1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/kthread.h> 95 #include <linux/bpf.h> 96 #include <linux/bpf_trace.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dsa.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/gro.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <trace/events/qdisc.h> 135 #include <linux/inetdevice.h> 136 #include <linux/cpu_rmap.h> 137 #include <linux/static_key.h> 138 #include <linux/hashtable.h> 139 #include <linux/vmalloc.h> 140 #include <linux/if_macvlan.h> 141 #include <linux/errqueue.h> 142 #include <linux/hrtimer.h> 143 #include <linux/netfilter_netdev.h> 144 #include <linux/crash_dump.h> 145 #include <linux/sctp.h> 146 #include <net/udp_tunnel.h> 147 #include <linux/net_namespace.h> 148 #include <linux/indirect_call_wrapper.h> 149 #include <net/devlink.h> 150 #include <linux/pm_runtime.h> 151 #include <linux/prandom.h> 152 #include <linux/once_lite.h> 153 154 #include "net-sysfs.h" 155 156 157 static DEFINE_SPINLOCK(ptype_lock); 158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 159 struct list_head ptype_all __read_mostly; /* Taps */ 160 161 static int netif_rx_internal(struct sk_buff *skb); 162 static int call_netdevice_notifiers_info(unsigned long val, 163 struct netdev_notifier_info *info); 164 static int call_netdevice_notifiers_extack(unsigned long val, 165 struct net_device *dev, 166 struct netlink_ext_ack *extack); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 static DEFINE_MUTEX(ifalias_mutex); 192 193 /* protects napi_hash addition/deletion and napi_gen_id */ 194 static DEFINE_SPINLOCK(napi_hash_lock); 195 196 static unsigned int napi_gen_id = NR_CPUS; 197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199 static DECLARE_RWSEM(devnet_rename_sem); 200 201 static inline void dev_base_seq_inc(struct net *net) 202 { 203 while (++net->dev_base_seq == 0) 204 ; 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212 } 213 214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215 { 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217 } 218 219 static inline void rps_lock_irqsave(struct softnet_data *sd, 220 unsigned long *flags) 221 { 222 if (IS_ENABLED(CONFIG_RPS)) 223 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 224 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 225 local_irq_save(*flags); 226 } 227 228 static inline void rps_lock_irq_disable(struct softnet_data *sd) 229 { 230 if (IS_ENABLED(CONFIG_RPS)) 231 spin_lock_irq(&sd->input_pkt_queue.lock); 232 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 233 local_irq_disable(); 234 } 235 236 static inline void rps_unlock_irq_restore(struct softnet_data *sd, 237 unsigned long *flags) 238 { 239 if (IS_ENABLED(CONFIG_RPS)) 240 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 241 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 242 local_irq_restore(*flags); 243 } 244 245 static inline void rps_unlock_irq_enable(struct softnet_data *sd) 246 { 247 if (IS_ENABLED(CONFIG_RPS)) 248 spin_unlock_irq(&sd->input_pkt_queue.lock); 249 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 250 local_irq_enable(); 251 } 252 253 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 254 const char *name) 255 { 256 struct netdev_name_node *name_node; 257 258 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 259 if (!name_node) 260 return NULL; 261 INIT_HLIST_NODE(&name_node->hlist); 262 name_node->dev = dev; 263 name_node->name = name; 264 return name_node; 265 } 266 267 static struct netdev_name_node * 268 netdev_name_node_head_alloc(struct net_device *dev) 269 { 270 struct netdev_name_node *name_node; 271 272 name_node = netdev_name_node_alloc(dev, dev->name); 273 if (!name_node) 274 return NULL; 275 INIT_LIST_HEAD(&name_node->list); 276 return name_node; 277 } 278 279 static void netdev_name_node_free(struct netdev_name_node *name_node) 280 { 281 kfree(name_node); 282 } 283 284 static void netdev_name_node_add(struct net *net, 285 struct netdev_name_node *name_node) 286 { 287 hlist_add_head_rcu(&name_node->hlist, 288 dev_name_hash(net, name_node->name)); 289 } 290 291 static void netdev_name_node_del(struct netdev_name_node *name_node) 292 { 293 hlist_del_rcu(&name_node->hlist); 294 } 295 296 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 297 const char *name) 298 { 299 struct hlist_head *head = dev_name_hash(net, name); 300 struct netdev_name_node *name_node; 301 302 hlist_for_each_entry(name_node, head, hlist) 303 if (!strcmp(name_node->name, name)) 304 return name_node; 305 return NULL; 306 } 307 308 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 309 const char *name) 310 { 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry_rcu(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318 } 319 320 bool netdev_name_in_use(struct net *net, const char *name) 321 { 322 return netdev_name_node_lookup(net, name); 323 } 324 EXPORT_SYMBOL(netdev_name_in_use); 325 326 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 327 { 328 struct netdev_name_node *name_node; 329 struct net *net = dev_net(dev); 330 331 name_node = netdev_name_node_lookup(net, name); 332 if (name_node) 333 return -EEXIST; 334 name_node = netdev_name_node_alloc(dev, name); 335 if (!name_node) 336 return -ENOMEM; 337 netdev_name_node_add(net, name_node); 338 /* The node that holds dev->name acts as a head of per-device list. */ 339 list_add_tail(&name_node->list, &dev->name_node->list); 340 341 return 0; 342 } 343 EXPORT_SYMBOL(netdev_name_node_alt_create); 344 345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 346 { 347 list_del(&name_node->list); 348 netdev_name_node_del(name_node); 349 kfree(name_node->name); 350 netdev_name_node_free(name_node); 351 } 352 353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 354 { 355 struct netdev_name_node *name_node; 356 struct net *net = dev_net(dev); 357 358 name_node = netdev_name_node_lookup(net, name); 359 if (!name_node) 360 return -ENOENT; 361 /* lookup might have found our primary name or a name belonging 362 * to another device. 363 */ 364 if (name_node == dev->name_node || name_node->dev != dev) 365 return -EINVAL; 366 367 __netdev_name_node_alt_destroy(name_node); 368 369 return 0; 370 } 371 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 372 373 static void netdev_name_node_alt_flush(struct net_device *dev) 374 { 375 struct netdev_name_node *name_node, *tmp; 376 377 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 378 __netdev_name_node_alt_destroy(name_node); 379 } 380 381 /* Device list insertion */ 382 static void list_netdevice(struct net_device *dev) 383 { 384 struct net *net = dev_net(dev); 385 386 ASSERT_RTNL(); 387 388 write_lock(&dev_base_lock); 389 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 390 netdev_name_node_add(net, dev->name_node); 391 hlist_add_head_rcu(&dev->index_hlist, 392 dev_index_hash(net, dev->ifindex)); 393 write_unlock(&dev_base_lock); 394 395 dev_base_seq_inc(net); 396 } 397 398 /* Device list removal 399 * caller must respect a RCU grace period before freeing/reusing dev 400 */ 401 static void unlist_netdevice(struct net_device *dev) 402 { 403 ASSERT_RTNL(); 404 405 /* Unlink dev from the device chain */ 406 write_lock(&dev_base_lock); 407 list_del_rcu(&dev->dev_list); 408 netdev_name_node_del(dev->name_node); 409 hlist_del_rcu(&dev->index_hlist); 410 write_unlock(&dev_base_lock); 411 412 dev_base_seq_inc(dev_net(dev)); 413 } 414 415 /* 416 * Our notifier list 417 */ 418 419 static RAW_NOTIFIER_HEAD(netdev_chain); 420 421 /* 422 * Device drivers call our routines to queue packets here. We empty the 423 * queue in the local softnet handler. 424 */ 425 426 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 427 EXPORT_PER_CPU_SYMBOL(softnet_data); 428 429 #ifdef CONFIG_LOCKDEP 430 /* 431 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 432 * according to dev->type 433 */ 434 static const unsigned short netdev_lock_type[] = { 435 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 436 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 437 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 438 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 439 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 440 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 441 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 442 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 443 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 444 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 445 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 446 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 447 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 448 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 449 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 450 451 static const char *const netdev_lock_name[] = { 452 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 453 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 454 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 455 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 456 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 457 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 458 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 459 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 460 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 461 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 462 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 463 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 464 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 465 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 466 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 467 468 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 469 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 470 471 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 472 { 473 int i; 474 475 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 476 if (netdev_lock_type[i] == dev_type) 477 return i; 478 /* the last key is used by default */ 479 return ARRAY_SIZE(netdev_lock_type) - 1; 480 } 481 482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 483 unsigned short dev_type) 484 { 485 int i; 486 487 i = netdev_lock_pos(dev_type); 488 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 489 netdev_lock_name[i]); 490 } 491 492 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 493 { 494 int i; 495 496 i = netdev_lock_pos(dev->type); 497 lockdep_set_class_and_name(&dev->addr_list_lock, 498 &netdev_addr_lock_key[i], 499 netdev_lock_name[i]); 500 } 501 #else 502 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 503 unsigned short dev_type) 504 { 505 } 506 507 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 508 { 509 } 510 #endif 511 512 /******************************************************************************* 513 * 514 * Protocol management and registration routines 515 * 516 *******************************************************************************/ 517 518 519 /* 520 * Add a protocol ID to the list. Now that the input handler is 521 * smarter we can dispense with all the messy stuff that used to be 522 * here. 523 * 524 * BEWARE!!! Protocol handlers, mangling input packets, 525 * MUST BE last in hash buckets and checking protocol handlers 526 * MUST start from promiscuous ptype_all chain in net_bh. 527 * It is true now, do not change it. 528 * Explanation follows: if protocol handler, mangling packet, will 529 * be the first on list, it is not able to sense, that packet 530 * is cloned and should be copied-on-write, so that it will 531 * change it and subsequent readers will get broken packet. 532 * --ANK (980803) 533 */ 534 535 static inline struct list_head *ptype_head(const struct packet_type *pt) 536 { 537 if (pt->type == htons(ETH_P_ALL)) 538 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 539 else 540 return pt->dev ? &pt->dev->ptype_specific : 541 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 542 } 543 544 /** 545 * dev_add_pack - add packet handler 546 * @pt: packet type declaration 547 * 548 * Add a protocol handler to the networking stack. The passed &packet_type 549 * is linked into kernel lists and may not be freed until it has been 550 * removed from the kernel lists. 551 * 552 * This call does not sleep therefore it can not 553 * guarantee all CPU's that are in middle of receiving packets 554 * will see the new packet type (until the next received packet). 555 */ 556 557 void dev_add_pack(struct packet_type *pt) 558 { 559 struct list_head *head = ptype_head(pt); 560 561 spin_lock(&ptype_lock); 562 list_add_rcu(&pt->list, head); 563 spin_unlock(&ptype_lock); 564 } 565 EXPORT_SYMBOL(dev_add_pack); 566 567 /** 568 * __dev_remove_pack - remove packet handler 569 * @pt: packet type declaration 570 * 571 * Remove a protocol handler that was previously added to the kernel 572 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 573 * from the kernel lists and can be freed or reused once this function 574 * returns. 575 * 576 * The packet type might still be in use by receivers 577 * and must not be freed until after all the CPU's have gone 578 * through a quiescent state. 579 */ 580 void __dev_remove_pack(struct packet_type *pt) 581 { 582 struct list_head *head = ptype_head(pt); 583 struct packet_type *pt1; 584 585 spin_lock(&ptype_lock); 586 587 list_for_each_entry(pt1, head, list) { 588 if (pt == pt1) { 589 list_del_rcu(&pt->list); 590 goto out; 591 } 592 } 593 594 pr_warn("dev_remove_pack: %p not found\n", pt); 595 out: 596 spin_unlock(&ptype_lock); 597 } 598 EXPORT_SYMBOL(__dev_remove_pack); 599 600 /** 601 * dev_remove_pack - remove packet handler 602 * @pt: packet type declaration 603 * 604 * Remove a protocol handler that was previously added to the kernel 605 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 606 * from the kernel lists and can be freed or reused once this function 607 * returns. 608 * 609 * This call sleeps to guarantee that no CPU is looking at the packet 610 * type after return. 611 */ 612 void dev_remove_pack(struct packet_type *pt) 613 { 614 __dev_remove_pack(pt); 615 616 synchronize_net(); 617 } 618 EXPORT_SYMBOL(dev_remove_pack); 619 620 621 /******************************************************************************* 622 * 623 * Device Interface Subroutines 624 * 625 *******************************************************************************/ 626 627 /** 628 * dev_get_iflink - get 'iflink' value of a interface 629 * @dev: targeted interface 630 * 631 * Indicates the ifindex the interface is linked to. 632 * Physical interfaces have the same 'ifindex' and 'iflink' values. 633 */ 634 635 int dev_get_iflink(const struct net_device *dev) 636 { 637 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 638 return dev->netdev_ops->ndo_get_iflink(dev); 639 640 return dev->ifindex; 641 } 642 EXPORT_SYMBOL(dev_get_iflink); 643 644 /** 645 * dev_fill_metadata_dst - Retrieve tunnel egress information. 646 * @dev: targeted interface 647 * @skb: The packet. 648 * 649 * For better visibility of tunnel traffic OVS needs to retrieve 650 * egress tunnel information for a packet. Following API allows 651 * user to get this info. 652 */ 653 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 654 { 655 struct ip_tunnel_info *info; 656 657 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 658 return -EINVAL; 659 660 info = skb_tunnel_info_unclone(skb); 661 if (!info) 662 return -ENOMEM; 663 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 664 return -EINVAL; 665 666 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 667 } 668 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 669 670 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 671 { 672 int k = stack->num_paths++; 673 674 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 675 return NULL; 676 677 return &stack->path[k]; 678 } 679 680 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 681 struct net_device_path_stack *stack) 682 { 683 const struct net_device *last_dev; 684 struct net_device_path_ctx ctx = { 685 .dev = dev, 686 .daddr = daddr, 687 }; 688 struct net_device_path *path; 689 int ret = 0; 690 691 stack->num_paths = 0; 692 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 693 last_dev = ctx.dev; 694 path = dev_fwd_path(stack); 695 if (!path) 696 return -1; 697 698 memset(path, 0, sizeof(struct net_device_path)); 699 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 700 if (ret < 0) 701 return -1; 702 703 if (WARN_ON_ONCE(last_dev == ctx.dev)) 704 return -1; 705 } 706 path = dev_fwd_path(stack); 707 if (!path) 708 return -1; 709 path->type = DEV_PATH_ETHERNET; 710 path->dev = ctx.dev; 711 712 return ret; 713 } 714 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 715 716 /** 717 * __dev_get_by_name - find a device by its name 718 * @net: the applicable net namespace 719 * @name: name to find 720 * 721 * Find an interface by name. Must be called under RTNL semaphore 722 * or @dev_base_lock. If the name is found a pointer to the device 723 * is returned. If the name is not found then %NULL is returned. The 724 * reference counters are not incremented so the caller must be 725 * careful with locks. 726 */ 727 728 struct net_device *__dev_get_by_name(struct net *net, const char *name) 729 { 730 struct netdev_name_node *node_name; 731 732 node_name = netdev_name_node_lookup(net, name); 733 return node_name ? node_name->dev : NULL; 734 } 735 EXPORT_SYMBOL(__dev_get_by_name); 736 737 /** 738 * dev_get_by_name_rcu - find a device by its name 739 * @net: the applicable net namespace 740 * @name: name to find 741 * 742 * Find an interface by name. 743 * If the name is found a pointer to the device is returned. 744 * If the name is not found then %NULL is returned. 745 * The reference counters are not incremented so the caller must be 746 * careful with locks. The caller must hold RCU lock. 747 */ 748 749 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 750 { 751 struct netdev_name_node *node_name; 752 753 node_name = netdev_name_node_lookup_rcu(net, name); 754 return node_name ? node_name->dev : NULL; 755 } 756 EXPORT_SYMBOL(dev_get_by_name_rcu); 757 758 /** 759 * dev_get_by_name - find a device by its name 760 * @net: the applicable net namespace 761 * @name: name to find 762 * 763 * Find an interface by name. This can be called from any 764 * context and does its own locking. The returned handle has 765 * the usage count incremented and the caller must use dev_put() to 766 * release it when it is no longer needed. %NULL is returned if no 767 * matching device is found. 768 */ 769 770 struct net_device *dev_get_by_name(struct net *net, const char *name) 771 { 772 struct net_device *dev; 773 774 rcu_read_lock(); 775 dev = dev_get_by_name_rcu(net, name); 776 dev_hold(dev); 777 rcu_read_unlock(); 778 return dev; 779 } 780 EXPORT_SYMBOL(dev_get_by_name); 781 782 /** 783 * __dev_get_by_index - find a device by its ifindex 784 * @net: the applicable net namespace 785 * @ifindex: index of device 786 * 787 * Search for an interface by index. Returns %NULL if the device 788 * is not found or a pointer to the device. The device has not 789 * had its reference counter increased so the caller must be careful 790 * about locking. The caller must hold either the RTNL semaphore 791 * or @dev_base_lock. 792 */ 793 794 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 795 { 796 struct net_device *dev; 797 struct hlist_head *head = dev_index_hash(net, ifindex); 798 799 hlist_for_each_entry(dev, head, index_hlist) 800 if (dev->ifindex == ifindex) 801 return dev; 802 803 return NULL; 804 } 805 EXPORT_SYMBOL(__dev_get_by_index); 806 807 /** 808 * dev_get_by_index_rcu - find a device by its ifindex 809 * @net: the applicable net namespace 810 * @ifindex: index of device 811 * 812 * Search for an interface by index. Returns %NULL if the device 813 * is not found or a pointer to the device. The device has not 814 * had its reference counter increased so the caller must be careful 815 * about locking. The caller must hold RCU lock. 816 */ 817 818 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 819 { 820 struct net_device *dev; 821 struct hlist_head *head = dev_index_hash(net, ifindex); 822 823 hlist_for_each_entry_rcu(dev, head, index_hlist) 824 if (dev->ifindex == ifindex) 825 return dev; 826 827 return NULL; 828 } 829 EXPORT_SYMBOL(dev_get_by_index_rcu); 830 831 832 /** 833 * dev_get_by_index - find a device by its ifindex 834 * @net: the applicable net namespace 835 * @ifindex: index of device 836 * 837 * Search for an interface by index. Returns NULL if the device 838 * is not found or a pointer to the device. The device returned has 839 * had a reference added and the pointer is safe until the user calls 840 * dev_put to indicate they have finished with it. 841 */ 842 843 struct net_device *dev_get_by_index(struct net *net, int ifindex) 844 { 845 struct net_device *dev; 846 847 rcu_read_lock(); 848 dev = dev_get_by_index_rcu(net, ifindex); 849 dev_hold(dev); 850 rcu_read_unlock(); 851 return dev; 852 } 853 EXPORT_SYMBOL(dev_get_by_index); 854 855 /** 856 * dev_get_by_napi_id - find a device by napi_id 857 * @napi_id: ID of the NAPI struct 858 * 859 * Search for an interface by NAPI ID. Returns %NULL if the device 860 * is not found or a pointer to the device. The device has not had 861 * its reference counter increased so the caller must be careful 862 * about locking. The caller must hold RCU lock. 863 */ 864 865 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 866 { 867 struct napi_struct *napi; 868 869 WARN_ON_ONCE(!rcu_read_lock_held()); 870 871 if (napi_id < MIN_NAPI_ID) 872 return NULL; 873 874 napi = napi_by_id(napi_id); 875 876 return napi ? napi->dev : NULL; 877 } 878 EXPORT_SYMBOL(dev_get_by_napi_id); 879 880 /** 881 * netdev_get_name - get a netdevice name, knowing its ifindex. 882 * @net: network namespace 883 * @name: a pointer to the buffer where the name will be stored. 884 * @ifindex: the ifindex of the interface to get the name from. 885 */ 886 int netdev_get_name(struct net *net, char *name, int ifindex) 887 { 888 struct net_device *dev; 889 int ret; 890 891 down_read(&devnet_rename_sem); 892 rcu_read_lock(); 893 894 dev = dev_get_by_index_rcu(net, ifindex); 895 if (!dev) { 896 ret = -ENODEV; 897 goto out; 898 } 899 900 strcpy(name, dev->name); 901 902 ret = 0; 903 out: 904 rcu_read_unlock(); 905 up_read(&devnet_rename_sem); 906 return ret; 907 } 908 909 /** 910 * dev_getbyhwaddr_rcu - find a device by its hardware address 911 * @net: the applicable net namespace 912 * @type: media type of device 913 * @ha: hardware address 914 * 915 * Search for an interface by MAC address. Returns NULL if the device 916 * is not found or a pointer to the device. 917 * The caller must hold RCU or RTNL. 918 * The returned device has not had its ref count increased 919 * and the caller must therefore be careful about locking 920 * 921 */ 922 923 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 924 const char *ha) 925 { 926 struct net_device *dev; 927 928 for_each_netdev_rcu(net, dev) 929 if (dev->type == type && 930 !memcmp(dev->dev_addr, ha, dev->addr_len)) 931 return dev; 932 933 return NULL; 934 } 935 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 936 937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 938 { 939 struct net_device *dev, *ret = NULL; 940 941 rcu_read_lock(); 942 for_each_netdev_rcu(net, dev) 943 if (dev->type == type) { 944 dev_hold(dev); 945 ret = dev; 946 break; 947 } 948 rcu_read_unlock(); 949 return ret; 950 } 951 EXPORT_SYMBOL(dev_getfirstbyhwtype); 952 953 /** 954 * __dev_get_by_flags - find any device with given flags 955 * @net: the applicable net namespace 956 * @if_flags: IFF_* values 957 * @mask: bitmask of bits in if_flags to check 958 * 959 * Search for any interface with the given flags. Returns NULL if a device 960 * is not found or a pointer to the device. Must be called inside 961 * rtnl_lock(), and result refcount is unchanged. 962 */ 963 964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 965 unsigned short mask) 966 { 967 struct net_device *dev, *ret; 968 969 ASSERT_RTNL(); 970 971 ret = NULL; 972 for_each_netdev(net, dev) { 973 if (((dev->flags ^ if_flags) & mask) == 0) { 974 ret = dev; 975 break; 976 } 977 } 978 return ret; 979 } 980 EXPORT_SYMBOL(__dev_get_by_flags); 981 982 /** 983 * dev_valid_name - check if name is okay for network device 984 * @name: name string 985 * 986 * Network device names need to be valid file names to 987 * allow sysfs to work. We also disallow any kind of 988 * whitespace. 989 */ 990 bool dev_valid_name(const char *name) 991 { 992 if (*name == '\0') 993 return false; 994 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 995 return false; 996 if (!strcmp(name, ".") || !strcmp(name, "..")) 997 return false; 998 999 while (*name) { 1000 if (*name == '/' || *name == ':' || isspace(*name)) 1001 return false; 1002 name++; 1003 } 1004 return true; 1005 } 1006 EXPORT_SYMBOL(dev_valid_name); 1007 1008 /** 1009 * __dev_alloc_name - allocate a name for a device 1010 * @net: network namespace to allocate the device name in 1011 * @name: name format string 1012 * @buf: scratch buffer and result name string 1013 * 1014 * Passed a format string - eg "lt%d" it will try and find a suitable 1015 * id. It scans list of devices to build up a free map, then chooses 1016 * the first empty slot. The caller must hold the dev_base or rtnl lock 1017 * while allocating the name and adding the device in order to avoid 1018 * duplicates. 1019 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1020 * Returns the number of the unit assigned or a negative errno code. 1021 */ 1022 1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1024 { 1025 int i = 0; 1026 const char *p; 1027 const int max_netdevices = 8*PAGE_SIZE; 1028 unsigned long *inuse; 1029 struct net_device *d; 1030 1031 if (!dev_valid_name(name)) 1032 return -EINVAL; 1033 1034 p = strchr(name, '%'); 1035 if (p) { 1036 /* 1037 * Verify the string as this thing may have come from 1038 * the user. There must be either one "%d" and no other "%" 1039 * characters. 1040 */ 1041 if (p[1] != 'd' || strchr(p + 2, '%')) 1042 return -EINVAL; 1043 1044 /* Use one page as a bit array of possible slots */ 1045 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1046 if (!inuse) 1047 return -ENOMEM; 1048 1049 for_each_netdev(net, d) { 1050 struct netdev_name_node *name_node; 1051 list_for_each_entry(name_node, &d->name_node->list, list) { 1052 if (!sscanf(name_node->name, name, &i)) 1053 continue; 1054 if (i < 0 || i >= max_netdevices) 1055 continue; 1056 1057 /* avoid cases where sscanf is not exact inverse of printf */ 1058 snprintf(buf, IFNAMSIZ, name, i); 1059 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1060 __set_bit(i, inuse); 1061 } 1062 if (!sscanf(d->name, name, &i)) 1063 continue; 1064 if (i < 0 || i >= max_netdevices) 1065 continue; 1066 1067 /* avoid cases where sscanf is not exact inverse of printf */ 1068 snprintf(buf, IFNAMSIZ, name, i); 1069 if (!strncmp(buf, d->name, IFNAMSIZ)) 1070 __set_bit(i, inuse); 1071 } 1072 1073 i = find_first_zero_bit(inuse, max_netdevices); 1074 free_page((unsigned long) inuse); 1075 } 1076 1077 snprintf(buf, IFNAMSIZ, name, i); 1078 if (!netdev_name_in_use(net, buf)) 1079 return i; 1080 1081 /* It is possible to run out of possible slots 1082 * when the name is long and there isn't enough space left 1083 * for the digits, or if all bits are used. 1084 */ 1085 return -ENFILE; 1086 } 1087 1088 static int dev_alloc_name_ns(struct net *net, 1089 struct net_device *dev, 1090 const char *name) 1091 { 1092 char buf[IFNAMSIZ]; 1093 int ret; 1094 1095 BUG_ON(!net); 1096 ret = __dev_alloc_name(net, name, buf); 1097 if (ret >= 0) 1098 strlcpy(dev->name, buf, IFNAMSIZ); 1099 return ret; 1100 } 1101 1102 /** 1103 * dev_alloc_name - allocate a name for a device 1104 * @dev: device 1105 * @name: name format string 1106 * 1107 * Passed a format string - eg "lt%d" it will try and find a suitable 1108 * id. It scans list of devices to build up a free map, then chooses 1109 * the first empty slot. The caller must hold the dev_base or rtnl lock 1110 * while allocating the name and adding the device in order to avoid 1111 * duplicates. 1112 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1113 * Returns the number of the unit assigned or a negative errno code. 1114 */ 1115 1116 int dev_alloc_name(struct net_device *dev, const char *name) 1117 { 1118 return dev_alloc_name_ns(dev_net(dev), dev, name); 1119 } 1120 EXPORT_SYMBOL(dev_alloc_name); 1121 1122 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1123 const char *name) 1124 { 1125 BUG_ON(!net); 1126 1127 if (!dev_valid_name(name)) 1128 return -EINVAL; 1129 1130 if (strchr(name, '%')) 1131 return dev_alloc_name_ns(net, dev, name); 1132 else if (netdev_name_in_use(net, name)) 1133 return -EEXIST; 1134 else if (dev->name != name) 1135 strlcpy(dev->name, name, IFNAMSIZ); 1136 1137 return 0; 1138 } 1139 1140 /** 1141 * dev_change_name - change name of a device 1142 * @dev: device 1143 * @newname: name (or format string) must be at least IFNAMSIZ 1144 * 1145 * Change name of a device, can pass format strings "eth%d". 1146 * for wildcarding. 1147 */ 1148 int dev_change_name(struct net_device *dev, const char *newname) 1149 { 1150 unsigned char old_assign_type; 1151 char oldname[IFNAMSIZ]; 1152 int err = 0; 1153 int ret; 1154 struct net *net; 1155 1156 ASSERT_RTNL(); 1157 BUG_ON(!dev_net(dev)); 1158 1159 net = dev_net(dev); 1160 1161 /* Some auto-enslaved devices e.g. failover slaves are 1162 * special, as userspace might rename the device after 1163 * the interface had been brought up and running since 1164 * the point kernel initiated auto-enslavement. Allow 1165 * live name change even when these slave devices are 1166 * up and running. 1167 * 1168 * Typically, users of these auto-enslaving devices 1169 * don't actually care about slave name change, as 1170 * they are supposed to operate on master interface 1171 * directly. 1172 */ 1173 if (dev->flags & IFF_UP && 1174 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1175 return -EBUSY; 1176 1177 down_write(&devnet_rename_sem); 1178 1179 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1180 up_write(&devnet_rename_sem); 1181 return 0; 1182 } 1183 1184 memcpy(oldname, dev->name, IFNAMSIZ); 1185 1186 err = dev_get_valid_name(net, dev, newname); 1187 if (err < 0) { 1188 up_write(&devnet_rename_sem); 1189 return err; 1190 } 1191 1192 if (oldname[0] && !strchr(oldname, '%')) 1193 netdev_info(dev, "renamed from %s\n", oldname); 1194 1195 old_assign_type = dev->name_assign_type; 1196 dev->name_assign_type = NET_NAME_RENAMED; 1197 1198 rollback: 1199 ret = device_rename(&dev->dev, dev->name); 1200 if (ret) { 1201 memcpy(dev->name, oldname, IFNAMSIZ); 1202 dev->name_assign_type = old_assign_type; 1203 up_write(&devnet_rename_sem); 1204 return ret; 1205 } 1206 1207 up_write(&devnet_rename_sem); 1208 1209 netdev_adjacent_rename_links(dev, oldname); 1210 1211 write_lock(&dev_base_lock); 1212 netdev_name_node_del(dev->name_node); 1213 write_unlock(&dev_base_lock); 1214 1215 synchronize_rcu(); 1216 1217 write_lock(&dev_base_lock); 1218 netdev_name_node_add(net, dev->name_node); 1219 write_unlock(&dev_base_lock); 1220 1221 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1222 ret = notifier_to_errno(ret); 1223 1224 if (ret) { 1225 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1226 if (err >= 0) { 1227 err = ret; 1228 down_write(&devnet_rename_sem); 1229 memcpy(dev->name, oldname, IFNAMSIZ); 1230 memcpy(oldname, newname, IFNAMSIZ); 1231 dev->name_assign_type = old_assign_type; 1232 old_assign_type = NET_NAME_RENAMED; 1233 goto rollback; 1234 } else { 1235 netdev_err(dev, "name change rollback failed: %d\n", 1236 ret); 1237 } 1238 } 1239 1240 return err; 1241 } 1242 1243 /** 1244 * dev_set_alias - change ifalias of a device 1245 * @dev: device 1246 * @alias: name up to IFALIASZ 1247 * @len: limit of bytes to copy from info 1248 * 1249 * Set ifalias for a device, 1250 */ 1251 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1252 { 1253 struct dev_ifalias *new_alias = NULL; 1254 1255 if (len >= IFALIASZ) 1256 return -EINVAL; 1257 1258 if (len) { 1259 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1260 if (!new_alias) 1261 return -ENOMEM; 1262 1263 memcpy(new_alias->ifalias, alias, len); 1264 new_alias->ifalias[len] = 0; 1265 } 1266 1267 mutex_lock(&ifalias_mutex); 1268 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1269 mutex_is_locked(&ifalias_mutex)); 1270 mutex_unlock(&ifalias_mutex); 1271 1272 if (new_alias) 1273 kfree_rcu(new_alias, rcuhead); 1274 1275 return len; 1276 } 1277 EXPORT_SYMBOL(dev_set_alias); 1278 1279 /** 1280 * dev_get_alias - get ifalias of a device 1281 * @dev: device 1282 * @name: buffer to store name of ifalias 1283 * @len: size of buffer 1284 * 1285 * get ifalias for a device. Caller must make sure dev cannot go 1286 * away, e.g. rcu read lock or own a reference count to device. 1287 */ 1288 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1289 { 1290 const struct dev_ifalias *alias; 1291 int ret = 0; 1292 1293 rcu_read_lock(); 1294 alias = rcu_dereference(dev->ifalias); 1295 if (alias) 1296 ret = snprintf(name, len, "%s", alias->ifalias); 1297 rcu_read_unlock(); 1298 1299 return ret; 1300 } 1301 1302 /** 1303 * netdev_features_change - device changes features 1304 * @dev: device to cause notification 1305 * 1306 * Called to indicate a device has changed features. 1307 */ 1308 void netdev_features_change(struct net_device *dev) 1309 { 1310 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1311 } 1312 EXPORT_SYMBOL(netdev_features_change); 1313 1314 /** 1315 * netdev_state_change - device changes state 1316 * @dev: device to cause notification 1317 * 1318 * Called to indicate a device has changed state. This function calls 1319 * the notifier chains for netdev_chain and sends a NEWLINK message 1320 * to the routing socket. 1321 */ 1322 void netdev_state_change(struct net_device *dev) 1323 { 1324 if (dev->flags & IFF_UP) { 1325 struct netdev_notifier_change_info change_info = { 1326 .info.dev = dev, 1327 }; 1328 1329 call_netdevice_notifiers_info(NETDEV_CHANGE, 1330 &change_info.info); 1331 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1332 } 1333 } 1334 EXPORT_SYMBOL(netdev_state_change); 1335 1336 /** 1337 * __netdev_notify_peers - notify network peers about existence of @dev, 1338 * to be called when rtnl lock is already held. 1339 * @dev: network device 1340 * 1341 * Generate traffic such that interested network peers are aware of 1342 * @dev, such as by generating a gratuitous ARP. This may be used when 1343 * a device wants to inform the rest of the network about some sort of 1344 * reconfiguration such as a failover event or virtual machine 1345 * migration. 1346 */ 1347 void __netdev_notify_peers(struct net_device *dev) 1348 { 1349 ASSERT_RTNL(); 1350 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1351 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1352 } 1353 EXPORT_SYMBOL(__netdev_notify_peers); 1354 1355 /** 1356 * netdev_notify_peers - notify network peers about existence of @dev 1357 * @dev: network device 1358 * 1359 * Generate traffic such that interested network peers are aware of 1360 * @dev, such as by generating a gratuitous ARP. This may be used when 1361 * a device wants to inform the rest of the network about some sort of 1362 * reconfiguration such as a failover event or virtual machine 1363 * migration. 1364 */ 1365 void netdev_notify_peers(struct net_device *dev) 1366 { 1367 rtnl_lock(); 1368 __netdev_notify_peers(dev); 1369 rtnl_unlock(); 1370 } 1371 EXPORT_SYMBOL(netdev_notify_peers); 1372 1373 static int napi_threaded_poll(void *data); 1374 1375 static int napi_kthread_create(struct napi_struct *n) 1376 { 1377 int err = 0; 1378 1379 /* Create and wake up the kthread once to put it in 1380 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1381 * warning and work with loadavg. 1382 */ 1383 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1384 n->dev->name, n->napi_id); 1385 if (IS_ERR(n->thread)) { 1386 err = PTR_ERR(n->thread); 1387 pr_err("kthread_run failed with err %d\n", err); 1388 n->thread = NULL; 1389 } 1390 1391 return err; 1392 } 1393 1394 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1395 { 1396 const struct net_device_ops *ops = dev->netdev_ops; 1397 int ret; 1398 1399 ASSERT_RTNL(); 1400 dev_addr_check(dev); 1401 1402 if (!netif_device_present(dev)) { 1403 /* may be detached because parent is runtime-suspended */ 1404 if (dev->dev.parent) 1405 pm_runtime_resume(dev->dev.parent); 1406 if (!netif_device_present(dev)) 1407 return -ENODEV; 1408 } 1409 1410 /* Block netpoll from trying to do any rx path servicing. 1411 * If we don't do this there is a chance ndo_poll_controller 1412 * or ndo_poll may be running while we open the device 1413 */ 1414 netpoll_poll_disable(dev); 1415 1416 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1417 ret = notifier_to_errno(ret); 1418 if (ret) 1419 return ret; 1420 1421 set_bit(__LINK_STATE_START, &dev->state); 1422 1423 if (ops->ndo_validate_addr) 1424 ret = ops->ndo_validate_addr(dev); 1425 1426 if (!ret && ops->ndo_open) 1427 ret = ops->ndo_open(dev); 1428 1429 netpoll_poll_enable(dev); 1430 1431 if (ret) 1432 clear_bit(__LINK_STATE_START, &dev->state); 1433 else { 1434 dev->flags |= IFF_UP; 1435 dev_set_rx_mode(dev); 1436 dev_activate(dev); 1437 add_device_randomness(dev->dev_addr, dev->addr_len); 1438 } 1439 1440 return ret; 1441 } 1442 1443 /** 1444 * dev_open - prepare an interface for use. 1445 * @dev: device to open 1446 * @extack: netlink extended ack 1447 * 1448 * Takes a device from down to up state. The device's private open 1449 * function is invoked and then the multicast lists are loaded. Finally 1450 * the device is moved into the up state and a %NETDEV_UP message is 1451 * sent to the netdev notifier chain. 1452 * 1453 * Calling this function on an active interface is a nop. On a failure 1454 * a negative errno code is returned. 1455 */ 1456 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1457 { 1458 int ret; 1459 1460 if (dev->flags & IFF_UP) 1461 return 0; 1462 1463 ret = __dev_open(dev, extack); 1464 if (ret < 0) 1465 return ret; 1466 1467 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1468 call_netdevice_notifiers(NETDEV_UP, dev); 1469 1470 return ret; 1471 } 1472 EXPORT_SYMBOL(dev_open); 1473 1474 static void __dev_close_many(struct list_head *head) 1475 { 1476 struct net_device *dev; 1477 1478 ASSERT_RTNL(); 1479 might_sleep(); 1480 1481 list_for_each_entry(dev, head, close_list) { 1482 /* Temporarily disable netpoll until the interface is down */ 1483 netpoll_poll_disable(dev); 1484 1485 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1486 1487 clear_bit(__LINK_STATE_START, &dev->state); 1488 1489 /* Synchronize to scheduled poll. We cannot touch poll list, it 1490 * can be even on different cpu. So just clear netif_running(). 1491 * 1492 * dev->stop() will invoke napi_disable() on all of it's 1493 * napi_struct instances on this device. 1494 */ 1495 smp_mb__after_atomic(); /* Commit netif_running(). */ 1496 } 1497 1498 dev_deactivate_many(head); 1499 1500 list_for_each_entry(dev, head, close_list) { 1501 const struct net_device_ops *ops = dev->netdev_ops; 1502 1503 /* 1504 * Call the device specific close. This cannot fail. 1505 * Only if device is UP 1506 * 1507 * We allow it to be called even after a DETACH hot-plug 1508 * event. 