints[4]; 665 666 /* Add new entry to the list */ 667 return netdev_boot_setup_add(str, &map); 668 } 669 670 __setup("netdev=", netdev_boot_setup); 671 672 /******************************************************************************* 673 * 674 * Device Interface Subroutines 675 * 676 *******************************************************************************/ 677 678 /** 679 * dev_get_iflink - get 'iflink' value of a interface 680 * @dev: targeted interface 681 * 682 * Indicates the ifindex the interface is linked to. 683 * Physical interfaces have the same 'ifindex' and 'iflink' values. 684 */ 685 686 int dev_get_iflink(const struct net_device *dev) 687 { 688 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 689 return dev->netdev_ops->ndo_get_iflink(dev); 690 691 return dev->ifindex; 692 } 693 EXPORT_SYMBOL(dev_get_iflink); 694 695 /** 696 * dev_fill_metadata_dst - Retrieve tunnel egress information. 697 * @dev: targeted interface 698 * @skb: The packet. 699 * 700 * For better visibility of tunnel traffic OVS needs to retrieve 701 * egress tunnel information for a packet. Following API allows 702 * user to get this info. 703 */ 704 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 705 { 706 struct ip_tunnel_info *info; 707 708 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 709 return -EINVAL; 710 711 info = skb_tunnel_info_unclone(skb); 712 if (!info) 713 return -ENOMEM; 714 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 715 return -EINVAL; 716 717 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 718 } 719 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 720 721 /** 722 * __dev_get_by_name - find a device by its name 723 * @net: the applicable net namespace 724 * @name: name to find 725 * 726 * Find an interface by name. Must be called under RTNL semaphore 727 * or @dev_base_lock. If the name is found a pointer to the device 728 * is returned. If the name is not found then %NULL is returned. The 729 * reference counters are not incremented so the caller must be 730 * careful with locks. 731 */ 732 733 struct net_device *__dev_get_by_name(struct net *net, const char *name) 734 { 735 struct net_device *dev; 736 struct hlist_head *head = dev_name_hash(net, name); 737 738 hlist_for_each_entry(dev, head, name_hlist) 739 if (!strncmp(dev->name, name, IFNAMSIZ)) 740 return dev; 741 742 return NULL; 743 } 744 EXPORT_SYMBOL(__dev_get_by_name); 745 746 /** 747 * dev_get_by_name_rcu - find a device by its name 748 * @net: the applicable net namespace 749 * @name: name to find 750 * 751 * Find an interface by name. 752 * If the name is found a pointer to the device is returned. 753 * If the name is not found then %NULL is returned. 754 * The reference counters are not incremented so the caller must be 755 * careful with locks. The caller must hold RCU lock. 756 */ 757 758 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 759 { 760 struct net_device *dev; 761 struct hlist_head *head = dev_name_hash(net, name); 762 763 hlist_for_each_entry_rcu(dev, head, name_hlist) 764 if (!strncmp(dev->name, name, IFNAMSIZ)) 765 return dev; 766 767 return NULL; 768 } 769 EXPORT_SYMBOL(dev_get_by_name_rcu); 770 771 /** 772 * dev_get_by_name - find a device by its name 773 * @net: the applicable net namespace 774 * @name: name to find 775 * 776 * Find an interface by name. This can be called from any 777 * context and does its own locking. The returned handle has 778 * the usage count incremented and the caller must use dev_put() to 779 * release it when it is no longer needed. %NULL is returned if no 780 * matching device is found. 781 */ 782 783 struct net_device *dev_get_by_name(struct net *net, const char *name) 784 { 785 struct net_device *dev; 786 787 rcu_read_lock(); 788 dev = dev_get_by_name_rcu(net, name); 789 if (dev) 790 dev_hold(dev); 791 rcu_read_unlock(); 792 return dev; 793 } 794 EXPORT_SYMBOL(dev_get_by_name); 795 796 /** 797 * __dev_get_by_index - find a device by its ifindex 798 * @net: the applicable net namespace 799 * @ifindex: index of device 800 * 801 * Search for an interface by index. Returns %NULL if the device 802 * is not found or a pointer to the device. The device has not 803 * had its reference counter increased so the caller must be careful 804 * about locking. The caller must hold either the RTNL semaphore 805 * or @dev_base_lock. 806 */ 807 808 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 809 { 810 struct net_device *dev; 811 struct hlist_head *head = dev_index_hash(net, ifindex); 812 813 hlist_for_each_entry(dev, head, index_hlist) 814 if (dev->ifindex == ifindex) 815 return dev; 816 817 return NULL; 818 } 819 EXPORT_SYMBOL(__dev_get_by_index); 820 821 /** 822 * dev_get_by_index_rcu - find a device by its ifindex 823 * @net: the applicable net namespace 824 * @ifindex: index of device 825 * 826 * Search for an interface by index. Returns %NULL if the device 827 * is not found or a pointer to the device. The device has not 828 * had its reference counter increased so the caller must be careful 829 * about locking. The caller must hold RCU lock. 830 */ 831 832 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 833 { 834 struct net_device *dev; 835 struct hlist_head *head = dev_index_hash(net, ifindex); 836 837 hlist_for_each_entry_rcu(dev, head, index_hlist) 838 if (dev->ifindex == ifindex) 839 return dev; 840 841 return NULL; 842 } 843 EXPORT_SYMBOL(dev_get_by_index_rcu); 844 845 846 /** 847 * dev_get_by_index - find a device by its ifindex 848 * @net: the applicable net namespace 849 * @ifindex: index of device 850 * 851 * Search for an interface by index. Returns NULL if the device 852 * is not found or a pointer to the device. The device returned has 853 * had a reference added and the pointer is safe until the user calls 854 * dev_put to indicate they have finished with it. 855 */ 856 857 struct net_device *dev_get_by_index(struct net *net, int ifindex) 858 { 859 struct net_device *dev; 860 861 rcu_read_lock(); 862 dev = dev_get_by_index_rcu(net, ifindex); 863 if (dev) 864 dev_hold(dev); 865 rcu_read_unlock(); 866 return dev; 867 } 868 EXPORT_SYMBOL(dev_get_by_index); 869 870 /** 871 * dev_get_by_napi_id - find a device by napi_id 872 * @napi_id: ID of the NAPI struct 873 * 874 * Search for an interface by NAPI ID. Returns %NULL if the device 875 * is not found or a pointer to the device. The device has not had 876 * its reference counter increased so the caller must be careful 877 * about locking. The caller must hold RCU lock. 878 */ 879 880 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 881 { 882 struct napi_struct *napi; 883 884 WARN_ON_ONCE(!rcu_read_lock_held()); 885 886 if (napi_id < MIN_NAPI_ID) 887 return NULL; 888 889 napi = napi_by_id(napi_id); 890 891 return napi ? napi->dev : NULL; 892 } 893 EXPORT_SYMBOL(dev_get_by_napi_id); 894 895 /** 896 * netdev_get_name - get a netdevice name, knowing its ifindex. 897 * @net: network namespace 898 * @name: a pointer to the buffer where the name will be stored. 899 * @ifindex: the ifindex of the interface to get the name from. 900 * 901 * The use of raw_seqcount_begin() and cond_resched() before 902 * retrying is required as we want to give the writers a chance 903 * to complete when CONFIG_PREEMPT is not set. 904 */ 905 int netdev_get_name(struct net *net, char *name, int ifindex) 906 { 907 struct net_device *dev; 908 unsigned int seq; 909 910 retry: 911 seq = raw_seqcount_begin(&devnet_rename_seq); 912 rcu_read_lock(); 913 dev = dev_get_by_index_rcu(net, ifindex); 914 if (!dev) { 915 rcu_read_unlock(); 916 return -ENODEV; 917 } 918 919 strcpy(name, dev->name); 920 rcu_read_unlock(); 921 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 922 cond_resched(); 923 goto retry; 924 } 925 926 return 0; 927 } 928 929 /** 930 * dev_getbyhwaddr_rcu - find a device by its hardware address 931 * @net: the applicable net namespace 932 * @type: media type of device 933 * @ha: hardware address 934 * 935 * Search for an interface by MAC address. Returns NULL if the device 936 * is not found or a pointer to the device. 937 * The caller must hold RCU or RTNL. 938 * The returned device has not had its ref count increased 939 * and the caller must therefore be careful about locking 940 * 941 */ 942 943 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 944 const char *ha) 945 { 946 struct net_device *dev; 947 948 for_each_netdev_rcu(net, dev) 949 if (dev->type == type && 950 !memcmp(dev->dev_addr, ha, dev->addr_len)) 951 return dev; 952 953 return NULL; 954 } 955 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 956 957 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 958 { 959 struct net_device *dev; 960 961 ASSERT_RTNL(); 962 for_each_netdev(net, dev) 963 if (dev->type == type) 964 return dev; 965 966 return NULL; 967 } 968 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 969 970 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 971 { 972 struct net_device *dev, *ret = NULL; 973 974 rcu_read_lock(); 975 for_each_netdev_rcu(net, dev) 976 if (dev->type == type) { 977 dev_hold(dev); 978 ret = dev; 979 break; 980 } 981 rcu_read_unlock(); 982 return ret; 983 } 984 EXPORT_SYMBOL(dev_getfirstbyhwtype); 985 986 /** 987 * __dev_get_by_flags - find any device with given flags 988 * @net: the applicable net namespace 989 * @if_flags: IFF_* values 990 * @mask: bitmask of bits in if_flags to check 991 * 992 * Search for any interface with the given flags. Returns NULL if a device 993 * is not found or a pointer to the device. Must be called inside 994 * rtnl_lock(), and result refcount is unchanged. 995 */ 996 997 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 998 unsigned short mask) 999 { 1000 struct net_device *dev, *ret; 1001 1002 ASSERT_RTNL(); 1003 1004 ret = NULL; 1005 for_each_netdev(net, dev) { 1006 if (((dev->flags ^ if_flags) & mask) == 0) { 1007 ret = dev; 1008 break; 1009 } 1010 } 1011 return ret; 1012 } 1013 EXPORT_SYMBOL(__dev_get_by_flags); 1014 1015 /** 1016 * dev_valid_name - check if name is okay for network device 1017 * @name: name string 1018 * 1019 * Network device names need to be valid file names to 1020 * to allow sysfs to work. We also disallow any kind of 1021 * whitespace. 1022 */ 1023 bool dev_valid_name(const char *name) 1024 { 1025 if (*name == '\0') 1026 return false; 1027 if (strlen(name) >= IFNAMSIZ) 1028 return false; 1029 if (!strcmp(name, ".") || !strcmp(name, "..")) 1030 return false; 1031 1032 while (*name) { 1033 if (*name == '/' || *name == ':' || isspace(*name)) 1034 return false; 1035 name++; 1036 } 1037 return true; 1038 } 1039 EXPORT_SYMBOL(dev_valid_name); 1040 1041 /** 1042 * __dev_alloc_name - allocate a name for a device 1043 * @net: network namespace to allocate the device name in 1044 * @name: name format string 1045 * @buf: scratch buffer and result name string 1046 * 1047 * Passed a format string - eg "lt%d" it will try and find a suitable 1048 * id. It scans list of devices to build up a free map, then chooses 1049 * the first empty slot. The caller must hold the dev_base or rtnl lock 1050 * while allocating the name and adding the device in order to avoid 1051 * duplicates. 1052 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1053 * Returns the number of the unit assigned or a negative errno code. 1054 */ 1055 1056 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1057 { 1058 int i = 0; 1059 const char *p; 1060 const int max_netdevices = 8*PAGE_SIZE; 1061 unsigned long *inuse; 1062 struct net_device *d; 1063 1064 p = strnchr(name, IFNAMSIZ-1, '%'); 1065 if (p) { 1066 /* 1067 * Verify the string as this thing may have come from 1068 * the user. There must be either one "%d" and no other "%" 1069 * characters. 1070 */ 1071 if (p[1] != 'd' || strchr(p + 2, '%')) 1072 return -EINVAL; 1073 1074 /* Use one page as a bit array of possible slots */ 1075 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1076 if (!inuse) 1077 return -ENOMEM; 1078 1079 for_each_netdev(net, d) { 1080 if (!sscanf(d->name, name, &i)) 1081 continue; 1082 if (i < 0 || i >= max_netdevices) 1083 continue; 1084 1085 /* avoid cases where sscanf is not exact inverse of printf */ 1086 snprintf(buf, IFNAMSIZ, name, i); 1087 if (!strncmp(buf, d->name, IFNAMSIZ)) 1088 set_bit(i, inuse); 1089 } 1090 1091 i = find_first_zero_bit(inuse, max_netdevices); 1092 free_page((unsigned long) inuse); 1093 } 1094 1095 if (buf != name) 1096 snprintf(buf, IFNAMSIZ, name, i); 1097 if (!__dev_get_by_name(net, buf)) 1098 return i; 1099 1100 /* It is possible to run out of possible slots 1101 * when the name is long and there isn't enough space left 1102 * for the digits, or if all bits are used. 1103 */ 1104 return -ENFILE; 1105 } 1106 1107 /** 1108 * dev_alloc_name - allocate a name for a device 1109 * @dev: device 1110 * @name: name format string 1111 * 1112 * Passed a format string - eg "lt%d" it will try and find a suitable 1113 * id. It scans list of devices to build up a free map, then chooses 1114 * the first empty slot. The caller must hold the dev_base or rtnl lock 1115 * while allocating the name and adding the device in order to avoid 1116 * duplicates. 1117 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1118 * Returns the number of the unit assigned or a negative errno code. 1119 */ 1120 1121 int dev_alloc_name(struct net_device *dev, const char *name) 1122 { 1123 char buf[IFNAMSIZ]; 1124 struct net *net; 1125 int ret; 1126 1127 BUG_ON(!dev_net(dev)); 1128 net = dev_net(dev); 1129 ret = __dev_alloc_name(net, name, buf); 1130 if (ret >= 0) 1131 strlcpy(dev->name, buf, IFNAMSIZ); 1132 return ret; 1133 } 1134 EXPORT_SYMBOL(dev_alloc_name); 1135 1136 static int dev_alloc_name_ns(struct net *net, 1137 struct net_device *dev, 1138 const char *name) 1139 { 1140 char buf[IFNAMSIZ]; 1141 int ret; 1142 1143 ret = __dev_alloc_name(net, name, buf); 1144 if (ret >= 0) 1145 strlcpy(dev->name, buf, IFNAMSIZ); 1146 return ret; 1147 } 1148 1149 static int dev_get_valid_name(struct net *net, 1150 struct net_device *dev, 1151 const char *name) 1152 { 1153 BUG_ON(!net); 1154 1155 if (!dev_valid_name(name)) 1156 return -EINVAL; 1157 1158 if (strchr(name, '%')) 1159 return dev_alloc_name_ns(net, dev, name); 1160 else if (__dev_get_by_name(net, name)) 1161 return -EEXIST; 1162 else if (dev->name != name) 1163 strlcpy(dev->name, name, IFNAMSIZ); 1164 1165 return 0; 1166 } 1167 1168 /** 1169 * dev_change_name - change name of a device 1170 * @dev: device 1171 * @newname: name (or format string) must be at least IFNAMSIZ 1172 * 1173 * Change name of a device, can pass format strings "eth%d". 1174 * for wildcarding. 1175 */ 1176 int dev_change_name(struct net_device *dev, const char *newname) 1177 { 1178 unsigned char old_assign_type; 1179 char oldname[IFNAMSIZ]; 1180 int err = 0; 1181 int ret; 1182 struct net *net; 1183 1184 ASSERT_RTNL(); 1185 BUG_ON(!dev_net(dev)); 1186 1187 net = dev_net(dev); 1188 if (dev->flags & IFF_UP) 1189 return -EBUSY; 1190 1191 write_seqcount_begin(&devnet_rename_seq); 1192 1193 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1194 write_seqcount_end(&devnet_rename_seq); 1195 return 0; 1196 } 1197 1198 memcpy(oldname, dev->name, IFNAMSIZ); 1199 1200 err = dev_get_valid_name(net, dev, newname); 1201 if (err < 0) { 1202 write_seqcount_end(&devnet_rename_seq); 1203 return err; 1204 } 1205 1206 if (oldname[0] && !strchr(oldname, '%')) 1207 netdev_info(dev, "renamed from %s\n", oldname); 1208 1209 old_assign_type = dev->name_assign_type; 1210 dev->name_assign_type = NET_NAME_RENAMED; 1211 1212 rollback: 1213 ret = device_rename(&dev->dev, dev->name); 1214 if (ret) { 1215 memcpy(dev->name, oldname, IFNAMSIZ); 1216 dev->name_assign_type = old_assign_type; 1217 write_seqcount_end(&devnet_rename_seq); 1218 return ret; 1219 } 1220 1221 write_seqcount_end(&devnet_rename_seq); 1222 1223 netdev_adjacent_rename_links(dev, oldname); 1224 1225 write_lock_bh(&dev_base_lock); 1226 hlist_del_rcu(&dev->name_hlist); 1227 write_unlock_bh(&dev_base_lock); 1228 1229 synchronize_rcu(); 1230 1231 write_lock_bh(&dev_base_lock); 1232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1233 write_unlock_bh(&dev_base_lock); 1234 1235 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1236 ret = notifier_to_errno(ret); 1237 1238 if (ret) { 1239 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1240 if (err >= 0) { 1241 err = ret; 1242 write_seqcount_begin(&devnet_rename_seq); 1243 memcpy(dev->name, oldname, IFNAMSIZ); 1244 memcpy(oldname, newname, IFNAMSIZ); 1245 dev->name_assign_type = old_assign_type; 1246 old_assign_type = NET_NAME_RENAMED; 1247 goto rollback; 1248 } else { 1249 pr_err("%s: name change rollback failed: %d\n", 1250 dev->name, ret); 1251 } 1252 } 1253 1254 return err; 1255 } 1256 1257 /** 1258 * dev_set_alias - change ifalias of a device 1259 * @dev: device 1260 * @alias: name up to IFALIASZ 1261 * @len: limit of bytes to copy from info 1262 * 1263 * Set ifalias for a device, 1264 */ 1265 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1266 { 1267 char *new_ifalias; 1268 1269 ASSERT_RTNL(); 1270 1271 if (len >= IFALIASZ) 1272 return -EINVAL; 1273 1274 if (!len) { 1275 kfree(dev->ifalias); 1276 dev->ifalias = NULL; 1277 return 0; 1278 } 1279 1280 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1281 if (!new_ifalias) 1282 return -ENOMEM; 1283 dev->ifalias = new_ifalias; 1284 memcpy(dev->ifalias, alias, len); 1285 dev->ifalias[len] = 0; 1286 1287 return len; 1288 } 1289 1290 1291 /** 1292 * netdev_features_change - device changes features 1293 * @dev: device to cause notification 1294 * 1295 * Called to indicate a device has changed features. 1296 */ 1297 void netdev_features_change(struct net_device *dev) 1298 { 1299 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1300 } 1301 EXPORT_SYMBOL(netdev_features_change); 1302 1303 /** 1304 * netdev_state_change - device changes state 1305 * @dev: device to cause notification 1306 * 1307 * Called to indicate a device has changed state. This function calls 1308 * the notifier chains for netdev_chain and sends a NEWLINK message 1309 * to the routing socket. 1310 */ 1311 void netdev_state_change(struct net_device *dev) 1312 { 1313 if (dev->flags & IFF_UP) { 1314 struct netdev_notifier_change_info change_info; 1315 1316 change_info.flags_changed = 0; 1317 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1318 &change_info.info); 1319 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1320 } 1321 } 1322 EXPORT_SYMBOL(netdev_state_change); 1323 1324 /** 1325 * netdev_notify_peers - notify network peers about existence of @dev 1326 * @dev: network device 1327 * 1328 * Generate traffic such that interested network peers are aware of 1329 * @dev, such as by generating a gratuitous ARP. This may be used when 1330 * a device wants to inform the rest of the network about some sort of 1331 * reconfiguration such as a failover event or virtual machine 1332 * migration. 1333 */ 1334 void netdev_notify_peers(struct net_device *dev) 1335 { 1336 rtnl_lock(); 1337 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1338 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1339 rtnl_unlock(); 1340 } 1341 EXPORT_SYMBOL(netdev_notify_peers); 1342 1343 static int __dev_open(struct net_device *dev) 1344 { 1345 const struct net_device_ops *ops = dev->netdev_ops; 1346 int ret; 1347 1348 ASSERT_RTNL(); 1349 1350 if (!netif_device_present(dev)) 1351 return -ENODEV; 1352 1353 /* Block netpoll from trying to do any rx path servicing. 1354 * If we don't do this there is a chance ndo_poll_controller 1355 * or ndo_poll may be running while we open the device 1356 */ 1357 netpoll_poll_disable(dev); 1358 1359 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1360 ret = notifier_to_errno(ret); 1361 if (ret) 1362 return ret; 1363 1364 set_bit(__LINK_STATE_START, &dev->state); 1365 1366 if (ops->ndo_validate_addr) 1367 ret = ops->ndo_validate_addr(dev); 1368 1369 if (!ret && ops->ndo_open) 1370 ret = ops->ndo_open(dev); 1371 1372 netpoll_poll_enable(dev); 1373 1374 if (ret) 1375 clear_bit(__LINK_STATE_START, &dev->state); 1376 else { 1377 dev->flags |= IFF_UP; 1378 dev_set_rx_mode(dev); 1379 dev_activate(dev); 1380 add_device_randomness(dev->dev_addr, dev->addr_len); 1381 } 1382 1383 return ret; 1384 } 1385 1386 /** 1387 * dev_open - prepare an interface for use. 1388 * @dev: device to open 1389 * 1390 * Takes a device from down to up state. The device's private open 1391 * function is invoked and then the multicast lists are loaded. Finally 1392 * the device is moved into the up state and a %NETDEV_UP message is 1393 * sent to the netdev notifier chain. 1394 * 1395 * Calling this function on an active interface is a nop. On a failure 1396 * a negative errno code is returned. 1397 */ 1398 int dev_open(struct net_device *dev) 1399 { 1400 int ret; 1401 1402 if (dev->flags & IFF_UP) 1403 return 0; 1404 1405 ret = __dev_open(dev); 1406 if (ret < 0) 1407 return ret; 1408 1409 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1410 call_netdevice_notifiers(NETDEV_UP, dev); 1411 1412 return ret; 1413 } 1414 EXPORT_SYMBOL(dev_open); 1415 1416 static int __dev_close_many(struct list_head *head) 1417 { 1418 struct net_device *dev; 1419 1420 ASSERT_RTNL(); 1421 might_sleep(); 1422 1423 list_for_each_entry(dev, head, close_list) { 1424 /* Temporarily disable netpoll until the interface is down */ 1425 netpoll_poll_disable(dev); 1426 1427 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1428 1429 clear_bit(__LINK_STATE_START, &dev->state); 1430 1431 /* Synchronize to scheduled poll. We cannot touch poll list, it 1432 * can be even on different cpu. So just clear netif_running(). 1433 * 1434 * dev->stop() will invoke napi_disable() on all of it's 1435 * napi_struct instances on this device. 1436 */ 1437 smp_mb__after_atomic(); /* Commit netif_running(). */ 1438 } 1439 1440 dev_deactivate_many(head); 1441 1442 list_for_each_entry(dev, head, close_list) { 1443 const struct net_device_ops *ops = dev->netdev_ops; 1444 1445 /* 1446 * Call the device specific close. This cannot fail. 1447 * Only if device is UP 1448 * 1449 * We allow it to be called even after a DETACH hot-plug 1450 * event. 1451 */ 1452 if (ops->ndo_stop) 1453 ops->ndo_stop(dev); 1454 1455 dev->flags &= ~IFF_UP; 1456 netpoll_poll_enable(dev); 1457 } 1458 1459 return 0; 1460 } 1461 1462 static int __dev_close(struct net_device *dev) 1463 { 1464 int retval; 1465 LIST_HEAD(single); 1466 1467 list_add(&dev->close_list, &single); 1468 retval = __dev_close_many(&single); 1469 list_del(&single); 1470 1471 return retval; 1472 } 1473 1474 int dev_close_many(struct list_head *head, bool unlink) 1475 { 1476 struct net_device *dev, *tmp; 1477 1478 /* Remove the devices that don't need to be closed */ 1479 list_for_each_entry_safe(dev, tmp, head, close_list) 1480 if (!(dev->flags & IFF_UP)) 1481 list_del_init(&dev->close_list); 1482 1483 __dev_close_many(head); 1484 1485 list_for_each_entry_safe(dev, tmp, head, close_list) { 1486 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1487 call_netdevice_notifiers(NETDEV_DOWN, dev); 1488 if (unlink) 1489 list_del_init(&dev->close_list); 1490 } 1491 1492 return 0; 1493 } 1494 EXPORT_SYMBOL(dev_close_many); 1495 1496 /** 1497 * dev_close - shutdown an interface. 1498 * @dev: device to shutdown 1499 * 1500 * This function moves an active device into down state. A 1501 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1502 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1503 * chain. 1504 */ 1505 int dev_close(struct net_device *dev) 1506 { 1507 if (dev->flags & IFF_UP) { 1508 LIST_HEAD(single); 1509 1510 list_add(&dev->close_list, &single); 1511 dev_close_many(&single, true); 1512 list_del(&single); 1513 } 1514 return 0; 1515 } 1516 EXPORT_SYMBOL(dev_close); 1517 1518 1519 /** 1520 * dev_disable_lro - disable Large Receive Offload on a device 1521 * @dev: device 1522 * 1523 * Disable Large Receive Offload (LRO) on a net device. Must be 1524 * called under RTNL. This is needed if received packets may be 1525 * forwarded to another interface. 1526 */ 1527 void dev_disable_lro(struct net_device *dev) 1528 { 1529 struct net_device *lower_dev; 1530 struct list_head *iter; 1531 1532 dev->wanted_features &= ~NETIF_F_LRO; 1533 netdev_update_features(dev); 1534 1535 if (unlikely(dev->features & NETIF_F_LRO)) 1536 netdev_WARN(dev, "failed to disable LRO!\n"); 1537 1538 netdev_for_each_lower_dev(dev, lower_dev, iter) 1539 dev_disable_lro(lower_dev); 1540 } 1541 EXPORT_SYMBOL(dev_disable_lro); 1542 1543 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1544 struct net_device *dev) 1545 { 1546 struct netdev_notifier_info info; 1547 1548 netdev_notifier_info_init(&info, dev); 1549 return nb->notifier_call(nb, val, &info); 1550 } 1551 1552 static int dev_boot_phase = 1; 1553 1554 /** 1555 * register_netdevice_notifier - register a network notifier block 1556 * @nb: notifier 1557 * 1558 * Register a notifier to be called when network device events occur. 1559 * The notifier passed is linked into the kernel structures and must 1560 * not be reused until it has been unregistered. A negative errno code 1561 * is returned on a failure. 1562 * 1563 * When registered all registration and up events are replayed 1564 * to the new notifier to allow device to have a race free 1565 * view of the network device list. 1566 */ 1567 1568 int register_netdevice_notifier(struct notifier_block *nb) 1569 { 1570 struct net_device *dev; 1571 struct net_device *last; 1572 struct net *net; 1573 int err; 1574 1575 rtnl_lock(); 1576 err = raw_notifier_chain_register(&netdev_chain, nb); 1577 if (err) 1578 goto unlock; 1579 if (dev_boot_phase) 1580 goto unlock; 1581 for_each_net(net) { 1582 for_each_netdev(net, dev) { 1583 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1584 err = notifier_to_errno(err); 1585 if (err) 1586 goto rollback; 1587 1588 if (!(dev->flags & IFF_UP)) 1589 continue; 1590 1591 call_netdevice_notifier(nb, NETDEV_UP, dev); 1592 } 1593 } 1594 1595 unlock: 1596 rtnl_unlock(); 1597 return err; 1598 1599 rollback: 1600 last = dev; 1601 for_each_net(net) { 1602 for_each_netdev(net, dev) { 1603 if (dev == last) 1604 goto outroll; 1605 1606 if (dev->flags & IFF_UP) { 1607 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1608 dev); 1609 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1610 } 1611 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1612 } 1613 } 1614 1615 outroll: 1616 raw_notifier_chain_unregister(&netdev_chain, nb); 1617 goto unlock; 1618 } 1619 EXPORT_SYMBOL(register_netdevice_notifier); 1620 1621 /** 1622 * unregister_netdevice_notifier - unregister a network notifier block 1623 * @nb: notifier 1624 * 1625 * Unregister a notifier previously registered by 1626 * register_netdevice_notifier(). The notifier is unlinked into the 1627 * kernel structures and may then be reused. A negative errno code 1628 * is returned on a failure. 1629 * 1630 * After unregistering unregister and down device events are synthesized 1631 * for all devices on the device list to the removed notifier to remove 1632 * the need for special case cleanup code. 1633 */ 1634 1635 int unregister_netdevice_notifier(struct notifier_block *nb) 1636 { 1637 struct net_device *dev; 1638 struct net *net; 1639 int err; 1640 1641 rtnl_lock(); 1642 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1643 if (err) 1644 goto unlock; 1645 1646 for_each_net(net) { 1647 for_each_netdev(net, dev) { 1648 if (dev->flags & IFF_UP) { 1649 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1650 dev); 1651 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1652 } 1653 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1654 } 1655 } 1656 unlock: 1657 rtnl_unlock(); 1658 return err; 1659 } 1660 EXPORT_SYMBOL(unregister_netdevice_notifier); 1661 1662 /** 1663 * call_netdevice_notifiers_info - call all network notifier blocks 1664 * @val: value passed unmodified to notifier function 1665 * @dev: net_device pointer passed unmodified to notifier function 1666 * @info: notifier information data 1667 * 1668 * Call all network notifier blocks. Parameters and return value 1669 * are as for raw_notifier_call_chain(). 