xref: /linux/net/core/dev.c (revision d677aebd663ddc287f2b2bda098474694a0ca875)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dsa.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/gro.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <net/tcx.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
128 #include <net/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
160 #include <net/rps.h>
161 #include <linux/phy_link_topology.h>
162 
163 #include "dev.h"
164 #include "devmem.h"
165 #include "net-sysfs.h"
166 
167 static DEFINE_SPINLOCK(ptype_lock);
168 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
169 
170 static int netif_rx_internal(struct sk_buff *skb);
171 static int call_netdevice_notifiers_extack(unsigned long val,
172 					   struct net_device *dev,
173 					   struct netlink_ext_ack *extack);
174 
175 static DEFINE_MUTEX(ifalias_mutex);
176 
177 /* protects napi_hash addition/deletion and napi_gen_id */
178 static DEFINE_SPINLOCK(napi_hash_lock);
179 
180 static unsigned int napi_gen_id = NR_CPUS;
181 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
182 
183 static DECLARE_RWSEM(devnet_rename_sem);
184 
185 static inline void dev_base_seq_inc(struct net *net)
186 {
187 	unsigned int val = net->dev_base_seq + 1;
188 
189 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
190 }
191 
192 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
193 {
194 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
195 
196 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
197 }
198 
199 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
200 {
201 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
202 }
203 
204 #ifndef CONFIG_PREEMPT_RT
205 
206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
207 
208 static int __init setup_backlog_napi_threads(char *arg)
209 {
210 	static_branch_enable(&use_backlog_threads_key);
211 	return 0;
212 }
213 early_param("thread_backlog_napi", setup_backlog_napi_threads);
214 
215 static bool use_backlog_threads(void)
216 {
217 	return static_branch_unlikely(&use_backlog_threads_key);
218 }
219 
220 #else
221 
222 static bool use_backlog_threads(void)
223 {
224 	return true;
225 }
226 
227 #endif
228 
229 static inline void backlog_lock_irq_save(struct softnet_data *sd,
230 					 unsigned long *flags)
231 {
232 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234 	else
235 		local_irq_save(*flags);
236 }
237 
238 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
239 {
240 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241 		spin_lock_irq(&sd->input_pkt_queue.lock);
242 	else
243 		local_irq_disable();
244 }
245 
246 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247 					      unsigned long *flags)
248 {
249 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251 	else
252 		local_irq_restore(*flags);
253 }
254 
255 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
256 {
257 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 		spin_unlock_irq(&sd->input_pkt_queue.lock);
259 	else
260 		local_irq_enable();
261 }
262 
263 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264 						       const char *name)
265 {
266 	struct netdev_name_node *name_node;
267 
268 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269 	if (!name_node)
270 		return NULL;
271 	INIT_HLIST_NODE(&name_node->hlist);
272 	name_node->dev = dev;
273 	name_node->name = name;
274 	return name_node;
275 }
276 
277 static struct netdev_name_node *
278 netdev_name_node_head_alloc(struct net_device *dev)
279 {
280 	struct netdev_name_node *name_node;
281 
282 	name_node = netdev_name_node_alloc(dev, dev->name);
283 	if (!name_node)
284 		return NULL;
285 	INIT_LIST_HEAD(&name_node->list);
286 	return name_node;
287 }
288 
289 static void netdev_name_node_free(struct netdev_name_node *name_node)
290 {
291 	kfree(name_node);
292 }
293 
294 static void netdev_name_node_add(struct net *net,
295 				 struct netdev_name_node *name_node)
296 {
297 	hlist_add_head_rcu(&name_node->hlist,
298 			   dev_name_hash(net, name_node->name));
299 }
300 
301 static void netdev_name_node_del(struct netdev_name_node *name_node)
302 {
303 	hlist_del_rcu(&name_node->hlist);
304 }
305 
306 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307 							const char *name)
308 {
309 	struct hlist_head *head = dev_name_hash(net, name);
310 	struct netdev_name_node *name_node;
311 
312 	hlist_for_each_entry(name_node, head, hlist)
313 		if (!strcmp(name_node->name, name))
314 			return name_node;
315 	return NULL;
316 }
317 
318 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319 							    const char *name)
320 {
321 	struct hlist_head *head = dev_name_hash(net, name);
322 	struct netdev_name_node *name_node;
323 
324 	hlist_for_each_entry_rcu(name_node, head, hlist)
325 		if (!strcmp(name_node->name, name))
326 			return name_node;
327 	return NULL;
328 }
329 
330 bool netdev_name_in_use(struct net *net, const char *name)
331 {
332 	return netdev_name_node_lookup(net, name);
333 }
334 EXPORT_SYMBOL(netdev_name_in_use);
335 
336 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
337 {
338 	struct netdev_name_node *name_node;
339 	struct net *net = dev_net(dev);
340 
341 	name_node = netdev_name_node_lookup(net, name);
342 	if (name_node)
343 		return -EEXIST;
344 	name_node = netdev_name_node_alloc(dev, name);
345 	if (!name_node)
346 		return -ENOMEM;
347 	netdev_name_node_add(net, name_node);
348 	/* The node that holds dev->name acts as a head of per-device list. */
349 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
350 
351 	return 0;
352 }
353 
354 static void netdev_name_node_alt_free(struct rcu_head *head)
355 {
356 	struct netdev_name_node *name_node =
357 		container_of(head, struct netdev_name_node, rcu);
358 
359 	kfree(name_node->name);
360 	netdev_name_node_free(name_node);
361 }
362 
363 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
364 {
365 	netdev_name_node_del(name_node);
366 	list_del(&name_node->list);
367 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
368 }
369 
370 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
371 {
372 	struct netdev_name_node *name_node;
373 	struct net *net = dev_net(dev);
374 
375 	name_node = netdev_name_node_lookup(net, name);
376 	if (!name_node)
377 		return -ENOENT;
378 	/* lookup might have found our primary name or a name belonging
379 	 * to another device.
380 	 */
381 	if (name_node == dev->name_node || name_node->dev != dev)
382 		return -EINVAL;
383 
384 	__netdev_name_node_alt_destroy(name_node);
385 	return 0;
386 }
387 
388 static void netdev_name_node_alt_flush(struct net_device *dev)
389 {
390 	struct netdev_name_node *name_node, *tmp;
391 
392 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393 		list_del(&name_node->list);
394 		netdev_name_node_alt_free(&name_node->rcu);
395 	}
396 }
397 
398 /* Device list insertion */
399 static void list_netdevice(struct net_device *dev)
400 {
401 	struct netdev_name_node *name_node;
402 	struct net *net = dev_net(dev);
403 
404 	ASSERT_RTNL();
405 
406 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407 	netdev_name_node_add(net, dev->name_node);
408 	hlist_add_head_rcu(&dev->index_hlist,
409 			   dev_index_hash(net, dev->ifindex));
410 
411 	netdev_for_each_altname(dev, name_node)
412 		netdev_name_node_add(net, name_node);
413 
414 	/* We reserved the ifindex, this can't fail */
415 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
416 
417 	dev_base_seq_inc(net);
418 }
419 
420 /* Device list removal
421  * caller must respect a RCU grace period before freeing/reusing dev
422  */
423 static void unlist_netdevice(struct net_device *dev)
424 {
425 	struct netdev_name_node *name_node;
426 	struct net *net = dev_net(dev);
427 
428 	ASSERT_RTNL();
429 
430 	xa_erase(&net->dev_by_index, dev->ifindex);
431 
432 	netdev_for_each_altname(dev, name_node)
433 		netdev_name_node_del(name_node);
434 
435 	/* Unlink dev from the device chain */
436 	list_del_rcu(&dev->dev_list);
437 	netdev_name_node_del(dev->name_node);
438 	hlist_del_rcu(&dev->index_hlist);
439 
440 	dev_base_seq_inc(dev_net(dev));
441 }
442 
443 /*
444  *	Our notifier list
445  */
446 
447 static RAW_NOTIFIER_HEAD(netdev_chain);
448 
449 /*
450  *	Device drivers call our routines to queue packets here. We empty the
451  *	queue in the local softnet handler.
452  */
453 
454 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
456 };
457 EXPORT_PER_CPU_SYMBOL(softnet_data);
458 
459 /* Page_pool has a lockless array/stack to alloc/recycle pages.
460  * PP consumers must pay attention to run APIs in the appropriate context
461  * (e.g. NAPI context).
462  */
463 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
464 
465 #ifdef CONFIG_LOCKDEP
466 /*
467  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468  * according to dev->type
469  */
470 static const unsigned short netdev_lock_type[] = {
471 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
486 
487 static const char *const netdev_lock_name[] = {
488 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
503 
504 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
506 
507 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
508 {
509 	int i;
510 
511 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512 		if (netdev_lock_type[i] == dev_type)
513 			return i;
514 	/* the last key is used by default */
515 	return ARRAY_SIZE(netdev_lock_type) - 1;
516 }
517 
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 						 unsigned short dev_type)
520 {
521 	int i;
522 
523 	i = netdev_lock_pos(dev_type);
524 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525 				   netdev_lock_name[i]);
526 }
527 
528 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529 {
530 	int i;
531 
532 	i = netdev_lock_pos(dev->type);
533 	lockdep_set_class_and_name(&dev->addr_list_lock,
534 				   &netdev_addr_lock_key[i],
535 				   netdev_lock_name[i]);
536 }
537 #else
538 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539 						 unsigned short dev_type)
540 {
541 }
542 
543 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
544 {
545 }
546 #endif
547 
548 /*******************************************************************************
549  *
550  *		Protocol management and registration routines
551  *
552  *******************************************************************************/
553 
554 
555 /*
556  *	Add a protocol ID to the list. Now that the input handler is
557  *	smarter we can dispense with all the messy stuff that used to be
558  *	here.
559  *
560  *	BEWARE!!! Protocol handlers, mangling input packets,
561  *	MUST BE last in hash buckets and checking protocol handlers
562  *	MUST start from promiscuous ptype_all chain in net_bh.
563  *	It is true now, do not change it.
564  *	Explanation follows: if protocol handler, mangling packet, will
565  *	be the first on list, it is not able to sense, that packet
566  *	is cloned and should be copied-on-write, so that it will
567  *	change it and subsequent readers will get broken packet.
568  *							--ANK (980803)
569  */
570 
571 static inline struct list_head *ptype_head(const struct packet_type *pt)
572 {
573 	if (pt->type == htons(ETH_P_ALL))
574 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575 	else
576 		return pt->dev ? &pt->dev->ptype_specific :
577 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
578 }
579 
580 /**
581  *	dev_add_pack - add packet handler
582  *	@pt: packet type declaration
583  *
584  *	Add a protocol handler to the networking stack. The passed &packet_type
585  *	is linked into kernel lists and may not be freed until it has been
586  *	removed from the kernel lists.
587  *
588  *	This call does not sleep therefore it can not
589  *	guarantee all CPU's that are in middle of receiving packets
590  *	will see the new packet type (until the next received packet).
591  */
592 
593 void dev_add_pack(struct packet_type *pt)
594 {
595 	struct list_head *head = ptype_head(pt);
596 
597 	spin_lock(&ptype_lock);
598 	list_add_rcu(&pt->list, head);
599 	spin_unlock(&ptype_lock);
600 }
601 EXPORT_SYMBOL(dev_add_pack);
602 
603 /**
604  *	__dev_remove_pack	 - remove packet handler
605  *	@pt: packet type declaration
606  *
607  *	Remove a protocol handler that was previously added to the kernel
608  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
609  *	from the kernel lists and can be freed or reused once this function
610  *	returns.
611  *
612  *      The packet type might still be in use by receivers
613  *	and must not be freed until after all the CPU's have gone
614  *	through a quiescent state.
615  */
616 void __dev_remove_pack(struct packet_type *pt)
617 {
618 	struct list_head *head = ptype_head(pt);
619 	struct packet_type *pt1;
620 
621 	spin_lock(&ptype_lock);
622 
623 	list_for_each_entry(pt1, head, list) {
624 		if (pt == pt1) {
625 			list_del_rcu(&pt->list);
626 			goto out;
627 		}
628 	}
629 
630 	pr_warn("dev_remove_pack: %p not found\n", pt);
631 out:
632 	spin_unlock(&ptype_lock);
633 }
634 EXPORT_SYMBOL(__dev_remove_pack);
635 
636 /**
637  *	dev_remove_pack	 - remove packet handler
638  *	@pt: packet type declaration
639  *
640  *	Remove a protocol handler that was previously added to the kernel
641  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
642  *	from the kernel lists and can be freed or reused once this function
643  *	returns.
644  *
645  *	This call sleeps to guarantee that no CPU is looking at the packet
646  *	type after return.
647  */
648 void dev_remove_pack(struct packet_type *pt)
649 {
650 	__dev_remove_pack(pt);
651 
652 	synchronize_net();
653 }
654 EXPORT_SYMBOL(dev_remove_pack);
655 
656 
657 /*******************************************************************************
658  *
659  *			    Device Interface Subroutines
660  *
661  *******************************************************************************/
662 
663 /**
664  *	dev_get_iflink	- get 'iflink' value of a interface
665  *	@dev: targeted interface
666  *
667  *	Indicates the ifindex the interface is linked to.
668  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
669  */
670 
671 int dev_get_iflink(const struct net_device *dev)
672 {
673 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 		return dev->netdev_ops->ndo_get_iflink(dev);
675 
676 	return READ_ONCE(dev->ifindex);
677 }
678 EXPORT_SYMBOL(dev_get_iflink);
679 
680 /**
681  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
682  *	@dev: targeted interface
683  *	@skb: The packet.
684  *
685  *	For better visibility of tunnel traffic OVS needs to retrieve
686  *	egress tunnel information for a packet. Following API allows
687  *	user to get this info.
688  */
689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
690 {
691 	struct ip_tunnel_info *info;
692 
693 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
694 		return -EINVAL;
695 
696 	info = skb_tunnel_info_unclone(skb);
697 	if (!info)
698 		return -ENOMEM;
699 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700 		return -EINVAL;
701 
702 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
703 }
704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
705 
706 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
707 {
708 	int k = stack->num_paths++;
709 
710 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711 		return NULL;
712 
713 	return &stack->path[k];
714 }
715 
716 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717 			  struct net_device_path_stack *stack)
718 {
719 	const struct net_device *last_dev;
720 	struct net_device_path_ctx ctx = {
721 		.dev	= dev,
722 	};
723 	struct net_device_path *path;
724 	int ret = 0;
725 
726 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727 	stack->num_paths = 0;
728 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729 		last_dev = ctx.dev;
730 		path = dev_fwd_path(stack);
731 		if (!path)
732 			return -1;
733 
734 		memset(path, 0, sizeof(struct net_device_path));
735 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736 		if (ret < 0)
737 			return -1;
738 
739 		if (WARN_ON_ONCE(last_dev == ctx.dev))
740 			return -1;
741 	}
742 
743 	if (!ctx.dev)
744 		return ret;
745 
746 	path = dev_fwd_path(stack);
747 	if (!path)
748 		return -1;
749 	path->type = DEV_PATH_ETHERNET;
750 	path->dev = ctx.dev;
751 
752 	return ret;
753 }
754 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
755 
756 /**
757  *	__dev_get_by_name	- find a device by its name
758  *	@net: the applicable net namespace
759  *	@name: name to find
760  *
761  *	Find an interface by name. Must be called under RTNL semaphore.
762  *	If the name is found a pointer to the device is returned.
763  *	If the name is not found then %NULL is returned. The
764  *	reference counters are not incremented so the caller must be
765  *	careful with locks.
766  */
767 
768 struct net_device *__dev_get_by_name(struct net *net, const char *name)
769 {
770 	struct netdev_name_node *node_name;
771 
772 	node_name = netdev_name_node_lookup(net, name);
773 	return node_name ? node_name->dev : NULL;
774 }
775 EXPORT_SYMBOL(__dev_get_by_name);
776 
777 /**
778  * dev_get_by_name_rcu	- find a device by its name
779  * @net: the applicable net namespace
780  * @name: name to find
781  *
782  * Find an interface by name.
783  * If the name is found a pointer to the device is returned.
784  * If the name is not found then %NULL is returned.
785  * The reference counters are not incremented so the caller must be
786  * careful with locks. The caller must hold RCU lock.
787  */
788 
789 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
790 {
791 	struct netdev_name_node *node_name;
792 
793 	node_name = netdev_name_node_lookup_rcu(net, name);
794 	return node_name ? node_name->dev : NULL;
795 }
796 EXPORT_SYMBOL(dev_get_by_name_rcu);
797 
798 /* Deprecated for new users, call netdev_get_by_name() instead */
799 struct net_device *dev_get_by_name(struct net *net, const char *name)
800 {
801 	struct net_device *dev;
802 
803 	rcu_read_lock();
804 	dev = dev_get_by_name_rcu(net, name);
805 	dev_hold(dev);
806 	rcu_read_unlock();
807 	return dev;
808 }
809 EXPORT_SYMBOL(dev_get_by_name);
810 
811 /**
812  *	netdev_get_by_name() - find a device by its name
813  *	@net: the applicable net namespace
814  *	@name: name to find
815  *	@tracker: tracking object for the acquired reference
816  *	@gfp: allocation flags for the tracker
817  *
818  *	Find an interface by name. This can be called from any
819  *	context and does its own locking. The returned handle has
820  *	the usage count incremented and the caller must use netdev_put() to
821  *	release it when it is no longer needed. %NULL is returned if no
822  *	matching device is found.
823  */
824 struct net_device *netdev_get_by_name(struct net *net, const char *name,
825 				      netdevice_tracker *tracker, gfp_t gfp)
826 {
827 	struct net_device *dev;
828 
829 	dev = dev_get_by_name(net, name);
830 	if (dev)
831 		netdev_tracker_alloc(dev, tracker, gfp);
832 	return dev;
833 }
834 EXPORT_SYMBOL(netdev_get_by_name);
835 
836 /**
837  *	__dev_get_by_index - find a device by its ifindex
838  *	@net: the applicable net namespace
839  *	@ifindex: index of device
840  *
841  *	Search for an interface by index. Returns %NULL if the device
842  *	is not found or a pointer to the device. The device has not
843  *	had its reference counter increased so the caller must be careful
844  *	about locking. The caller must hold the RTNL semaphore.
845  */
846 
847 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
848 {
849 	struct net_device *dev;
850 	struct hlist_head *head = dev_index_hash(net, ifindex);
851 
852 	hlist_for_each_entry(dev, head, index_hlist)
853 		if (dev->ifindex == ifindex)
854 			return dev;
855 
856 	return NULL;
857 }
858 EXPORT_SYMBOL(__dev_get_by_index);
859 
860 /**
861  *	dev_get_by_index_rcu - find a device by its ifindex
862  *	@net: the applicable net namespace
863  *	@ifindex: index of device
864  *
865  *	Search for an interface by index. Returns %NULL if the device
866  *	is not found or a pointer to the device. The device has not
867  *	had its reference counter increased so the caller must be careful
868  *	about locking. The caller must hold RCU lock.
869  */
870 
871 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
872 {
873 	struct net_device *dev;
874 	struct hlist_head *head = dev_index_hash(net, ifindex);
875 
876 	hlist_for_each_entry_rcu(dev, head, index_hlist)
877 		if (dev->ifindex == ifindex)
878 			return dev;
879 
880 	return NULL;
881 }
882 EXPORT_SYMBOL(dev_get_by_index_rcu);
883 
884 /* Deprecated for new users, call netdev_get_by_index() instead */
885 struct net_device *dev_get_by_index(struct net *net, int ifindex)
886 {
887 	struct net_device *dev;
888 
889 	rcu_read_lock();
890 	dev = dev_get_by_index_rcu(net, ifindex);
891 	dev_hold(dev);
892 	rcu_read_unlock();
893 	return dev;
894 }
895 EXPORT_SYMBOL(dev_get_by_index);
896 
897 /**
898  *	netdev_get_by_index() - find a device by its ifindex
899  *	@net: the applicable net namespace
900  *	@ifindex: index of device
901  *	@tracker: tracking object for the acquired reference
902  *	@gfp: allocation flags for the tracker
903  *
904  *	Search for an interface by index. Returns NULL if the device
905  *	is not found or a pointer to the device. The device returned has
906  *	had a reference added and the pointer is safe until the user calls
907  *	netdev_put() to indicate they have finished with it.
908  */
909 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
910 				       netdevice_tracker *tracker, gfp_t gfp)
911 {
912 	struct net_device *dev;
913 
914 	dev = dev_get_by_index(net, ifindex);
915 	if (dev)
916 		netdev_tracker_alloc(dev, tracker, gfp);
917 	return dev;
918 }
919 EXPORT_SYMBOL(netdev_get_by_index);
920 
921 /**
922  *	dev_get_by_napi_id - find a device by napi_id
923  *	@napi_id: ID of the NAPI struct
924  *
925  *	Search for an interface by NAPI ID. Returns %NULL if the device
926  *	is not found or a pointer to the device. The device has not had
927  *	its reference counter increased so the caller must be careful
928  *	about locking. The caller must hold RCU lock.
929  */
930 
931 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
932 {
933 	struct napi_struct *napi;
934 
935 	WARN_ON_ONCE(!rcu_read_lock_held());
936 
937 	if (napi_id < MIN_NAPI_ID)
938 		return NULL;
939 
940 	napi = napi_by_id(napi_id);
941 
942 	return napi ? napi->dev : NULL;
943 }
944 EXPORT_SYMBOL(dev_get_by_napi_id);
945 
946 static DEFINE_SEQLOCK(netdev_rename_lock);
947 
948 void netdev_copy_name(struct net_device *dev, char *name)
949 {
950 	unsigned int seq;
951 
952 	do {
953 		seq = read_seqbegin(&netdev_rename_lock);
954 		strscpy(name, dev->name, IFNAMSIZ);
955 	} while (read_seqretry(&netdev_rename_lock, seq));
956 }
957 
958 /**
959  *	netdev_get_name - get a netdevice name, knowing its ifindex.
960  *	@net: network namespace
961  *	@name: a pointer to the buffer where the name will be stored.
962  *	@ifindex: the ifindex of the interface to get the name from.
963  */
964 int netdev_get_name(struct net *net, char *name, int ifindex)
965 {
966 	struct net_device *dev;
967 	int ret;
968 
969 	rcu_read_lock();
970 
971 	dev = dev_get_by_index_rcu(net, ifindex);
972 	if (!dev) {
973 		ret = -ENODEV;
974 		goto out;
975 	}
976 
977 	netdev_copy_name(dev, name);
978 
979 	ret = 0;
980 out:
981 	rcu_read_unlock();
982 	return ret;
983 }
984 
985 /**
986  *	dev_getbyhwaddr_rcu - find a device by its hardware address
987  *	@net: the applicable net namespace
988  *	@type: media type of device
989  *	@ha: hardware address
990  *
991  *	Search for an interface by MAC address. Returns NULL if the device
992  *	is not found or a pointer to the device.
993  *	The caller must hold RCU or RTNL.
994  *	The returned device has not had its ref count increased
995  *	and the caller must therefore be careful about locking
996  *
997  */
998 
999 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1000 				       const char *ha)
1001 {
1002 	struct net_device *dev;
1003 
1004 	for_each_netdev_rcu(net, dev)
1005 		if (dev->type == type &&
1006 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1007 			return dev;
1008 
1009 	return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1012 
1013 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1014 {
1015 	struct net_device *dev, *ret = NULL;
1016 
1017 	rcu_read_lock();
1018 	for_each_netdev_rcu(net, dev)
1019 		if (dev->type == type) {
1020 			dev_hold(dev);
1021 			ret = dev;
1022 			break;
1023 		}
1024 	rcu_read_unlock();
1025 	return ret;
1026 }
1027 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1028 
1029 /**
1030  *	__dev_get_by_flags - find any device with given flags
1031  *	@net: the applicable net namespace
1032  *	@if_flags: IFF_* values
1033  *	@mask: bitmask of bits in if_flags to check
1034  *
1035  *	Search for any interface with the given flags. Returns NULL if a device
1036  *	is not found or a pointer to the device. Must be called inside
1037  *	rtnl_lock(), and result refcount is unchanged.
1038  */
1039 
1040 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1041 				      unsigned short mask)
1042 {
1043 	struct net_device *dev, *ret;
1044 
1045 	ASSERT_RTNL();
1046 
1047 	ret = NULL;
1048 	for_each_netdev(net, dev) {
1049 		if (((dev->flags ^ if_flags) & mask) == 0) {
1050 			ret = dev;
1051 			break;
1052 		}
1053 	}
1054 	return ret;
1055 }
1056 EXPORT_SYMBOL(__dev_get_by_flags);
1057 
1058 /**
1059  *	dev_valid_name - check if name is okay for network device
1060  *	@name: name string
1061  *
1062  *	Network device names need to be valid file names to
1063  *	allow sysfs to work.  We also disallow any kind of
1064  *	whitespace.
1065  */
1066 bool dev_valid_name(const char *name)
1067 {
1068 	if (*name == '\0')
1069 		return false;
1070 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1071 		return false;
1072 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1073 		return false;
1074 
1075 	while (*name) {
1076 		if (*name == '/' || *name == ':' || isspace(*name))
1077 			return false;
1078 		name++;
1079 	}
1080 	return true;
1081 }
1082 EXPORT_SYMBOL(dev_valid_name);
1083 
1084 /**
1085  *	__dev_alloc_name - allocate a name for a device
1086  *	@net: network namespace to allocate the device name in
1087  *	@name: name format string
1088  *	@res: result name string
1089  *
1090  *	Passed a format string - eg "lt%d" it will try and find a suitable
1091  *	id. It scans list of devices to build up a free map, then chooses
1092  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1093  *	while allocating the name and adding the device in order to avoid
1094  *	duplicates.
1095  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1096  *	Returns the number of the unit assigned or a negative errno code.
1097  */
1098 
1099 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1100 {
1101 	int i = 0;
1102 	const char *p;
1103 	const int max_netdevices = 8*PAGE_SIZE;
1104 	unsigned long *inuse;
1105 	struct net_device *d;
1106 	char buf[IFNAMSIZ];
1107 
1108 	/* Verify the string as this thing may have come from the user.
1109 	 * There must be one "%d" and no other "%" characters.
1110 	 */
1111 	p = strchr(name, '%');
1112 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1113 		return -EINVAL;
1114 
1115 	/* Use one page as a bit array of possible slots */
1116 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1117 	if (!inuse)
1118 		return -ENOMEM;
1119 
1120 	for_each_netdev(net, d) {
1121 		struct netdev_name_node *name_node;
1122 
1123 		netdev_for_each_altname(d, name_node) {
1124 			if (!sscanf(name_node->name, name, &i))
1125 				continue;
1126 			if (i < 0 || i >= max_netdevices)
1127 				continue;
1128 
1129 			/* avoid cases where sscanf is not exact inverse of printf */
1130 			snprintf(buf, IFNAMSIZ, name, i);
1131 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1132 				__set_bit(i, inuse);
1133 		}
1134 		if (!sscanf(d->name, name, &i))
1135 			continue;
1136 		if (i < 0 || i >= max_netdevices)
1137 			continue;
1138 
1139 		/* avoid cases where sscanf is not exact inverse of printf */
1140 		snprintf(buf, IFNAMSIZ, name, i);
1141 		if (!strncmp(buf, d->name, IFNAMSIZ))
1142 			__set_bit(i, inuse);
1143 	}
1144 
1145 	i = find_first_zero_bit(inuse, max_netdevices);
1146 	bitmap_free(inuse);
1147 	if (i == max_netdevices)
1148 		return -ENFILE;
1149 
1150 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1151 	strscpy(buf, name, IFNAMSIZ);
1152 	snprintf(res, IFNAMSIZ, buf, i);
1153 	return i;
1154 }
1155 
1156 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1157 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1158 			       const char *want_name, char *out_name,
1159 			       int dup_errno)
1160 {
1161 	if (!dev_valid_name(want_name))
1162 		return -EINVAL;
1163 
1164 	if (strchr(want_name, '%'))
1165 		return __dev_alloc_name(net, want_name, out_name);
1166 
1167 	if (netdev_name_in_use(net, want_name))
1168 		return -dup_errno;
1169 	if (out_name != want_name)
1170 		strscpy(out_name, want_name, IFNAMSIZ);
1171 	return 0;
1172 }
1173 
1174 /**
1175  *	dev_alloc_name - allocate a name for a device
1176  *	@dev: device
1177  *	@name: name format string
1178  *
1179  *	Passed a format string - eg "lt%d" it will try and find a suitable
1180  *	id. It scans list of devices to build up a free map, then chooses
1181  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1182  *	while allocating the name and adding the device in order to avoid
1183  *	duplicates.
1184  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1185  *	Returns the number of the unit assigned or a negative errno code.
1186  */
1187 
1188 int dev_alloc_name(struct net_device *dev, const char *name)
1189 {
1190 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1191 }
1192 EXPORT_SYMBOL(dev_alloc_name);
1193 
1194 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1195 			      const char *name)
1196 {
1197 	int ret;
1198 
1199 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1200 	return ret < 0 ? ret : 0;
1201 }
1202 
1203 /**
1204  *	dev_change_name - change name of a device
1205  *	@dev: device
1206  *	@newname: name (or format string) must be at least IFNAMSIZ
1207  *
1208  *	Change name of a device, can pass format strings "eth%d".
1209  *	for wildcarding.
1210  */
1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213 	unsigned char old_assign_type;
1214 	char oldname[IFNAMSIZ];
1215 	int err = 0;
1216 	int ret;
1217 	struct net *net;
1218 
1219 	ASSERT_RTNL();
1220 	BUG_ON(!dev_net(dev));
1221 
1222 	net = dev_net(dev);
1223 
1224 	down_write(&devnet_rename_sem);
1225 
1226 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 		up_write(&devnet_rename_sem);
1228 		return 0;
1229 	}
1230 
1231 	memcpy(oldname, dev->name, IFNAMSIZ);
1232 
1233 	write_seqlock_bh(&netdev_rename_lock);
1234 	err = dev_get_valid_name(net, dev, newname);
1235 	write_sequnlock_bh(&netdev_rename_lock);
1236 
1237 	if (err < 0) {
1238 		up_write(&devnet_rename_sem);
1239 		return err;
1240 	}
1241 
1242 	if (oldname[0] && !strchr(oldname, '%'))
1243 		netdev_info(dev, "renamed from %s%s\n", oldname,
1244 			    dev->flags & IFF_UP ? " (while UP)" : "");
1245 
1246 	old_assign_type = dev->name_assign_type;
1247 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1248 
1249 rollback:
1250 	ret = device_rename(&dev->dev, dev->name);
1251 	if (ret) {
1252 		memcpy(dev->name, oldname, IFNAMSIZ);
1253 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1254 		up_write(&devnet_rename_sem);
1255 		return ret;
1256 	}
1257 
1258 	up_write(&devnet_rename_sem);
1259 
1260 	netdev_adjacent_rename_links(dev, oldname);
1261 
1262 	netdev_name_node_del(dev->name_node);
1263 
1264 	synchronize_net();
1265 
1266 	netdev_name_node_add(net, dev->name_node);
1267 
1268 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1269 	ret = notifier_to_errno(ret);
1270 
1271 	if (ret) {
1272 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1273 		if (err >= 0) {
1274 			err = ret;
1275 			down_write(&devnet_rename_sem);
1276 			write_seqlock_bh(&netdev_rename_lock);
1277 			memcpy(dev->name, oldname, IFNAMSIZ);
1278 			write_sequnlock_bh(&netdev_rename_lock);
1279 			memcpy(oldname, newname, IFNAMSIZ);
1280 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1281 			old_assign_type = NET_NAME_RENAMED;
1282 			goto rollback;
1283 		} else {
1284 			netdev_err(dev, "name change rollback failed: %d\n",
1285 				   ret);
1286 		}
1287 	}
1288 
1289 	return err;
1290 }
1291 
1292 /**
1293  *	dev_set_alias - change ifalias of a device
1294  *	@dev: device
1295  *	@alias: name up to IFALIASZ
1296  *	@len: limit of bytes to copy from info
1297  *
1298  *	Set ifalias for a device,
1299  */
1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301 {
1302 	struct dev_ifalias *new_alias = NULL;
1303 
1304 	if (len >= IFALIASZ)
1305 		return -EINVAL;
1306 
1307 	if (len) {
1308 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309 		if (!new_alias)
1310 			return -ENOMEM;
1311 
1312 		memcpy(new_alias->ifalias, alias, len);
1313 		new_alias->ifalias[len] = 0;
1314 	}
1315 
1316 	mutex_lock(&ifalias_mutex);
1317 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318 					mutex_is_locked(&ifalias_mutex));
1319 	mutex_unlock(&ifalias_mutex);
1320 
1321 	if (new_alias)
1322 		kfree_rcu(new_alias, rcuhead);
1323 
1324 	return len;
1325 }
1326 EXPORT_SYMBOL(dev_set_alias);
1327 
1328 /**
1329  *	dev_get_alias - get ifalias of a device
1330  *	@dev: device
1331  *	@name: buffer to store name of ifalias
1332  *	@len: size of buffer
1333  *
1334  *	get ifalias for a device.  Caller must make sure dev cannot go
1335  *	away,  e.g. rcu read lock or own a reference count to device.
1336  */
1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338 {
1339 	const struct dev_ifalias *alias;
1340 	int ret = 0;
1341 
1342 	rcu_read_lock();
1343 	alias = rcu_dereference(dev->ifalias);
1344 	if (alias)
1345 		ret = snprintf(name, len, "%s", alias->ifalias);
1346 	rcu_read_unlock();
1347 
1348 	return ret;
1349 }
1350 
1351 /**
1352  *	netdev_features_change - device changes features
1353  *	@dev: device to cause notification
1354  *
1355  *	Called to indicate a device has changed features.
1356  */
1357 void netdev_features_change(struct net_device *dev)
1358 {
1359 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1360 }
1361 EXPORT_SYMBOL(netdev_features_change);
1362 
1363 /**
1364  *	netdev_state_change - device changes state
1365  *	@dev: device to cause notification
1366  *
1367  *	Called to indicate a device has changed state. This function calls
1368  *	the notifier chains for netdev_chain and sends a NEWLINK message
1369  *	to the routing socket.
1370  */
1371 void netdev_state_change(struct net_device *dev)
1372 {
1373 	if (dev->flags & IFF_UP) {
1374 		struct netdev_notifier_change_info change_info = {
1375 			.info.dev = dev,
1376 		};
1377 
1378 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1379 					      &change_info.info);
1380 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1381 	}
1382 }
1383 EXPORT_SYMBOL(netdev_state_change);
1384 
1385 /**
1386  * __netdev_notify_peers - notify network peers about existence of @dev,
1387  * to be called when rtnl lock is already held.
1388  * @dev: network device
1389  *
1390  * Generate traffic such that interested network peers are aware of
1391  * @dev, such as by generating a gratuitous ARP. This may be used when
1392  * a device wants to inform the rest of the network about some sort of
1393  * reconfiguration such as a failover event or virtual machine
1394  * migration.
1395  */
1396 void __netdev_notify_peers(struct net_device *dev)
1397 {
1398 	ASSERT_RTNL();
1399 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1400 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1401 }
1402 EXPORT_SYMBOL(__netdev_notify_peers);
1403 
1404 /**
1405  * netdev_notify_peers - notify network peers about existence of @dev
1406  * @dev: network device
1407  *
1408  * Generate traffic such that interested network peers are aware of
1409  * @dev, such as by generating a gratuitous ARP. This may be used when
1410  * a device wants to inform the rest of the network about some sort of
1411  * reconfiguration such as a failover event or virtual machine
1412  * migration.
1413  */
1414 void netdev_notify_peers(struct net_device *dev)
1415 {
1416 	rtnl_lock();
1417 	__netdev_notify_peers(dev);
1418 	rtnl_unlock();
1419 }
1420 EXPORT_SYMBOL(netdev_notify_peers);
1421 
1422 static int napi_threaded_poll(void *data);
1423 
1424 static int napi_kthread_create(struct napi_struct *n)
1425 {
1426 	int err = 0;
1427 
1428 	/* Create and wake up the kthread once to put it in
1429 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1430 	 * warning and work with loadavg.
1431 	 */
1432 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1433 				n->dev->name, n->napi_id);
1434 	if (IS_ERR(n->thread)) {
1435 		err = PTR_ERR(n->thread);
1436 		pr_err("kthread_run failed with err %d\n", err);
1437 		n->thread = NULL;
1438 	}
1439 
1440 	return err;
1441 }
1442 
1443 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1444 {
1445 	const struct net_device_ops *ops = dev->netdev_ops;
1446 	int ret;
1447 
1448 	ASSERT_RTNL();
1449 	dev_addr_check(dev);
1450 
1451 	if (!netif_device_present(dev)) {
1452 		/* may be detached because parent is runtime-suspended */
1453 		if (dev->dev.parent)
1454 			pm_runtime_resume(dev->dev.parent);
1455 		if (!netif_device_present(dev))
1456 			return -ENODEV;
1457 	}
1458 
1459 	/* Block netpoll from trying to do any rx path servicing.
1460 	 * If we don't do this there is a chance ndo_poll_controller
1461 	 * or ndo_poll may be running while we open the device
1462 	 */
1463 	netpoll_poll_disable(dev);
1464 
1465 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1466 	ret = notifier_to_errno(ret);
1467 	if (ret)
1468 		return ret;
1469 
1470 	set_bit(__LINK_STATE_START, &dev->state);
1471 
1472 	if (ops->ndo_validate_addr)
1473 		ret = ops->ndo_validate_addr(dev);
1474 
1475 	if (!ret && ops->ndo_open)
1476 		ret = ops->ndo_open(dev);
1477 
1478 	netpoll_poll_enable(dev);
1479 
1480 	if (ret)
1481 		clear_bit(__LINK_STATE_START, &dev->state);
1482 	else {
1483 		dev->flags |= IFF_UP;
1484 		dev_set_rx_mode(dev);
1485 		dev_activate(dev);
1486 		add_device_randomness(dev->dev_addr, dev->addr_len);
1487 	}
1488 
1489 	return ret;
1490 }
1491 
1492 /**
1493  *	dev_open	- prepare an interface for use.
1494  *	@dev: device to open
1495  *	@extack: netlink extended ack
1496  *
1497  *	Takes a device from down to up state. The device's private open
1498  *	function is invoked and then the multicast lists are loaded. Finally
1499  *	the device is moved into the up state and a %NETDEV_UP message is
1500  *	sent to the netdev notifier chain.
1501  *
1502  *	Calling this function on an active interface is a nop. On a failure
1503  *	a negative errno code is returned.
1504  */
1505 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1506 {
1507 	int ret;
1508 
1509 	if (dev->flags & IFF_UP)
1510 		return 0;
1511 
1512 	ret = __dev_open(dev, extack);
1513 	if (ret < 0)
1514 		return ret;
1515 
1516 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1517 	call_netdevice_notifiers(NETDEV_UP, dev);
1518 
1519 	return ret;
1520 }
1521 EXPORT_SYMBOL(dev_open);
1522 
1523 static void __dev_close_many(struct list_head *head)
1524 {
1525 	struct net_device *dev;
1526 
1527 	ASSERT_RTNL();
1528 	might_sleep();
1529 
1530 	list_for_each_entry(dev, head, close_list) {
1531 		/* Temporarily disable netpoll until the interface is down */
1532 		netpoll_poll_disable(dev);
1533 
1534 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1535 
1536 		clear_bit(__LINK_STATE_START, &dev->state);
1537 
1538 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1539 		 * can be even on different cpu. So just clear netif_running().
1540 		 *
1541 		 * dev->stop() will invoke napi_disable() on all of it's
1542 		 * napi_struct instances on this device.
1543 		 */
1544 		smp_mb__after_atomic(); /* Commit netif_running(). */
1545 	}
1546 
1547 	dev_deactivate_many(head);
1548 
1549 	list_for_each_entry(dev, head, close_list) {
1550 		const struct net_device_ops *ops = dev->netdev_ops;
1551 
1552 		/*
1553 		 *	Call the device specific close. This cannot fail.
1554 		 *	Only if device is UP
1555 		 *
1556 		 *	We allow it to be called even after a DETACH hot-plug
1557 		 *	event.
1558 		 */
1559 		if (ops->ndo_stop)
1560 			ops->ndo_stop(dev);
1561 
1562 		dev->flags &= ~IFF_UP;
1563 		netpoll_poll_enable(dev);
1564 	}
1565 }
1566 
1567 static void __dev_close(struct net_device *dev)
1568 {
1569 	LIST_HEAD(single);
1570 
1571 	list_add(&dev->close_list, &single);
1572 	__dev_close_many(&single);
1573 	list_del(&single);
1574 }
1575 
1576 void dev_close_many(struct list_head *head, bool unlink)
1577 {
1578 	struct net_device *dev, *tmp;
1579 
1580 	/* Remove the devices that don't need to be closed */
1581 	list_for_each_entry_safe(dev, tmp, head, close_list)
1582 		if (!(dev->flags & IFF_UP))
1583 			list_del_init(&dev->close_list);
1584 
1585 	__dev_close_many(head);
1586 
1587 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1588 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1589 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1590 		if (unlink)
1591 			list_del_init(&dev->close_list);
1592 	}
1593 }
1594 EXPORT_SYMBOL(dev_close_many);
1595 
1596 /**
1597  *	dev_close - shutdown an interface.
1598  *	@dev: device to shutdown
1599  *
1600  *	This function moves an active device into down state. A
1601  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1602  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1603  *	chain.
1604  */
1605 void dev_close(struct net_device *dev)
1606 {
1607 	if (dev->flags & IFF_UP) {
1608 		LIST_HEAD(single);
1609 
1610 		list_add(&dev->close_list, &single);
1611 		dev_close_many(&single, true);
1612 		list_del(&single);
1613 	}
1614 }
1615 EXPORT_SYMBOL(dev_close);
1616 
1617 
1618 /**
1619  *	dev_disable_lro - disable Large Receive Offload on a device
1620  *	@dev: device
1621  *
1622  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1623  *	called under RTNL.  This is needed if received packets may be
1624  *	forwarded to another interface.
1625  */
1626 void dev_disable_lro(struct net_device *dev)
1627 {
1628 	struct net_device *lower_dev;
1629 	struct list_head *iter;
1630 
1631 	dev->wanted_features &= ~NETIF_F_LRO;
1632 	netdev_update_features(dev);
1633 
1634 	if (unlikely(dev->features & NETIF_F_LRO))
1635 		netdev_WARN(dev, "failed to disable LRO!\n");
1636 
1637 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1638 		dev_disable_lro(lower_dev);
1639 }
1640 EXPORT_SYMBOL(dev_disable_lro);
1641 
1642 /**
1643  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1644  *	@dev: device
1645  *
1646  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1647  *	called under RTNL.  This is needed if Generic XDP is installed on
1648  *	the device.
1649  */
1650 static void dev_disable_gro_hw(struct net_device *dev)
1651 {
1652 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1653 	netdev_update_features(dev);
1654 
1655 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1656 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1657 }
1658 
1659 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1660 {
1661 #define N(val) 						\
1662 	case NETDEV_##val:				\
1663 		return "NETDEV_" __stringify(val);
1664 	switch (cmd) {
1665 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1666 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1667 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1668 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1669 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1670 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1671 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1672 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1673 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1674 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1675 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1676 	N(XDP_FEAT_CHANGE)
1677 	}
1678 #undef N
1679 	return "UNKNOWN_NETDEV_EVENT";
1680 }
1681 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1682 
1683 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1684 				   struct net_device *dev)
1685 {
1686 	struct netdev_notifier_info info = {
1687 		.dev = dev,
1688 	};
1689 
1690 	return nb->notifier_call(nb, val, &info);
1691 }
1692 
1693 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1694 					     struct net_device *dev)
1695 {
1696 	int err;
1697 
1698 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1699 	err = notifier_to_errno(err);
1700 	if (err)
1701 		return err;
1702 
1703 	if (!(dev->flags & IFF_UP))
1704 		return 0;
1705 
1706 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1707 	return 0;
1708 }
1709 
1710 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1711 						struct net_device *dev)
1712 {
1713 	if (dev->flags & IFF_UP) {
1714 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1715 					dev);
1716 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1717 	}
1718 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1719 }
1720 
1721 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1722 						 struct net *net)
1723 {
1724 	struct net_device *dev;
1725 	int err;
1726 
1727 	for_each_netdev(net, dev) {
1728 		err = call_netdevice_register_notifiers(nb, dev);
1729 		if (err)
1730 			goto rollback;
1731 	}
1732 	return 0;
1733 
1734 rollback:
1735 	for_each_netdev_continue_reverse(net, dev)
1736 		call_netdevice_unregister_notifiers(nb, dev);
1737 	return err;
1738 }
1739 
1740 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1741 						    struct net *net)
1742 {
1743 	struct net_device *dev;
1744 
1745 	for_each_netdev(net, dev)
1746 		call_netdevice_unregister_notifiers(nb, dev);
1747 }
1748 
1749 static int dev_boot_phase = 1;
1750 
1751 /**
1752  * register_netdevice_notifier - register a network notifier block
1753  * @nb: notifier
1754  *
1755  * Register a notifier to be called when network device events occur.