1509 */ 1510 if (ops->ndo_stop) 1511 ops->ndo_stop(dev); 1512 1513 dev->flags &= ~IFF_UP; 1514 netpoll_poll_enable(dev); 1515 } 1516 } 1517 1518 static void __dev_close(struct net_device *dev) 1519 { 1520 LIST_HEAD(single); 1521 1522 list_add(&dev->close_list, &single); 1523 __dev_close_many(&single); 1524 list_del(&single); 1525 } 1526 1527 void dev_close_many(struct list_head *head, bool unlink) 1528 { 1529 struct net_device *dev, *tmp; 1530 1531 /* Remove the devices that don't need to be closed */ 1532 list_for_each_entry_safe(dev, tmp, head, close_list) 1533 if (!(dev->flags & IFF_UP)) 1534 list_del_init(&dev->close_list); 1535 1536 __dev_close_many(head); 1537 1538 list_for_each_entry_safe(dev, tmp, head, close_list) { 1539 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1540 call_netdevice_notifiers(NETDEV_DOWN, dev); 1541 if (unlink) 1542 list_del_init(&dev->close_list); 1543 } 1544 } 1545 EXPORT_SYMBOL(dev_close_many); 1546 1547 /** 1548 * dev_close - shutdown an interface. 1549 * @dev: device to shutdown 1550 * 1551 * This function moves an active device into down state. A 1552 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1553 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1554 * chain. 1555 */ 1556 void dev_close(struct net_device *dev) 1557 { 1558 if (dev->flags & IFF_UP) { 1559 LIST_HEAD(single); 1560 1561 list_add(&dev->close_list, &single); 1562 dev_close_many(&single, true); 1563 list_del(&single); 1564 } 1565 } 1566 EXPORT_SYMBOL(dev_close); 1567 1568 1569 /** 1570 * dev_disable_lro - disable Large Receive Offload on a device 1571 * @dev: device 1572 * 1573 * Disable Large Receive Offload (LRO) on a net device. Must be 1574 * called under RTNL. This is needed if received packets may be 1575 * forwarded to another interface. 1576 */ 1577 void dev_disable_lro(struct net_device *dev) 1578 { 1579 struct net_device *lower_dev; 1580 struct list_head *iter; 1581 1582 dev->wanted_features &= ~NETIF_F_LRO; 1583 netdev_update_features(dev); 1584 1585 if (unlikely(dev->features & NETIF_F_LRO)) 1586 netdev_WARN(dev, "failed to disable LRO!\n"); 1587 1588 netdev_for_each_lower_dev(dev, lower_dev, iter) 1589 dev_disable_lro(lower_dev); 1590 } 1591 EXPORT_SYMBOL(dev_disable_lro); 1592 1593 /** 1594 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1595 * @dev: device 1596 * 1597 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1598 * called under RTNL. This is needed if Generic XDP is installed on 1599 * the device. 1600 */ 1601 static void dev_disable_gro_hw(struct net_device *dev) 1602 { 1603 dev->wanted_features &= ~NETIF_F_GRO_HW; 1604 netdev_update_features(dev); 1605 1606 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1607 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1608 } 1609 1610 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1611 { 1612 #define N(val) \ 1613 case NETDEV_##val: \ 1614 return "NETDEV_" __stringify(val); 1615 switch (cmd) { 1616 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1617 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1618 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1619 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1620 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1621 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1622 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1623 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1624 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1625 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1626 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1627 } 1628 #undef N 1629 return "UNKNOWN_NETDEV_EVENT"; 1630 } 1631 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1632 1633 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1634 struct net_device *dev) 1635 { 1636 struct netdev_notifier_info info = { 1637 .dev = dev, 1638 }; 1639 1640 return nb->notifier_call(nb, val, &info); 1641 } 1642 1643 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1644 struct net_device *dev) 1645 { 1646 int err; 1647 1648 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1649 err = notifier_to_errno(err); 1650 if (err) 1651 return err; 1652 1653 if (!(dev->flags & IFF_UP)) 1654 return 0; 1655 1656 call_netdevice_notifier(nb, NETDEV_UP, dev); 1657 return 0; 1658 } 1659 1660 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1661 struct net_device *dev) 1662 { 1663 if (dev->flags & IFF_UP) { 1664 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1665 dev); 1666 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1667 } 1668 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1669 } 1670 1671 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1672 struct net *net) 1673 { 1674 struct net_device *dev; 1675 int err; 1676 1677 for_each_netdev(net, dev) { 1678 err = call_netdevice_register_notifiers(nb, dev); 1679 if (err) 1680 goto rollback; 1681 } 1682 return 0; 1683 1684 rollback: 1685 for_each_netdev_continue_reverse(net, dev) 1686 call_netdevice_unregister_notifiers(nb, dev); 1687 return err; 1688 } 1689 1690 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1691 struct net *net) 1692 { 1693 struct net_device *dev; 1694 1695 for_each_netdev(net, dev) 1696 call_netdevice_unregister_notifiers(nb, dev); 1697 } 1698 1699 static int dev_boot_phase = 1; 1700 1701 /** 1702 * register_netdevice_notifier - register a network notifier block 1703 * @nb: notifier 1704 * 1705 * Register a notifier to be called when network device events occur. 1706 * The notifier passed is linked into the kernel structures and must 1707 * not be reused until it has been unregistered. A negative errno code 1708 * is returned on a failure. 1709 * 1710 * When registered all registration and up events are replayed 1711 * to the new notifier to allow device to have a race free 1712 * view of the network device list. 1713 */ 1714 1715 int register_netdevice_notifier(struct notifier_block *nb) 1716 { 1717 struct net *net; 1718 int err; 1719 1720 /* Close race with setup_net() and cleanup_net() */ 1721 down_write(&pernet_ops_rwsem); 1722 rtnl_lock(); 1723 err = raw_notifier_chain_register(&netdev_chain, nb); 1724 if (err) 1725 goto unlock; 1726 if (dev_boot_phase) 1727 goto unlock; 1728 for_each_net(net) { 1729 err = call_netdevice_register_net_notifiers(nb, net); 1730 if (err) 1731 goto rollback; 1732 } 1733 1734 unlock: 1735 rtnl_unlock(); 1736 up_write(&pernet_ops_rwsem); 1737 return err; 1738 1739 rollback: 1740 for_each_net_continue_reverse(net) 1741 call_netdevice_unregister_net_notifiers(nb, net); 1742 1743 raw_notifier_chain_unregister(&netdev_chain, nb); 1744 goto unlock; 1745 } 1746 EXPORT_SYMBOL(register_netdevice_notifier); 1747 1748 /** 1749 * unregister_netdevice_notifier - unregister a network notifier block 1750 * @nb: notifier 1751 * 1752 * Unregister a notifier previously registered by 1753 * register_netdevice_notifier(). The notifier is unlinked into the 1754 * kernel structures and may then be reused. A negative errno code 1755 * is returned on a failure. 1756 * 1757 * After unregistering unregister and down device events are synthesized 1758 * for all devices on the device list to the removed notifier to remove 1759 * the need for special case cleanup code. 1760 */ 1761 1762 int unregister_netdevice_notifier(struct notifier_block *nb) 1763 { 1764 struct net *net; 1765 int err; 1766 1767 /* Close race with setup_net() and cleanup_net() */ 1768 down_write(&pernet_ops_rwsem); 1769 rtnl_lock(); 1770 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1771 if (err) 1772 goto unlock; 1773 1774 for_each_net(net) 1775 call_netdevice_unregister_net_notifiers(nb, net); 1776 1777 unlock: 1778 rtnl_unlock(); 1779 up_write(&pernet_ops_rwsem); 1780 return err; 1781 } 1782 EXPORT_SYMBOL(unregister_netdevice_notifier); 1783 1784 static int __register_netdevice_notifier_net(struct net *net, 1785 struct notifier_block *nb, 1786 bool ignore_call_fail) 1787 { 1788 int err; 1789 1790 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1791 if (err) 1792 return err; 1793 if (dev_boot_phase) 1794 return 0; 1795 1796 err = call_netdevice_register_net_notifiers(nb, net); 1797 if (err && !ignore_call_fail) 1798 goto chain_unregister; 1799 1800 return 0; 1801 1802 chain_unregister: 1803 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1804 return err; 1805 } 1806 1807 static int __unregister_netdevice_notifier_net(struct net *net, 1808 struct notifier_block *nb) 1809 { 1810 int err; 1811 1812 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1813 if (err) 1814 return err; 1815 1816 call_netdevice_unregister_net_notifiers(nb, net); 1817 return 0; 1818 } 1819 1820 /** 1821 * register_netdevice_notifier_net - register a per-netns network notifier block 1822 * @net: network namespace 1823 * @nb: notifier 1824 * 1825 * Register a notifier to be called when network device events occur. 1826 * The notifier passed is linked into the kernel structures and must 1827 * not be reused until it has been unregistered. A negative errno code 1828 * is returned on a failure. 1829 * 1830 * When registered all registration and up events are replayed 1831 * to the new notifier to allow device to have a race free 1832 * view of the network device list. 1833 */ 1834 1835 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1836 { 1837 int err; 1838 1839 rtnl_lock(); 1840 err = __register_netdevice_notifier_net(net, nb, false); 1841 rtnl_unlock(); 1842 return err; 1843 } 1844 EXPORT_SYMBOL(register_netdevice_notifier_net); 1845 1846 /** 1847 * unregister_netdevice_notifier_net - unregister a per-netns 1848 * network notifier block 1849 * @net: network namespace 1850 * @nb: notifier 1851 * 1852 * Unregister a notifier previously registered by 1853 * register_netdevice_notifier(). The notifier is unlinked into the 1854 * kernel structures and may then be reused. A negative errno code 1855 * is returned on a failure. 1856 * 1857 * After unregistering unregister and down device events are synthesized 1858 * for all devices on the device list to the removed notifier to remove 1859 * the need for special case cleanup code. 1860 */ 1861 1862 int unregister_netdevice_notifier_net(struct net *net, 1863 struct notifier_block *nb) 1864 { 1865 int err; 1866 1867 rtnl_lock(); 1868 err = __unregister_netdevice_notifier_net(net, nb); 1869 rtnl_unlock(); 1870 return err; 1871 } 1872 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1873 1874 int register_netdevice_notifier_dev_net(struct net_device *dev, 1875 struct notifier_block *nb, 1876 struct netdev_net_notifier *nn) 1877 { 1878 int err; 1879 1880 rtnl_lock(); 1881 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1882 if (!err) { 1883 nn->nb = nb; 1884 list_add(&nn->list, &dev->net_notifier_list); 1885 } 1886 rtnl_unlock(); 1887 return err; 1888 } 1889 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1890 1891 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1892 struct notifier_block *nb, 1893 struct netdev_net_notifier *nn) 1894 { 1895 int err; 1896 1897 rtnl_lock(); 1898 list_del(&nn->list); 1899 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1900 rtnl_unlock(); 1901 return err; 1902 } 1903 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1904 1905 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1906 struct net *net) 1907 { 1908 struct netdev_net_notifier *nn; 1909 1910 list_for_each_entry(nn, &dev->net_notifier_list, list) { 1911 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 1912 __register_netdevice_notifier_net(net, nn->nb, true); 1913 } 1914 } 1915 1916 /** 1917 * call_netdevice_notifiers_info - call all network notifier blocks 1918 * @val: value passed unmodified to notifier function 1919 * @info: notifier information data 1920 * 1921 * Call all network notifier blocks. Parameters and return value 1922 * are as for raw_notifier_call_chain(). 1923 */ 1924 1925 static int call_netdevice_notifiers_info(unsigned long val, 1926 struct netdev_notifier_info *info) 1927 { 1928 struct net *net = dev_net(info->dev); 1929 int ret; 1930 1931 ASSERT_RTNL(); 1932 1933 /* Run per-netns notifier block chain first, then run the global one. 1934 * Hopefully, one day, the global one is going to be removed after 1935 * all notifier block registrators get converted to be per-netns. 1936 */ 1937 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1938 if (ret & NOTIFY_STOP_MASK) 1939 return ret; 1940 return raw_notifier_call_chain(&netdev_chain, val, info); 1941 } 1942 1943 /** 1944 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 1945 * for and rollback on error 1946 * @val_up: value passed unmodified to notifier function 1947 * @val_down: value passed unmodified to the notifier function when 1948 * recovering from an error on @val_up 1949 * @info: notifier information data 1950 * 1951 * Call all per-netns network notifier blocks, but not notifier blocks on 1952 * the global notifier chain. Parameters and return value are as for 1953 * raw_notifier_call_chain_robust(). 1954 */ 1955 1956 static int 1957 call_netdevice_notifiers_info_robust(unsigned long val_up, 1958 unsigned long val_down, 1959 struct netdev_notifier_info *info) 1960 { 1961 struct net *net = dev_net(info->dev); 1962 1963 ASSERT_RTNL(); 1964 1965 return raw_notifier_call_chain_robust(&net->netdev_chain, 1966 val_up, val_down, info); 1967 } 1968 1969 static int call_netdevice_notifiers_extack(unsigned long val, 1970 struct net_device *dev, 1971 struct netlink_ext_ack *extack) 1972 { 1973 struct netdev_notifier_info info = { 1974 .dev = dev, 1975 .extack = extack, 1976 }; 1977 1978 return call_netdevice_notifiers_info(val, &info); 1979 } 1980 1981 /** 1982 * call_netdevice_notifiers - call all network notifier blocks 1983 * @val: value passed unmodified to notifier function 1984 * @dev: net_device pointer passed unmodified to notifier function 1985 * 1986 * Call all network notifier blocks. Parameters and return value 1987 * are as for raw_notifier_call_chain(). 1988 */ 1989 1990 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1991 { 1992 return call_netdevice_notifiers_extack(val, dev, NULL); 1993 } 1994 EXPORT_SYMBOL(call_netdevice_notifiers); 1995 1996 /** 1997 * call_netdevice_notifiers_mtu - call all network notifier blocks 1998 * @val: value passed unmodified to notifier function 1999 * @dev: net_device pointer passed unmodified to notifier function 2000 * @arg: additional u32 argument passed to the notifier function 2001 * 2002 * Call all network notifier blocks. Parameters and return value 2003 * are as for raw_notifier_call_chain(). 2004 */ 2005 static int call_netdevice_notifiers_mtu(unsigned long val, 2006 struct net_device *dev, u32 arg) 2007 { 2008 struct netdev_notifier_info_ext info = { 2009 .info.dev = dev, 2010 .ext.mtu = arg, 2011 }; 2012 2013 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2014 2015 return call_netdevice_notifiers_info(val, &info.info); 2016 } 2017 2018 #ifdef CONFIG_NET_INGRESS 2019 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2020 2021 void net_inc_ingress_queue(void) 2022 { 2023 static_branch_inc(&ingress_needed_key); 2024 } 2025 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2026 2027 void net_dec_ingress_queue(void) 2028 { 2029 static_branch_dec(&ingress_needed_key); 2030 } 2031 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2032 #endif 2033 2034 #ifdef CONFIG_NET_EGRESS 2035 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2036 2037 void net_inc_egress_queue(void) 2038 { 2039 static_branch_inc(&egress_needed_key); 2040 } 2041 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2042 2043 void net_dec_egress_queue(void) 2044 { 2045 static_branch_dec(&egress_needed_key); 2046 } 2047 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2048 #endif 2049 2050 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2051 EXPORT_SYMBOL(netstamp_needed_key); 2052 #ifdef CONFIG_JUMP_LABEL 2053 static atomic_t netstamp_needed_deferred; 2054 static atomic_t netstamp_wanted; 2055 static void netstamp_clear(struct work_struct *work) 2056 { 2057 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2058 int wanted; 2059 2060 wanted = atomic_add_return(deferred, &netstamp_wanted); 2061 if (wanted > 0) 2062 static_branch_enable(&netstamp_needed_key); 2063 else 2064 static_branch_disable(&netstamp_needed_key); 2065 } 2066 static DECLARE_WORK(netstamp_work, netstamp_clear); 2067 #endif 2068 2069 void net_enable_timestamp(void) 2070 { 2071 #ifdef CONFIG_JUMP_LABEL 2072 int wanted; 2073 2074 while (1) { 2075 wanted = atomic_read(&netstamp_wanted); 2076 if (wanted <= 0) 2077 break; 2078 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2079 return; 2080 } 2081 atomic_inc(&netstamp_needed_deferred); 2082 schedule_work(&netstamp_work); 2083 #else 2084 static_branch_inc(&netstamp_needed_key); 2085 #endif 2086 } 2087 EXPORT_SYMBOL(net_enable_timestamp); 2088 2089 void net_disable_timestamp(void) 2090 { 2091 #ifdef CONFIG_JUMP_LABEL 2092 int wanted; 2093 2094 while (1) { 2095 wanted = atomic_read(&netstamp_wanted); 2096 if (wanted <= 1) 2097 break; 2098 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2099 return; 2100 } 2101 atomic_dec(&netstamp_needed_deferred); 2102 schedule_work(&netstamp_work); 2103 #else 2104 static_branch_dec(&netstamp_needed_key); 2105 #endif 2106 } 2107 EXPORT_SYMBOL(net_disable_timestamp); 2108 2109 static inline void net_timestamp_set(struct sk_buff *skb) 2110 { 2111 skb->tstamp = 0; 2112 skb->mono_delivery_time = 0; 2113 if (static_branch_unlikely(&netstamp_needed_key)) 2114 skb->tstamp = ktime_get_real(); 2115 } 2116 2117 #define net_timestamp_check(COND, SKB) \ 2118 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2119 if ((COND) && !(SKB)->tstamp) \ 2120 (SKB)->tstamp = ktime_get_real(); \ 2121 } \ 2122 2123 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2124 { 2125 return __is_skb_forwardable(dev, skb, true); 2126 } 2127 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2128 2129 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2130 bool check_mtu) 2131 { 2132 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2133 2134 if (likely(!ret)) { 2135 skb->protocol = eth_type_trans(skb, dev); 2136 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2137 } 2138 2139 return ret; 2140 } 2141 2142 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2143 { 2144 return __dev_forward_skb2(dev, skb, true); 2145 } 2146 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2147 2148 /** 2149 * dev_forward_skb - loopback an skb to another netif 2150 * 2151 * @dev: destination network device 2152 * @skb: buffer to forward 2153 * 2154 * return values: 2155 * NET_RX_SUCCESS (no congestion) 2156 * NET_RX_DROP (packet was dropped, but freed) 2157 * 2158 * dev_forward_skb can be used for injecting an skb from the 2159 * start_xmit function of one device into the receive queue 2160 * of another device. 2161 * 2162 * The receiving device may be in another namespace, so 2163 * we have to clear all information in the skb that could 2164 * impact namespace isolation. 2165 */ 2166 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2167 { 2168 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2169 } 2170 EXPORT_SYMBOL_GPL(dev_forward_skb); 2171 2172 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2173 { 2174 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2175 } 2176 2177 static inline int deliver_skb(struct sk_buff *skb, 2178 struct packet_type *pt_prev, 2179 struct net_device *orig_dev) 2180 { 2181 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2182 return -ENOMEM; 2183 refcount_inc(&skb->users); 2184 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2185 } 2186 2187 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2188 struct packet_type **pt, 2189 struct net_device *orig_dev, 2190 __be16 type, 2191 struct list_head *ptype_list) 2192 { 2193 struct packet_type *ptype, *pt_prev = *pt; 2194 2195 list_for_each_entry_rcu(ptype, ptype_list, list) { 2196 if (ptype->type != type) 2197 continue; 2198 if (pt_prev) 2199 deliver_skb(skb, pt_prev, orig_dev); 2200 pt_prev = ptype; 2201 } 2202 *pt = pt_prev; 2203 } 2204 2205 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2206 { 2207 if (!ptype->af_packet_priv || !skb->sk) 2208 return false; 2209 2210 if (ptype->id_match) 2211 return ptype->id_match(ptype, skb->sk); 2212 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2213 return true; 2214 2215 return false; 2216 } 2217 2218 /** 2219 * dev_nit_active - return true if any network interface taps are in use 2220 * 2221 * @dev: network device to check for the presence of taps 2222 */ 2223 bool dev_nit_active(struct net_device *dev) 2224 { 2225 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2226 } 2227 EXPORT_SYMBOL_GPL(dev_nit_active); 2228 2229 /* 2230 * Support routine. Sends outgoing frames to any network 2231 * taps currently in use. 2232 */ 2233 2234 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2235 { 2236 struct packet_type *ptype; 2237 struct sk_buff *skb2 = NULL; 2238 struct packet_type *pt_prev = NULL; 2239 struct list_head *ptype_list = &ptype_all; 2240 2241 rcu_read_lock(); 2242 again: 2243 list_for_each_entry_rcu(ptype, ptype_list, list) { 2244 if (ptype->ignore_outgoing) 2245 continue; 2246 2247 /* Never send packets back to the socket 2248 * they originated from - MvS (miquels@drinkel.ow.org) 2249 */ 2250 if (skb_loop_sk(ptype, skb)) 2251 continue; 2252 2253 if (pt_prev) { 2254 deliver_skb(skb2, pt_prev, skb->dev); 2255 pt_prev = ptype; 2256 continue; 2257 } 2258 2259 /* need to clone skb, done only once */ 2260 skb2 = skb_clone(skb, GFP_ATOMIC); 2261 if (!skb2) 2262 goto out_unlock; 2263 2264 net_timestamp_set(skb2); 2265 2266 /* skb->nh should be correctly 2267 * set by sender, so that the second statement is 2268 * just protection against buggy protocols. 2269 */ 2270 skb_reset_mac_header(skb2); 2271 2272 if (skb_network_header(skb2) < skb2->data || 2273 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2274 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2275 ntohs(skb2->protocol), 2276 dev->name); 2277 skb_reset_network_header(skb2); 2278 } 2279 2280 skb2->transport_header = skb2->network_header; 2281 skb2->pkt_type = PACKET_OUTGOING; 2282 pt_prev = ptype; 2283 } 2284 2285 if (ptype_list == &ptype_all) { 2286 ptype_list = &dev->ptype_all; 2287 goto again; 2288 } 2289 out_unlock: 2290 if (pt_prev) { 2291 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2292 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2293 else 2294 kfree_skb(skb2); 2295 } 2296 rcu_read_unlock(); 2297 } 2298 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2299 2300 /** 2301 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2302 * @dev: Network device 2303 * @txq: number of queues available 2304 * 2305 * If real_num_tx_queues is changed the tc mappings may no longer be 2306 * valid. To resolve this verify the tc mapping remains valid and if 2307 * not NULL the mapping. With no priorities mapping to this 2308 * offset/count pair it will no longer be used. In the worst case TC0 2309 * is invalid nothing can be done so disable priority mappings. If is 2310 * expected that drivers will fix this mapping if they can before 2311 * calling netif_set_real_num_tx_queues. 2312 */ 2313 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2314 { 2315 int i; 2316 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2317 2318 /* If TC0 is invalidated disable TC mapping */ 2319 if (tc->offset + tc->count > txq) { 2320 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2321 dev->num_tc = 0; 2322 return; 2323 } 2324 2325 /* Invalidated prio to tc mappings set to TC0 */ 2326 for (i = 1; i < TC_BITMASK + 1; i++) { 2327 int q = netdev_get_prio_tc_map(dev, i); 2328 2329 tc = &dev->tc_to_txq[q]; 2330 if (tc->offset + tc->count > txq) { 2331 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2332 i, q); 2333 netdev_set_prio_tc_map(dev, i, 0); 2334 } 2335 } 2336 } 2337 2338 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2339 { 2340 if (dev->num_tc) { 2341 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2342 int i; 2343 2344 /* walk through the TCs and see if it falls into any of them */ 2345 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2346 if ((txq - tc->offset) < tc->count) 2347 return i; 2348 } 2349 2350 /* didn't find it, just return -1 to indicate no match */ 2351 return -1; 2352 } 2353 2354 return 0; 2355 } 2356 EXPORT_SYMBOL(netdev_txq_to_tc); 2357 2358 #ifdef CONFIG_XPS 2359 static struct static_key xps_needed __read_mostly; 2360 static struct static_key xps_rxqs_needed __read_mostly; 2361 static DEFINE_MUTEX(xps_map_mutex); 2362 #define xmap_dereference(P) \ 2363 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2364 2365 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2366 struct xps_dev_maps *old_maps, int tci, u16 index) 2367 { 2368 struct xps_map *map = NULL; 2369 int pos; 2370 2371 if (dev_maps) 2372 map = xmap_dereference(dev_maps->attr_map[tci]); 2373 if (!map) 2374 return false; 2375 2376 for (pos = map->len; pos--;) { 2377 if (map->queues[pos] != index) 2378 continue; 2379 2380 if (map->len > 1) { 2381 map->queues[pos] = map->queues[--map->len]; 2382 break; 2383 } 2384 2385 if (old_maps) 2386 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2387 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2388 kfree_rcu(map, rcu); 2389 return false; 2390 } 2391 2392 return true; 2393 } 2394 2395 static bool remove_xps_queue_cpu(struct net_device *dev, 2396 struct xps_dev_maps *dev_maps, 2397 int cpu, u16 offset, u16 count) 2398 { 2399 int num_tc = dev_maps->num_tc; 2400 bool active = false; 2401 int tci; 2402 2403 for (tci = cpu * num_tc; num_tc--; tci++) { 2404 int i, j; 2405 2406 for (i = count, j = offset; i--; j++) { 2407 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2408 break; 2409 } 2410 2411 active |= i < 0; 2412 } 2413 2414 return active; 2415 } 2416 2417 static void reset_xps_maps(struct net_device *dev, 2418 struct xps_dev_maps *dev_maps, 2419 enum xps_map_type type) 2420 { 2421 static_key_slow_dec_cpuslocked(&xps_needed); 2422 if (type == XPS_RXQS) 2423 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2424 2425 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2426 2427 kfree_rcu(dev_maps, rcu); 2428 } 2429 2430 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2431 u16 offset, u16 count) 2432 { 2433 struct xps_dev_maps *dev_maps; 2434 bool active = false; 2435 int i, j; 2436 2437 dev_maps = xmap_dereference(dev->xps_maps[type]); 2438 if (!dev_maps) 2439 return; 2440 2441 for (j = 0; j < dev_maps->nr_ids; j++) 2442 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2443 if (!active) 2444 reset_xps_maps(dev, dev_maps, type); 2445 2446 if (type == XPS_CPUS) { 2447 for (i = offset + (count - 1); count--; i--) 2448 netdev_queue_numa_node_write( 2449 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2450 } 2451 } 2452 2453 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2454 u16 count) 2455 { 2456 if (!static_key_false(&xps_needed)) 2457 return; 2458 2459 cpus_read_lock(); 2460 mutex_lock(&xps_map_mutex); 2461 2462 if (static_key_false(&xps_rxqs_needed)) 2463 clean_xps_maps(dev, XPS_RXQS, offset, count); 2464 2465 clean_xps_maps(dev, XPS_CPUS, offset, count); 2466 2467 mutex_unlock(&xps_map_mutex); 2468 cpus_read_unlock(); 2469 } 2470 2471 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2472 { 2473 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2474 } 2475 2476 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2477 u16 index, bool is_rxqs_map) 2478 { 2479 struct xps_map *new_map; 2480 int alloc_len = XPS_MIN_MAP_ALLOC; 2481 int i, pos; 2482 2483 for (pos = 0; map && pos < map->len; pos++) { 2484 if (map->queues[pos] != index) 2485 continue; 2486 return map; 2487 } 2488 2489 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2490 if (map) { 2491 if (pos < map->alloc_len) 2492 return map; 2493 2494 alloc_len = map->alloc_len * 2; 2495 } 2496 2497 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2498 * map 2499 */ 2500 if (is_rxqs_map) 2501 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2502 else 2503 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2504 cpu_to_node(attr_index)); 2505 if (!new_map) 2506 return NULL; 2507 2508 for (i = 0; i < pos; i++) 2509 new_map->queues[i] = map->queues[i]; 2510 new_map->alloc_len = alloc_len; 2511 new_map->len = pos; 2512 2513 return new_map; 2514 } 2515 2516 /* Copy xps maps at a given index */ 2517 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2518 struct xps_dev_maps *new_dev_maps, int index, 2519 int tc, bool skip_tc) 2520 { 2521 int i, tci = index * dev_maps->num_tc; 2522 struct xps_map *map; 2523 2524 /* copy maps belonging to foreign traffic classes */ 2525 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2526 if (i == tc && skip_tc) 2527 continue; 2528 2529 /* fill in the new device map from the old device map */ 2530 map = xmap_dereference(dev_maps->attr_map[tci]); 2531 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2532 } 2533 } 2534 2535 /* Must be called under cpus_read_lock */ 2536 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2537 u16 index, enum xps_map_type type) 2538 { 2539 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2540 const unsigned long *online_mask = NULL; 2541 bool active = false, copy = false; 2542 int i, j, tci, numa_node_id = -2; 2543 int maps_sz, num_tc = 1, tc = 0; 2544 struct xps_map *map, *new_map; 2545 unsigned int nr_ids; 2546 2547 if (dev->num_tc) { 2548 /* Do not allow XPS on subordinate device directly */ 2549 num_tc = dev->num_tc; 2550 if (num_tc < 0) 2551 return -EINVAL; 2552 2553 /* If queue belongs to subordinate dev use its map */ 2554 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2555 2556 tc = netdev_txq_to_tc(dev, index); 2557 if (tc < 0) 2558 return -EINVAL; 2559 } 2560 2561 mutex_lock(&xps_map_mutex); 2562 2563 dev_maps = xmap_dereference(dev->xps_maps[type]); 2564 if (type == XPS_RXQS) { 2565 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2566 nr_ids = dev->num_rx_queues; 2567 } else { 2568 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2569 if (num_possible_cpus() > 1) 2570 online_mask = cpumask_bits(cpu_online_mask); 2571 nr_ids = nr_cpu_ids; 2572 } 2573 2574 if (maps_sz < L1_CACHE_BYTES) 2575 maps_sz = L1_CACHE_BYTES; 2576 2577 /* The old dev_maps could be larger or smaller than the one we're 2578 * setting up now, as dev->num_tc or nr_ids could have been updated in 2579 * between. We could try to be smart, but let's be safe instead and only 2580 * copy foreign traffic classes if the two map sizes match. 2581 */ 2582 if (dev_maps && 2583 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2584 copy = true; 2585 2586 /* allocate memory for queue storage */ 2587 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2588 j < nr_ids;) { 2589 if (!new_dev_maps) { 2590 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2591 if (!new_dev_maps) { 2592 mutex_unlock(&xps_map_mutex); 2593 return -ENOMEM; 2594 } 2595 2596 new_dev_maps->nr_ids = nr_ids; 2597 new_dev_maps->num_tc = num_tc; 2598 } 2599 2600 tci = j * num_tc + tc; 2601 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2602 2603 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2604 if (!map) 2605 goto error; 2606 2607 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2608 } 2609 2610 if (!new_dev_maps) 2611 goto out_no_new_maps; 2612 2613 if (!dev_maps) { 2614 /* Increment static keys at most once per type */ 2615 static_key_slow_inc_cpuslocked(&xps_needed); 2616 if (type == XPS_RXQS) 2617 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2618 } 2619 2620 for (j = 0; j < nr_ids; j++) { 2621 bool skip_tc = false; 2622 2623 tci = j * num_tc + tc; 2624 if (netif_attr_test_mask(j, mask, nr_ids) && 2625 netif_attr_test_online(j, online_mask, nr_ids)) { 2626 /* add tx-queue to CPU/rx-queue maps */ 2627 int pos = 0; 2628 2629 skip_tc = true; 2630 2631 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2632 while ((pos < map->len) && (map->queues[pos] != index)) 2633 pos++; 2634 2635 if (pos == map->len) 2636 map->queues[map->len++] = index; 2637 #ifdef CONFIG_NUMA 2638 if (type == XPS_CPUS) { 2639 if (numa_node_id == -2) 2640 numa_node_id = cpu_to_node(j); 2641 else if (numa_node_id != cpu_to_node(j)) 2642 numa_node_id = -1; 2643 } 2644 #endif 2645 } 2646 2647 if (copy) 2648 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2649 skip_tc); 2650 } 2651 2652 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2653 2654 /* Cleanup old maps */ 2655 if (!dev_maps) 2656 goto out_no_old_maps; 2657 2658 for (j = 0; j < dev_maps->nr_ids; j++) { 2659 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2660 map = xmap_dereference(dev_maps->attr_map[tci]); 2661 if (!map) 2662 continue; 2663 2664 if (copy) { 2665 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2666 if (map == new_map) 2667 continue; 2668 } 2669 2670 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2671 kfree_rcu(map, rcu); 2672 } 2673 } 2674 2675 old_dev_maps = dev_maps; 2676 2677 out_no_old_maps: 2678 dev_maps = new_dev_maps; 2679 active = true; 2680 2681 out_no_new_maps: 2682 if (type == XPS_CPUS) 2683 /* update Tx queue numa node */ 2684 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2685 (numa_node_id >= 0) ? 2686 numa_node_id : NUMA_NO_NODE); 2687 2688 if (!dev_maps) 2689 goto out_no_maps; 2690 2691 /* removes tx-queue from unused CPUs/rx-queues */ 2692 for (j = 0; j < dev_maps->nr_ids; j++) { 2693 tci = j * dev_maps->num_tc; 2694 2695 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2696 if (i == tc && 2697 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2698 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2699 continue; 2700 2701 active |= remove_xps_queue(dev_maps, 2702 copy ? old_dev_maps : NULL, 2703 tci, index); 2704 } 2705 } 2706 2707 if (old_dev_maps) 2708 kfree_rcu(old_dev_maps, rcu); 2709 2710 /* free map if not active */ 2711 if (!active) 2712 reset_xps_maps(dev, dev_maps, type); 2713 2714 out_no_maps: 2715 mutex_unlock(&xps_map_mutex); 2716 2717 return 0; 2718 error: 2719 /* remove any maps that we added */ 2720 for (j = 0; j < nr_ids; j++) { 2721 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2722 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2723 map = copy ? 2724 xmap_dereference(dev_maps->attr_map[tci]) : 2725 NULL; 2726 if (new_map && new_map != map) 2727 kfree(new_map); 2728 } 2729 } 2730 2731 mutex_unlock(&xps_map_mutex); 2732 2733 kfree(new_dev_maps); 2734 return -ENOMEM; 2735 } 2736 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2737 2738 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2739 u16 index) 2740 { 2741 int ret; 2742 2743 cpus_read_lock(); 2744 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2745 cpus_read_unlock(); 2746 2747 return ret; 2748 } 2749 EXPORT_SYMBOL(netif_set_xps_queue); 2750 2751 #endif 2752 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2753 { 2754 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2755 2756 /* Unbind any subordinate channels */ 2757 while (txq-- != &dev->_tx[0]) { 2758 if (txq->sb_dev) 2759 netdev_unbind_sb_channel(dev, txq->sb_dev); 2760 } 2761 } 2762 2763 void netdev_reset_tc(struct net_device *dev) 2764 { 2765 #ifdef CONFIG_XPS 2766 netif_reset_xps_queues_gt(dev, 0); 2767 #endif 2768 netdev_unbind_all_sb_channels(dev); 2769 2770 /* Reset TC configuration of device */ 2771 dev->num_tc = 0; 2772 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2773 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2774 } 2775 EXPORT_SYMBOL(netdev_reset_tc); 2776 2777 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2778 { 2779 if (tc >= dev->num_tc) 2780 return -EINVAL; 2781 2782 #ifdef CONFIG_XPS 2783 netif_reset_xps_queues(dev, offset, count); 2784 #endif 2785 dev->tc_to_txq[tc].count = count; 2786 dev->tc_to_txq[tc].offset = offset; 2787 return 0; 2788 } 2789 EXPORT_SYMBOL(netdev_set_tc_queue); 2790 2791 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2792 { 2793 if (num_tc > TC_MAX_QUEUE) 2794 return -EINVAL; 2795 2796 #ifdef CONFIG_XPS 2797 netif_reset_xps_queues_gt(dev, 0); 2798 #endif 2799 netdev_unbind_all_sb_channels(dev); 2800 2801 dev->num_tc = num_tc; 2802 return 0; 2803 } 2804 EXPORT_SYMBOL(netdev_set_num_tc); 2805 2806 void netdev_unbind_sb_channel(struct net_device *dev, 2807 struct net_device *sb_dev) 2808 { 2809 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2810 2811 #ifdef CONFIG_XPS 2812 netif_reset_xps_queues_gt(sb_dev, 0); 2813 #endif 2814 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2815 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2816 2817 while (txq-- != &dev->_tx[0]) { 2818 if (txq->sb_dev == sb_dev) 2819 txq->sb_dev = NULL; 2820 } 2821 } 2822 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2823 2824 int netdev_bind_sb_channel_queue(struct net_device *dev, 2825 struct net_device *sb_dev, 2826 u8 tc, u16 count, u16 offset) 2827 { 2828 /* Make certain the sb_dev and dev are already configured */ 2829 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2830 return -EINVAL; 2831 2832 /* We cannot hand out queues we don't have */ 2833 if ((offset + count) > dev->real_num_tx_queues) 2834 return -EINVAL; 2835 2836 /* Record the mapping */ 2837 sb_dev->tc_to_txq[tc].count = count; 2838 sb_dev->tc_to_txq[tc].offset = offset; 2839 2840 /* Provide a way for Tx queue to find the tc_to_txq map or 2841 * XPS map for itself. 2842 */ 2843 while (count--) 2844 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2845 2846 return 0; 2847 } 2848 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2849 2850 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2851 { 2852 /* Do not use a multiqueue device to represent a subordinate channel */ 2853 if (netif_is_multiqueue(dev)) 2854 return -ENODEV; 2855 2856 /* We allow channels 1 - 32767 to be used for subordinate channels. 2857 * Channel 0 is meant to be "native" mode and used only to represent 2858 * the main root device. We allow writing 0 to reset the device back 2859 * to normal mode after being used as a subordinate channel. 2860 */ 2861 if (channel > S16_MAX) 2862 return -EINVAL; 2863 2864 dev->num_tc = -channel; 2865 2866 return 0; 2867 } 2868 EXPORT_SYMBOL(netdev_set_sb_channel); 2869 2870 /* 2871 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2872 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2873 */ 2874 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2875 { 2876 bool disabling; 2877 int rc; 2878 2879 disabling = txq < dev->real_num_tx_queues; 2880 2881 if (txq < 1 || txq > dev->num_tx_queues) 2882 return -EINVAL; 2883 2884 if (dev->reg_state == NETREG_REGISTERED || 2885 dev->reg_state == NETREG_UNREGISTERING) { 2886 ASSERT_RTNL(); 2887 2888 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2889 txq); 2890 if (rc) 2891 return rc; 2892 2893 if (dev->num_tc) 2894 netif_setup_tc(dev, txq); 2895 2896 dev_qdisc_change_real_num_tx(dev, txq); 2897 2898 dev->real_num_tx_queues = txq; 2899 2900 if (disabling) { 2901 synchronize_net(); 2902 qdisc_reset_all_tx_gt(dev, txq); 2903 #ifdef CONFIG_XPS 2904 netif_reset_xps_queues_gt(dev, txq); 2905 #endif 2906 } 2907 } else { 2908 dev->real_num_tx_queues = txq; 2909 } 2910 2911 return 0; 2912 } 2913 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2914 2915 #ifdef CONFIG_SYSFS 2916 /** 2917 * netif_set_real_num_rx_queues - set actual number of RX queues used 2918 * @dev: Network device 2919 * @rxq: Actual number of RX queues 2920 * 2921 * This must be called either with the rtnl_lock held or before 2922 * registration of the net device. Returns 0 on success, or a 2923 * negative error code. If called before registration, it always 2924 * succeeds. 