1670 */ 1671 1672 static int call_netdevice_notifiers_info(unsigned long val, 1673 struct net_device *dev, 1674 struct netdev_notifier_info *info) 1675 { 1676 ASSERT_RTNL(); 1677 netdev_notifier_info_init(info, dev); 1678 return raw_notifier_call_chain(&netdev_chain, val, info); 1679 } 1680 1681 /** 1682 * call_netdevice_notifiers - call all network notifier blocks 1683 * @val: value passed unmodified to notifier function 1684 * @dev: net_device pointer passed unmodified to notifier function 1685 * 1686 * Call all network notifier blocks. Parameters and return value 1687 * are as for raw_notifier_call_chain(). 1688 */ 1689 1690 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1691 { 1692 struct netdev_notifier_info info; 1693 1694 return call_netdevice_notifiers_info(val, dev, &info); 1695 } 1696 EXPORT_SYMBOL(call_netdevice_notifiers); 1697 1698 #ifdef CONFIG_NET_INGRESS 1699 static struct static_key ingress_needed __read_mostly; 1700 1701 void net_inc_ingress_queue(void) 1702 { 1703 static_key_slow_inc(&ingress_needed); 1704 } 1705 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1706 1707 void net_dec_ingress_queue(void) 1708 { 1709 static_key_slow_dec(&ingress_needed); 1710 } 1711 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1712 #endif 1713 1714 #ifdef CONFIG_NET_EGRESS 1715 static struct static_key egress_needed __read_mostly; 1716 1717 void net_inc_egress_queue(void) 1718 { 1719 static_key_slow_inc(&egress_needed); 1720 } 1721 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1722 1723 void net_dec_egress_queue(void) 1724 { 1725 static_key_slow_dec(&egress_needed); 1726 } 1727 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1728 #endif 1729 1730 static struct static_key netstamp_needed __read_mostly; 1731 #ifdef HAVE_JUMP_LABEL 1732 static atomic_t netstamp_needed_deferred; 1733 static atomic_t netstamp_wanted; 1734 static void netstamp_clear(struct work_struct *work) 1735 { 1736 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1737 int wanted; 1738 1739 wanted = atomic_add_return(deferred, &netstamp_wanted); 1740 if (wanted > 0) 1741 static_key_enable(&netstamp_needed); 1742 else 1743 static_key_disable(&netstamp_needed); 1744 } 1745 static DECLARE_WORK(netstamp_work, netstamp_clear); 1746 #endif 1747 1748 void net_enable_timestamp(void) 1749 { 1750 #ifdef HAVE_JUMP_LABEL 1751 int wanted; 1752 1753 while (1) { 1754 wanted = atomic_read(&netstamp_wanted); 1755 if (wanted <= 0) 1756 break; 1757 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1758 return; 1759 } 1760 atomic_inc(&netstamp_needed_deferred); 1761 schedule_work(&netstamp_work); 1762 #else 1763 static_key_slow_inc(&netstamp_needed); 1764 #endif 1765 } 1766 EXPORT_SYMBOL(net_enable_timestamp); 1767 1768 void net_disable_timestamp(void) 1769 { 1770 #ifdef HAVE_JUMP_LABEL 1771 int wanted; 1772 1773 while (1) { 1774 wanted = atomic_read(&netstamp_wanted); 1775 if (wanted <= 1) 1776 break; 1777 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1778 return; 1779 } 1780 atomic_dec(&netstamp_needed_deferred); 1781 schedule_work(&netstamp_work); 1782 #else 1783 static_key_slow_dec(&netstamp_needed); 1784 #endif 1785 } 1786 EXPORT_SYMBOL(net_disable_timestamp); 1787 1788 static inline void net_timestamp_set(struct sk_buff *skb) 1789 { 1790 skb->tstamp = 0; 1791 if (static_key_false(&netstamp_needed)) 1792 __net_timestamp(skb); 1793 } 1794 1795 #define net_timestamp_check(COND, SKB) \ 1796 if (static_key_false(&netstamp_needed)) { \ 1797 if ((COND) && !(SKB)->tstamp) \ 1798 __net_timestamp(SKB); \ 1799 } \ 1800 1801 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1802 { 1803 unsigned int len; 1804 1805 if (!(dev->flags & IFF_UP)) 1806 return false; 1807 1808 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1809 if (skb->len <= len) 1810 return true; 1811 1812 /* if TSO is enabled, we don't care about the length as the packet 1813 * could be forwarded without being segmented before 1814 */ 1815 if (skb_is_gso(skb)) 1816 return true; 1817 1818 return false; 1819 } 1820 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1821 1822 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1823 { 1824 int ret = ____dev_forward_skb(dev, skb); 1825 1826 if (likely(!ret)) { 1827 skb->protocol = eth_type_trans(skb, dev); 1828 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1829 } 1830 1831 return ret; 1832 } 1833 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1834 1835 /** 1836 * dev_forward_skb - loopback an skb to another netif 1837 * 1838 * @dev: destination network device 1839 * @skb: buffer to forward 1840 * 1841 * return values: 1842 * NET_RX_SUCCESS (no congestion) 1843 * NET_RX_DROP (packet was dropped, but freed) 1844 * 1845 * dev_forward_skb can be used for injecting an skb from the 1846 * start_xmit function of one device into the receive queue 1847 * of another device. 1848 * 1849 * The receiving device may be in another namespace, so 1850 * we have to clear all information in the skb that could 1851 * impact namespace isolation. 1852 */ 1853 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1854 { 1855 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1856 } 1857 EXPORT_SYMBOL_GPL(dev_forward_skb); 1858 1859 static inline int deliver_skb(struct sk_buff *skb, 1860 struct packet_type *pt_prev, 1861 struct net_device *orig_dev) 1862 { 1863 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1864 return -ENOMEM; 1865 atomic_inc(&skb->users); 1866 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1867 } 1868 1869 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1870 struct packet_type **pt, 1871 struct net_device *orig_dev, 1872 __be16 type, 1873 struct list_head *ptype_list) 1874 { 1875 struct packet_type *ptype, *pt_prev = *pt; 1876 1877 list_for_each_entry_rcu(ptype, ptype_list, list) { 1878 if (ptype->type != type) 1879 continue; 1880 if (pt_prev) 1881 deliver_skb(skb, pt_prev, orig_dev); 1882 pt_prev = ptype; 1883 } 1884 *pt = pt_prev; 1885 } 1886 1887 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1888 { 1889 if (!ptype->af_packet_priv || !skb->sk) 1890 return false; 1891 1892 if (ptype->id_match) 1893 return ptype->id_match(ptype, skb->sk); 1894 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1895 return true; 1896 1897 return false; 1898 } 1899 1900 /* 1901 * Support routine. Sends outgoing frames to any network 1902 * taps currently in use. 1903 */ 1904 1905 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1906 { 1907 struct packet_type *ptype; 1908 struct sk_buff *skb2 = NULL; 1909 struct packet_type *pt_prev = NULL; 1910 struct list_head *ptype_list = &ptype_all; 1911 1912 rcu_read_lock(); 1913 again: 1914 list_for_each_entry_rcu(ptype, ptype_list, list) { 1915 /* Never send packets back to the socket 1916 * they originated from - MvS (miquels@drinkel.ow.org) 1917 */ 1918 if (skb_loop_sk(ptype, skb)) 1919 continue; 1920 1921 if (pt_prev) { 1922 deliver_skb(skb2, pt_prev, skb->dev); 1923 pt_prev = ptype; 1924 continue; 1925 } 1926 1927 /* need to clone skb, done only once */ 1928 skb2 = skb_clone(skb, GFP_ATOMIC); 1929 if (!skb2) 1930 goto out_unlock; 1931 1932 net_timestamp_set(skb2); 1933 1934 /* skb->nh should be correctly 1935 * set by sender, so that the second statement is 1936 * just protection against buggy protocols. 1937 */ 1938 skb_reset_mac_header(skb2); 1939 1940 if (skb_network_header(skb2) < skb2->data || 1941 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1942 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1943 ntohs(skb2->protocol), 1944 dev->name); 1945 skb_reset_network_header(skb2); 1946 } 1947 1948 skb2->transport_header = skb2->network_header; 1949 skb2->pkt_type = PACKET_OUTGOING; 1950 pt_prev = ptype; 1951 } 1952 1953 if (ptype_list == &ptype_all) { 1954 ptype_list = &dev->ptype_all; 1955 goto again; 1956 } 1957 out_unlock: 1958 if (pt_prev) 1959 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1960 rcu_read_unlock(); 1961 } 1962 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1963 1964 /** 1965 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1966 * @dev: Network device 1967 * @txq: number of queues available 1968 * 1969 * If real_num_tx_queues is changed the tc mappings may no longer be 1970 * valid. To resolve this verify the tc mapping remains valid and if 1971 * not NULL the mapping. With no priorities mapping to this 1972 * offset/count pair it will no longer be used. In the worst case TC0 1973 * is invalid nothing can be done so disable priority mappings. If is 1974 * expected that drivers will fix this mapping if they can before 1975 * calling netif_set_real_num_tx_queues. 1976 */ 1977 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1978 { 1979 int i; 1980 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1981 1982 /* If TC0 is invalidated disable TC mapping */ 1983 if (tc->offset + tc->count > txq) { 1984 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1985 dev->num_tc = 0; 1986 return; 1987 } 1988 1989 /* Invalidated prio to tc mappings set to TC0 */ 1990 for (i = 1; i < TC_BITMASK + 1; i++) { 1991 int q = netdev_get_prio_tc_map(dev, i); 1992 1993 tc = &dev->tc_to_txq[q]; 1994 if (tc->offset + tc->count > txq) { 1995 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1996 i, q); 1997 netdev_set_prio_tc_map(dev, i, 0); 1998 } 1999 } 2000 } 2001 2002 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2003 { 2004 if (dev->num_tc) { 2005 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2006 int i; 2007 2008 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2009 if ((txq - tc->offset) < tc->count) 2010 return i; 2011 } 2012 2013 return -1; 2014 } 2015 2016 return 0; 2017 } 2018 2019 #ifdef CONFIG_XPS 2020 static DEFINE_MUTEX(xps_map_mutex); 2021 #define xmap_dereference(P) \ 2022 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2023 2024 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2025 int tci, u16 index) 2026 { 2027 struct xps_map *map = NULL; 2028 int pos; 2029 2030 if (dev_maps) 2031 map = xmap_dereference(dev_maps->cpu_map[tci]); 2032 if (!map) 2033 return false; 2034 2035 for (pos = map->len; pos--;) { 2036 if (map->queues[pos] != index) 2037 continue; 2038 2039 if (map->len > 1) { 2040 map->queues[pos] = map->queues[--map->len]; 2041 break; 2042 } 2043 2044 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2045 kfree_rcu(map, rcu); 2046 return false; 2047 } 2048 2049 return true; 2050 } 2051 2052 static bool remove_xps_queue_cpu(struct net_device *dev, 2053 struct xps_dev_maps *dev_maps, 2054 int cpu, u16 offset, u16 count) 2055 { 2056 int num_tc = dev->num_tc ? : 1; 2057 bool active = false; 2058 int tci; 2059 2060 for (tci = cpu * num_tc; num_tc--; tci++) { 2061 int i, j; 2062 2063 for (i = count, j = offset; i--; j++) { 2064 if (!remove_xps_queue(dev_maps, cpu, j)) 2065 break; 2066 } 2067 2068 active |= i < 0; 2069 } 2070 2071 return active; 2072 } 2073 2074 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2075 u16 count) 2076 { 2077 struct xps_dev_maps *dev_maps; 2078 int cpu, i; 2079 bool active = false; 2080 2081 mutex_lock(&xps_map_mutex); 2082 dev_maps = xmap_dereference(dev->xps_maps); 2083 2084 if (!dev_maps) 2085 goto out_no_maps; 2086 2087 for_each_possible_cpu(cpu) 2088 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2089 offset, count); 2090 2091 if (!active) { 2092 RCU_INIT_POINTER(dev->xps_maps, NULL); 2093 kfree_rcu(dev_maps, rcu); 2094 } 2095 2096 for (i = offset + (count - 1); count--; i--) 2097 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2098 NUMA_NO_NODE); 2099 2100 out_no_maps: 2101 mutex_unlock(&xps_map_mutex); 2102 } 2103 2104 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2105 { 2106 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2107 } 2108 2109 static struct xps_map *expand_xps_map(struct xps_map *map, 2110 int cpu, u16 index) 2111 { 2112 struct xps_map *new_map; 2113 int alloc_len = XPS_MIN_MAP_ALLOC; 2114 int i, pos; 2115 2116 for (pos = 0; map && pos < map->len; pos++) { 2117 if (map->queues[pos] != index) 2118 continue; 2119 return map; 2120 } 2121 2122 /* Need to add queue to this CPU's existing map */ 2123 if (map) { 2124 if (pos < map->alloc_len) 2125 return map; 2126 2127 alloc_len = map->alloc_len * 2; 2128 } 2129 2130 /* Need to allocate new map to store queue on this CPU's map */ 2131 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2132 cpu_to_node(cpu)); 2133 if (!new_map) 2134 return NULL; 2135 2136 for (i = 0; i < pos; i++) 2137 new_map->queues[i] = map->queues[i]; 2138 new_map->alloc_len = alloc_len; 2139 new_map->len = pos; 2140 2141 return new_map; 2142 } 2143 2144 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2145 u16 index) 2146 { 2147 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2148 int i, cpu, tci, numa_node_id = -2; 2149 int maps_sz, num_tc = 1, tc = 0; 2150 struct xps_map *map, *new_map; 2151 bool active = false; 2152 2153 if (dev->num_tc) { 2154 num_tc = dev->num_tc; 2155 tc = netdev_txq_to_tc(dev, index); 2156 if (tc < 0) 2157 return -EINVAL; 2158 } 2159 2160 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2161 if (maps_sz < L1_CACHE_BYTES) 2162 maps_sz = L1_CACHE_BYTES; 2163 2164 mutex_lock(&xps_map_mutex); 2165 2166 dev_maps = xmap_dereference(dev->xps_maps); 2167 2168 /* allocate memory for queue storage */ 2169 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2170 if (!new_dev_maps) 2171 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2172 if (!new_dev_maps) { 2173 mutex_unlock(&xps_map_mutex); 2174 return -ENOMEM; 2175 } 2176 2177 tci = cpu * num_tc + tc; 2178 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2179 NULL; 2180 2181 map = expand_xps_map(map, cpu, index); 2182 if (!map) 2183 goto error; 2184 2185 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2186 } 2187 2188 if (!new_dev_maps) 2189 goto out_no_new_maps; 2190 2191 for_each_possible_cpu(cpu) { 2192 /* copy maps belonging to foreign traffic classes */ 2193 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2194 /* fill in the new device map from the old device map */ 2195 map = xmap_dereference(dev_maps->cpu_map[tci]); 2196 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2197 } 2198 2199 /* We need to explicitly update tci as prevous loop 2200 * could break out early if dev_maps is NULL. 2201 */ 2202 tci = cpu * num_tc + tc; 2203 2204 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2205 /* add queue to CPU maps */ 2206 int pos = 0; 2207 2208 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2209 while ((pos < map->len) && (map->queues[pos] != index)) 2210 pos++; 2211 2212 if (pos == map->len) 2213 map->queues[map->len++] = index; 2214 #ifdef CONFIG_NUMA 2215 if (numa_node_id == -2) 2216 numa_node_id = cpu_to_node(cpu); 2217 else if (numa_node_id != cpu_to_node(cpu)) 2218 numa_node_id = -1; 2219 #endif 2220 } else if (dev_maps) { 2221 /* fill in the new device map from the old device map */ 2222 map = xmap_dereference(dev_maps->cpu_map[tci]); 2223 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2224 } 2225 2226 /* copy maps belonging to foreign traffic classes */ 2227 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2228 /* fill in the new device map from the old device map */ 2229 map = xmap_dereference(dev_maps->cpu_map[tci]); 2230 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2231 } 2232 } 2233 2234 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2235 2236 /* Cleanup old maps */ 2237 if (!dev_maps) 2238 goto out_no_old_maps; 2239 2240 for_each_possible_cpu(cpu) { 2241 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2242 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2243 map = xmap_dereference(dev_maps->cpu_map[tci]); 2244 if (map && map != new_map) 2245 kfree_rcu(map, rcu); 2246 } 2247 } 2248 2249 kfree_rcu(dev_maps, rcu); 2250 2251 out_no_old_maps: 2252 dev_maps = new_dev_maps; 2253 active = true; 2254 2255 out_no_new_maps: 2256 /* update Tx queue numa node */ 2257 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2258 (numa_node_id >= 0) ? numa_node_id : 2259 NUMA_NO_NODE); 2260 2261 if (!dev_maps) 2262 goto out_no_maps; 2263 2264 /* removes queue from unused CPUs */ 2265 for_each_possible_cpu(cpu) { 2266 for (i = tc, tci = cpu * num_tc; i--; tci++) 2267 active |= remove_xps_queue(dev_maps, tci, index); 2268 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2269 active |= remove_xps_queue(dev_maps, tci, index); 2270 for (i = num_tc - tc, tci++; --i; tci++) 2271 active |= remove_xps_queue(dev_maps, tci, index); 2272 } 2273 2274 /* free map if not active */ 2275 if (!active) { 2276 RCU_INIT_POINTER(dev->xps_maps, NULL); 2277 kfree_rcu(dev_maps, rcu); 2278 } 2279 2280 out_no_maps: 2281 mutex_unlock(&xps_map_mutex); 2282 2283 return 0; 2284 error: 2285 /* remove any maps that we added */ 2286 for_each_possible_cpu(cpu) { 2287 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2288 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2289 map = dev_maps ? 2290 xmap_dereference(dev_maps->cpu_map[tci]) : 2291 NULL; 2292 if (new_map && new_map != map) 2293 kfree(new_map); 2294 } 2295 } 2296 2297 mutex_unlock(&xps_map_mutex); 2298 2299 kfree(new_dev_maps); 2300 return -ENOMEM; 2301 } 2302 EXPORT_SYMBOL(netif_set_xps_queue); 2303 2304 #endif 2305 void netdev_reset_tc(struct net_device *dev) 2306 { 2307 #ifdef CONFIG_XPS 2308 netif_reset_xps_queues_gt(dev, 0); 2309 #endif 2310 dev->num_tc = 0; 2311 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2312 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2313 } 2314 EXPORT_SYMBOL(netdev_reset_tc); 2315 2316 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2317 { 2318 if (tc >= dev->num_tc) 2319 return -EINVAL; 2320 2321 #ifdef CONFIG_XPS 2322 netif_reset_xps_queues(dev, offset, count); 2323 #endif 2324 dev->tc_to_txq[tc].count = count; 2325 dev->tc_to_txq[tc].offset = offset; 2326 return 0; 2327 } 2328 EXPORT_SYMBOL(netdev_set_tc_queue); 2329 2330 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2331 { 2332 if (num_tc > TC_MAX_QUEUE) 2333 return -EINVAL; 2334 2335 #ifdef CONFIG_XPS 2336 netif_reset_xps_queues_gt(dev, 0); 2337 #endif 2338 dev->num_tc = num_tc; 2339 return 0; 2340 } 2341 EXPORT_SYMBOL(netdev_set_num_tc); 2342 2343 /* 2344 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2345 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2346 */ 2347 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2348 { 2349 int rc; 2350 2351 if (txq < 1 || txq > dev->num_tx_queues) 2352 return -EINVAL; 2353 2354 if (dev->reg_state == NETREG_REGISTERED || 2355 dev->reg_state == NETREG_UNREGISTERING) { 2356 ASSERT_RTNL(); 2357 2358 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2359 txq); 2360 if (rc) 2361 return rc; 2362 2363 if (dev->num_tc) 2364 netif_setup_tc(dev, txq); 2365 2366 if (txq < dev->real_num_tx_queues) { 2367 qdisc_reset_all_tx_gt(dev, txq); 2368 #ifdef CONFIG_XPS 2369 netif_reset_xps_queues_gt(dev, txq); 2370 #endif 2371 } 2372 } 2373 2374 dev->real_num_tx_queues = txq; 2375 return 0; 2376 } 2377 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2378 2379 #ifdef CONFIG_SYSFS 2380 /** 2381 * netif_set_real_num_rx_queues - set actual number of RX queues used 2382 * @dev: Network device 2383 * @rxq: Actual number of RX queues 2384 * 2385 * This must be called either with the rtnl_lock held or before 2386 * registration of the net device. Returns 0 on success, or a 2387 * negative error code. If called before registration, it always 2388 * succeeds. 2389 */ 2390 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2391 { 2392 int rc; 2393 2394 if (rxq < 1 || rxq > dev->num_rx_queues) 2395 return -EINVAL; 2396 2397 if (dev->reg_state == NETREG_REGISTERED) { 2398 ASSERT_RTNL(); 2399 2400 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2401 rxq); 2402 if (rc) 2403 return rc; 2404 } 2405 2406 dev->real_num_rx_queues = rxq; 2407 return 0; 2408 } 2409 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2410 #endif 2411 2412 /** 2413 * netif_get_num_default_rss_queues - default number of RSS queues 2414 * 2415 * This routine should set an upper limit on the number of RSS queues 2416 * used by default by multiqueue devices. 2417 */ 2418 int netif_get_num_default_rss_queues(void) 2419 { 2420 return is_kdump_kernel() ? 2421 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2422 } 2423 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2424 2425 static void __netif_reschedule(struct Qdisc *q) 2426 { 2427 struct softnet_data *sd; 2428 unsigned long flags; 2429 2430 local_irq_save(flags); 2431 sd = this_cpu_ptr(&softnet_data); 2432 q->next_sched = NULL; 2433 *sd->output_queue_tailp = q; 2434 sd->output_queue_tailp = &q->next_sched; 2435 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2436 local_irq_restore(flags); 2437 } 2438 2439 void __netif_schedule(struct Qdisc *q) 2440 { 2441 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2442 __netif_reschedule(q); 2443 } 2444 EXPORT_SYMBOL(__netif_schedule); 2445 2446 struct dev_kfree_skb_cb { 2447 enum skb_free_reason reason; 2448 }; 2449 2450 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2451 { 2452 return (struct dev_kfree_skb_cb *)skb->cb; 2453 } 2454 2455 void netif_schedule_queue(struct netdev_queue *txq) 2456 { 2457 rcu_read_lock(); 2458 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2459 struct Qdisc *q = rcu_dereference(txq->qdisc); 2460 2461 __netif_schedule(q); 2462 } 2463 rcu_read_unlock(); 2464 } 2465 EXPORT_SYMBOL(netif_schedule_queue); 2466 2467 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2468 { 2469 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2470 struct Qdisc *q; 2471 2472 rcu_read_lock(); 2473 q = rcu_dereference(dev_queue->qdisc); 2474 __netif_schedule(q); 2475 rcu_read_unlock(); 2476 } 2477 } 2478 EXPORT_SYMBOL(netif_tx_wake_queue); 2479 2480 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2481 { 2482 unsigned long flags; 2483 2484 if (unlikely(!skb)) 2485 return; 2486 2487 if (likely(atomic_read(&skb->users) == 1)) { 2488 smp_rmb(); 2489 atomic_set(&skb->users, 0); 2490 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2491 return; 2492 } 2493 get_kfree_skb_cb(skb)->reason = reason; 2494 local_irq_save(flags); 2495 skb->next = __this_cpu_read(softnet_data.completion_queue); 2496 __this_cpu_write(softnet_data.completion_queue, skb); 2497 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2498 local_irq_restore(flags); 2499 } 2500 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2501 2502 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2503 { 2504 if (in_irq() || irqs_disabled()) 2505 __dev_kfree_skb_irq(skb, reason); 2506 else 2507 dev_kfree_skb(skb); 2508 } 2509 EXPORT_SYMBOL(__dev_kfree_skb_any); 2510 2511 2512 /** 2513 * netif_device_detach - mark device as removed 2514 * @dev: network device 2515 * 2516 * Mark device as removed from system and therefore no longer available. 2517 */ 2518 void netif_device_detach(struct net_device *dev) 2519 { 2520 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2521 netif_running(dev)) { 2522 netif_tx_stop_all_queues(dev); 2523 } 2524 } 2525 EXPORT_SYMBOL(netif_device_detach); 2526 2527 /** 2528 * netif_device_attach - mark device as attached 2529 * @dev: network device 2530 * 2531 * Mark device as attached from system and restart if needed. 2532 */ 2533 void netif_device_attach(struct net_device *dev) 2534 { 2535 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2536 netif_running(dev)) { 2537 netif_tx_wake_all_queues(dev); 2538 __netdev_watchdog_up(dev); 2539 } 2540 } 2541 EXPORT_SYMBOL(netif_device_attach); 2542 2543 /* 2544 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2545 * to be used as a distribution range. 2546 */ 2547 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2548 unsigned int num_tx_queues) 2549 { 2550 u32 hash; 2551 u16 qoffset = 0; 2552 u16 qcount = num_tx_queues; 2553 2554 if (skb_rx_queue_recorded(skb)) { 2555 hash = skb_get_rx_queue(skb); 2556 while (unlikely(hash >= num_tx_queues)) 2557 hash -= num_tx_queues; 2558 return hash; 2559 } 2560 2561 if (dev->num_tc) { 2562 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2563 2564 qoffset = dev->tc_to_txq[tc].offset; 2565 qcount = dev->tc_to_txq[tc].count; 2566 } 2567 2568 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2569 } 2570 EXPORT_SYMBOL(__skb_tx_hash); 2571 2572 static void skb_warn_bad_offload(const struct sk_buff *skb) 2573 { 2574 static const netdev_features_t null_features; 2575 struct net_device *dev = skb->dev; 2576 const char *name = ""; 2577 2578 if (!net_ratelimit()) 2579 return; 2580 2581 if (dev) { 2582 if (dev->dev.parent) 2583 name = dev_driver_string(dev->dev.parent); 2584 else 2585 name = netdev_name(dev); 2586 } 2587 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2588 "gso_type=%d ip_summed=%d\n", 2589 name, dev ? &dev->features : &null_features, 2590 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2591 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2592 skb_shinfo(skb)->gso_type, skb->ip_summed); 2593 } 2594 2595 /* 2596 * Invalidate hardware checksum when packet is to be mangled, and 2597 * complete checksum manually on outgoing path. 2598 */ 2599 int skb_checksum_help(struct sk_buff *skb) 2600 { 2601 __wsum csum; 2602 int ret = 0, offset; 2603 2604 if (skb->ip_summed == CHECKSUM_COMPLETE) 2605 goto out_set_summed; 2606 2607 if (unlikely(skb_shinfo(skb)->gso_size)) { 2608 skb_warn_bad_offload(skb); 2609 return -EINVAL; 2610 } 2611 2612 /* Before computing a checksum, we should make sure no frag could 2613 * be modified by an external entity : checksum could be wrong. 2614 */ 2615 if (skb_has_shared_frag(skb)) { 2616 ret = __skb_linearize(skb); 2617 if (ret) 2618 goto out; 2619 } 2620 2621 offset = skb_checksum_start_offset(skb); 2622 BUG_ON(offset >= skb_headlen(skb)); 2623 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2624 2625 offset += skb->csum_offset; 2626 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2627 2628 if (skb_cloned(skb) && 2629 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2630 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2631 if (ret) 2632 goto out; 2633 } 2634 2635 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2636 out_set_summed: 2637 skb->ip_summed = CHECKSUM_NONE; 2638 out: 2639 return ret; 2640 } 2641 EXPORT_SYMBOL(skb_checksum_help); 2642 2643 int skb_crc32c_csum_help(struct sk_buff *skb) 2644 { 2645 __le32 crc32c_csum; 2646 int ret = 0, offset, start; 2647 2648 if (skb->ip_summed != CHECKSUM_PARTIAL) 2649 goto out; 2650 2651 if (unlikely(skb_is_gso(skb))) 2652 goto out; 2653 2654 /* Before computing a checksum, we should make sure no frag could 2655 * be modified by an external entity : checksum could be wrong. 2656 */ 2657 if (unlikely(skb_has_shared_frag(skb))) { 2658 ret = __skb_linearize(skb); 2659 if (ret) 2660 goto out; 2661 } 2662 start = skb_checksum_start_offset(skb); 2663 offset = start + offsetof(struct sctphdr, checksum); 2664 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2665 ret = -EINVAL; 2666 goto out; 2667 } 2668 if (skb_cloned(skb) && 2669 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2670 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2671 if (ret) 2672 goto out; 2673 } 2674 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2675 skb->len - start, ~(__u32)0, 2676 crc32c_csum_stub)); 2677 *(__le32 *)(skb->data + offset) = crc32c_csum; 2678 skb->ip_summed = CHECKSUM_NONE; 2679 skb->csum_not_inet = 0; 2680 out: 2681 return ret; 2682 } 2683 2684 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2685 { 2686 __be16 type = skb->protocol; 2687 2688 /* Tunnel gso handlers can set protocol to ethernet. */ 2689 if (type == htons(ETH_P_TEB)) { 2690 struct ethhdr *eth; 2691 2692 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2693 return 0; 2694 2695 eth = (struct ethhdr *)skb_mac_header(skb); 2696 type = eth->h_proto; 2697 } 2698 2699 return __vlan_get_protocol(skb, type, depth); 2700 } 2701 2702 /** 2703 * skb_mac_gso_segment - mac layer segmentation handler. 