1756  * The notifier passed is linked into the kernel structures and must
1757  * not be reused until it has been unregistered. A negative errno code
1758  * is returned on a failure.
1759  *
1760  * When registered all registration and up events are replayed
1761  * to the new notifier to allow device to have a race free
1762  * view of the network device list.
1763  */
1764 
1765 int register_netdevice_notifier(struct notifier_block *nb)
1766 {
1767 	struct net *net;
1768 	int err;
1769 
1770 	/* Close race with setup_net() and cleanup_net() */
1771 	down_write(&pernet_ops_rwsem);
1772 	rtnl_lock();
1773 	err = raw_notifier_chain_register(&netdev_chain, nb);
1774 	if (err)
1775 		goto unlock;
1776 	if (dev_boot_phase)
1777 		goto unlock;
1778 	for_each_net(net) {
1779 		err = call_netdevice_register_net_notifiers(nb, net);
1780 		if (err)
1781 			goto rollback;
1782 	}
1783 
1784 unlock:
1785 	rtnl_unlock();
1786 	up_write(&pernet_ops_rwsem);
1787 	return err;
1788 
1789 rollback:
1790 	for_each_net_continue_reverse(net)
1791 		call_netdevice_unregister_net_notifiers(nb, net);
1792 
1793 	raw_notifier_chain_unregister(&netdev_chain, nb);
1794 	goto unlock;
1795 }
1796 EXPORT_SYMBOL(register_netdevice_notifier);
1797 
1798 /**
1799  * unregister_netdevice_notifier - unregister a network notifier block
1800  * @nb: notifier
1801  *
1802  * Unregister a notifier previously registered by
1803  * register_netdevice_notifier(). The notifier is unlinked into the
1804  * kernel structures and may then be reused. A negative errno code
1805  * is returned on a failure.
1806  *
1807  * After unregistering unregister and down device events are synthesized
1808  * for all devices on the device list to the removed notifier to remove
1809  * the need for special case cleanup code.
1810  */
1811 
1812 int unregister_netdevice_notifier(struct notifier_block *nb)
1813 {
1814 	struct net *net;
1815 	int err;
1816 
1817 	/* Close race with setup_net() and cleanup_net() */
1818 	down_write(&pernet_ops_rwsem);
1819 	rtnl_lock();
1820 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1821 	if (err)
1822 		goto unlock;
1823 
1824 	for_each_net(net)
1825 		call_netdevice_unregister_net_notifiers(nb, net);
1826 
1827 unlock:
1828 	rtnl_unlock();
1829 	up_write(&pernet_ops_rwsem);
1830 	return err;
1831 }
1832 EXPORT_SYMBOL(unregister_netdevice_notifier);
1833 
1834 static int __register_netdevice_notifier_net(struct net *net,
1835 					     struct notifier_block *nb,
1836 					     bool ignore_call_fail)
1837 {
1838 	int err;
1839 
1840 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1841 	if (err)
1842 		return err;
1843 	if (dev_boot_phase)
1844 		return 0;
1845 
1846 	err = call_netdevice_register_net_notifiers(nb, net);
1847 	if (err && !ignore_call_fail)
1848 		goto chain_unregister;
1849 
1850 	return 0;
1851 
1852 chain_unregister:
1853 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1854 	return err;
1855 }
1856 
1857 static int __unregister_netdevice_notifier_net(struct net *net,
1858 					       struct notifier_block *nb)
1859 {
1860 	int err;
1861 
1862 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1863 	if (err)
1864 		return err;
1865 
1866 	call_netdevice_unregister_net_notifiers(nb, net);
1867 	return 0;
1868 }
1869 
1870 /**
1871  * register_netdevice_notifier_net - register a per-netns network notifier block
1872  * @net: network namespace
1873  * @nb: notifier
1874  *
1875  * Register a notifier to be called when network device events occur.
1876  * The notifier passed is linked into the kernel structures and must
1877  * not be reused until it has been unregistered. A negative errno code
1878  * is returned on a failure.
1879  *
1880  * When registered all registration and up events are replayed
1881  * to the new notifier to allow device to have a race free
1882  * view of the network device list.
1883  */
1884 
1885 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1886 {
1887 	int err;
1888 
1889 	rtnl_lock();
1890 	err = __register_netdevice_notifier_net(net, nb, false);
1891 	rtnl_unlock();
1892 	return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_net);
1895 
1896 /**
1897  * unregister_netdevice_notifier_net - unregister a per-netns
1898  *                                     network notifier block
1899  * @net: network namespace
1900  * @nb: notifier
1901  *
1902  * Unregister a notifier previously registered by
1903  * register_netdevice_notifier_net(). The notifier is unlinked from the
1904  * kernel structures and may then be reused. A negative errno code
1905  * is returned on a failure.
1906  *
1907  * After unregistering unregister and down device events are synthesized
1908  * for all devices on the device list to the removed notifier to remove
1909  * the need for special case cleanup code.
1910  */
1911 
1912 int unregister_netdevice_notifier_net(struct net *net,
1913 				      struct notifier_block *nb)
1914 {
1915 	int err;
1916 
1917 	rtnl_lock();
1918 	err = __unregister_netdevice_notifier_net(net, nb);
1919 	rtnl_unlock();
1920 	return err;
1921 }
1922 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1923 
1924 static void __move_netdevice_notifier_net(struct net *src_net,
1925 					  struct net *dst_net,
1926 					  struct notifier_block *nb)
1927 {
1928 	__unregister_netdevice_notifier_net(src_net, nb);
1929 	__register_netdevice_notifier_net(dst_net, nb, true);
1930 }
1931 
1932 int register_netdevice_notifier_dev_net(struct net_device *dev,
1933 					struct notifier_block *nb,
1934 					struct netdev_net_notifier *nn)
1935 {
1936 	int err;
1937 
1938 	rtnl_lock();
1939 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1940 	if (!err) {
1941 		nn->nb = nb;
1942 		list_add(&nn->list, &dev->net_notifier_list);
1943 	}
1944 	rtnl_unlock();
1945 	return err;
1946 }
1947 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1948 
1949 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1950 					  struct notifier_block *nb,
1951 					  struct netdev_net_notifier *nn)
1952 {
1953 	int err;
1954 
1955 	rtnl_lock();
1956 	list_del(&nn->list);
1957 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1958 	rtnl_unlock();
1959 	return err;
1960 }
1961 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1962 
1963 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1964 					     struct net *net)
1965 {
1966 	struct netdev_net_notifier *nn;
1967 
1968 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1969 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1970 }
1971 
1972 /**
1973  *	call_netdevice_notifiers_info - call all network notifier blocks
1974  *	@val: value passed unmodified to notifier function
1975  *	@info: notifier information data
1976  *
1977  *	Call all network notifier blocks.  Parameters and return value
1978  *	are as for raw_notifier_call_chain().
1979  */
1980 
1981 int call_netdevice_notifiers_info(unsigned long val,
1982 				  struct netdev_notifier_info *info)
1983 {
1984 	struct net *net = dev_net(info->dev);
1985 	int ret;
1986 
1987 	ASSERT_RTNL();
1988 
1989 	/* Run per-netns notifier block chain first, then run the global one.
1990 	 * Hopefully, one day, the global one is going to be removed after
1991 	 * all notifier block registrators get converted to be per-netns.
1992 	 */
1993 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994 	if (ret & NOTIFY_STOP_MASK)
1995 		return ret;
1996 	return raw_notifier_call_chain(&netdev_chain, val, info);
1997 }
1998 
1999 /**
2000  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2001  *	                                       for and rollback on error
2002  *	@val_up: value passed unmodified to notifier function
2003  *	@val_down: value passed unmodified to the notifier function when
2004  *	           recovering from an error on @val_up
2005  *	@info: notifier information data
2006  *
2007  *	Call all per-netns network notifier blocks, but not notifier blocks on
2008  *	the global notifier chain. Parameters and return value are as for
2009  *	raw_notifier_call_chain_robust().
2010  */
2011 
2012 static int
2013 call_netdevice_notifiers_info_robust(unsigned long val_up,
2014 				     unsigned long val_down,
2015 				     struct netdev_notifier_info *info)
2016 {
2017 	struct net *net = dev_net(info->dev);
2018 
2019 	ASSERT_RTNL();
2020 
2021 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2022 					      val_up, val_down, info);
2023 }
2024 
2025 static int call_netdevice_notifiers_extack(unsigned long val,
2026 					   struct net_device *dev,
2027 					   struct netlink_ext_ack *extack)
2028 {
2029 	struct netdev_notifier_info info = {
2030 		.dev = dev,
2031 		.extack = extack,
2032 	};
2033 
2034 	return call_netdevice_notifiers_info(val, &info);
2035 }
2036 
2037 /**
2038  *	call_netdevice_notifiers - call all network notifier blocks
2039  *      @val: value passed unmodified to notifier function
2040  *      @dev: net_device pointer passed unmodified to notifier function
2041  *
2042  *	Call all network notifier blocks.  Parameters and return value
2043  *	are as for raw_notifier_call_chain().
2044  */
2045 
2046 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2047 {
2048 	return call_netdevice_notifiers_extack(val, dev, NULL);
2049 }
2050 EXPORT_SYMBOL(call_netdevice_notifiers);
2051 
2052 /**
2053  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2054  *	@val: value passed unmodified to notifier function
2055  *	@dev: net_device pointer passed unmodified to notifier function
2056  *	@arg: additional u32 argument passed to the notifier function
2057  *
2058  *	Call all network notifier blocks.  Parameters and return value
2059  *	are as for raw_notifier_call_chain().
2060  */
2061 static int call_netdevice_notifiers_mtu(unsigned long val,
2062 					struct net_device *dev, u32 arg)
2063 {
2064 	struct netdev_notifier_info_ext info = {
2065 		.info.dev = dev,
2066 		.ext.mtu = arg,
2067 	};
2068 
2069 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2070 
2071 	return call_netdevice_notifiers_info(val, &info.info);
2072 }
2073 
2074 #ifdef CONFIG_NET_INGRESS
2075 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2076 
2077 void net_inc_ingress_queue(void)
2078 {
2079 	static_branch_inc(&ingress_needed_key);
2080 }
2081 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2082 
2083 void net_dec_ingress_queue(void)
2084 {
2085 	static_branch_dec(&ingress_needed_key);
2086 }
2087 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2088 #endif
2089 
2090 #ifdef CONFIG_NET_EGRESS
2091 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2092 
2093 void net_inc_egress_queue(void)
2094 {
2095 	static_branch_inc(&egress_needed_key);
2096 }
2097 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2098 
2099 void net_dec_egress_queue(void)
2100 {
2101 	static_branch_dec(&egress_needed_key);
2102 }
2103 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2104 #endif
2105 
2106 #ifdef CONFIG_NET_CLS_ACT
2107 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2108 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2109 #endif
2110 
2111 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2112 EXPORT_SYMBOL(netstamp_needed_key);
2113 #ifdef CONFIG_JUMP_LABEL
2114 static atomic_t netstamp_needed_deferred;
2115 static atomic_t netstamp_wanted;
2116 static void netstamp_clear(struct work_struct *work)
2117 {
2118 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2119 	int wanted;
2120 
2121 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2122 	if (wanted > 0)
2123 		static_branch_enable(&netstamp_needed_key);
2124 	else
2125 		static_branch_disable(&netstamp_needed_key);
2126 }
2127 static DECLARE_WORK(netstamp_work, netstamp_clear);
2128 #endif
2129 
2130 void net_enable_timestamp(void)
2131 {
2132 #ifdef CONFIG_JUMP_LABEL
2133 	int wanted = atomic_read(&netstamp_wanted);
2134 
2135 	while (wanted > 0) {
2136 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2137 			return;
2138 	}
2139 	atomic_inc(&netstamp_needed_deferred);
2140 	schedule_work(&netstamp_work);
2141 #else
2142 	static_branch_inc(&netstamp_needed_key);
2143 #endif
2144 }
2145 EXPORT_SYMBOL(net_enable_timestamp);
2146 
2147 void net_disable_timestamp(void)
2148 {
2149 #ifdef CONFIG_JUMP_LABEL
2150 	int wanted = atomic_read(&netstamp_wanted);
2151 
2152 	while (wanted > 1) {
2153 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2154 			return;
2155 	}
2156 	atomic_dec(&netstamp_needed_deferred);
2157 	schedule_work(&netstamp_work);
2158 #else
2159 	static_branch_dec(&netstamp_needed_key);
2160 #endif
2161 }
2162 EXPORT_SYMBOL(net_disable_timestamp);
2163 
2164 static inline void net_timestamp_set(struct sk_buff *skb)
2165 {
2166 	skb->tstamp = 0;
2167 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2168 	if (static_branch_unlikely(&netstamp_needed_key))
2169 		skb->tstamp = ktime_get_real();
2170 }
2171 
2172 #define net_timestamp_check(COND, SKB)				\
2173 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2174 		if ((COND) && !(SKB)->tstamp)			\
2175 			(SKB)->tstamp = ktime_get_real();	\
2176 	}							\
2177 
2178 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2179 {
2180 	return __is_skb_forwardable(dev, skb, true);
2181 }
2182 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2183 
2184 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2185 			      bool check_mtu)
2186 {
2187 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2188 
2189 	if (likely(!ret)) {
2190 		skb->protocol = eth_type_trans(skb, dev);
2191 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2192 	}
2193 
2194 	return ret;
2195 }
2196 
2197 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2198 {
2199 	return __dev_forward_skb2(dev, skb, true);
2200 }
2201 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2202 
2203 /**
2204  * dev_forward_skb - loopback an skb to another netif
2205  *
2206  * @dev: destination network device
2207  * @skb: buffer to forward
2208  *
2209  * return values:
2210  *	NET_RX_SUCCESS	(no congestion)
2211  *	NET_RX_DROP     (packet was dropped, but freed)
2212  *
2213  * dev_forward_skb can be used for injecting an skb from the
2214  * start_xmit function of one device into the receive queue
2215  * of another device.
2216  *
2217  * The receiving device may be in another namespace, so
2218  * we have to clear all information in the skb that could
2219  * impact namespace isolation.
2220  */
2221 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2222 {
2223 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2224 }
2225 EXPORT_SYMBOL_GPL(dev_forward_skb);
2226 
2227 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2228 {
2229 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2230 }
2231 
2232 static inline int deliver_skb(struct sk_buff *skb,
2233 			      struct packet_type *pt_prev,
2234 			      struct net_device *orig_dev)
2235 {
2236 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2237 		return -ENOMEM;
2238 	refcount_inc(&skb->users);
2239 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2240 }
2241 
2242 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2243 					  struct packet_type **pt,
2244 					  struct net_device *orig_dev,
2245 					  __be16 type,
2246 					  struct list_head *ptype_list)
2247 {
2248 	struct packet_type *ptype, *pt_prev = *pt;
2249 
2250 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2251 		if (ptype->type != type)
2252 			continue;
2253 		if (pt_prev)
2254 			deliver_skb(skb, pt_prev, orig_dev);
2255 		pt_prev = ptype;
2256 	}
2257 	*pt = pt_prev;
2258 }
2259 
2260 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2261 {
2262 	if (!ptype->af_packet_priv || !skb->sk)
2263 		return false;
2264 
2265 	if (ptype->id_match)
2266 		return ptype->id_match(ptype, skb->sk);
2267 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2268 		return true;
2269 
2270 	return false;
2271 }
2272 
2273 /**
2274  * dev_nit_active - return true if any network interface taps are in use
2275  *
2276  * @dev: network device to check for the presence of taps
2277  */
2278 bool dev_nit_active(struct net_device *dev)
2279 {
2280 	return !list_empty(&net_hotdata.ptype_all) ||
2281 	       !list_empty(&dev->ptype_all);
2282 }
2283 EXPORT_SYMBOL_GPL(dev_nit_active);
2284 
2285 /*
2286  *	Support routine. Sends outgoing frames to any network
2287  *	taps currently in use.
2288  */
2289 
2290 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2291 {
2292 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2293 	struct packet_type *ptype, *pt_prev = NULL;
2294 	struct sk_buff *skb2 = NULL;
2295 
2296 	rcu_read_lock();
2297 again:
2298 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2299 		if (READ_ONCE(ptype->ignore_outgoing))
2300 			continue;
2301 
2302 		/* Never send packets back to the socket
2303 		 * they originated from - MvS (miquels@drinkel.ow.org)
2304 		 */
2305 		if (skb_loop_sk(ptype, skb))
2306 			continue;
2307 
2308 		if (pt_prev) {
2309 			deliver_skb(skb2, pt_prev, skb->dev);
2310 			pt_prev = ptype;
2311 			continue;
2312 		}
2313 
2314 		/* need to clone skb, done only once */
2315 		skb2 = skb_clone(skb, GFP_ATOMIC);
2316 		if (!skb2)
2317 			goto out_unlock;
2318 
2319 		net_timestamp_set(skb2);
2320 
2321 		/* skb->nh should be correctly
2322 		 * set by sender, so that the second statement is
2323 		 * just protection against buggy protocols.
2324 		 */
2325 		skb_reset_mac_header(skb2);
2326 
2327 		if (skb_network_header(skb2) < skb2->data ||
2328 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2329 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2330 					     ntohs(skb2->protocol),
2331 					     dev->name);
2332 			skb_reset_network_header(skb2);
2333 		}
2334 
2335 		skb2->transport_header = skb2->network_header;
2336 		skb2->pkt_type = PACKET_OUTGOING;
2337 		pt_prev = ptype;
2338 	}
2339 
2340 	if (ptype_list == &net_hotdata.ptype_all) {
2341 		ptype_list = &dev->ptype_all;
2342 		goto again;
2343 	}
2344 out_unlock:
2345 	if (pt_prev) {
2346 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2347 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2348 		else
2349 			kfree_skb(skb2);
2350 	}
2351 	rcu_read_unlock();
2352 }
2353 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2354 
2355 /**
2356  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2357  * @dev: Network device
2358  * @txq: number of queues available
2359  *
2360  * If real_num_tx_queues is changed the tc mappings may no longer be
2361  * valid. To resolve this verify the tc mapping remains valid and if
2362  * not NULL the mapping. With no priorities mapping to this
2363  * offset/count pair it will no longer be used. In the worst case TC0
2364  * is invalid nothing can be done so disable priority mappings. If is
2365  * expected that drivers will fix this mapping if they can before
2366  * calling netif_set_real_num_tx_queues.
2367  */
2368 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2369 {
2370 	int i;
2371 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2372 
2373 	/* If TC0 is invalidated disable TC mapping */
2374 	if (tc->offset + tc->count > txq) {
2375 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2376 		dev->num_tc = 0;
2377 		return;
2378 	}
2379 
2380 	/* Invalidated prio to tc mappings set to TC0 */
2381 	for (i = 1; i < TC_BITMASK + 1; i++) {
2382 		int q = netdev_get_prio_tc_map(dev, i);
2383 
2384 		tc = &dev->tc_to_txq[q];
2385 		if (tc->offset + tc->count > txq) {
2386 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2387 				    i, q);
2388 			netdev_set_prio_tc_map(dev, i, 0);
2389 		}
2390 	}
2391 }
2392 
2393 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2394 {
2395 	if (dev->num_tc) {
2396 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2397 		int i;
2398 
2399 		/* walk through the TCs and see if it falls into any of them */
2400 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2401 			if ((txq - tc->offset) < tc->count)
2402 				return i;
2403 		}
2404 
2405 		/* didn't find it, just return -1 to indicate no match */
2406 		return -1;
2407 	}
2408 
2409 	return 0;
2410 }
2411 EXPORT_SYMBOL(netdev_txq_to_tc);
2412 
2413 #ifdef CONFIG_XPS
2414 static struct static_key xps_needed __read_mostly;
2415 static struct static_key xps_rxqs_needed __read_mostly;
2416 static DEFINE_MUTEX(xps_map_mutex);
2417 #define xmap_dereference(P)		\
2418 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2419 
2420 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2421 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2422 {
2423 	struct xps_map *map = NULL;
2424 	int pos;
2425 
2426 	map = xmap_dereference(dev_maps->attr_map[tci]);
2427 	if (!map)
2428 		return false;
2429 
2430 	for (pos = map->len; pos--;) {
2431 		if (map->queues[pos] != index)
2432 			continue;
2433 
2434 		if (map->len > 1) {
2435 			map->queues[pos] = map->queues[--map->len];
2436 			break;
2437 		}
2438 
2439 		if (old_maps)
2440 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2441 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2442 		kfree_rcu(map, rcu);
2443 		return false;
2444 	}
2445 
2446 	return true;
2447 }
2448 
2449 static bool remove_xps_queue_cpu(struct net_device *dev,
2450 				 struct xps_dev_maps *dev_maps,
2451 				 int cpu, u16 offset, u16 count)
2452 {
2453 	int num_tc = dev_maps->num_tc;
2454 	bool active = false;
2455 	int tci;
2456 
2457 	for (tci = cpu * num_tc; num_tc--; tci++) {
2458 		int i, j;
2459 
2460 		for (i = count, j = offset; i--; j++) {
2461 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2462 				break;
2463 		}
2464 
2465 		active |= i < 0;
2466 	}
2467 
2468 	return active;
2469 }
2470 
2471 static void reset_xps_maps(struct net_device *dev,
2472 			   struct xps_dev_maps *dev_maps,
2473 			   enum xps_map_type type)
2474 {
2475 	static_key_slow_dec_cpuslocked(&xps_needed);
2476 	if (type == XPS_RXQS)
2477 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2478 
2479 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2480 
2481 	kfree_rcu(dev_maps, rcu);
2482 }
2483 
2484 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2485 			   u16 offset, u16 count)
2486 {
2487 	struct xps_dev_maps *dev_maps;
2488 	bool active = false;
2489 	int i, j;
2490 
2491 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2492 	if (!dev_maps)
2493 		return;
2494 
2495 	for (j = 0; j < dev_maps->nr_ids; j++)
2496 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2497 	if (!active)
2498 		reset_xps_maps(dev, dev_maps, type);
2499 
2500 	if (type == XPS_CPUS) {
2501 		for (i = offset + (count - 1); count--; i--)
2502 			netdev_queue_numa_node_write(
2503 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2504 	}
2505 }
2506 
2507 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2508 				   u16 count)
2509 {
2510 	if (!static_key_false(&xps_needed))
2511 		return;
2512 
2513 	cpus_read_lock();
2514 	mutex_lock(&xps_map_mutex);
2515 
2516 	if (static_key_false(&xps_rxqs_needed))
2517 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2518 
2519 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2520 
2521 	mutex_unlock(&xps_map_mutex);
2522 	cpus_read_unlock();
2523 }
2524 
2525 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2526 {
2527 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2528 }
2529 
2530 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2531 				      u16 index, bool is_rxqs_map)
2532 {
2533 	struct xps_map *new_map;
2534 	int alloc_len = XPS_MIN_MAP_ALLOC;
2535 	int i, pos;
2536 
2537 	for (pos = 0; map && pos < map->len; pos++) {
2538 		if (map->queues[pos] != index)
2539 			continue;
2540 		return map;
2541 	}
2542 
2543 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2544 	if (map) {
2545 		if (pos < map->alloc_len)
2546 			return map;
2547 
2548 		alloc_len = map->alloc_len * 2;
2549 	}
2550 
2551 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2552 	 *  map
2553 	 */
2554 	if (is_rxqs_map)
2555 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2556 	else
2557 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2558 				       cpu_to_node(attr_index));
2559 	if (!new_map)
2560 		return NULL;
2561 
2562 	for (i = 0; i < pos; i++)
2563 		new_map->queues[i] = map->queues[i];
2564 	new_map->alloc_len = alloc_len;
2565 	new_map->len = pos;
2566 
2567 	return new_map;
2568 }
2569 
2570 /* Copy xps maps at a given index */
2571 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2572 			      struct xps_dev_maps *new_dev_maps, int index,
2573 			      int tc, bool skip_tc)
2574 {
2575 	int i, tci = index * dev_maps->num_tc;
2576 	struct xps_map *map;
2577 
2578 	/* copy maps belonging to foreign traffic classes */
2579 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2580 		if (i == tc && skip_tc)
2581 			continue;
2582 
2583 		/* fill in the new device map from the old device map */
2584 		map = xmap_dereference(dev_maps->attr_map[tci]);
2585 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2586 	}
2587 }
2588 
2589 /* Must be called under cpus_read_lock */
2590 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2591 			  u16 index, enum xps_map_type type)
2592 {
2593 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2594 	const unsigned long *online_mask = NULL;
2595 	bool active = false, copy = false;
2596 	int i, j, tci, numa_node_id = -2;
2597 	int maps_sz, num_tc = 1, tc = 0;
2598 	struct xps_map *map, *new_map;
2599 	unsigned int nr_ids;
2600 
2601 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2602 
2603 	if (dev->num_tc) {
2604 		/* Do not allow XPS on subordinate device directly */
2605 		num_tc = dev->num_tc;
2606 		if (num_tc < 0)
2607 			return -EINVAL;
2608 
2609 		/* If queue belongs to subordinate dev use its map */
2610 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2611 
2612 		tc = netdev_txq_to_tc(dev, index);
2613 		if (tc < 0)
2614 			return -EINVAL;
2615 	}
2616 
2617 	mutex_lock(&xps_map_mutex);
2618 
2619 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2620 	if (type == XPS_RXQS) {
2621 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2622 		nr_ids = dev->num_rx_queues;
2623 	} else {
2624 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2625 		if (num_possible_cpus() > 1)
2626 			online_mask = cpumask_bits(cpu_online_mask);
2627 		nr_ids = nr_cpu_ids;
2628 	}
2629 
2630 	if (maps_sz < L1_CACHE_BYTES)
2631 		maps_sz = L1_CACHE_BYTES;
2632 
2633 	/* The old dev_maps could be larger or smaller than the one we're
2634 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2635 	 * between. We could try to be smart, but let's be safe instead and only
2636 	 * copy foreign traffic classes if the two map sizes match.
2637 	 */
2638 	if (dev_maps &&
2639 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2640 		copy = true;
2641 
2642 	/* allocate memory for queue storage */
2643 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2644 	     j < nr_ids;) {
2645 		if (!new_dev_maps) {
2646 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2647 			if (!new_dev_maps) {
2648 				mutex_unlock(&xps_map_mutex);
2649 				return -ENOMEM;
2650 			}
2651 
2652 			new_dev_maps->nr_ids = nr_ids;
2653 			new_dev_maps->num_tc = num_tc;
2654 		}
2655 
2656 		tci = j * num_tc + tc;
2657 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2658 
2659 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2660 		if (!map)
2661 			goto error;
2662 
2663 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2664 	}
2665 
2666 	if (!new_dev_maps)
2667 		goto out_no_new_maps;
2668 
2669 	if (!dev_maps) {
2670 		/* Increment static keys at most once per type */
2671 		static_key_slow_inc_cpuslocked(&xps_needed);
2672 		if (type == XPS_RXQS)
2673 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2674 	}
2675 
2676 	for (j = 0; j < nr_ids; j++) {
2677 		bool skip_tc = false;
2678 
2679 		tci = j * num_tc + tc;
2680 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2681 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2682 			/* add tx-queue to CPU/rx-queue maps */
2683 			int pos = 0;
2684 
2685 			skip_tc = true;
2686 
2687 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2688 			while ((pos < map->len) && (map->queues[pos] != index))
2689 				pos++;
2690 
2691 			if (pos == map->len)
2692 				map->queues[map->len++] = index;
2693 #ifdef CONFIG_NUMA
2694 			if (type == XPS_CPUS) {
2695 				if (numa_node_id == -2)
2696 					numa_node_id = cpu_to_node(j);
2697 				else if (numa_node_id != cpu_to_node(j))
2698 					numa_node_id = -1;
2699 			}
2700 #endif
2701 		}
2702 
2703 		if (copy)
2704 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2705 					  skip_tc);
2706 	}
2707 
2708 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2709 
2710 	/* Cleanup old maps */
2711 	if (!dev_maps)
2712 		goto out_no_old_maps;
2713 
2714 	for (j = 0; j < dev_maps->nr_ids; j++) {
2715 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2716 			map = xmap_dereference(dev_maps->attr_map[tci]);
2717 			if (!map)
2718 				continue;
2719 
2720 			if (copy) {
2721 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2722 				if (map == new_map)
2723 					continue;
2724 			}
2725 
2726 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2727 			kfree_rcu(map, rcu);
2728 		}
2729 	}
2730 
2731 	old_dev_maps = dev_maps;
2732 
2733 out_no_old_maps:
2734 	dev_maps = new_dev_maps;
2735 	active = true;
2736 
2737 out_no_new_maps:
2738 	if (type == XPS_CPUS)
2739 		/* update Tx queue numa node */
2740 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2741 					     (numa_node_id >= 0) ?
2742 					     numa_node_id : NUMA_NO_NODE);
2743 
2744 	if (!dev_maps)
2745 		goto out_no_maps;
2746 
2747 	/* removes tx-queue from unused CPUs/rx-queues */
2748 	for (j = 0; j < dev_maps->nr_ids; j++) {
2749 		tci = j * dev_maps->num_tc;
2750 
2751 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2752 			if (i == tc &&
2753 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2754 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2755 				continue;
2756 
2757 			active |= remove_xps_queue(dev_maps,
2758 						   copy ? old_dev_maps : NULL,
2759 						   tci, index);
2760 		}
2761 	}
2762 
2763 	if (old_dev_maps)
2764 		kfree_rcu(old_dev_maps, rcu);
2765 
2766 	/* free map if not active */
2767 	if (!active)
2768 		reset_xps_maps(dev, dev_maps, type);
2769 
2770 out_no_maps:
2771 	mutex_unlock(&xps_map_mutex);
2772 
2773 	return 0;
2774 error:
2775 	/* remove any maps that we added */
2776 	for (j = 0; j < nr_ids; j++) {
2777 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2778 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2779 			map = copy ?
2780 			      xmap_dereference(dev_maps->attr_map[tci]) :
2781 			      NULL;
2782 			if (new_map && new_map != map)
2783 				kfree(new_map);
2784 		}
2785 	}
2786 
2787 	mutex_unlock(&xps_map_mutex);
2788 
2789 	kfree(new_dev_maps);
2790 	return -ENOMEM;
2791 }
2792 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2793 
2794 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2795 			u16 index)
2796 {
2797 	int ret;
2798 
2799 	cpus_read_lock();
2800 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2801 	cpus_read_unlock();
2802 
2803 	return ret;
2804 }
2805 EXPORT_SYMBOL(netif_set_xps_queue);
2806 
2807 #endif
2808 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2809 {
2810 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2811 
2812 	/* Unbind any subordinate channels */
2813 	while (txq-- != &dev->_tx[0]) {
2814 		if (txq->sb_dev)
2815 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2816 	}
2817 }
2818 
2819 void netdev_reset_tc(struct net_device *dev)
2820 {
2821 #ifdef CONFIG_XPS
2822 	netif_reset_xps_queues_gt(dev, 0);
2823 #endif
2824 	netdev_unbind_all_sb_channels(dev);
2825 
2826 	/* Reset TC configuration of device */
2827 	dev->num_tc = 0;
2828 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2829 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2830 }
2831 EXPORT_SYMBOL(netdev_reset_tc);
2832 
2833 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2834 {
2835 	if (tc >= dev->num_tc)
2836 		return -EINVAL;
2837 
2838 #ifdef CONFIG_XPS
2839 	netif_reset_xps_queues(dev, offset, count);
2840 #endif
2841 	dev->tc_to_txq[tc].count = count;
2842 	dev->tc_to_txq[tc].offset = offset;
2843 	return 0;
2844 }
2845 EXPORT_SYMBOL(netdev_set_tc_queue);
2846 
2847 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2848 {
2849 	if (num_tc > TC_MAX_QUEUE)
2850 		return -EINVAL;
2851 
2852 #ifdef CONFIG_XPS
2853 	netif_reset_xps_queues_gt(dev, 0);
2854 #endif
2855 	netdev_unbind_all_sb_channels(dev);
2856 
2857 	dev->num_tc = num_tc;
2858 	return 0;
2859 }
2860 EXPORT_SYMBOL(netdev_set_num_tc);
2861 
2862 void netdev_unbind_sb_channel(struct net_device *dev,
2863 			      struct net_device *sb_dev)
2864 {
2865 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2866 
2867 #ifdef CONFIG_XPS
2868 	netif_reset_xps_queues_gt(sb_dev, 0);
2869 #endif
2870 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2871 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2872 
2873 	while (txq-- != &dev->_tx[0]) {
2874 		if (txq->sb_dev == sb_dev)
2875 			txq->sb_dev = NULL;
2876 	}
2877 }
2878 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2879 
2880 int netdev_bind_sb_channel_queue(struct net_device *dev,
2881 				 struct net_device *sb_dev,
2882 				 u8 tc, u16 count, u16 offset)
2883 {
2884 	/* Make certain the sb_dev and dev are already configured */
2885 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2886 		return -EINVAL;
2887 
2888 	/* We cannot hand out queues we don't have */
2889 	if ((offset + count) > dev->real_num_tx_queues)
2890 		return -EINVAL;
2891 
2892 	/* Record the mapping */
2893 	sb_dev->tc_to_txq[tc].count = count;
2894 	sb_dev->tc_to_txq[tc].offset = offset;
2895 
2896 	/* Provide a way for Tx queue to find the tc_to_txq map or
2897 	 * XPS map for itself.
2898 	 */
2899 	while (count--)
2900 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2901 
2902 	return 0;
2903 }
2904 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2905 
2906 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2907 {
2908 	/* Do not use a multiqueue device to represent a subordinate channel */
2909 	if (netif_is_multiqueue(dev))
2910 		return -ENODEV;
2911 
2912 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2913 	 * Channel 0 is meant to be "native" mode and used only to represent
2914 	 * the main root device. We allow writing 0 to reset the device back
2915 	 * to normal mode after being used as a subordinate channel.
2916 	 */
2917 	if (channel > S16_MAX)
2918 		return -EINVAL;
2919 
2920 	dev->num_tc = -channel;
2921 
2922 	return 0;
2923 }
2924 EXPORT_SYMBOL(netdev_set_sb_channel);
2925 
2926 /*
2927  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2928  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2929  */
2930 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2931 {
2932 	bool disabling;
2933 	int rc;
2934 
2935 	disabling = txq < dev->real_num_tx_queues;
2936 
2937 	if (txq < 1 || txq > dev->num_tx_queues)
2938 		return -EINVAL;
2939 
2940 	if (dev->reg_state == NETREG_REGISTERED ||
2941 	    dev->reg_state == NETREG_UNREGISTERING) {
2942 		ASSERT_RTNL();
2943 
2944 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2945 						  txq);
2946 		if (rc)
2947 			return rc;
2948 
2949 		if (dev->num_tc)
2950 			netif_setup_tc(dev, txq);
2951 
2952 		net_shaper_set_real_num_tx_queues(dev, txq);
2953 
2954 		dev_qdisc_change_real_num_tx(dev, txq);
2955 
2956 		dev->real_num_tx_queues = txq;
2957 
2958 		if (disabling) {
2959 			synchronize_net();
2960 			qdisc_reset_all_tx_gt(dev, txq);
2961 #ifdef CONFIG_XPS
2962 			netif_reset_xps_queues_gt(dev, txq);
2963 #endif
2964 		}
2965 	} else {
2966 		dev->real_num_tx_queues = txq;
2967 	}
2968 
2969 	return 0;
2970 }
2971 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2972 
2973 #ifdef CONFIG_SYSFS
2974 /**
2975  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2976  *	@dev: Network device
2977  *	@rxq: Actual number of RX queues
2978  *
2979  *	This must be called either with the rtnl_lock held or before
2980  *	registration of the net device.  Returns 0 on success, or a
2981  *	negative error code.  If called before registration, it always
2982  *	succeeds.
2983  */
2984 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2985 {
2986 	int rc;
2987 
2988 	if (rxq < 1 || rxq > dev->num_rx_queues)
2989 		return -EINVAL;
2990 
2991 	if (dev->reg_state == NETREG_REGISTERED) {
2992 		ASSERT_RTNL();
2993 
2994 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2995 						  rxq);
2996 		if (rc)
2997 			return rc;
2998 	}
2999 
3000 	dev->real_num_rx_queues = rxq;
3001 	return 0;
3002 }
3003 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3004 #endif
3005 
3006 /**
3007  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3008  *	@dev: Network device
3009  *	@txq: Actual number of TX queues
3010  *	@rxq: Actual number of RX queues
3011  *
3012  *	Set the real number of both TX and RX queues.
3013  *	Does nothing if the number of queues is already correct.
3014  */
3015 int netif_set_real_num_queues(struct net_device *dev,
3016 			      unsigned int txq, unsigned int rxq)
3017 {
3018 	unsigned int old_rxq = dev->real_num_rx_queues;
3019 	int err;
3020 
3021 	if (txq < 1 || txq > dev->num_tx_queues ||
3022 	    rxq < 1 || rxq > dev->num_rx_queues)
3023 		return -EINVAL;
3024 
3025 	/* Start from increases, so the error path only does decreases -
3026 	 * decreases can't fail.
3027 	 */
3028 	if (rxq > dev->real_num_rx_queues) {
3029 		err = netif_set_real_num_rx_queues(dev, rxq);
3030 		if (err)
3031 			return err;
3032 	}
3033 	if (txq > dev->real_num_tx_queues) {
3034 		err = netif_set_real_num_tx_queues(dev, txq);
3035 		if (err)
3036 			goto undo_rx;
3037 	}
3038 	if (rxq < dev->real_num_rx_queues)
3039 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3040 	if (txq < dev->real_num_tx_queues)
3041 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3042 
3043 	return 0;
3044 undo_rx:
3045 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3046 	return err;
3047 }
3048 EXPORT_SYMBOL(netif_set_real_num_queues);
3049 
3050 /**
3051  * netif_set_tso_max_size() - set the max size of TSO frames supported
3052  * @dev:	netdev to update
3053  * @size:	max skb->len of a TSO frame
3054  *
3055  * Set the limit on the size of TSO super-frames the device can handle.
3056  * Unless explicitly set the stack will assume the value of
3057  * %GSO_LEGACY_MAX_SIZE.
3058  */
3059 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3060 {
3061 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3062 	if (size < READ_ONCE(dev->gso_max_size))
3063 		netif_set_gso_max_size(dev, size);
3064 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3065 		netif_set_gso_ipv4_max_size(dev, size);
3066 }
3067 EXPORT_SYMBOL(netif_set_tso_max_size);
3068 
3069 /**
3070  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3071  * @dev:	netdev to update
3072  * @segs:	max number of TCP segments
3073  *
3074  * Set the limit on the number of TCP segments the device can generate from
3075  * a single TSO super-frame.
3076  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3077  */
3078 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3079 {
3080 	dev->tso_max_segs = segs;
3081 	if (segs < READ_ONCE(dev->gso_max_segs))
3082 		netif_set_gso_max_segs(dev, segs);
3083 }
3084 EXPORT_SYMBOL(netif_set_tso_max_segs);
3085 
3086 /**
3087  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3088  * @to:		netdev to update
3089  * @from:	netdev from which to copy the limits
3090  */
3091 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3092 {
3093 	netif_set_tso_max_size(to, from->tso_max_size);
3094 	netif_set_tso_max_segs(to, from->tso_max_segs);
3095 }
3096 EXPORT_SYMBOL(netif_inherit_tso_max);
3097 
3098 /**
3099  * netif_get_num_default_rss_queues - default number of RSS queues
3100  *
3101  * Default value is the number of physical cores if there are only 1 or 2, or
3102  * divided by 2 if there are more.
3103  */
3104 int netif_get_num_default_rss_queues(void)
3105 {
3106 	cpumask_var_t cpus;
3107 	int cpu, count = 0;
3108 
3109 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3110 		return 1;
3111 
3112 	cpumask_copy(cpus, cpu_online_mask);
3113 	for_each_cpu(cpu, cpus) {
3114 		++count;
3115 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3116 	}
3117 	free_cpumask_var(cpus);
3118 
3119 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3120 }
3121 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3122 
3123 static void __netif_reschedule(struct Qdisc *q)
3124 {
3125 	struct softnet_data *sd;
3126 	unsigned long flags;
3127 
3128 	local_irq_save(flags);
3129 	sd = this_cpu_ptr(&softnet_data);
3130 	q->next_sched = NULL;
3131 	*sd->output_queue_tailp = q;
3132 	sd->output_queue_tailp = &q->next_sched;
3133 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3134 	local_irq_restore(flags);
3135 }
3136 
3137 void __netif_schedule(struct Qdisc *q)
3138 {
3139 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3140 		__netif_reschedule(q);
3141 }
3142 EXPORT_SYMBOL(__netif_schedule);
3143 
3144 struct dev_kfree_skb_cb {
3145 	enum skb_drop_reason reason;
3146 };
3147 
3148 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3149 {
3150 	return (struct dev_kfree_skb_cb *)skb->cb;
3151 }
3152 
3153 void netif_schedule_queue(struct netdev_queue *txq)
3154 {
3155 	rcu_read_lock();
3156 	if (!netif_xmit_stopped(txq)) {
3157 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3158 
3159 		__netif_schedule(q);
3160 	}
3161 	rcu_read_unlock();
3162 }
3163 EXPORT_SYMBOL(netif_schedule_queue);
3164 
3165 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3166 {
3167 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3168 		struct Qdisc *q;
3169 
3170 		rcu_read_lock();
3171 		q = rcu_dereference(dev_queue->qdisc);
3172 		__netif_schedule(q);
3173 		rcu_read_unlock();
3174 	}
3175 }
3176 EXPORT_SYMBOL(netif_tx_wake_queue);
3177 
3178 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3179 {
3180 	unsigned long flags;
3181 
3182 	if (unlikely(!skb))
3183 		return;
3184 
3185 	if (likely(refcount_read(&skb->users) == 1)) {
3186 		smp_rmb();
3187 		refcount_set(&skb->users, 0);
3188 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3189 		return;
3190 	}
3191 	get_kfree_skb_cb(skb)->reason = reason;
3192 	local_irq_save(flags);
3193 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3194 	__this_cpu_write(softnet_data.completion_queue, skb);
3195 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3196 	local_irq_restore(flags);
3197 }
3198 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3199 
3200 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3201 {
3202 	if (in_hardirq() || irqs_disabled())
3203 		dev_kfree_skb_irq_reason(skb, reason);
3204 	else
3205 		kfree_skb_reason(skb, reason);
3206 }
3207 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3208 
3209 
3210 /**
3211  * netif_device_detach - mark device as removed
3212  * @dev: network device
3213  *
3214  * Mark device as removed from system and therefore no longer available.
3215  */
3216 void netif_device_detach(struct net_device *dev)
3217 {
3218 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3219 	    netif_running(dev)) {
3220 		netif_tx_stop_all_queues(dev);
3221 	}
3222 }
3223 EXPORT_SYMBOL(netif_device_detach);
3224 
3225 /**
3226  * netif_device_attach - mark device as attached
3227  * @dev: network device
3228  *
3229  * Mark device as attached from system and restart if needed.
3230  */
3231 void netif_device_attach(struct net_device *dev)
3232 {
3233 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3234 	    netif_running(dev)) {
3235 		netif_tx_wake_all_queues(dev);
3236 		__netdev_watchdog_up(dev);
3237 	}
3238 }
3239 EXPORT_SYMBOL(netif_device_attach);
3240 
3241 /*
3242  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3243  * to be used as a distribution range.