2925 */ 2926 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2927 { 2928 int rc; 2929 2930 if (rxq < 1 || rxq > dev->num_rx_queues) 2931 return -EINVAL; 2932 2933 if (dev->reg_state == NETREG_REGISTERED) { 2934 ASSERT_RTNL(); 2935 2936 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2937 rxq); 2938 if (rc) 2939 return rc; 2940 } 2941 2942 dev->real_num_rx_queues = rxq; 2943 return 0; 2944 } 2945 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2946 #endif 2947 2948 /** 2949 * netif_set_real_num_queues - set actual number of RX and TX queues used 2950 * @dev: Network device 2951 * @txq: Actual number of TX queues 2952 * @rxq: Actual number of RX queues 2953 * 2954 * Set the real number of both TX and RX queues. 2955 * Does nothing if the number of queues is already correct. 2956 */ 2957 int netif_set_real_num_queues(struct net_device *dev, 2958 unsigned int txq, unsigned int rxq) 2959 { 2960 unsigned int old_rxq = dev->real_num_rx_queues; 2961 int err; 2962 2963 if (txq < 1 || txq > dev->num_tx_queues || 2964 rxq < 1 || rxq > dev->num_rx_queues) 2965 return -EINVAL; 2966 2967 /* Start from increases, so the error path only does decreases - 2968 * decreases can't fail. 2969 */ 2970 if (rxq > dev->real_num_rx_queues) { 2971 err = netif_set_real_num_rx_queues(dev, rxq); 2972 if (err) 2973 return err; 2974 } 2975 if (txq > dev->real_num_tx_queues) { 2976 err = netif_set_real_num_tx_queues(dev, txq); 2977 if (err) 2978 goto undo_rx; 2979 } 2980 if (rxq < dev->real_num_rx_queues) 2981 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 2982 if (txq < dev->real_num_tx_queues) 2983 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 2984 2985 return 0; 2986 undo_rx: 2987 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 2988 return err; 2989 } 2990 EXPORT_SYMBOL(netif_set_real_num_queues); 2991 2992 /** 2993 * netif_get_num_default_rss_queues - default number of RSS queues 2994 * 2995 * This routine should set an upper limit on the number of RSS queues 2996 * used by default by multiqueue devices. 2997 */ 2998 int netif_get_num_default_rss_queues(void) 2999 { 3000 return is_kdump_kernel() ? 3001 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 3002 } 3003 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3004 3005 static void __netif_reschedule(struct Qdisc *q) 3006 { 3007 struct softnet_data *sd; 3008 unsigned long flags; 3009 3010 local_irq_save(flags); 3011 sd = this_cpu_ptr(&softnet_data); 3012 q->next_sched = NULL; 3013 *sd->output_queue_tailp = q; 3014 sd->output_queue_tailp = &q->next_sched; 3015 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3016 local_irq_restore(flags); 3017 } 3018 3019 void __netif_schedule(struct Qdisc *q) 3020 { 3021 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3022 __netif_reschedule(q); 3023 } 3024 EXPORT_SYMBOL(__netif_schedule); 3025 3026 struct dev_kfree_skb_cb { 3027 enum skb_free_reason reason; 3028 }; 3029 3030 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3031 { 3032 return (struct dev_kfree_skb_cb *)skb->cb; 3033 } 3034 3035 void netif_schedule_queue(struct netdev_queue *txq) 3036 { 3037 rcu_read_lock(); 3038 if (!netif_xmit_stopped(txq)) { 3039 struct Qdisc *q = rcu_dereference(txq->qdisc); 3040 3041 __netif_schedule(q); 3042 } 3043 rcu_read_unlock(); 3044 } 3045 EXPORT_SYMBOL(netif_schedule_queue); 3046 3047 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3048 { 3049 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3050 struct Qdisc *q; 3051 3052 rcu_read_lock(); 3053 q = rcu_dereference(dev_queue->qdisc); 3054 __netif_schedule(q); 3055 rcu_read_unlock(); 3056 } 3057 } 3058 EXPORT_SYMBOL(netif_tx_wake_queue); 3059 3060 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3061 { 3062 unsigned long flags; 3063 3064 if (unlikely(!skb)) 3065 return; 3066 3067 if (likely(refcount_read(&skb->users) == 1)) { 3068 smp_rmb(); 3069 refcount_set(&skb->users, 0); 3070 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3071 return; 3072 } 3073 get_kfree_skb_cb(skb)->reason = reason; 3074 local_irq_save(flags); 3075 skb->next = __this_cpu_read(softnet_data.completion_queue); 3076 __this_cpu_write(softnet_data.completion_queue, skb); 3077 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3078 local_irq_restore(flags); 3079 } 3080 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3081 3082 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3083 { 3084 if (in_hardirq() || irqs_disabled()) 3085 __dev_kfree_skb_irq(skb, reason); 3086 else 3087 dev_kfree_skb(skb); 3088 } 3089 EXPORT_SYMBOL(__dev_kfree_skb_any); 3090 3091 3092 /** 3093 * netif_device_detach - mark device as removed 3094 * @dev: network device 3095 * 3096 * Mark device as removed from system and therefore no longer available. 3097 */ 3098 void netif_device_detach(struct net_device *dev) 3099 { 3100 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3101 netif_running(dev)) { 3102 netif_tx_stop_all_queues(dev); 3103 } 3104 } 3105 EXPORT_SYMBOL(netif_device_detach); 3106 3107 /** 3108 * netif_device_attach - mark device as attached 3109 * @dev: network device 3110 * 3111 * Mark device as attached from system and restart if needed. 3112 */ 3113 void netif_device_attach(struct net_device *dev) 3114 { 3115 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3116 netif_running(dev)) { 3117 netif_tx_wake_all_queues(dev); 3118 __netdev_watchdog_up(dev); 3119 } 3120 } 3121 EXPORT_SYMBOL(netif_device_attach); 3122 3123 /* 3124 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3125 * to be used as a distribution range. 3126 */ 3127 static u16 skb_tx_hash(const struct net_device *dev, 3128 const struct net_device *sb_dev, 3129 struct sk_buff *skb) 3130 { 3131 u32 hash; 3132 u16 qoffset = 0; 3133 u16 qcount = dev->real_num_tx_queues; 3134 3135 if (dev->num_tc) { 3136 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3137 3138 qoffset = sb_dev->tc_to_txq[tc].offset; 3139 qcount = sb_dev->tc_to_txq[tc].count; 3140 if (unlikely(!qcount)) { 3141 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3142 sb_dev->name, qoffset, tc); 3143 qoffset = 0; 3144 qcount = dev->real_num_tx_queues; 3145 } 3146 } 3147 3148 if (skb_rx_queue_recorded(skb)) { 3149 hash = skb_get_rx_queue(skb); 3150 if (hash >= qoffset) 3151 hash -= qoffset; 3152 while (unlikely(hash >= qcount)) 3153 hash -= qcount; 3154 return hash + qoffset; 3155 } 3156 3157 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3158 } 3159 3160 static void skb_warn_bad_offload(const struct sk_buff *skb) 3161 { 3162 static const netdev_features_t null_features; 3163 struct net_device *dev = skb->dev; 3164 const char *name = ""; 3165 3166 if (!net_ratelimit()) 3167 return; 3168 3169 if (dev) { 3170 if (dev->dev.parent) 3171 name = dev_driver_string(dev->dev.parent); 3172 else 3173 name = netdev_name(dev); 3174 } 3175 skb_dump(KERN_WARNING, skb, false); 3176 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3177 name, dev ? &dev->features : &null_features, 3178 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3179 } 3180 3181 /* 3182 * Invalidate hardware checksum when packet is to be mangled, and 3183 * complete checksum manually on outgoing path. 3184 */ 3185 int skb_checksum_help(struct sk_buff *skb) 3186 { 3187 __wsum csum; 3188 int ret = 0, offset; 3189 3190 if (skb->ip_summed == CHECKSUM_COMPLETE) 3191 goto out_set_summed; 3192 3193 if (unlikely(skb_is_gso(skb))) { 3194 skb_warn_bad_offload(skb); 3195 return -EINVAL; 3196 } 3197 3198 /* Before computing a checksum, we should make sure no frag could 3199 * be modified by an external entity : checksum could be wrong. 3200 */ 3201 if (skb_has_shared_frag(skb)) { 3202 ret = __skb_linearize(skb); 3203 if (ret) 3204 goto out; 3205 } 3206 3207 offset = skb_checksum_start_offset(skb); 3208 BUG_ON(offset >= skb_headlen(skb)); 3209 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3210 3211 offset += skb->csum_offset; 3212 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3213 3214 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3215 if (ret) 3216 goto out; 3217 3218 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3219 out_set_summed: 3220 skb->ip_summed = CHECKSUM_NONE; 3221 out: 3222 return ret; 3223 } 3224 EXPORT_SYMBOL(skb_checksum_help); 3225 3226 int skb_crc32c_csum_help(struct sk_buff *skb) 3227 { 3228 __le32 crc32c_csum; 3229 int ret = 0, offset, start; 3230 3231 if (skb->ip_summed != CHECKSUM_PARTIAL) 3232 goto out; 3233 3234 if (unlikely(skb_is_gso(skb))) 3235 goto out; 3236 3237 /* Before computing a checksum, we should make sure no frag could 3238 * be modified by an external entity : checksum could be wrong. 3239 */ 3240 if (unlikely(skb_has_shared_frag(skb))) { 3241 ret = __skb_linearize(skb); 3242 if (ret) 3243 goto out; 3244 } 3245 start = skb_checksum_start_offset(skb); 3246 offset = start + offsetof(struct sctphdr, checksum); 3247 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3248 ret = -EINVAL; 3249 goto out; 3250 } 3251 3252 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3253 if (ret) 3254 goto out; 3255 3256 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3257 skb->len - start, ~(__u32)0, 3258 crc32c_csum_stub)); 3259 *(__le32 *)(skb->data + offset) = crc32c_csum; 3260 skb->ip_summed = CHECKSUM_NONE; 3261 skb->csum_not_inet = 0; 3262 out: 3263 return ret; 3264 } 3265 3266 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3267 { 3268 __be16 type = skb->protocol; 3269 3270 /* Tunnel gso handlers can set protocol to ethernet. */ 3271 if (type == htons(ETH_P_TEB)) { 3272 struct ethhdr *eth; 3273 3274 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3275 return 0; 3276 3277 eth = (struct ethhdr *)skb->data; 3278 type = eth->h_proto; 3279 } 3280 3281 return __vlan_get_protocol(skb, type, depth); 3282 } 3283 3284 /* openvswitch calls this on rx path, so we need a different check. 3285 */ 3286 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3287 { 3288 if (tx_path) 3289 return skb->ip_summed != CHECKSUM_PARTIAL && 3290 skb->ip_summed != CHECKSUM_UNNECESSARY; 3291 3292 return skb->ip_summed == CHECKSUM_NONE; 3293 } 3294 3295 /** 3296 * __skb_gso_segment - Perform segmentation on skb. 3297 * @skb: buffer to segment 3298 * @features: features for the output path (see dev->features) 3299 * @tx_path: whether it is called in TX path 3300 * 3301 * This function segments the given skb and returns a list of segments. 3302 * 3303 * It may return NULL if the skb requires no segmentation. This is 3304 * only possible when GSO is used for verifying header integrity. 3305 * 3306 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3307 */ 3308 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3309 netdev_features_t features, bool tx_path) 3310 { 3311 struct sk_buff *segs; 3312 3313 if (unlikely(skb_needs_check(skb, tx_path))) { 3314 int err; 3315 3316 /* We're going to init ->check field in TCP or UDP header */ 3317 err = skb_cow_head(skb, 0); 3318 if (err < 0) 3319 return ERR_PTR(err); 3320 } 3321 3322 /* Only report GSO partial support if it will enable us to 3323 * support segmentation on this frame without needing additional 3324 * work. 3325 */ 3326 if (features & NETIF_F_GSO_PARTIAL) { 3327 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3328 struct net_device *dev = skb->dev; 3329 3330 partial_features |= dev->features & dev->gso_partial_features; 3331 if (!skb_gso_ok(skb, features | partial_features)) 3332 features &= ~NETIF_F_GSO_PARTIAL; 3333 } 3334 3335 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3336 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3337 3338 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3339 SKB_GSO_CB(skb)->encap_level = 0; 3340 3341 skb_reset_mac_header(skb); 3342 skb_reset_mac_len(skb); 3343 3344 segs = skb_mac_gso_segment(skb, features); 3345 3346 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3347 skb_warn_bad_offload(skb); 3348 3349 return segs; 3350 } 3351 EXPORT_SYMBOL(__skb_gso_segment); 3352 3353 /* Take action when hardware reception checksum errors are detected. */ 3354 #ifdef CONFIG_BUG 3355 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3356 { 3357 netdev_err(dev, "hw csum failure\n"); 3358 skb_dump(KERN_ERR, skb, true); 3359 dump_stack(); 3360 } 3361 3362 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3363 { 3364 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3365 } 3366 EXPORT_SYMBOL(netdev_rx_csum_fault); 3367 #endif 3368 3369 /* XXX: check that highmem exists at all on the given machine. */ 3370 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3371 { 3372 #ifdef CONFIG_HIGHMEM 3373 int i; 3374 3375 if (!(dev->features & NETIF_F_HIGHDMA)) { 3376 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3377 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3378 3379 if (PageHighMem(skb_frag_page(frag))) 3380 return 1; 3381 } 3382 } 3383 #endif 3384 return 0; 3385 } 3386 3387 /* If MPLS offload request, verify we are testing hardware MPLS features 3388 * instead of standard features for the netdev. 3389 */ 3390 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3391 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3392 netdev_features_t features, 3393 __be16 type) 3394 { 3395 if (eth_p_mpls(type)) 3396 features &= skb->dev->mpls_features; 3397 3398 return features; 3399 } 3400 #else 3401 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3402 netdev_features_t features, 3403 __be16 type) 3404 { 3405 return features; 3406 } 3407 #endif 3408 3409 static netdev_features_t harmonize_features(struct sk_buff *skb, 3410 netdev_features_t features) 3411 { 3412 __be16 type; 3413 3414 type = skb_network_protocol(skb, NULL); 3415 features = net_mpls_features(skb, features, type); 3416 3417 if (skb->ip_summed != CHECKSUM_NONE && 3418 !can_checksum_protocol(features, type)) { 3419 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3420 } 3421 if (illegal_highdma(skb->dev, skb)) 3422 features &= ~NETIF_F_SG; 3423 3424 return features; 3425 } 3426 3427 netdev_features_t passthru_features_check(struct sk_buff *skb, 3428 struct net_device *dev, 3429 netdev_features_t features) 3430 { 3431 return features; 3432 } 3433 EXPORT_SYMBOL(passthru_features_check); 3434 3435 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3436 struct net_device *dev, 3437 netdev_features_t features) 3438 { 3439 return vlan_features_check(skb, features); 3440 } 3441 3442 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3443 struct net_device *dev, 3444 netdev_features_t features) 3445 { 3446 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3447 3448 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3449 return features & ~NETIF_F_GSO_MASK; 3450 3451 if (!skb_shinfo(skb)->gso_type) { 3452 skb_warn_bad_offload(skb); 3453 return features & ~NETIF_F_GSO_MASK; 3454 } 3455 3456 /* Support for GSO partial features requires software 3457 * intervention before we can actually process the packets 3458 * so we need to strip support for any partial features now 3459 * and we can pull them back in after we have partially 3460 * segmented the frame. 3461 */ 3462 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3463 features &= ~dev->gso_partial_features; 3464 3465 /* Make sure to clear the IPv4 ID mangling feature if the 3466 * IPv4 header has the potential to be fragmented. 3467 */ 3468 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3469 struct iphdr *iph = skb->encapsulation ? 3470 inner_ip_hdr(skb) : ip_hdr(skb); 3471 3472 if (!(iph->frag_off & htons(IP_DF))) 3473 features &= ~NETIF_F_TSO_MANGLEID; 3474 } 3475 3476 return features; 3477 } 3478 3479 netdev_features_t netif_skb_features(struct sk_buff *skb) 3480 { 3481 struct net_device *dev = skb->dev; 3482 netdev_features_t features = dev->features; 3483 3484 if (skb_is_gso(skb)) 3485 features = gso_features_check(skb, dev, features); 3486 3487 /* If encapsulation offload request, verify we are testing 3488 * hardware encapsulation features instead of standard 3489 * features for the netdev 3490 */ 3491 if (skb->encapsulation) 3492 features &= dev->hw_enc_features; 3493 3494 if (skb_vlan_tagged(skb)) 3495 features = netdev_intersect_features(features, 3496 dev->vlan_features | 3497 NETIF_F_HW_VLAN_CTAG_TX | 3498 NETIF_F_HW_VLAN_STAG_TX); 3499 3500 if (dev->netdev_ops->ndo_features_check) 3501 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3502 features); 3503 else 3504 features &= dflt_features_check(skb, dev, features); 3505 3506 return harmonize_features(skb, features); 3507 } 3508 EXPORT_SYMBOL(netif_skb_features); 3509 3510 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3511 struct netdev_queue *txq, bool more) 3512 { 3513 unsigned int len; 3514 int rc; 3515 3516 if (dev_nit_active(dev)) 3517 dev_queue_xmit_nit(skb, dev); 3518 3519 len = skb->len; 3520 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies); 3521 trace_net_dev_start_xmit(skb, dev); 3522 rc = netdev_start_xmit(skb, dev, txq, more); 3523 trace_net_dev_xmit(skb, rc, dev, len); 3524 3525 return rc; 3526 } 3527 3528 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3529 struct netdev_queue *txq, int *ret) 3530 { 3531 struct sk_buff *skb = first; 3532 int rc = NETDEV_TX_OK; 3533 3534 while (skb) { 3535 struct sk_buff *next = skb->next; 3536 3537 skb_mark_not_on_list(skb); 3538 rc = xmit_one(skb, dev, txq, next != NULL); 3539 if (unlikely(!dev_xmit_complete(rc))) { 3540 skb->next = next; 3541 goto out; 3542 } 3543 3544 skb = next; 3545 if (netif_tx_queue_stopped(txq) && skb) { 3546 rc = NETDEV_TX_BUSY; 3547 break; 3548 } 3549 } 3550 3551 out: 3552 *ret = rc; 3553 return skb; 3554 } 3555 3556 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3557 netdev_features_t features) 3558 { 3559 if (skb_vlan_tag_present(skb) && 3560 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3561 skb = __vlan_hwaccel_push_inside(skb); 3562 return skb; 3563 } 3564 3565 int skb_csum_hwoffload_help(struct sk_buff *skb, 3566 const netdev_features_t features) 3567 { 3568 if (unlikely(skb_csum_is_sctp(skb))) 3569 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3570 skb_crc32c_csum_help(skb); 3571 3572 if (features & NETIF_F_HW_CSUM) 3573 return 0; 3574 3575 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3576 switch (skb->csum_offset) { 3577 case offsetof(struct tcphdr, check): 3578 case offsetof(struct udphdr, check): 3579 return 0; 3580 } 3581 } 3582 3583 return skb_checksum_help(skb); 3584 } 3585 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3586 3587 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3588 { 3589 netdev_features_t features; 3590 3591 features = netif_skb_features(skb); 3592 skb = validate_xmit_vlan(skb, features); 3593 if (unlikely(!skb)) 3594 goto out_null; 3595 3596 skb = sk_validate_xmit_skb(skb, dev); 3597 if (unlikely(!skb)) 3598 goto out_null; 3599 3600 if (netif_needs_gso(skb, features)) { 3601 struct sk_buff *segs; 3602 3603 segs = skb_gso_segment(skb, features); 3604 if (IS_ERR(segs)) { 3605 goto out_kfree_skb; 3606 } else if (segs) { 3607 consume_skb(skb); 3608 skb = segs; 3609 } 3610 } else { 3611 if (skb_needs_linearize(skb, features) && 3612 __skb_linearize(skb)) 3613 goto out_kfree_skb; 3614 3615 /* If packet is not checksummed and device does not 3616 * support checksumming for this protocol, complete 3617 * checksumming here. 3618 */ 3619 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3620 if (skb->encapsulation) 3621 skb_set_inner_transport_header(skb, 3622 skb_checksum_start_offset(skb)); 3623 else 3624 skb_set_transport_header(skb, 3625 skb_checksum_start_offset(skb)); 3626 if (skb_csum_hwoffload_help(skb, features)) 3627 goto out_kfree_skb; 3628 } 3629 } 3630 3631 skb = validate_xmit_xfrm(skb, features, again); 3632 3633 return skb; 3634 3635 out_kfree_skb: 3636 kfree_skb(skb); 3637 out_null: 3638 atomic_long_inc(&dev->tx_dropped); 3639 return NULL; 3640 } 3641 3642 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3643 { 3644 struct sk_buff *next, *head = NULL, *tail; 3645 3646 for (; skb != NULL; skb = next) { 3647 next = skb->next; 3648 skb_mark_not_on_list(skb); 3649 3650 /* in case skb wont be segmented, point to itself */ 3651 skb->prev = skb; 3652 3653 skb = validate_xmit_skb(skb, dev, again); 3654 if (!skb) 3655 continue; 3656 3657 if (!head) 3658 head = skb; 3659 else 3660 tail->next = skb; 3661 /* If skb was segmented, skb->prev points to 3662 * the last segment. If not, it still contains skb. 3663 */ 3664 tail = skb->prev; 3665 } 3666 return head; 3667 } 3668 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3669 3670 static void qdisc_pkt_len_init(struct sk_buff *skb) 3671 { 3672 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3673 3674 qdisc_skb_cb(skb)->pkt_len = skb->len; 3675 3676 /* To get more precise estimation of bytes sent on wire, 3677 * we add to pkt_len the headers size of all segments 3678 */ 3679 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3680 unsigned int hdr_len; 3681 u16 gso_segs = shinfo->gso_segs; 3682 3683 /* mac layer + network layer */ 3684 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3685 3686 /* + transport layer */ 3687 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3688 const struct tcphdr *th; 3689 struct tcphdr _tcphdr; 3690 3691 th = skb_header_pointer(skb, skb_transport_offset(skb), 3692 sizeof(_tcphdr), &_tcphdr); 3693 if (likely(th)) 3694 hdr_len += __tcp_hdrlen(th); 3695 } else { 3696 struct udphdr _udphdr; 3697 3698 if (skb_header_pointer(skb, skb_transport_offset(skb), 3699 sizeof(_udphdr), &_udphdr)) 3700 hdr_len += sizeof(struct udphdr); 3701 } 3702 3703 if (shinfo->gso_type & SKB_GSO_DODGY) 3704 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3705 shinfo->gso_size); 3706 3707 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3708 } 3709 } 3710 3711 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3712 struct sk_buff **to_free, 3713 struct netdev_queue *txq) 3714 { 3715 int rc; 3716 3717 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3718 if (rc == NET_XMIT_SUCCESS) 3719 trace_qdisc_enqueue(q, txq, skb); 3720 return rc; 3721 } 3722 3723 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3724 struct net_device *dev, 3725 struct netdev_queue *txq) 3726 { 3727 spinlock_t *root_lock = qdisc_lock(q); 3728 struct sk_buff *to_free = NULL; 3729 bool contended; 3730 int rc; 3731 3732 qdisc_calculate_pkt_len(skb, q); 3733 3734 if (q->flags & TCQ_F_NOLOCK) { 3735 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3736 qdisc_run_begin(q)) { 3737 /* Retest nolock_qdisc_is_empty() within the protection 3738 * of q->seqlock to protect from racing with requeuing. 3739 */ 3740 if (unlikely(!nolock_qdisc_is_empty(q))) { 3741 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3742 __qdisc_run(q); 3743 qdisc_run_end(q); 3744 3745 goto no_lock_out; 3746 } 3747 3748 qdisc_bstats_cpu_update(q, skb); 3749 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3750 !nolock_qdisc_is_empty(q)) 3751 __qdisc_run(q); 3752 3753 qdisc_run_end(q); 3754 return NET_XMIT_SUCCESS; 3755 } 3756 3757 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3758 qdisc_run(q); 3759 3760 no_lock_out: 3761 if (unlikely(to_free)) 3762 kfree_skb_list(to_free); 3763 return rc; 3764 } 3765 3766 /* 3767 * Heuristic to force contended enqueues to serialize on a 3768 * separate lock before trying to get qdisc main lock. 3769 * This permits qdisc->running owner to get the lock more 3770 * often and dequeue packets faster. 3771 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3772 * and then other tasks will only enqueue packets. The packets will be 3773 * sent after the qdisc owner is scheduled again. To prevent this 3774 * scenario the task always serialize on the lock. 3775 */ 3776 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3777 if (unlikely(contended)) 3778 spin_lock(&q->busylock); 3779 3780 spin_lock(root_lock); 3781 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3782 __qdisc_drop(skb, &to_free); 3783 rc = NET_XMIT_DROP; 3784 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3785 qdisc_run_begin(q)) { 3786 /* 3787 * This is a work-conserving queue; there are no old skbs 3788 * waiting to be sent out; and the qdisc is not running - 3789 * xmit the skb directly. 3790 */ 3791 3792 qdisc_bstats_update(q, skb); 3793 3794 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3795 if (unlikely(contended)) { 3796 spin_unlock(&q->busylock); 3797 contended = false; 3798 } 3799 __qdisc_run(q); 3800 } 3801 3802 qdisc_run_end(q); 3803 rc = NET_XMIT_SUCCESS; 3804 } else { 3805 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3806 if (qdisc_run_begin(q)) { 3807 if (unlikely(contended)) { 3808 spin_unlock(&q->busylock); 3809 contended = false; 3810 } 3811 __qdisc_run(q); 3812 qdisc_run_end(q); 3813 } 3814 } 3815 spin_unlock(root_lock); 3816 if (unlikely(to_free)) 3817 kfree_skb_list(to_free); 3818 if (unlikely(contended)) 3819 spin_unlock(&q->busylock); 3820 return rc; 3821 } 3822 3823 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3824 static void skb_update_prio(struct sk_buff *skb) 3825 { 3826 const struct netprio_map *map; 3827 const struct sock *sk; 3828 unsigned int prioidx; 3829 3830 if (skb->priority) 3831 return; 3832 map = rcu_dereference_bh(skb->dev->priomap); 3833 if (!map) 3834 return; 3835 sk = skb_to_full_sk(skb); 3836 if (!sk) 3837 return; 3838 3839 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3840 3841 if (prioidx < map->priomap_len) 3842 skb->priority = map->priomap[prioidx]; 3843 } 3844 #else 3845 #define skb_update_prio(skb) 3846 #endif 3847 3848 /** 3849 * dev_loopback_xmit - loop back @skb 3850 * @net: network namespace this loopback is happening in 3851 * @sk: sk needed to be a netfilter okfn 3852 * @skb: buffer to transmit 3853 */ 3854 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3855 { 3856 skb_reset_mac_header(skb); 3857 __skb_pull(skb, skb_network_offset(skb)); 3858 skb->pkt_type = PACKET_LOOPBACK; 3859 if (skb->ip_summed == CHECKSUM_NONE) 3860 skb->ip_summed = CHECKSUM_UNNECESSARY; 3861 WARN_ON(!skb_dst(skb)); 3862 skb_dst_force(skb); 3863 netif_rx_ni(skb); 3864 return 0; 3865 } 3866 EXPORT_SYMBOL(dev_loopback_xmit); 3867 3868 #ifdef CONFIG_NET_EGRESS 3869 static struct sk_buff * 3870 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3871 { 3872 #ifdef CONFIG_NET_CLS_ACT 3873 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3874 struct tcf_result cl_res; 3875 3876 if (!miniq) 3877 return skb; 3878 3879 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3880 tc_skb_cb(skb)->mru = 0; 3881 tc_skb_cb(skb)->post_ct = false; 3882 mini_qdisc_bstats_cpu_update(miniq, skb); 3883 3884 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) { 3885 case TC_ACT_OK: 3886 case TC_ACT_RECLASSIFY: 3887 skb->tc_index = TC_H_MIN(cl_res.classid); 3888 break; 3889 case TC_ACT_SHOT: 3890 mini_qdisc_qstats_cpu_drop(miniq); 3891 *ret = NET_XMIT_DROP; 3892 kfree_skb(skb); 3893 return NULL; 3894 case TC_ACT_STOLEN: 3895 case TC_ACT_QUEUED: 3896 case TC_ACT_TRAP: 3897 *ret = NET_XMIT_SUCCESS; 3898 consume_skb(skb); 3899 return NULL; 3900 case TC_ACT_REDIRECT: 3901 /* No need to push/pop skb's mac_header here on egress! */ 3902 skb_do_redirect(skb); 3903 *ret = NET_XMIT_SUCCESS; 3904 return NULL; 3905 default: 3906 break; 3907 } 3908 #endif /* CONFIG_NET_CLS_ACT */ 3909 3910 return skb; 3911 } 3912 #endif /* CONFIG_NET_EGRESS */ 3913 3914 #ifdef CONFIG_XPS 3915 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3916 struct xps_dev_maps *dev_maps, unsigned int tci) 3917 { 3918 int tc = netdev_get_prio_tc_map(dev, skb->priority); 3919 struct xps_map *map; 3920 int queue_index = -1; 3921 3922 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 3923 return queue_index; 3924 3925 tci *= dev_maps->num_tc; 3926 tci += tc; 3927 3928 map = rcu_dereference(dev_maps->attr_map[tci]); 3929 if (map) { 3930 if (map->len == 1) 3931 queue_index = map->queues[0]; 3932 else 3933 queue_index = map->queues[reciprocal_scale( 3934 skb_get_hash(skb), map->len)]; 3935 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3936 queue_index = -1; 3937 } 3938 return queue_index; 3939 } 3940 #endif 3941 3942 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3943 struct sk_buff *skb) 3944 { 3945 #ifdef CONFIG_XPS 3946 struct xps_dev_maps *dev_maps; 3947 struct sock *sk = skb->sk; 3948 int queue_index = -1; 3949 3950 if (!static_key_false(&xps_needed)) 3951 return -1; 3952 3953 rcu_read_lock(); 3954 if (!static_key_false(&xps_rxqs_needed)) 3955 goto get_cpus_map; 3956 3957 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 3958 if (dev_maps) { 3959 int tci = sk_rx_queue_get(sk); 3960 3961 if (tci >= 0) 3962 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3963 tci); 3964 } 3965 3966 get_cpus_map: 3967 if (queue_index < 0) { 3968 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 3969 if (dev_maps) { 3970 unsigned int tci = skb->sender_cpu - 1; 3971 3972 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3973 tci); 3974 } 3975 } 3976 rcu_read_unlock(); 3977 3978 return queue_index; 3979 #else 3980 return -1; 3981 #endif 3982 } 3983 3984 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3985 struct net_device *sb_dev) 3986 { 3987 return 0; 3988 } 3989 EXPORT_SYMBOL(dev_pick_tx_zero); 3990 3991 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3992 struct net_device *sb_dev) 3993 { 3994 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3995 } 3996 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3997 3998 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3999 struct net_device *sb_dev) 4000 { 4001 struct sock *sk = skb->sk; 4002 int queue_index = sk_tx_queue_get(sk); 4003 4004 sb_dev = sb_dev ? : dev; 4005 4006 if (queue_index < 0 || skb->ooo_okay || 4007 queue_index >= dev->real_num_tx_queues) { 4008 int new_index = get_xps_queue(dev, sb_dev, skb); 4009 4010 if (new_index < 0) 4011 new_index = skb_tx_hash(dev, sb_dev, skb); 4012 4013 if (queue_index != new_index && sk && 4014 sk_fullsock(sk) && 4015 rcu_access_pointer(sk->sk_dst_cache)) 4016 sk_tx_queue_set(sk, new_index); 4017 4018 queue_index = new_index; 4019 } 4020 4021 return queue_index; 4022 } 4023 EXPORT_SYMBOL(netdev_pick_tx); 4024 4025 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4026 struct sk_buff *skb, 4027 struct net_device *sb_dev) 4028 { 4029 int queue_index = 0; 4030 4031 #ifdef CONFIG_XPS 4032 u32 sender_cpu = skb->sender_cpu - 1; 4033 4034 if (sender_cpu >= (u32)NR_CPUS) 4035 skb->sender_cpu = raw_smp_processor_id() + 1; 4036 #endif 4037 4038 if (dev->real_num_tx_queues != 1) { 4039 const struct net_device_ops *ops = dev->netdev_ops; 4040 4041 if (ops->ndo_select_queue) 4042 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4043 else 4044 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4045 4046 queue_index = netdev_cap_txqueue(dev, queue_index); 4047 } 4048 4049 skb_set_queue_mapping(skb, queue_index); 4050 return netdev_get_tx_queue(dev, queue_index); 4051 } 4052 4053 /** 4054 * __dev_queue_xmit - transmit a buffer 4055 * @skb: buffer to transmit 4056 * @sb_dev: suboordinate device used for L2 forwarding offload 4057 * 4058 * Queue a buffer for transmission to a network device. The caller must 4059 * have set the device and priority and built the buffer before calling 4060 * this function. The function can be called from an interrupt. 4061 * 4062 * A negative errno code is returned on a failure. A success does not 4063 * guarantee the frame will be transmitted as it may be dropped due 4064 * to congestion or traffic shaping. 4065 * 4066 * ----------------------------------------------------------------------------------- 4067 * I notice this method can also return errors from the queue disciplines, 4068 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4069 * be positive. 4070 * 4071 * Regardless of the return value, the skb is consumed, so it is currently 4072 * difficult to retry a send to this method. (You can bump the ref count 4073 * before sending to hold a reference for retry if you are careful.) 4074 * 4075 * When calling this method, interrupts MUST be enabled. This is because 4076 * the BH enable code must have IRQs enabled so that it will not deadlock. 4077 * --BLG 4078 */ 4079 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4080 { 4081 struct net_device *dev = skb->dev; 4082 struct netdev_queue *txq; 4083 struct Qdisc *q; 4084 int rc = -ENOMEM; 4085 bool again = false; 4086 4087 skb_reset_mac_header(skb); 4088 4089 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4090 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4091 4092 /* Disable soft irqs for various locks below. Also 4093 * stops preemption for RCU. 4094 */ 4095 rcu_read_lock_bh(); 4096 4097 skb_update_prio(skb); 4098 4099 qdisc_pkt_len_init(skb); 4100 #ifdef CONFIG_NET_CLS_ACT 4101 skb->tc_at_ingress = 0; 4102 #endif 4103 #ifdef CONFIG_NET_EGRESS 4104 if (static_branch_unlikely(&egress_needed_key)) { 4105 if (nf_hook_egress_active()) { 4106 skb = nf_hook_egress(skb, &rc, dev); 4107 if (!skb) 4108 goto out; 4109 } 4110 nf_skip_egress(skb, true); 4111 skb = sch_handle_egress(skb, &rc, dev); 4112 if (!skb) 4113 goto out; 4114 nf_skip_egress(skb, false); 4115 } 4116 #endif 4117 /* If device/qdisc don't need skb->dst, release it right now while 4118 * its hot in this cpu cache. 4119 */ 4120 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4121 skb_dst_drop(skb); 4122 else 4123 skb_dst_force(skb); 4124 4125 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4126 q = rcu_dereference_bh(txq->qdisc); 4127 4128 trace_net_dev_queue(skb); 4129 if (q->enqueue) { 4130 rc = __dev_xmit_skb(skb, q, dev, txq); 4131 goto out; 4132 } 4133 4134 /* The device has no queue. Common case for software devices: 4135 * loopback, all the sorts of tunnels... 4136 4137 * Really, it is unlikely that netif_tx_lock protection is necessary 4138 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4139 * counters.) 4140 * However, it is possible, that they rely on protection 4141 * made by us here. 4142 4143 * Check this and shot the lock. It is not prone from deadlocks. 4144 *Either shot noqueue qdisc, it is even simpler 8) 4145 */ 4146 if (dev->flags & IFF_UP) { 4147 int cpu = smp_processor_id(); /* ok because BHs are off */ 4148 4149 /* Other cpus might concurrently change txq->xmit_lock_owner 4150 * to -1 or to their cpu id, but not to our id. 4151 */ 4152 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4153 if (dev_xmit_recursion()) 4154 goto recursion_alert; 4155 4156 skb = validate_xmit_skb(skb, dev, &again); 4157 if (!skb) 4158 goto out; 4159 4160 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4161 HARD_TX_LOCK(dev, txq, cpu); 4162 4163 if (!netif_xmit_stopped(txq)) { 4164 dev_xmit_recursion_inc(); 4165 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4166 dev_xmit_recursion_dec(); 4167 if (dev_xmit_complete(rc)) { 4168 HARD_TX_UNLOCK(dev, txq); 4169 goto out; 4170 } 4171 } 4172 HARD_TX_UNLOCK(dev, txq); 4173 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4174 dev->name); 4175 } else { 4176 /* Recursion is detected! It is possible, 4177 * unfortunately 4178 */ 4179 recursion_alert: 4180 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4181 dev->name); 4182 } 4183 } 4184 4185 rc = -ENETDOWN; 4186 rcu_read_unlock_bh(); 4187 4188 atomic_long_inc(&dev->tx_dropped); 4189 kfree_skb_list(skb); 4190 return rc; 4191 out: 4192 rcu_read_unlock_bh(); 4193 return rc; 4194 } 4195 4196 int dev_queue_xmit(struct sk_buff *skb) 4197 { 4198 return __dev_queue_xmit(skb, NULL); 4199 } 4200 EXPORT_SYMBOL(dev_queue_xmit); 4201 4202 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4203 { 4204 return __dev_queue_xmit(skb, sb_dev); 4205 } 4206 EXPORT_SYMBOL(dev_queue_xmit_accel); 4207 4208 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4209 { 4210 struct net_device *dev = skb->dev; 4211 struct sk_buff *orig_skb = skb; 4212 struct netdev_queue *txq; 4213 int ret = NETDEV_TX_BUSY; 4214 bool again = false; 4215 4216 if (unlikely(!netif_running(dev) || 4217 !netif_carrier_ok(dev))) 4218 goto drop; 4219 4220 skb = validate_xmit_skb_list(skb, dev, &again); 4221 if (skb != orig_skb) 4222 goto drop; 4223 4224 skb_set_queue_mapping(skb, queue_id); 4225 txq = skb_get_tx_queue(dev, skb); 4226 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4227 4228 local_bh_disable(); 4229 4230 dev_xmit_recursion_inc(); 4231 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4232 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4233 ret = netdev_start_xmit(skb, dev, txq, false); 4234 HARD_TX_UNLOCK(dev, txq); 4235 dev_xmit_recursion_dec(); 4236 4237 local_bh_enable(); 4238 return ret; 4239 drop: 4240 atomic_long_inc(&dev->tx_dropped); 4241 kfree_skb_list(skb); 4242 return NET_XMIT_DROP; 4243 } 4244 EXPORT_SYMBOL(__dev_direct_xmit); 4245 4246 /************************************************************************* 4247 * Receiver routines 4248 *************************************************************************/ 4249 4250 int netdev_max_backlog __read_mostly = 1000; 4251 EXPORT_SYMBOL(netdev_max_backlog); 4252 4253 int netdev_tstamp_prequeue __read_mostly = 1; 4254 int netdev_budget __read_mostly = 300; 4255 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4256 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4257 int weight_p __read_mostly = 64; /* old backlog weight */ 4258 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4259 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4260 int dev_rx_weight __read_mostly = 64; 4261 int dev_tx_weight __read_mostly = 64; 4262 4263 /* Called with irq disabled */ 4264 static inline void ____napi_schedule(struct softnet_data *sd, 4265 struct napi_struct *napi) 4266 { 4267 struct task_struct *thread; 4268 4269 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4270 /* Paired with smp_mb__before_atomic() in 4271 * napi_enable()/dev_set_threaded(). 4272 * Use READ_ONCE() to guarantee a complete 4273 * read on napi->thread. Only call 4274 * wake_up_process() when it's not NULL. 4275 */ 4276 thread = READ_ONCE(napi->thread); 4277 if (thread) { 4278 /* Avoid doing set_bit() if the thread is in 4279 * INTERRUPTIBLE state, cause napi_thread_wait() 4280 * makes sure to proceed with napi polling 4281 * if the thread is explicitly woken from here. 4282 */ 4283 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE) 4284 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4285 wake_up_process(thread); 4286 return; 4287 } 4288 } 4289 4290 list_add_tail(&napi->poll_list, &sd->poll_list); 4291 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4292 } 4293 4294 #ifdef CONFIG_RPS 4295 4296 /* One global table that all flow-based protocols share. */ 4297 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4298 EXPORT_SYMBOL(rps_sock_flow_table); 4299 u32 rps_cpu_mask __read_mostly; 4300 EXPORT_SYMBOL(rps_cpu_mask); 4301 4302 struct static_key_false rps_needed __read_mostly; 4303 EXPORT_SYMBOL(rps_needed); 4304 struct static_key_false rfs_needed __read_mostly; 4305 EXPORT_SYMBOL(rfs_needed); 4306 4307 static struct rps_dev_flow * 4308 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4309 struct rps_dev_flow *rflow, u16 next_cpu) 4310 { 4311 if (next_cpu < nr_cpu_ids) { 4312 #ifdef CONFIG_RFS_ACCEL 4313 struct netdev_rx_queue *rxqueue; 4314 struct rps_dev_flow_table *flow_table; 4315 struct rps_dev_flow *old_rflow; 4316 u32 flow_id; 4317 u16 rxq_index; 4318 int rc; 4319 4320 /* Should we steer this flow to a different hardware queue? */ 4321 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4322 !