2704 * @skb: buffer to segment 2705 * @features: features for the output path (see dev->features) 2706 */ 2707 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2708 netdev_features_t features) 2709 { 2710 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2711 struct packet_offload *ptype; 2712 int vlan_depth = skb->mac_len; 2713 __be16 type = skb_network_protocol(skb, &vlan_depth); 2714 2715 if (unlikely(!type)) 2716 return ERR_PTR(-EINVAL); 2717 2718 __skb_pull(skb, vlan_depth); 2719 2720 rcu_read_lock(); 2721 list_for_each_entry_rcu(ptype, &offload_base, list) { 2722 if (ptype->type == type && ptype->callbacks.gso_segment) { 2723 segs = ptype->callbacks.gso_segment(skb, features); 2724 break; 2725 } 2726 } 2727 rcu_read_unlock(); 2728 2729 __skb_push(skb, skb->data - skb_mac_header(skb)); 2730 2731 return segs; 2732 } 2733 EXPORT_SYMBOL(skb_mac_gso_segment); 2734 2735 2736 /* openvswitch calls this on rx path, so we need a different check. 2737 */ 2738 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2739 { 2740 if (tx_path) 2741 return skb->ip_summed != CHECKSUM_PARTIAL && 2742 skb->ip_summed != CHECKSUM_NONE; 2743 2744 return skb->ip_summed == CHECKSUM_NONE; 2745 } 2746 2747 /** 2748 * __skb_gso_segment - Perform segmentation on skb. 2749 * @skb: buffer to segment 2750 * @features: features for the output path (see dev->features) 2751 * @tx_path: whether it is called in TX path 2752 * 2753 * This function segments the given skb and returns a list of segments. 2754 * 2755 * It may return NULL if the skb requires no segmentation. This is 2756 * only possible when GSO is used for verifying header integrity. 2757 * 2758 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2759 */ 2760 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2761 netdev_features_t features, bool tx_path) 2762 { 2763 struct sk_buff *segs; 2764 2765 if (unlikely(skb_needs_check(skb, tx_path))) { 2766 int err; 2767 2768 /* We're going to init ->check field in TCP or UDP header */ 2769 err = skb_cow_head(skb, 0); 2770 if (err < 0) 2771 return ERR_PTR(err); 2772 } 2773 2774 /* Only report GSO partial support if it will enable us to 2775 * support segmentation on this frame without needing additional 2776 * work. 2777 */ 2778 if (features & NETIF_F_GSO_PARTIAL) { 2779 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2780 struct net_device *dev = skb->dev; 2781 2782 partial_features |= dev->features & dev->gso_partial_features; 2783 if (!skb_gso_ok(skb, features | partial_features)) 2784 features &= ~NETIF_F_GSO_PARTIAL; 2785 } 2786 2787 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2788 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2789 2790 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2791 SKB_GSO_CB(skb)->encap_level = 0; 2792 2793 skb_reset_mac_header(skb); 2794 skb_reset_mac_len(skb); 2795 2796 segs = skb_mac_gso_segment(skb, features); 2797 2798 if (unlikely(skb_needs_check(skb, tx_path))) 2799 skb_warn_bad_offload(skb); 2800 2801 return segs; 2802 } 2803 EXPORT_SYMBOL(__skb_gso_segment); 2804 2805 /* Take action when hardware reception checksum errors are detected. */ 2806 #ifdef CONFIG_BUG 2807 void netdev_rx_csum_fault(struct net_device *dev) 2808 { 2809 if (net_ratelimit()) { 2810 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2811 dump_stack(); 2812 } 2813 } 2814 EXPORT_SYMBOL(netdev_rx_csum_fault); 2815 #endif 2816 2817 /* Actually, we should eliminate this check as soon as we know, that: 2818 * 1. IOMMU is present and allows to map all the memory. 2819 * 2. No high memory really exists on this machine. 2820 */ 2821 2822 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2823 { 2824 #ifdef CONFIG_HIGHMEM 2825 int i; 2826 2827 if (!(dev->features & NETIF_F_HIGHDMA)) { 2828 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2829 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2830 2831 if (PageHighMem(skb_frag_page(frag))) 2832 return 1; 2833 } 2834 } 2835 2836 if (PCI_DMA_BUS_IS_PHYS) { 2837 struct device *pdev = dev->dev.parent; 2838 2839 if (!pdev) 2840 return 0; 2841 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2842 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2843 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2844 2845 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2846 return 1; 2847 } 2848 } 2849 #endif 2850 return 0; 2851 } 2852 2853 /* If MPLS offload request, verify we are testing hardware MPLS features 2854 * instead of standard features for the netdev. 2855 */ 2856 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2857 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2858 netdev_features_t features, 2859 __be16 type) 2860 { 2861 if (eth_p_mpls(type)) 2862 features &= skb->dev->mpls_features; 2863 2864 return features; 2865 } 2866 #else 2867 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2868 netdev_features_t features, 2869 __be16 type) 2870 { 2871 return features; 2872 } 2873 #endif 2874 2875 static netdev_features_t harmonize_features(struct sk_buff *skb, 2876 netdev_features_t features) 2877 { 2878 int tmp; 2879 __be16 type; 2880 2881 type = skb_network_protocol(skb, &tmp); 2882 features = net_mpls_features(skb, features, type); 2883 2884 if (skb->ip_summed != CHECKSUM_NONE && 2885 !can_checksum_protocol(features, type)) { 2886 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2887 } 2888 if (illegal_highdma(skb->dev, skb)) 2889 features &= ~NETIF_F_SG; 2890 2891 return features; 2892 } 2893 2894 netdev_features_t passthru_features_check(struct sk_buff *skb, 2895 struct net_device *dev, 2896 netdev_features_t features) 2897 { 2898 return features; 2899 } 2900 EXPORT_SYMBOL(passthru_features_check); 2901 2902 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2903 struct net_device *dev, 2904 netdev_features_t features) 2905 { 2906 return vlan_features_check(skb, features); 2907 } 2908 2909 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2910 struct net_device *dev, 2911 netdev_features_t features) 2912 { 2913 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2914 2915 if (gso_segs > dev->gso_max_segs) 2916 return features & ~NETIF_F_GSO_MASK; 2917 2918 /* Support for GSO partial features requires software 2919 * intervention before we can actually process the packets 2920 * so we need to strip support for any partial features now 2921 * and we can pull them back in after we have partially 2922 * segmented the frame. 2923 */ 2924 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2925 features &= ~dev->gso_partial_features; 2926 2927 /* Make sure to clear the IPv4 ID mangling feature if the 2928 * IPv4 header has the potential to be fragmented. 2929 */ 2930 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2931 struct iphdr *iph = skb->encapsulation ? 2932 inner_ip_hdr(skb) : ip_hdr(skb); 2933 2934 if (!(iph->frag_off & htons(IP_DF))) 2935 features &= ~NETIF_F_TSO_MANGLEID; 2936 } 2937 2938 return features; 2939 } 2940 2941 netdev_features_t netif_skb_features(struct sk_buff *skb) 2942 { 2943 struct net_device *dev = skb->dev; 2944 netdev_features_t features = dev->features; 2945 2946 if (skb_is_gso(skb)) 2947 features = gso_features_check(skb, dev, features); 2948 2949 /* If encapsulation offload request, verify we are testing 2950 * hardware encapsulation features instead of standard 2951 * features for the netdev 2952 */ 2953 if (skb->encapsulation) 2954 features &= dev->hw_enc_features; 2955 2956 if (skb_vlan_tagged(skb)) 2957 features = netdev_intersect_features(features, 2958 dev->vlan_features | 2959 NETIF_F_HW_VLAN_CTAG_TX | 2960 NETIF_F_HW_VLAN_STAG_TX); 2961 2962 if (dev->netdev_ops->ndo_features_check) 2963 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2964 features); 2965 else 2966 features &= dflt_features_check(skb, dev, features); 2967 2968 return harmonize_features(skb, features); 2969 } 2970 EXPORT_SYMBOL(netif_skb_features); 2971 2972 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2973 struct netdev_queue *txq, bool more) 2974 { 2975 unsigned int len; 2976 int rc; 2977 2978 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2979 dev_queue_xmit_nit(skb, dev); 2980 2981 len = skb->len; 2982 trace_net_dev_start_xmit(skb, dev); 2983 rc = netdev_start_xmit(skb, dev, txq, more); 2984 trace_net_dev_xmit(skb, rc, dev, len); 2985 2986 return rc; 2987 } 2988 2989 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2990 struct netdev_queue *txq, int *ret) 2991 { 2992 struct sk_buff *skb = first; 2993 int rc = NETDEV_TX_OK; 2994 2995 while (skb) { 2996 struct sk_buff *next = skb->next; 2997 2998 skb->next = NULL; 2999 rc = xmit_one(skb, dev, txq, next != NULL); 3000 if (unlikely(!dev_xmit_complete(rc))) { 3001 skb->next = next; 3002 goto out; 3003 } 3004 3005 skb = next; 3006 if (netif_xmit_stopped(txq) && skb) { 3007 rc = NETDEV_TX_BUSY; 3008 break; 3009 } 3010 } 3011 3012 out: 3013 *ret = rc; 3014 return skb; 3015 } 3016 3017 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3018 netdev_features_t features) 3019 { 3020 if (skb_vlan_tag_present(skb) && 3021 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3022 skb = __vlan_hwaccel_push_inside(skb); 3023 return skb; 3024 } 3025 3026 int skb_csum_hwoffload_help(struct sk_buff *skb, 3027 const netdev_features_t features) 3028 { 3029 if (unlikely(skb->csum_not_inet)) 3030 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3031 skb_crc32c_csum_help(skb); 3032 3033 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3034 } 3035 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3036 3037 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 3038 { 3039 netdev_features_t features; 3040 3041 features = netif_skb_features(skb); 3042 skb = validate_xmit_vlan(skb, features); 3043 if (unlikely(!skb)) 3044 goto out_null; 3045 3046 if (netif_needs_gso(skb, features)) { 3047 struct sk_buff *segs; 3048 3049 segs = skb_gso_segment(skb, features); 3050 if (IS_ERR(segs)) { 3051 goto out_kfree_skb; 3052 } else if (segs) { 3053 consume_skb(skb); 3054 skb = segs; 3055 } 3056 } else { 3057 if (skb_needs_linearize(skb, features) && 3058 __skb_linearize(skb)) 3059 goto out_kfree_skb; 3060 3061 if (validate_xmit_xfrm(skb, features)) 3062 goto out_kfree_skb; 3063 3064 /* If packet is not checksummed and device does not 3065 * support checksumming for this protocol, complete 3066 * checksumming here. 3067 */ 3068 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3069 if (skb->encapsulation) 3070 skb_set_inner_transport_header(skb, 3071 skb_checksum_start_offset(skb)); 3072 else 3073 skb_set_transport_header(skb, 3074 skb_checksum_start_offset(skb)); 3075 if (skb_csum_hwoffload_help(skb, features)) 3076 goto out_kfree_skb; 3077 } 3078 } 3079 3080 return skb; 3081 3082 out_kfree_skb: 3083 kfree_skb(skb); 3084 out_null: 3085 atomic_long_inc(&dev->tx_dropped); 3086 return NULL; 3087 } 3088 3089 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3090 { 3091 struct sk_buff *next, *head = NULL, *tail; 3092 3093 for (; skb != NULL; skb = next) { 3094 next = skb->next; 3095 skb->next = NULL; 3096 3097 /* in case skb wont be segmented, point to itself */ 3098 skb->prev = skb; 3099 3100 skb = validate_xmit_skb(skb, dev); 3101 if (!skb) 3102 continue; 3103 3104 if (!head) 3105 head = skb; 3106 else 3107 tail->next = skb; 3108 /* If skb was segmented, skb->prev points to 3109 * the last segment. If not, it still contains skb. 3110 */ 3111 tail = skb->prev; 3112 } 3113 return head; 3114 } 3115 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3116 3117 static void qdisc_pkt_len_init(struct sk_buff *skb) 3118 { 3119 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3120 3121 qdisc_skb_cb(skb)->pkt_len = skb->len; 3122 3123 /* To get more precise estimation of bytes sent on wire, 3124 * we add to pkt_len the headers size of all segments 3125 */ 3126 if (shinfo->gso_size) { 3127 unsigned int hdr_len; 3128 u16 gso_segs = shinfo->gso_segs; 3129 3130 /* mac layer + network layer */ 3131 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3132 3133 /* + transport layer */ 3134 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3135 hdr_len += tcp_hdrlen(skb); 3136 else 3137 hdr_len += sizeof(struct udphdr); 3138 3139 if (shinfo->gso_type & SKB_GSO_DODGY) 3140 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3141 shinfo->gso_size); 3142 3143 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3144 } 3145 } 3146 3147 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3148 struct net_device *dev, 3149 struct netdev_queue *txq) 3150 { 3151 spinlock_t *root_lock = qdisc_lock(q); 3152 struct sk_buff *to_free = NULL; 3153 bool contended; 3154 int rc; 3155 3156 qdisc_calculate_pkt_len(skb, q); 3157 /* 3158 * Heuristic to force contended enqueues to serialize on a 3159 * separate lock before trying to get qdisc main lock. 3160 * This permits qdisc->running owner to get the lock more 3161 * often and dequeue packets faster. 3162 */ 3163 contended = qdisc_is_running(q); 3164 if (unlikely(contended)) 3165 spin_lock(&q->busylock); 3166 3167 spin_lock(root_lock); 3168 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3169 __qdisc_drop(skb, &to_free); 3170 rc = NET_XMIT_DROP; 3171 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3172 qdisc_run_begin(q)) { 3173 /* 3174 * This is a work-conserving queue; there are no old skbs 3175 * waiting to be sent out; and the qdisc is not running - 3176 * xmit the skb directly. 3177 */ 3178 3179 qdisc_bstats_update(q, skb); 3180 3181 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3182 if (unlikely(contended)) { 3183 spin_unlock(&q->busylock); 3184 contended = false; 3185 } 3186 __qdisc_run(q); 3187 } else 3188 qdisc_run_end(q); 3189 3190 rc = NET_XMIT_SUCCESS; 3191 } else { 3192 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3193 if (qdisc_run_begin(q)) { 3194 if (unlikely(contended)) { 3195 spin_unlock(&q->busylock); 3196 contended = false; 3197 } 3198 __qdisc_run(q); 3199 } 3200 } 3201 spin_unlock(root_lock); 3202 if (unlikely(to_free)) 3203 kfree_skb_list(to_free); 3204 if (unlikely(contended)) 3205 spin_unlock(&q->busylock); 3206 return rc; 3207 } 3208 3209 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3210 static void skb_update_prio(struct sk_buff *skb) 3211 { 3212 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3213 3214 if (!skb->priority && skb->sk && map) { 3215 unsigned int prioidx = 3216 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3217 3218 if (prioidx < map->priomap_len) 3219 skb->priority = map->priomap[prioidx]; 3220 } 3221 } 3222 #else 3223 #define skb_update_prio(skb) 3224 #endif 3225 3226 DEFINE_PER_CPU(int, xmit_recursion); 3227 EXPORT_SYMBOL(xmit_recursion); 3228 3229 /** 3230 * dev_loopback_xmit - loop back @skb 3231 * @net: network namespace this loopback is happening in 3232 * @sk: sk needed to be a netfilter okfn 3233 * @skb: buffer to transmit 3234 */ 3235 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3236 { 3237 skb_reset_mac_header(skb); 3238 __skb_pull(skb, skb_network_offset(skb)); 3239 skb->pkt_type = PACKET_LOOPBACK; 3240 skb->ip_summed = CHECKSUM_UNNECESSARY; 3241 WARN_ON(!skb_dst(skb)); 3242 skb_dst_force(skb); 3243 netif_rx_ni(skb); 3244 return 0; 3245 } 3246 EXPORT_SYMBOL(dev_loopback_xmit); 3247 3248 #ifdef CONFIG_NET_EGRESS 3249 static struct sk_buff * 3250 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3251 { 3252 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3253 struct tcf_result cl_res; 3254 3255 if (!cl) 3256 return skb; 3257 3258 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3259 qdisc_bstats_cpu_update(cl->q, skb); 3260 3261 switch (tcf_classify(skb, cl, &cl_res, false)) { 3262 case TC_ACT_OK: 3263 case TC_ACT_RECLASSIFY: 3264 skb->tc_index = TC_H_MIN(cl_res.classid); 3265 break; 3266 case TC_ACT_SHOT: 3267 qdisc_qstats_cpu_drop(cl->q); 3268 *ret = NET_XMIT_DROP; 3269 kfree_skb(skb); 3270 return NULL; 3271 case TC_ACT_STOLEN: 3272 case TC_ACT_QUEUED: 3273 case TC_ACT_TRAP: 3274 *ret = NET_XMIT_SUCCESS; 3275 consume_skb(skb); 3276 return NULL; 3277 case TC_ACT_REDIRECT: 3278 /* No need to push/pop skb's mac_header here on egress! */ 3279 skb_do_redirect(skb); 3280 *ret = NET_XMIT_SUCCESS; 3281 return NULL; 3282 default: 3283 break; 3284 } 3285 3286 return skb; 3287 } 3288 #endif /* CONFIG_NET_EGRESS */ 3289 3290 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3291 { 3292 #ifdef CONFIG_XPS 3293 struct xps_dev_maps *dev_maps; 3294 struct xps_map *map; 3295 int queue_index = -1; 3296 3297 rcu_read_lock(); 3298 dev_maps = rcu_dereference(dev->xps_maps); 3299 if (dev_maps) { 3300 unsigned int tci = skb->sender_cpu - 1; 3301 3302 if (dev->num_tc) { 3303 tci *= dev->num_tc; 3304 tci += netdev_get_prio_tc_map(dev, skb->priority); 3305 } 3306 3307 map = rcu_dereference(dev_maps->cpu_map[tci]); 3308 if (map) { 3309 if (map->len == 1) 3310 queue_index = map->queues[0]; 3311 else 3312 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3313 map->len)]; 3314 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3315 queue_index = -1; 3316 } 3317 } 3318 rcu_read_unlock(); 3319 3320 return queue_index; 3321 #else 3322 return -1; 3323 #endif 3324 } 3325 3326 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3327 { 3328 struct sock *sk = skb->sk; 3329 int queue_index = sk_tx_queue_get(sk); 3330 3331 if (queue_index < 0 || skb->ooo_okay || 3332 queue_index >= dev->real_num_tx_queues) { 3333 int new_index = get_xps_queue(dev, skb); 3334 3335 if (new_index < 0) 3336 new_index = skb_tx_hash(dev, skb); 3337 3338 if (queue_index != new_index && sk && 3339 sk_fullsock(sk) && 3340 rcu_access_pointer(sk->sk_dst_cache)) 3341 sk_tx_queue_set(sk, new_index); 3342 3343 queue_index = new_index; 3344 } 3345 3346 return queue_index; 3347 } 3348 3349 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3350 struct sk_buff *skb, 3351 void *accel_priv) 3352 { 3353 int queue_index = 0; 3354 3355 #ifdef CONFIG_XPS 3356 u32 sender_cpu = skb->sender_cpu - 1; 3357 3358 if (sender_cpu >= (u32)NR_CPUS) 3359 skb->sender_cpu = raw_smp_processor_id() + 1; 3360 #endif 3361 3362 if (dev->real_num_tx_queues != 1) { 3363 const struct net_device_ops *ops = dev->netdev_ops; 3364 3365 if (ops->ndo_select_queue) 3366 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3367 __netdev_pick_tx); 3368 else 3369 queue_index = __netdev_pick_tx(dev, skb); 3370 3371 if (!accel_priv) 3372 queue_index = netdev_cap_txqueue(dev, queue_index); 3373 } 3374 3375 skb_set_queue_mapping(skb, queue_index); 3376 return netdev_get_tx_queue(dev, queue_index); 3377 } 3378 3379 /** 3380 * __dev_queue_xmit - transmit a buffer 3381 * @skb: buffer to transmit 3382 * @accel_priv: private data used for L2 forwarding offload 3383 * 3384 * Queue a buffer for transmission to a network device. The caller must 3385 * have set the device and priority and built the buffer before calling 3386 * this function. The function can be called from an interrupt. 3387 * 3388 * A negative errno code is returned on a failure. A success does not 3389 * guarantee the frame will be transmitted as it may be dropped due 3390 * to congestion or traffic shaping. 3391 * 3392 * ----------------------------------------------------------------------------------- 3393 * I notice this method can also return errors from the queue disciplines, 3394 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3395 * be positive. 3396 * 3397 * Regardless of the return value, the skb is consumed, so it is currently 3398 * difficult to retry a send to this method. (You can bump the ref count 3399 * before sending to hold a reference for retry if you are careful.) 3400 * 3401 * When calling this method, interrupts MUST be enabled. This is because 3402 * the BH enable code must have IRQs enabled so that it will not deadlock. 3403 * --BLG 3404 */ 3405 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3406 { 3407 struct net_device *dev = skb->dev; 3408 struct netdev_queue *txq; 3409 struct Qdisc *q; 3410 int rc = -ENOMEM; 3411 3412 skb_reset_mac_header(skb); 3413 3414 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3415 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3416 3417 /* Disable soft irqs for various locks below. Also 3418 * stops preemption for RCU. 3419 */ 3420 rcu_read_lock_bh(); 3421 3422 skb_update_prio(skb); 3423 3424 qdisc_pkt_len_init(skb); 3425 #ifdef CONFIG_NET_CLS_ACT 3426 skb->tc_at_ingress = 0; 3427 # ifdef CONFIG_NET_EGRESS 3428 if (static_key_false(&egress_needed)) { 3429 skb = sch_handle_egress(skb, &rc, dev); 3430 if (!skb) 3431 goto out; 3432 } 3433 # endif 3434 #endif 3435 /* If device/qdisc don't need skb->dst, release it right now while 3436 * its hot in this cpu cache. 3437 */ 3438 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3439 skb_dst_drop(skb); 3440 else 3441 skb_dst_force(skb); 3442 3443 txq = netdev_pick_tx(dev, skb, accel_priv); 3444 q = rcu_dereference_bh(txq->qdisc); 3445 3446 trace_net_dev_queue(skb); 3447 if (q->enqueue) { 3448 rc = __dev_xmit_skb(skb, q, dev, txq); 3449 goto out; 3450 } 3451 3452 /* The device has no queue. Common case for software devices: 3453 * loopback, all the sorts of tunnels... 3454 3455 * Really, it is unlikely that netif_tx_lock protection is necessary 3456 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3457 * counters.) 3458 * However, it is possible, that they rely on protection 3459 * made by us here. 3460 3461 * Check this and shot the lock. It is not prone from deadlocks. 3462 *Either shot noqueue qdisc, it is even simpler 8) 3463 */ 3464 if (dev->flags & IFF_UP) { 3465 int cpu = smp_processor_id(); /* ok because BHs are off */ 3466 3467 if (txq->xmit_lock_owner != cpu) { 3468 if (unlikely(__this_cpu_read(xmit_recursion) > 3469 XMIT_RECURSION_LIMIT)) 3470 goto recursion_alert; 3471 3472 skb = validate_xmit_skb(skb, dev); 3473 if (!skb) 3474 goto out; 3475 3476 HARD_TX_LOCK(dev, txq, cpu); 3477 3478 if (!netif_xmit_stopped(txq)) { 3479 __this_cpu_inc(xmit_recursion); 3480 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3481 __this_cpu_dec(xmit_recursion); 3482 if (dev_xmit_complete(rc)) { 3483 HARD_TX_UNLOCK(dev, txq); 3484 goto out; 3485 } 3486 } 3487 HARD_TX_UNLOCK(dev, txq); 3488 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3489 dev->name); 3490 } else { 3491 /* Recursion is detected! It is possible, 3492 * unfortunately 3493 */ 3494 recursion_alert: 3495 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3496 dev->name); 3497 } 3498 } 3499 3500 rc = -ENETDOWN; 3501 rcu_read_unlock_bh(); 3502 3503 atomic_long_inc(&dev->tx_dropped); 3504 kfree_skb_list(skb); 3505 return rc; 3506 out: 3507 rcu_read_unlock_bh(); 3508 return rc; 3509 } 3510 3511 int dev_queue_xmit(struct sk_buff *skb) 3512 { 3513 return __dev_queue_xmit(skb, NULL); 3514 } 3515 EXPORT_SYMBOL(dev_queue_xmit); 3516 3517 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3518 { 3519 return __dev_queue_xmit(skb, accel_priv); 3520 } 3521 EXPORT_SYMBOL(dev_queue_xmit_accel); 3522 3523 3524 /************************************************************************* 3525 * Receiver routines 3526 *************************************************************************/ 3527 3528 int netdev_max_backlog __read_mostly = 1000; 3529 EXPORT_SYMBOL(netdev_max_backlog); 3530 3531 int netdev_tstamp_prequeue __read_mostly = 1; 3532 int netdev_budget __read_mostly = 300; 3533 unsigned int __read_mostly netdev_budget_usecs = 2000; 3534 int weight_p __read_mostly = 64; /* old backlog weight */ 3535 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3536 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3537 int dev_rx_weight __read_mostly = 64; 3538 int dev_tx_weight __read_mostly = 64; 3539 3540 /* Called with irq disabled */ 3541 static inline void ____napi_schedule(struct softnet_data *sd, 3542 struct napi_struct *napi) 3543 { 3544 list_add_tail(&napi->poll_list, &sd->poll_list); 3545 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3546 } 3547 3548 #ifdef CONFIG_RPS 3549 3550 /* One global table that all flow-based protocols share. */ 3551 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3552 EXPORT_SYMBOL(rps_sock_flow_table); 3553 u32 rps_cpu_mask __read_mostly; 3554 EXPORT_SYMBOL(rps_cpu_mask); 3555 3556 struct static_key rps_needed __read_mostly; 3557 EXPORT_SYMBOL(rps_needed); 3558 struct static_key rfs_needed __read_mostly; 3559 EXPORT_SYMBOL(rfs_needed); 3560 3561 static struct rps_dev_flow * 3562 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3563 struct rps_dev_flow *rflow, u16 next_cpu) 3564 { 3565 if (next_cpu < nr_cpu_ids) { 3566 #ifdef CONFIG_RFS_ACCEL 3567 struct netdev_rx_queue *rxqueue; 3568 struct rps_dev_flow_table *flow_table; 3569 struct rps_dev_flow *old_rflow; 3570 u32 flow_id; 3571 u16 rxq_index; 3572 int rc; 3573 3574 /* Should we steer this flow to a different hardware queue? */ 3575 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3576 !(dev->features & NETIF_F_NTUPLE)) 3577 goto out; 3578 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3579 if (rxq_index == skb_get_rx_queue(skb)) 3580 goto out; 3581 3582 rxqueue = dev->_rx + rxq_index; 3583 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3584 if (!flow_table) 3585 goto out; 3586 flow_id = skb_get_hash(skb) & flow_table->mask; 3587 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3588 rxq_index, flow_id); 3589 if (rc < 0) 3590 goto out; 3591 old_rflow = rflow; 3592 rflow = &flow_table->flows[flow_id]; 3593 rflow->filter = rc; 3594 if (old_rflow->filter == rflow->filter) 3595 old_rflow->filter = RPS_NO_FILTER; 3596 out: 3597 #endif 3598 rflow->last_qtail = 3599 per_cpu(softnet_data, next_cpu).input_queue_head; 3600 } 3601 3602 rflow->cpu = next_cpu; 3603 return rflow; 3604 } 3605 3606 /* 3607 * get_rps_cpu is called from netif_receive_skb and returns the target 3608 * CPU from the RPS map of the receiving queue for a given skb. 3609 * rcu_read_lock must be held on entry. 3610 */ 3611 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3612 struct rps_dev_flow **rflowp) 3613 { 3614 const struct rps_sock_flow_table *sock_flow_table; 3615 struct netdev_rx_queue *rxqueue = dev->_rx; 3616 struct rps_dev_flow_table *flow_table; 3617 struct rps_map *map; 3618 int cpu = -1; 3619 u32 tcpu; 3620 u32 hash; 3621 3622 if (skb_rx_queue_recorded(skb)) { 3623 u16 index = skb_get_rx_queue(skb); 3624 3625 if (unlikely(index >= dev->real_num_rx_queues)) { 3626 WARN_ONCE(dev->real_num_rx_queues > 1, 3627 "%s received packet on queue %u, but number " 3628 "of RX queues is %u\n", 3629 dev->name, index, dev->real_num_rx_queues); 3630 goto done; 3631 } 3632 rxqueue += index; 3633 } 3634 3635 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3636 3637 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3638 map = rcu_dereference(rxqueue->rps_map); 3639 if (!flow_table && !map) 3640 goto done; 3641 3642 skb_reset_network_header(skb); 3643 hash = skb_get_hash(skb); 3644 if (!hash) 3645 goto done; 3646 3647 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3648 if (flow_table && sock_flow_table) { 3649 struct rps_dev_flow *rflow; 3650 u32 next_cpu; 3651 u32 ident; 3652 3653 /* First check into global flow table if there is a match */ 3654 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3655 if ((ident ^ hash) & ~rps_cpu_mask) 3656 goto try_rps; 3657 3658 next_cpu = ident & rps_cpu_mask; 3659 3660 /* OK, now we know there is a match, 3661 * we can look at the local (per receive queue) flow table 3662 */ 3663 rflow = &flow_table->flows[hash & flow_table->mask]; 3664 tcpu = rflow->cpu; 3665 3666 /* 3667 * If the desired CPU (where last recvmsg was done) is 3668 * different from current CPU (one in the rx-queue flow 3669 * table entry), switch if one of the following holds: 3670 * - Current CPU is unset (>= nr_cpu_ids). 3671 * - Current CPU is offline. 3672 * - The current CPU's queue tail has advanced beyond the 3673 * last packet that was enqueued using this table entry. 3674 * This guarantees that all previous packets for the flow 3675 * have been dequeued, thus preserving in order delivery. 