3244  */
3245 static u16 skb_tx_hash(const struct net_device *dev,
3246 		       const struct net_device *sb_dev,
3247 		       struct sk_buff *skb)
3248 {
3249 	u32 hash;
3250 	u16 qoffset = 0;
3251 	u16 qcount = dev->real_num_tx_queues;
3252 
3253 	if (dev->num_tc) {
3254 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3255 
3256 		qoffset = sb_dev->tc_to_txq[tc].offset;
3257 		qcount = sb_dev->tc_to_txq[tc].count;
3258 		if (unlikely(!qcount)) {
3259 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3260 					     sb_dev->name, qoffset, tc);
3261 			qoffset = 0;
3262 			qcount = dev->real_num_tx_queues;
3263 		}
3264 	}
3265 
3266 	if (skb_rx_queue_recorded(skb)) {
3267 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3268 		hash = skb_get_rx_queue(skb);
3269 		if (hash >= qoffset)
3270 			hash -= qoffset;
3271 		while (unlikely(hash >= qcount))
3272 			hash -= qcount;
3273 		return hash + qoffset;
3274 	}
3275 
3276 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3277 }
3278 
3279 void skb_warn_bad_offload(const struct sk_buff *skb)
3280 {
3281 	static const netdev_features_t null_features;
3282 	struct net_device *dev = skb->dev;
3283 	const char *name = "";
3284 
3285 	if (!net_ratelimit())
3286 		return;
3287 
3288 	if (dev) {
3289 		if (dev->dev.parent)
3290 			name = dev_driver_string(dev->dev.parent);
3291 		else
3292 			name = netdev_name(dev);
3293 	}
3294 	skb_dump(KERN_WARNING, skb, false);
3295 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3296 	     name, dev ? &dev->features : &null_features,
3297 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3298 }
3299 
3300 /*
3301  * Invalidate hardware checksum when packet is to be mangled, and
3302  * complete checksum manually on outgoing path.
3303  */
3304 int skb_checksum_help(struct sk_buff *skb)
3305 {
3306 	__wsum csum;
3307 	int ret = 0, offset;
3308 
3309 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3310 		goto out_set_summed;
3311 
3312 	if (unlikely(skb_is_gso(skb))) {
3313 		skb_warn_bad_offload(skb);
3314 		return -EINVAL;
3315 	}
3316 
3317 	if (!skb_frags_readable(skb)) {
3318 		return -EFAULT;
3319 	}
3320 
3321 	/* Before computing a checksum, we should make sure no frag could
3322 	 * be modified by an external entity : checksum could be wrong.
3323 	 */
3324 	if (skb_has_shared_frag(skb)) {
3325 		ret = __skb_linearize(skb);
3326 		if (ret)
3327 			goto out;
3328 	}
3329 
3330 	offset = skb_checksum_start_offset(skb);
3331 	ret = -EINVAL;
3332 	if (unlikely(offset >= skb_headlen(skb))) {
3333 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3334 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3335 			  offset, skb_headlen(skb));
3336 		goto out;
3337 	}
3338 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3339 
3340 	offset += skb->csum_offset;
3341 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3342 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3343 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3344 			  offset + sizeof(__sum16), skb_headlen(skb));
3345 		goto out;
3346 	}
3347 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3348 	if (ret)
3349 		goto out;
3350 
3351 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3352 out_set_summed:
3353 	skb->ip_summed = CHECKSUM_NONE;
3354 out:
3355 	return ret;
3356 }
3357 EXPORT_SYMBOL(skb_checksum_help);
3358 
3359 int skb_crc32c_csum_help(struct sk_buff *skb)
3360 {
3361 	__le32 crc32c_csum;
3362 	int ret = 0, offset, start;
3363 
3364 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3365 		goto out;
3366 
3367 	if (unlikely(skb_is_gso(skb)))
3368 		goto out;
3369 
3370 	/* Before computing a checksum, we should make sure no frag could
3371 	 * be modified by an external entity : checksum could be wrong.
3372 	 */
3373 	if (unlikely(skb_has_shared_frag(skb))) {
3374 		ret = __skb_linearize(skb);
3375 		if (ret)
3376 			goto out;
3377 	}
3378 	start = skb_checksum_start_offset(skb);
3379 	offset = start + offsetof(struct sctphdr, checksum);
3380 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3381 		ret = -EINVAL;
3382 		goto out;
3383 	}
3384 
3385 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3386 	if (ret)
3387 		goto out;
3388 
3389 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3390 						  skb->len - start, ~(__u32)0,
3391 						  crc32c_csum_stub));
3392 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3393 	skb_reset_csum_not_inet(skb);
3394 out:
3395 	return ret;
3396 }
3397 EXPORT_SYMBOL(skb_crc32c_csum_help);
3398 
3399 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3400 {
3401 	__be16 type = skb->protocol;
3402 
3403 	/* Tunnel gso handlers can set protocol to ethernet. */
3404 	if (type == htons(ETH_P_TEB)) {
3405 		struct ethhdr *eth;
3406 
3407 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3408 			return 0;
3409 
3410 		eth = (struct ethhdr *)skb->data;
3411 		type = eth->h_proto;
3412 	}
3413 
3414 	return vlan_get_protocol_and_depth(skb, type, depth);
3415 }
3416 
3417 
3418 /* Take action when hardware reception checksum errors are detected. */
3419 #ifdef CONFIG_BUG
3420 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3421 {
3422 	netdev_err(dev, "hw csum failure\n");
3423 	skb_dump(KERN_ERR, skb, true);
3424 	dump_stack();
3425 }
3426 
3427 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3428 {
3429 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3430 }
3431 EXPORT_SYMBOL(netdev_rx_csum_fault);
3432 #endif
3433 
3434 /* XXX: check that highmem exists at all on the given machine. */
3435 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3436 {
3437 #ifdef CONFIG_HIGHMEM
3438 	int i;
3439 
3440 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3441 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3442 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3443 			struct page *page = skb_frag_page(frag);
3444 
3445 			if (page && PageHighMem(page))
3446 				return 1;
3447 		}
3448 	}
3449 #endif
3450 	return 0;
3451 }
3452 
3453 /* If MPLS offload request, verify we are testing hardware MPLS features
3454  * instead of standard features for the netdev.
3455  */
3456 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3457 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3458 					   netdev_features_t features,
3459 					   __be16 type)
3460 {
3461 	if (eth_p_mpls(type))
3462 		features &= skb->dev->mpls_features;
3463 
3464 	return features;
3465 }
3466 #else
3467 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3468 					   netdev_features_t features,
3469 					   __be16 type)
3470 {
3471 	return features;
3472 }
3473 #endif
3474 
3475 static netdev_features_t harmonize_features(struct sk_buff *skb,
3476 	netdev_features_t features)
3477 {
3478 	__be16 type;
3479 
3480 	type = skb_network_protocol(skb, NULL);
3481 	features = net_mpls_features(skb, features, type);
3482 
3483 	if (skb->ip_summed != CHECKSUM_NONE &&
3484 	    !can_checksum_protocol(features, type)) {
3485 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3486 	}
3487 	if (illegal_highdma(skb->dev, skb))
3488 		features &= ~NETIF_F_SG;
3489 
3490 	return features;
3491 }
3492 
3493 netdev_features_t passthru_features_check(struct sk_buff *skb,
3494 					  struct net_device *dev,
3495 					  netdev_features_t features)
3496 {
3497 	return features;
3498 }
3499 EXPORT_SYMBOL(passthru_features_check);
3500 
3501 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3502 					     struct net_device *dev,
3503 					     netdev_features_t features)
3504 {
3505 	return vlan_features_check(skb, features);
3506 }
3507 
3508 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3509 					    struct net_device *dev,
3510 					    netdev_features_t features)
3511 {
3512 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3513 
3514 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3515 		return features & ~NETIF_F_GSO_MASK;
3516 
3517 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3518 		return features & ~NETIF_F_GSO_MASK;
3519 
3520 	if (!skb_shinfo(skb)->gso_type) {
3521 		skb_warn_bad_offload(skb);
3522 		return features & ~NETIF_F_GSO_MASK;
3523 	}
3524 
3525 	/* Support for GSO partial features requires software
3526 	 * intervention before we can actually process the packets
3527 	 * so we need to strip support for any partial features now
3528 	 * and we can pull them back in after we have partially
3529 	 * segmented the frame.
3530 	 */
3531 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3532 		features &= ~dev->gso_partial_features;
3533 
3534 	/* Make sure to clear the IPv4 ID mangling feature if the
3535 	 * IPv4 header has the potential to be fragmented.
3536 	 */
3537 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3538 		struct iphdr *iph = skb->encapsulation ?
3539 				    inner_ip_hdr(skb) : ip_hdr(skb);
3540 
3541 		if (!(iph->frag_off & htons(IP_DF)))
3542 			features &= ~NETIF_F_TSO_MANGLEID;
3543 	}
3544 
3545 	return features;
3546 }
3547 
3548 netdev_features_t netif_skb_features(struct sk_buff *skb)
3549 {
3550 	struct net_device *dev = skb->dev;
3551 	netdev_features_t features = dev->features;
3552 
3553 	if (skb_is_gso(skb))
3554 		features = gso_features_check(skb, dev, features);
3555 
3556 	/* If encapsulation offload request, verify we are testing
3557 	 * hardware encapsulation features instead of standard
3558 	 * features for the netdev
3559 	 */
3560 	if (skb->encapsulation)
3561 		features &= dev->hw_enc_features;
3562 
3563 	if (skb_vlan_tagged(skb))
3564 		features = netdev_intersect_features(features,
3565 						     dev->vlan_features |
3566 						     NETIF_F_HW_VLAN_CTAG_TX |
3567 						     NETIF_F_HW_VLAN_STAG_TX);
3568 
3569 	if (dev->netdev_ops->ndo_features_check)
3570 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3571 								features);
3572 	else
3573 		features &= dflt_features_check(skb, dev, features);
3574 
3575 	return harmonize_features(skb, features);
3576 }
3577 EXPORT_SYMBOL(netif_skb_features);
3578 
3579 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3580 		    struct netdev_queue *txq, bool more)
3581 {
3582 	unsigned int len;
3583 	int rc;
3584 
3585 	if (dev_nit_active(dev))
3586 		dev_queue_xmit_nit(skb, dev);
3587 
3588 	len = skb->len;
3589 	trace_net_dev_start_xmit(skb, dev);
3590 	rc = netdev_start_xmit(skb, dev, txq, more);
3591 	trace_net_dev_xmit(skb, rc, dev, len);
3592 
3593 	return rc;
3594 }
3595 
3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3597 				    struct netdev_queue *txq, int *ret)
3598 {
3599 	struct sk_buff *skb = first;
3600 	int rc = NETDEV_TX_OK;
3601 
3602 	while (skb) {
3603 		struct sk_buff *next = skb->next;
3604 
3605 		skb_mark_not_on_list(skb);
3606 		rc = xmit_one(skb, dev, txq, next != NULL);
3607 		if (unlikely(!dev_xmit_complete(rc))) {
3608 			skb->next = next;
3609 			goto out;
3610 		}
3611 
3612 		skb = next;
3613 		if (netif_tx_queue_stopped(txq) && skb) {
3614 			rc = NETDEV_TX_BUSY;
3615 			break;
3616 		}
3617 	}
3618 
3619 out:
3620 	*ret = rc;
3621 	return skb;
3622 }
3623 
3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3625 					  netdev_features_t features)
3626 {
3627 	if (skb_vlan_tag_present(skb) &&
3628 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3629 		skb = __vlan_hwaccel_push_inside(skb);
3630 	return skb;
3631 }
3632 
3633 int skb_csum_hwoffload_help(struct sk_buff *skb,
3634 			    const netdev_features_t features)
3635 {
3636 	if (unlikely(skb_csum_is_sctp(skb)))
3637 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3638 			skb_crc32c_csum_help(skb);
3639 
3640 	if (features & NETIF_F_HW_CSUM)
3641 		return 0;
3642 
3643 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3644 		switch (skb->csum_offset) {
3645 		case offsetof(struct tcphdr, check):
3646 		case offsetof(struct udphdr, check):
3647 			return 0;
3648 		}
3649 	}
3650 
3651 	return skb_checksum_help(skb);
3652 }
3653 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3654 
3655 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3656 {
3657 	netdev_features_t features;
3658 
3659 	features = netif_skb_features(skb);
3660 	skb = validate_xmit_vlan(skb, features);
3661 	if (unlikely(!skb))
3662 		goto out_null;
3663 
3664 	skb = sk_validate_xmit_skb(skb, dev);
3665 	if (unlikely(!skb))
3666 		goto out_null;
3667 
3668 	if (netif_needs_gso(skb, features)) {
3669 		struct sk_buff *segs;
3670 
3671 		segs = skb_gso_segment(skb, features);
3672 		if (IS_ERR(segs)) {
3673 			goto out_kfree_skb;
3674 		} else if (segs) {
3675 			consume_skb(skb);
3676 			skb = segs;
3677 		}
3678 	} else {
3679 		if (skb_needs_linearize(skb, features) &&
3680 		    __skb_linearize(skb))
3681 			goto out_kfree_skb;
3682 
3683 		/* If packet is not checksummed and device does not
3684 		 * support checksumming for this protocol, complete
3685 		 * checksumming here.
3686 		 */
3687 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3688 			if (skb->encapsulation)
3689 				skb_set_inner_transport_header(skb,
3690 							       skb_checksum_start_offset(skb));
3691 			else
3692 				skb_set_transport_header(skb,
3693 							 skb_checksum_start_offset(skb));
3694 			if (skb_csum_hwoffload_help(skb, features))
3695 				goto out_kfree_skb;
3696 		}
3697 	}
3698 
3699 	skb = validate_xmit_xfrm(skb, features, again);
3700 
3701 	return skb;
3702 
3703 out_kfree_skb:
3704 	kfree_skb(skb);
3705 out_null:
3706 	dev_core_stats_tx_dropped_inc(dev);
3707 	return NULL;
3708 }
3709 
3710 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3711 {
3712 	struct sk_buff *next, *head = NULL, *tail;
3713 
3714 	for (; skb != NULL; skb = next) {
3715 		next = skb->next;
3716 		skb_mark_not_on_list(skb);
3717 
3718 		/* in case skb won't be segmented, point to itself */
3719 		skb->prev = skb;
3720 
3721 		skb = validate_xmit_skb(skb, dev, again);
3722 		if (!skb)
3723 			continue;
3724 
3725 		if (!head)
3726 			head = skb;
3727 		else
3728 			tail->next = skb;
3729 		/* If skb was segmented, skb->prev points to
3730 		 * the last segment. If not, it still contains skb.
3731 		 */
3732 		tail = skb->prev;
3733 	}
3734 	return head;
3735 }
3736 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3737 
3738 static void qdisc_pkt_len_init(struct sk_buff *skb)
3739 {
3740 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3741 
3742 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3743 
3744 	/* To get more precise estimation of bytes sent on wire,
3745 	 * we add to pkt_len the headers size of all segments
3746 	 */
3747 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3748 		u16 gso_segs = shinfo->gso_segs;
3749 		unsigned int hdr_len;
3750 
3751 		/* mac layer + network layer */
3752 		hdr_len = skb_transport_offset(skb);
3753 
3754 		/* + transport layer */
3755 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3756 			const struct tcphdr *th;
3757 			struct tcphdr _tcphdr;
3758 
3759 			th = skb_header_pointer(skb, hdr_len,
3760 						sizeof(_tcphdr), &_tcphdr);
3761 			if (likely(th))
3762 				hdr_len += __tcp_hdrlen(th);
3763 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3764 			struct udphdr _udphdr;
3765 
3766 			if (skb_header_pointer(skb, hdr_len,
3767 					       sizeof(_udphdr), &_udphdr))
3768 				hdr_len += sizeof(struct udphdr);
3769 		}
3770 
3771 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3772 			int payload = skb->len - hdr_len;
3773 
3774 			/* Malicious packet. */
3775 			if (payload <= 0)
3776 				return;
3777 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3778 		}
3779 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3780 	}
3781 }
3782 
3783 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3784 			     struct sk_buff **to_free,
3785 			     struct netdev_queue *txq)
3786 {
3787 	int rc;
3788 
3789 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3790 	if (rc == NET_XMIT_SUCCESS)
3791 		trace_qdisc_enqueue(q, txq, skb);
3792 	return rc;
3793 }
3794 
3795 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3796 				 struct net_device *dev,
3797 				 struct netdev_queue *txq)
3798 {
3799 	spinlock_t *root_lock = qdisc_lock(q);
3800 	struct sk_buff *to_free = NULL;
3801 	bool contended;
3802 	int rc;
3803 
3804 	qdisc_calculate_pkt_len(skb, q);
3805 
3806 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3807 
3808 	if (q->flags & TCQ_F_NOLOCK) {
3809 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3810 		    qdisc_run_begin(q)) {
3811 			/* Retest nolock_qdisc_is_empty() within the protection
3812 			 * of q->seqlock to protect from racing with requeuing.
3813 			 */
3814 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3815 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3816 				__qdisc_run(q);
3817 				qdisc_run_end(q);
3818 
3819 				goto no_lock_out;
3820 			}
3821 
3822 			qdisc_bstats_cpu_update(q, skb);
3823 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3824 			    !nolock_qdisc_is_empty(q))
3825 				__qdisc_run(q);
3826 
3827 			qdisc_run_end(q);
3828 			return NET_XMIT_SUCCESS;
3829 		}
3830 
3831 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3832 		qdisc_run(q);
3833 
3834 no_lock_out:
3835 		if (unlikely(to_free))
3836 			kfree_skb_list_reason(to_free,
3837 					      tcf_get_drop_reason(to_free));
3838 		return rc;
3839 	}
3840 
3841 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3842 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3843 		return NET_XMIT_DROP;
3844 	}
3845 	/*
3846 	 * Heuristic to force contended enqueues to serialize on a
3847 	 * separate lock before trying to get qdisc main lock.
3848 	 * This permits qdisc->running owner to get the lock more
3849 	 * often and dequeue packets faster.
3850 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3851 	 * and then other tasks will only enqueue packets. The packets will be
3852 	 * sent after the qdisc owner is scheduled again. To prevent this
3853 	 * scenario the task always serialize on the lock.
3854 	 */
3855 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3856 	if (unlikely(contended))
3857 		spin_lock(&q->busylock);
3858 
3859 	spin_lock(root_lock);
3860 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3861 		__qdisc_drop(skb, &to_free);
3862 		rc = NET_XMIT_DROP;
3863 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3864 		   qdisc_run_begin(q)) {
3865 		/*
3866 		 * This is a work-conserving queue; there are no old skbs
3867 		 * waiting to be sent out; and the qdisc is not running -
3868 		 * xmit the skb directly.
3869 		 */
3870 
3871 		qdisc_bstats_update(q, skb);
3872 
3873 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3874 			if (unlikely(contended)) {
3875 				spin_unlock(&q->busylock);
3876 				contended = false;
3877 			}
3878 			__qdisc_run(q);
3879 		}
3880 
3881 		qdisc_run_end(q);
3882 		rc = NET_XMIT_SUCCESS;
3883 	} else {
3884 		WRITE_ONCE(q->owner, smp_processor_id());
3885 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3886 		WRITE_ONCE(q->owner, -1);
3887 		if (qdisc_run_begin(q)) {
3888 			if (unlikely(contended)) {
3889 				spin_unlock(&q->busylock);
3890 				contended = false;
3891 			}
3892 			__qdisc_run(q);
3893 			qdisc_run_end(q);
3894 		}
3895 	}
3896 	spin_unlock(root_lock);
3897 	if (unlikely(to_free))
3898 		kfree_skb_list_reason(to_free,
3899 				      tcf_get_drop_reason(to_free));
3900 	if (unlikely(contended))
3901 		spin_unlock(&q->busylock);
3902 	return rc;
3903 }
3904 
3905 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3906 static void skb_update_prio(struct sk_buff *skb)
3907 {
3908 	const struct netprio_map *map;
3909 	const struct sock *sk;
3910 	unsigned int prioidx;
3911 
3912 	if (skb->priority)
3913 		return;
3914 	map = rcu_dereference_bh(skb->dev->priomap);
3915 	if (!map)
3916 		return;
3917 	sk = skb_to_full_sk(skb);
3918 	if (!sk)
3919 		return;
3920 
3921 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3922 
3923 	if (prioidx < map->priomap_len)
3924 		skb->priority = map->priomap[prioidx];
3925 }
3926 #else
3927 #define skb_update_prio(skb)
3928 #endif
3929 
3930 /**
3931  *	dev_loopback_xmit - loop back @skb
3932  *	@net: network namespace this loopback is happening in
3933  *	@sk:  sk needed to be a netfilter okfn
3934  *	@skb: buffer to transmit
3935  */
3936 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3937 {
3938 	skb_reset_mac_header(skb);
3939 	__skb_pull(skb, skb_network_offset(skb));
3940 	skb->pkt_type = PACKET_LOOPBACK;
3941 	if (skb->ip_summed == CHECKSUM_NONE)
3942 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3943 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3944 	skb_dst_force(skb);
3945 	netif_rx(skb);
3946 	return 0;
3947 }
3948 EXPORT_SYMBOL(dev_loopback_xmit);
3949 
3950 #ifdef CONFIG_NET_EGRESS
3951 static struct netdev_queue *
3952 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3953 {
3954 	int qm = skb_get_queue_mapping(skb);
3955 
3956 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3957 }
3958 
3959 #ifndef CONFIG_PREEMPT_RT
3960 static bool netdev_xmit_txqueue_skipped(void)
3961 {
3962 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3963 }
3964 
3965 void netdev_xmit_skip_txqueue(bool skip)
3966 {
3967 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3968 }
3969 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3970 
3971 #else
3972 static bool netdev_xmit_txqueue_skipped(void)
3973 {
3974 	return current->net_xmit.skip_txqueue;
3975 }
3976 
3977 void netdev_xmit_skip_txqueue(bool skip)
3978 {
3979 	current->net_xmit.skip_txqueue = skip;
3980 }
3981 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3982 #endif
3983 #endif /* CONFIG_NET_EGRESS */
3984 
3985 #ifdef CONFIG_NET_XGRESS
3986 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3987 		  enum skb_drop_reason *drop_reason)
3988 {
3989 	int ret = TC_ACT_UNSPEC;
3990 #ifdef CONFIG_NET_CLS_ACT
3991 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3992 	struct tcf_result res;
3993 
3994 	if (!miniq)
3995 		return ret;
3996 
3997 	if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
3998 		if (tcf_block_bypass_sw(miniq->block))
3999 			return ret;
4000 	}
4001 
4002 	tc_skb_cb(skb)->mru = 0;
4003 	tc_skb_cb(skb)->post_ct = false;
4004 	tcf_set_drop_reason(skb, *drop_reason);
4005 
4006 	mini_qdisc_bstats_cpu_update(miniq, skb);
4007 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4008 	/* Only tcf related quirks below. */
4009 	switch (ret) {
4010 	case TC_ACT_SHOT:
4011 		*drop_reason = tcf_get_drop_reason(skb);
4012 		mini_qdisc_qstats_cpu_drop(miniq);
4013 		break;
4014 	case TC_ACT_OK:
4015 	case TC_ACT_RECLASSIFY:
4016 		skb->tc_index = TC_H_MIN(res.classid);
4017 		break;
4018 	}
4019 #endif /* CONFIG_NET_CLS_ACT */
4020 	return ret;
4021 }
4022 
4023 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4024 
4025 void tcx_inc(void)
4026 {
4027 	static_branch_inc(&tcx_needed_key);
4028 }
4029 
4030 void tcx_dec(void)
4031 {
4032 	static_branch_dec(&tcx_needed_key);
4033 }
4034 
4035 static __always_inline enum tcx_action_base
4036 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4037 	const bool needs_mac)
4038 {
4039 	const struct bpf_mprog_fp *fp;
4040 	const struct bpf_prog *prog;
4041 	int ret = TCX_NEXT;
4042 
4043 	if (needs_mac)
4044 		__skb_push(skb, skb->mac_len);
4045 	bpf_mprog_foreach_prog(entry, fp, prog) {
4046 		bpf_compute_data_pointers(skb);
4047 		ret = bpf_prog_run(prog, skb);
4048 		if (ret != TCX_NEXT)
4049 			break;
4050 	}
4051 	if (needs_mac)
4052 		__skb_pull(skb, skb->mac_len);
4053 	return tcx_action_code(skb, ret);
4054 }
4055 
4056 static __always_inline struct sk_buff *
4057 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4058 		   struct net_device *orig_dev, bool *another)
4059 {
4060 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4061 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4062 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4063 	int sch_ret;
4064 
4065 	if (!entry)
4066 		return skb;
4067 
4068 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4069 	if (*pt_prev) {
4070 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4071 		*pt_prev = NULL;
4072 	}
4073 
4074 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4075 	tcx_set_ingress(skb, true);
4076 
4077 	if (static_branch_unlikely(&tcx_needed_key)) {
4078 		sch_ret = tcx_run(entry, skb, true);
4079 		if (sch_ret != TC_ACT_UNSPEC)
4080 			goto ingress_verdict;
4081 	}
4082 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4083 ingress_verdict:
4084 	switch (sch_ret) {
4085 	case TC_ACT_REDIRECT:
4086 		/* skb_mac_header check was done by BPF, so we can safely
4087 		 * push the L2 header back before redirecting to another
4088 		 * netdev.
4089 		 */
4090 		__skb_push(skb, skb->mac_len);
4091 		if (skb_do_redirect(skb) == -EAGAIN) {
4092 			__skb_pull(skb, skb->mac_len);
4093 			*another = true;
4094 			break;
4095 		}
4096 		*ret = NET_RX_SUCCESS;
4097 		bpf_net_ctx_clear(bpf_net_ctx);
4098 		return NULL;
4099 	case TC_ACT_SHOT:
4100 		kfree_skb_reason(skb, drop_reason);
4101 		*ret = NET_RX_DROP;
4102 		bpf_net_ctx_clear(bpf_net_ctx);
4103 		return NULL;
4104 	/* used by tc_run */
4105 	case TC_ACT_STOLEN:
4106 	case TC_ACT_QUEUED:
4107 	case TC_ACT_TRAP:
4108 		consume_skb(skb);
4109 		fallthrough;
4110 	case TC_ACT_CONSUMED:
4111 		*ret = NET_RX_SUCCESS;
4112 		bpf_net_ctx_clear(bpf_net_ctx);
4113 		return NULL;
4114 	}
4115 	bpf_net_ctx_clear(bpf_net_ctx);
4116 
4117 	return skb;
4118 }
4119 
4120 static __always_inline struct sk_buff *
4121 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4122 {
4123 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4124 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4125 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4126 	int sch_ret;
4127 
4128 	if (!entry)
4129 		return skb;
4130 
4131 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4132 
4133 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4134 	 * already set by the caller.
4135 	 */
4136 	if (static_branch_unlikely(&tcx_needed_key)) {
4137 		sch_ret = tcx_run(entry, skb, false);
4138 		if (sch_ret != TC_ACT_UNSPEC)
4139 			goto egress_verdict;
4140 	}
4141 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4142 egress_verdict:
4143 	switch (sch_ret) {
4144 	case TC_ACT_REDIRECT:
4145 		/* No need to push/pop skb's mac_header here on egress! */
4146 		skb_do_redirect(skb);
4147 		*ret = NET_XMIT_SUCCESS;
4148 		bpf_net_ctx_clear(bpf_net_ctx);
4149 		return NULL;
4150 	case TC_ACT_SHOT:
4151 		kfree_skb_reason(skb, drop_reason);
4152 		*ret = NET_XMIT_DROP;
4153 		bpf_net_ctx_clear(bpf_net_ctx);
4154 		return NULL;
4155 	/* used by tc_run */
4156 	case TC_ACT_STOLEN:
4157 	case TC_ACT_QUEUED:
4158 	case TC_ACT_TRAP:
4159 		consume_skb(skb);
4160 		fallthrough;
4161 	case TC_ACT_CONSUMED:
4162 		*ret = NET_XMIT_SUCCESS;
4163 		bpf_net_ctx_clear(bpf_net_ctx);
4164 		return NULL;
4165 	}
4166 	bpf_net_ctx_clear(bpf_net_ctx);
4167 
4168 	return skb;
4169 }
4170 #else
4171 static __always_inline struct sk_buff *
4172 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4173 		   struct net_device *orig_dev, bool *another)
4174 {
4175 	return skb;
4176 }
4177 
4178 static __always_inline struct sk_buff *
4179 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4180 {
4181 	return skb;
4182 }
4183 #endif /* CONFIG_NET_XGRESS */
4184 
4185 #ifdef CONFIG_XPS
4186 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4187 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4188 {
4189 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4190 	struct xps_map *map;
4191 	int queue_index = -1;
4192 
4193 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4194 		return queue_index;
4195 
4196 	tci *= dev_maps->num_tc;
4197 	tci += tc;
4198 
4199 	map = rcu_dereference(dev_maps->attr_map[tci]);
4200 	if (map) {
4201 		if (map->len == 1)
4202 			queue_index = map->queues[0];
4203 		else
4204 			queue_index = map->queues[reciprocal_scale(
4205 						skb_get_hash(skb), map->len)];
4206 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4207 			queue_index = -1;
4208 	}
4209 	return queue_index;
4210 }
4211 #endif
4212 
4213 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4214 			 struct sk_buff *skb)
4215 {
4216 #ifdef CONFIG_XPS
4217 	struct xps_dev_maps *dev_maps;
4218 	struct sock *sk = skb->sk;
4219 	int queue_index = -1;
4220 
4221 	if (!static_key_false(&xps_needed))
4222 		return -1;
4223 
4224 	rcu_read_lock();
4225 	if (!static_key_false(&xps_rxqs_needed))
4226 		goto get_cpus_map;
4227 
4228 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4229 	if (dev_maps) {
4230 		int tci = sk_rx_queue_get(sk);
4231 
4232 		if (tci >= 0)
4233 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4234 							  tci);
4235 	}
4236 
4237 get_cpus_map:
4238 	if (queue_index < 0) {
4239 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4240 		if (dev_maps) {
4241 			unsigned int tci = skb->sender_cpu - 1;
4242 
4243 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4244 							  tci);
4245 		}
4246 	}
4247 	rcu_read_unlock();
4248 
4249 	return queue_index;
4250 #else
4251 	return -1;
4252 #endif
4253 }
4254 
4255 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4256 		     struct net_device *sb_dev)
4257 {
4258 	return 0;
4259 }
4260 EXPORT_SYMBOL(dev_pick_tx_zero);
4261 
4262 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4263 		     struct net_device *sb_dev)
4264 {
4265 	struct sock *sk = skb->sk;
4266 	int queue_index = sk_tx_queue_get(sk);
4267 
4268 	sb_dev = sb_dev ? : dev;
4269 
4270 	if (queue_index < 0 || skb->ooo_okay ||
4271 	    queue_index >= dev->real_num_tx_queues) {
4272 		int new_index = get_xps_queue(dev, sb_dev, skb);
4273 
4274 		if (new_index < 0)
4275 			new_index = skb_tx_hash(dev, sb_dev, skb);
4276 
4277 		if (queue_index != new_index && sk &&
4278 		    sk_fullsock(sk) &&
4279 		    rcu_access_pointer(sk->sk_dst_cache))
4280 			sk_tx_queue_set(sk, new_index);
4281 
4282 		queue_index = new_index;
4283 	}
4284 
4285 	return queue_index;
4286 }
4287 EXPORT_SYMBOL(netdev_pick_tx);
4288 
4289 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4290 					 struct sk_buff *skb,
4291 					 struct net_device *sb_dev)
4292 {
4293 	int queue_index = 0;
4294 
4295 #ifdef CONFIG_XPS
4296 	u32 sender_cpu = skb->sender_cpu - 1;
4297 
4298 	if (sender_cpu >= (u32)NR_CPUS)
4299 		skb->sender_cpu = raw_smp_processor_id() + 1;
4300 #endif
4301 
4302 	if (dev->real_num_tx_queues != 1) {
4303 		const struct net_device_ops *ops = dev->netdev_ops;
4304 
4305 		if (ops->ndo_select_queue)
4306 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4307 		else
4308 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4309 
4310 		queue_index = netdev_cap_txqueue(dev, queue_index);
4311 	}
4312 
4313 	skb_set_queue_mapping(skb, queue_index);
4314 	return netdev_get_tx_queue(dev, queue_index);
4315 }
4316 
4317 /**
4318  * __dev_queue_xmit() - transmit a buffer
4319  * @skb:	buffer to transmit
4320  * @sb_dev:	suboordinate device used for L2 forwarding offload
4321  *
4322  * Queue a buffer for transmission to a network device. The caller must
4323  * have set the device and priority and built the buffer before calling
4324  * this function. The function can be called from an interrupt.
4325  *
4326  * When calling this method, interrupts MUST be enabled. This is because
4327  * the BH enable code must have IRQs enabled so that it will not deadlock.
4328  *
4329  * Regardless of the return value, the skb is consumed, so it is currently
4330  * difficult to retry a send to this method. (You can bump the ref count
4331  * before sending to hold a reference for retry if you are careful.)
4332  *
4333  * Return:
4334  * * 0				- buffer successfully transmitted
4335  * * positive qdisc return code	- NET_XMIT_DROP etc.
4336  * * negative errno		- other errors
4337  */
4338 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4339 {
4340 	struct net_device *dev = skb->dev;
4341 	struct netdev_queue *txq = NULL;
4342 	struct Qdisc *q;
4343 	int rc = -ENOMEM;
4344 	bool again = false;
4345 
4346 	skb_reset_mac_header(skb);
4347 	skb_assert_len(skb);
4348 
4349 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4350 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4351 
4352 	/* Disable soft irqs for various locks below. Also
4353 	 * stops preemption for RCU.
4354 	 */
4355 	rcu_read_lock_bh();
4356 
4357 	skb_update_prio(skb);
4358 
4359 	qdisc_pkt_len_init(skb);
4360 	tcx_set_ingress(skb, false);
4361 #ifdef CONFIG_NET_EGRESS
4362 	if (static_branch_unlikely(&egress_needed_key)) {
4363 		if (nf_hook_egress_active()) {
4364 			skb = nf_hook_egress(skb, &rc, dev);
4365 			if (!skb)
4366 				goto out;
4367 		}
4368 
4369 		netdev_xmit_skip_txqueue(false);
4370 
4371 		nf_skip_egress(skb, true);
4372 		skb = sch_handle_egress(skb, &rc, dev);
4373 		if (!skb)
4374 			goto out;
4375 		nf_skip_egress(skb, false);
4376 
4377 		if (netdev_xmit_txqueue_skipped())
4378 			txq = netdev_tx_queue_mapping(dev, skb);
4379 	}
4380 #endif
4381 	/* If device/qdisc don't need skb->dst, release it right now while
4382 	 * its hot in this cpu cache.
4383 	 */
4384 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4385 		skb_dst_drop(skb);
4386 	else
4387 		skb_dst_force(skb);
4388 
4389 	if (!txq)
4390 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4391 
4392 	q = rcu_dereference_bh(txq->qdisc);
4393 
4394 	trace_net_dev_queue(skb);
4395 	if (q->enqueue) {
4396 		rc = __dev_xmit_skb(skb, q, dev, txq);
4397 		goto out;
4398 	}
4399 
4400 	/* The device has no queue. Common case for software devices:
4401 	 * loopback, all the sorts of tunnels...
4402 
4403 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4404 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4405 	 * counters.)
4406 	 * However, it is possible, that they rely on protection
4407 	 * made by us here.
4408 
4409 	 * Check this and shot the lock. It is not prone from deadlocks.
4410 	 *Either shot noqueue qdisc, it is even simpler 8)
4411 	 */
4412 	if (dev->flags & IFF_UP) {
4413 		int cpu = smp_processor_id(); /* ok because BHs are off */
4414 
4415 		/* Other cpus might concurrently change txq->xmit_lock_owner
4416 		 * to -1 or to their cpu id, but not to our id.
4417 		 */
4418 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4419 			if (dev_xmit_recursion())
4420 				goto recursion_alert;
4421 
4422 			skb = validate_xmit_skb(skb, dev, &again);
4423 			if (!skb)
4424 				goto out;
4425 
4426 			HARD_TX_LOCK(dev, txq, cpu);
4427 
4428 			if (!netif_xmit_stopped(txq)) {
4429 				dev_xmit_recursion_inc();
4430 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4431 				dev_xmit_recursion_dec();
4432 				if (dev_xmit_complete(rc)) {
4433 					HARD_TX_UNLOCK(dev, txq);
4434 					goto out;
4435 				}
4436 			}
4437 			HARD_TX_UNLOCK(dev, txq);
4438 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4439 					     dev->name);
4440 		} else {
4441 			/* Recursion is detected! It is possible,
4442 			 * unfortunately
4443 			 */
4444 recursion_alert:
4445 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4446 					     dev->name);
4447 		}
4448 	}
4449 
4450 	rc = -ENETDOWN;
4451 	rcu_read_unlock_bh();
4452 
4453 	dev_core_stats_tx_dropped_inc(dev);
4454 	kfree_skb_list(skb);
4455 	return rc;
4456 out:
4457 	rcu_read_unlock_bh();
4458 	return rc;
4459 }
4460 EXPORT_SYMBOL(__dev_queue_xmit);
4461 
4462 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4463 {
4464 	struct net_device *dev = skb->dev;
4465 	struct sk_buff *orig_skb = skb;
4466 	struct netdev_queue *txq;
4467 	int ret = NETDEV_TX_BUSY;
4468 	bool again = false;
4469 
4470 	if (unlikely(!netif_running(dev) ||
4471 		     !netif_carrier_ok(dev)))
4472 		goto drop;
4473 
4474 	skb = validate_xmit_skb_list(skb, dev, &again);
4475 	if (skb != orig_skb)
4476 		goto drop;
4477 
4478 	skb_set_queue_mapping(skb, queue_id);
4479 	txq = skb_get_tx_queue(dev, skb);
4480 
4481 	local_bh_disable();
4482 
4483 	dev_xmit_recursion_inc();
4484 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4485 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4486 		ret = netdev_start_xmit(skb, dev, txq, false);
4487 	HARD_TX_UNLOCK(dev, txq);
4488 	dev_xmit_recursion_dec();
4489 
4490 	local_bh_enable();
4491 	return ret;
4492 drop:
4493 	dev_core_stats_tx_dropped_inc(dev);
4494 	kfree_skb_list(skb);
4495 	return NET_XMIT_DROP;
4496 }
4497 EXPORT_SYMBOL(__dev_direct_xmit);
4498 
4499 /*************************************************************************
4500  *			Receiver routines
4501  *************************************************************************/
4502 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4503 
4504 int weight_p __read_mostly = 64;           /* old backlog weight */
4505 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4506 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4507 
4508 /* Called with irq disabled */
4509 static inline void ____napi_schedule(struct softnet_data *sd,
4510 				     struct napi_struct *napi)
4511 {
4512 	struct task_struct *thread;
4513 
4514 	lockdep_assert_irqs_disabled();
4515 
4516 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4517 		/* Paired with smp_mb__before_atomic() in
4518 		 * napi_enable()/dev_set_threaded().
4519 		 * Use READ_ONCE() to guarantee a complete
4520 		 * read on napi->thread. Only call
4521 		 * wake_up_process() when it's not NULL.
4522 		 */
4523 		thread = READ_ONCE(napi->thread);
4524 		if (thread) {
4525 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4526 				goto use_local_napi;
4527 
4528 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4529 			wake_up_process(thread);
4530 			return;
4531 		}
4532 	}
4533 
4534 use_local_napi:
4535 	list_add_tail(&napi->poll_list, &sd->poll_list);
4536 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4537 	/* If not called from net_rx_action()
4538 	 * we have to raise NET_RX_SOFTIRQ.
4539 	 */
4540 	if (!sd->in_net_rx_action)
4541 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4542 }
4543 
4544 #ifdef CONFIG_RPS
4545 
4546 struct static_key_false rps_needed __read_mostly;
4547 EXPORT_SYMBOL(rps_needed);
4548 struct static_key_false rfs_needed __read_mostly;
4549 EXPORT_SYMBOL(rfs_needed);
4550 
4551 static struct rps_dev_flow *
4552 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4553 	    struct rps_dev_flow *rflow, u16 next_cpu)
4554 {
4555 	if (next_cpu < nr_cpu_ids) {
4556 		u32 head;
4557 #ifdef CONFIG_RFS_ACCEL
4558 		struct netdev_rx_queue *rxqueue;
4559 		struct rps_dev_flow_table *flow_table;
4560 		struct rps_dev_flow *old_rflow;
4561 		u16 rxq_index;
4562 		u32 flow_id;
4563 		int rc;
4564 
4565 		/* Should we steer this flow to a different hardware queue? */
4566 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4567 		    !(dev->features & NETIF_F_NTUPLE))
4568 			goto out;
4569 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4570 		if (rxq_index == skb_get_rx_queue(skb))
4571 			goto out;
4572 
4573 		rxqueue = dev->_rx + rxq_index;
4574 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4575 		if (!flow_table)
4576 			goto out;
4577 		flow_id = skb_get_hash(skb) & flow_table->mask;
4578 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4579 							rxq_index, flow_id);
4580 		if (rc < 0)
4581 			goto out;
4582 		old_rflow = rflow;
4583 		rflow = &flow_table->flows[flow_id];
4584 		WRITE_ONCE(rflow->filter, rc);
4585 		if (old_rflow->filter == rc)
4586 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4587 	out:
4588 #endif
4589 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4590 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4591 	}
4592 
4593 	WRITE_ONCE(rflow->cpu, next_cpu);
4594 	return rflow;
4595 }
4596 
4597 /*
4598  * get_rps_cpu is called from netif_receive_skb and returns the target
4599  * CPU from the RPS map of the receiving queue for a given skb.
4600  * rcu_read_lock must be held on entry.
4601  */
4602 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4603 		       struct rps_dev_flow **rflowp)
4604 {
4605 	const struct rps_sock_flow_table *sock_flow_table;
4606 	struct netdev_rx_queue *rxqueue = dev->_rx;
4607 	struct rps_dev_flow_table *flow_table;
4608 	struct rps_map *map;
4609 	int cpu = -1;
4610 	u32 tcpu;
4611 	u32 hash;
4612 
4613 	if (skb_rx_queue_recorded(skb)) {
4614 		u16 index = skb_get_rx_queue(skb);
4615 
4616 		if (unlikely(index >= dev->real_num_rx_queues)) {
4617 			WARN_ONCE(dev->real_num_rx_queues > 1,
4618 				  "%s received packet on queue %u, but number "
4619 				  "of RX queues is %u\n",
4620 				  dev->name, index, dev->real_num_rx_queues);
4621 			goto done;
4622 		}
4623 		rxqueue += index;
4624 	}
4625 
4626 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4627 
4628 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4629 	map = rcu_dereference(rxqueue->rps_map);
4630 	if (!flow_table && !map)
4631 		goto done;
4632 
4633 	skb_reset_network_header(skb);
4634 	hash = skb_get_hash(skb);
4635 	if (!hash)
4636 		goto done;
4637 
4638 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4639 	if (flow_table && sock_flow_table) {
4640 		struct rps_dev_flow *rflow;
4641 		u32 next_cpu;
4642 		u32 ident;
4643 
4644 		/* First check into global flow table if there is a match.
4645 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4646 		 */
4647 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4648 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4649 			goto try_rps;
4650 
4651 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4652 
4653 		/* OK, now we know there is a match,
4654 		 * we can look at the local (per receive queue) flow table
4655 		 */
4656 		rflow = &flow_table->flows[hash & flow_table->mask];
4657 		tcpu = rflow->cpu;
4658 
4659 		/*
4660 		 * If the desired CPU (where last recvmsg was done) is
4661 		 * different from current CPU (one in the rx-queue flow
4662 		 * table entry), switch if one of the following holds:
4663 		 *   - Current CPU is unset (>= nr_cpu_ids).
4664 		 *   - Current CPU is offline.
4665 		 *   - The current CPU's queue tail has advanced beyond the
4666 		 *     last packet that was enqueued using this table entry.
4667 		 *     This guarantees that all previous packets for the flow
4668 		 *     have been dequeued, thus preserving in order delivery.
4669 		 */
4670 		if (unlikely(tcpu != next_cpu) &&
4671 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4672 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4673 		      rflow->last_qtail)) >= 0)) {
4674 			tcpu = next_cpu;
4675 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4676 		}
4677 
4678 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4679 			*rflowp = rflow;
4680 			cpu = tcpu;
4681 			goto done;
4682 		}
4683 	}
4684 
4685 try_rps:
4686 
4687 	if (map) {
4688 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4689 		if (cpu_online(tcpu)) {
4690 			cpu = tcpu;
4691 			goto done;
4692 		}
4693 	}
4694 
4695 done:
4696 	return cpu;
4697 }
4698 
4699 #ifdef CONFIG_RFS_ACCEL
4700 
4701 /**
4702  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4703  * @dev: Device on which the filter was set
4704  * @rxq_index: RX queue index
4705  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4706  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4707  *
4708  * Drivers that implement ndo_rx_flow_steer() should periodically call
4709  * this function for each installed filter and remove the filters for
4710  * which it returns %true.