(dev->features & NETIF_F_NTUPLE)) 4323 goto out; 4324 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4325 if (rxq_index == skb_get_rx_queue(skb)) 4326 goto out; 4327 4328 rxqueue = dev->_rx + rxq_index; 4329 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4330 if (!flow_table) 4331 goto out; 4332 flow_id = skb_get_hash(skb) & flow_table->mask; 4333 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4334 rxq_index, flow_id); 4335 if (rc < 0) 4336 goto out; 4337 old_rflow = rflow; 4338 rflow = &flow_table->flows[flow_id]; 4339 rflow->filter = rc; 4340 if (old_rflow->filter == rflow->filter) 4341 old_rflow->filter = RPS_NO_FILTER; 4342 out: 4343 #endif 4344 rflow->last_qtail = 4345 per_cpu(softnet_data, next_cpu).input_queue_head; 4346 } 4347 4348 rflow->cpu = next_cpu; 4349 return rflow; 4350 } 4351 4352 /* 4353 * get_rps_cpu is called from netif_receive_skb and returns the target 4354 * CPU from the RPS map of the receiving queue for a given skb. 4355 * rcu_read_lock must be held on entry. 4356 */ 4357 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4358 struct rps_dev_flow **rflowp) 4359 { 4360 const struct rps_sock_flow_table *sock_flow_table; 4361 struct netdev_rx_queue *rxqueue = dev->_rx; 4362 struct rps_dev_flow_table *flow_table; 4363 struct rps_map *map; 4364 int cpu = -1; 4365 u32 tcpu; 4366 u32 hash; 4367 4368 if (skb_rx_queue_recorded(skb)) { 4369 u16 index = skb_get_rx_queue(skb); 4370 4371 if (unlikely(index >= dev->real_num_rx_queues)) { 4372 WARN_ONCE(dev->real_num_rx_queues > 1, 4373 "%s received packet on queue %u, but number " 4374 "of RX queues is %u\n", 4375 dev->name, index, dev->real_num_rx_queues); 4376 goto done; 4377 } 4378 rxqueue += index; 4379 } 4380 4381 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4382 4383 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4384 map = rcu_dereference(rxqueue->rps_map); 4385 if (!flow_table && !map) 4386 goto done; 4387 4388 skb_reset_network_header(skb); 4389 hash = skb_get_hash(skb); 4390 if (!hash) 4391 goto done; 4392 4393 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4394 if (flow_table && sock_flow_table) { 4395 struct rps_dev_flow *rflow; 4396 u32 next_cpu; 4397 u32 ident; 4398 4399 /* First check into global flow table if there is a match */ 4400 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4401 if ((ident ^ hash) & ~rps_cpu_mask) 4402 goto try_rps; 4403 4404 next_cpu = ident & rps_cpu_mask; 4405 4406 /* OK, now we know there is a match, 4407 * we can look at the local (per receive queue) flow table 4408 */ 4409 rflow = &flow_table->flows[hash & flow_table->mask]; 4410 tcpu = rflow->cpu; 4411 4412 /* 4413 * If the desired CPU (where last recvmsg was done) is 4414 * different from current CPU (one in the rx-queue flow 4415 * table entry), switch if one of the following holds: 4416 * - Current CPU is unset (>= nr_cpu_ids). 4417 * - Current CPU is offline. 4418 * - The current CPU's queue tail has advanced beyond the 4419 * last packet that was enqueued using this table entry. 4420 * This guarantees that all previous packets for the flow 4421 * have been dequeued, thus preserving in order delivery. 4422 */ 4423 if (unlikely(tcpu != next_cpu) && 4424 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4425 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4426 rflow->last_qtail)) >= 0)) { 4427 tcpu = next_cpu; 4428 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4429 } 4430 4431 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4432 *rflowp = rflow; 4433 cpu = tcpu; 4434 goto done; 4435 } 4436 } 4437 4438 try_rps: 4439 4440 if (map) { 4441 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4442 if (cpu_online(tcpu)) { 4443 cpu = tcpu; 4444 goto done; 4445 } 4446 } 4447 4448 done: 4449 return cpu; 4450 } 4451 4452 #ifdef CONFIG_RFS_ACCEL 4453 4454 /** 4455 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4456 * @dev: Device on which the filter was set 4457 * @rxq_index: RX queue index 4458 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4459 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4460 * 4461 * Drivers that implement ndo_rx_flow_steer() should periodically call 4462 * this function for each installed filter and remove the filters for 4463 * which it returns %true. 4464 */ 4465 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4466 u32 flow_id, u16 filter_id) 4467 { 4468 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4469 struct rps_dev_flow_table *flow_table; 4470 struct rps_dev_flow *rflow; 4471 bool expire = true; 4472 unsigned int cpu; 4473 4474 rcu_read_lock(); 4475 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4476 if (flow_table && flow_id <= flow_table->mask) { 4477 rflow = &flow_table->flows[flow_id]; 4478 cpu = READ_ONCE(rflow->cpu); 4479 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4480 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4481 rflow->last_qtail) < 4482 (int)(10 * flow_table->mask))) 4483 expire = false; 4484 } 4485 rcu_read_unlock(); 4486 return expire; 4487 } 4488 EXPORT_SYMBOL(rps_may_expire_flow); 4489 4490 #endif /* CONFIG_RFS_ACCEL */ 4491 4492 /* Called from hardirq (IPI) context */ 4493 static void rps_trigger_softirq(void *data) 4494 { 4495 struct softnet_data *sd = data; 4496 4497 ____napi_schedule(sd, &sd->backlog); 4498 sd->received_rps++; 4499 } 4500 4501 #endif /* CONFIG_RPS */ 4502 4503 /* 4504 * Check if this softnet_data structure is another cpu one 4505 * If yes, queue it to our IPI list and return 1 4506 * If no, return 0 4507 */ 4508 static int napi_schedule_rps(struct softnet_data *sd) 4509 { 4510 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4511 4512 #ifdef CONFIG_RPS 4513 if (sd != mysd) { 4514 sd->rps_ipi_next = mysd->rps_ipi_list; 4515 mysd->rps_ipi_list = sd; 4516 4517 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4518 return 1; 4519 } 4520 #endif /* CONFIG_RPS */ 4521 __napi_schedule_irqoff(&mysd->backlog); 4522 return 0; 4523 } 4524 4525 #ifdef CONFIG_NET_FLOW_LIMIT 4526 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4527 #endif 4528 4529 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4530 { 4531 #ifdef CONFIG_NET_FLOW_LIMIT 4532 struct sd_flow_limit *fl; 4533 struct softnet_data *sd; 4534 unsigned int old_flow, new_flow; 4535 4536 if (qlen < (netdev_max_backlog >> 1)) 4537 return false; 4538 4539 sd = this_cpu_ptr(&softnet_data); 4540 4541 rcu_read_lock(); 4542 fl = rcu_dereference(sd->flow_limit); 4543 if (fl) { 4544 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4545 old_flow = fl->history[fl->history_head]; 4546 fl->history[fl->history_head] = new_flow; 4547 4548 fl->history_head++; 4549 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4550 4551 if (likely(fl->buckets[old_flow])) 4552 fl->buckets[old_flow]--; 4553 4554 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4555 fl->count++; 4556 rcu_read_unlock(); 4557 return true; 4558 } 4559 } 4560 rcu_read_unlock(); 4561 #endif 4562 return false; 4563 } 4564 4565 /* 4566 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4567 * queue (may be a remote CPU queue). 4568 */ 4569 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4570 unsigned int *qtail) 4571 { 4572 struct softnet_data *sd; 4573 unsigned long flags; 4574 unsigned int qlen; 4575 4576 sd = &per_cpu(softnet_data, cpu); 4577 4578 rps_lock_irqsave(sd, &flags); 4579 if (!netif_running(skb->dev)) 4580 goto drop; 4581 qlen = skb_queue_len(&sd->input_pkt_queue); 4582 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4583 if (qlen) { 4584 enqueue: 4585 __skb_queue_tail(&sd->input_pkt_queue, skb); 4586 input_queue_tail_incr_save(sd, qtail); 4587 rps_unlock_irq_restore(sd, &flags); 4588 return NET_RX_SUCCESS; 4589 } 4590 4591 /* Schedule NAPI for backlog device 4592 * We can use non atomic operation since we own the queue lock 4593 */ 4594 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4595 napi_schedule_rps(sd); 4596 goto enqueue; 4597 } 4598 4599 drop: 4600 sd->dropped++; 4601 rps_unlock_irq_restore(sd, &flags); 4602 4603 atomic_long_inc(&skb->dev->rx_dropped); 4604 kfree_skb(skb); 4605 return NET_RX_DROP; 4606 } 4607 4608 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4609 { 4610 struct net_device *dev = skb->dev; 4611 struct netdev_rx_queue *rxqueue; 4612 4613 rxqueue = dev->_rx; 4614 4615 if (skb_rx_queue_recorded(skb)) { 4616 u16 index = skb_get_rx_queue(skb); 4617 4618 if (unlikely(index >= dev->real_num_rx_queues)) { 4619 WARN_ONCE(dev->real_num_rx_queues > 1, 4620 "%s received packet on queue %u, but number " 4621 "of RX queues is %u\n", 4622 dev->name, index, dev->real_num_rx_queues); 4623 4624 return rxqueue; /* Return first rxqueue */ 4625 } 4626 rxqueue += index; 4627 } 4628 return rxqueue; 4629 } 4630 4631 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4632 struct bpf_prog *xdp_prog) 4633 { 4634 void *orig_data, *orig_data_end, *hard_start; 4635 struct netdev_rx_queue *rxqueue; 4636 bool orig_bcast, orig_host; 4637 u32 mac_len, frame_sz; 4638 __be16 orig_eth_type; 4639 struct ethhdr *eth; 4640 u32 metalen, act; 4641 int off; 4642 4643 /* The XDP program wants to see the packet starting at the MAC 4644 * header. 4645 */ 4646 mac_len = skb->data - skb_mac_header(skb); 4647 hard_start = skb->data - skb_headroom(skb); 4648 4649 /* SKB "head" area always have tailroom for skb_shared_info */ 4650 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4651 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4652 4653 rxqueue = netif_get_rxqueue(skb); 4654 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4655 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4656 skb_headlen(skb) + mac_len, true); 4657 4658 orig_data_end = xdp->data_end; 4659 orig_data = xdp->data; 4660 eth = (struct ethhdr *)xdp->data; 4661 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4662 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4663 orig_eth_type = eth->h_proto; 4664 4665 act = bpf_prog_run_xdp(xdp_prog, xdp); 4666 4667 /* check if bpf_xdp_adjust_head was used */ 4668 off = xdp->data - orig_data; 4669 if (off) { 4670 if (off > 0) 4671 __skb_pull(skb, off); 4672 else if (off < 0) 4673 __skb_push(skb, -off); 4674 4675 skb->mac_header += off; 4676 skb_reset_network_header(skb); 4677 } 4678 4679 /* check if bpf_xdp_adjust_tail was used */ 4680 off = xdp->data_end - orig_data_end; 4681 if (off != 0) { 4682 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4683 skb->len += off; /* positive on grow, negative on shrink */ 4684 } 4685 4686 /* check if XDP changed eth hdr such SKB needs update */ 4687 eth = (struct ethhdr *)xdp->data; 4688 if ((orig_eth_type != eth->h_proto) || 4689 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4690 skb->dev->dev_addr)) || 4691 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4692 __skb_push(skb, ETH_HLEN); 4693 skb->pkt_type = PACKET_HOST; 4694 skb->protocol = eth_type_trans(skb, skb->dev); 4695 } 4696 4697 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 4698 * before calling us again on redirect path. We do not call do_redirect 4699 * as we leave that up to the caller. 4700 * 4701 * Caller is responsible for managing lifetime of skb (i.e. calling 4702 * kfree_skb in response to actions it cannot handle/XDP_DROP). 4703 */ 4704 switch (act) { 4705 case XDP_REDIRECT: 4706 case XDP_TX: 4707 __skb_push(skb, mac_len); 4708 break; 4709 case XDP_PASS: 4710 metalen = xdp->data - xdp->data_meta; 4711 if (metalen) 4712 skb_metadata_set(skb, metalen); 4713 break; 4714 } 4715 4716 return act; 4717 } 4718 4719 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4720 struct xdp_buff *xdp, 4721 struct bpf_prog *xdp_prog) 4722 { 4723 u32 act = XDP_DROP; 4724 4725 /* Reinjected packets coming from act_mirred or similar should 4726 * not get XDP generic processing. 4727 */ 4728 if (skb_is_redirected(skb)) 4729 return XDP_PASS; 4730 4731 /* XDP packets must be linear and must have sufficient headroom 4732 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4733 * native XDP provides, thus we need to do it here as well. 4734 */ 4735 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4736 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4737 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4738 int troom = skb->tail + skb->data_len - skb->end; 4739 4740 /* In case we have to go down the path and also linearize, 4741 * then lets do the pskb_expand_head() work just once here. 4742 */ 4743 if (pskb_expand_head(skb, 4744 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4745 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4746 goto do_drop; 4747 if (skb_linearize(skb)) 4748 goto do_drop; 4749 } 4750 4751 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog); 4752 switch (act) { 4753 case XDP_REDIRECT: 4754 case XDP_TX: 4755 case XDP_PASS: 4756 break; 4757 default: 4758 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act); 4759 fallthrough; 4760 case XDP_ABORTED: 4761 trace_xdp_exception(skb->dev, xdp_prog, act); 4762 fallthrough; 4763 case XDP_DROP: 4764 do_drop: 4765 kfree_skb(skb); 4766 break; 4767 } 4768 4769 return act; 4770 } 4771 4772 /* When doing generic XDP we have to bypass the qdisc layer and the 4773 * network taps in order to match in-driver-XDP behavior. 4774 */ 4775 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4776 { 4777 struct net_device *dev = skb->dev; 4778 struct netdev_queue *txq; 4779 bool free_skb = true; 4780 int cpu, rc; 4781 4782 txq = netdev_core_pick_tx(dev, skb, NULL); 4783 cpu = smp_processor_id(); 4784 HARD_TX_LOCK(dev, txq, cpu); 4785 if (!netif_xmit_stopped(txq)) { 4786 rc = netdev_start_xmit(skb, dev, txq, 0); 4787 if (dev_xmit_complete(rc)) 4788 free_skb = false; 4789 } 4790 HARD_TX_UNLOCK(dev, txq); 4791 if (free_skb) { 4792 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4793 kfree_skb(skb); 4794 } 4795 } 4796 4797 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4798 4799 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4800 { 4801 if (xdp_prog) { 4802 struct xdp_buff xdp; 4803 u32 act; 4804 int err; 4805 4806 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4807 if (act != XDP_PASS) { 4808 switch (act) { 4809 case XDP_REDIRECT: 4810 err = xdp_do_generic_redirect(skb->dev, skb, 4811 &xdp, xdp_prog); 4812 if (err) 4813 goto out_redir; 4814 break; 4815 case XDP_TX: 4816 generic_xdp_tx(skb, xdp_prog); 4817 break; 4818 } 4819 return XDP_DROP; 4820 } 4821 } 4822 return XDP_PASS; 4823 out_redir: 4824 kfree_skb(skb); 4825 return XDP_DROP; 4826 } 4827 EXPORT_SYMBOL_GPL(do_xdp_generic); 4828 4829 static int netif_rx_internal(struct sk_buff *skb) 4830 { 4831 int ret; 4832 4833 net_timestamp_check(netdev_tstamp_prequeue, skb); 4834 4835 trace_netif_rx(skb); 4836 4837 #ifdef CONFIG_RPS 4838 if (static_branch_unlikely(&rps_needed)) { 4839 struct rps_dev_flow voidflow, *rflow = &voidflow; 4840 int cpu; 4841 4842 rcu_read_lock(); 4843 4844 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4845 if (cpu < 0) 4846 cpu = smp_processor_id(); 4847 4848 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4849 4850 rcu_read_unlock(); 4851 } else 4852 #endif 4853 { 4854 unsigned int qtail; 4855 4856 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 4857 } 4858 return ret; 4859 } 4860 4861 /** 4862 * __netif_rx - Slightly optimized version of netif_rx 4863 * @skb: buffer to post 4864 * 4865 * This behaves as netif_rx except that it does not disable bottom halves. 4866 * As a result this function may only be invoked from the interrupt context 4867 * (either hard or soft interrupt). 4868 */ 4869 int __netif_rx(struct sk_buff *skb) 4870 { 4871 int ret; 4872 4873 lockdep_assert_once(hardirq_count() | softirq_count()); 4874 4875 trace_netif_rx_entry(skb); 4876 ret = netif_rx_internal(skb); 4877 trace_netif_rx_exit(ret); 4878 return ret; 4879 } 4880 EXPORT_SYMBOL(__netif_rx); 4881 4882 /** 4883 * netif_rx - post buffer to the network code 4884 * @skb: buffer to post 4885 * 4886 * This function receives a packet from a device driver and queues it for 4887 * the upper (protocol) levels to process via the backlog NAPI device. It 4888 * always succeeds. The buffer may be dropped during processing for 4889 * congestion control or by the protocol layers. 4890 * The network buffer is passed via the backlog NAPI device. Modern NIC 4891 * driver should use NAPI and GRO. 4892 * This function can used from interrupt and from process context. The 4893 * caller from process context must not disable interrupts before invoking 4894 * this function. 4895 * 4896 * return values: 4897 * NET_RX_SUCCESS (no congestion) 4898 * NET_RX_DROP (packet was dropped) 4899 * 4900 */ 4901 int netif_rx(struct sk_buff *skb) 4902 { 4903 bool need_bh_off = !(hardirq_count() | softirq_count()); 4904 int ret; 4905 4906 if (need_bh_off) 4907 local_bh_disable(); 4908 trace_netif_rx_entry(skb); 4909 ret = netif_rx_internal(skb); 4910 trace_netif_rx_exit(ret); 4911 if (need_bh_off) 4912 local_bh_enable(); 4913 return ret; 4914 } 4915 EXPORT_SYMBOL(netif_rx); 4916 4917 static __latent_entropy void net_tx_action(struct softirq_action *h) 4918 { 4919 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4920 4921 if (sd->completion_queue) { 4922 struct sk_buff *clist; 4923 4924 local_irq_disable(); 4925 clist = sd->completion_queue; 4926 sd->completion_queue = NULL; 4927 local_irq_enable(); 4928 4929 while (clist) { 4930 struct sk_buff *skb = clist; 4931 4932 clist = clist->next; 4933 4934 WARN_ON(refcount_read(&skb->users)); 4935 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4936 trace_consume_skb(skb); 4937 else 4938 trace_kfree_skb(skb, net_tx_action, 4939 SKB_DROP_REASON_NOT_SPECIFIED); 4940 4941 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4942 __kfree_skb(skb); 4943 else 4944 __kfree_skb_defer(skb); 4945 } 4946 } 4947 4948 if (sd->output_queue) { 4949 struct Qdisc *head; 4950 4951 local_irq_disable(); 4952 head = sd->output_queue; 4953 sd->output_queue = NULL; 4954 sd->output_queue_tailp = &sd->output_queue; 4955 local_irq_enable(); 4956 4957 rcu_read_lock(); 4958 4959 while (head) { 4960 struct Qdisc *q = head; 4961 spinlock_t *root_lock = NULL; 4962 4963 head = head->next_sched; 4964 4965 /* We need to make sure head->next_sched is read 4966 * before clearing __QDISC_STATE_SCHED 4967 */ 4968 smp_mb__before_atomic(); 4969 4970 if (!(q->flags & TCQ_F_NOLOCK)) { 4971 root_lock = qdisc_lock(q); 4972 spin_lock(root_lock); 4973 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 4974 &q->state))) { 4975 /* There is a synchronize_net() between 4976 * STATE_DEACTIVATED flag being set and 4977 * qdisc_reset()/some_qdisc_is_busy() in 4978 * dev_deactivate(), so we can safely bail out 4979 * early here to avoid data race between 4980 * qdisc_deactivate() and some_qdisc_is_busy() 4981 * for lockless qdisc. 4982 */ 4983 clear_bit(__QDISC_STATE_SCHED, &q->state); 4984 continue; 4985 } 4986 4987 clear_bit(__QDISC_STATE_SCHED, &q->state); 4988 qdisc_run(q); 4989 if (root_lock) 4990 spin_unlock(root_lock); 4991 } 4992 4993 rcu_read_unlock(); 4994 } 4995 4996 xfrm_dev_backlog(sd); 4997 } 4998 4999 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5000 /* This hook is defined here for ATM LANE */ 5001 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5002 unsigned char *addr) __read_mostly; 5003 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5004 #endif 5005 5006 static inline struct sk_buff * 5007 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 5008 struct net_device *orig_dev, bool *another) 5009 { 5010 #ifdef CONFIG_NET_CLS_ACT 5011 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 5012 struct tcf_result cl_res; 5013 5014 /* If there's at least one ingress present somewhere (so 5015 * we get here via enabled static key), remaining devices 5016 * that are not configured with an ingress qdisc will bail 5017 * out here. 5018 */ 5019 if (!miniq) 5020 return skb; 5021 5022 if (*pt_prev) { 5023 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5024 *pt_prev = NULL; 5025 } 5026 5027 qdisc_skb_cb(skb)->pkt_len = skb->len; 5028 tc_skb_cb(skb)->mru = 0; 5029 tc_skb_cb(skb)->post_ct = false; 5030 skb->tc_at_ingress = 1; 5031 mini_qdisc_bstats_cpu_update(miniq, skb); 5032 5033 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) { 5034 case TC_ACT_OK: 5035 case TC_ACT_RECLASSIFY: 5036 skb->tc_index = TC_H_MIN(cl_res.classid); 5037 break; 5038 case TC_ACT_SHOT: 5039 mini_qdisc_qstats_cpu_drop(miniq); 5040 kfree_skb(skb); 5041 return NULL; 5042 case TC_ACT_STOLEN: 5043 case TC_ACT_QUEUED: 5044 case TC_ACT_TRAP: 5045 consume_skb(skb); 5046 return NULL; 5047 case TC_ACT_REDIRECT: 5048 /* skb_mac_header check was done by cls/act_bpf, so 5049 * we can safely push the L2 header back before 5050 * redirecting to another netdev 5051 */ 5052 __skb_push(skb, skb->mac_len); 5053 if (skb_do_redirect(skb) == -EAGAIN) { 5054 __skb_pull(skb, skb->mac_len); 5055 *another = true; 5056 break; 5057 } 5058 return NULL; 5059 case TC_ACT_CONSUMED: 5060 return NULL; 5061 default: 5062 break; 5063 } 5064 #endif /* CONFIG_NET_CLS_ACT */ 5065 return skb; 5066 } 5067 5068 /** 5069 * netdev_is_rx_handler_busy - check if receive handler is registered 5070 * @dev: device to check 5071 * 5072 * Check if a receive handler is already registered for a given device. 5073 * Return true if there one. 5074 * 5075 * The caller must hold the rtnl_mutex. 5076 */ 5077 bool netdev_is_rx_handler_busy(struct net_device *dev) 5078 { 5079 ASSERT_RTNL(); 5080 return dev && rtnl_dereference(dev->rx_handler); 5081 } 5082 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5083 5084 /** 5085 * netdev_rx_handler_register - register receive handler 5086 * @dev: device to register a handler for 5087 * @rx_handler: receive handler to register 5088 * @rx_handler_data: data pointer that is used by rx handler 5089 * 5090 * Register a receive handler for a device. This handler will then be 5091 * called from __netif_receive_skb. A negative errno code is returned 5092 * on a failure. 5093 * 5094 * The caller must hold the rtnl_mutex. 5095 * 5096 * For a general description of rx_handler, see enum rx_handler_result. 5097 */ 5098 int netdev_rx_handler_register(struct net_device *dev, 5099 rx_handler_func_t *rx_handler, 5100 void *rx_handler_data) 5101 { 5102 if (netdev_is_rx_handler_busy(dev)) 5103 return -EBUSY; 5104 5105 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5106 return -EINVAL; 5107 5108 /* Note: rx_handler_data must be set before rx_handler */ 5109 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5110 rcu_assign_pointer(dev->rx_handler, rx_handler); 5111 5112 return 0; 5113 } 5114 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5115 5116 /** 5117 * netdev_rx_handler_unregister - unregister receive handler 5118 * @dev: device to unregister a handler from 5119 * 5120 * Unregister a receive handler from a device. 5121 * 5122 * The caller must hold the rtnl_mutex. 5123 */ 5124 void netdev_rx_handler_unregister(struct net_device *dev) 5125 { 5126 5127 ASSERT_RTNL(); 5128 RCU_INIT_POINTER(dev->rx_handler, NULL); 5129 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5130 * section has a guarantee to see a non NULL rx_handler_data 5131 * as well. 5132 */ 5133 synchronize_net(); 5134 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5135 } 5136 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5137 5138 /* 5139 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5140 * the special handling of PFMEMALLOC skbs. 5141 */ 5142 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5143 { 5144 switch (skb->protocol) { 5145 case htons(ETH_P_ARP): 5146 case htons(ETH_P_IP): 5147 case htons(ETH_P_IPV6): 5148 case htons(ETH_P_8021Q): 5149 case htons(ETH_P_8021AD): 5150 return true; 5151 default: 5152 return false; 5153 } 5154 } 5155 5156 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5157 int *ret, struct net_device *orig_dev) 5158 { 5159 if (nf_hook_ingress_active(skb)) { 5160 int ingress_retval; 5161 5162 if (*pt_prev) { 5163 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5164 *pt_prev = NULL; 5165 } 5166 5167 rcu_read_lock(); 5168 ingress_retval = nf_hook_ingress(skb); 5169 rcu_read_unlock(); 5170 return ingress_retval; 5171 } 5172 return 0; 5173 } 5174 5175 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5176 struct packet_type **ppt_prev) 5177 { 5178 struct packet_type *ptype, *pt_prev; 5179 rx_handler_func_t *rx_handler; 5180 struct sk_buff *skb = *pskb; 5181 struct net_device *orig_dev; 5182 bool deliver_exact = false; 5183 int ret = NET_RX_DROP; 5184 __be16 type; 5185 5186 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5187 5188 trace_netif_receive_skb(skb); 5189 5190 orig_dev = skb->dev; 5191 5192 skb_reset_network_header(skb); 5193 if (!skb_transport_header_was_set(skb)) 5194 skb_reset_transport_header(skb); 5195 skb_reset_mac_len(skb); 5196 5197 pt_prev = NULL; 5198 5199 another_round: 5200 skb->skb_iif = skb->dev->ifindex; 5201 5202 __this_cpu_inc(softnet_data.processed); 5203 5204 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5205 int ret2; 5206 5207 migrate_disable(); 5208 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5209 migrate_enable(); 5210 5211 if (ret2 != XDP_PASS) { 5212 ret = NET_RX_DROP; 5213 goto out; 5214 } 5215 } 5216 5217 if (eth_type_vlan(skb->protocol)) { 5218 skb = skb_vlan_untag(skb); 5219 if (unlikely(!skb)) 5220 goto out; 5221 } 5222 5223 if (skb_skip_tc_classify(skb)) 5224 goto skip_classify; 5225 5226 if (pfmemalloc) 5227 goto skip_taps; 5228 5229 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5230 if (pt_prev) 5231 ret = deliver_skb(skb, pt_prev, orig_dev); 5232 pt_prev = ptype; 5233 } 5234 5235 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5236 if (pt_prev) 5237 ret = deliver_skb(skb, pt_prev, orig_dev); 5238 pt_prev = ptype; 5239 } 5240 5241 skip_taps: 5242 #ifdef CONFIG_NET_INGRESS 5243 if (static_branch_unlikely(&ingress_needed_key)) { 5244 bool another = false; 5245 5246 nf_skip_egress(skb, true); 5247 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5248 &another); 5249 if (another) 5250 goto another_round; 5251 if (!skb) 5252 goto out; 5253 5254 nf_skip_egress(skb, false); 5255 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5256 goto out; 5257 } 5258 #endif 5259 skb_reset_redirect(skb); 5260 skip_classify: 5261 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5262 goto drop; 5263 5264 if (skb_vlan_tag_present(skb)) { 5265 if (pt_prev) { 5266 ret = deliver_skb(skb, pt_prev, orig_dev); 5267 pt_prev = NULL; 5268 } 5269 if (vlan_do_receive(&skb)) 5270 goto another_round; 5271 else if (unlikely(!skb)) 5272 goto out; 5273 } 5274 5275 rx_handler = rcu_dereference(skb->dev->rx_handler); 5276 if (rx_handler) { 5277 if (pt_prev) { 5278 ret = deliver_skb(skb, pt_prev, orig_dev); 5279 pt_prev = NULL; 5280 } 5281 switch (rx_handler(&skb)) { 5282 case RX_HANDLER_CONSUMED: 5283 ret = NET_RX_SUCCESS; 5284 goto out; 5285 case RX_HANDLER_ANOTHER: 5286 goto another_round; 5287 case RX_HANDLER_EXACT: 5288 deliver_exact = true; 5289 break; 5290 case RX_HANDLER_PASS: 5291 break; 5292 default: 5293 BUG(); 5294 } 5295 } 5296 5297 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5298 check_vlan_id: 5299 if (skb_vlan_tag_get_id(skb)) { 5300 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5301 * find vlan device. 5302 */ 5303 skb->pkt_type = PACKET_OTHERHOST; 5304 } else if (eth_type_vlan(skb->protocol)) { 5305 /* Outer header is 802.1P with vlan 0, inner header is 5306 * 802.1Q or 802.1AD and vlan_do_receive() above could 5307 * not find vlan dev for vlan id 0. 5308 */ 5309 __vlan_hwaccel_clear_tag(skb); 5310 skb = skb_vlan_untag(skb); 5311 if (unlikely(!skb)) 5312 goto out; 5313 if (vlan_do_receive(&skb)) 5314 /* After stripping off 802.1P header with vlan 0 5315 * vlan dev is found for inner header. 5316 */ 5317 goto another_round; 5318 else if (unlikely(!skb)) 5319 goto out; 5320 else 5321 /* We have stripped outer 802.1P vlan 0 header. 5322 * But could not find vlan dev. 5323 * check again for vlan id to set OTHERHOST. 5324 */ 5325 goto check_vlan_id; 5326 } 5327 /* Note: we might in the future use prio bits 5328 * and set skb->priority like in vlan_do_receive() 5329 * For the time being, just ignore Priority Code Point 5330 */ 5331 __vlan_hwaccel_clear_tag(skb); 5332 } 5333 5334 type = skb->protocol; 5335 5336 /* deliver only exact match when indicated */ 5337 if (likely(!deliver_exact)) { 5338 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5339 &ptype_base[ntohs(type) & 5340 PTYPE_HASH_MASK]); 5341 } 5342 5343 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5344 &orig_dev->ptype_specific); 5345 5346 if (unlikely(skb->dev != orig_dev)) { 5347 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5348 &skb->dev->ptype_specific); 5349 } 5350 5351 if (pt_prev) { 5352 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5353 goto drop; 5354 *ppt_prev = pt_prev; 5355 } else { 5356 drop: 5357 if (!deliver_exact) 5358 atomic_long_inc(&skb->dev->rx_dropped); 5359 else 5360 atomic_long_inc(&skb->dev->rx_nohandler); 5361 kfree_skb(skb); 5362 /* Jamal, now you will not able to escape explaining 5363 * me how you were going to use this. :-) 5364 */ 5365 ret = NET_RX_DROP; 5366 } 5367 5368 out: 5369 /* The invariant here is that if *ppt_prev is not NULL 5370 * then skb should also be non-NULL. 5371 * 5372 * Apparently *ppt_prev assignment above holds this invariant due to 5373 * skb dereferencing near it. 5374 */ 5375 *pskb = skb; 5376 return ret; 5377 } 5378 5379 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5380 { 5381 struct net_device *orig_dev = skb->dev; 5382 struct packet_type *pt_prev = NULL; 5383 int ret; 5384 5385 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5386 if (pt_prev) 5387 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5388 skb->dev, pt_prev, orig_dev); 5389 return ret; 5390 } 5391 5392 /** 5393 * netif_receive_skb_core - special purpose version of netif_receive_skb 5394 * @skb: buffer to process 5395 * 5396 * More direct receive version of netif_receive_skb(). It should 5397 * only be used by callers that have a need to skip RPS and Generic XDP. 5398 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5399 * 5400 * This function may only be called from softirq context and interrupts 5401 * should be enabled. 5402 * 5403 * Return values (usually ignored): 5404 * NET_RX_SUCCESS: no congestion 5405 * NET_RX_DROP: packet was dropped 5406 */ 5407 int netif_receive_skb_core(struct sk_buff *skb) 5408 { 5409 int ret; 5410 5411 rcu_read_lock(); 5412 ret = __netif_receive_skb_one_core(skb, false); 5413 rcu_read_unlock(); 5414 5415 return ret; 5416 } 5417 EXPORT_SYMBOL(netif_receive_skb_core); 5418 5419 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5420 struct packet_type *pt_prev, 5421 struct net_device *orig_dev) 5422 { 5423 struct sk_buff *skb, *next; 5424 5425 if (!pt_prev) 5426 return; 5427 if (list_empty(head)) 5428 return; 5429 if (pt_prev->list_func != NULL) 5430 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5431 ip_list_rcv, head, pt_prev, orig_dev); 5432 else 5433 list_for_each_entry_safe(skb, next, head, list) { 5434 skb_list_del_init(skb); 5435 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5436 } 5437 } 5438 5439 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5440 { 5441 /* Fast-path assumptions: 5442 * - There is no RX handler. 5443 * - Only one packet_type matches. 5444 * If either of these fails, we will end up doing some per-packet 5445 * processing in-line, then handling the 'last ptype' for the whole 5446 * sublist. This can't cause out-of-order delivery to any single ptype, 5447 * because the 'last ptype' must be constant across the sublist, and all 5448 * other ptypes are handled per-packet. 5449 */ 5450 /* Current (common) ptype of sublist */ 5451 struct packet_type *pt_curr = NULL; 5452 /* Current (common) orig_dev of sublist */ 5453 struct net_device *od_curr = NULL; 5454 struct list_head sublist; 5455 struct sk_buff *skb, *next; 5456 5457 INIT_LIST_HEAD(&sublist); 5458 list_for_each_entry_safe(skb, next, head, list) { 5459 struct net_device *orig_dev = skb->dev; 5460 struct packet_type *pt_prev = NULL; 5461 5462 skb_list_del_init(skb); 5463 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5464 if (!pt_prev) 5465 continue; 5466 if (pt_curr != pt_prev || od_curr != orig_dev) { 5467 /* dispatch old sublist */ 5468 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5469 /* start new sublist */ 5470 INIT_LIST_HEAD(&sublist); 5471 pt_curr = pt_prev; 5472 od_curr = orig_dev; 5473 } 5474 list_add_tail(&skb->list, &sublist); 5475 } 5476 5477 /* dispatch final sublist */ 5478 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5479 } 5480 5481 static int __netif_receive_skb(struct sk_buff *skb) 5482 { 5483 int ret; 5484 5485 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5486 unsigned int noreclaim_flag; 5487 5488 /* 5489 * PFMEMALLOC skbs are special, they should 5490 * - be delivered to SOCK_MEMALLOC sockets only 5491 * - stay away from userspace 5492 * - have bounded memory usage 5493 * 5494 * Use PF_MEMALLOC as this saves us from propagating the allocation 5495 * context down to all allocation sites. 5496 */ 5497 noreclaim_flag = memalloc_noreclaim_save(); 5498 ret = __netif_receive_skb_one_core(skb, true); 5499 memalloc_noreclaim_restore(noreclaim_flag); 5500 } else 5501 ret = __netif_receive_skb_one_core(skb, false); 5502 5503 return ret; 5504 } 5505 5506 static void __netif_receive_skb_list(struct list_head *head) 5507 { 5508 unsigned long noreclaim_flag = 0; 5509 struct sk_buff *skb, *next; 5510 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5511 5512 list_for_each_entry_safe(skb, next, head, list) { 5513 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5514 struct list_head sublist; 5515 5516 /* Handle the previous sublist */ 5517 list_cut_before(&sublist, head, &skb->list); 5518 if (!list_empty(&sublist)) 5519 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5520 pfmemalloc = !pfmemalloc; 5521 /* See comments in __netif_receive_skb */ 5522 if (pfmemalloc) 5523 noreclaim_flag = memalloc_noreclaim_save(); 5524 else 5525 memalloc_noreclaim_restore(noreclaim_flag); 5526 } 5527 } 5528 /* Handle the remaining sublist */ 5529 if (!list_empty(head)) 5530 __netif_receive_skb_list_core(head, pfmemalloc); 5531 /* Restore pflags */ 5532 if (pfmemalloc) 5533 memalloc_noreclaim_restore(noreclaim_flag); 5534 } 5535 5536 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5537 { 5538 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5539 struct bpf_prog *new = xdp->prog; 5540 int ret = 0; 5541 5542 switch (xdp->command) { 5543 case XDP_SETUP_PROG: 5544 rcu_assign_pointer(dev->xdp_prog, new); 5545 if (old) 5546 bpf_prog_put(old); 5547 5548 if (old && !new) { 5549 static_branch_dec(&generic_xdp_needed_key); 5550 } else if (new && !old) { 5551 static_branch_inc(&generic_xdp_needed_key); 5552 dev_disable_lro(dev); 5553 dev_disable_gro_hw(dev); 5554 } 5555 break; 5556 5557 default: 5558 ret = -EINVAL; 5559 break; 5560 } 5561 5562 return ret; 5563 } 5564 5565 static int netif_receive_skb_internal(struct sk_buff *skb) 5566 { 5567 int ret; 5568 5569 net_timestamp_check(netdev_tstamp_prequeue, skb); 5570 5571 if (skb_defer_rx_timestamp(skb)) 5572 return NET_RX_SUCCESS; 5573 5574 rcu_read_lock(); 5575 #ifdef CONFIG_RPS 5576 if (static_branch_unlikely(&rps_needed)) { 5577 struct rps_dev_flow voidflow, *rflow = &voidflow; 5578 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5579 5580 if (cpu >= 0) { 5581 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5582 rcu_read_unlock(); 5583 return ret; 5584 } 5585 } 5586 #endif 5587 ret = __netif_receive_skb(skb); 5588 rcu_read_unlock(); 5589 return ret; 5590 } 5591 5592 void netif_receive_skb_list_internal(struct list_head *head) 5593 { 5594 struct sk_buff *skb, *next; 5595 struct list_head sublist; 5596 5597 INIT_LIST_HEAD(&sublist); 5598 list_for_each_entry_safe(skb, next, head, list) { 5599 net_timestamp_check(netdev_tstamp_prequeue, skb); 5600 skb_list_del_init(skb); 5601 if (!skb_defer_rx_timestamp(skb)) 5602 list_add_tail(&skb->list, &sublist); 5603 } 5604 list_splice_init(&sublist, head); 5605 5606 rcu_read_lock(); 5607 #ifdef CONFIG_RPS 5608 if (static_branch_unlikely(&rps_needed)) { 5609 list_for_each_entry_safe(skb, next, head, list) { 5610 struct rps_dev_flow voidflow, *rflow = &voidflow; 5611 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5612 5613 if (cpu >= 0) { 5614 /* Will be handled, remove from list */ 5615 skb_list_del_init(skb); 5616 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5617 } 5618 } 5619 } 5620 #endif 5621 __netif_receive_skb_list(head); 5622 rcu_read_unlock(); 5623 } 5624 5625 /** 5626 * netif_receive_skb - process receive buffer from network 5627 * @skb: buffer to process 5628 * 5629 * netif_receive_skb() is the main receive data processing function. 5630 * It always succeeds. The buffer may be dropped during processing 5631 * for congestion control or by the protocol layers. 5632 * 5633 * This function may only be called from softirq context and interrupts 5634 * should be enabled. 5635 * 5636 * Return values (usually ignored): 5637 * NET_RX_SUCCESS: no congestion 5638 * NET_RX_DROP: packet was dropped 5639 */ 5640 int netif_receive_skb(struct sk_buff *skb) 5641 { 5642 int ret; 5643 5644 trace_netif_receive_skb_entry(skb); 5645 5646 ret = netif_receive_skb_internal(skb); 5647 trace_netif_receive_skb_exit(ret); 5648 5649 return ret; 5650 } 5651 EXPORT_SYMBOL(netif_receive_skb); 5652 5653 /** 5654 * netif_receive_skb_list - process many receive buffers from network 5655 * @head: list of skbs to process. 5656 * 5657 * Since return value of netif_receive_skb() is normally ignored, and 5658 * wouldn't be meaningful for a list, this function returns void. 5659 * 5660 * This function may only be called from softirq context and interrupts 5661 * should be enabled. 