3676 */ 3677 if (unlikely(tcpu != next_cpu) && 3678 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3679 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3680 rflow->last_qtail)) >= 0)) { 3681 tcpu = next_cpu; 3682 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3683 } 3684 3685 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3686 *rflowp = rflow; 3687 cpu = tcpu; 3688 goto done; 3689 } 3690 } 3691 3692 try_rps: 3693 3694 if (map) { 3695 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3696 if (cpu_online(tcpu)) { 3697 cpu = tcpu; 3698 goto done; 3699 } 3700 } 3701 3702 done: 3703 return cpu; 3704 } 3705 3706 #ifdef CONFIG_RFS_ACCEL 3707 3708 /** 3709 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3710 * @dev: Device on which the filter was set 3711 * @rxq_index: RX queue index 3712 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3713 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3714 * 3715 * Drivers that implement ndo_rx_flow_steer() should periodically call 3716 * this function for each installed filter and remove the filters for 3717 * which it returns %true. 3718 */ 3719 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3720 u32 flow_id, u16 filter_id) 3721 { 3722 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3723 struct rps_dev_flow_table *flow_table; 3724 struct rps_dev_flow *rflow; 3725 bool expire = true; 3726 unsigned int cpu; 3727 3728 rcu_read_lock(); 3729 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3730 if (flow_table && flow_id <= flow_table->mask) { 3731 rflow = &flow_table->flows[flow_id]; 3732 cpu = ACCESS_ONCE(rflow->cpu); 3733 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3734 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3735 rflow->last_qtail) < 3736 (int)(10 * flow_table->mask))) 3737 expire = false; 3738 } 3739 rcu_read_unlock(); 3740 return expire; 3741 } 3742 EXPORT_SYMBOL(rps_may_expire_flow); 3743 3744 #endif /* CONFIG_RFS_ACCEL */ 3745 3746 /* Called from hardirq (IPI) context */ 3747 static void rps_trigger_softirq(void *data) 3748 { 3749 struct softnet_data *sd = data; 3750 3751 ____napi_schedule(sd, &sd->backlog); 3752 sd->received_rps++; 3753 } 3754 3755 #endif /* CONFIG_RPS */ 3756 3757 /* 3758 * Check if this softnet_data structure is another cpu one 3759 * If yes, queue it to our IPI list and return 1 3760 * If no, return 0 3761 */ 3762 static int rps_ipi_queued(struct softnet_data *sd) 3763 { 3764 #ifdef CONFIG_RPS 3765 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3766 3767 if (sd != mysd) { 3768 sd->rps_ipi_next = mysd->rps_ipi_list; 3769 mysd->rps_ipi_list = sd; 3770 3771 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3772 return 1; 3773 } 3774 #endif /* CONFIG_RPS */ 3775 return 0; 3776 } 3777 3778 #ifdef CONFIG_NET_FLOW_LIMIT 3779 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3780 #endif 3781 3782 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3783 { 3784 #ifdef CONFIG_NET_FLOW_LIMIT 3785 struct sd_flow_limit *fl; 3786 struct softnet_data *sd; 3787 unsigned int old_flow, new_flow; 3788 3789 if (qlen < (netdev_max_backlog >> 1)) 3790 return false; 3791 3792 sd = this_cpu_ptr(&softnet_data); 3793 3794 rcu_read_lock(); 3795 fl = rcu_dereference(sd->flow_limit); 3796 if (fl) { 3797 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3798 old_flow = fl->history[fl->history_head]; 3799 fl->history[fl->history_head] = new_flow; 3800 3801 fl->history_head++; 3802 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3803 3804 if (likely(fl->buckets[old_flow])) 3805 fl->buckets[old_flow]--; 3806 3807 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3808 fl->count++; 3809 rcu_read_unlock(); 3810 return true; 3811 } 3812 } 3813 rcu_read_unlock(); 3814 #endif 3815 return false; 3816 } 3817 3818 /* 3819 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3820 * queue (may be a remote CPU queue). 3821 */ 3822 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3823 unsigned int *qtail) 3824 { 3825 struct softnet_data *sd; 3826 unsigned long flags; 3827 unsigned int qlen; 3828 3829 sd = &per_cpu(softnet_data, cpu); 3830 3831 local_irq_save(flags); 3832 3833 rps_lock(sd); 3834 if (!netif_running(skb->dev)) 3835 goto drop; 3836 qlen = skb_queue_len(&sd->input_pkt_queue); 3837 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3838 if (qlen) { 3839 enqueue: 3840 __skb_queue_tail(&sd->input_pkt_queue, skb); 3841 input_queue_tail_incr_save(sd, qtail); 3842 rps_unlock(sd); 3843 local_irq_restore(flags); 3844 return NET_RX_SUCCESS; 3845 } 3846 3847 /* Schedule NAPI for backlog device 3848 * We can use non atomic operation since we own the queue lock 3849 */ 3850 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3851 if (!rps_ipi_queued(sd)) 3852 ____napi_schedule(sd, &sd->backlog); 3853 } 3854 goto enqueue; 3855 } 3856 3857 drop: 3858 sd->dropped++; 3859 rps_unlock(sd); 3860 3861 local_irq_restore(flags); 3862 3863 atomic_long_inc(&skb->dev->rx_dropped); 3864 kfree_skb(skb); 3865 return NET_RX_DROP; 3866 } 3867 3868 static int netif_rx_internal(struct sk_buff *skb) 3869 { 3870 int ret; 3871 3872 net_timestamp_check(netdev_tstamp_prequeue, skb); 3873 3874 trace_netif_rx(skb); 3875 #ifdef CONFIG_RPS 3876 if (static_key_false(&rps_needed)) { 3877 struct rps_dev_flow voidflow, *rflow = &voidflow; 3878 int cpu; 3879 3880 preempt_disable(); 3881 rcu_read_lock(); 3882 3883 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3884 if (cpu < 0) 3885 cpu = smp_processor_id(); 3886 3887 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3888 3889 rcu_read_unlock(); 3890 preempt_enable(); 3891 } else 3892 #endif 3893 { 3894 unsigned int qtail; 3895 3896 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3897 put_cpu(); 3898 } 3899 return ret; 3900 } 3901 3902 /** 3903 * netif_rx - post buffer to the network code 3904 * @skb: buffer to post 3905 * 3906 * This function receives a packet from a device driver and queues it for 3907 * the upper (protocol) levels to process. It always succeeds. The buffer 3908 * may be dropped during processing for congestion control or by the 3909 * protocol layers. 3910 * 3911 * return values: 3912 * NET_RX_SUCCESS (no congestion) 3913 * NET_RX_DROP (packet was dropped) 3914 * 3915 */ 3916 3917 int netif_rx(struct sk_buff *skb) 3918 { 3919 trace_netif_rx_entry(skb); 3920 3921 return netif_rx_internal(skb); 3922 } 3923 EXPORT_SYMBOL(netif_rx); 3924 3925 int netif_rx_ni(struct sk_buff *skb) 3926 { 3927 int err; 3928 3929 trace_netif_rx_ni_entry(skb); 3930 3931 preempt_disable(); 3932 err = netif_rx_internal(skb); 3933 if (local_softirq_pending()) 3934 do_softirq(); 3935 preempt_enable(); 3936 3937 return err; 3938 } 3939 EXPORT_SYMBOL(netif_rx_ni); 3940 3941 static __latent_entropy void net_tx_action(struct softirq_action *h) 3942 { 3943 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3944 3945 if (sd->completion_queue) { 3946 struct sk_buff *clist; 3947 3948 local_irq_disable(); 3949 clist = sd->completion_queue; 3950 sd->completion_queue = NULL; 3951 local_irq_enable(); 3952 3953 while (clist) { 3954 struct sk_buff *skb = clist; 3955 3956 clist = clist->next; 3957 3958 WARN_ON(atomic_read(&skb->users)); 3959 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3960 trace_consume_skb(skb); 3961 else 3962 trace_kfree_skb(skb, net_tx_action); 3963 3964 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 3965 __kfree_skb(skb); 3966 else 3967 __kfree_skb_defer(skb); 3968 } 3969 3970 __kfree_skb_flush(); 3971 } 3972 3973 if (sd->output_queue) { 3974 struct Qdisc *head; 3975 3976 local_irq_disable(); 3977 head = sd->output_queue; 3978 sd->output_queue = NULL; 3979 sd->output_queue_tailp = &sd->output_queue; 3980 local_irq_enable(); 3981 3982 while (head) { 3983 struct Qdisc *q = head; 3984 spinlock_t *root_lock; 3985 3986 head = head->next_sched; 3987 3988 root_lock = qdisc_lock(q); 3989 spin_lock(root_lock); 3990 /* We need to make sure head->next_sched is read 3991 * before clearing __QDISC_STATE_SCHED 3992 */ 3993 smp_mb__before_atomic(); 3994 clear_bit(__QDISC_STATE_SCHED, &q->state); 3995 qdisc_run(q); 3996 spin_unlock(root_lock); 3997 } 3998 } 3999 } 4000 4001 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4002 /* This hook is defined here for ATM LANE */ 4003 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4004 unsigned char *addr) __read_mostly; 4005 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4006 #endif 4007 4008 static inline struct sk_buff * 4009 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4010 struct net_device *orig_dev) 4011 { 4012 #ifdef CONFIG_NET_CLS_ACT 4013 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 4014 struct tcf_result cl_res; 4015 4016 /* If there's at least one ingress present somewhere (so 4017 * we get here via enabled static key), remaining devices 4018 * that are not configured with an ingress qdisc will bail 4019 * out here. 4020 */ 4021 if (!cl) 4022 return skb; 4023 if (*pt_prev) { 4024 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4025 *pt_prev = NULL; 4026 } 4027 4028 qdisc_skb_cb(skb)->pkt_len = skb->len; 4029 skb->tc_at_ingress = 1; 4030 qdisc_bstats_cpu_update(cl->q, skb); 4031 4032 switch (tcf_classify(skb, cl, &cl_res, false)) { 4033 case TC_ACT_OK: 4034 case TC_ACT_RECLASSIFY: 4035 skb->tc_index = TC_H_MIN(cl_res.classid); 4036 break; 4037 case TC_ACT_SHOT: 4038 qdisc_qstats_cpu_drop(cl->q); 4039 kfree_skb(skb); 4040 return NULL; 4041 case TC_ACT_STOLEN: 4042 case TC_ACT_QUEUED: 4043 case TC_ACT_TRAP: 4044 consume_skb(skb); 4045 return NULL; 4046 case TC_ACT_REDIRECT: 4047 /* skb_mac_header check was done by cls/act_bpf, so 4048 * we can safely push the L2 header back before 4049 * redirecting to another netdev 4050 */ 4051 __skb_push(skb, skb->mac_len); 4052 skb_do_redirect(skb); 4053 return NULL; 4054 default: 4055 break; 4056 } 4057 #endif /* CONFIG_NET_CLS_ACT */ 4058 return skb; 4059 } 4060 4061 /** 4062 * netdev_is_rx_handler_busy - check if receive handler is registered 4063 * @dev: device to check 4064 * 4065 * Check if a receive handler is already registered for a given device. 4066 * Return true if there one. 4067 * 4068 * The caller must hold the rtnl_mutex. 4069 */ 4070 bool netdev_is_rx_handler_busy(struct net_device *dev) 4071 { 4072 ASSERT_RTNL(); 4073 return dev && rtnl_dereference(dev->rx_handler); 4074 } 4075 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4076 4077 /** 4078 * netdev_rx_handler_register - register receive handler 4079 * @dev: device to register a handler for 4080 * @rx_handler: receive handler to register 4081 * @rx_handler_data: data pointer that is used by rx handler 4082 * 4083 * Register a receive handler for a device. This handler will then be 4084 * called from __netif_receive_skb. A negative errno code is returned 4085 * on a failure. 4086 * 4087 * The caller must hold the rtnl_mutex. 4088 * 4089 * For a general description of rx_handler, see enum rx_handler_result. 4090 */ 4091 int netdev_rx_handler_register(struct net_device *dev, 4092 rx_handler_func_t *rx_handler, 4093 void *rx_handler_data) 4094 { 4095 if (netdev_is_rx_handler_busy(dev)) 4096 return -EBUSY; 4097 4098 /* Note: rx_handler_data must be set before rx_handler */ 4099 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4100 rcu_assign_pointer(dev->rx_handler, rx_handler); 4101 4102 return 0; 4103 } 4104 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4105 4106 /** 4107 * netdev_rx_handler_unregister - unregister receive handler 4108 * @dev: device to unregister a handler from 4109 * 4110 * Unregister a receive handler from a device. 4111 * 4112 * The caller must hold the rtnl_mutex. 4113 */ 4114 void netdev_rx_handler_unregister(struct net_device *dev) 4115 { 4116 4117 ASSERT_RTNL(); 4118 RCU_INIT_POINTER(dev->rx_handler, NULL); 4119 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4120 * section has a guarantee to see a non NULL rx_handler_data 4121 * as well. 4122 */ 4123 synchronize_net(); 4124 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4125 } 4126 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4127 4128 /* 4129 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4130 * the special handling of PFMEMALLOC skbs. 4131 */ 4132 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4133 { 4134 switch (skb->protocol) { 4135 case htons(ETH_P_ARP): 4136 case htons(ETH_P_IP): 4137 case htons(ETH_P_IPV6): 4138 case htons(ETH_P_8021Q): 4139 case htons(ETH_P_8021AD): 4140 return true; 4141 default: 4142 return false; 4143 } 4144 } 4145 4146 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4147 int *ret, struct net_device *orig_dev) 4148 { 4149 #ifdef CONFIG_NETFILTER_INGRESS 4150 if (nf_hook_ingress_active(skb)) { 4151 int ingress_retval; 4152 4153 if (*pt_prev) { 4154 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4155 *pt_prev = NULL; 4156 } 4157 4158 rcu_read_lock(); 4159 ingress_retval = nf_hook_ingress(skb); 4160 rcu_read_unlock(); 4161 return ingress_retval; 4162 } 4163 #endif /* CONFIG_NETFILTER_INGRESS */ 4164 return 0; 4165 } 4166 4167 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4168 { 4169 struct packet_type *ptype, *pt_prev; 4170 rx_handler_func_t *rx_handler; 4171 struct net_device *orig_dev; 4172 bool deliver_exact = false; 4173 int ret = NET_RX_DROP; 4174 __be16 type; 4175 4176 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4177 4178 trace_netif_receive_skb(skb); 4179 4180 orig_dev = skb->dev; 4181 4182 skb_reset_network_header(skb); 4183 if (!skb_transport_header_was_set(skb)) 4184 skb_reset_transport_header(skb); 4185 skb_reset_mac_len(skb); 4186 4187 pt_prev = NULL; 4188 4189 another_round: 4190 skb->skb_iif = skb->dev->ifindex; 4191 4192 __this_cpu_inc(softnet_data.processed); 4193 4194 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4195 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4196 skb = skb_vlan_untag(skb); 4197 if (unlikely(!skb)) 4198 goto out; 4199 } 4200 4201 if (skb_skip_tc_classify(skb)) 4202 goto skip_classify; 4203 4204 if (pfmemalloc) 4205 goto skip_taps; 4206 4207 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4208 if (pt_prev) 4209 ret = deliver_skb(skb, pt_prev, orig_dev); 4210 pt_prev = ptype; 4211 } 4212 4213 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4214 if (pt_prev) 4215 ret = deliver_skb(skb, pt_prev, orig_dev); 4216 pt_prev = ptype; 4217 } 4218 4219 skip_taps: 4220 #ifdef CONFIG_NET_INGRESS 4221 if (static_key_false(&ingress_needed)) { 4222 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4223 if (!skb) 4224 goto out; 4225 4226 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4227 goto out; 4228 } 4229 #endif 4230 skb_reset_tc(skb); 4231 skip_classify: 4232 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4233 goto drop; 4234 4235 if (skb_vlan_tag_present(skb)) { 4236 if (pt_prev) { 4237 ret = deliver_skb(skb, pt_prev, orig_dev); 4238 pt_prev = NULL; 4239 } 4240 if (vlan_do_receive(&skb)) 4241 goto another_round; 4242 else if (unlikely(!skb)) 4243 goto out; 4244 } 4245 4246 rx_handler = rcu_dereference(skb->dev->rx_handler); 4247 if (rx_handler) { 4248 if (pt_prev) { 4249 ret = deliver_skb(skb, pt_prev, orig_dev); 4250 pt_prev = NULL; 4251 } 4252 switch (rx_handler(&skb)) { 4253 case RX_HANDLER_CONSUMED: 4254 ret = NET_RX_SUCCESS; 4255 goto out; 4256 case RX_HANDLER_ANOTHER: 4257 goto another_round; 4258 case RX_HANDLER_EXACT: 4259 deliver_exact = true; 4260 case RX_HANDLER_PASS: 4261 break; 4262 default: 4263 BUG(); 4264 } 4265 } 4266 4267 if (unlikely(skb_vlan_tag_present(skb))) { 4268 if (skb_vlan_tag_get_id(skb)) 4269 skb->pkt_type = PACKET_OTHERHOST; 4270 /* Note: we might in the future use prio bits 4271 * and set skb->priority like in vlan_do_receive() 4272 * For the time being, just ignore Priority Code Point 4273 */ 4274 skb->vlan_tci = 0; 4275 } 4276 4277 type = skb->protocol; 4278 4279 /* deliver only exact match when indicated */ 4280 if (likely(!deliver_exact)) { 4281 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4282 &ptype_base[ntohs(type) & 4283 PTYPE_HASH_MASK]); 4284 } 4285 4286 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4287 &orig_dev->ptype_specific); 4288 4289 if (unlikely(skb->dev != orig_dev)) { 4290 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4291 &skb->dev->ptype_specific); 4292 } 4293 4294 if (pt_prev) { 4295 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4296 goto drop; 4297 else 4298 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4299 } else { 4300 drop: 4301 if (!deliver_exact) 4302 atomic_long_inc(&skb->dev->rx_dropped); 4303 else 4304 atomic_long_inc(&skb->dev->rx_nohandler); 4305 kfree_skb(skb); 4306 /* Jamal, now you will not able to escape explaining 4307 * me how you were going to use this. :-) 4308 */ 4309 ret = NET_RX_DROP; 4310 } 4311 4312 out: 4313 return ret; 4314 } 4315 4316 static int __netif_receive_skb(struct sk_buff *skb) 4317 { 4318 int ret; 4319 4320 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4321 unsigned int noreclaim_flag; 4322 4323 /* 4324 * PFMEMALLOC skbs are special, they should 4325 * - be delivered to SOCK_MEMALLOC sockets only 4326 * - stay away from userspace 4327 * - have bounded memory usage 4328 * 4329 * Use PF_MEMALLOC as this saves us from propagating the allocation 4330 * context down to all allocation sites. 4331 */ 4332 noreclaim_flag = memalloc_noreclaim_save(); 4333 ret = __netif_receive_skb_core(skb, true); 4334 memalloc_noreclaim_restore(noreclaim_flag); 4335 } else 4336 ret = __netif_receive_skb_core(skb, false); 4337 4338 return ret; 4339 } 4340 4341 static struct static_key generic_xdp_needed __read_mostly; 4342 4343 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp) 4344 { 4345 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4346 struct bpf_prog *new = xdp->prog; 4347 int ret = 0; 4348 4349 switch (xdp->command) { 4350 case XDP_SETUP_PROG: 4351 rcu_assign_pointer(dev->xdp_prog, new); 4352 if (old) 4353 bpf_prog_put(old); 4354 4355 if (old && !new) { 4356 static_key_slow_dec(&generic_xdp_needed); 4357 } else if (new && !old) { 4358 static_key_slow_inc(&generic_xdp_needed); 4359 dev_disable_lro(dev); 4360 } 4361 break; 4362 4363 case XDP_QUERY_PROG: 4364 xdp->prog_attached = !!old; 4365 xdp->prog_id = old ? old->aux->id : 0; 4366 break; 4367 4368 default: 4369 ret = -EINVAL; 4370 break; 4371 } 4372 4373 return ret; 4374 } 4375 4376 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4377 struct bpf_prog *xdp_prog) 4378 { 4379 struct xdp_buff xdp; 4380 u32 act = XDP_DROP; 4381 void *orig_data; 4382 int hlen, off; 4383 u32 mac_len; 4384 4385 /* Reinjected packets coming from act_mirred or similar should 4386 * not get XDP generic processing. 4387 */ 4388 if (skb_cloned(skb)) 4389 return XDP_PASS; 4390 4391 if (skb_linearize(skb)) 4392 goto do_drop; 4393 4394 /* The XDP program wants to see the packet starting at the MAC 4395 * header. 4396 */ 4397 mac_len = skb->data - skb_mac_header(skb); 4398 hlen = skb_headlen(skb) + mac_len; 4399 xdp.data = skb->data - mac_len; 4400 xdp.data_end = xdp.data + hlen; 4401 xdp.data_hard_start = skb->data - skb_headroom(skb); 4402 orig_data = xdp.data; 4403 4404 act = bpf_prog_run_xdp(xdp_prog, &xdp); 4405 4406 off = xdp.data - orig_data; 4407 if (off > 0) 4408 __skb_pull(skb, off); 4409 else if (off < 0) 4410 __skb_push(skb, -off); 4411 4412 switch (act) { 4413 case XDP_TX: 4414 __skb_push(skb, mac_len); 4415 /* fall through */ 4416 case XDP_PASS: 4417 break; 4418 4419 default: 4420 bpf_warn_invalid_xdp_action(act); 4421 /* fall through */ 4422 case XDP_ABORTED: 4423 trace_xdp_exception(skb->dev, xdp_prog, act); 4424 /* fall through */ 4425 case XDP_DROP: 4426 do_drop: 4427 kfree_skb(skb); 4428 break; 4429 } 4430 4431 return act; 4432 } 4433 4434 /* When doing generic XDP we have to bypass the qdisc layer and the 4435 * network taps in order to match in-driver-XDP behavior. 4436 */ 4437 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4438 { 4439 struct net_device *dev = skb->dev; 4440 struct netdev_queue *txq; 4441 bool free_skb = true; 4442 int cpu, rc; 4443 4444 txq = netdev_pick_tx(dev, skb, NULL); 4445 cpu = smp_processor_id(); 4446 HARD_TX_LOCK(dev, txq, cpu); 4447 if (!netif_xmit_stopped(txq)) { 4448 rc = netdev_start_xmit(skb, dev, txq, 0); 4449 if (dev_xmit_complete(rc)) 4450 free_skb = false; 4451 } 4452 HARD_TX_UNLOCK(dev, txq); 4453 if (free_skb) { 4454 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4455 kfree_skb(skb); 4456 } 4457 } 4458 4459 static int netif_receive_skb_internal(struct sk_buff *skb) 4460 { 4461 int ret; 4462 4463 net_timestamp_check(netdev_tstamp_prequeue, skb); 4464 4465 if (skb_defer_rx_timestamp(skb)) 4466 return NET_RX_SUCCESS; 4467 4468 rcu_read_lock(); 4469 4470 if (static_key_false(&generic_xdp_needed)) { 4471 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog); 4472 4473 if (xdp_prog) { 4474 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 4475 4476 if (act != XDP_PASS) { 4477 rcu_read_unlock(); 4478 if (act == XDP_TX) 4479 generic_xdp_tx(skb, xdp_prog); 4480 return NET_RX_DROP; 4481 } 4482 } 4483 } 4484 4485 #ifdef CONFIG_RPS 4486 if (static_key_false(&rps_needed)) { 4487 struct rps_dev_flow voidflow, *rflow = &voidflow; 4488 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4489 4490 if (cpu >= 0) { 4491 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4492 rcu_read_unlock(); 4493 return ret; 4494 } 4495 } 4496 #endif 4497 ret = __netif_receive_skb(skb); 4498 rcu_read_unlock(); 4499 return ret; 4500 } 4501 4502 /** 4503 * netif_receive_skb - process receive buffer from network 4504 * @skb: buffer to process 4505 * 4506 * netif_receive_skb() is the main receive data processing function. 4507 * It always succeeds. The buffer may be dropped during processing 4508 * for congestion control or by the protocol layers. 4509 * 4510 * This function may only be called from softirq context and interrupts 4511 * should be enabled. 4512 * 4513 * Return values (usually ignored): 4514 * NET_RX_SUCCESS: no congestion 4515 * NET_RX_DROP: packet was dropped 4516 */ 4517 int netif_receive_skb(struct sk_buff *skb) 4518 { 4519 trace_netif_receive_skb_entry(skb); 4520 4521 return netif_receive_skb_internal(skb); 4522 } 4523 EXPORT_SYMBOL(netif_receive_skb); 4524 4525 DEFINE_PER_CPU(struct work_struct, flush_works); 4526 4527 /* Network device is going away, flush any packets still pending */ 4528 static void flush_backlog(struct work_struct *work) 4529 { 4530 struct sk_buff *skb, *tmp; 4531 struct softnet_data *sd; 4532 4533 local_bh_disable(); 4534 sd = this_cpu_ptr(&softnet_data); 4535 4536 local_irq_disable(); 4537 rps_lock(sd); 4538 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4539 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4540 __skb_unlink(skb, &sd->input_pkt_queue); 4541 kfree_skb(skb); 4542 input_queue_head_incr(sd); 4543 } 4544 } 4545 rps_unlock(sd); 4546 local_irq_enable(); 4547 4548 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4549 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4550 __skb_unlink(skb, &sd->process_queue); 4551 kfree_skb(skb); 4552 input_queue_head_incr(sd); 4553 } 4554 } 4555 local_bh_enable(); 4556 } 4557 4558 static void flush_all_backlogs(void) 4559 { 4560 unsigned int cpu; 4561 4562 get_online_cpus(); 4563 4564 for_each_online_cpu(cpu) 4565 queue_work_on(cpu, system_highpri_wq, 4566 per_cpu_ptr(&flush_works, cpu)); 4567 4568 for_each_online_cpu(cpu) 4569 flush_work(per_cpu_ptr(&flush_works, cpu)); 4570 4571 put_online_cpus(); 4572 } 4573 4574 static int napi_gro_complete(struct sk_buff *skb) 4575 { 4576 struct packet_offload *ptype; 4577 __be16 type = skb->protocol; 4578 struct list_head *head = &offload_base; 4579 int err = -ENOENT; 4580 4581 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4582 4583 if (NAPI_GRO_CB(skb)->count == 1) { 4584 skb_shinfo(skb)->gso_size = 0; 4585 goto out; 4586 } 4587 4588 rcu_read_lock(); 4589 list_for_each_entry_rcu(ptype, head, list) { 4590 if (ptype->type != type || !ptype->callbacks.gro_complete) 4591 continue; 4592 4593 err = ptype->callbacks.gro_complete(skb, 0); 4594 break; 4595 } 4596 rcu_read_unlock(); 4597 4598 if (err) { 4599 WARN_ON(&ptype->list == head); 4600 kfree_skb(skb); 4601 return NET_RX_SUCCESS; 4602 } 4603 4604 out: 4605 return netif_receive_skb_internal(skb); 4606 } 4607 4608 /* napi->gro_list contains packets ordered by age. 4609 * youngest packets at the head of it. 4610 * Complete skbs in reverse order to reduce latencies. 