4711  */
4712 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4713 			 u32 flow_id, u16 filter_id)
4714 {
4715 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4716 	struct rps_dev_flow_table *flow_table;
4717 	struct rps_dev_flow *rflow;
4718 	bool expire = true;
4719 	unsigned int cpu;
4720 
4721 	rcu_read_lock();
4722 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4723 	if (flow_table && flow_id <= flow_table->mask) {
4724 		rflow = &flow_table->flows[flow_id];
4725 		cpu = READ_ONCE(rflow->cpu);
4726 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4727 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4728 			   READ_ONCE(rflow->last_qtail)) <
4729 		     (int)(10 * flow_table->mask)))
4730 			expire = false;
4731 	}
4732 	rcu_read_unlock();
4733 	return expire;
4734 }
4735 EXPORT_SYMBOL(rps_may_expire_flow);
4736 
4737 #endif /* CONFIG_RFS_ACCEL */
4738 
4739 /* Called from hardirq (IPI) context */
4740 static void rps_trigger_softirq(void *data)
4741 {
4742 	struct softnet_data *sd = data;
4743 
4744 	____napi_schedule(sd, &sd->backlog);
4745 	sd->received_rps++;
4746 }
4747 
4748 #endif /* CONFIG_RPS */
4749 
4750 /* Called from hardirq (IPI) context */
4751 static void trigger_rx_softirq(void *data)
4752 {
4753 	struct softnet_data *sd = data;
4754 
4755 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4756 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4757 }
4758 
4759 /*
4760  * After we queued a packet into sd->input_pkt_queue,
4761  * we need to make sure this queue is serviced soon.
4762  *
4763  * - If this is another cpu queue, link it to our rps_ipi_list,
4764  *   and make sure we will process rps_ipi_list from net_rx_action().
4765  *
4766  * - If this is our own queue, NAPI schedule our backlog.
4767  *   Note that this also raises NET_RX_SOFTIRQ.
4768  */
4769 static void napi_schedule_rps(struct softnet_data *sd)
4770 {
4771 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4772 
4773 #ifdef CONFIG_RPS
4774 	if (sd != mysd) {
4775 		if (use_backlog_threads()) {
4776 			__napi_schedule_irqoff(&sd->backlog);
4777 			return;
4778 		}
4779 
4780 		sd->rps_ipi_next = mysd->rps_ipi_list;
4781 		mysd->rps_ipi_list = sd;
4782 
4783 		/* If not called from net_rx_action() or napi_threaded_poll()
4784 		 * we have to raise NET_RX_SOFTIRQ.
4785 		 */
4786 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4787 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4788 		return;
4789 	}
4790 #endif /* CONFIG_RPS */
4791 	__napi_schedule_irqoff(&mysd->backlog);
4792 }
4793 
4794 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4795 {
4796 	unsigned long flags;
4797 
4798 	if (use_backlog_threads()) {
4799 		backlog_lock_irq_save(sd, &flags);
4800 
4801 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4802 			__napi_schedule_irqoff(&sd->backlog);
4803 
4804 		backlog_unlock_irq_restore(sd, &flags);
4805 
4806 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4807 		smp_call_function_single_async(cpu, &sd->defer_csd);
4808 	}
4809 }
4810 
4811 #ifdef CONFIG_NET_FLOW_LIMIT
4812 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4813 #endif
4814 
4815 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4816 {
4817 #ifdef CONFIG_NET_FLOW_LIMIT
4818 	struct sd_flow_limit *fl;
4819 	struct softnet_data *sd;
4820 	unsigned int old_flow, new_flow;
4821 
4822 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4823 		return false;
4824 
4825 	sd = this_cpu_ptr(&softnet_data);
4826 
4827 	rcu_read_lock();
4828 	fl = rcu_dereference(sd->flow_limit);
4829 	if (fl) {
4830 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4831 		old_flow = fl->history[fl->history_head];
4832 		fl->history[fl->history_head] = new_flow;
4833 
4834 		fl->history_head++;
4835 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4836 
4837 		if (likely(fl->buckets[old_flow]))
4838 			fl->buckets[old_flow]--;
4839 
4840 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4841 			fl->count++;
4842 			rcu_read_unlock();
4843 			return true;
4844 		}
4845 	}
4846 	rcu_read_unlock();
4847 #endif
4848 	return false;
4849 }
4850 
4851 /*
4852  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4853  * queue (may be a remote CPU queue).
4854  */
4855 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4856 			      unsigned int *qtail)
4857 {
4858 	enum skb_drop_reason reason;
4859 	struct softnet_data *sd;
4860 	unsigned long flags;
4861 	unsigned int qlen;
4862 	int max_backlog;
4863 	u32 tail;
4864 
4865 	reason = SKB_DROP_REASON_DEV_READY;
4866 	if (!netif_running(skb->dev))
4867 		goto bad_dev;
4868 
4869 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4870 	sd = &per_cpu(softnet_data, cpu);
4871 
4872 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4873 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
4874 	if (unlikely(qlen > max_backlog))
4875 		goto cpu_backlog_drop;
4876 	backlog_lock_irq_save(sd, &flags);
4877 	qlen = skb_queue_len(&sd->input_pkt_queue);
4878 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4879 		if (!qlen) {
4880 			/* Schedule NAPI for backlog device. We can use
4881 			 * non atomic operation as we own the queue lock.
4882 			 */
4883 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
4884 						&sd->backlog.state))
4885 				napi_schedule_rps(sd);
4886 		}
4887 		__skb_queue_tail(&sd->input_pkt_queue, skb);
4888 		tail = rps_input_queue_tail_incr(sd);
4889 		backlog_unlock_irq_restore(sd, &flags);
4890 
4891 		/* save the tail outside of the critical section */
4892 		rps_input_queue_tail_save(qtail, tail);
4893 		return NET_RX_SUCCESS;
4894 	}
4895 
4896 	backlog_unlock_irq_restore(sd, &flags);
4897 
4898 cpu_backlog_drop:
4899 	atomic_inc(&sd->dropped);
4900 bad_dev:
4901 	dev_core_stats_rx_dropped_inc(skb->dev);
4902 	kfree_skb_reason(skb, reason);
4903 	return NET_RX_DROP;
4904 }
4905 
4906 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4907 {
4908 	struct net_device *dev = skb->dev;
4909 	struct netdev_rx_queue *rxqueue;
4910 
4911 	rxqueue = dev->_rx;
4912 
4913 	if (skb_rx_queue_recorded(skb)) {
4914 		u16 index = skb_get_rx_queue(skb);
4915 
4916 		if (unlikely(index >= dev->real_num_rx_queues)) {
4917 			WARN_ONCE(dev->real_num_rx_queues > 1,
4918 				  "%s received packet on queue %u, but number "
4919 				  "of RX queues is %u\n",
4920 				  dev->name, index, dev->real_num_rx_queues);
4921 
4922 			return rxqueue; /* Return first rxqueue */
4923 		}
4924 		rxqueue += index;
4925 	}
4926 	return rxqueue;
4927 }
4928 
4929 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4930 			     struct bpf_prog *xdp_prog)
4931 {
4932 	void *orig_data, *orig_data_end, *hard_start;
4933 	struct netdev_rx_queue *rxqueue;
4934 	bool orig_bcast, orig_host;
4935 	u32 mac_len, frame_sz;
4936 	__be16 orig_eth_type;
4937 	struct ethhdr *eth;
4938 	u32 metalen, act;
4939 	int off;
4940 
4941 	/* The XDP program wants to see the packet starting at the MAC
4942 	 * header.
4943 	 */
4944 	mac_len = skb->data - skb_mac_header(skb);
4945 	hard_start = skb->data - skb_headroom(skb);
4946 
4947 	/* SKB "head" area always have tailroom for skb_shared_info */
4948 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4949 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4950 
4951 	rxqueue = netif_get_rxqueue(skb);
4952 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4953 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4954 			 skb_headlen(skb) + mac_len, true);
4955 	if (skb_is_nonlinear(skb)) {
4956 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4957 		xdp_buff_set_frags_flag(xdp);
4958 	} else {
4959 		xdp_buff_clear_frags_flag(xdp);
4960 	}
4961 
4962 	orig_data_end = xdp->data_end;
4963 	orig_data = xdp->data;
4964 	eth = (struct ethhdr *)xdp->data;
4965 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4966 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4967 	orig_eth_type = eth->h_proto;
4968 
4969 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4970 
4971 	/* check if bpf_xdp_adjust_head was used */
4972 	off = xdp->data - orig_data;
4973 	if (off) {
4974 		if (off > 0)
4975 			__skb_pull(skb, off);
4976 		else if (off < 0)
4977 			__skb_push(skb, -off);
4978 
4979 		skb->mac_header += off;
4980 		skb_reset_network_header(skb);
4981 	}
4982 
4983 	/* check if bpf_xdp_adjust_tail was used */
4984 	off = xdp->data_end - orig_data_end;
4985 	if (off != 0) {
4986 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4987 		skb->len += off; /* positive on grow, negative on shrink */
4988 	}
4989 
4990 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4991 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4992 	 */
4993 	if (xdp_buff_has_frags(xdp))
4994 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4995 	else
4996 		skb->data_len = 0;
4997 
4998 	/* check if XDP changed eth hdr such SKB needs update */
4999 	eth = (struct ethhdr *)xdp->data;
5000 	if ((orig_eth_type != eth->h_proto) ||
5001 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5002 						  skb->dev->dev_addr)) ||
5003 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5004 		__skb_push(skb, ETH_HLEN);
5005 		skb->pkt_type = PACKET_HOST;
5006 		skb->protocol = eth_type_trans(skb, skb->dev);
5007 	}
5008 
5009 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5010 	 * before calling us again on redirect path. We do not call do_redirect
5011 	 * as we leave that up to the caller.
5012 	 *
5013 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5014 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5015 	 */
5016 	switch (act) {
5017 	case XDP_REDIRECT:
5018 	case XDP_TX:
5019 		__skb_push(skb, mac_len);
5020 		break;
5021 	case XDP_PASS:
5022 		metalen = xdp->data - xdp->data_meta;
5023 		if (metalen)
5024 			skb_metadata_set(skb, metalen);
5025 		break;
5026 	}
5027 
5028 	return act;
5029 }
5030 
5031 static int
5032 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5033 {
5034 	struct sk_buff *skb = *pskb;
5035 	int err, hroom, troom;
5036 
5037 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5038 		return 0;
5039 
5040 	/* In case we have to go down the path and also linearize,
5041 	 * then lets do the pskb_expand_head() work just once here.
5042 	 */
5043 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5044 	troom = skb->tail + skb->data_len - skb->end;
5045 	err = pskb_expand_head(skb,
5046 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5047 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5048 	if (err)
5049 		return err;
5050 
5051 	return skb_linearize(skb);
5052 }
5053 
5054 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5055 				     struct xdp_buff *xdp,
5056 				     struct bpf_prog *xdp_prog)
5057 {
5058 	struct sk_buff *skb = *pskb;
5059 	u32 mac_len, act = XDP_DROP;
5060 
5061 	/* Reinjected packets coming from act_mirred or similar should
5062 	 * not get XDP generic processing.
5063 	 */
5064 	if (skb_is_redirected(skb))
5065 		return XDP_PASS;
5066 
5067 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5068 	 * bytes. This is the guarantee that also native XDP provides,
5069 	 * thus we need to do it here as well.
5070 	 */
5071 	mac_len = skb->data - skb_mac_header(skb);
5072 	__skb_push(skb, mac_len);
5073 
5074 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5075 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5076 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5077 			goto do_drop;
5078 	}
5079 
5080 	__skb_pull(*pskb, mac_len);
5081 
5082 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5083 	switch (act) {
5084 	case XDP_REDIRECT:
5085 	case XDP_TX:
5086 	case XDP_PASS:
5087 		break;
5088 	default:
5089 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5090 		fallthrough;
5091 	case XDP_ABORTED:
5092 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5093 		fallthrough;
5094 	case XDP_DROP:
5095 	do_drop:
5096 		kfree_skb(*pskb);
5097 		break;
5098 	}
5099 
5100 	return act;
5101 }
5102 
5103 /* When doing generic XDP we have to bypass the qdisc layer and the
5104  * network taps in order to match in-driver-XDP behavior. This also means
5105  * that XDP packets are able to starve other packets going through a qdisc,
5106  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5107  * queues, so they do not have this starvation issue.
5108  */
5109 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5110 {
5111 	struct net_device *dev = skb->dev;
5112 	struct netdev_queue *txq;
5113 	bool free_skb = true;
5114 	int cpu, rc;
5115 
5116 	txq = netdev_core_pick_tx(dev, skb, NULL);
5117 	cpu = smp_processor_id();
5118 	HARD_TX_LOCK(dev, txq, cpu);
5119 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5120 		rc = netdev_start_xmit(skb, dev, txq, 0);
5121 		if (dev_xmit_complete(rc))
5122 			free_skb = false;
5123 	}
5124 	HARD_TX_UNLOCK(dev, txq);
5125 	if (free_skb) {
5126 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5127 		dev_core_stats_tx_dropped_inc(dev);
5128 		kfree_skb(skb);
5129 	}
5130 }
5131 
5132 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5133 
5134 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5135 {
5136 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5137 
5138 	if (xdp_prog) {
5139 		struct xdp_buff xdp;
5140 		u32 act;
5141 		int err;
5142 
5143 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5144 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5145 		if (act != XDP_PASS) {
5146 			switch (act) {
5147 			case XDP_REDIRECT:
5148 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5149 							      &xdp, xdp_prog);
5150 				if (err)
5151 					goto out_redir;
5152 				break;
5153 			case XDP_TX:
5154 				generic_xdp_tx(*pskb, xdp_prog);
5155 				break;
5156 			}
5157 			bpf_net_ctx_clear(bpf_net_ctx);
5158 			return XDP_DROP;
5159 		}
5160 		bpf_net_ctx_clear(bpf_net_ctx);
5161 	}
5162 	return XDP_PASS;
5163 out_redir:
5164 	bpf_net_ctx_clear(bpf_net_ctx);
5165 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5166 	return XDP_DROP;
5167 }
5168 EXPORT_SYMBOL_GPL(do_xdp_generic);
5169 
5170 static int netif_rx_internal(struct sk_buff *skb)
5171 {
5172 	int ret;
5173 
5174 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5175 
5176 	trace_netif_rx(skb);
5177 
5178 #ifdef CONFIG_RPS
5179 	if (static_branch_unlikely(&rps_needed)) {
5180 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5181 		int cpu;
5182 
5183 		rcu_read_lock();
5184 
5185 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5186 		if (cpu < 0)
5187 			cpu = smp_processor_id();
5188 
5189 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5190 
5191 		rcu_read_unlock();
5192 	} else
5193 #endif
5194 	{
5195 		unsigned int qtail;
5196 
5197 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5198 	}
5199 	return ret;
5200 }
5201 
5202 /**
5203  *	__netif_rx	-	Slightly optimized version of netif_rx
5204  *	@skb: buffer to post
5205  *
5206  *	This behaves as netif_rx except that it does not disable bottom halves.
5207  *	As a result this function may only be invoked from the interrupt context
5208  *	(either hard or soft interrupt).
5209  */
5210 int __netif_rx(struct sk_buff *skb)
5211 {
5212 	int ret;
5213 
5214 	lockdep_assert_once(hardirq_count() | softirq_count());
5215 
5216 	trace_netif_rx_entry(skb);
5217 	ret = netif_rx_internal(skb);
5218 	trace_netif_rx_exit(ret);
5219 	return ret;
5220 }
5221 EXPORT_SYMBOL(__netif_rx);
5222 
5223 /**
5224  *	netif_rx	-	post buffer to the network code
5225  *	@skb: buffer to post
5226  *
5227  *	This function receives a packet from a device driver and queues it for
5228  *	the upper (protocol) levels to process via the backlog NAPI device. It
5229  *	always succeeds. The buffer may be dropped during processing for
5230  *	congestion control or by the protocol layers.
5231  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5232  *	driver should use NAPI and GRO.
5233  *	This function can used from interrupt and from process context. The
5234  *	caller from process context must not disable interrupts before invoking
5235  *	this function.
5236  *
5237  *	return values:
5238  *	NET_RX_SUCCESS	(no congestion)
5239  *	NET_RX_DROP     (packet was dropped)
5240  *
5241  */
5242 int netif_rx(struct sk_buff *skb)
5243 {
5244 	bool need_bh_off = !(hardirq_count() | softirq_count());
5245 	int ret;
5246 
5247 	if (need_bh_off)
5248 		local_bh_disable();
5249 	trace_netif_rx_entry(skb);
5250 	ret = netif_rx_internal(skb);
5251 	trace_netif_rx_exit(ret);
5252 	if (need_bh_off)
5253 		local_bh_enable();
5254 	return ret;
5255 }
5256 EXPORT_SYMBOL(netif_rx);
5257 
5258 static __latent_entropy void net_tx_action(void)
5259 {
5260 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5261 
5262 	if (sd->completion_queue) {
5263 		struct sk_buff *clist;
5264 
5265 		local_irq_disable();
5266 		clist = sd->completion_queue;
5267 		sd->completion_queue = NULL;
5268 		local_irq_enable();
5269 
5270 		while (clist) {
5271 			struct sk_buff *skb = clist;
5272 
5273 			clist = clist->next;
5274 
5275 			WARN_ON(refcount_read(&skb->users));
5276 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5277 				trace_consume_skb(skb, net_tx_action);
5278 			else
5279 				trace_kfree_skb(skb, net_tx_action,
5280 						get_kfree_skb_cb(skb)->reason, NULL);
5281 
5282 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5283 				__kfree_skb(skb);
5284 			else
5285 				__napi_kfree_skb(skb,
5286 						 get_kfree_skb_cb(skb)->reason);
5287 		}
5288 	}
5289 
5290 	if (sd->output_queue) {
5291 		struct Qdisc *head;
5292 
5293 		local_irq_disable();
5294 		head = sd->output_queue;
5295 		sd->output_queue = NULL;
5296 		sd->output_queue_tailp = &sd->output_queue;
5297 		local_irq_enable();
5298 
5299 		rcu_read_lock();
5300 
5301 		while (head) {
5302 			struct Qdisc *q = head;
5303 			spinlock_t *root_lock = NULL;
5304 
5305 			head = head->next_sched;
5306 
5307 			/* We need to make sure head->next_sched is read
5308 			 * before clearing __QDISC_STATE_SCHED
5309 			 */
5310 			smp_mb__before_atomic();
5311 
5312 			if (!(q->flags & TCQ_F_NOLOCK)) {
5313 				root_lock = qdisc_lock(q);
5314 				spin_lock(root_lock);
5315 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5316 						     &q->state))) {
5317 				/* There is a synchronize_net() between
5318 				 * STATE_DEACTIVATED flag being set and
5319 				 * qdisc_reset()/some_qdisc_is_busy() in
5320 				 * dev_deactivate(), so we can safely bail out
5321 				 * early here to avoid data race between
5322 				 * qdisc_deactivate() and some_qdisc_is_busy()
5323 				 * for lockless qdisc.
5324 				 */
5325 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5326 				continue;
5327 			}
5328 
5329 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5330 			qdisc_run(q);
5331 			if (root_lock)
5332 				spin_unlock(root_lock);
5333 		}
5334 
5335 		rcu_read_unlock();
5336 	}
5337 
5338 	xfrm_dev_backlog(sd);
5339 }
5340 
5341 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5342 /* This hook is defined here for ATM LANE */
5343 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5344 			     unsigned char *addr) __read_mostly;
5345 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5346 #endif
5347 
5348 /**
5349  *	netdev_is_rx_handler_busy - check if receive handler is registered
5350  *	@dev: device to check
5351  *
5352  *	Check if a receive handler is already registered for a given device.
5353  *	Return true if there one.
5354  *
5355  *	The caller must hold the rtnl_mutex.
5356  */
5357 bool netdev_is_rx_handler_busy(struct net_device *dev)
5358 {
5359 	ASSERT_RTNL();
5360 	return dev && rtnl_dereference(dev->rx_handler);
5361 }
5362 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5363 
5364 /**
5365  *	netdev_rx_handler_register - register receive handler
5366  *	@dev: device to register a handler for
5367  *	@rx_handler: receive handler to register
5368  *	@rx_handler_data: data pointer that is used by rx handler
5369  *
5370  *	Register a receive handler for a device. This handler will then be
5371  *	called from __netif_receive_skb. A negative errno code is returned
5372  *	on a failure.
5373  *
5374  *	The caller must hold the rtnl_mutex.
5375  *
5376  *	For a general description of rx_handler, see enum rx_handler_result.
5377  */
5378 int netdev_rx_handler_register(struct net_device *dev,
5379 			       rx_handler_func_t *rx_handler,
5380 			       void *rx_handler_data)
5381 {
5382 	if (netdev_is_rx_handler_busy(dev))
5383 		return -EBUSY;
5384 
5385 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5386 		return -EINVAL;
5387 
5388 	/* Note: rx_handler_data must be set before rx_handler */
5389 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5390 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5391 
5392 	return 0;
5393 }
5394 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5395 
5396 /**
5397  *	netdev_rx_handler_unregister - unregister receive handler
5398  *	@dev: device to unregister a handler from
5399  *
5400  *	Unregister a receive handler from a device.
5401  *
5402  *	The caller must hold the rtnl_mutex.
5403  */
5404 void netdev_rx_handler_unregister(struct net_device *dev)
5405 {
5406 
5407 	ASSERT_RTNL();
5408 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5409 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5410 	 * section has a guarantee to see a non NULL rx_handler_data
5411 	 * as well.
5412 	 */
5413 	synchronize_net();
5414 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5415 }
5416 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5417 
5418 /*
5419  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5420  * the special handling of PFMEMALLOC skbs.
5421  */
5422 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5423 {
5424 	switch (skb->protocol) {
5425 	case htons(ETH_P_ARP):
5426 	case htons(ETH_P_IP):
5427 	case htons(ETH_P_IPV6):
5428 	case htons(ETH_P_8021Q):
5429 	case htons(ETH_P_8021AD):
5430 		return true;
5431 	default:
5432 		return false;
5433 	}
5434 }
5435 
5436 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5437 			     int *ret, struct net_device *orig_dev)
5438 {
5439 	if (nf_hook_ingress_active(skb)) {
5440 		int ingress_retval;
5441 
5442 		if (*pt_prev) {
5443 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5444 			*pt_prev = NULL;
5445 		}
5446 
5447 		rcu_read_lock();
5448 		ingress_retval = nf_hook_ingress(skb);
5449 		rcu_read_unlock();
5450 		return ingress_retval;
5451 	}
5452 	return 0;
5453 }
5454 
5455 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5456 				    struct packet_type **ppt_prev)
5457 {
5458 	struct packet_type *ptype, *pt_prev;
5459 	rx_handler_func_t *rx_handler;
5460 	struct sk_buff *skb = *pskb;
5461 	struct net_device *orig_dev;
5462 	bool deliver_exact = false;
5463 	int ret = NET_RX_DROP;
5464 	__be16 type;
5465 
5466 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5467 
5468 	trace_netif_receive_skb(skb);
5469 
5470 	orig_dev = skb->dev;
5471 
5472 	skb_reset_network_header(skb);
5473 	if (!skb_transport_header_was_set(skb))
5474 		skb_reset_transport_header(skb);
5475 	skb_reset_mac_len(skb);
5476 
5477 	pt_prev = NULL;
5478 
5479 another_round:
5480 	skb->skb_iif = skb->dev->ifindex;
5481 
5482 	__this_cpu_inc(softnet_data.processed);
5483 
5484 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5485 		int ret2;
5486 
5487 		migrate_disable();
5488 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5489 				      &skb);
5490 		migrate_enable();
5491 
5492 		if (ret2 != XDP_PASS) {
5493 			ret = NET_RX_DROP;
5494 			goto out;
5495 		}
5496 	}
5497 
5498 	if (eth_type_vlan(skb->protocol)) {
5499 		skb = skb_vlan_untag(skb);
5500 		if (unlikely(!skb))
5501 			goto out;
5502 	}
5503 
5504 	if (skb_skip_tc_classify(skb))
5505 		goto skip_classify;
5506 
5507 	if (pfmemalloc)
5508 		goto skip_taps;
5509 
5510 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5511 		if (pt_prev)
5512 			ret = deliver_skb(skb, pt_prev, orig_dev);
5513 		pt_prev = ptype;
5514 	}
5515 
5516 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5517 		if (pt_prev)
5518 			ret = deliver_skb(skb, pt_prev, orig_dev);
5519 		pt_prev = ptype;
5520 	}
5521 
5522 skip_taps:
5523 #ifdef CONFIG_NET_INGRESS
5524 	if (static_branch_unlikely(&ingress_needed_key)) {
5525 		bool another = false;
5526 
5527 		nf_skip_egress(skb, true);
5528 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5529 					 &another);
5530 		if (another)
5531 			goto another_round;
5532 		if (!skb)
5533 			goto out;
5534 
5535 		nf_skip_egress(skb, false);
5536 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5537 			goto out;
5538 	}
5539 #endif
5540 	skb_reset_redirect(skb);
5541 skip_classify:
5542 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5543 		goto drop;
5544 
5545 	if (skb_vlan_tag_present(skb)) {
5546 		if (pt_prev) {
5547 			ret = deliver_skb(skb, pt_prev, orig_dev);
5548 			pt_prev = NULL;
5549 		}
5550 		if (vlan_do_receive(&skb))
5551 			goto another_round;
5552 		else if (unlikely(!skb))
5553 			goto out;
5554 	}
5555 
5556 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5557 	if (rx_handler) {
5558 		if (pt_prev) {
5559 			ret = deliver_skb(skb, pt_prev, orig_dev);
5560 			pt_prev = NULL;
5561 		}
5562 		switch (rx_handler(&skb)) {
5563 		case RX_HANDLER_CONSUMED:
5564 			ret = NET_RX_SUCCESS;
5565 			goto out;
5566 		case RX_HANDLER_ANOTHER:
5567 			goto another_round;
5568 		case RX_HANDLER_EXACT:
5569 			deliver_exact = true;
5570 			break;
5571 		case RX_HANDLER_PASS:
5572 			break;
5573 		default:
5574 			BUG();
5575 		}
5576 	}
5577 
5578 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5579 check_vlan_id:
5580 		if (skb_vlan_tag_get_id(skb)) {
5581 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5582 			 * find vlan device.
5583 			 */
5584 			skb->pkt_type = PACKET_OTHERHOST;
5585 		} else if (eth_type_vlan(skb->protocol)) {
5586 			/* Outer header is 802.1P with vlan 0, inner header is
5587 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5588 			 * not find vlan dev for vlan id 0.
5589 			 */
5590 			__vlan_hwaccel_clear_tag(skb);
5591 			skb = skb_vlan_untag(skb);
5592 			if (unlikely(!skb))
5593 				goto out;
5594 			if (vlan_do_receive(&skb))
5595 				/* After stripping off 802.1P header with vlan 0
5596 				 * vlan dev is found for inner header.
5597 				 */
5598 				goto another_round;
5599 			else if (unlikely(!skb))
5600 				goto out;
5601 			else
5602 				/* We have stripped outer 802.1P vlan 0 header.
5603 				 * But could not find vlan dev.
5604 				 * check again for vlan id to set OTHERHOST.
5605 				 */
5606 				goto check_vlan_id;
5607 		}
5608 		/* Note: we might in the future use prio bits
5609 		 * and set skb->priority like in vlan_do_receive()
5610 		 * For the time being, just ignore Priority Code Point
5611 		 */
5612 		__vlan_hwaccel_clear_tag(skb);
5613 	}
5614 
5615 	type = skb->protocol;
5616 
5617 	/* deliver only exact match when indicated */
5618 	if (likely(!deliver_exact)) {
5619 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5620 				       &ptype_base[ntohs(type) &
5621 						   PTYPE_HASH_MASK]);
5622 	}
5623 
5624 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5625 			       &orig_dev->ptype_specific);
5626 
5627 	if (unlikely(skb->dev != orig_dev)) {
5628 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5629 				       &skb->dev->ptype_specific);
5630 	}
5631 
5632 	if (pt_prev) {
5633 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5634 			goto drop;
5635 		*ppt_prev = pt_prev;
5636 	} else {
5637 drop:
5638 		if (!deliver_exact)
5639 			dev_core_stats_rx_dropped_inc(skb->dev);
5640 		else
5641 			dev_core_stats_rx_nohandler_inc(skb->dev);
5642 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5643 		/* Jamal, now you will not able to escape explaining
5644 		 * me how you were going to use this. :-)
5645 		 */
5646 		ret = NET_RX_DROP;
5647 	}
5648 
5649 out:
5650 	/* The invariant here is that if *ppt_prev is not NULL
5651 	 * then skb should also be non-NULL.
5652 	 *
5653 	 * Apparently *ppt_prev assignment above holds this invariant due to
5654 	 * skb dereferencing near it.
5655 	 */
5656 	*pskb = skb;
5657 	return ret;
5658 }
5659 
5660 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5661 {
5662 	struct net_device *orig_dev = skb->dev;
5663 	struct packet_type *pt_prev = NULL;
5664 	int ret;
5665 
5666 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5667 	if (pt_prev)
5668 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5669 					 skb->dev, pt_prev, orig_dev);
5670 	return ret;
5671 }
5672 
5673 /**
5674  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5675  *	@skb: buffer to process
5676  *
5677  *	More direct receive version of netif_receive_skb().  It should
5678  *	only be used by callers that have a need to skip RPS and Generic XDP.
5679  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5680  *
5681  *	This function may only be called from softirq context and interrupts
5682  *	should be enabled.
5683  *
5684  *	Return values (usually ignored):
5685  *	NET_RX_SUCCESS: no congestion
5686  *	NET_RX_DROP: packet was dropped
5687  */
5688 int netif_receive_skb_core(struct sk_buff *skb)
5689 {
5690 	int ret;
5691 
5692 	rcu_read_lock();
5693 	ret = __netif_receive_skb_one_core(skb, false);
5694 	rcu_read_unlock();
5695 
5696 	return ret;
5697 }
5698 EXPORT_SYMBOL(netif_receive_skb_core);
5699 
5700 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5701 						  struct packet_type *pt_prev,
5702 						  struct net_device *orig_dev)
5703 {
5704 	struct sk_buff *skb, *next;
5705 
5706 	if (!pt_prev)
5707 		return;
5708 	if (list_empty(head))
5709 		return;
5710 	if (pt_prev->list_func != NULL)
5711 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5712 				   ip_list_rcv, head, pt_prev, orig_dev);
5713 	else
5714 		list_for_each_entry_safe(skb, next, head, list) {
5715 			skb_list_del_init(skb);
5716 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5717 		}
5718 }
5719 
5720 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5721 {
5722 	/* Fast-path assumptions:
5723 	 * - There is no RX handler.
5724 	 * - Only one packet_type matches.
5725 	 * If either of these fails, we will end up doing some per-packet
5726 	 * processing in-line, then handling the 'last ptype' for the whole
5727 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5728 	 * because the 'last ptype' must be constant across the sublist, and all
5729 	 * other ptypes are handled per-packet.
5730 	 */
5731 	/* Current (common) ptype of sublist */
5732 	struct packet_type *pt_curr = NULL;
5733 	/* Current (common) orig_dev of sublist */
5734 	struct net_device *od_curr = NULL;
5735 	struct sk_buff *skb, *next;
5736 	LIST_HEAD(sublist);
5737 
5738 	list_for_each_entry_safe(skb, next, head, list) {
5739 		struct net_device *orig_dev = skb->dev;
5740 		struct packet_type *pt_prev = NULL;
5741 
5742 		skb_list_del_init(skb);
5743 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5744 		if (!pt_prev)
5745 			continue;
5746 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5747 			/* dispatch old sublist */
5748 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5749 			/* start new sublist */
5750 			INIT_LIST_HEAD(&sublist);
5751 			pt_curr = pt_prev;
5752 			od_curr = orig_dev;
5753 		}
5754 		list_add_tail(&skb->list, &sublist);
5755 	}
5756 
5757 	/* dispatch final sublist */
5758 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5759 }
5760 
5761 static int __netif_receive_skb(struct sk_buff *skb)
5762 {
5763 	int ret;
5764 
5765 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5766 		unsigned int noreclaim_flag;
5767 
5768 		/*
5769 		 * PFMEMALLOC skbs are special, they should
5770 		 * - be delivered to SOCK_MEMALLOC sockets only
5771 		 * - stay away from userspace
5772 		 * - have bounded memory usage
5773 		 *
5774 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5775 		 * context down to all allocation sites.
5776 		 */
5777 		noreclaim_flag = memalloc_noreclaim_save();
5778 		ret = __netif_receive_skb_one_core(skb, true);
5779 		memalloc_noreclaim_restore(noreclaim_flag);
5780 	} else
5781 		ret = __netif_receive_skb_one_core(skb, false);
5782 
5783 	return ret;
5784 }
5785 
5786 static void __netif_receive_skb_list(struct list_head *head)
5787 {
5788 	unsigned long noreclaim_flag = 0;
5789 	struct sk_buff *skb, *next;
5790 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5791 
5792 	list_for_each_entry_safe(skb, next, head, list) {
5793 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5794 			struct list_head sublist;
5795 
5796 			/* Handle the previous sublist */
5797 			list_cut_before(&sublist, head, &skb->list);
5798 			if (!list_empty(&sublist))
5799 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5800 			pfmemalloc = !pfmemalloc;
5801 			/* See comments in __netif_receive_skb */
5802 			if (pfmemalloc)
5803 				noreclaim_flag = memalloc_noreclaim_save();
5804 			else
5805 				memalloc_noreclaim_restore(noreclaim_flag);
5806 		}
5807 	}
5808 	/* Handle the remaining sublist */
5809 	if (!list_empty(head))
5810 		__netif_receive_skb_list_core(head, pfmemalloc);
5811 	/* Restore pflags */
5812 	if (pfmemalloc)
5813 		memalloc_noreclaim_restore(noreclaim_flag);
5814 }
5815 
5816 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5817 {
5818 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5819 	struct bpf_prog *new = xdp->prog;
5820 	int ret = 0;
5821 
5822 	switch (xdp->command) {
5823 	case XDP_SETUP_PROG:
5824 		rcu_assign_pointer(dev->xdp_prog, new);
5825 		if (old)
5826 			bpf_prog_put(old);
5827 
5828 		if (old && !new) {
5829 			static_branch_dec(&generic_xdp_needed_key);
5830 		} else if (new && !old) {
5831 			static_branch_inc(&generic_xdp_needed_key);
5832 			dev_disable_lro(dev);
5833 			dev_disable_gro_hw(dev);
5834 		}
5835 		break;
5836 
5837 	default:
5838 		ret = -EINVAL;
5839 		break;
5840 	}
5841 
5842 	return ret;
5843 }
5844 
5845 static int netif_receive_skb_internal(struct sk_buff *skb)
5846 {
5847 	int ret;
5848 
5849 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5850 
5851 	if (skb_defer_rx_timestamp(skb))
5852 		return NET_RX_SUCCESS;
5853 
5854 	rcu_read_lock();
5855 #ifdef CONFIG_RPS
5856 	if (static_branch_unlikely(&rps_needed)) {
5857 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5858 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5859 
5860 		if (cpu >= 0) {
5861 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5862 			rcu_read_unlock();
5863 			return ret;
5864 		}
5865 	}
5866 #endif
5867 	ret = __netif_receive_skb(skb);
5868 	rcu_read_unlock();
5869 	return ret;
5870 }
5871 
5872 void netif_receive_skb_list_internal(struct list_head *head)
5873 {
5874 	struct sk_buff *skb, *next;
5875 	LIST_HEAD(sublist);
5876 
5877 	list_for_each_entry_safe(skb, next, head, list) {
5878 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5879 				    skb);
5880 		skb_list_del_init(skb);
5881 		if (!skb_defer_rx_timestamp(skb))
5882 			list_add_tail(&skb->list, &sublist);
5883 	}
5884 	list_splice_init(&sublist, head);
5885 
5886 	rcu_read_lock();
5887 #ifdef CONFIG_RPS
5888 	if (static_branch_unlikely(&rps_needed)) {
5889 		list_for_each_entry_safe(skb, next, head, list) {
5890 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5891 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5892 
5893 			if (cpu >= 0) {
5894 				/* Will be handled, remove from list */
5895 				skb_list_del_init(skb);
5896 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5897 			}
5898 		}
5899 	}
5900 #endif
5901 	__netif_receive_skb_list(head);
5902 	rcu_read_unlock();
5903 }
5904 
5905 /**
5906  *	netif_receive_skb - process receive buffer from network
5907  *	@skb: buffer to process
5908  *
5909  *	netif_receive_skb() is the main receive data processing function.
5910  *	It always succeeds. The buffer may be dropped during processing
5911  *	for congestion control or by the protocol layers.
5912  *
5913  *	This function may only be called from softirq context and interrupts
5914  *	should be enabled.
5915  *
5916  *	Return values (usually ignored):
5917  *	NET_RX_SUCCESS: no congestion
5918  *	NET_RX_DROP: packet was dropped
5919  */
5920 int netif_receive_skb(struct sk_buff *skb)
5921 {
5922 	int ret;
5923 
5924 	trace_netif_receive_skb_entry(skb);
5925 
5926 	ret = netif_receive_skb_internal(skb);
5927 	trace_netif_receive_skb_exit(ret);
5928 
5929 	return ret;
5930 }
5931 EXPORT_SYMBOL(netif_receive_skb);
5932 
5933 /**
5934  *	netif_receive_skb_list - process many receive buffers from network
5935  *	@head: list of skbs to process.
5936  *
5937  *	Since return value of netif_receive_skb() is normally ignored, and
5938  *	wouldn't be meaningful for a list, this function returns void.
5939  *
5940  *	This function may only be called from softirq context and interrupts
5941  *	should be enabled.
5942  */
5943 void netif_receive_skb_list(struct list_head *head)
5944 {
5945 	struct sk_buff *skb;
5946 
5947 	if (list_empty(head))
5948 		return;
5949 	if (trace_netif_receive_skb_list_entry_enabled()) {
5950 		list_for_each_entry(skb, head, list)
5951 			trace_netif_receive_skb_list_entry(skb);
5952 	}
5953 	netif_receive_skb_list_internal(head);
5954 	trace_netif_receive_skb_list_exit(0);
5955 }
5956 EXPORT_SYMBOL(netif_receive_skb_list);
5957 
5958 static DEFINE_PER_CPU(struct work_struct, flush_works);
5959 
5960 /* Network device is going away, flush any packets still pending */
5961 static void flush_backlog(struct work_struct *work)
5962 {
5963 	struct sk_buff *skb, *tmp;
5964 	struct softnet_data *sd;
5965 
5966 	local_bh_disable();
5967 	sd = this_cpu_ptr(&softnet_data);
5968 
5969 	backlog_lock_irq_disable(sd);
5970 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5971 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5972 			__skb_unlink(skb, &sd->input_pkt_queue);
5973 			dev_kfree_skb_irq(skb);
5974 			rps_input_queue_head_incr(sd);
5975 		}
5976 	}
5977 	backlog_unlock_irq_enable(sd);
5978 
5979 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
5980 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5981 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5982 			__skb_unlink(skb, &sd->process_queue);
5983 			kfree_skb(skb);
5984 			rps_input_queue_head_incr(sd);
5985 		}
5986 	}
5987 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
5988 	local_bh_enable();
5989 }
5990 
5991 static bool flush_required(int cpu)
5992 {
5993 #if IS_ENABLED(CONFIG_RPS)
5994 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5995 	bool do_flush;
5996 
5997 	backlog_lock_irq_disable(sd);
5998 
5999 	/* as insertion into process_queue happens with the rps lock held,
6000 	 * process_queue access may race only with dequeue
6001 	 */
6002 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6003 		   !skb_queue_empty_lockless(&sd->process_queue);
6004 	backlog_unlock_irq_enable(sd);
6005 
6006 	return do_flush;
6007 #endif
6008 	/* without RPS we can't safely check input_pkt_queue: during a
6009 	 * concurrent remote skb_queue_splice() we can detect as empty both
6010 	 * input_pkt_queue and process_queue even if the latter could end-up
6011 	 * containing a lot of packets.
6012 	 */
6013 	return true;
6014 }
6015 
6016 static void flush_all_backlogs(void)
6017 {
6018 	static cpumask_t flush_cpus;
6019 	unsigned int cpu;
6020 
6021 	/* since we are under rtnl lock protection we can use static data
6022 	 * for the cpumask and avoid allocating on stack the possibly
6023 	 * large mask
6024 	 */
6025 	ASSERT_RTNL();
6026 
6027 	cpus_read_lock();
6028 
6029 	cpumask_clear(&flush_cpus);
6030 	for_each_online_cpu(cpu) {
6031 		if (flush_required(cpu)) {
6032 			queue_work_on(cpu, system_highpri_wq,
6033 				      per_cpu_ptr(&flush_works, cpu));
6034 			cpumask_set_cpu(cpu, &flush_cpus);
6035 		}
6036 	}
6037 
6038 	/* we can have in flight packet[s] on the cpus we are not flushing,
6039 	 * synchronize_net() in unregister_netdevice_many() will take care of
6040 	 * them
6041 	 */
6042 	for_each_cpu(cpu, &flush_cpus)
6043 		flush_work(per_cpu_ptr(&flush_works, cpu));
6044 
6045 	cpus_read_unlock();
6046 }
6047 
6048 static void net_rps_send_ipi(struct softnet_data *remsd)
6049 {
6050 #ifdef CONFIG_RPS
6051 	while (remsd) {
6052 		struct softnet_data *next = remsd->rps_ipi_next;
6053 
6054 		if (cpu_online(remsd->cpu))
6055 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6056 		remsd = next;
6057 	}
6058 #endif
6059 }
6060 
6061 /*
6062  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6063  * Note: called with local irq disabled, but exits with local irq enabled.
6064  */
6065 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6066 {
6067 #ifdef CONFIG_RPS
6068 	struct softnet_data *remsd = sd->rps_ipi_list;
6069 
6070 	if (!use_backlog_threads() && remsd) {
6071 		sd->rps_ipi_list = NULL;
6072 
6073 		local_irq_enable();
6074 
6075 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6076 		net_rps_send_ipi(remsd);
6077 	} else
6078 #endif
6079 		local_irq_enable();
6080 }
6081 
6082 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6083 {
6084 #ifdef CONFIG_RPS
6085 	return !use_backlog_threads() && sd->rps_ipi_list;
6086 #else
6087 	return false;
6088 #endif
6089 }
6090 
6091 static int process_backlog(struct napi_struct *napi, int quota)
6092 {
6093 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6094 	bool again = true;
6095 	int work = 0;
6096 
6097 	/* Check if we have pending ipi, its better to send them now,
6098 	 * not waiting net_rx_action() end.
6099 	 */
6100 	if (sd_has_rps_ipi_waiting(sd)) {
6101 		local_irq_disable();
6102 		net_rps_action_and_irq_enable(sd);
6103 	}
6104 
6105 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6106 	while (again) {
6107 		struct sk_buff *skb;
6108 
6109 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6110 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6111 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6112 			rcu_read_lock();
6113 			__netif_receive_skb(skb);
6114 			rcu_read_unlock();
6115 			if (++work >= quota) {
6116 				rps_input_queue_head_add(sd, work);
6117 				return work;
6118 			}
6119 
6120 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6121 		}
6122 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6123 
6124 		backlog_lock_irq_disable(sd);
6125 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6126 			/*
6127 			 * Inline a custom version of __napi_complete().
6128 			 * only current cpu owns and manipulates this napi,
6129 			 * and NAPI_STATE_SCHED is the only possible flag set
6130 			 * on backlog.
6131 			 * We can use a plain write instead of clear_bit(),
6132 			 * and we dont need an smp_mb() memory barrier.
6133 			 */
6134 			napi->state &= NAPIF_STATE_THREADED;
6135 			again = false;
6136 		} else {
6137 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6138 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6139 						   &sd->process_queue);
6140 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6141 		}
6142 		backlog_unlock_irq_enable(sd);
6143 	}
6144 
6145 	if (work)
6146 		rps_input_queue_head_add(sd, work);
6147 	return work;
6148 }
6149 
6150 /**
6151  * __napi_schedule - schedule for receive
6152  * @n: entry to schedule
6153  *
6154  * The entry's receive function will be scheduled to run.