5662 */ 5663 void netif_receive_skb_list(struct list_head *head) 5664 { 5665 struct sk_buff *skb; 5666 5667 if (list_empty(head)) 5668 return; 5669 if (trace_netif_receive_skb_list_entry_enabled()) { 5670 list_for_each_entry(skb, head, list) 5671 trace_netif_receive_skb_list_entry(skb); 5672 } 5673 netif_receive_skb_list_internal(head); 5674 trace_netif_receive_skb_list_exit(0); 5675 } 5676 EXPORT_SYMBOL(netif_receive_skb_list); 5677 5678 static DEFINE_PER_CPU(struct work_struct, flush_works); 5679 5680 /* Network device is going away, flush any packets still pending */ 5681 static void flush_backlog(struct work_struct *work) 5682 { 5683 struct sk_buff *skb, *tmp; 5684 struct softnet_data *sd; 5685 5686 local_bh_disable(); 5687 sd = this_cpu_ptr(&softnet_data); 5688 5689 rps_lock_irq_disable(sd); 5690 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5691 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5692 __skb_unlink(skb, &sd->input_pkt_queue); 5693 dev_kfree_skb_irq(skb); 5694 input_queue_head_incr(sd); 5695 } 5696 } 5697 rps_unlock_irq_enable(sd); 5698 5699 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5700 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5701 __skb_unlink(skb, &sd->process_queue); 5702 kfree_skb(skb); 5703 input_queue_head_incr(sd); 5704 } 5705 } 5706 local_bh_enable(); 5707 } 5708 5709 static bool flush_required(int cpu) 5710 { 5711 #if IS_ENABLED(CONFIG_RPS) 5712 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5713 bool do_flush; 5714 5715 rps_lock_irq_disable(sd); 5716 5717 /* as insertion into process_queue happens with the rps lock held, 5718 * process_queue access may race only with dequeue 5719 */ 5720 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5721 !skb_queue_empty_lockless(&sd->process_queue); 5722 rps_unlock_irq_enable(sd); 5723 5724 return do_flush; 5725 #endif 5726 /* without RPS we can't safely check input_pkt_queue: during a 5727 * concurrent remote skb_queue_splice() we can detect as empty both 5728 * input_pkt_queue and process_queue even if the latter could end-up 5729 * containing a lot of packets. 5730 */ 5731 return true; 5732 } 5733 5734 static void flush_all_backlogs(void) 5735 { 5736 static cpumask_t flush_cpus; 5737 unsigned int cpu; 5738 5739 /* since we are under rtnl lock protection we can use static data 5740 * for the cpumask and avoid allocating on stack the possibly 5741 * large mask 5742 */ 5743 ASSERT_RTNL(); 5744 5745 cpus_read_lock(); 5746 5747 cpumask_clear(&flush_cpus); 5748 for_each_online_cpu(cpu) { 5749 if (flush_required(cpu)) { 5750 queue_work_on(cpu, system_highpri_wq, 5751 per_cpu_ptr(&flush_works, cpu)); 5752 cpumask_set_cpu(cpu, &flush_cpus); 5753 } 5754 } 5755 5756 /* we can have in flight packet[s] on the cpus we are not flushing, 5757 * synchronize_net() in unregister_netdevice_many() will take care of 5758 * them 5759 */ 5760 for_each_cpu(cpu, &flush_cpus) 5761 flush_work(per_cpu_ptr(&flush_works, cpu)); 5762 5763 cpus_read_unlock(); 5764 } 5765 5766 static void net_rps_send_ipi(struct softnet_data *remsd) 5767 { 5768 #ifdef CONFIG_RPS 5769 while (remsd) { 5770 struct softnet_data *next = remsd->rps_ipi_next; 5771 5772 if (cpu_online(remsd->cpu)) 5773 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5774 remsd = next; 5775 } 5776 #endif 5777 } 5778 5779 /* 5780 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5781 * Note: called with local irq disabled, but exits with local irq enabled. 5782 */ 5783 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5784 { 5785 #ifdef CONFIG_RPS 5786 struct softnet_data *remsd = sd->rps_ipi_list; 5787 5788 if (remsd) { 5789 sd->rps_ipi_list = NULL; 5790 5791 local_irq_enable(); 5792 5793 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5794 net_rps_send_ipi(remsd); 5795 } else 5796 #endif 5797 local_irq_enable(); 5798 } 5799 5800 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5801 { 5802 #ifdef CONFIG_RPS 5803 return sd->rps_ipi_list != NULL; 5804 #else 5805 return false; 5806 #endif 5807 } 5808 5809 static int process_backlog(struct napi_struct *napi, int quota) 5810 { 5811 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5812 bool again = true; 5813 int work = 0; 5814 5815 /* Check if we have pending ipi, its better to send them now, 5816 * not waiting net_rx_action() end. 5817 */ 5818 if (sd_has_rps_ipi_waiting(sd)) { 5819 local_irq_disable(); 5820 net_rps_action_and_irq_enable(sd); 5821 } 5822 5823 napi->weight = dev_rx_weight; 5824 while (again) { 5825 struct sk_buff *skb; 5826 5827 while ((skb = __skb_dequeue(&sd->process_queue))) { 5828 rcu_read_lock(); 5829 __netif_receive_skb(skb); 5830 rcu_read_unlock(); 5831 input_queue_head_incr(sd); 5832 if (++work >= quota) 5833 return work; 5834 5835 } 5836 5837 rps_lock_irq_disable(sd); 5838 if (skb_queue_empty(&sd->input_pkt_queue)) { 5839 /* 5840 * Inline a custom version of __napi_complete(). 5841 * only current cpu owns and manipulates this napi, 5842 * and NAPI_STATE_SCHED is the only possible flag set 5843 * on backlog. 5844 * We can use a plain write instead of clear_bit(), 5845 * and we dont need an smp_mb() memory barrier. 5846 */ 5847 napi->state = 0; 5848 again = false; 5849 } else { 5850 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5851 &sd->process_queue); 5852 } 5853 rps_unlock_irq_enable(sd); 5854 } 5855 5856 return work; 5857 } 5858 5859 /** 5860 * __napi_schedule - schedule for receive 5861 * @n: entry to schedule 5862 * 5863 * The entry's receive function will be scheduled to run. 5864 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5865 */ 5866 void __napi_schedule(struct napi_struct *n) 5867 { 5868 unsigned long flags; 5869 5870 local_irq_save(flags); 5871 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5872 local_irq_restore(flags); 5873 } 5874 EXPORT_SYMBOL(__napi_schedule); 5875 5876 /** 5877 * napi_schedule_prep - check if napi can be scheduled 5878 * @n: napi context 5879 * 5880 * Test if NAPI routine is already running, and if not mark 5881 * it as running. This is used as a condition variable to 5882 * insure only one NAPI poll instance runs. We also make 5883 * sure there is no pending NAPI disable. 5884 */ 5885 bool napi_schedule_prep(struct napi_struct *n) 5886 { 5887 unsigned long val, new; 5888 5889 do { 5890 val = READ_ONCE(n->state); 5891 if (unlikely(val & NAPIF_STATE_DISABLE)) 5892 return false; 5893 new = val | NAPIF_STATE_SCHED; 5894 5895 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5896 * This was suggested by Alexander Duyck, as compiler 5897 * emits better code than : 5898 * if (val & NAPIF_STATE_SCHED) 5899 * new |= NAPIF_STATE_MISSED; 5900 */ 5901 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5902 NAPIF_STATE_MISSED; 5903 } while (cmpxchg(&n->state, val, new) != val); 5904 5905 return !(val & NAPIF_STATE_SCHED); 5906 } 5907 EXPORT_SYMBOL(napi_schedule_prep); 5908 5909 /** 5910 * __napi_schedule_irqoff - schedule for receive 5911 * @n: entry to schedule 5912 * 5913 * Variant of __napi_schedule() assuming hard irqs are masked. 5914 * 5915 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 5916 * because the interrupt disabled assumption might not be true 5917 * due to force-threaded interrupts and spinlock substitution. 5918 */ 5919 void __napi_schedule_irqoff(struct napi_struct *n) 5920 { 5921 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 5922 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5923 else 5924 __napi_schedule(n); 5925 } 5926 EXPORT_SYMBOL(__napi_schedule_irqoff); 5927 5928 bool napi_complete_done(struct napi_struct *n, int work_done) 5929 { 5930 unsigned long flags, val, new, timeout = 0; 5931 bool ret = true; 5932 5933 /* 5934 * 1) Don't let napi dequeue from the cpu poll list 5935 * just in case its running on a different cpu. 5936 * 2) If we are busy polling, do nothing here, we have 5937 * the guarantee we will be called later. 5938 */ 5939 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5940 NAPIF_STATE_IN_BUSY_POLL))) 5941 return false; 5942 5943 if (work_done) { 5944 if (n->gro_bitmask) 5945 timeout = READ_ONCE(n->dev->gro_flush_timeout); 5946 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 5947 } 5948 if (n->defer_hard_irqs_count > 0) { 5949 n->defer_hard_irqs_count--; 5950 timeout = READ_ONCE(n->dev->gro_flush_timeout); 5951 if (timeout) 5952 ret = false; 5953 } 5954 if (n->gro_bitmask) { 5955 /* When the NAPI instance uses a timeout and keeps postponing 5956 * it, we need to bound somehow the time packets are kept in 5957 * the GRO layer 5958 */ 5959 napi_gro_flush(n, !!timeout); 5960 } 5961 5962 gro_normal_list(n); 5963 5964 if (unlikely(!list_empty(&n->poll_list))) { 5965 /* If n->poll_list is not empty, we need to mask irqs */ 5966 local_irq_save(flags); 5967 list_del_init(&n->poll_list); 5968 local_irq_restore(flags); 5969 } 5970 5971 do { 5972 val = READ_ONCE(n->state); 5973 5974 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5975 5976 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 5977 NAPIF_STATE_SCHED_THREADED | 5978 NAPIF_STATE_PREFER_BUSY_POLL); 5979 5980 /* If STATE_MISSED was set, leave STATE_SCHED set, 5981 * because we will call napi->poll() one more time. 5982 * This C code was suggested by Alexander Duyck to help gcc. 5983 */ 5984 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5985 NAPIF_STATE_SCHED; 5986 } while (cmpxchg(&n->state, val, new) != val); 5987 5988 if (unlikely(val & NAPIF_STATE_MISSED)) { 5989 __napi_schedule(n); 5990 return false; 5991 } 5992 5993 if (timeout) 5994 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5995 HRTIMER_MODE_REL_PINNED); 5996 return ret; 5997 } 5998 EXPORT_SYMBOL(napi_complete_done); 5999 6000 /* must be called under rcu_read_lock(), as we dont take a reference */ 6001 static struct napi_struct *napi_by_id(unsigned int napi_id) 6002 { 6003 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6004 struct napi_struct *napi; 6005 6006 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6007 if (napi->napi_id == napi_id) 6008 return napi; 6009 6010 return NULL; 6011 } 6012 6013 #if defined(CONFIG_NET_RX_BUSY_POLL) 6014 6015 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6016 { 6017 if (!skip_schedule) { 6018 gro_normal_list(napi); 6019 __napi_schedule(napi); 6020 return; 6021 } 6022 6023 if (napi->gro_bitmask) { 6024 /* flush too old packets 6025 * If HZ < 1000, flush all packets. 6026 */ 6027 napi_gro_flush(napi, HZ >= 1000); 6028 } 6029 6030 gro_normal_list(napi); 6031 clear_bit(NAPI_STATE_SCHED, &napi->state); 6032 } 6033 6034 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, 6035 u16 budget) 6036 { 6037 bool skip_schedule = false; 6038 unsigned long timeout; 6039 int rc; 6040 6041 /* Busy polling means there is a high chance device driver hard irq 6042 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6043 * set in napi_schedule_prep(). 6044 * Since we are about to call napi->poll() once more, we can safely 6045 * clear NAPI_STATE_MISSED. 6046 * 6047 * Note: x86 could use a single "lock and ..." instruction 6048 * to perform these two clear_bit() 6049 */ 6050 clear_bit(NAPI_STATE_MISSED, &napi->state); 6051 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6052 6053 local_bh_disable(); 6054 6055 if (prefer_busy_poll) { 6056 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6057 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6058 if (napi->defer_hard_irqs_count && timeout) { 6059 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6060 skip_schedule = true; 6061 } 6062 } 6063 6064 /* All we really want here is to re-enable device interrupts. 6065 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6066 */ 6067 rc = napi->poll(napi, budget); 6068 /* We can't gro_normal_list() here, because napi->poll() might have 6069 * rearmed the napi (napi_complete_done()) in which case it could 6070 * already be running on another CPU. 6071 */ 6072 trace_napi_poll(napi, rc, budget); 6073 netpoll_poll_unlock(have_poll_lock); 6074 if (rc == budget) 6075 __busy_poll_stop(napi, skip_schedule); 6076 local_bh_enable(); 6077 } 6078 6079 void napi_busy_loop(unsigned int napi_id, 6080 bool (*loop_end)(void *, unsigned long), 6081 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6082 { 6083 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6084 int (*napi_poll)(struct napi_struct *napi, int budget); 6085 void *have_poll_lock = NULL; 6086 struct napi_struct *napi; 6087 6088 restart: 6089 napi_poll = NULL; 6090 6091 rcu_read_lock(); 6092 6093 napi = napi_by_id(napi_id); 6094 if (!napi) 6095 goto out; 6096 6097 preempt_disable(); 6098 for (;;) { 6099 int work = 0; 6100 6101 local_bh_disable(); 6102 if (!napi_poll) { 6103 unsigned long val = READ_ONCE(napi->state); 6104 6105 /* If multiple threads are competing for this napi, 6106 * we avoid dirtying napi->state as much as we can. 6107 */ 6108 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6109 NAPIF_STATE_IN_BUSY_POLL)) { 6110 if (prefer_busy_poll) 6111 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6112 goto count; 6113 } 6114 if (cmpxchg(&napi->state, val, 6115 val | NAPIF_STATE_IN_BUSY_POLL | 6116 NAPIF_STATE_SCHED) != val) { 6117 if (prefer_busy_poll) 6118 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6119 goto count; 6120 } 6121 have_poll_lock = netpoll_poll_lock(napi); 6122 napi_poll = napi->poll; 6123 } 6124 work = napi_poll(napi, budget); 6125 trace_napi_poll(napi, work, budget); 6126 gro_normal_list(napi); 6127 count: 6128 if (work > 0) 6129 __NET_ADD_STATS(dev_net(napi->dev), 6130 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6131 local_bh_enable(); 6132 6133 if (!loop_end || loop_end(loop_end_arg, start_time)) 6134 break; 6135 6136 if (unlikely(need_resched())) { 6137 if (napi_poll) 6138 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6139 preempt_enable(); 6140 rcu_read_unlock(); 6141 cond_resched(); 6142 if (loop_end(loop_end_arg, start_time)) 6143 return; 6144 goto restart; 6145 } 6146 cpu_relax(); 6147 } 6148 if (napi_poll) 6149 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6150 preempt_enable(); 6151 out: 6152 rcu_read_unlock(); 6153 } 6154 EXPORT_SYMBOL(napi_busy_loop); 6155 6156 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6157 6158 static void napi_hash_add(struct napi_struct *napi) 6159 { 6160 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6161 return; 6162 6163 spin_lock(&napi_hash_lock); 6164 6165 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6166 do { 6167 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6168 napi_gen_id = MIN_NAPI_ID; 6169 } while (napi_by_id(napi_gen_id)); 6170 napi->napi_id = napi_gen_id; 6171 6172 hlist_add_head_rcu(&napi->napi_hash_node, 6173 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6174 6175 spin_unlock(&napi_hash_lock); 6176 } 6177 6178 /* Warning : caller is responsible to make sure rcu grace period 6179 * is respected before freeing memory containing @napi 6180 */ 6181 static void napi_hash_del(struct napi_struct *napi) 6182 { 6183 spin_lock(&napi_hash_lock); 6184 6185 hlist_del_init_rcu(&napi->napi_hash_node); 6186 6187 spin_unlock(&napi_hash_lock); 6188 } 6189 6190 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6191 { 6192 struct napi_struct *napi; 6193 6194 napi = container_of(timer, struct napi_struct, timer); 6195 6196 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6197 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6198 */ 6199 if (!napi_disable_pending(napi) && 6200 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6201 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6202 __napi_schedule_irqoff(napi); 6203 } 6204 6205 return HRTIMER_NORESTART; 6206 } 6207 6208 static void init_gro_hash(struct napi_struct *napi) 6209 { 6210 int i; 6211 6212 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6213 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6214 napi->gro_hash[i].count = 0; 6215 } 6216 napi->gro_bitmask = 0; 6217 } 6218 6219 int dev_set_threaded(struct net_device *dev, bool threaded) 6220 { 6221 struct napi_struct *napi; 6222 int err = 0; 6223 6224 if (dev->threaded == threaded) 6225 return 0; 6226 6227 if (threaded) { 6228 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6229 if (!napi->thread) { 6230 err = napi_kthread_create(napi); 6231 if (err) { 6232 threaded = false; 6233 break; 6234 } 6235 } 6236 } 6237 } 6238 6239 dev->threaded = threaded; 6240 6241 /* Make sure kthread is created before THREADED bit 6242 * is set. 6243 */ 6244 smp_mb__before_atomic(); 6245 6246 /* Setting/unsetting threaded mode on a napi might not immediately 6247 * take effect, if the current napi instance is actively being 6248 * polled. In this case, the switch between threaded mode and 6249 * softirq mode will happen in the next round of napi_schedule(). 6250 * This should not cause hiccups/stalls to the live traffic. 6251 */ 6252 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6253 if (threaded) 6254 set_bit(NAPI_STATE_THREADED, &napi->state); 6255 else 6256 clear_bit(NAPI_STATE_THREADED, &napi->state); 6257 } 6258 6259 return err; 6260 } 6261 EXPORT_SYMBOL(dev_set_threaded); 6262 6263 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6264 int (*poll)(struct napi_struct *, int), int weight) 6265 { 6266 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6267 return; 6268 6269 INIT_LIST_HEAD(&napi->poll_list); 6270 INIT_HLIST_NODE(&napi->napi_hash_node); 6271 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6272 napi->timer.function = napi_watchdog; 6273 init_gro_hash(napi); 6274 napi->skb = NULL; 6275 INIT_LIST_HEAD(&napi->rx_list); 6276 napi->rx_count = 0; 6277 napi->poll = poll; 6278 if (weight > NAPI_POLL_WEIGHT) 6279 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6280 weight); 6281 napi->weight = weight; 6282 napi->dev = dev; 6283 #ifdef CONFIG_NETPOLL 6284 napi->poll_owner = -1; 6285 #endif 6286 set_bit(NAPI_STATE_SCHED, &napi->state); 6287 set_bit(NAPI_STATE_NPSVC, &napi->state); 6288 list_add_rcu(&napi->dev_list, &dev->napi_list); 6289 napi_hash_add(napi); 6290 /* Create kthread for this napi if dev->threaded is set. 6291 * Clear dev->threaded if kthread creation failed so that 6292 * threaded mode will not be enabled in napi_enable(). 6293 */ 6294 if (dev->threaded && napi_kthread_create(napi)) 6295 dev->threaded = 0; 6296 } 6297 EXPORT_SYMBOL(netif_napi_add); 6298 6299 void napi_disable(struct napi_struct *n) 6300 { 6301 unsigned long val, new; 6302 6303 might_sleep(); 6304 set_bit(NAPI_STATE_DISABLE, &n->state); 6305 6306 for ( ; ; ) { 6307 val = READ_ONCE(n->state); 6308 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6309 usleep_range(20, 200); 6310 continue; 6311 } 6312 6313 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6314 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6315 6316 if (cmpxchg(&n->state, val, new) == val) 6317 break; 6318 } 6319 6320 hrtimer_cancel(&n->timer); 6321 6322 clear_bit(NAPI_STATE_DISABLE, &n->state); 6323 } 6324 EXPORT_SYMBOL(napi_disable); 6325 6326 /** 6327 * napi_enable - enable NAPI scheduling 6328 * @n: NAPI context 6329 * 6330 * Resume NAPI from being scheduled on this context. 6331 * Must be paired with napi_disable. 6332 */ 6333 void napi_enable(struct napi_struct *n) 6334 { 6335 unsigned long val, new; 6336 6337 do { 6338 val = READ_ONCE(n->state); 6339 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6340 6341 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6342 if (n->dev->threaded && n->thread) 6343 new |= NAPIF_STATE_THREADED; 6344 } while (cmpxchg(&n->state, val, new) != val); 6345 } 6346 EXPORT_SYMBOL(napi_enable); 6347 6348 static void flush_gro_hash(struct napi_struct *napi) 6349 { 6350 int i; 6351 6352 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6353 struct sk_buff *skb, *n; 6354 6355 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6356 kfree_skb(skb); 6357 napi->gro_hash[i].count = 0; 6358 } 6359 } 6360 6361 /* Must be called in process context */ 6362 void __netif_napi_del(struct napi_struct *napi) 6363 { 6364 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6365 return; 6366 6367 napi_hash_del(napi); 6368 list_del_rcu(&napi->dev_list); 6369 napi_free_frags(napi); 6370 6371 flush_gro_hash(napi); 6372 napi->gro_bitmask = 0; 6373 6374 if (napi->thread) { 6375 kthread_stop(napi->thread); 6376 napi->thread = NULL; 6377 } 6378 } 6379 EXPORT_SYMBOL(__netif_napi_del); 6380 6381 static int __napi_poll(struct napi_struct *n, bool *repoll) 6382 { 6383 int work, weight; 6384 6385 weight = n->weight; 6386 6387 /* This NAPI_STATE_SCHED test is for avoiding a race 6388 * with netpoll's poll_napi(). Only the entity which 6389 * obtains the lock and sees NAPI_STATE_SCHED set will 6390 * actually make the ->poll() call. Therefore we avoid 6391 * accidentally calling ->poll() when NAPI is not scheduled. 6392 */ 6393 work = 0; 6394 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6395 work = n->poll(n, weight); 6396 trace_napi_poll(n, work, weight); 6397 } 6398 6399 if (unlikely(work > weight)) 6400 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6401 n->poll, work, weight); 6402 6403 if (likely(work < weight)) 6404 return work; 6405 6406 /* Drivers must not modify the NAPI state if they 6407 * consume the entire weight. In such cases this code 6408 * still "owns" the NAPI instance and therefore can 6409 * move the instance around on the list at-will. 6410 */ 6411 if (unlikely(napi_disable_pending(n))) { 6412 napi_complete(n); 6413 return work; 6414 } 6415 6416 /* The NAPI context has more processing work, but busy-polling 6417 * is preferred. Exit early. 6418 */ 6419 if (napi_prefer_busy_poll(n)) { 6420 if (napi_complete_done(n, work)) { 6421 /* If timeout is not set, we need to make sure 6422 * that the NAPI is re-scheduled. 6423 */ 6424 napi_schedule(n); 6425 } 6426 return work; 6427 } 6428 6429 if (n->gro_bitmask) { 6430 /* flush too old packets 6431 * If HZ < 1000, flush all packets. 6432 */ 6433 napi_gro_flush(n, HZ >= 1000); 6434 } 6435 6436 gro_normal_list(n); 6437 6438 /* Some drivers may have called napi_schedule 6439 * prior to exhausting their budget. 6440 */ 6441 if (unlikely(!list_empty(&n->poll_list))) { 6442 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6443 n->dev ? n->dev->name : "backlog"); 6444 return work; 6445 } 6446 6447 *repoll = true; 6448 6449 return work; 6450 } 6451 6452 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6453 { 6454 bool do_repoll = false; 6455 void *have; 6456 int work; 6457 6458 list_del_init(&n->poll_list); 6459 6460 have = netpoll_poll_lock(n); 6461 6462 work = __napi_poll(n, &do_repoll); 6463 6464 if (do_repoll) 6465 list_add_tail(&n->poll_list, repoll); 6466 6467 netpoll_poll_unlock(have); 6468 6469 return work; 6470 } 6471 6472 static int napi_thread_wait(struct napi_struct *napi) 6473 { 6474 bool woken = false; 6475 6476 set_current_state(TASK_INTERRUPTIBLE); 6477 6478 while (!kthread_should_stop()) { 6479 /* Testing SCHED_THREADED bit here to make sure the current 6480 * kthread owns this napi and could poll on this napi. 6481 * Testing SCHED bit is not enough because SCHED bit might be 6482 * set by some other busy poll thread or by napi_disable(). 6483 */ 6484 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { 6485 WARN_ON(!list_empty(&napi->poll_list)); 6486 __set_current_state(TASK_RUNNING); 6487 return 0; 6488 } 6489 6490 schedule(); 6491 /* woken being true indicates this thread owns this napi. */ 6492 woken = true; 6493 set_current_state(TASK_INTERRUPTIBLE); 6494 } 6495 __set_current_state(TASK_RUNNING); 6496 6497 return -1; 6498 } 6499 6500 static int napi_threaded_poll(void *data) 6501 { 6502 struct napi_struct *napi = data; 6503 void *have; 6504 6505 while (!napi_thread_wait(napi)) { 6506 for (;;) { 6507 bool repoll = false; 6508 6509 local_bh_disable(); 6510 6511 have = netpoll_poll_lock(napi); 6512 __napi_poll(napi, &repoll); 6513 netpoll_poll_unlock(have); 6514 6515 local_bh_enable(); 6516 6517 if (!repoll) 6518 break; 6519 6520 cond_resched(); 6521 } 6522 } 6523 return 0; 6524 } 6525 6526 static __latent_entropy void net_rx_action(struct softirq_action *h) 6527 { 6528 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6529 unsigned long time_limit = jiffies + 6530 usecs_to_jiffies(netdev_budget_usecs); 6531 int budget = netdev_budget; 6532 LIST_HEAD(list); 6533 LIST_HEAD(repoll); 6534 6535 local_irq_disable(); 6536 list_splice_init(&sd->poll_list, &list); 6537 local_irq_enable(); 6538 6539 for (;;) { 6540 struct napi_struct *n; 6541 6542 if (list_empty(&list)) { 6543 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6544 return; 6545 break; 6546 } 6547 6548 n = list_first_entry(&list, struct napi_struct, poll_list); 6549 budget -= napi_poll(n, &repoll); 6550 6551 /* If softirq window is exhausted then punt. 6552 * Allow this to run for 2 jiffies since which will allow 6553 * an average latency of 1.5/HZ. 6554 */ 6555 if (unlikely(budget <= 0 || 6556 time_after_eq(jiffies, time_limit))) { 6557 sd->time_squeeze++; 6558 break; 6559 } 6560 } 6561 6562 local_irq_disable(); 6563 6564 list_splice_tail_init(&sd->poll_list, &list); 6565 list_splice_tail(&repoll, &list); 6566 list_splice(&list, &sd->poll_list); 6567 if (!list_empty(&sd->poll_list)) 6568 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6569 6570 net_rps_action_and_irq_enable(sd); 6571 } 6572 6573 struct netdev_adjacent { 6574 struct net_device *dev; 6575 netdevice_tracker dev_tracker; 6576 6577 /* upper master flag, there can only be one master device per list */ 6578 bool master; 6579 6580 /* lookup ignore flag */ 6581 bool ignore; 6582 6583 /* counter for the number of times this device was added to us */ 6584 u16 ref_nr; 6585 6586 /* private field for the users */ 6587 void *private; 6588 6589 struct list_head list; 6590 struct rcu_head rcu; 6591 }; 6592 6593 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6594 struct list_head *adj_list) 6595 { 6596 struct netdev_adjacent *adj; 6597 6598 list_for_each_entry(adj, adj_list, list) { 6599 if (adj->dev == adj_dev) 6600 return adj; 6601 } 6602 return NULL; 6603 } 6604 6605 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6606 struct netdev_nested_priv *priv) 6607 { 6608 struct net_device *dev = (struct net_device *)priv->data; 6609 6610 return upper_dev == dev; 6611 } 6612 6613 /** 6614 * netdev_has_upper_dev - Check if device is linked to an upper device 6615 * @dev: device 6616 * @upper_dev: upper device to check 6617 * 6618 * Find out if a device is linked to specified upper device and return true 6619 * in case it is. Note that this checks only immediate upper device, 6620 * not through a complete stack of devices. The caller must hold the RTNL lock. 6621 */ 6622 bool netdev_has_upper_dev(struct net_device *dev, 6623 struct net_device *upper_dev) 6624 { 6625 struct netdev_nested_priv priv = { 6626 .data = (void *)upper_dev, 6627 }; 6628 6629 ASSERT_RTNL(); 6630 6631 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6632 &priv); 6633 } 6634 EXPORT_SYMBOL(netdev_has_upper_dev); 6635 6636 /** 6637 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 6638 * @dev: device 6639 * @upper_dev: upper device to check 6640 * 6641 * Find out if a device is linked to specified upper device and return true 6642 * in case it is. Note that this checks the entire upper device chain. 6643 * The caller must hold rcu lock. 6644 */ 6645 6646 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6647 struct net_device *upper_dev) 6648 { 6649 struct netdev_nested_priv priv = { 6650 .data = (void *)upper_dev, 6651 }; 6652 6653 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6654 &priv); 6655 } 6656 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6657 6658 /** 6659 * netdev_has_any_upper_dev - Check if device is linked to some device 6660 * @dev: device 6661 * 6662 * Find out if a device is linked to an upper device and return true in case 6663 * it is. The caller must hold the RTNL lock. 6664 */ 6665 bool netdev_has_any_upper_dev(struct net_device *dev) 6666 { 6667 ASSERT_RTNL(); 6668 6669 return !list_empty(&dev->adj_list.upper); 6670 } 6671 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6672 6673 /** 6674 * netdev_master_upper_dev_get - Get master upper device 6675 * @dev: device 6676 * 6677 * Find a master upper device and return pointer to it or NULL in case 6678 * it's not there. The caller must hold the RTNL lock. 6679 */ 6680 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6681 { 6682 struct netdev_adjacent *upper; 6683 6684 ASSERT_RTNL(); 6685 6686 if (list_empty(&dev->adj_list.upper)) 6687 return NULL; 6688 6689 upper = list_first_entry(&dev->adj_list.upper, 6690 struct netdev_adjacent, list); 6691 if (likely(upper->master)) 6692 return upper->dev; 6693 return NULL; 6694 } 6695 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6696 6697 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6698 { 6699 struct netdev_adjacent *upper; 6700 6701 ASSERT_RTNL(); 6702 6703 if (list_empty(&dev->adj_list.upper)) 6704 return NULL; 6705 6706 upper = list_first_entry(&dev->adj_list.upper, 6707 struct netdev_adjacent, list); 6708 if (likely(upper->master) && !upper->ignore) 6709 return upper->dev; 6710 return NULL; 6711 } 6712 6713 /** 6714 * netdev_has_any_lower_dev - Check if device is linked to some device 6715 * @dev: device 6716 * 6717 * Find out if a device is linked to a lower device and return true in case 6718 * it is. The caller must hold the RTNL lock. 6719 */ 6720 static bool netdev_has_any_lower_dev(struct net_device *dev) 6721 { 6722 ASSERT_RTNL(); 6723 6724 return !list_empty(&dev->adj_list.lower); 6725 } 6726 6727 void *netdev_adjacent_get_private(struct list_head *adj_list) 6728 { 6729 struct netdev_adjacent *adj; 6730 6731 adj = list_entry(adj_list, struct netdev_adjacent, list); 6732 6733 return adj->private; 6734 } 6735 EXPORT_SYMBOL(netdev_adjacent_get_private); 6736 6737 /** 6738 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6739 * @dev: device 6740 * @iter: list_head ** of the current position 6741 * 6742 * Gets the next device from the dev's upper list, starting from iter 6743 * position. The caller must hold RCU read lock. 6744 */ 6745 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6746 struct list_head **iter) 6747 { 6748 struct netdev_adjacent *upper; 6749 6750 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6751 6752 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6753 6754 if (&upper->list == &dev->adj_list.upper) 6755 return NULL; 6756 6757 *iter = &upper->list; 6758 6759 return upper->dev; 6760 } 6761 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6762 6763 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6764 struct list_head **iter, 6765 bool *ignore) 6766 { 6767 struct netdev_adjacent *upper; 6768 6769 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6770 6771 if (&upper->list == &dev->adj_list.upper) 6772 return NULL; 6773 6774 *iter = &upper->list; 6775 *ignore = upper->ignore; 6776 6777 return upper->dev; 6778 } 6779 6780 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6781 struct list_head **iter) 6782 { 6783 struct netdev_adjacent *upper; 6784 6785 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6786 6787 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6788 6789 if (&upper->list == &dev->adj_list.upper) 6790 return NULL; 6791 6792 *iter = &upper->list; 6793 6794 return upper->dev; 6795 } 6796 6797 static int __netdev_walk_all_upper_dev(struct net_device *dev, 6798 int (*fn)(struct net_device *dev, 6799 struct netdev_nested_priv *priv), 6800 struct netdev_nested_priv *priv) 6801 { 6802 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6803 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6804 int ret, cur = 0; 6805 bool ignore; 6806 6807 now = dev; 6808 iter = &dev->adj_list.upper; 6809 6810 while (1) { 6811 if (now != dev) { 6812 ret = fn(now, priv); 6813 if (ret) 6814 return ret; 6815 } 6816 6817 next = NULL; 6818 while (1) { 6819 udev = __netdev_next_upper_dev(now, &iter, &ignore); 6820 if (!udev) 6821 break; 6822 if (ignore) 6823 continue; 6824 6825 next = udev; 6826 niter = &udev->adj_list.upper; 6827 dev_stack[cur] = now; 6828 iter_stack[cur++] = iter; 6829 break; 6830 } 6831 6832 if (!next) { 6833 if (!cur) 6834 return 0; 6835 next = dev_stack[--cur]; 6836 niter = iter_stack[cur]; 6837 } 6838 6839 now = next; 6840 iter = niter; 6841 } 6842 6843 return 0; 6844 } 6845 6846 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6847 int (*fn)(struct net_device *dev, 6848 struct netdev_nested_priv *priv), 6849 struct netdev_nested_priv *priv) 6850 { 6851 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6852 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6853 int ret, cur = 0; 6854 6855 now = dev; 6856 iter = &dev->adj_list.upper; 6857 6858 while (1) { 6859 if (now != dev) { 6860 ret = fn(now, priv); 6861 if (ret) 6862 return ret; 6863 } 6864 6865 next = NULL; 6866 while (1) { 6867 udev = netdev_next_upper_dev_rcu(now, &iter); 6868 if (!udev) 6869 break; 6870 6871 next = udev; 6872 niter = &udev->adj_list.upper; 6873 dev_stack[cur] = now; 6874 iter_stack[cur++] = iter; 6875 break; 6876 } 6877 6878 if (!next) { 6879 if (!cur) 6880 return 0; 6881 next = dev_stack[--cur]; 6882 niter = iter_stack[cur]; 6883 } 6884 6885 now = next; 6886 iter = niter; 6887 } 6888 6889 return 0; 6890 } 6891 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6892 6893 static bool __netdev_has_upper_dev(struct net_device *dev, 6894 struct net_device *upper_dev) 6895 { 6896 struct netdev_nested_priv priv = { 6897 .flags = 0, 6898 .data = (void *)upper_dev, 6899 }; 6900 6901 ASSERT_RTNL(); 6902 6903 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 6904 &priv); 6905 } 6906 6907 /** 6908 * netdev_lower_get_next_private - Get the next ->private from the 6909 * lower neighbour list 6910 * @dev: device 6911 * @iter: list_head ** of the current position 6912 * 6913 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6914 * list, starting from iter position. The caller must hold either hold the 6915 * RTNL lock or its own locking that guarantees that the neighbour lower 6916 * list will remain unchanged. 6917 */ 6918 void *netdev_lower_get_next_private(struct net_device *dev, 6919 struct list_head **iter) 6920 { 6921 struct netdev_adjacent *lower; 6922 6923 lower = list_entry(*iter, struct netdev_adjacent, list); 6924 6925 if (&lower->list == &dev->adj_list.lower) 6926 return NULL; 6927 6928 *iter = lower->list.next; 6929 6930 return lower->private; 6931 } 6932 EXPORT_SYMBOL(netdev_lower_get_next_private); 6933 6934 /** 6935 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6936 * lower neighbour list, RCU 6937 * variant 6938 * @dev: device 6939 * @iter: list_head ** of the current position 6940 * 6941 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6942 * list, starting from iter position. The caller must hold RCU read lock. 6943 */ 6944 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6945 struct list_head **iter) 6946 { 6947 struct netdev_adjacent *lower; 6948 6949 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 6950 6951 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6952 6953 if (&lower->list == &dev->adj_list.lower) 6954 return NULL; 6955 6956 *iter = &lower->list; 6957 6958 return lower->private; 6959 } 6960 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6961 6962 /** 6963 * netdev_lower_get_next - Get the next device from the lower neighbour 6964 * list 6965 * @dev: device 6966 * @iter: list_head ** of the current position 6967 * 6968 * Gets the next netdev_adjacent from the dev's lower neighbour 6969 * list, starting from iter position. The caller must hold RTNL lock or 6970 * its own locking that guarantees that the neighbour lower 6971 * list will remain unchanged. 