4611 */ 4612 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4613 { 4614 struct sk_buff *skb, *prev = NULL; 4615 4616 /* scan list and build reverse chain */ 4617 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4618 skb->prev = prev; 4619 prev = skb; 4620 } 4621 4622 for (skb = prev; skb; skb = prev) { 4623 skb->next = NULL; 4624 4625 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4626 return; 4627 4628 prev = skb->prev; 4629 napi_gro_complete(skb); 4630 napi->gro_count--; 4631 } 4632 4633 napi->gro_list = NULL; 4634 } 4635 EXPORT_SYMBOL(napi_gro_flush); 4636 4637 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4638 { 4639 struct sk_buff *p; 4640 unsigned int maclen = skb->dev->hard_header_len; 4641 u32 hash = skb_get_hash_raw(skb); 4642 4643 for (p = napi->gro_list; p; p = p->next) { 4644 unsigned long diffs; 4645 4646 NAPI_GRO_CB(p)->flush = 0; 4647 4648 if (hash != skb_get_hash_raw(p)) { 4649 NAPI_GRO_CB(p)->same_flow = 0; 4650 continue; 4651 } 4652 4653 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4654 diffs |= p->vlan_tci ^ skb->vlan_tci; 4655 diffs |= skb_metadata_dst_cmp(p, skb); 4656 if (maclen == ETH_HLEN) 4657 diffs |= compare_ether_header(skb_mac_header(p), 4658 skb_mac_header(skb)); 4659 else if (!diffs) 4660 diffs = memcmp(skb_mac_header(p), 4661 skb_mac_header(skb), 4662 maclen); 4663 NAPI_GRO_CB(p)->same_flow = !diffs; 4664 } 4665 } 4666 4667 static void skb_gro_reset_offset(struct sk_buff *skb) 4668 { 4669 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4670 const skb_frag_t *frag0 = &pinfo->frags[0]; 4671 4672 NAPI_GRO_CB(skb)->data_offset = 0; 4673 NAPI_GRO_CB(skb)->frag0 = NULL; 4674 NAPI_GRO_CB(skb)->frag0_len = 0; 4675 4676 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4677 pinfo->nr_frags && 4678 !PageHighMem(skb_frag_page(frag0))) { 4679 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4680 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4681 skb_frag_size(frag0), 4682 skb->end - skb->tail); 4683 } 4684 } 4685 4686 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4687 { 4688 struct skb_shared_info *pinfo = skb_shinfo(skb); 4689 4690 BUG_ON(skb->end - skb->tail < grow); 4691 4692 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4693 4694 skb->data_len -= grow; 4695 skb->tail += grow; 4696 4697 pinfo->frags[0].page_offset += grow; 4698 skb_frag_size_sub(&pinfo->frags[0], grow); 4699 4700 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4701 skb_frag_unref(skb, 0); 4702 memmove(pinfo->frags, pinfo->frags + 1, 4703 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4704 } 4705 } 4706 4707 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4708 { 4709 struct sk_buff **pp = NULL; 4710 struct packet_offload *ptype; 4711 __be16 type = skb->protocol; 4712 struct list_head *head = &offload_base; 4713 int same_flow; 4714 enum gro_result ret; 4715 int grow; 4716 4717 if (netif_elide_gro(skb->dev)) 4718 goto normal; 4719 4720 gro_list_prepare(napi, skb); 4721 4722 rcu_read_lock(); 4723 list_for_each_entry_rcu(ptype, head, list) { 4724 if (ptype->type != type || !ptype->callbacks.gro_receive) 4725 continue; 4726 4727 skb_set_network_header(skb, skb_gro_offset(skb)); 4728 skb_reset_mac_len(skb); 4729 NAPI_GRO_CB(skb)->same_flow = 0; 4730 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4731 NAPI_GRO_CB(skb)->free = 0; 4732 NAPI_GRO_CB(skb)->encap_mark = 0; 4733 NAPI_GRO_CB(skb)->recursion_counter = 0; 4734 NAPI_GRO_CB(skb)->is_fou = 0; 4735 NAPI_GRO_CB(skb)->is_atomic = 1; 4736 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4737 4738 /* Setup for GRO checksum validation */ 4739 switch (skb->ip_summed) { 4740 case CHECKSUM_COMPLETE: 4741 NAPI_GRO_CB(skb)->csum = skb->csum; 4742 NAPI_GRO_CB(skb)->csum_valid = 1; 4743 NAPI_GRO_CB(skb)->csum_cnt = 0; 4744 break; 4745 case CHECKSUM_UNNECESSARY: 4746 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4747 NAPI_GRO_CB(skb)->csum_valid = 0; 4748 break; 4749 default: 4750 NAPI_GRO_CB(skb)->csum_cnt = 0; 4751 NAPI_GRO_CB(skb)->csum_valid = 0; 4752 } 4753 4754 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4755 break; 4756 } 4757 rcu_read_unlock(); 4758 4759 if (&ptype->list == head) 4760 goto normal; 4761 4762 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4763 ret = GRO_CONSUMED; 4764 goto ok; 4765 } 4766 4767 same_flow = NAPI_GRO_CB(skb)->same_flow; 4768 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4769 4770 if (pp) { 4771 struct sk_buff *nskb = *pp; 4772 4773 *pp = nskb->next; 4774 nskb->next = NULL; 4775 napi_gro_complete(nskb); 4776 napi->gro_count--; 4777 } 4778 4779 if (same_flow) 4780 goto ok; 4781 4782 if (NAPI_GRO_CB(skb)->flush) 4783 goto normal; 4784 4785 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4786 struct sk_buff *nskb = napi->gro_list; 4787 4788 /* locate the end of the list to select the 'oldest' flow */ 4789 while (nskb->next) { 4790 pp = &nskb->next; 4791 nskb = *pp; 4792 } 4793 *pp = NULL; 4794 nskb->next = NULL; 4795 napi_gro_complete(nskb); 4796 } else { 4797 napi->gro_count++; 4798 } 4799 NAPI_GRO_CB(skb)->count = 1; 4800 NAPI_GRO_CB(skb)->age = jiffies; 4801 NAPI_GRO_CB(skb)->last = skb; 4802 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4803 skb->next = napi->gro_list; 4804 napi->gro_list = skb; 4805 ret = GRO_HELD; 4806 4807 pull: 4808 grow = skb_gro_offset(skb) - skb_headlen(skb); 4809 if (grow > 0) 4810 gro_pull_from_frag0(skb, grow); 4811 ok: 4812 return ret; 4813 4814 normal: 4815 ret = GRO_NORMAL; 4816 goto pull; 4817 } 4818 4819 struct packet_offload *gro_find_receive_by_type(__be16 type) 4820 { 4821 struct list_head *offload_head = &offload_base; 4822 struct packet_offload *ptype; 4823 4824 list_for_each_entry_rcu(ptype, offload_head, list) { 4825 if (ptype->type != type || !ptype->callbacks.gro_receive) 4826 continue; 4827 return ptype; 4828 } 4829 return NULL; 4830 } 4831 EXPORT_SYMBOL(gro_find_receive_by_type); 4832 4833 struct packet_offload *gro_find_complete_by_type(__be16 type) 4834 { 4835 struct list_head *offload_head = &offload_base; 4836 struct packet_offload *ptype; 4837 4838 list_for_each_entry_rcu(ptype, offload_head, list) { 4839 if (ptype->type != type || !ptype->callbacks.gro_complete) 4840 continue; 4841 return ptype; 4842 } 4843 return NULL; 4844 } 4845 EXPORT_SYMBOL(gro_find_complete_by_type); 4846 4847 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4848 { 4849 switch (ret) { 4850 case GRO_NORMAL: 4851 if (netif_receive_skb_internal(skb)) 4852 ret = GRO_DROP; 4853 break; 4854 4855 case GRO_DROP: 4856 kfree_skb(skb); 4857 break; 4858 4859 case GRO_MERGED_FREE: 4860 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { 4861 skb_dst_drop(skb); 4862 secpath_reset(skb); 4863 kmem_cache_free(skbuff_head_cache, skb); 4864 } else { 4865 __kfree_skb(skb); 4866 } 4867 break; 4868 4869 case GRO_HELD: 4870 case GRO_MERGED: 4871 case GRO_CONSUMED: 4872 break; 4873 } 4874 4875 return ret; 4876 } 4877 4878 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4879 { 4880 skb_mark_napi_id(skb, napi); 4881 trace_napi_gro_receive_entry(skb); 4882 4883 skb_gro_reset_offset(skb); 4884 4885 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4886 } 4887 EXPORT_SYMBOL(napi_gro_receive); 4888 4889 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4890 { 4891 if (unlikely(skb->pfmemalloc)) { 4892 consume_skb(skb); 4893 return; 4894 } 4895 __skb_pull(skb, skb_headlen(skb)); 4896 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4897 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4898 skb->vlan_tci = 0; 4899 skb->dev = napi->dev; 4900 skb->skb_iif = 0; 4901 skb->encapsulation = 0; 4902 skb_shinfo(skb)->gso_type = 0; 4903 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4904 secpath_reset(skb); 4905 4906 napi->skb = skb; 4907 } 4908 4909 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4910 { 4911 struct sk_buff *skb = napi->skb; 4912 4913 if (!skb) { 4914 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4915 if (skb) { 4916 napi->skb = skb; 4917 skb_mark_napi_id(skb, napi); 4918 } 4919 } 4920 return skb; 4921 } 4922 EXPORT_SYMBOL(napi_get_frags); 4923 4924 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4925 struct sk_buff *skb, 4926 gro_result_t ret) 4927 { 4928 switch (ret) { 4929 case GRO_NORMAL: 4930 case GRO_HELD: 4931 __skb_push(skb, ETH_HLEN); 4932 skb->protocol = eth_type_trans(skb, skb->dev); 4933 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4934 ret = GRO_DROP; 4935 break; 4936 4937 case GRO_DROP: 4938 case GRO_MERGED_FREE: 4939 napi_reuse_skb(napi, skb); 4940 break; 4941 4942 case GRO_MERGED: 4943 case GRO_CONSUMED: 4944 break; 4945 } 4946 4947 return ret; 4948 } 4949 4950 /* Upper GRO stack assumes network header starts at gro_offset=0 4951 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4952 * We copy ethernet header into skb->data to have a common layout. 4953 */ 4954 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4955 { 4956 struct sk_buff *skb = napi->skb; 4957 const struct ethhdr *eth; 4958 unsigned int hlen = sizeof(*eth); 4959 4960 napi->skb = NULL; 4961 4962 skb_reset_mac_header(skb); 4963 skb_gro_reset_offset(skb); 4964 4965 eth = skb_gro_header_fast(skb, 0); 4966 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4967 eth = skb_gro_header_slow(skb, hlen, 0); 4968 if (unlikely(!eth)) { 4969 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 4970 __func__, napi->dev->name); 4971 napi_reuse_skb(napi, skb); 4972 return NULL; 4973 } 4974 } else { 4975 gro_pull_from_frag0(skb, hlen); 4976 NAPI_GRO_CB(skb)->frag0 += hlen; 4977 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4978 } 4979 __skb_pull(skb, hlen); 4980 4981 /* 4982 * This works because the only protocols we care about don't require 4983 * special handling. 4984 * We'll fix it up properly in napi_frags_finish() 4985 */ 4986 skb->protocol = eth->h_proto; 4987 4988 return skb; 4989 } 4990 4991 gro_result_t napi_gro_frags(struct napi_struct *napi) 4992 { 4993 struct sk_buff *skb = napi_frags_skb(napi); 4994 4995 if (!skb) 4996 return GRO_DROP; 4997 4998 trace_napi_gro_frags_entry(skb); 4999 5000 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5001 } 5002 EXPORT_SYMBOL(napi_gro_frags); 5003 5004 /* Compute the checksum from gro_offset and return the folded value 5005 * after adding in any pseudo checksum. 5006 */ 5007 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5008 { 5009 __wsum wsum; 5010 __sum16 sum; 5011 5012 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5013 5014 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5015 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5016 if (likely(!sum)) { 5017 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5018 !skb->csum_complete_sw) 5019 netdev_rx_csum_fault(skb->dev); 5020 } 5021 5022 NAPI_GRO_CB(skb)->csum = wsum; 5023 NAPI_GRO_CB(skb)->csum_valid = 1; 5024 5025 return sum; 5026 } 5027 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5028 5029 static void net_rps_send_ipi(struct softnet_data *remsd) 5030 { 5031 #ifdef CONFIG_RPS 5032 while (remsd) { 5033 struct softnet_data *next = remsd->rps_ipi_next; 5034 5035 if (cpu_online(remsd->cpu)) 5036 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5037 remsd = next; 5038 } 5039 #endif 5040 } 5041 5042 /* 5043 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5044 * Note: called with local irq disabled, but exits with local irq enabled. 5045 */ 5046 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5047 { 5048 #ifdef CONFIG_RPS 5049 struct softnet_data *remsd = sd->rps_ipi_list; 5050 5051 if (remsd) { 5052 sd->rps_ipi_list = NULL; 5053 5054 local_irq_enable(); 5055 5056 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5057 net_rps_send_ipi(remsd); 5058 } else 5059 #endif 5060 local_irq_enable(); 5061 } 5062 5063 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5064 { 5065 #ifdef CONFIG_RPS 5066 return sd->rps_ipi_list != NULL; 5067 #else 5068 return false; 5069 #endif 5070 } 5071 5072 static int process_backlog(struct napi_struct *napi, int quota) 5073 { 5074 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5075 bool again = true; 5076 int work = 0; 5077 5078 /* Check if we have pending ipi, its better to send them now, 5079 * not waiting net_rx_action() end. 5080 */ 5081 if (sd_has_rps_ipi_waiting(sd)) { 5082 local_irq_disable(); 5083 net_rps_action_and_irq_enable(sd); 5084 } 5085 5086 napi->weight = dev_rx_weight; 5087 while (again) { 5088 struct sk_buff *skb; 5089 5090 while ((skb = __skb_dequeue(&sd->process_queue))) { 5091 rcu_read_lock(); 5092 __netif_receive_skb(skb); 5093 rcu_read_unlock(); 5094 input_queue_head_incr(sd); 5095 if (++work >= quota) 5096 return work; 5097 5098 } 5099 5100 local_irq_disable(); 5101 rps_lock(sd); 5102 if (skb_queue_empty(&sd->input_pkt_queue)) { 5103 /* 5104 * Inline a custom version of __napi_complete(). 5105 * only current cpu owns and manipulates this napi, 5106 * and NAPI_STATE_SCHED is the only possible flag set 5107 * on backlog. 5108 * We can use a plain write instead of clear_bit(), 5109 * and we dont need an smp_mb() memory barrier. 5110 */ 5111 napi->state = 0; 5112 again = false; 5113 } else { 5114 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5115 &sd->process_queue); 5116 } 5117 rps_unlock(sd); 5118 local_irq_enable(); 5119 } 5120 5121 return work; 5122 } 5123 5124 /** 5125 * __napi_schedule - schedule for receive 5126 * @n: entry to schedule 5127 * 5128 * The entry's receive function will be scheduled to run. 5129 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5130 */ 5131 void __napi_schedule(struct napi_struct *n) 5132 { 5133 unsigned long flags; 5134 5135 local_irq_save(flags); 5136 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5137 local_irq_restore(flags); 5138 } 5139 EXPORT_SYMBOL(__napi_schedule); 5140 5141 /** 5142 * napi_schedule_prep - check if napi can be scheduled 5143 * @n: napi context 5144 * 5145 * Test if NAPI routine is already running, and if not mark 5146 * it as running. This is used as a condition variable 5147 * insure only one NAPI poll instance runs. We also make 5148 * sure there is no pending NAPI disable. 5149 */ 5150 bool napi_schedule_prep(struct napi_struct *n) 5151 { 5152 unsigned long val, new; 5153 5154 do { 5155 val = READ_ONCE(n->state); 5156 if (unlikely(val & NAPIF_STATE_DISABLE)) 5157 return false; 5158 new = val | NAPIF_STATE_SCHED; 5159 5160 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5161 * This was suggested by Alexander Duyck, as compiler 5162 * emits better code than : 5163 * if (val & NAPIF_STATE_SCHED) 5164 * new |= NAPIF_STATE_MISSED; 5165 */ 5166 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5167 NAPIF_STATE_MISSED; 5168 } while (cmpxchg(&n->state, val, new) != val); 5169 5170 return !(val & NAPIF_STATE_SCHED); 5171 } 5172 EXPORT_SYMBOL(napi_schedule_prep); 5173 5174 /** 5175 * __napi_schedule_irqoff - schedule for receive 5176 * @n: entry to schedule 5177 * 5178 * Variant of __napi_schedule() assuming hard irqs are masked 5179 */ 5180 void __napi_schedule_irqoff(struct napi_struct *n) 5181 { 5182 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5183 } 5184 EXPORT_SYMBOL(__napi_schedule_irqoff); 5185 5186 bool napi_complete_done(struct napi_struct *n, int work_done) 5187 { 5188 unsigned long flags, val, new; 5189 5190 /* 5191 * 1) Don't let napi dequeue from the cpu poll list 5192 * just in case its running on a different cpu. 5193 * 2) If we are busy polling, do nothing here, we have 5194 * the guarantee we will be called later. 5195 */ 5196 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5197 NAPIF_STATE_IN_BUSY_POLL))) 5198 return false; 5199 5200 if (n->gro_list) { 5201 unsigned long timeout = 0; 5202 5203 if (work_done) 5204 timeout = n->dev->gro_flush_timeout; 5205 5206 if (timeout) 5207 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5208 HRTIMER_MODE_REL_PINNED); 5209 else 5210 napi_gro_flush(n, false); 5211 } 5212 if (unlikely(!list_empty(&n->poll_list))) { 5213 /* If n->poll_list is not empty, we need to mask irqs */ 5214 local_irq_save(flags); 5215 list_del_init(&n->poll_list); 5216 local_irq_restore(flags); 5217 } 5218 5219 do { 5220 val = READ_ONCE(n->state); 5221 5222 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5223 5224 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5225 5226 /* If STATE_MISSED was set, leave STATE_SCHED set, 5227 * because we will call napi->poll() one more time. 5228 * This C code was suggested by Alexander Duyck to help gcc. 5229 */ 5230 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5231 NAPIF_STATE_SCHED; 5232 } while (cmpxchg(&n->state, val, new) != val); 5233 5234 if (unlikely(val & NAPIF_STATE_MISSED)) { 5235 __napi_schedule(n); 5236 return false; 5237 } 5238 5239 return true; 5240 } 5241 EXPORT_SYMBOL(napi_complete_done); 5242 5243 /* must be called under rcu_read_lock(), as we dont take a reference */ 5244 static struct napi_struct *napi_by_id(unsigned int napi_id) 5245 { 5246 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5247 struct napi_struct *napi; 5248 5249 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5250 if (napi->napi_id == napi_id) 5251 return napi; 5252 5253 return NULL; 5254 } 5255 5256 #if defined(CONFIG_NET_RX_BUSY_POLL) 5257 5258 #define BUSY_POLL_BUDGET 8 5259 5260 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5261 { 5262 int rc; 5263 5264 /* Busy polling means there is a high chance device driver hard irq 5265 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5266 * set in napi_schedule_prep(). 5267 * Since we are about to call napi->poll() once more, we can safely 5268 * clear NAPI_STATE_MISSED. 5269 * 5270 * Note: x86 could use a single "lock and ..." instruction 5271 * to perform these two clear_bit() 5272 */ 5273 clear_bit(NAPI_STATE_MISSED, &napi->state); 5274 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5275 5276 local_bh_disable(); 5277 5278 /* All we really want here is to re-enable device interrupts. 5279 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5280 */ 5281 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5282 netpoll_poll_unlock(have_poll_lock); 5283 if (rc == BUSY_POLL_BUDGET) 5284 __napi_schedule(napi); 5285 local_bh_enable(); 5286 if (local_softirq_pending()) 5287 do_softirq(); 5288 } 5289 5290 void napi_busy_loop(unsigned int napi_id, 5291 bool (*loop_end)(void *, unsigned long), 5292 void *loop_end_arg) 5293 { 5294 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5295 int (*napi_poll)(struct napi_struct *napi, int budget); 5296 void *have_poll_lock = NULL; 5297 struct napi_struct *napi; 5298 5299 restart: 5300 napi_poll = NULL; 5301 5302 rcu_read_lock(); 5303 5304 napi = napi_by_id(napi_id); 5305 if (!napi) 5306 goto out; 5307 5308 preempt_disable(); 5309 for (;;) { 5310 int work = 0; 5311 5312 local_bh_disable(); 5313 if (!napi_poll) { 5314 unsigned long val = READ_ONCE(napi->state); 5315 5316 /* If multiple threads are competing for this napi, 5317 * we avoid dirtying napi->state as much as we can. 5318 */ 5319 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5320 NAPIF_STATE_IN_BUSY_POLL)) 5321 goto count; 5322 if (cmpxchg(&napi->state, val, 5323 val | NAPIF_STATE_IN_BUSY_POLL | 5324 NAPIF_STATE_SCHED) != val) 5325 goto count; 5326 have_poll_lock = netpoll_poll_lock(napi); 5327 napi_poll = napi->poll; 5328 } 5329 work = napi_poll(napi, BUSY_POLL_BUDGET); 5330 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5331 count: 5332 if (work > 0) 5333 __NET_ADD_STATS(dev_net(napi->dev), 5334 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5335 local_bh_enable(); 5336 5337 if (!loop_end || loop_end(loop_end_arg, start_time)) 5338 break; 5339 5340 if (unlikely(need_resched())) { 5341 if (napi_poll) 5342 busy_poll_stop(napi, have_poll_lock); 5343 preempt_enable(); 5344 rcu_read_unlock(); 5345 cond_resched(); 5346 if (loop_end(loop_end_arg, start_time)) 5347 return; 5348 goto restart; 5349 } 5350 cpu_relax(); 5351 } 5352 if (napi_poll) 5353 busy_poll_stop(napi, have_poll_lock); 5354 preempt_enable(); 5355 out: 5356 rcu_read_unlock(); 5357 } 5358 EXPORT_SYMBOL(napi_busy_loop); 5359 5360 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5361 5362 static void napi_hash_add(struct napi_struct *napi) 5363 { 5364 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5365 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5366 return; 5367 5368 spin_lock(&napi_hash_lock); 5369 5370 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5371 do { 5372 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5373 napi_gen_id = MIN_NAPI_ID; 5374 } while (napi_by_id(napi_gen_id)); 5375 napi->napi_id = napi_gen_id; 5376 5377 hlist_add_head_rcu(&napi->napi_hash_node, 5378 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5379 5380 spin_unlock(&napi_hash_lock); 5381 } 5382 5383 /* Warning : caller is responsible to make sure rcu grace period 5384 * is respected before freeing memory containing @napi 5385 */ 5386 bool napi_hash_del(struct napi_struct *napi) 5387 { 5388 bool rcu_sync_needed = false; 5389 5390 spin_lock(&napi_hash_lock); 5391 5392 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5393 rcu_sync_needed = true; 5394 hlist_del_rcu(&napi->napi_hash_node); 5395 } 5396 spin_unlock(&napi_hash_lock); 5397 return rcu_sync_needed; 5398 } 5399 EXPORT_SYMBOL_GPL(napi_hash_del); 5400 5401 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5402 { 5403 struct napi_struct *napi; 5404 5405 napi = container_of(timer, struct napi_struct, timer); 5406 5407 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5408 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5409 */ 5410 if (napi->gro_list && !napi_disable_pending(napi) && 5411 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5412 __napi_schedule_irqoff(napi); 5413 5414 return HRTIMER_NORESTART; 5415 } 5416 5417 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5418 int (*poll)(struct napi_struct *, int), int weight) 5419 { 5420 INIT_LIST_HEAD(&napi->poll_list); 5421 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5422 napi->timer.function = napi_watchdog; 5423 napi->gro_count = 0; 5424 napi->gro_list = NULL; 5425 napi->skb = NULL; 5426 napi->poll = poll; 5427 if (weight > NAPI_POLL_WEIGHT) 5428 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5429 weight, dev->name); 5430 napi->weight = weight; 5431 list_add(&napi->dev_list, &dev->napi_list); 5432 napi->dev = dev; 5433 #ifdef CONFIG_NETPOLL 5434 napi->poll_owner = -1; 5435 #endif 5436 set_bit(NAPI_STATE_SCHED, &napi->state); 5437 napi_hash_add(napi); 5438 } 5439 EXPORT_SYMBOL(netif_napi_add); 5440 5441 void napi_disable(struct napi_struct *n) 5442 { 5443 might_sleep(); 5444 set_bit(NAPI_STATE_DISABLE, &n->state); 5445 5446 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5447 msleep(1); 5448 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5449 msleep(1); 5450 5451 hrtimer_cancel(&n->timer); 5452 5453 clear_bit(NAPI_STATE_DISABLE, &n->state); 5454 } 5455 EXPORT_SYMBOL(napi_disable); 5456 5457 /* Must be called in process context */ 5458 void netif_napi_del(struct napi_struct *napi) 5459 { 5460 might_sleep(); 5461 if (napi_hash_del(napi)) 5462 synchronize_net(); 5463 list_del_init(&napi->dev_list); 5464 napi_free_frags(napi); 5465 5466 kfree_skb_list(napi->gro_list); 5467 napi->gro_list = NULL; 5468 napi->gro_count = 0; 5469 } 5470 EXPORT_SYMBOL(netif_napi_del); 5471 5472 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5473 { 5474 void *have; 5475 int work, weight; 5476 5477 list_del_init(&n->poll_list); 5478 5479 have = netpoll_poll_lock(n); 5480 5481 weight = n->weight; 5482 5483 /* This NAPI_STATE_SCHED test is for avoiding a race 5484 * with netpoll's poll_napi(). Only the entity which 5485 * obtains the lock and sees NAPI_STATE_SCHED set will 5486 * actually make the ->poll() call. Therefore we avoid 5487 * accidentally calling ->poll() when NAPI is not scheduled. 5488 */ 5489 work = 0; 5490 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5491 work = n->poll(n, weight); 5492 trace_napi_poll(n, work, weight); 5493 } 5494 5495 WARN_ON_ONCE(work > weight); 5496 5497 if (likely(work < weight)) 5498 goto out_unlock; 5499 5500 /* Drivers must not modify the NAPI state if they 5501 * consume the entire weight. In such cases this code 5502 * still "owns" the NAPI instance and therefore can 5503 * move the instance around on the list at-will. 5504 */ 5505 if (unlikely(napi_disable_pending(n))) { 5506 napi_complete(n); 5507 goto out_unlock; 5508 } 5509 5510 if (n->gro_list) { 5511 /* flush too old packets 5512 * If HZ < 1000, flush all packets. 5513 */ 5514 napi_gro_flush(n, HZ >= 1000); 5515 } 5516 5517 /* Some drivers may have called napi_schedule 5518 * prior to exhausting their budget. 5519 */ 5520 if (unlikely(!list_empty(&n->poll_list))) { 5521 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5522 n->dev ? n->dev->name : "backlog"); 5523 goto out_unlock; 5524 } 5525 5526 list_add_tail(&n->poll_list, repoll); 5527 5528 out_unlock: 5529 netpoll_poll_unlock(have); 5530 5531 return work; 5532 } 5533 5534 static __latent_entropy void net_rx_action(struct softirq_action *h) 5535 { 5536 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5537 unsigned long time_limit = jiffies + 5538 usecs_to_jiffies(netdev_budget_usecs); 5539 int budget = netdev_budget; 5540 LIST_HEAD(list); 5541 LIST_HEAD(repoll); 5542 5543 local_irq_disable(); 5544 list_splice_init(&sd->poll_list, &list); 5545 local_irq_enable(); 5546 5547 for (;;) { 5548 struct napi_struct *n; 5549 5550 if (list_empty(&list)) { 5551 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5552 goto out; 5553 break; 5554 } 5555 5556 n = list_first_entry(&list, struct napi_struct, poll_list); 5557 budget -= napi_poll(n, &repoll); 5558 5559 /* If softirq window is exhausted then punt. 5560 * Allow this to run for 2 jiffies since which will allow 5561 * an average latency of 1.5/HZ. 5562 */ 5563 if (unlikely(budget <= 0 || 5564 time_after_eq(jiffies, time_limit))) { 5565 sd->time_squeeze++; 5566 break; 5567 } 5568 } 5569 5570 local_irq_disable(); 5571 5572 list_splice_tail_init(&sd->poll_list, &list); 5573 list_splice_tail(&repoll, &list); 5574 list_splice(&list, &sd->poll_list); 5575 if (!list_empty(&sd->poll_list)) 5576 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5577 5578 net_rps_action_and_irq_enable(sd); 5579 out: 5580 __kfree_skb_flush(); 5581 } 5582 5583 struct netdev_adjacent { 5584 struct net_device *dev; 5585 5586 /* upper master flag, there can only be one master device per list */ 5587 bool master; 5588 5589 /* counter for the number of times this device was added to us */ 5590 u16 ref_nr; 5591 5592 /* private field for the users */ 5593 void *private; 5594 5595 struct list_head list; 5596 struct rcu_head rcu; 5597 }; 5598 5599 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5600 struct list_head *adj_list) 5601 { 5602 struct netdev_adjacent *adj; 5603 5604 list_for_each_entry(adj, adj_list, list) { 5605 if (adj->dev == adj_dev) 5606 return adj; 5607 } 5608 return NULL; 5609 } 5610 5611 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5612 { 5613 struct net_device *dev = data; 5614 5615 return upper_dev == dev; 5616 } 5617 5618 /** 5619 * netdev_has_upper_dev - Check if device is linked to an upper device 5620 * @dev: device 5621 * @upper_dev: upper device to check 5622 * 5623 * Find out if a device is linked to specified upper device and return true 5624 * in case it is. Note that this checks only immediate upper device, 5625 * not through a complete stack of devices. The caller must hold the RTNL lock. 5626 */ 5627 bool netdev_has_upper_dev(struct net_device *dev, 5628 struct net_device *upper_dev) 5629 { 5630 ASSERT_RTNL(); 5631 5632 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5633 upper_dev); 5634 } 5635 EXPORT_SYMBOL(netdev_has_upper_dev); 5636 5637 /** 5638 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5639 * @dev: device 5640 * @upper_dev: upper device to check 5641 * 5642 * Find out if a device is linked to specified upper device and return true 5643 * in case it is. Note that this checks the entire upper device chain. 5644 * The caller must hold rcu lock. 5645 */ 5646 5647 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5648 struct net_device *upper_dev) 5649 { 5650 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5651 upper_dev); 5652 } 5653 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5654 5655 /** 5656 * netdev_has_any_upper_dev - Check if device is linked to some device 5657 * @dev: device 5658 * 5659 * Find out if a device is linked to an upper device and return true in case 5660 * it is. The caller must hold the RTNL lock. 5661 */ 5662 static bool netdev_has_any_upper_dev(struct net_device *dev) 5663 { 5664 ASSERT_RTNL(); 5665 5666 return !list_empty(&dev->adj_list.upper); 5667 } 5668 5669 /** 5670 * netdev_master_upper_dev_get - Get master upper device 5671 * @dev: device 5672 * 5673 * Find a master upper device and return pointer to it or NULL in case 5674 * it's not there. The caller must hold the RTNL lock. 5675 */ 5676 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5677 { 5678 struct netdev_adjacent *upper; 5679 5680 ASSERT_RTNL(); 5681 5682 if (list_empty(&dev->adj_list.upper)) 5683 return NULL; 5684 5685 upper = list_first_entry(&dev->adj_list.upper, 5686 struct netdev_adjacent, list); 5687 if (likely(upper->master)) 5688 return upper->dev; 5689 return NULL; 5690 } 5691 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5692 5693 /** 5694 * netdev_has_any_lower_dev - Check if device is linked to some device 5695 * @dev: device 5696 * 5697 * Find out if a device is linked to a lower device and return true in case 5698 * it is. The caller must hold the RTNL lock. 5699 */ 5700 static bool netdev_has_any_lower_dev(struct net_device *dev) 5701 { 5702 ASSERT_RTNL(); 5703 5704 return !list_empty(&dev->adj_list.lower); 5705 } 5706 5707 void *netdev_adjacent_get_private(struct list_head *adj_list) 5708 { 5709 struct netdev_adjacent *adj; 5710 5711 adj = list_entry(adj_list, struct netdev_adjacent, list); 5712 5713 return adj->private; 5714 } 5715 EXPORT_SYMBOL(netdev_adjacent_get_private); 5716 5717 /** 5718 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5719 * @dev: device 5720 * @iter: list_head ** of the current position 5721 * 5722 * Gets the next device from the dev's upper list, starting from iter 5723 * position. The caller must hold RCU read lock. 5724 */ 5725 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5726 struct list_head **iter) 5727 { 5728 struct netdev_adjacent *upper; 5729 5730 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5731 5732 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5733 5734 if (&upper->list == &dev->adj_list.upper) 5735 return NULL; 5736 5737 *iter = &upper->list; 5738 5739 return upper->dev; 5740 } 5741 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5742 5743 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5744 struct list_head **iter) 5745 { 5746 struct netdev_adjacent *upper; 5747 5748 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5749 5750 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5751 5752 if (&upper->list == &dev->adj_list.upper) 5753 return NULL; 5754 5755 *iter = &upper->list; 5756 5757 return upper->dev; 5758 } 5759 5760 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5761 int (*fn)(struct net_device *dev, 5762 void *data), 5763 void *data) 5764 { 5765 struct net_device *udev; 5766 struct list_head *iter; 5767 int ret; 5768 5769 for (iter = &dev->adj_list.upper, 5770 udev = netdev_next_upper_dev_rcu(dev, &iter); 5771 udev; 5772 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5773 /* first is the upper device itself */ 5774 ret = fn(udev, data); 5775 if (ret) 5776 return ret; 5777 5778 /* then look at all of its upper devices */ 5779 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5780 if (ret) 5781 return ret; 5782 } 5783 5784 return 0; 5785 } 5786 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5787 5788 /** 5789 * netdev_lower_get_next_private - Get the next ->private from the 5790 * lower neighbour list 5791 * @dev: device 5792 * @iter: list_head ** of the current position 5793 * 5794 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5795 * list, starting from iter position. The caller must hold either hold the 5796 * RTNL lock or its own locking that guarantees that the neighbour lower 5797 * list will remain unchanged. 