6155  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6156  */
6157 void __napi_schedule(struct napi_struct *n)
6158 {
6159 	unsigned long flags;
6160 
6161 	local_irq_save(flags);
6162 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6163 	local_irq_restore(flags);
6164 }
6165 EXPORT_SYMBOL(__napi_schedule);
6166 
6167 /**
6168  *	napi_schedule_prep - check if napi can be scheduled
6169  *	@n: napi context
6170  *
6171  * Test if NAPI routine is already running, and if not mark
6172  * it as running.  This is used as a condition variable to
6173  * insure only one NAPI poll instance runs.  We also make
6174  * sure there is no pending NAPI disable.
6175  */
6176 bool napi_schedule_prep(struct napi_struct *n)
6177 {
6178 	unsigned long new, val = READ_ONCE(n->state);
6179 
6180 	do {
6181 		if (unlikely(val & NAPIF_STATE_DISABLE))
6182 			return false;
6183 		new = val | NAPIF_STATE_SCHED;
6184 
6185 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6186 		 * This was suggested by Alexander Duyck, as compiler
6187 		 * emits better code than :
6188 		 * if (val & NAPIF_STATE_SCHED)
6189 		 *     new |= NAPIF_STATE_MISSED;
6190 		 */
6191 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6192 						   NAPIF_STATE_MISSED;
6193 	} while (!try_cmpxchg(&n->state, &val, new));
6194 
6195 	return !(val & NAPIF_STATE_SCHED);
6196 }
6197 EXPORT_SYMBOL(napi_schedule_prep);
6198 
6199 /**
6200  * __napi_schedule_irqoff - schedule for receive
6201  * @n: entry to schedule
6202  *
6203  * Variant of __napi_schedule() assuming hard irqs are masked.
6204  *
6205  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6206  * because the interrupt disabled assumption might not be true
6207  * due to force-threaded interrupts and spinlock substitution.
6208  */
6209 void __napi_schedule_irqoff(struct napi_struct *n)
6210 {
6211 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6212 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6213 	else
6214 		__napi_schedule(n);
6215 }
6216 EXPORT_SYMBOL(__napi_schedule_irqoff);
6217 
6218 bool napi_complete_done(struct napi_struct *n, int work_done)
6219 {
6220 	unsigned long flags, val, new, timeout = 0;
6221 	bool ret = true;
6222 
6223 	/*
6224 	 * 1) Don't let napi dequeue from the cpu poll list
6225 	 *    just in case its running on a different cpu.
6226 	 * 2) If we are busy polling, do nothing here, we have
6227 	 *    the guarantee we will be called later.
6228 	 */
6229 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6230 				 NAPIF_STATE_IN_BUSY_POLL)))
6231 		return false;
6232 
6233 	if (work_done) {
6234 		if (n->gro_bitmask)
6235 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6236 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6237 	}
6238 	if (n->defer_hard_irqs_count > 0) {
6239 		n->defer_hard_irqs_count--;
6240 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6241 		if (timeout)
6242 			ret = false;
6243 	}
6244 	if (n->gro_bitmask) {
6245 		/* When the NAPI instance uses a timeout and keeps postponing
6246 		 * it, we need to bound somehow the time packets are kept in
6247 		 * the GRO layer
6248 		 */
6249 		napi_gro_flush(n, !!timeout);
6250 	}
6251 
6252 	gro_normal_list(n);
6253 
6254 	if (unlikely(!list_empty(&n->poll_list))) {
6255 		/* If n->poll_list is not empty, we need to mask irqs */
6256 		local_irq_save(flags);
6257 		list_del_init(&n->poll_list);
6258 		local_irq_restore(flags);
6259 	}
6260 	WRITE_ONCE(n->list_owner, -1);
6261 
6262 	val = READ_ONCE(n->state);
6263 	do {
6264 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6265 
6266 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6267 			      NAPIF_STATE_SCHED_THREADED |
6268 			      NAPIF_STATE_PREFER_BUSY_POLL);
6269 
6270 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6271 		 * because we will call napi->poll() one more time.
6272 		 * This C code was suggested by Alexander Duyck to help gcc.
6273 		 */
6274 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6275 						    NAPIF_STATE_SCHED;
6276 	} while (!try_cmpxchg(&n->state, &val, new));
6277 
6278 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6279 		__napi_schedule(n);
6280 		return false;
6281 	}
6282 
6283 	if (timeout)
6284 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6285 			      HRTIMER_MODE_REL_PINNED);
6286 	return ret;
6287 }
6288 EXPORT_SYMBOL(napi_complete_done);
6289 
6290 /* must be called under rcu_read_lock(), as we dont take a reference */
6291 struct napi_struct *napi_by_id(unsigned int napi_id)
6292 {
6293 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6294 	struct napi_struct *napi;
6295 
6296 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6297 		if (napi->napi_id == napi_id)
6298 			return napi;
6299 
6300 	return NULL;
6301 }
6302 
6303 static void skb_defer_free_flush(struct softnet_data *sd)
6304 {
6305 	struct sk_buff *skb, *next;
6306 
6307 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6308 	if (!READ_ONCE(sd->defer_list))
6309 		return;
6310 
6311 	spin_lock(&sd->defer_lock);
6312 	skb = sd->defer_list;
6313 	sd->defer_list = NULL;
6314 	sd->defer_count = 0;
6315 	spin_unlock(&sd->defer_lock);
6316 
6317 	while (skb != NULL) {
6318 		next = skb->next;
6319 		napi_consume_skb(skb, 1);
6320 		skb = next;
6321 	}
6322 }
6323 
6324 #if defined(CONFIG_NET_RX_BUSY_POLL)
6325 
6326 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6327 {
6328 	if (!skip_schedule) {
6329 		gro_normal_list(napi);
6330 		__napi_schedule(napi);
6331 		return;
6332 	}
6333 
6334 	if (napi->gro_bitmask) {
6335 		/* flush too old packets
6336 		 * If HZ < 1000, flush all packets.
6337 		 */
6338 		napi_gro_flush(napi, HZ >= 1000);
6339 	}
6340 
6341 	gro_normal_list(napi);
6342 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6343 }
6344 
6345 enum {
6346 	NAPI_F_PREFER_BUSY_POLL	= 1,
6347 	NAPI_F_END_ON_RESCHED	= 2,
6348 };
6349 
6350 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6351 			   unsigned flags, u16 budget)
6352 {
6353 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6354 	bool skip_schedule = false;
6355 	unsigned long timeout;
6356 	int rc;
6357 
6358 	/* Busy polling means there is a high chance device driver hard irq
6359 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6360 	 * set in napi_schedule_prep().
6361 	 * Since we are about to call napi->poll() once more, we can safely
6362 	 * clear NAPI_STATE_MISSED.
6363 	 *
6364 	 * Note: x86 could use a single "lock and ..." instruction
6365 	 * to perform these two clear_bit()
6366 	 */
6367 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6368 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6369 
6370 	local_bh_disable();
6371 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6372 
6373 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6374 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6375 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6376 		if (napi->defer_hard_irqs_count && timeout) {
6377 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6378 			skip_schedule = true;
6379 		}
6380 	}
6381 
6382 	/* All we really want here is to re-enable device interrupts.
6383 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6384 	 */
6385 	rc = napi->poll(napi, budget);
6386 	/* We can't gro_normal_list() here, because napi->poll() might have
6387 	 * rearmed the napi (napi_complete_done()) in which case it could
6388 	 * already be running on another CPU.
6389 	 */
6390 	trace_napi_poll(napi, rc, budget);
6391 	netpoll_poll_unlock(have_poll_lock);
6392 	if (rc == budget)
6393 		__busy_poll_stop(napi, skip_schedule);
6394 	bpf_net_ctx_clear(bpf_net_ctx);
6395 	local_bh_enable();
6396 }
6397 
6398 static void __napi_busy_loop(unsigned int napi_id,
6399 		      bool (*loop_end)(void *, unsigned long),
6400 		      void *loop_end_arg, unsigned flags, u16 budget)
6401 {
6402 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6403 	int (*napi_poll)(struct napi_struct *napi, int budget);
6404 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6405 	void *have_poll_lock = NULL;
6406 	struct napi_struct *napi;
6407 
6408 	WARN_ON_ONCE(!rcu_read_lock_held());
6409 
6410 restart:
6411 	napi_poll = NULL;
6412 
6413 	napi = napi_by_id(napi_id);
6414 	if (!napi)
6415 		return;
6416 
6417 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6418 		preempt_disable();
6419 	for (;;) {
6420 		int work = 0;
6421 
6422 		local_bh_disable();
6423 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6424 		if (!napi_poll) {
6425 			unsigned long val = READ_ONCE(napi->state);
6426 
6427 			/* If multiple threads are competing for this napi,
6428 			 * we avoid dirtying napi->state as much as we can.
6429 			 */
6430 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6431 				   NAPIF_STATE_IN_BUSY_POLL)) {
6432 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6433 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6434 				goto count;
6435 			}
6436 			if (cmpxchg(&napi->state, val,
6437 				    val | NAPIF_STATE_IN_BUSY_POLL |
6438 					  NAPIF_STATE_SCHED) != val) {
6439 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6440 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6441 				goto count;
6442 			}
6443 			have_poll_lock = netpoll_poll_lock(napi);
6444 			napi_poll = napi->poll;
6445 		}
6446 		work = napi_poll(napi, budget);
6447 		trace_napi_poll(napi, work, budget);
6448 		gro_normal_list(napi);
6449 count:
6450 		if (work > 0)
6451 			__NET_ADD_STATS(dev_net(napi->dev),
6452 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6453 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6454 		bpf_net_ctx_clear(bpf_net_ctx);
6455 		local_bh_enable();
6456 
6457 		if (!loop_end || loop_end(loop_end_arg, start_time))
6458 			break;
6459 
6460 		if (unlikely(need_resched())) {
6461 			if (flags & NAPI_F_END_ON_RESCHED)
6462 				break;
6463 			if (napi_poll)
6464 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6465 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6466 				preempt_enable();
6467 			rcu_read_unlock();
6468 			cond_resched();
6469 			rcu_read_lock();
6470 			if (loop_end(loop_end_arg, start_time))
6471 				return;
6472 			goto restart;
6473 		}
6474 		cpu_relax();
6475 	}
6476 	if (napi_poll)
6477 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6478 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6479 		preempt_enable();
6480 }
6481 
6482 void napi_busy_loop_rcu(unsigned int napi_id,
6483 			bool (*loop_end)(void *, unsigned long),
6484 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6485 {
6486 	unsigned flags = NAPI_F_END_ON_RESCHED;
6487 
6488 	if (prefer_busy_poll)
6489 		flags |= NAPI_F_PREFER_BUSY_POLL;
6490 
6491 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6492 }
6493 
6494 void napi_busy_loop(unsigned int napi_id,
6495 		    bool (*loop_end)(void *, unsigned long),
6496 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6497 {
6498 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6499 
6500 	rcu_read_lock();
6501 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6502 	rcu_read_unlock();
6503 }
6504 EXPORT_SYMBOL(napi_busy_loop);
6505 
6506 #endif /* CONFIG_NET_RX_BUSY_POLL */
6507 
6508 static void napi_hash_add(struct napi_struct *napi)
6509 {
6510 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6511 		return;
6512 
6513 	spin_lock(&napi_hash_lock);
6514 
6515 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6516 	do {
6517 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6518 			napi_gen_id = MIN_NAPI_ID;
6519 	} while (napi_by_id(napi_gen_id));
6520 	napi->napi_id = napi_gen_id;
6521 
6522 	hlist_add_head_rcu(&napi->napi_hash_node,
6523 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6524 
6525 	spin_unlock(&napi_hash_lock);
6526 }
6527 
6528 /* Warning : caller is responsible to make sure rcu grace period
6529  * is respected before freeing memory containing @napi
6530  */
6531 static void napi_hash_del(struct napi_struct *napi)
6532 {
6533 	spin_lock(&napi_hash_lock);
6534 
6535 	hlist_del_init_rcu(&napi->napi_hash_node);
6536 
6537 	spin_unlock(&napi_hash_lock);
6538 }
6539 
6540 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6541 {
6542 	struct napi_struct *napi;
6543 
6544 	napi = container_of(timer, struct napi_struct, timer);
6545 
6546 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6547 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6548 	 */
6549 	if (!napi_disable_pending(napi) &&
6550 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6551 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6552 		__napi_schedule_irqoff(napi);
6553 	}
6554 
6555 	return HRTIMER_NORESTART;
6556 }
6557 
6558 static void init_gro_hash(struct napi_struct *napi)
6559 {
6560 	int i;
6561 
6562 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6563 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6564 		napi->gro_hash[i].count = 0;
6565 	}
6566 	napi->gro_bitmask = 0;
6567 }
6568 
6569 int dev_set_threaded(struct net_device *dev, bool threaded)
6570 {
6571 	struct napi_struct *napi;
6572 	int err = 0;
6573 
6574 	if (dev->threaded == threaded)
6575 		return 0;
6576 
6577 	if (threaded) {
6578 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6579 			if (!napi->thread) {
6580 				err = napi_kthread_create(napi);
6581 				if (err) {
6582 					threaded = false;
6583 					break;
6584 				}
6585 			}
6586 		}
6587 	}
6588 
6589 	WRITE_ONCE(dev->threaded, threaded);
6590 
6591 	/* Make sure kthread is created before THREADED bit
6592 	 * is set.
6593 	 */
6594 	smp_mb__before_atomic();
6595 
6596 	/* Setting/unsetting threaded mode on a napi might not immediately
6597 	 * take effect, if the current napi instance is actively being
6598 	 * polled. In this case, the switch between threaded mode and
6599 	 * softirq mode will happen in the next round of napi_schedule().
6600 	 * This should not cause hiccups/stalls to the live traffic.
6601 	 */
6602 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6603 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6604 
6605 	return err;
6606 }
6607 EXPORT_SYMBOL(dev_set_threaded);
6608 
6609 /**
6610  * netif_queue_set_napi - Associate queue with the napi
6611  * @dev: device to which NAPI and queue belong
6612  * @queue_index: Index of queue
6613  * @type: queue type as RX or TX
6614  * @napi: NAPI context, pass NULL to clear previously set NAPI
6615  *
6616  * Set queue with its corresponding napi context. This should be done after
6617  * registering the NAPI handler for the queue-vector and the queues have been
6618  * mapped to the corresponding interrupt vector.
6619  */
6620 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6621 			  enum netdev_queue_type type, struct napi_struct *napi)
6622 {
6623 	struct netdev_rx_queue *rxq;
6624 	struct netdev_queue *txq;
6625 
6626 	if (WARN_ON_ONCE(napi && !napi->dev))
6627 		return;
6628 	if (dev->reg_state >= NETREG_REGISTERED)
6629 		ASSERT_RTNL();
6630 
6631 	switch (type) {
6632 	case NETDEV_QUEUE_TYPE_RX:
6633 		rxq = __netif_get_rx_queue(dev, queue_index);
6634 		rxq->napi = napi;
6635 		return;
6636 	case NETDEV_QUEUE_TYPE_TX:
6637 		txq = netdev_get_tx_queue(dev, queue_index);
6638 		txq->napi = napi;
6639 		return;
6640 	default:
6641 		return;
6642 	}
6643 }
6644 EXPORT_SYMBOL(netif_queue_set_napi);
6645 
6646 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6647 			   int (*poll)(struct napi_struct *, int), int weight)
6648 {
6649 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6650 		return;
6651 
6652 	INIT_LIST_HEAD(&napi->poll_list);
6653 	INIT_HLIST_NODE(&napi->napi_hash_node);
6654 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6655 	napi->timer.function = napi_watchdog;
6656 	init_gro_hash(napi);
6657 	napi->skb = NULL;
6658 	INIT_LIST_HEAD(&napi->rx_list);
6659 	napi->rx_count = 0;
6660 	napi->poll = poll;
6661 	if (weight > NAPI_POLL_WEIGHT)
6662 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6663 				weight);
6664 	napi->weight = weight;
6665 	napi->dev = dev;
6666 #ifdef CONFIG_NETPOLL
6667 	napi->poll_owner = -1;
6668 #endif
6669 	napi->list_owner = -1;
6670 	set_bit(NAPI_STATE_SCHED, &napi->state);
6671 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6672 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6673 	napi_hash_add(napi);
6674 	napi_get_frags_check(napi);
6675 	/* Create kthread for this napi if dev->threaded is set.
6676 	 * Clear dev->threaded if kthread creation failed so that
6677 	 * threaded mode will not be enabled in napi_enable().
6678 	 */
6679 	if (dev->threaded && napi_kthread_create(napi))
6680 		dev->threaded = false;
6681 	netif_napi_set_irq(napi, -1);
6682 }
6683 EXPORT_SYMBOL(netif_napi_add_weight);
6684 
6685 void napi_disable(struct napi_struct *n)
6686 {
6687 	unsigned long val, new;
6688 
6689 	might_sleep();
6690 	set_bit(NAPI_STATE_DISABLE, &n->state);
6691 
6692 	val = READ_ONCE(n->state);
6693 	do {
6694 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6695 			usleep_range(20, 200);
6696 			val = READ_ONCE(n->state);
6697 		}
6698 
6699 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6700 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6701 	} while (!try_cmpxchg(&n->state, &val, new));
6702 
6703 	hrtimer_cancel(&n->timer);
6704 
6705 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6706 }
6707 EXPORT_SYMBOL(napi_disable);
6708 
6709 /**
6710  *	napi_enable - enable NAPI scheduling
6711  *	@n: NAPI context
6712  *
6713  * Resume NAPI from being scheduled on this context.
6714  * Must be paired with napi_disable.
6715  */
6716 void napi_enable(struct napi_struct *n)
6717 {
6718 	unsigned long new, val = READ_ONCE(n->state);
6719 
6720 	do {
6721 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6722 
6723 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6724 		if (n->dev->threaded && n->thread)
6725 			new |= NAPIF_STATE_THREADED;
6726 	} while (!try_cmpxchg(&n->state, &val, new));
6727 }
6728 EXPORT_SYMBOL(napi_enable);
6729 
6730 static void flush_gro_hash(struct napi_struct *napi)
6731 {
6732 	int i;
6733 
6734 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6735 		struct sk_buff *skb, *n;
6736 
6737 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6738 			kfree_skb(skb);
6739 		napi->gro_hash[i].count = 0;
6740 	}
6741 }
6742 
6743 /* Must be called in process context */
6744 void __netif_napi_del(struct napi_struct *napi)
6745 {
6746 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6747 		return;
6748 
6749 	napi_hash_del(napi);
6750 	list_del_rcu(&napi->dev_list);
6751 	napi_free_frags(napi);
6752 
6753 	flush_gro_hash(napi);
6754 	napi->gro_bitmask = 0;
6755 
6756 	if (napi->thread) {
6757 		kthread_stop(napi->thread);
6758 		napi->thread = NULL;
6759 	}
6760 }
6761 EXPORT_SYMBOL(__netif_napi_del);
6762 
6763 static int __napi_poll(struct napi_struct *n, bool *repoll)
6764 {
6765 	int work, weight;
6766 
6767 	weight = n->weight;
6768 
6769 	/* This NAPI_STATE_SCHED test is for avoiding a race
6770 	 * with netpoll's poll_napi().  Only the entity which
6771 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6772 	 * actually make the ->poll() call.  Therefore we avoid
6773 	 * accidentally calling ->poll() when NAPI is not scheduled.
6774 	 */
6775 	work = 0;
6776 	if (napi_is_scheduled(n)) {
6777 		work = n->poll(n, weight);
6778 		trace_napi_poll(n, work, weight);
6779 
6780 		xdp_do_check_flushed(n);
6781 	}
6782 
6783 	if (unlikely(work > weight))
6784 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6785 				n->poll, work, weight);
6786 
6787 	if (likely(work < weight))
6788 		return work;
6789 
6790 	/* Drivers must not modify the NAPI state if they
6791 	 * consume the entire weight.  In such cases this code
6792 	 * still "owns" the NAPI instance and therefore can
6793 	 * move the instance around on the list at-will.
6794 	 */
6795 	if (unlikely(napi_disable_pending(n))) {
6796 		napi_complete(n);
6797 		return work;
6798 	}
6799 
6800 	/* The NAPI context has more processing work, but busy-polling
6801 	 * is preferred. Exit early.
6802 	 */
6803 	if (napi_prefer_busy_poll(n)) {
6804 		if (napi_complete_done(n, work)) {
6805 			/* If timeout is not set, we need to make sure
6806 			 * that the NAPI is re-scheduled.
6807 			 */
6808 			napi_schedule(n);
6809 		}
6810 		return work;
6811 	}
6812 
6813 	if (n->gro_bitmask) {
6814 		/* flush too old packets
6815 		 * If HZ < 1000, flush all packets.
6816 		 */
6817 		napi_gro_flush(n, HZ >= 1000);
6818 	}
6819 
6820 	gro_normal_list(n);
6821 
6822 	/* Some drivers may have called napi_schedule
6823 	 * prior to exhausting their budget.
6824 	 */
6825 	if (unlikely(!list_empty(&n->poll_list))) {
6826 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6827 			     n->dev ? n->dev->name : "backlog");
6828 		return work;
6829 	}
6830 
6831 	*repoll = true;
6832 
6833 	return work;
6834 }
6835 
6836 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6837 {
6838 	bool do_repoll = false;
6839 	void *have;
6840 	int work;
6841 
6842 	list_del_init(&n->poll_list);
6843 
6844 	have = netpoll_poll_lock(n);
6845 
6846 	work = __napi_poll(n, &do_repoll);
6847 
6848 	if (do_repoll)
6849 		list_add_tail(&n->poll_list, repoll);
6850 
6851 	netpoll_poll_unlock(have);
6852 
6853 	return work;
6854 }
6855 
6856 static int napi_thread_wait(struct napi_struct *napi)
6857 {
6858 	set_current_state(TASK_INTERRUPTIBLE);
6859 
6860 	while (!kthread_should_stop()) {
6861 		/* Testing SCHED_THREADED bit here to make sure the current
6862 		 * kthread owns this napi and could poll on this napi.
6863 		 * Testing SCHED bit is not enough because SCHED bit might be
6864 		 * set by some other busy poll thread or by napi_disable().
6865 		 */
6866 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6867 			WARN_ON(!list_empty(&napi->poll_list));
6868 			__set_current_state(TASK_RUNNING);
6869 			return 0;
6870 		}
6871 
6872 		schedule();
6873 		set_current_state(TASK_INTERRUPTIBLE);
6874 	}
6875 	__set_current_state(TASK_RUNNING);
6876 
6877 	return -1;
6878 }
6879 
6880 static void napi_threaded_poll_loop(struct napi_struct *napi)
6881 {
6882 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6883 	struct softnet_data *sd;
6884 	unsigned long last_qs = jiffies;
6885 
6886 	for (;;) {
6887 		bool repoll = false;
6888 		void *have;
6889 
6890 		local_bh_disable();
6891 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6892 
6893 		sd = this_cpu_ptr(&softnet_data);
6894 		sd->in_napi_threaded_poll = true;
6895 
6896 		have = netpoll_poll_lock(napi);
6897 		__napi_poll(napi, &repoll);
6898 		netpoll_poll_unlock(have);
6899 
6900 		sd->in_napi_threaded_poll = false;
6901 		barrier();
6902 
6903 		if (sd_has_rps_ipi_waiting(sd)) {
6904 			local_irq_disable();
6905 			net_rps_action_and_irq_enable(sd);
6906 		}
6907 		skb_defer_free_flush(sd);
6908 		bpf_net_ctx_clear(bpf_net_ctx);
6909 		local_bh_enable();
6910 
6911 		if (!repoll)
6912 			break;
6913 
6914 		rcu_softirq_qs_periodic(last_qs);
6915 		cond_resched();
6916 	}
6917 }
6918 
6919 static int napi_threaded_poll(void *data)
6920 {
6921 	struct napi_struct *napi = data;
6922 
6923 	while (!napi_thread_wait(napi))
6924 		napi_threaded_poll_loop(napi);
6925 
6926 	return 0;
6927 }
6928 
6929 static __latent_entropy void net_rx_action(void)
6930 {
6931 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6932 	unsigned long time_limit = jiffies +
6933 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6934 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6935 	int budget = READ_ONCE(net_hotdata.netdev_budget);
6936 	LIST_HEAD(list);
6937 	LIST_HEAD(repoll);
6938 
6939 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6940 start:
6941 	sd->in_net_rx_action = true;
6942 	local_irq_disable();
6943 	list_splice_init(&sd->poll_list, &list);
6944 	local_irq_enable();
6945 
6946 	for (;;) {
6947 		struct napi_struct *n;
6948 
6949 		skb_defer_free_flush(sd);
6950 
6951 		if (list_empty(&list)) {
6952 			if (list_empty(&repoll)) {
6953 				sd->in_net_rx_action = false;
6954 				barrier();
6955 				/* We need to check if ____napi_schedule()
6956 				 * had refilled poll_list while
6957 				 * sd->in_net_rx_action was true.
6958 				 */
6959 				if (!list_empty(&sd->poll_list))
6960 					goto start;
6961 				if (!sd_has_rps_ipi_waiting(sd))
6962 					goto end;
6963 			}
6964 			break;
6965 		}
6966 
6967 		n = list_first_entry(&list, struct napi_struct, poll_list);
6968 		budget -= napi_poll(n, &repoll);
6969 
6970 		/* If softirq window is exhausted then punt.
6971 		 * Allow this to run for 2 jiffies since which will allow
6972 		 * an average latency of 1.5/HZ.
6973 		 */
6974 		if (unlikely(budget <= 0 ||
6975 			     time_after_eq(jiffies, time_limit))) {
6976 			sd->time_squeeze++;
6977 			break;
6978 		}
6979 	}
6980 
6981 	local_irq_disable();
6982 
6983 	list_splice_tail_init(&sd->poll_list, &list);
6984 	list_splice_tail(&repoll, &list);
6985 	list_splice(&list, &sd->poll_list);
6986 	if (!list_empty(&sd->poll_list))
6987 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6988 	else
6989 		sd->in_net_rx_action = false;
6990 
6991 	net_rps_action_and_irq_enable(sd);
6992 end:
6993 	bpf_net_ctx_clear(bpf_net_ctx);
6994 }
6995 
6996 struct netdev_adjacent {
6997 	struct net_device *dev;
6998 	netdevice_tracker dev_tracker;
6999 
7000 	/* upper master flag, there can only be one master device per list */
7001 	bool master;
7002 
7003 	/* lookup ignore flag */
7004 	bool ignore;
7005 
7006 	/* counter for the number of times this device was added to us */
7007 	u16 ref_nr;
7008 
7009 	/* private field for the users */
7010 	void *private;
7011 
7012 	struct list_head list;
7013 	struct rcu_head rcu;
7014 };
7015 
7016 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7017 						 struct list_head *adj_list)
7018 {
7019 	struct netdev_adjacent *adj;
7020 
7021 	list_for_each_entry(adj, adj_list, list) {
7022 		if (adj->dev == adj_dev)
7023 			return adj;
7024 	}
7025 	return NULL;
7026 }
7027 
7028 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7029 				    struct netdev_nested_priv *priv)
7030 {
7031 	struct net_device *dev = (struct net_device *)priv->data;
7032 
7033 	return upper_dev == dev;
7034 }
7035 
7036 /**
7037  * netdev_has_upper_dev - Check if device is linked to an upper device
7038  * @dev: device
7039  * @upper_dev: upper device to check
7040  *
7041  * Find out if a device is linked to specified upper device and return true
7042  * in case it is. Note that this checks only immediate upper device,
7043  * not through a complete stack of devices. The caller must hold the RTNL lock.
7044  */
7045 bool netdev_has_upper_dev(struct net_device *dev,
7046 			  struct net_device *upper_dev)
7047 {
7048 	struct netdev_nested_priv priv = {
7049 		.data = (void *)upper_dev,
7050 	};
7051 
7052 	ASSERT_RTNL();
7053 
7054 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7055 					     &priv);
7056 }
7057 EXPORT_SYMBOL(netdev_has_upper_dev);
7058 
7059 /**
7060  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7061  * @dev: device
7062  * @upper_dev: upper device to check
7063  *
7064  * Find out if a device is linked to specified upper device and return true
7065  * in case it is. Note that this checks the entire upper device chain.
7066  * The caller must hold rcu lock.
7067  */
7068 
7069 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7070 				  struct net_device *upper_dev)
7071 {
7072 	struct netdev_nested_priv priv = {
7073 		.data = (void *)upper_dev,
7074 	};
7075 
7076 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7077 					       &priv);
7078 }
7079 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7080 
7081 /**
7082  * netdev_has_any_upper_dev - Check if device is linked to some device
7083  * @dev: device
7084  *
7085  * Find out if a device is linked to an upper device and return true in case
7086  * it is. The caller must hold the RTNL lock.
7087  */
7088 bool netdev_has_any_upper_dev(struct net_device *dev)
7089 {
7090 	ASSERT_RTNL();
7091 
7092 	return !list_empty(&dev->adj_list.upper);
7093 }
7094 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7095 
7096 /**
7097  * netdev_master_upper_dev_get - Get master upper device
7098  * @dev: device
7099  *
7100  * Find a master upper device and return pointer to it or NULL in case
7101  * it's not there. The caller must hold the RTNL lock.
7102  */
7103 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7104 {
7105 	struct netdev_adjacent *upper;
7106 
7107 	ASSERT_RTNL();
7108 
7109 	if (list_empty(&dev->adj_list.upper))
7110 		return NULL;
7111 
7112 	upper = list_first_entry(&dev->adj_list.upper,
7113 				 struct netdev_adjacent, list);
7114 	if (likely(upper->master))
7115 		return upper->dev;
7116 	return NULL;
7117 }
7118 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7119 
7120 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7121 {
7122 	struct netdev_adjacent *upper;
7123 
7124 	ASSERT_RTNL();
7125 
7126 	if (list_empty(&dev->adj_list.upper))
7127 		return NULL;
7128 
7129 	upper = list_first_entry(&dev->adj_list.upper,
7130 				 struct netdev_adjacent, list);
7131 	if (likely(upper->master) && !upper->ignore)
7132 		return upper->dev;
7133 	return NULL;
7134 }
7135 
7136 /**
7137  * netdev_has_any_lower_dev - Check if device is linked to some device
7138  * @dev: device
7139  *
7140  * Find out if a device is linked to a lower device and return true in case
7141  * it is. The caller must hold the RTNL lock.
7142  */
7143 static bool netdev_has_any_lower_dev(struct net_device *dev)
7144 {
7145 	ASSERT_RTNL();
7146 
7147 	return !list_empty(&dev->adj_list.lower);
7148 }
7149 
7150 void *netdev_adjacent_get_private(struct list_head *adj_list)
7151 {
7152 	struct netdev_adjacent *adj;
7153 
7154 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7155 
7156 	return adj->private;
7157 }
7158 EXPORT_SYMBOL(netdev_adjacent_get_private);
7159 
7160 /**
7161  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7162  * @dev: device
7163  * @iter: list_head ** of the current position
7164  *
7165  * Gets the next device from the dev's upper list, starting from iter
7166  * position. The caller must hold RCU read lock.
7167  */
7168 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7169 						 struct list_head **iter)
7170 {
7171 	struct netdev_adjacent *upper;
7172 
7173 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7174 
7175 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7176 
7177 	if (&upper->list == &dev->adj_list.upper)
7178 		return NULL;
7179 
7180 	*iter = &upper->list;
7181 
7182 	return upper->dev;
7183 }
7184 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7185 
7186 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7187 						  struct list_head **iter,
7188 						  bool *ignore)
7189 {
7190 	struct netdev_adjacent *upper;
7191 
7192 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7193 
7194 	if (&upper->list == &dev->adj_list.upper)
7195 		return NULL;
7196 
7197 	*iter = &upper->list;
7198 	*ignore = upper->ignore;
7199 
7200 	return upper->dev;
7201 }
7202 
7203 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7204 						    struct list_head **iter)
7205 {
7206 	struct netdev_adjacent *upper;
7207 
7208 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7209 
7210 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7211 
7212 	if (&upper->list == &dev->adj_list.upper)
7213 		return NULL;
7214 
7215 	*iter = &upper->list;
7216 
7217 	return upper->dev;
7218 }
7219 
7220 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7221 				       int (*fn)(struct net_device *dev,
7222 					 struct netdev_nested_priv *priv),
7223 				       struct netdev_nested_priv *priv)
7224 {
7225 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7226 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7227 	int ret, cur = 0;
7228 	bool ignore;
7229 
7230 	now = dev;
7231 	iter = &dev->adj_list.upper;
7232 
7233 	while (1) {
7234 		if (now != dev) {
7235 			ret = fn(now, priv);
7236 			if (ret)
7237 				return ret;
7238 		}
7239 
7240 		next = NULL;
7241 		while (1) {
7242 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7243 			if (!udev)
7244 				break;
7245 			if (ignore)
7246 				continue;
7247 
7248 			next = udev;
7249 			niter = &udev->adj_list.upper;
7250 			dev_stack[cur] = now;
7251 			iter_stack[cur++] = iter;
7252 			break;
7253 		}
7254 
7255 		if (!next) {
7256 			if (!cur)
7257 				return 0;
7258 			next = dev_stack[--cur];
7259 			niter = iter_stack[cur];
7260 		}
7261 
7262 		now = next;
7263 		iter = niter;
7264 	}
7265 
7266 	return 0;
7267 }
7268 
7269 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7270 				  int (*fn)(struct net_device *dev,
7271 					    struct netdev_nested_priv *priv),
7272 				  struct netdev_nested_priv *priv)
7273 {
7274 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7275 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7276 	int ret, cur = 0;
7277 
7278 	now = dev;
7279 	iter = &dev->adj_list.upper;
7280 
7281 	while (1) {
7282 		if (now != dev) {
7283 			ret = fn(now, priv);
7284 			if (ret)
7285 				return ret;
7286 		}
7287 
7288 		next = NULL;
7289 		while (1) {
7290 			udev = netdev_next_upper_dev_rcu(now, &iter);
7291 			if (!udev)
7292 				break;
7293 
7294 			next = udev;
7295 			niter = &udev->adj_list.upper;
7296 			dev_stack[cur] = now;
7297 			iter_stack[cur++] = iter;
7298 			break;
7299 		}
7300 
7301 		if (!next) {
7302 			if (!cur)
7303 				return 0;
7304 			next = dev_stack[--cur];
7305 			niter = iter_stack[cur];
7306 		}
7307 
7308 		now = next;
7309 		iter = niter;
7310 	}
7311 
7312 	return 0;
7313 }
7314 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7315 
7316 static bool __netdev_has_upper_dev(struct net_device *dev,
7317 				   struct net_device *upper_dev)
7318 {
7319 	struct netdev_nested_priv priv = {
7320 		.flags = 0,
7321 		.data = (void *)upper_dev,
7322 	};
7323 
7324 	ASSERT_RTNL();
7325 
7326 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7327 					   &priv);
7328 }
7329 
7330 /**
7331  * netdev_lower_get_next_private - Get the next ->private from the
7332  *				   lower neighbour list
7333  * @dev: device
7334  * @iter: list_head ** of the current position
7335  *
7336  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7337  * list, starting from iter position. The caller must hold either hold the
7338  * RTNL lock or its own locking that guarantees that the neighbour lower
7339  * list will remain unchanged.
7340  */
7341 void *netdev_lower_get_next_private(struct net_device *dev,
7342 				    struct list_head **iter)
7343 {
7344 	struct netdev_adjacent *lower;
7345 
7346 	lower = list_entry(*iter, struct netdev_adjacent, list);
7347 
7348 	if (&lower->list == &dev->adj_list.lower)
7349 		return NULL;
7350 
7351 	*iter = lower->list.next;
7352 
7353 	return lower->private;
7354 }
7355 EXPORT_SYMBOL(netdev_lower_get_next_private);
7356 
7357 /**
7358  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7359  *				       lower neighbour list, RCU
7360  *				       variant
7361  * @dev: device
7362  * @iter: list_head ** of the current position
7363  *
7364  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7365  * list, starting from iter position. The caller must hold RCU read lock.
7366  */
7367 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7368 					struct list_head **iter)
7369 {
7370 	struct netdev_adjacent *lower;
7371 
7372 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7373 
7374 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7375 
7376 	if (&lower->list == &dev->adj_list.lower)
7377 		return NULL;
7378 
7379 	*iter = &lower->list;
7380 
7381 	return lower->private;
7382 }
7383 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7384 
7385 /**
7386  * netdev_lower_get_next - Get the next device from the lower neighbour
7387  *                         list
7388  * @dev: device
7389  * @iter: list_head ** of the current position
7390  *
7391  * Gets the next netdev_adjacent from the dev's lower neighbour
7392  * list, starting from iter position. The caller must hold RTNL lock or
7393  * its own locking that guarantees that the neighbour lower
7394  * list will remain unchanged.
7395  */
7396 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7397 {
7398 	struct netdev_adjacent *lower;
7399 
7400 	lower = list_entry(*iter, struct netdev_adjacent, list);
7401 
7402 	if (&lower->list == &dev->adj_list.lower)
7403 		return NULL;
7404 
7405 	*iter = lower->list.next;
7406 
7407 	return lower->dev;
7408 }
7409 EXPORT_SYMBOL(netdev_lower_get_next);
7410 
7411 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7412 						struct list_head **iter)
7413 {
7414 	struct netdev_adjacent *lower;
7415 
7416 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7417 
7418 	if (&lower->list == &dev->adj_list.lower)
7419 		return NULL;
7420 
7421 	*iter = &lower->list;
7422 
7423 	return lower->dev;
7424 }
7425 
7426 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7427 						  struct list_head **iter,
7428 						  bool *ignore)
7429 {
7430 	struct netdev_adjacent *lower;
7431 
7432 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7433 
7434 	if (&lower->list == &dev->adj_list.lower)
7435 		return NULL;
7436 
7437 	*iter = &lower->list;
7438 	*ignore = lower->ignore;
7439 
7440 	return lower->dev;
7441 }
7442 
7443 int netdev_walk_all_lower_dev(struct net_device *dev,
7444 			      int (*fn)(struct net_device *dev,
7445 					struct netdev_nested_priv *priv),
7446 			      struct netdev_nested_priv *priv)
7447 {
7448 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7449 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7450 	int ret, cur = 0;
7451 
7452 	now = dev;
7453 	iter = &dev->adj_list.lower;
7454 
7455 	while (1) {
7456 		if (now != dev) {
7457 			ret = fn(now, priv);
7458 			if (ret)
7459 				return ret;
7460 		}
7461 
7462 		next = NULL;
7463 		while (1) {
7464 			ldev = netdev_next_lower_dev(now, &iter);
7465 			if (!ldev)
7466 				break;
7467 
7468 			next = ldev;
7469 			niter = &ldev->adj_list.lower;
7470 			dev_stack[cur] = now;
7471 			iter_stack[cur++] = iter;
7472 			break;
7473 		}
7474 
7475 		if (!next) {
7476 			if (!cur)
7477 				return 0;
7478 			next = dev_stack[--cur];
7479 			niter = iter_stack[cur];
7480 		}
7481 
7482 		now = next;
7483 		iter = niter;
7484 	}
7485 
7486 	return 0;
7487 }
7488 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7489 
7490 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7491 				       int (*fn)(struct net_device *dev,
7492 					 struct netdev_nested_priv *priv),
7493 				       struct netdev_nested_priv *priv)
7494 {
7495 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7496 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7497 	int ret, cur = 0;
7498 	bool ignore;
7499 
7500 	now = dev;
7501 	iter = &dev->adj_list.lower;
7502 
7503 	while (1) {
7504 		if (now != dev) {
7505 			ret = fn(now, priv);
7506 			if (ret)
7507 				return ret;
7508 		}
7509 
7510 		next = NULL;
7511 		while (1) {
7512 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7513 			if (!ldev)
7514 				break;
7515 			if (ignore)
7516 				continue;
7517 
7518 			next = ldev;
7519 			niter = &ldev->adj_list.lower;
7520 			dev_stack[cur] = now;
7521 			iter_stack[cur++] = iter;
7522 			break;
7523 		}
7524 
7525 		if (!next) {
7526 			if (!cur)
7527 				return 0;
7528 			next = dev_stack[--cur];
7529 			niter = iter_stack[cur];
7530 		}
7531 
7532 		now = next;
7533 		iter = niter;
7534 	}
7535 
7536 	return 0;
7537 }
7538 
7539 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7540 					     struct list_head **iter)
7541 {
7542 	struct netdev_adjacent *lower;
7543 
7544 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7545 	if (&lower->list == &dev->adj_list.lower)
7546 		return NULL;
7547 
7548 	*iter = &lower->list;
7549 
7550 	return lower->dev;
7551 }
7552 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7553 
7554 static u8 __netdev_upper_depth(struct net_device *dev)
7555 {
7556 	struct net_device *udev;
7557 	struct list_head *iter;
7558 	u8 max_depth = 0;
7559 	bool ignore;
7560 
7561 	for (iter = &dev->adj_list.upper,
7562 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7563 	     udev;
7564 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7565 		if (ignore)
7566 			continue;
7567 		if (max_depth < udev->upper_level)
7568 			max_depth = udev->upper_level;
7569 	}
7570 
7571 	return max_depth;
7572 }
7573 
7574 static u8 __netdev_lower_depth(struct net_device *dev)
7575 {
7576 	struct net_device *ldev;
7577 	struct list_head *iter;
7578 	u8 max_depth = 0;
7579 	bool ignore;
7580 
7581 	for (iter = &dev->adj_list.lower,
7582 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7583 	     ldev;
7584 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7585 		if (ignore)
7586 			continue;
7587 		if (max_depth < ldev->lower_level)
7588 			max_depth = ldev->lower_level;
7589 	}
7590 
7591 	return max_depth;
7592 }
7593 
7594 static int __netdev_update_upper_level(struct net_device *dev,
7595 				       struct netdev_nested_priv *__unused)
7596 {
7597 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7598 	return 0;
7599 }
7600 
7601 #ifdef CONFIG_LOCKDEP
7602 static LIST_HEAD(net_unlink_list);
7603 
7604 static void net_unlink_todo(struct net_device *dev)
7605 {
7606 	if (list_empty(&dev->unlink_list))
7607 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7608 }
7609 #endif
7610 
7611 static int __netdev_update_lower_level(struct net_device *dev,
7612 				       struct netdev_nested_priv *priv)
7613 {
7614 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7615 
7616 #ifdef CONFIG_LOCKDEP
7617 	if (!priv)
7618 		return 0;
7619 
7620 	if (priv->flags & NESTED_SYNC_IMM)
7621 		dev->nested_level = dev->lower_level - 1;
7622 	if (priv->flags & NESTED_SYNC_TODO)
7623 		net_unlink_todo(dev);
7624 #endif
7625 	return 0;
7626 }
7627 
7628 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7629 				  int (*fn)(struct net_device *dev,
7630 					    struct netdev_nested_priv *priv),
7631 				  struct netdev_nested_priv *priv)
7632 {
7633 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7634 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7635 	int ret, cur = 0;
7636 
7637 	now = dev;
7638 	iter = &dev->adj_list.lower;
7639 
7640 	while (1) {
7641 		if (now != dev) {
7642 			ret = fn(now, priv);
7643 			if (ret)
7644 				return ret;
7645 		}
7646 
7647 		next = NULL;
7648 		while (1) {
7649 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7650 			if (!ldev)
7651 				break;
7652 
7653 			next = ldev;
7654 			niter = &ldev->adj_list.lower;
7655 			dev_stack[cur] = now;
7656 			iter_stack[cur++] = iter;
7657 			break;
7658 		}
7659 
7660 		if (!next) {
7661 			if (!cur)
7662 				return 0;
7663 			next = dev_stack[--cur];
7664 			niter = iter_stack[cur];
7665 		}
7666 
7667 		now = next;
7668 		iter = niter;
7669 	}
7670 
7671 	return 0;
7672 }
7673 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7674 
7675 /**
7676  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7677  *				       lower neighbour list, RCU
7678  *				       variant
7679  * @dev: device
7680  *
7681  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7682  * list. The caller must hold RCU read lock.
7683  */
7684 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7685 {
7686 	struct netdev_adjacent *lower;
7687 
7688 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7689 			struct netdev_adjacent, list);
7690 	if (lower)
7691 		return lower->private;
7692 	return NULL;
7693 }
7694 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7695 
7696 /**
7697  * netdev_master_upper_dev_get_rcu - Get master upper device
7698  * @dev: device
7699  *
7700  * Find a master upper device and return pointer to it or NULL in case
7701  * it's not there. The caller must hold the RCU read lock.