6972 */ 6973 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6974 { 6975 struct netdev_adjacent *lower; 6976 6977 lower = list_entry(*iter, struct netdev_adjacent, list); 6978 6979 if (&lower->list == &dev->adj_list.lower) 6980 return NULL; 6981 6982 *iter = lower->list.next; 6983 6984 return lower->dev; 6985 } 6986 EXPORT_SYMBOL(netdev_lower_get_next); 6987 6988 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6989 struct list_head **iter) 6990 { 6991 struct netdev_adjacent *lower; 6992 6993 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6994 6995 if (&lower->list == &dev->adj_list.lower) 6996 return NULL; 6997 6998 *iter = &lower->list; 6999 7000 return lower->dev; 7001 } 7002 7003 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7004 struct list_head **iter, 7005 bool *ignore) 7006 { 7007 struct netdev_adjacent *lower; 7008 7009 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7010 7011 if (&lower->list == &dev->adj_list.lower) 7012 return NULL; 7013 7014 *iter = &lower->list; 7015 *ignore = lower->ignore; 7016 7017 return lower->dev; 7018 } 7019 7020 int netdev_walk_all_lower_dev(struct net_device *dev, 7021 int (*fn)(struct net_device *dev, 7022 struct netdev_nested_priv *priv), 7023 struct netdev_nested_priv *priv) 7024 { 7025 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7026 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7027 int ret, cur = 0; 7028 7029 now = dev; 7030 iter = &dev->adj_list.lower; 7031 7032 while (1) { 7033 if (now != dev) { 7034 ret = fn(now, priv); 7035 if (ret) 7036 return ret; 7037 } 7038 7039 next = NULL; 7040 while (1) { 7041 ldev = netdev_next_lower_dev(now, &iter); 7042 if (!ldev) 7043 break; 7044 7045 next = ldev; 7046 niter = &ldev->adj_list.lower; 7047 dev_stack[cur] = now; 7048 iter_stack[cur++] = iter; 7049 break; 7050 } 7051 7052 if (!next) { 7053 if (!cur) 7054 return 0; 7055 next = dev_stack[--cur]; 7056 niter = iter_stack[cur]; 7057 } 7058 7059 now = next; 7060 iter = niter; 7061 } 7062 7063 return 0; 7064 } 7065 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7066 7067 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7068 int (*fn)(struct net_device *dev, 7069 struct netdev_nested_priv *priv), 7070 struct netdev_nested_priv *priv) 7071 { 7072 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7073 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7074 int ret, cur = 0; 7075 bool ignore; 7076 7077 now = dev; 7078 iter = &dev->adj_list.lower; 7079 7080 while (1) { 7081 if (now != dev) { 7082 ret = fn(now, priv); 7083 if (ret) 7084 return ret; 7085 } 7086 7087 next = NULL; 7088 while (1) { 7089 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7090 if (!ldev) 7091 break; 7092 if (ignore) 7093 continue; 7094 7095 next = ldev; 7096 niter = &ldev->adj_list.lower; 7097 dev_stack[cur] = now; 7098 iter_stack[cur++] = iter; 7099 break; 7100 } 7101 7102 if (!next) { 7103 if (!cur) 7104 return 0; 7105 next = dev_stack[--cur]; 7106 niter = iter_stack[cur]; 7107 } 7108 7109 now = next; 7110 iter = niter; 7111 } 7112 7113 return 0; 7114 } 7115 7116 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7117 struct list_head **iter) 7118 { 7119 struct netdev_adjacent *lower; 7120 7121 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7122 if (&lower->list == &dev->adj_list.lower) 7123 return NULL; 7124 7125 *iter = &lower->list; 7126 7127 return lower->dev; 7128 } 7129 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7130 7131 static u8 __netdev_upper_depth(struct net_device *dev) 7132 { 7133 struct net_device *udev; 7134 struct list_head *iter; 7135 u8 max_depth = 0; 7136 bool ignore; 7137 7138 for (iter = &dev->adj_list.upper, 7139 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7140 udev; 7141 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7142 if (ignore) 7143 continue; 7144 if (max_depth < udev->upper_level) 7145 max_depth = udev->upper_level; 7146 } 7147 7148 return max_depth; 7149 } 7150 7151 static u8 __netdev_lower_depth(struct net_device *dev) 7152 { 7153 struct net_device *ldev; 7154 struct list_head *iter; 7155 u8 max_depth = 0; 7156 bool ignore; 7157 7158 for (iter = &dev->adj_list.lower, 7159 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7160 ldev; 7161 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7162 if (ignore) 7163 continue; 7164 if (max_depth < ldev->lower_level) 7165 max_depth = ldev->lower_level; 7166 } 7167 7168 return max_depth; 7169 } 7170 7171 static int __netdev_update_upper_level(struct net_device *dev, 7172 struct netdev_nested_priv *__unused) 7173 { 7174 dev->upper_level = __netdev_upper_depth(dev) + 1; 7175 return 0; 7176 } 7177 7178 static int __netdev_update_lower_level(struct net_device *dev, 7179 struct netdev_nested_priv *priv) 7180 { 7181 dev->lower_level = __netdev_lower_depth(dev) + 1; 7182 7183 #ifdef CONFIG_LOCKDEP 7184 if (!priv) 7185 return 0; 7186 7187 if (priv->flags & NESTED_SYNC_IMM) 7188 dev->nested_level = dev->lower_level - 1; 7189 if (priv->flags & NESTED_SYNC_TODO) 7190 net_unlink_todo(dev); 7191 #endif 7192 return 0; 7193 } 7194 7195 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7196 int (*fn)(struct net_device *dev, 7197 struct netdev_nested_priv *priv), 7198 struct netdev_nested_priv *priv) 7199 { 7200 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7201 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7202 int ret, cur = 0; 7203 7204 now = dev; 7205 iter = &dev->adj_list.lower; 7206 7207 while (1) { 7208 if (now != dev) { 7209 ret = fn(now, priv); 7210 if (ret) 7211 return ret; 7212 } 7213 7214 next = NULL; 7215 while (1) { 7216 ldev = netdev_next_lower_dev_rcu(now, &iter); 7217 if (!ldev) 7218 break; 7219 7220 next = ldev; 7221 niter = &ldev->adj_list.lower; 7222 dev_stack[cur] = now; 7223 iter_stack[cur++] = iter; 7224 break; 7225 } 7226 7227 if (!next) { 7228 if (!cur) 7229 return 0; 7230 next = dev_stack[--cur]; 7231 niter = iter_stack[cur]; 7232 } 7233 7234 now = next; 7235 iter = niter; 7236 } 7237 7238 return 0; 7239 } 7240 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7241 7242 /** 7243 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7244 * lower neighbour list, RCU 7245 * variant 7246 * @dev: device 7247 * 7248 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7249 * list. The caller must hold RCU read lock. 7250 */ 7251 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7252 { 7253 struct netdev_adjacent *lower; 7254 7255 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7256 struct netdev_adjacent, list); 7257 if (lower) 7258 return lower->private; 7259 return NULL; 7260 } 7261 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7262 7263 /** 7264 * netdev_master_upper_dev_get_rcu - Get master upper device 7265 * @dev: device 7266 * 7267 * Find a master upper device and return pointer to it or NULL in case 7268 * it's not there. The caller must hold the RCU read lock. 7269 */ 7270 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7271 { 7272 struct netdev_adjacent *upper; 7273 7274 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7275 struct netdev_adjacent, list); 7276 if (upper && likely(upper->master)) 7277 return upper->dev; 7278 return NULL; 7279 } 7280 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7281 7282 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7283 struct net_device *adj_dev, 7284 struct list_head *dev_list) 7285 { 7286 char linkname[IFNAMSIZ+7]; 7287 7288 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7289 "upper_%s" : "lower_%s", adj_dev->name); 7290 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7291 linkname); 7292 } 7293 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7294 char *name, 7295 struct list_head *dev_list) 7296 { 7297 char linkname[IFNAMSIZ+7]; 7298 7299 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7300 "upper_%s" : "lower_%s", name); 7301 sysfs_remove_link(&(dev->dev.kobj), linkname); 7302 } 7303 7304 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7305 struct net_device *adj_dev, 7306 struct list_head *dev_list) 7307 { 7308 return (dev_list == &dev->adj_list.upper || 7309 dev_list == &dev->adj_list.lower) && 7310 net_eq(dev_net(dev), dev_net(adj_dev)); 7311 } 7312 7313 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7314 struct net_device *adj_dev, 7315 struct list_head *dev_list, 7316 void *private, bool master) 7317 { 7318 struct netdev_adjacent *adj; 7319 int ret; 7320 7321 adj = __netdev_find_adj(adj_dev, dev_list); 7322 7323 if (adj) { 7324 adj->ref_nr += 1; 7325 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7326 dev->name, adj_dev->name, adj->ref_nr); 7327 7328 return 0; 7329 } 7330 7331 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7332 if (!adj) 7333 return -ENOMEM; 7334 7335 adj->dev = adj_dev; 7336 adj->master = master; 7337 adj->ref_nr = 1; 7338 adj->private = private; 7339 adj->ignore = false; 7340 dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7341 7342 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7343 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7344 7345 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7346 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7347 if (ret) 7348 goto free_adj; 7349 } 7350 7351 /* Ensure that master link is always the first item in list. */ 7352 if (master) { 7353 ret = sysfs_create_link(&(dev->dev.kobj), 7354 &(adj_dev->dev.kobj), "master"); 7355 if (ret) 7356 goto remove_symlinks; 7357 7358 list_add_rcu(&adj->list, dev_list); 7359 } else { 7360 list_add_tail_rcu(&adj->list, dev_list); 7361 } 7362 7363 return 0; 7364 7365 remove_symlinks: 7366 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7367 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7368 free_adj: 7369 dev_put_track(adj_dev, &adj->dev_tracker); 7370 kfree(adj); 7371 7372 return ret; 7373 } 7374 7375 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7376 struct net_device *adj_dev, 7377 u16 ref_nr, 7378 struct list_head *dev_list) 7379 { 7380 struct netdev_adjacent *adj; 7381 7382 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7383 dev->name, adj_dev->name, ref_nr); 7384 7385 adj = __netdev_find_adj(adj_dev, dev_list); 7386 7387 if (!adj) { 7388 pr_err("Adjacency does not exist for device %s from %s\n", 7389 dev->name, adj_dev->name); 7390 WARN_ON(1); 7391 return; 7392 } 7393 7394 if (adj->ref_nr > ref_nr) { 7395 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7396 dev->name, adj_dev->name, ref_nr, 7397 adj->ref_nr - ref_nr); 7398 adj->ref_nr -= ref_nr; 7399 return; 7400 } 7401 7402 if (adj->master) 7403 sysfs_remove_link(&(dev->dev.kobj), "master"); 7404 7405 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7406 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7407 7408 list_del_rcu(&adj->list); 7409 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7410 adj_dev->name, dev->name, adj_dev->name); 7411 dev_put_track(adj_dev, &adj->dev_tracker); 7412 kfree_rcu(adj, rcu); 7413 } 7414 7415 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7416 struct net_device *upper_dev, 7417 struct list_head *up_list, 7418 struct list_head *down_list, 7419 void *private, bool master) 7420 { 7421 int ret; 7422 7423 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7424 private, master); 7425 if (ret) 7426 return ret; 7427 7428 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7429 private, false); 7430 if (ret) { 7431 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7432 return ret; 7433 } 7434 7435 return 0; 7436 } 7437 7438 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7439 struct net_device *upper_dev, 7440 u16 ref_nr, 7441 struct list_head *up_list, 7442 struct list_head *down_list) 7443 { 7444 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7445 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7446 } 7447 7448 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7449 struct net_device *upper_dev, 7450 void *private, bool master) 7451 { 7452 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7453 &dev->adj_list.upper, 7454 &upper_dev->adj_list.lower, 7455 private, master); 7456 } 7457 7458 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7459 struct net_device *upper_dev) 7460 { 7461 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7462 &dev->adj_list.upper, 7463 &upper_dev->adj_list.lower); 7464 } 7465 7466 static int __netdev_upper_dev_link(struct net_device *dev, 7467 struct net_device *upper_dev, bool master, 7468 void *upper_priv, void *upper_info, 7469 struct netdev_nested_priv *priv, 7470 struct netlink_ext_ack *extack) 7471 { 7472 struct netdev_notifier_changeupper_info changeupper_info = { 7473 .info = { 7474 .dev = dev, 7475 .extack = extack, 7476 }, 7477 .upper_dev = upper_dev, 7478 .master = master, 7479 .linking = true, 7480 .upper_info = upper_info, 7481 }; 7482 struct net_device *master_dev; 7483 int ret = 0; 7484 7485 ASSERT_RTNL(); 7486 7487 if (dev == upper_dev) 7488 return -EBUSY; 7489 7490 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7491 if (__netdev_has_upper_dev(upper_dev, dev)) 7492 return -EBUSY; 7493 7494 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7495 return -EMLINK; 7496 7497 if (!master) { 7498 if (__netdev_has_upper_dev(dev, upper_dev)) 7499 return -EEXIST; 7500 } else { 7501 master_dev = __netdev_master_upper_dev_get(dev); 7502 if (master_dev) 7503 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7504 } 7505 7506 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7507 &changeupper_info.info); 7508 ret = notifier_to_errno(ret); 7509 if (ret) 7510 return ret; 7511 7512 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7513 master); 7514 if (ret) 7515 return ret; 7516 7517 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7518 &changeupper_info.info); 7519 ret = notifier_to_errno(ret); 7520 if (ret) 7521 goto rollback; 7522 7523 __netdev_update_upper_level(dev, NULL); 7524 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7525 7526 __netdev_update_lower_level(upper_dev, priv); 7527 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7528 priv); 7529 7530 return 0; 7531 7532 rollback: 7533 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7534 7535 return ret; 7536 } 7537 7538 /** 7539 * netdev_upper_dev_link - Add a link to the upper device 7540 * @dev: device 7541 * @upper_dev: new upper device 7542 * @extack: netlink extended ack 7543 * 7544 * Adds a link to device which is upper to this one. The caller must hold 7545 * the RTNL lock. On a failure a negative errno code is returned. 7546 * On success the reference counts are adjusted and the function 7547 * returns zero. 7548 */ 7549 int netdev_upper_dev_link(struct net_device *dev, 7550 struct net_device *upper_dev, 7551 struct netlink_ext_ack *extack) 7552 { 7553 struct netdev_nested_priv priv = { 7554 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7555 .data = NULL, 7556 }; 7557 7558 return __netdev_upper_dev_link(dev, upper_dev, false, 7559 NULL, NULL, &priv, extack); 7560 } 7561 EXPORT_SYMBOL(netdev_upper_dev_link); 7562 7563 /** 7564 * netdev_master_upper_dev_link - Add a master link to the upper device 7565 * @dev: device 7566 * @upper_dev: new upper device 7567 * @upper_priv: upper device private 7568 * @upper_info: upper info to be passed down via notifier 7569 * @extack: netlink extended ack 7570 * 7571 * Adds a link to device which is upper to this one. In this case, only 7572 * one master upper device can be linked, although other non-master devices 7573 * might be linked as well. The caller must hold the RTNL lock. 7574 * On a failure a negative errno code is returned. On success the reference 7575 * counts are adjusted and the function returns zero. 7576 */ 7577 int netdev_master_upper_dev_link(struct net_device *dev, 7578 struct net_device *upper_dev, 7579 void *upper_priv, void *upper_info, 7580 struct netlink_ext_ack *extack) 7581 { 7582 struct netdev_nested_priv priv = { 7583 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7584 .data = NULL, 7585 }; 7586 7587 return __netdev_upper_dev_link(dev, upper_dev, true, 7588 upper_priv, upper_info, &priv, extack); 7589 } 7590 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7591 7592 static void __netdev_upper_dev_unlink(struct net_device *dev, 7593 struct net_device *upper_dev, 7594 struct netdev_nested_priv *priv) 7595 { 7596 struct netdev_notifier_changeupper_info changeupper_info = { 7597 .info = { 7598 .dev = dev, 7599 }, 7600 .upper_dev = upper_dev, 7601 .linking = false, 7602 }; 7603 7604 ASSERT_RTNL(); 7605 7606 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7607 7608 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7609 &changeupper_info.info); 7610 7611 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7612 7613 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7614 &changeupper_info.info); 7615 7616 __netdev_update_upper_level(dev, NULL); 7617 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7618 7619 __netdev_update_lower_level(upper_dev, priv); 7620 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7621 priv); 7622 } 7623 7624 /** 7625 * netdev_upper_dev_unlink - Removes a link to upper device 7626 * @dev: device 7627 * @upper_dev: new upper device 7628 * 7629 * Removes a link to device which is upper to this one. The caller must hold 7630 * the RTNL lock. 7631 */ 7632 void netdev_upper_dev_unlink(struct net_device *dev, 7633 struct net_device *upper_dev) 7634 { 7635 struct netdev_nested_priv priv = { 7636 .flags = NESTED_SYNC_TODO, 7637 .data = NULL, 7638 }; 7639 7640 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 7641 } 7642 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7643 7644 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7645 struct net_device *lower_dev, 7646 bool val) 7647 { 7648 struct netdev_adjacent *adj; 7649 7650 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7651 if (adj) 7652 adj->ignore = val; 7653 7654 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7655 if (adj) 7656 adj->ignore = val; 7657 } 7658 7659 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7660 struct net_device *lower_dev) 7661 { 7662 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7663 } 7664 7665 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7666 struct net_device *lower_dev) 7667 { 7668 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7669 } 7670 7671 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7672 struct net_device *new_dev, 7673 struct net_device *dev, 7674 struct netlink_ext_ack *extack) 7675 { 7676 struct netdev_nested_priv priv = { 7677 .flags = 0, 7678 .data = NULL, 7679 }; 7680 int err; 7681 7682 if (!new_dev) 7683 return 0; 7684 7685 if (old_dev && new_dev != old_dev) 7686 netdev_adjacent_dev_disable(dev, old_dev); 7687 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 7688 extack); 7689 if (err) { 7690 if (old_dev && new_dev != old_dev) 7691 netdev_adjacent_dev_enable(dev, old_dev); 7692 return err; 7693 } 7694 7695 return 0; 7696 } 7697 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7698 7699 void netdev_adjacent_change_commit(struct net_device *old_dev, 7700 struct net_device *new_dev, 7701 struct net_device *dev) 7702 { 7703 struct netdev_nested_priv priv = { 7704 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7705 .data = NULL, 7706 }; 7707 7708 if (!new_dev || !old_dev) 7709 return; 7710 7711 if (new_dev == old_dev) 7712 return; 7713 7714 netdev_adjacent_dev_enable(dev, old_dev); 7715 __netdev_upper_dev_unlink(old_dev, dev, &priv); 7716 } 7717 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7718 7719 void netdev_adjacent_change_abort(struct net_device *old_dev, 7720 struct net_device *new_dev, 7721 struct net_device *dev) 7722 { 7723 struct netdev_nested_priv priv = { 7724 .flags = 0, 7725 .data = NULL, 7726 }; 7727 7728 if (!new_dev) 7729 return; 7730 7731 if (old_dev && new_dev != old_dev) 7732 netdev_adjacent_dev_enable(dev, old_dev); 7733 7734 __netdev_upper_dev_unlink(new_dev, dev, &priv); 7735 } 7736 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7737 7738 /** 7739 * netdev_bonding_info_change - Dispatch event about slave change 7740 * @dev: device 7741 * @bonding_info: info to dispatch 7742 * 7743 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7744 * The caller must hold the RTNL lock. 7745 */ 7746 void netdev_bonding_info_change(struct net_device *dev, 7747 struct netdev_bonding_info *bonding_info) 7748 { 7749 struct netdev_notifier_bonding_info info = { 7750 .info.dev = dev, 7751 }; 7752 7753 memcpy(&info.bonding_info, bonding_info, 7754 sizeof(struct netdev_bonding_info)); 7755 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7756 &info.info); 7757 } 7758 EXPORT_SYMBOL(netdev_bonding_info_change); 7759 7760 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 7761 struct netlink_ext_ack *extack) 7762 { 7763 struct netdev_notifier_offload_xstats_info info = { 7764 .info.dev = dev, 7765 .info.extack = extack, 7766 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 7767 }; 7768 int err; 7769 int rc; 7770 7771 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 7772 GFP_KERNEL); 7773 if (!dev->offload_xstats_l3) 7774 return -ENOMEM; 7775 7776 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 7777 NETDEV_OFFLOAD_XSTATS_DISABLE, 7778 &info.info); 7779 err = notifier_to_errno(rc); 7780 if (err) 7781 goto free_stats; 7782 7783 return 0; 7784 7785 free_stats: 7786 kfree(dev->offload_xstats_l3); 7787 dev->offload_xstats_l3 = NULL; 7788 return err; 7789 } 7790 7791 int netdev_offload_xstats_enable(struct net_device *dev, 7792 enum netdev_offload_xstats_type type, 7793 struct netlink_ext_ack *extack) 7794 { 7795 ASSERT_RTNL(); 7796 7797 if (netdev_offload_xstats_enabled(dev, type)) 7798 return -EALREADY; 7799 7800 switch (type) { 7801 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 7802 return netdev_offload_xstats_enable_l3(dev, extack); 7803 } 7804 7805 WARN_ON(1); 7806 return -EINVAL; 7807 } 7808 EXPORT_SYMBOL(netdev_offload_xstats_enable); 7809 7810 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 7811 { 7812 struct netdev_notifier_offload_xstats_info info = { 7813 .info.dev = dev, 7814 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 7815 }; 7816 7817 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 7818 &info.info); 7819 kfree(dev->offload_xstats_l3); 7820 dev->offload_xstats_l3 = NULL; 7821 } 7822 7823 int netdev_offload_xstats_disable(struct net_device *dev, 7824 enum netdev_offload_xstats_type type) 7825 { 7826 ASSERT_RTNL(); 7827 7828 if (!netdev_offload_xstats_enabled(dev, type)) 7829 return -EALREADY; 7830 7831 switch (type) { 7832 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 7833 netdev_offload_xstats_disable_l3(dev); 7834 return 0; 7835 } 7836 7837 WARN_ON(1); 7838 return -EINVAL; 7839 } 7840 EXPORT_SYMBOL(netdev_offload_xstats_disable); 7841 7842 static void netdev_offload_xstats_disable_all(struct net_device *dev) 7843 { 7844 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 7845 } 7846 7847 static struct rtnl_hw_stats64 * 7848 netdev_offload_xstats_get_ptr(const struct net_device *dev, 7849 enum netdev_offload_xstats_type type) 7850 { 7851 switch (type) { 7852 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 7853 return dev->offload_xstats_l3; 7854 } 7855 7856 WARN_ON(1); 7857 return NULL; 7858 } 7859 7860 bool netdev_offload_xstats_enabled(const struct net_device *dev, 7861 enum netdev_offload_xstats_type type) 7862 { 7863 ASSERT_RTNL(); 7864 7865 return netdev_offload_xstats_get_ptr(dev, type); 7866 } 7867 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 7868 7869 struct netdev_notifier_offload_xstats_ru { 7870 bool used; 7871 }; 7872 7873 struct netdev_notifier_offload_xstats_rd { 7874 struct rtnl_hw_stats64 stats; 7875 bool used; 7876 }; 7877 7878 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 7879 const struct rtnl_hw_stats64 *src) 7880 { 7881 dest->rx_packets += src->rx_packets; 7882 dest->tx_packets += src->tx_packets; 7883 dest->rx_bytes += src->rx_bytes; 7884 dest->tx_bytes += src->tx_bytes; 7885 dest->rx_errors += src->rx_errors; 7886 dest->tx_errors += src->tx_errors; 7887 dest->rx_dropped += src->rx_dropped; 7888 dest->tx_dropped += src->tx_dropped; 7889 dest->multicast += src->multicast; 7890 } 7891 7892 static int netdev_offload_xstats_get_used(struct net_device *dev, 7893 enum netdev_offload_xstats_type type, 7894 bool *p_used, 7895 struct netlink_ext_ack *extack) 7896 { 7897 struct netdev_notifier_offload_xstats_ru report_used = {}; 7898 struct netdev_notifier_offload_xstats_info info = { 7899 .info.dev = dev, 7900 .info.extack = extack, 7901 .type = type, 7902 .report_used = &report_used, 7903 }; 7904 int rc; 7905 7906 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 7907 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 7908 &info.info); 7909 *p_used = report_used.used; 7910 return notifier_to_errno(rc); 7911 } 7912 7913 static int netdev_offload_xstats_get_stats(struct net_device *dev, 7914 enum netdev_offload_xstats_type type, 7915 struct rtnl_hw_stats64 *p_stats, 7916 bool *p_used, 7917 struct netlink_ext_ack *extack) 7918 { 7919 struct netdev_notifier_offload_xstats_rd report_delta = {}; 7920 struct netdev_notifier_offload_xstats_info info = { 7921 .info.dev = dev, 7922 .info.extack = extack, 7923 .type = type, 7924 .report_delta = &report_delta, 7925 }; 7926 struct rtnl_hw_stats64 *stats; 7927 int rc; 7928 7929 stats = netdev_offload_xstats_get_ptr(dev, type); 7930 if (WARN_ON(!stats)) 7931 return -EINVAL; 7932 7933 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 7934 &info.info); 7935 7936 /* Cache whatever we got, even if there was an error, otherwise the 7937 * successful stats retrievals would get lost. 7938 */ 7939 netdev_hw_stats64_add(stats, &report_delta.stats); 7940 7941 if (p_stats) 7942 *p_stats = *stats; 7943 *p_used = report_delta.used; 7944 7945 return notifier_to_errno(rc); 7946 } 7947 7948 int netdev_offload_xstats_get(struct net_device *dev, 7949 enum netdev_offload_xstats_type type, 7950 struct rtnl_hw_stats64 *p_stats, bool *p_used, 7951 struct netlink_ext_ack *extack) 7952 { 7953 ASSERT_RTNL(); 7954 7955 if (p_stats) 7956 return netdev_offload_xstats_get_stats(dev, type, p_stats, 7957 p_used, extack); 7958 else 7959 return netdev_offload_xstats_get_used(dev, type, p_used, 7960 extack); 7961 } 7962 EXPORT_SYMBOL(netdev_offload_xstats_get); 7963 7964 void 7965 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 7966 const struct rtnl_hw_stats64 *stats) 7967 { 7968 report_delta->used = true; 7969 netdev_hw_stats64_add(&report_delta->stats, stats); 7970 } 7971 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 7972 7973 void 7974 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 7975 { 7976 report_used->used = true; 7977 } 7978 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 7979 7980 void netdev_offload_xstats_push_delta(struct net_device *dev, 7981 enum netdev_offload_xstats_type type, 7982 const struct rtnl_hw_stats64 *p_stats) 7983 { 7984 struct rtnl_hw_stats64 *stats; 7985 7986 ASSERT_RTNL(); 7987 7988 stats = netdev_offload_xstats_get_ptr(dev, type); 7989 if (WARN_ON(!stats)) 7990 return; 7991 7992 netdev_hw_stats64_add(stats, p_stats); 7993 } 7994 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 7995 7996 /** 7997 * netdev_get_xmit_slave - Get the xmit slave of master device 7998 * @dev: device 7999 * @skb: The packet 8000 * @all_slaves: assume all the slaves are active 8001 * 8002 * The reference counters are not incremented so the caller must be 8003 * careful with locks. The caller must hold RCU lock. 8004 * %NULL is returned if no slave is found. 8005 */ 8006 8007 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8008 struct sk_buff *skb, 8009 bool all_slaves) 8010 { 8011 const struct net_device_ops *ops = dev->netdev_ops; 8012 8013 if (!ops->ndo_get_xmit_slave) 8014 return NULL; 8015 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8016 } 8017 EXPORT_SYMBOL(netdev_get_xmit_slave); 8018 8019 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8020 struct sock *sk) 8021 { 8022 const struct net_device_ops *ops = dev->netdev_ops; 8023 8024 if (!ops->ndo_sk_get_lower_dev) 8025 return NULL; 8026 return ops->ndo_sk_get_lower_dev(dev, sk); 8027 } 8028 8029 /** 8030 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8031 * @dev: device 8032 * @sk: the socket 8033 * 8034 * %NULL is returned if no lower device is found. 8035 */ 8036 8037 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8038 struct sock *sk) 8039 { 8040 struct net_device *lower; 8041 8042 lower = netdev_sk_get_lower_dev(dev, sk); 8043 while (lower) { 8044 dev = lower; 8045 lower = netdev_sk_get_lower_dev(dev, sk); 8046 } 8047 8048 return dev; 8049 } 8050 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8051 8052 static void netdev_adjacent_add_links(struct net_device *dev) 8053 { 8054 struct netdev_adjacent *iter; 8055 8056 struct net *net = dev_net(dev); 8057 8058 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8059 if (!net_eq(net, dev_net(iter->dev))) 8060 continue; 8061 netdev_adjacent_sysfs_add(iter->dev, dev, 8062 &iter->dev->adj_list.lower); 8063 netdev_adjacent_sysfs_add(dev, iter->dev, 8064 &dev->adj_list.upper); 8065 } 8066 8067 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8068 if (!net_eq(net, dev_net(iter->dev))) 8069 continue; 8070 netdev_adjacent_sysfs_add(iter->dev, dev, 8071 &iter->dev->adj_list.upper); 8072 netdev_adjacent_sysfs_add(dev, iter->dev, 8073 &dev->adj_list.lower); 8074 } 8075 } 8076 8077 static void netdev_adjacent_del_links(struct net_device *dev) 8078 { 8079 struct netdev_adjacent *iter; 8080 8081 struct net *net = dev_net(dev); 8082 8083 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8084 if (!net_eq(net, dev_net(iter->dev))) 8085 continue; 8086 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8087 &iter->dev->adj_list.lower); 8088 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8089 &dev->adj_list.upper); 8090 } 8091 8092 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8093 if (!net_eq(net, dev_net(iter->dev))) 8094 continue; 8095 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8096 &iter->dev->adj_list.upper); 8097 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8098 &dev->adj_list.lower); 8099 } 8100 } 8101 8102 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8103 { 8104 struct netdev_adjacent *iter; 8105 8106 struct net *net = dev_net(dev); 8107 8108 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8109 if (!net_eq(net, dev_net(iter->dev))) 8110 continue; 8111 netdev_adjacent_sysfs_del(iter->dev, oldname, 8112 &iter->dev->adj_list.lower); 8113 netdev_adjacent_sysfs_add(iter->dev, dev, 8114 &iter->dev->adj_list.lower); 8115 } 8116 8117 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8118 if (!net_eq(net, dev_net(iter->dev))) 8119 continue; 8120 netdev_adjacent_sysfs_del(iter->dev, oldname, 8121 &iter->dev->adj_list.upper); 8122 netdev_adjacent_sysfs_add(iter->dev, dev, 8123 &iter->dev->adj_list.upper); 8124 } 8125 } 8126 8127 void *netdev_lower_dev_get_private(struct net_device *dev, 8128 struct net_device *lower_dev) 8129 { 8130 struct netdev_adjacent *lower; 8131 8132 if (!lower_dev) 8133 return NULL; 8134 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8135 if (!lower) 8136 return NULL; 8137 8138 return lower->private; 8139 } 8140 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8141 8142 8143 /** 8144 * netdev_lower_state_changed - Dispatch event about lower device state change 8145 * @lower_dev: device 8146 * @lower_state_info: state to dispatch 8147 * 8148 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8149 * The caller must hold the RTNL lock. 8150 */ 8151 void netdev_lower_state_changed(struct net_device *lower_dev, 8152 void *lower_state_info) 8153 { 8154 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8155 .info.dev = lower_dev, 8156 }; 8157 8158 ASSERT_RTNL(); 8159 changelowerstate_info.lower_state_info = lower_state_info; 8160 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8161 &changelowerstate_info.info); 8162 } 8163 EXPORT_SYMBOL(netdev_lower_state_changed); 8164 8165 static void dev_change_rx_flags(struct net_device *dev, int flags) 8166 { 8167 const struct net_device_ops *ops = dev->netdev_ops; 8168 8169 if (ops->ndo_change_rx_flags) 8170 ops->ndo_change_rx_flags(dev, flags); 8171 } 8172 8173 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8174 { 8175 unsigned int old_flags = dev->flags; 8176 kuid_t uid; 8177 kgid_t gid; 8178 8179 ASSERT_RTNL(); 8180 8181 dev->flags |= IFF_PROMISC; 8182 dev->promiscuity += inc; 8183 if (dev->promiscuity == 0) { 8184 /* 8185 * Avoid overflow. 8186 * If inc causes overflow, untouch promisc and return error. 8187 */ 8188 if (inc < 0) 8189 dev->flags &= ~IFF_PROMISC; 8190 else { 8191 dev->promiscuity -= inc; 8192 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8193 return -EOVERFLOW; 8194 } 8195 } 8196 if (dev->flags != old_flags) { 8197 pr_info("device %s %s promiscuous mode\n", 8198 dev->name, 8199 dev->flags & IFF_PROMISC ? "entered" : "left"); 8200 if (audit_enabled) { 8201 current_uid_gid(&uid, &gid); 8202 audit_log(audit_context(), GFP_ATOMIC, 8203 AUDIT_ANOM_PROMISCUOUS, 8204 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8205 dev->name, (dev->flags & IFF_PROMISC), 8206 (old_flags & IFF_PROMISC), 8207 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8208 from_kuid(&init_user_ns, uid), 8209 from_kgid(&init_user_ns, gid), 8210 audit_get_sessionid(current)); 8211 } 8212 8213 dev_change_rx_flags(dev, IFF_PROMISC); 8214 } 8215 if (notify) 8216 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8217 return 0; 8218 } 8219 8220 /** 8221 * dev_set_promiscuity - update promiscuity count on a device 8222 * @dev: device 8223 * @inc: modifier 8224 * 8225 * Add or remove promiscuity from a device. While the count in the device 8226 * remains above zero the interface remains promiscuous. Once it hits zero 8227 * the device reverts back to normal filtering operation. A negative inc 8228 * value is used to drop promiscuity on the device. 8229 * Return 0 if successful or a negative errno code on error. 8230 */ 8231 int dev_set_promiscuity(struct net_device *dev, int inc) 8232 { 8233 unsigned int old_flags = dev->flags; 8234 int err; 8235 8236 err = __dev_set_promiscuity(dev, inc, true); 8237 if (err < 0) 8238 return err; 8239 if (dev->flags != old_flags) 8240 dev_set_rx_mode(dev); 8241 return err; 8242 } 8243 EXPORT_SYMBOL(dev_set_promiscuity); 8244 8245 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8246 { 8247 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8248 8249 ASSERT_RTNL(); 8250 8251 dev->flags |= IFF_ALLMULTI; 8252 dev->allmulti += inc; 8253 if (dev->allmulti == 0) { 8254 /* 8255 * Avoid overflow. 8256 * If inc causes overflow, untouch allmulti and return error. 8257 */ 8258 if (inc < 0) 8259 dev->flags &= ~IFF_ALLMULTI; 8260 else { 8261 dev->allmulti -= inc; 8262 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8263 return -EOVERFLOW; 8264 } 8265 } 8266 if (dev->flags ^ old_flags) { 8267 dev_change_rx_flags(dev, IFF_ALLMULTI); 8268 dev_set_rx_mode(dev); 8269 if (notify) 8270 __dev_notify_flags(dev, old_flags, 8271 dev->gflags ^ old_gflags); 8272 } 8273 return 0; 8274 } 8275 8276 /** 8277 * dev_set_allmulti - update allmulti count on a device 8278 * @dev: device 8279 * @inc: modifier 8280 * 8281 * Add or remove reception of all multicast frames to a device. While the 8282 * count in the device remains above zero the interface remains listening 8283 * to all interfaces. Once it hits zero the device reverts back to normal 8284 * filtering operation. A negative @inc value is used to drop the counter 8285 * when releasing a resource needing all multicasts. 8286 * Return 0 if successful or a negative errno code on error. 8287 */ 8288 8289 int dev_set_allmulti(struct net_device *dev, int inc) 8290 { 8291 return __dev_set_allmulti(dev, inc, true); 8292 } 8293 EXPORT_SYMBOL(dev_set_allmulti); 8294 8295 /* 8296 * Upload unicast and multicast address lists to device and 8297 * configure RX filtering. When the device doesn't support unicast 8298 * filtering it is put in promiscuous mode while unicast addresses 8299 * are present. 8300 */ 8301 void __dev_set_rx_mode(struct net_device *dev) 8302 { 8303 const struct net_device_ops *ops = dev->netdev_ops; 8304 8305 /* dev_open will call this function so the list will stay sane. */ 8306 if (!(dev->flags&IFF_UP)) 8307 return; 8308 8309 if (!netif_device_present(dev)) 8310 return; 8311 8312 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8313 /* Unicast addresses changes may only happen under the rtnl, 8314 * therefore calling __dev_set_promiscuity here is safe. 8315 */ 8316 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8317 __dev_set_promiscuity(dev, 1, false); 8318 dev->uc_promisc = true; 8319 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8320 __dev_set_promiscuity(dev, -1, false); 8321 dev->uc_promisc = false; 8322 } 8323 } 8324 8325 if (ops->ndo_set_rx_mode) 8326 ops->ndo_set_rx_mode(dev); 8327 } 8328 8329 void dev_set_rx_mode(struct net_device *dev) 8330 { 8331 netif_addr_lock_bh(dev); 8332 __dev_set_rx_mode(dev); 8333 netif_addr_unlock_bh(dev); 8334 } 8335 8336 /** 8337 * dev_get_flags - get flags reported to userspace 8338 * @dev: device 8339 * 8340 * Get the combination of flag bits exported through APIs to userspace. 8341 */ 8342 unsigned int dev_get_flags(const struct net_device *dev) 8343 { 8344 unsigned int flags; 8345 8346 flags = (dev->flags & ~(IFF_PROMISC | 8347 IFF_ALLMULTI | 8348 IFF_RUNNING | 8349 IFF_LOWER_UP | 8350 IFF_DORMANT)) | 8351 (dev->gflags & (IFF_PROMISC | 8352 IFF_ALLMULTI)); 8353 8354 if (netif_running(dev)) { 8355 if (netif_oper_up(dev)) 8356 flags |= IFF_RUNNING; 8357 if (netif_carrier_ok(dev)) 8358 flags |= IFF_LOWER_UP; 8359 if (netif_dormant(dev)) 8360 flags |= IFF_DORMANT; 8361 } 8362 8363 return flags; 8364 } 8365 EXPORT_SYMBOL(dev_get_flags); 8366 8367 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8368 struct netlink_ext_ack *extack) 8369 { 8370 unsigned int old_flags = dev->flags; 8371 int ret; 8372 8373 ASSERT_RTNL(); 8374 8375 /* 8376 * Set the flags on our device. 8377 */ 8378 8379 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8380 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8381 IFF_AUTOMEDIA)) | 8382 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8383 IFF_ALLMULTI)); 8384 8385 /* 8386 * Load in the correct multicast list now the flags have changed. 8387 */ 8388 8389 if ((old_flags ^ flags) & IFF_MULTICAST) 8390 dev_change_rx_flags(dev, IFF_MULTICAST); 8391 8392 dev_set_rx_mode(dev); 8393 8394 /* 8395 * Have we downed the interface. We handle IFF_UP ourselves 8396 * according to user attempts to set it, rather than blindly 8397 * setting it. 8398 */ 8399 8400 ret = 0; 8401 if ((old_flags ^ flags) & IFF_UP) { 8402 if (old_flags & IFF_UP) 8403 __dev_close(dev); 8404 else 8405 ret = __dev_open(dev, extack); 8406 } 8407 8408 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8409 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8410 unsigned int old_flags = dev->flags; 8411 8412 dev->gflags ^= IFF_PROMISC; 8413 8414 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8415 if (dev->flags != old_flags) 8416 dev_set_rx_mode(dev); 8417 } 8418 8419 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8420 * is important. Some (broken) drivers set IFF_PROMISC, when 8421 * IFF_ALLMULTI is requested not asking us and not reporting. 8422 */ 8423 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8424 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8425 8426 dev->gflags ^= IFF_ALLMULTI; 8427 __dev_set_allmulti(dev, inc, false); 8428 } 8429 8430 return ret; 8431 } 8432 8433 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8434 unsigned int gchanges) 8435 { 8436 unsigned int changes = dev->flags ^ old_flags; 8437 8438 if (gchanges) 8439 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8440 8441 if (changes & IFF_UP) { 8442 if (dev->flags & IFF_UP) 8443 call_netdevice_notifiers(NETDEV_UP, dev); 8444 else 8445 call_netdevice_notifiers(NETDEV_DOWN, dev); 8446 } 8447 8448 if (dev->flags & IFF_UP && 8449 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8450 struct netdev_notifier_change_info change_info = { 8451 .info = { 8452 .dev = dev, 8453 }, 8454 .flags_changed = changes, 8455 }; 8456 8457 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8458 } 8459 } 8460 8461 /** 8462 * dev_change_flags - change device settings 8463 * @dev: device 8464 * @flags: device state flags 8465 * @extack: netlink extended ack 8466 * 8467 * Change settings on device based state flags. The flags are 8468 * in the userspace exported format. 8469 */ 8470 int dev_change_flags(struct net_device *dev, unsigned int flags, 8471 struct netlink_ext_ack *extack) 8472 { 8473 int ret; 8474 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8475 8476 ret = __dev_change_flags(dev, flags, extack); 8477 if (ret < 0) 8478 return ret; 8479 8480 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8481 __dev_notify_flags(dev, old_flags, changes); 8482 return ret; 8483 } 8484 EXPORT_SYMBOL(dev_change_flags); 8485 8486 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8487 { 8488 const struct net_device_ops *ops = dev->netdev_ops; 8489 8490 if (ops->ndo_change_mtu) 8491 return ops->ndo_change_mtu(dev, new_mtu); 8492 8493 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8494 WRITE_ONCE(dev->mtu, new_mtu); 8495 return 0; 8496 } 8497 EXPORT_SYMBOL(__dev_set_mtu); 8498 8499 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8500 struct netlink_ext_ack *extack) 8501 { 8502 /* MTU must be positive, and in range */ 8503 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8504 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8505 return -EINVAL; 8506 } 8507 8508 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8509 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8510 return -EINVAL; 8511 } 8512 return 0; 8513 } 8514 8515 /** 8516 * dev_set_mtu_ext - Change maximum transfer unit 8517 * @dev: device 8518 * @new_mtu: new transfer unit 8519 * @extack: netlink extended ack 8520 * 8521 * Change the maximum transfer size of the network device. 8522 */ 8523 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8524 struct netlink_ext_ack *extack) 8525 { 8526 int err, orig_mtu; 8527 8528 if (new_mtu == dev->mtu) 8529 return 0; 8530 8531 err = dev_validate_mtu(dev, new_mtu, extack); 8532 if (err) 8533 return err; 8534 8535 if (!netif_device_present(dev)) 8536 return -ENODEV; 8537 8538 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8539 err = notifier_to_errno(err); 8540 if (err) 8541 return err; 8542 8543 orig_mtu = dev->mtu; 8544 err = __dev_set_mtu(dev, new_mtu); 8545 8546 if (!err) { 8547 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8548 orig_mtu); 8549 err = notifier_to_errno(err); 8550 if (err) { 8551 /* setting mtu back and notifying everyone again, 8552 * so that they have a chance to revert changes. 