5798 */ 5799 void *netdev_lower_get_next_private(struct net_device *dev, 5800 struct list_head **iter) 5801 { 5802 struct netdev_adjacent *lower; 5803 5804 lower = list_entry(*iter, struct netdev_adjacent, list); 5805 5806 if (&lower->list == &dev->adj_list.lower) 5807 return NULL; 5808 5809 *iter = lower->list.next; 5810 5811 return lower->private; 5812 } 5813 EXPORT_SYMBOL(netdev_lower_get_next_private); 5814 5815 /** 5816 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5817 * lower neighbour list, RCU 5818 * variant 5819 * @dev: device 5820 * @iter: list_head ** of the current position 5821 * 5822 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5823 * list, starting from iter position. The caller must hold RCU read lock. 5824 */ 5825 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5826 struct list_head **iter) 5827 { 5828 struct netdev_adjacent *lower; 5829 5830 WARN_ON_ONCE(!rcu_read_lock_held()); 5831 5832 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5833 5834 if (&lower->list == &dev->adj_list.lower) 5835 return NULL; 5836 5837 *iter = &lower->list; 5838 5839 return lower->private; 5840 } 5841 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5842 5843 /** 5844 * netdev_lower_get_next - Get the next device from the lower neighbour 5845 * list 5846 * @dev: device 5847 * @iter: list_head ** of the current position 5848 * 5849 * Gets the next netdev_adjacent from the dev's lower neighbour 5850 * list, starting from iter position. The caller must hold RTNL lock or 5851 * its own locking that guarantees that the neighbour lower 5852 * list will remain unchanged. 5853 */ 5854 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5855 { 5856 struct netdev_adjacent *lower; 5857 5858 lower = list_entry(*iter, struct netdev_adjacent, list); 5859 5860 if (&lower->list == &dev->adj_list.lower) 5861 return NULL; 5862 5863 *iter = lower->list.next; 5864 5865 return lower->dev; 5866 } 5867 EXPORT_SYMBOL(netdev_lower_get_next); 5868 5869 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5870 struct list_head **iter) 5871 { 5872 struct netdev_adjacent *lower; 5873 5874 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5875 5876 if (&lower->list == &dev->adj_list.lower) 5877 return NULL; 5878 5879 *iter = &lower->list; 5880 5881 return lower->dev; 5882 } 5883 5884 int netdev_walk_all_lower_dev(struct net_device *dev, 5885 int (*fn)(struct net_device *dev, 5886 void *data), 5887 void *data) 5888 { 5889 struct net_device *ldev; 5890 struct list_head *iter; 5891 int ret; 5892 5893 for (iter = &dev->adj_list.lower, 5894 ldev = netdev_next_lower_dev(dev, &iter); 5895 ldev; 5896 ldev = netdev_next_lower_dev(dev, &iter)) { 5897 /* first is the lower device itself */ 5898 ret = fn(ldev, data); 5899 if (ret) 5900 return ret; 5901 5902 /* then look at all of its lower devices */ 5903 ret = netdev_walk_all_lower_dev(ldev, fn, data); 5904 if (ret) 5905 return ret; 5906 } 5907 5908 return 0; 5909 } 5910 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 5911 5912 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5913 struct list_head **iter) 5914 { 5915 struct netdev_adjacent *lower; 5916 5917 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5918 if (&lower->list == &dev->adj_list.lower) 5919 return NULL; 5920 5921 *iter = &lower->list; 5922 5923 return lower->dev; 5924 } 5925 5926 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5927 int (*fn)(struct net_device *dev, 5928 void *data), 5929 void *data) 5930 { 5931 struct net_device *ldev; 5932 struct list_head *iter; 5933 int ret; 5934 5935 for (iter = &dev->adj_list.lower, 5936 ldev = netdev_next_lower_dev_rcu(dev, &iter); 5937 ldev; 5938 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 5939 /* first is the lower device itself */ 5940 ret = fn(ldev, data); 5941 if (ret) 5942 return ret; 5943 5944 /* then look at all of its lower devices */ 5945 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 5946 if (ret) 5947 return ret; 5948 } 5949 5950 return 0; 5951 } 5952 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 5953 5954 /** 5955 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5956 * lower neighbour list, RCU 5957 * variant 5958 * @dev: device 5959 * 5960 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5961 * list. The caller must hold RCU read lock. 5962 */ 5963 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5964 { 5965 struct netdev_adjacent *lower; 5966 5967 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5968 struct netdev_adjacent, list); 5969 if (lower) 5970 return lower->private; 5971 return NULL; 5972 } 5973 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5974 5975 /** 5976 * netdev_master_upper_dev_get_rcu - Get master upper device 5977 * @dev: device 5978 * 5979 * Find a master upper device and return pointer to it or NULL in case 5980 * it's not there. The caller must hold the RCU read lock. 5981 */ 5982 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5983 { 5984 struct netdev_adjacent *upper; 5985 5986 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5987 struct netdev_adjacent, list); 5988 if (upper && likely(upper->master)) 5989 return upper->dev; 5990 return NULL; 5991 } 5992 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5993 5994 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5995 struct net_device *adj_dev, 5996 struct list_head *dev_list) 5997 { 5998 char linkname[IFNAMSIZ+7]; 5999 6000 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6001 "upper_%s" : "lower_%s", adj_dev->name); 6002 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6003 linkname); 6004 } 6005 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6006 char *name, 6007 struct list_head *dev_list) 6008 { 6009 char linkname[IFNAMSIZ+7]; 6010 6011 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6012 "upper_%s" : "lower_%s", name); 6013 sysfs_remove_link(&(dev->dev.kobj), linkname); 6014 } 6015 6016 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6017 struct net_device *adj_dev, 6018 struct list_head *dev_list) 6019 { 6020 return (dev_list == &dev->adj_list.upper || 6021 dev_list == &dev->adj_list.lower) && 6022 net_eq(dev_net(dev), dev_net(adj_dev)); 6023 } 6024 6025 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6026 struct net_device *adj_dev, 6027 struct list_head *dev_list, 6028 void *private, bool master) 6029 { 6030 struct netdev_adjacent *adj; 6031 int ret; 6032 6033 adj = __netdev_find_adj(adj_dev, dev_list); 6034 6035 if (adj) { 6036 adj->ref_nr += 1; 6037 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6038 dev->name, adj_dev->name, adj->ref_nr); 6039 6040 return 0; 6041 } 6042 6043 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6044 if (!adj) 6045 return -ENOMEM; 6046 6047 adj->dev = adj_dev; 6048 adj->master = master; 6049 adj->ref_nr = 1; 6050 adj->private = private; 6051 dev_hold(adj_dev); 6052 6053 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6054 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6055 6056 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6057 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6058 if (ret) 6059 goto free_adj; 6060 } 6061 6062 /* Ensure that master link is always the first item in list. */ 6063 if (master) { 6064 ret = sysfs_create_link(&(dev->dev.kobj), 6065 &(adj_dev->dev.kobj), "master"); 6066 if (ret) 6067 goto remove_symlinks; 6068 6069 list_add_rcu(&adj->list, dev_list); 6070 } else { 6071 list_add_tail_rcu(&adj->list, dev_list); 6072 } 6073 6074 return 0; 6075 6076 remove_symlinks: 6077 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6078 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6079 free_adj: 6080 kfree(adj); 6081 dev_put(adj_dev); 6082 6083 return ret; 6084 } 6085 6086 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6087 struct net_device *adj_dev, 6088 u16 ref_nr, 6089 struct list_head *dev_list) 6090 { 6091 struct netdev_adjacent *adj; 6092 6093 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6094 dev->name, adj_dev->name, ref_nr); 6095 6096 adj = __netdev_find_adj(adj_dev, dev_list); 6097 6098 if (!adj) { 6099 pr_err("Adjacency does not exist for device %s from %s\n", 6100 dev->name, adj_dev->name); 6101 WARN_ON(1); 6102 return; 6103 } 6104 6105 if (adj->ref_nr > ref_nr) { 6106 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6107 dev->name, adj_dev->name, ref_nr, 6108 adj->ref_nr - ref_nr); 6109 adj->ref_nr -= ref_nr; 6110 return; 6111 } 6112 6113 if (adj->master) 6114 sysfs_remove_link(&(dev->dev.kobj), "master"); 6115 6116 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6117 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6118 6119 list_del_rcu(&adj->list); 6120 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6121 adj_dev->name, dev->name, adj_dev->name); 6122 dev_put(adj_dev); 6123 kfree_rcu(adj, rcu); 6124 } 6125 6126 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6127 struct net_device *upper_dev, 6128 struct list_head *up_list, 6129 struct list_head *down_list, 6130 void *private, bool master) 6131 { 6132 int ret; 6133 6134 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6135 private, master); 6136 if (ret) 6137 return ret; 6138 6139 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6140 private, false); 6141 if (ret) { 6142 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6143 return ret; 6144 } 6145 6146 return 0; 6147 } 6148 6149 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6150 struct net_device *upper_dev, 6151 u16 ref_nr, 6152 struct list_head *up_list, 6153 struct list_head *down_list) 6154 { 6155 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6156 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6157 } 6158 6159 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6160 struct net_device *upper_dev, 6161 void *private, bool master) 6162 { 6163 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6164 &dev->adj_list.upper, 6165 &upper_dev->adj_list.lower, 6166 private, master); 6167 } 6168 6169 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6170 struct net_device *upper_dev) 6171 { 6172 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6173 &dev->adj_list.upper, 6174 &upper_dev->adj_list.lower); 6175 } 6176 6177 static int __netdev_upper_dev_link(struct net_device *dev, 6178 struct net_device *upper_dev, bool master, 6179 void *upper_priv, void *upper_info) 6180 { 6181 struct netdev_notifier_changeupper_info changeupper_info; 6182 int ret = 0; 6183 6184 ASSERT_RTNL(); 6185 6186 if (dev == upper_dev) 6187 return -EBUSY; 6188 6189 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6190 if (netdev_has_upper_dev(upper_dev, dev)) 6191 return -EBUSY; 6192 6193 if (netdev_has_upper_dev(dev, upper_dev)) 6194 return -EEXIST; 6195 6196 if (master && netdev_master_upper_dev_get(dev)) 6197 return -EBUSY; 6198 6199 changeupper_info.upper_dev = upper_dev; 6200 changeupper_info.master = master; 6201 changeupper_info.linking = true; 6202 changeupper_info.upper_info = upper_info; 6203 6204 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6205 &changeupper_info.info); 6206 ret = notifier_to_errno(ret); 6207 if (ret) 6208 return ret; 6209 6210 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6211 master); 6212 if (ret) 6213 return ret; 6214 6215 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6216 &changeupper_info.info); 6217 ret = notifier_to_errno(ret); 6218 if (ret) 6219 goto rollback; 6220 6221 return 0; 6222 6223 rollback: 6224 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6225 6226 return ret; 6227 } 6228 6229 /** 6230 * netdev_upper_dev_link - Add a link to the upper device 6231 * @dev: device 6232 * @upper_dev: new upper device 6233 * 6234 * Adds a link to device which is upper to this one. The caller must hold 6235 * the RTNL lock. On a failure a negative errno code is returned. 6236 * On success the reference counts are adjusted and the function 6237 * returns zero. 6238 */ 6239 int netdev_upper_dev_link(struct net_device *dev, 6240 struct net_device *upper_dev) 6241 { 6242 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 6243 } 6244 EXPORT_SYMBOL(netdev_upper_dev_link); 6245 6246 /** 6247 * netdev_master_upper_dev_link - Add a master link to the upper device 6248 * @dev: device 6249 * @upper_dev: new upper device 6250 * @upper_priv: upper device private 6251 * @upper_info: upper info to be passed down via notifier 6252 * 6253 * Adds a link to device which is upper to this one. In this case, only 6254 * one master upper device can be linked, although other non-master devices 6255 * might be linked as well. The caller must hold the RTNL lock. 6256 * On a failure a negative errno code is returned. On success the reference 6257 * counts are adjusted and the function returns zero. 6258 */ 6259 int netdev_master_upper_dev_link(struct net_device *dev, 6260 struct net_device *upper_dev, 6261 void *upper_priv, void *upper_info) 6262 { 6263 return __netdev_upper_dev_link(dev, upper_dev, true, 6264 upper_priv, upper_info); 6265 } 6266 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6267 6268 /** 6269 * netdev_upper_dev_unlink - Removes a link to upper device 6270 * @dev: device 6271 * @upper_dev: new upper device 6272 * 6273 * Removes a link to device which is upper to this one. The caller must hold 6274 * the RTNL lock. 6275 */ 6276 void netdev_upper_dev_unlink(struct net_device *dev, 6277 struct net_device *upper_dev) 6278 { 6279 struct netdev_notifier_changeupper_info changeupper_info; 6280 6281 ASSERT_RTNL(); 6282 6283 changeupper_info.upper_dev = upper_dev; 6284 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6285 changeupper_info.linking = false; 6286 6287 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6288 &changeupper_info.info); 6289 6290 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6291 6292 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6293 &changeupper_info.info); 6294 } 6295 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6296 6297 /** 6298 * netdev_bonding_info_change - Dispatch event about slave change 6299 * @dev: device 6300 * @bonding_info: info to dispatch 6301 * 6302 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6303 * The caller must hold the RTNL lock. 6304 */ 6305 void netdev_bonding_info_change(struct net_device *dev, 6306 struct netdev_bonding_info *bonding_info) 6307 { 6308 struct netdev_notifier_bonding_info info; 6309 6310 memcpy(&info.bonding_info, bonding_info, 6311 sizeof(struct netdev_bonding_info)); 6312 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 6313 &info.info); 6314 } 6315 EXPORT_SYMBOL(netdev_bonding_info_change); 6316 6317 static void netdev_adjacent_add_links(struct net_device *dev) 6318 { 6319 struct netdev_adjacent *iter; 6320 6321 struct net *net = dev_net(dev); 6322 6323 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6324 if (!net_eq(net, dev_net(iter->dev))) 6325 continue; 6326 netdev_adjacent_sysfs_add(iter->dev, dev, 6327 &iter->dev->adj_list.lower); 6328 netdev_adjacent_sysfs_add(dev, iter->dev, 6329 &dev->adj_list.upper); 6330 } 6331 6332 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6333 if (!net_eq(net, dev_net(iter->dev))) 6334 continue; 6335 netdev_adjacent_sysfs_add(iter->dev, dev, 6336 &iter->dev->adj_list.upper); 6337 netdev_adjacent_sysfs_add(dev, iter->dev, 6338 &dev->adj_list.lower); 6339 } 6340 } 6341 6342 static void netdev_adjacent_del_links(struct net_device *dev) 6343 { 6344 struct netdev_adjacent *iter; 6345 6346 struct net *net = dev_net(dev); 6347 6348 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6349 if (!net_eq(net, dev_net(iter->dev))) 6350 continue; 6351 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6352 &iter->dev->adj_list.lower); 6353 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6354 &dev->adj_list.upper); 6355 } 6356 6357 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6358 if (!net_eq(net, dev_net(iter->dev))) 6359 continue; 6360 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6361 &iter->dev->adj_list.upper); 6362 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6363 &dev->adj_list.lower); 6364 } 6365 } 6366 6367 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6368 { 6369 struct netdev_adjacent *iter; 6370 6371 struct net *net = dev_net(dev); 6372 6373 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6374 if (!net_eq(net, dev_net(iter->dev))) 6375 continue; 6376 netdev_adjacent_sysfs_del(iter->dev, oldname, 6377 &iter->dev->adj_list.lower); 6378 netdev_adjacent_sysfs_add(iter->dev, dev, 6379 &iter->dev->adj_list.lower); 6380 } 6381 6382 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6383 if (!net_eq(net, dev_net(iter->dev))) 6384 continue; 6385 netdev_adjacent_sysfs_del(iter->dev, oldname, 6386 &iter->dev->adj_list.upper); 6387 netdev_adjacent_sysfs_add(iter->dev, dev, 6388 &iter->dev->adj_list.upper); 6389 } 6390 } 6391 6392 void *netdev_lower_dev_get_private(struct net_device *dev, 6393 struct net_device *lower_dev) 6394 { 6395 struct netdev_adjacent *lower; 6396 6397 if (!lower_dev) 6398 return NULL; 6399 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6400 if (!lower) 6401 return NULL; 6402 6403 return lower->private; 6404 } 6405 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6406 6407 6408 int dev_get_nest_level(struct net_device *dev) 6409 { 6410 struct net_device *lower = NULL; 6411 struct list_head *iter; 6412 int max_nest = -1; 6413 int nest; 6414 6415 ASSERT_RTNL(); 6416 6417 netdev_for_each_lower_dev(dev, lower, iter) { 6418 nest = dev_get_nest_level(lower); 6419 if (max_nest < nest) 6420 max_nest = nest; 6421 } 6422 6423 return max_nest + 1; 6424 } 6425 EXPORT_SYMBOL(dev_get_nest_level); 6426 6427 /** 6428 * netdev_lower_change - Dispatch event about lower device state change 6429 * @lower_dev: device 6430 * @lower_state_info: state to dispatch 6431 * 6432 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6433 * The caller must hold the RTNL lock. 6434 */ 6435 void netdev_lower_state_changed(struct net_device *lower_dev, 6436 void *lower_state_info) 6437 { 6438 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6439 6440 ASSERT_RTNL(); 6441 changelowerstate_info.lower_state_info = lower_state_info; 6442 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6443 &changelowerstate_info.info); 6444 } 6445 EXPORT_SYMBOL(netdev_lower_state_changed); 6446 6447 static void dev_change_rx_flags(struct net_device *dev, int flags) 6448 { 6449 const struct net_device_ops *ops = dev->netdev_ops; 6450 6451 if (ops->ndo_change_rx_flags) 6452 ops->ndo_change_rx_flags(dev, flags); 6453 } 6454 6455 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6456 { 6457 unsigned int old_flags = dev->flags; 6458 kuid_t uid; 6459 kgid_t gid; 6460 6461 ASSERT_RTNL(); 6462 6463 dev->flags |= IFF_PROMISC; 6464 dev->promiscuity += inc; 6465 if (dev->promiscuity == 0) { 6466 /* 6467 * Avoid overflow. 6468 * If inc causes overflow, untouch promisc and return error. 6469 */ 6470 if (inc < 0) 6471 dev->flags &= ~IFF_PROMISC; 6472 else { 6473 dev->promiscuity -= inc; 6474 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6475 dev->name); 6476 return -EOVERFLOW; 6477 } 6478 } 6479 if (dev->flags != old_flags) { 6480 pr_info("device %s %s promiscuous mode\n", 6481 dev->name, 6482 dev->flags & IFF_PROMISC ? "entered" : "left"); 6483 if (audit_enabled) { 6484 current_uid_gid(&uid, &gid); 6485 audit_log(current->audit_context, GFP_ATOMIC, 6486 AUDIT_ANOM_PROMISCUOUS, 6487 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6488 dev->name, (dev->flags & IFF_PROMISC), 6489 (old_flags & IFF_PROMISC), 6490 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6491 from_kuid(&init_user_ns, uid), 6492 from_kgid(&init_user_ns, gid), 6493 audit_get_sessionid(current)); 6494 } 6495 6496 dev_change_rx_flags(dev, IFF_PROMISC); 6497 } 6498 if (notify) 6499 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6500 return 0; 6501 } 6502 6503 /** 6504 * dev_set_promiscuity - update promiscuity count on a device 6505 * @dev: device 6506 * @inc: modifier 6507 * 6508 * Add or remove promiscuity from a device. While the count in the device 6509 * remains above zero the interface remains promiscuous. Once it hits zero 6510 * the device reverts back to normal filtering operation. A negative inc 6511 * value is used to drop promiscuity on the device. 6512 * Return 0 if successful or a negative errno code on error. 6513 */ 6514 int dev_set_promiscuity(struct net_device *dev, int inc) 6515 { 6516 unsigned int old_flags = dev->flags; 6517 int err; 6518 6519 err = __dev_set_promiscuity(dev, inc, true); 6520 if (err < 0) 6521 return err; 6522 if (dev->flags != old_flags) 6523 dev_set_rx_mode(dev); 6524 return err; 6525 } 6526 EXPORT_SYMBOL(dev_set_promiscuity); 6527 6528 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6529 { 6530 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6531 6532 ASSERT_RTNL(); 6533 6534 dev->flags |= IFF_ALLMULTI; 6535 dev->allmulti += inc; 6536 if (dev->allmulti == 0) { 6537 /* 6538 * Avoid overflow. 6539 * If inc causes overflow, untouch allmulti and return error. 6540 */ 6541 if (inc < 0) 6542 dev->flags &= ~IFF_ALLMULTI; 6543 else { 6544 dev->allmulti -= inc; 6545 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6546 dev->name); 6547 return -EOVERFLOW; 6548 } 6549 } 6550 if (dev->flags ^ old_flags) { 6551 dev_change_rx_flags(dev, IFF_ALLMULTI); 6552 dev_set_rx_mode(dev); 6553 if (notify) 6554 __dev_notify_flags(dev, old_flags, 6555 dev->gflags ^ old_gflags); 6556 } 6557 return 0; 6558 } 6559 6560 /** 6561 * dev_set_allmulti - update allmulti count on a device 6562 * @dev: device 6563 * @inc: modifier 6564 * 6565 * Add or remove reception of all multicast frames to a device. While the 6566 * count in the device remains above zero the interface remains listening 6567 * to all interfaces. Once it hits zero the device reverts back to normal 6568 * filtering operation. A negative @inc value is used to drop the counter 6569 * when releasing a resource needing all multicasts. 6570 * Return 0 if successful or a negative errno code on error. 6571 */ 6572 6573 int dev_set_allmulti(struct net_device *dev, int inc) 6574 { 6575 return __dev_set_allmulti(dev, inc, true); 6576 } 6577 EXPORT_SYMBOL(dev_set_allmulti); 6578 6579 /* 6580 * Upload unicast and multicast address lists to device and 6581 * configure RX filtering. When the device doesn't support unicast 6582 * filtering it is put in promiscuous mode while unicast addresses 6583 * are present. 6584 */ 6585 void __dev_set_rx_mode(struct net_device *dev) 6586 { 6587 const struct net_device_ops *ops = dev->netdev_ops; 6588 6589 /* dev_open will call this function so the list will stay sane. */ 6590 if (!(dev->flags&IFF_UP)) 6591 return; 6592 6593 if (!netif_device_present(dev)) 6594 return; 6595 6596 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6597 /* Unicast addresses changes may only happen under the rtnl, 6598 * therefore calling __dev_set_promiscuity here is safe. 6599 */ 6600 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6601 __dev_set_promiscuity(dev, 1, false); 6602 dev->uc_promisc = true; 6603 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6604 __dev_set_promiscuity(dev, -1, false); 6605 dev->uc_promisc = false; 6606 } 6607 } 6608 6609 if (ops->ndo_set_rx_mode) 6610 ops->ndo_set_rx_mode(dev); 6611 } 6612 6613 void dev_set_rx_mode(struct net_device *dev) 6614 { 6615 netif_addr_lock_bh(dev); 6616 __dev_set_rx_mode(dev); 6617 netif_addr_unlock_bh(dev); 6618 } 6619 6620 /** 6621 * dev_get_flags - get flags reported to userspace 6622 * @dev: device 6623 * 6624 * Get the combination of flag bits exported through APIs to userspace. 6625 */ 6626 unsigned int dev_get_flags(const struct net_device *dev) 6627 { 6628 unsigned int flags; 6629 6630 flags = (dev->flags & ~(IFF_PROMISC | 6631 IFF_ALLMULTI | 6632 IFF_RUNNING | 6633 IFF_LOWER_UP | 6634 IFF_DORMANT)) | 6635 (dev->gflags & (IFF_PROMISC | 6636 IFF_ALLMULTI)); 6637 6638 if (netif_running(dev)) { 6639 if (netif_oper_up(dev)) 6640 flags |= IFF_RUNNING; 6641 if (netif_carrier_ok(dev)) 6642 flags |= IFF_LOWER_UP; 6643 if (netif_dormant(dev)) 6644 flags |= IFF_DORMANT; 6645 } 6646 6647 return flags; 6648 } 6649 EXPORT_SYMBOL(dev_get_flags); 6650 6651 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6652 { 6653 unsigned int old_flags = dev->flags; 6654 int ret; 6655 6656 ASSERT_RTNL(); 6657 6658 /* 6659 * Set the flags on our device. 6660 */ 6661 6662 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6663 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6664 IFF_AUTOMEDIA)) | 6665 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6666 IFF_ALLMULTI)); 6667 6668 /* 6669 * Load in the correct multicast list now the flags have changed. 6670 */ 6671 6672 if ((old_flags ^ flags) & IFF_MULTICAST) 6673 dev_change_rx_flags(dev, IFF_MULTICAST); 6674 6675 dev_set_rx_mode(dev); 6676 6677 /* 6678 * Have we downed the interface. We handle IFF_UP ourselves 6679 * according to user attempts to set it, rather than blindly 6680 * setting it. 6681 */ 6682 6683 ret = 0; 6684 if ((old_flags ^ flags) & IFF_UP) 6685 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 6686 6687 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6688 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6689 unsigned int old_flags = dev->flags; 6690 6691 dev->gflags ^= IFF_PROMISC; 6692 6693 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6694 if (dev->flags != old_flags) 6695 dev_set_rx_mode(dev); 6696 } 6697 6698 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6699 * is important. Some (broken) drivers set IFF_PROMISC, when 6700 * IFF_ALLMULTI is requested not asking us and not reporting. 6701 */ 6702 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6703 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6704 6705 dev->gflags ^= IFF_ALLMULTI; 6706 __dev_set_allmulti(dev, inc, false); 6707 } 6708 6709 return ret; 6710 } 6711 6712 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6713 unsigned int gchanges) 6714 { 6715 unsigned int changes = dev->flags ^ old_flags; 6716 6717 if (gchanges) 6718 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6719 6720 if (changes & IFF_UP) { 6721 if (dev->flags & IFF_UP) 6722 call_netdevice_notifiers(NETDEV_UP, dev); 6723 else 6724 call_netdevice_notifiers(NETDEV_DOWN, dev); 6725 } 6726 6727 if (dev->flags & IFF_UP && 6728 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6729 struct netdev_notifier_change_info change_info; 6730 6731 change_info.flags_changed = changes; 6732 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6733 &change_info.info); 6734 } 6735 } 6736 6737 /** 6738 * dev_change_flags - change device settings 6739 * @dev: device 6740 * @flags: device state flags 6741 * 6742 * Change settings on device based state flags. The flags are 6743 * in the userspace exported format. 6744 */ 6745 int dev_change_flags(struct net_device *dev, unsigned int flags) 6746 { 6747 int ret; 6748 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6749 6750 ret = __dev_change_flags(dev, flags); 6751 if (ret < 0) 6752 return ret; 6753 6754 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6755 __dev_notify_flags(dev, old_flags, changes); 6756 return ret; 6757 } 6758 EXPORT_SYMBOL(dev_change_flags); 6759 6760 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6761 { 6762 const struct net_device_ops *ops = dev->netdev_ops; 6763 6764 if (ops->ndo_change_mtu) 6765 return ops->ndo_change_mtu(dev, new_mtu); 6766 6767 dev->mtu = new_mtu; 6768 return 0; 6769 } 6770 6771 /** 6772 * dev_set_mtu - Change maximum transfer unit 6773 * @dev: device 6774 * @new_mtu: new transfer unit 6775 * 6776 * Change the maximum transfer size of the network device. 