7702  */
7703 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7704 {
7705 	struct netdev_adjacent *upper;
7706 
7707 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7708 				       struct netdev_adjacent, list);
7709 	if (upper && likely(upper->master))
7710 		return upper->dev;
7711 	return NULL;
7712 }
7713 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7714 
7715 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7716 			      struct net_device *adj_dev,
7717 			      struct list_head *dev_list)
7718 {
7719 	char linkname[IFNAMSIZ+7];
7720 
7721 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7722 		"upper_%s" : "lower_%s", adj_dev->name);
7723 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7724 				 linkname);
7725 }
7726 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7727 			       char *name,
7728 			       struct list_head *dev_list)
7729 {
7730 	char linkname[IFNAMSIZ+7];
7731 
7732 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7733 		"upper_%s" : "lower_%s", name);
7734 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7735 }
7736 
7737 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7738 						 struct net_device *adj_dev,
7739 						 struct list_head *dev_list)
7740 {
7741 	return (dev_list == &dev->adj_list.upper ||
7742 		dev_list == &dev->adj_list.lower) &&
7743 		net_eq(dev_net(dev), dev_net(adj_dev));
7744 }
7745 
7746 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7747 					struct net_device *adj_dev,
7748 					struct list_head *dev_list,
7749 					void *private, bool master)
7750 {
7751 	struct netdev_adjacent *adj;
7752 	int ret;
7753 
7754 	adj = __netdev_find_adj(adj_dev, dev_list);
7755 
7756 	if (adj) {
7757 		adj->ref_nr += 1;
7758 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7759 			 dev->name, adj_dev->name, adj->ref_nr);
7760 
7761 		return 0;
7762 	}
7763 
7764 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7765 	if (!adj)
7766 		return -ENOMEM;
7767 
7768 	adj->dev = adj_dev;
7769 	adj->master = master;
7770 	adj->ref_nr = 1;
7771 	adj->private = private;
7772 	adj->ignore = false;
7773 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7774 
7775 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7776 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7777 
7778 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7779 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7780 		if (ret)
7781 			goto free_adj;
7782 	}
7783 
7784 	/* Ensure that master link is always the first item in list. */
7785 	if (master) {
7786 		ret = sysfs_create_link(&(dev->dev.kobj),
7787 					&(adj_dev->dev.kobj), "master");
7788 		if (ret)
7789 			goto remove_symlinks;
7790 
7791 		list_add_rcu(&adj->list, dev_list);
7792 	} else {
7793 		list_add_tail_rcu(&adj->list, dev_list);
7794 	}
7795 
7796 	return 0;
7797 
7798 remove_symlinks:
7799 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7800 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7801 free_adj:
7802 	netdev_put(adj_dev, &adj->dev_tracker);
7803 	kfree(adj);
7804 
7805 	return ret;
7806 }
7807 
7808 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7809 					 struct net_device *adj_dev,
7810 					 u16 ref_nr,
7811 					 struct list_head *dev_list)
7812 {
7813 	struct netdev_adjacent *adj;
7814 
7815 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7816 		 dev->name, adj_dev->name, ref_nr);
7817 
7818 	adj = __netdev_find_adj(adj_dev, dev_list);
7819 
7820 	if (!adj) {
7821 		pr_err("Adjacency does not exist for device %s from %s\n",
7822 		       dev->name, adj_dev->name);
7823 		WARN_ON(1);
7824 		return;
7825 	}
7826 
7827 	if (adj->ref_nr > ref_nr) {
7828 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7829 			 dev->name, adj_dev->name, ref_nr,
7830 			 adj->ref_nr - ref_nr);
7831 		adj->ref_nr -= ref_nr;
7832 		return;
7833 	}
7834 
7835 	if (adj->master)
7836 		sysfs_remove_link(&(dev->dev.kobj), "master");
7837 
7838 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7839 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7840 
7841 	list_del_rcu(&adj->list);
7842 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7843 		 adj_dev->name, dev->name, adj_dev->name);
7844 	netdev_put(adj_dev, &adj->dev_tracker);
7845 	kfree_rcu(adj, rcu);
7846 }
7847 
7848 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7849 					    struct net_device *upper_dev,
7850 					    struct list_head *up_list,
7851 					    struct list_head *down_list,
7852 					    void *private, bool master)
7853 {
7854 	int ret;
7855 
7856 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7857 					   private, master);
7858 	if (ret)
7859 		return ret;
7860 
7861 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7862 					   private, false);
7863 	if (ret) {
7864 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7865 		return ret;
7866 	}
7867 
7868 	return 0;
7869 }
7870 
7871 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7872 					       struct net_device *upper_dev,
7873 					       u16 ref_nr,
7874 					       struct list_head *up_list,
7875 					       struct list_head *down_list)
7876 {
7877 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7878 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7879 }
7880 
7881 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7882 						struct net_device *upper_dev,
7883 						void *private, bool master)
7884 {
7885 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7886 						&dev->adj_list.upper,
7887 						&upper_dev->adj_list.lower,
7888 						private, master);
7889 }
7890 
7891 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7892 						   struct net_device *upper_dev)
7893 {
7894 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7895 					   &dev->adj_list.upper,
7896 					   &upper_dev->adj_list.lower);
7897 }
7898 
7899 static int __netdev_upper_dev_link(struct net_device *dev,
7900 				   struct net_device *upper_dev, bool master,
7901 				   void *upper_priv, void *upper_info,
7902 				   struct netdev_nested_priv *priv,
7903 				   struct netlink_ext_ack *extack)
7904 {
7905 	struct netdev_notifier_changeupper_info changeupper_info = {
7906 		.info = {
7907 			.dev = dev,
7908 			.extack = extack,
7909 		},
7910 		.upper_dev = upper_dev,
7911 		.master = master,
7912 		.linking = true,
7913 		.upper_info = upper_info,
7914 	};
7915 	struct net_device *master_dev;
7916 	int ret = 0;
7917 
7918 	ASSERT_RTNL();
7919 
7920 	if (dev == upper_dev)
7921 		return -EBUSY;
7922 
7923 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7924 	if (__netdev_has_upper_dev(upper_dev, dev))
7925 		return -EBUSY;
7926 
7927 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7928 		return -EMLINK;
7929 
7930 	if (!master) {
7931 		if (__netdev_has_upper_dev(dev, upper_dev))
7932 			return -EEXIST;
7933 	} else {
7934 		master_dev = __netdev_master_upper_dev_get(dev);
7935 		if (master_dev)
7936 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7937 	}
7938 
7939 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7940 					    &changeupper_info.info);
7941 	ret = notifier_to_errno(ret);
7942 	if (ret)
7943 		return ret;
7944 
7945 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7946 						   master);
7947 	if (ret)
7948 		return ret;
7949 
7950 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7951 					    &changeupper_info.info);
7952 	ret = notifier_to_errno(ret);
7953 	if (ret)
7954 		goto rollback;
7955 
7956 	__netdev_update_upper_level(dev, NULL);
7957 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7958 
7959 	__netdev_update_lower_level(upper_dev, priv);
7960 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7961 				    priv);
7962 
7963 	return 0;
7964 
7965 rollback:
7966 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7967 
7968 	return ret;
7969 }
7970 
7971 /**
7972  * netdev_upper_dev_link - Add a link to the upper device
7973  * @dev: device
7974  * @upper_dev: new upper device
7975  * @extack: netlink extended ack
7976  *
7977  * Adds a link to device which is upper to this one. The caller must hold
7978  * the RTNL lock. On a failure a negative errno code is returned.
7979  * On success the reference counts are adjusted and the function
7980  * returns zero.
7981  */
7982 int netdev_upper_dev_link(struct net_device *dev,
7983 			  struct net_device *upper_dev,
7984 			  struct netlink_ext_ack *extack)
7985 {
7986 	struct netdev_nested_priv priv = {
7987 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7988 		.data = NULL,
7989 	};
7990 
7991 	return __netdev_upper_dev_link(dev, upper_dev, false,
7992 				       NULL, NULL, &priv, extack);
7993 }
7994 EXPORT_SYMBOL(netdev_upper_dev_link);
7995 
7996 /**
7997  * netdev_master_upper_dev_link - Add a master link to the upper device
7998  * @dev: device
7999  * @upper_dev: new upper device
8000  * @upper_priv: upper device private
8001  * @upper_info: upper info to be passed down via notifier
8002  * @extack: netlink extended ack
8003  *
8004  * Adds a link to device which is upper to this one. In this case, only
8005  * one master upper device can be linked, although other non-master devices
8006  * might be linked as well. The caller must hold the RTNL lock.
8007  * On a failure a negative errno code is returned. On success the reference
8008  * counts are adjusted and the function returns zero.
8009  */
8010 int netdev_master_upper_dev_link(struct net_device *dev,
8011 				 struct net_device *upper_dev,
8012 				 void *upper_priv, void *upper_info,
8013 				 struct netlink_ext_ack *extack)
8014 {
8015 	struct netdev_nested_priv priv = {
8016 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8017 		.data = NULL,
8018 	};
8019 
8020 	return __netdev_upper_dev_link(dev, upper_dev, true,
8021 				       upper_priv, upper_info, &priv, extack);
8022 }
8023 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8024 
8025 static void __netdev_upper_dev_unlink(struct net_device *dev,
8026 				      struct net_device *upper_dev,
8027 				      struct netdev_nested_priv *priv)
8028 {
8029 	struct netdev_notifier_changeupper_info changeupper_info = {
8030 		.info = {
8031 			.dev = dev,
8032 		},
8033 		.upper_dev = upper_dev,
8034 		.linking = false,
8035 	};
8036 
8037 	ASSERT_RTNL();
8038 
8039 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8040 
8041 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8042 				      &changeupper_info.info);
8043 
8044 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8045 
8046 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8047 				      &changeupper_info.info);
8048 
8049 	__netdev_update_upper_level(dev, NULL);
8050 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8051 
8052 	__netdev_update_lower_level(upper_dev, priv);
8053 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8054 				    priv);
8055 }
8056 
8057 /**
8058  * netdev_upper_dev_unlink - Removes a link to upper device
8059  * @dev: device
8060  * @upper_dev: new upper device
8061  *
8062  * Removes a link to device which is upper to this one. The caller must hold
8063  * the RTNL lock.
8064  */
8065 void netdev_upper_dev_unlink(struct net_device *dev,
8066 			     struct net_device *upper_dev)
8067 {
8068 	struct netdev_nested_priv priv = {
8069 		.flags = NESTED_SYNC_TODO,
8070 		.data = NULL,
8071 	};
8072 
8073 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8074 }
8075 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8076 
8077 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8078 				      struct net_device *lower_dev,
8079 				      bool val)
8080 {
8081 	struct netdev_adjacent *adj;
8082 
8083 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8084 	if (adj)
8085 		adj->ignore = val;
8086 
8087 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8088 	if (adj)
8089 		adj->ignore = val;
8090 }
8091 
8092 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8093 					struct net_device *lower_dev)
8094 {
8095 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8096 }
8097 
8098 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8099 				       struct net_device *lower_dev)
8100 {
8101 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8102 }
8103 
8104 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8105 				   struct net_device *new_dev,
8106 				   struct net_device *dev,
8107 				   struct netlink_ext_ack *extack)
8108 {
8109 	struct netdev_nested_priv priv = {
8110 		.flags = 0,
8111 		.data = NULL,
8112 	};
8113 	int err;
8114 
8115 	if (!new_dev)
8116 		return 0;
8117 
8118 	if (old_dev && new_dev != old_dev)
8119 		netdev_adjacent_dev_disable(dev, old_dev);
8120 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8121 				      extack);
8122 	if (err) {
8123 		if (old_dev && new_dev != old_dev)
8124 			netdev_adjacent_dev_enable(dev, old_dev);
8125 		return err;
8126 	}
8127 
8128 	return 0;
8129 }
8130 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8131 
8132 void netdev_adjacent_change_commit(struct net_device *old_dev,
8133 				   struct net_device *new_dev,
8134 				   struct net_device *dev)
8135 {
8136 	struct netdev_nested_priv priv = {
8137 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8138 		.data = NULL,
8139 	};
8140 
8141 	if (!new_dev || !old_dev)
8142 		return;
8143 
8144 	if (new_dev == old_dev)
8145 		return;
8146 
8147 	netdev_adjacent_dev_enable(dev, old_dev);
8148 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8149 }
8150 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8151 
8152 void netdev_adjacent_change_abort(struct net_device *old_dev,
8153 				  struct net_device *new_dev,
8154 				  struct net_device *dev)
8155 {
8156 	struct netdev_nested_priv priv = {
8157 		.flags = 0,
8158 		.data = NULL,
8159 	};
8160 
8161 	if (!new_dev)
8162 		return;
8163 
8164 	if (old_dev && new_dev != old_dev)
8165 		netdev_adjacent_dev_enable(dev, old_dev);
8166 
8167 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8168 }
8169 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8170 
8171 /**
8172  * netdev_bonding_info_change - Dispatch event about slave change
8173  * @dev: device
8174  * @bonding_info: info to dispatch
8175  *
8176  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8177  * The caller must hold the RTNL lock.
8178  */
8179 void netdev_bonding_info_change(struct net_device *dev,
8180 				struct netdev_bonding_info *bonding_info)
8181 {
8182 	struct netdev_notifier_bonding_info info = {
8183 		.info.dev = dev,
8184 	};
8185 
8186 	memcpy(&info.bonding_info, bonding_info,
8187 	       sizeof(struct netdev_bonding_info));
8188 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8189 				      &info.info);
8190 }
8191 EXPORT_SYMBOL(netdev_bonding_info_change);
8192 
8193 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8194 					   struct netlink_ext_ack *extack)
8195 {
8196 	struct netdev_notifier_offload_xstats_info info = {
8197 		.info.dev = dev,
8198 		.info.extack = extack,
8199 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8200 	};
8201 	int err;
8202 	int rc;
8203 
8204 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8205 					 GFP_KERNEL);
8206 	if (!dev->offload_xstats_l3)
8207 		return -ENOMEM;
8208 
8209 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8210 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8211 						  &info.info);
8212 	err = notifier_to_errno(rc);
8213 	if (err)
8214 		goto free_stats;
8215 
8216 	return 0;
8217 
8218 free_stats:
8219 	kfree(dev->offload_xstats_l3);
8220 	dev->offload_xstats_l3 = NULL;
8221 	return err;
8222 }
8223 
8224 int netdev_offload_xstats_enable(struct net_device *dev,
8225 				 enum netdev_offload_xstats_type type,
8226 				 struct netlink_ext_ack *extack)
8227 {
8228 	ASSERT_RTNL();
8229 
8230 	if (netdev_offload_xstats_enabled(dev, type))
8231 		return -EALREADY;
8232 
8233 	switch (type) {
8234 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8235 		return netdev_offload_xstats_enable_l3(dev, extack);
8236 	}
8237 
8238 	WARN_ON(1);
8239 	return -EINVAL;
8240 }
8241 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8242 
8243 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8244 {
8245 	struct netdev_notifier_offload_xstats_info info = {
8246 		.info.dev = dev,
8247 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8248 	};
8249 
8250 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8251 				      &info.info);
8252 	kfree(dev->offload_xstats_l3);
8253 	dev->offload_xstats_l3 = NULL;
8254 }
8255 
8256 int netdev_offload_xstats_disable(struct net_device *dev,
8257 				  enum netdev_offload_xstats_type type)
8258 {
8259 	ASSERT_RTNL();
8260 
8261 	if (!netdev_offload_xstats_enabled(dev, type))
8262 		return -EALREADY;
8263 
8264 	switch (type) {
8265 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8266 		netdev_offload_xstats_disable_l3(dev);
8267 		return 0;
8268 	}
8269 
8270 	WARN_ON(1);
8271 	return -EINVAL;
8272 }
8273 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8274 
8275 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8276 {
8277 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8278 }
8279 
8280 static struct rtnl_hw_stats64 *
8281 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8282 			      enum netdev_offload_xstats_type type)
8283 {
8284 	switch (type) {
8285 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8286 		return dev->offload_xstats_l3;
8287 	}
8288 
8289 	WARN_ON(1);
8290 	return NULL;
8291 }
8292 
8293 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8294 				   enum netdev_offload_xstats_type type)
8295 {
8296 	ASSERT_RTNL();
8297 
8298 	return netdev_offload_xstats_get_ptr(dev, type);
8299 }
8300 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8301 
8302 struct netdev_notifier_offload_xstats_ru {
8303 	bool used;
8304 };
8305 
8306 struct netdev_notifier_offload_xstats_rd {
8307 	struct rtnl_hw_stats64 stats;
8308 	bool used;
8309 };
8310 
8311 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8312 				  const struct rtnl_hw_stats64 *src)
8313 {
8314 	dest->rx_packets	  += src->rx_packets;
8315 	dest->tx_packets	  += src->tx_packets;
8316 	dest->rx_bytes		  += src->rx_bytes;
8317 	dest->tx_bytes		  += src->tx_bytes;
8318 	dest->rx_errors		  += src->rx_errors;
8319 	dest->tx_errors		  += src->tx_errors;
8320 	dest->rx_dropped	  += src->rx_dropped;
8321 	dest->tx_dropped	  += src->tx_dropped;
8322 	dest->multicast		  += src->multicast;
8323 }
8324 
8325 static int netdev_offload_xstats_get_used(struct net_device *dev,
8326 					  enum netdev_offload_xstats_type type,
8327 					  bool *p_used,
8328 					  struct netlink_ext_ack *extack)
8329 {
8330 	struct netdev_notifier_offload_xstats_ru report_used = {};
8331 	struct netdev_notifier_offload_xstats_info info = {
8332 		.info.dev = dev,
8333 		.info.extack = extack,
8334 		.type = type,
8335 		.report_used = &report_used,
8336 	};
8337 	int rc;
8338 
8339 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8340 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8341 					   &info.info);
8342 	*p_used = report_used.used;
8343 	return notifier_to_errno(rc);
8344 }
8345 
8346 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8347 					   enum netdev_offload_xstats_type type,
8348 					   struct rtnl_hw_stats64 *p_stats,
8349 					   bool *p_used,
8350 					   struct netlink_ext_ack *extack)
8351 {
8352 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8353 	struct netdev_notifier_offload_xstats_info info = {
8354 		.info.dev = dev,
8355 		.info.extack = extack,
8356 		.type = type,
8357 		.report_delta = &report_delta,
8358 	};
8359 	struct rtnl_hw_stats64 *stats;
8360 	int rc;
8361 
8362 	stats = netdev_offload_xstats_get_ptr(dev, type);
8363 	if (WARN_ON(!stats))
8364 		return -EINVAL;
8365 
8366 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8367 					   &info.info);
8368 
8369 	/* Cache whatever we got, even if there was an error, otherwise the
8370 	 * successful stats retrievals would get lost.
8371 	 */
8372 	netdev_hw_stats64_add(stats, &report_delta.stats);
8373 
8374 	if (p_stats)
8375 		*p_stats = *stats;
8376 	*p_used = report_delta.used;
8377 
8378 	return notifier_to_errno(rc);
8379 }
8380 
8381 int netdev_offload_xstats_get(struct net_device *dev,
8382 			      enum netdev_offload_xstats_type type,
8383 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8384 			      struct netlink_ext_ack *extack)
8385 {
8386 	ASSERT_RTNL();
8387 
8388 	if (p_stats)
8389 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8390 						       p_used, extack);
8391 	else
8392 		return netdev_offload_xstats_get_used(dev, type, p_used,
8393 						      extack);
8394 }
8395 EXPORT_SYMBOL(netdev_offload_xstats_get);
8396 
8397 void
8398 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8399 				   const struct rtnl_hw_stats64 *stats)
8400 {
8401 	report_delta->used = true;
8402 	netdev_hw_stats64_add(&report_delta->stats, stats);
8403 }
8404 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8405 
8406 void
8407 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8408 {
8409 	report_used->used = true;
8410 }
8411 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8412 
8413 void netdev_offload_xstats_push_delta(struct net_device *dev,
8414 				      enum netdev_offload_xstats_type type,
8415 				      const struct rtnl_hw_stats64 *p_stats)
8416 {
8417 	struct rtnl_hw_stats64 *stats;
8418 
8419 	ASSERT_RTNL();
8420 
8421 	stats = netdev_offload_xstats_get_ptr(dev, type);
8422 	if (WARN_ON(!stats))
8423 		return;
8424 
8425 	netdev_hw_stats64_add(stats, p_stats);
8426 }
8427 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8428 
8429 /**
8430  * netdev_get_xmit_slave - Get the xmit slave of master device
8431  * @dev: device
8432  * @skb: The packet
8433  * @all_slaves: assume all the slaves are active
8434  *
8435  * The reference counters are not incremented so the caller must be
8436  * careful with locks. The caller must hold RCU lock.
8437  * %NULL is returned if no slave is found.
8438  */
8439 
8440 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8441 					 struct sk_buff *skb,
8442 					 bool all_slaves)
8443 {
8444 	const struct net_device_ops *ops = dev->netdev_ops;
8445 
8446 	if (!ops->ndo_get_xmit_slave)
8447 		return NULL;
8448 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8449 }
8450 EXPORT_SYMBOL(netdev_get_xmit_slave);
8451 
8452 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8453 						  struct sock *sk)
8454 {
8455 	const struct net_device_ops *ops = dev->netdev_ops;
8456 
8457 	if (!ops->ndo_sk_get_lower_dev)
8458 		return NULL;
8459 	return ops->ndo_sk_get_lower_dev(dev, sk);
8460 }
8461 
8462 /**
8463  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8464  * @dev: device
8465  * @sk: the socket
8466  *
8467  * %NULL is returned if no lower device is found.
8468  */
8469 
8470 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8471 					    struct sock *sk)
8472 {
8473 	struct net_device *lower;
8474 
8475 	lower = netdev_sk_get_lower_dev(dev, sk);
8476 	while (lower) {
8477 		dev = lower;
8478 		lower = netdev_sk_get_lower_dev(dev, sk);
8479 	}
8480 
8481 	return dev;
8482 }
8483 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8484 
8485 static void netdev_adjacent_add_links(struct net_device *dev)
8486 {
8487 	struct netdev_adjacent *iter;
8488 
8489 	struct net *net = dev_net(dev);
8490 
8491 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8492 		if (!net_eq(net, dev_net(iter->dev)))
8493 			continue;
8494 		netdev_adjacent_sysfs_add(iter->dev, dev,
8495 					  &iter->dev->adj_list.lower);
8496 		netdev_adjacent_sysfs_add(dev, iter->dev,
8497 					  &dev->adj_list.upper);
8498 	}
8499 
8500 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8501 		if (!net_eq(net, dev_net(iter->dev)))
8502 			continue;
8503 		netdev_adjacent_sysfs_add(iter->dev, dev,
8504 					  &iter->dev->adj_list.upper);
8505 		netdev_adjacent_sysfs_add(dev, iter->dev,
8506 					  &dev->adj_list.lower);
8507 	}
8508 }
8509 
8510 static void netdev_adjacent_del_links(struct net_device *dev)
8511 {
8512 	struct netdev_adjacent *iter;
8513 
8514 	struct net *net = dev_net(dev);
8515 
8516 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8517 		if (!net_eq(net, dev_net(iter->dev)))
8518 			continue;
8519 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8520 					  &iter->dev->adj_list.lower);
8521 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8522 					  &dev->adj_list.upper);
8523 	}
8524 
8525 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8526 		if (!net_eq(net, dev_net(iter->dev)))
8527 			continue;
8528 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8529 					  &iter->dev->adj_list.upper);
8530 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8531 					  &dev->adj_list.lower);
8532 	}
8533 }
8534 
8535 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8536 {
8537 	struct netdev_adjacent *iter;
8538 
8539 	struct net *net = dev_net(dev);
8540 
8541 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8542 		if (!net_eq(net, dev_net(iter->dev)))
8543 			continue;
8544 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8545 					  &iter->dev->adj_list.lower);
8546 		netdev_adjacent_sysfs_add(iter->dev, dev,
8547 					  &iter->dev->adj_list.lower);
8548 	}
8549 
8550 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8551 		if (!net_eq(net, dev_net(iter->dev)))
8552 			continue;
8553 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8554 					  &iter->dev->adj_list.upper);
8555 		netdev_adjacent_sysfs_add(iter->dev, dev,
8556 					  &iter->dev->adj_list.upper);
8557 	}
8558 }
8559 
8560 void *netdev_lower_dev_get_private(struct net_device *dev,
8561 				   struct net_device *lower_dev)
8562 {
8563 	struct netdev_adjacent *lower;
8564 
8565 	if (!lower_dev)
8566 		return NULL;
8567 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8568 	if (!lower)
8569 		return NULL;
8570 
8571 	return lower->private;
8572 }
8573 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8574 
8575 
8576 /**
8577  * netdev_lower_state_changed - Dispatch event about lower device state change
8578  * @lower_dev: device
8579  * @lower_state_info: state to dispatch
8580  *
8581  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8582  * The caller must hold the RTNL lock.
8583  */
8584 void netdev_lower_state_changed(struct net_device *lower_dev,
8585 				void *lower_state_info)
8586 {
8587 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8588 		.info.dev = lower_dev,
8589 	};
8590 
8591 	ASSERT_RTNL();
8592 	changelowerstate_info.lower_state_info = lower_state_info;
8593 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8594 				      &changelowerstate_info.info);
8595 }
8596 EXPORT_SYMBOL(netdev_lower_state_changed);
8597 
8598 static void dev_change_rx_flags(struct net_device *dev, int flags)
8599 {
8600 	const struct net_device_ops *ops = dev->netdev_ops;
8601 
8602 	if (ops->ndo_change_rx_flags)
8603 		ops->ndo_change_rx_flags(dev, flags);
8604 }
8605 
8606 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8607 {
8608 	unsigned int old_flags = dev->flags;
8609 	unsigned int promiscuity, flags;
8610 	kuid_t uid;
8611 	kgid_t gid;
8612 
8613 	ASSERT_RTNL();
8614 
8615 	promiscuity = dev->promiscuity + inc;
8616 	if (promiscuity == 0) {
8617 		/*
8618 		 * Avoid overflow.
8619 		 * If inc causes overflow, untouch promisc and return error.
8620 		 */
8621 		if (unlikely(inc > 0)) {
8622 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8623 			return -EOVERFLOW;
8624 		}
8625 		flags = old_flags & ~IFF_PROMISC;
8626 	} else {
8627 		flags = old_flags | IFF_PROMISC;
8628 	}
8629 	WRITE_ONCE(dev->promiscuity, promiscuity);
8630 	if (flags != old_flags) {
8631 		WRITE_ONCE(dev->flags, flags);
8632 		netdev_info(dev, "%s promiscuous mode\n",
8633 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8634 		if (audit_enabled) {
8635 			current_uid_gid(&uid, &gid);
8636 			audit_log(audit_context(), GFP_ATOMIC,
8637 				  AUDIT_ANOM_PROMISCUOUS,
8638 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8639 				  dev->name, (dev->flags & IFF_PROMISC),
8640 				  (old_flags & IFF_PROMISC),
8641 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8642 				  from_kuid(&init_user_ns, uid),
8643 				  from_kgid(&init_user_ns, gid),
8644 				  audit_get_sessionid(current));
8645 		}
8646 
8647 		dev_change_rx_flags(dev, IFF_PROMISC);
8648 	}
8649 	if (notify)
8650 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8651 	return 0;
8652 }
8653 
8654 /**
8655  *	dev_set_promiscuity	- update promiscuity count on a device
8656  *	@dev: device
8657  *	@inc: modifier
8658  *
8659  *	Add or remove promiscuity from a device. While the count in the device
8660  *	remains above zero the interface remains promiscuous. Once it hits zero
8661  *	the device reverts back to normal filtering operation. A negative inc
8662  *	value is used to drop promiscuity on the device.
8663  *	Return 0 if successful or a negative errno code on error.
8664  */
8665 int dev_set_promiscuity(struct net_device *dev, int inc)
8666 {
8667 	unsigned int old_flags = dev->flags;
8668 	int err;
8669 
8670 	err = __dev_set_promiscuity(dev, inc, true);
8671 	if (err < 0)
8672 		return err;
8673 	if (dev->flags != old_flags)
8674 		dev_set_rx_mode(dev);
8675 	return err;
8676 }
8677 EXPORT_SYMBOL(dev_set_promiscuity);
8678 
8679 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8680 {
8681 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8682 	unsigned int allmulti, flags;
8683 
8684 	ASSERT_RTNL();
8685 
8686 	allmulti = dev->allmulti + inc;
8687 	if (allmulti == 0) {
8688 		/*
8689 		 * Avoid overflow.
8690 		 * If inc causes overflow, untouch allmulti and return error.
8691 		 */
8692 		if (unlikely(inc > 0)) {
8693 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8694 			return -EOVERFLOW;
8695 		}
8696 		flags = old_flags & ~IFF_ALLMULTI;
8697 	} else {
8698 		flags = old_flags | IFF_ALLMULTI;
8699 	}
8700 	WRITE_ONCE(dev->allmulti, allmulti);
8701 	if (flags != old_flags) {
8702 		WRITE_ONCE(dev->flags, flags);
8703 		netdev_info(dev, "%s allmulticast mode\n",
8704 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8705 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8706 		dev_set_rx_mode(dev);
8707 		if (notify)
8708 			__dev_notify_flags(dev, old_flags,
8709 					   dev->gflags ^ old_gflags, 0, NULL);
8710 	}
8711 	return 0;
8712 }
8713 
8714 /**
8715  *	dev_set_allmulti	- update allmulti count on a device
8716  *	@dev: device
8717  *	@inc: modifier
8718  *
8719  *	Add or remove reception of all multicast frames to a device. While the
8720  *	count in the device remains above zero the interface remains listening
8721  *	to all interfaces. Once it hits zero the device reverts back to normal
8722  *	filtering operation. A negative @inc value is used to drop the counter
8723  *	when releasing a resource needing all multicasts.
8724  *	Return 0 if successful or a negative errno code on error.
8725  */
8726 
8727 int dev_set_allmulti(struct net_device *dev, int inc)
8728 {
8729 	return __dev_set_allmulti(dev, inc, true);
8730 }
8731 EXPORT_SYMBOL(dev_set_allmulti);
8732 
8733 /*
8734  *	Upload unicast and multicast address lists to device and
8735  *	configure RX filtering. When the device doesn't support unicast
8736  *	filtering it is put in promiscuous mode while unicast addresses
8737  *	are present.
8738  */
8739 void __dev_set_rx_mode(struct net_device *dev)
8740 {
8741 	const struct net_device_ops *ops = dev->netdev_ops;
8742 
8743 	/* dev_open will call this function so the list will stay sane. */
8744 	if (!(dev->flags&IFF_UP))
8745 		return;
8746 
8747 	if (!netif_device_present(dev))
8748 		return;
8749 
8750 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8751 		/* Unicast addresses changes may only happen under the rtnl,
8752 		 * therefore calling __dev_set_promiscuity here is safe.
8753 		 */
8754 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8755 			__dev_set_promiscuity(dev, 1, false);
8756 			dev->uc_promisc = true;
8757 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8758 			__dev_set_promiscuity(dev, -1, false);
8759 			dev->uc_promisc = false;
8760 		}
8761 	}
8762 
8763 	if (ops->ndo_set_rx_mode)
8764 		ops->ndo_set_rx_mode(dev);
8765 }
8766 
8767 void dev_set_rx_mode(struct net_device *dev)
8768 {
8769 	netif_addr_lock_bh(dev);
8770 	__dev_set_rx_mode(dev);
8771 	netif_addr_unlock_bh(dev);
8772 }
8773 
8774 /**
8775  *	dev_get_flags - get flags reported to userspace
8776  *	@dev: device
8777  *
8778  *	Get the combination of flag bits exported through APIs to userspace.
8779  */
8780 unsigned int dev_get_flags(const struct net_device *dev)
8781 {
8782 	unsigned int flags;
8783 
8784 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8785 				IFF_ALLMULTI |
8786 				IFF_RUNNING |
8787 				IFF_LOWER_UP |
8788 				IFF_DORMANT)) |
8789 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8790 				IFF_ALLMULTI));
8791 
8792 	if (netif_running(dev)) {
8793 		if (netif_oper_up(dev))
8794 			flags |= IFF_RUNNING;
8795 		if (netif_carrier_ok(dev))
8796 			flags |= IFF_LOWER_UP;
8797 		if (netif_dormant(dev))
8798 			flags |= IFF_DORMANT;
8799 	}
8800 
8801 	return flags;
8802 }
8803 EXPORT_SYMBOL(dev_get_flags);
8804 
8805 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8806 		       struct netlink_ext_ack *extack)
8807 {
8808 	unsigned int old_flags = dev->flags;
8809 	int ret;
8810 
8811 	ASSERT_RTNL();
8812 
8813 	/*
8814 	 *	Set the flags on our device.
8815 	 */
8816 
8817 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8818 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8819 			       IFF_AUTOMEDIA)) |
8820 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8821 				    IFF_ALLMULTI));
8822 
8823 	/*
8824 	 *	Load in the correct multicast list now the flags have changed.
8825 	 */
8826 
8827 	if ((old_flags ^ flags) & IFF_MULTICAST)
8828 		dev_change_rx_flags(dev, IFF_MULTICAST);
8829 
8830 	dev_set_rx_mode(dev);
8831 
8832 	/*
8833 	 *	Have we downed the interface. We handle IFF_UP ourselves
8834 	 *	according to user attempts to set it, rather than blindly
8835 	 *	setting it.
8836 	 */
8837 
8838 	ret = 0;
8839 	if ((old_flags ^ flags) & IFF_UP) {
8840 		if (old_flags & IFF_UP)
8841 			__dev_close(dev);
8842 		else
8843 			ret = __dev_open(dev, extack);
8844 	}
8845 
8846 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8847 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8848 		unsigned int old_flags = dev->flags;
8849 
8850 		dev->gflags ^= IFF_PROMISC;
8851 
8852 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8853 			if (dev->flags != old_flags)
8854 				dev_set_rx_mode(dev);
8855 	}
8856 
8857 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8858 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8859 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8860 	 */
8861 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8862 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8863 
8864 		dev->gflags ^= IFF_ALLMULTI;
8865 		__dev_set_allmulti(dev, inc, false);
8866 	}
8867 
8868 	return ret;
8869 }
8870 
8871 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8872 			unsigned int gchanges, u32 portid,
8873 			const struct nlmsghdr *nlh)
8874 {
8875 	unsigned int changes = dev->flags ^ old_flags;
8876 
8877 	if (gchanges)
8878 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8879 
8880 	if (changes & IFF_UP) {
8881 		if (dev->flags & IFF_UP)
8882 			call_netdevice_notifiers(NETDEV_UP, dev);
8883 		else
8884 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8885 	}
8886 
8887 	if (dev->flags & IFF_UP &&
8888 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8889 		struct netdev_notifier_change_info change_info = {
8890 			.info = {
8891 				.dev = dev,
8892 			},
8893 			.flags_changed = changes,
8894 		};
8895 
8896 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8897 	}
8898 }
8899 
8900 /**
8901  *	dev_change_flags - change device settings
8902  *	@dev: device
8903  *	@flags: device state flags
8904  *	@extack: netlink extended ack
8905  *
8906  *	Change settings on device based state flags. The flags are
8907  *	in the userspace exported format.
8908  */
8909 int dev_change_flags(struct net_device *dev, unsigned int flags,
8910 		     struct netlink_ext_ack *extack)
8911 {
8912 	int ret;
8913 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8914 
8915 	ret = __dev_change_flags(dev, flags, extack);
8916 	if (ret < 0)
8917 		return ret;
8918 
8919 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8920 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8921 	return ret;
8922 }
8923 EXPORT_SYMBOL(dev_change_flags);
8924 
8925 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8926 {
8927 	const struct net_device_ops *ops = dev->netdev_ops;
8928 
8929 	if (ops->ndo_change_mtu)
8930 		return ops->ndo_change_mtu(dev, new_mtu);
8931 
8932 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8933 	WRITE_ONCE(dev->mtu, new_mtu);
8934 	return 0;
8935 }
8936 EXPORT_SYMBOL(__dev_set_mtu);
8937 
8938 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8939 		     struct netlink_ext_ack *extack)
8940 {
8941 	/* MTU must be positive, and in range */
8942 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8943 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8944 		return -EINVAL;
8945 	}
8946 
8947 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8948 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8949 		return -EINVAL;
8950 	}
8951 	return 0;
8952 }
8953 
8954 /**
8955  *	dev_set_mtu_ext - Change maximum transfer unit
8956  *	@dev: device
8957  *	@new_mtu: new transfer unit
8958  *	@extack: netlink extended ack
8959  *
8960  *	Change the maximum transfer size of the network device.
8961  */
8962 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8963 		    struct netlink_ext_ack *extack)
8964 {
8965 	int err, orig_mtu;
8966 
8967 	if (new_mtu == dev->mtu)
8968 		return 0;
8969 
8970 	err = dev_validate_mtu(dev, new_mtu, extack);
8971 	if (err)
8972 		return err;
8973 
8974 	if (!netif_device_present(dev))
8975 		return -ENODEV;
8976 
8977 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8978 	err = notifier_to_errno(err);
8979 	if (err)
8980 		return err;
8981 
8982 	orig_mtu = dev->mtu;
8983 	err = __dev_set_mtu(dev, new_mtu);
8984 
8985 	if (!err) {
8986 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8987 						   orig_mtu);
8988 		err = notifier_to_errno(err);
8989 		if (err) {
8990 			/* setting mtu back and notifying everyone again,
8991 			 * so that they have a chance to revert changes.
8992 			 */
8993 			__dev_set_mtu(dev, orig_mtu);
8994 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8995 						     new_mtu);
8996 		}
8997 	}
8998 	return err;
8999 }
9000 
9001 int dev_set_mtu(struct net_device *dev, int new_mtu)
9002 {
9003 	struct netlink_ext_ack extack;
9004 	int err;
9005 
9006 	memset(&extack, 0, sizeof(extack));
9007 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
9008 	if (err && extack._msg)
9009 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9010 	return err;
9011 }
9012 EXPORT_SYMBOL(dev_set_mtu);
9013 
9014 /**
9015  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9016  *	@dev: device
9017  *	@new_len: new tx queue length
9018  */
9019 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9020 {
9021 	unsigned int orig_len = dev->tx_queue_len;
9022 	int res;
9023 
9024 	if (new_len != (unsigned int)new_len)
9025 		return -ERANGE;
9026 
9027 	if (new_len != orig_len) {
9028 		WRITE_ONCE(dev->tx_queue_len, new_len);
9029 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9030 		res = notifier_to_errno(res);
9031 		if (res)
9032 			goto err_rollback;
9033 		res = dev_qdisc_change_tx_queue_len(dev);
9034 		if (res)
9035 			goto err_rollback;
9036 	}
9037 
9038 	return 0;
9039 
9040 err_rollback:
9041 	netdev_err(dev, "refused to change device tx_queue_len\n");
9042 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9043 	return res;
9044 }
9045 
9046 /**
9047  *	dev_set_group - Change group this device belongs to
9048  *	@dev: device
9049  *	@new_group: group this device should belong to
9050  */
9051 void dev_set_group(struct net_device *dev, int new_group)
9052 {
9053 	dev->group = new_group;
9054 }
9055 
9056 /**
9057  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9058  *	@dev: device
9059  *	@addr: new address
9060  *	@extack: netlink extended ack
9061  */
9062 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9063 			      struct netlink_ext_ack *extack)
9064 {
9065 	struct netdev_notifier_pre_changeaddr_info info = {
9066 		.info.dev = dev,
9067 		.info.extack = extack,
9068 		.dev_addr = addr,
9069 	};
9070 	int rc;
9071 
9072 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9073 	return notifier_to_errno(rc);
9074 }
9075 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9076 
9077 /**
9078  *	dev_set_mac_address - Change Media Access Control Address
9079  *	@dev: device
9080  *	@sa: new address
9081  *	@extack: netlink extended ack
9082  *
9083  *	Change the hardware (MAC) address of the device
9084  */
9085 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9086 			struct netlink_ext_ack *extack)
9087 {
9088 	const struct net_device_ops *ops = dev->netdev_ops;
9089 	int err;
9090 
9091 	if (!ops->ndo_set_mac_address)
9092 		return -EOPNOTSUPP;
9093 	if (sa->sa_family != dev->type)
9094 		return -EINVAL;
9095 	if (!netif_device_present(dev))
9096 		return -ENODEV;
9097 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9098 	if (err)
9099 		return err;
9100 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9101 		err = ops->ndo_set_mac_address(dev, sa);
9102 		if (err)
9103 			return err;
9104 	}
9105 	dev->addr_assign_type = NET_ADDR_SET;
9106 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9107 	add_device_randomness(dev->dev_addr, dev->addr_len);
9108 	return 0;
9109 }
9110 EXPORT_SYMBOL(dev_set_mac_address);
9111 
9112 DECLARE_RWSEM(dev_addr_sem);
9113 
9114 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9115 			     struct netlink_ext_ack *extack)
9116 {
9117 	int ret;
9118 
9119 	down_write(&dev_addr_sem);
9120 	ret = dev_set_mac_address(dev, sa, extack);
9121 	up_write(&dev_addr_sem);
9122 	return ret;
9123 }
9124 EXPORT_SYMBOL(dev_set_mac_address_user);
9125 
9126 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9127 {
9128 	size_t size = sizeof(sa->sa_data_min);
9129 	struct net_device *dev;
9130 	int ret = 0;
9131 
9132 	down_read(&dev_addr_sem);
9133 	rcu_read_lock();
9134 
9135 	dev = dev_get_by_name_rcu(net, dev_name);
9136 	if (!dev) {
9137 		ret = -ENODEV;
9138 		goto unlock;
9139 	}
9140 	if (!dev->addr_len)
9141 		memset(sa->sa_data, 0, size);
9142 	else
9143 		memcpy(sa->sa_data, dev->dev_addr,
9144 		       min_t(size_t, size, dev->addr_len));
9145 	sa->sa_family = dev->type;
9146 
9147 unlock:
9148 	rcu_read_unlock();
9149 	up_read(&dev_addr_sem);
9150 	return ret;
9151 }
9152 EXPORT_SYMBOL(dev_get_mac_address);
9153 
9154 /**
9155  *	dev_change_carrier - Change device carrier
9156  *	@dev: device
9157  *	@new_carrier: new value
9158  *
9159  *	Change device carrier
9160  */
9161 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9162 {
9163 	const struct net_device_ops *ops = dev->netdev_ops;
9164 
9165 	if (!ops->ndo_change_carrier)
9166 		return -EOPNOTSUPP;
9167 	if (!netif_device_present(dev))
9168 		return -ENODEV;
9169 	return ops->ndo_change_carrier(dev, new_carrier);
9170 }
9171 
9172 /**
9173  *	dev_get_phys_port_id - Get device physical port ID
9174  *	@dev: device
9175  *	@ppid: port ID
9176  *
9177  *	Get device physical port ID
9178  */
9179 int dev_get_phys_port_id(struct net_device *dev,
9180 			 struct netdev_phys_item_id *ppid)
9181 {
9182 	const struct net_device_ops *ops = dev->netdev_ops;
9183 
9184 	if (!ops->ndo_get_phys_port_id)
9185 		return -EOPNOTSUPP;
9186 	return ops->ndo_get_phys_port_id(dev, ppid);
9187 }
9188 
9189 /**
9190  *	dev_get_phys_port_name - Get device physical port name
9191  *	@dev: device
9192  *	@name: port name
9193  *	@len: limit of bytes to copy to name
9194  *
9195  *	Get device physical port name
9196  */
9197 int dev_get_phys_port_name(struct net_device *dev,
9198 			   char *name, size_t len)
9199 {
9200 	const struct net_device_ops *ops = dev->netdev_ops;
9201 	int err;
9202 
9203 	if (ops->ndo_get_phys_port_name) {
9204 		err = ops->ndo_get_phys_port_name(dev, name, len);
9205 		if (err != -EOPNOTSUPP)
9206 			return err;
9207 	}
9208 	return devlink_compat_phys_port_name_get(dev, name, len);
9209 }
9210 
9211 /**
9212  *	dev_get_port_parent_id - Get the device's port parent identifier
9213  *	@dev: network device
9214  *	@ppid: pointer to a storage for the port's parent identifier
9215  *	@recurse: allow/disallow recursion to lower devices
9216  *
9217  *	Get the devices's port parent identifier
9218  */
9219 int dev_get_port_parent_id(struct net_device *dev,
9220 			   struct netdev_phys_item_id *ppid,
9221 			   bool recurse)
9222 {
9223 	const struct net_device_ops *ops = dev->netdev_ops;
9224 	struct netdev_phys_item_id first = { };
9225 	struct net_device *lower_dev;
9226 	struct list_head *iter;
9227 	int err;
9228 
9229 	if (ops->ndo_get_port_parent_id) {
9230 		err = ops->ndo_get_port_parent_id(dev, ppid);
9231 		if (err != -EOPNOTSUPP)
9232 			return err;
9233 	}
9234 
9235 	err = devlink_compat_switch_id_get(dev, ppid);
9236 	if (!recurse || err != -EOPNOTSUPP)
9237 		return err;
9238 
9239 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9240 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9241 		if (err)
9242 			break;
9243 		if (!first.id_len)
9244 			first = *ppid;
9245 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9246 			return -EOPNOTSUPP;
9247 	}
9248 
9249 	return err;
9250 }
9251 EXPORT_SYMBOL(dev_get_port_parent_id);
9252 
9253 /**
9254  *	netdev_port_same_parent_id - Indicate if two network devices have
9255  *	the same port parent identifier
9256  *	@a: first network device
9257  *	@b: second network device
9258  */
9259 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9260 {
9261 	struct netdev_phys_item_id a_id = { };
9262 	struct netdev_phys_item_id b_id = { };
9263 
9264 	if (dev_get_port_parent_id(a, &a_id, true) ||
9265 	    dev_get_port_parent_id(b, &b_id, true))
9266 		return false;
9267 
9268 	return netdev_phys_item_id_same(&a_id, &b_id);
9269 }
9270 EXPORT_SYMBOL(netdev_port_same_parent_id);
9271 
9272 /**
9273  *	dev_change_proto_down - set carrier according to proto_down.