8553 */ 8554 __dev_set_mtu(dev, orig_mtu); 8555 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8556 new_mtu); 8557 } 8558 } 8559 return err; 8560 } 8561 8562 int dev_set_mtu(struct net_device *dev, int new_mtu) 8563 { 8564 struct netlink_ext_ack extack; 8565 int err; 8566 8567 memset(&extack, 0, sizeof(extack)); 8568 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8569 if (err && extack._msg) 8570 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8571 return err; 8572 } 8573 EXPORT_SYMBOL(dev_set_mtu); 8574 8575 /** 8576 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8577 * @dev: device 8578 * @new_len: new tx queue length 8579 */ 8580 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8581 { 8582 unsigned int orig_len = dev->tx_queue_len; 8583 int res; 8584 8585 if (new_len != (unsigned int)new_len) 8586 return -ERANGE; 8587 8588 if (new_len != orig_len) { 8589 dev->tx_queue_len = new_len; 8590 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8591 res = notifier_to_errno(res); 8592 if (res) 8593 goto err_rollback; 8594 res = dev_qdisc_change_tx_queue_len(dev); 8595 if (res) 8596 goto err_rollback; 8597 } 8598 8599 return 0; 8600 8601 err_rollback: 8602 netdev_err(dev, "refused to change device tx_queue_len\n"); 8603 dev->tx_queue_len = orig_len; 8604 return res; 8605 } 8606 8607 /** 8608 * dev_set_group - Change group this device belongs to 8609 * @dev: device 8610 * @new_group: group this device should belong to 8611 */ 8612 void dev_set_group(struct net_device *dev, int new_group) 8613 { 8614 dev->group = new_group; 8615 } 8616 EXPORT_SYMBOL(dev_set_group); 8617 8618 /** 8619 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8620 * @dev: device 8621 * @addr: new address 8622 * @extack: netlink extended ack 8623 */ 8624 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8625 struct netlink_ext_ack *extack) 8626 { 8627 struct netdev_notifier_pre_changeaddr_info info = { 8628 .info.dev = dev, 8629 .info.extack = extack, 8630 .dev_addr = addr, 8631 }; 8632 int rc; 8633 8634 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8635 return notifier_to_errno(rc); 8636 } 8637 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8638 8639 /** 8640 * dev_set_mac_address - Change Media Access Control Address 8641 * @dev: device 8642 * @sa: new address 8643 * @extack: netlink extended ack 8644 * 8645 * Change the hardware (MAC) address of the device 8646 */ 8647 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8648 struct netlink_ext_ack *extack) 8649 { 8650 const struct net_device_ops *ops = dev->netdev_ops; 8651 int err; 8652 8653 if (!ops->ndo_set_mac_address) 8654 return -EOPNOTSUPP; 8655 if (sa->sa_family != dev->type) 8656 return -EINVAL; 8657 if (!netif_device_present(dev)) 8658 return -ENODEV; 8659 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8660 if (err) 8661 return err; 8662 err = ops->ndo_set_mac_address(dev, sa); 8663 if (err) 8664 return err; 8665 dev->addr_assign_type = NET_ADDR_SET; 8666 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8667 add_device_randomness(dev->dev_addr, dev->addr_len); 8668 return 0; 8669 } 8670 EXPORT_SYMBOL(dev_set_mac_address); 8671 8672 static DECLARE_RWSEM(dev_addr_sem); 8673 8674 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 8675 struct netlink_ext_ack *extack) 8676 { 8677 int ret; 8678 8679 down_write(&dev_addr_sem); 8680 ret = dev_set_mac_address(dev, sa, extack); 8681 up_write(&dev_addr_sem); 8682 return ret; 8683 } 8684 EXPORT_SYMBOL(dev_set_mac_address_user); 8685 8686 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 8687 { 8688 size_t size = sizeof(sa->sa_data); 8689 struct net_device *dev; 8690 int ret = 0; 8691 8692 down_read(&dev_addr_sem); 8693 rcu_read_lock(); 8694 8695 dev = dev_get_by_name_rcu(net, dev_name); 8696 if (!dev) { 8697 ret = -ENODEV; 8698 goto unlock; 8699 } 8700 if (!dev->addr_len) 8701 memset(sa->sa_data, 0, size); 8702 else 8703 memcpy(sa->sa_data, dev->dev_addr, 8704 min_t(size_t, size, dev->addr_len)); 8705 sa->sa_family = dev->type; 8706 8707 unlock: 8708 rcu_read_unlock(); 8709 up_read(&dev_addr_sem); 8710 return ret; 8711 } 8712 EXPORT_SYMBOL(dev_get_mac_address); 8713 8714 /** 8715 * dev_change_carrier - Change device carrier 8716 * @dev: device 8717 * @new_carrier: new value 8718 * 8719 * Change device carrier 8720 */ 8721 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8722 { 8723 const struct net_device_ops *ops = dev->netdev_ops; 8724 8725 if (!ops->ndo_change_carrier) 8726 return -EOPNOTSUPP; 8727 if (!netif_device_present(dev)) 8728 return -ENODEV; 8729 return ops->ndo_change_carrier(dev, new_carrier); 8730 } 8731 EXPORT_SYMBOL(dev_change_carrier); 8732 8733 /** 8734 * dev_get_phys_port_id - Get device physical port ID 8735 * @dev: device 8736 * @ppid: port ID 8737 * 8738 * Get device physical port ID 8739 */ 8740 int dev_get_phys_port_id(struct net_device *dev, 8741 struct netdev_phys_item_id *ppid) 8742 { 8743 const struct net_device_ops *ops = dev->netdev_ops; 8744 8745 if (!ops->ndo_get_phys_port_id) 8746 return -EOPNOTSUPP; 8747 return ops->ndo_get_phys_port_id(dev, ppid); 8748 } 8749 EXPORT_SYMBOL(dev_get_phys_port_id); 8750 8751 /** 8752 * dev_get_phys_port_name - Get device physical port name 8753 * @dev: device 8754 * @name: port name 8755 * @len: limit of bytes to copy to name 8756 * 8757 * Get device physical port name 8758 */ 8759 int dev_get_phys_port_name(struct net_device *dev, 8760 char *name, size_t len) 8761 { 8762 const struct net_device_ops *ops = dev->netdev_ops; 8763 int err; 8764 8765 if (ops->ndo_get_phys_port_name) { 8766 err = ops->ndo_get_phys_port_name(dev, name, len); 8767 if (err != -EOPNOTSUPP) 8768 return err; 8769 } 8770 return devlink_compat_phys_port_name_get(dev, name, len); 8771 } 8772 EXPORT_SYMBOL(dev_get_phys_port_name); 8773 8774 /** 8775 * dev_get_port_parent_id - Get the device's port parent identifier 8776 * @dev: network device 8777 * @ppid: pointer to a storage for the port's parent identifier 8778 * @recurse: allow/disallow recursion to lower devices 8779 * 8780 * Get the devices's port parent identifier 8781 */ 8782 int dev_get_port_parent_id(struct net_device *dev, 8783 struct netdev_phys_item_id *ppid, 8784 bool recurse) 8785 { 8786 const struct net_device_ops *ops = dev->netdev_ops; 8787 struct netdev_phys_item_id first = { }; 8788 struct net_device *lower_dev; 8789 struct list_head *iter; 8790 int err; 8791 8792 if (ops->ndo_get_port_parent_id) { 8793 err = ops->ndo_get_port_parent_id(dev, ppid); 8794 if (err != -EOPNOTSUPP) 8795 return err; 8796 } 8797 8798 err = devlink_compat_switch_id_get(dev, ppid); 8799 if (!recurse || err != -EOPNOTSUPP) 8800 return err; 8801 8802 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8803 err = dev_get_port_parent_id(lower_dev, ppid, true); 8804 if (err) 8805 break; 8806 if (!first.id_len) 8807 first = *ppid; 8808 else if (memcmp(&first, ppid, sizeof(*ppid))) 8809 return -EOPNOTSUPP; 8810 } 8811 8812 return err; 8813 } 8814 EXPORT_SYMBOL(dev_get_port_parent_id); 8815 8816 /** 8817 * netdev_port_same_parent_id - Indicate if two network devices have 8818 * the same port parent identifier 8819 * @a: first network device 8820 * @b: second network device 8821 */ 8822 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8823 { 8824 struct netdev_phys_item_id a_id = { }; 8825 struct netdev_phys_item_id b_id = { }; 8826 8827 if (dev_get_port_parent_id(a, &a_id, true) || 8828 dev_get_port_parent_id(b, &b_id, true)) 8829 return false; 8830 8831 return netdev_phys_item_id_same(&a_id, &b_id); 8832 } 8833 EXPORT_SYMBOL(netdev_port_same_parent_id); 8834 8835 /** 8836 * dev_change_proto_down - set carrier according to proto_down. 8837 * 8838 * @dev: device 8839 * @proto_down: new value 8840 */ 8841 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8842 { 8843 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN)) 8844 return -EOPNOTSUPP; 8845 if (!netif_device_present(dev)) 8846 return -ENODEV; 8847 if (proto_down) 8848 netif_carrier_off(dev); 8849 else 8850 netif_carrier_on(dev); 8851 dev->proto_down = proto_down; 8852 return 0; 8853 } 8854 EXPORT_SYMBOL(dev_change_proto_down); 8855 8856 /** 8857 * dev_change_proto_down_reason - proto down reason 8858 * 8859 * @dev: device 8860 * @mask: proto down mask 8861 * @value: proto down value 8862 */ 8863 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 8864 u32 value) 8865 { 8866 int b; 8867 8868 if (!mask) { 8869 dev->proto_down_reason = value; 8870 } else { 8871 for_each_set_bit(b, &mask, 32) { 8872 if (value & (1 << b)) 8873 dev->proto_down_reason |= BIT(b); 8874 else 8875 dev->proto_down_reason &= ~BIT(b); 8876 } 8877 } 8878 } 8879 EXPORT_SYMBOL(dev_change_proto_down_reason); 8880 8881 struct bpf_xdp_link { 8882 struct bpf_link link; 8883 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 8884 int flags; 8885 }; 8886 8887 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 8888 { 8889 if (flags & XDP_FLAGS_HW_MODE) 8890 return XDP_MODE_HW; 8891 if (flags & XDP_FLAGS_DRV_MODE) 8892 return XDP_MODE_DRV; 8893 if (flags & XDP_FLAGS_SKB_MODE) 8894 return XDP_MODE_SKB; 8895 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 8896 } 8897 8898 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 8899 { 8900 switch (mode) { 8901 case XDP_MODE_SKB: 8902 return generic_xdp_install; 8903 case XDP_MODE_DRV: 8904 case XDP_MODE_HW: 8905 return dev->netdev_ops->ndo_bpf; 8906 default: 8907 return NULL; 8908 } 8909 } 8910 8911 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 8912 enum bpf_xdp_mode mode) 8913 { 8914 return dev->xdp_state[mode].link; 8915 } 8916 8917 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 8918 enum bpf_xdp_mode mode) 8919 { 8920 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 8921 8922 if (link) 8923 return link->link.prog; 8924 return dev->xdp_state[mode].prog; 8925 } 8926 8927 u8 dev_xdp_prog_count(struct net_device *dev) 8928 { 8929 u8 count = 0; 8930 int i; 8931 8932 for (i = 0; i < __MAX_XDP_MODE; i++) 8933 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 8934 count++; 8935 return count; 8936 } 8937 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 8938 8939 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 8940 { 8941 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 8942 8943 return prog ? prog->aux->id : 0; 8944 } 8945 8946 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 8947 struct bpf_xdp_link *link) 8948 { 8949 dev->xdp_state[mode].link = link; 8950 dev->xdp_state[mode].prog = NULL; 8951 } 8952 8953 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 8954 struct bpf_prog *prog) 8955 { 8956 dev->xdp_state[mode].link = NULL; 8957 dev->xdp_state[mode].prog = prog; 8958 } 8959 8960 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 8961 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 8962 u32 flags, struct bpf_prog *prog) 8963 { 8964 struct netdev_bpf xdp; 8965 int err; 8966 8967 memset(&xdp, 0, sizeof(xdp)); 8968 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 8969 xdp.extack = extack; 8970 xdp.flags = flags; 8971 xdp.prog = prog; 8972 8973 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 8974 * "moved" into driver), so they don't increment it on their own, but 8975 * they do decrement refcnt when program is detached or replaced. 8976 * Given net_device also owns link/prog, we need to bump refcnt here 8977 * to prevent drivers from underflowing it. 8978 */ 8979 if (prog) 8980 bpf_prog_inc(prog); 8981 err = bpf_op(dev, &xdp); 8982 if (err) { 8983 if (prog) 8984 bpf_prog_put(prog); 8985 return err; 8986 } 8987 8988 if (mode != XDP_MODE_HW) 8989 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 8990 8991 return 0; 8992 } 8993 8994 static void dev_xdp_uninstall(struct net_device *dev) 8995 { 8996 struct bpf_xdp_link *link; 8997 struct bpf_prog *prog; 8998 enum bpf_xdp_mode mode; 8999 bpf_op_t bpf_op; 9000 9001 ASSERT_RTNL(); 9002 9003 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9004 prog = dev_xdp_prog(dev, mode); 9005 if (!prog) 9006 continue; 9007 9008 bpf_op = dev_xdp_bpf_op(dev, mode); 9009 if (!bpf_op) 9010 continue; 9011 9012 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9013 9014 /* auto-detach link from net device */ 9015 link = dev_xdp_link(dev, mode); 9016 if (link) 9017 link->dev = NULL; 9018 else 9019 bpf_prog_put(prog); 9020 9021 dev_xdp_set_link(dev, mode, NULL); 9022 } 9023 } 9024 9025 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9026 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9027 struct bpf_prog *old_prog, u32 flags) 9028 { 9029 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9030 struct bpf_prog *cur_prog; 9031 struct net_device *upper; 9032 struct list_head *iter; 9033 enum bpf_xdp_mode mode; 9034 bpf_op_t bpf_op; 9035 int err; 9036 9037 ASSERT_RTNL(); 9038 9039 /* either link or prog attachment, never both */ 9040 if (link && (new_prog || old_prog)) 9041 return -EINVAL; 9042 /* link supports only XDP mode flags */ 9043 if (link && (flags & ~XDP_FLAGS_MODES)) { 9044 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9045 return -EINVAL; 9046 } 9047 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9048 if (num_modes > 1) { 9049 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9050 return -EINVAL; 9051 } 9052 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9053 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9054 NL_SET_ERR_MSG(extack, 9055 "More than one program loaded, unset mode is ambiguous"); 9056 return -EINVAL; 9057 } 9058 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9059 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9060 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9061 return -EINVAL; 9062 } 9063 9064 mode = dev_xdp_mode(dev, flags); 9065 /* can't replace attached link */ 9066 if (dev_xdp_link(dev, mode)) { 9067 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9068 return -EBUSY; 9069 } 9070 9071 /* don't allow if an upper device already has a program */ 9072 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9073 if (dev_xdp_prog_count(upper) > 0) { 9074 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9075 return -EEXIST; 9076 } 9077 } 9078 9079 cur_prog = dev_xdp_prog(dev, mode); 9080 /* can't replace attached prog with link */ 9081 if (link && cur_prog) { 9082 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9083 return -EBUSY; 9084 } 9085 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9086 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9087 return -EEXIST; 9088 } 9089 9090 /* put effective new program into new_prog */ 9091 if (link) 9092 new_prog = link->link.prog; 9093 9094 if (new_prog) { 9095 bool offload = mode == XDP_MODE_HW; 9096 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9097 ? XDP_MODE_DRV : XDP_MODE_SKB; 9098 9099 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9100 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9101 return -EBUSY; 9102 } 9103 if (!offload && dev_xdp_prog(dev, other_mode)) { 9104 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9105 return -EEXIST; 9106 } 9107 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) { 9108 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported"); 9109 return -EINVAL; 9110 } 9111 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9112 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9113 return -EINVAL; 9114 } 9115 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9116 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9117 return -EINVAL; 9118 } 9119 } 9120 9121 /* don't call drivers if the effective program didn't change */ 9122 if (new_prog != cur_prog) { 9123 bpf_op = dev_xdp_bpf_op(dev, mode); 9124 if (!bpf_op) { 9125 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9126 return -EOPNOTSUPP; 9127 } 9128 9129 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9130 if (err) 9131 return err; 9132 } 9133 9134 if (link) 9135 dev_xdp_set_link(dev, mode, link); 9136 else 9137 dev_xdp_set_prog(dev, mode, new_prog); 9138 if (cur_prog) 9139 bpf_prog_put(cur_prog); 9140 9141 return 0; 9142 } 9143 9144 static int dev_xdp_attach_link(struct net_device *dev, 9145 struct netlink_ext_ack *extack, 9146 struct bpf_xdp_link *link) 9147 { 9148 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9149 } 9150 9151 static int dev_xdp_detach_link(struct net_device *dev, 9152 struct netlink_ext_ack *extack, 9153 struct bpf_xdp_link *link) 9154 { 9155 enum bpf_xdp_mode mode; 9156 bpf_op_t bpf_op; 9157 9158 ASSERT_RTNL(); 9159 9160 mode = dev_xdp_mode(dev, link->flags); 9161 if (dev_xdp_link(dev, mode) != link) 9162 return -EINVAL; 9163 9164 bpf_op = dev_xdp_bpf_op(dev, mode); 9165 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9166 dev_xdp_set_link(dev, mode, NULL); 9167 return 0; 9168 } 9169 9170 static void bpf_xdp_link_release(struct bpf_link *link) 9171 { 9172 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9173 9174 rtnl_lock(); 9175 9176 /* if racing with net_device's tear down, xdp_link->dev might be 9177 * already NULL, in which case link was already auto-detached 9178 */ 9179 if (xdp_link->dev) { 9180 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9181 xdp_link->dev = NULL; 9182 } 9183 9184 rtnl_unlock(); 9185 } 9186 9187 static int bpf_xdp_link_detach(struct bpf_link *link) 9188 { 9189 bpf_xdp_link_release(link); 9190 return 0; 9191 } 9192 9193 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9194 { 9195 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9196 9197 kfree(xdp_link); 9198 } 9199 9200 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9201 struct seq_file *seq) 9202 { 9203 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9204 u32 ifindex = 0; 9205 9206 rtnl_lock(); 9207 if (xdp_link->dev) 9208 ifindex = xdp_link->dev->ifindex; 9209 rtnl_unlock(); 9210 9211 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9212 } 9213 9214 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9215 struct bpf_link_info *info) 9216 { 9217 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9218 u32 ifindex = 0; 9219 9220 rtnl_lock(); 9221 if (xdp_link->dev) 9222 ifindex = xdp_link->dev->ifindex; 9223 rtnl_unlock(); 9224 9225 info->xdp.ifindex = ifindex; 9226 return 0; 9227 } 9228 9229 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9230 struct bpf_prog *old_prog) 9231 { 9232 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9233 enum bpf_xdp_mode mode; 9234 bpf_op_t bpf_op; 9235 int err = 0; 9236 9237 rtnl_lock(); 9238 9239 /* link might have been auto-released already, so fail */ 9240 if (!xdp_link->dev) { 9241 err = -ENOLINK; 9242 goto out_unlock; 9243 } 9244 9245 if (old_prog && link->prog != old_prog) { 9246 err = -EPERM; 9247 goto out_unlock; 9248 } 9249 old_prog = link->prog; 9250 if (old_prog->type != new_prog->type || 9251 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9252 err = -EINVAL; 9253 goto out_unlock; 9254 } 9255 9256 if (old_prog == new_prog) { 9257 /* no-op, don't disturb drivers */ 9258 bpf_prog_put(new_prog); 9259 goto out_unlock; 9260 } 9261 9262 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9263 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9264 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9265 xdp_link->flags, new_prog); 9266 if (err) 9267 goto out_unlock; 9268 9269 old_prog = xchg(&link->prog, new_prog); 9270 bpf_prog_put(old_prog); 9271 9272 out_unlock: 9273 rtnl_unlock(); 9274 return err; 9275 } 9276 9277 static const struct bpf_link_ops bpf_xdp_link_lops = { 9278 .release = bpf_xdp_link_release, 9279 .dealloc = bpf_xdp_link_dealloc, 9280 .detach = bpf_xdp_link_detach, 9281 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9282 .fill_link_info = bpf_xdp_link_fill_link_info, 9283 .update_prog = bpf_xdp_link_update, 9284 }; 9285 9286 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9287 { 9288 struct net *net = current->nsproxy->net_ns; 9289 struct bpf_link_primer link_primer; 9290 struct bpf_xdp_link *link; 9291 struct net_device *dev; 9292 int err, fd; 9293 9294 rtnl_lock(); 9295 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9296 if (!dev) { 9297 rtnl_unlock(); 9298 return -EINVAL; 9299 } 9300 9301 link = kzalloc(sizeof(*link), GFP_USER); 9302 if (!link) { 9303 err = -ENOMEM; 9304 goto unlock; 9305 } 9306 9307 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9308 link->dev = dev; 9309 link->flags = attr->link_create.flags; 9310 9311 err = bpf_link_prime(&link->link, &link_primer); 9312 if (err) { 9313 kfree(link); 9314 goto unlock; 9315 } 9316 9317 err = dev_xdp_attach_link(dev, NULL, link); 9318 rtnl_unlock(); 9319 9320 if (err) { 9321 link->dev = NULL; 9322 bpf_link_cleanup(&link_primer); 9323 goto out_put_dev; 9324 } 9325 9326 fd = bpf_link_settle(&link_primer); 9327 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9328 dev_put(dev); 9329 return fd; 9330 9331 unlock: 9332 rtnl_unlock(); 9333 9334 out_put_dev: 9335 dev_put(dev); 9336 return err; 9337 } 9338 9339 /** 9340 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9341 * @dev: device 9342 * @extack: netlink extended ack 9343 * @fd: new program fd or negative value to clear 9344 * @expected_fd: old program fd that userspace expects to replace or clear 9345 * @flags: xdp-related flags 9346 * 9347 * Set or clear a bpf program for a device 9348 */ 9349 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9350 int fd, int expected_fd, u32 flags) 9351 { 9352 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9353 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9354 int err; 9355 9356 ASSERT_RTNL(); 9357 9358 if (fd >= 0) { 9359 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9360 mode != XDP_MODE_SKB); 9361 if (IS_ERR(new_prog)) 9362 return PTR_ERR(new_prog); 9363 } 9364 9365 if (expected_fd >= 0) { 9366 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9367 mode != XDP_MODE_SKB); 9368 if (IS_ERR(old_prog)) { 9369 err = PTR_ERR(old_prog); 9370 old_prog = NULL; 9371 goto err_out; 9372 } 9373 } 9374 9375 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9376 9377 err_out: 9378 if (err && new_prog) 9379 bpf_prog_put(new_prog); 9380 if (old_prog) 9381 bpf_prog_put(old_prog); 9382 return err; 9383 } 9384 9385 /** 9386 * dev_new_index - allocate an ifindex 9387 * @net: the applicable net namespace 9388 * 9389 * Returns a suitable unique value for a new device interface 9390 * number. The caller must hold the rtnl semaphore or the 9391 * dev_base_lock to be sure it remains unique. 9392 */ 9393 static int dev_new_index(struct net *net) 9394 { 9395 int ifindex = net->ifindex; 9396 9397 for (;;) { 9398 if (++ifindex <= 0) 9399 ifindex = 1; 9400 if (!__dev_get_by_index(net, ifindex)) 9401 return net->ifindex = ifindex; 9402 } 9403 } 9404 9405 /* Delayed registration/unregisteration */ 9406 static LIST_HEAD(net_todo_list); 9407 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9408 9409 static void net_set_todo(struct net_device *dev) 9410 { 9411 list_add_tail(&dev->todo_list, &net_todo_list); 9412 atomic_inc(&dev_net(dev)->dev_unreg_count); 9413 } 9414 9415 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9416 struct net_device *upper, netdev_features_t features) 9417 { 9418 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9419 netdev_features_t feature; 9420 int feature_bit; 9421 9422 for_each_netdev_feature(upper_disables, feature_bit) { 9423 feature = __NETIF_F_BIT(feature_bit); 9424 if (!(upper->wanted_features & feature) 9425 && (features & feature)) { 9426 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9427 &feature, upper->name); 9428 features &= ~feature; 9429 } 9430 } 9431 9432 return features; 9433 } 9434 9435 static void netdev_sync_lower_features(struct net_device *upper, 9436 struct net_device *lower, netdev_features_t features) 9437 { 9438 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9439 netdev_features_t feature; 9440 int feature_bit; 9441 9442 for_each_netdev_feature(upper_disables, feature_bit) { 9443 feature = __NETIF_F_BIT(feature_bit); 9444 if (!(features & feature) && (lower->features & feature)) { 9445 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9446 &feature, lower->name); 9447 lower->wanted_features &= ~feature; 9448 __netdev_update_features(lower); 9449 9450 if (unlikely(lower->features & feature)) 9451 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9452 &feature, lower->name); 9453 else 9454 netdev_features_change(lower); 9455 } 9456 } 9457 } 9458 9459 static netdev_features_t netdev_fix_features(struct net_device *dev, 9460 netdev_features_t features) 9461 { 9462 /* Fix illegal checksum combinations */ 9463 if ((features & NETIF_F_HW_CSUM) && 9464 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9465 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9466 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9467 } 9468 9469 /* TSO requires that SG is present as well. */ 9470 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9471 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9472 features &= ~NETIF_F_ALL_TSO; 9473 } 9474 9475 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9476 !(features & NETIF_F_IP_CSUM)) { 9477 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9478 features &= ~NETIF_F_TSO; 9479 features &= ~NETIF_F_TSO_ECN; 9480 } 9481 9482 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9483 !(features & NETIF_F_IPV6_CSUM)) { 9484 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9485 features &= ~NETIF_F_TSO6; 9486 } 9487 9488 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9489 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9490 features &= ~NETIF_F_TSO_MANGLEID; 9491 9492 /* TSO ECN requires that TSO is present as well. */ 9493 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9494 features &= ~NETIF_F_TSO_ECN; 9495 9496 /* Software GSO depends on SG. */ 9497 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9498 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9499 features &= ~NETIF_F_GSO; 9500 } 9501 9502 /* GSO partial features require GSO partial be set */ 9503 if ((features & dev->gso_partial_features) && 9504 !(features & NETIF_F_GSO_PARTIAL)) { 9505 netdev_dbg(dev, 9506 "Dropping partially supported GSO features since no GSO partial.\n"); 9507 features &= ~dev->gso_partial_features; 9508 } 9509 9510 if (!(features & NETIF_F_RXCSUM)) { 9511 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9512 * successfully merged by hardware must also have the 9513 * checksum verified by hardware. If the user does not 9514 * want to enable RXCSUM, logically, we should disable GRO_HW. 9515 */ 9516 if (features & NETIF_F_GRO_HW) { 9517 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9518 features &= ~NETIF_F_GRO_HW; 9519 } 9520 } 9521 9522 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9523 if (features & NETIF_F_RXFCS) { 9524 if (features & NETIF_F_LRO) { 9525 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9526 features &= ~NETIF_F_LRO; 9527 } 9528 9529 if (features & NETIF_F_GRO_HW) { 9530 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9531 features &= ~NETIF_F_GRO_HW; 9532 } 9533 } 9534 9535 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 9536 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 9537 features &= ~NETIF_F_LRO; 9538 } 9539 9540 if (features & NETIF_F_HW_TLS_TX) { 9541 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9542 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9543 bool hw_csum = features & NETIF_F_HW_CSUM; 9544 9545 if (!ip_csum && !hw_csum) { 9546 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9547 features &= ~NETIF_F_HW_TLS_TX; 9548 } 9549 } 9550 9551 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9552 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9553 features &= ~NETIF_F_HW_TLS_RX; 9554 } 9555 9556 return features; 9557 } 9558 9559 int __netdev_update_features(struct net_device *dev) 9560 { 9561 struct net_device *upper, *lower; 9562 netdev_features_t features; 9563 struct list_head *iter; 9564 int err = -1; 9565 9566 ASSERT_RTNL(); 9567 9568 features = netdev_get_wanted_features(dev); 9569 9570 if (dev->netdev_ops->ndo_fix_features) 9571 features = dev->netdev_ops->ndo_fix_features(dev, features); 9572 9573 /* driver might be less strict about feature dependencies */ 9574 features = netdev_fix_features(dev, features); 9575 9576 /* some features can't be enabled if they're off on an upper device */ 9577 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9578 features = netdev_sync_upper_features(dev, upper, features); 9579 9580 if (dev->features == features) 9581 goto sync_lower; 9582 9583 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9584 &dev->features, &features); 9585 9586 if (dev->netdev_ops->ndo_set_features) 9587 err = dev->netdev_ops->ndo_set_features(dev, features); 9588 else 9589 err = 0; 9590 9591 if (unlikely(err < 0)) { 9592 netdev_err(dev, 9593 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9594 err, &features, &dev->features); 9595 /* return non-0 since some features might have changed and 9596 * it's better to fire a spurious notification than miss it 9597 */ 9598 return -1; 9599 } 9600 9601 sync_lower: 9602 /* some features must be disabled on lower devices when disabled 9603 * on an upper device (think: bonding master or bridge) 9604 */ 9605 netdev_for_each_lower_dev(dev, lower, iter) 9606 netdev_sync_lower_features(dev, lower, features); 9607 9608 if (!err) { 9609 netdev_features_t diff = features ^ dev->features; 9610 9611 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9612 /* udp_tunnel_{get,drop}_rx_info both need 9613 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9614 * device, or they won't do anything. 9615 * Thus we need to update dev->features 9616 * *before* calling udp_tunnel_get_rx_info, 9617 * but *after* calling udp_tunnel_drop_rx_info. 9618 */ 9619 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9620 dev->features = features; 9621 udp_tunnel_get_rx_info(dev); 9622 } else { 9623 udp_tunnel_drop_rx_info(dev); 9624 } 9625 } 9626 9627 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9628 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9629 dev->features = features; 9630 err |= vlan_get_rx_ctag_filter_info(dev); 9631 } else { 9632 vlan_drop_rx_ctag_filter_info(dev); 9633 } 9634 } 9635 9636 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9637 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9638 dev->features = features; 9639 err |= vlan_get_rx_stag_filter_info(dev); 9640 } else { 9641 vlan_drop_rx_stag_filter_info(dev); 9642 } 9643 } 9644 9645 dev->features = features; 9646 } 9647 9648 return err < 0 ? 0 : 1; 9649 } 9650 9651 /** 9652 * netdev_update_features - recalculate device features 9653 * @dev: the device to check 9654 * 9655 * Recalculate dev->features set and send notifications if it 9656 * has changed. Should be called after driver or hardware dependent 9657 * conditions might have changed that influence the features. 9658 */ 9659 void netdev_update_features(struct net_device *dev) 9660 { 9661 if (__netdev_update_features(dev)) 9662 netdev_features_change(dev); 9663 } 9664 EXPORT_SYMBOL(netdev_update_features); 9665 9666 /** 9667 * netdev_change_features - recalculate device features 9668 * @dev: the device to check 9669 * 9670 * Recalculate dev->features set and send notifications even 9671 * if they have not changed. Should be called instead of 9672 * netdev_update_features() if also dev->vlan_features might 9673 * have changed to allow the changes to be propagated to stacked 9674 * VLAN devices. 9675 */ 9676 void netdev_change_features(struct net_device *dev) 9677 { 9678 __netdev_update_features(dev); 9679 netdev_features_change(dev); 9680 } 9681 EXPORT_SYMBOL(netdev_change_features); 9682 9683 /** 9684 * netif_stacked_transfer_operstate - transfer operstate 9685 * @rootdev: the root or lower level device to transfer state from 9686 * @dev: the device to transfer operstate to 9687 * 9688 * Transfer operational state from root to device. This is normally 9689 * called when a stacking relationship exists between the root 9690 * device and the device(a leaf device). 9691 */ 9692 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9693 struct net_device *dev) 9694 { 9695 if (rootdev->operstate == IF_OPER_DORMANT) 9696 netif_dormant_on(dev); 9697 else 9698 netif_dormant_off(dev); 9699 9700 if (rootdev->operstate == IF_OPER_TESTING) 9701 netif_testing_on(dev); 9702 else 9703 netif_testing_off(dev); 9704 9705 if (netif_carrier_ok(rootdev)) 9706 netif_carrier_on(dev); 9707 else 9708 netif_carrier_off(dev); 9709 } 9710 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9711 9712 static int netif_alloc_rx_queues(struct net_device *dev) 9713 { 9714 unsigned int i, count = dev->num_rx_queues; 9715 struct netdev_rx_queue *rx; 9716 size_t sz = count * sizeof(*rx); 9717 int err = 0; 9718 9719 BUG_ON(count < 1); 9720 9721 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 9722 if (!rx) 9723 return -ENOMEM; 9724 9725 dev->_rx = rx; 9726 9727 for (i = 0; i < count; i++) { 9728 rx[i].dev = dev; 9729 9730 /* XDP RX-queue setup */ 9731 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 9732 if (err < 0) 9733 goto err_rxq_info; 9734 } 9735 return 0; 9736 9737 err_rxq_info: 9738 /* Rollback successful reg's and free other resources */ 9739 while (i--) 9740 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9741 kvfree(dev->_rx); 9742 dev->_rx = NULL; 9743 return err; 9744 } 9745 9746 static void netif_free_rx_queues(struct net_device *dev) 9747 { 9748 unsigned int i, count = dev->num_rx_queues; 9749 9750 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9751 if (!dev->_rx) 9752 return; 9753 9754 for (i = 0; i < count; i++) 9755 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9756 9757 kvfree(dev->_rx); 9758 } 9759 9760 static void netdev_init_one_queue(struct net_device *dev, 9761 struct netdev_queue *queue, void *_unused) 9762 { 9763 /* Initialize queue lock */ 9764 spin_lock_init(&queue->_xmit_lock); 9765 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9766 queue->xmit_lock_owner = -1; 9767 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9768 queue->dev = dev; 9769 #ifdef CONFIG_BQL 9770 dql_init(&queue->dql, HZ); 9771 #endif 9772 } 9773 9774 static void netif_free_tx_queues(struct net_device *dev) 9775 { 9776 kvfree(dev->_tx); 9777 } 9778 9779 static int netif_alloc_netdev_queues(struct net_device *dev) 9780 { 9781 unsigned int count = dev->num_tx_queues; 9782 struct netdev_queue *tx; 9783 size_t sz = count * sizeof(*tx); 9784 9785 if (count < 1 || count > 0xffff) 9786 return -EINVAL; 9787 9788 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 9789 if (!tx) 9790 return -ENOMEM; 9791 9792 dev->_tx = tx; 9793 9794 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9795 spin_lock_init(&dev->tx_global_lock); 9796 9797 return 0; 9798 } 9799 9800 void netif_tx_stop_all_queues(struct net_device *dev) 9801 { 9802 unsigned int i; 9803 9804 for (i = 0; i < dev->num_tx_queues; i++) { 9805 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9806 9807 netif_tx_stop_queue(txq); 9808 } 9809 } 9810 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9811 9812 /** 9813 * register_netdevice - register a network device 9814 * @dev: device to register 9815 * 9816 * Take a completed network device structure and add it to the kernel 9817 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9818 * chain. 0 is returned on success. A negative errno code is returned 9819 * on a failure to set up the device, or if the name is a duplicate. 9820 * 9821 * Callers must hold the rtnl semaphore. You may want 9822 * register_netdev() instead of this. 9823 * 9824 * BUGS: 9825 * The locking appears insufficient to guarantee two parallel registers 9826 * will not get the same name. 9827 */ 9828 9829 int register_netdevice(struct net_device *dev) 9830 { 9831 int ret; 9832 struct net *net = dev_net(dev); 9833 9834 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9835 NETDEV_FEATURE_COUNT); 9836 BUG_ON(dev_boot_phase); 9837 ASSERT_RTNL(); 9838 9839 might_sleep(); 9840 9841 /* When net_device's are persistent, this will be fatal. */ 9842 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9843 BUG_ON(!net); 9844 9845 ret = ethtool_check_ops(dev->ethtool_ops); 9846 if (ret) 9847 return ret; 9848 9849 spin_lock_init(&dev->addr_list_lock); 9850 netdev_set_addr_lockdep_class(dev); 9851 9852 ret = dev_get_valid_name(net, dev, dev->name); 9853 if (ret < 0) 9854 goto out; 9855 9856 ret = -ENOMEM; 9857 dev->name_node = netdev_name_node_head_alloc(dev); 9858 if (!dev->name_node) 9859 goto out; 9860 9861 /* Init, if this function is available */ 9862 if (dev->netdev_ops->ndo_init) { 9863 ret = dev->netdev_ops->ndo_init(dev); 9864 if (ret) { 9865 if (ret > 0) 9866 ret = -EIO; 9867 goto err_free_name; 9868 } 9869 } 9870 9871 if (((dev->hw_features | dev->features) & 9872 NETIF_F_HW_VLAN_CTAG_FILTER) && 9873 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9874 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9875 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9876 ret = -EINVAL; 9877 goto err_uninit; 9878 } 9879 9880 ret = -EBUSY; 9881 if (!dev->ifindex) 9882 dev->ifindex = dev_new_index(net); 9883 else if (__dev_get_by_index(net, dev->ifindex)) 9884 goto err_uninit; 9885 9886 /* Transfer changeable features to wanted_features and enable 9887 * software offloads (GSO and GRO). 9888 */ 9889 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 9890 dev->features |= NETIF_F_SOFT_FEATURES; 9891 9892 if (dev->udp_tunnel_nic_info) { 9893 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9894 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9895 } 9896 9897 dev->wanted_features = dev->features & dev->hw_features; 9898 9899 if (!(dev->flags & IFF_LOOPBACK)) 9900 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9901 9902 /* If IPv4 TCP segmentation offload is supported we should also 9903 * allow the device to enable segmenting the frame with the option 9904 * of ignoring a static IP ID value. This doesn't enable the 9905 * feature itself but allows the user to enable it later. 9906 */ 9907 if (dev->hw_features & NETIF_F_TSO) 9908 dev->hw_features |= NETIF_F_TSO_MANGLEID; 9909 if (dev->vlan_features & NETIF_F_TSO) 9910 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 9911 if (dev->mpls_features & NETIF_F_TSO) 9912 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 9913 if (dev->hw_enc_features & NETIF_F_TSO) 9914 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 9915 9916 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 9917 */ 9918 dev->vlan_features |= NETIF_F_HIGHDMA; 9919 9920 /* Make NETIF_F_SG inheritable to tunnel devices. 9921 */ 9922 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 9923 9924 /* Make NETIF_F_SG inheritable to MPLS. 9925 */ 9926 dev->mpls_features |= NETIF_F_SG; 9927 9928 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 9929 ret = notifier_to_errno(ret); 9930 if (ret) 9931 goto err_uninit; 9932 9933 ret = netdev_register_kobject(dev); 9934 if (ret) { 9935 dev->reg_state = NETREG_UNREGISTERED; 9936 goto err_uninit; 9937 } 9938 dev->reg_state = NETREG_REGISTERED; 9939 9940 __netdev_update_features(dev); 9941 9942 /* 9943 * Default initial state at registry is that the 9944 * device is present. 9945 */ 9946 9947 set_bit(__LINK_STATE_PRESENT, &dev->state); 9948 9949 linkwatch_init_dev(dev); 9950 9951 dev_init_scheduler(dev); 9952 9953 dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL); 9954 list_netdevice(dev); 9955 9956 add_device_randomness(dev->dev_addr, dev->addr_len); 9957 9958 /* If the device has permanent device address, driver should 9959 * set dev_addr and also addr_assign_type should be set to 9960 * NET_ADDR_PERM (default value). 9961 */ 9962 if (dev->addr_assign_type == NET_ADDR_PERM) 9963 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 9964 9965 /* Notify protocols, that a new device appeared. */ 9966 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 9967 ret = notifier_to_errno(ret); 9968 if (ret) { 9969 /* Expect explicit free_netdev() on failure */ 9970 dev->needs_free_netdev = false; 9971 unregister_netdevice_queue(dev, NULL); 9972 goto out; 9973 } 9974 /* 9975 * Prevent userspace races by waiting until the network 9976 * device is fully setup before sending notifications. 