6777 */ 6778 int dev_set_mtu(struct net_device *dev, int new_mtu) 6779 { 6780 int err, orig_mtu; 6781 6782 if (new_mtu == dev->mtu) 6783 return 0; 6784 6785 /* MTU must be positive, and in range */ 6786 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6787 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6788 dev->name, new_mtu, dev->min_mtu); 6789 return -EINVAL; 6790 } 6791 6792 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6793 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6794 dev->name, new_mtu, dev->max_mtu); 6795 return -EINVAL; 6796 } 6797 6798 if (!netif_device_present(dev)) 6799 return -ENODEV; 6800 6801 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6802 err = notifier_to_errno(err); 6803 if (err) 6804 return err; 6805 6806 orig_mtu = dev->mtu; 6807 err = __dev_set_mtu(dev, new_mtu); 6808 6809 if (!err) { 6810 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6811 err = notifier_to_errno(err); 6812 if (err) { 6813 /* setting mtu back and notifying everyone again, 6814 * so that they have a chance to revert changes. 6815 */ 6816 __dev_set_mtu(dev, orig_mtu); 6817 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6818 } 6819 } 6820 return err; 6821 } 6822 EXPORT_SYMBOL(dev_set_mtu); 6823 6824 /** 6825 * dev_set_group - Change group this device belongs to 6826 * @dev: device 6827 * @new_group: group this device should belong to 6828 */ 6829 void dev_set_group(struct net_device *dev, int new_group) 6830 { 6831 dev->group = new_group; 6832 } 6833 EXPORT_SYMBOL(dev_set_group); 6834 6835 /** 6836 * dev_set_mac_address - Change Media Access Control Address 6837 * @dev: device 6838 * @sa: new address 6839 * 6840 * Change the hardware (MAC) address of the device 6841 */ 6842 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6843 { 6844 const struct net_device_ops *ops = dev->netdev_ops; 6845 int err; 6846 6847 if (!ops->ndo_set_mac_address) 6848 return -EOPNOTSUPP; 6849 if (sa->sa_family != dev->type) 6850 return -EINVAL; 6851 if (!netif_device_present(dev)) 6852 return -ENODEV; 6853 err = ops->ndo_set_mac_address(dev, sa); 6854 if (err) 6855 return err; 6856 dev->addr_assign_type = NET_ADDR_SET; 6857 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6858 add_device_randomness(dev->dev_addr, dev->addr_len); 6859 return 0; 6860 } 6861 EXPORT_SYMBOL(dev_set_mac_address); 6862 6863 /** 6864 * dev_change_carrier - Change device carrier 6865 * @dev: device 6866 * @new_carrier: new value 6867 * 6868 * Change device carrier 6869 */ 6870 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6871 { 6872 const struct net_device_ops *ops = dev->netdev_ops; 6873 6874 if (!ops->ndo_change_carrier) 6875 return -EOPNOTSUPP; 6876 if (!netif_device_present(dev)) 6877 return -ENODEV; 6878 return ops->ndo_change_carrier(dev, new_carrier); 6879 } 6880 EXPORT_SYMBOL(dev_change_carrier); 6881 6882 /** 6883 * dev_get_phys_port_id - Get device physical port ID 6884 * @dev: device 6885 * @ppid: port ID 6886 * 6887 * Get device physical port ID 6888 */ 6889 int dev_get_phys_port_id(struct net_device *dev, 6890 struct netdev_phys_item_id *ppid) 6891 { 6892 const struct net_device_ops *ops = dev->netdev_ops; 6893 6894 if (!ops->ndo_get_phys_port_id) 6895 return -EOPNOTSUPP; 6896 return ops->ndo_get_phys_port_id(dev, ppid); 6897 } 6898 EXPORT_SYMBOL(dev_get_phys_port_id); 6899 6900 /** 6901 * dev_get_phys_port_name - Get device physical port name 6902 * @dev: device 6903 * @name: port name 6904 * @len: limit of bytes to copy to name 6905 * 6906 * Get device physical port name 6907 */ 6908 int dev_get_phys_port_name(struct net_device *dev, 6909 char *name, size_t len) 6910 { 6911 const struct net_device_ops *ops = dev->netdev_ops; 6912 6913 if (!ops->ndo_get_phys_port_name) 6914 return -EOPNOTSUPP; 6915 return ops->ndo_get_phys_port_name(dev, name, len); 6916 } 6917 EXPORT_SYMBOL(dev_get_phys_port_name); 6918 6919 /** 6920 * dev_change_proto_down - update protocol port state information 6921 * @dev: device 6922 * @proto_down: new value 6923 * 6924 * This info can be used by switch drivers to set the phys state of the 6925 * port. 6926 */ 6927 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6928 { 6929 const struct net_device_ops *ops = dev->netdev_ops; 6930 6931 if (!ops->ndo_change_proto_down) 6932 return -EOPNOTSUPP; 6933 if (!netif_device_present(dev)) 6934 return -ENODEV; 6935 return ops->ndo_change_proto_down(dev, proto_down); 6936 } 6937 EXPORT_SYMBOL(dev_change_proto_down); 6938 6939 bool __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, 6940 u32 *prog_id) 6941 { 6942 struct netdev_xdp xdp; 6943 6944 memset(&xdp, 0, sizeof(xdp)); 6945 xdp.command = XDP_QUERY_PROG; 6946 6947 /* Query must always succeed. */ 6948 WARN_ON(xdp_op(dev, &xdp) < 0); 6949 if (prog_id) 6950 *prog_id = xdp.prog_id; 6951 6952 return xdp.prog_attached; 6953 } 6954 6955 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op, 6956 struct netlink_ext_ack *extack, 6957 struct bpf_prog *prog) 6958 { 6959 struct netdev_xdp xdp; 6960 6961 memset(&xdp, 0, sizeof(xdp)); 6962 xdp.command = XDP_SETUP_PROG; 6963 xdp.extack = extack; 6964 xdp.prog = prog; 6965 6966 return xdp_op(dev, &xdp); 6967 } 6968 6969 /** 6970 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 6971 * @dev: device 6972 * @extack: netlink extended ack 6973 * @fd: new program fd or negative value to clear 6974 * @flags: xdp-related flags 6975 * 6976 * Set or clear a bpf program for a device 6977 */ 6978 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 6979 int fd, u32 flags) 6980 { 6981 const struct net_device_ops *ops = dev->netdev_ops; 6982 struct bpf_prog *prog = NULL; 6983 xdp_op_t xdp_op, xdp_chk; 6984 int err; 6985 6986 ASSERT_RTNL(); 6987 6988 xdp_op = xdp_chk = ops->ndo_xdp; 6989 if (!xdp_op && (flags & XDP_FLAGS_DRV_MODE)) 6990 return -EOPNOTSUPP; 6991 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE)) 6992 xdp_op = generic_xdp_install; 6993 if (xdp_op == xdp_chk) 6994 xdp_chk = generic_xdp_install; 6995 6996 if (fd >= 0) { 6997 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL)) 6998 return -EEXIST; 6999 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7000 __dev_xdp_attached(dev, xdp_op, NULL)) 7001 return -EBUSY; 7002 7003 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 7004 if (IS_ERR(prog)) 7005 return PTR_ERR(prog); 7006 } 7007 7008 err = dev_xdp_install(dev, xdp_op, extack, prog); 7009 if (err < 0 && prog) 7010 bpf_prog_put(prog); 7011 7012 return err; 7013 } 7014 7015 /** 7016 * dev_new_index - allocate an ifindex 7017 * @net: the applicable net namespace 7018 * 7019 * Returns a suitable unique value for a new device interface 7020 * number. The caller must hold the rtnl semaphore or the 7021 * dev_base_lock to be sure it remains unique. 7022 */ 7023 static int dev_new_index(struct net *net) 7024 { 7025 int ifindex = net->ifindex; 7026 7027 for (;;) { 7028 if (++ifindex <= 0) 7029 ifindex = 1; 7030 if (!__dev_get_by_index(net, ifindex)) 7031 return net->ifindex = ifindex; 7032 } 7033 } 7034 7035 /* Delayed registration/unregisteration */ 7036 static LIST_HEAD(net_todo_list); 7037 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7038 7039 static void net_set_todo(struct net_device *dev) 7040 { 7041 list_add_tail(&dev->todo_list, &net_todo_list); 7042 dev_net(dev)->dev_unreg_count++; 7043 } 7044 7045 static void rollback_registered_many(struct list_head *head) 7046 { 7047 struct net_device *dev, *tmp; 7048 LIST_HEAD(close_head); 7049 7050 BUG_ON(dev_boot_phase); 7051 ASSERT_RTNL(); 7052 7053 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7054 /* Some devices call without registering 7055 * for initialization unwind. Remove those 7056 * devices and proceed with the remaining. 7057 */ 7058 if (dev->reg_state == NETREG_UNINITIALIZED) { 7059 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7060 dev->name, dev); 7061 7062 WARN_ON(1); 7063 list_del(&dev->unreg_list); 7064 continue; 7065 } 7066 dev->dismantle = true; 7067 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7068 } 7069 7070 /* If device is running, close it first. */ 7071 list_for_each_entry(dev, head, unreg_list) 7072 list_add_tail(&dev->close_list, &close_head); 7073 dev_close_many(&close_head, true); 7074 7075 list_for_each_entry(dev, head, unreg_list) { 7076 /* And unlink it from device chain. */ 7077 unlist_netdevice(dev); 7078 7079 dev->reg_state = NETREG_UNREGISTERING; 7080 } 7081 flush_all_backlogs(); 7082 7083 synchronize_net(); 7084 7085 list_for_each_entry(dev, head, unreg_list) { 7086 struct sk_buff *skb = NULL; 7087 7088 /* Shutdown queueing discipline. */ 7089 dev_shutdown(dev); 7090 7091 7092 /* Notify protocols, that we are about to destroy 7093 * this device. They should clean all the things. 7094 */ 7095 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7096 7097 if (!dev->rtnl_link_ops || 7098 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7099 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7100 GFP_KERNEL); 7101 7102 /* 7103 * Flush the unicast and multicast chains 7104 */ 7105 dev_uc_flush(dev); 7106 dev_mc_flush(dev); 7107 7108 if (dev->netdev_ops->ndo_uninit) 7109 dev->netdev_ops->ndo_uninit(dev); 7110 7111 if (skb) 7112 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7113 7114 /* Notifier chain MUST detach us all upper devices. */ 7115 WARN_ON(netdev_has_any_upper_dev(dev)); 7116 WARN_ON(netdev_has_any_lower_dev(dev)); 7117 7118 /* Remove entries from kobject tree */ 7119 netdev_unregister_kobject(dev); 7120 #ifdef CONFIG_XPS 7121 /* Remove XPS queueing entries */ 7122 netif_reset_xps_queues_gt(dev, 0); 7123 #endif 7124 } 7125 7126 synchronize_net(); 7127 7128 list_for_each_entry(dev, head, unreg_list) 7129 dev_put(dev); 7130 } 7131 7132 static void rollback_registered(struct net_device *dev) 7133 { 7134 LIST_HEAD(single); 7135 7136 list_add(&dev->unreg_list, &single); 7137 rollback_registered_many(&single); 7138 list_del(&single); 7139 } 7140 7141 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7142 struct net_device *upper, netdev_features_t features) 7143 { 7144 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7145 netdev_features_t feature; 7146 int feature_bit; 7147 7148 for_each_netdev_feature(&upper_disables, feature_bit) { 7149 feature = __NETIF_F_BIT(feature_bit); 7150 if (!(upper->wanted_features & feature) 7151 && (features & feature)) { 7152 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7153 &feature, upper->name); 7154 features &= ~feature; 7155 } 7156 } 7157 7158 return features; 7159 } 7160 7161 static void netdev_sync_lower_features(struct net_device *upper, 7162 struct net_device *lower, netdev_features_t features) 7163 { 7164 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7165 netdev_features_t feature; 7166 int feature_bit; 7167 7168 for_each_netdev_feature(&upper_disables, feature_bit) { 7169 feature = __NETIF_F_BIT(feature_bit); 7170 if (!(features & feature) && (lower->features & feature)) { 7171 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7172 &feature, lower->name); 7173 lower->wanted_features &= ~feature; 7174 netdev_update_features(lower); 7175 7176 if (unlikely(lower->features & feature)) 7177 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7178 &feature, lower->name); 7179 } 7180 } 7181 } 7182 7183 static netdev_features_t netdev_fix_features(struct net_device *dev, 7184 netdev_features_t features) 7185 { 7186 /* Fix illegal checksum combinations */ 7187 if ((features & NETIF_F_HW_CSUM) && 7188 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7189 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7190 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7191 } 7192 7193 /* TSO requires that SG is present as well. */ 7194 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7195 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7196 features &= ~NETIF_F_ALL_TSO; 7197 } 7198 7199 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7200 !(features & NETIF_F_IP_CSUM)) { 7201 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7202 features &= ~NETIF_F_TSO; 7203 features &= ~NETIF_F_TSO_ECN; 7204 } 7205 7206 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7207 !(features & NETIF_F_IPV6_CSUM)) { 7208 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7209 features &= ~NETIF_F_TSO6; 7210 } 7211 7212 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7213 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7214 features &= ~NETIF_F_TSO_MANGLEID; 7215 7216 /* TSO ECN requires that TSO is present as well. */ 7217 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7218 features &= ~NETIF_F_TSO_ECN; 7219 7220 /* Software GSO depends on SG. */ 7221 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7222 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7223 features &= ~NETIF_F_GSO; 7224 } 7225 7226 /* UFO needs SG and checksumming */ 7227 if (features & NETIF_F_UFO) { 7228 /* maybe split UFO into V4 and V6? */ 7229 if (!(features & NETIF_F_HW_CSUM) && 7230 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != 7231 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { 7232 netdev_dbg(dev, 7233 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 7234 features &= ~NETIF_F_UFO; 7235 } 7236 7237 if (!(features & NETIF_F_SG)) { 7238 netdev_dbg(dev, 7239 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 7240 features &= ~NETIF_F_UFO; 7241 } 7242 } 7243 7244 /* GSO partial features require GSO partial be set */ 7245 if ((features & dev->gso_partial_features) && 7246 !(features & NETIF_F_GSO_PARTIAL)) { 7247 netdev_dbg(dev, 7248 "Dropping partially supported GSO features since no GSO partial.\n"); 7249 features &= ~dev->gso_partial_features; 7250 } 7251 7252 return features; 7253 } 7254 7255 int __netdev_update_features(struct net_device *dev) 7256 { 7257 struct net_device *upper, *lower; 7258 netdev_features_t features; 7259 struct list_head *iter; 7260 int err = -1; 7261 7262 ASSERT_RTNL(); 7263 7264 features = netdev_get_wanted_features(dev); 7265 7266 if (dev->netdev_ops->ndo_fix_features) 7267 features = dev->netdev_ops->ndo_fix_features(dev, features); 7268 7269 /* driver might be less strict about feature dependencies */ 7270 features = netdev_fix_features(dev, features); 7271 7272 /* some features can't be enabled if they're off an an upper device */ 7273 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7274 features = netdev_sync_upper_features(dev, upper, features); 7275 7276 if (dev->features == features) 7277 goto sync_lower; 7278 7279 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7280 &dev->features, &features); 7281 7282 if (dev->netdev_ops->ndo_set_features) 7283 err = dev->netdev_ops->ndo_set_features(dev, features); 7284 else 7285 err = 0; 7286 7287 if (unlikely(err < 0)) { 7288 netdev_err(dev, 7289 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7290 err, &features, &dev->features); 7291 /* return non-0 since some features might have changed and 7292 * it's better to fire a spurious notification than miss it 7293 */ 7294 return -1; 7295 } 7296 7297 sync_lower: 7298 /* some features must be disabled on lower devices when disabled 7299 * on an upper device (think: bonding master or bridge) 7300 */ 7301 netdev_for_each_lower_dev(dev, lower, iter) 7302 netdev_sync_lower_features(dev, lower, features); 7303 7304 if (!err) 7305 dev->features = features; 7306 7307 return err < 0 ? 0 : 1; 7308 } 7309 7310 /** 7311 * netdev_update_features - recalculate device features 7312 * @dev: the device to check 7313 * 7314 * Recalculate dev->features set and send notifications if it 7315 * has changed. Should be called after driver or hardware dependent 7316 * conditions might have changed that influence the features. 7317 */ 7318 void netdev_update_features(struct net_device *dev) 7319 { 7320 if (__netdev_update_features(dev)) 7321 netdev_features_change(dev); 7322 } 7323 EXPORT_SYMBOL(netdev_update_features); 7324 7325 /** 7326 * netdev_change_features - recalculate device features 7327 * @dev: the device to check 7328 * 7329 * Recalculate dev->features set and send notifications even 7330 * if they have not changed. Should be called instead of 7331 * netdev_update_features() if also dev->vlan_features might 7332 * have changed to allow the changes to be propagated to stacked 7333 * VLAN devices. 7334 */ 7335 void netdev_change_features(struct net_device *dev) 7336 { 7337 __netdev_update_features(dev); 7338 netdev_features_change(dev); 7339 } 7340 EXPORT_SYMBOL(netdev_change_features); 7341 7342 /** 7343 * netif_stacked_transfer_operstate - transfer operstate 7344 * @rootdev: the root or lower level device to transfer state from 7345 * @dev: the device to transfer operstate to 7346 * 7347 * Transfer operational state from root to device. This is normally 7348 * called when a stacking relationship exists between the root 7349 * device and the device(a leaf device). 7350 */ 7351 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7352 struct net_device *dev) 7353 { 7354 if (rootdev->operstate == IF_OPER_DORMANT) 7355 netif_dormant_on(dev); 7356 else 7357 netif_dormant_off(dev); 7358 7359 if (netif_carrier_ok(rootdev)) 7360 netif_carrier_on(dev); 7361 else 7362 netif_carrier_off(dev); 7363 } 7364 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7365 7366 #ifdef CONFIG_SYSFS 7367 static int netif_alloc_rx_queues(struct net_device *dev) 7368 { 7369 unsigned int i, count = dev->num_rx_queues; 7370 struct netdev_rx_queue *rx; 7371 size_t sz = count * sizeof(*rx); 7372 7373 BUG_ON(count < 1); 7374 7375 rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT); 7376 if (!rx) 7377 return -ENOMEM; 7378 7379 dev->_rx = rx; 7380 7381 for (i = 0; i < count; i++) 7382 rx[i].dev = dev; 7383 return 0; 7384 } 7385 #endif 7386 7387 static void netdev_init_one_queue(struct net_device *dev, 7388 struct netdev_queue *queue, void *_unused) 7389 { 7390 /* Initialize queue lock */ 7391 spin_lock_init(&queue->_xmit_lock); 7392 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7393 queue->xmit_lock_owner = -1; 7394 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7395 queue->dev = dev; 7396 #ifdef CONFIG_BQL 7397 dql_init(&queue->dql, HZ); 7398 #endif 7399 } 7400 7401 static void netif_free_tx_queues(struct net_device *dev) 7402 { 7403 kvfree(dev->_tx); 7404 } 7405 7406 static int netif_alloc_netdev_queues(struct net_device *dev) 7407 { 7408 unsigned int count = dev->num_tx_queues; 7409 struct netdev_queue *tx; 7410 size_t sz = count * sizeof(*tx); 7411 7412 if (count < 1 || count > 0xffff) 7413 return -EINVAL; 7414 7415 tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT); 7416 if (!tx) 7417 return -ENOMEM; 7418 7419 dev->_tx = tx; 7420 7421 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7422 spin_lock_init(&dev->tx_global_lock); 7423 7424 return 0; 7425 } 7426 7427 void netif_tx_stop_all_queues(struct net_device *dev) 7428 { 7429 unsigned int i; 7430 7431 for (i = 0; i < dev->num_tx_queues; i++) { 7432 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7433 7434 netif_tx_stop_queue(txq); 7435 } 7436 } 7437 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7438 7439 /** 7440 * register_netdevice - register a network device 7441 * @dev: device to register 7442 * 7443 * Take a completed network device structure and add it to the kernel 7444 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7445 * chain. 0 is returned on success. A negative errno code is returned 7446 * on a failure to set up the device, or if the name is a duplicate. 7447 * 7448 * Callers must hold the rtnl semaphore. You may want 7449 * register_netdev() instead of this. 7450 * 7451 * BUGS: 7452 * The locking appears insufficient to guarantee two parallel registers 7453 * will not get the same name. 7454 */ 7455 7456 int register_netdevice(struct net_device *dev) 7457 { 7458 int ret; 7459 struct net *net = dev_net(dev); 7460 7461 BUG_ON(dev_boot_phase); 7462 ASSERT_RTNL(); 7463 7464 might_sleep(); 7465 7466 /* When net_device's are persistent, this will be fatal. */ 7467 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7468 BUG_ON(!net); 7469 7470 spin_lock_init(&dev->addr_list_lock); 7471 netdev_set_addr_lockdep_class(dev); 7472 7473 ret = dev_get_valid_name(net, dev, dev->name); 7474 if (ret < 0) 7475 goto out; 7476 7477 /* Init, if this function is available */ 7478 if (dev->netdev_ops->ndo_init) { 7479 ret = dev->netdev_ops->ndo_init(dev); 7480 if (ret) { 7481 if (ret > 0) 7482 ret = -EIO; 7483 goto out; 7484 } 7485 } 7486 7487 if (((dev->hw_features | dev->features) & 7488 NETIF_F_HW_VLAN_CTAG_FILTER) && 7489 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7490 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7491 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7492 ret = -EINVAL; 7493 goto err_uninit; 7494 } 7495 7496 ret = -EBUSY; 7497 if (!dev->ifindex) 7498 dev->ifindex = dev_new_index(net); 7499 else if (__dev_get_by_index(net, dev->ifindex)) 7500 goto err_uninit; 7501 7502 /* Transfer changeable features to wanted_features and enable 7503 * software offloads (GSO and GRO). 7504 */ 7505 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7506 dev->features |= NETIF_F_SOFT_FEATURES; 7507 dev->wanted_features = dev->features & dev->hw_features; 7508 7509 if (!(dev->flags & IFF_LOOPBACK)) 7510 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7511 7512 /* If IPv4 TCP segmentation offload is supported we should also 7513 * allow the device to enable segmenting the frame with the option 7514 * of ignoring a static IP ID value. This doesn't enable the 7515 * feature itself but allows the user to enable it later. 7516 */ 7517 if (dev->hw_features & NETIF_F_TSO) 7518 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7519 if (dev->vlan_features & NETIF_F_TSO) 7520 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7521 if (dev->mpls_features & NETIF_F_TSO) 7522 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7523 if (dev->hw_enc_features & NETIF_F_TSO) 7524 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7525 7526 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7527 */ 7528 dev->vlan_features |= NETIF_F_HIGHDMA; 7529 7530 /* Make NETIF_F_SG inheritable to tunnel devices. 7531 */ 7532 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7533 7534 /* Make NETIF_F_SG inheritable to MPLS. 7535 */ 7536 dev->mpls_features |= NETIF_F_SG; 7537 7538 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7539 ret = notifier_to_errno(ret); 7540 if (ret) 7541 goto err_uninit; 7542 7543 ret = netdev_register_kobject(dev); 7544 if (ret) 7545 goto err_uninit; 7546 dev->reg_state = NETREG_REGISTERED; 7547 7548 __netdev_update_features(dev); 7549 7550 /* 7551 * Default initial state at registry is that the 7552 * device is present. 7553 */ 7554 7555 set_bit(__LINK_STATE_PRESENT, &dev->state); 7556 7557 linkwatch_init_dev(dev); 7558 7559 dev_init_scheduler(dev); 7560 dev_hold(dev); 7561 list_netdevice(dev); 7562 add_device_randomness(dev->dev_addr, dev->addr_len); 7563 7564 /* If the device has permanent device address, driver should 7565 * set dev_addr and also addr_assign_type should be set to 7566 * NET_ADDR_PERM (default value). 7567 */ 7568 if (dev->addr_assign_type == NET_ADDR_PERM) 7569 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7570 7571 /* Notify protocols, that a new device appeared. */ 7572 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7573 ret = notifier_to_errno(ret); 7574 if (ret) { 7575 rollback_registered(dev); 7576 dev->reg_state = NETREG_UNREGISTERED; 7577 } 7578 /* 7579 * Prevent userspace races by waiting until the network 7580 * device is fully setup before sending notifications. 7581 */ 7582 if (!dev->rtnl_link_ops || 7583 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7584 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7585 7586 out: 7587 return ret; 7588 7589 err_uninit: 7590 if (dev->netdev_ops->ndo_uninit) 7591 dev->netdev_ops->ndo_uninit(dev); 7592 if (dev->priv_destructor) 7593 dev->priv_destructor(dev); 7594 goto out; 7595 } 7596 EXPORT_SYMBOL(register_netdevice); 7597 7598 /** 7599 * init_dummy_netdev - init a dummy network device for NAPI 7600 * @dev: device to init 7601 * 7602 * This takes a network device structure and initialize the minimum 7603 * amount of fields so it can be used to schedule NAPI polls without 7604 * registering a full blown interface. This is to be used by drivers 7605 * that need to tie several hardware interfaces to a single NAPI 7606 * poll scheduler due to HW limitations. 7607 */ 7608 int init_dummy_netdev(struct net_device *dev) 7609 { 7610 /* Clear everything. Note we don't initialize spinlocks 7611 * are they aren't supposed to be taken by any of the 7612 * NAPI code and this dummy netdev is supposed to be 7613 * only ever used for NAPI polls 7614 */ 7615 memset(dev, 0, sizeof(struct net_device)); 7616 7617 /* make sure we BUG if trying to hit standard 7618 * register/unregister code path 7619 */ 7620 dev->reg_state = NETREG_DUMMY; 7621 7622 /* NAPI wants this */ 7623 INIT_LIST_HEAD(&dev->napi_list); 7624 7625 /* a dummy interface is started by default */ 7626 set_bit(__LINK_STATE_PRESENT, &dev->state); 7627 set_bit(__LINK_STATE_START, &dev->state); 7628 7629 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7630 * because users of this 'device' dont need to change 7631 * its refcount. 7632 */ 7633 7634 return 0; 7635 } 7636 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7637 7638 7639 /** 7640 * register_netdev - register a network device 7641 * @dev: device to register 7642 * 7643 * Take a completed network device structure and add it to the kernel 7644 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7645 * chain. 0 is returned on success. A negative errno code is returned 7646 * on a failure to set up the device, or if the name is a duplicate. 7647 * 7648 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7649 * and expands the device name if you passed a format string to 7650 * alloc_netdev. 7651 */ 7652 int register_netdev(struct net_device *dev) 7653 { 7654 int err; 7655 7656 rtnl_lock(); 7657 err = register_netdevice(dev); 7658 rtnl_unlock(); 7659 return err; 7660 } 7661 EXPORT_SYMBOL(register_netdev); 7662 7663 int netdev_refcnt_read(const struct net_device *dev) 7664 { 7665 int i, refcnt = 0; 7666 7667 for_each_possible_cpu(i) 7668 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7669 return refcnt; 7670 } 7671 EXPORT_SYMBOL(netdev_refcnt_read); 7672 7673 /** 7674 * netdev_wait_allrefs - wait until all references are gone. 7675 * @dev: target net_device 7676 * 7677 * This is called when unregistering network devices. 7678 * 7679 * Any protocol or device that holds a reference should register 7680 * for netdevice notification, and cleanup and put back the 7681 * reference if they receive an UNREGISTER event. 7682 * We can get stuck here if buggy protocols don't correctly 7683 * call dev_put. 7684 */ 7685 static void netdev_wait_allrefs(struct net_device *dev) 7686 { 7687 unsigned long rebroadcast_time, warning_time; 7688 int refcnt; 7689 7690 linkwatch_forget_dev(dev); 7691 7692 rebroadcast_time = warning_time = jiffies; 7693 refcnt = netdev_refcnt_read(dev); 7694 7695 while (refcnt != 0) { 7696 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7697 rtnl_lock(); 7698 7699 /* Rebroadcast unregister notification */ 7700 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7701 7702 __rtnl_unlock(); 7703 rcu_barrier(); 7704 rtnl_lock(); 7705 7706 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7707 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7708 &dev->state)) { 7709 /* We must not have linkwatch events 7710 * pending on unregister. If this 7711 * happens, we simply run the queue 7712 * unscheduled, resulting in a noop 7713 * for this device. 7714 */ 7715 linkwatch_run_queue(); 7716 } 7717 7718 __rtnl_unlock(); 7719 7720 rebroadcast_time = jiffies; 7721 } 7722 7723 msleep(250); 7724 7725 refcnt = netdev_refcnt_read(dev); 7726 7727 if (time_after(jiffies, warning_time + 10 * HZ)) { 7728 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7729 dev->name, refcnt); 7730 warning_time = jiffies; 7731 } 7732 } 7733 } 7734 7735 /* The sequence is: 7736 * 7737 * rtnl_lock(); 7738 * ... 