9274  *
9275  *	@dev: device
9276  *	@proto_down: new value
9277  */
9278 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9279 {
9280 	if (!dev->change_proto_down)
9281 		return -EOPNOTSUPP;
9282 	if (!netif_device_present(dev))
9283 		return -ENODEV;
9284 	if (proto_down)
9285 		netif_carrier_off(dev);
9286 	else
9287 		netif_carrier_on(dev);
9288 	WRITE_ONCE(dev->proto_down, proto_down);
9289 	return 0;
9290 }
9291 
9292 /**
9293  *	dev_change_proto_down_reason - proto down reason
9294  *
9295  *	@dev: device
9296  *	@mask: proto down mask
9297  *	@value: proto down value
9298  */
9299 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9300 				  u32 value)
9301 {
9302 	u32 proto_down_reason;
9303 	int b;
9304 
9305 	if (!mask) {
9306 		proto_down_reason = value;
9307 	} else {
9308 		proto_down_reason = dev->proto_down_reason;
9309 		for_each_set_bit(b, &mask, 32) {
9310 			if (value & (1 << b))
9311 				proto_down_reason |= BIT(b);
9312 			else
9313 				proto_down_reason &= ~BIT(b);
9314 		}
9315 	}
9316 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9317 }
9318 
9319 struct bpf_xdp_link {
9320 	struct bpf_link link;
9321 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9322 	int flags;
9323 };
9324 
9325 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9326 {
9327 	if (flags & XDP_FLAGS_HW_MODE)
9328 		return XDP_MODE_HW;
9329 	if (flags & XDP_FLAGS_DRV_MODE)
9330 		return XDP_MODE_DRV;
9331 	if (flags & XDP_FLAGS_SKB_MODE)
9332 		return XDP_MODE_SKB;
9333 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9334 }
9335 
9336 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9337 {
9338 	switch (mode) {
9339 	case XDP_MODE_SKB:
9340 		return generic_xdp_install;
9341 	case XDP_MODE_DRV:
9342 	case XDP_MODE_HW:
9343 		return dev->netdev_ops->ndo_bpf;
9344 	default:
9345 		return NULL;
9346 	}
9347 }
9348 
9349 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9350 					 enum bpf_xdp_mode mode)
9351 {
9352 	return dev->xdp_state[mode].link;
9353 }
9354 
9355 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9356 				     enum bpf_xdp_mode mode)
9357 {
9358 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9359 
9360 	if (link)
9361 		return link->link.prog;
9362 	return dev->xdp_state[mode].prog;
9363 }
9364 
9365 u8 dev_xdp_prog_count(struct net_device *dev)
9366 {
9367 	u8 count = 0;
9368 	int i;
9369 
9370 	for (i = 0; i < __MAX_XDP_MODE; i++)
9371 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9372 			count++;
9373 	return count;
9374 }
9375 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9376 
9377 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9378 {
9379 	if (!dev->netdev_ops->ndo_bpf)
9380 		return -EOPNOTSUPP;
9381 
9382 	if (dev_get_min_mp_channel_count(dev)) {
9383 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9384 		return -EBUSY;
9385 	}
9386 
9387 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9388 }
9389 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9390 
9391 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9392 {
9393 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9394 
9395 	return prog ? prog->aux->id : 0;
9396 }
9397 
9398 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9399 			     struct bpf_xdp_link *link)
9400 {
9401 	dev->xdp_state[mode].link = link;
9402 	dev->xdp_state[mode].prog = NULL;
9403 }
9404 
9405 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9406 			     struct bpf_prog *prog)
9407 {
9408 	dev->xdp_state[mode].link = NULL;
9409 	dev->xdp_state[mode].prog = prog;
9410 }
9411 
9412 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9413 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9414 			   u32 flags, struct bpf_prog *prog)
9415 {
9416 	struct netdev_bpf xdp;
9417 	int err;
9418 
9419 	if (dev_get_min_mp_channel_count(dev)) {
9420 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9421 		return -EBUSY;
9422 	}
9423 
9424 	memset(&xdp, 0, sizeof(xdp));
9425 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9426 	xdp.extack = extack;
9427 	xdp.flags = flags;
9428 	xdp.prog = prog;
9429 
9430 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9431 	 * "moved" into driver), so they don't increment it on their own, but
9432 	 * they do decrement refcnt when program is detached or replaced.
9433 	 * Given net_device also owns link/prog, we need to bump refcnt here
9434 	 * to prevent drivers from underflowing it.
9435 	 */
9436 	if (prog)
9437 		bpf_prog_inc(prog);
9438 	err = bpf_op(dev, &xdp);
9439 	if (err) {
9440 		if (prog)
9441 			bpf_prog_put(prog);
9442 		return err;
9443 	}
9444 
9445 	if (mode != XDP_MODE_HW)
9446 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9447 
9448 	return 0;
9449 }
9450 
9451 static void dev_xdp_uninstall(struct net_device *dev)
9452 {
9453 	struct bpf_xdp_link *link;
9454 	struct bpf_prog *prog;
9455 	enum bpf_xdp_mode mode;
9456 	bpf_op_t bpf_op;
9457 
9458 	ASSERT_RTNL();
9459 
9460 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9461 		prog = dev_xdp_prog(dev, mode);
9462 		if (!prog)
9463 			continue;
9464 
9465 		bpf_op = dev_xdp_bpf_op(dev, mode);
9466 		if (!bpf_op)
9467 			continue;
9468 
9469 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9470 
9471 		/* auto-detach link from net device */
9472 		link = dev_xdp_link(dev, mode);
9473 		if (link)
9474 			link->dev = NULL;
9475 		else
9476 			bpf_prog_put(prog);
9477 
9478 		dev_xdp_set_link(dev, mode, NULL);
9479 	}
9480 }
9481 
9482 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9483 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9484 			  struct bpf_prog *old_prog, u32 flags)
9485 {
9486 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9487 	struct bpf_prog *cur_prog;
9488 	struct net_device *upper;
9489 	struct list_head *iter;
9490 	enum bpf_xdp_mode mode;
9491 	bpf_op_t bpf_op;
9492 	int err;
9493 
9494 	ASSERT_RTNL();
9495 
9496 	/* either link or prog attachment, never both */
9497 	if (link && (new_prog || old_prog))
9498 		return -EINVAL;
9499 	/* link supports only XDP mode flags */
9500 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9501 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9502 		return -EINVAL;
9503 	}
9504 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9505 	if (num_modes > 1) {
9506 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9507 		return -EINVAL;
9508 	}
9509 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9510 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9511 		NL_SET_ERR_MSG(extack,
9512 			       "More than one program loaded, unset mode is ambiguous");
9513 		return -EINVAL;
9514 	}
9515 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9516 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9517 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9518 		return -EINVAL;
9519 	}
9520 
9521 	mode = dev_xdp_mode(dev, flags);
9522 	/* can't replace attached link */
9523 	if (dev_xdp_link(dev, mode)) {
9524 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9525 		return -EBUSY;
9526 	}
9527 
9528 	/* don't allow if an upper device already has a program */
9529 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9530 		if (dev_xdp_prog_count(upper) > 0) {
9531 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9532 			return -EEXIST;
9533 		}
9534 	}
9535 
9536 	cur_prog = dev_xdp_prog(dev, mode);
9537 	/* can't replace attached prog with link */
9538 	if (link && cur_prog) {
9539 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9540 		return -EBUSY;
9541 	}
9542 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9543 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9544 		return -EEXIST;
9545 	}
9546 
9547 	/* put effective new program into new_prog */
9548 	if (link)
9549 		new_prog = link->link.prog;
9550 
9551 	if (new_prog) {
9552 		bool offload = mode == XDP_MODE_HW;
9553 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9554 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9555 
9556 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9557 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9558 			return -EBUSY;
9559 		}
9560 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9561 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9562 			return -EEXIST;
9563 		}
9564 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9565 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9566 			return -EINVAL;
9567 		}
9568 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9569 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9570 			return -EINVAL;
9571 		}
9572 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9573 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9574 			return -EINVAL;
9575 		}
9576 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9577 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9578 			return -EINVAL;
9579 		}
9580 	}
9581 
9582 	/* don't call drivers if the effective program didn't change */
9583 	if (new_prog != cur_prog) {
9584 		bpf_op = dev_xdp_bpf_op(dev, mode);
9585 		if (!bpf_op) {
9586 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9587 			return -EOPNOTSUPP;
9588 		}
9589 
9590 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9591 		if (err)
9592 			return err;
9593 	}
9594 
9595 	if (link)
9596 		dev_xdp_set_link(dev, mode, link);
9597 	else
9598 		dev_xdp_set_prog(dev, mode, new_prog);
9599 	if (cur_prog)
9600 		bpf_prog_put(cur_prog);
9601 
9602 	return 0;
9603 }
9604 
9605 static int dev_xdp_attach_link(struct net_device *dev,
9606 			       struct netlink_ext_ack *extack,
9607 			       struct bpf_xdp_link *link)
9608 {
9609 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9610 }
9611 
9612 static int dev_xdp_detach_link(struct net_device *dev,
9613 			       struct netlink_ext_ack *extack,
9614 			       struct bpf_xdp_link *link)
9615 {
9616 	enum bpf_xdp_mode mode;
9617 	bpf_op_t bpf_op;
9618 
9619 	ASSERT_RTNL();
9620 
9621 	mode = dev_xdp_mode(dev, link->flags);
9622 	if (dev_xdp_link(dev, mode) != link)
9623 		return -EINVAL;
9624 
9625 	bpf_op = dev_xdp_bpf_op(dev, mode);
9626 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9627 	dev_xdp_set_link(dev, mode, NULL);
9628 	return 0;
9629 }
9630 
9631 static void bpf_xdp_link_release(struct bpf_link *link)
9632 {
9633 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9634 
9635 	rtnl_lock();
9636 
9637 	/* if racing with net_device's tear down, xdp_link->dev might be
9638 	 * already NULL, in which case link was already auto-detached
9639 	 */
9640 	if (xdp_link->dev) {
9641 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9642 		xdp_link->dev = NULL;
9643 	}
9644 
9645 	rtnl_unlock();
9646 }
9647 
9648 static int bpf_xdp_link_detach(struct bpf_link *link)
9649 {
9650 	bpf_xdp_link_release(link);
9651 	return 0;
9652 }
9653 
9654 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9655 {
9656 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9657 
9658 	kfree(xdp_link);
9659 }
9660 
9661 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9662 				     struct seq_file *seq)
9663 {
9664 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9665 	u32 ifindex = 0;
9666 
9667 	rtnl_lock();
9668 	if (xdp_link->dev)
9669 		ifindex = xdp_link->dev->ifindex;
9670 	rtnl_unlock();
9671 
9672 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9673 }
9674 
9675 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9676 				       struct bpf_link_info *info)
9677 {
9678 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9679 	u32 ifindex = 0;
9680 
9681 	rtnl_lock();
9682 	if (xdp_link->dev)
9683 		ifindex = xdp_link->dev->ifindex;
9684 	rtnl_unlock();
9685 
9686 	info->xdp.ifindex = ifindex;
9687 	return 0;
9688 }
9689 
9690 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9691 			       struct bpf_prog *old_prog)
9692 {
9693 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9694 	enum bpf_xdp_mode mode;
9695 	bpf_op_t bpf_op;
9696 	int err = 0;
9697 
9698 	rtnl_lock();
9699 
9700 	/* link might have been auto-released already, so fail */
9701 	if (!xdp_link->dev) {
9702 		err = -ENOLINK;
9703 		goto out_unlock;
9704 	}
9705 
9706 	if (old_prog && link->prog != old_prog) {
9707 		err = -EPERM;
9708 		goto out_unlock;
9709 	}
9710 	old_prog = link->prog;
9711 	if (old_prog->type != new_prog->type ||
9712 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9713 		err = -EINVAL;
9714 		goto out_unlock;
9715 	}
9716 
9717 	if (old_prog == new_prog) {
9718 		/* no-op, don't disturb drivers */
9719 		bpf_prog_put(new_prog);
9720 		goto out_unlock;
9721 	}
9722 
9723 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9724 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9725 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9726 			      xdp_link->flags, new_prog);
9727 	if (err)
9728 		goto out_unlock;
9729 
9730 	old_prog = xchg(&link->prog, new_prog);
9731 	bpf_prog_put(old_prog);
9732 
9733 out_unlock:
9734 	rtnl_unlock();
9735 	return err;
9736 }
9737 
9738 static const struct bpf_link_ops bpf_xdp_link_lops = {
9739 	.release = bpf_xdp_link_release,
9740 	.dealloc = bpf_xdp_link_dealloc,
9741 	.detach = bpf_xdp_link_detach,
9742 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9743 	.fill_link_info = bpf_xdp_link_fill_link_info,
9744 	.update_prog = bpf_xdp_link_update,
9745 };
9746 
9747 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9748 {
9749 	struct net *net = current->nsproxy->net_ns;
9750 	struct bpf_link_primer link_primer;
9751 	struct netlink_ext_ack extack = {};
9752 	struct bpf_xdp_link *link;
9753 	struct net_device *dev;
9754 	int err, fd;
9755 
9756 	rtnl_lock();
9757 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9758 	if (!dev) {
9759 		rtnl_unlock();
9760 		return -EINVAL;
9761 	}
9762 
9763 	link = kzalloc(sizeof(*link), GFP_USER);
9764 	if (!link) {
9765 		err = -ENOMEM;
9766 		goto unlock;
9767 	}
9768 
9769 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9770 	link->dev = dev;
9771 	link->flags = attr->link_create.flags;
9772 
9773 	err = bpf_link_prime(&link->link, &link_primer);
9774 	if (err) {
9775 		kfree(link);
9776 		goto unlock;
9777 	}
9778 
9779 	err = dev_xdp_attach_link(dev, &extack, link);
9780 	rtnl_unlock();
9781 
9782 	if (err) {
9783 		link->dev = NULL;
9784 		bpf_link_cleanup(&link_primer);
9785 		trace_bpf_xdp_link_attach_failed(extack._msg);
9786 		goto out_put_dev;
9787 	}
9788 
9789 	fd = bpf_link_settle(&link_primer);
9790 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9791 	dev_put(dev);
9792 	return fd;
9793 
9794 unlock:
9795 	rtnl_unlock();
9796 
9797 out_put_dev:
9798 	dev_put(dev);
9799 	return err;
9800 }
9801 
9802 /**
9803  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9804  *	@dev: device
9805  *	@extack: netlink extended ack
9806  *	@fd: new program fd or negative value to clear
9807  *	@expected_fd: old program fd that userspace expects to replace or clear
9808  *	@flags: xdp-related flags
9809  *
9810  *	Set or clear a bpf program for a device
9811  */
9812 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9813 		      int fd, int expected_fd, u32 flags)
9814 {
9815 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9816 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9817 	int err;
9818 
9819 	ASSERT_RTNL();
9820 
9821 	if (fd >= 0) {
9822 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9823 						 mode != XDP_MODE_SKB);
9824 		if (IS_ERR(new_prog))
9825 			return PTR_ERR(new_prog);
9826 	}
9827 
9828 	if (expected_fd >= 0) {
9829 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9830 						 mode != XDP_MODE_SKB);
9831 		if (IS_ERR(old_prog)) {
9832 			err = PTR_ERR(old_prog);
9833 			old_prog = NULL;
9834 			goto err_out;
9835 		}
9836 	}
9837 
9838 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9839 
9840 err_out:
9841 	if (err && new_prog)
9842 		bpf_prog_put(new_prog);
9843 	if (old_prog)
9844 		bpf_prog_put(old_prog);
9845 	return err;
9846 }
9847 
9848 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
9849 {
9850 	int i;
9851 
9852 	ASSERT_RTNL();
9853 
9854 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
9855 		if (dev->_rx[i].mp_params.mp_priv)
9856 			/* The channel count is the idx plus 1. */
9857 			return i + 1;
9858 
9859 	return 0;
9860 }
9861 
9862 /**
9863  * dev_index_reserve() - allocate an ifindex in a namespace
9864  * @net: the applicable net namespace
9865  * @ifindex: requested ifindex, pass %0 to get one allocated
9866  *
9867  * Allocate a ifindex for a new device. Caller must either use the ifindex
9868  * to store the device (via list_netdevice()) or call dev_index_release()
9869  * to give the index up.
9870  *
9871  * Return: a suitable unique value for a new device interface number or -errno.
9872  */
9873 static int dev_index_reserve(struct net *net, u32 ifindex)
9874 {
9875 	int err;
9876 
9877 	if (ifindex > INT_MAX) {
9878 		DEBUG_NET_WARN_ON_ONCE(1);
9879 		return -EINVAL;
9880 	}
9881 
9882 	if (!ifindex)
9883 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9884 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9885 	else
9886 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9887 	if (err < 0)
9888 		return err;
9889 
9890 	return ifindex;
9891 }
9892 
9893 static void dev_index_release(struct net *net, int ifindex)
9894 {
9895 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9896 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9897 }
9898 
9899 /* Delayed registration/unregisteration */
9900 LIST_HEAD(net_todo_list);
9901 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9902 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9903 
9904 static void net_set_todo(struct net_device *dev)
9905 {
9906 	list_add_tail(&dev->todo_list, &net_todo_list);
9907 }
9908 
9909 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9910 	struct net_device *upper, netdev_features_t features)
9911 {
9912 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9913 	netdev_features_t feature;
9914 	int feature_bit;
9915 
9916 	for_each_netdev_feature(upper_disables, feature_bit) {
9917 		feature = __NETIF_F_BIT(feature_bit);
9918 		if (!(upper->wanted_features & feature)
9919 		    && (features & feature)) {
9920 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9921 				   &feature, upper->name);
9922 			features &= ~feature;
9923 		}
9924 	}
9925 
9926 	return features;
9927 }
9928 
9929 static void netdev_sync_lower_features(struct net_device *upper,
9930 	struct net_device *lower, netdev_features_t features)
9931 {
9932 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9933 	netdev_features_t feature;
9934 	int feature_bit;
9935 
9936 	for_each_netdev_feature(upper_disables, feature_bit) {
9937 		feature = __NETIF_F_BIT(feature_bit);
9938 		if (!(features & feature) && (lower->features & feature)) {
9939 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9940 				   &feature, lower->name);
9941 			lower->wanted_features &= ~feature;
9942 			__netdev_update_features(lower);
9943 
9944 			if (unlikely(lower->features & feature))
9945 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9946 					    &feature, lower->name);
9947 			else
9948 				netdev_features_change(lower);
9949 		}
9950 	}
9951 }
9952 
9953 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
9954 {
9955 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
9956 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
9957 	bool hw_csum = features & NETIF_F_HW_CSUM;
9958 
9959 	return ip_csum || hw_csum;
9960 }
9961 
9962 static netdev_features_t netdev_fix_features(struct net_device *dev,
9963 	netdev_features_t features)
9964 {
9965 	/* Fix illegal checksum combinations */
9966 	if ((features & NETIF_F_HW_CSUM) &&
9967 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9968 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9969 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9970 	}
9971 
9972 	/* TSO requires that SG is present as well. */
9973 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9974 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9975 		features &= ~NETIF_F_ALL_TSO;
9976 	}
9977 
9978 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9979 					!(features & NETIF_F_IP_CSUM)) {
9980 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9981 		features &= ~NETIF_F_TSO;
9982 		features &= ~NETIF_F_TSO_ECN;
9983 	}
9984 
9985 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9986 					 !(features & NETIF_F_IPV6_CSUM)) {
9987 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9988 		features &= ~NETIF_F_TSO6;
9989 	}
9990 
9991 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9992 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9993 		features &= ~NETIF_F_TSO_MANGLEID;
9994 
9995 	/* TSO ECN requires that TSO is present as well. */
9996 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9997 		features &= ~NETIF_F_TSO_ECN;
9998 
9999 	/* Software GSO depends on SG. */
10000 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10001 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10002 		features &= ~NETIF_F_GSO;
10003 	}
10004 
10005 	/* GSO partial features require GSO partial be set */
10006 	if ((features & dev->gso_partial_features) &&
10007 	    !(features & NETIF_F_GSO_PARTIAL)) {
10008 		netdev_dbg(dev,
10009 			   "Dropping partially supported GSO features since no GSO partial.\n");
10010 		features &= ~dev->gso_partial_features;
10011 	}
10012 
10013 	if (!(features & NETIF_F_RXCSUM)) {
10014 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10015 		 * successfully merged by hardware must also have the
10016 		 * checksum verified by hardware.  If the user does not
10017 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10018 		 */
10019 		if (features & NETIF_F_GRO_HW) {
10020 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10021 			features &= ~NETIF_F_GRO_HW;
10022 		}
10023 	}
10024 
10025 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10026 	if (features & NETIF_F_RXFCS) {
10027 		if (features & NETIF_F_LRO) {
10028 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10029 			features &= ~NETIF_F_LRO;
10030 		}
10031 
10032 		if (features & NETIF_F_GRO_HW) {
10033 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10034 			features &= ~NETIF_F_GRO_HW;
10035 		}
10036 	}
10037 
10038 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10039 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10040 		features &= ~NETIF_F_LRO;
10041 	}
10042 
10043 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10044 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10045 		features &= ~NETIF_F_HW_TLS_TX;
10046 	}
10047 
10048 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10049 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10050 		features &= ~NETIF_F_HW_TLS_RX;
10051 	}
10052 
10053 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10054 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10055 		features &= ~NETIF_F_GSO_UDP_L4;
10056 	}
10057 
10058 	return features;
10059 }
10060 
10061 int __netdev_update_features(struct net_device *dev)
10062 {
10063 	struct net_device *upper, *lower;
10064 	netdev_features_t features;
10065 	struct list_head *iter;
10066 	int err = -1;
10067 
10068 	ASSERT_RTNL();
10069 
10070 	features = netdev_get_wanted_features(dev);
10071 
10072 	if (dev->netdev_ops->ndo_fix_features)
10073 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10074 
10075 	/* driver might be less strict about feature dependencies */
10076 	features = netdev_fix_features(dev, features);
10077 
10078 	/* some features can't be enabled if they're off on an upper device */
10079 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10080 		features = netdev_sync_upper_features(dev, upper, features);
10081 
10082 	if (dev->features == features)
10083 		goto sync_lower;
10084 
10085 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10086 		&dev->features, &features);
10087 
10088 	if (dev->netdev_ops->ndo_set_features)
10089 		err = dev->netdev_ops->ndo_set_features(dev, features);
10090 	else
10091 		err = 0;
10092 
10093 	if (unlikely(err < 0)) {
10094 		netdev_err(dev,
10095 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10096 			err, &features, &dev->features);
10097 		/* return non-0 since some features might have changed and
10098 		 * it's better to fire a spurious notification than miss it
10099 		 */
10100 		return -1;
10101 	}
10102 
10103 sync_lower:
10104 	/* some features must be disabled on lower devices when disabled
10105 	 * on an upper device (think: bonding master or bridge)
10106 	 */
10107 	netdev_for_each_lower_dev(dev, lower, iter)
10108 		netdev_sync_lower_features(dev, lower, features);
10109 
10110 	if (!err) {
10111 		netdev_features_t diff = features ^ dev->features;
10112 
10113 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10114 			/* udp_tunnel_{get,drop}_rx_info both need
10115 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10116 			 * device, or they won't do anything.
10117 			 * Thus we need to update dev->features
10118 			 * *before* calling udp_tunnel_get_rx_info,
10119 			 * but *after* calling udp_tunnel_drop_rx_info.
10120 			 */
10121 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10122 				dev->features = features;
10123 				udp_tunnel_get_rx_info(dev);
10124 			} else {
10125 				udp_tunnel_drop_rx_info(dev);
10126 			}
10127 		}
10128 
10129 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10130 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10131 				dev->features = features;
10132 				err |= vlan_get_rx_ctag_filter_info(dev);
10133 			} else {
10134 				vlan_drop_rx_ctag_filter_info(dev);
10135 			}
10136 		}
10137 
10138 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10139 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10140 				dev->features = features;
10141 				err |= vlan_get_rx_stag_filter_info(dev);
10142 			} else {
10143 				vlan_drop_rx_stag_filter_info(dev);
10144 			}
10145 		}
10146 
10147 		dev->features = features;
10148 	}
10149 
10150 	return err < 0 ? 0 : 1;
10151 }
10152 
10153 /**
10154  *	netdev_update_features - recalculate device features
10155  *	@dev: the device to check
10156  *
10157  *	Recalculate dev->features set and send notifications if it
10158  *	has changed. Should be called after driver or hardware dependent
10159  *	conditions might have changed that influence the features.
10160  */
10161 void netdev_update_features(struct net_device *dev)
10162 {
10163 	if (__netdev_update_features(dev))
10164 		netdev_features_change(dev);
10165 }
10166 EXPORT_SYMBOL(netdev_update_features);
10167 
10168 /**
10169  *	netdev_change_features - recalculate device features
10170  *	@dev: the device to check
10171  *
10172  *	Recalculate dev->features set and send notifications even
10173  *	if they have not changed. Should be called instead of
10174  *	netdev_update_features() if also dev->vlan_features might
10175  *	have changed to allow the changes to be propagated to stacked
10176  *	VLAN devices.
10177  */
10178 void netdev_change_features(struct net_device *dev)
10179 {
10180 	__netdev_update_features(dev);
10181 	netdev_features_change(dev);
10182 }
10183 EXPORT_SYMBOL(netdev_change_features);
10184 
10185 /**
10186  *	netif_stacked_transfer_operstate -	transfer operstate
10187  *	@rootdev: the root or lower level device to transfer state from
10188  *	@dev: the device to transfer operstate to
10189  *
10190  *	Transfer operational state from root to device. This is normally
10191  *	called when a stacking relationship exists between the root
10192  *	device and the device(a leaf device).
10193  */
10194 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10195 					struct net_device *dev)
10196 {
10197 	if (rootdev->operstate == IF_OPER_DORMANT)
10198 		netif_dormant_on(dev);
10199 	else
10200 		netif_dormant_off(dev);
10201 
10202 	if (rootdev->operstate == IF_OPER_TESTING)
10203 		netif_testing_on(dev);
10204 	else
10205 		netif_testing_off(dev);
10206 
10207 	if (netif_carrier_ok(rootdev))
10208 		netif_carrier_on(dev);
10209 	else
10210 		netif_carrier_off(dev);
10211 }
10212 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10213 
10214 static int netif_alloc_rx_queues(struct net_device *dev)
10215 {
10216 	unsigned int i, count = dev->num_rx_queues;
10217 	struct netdev_rx_queue *rx;
10218 	size_t sz = count * sizeof(*rx);
10219 	int err = 0;
10220 
10221 	BUG_ON(count < 1);
10222 
10223 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10224 	if (!rx)
10225 		return -ENOMEM;
10226 
10227 	dev->_rx = rx;
10228 
10229 	for (i = 0; i < count; i++) {
10230 		rx[i].dev = dev;
10231 
10232 		/* XDP RX-queue setup */
10233 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10234 		if (err < 0)
10235 			goto err_rxq_info;
10236 	}
10237 	return 0;
10238 
10239 err_rxq_info:
10240 	/* Rollback successful reg's and free other resources */
10241 	while (i--)
10242 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10243 	kvfree(dev->_rx);
10244 	dev->_rx = NULL;
10245 	return err;
10246 }
10247 
10248 static void netif_free_rx_queues(struct net_device *dev)
10249 {
10250 	unsigned int i, count = dev->num_rx_queues;
10251 
10252 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10253 	if (!dev->_rx)
10254 		return;
10255 
10256 	for (i = 0; i < count; i++)
10257 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10258 
10259 	kvfree(dev->_rx);
10260 }
10261 
10262 static void netdev_init_one_queue(struct net_device *dev,
10263 				  struct netdev_queue *queue, void *_unused)
10264 {
10265 	/* Initialize queue lock */
10266 	spin_lock_init(&queue->_xmit_lock);
10267 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10268 	queue->xmit_lock_owner = -1;
10269 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10270 	queue->dev = dev;
10271 #ifdef CONFIG_BQL
10272 	dql_init(&queue->dql, HZ);
10273 #endif
10274 }
10275 
10276 static void netif_free_tx_queues(struct net_device *dev)
10277 {
10278 	kvfree(dev->_tx);
10279 }
10280 
10281 static int netif_alloc_netdev_queues(struct net_device *dev)
10282 {
10283 	unsigned int count = dev->num_tx_queues;
10284 	struct netdev_queue *tx;
10285 	size_t sz = count * sizeof(*tx);
10286 
10287 	if (count < 1 || count > 0xffff)
10288 		return -EINVAL;
10289 
10290 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10291 	if (!tx)
10292 		return -ENOMEM;
10293 
10294 	dev->_tx = tx;
10295 
10296 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10297 	spin_lock_init(&dev->tx_global_lock);
10298 
10299 	return 0;
10300 }
10301 
10302 void netif_tx_stop_all_queues(struct net_device *dev)
10303 {
10304 	unsigned int i;
10305 
10306 	for (i = 0; i < dev->num_tx_queues; i++) {
10307 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10308 
10309 		netif_tx_stop_queue(txq);
10310 	}
10311 }
10312 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10313 
10314 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10315 {
10316 	void __percpu *v;
10317 
10318 	/* Drivers implementing ndo_get_peer_dev must support tstat
10319 	 * accounting, so that skb_do_redirect() can bump the dev's
10320 	 * RX stats upon network namespace switch.
10321 	 */
10322 	if (dev->netdev_ops->ndo_get_peer_dev &&
10323 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10324 		return -EOPNOTSUPP;
10325 
10326 	switch (dev->pcpu_stat_type) {
10327 	case NETDEV_PCPU_STAT_NONE:
10328 		return 0;
10329 	case NETDEV_PCPU_STAT_LSTATS:
10330 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10331 		break;
10332 	case NETDEV_PCPU_STAT_TSTATS:
10333 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10334 		break;
10335 	case NETDEV_PCPU_STAT_DSTATS:
10336 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10337 		break;
10338 	default:
10339 		return -EINVAL;
10340 	}
10341 
10342 	return v ? 0 : -ENOMEM;
10343 }
10344 
10345 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10346 {
10347 	switch (dev->pcpu_stat_type) {
10348 	case NETDEV_PCPU_STAT_NONE:
10349 		return;
10350 	case NETDEV_PCPU_STAT_LSTATS:
10351 		free_percpu(dev->lstats);
10352 		break;
10353 	case NETDEV_PCPU_STAT_TSTATS:
10354 		free_percpu(dev->tstats);
10355 		break;
10356 	case NETDEV_PCPU_STAT_DSTATS:
10357 		free_percpu(dev->dstats);
10358 		break;
10359 	}
10360 }
10361 
10362 static void netdev_free_phy_link_topology(struct net_device *dev)
10363 {
10364 	struct phy_link_topology *topo = dev->link_topo;
10365 
10366 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10367 		xa_destroy(&topo->phys);
10368 		kfree(topo);
10369 		dev->link_topo = NULL;
10370 	}
10371 }
10372 
10373 /**
10374  * register_netdevice() - register a network device
10375  * @dev: device to register
10376  *
10377  * Take a prepared network device structure and make it externally accessible.
10378  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10379  * Callers must hold the rtnl lock - you may want register_netdev()
10380  * instead of this.
10381  */
10382 int register_netdevice(struct net_device *dev)
10383 {
10384 	int ret;
10385 	struct net *net = dev_net(dev);
10386 
10387 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10388 		     NETDEV_FEATURE_COUNT);
10389 	BUG_ON(dev_boot_phase);
10390 	ASSERT_RTNL();
10391 
10392 	might_sleep();
10393 
10394 	/* When net_device's are persistent, this will be fatal. */
10395 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10396 	BUG_ON(!net);
10397 
10398 	ret = ethtool_check_ops(dev->ethtool_ops);
10399 	if (ret)
10400 		return ret;
10401 
10402 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10403 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10404 	mutex_init(&dev->ethtool->rss_lock);
10405 
10406 	spin_lock_init(&dev->addr_list_lock);
10407 	netdev_set_addr_lockdep_class(dev);
10408 
10409 	ret = dev_get_valid_name(net, dev, dev->name);
10410 	if (ret < 0)
10411 		goto out;
10412 
10413 	ret = -ENOMEM;
10414 	dev->name_node = netdev_name_node_head_alloc(dev);
10415 	if (!dev->name_node)
10416 		goto out;
10417 
10418 	/* Init, if this function is available */
10419 	if (dev->netdev_ops->ndo_init) {
10420 		ret = dev->netdev_ops->ndo_init(dev);
10421 		if (ret) {
10422 			if (ret > 0)
10423 				ret = -EIO;
10424 			goto err_free_name;
10425 		}
10426 	}
10427 
10428 	if (((dev->hw_features | dev->features) &
10429 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10430 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10431 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10432 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10433 		ret = -EINVAL;
10434 		goto err_uninit;
10435 	}
10436 
10437 	ret = netdev_do_alloc_pcpu_stats(dev);
10438 	if (ret)
10439 		goto err_uninit;
10440 
10441 	ret = dev_index_reserve(net, dev->ifindex);
10442 	if (ret < 0)
10443 		goto err_free_pcpu;
10444 	dev->ifindex = ret;
10445 
10446 	/* Transfer changeable features to wanted_features and enable
10447 	 * software offloads (GSO and GRO).
10448 	 */
10449 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10450 	dev->features |= NETIF_F_SOFT_FEATURES;
10451 
10452 	if (dev->udp_tunnel_nic_info) {
10453 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10454 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10455 	}
10456 
10457 	dev->wanted_features = dev->features & dev->hw_features;
10458 
10459 	if (!(dev->flags & IFF_LOOPBACK))
10460 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10461 
10462 	/* If IPv4 TCP segmentation offload is supported we should also
10463 	 * allow the device to enable segmenting the frame with the option
10464 	 * of ignoring a static IP ID value.  This doesn't enable the
10465 	 * feature itself but allows the user to enable it later.
10466 	 */
10467 	if (dev->hw_features & NETIF_F_TSO)
10468 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10469 	if (dev->vlan_features & NETIF_F_TSO)
10470 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10471 	if (dev->mpls_features & NETIF_F_TSO)
10472 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10473 	if (dev->hw_enc_features & NETIF_F_TSO)
10474 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10475 
10476 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10477 	 */
10478 	dev->vlan_features |= NETIF_F_HIGHDMA;
10479 
10480 	/* Make NETIF_F_SG inheritable to tunnel devices.
10481 	 */
10482 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10483 
10484 	/* Make NETIF_F_SG inheritable to MPLS.
10485 	 */
10486 	dev->mpls_features |= NETIF_F_SG;
10487 
10488 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10489 	ret = notifier_to_errno(ret);
10490 	if (ret)
10491 		goto err_ifindex_release;
10492 
10493 	ret = netdev_register_kobject(dev);
10494 
10495 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10496 
10497 	if (ret)
10498 		goto err_uninit_notify;
10499 
10500 	__netdev_update_features(dev);
10501 
10502 	/*
10503 	 *	Default initial state at registry is that the
10504 	 *	device is present.
10505 	 */
10506 
10507 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10508 
10509 	linkwatch_init_dev(dev);
10510 
10511 	dev_init_scheduler(dev);
10512 
10513 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10514 	list_netdevice(dev);
10515 
10516 	add_device_randomness(dev->dev_addr, dev->addr_len);
10517 
10518 	/* If the device has permanent device address, driver should
10519 	 * set dev_addr and also addr_assign_type should be set to
10520 	 * NET_ADDR_PERM (default value).
10521 	 */
10522 	if (dev->addr_assign_type == NET_ADDR_PERM)
10523 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10524 
10525 	/* Notify protocols, that a new device appeared. */
10526 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10527 	ret = notifier_to_errno(ret);
10528 	if (ret) {
10529 		/* Expect explicit free_netdev() on failure */
10530 		dev->needs_free_netdev = false;
10531 		unregister_netdevice_queue(dev, NULL);
10532 		goto out;
10533 	}
10534 	/*
10535 	 *	Prevent userspace races by waiting until the network
10536 	 *	device is fully setup before sending notifications.
10537 	 */
10538 	if (!dev->rtnl_link_ops ||
10539 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10540 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10541 
10542 out:
10543 	return ret;
10544 
10545 err_uninit_notify:
10546 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10547 err_ifindex_release:
10548 	dev_index_release(net, dev->ifindex);
10549 err_free_pcpu:
10550 	netdev_do_free_pcpu_stats(dev);
10551 err_uninit:
10552 	if (dev->netdev_ops->ndo_uninit)
10553 		dev->netdev_ops->ndo_uninit(dev);
10554 	if (dev->priv_destructor)
10555 		dev->priv_destructor(dev);
10556 err_free_name:
10557 	netdev_name_node_free(dev->name_node);
10558 	goto out;
10559 }
10560 EXPORT_SYMBOL(register_netdevice);
10561 
10562 /* Initialize the core of a dummy net device.
10563  * This is useful if you are calling this function after alloc_netdev(),
10564  * since it does not memset the net_device fields.
10565  */
10566 static void init_dummy_netdev_core(struct net_device *dev)
10567 {
10568 	/* make sure we BUG if trying to hit standard
10569 	 * register/unregister code path
10570 	 */
10571 	dev->reg_state = NETREG_DUMMY;
10572 
10573 	/* NAPI wants this */
10574 	INIT_LIST_HEAD(&dev->napi_list);
10575 
10576 	/* a dummy interface is started by default */
10577 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10578 	set_bit(__LINK_STATE_START, &dev->state);
10579 
10580 	/* napi_busy_loop stats accounting wants this */
10581 	dev_net_set(dev, &init_net);
10582 
10583 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10584 	 * because users of this 'device' dont need to change
10585 	 * its refcount.
10586 	 */
10587 }
10588 
10589 /**
10590  *	init_dummy_netdev	- init a dummy network device for NAPI
10591  *	@dev: device to init
10592  *
10593  *	This takes a network device structure and initializes the minimum
10594  *	amount of fields so it can be used to schedule NAPI polls without
10595  *	registering a full blown interface. This is to be used by drivers
10596  *	that need to tie several hardware interfaces to a single NAPI
10597  *	poll scheduler due to HW limitations.
10598  */
10599 void init_dummy_netdev(struct net_device *dev)
10600 {
10601 	/* Clear everything. Note we don't initialize spinlocks
10602 	 * as they aren't supposed to be taken by any of the
10603 	 * NAPI code and this dummy netdev is supposed to be
10604 	 * only ever used for NAPI polls
10605 	 */
10606 	memset(dev, 0, sizeof(struct net_device));
10607 	init_dummy_netdev_core(dev);
10608 }
10609 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10610 
10611 /**
10612  *	register_netdev	- register a network device
10613  *	@dev: device to register
10614  *
10615  *	Take a completed network device structure and add it to the kernel
10616  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10617  *	chain. 0 is returned on success. A negative errno code is returned
10618  *	on a failure to set up the device, or if the name is a duplicate.
10619  *
10620  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10621  *	and expands the device name if you passed a format string to
10622  *	alloc_netdev.
10623  */
10624 int register_netdev(struct net_device *dev)
10625 {
10626 	int err;
10627 
10628 	if (rtnl_lock_killable())
10629 		return -EINTR;
10630 	err = register_netdevice(dev);
10631 	rtnl_unlock();
10632 	return err;
10633 }
10634 EXPORT_SYMBOL(register_netdev);
10635 
10636 int netdev_refcnt_read(const struct net_device *dev)
10637 {
10638 #ifdef CONFIG_PCPU_DEV_REFCNT
10639 	int i, refcnt = 0;
10640 
10641 	for_each_possible_cpu(i)
10642 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10643 	return refcnt;
10644 #else
10645 	return refcount_read(&dev->dev_refcnt);
10646 #endif
10647 }
10648 EXPORT_SYMBOL(netdev_refcnt_read);
10649 
10650 int netdev_unregister_timeout_secs __read_mostly = 10;
10651 
10652 #define WAIT_REFS_MIN_MSECS 1
10653 #define WAIT_REFS_MAX_MSECS 250
10654 /**
10655  * netdev_wait_allrefs_any - wait until all references are gone.
10656  * @list: list of net_devices to wait on
10657  *
10658  * This is called when unregistering network devices.
10659  *
10660  * Any protocol or device that holds a reference should register
10661  * for netdevice notification, and cleanup and put back the
10662  * reference if they receive an UNREGISTER event.
10663  * We can get stuck here if buggy protocols don't correctly
10664  * call dev_put.
10665  */
10666 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10667 {
10668 	unsigned long rebroadcast_time, warning_time;
10669 	struct net_device *dev;
10670 	int wait = 0;
10671 
10672 	rebroadcast_time = warning_time = jiffies;
10673 
10674 	list_for_each_entry(dev, list, todo_list)
10675 		if (netdev_refcnt_read(dev) == 1)
10676 			return dev;
10677 
10678 	while (true) {
10679 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10680 			rtnl_lock();
10681 
10682 			/* Rebroadcast unregister notification */
10683 			list_for_each_entry(dev, list, todo_list)
10684 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10685 
10686 			__rtnl_unlock();
10687 			rcu_barrier();
10688 			rtnl_lock();
10689 
10690 			list_for_each_entry(dev, list, todo_list)
10691 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10692 					     &dev->state)) {
10693 					/* We must not have linkwatch events
10694 					 * pending on unregister. If this
10695 					 * happens, we simply run the queue
10696 					 * unscheduled, resulting in a noop
10697 					 * for this device.
10698 					 */
10699 					linkwatch_run_queue();
10700 					break;
10701 				}
10702 
10703 			__rtnl_unlock();
10704 
10705 			rebroadcast_time = jiffies;
10706 		}
10707 
10708 		rcu_barrier();
10709 
10710 		if (!wait) {
10711 			wait = WAIT_REFS_MIN_MSECS;
10712 		} else {
10713 			msleep(wait);
10714 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10715 		}
10716 
10717 		list_for_each_entry(dev, list, todo_list)
10718 			if (netdev_refcnt_read(dev) == 1)
10719 				return dev;
10720 
10721 		if (time_after(jiffies, warning_time +
10722 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10723 			list_for_each_entry(dev, list, todo_list) {
10724 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10725 					 dev->name, netdev_refcnt_read(dev));
10726 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10727 			}
10728 
10729 			warning_time = jiffies;
10730 		}
10731 	}
10732 }
10733 
10734 /* The sequence is:
10735  *
10736  *	rtnl_lock();
10737  *	...
10738  *	register_netdevice(x1);
10739  *	register_netdevice(x2);
10740  *	...
10741  *	unregister_netdevice(y1);
10742  *	unregister_netdevice(y2);
10743  *      ...
10744  *	rtnl_unlock();
10745  *	free_netdev(y1);
10746  *	free_netdev(y2);
10747  *
10748  * We are invoked by rtnl_unlock().
10749  * This allows us to deal with problems:
10750  * 1) We can delete sysfs objects which invoke hotplug
10751  *    without deadlocking with linkwatch via keventd.
10752  * 2) Since we run with the RTNL semaphore not held, we can sleep
10753  *    safely in order to wait for the netdev refcnt to drop to zero.
10754  *
10755  * We must not return until all unregister events added during
10756  * the interval the lock was held have been completed.