9977 */ 9978 if (!dev->rtnl_link_ops || 9979 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 9980 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9981 9982 out: 9983 return ret; 9984 9985 err_uninit: 9986 if (dev->netdev_ops->ndo_uninit) 9987 dev->netdev_ops->ndo_uninit(dev); 9988 if (dev->priv_destructor) 9989 dev->priv_destructor(dev); 9990 err_free_name: 9991 netdev_name_node_free(dev->name_node); 9992 goto out; 9993 } 9994 EXPORT_SYMBOL(register_netdevice); 9995 9996 /** 9997 * init_dummy_netdev - init a dummy network device for NAPI 9998 * @dev: device to init 9999 * 10000 * This takes a network device structure and initialize the minimum 10001 * amount of fields so it can be used to schedule NAPI polls without 10002 * registering a full blown interface. This is to be used by drivers 10003 * that need to tie several hardware interfaces to a single NAPI 10004 * poll scheduler due to HW limitations. 10005 */ 10006 int init_dummy_netdev(struct net_device *dev) 10007 { 10008 /* Clear everything. Note we don't initialize spinlocks 10009 * are they aren't supposed to be taken by any of the 10010 * NAPI code and this dummy netdev is supposed to be 10011 * only ever used for NAPI polls 10012 */ 10013 memset(dev, 0, sizeof(struct net_device)); 10014 10015 /* make sure we BUG if trying to hit standard 10016 * register/unregister code path 10017 */ 10018 dev->reg_state = NETREG_DUMMY; 10019 10020 /* NAPI wants this */ 10021 INIT_LIST_HEAD(&dev->napi_list); 10022 10023 /* a dummy interface is started by default */ 10024 set_bit(__LINK_STATE_PRESENT, &dev->state); 10025 set_bit(__LINK_STATE_START, &dev->state); 10026 10027 /* napi_busy_loop stats accounting wants this */ 10028 dev_net_set(dev, &init_net); 10029 10030 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10031 * because users of this 'device' dont need to change 10032 * its refcount. 10033 */ 10034 10035 return 0; 10036 } 10037 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10038 10039 10040 /** 10041 * register_netdev - register a network device 10042 * @dev: device to register 10043 * 10044 * Take a completed network device structure and add it to the kernel 10045 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10046 * chain. 0 is returned on success. A negative errno code is returned 10047 * on a failure to set up the device, or if the name is a duplicate. 10048 * 10049 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10050 * and expands the device name if you passed a format string to 10051 * alloc_netdev. 10052 */ 10053 int register_netdev(struct net_device *dev) 10054 { 10055 int err; 10056 10057 if (rtnl_lock_killable()) 10058 return -EINTR; 10059 err = register_netdevice(dev); 10060 rtnl_unlock(); 10061 return err; 10062 } 10063 EXPORT_SYMBOL(register_netdev); 10064 10065 int netdev_refcnt_read(const struct net_device *dev) 10066 { 10067 #ifdef CONFIG_PCPU_DEV_REFCNT 10068 int i, refcnt = 0; 10069 10070 for_each_possible_cpu(i) 10071 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10072 return refcnt; 10073 #else 10074 return refcount_read(&dev->dev_refcnt); 10075 #endif 10076 } 10077 EXPORT_SYMBOL(netdev_refcnt_read); 10078 10079 int netdev_unregister_timeout_secs __read_mostly = 10; 10080 10081 #define WAIT_REFS_MIN_MSECS 1 10082 #define WAIT_REFS_MAX_MSECS 250 10083 /** 10084 * netdev_wait_allrefs_any - wait until all references are gone. 10085 * @list: list of net_devices to wait on 10086 * 10087 * This is called when unregistering network devices. 10088 * 10089 * Any protocol or device that holds a reference should register 10090 * for netdevice notification, and cleanup and put back the 10091 * reference if they receive an UNREGISTER event. 10092 * We can get stuck here if buggy protocols don't correctly 10093 * call dev_put. 10094 */ 10095 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10096 { 10097 unsigned long rebroadcast_time, warning_time; 10098 struct net_device *dev; 10099 int wait = 0; 10100 10101 rebroadcast_time = warning_time = jiffies; 10102 10103 list_for_each_entry(dev, list, todo_list) 10104 if (netdev_refcnt_read(dev) == 1) 10105 return dev; 10106 10107 while (true) { 10108 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10109 rtnl_lock(); 10110 10111 /* Rebroadcast unregister notification */ 10112 list_for_each_entry(dev, list, todo_list) 10113 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10114 10115 __rtnl_unlock(); 10116 rcu_barrier(); 10117 rtnl_lock(); 10118 10119 list_for_each_entry(dev, list, todo_list) 10120 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10121 &dev->state)) { 10122 /* We must not have linkwatch events 10123 * pending on unregister. If this 10124 * happens, we simply run the queue 10125 * unscheduled, resulting in a noop 10126 * for this device. 10127 */ 10128 linkwatch_run_queue(); 10129 break; 10130 } 10131 10132 __rtnl_unlock(); 10133 10134 rebroadcast_time = jiffies; 10135 } 10136 10137 if (!wait) { 10138 rcu_barrier(); 10139 wait = WAIT_REFS_MIN_MSECS; 10140 } else { 10141 msleep(wait); 10142 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10143 } 10144 10145 list_for_each_entry(dev, list, todo_list) 10146 if (netdev_refcnt_read(dev) == 1) 10147 return dev; 10148 10149 if (time_after(jiffies, warning_time + 10150 netdev_unregister_timeout_secs * HZ)) { 10151 list_for_each_entry(dev, list, todo_list) { 10152 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10153 dev->name, netdev_refcnt_read(dev)); 10154 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10155 } 10156 10157 warning_time = jiffies; 10158 } 10159 } 10160 } 10161 10162 /* The sequence is: 10163 * 10164 * rtnl_lock(); 10165 * ... 10166 * register_netdevice(x1); 10167 * register_netdevice(x2); 10168 * ... 10169 * unregister_netdevice(y1); 10170 * unregister_netdevice(y2); 10171 * ... 10172 * rtnl_unlock(); 10173 * free_netdev(y1); 10174 * free_netdev(y2); 10175 * 10176 * We are invoked by rtnl_unlock(). 10177 * This allows us to deal with problems: 10178 * 1) We can delete sysfs objects which invoke hotplug 10179 * without deadlocking with linkwatch via keventd. 10180 * 2) Since we run with the RTNL semaphore not held, we can sleep 10181 * safely in order to wait for the netdev refcnt to drop to zero. 10182 * 10183 * We must not return until all unregister events added during 10184 * the interval the lock was held have been completed. 10185 */ 10186 void netdev_run_todo(void) 10187 { 10188 struct net_device *dev, *tmp; 10189 struct list_head list; 10190 #ifdef CONFIG_LOCKDEP 10191 struct list_head unlink_list; 10192 10193 list_replace_init(&net_unlink_list, &unlink_list); 10194 10195 while (!list_empty(&unlink_list)) { 10196 struct net_device *dev = list_first_entry(&unlink_list, 10197 struct net_device, 10198 unlink_list); 10199 list_del_init(&dev->unlink_list); 10200 dev->nested_level = dev->lower_level - 1; 10201 } 10202 #endif 10203 10204 /* Snapshot list, allow later requests */ 10205 list_replace_init(&net_todo_list, &list); 10206 10207 __rtnl_unlock(); 10208 10209 /* Wait for rcu callbacks to finish before next phase */ 10210 if (!list_empty(&list)) 10211 rcu_barrier(); 10212 10213 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10214 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10215 netdev_WARN(dev, "run_todo but not unregistering\n"); 10216 list_del(&dev->todo_list); 10217 continue; 10218 } 10219 10220 dev->reg_state = NETREG_UNREGISTERED; 10221 linkwatch_forget_dev(dev); 10222 } 10223 10224 while (!list_empty(&list)) { 10225 dev = netdev_wait_allrefs_any(&list); 10226 list_del(&dev->todo_list); 10227 10228 /* paranoia */ 10229 BUG_ON(netdev_refcnt_read(dev) != 1); 10230 BUG_ON(!list_empty(&dev->ptype_all)); 10231 BUG_ON(!list_empty(&dev->ptype_specific)); 10232 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10233 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10234 #if IS_ENABLED(CONFIG_DECNET) 10235 WARN_ON(dev->dn_ptr); 10236 #endif 10237 if (dev->priv_destructor) 10238 dev->priv_destructor(dev); 10239 if (dev->needs_free_netdev) 10240 free_netdev(dev); 10241 10242 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count)) 10243 wake_up(&netdev_unregistering_wq); 10244 10245 /* Free network device */ 10246 kobject_put(&dev->dev.kobj); 10247 } 10248 } 10249 10250 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10251 * all the same fields in the same order as net_device_stats, with only 10252 * the type differing, but rtnl_link_stats64 may have additional fields 10253 * at the end for newer counters. 10254 */ 10255 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10256 const struct net_device_stats *netdev_stats) 10257 { 10258 #if BITS_PER_LONG == 64 10259 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 10260 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 10261 /* zero out counters that only exist in rtnl_link_stats64 */ 10262 memset((char *)stats64 + sizeof(*netdev_stats), 0, 10263 sizeof(*stats64) - sizeof(*netdev_stats)); 10264 #else 10265 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 10266 const unsigned long *src = (const unsigned long *)netdev_stats; 10267 u64 *dst = (u64 *)stats64; 10268 10269 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10270 for (i = 0; i < n; i++) 10271 dst[i] = src[i]; 10272 /* zero out counters that only exist in rtnl_link_stats64 */ 10273 memset((char *)stats64 + n * sizeof(u64), 0, 10274 sizeof(*stats64) - n * sizeof(u64)); 10275 #endif 10276 } 10277 EXPORT_SYMBOL(netdev_stats_to_stats64); 10278 10279 /** 10280 * dev_get_stats - get network device statistics 10281 * @dev: device to get statistics from 10282 * @storage: place to store stats 10283 * 10284 * Get network statistics from device. Return @storage. 10285 * The device driver may provide its own method by setting 10286 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10287 * otherwise the internal statistics structure is used. 10288 */ 10289 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10290 struct rtnl_link_stats64 *storage) 10291 { 10292 const struct net_device_ops *ops = dev->netdev_ops; 10293 10294 if (ops->ndo_get_stats64) { 10295 memset(storage, 0, sizeof(*storage)); 10296 ops->ndo_get_stats64(dev, storage); 10297 } else if (ops->ndo_get_stats) { 10298 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10299 } else { 10300 netdev_stats_to_stats64(storage, &dev->stats); 10301 } 10302 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 10303 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 10304 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 10305 return storage; 10306 } 10307 EXPORT_SYMBOL(dev_get_stats); 10308 10309 /** 10310 * dev_fetch_sw_netstats - get per-cpu network device statistics 10311 * @s: place to store stats 10312 * @netstats: per-cpu network stats to read from 10313 * 10314 * Read per-cpu network statistics and populate the related fields in @s. 10315 */ 10316 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10317 const struct pcpu_sw_netstats __percpu *netstats) 10318 { 10319 int cpu; 10320 10321 for_each_possible_cpu(cpu) { 10322 const struct pcpu_sw_netstats *stats; 10323 struct pcpu_sw_netstats tmp; 10324 unsigned int start; 10325 10326 stats = per_cpu_ptr(netstats, cpu); 10327 do { 10328 start = u64_stats_fetch_begin_irq(&stats->syncp); 10329 tmp.rx_packets = stats->rx_packets; 10330 tmp.rx_bytes = stats->rx_bytes; 10331 tmp.tx_packets = stats->tx_packets; 10332 tmp.tx_bytes = stats->tx_bytes; 10333 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 10334 10335 s->rx_packets += tmp.rx_packets; 10336 s->rx_bytes += tmp.rx_bytes; 10337 s->tx_packets += tmp.tx_packets; 10338 s->tx_bytes += tmp.tx_bytes; 10339 } 10340 } 10341 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10342 10343 /** 10344 * dev_get_tstats64 - ndo_get_stats64 implementation 10345 * @dev: device to get statistics from 10346 * @s: place to store stats 10347 * 10348 * Populate @s from dev->stats and dev->tstats. Can be used as 10349 * ndo_get_stats64() callback. 10350 */ 10351 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10352 { 10353 netdev_stats_to_stats64(s, &dev->stats); 10354 dev_fetch_sw_netstats(s, dev->tstats); 10355 } 10356 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10357 10358 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10359 { 10360 struct netdev_queue *queue = dev_ingress_queue(dev); 10361 10362 #ifdef CONFIG_NET_CLS_ACT 10363 if (queue) 10364 return queue; 10365 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10366 if (!queue) 10367 return NULL; 10368 netdev_init_one_queue(dev, queue, NULL); 10369 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10370 queue->qdisc_sleeping = &noop_qdisc; 10371 rcu_assign_pointer(dev->ingress_queue, queue); 10372 #endif 10373 return queue; 10374 } 10375 10376 static const struct ethtool_ops default_ethtool_ops; 10377 10378 void netdev_set_default_ethtool_ops(struct net_device *dev, 10379 const struct ethtool_ops *ops) 10380 { 10381 if (dev->ethtool_ops == &default_ethtool_ops) 10382 dev->ethtool_ops = ops; 10383 } 10384 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10385 10386 void netdev_freemem(struct net_device *dev) 10387 { 10388 char *addr = (char *)dev - dev->padded; 10389 10390 kvfree(addr); 10391 } 10392 10393 /** 10394 * alloc_netdev_mqs - allocate network device 10395 * @sizeof_priv: size of private data to allocate space for 10396 * @name: device name format string 10397 * @name_assign_type: origin of device name 10398 * @setup: callback to initialize device 10399 * @txqs: the number of TX subqueues to allocate 10400 * @rxqs: the number of RX subqueues to allocate 10401 * 10402 * Allocates a struct net_device with private data area for driver use 10403 * and performs basic initialization. Also allocates subqueue structs 10404 * for each queue on the device. 10405 */ 10406 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10407 unsigned char name_assign_type, 10408 void (*setup)(struct net_device *), 10409 unsigned int txqs, unsigned int rxqs) 10410 { 10411 struct net_device *dev; 10412 unsigned int alloc_size; 10413 struct net_device *p; 10414 10415 BUG_ON(strlen(name) >= sizeof(dev->name)); 10416 10417 if (txqs < 1) { 10418 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10419 return NULL; 10420 } 10421 10422 if (rxqs < 1) { 10423 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10424 return NULL; 10425 } 10426 10427 alloc_size = sizeof(struct net_device); 10428 if (sizeof_priv) { 10429 /* ensure 32-byte alignment of private area */ 10430 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10431 alloc_size += sizeof_priv; 10432 } 10433 /* ensure 32-byte alignment of whole construct */ 10434 alloc_size += NETDEV_ALIGN - 1; 10435 10436 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10437 if (!p) 10438 return NULL; 10439 10440 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10441 dev->padded = (char *)dev - (char *)p; 10442 10443 ref_tracker_dir_init(&dev->refcnt_tracker, 128); 10444 #ifdef CONFIG_PCPU_DEV_REFCNT 10445 dev->pcpu_refcnt = alloc_percpu(int); 10446 if (!dev->pcpu_refcnt) 10447 goto free_dev; 10448 __dev_hold(dev); 10449 #else 10450 refcount_set(&dev->dev_refcnt, 1); 10451 #endif 10452 10453 if (dev_addr_init(dev)) 10454 goto free_pcpu; 10455 10456 dev_mc_init(dev); 10457 dev_uc_init(dev); 10458 10459 dev_net_set(dev, &init_net); 10460 10461 dev->gso_max_size = GSO_MAX_SIZE; 10462 dev->gso_max_segs = GSO_MAX_SEGS; 10463 dev->gro_max_size = GRO_MAX_SIZE; 10464 dev->upper_level = 1; 10465 dev->lower_level = 1; 10466 #ifdef CONFIG_LOCKDEP 10467 dev->nested_level = 0; 10468 INIT_LIST_HEAD(&dev->unlink_list); 10469 #endif 10470 10471 INIT_LIST_HEAD(&dev->napi_list); 10472 INIT_LIST_HEAD(&dev->unreg_list); 10473 INIT_LIST_HEAD(&dev->close_list); 10474 INIT_LIST_HEAD(&dev->link_watch_list); 10475 INIT_LIST_HEAD(&dev->adj_list.upper); 10476 INIT_LIST_HEAD(&dev->adj_list.lower); 10477 INIT_LIST_HEAD(&dev->ptype_all); 10478 INIT_LIST_HEAD(&dev->ptype_specific); 10479 INIT_LIST_HEAD(&dev->net_notifier_list); 10480 #ifdef CONFIG_NET_SCHED 10481 hash_init(dev->qdisc_hash); 10482 #endif 10483 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10484 setup(dev); 10485 10486 if (!dev->tx_queue_len) { 10487 dev->priv_flags |= IFF_NO_QUEUE; 10488 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10489 } 10490 10491 dev->num_tx_queues = txqs; 10492 dev->real_num_tx_queues = txqs; 10493 if (netif_alloc_netdev_queues(dev)) 10494 goto free_all; 10495 10496 dev->num_rx_queues = rxqs; 10497 dev->real_num_rx_queues = rxqs; 10498 if (netif_alloc_rx_queues(dev)) 10499 goto free_all; 10500 10501 strcpy(dev->name, name); 10502 dev->name_assign_type = name_assign_type; 10503 dev->group = INIT_NETDEV_GROUP; 10504 if (!dev->ethtool_ops) 10505 dev->ethtool_ops = &default_ethtool_ops; 10506 10507 nf_hook_netdev_init(dev); 10508 10509 return dev; 10510 10511 free_all: 10512 free_netdev(dev); 10513 return NULL; 10514 10515 free_pcpu: 10516 #ifdef CONFIG_PCPU_DEV_REFCNT 10517 free_percpu(dev->pcpu_refcnt); 10518 free_dev: 10519 #endif 10520 netdev_freemem(dev); 10521 return NULL; 10522 } 10523 EXPORT_SYMBOL(alloc_netdev_mqs); 10524 10525 /** 10526 * free_netdev - free network device 10527 * @dev: device 10528 * 10529 * This function does the last stage of destroying an allocated device 10530 * interface. The reference to the device object is released. If this 10531 * is the last reference then it will be freed.Must be called in process 10532 * context. 10533 */ 10534 void free_netdev(struct net_device *dev) 10535 { 10536 struct napi_struct *p, *n; 10537 10538 might_sleep(); 10539 10540 /* When called immediately after register_netdevice() failed the unwind 10541 * handling may still be dismantling the device. Handle that case by 10542 * deferring the free. 10543 */ 10544 if (dev->reg_state == NETREG_UNREGISTERING) { 10545 ASSERT_RTNL(); 10546 dev->needs_free_netdev = true; 10547 return; 10548 } 10549 10550 netif_free_tx_queues(dev); 10551 netif_free_rx_queues(dev); 10552 10553 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10554 10555 /* Flush device addresses */ 10556 dev_addr_flush(dev); 10557 10558 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10559 netif_napi_del(p); 10560 10561 ref_tracker_dir_exit(&dev->refcnt_tracker); 10562 #ifdef CONFIG_PCPU_DEV_REFCNT 10563 free_percpu(dev->pcpu_refcnt); 10564 dev->pcpu_refcnt = NULL; 10565 #endif 10566 free_percpu(dev->xdp_bulkq); 10567 dev->xdp_bulkq = NULL; 10568 10569 /* Compatibility with error handling in drivers */ 10570 if (dev->reg_state == NETREG_UNINITIALIZED) { 10571 netdev_freemem(dev); 10572 return; 10573 } 10574 10575 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10576 dev->reg_state = NETREG_RELEASED; 10577 10578 /* will free via device release */ 10579 put_device(&dev->dev); 10580 } 10581 EXPORT_SYMBOL(free_netdev); 10582 10583 /** 10584 * synchronize_net - Synchronize with packet receive processing 10585 * 10586 * Wait for packets currently being received to be done. 10587 * Does not block later packets from starting. 10588 */ 10589 void synchronize_net(void) 10590 { 10591 might_sleep(); 10592 if (rtnl_is_locked()) 10593 synchronize_rcu_expedited(); 10594 else 10595 synchronize_rcu(); 10596 } 10597 EXPORT_SYMBOL(synchronize_net); 10598 10599 /** 10600 * unregister_netdevice_queue - remove device from the kernel 10601 * @dev: device 10602 * @head: list 10603 * 10604 * This function shuts down a device interface and removes it 10605 * from the kernel tables. 10606 * If head not NULL, device is queued to be unregistered later. 10607 * 10608 * Callers must hold the rtnl semaphore. You may want 10609 * unregister_netdev() instead of this. 10610 */ 10611 10612 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10613 { 10614 ASSERT_RTNL(); 10615 10616 if (head) { 10617 list_move_tail(&dev->unreg_list, head); 10618 } else { 10619 LIST_HEAD(single); 10620 10621 list_add(&dev->unreg_list, &single); 10622 unregister_netdevice_many(&single); 10623 } 10624 } 10625 EXPORT_SYMBOL(unregister_netdevice_queue); 10626 10627 /** 10628 * unregister_netdevice_many - unregister many devices 10629 * @head: list of devices 10630 * 10631 * Note: As most callers use a stack allocated list_head, 10632 * we force a list_del() to make sure stack wont be corrupted later. 10633 */ 10634 void unregister_netdevice_many(struct list_head *head) 10635 { 10636 struct net_device *dev, *tmp; 10637 LIST_HEAD(close_head); 10638 10639 BUG_ON(dev_boot_phase); 10640 ASSERT_RTNL(); 10641 10642 if (list_empty(head)) 10643 return; 10644 10645 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 10646 /* Some devices call without registering 10647 * for initialization unwind. Remove those 10648 * devices and proceed with the remaining. 10649 */ 10650 if (dev->reg_state == NETREG_UNINITIALIZED) { 10651 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 10652 dev->name, dev); 10653 10654 WARN_ON(1); 10655 list_del(&dev->unreg_list); 10656 continue; 10657 } 10658 dev->dismantle = true; 10659 BUG_ON(dev->reg_state != NETREG_REGISTERED); 10660 } 10661 10662 /* If device is running, close it first. */ 10663 list_for_each_entry(dev, head, unreg_list) 10664 list_add_tail(&dev->close_list, &close_head); 10665 dev_close_many(&close_head, true); 10666 10667 list_for_each_entry(dev, head, unreg_list) { 10668 /* And unlink it from device chain. */ 10669 unlist_netdevice(dev); 10670 10671 dev->reg_state = NETREG_UNREGISTERING; 10672 } 10673 flush_all_backlogs(); 10674 10675 synchronize_net(); 10676 10677 list_for_each_entry(dev, head, unreg_list) { 10678 struct sk_buff *skb = NULL; 10679 10680 /* Shutdown queueing discipline. */ 10681 dev_shutdown(dev); 10682 10683 dev_xdp_uninstall(dev); 10684 10685 netdev_offload_xstats_disable_all(dev); 10686 10687 /* Notify protocols, that we are about to destroy 10688 * this device. They should clean all the things. 10689 */ 10690 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10691 10692 if (!dev->rtnl_link_ops || 10693 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10694 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 10695 GFP_KERNEL, NULL, 0); 10696 10697 /* 10698 * Flush the unicast and multicast chains 10699 */ 10700 dev_uc_flush(dev); 10701 dev_mc_flush(dev); 10702 10703 netdev_name_node_alt_flush(dev); 10704 netdev_name_node_free(dev->name_node); 10705 10706 if (dev->netdev_ops->ndo_uninit) 10707 dev->netdev_ops->ndo_uninit(dev); 10708 10709 if (skb) 10710 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 10711 10712 /* Notifier chain MUST detach us all upper devices. */ 10713 WARN_ON(netdev_has_any_upper_dev(dev)); 10714 WARN_ON(netdev_has_any_lower_dev(dev)); 10715 10716 /* Remove entries from kobject tree */ 10717 netdev_unregister_kobject(dev); 10718 #ifdef CONFIG_XPS 10719 /* Remove XPS queueing entries */ 10720 netif_reset_xps_queues_gt(dev, 0); 10721 #endif 10722 } 10723 10724 synchronize_net(); 10725 10726 list_for_each_entry(dev, head, unreg_list) { 10727 dev_put_track(dev, &dev->dev_registered_tracker); 10728 net_set_todo(dev); 10729 } 10730 10731 list_del(head); 10732 } 10733 EXPORT_SYMBOL(unregister_netdevice_many); 10734 10735 /** 10736 * unregister_netdev - remove device from the kernel 10737 * @dev: device 10738 * 10739 * This function shuts down a device interface and removes it 10740 * from the kernel tables. 10741 * 10742 * This is just a wrapper for unregister_netdevice that takes 10743 * the rtnl semaphore. In general you want to use this and not 10744 * unregister_netdevice. 10745 */ 10746 void unregister_netdev(struct net_device *dev) 10747 { 10748 rtnl_lock(); 10749 unregister_netdevice(dev); 10750 rtnl_unlock(); 10751 } 10752 EXPORT_SYMBOL(unregister_netdev); 10753 10754 /** 10755 * __dev_change_net_namespace - move device to different nethost namespace 10756 * @dev: device 10757 * @net: network namespace 10758 * @pat: If not NULL name pattern to try if the current device name 10759 * is already taken in the destination network namespace. 10760 * @new_ifindex: If not zero, specifies device index in the target 10761 * namespace. 10762 * 10763 * This function shuts down a device interface and moves it 10764 * to a new network namespace. On success 0 is returned, on 10765 * a failure a netagive errno code is returned. 10766 * 10767 * Callers must hold the rtnl semaphore. 10768 */ 10769 10770 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 10771 const char *pat, int new_ifindex) 10772 { 10773 struct net *net_old = dev_net(dev); 10774 int err, new_nsid; 10775 10776 ASSERT_RTNL(); 10777 10778 /* Don't allow namespace local devices to be moved. */ 10779 err = -EINVAL; 10780 if (dev->features & NETIF_F_NETNS_LOCAL) 10781 goto out; 10782 10783 /* Ensure the device has been registrered */ 10784 if (dev->reg_state != NETREG_REGISTERED) 10785 goto out; 10786 10787 /* Get out if there is nothing todo */ 10788 err = 0; 10789 if (net_eq(net_old, net)) 10790 goto out; 10791 10792 /* Pick the destination device name, and ensure 10793 * we can use it in the destination network namespace. 10794 */ 10795 err = -EEXIST; 10796 if (netdev_name_in_use(net, dev->name)) { 10797 /* We get here if we can't use the current device name */ 10798 if (!pat) 10799 goto out; 10800 err = dev_get_valid_name(net, dev, pat); 10801 if (err < 0) 10802 goto out; 10803 } 10804 10805 /* Check that new_ifindex isn't used yet. */ 10806 err = -EBUSY; 10807 if (new_ifindex && __dev_get_by_index(net, new_ifindex)) 10808 goto out; 10809 10810 /* 10811 * And now a mini version of register_netdevice unregister_netdevice. 10812 */ 10813 10814 /* If device is running close it first. */ 10815 dev_close(dev); 10816 10817 /* And unlink it from device chain */ 10818 unlist_netdevice(dev); 10819 10820 synchronize_net(); 10821 10822 /* Shutdown queueing discipline. */ 10823 dev_shutdown(dev); 10824 10825 /* Notify protocols, that we are about to destroy 10826 * this device. They should clean all the things. 10827 * 10828 * Note that dev->reg_state stays at NETREG_REGISTERED. 10829 * This is wanted because this way 8021q and macvlan know 10830 * the device is just moving and can keep their slaves up. 10831 */ 10832 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10833 rcu_barrier(); 10834 10835 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10836 /* If there is an ifindex conflict assign a new one */ 10837 if (!new_ifindex) { 10838 if (__dev_get_by_index(net, dev->ifindex)) 10839 new_ifindex = dev_new_index(net); 10840 else 10841 new_ifindex = dev->ifindex; 10842 } 10843 10844 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10845 new_ifindex); 10846 10847 /* 10848 * Flush the unicast and multicast chains 10849 */ 10850 dev_uc_flush(dev); 10851 dev_mc_flush(dev); 10852 10853 /* Send a netdev-removed uevent to the old namespace */ 10854 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10855 netdev_adjacent_del_links(dev); 10856 10857 /* Move per-net netdevice notifiers that are following the netdevice */ 10858 move_netdevice_notifiers_dev_net(dev, net); 10859 10860 /* Actually switch the network namespace */ 10861 dev_net_set(dev, net); 10862 dev->ifindex = new_ifindex; 10863 10864 /* Send a netdev-add uevent to the new namespace */ 10865 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10866 netdev_adjacent_add_links(dev); 10867 10868 /* Fixup kobjects */ 10869 err = device_rename(&dev->dev, dev->name); 10870 WARN_ON(err); 10871 10872 /* Adapt owner in case owning user namespace of target network 10873 * namespace is different from the original one. 10874 */ 10875 err = netdev_change_owner(dev, net_old, net); 10876 WARN_ON(err); 10877 10878 /* Add the device back in the hashes */ 10879 list_netdevice(dev); 10880 10881 /* Notify protocols, that a new device appeared. */ 10882 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10883 10884 /* 10885 * Prevent userspace races by waiting until the network 10886 * device is fully setup before sending notifications. 10887 */ 10888 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10889 10890 synchronize_net(); 10891 err = 0; 10892 out: 10893 return err; 10894 } 10895 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 10896 10897 static int dev_cpu_dead(unsigned int oldcpu) 10898 { 10899 struct sk_buff **list_skb; 10900 struct sk_buff *skb; 10901 unsigned int cpu; 10902 struct softnet_data *sd, *oldsd, *remsd = NULL; 10903 10904 local_irq_disable(); 10905 cpu = smp_processor_id(); 10906 sd = &per_cpu(softnet_data, cpu); 10907 oldsd = &per_cpu(softnet_data, oldcpu); 10908 10909 /* Find end of our completion_queue. */ 10910 list_skb = &sd->completion_queue; 10911 while (*list_skb) 10912 list_skb = &(*list_skb)->next; 10913 /* Append completion queue from offline CPU. */ 10914 *list_skb = oldsd->completion_queue; 10915 oldsd->completion_queue = NULL; 10916 10917 /* Append output queue from offline CPU. */ 10918 if (oldsd->output_queue) { 10919 *sd->output_queue_tailp = oldsd->output_queue; 10920 sd->output_queue_tailp = oldsd->output_queue_tailp; 10921 oldsd->output_queue = NULL; 10922 oldsd->output_queue_tailp = &oldsd->output_queue; 10923 } 10924 /* Append NAPI poll list from offline CPU, with one exception : 10925 * process_backlog() must be called by cpu owning percpu backlog. 10926 * We properly handle process_queue & input_pkt_queue later. 10927 */ 10928 while (!list_empty(&oldsd->poll_list)) { 10929 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10930 struct napi_struct, 10931 poll_list); 10932 10933 list_del_init(&napi->poll_list); 10934 if (napi->poll == process_backlog) 10935 napi->state = 0; 10936 else 10937 ____napi_schedule(sd, napi); 10938 } 10939 10940 raise_softirq_irqoff(NET_TX_SOFTIRQ); 10941 local_irq_enable(); 10942 10943 #ifdef CONFIG_RPS 10944 remsd = oldsd->rps_ipi_list; 10945 oldsd->rps_ipi_list = NULL; 10946 #endif 10947 /* send out pending IPI's on offline CPU */ 10948 net_rps_send_ipi(remsd); 10949 10950 /* Process offline CPU's input_pkt_queue */ 10951 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 10952 netif_rx_ni(skb); 10953 input_queue_head_incr(oldsd); 10954 } 10955 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 10956 netif_rx_ni(skb); 10957 input_queue_head_incr(oldsd); 10958 } 10959 10960 return 0; 10961 } 10962 10963 /** 10964 * netdev_increment_features - increment feature set by one 10965 * @all: current feature set 10966 * @one: new feature set 10967 * @mask: mask feature set 10968 * 10969 * Computes a new feature set after adding a device with feature set 10970 * @one to the master device with current feature set @all. Will not 10971 * enable anything that is off in @mask. Returns the new feature set. 10972 */ 10973 netdev_features_t netdev_increment_features(netdev_features_t all, 10974 netdev_features_t one, netdev_features_t mask) 10975 { 10976 if (mask & NETIF_F_HW_CSUM) 10977 mask |= NETIF_F_CSUM_MASK; 10978 mask |= NETIF_F_VLAN_CHALLENGED; 10979 10980 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 10981 all &= one | ~NETIF_F_ALL_FOR_ALL; 10982 10983 /* If one device supports hw checksumming, set for all. */ 10984 if (all & NETIF_F_HW_CSUM) 10985 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 10986 10987 return all; 10988 } 10989 EXPORT_SYMBOL(netdev_increment_features); 10990 10991 static struct hlist_head * __net_init netdev_create_hash(void) 10992 { 10993 int i; 10994 struct hlist_head *hash; 10995 10996 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 10997 if (hash != NULL) 10998 for (i = 0; i < NETDEV_HASHENTRIES; i++) 10999 INIT_HLIST_HEAD(&hash[i]); 11000 11001 return hash; 11002 } 11003 11004 /* Initialize per network namespace state */ 11005 static int __net_init netdev_init(struct net *net) 11006 { 11007 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11008 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11009 11010 INIT_LIST_HEAD(&net->dev_base_head); 11011 11012 net->dev_name_head = netdev_create_hash(); 11013 if (net->dev_name_head == NULL) 11014 goto err_name; 11015 11016 net->dev_index_head = netdev_create_hash(); 11017 if (net->dev_index_head == NULL) 11018 goto err_idx; 11019 11020 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11021 11022 return 0; 11023 11024 err_idx: 11025 kfree(net->dev_name_head); 11026 err_name: 11027 return -ENOMEM; 11028 } 11029 11030 /** 11031 * netdev_drivername - network driver for the device 11032 * @dev: network device 11033 * 11034 * Determine network driver for device. 11035 */ 11036 const char *netdev_drivername(const struct net_device *dev) 11037 { 11038 const struct device_driver *driver; 11039 const struct device *parent; 11040 const char *empty = ""; 11041 11042 parent = dev->dev.parent; 11043 if (!parent) 11044 return empty; 11045 11046 driver = parent->driver; 11047 if (driver && driver->name) 11048 return driver->name; 11049 return empty; 11050 } 11051 11052 static void __netdev_printk(const char *level, const struct net_device *dev, 11053 struct va_format *vaf) 11054 { 11055 if (dev && dev->dev.parent) { 11056 dev_printk_emit(level[1] - '0', 11057 dev->dev.parent, 11058 "%s %s %s%s: %pV", 11059 dev_driver_string(dev->dev.parent), 11060 dev_name(dev->dev.parent), 11061 netdev_name(dev), netdev_reg_state(dev), 11062 vaf); 11063 } else if (dev) { 11064 printk("%s%s%s: %pV", 11065 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11066 } else { 11067 printk("%s(NULL net_device): %pV", level, vaf); 11068 } 11069 } 11070 11071 void netdev_printk(const char *level, const struct net_device *dev, 11072 const char *format, ...) 11073 { 11074 struct va_format vaf; 11075 va_list args; 11076 11077 va_start(args, format); 11078 11079 vaf.fmt = format; 11080 vaf.va = &args; 11081 11082 __netdev_printk(level, dev, &vaf); 11083 11084 va_end(args); 11085 } 11086 EXPORT_SYMBOL(netdev_printk); 11087 11088 #define define_netdev_printk_level(func, level) \ 11089 void func(const struct net_device *dev, const char *fmt, ...) \ 11090 { \ 11091 struct va_format vaf; \ 11092 va_list args; \ 11093 \ 11094 va_start(args, fmt); \ 11095 \ 11096 vaf.fmt = fmt; \ 11097 vaf.va = &args; \ 11098 \ 11099 __netdev_printk(level, dev, &vaf); \ 11100 \ 11101 va_end(args); \ 11102 } \ 11103 EXPORT_SYMBOL(func); 11104 11105 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11106 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11107 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11108 define_netdev_printk_level(netdev_err, KERN_ERR); 11109 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11110 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11111 define_netdev_printk_level(netdev_info, KERN_INFO); 11112 11113 static void __net_exit netdev_exit(struct net *net) 11114 { 11115 kfree(net->dev_name_head); 11116 kfree(net->dev_index_head); 11117 if (net != &init_net) 11118 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11119 } 11120 11121 static struct pernet_operations __net_initdata netdev_net_ops = { 11122 .init = netdev_init, 11123 .exit = netdev_exit, 11124 }; 11125 11126 static void __net_exit default_device_exit_net(struct net *net) 11127 { 11128 struct net_device *dev, *aux; 11129 /* 11130 * Push all migratable network devices back to the 11131 * initial network namespace 11132 */ 11133 ASSERT_RTNL(); 11134 for_each_netdev_safe(net, dev, aux) { 11135 int err; 11136 char fb_name[IFNAMSIZ]; 11137 11138 /* Ignore unmoveable devices (i.e. loopback) */ 11139 if (dev->features & NETIF_F_NETNS_LOCAL) 11140 continue; 11141 11142 /* Leave virtual devices for the generic cleanup */ 11143 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11144 continue; 11145 11146 /* Push remaining network devices to init_net */ 11147 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11148 if (netdev_name_in_use(&init_net, fb_name)) 11149 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11150 err = dev_change_net_namespace(dev, &init_net, fb_name); 11151 if (err) { 11152 pr_emerg("%s: failed to move %s to init_net: %d\n", 11153 __func__, dev->name, err); 11154 BUG(); 11155 } 11156 } 11157 } 11158 11159 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11160 { 11161 /* At exit all network devices most be removed from a network 11162 * namespace. Do this in the reverse order of registration. 11163 * Do this across as many network namespaces as possible to 11164 * improve batching efficiency. 11165 */ 11166 struct net_device *dev; 11167 struct net *net; 11168 LIST_HEAD(dev_kill_list); 11169 11170 rtnl_lock(); 11171 list_for_each_entry(net, net_list, exit_list) { 11172 default_device_exit_net(net); 11173 cond_resched(); 11174 } 11175 11176 list_for_each_entry(net, net_list, exit_list) { 11177 for_each_netdev_reverse(net, dev) { 11178 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11179 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11180 else 11181 unregister_netdevice_queue(dev, &dev_kill_list); 11182 } 11183 } 11184 unregister_netdevice_many(&dev_kill_list); 11185 rtnl_unlock(); 11186 } 11187 11188 static struct pernet_operations __net_initdata default_device_ops = { 11189 .exit_batch = default_device_exit_batch, 11190 }; 11191 11192 /* 11193 * Initialize the DEV module. At boot time this walks the device list and 11194 * unhooks any devices that fail to initialise (normally hardware not 11195 * present) and leaves us with a valid list of present and active devices. 11196 * 11197 */ 11198 11199 /* 11200 * This is called single threaded during boot, so no need 11201 * to take the rtnl semaphore. 11202 */ 11203 static int __init net_dev_init(void) 11204 { 11205 int i, rc = -ENOMEM; 11206 11207 BUG_ON(!dev_boot_phase); 11208 11209 if (dev_proc_init()) 11210 goto out; 11211 11212 if (netdev_kobject_init()) 11213 goto out; 11214 11215 INIT_LIST_HEAD(&ptype_all); 11216 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11217 INIT_LIST_HEAD(&ptype_base[i]); 11218 11219 if (register_pernet_subsys(&netdev_net_ops)) 11220 goto out; 11221 11222 /* 11223 * Initialise the packet receive queues. 11224 */ 11225 11226 for_each_possible_cpu(i) { 11227 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11228 struct softnet_data *sd = &per_cpu(softnet_data, i); 11229 11230 INIT_WORK(flush, flush_backlog); 11231 11232 skb_queue_head_init(&sd->input_pkt_queue); 11233 skb_queue_head_init(&sd->process_queue); 11234 #ifdef CONFIG_XFRM_OFFLOAD 11235 skb_queue_head_init(&sd->xfrm_backlog); 11236 #endif 11237 INIT_LIST_HEAD(&sd->poll_list); 11238 sd->output_queue_tailp = &sd->output_queue; 11239 #ifdef CONFIG_RPS 11240 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11241 sd->cpu = i; 11242 #endif 11243 11244 init_gro_hash(&sd->backlog); 11245 sd->backlog.poll = process_backlog; 11246 sd->backlog.weight = weight_p; 11247 } 11248 11249 dev_boot_phase = 0; 11250 11251 /* The loopback device is special if any other network devices 11252 * is present in a network namespace the loopback device must 11253 * be present. Since we now dynamically allocate and free the 11254 * loopback device ensure this invariant is maintained by 11255 * keeping the loopback device as the first device on the 11256 * list of network devices. Ensuring the loopback devices 11257 * is the first device that appears and the last network device 11258 * that disappears. 11259 */ 11260 if (register_pernet_device(&loopback_net_ops)) 11261 goto out; 11262 11263 if (register_pernet_device(&default_device_ops)) 11264 goto out; 11265 11266 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11267 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11268 11269 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11270 NULL, dev_cpu_dead); 11271 WARN_ON(rc < 0); 11272 rc = 0; 11273 out: 11274 return rc; 11275 } 11276 11277 subsys_initcall(net_dev_init); 11278