7739 * register_netdevice(x1); 7740 * register_netdevice(x2); 7741 * ... 7742 * unregister_netdevice(y1); 7743 * unregister_netdevice(y2); 7744 * ... 7745 * rtnl_unlock(); 7746 * free_netdev(y1); 7747 * free_netdev(y2); 7748 * 7749 * We are invoked by rtnl_unlock(). 7750 * This allows us to deal with problems: 7751 * 1) We can delete sysfs objects which invoke hotplug 7752 * without deadlocking with linkwatch via keventd. 7753 * 2) Since we run with the RTNL semaphore not held, we can sleep 7754 * safely in order to wait for the netdev refcnt to drop to zero. 7755 * 7756 * We must not return until all unregister events added during 7757 * the interval the lock was held have been completed. 7758 */ 7759 void netdev_run_todo(void) 7760 { 7761 struct list_head list; 7762 7763 /* Snapshot list, allow later requests */ 7764 list_replace_init(&net_todo_list, &list); 7765 7766 __rtnl_unlock(); 7767 7768 7769 /* Wait for rcu callbacks to finish before next phase */ 7770 if (!list_empty(&list)) 7771 rcu_barrier(); 7772 7773 while (!list_empty(&list)) { 7774 struct net_device *dev 7775 = list_first_entry(&list, struct net_device, todo_list); 7776 list_del(&dev->todo_list); 7777 7778 rtnl_lock(); 7779 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7780 __rtnl_unlock(); 7781 7782 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7783 pr_err("network todo '%s' but state %d\n", 7784 dev->name, dev->reg_state); 7785 dump_stack(); 7786 continue; 7787 } 7788 7789 dev->reg_state = NETREG_UNREGISTERED; 7790 7791 netdev_wait_allrefs(dev); 7792 7793 /* paranoia */ 7794 BUG_ON(netdev_refcnt_read(dev)); 7795 BUG_ON(!list_empty(&dev->ptype_all)); 7796 BUG_ON(!list_empty(&dev->ptype_specific)); 7797 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7798 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7799 WARN_ON(dev->dn_ptr); 7800 7801 if (dev->priv_destructor) 7802 dev->priv_destructor(dev); 7803 if (dev->needs_free_netdev) 7804 free_netdev(dev); 7805 7806 /* Report a network device has been unregistered */ 7807 rtnl_lock(); 7808 dev_net(dev)->dev_unreg_count--; 7809 __rtnl_unlock(); 7810 wake_up(&netdev_unregistering_wq); 7811 7812 /* Free network device */ 7813 kobject_put(&dev->dev.kobj); 7814 } 7815 } 7816 7817 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7818 * all the same fields in the same order as net_device_stats, with only 7819 * the type differing, but rtnl_link_stats64 may have additional fields 7820 * at the end for newer counters. 7821 */ 7822 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7823 const struct net_device_stats *netdev_stats) 7824 { 7825 #if BITS_PER_LONG == 64 7826 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7827 memcpy(stats64, netdev_stats, sizeof(*stats64)); 7828 /* zero out counters that only exist in rtnl_link_stats64 */ 7829 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7830 sizeof(*stats64) - sizeof(*netdev_stats)); 7831 #else 7832 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7833 const unsigned long *src = (const unsigned long *)netdev_stats; 7834 u64 *dst = (u64 *)stats64; 7835 7836 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7837 for (i = 0; i < n; i++) 7838 dst[i] = src[i]; 7839 /* zero out counters that only exist in rtnl_link_stats64 */ 7840 memset((char *)stats64 + n * sizeof(u64), 0, 7841 sizeof(*stats64) - n * sizeof(u64)); 7842 #endif 7843 } 7844 EXPORT_SYMBOL(netdev_stats_to_stats64); 7845 7846 /** 7847 * dev_get_stats - get network device statistics 7848 * @dev: device to get statistics from 7849 * @storage: place to store stats 7850 * 7851 * Get network statistics from device. Return @storage. 7852 * The device driver may provide its own method by setting 7853 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7854 * otherwise the internal statistics structure is used. 7855 */ 7856 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7857 struct rtnl_link_stats64 *storage) 7858 { 7859 const struct net_device_ops *ops = dev->netdev_ops; 7860 7861 if (ops->ndo_get_stats64) { 7862 memset(storage, 0, sizeof(*storage)); 7863 ops->ndo_get_stats64(dev, storage); 7864 } else if (ops->ndo_get_stats) { 7865 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7866 } else { 7867 netdev_stats_to_stats64(storage, &dev->stats); 7868 } 7869 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7870 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7871 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler); 7872 return storage; 7873 } 7874 EXPORT_SYMBOL(dev_get_stats); 7875 7876 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7877 { 7878 struct netdev_queue *queue = dev_ingress_queue(dev); 7879 7880 #ifdef CONFIG_NET_CLS_ACT 7881 if (queue) 7882 return queue; 7883 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7884 if (!queue) 7885 return NULL; 7886 netdev_init_one_queue(dev, queue, NULL); 7887 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7888 queue->qdisc_sleeping = &noop_qdisc; 7889 rcu_assign_pointer(dev->ingress_queue, queue); 7890 #endif 7891 return queue; 7892 } 7893 7894 static const struct ethtool_ops default_ethtool_ops; 7895 7896 void netdev_set_default_ethtool_ops(struct net_device *dev, 7897 const struct ethtool_ops *ops) 7898 { 7899 if (dev->ethtool_ops == &default_ethtool_ops) 7900 dev->ethtool_ops = ops; 7901 } 7902 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7903 7904 void netdev_freemem(struct net_device *dev) 7905 { 7906 char *addr = (char *)dev - dev->padded; 7907 7908 kvfree(addr); 7909 } 7910 7911 /** 7912 * alloc_netdev_mqs - allocate network device 7913 * @sizeof_priv: size of private data to allocate space for 7914 * @name: device name format string 7915 * @name_assign_type: origin of device name 7916 * @setup: callback to initialize device 7917 * @txqs: the number of TX subqueues to allocate 7918 * @rxqs: the number of RX subqueues to allocate 7919 * 7920 * Allocates a struct net_device with private data area for driver use 7921 * and performs basic initialization. Also allocates subqueue structs 7922 * for each queue on the device. 7923 */ 7924 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7925 unsigned char name_assign_type, 7926 void (*setup)(struct net_device *), 7927 unsigned int txqs, unsigned int rxqs) 7928 { 7929 struct net_device *dev; 7930 size_t alloc_size; 7931 struct net_device *p; 7932 7933 BUG_ON(strlen(name) >= sizeof(dev->name)); 7934 7935 if (txqs < 1) { 7936 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7937 return NULL; 7938 } 7939 7940 #ifdef CONFIG_SYSFS 7941 if (rxqs < 1) { 7942 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7943 return NULL; 7944 } 7945 #endif 7946 7947 alloc_size = sizeof(struct net_device); 7948 if (sizeof_priv) { 7949 /* ensure 32-byte alignment of private area */ 7950 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7951 alloc_size += sizeof_priv; 7952 } 7953 /* ensure 32-byte alignment of whole construct */ 7954 alloc_size += NETDEV_ALIGN - 1; 7955 7956 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT); 7957 if (!p) 7958 return NULL; 7959 7960 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7961 dev->padded = (char *)dev - (char *)p; 7962 7963 dev->pcpu_refcnt = alloc_percpu(int); 7964 if (!dev->pcpu_refcnt) 7965 goto free_dev; 7966 7967 if (dev_addr_init(dev)) 7968 goto free_pcpu; 7969 7970 dev_mc_init(dev); 7971 dev_uc_init(dev); 7972 7973 dev_net_set(dev, &init_net); 7974 7975 dev->gso_max_size = GSO_MAX_SIZE; 7976 dev->gso_max_segs = GSO_MAX_SEGS; 7977 7978 INIT_LIST_HEAD(&dev->napi_list); 7979 INIT_LIST_HEAD(&dev->unreg_list); 7980 INIT_LIST_HEAD(&dev->close_list); 7981 INIT_LIST_HEAD(&dev->link_watch_list); 7982 INIT_LIST_HEAD(&dev->adj_list.upper); 7983 INIT_LIST_HEAD(&dev->adj_list.lower); 7984 INIT_LIST_HEAD(&dev->ptype_all); 7985 INIT_LIST_HEAD(&dev->ptype_specific); 7986 #ifdef CONFIG_NET_SCHED 7987 hash_init(dev->qdisc_hash); 7988 #endif 7989 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7990 setup(dev); 7991 7992 if (!dev->tx_queue_len) { 7993 dev->priv_flags |= IFF_NO_QUEUE; 7994 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 7995 } 7996 7997 dev->num_tx_queues = txqs; 7998 dev->real_num_tx_queues = txqs; 7999 if (netif_alloc_netdev_queues(dev)) 8000 goto free_all; 8001 8002 #ifdef CONFIG_SYSFS 8003 dev->num_rx_queues = rxqs; 8004 dev->real_num_rx_queues = rxqs; 8005 if (netif_alloc_rx_queues(dev)) 8006 goto free_all; 8007 #endif 8008 8009 strcpy(dev->name, name); 8010 dev->name_assign_type = name_assign_type; 8011 dev->group = INIT_NETDEV_GROUP; 8012 if (!dev->ethtool_ops) 8013 dev->ethtool_ops = &default_ethtool_ops; 8014 8015 nf_hook_ingress_init(dev); 8016 8017 return dev; 8018 8019 free_all: 8020 free_netdev(dev); 8021 return NULL; 8022 8023 free_pcpu: 8024 free_percpu(dev->pcpu_refcnt); 8025 free_dev: 8026 netdev_freemem(dev); 8027 return NULL; 8028 } 8029 EXPORT_SYMBOL(alloc_netdev_mqs); 8030 8031 /** 8032 * free_netdev - free network device 8033 * @dev: device 8034 * 8035 * This function does the last stage of destroying an allocated device 8036 * interface. The reference to the device object is released. If this 8037 * is the last reference then it will be freed.Must be called in process 8038 * context. 8039 */ 8040 void free_netdev(struct net_device *dev) 8041 { 8042 struct napi_struct *p, *n; 8043 struct bpf_prog *prog; 8044 8045 might_sleep(); 8046 netif_free_tx_queues(dev); 8047 #ifdef CONFIG_SYSFS 8048 kvfree(dev->_rx); 8049 #endif 8050 8051 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8052 8053 /* Flush device addresses */ 8054 dev_addr_flush(dev); 8055 8056 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8057 netif_napi_del(p); 8058 8059 free_percpu(dev->pcpu_refcnt); 8060 dev->pcpu_refcnt = NULL; 8061 8062 prog = rcu_dereference_protected(dev->xdp_prog, 1); 8063 if (prog) { 8064 bpf_prog_put(prog); 8065 static_key_slow_dec(&generic_xdp_needed); 8066 } 8067 8068 /* Compatibility with error handling in drivers */ 8069 if (dev->reg_state == NETREG_UNINITIALIZED) { 8070 netdev_freemem(dev); 8071 return; 8072 } 8073 8074 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8075 dev->reg_state = NETREG_RELEASED; 8076 8077 /* will free via device release */ 8078 put_device(&dev->dev); 8079 } 8080 EXPORT_SYMBOL(free_netdev); 8081 8082 /** 8083 * synchronize_net - Synchronize with packet receive processing 8084 * 8085 * Wait for packets currently being received to be done. 8086 * Does not block later packets from starting. 8087 */ 8088 void synchronize_net(void) 8089 { 8090 might_sleep(); 8091 if (rtnl_is_locked()) 8092 synchronize_rcu_expedited(); 8093 else 8094 synchronize_rcu(); 8095 } 8096 EXPORT_SYMBOL(synchronize_net); 8097 8098 /** 8099 * unregister_netdevice_queue - remove device from the kernel 8100 * @dev: device 8101 * @head: list 8102 * 8103 * This function shuts down a device interface and removes it 8104 * from the kernel tables. 8105 * If head not NULL, device is queued to be unregistered later. 8106 * 8107 * Callers must hold the rtnl semaphore. You may want 8108 * unregister_netdev() instead of this. 8109 */ 8110 8111 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8112 { 8113 ASSERT_RTNL(); 8114 8115 if (head) { 8116 list_move_tail(&dev->unreg_list, head); 8117 } else { 8118 rollback_registered(dev); 8119 /* Finish processing unregister after unlock */ 8120 net_set_todo(dev); 8121 } 8122 } 8123 EXPORT_SYMBOL(unregister_netdevice_queue); 8124 8125 /** 8126 * unregister_netdevice_many - unregister many devices 8127 * @head: list of devices 8128 * 8129 * Note: As most callers use a stack allocated list_head, 8130 * we force a list_del() to make sure stack wont be corrupted later. 8131 */ 8132 void unregister_netdevice_many(struct list_head *head) 8133 { 8134 struct net_device *dev; 8135 8136 if (!list_empty(head)) { 8137 rollback_registered_many(head); 8138 list_for_each_entry(dev, head, unreg_list) 8139 net_set_todo(dev); 8140 list_del(head); 8141 } 8142 } 8143 EXPORT_SYMBOL(unregister_netdevice_many); 8144 8145 /** 8146 * unregister_netdev - remove device from the kernel 8147 * @dev: device 8148 * 8149 * This function shuts down a device interface and removes it 8150 * from the kernel tables. 8151 * 8152 * This is just a wrapper for unregister_netdevice that takes 8153 * the rtnl semaphore. In general you want to use this and not 8154 * unregister_netdevice. 8155 */ 8156 void unregister_netdev(struct net_device *dev) 8157 { 8158 rtnl_lock(); 8159 unregister_netdevice(dev); 8160 rtnl_unlock(); 8161 } 8162 EXPORT_SYMBOL(unregister_netdev); 8163 8164 /** 8165 * dev_change_net_namespace - move device to different nethost namespace 8166 * @dev: device 8167 * @net: network namespace 8168 * @pat: If not NULL name pattern to try if the current device name 8169 * is already taken in the destination network namespace. 8170 * 8171 * This function shuts down a device interface and moves it 8172 * to a new network namespace. On success 0 is returned, on 8173 * a failure a netagive errno code is returned. 8174 * 8175 * Callers must hold the rtnl semaphore. 8176 */ 8177 8178 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8179 { 8180 int err; 8181 8182 ASSERT_RTNL(); 8183 8184 /* Don't allow namespace local devices to be moved. */ 8185 err = -EINVAL; 8186 if (dev->features & NETIF_F_NETNS_LOCAL) 8187 goto out; 8188 8189 /* Ensure the device has been registrered */ 8190 if (dev->reg_state != NETREG_REGISTERED) 8191 goto out; 8192 8193 /* Get out if there is nothing todo */ 8194 err = 0; 8195 if (net_eq(dev_net(dev), net)) 8196 goto out; 8197 8198 /* Pick the destination device name, and ensure 8199 * we can use it in the destination network namespace. 8200 */ 8201 err = -EEXIST; 8202 if (__dev_get_by_name(net, dev->name)) { 8203 /* We get here if we can't use the current device name */ 8204 if (!pat) 8205 goto out; 8206 if (dev_get_valid_name(net, dev, pat) < 0) 8207 goto out; 8208 } 8209 8210 /* 8211 * And now a mini version of register_netdevice unregister_netdevice. 8212 */ 8213 8214 /* If device is running close it first. */ 8215 dev_close(dev); 8216 8217 /* And unlink it from device chain */ 8218 err = -ENODEV; 8219 unlist_netdevice(dev); 8220 8221 synchronize_net(); 8222 8223 /* Shutdown queueing discipline. */ 8224 dev_shutdown(dev); 8225 8226 /* Notify protocols, that we are about to destroy 8227 * this device. They should clean all the things. 8228 * 8229 * Note that dev->reg_state stays at NETREG_REGISTERED. 8230 * This is wanted because this way 8021q and macvlan know 8231 * the device is just moving and can keep their slaves up. 8232 */ 8233 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8234 rcu_barrier(); 8235 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8236 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 8237 8238 /* 8239 * Flush the unicast and multicast chains 8240 */ 8241 dev_uc_flush(dev); 8242 dev_mc_flush(dev); 8243 8244 /* Send a netdev-removed uevent to the old namespace */ 8245 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8246 netdev_adjacent_del_links(dev); 8247 8248 /* Actually switch the network namespace */ 8249 dev_net_set(dev, net); 8250 8251 /* If there is an ifindex conflict assign a new one */ 8252 if (__dev_get_by_index(net, dev->ifindex)) 8253 dev->ifindex = dev_new_index(net); 8254 8255 /* Send a netdev-add uevent to the new namespace */ 8256 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8257 netdev_adjacent_add_links(dev); 8258 8259 /* Fixup kobjects */ 8260 err = device_rename(&dev->dev, dev->name); 8261 WARN_ON(err); 8262 8263 /* Add the device back in the hashes */ 8264 list_netdevice(dev); 8265 8266 /* Notify protocols, that a new device appeared. */ 8267 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8268 8269 /* 8270 * Prevent userspace races by waiting until the network 8271 * device is fully setup before sending notifications. 8272 */ 8273 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8274 8275 synchronize_net(); 8276 err = 0; 8277 out: 8278 return err; 8279 } 8280 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8281 8282 static int dev_cpu_dead(unsigned int oldcpu) 8283 { 8284 struct sk_buff **list_skb; 8285 struct sk_buff *skb; 8286 unsigned int cpu; 8287 struct softnet_data *sd, *oldsd, *remsd = NULL; 8288 8289 local_irq_disable(); 8290 cpu = smp_processor_id(); 8291 sd = &per_cpu(softnet_data, cpu); 8292 oldsd = &per_cpu(softnet_data, oldcpu); 8293 8294 /* Find end of our completion_queue. */ 8295 list_skb = &sd->completion_queue; 8296 while (*list_skb) 8297 list_skb = &(*list_skb)->next; 8298 /* Append completion queue from offline CPU. */ 8299 *list_skb = oldsd->completion_queue; 8300 oldsd->completion_queue = NULL; 8301 8302 /* Append output queue from offline CPU. */ 8303 if (oldsd->output_queue) { 8304 *sd->output_queue_tailp = oldsd->output_queue; 8305 sd->output_queue_tailp = oldsd->output_queue_tailp; 8306 oldsd->output_queue = NULL; 8307 oldsd->output_queue_tailp = &oldsd->output_queue; 8308 } 8309 /* Append NAPI poll list from offline CPU, with one exception : 8310 * process_backlog() must be called by cpu owning percpu backlog. 8311 * We properly handle process_queue & input_pkt_queue later. 8312 */ 8313 while (!list_empty(&oldsd->poll_list)) { 8314 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8315 struct napi_struct, 8316 poll_list); 8317 8318 list_del_init(&napi->poll_list); 8319 if (napi->poll == process_backlog) 8320 napi->state = 0; 8321 else 8322 ____napi_schedule(sd, napi); 8323 } 8324 8325 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8326 local_irq_enable(); 8327 8328 #ifdef CONFIG_RPS 8329 remsd = oldsd->rps_ipi_list; 8330 oldsd->rps_ipi_list = NULL; 8331 #endif 8332 /* send out pending IPI's on offline CPU */ 8333 net_rps_send_ipi(remsd); 8334 8335 /* Process offline CPU's input_pkt_queue */ 8336 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8337 netif_rx_ni(skb); 8338 input_queue_head_incr(oldsd); 8339 } 8340 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8341 netif_rx_ni(skb); 8342 input_queue_head_incr(oldsd); 8343 } 8344 8345 return 0; 8346 } 8347 8348 /** 8349 * netdev_increment_features - increment feature set by one 8350 * @all: current feature set 8351 * @one: new feature set 8352 * @mask: mask feature set 8353 * 8354 * Computes a new feature set after adding a device with feature set 8355 * @one to the master device with current feature set @all. Will not 8356 * enable anything that is off in @mask. Returns the new feature set. 8357 */ 8358 netdev_features_t netdev_increment_features(netdev_features_t all, 8359 netdev_features_t one, netdev_features_t mask) 8360 { 8361 if (mask & NETIF_F_HW_CSUM) 8362 mask |= NETIF_F_CSUM_MASK; 8363 mask |= NETIF_F_VLAN_CHALLENGED; 8364 8365 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8366 all &= one | ~NETIF_F_ALL_FOR_ALL; 8367 8368 /* If one device supports hw checksumming, set for all. */ 8369 if (all & NETIF_F_HW_CSUM) 8370 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8371 8372 return all; 8373 } 8374 EXPORT_SYMBOL(netdev_increment_features); 8375 8376 static struct hlist_head * __net_init netdev_create_hash(void) 8377 { 8378 int i; 8379 struct hlist_head *hash; 8380 8381 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8382 if (hash != NULL) 8383 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8384 INIT_HLIST_HEAD(&hash[i]); 8385 8386 return hash; 8387 } 8388 8389 /* Initialize per network namespace state */ 8390 static int __net_init netdev_init(struct net *net) 8391 { 8392 if (net != &init_net) 8393 INIT_LIST_HEAD(&net->dev_base_head); 8394 8395 net->dev_name_head = netdev_create_hash(); 8396 if (net->dev_name_head == NULL) 8397 goto err_name; 8398 8399 net->dev_index_head = netdev_create_hash(); 8400 if (net->dev_index_head == NULL) 8401 goto err_idx; 8402 8403 return 0; 8404 8405 err_idx: 8406 kfree(net->dev_name_head); 8407 err_name: 8408 return -ENOMEM; 8409 } 8410 8411 /** 8412 * netdev_drivername - network driver for the device 8413 * @dev: network device 8414 * 8415 * Determine network driver for device. 8416 */ 8417 const char *netdev_drivername(const struct net_device *dev) 8418 { 8419 const struct device_driver *driver; 8420 const struct device *parent; 8421 const char *empty = ""; 8422 8423 parent = dev->dev.parent; 8424 if (!parent) 8425 return empty; 8426 8427 driver = parent->driver; 8428 if (driver && driver->name) 8429 return driver->name; 8430 return empty; 8431 } 8432 8433 static void __netdev_printk(const char *level, const struct net_device *dev, 8434 struct va_format *vaf) 8435 { 8436 if (dev && dev->dev.parent) { 8437 dev_printk_emit(level[1] - '0', 8438 dev->dev.parent, 8439 "%s %s %s%s: %pV", 8440 dev_driver_string(dev->dev.parent), 8441 dev_name(dev->dev.parent), 8442 netdev_name(dev), netdev_reg_state(dev), 8443 vaf); 8444 } else if (dev) { 8445 printk("%s%s%s: %pV", 8446 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8447 } else { 8448 printk("%s(NULL net_device): %pV", level, vaf); 8449 } 8450 } 8451 8452 void netdev_printk(const char *level, const struct net_device *dev, 8453 const char *format, ...) 8454 { 8455 struct va_format vaf; 8456 va_list args; 8457 8458 va_start(args, format); 8459 8460 vaf.fmt = format; 8461 vaf.va = &args; 8462 8463 __netdev_printk(level, dev, &vaf); 8464 8465 va_end(args); 8466 } 8467 EXPORT_SYMBOL(netdev_printk); 8468 8469 #define define_netdev_printk_level(func, level) \ 8470 void func(const struct net_device *dev, const char *fmt, ...) \ 8471 { \ 8472 struct va_format vaf; \ 8473 va_list args; \ 8474 \ 8475 va_start(args, fmt); \ 8476 \ 8477 vaf.fmt = fmt; \ 8478 vaf.va = &args; \ 8479 \ 8480 __netdev_printk(level, dev, &vaf); \ 8481 \ 8482 va_end(args); \ 8483 } \ 8484 EXPORT_SYMBOL(func); 8485 8486 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8487 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8488 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8489 define_netdev_printk_level(netdev_err, KERN_ERR); 8490 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8491 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8492 define_netdev_printk_level(netdev_info, KERN_INFO); 8493 8494 static void __net_exit netdev_exit(struct net *net) 8495 { 8496 kfree(net->dev_name_head); 8497 kfree(net->dev_index_head); 8498 } 8499 8500 static struct pernet_operations __net_initdata netdev_net_ops = { 8501 .init = netdev_init, 8502 .exit = netdev_exit, 8503 }; 8504 8505 static void __net_exit default_device_exit(struct net *net) 8506 { 8507 struct net_device *dev, *aux; 8508 /* 8509 * Push all migratable network devices back to the 8510 * initial network namespace 8511 */ 8512 rtnl_lock(); 8513 for_each_netdev_safe(net, dev, aux) { 8514 int err; 8515 char fb_name[IFNAMSIZ]; 8516 8517 /* Ignore unmoveable devices (i.e. loopback) */ 8518 if (dev->features & NETIF_F_NETNS_LOCAL) 8519 continue; 8520 8521 /* Leave virtual devices for the generic cleanup */ 8522 if (dev->rtnl_link_ops) 8523 continue; 8524 8525 /* Push remaining network devices to init_net */ 8526 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8527 err = dev_change_net_namespace(dev, &init_net, fb_name); 8528 if (err) { 8529 pr_emerg("%s: failed to move %s to init_net: %d\n", 8530 __func__, dev->name, err); 8531 BUG(); 8532 } 8533 } 8534 rtnl_unlock(); 8535 } 8536 8537 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8538 { 8539 /* Return with the rtnl_lock held when there are no network 8540 * devices unregistering in any network namespace in net_list. 8541 */ 8542 struct net *net; 8543 bool unregistering; 8544 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8545 8546 add_wait_queue(&netdev_unregistering_wq, &wait); 8547 for (;;) { 8548 unregistering = false; 8549 rtnl_lock(); 8550 list_for_each_entry(net, net_list, exit_list) { 8551 if (net->dev_unreg_count > 0) { 8552 unregistering = true; 8553 break; 8554 } 8555 } 8556 if (!unregistering) 8557 break; 8558 __rtnl_unlock(); 8559 8560 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8561 } 8562 remove_wait_queue(&netdev_unregistering_wq, &wait); 8563 } 8564 8565 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8566 { 8567 /* At exit all network devices most be removed from a network 8568 * namespace. Do this in the reverse order of registration. 8569 * Do this across as many network namespaces as possible to 8570 * improve batching efficiency. 8571 */ 8572 struct net_device *dev; 8573 struct net *net; 8574 LIST_HEAD(dev_kill_list); 8575 8576 /* To prevent network device cleanup code from dereferencing 8577 * loopback devices or network devices that have been freed 8578 * wait here for all pending unregistrations to complete, 8579 * before unregistring the loopback device and allowing the 8580 * network namespace be freed. 8581 * 8582 * The netdev todo list containing all network devices 8583 * unregistrations that happen in default_device_exit_batch 8584 * will run in the rtnl_unlock() at the end of 8585 * default_device_exit_batch. 8586 */ 8587 rtnl_lock_unregistering(net_list); 8588 list_for_each_entry(net, net_list, exit_list) { 8589 for_each_netdev_reverse(net, dev) { 8590 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8591 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8592 else 8593 unregister_netdevice_queue(dev, &dev_kill_list); 8594 } 8595 } 8596 unregister_netdevice_many(&dev_kill_list); 8597 rtnl_unlock(); 8598 } 8599 8600 static struct pernet_operations __net_initdata default_device_ops = { 8601 .exit = default_device_exit, 8602 .exit_batch = default_device_exit_batch, 8603 }; 8604 8605 /* 8606 * Initialize the DEV module. At boot time this walks the device list and 8607 * unhooks any devices that fail to initialise (normally hardware not 8608 * present) and leaves us with a valid list of present and active devices. 8609 * 8610 */ 8611 8612 /* 8613 * This is called single threaded during boot, so no need 8614 * to take the rtnl semaphore. 8615 */ 8616 static int __init net_dev_init(void) 8617 { 8618 int i, rc = -ENOMEM; 8619 8620 BUG_ON(!dev_boot_phase); 8621 8622 if (dev_proc_init()) 8623 goto out; 8624 8625 if (netdev_kobject_init()) 8626 goto out; 8627 8628 INIT_LIST_HEAD(&ptype_all); 8629 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8630 INIT_LIST_HEAD(&ptype_base[i]); 8631 8632 INIT_LIST_HEAD(&offload_base); 8633 8634 if (register_pernet_subsys(&netdev_net_ops)) 8635 goto out; 8636 8637 /* 8638 * Initialise the packet receive queues. 8639 */ 8640 8641 for_each_possible_cpu(i) { 8642 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8643 struct softnet_data *sd = &per_cpu(softnet_data, i); 8644 8645 INIT_WORK(flush, flush_backlog); 8646 8647 skb_queue_head_init(&sd->input_pkt_queue); 8648 skb_queue_head_init(&sd->process_queue); 8649 INIT_LIST_HEAD(&sd->poll_list); 8650 sd->output_queue_tailp = &sd->output_queue; 8651 #ifdef CONFIG_RPS 8652 sd->csd.func = rps_trigger_softirq; 8653 sd->csd.info = sd; 8654 sd->cpu = i; 8655 #endif 8656 8657 sd->backlog.poll = process_backlog; 8658 sd->backlog.weight = weight_p; 8659 } 8660 8661 dev_boot_phase = 0; 8662 8663 /* The loopback device is special if any other network devices 8664 * is present in a network namespace the loopback device must 8665 * be present. Since we now dynamically allocate and free the 8666 * loopback device ensure this invariant is maintained by 8667 * keeping the loopback device as the first device on the 8668 * list of network devices. Ensuring the loopback devices 8669 * is the first device that appears and the last network device 8670 * that disappears. 8671 */ 8672 if (register_pernet_device(&loopback_net_ops)) 8673 goto out; 8674 8675 if (register_pernet_device(&default_device_ops)) 8676 goto out; 8677 8678 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8679 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8680 8681 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8682 NULL, dev_cpu_dead); 8683 WARN_ON(rc < 0); 8684 rc = 0; 8685 out: 8686 return rc; 8687 } 8688 8689 subsys_initcall(net_dev_init); 8690