10757  */
10758 void netdev_run_todo(void)
10759 {
10760 	struct net_device *dev, *tmp;
10761 	struct list_head list;
10762 	int cnt;
10763 #ifdef CONFIG_LOCKDEP
10764 	struct list_head unlink_list;
10765 
10766 	list_replace_init(&net_unlink_list, &unlink_list);
10767 
10768 	while (!list_empty(&unlink_list)) {
10769 		struct net_device *dev = list_first_entry(&unlink_list,
10770 							  struct net_device,
10771 							  unlink_list);
10772 		list_del_init(&dev->unlink_list);
10773 		dev->nested_level = dev->lower_level - 1;
10774 	}
10775 #endif
10776 
10777 	/* Snapshot list, allow later requests */
10778 	list_replace_init(&net_todo_list, &list);
10779 
10780 	__rtnl_unlock();
10781 
10782 	/* Wait for rcu callbacks to finish before next phase */
10783 	if (!list_empty(&list))
10784 		rcu_barrier();
10785 
10786 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10787 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10788 			netdev_WARN(dev, "run_todo but not unregistering\n");
10789 			list_del(&dev->todo_list);
10790 			continue;
10791 		}
10792 
10793 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10794 		linkwatch_sync_dev(dev);
10795 	}
10796 
10797 	cnt = 0;
10798 	while (!list_empty(&list)) {
10799 		dev = netdev_wait_allrefs_any(&list);
10800 		list_del(&dev->todo_list);
10801 
10802 		/* paranoia */
10803 		BUG_ON(netdev_refcnt_read(dev) != 1);
10804 		BUG_ON(!list_empty(&dev->ptype_all));
10805 		BUG_ON(!list_empty(&dev->ptype_specific));
10806 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10807 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10808 
10809 		netdev_do_free_pcpu_stats(dev);
10810 		if (dev->priv_destructor)
10811 			dev->priv_destructor(dev);
10812 		if (dev->needs_free_netdev)
10813 			free_netdev(dev);
10814 
10815 		cnt++;
10816 
10817 		/* Free network device */
10818 		kobject_put(&dev->dev.kobj);
10819 	}
10820 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10821 		wake_up(&netdev_unregistering_wq);
10822 }
10823 
10824 /* Collate per-cpu network dstats statistics
10825  *
10826  * Read per-cpu network statistics from dev->dstats and populate the related
10827  * fields in @s.
10828  */
10829 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10830 			     const struct pcpu_dstats __percpu *dstats)
10831 {
10832 	int cpu;
10833 
10834 	for_each_possible_cpu(cpu) {
10835 		u64 rx_packets, rx_bytes, rx_drops;
10836 		u64 tx_packets, tx_bytes, tx_drops;
10837 		const struct pcpu_dstats *stats;
10838 		unsigned int start;
10839 
10840 		stats = per_cpu_ptr(dstats, cpu);
10841 		do {
10842 			start = u64_stats_fetch_begin(&stats->syncp);
10843 			rx_packets = u64_stats_read(&stats->rx_packets);
10844 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10845 			rx_drops   = u64_stats_read(&stats->rx_drops);
10846 			tx_packets = u64_stats_read(&stats->tx_packets);
10847 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10848 			tx_drops   = u64_stats_read(&stats->tx_drops);
10849 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10850 
10851 		s->rx_packets += rx_packets;
10852 		s->rx_bytes   += rx_bytes;
10853 		s->rx_dropped += rx_drops;
10854 		s->tx_packets += tx_packets;
10855 		s->tx_bytes   += tx_bytes;
10856 		s->tx_dropped += tx_drops;
10857 	}
10858 }
10859 
10860 /* ndo_get_stats64 implementation for dtstats-based accounting.
10861  *
10862  * Populate @s from dev->stats and dev->dstats. This is used internally by the
10863  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10864  */
10865 static void dev_get_dstats64(const struct net_device *dev,
10866 			     struct rtnl_link_stats64 *s)
10867 {
10868 	netdev_stats_to_stats64(s, &dev->stats);
10869 	dev_fetch_dstats(s, dev->dstats);
10870 }
10871 
10872 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10873  * all the same fields in the same order as net_device_stats, with only
10874  * the type differing, but rtnl_link_stats64 may have additional fields
10875  * at the end for newer counters.
10876  */
10877 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10878 			     const struct net_device_stats *netdev_stats)
10879 {
10880 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10881 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10882 	u64 *dst = (u64 *)stats64;
10883 
10884 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10885 	for (i = 0; i < n; i++)
10886 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10887 	/* zero out counters that only exist in rtnl_link_stats64 */
10888 	memset((char *)stats64 + n * sizeof(u64), 0,
10889 	       sizeof(*stats64) - n * sizeof(u64));
10890 }
10891 EXPORT_SYMBOL(netdev_stats_to_stats64);
10892 
10893 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10894 		struct net_device *dev)
10895 {
10896 	struct net_device_core_stats __percpu *p;
10897 
10898 	p = alloc_percpu_gfp(struct net_device_core_stats,
10899 			     GFP_ATOMIC | __GFP_NOWARN);
10900 
10901 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10902 		free_percpu(p);
10903 
10904 	/* This READ_ONCE() pairs with the cmpxchg() above */
10905 	return READ_ONCE(dev->core_stats);
10906 }
10907 
10908 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10909 {
10910 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10911 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10912 	unsigned long __percpu *field;
10913 
10914 	if (unlikely(!p)) {
10915 		p = netdev_core_stats_alloc(dev);
10916 		if (!p)
10917 			return;
10918 	}
10919 
10920 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
10921 	this_cpu_inc(*field);
10922 }
10923 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10924 
10925 /**
10926  *	dev_get_stats	- get network device statistics
10927  *	@dev: device to get statistics from
10928  *	@storage: place to store stats
10929  *
10930  *	Get network statistics from device. Return @storage.
10931  *	The device driver may provide its own method by setting
10932  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10933  *	otherwise the internal statistics structure is used.
10934  */
10935 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10936 					struct rtnl_link_stats64 *storage)
10937 {
10938 	const struct net_device_ops *ops = dev->netdev_ops;
10939 	const struct net_device_core_stats __percpu *p;
10940 
10941 	if (ops->ndo_get_stats64) {
10942 		memset(storage, 0, sizeof(*storage));
10943 		ops->ndo_get_stats64(dev, storage);
10944 	} else if (ops->ndo_get_stats) {
10945 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10946 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10947 		dev_get_tstats64(dev, storage);
10948 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
10949 		dev_get_dstats64(dev, storage);
10950 	} else {
10951 		netdev_stats_to_stats64(storage, &dev->stats);
10952 	}
10953 
10954 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10955 	p = READ_ONCE(dev->core_stats);
10956 	if (p) {
10957 		const struct net_device_core_stats *core_stats;
10958 		int i;
10959 
10960 		for_each_possible_cpu(i) {
10961 			core_stats = per_cpu_ptr(p, i);
10962 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10963 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10964 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10965 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10966 		}
10967 	}
10968 	return storage;
10969 }
10970 EXPORT_SYMBOL(dev_get_stats);
10971 
10972 /**
10973  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10974  *	@s: place to store stats
10975  *	@netstats: per-cpu network stats to read from
10976  *
10977  *	Read per-cpu network statistics and populate the related fields in @s.
10978  */
10979 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10980 			   const struct pcpu_sw_netstats __percpu *netstats)
10981 {
10982 	int cpu;
10983 
10984 	for_each_possible_cpu(cpu) {
10985 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10986 		const struct pcpu_sw_netstats *stats;
10987 		unsigned int start;
10988 
10989 		stats = per_cpu_ptr(netstats, cpu);
10990 		do {
10991 			start = u64_stats_fetch_begin(&stats->syncp);
10992 			rx_packets = u64_stats_read(&stats->rx_packets);
10993 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10994 			tx_packets = u64_stats_read(&stats->tx_packets);
10995 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10996 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10997 
10998 		s->rx_packets += rx_packets;
10999 		s->rx_bytes   += rx_bytes;
11000 		s->tx_packets += tx_packets;
11001 		s->tx_bytes   += tx_bytes;
11002 	}
11003 }
11004 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11005 
11006 /**
11007  *	dev_get_tstats64 - ndo_get_stats64 implementation
11008  *	@dev: device to get statistics from
11009  *	@s: place to store stats
11010  *
11011  *	Populate @s from dev->stats and dev->tstats. Can be used as
11012  *	ndo_get_stats64() callback.
11013  */
11014 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11015 {
11016 	netdev_stats_to_stats64(s, &dev->stats);
11017 	dev_fetch_sw_netstats(s, dev->tstats);
11018 }
11019 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11020 
11021 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11022 {
11023 	struct netdev_queue *queue = dev_ingress_queue(dev);
11024 
11025 #ifdef CONFIG_NET_CLS_ACT
11026 	if (queue)
11027 		return queue;
11028 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11029 	if (!queue)
11030 		return NULL;
11031 	netdev_init_one_queue(dev, queue, NULL);
11032 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11033 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11034 	rcu_assign_pointer(dev->ingress_queue, queue);
11035 #endif
11036 	return queue;
11037 }
11038 
11039 static const struct ethtool_ops default_ethtool_ops;
11040 
11041 void netdev_set_default_ethtool_ops(struct net_device *dev,
11042 				    const struct ethtool_ops *ops)
11043 {
11044 	if (dev->ethtool_ops == &default_ethtool_ops)
11045 		dev->ethtool_ops = ops;
11046 }
11047 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11048 
11049 /**
11050  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11051  * @dev: netdev to enable the IRQ coalescing on
11052  *
11053  * Sets a conservative default for SW IRQ coalescing. Users can use
11054  * sysfs attributes to override the default values.
11055  */
11056 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11057 {
11058 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11059 
11060 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11061 		dev->gro_flush_timeout = 20000;
11062 		dev->napi_defer_hard_irqs = 1;
11063 	}
11064 }
11065 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11066 
11067 /**
11068  * alloc_netdev_mqs - allocate network device
11069  * @sizeof_priv: size of private data to allocate space for
11070  * @name: device name format string
11071  * @name_assign_type: origin of device name
11072  * @setup: callback to initialize device
11073  * @txqs: the number of TX subqueues to allocate
11074  * @rxqs: the number of RX subqueues to allocate
11075  *
11076  * Allocates a struct net_device with private data area for driver use
11077  * and performs basic initialization.  Also allocates subqueue structs
11078  * for each queue on the device.
11079  */
11080 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11081 		unsigned char name_assign_type,
11082 		void (*setup)(struct net_device *),
11083 		unsigned int txqs, unsigned int rxqs)
11084 {
11085 	struct net_device *dev;
11086 
11087 	BUG_ON(strlen(name) >= sizeof(dev->name));
11088 
11089 	if (txqs < 1) {
11090 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11091 		return NULL;
11092 	}
11093 
11094 	if (rxqs < 1) {
11095 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11096 		return NULL;
11097 	}
11098 
11099 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11100 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11101 	if (!dev)
11102 		return NULL;
11103 
11104 	dev->priv_len = sizeof_priv;
11105 
11106 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11107 #ifdef CONFIG_PCPU_DEV_REFCNT
11108 	dev->pcpu_refcnt = alloc_percpu(int);
11109 	if (!dev->pcpu_refcnt)
11110 		goto free_dev;
11111 	__dev_hold(dev);
11112 #else
11113 	refcount_set(&dev->dev_refcnt, 1);
11114 #endif
11115 
11116 	if (dev_addr_init(dev))
11117 		goto free_pcpu;
11118 
11119 	dev_mc_init(dev);
11120 	dev_uc_init(dev);
11121 
11122 	dev_net_set(dev, &init_net);
11123 
11124 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11125 	dev->xdp_zc_max_segs = 1;
11126 	dev->gso_max_segs = GSO_MAX_SEGS;
11127 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11128 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11129 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11130 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11131 	dev->tso_max_segs = TSO_MAX_SEGS;
11132 	dev->upper_level = 1;
11133 	dev->lower_level = 1;
11134 #ifdef CONFIG_LOCKDEP
11135 	dev->nested_level = 0;
11136 	INIT_LIST_HEAD(&dev->unlink_list);
11137 #endif
11138 
11139 	INIT_LIST_HEAD(&dev->napi_list);
11140 	INIT_LIST_HEAD(&dev->unreg_list);
11141 	INIT_LIST_HEAD(&dev->close_list);
11142 	INIT_LIST_HEAD(&dev->link_watch_list);
11143 	INIT_LIST_HEAD(&dev->adj_list.upper);
11144 	INIT_LIST_HEAD(&dev->adj_list.lower);
11145 	INIT_LIST_HEAD(&dev->ptype_all);
11146 	INIT_LIST_HEAD(&dev->ptype_specific);
11147 	INIT_LIST_HEAD(&dev->net_notifier_list);
11148 #ifdef CONFIG_NET_SCHED
11149 	hash_init(dev->qdisc_hash);
11150 #endif
11151 
11152 	mutex_init(&dev->lock);
11153 
11154 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11155 	setup(dev);
11156 
11157 	if (!dev->tx_queue_len) {
11158 		dev->priv_flags |= IFF_NO_QUEUE;
11159 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11160 	}
11161 
11162 	dev->num_tx_queues = txqs;
11163 	dev->real_num_tx_queues = txqs;
11164 	if (netif_alloc_netdev_queues(dev))
11165 		goto free_all;
11166 
11167 	dev->num_rx_queues = rxqs;
11168 	dev->real_num_rx_queues = rxqs;
11169 	if (netif_alloc_rx_queues(dev))
11170 		goto free_all;
11171 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11172 	if (!dev->ethtool)
11173 		goto free_all;
11174 
11175 	strscpy(dev->name, name);
11176 	dev->name_assign_type = name_assign_type;
11177 	dev->group = INIT_NETDEV_GROUP;
11178 	if (!dev->ethtool_ops)
11179 		dev->ethtool_ops = &default_ethtool_ops;
11180 
11181 	nf_hook_netdev_init(dev);
11182 
11183 	return dev;
11184 
11185 free_all:
11186 	free_netdev(dev);
11187 	return NULL;
11188 
11189 free_pcpu:
11190 #ifdef CONFIG_PCPU_DEV_REFCNT
11191 	free_percpu(dev->pcpu_refcnt);
11192 free_dev:
11193 #endif
11194 	kvfree(dev);
11195 	return NULL;
11196 }
11197 EXPORT_SYMBOL(alloc_netdev_mqs);
11198 
11199 /**
11200  * free_netdev - free network device
11201  * @dev: device
11202  *
11203  * This function does the last stage of destroying an allocated device
11204  * interface. The reference to the device object is released. If this
11205  * is the last reference then it will be freed.Must be called in process
11206  * context.
11207  */
11208 void free_netdev(struct net_device *dev)
11209 {
11210 	struct napi_struct *p, *n;
11211 
11212 	might_sleep();
11213 
11214 	/* When called immediately after register_netdevice() failed the unwind
11215 	 * handling may still be dismantling the device. Handle that case by
11216 	 * deferring the free.
11217 	 */
11218 	if (dev->reg_state == NETREG_UNREGISTERING) {
11219 		ASSERT_RTNL();
11220 		dev->needs_free_netdev = true;
11221 		return;
11222 	}
11223 
11224 	mutex_destroy(&dev->lock);
11225 
11226 	kfree(dev->ethtool);
11227 	netif_free_tx_queues(dev);
11228 	netif_free_rx_queues(dev);
11229 
11230 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11231 
11232 	/* Flush device addresses */
11233 	dev_addr_flush(dev);
11234 
11235 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11236 		netif_napi_del(p);
11237 
11238 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11239 #ifdef CONFIG_PCPU_DEV_REFCNT
11240 	free_percpu(dev->pcpu_refcnt);
11241 	dev->pcpu_refcnt = NULL;
11242 #endif
11243 	free_percpu(dev->core_stats);
11244 	dev->core_stats = NULL;
11245 	free_percpu(dev->xdp_bulkq);
11246 	dev->xdp_bulkq = NULL;
11247 
11248 	netdev_free_phy_link_topology(dev);
11249 
11250 	/*  Compatibility with error handling in drivers */
11251 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11252 	    dev->reg_state == NETREG_DUMMY) {
11253 		kvfree(dev);
11254 		return;
11255 	}
11256 
11257 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11258 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11259 
11260 	/* will free via device release */
11261 	put_device(&dev->dev);
11262 }
11263 EXPORT_SYMBOL(free_netdev);
11264 
11265 /**
11266  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11267  * @sizeof_priv: size of private data to allocate space for
11268  *
11269  * Return: the allocated net_device on success, NULL otherwise
11270  */
11271 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11272 {
11273 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11274 			    init_dummy_netdev_core);
11275 }
11276 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11277 
11278 /**
11279  *	synchronize_net -  Synchronize with packet receive processing
11280  *
11281  *	Wait for packets currently being received to be done.
11282  *	Does not block later packets from starting.
11283  */
11284 void synchronize_net(void)
11285 {
11286 	might_sleep();
11287 	if (rtnl_is_locked())
11288 		synchronize_rcu_expedited();
11289 	else
11290 		synchronize_rcu();
11291 }
11292 EXPORT_SYMBOL(synchronize_net);
11293 
11294 static void netdev_rss_contexts_free(struct net_device *dev)
11295 {
11296 	struct ethtool_rxfh_context *ctx;
11297 	unsigned long context;
11298 
11299 	mutex_lock(&dev->ethtool->rss_lock);
11300 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11301 		struct ethtool_rxfh_param rxfh;
11302 
11303 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11304 		rxfh.key = ethtool_rxfh_context_key(ctx);
11305 		rxfh.hfunc = ctx->hfunc;
11306 		rxfh.input_xfrm = ctx->input_xfrm;
11307 		rxfh.rss_context = context;
11308 		rxfh.rss_delete = true;
11309 
11310 		xa_erase(&dev->ethtool->rss_ctx, context);
11311 		if (dev->ethtool_ops->create_rxfh_context)
11312 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11313 							      context, NULL);
11314 		else
11315 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11316 		kfree(ctx);
11317 	}
11318 	xa_destroy(&dev->ethtool->rss_ctx);
11319 	mutex_unlock(&dev->ethtool->rss_lock);
11320 }
11321 
11322 /**
11323  *	unregister_netdevice_queue - remove device from the kernel
11324  *	@dev: device
11325  *	@head: list
11326  *
11327  *	This function shuts down a device interface and removes it
11328  *	from the kernel tables.
11329  *	If head not NULL, device is queued to be unregistered later.
11330  *
11331  *	Callers must hold the rtnl semaphore.  You may want
11332  *	unregister_netdev() instead of this.
11333  */
11334 
11335 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11336 {
11337 	ASSERT_RTNL();
11338 
11339 	if (head) {
11340 		list_move_tail(&dev->unreg_list, head);
11341 	} else {
11342 		LIST_HEAD(single);
11343 
11344 		list_add(&dev->unreg_list, &single);
11345 		unregister_netdevice_many(&single);
11346 	}
11347 }
11348 EXPORT_SYMBOL(unregister_netdevice_queue);
11349 
11350 void unregister_netdevice_many_notify(struct list_head *head,
11351 				      u32 portid, const struct nlmsghdr *nlh)
11352 {
11353 	struct net_device *dev, *tmp;
11354 	LIST_HEAD(close_head);
11355 	int cnt = 0;
11356 
11357 	BUG_ON(dev_boot_phase);
11358 	ASSERT_RTNL();
11359 
11360 	if (list_empty(head))
11361 		return;
11362 
11363 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11364 		/* Some devices call without registering
11365 		 * for initialization unwind. Remove those
11366 		 * devices and proceed with the remaining.
11367 		 */
11368 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11369 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11370 				 dev->name, dev);
11371 
11372 			WARN_ON(1);
11373 			list_del(&dev->unreg_list);
11374 			continue;
11375 		}
11376 		dev->dismantle = true;
11377 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11378 	}
11379 
11380 	/* If device is running, close it first. */
11381 	list_for_each_entry(dev, head, unreg_list)
11382 		list_add_tail(&dev->close_list, &close_head);
11383 	dev_close_many(&close_head, true);
11384 
11385 	list_for_each_entry(dev, head, unreg_list) {
11386 		/* And unlink it from device chain. */
11387 		unlist_netdevice(dev);
11388 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11389 	}
11390 	flush_all_backlogs();
11391 
11392 	synchronize_net();
11393 
11394 	list_for_each_entry(dev, head, unreg_list) {
11395 		struct sk_buff *skb = NULL;
11396 
11397 		/* Shutdown queueing discipline. */
11398 		dev_shutdown(dev);
11399 		dev_tcx_uninstall(dev);
11400 		dev_xdp_uninstall(dev);
11401 		bpf_dev_bound_netdev_unregister(dev);
11402 		dev_dmabuf_uninstall(dev);
11403 
11404 		netdev_offload_xstats_disable_all(dev);
11405 
11406 		/* Notify protocols, that we are about to destroy
11407 		 * this device. They should clean all the things.
11408 		 */
11409 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11410 
11411 		if (!dev->rtnl_link_ops ||
11412 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11413 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11414 						     GFP_KERNEL, NULL, 0,
11415 						     portid, nlh);
11416 
11417 		/*
11418 		 *	Flush the unicast and multicast chains
11419 		 */
11420 		dev_uc_flush(dev);
11421 		dev_mc_flush(dev);
11422 
11423 		netdev_name_node_alt_flush(dev);
11424 		netdev_name_node_free(dev->name_node);
11425 
11426 		netdev_rss_contexts_free(dev);
11427 
11428 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11429 
11430 		if (dev->netdev_ops->ndo_uninit)
11431 			dev->netdev_ops->ndo_uninit(dev);
11432 
11433 		mutex_destroy(&dev->ethtool->rss_lock);
11434 
11435 		net_shaper_flush_netdev(dev);
11436 
11437 		if (skb)
11438 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11439 
11440 		/* Notifier chain MUST detach us all upper devices. */
11441 		WARN_ON(netdev_has_any_upper_dev(dev));
11442 		WARN_ON(netdev_has_any_lower_dev(dev));
11443 
11444 		/* Remove entries from kobject tree */
11445 		netdev_unregister_kobject(dev);
11446 #ifdef CONFIG_XPS
11447 		/* Remove XPS queueing entries */
11448 		netif_reset_xps_queues_gt(dev, 0);
11449 #endif
11450 	}
11451 
11452 	synchronize_net();
11453 
11454 	list_for_each_entry(dev, head, unreg_list) {
11455 		netdev_put(dev, &dev->dev_registered_tracker);
11456 		net_set_todo(dev);
11457 		cnt++;
11458 	}
11459 	atomic_add(cnt, &dev_unreg_count);
11460 
11461 	list_del(head);
11462 }
11463 
11464 /**
11465  *	unregister_netdevice_many - unregister many devices
11466  *	@head: list of devices
11467  *
11468  *  Note: As most callers use a stack allocated list_head,
11469  *  we force a list_del() to make sure stack won't be corrupted later.
11470  */
11471 void unregister_netdevice_many(struct list_head *head)
11472 {
11473 	unregister_netdevice_many_notify(head, 0, NULL);
11474 }
11475 EXPORT_SYMBOL(unregister_netdevice_many);
11476 
11477 /**
11478  *	unregister_netdev - remove device from the kernel
11479  *	@dev: device
11480  *
11481  *	This function shuts down a device interface and removes it
11482  *	from the kernel tables.
11483  *
11484  *	This is just a wrapper for unregister_netdevice that takes
11485  *	the rtnl semaphore.  In general you want to use this and not
11486  *	unregister_netdevice.
11487  */
11488 void unregister_netdev(struct net_device *dev)
11489 {
11490 	rtnl_lock();
11491 	unregister_netdevice(dev);
11492 	rtnl_unlock();
11493 }
11494 EXPORT_SYMBOL(unregister_netdev);
11495 
11496 /**
11497  *	__dev_change_net_namespace - move device to different nethost namespace
11498  *	@dev: device
11499  *	@net: network namespace
11500  *	@pat: If not NULL name pattern to try if the current device name
11501  *	      is already taken in the destination network namespace.
11502  *	@new_ifindex: If not zero, specifies device index in the target
11503  *	              namespace.
11504  *
11505  *	This function shuts down a device interface and moves it
11506  *	to a new network namespace. On success 0 is returned, on
11507  *	a failure a netagive errno code is returned.
11508  *
11509  *	Callers must hold the rtnl semaphore.
11510  */
11511 
11512 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11513 			       const char *pat, int new_ifindex)
11514 {
11515 	struct netdev_name_node *name_node;
11516 	struct net *net_old = dev_net(dev);
11517 	char new_name[IFNAMSIZ] = {};
11518 	int err, new_nsid;
11519 
11520 	ASSERT_RTNL();
11521 
11522 	/* Don't allow namespace local devices to be moved. */
11523 	err = -EINVAL;
11524 	if (dev->netns_local)
11525 		goto out;
11526 
11527 	/* Ensure the device has been registered */
11528 	if (dev->reg_state != NETREG_REGISTERED)
11529 		goto out;
11530 
11531 	/* Get out if there is nothing todo */
11532 	err = 0;
11533 	if (net_eq(net_old, net))
11534 		goto out;
11535 
11536 	/* Pick the destination device name, and ensure
11537 	 * we can use it in the destination network namespace.
11538 	 */
11539 	err = -EEXIST;
11540 	if (netdev_name_in_use(net, dev->name)) {
11541 		/* We get here if we can't use the current device name */
11542 		if (!pat)
11543 			goto out;
11544 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11545 		if (err < 0)
11546 			goto out;
11547 	}
11548 	/* Check that none of the altnames conflicts. */
11549 	err = -EEXIST;
11550 	netdev_for_each_altname(dev, name_node)
11551 		if (netdev_name_in_use(net, name_node->name))
11552 			goto out;
11553 
11554 	/* Check that new_ifindex isn't used yet. */
11555 	if (new_ifindex) {
11556 		err = dev_index_reserve(net, new_ifindex);
11557 		if (err < 0)
11558 			goto out;
11559 	} else {
11560 		/* If there is an ifindex conflict assign a new one */
11561 		err = dev_index_reserve(net, dev->ifindex);
11562 		if (err == -EBUSY)
11563 			err = dev_index_reserve(net, 0);
11564 		if (err < 0)
11565 			goto out;
11566 		new_ifindex = err;
11567 	}
11568 
11569 	/*
11570 	 * And now a mini version of register_netdevice unregister_netdevice.
11571 	 */
11572 
11573 	/* If device is running close it first. */
11574 	dev_close(dev);
11575 
11576 	/* And unlink it from device chain */
11577 	unlist_netdevice(dev);
11578 
11579 	synchronize_net();
11580 
11581 	/* Shutdown queueing discipline. */
11582 	dev_shutdown(dev);
11583 
11584 	/* Notify protocols, that we are about to destroy
11585 	 * this device. They should clean all the things.
11586 	 *
11587 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11588 	 * This is wanted because this way 8021q and macvlan know
11589 	 * the device is just moving and can keep their slaves up.
11590 	 */
11591 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11592 	rcu_barrier();
11593 
11594 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11595 
11596 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11597 			    new_ifindex);
11598 
11599 	/*
11600 	 *	Flush the unicast and multicast chains
11601 	 */
11602 	dev_uc_flush(dev);
11603 	dev_mc_flush(dev);
11604 
11605 	/* Send a netdev-removed uevent to the old namespace */
11606 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11607 	netdev_adjacent_del_links(dev);
11608 
11609 	/* Move per-net netdevice notifiers that are following the netdevice */
11610 	move_netdevice_notifiers_dev_net(dev, net);
11611 
11612 	/* Actually switch the network namespace */
11613 	dev_net_set(dev, net);
11614 	dev->ifindex = new_ifindex;
11615 
11616 	if (new_name[0]) {
11617 		/* Rename the netdev to prepared name */
11618 		write_seqlock_bh(&netdev_rename_lock);
11619 		strscpy(dev->name, new_name, IFNAMSIZ);
11620 		write_sequnlock_bh(&netdev_rename_lock);
11621 	}
11622 
11623 	/* Fixup kobjects */
11624 	dev_set_uevent_suppress(&dev->dev, 1);
11625 	err = device_rename(&dev->dev, dev->name);
11626 	dev_set_uevent_suppress(&dev->dev, 0);
11627 	WARN_ON(err);
11628 
11629 	/* Send a netdev-add uevent to the new namespace */
11630 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11631 	netdev_adjacent_add_links(dev);
11632 
11633 	/* Adapt owner in case owning user namespace of target network
11634 	 * namespace is different from the original one.
11635 	 */
11636 	err = netdev_change_owner(dev, net_old, net);
11637 	WARN_ON(err);
11638 
11639 	/* Add the device back in the hashes */
11640 	list_netdevice(dev);
11641 
11642 	/* Notify protocols, that a new device appeared. */
11643 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11644 
11645 	/*
11646 	 *	Prevent userspace races by waiting until the network
11647 	 *	device is fully setup before sending notifications.
11648 	 */
11649 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11650 
11651 	synchronize_net();
11652 	err = 0;
11653 out:
11654 	return err;
11655 }
11656 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11657 
11658 static int dev_cpu_dead(unsigned int oldcpu)
11659 {
11660 	struct sk_buff **list_skb;
11661 	struct sk_buff *skb;
11662 	unsigned int cpu;
11663 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11664 
11665 	local_irq_disable();
11666 	cpu = smp_processor_id();
11667 	sd = &per_cpu(softnet_data, cpu);
11668 	oldsd = &per_cpu(softnet_data, oldcpu);
11669 
11670 	/* Find end of our completion_queue. */
11671 	list_skb = &sd->completion_queue;
11672 	while (*list_skb)
11673 		list_skb = &(*list_skb)->next;
11674 	/* Append completion queue from offline CPU. */
11675 	*list_skb = oldsd->completion_queue;
11676 	oldsd->completion_queue = NULL;
11677 
11678 	/* Append output queue from offline CPU. */
11679 	if (oldsd->output_queue) {
11680 		*sd->output_queue_tailp = oldsd->output_queue;
11681 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11682 		oldsd->output_queue = NULL;
11683 		oldsd->output_queue_tailp = &oldsd->output_queue;
11684 	}
11685 	/* Append NAPI poll list from offline CPU, with one exception :
11686 	 * process_backlog() must be called by cpu owning percpu backlog.
11687 	 * We properly handle process_queue & input_pkt_queue later.
11688 	 */
11689 	while (!list_empty(&oldsd->poll_list)) {
11690 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11691 							    struct napi_struct,
11692 							    poll_list);
11693 
11694 		list_del_init(&napi->poll_list);
11695 		if (napi->poll == process_backlog)
11696 			napi->state &= NAPIF_STATE_THREADED;
11697 		else
11698 			____napi_schedule(sd, napi);
11699 	}
11700 
11701 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11702 	local_irq_enable();
11703 
11704 	if (!use_backlog_threads()) {
11705 #ifdef CONFIG_RPS
11706 		remsd = oldsd->rps_ipi_list;
11707 		oldsd->rps_ipi_list = NULL;
11708 #endif
11709 		/* send out pending IPI's on offline CPU */
11710 		net_rps_send_ipi(remsd);
11711 	}
11712 
11713 	/* Process offline CPU's input_pkt_queue */
11714 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11715 		netif_rx(skb);
11716 		rps_input_queue_head_incr(oldsd);
11717 	}
11718 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11719 		netif_rx(skb);
11720 		rps_input_queue_head_incr(oldsd);
11721 	}
11722 
11723 	return 0;
11724 }
11725 
11726 /**
11727  *	netdev_increment_features - increment feature set by one
11728  *	@all: current feature set
11729  *	@one: new feature set
11730  *	@mask: mask feature set
11731  *
11732  *	Computes a new feature set after adding a device with feature set
11733  *	@one to the master device with current feature set @all.  Will not
11734  *	enable anything that is off in @mask. Returns the new feature set.
11735  */
11736 netdev_features_t netdev_increment_features(netdev_features_t all,
11737 	netdev_features_t one, netdev_features_t mask)
11738 {
11739 	if (mask & NETIF_F_HW_CSUM)
11740 		mask |= NETIF_F_CSUM_MASK;
11741 	mask |= NETIF_F_VLAN_CHALLENGED;
11742 
11743 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11744 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11745 
11746 	/* If one device supports hw checksumming, set for all. */
11747 	if (all & NETIF_F_HW_CSUM)
11748 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11749 
11750 	return all;
11751 }
11752 EXPORT_SYMBOL(netdev_increment_features);
11753 
11754 static struct hlist_head * __net_init netdev_create_hash(void)
11755 {
11756 	int i;
11757 	struct hlist_head *hash;
11758 
11759 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11760 	if (hash != NULL)
11761 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11762 			INIT_HLIST_HEAD(&hash[i]);
11763 
11764 	return hash;
11765 }
11766 
11767 /* Initialize per network namespace state */
11768 static int __net_init netdev_init(struct net *net)
11769 {
11770 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11771 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11772 
11773 	INIT_LIST_HEAD(&net->dev_base_head);
11774 
11775 	net->dev_name_head = netdev_create_hash();
11776 	if (net->dev_name_head == NULL)
11777 		goto err_name;
11778 
11779 	net->dev_index_head = netdev_create_hash();
11780 	if (net->dev_index_head == NULL)
11781 		goto err_idx;
11782 
11783 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11784 
11785 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11786 
11787 	return 0;
11788 
11789 err_idx:
11790 	kfree(net->dev_name_head);
11791 err_name:
11792 	return -ENOMEM;
11793 }
11794 
11795 /**
11796  *	netdev_drivername - network driver for the device
11797  *	@dev: network device
11798  *
11799  *	Determine network driver for device.
11800  */
11801 const char *netdev_drivername(const struct net_device *dev)
11802 {
11803 	const struct device_driver *driver;
11804 	const struct device *parent;
11805 	const char *empty = "";
11806 
11807 	parent = dev->dev.parent;
11808 	if (!parent)
11809 		return empty;
11810 
11811 	driver = parent->driver;
11812 	if (driver && driver->name)
11813 		return driver->name;
11814 	return empty;
11815 }
11816 
11817 static void __netdev_printk(const char *level, const struct net_device *dev,
11818 			    struct va_format *vaf)
11819 {
11820 	if (dev && dev->dev.parent) {
11821 		dev_printk_emit(level[1] - '0',
11822 				dev->dev.parent,
11823 				"%s %s %s%s: %pV",
11824 				dev_driver_string(dev->dev.parent),
11825 				dev_name(dev->dev.parent),
11826 				netdev_name(dev), netdev_reg_state(dev),
11827 				vaf);
11828 	} else if (dev) {
11829 		printk("%s%s%s: %pV",
11830 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11831 	} else {
11832 		printk("%s(NULL net_device): %pV", level, vaf);
11833 	}
11834 }
11835 
11836 void netdev_printk(const char *level, const struct net_device *dev,
11837 		   const char *format, ...)
11838 {
11839 	struct va_format vaf;
11840 	va_list args;
11841 
11842 	va_start(args, format);
11843 
11844 	vaf.fmt = format;
11845 	vaf.va = &args;
11846 
11847 	__netdev_printk(level, dev, &vaf);
11848 
11849 	va_end(args);
11850 }
11851 EXPORT_SYMBOL(netdev_printk);
11852 
11853 #define define_netdev_printk_level(func, level)			\
11854 void func(const struct net_device *dev, const char *fmt, ...)	\
11855 {								\
11856 	struct va_format vaf;					\
11857 	va_list args;						\
11858 								\
11859 	va_start(args, fmt);					\
11860 								\
11861 	vaf.fmt = fmt;						\
11862 	vaf.va = &args;						\
11863 								\
11864 	__netdev_printk(level, dev, &vaf);			\
11865 								\
11866 	va_end(args);						\
11867 }								\
11868 EXPORT_SYMBOL(func);
11869 
11870 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11871 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11872 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11873 define_netdev_printk_level(netdev_err, KERN_ERR);
11874 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11875 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11876 define_netdev_printk_level(netdev_info, KERN_INFO);
11877 
11878 static void __net_exit netdev_exit(struct net *net)
11879 {
11880 	kfree(net->dev_name_head);
11881 	kfree(net->dev_index_head);
11882 	xa_destroy(&net->dev_by_index);
11883 	if (net != &init_net)
11884 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11885 }
11886 
11887 static struct pernet_operations __net_initdata netdev_net_ops = {
11888 	.init = netdev_init,
11889 	.exit = netdev_exit,
11890 };
11891 
11892 static void __net_exit default_device_exit_net(struct net *net)
11893 {
11894 	struct netdev_name_node *name_node, *tmp;
11895 	struct net_device *dev, *aux;
11896 	/*
11897 	 * Push all migratable network devices back to the
11898 	 * initial network namespace
11899 	 */
11900 	ASSERT_RTNL();
11901 	for_each_netdev_safe(net, dev, aux) {
11902 		int err;
11903 		char fb_name[IFNAMSIZ];
11904 
11905 		/* Ignore unmoveable devices (i.e. loopback) */
11906 		if (dev->netns_local)
11907 			continue;
11908 
11909 		/* Leave virtual devices for the generic cleanup */
11910 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11911 			continue;
11912 
11913 		/* Push remaining network devices to init_net */
11914 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11915 		if (netdev_name_in_use(&init_net, fb_name))
11916 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11917 
11918 		netdev_for_each_altname_safe(dev, name_node, tmp)
11919 			if (netdev_name_in_use(&init_net, name_node->name))
11920 				__netdev_name_node_alt_destroy(name_node);
11921 
11922 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11923 		if (err) {
11924 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11925 				 __func__, dev->name, err);
11926 			BUG();
11927 		}
11928 	}
11929 }
11930 
11931 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11932 {
11933 	/* At exit all network devices most be removed from a network
11934 	 * namespace.  Do this in the reverse order of registration.
11935 	 * Do this across as many network namespaces as possible to
11936 	 * improve batching efficiency.
11937 	 */
11938 	struct net_device *dev;
11939 	struct net *net;
11940 	LIST_HEAD(dev_kill_list);
11941 
11942 	rtnl_lock();
11943 	list_for_each_entry(net, net_list, exit_list) {
11944 		default_device_exit_net(net);
11945 		cond_resched();
11946 	}
11947 
11948 	list_for_each_entry(net, net_list, exit_list) {
11949 		for_each_netdev_reverse(net, dev) {
11950 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11951 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11952 			else
11953 				unregister_netdevice_queue(dev, &dev_kill_list);
11954 		}
11955 	}
11956 	unregister_netdevice_many(&dev_kill_list);
11957 	rtnl_unlock();
11958 }
11959 
11960 static struct pernet_operations __net_initdata default_device_ops = {
11961 	.exit_batch = default_device_exit_batch,
11962 };
11963 
11964 static void __init net_dev_struct_check(void)
11965 {
11966 	/* TX read-mostly hotpath */
11967 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
11968 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11969 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11970 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11971 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11972 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11973 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11974 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11975 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11976 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11977 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11978 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11979 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11980 #ifdef CONFIG_XPS
11981 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11982 #endif
11983 #ifdef CONFIG_NETFILTER_EGRESS
11984 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11985 #endif
11986 #ifdef CONFIG_NET_XGRESS
11987 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11988 #endif
11989 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11990 
11991 	/* TXRX read-mostly hotpath */
11992 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11993 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11994 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11995 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11996 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11997 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11998 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11999 
12000 	/* RX read-mostly hotpath */
12001 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12002 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12003 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12004 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12005 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
12006 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
12007 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12008 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12009 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12010 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12011 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12012 #ifdef CONFIG_NETPOLL
12013 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12014 #endif
12015 #ifdef CONFIG_NET_XGRESS
12016 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12017 #endif
12018 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
12019 }
12020 
12021 /*
12022  *	Initialize the DEV module. At boot time this walks the device list and
12023  *	unhooks any devices that fail to initialise (normally hardware not
12024  *	present) and leaves us with a valid list of present and active devices.
12025  *
12026  */
12027 
12028 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12029 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12030 
12031 static int net_page_pool_create(int cpuid)
12032 {
12033 #if IS_ENABLED(CONFIG_PAGE_POOL)
12034 	struct page_pool_params page_pool_params = {
12035 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12036 		.flags = PP_FLAG_SYSTEM_POOL,
12037 		.nid = cpu_to_mem(cpuid),
12038 	};
12039 	struct page_pool *pp_ptr;
12040 
12041 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12042 	if (IS_ERR(pp_ptr))
12043 		return -ENOMEM;
12044 
12045 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12046 #endif
12047 	return 0;
12048 }
12049 
12050 static int backlog_napi_should_run(unsigned int cpu)
12051 {
12052 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12053 	struct napi_struct *napi = &sd->backlog;
12054 
12055 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12056 }
12057 
12058 static void run_backlog_napi(unsigned int cpu)
12059 {
12060 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12061 
12062 	napi_threaded_poll_loop(&sd->backlog);
12063 }
12064 
12065 static void backlog_napi_setup(unsigned int cpu)
12066 {
12067 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12068 	struct napi_struct *napi = &sd->backlog;
12069 
12070 	napi->thread = this_cpu_read(backlog_napi);
12071 	set_bit(NAPI_STATE_THREADED, &napi->state);
12072 }
12073 
12074 static struct smp_hotplug_thread backlog_threads = {
12075 	.store			= &backlog_napi,
12076 	.thread_should_run	= backlog_napi_should_run,
12077 	.thread_fn		= run_backlog_napi,
12078 	.thread_comm		= "backlog_napi/%u",
12079 	.setup			= backlog_napi_setup,
12080 };
12081 
12082 /*
12083  *       This is called single threaded during boot, so no need
12084  *       to take the rtnl semaphore.
12085  */
12086 static int __init net_dev_init(void)
12087 {
12088 	int i, rc = -ENOMEM;
12089 
12090 	BUG_ON(!dev_boot_phase);
12091 
12092 	net_dev_struct_check();
12093 
12094 	if (dev_proc_init())
12095 		goto out;
12096 
12097 	if (netdev_kobject_init())
12098 		goto out;
12099 
12100 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12101 		INIT_LIST_HEAD(&ptype_base[i]);
12102 
12103 	if (register_pernet_subsys(&netdev_net_ops))
12104 		goto out;
12105 
12106 	/*
12107 	 *	Initialise the packet receive queues.
12108 	 */
12109 
12110 	for_each_possible_cpu(i) {
12111 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12112 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12113 
12114 		INIT_WORK(flush, flush_backlog);
12115 
12116 		skb_queue_head_init(&sd->input_pkt_queue);
12117 		skb_queue_head_init(&sd->process_queue);
12118 #ifdef CONFIG_XFRM_OFFLOAD
12119 		skb_queue_head_init(&sd->xfrm_backlog);
12120 #endif
12121 		INIT_LIST_HEAD(&sd->poll_list);
12122 		sd->output_queue_tailp = &sd->output_queue;
12123 #ifdef CONFIG_RPS
12124 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12125 		sd->cpu = i;
12126 #endif
12127 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12128 		spin_lock_init(&sd->defer_lock);
12129 
12130 		init_gro_hash(&sd->backlog);
12131 		sd->backlog.poll = process_backlog;
12132 		sd->backlog.weight = weight_p;
12133 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12134 
12135 		if (net_page_pool_create(i))
12136 			goto out;
12137 	}
12138 	if (use_backlog_threads())
12139 		smpboot_register_percpu_thread(&backlog_threads);
12140 
12141 	dev_boot_phase = 0;
12142 
12143 	/* The loopback device is special if any other network devices
12144 	 * is present in a network namespace the loopback device must
12145 	 * be present. Since we now dynamically allocate and free the
12146 	 * loopback device ensure this invariant is maintained by
12147 	 * keeping the loopback device as the first device on the
12148 	 * list of network devices.  Ensuring the loopback devices
12149 	 * is the first device that appears and the last network device
12150 	 * that disappears.
12151 	 */
12152 	if (register_pernet_device(&loopback_net_ops))
12153 		goto out;
12154 
12155 	if (register_pernet_device(&default_device_ops))
12156 		goto out;
12157 
12158 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12159 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12160 
12161 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12162 				       NULL, dev_cpu_dead);
12163 	WARN_ON(rc < 0);
12164 	rc = 0;
12165 
12166 	/* avoid static key IPIs to isolated CPUs */
12167 	if (housekeeping_enabled(HK_TYPE_MISC))
12168 		net_enable_timestamp();
12169 out:
12170 	if (rc < 0) {
12171 		for_each_possible_cpu(i) {
12172 			struct page_pool *pp_ptr;
12173 
12174 			pp_ptr = per_cpu(system_page_pool, i);
12175 			if (!pp_ptr)
12176 				continue;
12177 
12178 			page_pool_destroy(pp_ptr);
12179 			per_cpu(system_page_pool, i) = NULL;
12180 		}
12181 	}
12182 
12183 	return rc;
12184 }
12185 
12186 subsys_initcall(net_dev_init);
12187